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Abstract

It is well known that various amorphous solids have many universal properties.
One of them is the temperature dependence of the thermal conductivity. However,
the microscopic mechanism of the heat transfer above 20 K is still poorly understood.
Recent numerical simulations of amorphous silicon and silica show that vibrational
modes in the corresponding frequency range (called “diffusons”) are delocalized,
however they are completely different from low-frequency acoustic phonons.

In this work we present a stable random matrix model of an amorphous solid.
In this model one can vary the strength of disorder going from a perfect crystal
to extremely disordered soft medium without macroscopic rigidity. We show that
real amorphous solids are close to the second limiting case, and that diffusons
occupy the dominant part of the vibrational spectrum. The crossover frequency
between acoustic phonons and diffusons is determined by the loffe-Regel criterion.
Interestingly, this crossover frequency practically coincides with the boson peak
position. We also show that, as a function of frequency, the diffusivity and the
vibrational density of states of diffusons are practically constant. As a result,
the thermal conductivity is a linear function of temperature up to rather high
temperatures and then saturates. This conclusion is in agreement with numerous
experimental data.

Further, we consider a numerical model of amorphous silicon-like materials and
investigate the role of disorder for longitudinal and transverse vibrations. We also
show that the random matrix theory can be successfully applied to estimate the
vibrational density of states of granular jammed systems.

Keywords amorphous solids, vibrations, random matrices.
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Résumé

Il est bien connu que divers solides amorphes ont de nombreuses propriétés
universelles. L’une d’entre elles est la variation de la conductivité thermique en
fonction de la température. Cependant, le mécanisme microscopique du transfert de
chaleur dans le domaine de température supérieure a 20 K est encore mal compris.
Simulations numériques récentes du silicium et de la silice amorphes montrent que les
modes de vibration dans la gamme de fréquences correspondante (dits «diffusons»)
sont délocalisés. En méme temps ils sont completement différents des phonons
acoustiques de basse fréquence.

Dans ce travail, nous présentons un modele stable de matrice aléatoire d’un solide
amorphe. Dans ce modele, on peut faire varier le degré de désordre allant du cristal
parfait jusqu’au milieu mou extrémement désordonné sans rigidité macroscopique.
Nous montrons que les solides amorphes réels sont proches du deuxiéme cas limite, et
que les diffusons occupent la partie dominante du spectre de vibration. La fréquence
de transition entre les phonons acoustiques et diffusons est déterminée par le critere
Ioffe-Regel. Fait intéressant, cette fréquence de transition coincide pratiquement
avec la position du pic boson. Nous montrons également que la diffusivité et la
densité d’états de vibration de diffusons sont pratiquement constantes en fonction
de la fréquence. Par conséquent, la conductivité thermique est une fonction linéaire
de la température dans le domaine allant & des températures relativement élevées,
puis elle sature. Cette conclusion est en accord avec de nombreuses données
expérimentales.

En outre, nous considérons un modele numérique de matériaux de type de
silicium amorphe et étudions le réle du désordre pour les vibrations longitudinales
et transverses. Nous montrons aussi que la théorie des matrices aléatoires peut
étre appliquée avec succes pour estimer la densité d’états vibrationnels des systemes
granulaires bloqués.

Mots clés solides amorphes, vibrations, matrices aléatoires.
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Introduction

Establishing the general properties of vibrations in amorphous solids (glasses) is
one of the key problems in the physics of disordered systems. Amorphous solids have
approximately the same local order of atoms as in crystals, but there is no long-range
order (Fig. 1). The disorder in atomic positions strongly modifies the macroscopic
properties such as the thermal conductivity [Eucken 1911; Berman 1949]. Fig. 2
shows the thermal conductivity of amorphous and crystalline SiOs.

The thermal conductivity of dielectrics is completely determined by transport
properties of vibrations. The thermal conductivity of a phonon gas was first obtained
by Debye [Debye 1914; Kittel 1949|

= éC’vl, (1)

where C' is the specific heat, v is the sound velocity and [ is the mean free path of
phonons. The thermal conductivity of nearly perfect crystals at high temperatures

a b

Figure 1. A two-dimensional illustration of atomic order in crystalline (a) and
amorphous (b) SiO2. Lines show the direction of chemical bonds, dots and circles
are Si and O atoms respectively [Kittel 1949].
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Figure 2. The thermal conductivity of crystalline and amorphous SiOg. Filled
symbols are the first results of Eucken [Eucken 1911]. Open symbols are more recent
Pohl’s results |[Zeller and Pohl 1971; Raychaudhuri and Pohl 1982; Vandersande and
Pohl 1980; Cahill and Pohl 1987; Cahill and Pohl 1988|. The black bottom line is
the existing theory of the thermal conductivity of amorphous solids [Buchenau et al.
1992|. The straight red line shows the linear dependence (it will be obtained in
Section 2.4).

is s < 1/T (Fig. 2), which is related to umklapp processes (resulting from a small
anharmonicity). At small temperatures (much less than the Debye temperature)
the probability of umklapp processes is exponentially small. In this case, the mean
free path [ is limited by the sample size L. According to the Debye law, the low-
temperature specific heat is C' oc T% [Debye 1912|. Therefore, the low-temperature
thermal conductivity of crystals is » oc T° (Fig. 2).

Amorphous solids have bond lengths and bond angles, which differ by ~10%
from the crystalline values. However, the temperature dependence of the thermal
conductivity is completely different, and the difference can be more than four orders
of magnitude (Fig. 2). Other amorphous dielectrics have qualitatively the same
temperature dependence of the thermal conductivity (Fig. 3).

At low temperatures below 1 K, the low-frequency long-wave acoustical phonons
are well-defined excitations which transfer the heat in glasses. At these temperatures
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Figure 3. Comparison of the thermal conductivity of different amorphous

dielectrics: GeOg, Se, SiOo9, solid varnish GE 7031, polymer PMMA |Zeller and
Pohl 1971].

the thermal conductivity »(T) oc T? is controlled by a resonant scattering of phonons
by two-level systems (TLS) [Hunklinger and Raychaudhuri 1986; Phillips 1987].
Between 4 K and 20 K the thermal conductivity s(7") saturates and displays a well-
known plateau |Zeller and Pohl 1971]. As was shown in [Buchenau et al. 1992], it can
be explained by a resonant scattering of phonons by quasilocal vibrations (QLV).
The QLV, together with TLS and phonons are vibrational excitations responsible
for many universal properties of glasses [Parshin 1994|. Above approximately 20 K
the thermal conductivity rises again (approximately linearly, s o< T) and finally
saturates at the level of one order of magnitude higher, at temperatures about
several hundred Kelvin [Cahill and Pohl 1987].

A microscopic mechanism of the heat transfer in glasses in the temperature range
above the plateau (from 20 K up to the glass transition temperature T, ~ 1400 K
[Briickner 1970]) is still poorly understood. As generally believed, the origin of
this second rise of the thermal conductivity (above the plateau) is not related to
acoustic phonons. However, the existing models (Einstein model and the model of
the minimum thermal conductivity) do not follow from the microscopic description
of atomic vibrations, and they have no s o 7" dependence |Cahill and Pohl 1988].

It was established long ago |Birch and Clark 1940; Kittel 1949; Graebner et
al. 1986], that in the temperature (frequency) range under consideration the mean
free path of acoustic phonons [ becomes of the order of their wavelength A (or
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Figure 4. The numerical calculations of the VDOS of the amorphous SiO2 using
molecular dynamics methods [Jin et al. 1993].

even smaller, of the order of interatomic distance). Correspondingly, the Ioffe-Regel
criterion for phonons [loffe and Regel 1960| becomes violated. Molecular dynamics
calculations confirmed the existence of such crossover for some real and model glasses
[Taraskin and Elliott 2000; Schober 2004] and disordered lattices [Schirmacher et al.
1998; Taraskin and Elliott 2002b].

In the regime of such strong scattering, the concept of plane waves (phonons)’
with a well-defined wave vector g becomes inapplicable. The question then arises:
what physical mechanism is responsible for the heat transfer in glasses in this
temperature range? The numerical simulations show that majority of the vibrational
modes in the corresponding frequency range are not localized [Jin et al. 1993;
Oligschleger 1999; Taraskin and Elliott 1997|. The vibrational density of states
(VDOS) of amorphous SiO, in the corresponding frequency range is approximately
constant (Fig. 4). The same behavior for g(w) was found in the soft-sphere glass
[Schober et al. 1993; Schober and Oligschleger 1996] and amorphous Se [Oligschleger
and Schober 1993; Oligschleger and Schon 1997|. In other glasses, the VDOS has a
broad maximum and then decays to zero [Hafner and Krajéi 1994; Meshkov 1997;
Ballone and Rubini 1995; Abraham and Bagchi 2010].

At the same time, delocalized vibrations in glasses of a new type, different
from plane wave-like phonons, were introduced. They were called diffusons [Allen
and Feldman 1989; Allen and Feldman 1993; Feldman et al. 1993; Feldman et al.
1999; Allen et al. 1999]. These are vibrations spreading through the system not

!The notion of “phonons” has different meanings in different communities. We use the notation
phonons for vibrations, which can be described by a wavevector ¢ and a finite mean free path [ (as
a result, there is an uncertainty in the wavevector Ag ~ 1/1) if ¢l < 1.
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ballistically, as phonons (on distances of the order of mean free path) but by means
of diffusion. It is an important class of excitations which occupy in glasses the
dominant part of the spectrum [Allen et al. 1999|. In these papers, the hypothesis
was put forward that the boundary between phonons and diffusons is determined
by the loffe-Regel criterion for phonons. Since diffusons are delocalized excitations,
they may be responsible for the thermal conductivity of glasses above the plateau.

A similar conclusion was made by the authors of [Sheng and Zhou 1991; Sheng
et al. 1994]. They considered the case of strong scattering of phonons in disordered
lattices with a significant fraction of randomly located missing sites, but which
is still far from the percolation threshold. It was shown that, in contrast to the
electronic case, the loffe-Regel criterion is inaccurate in the prediction of phonon
localization. Instead of localization, the vibrational transport above the Ioffe-Regel
threshold becomes diffusive with approximately constant energy diffusivity D(w).
The diffusivity was calculated by numerical solution of the Newton equations for
particle displacements. Similar calculations but for real glasses were done in the
papers |[Feldman and Kluge 1995; Yu and Leitner 2006] using molecular dynamics
methods. The difference between electron and phonon localization is related to
a very strong scattering of electrons by perturbations in electrostatic potentials
associated, say, with structural disorder [Taraskin and Elliott 1999].

Recent experiments of the inelastic x-ray scattering in glasses [Sette et al. 1998;
Ruocco and Sette 2001| show that vibrations in the same frequency range have a
linewidth T oc ¢?. This unusual behavior still has no theoretical explanation. The
same dependence was found by molecular dynamics simulations of amorphous silicon
[Christie et al. 2007].

Another universal property of amorphous materials is the so-called boson peak.
According to the Debye prediction, the low-frequency VDOS g(w) oc w?. However,
the amorphous materials show an excess contribution at low frequencies [Phillips
1981]. The reduced VDOS g(w)/w? as a function of w shows a peak which can be
detected experimentally by methods like inelastic neutron scattering. Usually, the
position of the boson peak wy is correlated with the Ioffe-Regel crossover frequency
Wi, see [Gurevich et al. 1993; Parshin and Laermans 2001; Rufflé et al. 2006; Ruffié
et al. 2008; Shintani and Tanaka 2008| and references therein.

Another disordered system with rich mechanical and vibrational properties is the
jammed granular system with repulsive forces between the particles |[Liu and Nagel
1998]. The diffusons above the Ioffe-Regel crossover were also identified in jammed
granular systems with repulsive forces between the particles [Xu et al. 2009; Vitelli
et al. 2010]. They also have diffusivity which is independent of frequency w. It was
calculated making use of the Kubo-Greenwood formula for the thermal conductivity
derived in [Allen and Feldman 1993]. In jammed systems, the Ioffe-Regel crossover
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frequency wyy can vary. It is shifted to zero when the system approaches a so-called
jamming transition point, and rigidity goes to zero.

Therefore, as we believe, it is important to study properties of diffusons and the
Ioffe-Regel criterion systematically. They bring a new physics to our understanding
of vibrational properties in strongly disordered systems and energy /heat transfer in
glasses. To study these properties, we should have a model being sufficiently simple
but still allowing to describe all of them.

This work is organized as follows. In Chapter 1 we present a stable random
matrix model of an amorphous solid. Starting from general properties of the
dynamical matrix, we obtain a disordered medium with random bond strength
between atoms on a simple cubic lattice. In this model, we can vary the strength of
disorder between two limiting cases. One limit corresponds to extremely disordered
soft medium without macroscopic rigidity. In the other limit one has a perfect
crystal. We also compare our results with classical results of the random matrix
theory.

In Chapter 2 we analyze transport properties of vibrations in the suggested
model amorphous solid. We numerically calculate different physical quantities such
as the dynamical structure factor, the loffe-Regel crossover and the diffusivity of
the vibrational energy. As a result, we obtain the thermal conductivity, which is in
agreement with the experimental data. We also obtain general scaling relations and
compare them with ones for jammed granular systems.

In Chapter 3 we consider a Stillinger-Weber model of an amorphous silicon. We
show that transverse and longitudinal vibrations in silicon-like amorphous materials
have sufficiently different properties (the VDOS, the dynamical structure factor, the
diffusivity and other related quantities). To emphasize this difference we study the
effect of the local bending rigidity, which mostly affect the transverse vibrations.

In Chapter 4 we show that the random matrix theory can be successfully applied
to estimate the vibrational density of states. As an example, we consider jammed
granular systems near the jamming transition.

In the Appendices, we present some important technical information. In
Appendix A we present an original derivation of some classical results of the random
matrix theory, including the density of states and the level statistics of the Wishart
ensemble. In Appendix B we consider the kernel polynomial method. It is a very
efficient numerical method for eigenvalue analysis, which can be applied to dynamical
matrices. In Appendix C we present a general method of the decomposition of the
VDOS to its transverse and longitudinal components.



Chapter 1

The random matrix approach

In this Chapter we consider disordered lattices with a strong force-constant
disorder, described by a stable positive definite random dynamical matrix AAT
having positive eigenvalues only. We show that the vibrational density of states g(w)
is not zero at w = 0 and phonons cannot propagate through the lattice. We explain
this by the fact that the system is extremely soft, and the macroscopic rigidity is
zero. The participation ratio P(w) indicates that all modes with an exception of
a high-frequency part are delocalized. Further investigation shows that all of them
are diffusons. In Section 1.8 we introduce slightly additively deformed dynamical
matrix AAT 4 M, which has phonon-like excitations at small frequencies. Here the
positive definite matrix M, (random or non-random) is independent of A and p is
a parameter of the model which can vary in the interval 0 < p < oo.

1.1 Introduction

Masses of atomic nuclei are much larger than electron masses, so we can separate
the electron motion and the motion of nuclei. Therefore, motion of atoms can be
described by the classical Newton’s equation of motion

ou
Myt = — 1.1
lrla 8’]”la ( )

where m; is the mass of ith atom, « indicates spatial direction and U is the total
potential energy, which depends on the atomic positions r,...,7ry. In the solid
state each atom vibrates around a certain equilibrium position R;. In this case, we
can linearize the equation of motion (1.1)

ﬁia = — Z Mmdﬂujﬂ (12)
JB

7



Chapter 1. The random matrix approach 8

with atomic displacements uw; = /m;(r; — R;) and the dynamical matrix

1 0*U

Mia i3 = . 13
98 A/ T ﬁrmarjg ( )
The linear equation (1.2) corresponds to the eigenvalue problem
wzum = Z Mimj,é’ujﬂ (14)
jB

2

where ¢ = w” are eigenvalues of the dynamical matrix M.

In structural glasses in many cases (as, for example, in vitreous silica or
amorphous silicon) a mass disorder is not important and we usually deal with
a force-constant disorder. It is related to fluctuations of valence bond lengths
and valence bond angles because of an absence of crystalline ordering. Since
valence forces depend exponentially on the distances between the atoms, they
can experience strong fluctuations. Due to positional disorder, there are also
fluctuations of long distance Coulomb forces in non-covalent materials. Thus, the
force-constant disorder plays an essential role in glassy dynamics. Therefore, one
can say that dynamical matrix of an amorphous system has random elements with
some non-trivial correlations between them. The main restriction is the mechanical
stability of the whole system. All eigenfrequencies w in such a system are real,
and the dynamical matrix M is positive definite (it is also real and symmetric by
the definition (1.4)). However, not every random symmetrical dynamical matrix
is positive definite. We will solve this problem using a following mathematical
approach.

Every real symmetric and positive definite matrix M can be presented in the
form [Bhatia 2007|
M = AAT (1.5)

where A is some real (not necessarily symmetric nor square) matrix. And, vice
versa, for every real matrix A the product AAT is a positive definite symmetric
matrix [Bhatia 2007]. One may assume that in amorphous solids the dynamical
matrix has a form M = AA”, where correlations between elements of the matrix A
are less important than correlations between elements of the matrix M.

A vectorial character of vibrations in real glasses makes the issue be more
complicated, so in this and in the next Chapters we will use a so-called scalar
model, where we for simplicity omit indices a and . One can imagine that
atoms can vibrate along x direction only, and polarization of the modes is of no
importance. Different scalar models were successfully used in glassy physics in
the past [Schirmacher et al. 1998; Martin-Mayor et al. 2000; Grigera et al. 2002;
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Kantelhardt et al. 2001]. In this model, the dynamical matrix M is N x N matrix
and the matrix A is N x K rectangular matrix.

Let us start the analysis from a simple case where all elements of the N x K
matrix A (they have dimension of s7!) are independent and identically distributed
random numbers with

(Aij) =0 and (47) = Q% (1.6)
It is so-called Wishart random matrix ensemble [Wishart 1928|. In the limit

K
N, K — oo, N = const (1.7)

eigenvalues ¢; of the matrix M = AAT have the Maréhenko-Pastur distribution
[Maréhenko and Pastur 1967] (see also Appendix A). The Wishart ensemble was
investigated in the theory of financial markets [Plerou et al. 2002|, complex networks
[Barthélemy et al. 2002], and wireless communications [Tulino and Verdu 2004]. As
far as we know, for vibrations in disordered solids this approach was not used so far
(as an exception see the paper [Gurarie and Chalker 2003|). The Mar¢henko-Pastur
distribution corresponds to the following vibrational density of states (VDOS)

1

R e SR

g(w) =

where

Wi = wo ‘ K/N+1|, wy=VNQ. (1.9)

If K < N there is N — K zero eigenvalues and the Marchenko-Pastur law (1.8)
contains a delta-function term (1 — K/N)d(w). In Appendix A we present a rather
simple derivation of Eq. (1.8). If K = N then the VDOS has a quarter circle form

1

gw)=—

4w —w?, 0 <w < 2wy, 1.10
o wi — w?, w < 2wy (1.10)

which is similar to the well known Wigner semicircle [Wigner 1955]. This VDOS is
approximately constant in a wide frequency range. Real and model amorphous
systems also have a constant VDOS in some frequency range [Jin et al. 1993;
Schober and Oligschleger 1996; Oligschleger and Schon 1997; Hafner and Krajci
1994; Meshkov 1997; Ballone and Rubini 1995; Abraham and Bagchi 2010]. The
corresponding distribution of eigenvalues e = w? is p(g) o< 1/4/2. This singular-like
behavior was observed in [Taraskin and Elliott 2002a] and [Huang and Wu 2009]
(see Fig. 2 of this paper). Therefore, we will consider the case K = N below. The
general case K # N will be discussed in Chapter 4.
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1.2 Sparse matrices

In the random medium model described by the Wishart ensemble, each of the
elements M;; of the dynamical matrix M is not zero

Mi; = ApAy. (1.11)
k

Obviously, this corresponds to the case of long-range interaction when each atom is
connected by random forces with every atom in the system. However, this model is
not justified from the physical point of view. In amorphous materials, only closely
spaced atoms are bonded by elastic forces. Therefore, the more real case is when the
number of nonzero elements m in each row of the matrix M is small as compared
to N and does not depend on N. As a result, the matrix M is sparse. Usually, such
sparse matrices arise in computer calculations of atomic vibrations in amorphous
solids (and liquids). For example, in the case of the short-range order for a simple
cubic lattice with the interaction only between nearest neighbors and the vector
character of vibrations (in three-dimensional space), we have m = 18 + 3 = 21. For
other lattices we obtain m = 24+18+3 = 45 for a bec lattice and m = 36+18+4-3 = 57
for an fcc lattice. In the last two cases, we took into account all interactions in the
first and second coordination shells.

Therefore, we get a more real case if we consider a sparse matrix A where each
row contains only 7 nonzero matrix elements (with n < N). Then, each row of the
matrix M = AAT will have approximately m = n? nonzero elements. At n? < N,
this corresponds to the case of a sparse matrix M.

If the nonzero elements of the matrix A are chosen randomly and n > 1 then
the VDOS is also described by the Eqgs. (1.8) — (1.10) with

wo = v/nk. (1.12)

If n > 1 we can use the obtained quarter-circle VDOS (1.10) by substituting the
variance n)?/N instead of the variance Q?; that is

VaAnQ? —w?, 0 < w < 2Qv/n. (1.13)

g(w) = —

At the same time we can take n < N. This means that, at N > n > 1 the
quarter-circle distribution for the density of states g(w) is still valid even in the case
when nonzero elements occupy only a small part of the matrix A. Such form of the
distribution in our model is a universal law and does not depend on the distribution
density po(a;;), the size of the system N, and the number of nonzero elements n for
sufficiently large values of n.
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Figure 1.1. VDOS of sparse 1000 x 1000 dynamical matrices for different values of
n. The line n = oo is the theoretical prediction (1.13). The frequency has units of €.

A numerical analysis confirms that with an increase of n the density of states
g(w) actually approaches quarter-circle distribution (for n > 1) and, in this case,
the inequality n < N is possible (see Fig. 1.1). Already for values of n of the
order of 10 and large values of N, we obtain the density of vibrational states that
only slightly differs from the quarter-circle distribution. In this case, the vibrational
spectrum (normalized to unity) does not depend on the size of the system N.

The symmetric sparse random matrix M = AA” considered in this Section is
topologically equivalent to a tree (closed to itself on the system size) so that the
number m = n? specifies the order of branching or the coordination number of this
tree. However, the random bond structure in amorphous systems (glasses) more
likely corresponds to the short-range order in the atomic arrangement, topologically
similar to the bond structure existing in the corresponding crystals. It is clear that
topologically the crystal structure differs fundamentally from the tree structure. In
the tree structure, there are no small closed loops which are present in the lattice.

In the conclusion of this section, it should be noted that the singularity in the
density of states g(w) at w — 0 manifests itself for small values of n (see Fig. 1.1
for n = 5). Similar singularity also exists in the density of eigenvalues the sparse
random Hamiltonian H [Dyson 1953; Rodgers and Dominicis 1990; Evangelou 1990;
Evangelou 1992|. Taking into account that this singularity was first discovered in
the density of vibrational states of a disordered one-dimensional chain by Dyson
[Dyson 1953|, it sometimes is called the Dyson singularity. It has been believed
that this singularity is an indication of strong fluctuations in a random medium and
related quasi-localization of modes [Evangelou 1992].
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Figure 1.3. A simple cubic
Figure 1.2. Tree topology. lattice.

1.3 Cubic lattice with random bonds

Our purpose in this section is to construct a simple random matrix model of
an amorphous system with certain physical properties: this structure should have
a given topology of bonds, and the total potential energy U should not depend
on the translation of the whole system. The latter property is necessary (but not
enough as we will see below) to the propagation of low-frequency acoustic phonons.
It corresponds to the sum rule in the dynamical matrix (here and below we assume
that all masses m; = m are equal) [Taraskin and Elliott 2002b; Kithn and Urmann

2000]
> My=Y M;=0. (1.14)
i J
Indeed, in this case the potential energy is

m m
U= T;Mij“iw =5 > My(ui —uy)*. (1.15)

i,j<i

As soon as the dynamical matrix M is fixed, the exact atomic equilibrium
positions are no longer important for dynamics on a long length scales much
bigger than the interatomic distances. They do not enter the dynamical matrix
M. Therefore, it is reasonable to consider harmonic lattice models involving only
force-constant disorder.

As an example, we consider a simple cubic lattice with N = L? atoms, a lattice
constant ag, and random bond strength between neighbor atoms. In all other aspects
our system remains random without any periodicity (except for the topology of the
bonds). The atoms have coordinates (ais, aoiy, api,) and each index i, can take on
values from 1 to L. Let us introduce the integer index i = i, + L(i, — 1) + L*(i, — 1).
Each atom in the lattice is characterized by its unique index ¢ running from 1 to N.
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Figure 1.4. Schematic diagram illustrating the interaction of atoms in a cubic
lattice. Shown are atoms interacting with the central (black) atom with random
stiffness. Different colors mark random bonds with different stiffness distribution.
In total, the central atom interacts with 24 surrounding atoms (nearest and next
nearest neighbors).

Let us now construct a corresponding random matrix A. The element A;; is
random and nonzero if the 7th and jth atoms are nearest neighbors. Non-diagonal
elements A;; and Aj; are statistically independent of each other (matrix A is non-
symmetric). All other elements A;; are equal to zero except the diagonal element

Ay == Aj. (1.16)
J#

Then according to Eq. (1.11), the Eq. (1.14) will also be satisfied. As a result, for
the simple cubic lattice, we obtain n = 7 nonzero elements in each row and in each
column of the matrix A. In the dynamical matrix M = AAT the element M;; will
be nonzero if ith atom will be nearest or next nearest to the jth atom (or it is the
same atom for i = j). Fig. 1.4 shows the atoms interacting with the central (black)
atom.

We calculated the density of vibrational states g(w) for this cubic lattice. The
mean value of nonzero elements of the matrix A was taken equal to zero (4;;) =0
and the variance was taken to be (A7) = Q* (Gaussian distribution). The results
of the numerical analysis are shown by solid line in Fig. 1.5.

According to the Debye law, the VDOS of acoustic phonons in the limit w — 0

18
i1

Ipn(w) o< =5, (1.17)
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Figure 1.5. VDOS for 1d, 2d, 3d, and 6d simple cubic lattices. The system size is
N =1000', 322,103, 3% respectively. The frequency has units of €.

where v is the sound velocity. However, Fig. 1.5 shows a weak (logarithmic)
singularity in the VDOS at w — 0. So we can suppose that the system under
consideration has no acoustic phonons despite the sum rule (1.14). To elucidate
a spatial structure of the eigenmodes for the matrix M = AA”, we consider as
an example a two-dimensional square lattice with N = 400 x 400 particles and
calculate eigenvector e;(wmin) (i = 1,2, ..., N) for the lowest nonzero frequency wpi,
in the system. The result is shown in Fig. 1.6. Particles with positive and negative
displacements are shown by white and black dots correspondingly. As one can see
from the figure, the mode is delocalized. Its spatial structure is random (fractal)
and has nothing to do with a plane wave. A similar picture takes place in the 3d
case. In Section 2.3.1 we will show that in the limit w — 0 the structure factor has
power-law behavior, which confirms the fractal structure of a such low-frequency
mode.

1.4 Participation ratio

One of the most important problems in the disordered systems is the problem of
modes localization. As is well known from the seminal paper of Anderson [Anderson
1958], the sufficiently strong disorder in a system leads to localization of elementary
excitations. To estimate the inverse strength of mode localization one usually
introduce the participation ratio. As a rule, the participation ratio is defined by
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"

Figure 1.6. The spatial eigenmode structure of random matrix M = AA7T for the
lowest frequency wpnin in two-dimensional square lattice 400 x 400.

the expression

Plw)= —— (1.18)

where ¢;(w) is the ith coordinate of the eigenvector corresponding to the eigenvalue
w? of the dynamical matrix M. In the case of completely localized mode
1

‘61’:1, 62263:...:€N20, PNN (119)
the participation ratio P(w) decreases with the increase of the system size. In the
case of completely delocalized mode

1
’61’ = ‘62‘ = ... = |€N| = _\/N7 P ~ 1’ (120)

the participation ratio does not depend on the system size N and is of the order of
unity.

We performed the numerical calculations of the participation ratio for vibrational
excitations in the cubic lattice with random bonds, which was introduced in the
previous Section. Fig. 1.7 shows the result for lattices in different dimensions. Three-
dimensional cubic lattice has P(w) &~ 0.2, which does not depend on N. Therefore,
almost all vibrations (except a small high-frequency range) are delocalized, but
none of them are plane waves. According to the terminology proposed by Allen et
al. [Allen et al. 1999 they are referred to as the diffusons. In Section 2.3 we will
show that these vibrations spread by mean of diffusion.
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Figure 1.7. The numerical calculation of the participation ratio for cubic lattices in
different dimensions d. a) N ~ 1000 atoms (1000*, 322, 103, 3%) b) N ~ 16000 atoms
(16000', 1262, 253, 55). The black horizontal line corresponds to the theoretical value
P(w) = 1/3. The frequency has units of 2.

Qualitatively our plot P(w) coincides well with the results of the numerical
calculations of the participation ratio for amorphous SiO, using molecular dynamics
methods [Jin et al. 1993| in the frequency range 0 < w < 120 meV (Fig. 1.8).
It is interesting that in the two-dimensional (square) and one-dimensional lattices
with random bonds (constructed in a similar manner) the participation ratio is one
order of magnitude smaller than that in the cubic lattice (Fig. 1.7). By analogy
with disordered electronic systems [Abrahams et al. 1979], this can indicate to the
localization of vibrational modes in these low-dimensional structures.

The numerical values of the participation ratio of vibrational modes P(w) in
various glasses according to the data obtained by molecular dynamics methods, as
a rule, are in the range 0.2 < P(w) < 0.6 [Jin et al. 1993; Schober and Oligschleger
1996; Schober et al. 1993; Oligschleger and Schober 1993; Oligschleger and Schon
1997; Hafner and Krajci 1994; Meshkov 1997; Ballone and Rubini 1995; Abraham
and Bagchi 2010]. This is in good agreement with the results of the random matrix
theory. For example, by assuming that the eigenvectors e;(w) (i = 1,2, ..., N) of the
random matrix M = AA” are unit vectors in the N-dimensional space

Zef(w) =1, (1.21)

which are isotropically oriented in all possible directions, the quantity r = e?(w) will
be distributed according to the Porter-Thomas law [Haake 2001|

p(r) = \/% exp (—%) . (1.22)
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Figure 1.8. The numerical calculations of the participation ratio of the amorphous
Si0y using molecular dynamics methods |Jin et al. 1993].

As a result, we have

(W) = ) = 50 (@) = () = (1.23)

and according to Eq. (1.18) the participation ratio is
P(w) =1/3. (1.24)

Fig. 1.7 shows that the participation ratio approaches to the theoretical value 1/3
with the increase of the space dimensionality.

In the literature [Schober and Oligschleger 1996], there is one more definition of
the participation ratio for the vector model (in contrast to the above scalar model)

Py(w) = Nié (aill e?a(w))w (1.25)

where index 7 indicates the index number of the atom (i = 1,2, ..., N) and the index
« stands for the Cartesian projection of the displacement of the ith atom onto the
a (o =z,y,2) axis. In this case, under the assumption that the unit vectors e;,(w)

are isotropically distributed in the 3/N-dimensional space we have in analogy with
Egs. (1.23)

3 1
(3N)2  3NZ

<efa(w)> =(r)=— <efa(w)> = <7’2> = (1.26)
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Figure 1.9. Level statistics for the simple cubic lattice with random bonds with
N = 16 atoms for different frequencies. The level statistics 0 < w < 4.7Q2 (orange
line) is indistinguishable from the theoretical prediction (1.32) (dashed line). Dotted
line is Poisson statistics (1.30).

Since

(e + el e2)") = (el (el H(eh)+2 ((e2) (e) + () (e2) + () (k)
(1.27)
then using Eq. (1.26) we find that the participation ratio Ps(w) (1.25) is equal

Ps(w) =3/5=0.6. (1.28)

In this sense, the values of P(w) = 1/3 for the scalar model and P3(w) = 0.6 for
the vector model are equivalent to each other from the standpoint of the random
matrix theory. The value of P3(w) ~ 0.6 was obtained in numerical calculations
of the participation ratio of vibrational modes for the soft-sphere glass [Schober
and Laird 1991|. Finally, making use of Egs. (1.26) it can be shown that the
participation ratios Po ~ Ps; ~ 0.3 calculated numerically by Jin et al. [Jin et
al. 1993] for amorphous SiO, are also in good agreement with the theoretical values
Po = Ps; = 1/3 that follows from formula (18) of this work. Summarizing we can
conclude that participation ratio calculated in different papers for different glasses
is in good agreement with predictions of the random matrix theory.

1.5 Levels statistic

The level statistics is another powerful criterion that makes it possible to judge
about localization or delocalization of vibrational modes. If the modes are localized,
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Figure 1.10. The molecular dynamics calculations of the statistics of vibrational
levels for amorphous clusters [Sarkar et al. 2004]. The line is the theoretical
prediction (1.32).

their frequencies are randomly distributed over the frequency axis according to the
Poisson distribution law without any correlation with each other. For quantitative
description let us introduce the normalized difference between the vibrational

eigenfrequencies
Aw
§=—, 1.29
Ao (1.29)
where Aw is the distance between the two neighboring frequencies that corresponds
to the frequency w and (Aw) is the mean distance between these frequencies. Then

for localized modes the distribution function can be presented in the form
Z(s) = exp(—s). (1.30)

When the modes are delocalized the repulsion effect takes place and Z(s) o s
for small values of s < 1. The level statistics of the Wishart ensemble (and the
Wigner ensemble as well) is approximately

m T
Zw(s) =~ 55 eXp (—ZS2> : (1.31)

It is so called Wigner surmise [Haake 2001]. The precise form of Z(s) can be written
as [Forrester and Witte 2000]

Z(s) = C;‘l—; exp <— /0 o @dt) (1.32)

t

where o(t) is the solution of the nonlinear differential equation

(to")? +o'(0c —to') (4o’ — 1) — ~(0')* =0 (1.33)
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Figure 1.11. A schematic representation of the Young modulus measurement for a
system with N = 5% atoms.

with an asymptotic behavior

1 2 4 1
ot —0) = ;tl/Q + ot (F — 3—7T> 32, (1.34)

We have calculated numerically the level statistics for the dynamical matrix
of the simple cubic lattice with random bonds. The level statistics for different
frequencies is presented in Fig. 1.9. In a wide frequency range we have Z(s) o s
for small s. In the frequency range 0 < w < 4.7, the result is indistinguishable
from Eq. (1.32). As was mentioned above, this statistics corresponds to the case of
delocalized modes. Therefore, we conclude that the majority of vibrational modes
in our system are delocalized. This is in a good agreement with the data presented
in Fig. 1.7 for the participation ratio P(w). In conclusion, we note that our results
agree well with the molecular dynamics calculations of the statistics of vibrational
levels for amorphous clusters (Fig. 1.10).

1.6 Young modulus and the absence of
acoustic phonons

Let us consider the difference between the VDOS (Fig. 1.5) and the Debye
prediction (1.17). In the three-dimensional case and the scalar model we have

30,2
ap w

Ionw) =5 373 (1.35)
where a is the lattice constant, v is the sound velocity. The VDOS is normalized
to unity, and the coefficient aj indicates a volume associated with each degree of
freedom. According to the standard textbook formula of the macroscopic elasticity
theory for isotropic medium (see Eq. 5.2 in [Landau and Lifshitz 1986]), Young
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Figure 1.12. The Young modulus (in units of m€?/ag) averaged over 1000
realizations for different system sizes.

modulus is given by E = 0,,/u,,. Here o, is the stress, and u,, is the strain.
The component u,, gives the relative lengthening of the sample. The sound velocity
depends on the Young modulus as

E
v=y/— (1.36)
Po

where the mass density is pg = m/aj.

In modeling of amorphous solids, the standard method to calculate the Young
modulus is to use Irving-Kirkwood stress tensor formula [Irving and Kirkwood 1950].
However, it is difficult to implement this procedure in our case of strong local
fluctuations of elastic springs when microscopic displacement field u(r) is not a
differentiable function of equilibrium particle positions. Therefore, to avoid these
difficulties we used a direct numerical method. We apply the force f, to each atom
on the right side and the force —fj to each atom on the left side (Fig. 1.11). Since
Newton equations are linear, the final result is independent of the value of the force
fo- In other two directions we use the periodic boundary conditions. In this case,
the stress is

Opr = f_g7
ap

(1.37)

and the strain is
1 Uy — Uy
_ i . = 1.38
: a@%L—D(Z)L+Z:%> ao(L — 1) (1.38)

where u; and wu, are the displacements of the particles on the left and the right
side. Their mean values are denoted by #, and #; respectively. The resulting Young
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Figure 1.13. The distribution of Young modulus (in units of m$?/ag) for
10° different realizations of the system. The results for different system sizes
are almost indistinguishable from each others. The black line is the exponential
distribution (1.41).

modulus is I_1
po O _ HL-1) (1.39)
Upy (U — TUy)
To avoid confusion, we remind that we are using here a scalar version of the elasticity
theory. Therefore, all forces in the lattice are parallel (or antiparallel) to the particle

displacements.

Numerical calculations show that the Young modulus strongly fluctuates: its
value is sufficiently different for different realizations of the system. The mean value
of the Young modulus decreases with the system size as (Fig. 1.12)

1 mO?

<E>O(N o

(1.40)

In the thermodynamical limit (N — oo) the Young modulus is 0, i.e. the
macroscopic rigidity is 0. Therefore, the sound velocity v is also 0 (Eq. (1.36)),
acoustic phonons cannot propagate, and the Debye prediction (1.35) is not applicable.

The distribution of the measured Young moduli is shown in Fig. 1.13. It has an
exponential form

aNag alNag
pE) =7 exp (— 0 E) , a=0.39. (1.41)

The same distribution holds not only for a cubic sample but also for any rectangular
parallelepiped sample. The result for 20 x 15 x 10 sample is presented in Fig. 1.13.
The relative fluctuations of the Young modulus do not decrease with the system
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Figure 1.14. a) Non-affine displacements of the surface atoms (in arbitrary units)
for N = 20% sample. b) The distribution of displacements.

size N

=1. (1.42)

The fluctuations of displacements of the edge atoms are much larger than the mean
displacement, and about 35% of atoms have displacements, which are opposite to
the force (Fig. 1.14). Therefore, we cannot apply the elasticity theory to the system
under consideration because we cannot introduce a strain as a smooth function of

the coordinate.

1.7 Distribution of elements of
the dynamical matrix

Let us consider why the Young modulus is zero. The macroscopic rigidity
depends on the microscopical atomic interactions. We have shown that each atom
interacts with 24 surrounding atoms in the three-dimensional case (Fig. 1.4). For
clarity, we now consider the two-dimensional analog, where each atom interacts with
12 surrounding atoms (Fig. 1.15).

In Section 1.3 we defined matrix elements of the dynamical matrix M = AAT.
Matrix elements between the central atom in Fig. 1.15 and its nearest neighbors
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Figure 1.15. A schematic diagram illustrating the interaction of atoms in a square
lattice. It is a two-dimensional analog of Fig. 1.4.

have a form

My, = Z Ao A1 = AgoAro + Ao A (1.43)
k

The diagonal elements A are defined by the sum rule (1.14)

Ao = —(Aro + Az + Azp + Ayo), (1.44)
Ay = —(Agr + As1 + Ag1 + Aor)- (1.45)

From Eq. (1.43), we get
My = —Afy — A%} — Aio(Ago + Azp + Asg) — Ao1(Agr + Asy + Agr). (1.46)

Since averaged values (A;;) = 0 and different non-diagonal matrix elements A;; are
statistically independent of each other, the average value (M) is determined by the
first two quadratic terms in Eq. (1.46). As a result, it is non-zero and negative. It

corresponds to positive average elastic spring ky; = — My, between particles 0 and 1
m m m 2m€)?
(ko) = ——(Mo1) = —(Afy) + —(A5;) = : (1.47)
ap ap ap ap

According to Gaussian distribution of A,.;, there is a probability (1/4 in two
dimensions and (1 — 1/4/6)/2 ~ 30% in three dimensions) that the spring constant
is negative kg; < 0. All the aforesaid is valid for other nearest neighbor matrix
elements Mo, Mys, and Mo,.

The negative spring constant (“negative spring”) means unstable spring between
two atoms: it expands after initial stretching and shrinks after initial contraction.
However, the whole system is stable because the dynamical matrix M = AAT is
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Figure 1.16. Distributions of random elastic spring constants (in units of m2/ag)
in 3d simple cubic lattice. The parameter p will be defined in Section 1.8. Spring
constants kgs and kg9 do not depend on pu.

positive definite and there are always positive springs, which stabilize the system.
The effect of negative spring constants on atomic vibrations was discussed in different
papers [Schirmacher et al. 1998; Dederichs et al. 1973; Oshima et al. 1986; Erwin
et al. 1999; Rosch and Gunnarsson 2004; Martin-Mayor et al. 2000; Taraskin et al.
2001].

The matrix elements between next nearest neighbors are

Mys = Z Aok Asi, = Ao1As1 + AosAsa, (1.48)
%

Moy = Z AorAgr, = Ap1 Aoy (1.49)
K

The distributions of these elements are symmetrical and in average we have (Mys) =
0 and (Mgy) = 0. Therefore, the average spring constant of these bonds are zero,
and there is 50% probability of negative springs. The same is valid for 6 other next
nearest neighbor matrix elements M067 ]\4'077 M(]g and MO,lO; M0711, Mo’lg.

In the 3d case for simple cubic lattice, there are 6 springs of the type My, 12
springs of the type My; and 6 springs of the type Myy. As a result, all together
we have 24 particles interacting with the central black particle. All these 24 spring
constants can be either positive or negative but to ensure the mechanical stability
of the whole system they are correlated with each other in a rather tangly way.

Distributions of different spring constants are shown in Fig. 1.16. The
distribution of ky; is asymmetric with positive mean value. The distributions of
kos and kg9 are even (with zero average value) and for kgy are given by zeroth-
order Macdonald function which logarithmically diverges at £ = 0. One can find a
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Figure 1.17. The probability to obtain a stable system if we change a randomly
chosen spring constant by 6k (in units of mQ?/ay).

similarity between our spring constant distributions and dynamical matrix element
distributions obtained in [Taraskin and Elliott 2002b] for 1C-glass, in [Huang and
Wu 2009] for simple fluid with short-ranged interactions (see Fig. 1 in these papers),
and in [Christie 2006] for realistic model of amorphous silicon (see Figs 2.12, 2.13).
Though it is difficult to compare our scalar model with vector models analyzed in
[Taraskin and Elliott 2002b; Huang and Wu 2009; Christie 2006].

In the three-dimensional case, we have almost half ((4—1/v/6)/8 ~ 45%) negative
springs. The dynamical matrix M = AAT ensures the stability of the lattice,
however, the high concentration of negative springs makes it extremely soft. It
is a subtle equilibrium: if we decrease the spring constant of a random spring, the
lattice certainly becomes unstable (Fig. 1.17). Therefore, in the thermodynamical
limit N — oo, we have a critical system.

Concluding this part, we can easily include into consideration the next neighbor
shell for the matrix A. Then, in addition to the previous case, the matrix elements
of the type Ags should be taken into account. As a result, the coordination number
for the matrix M in simple cubic lattice increases up to 90. Just opposite, applying
some additional constraints, we can reduce the coordination number from 24 to
smaller numbers or make it fluctuating quantity, etc. We have checked that all
these modifications can lead to quantitative changes but do not qualitatively change
the main results. Therefore, we will restrict our consideration to the simplest case
outlined before.
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Figure 1.18. Young modulus E (in units of m?/ag) as a function of u for
dynamical matrix M = AAT 4+ uM;y built on a simple cubic lattice with N =
100 x 100 x 100 particles (one realization). Black dots are calculated values, and
the line is the best least-square fit.

1.8 The macroscopic rigidity

Real glasses have nonzero macroscopic rigidity, and the low-frequency modes
are acoustic phonons. For example, numerical calculations show that only 0.2%
of vibrational modes of amorphous SiO, is acoustic modes |Taraskin and Elliott
2000]. To include phonons in the picture, we should have a finite rigidity of the
lattice. The rigidity can be introduced by different means. Since a sum of positive
definite matrices is a positive definite matrix, then simplest possibility is to add
to the random matrix AAT a “crystalline part” (other possibilities are discussed in
Section 1.9)

M = AAT + uM. (1.50)

Here A is the same random matrix built on a 3d simple cubic lattice as in the
Section 1.3. Matrix M is a positive definite crystal dynamical matrix for the same
lattice with nonzero matrix elements between the nearest neighbors M,; = 02 (the
same units as AAT term). We will see below that the dimensionless tune parameter
i = 0 controls the rigidity of the lattice.

Adding the regular part pMj, changes the distribution of spring constants ko
between the nearest neighbors, as shown in Fig. 1.16. The average value is equal
to (k1) = mQ*(2 + p)/ag. At small values of 4 < 1 the change is negligible.
The distribution mainly consists of strongly fluctuating part AA” (compare the
distributions of kg; for © = 0 and p = 0.1). Therefore, it is not obvious that such
small perturbation is able to introduce a finite rigidity and phonons into the system.
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The macroscopic rigidity can be also introduced by a non-regular addition (see
Section 1.9). However, in this work we limit ourselves to the most simple case
described by Eq. (1.50). The advantage of this form is that it comprises both cases
of small (x> 1) and strong (¢ < 1) disorder.

To find the rigidity (as a function of u), we calculated numerically the Young
modulus F of the lattice with dynamical matrix given by Eq. (1.50) for pu # 0.
We took a very big cubic sample with N = L x L x L = 10° particles to reduce
fluctuations and possible non-affine response.

The results of these calculations are shown in Fig. 1.18 for cubic sample with
N = 10° particles (we have checked that for g > 107* for such a big sample the
fluctuations of Young modulus from sample to sample are small so we can use one
realization only. It is different from the case p = 0 where the relative fluctuations
of the Young modulus are of the order of unity). As we can see from the fit, the
Young modulus has the following dependence on p:

QQ
BE=""Cp p> 1, (1.51)
ap
Q2
E=15"""n pu<l. (1.52)
Qo

As a result, for u > 1, we have a usual crystal , where the disorder is relatively
small, and relation (1.51) is obvious. For ;1 < 1 the force-constant disorder is strong.
The fluctuations of the non-diagonal matrix elements M,; are much bigger than the
averaged values. In this case Young modulus F o /u. It is much bigger than the
crystal result (1.51). Strong fluctuations of the positive and negative elastic springs
which in average almost compensate each other make the lattice much more rigid
than in the case of crystal. Therefore, for © < 1 one cannot consider our lattice as
a simple superposition of two systems AAT and uM,. The origin of this behavior
E o \/p is unclear, and it should be elucidated in future work (see also Section 2.5).
But we will support our numerical findings by calculation of the sound velocity and
of the phonon density of states (for small w) and by a comparison of the latter with
total VDOS calculated numerically for the matrix (1.50). Below we will consider
the case of strong and moderate force-constant disorder when 0 < o < 1.

The total VDOS g¢(w), normalized to unity and calculated numerically by the
kernel polynomial method (KPM, see Appendix B) for dynamical matrix (1.50) and
different values of p, is shown in Fig. 1.19. We see from the figure that the VDOS
for 1 # 0 at low enough frequencies is proportional to w? which corresponds to
acoustical phonon excitations. Thus, introducing finite values of x, we open up a
soft phonon gap in the gapless diffuson spectrum, existing at © = 0. The VDOS
in the gap, as we will show in the next Chapter, is built by acoustic phonon-like
modes and at low frequencies goes to zero as g(w) oc w?. The term phonon gap is is
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Figure 1.19. The normalized VDOS g(w) for dynamical matrix M = AAT + uMj
and five different p (0, 0.001, 0.01, 0.1, 1) calculated with precise numerical KPM
solution for a simple cubic lattice with N = 2002 (full lines). Straight lines correspond
to the Debye prediction (1.35). Inset: dependence wmax(pt) o< /. The frequency
has units of Q.
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Figure 1.20. Participation ratio for different p as a function of w (in units of )
for N = 27% (one realization). The arrows indicate positions of wyax in g(w) for
corresponding values of p (see Fig. 1.19).

used because if conditions (1.14) are violated, then addition My to random matrix
AAT opens a hard gap in the gapless vibrational spectrum (see Fig. 1.21 below).
Just above this gap, the VDOS has a sharp maximum at frequency wy,ax, which we
will identify with the width of the gap. As follows from Fig. 1.19, the maximum
frequency for p < 1 increases as wmax o< /1. Above the maximum the vibrational
excitations remain to be diffusons (see Section 2.3).

One can try to explain the dependence wyax o y/f as follows. In the absence
of random part AA” the dynamical matrix M is determined by the crystalline part
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pMq only. Then (for a simple cubic lattice) we have well-defined phonon modes with
the dispersion law

Woysr = 482 (sin2 % + sin? % + sin? %) : (1.53)
The maximum frequency, in this case, is equal t0 Wiax, cryst = 2v/3p8) /it which
qualitatively (but not quantitatively) explains the aforesaid dependence oc /.
However the sound velocity in this pure crystalline lattice case veryst = ao$2y/1t.
Though according to Egs. (1.36, 1.52) v oc pu'/* for M = AAT + My what is much
bigger than /p for small values of p < 1. It means that simple superposition
approach does not work in this case, and a physical picture is more complicated,
and the Young modulus E also depends on the amplitude of the random part AAT.

Since the VDOS g(w) is normalized to unity for all values of x1, we conclude from
Fig. 1.19 (comparing the VDOS for p # 0 with VDOS for 1 = 0) that vibrations
corresponding to the maximum for p # 0 were pushed out from the region of small
frequencies w < wpa for p = 0. We see also from the figure that, after initial
w? dependence, the VDOS for ;1 # 0 increases much faster than w?. It is a clear
signature of the presence of the boson peak in our disordered lattice. As we will
show further (see Table 2.1), the frequency wyay is correlated with the position of
the boson peak w;, (the maximum in the reduced VDOS g(w)/w?). Therefore, the
appearance of the boson peak in disordered systems is not necessarily related to
the acoustic van Hove singularity in crystals as was proposed recently [Schirmacher
et al. 1998; Taraskin et al. 2001; Chumakov et al. 2011].

The straight lines in Fig. 1.19 correspond to the phonon VDOS g, (w) determined
by Eq. (1.35) with the sound velocity v = y/E/pg and E calculated from Fig. 1.18.
One can see a good agreement of the total g(w) at low frequencies with the phonon
contribution gpn(w). From that we can conclude that at least the low-frequency
excitations in the phonon gap are the usual long-wave acoustical phonons. However,
actually, as we will show further, nearly all excitations in the gap up to the
frequencies close to wpax correspond to phonons, but with a nonlinear dispersion
law.

This conclusion is supported by calculations of the participation ratio P(w). It
is shown in Fig. 1.20 for various values of p. For p # 0, one can clearly distinguish
in the function P(w) a presence of the two different frequency regions. As follows
from Fig. 1.19, the low-frequency part (below wp,.x) corresponds to phonons. In this
range, the participation ratio increases with decreasing frequency. It is related to
increase of the phonon mean free path I(w) as w — 0 (see Fig. 2.4). In the high-
frequency part (above wpa.x) P(w) is approximately independent of the frequency
and coincides with participation ratio for p = 0. As we will show in Section 2.3
this range corresponds to diffusons. A similar rise in the participation ratio with
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Figure 1.21. The normalized VDOS g(w) for dynamical matrix M = AAT + uMj
and different p (0, 0.001, 0.01, 0.1, 1) calculated with precise numerical KPM solution
for a simple cubic lattice with N = 2003 (full lines). The sum rule (1.14) is violated.
Inset: dependence wpyax(pt) o< /2. The frequency w has units of €.

decreasing frequency was found recently in 2d Lennard-Jones glasses [Tanguy et al.
2010] (see Fig. 1b of this paper).

It is important to emphasize that the sum rule (1.14) is crucial for the existence
of the acoustical phonon excitations. If they are not obeyed, then, instead of soft
phonon gap in the vibrational spectrum shown in Fig. 1.19, we have a hard gap
shown in Fig. 1.21. Inside the hard gap there are no vibrations at all. The dynamical
matrix M, in this case, was taken in the same form (1.50). But diagonal elements A;;
of the matrix A were taken as independent Gaussian random variables with average
(Ay) = 0 and variance (A%) = Q2. As a result, the condition (1.16) (and therefore
(1.14)) was violated, and we have got a spatially pinned lattice where low-frequency
acoustical phonon modes cannot exist. However, the width of the hard gap, in this
case, has the same p dependence as the width of the phonon gap, wiax o< /1.

1.9 Non-crystalline origin of acoustical phonons

In this Section we demonstrate, that appearance of acoustical phonons (and
macroscopic rigidity) in the system is not related to the crystalline order in the
term pMy.

1.9.1 Lattices with cut out bonds

Let us consider the case when some part of springs are cut out from the matrix
My in the dynamical matrix (1.50). The value of parameter p = 1 we will keep
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Figure 1.22. The normalized VDOS g(w) for dynamical matrix M = AAT + uMj
with g = 1 and different percentage 100% — p of cut out springs calculated with
precise numerical KPM solution for a simple cubic lattice with N = 2003 (full lines).
Straight lines are calculated according to Eq. (1.35) with sound velocity v = \/E/po.
The Young modulus FE is calculated in the same way as in Section 1.8.

fixed. Let parameter p gives the percentage of remaining springs. The percolation
threshold in the simple cubic lattice for bond percolation problem is at p. ~ 25%
[Stauffer and Aharony 1994]. If p < p,, then there is no infinite cluster of connected
springs and, therefore, the matrix pM, with cut out springs has itself no acoustical
phonon-like modes at all. Nevertheless, the full dynamical matrix (1.50) still has
well-defined phonon modes with the VDOS g(w) oc w? for all positive values of p even
below the percolation threshold. The normalized density of states g(w) for p = 1
and different values of p is shown in Fig. 1.22. The straight lines show the phonon
contribution to the VDOS calculated from Eq. (1.35) with sound velocity given by
Eq. (1.36). The Young modulus E was calculated numerically using Eq. (1.39) for
the lattice with N = 10% atoms (one realization) in the same way, as it was done in
Section 1.8.

1.9.2 Superposition of two random matrices

Another (less obvious) possibility to get phonons is to add to the random
dynamical matrix AAT a random matrix 3BBT. Here 8 is a parameter, and
the random matrix B is build in the same way as random matrix A but they
are statistically independent of each other. Though both terms AAT and SBBT
taken separately have zero rigidity (and do not have phonons) their superposition
introduces a finite rigidity £ to the system. The rigidity changes when we vary
parameter 3 as £ o /f and goes to zero when 3 — 0. In Section 2.5 we will
show different scaling relations for the model M = AAT 4+ uM,. The model
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Figure 1.23. The normalized VDOS g(w) for dynamical matrix M = AAT +3BB”
with different 3 calculated with precise numerical KPM solution for simple cubic
lattice with N = 100? (full lines). Straight lines are calculated according to Eq. (1.35)
with sound velocity v = \/E/pg. The Young modulus F is calculated in the same
way as in Section 1.8.

M = AAT + BBBT has the same scaling relations with the replacement of y by
g if B < 1. The results obtained within this approach are shown in Fig. 1.23.

1.10 Conclusion

In this Chapter we demonstrated that dynamical sparse random matrices of
the general form M = AAT 4 uM, with nonnegative eigenvalues ¢ = w? can be
successfully used to describe sufficiently general properties of vibrational spectra of
amorphous solids. We have shown that the system with ¢ = 0 is a critical system
with zero macroscopic rigidity in which acoustic phonons cannot propagate.

Compared to the currently used molecular dynamics methods, they have the
advantage that the construction of the random dynamical matrix corresponding
to a stable system requires significantly fewer efforts than the similar calculations
for real glasses with specific interatomic interaction potentials. In many cases, the
results appear to be very similar.

The study of the problem of the localization of these vibrational modes in the
three-dimensional system led us to the conclusion that, despite a high degree of
disorder, the majority of these modes are delocalized harmonic excitations. This is
evidenced by the values of the participation ratio and the statistics of vibrational
levels where the level repulsion effect clearly manifests itself. Our results are in
good agreement with the corresponding results obtained for real glasses by molecular
dynamics methods.



Chapter 2

Diffusion of vibrations

In this Chapter we consider transport properties of phonons in a model
amorphous solid with the dynamical matrix M = AAT + uM,. Analyzing properties
of this matrix, we calculate the dynamical structure factor S(q,w), the phonon
dispersion law wgq, and phonon mean-free path I(w). Comparison of the later with
phonon wavelength A\ determines the loffe-Regel crossover frequency w;, which goes
to zero when p — 0. We show that above w,, phonons cease to exist and they
are transformed to diffusons. In Section 2.3 we consider properties of diffusons and
show that they spread by means of diffusion. In Section 2.4 we find an asymptotic
behavior of the thermal conductivity and compare it with the experimental data.
In Section 2.5 we discuss scaling properties of the model (their dependence on
parameters €2 and p). We show that they map directly onto the scaling observed in
systems near jamming transition point.

2.1 Dynamical structure factor

The dynamical structure factor is a self-correlation function of the normal modes
[Shintani and Tanaka 2008|. In the scalar model (modes have no polarization, see
previous Chapter) it can be defined as

2

d(w —wj) (2.1)

N
iqRi

2

Jj=1

S(q,w) =

ui(w;)e

i=1

=]~

where u;(w;) is the displacement of the ith atom for jth eigenmode. The prefactor
7/N was chosen for convenience.

To find the phonon dispersion curve (dependence of the phonon frequency w
on the wavevector ) and phonon mean-free path [(w) we calculate the dynamical

34
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structure factor (2.1) as a space and time Fourier transform of the atomic
displacements u(R;,t) = u;(t)

_ —iqR; . iwt
S(q,w) = NT. Z;e /u(RZ,t)e dt| . (2.2)
= 0
For that we ascribed to all the atoms at the initial moment ¢ = 0 random

displacements u(R;,0) (from Gaussian distribution with zero mean and unit
variance) and zero velocities. Then, numerically solving Newton equations (with
all masses m; = m) we analyzed the atomic dynamics at ¢ # 0. Let u(R;,t) be the
i-th atomic displacement as a function of atomic coordinate R; and time ¢. One
can show that the definitions (2.1) and (2.2) are equivalent. Another possibility to
calculate S(q,w) is the kernel polynomial method (KPM, see Appendix B). It gives
the same results, it is more effective from the computational point of view and it
will be used in the next Chapter.

Since equilibrium atom positions R; are discrete and form a cubic lattice, the
wave vectors q are also discrete and are defined on the corresponding reciprocal
lattice. For example, for cubic sample L x L x L and g || (100) direction we have
qn = 2mn/agL where integer numbers n are —L/2 < n < L/2. In this case, the
normalized density of states is related to the structure factor by the sum over the
first Brillouin zone

o) =~ > Sla,w) (2.3

2.2 Acoustic phonons

To analyze phonon excitations, we have found the maximum of S(q,w) as a
function of w for each discrete value of q,, for several values of p. As an example,
the results for 4 = 0.1 and one q direction are shown in Fig. 2.1. For the fitting
curves we used the Lorentz distribution (fitting to the DHO model gives slightly
better results, see the next Chapter)

1
(W —wy)® + (Aw)*

S(q,w) o (2.4)

From the fit, we can find both the phonon frequency wq and the phonon linewidth
Aw, which corresponds to the phonon inverse lifetime I' = 2Aw. Factor 2 takes
into account that Aw corresponds to the decay of the amplitude of the vibration.
The results for w, are shown in Fig. 2.2 for three values of p and g || (100). For
sufficiently small values of wavevector ¢ we see a nice linear dispersion curve w, = vq,
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Figure 2.1. The Lorentz dispersion curves for different wave vectors q || (100)
direction and g = 0.1. Closed diamonds correspond to the calculated values of
S(q,w) and lines are fitting curves according to Eq. (2.4). The number of atoms
N = 503 (one realization). Insets: the Lorentz dispersion curves for ¢ = 0.5 and
q = 0.75. The frequency w has units of €, wavevector ¢ has units of 1/ay.

with the sound velocity v given by Eq. (1.36). It is independent of the g direction
(i.e. the sound velocity is isotropic). With the increase of ¢, the frequency w, shows
a pronounced negative dispersion of the group velocity v, = dw,/dq and approaches
the maximum frequency wmax where the dependence w, saturates. In this g region,
we observed a weak anisotropy of the dispersion curves for 4 = 1. At smaller values
of i the dependence wy is isotropic. Since wmax o< /1, the vertical axis in Fig. 2.2
scales approximately as \/u and the horizontal axis scales as p'/* (sound velocity
v x VE pM4 and Guax & Wiax /v o< /).

The strong negative dispersion of the group velocity v, for big ¢ values can
be explained by avoided crossing principle (or level repulsion effect) due to the
coupling of phonons to quasilocal vibrations near frequency wp.y, corresponding
to the sharp maximum in VDOS g(w) (see Fig. 1.19). Similar phenomenon exists
in polariton physics (polaritons are quasiparticles resulting from strong coupling of
electromagnetic waves with an electric or magnetic dipole-carrying excitations. They
are an expression of the common quantum phenomenon known as level repulsion,
also known as the avoided crossing principle. Polaritons describe the crossing of the
dispersion of light with any interacting resonance. See for example [Gurevich 1986]).
The dip in the participation ratio P(w) for 4 = 0.001, 1 = 0.01, and g = 0.1 at
W A Wmnax (see Fig. 1.20) evidences in favor of this idea. The vibrations inside the dip
correspond to frequencies near wp,., and have smaller participation ratio than the
others. Therefore, they can be referred to as quasilocal vibrations. In the following
we will see that this strong scattering is also responsible for the deep minimum in
the diffusivity D(w) at w & wpax (see Fig. 2.14).
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Figure 2.2. The dependence wq on ¢ for g || (100) direction for various p (1, 0.1,
0.01) in a cubic sample with N = 50 (one realization). Filled and open diamonds
are the maximums of S(qg,w) as a function of w for each discrete value of ¢, for
frequencies below and above the IToffe-Regel crossover correspondingly (see text below
for details). Solid lines correspond to halves of the maximums. Dashed lines show
w = vq linear dependence with sound velocity v = \/E/py. Horizontal dotted lines
correspond to the maximum frequency wpax in g(w) (taken from Fig. 1.19). Insets
show the group velocity vy = dw/dq as a function of w. The frequency w has units
of © units, wavevector ¢ has units of 1/ag.

The negative dispersion of the group velocity v, is responsible also for the
pronounced rise of the phonon VDOS above the w? dependence, given by Eq. (1.35).
It is clearly seen in Fig. 1.19. Indeed, taking the dispersion into account and
disregarding weak anisotropy (taking place only for © = 1) we can write instead
of Eq. (1.35)

_ % ')
gpnl10) = 2_7727)9("‘1).
Here v,(w) = dw/dq is the group velocity shown in Insets in Fig. 2.2. Taking for ¢(w)
and vy(w) the data from Fig. 2.2 we obtain the points (filled and open diamonds)
shown in Fig. 1.19. Since they perfectly coincide with numerical data for g(w) below
Wmax, We conclude that all the excitations in the phonon gap belong to phonons (with
nonlinear dispersion at higher values of q).

(2.5)

The phonon linewidth Aw can be also found from fits similar to those shown in
Fig. 2.1. The results are shown in Fig. 2.3. As follows from this figure, Aw o< w?
and does not depend on the direction of g. It is similar to Rayleigh scattering of
phonons on a static disorder. However, in such a case Aw would be proportional
to ¢*. Due to nonlinear dispersion in w,, these dependencies do not correspond to
each other. More likely, the phonon linewidth is due to strong resonant scattering
of phonons by quasilocal vibrations responsible for the sharp peak in the VDOS,
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Figure 2.3. The phonon linewidth Aw as a function of w (in units of ) for different
p in a cubic sample with N = 50 (one realization). Different symbols correspond to
different g directions. <> for q || (100), A for q || (110), O for g || (111). Filled and
open symbols refer to excitations below and above the Ioffe-Regel crossover frequency
wig correspondingly.
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Figure 2.4. The ratio [(w)/\ as a function of w (in units of Q) for different p.
Different symbols correspond to different g directions as explained in Fig. 2.3. The
full horizontal line (separating filled and open symbols) corresponds to loffe-Regel
crossover [(w) = \/2.
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Figure 2.5. The reduced VDOS g(w)/w? is a function of w/wjy, where wy is the boson
peak position.

similar to those introduced in [Buchenau et al. 1992]. The deep minimum in the
diffusivity D(w) around frequency wyax also supports this idea (see Fig. 2.14).

With known value of Aw (and I'), the phonon mean-free path /(w) can be
calculated as follows

v v
l(w) = Fg = ﬁ. (2.6)

The phonons are well-defined excitations if their mean-free path [(w) exceeds the
phonon wavelength A = 27 /¢ (the Ioffe-Regel criterion for phonons). As we will see
in the next Section, phonons transform to diffusons when [(w) ~ /2. We will call
the corresponding crossover frequency as wy,. Fig. 2.4 shows the ratio [(w)/\ as a
function of w for several values of 1 and different directions of the wavevector q.
The boundary between filled and open symbols (the full horizontal line) corresponds
to frequency wyz. Thus, filled and open symbols in Figs. 2.2, 2.3, 2.4, 2.6 belong
to phonons with frequencies below and above the Ioffe-Regel crossover frequency
correspondingly.

Usually, the Ioffe-Regel crossover frequency wy in glasses is correlated with the
position of the boson peak wy,, see [Gurevich et al. 1993; Parshin and Laermans
2001; Rufflé et al. 2006; Rufflé et al. 2008; Shintani and Tanaka 2008| and references
therein. It is the frequency where the reduced VDOS g(w)/w? has a maximum.
We also have a rather sharp boson peak in our disordered lattices (Fig. 2.5). As
follows from Fig. 2.6 the left side of the boson peak is built from phonons having
the negative dispersion of the group velocity dwg/dg. Similar conclusion was made
recently for 2d and 3d Lennard-Jones glasses [Tanguy et al. 2010; Léonforte et al.
2005; Monaco and Mossa 2009|. The right side of the boson peak consists of diffuson
modes shifted from the region of small frequencies 0 < w < wWmayx by additional term
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Figure 2.6. The normalized VDOS g(w) for dynamical matrix M = AAT 4 uMj
and five different p (0, 0.001, 0.01, 0.1, 1) calculated with precise numerical KPM
solution for a simple cubic lattice with N = 2002 (full lines). Straight lines correspond
to the Debye prediction (1.35). Filled and open diamonds correspond to phonon
contribution to the VDOS below and above the loffe-Regel crossover frequency wiy
correspondingly. The frequency has units of €.

1My and further modified by interaction with phonons. But more work is necessary
to elucidate the precise structure of these modes.

The frequencies wyax, Wir, and wy, are collected in Table 2.1 for different p. As we
can see from the table, wy is close to the frequency wy.x and to the position of the
boson peak wy,. Above wy phonons cease to exist as well-defined excitations. They
are smoothly transformed to diffusons which we will consider in the next Section.
The relative number of phonons in the lattice can be estimated as follows

WIirR

Npn = /g(w)dw. (2.7)

0

1 Wmax/Q wp/Q wirn/Q Npp
1 2.5 2.4 2.2% 0.12
0.1 0.78 0.74 062 0.027
0.01 0.23 0.23 0.19 0.0066
0.001  0.072  0.07

Table 2.1. The frequency of maximum in VDOS wpax, the frequency of the loffe-
Regel crossover wyy and the boson peak frequency wy for various p. Star * means
that wr was found for g || (100) direction. Npy is a relative number of phonons in

the lattice.
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These values are also given in the Table 2.1. We see that the relative number of
phonons in the lattice is small for all investigated values of u. It is in agreement
with similar estimates for amorphous silicon (4%) |Allen et al. 1999] and amorphous
SiOy (0.2%) |Taraskin and Elliott 2000].

2.3 Diffusons

In this section we are going to consider properties of diffusons (we introduced
this notation in Section 1.4). As is well known, the diffusion phenomenon usually
takes place for physical quantities which are conserved. In a free closed mechanical
system, we have two integrals of motion, momentum and energy. Therefore, one
should discriminate between diffusion of momentum and energy.

2.3.1 Diffusion of momentum

First let us consider diffusion of momentum. Usually, the diffusion of momentum
is related to viscosity in the system. If all atomic masses are equal (m; = m), the
diffusion of momentum is equivalent to the diffusion of atomic displacements. It
is because in our system the position of the center of inertia is conserved and we
can put it at the origin of the coordinate system. Then the sum of all atomic
displacements vanishes

Z w;(t) =0, (2.8)

i.e. it is an integral of motion. The diffusion of displacements, in this case, looks like
a diffusion of “particles” in a lattice where the total number of particles is conserved.
One can complete the analogy by subtraction the mean displacement (the number
of “particles” divided by the number of atoms) and taking the infinite number of
“particles”. In this case the displacements are not bounded, and the process is
continuous.

By analogy with the diffusion of “particles” the information about diffusivity of
displacements is absorbed in the displacement structure factor S(q,w) (2.2). We
remind that to calculate this structure factor we ascribed at the initial moment
t = 0 the random displacements to all the atoms with Gaussian distribution (with
zero mean and unit variance) and velocities equal to zero. So the condition (2.8)
at t = 0 was satisfied. Therefore, let us analyze now this structure factor in the
diffuson frequency range.

Firstly, let us consider the case of 4 = 0 when phonons are absent, and only
diffusons are present in the lattice. Fig. 2.7 shows the structure factor S(q,w) as
a function of wavevector ¢ for three different directions in g space (symbols) and
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Figure 2.7. The displacement structure factor S(q,w), Eq. (2.1) (symbols) for
1 = 0 and for three different frequencies. Different symbols correspond to different
q directions. <> for g || (100), A for g || (110), O for q || (111). Full lines correspond
to the structure factor Syy(q,w) of the random walk on the lattice given by Eq. (2.9)
with Dyy, = 0.7. Dashed line corresponds to the limit ¢ < 1 (see Eq. (2.12)). The
frequency has units of 2, the wavevector has units of 1/ag.

for three different frequencies w. Let us compare this displacement structure factor
with structure factor of the random walk S,y (g, w) on the lattice.

As was shown in [Kehr et al. 2005] for the case of the random walk on a lattice,
Siw(g,w) is given by expression

Sea(q,w) = %&g)@. (2.9)

It is a Lorentz function, with a width I'(q) given by

I(q) = DiQ*(q) (2.10)

where D, is a diffusion constant of the random walk. In a simple cubic lattice (with
lattice constant ag) the function Q(q) reads

2 r 2
Qlq) = a—o\/sin2 % + sin? % + sin? %. (2.11)
For small values of ¢ < 1/ag, Q(q) = ¢ and in the continuum limit we have the
well-known result for the diffusion structure factor [Landau and Lifshitz 1980, §89|

2Dy ¢
Dt w?

W

Soel@,) (2.12)
Let us note that the structure factor (2.9) has a maximum at g values obeying the
condition

w =I(q) = DvQ*(q). (2.13)
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We can specify it as a dispersion law for diffusons. The width of the maximum is
I'(q). For q < 1/ag, T'(q) = Dywq*.

A comparison of the displacement structure factor S(q,w), (2.2), and the
structure factor of the random walk Sy (g, w), (2.9), is shown in Fig. 2.7. One fitting
parameter was the diffusion coefficient D,, in Eq. (2.10). From the comparison of
this data, we obtain Dy, = 0.7Qa3. It means that the diffusion coefficient of atomic
displacements D, = 0.7Qa2 (see Section 2.6). Another fitting parameter was a
height h(w) of the random walk structure factor in the maximum. According to
Eq. (2.9), in the maximum I'(g) = w and h(w) = 1/w, but to fit the data points in
Fig. 2.7 we used slightly higher values of h(w).

The small difference between h(w) and 1/w can be explained by different
frequency dependencies of the density of states g(w) for vibrations and for the
random walk (following from the sum rule similar to Eq. (2.3)). As we can see
from the figure, for the investigated frequencies the fit is perfect. With increasing
frequency above w =~ 2(2, the fitting becomes more and more poor since we approach
the localization threshold at wj,. ~ 5.5 (see below) which is not described well by
a simple model of Markovian random walk.

Now let us consider a behavior of a correlation function. The correlation function
of atomic displacements at some frequency w, expressed through eigenvectors
u(R,w) of the dynamical matrix M, reads

C(r.w)=> u(R+r wu(R,w). (2.14)

It is a Fourier transform of the displacement structure factor (2.1)

B 1
- 87t

C(r,w) /S(q,w)eiqrdq. (2.15)

Let us compare this correlation function with correlation function of the random
walk. For distances bigger than the period of the lattice ag we can make use of
the limit of small ¢ < 1/ag and integrate Eq. (2.12) for the random walk structure
factor taken in the continuous media approximation. As a result, we derive

1 w w
Crw(r,w) = 3735 €XP (—r 5D ) cos (r1 / 5D ) . (2.16)

Fig. 2.8 shows a good agreement of our correlation function (2.15) with the
correlation function of the random walk (2.16). For all investigated frequencies the
numerical data collapse together and become indistinguishable from the theoretical
prediction (2.16). We can see also on this figure the anticorrelation phenomenon (the
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Figure 2.8. The correlation function C'(r,w) for u = 0 and six different frequencies
(w/Q = 0.14,0.31,0.49,0.66,0.84,1.01) for sample with N = 50% atoms. The full
lines are our numerical results obtained from Eq. (2.2). FEach line starts from
7 = rmin Which is about 2.5 interatomic distances (marked by arrows). The dashed
line corresponds to Eq. (2.16) with Dy, = 0.7Qa2. The distance r has units of ag

region of negative values of the correlation function). As follows from Eq. (2.16),
the correlation function of the random walk changes its sign for the first time at

w T
N - 2.1
"WaoD., T 2 (2.17)

It is also in a good agreement with our numerical results. Therefore, we can call a
corresponding value of r found from Eq. (2.17) as a radius of diffuson. It is a typical
size of the regions vibrating with frequency w and having the same sign of all atomic
displacements. According to (2.17), the radius of diffuson is given by

D

oy = w2, (2.18)

rq(w) ==

At w = 0 the correlation function (2.16) decays slowly as 1/r. In disordered systems
at critical point the correlation function decays as C(r) oc 1/r?P2 where d is the
space dimension and D, is a correlation dimension. From this, we conclude that in
our case Dy = 2 what corresponds to diffusion.

Now let us analyze the displacement structure factor S(q,w) for p # 0. For
better visual effect we will show a map of the function S(q,w) on the plane (w, q)
for different directions in g space. To do that, for each frequency w we have found
the maximum S(q,w) as a function of ¢ along some directions in g space. Then
we normalized function S(g,w) along this line w = const to the magnitude of this
maximum

Sn(q,w) = 5(q,w)/mqe}xs(d,w)- (2.19)
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Figure 2.9. The normalized structure factor S,(q,w) as a function of ¢ (in units
of 1/ag) for some direction in g space and for each frequency w (in units of ) for
various values of u (0, 0.01, 0.1, 1). The sample size is N = 503. The averaging is
performed over 100 realizations. Left sides of all plots are for g || (111), right sides
are for g || (100). White horizontal dashes show the Ioffe-Regel crossover frequency
wir. For p =1 the frequency wyy is slightly different for different g directions. Black
full line corresponds to Eq. (2.13) for the random walk on a simple cubic lattice with
diffusion constant D,y = O.7Qa%,

The results are shown in Fig. 2.9 for four different values of ;1 and two directions in
q space. The white color corresponds to the maximum when normalized structure
factor S,(g,w) = 1 while the black color to the case where S,(q,w) = 0. For
i # 0 we can see clearly two types of excitations in the lattice. At low enough
frequencies, below wz, we see phonons with well-defined dispersion law wq, the
same as in the previous Section. At the Ioffe-Regel crossover frequency wiy, the
structure factor strongly broadens, and phonon dispersion line disappears. Above
wr the displacement structure factor coincides well with the structure factor for
i = 0 case shown in Fig. 2.9a, which corresponds to diffusons. The maximum of
the normalized structure factor S,,(g,w) (white regions) agrees well with Eq. (2.13)
(with the same diffusion coefficient D, ) giving the maximum of the random walk
structure factor S,y (q,w) (black line). It means that diffusion coefficient of atomic
displacements is independent of u. Deviations from S,y (q,w) take place at high
frequencies near the localization threshold.

For p # 0 the radius of diffuson (2.18) takes a maximum value at w ~ wj. At
smaller frequencies we have well-defined phonons. Since wyx ~ Q,/p and Dy, ~ azf
we can write for 0 < p <1

ra(wir) = 1e = \/ Dy Jwrg = agp V4. (2.20)

The value r. plays a role of correlation length in our lattice. It diverges when p — 0.
The physical meaning of this length is that it by the order of the value coincides
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Figure 2.10. The same normalized structure factor S, (q,w) as in Fig. 2.9 but in q
space in plane ¢;qy (¢- = 0) for w = 0.5Q. The left picture corresponds to =0 (a)
and the right to u = 0.1 (b).

with the Ioffe-Regel wavelength A\, = 27/qy corresponding to frequency wy, (see
Section 2.5). Samples with a size smaller than r. have no phonon-like modes at all.

To compare phonon and diffuson structure factors, we show in Fig. 2.10 a cross
section of the structure factor S, (q,w) in q space for ¢, = 0 and frequency w = 0.5Q
for =0 and g = 0.1. At the left side (a) of this figure we see the structure factor of
diffuson. On the right side we see the structure factor of phonon (b). As compared
with phonon structure factor, the diffuson structure factor is much more broadened.

2.3.2 Diffusion of energy

We said above that there are two types of diffusion because we have two
conservation laws. In this section we will consider the diffusion of the energy. In the
harmonic approximation, all normal modes are independent so the energy conserves
in the each small frequency interval. Therefore, the diffusivity of the energy D(w)
is a function of the frequency w.

There are two common methods to determine the diffusivity D(w). The first
approach to calculate the diffusivity of energy D(w) for vibrations with frequency
w is a direct numerical solution of Newton’s equations for a cubic sample with
N = L x L x L atoms and with free boundary conditions along the z direction.
Along other two directions, we take the periodic boundary conditions.

Assuming zero initial conditions for displacements and velocities of all the atoms,
let us apply external forces with frequency w and random phases ; to all the atoms
in the central layer x = 0 of our sample

2
27_exc

FE(0) = sinfet + i) e - a ) (221)
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Figure 2.11. The dependence of R%(t) in the case of u = 0 for one sample with
N = 100 x 100 x 100 atoms and 14 different frequencies (w/2 = 0.5,1,1.5,...,7,
from top to bottom). The numbers indicate integer frequencies. The slope of each
line corresponds to each black dot in Fig. 2.12. Two points at w = 2Q and w = 6
correspond to two distributions of energy F(z,t) over the sample for delocalized and
localized modes correspondingly. They are shown in Fig. 2.13 (see below). The time
has units of 1/, the excitation width R has units of ag.

where w7 > 1. For a big sample with N = 100 x 100 x 100 = 10° atoms it is
sufficient to excite only one atomic layer z = 0 with 100 x 100 = 10* atoms. The
addition of two or more neighbor layers does not change the results. Increasing the
width of the excited layer one should increase the length of the sample as well. The
right and the left sides of the sample have coordinates x,; = +agL/2. In such a
way we excite vibrations with frequencies near frequency w distributed in a small
frequency interval (w—1/Texe, W+ 1/Texe). In calculations we used 7o = 5/€2 for all
frequencies w. We started our calculations at time t; = —57.. when the external
force is still negligible.

After applying the force to the central layer x = 0, vibrations will spread to the
left and to the right ends of the sample. The average squared distance to the energy
diffusion front we define as usual

1 N

Etot i—

R*(t) T3 E;(t). (2.22)

1

Here z; is the x coordinate of the i-th atom, E;(t) is the vibrational energy of i-
th atom, and sum is taken over all atoms in the sample. Ey = >, E;(t) is the
total energy of the system. It is independent of time after the external force f&**(¢)
becomes negligibly small (i.e. for ¢ > 57ey).
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Figure 2.12. The dependence of diffusivity D(w) (in units of Qa2) on w (in units of
Q) for u = 0. Black dots are calculated by the direct solution of Newton’s equations
from Egs. (2.22, 2.24) and Fig. 2.11 for N = 100 atoms (one realization). Full lines
for N = 103,143,20° are calculated using formula of Edwards and Thouless (2.29)
with ¢ = 1 (see below). Averaging for lines is performed over frequencies in the small
interval (w — dw,w + dw) with dw = 0.25§2 and over several thousands realizations.

The energy of i-th atom E;(t) we define as a sum of the kinetic energy and a half
of the potential energy of connected bonds

B(t) = "1~ 137 My tt) s (0)” (223)

Here v;(t) = u,(t) is an atomic velocity with the same notations as Eq. 1.2.
Summation over all atoms in Eq. (2.22) we can divide into two steps. First we
sum over all atoms in the layer x, and then we sum over all layers. Let F(z,t) be a
total energy confined to the layer x at time ¢. Having in mind that we have sample
size L > 1 in our case, we can change summation over different layers to integration
over coordinate x for times where R(t) > ao.

We will apply this method to the case of p = 0 (i.e. for the lattice without
phonons). The results are shown in Fig. 2.11. As we can see from the figure for
small and middle frequencies, R?(t) o t. Therefore for these frequencies vibrations
indeed spread along the x axis by means of diffusion. The slope of the lines decreases
with frequency w. To calculate the slope, we take the time interval At where, on
the one hand, ¢ > 57, and on the other hand, R < aoL/2.

From the slope of R?(t), we can calculate the diffusivity of modes D(w) using
one-dimensional formula

R*(t) = 2D(w)t. (2.24)

This diffusivity is shown by black dots in Fig. 2.12. At small frequencies it is

approximately constant, and then it decreases with the frequency approaching zero
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Figure 2.13. Black points (diamonds and triangles) show the distribution of energy
E(z,t) contained in the layer x as a function of z for two different frequencies w = 29
and w = 652 at times ¢ = 234/Q and t = 900/€2, respectively, calculated numerically
with Newton method. Full lines are theoretical predictions for delocalized (diffusive)
and localized modes given by Eqs. (2.25, 2.26) with R? ~ 166a3 and R? ~ 22a3
correspondingly. The coordinate x has units of ag.

at the localization threshold, wyp. =~ 5.5€). At higher frequencies above w,. the
dependence R%*(t) saturates with increasing ¢. This indicates localization of the
vibrational modes.

The difference between delocalized and localized modes is clearly seen if we
examine the dependence FE(z,t) as a function of coordinate x at some moment
t for two different frequencies below and above the localization threshold. These
two points for investigation are shown in Fig. 2.11. Black diamond corresponds
to delocalized mode with frequency w = 2 and has coordinates ¢t = 234/Q
and R* = 166a3. The distribution of energy F(z,t) over the sample calculated
numerically at this moment is shown by black diamonds in Fig. 2.13. The data are
perfectly fitted by solid line drawn according to the solution of diffusion equation in

1d case 5 )
E(n.t) = —ot _ 2.9
(0.0) = —o2exp (575 ) (2.25)

with the value of R? = 166a3.

Black triangle in Fig. 2.11 corresponds to the localized mode with frequency
w = 69 and has coordinates t = 900/ and R? = 22aZ. The distribution of energy
E(z,t) over the sample calculated numerically at this moment is shown by black
triangles in Fig. 2.13. This distribution is drastically different from the previous
case. For localized modes we expect the usual exponential decay

E(x,t) = \l/?%o;i exp (— \/ZM) . (2.26)
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The fit of the numerical data with this function and R* = 2242 is shown in
Fig. 2.13. The fit is perfect except for the central point at x = 0 which lies noticeably
above prediction of Eq. (2.26). The coefficients in Egs. (2.25, 2.26) were taken to
satisfy the obvious rules

o0 o0

1
/ E(z,t)dr = By, / 2*E(x,t)dr = R%. (2.27)

—00 —00

To find the diffusivity D(w) for p # 0, the method of numerical solution of
Newton’s equations is not accurate because we have phonons with long mean-free
paths in this case. Correspondingly samples with much bigger sizes are necessary
to use this approach. Therefore, for © # 0 we used a second approach. In this

approach, the diffusivity D(w;) at eigenfrequency w; was calculated by means of the
formula of Edwards and Thouless [Edwards and Thouless 1972]

D(w;) =~ (aoL)*|Awj| (2.28)

where agL is the length of the sample and Aw; is the sensitivity of the eigenfrequency
w; to a twist of boundary conditions. Physically, the frequency shift Aw; means the
inverse time of the signal propagation from one boundary to another.

Allen et al. proposed a more precise formula with twisting by a small angle ¢
[Allen et al. 1999]:

D(w) = e tim Y295 A @) (2.29)

©p—0 @2
where ¢ is some constant of the order of unity. The symmetric real matrix M
was defined as usual (1.50) with periodic boundary conditions. The twisting of the
matrix M by angle ¢ gives a new Hermitian matrix M’ obtained as follows. For
bonds between the left (I) and the right (r) boundaries of our cubic sample
My, = My exp(ip), M), = My exp(—ip). (2.30)

T

For all other bonds ]’k = M. So Aw; is the difference between i-th
eigenfrequencies of matrices M and M’

Aw; = w; — w;. (2.31)
Twisting of boundary conditions was performed for = direction only. For other two

directions, the periodic boundary conditions were used.

The averaging in Eq. 2.29 is performed over frequencies w in the small interval
(w—dw,w~+ dw) with dw = 0.252 and over several thousand realizations. For y = 0
the results for D(w) are shown in Fig. 2.12 for three different cubic samples (full
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Figure 2.14. The diffusivity D(w) (in units of Qa3) as a function of w (in units of 2)
for various p (0, 0.01, 0.1, 1) for sample with N = 143 (crosses). The diffusivity was
calculated using formula of Edwards and Thouless (2.29) with ¢ = 1 and averaged
over two thousand realizations. The arrows indicate frequencies wyayx in the VDOS
g(w) for corresponding values of . Open symbols correspond to phonon diffusivity
(2.32) below the Ioffe-Regel crossover frequency wyy.

lines). We compared these results with the numerical solution of Newton equations
for 4 = 0 (black dots) and get the constant ¢ &~ 1. Then we used this ¢ value for
it # 0. The results are shown in Fig. 2.14. For u # 0 we see clearly two different
frequency regions in the function D(w).

At low frequencies, the diffusivity increases with decreasing of w. This range
corresponds to phonons. Indeed, the diffusivity of phonons D(w) can be calculated
as follows )

D(w) = gl(w)vg(w). (2.32)
Open symbols in Fig. 2.14 show contribution calculated from this equation (just
below loffe-Regel threshold). We see a good agreement with Edwards and Thouless
formula. After a deep minimum at frequency w & wpay, the diffusivity D(w)
saturates at a constant level (independent of u) coinciding with D(w) for u = 0.
The diffusivity in this range corresponds to diffusons. Similar behavior of D(w) was
found recently in jammed systems [Xu et al. 2009; Vitelli et al. 2010]. The deep
minimum in the diffusivity at w & wy.x corresponds to strong scattering of phonons
by the quasilocal vibrations near the sharp peaks in the VDOS g(w) (see Fig. 2.6).
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2.4 The thermal conductivity

One can find the thermal conductivity from the VDOS g(w) and the diffusivity
D(w) [Sheng and Zhou 1991; Feldman et al. 1993]

#(T) = ~ / (@) D(w)C(w, T)dew (2.33)

Qg
0

where C'(w,T) is the specific heat of the harmonic oscillator

Clw,T) = (@)2% (2.34)

Diffusons have an approximately constant VDOS g(w) ~ 1/Q and diffusivity
D(w) ~ a3Q). In this case from Eq. (2.33) we get a linear temperature dependence
of the thermal conductivity

k2T

~ Y
hCLO

»#(T)

ksT < hQ. (2.35)

At high frequencies, all vibrational modes are excited, and the thermal conductivity
saturates

k)

Qg

»(T) kpT > Q. (2.36)
Eqs. (2.35) and (2.36) with ap = 3 A and hQ = 30 meV have a quantitative
agreement with experimental data of the thermal conductivity of amorphous SiOq
in the temperature range above 20 K (red line in Fig. 2). At the high-temperature
limit, we get the experimental value » ~ 2 W/(m-K). Note, that the maximum
frequency in SiO, is several times bigger than ) (Fig. 4) as well as the maximum
frequency in the random matrix model (Fig. 2.3).

2.5 Scaling relations

Finally, the concept of diffusons allows us to establish useful scaling relations
between observable values and important parameters of our model. We have the
dimensionless parameter . The second important parameter of the model is the
variance of non-diagonal elements A;; of the random matrix A

(A2) = Q2. (2.37)
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The parameter §2 has units of frequency and assigns the scale of typical frequencies
in the system. In particular, the normalized density of states g(w) for p = 0 shown
in Fig 1.5 has the following scaling relation

g(w) =~ 1/9. (2.38)

Other dimensional parameters are the lattice constant ay and the atomic mass m.
The diffusivity D does not depend on p, therefore from the dimensional analysis we
get

D ~ a2Q). (2.39)

From Eq.(1.52) the Young modulus is

B m&)?

Nm (2.40)

Qo

The Ioffe-Regel frequency is also proportional to \/u

wir > Q1. (2.41)

The corresponding length scale (2.20) is
A > Hwi) >~ ¢ ~ /D /ww ~ D/v =~ agu™ 4, (2.42)

It is interesting to note that these scaling relations are identical to those found in
jamming transition [Vitelli et al. 2010]. Authors [Vitelli et al. 2010] study a model of
amorphous packing of frictionless spheres interacting via the repulsive pair potential
(see Chapter 4 for more details)

U(rij) < (L —ri;/o5)" i 1y < oy,
Uri) =0 it rij > 0y, (2.43)

where the distance between the centers of atoms ¢ and j is denoted by r;; and
the sum of their radii by o;;. This model system, irrespective of the value of «,
exhibits a jamming/unjamming transition at 7" = 0 at a packing fraction ¢ = ¢,
at which the atoms are just touching each other, and there is no overlap [O’Hern
et al. 2003|. At densities lower than ¢. atoms are free to rearrange while above ¢,
at Ap = ¢ — ¢., the system behaves as a weakly connected amorphous solid with
an average coordination number that scales as a power law with an exponent

Az=z— 2.~ Ap'/? (2.44)

where z. = 2d, with d being the space dimension.
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It was found that different quantities exhibit scaling behavior near the jamming
point. According to [Vitelli et al. 2010], the loffe-Regel crossover frequency w* and
the shear modulus G behave as (below we use the notation of the paper |Vitelli et al.
2010])

W~ APTD2 G ApPe3)/2 (2.45)

The transverse sound velocity v; and the diffusivity in the plateau region Dy scale
vy ~ AP Dy~ Aple2/2, (2.46)

The applied pressure p and the plateau in the density of states gy depend on the
packing fraction as follows [O’Hern et al. 2003]

P~ AGT go ~ AP, (2.47)

Thus, if we put
H~ DG, Qe AG, (2.48)

then the crossover frequency wy, the Young modulus E, sound velocity v, the
diffusivity at the plateau D, and the density of states g(w) in our model have the
same scaling as the crossover frequency w*, the shear modulus G, transverse sound
velocity v, the diffusivity in the plateau Dy, and the density of states gy in the
jamming transition model respectively. In particular, the parameters p and €2 in
our model are equivalent to the parameter A¢ and the inverse density of states 1/gq
in the jamming transition model correspondingly.

In the Chapter we mainly considered a case of strong disorder, ;1 < 1. Taking
into account Eq. (2.48) we find that the small parameter p of our model coincides
with the small parameter A¢ in the jamming transition model. The mean-free path
at the crossover as follows from (2.42) and (2.48) is given by

lwi) ~ Ag™Y*, (2.49)

what also coincides with [Vitelli et al. 2010].

2.6 Conclusion

In this Chapter we have found that the delocalized vibrational excitations in
the disordered lattice model are of two types. At low frequencies below the Ioffe-
Regel crossover, w < wig, they are the usual phonons (plane waves) which can be
characterized by frequency w and wavevector q.

At higher frequencies the original notion of phonons is lost, and delocalized
vibrational modes have a diffusive nature. They are similar to diffusons introduced
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by Allen and Feldman et al. [Allen et al. 1999]. The diffusons again can be
characterized by frequency w, but have no well-defined wavevector q. Above w ~ wir
the structure factor of atomic displacements S(q,w) becomes very similar to the
structure factor S,y(g,w) of a random walk on the lattice. The corresponding
vibrational linewidth I'(¢) o« ¢* was found in many glasses in the experiments on
inelastic x-ray scattering, see for example [Sette et al. 1998; Ruocco and Sette 2001]
and references therein.

We have found that the diffusivity of the vibrational energy of diffusons is
approximately constant (as well as the VDOS). The corresponding temperature
dependence of the thermal conductivity have the same behavior as the experimental
data: it is proportional to the temperature 7" above the plateau and then saturates.



Chapter 3

Vibrational properties of amorphous
silicon-like materials

In previous two Chapters we consider a scalar model where vibrational modes
have no polarization. In this Chapter we show that the polarization plays a crucial
role in such materials as amorphous silicon. We begin with a detailed presentation
of the numerical model of amorphous silicon. Then we compute the vibrational
density of states (Section 3.2) and its transverse and longitudinal component. Then
we analyze the spatial structure of the corresponding eigenmodes (Section 3.3).
In Section 3.4 we study the dynamical structure factor, the dispersion laws, the
corresponding phonon lifetimes and mean-free paths. Finally, in Section 3.5, we
compare the results to the propagation of quasi-monochromatic wave packets with
different frequencies allowing to measure the diffusivity of vibration energy in the
materials, as a function of the frequency and of the bending rigidity. This allows
to identify coherently well-defined vibrational domains, as it is summarized in the
conclusion.

3.1 Numerical model

In this chapter we study the vibrational properties of a model amorphous silicon
(a-Si) system consisting of N = 32768 atoms contained in a cubic box of lengths
L, =L, = L, of approximately 87 A (smaller systems of N = 8000 have also been
studied to compare our results). The technical details of the preparation of the a-Si
model are presented in Ref. [Fusco et al. 2010|. The Si-Si interaction in the system
studied here is described by the Stillinger-Weber potential [Stillinger and Weber
1985], where we have tuned the prefactor A of the three-body term as already done
in [Fusco et al. 2010; Fusco et al. 2014], to quantify here the effect of local order on

o6
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A pog/em® P, GPa cp, m/s cp, m/s

17 2.303 —1.82 3334 7833
19 7 —0.096 3570 7750
21 7 0.638 3854 7965
23.5 7 1.38 4133 8226
26.25 7 2.1 4386 8484
40 K 2.07 5305 9490

17 2.339 —0.011 3312 8436
21 2.295 0.013 3714 8367
40 2.248 —0.114 5118 9350

Table 3.1. Transverse and longitudinal sound velocities obtained from the elastic
moduli for different values of the parameter A with N = 32768.

the vibrational properties. The Stillinger-Weber potential is an empirical potential
including two-body and three-body interactions, such that the total potential energy
of the system is written as

U= Zf(rij) + A Z (Q(Tij,ﬁk,@jik) + 9(rji, Tk, Oijn) +9(7"k:u7"kj,9ikj)) (3.1)

i<j i<j<k
with
f(ri;) =A (B/rf‘j — 1) exp (U (rij — a)_l) (3.2)
and
9(rij, Tik, 0jix) = (cos O, + 1/3)2 exp (a(rij — a)_1 + aryg — a)_l) (3.3)

with the parameters proposed in [Stillinger and Weber 1985] A = 7.05, B = 11.60,
a=251 A, 0=206A, and a = 3.77 A. The parameter A gives a measure of the
bond’s directionality: high values of A favor local tetragonal order (A = 21 is the
original value proposed by Stillinger et al. [Stillinger and Weber 1985] as an empirical
model for a-Si). The atomic configurations corresponding to a-Si structures for
different values of A have been obtained from the liquid state, using the open source
LAMMPS package [Plimpton 1995] for classical Molecular Dynamics simulations,
and following the procedure already described in [Fusco et al. 2010]. Different
configurations have been obtained, either by quenching in the NVT ensemble at
a fixed density p = 2.303 g/cm?, giving rise to different final pressures as detailed
in Table 3.1, either after pressure relaxation up to P ~ 0 GPa.

In order to study the role of the local order on the vibrational properties of a-Si,
we have calculated the dynamical matrices for different values of A. The dynamical
matrix (1.3) has been numerically computed by calculating the second order spatial
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Figure 3.1. (a) The VDOS for different values of the parameter A. (b) The VDOS
as a function of the reduced wave vector ¢* = w/cp. Inset: A-dependence of the

sound velocities ¢ (green symbols) and ¢y, (red symbols). Green line shows fit with
cr VA dependence.

derivative of the potential energy around the equilibrium atomic positions R;. Each
realization of the amorhous silicon and its dynamical matrix M is different. In
this sense the dynamical matrix M is random, however the matrix elements have
complicated correlations with each other.

The elastic constants (shear and bulk modulus) are obtained as in [Fusco et al.
2010] by measuring the quasi-static response of the system to a small deformation
of the box. The corresponding values of the transverse ¢z and longitudinal ¢, sound
velocities are summarized in Table 3.1 for the different values of A.
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Figure 3.2. (a) The VDOS divided by v2, that shows the boson peak for different A.
Thick lines correspond to constant density configurations as described in Table 3.1.
Dashed thin lines are relaxed configurations with P =~ 0 GPa. Solid horizontal thin
lines on the left show the low-frequency Debye predictions calculated from the static
shear and bulk modules. (b) Boson peak as a function of the reduced wave vector
¢* = w/ep. Vertical gray bands mark the position of ¢i and ¢5. Arrows show the
position of the transverse Ioffe-Regel criteria (see Section 3.4).

3.2 Density of states
The dynamical matrix M has N' = 3N eigenvalues that are squares of the

corresponding eigenfrequencies w;. The normalized vibrational density of states
(VDOS) as a function of w = 27v reads

1 N
g(w) = 7 Z 5w — w;). (3.4)

The full set of eigenvalues for a small system (with N < 10?) can be obtained by
standard numerical routines. We used the FEAST Eigenvalue Solver [Polizzi 2009
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for N = 8000 to get the full set of eigenfrequencies together with the eigenvectors of
the dynamical matrix. However, this direct method requires too much time as well
as random access memory for large enough systems (N > 10%). For these purposes,
it is necessary to use more powerful methods for the larger systems studied. In
Appendix B we discuss the Kernel Polynomial Method (KPM) and velocity auto-
correlation method.

The numerical results for VDOS obtained using KPM are presented in Fig. 3.1.
They show the usual shape of VDOS obtained for amorphous silicon [Kamitakahara
et al. 1987|, with a first peak related to transverse acoustic modes and a second
well-defined peak at high frequencies that is reminiscent of optic modes in the
crystal (Fig. 3.1a). The rescaling of the frequencies by the transverse sound velocity
(Fig. 3.1b) allows drawing the density of states as a function of a reduced wave
vector ¢* = w/cp. In this case, the low g-part of the spectra superimpose whatever
the value of A, confirming the dominant transverse acoustic character of the low-
frequency vibrations, and suggesting the existence of a characteristic length at a wave
vector ¢* ~ 10 nm~! independent of A, above which the rescaled VDOS split. The
transverse sound velocities ¢, shown in the inset of Fig. 3.1 have a A'/? dependence
at constant density, showing that the shear modulus is proportional to the three-
body contribution to the total energy of the system. This effect is not shown in
the longitudinal sound velocities c¢;, because bending rigidity is not dominant for the
propagation of compressive waves, contrary to shear waves. The parameter A thus
allows tuning the transverse wave velocities independently of the longitudinal one.

The boson peak is visible after dividing the VDOS ¢(v) by v? (the Debye
prediction) as shown in Fig. 3.2a. The shape of the boson peak (Fig. 3.2a) shows
clearly a dependence on the bonds directionality quantified by the parameter A.
The boson peak appears to be magnified when the three-body interactions are low,
and it decreases when the three-body interactions get more and more important as
compared to the central interatomic forces. For A = 21 corresponding to a-Si, the
initial very low-frequency peak is no more marked, but the boson peak is still visible
with an excess of low-frequency vibrations as compared to the Debye prediction. As
the value of A increases, the position of the peak is shifted to higher frequencies.
This effect is clearly dominated by A. We have checked that pressure differences
between the samples induce only a small change in the boson peak (thin lines in
Fig. 3.2a) as compared to the role of A. In order to quantify the observed shift to
higher frequencies, we again rescale the frequencies by the transverse sound velocity,
as suggested in [Léonforte et al. 2006]. The resulting reduced density of states is
shown in Fig. 3.2b. The position of the boson peak as a function of the reduced wave
vector ¢* appears now independent of A, suggesting a universal process dominated by
transverse waves, that will be discussed later. Note, however, that the fine structure
of the peak depends on the bonds directionality A: at a very low-frequency, a peak is
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visible for low values of A, located at ¢} ~ 2.7 nm~! (corresponding to a wavelength
&~ 23 A) This very low-frequency peak disappears progressively, and a secondary
peak appears at ¢f ~ 7.0 nm ' (& ~ 9 A) when A > 21. The significance of these
peaks will be discussed later.

Above we have shown that the low-frequency part of the VDOS has presumably
a dominant transverse character. It would be very interesting to find a regular way
to separate the VDOS into the longitudinal and the transverse components for the
whole vibrational spectrum. In particular, it gives us a possibility to show more
clearly that the boson peak has a transverse nature [Schober 2004|. In Appendix C
we describe a generalized decomposition method without the notion of the wave
vector, which is an ill-defined quantity in strongly disordered systems. This method
is based on the volume variations of the Voronoi cells during the atomic motion. The
atomic displacement of each atom can be decomposed into two components, one of
them preserving the volume of the Voronoi cells. The displacements preserving the
volume of each Voronoi cell are identified as transverse displacements, and the other
as longitudinal displacements.

The separate contribution of longitudinal and transverse displacements to the
total VDOS is shown in Fig. 3.3. In the low-frequency region (below 7 THz for
A = 21), the transverse modes dominate the VDOS, thus confirming the transverse
character of the vibrations in the region of the boson peak for amorphous silicon-like
samples (Fig. 3.3b). However, at 7 THz there is a sharp transition from mostly
transverse modes to mostly longitudinal ones. It corresponds to the maximum
frequency (7.5 THz) of TA modes in crystalline silicon [Tubino 1972]. The maximum
frequency of LA modes is much large (11 THz) due to the large difference between
bulk and shear moduli. The elementary cell in the diamond-like crystalline silicon
contains 2 non-equivalent atoms whose out of phase motion results in the three
branches of high-frequency optic modes (one LO and two TO modes) with very low
group velocity |Kittel 2005]. In amorphous silicon out of phase motion of nearest
atoms is similar to crystalline optic modes. These modes form the second peak of
the VDOS, which is clearly seen in neutron scattering measurements [Kamitakahara
et al. 1987|. Thus, the predominance of the longitudinal modes between 7 THz and
15 THz in amorphous silicon (Fig. 3.3a) corresponds indeed to the gap between the
upper frequency of TA modes (7.5 THz) and the lower frequency of TO modes (13.9
THz) in crystalline Si. This frequency region in crystalline Si is totally occupied by
LA and LO modes (without a gap). In amorphous Si in the same frequency region,
the vibrations have a small transverse component (15-20%), in agreement with the
results obtained in [Marinov and Zotov 1997].
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Figure 3.3. (a) The decomposition of the total vibrational density of states (X)
to longitudinal and transverse components for A = 21. Vertical arrows show the
transverse and longitudinal Toffe-Regel frequencies. Inset: the relative number of the
longitudinal modes gy (w)/g(w) (green line between hatching regions). The relative
number of the transverse modes gr(w)/g(w) = 1 — gr(w)/g(w) is shown by red
hatching between green line and the value 1. (b) The boson peak (X) and its
longitudinal and transverse components for A = 21. Thin horizontal lines show the
low-frequency Debye prediction calculated from the static shear and bulk moduli.
Dashed lines are estimations from Section 3.4 of the phononic contribution, below
the Ioffe-Regel limit. The vertical arrow shows the transverse loffe-Regel frequency.

In order to complete this description, in the next Section we will calculate
participation ratio and the correlation function to describe the geometrical structure
of the eigenmodes that are obtained as eigenvectors of the dynamical matrix.

3.3 Participation ratio and spatial correlations

The exact diagonalization of the dynamical matrix is performed using FEAST
Eigenvalue Solver [Polizzi 2009] on a system made with N = 8000 atoms. A series of
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Figure 3.4. Vibration modes corresponding to different frequency range, for A = 21.
Arrows are proportional to the displacements of the particles (x100). The 2D
representation corresponds to a cut along the z-y plane (0z =5 A) that contains the
particle supporting the largest displacement.

N = 3N eigenmodes u;(w;) is then obtained with the corresponding eigenvalues w?.
These eigenmodes are the normal modes of the amorphous material but they are not
simple plane waves with a well-defined wave vector q. Examples of such eigenmodes
are shown in Fig. 3.4. The low-frequency eigenmodes are a superposition of plane
waves with softer regions supporting highly strained isolated vibrations (Fig. 3.4a).
The modes supporting additional isolated vibrations are precursors of local plastic
rearrangements when looking at the anharmonic mechanical response [Tanguy et al.
2010]. We identify them as soft modes because they occur only in the low-frequency
part of the spectrum (as will be proved later) with soft spots due to very low local
elastic stiffness. Other authors called the low-frequency modes quasi-localized modes
[Schober and Oligschleger 1996; Schober 2004] in order to distinguish them from
plane waves. At higher frequencies, the shape of the eigenmodes becomes more
complex.

The amount of particles moving together in the vibrational eigenmodes is usually
quantified by the participation ratio defined for each eigenmode j as

()

Pl = 8% i)

(3.5)
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Figure 3.5. Participation ratio as a function of the reduced wave vector ¢* = w/erp
for different values of the parameter A. Vertical gray bands show three characteristics
reduced wave vectors ¢j, ¢5, and ¢3. Inset: zoom on the low-frequency range.

For an isolated particle P ~ 1/N, and for translational motion P ~ 1 (see
Section 1.4). The participation ratio is shown in Fig. 3.5 as a function of the reduced
wave vector ¢*. Similarly to the VDOS, the low-frequency part of P superimposes
for all A when plotted as a function of the reduced wave vector ¢*, suggesting the
existence of a common geometrical origin involving mainly transverse vibrations. It
can be schematized as follows: first an initial decay due to the wavelengths decrease
of acoustic modes, together with very low values characteristic of soft modes. Then
an increase up to a value close to P* = 0.5 (an example of such mode is shown
in Fig. 3.4b). The value of P* is close to 0.6 for uncorrelated Gaussian random
noise (see Section 1.4). After a secondary minimum (mode shown in Fig. 3.4c)
the participation ratio decreases to zero at the mobility edge [Allen et al. 1999
that follows the position of the high-frequency peak in the VDOS (see Fig. 3.1). A
typical mode in this frequency range is shown in Fig. 3.4d. Quite remarkably, the
position of the first minimum in the participation ratio corresponds for all A to the
first maximum in the rescaled VDOS divided by v? located at ¢}, and the position
of the common maximum P* = 0.5 is located at ¢; corresponding to the second
peak in the low-frequency rescaled VDOS divided by v2. The departure from the
plane waves participation ratio in this range, means that in all our systems, the
boson peak is located in a frequency range where plane waves are no more the
dominant contribution to the eigenmodes. This frequency range is limited by two
characteristic distances £ and &;, that are independent on A. There is also a third
characteristic reduced wave vector g5 = 11.7 nm ™" which corresponds to a secondary
local minimum of the participation ratio for all values of A. It coincide with the sharp
change of the nature of vibrations from almost transverse to almost longitudinal ones
(Fig. 3.3).
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Figure 3.6. (a) The spatial correlation function of the atomic displacements
Chp(r,w) as a function of the frequency v for A = 21. The amplitude of the correlation
function is indicated by color. The negative correlation is marked by blue color. All
amplitudes above 0.1 are shown as 0.1. (b) The same correlation function for different
frequencies v = w/2m. (c) Position in the first minimum of the correlation function as
a function of the reduced wave vector ¢* for the different values of A. The dashed line
is 7* = 0.449/¢*, which corresponds to the first minimum of Eq. (3.10) for transverse
modes. Vertical gray bands mark the positions of ¢f, ¢3, and ¢;.
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In order to detail the shape of the eigenmodes and compare with these
characteristic lengths, we have computed their spatial correlation function C(7,w).
It is defined as in Ref. [Tanguy et al. 2002] as

C(r,w) NZ r+r w) - u(r w))pd(w — w;), (3.6)

where u(r, w;) is coarse-grained displacement field of jth eigenmode

N

u(r,wj) = ZW(T — R;)u;(wj) (3.7)

=1

with W a coarse-graining function normalized by [ W?(r)dr = 1. We used Gaussian
coarse-graining function of width wee = 0.5 A. This length is less than the typical
distance between atoms, so we can neglect the overlapping of different grains. In
this case, normalization of the eigenmodes implies

(u(r,w;) - u(r,w;)), =1, (3.8)

which results in the property C(0,w) = g(w). For convenience we used the
normalized correlation function

Cp(r,w) = : (3.9)

In order to calculate C(r,w), we used the KPM (Appendix B). The amplitude
of C,(r,w) averaged over different directions of r for all the frequencies is shown
in Fig. 3.6a for A = 21. Starting from C,(0,w) = 1, it shows oscillations between
positive and negative values characterizing a spatial flipping of the displacement
field. For a three-dimensional plane wave with a given polarization (L or T) and the
wavevector ¢ the normalized correlation function has a form

Colr,w) = Sin;fr). (3.10)

The low-frequency behavior of the correlation function (Fig. 3.6) is indeed dominated
by the wavelength of the plane wave: when plotted as a function of the reduced wave
vector ¢* = w/cp, it shows the characteristic behavior of transverse plane waves.
Indeed, Fig. 3.6¢ shows the position of the first minimum r* of C,, as a function of
the reduced wave vector. In the low-frequency regime, it decays like r* = 0.449/¢* in
exact correspondence with the wavelength of the transverse plane wave. This means
that C), is dominated by the collective dynamics of plane waves even in the presence
of soft modes. However, the values of r* = & at ¢f and r* = & at ¢5, confirm
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the signature of a characteristic wavelength in the vibration modes. The origin of
these lengths is not obvious. It was obvious from P(w;) that the eigenmodes are not
simple plane waves at ¢}, but have a very small participation ratio indicating the
presence of isolated centers of enhanced vibrations. These centers are sufficiently
few to not affect the long-range spatial correlations due to transverse plane waves in
C,, but can affect the vibrational density of states through small frequency shifts.
This description supports the fact that transverse plane waves and isolated centers of
enhanced vibrations still coexist at gj. & could be the distance between the isolated
centers, that would correspond as well to the wavelength at ¢f. At ¢; a clear-cut
change of behaviour appears in C), for all the systems studied indicating departure
from transverse plane waves. This effect will be discussed again later. Finally, a
common change appears at a larger reduced wave vector ¢ = 11.7 nm~! in C,,,
which was introduced in Fig. 3.5. It corresponds to the transition from transverse
modes to longitudinal ones with bigger correlation radius.

We have shown in this Section, that the eigenmodes have characteristic features
depending on the corresponding frequency range. In the low-frequency part of the
spectrum, eigenmodes share common features independent of the bending rigidity
of the modes: for example, the boson peak is bounded by two characteristic
lengthscales & and &; with a very low participation ratio in the first case, and a local
maximum in the participation ratio in the second case. These two length-scales have
a signature in the spatial correlation analysis of the modes. It is shown as well, that
in the very low-frequency range, transverse plane waves coexist with local enhanced
vibrations while the plane-wave character of the vibrations is questioned in the higher
limit of the boson peak. We will now study the dynamical structure factor, in order
to relate these observations to the study of density-density correlation functions,
as can be tracked in neutron diffraction experiments for example |Giordano and
Monaco 2010; Baldi et al. 2011b]. The analysis of the dynamical structure factor
allows also to discuss the loffe-Regel criterion for waves scattering.

3.4 Dynamical structure factor

In this Section we analyze the dynamical structure factor in order to determine
the dispersion law and the mean-free path for longitudinal and transverse phonons.
We prove that it is an accurate method in the frequency range below the Ioffe-Regel
criterion, where the mean-free path is still bigger than the half wavelength, and the
notion of phonon dispersion is well-defined.

The dynamical structure factor is the self-correlation function of the mass
currents [Shintani and Tanaka 2008| in the system at thermal equilibrium with some
temperature T'. The structure factor can be calculated by normal mode analysis.
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Figure 3.7. The longitudinal (L) and transverse (T) components of eigenmodes in
the reciprocal space as a function of the wavenumber ¢ and the frequency v for the
parameter A = 21 and A = 40.
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Figure 3.8. Fits of the dynamical structure factor Sr.(¢,w) to Eq. (3.14) for A = 21
and various values of the wavenumber ¢ (from left to right: 1.44, 2.89, 4.33, 5.77,
7.21, 8.66, 10.10 and 11.54 nm’l). The inset shows a full curve for ¢ = 1.44 nm™!.
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Using a small displacement expansion of the density correlation function, combined
with the projection of the displacements on the normal modes, and the classical
approximation kg1 > hw for the equipartition of energy in the normal modes
amplitude, it reads )
T
Sylgw) =L
where 7 denotes longitudinal (L) or transverse (T) component. In the above
equation, F,(q,w) is the longitudinal or transverse component of the Fourier

Fy(q,w), (3.11)

transform of the eigenmodes

N | N 2

Fi(q,w) = Z Z G- ui(w;)e | §(w — w)), (3.12)
VN e

Fr(g.w) =Y > G x uiw)e ™| (w - wy). (3.13)

j=1li=1

Here ¢ = q/|q| is a unit vector along q and u;(w;) is the displacement of the ith
atom for jth eigenmode.

In order to calculate F,(q,w), we also used the KPM (Appendix B). Fig. 3.7
shows the structure of eigenmodes F),(¢,w) in the reciprocal space averaged over
all possible directions of q. For a better visual effect we divide F,(q,w) by the
magnitude of its maximum for each fixed value of w. All color maps in Fig. 3.7
have two evident regions: low-frequency region with thin phonon branch, and high-
frequency region without a certain relationship between the wavenumber ¢ and the
frequency w.

In order to extract information about phonons in the low-frequency region we fit
the structure factor 5, (¢, w) using the DHO model (Fig. 3.8)
A

Sﬂ(q’w) = ((.U2 o W2(Q))2 + OJQFQ’
n

n=LT. (3.14)

We extract phonon dispersion wy(g), the phonon inverse lifetime I'(g) and a
coefficient A from this fit.

The numerical results obtained by this method for phonon dispersion w,(q) as
well as the group velocity v} = dw, /0q are presented in Fig. 3.9. With a known value
of I' and v,, the phonon mean-free path [(w) can now be calculated as {(w) = v, /T
The phonons are well-defined excitations if their mean-free path [(w) exceeds the
phonon half wavelength 7/q (Ioffe-Regel criterion for phonons). Fig. 3.10 shows the
value of I" for all the samples with different bending rigidities A and Fig. 3.11 shows
the position of the Ioffe-Regel frequency for longitudinal and transverse phonons for
the parameter A = 21. From the similar figures for other values of the parameter A
we find the remaining loffe-Regel frequencies (Table 3.2).
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Figure 3.9. (a) Phonon dispersion curve obtained from the fitting (3.14) for the
parameter A = 21 (full line) and A = 40 (dashed line). (b) Group velocity for the
parameter A = 21 (full line) and A = 40 (dashed line). All curves are shown up to
the corresponding loffe-Regel frequency. Longitudinal and transverse phonons are
denoted by L and T respectively.
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Figure 3.10. Width I' obtained from the DHO fit of the structure factor, as a
function of the wave vector ¢ obtained from the dispersion relation Fig. 3.9 for the
different values of A. Left: transverse modes; right: longitudinal modes. Arrows
mark the approximate position of the loffe-Regel crossover for all values of A.
Transverse modes show the I' o< ¢ law near the Ioffe-Regel criterion.
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Figure 3.11. The mean-free path [ as a function of the frequency (points),
compared to the half-wavelength /¢ given by DHO fit (solid lines). The crossing
points determine the Ioffe-Regel criterion (shown by arrows). Inset: the Ioffe-Regel
frequencies for longitudinal (red symbols) and transverse (green symbols) phonons
for different values of the parameter A. The solid line shows the trend 1/17;{ = cr/&a.

T T T 1 L 1
A Ui, THz v, THz ¢z, nm qik, DM

17 3.3 12.1 6.2 9.7
19 4.1 12.4 7.2 10.1
21 4.5 12.7 7.3 10.0
23.5 5.1 12.8 7.8 9.8
26.25 5.7 13.0 8.2 9.6
40 7.0 13.8 8.3 9.1

Table 3.2. Transverse and longitudinal loffe-Regel criteria for different values of
the parameter A.

Different comments are raised by these measurements. First, the sound wave
velocities (Fig. 3.9b) are well-defined below the loffe-Regel criterion. It is not
constant, but it varies with ¢. Transverse sound velocities show a small decay
with ¢, starting at the low-frequency limit of the boson peak, as already measured
in experiments [Baldi et al. 2011b|. Longitudinal sound velocities decay faster with
a sudden increase at ¢ &~ 10 nm~! (v = 12.5 THz for A = 21), after transverse waves
became strongly scattered in the sample.
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The density of states of longitudinal and transverse phonons can be obtained
from the dispersion laws ¢ (w) and gr(w) respectively

gr(w) = 6]6%2 q{)}(é:))) : (3.15)
gr(w) = = ar@) (3.16)

~ 3N7? wl(w)

and compared to the more general decomposition that was already discussed in
Section 3.2. In the low-frequency limit, the ratio between them is

gr(w)/gr(w) = cr/2¢ < 1. (3.17)

For A = 21 this ratio is equal to 0.057, which coincides well with the low-frequency
part of this ratio is shown in the inset in Fig. 3.3a. The very low-frequency modes are
naturally mainly transverse due to their lower sound velocity. The two estimations
of longitudinal and transverse contribution to VDOS are compared in Fig. 3.3. The
estimation from the dispersion law is close to the general estimation, but slightly
lower. The main difference is on the boson peak Fig. 3.3b: the first low-frequency
peak (attributed to soft modes in Section 3.2) is indeed completely absent in the
dispersion law estimation of the VDOS that stays close to the Debye one in this
frequency range. It means that this first peak results from a departure to the
phonon-like behavior.

The inverse lifetime I' (Fig. 3.10) is different for transverse and for longitudinal
waves. The inverse lifetime of transverse waves varies approximately o< ¢* as
discussed extensively in the literature [Rufflé et al. 2006], with a collapse for all
A values at ¢;. Longitudinal inverse lifetime is more sparse. It shows a sudden
increase at ¢ ~ 10 nm ™!, that is after transverse waves are strongly scattered in the
system and do not interfere anymore with longitudinal waves. The measurement
of I allows computing a mean-free path [ (Fig. 3.11) but only in the region where
the sound velocity v, is well-defined. The computed longitudinal mean-free path
is always larger than the transverse mean-free path. The measured values of [ can
overcome the size of the system, because it is computed from an estimation of the
inverse lifetime T' that does not result from a propagating process [Damart et al.
2015] but only from a general fit of a geometrical function S(q,w). The Ioffe-Regel
crossover occurs at a well-defined wave vector iy = 2714y /er &~ 7.5 £ 1.0 nm ™ for
transverse waves, and ¢f, = 27vig /e, & 9.7 4+ 0.4 nm™! for longitudinal waves (see
Table 3.2), slightly larger than the upper limit ¢5 of the boson peak for the transverse
one. This relation is only slightly sensitive to A, suggesting a universal mechanism
for strong scattering in amorphous materials, independent of the specific interatomic
interactions. We will now compare this estimation of the Ioffe-Regel criterion to the
description of quasi-monochromatic wave packet propagation.
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Figure 3.12. The spatial distribution of the vibrational energy for different time ¢
after the maximum of the exciting pulse for v = 8 THz. Solid lines were calculated
for the repeatedly extended sample with 4 x 2 x 2 periodic blocks. Dashed lines show
the spreading of the energy in one periodic block only. Vertical thin black lines show
boundaries of one periodic block. The width of the extended sample is larger than
the horizontal plot range.

3.5 Diffusivity

In this Section we consider the diffusion of the vibrational energy. For this
purpose, we excite a quasi-monochromatic wave packet in the middle thin layer of
the sample around x = 0 in a small time interval around ¢ = 0. In this Section we
use a vector analog of the method described in Section 2.3.2. To excite vibrations
in the sample we use the excitation force

2

ex : L t2
(1) = sin(wt + Qia) X (—2—102 ~ 5 ) (3.18)

where the phase @, is random for each atom ¢ and each Cartesian projection o. The
width of the excited layer is determined by the value of w = 3 nm and the duration of
the excitation is given by 7., = 1 ps. The latter determines the frequency resolution
Av =1 THz. We start our calculations at time ¢y = —b57ex. When the external force
is still negligible. In order to have a sufficiently large system size, the central sample
with periodic boundary conditions and size L = 87 A is duplicated into 4 images
along = direction and 2 along y and z directions. As a result, in volume size we
obtain a 16 times bigger sample. This allows a determination of large mean-free
paths for phonons and diffusion of energy on longer distances. Indeed, the energy
diffusion front reaches the boundaries of the original sample at t ~ 1 ps when the
excitation force is still active (see dashed lines in Fig. 3.12). The diffusivity of the
vibrational energy in this extended sample is the same as in one big sample except
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Figure 3.13. Snapshot of rotons with wave packet for A = 21, v =4 THz and ¢t = 2
ps.

a small region near the mobility edge. Localized modes with the localization length
& > L look like delocalized in the repeated sample.

After applying the external force, the vibrational energy spreads in both
directions from the central layer x = 0. The average radius squared of the energy
diffusion front is defined as in Chapter 2 as:

R(t) = Eiot Zm?Ei(t). (3.19)

Here, z; is the x coordinate of the ith atom, F;(t) is the total energy of the ith
atom, and the sum is taken over all atoms in the sample. Ei, = >, E;(t) is the
total vibrational energy of the system. It is independent on time after the external
force (t) became negligibly small (i.e., for ¢ > 57eyc).

ext
e

The energy of the ith atom E;(t) is the sum of the kinetic energy and a half of
the potential energy of connected bonds with ith atom:

B = 97 % S Mo sattia (s ). (3.20)

2 ,
jaB
Here, v;(t) = u,(t) is the ith atom velocity with the same notations as Eq. 1.2.
Eq. (3.20) is the vector analog of Eq. (2.23).

The spatial vibrational energy distribution along the z direction is shown in
Fig. 3.12 at different times t. Initial random phases @;, allow keeping the center
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Figure 3.14. Spreading of the vibrational energy in space R2(t) for different
frequencies for A = 21. Numbers near curves represent frequencies in THz. Solid
lines were calculated for the repeatedly extended sample with 4 x 2 x 2 periodic
blocks. Dashed line shows the spreading of the energy in one periodic block only (for
v =8 THz).

of mass of the energy in the central layer while the energy is progressively spread
inside the sample.

To integrate the system with a given external force and zero initial conditions
we used the Verlet method with a small enough time step 6t = 0.6 fs and get the
dependence R%(t) for different frequencies from v = 2 THz up to v = 20 THz.
The results are shown in Fig. 3.14. We clearly see a linear temporal dependence in
each curve. Their slope gives us the diffusivity by the equation for one-dimensional
diffusion

R*(t) = 2D(w)t. (3.21)

The resulting diffusivity is shown in Fig. 3.15a for different values of the parameter
A. All curves have the same structure: (1) low-frequency modes with large
diffusivity; (2) a flat region with relatively small diffusivity; (3) a prominent peak
of the diffusivity; (4) a gradual decreasing of the diffusivity; (5) zero diffusivity
for localized modes. The first two regions coincide for all values of A if we plot
the rescaled diffusivity D/cr as a function of the reduced wave vector ¢* = w/cr
(Fig. 3.15b). After an initial decay, the diffusivity saturates at a minimum value.
Whatever A, the flat region in the diffusivity occurs precisely between ¢5 and ¢j,
that is in the region between the upper bound of the boson peak (close to the
loffe-Regel criterion for transverse waves) and transition from mostly transverse
modes to mostly longitudinal ones. The lower boundary of the flat region is in
perfect agreement with those obtained in Chapter 2 for a completely different
random system. The relation between boson peak and loffe-Regel criterion was



Chapter 3. Vibrational properties of amorphous silicon-like materials 76

— A =17

4r —A=19 -
. —A =21
| —A=235 |
& — A = 26.25
g —A =40
or 1
S

* _
¢ =w/cr, nm!

Figure 3.15. (a) The diffusivity as a function of frequency for different values
of the parameter A. Upward and downward arrows show the transverse and the
longitudinal Ioffe-Regel criteria respectively. (b) The rescaled diffusivity D/cp as a
function of the reduced wave vector ¢* = w/cp for the same values of A. Vertical
gray bands mark the positions of g5 and ¢3.

also suggested by experimental measurements [Rufflé et al. 2006] and molecular
dynamics simulations in Lennard-Jones glasses |[Tanguy et al. 2006]. It is shown
here that the strong scattering gives rise to a very low diffusivity, and that it is
possible to measure diffusivity in a purely harmonic model as soon as interactions
are random. The shape of the instantaneous velocity field in the flat region is
shown in Fig. 3.13 during the propagation of a wave packet. Rotational structures
are clearly visible and responsible for the strong dephasing close to the Ioffe-Regel
crossover. The flat region in the diffusivity is followed by a peak already discussed
in Ref. [Allen et al. 1999].

The peak of the diffusivity is large for almost all values of the parameter A
(Fig. 3.15). We can alternatively find the diffusivity of longitudinal and transverse
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Figure 3.16. Diffusivity of longitudinal phonons (L) and transverse phonons
(T). Dotted line (L+T) shows the estimation of phonon contribution to the total
diffusivity by Eq. (3.23). Solid black line is the total measured diffusivity. The
vertical arrows show the transverse and longitudinal Ioffe-Regel frequencies.

phonons up to the Ioffe-Regel criteria using the approximate relation [Kittel 2005]
1
D,(w) = gln(w)vn(w), n=1LT (3.22)

where w < wf; for longitudinal phonons and w < wf; for transverse phonons. We
can see that the diffusivity of longitudinal and transverse phonons has monotonically
decreasing behavior except the negligible peak for longitudinal phonons (Fig.3.16).
Eq. 3.22 cannot give the diffusivity beyond the Ioffe-Regel criteria, but we expect a
small diffusivity decreasing down to 0 at the mobility edge. Therefore, the peak in
the diffusivity cannot be explained by the diffusivity of longitudinal and transverse
phonons separately. However, the total diffusivity depends on the ratio of density
of states of longitudinal and transverse vibrations

D) = 229 b )+ 59 b ), (3.23)

The resulting phononic diffusivity is shown in Fig. 3.16. It shows that the main peak
located at ¢* ~ 13.5 nm™! is due to the large density of longitudinal modes gz (w),
enhancing the small diffusivity increase due to the absence of transverse modes in
that frequency range. The rise of the diffusivity at 7 THz in amorphous silicon thus
corresponds to the sharp change in the nature of vibrations from almost transverse
to almost longitudinal ones having high sound velocity.
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Figure 3.17. Schematic description of the different crossovers in the vibrational
properties of harmonic amorphous solids. The VDOS and the diffusivity of vibrations
of model amorphous silicon with A = 21 are shown in the background.

3.6 Conclusion

In this Chapter we have proposed a coherent picture of the vibrational properties
of harmonic amorphous solids with local tetrahedral order, by combining four
independent approaches: the detailed study of the normal modes (resonant
vibrational modes) and of the vibrational density of states, dynamic structure factor
calculation and an analysis of propagation of a quasi-monochromatic wave packet.
The bending rigidity of local interatomic bonds was used as a control parameter to
tune the sound velocity. This allowed to get a coherent picture of the vibrational
response of our model systems. Different regimes were highlighted. The results are
summarized in Fig. 3.17.

The low-frequency vibrational response is dominated by transverse modes. In
this region, the boson peak is visible and bonded by two characteristic wave vectors:
the first is related to soft modes, and the second to the loffe-Regel limit for transverse
waves. Remarkably, these two wave vectors are independent on the details of the
interactions in the different systems studied here, and they define two characteristic
mesoscopic length scales & and & having a signature in the spatial correlations
of the normal modes. In silicon-like samples, the large difference in the transverse
and longitudinal sound velocities yields a large gap between the loffe-Regel limit for
transverse waves, and the Ioffe-Regel limit for longitudinal waves. In this gap,
the vibrations sharply change the transverse character to longitudinal one near
q* =~ ¢;, resulting in a deep increase of the diffusivity. As shown already by P.B.
Allen at al. [Allen et al. 1999], the mobility edge and the transition to localized
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modes occur at higher frequencies. This transition was obtained as well in other
disordered model materials, like lattice models [Ludlam et al. 2003| and models of
amorphous silica [Ludlam et al. 2005|, thus supporting its universal feature. The
modes in the boson peak range preceding the Ioffe-Regel crossover for transverse
waves have a characteristic random rotational structure yielding a dephasing of
the wave front. In this frequency range, the participation ratio is at a maximum
value, but the diffusivity is at a minimum value, and the diffusive inverse lifetime
is proportional to ¢?. Similar results have already been obtained with Brillouin
scattering measurements |[Rufflé et al. 2006]. However, the precise sensitivity of the
inverse lifetimes or of the vibrational density of states to the rescaled wave vector (or
equivalently to the frequency) is system dependent |Larkin and McGaughey 2014].



Chapter 4

Random matrix theory approach to
the jamming transition

In this Chapter we show how one can apply the random matrix theory to estimate
the vibrational density of states (VDOS) in jammed granular systems.

4.1 Model

Granular media, various emulsions (microdrops of one liquid in another
immiscible liquid), and colloid suspensions (solid particles in the liquid) are
widespread in nature, industry, and daily life. Such media demonstrate a wide
variety of phenomena still poorly studied. In particular, they can flow as a liquid or
have elastic properties as a solid, depending on external factors.

A transition between a solid phase, where all granules (microdrops, etc.) touch
each other, and a phase of free particles is called the jamming transition (after
traffic jam). Such a transition is described by a simple model, where N elastic
granules enclosed in a certain volume are considered [Liu and Nagel 1998]. The most
important parameter of this model is the ratio ¢ of the volume occupied by granules
to the entire available volume. If ¢ is large and exceeds a certain critical value ¢.,
all granules touch each other and constitute something like a solid whose structure
can withstand finite external loads (Fig. 4.1). In order to avoid the crystallization
of the system, a mixture of granules with slightly different dimensions is taken. If
¢ < ¢., granules no longer touch each other and the system behaves as a gas. At
¢ = ¢., all granules touch each other, but the interaction between them is absent.
In this work, we demonstrate how the random matrix theory allows the description
of the VDOS in the solid phase, when ¢ is slightly larger than the critical value ¢..

80
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a b C

Figure 4.1. States of the granular media. (a) Free particles, ¢ < ¢.. (b) Critical
state, ¢ = ¢.. (c) Solid phase, ¢ > ¢. [O’Hern et al. 2003].

The case where granules are spherical and friction between them is absent is
of most interest. Despite seeming simplicity, this model is sufficient for qualitative
description of the jamming transition. Such a model is mathematically described
by a repulsive potential between each pair of granules touching each other [Liu and
Nagel 1998]:

U(rij) oc (1 =ry/0i)", 1y < 04,

U(?”ij) = 0, Tij > 0. <41>

Here, 7;; is the distance between the centers of the ith and jth granules and o;; is
the sum of the radii of these granules. The exponent v depends on the type of the
interaction between granules. The harmonic potential (v = 2) and Hertz potential
(v = 5/2), which corresponds to the interaction between three-dimensional elastic
balls, are often used. Since we consider spherical granules in the absence of friction,
rotational degrees of freedom of individual granules are of no significance.

We introduce the average coordination number z, i.e., the average number of
contacts of each granule with neighboring granules. The larger the concentration of
granules ¢, the larger the number of the neighbors interacting with each granule. At
the point of jamming transition ¢ = ¢., the average number of contacts is determined
by the universal formula z. = 2d, where d is the dimension of the space, which is
related to the Maxwell rule of counting bonds [O’Hern et al. 2003; Maxwell 1864].

As the average number of contacts z decreases to the critical value 2d, various
characteristics of the system satisfy a power law. In particular, the bulk modulus G
and shear modulus B behave as follows [O’Hern et al. 2003]:

Gr(z—2)73 Be~(z—z2)7 0 (4.2)

We are interested in the behavior of the VDOS g(w) as a function of the frequency
w. Numerical simulation shows that two characteristic frequency ranges can be
identified: the range w_ < w < w,, where the VDOS is approximately constant,
and the range 0 < w < w_ with a relatively small number of oscillations (or a gap
in the spectrum). The closer z to the critical value 2d, the closer is w_ to 0. At
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the critical value z = 2d, the VDOS g(w) is approximately constant beginning with
zero frequency. There is no simple theoretical explanation of such a behavior of the
VDOS near the stability threshold. We will show that the random matrix theory
can provide an adequate estimate of the VDOS near the jamming transition.

We consider the system close to a critical one when z > z. (¢ > ¢.). In this
case, granules touch its neighbors, but are insignificantly indented into each other.
Then, the total potential energy is expanded near the stable equilibrium position as
[Wyart et al. 2005]

kij 2
Ulwy, ... ouy) =Y ?]((ui — ;) ny) (4.3)
(i)

Here, u; is the displacement of the ith granule from the equilibrium position ri(o),
(77) under the sum sign means summation only over the touching pairs of the ith and
jth granules, and m,; is the unit vector along the direction connecting the centers
of these granules r; — r;. Owing to the repulsive potential under consideration,
all k;; values are positive, k;; > 0. For certainty, we accept that the total number
of pairs of touching granules is K = zNN/2. The above formulas are valid for any
dimensionality of the space d.

The dynamical matrix M is defined in terms of the second derivatives with
respect to the potential energy of the system at the equilibrium position:

1 0*U
A/ T4 8uia8uj5 ’

where a and 8 mean the projections of the displacements of granules on the
Cartesian coordinates. The dynamical matrix has a dimension of Ny x Ny, where
Ny = Nd is the number of degrees of freedom. In this case, the eigenvalues of the
dynamical matrix are squares of the eigenfrequencies of the mechanical system under
consideration. The eigenfrequencies include trivial zero frequencies corresponding
to the translational and rotational motions of the system as a whole.

M i = (4.4)

4.2 Decomposition of the dynamical matrix

Before the consideration of the general case of many interacting particles, we
consider illustrative cases of two and three particles interacting with each other
without the participation of other particles (Fig. 4.2). The potential energy of two
particles (Fig. 4.2a) appears as a single term in Eq. (4.3):

2

k
5((u1 —uy) - n) .

U(ul,u2) = (45)
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P 5o

Figure 4.2. Illustration of the interaction between two and three particles.

This energy is just the interaction energy of two particles connected by a spring with
the longitudinal rigidity k. The corresponding dynamical matrix M (2d x 2d) can
be written in the block form

where 1 is a d x d matrix with the elements n,3 = n,ng. We note that such
a dynamical matrix can be represented in the form M = AA”, where A is the

A= ( k/mmn ) . (4.7)

— k:/mgn

following 2d x 1 matrix:

The elements of the matrix A have the dimension of frequency and correspond to
oscillations of the masses m; and moy connected by a spring with the rigidity k.

For three particles, the first of which touches the second and the second touches
the third (Fig. 4.2b), the 3d x 3d dynamical matrix has the form

k12M12 —k12712 0
ma mims
M — —kiong  kigfio + kogfigs —kosnios ' (4.8)
mims me moms
0 —ko3nio3 Fa3nias
maoms ms

This dynamical matrix is also represented in the form M = AA”, where the matrix
A now has two columns according to two contacts and 3d rows according to 3d
degrees of freedom existing in the system:

V k12/maims 0
A= —1/ klg/mgnlg \/ kgg/mgngg . (49)
0 —/kas /mzmos

The positions of minus signs are arbitrary: each column of the matrix A can be
multiplied by —1 without a change in the dynamical matrix M.
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In the general case of a large number of interacting granules, the elements of the
dynamical matrix M have the form

hinging;
Mia,js = +7 L7 (4.10)

za B8 = Z A [ Mza,jﬁ (411>
J#i

By analogy with the above examples, it can be represented in the form M = AAT,
where A is a rectangular Ny x K matrix. Here, as above, Ny = Nd is the number
of degrees of freedom and K = zN/2 is the total number of pairs of interacting
granules. The elements of the matrix A have the form

[k
Aia,p - ﬁnpa((spn - 51021')7 (412>

where the subscript p enumerates pairs of touching granules and p; and p, are the
numbers of granules contained in the pth pair. As a result, each row of the matrix A
corresponds to a certain degree of freedom and each column corresponds to a certain
pair of interacting granules. Furthermore, the representation AAT guarantees the
stability of the mechanical system, because the matrix M = AAT is always positive
definite for any rectangular real-valued matrix A [Bhatia 2007].

We note that the eigenvalues of the dynamical matrix M do not change when the
matrix A is multiplied from the left and right by arbitrary orthogonal matrices U
and V', respectively. In other words, the matrix M = AAT has the same eigenvalues
as the matrix M = AAT if A= UAV. The dimensions of the orthogonal matrices U
and V are Ny x Ny and K x K, respectively. For arbitrary (i.e., random) orthogonal
matrices U and V,

(Uij) = (Vij) =0, (4.13)
1

(Ui Uijy) = (UjiUjyi) = 5;'1]'2@, (4.14)
1

(VisViga) = (ViyiVimi) = 53‘1]'2?7 (4.15)

because an individual column or row of a random orthogonal matrix is a randomly

oriented unit vector. Consequently, the elements of the matrix A have the simple
properties

(Ay) =0, (4] NfKZAM, (4.16)

Thus, all elements of the matrix A are generally nonzero and have the same variance
in contrast to the highly sparse matrix A, which is determined by the interaction only
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0.6

Figure 4.3. The VDOS for 1024 spheres with the repulsive potential with v = 2
for various filling densities ¢. The solid lines are predictions of the random matrix
theory and the dashed lines present the numerical data from [Wyart et al. 2005].

between the nearest granules. In this case, by definition, the matrices M = AAT
and M = AAT have the same set of eigenvalues. We note that the elements of the
matrix A have certain correlations. However, for simplicity and universality of the
estimate of the distribution of eigenvalues, we neglect these correlations.

Thus, we accept below that the matrix Aisa N ¢ x K rectangular random matrix
with the independent elements having the properties

2

(Ay) =0, (A5) =3 (4.17)

Here, wy is the characteristic frequency of oscillations of touching particles. It is
determined from Eqs. (4.12) and (4.16):

1 1 1
(7)

Then, M = AAT with such a random matrix A is the so-called Wishart ensemble in
the random matrix theory. The corresponding VDOS is described by the Marchenko-
Pastur distribution [Marchenko and Pastur 1967| (see Appendix A):

1
o) = ol — ) — ), v SwSw (4.19)
where
K K z
W+ = Wo Nf ) Nf 2 ( )
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It is seen that the value z = 2d is specific: in this case, the number of degrees
of freedom Ny is equal to the number of touching pairs K, the matrix A becomes
square, and the VDOS has the form of a quarter of a circle. For values z > 2d, a
gap in the VDOS appears in the frequency range 0 < w < w_. In this case, near the
critical value 2d,
|z —2d|
~ Wo —4d s

However, it is noteworthy that the case z < 2d in the model under consideration with

w_ Wy = 2wp. (4.21)

elastic balls is not implemented, because the system at z < 2d completely breaks up
into noninteracting granules and the average coordination number is z = 0.

4.3 The vibrational density of states

The VDOS obtained numerically in [Wyart et al. 2005] for elastic spheres with the
repulsive potential with v = 2 is shown in Fiig. 4.3 in comparison with the estimate by
Eq. (4.19). To recalculate the density of filling ¢ to the average coordination number
z, we used the relation z — 2d = 7.5¢ — ¢., which is quite accurately satisfied in
the studied range of ¢ — ¢. |[O’Hern et al. 2003]. We note that the characteristic
frequency wy can also depend on the difference z — 2d. Indeed, the characteristic
mutual penetration of particles ¢ is proportional to ¢ — ¢.. For this reason, the
characteristic rigidity of bonds, which is defined in terms of the second derivative
of potential (4.1), is k oc 6772 o (¢ — )72 o< (2 — 2d)*~*. Correspondingly, the
characteristic frequency is wy = k/m o (z — 2d)*~*. However, for the case v = 2,
the frequency wy is constant and the value wy = 1.71 (in the same units as in the
numerical calculation) was used for comparison with the numerical experiment.

The approach under consideration based on the random matrix theory
appropriately predicts both an almost constant VDOS from w_ ~ z — 2d up to the
maximum frequency of the system and the almost complete absence of vibrational
modes at w < w_. In a real system at w < w_, a number of vibrational states exist
instead of the strict gap. The reason is that acoustic phonons are disregarded in the
above approach. However, as is seen in the numerical experiment, the number
of acoustic phonons rapidly decreases when z approaches the critical value 2d.
Acoustic phonons in the gap were studied in Chapter 2. We note that the value
wo = 1.71 was the only fitting parameter (common for all curves). It simultaneously
provides the correct frequencies w_ and an approximately constant density of states
g(w) = 2/mwy = 0.37 in the range w_ < w < wy.
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To conclude, we note that, strictly speaking, Eq. (4.3) is not exact. A more
accurate formula has the form
kij 2 € 2
Ulug, ..., un) = Z(TJ [(Uz —uj) - 'n'ij] + 7] [(Uz - Uj)ﬂ >7 (4.22)
(i5)

where (u; — u;)* is the projection of the difference of the displacements w; — u;
on the plane perpendicular to the vector m;;. For the repulsive potential under
consideration, k;; > 0 and e;; < 0. Thus, k;j; and e;; make the stabilizing
and destabilizing contributions to the potential, respectively. The destabilizing
component is noticeable in the determination of the equilibrium position, but the
ratio |e;;/ki;| at the equilibrium position is proportional to the mutual penetration
of particles 9. It is equal to 0 at z = z. and, at z > 2., makes an insignificant change
in the density of vibrational states, leading to a smoothing of the density of states
at w~ w_ [Wyart et al. 2005].

4.4 Conclusion

In this Chapter we have shown that the interaction between elastic granules
in a granular system is described by the dynamical matrix M = AAT. Each
row of the matrix A corresponds to a certain degree of freedom and each column
corresponds to the elastic interaction between a certain pair of neighboring granules.
The representation of the dynamical matrix in the form M = AAT, together with the
random orthogonal transformation, allows to describe qualitatively the density of
vibrational states making use the Wishart ensemble. In this case, the only significant
parameter is the ratio of the total number of contacts K to the total number of
degrees of freedom N;. The characteristic frequency wy specifies only the scale of
all frequencies and trivially appears in all formulas. If the total number of contacts
K differs from the total number of degrees of freedom Ny, the density of vibrational
states has a gap whose width is proportional to K — Ny. In reality, this gap in
the vibrational spectrum is not perfect and contains a small number of acoustical
phonons (see Chapter 2, where such a soft gap was called phonon gap). At K = Ny,
the gap is closed and the density of vibrational states is approximately constant
starting from zero frequency. The results of this work are in agreement with the
theoretical calculations performed by the effective medium method [Wyart 2010).
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In this work we have studied different vibrational properties of different
amorphous systems, including a stable random matrix model (Chapters 1 and 2),
a numerical model of amorphous silicon (Chapter 3), and a granular jammed solid
(Chapter 4).

In Chapters 1 and 2 we have developed a stable random matrix approach to
describe vibrations in strongly disordered systems. This approach has one important
advantage in comparison to other models. It describes mechanical systems which
are always stable independently of the degree of disorder. Previous random matrix
models [Schirmacher et al. 1998; Taraskin et al. 2001; Grigera et al. 2002] suffer from
an inherent mechanical instability that occurs at some critical amount of disorder.
As a result, they are limited by consideration of “relatively weak” or “moderate”
disorder.

We use scalar model and take the dynamical matrix in the form M = AAT +pM,.
Since matrices AAT and M, are positive definite, such form of the dynamical matrix
guarantees the mechanical stability of the system for any positive value of y. The
first term AAT is responsible for the disorder in the system, and the second term
1My describes the ordered part of the dynamical matrix. The parameter y controls
the relative amplitude of this part and the rigidity of the lattice. It can vary in the
interval 0 < p < oo, changing the rigidity and relative amount of disorder. In this
paper we have mainly considered the case of strong and moderate disorder when
0 < i £ 1 and fluctuating part of the dynamical matrix is bigger than the ordered
part. In this case the Young modulus of the lattice E' oc \/u. As we have shown,
this and other scaling relations map directly onto the scaling observed in jammed
packings near the isostatic point. For example, in scaling relations the parameter
plays the same role as the parameter A¢ in jammed systems.

We have found that the delocalized vibrational excitations in this disordered
lattice are of two types. At low frequencies below the loffe-Regel crossover, w < wyg,
they are the usual acoustic phonons (plane waves) which can be characterized by
frequency w and wave vector q. However, with increasing of w, due to the disorder-
induced scattering, the phonon linewidth Aw increases rapidly as Aw o w* and at

38



General conclusion 89

some frequency w =~ w;; the phonon mean-free path [ becomes of the order of the
wavelength A\. Though this crossover is not sharp and has no critical behavior at
w = wyg, the structure of the eigenmodes at higher frequencies quite soon becomes
very different from the plane waves.

As a result, at higher frequencies the original notion of acoustic phonons is lost
and delocalized vibrational modes have a diffusive nature. They are similar to
diffusons introduced by Allen and Feldman et al. [Allen et al. 1999]. The diffusons
again can be characterized by frequency w, but have no well-defined wavevector
q. Above w = wy the structure factor of particle displacements S(q,w) becomes
very similar to the structure factor Sy (g,w) of a random walk on the lattice. The
latter has a broad maximum as a function of ¢ at ¢ = \/w/D,,, where D, ~ Qa3
is a diffusion coefficient of particle displacements. The vibrational line width is
I'(q) ~ D,g* Such quadratic dependence of I'(q) was found in many glasses in the
experiments on inelastic x-ray scattering, see for example [Sette et al. 1998; Ruocco
and Sette 2001 and references therein. It was also found in molecular dynamics
simulations of amorphous silicon [Christie et al. 2007].

The crossover between acoustic phonons and diffusons takes place at the loffe-
Regel crossover frequency w;, which is close to the position of the boson peak. Since
for phonons I' < w* and for diffusons I'(¢) ~ D,q?, there should exist a crossover
from w* to ¢*> dependence of the line width. Such a crossover was indeed found
recently in inelastic x-ray scattering in lithium diborate glass [Rufflé et al. 2006,
densified vitreous silica [Rufflé et al. 2003], vitreous silica [Baldi et al. 2010; Baldi
et al. 2011b; Baldi et al. 2011a], glassy sorbitol [Ruta et al. 2010] and glycerol
glass [Monaco and Giordano 2009]. The crossover frequency was found to be close
to the boson peak position.

The experimental data and molecular dynamics simulations show that the
diffusion coefficient of particle displacements D,, and the diffusivity of energy D(w)
are of the same order D, ~ D(w) ~ 1 mm?/sec in vitreous silica [Baldi et al. 2011b;
Feldman and Kluge 1995; Yu and Leitner 2006|, amorphous silicon [Christie et al.
2007; Allen et al. 1999] and glycerol [Ruocco et al. 1999|. Our results for amorphous
silicon are discussed in Chapter 3.

Since wyx o |/pt, we can vary the Ioffe-Regel crossover frequency and, therefore,
the relative number of acoustic phonons Ny, in the system, changing the parameter
i It is zero when p = 0 and there are no acoustic phonons in the lattice. In this
case all delocalized vibrations are diffusons. If 0 < p < 1 we have acoustic phonons,
but their relative number is small. One can show that in this case Ny, oc 4. In
the opposite case, > 1, the disorder is relatively small and nearly all vibrations
in the lattice are well-defined plane waves, i.e. phonons.
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In the silica glass we can estimate the relative number of acoustic phonons
from the data |Taraskin and Elliott 2000|. The Ioffe-Regel crossover frequency was
estimated to be vjg = 1 THz, and integrating density of states up to this frequency
we come to the relative number N, = 0.002 = 0.0005. As a result, in the typical
glass such as amorphous silica only 0.2% of all modes are acoustic phonons. As
follows from Table 2.1 it corresponds to very small values of x < 0.01. It means that
small amount of acoustic phonons in disordered systems is a signature of a strong
disorder.

We show that in the random matrix model functions g(w) and D(w) are
approximately constant in some frequency interval (wyp S w < wiee), then we
find that approximately s(7) o T in the corresponding temperature range [Xu
et al. 2009]. It explains a quasi-linear temperature dependence of the thermal
conductivity above the plateau observed in glasses [Cahill and Pohl 1987]. With
increasing frequency the functions g(w) and D(w) finally drop to zero and thermal
conductivity saturates at some constant level independent of temperature. Thus, the
conception of diffusons gives a clear explanation for the temperature dependence of

the thermal conductivity of glasses and other disordered systems above the plateau.

In Chapter 3 we have considered a numerical model of amorphous silicon. We
have shown that properties of transverse and longitudinal vibrations in silicon-
like amorphous materials are sufficiently different. It leads to a more complicated
structure of the vibrational spectrum (Fig. 3.17). The low-frequency part of the
VDOS has a dominant transverse character up to 7 THz. In this frequency region,
there are the wide boson peak (2-5 THz) and the transverse loffe-Regel frequency
(4.5 THz). Modes in the frequency range 4.5-7 THz have a constant diffusivity and
the linewidth I' ~ ¢?. Therefore, transverse diffusons dominate in this frequency
range. At 7 THz there is a sharp transition from mostly transverse modes to mostly
longitudinal ones. However, the longitudinal Ioffe-Regel frequency is much larger
(13 THz). It explains the prominent peak in the diffusivity at ~8 THz.

In Chapter 4 we have shown that dynamical matrix of the granular jamming
system can be presented in the form M = AAT where A is a rectangular Ny x K
matrix. Here Ny is the number of degrees of freedom and K is the number of elastic
contacts between particles. We have shown that one can use the Wishart ensemble
to qualitatively describe the density of vibrational states. In this case, the only
significant parameter is the ratio K/N;. If the total number of contacts K differs
from the total number of degrees of freedom Ny, the density of vibrational states has
a gap whose width is proportional to K/N; — 1. In numerical experiments, this gap
in the vibrational spectrum is not perfect and contains a small number of phonons.
If K = Ny, the gap is closed and the density of vibrational states is approximately
constant starting from zero frequency. Thus, granular jamming systems are similar
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to the random matrix model considered in Chapter 1. However, they have different
control parameters.



Appendix A

The Wishart ensemble

The random matrix theory has many interesting results. It gives properties of
eigenvalues of random matrices of certain symmetry classes (so-called random matrix
ensembles). Unfortunately, the derivation of many results is mathematically rather
difficult for non-specialists. Therefore, below we present the derivation of these
results in a some simplified form. We obtain the density of states in the Wishart
ensemble. Then we consider the Brownian motion of eigenvalues and demonstrate
the level-repulsion effect.

1. Density of states

Let us consider the Wishart ensemble
M = AAT (A.1)

where A is a random N x K matrix with i