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Abstract

It is well known that various amorphous solids have many universal properties.

One of them is the temperature dependence of the thermal conductivity. However,

the microscopic mechanism of the heat transfer above 20 K is still poorly understood.

Recent numerical simulations of amorphous silicon and silica show that vibrational

modes in the corresponding frequency range (called “diffusons”) are delocalized,

however they are completely different from low-frequency acoustic phonons.

In this work we present a stable random matrix model of an amorphous solid.

In this model one can vary the strength of disorder going from a perfect crystal

to extremely disordered soft medium without macroscopic rigidity. We show that

real amorphous solids are close to the second limiting case, and that diffusons

occupy the dominant part of the vibrational spectrum. The crossover frequency

between acoustic phonons and diffusons is determined by the Ioffe-Regel criterion.

Interestingly, this crossover frequency practically coincides with the boson peak

position. We also show that, as a function of frequency, the diffusivity and the

vibrational density of states of diffusons are practically constant. As a result,

the thermal conductivity is a linear function of temperature up to rather high

temperatures and then saturates. This conclusion is in agreement with numerous

experimental data.

Further, we consider a numerical model of amorphous silicon-like materials and

investigate the role of disorder for longitudinal and transverse vibrations. We also

show that the random matrix theory can be successfully applied to estimate the

vibrational density of states of granular jammed systems.

Keywords amorphous solids, vibrations, random matrices.
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Résumé

Il est bien connu que divers solides amorphes ont de nombreuses propriétés

universelles. L’une d’entre elles est la variation de la conductivité thermique en

fonction de la température. Cependant, le mécanisme microscopique du transfert de

chaleur dans le domaine de température supérieure à 20 K est encore mal compris.

Simulations numériques récentes du silicium et de la silice amorphes montrent que les

modes de vibration dans la gamme de fréquences correspondante (dits «diffusons»)

sont délocalisés. En même temps ils sont complètement différents des phonons

acoustiques de basse fréquence.

Dans ce travail, nous présentons un modèle stable de matrice aléatoire d’un solide

amorphe. Dans ce modèle, on peut faire varier le degré de désordre allant du cristal

parfait jusqu’au milieu mou extrêmement désordonné sans rigidité macroscopique.

Nous montrons que les solides amorphes réels sont proches du deuxième cas limite, et

que les diffusons occupent la partie dominante du spectre de vibration. La fréquence

de transition entre les phonons acoustiques et diffusons est déterminée par le critère

Ioffe-Regel. Fait intéressant, cette fréquence de transition cöıncide pratiquement

avec la position du pic boson. Nous montrons également que la diffusivité et la

densité d’états de vibration de diffusons sont pratiquement constantes en fonction

de la fréquence. Par conséquent, la conductivité thermique est une fonction linéaire

de la température dans le domaine allant à des températures relativement élevées,

puis elle sature. Cette conclusion est en accord avec de nombreuses données

expérimentales.

En outre, nous considérons un modèle numérique de matériaux de type de

silicium amorphe et étudions le rôle du désordre pour les vibrations longitudinales

et transverses. Nous montrons aussi que la théorie des matrices aléatoires peut

être appliquée avec succès pour estimer la densité d’états vibrationnels des systèmes

granulaires bloqués.

Mots clés solides amorphes, vibrations, matrices aléatoires.
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Introduction

Establishing the general properties of vibrations in amorphous solids (glasses) is

one of the key problems in the physics of disordered systems. Amorphous solids have

approximately the same local order of atoms as in crystals, but there is no long-range

order (Fig. 1). The disorder in atomic positions strongly modifies the macroscopic

properties such as the thermal conductivity [Eucken 1911; Berman 1949]. Fig. 2

shows the thermal conductivity of amorphous and crystalline SiO2.

The thermal conductivity of dielectrics is completely determined by transport

properties of vibrations. The thermal conductivity of a phonon gas was first obtained

by Debye [Debye 1914; Kittel 1949]

κ =
1

3
Cvl, (1)

where C is the specific heat, v is the sound velocity and l is the mean free path of

phonons. The thermal conductivity of nearly perfect crystals at high temperatures

Figure 1. A two-dimensional illustration of atomic order in crystalline (a) and

amorphous (b) SiO2. Lines show the direction of chemical bonds, dots and circles

are Si and O atoms respectively [Kittel 1949].
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Introduction 2

Figure 2. The thermal conductivity of crystalline and amorphous SiO2. Filled

symbols are the first results of Eucken [Eucken 1911]. Open symbols are more recent

Pohl’s results [Zeller and Pohl 1971; Raychaudhuri and Pohl 1982; Vandersande and

Pohl 1980; Cahill and Pohl 1987; Cahill and Pohl 1988]. The black bottom line is

the existing theory of the thermal conductivity of amorphous solids [Buchenau et al.

1992]. The straight red line shows the linear dependence (it will be obtained in

Section 2.4).

is κ ∝ 1/T (Fig. 2), which is related to umklapp processes (resulting from a small

anharmonicity). At small temperatures (much less than the Debye temperature)

the probability of umklapp processes is exponentially small. In this case, the mean

free path l is limited by the sample size L. According to the Debye law, the low-

temperature specific heat is C ∝ T 3 [Debye 1912]. Therefore, the low-temperature

thermal conductivity of crystals is κ ∝ T 3 (Fig. 2).

Amorphous solids have bond lengths and bond angles, which differ by ∼10%

from the crystalline values. However, the temperature dependence of the thermal

conductivity is completely different, and the difference can be more than four orders

of magnitude (Fig. 2). Other amorphous dielectrics have qualitatively the same

temperature dependence of the thermal conductivity (Fig. 3).

At low temperatures below 1 K, the low-frequency long-wave acoustical phonons

are well-defined excitations which transfer the heat in glasses. At these temperatures
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Figure 3. Comparison of the thermal conductivity of different amorphous

dielectrics: GeO2, Se, SiO2, solid varnish GE 7031, polymer PMMA [Zeller and

Pohl 1971].

the thermal conductivity κ(T ) ∝ T 2 is controlled by a resonant scattering of phonons

by two-level systems (TLS) [Hunklinger and Raychaudhuri 1986; Phillips 1987].

Between 4 K and 20 K the thermal conductivity κ(T ) saturates and displays a well-

known plateau [Zeller and Pohl 1971]. As was shown in [Buchenau et al. 1992], it can

be explained by a resonant scattering of phonons by quasilocal vibrations (QLV).

The QLV, together with TLS and phonons are vibrational excitations responsible

for many universal properties of glasses [Parshin 1994]. Above approximately 20 K

the thermal conductivity rises again (approximately linearly, κ ∝ T ) and finally

saturates at the level of one order of magnitude higher, at temperatures about

several hundred Kelvin [Cahill and Pohl 1987].

A microscopic mechanism of the heat transfer in glasses in the temperature range

above the plateau (from 20 K up to the glass transition temperature Tg ∼ 1400 K

[Brückner 1970]) is still poorly understood. As generally believed, the origin of

this second rise of the thermal conductivity (above the plateau) is not related to

acoustic phonons. However, the existing models (Einstein model and the model of

the minimum thermal conductivity) do not follow from the microscopic description

of atomic vibrations, and they have no κ ∝ T dependence [Cahill and Pohl 1988].

It was established long ago [Birch and Clark 1940; Kittel 1949; Graebner et

al. 1986], that in the temperature (frequency) range under consideration the mean

free path of acoustic phonons l becomes of the order of their wavelength λ (or
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Figure 4. The numerical calculations of the VDOS of the amorphous SiO2 using

molecular dynamics methods [Jin et al. 1993].

even smaller, of the order of interatomic distance). Correspondingly, the Ioffe-Regel

criterion for phonons [Ioffe and Regel 1960] becomes violated. Molecular dynamics

calculations confirmed the existence of such crossover for some real and model glasses

[Taraskin and Elliott 2000; Schober 2004] and disordered lattices [Schirmacher et al.

1998; Taraskin and Elliott 2002b].

In the regime of such strong scattering, the concept of plane waves (phonons)1

with a well-defined wave vector q becomes inapplicable. The question then arises:

what physical mechanism is responsible for the heat transfer in glasses in this

temperature range? The numerical simulations show that majority of the vibrational

modes in the corresponding frequency range are not localized [Jin et al. 1993;

Oligschleger 1999; Taraskin and Elliott 1997]. The vibrational density of states

(VDOS) of amorphous SiO2 in the corresponding frequency range is approximately

constant (Fig. 4). The same behavior for g(ω) was found in the soft-sphere glass

[Schober et al. 1993; Schober and Oligschleger 1996] and amorphous Se [Oligschleger

and Schober 1993; Oligschleger and Schön 1997]. In other glasses, the VDOS has a

broad maximum and then decays to zero [Hafner and Krajc̆́ı 1994; Meshkov 1997;

Ballone and Rubini 1995; Abraham and Bagchi 2010].

At the same time, delocalized vibrations in glasses of a new type, different

from plane wave-like phonons, were introduced. They were called diffusons [Allen

and Feldman 1989; Allen and Feldman 1993; Feldman et al. 1993; Feldman et al.

1999; Allen et al. 1999]. These are vibrations spreading through the system not

1The notion of “phonons” has different meanings in different communities. We use the notation

phonons for vibrations, which can be described by a wavevector q and a finite mean free path l (as

a result, there is an uncertainty in the wavevector ∆q ∼ 1/l) if ql . 1.
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ballistically, as phonons (on distances of the order of mean free path) but by means

of diffusion. It is an important class of excitations which occupy in glasses the

dominant part of the spectrum [Allen et al. 1999]. In these papers, the hypothesis

was put forward that the boundary between phonons and diffusons is determined

by the Ioffe-Regel criterion for phonons. Since diffusons are delocalized excitations,

they may be responsible for the thermal conductivity of glasses above the plateau.

A similar conclusion was made by the authors of [Sheng and Zhou 1991; Sheng

et al. 1994]. They considered the case of strong scattering of phonons in disordered

lattices with a significant fraction of randomly located missing sites, but which

is still far from the percolation threshold. It was shown that, in contrast to the

electronic case, the Ioffe-Regel criterion is inaccurate in the prediction of phonon

localization. Instead of localization, the vibrational transport above the Ioffe-Regel

threshold becomes diffusive with approximately constant energy diffusivity D(ω).

The diffusivity was calculated by numerical solution of the Newton equations for

particle displacements. Similar calculations but for real glasses were done in the

papers [Feldman and Kluge 1995; Yu and Leitner 2006] using molecular dynamics

methods. The difference between electron and phonon localization is related to

a very strong scattering of electrons by perturbations in electrostatic potentials

associated, say, with structural disorder [Taraskin and Elliott 1999].

Recent experiments of the inelastic x-ray scattering in glasses [Sette et al. 1998;

Ruocco and Sette 2001] show that vibrations in the same frequency range have a

linewidth Γ ∝ q2. This unusual behavior still has no theoretical explanation. The

same dependence was found by molecular dynamics simulations of amorphous silicon

[Christie et al. 2007].

Another universal property of amorphous materials is the so-called boson peak.

According to the Debye prediction, the low-frequency VDOS g(ω) ∝ ω2. However,

the amorphous materials show an excess contribution at low frequencies [Phillips

1981]. The reduced VDOS g(ω)/ω2 as a function of ω shows a peak which can be

detected experimentally by methods like inelastic neutron scattering. Usually, the

position of the boson peak ωb is correlated with the Ioffe-Regel crossover frequency

ωir, see [Gurevich et al. 1993; Parshin and Laermans 2001; Rufflé et al. 2006; Rufflé

et al. 2008; Shintani and Tanaka 2008] and references therein.

Another disordered system with rich mechanical and vibrational properties is the

jammed granular system with repulsive forces between the particles [Liu and Nagel

1998]. The diffusons above the Ioffe-Regel crossover were also identified in jammed

granular systems with repulsive forces between the particles [Xu et al. 2009; Vitelli

et al. 2010]. They also have diffusivity which is independent of frequency ω. It was

calculated making use of the Kubo-Greenwood formula for the thermal conductivity

derived in [Allen and Feldman 1993]. In jammed systems, the Ioffe-Regel crossover
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frequency ωir can vary. It is shifted to zero when the system approaches a so-called

jamming transition point, and rigidity goes to zero.

Therefore, as we believe, it is important to study properties of diffusons and the

Ioffe-Regel criterion systematically. They bring a new physics to our understanding

of vibrational properties in strongly disordered systems and energy/heat transfer in

glasses. To study these properties, we should have a model being sufficiently simple

but still allowing to describe all of them.

This work is organized as follows. In Chapter 1 we present a stable random

matrix model of an amorphous solid. Starting from general properties of the

dynamical matrix, we obtain a disordered medium with random bond strength

between atoms on a simple cubic lattice. In this model, we can vary the strength of

disorder between two limiting cases. One limit corresponds to extremely disordered

soft medium without macroscopic rigidity. In the other limit one has a perfect

crystal. We also compare our results with classical results of the random matrix

theory.

In Chapter 2 we analyze transport properties of vibrations in the suggested

model amorphous solid. We numerically calculate different physical quantities such

as the dynamical structure factor, the Ioffe-Regel crossover and the diffusivity of

the vibrational energy. As a result, we obtain the thermal conductivity, which is in

agreement with the experimental data. We also obtain general scaling relations and

compare them with ones for jammed granular systems.

In Chapter 3 we consider a Stillinger-Weber model of an amorphous silicon. We

show that transverse and longitudinal vibrations in silicon-like amorphous materials

have sufficiently different properties (the VDOS, the dynamical structure factor, the

diffusivity and other related quantities). To emphasize this difference we study the

effect of the local bending rigidity, which mostly affect the transverse vibrations.

In Chapter 4 we show that the random matrix theory can be successfully applied

to estimate the vibrational density of states. As an example, we consider jammed

granular systems near the jamming transition.

In the Appendices, we present some important technical information. In

Appendix A we present an original derivation of some classical results of the random

matrix theory, including the density of states and the level statistics of the Wishart

ensemble. In Appendix B we consider the kernel polynomial method. It is a very

efficient numerical method for eigenvalue analysis, which can be applied to dynamical

matrices. In Appendix C we present a general method of the decomposition of the

VDOS to its transverse and longitudinal components.



Chapter 1

The random matrix approach

In this Chapter we consider disordered lattices with a strong force-constant

disorder, described by a stable positive definite random dynamical matrix AAT

having positive eigenvalues only. We show that the vibrational density of states g(ω)

is not zero at ω = 0 and phonons cannot propagate through the lattice. We explain

this by the fact that the system is extremely soft, and the macroscopic rigidity is

zero. The participation ratio P (ω) indicates that all modes with an exception of

a high-frequency part are delocalized. Further investigation shows that all of them

are diffusons. In Section 1.8 we introduce slightly additively deformed dynamical

matrix AAT +µM0 which has phonon-like excitations at small frequencies. Here the

positive definite matrix M0 (random or non-random) is independent of A and µ is

a parameter of the model which can vary in the interval 0 6 µ < ∞.

1.1 Introduction

Masses of atomic nuclei are much larger than electron masses, so we can separate

the electron motion and the motion of nuclei. Therefore, motion of atoms can be

described by the classical Newton’s equation of motion

mir̈iα = − ∂U

∂riα
(1.1)

where mi is the mass of ith atom, α indicates spatial direction and U is the total

potential energy, which depends on the atomic positions r1, . . . , rN . In the solid

state each atom vibrates around a certain equilibrium position Ri. In this case, we

can linearize the equation of motion (1.1)

üiα = −
∑

jβ

Miα,jβujβ (1.2)

7



Chapter 1. The random matrix approach 8

with atomic displacements ui =
√
mi(ri −Ri) and the dynamical matrix

Miα,jβ =
1

√
mimj

∂2U

∂riα∂rjβ
. (1.3)

The linear equation (1.2) corresponds to the eigenvalue problem

ω2uiα =
∑

jβ

Miα,jβujβ (1.4)

where ε = ω2 are eigenvalues of the dynamical matrix M .

In structural glasses in many cases (as, for example, in vitreous silica or

amorphous silicon) a mass disorder is not important and we usually deal with

a force-constant disorder. It is related to fluctuations of valence bond lengths

and valence bond angles because of an absence of crystalline ordering. Since

valence forces depend exponentially on the distances between the atoms, they

can experience strong fluctuations. Due to positional disorder, there are also

fluctuations of long distance Coulomb forces in non-covalent materials. Thus, the

force-constant disorder plays an essential role in glassy dynamics. Therefore, one

can say that dynamical matrix of an amorphous system has random elements with

some non-trivial correlations between them. The main restriction is the mechanical

stability of the whole system. All eigenfrequencies ω in such a system are real,

and the dynamical matrix M is positive definite (it is also real and symmetric by

the definition (1.4)). However, not every random symmetrical dynamical matrix

is positive definite. We will solve this problem using a following mathematical

approach.

Every real symmetric and positive definite matrix M can be presented in the

form [Bhatia 2007]

M = AAT (1.5)

where A is some real (not necessarily symmetric nor square) matrix. And, vice

versa, for every real matrix A the product AAT is a positive definite symmetric

matrix [Bhatia 2007]. One may assume that in amorphous solids the dynamical

matrix has a form M = AAT , where correlations between elements of the matrix A

are less important than correlations between elements of the matrix M .

A vectorial character of vibrations in real glasses makes the issue be more

complicated, so in this and in the next Chapters we will use a so-called scalar

model, where we for simplicity omit indices α and β. One can imagine that

atoms can vibrate along x direction only, and polarization of the modes is of no

importance. Different scalar models were successfully used in glassy physics in

the past [Schirmacher et al. 1998; Mart́ın-Mayor et al. 2000; Grigera et al. 2002;
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Kantelhardt et al. 2001]. In this model, the dynamical matrix M is N ×N matrix

and the matrix A is N ×K rectangular matrix.

Let us start the analysis from a simple case where all elements of the N × K

matrix A (they have dimension of s−1) are independent and identically distributed

random numbers with

〈Aij〉 = 0 and 〈A2
ij〉 = Ω2. (1.6)

It is so-called Wishart random matrix ensemble [Wishart 1928]. In the limit

N,K → ∞,
K

N
= const (1.7)

eigenvalues εi of the matrix M = AAT have the Marĉhenko-Pastur distribution

[Marĉhenko and Pastur 1967] (see also Appendix A). The Wishart ensemble was

investigated in the theory of financial markets [Plerou et al. 2002], complex networks

[Barthélemy et al. 2002], and wireless communications [Tulino and Verdú 2004]. As

far as we know, for vibrations in disordered solids this approach was not used so far

(as an exception see the paper [Gurarie and Chalker 2003]). The Marĉhenko-Pastur

distribution corresponds to the following vibrational density of states (VDOS)

g(ω) =
1

πω2
0ω

√

(ω2 − ω2
−)(ω

2
+ − ω2), ω− < ω < ω+ (1.8)

where

ω± = ω0

∣

∣

∣

√

K/N ± 1
∣

∣

∣ , ω0 =
√
NΩ. (1.9)

If K < N there is N − K zero eigenvalues and the Marchenko-Pastur law (1.8)

contains a delta-function term (1−K/N)δ(ω). In Appendix A we present a rather

simple derivation of Eq. (1.8). If K = N then the VDOS has a quarter circle form

g(ω) =
1

πω2
0

√

4ω2
0 − ω2, 0 < ω < 2ω0, (1.10)

which is similar to the well known Wigner semicircle [Wigner 1955]. This VDOS is

approximately constant in a wide frequency range. Real and model amorphous

systems also have a constant VDOS in some frequency range [Jin et al. 1993;

Schober and Oligschleger 1996; Oligschleger and Schön 1997; Hafner and Krajc̆́ı

1994; Meshkov 1997; Ballone and Rubini 1995; Abraham and Bagchi 2010]. The

corresponding distribution of eigenvalues ε = ω2 is p(ε) ∝ 1/
√
ε. This singular-like

behavior was observed in [Taraskin and Elliott 2002a] and [Huang and Wu 2009]

(see Fig. 2 of this paper). Therefore, we will consider the case K = N below. The

general case K 6= N will be discussed in Chapter 4.
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1.2 Sparse matrices

In the random medium model described by the Wishart ensemble, each of the

elements Mij of the dynamical matrix M is not zero

Mij =
∑

k

AikAjk. (1.11)

Obviously, this corresponds to the case of long-range interaction when each atom is

connected by random forces with every atom in the system. However, this model is

not justified from the physical point of view. In amorphous materials, only closely

spaced atoms are bonded by elastic forces. Therefore, the more real case is when the

number of nonzero elements m in each row of the matrix M is small as compared

to N and does not depend on N . As a result, the matrix M is sparse. Usually, such

sparse matrices arise in computer calculations of atomic vibrations in amorphous

solids (and liquids). For example, in the case of the short-range order for a simple

cubic lattice with the interaction only between nearest neighbors and the vector

character of vibrations (in three-dimensional space), we have m = 18 + 3 = 21. For

other lattices we obtain m = 24+18+3 = 45 for a bcc lattice and m = 36+18+3 = 57

for an fcc lattice. In the last two cases, we took into account all interactions in the

first and second coordination shells.

Therefore, we get a more real case if we consider a sparse matrix A where each

row contains only n nonzero matrix elements (with n ≪ N). Then, each row of the

matrix M = AAT will have approximately m = n2 nonzero elements. At n2 ≪ N ,

this corresponds to the case of a sparse matrix M .

If the nonzero elements of the matrix A are chosen randomly and n ≫ 1 then

the VDOS is also described by the Eqs. (1.8) – (1.10) with

ω0 =
√
nΩ. (1.12)

If n ≫ 1 we can use the obtained quarter-circle VDOS (1.10) by substituting the

variance nΩ2/N instead of the variance Ω2; that is

g(ω) =
N

πnΩ2

√
4nΩ2 − ω2, 0 < ω < 2Ω

√
n. (1.13)

At the same time we can take n ≪ N . This means that, at N ≫ n ≫ 1 the

quarter-circle distribution for the density of states g(ω) is still valid even in the case

when nonzero elements occupy only a small part of the matrix A. Such form of the

distribution in our model is a universal law and does not depend on the distribution

density ρ0(aij), the size of the system N , and the number of nonzero elements n for

sufficiently large values of n.
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Figure 1.1. VDOS of sparse 1000× 1000 dynamical matrices for different values of

n. The line n = ∞ is the theoretical prediction (1.13). The frequency has units of Ω.

A numerical analysis confirms that with an increase of n the density of states

g(ω) actually approaches quarter-circle distribution (for n ≫ 1) and, in this case,

the inequality n ≪ N is possible (see Fig. 1.1). Already for values of n of the

order of 10 and large values of N , we obtain the density of vibrational states that

only slightly differs from the quarter-circle distribution. In this case, the vibrational

spectrum (normalized to unity) does not depend on the size of the system N .

The symmetric sparse random matrix M = AAT considered in this Section is

topologically equivalent to a tree (closed to itself on the system size) so that the

number m = n2 specifies the order of branching or the coordination number of this

tree. However, the random bond structure in amorphous systems (glasses) more

likely corresponds to the short-range order in the atomic arrangement, topologically

similar to the bond structure existing in the corresponding crystals. It is clear that

topologically the crystal structure differs fundamentally from the tree structure. In

the tree structure, there are no small closed loops which are present in the lattice.

In the conclusion of this section, it should be noted that the singularity in the

density of states g(ω) at ω → 0 manifests itself for small values of n (see Fig. 1.1

for n = 5). Similar singularity also exists in the density of eigenvalues the sparse

random Hamiltonian H [Dyson 1953; Rodgers and Dominicis 1990; Evangelou 1990;

Evangelou 1992]. Taking into account that this singularity was first discovered in

the density of vibrational states of a disordered one-dimensional chain by Dyson

[Dyson 1953], it sometimes is called the Dyson singularity. It has been believed

that this singularity is an indication of strong fluctuations in a random medium and

related quasi-localization of modes [Evangelou 1992].
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Figure 1.2. Tree topology.

Figure 1.3. A simple cubic

lattice.

1.3 Cubic lattice with random bonds

Our purpose in this section is to construct a simple random matrix model of

an amorphous system with certain physical properties: this structure should have

a given topology of bonds, and the total potential energy U should not depend

on the translation of the whole system. The latter property is necessary (but not

enough as we will see below) to the propagation of low-frequency acoustic phonons.

It corresponds to the sum rule in the dynamical matrix (here and below we assume

that all masses mi = m are equal) [Taraskin and Elliott 2002b; Kühn and Urmann

2000]
∑

i

Mij =
∑

j

Mij = 0. (1.14)

Indeed, in this case the potential energy is

U =
m

2

∑

ij

Mijuiuj = −m

2

∑

i,j<i

Mij(ui − uj)
2. (1.15)

As soon as the dynamical matrix M is fixed, the exact atomic equilibrium

positions are no longer important for dynamics on a long length scales much

bigger than the interatomic distances. They do not enter the dynamical matrix

M . Therefore, it is reasonable to consider harmonic lattice models involving only

force-constant disorder.

As an example, we consider a simple cubic lattice with N = L3 atoms, a lattice

constant a0, and random bond strength between neighbor atoms. In all other aspects

our system remains random without any periodicity (except for the topology of the

bonds). The atoms have coordinates (a0ix, a0iy, a0iz) and each index iα can take on

values from 1 to L. Let us introduce the integer index i = ix+L(iy−1)+L2(iz−1).

Each atom in the lattice is characterized by its unique index i running from 1 to N .
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Figure 1.4. Schematic diagram illustrating the interaction of atoms in a cubic

lattice. Shown are atoms interacting with the central (black) atom with random

stiffness. Different colors mark random bonds with different stiffness distribution.

In total, the central atom interacts with 24 surrounding atoms (nearest and next

nearest neighbors).

Let us now construct a corresponding random matrix A. The element Aij is

random and nonzero if the ith and jth atoms are nearest neighbors. Non-diagonal

elements Aij and Aji are statistically independent of each other (matrix A is non-

symmetric). All other elements Aij are equal to zero except the diagonal element

Aii = −
∑

j 6=i

Aji. (1.16)

Then according to Eq. (1.11), the Eq. (1.14) will also be satisfied. As a result, for

the simple cubic lattice, we obtain n = 7 nonzero elements in each row and in each

column of the matrix A. In the dynamical matrix M = AAT the element Mij will

be nonzero if ith atom will be nearest or next nearest to the jth atom (or it is the

same atom for i = j). Fig. 1.4 shows the atoms interacting with the central (black)

atom.

We calculated the density of vibrational states g(ω) for this cubic lattice. The

mean value of nonzero elements of the matrix A was taken equal to zero 〈Aij〉 = 0

and the variance was taken to be 〈A2
ij〉 = Ω2 (Gaussian distribution). The results

of the numerical analysis are shown by solid line in Fig. 1.5.

According to the Debye law, the VDOS of acoustic phonons in the limit ω → 0

is

gph(ω) ∝
ωd−1

vd
, (1.17)
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Figure 1.5. VDOS for 1d, 2d, 3d, and 6d simple cubic lattices. The system size is

N = 10001, 322, 103, 36 respectively. The frequency has units of Ω.

where v is the sound velocity. However, Fig. 1.5 shows a weak (logarithmic)

singularity in the VDOS at ω → 0. So we can suppose that the system under

consideration has no acoustic phonons despite the sum rule (1.14). To elucidate

a spatial structure of the eigenmodes for the matrix M = AAT , we consider as

an example a two-dimensional square lattice with N = 400 × 400 particles and

calculate eigenvector ei(ωmin) (i = 1, 2, ..., N) for the lowest nonzero frequency ωmin

in the system. The result is shown in Fig. 1.6. Particles with positive and negative

displacements are shown by white and black dots correspondingly. As one can see

from the figure, the mode is delocalized. Its spatial structure is random (fractal)

and has nothing to do with a plane wave. A similar picture takes place in the 3d

case. In Section 2.3.1 we will show that in the limit ω → 0 the structure factor has

power-law behavior, which confirms the fractal structure of a such low-frequency

mode.

1.4 Participation ratio

One of the most important problems in the disordered systems is the problem of

modes localization. As is well known from the seminal paper of Anderson [Anderson

1958], the sufficiently strong disorder in a system leads to localization of elementary

excitations. To estimate the inverse strength of mode localization one usually

introduce the participation ratio. As a rule, the participation ratio is defined by
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Figure 1.6. The spatial eigenmode structure of random matrix M = AAT for the

lowest frequency ωmin in two-dimensional square lattice 400× 400.

the expression

P (ω) =
1

N
N
∑

i=1

e4i (ω)

, (1.18)

where ei(ω) is the ith coordinate of the eigenvector corresponding to the eigenvalue

ω2 of the dynamical matrix M . In the case of completely localized mode

|e1| = 1, e2 = e3 = ... = eN = 0, P ∼ 1

N
(1.19)

the participation ratio P (ω) decreases with the increase of the system size. In the

case of completely delocalized mode

|e1| = |e2| = ... = |eN | =
1√
N
, P ∼ 1, (1.20)

the participation ratio does not depend on the system size N and is of the order of

unity.

We performed the numerical calculations of the participation ratio for vibrational

excitations in the cubic lattice with random bonds, which was introduced in the

previous Section. Fig. 1.7 shows the result for lattices in different dimensions. Three-

dimensional cubic lattice has P (ω) ≈ 0.2, which does not depend on N . Therefore,

almost all vibrations (except a small high-frequency range) are delocalized, but

none of them are plane waves. According to the terminology proposed by Allen et

al. [Allen et al. 1999] they are referred to as the diffusons. In Section 2.3 we will

show that these vibrations spread by mean of diffusion.
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Figure 1.7. The numerical calculation of the participation ratio for cubic lattices in

different dimensions d. a) N ≈ 1000 atoms (10001, 322, 103, 36) b) N ≈ 16000 atoms

(160001, 1262, 253, 56). The black horizontal line corresponds to the theoretical value

P (ω) = 1/3. The frequency has units of Ω.

Qualitatively our plot P (ω) coincides well with the results of the numerical

calculations of the participation ratio for amorphous SiO2 using molecular dynamics

methods [Jin et al. 1993] in the frequency range 0 < ω < 120 meV (Fig. 1.8).

It is interesting that in the two-dimensional (square) and one-dimensional lattices

with random bonds (constructed in a similar manner) the participation ratio is one

order of magnitude smaller than that in the cubic lattice (Fig. 1.7). By analogy

with disordered electronic systems [Abrahams et al. 1979], this can indicate to the

localization of vibrational modes in these low-dimensional structures.

The numerical values of the participation ratio of vibrational modes P (ω) in

various glasses according to the data obtained by molecular dynamics methods, as

a rule, are in the range 0.2 . P (ω) . 0.6 [Jin et al. 1993; Schober and Oligschleger

1996; Schober et al. 1993; Oligschleger and Schober 1993; Oligschleger and Schön

1997; Hafner and Krajc̆́ı 1994; Meshkov 1997; Ballone and Rubini 1995; Abraham

and Bagchi 2010]. This is in good agreement with the results of the random matrix

theory. For example, by assuming that the eigenvectors ei(ω) (i = 1, 2, ..., N) of the

random matrix M = AAT are unit vectors in the N -dimensional space

N
∑

i=1

e2i (ω) = 1, (1.21)

which are isotropically oriented in all possible directions, the quantity r = e2i (ω) will

be distributed according to the Porter-Thomas law [Haake 2001]

p(r) =

√

N

2πr
exp

(

−Nr

2

)

. (1.22)
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Figure 1.8. The numerical calculations of the participation ratio of the amorphous

SiO2 using molecular dynamics methods [Jin et al. 1993].

As a result, we have

〈

e2i (ω)
〉

= 〈r〉 = 1

N
,

〈

e4i (ω)
〉

=
〈

r2
〉

=
3

N2
(1.23)

and according to Eq. (1.18) the participation ratio is

P (ω) = 1/3. (1.24)

Fig. 1.7 shows that the participation ratio approaches to the theoretical value 1/3

with the increase of the space dimensionality.

In the literature [Schober and Oligschleger 1996], there is one more definition of

the participation ratio for the vector model (in contrast to the above scalar model)

P3(ω) =
1

N
N
∑

i=1

(

3
∑

α=1

e2iα(ω)

)2 , (1.25)

where index i indicates the index number of the atom (i = 1, 2, ..., N) and the index

α stands for the Cartesian projection of the displacement of the ith atom onto the

α (α = x, y, z) axis. In this case, under the assumption that the unit vectors eiα(ω)

are isotropically distributed in the 3N -dimensional space we have in analogy with

Eqs. (1.23)

〈

e2iα(ω)
〉

= 〈r〉 = 1

3N
,

〈

e4iα(ω)
〉

=
〈

r2
〉

=
3

(3N)2
=

1

3N2
. (1.26)
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Figure 1.9. Level statistics for the simple cubic lattice with random bonds with

N = 163 atoms for different frequencies. The level statistics 0 < ω < 4.7Ω (orange

line) is indistinguishable from the theoretical prediction (1.32) (dashed line). Dotted

line is Poisson statistics (1.30).

Since
〈

(

e2ix + e2iy + e2iz
)2
〉

=
〈

e4ix
〉

+
〈

e4iy
〉

+
〈

e4iz
〉

+2
(〈

e2ix
〉 〈

e2iy
〉

+
〈

e2ix
〉 〈

e2iz
〉

+
〈

e2iy
〉 〈

e2iz
〉)

,

(1.27)

then using Eq. (1.26) we find that the participation ratio P3(ω) (1.25) is equal

P3(ω) = 3/5 = 0.6. (1.28)

In this sense, the values of P (ω) = 1/3 for the scalar model and P3(ω) = 0.6 for

the vector model are equivalent to each other from the standpoint of the random

matrix theory. The value of P3(ω) ≈ 0.6 was obtained in numerical calculations

of the participation ratio of vibrational modes for the soft-sphere glass [Schober

and Laird 1991]. Finally, making use of Eqs. (1.26) it can be shown that the

participation ratios PO ≈ PSi ≈ 0.3 calculated numerically by Jin et al. [Jin et

al. 1993] for amorphous SiO2 are also in good agreement with the theoretical values

PO = PSi = 1/3 that follows from formula (18) of this work. Summarizing we can

conclude that participation ratio calculated in different papers for different glasses

is in good agreement with predictions of the random matrix theory.

1.5 Levels statistic

The level statistics is another powerful criterion that makes it possible to judge

about localization or delocalization of vibrational modes. If the modes are localized,
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Figure 1.10. The molecular dynamics calculations of the statistics of vibrational

levels for amorphous clusters [Sarkar et al. 2004]. The line is the theoretical

prediction (1.32).

their frequencies are randomly distributed over the frequency axis according to the

Poisson distribution law without any correlation with each other. For quantitative

description let us introduce the normalized difference between the vibrational

eigenfrequencies

s =
∆ω

〈∆ω〉 , (1.29)

where ∆ω is the distance between the two neighboring frequencies that corresponds

to the frequency ω and 〈∆ω〉 is the mean distance between these frequencies. Then

for localized modes the distribution function can be presented in the form

Z(s) = exp(−s). (1.30)

When the modes are delocalized the repulsion effect takes place and Z(s) ∝ s

for small values of s ≪ 1. The level statistics of the Wishart ensemble (and the

Wigner ensemble as well) is approximately

ZW (s) ≈ π

2
s exp

(

−π

4
s2
)

, (1.31)

It is so called Wigner surmise [Haake 2001]. The precise form of Z(s) can be written

as [Forrester and Witte 2000]

Z(s) =
d2

ds2
exp

(

−
∫ (πs/2)2

0

σ(t)

t
dt

)

(1.32)

where σ(t) is the solution of the nonlinear differential equation

(tσ′′)2 + σ′(σ − tσ′)(4σ′ − 1)− 1

4
(σ′)2 = 0 (1.33)
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Figure 1.11. A schematic representation of the Young modulus measurement for a

system with N = 53 atoms.

with an asymptotic behavior

σ(t → 0) =
1

π
t1/2 +

2

π2
t+

(

4

π3
− 1

3π

)

t3/2. (1.34)

We have calculated numerically the level statistics for the dynamical matrix

of the simple cubic lattice with random bonds. The level statistics for different

frequencies is presented in Fig. 1.9. In a wide frequency range we have Z(s) ∝ s

for small s. In the frequency range 0 < ω < 4.7, the result is indistinguishable

from Eq. (1.32). As was mentioned above, this statistics corresponds to the case of

delocalized modes. Therefore, we conclude that the majority of vibrational modes

in our system are delocalized. This is in a good agreement with the data presented

in Fig. 1.7 for the participation ratio P (ω). In conclusion, we note that our results

agree well with the molecular dynamics calculations of the statistics of vibrational

levels for amorphous clusters (Fig. 1.10).

1.6 Young modulus and the absence of

acoustic phonons

Let us consider the difference between the VDOS (Fig. 1.5) and the Debye

prediction (1.17). In the three-dimensional case and the scalar model we have

gph(ω) =
a30
2π2

ω2

v3
(1.35)

where a0 is the lattice constant, v is the sound velocity. The VDOS is normalized

to unity, and the coefficient a30 indicates a volume associated with each degree of

freedom. According to the standard textbook formula of the macroscopic elasticity

theory for isotropic medium (see Eq. 5.2 in [Landau and Lifshitz 1986]), Young
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Figure 1.12. The Young modulus (in units of mΩ2/a0) averaged over 1000

realizations for different system sizes.

modulus is given by E = σxx/uxx. Here σxx is the stress, and uxx is the strain.

The component uxx gives the relative lengthening of the sample. The sound velocity

depends on the Young modulus as

v =

√

E

ρ0
(1.36)

where the mass density is ρ0 = m/a30.

In modeling of amorphous solids, the standard method to calculate the Young

modulus is to use Irving-Kirkwood stress tensor formula [Irving and Kirkwood 1950].

However, it is difficult to implement this procedure in our case of strong local

fluctuations of elastic springs when microscopic displacement field u(r) is not a

differentiable function of equilibrium particle positions. Therefore, to avoid these

difficulties we used a direct numerical method. We apply the force f0 to each atom

on the right side and the force −f0 to each atom on the left side (Fig. 1.11). Since

Newton equations are linear, the final result is independent of the value of the force

f0. In other two directions we use the periodic boundary conditions. In this case,

the stress is

σxx =
f0
a20

, (1.37)

and the strain is

ξ =
1

a0L2(L− 1)

(

∑

r

ur +
∑

l

ul

)

=
ūr − ūl

a0(L− 1)
, (1.38)

where ul and ur are the displacements of the particles on the left and the right

side. Their mean values are denoted by ūr and ūl respectively. The resulting Young
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Figure 1.13. The distribution of Young modulus (in units of mΩ2/a0) for

105 different realizations of the system. The results for different system sizes

are almost indistinguishable from each others. The black line is the exponential

distribution (1.41).

modulus is

E =
σxx

uxx

=
f0(L− 1)

a0(ūr − ūl)
. (1.39)

To avoid confusion, we remind that we are using here a scalar version of the elasticity

theory. Therefore, all forces in the lattice are parallel (or antiparallel) to the particle

displacements.

Numerical calculations show that the Young modulus strongly fluctuates: its

value is sufficiently different for different realizations of the system. The mean value

of the Young modulus decreases with the system size as (Fig. 1.12)

〈E〉 ∝ 1

N

mΩ2

a0
. (1.40)

In the thermodynamical limit (N → ∞) the Young modulus is 0, i.e. the

macroscopic rigidity is 0. Therefore, the sound velocity v is also 0 (Eq. (1.36)),

acoustic phonons cannot propagate, and the Debye prediction (1.35) is not applicable.

The distribution of the measured Young moduli is shown in Fig. 1.13. It has an

exponential form

ρ(E) =
αNa0
mΩ2

exp

(

−αNa0
mΩ2

E

)

, α = 0.39. (1.41)

The same distribution holds not only for a cubic sample but also for any rectangular

parallelepiped sample. The result for 20× 15× 10 sample is presented in Fig. 1.13.

The relative fluctuations of the Young modulus do not decrease with the system
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Figure 1.14. a) Non-affine displacements of the surface atoms (in arbitrary units)

for N = 203 sample. b) The distribution of displacements.

size N
√

〈(

E − 〈E〉
)2〉

〈E〉2 = 1. (1.42)

The fluctuations of displacements of the edge atoms are much larger than the mean

displacement, and about 35% of atoms have displacements, which are opposite to

the force (Fig. 1.14). Therefore, we cannot apply the elasticity theory to the system

under consideration because we cannot introduce a strain as a smooth function of

the coordinate.

1.7 Distribution of elements of

the dynamical matrix

Let us consider why the Young modulus is zero. The macroscopic rigidity

depends on the microscopical atomic interactions. We have shown that each atom

interacts with 24 surrounding atoms in the three-dimensional case (Fig. 1.4). For

clarity, we now consider the two-dimensional analog, where each atom interacts with

12 surrounding atoms (Fig. 1.15).

In Section 1.3 we defined matrix elements of the dynamical matrix M = AAT .

Matrix elements between the central atom in Fig. 1.15 and its nearest neighbors
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Figure 1.15. A schematic diagram illustrating the interaction of atoms in a square

lattice. It is a two-dimensional analog of Fig. 1.4.

have a form

M01 =
∑

k

A0kA1k = A00A10 + A01A11. (1.43)

The diagonal elements A are defined by the sum rule (1.14)

A00 = −(A10 + A20 + A30 + A40), (1.44)

A11 = −(A91 + A51 + A61 + A01). (1.45)

From Eq. (1.43), we get

M01 = −A2
10 − A2

01 − A10(A20 + A30 + A40)− A01(A91 + A51 + A61). (1.46)

Since averaged values 〈Aij〉 = 0 and different non-diagonal matrix elements Aij are

statistically independent of each other, the average value 〈M01〉 is determined by the

first two quadratic terms in Eq. (1.46). As a result, it is non-zero and negative. It

corresponds to positive average elastic spring k01 = −M01 between particles 0 and 1

〈k01〉 = −m

a0
〈M01〉 =

m

a0
〈A2

10〉+
m

a0
〈A2

01〉 =
2mΩ2

a0
. (1.47)

According to Gaussian distribution of Ai 6=k, there is a probability (1/4 in two

dimensions and (1− 1/
√
6)/2 ≈ 30% in three dimensions) that the spring constant

is negative k01 < 0. All the aforesaid is valid for other nearest neighbor matrix

elements M02, M03, and M04.

The negative spring constant (“negative spring”) means unstable spring between

two atoms: it expands after initial stretching and shrinks after initial contraction.

However, the whole system is stable because the dynamical matrix M = AAT is
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Figure 1.16. Distributions of random elastic spring constants (in units of mΩ2/a0)

in 3d simple cubic lattice. The parameter µ will be defined in Section 1.8. Spring

constants k05 and k09 do not depend on µ.

positive definite and there are always positive springs, which stabilize the system.

The effect of negative spring constants on atomic vibrations was discussed in different

papers [Schirmacher et al. 1998; Dederichs et al. 1973; Oshima et al. 1986; Erwin

et al. 1999; Rösch and Gunnarsson 2004; Mart́ın-Mayor et al. 2000; Taraskin et al.

2001].

The matrix elements between next nearest neighbors are

M05 =
∑

k

A0kA5k = A01A51 + A04A54, (1.48)

M09 =
∑

k

A0kA9k = A01A91. (1.49)

The distributions of these elements are symmetrical and in average we have 〈M05〉 =
0 and 〈M09〉 = 0. Therefore, the average spring constant of these bonds are zero,

and there is 50% probability of negative springs. The same is valid for 6 other next

nearest neighbor matrix elements M06, M07, M08 and M0,10, M0,11, M0,12.

In the 3d case for simple cubic lattice, there are 6 springs of the type M01, 12

springs of the type M05 and 6 springs of the type M09. As a result, all together

we have 24 particles interacting with the central black particle. All these 24 spring

constants can be either positive or negative but to ensure the mechanical stability

of the whole system they are correlated with each other in a rather tangly way.

Distributions of different spring constants are shown in Fig. 1.16. The

distribution of k01 is asymmetric with positive mean value. The distributions of

k05 and k09 are even (with zero average value) and for k09 are given by zeroth-

order Macdonald function which logarithmically diverges at k = 0. One can find a
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Figure 1.17. The probability to obtain a stable system if we change a randomly

chosen spring constant by δk (in units of mΩ2/a0).

similarity between our spring constant distributions and dynamical matrix element

distributions obtained in [Taraskin and Elliott 2002b] for IC-glass, in [Huang and

Wu 2009] for simple fluid with short-ranged interactions (see Fig. 1 in these papers),

and in [Christie 2006] for realistic model of amorphous silicon (see Figs 2.12, 2.13).

Though it is difficult to compare our scalar model with vector models analyzed in

[Taraskin and Elliott 2002b; Huang and Wu 2009; Christie 2006].

In the three-dimensional case, we have almost half ((4−1/
√
6)/8 ≈ 45%) negative

springs. The dynamical matrix M = AAT ensures the stability of the lattice,

however, the high concentration of negative springs makes it extremely soft. It

is a subtle equilibrium: if we decrease the spring constant of a random spring, the

lattice certainly becomes unstable (Fig. 1.17). Therefore, in the thermodynamical

limit N → ∞, we have a critical system.

Concluding this part, we can easily include into consideration the next neighbor

shell for the matrix A. Then, in addition to the previous case, the matrix elements

of the type A05 should be taken into account. As a result, the coordination number

for the matrix M in simple cubic lattice increases up to 90. Just opposite, applying

some additional constraints, we can reduce the coordination number from 24 to

smaller numbers or make it fluctuating quantity, etc. We have checked that all

these modifications can lead to quantitative changes but do not qualitatively change

the main results. Therefore, we will restrict our consideration to the simplest case

outlined before.
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Figure 1.18. Young modulus E (in units of mΩ2/a0) as a function of µ for

dynamical matrix M = AAT + µM0 built on a simple cubic lattice with N =

100 × 100 × 100 particles (one realization). Black dots are calculated values, and

the line is the best least-square fit.

1.8 The macroscopic rigidity

Real glasses have nonzero macroscopic rigidity, and the low-frequency modes

are acoustic phonons. For example, numerical calculations show that only 0.2%

of vibrational modes of amorphous SiO2 is acoustic modes [Taraskin and Elliott

2000]. To include phonons in the picture, we should have a finite rigidity of the

lattice. The rigidity can be introduced by different means. Since a sum of positive

definite matrices is a positive definite matrix, then simplest possibility is to add

to the random matrix AAT a “crystalline part” (other possibilities are discussed in

Section 1.9)

M = AAT + µM0. (1.50)

Here A is the same random matrix built on a 3d simple cubic lattice as in the

Section 1.3. Matrix M0 is a positive definite crystal dynamical matrix for the same

lattice with nonzero matrix elements between the nearest neighbors M0ij = Ω2 (the

same units as AAT term). We will see below that the dimensionless tune parameter

µ > 0 controls the rigidity of the lattice.

Adding the regular part µM0, changes the distribution of spring constants k01
between the nearest neighbors, as shown in Fig. 1.16. The average value is equal

to 〈k01〉 = mΩ2(2 + µ)/a0. At small values of µ ≪ 1 the change is negligible.

The distribution mainly consists of strongly fluctuating part AAT (compare the

distributions of k01 for µ = 0 and µ = 0.1). Therefore, it is not obvious that such

small perturbation is able to introduce a finite rigidity and phonons into the system.
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The macroscopic rigidity can be also introduced by a non-regular addition (see

Section 1.9). However, in this work we limit ourselves to the most simple case

described by Eq. (1.50). The advantage of this form is that it comprises both cases

of small (µ ≫ 1) and strong (µ ≪ 1) disorder.

To find the rigidity (as a function of µ), we calculated numerically the Young

modulus E of the lattice with dynamical matrix given by Eq. (1.50) for µ 6= 0.

We took a very big cubic sample with N = L × L × L = 106 particles to reduce

fluctuations and possible non-affine response.

The results of these calculations are shown in Fig. 1.18 for cubic sample with

N = 106 particles (we have checked that for µ > 10−4 for such a big sample the

fluctuations of Young modulus from sample to sample are small so we can use one

realization only. It is different from the case µ = 0 where the relative fluctuations

of the Young modulus are of the order of unity). As we can see from the fit, the

Young modulus has the following dependence on µ:

E =
mΩ2

a0
µ, µ ≫ 1, (1.51)

E = 1.5
mΩ2

a0

√
µ, µ ≪ 1. (1.52)

As a result, for µ ≫ 1, we have a usual crystal , where the disorder is relatively

small, and relation (1.51) is obvious. For µ ≪ 1 the force-constant disorder is strong.

The fluctuations of the non-diagonal matrix elements Mi 6=j are much bigger than the

averaged values. In this case Young modulus E ∝ √
µ. It is much bigger than the

crystal result (1.51). Strong fluctuations of the positive and negative elastic springs

which in average almost compensate each other make the lattice much more rigid

than in the case of crystal. Therefore, for µ ≪ 1 one cannot consider our lattice as

a simple superposition of two systems AAT and µM0. The origin of this behavior

E ∝ √
µ is unclear, and it should be elucidated in future work (see also Section 2.5).

But we will support our numerical findings by calculation of the sound velocity and

of the phonon density of states (for small ω) and by a comparison of the latter with

total VDOS calculated numerically for the matrix (1.50). Below we will consider

the case of strong and moderate force-constant disorder when 0 6 µ 6 1.

The total VDOS g(ω), normalized to unity and calculated numerically by the

kernel polynomial method (KPM, see Appendix B) for dynamical matrix (1.50) and

different values of µ, is shown in Fig. 1.19. We see from the figure that the VDOS

for µ 6= 0 at low enough frequencies is proportional to ω2 which corresponds to

acoustical phonon excitations. Thus, introducing finite values of µ, we open up a

soft phonon gap in the gapless diffuson spectrum, existing at µ = 0. The VDOS

in the gap, as we will show in the next Chapter, is built by acoustic phonon-like

modes and at low frequencies goes to zero as g(ω) ∝ ω2. The term phonon gap is is
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Figure 1.19. The normalized VDOS g(ω) for dynamical matrix M = AAT + µM0

and five different µ (0, 0.001, 0.01, 0.1, 1) calculated with precise numerical KPM

solution for a simple cubic lattice with N = 2003 (full lines). Straight lines correspond

to the Debye prediction (1.35). Inset: dependence ωmax(µ) ∝ √
µ. The frequency

has units of Ω.
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Figure 1.20. Participation ratio for different µ as a function of ω (in units of Ω)

for N = 273 (one realization). The arrows indicate positions of ωmax in g(ω) for

corresponding values of µ (see Fig. 1.19).

used because if conditions (1.14) are violated, then addition µM0 to random matrix

AAT opens a hard gap in the gapless vibrational spectrum (see Fig. 1.21 below).

Just above this gap, the VDOS has a sharp maximum at frequency ωmax, which we

will identify with the width of the gap. As follows from Fig. 1.19, the maximum

frequency for µ ≪ 1 increases as ωmax ∝ √
µ. Above the maximum the vibrational

excitations remain to be diffusons (see Section 2.3).

One can try to explain the dependence ωmax ∝ √
µ as follows. In the absence

of random part AAT the dynamical matrix M is determined by the crystalline part



Chapter 1. The random matrix approach 30

µM0 only. Then (for a simple cubic lattice) we have well-defined phonon modes with

the dispersion law

ω2
cryst = 4µΩ2

(

sin2 qxa0
2

+ sin2 qya0
2

+ sin2 qza0
2

)

. (1.53)

The maximum frequency, in this case, is equal to ωmax, cryst = 2
√
3µΩ ∝ √

µ which

qualitatively (but not quantitatively) explains the aforesaid dependence ∝ √
µ.

However the sound velocity in this pure crystalline lattice case vcryst = a0Ω
√
µ.

Though according to Eqs. (1.36, 1.52) v ∝ µ1/4 for M = AAT + µM0 what is much

bigger than
√
µ for small values of µ ≪ 1. It means that simple superposition

approach does not work in this case, and a physical picture is more complicated,

and the Young modulus E also depends on the amplitude of the random part AAT .

Since the VDOS g(ω) is normalized to unity for all values of µ, we conclude from

Fig. 1.19 (comparing the VDOS for µ 6= 0 with VDOS for µ = 0) that vibrations

corresponding to the maximum for µ 6= 0 were pushed out from the region of small

frequencies ω < ωmax for µ = 0. We see also from the figure that, after initial

ω2 dependence, the VDOS for µ 6= 0 increases much faster than ω2. It is a clear

signature of the presence of the boson peak in our disordered lattice. As we will

show further (see Table 2.1), the frequency ωmax is correlated with the position of

the boson peak ωb (the maximum in the reduced VDOS g(ω)/ω2). Therefore, the

appearance of the boson peak in disordered systems is not necessarily related to

the acoustic van Hove singularity in crystals as was proposed recently [Schirmacher

et al. 1998; Taraskin et al. 2001; Chumakov et al. 2011].

The straight lines in Fig. 1.19 correspond to the phonon VDOS gph(ω) determined

by Eq. (1.35) with the sound velocity v =
√

E/ρ0 and E calculated from Fig. 1.18.

One can see a good agreement of the total g(ω) at low frequencies with the phonon

contribution gph(ω). From that we can conclude that at least the low-frequency

excitations in the phonon gap are the usual long-wave acoustical phonons. However,

actually, as we will show further, nearly all excitations in the gap up to the

frequencies close to ωmax correspond to phonons, but with a nonlinear dispersion

law.

This conclusion is supported by calculations of the participation ratio P (ω). It

is shown in Fig. 1.20 for various values of µ. For µ 6= 0, one can clearly distinguish

in the function P (ω) a presence of the two different frequency regions. As follows

from Fig. 1.19, the low-frequency part (below ωmax) corresponds to phonons. In this

range, the participation ratio increases with decreasing frequency. It is related to

increase of the phonon mean free path l(ω) as ω → 0 (see Fig. 2.4). In the high-

frequency part (above ωmax) P (ω) is approximately independent of the frequency

and coincides with participation ratio for µ = 0. As we will show in Section 2.3

this range corresponds to diffusons. A similar rise in the participation ratio with
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Figure 1.21. The normalized VDOS g(ω) for dynamical matrix M = AAT + µM0

and different µ (0, 0.001, 0.01, 0.1, 1) calculated with precise numerical KPM solution

for a simple cubic lattice with N = 2003 (full lines). The sum rule (1.14) is violated.

Inset: dependence ωmax(µ) ∝ √
µ. The frequency ω has units of Ω.

decreasing frequency was found recently in 2d Lennard-Jones glasses [Tanguy et al.

2010] (see Fig. 1b of this paper).

It is important to emphasize that the sum rule (1.14) is crucial for the existence

of the acoustical phonon excitations. If they are not obeyed, then, instead of soft

phonon gap in the vibrational spectrum shown in Fig. 1.19, we have a hard gap

shown in Fig. 1.21. Inside the hard gap there are no vibrations at all. The dynamical

matrix M , in this case, was taken in the same form (1.50). But diagonal elements Aii

of the matrix A were taken as independent Gaussian random variables with average

〈Aii〉 = 0 and variance 〈A2
ii〉 = Ω2. As a result, the condition (1.16) (and therefore

(1.14)) was violated, and we have got a spatially pinned lattice where low-frequency

acoustical phonon modes cannot exist. However, the width of the hard gap, in this

case, has the same µ dependence as the width of the phonon gap, ωmax ∝ √
µ.

1.9 Non-crystalline origin of acoustical phonons

In this Section we demonstrate, that appearance of acoustical phonons (and

macroscopic rigidity) in the system is not related to the crystalline order in the

term µM0.

1.9.1 Lattices with cut out bonds

Let us consider the case when some part of springs are cut out from the matrix

µM0 in the dynamical matrix (1.50). The value of parameter µ = 1 we will keep
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Figure 1.22. The normalized VDOS g(ω) for dynamical matrix M = AAT + µM0

with µ = 1 and different percentage 100% − p of cut out springs calculated with

precise numerical KPM solution for a simple cubic lattice with N = 2003 (full lines).

Straight lines are calculated according to Eq. (1.35) with sound velocity v =
√

E/ρ0.

The Young modulus E is calculated in the same way as in Section 1.8.

fixed. Let parameter p gives the percentage of remaining springs. The percolation

threshold in the simple cubic lattice for bond percolation problem is at pc ≈ 25%

[Stauffer and Aharony 1994]. If p < pc, then there is no infinite cluster of connected

springs and, therefore, the matrix µM0 with cut out springs has itself no acoustical

phonon-like modes at all. Nevertheless, the full dynamical matrix (1.50) still has

well-defined phonon modes with the VDOS g(ω) ∝ ω2 for all positive values of p even

below the percolation threshold. The normalized density of states g(ω) for µ = 1

and different values of p is shown in Fig. 1.22. The straight lines show the phonon

contribution to the VDOS calculated from Eq. (1.35) with sound velocity given by

Eq. (1.36). The Young modulus E was calculated numerically using Eq. (1.39) for

the lattice with N = 106 atoms (one realization) in the same way, as it was done in

Section 1.8.

1.9.2 Superposition of two random matrices

Another (less obvious) possibility to get phonons is to add to the random

dynamical matrix AAT a random matrix βBBT . Here β is a parameter, and

the random matrix B is build in the same way as random matrix A but they

are statistically independent of each other. Though both terms AAT and βBBT

taken separately have zero rigidity (and do not have phonons) their superposition

introduces a finite rigidity E to the system. The rigidity changes when we vary

parameter β as E ∝ √
β and goes to zero when β → 0. In Section 2.5 we will

show different scaling relations for the model M = AAT + µM0. The model
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Figure 1.23. The normalized VDOS g(ω) for dynamical matrix M = AAT +βBBT

with different β calculated with precise numerical KPM solution for simple cubic

lattice with N = 1003 (full lines). Straight lines are calculated according to Eq. (1.35)

with sound velocity v =
√

E/ρ0. The Young modulus E is calculated in the same

way as in Section 1.8.

M = AAT + βBBT has the same scaling relations with the replacement of µ by

β if β ≪ 1. The results obtained within this approach are shown in Fig. 1.23.

1.10 Conclusion

In this Chapter we demonstrated that dynamical sparse random matrices of

the general form M = AAT + µM0 with nonnegative eigenvalues ε = ω2 can be

successfully used to describe sufficiently general properties of vibrational spectra of

amorphous solids. We have shown that the system with µ = 0 is a critical system

with zero macroscopic rigidity in which acoustic phonons cannot propagate.

Compared to the currently used molecular dynamics methods, they have the

advantage that the construction of the random dynamical matrix corresponding

to a stable system requires significantly fewer efforts than the similar calculations

for real glasses with specific interatomic interaction potentials. In many cases, the

results appear to be very similar.

The study of the problem of the localization of these vibrational modes in the

three-dimensional system led us to the conclusion that, despite a high degree of

disorder, the majority of these modes are delocalized harmonic excitations. This is

evidenced by the values of the participation ratio and the statistics of vibrational

levels where the level repulsion effect clearly manifests itself. Our results are in

good agreement with the corresponding results obtained for real glasses by molecular

dynamics methods.



Chapter 2

Diffusion of vibrations

In this Chapter we consider transport properties of phonons in a model

amorphous solid with the dynamical matrix M = AAT +µM0. Analyzing properties

of this matrix, we calculate the dynamical structure factor S(q, ω), the phonon

dispersion law ωq, and phonon mean-free path l(ω). Comparison of the later with

phonon wavelength λ determines the Ioffe-Regel crossover frequency ωir which goes

to zero when µ → 0. We show that above ωir, phonons cease to exist and they

are transformed to diffusons. In Section 2.3 we consider properties of diffusons and

show that they spread by means of diffusion. In Section 2.4 we find an asymptotic

behavior of the thermal conductivity and compare it with the experimental data.

In Section 2.5 we discuss scaling properties of the model (their dependence on

parameters Ω and µ). We show that they map directly onto the scaling observed in

systems near jamming transition point.

2.1 Dynamical structure factor

The dynamical structure factor is a self-correlation function of the normal modes

[Shintani and Tanaka 2008]. In the scalar model (modes have no polarization, see

previous Chapter) it can be defined as

S(q, ω) =
π

N

N
∑

j=1

∣

∣

∣

∣

N
∑

i=1

ui(ωj)e
iqRi

∣

∣

∣

∣

2

δ(ω − ωj) (2.1)

where ui(ωj) is the displacement of the ith atom for jth eigenmode. The prefactor

π/N was chosen for convenience.

To find the phonon dispersion curve (dependence of the phonon frequency ω

on the wavevector q) and phonon mean-free path l(ω) we calculate the dynamical

34
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structure factor (2.1) as a space and time Fourier transform of the atomic

displacements u(Ri, t) ≡ ui(t)

S(q, ω) =
2

NTmax

∣

∣

∣

∣

∣

∣

N
∑

i=1

e−iqRi

Tmax
∫

0

u(Ri, t)e
iωtdt

∣

∣

∣

∣

∣

∣

2

. (2.2)

For that we ascribed to all the atoms at the initial moment t = 0 random

displacements u(Ri, 0) (from Gaussian distribution with zero mean and unit

variance) and zero velocities. Then, numerically solving Newton equations (with

all masses mi = m) we analyzed the atomic dynamics at t 6= 0. Let u(Ri, t) be the

i-th atomic displacement as a function of atomic coordinate Ri and time t. One

can show that the definitions (2.1) and (2.2) are equivalent. Another possibility to

calculate S(q, ω) is the kernel polynomial method (KPM, see Appendix B). It gives

the same results, it is more effective from the computational point of view and it

will be used in the next Chapter.

Since equilibrium atom positions Ri are discrete and form a cubic lattice, the

wave vectors q are also discrete and are defined on the corresponding reciprocal

lattice. For example, for cubic sample L × L × L and q ‖ 〈100〉 direction we have

qn = 2πn/a0L where integer numbers n are −L/2 6 n 6 L/2. In this case, the

normalized density of states is related to the structure factor by the sum over the

first Brillouin zone

g(ω) =
1

π

∑

q

S(q, ω). (2.3)

2.2 Acoustic phonons

To analyze phonon excitations, we have found the maximum of S(q, ω) as a

function of ω for each discrete value of qn, for several values of µ. As an example,

the results for µ = 0.1 and one q direction are shown in Fig. 2.1. For the fitting

curves we used the Lorentz distribution (fitting to the DHO model gives slightly

better results, see the next Chapter)

S(q, ω) ∝ 1

(ω − ωq)
2 + (∆ω)2

. (2.4)

From the fit, we can find both the phonon frequency ωq and the phonon linewidth

∆ω, which corresponds to the phonon inverse lifetime Γ = 2∆ω. Factor 2 takes

into account that ∆ω corresponds to the decay of the amplitude of the vibration.

The results for ωq are shown in Fig. 2.2 for three values of µ and q ‖ 〈100〉. For

sufficiently small values of wavevector q we see a nice linear dispersion curve ωq = vq,
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Figure 2.1. The Lorentz dispersion curves for different wave vectors q ‖ 〈100〉
direction and µ = 0.1. Closed diamonds correspond to the calculated values of

S(q, ω) and lines are fitting curves according to Eq. (2.4). The number of atoms

N = 503 (one realization). Insets: the Lorentz dispersion curves for q = 0.5 and

q = 0.75. The frequency ω has units of Ω, wavevector q has units of 1/a0.

with the sound velocity v given by Eq. (1.36). It is independent of the q direction

(i.e. the sound velocity is isotropic). With the increase of q, the frequency ωq shows

a pronounced negative dispersion of the group velocity vg = dωq/dq and approaches

the maximum frequency ωmax where the dependence ωq saturates. In this q region,

we observed a weak anisotropy of the dispersion curves for µ = 1. At smaller values

of µ the dependence ωq is isotropic. Since ωmax ∝ √
µ, the vertical axis in Fig. 2.2

scales approximately as
√
µ and the horizontal axis scales as µ1/4 (sound velocity

v ∝
√
E ∝ µ1/4, and qmax ≈ ωmax/v ∝ µ1/4).

The strong negative dispersion of the group velocity vg for big q values can

be explained by avoided crossing principle (or level repulsion effect) due to the

coupling of phonons to quasilocal vibrations near frequency ωmax, corresponding

to the sharp maximum in VDOS g(ω) (see Fig. 1.19). Similar phenomenon exists

in polariton physics (polaritons are quasiparticles resulting from strong coupling of

electromagnetic waves with an electric or magnetic dipole-carrying excitations. They

are an expression of the common quantum phenomenon known as level repulsion,

also known as the avoided crossing principle. Polaritons describe the crossing of the

dispersion of light with any interacting resonance. See for example [Gurevich 1986]).

The dip in the participation ratio P (ω) for µ = 0.001, µ = 0.01, and µ = 0.1 at

ω ≈ ωmax (see Fig. 1.20) evidences in favor of this idea. The vibrations inside the dip

correspond to frequencies near ωmax and have smaller participation ratio than the

others. Therefore, they can be referred to as quasilocal vibrations. In the following

we will see that this strong scattering is also responsible for the deep minimum in

the diffusivity D(ω) at ω ≈ ωmax (see Fig. 2.14).



Chapter 2. Diffusion of vibrations 37

�

���

���

���

���

�
� ��� � ���

�	
	���

�
�

����

���

����

���

�
� ��� �

�	
	����

�

�

�

���

�

���

�

���

�
� � � �

�	
	�

�

� �

�

���

���

���

���

�
� ��� ���

� �

�

���

���

���

���

�
� ��� ���

� �

�

���

�

���

�
� � �

Figure 2.2. The dependence ωq on q for q ‖ 〈100〉 direction for various µ (1, 0.1,

0.01) in a cubic sample with N = 503 (one realization). Filled and open diamonds

are the maximums of S(q, ω) as a function of ω for each discrete value of qn for

frequencies below and above the Ioffe-Regel crossover correspondingly (see text below

for details). Solid lines correspond to halves of the maximums. Dashed lines show

ω = vq linear dependence with sound velocity v =
√

E/ρ0. Horizontal dotted lines

correspond to the maximum frequency ωmax in g(ω) (taken from Fig. 1.19). Insets

show the group velocity vg = dω/dq as a function of ω. The frequency ω has units

of Ω units, wavevector q has units of 1/a0.

The negative dispersion of the group velocity vg is responsible also for the

pronounced rise of the phonon VDOS above the ω2 dependence, given by Eq. (1.35).

It is clearly seen in Fig. 1.19. Indeed, taking the dispersion into account and

disregarding weak anisotropy (taking place only for µ = 1) we can write instead

of Eq. (1.35)

gph(ω) =
a30
2π2

q2(ω)

vg(ω)
. (2.5)

Here vg(ω) = dω/dq is the group velocity shown in Insets in Fig. 2.2. Taking for q(ω)

and vg(ω) the data from Fig. 2.2 we obtain the points (filled and open diamonds)

shown in Fig. 1.19. Since they perfectly coincide with numerical data for g(ω) below

ωmax, we conclude that all the excitations in the phonon gap belong to phonons (with

nonlinear dispersion at higher values of q).

The phonon linewidth ∆ω can be also found from fits similar to those shown in

Fig. 2.1. The results are shown in Fig. 2.3. As follows from this figure, ∆ω ∝ ω4

and does not depend on the direction of q. It is similar to Rayleigh scattering of

phonons on a static disorder. However, in such a case ∆ω would be proportional

to q4. Due to nonlinear dispersion in ωq, these dependencies do not correspond to

each other. More likely, the phonon linewidth is due to strong resonant scattering

of phonons by quasilocal vibrations responsible for the sharp peak in the VDOS,
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Figure 2.3. The phonon linewidth ∆ω as a function of ω (in units of Ω) for different

µ in a cubic sample with N = 503 (one realization). Different symbols correspond to

different q directions. � for q ‖ 〈100〉, △ for q ‖ 〈110〉, � for q ‖ 〈111〉. Filled and

open symbols refer to excitations below and above the Ioffe-Regel crossover frequency

ωir correspondingly.
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Figure 2.4. The ratio l(ω)/λ as a function of ω (in units of Ω) for different µ.

Different symbols correspond to different q directions as explained in Fig. 2.3. The

full horizontal line (separating filled and open symbols) corresponds to Ioffe-Regel

crossover l(ω) = λ/2.
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Figure 2.5. The reduced VDOS g(ω)/ω2 is a function of ω/ωb where ωb is the boson

peak position.

similar to those introduced in [Buchenau et al. 1992]. The deep minimum in the

diffusivity D(ω) around frequency ωmax also supports this idea (see Fig. 2.14).

With known value of ∆ω (and Γ), the phonon mean-free path l(ω) can be

calculated as follows

l(ω) =
vg
Γ

=
vg

2∆ω
. (2.6)

The phonons are well-defined excitations if their mean-free path l(ω) exceeds the

phonon wavelength λ = 2π/q (the Ioffe-Regel criterion for phonons). As we will see

in the next Section, phonons transform to diffusons when l(ω) ≈ λ/2. We will call

the corresponding crossover frequency as ωir. Fig. 2.4 shows the ratio l(ω)/λ as a

function of ω for several values of µ and different directions of the wavevector q.

The boundary between filled and open symbols (the full horizontal line) corresponds

to frequency ωir. Thus, filled and open symbols in Figs. 2.2, 2.3, 2.4, 2.6 belong

to phonons with frequencies below and above the Ioffe-Regel crossover frequency

correspondingly.

Usually, the Ioffe-Regel crossover frequency ωir in glasses is correlated with the

position of the boson peak ωb, see [Gurevich et al. 1993; Parshin and Laermans

2001; Rufflé et al. 2006; Rufflé et al. 2008; Shintani and Tanaka 2008] and references

therein. It is the frequency where the reduced VDOS g(ω)/ω2 has a maximum.

We also have a rather sharp boson peak in our disordered lattices (Fig. 2.5). As

follows from Fig. 2.6 the left side of the boson peak is built from phonons having

the negative dispersion of the group velocity dωq/dq. Similar conclusion was made

recently for 2d and 3d Lennard-Jones glasses [Tanguy et al. 2010; Léonforte et al.

2005; Monaco and Mossa 2009]. The right side of the boson peak consists of diffuson

modes shifted from the region of small frequencies 0 < ω < ωmax by additional term
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Figure 2.6. The normalized VDOS g(ω) for dynamical matrix M = AAT + µM0

and five different µ (0, 0.001, 0.01, 0.1, 1) calculated with precise numerical KPM

solution for a simple cubic lattice with N = 2003 (full lines). Straight lines correspond

to the Debye prediction (1.35). Filled and open diamonds correspond to phonon

contribution to the VDOS below and above the Ioffe-Regel crossover frequency ωir

correspondingly. The frequency has units of Ω.

µM0 and further modified by interaction with phonons. But more work is necessary

to elucidate the precise structure of these modes.

The frequencies ωmax, ωir, and ωb are collected in Table 2.1 for different µ. As we

can see from the table, ωir is close to the frequency ωmax and to the position of the

boson peak ωb. Above ωir phonons cease to exist as well-defined excitations. They

are smoothly transformed to diffusons which we will consider in the next Section.

The relative number of phonons in the lattice can be estimated as follows

Nph =

ωir
∫

0

g(ω)dω. (2.7)

µ ωmax/Ω ωb/Ω ωir/Ω Nph

1 2.5 2.4 2.2∗ 0.12

0.1 0.78 0.74 0.62 0.027

0.01 0.23 0.23 0.19 0.0066

0.001 0.072 0.07

Table 2.1. The frequency of maximum in VDOS ωmax, the frequency of the Ioffe-

Regel crossover ωir and the boson peak frequency ωb for various µ. Star ∗ means

that ωir was found for q ‖ 〈100〉 direction. Nph is a relative number of phonons in

the lattice.
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These values are also given in the Table 2.1. We see that the relative number of

phonons in the lattice is small for all investigated values of µ. It is in agreement

with similar estimates for amorphous silicon (4%) [Allen et al. 1999] and amorphous

SiO2 (0.2%) [Taraskin and Elliott 2000].

2.3 Diffusons

In this section we are going to consider properties of diffusons (we introduced

this notation in Section 1.4). As is well known, the diffusion phenomenon usually

takes place for physical quantities which are conserved. In a free closed mechanical

system, we have two integrals of motion, momentum and energy. Therefore, one

should discriminate between diffusion of momentum and energy.

2.3.1 Diffusion of momentum

First let us consider diffusion of momentum. Usually, the diffusion of momentum

is related to viscosity in the system. If all atomic masses are equal (mi = m), the

diffusion of momentum is equivalent to the diffusion of atomic displacements. It

is because in our system the position of the center of inertia is conserved and we

can put it at the origin of the coordinate system. Then the sum of all atomic

displacements vanishes
∑

i

ui(t) = 0, (2.8)

i.e. it is an integral of motion. The diffusion of displacements, in this case, looks like

a diffusion of “particles” in a lattice where the total number of particles is conserved.

One can complete the analogy by subtraction the mean displacement (the number

of “particles” divided by the number of atoms) and taking the infinite number of

“particles”. In this case the displacements are not bounded, and the process is

continuous.

By analogy with the diffusion of “particles” the information about diffusivity of

displacements is absorbed in the displacement structure factor S(q, ω) (2.2). We

remind that to calculate this structure factor we ascribed at the initial moment

t = 0 the random displacements to all the atoms with Gaussian distribution (with

zero mean and unit variance) and velocities equal to zero. So the condition (2.8)

at t = 0 was satisfied. Therefore, let us analyze now this structure factor in the

diffuson frequency range.

Firstly, let us consider the case of µ = 0 when phonons are absent, and only

diffusons are present in the lattice. Fig. 2.7 shows the structure factor S(q, ω) as

a function of wavevector q for three different directions in q space (symbols) and
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Figure 2.7. The displacement structure factor S(q, ω), Eq. (2.1) (symbols) for

µ = 0 and for three different frequencies. Different symbols correspond to different

q directions. � for q ‖ 〈100〉, △ for q ‖ 〈110〉, � for q ‖ 〈111〉. Full lines correspond

to the structure factor Srw(q, ω) of the random walk on the lattice given by Eq. (2.9)

with Drw = 0.7. Dashed line corresponds to the limit q ≪ 1 (see Eq. (2.12)). The

frequency has units of Ω, the wavevector has units of 1/a0.

for three different frequencies ω. Let us compare this displacement structure factor

with structure factor of the random walk Srw(q, ω) on the lattice.

As was shown in [Kehr et al. 2005] for the case of the random walk on a lattice,

Srw(q, ω) is given by expression

Srw(q, ω) =
2Γ(q)

ω2 + Γ2(q)
. (2.9)

It is a Lorentz function, with a width Γ(q) given by

Γ(q) = DrwQ
2(q) (2.10)

where Drw is a diffusion constant of the random walk. In a simple cubic lattice (with

lattice constant a0) the function Q(q) reads

Q(q) =
2

a0

√

sin2 qxa0
2

+ sin2 qya0
2

+ sin2 qza0
2

. (2.11)

For small values of q ≪ 1/a0, Q(q) = q and in the continuum limit we have the

well-known result for the diffusion structure factor [Landau and Lifshitz 1980, §89]

Srw(q, ω) =
2Drwq

2

D2
rwq

4 + ω2
. (2.12)

Let us note that the structure factor (2.9) has a maximum at q values obeying the

condition

ω = Γ(q) = DrwQ
2(q). (2.13)
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We can specify it as a dispersion law for diffusons. The width of the maximum is

Γ(q). For q ≪ 1/a0, Γ(q) = Drwq
2.

A comparison of the displacement structure factor S(q, ω), (2.2), and the

structure factor of the random walk Srw(q, ω), (2.9), is shown in Fig. 2.7. One fitting

parameter was the diffusion coefficient Drw in Eq. (2.10). From the comparison of

this data, we obtain Drw ≈ 0.7Ωa20. It means that the diffusion coefficient of atomic

displacements Du ≈ 0.7Ωa20 (see Section 2.6). Another fitting parameter was a

height h(ω) of the random walk structure factor in the maximum. According to

Eq. (2.9), in the maximum Γ(q) = ω and h(ω) = 1/ω, but to fit the data points in

Fig. 2.7 we used slightly higher values of h(ω).

The small difference between h(ω) and 1/ω can be explained by different

frequency dependencies of the density of states g(ω) for vibrations and for the

random walk (following from the sum rule similar to Eq. (2.3)). As we can see

from the figure, for the investigated frequencies the fit is perfect. With increasing

frequency above ω ≈ 2Ω, the fitting becomes more and more poor since we approach

the localization threshold at ωloc ≈ 5.5Ω (see below) which is not described well by

a simple model of Markovian random walk.

Now let us consider a behavior of a correlation function. The correlation function

of atomic displacements at some frequency ω, expressed through eigenvectors

u(R, ω) of the dynamical matrix M , reads

C(r, ω) =
∑

R

u(R+ r, ω)u(R, ω). (2.14)

It is a Fourier transform of the displacement structure factor (2.1)

C(r, ω) =
1

8π4

∫

S(q, ω)eiqrdq. (2.15)

Let us compare this correlation function with correlation function of the random

walk. For distances bigger than the period of the lattice a0 we can make use of

the limit of small q ≪ 1/a0 and integrate Eq. (2.12) for the random walk structure

factor taken in the continuous media approximation. As a result, we derive

Crw(r, ω) =
1

2π2rDrw

exp

(

−r

√

ω

2Drw

)

cos

(

r

√

ω

2Drw

)

. (2.16)

Fig. 2.8 shows a good agreement of our correlation function (2.15) with the

correlation function of the random walk (2.16). For all investigated frequencies the

numerical data collapse together and become indistinguishable from the theoretical

prediction (2.16). We can see also on this figure the anticorrelation phenomenon (the
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Figure 2.8. The correlation function C(r, ω) for µ = 0 and six different frequencies

(ω/Ω = 0.14, 0.31, 0.49, 0.66, 0.84, 1.01) for sample with N = 503 atoms. The full

lines are our numerical results obtained from Eq. (2.2). Each line starts from

r = rmin which is about 2.5 interatomic distances (marked by arrows). The dashed

line corresponds to Eq. (2.16) with Drw = 0.7Ωa20. The distance r has units of a0

region of negative values of the correlation function). As follows from Eq. (2.16),

the correlation function of the random walk changes its sign for the first time at

r

√

ω

2Drw

=
π

2
. (2.17)

It is also in a good agreement with our numerical results. Therefore, we can call a

corresponding value of r found from Eq. (2.17) as a radius of diffuson. It is a typical

size of the regions vibrating with frequency ω and having the same sign of all atomic

displacements. According to (2.17), the radius of diffuson is given by

rd(ω) = π

√

Drw

2ω
∝ ω−1/2. (2.18)

At ω = 0 the correlation function (2.16) decays slowly as 1/r. In disordered systems

at critical point the correlation function decays as C(r) ∝ 1/rd−D2 where d is the

space dimension and D2 is a correlation dimension. From this, we conclude that in

our case D2 = 2 what corresponds to diffusion.

Now let us analyze the displacement structure factor S(q, ω) for µ 6= 0. For

better visual effect we will show a map of the function S(q, ω) on the plane (ω, q)

for different directions in q space. To do that, for each frequency ω we have found

the maximum S(q, ω) as a function of q along some directions in q space. Then

we normalized function S(q, ω) along this line ω = const to the magnitude of this

maximum

Sn(q, ω) = S(q, ω)/max
q′

S(q′, ω). (2.19)
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Figure 2.9. The normalized structure factor Sn(q, ω) as a function of q (in units

of 1/a0) for some direction in q space and for each frequency ω (in units of Ω) for

various values of µ (0, 0.01, 0.1, 1). The sample size is N = 503. The averaging is

performed over 100 realizations. Left sides of all plots are for q ‖ 〈111〉, right sides

are for q ‖ 〈100〉. White horizontal dashes show the Ioffe-Regel crossover frequency

ωir. For µ = 1 the frequency ωir is slightly different for different q directions. Black

full line corresponds to Eq. (2.13) for the random walk on a simple cubic lattice with

diffusion constant Drw = 0.7Ωa20.

The results are shown in Fig. 2.9 for four different values of µ and two directions in

q space. The white color corresponds to the maximum when normalized structure

factor Sn(q, ω) = 1 while the black color to the case where Sn(q, ω) = 0. For

µ 6= 0 we can see clearly two types of excitations in the lattice. At low enough

frequencies, below ωir, we see phonons with well-defined dispersion law ωq, the

same as in the previous Section. At the Ioffe-Regel crossover frequency ωir, the

structure factor strongly broadens, and phonon dispersion line disappears. Above

ωir the displacement structure factor coincides well with the structure factor for

µ = 0 case shown in Fig. 2.9a, which corresponds to diffusons. The maximum of

the normalized structure factor Sn(q, ω) (white regions) agrees well with Eq. (2.13)

(with the same diffusion coefficient Drw) giving the maximum of the random walk

structure factor Srw(q, ω) (black line). It means that diffusion coefficient of atomic

displacements is independent of µ. Deviations from Srw(q, ω) take place at high

frequencies near the localization threshold.

For µ 6= 0 the radius of diffuson (2.18) takes a maximum value at ω ≈ ωir. At

smaller frequencies we have well-defined phonons. Since ωir ≃ Ω
√
µ and Drw ≈ a20Ω

we can write for 0 < µ . 1

rd(ωir) ≡ rc ≃
√

Drw/ωir ≃ a0µ
−1/4. (2.20)

The value rc plays a role of correlation length in our lattice. It diverges when µ → 0.

The physical meaning of this length is that it by the order of the value coincides
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Figure 2.10. The same normalized structure factor Sn(q, ω) as in Fig. 2.9 but in q

space in plane qxqy (qz = 0) for ω = 0.5Ω. The left picture corresponds to µ = 0 (a)

and the right to µ = 0.1 (b).

with the Ioffe-Regel wavelength λir = 2π/qir corresponding to frequency ωir (see

Section 2.5). Samples with a size smaller than rc have no phonon-like modes at all.

To compare phonon and diffuson structure factors, we show in Fig. 2.10 a cross

section of the structure factor Sn(q, ω) in q space for qz = 0 and frequency ω = 0.5Ω

for µ = 0 and µ = 0.1. At the left side (a) of this figure we see the structure factor of

diffuson. On the right side we see the structure factor of phonon (b). As compared

with phonon structure factor, the diffuson structure factor is much more broadened.

2.3.2 Diffusion of energy

We said above that there are two types of diffusion because we have two

conservation laws. In this section we will consider the diffusion of the energy. In the

harmonic approximation, all normal modes are independent so the energy conserves

in the each small frequency interval. Therefore, the diffusivity of the energy D(ω)

is a function of the frequency ω.

There are two common methods to determine the diffusivity D(ω). The first

approach to calculate the diffusivity of energy D(ω) for vibrations with frequency

ω is a direct numerical solution of Newton’s equations for a cubic sample with

N = L × L × L atoms and with free boundary conditions along the x direction.

Along other two directions, we take the periodic boundary conditions.

Assuming zero initial conditions for displacements and velocities of all the atoms,

let us apply external forces with frequency ω and random phases ϕi to all the atoms

in the central layer x = 0 of our sample

f ext
i (t) = sin(ωt+ ϕi) exp

(

− t2

2τ 2exc

)

(2.21)
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Figure 2.11. The dependence of R2(t) in the case of µ = 0 for one sample with

N = 100 × 100 × 100 atoms and 14 different frequencies (ω/Ω = 0.5, 1, 1.5, . . . , 7,

from top to bottom). The numbers indicate integer frequencies. The slope of each

line corresponds to each black dot in Fig. 2.12. Two points at ω = 2Ω and ω = 6Ω

correspond to two distributions of energy E(x, t) over the sample for delocalized and

localized modes correspondingly. They are shown in Fig. 2.13 (see below). The time

has units of 1/Ω, the excitation width R has units of a0.

where ωτexc ≫ 1. For a big sample with N = 100 × 100 × 100 = 106 atoms it is

sufficient to excite only one atomic layer x = 0 with 100 × 100 = 104 atoms. The

addition of two or more neighbor layers does not change the results. Increasing the

width of the excited layer one should increase the length of the sample as well. The

right and the left sides of the sample have coordinates xr,l = ±a0L/2. In such a

way we excite vibrations with frequencies near frequency ω distributed in a small

frequency interval (ω−1/τexc, ω+1/τexc). In calculations we used τexc = 5/Ω for all

frequencies ω. We started our calculations at time t0 = −5τexc when the external

force is still negligible.

After applying the force to the central layer x = 0, vibrations will spread to the

left and to the right ends of the sample. The average squared distance to the energy

diffusion front we define as usual

R2(t) =
1

Etot

N
∑

i=1

x2
iEi(t). (2.22)

Here xi is the x coordinate of the i-th atom, Ei(t) is the vibrational energy of i-

th atom, and sum is taken over all atoms in the sample. Etot =
∑

i Ei(t) is the

total energy of the system. It is independent of time after the external force f ext
i (t)

becomes negligibly small (i.e. for t > 5τexc).
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Figure 2.12. The dependence of diffusivity D(ω) (in units of Ωa20) on ω (in units of

Ω) for µ = 0. Black dots are calculated by the direct solution of Newton’s equations

from Eqs. (2.22, 2.24) and Fig. 2.11 for N = 1003 atoms (one realization). Full lines

for N = 103, 143, 203 are calculated using formula of Edwards and Thouless (2.29)

with c = 1 (see below). Averaging for lines is performed over frequencies in the small

interval (ω − δω, ω + δω) with δω = 0.25Ω and over several thousands realizations.

The energy of i-th atom Ei(t) we define as a sum of the kinetic energy and a half

of the potential energy of connected bonds

Ei(t) =
v2i (t)

2
− 1

4

∑

j

Mij

(

ui(t)− uj(t)
)2
. (2.23)

Here vi(t) = u̇i(t) is an atomic velocity with the same notations as Eq. 1.2.

Summation over all atoms in Eq. (2.22) we can divide into two steps. First we

sum over all atoms in the layer x, and then we sum over all layers. Let E(x, t) be a

total energy confined to the layer x at time t. Having in mind that we have sample

size L ≫ 1 in our case, we can change summation over different layers to integration

over coordinate x for times where R(t) ≫ a0.

We will apply this method to the case of µ = 0 (i.e. for the lattice without

phonons). The results are shown in Fig. 2.11. As we can see from the figure for

small and middle frequencies, R2(t) ∝ t. Therefore for these frequencies vibrations

indeed spread along the x axis by means of diffusion. The slope of the lines decreases

with frequency ω. To calculate the slope, we take the time interval ∆t where, on

the one hand, t > 5τexc, and on the other hand, R ≪ a0L/2.

From the slope of R2(t), we can calculate the diffusivity of modes D(ω) using

one-dimensional formula

R2(t) = 2D(ω)t. (2.24)

This diffusivity is shown by black dots in Fig. 2.12. At small frequencies it is

approximately constant, and then it decreases with the frequency approaching zero
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Figure 2.13. Black points (diamonds and triangles) show the distribution of energy

E(x, t) contained in the layer x as a function of x for two different frequencies ω = 2Ω

and ω = 6Ω at times t = 234/Ω and t = 900/Ω, respectively, calculated numerically

with Newton method. Full lines are theoretical predictions for delocalized (diffusive)

and localized modes given by Eqs. (2.25, 2.26) with R2 ≈ 166a20 and R2 ≈ 22a20
correspondingly. The coordinate x has units of a0.

at the localization threshold, ωloc ≈ 5.5Ω. At higher frequencies above ωloc the

dependence R2(t) saturates with increasing t. This indicates localization of the

vibrational modes.

The difference between delocalized and localized modes is clearly seen if we

examine the dependence E(x, t) as a function of coordinate x at some moment

t for two different frequencies below and above the localization threshold. These

two points for investigation are shown in Fig. 2.11. Black diamond corresponds

to delocalized mode with frequency ω = 2Ω and has coordinates t = 234/Ω

and R2 = 166a20. The distribution of energy E(x, t) over the sample calculated

numerically at this moment is shown by black diamonds in Fig. 2.13. The data are

perfectly fitted by solid line drawn according to the solution of diffusion equation in

1d case

E(x, t) =
Etot√
2πR2

exp

(

− x2

2R2

)

, (2.25)

with the value of R2 = 166a20.

Black triangle in Fig. 2.11 corresponds to the localized mode with frequency

ω = 6Ω and has coordinates t = 900/Ω and R2 = 22a20. The distribution of energy

E(x, t) over the sample calculated numerically at this moment is shown by black

triangles in Fig. 2.13. This distribution is drastically different from the previous

case. For localized modes we expect the usual exponential decay

E(x, t) =
Etot√
2R

exp

(

−
√
2|x|
R

)

. (2.26)
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The fit of the numerical data with this function and R2 = 22a20 is shown in

Fig. 2.13. The fit is perfect except for the central point at x = 0 which lies noticeably

above prediction of Eq. (2.26). The coefficients in Eqs. (2.25, 2.26) were taken to

satisfy the obvious rules

∞
∫

−∞

E(x, t)dx = Etot,
1

Etot

∞
∫

−∞

x2E(x, t)dx = R2. (2.27)

To find the diffusivity D(ω) for µ 6= 0, the method of numerical solution of

Newton’s equations is not accurate because we have phonons with long mean-free

paths in this case. Correspondingly samples with much bigger sizes are necessary

to use this approach. Therefore, for µ 6= 0 we used a second approach. In this

approach, the diffusivity D(ωi) at eigenfrequency ωi was calculated by means of the

formula of Edwards and Thouless [Edwards and Thouless 1972]

D(ωi) ≃ (a0L)
2|∆ωi| (2.28)

where a0L is the length of the sample and ∆ωi is the sensitivity of the eigenfrequency

ωi to a twist of boundary conditions. Physically, the frequency shift ∆ωi means the

inverse time of the signal propagation from one boundary to another.

Allen et al. proposed a more precise formula with twisting by a small angle ϕ

[Allen et al. 1999]:

D(ω) = c lim
ϕ→0

(a0L)
2

ϕ2
〈|∆ω(ω)|〉 (2.29)

where c is some constant of the order of unity. The symmetric real matrix M

was defined as usual (1.50) with periodic boundary conditions. The twisting of the

matrix M by angle ϕ gives a new Hermitian matrix M ′ obtained as follows. For

bonds between the left (l) and the right (r) boundaries of our cubic sample

M ′
lr = Mlr exp(iϕ), M ′

rl = Mrl exp(−iϕ). (2.30)

For all other bonds M ′
jk = Mjk. So ∆ωi is the difference between i-th

eigenfrequencies of matrices M and M ′

∆ωi = ωi − ω′
i. (2.31)

Twisting of boundary conditions was performed for x direction only. For other two

directions, the periodic boundary conditions were used.

The averaging in Eq. 2.29 is performed over frequencies ω in the small interval

(ω− δω, ω+ δω) with δω = 0.25Ω and over several thousand realizations. For µ = 0

the results for D(ω) are shown in Fig. 2.12 for three different cubic samples (full
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Figure 2.14. The diffusivity D(ω) (in units of Ωa20) as a function of ω (in units of Ω)

for various µ (0, 0.01, 0.1, 1) for sample with N = 143 (crosses). The diffusivity was

calculated using formula of Edwards and Thouless (2.29) with c = 1 and averaged

over two thousand realizations. The arrows indicate frequencies ωmax in the VDOS

g(ω) for corresponding values of µ. Open symbols correspond to phonon diffusivity

(2.32) below the Ioffe-Regel crossover frequency ωir.

lines). We compared these results with the numerical solution of Newton equations

for µ = 0 (black dots) and get the constant c ≈ 1. Then we used this c value for

µ 6= 0. The results are shown in Fig. 2.14. For µ 6= 0 we see clearly two different

frequency regions in the function D(ω).

At low frequencies, the diffusivity increases with decreasing of ω. This range

corresponds to phonons. Indeed, the diffusivity of phonons D(ω) can be calculated

as follows

D(ω) =
1

3
l(ω)vg(ω). (2.32)

Open symbols in Fig. 2.14 show contribution calculated from this equation (just

below Ioffe-Regel threshold). We see a good agreement with Edwards and Thouless

formula. After a deep minimum at frequency ω ≈ ωmax, the diffusivity D(ω)

saturates at a constant level (independent of µ) coinciding with D(ω) for µ = 0.

The diffusivity in this range corresponds to diffusons. Similar behavior of D(ω) was

found recently in jammed systems [Xu et al. 2009; Vitelli et al. 2010]. The deep

minimum in the diffusivity at ω ≈ ωmax corresponds to strong scattering of phonons

by the quasilocal vibrations near the sharp peaks in the VDOS g(ω) (see Fig. 2.6).
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2.4 The thermal conductivity

One can find the thermal conductivity from the VDOS g(ω) and the diffusivity

D(ω) [Sheng and Zhou 1991; Feldman et al. 1993]

κ(T ) =
1

a30

∞
∫

0

g(ω)D(ω)C(ω, T )dω (2.33)

where C(ω, T ) is the specific heat of the harmonic oscillator

C(ω, T ) =

(

~ω

T

)2
e~ω/T

(e~ω/T − 1)
2 . (2.34)

Diffusons have an approximately constant VDOS g(ω) ∼ 1/Ω and diffusivity

D(ω) ∼ a20Ω. In this case from Eq. (2.33) we get a linear temperature dependence

of the thermal conductivity

κ(T ) ∼ k2
BT

~a0
, kBT . ~Ω. (2.35)

At high frequencies, all vibrational modes are excited, and the thermal conductivity

saturates

κ(T ) ∼ kBΩ

a0
, kBT & ~Ω. (2.36)

Eqs. (2.35) and (2.36) with a0 = 3 Å and ~Ω = 30 meV have a quantitative

agreement with experimental data of the thermal conductivity of amorphous SiO2

in the temperature range above 20 K (red line in Fig. 2). At the high-temperature

limit, we get the experimental value κ ≈ 2 W/(m·K). Note, that the maximum

frequency in SiO2 is several times bigger than Ω (Fig. 4) as well as the maximum

frequency in the random matrix model (Fig. 2.3).

2.5 Scaling relations

Finally, the concept of diffusons allows us to establish useful scaling relations

between observable values and important parameters of our model. We have the

dimensionless parameter µ. The second important parameter of the model is the

variance of non-diagonal elements Aij of the random matrix A

〈

A2
ij

〉

= Ω2. (2.37)
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The parameter Ω has units of frequency and assigns the scale of typical frequencies

in the system. In particular, the normalized density of states g(ω) for µ = 0 shown

in Fig 1.5 has the following scaling relation

g(ω) ≃ 1/Ω. (2.38)

Other dimensional parameters are the lattice constant a0 and the atomic mass m.

The diffusivity D does not depend on µ, therefore from the dimensional analysis we

get

D ≃ a20Ω. (2.39)

From Eq.(1.52) the Young modulus is

E ≃ mΩ2

a0

√
µ. (2.40)

The Ioffe-Regel frequency is also proportional to
√
µ

ωir ≃ Ω
√
µ. (2.41)

The corresponding length scale (2.20) is

λir ≃ l(ωir) ≃ q−1
ir

≃
√

D/ωir ≃ D/v ≃ a0µ
−1/4. (2.42)

It is interesting to note that these scaling relations are identical to those found in

jamming transition [Vitelli et al. 2010]. Authors [Vitelli et al. 2010] study a model of

amorphous packing of frictionless spheres interacting via the repulsive pair potential

(see Chapter 4 for more details)

U(rij) ∝ (1− rij/σij)
α if rij < σij,

U(rij) = 0 if rij > σij, (2.43)

where the distance between the centers of atoms i and j is denoted by rij and

the sum of their radii by σij. This model system, irrespective of the value of α,

exhibits a jamming/unjamming transition at T = 0 at a packing fraction φ = φc

at which the atoms are just touching each other, and there is no overlap [O’Hern

et al. 2003]. At densities lower than φc atoms are free to rearrange while above φc

at ∆φ ≡ φ − φc, the system behaves as a weakly connected amorphous solid with

an average coordination number that scales as a power law with an exponent

∆z ≡ z − zc ∼ ∆φ1/2 (2.44)

where zc = 2d, with d being the space dimension.
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It was found that different quantities exhibit scaling behavior near the jamming

point. According to [Vitelli et al. 2010], the Ioffe-Regel crossover frequency ω∗ and

the shear modulus G behave as (below we use the notation of the paper [Vitelli et al.

2010])

ω∗ ∼ ∆φ(α−1)/2, G ∼ ∆φ(2α−3)/2. (2.45)

The transverse sound velocity vt and the diffusivity in the plateau region D0 scale

vt ∼ ∆φ(2α−3)/4, D0 ∼ ∆φ(α−2)/2. (2.46)

The applied pressure p and the plateau in the density of states g0 depend on the

packing fraction as follows [O’Hern et al. 2003]

p ∼ ∆φα−1, g0 ∼ ∆φ(2−α)/2. (2.47)

Thus, if we put

µ ∼ ∆φ, Ω ∼ ∆φ(α−2)/2, (2.48)

then the crossover frequency ωir, the Young modulus E, sound velocity v, the

diffusivity at the plateau D, and the density of states g(ω) in our model have the

same scaling as the crossover frequency ω∗, the shear modulus G, transverse sound

velocity vt, the diffusivity in the plateau D0, and the density of states g0 in the

jamming transition model respectively. In particular, the parameters µ and Ω in

our model are equivalent to the parameter ∆φ and the inverse density of states 1/g0
in the jamming transition model correspondingly.

In the Chapter we mainly considered a case of strong disorder, µ ≪ 1. Taking

into account Eq. (2.48) we find that the small parameter µ of our model coincides

with the small parameter ∆φ in the jamming transition model. The mean-free path

at the crossover as follows from (2.42) and (2.48) is given by

l(ωir) ∼ ∆φ−1/4, (2.49)

what also coincides with [Vitelli et al. 2010].

2.6 Conclusion

In this Chapter we have found that the delocalized vibrational excitations in

the disordered lattice model are of two types. At low frequencies below the Ioffe-

Regel crossover, ω < ωIR, they are the usual phonons (plane waves) which can be

characterized by frequency ω and wavevector q.

At higher frequencies the original notion of phonons is lost, and delocalized

vibrational modes have a diffusive nature. They are similar to diffusons introduced



Chapter 2. Diffusion of vibrations 55

by Allen and Feldman et al. [Allen et al. 1999]. The diffusons again can be

characterized by frequency ω, but have no well-defined wavevector q. Above ω ≈ ωIR

the structure factor of atomic displacements S(q, ω) becomes very similar to the

structure factor Srw(q, ω) of a random walk on the lattice. The corresponding

vibrational linewidth Γ(q) ∝ q2 was found in many glasses in the experiments on

inelastic x-ray scattering, see for example [Sette et al. 1998; Ruocco and Sette 2001]

and references therein.

We have found that the diffusivity of the vibrational energy of diffusons is

approximately constant (as well as the VDOS). The corresponding temperature

dependence of the thermal conductivity have the same behavior as the experimental

data: it is proportional to the temperature T above the plateau and then saturates.



Chapter 3

Vibrational properties of amorphous

silicon-like materials

In previous two Chapters we consider a scalar model where vibrational modes

have no polarization. In this Chapter we show that the polarization plays a crucial

role in such materials as amorphous silicon. We begin with a detailed presentation

of the numerical model of amorphous silicon. Then we compute the vibrational

density of states (Section 3.2) and its transverse and longitudinal component. Then

we analyze the spatial structure of the corresponding eigenmodes (Section 3.3).

In Section 3.4 we study the dynamical structure factor, the dispersion laws, the

corresponding phonon lifetimes and mean-free paths. Finally, in Section 3.5, we

compare the results to the propagation of quasi-monochromatic wave packets with

different frequencies allowing to measure the diffusivity of vibration energy in the

materials, as a function of the frequency and of the bending rigidity. This allows

to identify coherently well-defined vibrational domains, as it is summarized in the

conclusion.

3.1 Numerical model

In this chapter we study the vibrational properties of a model amorphous silicon

(a-Si) system consisting of N = 32768 atoms contained in a cubic box of lengths

Lx = Ly = Lz of approximately 87 Å (smaller systems of N = 8000 have also been

studied to compare our results). The technical details of the preparation of the a-Si

model are presented in Ref. [Fusco et al. 2010]. The Si-Si interaction in the system

studied here is described by the Stillinger-Weber potential [Stillinger and Weber

1985], where we have tuned the prefactor Λ of the three-body term as already done

in [Fusco et al. 2010; Fusco et al. 2014], to quantify here the effect of local order on

56
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Λ ρ, g/cm3 P , GPa cT , m/s cL, m/s

17 2.303 −1.82 3334 7833

19 ” −0.096 3570 7750

21 ” 0.638 3854 7965

23.5 ” 1.38 4133 8226

26.25 ” 2.1 4386 8484

40 ” 5.07 5305 9490

17 2.339 −0.011 3312 8436

21 2.295 0.013 3714 8367

40 2.248 −0.114 5118 9350

Table 3.1. Transverse and longitudinal sound velocities obtained from the elastic

moduli for different values of the parameter Λ with N = 32768.

the vibrational properties. The Stillinger-Weber potential is an empirical potential

including two-body and three-body interactions, such that the total potential energy

of the system is written as

U =
∑

i<j

f(rij) + Λ
∑

i<j<k

(

g(rij, rik, θjik) + g(rji, rjk, θijk) + g(rki, rkj, θikj)
)

(3.1)

with

f(rij) = A
(

B/r4ij − 1
)

exp
(

σ (rij − a)−1) (3.2)

and

g(rij, rik, θjik) = (cos θjik + 1/3)2 exp
(

α(rij − a)−1 + α(rik − a)−1
)

(3.3)

with the parameters proposed in [Stillinger and Weber 1985] A = 7.05, B = 11.60,

α = 2.51 Å, σ = 2.06 Å, and a = 3.77 Å. The parameter Λ gives a measure of the

bond’s directionality: high values of Λ favor local tetragonal order (Λ = 21 is the

original value proposed by Stillinger et al. [Stillinger and Weber 1985] as an empirical

model for a-Si). The atomic configurations corresponding to a-Si structures for

different values of Λ have been obtained from the liquid state, using the open source

LAMMPS package [Plimpton 1995] for classical Molecular Dynamics simulations,

and following the procedure already described in [Fusco et al. 2010]. Different

configurations have been obtained, either by quenching in the NVT ensemble at

a fixed density ρ = 2.303 g/cm3, giving rise to different final pressures as detailed

in Table 3.1, either after pressure relaxation up to P ≈ 0 GPa.

In order to study the role of the local order on the vibrational properties of a-Si,

we have calculated the dynamical matrices for different values of Λ. The dynamical

matrix (1.3) has been numerically computed by calculating the second order spatial
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Figure 3.1. (a) The VDOS for different values of the parameter Λ. (b) The VDOS

as a function of the reduced wave vector q∗ = ω/cT . Inset: Λ-dependence of the

sound velocities cT (green symbols) and cL (red symbols). Green line shows fit with

cT ∝
√
Λ dependence.

derivative of the potential energy around the equilibrium atomic positions Ri. Each

realization of the amorhous silicon and its dynamical matrix M is different. In

this sense the dynamical matrix M is random, however the matrix elements have

complicated correlations with each other.

The elastic constants (shear and bulk modulus) are obtained as in [Fusco et al.

2010] by measuring the quasi-static response of the system to a small deformation

of the box. The corresponding values of the transverse cT and longitudinal cL sound

velocities are summarized in Table 3.1 for the different values of Λ.
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Figure 3.2. (a) The VDOS divided by ν2, that shows the boson peak for different Λ.

Thick lines correspond to constant density configurations as described in Table 3.1.

Dashed thin lines are relaxed configurations with P ≈ 0 GPa. Solid horizontal thin

lines on the left show the low-frequency Debye predictions calculated from the static

shear and bulk modules. (b) Boson peak as a function of the reduced wave vector

q∗ = ω/cT . Vertical gray bands mark the position of q∗1 and q∗2. Arrows show the

position of the transverse Ioffe-Regel criteria (see Section 3.4).

3.2 Density of states

The dynamical matrix M has N = 3N eigenvalues that are squares of the

corresponding eigenfrequencies ωj. The normalized vibrational density of states

(VDOS) as a function of ω = 2πν reads

g(ω) =
1

N
N
∑

j=1

δ(ω − ωj). (3.4)

The full set of eigenvalues for a small system (with N < 104) can be obtained by

standard numerical routines. We used the FEAST Eigenvalue Solver [Polizzi 2009]
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for N = 8000 to get the full set of eigenfrequencies together with the eigenvectors of

the dynamical matrix. However, this direct method requires too much time as well

as random access memory for large enough systems (N > 104). For these purposes,

it is necessary to use more powerful methods for the larger systems studied. In

Appendix B we discuss the Kernel Polynomial Method (KPM) and velocity auto-

correlation method.

The numerical results for VDOS obtained using KPM are presented in Fig. 3.1.

They show the usual shape of VDOS obtained for amorphous silicon [Kamitakahara

et al. 1987], with a first peak related to transverse acoustic modes and a second

well-defined peak at high frequencies that is reminiscent of optic modes in the

crystal (Fig. 3.1a). The rescaling of the frequencies by the transverse sound velocity

(Fig. 3.1b) allows drawing the density of states as a function of a reduced wave

vector q∗ ≡ ω/cT . In this case, the low q-part of the spectra superimpose whatever

the value of Λ, confirming the dominant transverse acoustic character of the low-

frequency vibrations, and suggesting the existence of a characteristic length at a wave

vector q∗ ≈ 10 nm−1 independent of Λ, above which the rescaled VDOS split. The

transverse sound velocities cT shown in the inset of Fig. 3.1 have a Λ1/2 dependence

at constant density, showing that the shear modulus is proportional to the three-

body contribution to the total energy of the system. This effect is not shown in

the longitudinal sound velocities cL because bending rigidity is not dominant for the

propagation of compressive waves, contrary to shear waves. The parameter Λ thus

allows tuning the transverse wave velocities independently of the longitudinal one.

The boson peak is visible after dividing the VDOS g(ν) by ν2 (the Debye

prediction) as shown in Fig. 3.2a. The shape of the boson peak (Fig. 3.2a) shows

clearly a dependence on the bonds directionality quantified by the parameter Λ.

The boson peak appears to be magnified when the three-body interactions are low,

and it decreases when the three-body interactions get more and more important as

compared to the central interatomic forces. For Λ = 21 corresponding to a-Si, the

initial very low-frequency peak is no more marked, but the boson peak is still visible

with an excess of low-frequency vibrations as compared to the Debye prediction. As

the value of Λ increases, the position of the peak is shifted to higher frequencies.

This effect is clearly dominated by Λ. We have checked that pressure differences

between the samples induce only a small change in the boson peak (thin lines in

Fig. 3.2a) as compared to the role of Λ. In order to quantify the observed shift to

higher frequencies, we again rescale the frequencies by the transverse sound velocity,

as suggested in [Léonforte et al. 2006]. The resulting reduced density of states is

shown in Fig. 3.2b. The position of the boson peak as a function of the reduced wave

vector q∗ appears now independent of Λ, suggesting a universal process dominated by

transverse waves, that will be discussed later. Note, however, that the fine structure

of the peak depends on the bonds directionality Λ: at a very low-frequency, a peak is
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visible for low values of Λ, located at q∗1 ≈ 2.7 nm−1 (corresponding to a wavelength

ξ∗1 ≈ 23 Å). This very low-frequency peak disappears progressively, and a secondary

peak appears at q∗2 ≈ 7.0 nm−1 (ξ∗2 ≈ 9 Å) when Λ > 21. The significance of these

peaks will be discussed later.

Above we have shown that the low-frequency part of the VDOS has presumably

a dominant transverse character. It would be very interesting to find a regular way

to separate the VDOS into the longitudinal and the transverse components for the

whole vibrational spectrum. In particular, it gives us a possibility to show more

clearly that the boson peak has a transverse nature [Schober 2004]. In Appendix C

we describe a generalized decomposition method without the notion of the wave

vector, which is an ill-defined quantity in strongly disordered systems. This method

is based on the volume variations of the Voronoi cells during the atomic motion. The

atomic displacement of each atom can be decomposed into two components, one of

them preserving the volume of the Voronoi cells. The displacements preserving the

volume of each Voronoi cell are identified as transverse displacements, and the other

as longitudinal displacements.

The separate contribution of longitudinal and transverse displacements to the

total VDOS is shown in Fig. 3.3. In the low-frequency region (below 7 THz for

Λ = 21), the transverse modes dominate the VDOS, thus confirming the transverse

character of the vibrations in the region of the boson peak for amorphous silicon-like

samples (Fig. 3.3b). However, at 7 THz there is a sharp transition from mostly

transverse modes to mostly longitudinal ones. It corresponds to the maximum

frequency (7.5 THz) of TA modes in crystalline silicon [Tubino 1972]. The maximum

frequency of LA modes is much large (11 THz) due to the large difference between

bulk and shear moduli. The elementary cell in the diamond-like crystalline silicon

contains 2 non-equivalent atoms whose out of phase motion results in the three

branches of high-frequency optic modes (one LO and two TO modes) with very low

group velocity [Kittel 2005]. In amorphous silicon out of phase motion of nearest

atoms is similar to crystalline optic modes. These modes form the second peak of

the VDOS, which is clearly seen in neutron scattering measurements [Kamitakahara

et al. 1987]. Thus, the predominance of the longitudinal modes between 7 THz and

15 THz in amorphous silicon (Fig. 3.3a) corresponds indeed to the gap between the

upper frequency of TA modes (7.5 THz) and the lower frequency of TO modes (13.9

THz) in crystalline Si. This frequency region in crystalline Si is totally occupied by

LA and LO modes (without a gap). In amorphous Si in the same frequency region,

the vibrations have a small transverse component (15–20%), in agreement with the

results obtained in [Marinov and Zotov 1997].
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Figure 3.3. (a) The decomposition of the total vibrational density of states (Σ)

to longitudinal and transverse components for Λ = 21. Vertical arrows show the

transverse and longitudinal Ioffe-Regel frequencies. Inset: the relative number of the

longitudinal modes gL(ω)/g(ω) (green line between hatching regions). The relative

number of the transverse modes gT (ω)/g(ω) = 1 − gL(ω)/g(ω) is shown by red

hatching between green line and the value 1. (b) The boson peak (Σ) and its

longitudinal and transverse components for Λ = 21. Thin horizontal lines show the

low-frequency Debye prediction calculated from the static shear and bulk moduli.

Dashed lines are estimations from Section 3.4 of the phononic contribution, below

the Ioffe-Regel limit. The vertical arrow shows the transverse Ioffe-Regel frequency.

In order to complete this description, in the next Section we will calculate

participation ratio and the correlation function to describe the geometrical structure

of the eigenmodes that are obtained as eigenvectors of the dynamical matrix.

3.3 Participation ratio and spatial correlations

The exact diagonalization of the dynamical matrix is performed using FEAST

Eigenvalue Solver [Polizzi 2009] on a system made with N = 8000 atoms. A series of
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(a)  = 0.59 THz (b)  = 2.67 THz

(c)  = 9.95 THz (d)  = 17.39 THz

Figure 3.4. Vibration modes corresponding to different frequency range, for Λ = 21.

Arrows are proportional to the displacements of the particles (×100). The 2D

representation corresponds to a cut along the x-y plane (δz = 5 Å) that contains the

particle supporting the largest displacement.

N = 3N eigenmodes ui(ωj) is then obtained with the corresponding eigenvalues ω2
j .

These eigenmodes are the normal modes of the amorphous material but they are not

simple plane waves with a well-defined wave vector q. Examples of such eigenmodes

are shown in Fig. 3.4. The low-frequency eigenmodes are a superposition of plane

waves with softer regions supporting highly strained isolated vibrations (Fig. 3.4a).

The modes supporting additional isolated vibrations are precursors of local plastic

rearrangements when looking at the anharmonic mechanical response [Tanguy et al.

2010]. We identify them as soft modes because they occur only in the low-frequency

part of the spectrum (as will be proved later) with soft spots due to very low local

elastic stiffness. Other authors called the low-frequency modes quasi-localized modes

[Schober and Oligschleger 1996; Schober 2004] in order to distinguish them from

plane waves. At higher frequencies, the shape of the eigenmodes becomes more

complex.

The amount of particles moving together in the vibrational eigenmodes is usually

quantified by the participation ratio defined for each eigenmode j as

P (ωj) ≡
1

N

(
∑

i u
2
i (ωj))

2

∑

i u
4
i (ωj)

. (3.5)
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Figure 3.5. Participation ratio as a function of the reduced wave vector q∗ = ω/cT
for different values of the parameter Λ. Vertical gray bands show three characteristics

reduced wave vectors q∗1, q
∗
2, and q∗3. Inset: zoom on the low-frequency range.

For an isolated particle P ∼ 1/N , and for translational motion P ∼ 1 (see

Section 1.4). The participation ratio is shown in Fig. 3.5 as a function of the reduced

wave vector q∗. Similarly to the VDOS, the low-frequency part of P superimposes

for all Λ when plotted as a function of the reduced wave vector q∗, suggesting the

existence of a common geometrical origin involving mainly transverse vibrations. It

can be schematized as follows: first an initial decay due to the wavelengths decrease

of acoustic modes, together with very low values characteristic of soft modes. Then

an increase up to a value close to P ∗ = 0.5 (an example of such mode is shown

in Fig. 3.4b). The value of P ∗ is close to 0.6 for uncorrelated Gaussian random

noise (see Section 1.4). After a secondary minimum (mode shown in Fig. 3.4c)

the participation ratio decreases to zero at the mobility edge [Allen et al. 1999]

that follows the position of the high-frequency peak in the VDOS (see Fig. 3.1). A

typical mode in this frequency range is shown in Fig. 3.4d. Quite remarkably, the

position of the first minimum in the participation ratio corresponds for all Λ to the

first maximum in the rescaled VDOS divided by ν2 located at q∗1, and the position

of the common maximum P ∗ = 0.5 is located at q∗2 corresponding to the second

peak in the low-frequency rescaled VDOS divided by ν2. The departure from the

plane waves participation ratio in this range, means that in all our systems, the

boson peak is located in a frequency range where plane waves are no more the

dominant contribution to the eigenmodes. This frequency range is limited by two

characteristic distances ξ∗1 and ξ∗2 , that are independent on Λ. There is also a third

characteristic reduced wave vector q∗3 = 11.7 nm−1 which corresponds to a secondary

local minimum of the participation ratio for all values of Λ. It coincide with the sharp

change of the nature of vibrations from almost transverse to almost longitudinal ones

(Fig. 3.3).
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Figure 3.6. (a) The spatial correlation function of the atomic displacements

Cn(r, ω) as a function of the frequency ν for Λ = 21. The amplitude of the correlation

function is indicated by color. The negative correlation is marked by blue color. All

amplitudes above 0.1 are shown as 0.1. (b) The same correlation function for different

frequencies ν = ω/2π. (c) Position in the first minimum of the correlation function as

a function of the reduced wave vector q∗ for the different values of Λ. The dashed line

is r∗ = 0.449/q∗, which corresponds to the first minimum of Eq. (3.10) for transverse

modes. Vertical gray bands mark the positions of q∗1, q
∗
2, and q∗3.
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In order to detail the shape of the eigenmodes and compare with these

characteristic lengths, we have computed their spatial correlation function C(r, ω).

It is defined as in Ref. [Tanguy et al. 2002] as

C(r, ω) =
1

N
N
∑

j=1

〈u(r + r′, ωj) · u(r′, ωj)〉r′δ(ω − ωj), (3.6)

where u(r, ωj) is coarse-grained displacement field of jth eigenmode

u(r, ωj) =
N
∑

i=1

W(r −Ri)ui(ωj) (3.7)

with W a coarse-graining function normalized by
∫

W2(r)dr = 1. We used Gaussian

coarse-graining function of width wCG = 0.5 Å. This length is less than the typical

distance between atoms, so we can neglect the overlapping of different grains. In

this case, normalization of the eigenmodes implies

〈u(r, ωj) · u(r, ωj)〉r = 1, (3.8)

which results in the property C(0, ω) = g(ω). For convenience we used the

normalized correlation function

Cn(r, ω) =
C(r, ω)

g(ω)
. (3.9)

In order to calculate C(r, ω), we used the KPM (Appendix B). The amplitude

of Cn(r, ω) averaged over different directions of r for all the frequencies is shown

in Fig. 3.6a for Λ = 21. Starting from Cn(0, ω) = 1, it shows oscillations between

positive and negative values characterizing a spatial flipping of the displacement

field. For a three-dimensional plane wave with a given polarization (L or T) and the

wavevector q the normalized correlation function has a form

Cn(r, ω) =
sin(qr)

qr
. (3.10)

The low-frequency behavior of the correlation function (Fig. 3.6) is indeed dominated

by the wavelength of the plane wave: when plotted as a function of the reduced wave

vector q∗ = ω/cT , it shows the characteristic behavior of transverse plane waves.

Indeed, Fig. 3.6c shows the position of the first minimum r∗ of Cn as a function of

the reduced wave vector. In the low-frequency regime, it decays like r∗ = 0.449/q∗ in

exact correspondence with the wavelength of the transverse plane wave. This means

that Cn is dominated by the collective dynamics of plane waves even in the presence

of soft modes. However, the values of r∗ = ξ∗1 at q∗1 and r∗ = ξ∗2 at q∗2, confirm
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the signature of a characteristic wavelength in the vibration modes. The origin of

these lengths is not obvious. It was obvious from P (ωj) that the eigenmodes are not

simple plane waves at q∗1, but have a very small participation ratio indicating the

presence of isolated centers of enhanced vibrations. These centers are sufficiently

few to not affect the long-range spatial correlations due to transverse plane waves in

Cn, but can affect the vibrational density of states through small frequency shifts.

This description supports the fact that transverse plane waves and isolated centers of

enhanced vibrations still coexist at q∗1. ξ
∗
1 could be the distance between the isolated

centers, that would correspond as well to the wavelength at q∗1. At q∗2 a clear-cut

change of behaviour appears in Cn for all the systems studied indicating departure

from transverse plane waves. This effect will be discussed again later. Finally, a

common change appears at a larger reduced wave vector q∗3 = 11.7 nm−1 in Cn,

which was introduced in Fig. 3.5. It corresponds to the transition from transverse

modes to longitudinal ones with bigger correlation radius.

We have shown in this Section, that the eigenmodes have characteristic features

depending on the corresponding frequency range. In the low-frequency part of the

spectrum, eigenmodes share common features independent of the bending rigidity

of the modes: for example, the boson peak is bounded by two characteristic

lengthscales ξ∗1 and ξ∗2 with a very low participation ratio in the first case, and a local

maximum in the participation ratio in the second case. These two length-scales have

a signature in the spatial correlation analysis of the modes. It is shown as well, that

in the very low-frequency range, transverse plane waves coexist with local enhanced

vibrations while the plane-wave character of the vibrations is questioned in the higher

limit of the boson peak. We will now study the dynamical structure factor, in order

to relate these observations to the study of density-density correlation functions,

as can be tracked in neutron diffraction experiments for example [Giordano and

Monaco 2010; Baldi et al. 2011b]. The analysis of the dynamical structure factor

allows also to discuss the Ioffe-Regel criterion for waves scattering.

3.4 Dynamical structure factor

In this Section we analyze the dynamical structure factor in order to determine

the dispersion law and the mean-free path for longitudinal and transverse phonons.

We prove that it is an accurate method in the frequency range below the Ioffe-Regel

criterion, where the mean-free path is still bigger than the half wavelength, and the

notion of phonon dispersion is well-defined.

The dynamical structure factor is the self-correlation function of the mass

currents [Shintani and Tanaka 2008] in the system at thermal equilibrium with some

temperature T . The structure factor can be calculated by normal mode analysis.
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Figure 3.7. The longitudinal (L) and transverse (T) components of eigenmodes in

the reciprocal space as a function of the wavenumber q and the frequency ν for the

parameter Λ = 21 and Λ = 40.

Figure 3.8. Fits of the dynamical structure factor SL(q, ω) to Eq. (3.14) for Λ = 21

and various values of the wavenumber q (from left to right: 1.44, 2.89, 4.33, 5.77,

7.21, 8.66, 10.10 and 11.54 nm−1). The inset shows a full curve for q = 1.44 nm−1.
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Using a small displacement expansion of the density correlation function, combined

with the projection of the displacements on the normal modes, and the classical

approximation kBT ≫ ~ω for the equipartition of energy in the normal modes

amplitude, it reads

Sη(q, ω) =
kBT

m

q2

ω2
Fη(q, ω), (3.11)

where η denotes longitudinal (L) or transverse (T) component. In the above

equation, Fη(q, ω) is the longitudinal or transverse component of the Fourier

transform of the eigenmodes

FL(q, ω) =
N
∑

j=1

∣

∣

∣

∣

N
∑

i=1

q̂ · ui(ωj)e
iqRi

∣

∣

∣

∣

2

δ(ω − ωj), (3.12)

FT (q, ω) =
N
∑

j=1

∣

∣

∣

∣

N
∑

i=1

q̂ × ui(ωj)e
iqRi

∣

∣

∣

∣

2

δ(ω − ωj). (3.13)

Here q̂ = q/|q| is a unit vector along q and ui(ωj) is the displacement of the ith

atom for jth eigenmode.

In order to calculate Fη(q, ω), we also used the KPM (Appendix B). Fig. 3.7

shows the structure of eigenmodes Fη(q, ω) in the reciprocal space averaged over

all possible directions of q. For a better visual effect we divide Fη(q, ω) by the

magnitude of its maximum for each fixed value of ω. All color maps in Fig. 3.7

have two evident regions: low-frequency region with thin phonon branch, and high-

frequency region without a certain relationship between the wavenumber q and the

frequency ω.

In order to extract information about phonons in the low-frequency region we fit

the structure factor Sη(q, ω) using the DHO model (Fig. 3.8)

Sη(q, ω) =
A

(ω2 − ω2
η(q))

2 + ω2Γ2
, η = L, T. (3.14)

We extract phonon dispersion ωη(q), the phonon inverse lifetime Γ(q) and a

coefficient A from this fit.

The numerical results obtained by this method for phonon dispersion ωη(q) as

well as the group velocity vηg = ∂ωη/∂q are presented in Fig. 3.9. With a known value

of Γ and vg, the phonon mean-free path l(ω) can now be calculated as l(ω) = vg/Γ.

The phonons are well-defined excitations if their mean-free path l(ω) exceeds the

phonon half wavelength π/q (Ioffe-Regel criterion for phonons). Fig. 3.10 shows the

value of Γ for all the samples with different bending rigidities Λ and Fig. 3.11 shows

the position of the Ioffe-Regel frequency for longitudinal and transverse phonons for

the parameter Λ = 21. From the similar figures for other values of the parameter Λ

we find the remaining Ioffe-Regel frequencies (Table 3.2).
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Figure 3.10. Width Γ obtained from the DHO fit of the structure factor, as a

function of the wave vector q obtained from the dispersion relation Fig. 3.9 for the

different values of Λ. Left: transverse modes; right: longitudinal modes. Arrows

mark the approximate position of the Ioffe-Regel crossover for all values of Λ.

Transverse modes show the Γ ∝ q2 law near the Ioffe-Regel criterion.
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Figure 3.11. The mean-free path l as a function of the frequency (points),

compared to the half-wavelength π/q given by DHO fit (solid lines). The crossing

points determine the Ioffe-Regel criterion (shown by arrows). Inset: the Ioffe-Regel

frequencies for longitudinal (red symbols) and transverse (green symbols) phonons

for different values of the parameter Λ. The solid line shows the trend νTIR = cT /ξ2.

Λ νT
IR, THz νL

IR, THz qTIR, nm−1 qLIR, nm−1

17 3.3 12.1 6.2 9.7

19 4.1 12.4 7.2 10.1

21 4.5 12.7 7.3 10.0

23.5 5.1 12.8 7.8 9.8

26.25 5.7 13.0 8.2 9.6

40 7.0 13.8 8.3 9.1

Table 3.2. Transverse and longitudinal Ioffe-Regel criteria for different values of

the parameter Λ.

Different comments are raised by these measurements. First, the sound wave

velocities (Fig. 3.9b) are well-defined below the Ioffe-Regel criterion. It is not

constant, but it varies with q. Transverse sound velocities show a small decay

with q, starting at the low-frequency limit of the boson peak, as already measured

in experiments [Baldi et al. 2011b]. Longitudinal sound velocities decay faster with

a sudden increase at q ≈ 10 nm−1 (ν = 12.5 THz for Λ = 21), after transverse waves

became strongly scattered in the sample.
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The density of states of longitudinal and transverse phonons can be obtained

from the dispersion laws qL(ω) and qT (ω) respectively

gL(ω) =
L3

6Nπ2

qL(ω)
2

vLg (ω)
, (3.15)

gT (ω) =
L3

3Nπ2

qT (ω)
2

vTg (ω)
. (3.16)

and compared to the more general decomposition that was already discussed in

Section 3.2. In the low-frequency limit, the ratio between them is

gL(ω)/gT (ω) = c3T/2c
3
L ≪ 1. (3.17)

For Λ = 21 this ratio is equal to 0.057, which coincides well with the low-frequency

part of this ratio is shown in the inset in Fig. 3.3a. The very low-frequency modes are

naturally mainly transverse due to their lower sound velocity. The two estimations

of longitudinal and transverse contribution to VDOS are compared in Fig. 3.3. The

estimation from the dispersion law is close to the general estimation, but slightly

lower. The main difference is on the boson peak Fig. 3.3b: the first low-frequency

peak (attributed to soft modes in Section 3.2) is indeed completely absent in the

dispersion law estimation of the VDOS that stays close to the Debye one in this

frequency range. It means that this first peak results from a departure to the

phonon-like behavior.

The inverse lifetime Γ (Fig. 3.10) is different for transverse and for longitudinal

waves. The inverse lifetime of transverse waves varies approximately ∝ q2 as

discussed extensively in the literature [Rufflé et al. 2006], with a collapse for all

Λ values at q∗2. Longitudinal inverse lifetime is more sparse. It shows a sudden

increase at q ≈ 10 nm−1, that is after transverse waves are strongly scattered in the

system and do not interfere anymore with longitudinal waves. The measurement

of Γ allows computing a mean-free path l (Fig. 3.11) but only in the region where

the sound velocity vg is well-defined. The computed longitudinal mean-free path

is always larger than the transverse mean-free path. The measured values of l can

overcome the size of the system, because it is computed from an estimation of the

inverse lifetime Γ that does not result from a propagating process [Damart et al.

2015] but only from a general fit of a geometrical function S(q, ω). The Ioffe-Regel

crossover occurs at a well-defined wave vector qTIR = 2πνT
IR/cT ≈ 7.5± 1.0 nm−1 for

transverse waves, and qLIR = 2πνL
IR/cL ≈ 9.7± 0.4 nm−1 for longitudinal waves (see

Table 3.2), slightly larger than the upper limit q∗2 of the boson peak for the transverse

one. This relation is only slightly sensitive to Λ, suggesting a universal mechanism

for strong scattering in amorphous materials, independent of the specific interatomic

interactions. We will now compare this estimation of the Ioffe-Regel criterion to the

description of quasi-monochromatic wave packet propagation.
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Figure 3.12. The spatial distribution of the vibrational energy for different time t

after the maximum of the exciting pulse for ν = 8 THz. Solid lines were calculated

for the repeatedly extended sample with 4×2×2 periodic blocks. Dashed lines show

the spreading of the energy in one periodic block only. Vertical thin black lines show

boundaries of one periodic block. The width of the extended sample is larger than

the horizontal plot range.

3.5 Diffusivity

In this Section we consider the diffusion of the vibrational energy. For this

purpose, we excite a quasi-monochromatic wave packet in the middle thin layer of

the sample around x = 0 in a small time interval around t = 0. In this Section we

use a vector analog of the method described in Section 2.3.2. To excite vibrations

in the sample we use the excitation force

f ext
iα (t) = sin(ωt+ ϕiα) exp

(

− x2
i

2w2
− t2

2τ 2exc

)

(3.18)

where the phase ϕiα is random for each atom i and each Cartesian projection α. The

width of the excited layer is determined by the value of w = 3 nm and the duration of

the excitation is given by τexc = 1 ps. The latter determines the frequency resolution

∆ν = 1 THz. We start our calculations at time t0 = −5τexc when the external force

is still negligible. In order to have a sufficiently large system size, the central sample

with periodic boundary conditions and size L = 87 Å is duplicated into 4 images

along x direction and 2 along y and z directions. As a result, in volume size we

obtain a 16 times bigger sample. This allows a determination of large mean-free

paths for phonons and diffusion of energy on longer distances. Indeed, the energy

diffusion front reaches the boundaries of the original sample at t ≈ 1 ps when the

excitation force is still active (see dashed lines in Fig. 3.12). The diffusivity of the

vibrational energy in this extended sample is the same as in one big sample except
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Figure 3.13. Snapshot of rotons with wave packet for Λ = 21, ν = 4 THz and t = 2

ps.

a small region near the mobility edge. Localized modes with the localization length

ξ > L look like delocalized in the repeated sample.

After applying the external force, the vibrational energy spreads in both

directions from the central layer x = 0. The average radius squared of the energy

diffusion front is defined as in Chapter 2 as:

R2(t) =
1

Etot

∑

i

x2
iEi(t). (3.19)

Here, xi is the x coordinate of the ith atom, Ei(t) is the total energy of the ith

atom, and the sum is taken over all atoms in the sample. Etot =
∑

i Ei(t) is the

total vibrational energy of the system. It is independent on time after the external

force f ext
iα (t) became negligibly small (i.e., for t > 5τexc).

The energy of the ith atom Ei(t) is the sum of the kinetic energy and a half of

the potential energy of connected bonds with ith atom:

Ei(t) =
vi(t)

2

2
+

1

2

∑

jαβ

Miα,jβuiα(t)ujβ(t). (3.20)

Here, vi(t) = u̇i(t) is the ith atom velocity with the same notations as Eq. 1.2.

Eq. (3.20) is the vector analog of Eq. (2.23).

The spatial vibrational energy distribution along the x direction is shown in

Fig. 3.12 at different times t. Initial random phases ϕiα allow keeping the center
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Figure 3.14. Spreading of the vibrational energy in space R2(t) for different

frequencies for Λ = 21. Numbers near curves represent frequencies in THz. Solid

lines were calculated for the repeatedly extended sample with 4 × 2 × 2 periodic

blocks. Dashed line shows the spreading of the energy in one periodic block only (for

ν = 8 THz).

of mass of the energy in the central layer while the energy is progressively spread

inside the sample.

To integrate the system with a given external force and zero initial conditions

we used the Verlet method with a small enough time step δt = 0.6 fs and get the

dependence R2(t) for different frequencies from ν = 2 THz up to ν = 20 THz.

The results are shown in Fig. 3.14. We clearly see a linear temporal dependence in

each curve. Their slope gives us the diffusivity by the equation for one-dimensional

diffusion

R2(t) = 2D(ω)t. (3.21)

The resulting diffusivity is shown in Fig. 3.15a for different values of the parameter

Λ. All curves have the same structure: (1) low-frequency modes with large

diffusivity; (2) a flat region with relatively small diffusivity; (3) a prominent peak

of the diffusivity; (4) a gradual decreasing of the diffusivity; (5) zero diffusivity

for localized modes. The first two regions coincide for all values of Λ if we plot

the rescaled diffusivity D/cT as a function of the reduced wave vector q∗ = ω/cT
(Fig. 3.15b). After an initial decay, the diffusivity saturates at a minimum value.

Whatever Λ, the flat region in the diffusivity occurs precisely between q∗2 and q∗3,

that is in the region between the upper bound of the boson peak (close to the

Ioffe-Regel criterion for transverse waves) and transition from mostly transverse

modes to mostly longitudinal ones. The lower boundary of the flat region is in

perfect agreement with those obtained in Chapter 2 for a completely different

random system. The relation between boson peak and Ioffe-Regel criterion was
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Figure 3.15. (a) The diffusivity as a function of frequency for different values

of the parameter Λ. Upward and downward arrows show the transverse and the

longitudinal Ioffe-Regel criteria respectively. (b) The rescaled diffusivity D/cT as a

function of the reduced wave vector q∗ = ω/cT for the same values of Λ. Vertical

gray bands mark the positions of q∗2 and q∗3.

also suggested by experimental measurements [Rufflé et al. 2006] and molecular

dynamics simulations in Lennard-Jones glasses [Tanguy et al. 2006]. It is shown

here that the strong scattering gives rise to a very low diffusivity, and that it is

possible to measure diffusivity in a purely harmonic model as soon as interactions

are random. The shape of the instantaneous velocity field in the flat region is

shown in Fig. 3.13 during the propagation of a wave packet. Rotational structures

are clearly visible and responsible for the strong dephasing close to the Ioffe-Regel

crossover. The flat region in the diffusivity is followed by a peak already discussed

in Ref. [Allen et al. 1999].

The peak of the diffusivity is large for almost all values of the parameter Λ

(Fig. 3.15). We can alternatively find the diffusivity of longitudinal and transverse
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Figure 3.16. Diffusivity of longitudinal phonons (L) and transverse phonons

(T). Dotted line (L+T) shows the estimation of phonon contribution to the total

diffusivity by Eq. (3.23). Solid black line is the total measured diffusivity. The

vertical arrows show the transverse and longitudinal Ioffe-Regel frequencies.

phonons up to the Ioffe-Regel criteria using the approximate relation [Kittel 2005]

Dη(ω) =
1

3
lη(ω)vη(ω), η = L, T (3.22)

where ω < ωL
IR for longitudinal phonons and ω < ωT

IR for transverse phonons. We

can see that the diffusivity of longitudinal and transverse phonons has monotonically

decreasing behavior except the negligible peak for longitudinal phonons (Fig.3.16).

Eq. 3.22 cannot give the diffusivity beyond the Ioffe-Regel criteria, but we expect a

small diffusivity decreasing down to 0 at the mobility edge. Therefore, the peak in

the diffusivity cannot be explained by the diffusivity of longitudinal and transverse

phonons separately. However, the total diffusivity depends on the ratio of density

of states of longitudinal and transverse vibrations

D(ω) =
gL(ω)

g(ω)
DL(ω) +

gT (ω)

g(ω)
DT (ω). (3.23)

The resulting phononic diffusivity is shown in Fig. 3.16. It shows that the main peak

located at q∗ ≈ 13.5 nm−1 is due to the large density of longitudinal modes gL(ω),

enhancing the small diffusivity increase due to the absence of transverse modes in

that frequency range. The rise of the diffusivity at 7 THz in amorphous silicon thus

corresponds to the sharp change in the nature of vibrations from almost transverse

to almost longitudinal ones having high sound velocity.
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Figure 3.17. Schematic description of the different crossovers in the vibrational

properties of harmonic amorphous solids. The VDOS and the diffusivity of vibrations

of model amorphous silicon with Λ = 21 are shown in the background.

3.6 Conclusion

In this Chapter we have proposed a coherent picture of the vibrational properties

of harmonic amorphous solids with local tetrahedral order, by combining four

independent approaches: the detailed study of the normal modes (resonant

vibrational modes) and of the vibrational density of states, dynamic structure factor

calculation and an analysis of propagation of a quasi-monochromatic wave packet.

The bending rigidity of local interatomic bonds was used as a control parameter to

tune the sound velocity. This allowed to get a coherent picture of the vibrational

response of our model systems. Different regimes were highlighted. The results are

summarized in Fig. 3.17.

The low-frequency vibrational response is dominated by transverse modes. In

this region, the boson peak is visible and bonded by two characteristic wave vectors:

the first is related to soft modes, and the second to the Ioffe-Regel limit for transverse

waves. Remarkably, these two wave vectors are independent on the details of the

interactions in the different systems studied here, and they define two characteristic

mesoscopic length scales ξ∗1 and ξ∗2 having a signature in the spatial correlations

of the normal modes. In silicon-like samples, the large difference in the transverse

and longitudinal sound velocities yields a large gap between the Ioffe-Regel limit for

transverse waves, and the Ioffe-Regel limit for longitudinal waves. In this gap,

the vibrations sharply change the transverse character to longitudinal one near

q∗ ≈ q∗3, resulting in a deep increase of the diffusivity. As shown already by P.B.

Allen at al. [Allen et al. 1999], the mobility edge and the transition to localized
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modes occur at higher frequencies. This transition was obtained as well in other

disordered model materials, like lattice models [Ludlam et al. 2003] and models of

amorphous silica [Ludlam et al. 2005], thus supporting its universal feature. The

modes in the boson peak range preceding the Ioffe-Regel crossover for transverse

waves have a characteristic random rotational structure yielding a dephasing of

the wave front. In this frequency range, the participation ratio is at a maximum

value, but the diffusivity is at a minimum value, and the diffusive inverse lifetime

is proportional to q2. Similar results have already been obtained with Brillouin

scattering measurements [Rufflé et al. 2006]. However, the precise sensitivity of the

inverse lifetimes or of the vibrational density of states to the rescaled wave vector (or

equivalently to the frequency) is system dependent [Larkin and McGaughey 2014].



Chapter 4

Random matrix theory approach to

the jamming transition

In this Chapter we show how one can apply the random matrix theory to estimate

the vibrational density of states (VDOS) in jammed granular systems.

4.1 Model

Granular media, various emulsions (microdrops of one liquid in another

immiscible liquid), and colloid suspensions (solid particles in the liquid) are

widespread in nature, industry, and daily life. Such media demonstrate a wide

variety of phenomena still poorly studied. In particular, they can flow as a liquid or

have elastic properties as a solid, depending on external factors.

A transition between a solid phase, where all granules (microdrops, etc.) touch

each other, and a phase of free particles is called the jamming transition (after

traffic jam). Such a transition is described by a simple model, where N elastic

granules enclosed in a certain volume are considered [Liu and Nagel 1998]. The most

important parameter of this model is the ratio φ of the volume occupied by granules

to the entire available volume. If φ is large and exceeds a certain critical value φc,

all granules touch each other and constitute something like a solid whose structure

can withstand finite external loads (Fig. 4.1). In order to avoid the crystallization

of the system, a mixture of granules with slightly different dimensions is taken. If

φ < φc, granules no longer touch each other and the system behaves as a gas. At

φ = φc, all granules touch each other, but the interaction between them is absent.

In this work, we demonstrate how the random matrix theory allows the description

of the VDOS in the solid phase, when φ is slightly larger than the critical value φc.
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a b c

Figure 4.1. States of the granular media. (a) Free particles, φ < φc. (b) Critical

state, φ = φc. (c) Solid phase, φ > φc [O’Hern et al. 2003].

The case where granules are spherical and friction between them is absent is

of most interest. Despite seeming simplicity, this model is sufficient for qualitative

description of the jamming transition. Such a model is mathematically described

by a repulsive potential between each pair of granules touching each other [Liu and

Nagel 1998]:

U(rij) ∝ (1− rij/σij)
γ , rij < σij,

U(rij) = 0, rij > σij.
(4.1)

Here, rij is the distance between the centers of the ith and jth granules and σij is

the sum of the radii of these granules. The exponent γ depends on the type of the

interaction between granules. The harmonic potential (γ = 2) and Hertz potential

(γ = 5/2), which corresponds to the interaction between three-dimensional elastic

balls, are often used. Since we consider spherical granules in the absence of friction,

rotational degrees of freedom of individual granules are of no significance.

We introduce the average coordination number z, i.e., the average number of

contacts of each granule with neighboring granules. The larger the concentration of

granules φ, the larger the number of the neighbors interacting with each granule. At

the point of jamming transition φ = φc, the average number of contacts is determined

by the universal formula zc = 2d, where d is the dimension of the space, which is

related to the Maxwell rule of counting bonds [O’Hern et al. 2003; Maxwell 1864].

As the average number of contacts z decreases to the critical value 2d, various

characteristics of the system satisfy a power law. In particular, the bulk modulus G

and shear modulus B behave as follows [O’Hern et al. 2003]:

G ∼ (z − zc)
2γ−3, B ∼ (z − zc)

2γ−4. (4.2)

We are interested in the behavior of the VDOS g(ω) as a function of the frequency

ω. Numerical simulation shows that two characteristic frequency ranges can be

identified: the range ω− < ω < ω+, where the VDOS is approximately constant,

and the range 0 < ω < ω− with a relatively small number of oscillations (or a gap

in the spectrum). The closer z to the critical value 2d, the closer is ω− to 0. At
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the critical value z = 2d, the VDOS g(ω) is approximately constant beginning with

zero frequency. There is no simple theoretical explanation of such a behavior of the

VDOS near the stability threshold. We will show that the random matrix theory

can provide an adequate estimate of the VDOS near the jamming transition.

We consider the system close to a critical one when z > zc (φ > φc). In this

case, granules touch its neighbors, but are insignificantly indented into each other.

Then, the total potential energy is expanded near the stable equilibrium position as

[Wyart et al. 2005]

U(u1, . . . ,uN) =
∑

(ij)

kij
2

(

(ui − uj) · nij

)2
. (4.3)

Here, ui is the displacement of the ith granule from the equilibrium position r
(0)
i ,

(ij) under the sum sign means summation only over the touching pairs of the ith and

jth granules, and nij is the unit vector along the direction connecting the centers

of these granules ri − rj. Owing to the repulsive potential under consideration,

all kij values are positive, kij > 0. For certainty, we accept that the total number

of pairs of touching granules is K = zN/2. The above formulas are valid for any

dimensionality of the space d.

The dynamical matrix M is defined in terms of the second derivatives with

respect to the potential energy of the system at the equilibrium position:

Miα,jβ =
1

√
mimj

∂2U

∂uiα∂ujβ

. (4.4)

where α and β mean the projections of the displacements of granules on the

Cartesian coordinates. The dynamical matrix has a dimension of Nf × Nf , where

Nf = Nd is the number of degrees of freedom. In this case, the eigenvalues of the

dynamical matrix are squares of the eigenfrequencies of the mechanical system under

consideration. The eigenfrequencies include trivial zero frequencies corresponding

to the translational and rotational motions of the system as a whole.

4.2 Decomposition of the dynamical matrix

Before the consideration of the general case of many interacting particles, we

consider illustrative cases of two and three particles interacting with each other

without the participation of other particles (Fig. 4.2). The potential energy of two

particles (Fig. 4.2a) appears as a single term in Eq. (4.3):

U(u1,u2) =
k

2

(

(u1 − u2) · n
)2
. (4.5)
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Figure 4.2. Illustration of the interaction between two and three particles.

This energy is just the interaction energy of two particles connected by a spring with

the longitudinal rigidity k. The corresponding dynamical matrix M (2d × 2d) can

be written in the block form

M =

(

kn̂/m1 −kn̂/
√
m1m2

−kn̂/
√
m1m2 kn̂/m2

)

, (4.6)

where n̂ is a d × d matrix with the elements n̂αβ = nαnβ. We note that such

a dynamical matrix can be represented in the form M = AAT , where A is the

following 2d× 1 matrix:

A =

(
√

k/m1n

−
√

k/m2n

)

. (4.7)

The elements of the matrix A have the dimension of frequency and correspond to

oscillations of the masses m1 and m2 connected by a spring with the rigidity k.

For three particles, the first of which touches the second and the second touches

the third (Fig. 4.2b), the 3d× 3d dynamical matrix has the form

M =

















k12n̂12

m1

−k12n̂12√
m1m2

0

−k12n̂12√
m1m2

k12n̂12 + k23n̂23

m2

−k23n̂23√
m2m3

0
−k23n̂23√
m2m3

k23n̂23

m3

















. (4.8)

This dynamical matrix is also represented in the form M = AAT , where the matrix

A now has two columns according to two contacts and 3d rows according to 3d

degrees of freedom existing in the system:

A =





√

k12/m1n12 0

−
√

k12/m2n12

√

k23/m2n23

0 −
√

k23/m3n23



 . (4.9)

The positions of minus signs are arbitrary: each column of the matrix A can be

multiplied by −1 without a change in the dynamical matrix M .
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In the general case of a large number of interacting granules, the elements of the

dynamical matrix M have the form

Miα,jβ = −
kijn

α
ijn

β
ij√

mimj

, i 6= j, (4.10)

Miα,iβ = −
∑

j 6=i

√

mj

mi

Miα,jβ. (4.11)

By analogy with the above examples, it can be represented in the form M = AAT ,

where A is a rectangular Nf ×K matrix. Here, as above, Nf = Nd is the number

of degrees of freedom and K = zN/2 is the total number of pairs of interacting

granules. The elements of the matrix A have the form

Aiα,p =

√

kp
mi

npα(δp1i − δp2i), (4.12)

where the subscript p enumerates pairs of touching granules and p1 and p2 are the

numbers of granules contained in the pth pair. As a result, each row of the matrix A

corresponds to a certain degree of freedom and each column corresponds to a certain

pair of interacting granules. Furthermore, the representation AAT guarantees the

stability of the mechanical system, because the matrix M = AAT is always positive

definite for any rectangular real-valued matrix A [Bhatia 2007].

We note that the eigenvalues of the dynamical matrix M do not change when the

matrix A is multiplied from the left and right by arbitrary orthogonal matrices U

and V , respectively. In other words, the matrix
∼
M =

∼
A

∼
AT has the same eigenvalues

as the matrix M = AAT if
∼
A = UAV . The dimensions of the orthogonal matrices U

and V are Nf ×Nf and K×K, respectively. For arbitrary (i.e., random) orthogonal

matrices U and V ,

〈Uij〉 = 〈Vij〉 = 0, (4.13)

〈Uij1Uij2〉 = 〈Uj1iUj2i〉 = δj1j2
1

Nf

, (4.14)

〈Vij1Vij2〉 = 〈Vj1iVj2i〉 = δj1j2
1

K
, (4.15)

because an individual column or row of a random orthogonal matrix is a randomly

oriented unit vector. Consequently, the elements of the matrix
∼
A have the simple

properties

〈∼Aij〉 = 0, 〈∼A2
ij〉 =

1

NfK

∑

kl

A2
kl, (4.16)

Thus, all elements of the matrix
∼
A are generally nonzero and have the same variance

in contrast to the highly sparse matrix A, which is determined by the interaction only
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Figure 4.3. The VDOS for 1024 spheres with the repulsive potential with γ = 2

for various filling densities φ. The solid lines are predictions of the random matrix

theory and the dashed lines present the numerical data from [Wyart et al. 2005].

between the nearest granules. In this case, by definition, the matrices M = AAT

and
∼
M =

∼
A

∼
AT have the same set of eigenvalues. We note that the elements of the

matrix
∼
A have certain correlations. However, for simplicity and universality of the

estimate of the distribution of eigenvalues, we neglect these correlations.

Thus, we accept below that the matrix
∼
A is a Nf ×K rectangular random matrix

with the independent elements having the properties

〈∼Aij〉 = 0, 〈∼A2
ij〉 =

ω2
0

Nf

. (4.17)

Here, ω0 is the characteristic frequency of oscillations of touching particles. It is

determined from Eqs. (4.12) and (4.16):

ω2
0 =

1

K

∑

(ij)

kij

(

1

mi

+
1

mj

)

. (4.18)

Then,
∼
M =

∼
A

∼
AT with such a random matrix

∼
A is the so-called Wishart ensemble in

the random matrix theory. The corresponding VDOS is described by the Marchenko-

Pastur distribution [Marĉhenko and Pastur 1967] (see Appendix A):

g(ω) =
1

πω2
0ω

√

(ω2
+ − ω2)(ω2 − ω2

−), ω− ≤ ω ≤ ω+ (4.19)

where

ω± = ω0

∣

∣

∣

∣

∣

√

K

Nf

± 1

∣

∣

∣

∣

∣

,
K

Nf

=
z

2d
. (4.20)



Chapter 4. Random matrix theory approach to the jamming transition 86

It is seen that the value z = 2d is specific: in this case, the number of degrees

of freedom Nf is equal to the number of touching pairs K, the matrix A becomes

square, and the VDOS has the form of a quarter of a circle. For values z > 2d, a

gap in the VDOS appears in the frequency range 0 < ω < ω−. In this case, near the

critical value 2d,

ω− ≈ ω0
|z − 2d|

4d
, ω+ ≈ 2ω0. (4.21)

However, it is noteworthy that the case z < 2d in the model under consideration with

elastic balls is not implemented, because the system at z < 2d completely breaks up

into noninteracting granules and the average coordination number is z = 0.

4.3 The vibrational density of states

The VDOS obtained numerically in [Wyart et al. 2005] for elastic spheres with the

repulsive potential with γ = 2 is shown in Fig. 4.3 in comparison with the estimate by

Eq. (4.19). To recalculate the density of filling φ to the average coordination number

z, we used the relation z − 2d = 7.5φ − φc, which is quite accurately satisfied in

the studied range of φ − φc [O’Hern et al. 2003]. We note that the characteristic

frequency ω0 can also depend on the difference z − 2d. Indeed, the characteristic

mutual penetration of particles δ is proportional to φ − φc. For this reason, the

characteristic rigidity of bonds, which is defined in terms of the second derivative

of potential (4.1), is k ∝ δγ−2 ∝ (φ − φc)
γ−2 ∝ (z − 2d)2γ−4. Correspondingly, the

characteristic frequency is ω2
0 = k/m ∝ (z − 2d)2γ−4. However, for the case γ = 2,

the frequency ω0 is constant and the value ω0 = 1.71 (in the same units as in the

numerical calculation) was used for comparison with the numerical experiment.

The approach under consideration based on the random matrix theory

appropriately predicts both an almost constant VDOS from ω− ∼ z − 2d up to the

maximum frequency of the system and the almost complete absence of vibrational

modes at ω < ω−. In a real system at ω < ω−, a number of vibrational states exist

instead of the strict gap. The reason is that acoustic phonons are disregarded in the

above approach. However, as is seen in the numerical experiment, the number

of acoustic phonons rapidly decreases when z approaches the critical value 2d.

Acoustic phonons in the gap were studied in Chapter 2. We note that the value

ω0 = 1.71 was the only fitting parameter (common for all curves). It simultaneously

provides the correct frequencies ω− and an approximately constant density of states

g(ω) ≈ 2/πω0 = 0.37 in the range ω− < ω < ω+.
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To conclude, we note that, strictly speaking, Eq. (4.3) is not exact. A more

accurate formula has the form

U(u1, . . . ,uN) =
∑

(ij)

(kij
2

[

(ui − uj) · nij

]2
+

eij
2

[

(ui − uj)
⊥
]2
)

, (4.22)

where (ui − uj)
⊥ is the projection of the difference of the displacements ui − uj

on the plane perpendicular to the vector nij. For the repulsive potential under

consideration, kij > 0 and eij < 0. Thus, kij and eij make the stabilizing

and destabilizing contributions to the potential, respectively. The destabilizing

component is noticeable in the determination of the equilibrium position, but the

ratio |eij/kij| at the equilibrium position is proportional to the mutual penetration

of particles δ. It is equal to 0 at z = zc and, at z > zc, makes an insignificant change

in the density of vibrational states, leading to a smoothing of the density of states

at ω ≈ ω− [Wyart et al. 2005].

4.4 Conclusion

In this Chapter we have shown that the interaction between elastic granules

in a granular system is described by the dynamical matrix M = AAT . Each

row of the matrix A corresponds to a certain degree of freedom and each column

corresponds to the elastic interaction between a certain pair of neighboring granules.

The representation of the dynamical matrix in the form M = AAT , together with the

random orthogonal transformation, allows to describe qualitatively the density of

vibrational states making use the Wishart ensemble. In this case, the only significant

parameter is the ratio of the total number of contacts K to the total number of

degrees of freedom Nf . The characteristic frequency ω0 specifies only the scale of

all frequencies and trivially appears in all formulas. If the total number of contacts

K differs from the total number of degrees of freedom Nf , the density of vibrational

states has a gap whose width is proportional to K − Nf . In reality, this gap in

the vibrational spectrum is not perfect and contains a small number of acoustical

phonons (see Chapter 2, where such a soft gap was called phonon gap). At K = Nf ,

the gap is closed and the density of vibrational states is approximately constant

starting from zero frequency. The results of this work are in agreement with the

theoretical calculations performed by the effective medium method [Wyart 2010].



General conclusion

In this work we have studied different vibrational properties of different

amorphous systems, including a stable random matrix model (Chapters 1 and 2),

a numerical model of amorphous silicon (Chapter 3), and a granular jammed solid

(Chapter 4).

In Chapters 1 and 2 we have developed a stable random matrix approach to

describe vibrations in strongly disordered systems. This approach has one important

advantage in comparison to other models. It describes mechanical systems which

are always stable independently of the degree of disorder. Previous random matrix

models [Schirmacher et al. 1998; Taraskin et al. 2001; Grigera et al. 2002] suffer from

an inherent mechanical instability that occurs at some critical amount of disorder.

As a result, they are limited by consideration of “relatively weak” or “moderate”

disorder.

We use scalar model and take the dynamical matrix in the form M = AAT+µM0.

Since matrices AAT and M0 are positive definite, such form of the dynamical matrix

guarantees the mechanical stability of the system for any positive value of µ. The

first term AAT is responsible for the disorder in the system, and the second term

µM0 describes the ordered part of the dynamical matrix. The parameter µ controls

the relative amplitude of this part and the rigidity of the lattice. It can vary in the

interval 0 6 µ < ∞, changing the rigidity and relative amount of disorder. In this

paper we have mainly considered the case of strong and moderate disorder when

0 6 µ . 1 and fluctuating part of the dynamical matrix is bigger than the ordered

part. In this case the Young modulus of the lattice E ∝ √
µ. As we have shown,

this and other scaling relations map directly onto the scaling observed in jammed

packings near the isostatic point. For example, in scaling relations the parameter µ

plays the same role as the parameter ∆φ in jammed systems.

We have found that the delocalized vibrational excitations in this disordered

lattice are of two types. At low frequencies below the Ioffe-Regel crossover, ω < ωir,

they are the usual acoustic phonons (plane waves) which can be characterized by

frequency ω and wave vector q. However, with increasing of ω, due to the disorder-

induced scattering, the phonon linewidth ∆ω increases rapidly as ∆ω ∝ ω4 and at
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some frequency ω ≈ ωir the phonon mean-free path l becomes of the order of the

wavelength λ. Though this crossover is not sharp and has no critical behavior at

ω = ωir, the structure of the eigenmodes at higher frequencies quite soon becomes

very different from the plane waves.

As a result, at higher frequencies the original notion of acoustic phonons is lost

and delocalized vibrational modes have a diffusive nature. They are similar to

diffusons introduced by Allen and Feldman et al. [Allen et al. 1999]. The diffusons

again can be characterized by frequency ω, but have no well-defined wavevector

q. Above ω ≈ ωir the structure factor of particle displacements S(q, ω) becomes

very similar to the structure factor Srw(q, ω) of a random walk on the lattice. The

latter has a broad maximum as a function of q at q =
√

ω/Du, where Du ≃ Ωa20
is a diffusion coefficient of particle displacements. The vibrational line width is

Γ(q) ∼ Duq
2. Such quadratic dependence of Γ(q) was found in many glasses in the

experiments on inelastic x-ray scattering, see for example [Sette et al. 1998; Ruocco

and Sette 2001] and references therein. It was also found in molecular dynamics

simulations of amorphous silicon [Christie et al. 2007].

The crossover between acoustic phonons and diffusons takes place at the Ioffe-

Regel crossover frequency ωir which is close to the position of the boson peak. Since

for phonons Γ ∝ ω4 and for diffusons Γ(q) ∼ Duq
2, there should exist a crossover

from ω4 to q2 dependence of the line width. Such a crossover was indeed found

recently in inelastic x-ray scattering in lithium diborate glass [Rufflé et al. 2006],

densified vitreous silica [Rufflé et al. 2003], vitreous silica [Baldi et al. 2010; Baldi

et al. 2011b; Baldi et al. 2011a], glassy sorbitol [Ruta et al. 2010] and glycerol

glass [Monaco and Giordano 2009]. The crossover frequency was found to be close

to the boson peak position.

The experimental data and molecular dynamics simulations show that the

diffusion coefficient of particle displacements Du and the diffusivity of energy D(ω)

are of the same order Du ∼ D(ω) ∼ 1mm2/sec in vitreous silica [Baldi et al. 2011b;

Feldman and Kluge 1995; Yu and Leitner 2006], amorphous silicon [Christie et al.

2007; Allen et al. 1999] and glycerol [Ruocco et al. 1999]. Our results for amorphous

silicon are discussed in Chapter 3.

Since ωir ∝ √
µ, we can vary the Ioffe-Regel crossover frequency and, therefore,

the relative number of acoustic phonons Nph in the system, changing the parameter

µ. It is zero when µ = 0 and there are no acoustic phonons in the lattice. In this

case all delocalized vibrations are diffusons. If 0 < µ ≪ 1 we have acoustic phonons,

but their relative number is small. One can show that in this case Nph ∝ µ3/4. In

the opposite case, µ ≫ 1, the disorder is relatively small and nearly all vibrations

in the lattice are well-defined plane waves, i.e. phonons.
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In the silica glass we can estimate the relative number of acoustic phonons

from the data [Taraskin and Elliott 2000]. The Ioffe-Regel crossover frequency was

estimated to be νIR = 1THz, and integrating density of states up to this frequency

we come to the relative number Nph = 0.002 ± 0.0005. As a result, in the typical

glass such as amorphous silica only 0.2% of all modes are acoustic phonons. As

follows from Table 2.1 it corresponds to very small values of µ < 0.01. It means that

small amount of acoustic phonons in disordered systems is a signature of a strong

disorder.

We show that in the random matrix model functions g(ω) and D(ω) are

approximately constant in some frequency interval (ωir . ω . ωloc), then we

find that approximately κ(T ) ∝ T in the corresponding temperature range [Xu

et al. 2009]. It explains a quasi-linear temperature dependence of the thermal

conductivity above the plateau observed in glasses [Cahill and Pohl 1987]. With

increasing frequency the functions g(ω) and D(ω) finally drop to zero and thermal

conductivity saturates at some constant level independent of temperature. Thus, the

conception of diffusons gives a clear explanation for the temperature dependence of

the thermal conductivity of glasses and other disordered systems above the plateau.

In Chapter 3 we have considered a numerical model of amorphous silicon. We

have shown that properties of transverse and longitudinal vibrations in silicon-

like amorphous materials are sufficiently different. It leads to a more complicated

structure of the vibrational spectrum (Fig. 3.17). The low-frequency part of the

VDOS has a dominant transverse character up to 7 THz. In this frequency region,

there are the wide boson peak (2–5 THz) and the transverse Ioffe-Regel frequency

(4.5 THz). Modes in the frequency range 4.5–7 THz have a constant diffusivity and

the linewidth Γ ∼ q2. Therefore, transverse diffusons dominate in this frequency

range. At 7 THz there is a sharp transition from mostly transverse modes to mostly

longitudinal ones. However, the longitudinal Ioffe-Regel frequency is much larger

(13 THz). It explains the prominent peak in the diffusivity at ≈8 THz.

In Chapter 4 we have shown that dynamical matrix of the granular jamming

system can be presented in the form M = AAT where A is a rectangular Nf × K

matrix. Here Nf is the number of degrees of freedom and K is the number of elastic

contacts between particles. We have shown that one can use the Wishart ensemble

to qualitatively describe the density of vibrational states. In this case, the only

significant parameter is the ratio K/Nf . If the total number of contacts K differs

from the total number of degrees of freedom Nf , the density of vibrational states has

a gap whose width is proportional to K/Nf − 1. In numerical experiments, this gap

in the vibrational spectrum is not perfect and contains a small number of phonons.

If K = Nf , the gap is closed and the density of vibrational states is approximately

constant starting from zero frequency. Thus, granular jamming systems are similar
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to the random matrix model considered in Chapter 1. However, they have different

control parameters.



Appendix A

The Wishart ensemble

The random matrix theory has many interesting results. It gives properties of

eigenvalues of random matrices of certain symmetry classes (so-called random matrix

ensembles). Unfortunately, the derivation of many results is mathematically rather

difficult for non-specialists. Therefore, below we present the derivation of these

results in a some simplified form. We obtain the density of states in the Wishart

ensemble. Then we consider the Brownian motion of eigenvalues and demonstrate

the level-repulsion effect.

1. Density of states

Let us consider the Wishart ensemble

M = AA† (A.1)

where A is a random N × K matrix with independent and identically distributed

elements having the properties
〈

Aij

〉

= 0,
〈

|Aij|2
〉

= Ω2. (A.2)

In the general case, the matrix A can be a real, complex, or quaternionic matrix.

In the random matrix literature, these three ensembles are called the Laguerre

orthogonal ensemble (LOE), Laguerre unitary ensemble (LUE), and Laguerre

symplectic ensemble (LSE) respectively [Forrester 2010].

Let us consider a perturbation δA
〈

δAij

〉

= 0,
〈

|δAij|2
〉

= w2, w2 ≪ Ω2. (A.3)

The transformation

A′ =
A+ δA

√

1 + w2/Ω2
(A.4)
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does not change the variance of matrix elements. Therefore, the matrix M ′ = A′A′†

belongs to the same ensemble as the matrix M . The transformation of the matrix

M can be written as

M ′ =
M + δM

1 + w2/Ω2
(A.5)

where

δM = (A+ δA)(A+ δA)† −M = δAA† + AδA† + δA δA†. (A.6)

The matrix M = AA† is Hermitian (and positive definite) matrix. Therefore,

there is an orthogonal (unitary, symplectic) matrix U such that

U †MU = diag(ε1, ε2, . . . , εN), (A.7)

is a diagonal matrix. According to the perturbation theory, the change of an

eigenvalue εi of the matrix M (due to the addition of the matrix δM) can be written

in the form

δεi = −w2

Ω2
εi + δ

∼
M ii +

∑

j 6=i

|δ ∼
M ij|2

εi − εj
(A.8)

where

δ
∼
M = U †δM U. (A.9)

Let us average Eq. (A.8) over the perturbation δA. The matrix A we keep fixed.

Therefore, the matrices U and M , and eigenvalues εi are also fixed. According to

the perturbation theory, the change of an eigenvalue of the matrix M (due to the

addition of the matrix δM) can be written in the form

〈δεi〉 = −w2

Ω2
εi +

〈

δ
∼
M ii

〉

+
∑

j 6=i

〈

|δ ∼
M ij|2

〉

εi − εj
. (A.10)

The matrix A can be presented as a singular value decomposition

A = UDV †, (A.11)

where U and V are orthogonal (unitary, symplectic) matrices, and D is diagonal

N ×K matrix with ωi =
√
εi on its diagonal. Therefore

δ
∼
M = U †(δAA† + AδA† + δA δA†)U = δ

∼
AD† +D δ

∼
A† + δ

∼
Aδ

∼
A† (A.12)

where

δ
∼
A = U †δAV. (A.13)

The matrix δ
∼
A has the same mean and variance as the matrix δA

〈

δ
∼
Aij

〉

= 0,
〈

|δ ∼
Aij|2

〉

= w2. (A.14)
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Indeed, the matrices U and V are orthogonal (unitary, symplectic) so

〈

|δ ∼
Aij|2

〉

=
〈∣

∣

∣

∑

km

U∗
kiVmjδAkm

∣

∣

∣

2〉

=
∑

k1m1

k2m2

U∗
k1i
Vm1j

Uk2i
V ∗
m2j

〈δAk1m1
δA∗

k2m2
〉

= w2
∑

km

|Uki|2|Vmj|2 = w2. (A.15)

From Eqs. (A.12) and (A.14) we get the properties of the matrix δ
∼
M

〈

δ
∼
M ii

〉

= w2K,
〈

δ
∼
M2

ii

〉

=
4w2

β
εi,

〈

|δ ∼
M ij|2

〉

i 6=j
= w2(εi + εj) (A.16)

where β is the Dyson’s index, β = 1, 2, 4 for orthogonal, unitary and symplectic

ensembles respectively. Therefore, the change of an eigenvalue of the matrix

M (A.10) is

〈δεi〉 = −w2

Ω2
εi + w2(K −N + 1) + 2w2εi

∑

j 6=i

1

εi − εj
. (A.17)

The matrix M ′ belongs to the same ensemble as the matrix M , therefore, 〈δεi〉 = 0.

The matrix size is large N,K ≫ 1, therefore, we can write the sum as an integral

of a continuous eigenvalue distribution ρ(ε)

0 = −w2

Ω2
ε+ w2(K −N) + 2Nw2ε

∞
∫

−∞

ρ(ε′)

ε− ε′
dε′. (A.18)

Thus, we get the integral equation

ε

NΩ2
=

K

N
− 1 + 2ε

∞
∫

−∞

ρ(ε′)

ε− ε′
dε′. (A.19)

It has a solution

ρ(ε) = (1−K/N)+δ(ε) +
1

2πNΩ2ε

√

(ε− ε−)+(ε+ − ε)+, (A.20)

where we introduce the notation (z)+ = max(z, 0) and

ε± = Ω2
(√

K ±
√
N
)2

. (A.21)

The corresponding VDOS is

g(ω) = (1−K/N)+δ(ω) +
1

πNΩ2ω

√

(ω2 − ω2
−)

+(ω2
+ − ω2)+ (A.22)

where

ω± = Ω
∣

∣

√
K ±

√
N
∣

∣. (A.23)
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Figure A.1. Brownian motion of ωi =
√
εi where εi are eigenvalues of the matrix

M = AAT with a real 100 × 100 matrix A (β = 1). The standard deviations are

Ω = 1 and w = 0.001.

2. Brownian motion and the level repulsion

Let us consider a repeated transformation (every time with a new realization of

the perturbation δA)

A → A+ δA
√

1 + w2/Ω2
. (A.24)

According to Eq. (A.17)) each transformation slightly changes eigenvalues εi of

the matrix M = AA†. We can ascribe a small time interval δt = 4w2 to each

transformation. In this case, eigenvalues εi(t) depend on the time t. This time

evolution looks like Brownian motion (Fig. A.1). The idea of Brownian motion of

eigenvalues was introduced by Dyson for Wigner ensemble [Dyson 1962a]. He also

showed that the eigenvalue statistics is the same as the statistics of one-dimensional

Coulomb gas [Dyson 1962e; Dyson 1962b; Dyson 1962c; Dyson 1962d; Dyson 1962a].

Below we will show that eigenvalues “repulse” from each other in the Wishart

ensemble.

After each transformation (A.24) the distance between two consecutive

eigenvalues S = εi+1 − εi changes by δS = δεi+1 − δεi. One can show that for
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small values of S

〈δS〉 = 4w2ε

S
, (A.25)

〈δS2〉 =
〈 ∼
M2

i+1,i+1

〉

+
〈 ∼
M2

ii

〉

=
8w2

β
ε (A.26)

where angle brackets denote averaging over the perturbation δA. In the continuum

limit δt → 0 the distance between two consecutive eigenvalues S(t) performs a

Brownian motion with the diffusivity D = ε/β, mobility µp = ε and temperature

T = 1/β (according to the Einstein relation). The Eq. (A.25) means the repulsion

force F = 1/S for S → 0.

After a large time t, there is a certain distribution Z(S) of the distance between

two consecutive eigenvalues S. This distribution obeys the differential equation

1

β

d2Z

dS2
− 1

S

dZ

dS
= 0, (A.27)

which has the solution

Z(S) ∝ Sβ. (A.28)

This distribution goes to 0 if S → 0. Therefore the probability of close eigenvalues

is small (smaller than one for independent eigenvalues, see Section 1.5). It is the

so-called level repulsion effect.



Appendix B

The kernel polynomial method

The eigenvalue and eigenvector analysis of large sparse matrices is a common

problem in physics. The time of the full diagonalization of N ×N matrix is O(N3).

In three dimensions the number of atoms is N = L3 and the computation time grows

extremely fast as O(L9). Thus, the full diagonalization is limited by the size L ≈ 30

which is not enough for accurate analysis of long-wave modes.

However, the precise values of all eigenvalues and eigenvectors sometimes

are unnecessary information. Many measurable physical quantities (the VDOS,

dynamical structure factor) are averaged over many eigenvalues and eigenvectors.

The kernel polynomial method (KPM) can calculate such quantities for L . 300

with a high accuracy. The KPM was introduced in [Silver and Röder 1997] and

detailed reviewed in [Weiße et al. 2006]. In this Appendix we present a modification

of the KPM for vibrational analysis and compare it with a classical correlation

method.

1. Vibrational density of states

There are several methods for calculation of the VDOS without exact

diagonalization of the dynamical matrix. Following standard statistical mechanics

methods [Dove 1993], one can make a molecular dynamics simulation of a large

system excited at a small temperature T . Then assuming the equipartition of the

energy, we can compute VDOS as a Fourier transform of the velocity autocorrelation

function [Sampoli et al. 1998]

gcvv(ω) =
2

N
m

kBT

∫ tmax

0

∑

i

vi(t)vi(0) cosωt dt. (B.1)

97



Appendix B. The kernel polynomial method 98

Here vi(t) is the instantaneous velocity of the ith atom and m is the atomic mass

(all atomic masses are supposed to be the same). This method is much faster

than a numerical diagonalization of the matrix M . However, it requires accurate

integration of the equations of motion up to a large enough time tmax with small

enough time step δt ≪ 1/ωmax and low temperature kBT < ∆E. Here ωmax is the

maximum frequency in the system, and ∆E the smallest energy barrier surrounding

the referred equilibrium position. The resulting frequency resolution of the density

of states gcvv(ω) in this method is δω ∼ 1/tmax.

The kernel polynomial method [Weiße et al. 2006] (KPM) is an alternative way to

compute the VDOS for large systems. It is a more accurate and much faster method

in comparison with the previous one, as will be discussed below. It makes it possible

to find the VDOS using Eq. (3.4) with δ-function replaced by a series of polynomials.

KPM was introduced in [Silver and Röder 1997] and detailed reviewed in [Weiße et

al. 2006]. Originally it was used for finding electronic DOS in disordered systems. It

allows with controlled accuracy getting directly the distribution of the eigenvalues of

some large matrix M , not calculating the eigenvalues itself. We will show how KPM

can be adopted to find the VDOS, i.e. the distribution of the square roots of the

eigenvalues of the dynamical matrix M without its exact diagonalization. In this

method we use only moments of this matrix up to sufficiently high order which is

controlled by the accuracy of the calculations. Below we shortly describe the KPM

for our problem.

All eigenvalues ω2
j of the matrix M are non-negative due to mechanical stability

of the system and lie in some interval [0, ω2
max]. Usually, the precise value of the

maximum frequency is unknown so ωmax is an estimation of the maximum frequency

which guarantees that ωj < ωmax for all ωj. Let us introduce new dimensionless

variable ε = 1− 2ω2/ω2
max in order to rescale all eigenfrequencies squared ω2

j to the

interval [−1, 1] for variable εj. Thus, we can transform Eq. (3.4) as

g(ω) =
4ω

Nω2
max

N
∑

j=1

δ(ε− εj) (B.2)

where εi = 1− 2ω2
i /ω

2
max are eigenvalues of the matrix

∼
M = I − 2M/ω2

max where I

is the unit matrix.

For −1 < ε < 1 and −1 < εj < 1 we can expand the δ-function in Eq. (B.2) in

second kind Chebyshev polynomial series

δ(ε− εj) =
2

π

√
1− ε2

∞
∑

k=0

Uk(ε)Uk(εj). (B.3)
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Chebyshev polynomials of the second kind are defined by recurrence relations

U0(ε) = 1, (B.4)

U1(ε) = 2ε, (B.5)

Uk(ε) = 2εUk−1(ε)− Uk−2(ε). (B.6)

They have an equivalent trigonometric definition

Uk(ε) =
sin((k + 1) arccos ε)√

1− ε2
. (B.7)

From Eqs. (B.2) and (B.3) the density of states can be expressed in terms of the

sine Fourier transform

g(ω) =
8ω

πω2
max

∞
∑

k=0

µk sin((k + 1)ϕ) (B.8)

where ϕ depends on ω as ϕ = 2arcsin(ω/ωmax) and µk is the k-th Chebyshev moment

µk =
1

N
N
∑

j=1

Uk(εj). (B.9)

It is not possible to calculate the infinite number of the Chebyshev moments µk,

so we can cut off the series (B.3) and (B.8) at some K-th degree which is controlled

by the desired accuracy of the calculations. For the δ-function it gives the following

approximation

δ(ε− εj) ≈
2

π

√
1− ε2

K
∑

k=0

γkUk(εj)Uk(ε). (B.10)

The damping factors γk were introduced to avoid Gibbs oscillations. With increasing

k these factors decrease gradually from 1 to 0 (for k = K + 1). One of the best

choice for γk are Jackson damping factors [Weiße et al. 2006]. The finite number

of moments leads to the finite-width approximation of the δ-function [Weiße et al.

2006]

2

π

√
1− ε2

K
∑

k=0

γkUk(εi)Uk(ε) ≈
1√

2πδε2
exp

[

−(ε− εi)
2

2 δε2

]

. (B.11)

The width δε = π
√
1− ε2/K corresponds to the frequency resolution δω =

π
√

ω2
max − ω2/2K. The greater the degree K of the polynomial, the closer it to

the delta function. As a result, we can approximately calculate the VDOS as

gkpm(ω) =
8ω

πω2
max

K
∑

k=0

γkµk sin((k + 1)ϕ). (B.12)
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Figure B.1. (a) The calculated VDOS for K = 30, R = 5 (green line); K = 300,

R = 40 (black line) and K = 3000, R = 2000 (red line). (b) The enlarged region

20–20.5 THz. Arrows show the exact positions of the eigenfrequencies.

This sum can be calculated now by the Fast Fourier Transform (FFT) which is

implemented in many mathematical libraries.

We turned the calculation of the VDOS g(ω) into the calculation of Chebyshev

moments µk. Their definition (B.9) can be written as

µk =
1

N
N
∑

j=1

〈j|Uk(
∼
M)|j〉 (B.13)

where we use ket notation |j〉 for the jth eigenvector of the matrix
∼
M (the

eigenvectors of the matrices
∼
M and M are the same). For a sufficiently large matrix

∼
M the sum in Eq. (B.13) can be replaced by the averaging over several realizations

of a Gaussian random vector |u0〉 with unit norm

µk = 〈u0|Uk(
∼
M)|u0〉. (B.14)

Indeed, let us expand the random unit vector |u0〉 over eigenvectors |j〉 of the

matrix
∼
M

|u0〉 =
∑

j

βj|j〉, βj = 〈j|u0〉. (B.15)
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Therefore

〈u0|Uk(
∼
M)|u0〉 =

N
∑

j=1

|βj|2Uk(εj). (B.16)

The random vector |u0〉 is normalized, so |βj|2 = 1/N . As a result, we have

〈u0|Uk(
∼
M)|u0〉 =

1

N
N
∑

j=1

Uk(εj) = µk. (B.17)

Chebyshev moments µk for k = 0, . . . , K can be easily found by recurrence

matrix-vector multiplications like (B.4) – (B.6)

|u1〉 = 2
∼
M |u0〉, (B.18)

|uk〉 = 2
∼
M |uk−1〉 − |uk−2〉. (B.19)

It gives |uk〉 = Uk(
∼
M)|u0〉. At each step we calculate projection of |uk〉 to the initial

random vector |u0〉
mk = 〈u0|uk〉. (B.20)

After averaging these projections over several number of realizations R we obtain

Chebyshev moments µk = mk. Then the resulting VDOS is calculated making use

of Eq. (B.12).

Fig. B.1 shows calculated VDOS for different numbers of moments K taken into

account. For test purposes, we use the dynamical matrix of our model of amorphous

silicon with N = 32768 atoms and parameter Λ = 21. The number of realizations

R is big enough to neglect the statistical fluctuations (it is less than the linewidth

in Fig. B.1a). We can see that K = 30 is not enough because both peaks of

the resulting VDOS are sufficiently broadened. On the other hand, the value of

K = 3000 is unnecessarily big, and we can see peaks from distinct eigenfrequencies

(Fig. B.1b). We have found that the optimal value of K is around K = 300. For

this value the KPM takes about one minute on a modern computer for calculation

the VDOS.

Chebyshev polynomials of the first kind have similar recurrence relations (B.4)–

(B.6). So KPM can be implemented with the first kind polynomials as well as with

the second kind polynomials. However, since usually g(0) = 0, the second kind

polynomials give better approximation in the low-frequency region.

We would like to emphasize here that the KPM has interesting physical meaning.

The recurrence relations (B.19) indeed reveals a connection between KPM and CVV

method. By definition,
∼
M = I − 2M/ω2

max so

|uk+1〉 = 2|uk〉 − |uk−1〉 − δt2M |uk〉 (B.21)
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Figure B.2. A comparison between the KPM (black line) and CVV methods (red

line).

with δt = 2/ωmax and |uk〉 is the vector at step k in the KPM. The Eq. (B.21) has the

same form as the first step Verlet integration of equations for atomic displacements

[Verlet 1967]

ui(t+ δt) = 2ui(t)− ui(t− δt) + δt2üi(t) (B.22)

where the acceleration üi(t) of the ith atom is defined by the Newton’s law (1.2) and

ui(t) is the atomic displacement. Therefore, we can consider the integer variable

k as a discrete time t = k δt. Usually, the time step δt should be much less

than 1/ωmax for reasonably small error in the integration procedure. The KPM

relaxes this requirement to δt = 2/ωmax. The Chebyshev moments µk = 〈u0|uk〉 for

k = 0, . . . , K can be considered as auto-correlation functions of atomic displacements

µ(t) = u(0)u(t) for 0 ≤ t ≤ tmax = K δt. The resulting VDOS (B.12) is the

Fourier transform of the Chebyshev moments. The finite frequency resolution δω

corresponds to the finite-time limit 1/tmax. Thus the KPM is similar to the CVV

method (B.1), however, the remarkable properties of the Chebyshev polynomials

allows to take a big time step δt = 2/ωmax instead of a much smaller time step

δt ≪ 1/ωmax.

2. Eigenvector analysis

The correlation function (Sec. 3.3) and the dynamical structure factor (Sec. 3.4)

are two of the main eigenvector characteristics. The former shows the spatial

correlations of vibrations and the latter shows the structure in the reciprocal space.

The direct eigenvector analysis with full diagonalization of the dynamical matrix

takes too much computational time. In this Section we show how to properly modify

the KPM for eigenvector analysis.
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The definition of the correlation function (3.6) is similar to the definition of

VDOS (3.4), but it contains in addition (as multiplier) the bilinear form of the

eigenmodes, which depends on the external parameter r. In this case we can use

the whole evaluation procedure of the KPM with modified projection (B.20) of the

state |uk〉 to the initial state |u0〉

mk(r) = 〈u0(r + r′) · uk(r
′)〉r′ . (B.23)

Thus, for each fixed r we can efficiently calculate the correlation function as a sum

of Chebyshev polynomials.

The same idea is applicable to the dynamical structure factor. It depends on the

spatial Fourier transform of the eigenmodes Fη(q, ω), which also contains a bilinear

form of the eigenmodes. Therefore, we can use modified projections (B.20), which

are slightly different for longitudinal and transverse components

mL
k (q) = N

( N
∑

i=1

q̂ · u0
i e

iqRi

)∗( N
∑

i=1

q̂ · uk
i e

iqRi

)

, (B.24)

mT
k (q) = N

( N
∑

i=1

q̂ × u0
i e

iqRi

)∗

·
( N
∑

i=1

q̂ × uk
i e

iqRi

)

. (B.25)

A more general and detailed information about the calculation of eigenvector

characteristics and Green’s function can be found in the review [Weiße et al. 2006].
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General decomposition in transverse

and longitudinal vibrations

In Chapter 3 we have shown that the polarization of vibrational modes plays

a crucial role in amorphous silicon-like materials. However, the classical notion

of transverse and longitudinal modes are not applicable for amorphous systems

because it relies on the well-defined wavevector q . In this Appendix we generalize

the notions of transverse and longitudinal vibrations for disordered systems like

amorphous silicon.

1. Longitudinal and transverse components

Low-frequency vibrations below the Ioffe-Regel criterion are well-defined plane

waves (see Section 3.4 for details). In continuous medium approximation, the

displacement fields u(r) for longitudinal (L) and transverse (T) waves have a form

uη(r) = u(0)
η exp(iqr), η = L, T (C.1)

u
(0)
L ‖ q, u

(0)
T ⊥ q. (C.2)

However, above the Ioffe-Regel criterion, the wave vector q is ill-defined so we cannot

use the definition (C.2) in a general case.

The transverse displacement field uT (r) has zero divergence. Therefore, it

conserves the local volume. A natural analog of the local volumes in amorphous

media are Voronoi cells constructed around each atom. By definition, the Voronoi

cell Vi, associated with atom i is the set of all points in the surrounding space

whose distance to the atom i is not greater than their distances to the other atoms

j [Aurenhammer 1991]. This type of cells is also known as Wigner-Seitz cells in

104
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a b

Figure C.1. Longitudinal (a) and transverse (b) waves in a simple quadratic lattice.

crystallography for regular crystals. Fig. C.1 shows a simple example of Voronoi cells

for longitudinal and transverse waves in a simple quadratic lattice. A longitudinal

wave evidently changes the volumes of Voronoi cells while the transverse wave does

not change the volumes despite the change in the form of the cells.

Displacements of atoms ui in amorphous media may (or may not) change volumes

of Voronoi cells. We will call the displacement of atoms ui to be transverse if it does

not change the volumes of all Voronoi cells. For that let us introduce a matrix A
(not be confused with the matrix A from the main text) which is responsible for the

relative change of the ith Voronoi cell volume Vi under jth atom displacement in

the direction α

Ai,jα =
1

Vi

∂Vi

∂rjα
. (C.3)

The explicit formula for the matrix A will be derived in the next Section. Using this

matrix the displacement of jth atom in the direction α, ujα results in the following

relative change of the Voronoi cell volumes Ai,jαujα. Summing over all j and α gives

the relative change of the ith Voronoi cell volume

εi =
∑

jα

Ai,jαujα. (C.4)

In the bra-ket notation, this equation reads |ε〉 = A|u〉 where A is a rectangular

N×3N matrix (with N being the number of atoms), and |u〉 is a displacement vector

with 3N elements. The matrix A is a discrete analog of the divergence operator.

By definition the transverse component |uT 〉 of an arbitrary |u〉 satisfies to

equation A|uT 〉 = 0, i.e. |uT 〉 is the projection of the displacement |u〉 to the null

space of the matrix A. The longitudinal component |uL〉 is a remaining orthogonal

component of the displacement field, and it is the projection of |u〉 to the row space

of the matrix A. These projections have the following forms [Meyer 2000, Eqs.

(5.13.3) and (5.13.6)]

|uη〉 = Pη|u〉, (C.5)
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where

PL = AT (AAT )−1A, (C.6)

PT = I −AT (AAT )−1A. (C.7)

One can easy check that A|uT 〉 = 0 and 〈uL|uT 〉 = 0.

Thus, PL|j〉 and PT |j〉 are projections of the eigenmode |j〉 to longitudinal

and transverse components respectively. Therefore, the total VDOS g(ω) can

be decomposed into the longitudinal and transverse components in general case

independently on frequency ω

g(ω) =
1

N
N
∑

j=1

δ(ω − ωj) = gL(ω) + gT (ω), (C.8)

gη(ω) =
1

N
N
∑

j=1

〈j|Pη|j〉δ(ω − ωj), η = L, T (C.9)

where eigenfrequency ωj corresponds to the eigenvector |j〉. In three dimensions we

have
∫

gL(ω)dω = 1/3 and
∫

gT (ω)dω = 2/3.

The definition of longitudinal and transverse components of the VDOS (C.9)

contains the bilinear form of the eigenmode (as well as the correlation function (3.6)

and the Fourier transform (3.12), (3.13)). Therefore, one can apply the KPM with

the modified projection (B.20)

mη
k = 〈u0|Pη|uk〉. (C.10)

The results of this method are discussed in Section 3.2.

2. Derivation of the matrix A
Let us show how matrix A can be derived from geometry only. Let we shift only

the atom j by the vector u (Fig. C.2). The vector u is small, so the Voronoi cells

after shifting have almost the same structure, but their facets are slightly shifted

and rotated in space. The shifting u of the atom j can change the volume Vi of a

nearest neighbor cell i. By definition the cells i and j are nearest neighbors if they

have a common facet Sij.

By definition of the Voronoi cell, the facet Sij lies in the plane Pij, which has

the normal nij = rij/rij, where rij = rj − ri is the vector connecting atoms i and

j and go through the point bij = (ri + rj)/2. Therefore, the equation for this plane

reads

nij · (r − bij) = 0. (C.11)
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a b

Figure C.2. a) A two-dimensional example of the Voronoi cells. The points B and

C denote the position of bij and cij respectively. In two-dimensional case the point

C is the center of the segment Sij . b) Dashed lines show the Voronoi cells after

shifting of the atom j by the vector u. The point B′ denotes the position of b′ij .

Green and red areas show the increasing and decreasing of the Vi respectively.

After shifting of the atom j, the new facet S ′
ij lies in the plane P ′

ij which satisfies

the equation

n′
ij · (r − b′ij) = 0 (C.12)

where n′
ij = r′

ij/r
′
ij, r

′
ij = rij + u, and b′ij = bij + u/2. The signed distance from

an arbitrary point r to the plane P ′
ij is

d′ij(r) = n′
ij · (b′ij − r). (C.13)

This distance has the sign “+” if r lies on the same side to the plane P ′
ij as the atom

i and the sign “−” if r lies on the opposite side to the plane. If r lies in the plane

P ′
ij, then the distance d′ij(r) is equal to 0, and we get the Eq. (C.12). In the linear

approximation on u, the change of the volume Vi is the integral of d′ij(r) over the

surface of the initial facet Sij

δVi =

∫∫

r∈Sij

n′
ij · (b′ij − r) dS = Sijn

′
ij · (b′ij − cij), (C.14)

cij =
1

Sij

∫∫

r∈Sij

r dS. (C.15)

where Sij and cij are correspondingly the area and the centroid of the facet Sij. In

the linear approximation on u, the Eq. (C.14) reads

δVi =
Sij

rij
pij · u, pij = rj − cij, (C.16)

where we have taken into account that rij · (bij − cij) = 0 because cij ∈ Sij.
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If all neighboring atoms shift, the change of the volume Vi can be written in the

matrix form

δVi =
∑

jα

Wi,jα ujα. (C.17)

The nondiagonal elements of the matrix W we have already found above

Wi,jα =
Sij

rij
(pij)α, i 6= j. (C.18)

The diagonal element Wi,iα means the change of the ith Voronoi cell volume under

shifting of the ith atom itself. Shifting of the all atoms by the same vector does not

change the volumes of the Voronoi cells. Therefore

Wi,iα = −
∑

j 6=i

Wi,jα. (C.19)

After dividing by the volume, we finally get the matrix A

Ai,jα =
1

Vi

Wi,jα. (C.20)

It is notable that finite-elements methods also often use Voronoi cells and have a

similar definition for the finite differences for the divergence operator [Mishev 1998].
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Abstract It is well known that various amorphous solids have many universal
properties. One of them is the temperature dependence of the thermal conductivity.
However, the microscopic mechanism of the heat transfer above 20 K is still poorly
understood. Recent numerical simulations of amorphous silicon and silica show that
vibrational modes in the corresponding frequency range (called “diffusons”) are delocalized,
however they are completely different from low-frequency acoustic phonons.

In this work we present a stable random matrix model of an amorphous solid. In this
model one can vary the strength of disorder going from a perfect crystal to extremely
disordered soft medium without macroscopic rigidity. We show that real amorphous solids
are close to the second limiting case, and that diffusons occupy the dominant part of the
vibrational spectrum. The crossover frequency between acoustic phonons and diffusons is
determined by the Ioffe-Regel criterion. Interestingly, this crossover frequency practically
coincides with the boson peak position. We also show that, as a function of frequency,
the diffusivity and the vibrational density of states of diffusons are practically constant.
As a result, the thermal conductivity is a linear function of temperature up to rather
high temperatures and then saturates. This conclusion is in agreement with numerous
experimental data.

Further, we consider a numerical model of amorphous silicon-like materials and
investigate the role of disorder for longitudinal and transverse vibrations. We also show
that the random matrix theory can be successfully applied to estimate the vibrational
density of states of granular jammed systems.

Keywords amorphous solids, vibrations, random matrices.

Résumé Il est bien connu que divers solides amorphes ont de nombreuses propriétés
universelles. L’une d’entre elles est la variation de la conductivité thermique en fonction
de la température. Cependant, le mécanisme microscopique du transfert de chaleur dans le
domaine de température supérieure à 20 K est encore mal compris. Simulations numériques
récentes du silicium et de la silice amorphes montrent que les modes de vibration dans la
gamme de fréquences correspondante (dits «diffusons») sont délocalisés. En même temps
ils sont complètement différents des phonons acoustiques de basse fréquence.

Dans ce travail, nous présentons un modèle stable de matrice aléatoire d’un solide
amorphe. Dans ce modèle, on peut faire varier le degré de désordre allant du cristal
parfait jusqu’au milieu mou extrêmement désordonné sans rigidité macroscopique. Nous
montrons que les solides amorphes réels sont proches du deuxième cas limite, et que les
diffusons occupent la partie dominante du spectre de vibration. La fréquence de transition
entre les phonons acoustiques et diffusons est déterminée par le critère Ioffe-Regel. Fait
intéressant, cette fréquence de transition cöıncide pratiquement avec la position du pic
boson. Nous montrons également que la diffusivité et la densité d’états de vibration de
diffusons sont pratiquement constantes en fonction de la fréquence. Par conséquent, la
conductivité thermique est une fonction linéaire de la température dans le domaine allant
à des températures relativement élevées, puis elle sature. Cette conclusion est en accord
avec de nombreuses données expérimentales.

En outre, nous considérons un modèle numérique de matériaux de type de silicium
amorphe et étudions le rôle du désordre pour les vibrations longitudinales et transverses.
Nous montrons aussi que la théorie des matrices aléatoires peut être appliquée avec succès
pour estimer la densité d’états vibrationnels des systèmes granulaires bloqués.

Mots clés solides amorphes, vibrations, matrices aléatoires.


