N

N

Designing Design Tools

Nolwenn Maudet

» To cite this version:

Nolwenn Maudet. Designing Design Tools. Human-Computer Interaction [cs.HC]. Université Paris-
Saclay, 2017. English. NNT: 2017SACLS486 . tel-01827014v1

HAL Id: tel-01827014
https://theses.hal.science/tel-01827014v1
Submitted on 1 Jul 2018 (v1), last revised 17 Jul 2018 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01827014v1
https://hal.archives-ouvertes.fr

UNIVERSITE

o
université P S5

PARIS-SACLAY

Concevoir les outils
numeriques du design

Thése de doctorat de I'Université Paris-Saclay
préparée a I'Université Paris-Sud

Ecole doctorale n°580 :
sciences et technologies de l'information
et de la communication (STIC)

NNT : 2017SACLS486

Spécialité de doctorat: informatique

These présentée et soutenue a Gif-sur-Yvette, le 11/12/2017, par

Nolwenn MAUDET

Composition du Jury :

Laurent Grisoni

Professeur des universités, Université de Lille 1 Président
Yannick Prié

Professeur des universités, Université de Nantes Rapporteur

Peter Dalsgaard

Professeur associé, Université d’Aarhus Rapporteur
Gillian Crampton-Smith

Professeur Emérite, Univ. de sciences app. de Potsdam Examinateur
Annie Gentes

Maitre de Conférences HDR, Télécom Paris-Tech Examinateur
Michel Beaudouin-Lafon

Professeur des universités, Université Paris-Sud Directeur de thése
Wendy Mackay

Directrice de Recherche, Inria Saclay Co-encadrant de thése

=
(4¢)
-
®)
i’
@
@)
S
(),
[®)
(),
wn
QD
L
|—

Designin
Design
Tools

Nolwenn Maudet

under the supervision of
Wendy Mackay & Michel Beaudouin-Lafon

at University Paris-Saclay

Jury Members:

Laurent Grisoni, Président

Professeur des universités, Université de Lille 1
Yannick Prié, Rapporteur

Professeur des universités, Université de Nantes
Peter Dalsgaard, Rapporteur

Professeur associé, Université d’Aarhus

Annie Gentes, Examinatrice

Maitre de Conférences HDR, Télécom Paris-Tec¢h
Gillian Crampton-Smith, Examinatrice

Professeur Emérite, Univ. de sciences app. de Potsdam

Michel Beaudouin-Lafon, Directeur de theése
Professeur des universités, Université Paris-Sud
Wendy Mackay, Co-encadrante de these
Directrice de Recherche a Inria Saclay

Timhepaine & S VAL
.

Macintoshage, Raymond Hains. Around 1990.

SUMMARY

Mainstream digital graphic design tools seldom evolved since their
creation, more than 25 years ago. In recent years, a growing number of
designers started questioning the resulting invisibility of design tools in
the design process. In this dissertation, I address the following
questions: How do designers work with design software? And how can
we design novel design tools that better support designer practices?
Using StoryPortraits, a method designed to capture rich qualitative
insight in a form that supports both analysis and design conversations, I
first study four designer practices, ranging from specific design
operations such as color seledtion, alignment and distribution, to more
complex endeavors such as layout structuring and collaboration with
developers. In these empirical studies, I analyze the wealth of designer
practices and I ¢haracterize the existing mismatch between current
digital design tools and designers practices. I show how design tools,
because they decouple creativity from tool use, prioritize values such as
efficiency and user-friendliness that do not support existing creative
practices. Facing this mismatch, designers need to resort to
programming to benefit from the computational power they can't access
with traditional tools. Based on my empirical findings, I propose a new
type of design tools, Graphical Substrates, that combine the strengths of
both programming and traditional Graphical User Interfaces.

I design nine different tools that address the needs identified in the four
empirical studies by reifying specific user process into Graphical
Substrates probes. In four structured observation studies, I show how
designers can appropriate these probes in their own terms. For
designers to fully benefit from Graphical Substrates, I argue that they
need to acknowledge the fundamental design practice of tweaking. I
also argue that we should let designers reify their own graphical
substrates from specific examples. I design and explore several ways to
embed these two mechanisms into Graphical Substrates. In this thesis, I
argue that Graphical Substrates open the design space of designers’
tools by bridging the gap between programming and graphical user

interface to better support the wealth of designers' practices.

RESUME

Les outils de design graphique traditionnels n’ont que peu évolué depuis
leur création, il y a plus de 25 ans. Récemment, un nombre de plus en
plus important de designers commence a questionner I'invisibilité de
ces outils dans le processus de design. Dans cette these, je m'intéresse a
deux questions principales: Comment les designers travaillent-ils avec
leur outils de design numériques ? Comment peut-on créer de nouveaux
outils numériques pour le design qui supportent les pratiques existantes
? En utilisant StoryPortraits, une méthodologie de synthese graphique
crée pour capturer les experiences des designers en une forme qui
supporte a la fois I'analyse et le design, j’étudie en premier lieu quatre
pratiques de design. Celles-ci s'éc¢helonnent depuis des opérations
spécifiques telles que la sélection de couleurs, I'alignement et la
distribution d’objets graphiques vers des pratiques plus complexes telles
que la strucdturation de la mise en page et la collaboration avec des
développeurs pour créer de nouvelles interactions. Dans ces quatre
études empiriques, j’analyse la richesse des pratiques des designers et je
caractérise le décalage existant entre les outils numériques actuels et les
pratiques des designers. Je montre comment les outils du design
numérique actuels détachent la créativité de 'utilisation des outils en
donnant la priorité a des valeurs telles que I'efficacité et la facilité
d’utilisation qui ne refletent pas les pratiques creatives existantes. Face
a ce décalage, les designers se tournent vers la programmation pour
profiter d'une puissance de calcul et d’une flexibilité a laquelle ils n’ont
pas acces avec leurs outils traditionnels. Je propose un nouveau type
d’outil de design nommé “Substrats Graphiques”, fondé sur les résultats
empiriques de mes quatre études et qui combine la souplesse et
'expressivité de la programmation avec la manipulation directe permise
par les interfaces graphiques traditionnelles. Je concois neuf outils
différents qui répondent aux attentes identifiées dans mes études
empiriques en réifiant (transformant en objets concrets) les processus
$pécifiques des designers en tant que Substrats Graphiques. A travers
quatre observations structurées, je montre comment les designers
sapproprient ces substrats dans leurs propres termes. Afin que les
designers puissent véritablement bénéficier des Substrats Graphiques,
nous devons prendre en considération la pratique fondamentale de
I'ajustement. Nous devons également permettre aux designers de réifier

leurs substrats a partir de leurs propres exemples. Je concois et j’explore

plusieurs manieres d’intégrer ces mécanismes dans les substrats
graphiques. Dans cette these, je soutiens que les Substrats Graphiques
ouvrent I'espace des possibles des outils pour les designers en
permettant de combler ’écart entre la programmation et les interfaces

graphiques.

REMERCIEMENTS

Cette these est un hommage a tous les designers dont les histoires ont
donné corps 2 mon travail. Pourtant moi-méme designer, il n’y a pas eu
un seul entretien dont je ne sois ressortie sans avoir découvert une
nouvelle facette du design. La modestie dont font généralement preuve
les designers en interview n’a d’égale que la richesse des pratiques qu’ils
mettent en oeuvre au quotidien. Citer tous les designers qui ont
participé sous de tres nombreuses formes a mon travail nécessiterait
plusieurs pages, mais j'aimerais en particulier rendre ici hommage a
Frédéric Teschner qui s'est éteint alors que je travaillais encore sur
notre entretien ainsi que le collectif BAM (Thomas Thibault, Morgane
Chevalier, Anthony Ferretti), Louise Druhle, Raphaél Bastide, Sarah
Garcin, Marie-Astrid Bailly-Maitre, Nicolas Taffin, Fanny Prudhomme,
Betty Montarou, Camille Esayan, Kévin Donnot et Elise Gay, Ulrike
Weiss, Fanette Mellier, etc. dont les contributions ont été décisives.
J'aimerais aussi remercier ici ma directrice et mon directeur de
these: Wendy Mackay and Michel Beaudouin-Lafon qui ont accueilli a
bras ouvert la jeune designer et aspirante ¢hercheure que j'étais, m'ont
patiemment enseigné les arcanes de la rec¢herche tout autant que
l'interadtion humain-machine et qui ont appuyé ¢hacun de mes projets.
L'équipe ex)situ, ensuite, les permanents comme les doctorants, qui ont
permis a la ¢hercheuse en herbe que j'étais de s'épanouir et ont
largement enrichi mon travail de leurs conseils. Alors que la plupart des
theses sont tres solitaires, j'ai eu la ¢hance de collaborer avec des
collegues incroyablement talentueux: Ghita Jalal qui m'a transmis le
virus de I'étude des autres, Marianela qui m'a montré comment se
conduit une recherche exemplaire, Philip qui a littéralement réifi€¢ mon
idée en prototype et German qui m'a montré a quel point la
collaboration designer/developpeur pouvait étre fructueuse. J'aimerais
aussi remercier mes ami-es pour m'avoir soutenue pendant ces trois
années et toute ma famille pour leur indéfectible amour. Enfin,
Matthieu pour m'avoir aidé a commencer cette these et Hidemasa pour

P .
m'avoir aidé€ a la terminer.

ACKNOWLEDGMENTS

I hope that this thesis will, at least, showcase the amazing diversity and
creativity in designers' practices, especially in France. There hasn't been
a single interview from whic¢h I didn't learn a new facet of design. If
nothing else, this thesis is a love letter to design and designers. Properly
acknowledging all the designers who contributed in numerous forms to
this work would require too many pages but I would like to pay tribute
to Frédéric Tes¢hner who passed away while I was still working on our
interview as well as collectif BAM (Thomas Thibault, Morgane
Chevalier, Anthony Ferretti), Louise Druhle, Raphaél Bastide, Sarah
Garcin, Marie-Astrid Bailly-Maitre, Nicolas Taffin, Fanny Prudhomme,
Betty Montarou, Camille Esayan, Kévin Donnot et Elise Gay, Ulrike
Weiss, Fanette Mellier, etc. whose contributions were decisive.

I would like to first thank my two thesis advisors, Michel
Beaudouin-Lafon and Wendy Mackay, who welcomed me when I was
only an aspiring design researcher and taught me human-computer
interaction but also all the arcanes secrets of resear¢h. While most PhDs
are very solitary work, this thesis is a fortunate exception. The ex)situ lab
has been a very warm place for me, faculty members as well as fellow
PhD students, always providing great advices. I was extremely fortunate
to work with incredible colleagues without whom this resear¢h wouldn't
have existed: Ghita who first contaminated me with her love for
observing and listening to people, Marianela who showed me how we
could conduct exemplary HCI research, Philip who literally reified my
very small ideas into a fascinating prototype and Germdn who
demonstrated how fruitful a designer/developer collaboration could be. I
also would like to thank my friends for ¢heering me up as well as my

family and my love for their constant support.

10

CONTENTS

Contents 11
Introduction 13
Researc¢h Questions 17
Resear¢h Approach 19
Thesis Statement 21
Background 25
Design Software - creator perspectives 26
Design Software - user perspectives 38
Part 1 - Studying Designers 47
StoryPortraits 51
Color 65
Alignment 79
Layout 87
Collaboration 101
Discussion - Myths behind Design Tools 119
Part 2 - Designing Design Tools 125
Color Tools 129
StickyLines 139
Layout Tools 151
Enact 167
Discussion - Principles for Designing Design 189
Tools 195
Conclusion 203
Publications 205
Bibliography

11

12

Chapter 1

INTRODUCTION

When [furst started my design curriculum, during our
furst class, our professors asked us to install a set of
“design applications”; namely the Adobe Creative Suite.
It was a prerequisite, just like having a notebook and
some pencils at hand. During my studies, for each
project, we were asked to carefully select the material
and the industrial process we would use. We would
always question the design brief and look for
opportunities to challenge client assumptions about how
such material was meant to be used or how such
industrial or craft process had to be applied. However,
not once did we consider questioning the applications
that we were using at every step in the process. Design

software was a dead angle in the design process.

Design software tools revolutionized the design process as soon as they
were introduced in personal computers, around 1990. They greatly
facilitated and optimized the different steps of the design and
production process. Designers could finally access and interact with real
time visualization of their work. Graphic designer and critic Ellen
Lupton recalls: “being able to directly manipulate type, photography,
color, and being able to see it in real time, as you are working, that’s
what it’s all about, that’s the revolution” (Briar, 2017). Design software
also profoundly transformed design industries themselves, especially
graphic design. Behind the scene, design software led to the
disappearance of many intermediary professions and thus concentrated
design work in the hand of the designers themselves.

More than 25 years after, we saw the democratization of internet
and the wide $pread of mobile phones. Design practice accompanied
this movement and many novel design disciplines appeared, including
interaction design and service design. In an essay published in Digital

Design Theory (Khoi, 2011), graphic designer Khoi Vinh explains that

13

“Design solutions can no longer be concluded; they’re now works in
progress, objecls that continually evolve and are continually
reinvented”. Yet, contrary to design practice, the digital design tools
landscape mostly did not ¢hange. The same few design applications that
were introduced in the 1990’s are still being used by the overwhelming
majority of designers almost 30 years later. Moreover, these tools have
hardly evolved. If we look at toolbars for example (Figure 1), we can see
that they are based on the same logic and they still provide the same
tools since their origin. Rather than evolving, they “bloated”
(McGrenere, 2000).

Adobe Photoshop Toolbars Evolution

= BN q_ *
) E Ve [T B b
SE— EE = w s PR |e e EES
= [RN (RN g; el L) 2
N EE EAED) EAVA Biicv 5 2L | 7
fea) [ale 217] [2f7) |2l 25 a5 |7 .
&[T [©[a EFZ]) ElER piietat 2 be @ |lem o
[&a]ee]| [2] Slo Lol |[&]T) a0 50 1S % a
N NE o[t [E[T] |[<€l= &, T.| | ot o
EnlEnE NE EE R G AT 2T =
217 | £]5 a7 B2 [A] 5 2[R (8 W -
B[] 2] O] 2R ([DA eS| 65| RS
[of4] [olT @ @ m: [Be| oo KA
I o o |
= 5
800 [B50 ECD =, el L
Ps 87 Ps1 Ps2 Ps25 Ps3 Ps4 Ps5 Ps55 Ps6 Ps7 PsCS PsCS2 PsCS3 PsCS4 PsCS5 Ps CSo

Figure 1. Comparison of Adobe Photoshop Toolbars since 1987. Note how little they have
¢hanged.

The stagnation of the design tool landscape led to the progressive
invisibility of design software in designers practice. In fact, as New
Media professor Olia Lialina demonstrated, the message from Adobe in
their advertisement campaign is that the best kind of design requires
designers to forget about their tools, so that they can focus on the core
of their work: being creative (Lialina, 2012). The logic behind this
assertion is that, ideally, the creative process should be decoupled from
the tools. Thus, the invisibility of design tools should in fact become the

ultimate goal for tool creators.

Does the current Design Software stagnation and
invisibility imply that designers’ tools are a solved

problem?

Two different elements demonstrate that design software remains an
open question. First, design software invisibility is particularly striking
when we consider the reasons behind design birth. Design origins are
generally traced back to the industrialization of of Britain in the 19th
century. For design pioneer William Morris and the British Arts and

14

Crafts movement, the emerging industrialized mass production meant a
uniformization of the resulting products, as well as a degradation in
product quality (Morris, 1884). In response to this trend, they advocated
for a tighter connection between design, craft and production. William
Morris himself was extremely prolific and practiced dyeing, weaving,
cabinet making, and printing among other crafts. Before the era of
industrialization and the separation of people and the means of
production, craftsmen were creating their own tools. They were
extremely ingenious in adapting their tools to one’s hand size and
handedness, or to achieve particular effects (Figure 2). Morris sought to
preserve this tradition.

While Morris and the Art and crafts movement could be considered
“luddite” in their rejection of machine (Thomis1970), a few decades later,
the pioneer Bauhaus design s¢hool encouraged its students to embrace
machines and explore their potential. Designers were to appropriate

industrial processes to create high quality products. (Papanek, 1972)

Figure 2. Few of the many trowels that can be seen at the "Maison de l'outil et de la

pensée ouvriere" in Troyes, France. Note how very similar they look, yet how uniquely

different each one of them is.

Thus, at the origin of design was the intention to reappropriate
production means and to fusion design and production. Following this
line of thought, separating the question of design and design tools is
impossible. Design Software is an open issue because part of a
designer’s work is to ¢hoose and question their tools. The second, and
probably more important reason is an emerging reappropriation
movement coming from designers themselves. In recent years, more and
more designers started learning programming languages. The iconic
Processing programming language and environment, launched in 2001,
was among the very first tool that sought “to introduce visual designers

and artists to computational design” (Reas, 2007). Its influence spread

15

beyond graphic design and led to the Arduino project, an electronics
platform aimed at facilitating the creation and prototyping of
interactive products. For designers, programming offers a whole new
range of dynamic capabilities that traditional software does not yet
provide (Reas, 2010).

Figure 3. Interface detail of Prototypo, a parametric font design tool created by designer

Yannick Mathey

These pioneer initiatives nurtured a new generation of designers who
started building design software, usually for their own needs. In a 2012
essay commissioned by Centre National des Arts Plastiques for the
magazine Graphisme en France (Reas, 2012), Casey Reas and Chandler
McWilliams asked several designers who program their own tools: Why
do you write your own software rather than only use existing software
tools? How does writing your own software affect your design process
and also the visual qualities of the final work? They found that some
ideas were prevalent across respondents. First, designers explained that
writing custom software gives them more control over the resulting
artifact. The second is that new tools bring novel creative opportunities:
“Experienced designers know that off-the-shelf, general software tools
obscure the potential of software as a medium for expression and
communication. Writing custom, unique tools with software opens new
potentials for creative authorship”(Reas, 2012). A few designers also
produce tools for other designers. An early example is Scriptographer,
which lets designers extend Adobe Illustrator’s functionality by writing
simple scripts in JavaScript. More recently, Prototypo is an interactive
font creation software based on a parameterized customization.
Prototypo is also one of the rare tools that provides a fully visual
interface (Figure 3). Alongside these mostly individually-led initiatives, a
new design software industry is gradually emerging, with tools such as
Sketch and Affinity Designer. This movement is especially visible in

recent areas of design, such as interaction design. In these disciplines,

16

the gap between the actual interaction design work and traditional
software created for the printing process is especially salient.

At the same time, several designers started to question the lack of
interest and diversity in design software through their writings.
According to designer and design critic David Reinfurt: “Function sets,
software paradigms, and user scenarios are mapped out for each
software projecl to ensure the widest possible usability, resulting in an
averaged tool which skips the highs, lows, errors, and quirks.” (Reinfult,
2012). In his thesis “digital tools and graphic design”, graphic designer
Kevin Donnot wonders “Why couldn’t we accept that tools influence us
and that we could choose them depending on their impact? Shouldn’t
we ask ourselves which tool is appropriate before mechanically
resorting to our usual software?” (Donnot, 2011). This recent interest
started bringing design software in the spotlight (Leray, 2011). Yet, if the
need for novel design tools is real, we currently know very little about
the current relationship between designers and their digital tools and

what types of design tools would suit them.

Research Questions

Grounded in these preliminary observations about the current state of
design software, I articulated two complementary sets of research

questions for this thesis:

How do designers work with design software?

How do designers work with and around design tools?
How do they appropriate existing software and adapt it for
their specific practices? How do current design tools

support these practices.

How can we create design tools that better support
design practice?

What tools can we create to support current design
practices? How would designers work with these new
tools, and how would these tools influence their existing

practices?

The reflective aspect of these first two questions call for a second set of
broader questions on the nature of design tools. Designers design for
others. But how should we design for designers? How does designing
tools for designers differ from designing other tools? Can we use the

same principles to design for creativity and for productivity?

17

Definitions

Design is a very broad and multi-disciplinary field, involving many
different practices, cultures and traditions. In my thesis, I ¢hose to focus
on graphic design and interaction design. Graphic designers
professionally create documents, laying out content in space. Yet, many
aspedts of their work, including ¢hoosing color, aligning visual elements
or even creating layouts are not exclusively the prerogative of graphic
designers. Many different professions create documents as part of their
daily work. Even if they don’t focus on the graphic design aspect of
these documents, they nevertheless need to carry the same design tasks.
New tools created for designers could potentially also transform how
these non-professional perform their own design tasks. Even within this
limited scope, graphic design practices are extremely diverse. To study
design tools from complementary angles, I focus on successive task
levels, starting from very focused and specific tasks to more and more
higher level, structural and collaborative, tasks. I started with extremely
focused practices: color selection as well as alignment and distribution,
which are intrinsic to most design work. Yet, these two tasks are only
one specific aspect of any design project. To complement these first two
inquiries, I then turned to a more complex design task, layout
structuring. Unlike color and alignment, current design software
applications do not include a single dedicated tool for layout
manipulation. Finally, I studied designer-developer collaboration when
creating interactive systems. These four different design activities,

address design tools from different perspectives and scales.

Defining design tools might be an endless endeavor, because the
intricate architecture of software tends to blend different levels of
granularity. In this thesis, I define design tools as individual tools
within design applications suc¢h as Adobe Illustrator and InDesign. For
example, in this thesis, I call design tools individual panels and
commands such as color pickers, alignment commands, levels panel,
Adobe Photoshop filters, etc. I otherwise use the term design software
application to refer to design applications such as Adobe Illustrator,

Photoshop and InDesign that include a wide variety of design tools.

18

Research Approach

This thesis is at the cross-roads of design and human-computer
interaction. Over the course of this PhD, I positioned myself as a design
researcher borrowing from HCI methodologies. Design research is a
relatively new field of research, and, not unlike Human-Computer
Interaction, is still arguing over a canonical definition. But before trying
to define design research, I must first settle on a definition of design.
Many have been proposed, but for the sake of convenience and because
it fits my personal philosophy rather well, I ¢hose the definition
proposed by Herbert Simon in 1969:

“everyone designs who devises courses of action aimed at
¢hanging existing situations into preferred ones.”

—Herbert Simon in The Sciences of the Artificial, p.130

One could argue that this goal is shared with engineering. A key
differences, however, is that design focuses on what Horst Rittel and
Melvin Webber in 1973 called "Wicked Problems" (Rittel, 1973). Wicked
Problems cannot be easily addressed through science and engineering
methods. Rittel and Webber coined this term “in reaction to the casting
of design as a science and also in response to systems engineers’
inability to apply scientific methods to address social problems’.
Zimmerman explains that wicked problems cannot be accurately
modeled, because the different stakeholders hold conflicting
perspectives of the issue at hand. It is therefore impossible to adress
this problem using “the reductionist approaches of science and
engineering” (Zimmerman, 2007).

Now that we have proposed a definition of design, we can approach
a definition of design research. Frayling, Professor at the Royal College
of Art, proposed a classification of design researc¢h in three components
(Frayling, 1993): Research for design, Research into design and Researc¢h
through design. Findeli, in 2004, redefined these three types of design
research (Findeli, 2004) as follows:

“Research for design” aims at guiding design practice.
This research is collected by designers to document
different aspects of their project (te¢hnical, sociological,
ergonomics...) that will then be used to nourish their

design process.

19

“Research into design” is mainly found in universities
and research centres contributing to a scientific discipline
studying design. It documents objects, phenomena and

history of design.

“Research through design” is the closest to the actual
design practice. Designer/researchers who use Research
through Design seek knowledge and understanding
through the making of artefacts.

My thesis follows a “Research through design” approach. More
concretely, Findeli’s description again as his description of resear¢h

through design practice accurately reflects my own practice:

“the aim of designers is to modify human-environment
interactions and to transform them into preferred ones.
Their stance is prescriptive and diagnostic. Indeed, design
researchers, being also trained as designers - a
fundamental prerequisite — are endowed with the
intellectual culture of design; they not only look at what is
going on in the world (descriptive stance), they look for
what is going wrong in the world (diagnostic stance) in
order, hopeftully, to improve the situation. [...] Their
epistemological stance may thus be ¢haracterized as
projective.” (Findeli, 2004)

According to Pedgley
Model Fiioasl * (Pedgley, 2007), one of the

Interaction with artifacts
| S—

=
AN main obstacles to acquiring
\ /\ knowledge with this method is

Desi f - .
o —— that “Designers are not used

Theory

Prototype

to accounting for what they

Observation

know or do”. S¢hon also

| I—| | S—
Field Study Evaluation .
concur that this type of
Figure 4. -Mackay and Fayard’s knowledge is “implicit to our

i lation f k, articul . .
triangulation framework, articulated around patterns of action and in our

feel for the stuff with which
we are dealing” (S¢hon, 1983). To address this issue, I conducted my PhD

using Mackay and Fayard’s triangulation framework, originally defined

theory, design of artifacts and observation.

in the context of Human-Computer Interaction (Figure 4). As Mackay
and Fayard pointed out, “HCI cannot be considered a pure natural
science because it studies the interaction between people and

artificially-created artifacts, rather than naturally-occurring

20

phenomena, which violates several basic assumptions of natural
science”. In order to integrate design and scientific knowledge, they
propose to iterate over three different levels: theory, artifact design and
observation. Findings from each of these steps nurture the subsequents.
Following this framework, I articulated my thesis contributions around
this threefold structure.

Following design researcher Bill Gaver’s demand for new artifacts
to manifest and exhibit design research results (Gaver, 2012), I produced
artifacts to explicit my findings at each level in the process. These

artifacts are the foundation of the present thesis.

Thesis Statement

My thesis concerns the mismatch between the principles underlying
current graphic design tools and the daily practices of graphic
designers. Mainstream design tools decouple creativity from tool use
and prioritize values such as efficiency and user-friendliness that do not
reflect designers’ needs. I propose to turn graphical design substrates,
the ad hoc principles created and used by designers in their work, into
design tools that bridge the gap between graphical design tools and
programming. Graphical Substrates can be turned into interactive
objects that represent and mediate relationships among graphical
elements. These reified relationships can scaffold and evolve during
designers’ exploration phase. I demonstrate how we can create
Graphical Substrates directly from specific designers’ practices and how
we can let designers themselves reify their own graphical substrates
from their unique examples. By integrating tweaking mechanisms in the
substrates themselves, they can become a novel type of flexible and

powerful design tools.

Thesis Overview

In Chapter 2, [analyze the differences among design software
application that were developed by computer scientists, by the industry
and by designers themselves. I also review the impact of design software
from three perspectives: designer's accounts, empirical studies and
media studies analyses.

I then divide my thesis in two parts, each targeting one of the two
sets of researc¢h questions presented above. In the first part of the thesis,
I investigate designers' practices with digital tools by studying four

21

complementary practices. In ¢hapter 3, I present StoryPortraits, a
technique for interviewing, synthesizing and visualizing designers’
stories into a form that supports later analysis, and inspires design
ideas. In c¢hapter 4, I inquire into designers practices with color. I
present the Color Portraits Design Space that ¢haracterize five key color
manipulation activities that demonstrate the breadth of designers
interaction with color. I validate the Color Portraits Design Space with
scientists and engineers before using it to analyze the limitations of
current color tools. In ¢hapter 5, I study alignment and distribution
practices with professional designers and regular users of authoring
software. I analyze the main limits of the current alignment and
distribution commands. In ¢hapter 6, I present a study of designers
Strategies to structure layout. We explore the wealth of strategies and
present the “graphical substrates” framework: underlying structures
onto which designers organize their layout. I analyze how designers who
code can reify their substrates and develop them further. In ¢hapter 7, I
present two studies exploring the collaboration issues and strategies
between designers and developers. I show how their current tools
require a lot of reworking and redundancies that introduce mismatches.
We call these mismatches design breakdowns and divide them in three
categories: missing information, edge cases and tec¢hnical constraints.
In ¢hapter 8, I discuss the results of the four previous ¢hapters to
understand commonalities among design tools. I analyze the mismatch
between designers' practices and the underlying principles behind
design tools.

In the second part of the thesis, I investigate how we can create and
explore design tools that support the activities described in the first
part. In ¢hapter 9, I present four color tools supporting the
corresponding practices identified in the ColorPortraits Design Space. [
explore them as probes (Hut¢hinson & al., 2003), as new means of
understanding how designers work, with designers and scientists to
understand how they can interpret them in their own work. In ¢hapter
11, I explore how we can reify graphical substrates through two first
probes directly inspired by designer' stories. I explore these probes with
graphic designers and I incorporate their feedback in a prototype that
fully reifies graphical substrates in the context of CSS. In ¢hapter 12, I
present Enact, a tool that facilitates the transition phase between
designers and developers during the creation of interaction. We first
start with a participatory design workshop to elicit novel ways of
representing the interaction that satisfies both professions. We build
Enact based on this feedback, combining interconnedted visual,

symbolic and interactive views. I then explore how it affects designers

22

and developers collaboration through structured observation studies. In
¢hapter 13, I discuss the different tools and propose principles for the
creation of design tools that better reflect and support existing

designers' practices.

23

24

Chapter 2

BACKGROUND

A brief History of Design
Software

In this ¢hapter I propose a brief analysis of the history of graphic design
software applications to better situate and understand the current
relationship between designers and their digital tools. In this ¢hapter, I
discuss graphic design tools mostly at the software application level. In
each subsequent c¢hapter of this thesis, I provide a more detailed related
work to situate each project in its specific context.

oo o
or on Dm On 05 om OB

i S

i Lk L L

if R~ ;
-~y

Yoa g0 gift-happy
with us. You'tt e, toe,

By —
Vi -
m" MiE e

=g SV

O

Figure 5. Prior to using design software applications, designers used to create layouts

through “paste-up”, cutting and pasting different content elements onto a blank page.

I divide this ¢hapter in two complementary sections: I first analyze the
history of graphic design software from the perspective of their creators.
I explore how design software gradually came to be, what were the the
underlying conceptions behind them and how did they differ from pre-
existing techniques (Figure 5). To do so, I identify and explain how
design software applications were produced and envisioned from three

complementary perspectives: from computer science research, from the

25

industry and from designers themselves. In the second part of this
¢hapter, I inquire into what we know of the relationship between
designers and graphic design software applications. I explore how
designers perceive these digital design tools and how they work with
them. I also report on three different perspectives that provide
complementary insights: designers writings on the early moments of
digital design software, empirical studies of the impact of the computer
on designers' practice as well as a few theories developed, both in HCI
and in Media studies, to understand the impact and the logic of digital

design tools.

Design Software -
creator perspectives

In the first part of the background, I present a succinct history of digital
graphical design software applications. If we want to study how
designers work with their tools, we first need to understand how did
these tools come to be. Obviously, the history of tools for design is a
very complex and intricate one. My goal here is not to provide a precise
and exhaustive history -for a first hand account on the history of paint
software, for example, see Smith's (Smith, 2001)- it is instead to
understand how producing design tools can be done very differently in
different contexts. According to Suchman (Su¢hman, 2007), “Every
human tool relies on, and materializes, some underlying conception of
the aclivity that it is designed to support”. Designers design for others.
But who designs for designers? Studying the intention behind software
can help us understand the hidden assumptions that often go
unquestioned. According to philosopher of technology Simondon
(Simondon, 1958), a study of te¢chnology should not approach te¢hnology
from an individual perspective. Instead, each technical object belongs to
a te¢hnical lineage and cannot be fully understood outside of it.

In the following section, I present three main lineages of graphic
design software applications. These three lineages and their resulting
software applications obviously influenced each other. This is especially
true from the research world to the industry (Myers, 1998), but they
nevertheless were designed in very different contexts and for very
different purposes. The first type of design software applications
emerged as experiments by computer scientists. They used design
software as a way to explore and enhance the potential of computers.
The second wave of graphic design software applications came later

from the industry and sought to replace traditional graphic design tools.

26

Therefore, creators tailored design software applications for integrating
them into pre-existing workflows and facilitating designers adoption.
The third lineage are design tools created by graphic designers
themselves. Because designers were working for themselves, they could
explore how graphic design software impacted their work and generally

tried to reinvent what graphic design meant.

DESIGN SOFTWARE
FROM A RESEARCH PERSPECTIVE

The first computers, built before and during World War 11, were
designed and used as powerful calculators “for specific purposes, such
as solving equations or breaking codes” (Grudin, 2012). Therefore, the
first computer users were mathematicians. When a single computer
would fill an entire room and required programs to be written on
punched cards, it could be hard to imagine the versatility that we are
accustomed to today. The gradual shift towards designing computers as
tools for creation first happened in the resear¢h world, as computer
scientists started questioning the relationship between people and
computers. The following projects were never commercialized and thus
never used by professional designers, yet they all were pioneers in

recognizing the power of the computer as a design tool.

Memex (1945) and Xanadu (1960)

The Memex was not a tool for

THE "AM'NGM designers per se, but it
5:5.;;?31‘.:‘?.:&?:2’.‘:‘ pioneered a vision of
computers that would deeply
@ affect how we access
information, ultimately
% questioning the role of design.
Nikalf j In 1945, at the end of the war,
B Vanevar Bush, in his visionary
article “As we may think”
UJ (Bush, 1945), proposed to shift
Figure 6. -The Framing Problem, “How [to] the vision of computing to
extract and visualize an appropriate subset envision the computer as an

from a tangle of interconnected pieces”, by empowering tool available to

Ted Nelson in Computer Lib/Dream

Machines, 1974 everyone. According to Bush,

27

a Memex would become the equivalent of a private library, it would help
individuals store all their books, records and communications, “an
enlarged intimate supplement to his memory”. Even if it was never
built, the Memex had a great influence on the subsequent development
of tools to shape information and on human-computer interaction as a
whole. As design researcher Masure explains, the infinite storage
envisioned by Bush questions the modalities of access of this content
(Masure, 2014). How should the content be presented? In that sense, the
Memex was already a tool for design, carrying the seeds of the future
that designers need to shape today. Deeply inspired by Vanevar Bush’s
vision, Ted Nelson, developed the notions of hypertext, and hypermedia:
interconnected text, graphics and sounds.

His book Computer Lib/Dream Machines, published in 1974, is a
peculiar graphical object in itself (Nelson, 1974), following the precepts
of hypertext. With his project Xanadu, initiated in 1960, Nelson
questions the practice of graphic design by proposing a hypertext
system that defies the idea of fixed content. In his book, he envisioned
some of the impact that hypertext would have on designers. For
example, he envisioned “the Framing Problem: How (to) extract and
visualize an appropriate subset from a tangle of interconnected pieces”
(Figure 6). HyperText influenced the World Wide Web creator Tim
Berners Lee and provided the foundations for the new world graphic

designers currently need to shape.

Sketc¢hpad (1963)

In 1963, Ivan Sutherland
published his PhD
dissertation in which he
presented the groundbreaking
Sketéhpad system. Usually
considered the first
graphically based interactive
system, it was developed at the
MIT’s Lincoln Lab under the
direction of Claude Shannon,

Figure 7. -Sutherland’s Sket(fhpad syﬂem. father Of information theory‘
Built in 1963, it is considered to be the first

visual interface and, coincidentally, the first

This application demonstrates
digital design tool a few groundbreaking
principles, some of which are
yet to be seen in common Computer Aided Design applications or
graphic design software today. Using a light pen as a pointer directly

onto the screen, Sket¢hpad lets designers create shapes on the screen by

28

creating points onto the screen (Figure 7). Using command keys on a
separate keyboard, designers can create and apply constraints, such as
making two lines perpendicular or parallel. Sutherland also introduces
an object oriented approach (before it even existed in programming
languages). Instead of having to manually create multiple copies of a
same shape, Sketchpad lets designers create and instantiate objects.
Changes made to the original shape are reflected in all its instances.
Among other features, Sketchpad also provides a zooming interface. The
initial goal, according to Sutherland, was to make the computer “more
approachable” (Sutherland, 1963) by using displays. Sutherland wanted
to explore drawing as a new way to interact with the computer. His
thesis title, “a man-machine graphical communication system”, makes
explicit this vision, one of a partnership between humans and machines.
Sketéhpad was not design to support existing practices nor replace
traditional tools in the industry. According to Sutherland himself, the
principles behind Sket¢hpad are inspired by his interaction with the
computer as well as by programming concepts (constraints and object

oriented programming).

It has turned out that the properties of a computer drawing
are entirely different from a paper drawing not only
because of the accuracy, ease of drawing, and speed of
erasing provided by the computer, but also primarily
because the ability to move drawing parts around on a
computer drawing without the need to erase them. Had a
working system not been developed, our thinking would
have been too strongly influenced by a lifetime of drawing
on paper to discover many of the useful services that the

computer can provide (Sutherland, 1963)

Sket¢hpad paved the way for CAD (Computer Aided Design) software as
well as for HCI (Human-Computer Interaction) as a whole. Among

others, it notably inspired Douglas Engelbart (Engelbart, 1962).

Genesys (1969)

Genesys is another interesting early example of a design software: “An
Interactive Computer-Mediated Animation System”. It was built for
creating animation by Ron Baecker in 1969, as part of his PhD at the
MIT’s Lincoln Lab. The system uses a Rand Tablet, ancestor of today’s
graphic tablets. One of the key notions of GENESYS is that animations

are “movements-that-are-drawn”. A hand-drawn picture can either be a

29

visible object to be animated, or a motion path for other graphical
objects. Furthermore, not only could an object follow a hand-drawn
motion path, it could do so with the same velocity and dynamism that
was used to draw the line (Figure 8).

Contrary to Sket¢hpad, and
visionary at its time,
GENESYS was directly
inspired by animators’ way of
working. Baecker even tested
his system with professionals
and asked them for feedback.

Baecker also stresses that “The

computer is an artistic and

Figure 8. -Ron Baecker’s Genesys. Built in

1969, it is the first digital tool explicitly animation medium, a powerful
designed to support animators’ practices. aid in the creation of beautiful

visual phenomena, and not
merely a tool for the drafting of regular or repetitive pictures” (Baecker,
1969). This new vision of the computer, as a creativity support tool

remained peculiar for a long time.

Pygmalion (1975)

During his PhD, David Smith, created Pygmalion: “A Creative
Programming Environment”. He programmed it in smalltalk, an
influential programming language created by Alan Kay and Adele
Goldberg, Alan kay also being Smith's PhD advisor. Smith's goal was to
bridge the gap between art and science, arguing that during the
Renaissance, people like Da Vinci were both artists and engineers. For
him, creative people, such as designers, should be able to use
computers, not only as users of software applications, but rather as
programmer themselves. According to Smith, “the main goal of
Pygmalion is to develop a system whose representation and processing
facilities correspond to mental processes that occur during creative
thought” (Smith, 1975). Drawing inspiration from both Sket¢hPad and
Genesys, Smith wanted to make programming visual. Smith was
especially influenced by the research on creative thinking of his time
and he based his design on some concepts borrowed from that
literature.

One such notion was incrementation: “/In Pygmalion,] since
creativity is incremental, programming proceeds in a step-by-step,
interactive fashion, much as one uses an editor to change a body of
text”. Pygmalion also introduced a second key idea: the notion of “icon”.

Instead of symbols and abstract concepts, Pygmalion uses concrete

30

display images called “icons” to represent abstract notions such as

variables or even to save lines of code for later reuse (Figure 9).

After working on Pygmalion,

Smith went on to work at

(e W Xerox Parc. As one of the

delete

FeFesn H jlili— main designer of the Xerox

name [

hare Star computer, he popularized

-

e | = the icons whic¢h became a

4 cornerstone of the graphical

not . .

kentrer user interface paradigm that

repeat .

o most of our current interfaces

return

Phescey derive from.

:é:bé mouse value mouse

e ||

‘t’::': rerenbered

I Sketéhpad, Genesys and

gl?: smallitalk
Pygmalion, all originated in
research contexts and were

not destined for professional
Figure 9. The interface of Pygmalion, “a use. In fact, more than tools
creative programming environment” created to support
professional designers work,
these projects instead drew inspiration in designers' way of working to
transform computers themselves. They introduced novel ways for
interacting with computers based on their creators' understanding of

creative thinking.

GRAPHIC DESIGN SOFTWARE
FROM THE INDUSTRY PERSPECTIVE

Most early principles for interacting with computers were invented in
universities, but the industry then appropriated them (Myers, 1998).

Software dedicated to graphic designers were no exception.

Quantel - PaintBox

In the domain of TV Graphics, Quantel released its PaintBox in 1981
and revolutionized the production of television graphics. PaintBox was a
computer graphics workstation, it could only be used for producing
animated graphics and its price made it unaffordable for designers who
did not work in large companies (Figure 10). On the other hand, because

it was a dedicated workstation, it could handle high quality images and

31

video effedts far beyond what was possible with general purpose
computers at the time. Following its moto: “crafting the tools that do
the job without users needing to know how they work” (Prank, 2011), the
PaintBox creators tried to simulate how traditional illustrators worked
and to give them the same tools that they were used to work with.

Its setup was similar to
Genesys, with a pressure
sensitive pencil as input and a
TV-like monitor as output, so
designers could directly paint
“on the screen” the way they

used to do it on paper. The

PaintBox provided tools that

Figure 10. Paintbox, by Quantel,

revolutionized animated graphics by mimicked existing illustrator
mimicking traditional designers tools such tools such as “airbrushes” and
as stencils. even a color palette where
designers could mix color
swatches. They also provided “stencils” to let designers separate objects
from their background and paint only specific parts of the final image. If
Paintbox was hegemonic for TV animated graphics, it was however
hardly used by graphic designers whose work was ultimately printed

because Paintbox did not handle the necessary resolution.

Mac Write & Mac Draw

The macintosh, release in 1984, launched the era of desktop publishing
(Grudin, 2012). For most of graphic designers in the publishing industry,
the macintosh was the first computer they encountered (Levit, 2017).
Contrary to the PaintBox, it was not specifically designed for them but
was instead a general purpose computer.

The first Macintosh proposed

& File Edit Search Format Font [T
" tit| vPlain Tent %P
Bold %B

only three general purpose

talic 81 L
=B = Underline U
e | Outlime ®o

MacWrite is a leading word process| ghadam %S [intosh. It can
be used to write memos, reports, etc. Superscript %H 5 and pictures
from other applications can be paste Subscript %L Pocuments. In

hanglng

software: Mac Draw, Mac

Paint and Mac Write (Figure

addition, words can be emphasized by| H‘g‘;;i.m
9&y1e8 or changing sizes. | 10 point
tain all the

12 Polnt
14 Point
e
commands you will ever need. If you c|_24 Point hnd paste, you

The pull down menus across the to]
can use MacWrite. For instance, to replace one word with another word
simply select the item named "Change” from the "Search” Menu.

11). Those three software
interface principles were
direct heir of the Xerox Star,
the system that Smith helped

Figure 11. The Mac Write Interface. The to develop at Xerox Parc that
focus of the tool is on writing text, rather established user interfaces

than formatting it. The sample text says that mimicking the office

it can be used to “write memos, reports,

ete” paradigm. Before the

Macintosh, designers were

32

used to work “blindly”, not seeing what the final output would look like
before it came back from the printer. At that time, the traditional
process of laying out content, named paste-up, was a very mathematical
work, requiring a lot of preparation and calculation as designers had to
manually trace guides on their sheet to make sure all their elements
were aligned. In contrast, on the Macintosh, graphic designers were
able to see the content they were manipulating before printing the final
result. Mac applications had adopted the “What You See Is What You
Get” paradigm in whic¢h designers could ¢hange fonts and instantly see
the result on the screen. On the other hand, the purpose of Mac Write
was to write content as much as to format it. This initial focus
influenced the type of formatting functions available, whi¢h were
limited, from a professional graphic designer point of view. Similarly,
influenced by this focus, Mac treated text and image manipulation as
utterly different activities, thus separating them in different

applications.

Aldus PageMaker

Rapidly, however, a few companies such as Aldus and Adobe, realized
that the printing industry would certainly adopt graphic design software
if they could allow them to output high quality printed pages. To
establish its economic success, design software needed to pursue an
apparent continuity with existing environment and techniques (Masure,
2014). In 1985, Aldus released Page Maker (Figure 12), a Macintosh
dedicated software for desktop publishing. This piece of software was,
this time, specifically created to supplant traditional technologies and
fit within the existing printing industry practices.

As his founder explains, “most

Edit_Options _Page_Type Element Window _Help
PMATUTORIA ON4 DONE.P

of the page maker interface

Tl0

; ﬁ;‘l‘; and dialogs and the way it
% S A . .
; ‘P @ RT_[R A H S works, the basic functions
|| pommm— P ——r— came from my experience of
T Manutius—— 10 o o G .
TheOriginal
| Thecrizi: having done past up myself

Hhem at 2

The first prblem was how print more.

5ible words per page and thus reduce the.
I

e : Brainerd (Levit, 2017). Indeed,
Figure 12. The PageMaker Interface Page Maker, and its

Five hundred years
g0, Clgismpher

with a razor blade” -Paul

successors, Quark XPress and
Adobe InDesign introduce the possibility to freely drag and drop text
onto the page. Moreover, the way desktop publishing software handles
text is a reminiscence of the paste-up process that used to be prevalent
in the industry: First, designers would do phototypesetting to generate
the whole text using the right font at the right size. They would receive

33

single columns scrolls that they would then cut and paste onto the page.
In desktop publishing too, as exemplified in (Figure 13), the text is
received as one infinite scroll, it is disconnected from its container.
Designers can then compose, cut and adjust the containers. The key
difference being that the text continuously flows in the containers,
offering greater exploration possibilities to designers.

A second example of the influence of the traditional process over
desktop publishing can be found in its way of handling page format. In
desktop publishing too, when creating a project, a designer must first
select page dimensions as well as margins and a column system. These
parameters are then fixed and not supposed to be ¢hanged. This echoes
the traditional paste-up process in whic¢h the designer first ¢hooses a
page size and establishes page margins and a grid. This page becomes
the canvas onto which she can experiment with text and image
positioning. Yet, in desktop publishing, the c¢hoice to first set page size
and margins is not dictated by a technical constraint, rather, it simply

reproduces a pre-existing process.

ma famille, la maison ou

I]’aimerais qu’il existe des
lieux stables, immobiles,
intangibles, intouchés

et presque intouchables,
immuables, enracinés ;
des lieux qui seraient des
références, des points de

départ, des sources : Mon|

o]

jpays natal, le berceau de

je serais né, I'arbre que
j’aurais vu grandir (que
mon pére aurait planté le
jour de ma naissance), le
grenier de mon enfance
empli de souvenirs in-

acts... De tels lieux n'ex-

istent pas, et c’est parce

hu'ils n'existent pas que
&

‘espace devient question,

esse d’étre évidence,

esse d’étre incorporé,
esse d’étre approprié.
‘espace est un doute :
il me faut sans cesse le
arquer, le désigner ;

il n’est jamais a moi, il

ne m’est jamais donné,
il faut que j’en fasse la
conquéte. Mes espaces
sont fragiles : le temps
a les user, va les détru-
lire : rien ne ressemblera
plus a ce qui était, mes
souvenirs me trahiront,
I'oubli s'infiltrera dans
ma mémoire, je regardf
erai sans les reconnaitre

quelques photos jaunies T

Figure 13. The influence of Paste-Up can be seen in how InDesign deals with text.

Designers can cut and paste the text in separate rectangles

A last example can be found in the type of functionalities enabled by

desktop publishing. When presenting their software, PageMakers’

developers explained: “it was designed with the industry in mind, in

other words it does half-tones, ligatures, kerning, all the words that the

typesetting industry has been familiar with.” (Paul Brainerd, in

Computer Chronicles, 1986”). Here again, it is interesting to observe

that desktop publishing first and foremost developed functionalities

that matched previously existing ones in the industry. In fact, because
their goal was to fit within existing workflow and to be easily adopted
by designers, they tried to mimick the existing process. Therefore, they
proposed very few functionalities that went beyond what traditional

processes could produce.

On the other hand, they introduced the WISIWIG paradigm to

34

designers who were previously used to work without seeing the end-
result of their production. The conditions and environment behind the
emergence of graphic design dedicated software led to the reproduction
of pre-existing constraints and principles, coexisting with novel
possibilities. Ldszlo Moholy-Nagy gives a compelling example in
another domain: “Square plates would have been more convenient than
round ones because they are easier to store. But as the first plates were
created from a potter’s wheel, they then went on keeping their rounded
shape, despite the new methods [...] that provided total freedom of
shape” (Moholy-Nagy, 1925). After the initial standards were
established, graphic design software mostly did not ¢hange. They
gradually added more features but their core functionalities remained

the same until now.

DESIGN SOFTWARE
FROM A DESIGNER PERSPECTIVE

Few graphic designers were able to experiment with computers before
the era of personal computers. Yet, this limited access did not prevent a
few designers to perceive that computing would transform the way they

work.

Karl Gerstner - Designing Programs

One of the designers who
explored the impact of of
computing was the swiss Karl
Gerstner (Armstrong, 2009). In
his 1968 book entitled

Designing Programs, he

proposed a manifesto,
Figure 14. Karl Gerstner, extract from advocating for a deterministic
Designing Programs, 1962. approaéh of graphic design.
He transposed what he
understood from the rigor of computational programs into the
typographic grid, turning it into a system (Figure 14). For Gerstner, the
computer was mainly a computational machine that he could use to
compute all the potential solutions of a design. The design process thus

had to be discretized into a set of parameters in order to make it

35

computable. The designer’s work was then to cast aside all the bad
solutions proposed by the computer and, iteratively, to keep the best
one. Even if Gerstner was not using design software at that time, he
already had perceived the impact that computing could have on the
profession: “How much computers change - or can ¢hange - not only

the procedure of the work but the work itself”. (Kroplien, 2001)

Muriel Cooper

If some designers were able to envision how computers could impact
their profession, very few had the ¢hance to work with computers before
any of the common interface metaphors became ubiquitous. An almost
unknown, yet critical example of a designer who profoundly explored

design software tools was MIT professor and graphic designer Muriel

Cooper.

In her workshop, Cooper
sought to explore and extend
the influence that graphic
design could have on the new
digital world. She also
explored the influence that
computers would have, in

return, on the profession of

graphic designer. She

Figure 15. “Typography in Space”, an considered that the “desktop
interactive three-dimensional space in metaphor”, developed since
the 1970’s and used in most

mainstream applications, was

which the reader can freely browse, 1994

only a transition state in Human-Computer Interaction. (Cooper, 1989)

When she started exploring graphic design with computers, there
were no design software. Her students needed to directly program. For
her, it was critical that they participate in the creation of their own tools
and in exploring their potentialities. As designers were directly involved
in the creation of their own tools, the interfaces and interactions
created by Cooper and her students were radically different from the
ones produced in the research world as well as from the tools that were
developed in the industry.

For example, none of Cooper's projects contained the notion of the
page. Because this notion did not exist in programming, Cooper and her
students were able to think about novel ways to represent information

outside of this frame. Instead, they c¢hose to create a 3-dimensional

36

world for displaying information (Strausfeld, 1995). The reader could

freely navigate this space to access the information presented on many

different 2D planes (Figure 15). A second example is Perspective, a grid

expert system developed in 1989. The system proposes several layouts

based on images ¢hosen by the designer and following a simple rule

system. Cooper was seeing the computer as a partner for designers who

would be designing processes instead of final layouts:

“As applications for multi-media develop, such as

electronic documents, electronic mail transac¢tions, and

financial trading, the need for automatic layout and design

intelligence will be crucial [...]. Designers will simply be

unable to produce the number of solutions for the vast

majority of variables implicit in real-time interaction.

Design will of necessity become the art of designing

process.” (Cooper, 1989)

Processing

[ouis

MacNeice

Michacl
Foennedy

Varicties

Adrian Boult. of Parable

Ivan
Turgeney
A Child

Smoke ¢ Possessed

Figure 16. -Faber Finds, Generative book
covers, by Karsten S¢hmidt and Marian
Bantjes. Programmed using Processing.
2008

Following Cooper’s approach,
John Maeda, one of her
students, founded his own
workshop: “design by
number”. At that time,
personal computers had
become affordable and
graphic design software had
appeared. Designers had
become users of design
software applications created
by the industry, rather than
creators of their own tools.
For designers, learning
programming was tedious,
because they needed to learn a
lot before even being able to
display a single square on
their screen. To tackle this
issue, his students, Ben Fry
and Casey Reas, started the
Processing project in 2001. Its

37

goal was to make programming easily learnable by designers by
emphasizing visual representation. Yet, contrary to Cooper’s approach,
they explicitly favored an evolutionary approach, rather than a
revolutionary one (Fry, 2009). Built on top of Java, Processing is a simple
programming language whose focus is on producing visual and
interactive output. Yet, even if Processing is first and foremost a
programming language, it also came with a minimalistic Integrated
Development Environment also designed to encourage designers to
visualize the result of their program as soon as possible. Processing has
proved to be extremely influential within the design world, it even
sparked a new aesthetic in graphic design (Figure 16). By giving
designers access to programming, it contributed to bringing back

discussions about graphic design tools in the spotlight.

Digital design tools created by designers resulted in very different types
of tools. Whereas the industry tried to mimick existing design
techniques to fit within a pre-existing ecosystem, designers of digital
design tools used the opportunity of the digital medium to question the

notion of design and to redefine their field.

Design Software -
User perspectives

In the second part of this ¢hapter, I now review the different types of
accounts about digital design tools from the perspective of their users. I
explore how designers perceive these digital design tools and how they
work with them. I review three approaches to this inquiry. I first focus
on what a few designers themselves wrote and said about the impact of
digital tools on their practices. Empirical studies, mostly from an HCI
perspective give us other ways to understand the relationship by
observing it in more controlled or longitudinal ways. Finally, I give an
overview of different theories that have tried to ¢haracterize designers'
work with their tools as well as to understand digital tools' underlying

conceptions from the perspective of media studies.

DESIGNERS ACCOUNTS

To understand the relationship between designers and their digital

tools, we can look at what designers themselves wrote and said. In her

38

documentary Graphic Means: A History of Graphic Design Production,
graphic designer and director Levit interviews many graphic designers
and shows the spectacular transformations happening in the graphic
design industry as computers progressively find their way into designers
hands (Levit, 2017). Before the digitalization of the printing industry,
graphic design was an entire industry with many different and
complementary professions (typesetters, paste-up artists,
photomechanical te¢hnicians...) coexisting with complex machinery to
operate. At a macro level, one of the most crucial transformation
brought by computers to graphic design happened off-screen. Because
designers could do everything themselves, most of the aforementioned
intermediary profession disappeared, leaving all the work in the hands
of the designers. This movement greatly empowered graphic designers
as their prerogative grew to encompass layout but also type-setting, the
art of composing text. It also required designers to acquire new skills.
This profound transformation drew a lot of critics from established
designers (Armstrong, 2016). The inclusion of computers in the design

work also led to a drastic acceleration of the work (Levit, 2017).

Figure 17. April Grieman - “Does it make sense?”, in Design Quarterly, 1986

At an individual level, we can find evidence of the influence of digital
tools by looking at the designs produced when design software
applications first emerged. In fact, when personal computers started
democratizing software in the 1980’s, they directly fostered a new
graphic design era. As graphic designer Cece Cutsforth recalls, “you
saw a lot of this whole movement of stuff just being collage, because you
finally could” Cece Cutsforth, in Graphic Means, 1:10:50.

One of the first and most famous examples of this revolution was
produced in 1986, by April Grieman, with the first Macintosh and
MacDraw. She produced a large poster for the 1986 issue of the
magazine Design Quarterly (Figure 17). She found inspiration in the
potentiality of the tool, moving away from the very rigid grid revered by
many graphic designers at that time. Because of the inherently limited

resolution of the dot matrix printer she was using, she accepted and

39

fully embraced pixelization as part of her work. By doing so, she
propagated a graphic design revolution, the ‘New Wave’ design style in
the US (Armstrong, 2016).

In contrast to Grieman's work, graphic designers Erik van Blokland
and Just van Rossum did not see graphic design software as liberating.
For them, there is an inherent limitation in the fact that graphic design
software is a commercial mass product. It is therefore designed to target
a large group of professionals by providing functionalities that are
perceived by software designers as the most desired by the community.
“You can do everything with a program as long as there are enough
people who want to do the same thing. But as it is precisely the task of
designers to discover new possibilities, in their case, the use of a
computer can be more of a handicap than an advantage. [...[In the long
run, this leads to a monotonous computer driven uniformity”
(Middendorp, 2004).

Erik van Blokland and Just van
Rossum were creating

3 etter ? typography in the early 1990's.
Each of their new typefaces
was designed to explore a

].y Better% Specific potential of the

computer: “through our

experience with traditional
- mj typesetting methods, we have

come to expect that the

Figure 18. [s Best really Better, FF Beowolf individual letterforms [...]
font, Erik van Blokland and Just van should always look the same.
Rossum, 1990. This notion is the result of a
technical process, not the
other way around. However, there is no technical reason for making a
digital letter the same every time it is printed” (Middendorp, 2004). To
realize their vision of ever different letters, they had to “hack” digital
graphic design tools. Instead of using a graphical user interface to draw
their Beowolf font, they modified the underlying language, Postscript
(Figure 18). By adding a bit of randomness to the language, Beowolf
became a typeface “that changes while it is being printed”. They called
their method: “What you see is not what you get”. These two valuable
accounts on graphic design during the early age of graphic design
software present their authors reflections on design as a field and on
their own practice. Yet, because their target audience is generally other
designers, these documents provide relatively little information on the

concrete practice of design with digital tools.

40

EMPIRICAL ACCOUNT

Empirical studies are a second way to apprehend designers' relationship
with their digital tools. As early as 1967, Cross conducted a study with
designers to figure out what the design requirements for Computer
Aided Design systems might be as well to evaluate the impact of such
systems (Cross, 1967). At that time, only a few years after Sketchpad's
major breakthrough, fully functional CAD systems were still
hypothetical. To simulate what they might look like, Cross coined a
simulation te¢hnique, close to the “Wizard of Oz” technique (Cross,
2001), in whi¢h human beings pretend to be computers. Because design
software did not exist at that time, practitioners did not know what to
expect from such systems. Cross conducted a first series of 10
experiments, giving a design brief to designers and asking them to
produce a sket¢h concept with the help of a simulated CAD system.
They could interact with it by writing message on paper and showing
them to a camera and they would receive answers on the screen. Cross’s
goal was to observe how they would ¢hoose to interact with suc¢h a
system, hoping to extract requirements for building future CAD
systems. The first results were not positive as using the CAD system
induced stress on the designers part and didn’t result in better designs.
Cross explored an alternative version of the experiment by asking the
system (or rather the human behind the curtain) to create the design
while the designer was judging the results. This version was more
enjoyable for designers but required the CAD system to be able to
design, which, as Cross tested in later experiment, did not work so well
(Cross, 2001).

Years later, in the 1990’s, as design software were becoming more
and more common in design agencies, a few studies investigated their
impact on graphic design agencies and publishing companies. For
example, Bellotti and Rogers (Bellotti, 1997) conducted a six-month field
study to investigate “the changing practices of the publishing and
multimedia industries”, focusing specifically on the multiple
representations at play and on the relationships between computers and
the other artifacts used by designers. They emphasize the “continuous
switching between representations” of the same content and advocated
for tools to better integrate the paper-based methods and “electronic

te¢hnologies”. Similarly, Diane Murray conducted an ethnographic

41

study of graphic designers in 1993 (Murray, 1993). She revealed how
material traces are interwoven with the social aspect of a design studio
life. Designers leave visible their sket¢hes and work in progress so that
anyone can look at them and enri¢h them by critiquing them. In 1995,
Sumner conducted an ethnographic study of user interface designers
working with digital tools (Sumner, 1995). She witnessed the evolution of
tooling environment and practices at a time when software were quickly
appearing and ¢hanging. She realized that designers were creating what
she calls Toolbelts, a collection of several tools supporting their
different practices. Designers did not simply used the tools, but
appropriated them and re-purposed them for specific activities. She also
showed how “a large part of these designers’ job is ‘designing their
design process’ (Sumner, 1995). These different ethnographic accounts
demonstrate the complex interplay between designers, computer tools
and corporate needs. They however focus mainly on the relational
aspects of design work but give us little detail on how concretely
designers work with their digital tools.

More recently Jalal conducted

a a structured observation (Jalal,
D - 2016) with 12 designers to
investigate the different tools
. @ “ and strategies used by
b designers to reproduce a
i poster in Adobe Illustrator.
] - - She discovered that, to achieve
o @ ® the same result, designers

would deploy a wealth of
strategies and tools (Figure 19).
r For example, one of the tasks
@ . o was to cut 12 rectangles into
. N triangles. Among the 12
e Tl signrsshe sened g
task, in (Jalal, 2016) different strategies to achieve
this effect. Even when the
software had built-in dedicated tools, designers tend to rely and prefer
tools that allowed them a more direct manipulation of graphical
elements. Moreover, she was surprised by how often designers would
reflet on their strategies, either considering them as “clever tricks™
strategies that they would reuse in the future, or “bad hacks™: strategies
that they used as a way out but did not consider proper ways of
achieving the result. This lab study highlights the richness and variety in

designers’ individual interaction with tools, even within the same

42

application.

Yet, we still have very little knowledge on how designers design
with and around software. Bellotti and Rogers, in 1997, were already
advocating for more studies to understand how designers work with
design software applications (Bellotti, 1997). We also start seeing
evidence that designers don’t passively use software. With this thesis,
we focus on understanding designers’ relationship with their digital
tools in the wild, focusing on extracting principles that could help us

inform the design of design tools.

THEORETICAL ACCOUNTS

To understand designers relationship with digital tools, we can look at
the different theories that tried to explain it. In HCI, design researchers
often draw inspiration from S¢hon’s influential book: The Reflexive
Practitioner. How Professionals Think in Action to explain how
designers work. According to S¢hon, designers have what he calls
“reflective conversation with the situation” (S¢hon, 1983). From a set of
observations with architects, psyc¢hotherapists and systems engineers,
S¢hon demonstrates how they approach problems as unique cases and
focus on the peculiarities of the situation at hand. They don’t propose or
look for standard solutions. Instead, S¢hon argues that “in the
designer’s conversation with the materials of his design, he can never
make a move which has only the effects intended for it. His materials
are continually talking back to him, causing him to apprehend
unanticipated problems and potentials” (S¢hén, 1983). Dalsgaard further
explores the pragmatist perspective to consider tools in design as
“instruments of inquiry” (Dalsgaard, 2017). He argues that tools also
affedt our perception and understanding of the world and help us
explore and make sense of it. He proposes a framework for
understanding the role tools play in design, with five qualities for
“instruments of inquiry”™: perception, conception, externalization,
knowing-through-action and mediation. The perception of digital
design tools as instrument is also developed by Bertelsen & al.
Originally proposed in the context of musical creation, they introduce
the notion of instrumentness as a “quality of human-computer
interaction” (Bertelsen, 2007). They propose to consider creative
software as instrument in the musical sense, to be able to move away
from the ideals of transparency and usability. They argue that “the

software is comparable to a musical instrument since the software

43

becomes the object of [the composer's] attention and something he
explores, tweaks, observes, and challenges in a continuous shift of focus
between the sounding output and the instrument”. They argue that the
notion of instrumentness can be adapted beyond music creation and be
relevant to describe designers relationship with their digital tools.
Outside of the HCI literature,

the emerging field of media

| |
q and software studies attempts

to explore the underlying

assumptions behind design

software. In 2003, professor of

cultural studies Matthew

Fuller explored the principles

behind authoring software
(Fuller, 2003). Taking

Microsoft Word as an

example, he highlighted the

dissonance between creative

Figure 20. “Default Workspace”, Anthony
Masure, 2013

activities and the task oriented
way in whic¢h authoring
software application were built on. According to Fuller, they embed a
very $pecific notion of work borrowing from Taylorism, where human
actions are decomposed into minimal tasks. He remarks, for example,
that the use of templates and wizards makes it very easy to create
certain types of work-related documents, such as letters and CVs, while
some others (suicide notes, for example) do not receive the same
attention. To better understand the logic behind software, he proposes
to look at the missing features of Word: “For instance, which models of
“work” have informed Word to the extent that the types of text
management that it encompasses have not included such simple
features as automated alphabetical ordering of list or the ability to
produce combinatorial poetry as easily as “Word Art”? (Fuller, 2003).
Focusing on design-oriented authoring software, media researcher Lev
Manovich, differentiated traditional media production and what he
called “new media” production (Manovich, 2001). According to him,
design software exemplify a new paradigm: “the logic of selection”
within menus of actions and filters. He argues that media produced with
current digital design software applications are rarely created ex nihilo,
they are “collage of existing elements” assembled from menus. In his
PhD dissertation about the design of software, Masure shows how new
versions of Adobe Photoshop add functionalities that are in fact specific

automated functionalities, for example, automatically replacing objects

44

on a photograph with a generated background in Photoshop CS5 (Figure
20). He argues that this type of functionalities is meant to simplify the
work of the designer by automatizing it. In doing so, Masure argues that
“the semi-automatic functionalities orient the image towards a state

that is socially and culturally accepted” (Masure, 2014).

Summary

This ¢hapter explores the history of design software from the
perspective of those who created them as well as those who used and
analyzed them. In the first section, I analyze the history of design
software, focusing on how their condition of creation affected their
design. I introduce how design software were produced from three
complementary perspectives. The first one are design software created
as HCI experiment by computer scientists. The second one, in the
context of graphic design, came later and sought to replace traditional,
analog, graphic design tools. The third path are design tools created by
graphic designers themselves and that sought to reinvent what graphic
design meant. In the second section, I explore how designers perceive
these digital design tools and how they work with them. Designers
themselves wrote about the impact of digital tools on their work during
the early days of computers. They demonstrate how, from their origin,
digital tools were both seen as empowering and limiting. Empirical
studies, mostly from an HCI perspective give us other ways to
understand the relationship by observing designers daily work with
computers in more controlled ways or in longitudinal studies. They
reveal the complex interplay between on-screen and off-screen design
work. Finally, I give an overview of different theories that have tried to
¢haracterize designers' work with their tools as well as to understand
digital tools' underlying conceptions from the perspective of media
studies. These three different perspectives all show the intricate
interplay between designers and their tools. However, we still lack an
empirical understanding of designers daily practices with their digital
tools, from very specific tasks to more global endeavors.

45

46

PART 1

STUDYING
DESIGNERS

How do designers work with
digital tools?

If our goal is to create digital tools for designers, we must to investigate
designers’ daily practices with current design software. We need to
understand how designers work with and around digital design tools:
how do they appropriate and adapt them for their specific needs? We
also need to understand to what extent current design tools support
these practices.

Tools play a key role in any given creative process (Bertelsen, 2007)
and it is difficult to decouple and analyze a creative process without
taking into account the different tools that support it. I ¢hose to study
designers’ relationships with their digital tools through the angle of
designers’ practices: instead of looking directly at how designers use
particular tools, I focus on how designers carry specific design tasks and
observe alongside how they integrate digital tools as part of their
Strategies. To do so, I ¢hose four specific and concrete specific design
tasks within overall design projects. In the following ¢hapters, I present
the results of four complementary projects investigating design tasks at
different levels of complexity. I chose them because their different
scales would allow me to look at design tools from very different points
of view and, hopefully, reveal both different and common traits across
design task scales. I first started with extremely specific practices: color

selection as well as alignment and distribution. Both these practices are

47

currently supported by dedicated tools, namely the color selector and
the alignment and distribution commands. Moreover, these two tools
are included in all mainstream design software. To complement these
first two inquiries, I turned to a more complex graphic design task:
layout structuring. This practice has long been associated with a well
established conceptual tool, namely the grid (Williamson1986). Yet, it is
indirectly implemented through several features in common graphic
design software tools. Finally, I inquired into designers collaboration
practices with developers. By definition, this practice takes place at the
verge of design software tools, as designers need to give their design to
developers for them implement it in their own tools.

To study such a wide variety of design activities, I felt the need to
establish a dedicated methodology. Artists and designers themselves
find it difficult to describe their process. This is what epistemologist
Michael Polanyi calls “the tacit dimension” of practice (Polanyi, 1966).
Because I am focusing on the material aspect of the design process, I
designed and introduced a methodology to elicit and document
designer’s practices, taking into account the material aspect of their

work.

48

49

50

Chapter 3

STORYPORTRAITS

A methodology for inquiring
into designers’ practices

In the first part of this thesis, I inquire, document and analyze
designers’ practices in order to inform the design of novel digital design
tools. Artifacts occupy a central position in designers’ practices and this
Specificity guided my methodological ¢hoices. How can we, as design
researchers, best convey the richness of the stories that designers tell
about the material aspect of their design processes? In this ¢hapter, I
introduce StoryPortraits, a technique for interviewing, synthesizing and
visualizing designers’ stories into a form that supports later analysis,
and inspires design ideas. I then report on how we used and adapted

them for analysis purposes as well as for design conversations.

Context

Interviewing people is one of the main methods used for understanding
designers practices and experiences. When we conduct design research,
our goal is generally not only to capture and analyze a phenomenon, but
also to inspire ideas for products or tools. Wright and McCarthy suggest
that user-generated stories (Wright, 2005) can inspire ideas throughout
the design process. According to anthropologist Tim Ingold, “the
advantage of slories, is that they provide to practitioners the means to
say what they know without having to specify it.” p231 (Ingold, 2013). In
our case, we are interested in retaining qualitative details from the data
in a form that supports both analysis and design. In this context,
representing the results of these interviews so as to support both
analysis and design remains an open question. Current Human-
Computer-Interaction (HCI) practice is largely dominated by written
accounts, due mostly to the traditional publication format used in HCI.
Trying to enrich this linear format, researchers have introduced several

methods for documenting different aspects of interviews, including

51

mind maps (Faste, 2012), and video summaries (Mackay, 2000).

Yet, it is generally when documenting their own design process that
HCI and design researchers have developed creative techniques. They
have also developed techniques to visualize the design process itself,
such as previsualization animations (Wang, 2014), comics (Dykes, 2016),
post-hoc annotated portfolios (Gaver, 2012), and design workbooks
(Gaver, 2011) that capture design iterations and inspire new design
possibilities. However, these methods were created for documenting the
design side of projects more than interview results. We lack a concise,
visual-based method of capturing current design processes and using
them as a foundation for design.

When trained as designers, design researchers use sket¢hing as a
fundamental medium of expression, but also as a medium for recording.
In his interaction design sket¢hbook, Verplank (Verplank, 2009)
describes sket¢hing as an essential designer’s tool for capturing
preliminary observations and ideas. As McKim explains, seeing,
drawing and imagining are tightly linked: “Seeing feeds drawing,
drawing improves seeing. What we see is influenced by what we
imagine; what we imagine depends on what we see”. Following this
path, we introduce StoryPortraits, which capture the situated nature of

story-based data through sketches.

CRITICAL OBJECT INTERVIEWS

Interviewing skilled
professionals about their work
can be more complex than it
seems at first sight.
Practitioners know more than

what they can tell. Therefore,

it can be hard to distinguish
Figure 21. -During a critical object between the general method
interview, an interviewee demonstrates the designers synthesized for

different steps in the process, guided by the communication purposes and

artifacts ahand. the specific process they
devise for a particular project. Proposed by Flanagan in 1954 (Flanagan,
1954), the critical incident interview technique sought to colle¢t “direct
observations of human behavior in suc¢h a way as to facilitate their
potential usefulness in solving practical problems”in the context of the

U.S. aviation army They were developed to understand what led up to

52

airplane crashes. This te¢chnique focuses on extreme behavior examples,
rather than “normal” ones, hence the term critical. In the context of
HCI research, Mackay developed a variation of critical incident
technique (Mackay, 2002) for interviewing users and uncovering recent
breakdowns that they experienced in their daily lives. The goal is to
support discover stories about events, objects and times that reveal
information useful for the design of interactive systems. These stories
are then turned into creative opportunities for designing solutions that
closely matc¢h user issues. To interview designers, we adopted this
interviewing technique and adapted it for creative practitioners. In
critical object interview, we use artifacts as focal points during
interviews (Figure 21). Because artifacts are specific and are the result of
a unique process, they make a great entry point for uncovering specific
practices in the form of creation stories. By using concrete artifacts,

interviewers and interviewees gain a shared understanding.

pages of hand-written notes

14 photographs taken)
during the interview e o
1 didrit have an InDesign Document. The process was reversed.

ject for taring ap
s coupere shows whereyou have o cut. cethe book as an architee-
ture,a space. The structur it theabject vel.. Digital notes

1-hour sound recording
LI 1R N |

Figure 22. (D Hand-written notes summarize key story points and quotations as notes and
sketches. @ Photographs show the work setting, tools, artifacts, and sketches, as well as
demonstrations and intermediate steps. @ Video captures demonstrations and

interactions with artifacts and tools. @ Audio records conversations.

They can physically point and manipulate specific parts of objects, tools
and artifacts. When probing for more details, interviewers can ask for
more artifacts as supplementary evidence of the unfolding process.
Taking into account distributed cognition theory (Hutchins, 1995), we
also organize interviews in practitioners’ workshop or office to ensure
that they have most of their documents, objects and files at hand during
the interview. Seeing and manipulating artifacts also prompts specific
memories. Because the critical object interview technique relies on
interviewees’ memory to recall past actions, we focus their most recent
projects and use recent artifacts to prompt rich stories.

We are interested in capturing stories about the creation of physical

53

or digital artifacts. During the interviews, we first ask participants to
¢hoose a final artifact —analog or digital- from their most recent project
and describe the steps they went through to create it. We then probe for
details about the specific steps participants went through to create this
artifact. We also ask for the intermediary artifacts and document
versions produced in the process to probe deeper into the different
Steps. During the interview, we record four types of information: audio
for recording the conversation; video to capture demonstrations and
interactions with artifacts and tools; photographs to document the work
setting, tools, artifacts, and sket¢hes as well as demonstrations and
intermediate steps; hand-written notes to summarize key story points
and quotations as notes and sketches. At the end of each interview, the
traditional way for proceeding is to transcribe the whole conversation.
This approach, inherited from social sciences, does not take into
account the particularities of design research needs and critical object
interviews. Because interviews center around artifacts and
manipulations of such artifacts, transcriptions might result in a too
verbal-oriented account of the interview. We are instead interested in
capturing insights about the design process that will lead us to new
design approaches. Our goal is to preserve the situated nature of story-
based data into a form that supports later analysis, and inspires design
conversations. To support this goal, we propose StoryPortraits, a

technique for synthesizing and visualizing designer stories.

FROM STORY-BASED INTERVIEWS TO
STORYPORTRAITS

Creating StoryPortraits

The primary goal behind the creation of StoryPortraits is to facilitate the
analysis of qualitative data. StoryPortraits are summaries, they provide a
point of entry into interviewees’ full stories but they do not replace the
raw data. [devised the main constraints for creating StoryPortraits.
First, an analysis implies the possibility to confront and compare data.
To improve comparability, each StoryPortrait is created according to a
common Structure. I ¢hoose a static visual representation rather than a
video format, so I could lay out and compare different stories side by
side. I ¢hose a one-sided A4 page to ensure the visibility of all the
information at all time. I also decided to mix different types of
representations in order to highlight different aspects of each story.

First, a centered photograph of the main artifact provides a descriptive

54

icon for the story. It shows the context of the overall story as it typically
represent its final outcome. Second, hand-drawn illustrations provide
didactic representations of each step of the story. They depict specific
manipulations, artifacts and tools in use during intermediate steps.
StoryPortraits also include text, either descriptions of actions and
decisions stated using the interviewee’s own vocabulary or direct
quotations from interviewees, reflective statements and opinions about
the process. They complement visual content with insights and

explanations from the interviewee.

An Inverted Process
creating a book about being strip-searched

7m Lalq +o rie cxrwf
Pe Louk,rqav. L/ peae

o roa

W

(/J)\o.n DLL.S'\énmé‘A-e, Loog

. > e
o Vod o epye / N
S oew gy s =
L N leo% \12‘— \/
ot
) 4LL@AUWM
~ was “'5\’ il as 3 n
LI’\A ll‘ o% AL" f’ae“/ N Mmad
~o SenSe
A+

Figure 23. The resulting StoryPortrait synthesizes key elements from the qualitative data

of figure 22 into a concise story, represented as a set of illustrated steps that fit on a single

page.

Both (Figure 22) and (Figure 23) present the same story. In this story, the
designer was describing her process to create the architecture and the
layout of her book. The story focuses on the material process followed by
the designer to construct her unusual book: one needs to rip it apart in
order to read it. This design ¢hoice echoes the book’s theme: strip
searching. Figure 22 summarizes all the raw data captured for a single
story: hand-written and digital notes from two different interviewers; 14
photographs showing the setting, as well as demonstrations and
manipulations of tools and intermediate artifacts by the interviewee; a
ten-second video depicting one of the manipulations and an hour-long
audio recording of the interview. Figure 23 shows the resulting
StoryPortrait, synthesizing the raw data from figure 22 into a concise

story.

55

StoryPortraits’ adaptable structure

In (Figure 24), I present the overall structure of a StoryPortrait. Like any
design artifact, StoryPortraits must accommodate hard constraints, but
they also leave room for the adaptations required by eac¢h particular
story. Items in blue represent elements with a fixed-position: title,
photograph and identification code. Each serve as identification token:
they facilitate comparison and skimming within a collection. Items in
red represent elements with varying positions: quotations, arrows, text
descriptions and illustrations. They adapt to the data and the
Specificities of the depicted project. Each project is different and

requires its own type of interview.

®

Rules for Dynamic Content:
creating a single page news section

i i)
T
so ave »
ey WIS ==

OBILE, SYSTEME
@ o

- by
L ereadd e .
&mual e W /
Kophic ks 7 T asted

Q@

oter &

O, et
s carmoved

ll

@ RB.2

Figure 24. Structure of a StoryPortrait. (D Title - Context and key design idea. @ Picture -
Photograph of the artifact. @ Quotation - Reflective statements and opinions about the

process. @ Arrows - Indications of possible reading paths, including merging and

branc¢hing. ® Paper size and orientation - A4 landscape facilitates both print and on-
screen use. ® Text description - Actions and decisions stated using the participant’s own
vocabulary. @ Tllustration - Didactic representation of each step of the story, including
intermediate steps, tools and strategies. @ Code - Unique identifier for each participant
and each story. O Fixed-Position Elements - Facilitate comparison and skimming within a
collection. O Varying Elements - Adapt to the data and the goal of the project.

I adapted StoryPortraits for the three different projects we conducted.
For example, StoryPortraits created for the ColorPortraits projects
(¢hapter 4) are vertical. For the interviews on layout (¢hapter 6),
decided to make them horizontal to facilitate their display on screen.

The third project, Design Breakdowns (¢hapter 7), investigates how

56

designers and developers collaborate. To visualize this new type of story,
I structured StoryPortraits as parallel timelines that represent the
exchanges between the two partners over time. The general constraints
of each StoryPortrait provide an overall framework as to how much data
can be selected for each StoryPortrait. Yet, choosing what to represent
and what to omit from a StoryPortrait is a real ¢hallenge. That concern
is also true for textual transcripts for example (Lapadat, 1998), but
StoryPortraits require a high level of summarization that might makes
this task harder. I propose here the few principles that I followed in all
the projects and helped me ensure the overall usability of StoryPortraits
later in the process. To make StoryPortraits useful tools for later
analysis and design phase, design researchers should first and foremost
ensure consistency among StoryPortraits. Therefore, one person should
create all the StoryPortraits of a project. The visual illustrations are the
main elements of a StoryPortraits and should thus be seleéted and
drawn first. The quotes and text description should complement and
further contextualize illustrations rather than simply describing them.
However, more than rigid and definitive rules, I argue that
StoryPortraits should always be re-designed taking into account the

specific goals of each projects.

Reading StoryPortraits

Cobing de lagers

e e vl Gl g el

an addibive procass,
f’
1) t eveals colory ®
o =]

2 = - mn

= = a

® &M -

Figure 25. Levels of Detail. (D Individual Steps use text and sketches to precisely describe
a particular design process. @ StoryPortraits situate each story, illustrate the action,
reveal ¢hronology, and show the final artifact. @ StoryPortrait collections provide an
organized overview of the StoryPortraits. This collection is arranged by participant

(column) and c¢hronological order (row).

57

I designed StoryPortrait with the idea of supporting different levels of
analysis. StoryPortraits can be read at three different levels of detail
(Figure 25): from individual steps to StoryPortraits themselves and also
as a collection of StoryPortraits. Generally separated by arrows and
centered around an illustration, individual steps provide detailed
descriptions of a specific design process. The hand-drawn illustration
describe intermediary artifacts or manipulations. At the StoryPortrait
level, the story is the main focus. The reader can ¢hronologically situate
it and understand its context with the photograph of the final artifact.
Finally, because StoryPortraits follow a prescribed format, they can
easily be assembled as a collection. By spatially organizing them,
readers can compare stories both within and across participants.

A RESEARCH, DESIGN AND
COMMUNICATION TOOL

Automatic Filling

@~
= 06/03/15 19:36:19
ST
\ j Attention, ceci a été créé par Jannuzzi Smith |
. chez qui J'ai travaillé, pas par nous.

See here: l
https:/ fwww.behance.net/gallery/Central-
Saint-Martins-1997-2007 /46612

Hite vsabe T 2auld 3-:0‘43
on e ot Wheeting

by A ok

- sk
N a 06/03/15 19:36:12 RN S
orr e T el sl
Lmr'}zxn{' wou\al A 7:-7»7 LQ e F@L
artosaticaly Woco (
gruy\ ~\'\\m dad ALQJ@ = = . > /I z

N\

flr@; OV\d\
Youcts d-'nt“f
JJMJ\ e
He ér’.J\

Yo the bock
heosgh shyles

Figure 26. Participants annotations on a StoryPortrait. The first clarifies the context of the
story: “Careful, this system was created by J. and I only used it”. The second corrects a

misunderstanding: “No pictures, only text”.

Besides the initial goal of supporting interview analysis, I created
StoryPortraits as a way to easily communicate stories among all team
members, especially members who did not participate in the interviews.
Over the course of the three different projects in which they have been

used, StoryPortraits turned out to be useful in a wider variety of ways. I

58

present below the different ways in whi¢h team members appropriated

StoryPortraits throughout the whole process.

Communication with Interviewees

Because StoryPortraits were created artifacts based on interviews, we
used them to verify and deepen stories with interviewees. We shared
StoryPortraits with study participants. In return, they validated our
findings, provided relevant new context, corrected misunderstandings
and added new insights. Figure 26 shows two annotations from a
participant about a StoryPortrait. The first clarifies the context of the
Story: “Careful, this system was created by J. and I only used it”. The
second corrects a misunderstanding: “No pictures, only text”. One
participant also asked if she could use her StoryPortraits as a way of

presenting her design process to her clients.

Supporting Analysis

During the analysis phase, StoryPortraits provided physical support for
conducting grounded theory analysis (Strauss, 1987). StoryPortraits did
not replace raw data but provided tangible and visual links to it when
needed. StoryPortraits format helped us to compare stories side by side
to extract recurring themes, semantic terms and design space

dimensions (Figure 27).

Comparison

Figure 27. StoryPortraits were appropriated in various ways during the analysis and the

design phase.

We also iteratively classified stories by spatially positioning
StoryPortraits, laying them in space on a table and stacking them in
groups. Taking advantage of the empty back, we used Post-it notes,

59

storing them on StoryPortrait backs to keep track of the current state of
the analysis. We used them to store possible categories and other

annotations.

Supporting Design

StoryPortraits compactness made them self-sufficient and easily
reusable artifacts. We were able to use them during brainstorming
sessions. We used StoryPortraits to inspire ideas for novel design tools.
In fact, many of the proposed tools in this thesis come directly from
Specific practices depicted in StoryPortraits. Brainstorming participants
who had not participated in the interviews used StoryPortraits to grasp
the interviewees’ problems and design strategies. It helped them to

brainstorm ideas for new tools grounded in the participants’ stories.

Communication with diverse Audiences

Figure 28. We used StoryPortrait as support for visually presenting interview results to
diverse audience including scientific and design conferences. While the abstract analysis
is well explained through words, StoryPortraits ground stories to provide a shared

understanding of the story and its implications.

Because StoryPortraits are a visual summary, they can provide concise,
easy-to-understand descriptions of participants’ design activities to
both research and practitioner audiences (Figure 28). We presented
individual StoryPortraits to summarize qualitative results; and included
collections of StoryPortraits in videos to illustrate the analysis of the
three design projects in whic¢h we used them. By playing on different
scales, we could use the overall visualization in video, for example, to

visualize whether each story mapped with a category.

ADAPTING STORYPORTRAITS

StoryPortraits proved to be valuable assets in three different projects.
Yet, because I produced them all, it is unclear whether and how they can

be used by other design researchers. To study this question, I taught this

60

technique during a 45-minute workshop with 33 design researchers at
the ‘PhD by Design’ 2015 Conference.

Participants: We recruited 33 design PhD students who were
participating at the ‘PhD by Design’ 2015 Conference. All were design
researchers but none of them were familiar with the te¢hnique.
Procedure: During the first 15 minutes, we briefly explained both the
critical object interview te¢hnique and the StoryPortrait technique. We
showed examples in a descriptive approach rather than a prescriptive
one. We then paired participants and asked them to interview each
other about their recent use of design notebooks (7 minutes each) using
the critical object interview technique. The goal was to document recent
surprising uses of research notebooks by design researchers. After the
two interviews, we asked each participant to create a StoryPortrait
based on the interview (15min). Given the very limited time allocated,
we asked participants to use pen and paper only to create their
StoryPortraits. We ¢hose to focus on notebook usage because we knew
that virtually all participants would be carrying personal notebooks with
them at the conference and that they had supposedly used them
recently.

Data Collection: We took notes of participants discussions during the
workshop, and at the end of the workshop, we collec¢ted StoryPortraits
of 11 participants.

RESULTS

All participants were able to produce StoryPortraits based on their
interview results, in a very limited time. Because they only had
sket¢hing material, participants could not add pictures to their
portraits. Yet, the resulting StoryPortraits were very diverse in the type
of information they described. The resulting StoryPortraits included
sketéh-only (Figure 29.a) or mostly text representations (figure 29.b). One
example also proposed a non-temporal representation (figure 29.c),
departing from the idea of story. This StoryPortrait instead described
specific strategies in a layered manner. Another interesting example
focused on an emotional representation of the story (figure 29.d),
sketc¢hing facial expressions over time. These examples demonstrate that
StoryPortraits can be adapted by design researchers to represent

different types of data obtained through critical object interviews.

61

DISCUSSION

CARoLiVE HATES
Noteroog FORMAT,

tarecr)
< o (AL !
o2 gt feosteaded ™ WEWK Tuse dape, a‘(wﬂs('

" .,
~dire Cwme
= bided e A shiek edes
- ,(ldr WXTJZL{A ¢

'S ve
N p—\vus
© S

Figure 29. The resulting StoryPortraits included mostly text (1); non-temporal (2);

emotion-focused (3) and sket¢h-only (4) representations.

One of the main ¢hallenges when creating a StoryPortrait is deciding
what detail to include and what to omit. Researc¢hers must conduct a
thorough analysis of the stories before they sele¢t whic¢h details to
include in a particular StoryPortrait. StoryPortraits cannot replace raw
data but will act as pointers to it. Yet, each StoryPortrait should include
sufficient detail to convey the principal story dimensions, as well as
surprising details that can spark ideas for design. The person who
creates StoryPortraits get a greater understanding of the data by
selecting specific moments, quotations and actions.

Traditionally, text has been, and is still the primary medium for
documenting and analyzing qualitative data. With StoryPortraits, in the
context of artifact-focused interview, we propose to give a greater
importance to visual elements as the basis for qualitative researc¢h. In
that regard, illustrations are key elements for StoryPortraits because
they can precisely convey physical manipulations and artifacts. Yet, we
think that representing the steps in each story does not require
extensive drawing skills. Indeed, rougher sketc¢hes can remind

researchers of the incomplete nature of the data they are analyzing. In

62

the design phase as well, when using StoryPortraits as inspiration,
rough sketc¢hes prompt participants to fill in gaps in the story and, later,

encourage new ideas.

Summary

In this ¢hapter, [introduced StoryPortraits, a technique for synthesizing
and visualizing designers’ stories into a form that supports later
analysis, and inspires design conversations. StoryPortrait as a
documentation te¢hnique is tightly connected with critical object
interviews: an interview technique that focuses on the artifacts and
tools used along the process. I describe StoryPortrait original structure
that combines hard constraints such as a fixed format to facilitate
comparison and soft constraints that can be adapted to best render the
Specificities of each story. I then demonstrate how I adapted them for
the three projects in which I used them in this thesis. I also show how to
read them, taking into account different levels of detail, from individual
Steps to StoryPortrait collections. I then report on their usage during
the course of this thesis. Their physical representation facilitated
comparison across stories as well as manipulation and annotation
during the analysis phase. StoryPortraits also enriched the
communication with the interviewee, it inspired ideas for design of
interactive tools, and communication to diverse audiences.
StoryPortraits allowed me to integrate ric¢h, qualitative data from

designers throughout the resear¢h and design process of this thesis.

63

64

Chapter 4

COLOR

How do Designers
manipulate Color?

I conducted this study in collaboration with Ghita Jalal.

To investigate designers’ practices with digital tools, I ¢hose to start
with an elementary design element: color. Desite its apparent naivety,
color has been an enduring source of exploration for designers.
According to designer Hella Jongerius, “[its/ complexity makes it an
endless subject for investigation. No colour is ever exhausted”
(Jongerius, 2010).

Applications for creating

digital media usually include a

Microsoft
A1 Word 2.0

Microsoft
Word 2013

color picker, with the same

recurring features: a two-

Mac OS

oS dimensional visual

7.0

representations of a specified

Photoshop

o color model and controls to

T ‘ select color §paces and
parameter values within that
Figure 30. -ColorPickers did not evolve

) o space. Designers can select
since they first appear in mainstream

software. around 1990. individual colors from the

’ color space, either with the
cursor or by specifying a three-digit code, suc¢h as an RGB or a CMYK
value. Some color pickers also allow designers to select a color from a
pixel in an image, from existing color swatc¢hes or from user saved color
swatches. Desbite being ubiquitous, color pickers have ¢hanged little
over the past 25 years. (Figure 30) shows almost identical layouts and
controls for three common color pickers; the only new features are their
underlying color $paces, which have been updated according to research
in color perception (Faul, 2002) and representation (Meier, 1988).

Of course, one reason that color picker design does not evolve

65

could be that color picking is a "solved" problem - designers use color
pickers seamlessly to manipulate color in digital documents. However,
color theorist and educator Joseph Albers (Albers, 2013) argues that
color is not merely a scientific object that can be abstractly understood
and that tools such as color wheels provide little value for designers
when it comes to work with color. He advocated instead for “an
experimental way of studying color and teaching color” through colored
paper experiments. To address this gap, we need to understand how
artists and designers currently manipulate color in their own practice,

with or without digital tools.

Background

Color is one of the most fundamental and basic elements manipulated
by designers. Yet, color is a deceptively complex notion studied by many
different scientists from various angles. Because color perception is
more complex than directly sensing wavelengths of light, color is a very
complex property to ¢haracterize and manipulate. Psyc¢hologists showed
that the brain interprets signals from individual photoreceptors as
distinguishable, subjectively different colors (King, 2005). The relative
nature of color perception creates many illusions. For example, the
phenomenon of simultaneous color contrast whic¢h causes a color’s
appearance to be affected by the color that surrounds it (Chevreul, 1854).
Taking into account such illusions, designers need to develop a deep
knowledge of color and its effects as they need to craft colors for each
individual artifact that they create.

Color is fundamental to designer’s work, yet it is one of the most
complex to master. Some designers devoted their lives to understand the
role played by color in design work. Itten and Albers, both professors at
the Bauhaus proposed radically different visions of color. Itten was
interested in establishing a practice of color, rather than a scientific
understanding of it (Itten, 2013). According to him, designers and artists
must take into account impression (perception of color), expression
(emotional reaction to color), and construction (conveying meaning),
combining all three to create each desired effect.

Albers argues that color is “the most relative medium in art”
(Albers, 2013) and used practical exercises to teac¢h novice artists and
designers about the nature of color and to explore how it can convey
mood and meaning. Traditionally, this hands-on approach, through
intensive practice and experience, is still the default way for designers

to develop a nuanced understandings of color.

66

Yet, outside from pedagogical approaches, most designers don’t
formally talk or write about their personal practice of color in their
projects. Today, we still know very little about how designers
manipulate color in their daily work and especially digitally.

Study

With this first study, we are interested in how designers manipulate
color in their work, and which tools and te¢hniques do they use in the
process. Although digital color tools are our primary concern, we also
want to understand physical color practices that have evolved over
centuries and may inspire new ways to manipulate color digitally.
Participants: We observed and interviewed eight artists and designers
(4 men, 4 women; age 23-45) who consider color an essential part of their
work practice. Their professions included painter, illustrator, ceramist,
spatial designer, graphic designer, product designer, service designer
and interaction designer.

Procedure: We interviewed participants in their studio or office for
about one hour and a half. We used a critical object interview technique:
we asked participants to tell stories about their use of color in recent
projects and to show us the resulting artifacts. We probed for situations
in which their interaction with color was particularly effective, but also

when it was extremely difficult or impossible.

! }jﬁ: L {

R Pa.;'\ 18)

// T "’7 ;&vq_ra[l‘l Pl'\/_hm‘ .
~mixes Hhat T can

C-DMPMQ L} M7

o e

Figure 31. -Four to Five StoryPortraits per participants depict stories of color

manipulations

67

Data Collection: We recorded audio for each interview and took written
notes. We also recorded video of participants’ interactions with the
objedts they had created, and photographed each artifact and any
related color creation or manipulation tools.

Analysis: We created a StoryPortrait to illustrate each story (see
Chapter 3), with a photograph of the artifact, as well as drawings to
describe each step in the color creation and manipulation process
(Figure 31). We later showed these storyboards to the participants to
verify the details. We performed a grounded theory (Glaser, 1999)
analysis and defined ten different color manipulation categories. We
mapped each story to one or more categories and later ¢hose the five
most representative categories to create the ColorPortaits design space

described below.

RESULTS: THE COLOR PORTRAITS DESIGN
SPACE

We collected 35 individual

Participants 1 1
Artisls-l)epsigncrs Number of é}orles from elght
PL P2 P3 P4 5 D p7 pg |Paicipancs participants. We identified
Sample | N ks 3/ many surprising practices: P2
Palette 7/8 . . L.
Process — | § 'I. s (Spatial designer) explicitly
History i Ill ! lll 4/8 ¢hose an “incorrect” color to
Link 4/8 . . .
- > indicate to the client that the
Figure 32. -Mapping of designers stories final color had not yet been
with the Color Portraits design $pace ¢hosen. Similarly, several

dimensions. One story can map to more participants moved back and

than one category. forth between physical
artifadts and digital colors to reach satisfactory colors. However, the
following analysis focuses on the most common color manipulation
practices, chosen because they appeared in half or more of the
participants’ stories, usually with multiple examples per participant

(Figure 32).

Samples: Picking and Tweaking

One of the expected color manipulations is to sample a specific color.
Surprisingly, only two participants mentioned cases in whic¢h they
selected a color from the color picker and used it without further
modification. P6 (Product Designer) used Adobe Photoshop’s color

picker to recreate a particular blue she had already used in her project

68

for a website, and P4 (Graphic designer) tried to create “unusual colors”
by using Adobe Illustrator’s color picker. Most participants (5/8) selected
colors from a variety of samples, including online websites, color
palettes and photographs, as well as physical objects, suc¢h as ceramics,
textiles but also color standards from catalogs. Occasionally,
participants used the sampled color directly, mostly when they needed
to ensure conversion between digital and material colors, su¢h as when
P4 (Graphic designer) ¢hose a blue from a catalog to ensure that the
printed version of his poster would appear exactly as he wanted.
Choosing color from the RAL catalog was also reassuring for P1
(Painter). He knew that he “could still find the same color in a hundred

»
years .
More surprisingly, in all
Sample remaining cases, participants
Source Color Space Color Sample $tarted by sele&ing a sample
Application = Immediate Post-Tweaking

and then tweaked it before
Figure 33. -Designers pick colors from applying it to the artifact. P7
diverse sources, and often tweak them later. (Service designer) created a

palette using Kuler, extracted
colors from the screen with InDesign, ¢hanged one of them, and then
used the resulting palette in his final design. P1 (Painter) selected a set
of three tubes of oil colors and mixed them in his plate to obtain the
final colors for his painting. When participants used color pickers, it
was only as a step within a much more elaborate color manipulation
process. For example, P8 (Illustrator) used the eyedropper tool in the
Macintosh OS color picker to select a colored pixel from an image in a
magazine. She then decided to purify it by “removing the black”, which
she accomplished by placing the color in CMYK color space and sliding
the black (K) parameter to zero.Similarly, P2 (Exhibit designer) sampled
colors from paintings she had found online, and then used the color
picker to tweak the samples before adding them to her mood board.
Figure 33 shows the gap between the traditional understanding of color
selection as being an immediate color picking from a color space, and
the wealth of sources as well as the tweaking generally applied by

designers.

Palette: Manipulating color relationships

Participants rarely worked with individual colors. Instead, they created
coherent sets of colors, palettes, and manipulated them as a whole. Most
participants (7/8) created related sets of colors rather than separate
individual colors. In fact, it is extremely rare that a project would

involve only one color. Thus participants wanted to create coherent sets

69

of colors, according to the ¢haracteristics that they specify. For example,
P2 (spatial designer) took photographs of several colored objects to
experiment with palette creation. For her, “each picture is a different
palette”. Although the pictures contained the same objects, their
positions differed, which resulted in different color compositions and
effects. Participants were very concerned with how different colors
appear when used together. For example, P8 (Illustrator) had a restricted
palette of one blue and one red for a set of book illustrations. She
bought a variety of blue and red pencils and tested how they looked
together, before making a final ¢hoice.

Participants also wanted to

Palette apply a single color ¢hange to
b Haed ’ Riesizable affect an entire palette. For
Layout Juxtaposed e————— Layered

example, P8 (Illustrator)
Position Static =—— Dynamic
Manipulation Individual ————— Group created one palette and then
Context Independent ~——————— Dependent modified the hue of each color

. by the same amount, whic¢h
Figure 34. -Designers adjust size, layout
generated a new palette.

and position of one or more colors, ideally
in context. Simultaneously adjusting one

property for the entire set of
colors allowed her to maintain a related, harmonious color palette.
Participants often wanted to manipulate spatial dimensions and
contextual ¢haradteristics of each palette to control color relationships.
Unfortunately, color pickers do not allow designers to resize or reshape
color swatches, nor do they let designers explore color variations in
context.

Figure 34 defines the five above mentioned manipulations of color
palettes, including: comparing swatches of different sizes, layering or
repositioning colors, manipulating groups of colors as a unit, and
interacting with color independently, suc¢h as within a color picker, or in
the context of the remaining colors. Current color pickers consider
colors as independent elements and do not provide functionalities to

support selecting and manipulating colors in the context of other colors.

Composites: Combining Colors with other effects

Colors are affected both by their surrounding colors and by other
adjacent elements such as textures. Participants also considered these
aspects when creating and manipulating colors. Half of the participants
(4/8) needed to couple color with other elements, such as texture and
lighting effects, and manipulate the resulting combination. P2 (Exhibit
designer) described the screen as “a flat surface that does not always

transpose the richness of the physical world”. To reproduce the yellow

70

texture of a tablecloth on the screen, she scanned it and used the
resulting image to provide the effeét she wanted. For her, the color did
not exist without the underlying texture. P8 (Illustrator) used Photoshop

to manipulate a color and a texture that she paired together in several

illustrations.
In order to do so, she had to
i manipulate the two
. Color & Composition
Creation S —_ N components separately each
Manipulation = Color «——— Composite time. P1 (Palnter) Created a

Special preparation that added
Figure 35. -Designers combine and . A
a particular type of light

decompose colors with disparate
components. reflection to each color. He
considered this combination
of color-plus-reflection as his personal signature. Figure 35 defines the
two activities related to color composites, including: composing and
decomposing multiple components, and manipulating these
components individually or together. Color tools are designed to
manipulate properties based on pure colors. They do not support
creation of complex color-texture composites, nor can designers
manipulate individual elements as separate subcomponents that can be

assembled and disassembled as needed.

History: Interacting with past actions

Participants often performed similar tasks again and again, or revisited

old artifacts when creating new ones. They needed to remember both

how they initially created colors and also how the colors were applied in

the final artifact. Participants were also interested in intermediate steps,

which would let them explore alternative paths without starting over.
Half the participants (4/8)

History sought ways to save

. Source . . .
Context Coor ——__ e meaningful intermediate steps
Steps Final ——————— Intermediate in the process Of Creating a

final color. For example, P5
Figure 36. -Designers record color sources pie,

and targets, as well as intermediate steps. (Ceramist) kept samples of

every color she created over
the past decade, as well as “recipe” notebooks containing personal
names, codes of the different mineral used and the numbers of trials
needed to obtain each color. A few participants (2/8) also kept track of
source colors. For example, P7 (Service designer) saved images he
downloaded from the internet: “T use these images to extracl colors for
my palettes and I keep them for later reuse”. Other participants saved

their final palettes with the resulting artifact. For example, P4 (Graphic

71

designer) placed all the colors he had tried as rectangles in the unused
$pace beyond the margins of his Illustrator document, and saved them
as part of the final document. Some participants (2/8) wanted to return
to a previous use context, with both the initial color source and the final
artifact. For example, P5 (Ceramist) used several previously created red
tiles to develop a nuanced set of three slightly different red tiles for
another client. Figure 36 defines two activities related to history,
including: preserving source materials and final artifacts, and capturing
intermediate steps in the selection process. Current color pickers
support only the most limited form of history. Although many provide
slots for recording previous color ¢hoices, these colors are devoid of
context about their sources, the sequence of steps necessary to recreate

them, and the final result.

Process: Revealing activity over time

Sometimes participants who create physical objects observed color
¢hanges that revealed useful information about interim states. Unlike

previous dimensions, color here is not the focus, but rather a means to

an end.
Half the participants used
Process color to indicate how they
Manipulati Direc — i .
FRREE et fodirect created an artifact or the
Role Goal ~——— Means . .
amount of time §pent on its
Figure 37. -Designers react to naturally creation. P6 (Product

occurring ¢hanges in color to indicate Designer) observed colors to

progress. determine important details
about her design process: “Just by looking at the pot, you can see how
many layers I used”. In another project, she heated metal ¢hairs, whic¢h
caused the metal to ¢hange colors. She stopped the process when she
liked the color and applied a coating to stabilize the color. Here, she
manipulated color indirectly though ¢hanges in temperature. This
suggests an interesting opportunity for electronic color manipulation
tools, in which color ¢hange reveals the underlying ¢hanges in an online
activity. Figure 37 defines two activities related to the color ¢hange
process, including: manipulating color that results from other activities
and revealing on-going processes. This dimension is not taken into
account by current color tools as colors are usually completely separated
from the objects they are applied to. Changes applied to the object itself
won't affect its color.

72

Testing with non-color specialists

Even if our main goal is to create color tools for designers, we are also
interested in testing the broader applicability of the Color Portraits
design space. To do so, we interviewed eight scientists and engineers (6
men, 2 women, aged 23-45), from the following disciplines: biology,
bio¢hemistry, computer science, data visualization, game developing,
virtual reality engineering, automatics and information theory. Each
interview lasted approximately one hour, in the participant’s office. As
before, we asked participants to show us recent artifacts they had
created and to describe the steps they followed to incorporate color. At
the end of the interview, we asked for additional stories related to each
design space category. We recorded audio for all interviews and

recorded video of participants’ interactions with the resulting artifacts.

RESULTS AND DISCUSSION

We collected a total of 34

o cipants stories, three to five per
cientists-lingineers Number of
P9 P10 Pil P12 PI3 P4 P15 PI6 I::]'[:TK:‘: participant‘ (Figure 38) shows
Samples = I I ¥ e that scientists and engineers
Palettes] (RN . 7/8 L.
Composites | 5/ have similar color
History ——1-# ¥ o manipulation requirements as
Process (B | N [1 n /8 . .
artists and designers. We saw
Figure 38. -Mapping of scientists and similar proportions of

engineers’ stories with the Color Portraits a&ivities for both groups and

design space dimensions. One story can were surprised at how
map to more than one category. .

important these second group
of participants consider color manipulation. For example, P10
(Bio¢hemist) organized a full afternoon workshop with his colleagues to
¢hoose colors to establish color standards to represent different
molecules. P15 (Information theorist) found ¢hoosing a color for a figure
very time-consuming: “I might shend half an hour to find the right

amount of blue in my color”.

73

Samples

Scientists and engineers, like artists and designers, actively sample and
then tweak colors (7/8). For example, P10 (Virtual reality engineer)
looked for images on the Internet to find inspiration. He sampled
several colors as initial references and then adjusted them to create his
own set. P13 (Data visualization researcher) wanted to visualize data
about cycling teams, so he began by sampling an image of the team t-
shirt. He then modified the colors to make them easier to distinguish

from each other.

Palettes

Although none of these participants referred to a palette explicitly,
almost all (7/8) interacted with sets of colors. For example, P9
(Programmer) created a palette for a user interface design by selecting a
few primary colors. He then programmed a script to add a small amount
of black to all of his colors to increase legibility. P12 (Geologist) scanned
an image from a microscope image of a rock, using polarizing paper to
¢hange all colors simultaneously: “This lets me preserve the

relationships among the colors’.

Composites

Many participants (5/8) were interested in achieving particular effects

that required a combination of color and a second element. P10 (Virtual
reality engineer) combined a grass texture with green to create the grass
for his 3D space: “I played with the combinations to get this effect with

my 3D rendering software.”

History

Over half the participants (5/8) kept track of interim steps in the context
of previous color manipulations. For example, P14 (Game developer)
created folders of colors where she recorded her color ¢hoices and later
reflected on them, in the context in which they had been created: “I look
at the colors, dates of creation and names I gave the colors to see how

my perception of these names changed over time.”

74

Process

Interestingly, almost all scientists and engineers (7/8) used color to
indicate the progress of an on-going activity. P9 (Programmer) used
highly distinctive colors for his Java classes in order to quickly ¢heck the
complexity of a piece of code: “If the class has many colors, it means
that it has a large number of dependencies and it will be hard to test”.
Similarly, P16 (Information theorist) used a colored pen to mark
variables in her equations, which helped her communicate and follow
the evolution of her calculations.

In summary, seven participants described color-manipulation
stories related to at least four of the five dimensions. This suggests that
the color manipulation activities we identified for artists and designers,
for whom color is a major focus of their work, also apply for scientists

and engineers, even if color is more of a means to an end.

Analysis of current color tools

Designers and artists manipulated color in creative ways, along
dimensions expressed in the Color Portraits design space. In the
interviews, we observed how designers’ process usually went beyond
merely using color tools. Here, we analyze two existing color tools to see
how much they support the five key designers’ activities: Photoshop
color picker and Adobe’s Color CC. The Adobe Photoshop color picker
is embedded within a professional application designed to help artists
and designers edit photographs or illustrations. Adobe Color CC is an
online tool with a large library of themed palettes contributed by users
as well as an interactive tool that incorporates color theory to generate
new color palettes.

Both Photoshop color picker and Color CC support sampling well
as designers can not only sele¢t from predefined sets of colors, use the
eyedropper to sample from other sources and also modify the sampled
color, even if only through a set of color space parameter sliders. While
this first dimension is well represented in both tools, the other
dimensions receive far less support. Photoshop color picker does not
support the creation nor the modification of color palettes. Color CC
lets designers select palettes from a wide crowdsourced library.
However, while designers can ¢hange one color to affect the rest of the
palette, they cannot control their spatial arrangement. Moreover,

although they can take advantage of pre-defined color rules to create

75

certain types of palettes, su¢h as complementary colors, they cannot
define their own rules to determine and manipulate their own
personally defined color relationships. Although Photoshop’s color
picker and Color CC both allow designers to save colors which they can
reuse later, neither preserves context, nor the steps in the creation
process. Neither tool supports creating or disassembling composites of
multiple colors and textures, nor do they support the use of color to
reveal activity.

Although they do not comprise an exhaustive set, these three color
tools are widely available and represent the most common color tools
available to designers. This analysis reveals that color tools are primarily
designed to support color selection. They look at the end goal of the
design task, which is to select a specific color. They then propose an
interface that maximizes the amount of colors from which designers can
¢hoose and minimizes the actions needed to attain any specific color.
This is why color selection tools revolve around color $paces. Color
Spaces encompass all possible colors, the interaction consisting in
navigating this potential space. In fact, it is as if color tools creators
considered that designers have a specific color in mind of which they
want to retrieve the numerical value. They created tools that focus on
the efficiency of color selection, rather than the exploratory approach
used by designers. In the interviews with designers, we have seen that
this imagined “user scenario” does not happen. Instead, designers
continuously invent processes and recipes to reach desirable colors. We
can see that many gaps remain in the Color Portraits design space,

suggesting opportunities for the design of innovative color tools.

Summary

In this ¢hapter, I presented a study investigating designers’ practices
with colors. We conducted a series of 8 critical object interviews with
designers and artists who manipulate both digital and physical colors.
Using StoryPortraits, I depicted 35 individual stories that showed the
breadth and the extremely detailed color manipulations performed by
artists and designers in their work. From these stories, we created the
Color Portraits design space to ¢haracterize five key color manipulation
activities: sampling and tweaking individual colors, manipulating color
relationships, combining colors with other elements, revisiting previous
color ¢hoices, and revealing a design process through color. We tested
the applicability of the Color Portraits design space with scientists and

engineers who also performed the same type of color manipulation in

76

their daily work. Using the Color Portrait Design Space as a reference,
we then analyzed two color tools dedicated for designers. We found that,
apart from sampling, they poorly support designers’ color manipulation
activities in their current form. I argue that this is due to a lack of
understanding of design activities as exploratory-driven rather than

efficiency-driven.

77

78

Chapter 5

ALIGNMENT

How do designers Align and
Distribute Graphical Content

I conducted this study in collaboration with Marianela Ciolfi Felice. She

conducled the interviews and I collaborated on the analysis of the results.

Aligning and distributing
x «“ objects in space are two very

¢ Align .
common sotrategles for

Align Objects:

- - designers to organize content
in documents. From a Gestalt
Distribute Objects:

Theory perspective, alignment

is a concept that produces
rouping and organizes

Figure 39. -The alignment and distribution g P g. J

information to create order

(Wagemans, 2012). Virtually all

command panel in Adobe Illustrator

design software applications propose the same tools for aligning and
distributing objects: a set of 12 dedicated imperative commands (Figure
39). Ea¢h command performs the alignment or the distribution of the
selected objects based on their reference point: left, center and right;
top, middle and bottom. As for the color picker tool studied in Chapter
4, commands as we know and use them today were introduced in the
very first versions of authoring applications, su¢h as MacDraft,a CAD
application for the Apple Macintosh, released in 1984. More than 30
years later, only the appearance of icons differentiates this early version
of the alignment commands. They are also ubiquitous not only in
design-dedicated software but also in general authoring applications.
Over the years, HCI researc¢hers proposed several novel alignment and
distribution te¢hniques, suc¢h as GACA (Xu, 2015), a “group-aware”
alignment technique to enhance designers practices. Yet, we still know

very little about how designers handle this task in their daily work.

79

Background

A few previous studies highlighted the problem of positioning objects
in contexts other than design. For example, Janacek et al. (Janecek, 1999)
reported that an expert Colored Petri Net designer spent over 60% of his
time in a basic design task performing tedious and repetitive operations
to reposition graphical objects. Mackay et al. (Mackay, 2000) reported
that “expert users seriously underestimate how much time they spend
on minor manipulations of the tool, especially those involving layout”.
These petri net designers estimated that they spent approximately 5% of
their time on graphical repositioning, but video records showed that
they actually spent closer to 30%. However, we do not know how
designers and regular users of authoring applications perform
alignment and distribution in their work. To what extent do current

alignment and distribution commands support their existing practices?

Study

Participants: We interviewed twelve regular professionals (ages 24-38,;
four women) who use Adobe Illustrator, Adobe Photoshop, Sketch,
Inkscape, Gimp, Corel Draw, Microsoft PowerPoint and Prezi in their
daily work. Half the participants (6/12) were professional designers (UX,
product, and web designers); the other half included a software
developer, a design student, a biologist, a political scientist, a geologist,
and a computer scientist.

Procedure: We used a critical object interview te¢hnique: we
interviewed participants in their offices or homes and invited them to
show us recent projects in which they had to lay out graphical objects.
We asked them to recall specific problems, focusing on breakdowns
(interactions that led to unexpected or incorrect results), innovations,
and appropriations (the personal strategies they used, especially when
dealing with breakdowns). We also encouraged them to show us these
problematic tasks, and observed their reactions to mismatches between
their expectations and the system’s behaviour.

Data Analysis: We performed a Grounded Theory analysis (Glaser, 1999)
to classify the collected stories. We identified specific issues in each
story and cross-¢hecked them with the other stories. This provided us
with a list of the issues faced by participants when aligning and

distributing graphical objects.

80

RESULTS

We were surprised by the diverse strategies devised by participants to
achieve desired alignments and distributions. Whereas all participants
used the dedicated commands, most participants (8/12) also aligned and
distributed objects “manually”. For example, they first used the mouse
to roughly position the object, and then used the arrow keys to visually
fine-tune it. Participants viewed alignment and distribution commands
as “automatic” operations, and treated everything else as “manual”
operations, including using rulers (8/12), making visual comparisons
within a zoomed-in area (7/12), and typing in coordinates (2/12). All the
designers and one developer (P12) made extensive use of the keyboard to
align and distribute objects, not only because it is faster, but also
because “there are too many options and menus” (P3, UX designer) that
clutter their screens and make them “lose focus” (P2, web
developer/designer). Most participants (8/12) used and appreciated the
automatic guidelines that appear in some graphical editors, even though
they are not persistent.

We identified three key issues that participants faced when
positioning objedts using current graphical authoring tools. We define
them below and we show the different strategies used by participants to
overcome these limitations
Lack of persistence: Alignment and Distribution Commands do not
keep objects aligned or distributed, forcing participants to realign or
redistribute them after every minor ¢hange.

Lack of control: Participants often cannot predict the results of their
commands. Participants also lack tools for making and preserving
minor corrections or ‘tweaks’.

Lack of generality: Participants are limited to horizontal and vertical
layouts when aligning and distributing objects.

Persistence

With traditional tools, applying an alignment or distribution command
moves the objects but leaves no concrete trace of its use. Any ¢change to
one of the objects will likely require the designer to reapply the
command. This lack of persistence leads to the repetition of actions and
hinders the reuse of previous results. For example, P5 (web designer)
aligned two objects vertically: “I wanted to move one to the right. I wish

I could do it only in the horizontal axis, instead of being worried about

81

introducing an offset in the vertical one. Some constraints are obvious
to me but they are not captured by the tool, so it gives me more freedom
than I need, and I have to realign”.

The lack of persistence is closely related to the need to support
repetitive, rather than just one-time tasks. Optimizing repetitive tasks
currently requires some planning, such as creating auxiliary structures
or guides, which is not worth it for most one-time tasks. P9 (computer
scientist) explained that “you need to have an idea of how the objects
should look, and only then align with the commands, not the opposite;
so you either plan everything in advance, or you reapply everything you
did’. P3 (UX designer) explained that “for a one-time thing I do the job
manually, but for a frequent task I find a tutorial to learn how to solve it
with tools’.

To counter the lack of persistence, participants created “hacks”
using other tools. For example, half the participants reused a previous
alignment or distribution by duplicating the objects and replacing them
with new ones, even though P9 (computer scientist) considered this to
be “¢heating”. P7 (political scientist) and P10 (biologist) wanted to know
the distance between two graphical objects: “The grid is not enough, I
cannot count the squares.” (P7). P8 (geologist) needed to add tags to
several pictures at the same position relative to their frames: “I wish I
had a way to declare this to the program”. P9 (computer scientist)
wanted equal spacing among items and created an invisible spacer - a
transparent rectangle with the same height as the space he wanted to
duplicate. P11 (design student) created her own spacer by “cutting the
distance between two objects and pasting it between the rest of them”.

Control

The icons used to depict alignment and distribution commands appear
intuitive, but participants still had difficulty predicting the results. P1
(designer) was trying to distribute objects and the outcome was not what
he expected: “It is not clear what will be the effect of the command,
even if you have some experience with the tool. It is normal to have to
undo and retry, sometimes it does not do what you want. See? This does
not make sense to me. I am not even sure if I ¢hose the right command”.
P9 (computer scientist) wondered: “I am aligning with respect to what?
Does the selection order matter?” P10 (biologist) had the same problem
with distribution: “What is the reference? Is it the width of the page?”
P9 (computer scientist), after successfully aligning a group of objects
inside containers, added: “Now I was lucky, sometimes I have to undo
and repeat the action, because it moves the element or the box. I have to

be always alert, and do it in a precise mechanical way, always thinking

82

of making the selection in the correct order”.

Current command-based systems do not reveal how their
algorithms work. Few highlight the alignment’s pivot (the object used as
a reference to align other objects to it) or the object’s anchor (the
reference point within an object used for alignment - usually the
objedt’s center or a side), and even fewer let designers ¢hoose them.
Designers cannot pre-determine if or how the selection order will affect
the output. Half the participants did not feel in control and were
frustrated by the commands, which they described as ‘awkward’ (P12)
and ‘too automatic’ (P4, P5).

PS5 described annoying limitations of the tool: “There is a problem
with hierarchy in layers and groups. Sometimes I cannot directly relate
an object to one in another group, because they do not see each other; I
have to ungroup and regroup so that the tool lets me align them”. These
breakdowns caused P10 (biologist) to completely lose faith in
commands: “Align vertically always makes a disaster. I do not trust it, so
I do not trust align centers either”. P12 (developer) also felt the loss of
control: “I have more trust in moving things manually because I find it
more practical, I can put them exactly where I want’.

Alignment and distribution commands use the geometric center of
objects, but sometimes this does not match the object’s visual center.
Seven participants had recently used commands to align what they
referred to as ‘irregular’ or ‘weird’ shapes, including icons, logos and
text within a graphic design. All were forced to fine-tune the result to
make it aesthetically pleasing. We call such edits tweaks. For example,
P3 (UX designer), P5 and P6 (web developers/designers) swit¢hed to a
grid view and manually arranged each object’s position. To our
knowledge, current tools completely ignore such tasks, so designers
must perform them manually after each use of an alignment or
distribution command, therefore increasing the need for repetitive
actions, preventing output reuse and increasing the likelihood of errors.

When Participants felt that they could not trust the alignment and
distribution commands, they prefered to rely on other means. For
example, P2 (web developer/designer) needed to ensure equal spacing
among a series of objects: “I do not understand the distribution
commands, so what I did was to c¢heat. I put one object next to the right
side of the first one, I selecled it and then pressed shift and the right
arrow. I counted how many times I pressed the arrow, this gave me a
kind of procedural measure of the space between the objects that I
memorised and then repeated for the rest”. P10 (biologist) used a similar

procedure, because “It is safe”.

83

Generality

Sometimes designers want to align objects along a diagonal, or shapes
other than a straight line. They may also want objects, such as the
arrows in a diagram, to remain parallel in spite of future edits. However,
most current tools are limited to horizontal and vertical alignment and
distribution.

Some participants came up with clever tricks to align complex
graphical elements. P5 (web developer/designer) puts his icons and
labels inside transparent square containers that are larger than the
icons, which he keeps aligned: “The white space between an object and
its square generates the illusion of space between two icons, but in
reality it is a fake space, the containers are next to each other, so it is
easy for me to locate them in regular positions. I have 100% control over
what happens”. P9 (computer scientist) described a similar strategy:
“Look how I c¢heat. I create a fictitious box with a certain alpha, but not
transparent, with a distinctive colour, very different from the
background so it highlights and I remember it is not a real object. Then
I center each icon in its box, I group each pair, and I align the boxes”.

P12 (developer) had to align text and images at different angles. Due
to the lack of tool support he had to ¢heck visually if they looked right.
P5 (web designer) was working on a wheel-shaped menu, with icons in
the center of each slice. He had to create an “icons guideline”, a layer
with a grey circle that served as a visual guide to place the icons. This
guideline can be seen as a reification of the relationship among the
icons in the circular menu, i.e. a concrete object he could interact with.

P3 (UX designer), and P11 (design student) used similar strategies.

ALIGNMENT AND DISTRIBUTION ARE
RELATIONSHIPS, NOT ACTIONS

Participants aligned and distributed graphical content in a wide variety
of ways. In the interviews, we observed how participants’ process
usually went beyond merely using alignment and distribution
commands and reveal a profound mismatch between the expected
designer behavior implied by the tools and the actual designers’
practices. In the imperative command paradigm, alignment and
distribution are seen as actions, rather than relationships. Commands
are extremely efficient mechanisms for aligning once but do not provide

any support for long-term and evolving alignment and distribution.

84

Moreover, they are binary i.e., either something is aligned, or it is not.
Our study shows that for designers, rather than isolated actions,
alignment and distribution are a type of spatial relationship among
graphical elements. These spatial relationships are flexible, they can
evolve over time and can interact with other alignment and distribution

relationships.

Summary

In this ¢hapter, we investigated designers’ alignment and distribution
practices, the minimal design task provided a perfect starting point for
investigating designers’ practices. Moreover, they are currently
supported by one of the the oldest tools in graphical authoring software:
alignment and distribution commands. Despite the apparent simplicity
of this recurring design task, our critical object interviews with 6
professional designers and 6 regular users revealed its inherent
complexity. These stories allowed us to understand the current
limitations of the alignment and distribution commands. We
categorized the resulting impediments in three groups and we also
analyzed the different strategies used by designers to overcome them.
First, alignment and distribution command lack persistence, making it
extremely tedious to reuse previous alignments and requiring designer
to reapply commands for ea¢h modification in their composition.
Second, commands lack control: designers generally don’t feel in control
when applying the command, because they cannot visualize the
underlying algorithm. Similarly, the binary nature of command prevents
them to perform necessary tweaks in their composition. Finally,
commands lack generality. They only provide a fairly limited set of
option that rely on vertical and horizontal layout, leaving aside the far
more complex compositions that designers create. We argue that
imperative commands embody one-off actions, whereas designers
perceive alignment and distribution as relationships among graphical

objects.

85

86

Chapter 6

LAYOUT

How do designers structure
layouts?

I conducted this study in collaboration with Ghita Jalal. We ran the interviews
together and I then performed the analysis presented below.

After studying two specific design tasks with corresponding
dedicated tools, I ¢hose to investigate a more complex design task:
layout creation. One of the main tasks of professional graphic designers
is to organize graphical and textual content on the page. When creating
magazines, books and advertisements, professional graphic designers
traditionally use structures called grids: intersecting lines that partition
the page to lay out content. The grid is designed to organize print
content when the graphic designer knows, in advance, all of the
¢haradteristics of the final design, including content length, page size,
binding, etc.

Traditional Print Today’s Diverse Media

Figure 40. -Josef Miiller-Brockmann’s grid for the Végh Quartet Poster in 1958 is based on
a fixed print poster format. But is the grid enough to support today’s diverse media and

formats?

Traditional desktop publishing applications loosely base their

structuring tools on the grid, e.g. guides, rulers, and masters. As we have

87

demonstrated in Chapter 2, embedded in these tools is the assumption
that output is printed: fixed and static. However, as interactive devices
proliferate, so does the demand for layouts that display the same
content into variable formats (Figure 40). In addition, new types of media
have appeared, such as websites, blogs and online magazines. In these
new media, designers need to provide a template without knowing
beforehand the content that will populate it. Continuous information
streams and media diversity add new constraints and opportunities for
$tructuring visual content. Yet layout structuring functionality did not
evolve in desktop publishing software.

We are interested in investigating how designers are responding to
this paradigm shift. How do they create layout structures and processes
that solve the problems of the contemporary graphic design landscape?
Do they go beyond the grid? How are current digital tools supporting

their practices?

Context

Few studies focus specifically on how graphic designers work with their
tools. Murray (Murray, 1993) sheds light on social aspects of design
practice, such as the importance of shared feedback among team
members. Newman and Landay (Newman, 2000) focus on practical
aspects of the web design process and analyze the role of several
intermediate artifacts used by web designers, such as sitemaps and
mock-ups. Herring et al. (Herring, 2009) demonstrate the importance of
using examples both as inspiration and as starting blocks in creative
design. These studies highlight the social and material aspects of
graphic design, whereas we are more interested in practices developing
in the earliest phase of laying out content.

Danis et al. (Danis, 2000) show that designers begin by broadly
exploring multiple alternatives. Cross (Cross, 2002) points out the
importance of correctly framing the problem in the early design phase
in order to define a set of “first principles”. For multimedia designers in
particular, Bailey et al. (Bailey, 2001) state that, “the early design process
begins with the exploration of content structure”. These studies
demonstrate the critical role that structuring plays in the early phases of
design, but offer few grounded examples of how designers actually

accomplish this.

88

Study

Following the same methodology used to investigate designers’
interaction with color (Chapter 4), we are interested in the strategies,

tools, and techniques used by professional graphic designers to create

and structure layouts for both print and digital media.

I

o)

Figure 41. -We interviewed 12 graphic designers in their studios (a). They demonstrated

how they created layouts for both print (b) and digital media (c). They also showed us the
physical (d) and digital (e) artifacts they used to create these layouts.

Participants: We interviewed 12 graphic designers (5 male, 7 female),
age 24-50, with 4-25 years of experience (mean=10,5) who work in
various environments (freelance, studio, agency) and create layout for
digital media (2), print media (2) or both (8).

Procedure: We interviewed participants in their studio or office for
about two hours (Figure 41.a). We asked them to show us recent projects
where they had to create a layout (Figure 42b-c) and the different
artifacts used to develop it (Figure 42d-e). We asked them to tell us the
story of how they made layout decisions for ea¢h project and how they
obtained the final results. We probed for situations when they felt that
creating the desired structure was straightforward, but also when it was
¢hallenging.

Data collection: At eac¢h interview, we recorded audio and video of the
participants’ interactions with the documents they created, and we
photographed each artifact and any related layout creation or
manipulation tools.

Analysis: We analyzed the stories and depicted them as StoryPortraits:
each includes a photograph of the artifact, as well as quotes and
drawings that describe key steps in the process of designing a particular
layout. We later showed the StoryPortraits to the participants to verify
the details. Next, we performed a grounded theory (Glaser, 1999)
analysis: we looked for emerging themes in the stories. We then went
back to the stories to map them to eac¢h theme and organized the

resulting categories into a descriptive framework.

89

RESULTS AND DISCUSSION

We collected 52 specific layout creation stories from twelve participants
(3-5 stories per participant). We found that seven participants use grids
to structure their layouts. For example P1d defined her website
structure using guides to create a grid. Some guides establish the
margins that she takes into account, while others act as markers to
guide content composition and alignment. When the first page is
complete, she duplicates the file to reuse the guides with other pages.
We also found that many designers go beyond grids to structure their
layouts, establishing rules that describe how print or digital content
should be laid out. PSb described a typical example: She decided to use
only multiples of 42 to create the layout of the novel the Hit¢hhiker’s
Guide to the Galaxy. Her layout clearly extended beyond a basic grid
structure, since it required her to incorporate higher-level rules to
manipulate these numbers and map them to the parameters that control
the book’s layout, including the CMYK color values, font sizes, line

widths and grid dimensions.

Graphical substrates

Concept G hical Sub Spatial
patia
comternt. .\ Graphical Substrates

/ relationships N Temporal
Context among properties

Figure 42. -Participants establish graphical substrates based on properties extracted from
concepts, content and context; mapping them to patial and temporal properties.

We found that all participants begin by establishing what they call
“systems”, “principles”, “architectures”, “structures”, “rules” or
“constraints”, or what we call graphical substrates. They share a
common characteristic: they guide the layout, but rarely appear in the

final result. By analogy with the substrates on which some living

90

organisms grow, graphical substrates are the underlying structures onto
which the designer “grows” a layout. As with living organisms,
¢hanging the substrate usually affects the layout as well. The term
substrate has also been used in another creative context to describe how
music composers represent their musical ideas (Garcia, 2012). Although
a five-line musical score provides a standard structure comparable to a
grid, many composers invent their own, innovative musical
representations: “Although musical notation was important for all four
composers, each composer designed his own personal musical
substrate” (Garcia, 2012). We developed a simple descriptive framework
that identifies the types of inputs and outputs used by participants to
create and interact with graphical substrates (Figure 42). Participants
based their graphical substrates - or substrates for short - on three
main types of inputs: concepts, content properties and context
constraints, such as page dimensions. They then map these inputs to

$patial and temporal output properties.

INPUTS BASED ON CONCEPTS

Almost all participants (11/12) created substrates that used concepts as
input, like P5b’s use of the number 42. Some inputs are specific, such as
numbers, others are more abstract, such as “ambiance”. For example,
P4b created typographic landscapes by preserving only one letter, “c”
from a text. She erased all the other letters with a drawing application

and preserved the positioning of the “c”s, creating an abstract landscape

of letters for eac¢h cover.

INPUTS BASED ON CONTENT

Creating a Hierarchy
only with Repetitions and Colors

| set myself a

constraint:

using only =
HELVETICA . | also used color
n 12pt © Fanette Mdllicr

to codify elements

\ J{‘i:e subtitle N

> itle subtitle iti

. tite softifle — the 'ePet,ltlonl /

repeat 5 times title . creates visua

for a title title repeat 3 times masses 7
for a subtitle

Figure 43. Three to Five StoryPortraits per participants depict stories of layout creation.

91

Ten participants created substrates based on content properties, e.g.
title, subtitle, images, or on relationships among content elements. P7a
explained that “information of the same nature must have the same
style”. P4c wanted to see if it was possible “to lay out content without
any typographic hierarchy.” for her book design (Figure 43). She assigned
different numbers of repetitions and colors to the different semantic
types of content. For example, a title would be repeated five times, but a
subtitle only three times (Figure 44). Similarly, P7b created a substrate to
visually distinguish the multiple semantic elements of a grammar book.
In order to communicate its subtleties, she established a substrate at the
letter level: “Every case needs to have its own style.”Five participants
mentioned projects that used semantic relationships among content
elements to establish their substrates. P11a wanted to lay out a history
of text editing tools and based her substrate on parent-child
relationships. She began with the two main tools and then defined a rule

to dictate the layout: Place the “¢hildren” below and the “parents”

above.

Content —— Graphical Substrate —— Spatial & Color
Title —— repeat 5 times + Visual Weight
Subtitle ———— repeat 3 times + W > & Color

Figure 44. -Representation of Fig.44’s layout structure using the descriptive framework.
The substrate is based on content types (titles and subtitles) and shapes spatial properties

(visual masses) as well as colors.

INPUTS BASED ON CONTEXT

Ten participants used properties that they extracted from the context,
including page and screen dimensions and properties generated by the
printing process. They treated these contextual constraints as a source
of creativity: P8¢ programmed a grid system based on relative
proportions that made it easy to adapt to very different screen sizes,
allowing different reading contexts. P1d used a similar approach for a
website: she created a grid based on the smallest physical screen
dimension (900px) to accommodate all possible readers’ screen
dimensions, and used it to influence all of her subsequent grid ¢hoices.
Participants also used production constraints to create substrates. For
example, P2e created a book using sheets folded in two, whi¢h were
nested and stapled. She used physical properties of the binding process
to establish her substrate. She began by creating images that spanned

92

full sheets of paper. Once folded, the left part of the image became
separated from the right part, and was juxtaposed with the right part of
another image, “creating an interesting confrontation”. P2d had another
project that required folding a poster. She used the fold marks as a

layout constraint to ensure that text would not be printed on the folds.

Once designers select the properties they want to use as inputs to their
substrates, they map them to output properties. We identified two main
types: spatial and temporal.

MAPPING TO SPATIAL PROPERTIES

Layout is most often viewed as the organization of the spatial properties
of the content. Designers may focus on composition, e.g. by playing with
the relative positions of elements on the page or on visual weight, e.g. by
playing with relative proportions of content over white space (Figure
43).Eight participants used the positions of elements as output to their
substrates. For example, P1b created an initial substrate for the four
master pages of a website where she defined the positions of the
elements that would appear: “All master pages will work the same way.
They should have the same look. It’s a global positioning”. In this case,
she started by drawing and positioning elements on paper before
moving to Adobe Photoshop. P9d defined the precise location of a
recurring caption that appears on all pages of his book: “Then we can
move the images around without losing the reader”. Nine participants
used the visual weight and sizes of graphical elements from the content
as output to their substrates. For example, P7e first played with the
relative weights of different semantic elements: “The content creates
visual masses, I use them when defining the principle of my book
design”. P8c created a relative column system, then adapted it for all his
website layouts. He calls it the “grosso-modo grid” because it uses
approximate proportions (“tiny, little, big and huge”) that are extracted

dynamically from the reader’s screen size.
MAPPING TO TEMPORAL PROPERTIES

Layout is affected by temporal as well as spatial properties. Designers
must often create a coherent series of layouts, such as the pages of a
book or a series of posters. Ten participants created substrates that
explicitly address either temporal evolution or rhythm across a series or
collection. For example, P7d created a grid-system based on two or
three columns for a cookbook. Depending on page type, she applied one
of two grids: “It creates a rhythm thanks to the modular repetition of
this system”. She used this temporal rhythm to guide the reader through

the different content types. Similarly, P6e described a temporal pattern
he

93

created for a series of posters published every six months. Graphical
components vary differently from one poster to the next. For example,
the factual information and textured line at the center of the poster
never ¢hange: “It is a backbone”. By contrast, the client’s logo partially
evolves with eac¢h new poster, and the dividers between the content
elements are always different.

Participants mainly used substrates to shape spatial and temporal
properties of their layout. We also identified other common types of
outputs, including color (Fig. 43) and font. This suggests that substrates

can potentially shape a wide variety of layout properties.

Manipulating graphical substrates

Designers not only use graphical substrates as tools to shape particular
layouts, but also to manipulate them as dynamic objects in their own
right. We identified two main manipulation patterns: reusing and

adapting.
REUSING

Most participants (11/12) reused existing substrates across projects,
most often by modifying them (16 stories) or combining them with
existing substrates (8 stories). For example, P6d created an evolving
planet logo for a posters series. Each time, he manually reused the
previous version and slightly modified one of its ¢haracteristics, such as
¢hanging the color or adding a ring. “I first need to establish my
principles over several shecimens before I can override them”. Similarly,
P9c reused a substrate he created for the print identity of a company to
apply it to the corresponding website. He kept some parameters, such as
typography, but modified other rules to add interactivity to the website.
Participants also combined multiple substrates or parts of existing
substrates together. For example, P12c created a substrate for
developing a coherent yet diverse set of ¢haracters for a short clip. Each
feature, such as hairstyle or clothes, is based on a substrate meant to be
mixed easily with the others. Creating a new ¢haracter involved a simple

recombination of elements from each feature’s substrate.
ADAPTING

Participants created substrates that accommodate different levels of
flexibility to cope with different levels of constraints within projects.
While some rules and constraints may never be broken, suc¢h as the page
dimensions of a book, a great part of the graphic designer’s work is “ro

find a solution for each case” (P7b). Eight participants, in 12 projects,

94

created very flexible substrates to adapt to diverse and new constraints.
For example, P1b created a “master page” on paper to structure the
positioning of the elements of several web pages. She explained that
“Everything is flexible, even though I plan as much as I can”. Similarly,
P10b created an initial structure for a book layout where all the images
had the same vertical size. When he tried it with images of extreme
sizes, it created too much white $pace on the page. So he broke his
substrate for these extreme cases and adapted it with new rules to
accommodate the smallest and largest images, suc¢h as spreading the
content onto a second column.

Eight participants also created 15 “hackable” substrates. In each
case, the substrate guides the layout but can also be tweaked or
overridden if necessary. For example, P5c created a substrate that
represents the visual blocks of a book. In a few cases, some of the dialog
had to overlap vertically. This led her to manually override her general
rule, in order to maintain the overall grid. P10d established a precisely
defined substrate for a magazine cover with variants and invariants.
With each new issue, he ¢hanged the color and illustration, but retained
the same grid. However, for the final issue, he decided to break the grid

with an overlapping illustration.

REIFYING GRAPHICAL SUBSTRATES

All 12 participants developed and could easily describe details of the
graphical substrates they created for each project. However, most of
these substrates were strictly mental constructs, ideas in the designer’s
heads. Only participants who program could fully manipulate their
substrates in existing tools. All 12 participants created substrates, with
clearly identified, well-defined “rules” or “constraints” to manage
layout. If they were reified, turned into interactive objects (Beaudouin-
Lafon, 2000), these rules could be executed by the system or by another
graphic designer. For example, P5b’s book design based on multiples of
42 required her to manually set all the parameters of the book, including
CMYK color values, font sizes, line widths and grid dimensions. If she
had a tool that let her treat these parameters as variables, instead of
being hard-coded, she could easily ¢hange the number to 54 and ¢hange
the whole layout accordingly.

Even so, not all substrates are reifiable, at least not easily. Half the
participants reported stories (8) where they created part or an entire ad-

hoc substrate using principles such as “ambiance” and “Style”. These

95

substrates could not be executed by a system or by another graphic
designer unless they were defined more formally. For example, P7¢
inserted a set of pages into her cookbook as interludes between the
recipe pages. She said, “For these pages, nothing is aligned, it is

organized using spread ambiance”, making it difficult to systematize.

Current tools offer limited support

Participants relied heavily on a limited set of traditional tools to express
their substrates: guides, master pages, paragraph and ¢haracter styles.
However, these tools only support a fraction of the substrates that they
actually used for layout. A first consequence of this lack of support is
that designers must manage their substrates manually. For example,
P12d created an animation principle for a crane appearing in a short
video and decided to reuse it for all of her objects. However, she had to
adapt it and apply it to each object manually, because she could not
express the animation in the tool directly. Another important
consequence is that designers cannot easily share substrates with each
other. We found only two cases where designers reified their substrates
using traditional tools and shared the result with a colleague. P5a
created a report layout in Microsoft Excel, because she knew that a non-
graphic designer would be limited to Excel when creating the layout for
the next issue. She based her substrate on the possibilities offered by an
Excel master sheet and set as many parameters as she could to help her
colleagues reuse the same layout. P7b created the substrates for a
grammar book so that another designer could apply its content when
creating the final layout. P7b first explored different layout principles
with a one page example and later abstracdted her substrate by creating a
document with all the possible cases. She explained that “The person
doing the layout must be confident about which rules to apply to each

content type’.

Using code to reify graphical substrates

Half the participants created projects fully or partially implemented in
code (17 projects), six of which resulted in printed artifacts. On further
investigation, we noticed that designers explicitly reified their
substrates in code. We identified three recurring approaches that are

not supported by traditional design tools: supporting more diverse

96

inputs, automatic application of substrates, and collaboration with the

reader.

GENERATING MORE DIVERSE INPUTS

Reifying substrates in code lets designers manipulate additional input
properties as well as create new substrates that rely on complex
relationships. For example, P8b created a website layout for visualizing
other websites. “T had to design without having the content, and for all
the web variability”. He created a responsive grid based on different
screen sizes, to make his layout support this diversity. Whereas
traditional graphic design software would fix the format ¢hoice, P8b
could use this input to better tailor the layout to each reader.
Participants who wrote code
created substrates that

¢hanged according to content

properties. For example, P11d
produced hundreds of
different posters during a one-
night event. With her team,

she created an installation

with scanners that

Figure 45. -P2 confronted two layouts: a

livestreamed images into a
traditional one on the left and a fluid one on 8

the right. The fluid layout is handled pre-established dynamic grid.
programmatically. Image courtesy of Louise The grid reacted to the image
Drulhe.

width so that wide images
spread over two squares. The
team also used a mixing console that allowed a designer to ¢hoose
images in the stream to produce unique posters. Finally, participants
created relationships among the layout’s content elements and applied
different substrates to the same content at different times. For example,
P3b established a rule that dynamically creates header images for a blog
layout based on text length and creation dates as inputs. He also added
rules to display fewer and fewer elements of the blog post according to
their publication date, which enabled him to display all posts on a single
page. He coded these rules which were then applied automatically by
the system.

AUTOMATICALLY APPLYING GRAPHICAL SUBSTRATES

Reifying their substrates in code lets designers ¢hoose how the system
applies them to content. This partnership helps designers focus on the
early exploration and creation of substrates rather than the time-
consuming task of manually applying them to eac¢h content element. For

example, P10a used a system of styles and grids to automatically lay out

97

book content from a database. He greatly appreciated this workflow: “I
could focus on the most interesting part: choosing pictures, making sure
that every detail was correct and creating a cover page’. Similarly, P2a
used Markdown to semantically tag the content of her book and then
played with CSS properties to quickly explore alternative layouts. “I
didn’t have to manually select all the images to see the ¢hange”.
Automatically applying substrates to content also meant that designers
could generate an infinite number of unique layouts. In another project,
P2b created two layouts for the online version of her book (Figure 45).
On the right side layout is dynamically generated as content flows
downwards over time. Similarly, P9a created a generative website layout
based on shifting and rotating arrows between content elements. He
created a set of arrows and gave a few simple rules to the system. The
system then randomly ¢hose the arrows, which dictated a unique,
potentially infinite reading path for each visitor. Similarly, P3c created a
series of generated images by trying to find “the shortest function that
produces the greatest graphical diversity”. He focused on creating the
substrate while the machine executed the code to create hundreds of

different images for his series.

INVOLVING READERS AND OTHER DESIGNERS IN LAYOUT
CREATION

Existing graphic design tools do not usually let designers modify the
final layout, except with respect to window size. However, if substrates
are reified in code, designers can let readers provide inputs or
manipulate the substrate to generate layouts dynamically. P2c based her
layout on an active partnership with the reader. She created a book by
hacking the possibilities of CSS Print. Ea¢h reader has to go to a website
and provide a page size for their book before printing it. P2¢ designed
the book layout to depend entirely on the book format, by using CSS
rules such as relative positioning and width. She pointed out that “There
is not one final object but infinite possibilities.” and added “T will never
see the final object”. By embedding their substrates in code,
participants could also create interactive layouts that directly react to
the user’s actions. For example, P9b created an interactive substrate for
a website layout. He programmed two circles that reveal the background
image according to the movements of the mouse. The reader directly
interacts and modifies the layout by revealing the different parts of the
screen with cursor movements.

Our findings suggest that adding code provides many possibilities
for reifying graphical substrates, for traditional print layout as well as
interactive content. However not all designers can or want to program,

and current tools only reify certain type of substrates such as guides an

98

d text styles. Current digital tools focus on creating and manipulating
explicit visual properties but very few provide higher level support

needed for graphical substrates.

Summary

In this ¢hapter I investigated graphic designers’ strategies to structure
their layout. Designers traditionally used grids to perform this activity
but this tool does not have a direct equivalent in current graphic design
software application. Our 12 interviews with professional graphic
designers revealed that they use surprisingly sophisticated structures
that go beyond the grid. We define them as graphical substrates:
principles that guide the layout but rarely appear in the final result. We
present a framework to describe how designers establish graphical
substrates based on properties extracted from concepts, content and
context, and use them to compose layouts in both space and time.
However, most of these substrates are mental constructs and designers
cannot materialize them using current layout tools. Graphic designers
either manage them by hand or rely on code to explicitly represent them
in their designs. These resulting reified substrates provided new
possibilities for graphic designers, extending the types of inputs they
could incorporate, automatically applying graphical substrates and
involving readers in the layout creation process. Design work goes
beyond manipulating visual properties, designers create and manipulate
structure that guide the purely visual work. Digital design tools should

provide support for these intermediary design artifacts.

929

100

Chapter 7

COLLABORATION

How do Designers and
Developers Collaborate?

I conducted this study in collaboration with Germdn Leiva.

In previous ¢hapters, I have investigated designers’ practices
through three different tasks that are at the core of graphic design work:
aligning and distributing graphical elements, manipulating color and
structuring layout. These traditional tasks are still largely performed by
individual designers but recent design fields, such as interaction design,
require designers to closely collaborate with other professions. The
collaboration with developers is especially interesting as the two
professions rely on very different representations (visual versus
symbolic) and because they focus on different aspects of the design
process (Wolfgang, 1994). Designers are trained to communicate
visually: They use graphical editors, e.g. Adobe Illustrator and
Photoshop, to create “Static design documents” (Newman, 2000) such as
wireframes and mockups. By contrast, developers are trained to work
with abstractions: They use text editors and Integrated Development
Environments (IDEs) to create functional systems.

This setting questions design tools in a new way. When working
with developers, designers are working at the boundaries of the field
and they may reach the limits of their tools. Indeed, integrating
designers’ and developers’ work practices has proven difficult, often
leading to fric¢tion between them (Ferreira, 2011). One phase, especially,
is of interest to us: the hand off phase during which designers transmit
their static design documents to developers who then need to
implement them into working code.

This ¢hapters focused on the strategies used and problems faced by
designers as they collaborate with developers. We especially focus on
the representation, communication and interpretation of interactive

systems.

101

Context

Designer-developer collaboration

Although user-centered design methods for interactive systems
emerged in the 1980s (Donald, 1986), it took a long time for them to be
integrated into software engineering processes. More than thirty years
after, Silva (Dasilva, 2013) identified three roles undertaken by designers
during a project, and found that these role ¢hanges may complicate the
designer’s collaboration with developers. In their literature review,
Salah et al. (Salah, 2014) survey the ¢hallenges of integrating agile
methodologies into user-centered design practices. They show the need
for a “shared understanding of the design vision™ developers must
understand what they are expected to implement as soon as possible. In
this context, Brown et al. (Brown, 2011) analyze two major aspects of the
collaboration process: collaboration events and artifacts. Their study of
collaboration events shows that designers and developers constantly
perform “interactional alignment work” (Strauss, 1988) and that the
collaboration process is “patterned around the use of artifacts” (Brown,
2012).

Understanding the role of Artifacts

Star and Griesemer (Star, 1989) introduced the concept of boundary
objects, whic¢h coordinate collaborative work within communities of
practice. Lee (Lee, 2007) distinguishes between boundary objects
designed to “satisfy the information needs of the collaborating parties”
and boundary negotiating artifacts designed to push the boundaries in
complex, non-routine projects that lack standardized objects for
collaboration. In the context of designing and developing interactive
systems, the most common boundary objects are design artifacts. For
example, Newman (Newman, 2000) analyzed the specificities of
intermediate artifacts such as sitemaps, storyboards, mockups and
prototypes. On the other hand, few studies focus on collaboration with
respect to design artifacts as boundary negotiating artifacts between
designers and developers. Brown et al. (Brown, 2011) established twelve
categories of artifacts used for collaboration, including “design ideas”,
“stories” and “interface proxies”. We are particularly interested in
“interface proxies” because they serve as “a focal point for people to
discuss’. Myers et al. (Myers, 2008) surveyed more than 200 designers to
understand how they address interaction in their design practices. They

102

found that design documents focus primarily on the visual design:
designers find it much easier to communicate visual appearance than
interaction behavior to designers. Ozcen et al. (Ozenc, 2010) concur,
noting that designers “struggle to have a conversation with the
material”when creating refined interactive systems. Park et al. (Park,
2008) conducted a laboratory study that shows the differences between
how designers and developers use text to represent interaction. They
found that programmers “use more verbose descriptions”while
“designer’s experience with tools like Photoshop and PowerPoint
influences their natural expression of behaviors’.

Overall, the literature suggests that designers have difficulty
communicating the design of interaction behavior to developers.
However, the causes for these problems remain unclear. We need to
better understand how designers currently represent interaction
behavior to developers, as well as how their current tool support this

process.

Study 1
Designer & Developers Interviews

The goal of the first study was to examine the existing practices of
professional designers and developers from a wide variety of settings.
We were particularly interested in how: designers represent and
communicate a design; developers interpret the design; and designers
and developers identify and overcome breakdowns that appear during
the process. We conducted critical incident interviews (see ¢hapter 3)
about recent design projects, in order to obtain specific, detailed stories
of their successes and failures. We were particularly interested in their
problems representing and communicating interaction with each other.
We also looked for recurring patterns across work settings, cultures and
types of projects.

Participants: We recruited 16 professional designers and developers (7
women, ages 24-46) from France (8), Sweden (3), Argentina (2), the USA,
Canada and China, who create web sites, mobile applications or
interactive installations. Their work environments include: digital
agency (6), design studio (4), start-up (2), freelance (2), and software
factory (1). Participants P1ds-P8ds are designers (ds), self-described as
UX Designer, Visual Designer, Interaction Designer, or Graphic
Designer. Participants P9dv-P16dv are developers (dv), selfdescribed as
Mobile Developer, Web Developer, Front-End Developer, or Creative

Coder. Their experience in collaborating across disciplines, i.e. from

103

designer to developer or from developer to designer, ranges from 1.5 to
20 years (mean 8). Half of them typically collaborate remotely, none have
worked with each other. All participants reported that they follow agile
methodology.

Procedure: We conducted critical object interviewed with participants
in their studio or office for approximately 90 minutes. We asked
designers to ¢hoose recent projects in which they collaborated with a
developer, and asked developers to ¢hoose recent projects in which they
collaborated with a designer. For each project, we asked them to show
us their tools and the specific artifacts they created, and to describe,
Step-by-step, the details of how they communicated the design or
implementation. We probed for both successful and unsuccessful

collaboration examples.

Setting up a grid
to synchronize with the developer

= ENTY
I worked with
two developers
on this project !
— GD @ Now we have

the same, each

| wasn’t using an: -
g any one in our tool

the first one asked me

;) at that time
to specify everything 50 | set up one: \
-12 columns
> @ -gutter size o .
so we lost -max: 1200px it is the basis
a lot of time \ of our work

N \/
for example, all the

distances between
elements

he can express

the second developer dimensions with %

asked me which grid
B=1p | was using %% e
== |

Figure 46. For this study, we created a new version of StoryPortrait centered around a

timeline that shows the successive steps of the collaboration. Here, the developers's

actions are on top and designer's on the bottom

Data Collection: We collected 25 stories (one or two per participant)
from different projects. During the interviews, we recorded audio and
video of the participants manipulating the artifacts they created. We
also photographed the final products they produced and took notes.
Analysis: We analyzed the 25 stories using Grounded Theory (Strauss,
1987). We studied the projects with a particular focus on breakdowns

104

related to creating or interpreting the design documents. We first
selected examples that formed natural categories, looking for higher-
level concepts that emerged from the details of each projects. We
iterated and mapped each story to one or more categories. We
illustrated each project with StoryPortraits (see ¢hapter 3) to facilitate
the analysis (Figure 46). A StoryPortrait includes a photograph of the
interactive system or a key artifact created during the project, as well as
a timeline to show the successive steps of the collaboration, including

the participant’s quotes and drawings.

RESULTS AND DISCUSSION

DESIGNERS PRODUCE MULTIPLE DESIGN DOCUMENTS

All designers create multiple documents to communicate different
aspedts of their designs. Designers create extra design documents when
the original design documents lack specificity or lead to confusion.
Unfortunately, much of the information in these additional documents
is redundant. We found that designers spent time recreating the same
information across separate documents. For example, P2ds created five
documents to communicate the design of a small application: UxPin
“for sharing mockups™, Pixate “for detailed animations that cannot be
expressed with words™ InVision “for interactive mockups with basic
interactions and annotations for non-obvious features”, Photoshop
because “these developers are used to work with .psd files™ and
[lustrator, “the software we actually use to produce the screens.” She
also used email to communicate additional design details to the
development team. Even with all these documents, this designer was
unable to clearly communicate the design. Although all designers use
images of “screens” to represent the visual design of the interface, these
are insufficient to accurately describe user interaction. Designers resort
to other formats, ea¢h with different trade-offs, to communicate their
ideas. Most common is text, used extensively by all designers. For
example, P6ds briefly described in an email how the user moves
between screens: “from the login screen, you slide to the next screen”.
Text comments and annotations are easy to produce, but rarely
sufficiently explicit or complete, leaving details open to interpretation.
Less common is video (24% of the projects) which makes it possible to
visualize custom animations, but is expensive, time-consuming and does
not fully communicate the user experience. Finally, designers

occasionally create interactive mockups (12% of the projects) using the

105

built-in set of interactions in the tool of ¢hoice. These communicate how
the interaction should feel, but only when the tool has the right set of
pre-defined interaction types. All but one designer created custom
“guidelines” or “Specifications”. For example, P7ds created a video to
communicate the design of an “in progress icon” animation. When the
developer was unable to recreate the design from the video, P7ds

created an additional file that “extracts the useful information [from the

video] and represents it on a timeline”.
DEVELOPERS RECREATE DESIGN DOCUMENTS

The most common activities mentioned by the developer include
interpreting the design documents and recreating them with developer
tools. For example, P9dv received an informal text description of a
custom animation, but had to ask for a visual representation in order to
fully understand the design. We were surprised by the amount of time
that developers spent recreating design documents. Some developers
came up with interesting strategies to increase their productivity. For
example, when developing a mobile radio application, P14dv inserted
the provided image as the background of her corresponding view in the
IDE’s Interface Builder. She then positioned her components on top, to
recreate the designer’s composition. She could then “figure out the
[layout] constraints” of the screen to make it responsive, such as
determining that some elements were center aligned. P11dv created a
similar setup with two monitors. To implement the visual design, he
places the mockups on the smaller screen to assess them: “I measure by

eye rather than being pixel perfect.”

DEVELOPERS MISINTERPRET DESIGNS

During this process, many design decisions are lost, as developers
Struggle to interpret and implement the designer’s original intent. In
fadt, none of the initial implementations were exactly as the original
design. P1ds felt that the developer “used our design as an inspiration,
then he made many design decisions that he did not have to take”.
Similarly, P3ds provided a video that showed the developer how to vary
a text-box color according to the background picture. He later realized
that the developer had only partially implemented his idea by sampling
a single pixel, instead of generating an average color based on several
pixels. During the implementation phase, designers create correction
documents to show the location of the mismatc¢hes and what should be
modified. For example, to correct a vertical misalignment, P3ds created
avideo. He first traced a segmented line to highlight the misalignment
and then animated the correct repositioning of the elements. In the

context of a real state website project, Pé6ds discovered several visual

106

mismatches including wrong margins, colors and fonts. He decided to
modify the CSS and correct the mistakes by himself, using the web-
browser developer tools. Because these ¢changes were local to P6ds’s
browser, he screencaptured the new website’s look and added some
annotations linking the modified CSS code to the visual result. The

developer then recreated all of these steps with his own tools.
STRATEGIES TO AVOID REWORK AND REDUNDANCY

We found cases of rework and redundancy in all the interviews, but two
developers and one designer explicitly mentioned strategies to avoid
them. P5ds designed a complex casino website with many similar Ul
components. To avoid recreating them each time, she “was inspired by
the developers’ way of working™ she created a modular styleguide that
served as a shared visual library. She could then copy modules from the
Styleguide to create each new screen, gradually adding new modules or
missing information such as the color of the hyperlinks, as requested by
the developers. P12dv began with mockups and specifications for a web-
based interactive advertisement builder. He used Flash to create the
arc¢hitecture of the interface, writing the code “so that the designer
could easily touch it”. The developer encouraged the designer to directly
manipulate the code to fine-tune look and feel details, such as
modifying the images or ¢hanging the duration, delay and type of each
animation. This strategy allowed P12dv to avoid misunderstandings and

unnecessary back and forths.

Design Breakdowns

We use the term design breakdown to describe an impediment that
must be fixed before the design can be implemented. We identified
three recurrent types of design breakdowns related exclusively to the
collaboration between designers and developers (Figure 47). These
categories emerged from the most common issues encountered in the 25

analyzed projects.
MISSING INFORMATION

The first type of breakdown occurs when the designer makes a decision
without communicating it to the developer. Two designers and four
developers reported cases of missing information. For example, P9dv
received an interactive mockup of a webpage. He could not determine
whether the page’s calendar widget was interactive or simply the output
of another interaction. P9dv also lacked the design rationale: “What did
they create that calendar for?” Similarly, P13dv received only static

107

mockups for a sports application, and could not determine how to move
from one screen to another. P14dv created a “design specification file”

for the designer with missing information from the original design files.

Designer g 8

ONYvY |

PR 2R 2

' ULlv L

Developer g g
Technical

Missing
Information Cases Constraints

(X%
<< <

‘Boi-ado

Figure 47. Key design breakdowns between designers and developers: Missing
information: Designers can not communicate necessary details. Edge Cases: Designers do
not consider certain problematic situations. Tec¢hnical constraints: Designers are not

aware of technical limitations.

Designers found it difficult to represent and communicate dynamic
behavior to the developers. For example, P8ds wanted to create an
animation of a blossoming flower but did not know how to represent
her idea in After Effects. She ended up drawing a few sketches and then
sat next to the developer as they worked out how to implement her idea
directly in code. In two cases, the designers avoided mentioning
interaction at all, relying on the developer to create off-the-shelf
interactions. This supports Myers et al’s (Myers, 2008) argument that
designers find interactions hard to represent. For example, Péds
provided static design documents without representing some
transitions, even if they were simple: “I let the developer pick the

interaction between the screens, since they are very basic.”
EDGE CASES

The second type of design breakdown is missing edge cases, when
designers focus on typical scenarios and do not consider extreme or
problematic situations. Developers are trained to think about edge
cases; designers are not. All developers reported that designers omit
important edge cases from their design documents, and that they had to
decide how to handle these situations themselves.

P13dv received only mockups to develop a sport application.
Because the designer had only specified the “sunshine cases”, P13dv had
to make design decisions for eac¢h of the different edge cases. For
example, the client required him to include advertisements, so he
modified the original design to accommodate the ads. Similarly, P16dv

prepared a responsive grid for a cruise company website. The original

108

mockup only featured the desktop version of the website. P16dv did not
know how to handle large elements that did not fit within the width of
the screen of the mobile version: “Should the rectangle be transformed
into a square or should it take a full row?” For P16dv, designers usually
“don’t take into account the dynamic nature of the data”. Responsive
websites make it particularly difficult for designers to consider all
possible layout cases. For example, P11dv explained how designers of a
responsive website had specified the element widths based on a
percentage of the screen, but did not consider what the maximum width
should be, forcing P11dv to make the decision using his “designer’s eye”.
Some designers overcome these issues with design guidelines. For
example, P4ds created a 16-page specification with annotated
wireframes to explain the sign-up functionally of awebsite. She reported
that “Specifications make me think of all the states and exceptions”. She
also used the guideline to capture and communicate the rationale for
her design decisions. Similarly, P3ds created a spreadsheet to help him
think and “explain the rules of the game and the limits” for each website

element.

TECHNICAL CONSTRAINTS

The third type of design breakdown is the designer’s lack of awareness
of te¢hnical limitations, either in general or with respect to the
developer’s skills. Five designers and four developers reported
breakdowns due to su¢h misunderstandings, which created additional
work for the developer. For example, P13dv received a design for an iPad
application that called for horizontal scrolling when in portrait
orientation. But P13dv “could not recycle his code from the landscape
version to create it”. He had to reimplement it from scratch, since it had
already been approved by the client. This type of misunderstanding
leads developers to modify the design themselves. For example, P11dv
created a responsive website for a start-up. The designers created a
desktop and a mobile version of their design but “did not realize that
they had modified the behavior between the two versions and I would
have had to develop two different source codes”. Instead, he decided to
redesign the layout to make it feasible as a “simple responsive website”.
Not being aware of te¢hnical constraints is also a problem for designers.
For example, when working on a complex website, the developer first
told Péds that “everything was possible”. Péds soon discovered that the
developer was unable to implement many elements with his tools, even
though they had already been validated with the client. P6ds said: “He
should have said it earlier, we would have adapted our design.” Instead,
they were forced to redesign the project several times to accommodate

the developer’s limitations. Collaboration is usually smoother when the

109

designer is aware of the developer’s constraints and possibilities. For
example, P5ds worked on a project with two different developers. The
first asked her to specify all the dimensions, suc¢h as the distances
among all the elements on the screen, “so we lost a lot of time”. The
second developer asked for a grid specification, whic¢h she created with
12 columns, a gutter size and a maximum size of 1200px. “Now we have
the same, each one in our own tool.” The grid allowed the developer to
express dimensions in percentages, sparing P5ds the need to make

additional annotations and saving a great deal of time (Figure 46).

Late developer involvement

Developer NOT involved Developer involved
in the design phase in the design phase
P1.b Ps.b P6.a P6.b
Default >
Interaction P13.b Piga Pi4b Pi6a Pra Psa
| iy |
P2. P7. P7. Pa. P2. P3. Pga 1P8al
Custom 22 72) 98 2 = 42 LIiB_a‘
. —— R —
Interaction Pina||Pub|iPizar| P8b I1P0al Pi2a Pisa
oo oo
Implementation
[Impossible ¢ Z 3 Problematic Successful

Figure 48. Relationship between interaction complexity and developer involvement. Lack
of developer involvement in the early phase of custom interaction design is correlated

with problematic or impossible implementation.

Only five of the 25 projects (two remote and three co-located) included
face-to-face sessions between designers and developers dedicated to co-
design the initial interaction. For example, P4ds had an idea for a
custom navigation rule and invited all the designers and developers to
help design it. The developer was able to implement the resulting
navigation behavior without additional instructions or documents:
“Nothing was written down, we only had the screens.” Other similar
examples suggest that involving developers during the design phase
makes it easier to create complex interactions (Figure 48). In such cases,
developers gain an understanding of the desired interaction during the
meeting and designers need not fully represent it in their design

documents. Developers were most likely to be called in for the design

110

phase when the project included custom interactions. In most of these
cases (6/8), developers successfully implemented the desired custom
interaction, as in the aforementioned example of P3ds’s flower
animation. However, when the project required a custom interaction
and the developer was not involved at the design stage, most developers
were not able to subsequently implement the proposed interaction (5/7).
For example, P7ds reported that the developer “just did not implement”
the custom transition he had proposed. One of the remaining cases was
§till problematic: P13dv was frustrated with the proposed interaction: “I
could not recycle my code, but as the design had already been validated
by the client I still had to implement it. I lost a lot of time.”

In summary, we identify three main types of issues when designers
and developers collaborate on the creation of interactive systems:
reworking and redundancy, design breakdowns and late developer
involvement. We found reworking and redundancies in both designers
and developer practices. Designers struggle to represent interaction
with their current tools and use multiple design documents to
communicate different aspects of their design. Developers spend a great
amount of time recreating the designer’s documents and correcting
their misinterpretations. During the implementation phase, designers
and developers face three types of design breakdowns — missing
information, edge cases and te¢hnical constraints — that undermine the

collaboration process.

Study 2: Case Study

Study one identified three types of breakdowns that occur between
designers and developers in a wide range of contexts. To further
understand these breakdowns and how they are addressed, we
conducted a longitudinal study of a team of designers and one
developer. We observed P1ds from Study One and his team during the
entire duration of a one-month project, a re§ponsive website for a
crowd-sourced directory of companies. We were interested in whether
design breakdowns still appear when a developer is involved early in the
project, and, if so, which strategies are used to avoid or mitigate these
breakdowns.

Participants: We studied three designers and one developer (ages 24-25,
one woman). This was the first time that this group of designers had
collaborated with this particular developer.

Procedure: We observed the two face-to-face design meetings that

involved all the designers and the developer. The first two-hour meeting

111

(Figure 49) focused on the design of the website. The second meeting
lasted an hour and focused on implementation. We also interviewed the
designers separately, prior to the second meeting, to learn more about
their design tools.

Data Collection: We video recorded both meetings and took notes. We
took pictures of collaborative actions, i.e. exchanges between the
designers and the developer, and their manipulation of artifacts such as
drawings, notes and software. We also received copies of the emails
exc¢hanged during the project.

Analysis: We used Chronoviz (Fouse, 2011) to annotate relevant,
interesting events during the meetings. Two coders marked and
analyzed the times when a participant asked a question, or when a
designer sought confirmation from a developer or vice versa. We
correlated these marks to the design breakdowns classification from
Study One.

RESULTS AND DISCUSSION

The email ex¢hanges focused primarily on discussions with the client
about requirements and validating design decisions. Since these
activities are beyond the scope of this paper, we focus our analysis solely

on the two face-to-face meetings.

First Meeting - Accounting for design breakdowns

The main benefit of the early face-to-face meeting was to let
participants seek validation from each other and to avoid potential
problems. We identified examples of avoiding missing information,
considering edge cases, and clarifying technical constraints. In order to
avoid missing information (12 occurrences), the developer often
encouraged the designers to specify concrete details about their design
ideas. For example, when the designers proposed a button related to the
advanced search feature of the website, the developer demanded greater
precision: “Is it going to have radio buttons or checkboxes?” Similarly,
when a designer suggested that “there should be two sharing buttons”,
the developer immediately sought concrete details: “Ok, but what
exactly do you want me to share... the URL of their website, the URL of
our website or a Facebook link?” The developer required these details in
order to translate the design idea into specific elements that he could
implement. The mere presence of the developer pushed the designers to

be more explicit about certain design issues. For example, when

112

designing the “company card”that would be displayed on the search
page, one of the designers realized that he needed to specify the title’s
maximum number of ¢haradters to maintain the visual consistency.

The developer also pushed the
designers to think about edge
cases (5 occurrences). For
example, when designing the

category system for filtering

companies, he asked the

designers: “Can a project exist

Figure 49. First meeting. The developer

shows an example of an existing interaction without a category?” This
to the designers while one designer insight led one designer to
represents it on paper. come up with a different
strategy: He proposed an
“other” category that groups together previously uncategorized
companies. Similarly, when the designers proposed adding a gesture for
deselecting a category on the mobile version, the developer asked them
to consider how this design decision would affect the desktop version of
the website. Given the developer’s warning, the designers decided to
skip the feature: “Based on what you just said, I think we should not let
the user select different filters.” Designers often sought validation,
confirmation or information about te¢hnical constraints (17
occurrences). This e¢hoes the “considering implementability” category
observed by Brown et al. (Brown, 2012). First, they were able to confirm
with the developer the feasibility of their design. For example, one
designer asked the developer: “Is it possible to have a swipe gesture on a
mobile website?” In order to make informed decisions, they asked the
developer about the complexity of implementing certain designs. When
the designers proposed a search feature for companies, the developer
asked them to specify exactly what should be searchable. The designers
idea was to search within all company-related information, including
their descriptions. The developer replied: “Everything is possible... but if
you really want to make a search inside the description, it will be a bit
more complex.” He suggested only looking up names and tags, but with

an autocompletion feature. The designers agreed.

Second Meeting - Fixing design breakdowns

Even though they were able to handle many design breakdowns during
the first meeting, new ones appeared during the implementation
process. The developer found new edge cases (4 occurrences). For
example, he noticed that a company card with multiple subcategories

would occlude the company’s name: “There is a risk that it overlaps with

113

the title, I think it should be redesigned.” The designer responded:
“Maybe we can put three dots and display the extra ones only on [mouse/
hover.” The developer also requested missing information that he could
not infer (8 occurrences). For example, he could not understand why the
subcategory was not displayed on the company card. The designer had
thought about this, but did not communicate it to him: “I did not
explain it in my screens but here we are actually within the housing
category. In facl, the housing icon should be highlighted in the upper
menu.” In this case, the developer had interpreted the highlight as a
hover state, and not as a selected state. The developer also asked: “What
exactly is clickable on the item [company] card? Is it only the title and
image or the whole card?” Another problem was that the developer
could not understand the purpose of a cross in the corner of the
company card: “This little cross here, what should happen when I press
it? Is it a back button?” In a few cases, designers asked for more details
about decisions made by the developer. For example, when reviewing
the search feature, the designer asked for a clarification: “In whic¢h
order are the items shown when they are displayed as results?”
Designers also questioned some of the developer’s decisions: “Why do
we need pagination? Is it because of the heavy loading [time of the
HTTP] request?” The developer nodded as the designer proposed an
alternative: “We should put the maximum number of items on the page

without loading problems.”

Vocabulary mismatc¢h between designers and
developers

In both meetings, differences in the vocabulary used by designers and
developers led to miscommunication. Sometimes, designers and
developers used different terms for the same concept. For example,
during the second meeting the developer talked about a “fixed” element
using CSS terminology. The designer, who tried to take the user’s
perspective, referred to the same object as a “moving” element, an
element that follows the scroll. It took some time for them to discover
that they were talking about the same behavior. We observed several
strategies for overcoming these issues (5 occurrences). Developers and
designers tried to bridge the vocabulary gap by adopting each other’s
terminology. For example, when discussing whether an item should
appear in several categories, one designer started using mathematical
concepts when communicating with the developer: “Is it the union or
the intersection of these two categories?” The developer also

reformulated the original design idea in terms of Ul widgets: “It is

114

either a radio button or a checkbox.” On several occasions, designers
and developers looked up specific interaction te¢hniques on a particular
website or found examples from a mobile application on a smartphone
to show the others. This “communication-by-example” helped them
verify that they were talking about the same interaction technique.

In summary, we found that both designers and developers actively
try to mitigate design breakdowns when meeting face-to-face. Involving
the developer at the beginning of the design process helped the team
reduce the amount of missing information in the design documents,
discover and handle edge cases and set clear technical constraints for
the scope of the design. Even so, new design breakdowns occurred
during the implementation phase and had to be solved collaboratively
by the team. Vocabulary mismatches also created several collaboration

issues, especially when discussing interactive behavior.

Discussion

Tool Silos

Today’s design and development tools operate in isolation: ¢hanges in a
designer’s tool such as Sketch are not reflected in the developer’s tool,
such as XCode. Worse, ¢hanges in one design document are not
automatically reflected in the others. Some designers and developers
address this by linking their documents via cloud-based file syncing or
by referencing external resources from the code. Also, several IDEs
support multiple views: UI code can be opened with a text editor or an
interface builder and manipulating either tool modifies the underlying
code file. Unfortunately, these solutions are tool-$pecific and ad-hoc,
and do not reduce the amount of reworking across design documents

and development tools.

Lack of Refactoring

Some graphical tools include “symbols” or “smart objects” that are
referenced across documents instead of being copied. Designers can
modify these smart objects and see the ¢hanges reflected wherever they
are used. While this encourages modularity it also requires planning:
“smart objects” must be created before being used. However, the fluid
nature of design can make pre-planning difficult: new ideas or

constraints may appear and clients often ¢hange their minds.

115

Revealing the dynamic nature of interactive systems

Our results suggest that designers are less likely than developers to
Specify edge cases, even though their early identification can avoid
significant problems later. Because current design tools work operate
with static screens, they don’t support designers in exploring of the

dynamic nature of interactive systems and in discovering edge cases.

Summary

This ¢hapter studied how designers communicate and developers
interpret interactive system designs. First, we conducted 16 interviews
with professional designers and developers how they collaborated
during the hand-off phase. We showed that the current workflow
induces a lot of rework on both sides. Designers create a multitude of
redundant design documents and developers must recreate them with
their own tools. This process often introduces mismatches with the
original design. We then identified three key design breakdowns:
missing information, when designers do not communicate a specific
detail; edge cases, when designers do not think about a particular case;
and te¢hnical constraints, when designers are not aware of developer’s
te¢hnical limitations. The interviews also showed that when developers
are not involved in the initial design of custom interactions, the
implementation tends to be problematic or even impossible. To further
understand how designers and developers address these breakdowns, we
conducted a longitudinal case study. We found that even if the early
involvement of the developer mitigated the occurrences of design
breakdowns, new ones appeared in subsequent meetings. Our results
suggest that designer and developer tools don’t support the

transitioning between the design and the implementation phase.

116

117

118

Chapter 8

DISCUSSION
Myths behind Design Tools

In the first part of this thesis, I uncovered and analyzed designers’
practices from four complementary angles: color manipulation, visual
alignment, layout creation and collaboration with developers. For ea¢h
of these studies, I conducted independent analyses to avoid early
generalizations. In eac¢h of these contexts, distinct frameworks emerged
from specific and unrelated designers’ stories. Yet, my goal in ¢hoosing
such diverse design practices was to observe recurrent patterns among
them. I especially wanted to understand how current design tools
supported these different practices and how designers appropriated
them. After having reported on these studies independently, I now
analyze the commonalities among them.

First, the four studies revealed the incredible breadth and richness
of designers’ practices. Eac¢h designer, for each of their projects,
invented new ways of performing design tasks. Not a single story
resembled another. In their unique process, designers often used the
domain-specific digital tools. However they did not merely use them,
instead, they interweave their usage within a much more complex
process, usually involving multiple tools. In eac¢h study, we have shown
how current design tools provide only limited support for designers’
activities. If we want to design design tools that better support
designers’ practices, we first need to understand current tools’
limitations. Lucy Su¢hman argues that “every human tool relies on, and
materializes, some underlying conception of the activity that it is
designed to support. As a consequence, one way to view the artifacl is as
a test on the limits of the underlying conception” (Suchman, 2007). From
color pickers and alignment commands to layout masters and current
interaction design tools, I extracted two recurring features across digital
design tools.

Looking at the mismatches between tools and designers’ practices
we observed in the four design practices, we can understand the limits
of the underlying principles behind current design tools. I present these

interrelated principles below.

119

Design as a hylomorphic process

In a commercial for the groundbreaking Adobe Illustrator 88, the
narrator explains that Illustrator 88 is “a revolution based on new tools,
tools that free the imagination and eliminate drudgery”. Behind this
assumption lies the idea that tools impose restric¢tion on an otherwise
boundless creativity. This idea also implies that the act of creativity and
tool use are separated phenomena. Based on the results of the four
Studies, I argue that state-of-the-art design tools materialize this vision
of design work. Digital design tools conform with the idea that design is
what anthropologist Ingold calls a “hylomorphic” process: they posit

that designers already have in mind the outcome they want to achieve.

i visible
outcome

Figure 50. A detached description of designers' work may miss the invisible and often
complex process developed by designers.

Following this idea, design tools should allow them to reach this
outcome with the least effort, without getting in the way. Most current
design tools examined in the four studies embed this approach, and it
may partly explain why selection mechanisms and commands are so
pervasive in current design tools (Manovic¢h, 2001). To take a few
$pecific examples, the color picker focuses on retrieving an individual
color from all possible colors. The design brief behind the tool could be
summarized as: “given that a designer wants to select a specific color,
help her achieve this goal in the fewest steps possible”. For alignment
and distribution, traditional commands focus on the action itself:
aligning selected elements with a single click. In doing so, they omit the
fact that alignment takes place within a much larger process of
composition. In the case of layout tools as well, because the final
outcome is a §patial composition of graphical and textual content, most
tools focus on spatial positioning, neglecting the many other
dimensions, revealed in the graphical substrates framework, that play a
role in the overall process. In 1991, at a time when most design software
applications were originally designed, HCI researcher and activity
theorist Susanne Bodker argued that: “The established methods for

design of computer applications in general, and for the user interface

120

design in particular, do not intend to originate from the practice of the
users. They are based on a detached observation and description of the
work activity to be changed by the new artifact.” (Badker, 1987). Based
on the results of my four studies, I argue that current design tool embed
a hylomorphic view of design practice and this assumptions reveal a
profound misunderstanding of the nature of design work (Figure 50).

By contrast, more often than not, designer participants in the four
studies found creative constraints in their digital environment. Some
Strategies originated from the constraints afforded by particular tools.
For example, when exploring different color palettes, one designer used
the $pace beyond the margins of his Illustrator document to save
different alternatives within the context of the final artifact. Or instead,
designers appropriated their tools and re-purposed them.For example,
in the designer-developer collaboration context, one designer replicated
with her own tool a modularized approach that she learned from
developers: she created a modular styleguide that served as a shared
visual library. All these examples are instances of what Mackay calls “a
co-adaptative phenomenon” (Mackay, 1990). Not only do designers adapt
to technology, they also adapt it to meet their needs and this dual nature
of designers interaction with digital tools is a defining part of design

work.

Efficiency and User-friendliness

Because digital design tools were envisioned as obstacle on the way of
the designer, they were designed by putting an emphasis on their user-
friendliness and efficiency. In the Illustrator 88’s commercial, the
narrator explains that traditional graphic design tools “take
considerable skill to use, and even in the hands of a pro, take too much
time, time that could be used to design and create” (Illustrator88). To
overcome these limitations, Illustrator 88 is advertised as easy to learn
and more efficient than traditional tools. When it comes to learnability,
Lucy Su¢hman, in her account of users’ encounter with an “easy to use”
photocopier demonstrated that self-explanatory digital artifact are
nothing but a designers’ fantasy: “however improved the machine
interface or instruction set might be, this would never eliminate the
need for active sense-making on the part of the prospective users. This
in turn called into question the viability of marketing the machine as
“self-explanatory or self-evidently easy to use” (Suchman, 2007).

Yet, the principles of user-friendliness and efficiency are not
exclusive to design tools. Instead, they represent two of the core values
behind the development of personal computing. As early as the Xerox

Star, the first commercial Graphical User Interface system, user

121

interfaces were designed to be invisible to users and easy to learn. In an
ACM 1985’s panel, Jeff Johnson (Johnson, 1985) describes the design
approach used to produce the desktop metaphor: “this design approach
is intended to facilitate one’s use of the system by making the
manipulation of information in the system analogous to the
manipulation of physical objects on a desktop. The choice of office
objects in particular is intended to facilitate learning by capitalizing on
users’ familiarity with such objecls and with procedures involving
them”. It was not any kind of office that inspired this design, it was a
executive secretary office, occupied with copy-editing, file organization
and focusing on production and efficiency. A type of work very different
from what is generally considered design work. In the case of design
tool, the sole arguments of learnability and efficiency are wide of the
mark when it comes to supporting designers’ work. Of course, they are
respectable goals in themselves, but contrary to traditional work,
designers face wicked problems that cannot be solved by following a
prescribed series of steps that can then be optimized. That is why, for
example, a command approach to perform alignment does not
necessarily ease designers work. In fact, this approach limits
exploration. Overall, rather than a need for efficient design tools, our
studies showed a lack of support for exploration, one of the defining
aspect of design work (Gaver, 2000). By focusing on the final outcome,
current design tools neglect the intermediary steps in the design

process.

Programming as a design tool

To counter this lack, some designers in my studies used programming.
While they needed to spend time establishing their program, they then
were able, for example, to easily produce hundreds of posters in one
night, or to explore radical layout modifications in a second. I argue that
the aforementioned principles, deeply embedded into current Graphical
User Interface-based design tools, may partly be responsible for
designers increasing interest for programming languages such as
Processing or max/MSP. Programming does not focus on $pecific and
production-oriented tasks, but rather, they offer utterly new languages
through whic¢h designers can think and work in new ways. More than
producing one final artifact, programming lets designers set up a
process that can then be executed. As more and more designers start
embracing this new mindset, shouldn’t designers simply learn to
program ? Do we still need design software ?

Indeed, some of the most surprising and interesting stories I have

colledted in my four studies wouldn't have been possible without

122

programming languages. There is no doubt that learning to program can
be extremely valuable for designers. Among the different benefits
reported in our four studies, the possibility of automatically applying
rule to a great amount of elements was one of the main advantages
identified by designers. Yet, programming cannot simply replace GUI-
based design tools. Visual and code representations provide different
benefits. In his visual essay about “climbing the ladder of abstraction”
(Vidtor, 2011), Victor shows how concrete, visual and symbolic
representations might complement each other. In our study about
designer-developer collaboration, we could also see how their respective

tools let them envision interaction on very different grounds.

Textual Graphical
Programming User Interface

Figure 51. A range of possible design tools, from Programming to Graphical User
Interfaces.

Today, programming and Graphical User Interfaces are two mutually
exclusive sets of tools. We can consider them as two opposite bounds of
a large range of possible design tools (Figure 51). I argue that we need to
invent new interactive objects and interactions to fill in the range. Some
researchers already produce some hybrid forms. For example, departing
from the strictly text-based representation of code, visual programming
seeks to give a visual representation to code (Myers, 1986). Visual
programming tries to simultaneously preserve the range of capabilities
offered by programming while enhancing it through visual
representation. On the other hand of the she¢trum, graphic designers
work with visual content. Current GUI-based design tools generally let
designers manipulate content through direct manipulation and in the
context of their final outcome. This fundamental power of direct
manipulation (Shneiderman, 1981) originally led to the wide acceptance
of digital design tools and greatly facilitated graphic designers’ work.
Therefore I argue that we need to preserve the power of graphical user

interface tools while enhancing them with more computational power.

123

124

PART 2

DESIGNING
DESIGN
TOOLS

How can we design tools to
support designers' practices?

In the first part of this thesis, I conducted four studies to understand
designers’ practices and relationship with their digital tools. I observed
and analyzed emerging phenomena from designers’ practices and I
revealed current design tools' limitations.

Among the many findings from the four studies, I showed that there is
not a single way of doing even the most mundane design tasks. This fact
led me to oppose the idea that one single tool could perfectly support
any design tasks (Figure 52). Instead, I argue that we can reevaluate the
tradition of tool craftsmanship that emerged in the early period of
design, when designers were still considered as craftsmen and when
there were as many different tools as craftsmen. Of course, not everyone
can or even want to design or program their own tools, but digital tools
are of a different nature than their physical counterparts. Whereas, in
the pre-digital era, designers needed to adapt to expensive industrial
machinery onto which they had no influence; in the digital era, code -
the material their tools are built from- can easily be modified. Our
current situation is also very different from the pre-industrial era:

contrary to physical tools, digital ones can freely be reproduced and
shared.

125

Instrumental Interaction

However, the current design tool environments does not encourage tool
profusion. If we want to let designers ¢hoose their own tools, we need to
deconstruct current software architecture. In our current digital
environment, tools are trapped inside applications. Therefore, even if we
have very similar color pickers in many different applications, all these
color pickers are entirely distinct tools from the system perspective.
This leads to situations where
one designer might save a
color palette in one software
but is unable to access these
colors in another application.
In this thesis, I adopt an
instrumental interaction
perspective (Beaudouin-Lafon,
2000) for creating novel tools.
According to Beaudouin-
Lafon “the Instrumental

Interaction Model is based on

Figure 52. 543 Broadway Chairs, Gaetano

how we naturally use tools (or
Pesce, 1992. Gaetano Pesce diverted Y (

traditional industrial process to propose instruments) to manipu]ate
ever unique c¢hairs. As part of their practice, objects of interest in the
designers always appropriate and push the physical world. Objects of

limits of existing tools. . .
& interest are called domain

objects and are manipulated with computer artitacts called interaction
instruments”. By decoupling objects of interest and the instruments
used to manipulate them, instrumental interaction proposes an utterly
different paradigm. Following an instrumental interaction perspective,
a designer would be able to pick one color picker and use it on all her
documents e.g., videos, slides, mock-ups. Each designer could ¢hoose,
for each of their project, the right set of tools; no more, no less.

The tec¢hnical implementability of su¢h an approach is beyond the
scope of this thesis, but it has been an topic of research for HCI
engineers. One early example proposed by Stuerzlinger et al. is User
Interface Facades (Stuerzlinger, 2006), a software architecture that lets
user customize existing graphical interfaces through direct
manipulation. Users can, for example, drag and drop existing tools from
tool palettes in an application and drop them inside another one. More
recently, Klokmose et al. proposed Webstrates (Klokmose, 2015), a

“

promising environment that turns web pages into “software entities that

126

can evolve over time and shift roles, acting as what are traditionally
considered documents in one context and applications in another, or a

mix of the two.”

Design Tools as Design Probes

Using Instrumental Interaction as a framing in this second part of the
thesis, I investigate how we can create novel design tools that support
the wealth of design practices observed in the first part. According to
Susan Bogdker, “Good Design mehods must prescribe that the means
applied in a specific design activity must originate from the use activity
in question” (Bedker, 1987). Following this, I ¢hose to ground my
explorations in the collected designer's stories. Therefore, this second
part is divided in four ¢hapter, each devoted to the four previously
investigated design practices. In these fields, I took inspiration in
designer stories to design tools that closely match existing practices and
thus create situated interactions. (Beaudouin-Lafon, 2004)

From a design research perspective, novel design tools are also an
interesting means of understanding from a new angle how designers
work. Therefore, in this thesis, I envisioned design tools as design
probes. “A probe is an instrument that is deployed to find out about the
unknown - to hopefully return with useful or interesting data. There is
an element of risk in deploying probes; they might fail or bring
unexpected results”. (Hutc¢hinson, 2003). In the context of HCI, Boehner
et al. argue that the flexibility of probes resulted in their wide
acceptance and resulted in the production of many variations. In this
thesis, I envisioned probes as “a design-oriented way to acquire
inspirational glimpses of communities targeted for design” (Boehner,
2007). As advocated by Sengers and Gaver, probes should be open to
interpretation. To inform my design of the probes, I followed a few of
the technology probes' principles (Hut¢hinson, 2003). First, probes
should be as simple as possible, with a single main function and a few
features. This constraints implies that probes cannot fully replace design
tools and thus should be experimented over short periods of time. On
the other hand, design probes primarily emphasize flexibility: even if
they offer very limited functionality, they should be designed to be
open-ended. That open-endedness is designed to facilitate conversation.
Especially, this flexibility should “give participants a voice to interpret
and explain their own practices” (Vetere, 2006). How designers interpret
and envision appropriation scenario in the context of their own work is
as interesting as their explicit actions with the tools. Therefore, in this
thesis, design tools were not envisioned as ends in themselves but rather

as means to foster discussion with designers.

127

128

Chapter 9

COLOR TOOLS

One tool is not enough

Ghita Jalal collaborated on the probe study.

In Chapter 4, we interviewed 8 designers and artists to uncover
their color manipulation practices. Analyzing the 52 stories that we
collected, we created the Color Portrait Design Space that ¢haracterized
the five most recurring color manipulation activities: sampling and
tweaking individual colors, manipulating color relationships, combining
colors with other elements, revisiting previous color ¢hoices, and
revealing a design process through color. I have shown how, apart from
sampling, these color manipulations are not supported by the
ubiquitous color picker. In this ¢hapter, I present a set of four color
probes that explicitly focus on each of the color manipulation activities
of the design space. I designed these four probes based on the specific
designer stories that prompted each of the color manipulation adtivities.
My goal was not to support all the possible color activities observed
during the interviews, but rather, to explore how we could directly turn
these activities into tools that other designers could then appropriate in

their daily practice.

Context

In an attempt to go beyond the ubiquitous color pickers, researchers
proposed several alternatives that were mainly aimed at novices or

highly specialized professions.
Color Tools for novices

Choosing colors can be a deceptively complex art for novices who do

not have expertise in color theory nor experience in color manipulation.

129

Many color tools attempt to guide novices by hiding the complexity of
color manipulation and automatizing some of its principles through sets
of guidelines and pre-established relationships. ACE (A Color Expert)
(Meier, 1988) automatically selects colors based on a model of functional
relationships among components of a graphical interface. Wang et al’’s
(Wang, 2008) interactive colorization process lets users choose hues
from a color wheel. Then, an expert system calculates optimal brightness
and saturation. These expert systems support clearly defined tasks but
are less helpful for creative tasks in which designers define their own

rules and constraints.

Specialized Color Tools

Some specialized professions have explicit color requirements. Among
them, data visualization specialists need to maximize color differences
to enhance data perception. Color Brewer (Harrower, 2003) helps users
¢hoose effective color s¢hemes for coloring maps, based on specific
properties of the data being represented and human color perception.
[WantHue (IWantHue) helps users generate palettes with optimally
distinct colors. Several recent tools started exploring new ways of
manipulating colors in photographs. For example, Histomages
(Chevalier, 2012) allows users to edit images by modifying a histogram of
the colored pixels within the image. Users can select and ¢hange subsets
of colors, such as turning the sky from shades of blue to shades of
orange. Pouli and Reinhard (Pouli, 2011) demonstrate how to transfer
color by progressively matc¢hing a histogram to a target image’s color.
Meier et al’s Interactive Color Palette Tools (Meier, 2004) offer
additional te¢hniques for interacting with color, introducing the idea of
a painter’s palette in the digital realm. My color probes concur with
these more recent approaches that explore novel ways of interacting

with color.

Interacting with Color

In order to test the generative power of the Color Portraits design space
and foster conversation with designers, I created a set of four probes,
eac¢h designed to explore an activity that is not well supported by
current tools. The probes were inspired directly from the color
manipulation stories, and represent different requirements specified by
the Color Portraits design space. The probes support the following

activities: designing and interacting with palettes, assembling and

130

disassembling composites, creating interactive histories, and applying
color to reveal the process as users progress through a particular
activity. Using StoryPortraits as raw material, [organized three
different design workshops with HCI researchers and designers to
generate ideas for tools based on participants’ stories represented with
StoryPortraits. [was especially interested in the possibility for designers
who had not participated in the interviews to grasp insights from
StoryPortraits. We produced a dozen of video prototypes that [used as a
basis for the design of the four probes presented below. I implemented

the four probes using Processing.

Palette Explorer

Figure 53. in Palette Explorer, designers can create interactive color palettes with

interactive swatches, enabling them to explore spatial relationships and manipulate sets of
swatches. The same colors are resized and recomposed, generating very different color
effects

Our interviews with Designers and artists showed that they almost
never manipulate individual colors. Instead, they created sets of colors
and manipulated the relationships among them, but usually in an ad hoc
way, combining features from multiple tools or creating their own
techniques. Palette explorer was inspired by P2’s story in which she took
photographs of several colored objects, playing with their position and
visual weight to experiment with color composition and effects.
Following this principle, Palette Explorer focuses on color relationships
by allowing designers to manipulate colors in the context of other colors
and observe how they interact. Designers can create swatches of
different sizes and shapes, they can move, resize and adjust layers freely
at any time to explore the effects of different color relationships in
$pace. For example, in (Figure 53), a designer first positions a red and
dark blue rectangle on top of the green and purple squares to observe

how they react on such backgrounds. She then positions the dark blue

131

and red recdtangles next to the others to observe how they interact
together on a neutral grey background. To facilitate this exploration,
Palette Explorer allows designers to modify a color in the context of the
remaining colors by selecting it and moving the cursor along three axes:
X for hue, Y for saturation and mouse wheel for brightness.

In traditional color pickers,
designers are forced to ¢hoose
colors by comparing them
with their adjacent colors in a
color space. Instead, by

¢hoosing to provide an

Figure 54. Designers can manipulate whole invisible interaction, Palette
palette while preserving their harmony and Explorer focuses on the
other characteristics. relationship between colors of
the same palette. Designers
can also select sets of swatches or the whole palette and modify them at
the same time on any of the axes, retaining the harmony and other
¢haracdteristics of the original palette. This feature was inspired by P8’s
(Illustrator) story in which she modified the hue of eac¢h color by the
same amount. In Figure 54, the designer has shifted the red rectangle in

the background to turquoise and the remaining colors have ¢hanged

Figure 55. in Color Compositor, designers can combine colors and textures to create and

accordingly, creating a utterly new palette.

Color Compositor

manipulate composites.

During our interviews, we observed how designers did not treat color as
a separate entity but instead manipulated them with other visual effects,

including lighting and texture. They created and manipulated

132

composites of colors and effects. However, current color tools do not let
designers create, interact or decompose composites. Color Compositor
lets designers combine colors and textures to create their own novel
composites. They can manipulate these composite by independently
manipulating either the color or the texture and directly observe in
context how the composite reacts to these modifications. Designers can
save composite but can also decompose the resulting textured image
into its component parts. For example, in Figure 55, the designer
combines orange with an image containing slices of a citrus fruit. She
then modifies only the color to turn the composite into lemon and lime

and saves the different combination.

Color Partner

The designers we interviewed

reuse previous colors from

° . earlier projects and develop
[
.o their own ad hoc te¢hniques
. f 3 . for capturing both interesting
e e

color but also keeping their

intermediary exploration

° .
' steps. In current color pickers,
[]
Pe designers are forced to select
o o colors from the nearly infinite

space of all given colors.

Figure 56. The dots grow when selected but
also decrease and eventually disappear if

they are not selected, revealing a history of

Instead, designers tended to
sample particular colors from

existing sources and to tweak

past color choices. them. This utterly different

way of envisioning color
exploration is not yet supported by existing color tools. Color Partner
proposes a novel way of exploring color, a partnership between a system
that proposes colors and a designer who guides it. When opened for the
first time, Color Partner proposes a set of 6 color dots from which
designers can start their exploration. Clicking on a dot triggers the
semi-random generation of new color dots (one per second) for as long
as the designer does not release the cursor (Figure 56). Designers can
guide which colors are generated through proximity to previously
generated colors: keeping the cursor close to the selected dot produces
very similar colors to the original one whereas moving the cursor away
results in more and more diverse colors. In current color pickers, saving
a color requires an explicit action from designers, who are forced to

extract the color from its original context and intermediary steps. In

133

Color Partner, color dots become smaller over time and eventually
disappear if they were not used. Clicking on a dot to select it enlarges
the size of the dot. The more a color dot gets selected, the bigger it
becomes. These two simple rules provides an implicit memory
mechanism that reveals past color ¢hoices and allows designers to
return to intermediate color ¢hoices and use them to create new colors.
Because they can always visualize they past color explorations, Color
Partner helps designers reflect on their past color ¢hoices. In Figure 57,
the designer opens ColorPartner for the first time and clicks on the red

dot to start generating colors. As time goes on, the palettes follows the

designer color ¢hoices and reveal how they evolved over time.

Color Revealer

Introduction :

In the early eighties, the limp from WIMP to newer "post-WIMP"
graphical interfaces, which take advantage of nivel interaction
techniques_

Introduction :
In the early eighties, the Xerox Staruser Intaffa¢é [27] ans the
principles of direct manipulation [26] led to a powerful
graphicallliser interface/model) referfed to as WIMP Windows,
Icons, Menus and Pointing). WIMP interfaces revolutioniged
computihng, making computers dé¢essible to a broad audience.

Introduction :

In the early eighties, the Xerox Staruser Intérface [27] ans the
principles of direct manipulation [26] led to a powerful
graphical user interface model, referred to as WIMP (Windows,
Icons, Menus and Polnting). WIMP interfaces fevolutioniged
compulfing, making computers accessible to a broad audience.

Results :

An important role of an interaction model is to provide
properties to evaluate and compare ateernative designs. This
can help interface designers who face difficult choices when
selecting the interaction techniques for a particular
application_

Figure 57. in Color Revealer, Writers’
hesitations and corrections are revealed
through ¢hanges in hue and intensity.

Unlike the other activities in
the Color Portraits design
space, process does not treat
color as an end in itself, but
rather as a means to an end.
Color ¢hanges reveal
intermediate steps or the
overall state of an activity as it
occurs over time. We ¢hose to
directly reify this idea
observed in several
participants' stories and apply
it in the context of text
editing. ColorRevealer
captures traces of the writer’s
writing process by using color
as an indicator of pauses,
corrections and the passing
time. As they type, behind
each character appears a

subtle colored layer. Deleting a ¢haracter also applies a new layer, so

Color Revealer introduces stronger colors behind the corrected words.

Contrary to digital text that can be modified seamlessly, layers only

accumulate over time. As time flows, the color of the layers beeing

applied also ¢hange from pale green to blue and eventually red, allowing

the writer to visualize how much time went by between two text areas.

In Figure 58, the writer first types with very little hesitation, so the

layers behind the text appear as pale green. Then, additional layers

appear as the user deletes or rewrites words. here the writer has

134

repeatedly deleted and corrected a number of words in his introduction,
which introduces stronger colors behind the corrected words. Color
Revealer allows users to control the mapping of colors to their writing
activities and provides an adjustable timeline that lets them scroll back

through earlier stages in the writing process.

These four color tools embody different aspects of the Color Portraits
design space. We treat them as probes to help us evaluate how color
manipulation activities are represented in the design space and, to

understand color manipulation more generally.

Interacting with Probes

We selected 8 participants from the two earlier studies to explore the
probes in a structured observation. Structured observation (Garcia, 2012)
is a type of quasi-experiment (Cook, 1979) designed to enhance external
validity by combining controlled conditions that facilitate comparisons
within and across realistic tasks. We wanted to understand how they
interpreted each tool in general, and also in the context of their current
work.

Participants: We interviewed eight participants, half from each of the
two previous color interviews studies (5 men, 3 women, aged 23-40).
Professions included: product designer, illustrator, painter, service
designer, researcher in data visualization, information theorist, virtual
reality engineer and programmer.

Procedure: Eac¢h session lasted approximately one hour in the
participant’s studio or office. We presented each tool, in turn, and gave
the participant five minutes to experiment and perform short tasks with
each tool, as follows: Palette Explorer: Create a book’s cover page. Color
Compositor: Design a textured color for the background of the book
cover. Color Partner: Create your favorite red and favorite blue. Color
Revealer: Write a summary of a recent project. After each task, we asked
participants to think of recent color projects in whic¢h they manipulated
color and show us how the tool might, or might not, be useful for those
tasks. We counter-balanced the order of tools across participants.

Data collection: We collected audio recordings of each session and
screen captures of their interactions with eac¢h color tool. We also took
notes based on participants’ answers to a common set of interview

questions.

135

RESULTS

Participants suggested different ways of using the color probes both
conceptually, by explaining what the tool does, and practically,

explaining how they would prove useful in their current projects.

Palette Explorer

Most participants (7/8) viewed Palette Explorer as a space for sket¢hing
and experimenting with color relationships. PS5 (Product designer)
described Palette Explorer as “a tool for projection and sketching that
allows rapid visualization of scale relationships among colors” She
wanted to create a color ¢hart to establish a digital identity for a client
and was particularly interested in using it as is to see how the colors
look together in different contexts, without having to use text samples
and images to do so. For example, she wanted to establish a set of colors
and then experiment how they would look with different versions of her

client’s logo.

Color Compositor

Participants felt that Color Compositor greatly simplified the task for
creating and manipulating color composites and half of the participants
explained how it would affect their current projects. P3 (Service
designer) was happy to avoid using Photoshop layers when creating and
experimenting with a textured color. PS5 (Product designer) wanted to
use Color Compositor’s texture library to group similar components for
future use. Although Color Compositor focused on texture, participants
had a number of suggestions for combining color with other elements,
especially images. They also offered interesting ideas for how to extend
it. For example, three participants suggested reproducing these patterns
on very large surfaces, to establish color and texture relationships when

creating wallpaper.

Color Partner

Participants viewed Color Partner as a space for exploring color. P1
(Painter) appreciated how suggesting colors helped him make color-
related decisions. However, he “would not share the result of

generation. The colors I get are more personal”. Color Partner also

136

allowed participants to create interesting clusters of colors and to
preserve those they would later use to create a new color exploration
¢hain. P16 (Information theorist) felt that the tool would help her get
"little by little to the color I want”.

Color Revealer

Color Revealer encouraged participants to reflect on how they type and
write. P16 (Information theorist) compared Color Revealer to an eraser:
“When I erase an area several times, I end up seeing the trace on paper’.
She also noticed that she always deleted the whole word when she
makes a typo, which she had not realized before. P5 (Product Designer)
explained that Color Revealer “projects your thinking as you write. It
helps you feel the intensity of your writing and gives it meaning through
making this process visible.” All but one participant described how they
would use Color Revealer in their current projects. P1 (painter) wanted
to use it when collaborating on a course he is teac¢hing. Since his
colleague is a fast typist, he wanted her to use the tool to take notes
during class. He would like to then read the notes and use the ¢hange of
color to help him understand when she hesitated, just as in a face-to-

face conversation.

Summary

In this ¢hapter, I designed four color tools that support the currently
unsupported color activities uncovered during our interviews: Palette
Explorer manipulates color relationships within a shared context; Color
Compositor composes and decomposes diverse colors and textures;
Color Partner generates and captures c¢hains of color, guided by
designers; and Color Revealer reveals underlying processes by subtly
¢hanging hue and color intensity. These four probes demonstrate the
possibility to use designers’ practices stories into the form of
StoryPortraits as insights for creating novel color tools. We then
explored the probes with 8 designers and observed how both designers
and scientists were able to interpret the probes in the context of their
own work. The color tools demonstrate the generative power of the

Color Portraits Design Space.

137

138

Chapter 10

STICKYLINES
Structuring and Tweaking

I collaborated with Marianela Ciolfi Felice on the design of StickyLines and the
following study. Marianela Ciolfi Felice implemented StickyLines.

In ¢hapter 5, we observed how both designers and regular users of
graphical authoring tools struggled to align and distribute content in
their projects. We showed that current alignment and distribution
commands do not support designers' needs for persistent alignment and
distribution mechanisms that they could then adapt for specific cases.
We also showed how the current 6 commands do not match the variety
of possible alignments and distributions that designers perform. In this
¢hapter, I present and explore the potential of StickyLines, guidelines
that represent alignment and distribution as persistent objects that
designers can manipulate directly. Because StickyLines are first-class
objedts, they have their own settings and properties, like other graphical
objedts. I present two different tweaking mechanisms that extend
StickyLines to account for designers' need to adjust diverse elements
while maintaining alignment. We then tested StickyLines in two
complementary setting. We first observed how they perform against
traditional command and we then explore their most advanced

functionalities with designers in a structured observation.

Context

We can divide existing alignment te¢chniques around four different
Strategies: commands provide immediate imperative alignment;
snapping infers potential alignment and guide designers; constraints
allow the creation of explicit multidimensional alignments; and

reification provides an interactive and persistent aligning objects.

139

Command-based Techniques

Almost all current commercial applications for graphical authoring,
such as Adobe Illustrator and InDesign or Microsoft PowerPoint,
feature menu-based commands for alignment and distribution. A recent
technique, GACA (Xu, 2015), can align and distribute objects in 2D if
they are roughly aligned, in a single operation. The system infers
relationships in the selected set, without having to work with
subgroups. However, command-based techniques do not make

relationships persistent and their results can be hard to predict by users.

Constraint-based Techniques

Constraints encode relationships among objects in a layout. Sket¢hpad
(Sutherland, 1963) was the first interactive tool to integrate constraints
and dire¢t manipulation. In most constraint-based approaches, e.g.,
Juno (Nelson, 1985), and Dunnart (Dwyer, 2008), users declare
constraints and the system computes a layout that satisfies them. Some
systems focus instead on constraint inference, su¢h as Chimera
(Kurlander, 1993), Pegasus (Igarashi, 1997) and Penguins (Chok, 1998).
For example, DesignScape (O’Donovan, 2015) automates “the tedious
parts of design”, including alignment, by making layout suggestions
based on user-defined and system-inferred constraints. In current
design software, designers can hold caption key to constraint an axis
while moving graphical objects. Other systems, such as Xu et al.’s
beautifier (Xu, 2014) allow users to interact with the inferred
constraints. Geometric constraints can be difficult to solve and the
results can be difficult to anticipate. In the context of diagram editing,
Wybrow et al. (Wybrow, 2008) compared one-way and multi-way
constraints. One-way constraints are easy to understand but are limited.
Multi-way constraints overcome these limitations, but make the system
much more complex. The authors found that alignment and distribution

would be more usable if they provided “truly persistent relationships”.

Snapping Techniques

As early as 1964, Sket¢hpad (Sutherland, 1963) featured gravity fields to
snap the cursor to nearby objects. Snap-dragging (Bier, 1986), based on a
ruler and compass metaphor, creates transient ‘alignment objects’
(points, circles and lines) inferred from the elements in the document.

Since then, snap-dragging has been extended and new te¢hniques have

140

been introduced, such as keeping objects aligned across slides (Edge,
2015). Briar combines snap-dragging with constraints (Gleicher, 1992).
Constraints are specified through augmented snapping, which takes the
snapping location as an extra parameter to infer constraints. When
snapping an object, the system reveals the new possible relationships to
the user, who must ¢hoose among or reject them. However, the user
cannot manipulate the constraints directly, only the objects, and
distribution is not supported. GLIDE (Ryall, 1997) explores a similar
approach, representing constraints with ‘indicator’ objects. In
HyperSnapping (Masui, 2001), snapping objects creates constraints
represented by square ‘anchors’ at the snapping points, and the snapped
objects are treated as a group. While the relationships are visible, they
cannot be manipulated directly and they are not persistent: the

constraints are cleared when clicking outside the group.

Reification of Alignment and Distribution

Several approaches have explicitly reified the concept of alignment into
interactive objects. Raisamo’s alignment stick (Raisamo, 1999) uses a
physical ruler metaphor to push objects. Lineogrammer (Zeleznik, 2008)
extends the alignment stick with a ‘grabby’ ruler that collects objects
when passing over them and supports distribution. However, while the
stick reifies the action of aligning, the relationships themselves are
neither directly manipulable nor persistent. In Rock & Rails (Wigdor,
2011), specific hand gestures represent constraints and help users align
objedts on a multitouch tabletop. In Object-oriented drawing (Xia,
2016), users can create persistent alignments by linking the positions of

graphical objects via attribute objects.

StickyLines

We built our design on top of the magnetic guidelines idea (Beaudouin,
2000) which were introduced in the context of a Colored Petri Net
design tool and lated adapted for table-top surface (Fris¢h, 2011).
Magnetic guidelines reify alignments into persistent graphical objects
that users can directly manipulate: objects can be attached and detached
from a guideline, and moving a guideline moves the objects attached to
it. However, the original capabilities were limited to persistent
alignment, they did not include distribution, nor taking into account the
need for control and generalization. Directly building on top of our

analysis of designers’ practices, we created StickyLines, interactive

141

guidelines that maintain persistent, controllable, and generalizable

alignment and distribution.

Guidelines for Persistence

O O

Figure 58. StickyLines are guidelines that keep aligned and distributed graphical objects
that are attached to it.

We propose to reify alignment and distribution commands into a new
category of objects called StickyLines. These guidelines embed an
explicit behavior: keeping aligned, and sometimes distributed, the
objedts being attached to it (Figure 59). Designers can create guidelines
and attach objedts to it. Dragging an object close to a guideline
highlights the snap point (center or side) that will be used for alignment
when it is dropped. Dropping the object attaches it to the guideline at
that snap point. Dragging an object away from its guideline detaches it.
Guidelines can be manipulated like regular objects: they can be resized,
moved, and deleted. Moving a guideline also moves the objects attached
to it, keeping the alignment while simultaneously enabling designers to
continue on moving objects. Designers can also activate the distribution
behavior of individual guidelines. Because guidelines are interactive,
resizing the guidelines automatically recalculates and reapplies the
distribution.

Guidelines for Control

With StickyLines, [was especially interested in exploring how
structuring tools such as alignment guidelines can also support
designers needs for fined grained and always evolving tweaks. Study
participants wanted to tweak the placement of objects attached to
guidelines in order to, e.g., correct an alignment when the perceived

visual center of an object is not its geometric center or to adjust the

142

result of a distribution without modifying the position of other objects
on the guideline. We created two different mechanisms to support

manual tweaks while preserving the overall alignment and distribution

structure

TWEAKING OFFSETS

We first created what we call
tweaks. Using the arrow keys
to move an object repositions
it, but the object remains
~ logically attached to the
l guideline (Figure 60). This
offset, called a tweak, is
recorded and displayed.
Tweaks are persistent: moving
Figure 59. Moving an element with arrow the guideline preserves the
keys to center it visually creates a reified offset. Tweaks belong to the
offset (the purple line) that we call a tweak. objects so that if an object is
detached from a guideline, its
tweak will be reused when attaching the object to another guideline.
Tweaks reify the action of adjusting an object’s position, which is often
needed when fine-tuning a layout. They are first-class objects that can
be edited, copied onto other objects, and deleted. By creating such a
tweak, we preserve the capability to apply behaviors suc¢h as alignment
and distribution while simultaneously allowing for explicit

modifications of the rules.

TWEAKING BOUNDING BOXES

Designers can also modify the

bounding box of an object i
)) () (f ounding box of an object in

order to, e.g., finely control its

placement on a guideline

when it is attached by one of

)
\ its sides (Figure 61). Hovering
)) () (‘ the cursor over an object
> displays its bounding box. The
geometric bounding box is the
default, but designers can
Figure 60. Resizing the bounding box resize and move it through
affects the distribution of elements on the dire manipulation, without
affecting the object itself.

Moving and resizing an object

guideline

moves and resizes its bounding box. Bounding boxes can be copied onto

143

other objects, replacing their current one. In the same way as tweaking
the reference point reifies adjustments to the object’s position,
tweaking the bounding box reifies adjustments to its extent. Because
guidelines always update alignment and distribution, designers can

manipulate bounding box and immediately observe the resulting effect.

Guidelines for Generality

Study Participants also wanted
more diverse types of
alignments and distribution,
beyond the ubiquitous
horizontal and vertical ones.

p With StickyLines, designers
can create five different types
of guidelines: horizontal,
vertical, circular, parallel and
ghost guidelines. For
horizontal, vertical, circular

Figure 61. The parallel guidelines keeps and parallel guidelines,

objects aligned at any angle designers simply click in the

canvas and the guideline

appears. A parallel guideline is a line at any angle that keeps objects

parallel to each other, perpendicular to the line (Figure 62). To create a

ghost guideline, designers must first click an object. The guideline takes

the object’s shape and the designer can adjust its offset. A guideline can
be reshaped into another form and the positions of the attached objects
adapt to the new form, allowing experimentations with different

alignment types. Designers can also manipulate distribution by opening

the distribution curve and manipulating it.

Structured Observation

We are interested in how designers interact with StickyLines when they
need to create and tweak complex structures that will be reused. We
want to observe how designers use and appropriate the advanced
features of StickyLines that give them more control over alignment and
distribution, and capture their strategies. We conducted a structured
observation of expert use with six designers.

Participants: We recruited six designers (ages 22-30; all women) with

two to seven years of experience. All participants are regular users of

144

Adobe Illustrator and Adobe Photoshop, and some of Adobe InDesign
(5/6), Sketc¢h (3/6), Corel Draw (1/6), and Inkscape (1/6).

Apparatus: The version of StickyLines used in this study includes most
of the features described earlier: horizontal, vertical and circular
guidelienes, distribution (of space or reference points), re-shaping,
tweaking reference points and bounding boxes, hiding/showing
guidelines and tweaks. In order to keep the training time to around ten
minutes and to avoid overwhelming participants with a number of
features that are not at the core of the tool, we did not include parallel
and ghost guidelines, and disabled feedforward, distribution curves, and
automatic guideline removal.

Procedure Each participant

receives ten minutes of
\ training with StickyLines,
m followed by two minutes of
(0) N (m\) free practice. The study
O) ‘7(O includes three tasks, and uses
a think-aloud protocol. At the
beginning of the first task,

participants are given two
Figure 62. Landscape version of the poster i
printed posters and asked to

to reproduce

reproduce them using the
predefined objects displayed on the screen (Figure 63). They are told that
each task builds upon the results of the previous one - including
guidelines, tweaks and bounding boxes - unless they prefer to reset the
layout. The posters include ambiguous alignment and distribution
relationships, as well as “irregular” shapes, to encourage diversity in the
solutions. In task one, participants reproduce the first poster. In task
two, they can reuse the result of task one to generate the second poster,
which is a similar layout, but with a different page orientation. Half of
the users convert from portrait to landscape, the other half does the
opposite. The first two tasks are not timed. In task three, participants
have ten minutes to continue the series by designing two more posters
that they would present to a client. The three tasks take approximately
45 min, after which participants complete a post-hoc questionnaire.
Data Collection We recorded the screen and the audio and took notes.
We logged the interaction of the participants with the tool and we

collected the answers to the post-questionnaire.

RESULTS AND DISCUSSION

145

All participants relied extensively on StickyLines to construct their
layout in task one and to adapt it later for tasks two and three. In task
one, most participants (5/6) used the same strategy: to “first create a
guideline for the main structure” (P3) and later create secondary
guidelines. For example P1 created a vertical “base mark”, rougly
positioned all the objects, and only then added the other guidelines. By
contrast, P2 first created all the guidelines she thought she would need
before manipulating any object. She then “collected” objects by
releasing a guideline close to them, in sequence.

In task two, all participants reused existing guidelines. Participants
also used StickyLines to verify alignment: P4 created a vertical guideline
close to two objects that were already positioned in horizontal

alignments, to ¢heck whether or not they were also aligned vertically.

Strategies using Tweaks

As expected, most participants (5/6) tweaked object positions: all
tweaked alignment and one (P5) also tweaked distribution. P1 based her
strategy almost exclusively on tweaking reference points, barely using
bounding boxes. Not surprisingly, participants created more tweaks in
task one than in task two, indicating that they reused their previous
tweaks. When converting the poster, P5 appreciated the persistence of
tweaks: “It helps that the tweaks are still there”. Among the participants
who created tweaks, some (3/5) edited them more often in task two than
in task one. Only one participant copied tweaks (P2), in task three,
which was more open-ended and exploratory. However, she pasted these
two tweaks 16 times, a strong example of reuse. The low use of copying
is probably due to the fact that the layouts required mirroring a tweak
after pasting it, which is not currently supported by StickyLines, so
participants decided to create new tweaks instead. More than half (4/6)

expressed the need for a “mirroring” feature.

Strategies using Bounding Boxes

All participants also tweaked bounding boxes. P3 relied on this feature
extensively and did not tweak reference points. In task two, participants
reused tweaked bounding boxes more often than tweaked reference
points: A majority of participants (4/6) copied bounding boxes and
pasted them onto several objects, most during task one (only one in task
two). Participants were not only interested in modifying the perceived
borders of objects, but also their perceived centers. P4 modified the
bounding box to position its center at the visual center of the object.

She then used this new point to attach the object to a guideline.

146

Tweaks as Grouping Mechanisms

Interestingly, we observed that most participants (5/6) perceived
guidelines not only as an alignment and distribution feature, but also as
“groups” or “structures”. They appropriated tweaks to attach objects to a
guideline even if they were far away from it, in order to semantically
group objects together. (We refer to this as “super tweaking”.) For
example, P3 explicitly used a guideline as a grouping mechanism rather
than as an alignment feature. She stated: “I think of these four objecls as
a group but this one is not on the guideline”, so she attached the object
temporarily to be able to move the whole group by dragging the
guideline, and also to remember that they belonged together, since she
was planning to come back later to that part of the layout.

Most participants (5/6) resized guidelines to avoid overlapping other
objects and manipulated eac¢h one as a small, compact group that they
could easily move around. In task 3, half the participants (3/6) moved the
guidelines out of the frame to build the new poster based on their
current structures. Half the participants (3/6) hid the guidelines at the

end of each task, to compare their work with the printout.

StickyLines as First-class Objects

Participants used guidelines extensively during the three tasks. For the
second alternative poster in task three, all participants manipulated the
position and type of the guidelines more than the objects themselves,
supporting the idea that participants perceive StickyLines as first-class
objedts. In fact, participants asked for even greater levels of interaction
with StickyLines. For example, one participant wanted to “capture the
distance between two guidelines in order to reuse it” (P1), and two
participants said that they would like to align and distribute guidelines
as if they were regular objects (P1, P4). P4 wanted to cut a line in two
parts, since her “two groups are on the same line” (P4). Half the
participants (3/6) also wanted to be able to merge guidelines. Some
participants wanted to know if an object is at the center of a guideline
(2/6), to move guidelines precisely with the arrow keys (2/6), to move
multiple guidelines at once (5/6), to copy a guideline to reuse its length
(1/6), to snap the center of a bounding box to the center of the object
(1/6), to reveal all the bounding boxes in the layout (1/6), and to draw the
guidelines themselves to define their initial length (1/6). These
suggestions demonstrate the power of using guidelines to reify layout
relationships, and merit future exploration.

In summary, this structured observation demonstrates that trained

147

designers can quickly learn to use StickyLines and adapt their work
practices to take advantage of guidelines and tweaking. It supports the
findings from study one about the value of supporting persistence,
control and generality to extend the power of tools for graphical layout.
Study three also reveals examples of spontaneous appropriation, such as
“super tweaking” an object’s position in order to attach it to a distant

guideline.

Summary

In this ¢hapter, I introduced StickyLines, a tool that reifies both
alignment and distribution into an interactive and persistent guideline.
We designed StickyLines to support a fine-grained control over
alignment and distribution through the creation of tweaking objects
and the use of manipulable bounding boxes. Moreover, extended the
repertoire of possible alignments and distribution by allowing the
creation of ghost guidelines around existing shapes. We conducted a
structured observation study that demonstrates how professional
designers can quickly adapt to and appropriate StickyLinessay more.
StickyLines relies on the reification of alignments and adjustments,
turning them into first-class objects that users not only learn to use

efficiently, but also want to push further.

148

149

150

Chapter 11

LAYOUT TOOLS
Reifying Graphical Substrates

Philip Tchernavskij collaborated on the design of StyleBlocks

and he implemented it.

In our interviews with 12 professional graphic designers presented
in ¢hapter 5, we revealed that they all use sophisticated ways to
$tructure layout. We call these structures graphical substrates and show
that they consist of mapping a variety of inputs, including conceptual,
content and contextual inputs, onto outputs, most notably spatial and
temporal properties. However, current layout tools provide very limited
support for graphical substrates and graphic designers currently either
manage them by hand or rely on code to explicitly represent them in
their designs. In this ¢hapter, I explore the generative power of
graphical substrates. The goal is not to support all possible substrates
but rather to demonstrate how Graphical Substrates can be a generative
framework for the creation of graphic design tools. In the previous
¢hapter, we focused on spatial output through the creation of alignment
and distribution guidelines. In this ¢hapter, I focus on the types of
substrates that graphic designers reified using code. These reified
Graphical Substrates extended traditional graphic design by allowing an
automatic application of substrate, more diverse input types and
collaboration with the reader. By reifying these graphical substrates into
probe, my goal is to observe how different graphic designers react to
them and how they might adopt and adapt such possibilities into their

own work.

151

Context

Creating and structuring layout is a skilled activity and researc¢hers
created a number of dedicated tools that either guide and direct novices

or assist expert graphic designers.

Supporting layout creation by novices

With the advent of desktop computing, creating layout is no longer the
exclusive domain of experts, but is performed by novices as well. A
common Strategy for helping novices is to offer suggestions as they
create layouts. For example, Design-Scape (O'Donovan2015) makes
suggestions during both the brainstorming and refinement phases of
layout creation, R-ADoMC (Jahanian, 2013) makes recommendations for
magazine covers and Sketchplorer (Todi, 2016) provides real-time
optimization of layout sket¢hing. These recommendations take multiple
factors into account, including color themes and visual balance. For
more focused tasks, Edge et al. (Edge, 2015) propose automatic
alignment and systematic restyling of related objects to maintain
consistency across slides. Piccoli et al. (Piccoli, 2011) propose an
interactive system based on principles from physics to guide content
organization on the page. These systems support novices’ needs by
hiding complexity from the user and focusing directly on an efficient
final layout, but are less helpful for expert graphic designers who go
beyond established principles to define their own rules and constraints.
An alternative strategy is to build systems that automatically design and
generate layouts. Several models have been proposed, such as automated
responsive design (Colby, 1992), semi-automated document designs
inspired by magazine layouts that adapt to device screen sizes and
content selections (Kuhna, 2012) (S¢hrier, 2008), and adaptive grid-based
document layouts (Jacobs, 2003) that automatically ¢hoose and fill in
existing templates. Sukale et al. (Sukale, 2014) also automate adaptation
of layouts based on users’ proximity to the screen. Yet, as Hurst et al.
(Hurst, 2009) point out, “It is still unrealistic to expect automatic layout

systems to rival the creativity of a good graphic designer.”

Enhancing graphic designers’ practices

Instead of replacing graphic designers, some systems provide tools that
support specific needs, from solving localized “micro-problems”, to

facilitating workflow and providing programming support.

152

At the local level, automatic tools handle many small, but crucial design
¢hallenges. For example, Moulder and Marriott (Moulder, 2012) offer a
machine learning approach to solve line-breaking issues. Expert
designers can also benefit from interaction techniques that support
specific and recurrent tasks, especially alignment. The GACA (Xu, 2015)
group-aware alignment technique helps professionals deal with complex
alignments. NEAT (Fris¢h, 2011a) and Grids-and-Guides (Fris¢h, 2011b)
provide sets of multi-touch gestures for creating guides, as well as
aligning and distributing elements on interactive surfaces. Other tools
address the designer’s need to control their overall workflow. Adobe
Comp 1 lets designers quickly draw initial layout ideas before moving to
expert software. Gem-ni (Zaman, 2015) and Parallel Paths (Terry, 2004)
support parallel editing and active comparison of multiple divergent
visual elements. Adaptive Ideas (Lee, 2010) helps designers create
website layouts by sampling example elements. DECOR (Sinha, 2015)
supports web design workflow by providing recommendations for
adapting layouts to accommodate a variety of screen sizes; and Adobe
Edge Reflow uses media query breakpoints to help designers envision
their layouts on various devices. Both local and workflow tools can
significantly enhance the work practices of expert graphic designers,
but only for well-defined tasks. However, graphic design, like many
other creative activities, is undergoing a paradigm shift toward more
programmatic approaches. For example, Processing (Reas, 2007) is a
language and interactive development environment (IDE) designed to
make programming more accessible for visual creators. Personal
Information Management (PIM) (Maleki, 2014) reduces the scripting
learning curve for designers. Gliimpse (Dragicevic, 2011) uses animation
to visualize mappings between source markup and final result. These
approaches empower graphic designers, but require them to think in
programming rather than visual terms, which is particularly ¢hallenging

for designers with no software development training.

Probing Graphical Substrates

In our study with graphic designers, we observed multiple designers
explicitly reify graphical substrates into code to support (1)
collaboration with the reader, (2) more diverse input, and (3) automatic
application of substrates, none of which are supported by traditional
tools. Inspired by these stories, we created two probes that reify
graphical substrates into novel layout creation tools. The goal is not to

support all possible substrates, but rather to open new opportunities for

153

graphic designers and inspire new directions for designing tools that
generate innovative layouts. Contextify reifies aspects of the reader’s
context, modifying the layout according the reader’s preferences and the
current reading environment (1). Linkify reifies spatial relationships,
providing new inputs for modifying the layout according to dynamic
properties of the content (2). Both are implemented as web applications
to facilitate deployment and use by graphic designers directly in the

browser, where the final articles will be read.

CONTEXTIFY - RICHER INPUTS FOR
STRUCTURING LAYOUT

Although Responsive Design lets designers adapt layouts to the width of
the reader’s display, designers must write code to accommodate other
sources of input. [was inspired by P2’s book layout, which lets readers
¢hoose the page dimension, thus taking an active role in the creation of

the layout.

Beyond
Windows

Beyond Windows

Beyond Windows Beyond
Windows

i mous passions moins de temps & o

Figure 63. Contextify accepts inputs for tailoring layout under four reading conditions:

day (a-b) vs. night (c-d); preview (a-c) vs. full detail (b-d)

Contextify provides a visual interface for defining sub-layouts based on
inputs from the readers’ intentions and context. The system combines
sub-layouts according to these inputs and generates the layout displayed
to the reader. I implemented a contextual condition, night or day, and a
condition specified by the reader when entering the page or web site:

preview or detailed reading. Contextify redefines the relationship

154

between the reader and the designer: combining these conditions
results in a layout that can be tailored to four reading contexts.

[illustrate this probe with a simple scenario. Ron is designing an
article on Muriel Cooper to be published in an online magazine. For the
preview condition, Ron wants to show an overview of the article, so he
emphasizes the title size to attract attention and includes a selection of
texts and images (Figure 64). He saves this first sub-layout. To guide the
reader through the content in the detailed reading condition, he creates
a diagonal flow (Figure 64b) and saves the second sub-layout. Ron
decides to play with colors for both the night and day conditions and
¢hooses a set of two colors (Figure 64c-d). The reader can now access the

same article from four different perspectives.

LINKIFY - RELATIONSHIPS AMONG
CONTENT PARAMETERS

A major ¢hallenge is how to design a layout without knowing the
content beforehand. Instead of creating a fixed layout, some designers

base the layout on dynamic relationships among content properties.

California Design =
Seeomploce %
- =a
-dans ur

- 220 Ox %91 ten ot, la mode é & la sauce

a B lomtam o el i 1
Biceps, bijoux, ==
maillots et bord de e
mer [aeices]

Défilés sur les plages de la
modernité ot I'on rencontrera
notamment Coco Chanel, Boy
Capel, les Noailles, Jean
Cocteau et bien d’autres encore.

kini
s de plage du XIXe
lexes par leur

rien, ou presque, ne ls dif
ville. Le corps demeure di

S . | certaines dont ele sest habilement fait lauteure,

Figure 64. Linkify lets designers link content properties to create generative layouts.
Here, the length of titles affects the position of images and subtitles

I was especially inspired by P3’s design for generating images based on
title length. His layout evolves continuously according to the

¢haracteristics of each new content element. Linkify lets designers

155

visually connedt content properties to establish relationships that are
then reapplied when the content ¢hanges. The user selects two content
elements and the system captures the visual ratios among their
properties. Once the relationship is created, it is automatically applied
when the content elements ¢hange, just as a spreadsheet recomputes
formulas when a cell ¢hanges. I implemented five properties: the width
of an element, its horizontal and vertical positions, its font size and
number of ¢haracters (for text elements).

I illustrate this probe with a simple scenario. Alice is designing a
blog layout and already has the first three articles. She decides to set the
title position but to position the other elements according to the title
length of each blog post. She first creates an interesting composition
and then draws a link between the title length and the vertical positions
of the subtitle and other images (Figure 65). Longer titles push the
content downwards. Linkify automatically calculates this ratio based on
the linked parameters. Alice ¢hecks that the relationships produce
interesting results for longer titles (Figure 65b).

Exploring the Probes

Participants: We interviewed 12 graphic designers (6 men, 6 women),
age 23-57, with 4-27 years of experience (mean=11), who work in various
environments (freelance, studio, agency). 11 create layouts for print and
digital media, one for digital media only. Seven had at at least some
experience with a programming language and three already participated
in Study 1.

Procedure: Each session lasted approximately one hour and a half. We
gave a scripted presentation of the functions of each tool and asked the
participant to perform a short task based on the above scenarios, after
which they could experiment with each tool for 10-15 minutes. The
Linkify task consisted of using three sample articles to create a layout
for a blog that varied according to the title length. The Contextify task
consisted of creating a layout for an article in an online design magazine
that adapts to daytime vs. nighttime, and to the reader’s ¢hoice of
whether to read a preview or the full article. We used a think-aloud
protocol and counterbalanced the order of tools across participants.
After each task, we asked participants to describe to a colleague what
they think the purpose of the tool was and how to use it. We asked if
they had a recent layout project for whic¢h they thought the tool could
have been useful and to describe in detail how they would have used it.

We also asked them to suggest improvements to the tool.

156

Data Collection: We collected audio recordings of each session and
screen captures of their interactions with each tool. We also took notes

based on participants’ answers to our questions.

RESULTS

Interacting with Contextify

Beyond Windows

Figure 65. Two examples of layout created by participants with Contextify

Nine participants described concrete examples of how they wanted to
use Contextify (Figure 66). For example, P20 thought that the tool gave
designers a new form of editorial power. She wanted to use the tool to
design sc¢hool content on tablets. Providing multiple layouts would
allow students to adapt the content to their learning method: “Some
need more images, some need more words, others need to see all the
content at a glance. It would also be very interesting to add some types
of content only at home, such as sound for example in the case of an
English workbook”. Similarly, P16 explained that for her project on
Danish police data, Contextify “could adapt the analysis of the data to
the different jobs in the police, because they have very different needs.
You could also select a global view of the information or a very precise
one”. P18 is working on an editorial web project with both detailed and
summary views of the same content. He would like to use Contextify to
simplify the creation of these views by interacting with the tool visually
rather than programming everything. Finally, P19 wants to use

I?

Contextify as a teaching tool for students to “understand and explore
the challenges of adaptability beyond responsive design”. He wants the
students to “design according to other factors and not only the

i3 »
viewpor t.

157

Interacting with Linkify

Madame réve d’aéroport

Figure 66. Two examples of layouts created by participants with Linkify

Eleven participants described concrete examples of how they wanted to
use Linkify (Figure 67). For example, P24, a graphic designer working in
close relationship with a developer, wanted to use the tool as an
“interface between designers and developers”. Instead of waiting for her
colleague to implement the layouts in order to see how they render on
each page, she could try her substrate directly, with multiple content
examples, and make adjustments before handing it off to the developer.
P22 wanted to link content parameters to create the layout of an archive.
She would use the “organic nature of the tool” to generate a layout that
prompts new encounters and relationships among images because: “It is
not very interesting to have traditional linear layout for archives”. P13
was curating a webpage on which, every week, he published four
animated images with a text that analyzes them. He would like to use
Linkify “to create a completely different layout without having to
redesign everything each time, because by moditying the last page, all
the others are going to evolve.” He thought this would add a sense of
“temporal evolution” and would offer a new perspective on his old

content every week.

Extending Graphical Substrates

Participants quickly understood the power of reifying graphical
substrates in tools such as Contextify and Linkify. They also gave
feedback and suggested improvements, including new inputs they
would like to use and new ways to turn substrates into fully interactive
objects. We categorized the suggestions in two classes: generalization

and reification.

GENERALIZATION - EXTENDING INPUTS

Contextify supported only two sets of inputs that designers could

158

experiment with. Ten participants suggested other inputs that would
support and extend the dynamic nature of their projects. Some
participants wanted to control environmental and contextual
parameters in order to adapt the reading experience to the current
context, such as the reader’s current location (P20); current weather;
ambient sound level (P19); or even a continuous time parameter to
facilitate fluid ¢hanges in the layout (P13, P21). Other participants
proposed letting readers specify their needs, thus creating a line of
communication between the reader and the graphic designer.
Suggestions included: age, handicap (P16), memory type (P20) and
reading urgency (P17). Participants also wanted to create layouts
according to different types of readers including author or client (P18,
P23) or even job types (P16, P15). Linkify was limited to five content
properties to define relationships. Eight participants suggested
additional properties such as opacity (P19) or white space between
elements (P15, P17, P23). They also wanted to access non-content
properties, such as viewport (P18), margins and visual reference points
(P17).

GRAPHICAL SUBSTRATES AS INTERACTIVE OBJECTS

Overall, participants wanted more ways to interact with the substrates
they were creating. First, participants wanted the substrates to become
persistent, so that they could easily reuse them across projects. P17
wanted to use Linkify across several projects: “To remember the
common parameters I usually use in all my layouts. The system could
direclly reuse these parameters at the beginning of a new projecl”. He
was currently working on a knowledge management system and wanted
the system to “directly understand some of my links and patterns and
suggest new possibilities based on them”. Second, participants wanted
more control over the links provided by Linkify. For example, they
wanted to manipulate the ratios, e.g. to invert them or specify them as
absolute or relative values (P19). They also wanted to set the values (P14)
and define the bounds (P16, P13) of some parameters.

Linkify and Contextify demonstrate that we can reify the concept of
graphical substrates into tools that address previously unmet needs of
professional graphic designers. These tools should support a wide

variety of inputs and outputs and be flexible to let designers break rules.

159

StyleBlocks

To further explore the power of graphical substrates for web layout, we
created a prototype, StyleBlocks, that combines and extends Linkify and
Contextify. The goal is to rethink CSS stylesheets as interactive
graphical substrates. CSS (Cascading Style Sheets) is a declarative
language to specify web content layout. CSS supports a large set of
properties but is a very static language. Designers have to use Javascript
to implement any non-trivial dynamic behavior. Preprocessors such as
SASS support higher-level constructs, including variables and
expressions, but still generate static style sheets.

StyleBlocks (Figure 68) reifies

CSS declarations into

interactive blocks that can be

attached to content with

pipes. In addition to CSS

Figure 67. StyleBlocks supports arbitrary declarations, blocks can also
values (a), operators (limits (b) and ratios (c)) represent operators, which
as well as CSS declarations (d). perform funcions on style
declarations, e.g. limiting or
scaling values. Designers create blocks from scrat¢h or extract them
directly from content by clicking on it. They connect blocks with pipes
to map the output from one block to the input of another. The resulting
substrates can express relationships among any numerical CSS
properties (Figure 69). Several substrates specifying sub-layouts can be
applied in sequence or in parallel depending on their connections.

StyleBlocks builds on both Linkify and Contextify and incorporates
feedback from Study 2. Participants wanted to create substrates from a
wider variety of inputs in both probes. StyleBlocks supports the creation
of relationships among numerical CSS properties and readers can
provide their own inputs by specifying CSS values. Participants also
wanted to interact with the relationships they created in Linkify. In
StyleBlocks, designers can interact with relationships by adding
operators such as ratios and limits.

Reifying CSS declarations is similar in spirit to Attribute Objects
(xia2016). StyleBlocks extends this idea with interactive relationships
among attributes. We were also inspired by visual languages such as
PureData, whic¢h are widely used by artists to prototype and create

interactive digital audio pieces.

160

Scenario

The Hitchhikers Guide
To The Galaxy

The
Hitchhikers
Guide To

The Galax

Figure 68. StyleBlocks: Designers create substrates that link the CSS properties of a web
page. Here, a substrate generates the layout from a single value, 42 for the left page and 80
for the right one

We illustrate StyleBlocks with a simple scenario inspired by P5 from the
empirical study. Alice is a graphic designer who wants to create a layout
for the novel the Hit¢hhiker’s Guide to the Galaxy. Alice’s idea is to use
the number 42 for many different aspects of the layout. She begins by
creating a block with the value 42. She then draws relationships
between that number and the horizontal position blocks (left) of images
as well as the font size block of the title. If she decides to ¢hange the
number, she can modify it and instantly see the results on the layout.
She can also interact with the substrate to modify the nature and
bounds of the relationships. For example, she wants two images to
respond differently to the number, so she adds a ratio block between the
number and the left block of one image and sets the value of the ratio to
obtain a result she likes. Now, the number controls the left position of
the two images, but in different proportions. However the two images
can still go beyond the borders of the page. Alice positions the image in
its desired extreme position. She clicks on it to reveal its properties and
extracts the left block. She then feeds that value to a limit block by
drawing a pipe, and adds the limit to the relationship. Now the
relationship is bound by an extreme position and the image cannot go

off the page.

161

DISCUSSION

StyleBlocks illustrates the generative power of fully reifying graphical
substrates for graphic design tools. Below, we reflect on how
StyleBlocks addresses the needs of designers identified in our empirical

Study, as well as the c¢hallenges of investigating this new design space.

Extending the vocabulary of inputs and outputs

Study 1 demonstrated that graphic designers create substrates based on
awide variety of inputs and outputs that are seldom supported by
existing tools. We ¢hose to reify CSS declarations as they describe
layout properties. This opens up new possibilities in terms of inputs and
outputs. For example, designers can now access opacity (P19), viewport
(P18) and margins (P17). Designers and even readers can also provide
their own inputs, by specifying a CSS value. This supports P2’s story
where readers specified the page dimension to influence the final
layout. However, using CSS currently limits the scope of properties to
those available in the language. Designers can provide their own inputs,
but only by manually specifying a CSS value. Going beyond this
limitation requires opening up the system to external inputs, i.e.

implementing a protocol for connecting external data to layouts.

Providing greater flexibility through Reification

Study 1 showed that graphic designers establish design principles that
guide, but do not strictly define the layout. StyleBlocks supports
flexibility by supporting the tweaking of relationships using ratios (P14)
and limits (P13, P16). For example, P10 had to break his substrate to fit
extreme images in the layout. StyleBlocks lets him limit the height of
the image. Substrates are independent from content. They can be reused
and combined by detaching and reattaching them to other modules. This
supports P12’s strategy of combining existing graphical substrates to
produce a diverse set of coherent layouts. However, adding more
complex conditions to StyleBlocks is a ¢hallenge. Constraint systems
such as Apple Auto Layout support spatial constraints, but they
generally do not let designers simultaneously keep and tweak a

relationship.

162

Back and forth between layout and Graphical
Substrates

Study 1 showed that designers use both top-down and bottom-up
Strategies for creating and manipulating substrates. StyleBlocks lets
designers manipulate both the final layout and the substrate within the
same workspace, using the same interactions, which enables a constant
back-and-forth. Designers can start by building an example layout, then
extract interesting properties and reify them into an independent
Structure that can then be reused and manipulated. This would facilitate
P7’s workflow, so she would not have to manually create the substrate
for her grammar book before handing it off to another designer.
Designers can also build a substrate from scrat¢h and iterate quickly,
since it is instantly reapplied to the whole layout. Designers currently
write code to produce feedback loops. For example, P3 experimented
with algorithms that produce simple yet expressive rules for his images.
StyleBlocks would let him modify the substrate and see the resulting
images immediately without the indirection of ¢hanging and re-
executing code. However, whereas StyleBlocks lets designers ¢hange the
content while keeping existing blocks, it does not automatically apply
these blocks to the new content. Supporting CSS classes would address

this problem, letting designers further automate substrates.

Diversifying Representations of Graphical Properties

StyleBlocks currently borrows CSS’s representation of graphical
properties as text. This means that colors, positions, and
transformations can all be connected together in a consistent way.
However, designers would benefit from more expressive representations
of graphical properties, such as representing positions as points and
lines or ratios as rectangles. This would let designers apply existing

graphical te¢hniques and workflow to work with substrates.

Exploring other types of Graphical Substrates

We plan to explore which abstractions offer an optimal balance between
power and simplicity within the design space of graphical substrates.
We ¢hose to model graphical relationships as networks of blocks and
pipes. This approach is closer to programing than visual design. In the
future, we plan to continue working with graphic designers to develop

and evaluate a more extensive vocabulary of graphical substrates.

163

Summary

This ¢hapter explores how we can graphical substrates be reified into
graphic design tools. Based on graphic designers’ strategies presented
in ¢hapter 5, we created and tested two software probes: Contextify
reifies context inputs and lets designers tailor layouts according to the
reader’s intention and context; Linkify reifies spatial relationships to let
designers create dynamic relationships based on content properties. We
explored these two probes with 12 professional graphic designers who
explained how they would enrich their current projects. They also
suggested improvements such as extending the set of possible inputs
and outputs as well as making graphical substrates persistent and
manipulable. We then incorporated their suggestions into a new
prototype, StyleBlocks, that reifies CSS declarations into interactive
graphical substrates. StyleBlocks lets designers use both top-down and
bottom-up strategies for creating and manipulating substrates, thus
enabling a constant back and forth between structure and content. We
argue that graphical substrates offer a general framework for generating
new forms of layout creation tools that meet the evolving needs of

professional graphic designers.

164

165

166

Chapter 12

ENACT

Interconnecting visual,
symbolic and interactive
representations

I collaborated with Germdn Leiva on the three studies and the design of Enact.

Germdn Leiva implemented Enact.

We have now seen how we can reify graphical substrates, providing
new interactive representations for graphic designers to explore layout
creation. To complete this thesis work on designers’ tools, I need to
investigate the creation of design tool at the edges of design work.
Creating interactive systems requires the combined work of designers
and developers. In ¢hapter 8, we have seen how they both struggle to
transition from design to implementation, particularly when designing
complex interactions. While individuals work closely together, their
tools and artifacts do not, thus creating impediments such as design
breakdowns that hinder the collaboration process. Designers’
traditional tools, such as vector, raster graphics and even video-editing,
were not designed to handle dynamic behaviors. As a result, designers
§till find it much easier to communicate static visual appearance than
dynamic interaction (Myers, 2008).

In this ¢hapter, we want to explore tools at the boundaries of two
very distinc¢t practices: design and development. Based on the finding
from chapter 8, we conducted a participatory design workshop to elicit
the types of representation that new tools should provide to facilitate
the creation of custom interaction. We then designed and implemented
Enadt, a live environment for prototyping touch-based interactions that
supports designer-developer collaboration. With ENACT, we explored
how to combine interconnected visual, symbolic and interactive
representations.We then conducted two structured observations to study

how Enact might impact the designer-developer collaboration process.

167

Context

Designing, communicating and implementing interaction is complex.
To manage the complexity of creating interactions, researchers
proposed three different approaches to facilitate the prototyping of
custom interactions: interaction standards, tools inspired by designer
practices, tools inspired by developer practices and tools inspired by
both practices.

Towards interaction standards

One possible path towards a better integration of design and
development artifacts is standardization (Wiemann, 2016). Currently,
software vendors propose their own guidelines and standards for
interaction. For example, Google’s material design and Apple’s iOS
Human Interface Guidelines recommend standards for mobile
interaction on their respective platforms. Practitioners prototyping
tools such as InVision3 also provide a limited and standardized
interaction vocabulary to activate transitions between screens. Some
researchers also proposed tool that encourage a shared vocabulary. For
example, ActionSketc¢h (Barros, 2013) uses colors and symbols to
represent three stages of the interaction: initial state, user actions and
system actions as well as common situations. We believe that standards
should be encouraged for well-established interactions to facilitate the
communication between designers and developers. However, when
creating novel interactions, standards are yet to be established and are

not a suitable solution.

Tools inspired by designer practices

Another approach focuses on augmenting traditional design artifacts.
For example, SILK (Landay, 1995) lets designers quickly create
interactions using interactive sketches while DEMAIS (Bailey, 2001)
provides an interactive multimedia storyboard also based on sketches.
The designers’ strokes and text annotations are used as an input design
vocabulary to transform static sket¢hes into working examples.
Similarly, FrameWire (Li, 2010) infers interaction flows from paper-
prototype videos to detect hot spots and generate page-based
prototypes. Forsyth & Martin (Forsyth, 2014) use tagged digital

storyboards to infer behavioral information, suc¢h as states and actions.

168

While these tools enable discrete standard interactions, fewer let
designers prototype continuous interactions. Monet (Li, 2005) enables
designers to prototype continuous widgets by demonstrating
interactions on top of sketches. Designers explicitly define interaction
States and the system infers the correct state through multiple examples.
Using inference improves informal prototyping, but these interaction
descriptions are opaque and are of limited use for the final

implementation.

Tools inspired by developer practices

Code-oriented artifacts can be enhanced with other representations
such as notations, diagrams and test-cases. For example, InterState
(Oney, 2014) combines constraints and state machines to facilitate reuse.
InterState provides a live editor where developers can edit a program
and visualize the states as they interact with the interface. Proton (Kin,
2012a) and Proton++ (Kin, 2012b) use Regular Expressions to express
multi-touch interactions. In d.tools (Hartmann, 2007), Hartmann et al.
bring test-driven development benefits to physical prototypes. d.tools
lets developers rapidly test their design and analyze results, for example
to identify the most frequently used interaction. Juxtapose (Hartmann,
2008) lets developers create code alternatives and modify variables at
run-time to facilitate the exploration of multiple alternatives. These
tools mainly solve developers’ needs, but we do not know if they are also

suitable for designers.

Tools inspired by both practices

Recently, some researchers propose to integrate graphical and symbolic
vocabulary to create dynamic graphics. Kitty is a dynamic drawing tool
supporting the creation of animated scenes through functional
interactions between graphical entities (Kazi, 2014). Kitty relies on
direct manipulation of graphics but also enables the manipulation of
functional interadtion with input-output functions. Apparatus
(S¢hachman, 2017) is a graphics editor that combines direct
manipulation with data-flow programming. This combination enables
users to think both spatially and symbolically. While these tools provide
interaction authoring capabilities, they focus on the creation of dynamic
drawings, illustrations and diagrams, not on prototyping interactions.
For this reason, these interactions generally follow a fixed path, e.g., a
constrained drag and drop, and do not take into account all the input
capabilities of the target device. Victor proposes a tool that lets artists

interactively create drawings with behavior simulations (Victor, 2013).

169

The tool provides designer-friendly dire¢t manipulation of graphics but
also relies heavily on developer-friendly resources such as linear

algebra, parameterization and recursion. To design tools that lets both
designers and developers prototype novel interactions, we first want to

understand the types of representations that this tool should support.

Participatory Design Workshop

This participatory design workshop attempts to tease apart problems
that arise from generating design ideas and those that arise from an
inability to successfully represent the interaction itself. First, we are
interested in whether design breakdowns are simply a natural result of
the creation process, or if they are also by-products of the limitations in
the representations used to describe interactive systems. Second, since
these representations are traditionally the product of designers, we
wanted to elicit new kinds of representations by asking designers and
developers to create them together.

Participants: We recruited two designers and two developers (all men,
ages 24-33). The developers had not previously worked with the
designers. They had 1.5 to 10 years of experience collaborating across
disciplines. Besides the four active participants, the authors attended
the workshop: two as observers and two as participant-observers.
Procedure: The workshop lasted three hours and featured two activities
designed to examine how designers represent and communicate existing
interaction behaviors. To make the interactions more c¢hallenging to
describe, we avoided standard widgets such as buttons, or standard
interactions such as mouse clicks. Instead, we ¢hose novel, unfamiliar
interaction techniques from two mobile applications that rely heavily on
continuous gestures. Participants were given the opportunity to explore
these te¢hniques for themselves on a mobile device we provided. The
techniques included:

Interaction 1: The Clear to-do list mobile app uses a spread gesture to
progressively indicate the creation of a new item between two existing
items. Lifting the fingers creates the item.

Interaction 2: The Paper note-taking mobile application uses a lasso
technique to select an area of the canvas to be cut, which can then be
moved with a pan gesture. While moving, a tap with another finger
outside the selection copies it at that particular location.

Interaction 3: The Paper app uses a lasso selection to specify an area to
fill with a color selected by tapping on a color swat¢h. When the lasso

crosses itself, the area is colored with the so-called even-odd winding

170

rule, leading to unexpected results.

Activity 1 - Warm-up interaction game (1h): Designers and developers
were divided into two pairs, grouped by roles. Designers received
Interaction 1 and developers received Interaction 2. We asked the
designers to describe the interaction as they would ideally communicate
it and asked the developers how they would receive it. We instructed
them to give as complete a description as possible. When participants
were satisfied with their representation, they gave the resulting artifacts
to the other pair. Each pair then tried to describe what they understood
from the representation. Afterwards, participants discussed the issues
encountered as they created and interpreted the representations.
Activity 2 - Communicating an interaction (2h) The two designer-
developer pairs received Interaction 3. We asked each pair to come up
with strategies or new representations that fully communicate the
original interaction. We asked them to create representations that
satisfy both members of the pair.

Data Collection: We collected all artifacts created by the participants:
sketéhes, diagrams, text descriptions, paper prototypes and stop-motion
videos. We took photographs and videos as they manipulated these

artifadts, and took notes during the discussions.

RESULTS AND DISCUSSION

Lack of completeness

Participants took approximately 15 minutes each to create and be
satisfied with their representations in Activity 1. Even so, it was clear
that, even though they were given a fully functioning interaction, the
four proposed representations were incomplete. This suggests that some
design breakdowns are a by-product of inadequate representations. The
designers relied primarily on visual representations based on drawings
and annotations. Developers felt that these were effective in
communicating the overall idea, but left too many unanswered
questions for correct implementation. For example, the designers did
not communicate certain types of feedback, such as the gesture spread
threshold or the animated transition that placed new items at the top of
the list. During the discussion, one of the developers explained that: “if
receive a piclure, I first need to translate it into text and then I need to
translate it into code.” Developers relied mainly on text, including
programming vocabulary, complemented by a few visual elements. Text

descriptions provided specific information for the implementation but

171

did not clearly convey the look and feel of the interaction to the
designers. For example, when trying to represent Interaction 2,
developers did not communicate the increased opacity outside the
selection and the flash effect when pasting the copied area.

Strategies for creating complete representations

During A¢ivity 2, the two
pairs explored seven different
strategies for fully
representing and
communicating the
interaction. We describe two
of the most promising: Pair 1
decomposed interaction 3
using examples from other
applications: the lasso tool

from Photoshop combined

with the paint bucket from
lustrator. The designer from
Pair 1 proposed recording

videos to demonstrate the use

of these tools and combine

them. He argued that this
strategy would avoid
misunderstandings as well as
provide a complete

description of the interaction.

The developer from Pair 1
proposed a shared “lexicon”
oo DJPM}-
Ap\

A pon) e describing the objects of the
ot Dot LT . c -
(J\“Et;x ¥ depteLonipine program, their ¢haracteristics

and the tools that can interact
:ﬂ%ﬁfﬁ do> 2om with them. Pair 1 thought that

W«LW— cowrbe 'i'fw(f
e a common vocabulary would

Figure 69. Designer drew a snapshot of the facilitate the discussion about

interaction at four points in time - how to extract common
Developer created a diagram connecting components. In order to reach

rimitive graphical elements and functions
pr grap i a shared and complete
with user inputs - Designer merged the two

representations with an example representation, both pairs
refined their representations
through multiple iterations. They started with a visual example, and

then added rules and annotations to produce a more complete

172

description. For example, the designer from Pair 1 drew a snapshot of
the interaction at four points in time: “(1) I touch, (2) I move (3) I release
(4) The tool creates the closed shape.” (Figure 70). Next, the developers
and designers collaborated to gradually generalize the description of the
interaction. The developer, inspired by the designer’s representation and
his knowledge of “flow programming”, drew a diagram representing the
different components of the interaction: finger, shape, line and closed
shape. Based on the developer’s representation, the designer built a new
representation that combined the strengths of both proposals. He color-
coded a visual example and mapped each graphical element to a detailed
programming oriented description: “a straight line between the point of
origin and the current finger position [...] a curve that records the
complete path of the finger from the origin to the current finger
position [...]”. In summary, we observed that even when provided with an
existing and complete interaction, both designers’ and developers’
representations suffered from missing information and edge cases. This
suggests that current representations are limited and may result in
design breakdowns. When asked to create complete representations,
designers first started by representing a concrete example on top of
which both designers and developers gradually added rules. Based on
these results, we need to create tools that support this gradual

enrichment of representations.

Enact: prototyping interaction

Mobile Device

Device Mirror
Storyboard
Input Timeline M
State Machine

Code Area

Figure 70. Enact is composed of a target device and a desktop interface with five areas: a
storyboard with consecutive screens, an event timeline with screen’s handlers, a state

machine, a code editor and a device mirror

Based on the workshop findings, we created ENACT, a prototyping tool

for continuous touch-based mobile interactions. The goal of Enact is to

173

allow designers and developers to collaborate through interaction
prototyping. ENACT is composed of a target device and a desktop
interface with five areas (Figure 71): a storyboard, an input timeline, a
state machine, a code editor and an augmented mirror. These areas
represent multiple viewpoints, are interconnected and manipulate
different aspects of the source of truth.

SPECIFYING THE INTERACTION

A StoryBoard for interaction discretization

Designers most commonly depict the different visual states of an
interaction with diagrams, wireframes or mockups. In mainstream
graphic design software, designers need to manually maintain the
consistency among screens, e.g., using copy and paste, therefore
introducing redundancy in the artwork. In ENACT, each visual state is
aware of its past and future visual states. Objects created in one state
exist also in future states and ¢hanges are automatically propagated.
Changes include transformations, suc¢h as translation and scaling, and
setting properties such as fill color. A ¢hange in the second screen
propagates to subsequent screens, but also breaks the propagation from
the previous state, screen 1, to the current one. To reactivate the
propagation, the user simply needs to modify the second screen to look
like the firs one.

Providing concrete input examples

o

In current tools, user inputs
are only described as

annotations on top of the

visual state. In contrast,
ENACT’s screens are
associated with an actual user
input event. Touch inputs
events are recorded from the
target device in the input
timeline. First, the designer
presses the record button at
the right of the input timeline.
While the designer performs
the desired input on the target
device (Figure 72), a real-time

Figure 71. Recording a touch input example

qirgctly on the mobile device

feedback appears on the target device mirror. Once all touches have
ended, the recorded input events are saved in the timeline and
associated with the existing screens. In ENACT, input events are treated
as first-class objects, they live side-by-side with other graphical
elements such as polygons and paths. This leverages the current
designer practices but also provides new capabilities. For example, user
inputs can be used to position other visual objects relative to them. In
order to navigate the recorded events, the current input event can be
dragged in the screens to show the path of the touc¢hes as feedforward.
Also, the screen markers can be repositioned in the timeline to associate

that visual state with a different input event.

Generating Animations from the StoryBoard

Animations are a quick and simple medium to illustrate an interaction
and can be an interesting medium for transmitting the interaction
description to developers. However, designers currently need
specialized tools to create them and thus resort to video only for
extremely complex cases. ENACT automatically generates animations
descriptions based on the storyboard. Since eac¢h visual state is
associated with an input event, ENACT knows the time between states.
With this information the system can animate the visual objects
properties between states by using each screen as a keyframe at the time
of its associated input event. Currently, ENACT uses linear
interpolation, but other interpolation functions could easily be added.
By pressing play, the animation is executed on the target device and
replicated in the mirror alongside touch information. Such lightweight
animations let designers and developers ¢heck the relationship and
timing between user inputs and visual states in the context of a real
device. They provide a stepping stone towards creating an actual

interaction.

PROGRAMMING INTERACTIONS

ENACT organizes the
interaction code with a top-

level state machine (Figure 73).
The state machine always

highlights in red the current

active state while interacting

Figure 72. The state machine always ‘th th bile. In that
W1 € mobile. In atwa
highlights in red the current active state Y

while interacting with the mobile. both designers and developers

175

can understand through Enaction the current state of the interaction.
The system provides a default state machine, with two states and three
transitions, that supports continuous touches from one finger. Users can
create new states with double-click and new transitions with control-
drag. When the user selects a state or transition, ENACT shows its code
in the editor as a JSON (JavaScript Objec¢t Notation) object. Transitions
are named after their input event, they have a source and a target state
(inferred from the diagram), a guard condition and an ac¢tion function.
ENACT only executes the transition’s action function when its input
event is detected and the guard condition is satisfied. States can also
execute action functions when activated (on enter) or deactivated (on
exit). Guards and actions are written in JavaScript and interpreted right

away. Any code declaration valid in JavaScript is also valid on ENACT.

Reusing design elements with code markers

Instead of forcing developers to recreate the screens, developers can
reuse elements directly from the storyboard, in accordance with the
Multiple viewpoints and One source of truth principles. Users can
control-drag elements from the storyboard to the code editor (Figure
73f) to generate a code marker. Code markers are expressions that
reference existing design elements. They share the element’s color and
can be edited on double-click. When the user hovers over a code marker,
the storyboard highlights the corresponding elements. Alternative to
dragging, users can type § followed by a dot to access visual elements
such as screens ($.Sn), rectangles (§.Rn), circles (§.Cn), polygons ($.Pn),
touches ($.T0, $.T1, ...) and measures ($.Mn). Position and size labels can
also be diredtly dragged to the code, e.g. by dragging a rectangle’s x-
position label, ENACT generates $.R1.position.x.

Code markers and absolute values

A code marker such as $.R1.position.x refers to the x-position of R1 at
any time, i.e. in any screen. Sometimes, however, developers want to
reuse absolute values from the proposed design, such as an initial color
or a particular position. This is achieved by specifying absolute
references. By shift-dragging a R1’s y-position from screen S1 to the
editor, ENACT generates the absolute reference $.S1.R1.position.y. The
code marker displays its absolute value, e.g. 237 but stays bound to the
corresponding element. Thus, designers can modify their design at any
time, and ¢hanges are directly reflected in the code and ready to be
tested on the mobile device. These “active values” are useful to create

initial/final visual states or thresholds su¢h as minimum or maximum

176

values, e.g. to return an element to its original position or to constraint

an element’s size.

Creating input-output mappings

ENACT provides built-in functions, such as $.isInside({touch:,shape:})
and $.map({input:,output:}). Users can create recurrent functions to avoid
code duplication and use them on any state machine action. To
prototype interactive behaviors, developers can link user inputs with
system outputs. ENACT’s map function connects ¢hanges in the input
properties, such as ¢hange in position of the touc¢hes, with ¢hanges of
the output properties, such as the position of graphical objects. For
example, dragging rectangle R1 with one finger can be done by adding
$.map({input:$.TO.position, output:$.R1.position)) to the touchmove
transition of the default state mac¢hine. The map function can take
additional parameters for further customization: min and max to set the
minimum and maximum values of the output property, and ratio to
control the relationship between the ¢hanges in the input and the
¢hanges in the output. For example, a ratio of 0.5 creates a two-to-one
mapping and a ratio of 2 creates a one-to-two mapping. Besides these
parameters, ENACT’s code has access to the full power of the JavaScript
language, including variable declarations, control structures and

function definitions.

EXl 2srcoves + I
© ®
ma O
@
aﬁuu E 53@ .

description: '

FUNCTIONS ’ STATE-MACHINE
3 name: 'touchmove',
New Delete N Delete
guard: function (e) { return true }, Jouchenq Joucheng

ilnside 5 action: function (e) {
ep ‘ $.map({input : TR TTICIN cutput :ESEITITIEN)) . ,@. @ Pinch

ERPRERI MM . 71 position. yRNENHS .R2. position.)
$.map({input: JRUBEEEEEE output: 1)
$.map({input : JRNEISNISRY, output : i)

Figure 73. The interface of Enact.

i

Measures: reifying distances and points

The map inputs in ENACT are not limited to touches: Visual property
¢hanges can also be used as map inputs. Developers are used to working

symbolically with graphical relationships. With ENACT, developers can

177

$till use symbolic expressions to calculate these relationships, but they
can also reify them as Measures to Reveal the invisible. Measures are
first-class visual objects that can be drawn between two points of
interest in a shape, a touch input or another measure. For example, to
manipulate the spread of a pinch gesture, a Measure can be created
between the two touches (Figure 73b).

TARGET DEVICE AND AUGMENTED MIRROR

ENACT encourages early exploration of interactions during
prototyping. By default, ENACT shows the first screen on the target
device (Figure 73a). This contextualizes the design, helping users
evaluate decisions in the context where they will be used. Designers use
the target device to record touch input and to interact with the current
design. ENACT applies the ¢hanges in the state machine code as soon
as they happen. Since there is no waiting time, the code can be edited
live and the result is immediately available. Sometimes, the user’s hands
can occlude important aspects of the interaction on the target device.
The device mirror in the desktop interface (Figure 73c) replicates the
State of the target device in real time, showing all the visual property
¢hanges. Furthermore, the augmented mirror displays the current
measure that is not visible on the mobile device and can display object

properties to facilitate debugging.

AUTOMATED TESTING

One key ¢hallenge of the designer-developer collaboration is the
sync¢hronization of both the design and the code at all time in the
project. ENACT propose the use of automated tests to simplify the
syn¢hronization between code and design representations. The
automated test let users execute the pre-recorded input on the target
device at the touch of a button: When pressing the Test button, ENACT
sets the target device to match the first screen; Then, the recorded input
events are synthesized and executed on the target device, triggering the
same code as if they were actual user inputs. Each resulting output is
displayed in the corresponding screen of the storyboard. If the output
matches the screen, the screen name turns green in the timeline. If there
are differences, the screen name turns yellow (Figure 73g) and the
obtained output is displayed on top of the original design, with the
differences highlighted in orange (Figure 73h). When navigating the
recorded input events, each test result is shown to illustrate the

complete history of test results.

178

Mismatches between the screens and the actual interaction reflect
inconsistencies, which designers and developers can fix them by
¢hanging the code, the screens, or both. We envision the automated
testing as a support for designers and developers to perform alignment
work (Brown, 2012)

SYSTEM DESCRIPTION

ENACT is a client-server web application developed with Vue, Node.js,
Socket.io, CodeMirror and D34. We use reactive data bindings to
provide liveness within the desktop interface. The mobile device is
connected through an ad-hoc protocol on top of Socket.io messages. We
extended the CodeMirror parser with regular expressions to support
code markers, i.e. expressions of the form $.{screenj.{object}.fpropertyi.

{sub-property}.

Scenario

Anton, a designer, and Petra, a developer, use ENACT to collaboratively
prototype a custom interaction (Figure 73) to create items in a to-do list.
They want to explore a spread gesture to progressively indicate the
creation of a new item between two existing items. Anton represents the
existing list-items with purple rectangles and the new one with a blue
rectangle. To communicate the visual design to Petra, Anton draws the
look of the interface at different stages in the storyboard. Anton draws
two purple rectangles (R1, R2) and a blue rectangle (R3) on the first
screen (Figure 73a). When Anton adds a second screen (S2), all the
elements from the previous screen are present thanks to the storyboard
propagation. To finalize the design, Anton positions R1 and R2 a little
apart and increases the size of R3 (Figure 73b). Finally, Anton decides to
tweak R1’s color and size. He only needs to modify S1 because ¢hanges
propagate automatically to S2. To communicate the interaction design
to Petra, Anton records a pinc¢h gesture and locates each screen
according to the input example (Figure 73g). Anton records the example
directly on the mobile device, demonstrating how the user should
interact with the system. When all the touches are up (T0 and T1),
recording stops. Anton can then drag the screen name in the timeline to
position the screen at the proper point of the interadtion. Petra receives
Anton’s design. She first examines the screens and watches the
generated animation on the device mirror to understand Anton’s

Specification. Petra interacts with the target device, realizing that she

179

needs to expand the state machine to account for a pinc¢h gesture
(Figure 73e). She decides to create a Pinch state with three new
transitions: touchstart, touchmove and touchend. In the Pinch’s
touchmove action, she creates two new mappings. One between the first
finger’s y-position and the first rectangle’s y-position, another between
the second finger’s y-position and the second rectangle’s y-position. To
do so, she directly drag touches, visual elements and properties from the
screens designed by Anton (Figure 73f) into the code editor. After
adding the new action, Petra ¢hecks the interaction by interacting on
the mobile. Petra notices that R3 is not being resized. She creates a
measure (M1) by dragging a line between R1 and R2 (Figure 73b). She
then drags M1 to create a new map between M1’s distance and R3’s
height. She is satisfied with the result and sends the design back to
Anton. Anton realizes that the new to-list item should not grow bigger
than the existing items. He specifies this by adding a third screen with
the expected sizes. He runs the automatic testing. The current
implementation increases the height of R3 beyond the expected value
(Figure 73h). Anton decides to fix the implementation himself. He adds a
maximum value to the previous mapping created by Petra. Anton
extracts R3’s height from the third screen, creating an absolute
reference and setting it as the max value. Now Anton can tweak the size

directly from the storyboard without the need of modifying the code.

Preliminary Study

To better understand how designers and developers interact with
ENACT, we conducted a structured observation study (Garcia, 2014)
with an earlier version of Enact. This earlier version had graphical rule
templates (Figure 74) similar to the map function to program
interactivity instead of the editor and the state machine.

Participants: We recruited

four participants (1 woman,

deactivated axis —\

. 0 1
input row . .
P! o5 input-output ratio
50 0: :P maximum
L,— minimun

Figure 74. The rules proposed in an earlier

transformation icon

ages 26-34): two professional
developers (P1dv and P2dv)
and two professional
designers (P3ds and P4ds),

who create web sites, mobile

output row

adding an output

bl

version of Enact. Input-output rules connect

one input with one or more outputs. This

rule maps FO’s (Finger Zero) Y-axis
translation to SO’s (Shape Zero) Y-axis scale

with a 2:1 ratio (0.5 multiplier).

180

applications or interactive
installations. Their experience
collaborating across

disciplines ranges from 3 to 8

years.

Procedure: We gave a short presentation of ENACT and asked
participants to create a set of three different interactions with gradually
increasing difficulty: “simple drag”, “pull down curtain” and “pinch to
create item”. We prompted the first task orally and presented the last
two in the form of rough sketches. After the three tasks, we gave
participants 15 minutes to experiment freely with ENACT. The study
uses a think-aloud protocol and takes approximately one hour, after
which we ask a set of post-hoc questions.

Data Collection & Analysis: We recorded audio and video of the
participants’ interactions with ENACT, on the computer and on the
interactive device. We also took notes during the interviews. We
performed a thematic analysis (Braun, 2006) of the collected data to
extract common themes across participants, both during the tasks and
the post-hoc interviews. After looking for emerging themes, we

revisited the data to specify the themes and to extract relevant quotes.

RESULTS AND DISCUSSION

All participants were able to create the three proposed interactions.
Participants were not asked to be quick, they were instead encouraged
to talk while doing the tasks. Nevertheless, all participants finished the
first task in less than three minutes without prior training. All
participants finished task 2 in less than five minutes and task 3 in less

than 15 minutes.

An embodied perception of interaction

Surprisingly, even though they had not created any rule yet, all
participants tried to interact with shapes on the mobile device. P1dv
noted that ENACT approaches interaction from “a sensible point of
view, just like the end user would experience it on the mobile”. All the
participants interacted with the mobile as soon as they created rules.
Thanks to the liveness of the system, P1dv realized that one of his rules
was incomplete: “now I realize that it grows only downwards, I need to
move it up.” Some participants also appreciated the testing feature. For
example, after the first interaction, P2dv decided to rely exclusively on
the automatic testing to verify the rules. As P4dv could not understand
why the interaction on the mobile did not react as expected, he ran the
automated test and slowly navigated the history of the test results on the

screen.

181

Enriching the interaction possibilities

Participants were able to use ENACT’s features but, as they engaged
with the tool, they wanted greater levels of interaction. For example,
participants wanted to extend the provided rules. P1dv wanted more
control over the rules: “I want to add this delta value. I want operators
to correct rules.” P2dv also wanted to be able to bind shapes and values
in the rules, so that he could directly modify the latter by moving the
corresponding shapes in the storyboard.

Structured Observation

We wanted to observe and compare the strategies used by designer-
developer pairs to represent, communicate and implement interactions
with their own tools and with ENACT. For ecological validity, we
organized the observation in three phases that refle¢ts common
collaboration situations: communication of the initial design (designer
only), initial implementation (developer only) and side-by-side
collaboration (both co-located).

Participants: We recruited 12 participants (6 women and 6 men, ages
23-35): six professional developers (P1dv to Pé6dv) paired with six
professional designers (P1ds to Péds), who create web sites, mobile
applications or interactive installations. Their experience in
collaborating across disciplines ranges from 0 to 7 years. P1dv and Pé6dv
reported no collaborative experience as they were just starting their
front-end developer career.

Procedure: Each pair first creates an interactive prototype of an
existing interaction with their preferred tools (TRADITIONAL
condition). First, we show the designer an interaction on a mobile
device. Only the designer had access to the proposed interaction
throughout the study. The designer has 10 minutes to create a design
that communicates all the details he deems relevant for creating a
prototype with the same behavior. Then the designer sends the
document to the developer, who has 15 minutes to create an interactive
prototype based on the received design. During this time, we show a
more complete version of the interaction to the designer. Finally, we
give the pair another 15 minutes to sit together, review the initial
implementation and work together to prototype the final version of the
interaction. Once the TRADITIONAL condition is over, we give a short
presentation of ENACT and let eac¢h participant practice for 10 minutes

182

. We then follow the same protocol, but this time both the designer and
the developer are instructed to use ENACT. The study uses a think-aloud
protocol and takes approximately two hours. After each block, we
perform a post-hoc interview. We ¢hose to use the same two interaction
techniques that we previously described and used during the
participatory workshop: Interaction One and Interaction Two. We
decomposed each in an “initial” and a “final” version. We prototyped
the two interactions using Enact to focus the task on the interaction
behavior. The two interactions are balanced across pairs: P1, P2 and P4
started with Interaction One while P3, P5 and P6 started with
Interaction Two.

Data Collection: We recorded audio and video, both over the shoulder
and of the desktop screen. We also took notes during the tasks and the
post-hoc interviews.

Analysis: We performed a thematic analysis (Braun, 2006) of the
collected data to extract common themes across participants, both
during the tasks and the post-hoc interviews. After looking for
emerging themes, we revisited the data to specify the themes and to

extract relevant quotes.

RESULTS AND DISCUSSION

ENACT is a tool designed to prototype the type of interactions provided
to the participants. It was therefore reasonable to assume that
participants would perform better with ENACT than with
TRADITIONAL tools. On the other hand, ENACT is a new tool and
with only a short training session, participants were able to finish much
more of the interactive prototypes. In the ENACT condition, all pairs
provided the basic interactivity of the initial version of the interaction.
Five out of six even provided the basic interactivity of the final version
and one of them implemented all the details of the final interaction. On
the other hand, in the TRADITIONAL condition, only one pair
managed to provide the basic interactivity of the initial version, i.e. five
out of six pairs did not finish the initial version. Since we gave
participants very little time and did not expect them to finish
everything, we concentrate most of the discussion on the collaborative

Strategies rather than on performance measures.

Collaborative Strategies

All the designers used the same workflow to communicate the design to

183

the developer during the TRADITIONAL condition. Designers created
a screen flow document depicting the stages of the user-interface with a
graphic software. Then, they sent it to the developer either in the
original format, as a PDF or through a specialized tool suc¢h as InVision.
Designers illustrated the output ¢hanges with different screens and
explained the user inputs with circles, icons, traces, text annotations or
a combination of these. None of the designers used animations or video
to communicate interactivity.

In the TRADITIONAL condition, developers ran into problems
interpreting the interactivity and reproducing the visual look. When text
annotations were not present, developers expected them. For example,
PSdv said “T don’t understand this”when viewing the design for the first
time. When text annotations were minimal, developers also expected
more details. For example, P3dv said “I don’t know if these are multiple
interactions or different steps of the same interaction” and that she
“prefer(s| comments saying ‘when this happens then that happens’.
Four developers ignored the graphic design and used either: no visual
elements at all (only console logs), gray buttons and wrongly colored
rectangles. Two developers used external color pickers to extract the
right color from the design and copy the hex string. All the developers
ignored the sizes of the rectangles: for Interaction One the height of the
rectangle in the design was not replicated and for Interaction Two
developers generally used rectangles instead of the square in the design.
ENACT trivially fixes most of these problems because developers work
on top of the provided design.

In the ENACT condition,
designers used the animation
to refine the storyboard and
developers used it to
understand the interaction.

Thus, the generated animation

worked as a contact point

Figure 75. On the right, P4ds performs a
“mimicking gesture” on-device to between the two activities

communicate the design. On the left, P4dv while working

performs a “mimicking gesture” off-device

asynchronously. Only one
to understand the proposed design. . .
designer asked for icons to
represent user input and another expressed the need for text
annotations. We believe that text annotations were not highly demanded
due to the extensive use of ENACT’s generated animation. Developers
also mentioned the usefulness of showing the touc¢h information in the
device mirror while the animation was being played. In the

TRADITIONAL condition, all developers used print logs to confirm the

184

triggering of input events. ENACT’s live state mac¢hine diagram
provided the same level of confidence to the developer, without extra

effort, in a more detailed and simpler way.

OPPORTUNITIES FOR CO-CREATION

By analyzing the video data, we measured the number of “mimicking
gestures”, i.e. when a participant performs the interaction with the
hands either to understand it or to communicate it, both outside the
device and on the device. We only counted “mimicking gestures” during
the side-by-side phase (Figure 75), not when they were working
individually. Designers were much more involved during the side-by-
side collaboration with ENACT than with TRADITIONAL tools (Figure
76). With ENACT, all designers interacted with the target device (M =8,
SD = 3.65) while only three designers did it with TRADITIONAL tools
(M =1.17, SD = 1.46). One explanation could be the sense of ownership
of the prototype. With TRADITIONAL tools, developers recreate the
design with their own tools. It is not the designer’s design that will
come to life but a mere replica. With ENACT, developers literally add
interactivity to the artifact provided by the designer. Designers might
therefore feel a higher sense of ownership over the prototype under
construction, thus increasing participation. P4ds said “you have the
impression to be living in the same environment, that we share the same
language”’.

Tools with a flexible barrier between design and development can
create interesting opportunities for collaborative prototyping. P2ds was
not sure she should create an input example: “am I suppose to do this?’.
On the contrary, P5ds was really interested in the programming
capabilities of ENACT: he started adding interactivity by himself forgot
to finish the description of the interaction on the storyboard. When
P5dv received the design he said “What should I do now? This is already
coded!”. During the side-by-side collaboration, P5dv built on top of
PSds’s implementation, even extending the storyboard himself.
Similarly, P6ds added some interactivity to the Interaction One
prototype and Pédv directly started to fix several edge cases in the
implementation, such as ¢hecking that the touches are inside the shapes
and that the rectangle is constrained to a vertical movement. Most of
the designers were intimidated by the code editor but not by the live
state machine diagram. We believe that visual and intermediate
representations help breaking the silos between these communities of
practice.

The use of interactive representations helped designers and
developers to find edge-cases. Five out of six pairs found three or more

of the seven edge cases in the final version of the interaction. For

185

example, while interacting with her first implementation attempt, P3dv
realized that shapes where dragged even when her finger was outside
them. Similarly, P5ds noticed that Interaction One behaved differently
depending on which rectangle was touched first. He shared his finding
with P5dv, who added an if statement to determine whic¢h touch should

be associated with eac¢h rectangle.

Summary

In this ¢hapter, I investigated the creation of design tools that support
the transition from design to development. We first ran a participatory
design workshop to study the role played by the representations of
interactions in breakdowns. We observed that the limitations of the
representations used to communicate interaction result in missing
information and edge cases. Our results suggest that communicating
and representing interactions requires an iterative process, from
individual concrete examples to rule-based representations. Based on
these findings, we created Enact, a live environment for prototyping
touch-based interactions by combining interconnected visual, symbolic
and interactive representations. Storyboard propagation and code
markers reduce redundancies within and across representations.
ENACT’s state machine diagram and target mirror assist designers and
developers to quickly explore the interaction and detect edge cases. We
conducted two structured observations to gather feedback from
professional designers and developers and to analyze the impact of
ENACT during collaborative prototyping. The first study shows that all
participants were able to manipulate the symbolic, visual and interactive
representations of ENACT to achieve the tasks at hand. Both groups
greatly appreciated the reduced time-to-interaction. The second study
suggests that ENACT provides new opportunities for co-creation.
Designers participated more with ENACT than with traditional tools
during the side-by-side phase of the collaborative task. Also, pairs
working with ENACT found more edge cases than with traditional

tools.

186

187

188

Chapter 13

DISCUSSION

Principles for Designing
Design Tools

In the second part of this thesis, I designed, implemented and explored
nine probes in four different design contexts. All of them were created
independently based on the specific designers’ stories from the four
contexts. In this ¢hapter, I look back at the probes and analyze the
recurring principles that emerged from them to propose a set of

principles for designing design tools.

@
<1
=
Z
g
=
=
2
e
=
S
3
H
H
3
2

L w
8
2
&
&8
e
5
2
z

Figure 76. A physical substrate created by Jacques Bertin to explore datasets

In ¢hapter 6, I first introduced the notion of Design Substrate as a
descriptive framework in the context of layout structuring. In this
second part of the thesis, the concept of Design Substrates turned out to
be fundamental for my design work. Graphical Substrates are
interactive visual objects that represent relationships between
graphical elements. By reifying these relationships, e.g., turning
them into interactive objects, they scaffold designers’ exploration
phase. Yet, substrates are not in themselves new. While Garcia et al.
coined the term and designed the first substrates that bridge analog and

digital music creation methods (Garcia, 2012), the phenomenon of

189

substrates can be observed in many other contexts. In a second, non-
digital example, Jacques Bertin created physical and manipulable
matrices (Figure 76) for his data visualizations. He created a substrate
composed of the wooden sticks that hold rows together. By reifying
them -in this case, making them tangible using wooden sticks- Bertin
created a creative space for exploration. Data analysts can, by inserting,
removing and rearranging rows, observe the data from different angles.
In this thesis I envisioned tool design as the reification of existing ad
hoc practices that are turned into interactive Design Substrates.
Whereas most current tools target the end point of the design task (see
¢hapter 8), substrates embody the design process, the intermediary steps
and the overarching principles generally only articulated in designers'

minds.

Reifying Design Substrates

One of the key benefit in reifying Design Substrates is that ea¢h of them
provides a new lens through which designers can apprehend the content
they work with. Different Design Substrates provide different ways of
understanding the same phenomenon. For example, both StickyLines
and the Enadt’s measurement tool visualize what designers and
programmers were previously using in other forms: either as commands
or as mathematical formulas. Some of the representations proposed by
design tools may overlap or have direct equivalents in other
representations. However, very often, each representation gives access
to information that is hardly graspable through a second one. For
example, Palette Explorer focuses on the relationships among colors
while Color Partner focuses on the history of color ¢hoices. In Enact,
the sequential representation of interaction provides a clear visual
description of the key moments of an interaction, but the programmatic
representation may more easily reveal edge cases.

A second advantage of reifying Design Substrates is their potential
for automation. Design Substrates are particularly powerful when they
embody rules and relationships that are automatically applied to
content. This automation gives designers a much greater scale of
exploration because if they decide to modify their substrates, they will
be able to observe the results on all the content. This can be especially
useful as, in our empirical studies, designers modified their Design
Substrates over time. Even after their creation, designers modify
existing relationships to account for new content, or even to continue
exploring. Using and manipulating substrates are equally important for
designers. In Color Partner, colors are kept over time and reflect the

activity. In Color Compositor, designers can decompose what they

190

previously composed, nothing is irreversible. By reifying substrates, we
can develop design tools that stand as an interesting middle ground
between GUI-based design tools and programming. As visual objects,
they provide interaction mechanisms that follow dire¢t manipulation
principles, but also by embody behaviors and rules, giving designers

new possibilities for testing their ideas.

Creating Substrates: bottom-up or top-down

Allowing designers to manipulate and interact with Design Substrates
can empower them, but if we want to make substrates truly useful, we
need to address the question of their creation. With automation comes a
greater risk of loosing creative freedom. In the context of weaving,
Luther Hooper mentioned that “with each stage of mechanical
improvement of the loom, as moreover is the case with all machine in
varying degrees, the weaver’s freedom and his or her control of the
conception of their work is reduced” (Fetro, 2017). In my empirical
studies, I found that designers create novel and dedicated substrates
that take into account specific constraints and opportunities offered by
the project. They might also partially reuse previous structures that they
created for previous projects. In our four empirical studies, we have
seen that designers created substrates both from a top-down, but also
from a bottom up approach. When creating substrates, designers do not
necessarily start with the structure itself. Instead, in many cases, Design
Substrates emerge from examples, as designers explore different
possibilities with existing content samples. In our empirical studies, we
have observed the importance of exploration with examples and
generalization. For example, we showed how the process of
representing interaction first started from an example that then needs
to be abstracted.

I argue that structures should be reifiable from examples, i.e.,
design tools should let designers extract relationships and rules from
existing examples. In my probes, I have proposed several mec¢hanisms
that allow designers to create Substrates from examples. In Palette
Explorer, designers can create a sample palette and can then modify this
original palette as a whole, retaining its original harmony. In
StickyLines, we allow designers to create guidelines based on existing
shapes by creating “a ghost”, a guidelines that take the shape of an
existing object. In StyleBlocks, designers can extract CSS properties
from HTML content and thus create relationships out of examples.
Designers can also separate these extracted values from the examples
they originated from, to fully abstract them. Finally, we based Enact on

our findings from our participatory design workshop where visual and

191

sequential examples of interactions serve as a basis for abstracting the
general rules in code. We also provide mec¢hanisms for extracting
specific values from the storyboard to the rules. Because we maintain
the relationship between the storyboard the code, designers can directly
modify the implemented interaction by modifying the example in the
storyboard.

Tweaking

One of the graphic designers I interviewed in the beyond grids projects
explained that a graphic designer’s role is “to organize other people’s
mess”. Indeed, graphic designers organize content, but content is never
quite as easy to organize as it ought to be, so designers need to account
for exceptions. Designers integrate these exception into their existing
principles by tweaking them, modifying them just a little bit. When
manipulating colors, designers often sampled existing ones, but they
then invariably manually adjusted the resulting color; when aligning and
distributing graphical elements, designers usually tweaked individual
objects to account for mismatches between objects’ perceived visual
weight and reference points; when structuring layout, designers
established structures but very often needed to break their own rules to
account for extreme cases; and when communicating with developers,
designers needed to take into account edge cases. Tweaking is a
fundamental design practice and all these examples show how pervasive
the need for tweaking mechanisms is.

Revealing and reifying relationships or constraints into interactive
objects can be a powerful mechanism for designing design tools.
However, in current software, existing stru¢turing mec¢hanisms tend to
be rigid and binary: either graphical elements fully obey the structure
they belong to, or there is no structure at all. Designers' uses of
substrates show much more nuanced patterns in their daily practices. In
all the empirical studies that I conducted in part 1, designers did not
consider all substrates as fully rigid structures. As most of designers’
substrates were not reified and were only mental constructs, designers
could easily determine how strongly each substrate would be enforced.
While some constraints were considered unbreakable, some others
could allow more flexibility. When creating design tools, tool designers
should take into account the flexibility of their substrates. Enforcing
rigid rules greatly undermines substrates’ usability and designers might
end up resorting to a more manual process even when there is an
existing mechanism.

In my probes, I have only started to explore some mechanisms to

support tweaking. For example, in StickyLines, we proposed two

192

different mechanisms for designers to tweak individual objects’
alignment: tweaks and bounding boxes. In Color Partner, designers can
¢hoose to either tweak or completely modify colors by adjusting the
cursor’s distance from the original color. In StyleBlocks, designers can
customize their relationships by adding ratios and bounds to existing
relationships. To foster the usefulness and exploration possibilities of
Design Substrates, I argue that tweaking mec¢hanisms should also be

reified to create flexible structures.

193

194

Chapter 14

CONCLUSION

Summary and Research
Perspectives

To conclude this thesis, I present a summary of the different

contributions of this thesis and I discuss directions for future resear¢h

Summary of Contributions

This dissertation attempts to shed light on digital graphic design tools
and to question them more than 30 years after their introduction on the
market. While their quest for transparency resulted in their relative
invisibility, designers gradually started to question their steady
hegemony. This thesis investigates two main research questions: how do
designers currently work with design software? How can we create
design tools that better support design practice? In the first part of
this thesis, I investigated how designers work with design software. I
first proposed a methodology, StoryPortraits to conduct design research
focusing on the material aspects of the design process. Based on critical
objedt interviews, StoryPortraits synthesize and visualize designers'
stories into a form that better support later analysis and inspire design
conversation. I conducted six studies to explore this question at four
different different levels of designers practices.

When manipulating colors, designers and artists invariably go
beyond the mere selection of a color in a pre-defined color-space. Based
on 35 stories from eight designers and artists, we proposed a design
space to describe the five most recurrent color manipulation performed
by designers: sampling and tweaking individual colors, manipulating
color relationships, combining colors with other elements, revisiting
previous color ¢hoices, and revealing a design process through color. We
also validated the design space with eight scientists and engineers and
showed how current color tools do not support most of the activities of
the color manipulation design space.

When aligning and distributing content, designers create strategies

195

to overcome the limitations of current alignment and distribution
commands. We categorized the current limitations and strategies to
overcome them in three categories: lack of persistence, as commands
require designers to reapply commands for each modification of the
overall composition; lack of control as designers had issues predicting
the result of the alignment and distribution commands and could not go
beyond their binary nature; lack of generality as designers needed to
align graphical elements beyond horizontal and vertical alignments. The
current alignment and distribution commands leave aside the far more
complex compositions that designers create.

When looking at the overall layout composition practices, our
interviews with 12 graphic designers revealed that they use surprisingly
sophisticated structures that go beyond the grid. We define them as
graphical substrates: principles that guide the layout but rarely appear
in the final result. We presented a framework to describe how designers
establish graphical substrates based on properties extracted from
concepts, content and context, and use them to compose layouts in both
$pace and time. We showed that whereas most designers could not fully
express their graphical substrates in their tools, some designers reified
them in code. This allowed them to automatically apply substrates, to
extend the types of inputs as well as to involve the readers in their
creative process.

Finally, when looking at designers practices when collaborating
with developers, our 16 interviews showed that the current workflow
induces a lot of rework on both sides. Designers create a multitude of
redundant design documents and developers must recreate them with
their own tools. This process often introduces mismatches with the
original design. We also identified three key design breakdowns:
missing information, when designers do not communicate a specific
detail; edge cases, when designers do not think about a particular case;
and technical constraints, when designers are not aware of developer’s
tec¢hnical limitations. Our longitudinal case study showed that even if
the early involvement of the developer mitigated the occurrences of
design breakdowns, new ones appeared in subsequent meetings. Our
results show that designer tools don’t support the transitioning between
the design and the implementation phase.

Overall, these four projects demonstrate a mismatch between the
current graphic design tools and designers practices. Based on the
results of the four investigations, I propose a critical analysis of current
design tools. I argue that mainstream design software posit that design
is a hylomorphic process: that designers first create in mind a perfect

image of their project and then only do they apply it to still matter.

196

Instead, my four studies demonstrate that designers actively interact
with digital tools, to overcome limitations as well as exploiting

opportunities.

In the second part of the thesis, I investigated how we can create novel
design tools that support the wealth of design practices observed in part
1. In contrast to the current trend of requiring designers to learn to
program, [argue that we can reify graphical substrates to preserve the
power of graphical user interface tools while enhancing them with more
computational power. Adopting an instrumental interaction
perspective, let me create design tools based on specific designers'
practices to provide greater nuance. [created a set of probes designed to
explore the creation of design tools grounded in $pecific designer
stories. By decoupling objects of interest and the instruments used to
manipulate them, each designer could ¢hoose, for each of their project,
the right set of tools; no more, no less. They could craft their own
toolbox. I also created design tools as design probes to give participants
a voice to interpret their own practice and as a way to foster discussion
with designers.

I grounded the design of the different probes in specific designer
stories. Yet, the different probe studies that I conducted in the second
part of this thesis showed how designers were able to both adopt and
adapt substrates that originated in other designers’ practices. We
observed the phenomenon of co-adaptation when they were able to use
tools in the way we envisioned it but were also able to envision how they
would adapt them for their own projects. Designers were able to
interpret the probe in the context of their own work and, in some cases,
could explore possibilities that they had never envisioned with
traditional tools.

In the context of color manipulation, I designed four color tools to
$pecifically support the currently unsupported color activities
uncovered during our interviews: Palette Explorer manipulates color
relationships within a shared context; Color Compositor composes and
decomposes diverse colors and textures; Color Partner generates and
captures c¢hains of color, guided by designers; and Color Revealer reveals
underlying processes by subtly ¢hanging hue and color intensity. We
then explored the probes with 8 designers and observed how both
designers and scientists were able to interpret the probes in the context
of their own work. The color tools demonstrate the generative power of
the Color Portraits Design Space.

In the context of alignment and distribution, I presented

StickyLines, a tool to experiment about the reification of both alignment

197

and distribution into an interactive and persistent guideline. We
incorporated tweaks and modifiable bounding box to increase designers
control over alignment and distribution and we extended the repertoire
of possible alignments and distribution by allowing for more diverse
and non-orthogonal guidelines. We then explored Stickylines in a
structured observation study that demonstrates how professional
designers can quickly adapt to and appropriate the more advanced
features of StickyLines. Designers treated StickyLines as first-class
objects that they wanted to extend further.

In the context of layout creation, I explored how we could reify
graphical substrates into graphic design tools. I first created: Contextify
reifies context inputs and lets designers tailor layouts according to the
reader’s intention and context; Linkify reifies spatial relationships to let
designers create dynamic relationships based on content properties. I
explored these two probes with 12 professional graphic designers who
explained how they would enrich their current projects and wanted to
extend the current probes. We then incorporated their suggestions into
a new prototype, StyleBlocks, that reifies CSS declarations into
interactive graphical substrates that support a constant back and forth
between structure and content.

Finally, in the context of designer-developer collaboration, we ran a
participatory design workshop that demonstrated how communicating
and representing interactions require an iterative process, from
individual concrete examples to rule-based representations. We
included these findings to design Enact, a live environment for
prototyping touch-based interactions by combining interconnected
visual, symbolic and interactive representations. We conducted two
$tructured observations to gather feedback from professional designers
and developers and to analyze the impact of Enact during collaborative
prototyping. The first study shows that all participants were able to
manipulate the symbolic, visual and interactive representations of
Enact. The second structured observation suggests that Enact provides
new opportunities for co-creation. Designers participated more with
Enact than with traditional tools during the side-by-side phase of the
collaborative task.

In this thesis I envisioned tool design as the reification of existing
ad hoc design practices, turning them into interactive Design
Substrates. Looking back at the different probes and how they embody
different aspects of graphical substrates, I finally discussed principles
for designing design tools. Reifying Design Substrates from designers
practices let designers explore their ideas at different scales. To support

this reification, tools should provide mechanisms for extracting

198

substrates from existing examples and not only creating them in a top-
down approach. Finally, Design Substrates should embed tweaking
mechanisms to reinforce their application beyond binary structures. By
embracing flexibility, they can account for the variability of designers

content and intentions.

Research Perspectives

Limitations of Graphical Substrates

The proposed design substrates are not finite and unsurpassable design
tools. Instead, they are a set of first examples that demonstrate the
existence of a yet-unexplored design space for digital design tools. The
stories documented in this thesis represent new creative possibilities for
design tools, and eac¢h designer might come up with a different tool to
support the same specific story. This, indeed, happened very often in the
design workshops I organized. The type of graphical substrate presented
in this thesis are §till very limited. Diversifying representations of
graphical substrates is crucial to explore their potential. Researc¢hers in
other domains also started exploring new types of representations that
may inspire future directions for the creation of design substrates. For
example, Zinenko, in the context of programming, demonstrated how
interactive representations can let developers visualize and manipulate
“polyhedral relational representations” in order to improve program
restructuring (Zinenko2016).

Yet, providing computational power while preserving the power of
interactive visual representations remains a ¢hallenge. Following
Enadt's approach, i.e. facilitating the translation between different
synchronized representations, can represent a direction but we need to
explore more ways of translating concept representations. Tools such as
Gliimpse (Dragicevic, 2011) that animate the transition between
representation can alleviate some of the impediments regarding context
switch for example. Moreover, ensuring a graceful cohabitation of
unrelated design tools might be a never ending endeavor. Graphical
Substrates in the context of instrumental interaction require a
separation of data (content) and representation that may lead to
compatibility issues, an issue already identified by Beaudouin-Lafon
(2004). The three different qualities that a good instrument should
possess: reinterpretability, resilience and scalability all apply to
graphical substrates. Methods such as graceful degradation (Florins,
2004) can be interesting ways to implement these qualities.

199

Beyond Universalism

Beyond design tools, this thesis questions the underlying assumptions
of universality in human-computer interaction. As Grudin pointed out
in his history of HCI (Grudin, 2012), the field defined itself by devoting
its attention to non-professional uses of te¢hnology and by focusing on
non-experts. This angle led to an emphasis on usability (Satchell, 2009)
and user-friendliness as well as pursuing an ideal of transparent
interfaces (Bolter, 2003). However, HCI is moving beyond the notion of
use, with third wave HCI demanding for new values such as aesthetic
and instrumentness (Bertelsen, 2007), among others. This thesis belongs
to this trend and questions the traditional emphasis on averages, the
idea that one tool or one functionality could best resolve the issues of a
particular community of practice. This thesis shows that, at least for
creative communities such as graphic and interaction design,
practitioners always reinvent their process and adapt it for each new
project.

By basing my tools not on
median solutions, but instead
on specific outlying practices
and even specific designers
stories, I propose a novel path
to design. This thesis' probes
do not intend to solve a

problem for the majority.

A TN 4 Instead, they grow from very
$pecific practices and turn

Figure 77. The constraints of the industrial

process made it coherent to design them into tools that other

standardized mass produced goods, but designers can reuse and

these constraints don't exist in the digital interpret in their own terms. I

zfi(;l;ltjla:eys?;zrz;sle.: can create personalized believe that this approach
could be extended to many
domains. In an era where we are all being provided with “tailored”
services and information on social media and searc¢h engines, our design
tools still live in a pre-digital era with the idea that one-size-fits-all
(Figure 77). This thesis demonstrated how we could move beyond this
model towards tailored design tools. However, the temptation would be
great for design tools designers to try to “tailor” tools to designers a
priori, in the same way that we can't control how the information we
receive has been selected. I believe, on the other hand, that it is crucial
that designers remain in control of their ¢hoices. Design Tools should

be tailored to individual designers, but available to everyone. Finally, the

200

outcome of graphic and interaction design work could also follow the
same path. Current social media applications generally tailor their
content to each user, but their interfaces remain identical for everyone.
Some of the designers I interviewed started inviting readers in their
design process to let them tweak the final design to their own needs.
With my probes, I only scrat¢hed the surface of the potential
partnership that we could establish for creating a more inclusive design
process. Design Tools could become an interface for establishing

evolving conversations between designers and non-designers.

This thesis stands as an invitation for design tool makers to step in.

201

202

LIST OF
PUBLICATIONS

Jalal, G., Maudet, N. & Mackay, W. E. (2015). "Color Portraits: From
Color Picking to Interacting with Color", In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. (CHI15).
New York, NY, USA, pp.4207-4216. ACM. Honorable Mention Award

Felice, M. C., Maudet, N., Mackay, W. E. & Beaudouin-Lafon, M.
(2016). "Beyond Snapping: Persistent, Tweakable Alignment and
Distribution with StickyLines", In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology. (UIST16). New York,
NY, USA , pp.133-144. ACM.

Maudet, N. (2017). "Muriel Cooper, Information Landscapes", In Back-
Office n°1, “Making Do, Making With”. Paris, France, pp.104-117. Ed. B42
& Fork.

Maudet, N., Leiva, G., Beaudouin-Lafon, M. & Mackay, W. (2017).
"Design Breakdowns: Designer-Developer Gaps in Representing and
Interpreting Interactive Systems", In Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and Social Computing.
(CSCW17). New York, NY, USA, pp.630-641. ACM.

Maudet, N., Jalal, G., T¢hernavskij, P., Beaudouin-Lafon, M. &
Mackay, W. E. (2017). "Beyond Grids: Interactive Graphical Substrates
to Structure Digital Layout", In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. (CHI17). New York, NY, USA,
pp.5053-5064. ACM.

In Submission - Leiva, G., Maudet, N., Mackay, W. & Beaudouin-
Lafon, M. (2018). "Enact: Integrated Representations for Designer-
Developer Collaborative Prototyping", Submitted to ACM TOCHI.

In Submission - Maudet, N. & Mackay, W. (2018). "StoryPortraits,
Visualizing User's Stories for Research and Design ", Submitted to ACM
DIS18.

203

204

BIBLIOGRAPHY

Albers, J. (2013). Interaction of Color: 50th Anniversary Edition Yale

University Press, New Haven.

Appert, C. & Beaudouin-Lafon, M. (2008). SwingStates: Adding State
Machines to Java and the Swing Toolkit , Softw. Pract. Exper.. New
York, NY, USA , September, 2008. Vol. 38 (11) , pp.1149-1182. John Wiley

& Sons, Inc..

Armstrong, H. (2016). Digital Design Theory. Readings from the Field

Princeton Architectural Press.

Armstrong, H. (2009). Graphic design theory : readings from the field
Princeton Architectural Press.

Baecker, R. (1969). GENESYS: An Interacétive Computer-Mediated
Animation System . Thesis at MIT.

Bailey, B. P. & Konstan, J. A. (2001). Supporting Multimedia Designers:
Towards More Effective Design Tools , In Proc. Multimedia Modeling:
Modeling Mutlimedia Information and Systems (MMMZ2001). , pp.267-
286.

Bailey, B. P., Konstan, J. A. & Carlis, J. V. (2001). "DEMALIS: Designing
Multimedia Applications with Interactive Storyboards" | In Proceedings
of the Ninth ACM International Conference on Multimedia. New York, NY,
USA , pp.241-250. ACM.

Bardzell, J., Bardzell, S. & Hansen, L. K. (2015). "Immodest Proposals:
Research Through Design and Knowledge" , In Proceedings of the 33rd
Annual ACM Conference on Human Faclors in Computing Systems. New York,
NY, USA , pp.2093-2102. ACM.

Barros, G. & Carneiro, G. (2013). "A Technique to Improve Sketches of
Rich Interactions" , In Proceedings of the 12th Brazilian Symposium on
Human Faclors in Computing Systems. Porto Alegre, Brazil, Brazil , pp.22-

31. Brazilian Computer Society.

Barros, G. & Carneiro, G. (2013). "A Technique to Improve Sketches of
Rich Interactions" , In Proceedings of the 12th Brazilian Symposium on
Human Faclors in Computing Systems. Porto Alegre, Brazil, Brazil , pp.22-

31. Brazilian Computer Society.

205

Beaudouin-Lafon, M. (2004). "Designing Interaction, Not Interfaces" ,
In Proceedings of the Working Conference on Advanced Visual Interfaces. New
York, NY, USA , pp.15-22. ACM.

Beaudouin-Lafon, M. (2000). "Instrumental Interaction: An Interaction
Model for Designing post-WIMP User Interfaces" , In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. New York, NY,
USA , pp.446-453. ACM.

Beaudouin-Lafon, M. & Lassen, H. M. (2000). "The architecture and
implementation of CPN2000, a post-WIMP graphical application", In
Proceedings of the 13th annual ACM symposium on User interface software and
technology. , pp.181-190.

Beaudouin-Lafon, M. & Mackay, W. E. (2003). "Prototyping tools and
techniques" | In The human-computer interaction handbook: fundamentals,

evolving technologies and emerging applications. , pp.1017-1039.

Beaudouin-Lafon, M. & Mackay, W. E. (2000). Reification,
Polymorphism and Reuse: Three Principles for Designing Visual
Interfaces , Proceedings of the working conference on advanced visual

interfaces. , pp.102-109.

Bellotti, V. & Rogers, Y. (1997). "From Web Press to Web Pressure:
Multimedia Representations and Multimedia Publishing" , In
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems. New York, NY, USA |, pp.279-286. ACM.

Benjamin, W. (2005). "Little History of Photography" , In Selected

Writings. Harvard University Press.

Bertelsen, O. W., Breinbjerg, M. & Pold, S. (2007). "Instrumentness for
Creativity Mediation, Materiality & Metonymy" , In Proceedings of the 6th
ACM SIGCHI Conference on Creativity &Amp; Cognition. New York, NY,
USA , pp.233-242. ACM.

Bier, E. A. & Stone, M. C. (1986). "Snap-dragging" , In ACM SIGGRAPH
Computer Graphics. Vol. 20 (4) , pp.233-240.

Blackwell, A. F. (2006). The Reification of Metaphor As a Design Tool ,
ACM Trans. Comput.-Hum. Interact.. New York, NY, USA |, December,
2006. Vol. 13 (4) , pp.490-530. ACM.

Boehner, K., Vertesi, J., Sengers, P. & Dourish, P. (2007). "How HCI
Interprets the Probes" | In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. New York, NY, USA |, pp.1077-1086. ACM.

Bolter, J. D. & Gromala, D. (2003). Windows and mirrors: Interaction

206

design, digital art, and the myth of transparency MIT press.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology,
Qualitative research in psychology. Vol. 3 (2) , pp.77-101. Taylor &

Francis.
Briar, L. (2017). graphic means, a History of Graphic Design Production

Brown, J. M., Lindgaard, G. & Biddle, R. (2012). "Joint implicit
alignment work of interaction designers and software developers" , In
Proceedings of the 7th Nordic Conference on Human-Computer Interaction:
Making Sense Through Design. , pp.693-702.

Brown, J. M., Lindgaard, G. & Biddle, R. (2011). "Collaborative events
and shared artefacts: Agile interaction designers and developers
working toward common aims" , In Agile Conference (AGILE), 2011. ,
pp-87-96.

Bruner, J. S. (1966). Toward a theory of instruction Vol. 59 Harvard

University Press.

Burckhardt, S., Fahndri¢h, M., de Halleux, P., McDirmid, S., Moskal,
M., Tillmann, N. & Kato, J. (2013). "It's Alive! Continuous Feedback in
Ul Programming" , In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation. New York, NY, USA |
pp.95-104. ACM.

Bush, V. (1945). As We May Think , interactions. New York, NY, USA ,
March, 1945. Vol. 3 (2), pp.35-46. ACM.

Badker, S. (1987). Through the interface - A human adtivity approach to
user interface design , DAIMI report series. Vol. 224 Aarhus University.

Bodker, S. & Petersen, A. B. (2007). Seeds of Cross-Media Production ,
Comput. Supported Coop. Work. Norwell, MA, USA |, December, 2007.
Vol. 16 (6) , pp.539-566. Kluwer Academic Publishers.

Chatty, S., Sire, S., Vinot, J.-L., Lecoanet, P., Lemort, A. & Mertz, C.
(2004). "Revisiting Visual Interface Programming: Creating GUI Tools
for Designers and Programmers" , In Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology. New York, NY, USA |
pp.267-276. ACM.

Chevalier, F., Dragicevic, P. & Hurter, C. (2012). "Histomages: fully
sync¢hronized views for image editing" , In Proceedings of the 25th annual

ACM symposium on User interface software and technology. , pp.281-286.

Chevreul, M. E. (1854). The Principles of Harmony and Contrast of

207

Colors: and Their Applications to the Arts London Longman, Brown,

Green and Longmans.

Chok, S. S. & Marriott, K. (1998). "Automatic construction of intelligent
diagram editors" , In Proceedings of the 11th annual ACM symposium on

User interface software and technology. , pp.185-194.

Colby, G. (1992). "Maintaining Legibility, Structure, and Style of
Information Layout in Dynamic Display Environments" , In Posters and
Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing
Systems. New York, NY, USA |, pp.73-74. ACM.

Cook, D. J. & Bailey, B. P. (2005). "Designers' Use of Paper and the
Implications for Informal Tools" , In Proceedings of the 17th Australia
Conference on Computer-Human Interaction: Citizens Online: Considerations
for Today and the Future. Narrabundah, Australia, Australia , pp.1-10.
Computer-Human Interaction Special Interest Group (CHISIG) of
Australia.

Cook, T. & Campbell, D. (1979). “Quasi-experimentation: design and
analysis issues for field settings” RandMcNally.

Cooper, A., Reimann, R. & Cronin, D. (2007). About face 3: the

essentials of interadtion design John Wiley & Sons.

Cooper, M. (1989). Computer and Design , Design Quarterly. Vol. 142
Walker Art Center.

Cross, N. (2011). Design thinking: Understanding how designers think

and work Blommsbury.

Cross, N. (2002). "Creative cognition in design: processes of exceptional
designers" , In Proceedings of the 4th conference on Creativity & cognition. ,
pp.-14-19. ACM Press.

Cross, N. (2001). Can a machine design? , Design Issues. Vol. 17 (4) ,
pp-44-50. MIT Press.

Cross, N. (1967). Simulation of computer aided design . Thesis at
University of Manchester Institute of Science and Te¢hnology (UMIST).

Dalsgaard, P. (2017). Instruments of inquiry: Understanding the nature
and role of tools in design , International Journal of Design. Vol. 11 (1)

Chinese Institute of Design.

Damle, A. & Miller, T. (2011). "Influence of Design Tools on
Conceptually Driven Processes" , In Proceedings of the 8th ACM
Conference on Creativity and Cognition. New York, NY, USA | pp.327-328.

208

ACM.

Danis, C. & Boies, S. (2000). "Using a te¢hnique from graphic designers
to develop innovative system designs" , In Proceedings of the 3rd
conference on Designing interactive systems: processes, practices, methods, and
techniques. , pp.20-26. ACM Press.

Smet, C. D. (2012). "Pussy Galore et Bouddha du futur. Femmes,
graphisme, etc." , In Pour une critique du design graphique. Dix-huit essais.
B42.

Design, I. D. (1984). MacDraft (Version 1.2a) Internet Archive.

Donald, A. & Draper, S. W. N. (1986). User Centered System Design:

New perspectives on human-computer interaction

Donnot, K. (2011). Outil Numérique et Design Graphique . Thesis at

Ecole des Beaux-Arts de Rennes.

Dow, S., Saponas, T. S., Li, Y. & Landay, J. A. (2006). "External
Representations in Ubiquitous Computing Design and the Implications
for Design Tools" , In Proceedings of the 6th Conference on Designing
Interactive Systems. New York, NY, USA |, pp.241-250. ACM.

Dragicevic, P., Huot, S. & Chevalier, F. (2011). "Gliimpse: Animating
from Markup Code to Rendered Documents and Vice Versa" , In
Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Tec¢hnology. New York, NY, USA | pp.257-262. ACM.

Dwyer, T., Marriott, K. & Wybrow, M. (2008). "Dunnart: A constraint-
based network diagram authoring tool." , In Graph Drawing. Vol. 5417 ,
pp.420-431.

Dykes, T., Blythe, M., Wallace, J., Thomas, J. & Regan, T. (2016). "RtD
Comics: A Medium for Representing Resear¢h Through Design", In
Proceedings of the 2016 ACM Conference on Designing Interactive Systems.
New York, NY, USA , pp.971-982. ACM.

Ecology, 1. (1989). Translations” and Boundary Objects: Amateurs and
Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907--39 ,
Social Studies of Science. Vol. 19 (3) , pp.387-420.

Edge, D., Gulwani, S., Milic-Frayling, N., Raza, M., Saputra, R. A.,
Wang, C. & Yatani, K. (2015). "Mixed-initiative approaches to global
editing in slideware" , In Proceedings of the 33rd Annual ACM Conference
on Human Faclors in Computing Systems. , pp.3503-3512.

Engelbart, D. C. (1962). Augmenting Human Intellect:A Conceptual

209

Framework , SRI Summary Report AFOSR-3223. Director of
Information Sciences, Air Force Office of Scientific Research,
Washington DC, Contract AF 49(638)-1024.

Faste, H. & Lin, H. (2012). "The Untapped Promise of Digital Mind
Maps" , In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA | pp.1017-1026. ACM.

Faul, F. & Ekroll, V. (2002). Psy¢hophysical model of ¢chromatic
perceptual transparency based on substractive color mixture , JOSA A.
Vol. 19 (6) , pp.1084-1095. Optical Society of America.

Fernaeus, Y. & Sundstrom, P. (2012). "The Material Move How
Materials Matter in Interaction Design Research" | In Proceedings of the
Designing Interactive Systems Conference. New York, NY, USA | pp.486-495.
ACM.

Ferreira, J., Sharp, H. & Robinson, H. (2011). User experience design
and agile development: managing cooperation through articulation
work , Software: Practice and Experience. Vol. 41 (9) , pp.963-974. Wiley
Online Library.

Ferreira, J., Sharp, H. & Robinson, H. (2011). User experience design
and agile development: managing cooperation through articulation
work , Software: Practice and Experience. Vol. 41 (9) , pp.963-974. Wiley
Online Library.

Findeli, A. (2010). Searc¢hing for design researc¢h questions: some
conceptual clarifications , Questions, hypotheses & conjectures:

discussions on projects by early stage and senior design researchers.

Findeli, A. (2004). La recherc¢he-projet : une méthode pour la re¢herche

en design , Symposium de rec¢herche sur le design, Bile, Suisse.

Flanagan, J. C. (1954). The critical incident te¢hnique. , Psyc¢hological
bulletin. Vol. 51 (4) , pp.327. American Psyc¢hological Association.

Florins, M. & Vanderdonckg, J. (2004). "Graceful degradation of user
interfaces as a design method for multiplatform systems" , In [UI Vol. 4
, pp.140-147.

Forsyth, J. B. & Martin, T. L. (2014). "Extracting Behavioral
Information from Electronic Storyboards” , In Proceedings of the 2014
ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New
York, NY, USA , pp.253-262. ACM.

Forsyth, J. B. & Martin, T. L. (2014). "Extracting Behavioral
Information from Electronic Storyboards” |, In Proceedings of the 2014

210

ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New
York, NY, USA |, pp.253-262. ACM.

Fouse, A., Weibel, N., Hutchins, E. & Hollan, J. D. (2011). "ChronoViz:
A System for Supporting Navigation of Time-coded Data" , In CHI '11
Extended Abstracts on Human Factors in Computing Systems. New York, NY,
USA , pp.299-304. ACM.

Fris¢h, M., Kleinau, S., Langner, R. & Dachselt, R. (2011). "Grids &38;
Guides: Multi-touch Layout and Alignment Tools" , In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. New York, NY,
USA , pp.1615-1618. ACM.

Fris¢h, M., Langner, R. & Dachselt, R. (2011). "Neat: a set of flexible
tools and gestures for layout tasks on interactive displays" , In
Proceedings of the ACM International Conference on Interactive Tabletops and

Surfaces. , pp.1-10.

Fry, B. (2009). History of Processing, as told by John Maeda , Writing of
Ben Fry.

Fuller, M. (2003). Behind the Blip: essays on the culture of software.

New York: Autonomedia.

Garcia, J., Tsandilas, T., Agon, C. & Mackay, W. (2012). "Interactive
Paper Substrates to Support Musical Creation" , In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. New York, NY,
USA | pp.1825-1828. ACM.

Garcia, J., Tsandilas, T., Agon, C. & Mackay, W. E. (2014). "Structured
observation with polyphony" | In Proceedings of the 2014 conference on
Designing interactive systems - DIS '14. New York, New York, USA | pp.199-
208. ACM Press.

Gaver, B. & Bowers, J. (2012). Annotated Portfolios , interactions. New
York, NY, USA , July, 2012. Vol. 19 (4) , pp.40-49. ACM.

Gaver, B. & Martin, H. (2000). "Alternatives: exploring information
appliances through conceptual design proposals" , In Proceedings of the

SIGCHI conference on Human Factors in Computing Systems. , pp.209-216.

Gaver, W. (2012). "What Should We Expect from Researc¢h Through
Design?" | In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA | pp.937-946. ACM.

Gaver, W. (2012). "What Should We Expect from Research Through
Design?" | In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA | pp.937-946. ACM.

211

Gaver, W. (2011). "Making Spaces: How Design Workbooks Work" , In
Proceedings of the SIGCHI Conference on Human Faclors in Computing
Systems. New York, N'Y, USA , pp.1551-1560. ACM.

Glaser, B. & Strauss, A. (1999). Discovery of grounded theory: Strategies

for qualitative resear¢h Aldine Transaction, Chicago.

Gleicher, M. (1992). "Briar: a constraint-based drawing program" , In
Proceedings of the SIGCHI conference on Human factors in computing systems.
, pp.661-662.

Godin, D. & Zahedi, M. (2014). Aspects of research through design: a
literature review , Proceedings of DRS. , pp.1667-1680.

Grigoreanu, V., Fernandez, R., Inkpen, K. & Robertson, G. (2009).
"What designers want: Needs of interactive application designers" , In
2009 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). , sep, 2009. , pp.139-146. IEEE.

Grudin, J. (2012). "A Moving Target—The Evolution of Human-
Computer Interaction" |, In Human-computer interaction handbook:
Fundamentals, evolving technologies, and emerging applications. (3rd edition).. ,

January, 2012. Taylor & Francis Group.

Harrower, M. & Brewer, C. A. (2003). ColorBrewer. org: an online tool
for selecting colour s¢chemes for maps , The Cartographic Journal. Vol.
40 (1), pp.27-37. Taylor & Francis.

Hartmann, B., Abdulla, L., Mittal, M. & Klemmer, S. R. (2007).
"Authoring sensor-based interactions by demonstration with direct
manipulation and pattern recognition" | In Proceedings of the SIGCHI
conference on Human factors in computing systems - CHI '07. New York, New
York, USA | pp.145. ACM Press.

Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L., Burr, B.,
Robinson-Mosher, A. & Gee, J. (2006). "Reflective physical prototyping
through integrated design, test, and analysis" , In Proceedings of the 19th
annual ACM symposium on User interface software and technology - UIST '06.
New York, New York, USA | pp.299. ACM Press.

Hartmann, B., Yu, L., Allison, A., Yang, Y. & Klemmer, S. R. (2008).
"Design as exploration" , In Proceedings of the 21st annual ACM symposium
on User interface software and technology - UIST '08. New York, New York,
USA | pp.91. ACM Press.

Herring, S. R., Chang, C.-C., Krantzler, J. & Bailey, B. P. (2009).
"Getting Inspired!: Understanding How and Why Examples Are Used in

212

Creative Design Practice" , In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. New York, NY, USA |, pp.87-96.
ACM.

Hornbzk, K. & Oulasvirta, A. (2017). "What Is Interaction?" | In
Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. , pp.5040-5052.

Hurst, N, Li, W. & Marriott, K. (2009). "Review of Automatic
Document Formatting" , In Proceedings of the 9th ACM Symposium on
Document Engineering. New York, NY, USA | pp.99-108. ACM.

Hut¢hins, E. (1995). Cognition in the Wild MIT Press.

Hutchinson, H., Mackay, W., Westerlund, B., Bederson, B. B., Druin,
A., Plaisant, C., Beaudouin-Lafon, M., Conversy, S., Evans, H.,
Hansen, H., Roussel, N. & Eiderbick, B. (2003). "Technology Probes:
Inspiring Design for and with Families" | In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York, NY, USA |
pp-17-24. ACM.

Igarashi, T., Matsuoka, S., Kawachiya, S. & Tanaka, H. (1997).
"Interactive beautification: a technique for rapid geometric design" , In
Proceedings of the 10th annual ACM symposium on User interface software and
technology. , pp.105-114.

Ingold, T. (2013). Making: Anthropology, Archaeology, Art and
Architecture Routledge.

Itten, J. (1996). Art de la couleur, édition abrégée Bordas Editions.

Jacobs, C., Li, W., Schrier, E., Bargeron, D. & Salesin, D. (2003).
"Adaptive Grid-based Document Layout" , In ACM SIGGRAPH 2003
Papers. New York, NY, USA | pp.838-847. ACM.

Jahanian, A., Liu, J., Lin, Q., Tretter, D., O'Brien-Strain, E., Lee, S. C.,
Lyons, N. & Allebach, J. (2013). "Recommendation System for
Automatic Design of Magazine Covers" | In Proceedings of the 2013
International Conference on Intelligent User Interfaces. New York, NY, USA |
pp.95-106. ACM.

Jalal, G. (2016). Reification of visual properties for composition tasks .

Thesis at Université Paris-Saclay.

Janecek, P., Ratzer, A. V. & Mackay, W. E. (1999). "Redesigning
Design/CPN: Integrating interaction and petri nets in use" | In
Proceedings of Second Workshop on Practical Use of Coloured Petri Nets and
Design/CPN. , pp.119-133.

213

Jongerius, H. (2010). Misfit Phaidon.

Kato, J. & Goto, M. (2016). "Live Tuning: Expanding Live Programming
Benefits to Non-Programmers" , In Proceedings of the Second Workshop on

Live Programming Systems.

Kay, A. C. (1972). "A Personal Computer for Children of All Ages", In
Proceedings of the ACM Annual Conference - Volume 1. New York, NY, USA
ACM.

Kazi, R. H., Chevalier, F., Grossman, T. & Fitzmaurice, G. (2014).
"Kitty: Sket¢hing Dynamic and Interactive Illustrations" , In Proceedings
of the 27th annual ACM symposium on User interface software and technology
- UIST '14. New York, New York, USA | pp.395-405. ACM Press.

Kazi, R. H., Chevalier, F., Grossman, T. & Fitzmaurice, G. (2014).
"Kitty: Sket¢hing Dynamic and Interactive Illustrations" , In Proceedings
of the 27th annual ACM symposium on User interface software and technology
- UIST '14. New York, New York, USA | pp.395-405. ACM Press.

Khoi, V. (2011). "Conversations with the network" | In Digital Design

Theory. Princeton architectural press.

Kin, K., Hartmann, B., DeRose, T. & Agrawala, M. (2012). "Proton:
Multitouch Gestures as Regular Expressions’ , In Proceedings of the 2012
ACM annual conference on Human Factors in Computing Systems - CHI '12.
New York, New York, USA | pp.2885. ACM Press.

Kin, K., Hartmann, B., DeRose, T. & Agrawala, M. (2012). "Proton++: A
Customizable Declarative Multitouch Framework" , In Proceedings of the

25th annual ACM symposium on User interface software and technology - UIST
'12. New York, New York, USA | pp.477. ACM Press.

King, T. D. (2005). "Human color perception, cognition, and culture:
why red is always red" , In Proc. SPIE. Vol. 5667 , pp.234-242.

Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, W. & Beaudouin-
Lafon, M. (2015). "Webstrates: Shareable Dynamic Media" , In
Proceedings of the 28th Annual ACM Symposium on User Interface Software
&38; Technology. New York, NY, USA | pp.280-290. ACM.

Kroplien, M. (20011). Status Quo at 66 , Karl Gerstner, Review of 5*10
Years of Graphic Design etc.. Hatje Cantz.

Kuhna, M., Kivela, I.-M. & Oittinen, P. (2012). "Semi-automated
Magazine Layout Using Content-based Image Features" , In Proceedings
of the 20th ACM International Conference on Multimedia. New York, NY,
USA , pp.379-388. ACM.

214

Kurlander, D. & Feiner, S. (1993). Inferring constraints from multiple
snapshots , ACM Transactions on Graphics (TOG). Vol. 12 (4) , pp.277-
304. ACM.

Landay, J. A. & Myers, B. A. (1995). "Interactive Sketc¢hing for the Early
Stages of User Interface Design" , In Proceedings of the SIGCHI Conference
on Human Faclors in Computing Systems. New York, NY, USA |, pp.43-50.
ACM Press/Addison-Wesley Publishing Co..

Lapadat, J. C. & Lindsay, A. C. (1998). Examining Transcription: A
Theory-Laden Methodology. ERIC.

Lee, B., Srivastava, S., Kumar, R., Brafman, R. & Klemmer, S. R.
(2010). "Designing with Interactive Example Galleries" , In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. New York,
NY, USA , pp.2257-2266. ACM.

Lee, C. P. (2007). Boundary negotiating artifacts: Unbinding the routine
of boundary objects and embracing ¢haos in collaborative work ,
Computer Supported Cooperative Work (CSCW). Vol. 16 (3) , pp-307-339.
Springer.

Leray, A. & Vilayphiou, S. (2011). Considering your tools Libre
Graphics Research Unit.

Leroi-Gourhan, A. (1964). Le geste et la parole Albin Michel.
Levit, B. (2017). Graphic Means: A History of Graphic Design

Li, Y., Cao, X., Everitt, K., Dixon, M. & Landay, J. A. (2010).
"FrameWire: A Tool for Automatically Extracting Interaction Logic
from Paper Prototyping Tests" , In Proceedings of the SIGCHI Conference
on Human Faclors in Computing Systems. New York, NY, USA |, pp.503-512.
ACM.

Li, Y., Cao, X., Everitt, K., Dixon, M. & Landay, J. A. (2010).
"FrameWire: A Tool for Automatically Extracting Interaction Logic
from Paper Prototyping Tests" , In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. New York, NY, USA , pp.503-512.
ACM.

Li, Y. & Landay, J. A. (2005). "Informal prototyping of continuous
graphical interactions by demonstration" , In Proceedings of the 18th
annual ACM symposium on User interface software and technology - UIST '05.
New York, New York, USA | pp.221. ACM Press.

Lialina, O. (2012). Turing Complete User , Considering your tools. Libre
Graphics Research Unit.

215

Mackay, W. E. (2002). Using video to support interaction design , DVD
Tutorial, CHI. Vol. 2 (5)

Mackay, W. E. (2000). Responding to cognitive overload: Co-adaptation
between users and technology , Intellectica. , January, 2000. Vol. 30 ,
pp.177-193.

MacKay, W. E. (1999). Is Paper Safer? The Role of Paper Flight Strips in
Air Traffic Control , ACM Trans. Comput.-Hum. Interact.. New York,
NY, USA , December, 1999. Vol. 6 (4) , pp.311-340. ACM.

Mackay, W. E. (1990). Users and customizable software: A co-adaptive
phenomenon . Thesis at Massachusetts Institute of Te¢hnology, Sloan
Sc¢hool of Management.

Mackay, W. E. & Fayard, A.-L. (1997). "HCI, natural science and design:
a framework for triangulation across disciplines” , In Proceedings of the
2nd conference on Designing interactive systems: processes, practices, methods,
and techniques. , pp.223-234.

Mackay, W. E., Ratzer, A. V. & Janecek, P. (2000). "Video artifacts for
design: Bridging the gap between abstraction and detail" , In Proceedings
of the 3rd conference on Designing interaclive systems: processes, practices,

methods, and techniques. , pp.72-82.

Mackey, K. (2000). The Xerox" Star": A Retrospective , IEEE Computer.
Vol. 22

Maleki, M. M., Woodbury, R. F. & Neustaedter, C. (2014). "Liveness,
Localization and Lookahead: Interaction Elements for Parametric
Design" , In Proceedings of the 2014 Conference on Designing Interaclive
Systems. New York, NY, USA , pp.805-814. ACM.

Manovich, L. (2001). The language of new media Cambridge Mass. MIT

Press.

Maravita, A. & Iriki, A. (2004). Tools for the body (s¢hema) , Trends in
cognitive sciences. Vol. 8 (2) , pp.79-86. Elsevier.

Masui, T. (2001). "HyperSnapping" , In Human-Centric Computing
Languages and Environments, 2001. Proceedings IEEE Symposia on. , pp.188-
194.

Masure, A. (2014). Le design des programmes, des facons de faire du

numeérique . Thesis at Paris 1, Sorbonne.

Maudet, N. (2017). "Muriel Cooper, Information Landscapes" , In Back-
Office. Paris, France , pp.104-117. B42 and Fork.

216

Maudet, N., Leiva, G., Beaudouin-Lafon, M. & Mackay, W. (2017).
"Design Breakdowns: Designer-Developer Gaps in Representing and
Interpreting Interactive Systems" | In Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and Social Computing.
New York, NY, USA , pp.630-641. ACM.

McGrenere, J. (2000). ""Bloat": The Objective and Subject Dimensions" ,
In CHI '00 Extended Abstracts on Human Factors in Computing Systems. New
York, NY, USA |, pp.337-338. ACM.

Meier, B. J. (1988). "ACE: A Color Expert System for User Interface
Design" , In Proceedings of the 1st Annual ACM SIGGRAPH Symposium on
User Interface Software. New York, NY, USA | pp.117-128. ACM.

Meier, B. J., Spalter, A. M. & Karelitz, D. B. (2004). Interactive color
palette tools , IEEE Computer Graphics and Applications. Vol. 24 (3)
pp.64-72. IEEE.

Moholy-Nagy, L. (1973). Painting Photography Film MIT Press.

Morris, W. (1884). "Art and Socialism" , In Political Writings of William
Morris. A. L. Morton.

Morris, W. (1884). "Art and Socialism" , In Political Writings of William
Morris. A. L. Morton.

Moulder, P. & Marriott, K. (2012). "Learning How to Trade off
Aesthetic Criteria in Layout" , In Proceedings of the 2012 ACM Symposium
on Document Engineering. New York, NY, USA | pp.33-36. ACM.

Murray, D. (1993). "An ethnographic study of graphic designers" , In
Proceedings of the Third European Conference on Computer-Supported
Cooperative Work 13--17 September 1993, Milan, Italy ECSCW’93. | pp.295-
309.

Myers, B. A. (1998). A brief history of human-computer interaction
technology , interactions. Vol. 5 (2) , pp.44-54. ACM.

Myers, B. A. (1986). "Visual programming, programming by example,
and program visualization: a taxonomy" , In ACM SIGCHI Bulletin. Vol.
17 (4) , pp.59-66.

Myers, B. A., McDaniel, R. G. & Kosbie, D. S. (1993). "Marquise:
Creating Complete User Interfaces by Demonstration" , In Proceedings of
the INTERCHI '93 Conference on Human Factors in Computing Systems.
Amsterdam, The Netherlands, The Netherlands , pp.293-300. IOS Press.

Myers, B., Park, S. Y., Nakano, Y., Mueller, G. & Ko, A. (2008). "How

217

designers design and program interactive behaviors" , In Visual
Languages and Human-Centric Computing, 2008. VL/HCC 2008. IEEE
Symposium on. , pp.177-184.

Nelson, G. (1985). "Juno, a constraint-based graphics system" , In ACM
SIGGRAPH Computer Graphics. Vol. 19 (3) , pp.235-243.

Nelson, T. (1974). Computer Lib: You Can and Must Understand
Computers Now; Dream Machines: New Freedoms Through Computer
Screens— A Minority Report Self-Published.

Newman, M. W. & Landay, J. A. (2000). "Sitemaps, Storyboards, and
Specifications: A Sketc¢h of Web Site Design Practice" , In Proceedings of
the conference on Designing interaclive systems processes, practices, methods,
and techniques - DIS '00. New York, New York, USA |, aug, 2000. , pp.263-
274. ACM Press.

O'Donovan, P., Agarwala, A. & Hertzmann, A. (2015). "Designscape:
Design with interactive layout suggestions" , In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. , pp.1221-
1224.

Oney, S., Myers, B. A. & Brandt, J. (2014). "InterState: A Language and
Environment for Expressing Interface Behavior" , In Proceedings of the
27th annual ACM symposium on User interface software and technology - UIST
'14. New York, New York, USA | pp.263-272. ACM Press.

Oney, S., Myers, B. A. & Brandt, J. (2014). "InterState: A Language and
Environment for Expressing Interface Behavior" , In Proceedings of the
27th annual ACM symposium on User interface software and technology - UIST
'14. New York, New York, USA | pp.263-272. ACM Press.

Osiurak, F., Jarry, C., Allain, P., Aubin, G., Et¢harry-Bouyx, F.,
Richard, 1., Bernard, I. & Gall, D. L. (2009). Unusual use of objects after
unilateral brain damage. The te¢hnical reasoning model , Cortex. Vol. 45
(6) , pp.769-783. Elsevier.

Ozeng, F. K., Kim, M., Zimmerman, J., Oney, S. & Myers, B. (2010).
"How to Support Designers in Getting Hold of the Immaterial Material
of Software" | In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA | pp.2513-2522. ACM.

Ozeray, E. (2014). Pour un design graphique libre . Thesis at ENSAD.

Papanek, V. J. (1972). Design for the real world : human ecology and
social ¢hange , pp. xxviii, 339 p. : . Thames and Hudson London .

Park, S. Y., Myers, B. A. & Ko, A. J. (2008). "Designers' natural

218

descriptions of interactive behaviors" , In 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing. , sep, 2008. , pp.185-188. IEEE.

Parnami, A., Gupta, A., Reyes, G., Sadana, R., Li, Y. & Abowd, G.
(2016). "Mogeste: Mobile Tool for In-situ Motion Gesture Design" , In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct. New York, NY, USA , pp.345-348. ACM.

Parnami, A., Gupta, A., Reyes, G., Sadana, R., Li, Y. & Abowd, G.
(2016). "Mogeste: Mobile Tool for In-situ Motion Gesture Design" , In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct. New York, NY, USA , pp.345-348. ACM.

Pedgley, O. (2007). Capturing and analysing own design activity , Design
Studies. Vol. 28 (5) , pp.463-483. Elsevier.

Piccoli, R. F. B.,, Chamun, R., Cogo, N. C., de Oliveira, J. a. B. S. &
Manssour, I. H. (2011). "A Novel Physics-based Interaction Model for
Free Document Layout" , In Proceedings of the 11th ACM Symposium on
Document Engineering. New York, NY, USA | pp.153-162. ACM.

Polanyi, M. (1966). The Tacit Dimension Routledge.

Poltrock, S. E. & Grudin, J. (1994). Organizational obstacles to interface
design and development: two participant-observer studies , ACM
Transactions on Computer-Human Interaction (TOCHI). Vol. 1 (1) ,
pp-52-80. ACM.

Pouli, T. & Reinhard, E. (2011). Progressive color transfer for images of
arbitrary dynamic range , Computers & Graphics. Vol. 35 (1), pp.67-80.

Elsevier.

Prank, B. (2011). The Quantel Paintbox, a pioneering computer graphics
workstation , Quantel.eu.

Raisamo, R. (1999). "An alternative way of drawing" , In Proceedings of

the SIGCHI conference on Human Factors in Computing Systems. , pp.175-182.

Reas, C., Fry, B. & Maeda, J. (2007). Processing: A Programming
Handbook for Visual Designers and Artists The MIT Press.

Reas, C. & McWilliams, C. (2012). Progammer avec Erik van Blokland,
Catalogtree, Amanda Cox, Nicholas Felton, FIELD, LUST, Boris Miiller,
onformative, Jonathan Puckey, Sosolimited & Trafik , Graphisme en

France, code<>outils<>design. Centre National d'Art Plastique.

Reas, C. & McWilliams, C. (2010). Form+code in design, art, and

219

architecture Princeton Architectural Press New York .

Reinfurt, D. (2007). Making do and getting by, in : Kyes, Zak ; Owens,
Mark. Forms of Inquiry : The Architecture of Critical Graphic Design.

Architectural Association Publications.

Rey, S., Conversy, S., Magnaudet, M., Poirier, M., Prun, D., Vinot, J.-
L. & Chatty, S. (2015). "Using the Djnn Framework to Create and
Validate Interactive Components Iteratively" | In Proceedings of the 7th
ACM SIGCHI Symposium on Engineering Interacltive Computing Systems. New
York, NY, USA | pp.230-233. ACM.

Rittel, H. W. J. & Webber, M. M. (1973). Dilemmas in a general theory
of planning , Policy sciences. Vol. 4 (2) , pp.155-169. Springer.

Ryall, K., Marks, J. & Shieber, S. (1997). "An interactive constraint-
based system for drawing graphs" | In Proceedings of the 10th annual ACM
symposium on User interface software and technology. , pp.97-104.

Salah, D., Paige, R. F. & Cairns, P. (2014). "A systematic literature
review for agile development processes and user centred design
integration" | In Proceedings of the 18th international conference on

evaluation and assessment in software engineering. , pp.5S.

Satchell, C. & Dourish, P. (2009). "Beyond the User: Use and Non-use in
HCI", In Proceedings of the 21st Annual Conference of the Australian
Computer-Human Interaction Special Interest Group: Design: Open 24/7. New
York, NY, USA , pp.9-16. ACM.

S¢ha¢hman, T. (2017). Apparatus: A Hybrid Graphics Editor /
Programming Environment for Creating Interactive Diagrams , Strange

Loop.

S¢hmieder, P., Plimmer, B. & Vanderdonckt, J. (2010). Generating
systems from multiple sket¢hed models , Journal of Visual Languages &
Computing. , apr, 2010. Vol. 21 (2) , pp.98-108.

Sc¢hon, D. A. (1984). The reflective practitioner: How professionals think
in action Vol. 5126 Basic books.

Schrier, E., Dontc¢heva, M., Jacobs, C., Wade, G. & Salesin, D. (2008).
"Adaptive Layout for Dynamically Aggregated Documents" , In
Proceedings of the 13th International Conference on Intelligent User Interfaces.
New York, NY, USA , pp.99-108. ACM.

SciencesPo, M. L. (2013). I Want Hue

Sengers, P. & Gaver, B. (2006). "Staying Open to Interpretation:

220

Engaging Multiple Meanings in Design and Evaluation" , In Proceedings
of the 6th Conference on Designing Interactive Systems. New York, NY, USA |
pp.99-108. ACM.

Shneiderman, B. (2000). Creating Creativity: User Interfaces for
Supporting Innovation , ACM Trans. Comput.-Hum. Interact.. New
York, NY, USA , March, 2000. Vol. 7 (1), pp.114-138. ACM.

Shneiderman, B. (1981). "Direct Manipulation: A Step Beyond
Programming Languages' , In Proceedings of the Joint Conference on Easier
and More Productive Use of Computer Systems. (Part - II): Human Interface and
the User Interface - Volume 1981. New York, NY, USA |, pp.143-. ACM.

da Silva, T., Silveira, M. S. & Maurer, F. (2013). "Ten Lessons Learned
from Integrating Interaction Design and Agile Development"” , In 2013
Agile Conference. , aug, 2013. , pp.42-49. IEEE.

Simon, H. A. (1996). The sciences of the artificial MIT press.
Simondon, G. (1958). Du mode d'existence des objets te¢chniques Méot.

Sinha, N. & Karim, R. (2015). "Responsive Designs in a Snap", In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. New York, NY, USA | pp.544-554. ACM.

Small, D. (1999). Rethinking the book . Thesis at Massac¢husetts Institute
of Te¢hnology.

Small, D., Ishizaki, S. & Cooper, M. (1994). "Typographic Space" , In
Conference Companion on Human Factors in Computing Systems. New York,
NY, USA , pp.437-438. ACM.

Smith, A. R. (2001). Digital paint systems: An anecdotal and historical
overview , IEEE Annals of the History of Computing. Vol. 23 (2) , pp.4-
30. IEEE.

Smith, D. C. (1975). Pygmalion: a creative programming environment .
Thesis at STANFORD UNIV CA DEPT OF COMPUTER SCIENCE.

Smith, D. C., Ludolph, F. E. & Irby, C. H. (1985). "The Desktop
Metaphor As an Approach to User Interface Design (Panel Discussion)
, In Proceedings of the 1985 ACM Annual Conference on The Range of
Computing : Mid-80's Perspective: Mid-80's Perspective. New York, NY, USA
, pp.548-549. ACM.

Star, S. L. (1989). "The structure of ill-structured solutions: boundary
objedts and heterogeneous distributed problem solving" , In Distributed
Artificial Intelligence (Vol. 2). San Francisco, CA, USA | pp.37-54. Morgan

221

Kaufmann Publishers Inc..

Star, S. L. & Griesemer, J. R. (1989). Institutional Ecology,
‘Translations' and Boundary Objects: Amateurs and Professionals in
Berkeley's Museum of Vertebrate Zoology, 1907-39 , Social Studies of
Science. Vol. 19 (3) , pp.387-420.

Strausfeld, L. (1995). "Financial Viewpoints: Using Point-of-view to
Enable Understanding of Information" , In Conference Companion on
Human Faclors in Computing Systems. New York, NY, USA , pp.208-209.
ACM.

Strauss, A. (1988). The articulation of project work: An organizational
process , The Sociological Quarterly. Vol. 29 (2) , pp.163-178. Wiley
Online Library.

Strauss, A. L. (1987). Qualitative analysis for social scientists Cambridge

University Press.

Stuerzlinger, W., Chapuis, O., Phillips, D. & Roussel, N. (2006). "User
Interface FacAdes: Towards Fully Adaptable User Interfaces", In
Proceedings of the 19th Annual ACM Symposium on User Interface Software
and Technology. New York, NY, USA | pp.309-318. ACM.

Suc¢hman, L. A. (2007). Human-Machine Reconfiguration, Plans and
Situated Action, 2nd Edition Cambridge University Press.

Sukale, R., Koval, O. & Voida, S. (2014). "The Proxemic Web: Designing
for Proxemic Interactions with Responsive Web Design" , In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication. New York, NY, USA |, pp.171-174. ACM.

Sumner, T. (1995). "The High-te¢h Toolbelt: A Study of Designers in the
Workplace" , In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA | pp.178-185. ACM
Press/Addison-Wesley Publishing Co..

Sumner, T. R. (1995). Designers and their tools: computer support for
domain construction . Thesis at COLORADO UNIV AT BOULDER
DEPT OF COMPUTER SCIENCE.

Sundstrom, P., Taylor, A., Grufberg, K., Wirstrom, N., Belenguer, J. S.
& Lundén, M. (2011). "Inspirational Bits: Towards a Shared
Understanding of the Digital Material" , In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York, NY, USA |
pp.1561-1570. ACM.

Sutherland, I. (1963). Sket¢hpad: a man-machine graphical

222

communication system . Thesis at MIT.

Tanimoto, S. L. (2013). "A Perspective on the Evolution of Live
Programming" , In Proceedings of the 1st International Workshop on Live

Programming. Piscataway, NJ, USA | pp.31-34. IEEE Press.

Terry, M., Mynatt, E. D., Nakakoji, K. & Yamamoto, Y. (2004).
"Variation in Element and Action: Supporting Simultaneous
Development of Alternative Solutions" , In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York, NY, USA |
pp.711-718. ACM.

Tholander, J., Karlgren, K., Ramberg, R. & Sokjer, P. (2008). "Where All
the Interaction is: Sket¢hing in Interaction Design As an Embodied
Practice" , In Proceedings of the 7th ACM Conference on Designing Interactive
Systems. New York, NY, USA , pp.445-454. ACM.

Tholander, J., Karlgren, K., Ramberg, R. & Sokjer, P. (2008). "Where All
the Interaction is: Sket¢hing in Interaction Design As an Embodied
Practice" , In Proceedings of the 7th ACM Conference on Designing Interactive
Systems. New York, NY, USA | pp.445-454. ACM.

Thomis, M. (1970). The Luddites: Machine Breaking in Regency England
Shocken.

Todi, K., Weir, D. & Oulasvirta, A. (2016). "Sketchplore: Sket¢h and
Explore with a Layout Optimiser" , In Proceedings of the 2016 ACM
Conference on Designing Interactive Systems. New York, NY, USA | pp.543-
555. ACM.

Tschichold, J. (1928). Die Neue Typography Verlag des
Bildungsverbandes der Deuts¢hen Buchdrucker.

Varnedoe, K. (1987). Gustave Caillebotte New Haven: Yale University

Press.
Verplank, B. (2009). Interaction Design Sket¢hbook self-published.

Vetere, F., Davis, H., Gibbs, M. R., Francis, P. & Howard, S. (2006). "A
Magic Box for Understanding Intergenerational Play" , In CHI '06
Extended Abstracts on Human Factors in Computing Systems. New York, NY,
USA | pp.1475-1480. ACM.

Victor, B. (2013). Media for thinking the unthinkable , Presented at the
MIT Media Lab on April 4, 2013.

Victor, B. (2013). Media for thinking the unthinkable , Presented at the
MIT Media Lab on April 4, 2013.

223

Victor, B. (2011). Up and Down the Ladder of Abstraction , Self-
Published.

Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J.
R., van der Helm, P. A. & van Leeuwen, C. (2012). A century of Gestalt
psyc¢hology in visual perception: II. Conceptual and theoretical
foundations. , Psychological bulletin. Vol. 138 (6) , pp.1218. American
Psychological Association.

Wang, J., Juhlin, O. & Johnson, E.-C. B. (2014). "Previsualization with
Computer Animation (Previs): Communicating Research to Interaction
Design Practice" , In Proceedings of the 26th Australian Computer-Human
Interaction Conference on Designing Futures: The Future of Design. New York,
NY, USA , pp.11-20. ACM.

Wang, L., Giesen, J., McDonnell, K. T., Zolliker, P. & Mueller, K.
(2008). Color design for illustrative visualization , IEEE Transactions on
Visualization and Computer Graphics. Vol. 14 (6) , pp.1739-1754. IEEE.

Wiemann, M. (2016). Patterns as a tool for collaboration: A case study of
collaboration between designers and developers through user interface

pattern libraries. . Thesis at Umea University.

Wigdor, D., Benko, H., Pella, J., Lombardo, J. & Williams, S. (2011).
"Rock & rails: extending multi-touch interactions with shape gestures to
enable precise spatial manipulations" | In Proceedings of the SIGCHI
Conference on Human Faclors in Computing Systems. , pp.1581-1590.

Williamson, J. H. (1986). The grid: History, use, and meaning , Design
Issues. , pp.15-30. JSTOR.

Wolfgang, P. (1994). Design patterns for object-oriented software

development , Reading Mass.

Wright, B. & McCarthy (2005). Future Interaction Design Springer
London.

Wybrow, M., Marriott, K., Mciver, L. & Stuckey, P. J. (2008).
Comparing usability of one-way and multi-way constraints for diagram
editing , ACM Transactions on Computer-Human Interaction (TOCHI).
Vol. 14 (4) , pp.19. ACM.

Xia, H., Araujo, B., Grossman, T. & Wigdor, D. (2016). "Object-
oriented drawing" , In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. , pp.4610-4621.

Xu, P., Fu, H., Igarashi, T. & Tai, C.-L. (2014). "Global beautification of

layouts with interactive ambiguity resolution" , In Proceedings of the 27th

224

ECOLE DOCTORALE
o .

° : Sciences et technologies

un |VerS|te i de I'information

PARIS-SACLAY i et de la communication (STIC)

Titre : Concevoir les outils numériques du design
Mots clés : design graphique, interaction humain-machine, outils supports de la créativité

Résumé : Les outils de design graphique traditionnels n’ont que peu évolué depuis leur création, il y a
plus de 25 ans. Dans cette thése, je m’intéresse a deux questions principales: Comment les designers
travaillent-ils avec leur outils de design numériques? Comment peut-on créer de nouveaux outils
numériques pour le design qui supportent les pratiques existantes? J’étudie en premier lieu quatre
pratiques de design. Celles-ci s'échelonnent depuis des opérations spécifiques telles que la sélection de
couleurs, 1’alignement et la distribution d’objets graphiques vers des pratiques plus complexes telles
que la structuration de la mise en page et la collaboration avec des développeurs pour créer de
nouvelles interactions. Dans ces quatre études empiriques, je caractérise le décalage existant entre les
outils numériques actuels et les pratiques des designers. Je montre comment les outils du design
numérique actuels détachent la créativité de 1’utilisation des outils en donnant la priorité a des valeurs
telles que I’efficacité et la facilité d’utilisation. Je propose un nouveau type d’outil de design nommé
“Substrats Graphiques”, fondé sur les résultats empiriques de mes quatre études et qui combine la
souplesse et l'expressivité de la programmation avec la manipulation directe permise par les interfaces
graphiques traditionnelles. Je congois neuf outils différents qui répondent aux attentes identifiées dans
mes ¢tudes empiriques en réifiant (transformant en objets concrets) les processus spécifiques des
designers en tant que Substrats Graphiques. A travers quatre observations structurées, je montre
comment les designers s’approprient ces substrats dans leurs propres termes. Dans cette thése, je
soutiens que les Substrats Graphiques ouvrent 1’espace des possibles des outils pour les designers en
permettant de combler I’écart entre la programmation et les interfaces graphiques.

Title : Designing Design Tools
Keywords : graphic design, human-computer interaction, creativity support tools

Abstract : Mainstream digital graphic design tools seldom evolved since their creation, more than 25
years ago. In this dissertation, I address the following questions: How do designers work with design
software? And how can we design novel design tools that better support designer practices? Using
StoryPortraits, a method designed to capture rich qualitative insight, I first study four designer
practices, ranging from specific design operations such as color selection, alignment and distribution,
to more complex endeavors such as layout structuring and collaboration with developers. In these
empirical studies,I characterize the existing mismatch between current digital design tools and
designers practices. I show how design tools, because they decouple creativity from tool use, prioritize
values such as efficiency and user-friendliness. Based on my empirical findings, [propose a new type
of design tools, Graphical Substrates, that combine the strengths of both programming and traditional
Graphical User Interfaces. I design nine different tools that address the needs identified in the four
empirical studies by reifying specific user process into Graphical Substrates probes. In four structured
observation studies, I show how designers can appropriate these probes in their own terms. In this
thesis, I argue that Graphical Substrates open the design space of designers' tools by bridging the gap
between programming and graphical user interface to better support the wealth of designers' practices.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	aveccouv
	couverture_de_these_officielle
	Depot-These-version-finale

	couverture_de_these_officielle

