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Titre : Théorie des perturbations en matrice densité N-
représentable 

Résumé : 
Alors que les approches standards de résolution de la structure électronique 
présentent un coût de calcul à la puissance 3 par rapport à la complexité du 
problème, des solutions permettant d’atteindre un régime asymptotique linéaire, 
O(N), sont maintenant bien connues pour le calcul de l'état fondamental. Ces 
solutions sont basées sur la "myopie" de la matrice densité et le développement d'un 
cadre théorique permettant de contourner le problème aux valeurs propres. La 
théorie des purifications de la matrice densité constitue une branche de ce cadre 
théorique. Comme pour les approches de type O(N) appliquées à l'état fondamental, 
la théorie des perturbations nécessaire aux calculs des fonctions de réponse 
électronique doit être révisée pour contourner l'utilisation des routines coûteuses. 
L'objectif est de développer une méthode robuste basée uniquement sur la 
recherche de la matrice densité perturbée, pour laquelle seulement des 
multiplications de matrices creuses sont nécessaires. Dans une première partie, 
nous dérivons une méthode de purification canonique qui respecte les conditions de 
N-representabilité de la matrice densité à une particule. Nous montrons que le 
polynôme de purification obtenu est auto-cohérent et converge systématiquement 
vers la bonne solution. Dans une seconde partie, en utilisant une approche de type 
Hartree-Fock, nous appliquons cette méthode aux calculs des tenseurs de réponses 
statiques non-linéaires pouvant être déterminés par spectroscopie optique. Au delà 
des calculs à croissance linéaire réalisés, nous démontrons que les conditions N-
representabilité constituent un prérequis pour garantir la fiabilité des résultats. 
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Title: N-representable density matrix perturbation theory 

Abstract:  
Whereas standard approaches for solving the electronic structures present a 
computer effort scaling with the cube of the number of atoms, solutions to overcome 
this cubic wall are now well established for the ground state properties, and allow to 
reach the asymptotic linear-scaling, O(N). These solutions are based on the 
nearsightedness of the density matrix and the development of a theoretical 
framework allowing bypassing the standard eigenvalue problem to directly solve the 
density matrix. The density matrix purification theory constitutes a branch of such a 
theoretical framework. Similarly to earlier developments of O(N) methodology applied 
to the ground state, the perturbation theory necessary for the calculation of response 
functions must be revised to circumvent the use of expensive routines, such as 
matrix diagonalization and sum-over-states. The key point is to develop a robust 
method based only on the search of the perturbed density matrix, for which, ideally, 
only sparse matrix multiplications are required. In the first part of this work, we derive 
a canonical purification, which respects the N-representability conditions of the one-
particle density matrix for both unperturbed and perturbed electronic structure 
calculations. We show that this purification polynomial is self-consistent and 
converges systematically to the right solution. As a second part of this work, we apply 
the method to the computation of static non-linear response tensors as measured in 
optical spectroscopy. Beyond the possibility of achieving linear-scaling calculations, 
we demonstrate that the N-representability conditions are a prerequisite to ensure 
reliability of the results. 

Keywords: 

 
Density matrix, electronic response functions, self-consistent field, linear scaling 

 

Unité de recherche 

 
Institut des Sciences Moléculaires (ISM) – Université de Bordeaux, CNRS UMR 5255 

Bâtiment A12, 351 Cours de la Libération 
33405 Talence cedex 

 



N -representable density matrix
perturbation theory

Mamy Rivo Dianzinga

Chemistry Department
University of Bordeaux

This dissertation is submitted for the degree of
Doctor of Theoretical Chemistry and Physics

December 2016





I dedicate this thesis to my loving and beloved parents for all their sacrifices . . .





Declaration

I declare that this thesis is the presentation of the outcome of my original research work,
after three years of hard labor. However, I clearly certify that contributions from other
persons are involved. This dissertation contains equations, tables, figures, algorithms,
appendices and a bibliography. This work is officially recognized under the supervision
of Pr. Alain Fristch, but technically under the guidance of Dr. Lionel Truflandier at the
Institut des Sciences Moléculaires of Bordeaux in France.

Mamy Rivo Dianzinga
December 2016





Acknowledgements

This thesis would not be achieved without the help of some persons. For this reason, I can
not fail to thank a number of people. First of all, I deeply thank Dr. Lionel Truflandier
who was involved in an important part in this thesis. Dr. Lionel Truflandier was not
only my instructor who supported me during these three years. But he was also a wise
friend trying to teach me the professional habits necessary to carry on scientific work.

I thank Pr. David Bowler, Pr. Anders Niklasson, Pr. Matt Challacombe, Dr. Jörg
Kussmann and Pr. Christian Ochsenfeld for their interesting explanations of the linear
scaling methods. Once more, I thank Pr. David Bowler and Pr. Anders Niklasson for
agreeing to be members of the thesis defense committee.

I can not forget to thank Pr. Ionel Navon and Pr. Vladimir Ivanov who have taken
some of their time to explain to me methodological details of their papers.

I also thank the Theoretical Chemistry & Modelling group of the Institut des Sciences
Moléculaires which have accepted to invite Pr. Anders Niklasson. I also thank all the
group members, especially Pr. Alain Fritsch and the computer engineer Philippe Aurel.
I thank all the staff members of the Institut des Sciences Moléculaires, Professors and
students, who came to my presentations.

I also thank Pr. Roland Hayn who has been my internship supervisor during my
Master degree. Pr. Roland Hayn was my first professional relationship I had in France.
I thank him for all he has done for me since I met him, for having helped me during my
internship and for accepting to be in the thesis defense committee.

Of course, I thank my whole family, especially my father and my mother who both
have always done everything for making me an educated person. Once more, I thank my
parents who have always wanted me to obtain a Doctor of Philosphy degree. I deeply
thank my parents, from the bottom of my heart, for calling me at least once a week to
make sure I was doing well and to mentally and psychologically supported me in my
work.





Abstract

Whereas standard approaches for solving the electronic structures present —at least— a
computer effort scaling with the cube of the number of atoms, solutions to overcome this
cubic wall are now well established for the ground state properties, and allow to reach
the asymptotic linear-scaling —O(N). They are based on the nearsightedness of the
density matrix and the development of a theoretical framework allowing to bypass the
standard eigenvalue problem, to directly solve the density matrix. The density matrix
purification theory constitutes a branch of such a theoretical framework. Similarly to
earlier developments of O(N) methodology applied to the ground state, the perturbation
theory necessary for the calculation of response functions must be revised to circumvent
the use of expensive routines, such as matrix diagonalization and sum-over-states. The
key point is to develop a robust method based only on the search of the perturbed
density matrix, for which, ideally, only sparse matrix multiplications are required. In
the first part of this work, we derive a canonical purification which respects the N -
representability conditions of the one-particle density matrix for both unperturbed and
perturbed electronic structure calculations. We show that this purification polynomial is
self-consistent and converges systematically to the right solution. As a second part of
this work, using a Hartree-Fock model, we apply the method to the computation of static
non-linear response tensors as measured in optical spectroscopy. Beyond the possibility
of achieving linear-scaling calculations, we demonstrate that the N -representability
conditions are a prerequisite to ensure reliability of the results.





Résumé

Le Chapitre 1 résume les postulats et notions de la mécanique quantique nécessaires à
l’introduction de la matrice densité à une particule comme variable fondamentale dans
la résolution des équations de champ moyen auto-cohérent (self-consistent field – SCF),
héritées de l’approximation mono-déterminantale de la fonction d’onde électronique. Nous
montrons qu’il est possible de contourner la résolution de l’équation de Schrödinger —qui
revient à résoudre un problème aux valeurs propres du type : HC − CE = 0, (H,C) ∈
RM×M , H = H t, CtC = CCt = I, E = diag{ϵ1ϵ2 · · · ϵM}— par la résolution directe de
l’équation de Liouville-von Neumann du type : HD −DH = 0, D ∈ RM×M , D = Dt,
Tr{D} = N , D2 = D, 0 < N < M , dont la seule variable est la matrice densité D. La
détermination de la matrice densité via les vecteurs et valeurs propres, respectivement C
et E, de la matrice hamiltonienne, H, est numériquement coûteuse puisqu’elle nécessite
une étape de diagonalisation. Les ressources de calcul nécessaires à la réalisation de
cette étape présentent une croissance à la puissance 3 par rapport à la complexité du
problème, cette dernière étant généralement définie par le nombre d’états occupés, N ,
ou le nombre d’atomes, ou encore la taille des matrices M . La détermination directe de
la matrice densité —sans passer par le calcul des états propres— peut être explicitée
sur la base d’un principe de minimisation —sous contrainte— de l’énergie du système,
qui dans le cadre de cette thèse, correspond à l’énergie Hartree-Fock. En se référant
aux procédures standards de minimisation lagrangienne, il est montré que les propriétés
d’idempotence et de conservation de la trace de la matrice densité sont nécessaires et
suffisantes pour garantir l’unicité de la solution. Ces propriétés sont regroupées sous le
terme générique de conditions de N -representabilité de la matrice densité à une particule.
Dans ce travail, tous les calculs sont réalisés sur la base de l’approche Hartree-Fock semi-
empirique de Pariser, Parr et Pople (PPP). Les techniques d’accélération de la procédure
SCF, notamment l’interpolation à paramètre constant (damping) et l’extrapolation par
inversion directe du sous-espace des itérations (direct inversion of the iterative subspace –
DIIS) sont également discutées. Un exemple d’application montre clairement les avantages
de la méthode DIIS.



xii

Le Chapitre 2 présente les méthodes les plus couramment utilisées pour la résolution
directe de la matrice densité. Elles peuvent être regroupées en deux familles : (i) les
méthodes de minimisation, et (ii) les méthodes de purification, chacune s’appuyant
partiellement sur les conditions de N -representabilité évoquées précédemment. Dans le
premier cas, le polynôme de purification de McWeeny dérive du principe de minimisation
des moindres carrés de la contrainte d’idempotence, couplé à un algorithme de descente
de gradient. Une alternative proposée par Li, Nunes et Vanderbilt (LNV) est basée sur
la minimisation de la fonctionnelle de l’énergie sous une contrainte faible d’idempotence,
couplée à un algorithme de gradient conjugué. Dans leur formulation grand canonique,
ces deux approches sont en mesure de garantir les conditions de N -representabilité si et
seulement si le potentiel chimique est connu à l’avance. En d’autres termes, les énergies
correspondant au dernier état occupé et premier état inoccupé doivent être déterminées
au préalable. Notons que pour un taux d’occupation, θ = N/M = 50%, le potentiel
chimique peut être évalué avec une certaine précision à partir des limites supérieure et
inférieure du spectre des valeurs propres. Une autre catégorie de purification, qualifiée de
canonique, est également présentée. Dans cet ensemble, il n’est plus nécessaire d’évaluer
les valeurs propres internes du spectre de l’hamiltonien. Néanmoins, leur application
implique de prendre en compte plusieurs facteurs de stabilité, ce qui peut limiter leur
efficacité et par conséquent, aussi complexifier les algorithmes de calcul. C’est dans ce
cadre qu’est développée la première originalité de notre travail : en introduisant une
méthode de purification canonique simple et robuste qui s’affranchit des considérations
heuristiques de ces prédécesseurs. Cette nouvelle variante est basée sur la reformulation
lagrangienne du principe de minimisation de l’idempotence de McWeeny en introduisant
une contrainte explicite sur la trace de la matrice densité de faible idempotence. De
cette façon, la méthode de purification est auto-cohérente —l’ajustement a posteriori
du pôlynome n’est plus nécessaire— et vérifie les conditions de N -représentabilité à
chaque itération. Dans le cadre de l’approximation des liaisons fortes, une étude détaillée
des différentes méthodes de purification canoniques est réalisée. Il est prouvé que les
performances de cette nouvelle approche sont comparables aux méthodes heuristiques tout
en montrant des propriétés intéressantes de convergence monotonique et variationnelle.
Toujours dans ce même chapitre, après avoir résumé les approximations permettant
l’application de l’algèbre linéaire creuse aux méthodes de minimisation et purification,
des calculs SCF-HF-PPP à croissance linéaire sont réalisés sur une série de nanotubes de
carbone. Les difficultés liées à l’application des méthodes de troncatures numérique et
radiale sont étudiées.
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Dans le Chapitre 3, une généralisation des méthodes de variation/perturbation de la
matrice densité à une particule est proposée, puis étendue à la résolution des équations
couplées-perturbées du champ auto-cohérent (coupled-perturbed self-consistent field –
CPSCF). Il en résulte trois approches : (i) la méthode standard basée sur la résolution
spectrale de la matrice de Fock qui sera considérée par la suite comme la référence, (ii)
l’approche proposée par Kussmann et Ochsenfeld basée sur les relations de commutations
généralisées et l’utilisation du gradient conjugué, et (iii) la méthode de Niklasson basée
sur le développement par récursion de l’opérateur de Fermi-Dirac perturbé. Dans le
cadre du troisième formalisme, deux méthodes de purification sont utilisées, dont notre
pôlynome canonique auto-cohérent. Il est à noter que pour les deux premières approches,
le calcul des fonctions de réponse d’ordre supérieur nécessite la connaissance des fonctions
de réponse associées aux ordres inférieurs, alors que dans les cas des purifications toutes
les matrices densités perturbées sont calculées simultanément. En d’autres termes, l’ordre
zéro (non-perturbé) et l’ordre supérieur (cible), ainsi que tous les ordres intermédiaires (si
nécessaires), sont déterminés au cours du même processus de purification. Pour toutes les
approches mentionnées la résolution des équations CPSCF est accélérée par l’algorithme
de la dérivée du DIIS (D-DIIS) introduit par Weber et Daul. En fin de chapitre, nous
généralisons cet algorithme pour n’importe quel ordre de perturbation.

Le Chapitre 4 est consacré à l’application des différentes méthodes de perturbation
de la matrice densité pour le calcul des fonctions de réponse électronique induites par
l’application d’un champ électrique externe et statique. Ces fonctions de réponse perme-
ttent, entre autres, de déterminer des grandeurs accessibles via des mesures d’optique
non-linéaire, comme la polarisabilité, et/ou la première et seconde hyperpolarisabilité.
Dans ce même chapitre, le principe des méthodes de différence de champ fini (finite field
difference – FFD) est résumé. Dans un premier temps, toutes les méthodes sont appliquées
aux calculs des propriétés optiques d’une série de petites molécules π-conjuguées en
utilisant l’approche CPSCF-HF-PPP. L’accord remarquable observé démontre la fiabilité
des différentes implémentations. Dans un deuxième temps, les calculs sont étendus à des
systèmes facilement réplicables tels que des hydrocarbures insaturés. L’erreur de chaque
méthode de perturbation basée sur la matrice densité (ii-iii) par rapport à la méthode de
référence (i) est évaluée en fonction de la taille du polymère. Les résultats démontrent
que la purification canonique est la seule à conserver une précision remarquable, et ce
quelque soit l’ordre de perturbation. Ce résultat, qui constitue la deuxième originalité de
ce travail, est directement relié au respect des précieuses conditions de N -representabilité
discutées dans les chapitres précédents. Toutefois il est à noter que pour les approches ne
vérifiant pas explicitement ces contraintes, l’erreur observée reste acceptable puisqu’elle
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ne dépasse pas 0.1 % de la valeur attendue. Dans un troisième temps, les performances
des différentes méthodes sont comparées grâce au décompte du nombre d’itérations
CPSCF réalisé pour le calcul des fonctions de réponse en considérant des polymères de
taille croissante. De cette comparaison, les approches perturbatives par purification se
montrent être les plus stables avec un nombre moyen d’une douzaine d’itérations. La
méthode basée sur le gradient conjugué requiert un nombre de cycles six fois plus élevé
pour atteindre le même degré de convergence. En termes de temps de calcul global les
méthodes perturbatives par purification sont les plus avantageuses. En analysant la
variation du temps de calcul en fonction de la taille du polymère, on observe clairement
que la méthodes de résolution des équations CPSCF basée uniquement sur la matrice
densité sont plus efficaces de près d’un ordre de grandeur. Dans une dernière partie,
l’étude précédente est répétée en applicant la troncature numérique. Les résultats obtenus
dans le régime de croissance linéaire sont très similaires à ceux de l’analyse précédente.
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Introduction

Sustained by the fast increase of investments in high performance computing technologies,
quantum mechanics accuracy, as found in standard electronic structure methods, is
about to reach the mesoscale within the next century. This implies the development of
advanced parallelized programs including adapted theoretical frameworks and efficient
numerical algorithms. At the same time, spectroscopies are improving in resolution and
increasing in complexity with respect to the size of the probed systems, causing new
difficulties for interpreting spectra, and new challenges for the theoreticians. There is no
doubt in the importance of probing structure of matter at the atomic scale to establish
clear relationships between the macroscopic properties and the atoms’ arrangement in a
sample. For that purpose, electromagnetic spectroscopies are banal experiments to obtain
molecular fingerprint in physico-chemical analyses. Beyond their standard use, when
we have no a priori knowledge on the system —but let’s say the chemical composition
for a material sample— analysis of the spectra may become tedious, or very difficult
when dealing with disordered, amorphous or soft matter. Even if spectrocospies are
continuously increasing their possibilities in resolution, support of theoretical prediction
remains of primary interest for spectrum assignment and structure elucidation. On this
way, the accuracy of the theoretical methods and the size of the investigated system
consitute interrelated bottlenecks that need to be addressed.

Accurate quantum methods based on the explicit resolution of the many-electron
Schrödinger equation, where dynamic and/or static electron correlation can selectively
be accounted for remain limited to a few dozens of atoms or less depending on the
level of theory. If now, we are willing to sacrifice accuracy in order to resolve electronic
structure for larger systems where the number of electrons is above a few hundreds,
single-determinant theories, such as Hartree-Fock[1] (HF) or Kohn-Sham (KS) density
functional theory[2] are, until now, the only relevant methods. In that case, the many-
electron Schrödinger equation is reduced to a mean-field one-electron equation, whose
variational solutions are obtained by solving an eigenvalue problem. As a result, solutions
are obtained by minimizing the electronic energy by means of the self-consistent field
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(SCF) procedure. Whatever the basis set used to expand the wave functions, SCF
methods have a common limitation on the size of the problem in such way that they
require calculation of the full or partial set of eigenstates of the Hamiltonian matrix
at each iteration of the SCF. The computational effort related to the direct/iterative
diagonalization techniques[3, 4] or state-by-state conjugate gradient (CG) algorithm,[5, 6]
increases with the cube of the number of electrons. Over the last two decades, alternative
methods which scale linearly with the size of the problem were proposed as solution
to these standard energy minimizations.[7–10] These methods are based on the Kohn’s
principle of electronic structure nearsightedness,[11, 12] which under certain conditions,
eg. non-vanishing electronic gap, shows an exponential decay of the density matrix (DM)
elements with respect to the distance.[13, 14] On exploiting this natural property, that is
by enforcing sparsity of the matrices using a truncation scheme, O(N) can be achieved
by replacing the diagonalization step with DM solvers along with sparse-matrix multiply
(SpMM) algorithms.[4, 15, 16]

Predictions of spectroscopic observables for molecules and solids rely on the solid
approximation that the strengths of the electromagnetic radiations are negligible with
respect to magnitude of the electron bonding allowing the safely use of the Rayleigh-
Schrödinger wave function perturbation theory to compute the electronic response at
any order. The first applications of this theory to SCF methods based on molecular-
orbital (MO) wave functions were introduced during the 60s for the computation of
molecular properties such as magnetic susceptibility,[17] static polarizabilities and force
constants,[18, 19] which are all related to second-order energy derivatives through the
calculation of the first-order change of the wavefunctions with respect to the small
perturbation. Similarly to the unperturbed case, variational solutions of the perturbed
MOs are obtained by solving the so-called coupled-perturbed self-consistent field (CPSCF)
equations.[20–22] These early developments based either on the perturbed MOs or mixed
perturbed AOs-MOs are well-known to involve cumbersome matrix transformations.[23,
24] In 1962, McWeeny had already introduced the elegant formalism of the density
matrix perturbation theory (DMPT),[25] which was extended to the CPSCF equations
resolution by Diercksen and McWeeny[26] for the evaluation of π-electron polarizabilities
using the Pariser-Parr-Pople model. This work has first inspired Moccia to generalize
the McW-CPSCF equations resolution to non-orthogonal basis.[27, 28] Perturbation-
dependent non-orthogonal basis implementation was then proposed by Dodds, McWeeny,
Sadlej and Wolinski[29–31] for the calculation of atomic (hyper)-polarizabilities using
HF method and gaussian-type orbitals. The advantages of the McWeeny’s approach
over MO/AO-CPSCF have been clearly outlined, for instance, in the seminal article of
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Wolinski, Hinton, and Pulay[32] dealing with the calculation of magnetic shieldings as
measured in nuclear magnetic resonance (NMR) spectroscopy.

All the methods mentioned above have in common two limitations which narrow
their applicability to few hundred atoms system at most, which are: (i) the unperturbed
eigenstates are required prior the evaluation of the perturbed quantities, (ii) CPSCF
equations resolution involves dense matrix multiplications which scale as M3. Considering
the specific case of AO/GTO basis, the construction of the effective Hamiltonian matrix

—and the corresponding derivatives— should also be considered as an additional rate-
limiting step, although robust linear scaling methods are nowadays well recognized.[33–36]
Disregarding by now this specific feature, linear scaling can be achieved only if the two
following conditions are fullfilled: (i) the theoretical framework involves the density
matrix as the unique variable, that is no wavefunctions enter anymore in the formalism,
(ii) perturbed density matrices must preserve some locality pattern allowing for SpMM
algebra. Whereas, to the authors knowledge, analytical demonstration of the former point
has not yet been proposed, raw numerical analysis have already shown that first-order
perturbed density matrices for insulating systems present an approximate exponential
decay of the elements[37, 38] which apply also, to a lesser extent, to higher orders.[39]
Current methods dealing with condition (i) are intrinsically related to the DM solver used
for the unperturbed case. Concerning the schemes, Ochsenfeld and Head-Gordon first
reformulated the CPSCF equations in terms of the density matrix only[37] (referred as
CG-CPSCF by the authors) starting from the Li-Nunes-Vanderbilt (LNV) unconstrained
energy functional[40] where the McWeeny purification polynomial[41, 42] is used as input
DM. Later, Kussmann and Ochsenfeld recognized important deficiencies in this initial
version which were corrected in the alternative derivation of Ref. [43, 44].

In this manuscript we present the necessary and sufficient materials for developing a
one-particle density matrix solver for electronic structure perturbation theory, especially
within the framework of single-determinant theory. Chapter 1 introduces the main
quantum mechanical fondations necessary to approach the density as the main variable.
Chapter 2 presents the current methods applied to solve for the density matrix. In
Chapter 3, a comprehensive description of the density matrix perturbation theory is
presented. In Chapter 4, a large set of numerical experiments are performed to compare
the various schemes.





Chapter 1

Density matrices and electronic
structure
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1.1 Density operator and stationary condition

We shall start from an ensemble of particles within some external potential. From
quantum mechanics first postulate, information on this ensemble —eg. positions and
momenta— is completely specified by a mathematical object: the wavefunction Ψ, which
relates the probability amplitude of finding the system in a state —usually symbolized by
the ket |Ψ⟩— to its physical observation. The physical observation can only be realized
through the scope of an operator Ô, for which, when applied to |Ψ⟩ and integrated over
the space of the possibilities, results in the most probable value, that is, the expectation
value of the observable (operator). Obviously, depending on what we want to observe,
the operator is chosen accordingly. Whatever is this observable, at the end, the process
is always the same, that is, bring |Ψ⟩ to the space specified by the operator, ie. |ÔΨ⟩,
and integrate over that space, ⟨Ψ|ÔΨ⟩. The time evolution of the ket is governed by the
time-dependent Schrödinger equation[45]

iℏ
∂ |Ψ(t)⟩
∂t

= Ĥ(t) |Ψ(t)⟩ (1.1)

where Ĥ is the Hamiltonian operator which describes the energy of the system. For
an unperturbed and closed system, where the Hamiltonian operator does not depend
explicitely on time, the time dependence of the wave function can be separated assuming

|Ψ(t)⟩ = e−iĤt/ℏ |Ψ⟩ (1.2)

The expectation value of the time-independent Hamiltonian, ie. the energy E , is then
given by

E = ⟨Ψ(t)|Ĥ|Ψ(t)⟩
⟨Ψ(t)|Ψ(t)⟩ = ⟨Ψ|Ĥ|Ψ⟩

⟨Ψ|Ψ⟩ (1.3)

where the second equality emphasizes that E is independent on the time, that is, the
eigenstate {E ,Ψ} is stationary. Given a properly normalized state,

⟨Ψ|Ψ⟩ = 1 (1.4)

evaluating E from the definition of Eq. (1.3), requires to solve an eigenvalue problem:
the time-independent Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ (1.5)
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Let us now introduce another object, the density operator, which from a mathematical
point of view represents an (orthogonal) projection from a vector space to the same
vector space. The density operator is defined according to

D̂ := |Ψ⟩ ⟨Ψ| (1.6)

such that, from the above definition and the normalization condition (1.4), D̂ verifies the
following properties:

hermicity: D̂ = D̂†

idempotency: D̂2 = D̂
normalization: Tr{D̂} = 1

(1.7a)
(1.7b)
(1.7c)

For the last equality, we made use of the property of the projection operators: the trace
of the projection matrix is equal to the inner product of its constitutive eigenvectors.
From here, we can search for the equation of motion of D̂ retaining the Schrödinger
picture of Eq. (1.1). This gives rise to the Liouville-von Neumann equation[46]

iℏ
∂D̂(t)
∂t

=
[
Ĥ(t), D̂(t)

]
(1.8)

where [·, ·] denotes a commutator. Again, if we consider a conservative system, the
solution of Eq. (1.8) is found to be

D̂(t) = e−iĤt/ℏ D̂ eiĤt/ℏ (1.9)

In that case, the stationary condition (1.5) can be recast in an operator form, according
to

ĤD̂ = D̂Ĥ (1.10)

We may call it the time-independent Liouville-von Neumann equation. On multipying
on the left (or on the right) by D̂ and assuming that conditions (1.7) are respected, we
obtain

D̂ĤD̂ = D̂2Ĥ ⇔ ĤD̂2 = D̂ĤD̂
|Ψ⟩ E ⟨Ψ| = D̂Ĥ ⇔ ĤD̂ = |Ψ⟩ E ⟨Ψ|
E = Tr{D̂Ĥ} ⇔ Tr{ĤD̂} = E

(1.11a)
(1.11b)
(1.11c)

where me made explicit the evaluation of the energy of the stationary state. Therefore,
we found that the expectation value of Ĥ does not necessarily require to resolve the
Schrödinger equation (1.5). An alternative route is offered by the calculation of the
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matrix representation of the density operator. It is worth noticing that there is a
one-to-one correspondence between (E ,Ψ) and (Ĥ, D̂) such that, for non-degenerate
cases, the unique solution of the Schrödinger equation leads to a unique definition of
the density operator. This remark can, in principle, be extended to the calculation of
(time-dependent/independent) properties based on Rayleigh-Schrödinger perturbation
theory.

If associated with |Ψ⟩ we defined an (abstract) vector space as being a separable
Hilbert space of elements {|ui⟩}∞

i=1, such that, ⟨ui|uj⟩ = δij , the ket is expanded into this
basis according to

|Ψ⟩ =
∑

i

⟨ui|Ψ⟩ |ui⟩ (1.12)

On inserting the above definition into Eq. (1.6), the density operator transforms to

D̂ =
∑
i,j

⟨ui|Ψ⟩ |ui⟩ ⟨uj| ⟨Ψ|uj⟩

=
∑
i,j

|ui⟩ ⟨ui|Ψ⟩ ⟨Ψ|uj⟩ ⟨uj|

=
∑
i,j

|ui⟩Dij ⟨uj|

with: Dij := ⟨ui|D̂|uj⟩

(1.13a)

(1.13b)

(1.13c)

(1.13d)

As a result, D̂ can be expressed as a superposition of basis projectors. In that case, it is
easy to show that the definition (1.13c) also verifies the properties (1.7), the trace of the
density operator being defined by

Tr{D̂} =
∑

i

Dii (1.14)

If now, instead of enforcing the system to be described by a single pure state, we allow for
a statistical description. On introducing a probability distribution over all the possible
pure states, the ensemble (S ) density operator turns to be

D̂S :=
∑

i

pi |ΨS
i ⟩ ⟨ΨS

i |

subject to:
pi ≥ 0∑

i

pi = 1

(1.15a)

(1.15b)
(1.15c)
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where pi is the probability of the system being found in the microstate |ΨS
i ⟩. Depending

on the statistical ensemble, eg. canonical (S = NVT ) or grand canonical (S = µVT ),
the particle number of each |ΨS

i ⟩ may vary. Within the NVT ensemble, subject to
the constraints of Eq. (1.15) we can show that D̂S verifies the hermiticity and the
normalization conditions of Eq. (1.7), whereas idempotency is lost. This observation
allows to distinguish a mixed state from a pure state. By induction, we can state that a
pure state is well-defined within the microcanonical ensemble (S = NVE) at T = 0.

1.2 Density matrix for fermion systems

1.2.1 Generalities

In this work, we are mainly interested in computing the energy of an ensemble of N
electrons within the external potential created by K nuclei, and latter in the manuscript,
its variation(s) with respect to some external perturbation(s). Since electrons are fermions,
we must insure that the ket |Ψ⟩ —as defined in some vector space– respects the anti-
symmetry principle. As a consequence, the space of representation of |Ψ⟩ is reduced to
the anti-symmetric Hilbert space, such that, given the state vectors {|ui⟩}∞

i=1 allowing to
define the N–particle symmetric state,

|u1u2 · · ·uN) := |u1⟩ |u2⟩ · · · |uN⟩ (1.16)

any of the N -particle anti-symmetric state is obtained from the following definition:

|u1u2 · · ·uN⟩ := A |u1u2 · · ·uN)

with: A := 1√
N !

∑
p∈SN

(−1)pPp

(1.17)

where A is the anti-symmetrization operator, P is the permutation operator of two
particles, and (−1)p relates the parity of the permutation.1 It is customary in chemistry
to solve the time-independent Schrödinger equation [Eq. (1.5)] —or the time-independent
Liouville-von Neumann [Eq. (1.10)]— within the position–spin space. In that context,
the N–particle wavefunction is expressed in an abstract basis of continuous position

1For for the ensemble of N particles, there exist N ! possible permutations p, which constitute the
elements of the (symmetric) group of permutation SN . As a result, we can show that: A = A † and A 2

=
√

N !A .
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vectors, according to
Ψ(x1x2 · · ·xN) = ⟨x1x2 · · ·xN |A |Ψ⟩ (1.18)

where {|xi⟩ := |ri, σi⟩} stands for the space and spin coordinates. In this new vector
space, the matrix representation of the density operator as given in Eq. (1.13c) reads

D(x1x2 · · ·xN ,x′
1x′

2 · · ·x′
N) = Ψ(x1x2 · · ·xN)Ψ∗(x′

1x′
2 · · ·x′

N) (1.19)

Note that by using Eq. (1.18) and the resolution of identity in a continuous basis,

∫
dx |x⟩ ⟨x| = I (1.20)

where
∫
dx :=

∫ ∫
drdσ, we can easily demonstrate that the hermiticity and imdempotency

properties still hold for the density matrix defined in Eq. (1.19). Looking especially to
the trace, we obtain

Tr{D(x1 · · ·xN ,x′
1 · · ·x′

N)}

=
∫
dx1 · · · dxN D(x1 · · ·xN ,x1 · · ·xN)

=
∫
dx1 · · · dxN Ψ(x1 · · ·xN)Ψ∗(x1 · · ·xN)

(1.21a)

(1.21b)

On multiplying Eq. (1.19) by infinitesimal space-spin elements centered on each particle
coordinate, keeping only the diagonal elements,

D(x1x2 · · ·xN ,x1x2 · · ·xN) dx1dx2 · · · dxN (1.22)

we obtain the probability of an electron is in the space-spin volume element dx1 located
at x1 with spin state s1, while simultaneously another electron is in dx2 at x2 with spin
state s2 and so on.

1.2.2 Reduced density matrices

Since one- and two-electron operators are necessary to fully describe the electronic
Hamiltonian, the generalized expression of Eq. (1.19) describing the so-called Nth–order
density matrix can be reduced following the reduced density matrix theory. For the
second–order reduced density matrix D2 this gives

D2(x1x2,x′
1x′

2) := N(N − 1)
2

∫
dx3 · · · dxN D(x1x2 · · ·xN ,x′

1x′
2 · · ·xN) (1.23)
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and for the first–order density matrix D1,

D1(x1,x′
1) := N

∫
dx2 · · · dxN D(x1x2 · · ·xN ,x′

1x2 · · ·xN) (1.24)

It is worth to emphasize that D2 fully determines D1. This is apparent by noting that

D1(x1,x′
1) = 2

N − 1

∫
dx2 D2(x1x2,x′

1x2) (1.25)

From the above definitions, we found that the trace of the second–order density matrix
leads to the number of particle pairs,

Tr{D2(x1x2,x′
2x′

2)} =
∫
dx1dx2 D2(x1x2,x1x2) = N(N − 1)

2 (1.26)

whereas, the first–order density matrix is normalized to the number of particles

Tr{D1(x1,x′
1)} =

∫
dx1 D1(x1,x1) = N (1.27)

Indeed by integrating out the spin variable, the diagonal of D1 is recognized as the
one-electron density function, —usually identified as ρ(r)—, that is, the probability of
finding one electron in dr at position r assuming that the others are anywhere else, the
indistinguishability of the fermions being properly accounted for in Eq. (1.27). In this
work, we have reduced the scope of our investigations to closed-shell systems where
the total (electron) spin momentum is zero. Thereafter, we shall integrate out the spin
variables. Within the context of continuous reduced density matrices, the expectation
values of any one-particle (Ô1) and two-particle (Ô2) operators are given by

Tr{O1D} =
∫ ∫

dr1dr′
1 O1(r1, r′

1)D1(r′
1, r1)

Tr{O2D} =
∫ ∫

dr1dr2 dr′
1dr′

2 O2(r1r2, r′
1r′

2)D2(r′
1r′

2, r1r2)

(1.28)

(1.29)

If we assume that those operators are local, ie.

O1(r1, r′
1) = O1(r1)δ(r1 − r′

1)
O2(r1r2, r′

1r′
2) = O2(r1r2)δ(r1 − r′

1)δ(r2 − r′
2)

(1.30)
(1.31)
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Eqs. (1.28) and (1.29) simplify to

Tr{O1D}r1=r′
1

=
∫
dr1 O1(r1)D1(r1, r1)

Tr{O2D}r1=r′
1,r2=r′

2
=
∫
dr1dr2 O2(r1r2)D2(r1r2, r1r2)

(1.32)

(1.33)

The non-relativistic time-independent Hamiltonian operator for an ensemble of N
fermions within the external potential (Vext) created by K nuclei —considered fixed
in positions {RA}K

A=1 with charges {ZA}K
A=1 — can be expressed as the sum over the

electron kinetic energy operator (T̂ ), the electron-electron Coulomb interaction (Ĝ), and
the aforementioned external potential

Ĥ := T̂ + V̂ext + Ĝ (1.34)

with the following explicit definitions2

T̂ = −1
2
∑

i

∇2
i , Ĝ =

∑
i<j

1
|ri − rj|

and
V̂ext =

∑
i

v(ri) with: v(ri) = −
∑
A

ZA

|ri −RA|
(1.35)

where i runs over the electrons, (i < j) the electron pairs, and A the nuclei. By recognizing
that T̂ and V̂ext are one-electron operators, and Ĝ is a two-electron operator, in virtue of
Eqs. (1.32) and (1.32), the electronic energy is given by

E [D2] = T [D1] + Vext [D1] +G [D2] (1.36)

according to the following definitions

T [D1] := Tr{T̂D} =
∫
dr1 δ(r1 − r′

1)
(
−1

2∇
2
r

)
D1(r1, r′

1)

Vext [D1] := Tr{V̂extD} =
∫
dr1 v(r1)D1(r1, r1)

G [D2] := Tr{ĜD} =
∫
dr1dr2

D2(r1r2, r1r2)
|r1 − r2|

(1.37)

(1.38)

(1.39)

2In atomic units: ℏ = me = e = 1, where ℏ, me and e are the reduced Planck constant, the electron
mass and elementary charge, respectively.
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where, for the kinetic energy component, we made explicit the fact that, first, the Laplacien
is applied to D1(r1, r′

1), and then, integration over space coordinate is performed for
r′ = r. The square braket [·] in Eqs. (1.37)-(1.39) indicates the functional dependence
of the energy contribution over the density matrix. As previously noted, since D1 is
determined by D2, it is necessary and sufficient to know the second–order reduced density
matrix. Starting from an initial guess for D2 without any prior knowledge of the electronic
wavefunction, and solving a variational principle related to Eq. (1.36) in order to evalute
the energy of an ensemble of interacting electrons is an extraordinarily difficult task
that we leave to the specialists of the reduced density matrix theory (RDMT).[47–52]
At this stage, it is important to note that the RDMT embrasses, at some point, the
formalism of the (orbital-free) density functional theory[2, 53–56] (DFT) and Kohn-Sham
DFT (KS-DFT),[57] in the sense where, for a given Vext[D1], both of them are trying
to approximate T [D1] and G [D2] —in terms of D1(r1, r1) for DFT and D1(r1, r′

1) for
KS-DFT—, without requiring the support of Ψ, which is also a tedious challenge.

Interestingly for our work, addressing the difficulties mentioned aboved involved
introducing a set of constraints which must be fullfiled during the search of the solution
to guarantee that, at convergence, the density matrix corresponds to an acceptable
anti-symmetrized wavefunction. These constraints are called the N–representability
conditions[58–60] for RDMT, in addition to the v–representability conditions,[2, 61, 62]
a specificity of the DFT.

1.2.3 Density matrix for a single determinant

Let us now consider a more standard Hilbert space built from a discrete set of square
integrable functions {|ψi⟩}∞

i=1, such that, ψi(r) = ⟨r|ψi⟩ and ⟨ψi|ψj⟩ = δij. If we impose
that the N–wavefuntion is approximated by a single anti-symmetrized product [Eq. (1.17)]

—also called a Slater determinant— of a subset of these functions, that is {|ψi⟩}N
i=1, the

first-order density matrix in the coordinate representation, reads

D1(r1, r′
1) =

N∑
i=1

ψi(r1)ψ∗
i (r′

1) (1.40)

We can show that there exists a one-to-one mapping between D1 and a single anti-
symmetrized product of the form (1.17). As a consequence of the density operator
properties: (i) the trace of D1 is equal to the number of electrons [Eq. (1.27)] and (ii) D1

is idempotent, ie.
∫
dr′′ D1(r, r′′)D1(r′′, r′) = D1(r, r′), constitute necessary and sufficient

conditions for the first-order density matrix to correspond to a pure state approximated
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by a single Slater determinant.[2] In that context, the second-order density matrix can
be defined in terms of D1 according to

D2(r1r2, r′
2r′

2) = 1
2 (D1(r1, r′

1)D1(r2, r′
2)−D1(r1, r′

2)D1(r2, r′
1)) (1.41)

On introducing the Eqs. (1.26) and (1.41) into Eq. (1.36), we obtain the definition of the
Hartree-Fock (HF) energy expressed in density matrix form:

EHF [D1] := T [D1] + Vext [D1] +G [D1]
with: G [D1] := J [D1] +K [D1]

(1.42)

such that,
J [D1] := +1

2

∫
dr1dr2

D1(r1, r1)D1(r2, r2)
|r1 − r2|

K [D1] := −1
2

∫
dr1dr2

D1(r1, r2)D1(r2, r1)
|r1 − r2|

(1.43)

(1.44)

where the electron-electron energy is a sum over the classical Coulomb repulsion J , and
the quantum exchange energy K arising from the anti-symmetry principle of Eq. (1.17).
In textbooks it is also common to find the following condensed expression for the
Hartree-Fock energy,3

EHF [ρ(r, r′)] =
∫

r=r′
dr
(
−1

2∇
2 + v(r)

)
ρ(r, r′) + 1

2

∫
drdr′

(
ρ(r)ρ(r′)
|r− r′|

− ρ(r, r′)ρ(r′, r)
|r− r′|

)

(1.45)

1.2.4 Density matrix representation in finite non-orthogonal
basis

Practical calculation of the HF energy and other properties requires a closed and separable
Hilbert subspace, although the accuracy of result is closely linked with the dimension
of such space through the variational principle. In chemistry, it is rather natural to use
local atomic orbitals (AO) to describe chemical bonds in molecules. When properly
parametrized, these orbitals permit to reach a high level of accuracy with a limited set of
variational parameters. Unfortunatly, these orbitals form a non-orthogonal basis for the
representation of the operators, increasing the computational complexity.

3 Using the following substitutions: ρ(r) := D1(r, r) and ρ(r, r′) := D1(r, r′).
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Let us introduce a set of M non-orthogonal atomic-like basis functions {|ϕµ⟩}M
µ=1

to expand the one-electron states4 {|ψa⟩}M
a=1 —the sp-called molecular orbitals (MO).

According to Eq. (1.12), we have

|ψa⟩ =
M∑

µ=1
⟨ϕµ|ψa⟩ |ψa⟩ (1.46)

which, in coordinate representation, transforms to

⟨r|ψa⟩ =
∑

µ

⟨ϕµ|ψa⟩ ⟨r|ϕµ⟩ ⇔ ψa(r) =
∑

µ

cµaϕµ(r) (1.47)

where the inner products, {⟨ϕµ|ψa⟩}µ, are generally identified as the linear combination
of atomic orbital (LCAO) coefficients cµaµ. These coefficients constitute the set of
variational parameters to be optimized. By making use of Eqs. (1.13c) and (1.40), we
obtain for the one-particle density operator the following expression

D̂ :=
∑
µ,ν

|µ⟩Dµν ⟨ν| , with: Dµν :=
N∑

i=1
cµic

∗
νi (1.48)

where i runs over the N occupied states, that is, in restricted Hartree-Fock theory:
N = N/2. The set of elements {Dµν} constitutes the HF one-particule density matrix in
the atomic orbitals basis. In coordinate representation Eq. (1.48) transforms to

D(r, r′) := ⟨r|D̂|r′⟩ =
∑
µ,ν

ϕµ(r)Dµνϕν(r′) (1.49)

Note in passing, for such kind of basis set we need to introduce the overlap matrix S to
respect the idempotency relation, ie.

D(r, r′) =
∫
dr′′dr′′′ D(r, r′′)S(r′′, r′′′)D(r′′′, r′) (1.50)

For a properly normalized basis, the elements of the S matrix are determined by

Sµν = ⟨µ|ν⟩ =
∫
dr ϕ∗

µ(r−Rµ)ϕν(r−Rν)
 Sµµ = 1

0 < |Sµν | < 1

∣∣∣∣∣∣ Tr{S} = M


(1.51)

4Greek indices refer to atomic orbitals, whereas Roman indices refer to molecular orbitals.
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In order to make the link between the density matrix formalism described above and
programming, we shall recast Eq. (1.48) using a more suitable form. Assuming that
we already know the LCAO coefficients for each |ψa⟩, we generally defined a coefficient
matrix, in our case C ∈ RM×M , using the format described below:

C ≡



· · · · · ·

ψ1 ψNψN+1 ψM

occupied unoccupied

(1.52)

where C collects the M coefficients (sorted in column) of the M eigenvectors (sorted in
row). Consequently, the one-particle density matrix is expressed as

D = COC† (1.53)

where O is the matrix of the particle occupation numbers,

O := diag{IN , 0N̄} ≡





occupied
1 0

0...

0 1

0
0 0

unocuppied...

0 0

(1.54)

with N̄ the number of unoccupied states, such that: M = N + N̄ . Conversely, one can
also define the one-hole density matrix built from the set of unoccupied eigenstates. By
analogy with Eq. (1.53), this yields to introduce

D̄ = CŌC† (1.55)



1.3 Restricted Hartree-Fock energy 17

where Ō is the matrix of the hole occupation numbers,

Ō := diag{0N , IN̄} ≡





occupied
0 0

0...

0 0

0
1 0

unocuppied...

0 1

(1.56)

It is worth to emphasize that O and Ō are the matrix representations of the one-particle
and one-hole density operator, respectively, in the molecular orbitals basis. Using this
representation, the idempotency property of Eq. (1.50) writes:

D = DSD = COC†SCOC†

subject to: C†SC = I

(1.57)

1.3 Restricted Hartree-Fock energy

In restricted Hartree-Fock (RHF) theory applied to closed-shell systems, the electronic
energy of Eq. (1.42) can be recast in the following form

EHF = Tr{D(2h+G)}
= Tr{D(h+ F )}

(1.58)
(1.59)

with h and G the one-electron and two-electron contributions. In Eq. (1.59) we have
expressed the HF energy in terms of the Fock matrix, F := h + G (cf. Section 1.5).
The matrix elements of the one-particle Hamiltonian (also called the core hamiltonian),
within the AO basis, are defined according to

hµν = ⟨µ|ĥ|ν⟩

with: ĥ = −1
2∇

2 −
K∑

A=1

ZA

|r−RA|

(1.60a)

(1.60b)
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where we recognize the kinetic energy operator and the external potential created by the
K nuclei, respectively. The matrix elements of G are given by:

Gµν = ⟨µ|V̂HF|ν⟩

with: V̂HF =
∑
η,κ

Dηκ

[
2
∫
dr2

ϕ∗
η(r2)ϕκ(r2)
|r1 − r2|

−
∫
dr2

ϕ∗
η(r2)P12ϕκ(r2)
|r1 − r2|

] (1.61a)

(1.61b)

where P12 is the 12-permutation operator5 already introduced in Eq. (1.17). The first
and second term in Eq. (1.61b) are easily recognized as the Coulomb and exchange
operators:

Ĵ :=
∑
η,κ

∫
dr2

ϕ∗
η(r2)Dηκϕκ(r2)
|r1 − r2|

K̂ :=
∑
η,κ

∫
dr2

ϕ∗
η(r2)DηκP12ϕκ(r2)

|r1 − r2|

(1.62a)

(1.62b)

such that:
V̂HF = 2Ĵ − K̂

We emphasize that the Coulomb operator of Eq. (1.62a) can be re-written in terms of
the one-particle electron density ρ(r), according to

2Ĵ =
∫
dr2

ρ(r2)
|r1 − r2|

with: ρ(r) = 2
∑
η,κ

Dηκϕ
∗
η(r)ϕκ(r)

(1.63a)

(1.63b)

If we look for expressions of G matrix elements, by inserting Eqs. (1.62a) and (1.62b)
into Eq. (1.61b), we obtain:

Gµν = 2Jµν −Kµν

with:

Jµν = ⟨µ|Ĵ |ν⟩ =
∑
η,κ

∫ ∫
dr1 dr2

ϕ∗
µ(r1)ϕ∗

η(r2)Dηκϕκ(r2)ϕν(r1)
|r1 − r2|

Kµν = ⟨µ|K̂|ν⟩ =
∑
η,κ

∫ ∫
dr1 dr2

ϕ∗
µ(r1)ϕ∗

η(r2)Dηκϕκ(r1)ϕν(r2)
|r1 − r2|

(1.64a)

(1.64b)

We shall introduce some of the commonly used notations in Chemistry for the matrix
elements of the Coulomb and exchange operators. They are expressed in terms of the

5The permutation operator interchanges the coordinate of two electrons. When applied to the right
of the atomic orbitals product, this gives: P12ϕµ(r2)ϕν(r1) = ϕµ(r1)ϕν(r2).
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electron repulsion integrals (ERI). Following the Chemists’ notation, the formal expression
of an ERI is given according to

(µν|ηκ) :=
∫ ∫

dr1 dr2
ϕ∗

µ(r1)ϕν(r1)ϕ∗
η(r2)ϕκ(r2)

|r1 − r2|
(1.65)

where the coordinate of the electron 1 and 2 appear side by side with respect to the
vertical bar in (µν|ηκ). If we identify Eq. (1.65) to be the Coulomb integral as found in
Eq. (1.64a), the exchange integral appearing in Eq. (1.64b) writes

(µκ|ην) :=
∫ ∫

dr1 dr2
ϕ∗

µ(r1)ϕκ(r1)ϕ∗
η(r2)ϕν(r2)

|r1 − r2|
(1.66)

As a result, the G matrix elements are defined according to

Gµν =
∑
η,κ

Dηκ [2(µν|ηκ)− (µκ|ην)] (1.67)

On including the one-electron Hamiltonian in Eq. (1.67), we obtain the following expres-
sion for the Fock matrix elements:

Fµν = hµν +
∑
η,κ

Dηκ [2(µν|ηκ)− (µκ|ην)] (1.68)

We shall briefly review other commonly found definitions of the electronic energy since it
can be confusing in literature. From Eq. (1.58), the RHF energy can be alternatively
expressed as

E = Tr{D(2H +G)} = 2Tr{D(H + 1
2G)} (1.69)

By introducing the bond-order matrix, P := 2D, we may write

E = Tr{P (H + 1
2G)} = 1

2Tr{P (H + F )}

with: Gµν =
∑
η,κ

Pηκ

(
(µν|ηκ)− 1

2(µκ|ην)
) (1.70a)

(1.70b)

If we briefly review this Section, we observed that the construction for the Fock
matrix can be a serious bottleneck for large scale calculations. Since the AOs extend
over the whole molecule, the amount of information in each AO is proportional to N .[63]
Based on a naive analysis of Eqs. (1.60a), (1.64a) and (1.64b), we found that building
the one-core Hamiltonian involved integrating the product of two AOs scales as O(N2).
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While with the product of four AOs, the Coulomb and the exchange matrices scale as
O(N4). Therefore, the cost of the Fock matrix construction is basically O(N4). For large
molecular systems, relying on some distance criteria, the scaling can be reduced to reach
asymptotically N2. In order to calculate the Coulomb and exchange integrals in full
linear scaling, specific numerical techniques for GTOs have been developped,[64, 8] such
as the continuous fast multipole method[33] for the Coulomb integrals, and the LinK
method[36, 65] for the exchange integrals.

1.4 Pariser-Parr-Pople method

The entire implementation and all the applications performed during this thesis were based
on a semi-empirical method derived for the calculation of energetics and properties of π-
conjugated systems. In regard to the all-electron HF approaches based on non-orthogonal
extended local basis sets, this choice permits to focus our efforts mainly on algorithmic
developments related to the density matrix solvers, the computational ressources used for
evaluating the matrices being negligeable in that case. It has also the merit to overcome
the intricacies encountered when trying to modify some of the routines found in standard
quantum chemistry packages. Using such kind of simplified HF model, we were able to
performed a fast and fair comparison between various methods, while making sure that
coding was optimized for all of them. For these reasons, we have considered the most
simple semi–empirical HF model, the Pariser-Parr-Pople method[66–68] (PPP), which
was originally developed for treating conjugated hydrocarbons.

1.4.1 Zero-differential-overlap approximation

For atomic-like basis functions centered on atoms, ie. which are explicilty dependent on
the nucleus coordinates, such as Slater-type orbital (STO) or Gaussian-type orbitals
(GTO) —commonly used in quantum chemistry—, the ERI of Eq. (1.65) explicitly writes
as: ∫ ∫

dr1 dr2
ϕ∗

µ(r1 −Rµ)ϕν(r1 −Rν)ϕ∗
η(r2 −Rη)ϕκ(r2 −Rκ)

|r1 − r2|
(1.71)

where {Rµ,Rν ,Rη,Rκ} are the nucleus Cartesian coordinates. The zero-differential-
overlap (ZDO) approximation consists in neglecting ERIs containing product ϕµ(r1 −
Rµ)ϕν(r1 − Rν) where µ ̸= ν, ie. ERIs are assumed to be zero for pair-densities not
centered on the same nucleus. Put in other words,

(µν|ηκ) = (µµ|ηη) δµνδηκ (1.72)
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with6

(µµ|ηη) ≡
∫ ∫

dr1 dr2
|ϕµ(r1 −Rµ)|2 |ϕη(r2 −Rη)|2

|r1 − r2|
(1.73)

Note that the Kronecker functions in Eq. (1.72), implies that the basis set is orthonormal,
such that:

⟨µ|ν⟩

 1 if µ = ν

0 if µ ̸= ν
(1.74)

On introducing Eq. (1.72) into (1.68), we obtain:

Fµν = hµν +
∑
η,κ

Dηκ [2(µµ|ηη)δµνδηκ − (µµ|ηη)δµκδην ] (1.75)

which, without loss of generality, simplifies to

Fµν = hµν + 2
∑

η

Dηη(µµ|ηη)δµν −
∑
η,κ

Dνν(µµ|ηη)δµκδην

for: µ = ν

Fµµ = hµµ + 2
∑

ν

Dνν(µν|µν)−Dµµ(µµ|µµ)

for: µ ̸= ν

Fµν = hµν −Dνµ(µν|µν)

(1.76a)

(1.76b)

(1.76c)

In literature, we identify:
Γµµ := (µµ|µµ)
Γµν := (µν|µν)

which are the one-center integral corresponding to an energy constant, and the two-
electron repulsion integral which is parametrized with respect to a set of internal geometric
parameters. As a result, the ZDO approach greatly simplifies the problem at the cost of
a parametrization, which reduces the ab initio character of the Hartree-Fock method.

1.4.2 Pariser-Parr-Pople model parameterization

Several parameterizations of the PPP model can be found in literature.[69–72] In this
work we haved used the Ohno’s parameterization[70] using standard parameters[73, 74]
collected in Table {1.1}. HF-PPP self-consistent field (SCF) calculation (vide infra) is
initiated after a first tight-binding (TB) calculation. The TB matrix elements are the
on-site energy tµµ, and the hopping term tµν which is assigned with respect to the C−C

6Note that: (µµ|ηη)δµνδηκ = (νν|ηη)δµνδηκ = (νν|κκ)δµνδηκ = (µµ|κκ)δµνδηκ
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TB PPP core Hamiltonian
on-site tµµ = 0 Γµµ = 11.130 hµµ = tµµ −

∑
ν ̸=µ

Γµν

off-site tµν =
−2.568 if rµν ≤ Rd

0 else
Γµν = Γµµ√

1+( rµν
1.2786)2

hµν = tµν

Table 1.1 Ohno parametrization. tµµ and tµν are the on-site and off-site energy terms (in
eV). tµν is assigned with respect to a distance criteria Rd.

distance of the first nearest neighbour(s). Then, the electron-nuclei interaction is added
to the TB part in order to give the final one-electron Hamiltonian matrix elements hµν .
In the Table {1.1}, the electron-nuclei interaction is the second term in hµµ. Finally, the
two-electron contribution is constructed with the density matrix and the elements Γµµ

and Γµν , which added to the core Hamiltonian, leads to the Fock matrix elements of
Eq. (1.76).

1.5 Minimization of the Hartree-Fock energy

Let us consider a Hamiltonian Ĥ in an infinite dimensional Hilbert space, and let us
assume that we know the eigenstates SH := {E , |Ψ⟩}. In quantum mechanics, the
variational principle tells us that for any eigenstate, |Ψ⟩ ∈ SH, the expectation value
is an upper bound of the exact ground state energy E0 associated with the ket |Ψ0⟩,
ie. ⟨Ψ|ĤΨ⟩ := E [Ψ] ≥ E0 =: ⟨Ψ0|ĤΨ0⟩. Interestingly for practical calculations, this
principle can be extended to any approximate state |Ψ̃⟩ in a subspace of SH. For instance,
within the Hartree-Fock approximation, we shall have:

E [Ψ̃HF] ≥ EHF > E0 (1.78)

where EHF [cf. Section 1.2.3] is the exact energy of a single antisymmetrized product
of one-electron functions, ie. ΨHF, expanded over a finite basis. As a consequence, the
variational principle is the basis for the minimization principle which aims to find the
best approximate wavefunction for the ground state verifying Eq. (1.78). We can easily
establish a constrained minimization principle from the first inequality7 of Eq. (1.78) and

7This is also clearly apparent from Eq. (1.3).
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the normalization condition (1.4), according to

min
ΨHF

{
⟨ΨHF|ĤΨHF⟩ | ⟨ΨHF|ΨHF⟩ = 1

}
(1.79)

This kind of constrained minimization problem can be solved by using the Lagrange
multiplier technique. On introducing the wavefunction-based Hartree-Fock Lagrangian,

LHF[ΨHF] := ⟨ΨHF|ĤΨHF⟩ − EHF (⟨ΨHF|ΨHF⟩ − 1) (1.80)

where the Hartree-Fock energy EHF is recognized as the Lagrange multiplier. Basic calculus
of variations applied to this equation leads to the analogue of the time-independent
Schrödinger (1.5) in matrix form [cf. Section 1.2.4]. Instead, we may choose an alternative
route for solving this problem using the time-independent Liouville-von Neumann equation
(1.11c) along with matrix algebra. Nevertheless, in that case, we have to define necessary
and sufficient conditions in order to derive a minimization principle based uniquely on
DHF := |ΨHF⟩ ⟨ΨHF|, which leads to analogue of Eq. (1.79) and ensures the uniqueness
of the solution. These conditions are the N -representability conditions for a pure state
introduced in Section 1.2.3. As a result, we can introduce the following minimization
principle in matrix form:

min
DHF

{
Tr{ĤDHF} | Tr{D2

HF} = Tr{DHF}, Tr{DHF} = 1
}

(1.81)

which translates to density matrix-based Hartree-Fock Lagrangian, according to

LHF[DHF] := Tr{ĤDHF} −
(
Tr{Γ(D2

HF −DHF)}+ γ(Tr{DHF} − 1)
)

(1.82)

where Γ (∈ RM×M) and γ (∈ R) are Lagrange multipliers. Since the HF energy is a
functional of the one-particle density matrix only [cf. Eqs. (1.42) and (1.45)], from the
expression (1.69) and assuming an orthonormal basis set (S = I), Eq. (1.82) reduces to

LHF[D] := 2Tr{D(h+ 1
2G(D))} − 2

(
Tr{Λ(D2 −D)}+ µ(Tr{D} −N)

)
(1.83)

where the matrix of Lagrange multipliers Λ and the scalar µ have been introduced to
constrained idempotency and trace conservation, respectively. From here, we shall search
for minimizing such functional with respect to D. This yields to solve:

∇LHF[D] = 2(h+G(D)− ΛD −DΛ + Λ− µI) = 0 (1.84)
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where we have used the following functional derivative properties,8

∇Tr{DA} = A†

∇Tr{D2A} = (DA+ AD)†

∇Tr{DG(D)} = 2G(D)†

In the last statement, we used Tr{XG(Y )} = Tr{Y G(X)}[76, 77] for X = Y = D. On
recalling that all the operators are Hermitian —more specifically in this work all the
matrices are symmetric—, the following working equation is found

F (D)− µI = ΛD +DΛ− Λ (1.85)

where, F = h+G, is the Fock matrix already introduced in Section 1.3. It should be
outlined that despite the appealing form of this equation, to our knowledge, there is only
one paper dealing with its resolution.[78]

To demonstrate that solving Eq. (1.85) leads to an unique solution decribing a
pure state within the NVE ensemble, we may try to recover the famous Roothaan-
Hall equation[79, 80] widely used in quantum chemistry. By taking the commutator of
Eq. (1.85) with respect to D, we obtain:

[D,F − µI] = DΛD +D2Λ−DΛ− ΛD2 −DΛD +DΛ (1.86)

If the density matrix is exactly idempotent, the above equation reduced to:

FD = DF (1.87)

which is the single-determinant time-independent Liouville-von Neumann equation in
matrix form. For instance, multiplying on the right by the coefficient matrix C and using
the definition of Eq. (1.53), we have

FDC = DFC

FCOC†C = COC†FC

FCO = COE

(1.88)
(1.89)
(1.90)

8At first sight, passing from Eq. (1.83) to Eq. (1.84) might not be that straightforward. Given a
functional F , such that F : RM×M 7→ R, the variation of F (X) with respect to X is formally given by:
δF (X)/δX ≡ ∇F (X) = f(X)†, where f is the scalar derivative of F .[2, 75]
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where, for an orthogonal basis set, E is a diagonal matrix containing the M eigenvalues
of F .9 The presence of occupation number matrix O indicates that Eq. (1.90) gives
access only to the eigenvalues of occupied states. Based on symmetry considerations, it is
easily proved that Eq. (1.87) holds as well for the one-hole density matrix [cf. Eq. (1.55)].
As a result, the eigenvalues of the unocuppied states can be obtained by solving

FCŌ = CŌE (1.91)

On assembling Eqs. (1.90) and (1.91), we obtain the condensed matrix form

F (D)C − CE = 0
subject to: C†C = I

(1.92a)
(1.92b)

which will be referred as the Roothaan-Hall equation.10 On multiplying Eq. (1.92a) from
the right by C† and using Eqs. (1.90) and (1.91), the Fock matrix reads

F = COEC† + CŌEC† (1.93)

Hence, the spectrum of the Fock matrix can be resolved according to Eq. (1.13c), that is

F =
∑

i

ϵiDi +
∑

j

ϵ̄jD̄j

subject to:
N∑

i=1
Di = D, and

N̄∑
j=1

D̄j = D̄

(1.94a)

(1.94b)

with i and j running over the energy-weighted projectors for the occupied and unoccupied
subspace, respectively.

9For a given symmetric (Hermitian) non-degenerate Fock martrix F ∈ RM×M (∈ CM×M ), there
always exists a similarity transformation, such that: XtFX (X†FX) = diag{ϵ1ϵ2 · · · ϵM}, where
{ϵi}M

i=1 are the (real) eigenvalues of F , and the transformation matrix X is orthogonal (unitary), ie.
XtX = X−1X = I (X†X = X−1X = I). From the definition (1.52) of the coefficient matrix C, it is
obvious that X ≡ C.

10Indeed, the Roothaan-Hall equation[79, 80] corresponds to a generalized eigenvalue problem FC =
SCE deriving from the HF equations, expressed in a non-orthogonal basis. Nevertheless, we will retain
this naming convention.
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1.6 The self-consistent field procedure

Since the eigenvalue problem of Eqs. (1.92) is non-linear with respect to the density
matrix, the Roothaan-Hall equations are resolved iteratively using a two-step approach:
(i) solve a linear eigenvalue problem for a fixed Fock matrix, (ii) update the new Fock
matrix from the previous solutions. Iterations are repeated until some convergence criteria
is met. This procedure, called self-consistent field (SCF), is illustrated in Figure {1.1}.
The update of the Fock matrix at iteration n+ 1, from the Fock matrix at iteration n,

D0

F [Dn]

F [Dn]
Diag.−−−→ Cn+1n = n+ 1

Dn+1 = Cn+1OC†
n+1

Dn+1 vs. Dn

D∞

No

Yes

SCF cycle

Fig. 1.1 Flow diagram of the SCF processus.

through the matrix Dn, constitutes a SCF cycle. The initial guess and the converged
coefficient matrix in Figure {1.1} are designated by D0 and D∞, respectively.

The intial guess is one of the key steps of the SCF procedure which may have a
strong impact on the convergence rate. A poor or wrong initial guess can slow down the
convergence, or even worse, to a divergence. The former is generally related to oscillations
when approaching the final state so that it can not be reached with a reasonable number
of iterations. The latter indicates that the initial guess has no physical significance or is
too far away from the expected solution. There are different ways to define the starting
guess. In this work we merely start from the solutions of a tight-binding calculation,
as decribed in Section 1.4.2. The fact still remains that, even a good initial guess does
not prevent convergence instabilities. For that reason, numerous suggestions[81–85] have
been made to solve these issues. Many of those were combined into hybrid methods
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attempting to overcome the weakness of the standalone models[82, 83]. For our purpose
here, we recall two schemes which consist in optimizing the Fock matrix construction in
order to stabilize and accelerate the SCF convergence.

1.6.1 Constant damping algorithm

D0

F [Dn]

F̃ [Dn] = F [Dn−1] + λ (F [Dn]− F [Dn−1])

F̃ [Dn]
Diag.−−−→ Cn+1n = n+ 1

Dn+1 = Cn+1OC†n+1

Dn+1 vs. Dn

D∞

No

Yes

SCF cycle

Fig. 1.2 Flow diagram of the SCF scheme including the CDA.

The constant damping algorithm[86] (CDA) is a simple method based on a linear
interpolation between the past and futur events, that is, the Fock matrix at iteration n

is defined according to
F̃n := λFn + (1− λ)Fn−1, (1.95)

where λ, referring to a damping factor, is a constant chosen freely in the interval [0, 1].
The damping step is outlined by the green chart in Figure {1.2} which can be compared
to algorithm of Figure {1.1}. The main drawback with the CDA, is that the convergence
rate is now fixed by the value of λ. In other words, having chosen heuristically λ to
initiate the SCF processus, if for some reasons convergence problem persists, one has
to stop and restart the processus with another damping parameter. It is true that
some approaches were proposed to dynamically optimize the damping factor during the
SCF[87, 84]. It remains that using a constant or dynamic approach, the CDA is not
always successful for solving convergence issues.
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1.6.2 Direct inversion of the iterative subspace extrapolation

Another more general technique to speed up and stabilize the SCF convergence is the
direct inversion of the iterative subspace (DIIS) extrapolation proposed by Pulay[88–90].
This method and several improvements[82, 83] have shown to be very efficient[82, 83]
and it constitutes one of our ingredient for efficient calculation of the response properties
presented in Chapter 3. The idea of the DIIS is to extrapolate the Fock matrix at
iteration n, from a linear combination of Fock matrices taken in the history of the SCF
procedure according to

F̃n :=
n∑

i=n−m

ciFi (1.96)

where m is the size of the set of historical Fock matrices and n is the iteration from which
the DIIS is switched on. The coefficients of the linear combination are determined using
a set of Pulay’s error vectors, {ei}, corresponding to {Fi, Di}, according to ei = [Fi, Di].
The DIIS approach assumes that this linear combination is a good approximation of the

D0

F [Dn]

en

min
{∑n

i,j=n−m cicj (ei · ej) ,
∑n

i=n−m ci = 1
}

F̃ [Dn] =
∑n

i=n−m ciF [Di]

F̃ [Dn]
Diag.−−−→ Cn+1n = n+ 1

Dn+1 = Cn+1OC†n+1

Dn+1 vs. Dn

D∞

No

Yes

SCF cycle

Fig. 1.3 Flow diagram of the SCF scheme including the DIIS.

converged Fock matrix, symbolized here by F∞. Then, it supposes that each trial Fock
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matrix is the sum of the exact solution and an error vector ei. Therefore, Eq. (1.96)
becomes

F̃n =
n∑

i=n−m

ci (F∞ + ei)

= F∞

n∑
i=n−m

ci +
n∑

i=n−m

ciei (1.97)

From this equation, in order to have F̃n = F∞, we need to minimize the norm of the
second term while requiring the sum in the first term to be normalized, which gives11

min
∥

n∑
i=n−m

ciei ∥2

∣∣∣∣∣∣
n∑

i=n−m

ci = 1
 (1.98)

where the coefficients {ci} are assumed real, ie. c∗
i = ci. As for the minimization of

the Hartree-Fock energy developped in Section 1.5, we can use the Lagrange multiplier
technique to minimize the expression of Eq. (1.98). This yields to

LDIIS :=
n∑

i,j=n−m

cicjBij − λ

 n∑
i=n−m

ci − 1
 (1.99)

where λ is the Lagrange multiplier, and Bij = (ei · ej) . The first derivative of LDIIS with
respect to the coefficient cl, gives

∂LDIIS

∂cl

=
∑
i,j

∂ci

∂cl

cjBij +
∑
i,j

ci
∂cj

∂cl

Bij − λ
∑

i

∂ci

∂cl

=
∑
i,j

δilcjBij +
∑
i,j

ciδjlBij − λ
∑

i

δil

=
∑

j

cjBlj +
∑

i

ciBil − λ (1.100)

where, for the last step, we used the following properties

∂ci

∂cj

= δij,
∑

i

δij = 1,
∑

i

ciδij = cj (1.101)

11We recall that the first term within the braces is the expression to be minimized, and the second
term is the constraint ; ∥ · ∥ stands for the Frobenius norm, and ( · ) for the scalar product.
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Substituting j by i in the first sum of Eq. (1.100), and using the fact that the matrix B
of elements {Bij} is symmetric, Eq. (1.100) simplifies to

∂LDIIS

∂cl

= 2
∑

i

ciBil − λ (1.102)

As a result, solutions of eq. (1.98) translates to the minimization of the Lagragian LDIIS

such that ∑
i

ciBil − λ = 0 (1.103)

The coefficients {ci} are finally given by the Eq. (1.103) which corresponds to a system
of (m+ 1) linear equations[91–94]. Once the coefficients are found, the Fock matrix is
updated following the linear expansion of Eq. (1.96).

The DIIS steps are defined by the orange chart in the diagram of Figure {1.3}. In
the particular case of m = 2, the DIIS corresponds to the damping scheme of Eq. (1.95)
but without any restriction on λ, which means that the DIIS is a dynamical extension
of the CDA where the coefficients are optimized on-the-fly. As a concrete example, in
Figure {1.4} are presented the SCF convergence profiles obtained for a non-optimized
procedure (the simple SCF), the CDA interpolation using two different values of the
damping parameter, and the DIIS extrapolation. It is quite clear that the convergence
with the DIIS is the most efficient.
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(a)

(b)

Fig. 1.4 SCF convergence profiles obtained for the carbon nanotube (11,5) using a
simple approach, the CDA and the DIIS optimization. In (a) is displayed the energy
minimization during the iterative process. In (b) is represented the energy error during
the iterative process using a logarithmic scale.





Chapter 2

Density matrix purifications and
minimizations
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The orthodox resolution of the SCF equations [cf. Section 1.6] as obtained from a
single Slater determinant is based on the diagonalization of the Fock matrix at each
iteration. The diagonalization step is well known for being an expensive task, which
becomes rapidly the limiting step for large scale calculations. For this reason, it has
been suggested that one can solve the SCF equations relying only on the one-particle
density matrix.[41] Even if, in their native forms, density matrix (DM) methods also
present an asymptotical cubic scaling, they constitute the first ingredient towards linear
scaling regime. Density matrix solvers can be classified following the physical motivations
they originated from. These solvers are: (i) the iterative density matrix functional
minimizations[40, 95–101] where for one-determinant SCF theories, the HF or KS energy
functional is minimized with respect to an auxiliary density matrix used in place of
the conventional fixed DM built from the eigenvectors, (ii) the recursive density matrix
polynomial expansion where the Fermi-Dirac ground state DM at the zero electronic
temperature limit is obtained by a recursive application of projection polynomials —also
referred to as purifications.[102–114]

2.1 Density matrix minimization principle

In continuation of Section 1.5, where we have shown that the minimization of the Hartree-
Fock (HF) energy functional can be expressed in terms of the one-particle density matrix
only, we can either try to minimize the HF Lagrangian of Eq. (1.83) by releasing some of
the constraints, or by introducing another objective functional to minimize.

2.1.1 Idempotency error functional minimization

In order to obtain an exactly idempotent density matrix from a roughly idempotent initial
guess, McWeeny has proposed to minimize the sum of the squares of the idempotency
errors, that is, ∥D2−D∥2, using a steepest gradient descent method.[41, 42] This is fully
equivalent to minimize the following functional:

ΩMcW := Tr{(D2 −D)2} (2.1)

Using the trace algebra summarized in Section 1.5, the gradient for this functional is
given according to

∇ΩMcW = 2(2D3 − 3D2 +D) (2.2)
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The optimal step length γ for the line search of the steepest descent can be derived from
the Cauchy relation:

γ := min
γ

Tr{(D2
γ −Dγ)2} (2.3)

where
Dγ := D − γ∇ΩMcW (2.4)

Working on Eq. (2.3), to the second order in γ, the optimum value is found to be

γ = Tr{(D2 −D)2}
Tr{(D2 −D)2 (2D − I)2}

(2.5)

On substituting D := D′ + δ, where D′ is trully idempotent,[41] and expanding Eq. (2.5),
it can be easily shown that γ ≃ 1. As a result, for a fixed step length gradient descent,
Eq. (2.4) reduces to

D = 3D2 − 2D3 (2.6)

It is drawn from Eq. (2.6) that the fixed step gradient descent gives rise to an alternative
approach to obtain an idempotent DM relying on the following recursive formula:

Dn+1 = 3D2
n − 2D3

n (2.7)

where n is the iteration index. This relation is the so-called McWeeny purification. We
note that, in line with Section 1.1, the term purification clearly indicates that repeated
application of the polynomial (2.7) to a mixed state —the initial guess (vide infra) for
the density matrix— transforms it into a pure state: the idempotent one-particle density
matrix. It is worth emphasizing that solution to the minimization problem of Eq. (2.1) is
not restricted to the (fixed step) steepest descent. One can also consider other gradient
descent based algorithms such as the conjugate gradient (CG) or Newton-Raphson
method, each of them coming with their own pros and cons.[107]

2.1.2 Energy functional minimization

Another way to find the density matrix is to minimize an energy functional using a
conjugate gradient routine.[40, 95–99] Within the tight-binding (TB) framework, Li,
Nunes and Vanderbilt (LNV) have proposed to minimize the grand potential functional[40]
at the zero temperature limit as defined below,

Ωµ := E [D]− µN (2.8)
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where µ is the chemical potential and E [D] stands for one-eletron energy functional of
the one-particle density matrix. Instead of working on D directly, which would have led
to consider a set of Lagrange multipliers in Eq. (2.8) —cf. Eq. (1.82) of Section 1.5 and
discussion therein—, LNV have considered the auxiliary DM of Eq. (2.7) allowing to
introduce variational degrees of freedom within the grand potential functional of Eq. (2.8).
Considering the Fock matrix as input, the LNV energy functional reads:

ΩLNV := Tr{F (3D2 − 2D3)} − µTr{3D2 − 2D3}
with:
∇ΩLNV = 3(DF ′ + F ′D)− 2(D2F ′ +DF ′D + F ′D2)

(2.9)

(2.10)

and F ′ := F −µI. Latter, Xu and Scuseria[115] (XS) have proposed a slight modification
of the LNV functional minimization by a damping method based on updating the chemical
potential value between consecutive conjugate gradient iterations. They reported an
improvement in the convergence of the CG minimization.

Unfortunately, since Ωµ (or ΩLNV) is only well-defined within the µVT ensemble,
unconstrained minimization of Eq. (2.9) is not expected to yield the correct number
of particles unless the chemical potential is known exactly. This poses sever problems
for unsymmetric cases, ie. when µ is not in (or close to) the middle of the eigenvalue
spectrum, in other words, when the one-electron one-orbital picture is abandoned (vide
infra). To correct this drawback, a more general approach was introduced by Millam
and Scuseria[96] (MS), where the update of the chemical potential is constrained via
the trace of the gradient. The advantage for this functional is to explicitly calculate the
chemical potential during the conjugate gradient iterations so that the electron number
is preserved. Nevertheless, this scheme implies that the chemical potential must be zero
at convergence,[96] which clearly restricts its domain of applicability unless modifications
within the working equations are derived.

The other major issue of LNV functional minimization is that the idempotency of
the density matrix is not guaranteed. For this reason, the density matrix has to be
purified by the McWeeny polynomial of Eq. (2.7) outside the conjugate gradient.[98]
Extensive analysis of the LNV shortcomings and solutions are given in Refs. [99, 98, 116].
Algorithms related to the XS, MS and the original LNV are given in Appendix B, along
with the CG routine used in this work.[117]
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2.2 Density matrix polynomial expansion

The other class of density matrix solver is based on the Fermi-Dirac (FD) operator
expansion.[118] Within the µVT (or NVT ) ensemble [cf. Section 1.1 and Eq. (1.15)]
at non-zero electronic temperature, the one-particle density operator for a single anti-
symmetrized product of one-electron function [cf. Section 1.2.3 and Eq. (1.40)] is given
by:

D̂ =
∑

i

ηi |ψi⟩ ⟨ψi| (2.11)

where {ψi} are the set of molecular orbitals (MO), such that, ⟨ψi|ψj⟩ = δij [cf. Sec-
tion 1.2.4 and Eq. (1.46)]. For the sake of demonstration, we shall assume that our
molecular system can be equated with an ensemble of weakly interacting particles at
the thermodynamic equilibrium and obeying the Fermi-Dirac (FD) statistic.[119] As a
result, for a given fermion temperature T and chemical potential µ, we may associate
the occupation numbers {ηi} of Eq. (2.11) with the occupation probabilities of the
single-particle energy states {ϵi} following:

ηµ,T (ϵi) = 1
1 + eβ(ϵi−µ) , with β = 1

kBT
(2.12)

Band gap

”µ blurring”

Fixed point

µ

η=0.5 
T 

Fig. 2.1 Influence of the fermion temperature on the Fermi-Dirac distribution. The
inflection point of the distribution is located at (µ = 0, η = 0.5)
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Note that the one-particle density matrix of Eq. (2.11) with the occupation probabili-
ties as defined in Eq. (2.12) must respect the N -representability conditions:

Tr{D̂} =
∑

i

ηi = N, and ηi ∈ [0, 1] (2.13)

Within the MO basis, the matrix representation of Eq. (2.11) is readily recognized as the
matrix of the particle occupation numbers [cf. Eq. (1.54)] which, at non-zero temperature,
reads: Oµ,T = diag{η1η2 · · · ηM}, where M is the size of the basis set. Therefore, in the
atomic orbitals (AO) representation, the DM is expressed as:

Dµ,T (F ) =
(
1 + eβ(F −µI)

)−1
(2.14)

The equation above indicates that there exists a one-to-one non-linear correspondence
between the Fock and the density matrix. In other terms, at a given temperature, the
statistical density matrix is determined by µ and F . By expanding the right-hand-side of
Eq. (2.14) using appropriate polynomials, one can expect to obtain the N -representable
one-particle density matrix, provided that conditions (2.13) are fulfilled. This constitutes
the framework of the density matrix polynomial expansion (DMPE) theory.[118] Since
the pioneering works of Goedecker and Colombo,[102] several variations of the DMPE
have been proposed. These variations can be differentiated by: (i) the polynomials used
for the expansion, and (ii) the statistical ensemble chosen for describing the system. In
any case, solving Eq. (2.14), implies to proceed by iteration.

Within the µVT or NVT canonical ensemble, the statistical mixture of one-electron
states described in Eq. (2.14) can be purified following three different ways, depending
on the variable we choose to operate on.

• In µVT , for fixed chemical potential and temperature: the FD distribution of
Eq. (2.14) is expanded in terms of Chebyshev polynomials.[120, 103]. Despite
the good performance of the approach,[106, 121] its application requires a precise
knowledge of the chemical potential, that is for isolated molecular system, knowledge
of interior eigenvalues. Linear scaling algorithms addressing such task along with
some improvements were proposed,[122–124] but one may wonder if this step is
really necessary.

• In NVT , for a fixed number of particles N : we might try to cool down the
system towards the zero temperature limit, as depicted on Figure {2.1}. This was
first proposed by Daw in his seminal paper[125] where he demonstrated that the
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McWeeny purification of Eq. (2.7) is related to a ”temperature-driven” density
matrix equation of motion. The notion of statistical ensembles and the possibility
of solving Eq. (2.14) in the NVT were rationalized by Palser and Manolopoulos[104]
(PM) —without establishing direct relationships with Daw’s proposal. In the same
work, PM introduced a way of enforcing the McWeeny polynomial to preserve the
N -representability conditions throughout the purification process. Later in the
manuscript, the PM approach will be referred to as canonical purification (CP).

• In µ(N)V T , at the zero temperature: Niklasson[110] proposed to approach the FD
distribution at zero temperature, ie. the Heaviside step function,[126] by varying the
number of occupied states around the exact N , that is, adjusting the polynomial
dynamically during the recursion without enforcing requirements of Eq. (2.13),
such that the N -representable ground state DM is obtained only at convergence.
As a result, the Niklasson’s method implicitly assumes that the system is coupled
to a bath of particles, which are added or withdrawn with respect to the target
value. This family of polynomials constitutes the basis for trace-correcting (TC)
purification.

It should be emphasized that the purification methods mentioned in the last two points
can be easily adapted to the grand canonical ensemble.[104, 110] Calculations of the
ground state density matrix using the CP and TC methods are based on the recursive
application of projection polynomials {Pn} to evaluate the step function, Θ(µI − F ),
centered at the (unknown) chemical potential. This can be formally written as follows:

Θ(µI − F ) = lim
n→∞

Pn( Pn−1(...P2( P1( D0(F ;µ) ) )...) )

with D0 = α1I − α2(µI − F )

(2.15)

(2.16)

The density matrix purification is initialized by performing the linear transformation of
Eq. (2.16) where {α1, α2} are parameters judiciously chosen to: (i) map the eigenvalues
of the Fock matrix into the [0, 1] interval, and (ii) depending on the purification method,
to verify: Tr{D0} = N . An example of purification process for a (2× 2) mixed state is
presented in Figure {2.2}. At this stage, the problem of the chemical potential remains
a serious bottleneck since, for a given chemical potential or number of occupied states,
fixed inflection point polynomials, eg. the McWeeny polynomial of Eq. (2.7), yield the
N -representable ground state density matrix, if and only if, the inflection point is located
at the middle of the eigenvalue spectrum as depicted in Figure {2.1}. As a result, there
exist two possibilities: (i) determine the value of µ to shift the eigenvalues of the initial



40 Density matrix purifications and minimizations

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
x

0.50 0.50

0.25 0.25

0.00 0.00

0.25 0.25

0.50 0.50

0.75 0.75

1.00 1.00

1.25 1.25

1.50 1.50

P
(x

)

0

1

1

2

2

3

340

1

1

2

2

3

34

Fig. 2.2 McWeeny purification polynomial P (x) = 3x2 − 2x3. The initial (2× 2) mixed
state, with occupation numbers {η1, η2}n=0 = {0.3, 0.7}, is purified to eventually reach
{η1, η2}n=4 = {0, 1}.
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mixed state of Eq. (2.16) towards the left and the right of µ, respectively, and purify
according to Eq. (2.15), or (ii) define an approximate guess without the support of µ and
purify using flexible inflection point polynomials. This work is dealing with the second
approach.

As discussed by Niklasson in Ref. [110] performances of the purification methods, that
is the number of iterations, depends upon the location of µ in the [ϵmin, ϵmax] interval,
where ϵmin and ϵmax are the lower and upper bounds of the eigenvalue spectrum, or
equivalently, on the value of the filling factor θ = N/M , where M is the number of
available states. Typical values of θ are about 1/2 when dealing with one-electron
one-orbital many-electron systems, and around 1/20 for calculations based on extended
basis set where, for instance, there are 10 basis functions per electron. The influence of
the filling factor over the performances of the purification methods can be qualitatively
understood from the fact that the preconditioning of Eq. (2.16) leads to a clustered set
of eigenvalues around θ, the range of this cluster being inversely proportional to the gap
of the system. As a result, for extreme values of θ —let us say θ < 0.1 (or equivalently
for θ > 0.9)— where the initial DM eigenvalues are located around 0.1, the polynomials
must be flexible enough to send a few of the eigenvalues towards the upper bound (η = 1)
of the DM eigenspectrum, whereas all the others must be kept around the lower bound
(η = 0), and purified accordingly. In the next section, we shall present the most popular
purification polynomials.

2.2.1 Canonical purification

The Palser and Manolopoulos canonical purification[104] (PMCP) is based on the in-
troduction of a flexible inflection point within the McWeeny polynomial of Eq. (2.7)
that allows to address the issues mentioned above, and moreover, to preserve the N -
representability properties of the initial guess throughout the recursive process. The
density matrix is purified according to the following algorithm:

Dn+1 =


− 1

1− cn

D3
n + 1 + cn

1− cn

D2
n + 1− 2cn

1− cn

Dn if cn ≤
1
2

− 1
cn

D3
n + 1 + cn

cn

D2
n if cn >

1
2

(2.17)

with:
cn = Tr{D2

n −D3
n}

Tr{Dn −D2
n}

(2.18)

The polynomials of Eq. (2.17) are plotted in Figure {2.3}. The coefficient c is lying
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Fig. 2.3 Polynomials of the Palser and Manolopoulos canonical purification.

in the [0, 1] interval. For c = 1/2, where the inflexion point is located at x = 1/2, we
found that both functions behave like the McWeeny polynomial, with stationary points
at x = 0 and x = 1. For the extreme value c = 1 (c = 0), the inflexion point is located at
x = 1 (x = 0) with the stationary end point outside the maximum (minimum) bound
of the spectrum, at x > 1 (x < 0), whereas the other stationary point remains fixed at
x = 0 (x = 1). The N -representable initial guess as introduced by PM in Ref. [104] is
generated from the following normalization relation:

D0 = α(µ̄I − F ) + θI

α = min
{

N

ϵ̃max − µ̄
,
M −N
µ̄− ϵ̃min

}
µ̄ = Tr{F}/M

(2.19a)

(2.19b)

(2.19c)

where ϵ̃max and ϵ̃min are estimates of the highest (ϵmax) and lowest (ϵmin) eigenvalues of
the Fock matrix, respectively. These values are usually accessed, at low cost, using the
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Gershgorin’s formulas[127, 128]:

ϵ̃max = max
i

Fii +
M∑
j ̸=i

|Fij|


ϵ̃min = min

i

Fii −
M∑
j ̸=i

|Fij|


(2.20a)

(2.20b)

such that: ϵ̃max > ϵmax, and, ϵ̃min < ϵmin. It can be demonstrated[104] that, from the N -
representable initial guess built from Eq. (2.19), recursive application of the polynomials
of Eq. (2.17) maintains the N -representability conditions while converging monotonically
to the ground state energy associated with the ground state idempotent density matrix.
As outlined by Niklasson,[110] the problem with the trace-preserving PMCP is that it
slowly converges at very low or high filling factor[110, 104].

2.2.2 Trace-correcting and trace-resetting purifications

To circumvent this issue, Niklasson[110] has proposed an alternative method where
the N -representability constraints are alleviated and the density matrix purification is
performed using the following trace-correcting polynomials:

Dn+1 =
 P (a)

m (Dn) = I − (I −Dn)m(I +mDn) if Tr{Dn} ≤ N

P (b)
m (Dn) = Dm

n (I +m(I −Dn)) if Tr{Dn} > N
(2.21)

where (m + 1) gives the order of the polynomial, and n is the index of the recursion.
Note that for the special case of m = 1, the conditions on the trace in Eq. (2.21) have to
be swapped. The set of polynomials {P (a)

m } and {P (b)
m } are plotted in Figure {2.4} for

m = {1, 2, 3}. For m = 1 (2nd order polynomials), the stationary points are fixed for
x = 0 and x = 1, for P (a)

1 and P (b)
1 , respectively. For m = 2, both functions merge into the

McWeeny polynomial of Figure {2.2}. Note that the computational ressources, measured
in terms of matrix multiplication (MM), are given by the value of m. For instance: for
m = 1, each purification requires one MM, for m = 2, two MMs are necessary, and so on.
Consequently, polynomials with higher flexibililty (m > 2) might be costly in ressources
(for large scale systems) compared to lower order polynomials if the total number of
purifications needed to reach convergence is not reduced. The initial guess for the TC
family of purifications is given by:

D0,m = 1− 2βm

ϵ̃max − ϵ̃min
(ϵ̃maxI − F ) + βmI (2.22)
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Fig. 2.4 Projection polynomials used for the trace-correcting density matrix purifications
at different orders.

where βm ∈ [0, 1] is the stable fixed point such that: P (a)
m (βm) = βm, and P (b)

m (1− βm) =
1 − βm. It is worth emphasizing that normalization of Eq. (2.22) does not enforce
—indeed it must not— the trace of D0 to be equal to the correct value of N . Owing to
its simplicity and efficiency, the second-order trace-correcting polynomials (TC2) is the
most popular.[129, 124, 130] By setting m = 1 in Eq. (2.21), it writes:

Dn+1 =
 D2

n if Tr{Dn} ≥ N

2Dn −D2
n if Tr{Dn} < N

with D0 = (ϵ̃maxI − F )/(ϵ̃max − ϵ̃min)

(2.23)

(2.24)

An alternative solution to correct the CP deficiences at low or high filling fac-
tor, was brought by Niklasson, Tymczak and Challacombe through the trace-resetting
mechanism.[112] This is a hybrid method involving both trace-correcting and trace-
preserving polynomials. The authors proposed to subsitute the robust PMCP by a more
flexible, ie. efficient, trace-preserving polynomials for which, if appearing, instabilities are
controlled via a resetting option based on the TC2 projections. The working equations
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of the trace-resetting (TRS) density matrix purification are the following,

Dn+1 =


F(Dn) + γnG(Dn) for γn ∈ [γmin, γmax]

D2
n if γn < γmin

2Dn −D2
n if γn > γmax

with: γn = N − Tr{F(Dn)}
Tr{G(Dn)} , γmin = 0, and γmax = 6

(2.25)

(2.26)

where the recipe for initializing the density matrix is identical to the TC2 purification
[cf. Eq. (2.24)]. The parameter γn is analogous to the flexibe inflection point cn [cf.
Eq. (2.17)] but for the composite polynomial of Eq. (2.25) given by:

F(Dn) = D2
n(4Dn − 3D2

n)
G(Dn) = D2

n(I −Dn)2

(2.27)
(2.28)
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Fig. 2.5 Projection polynomials used of the trace-resetting density matrix purification for
different adjustement parameters of γ ∈ [0, 6].

The combination of the these two quartic polynomials (TRS4) results to a trace
conserving purifiation for γ bounded in the [0, 6] interval. As mentioned by Niklasson
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et al., adding the function γG to F and increasing γ continuously change the TRS4
polynomial from F(x) at γ = 0 to the mirror function 1 − F(x) at γ = 6.[112] The
variations of the TRS4 function with respect to the γ value are plotted in Figure {2.5},
along with the TC2 polynomials. Convergence is achieved when γ → 3, that is, when
the TRS4 polynomial transforms to the McWeeny purification: Dn+1 = 3D2

n − 2D3
n.

Since the TRS4 function presents (at most), two inflection points, runaway solutions
may appear when γ /∈ [0, 6]. In that case the trace-resetting mechanism supplied by the
TC2 projection takes over from the TRS4 and remaps the density matrix within the
trace-conserving domain. Minute details including performances of the method can be
found in Ref. [112].

The Table {2.1} summarizes the key points of the density matrix Fermi-Dirac poly-
nomial expansion including the number of MMs performed for each recursive call. We
emphasize that the number of MMs is governed by the order of the polynomials. For
comparison, the characteristics of LNV density matrix minimization are also reported. In
this case, it should be mentioned that there is an additional cost related to the use of the
conjugate-gradient routine, which is indicated by the number in parenthesis. This number
corresponds to the number of MMs performed during the CG line search. Algorithms
used in this work are provided in Appendix C.

Density matrix solver MM/iteration properties

PMCP 2 (+) preserves the N -representability constraints
(−) slowly converges at extreme filling factors

McW 2 (+) algorithmic simplicity
(−) work only at half filling factor

TC2 1 (+) algorithmic simplicity
(−) yields the correct trace only at convergence

TRS4 2 (+) preserves the trace during the last iterations
(−) algorithmic complexity

LNV 6 (+5) (+) energy functional minimization
(−) algorithmic complexity (eg. idempotency and µ)

Table 2.1 Density matrix solvers and their features.

2.2.3 Hole-particle canonical purification

It is worth to mention that beyond their mathematical characteristics, some of the density
matrix purifications presented above were based (more or less) on physical motivations.
Since the early work of McWeeny in 1956, the increasing complexity in attempting
to derive more robust and efficient polynomials has reached a stationary point, with
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for example the TRS4 or other approaches introduced for instance by Mazziotti,[108]
Kryachko[131] or Holas.[132] Intuitively, the NVT ensemble appears as the natural
framework to derive density matrix purification for isolated system, although hybrid
methods (TC2 or TRS4) relying on a ill-defined µ(N)V T ensemble are already very
efficient. The PMCP was, so far, the only strictly canonical purification, in the sense
that it conserves N -represensability conditions throughout the iterative process and
converges systematically as the order of the recursion increases. Nevertheless, Palser and
Manalopoulos did not provide any physical interpretation nor insight, for explaining their
formulation. We also outlined that, all the DMPE methods presented in this chapter
invoked a conditional statement with respect to the trace of the density matrix in order
to adjust the polynomial accordingly.

In the work presented below, by re-considering the original proposition of McWeeny
described in Section 2.1.1, we introduce a constrained minimization principle where the
N -representability conditions are fulfilled from the early steps to the end of the recursion.
The very simple purification polynomial emerging from it, called hole-particle canonical
purification (HPCP), is given by:

Dn+1 = (1− 2cn)Dn + 2(1 + cn)D2
n − 2D3

n, with: cn = Tr{D2
n −D3

n}
Tr{Dn −D2

n}
(2.29)

where cn is the flexible inflexion point already introduced by Palser and Manolopoulos [cf.
Eq. (2.18)]. In terms of both, the one-particle and one-hole density matrix, Eq. (2.29)
can be recast as

Dn+1 = Dn + 2(D2
nD̄n − cnDnD̄n), with: cn = Tr{D2

nD̄n}
Tr{DnD̄n}

(2.30)

From a conditioned D0, the recursion relation Eq. (2.29) or Eq. (2.30) is able to deliver the
exact ground-state density matrix without the need of correcting the trace, nor adjusting
the polynomial during the purification process. A a consequence, the polynomial of
Eq. (2.30) is self-consistent. The initial guess suitably conditioned for the HPCP approach
is defined according to

D0 = αDmin + (1− α)Dmax (2.31)
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where α ∈ [0, 1] is the mixing coefficient between Dmin and Dmax, which are evaluated
from the following recipe:

Dmin = λo(µI − F ) + θI

Dmax = λq(µI − F ) + θI

µ = Tr{F}
M

λo = min {λ1, λ2}
λq = max {λ1, λ2}

λ1 = N

M(ϵmax − µ)

λ2 = M −N
M(µ− ϵmin)

(2.32a)
(2.32b)

(2.32c)

(2.32d)
(2.32e)

(2.32f)

(2.32g)

For the extended comparison presented in the following section, HPCP denotes for the
HPCP associated with the initial guess described above.
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A Lagrangian formulation for the constrained search for the N-representable one-particle density
matrix based on the McWeeny idempotency error minimization is proposed, which converges system-
atically to the ground state. A closed form of the canonical purification is derived for which no a
posteriori adjustment on the trace of the density matrix is needed. The relationship with comparable
methods is discussed, showing their possible generalization through the hole-particle duality. The
appealing simplicity of this self-consistent recursion relation along with its low computational
complexity could prove useful as an alternative to diagonalization in solving dense and sparse matrix
eigenvalue problems. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943213]

As suggested 60 years ago,1 the idempotency property
of the density matrix (DM) along with a minimization
algorithm would be sufficient to solve for the electronic
structure without relying on the time consuming step of
calculating the eigenstates of the Hamiltonian matrix. The
celebrated McWeeny purification formula2 has inspired major
advances in electronic structure theory based on (conjugate-
gradient) DM minimization3–8 (DMM) or DM polynomial
expansion9,10 (DMPE), where the DM is evaluated by the
recursive application of projection polynomials (commonly
referred to as purification). DMPE resolution includes the
Chebyshev polynomial recursion,9–15 the Newton-Schultz
sign matrix iteration,16–18 the trace-correcting19 and the
trace-resetting20 purification (TCP and TRS, respectively),
and the Palser and Manolopoulos canonical purification
(PMCP).21 They constitute, with sparse matrix algebra, the
principal ingredient for efficient linear-scaling tight-binding
(TB) and self-consistent field (SCF) theories.22,23 Since all
these methods were originally derived within the grand
canonical ensemble,24 for a given total number of states
(M), none of them are expected to yield the correct number of
occupied states (N) unless the chemical potential (µ) is known
exactly. As a result, their implementation to the canonical
ensemble involves heuristic considerations, where the value
of µ12 or the polynomial expansion19 is adapted a posteriori
to reach the correct value for N , which adds irremediably
to the computational complexity. Despite the remarkable
performances of the DMPE approaches for solving for
sparse6,25 and dense26–28 DMs, it remains desirable to develop
an approach that overcomes the use of the chemical potential
while respecting the canonical requirement of constant-N .

In this letter, we derive a rigorous and variational
constrained search for the one-particle density matrix which

a)Electronic mail: lionel.truflandier@u-bordeaux.fr

does not rely on ad hoc adjustments and respects the
N-representability constraint throughout the minimization
process. We shall start from the McWeeny unconstrained
minimization of the error in the idempotency of the density
matrix,1 given by

minimize
D→Dµ

ΩMcW{D; (H , µ)}, (1a)

with ΩMcW = Tr{(D2 − D)2}, (1b)

where for a given fixed Hamiltonian29 H and chemical
potential µ, the density matrix Dµ is the ground-state for
that Hamiltonian and chemical potential. The initial guess
(D0) is generally constructed as a functionH , suitably scaled,

D0 = β1I + β2(µI −H ), (2)

where β1 and β2 stand for preconditioning constants such
that the eigenvalues of D0 lie within a predefined range. The
double-well shape of the McWeeny function with 3 stationary
points: 2 minima at xp = 1 and x p̄ = 0 and 1 local maximum
at xm =

1
2 (see Fig. 1(a), red curve), are important features

in developing robust DMM algorithms. Finding the minimum
of ΩMcW would be easily performed by stepwise gradient
descent,1 where the DM is updated at each iteration n,

Dn+1 = Dn − σn∇ΩMcW, (3a)
with ∇ΩMcW = 2

�
2D3

n − 3D2
n + Dn

�
, (3b)

and σn ≥ 0 represents the step length in the negative direction
of the gradient. Considering an optimal fixed step length
descent (σ = 1/2), on inserting Eq. (3b) into Eq. (3a), the
McWeeny purification formula appears,

Dn+1 = 3D2
n − 2D3

n, (4)

where the right-hand side of the equation above can be
view as an auxiliary DM. For a well-conditioned D0,
i.e., λ(D0) ∈ [− 1

2 ,
3
2 ], repeated application of the recursion
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FIG. 1. (a) Convergence of the McWeeny Lagrangian and density matrix
eigenvalues during the course of the minimization using a test Hamiltonian
and an occupation factor θ = 0.10. A grey scale is used to guide the eye during
the processes of purification. Each curve is a plot of the function LMcW(x;γn)
computed at each iteration n. The red line corresponds to LMcW(x;0)
=ΩMcW. (b) Convergence of LMcW (green circles) and the trace conservation
Tr{Dn}−N (black dots). (c) Convergence of ∥∇LMcW∥F (green circles) and
∥Dn∥F −N (black dots).

identity [Eq. (4)] naturally drives the eigenvalues of Dn+1
towards 0 or 1. For basic TB Hamiltonians where the
occupation factor (θ = N/M) is close to 1/2 and µ can
be determined by symmetry21 or when the input DM is
already strongly idempotent, the minimization principle (1a)
is able, on its own, to deliver the correct N-representable
ground-state DM (D). Beyond these very specific cases, we
have to enforce the objective function (1b) to keep N constant
during the minimization. From Eq. (4), a sufficient condition
would be to impose the trace of the auxiliary DM to give the
correct number of occupied states. This leads us to solve a
constrained optimization problem which can be formulated in
terms of the McWeeny Lagrangian (LMcW) by

minimize
{D→D |Tr{D}=N }

γ

LMcW{D, γ; (H ),N}, (5a)

with LMcW = ΩMcW − γ
�
Tr{3D2 − 2D3} − N

�
, (5b)

where γ is the constant-N Lagrange multiplier. The McWeeny
Lagrangian can be minimized using

∇LMcW = ∇ΩMcW − 6γ
�
D − D2� , (6a)

∂γLMcW = Tr{3D2 − 2D3} − N. (6b)

Taking trace Eq. (6a) we obtain the expression for γ,

γ =
1
3
− 2

3
c − 1

6
d, (7a)

with c =
Tr{D2 − D3}
Tr{D − D2} , (7b)

d =
Tr{∇LMcW}
Tr{D − D2} . (7c)

Then, Eqs. (6a) and (7a) are updated at each iteration by
requiring Tr{∇LMcW} = 0, that is d = 0, for all D. As a
result, given D0 such that Tr{D0} = N and [H ,D0] = 0, from
the fixed-step gradient descent minimization described above,

we obtain a recursion formula,

Dn+1 = Dn − 1
2
∇LMcW{Dn; γn}, (8)

which guarantees Tr{Dn+1} = N and [H ,Dn+1] = 0, ∀n.
Added to the preconditioning λ(D0) ∈ [0,1], the iterative
process should approach the (one-particle) ground-state
energy E = Tr{HD} variationally. The parameter c [Eq. (7b)]
is recognized as the unstable fixed point introduced in Ref. 21,
where c ∈ [0,1]. As a result, the interval [− 1

3 ,
1
3 ] constitutes

the stable variational domain of γ.
The variation of the McWeeny Lagrangian function and

the DM eigenvalues during the course of the minimization is
presented in Fig. 1(a) for a test Hamiltonian with N = 10, M
= 100, and a suitably conditioned initial guess (vide infra). The
corresponding convergence profiles of LMcW and ∥∇LMcW∥
(green circles) are reported on Figs. 1(b) and 1(c), respectively,
along with the trace conservation Tr{Dn} − N and the DM
norm convergence ∥Dn∥ − N (black dots). We may notice
first that for γ = 0 (or c = xm =

1
2 ), LMcW simplifies to ΩMcW.

For intermediate states, γ ∈ [− 1
3 ,0] ∪ [0, 1

3 ], the symmetry
of ΩMcW is lost and the shape of LMcW(x, γn) drives the
eigenvalues in the hole (left) or in the particle (right) well.
From the grey scale in Fig. 1(a), we observe how γn influences
LMcW (along the y-axis) at x p̄ and the abscissa of the second
stationary point xm which is free to move in [x p̄, xp]. This
yields to transform the hole well from a local (n = 0) to a
global (n = 15) minimum (or conversely the particule well
from a global to a local minimum). At the boundary values
γ = {− 1

3 ,
1
3 }, x p̄ and xm merged to a saddle point in such a

way that only one global minimum left at xp. Notice that, for
situations where γ < [− 1

3 ,
1
3 ], the saddle point transforms to a

maximum and runaway solutions may appear. Nevertheless,
as long as D0 is well conditioned, such kind of critical problem
should not be encountered.

Figs. 1(b) and 1(c) highlight the minimization mecha-
nism: (i) from iterate n = 0 to 12; γ → 0+, LMcW follows the
search direction and decreases monotonically. (ii) At iterate
n = 13; γ ≃ 0,LMcW is close to the target value but the gradient
residual is nonzero. (iii) From n = 14 to 15; γ < 0, the search
direction is inverted. (iv) At iterate n = 16, all the eigenvalues
are trapped in their respective wells. (iii) From iterate n = 17
to 23, γ → 0−, we are in the McWeeny regime [Eq. (4)] and
LMcW eventually reaches the global minimum.

Taking advantage of the closure relation,

D̄ + D = I, (9)

where D̄ stands for the hole density matrix,30 a more appealing
form for the McWeeny canonical purification [Eq. (8)] can be
derived by reformulating Eqs. (6a) and (7b) in terms of D and
D̄,

Dn+1 = Dn + 2
(
D2

nD̄n − Tr{D2
nD̄n}

Tr{DnD̄n}
DnD̄n

)
. (10)

Notice that since at convergence DD̄ = 0, Tr{DD̄} must be
chosen as the termination criterion in the recursion of Eq. (10)
to avoid numerical instabilities when approaching the minima.
The closed-form of this recurrence relation is remarkable:
providing N and H used to build D0 [Eq. (2)], we have
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FIG. 2. (a) Color maps displaying the average number of purifications (p̄) as the function of the filling factor (θ) and energy gap (∆ϵgap). Results obtained
from the PMCP and HPCP methods using the initial guess of Eqs. (2)-(11) and (2)-(14) (notated PMCP+ and HPCP+). Each pixel on the maps corresponds
to an average over 32 test Hamiltonians. (b) Energy convergence profiles with respect to the first 15 iterations for selected values of θ. (c) Average number of
purifications as a function of ln(1/∆ϵgap).

a self-consistent purification transformation which should
converge to D without any support of heuristic adjustments.
Indeed, Eq. (10) can also be derived from the PMCP relations
by working on both D and D̄ and enforcing relation (9) at
each iteration (see the Appendix). Consequently, we can also
demonstrate31 that the hole-particle canonical purification
(HPCP) of Eq. (10) converges quadratically on D as shown
in Fig. 2(b).

To assess the efficiency and limitations of the HPCP,
we have investigated the dependence of the number of
purifications (p) on the occupation factor (θ) and the energy
gap (∆ϵgap = ϵN+1 − ϵN), defined by the higher-occupied (ϵN)
and lower-unoccupied (ϵN+1) states. Similarly to the protocol
of Niklasson,15,19 sequences of M × M dense Hamiltonian
matrices (M = 100) with vanishing off-diagonal elements
were generated, having eigenvalues randomly distributed
in the range [−2.5, ϵN] ∪ [ϵN+1,2.5] for various ∆ϵgap ∈
[10−7,1.0]. As a first test, results are compared to the PMCP,21

along with the original initial guess [Eq. (2)], where β1 = θ
and β2 = min

�
β, β̄

	
, with

β =
θ

Hmax − µ
, β̄ =

θ̄

µ − Hmin

, µ ≃ µ = Tr{H }
M

, (11)

and θ̄ = 1 − θ = N̄/M , N̄ being the number of unoccupied
states. The lower and upper bounds of the Hamiltonian
eigenspectrum ( Hmin and Hmax, respectively) were estimated
from to the Geršgorin’s disc theorem.32 The preconditioning
of D0 given in Eq. (11) guarantees that the DM eigenvalues lie
in the interval [0,1] and gives rise to the following additional
constraints:

Tr{D0} = N, (12a)
Tr{D0} > Tr{D2

0} > Tr{D3
0}, (12b)

Tr{D3
0} > 2Tr{D2

0} − Tr{D0}, (12c)

which are also necessary and sufficient conditions for c ∈ [0,1]
at the first iteration. Convergence was achieved with respect to
the idempotency property, such that Tr{DnD̄n} ≤ 10−6 for all
the calculations. Additional tests on the Frobenius norm33 and
the eigenvalues of the converged density matrix (D∞) were
performed, using

∥D∞∥F −


Tr{D∞} < 10−6, (13a)

∥D∞∥F − N < 10−6, (13b)

∥diag{D∞} − diag{IN ,0N̄}∥F < 10−6, (13c)

which ensures that, at convergence, the representation of D∞
is orthogonal, and D∞ corresponds to D.

The variation of the average number of purifications (p̄)
with respect to θ and ∆ϵgap is displayed in Fig. 2(a) using a
color map for p̄ ∈ [10,50]. For a given energy gap, the HPCP
shows a net improvement over the PMCP approach regarding
moderate low and high occupation factors. Nevertheless,
as previously noted by Niklasson and Mazziotti,19,30 the
extreme values of θ remain pathological for the original
canonical purification and to a lesser extent for the HPCP. One
solution would be to break the symmetry of the McWeeny
function by moving xm towards xp or x p̄ depending on
the θ value. Basically, this requires a higher polynomial
degree for ΩMcW, i.e., Tr{(Dn − D)2}n>2, resulting in a higher
computational complexity. Assuming optimal programming,
we emphasize that the PMCP and HPCP involved only
two matrix multiplications per iteration. As already proved
in Ref. 21 and highlighted by the energy convergence profiles
in Fig. 2(b), the PMCP and HPCP approach E monotonically.

The dependence of p̄ on the band gap plotted in
Fig. 2(c) confirms the early numerical experiments,19,25 where
p̄ increases linearly with respect to ln(1/∆ϵgap). The influence
of θ is clearly apparent if we compare the minimum number
of purifications as required for the wider band gap (y-axis
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intercept), where for example, with θ = 0.5, both canonical
purifications reach the ideal value of about 10 purifications,
whereas for θ = 0.05, p̄HPCP = 23 and p̄PMCP = 37.

Let us consider how to improve the performance of
the canonical purifications by working on the initial guess,
regarding the hole-particle equivalence (or duality30). Instead
of searching for D, we may choose to purify D̄, which simply
requires replacing D with D̄ in relation (10). In that case, the
initial hole density matrix, satisfying λ(D̄0) ∈ [0,1], would be
given by Eqs. (2) and (11), with β1 = θ̄ and β2 = −max

�
β, β̄

	
.

Then, intuitively, the guess for the particle density matrix
should be improved by using this additional information.
Therefore, a more general preconditioning is proposed,

D+0 = αD0 + (1 − α)(I − D̄0), (14)
where α can be viewed as a mixing coefficient.34 Results
obtained with this new preconditioning are plotted in Fig. 2
(notated PMCP+ and HPCP+). As evident from Fig. 2(a), the
naive value of α = 0.5 leads to a net improvement of the PMCP
and HPCP performances over the range 0.3 < θ < 0.7, inside
of which the number of purifications becomes independent of
θ. Outside this interval, runaway solutions were encountered
due to the ill-conditioning of c, where either of the constraints
in Eq. (12b) or (12c) is violated. The solution to this problem
is to perform a constrained search of α in Eq. (14), such that
the first inequality of Eq. (12b) is respected, that is,

search
0≤α≤1
δ>0

Tr{D2
0} =


N − δN, if θ < (1 − δ)
N − δN̄ , if θ > (1 − δ)

 , (15)

which leads to solve a second-order polynomial equation in α,
at the extra cost of only one matrix multiplication. Obviously,
the parameter δ has to be carefully chosen such that the second
equality of Eq. (12b) and condition (12c) are also respected. We
found δ ≃ 2/3 as the optimal value.31 From Fig. 2, the bene-
fits of this optimized preconditioning are clear when focuss-
ing within the range [0.0,0.3] ∪ [0.7,1.0], albeit with one or
two extra purifications around the poles θ = {0.3,0.7}. These
benefits are even clearer in Fig. 2(c), where we also show the
plots of p̄ as a function of ln(1/∆ϵgap) for the test case θ = 0.01.
At the intercept, we find p̄PMCP ≃ 38 compared to p̄HPCP ≃ 21,
showing the improvement bring by the hole-particle equiva-
lence. We have also compared our method against the most
efficient of the trace updating methods, TRS4,20 and find that

for non-pathological fillings, the two are comparable in effi-
ciency. For the pathological cases, where TRS4 adjusts the
polynomial, we found it more efficient, but at the expense of
non-variational behaviour in the early iterations.

To conclude, we have shown how, by considering both
electron and hole occupancies, the density matrix for a
given system can be found efficiently while preserving N-
representability. This opens the door to a more robust, stable
ground state minimisation algorithm, with application to
standard and linear scaling DFT approaches.

L.A.T. would like to acknowledge D. Hache for his
unwavering support and midnight talks about how to move
beads along a double-well potential.

APPENDIX: ALTERNATIVE DERIVATION
OF THE HOLE-PARTICLE CANONICAL PURIFICATION

We demonstrate that by symmetrizing the Palser and
Manolopoulos equations with respect to D̄, the closed-form of
Eq. (10) appears naturally. Let us start from Eq. (16) of Ref. 21,

for cn ≤ 1
2
, (A1a)

Dn+1 = − 1
1 − cn

D3
n +

1 + cn
1 − cn

D2
n +

1 − 2cn
1 − cn

Dn,

for cn >
1
2
, Dn+1 = − 1

cn
D3

n +
1 + cn

cn
D2

n, (A1b)

with cn given in Eq. (7b). We may search for purification
relations dual to Eq. (A1), i.e., function of D̄. We obtain

for c̄n ≥ 1
2
, (A2a)

D̄n+1 = − 1
1 − c̄n

D̄3
n +

1 + c̄n
1 − c̄n

D̄2
n +

1 − 2c̄n
1 − c̄n

D̄n,

for c̄n <
1
2
, D̄n+1 = − 1

c̄n
D̄3

n +
1 + c̄n

c̄n
D̄2

n, (A2b)

with c̄n = 1 − cn. Instead of purifying either D or D̄, we
shall try to take advantage of the closure relation [Eq. (9)] in
such a way that, if we choose to work within the subspace of
occupied states, the purification of D [Eq. (A1)] is constrained
to verify D = I − D̄. By inserting this constraint in Eq. (A2),
we obtain

for cn ≤ 1
2
, Dn+1 = I −

(
− 1

cn
(I − Dn)3 +

2 − cn
cn

(I − Dn)2 − 1 − 2cn
cn

(I − Dn)
)
, (A3a)

for cn >
1
2
, Dn+1 = I −

(
− 1

1 − cn
(I − Dn)3 +

2 − cn
1 − cn

(I − Dn)2
)
. (A3b)

On multiplying Eqs. (A1a) and (A3a) by (1 − cn) and cn,
respectively [or multiplying Eqs. (A1b) and (A3b) by cn and
(1 − cn)], and adding, we obtain

Dn+1 = Dn + 2
�
D2

nD̄n − cnDnD̄n

�
. (A4a)
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2.2.4 Extended comparison of density matrix purifications

For this extended comparison of purification methods we shall consider the same set of
Hamiltonian matrices used for the numerical experiment of Section 2.2.3 [cf. Figure 2 of
the article and text therein]. The set of 32 Hamiltonians, ie. H ∈ RM×M with M = 100,
was constructed using the following recipe:

1. H := random{N ×N}, such that: Hij ∈ [−2,+2]

2. H := (H +H t)/2, such that: Hij = Hji

3. Hij := Hij/|i− j|2 ∀i ̸= j, such that: lim|i−j|→0 Hij → 0

4. (E,C) := diagonalize{H}, such that: E = diag{ϵ1ϵ2 · · · ϵM} and CtC = I

5. Ẽ := shift{E |N,∆ϵgap}, such that: ∆ϵgap = ϵN+1 − ϵN

6. H̃ := CẼCt

In step 5, given a filling factor, θ = N/M , and a band gap, ∆ϵgap, a shift operator
is applied to the eigenvalues located at the middle of the band gap in order to verify:
∆ϵgap = ϵN+1 − ϵN . The final dense Hamiltonian matrix is recovered in step 6. Given a
fixed energy band gap of 1.0 au and eigenspectrum width of about 6 au, examples of
eigenvalues distributions obtained from a chunk of test Hamiltonians are represented in
the Figure {2.6}.

Fig. 2.6 Scatter plot of the eigenvalues (in blue) from a chunk of the test Hamiltonians.
The red, yellow and green pixels correspond to ϵN , ϵN+1 and middle of the band gap,
respectively. Each panel correponds to a set 32 randomized symmetric matrices for filling
factor θ ∈ {0.01, 0.90}.
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As represented on Figure {2.7}a, this protocol was repeated by varying the filling
factor (the x-dimension) in the range ]0, 1[, and the energy gap in the range [10−7, 1.0]
(the y-dimension). This figure clearly highlights the performances of the HPCP with
respect to the TC2, TRS4 and PMCP, where each pixel represents the average number
of purifications over 32 randomized Hamiltonians. The number of purifications required
to achieve convergence for the TC2 is much more higher than for all the other methods
(about a factor 2). The TRS4 and HPCP have similar color maps, which are constant
along the θ direction, although at the very low or high θ, HPCP looses in efficiency.
As discussed in the original article, the impact of the energy gap over the number of
purifications is clearly observed.

Fig. 2.7 (a) Color maps displaying the average number of purifications (p̄) as the function
of the filling factor (θ) and energy gap (∆ϵgap). Results obtained from the PMCP,
HPCP, TRS4 and TC2 methods. (b) Energy convergence profiles with respect to the
first 15 iterations for selected values of θ, and (c) the corresponding density matrix trace
conservation profiles.

Figure {2.7(b,c)} sheds some light on the HPCP trace-preserving property regarding
the strong fluctuation of the number of occupied states observed for the trace-correcting
method, and to a lesser extent, the trace-resetting mechanism. It is noteworthy that
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fluctuations of the trace of the density matrix are attenuated when θ is different from
half filling.
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Fig. 2.8 Comparison of four density matrix purifications in terms of matrix multiplications
(MMs) for varying filling factors, and two band gap values ∆ϵgap = 0.5 and ∆ϵgap = 10−6.
Heavy lines represent averages over 256 random Hamiltonians and shaded areas are the
corresponding standard deviations.

In order to emphasize on the computational performance of the purification methods,
the number of matrix multiplications (MMs) is a parameter to consider. From an optimal
programming perspective, the numbers of MMs per iteration summarized in Table {2.1}
allow to compute the total number of MMs realized to reach convergence. Results
obtained for a set of 256 random test Hamiltonians —for two different values of the band
gap— as a function of θ are plotted in Figure {2.8}. We found that, while the HPCP
and TRS4 are comparable for θ ∈ [0.1, 0.9], TRS4 is more efficient when dealing with
pathological cases. Note that the TC2 also presents the inversed bell-shape distribution.
Regarding the influence of the gap, we should note that for the HPCP, the standard
deviation is almost negligeable, indicating that the HPCP performances do not depend
on the eigenvalue distributions. For wide and low gaps, the TC2 remains the most
performant purification method when θ ∈ [0.2, 0.8].
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2.3 Linear scaling strategies

The density matrix for insulator contains naturally small elements which can be considered
as zero with respect to some threshold. In order to accelerate the calculation, one can
get rid of zero elements and work only with significant (also referred to as non-zero
elements, nnz). Removing the zero elements involves to truncate the density matrix.
Working only with non-zero elements requires a structure representation for the truncated
density matrix. Performing density matrix minimizations and purifications with these
two ingredients enables to achieve a linear scaling calculation.

2.3.1 Density matrix truncations

The most popular density matrix truncations that we use in this thesis are the following:

Numerical truncation

Since there are small elements in the density matrix, a simple and direct scheme to
truncate the density matrix is to drop these small elements by setting them to zero if the
absolute value is below a predefined threshold τ [96, 133]. With respect to the chosen
numerical threshold, the density matrix elements are said to be filtered such as

D̃ = FILTER( D , τ ) =
 Dij if |Dij| > τ

0 otherwise
(2.33)

D̃ is the truncated density matrix. In a minimization or purification algorithm, we apply
the truncation (2.33) after each MM.

Radial truncation

The magnitude of density matrix elements depends on the distance between the basis
function centers of atom centers. Therefore, one way to truncate the density matrix is to
neglect the matrix elements that correspond to distances between basis function centers
larger than a predefined cutoff radius Rc[40, 101, 134, 105, 106, 104]. Hence, the filtered
matrix elements are such as

D̃ = FILTER( D , Rc ) =
 Dij if |ri − rj| < Rc

0 otherwise
(2.34)
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In a minimization or purification algorithm, we apply the truncation (2.34) only on the
density matrix D as shown in Algorithm {10} (step (9)). We apply the truncation above
all else (any polynomial, function or gradient) depending on the density matrix.

2.3.2 Sparse matrix representations

Using the truncation reinforces the matrix sparsity. The access to only non-zero elements
is a great advantage for the minimizations and purifications algorithms. Instead of
using the standard algebra for matrices in dense format, it is better to employ sparse
matrices algebra. In the latter, the sparse matrix is compressed into some matrix data
structures. A more detailed discussion of data structures for sparse matrices can be found
in Ref. [135]. There are several matrix data structures for sparse matrices[136–139, 16].
For instance, the tool package SPARSKIT[140] presents a multitude of sparse matrices
formats such as the compressed sparse column (CSC) format. The CSC representation is
the simplest representation for the sparse matrices, that we use in this thesis.

2.4 Applications to carbon nanotubes

In this section we shall compare the performances of O(N) density matrix energy
functional minimizations and polynomial expansions presented in Sections 2.1.2 and 2.2,
with respect to the truncation schemes. For that study, the Pariser-Parr-Pople (PPP)
semi-empiral method described in Section 1.4 will be applied to a set of π-conjugated
systems: the carbon nanotubes. We recall that, within the SCF-PPP framework, the
ideal case of the one-electron one-orbital picture is imposed. For neutral π-conjugated
network, this implies that the filling factor is automatically set up to 1/2.

2.4.1 Carbon nanotubes

The π-conjugated systems considered in this part are the carbon nanotubes (CNTs). A
CNT is a compound which has the shape of a cylindrical tube made of a rolled single
layer of carbon atoms. This single layer of carbon atoms is known as graphene.[141, 142]
A detailed description on CNTs and their properties can be found, for instance, in the
Refs. [143–145]. The rolling of the graphene to form CNTs is modulated by the chirality
vector, C⃗h, reproduced on Figure {2.9a}. This vector has two components, such that:

C⃗h = p a⃗1 + q a⃗2, (p, q) ∈ Z (2.35)
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(a) Illustration of the chiral vector for a the graphene sheet. T denotes the tube axis. a⃗1 and
a⃗2 are the unit vectors of graphene in real space.

(b) Armchair type (p, p).
(c) Zigzag type (p, 0). (d) Chiral type (p, q).

Fig. 2.9 Rolling of a graphene sheet to generate a carbon nanotube.
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where {a⃗1, a⃗2} are the unit vectors of the graphene sheet. The values of the pair of indices
(p, q) define the way the graphene sheet is wrapped. From the definition of C⃗h and the
symmetry of translation, three types of CNTs can be generated:

• the armchair type, where p = q,

• the zigzag type, where p = 0 or q = 0,

• the chiral type, where p ̸= q.

They are represented in Figure {2.9}. Note that p and q are generally given as positive
integers with p > q. The indices (p, q) do not only determine the carbon atoms’
arrangement in the tube, but they can also provide information on the properties
of the CNT.[143] For instance:

• the armchair CNTs are all metallic,

• the zigzag CNTs are metallic when p is a multiple of 3,

• the chiral CNTs are metallic when (p− q) is a multiple of 3.

CNTs # atoms a(Å) # cells
(8, 0) 32 4.27 33

(17, 0) 68 4.26 15
(12, 0) 48 4.27 21
(5, 4) 244 33.31 3

(15, 5) 260 15.37 3
(11, 5) 268 20.15 3

Table 2.2 Carbon nanotubes investigated in this work.

Metallic systems are challenging when using linear-scaling methods.[63] Consequently,
we have only considered the zigzag and chiral carbon nanotubes described in Table {2.3}.
These CNTs were generated from the nanotube structure generator website TUBGEN[146],
using a carbon-carbon bond length of 1.421 Å. Semi-empirical approaches such as the
PPP model are generally used to have a qualitative picture of electronic structure and
related properties. Nevertheless, it would be interesting to compare it to the state-
of-the-art Kohn-Sham DFT calculations in order to appreciate the robustness of the
parametrization described in Section 1.4.2.

The Table {2.3} reports the energy gaps of the CNTs using two different PPP
parametrizations, along with DFT calculations. We note a good agreement between the
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Table 2.3 Energy gap for the π–π∗ (in eV) at the Γ point of the first Brillouin zone.

CNTs # atoms a(Å) # cells Zhanga Ohnoa B3LYPb

(8,0) 32 4.27 33 1.2481 1.3238 1.283
(17,0) 68 4.26 15 0.6939 0.6940 0.734
(12,0) 48 4.27 21 0.0488 0.0413 0.041
(5,4) 244 33.31 3 0.9192 0.8069 –

(15,5) 260 15.37 3 0.5860 0.6836 0.66
(11,5) 268 20.15 3 0.0481 0.0664 0.00

aPresent work using the Ohno[70] and Zhang[72] PPP parametrizations.
bKS-DFT calculations using the B3LYP exchange-correlation functional reported from Ref. [147].

semi-empirical and the first-principles approaches, with differences which do not exceed
5% (for the Ohno parametrization only). This demonstrates that the major part of the
two-electron π interactions is well reproduced by the PPP model.

2.4.2 Numerical truncation for SCF calculations

SCF calculation based on density matrix solvers is controlled via two threshold parameters:
(i) the first one is related to the density matrix (DM) convergence inside each SCF cycle,
ie. τD = ∥Dn+1 − Dn∥,1 (ii) the second one is related to the convergence of the SCF
procedure itself, and based on an energy criterion, ie. τSCF = |En+1 − En|. For the results
presented in the next section, we have used τD = 10−3 and τSCF = 10−6. In order to
achieve the linear scaling regime, the density matrix purifications and minimizations must
be supported by techniques which reinforce the density matrix sparsity (cf. Section 2.3.1).

Using the numerical truncation scheme of Eq. (2.33), the sparsity of the DM is
controlled by the numerical threshold τ . In Table {2.4} are reported the SCF energies
obtained for the set of CNTs described in Table {2.3} using the hole-particle canonical
purification (HPCP) as density matrix solver. Different values of τ were considered
within the range [10−5, 10−7]. ∆E is the error between the exact SCF energy obtained
(without truncation) and the truncated density matrix purification. NSCF is the number
of SCF iterations achieved to reach convergence, and nnz is the number of non-zero
DM elements. As expected, by reading Table {2.4} (along the rows), for all the CNTs,
we observe that the energy approaches the exact value as τ decreases, ie. the density
of the non-zero elements increases. Interestingly, by reading the same table (along the
columns), for a given threshold, and given the π-π∗ gaps reported in Table {2.3}, we

1This parameter correponds to the keyword ”tolerance” introduced in the algorithms of the Appen-
dices B and C.
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CNTs
τ 10−5 10−6 10−7 10−8

(8,0)
∆E = 1.54× 10−3

NSCF = 15
nnz = 35%

∆E = 6.74× 10−4

NSCF = 6
nnz = 41%

∆E = 9.27× 10−6

NSCF = 5
nnz = 49%

∆E = 5.89× 10−7

NSCF = 5
nnz = 60%

(17,0)
∆E = 7.31× 10−3

NSCF = 14
nnz = 45%

∆E = 4.86× 10−5

NSCF = 6
nnz = 50%

∆E = 6.11× 10−6

NSCF = 6
nnz = 61%

∆E = 4.95× 10−7

NSCF = 6
nnz = 70%

(12,0)
∆E = 1.05× 10−3

NSCF = 9
nnz = 50%

∆E = 9.89× 10−4

NSCF = 7
nnz = 59%

∆E = 2.50× 10−6

NSCF = 6
nnz = 65%

∆E = 7.50× 10−7

NSCF = 6
nnz = 77%

(5,4)
∆E = 5.97× 10−4

NSCF = 5
nnz = 48%

∆E = 1.16× 10−5

NSCF = 5
nnz = 60%

∆E = 1.72× 10−7

NSCF = 5
nnz = 69%

∆E = 2.57× 10−7

NSCF = 5
nnz = 80%

(15,5)
∆E = 3.71× 10−4

NSCF = 4
nnz = 51%

∆E = 2.33× 10−5

NSCF = 5
nnz = 62%

∆E = 1.57× 10−6

NSCF = 6
nnz = 75%

∆E = 2.89× 10−7

NSCF = 6
nnz = 85%

(11,5)
∆E = 9.90× 10−5

NSCF = 13
nnz = 54%

∆E = 8.61× 10−6

NSCF = 7
nnz = 67%

∆E = 1.98× 10−7

NSCF = 6
nnz = 80%

∆E = 5.96× 10−8

NSCF = 6
nnz = 89%

Table 2.4 SCF convergence with respect to the numerical truncation threshold τ , for a set
of carbone nanotubes. ∆E , NSCF and nnz correspond to the energy error, the number of
SCF iterations, and the number of non-zero density matrix elements after having applied
the truncation.
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note that the sparsity of the DM decreases for increasing energy gap. For reasonable
values of the threshold (τ ≥ 10−6), the convergence is roughly achieved after a number of
6 cycles, whatever the CNT. This is to be compared with the trend obtained for highly
sparse DM where, depending on the CNT, twice as many SCF cycles are required.
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(d) nnz = 89%

Fig. 2.10 First form of illustration of the sparsity pattern of the density matrix truncated
at τ = 10−8 during the SCF iterations, following the sequence (a) to (d). Results obtained
for the CNT (11,5).

To illustrate the influence of the numerical truncation on the density matrix during
the SCF, sparsity patterns were represented in Figure {2.10} for the CNT (11,5). These
sparsity patterns correspond to an average of the density matrices over the six SCF
cycles summarized into four sequences. In Figure {2.10}, each colored map represents the



64 Density matrix purifications and minimizations

0 50 100 150 200 250

0

50

100

150

200

250
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(a) nnz = 26%

0 50 100 150 200 250

0

50

100

150

200

250
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(b) nnz = 72%

0 50 100 150 200 250

0

50

100

150

200

250
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(c) nnz = 86%

0 50 100 150 200 250

0

50

100

150

200

250
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(d) nnz = 89%

Fig. 2.11 Second form of illustration of the sparsity pattern of the density matrix truncated
at τ = 10−8 during the SCF iterations, following the sequence (a) to (d). Results obtained
for the CNT (11,5).
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density matrix during the iterative procedure where, according to the legend color bar,
the largest matrix elements are located on the diagonal. Starting from a sparse initial
guess,2 we observe how the DM is gradually filled up from step (a) to (d), to eventually
reach convergence at nnz = 89%. The alternative representation of Figure {2.11}, where
the elements (in absolute value) are sorted in decreasing order (from the top to the
bottom), emphasizes on how really sparse are the matrices we are dealing with, and
the amplitude of variations of the nnz. Each colored map in Figure {2.11} presents an
important decaying constrast from black (the largest elements) to grey (the smallest
elements). From (a) to (b), one can see that the nnz region is progressively widening to
reach half of the picture. Then, from (c) to (d), the amplitude of those elements —the
intensity of the red color— is increasing.

2.4.3 Radial truncation for SCF calculations

Fig. 2.12 Chart for the radial truncation scheme displaying the circle (blue solid line) of
radius Rc. The largest circle (red dashed line) is of radius equal to a/2 inscribed in the
square unit cell.

Whereas the numerical truncation operates directly on the DM elements without
consideration on the density matrix topology, the radial truncation of Eq. (2.34) assumes
that the relevant elements are localized within spheres of a certain radius centered on
each atom. As a result, controlling the radius of the spheres, controls the number of
non-zero elements which, compared to numerical truncation, has fixed positions within

2In this work the sparsity of the initial guess is dictated by the sparsity of the semi-empirical ZDO
Fock matrix [cf. Section 1.4].
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Fig. 2.13 Convergence of the LNV energy with respect to the exact value obtained from
diagonalization (no truncation) as a function of the radial cutoff Rc. (a) Convergence
profile obtained for the zigzag CNT. (b) Convergence profile obtained for the chiral CNT.
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the DM network. As a result, the cutoff radius Rc fixes the superior limit beyond which
the density matrix elements are enforced to be zero. In this work, the upper bound
of Rc is defined by the lattice parameter a in the longitudinal-like direction, such that:
Rc ≤ a/2 [cf. Figure {2.12}]. It is clear that larger is the radial cutoff, higher is the
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Fig. 2.14 Convergence of energy during the density matrix (a) minimization (LNV), and
(b) purification (HPCP) for the CNT (8,0). A cutoff radius of 15 Å have been used (cf.
text for more details).

number of significant nnz of the density matrix. We have investigated the convergence
of the SCF energy with respect to Rc. Results are displayed in Figure {2.13}. For each
type of CNT —zigzag or chiral— we observe a variational-like convergence in agreement
with the earlier works of Refs. [148, 149]. However, the purifications used with the
radial truncation can be problematic for some cutoff radii. For instance, in Figure {2.14}
is represented the convergence of the energy within a single SCF cycle (ie. for a fixed
Fock matrix). For the variational trace-conserving purification method, we observe an
increase of the energy after the 5th iteration [blue curve on panel (b)], which indicates
that the (local) minimum can not be reached. Note that the relation En+1 > En was
already proposed by Palser and Manolopoulos as the termination criterion when radial
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Fig. 2.15 First form of illustration for the progression of the density matrix truncated at
Rc = 10 Å during the iterations, throughout the four respective sequences (a), (b), (c)
and (d).
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Fig. 2.16 Second form of illustration for the progression of the density matrix truncated
at Rc = 10 Å during the iterations, throughout the four respective sequences (a), (b), (c)
and (d).
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truncation is applied.[104] As a result, unlike the numerical truncation which drops small
elements disregarding their locations in the density matrix, and can be used with any of
the density matrix solver, the radial truncation seems to be, for some of the cases treated
here, incompatible with the purifications.

As an attempt of solution, we have performed the following test: when En+1 > En,
the radial truncation is switched off until En′+1 < En′ , where then, the truncation is
switched back on. Result (denoted by Radial∗) is dispalyed in red on the Figure {2.14}.
In that case, we observed that the monotonic convergence is not interrupted at the
crossing point corresponding to n = 5. Note that compared to the LNV minimization,
the output energy (as obtained at the end of the purification) is lower. Nevertheless,
for all the cases, we found that the LNV is more robust than the HPCP with regard to
the radial truncation. In the following, only results obtained for the purifications and
radial truncation at non-problematic cutoff radii are discussed. We now illustrate the
radial truncation using the CNT (11,5) at Rc = 10 Å, as already used for the numerical
truncation in Section 2.4.2. The evolution of the density matrix sparsity during the SCF
iterations is summarized in Figures {2.15} and {2.16}. Since the number of non-zero
elements is predifined by the radial truncation, compared to Figures {2.10} and {2.11},
we do not observe the ”let-it-grow” evolution of the numerical scheme. The progression
of the red color region for the non-zero elements is limited.

2.4.4 Linear scaling SCF calculations and conclusion

Applications of the radial truncation to achieve linear scaling on large systems are pre-
sented in Figure {2.17}. For that purpose, we have replicated the CNT (11,5) in the
longitudinal direction up to about 10,000 atoms. The figure displays the variation of
the CPU time as a function of the system size. Calculations were performed using the
diagonalization (Diag) and the following density matrix solvers: the standard LNV mini-
mization, McWeeny purification (McW), trace correcting (TC2), canonical purification
(PMCP), hole particle canonical purification (HPCP), and the trace resetting (TRS4).
Figure {2.17(a)} shows that purifications are more efficient than the LNV minimization.
In this ideal case of half-filling, the ”fixed point” McWeeny polynomials presents the best
performance. These results are in agreement with other comparative studies.[150, 151]
The influence of the density matrix sparsity on the linear scaling behavior can be appre-
ciated in Figure {2.17(b)}, where the calculation time is reduced by more than a factor
2 when the truncation radius is decreased from 50 to 10 Å. Note in passing that, all
the density matrix methods are cleary proved more efficient than the diagonalization.
Using the two previous forms of matrix illustration [cf. Section 2.4.2 or Section 2.4.3], we
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Fig. 2.17 Calculation time as a function of the number of atoms. Linear scaling regime is
achieved using the radial truncation. (a) Rc = 50 Å. (b) Rc = 10 and 50 Å Results were
obtained for the replicated CNT (11,5).
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Fig. 2.18 Illustration of the C coefficients matrix for the diagonalization and of the
untruncated D density matrix for the minimizations and purifications methods. (a) and
(b) are the first form of illustration, while (c) and (d) are the second form of illustration,
for the CNT (11,5).
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display in Figure {2.18} the profile of the C and D matrices obtained at the end of SCF
convergence, for the CNT (11,5). C is completely full, while D is sparse with decaying
profile. That justifies the net difference between the diagonalization scaling and density
matrix methods scaling.

In this chapter we have shown standard diagonalization can be circumvented using
density matrix based solvers, which, when combined with sparse matrix algebra can lead
to linear scaling regime. We found that, enforcing sparsity by the numerical approach is
more robust compared to the radial truncation. Nevertheless, in that case, the number
of non-zero elements is controlled a posteriori. For all the density matrix purifications,
we found that radial truncation may cause convergence problems. Obviously, definitive
conclusions on the advantages and drawbacks of the various schemes are beyond the
scope of this work. A more systematic comparison using non-orthogonal basis sets of
various sizes, along with a browder set of systems should be beneficial to identify and
analyse limitations in accuracy and stability of O(N) methods. The main aim of this
dissertation is to derive and test linear scaling algorithms for density matrix perturbation
theory, which will be introduced in the next chapter.





Chapter 3

Density matrix perturbation theory
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In Chapters 1 and 2 of this manuscript, we have presented the resolution of time-
independent Liouville-von Neumann equation in order to determine the energy of a
molecular system. However, to relate the results from quantum chemical calculations
to experiment, it is essential to compute quantities that are directly comparable to
measurements. For this purpose, the density matrix of the ground state obtained from
the resolution of the Liouville-von Neumann equation is not sufficient. It is therefore
necessary to compute further quantities that characterize the molecular system of interest.
Theses quantities can be classified as follow:

1. Energy differences, such as reaction energies, dissociation energies, that involve
energy information at different points on the Born-Oppenheimer potential energy
surface.

2. Molecular properties, like dipole moment, polarizabilities, vibrational frequencies,
nuclear magnetic resonance parameters, that require information of perturbed
electronic states at a single point on the potential surface.

3. Transitions energy between different electronic states, as for instance, electronic
excitation energies, radiative life times, that involve information for electronic states
coupling.

The concept of spectroscopy refers to the observation of a physical phenomenon onto
an energy scale or any quantity related to an energy, like frequency or wave length.
Until nowadays, the spectroscopy principle is greatly expanding in many research fields
such as astronomy, biophysics, chemistry, acoustics. The basic idea of the spectroscopy
consists to subject to radiation the matter and measure the response. Comparing the
original radiation with the response, one can extract information related to some of its
intrinsic properties, for instance: structural, electronic or magnetic. A specific radiation,
ie. wavelength range, allows to probe specific properties of the system. For the second
class of properties enumerated above, the perturbation theory is necessary (and sufficient)
to access various spectroscopic observables. This Chapter takes a look beyond the time-
independent Liouville-von Neumann equation, to derive density matrix time-independent
perturbation theory.
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3.1 Theoretical background

Let us consider an unperturbed system of N occupied and N̄ unoccupied molecular states
expanded onto a linear combination of M atomic basis functions, such that N + N̄ = M .
Considering an orthonormalized set of basis functions [cf. Section 1.4], we recall the
generalized constraints on the one-particle density matrix D for the occupied states and
the one-hole density matrix D̄ for the unoccupied eigenstates, are given as

Idempotency: D2 = D and D̄2 = D̄

Trace conservation: Tr{D} = N and Tr{D̄} = N̄

Complementarity: D + D̄ = I

Orthogonality: DD̄ = 0

(3.1a)
(3.1b)
(3.1c)
(3.1d)

where Eqs. (3.1a) and (3.1b) are the N -representability conditions for a single Slater
determinant. Along with Eq. (3.1), the ground state is guaranteed if the density matrix
and the Fock matrix fulfill the SCF conditions

FD −DF = 0
FD̄ − D̄F = 0

(3.2)
(3.3)

The density matrix methods such as the minimizations and the purifications, highlighted
in Chapter 2, are used for solving the following unperturbed SCF equations

F (Dn)Dn+1 −Dn+1F (Dn) = 0
subject to: Tr{Dn} = N

D2
n = Dn, ∀ n

(3.4a)
(3.4b)
(3.4c)

Let us now consider that this system is disturbed by an external time-independent
perturbation, which takes the form of a matrix W . The perturbed Fock and one-particle
density matrices formally read

Fλ := F + λWF

Dλ := D + λWD

(3.5a)
(3.5b)

where we have introduced a scaling parameter λ ∈ [0, 1] to modulate the strength of the
perturbation. Consequently, the analogue of the non-perturbed SCF equations (3.4), for
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the perturbed case, are given by

Fλ (Dλ,n)Dλ,n+1 −Dλ,n+1Fλ (Dλ,n) = 0
subject to: Tr{Dλ,n} = N,

D2
λ,n = Dλ,n, ∀ n

(3.6a)
(3.6b)
(3.6c)

Since we are concerned about the response of the system to the perturbation, we need
to evaluate the variation of the energy with respect to an infinitesimal variation of
the perturbation strength. It is worth to note that the perturbation theory is valid if
the response is small compared to the eigenspectrum of F . There exist two ways for
evaluating the energy response: (i) the numerical solution based on finite differences [cf.
Appendix E], or (ii) the analytical solution based on the perturbation expansion of the
relevant quantities. Density matrix perturbation theory presented in this Chapter is
obviously dealing with the second possiblity. In that context, one can write the matrices
Fλ and Dλ down as power series in λ following the standard Taylor expansion:

Dλ = D + λD(1) + λ2D(2) + ...+ λkD(k)

Fλ = F + λF (1) + λ2F (2) + ...+ λkF (k)

(3.7a)
(3.7b)

with D(k) and F (k) the shorthand notations for the kth order variation of the density and
Fock matrix. More explicitly, they should read

D(k) := 1
k!
dkD

dλk

F (k) := 1
k!
dkF

dλk

(3.8a)

(3.8b)

From here, the idea is to apply the perturbation theory on the stationary conditions of
Eq. (3.6). On inserting the expansion of Eq. (3.7a) into (3.6c), and equating the pertur-
bation orders of the left and right sides, we obtain the following perturbed idempotency
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relations:
DD(1) +D(1)D = D(1)

DD(2) + (D(1))2 +D(2)D = D(2)

DD(3) +D(1)D(2) +D(2)D(1) +D(3)D = D(3)

...
DD(k) +D(1)D(k−1) +D(2)D(k−2) + ...+D(k)D = D(k)

or more generally: D(k) =
k∑

l=0
D(l)D(k−l)

(3.9a)
(3.9b)
(3.9c)

(3.9d)

(3.9e)

Then, by repeating the perturbation identification on the Liouville-von Neumann equation,
that is by inserting Eqs. (3.7a) and (3.7b) into Eq. (3.6a), we obtain the perturbed SCF
conditions:

[F,D(1)] + [F (1), D] = 0
[F,D(2)] + [F (1), D(1)] + [F (2), D] = 0

[F,D(3)] + [F (1), D(2)] + [F (2), D(1)] + [F (3), D] = 0
...

[F,D(k)] + [F (1), D(k−1)] + ...+ [F (k), D] = 0

or more generally:
k∑

l=0
[F (l), D(k−l)] = 0

(3.10a)
(3.10b)
(3.10c)

(3.10d)

(3.10e)

The perturbed idempotency constraints (3.9) and SCF conditions (3.10) are both the
background of the density matrix perturbation theories which are presented in the next
Section. From these relations, we may also emphasize that the evaluation of the perturbed
density matrix at order (k) is based on the knowledge of the order (k − 1). In other
words, evaluation of the perturbed quantities requires —in principle— to proceed order
by order.

3.2 Wavefunction coupled perturbed self-consistent
field formulation

The standard density matrix perturbation method is the atomic orbitals coupled perturbed
self-consistent-field[25, 17, 26, 152] (AO-CPSCF). In order to derive it, we simply need
to decompose the non-perturbed Fock matrix in terms of its eigenvalues and (one-state)
projection operators built from the eigenvectors.
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The density matrix perturbation theory as developed by Diercksen and McWeeny[26]
is based on the partitioning of D(k) into four distinct contributions and their resolutions.
Using the closure relation (3.1c), any operator X can be recast into the following projected
components:

X = (D + D̄)X(D + D̄)
= DXD +DXD̄ + D̄XD + D̄XD̄

= Xoo +Xov +Xvo +Xvv

(3.11a)
(3.11b)
(3.11c)

where the subscripts (oo) and (vv) designate the occupied-occupied, and virtual-virtual
contributions related to the original orthogonal subspaces Hocc and Hvirt, for the occupied
states and for the unoccupied states, respectively. Likewise, (ov) and (vo) stand for
the perturbation induced by coupling terms associated with subspaces Hocc-virt and
Hvirt-occ, respectively. The spectral resolution of Eq. (1.94b) already introduced in
Section 1.5 allows any projected matrices of Eq. (3.11c) to be decomposed into a sum of
single-projected components, following:

Xoo = DXD̄ =
∑
i,j

DiXDj

Xov = DXD̄ =
∑
i,j

DiXD̄j

Xvo = DXD̄ =
∑
i,j

D̄iXDj

Xvv = DXD̄ =
∑
i,j

D̄iXD̄j

(3.12a)

(3.12b)

(3.12c)

(3.12d)

Note that the spectral resolution (3.12) implies the eigenstates to be known, which
irremediably involves the diagonalization of the unperturbed Fock matrix.

3.2.1 First-order response

Let us start with the first-order of perturbation. On applying the projection decomposition
of Eq. (3.11) to both sides of Eq. (3.9a), we obtain:

2D(1)
oo +D(1)

ov +D(1)
vo = D(1)

oo +D(1)
ov +D(1)

vo +D(1)
vv (3.13)

Proceeding by identification, it can be deduced that

D(1)
oo = 0, D(1)

vv = 0 (3.14)
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and
D(1) = D(1)

ov +D(1)
vo

= D(1)
ov +D(1)†

ov

(3.15a)
(3.15b)

For the last statement (3.15b), we relied on the symmetry property of the perturbed
density matrix, that is, D(1)† = D(1). The relation (3.15b) demonstrates that the
determination of D(1) involves only the evaluation of the occupied-virtual transition
matrix. For that purpose, multiplying Eq. (3.10a) by D from the left, and by D̄ from
the right, we obtain

F (1)
ov (D(1)

ov,n) = [F,D(1)
ov,n+1]

subject to: Tr{D(1)
ov,n} = 0, ∀n

(3.16a)
(3.16b)

where we have re-introduced the iteration indice n of the self-consistent resolution, and
the dependence of the perturbation matrix F (1)

ov over D(1)
ov .1 This relation constitutes the

first-order —coupled perturbed self-consistent field (CPSCF)— density-matrix equations,
analogous to the non-perturbed Eq. (3.4). Given an initial guess for the first-order
perturbed density matrix D(1)

ov [cf. Eq. (3.14)], we project the first-order perturbed Fock
matrix F (1), to build F (1)

ov , and finally solve Eq. (3.16). The iterative process is repeated
until convergence is achieved. By substituting Eq. (1.94a) into (3.16), one obtains

∑
i,j

{
D

(1)
ov,ij(ϵi − ϵ̄j)− F (1)

ov,ij

}
= 0

with: D
(1)
ov,ij = DiD

(1)D̄j

F
(1)
ov,ij = DiF

(1)D̄j

(3.17a)

(3.17b)
(3.17c)

which yields to the well-known sum-over-states (SOS) first-order equation:

∑
i,j

D
(1)
ov,ij =

∑
i,j

F
(1)
ov,ij

(ϵi − ϵ̄j)
⇔ D(1)

ov =
∑
i,j

F
(1)
ov,ij

(ϵi − ϵ̄j)
(3.18)

1Latter in this Chapter the dependence of the perturbed Fock matrices over the perturbed density
matrices will be considered as implicit.
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3.2.2 Second-order response

The second-order equation can be derived by applying the resolution of identity to both
side of Eq. (3.9b). Keeping the notations of Eq. (3.11), we have

2D(2)
oo +D(2)

ov +D(2)
vo + (D(1)D(1))oo + (D(1)D(1))vv + (D(1)D(1))ov

+ (D(1)D(1))vo = D(2)
oo +D(2)

ov +D(2)
vo +D(2)

vv (3.19)

By resolving the product of first-order perturbed density matrices according to

D(1)D(1) = D(1)ID(1)

= D(1)(D + D̄)D(1)

= D(1)(D2 + D̄2)D(1)

we obtain
(D(1)D(1))oo = D(1)

oo D
(1)
oo +D(1)

ov D
(1)
vo

(D(1)D(1))vv = D(1)
vv D

(1)
vv +D(1)

vo D
(1)
ov

(D(1)D(1))ov = D(1)
ov D

(1)
vv +D(1)

oo D
(1)
ov

(D(1)D(1))vo = D(1)
vo D

(1)
oo +D(1)

vv D
(1)
vo

(3.21a)
(3.21b)
(3.21c)
(3.21d)

On inserting the right-hand side (rhs) of Eqs. (3.21) into (3.19), and using the properties
(3.14), we have

2D(2)
oo +D(2)

ov +D(2)
vo +D(1)

ov D
(1)
vo +D(1)

vo D
(1)
ov

= D(2)
oo +D(2)

ov +D(2)
vo +D(2)

vv (3.22)

Therefore, it comes
D(2)

oo = −D(1)
ov D

(1)
vo , D(2)

vv = +D(1)
vo D

(1)
ov (3.23)

Unlike the 1st-order perturbation, the diagonal components of the 2nd-order perturbed
density matrix are likely to be non zero and can be computed from the 1st-order perturbed
density matrix. Relying furthermore on the symmetry of the perturbed density, it leaves
only the occupied-virtual coupling matrix to evaluate. On resolving the 2nd-order
perturbed Fock matrix using Eq. (3.10b), we obtain

F (2)
ov = [F,D(2)

ov ] + [F (1), D(1)]ov (3.24)
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Using the spectral resolution of the non-perturbed Fock matrix and the perturbed density
matrix, Eq. (3.24) transforms as

F (2)
ov =

∑
i,j

(
D

(2)
ov,ij(ϵi − ϵ̄j) + [F (1), D(1)]ov,ij

)
(3.25)

which leads to the 2nd-order SOS equation

D(2)
ov =

∑
i,j

(ϵi − ϵ̄j)−1
(
F (2)

ov − [F (1), D(1)]ov

)
ij

(3.26)

The final 2nd-order perturbed density matrix is obtained summing over D(2)
ov , its conjugate-

transposed, D(2)
vo , and the diagonal contributions of Eq. (3.23).

3.2.3 Third-order response

Using the same route than for the first- and second-order, the third-order response
equations are derived from Eq. (3.9c). This yields to

2D(3)
oo + D(3)

ov +D(3)
vo + (D(1)D(2))oo + (D(1)D(2))vv + (D(1)D(2))ov

+ (D(1)D(2))vo + (D(2)D(1))oo + (D(2)D(1))vv + (D(2)D(1))ov

+ (D(2)D(1))vo = D(3)
oo +D(3)

ov +D(3)
vo +D(3)

vv (3.27)

where
(D(1)D(2))oo = D(1)

oo D
(2)
oo +D(1)

ov D
(2)
vo

(D(1)D(2))vv = D(1)
vv D

(2)
vv +D(1)

vo D
(2)
ov

(D(1)D(2))ov = D(1)
ov D

(2)
vv +D(1)

oo D
(2)
ov

(D(1)D(2))vo = D(1)
vo D

(2)
oo +D(1)

vv D
(2)
vo

(D(2)D(1))oo = D(2)
oo D

(1)
oo +D(2)

ov D
(1)
vo

(D(2)D(1))vv = D(2)
vv D

(1)
vv +D(2)

vo D
(1)
ov

(D(2)D(1))ov = D(2)
ov D

(1)
vv +D(2)

oo D
(1)
ov

(D(2)D(1))vo = D(2)
vo D

(1)
oo +D(2)

vv D
(1)
vo

(3.28a)
(3.28b)
(3.28c)
(3.28d)
(3.28e)
(3.28f)
(3.28g)
(3.28h)

On inserting Eqs. (3.14) and (3.23) into (3.28), simplifies Eq. (3.27) to:

2D(3)
oo +D(3)

ov +D(3)
vo + D(1)

ov D
(2)
vo +D(2)

ov D
(1)
vo +D(1)

vo D
(2)
ov +D(2)

vo D
(1)
ov

= D(3)
oo +D(3)

ov +D(3)
vo +D(3)

vv (3.29)
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Consequently, it follows

D(3)
oo = −

(
D(1)

ov D
(2)
vo +D(2)

ov D
(1)
vo

)
D(3)

vv = +
(
D(1)

vo D
(2)
ov +D(2)

vo D
(1)
ov

) (3.30a)

(3.30b)

Once again, these last equations show that the 2nd-order density matrix is necessary
and sufficient to compute the 3rd order diagonal components. Again, at this point, we
emphasize that only the occupied-virtual transition matrix needs to be evaluated self-
consistently since the perturbed density matrix is (at least) Hermitian. Using Eq. (3.10c),
the 3rd-order perturbed Fock matrix reads

F (3)
ov = [F,D(3)

ov ] + [F (1), D(2)]ov + [F (2)D(1)]ov (3.31)

Relying on the spectral resolution, this relation transforms to

F (3)
ov =

∑
i,j

D
(3)
ov,ij(ϵi − ϵ̄j) +

(
[F (1), D(2)]ov + [F (2)D(1)]ov

)
ij

(3.32)

which leads to the 3rd-order SOS equation

D(3)
ov =

∑
i,j

(ϵi − ϵ̄j)−1
(
F (3)

ov − [F (1), D(2)]ov − [F (2), D(1)]ov

)
ij

(3.33)

3.2.4 kth-order response

As a matter of fact, from the expansions (3.9) and (3.10), we can generalize the response
equations to any kth-order, by proceeding in the same way and using the components
from the lower orders. Then, the (diagonal) fixed components are defined according to

D(k)
oo = −

k−1∑
i=1

(
D(i)

ooD
(k−i)
oo +D(i)

ovD
(k−i)
vo

)
(3.34)

D(k)
vv =

k−1∑
i=1

(
D(i)

vvD
(k−i)
vv +D(i)

voD
(k−i)
ov

)
(3.35)

whereas the (off-diagonal) transition matrices, which involve a self-consistent resolution,
are defined according to

D(k)
ov =

∑
i,j

(ϵi − ϵ̄j)−1
(
F (k)

ov −M (k)
ov

)
ij

(3.36)
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M
(k)
ov,ij =

k−1∑
l=1

(
(D(k)F (k−l))ov − (F (k)D(k−l))ov

)
ij

(3.37)

using the shorthand notations

F
(k)
ov,ij = DiF

(k)D̄j

(D(k)F (k−l))ov,ij = DiD
(k)F (k−l)D̄j,

(F (k)D(k−l))ov,ij = DiF
(k)D(k−l)D̄j

The diagonal components are used as appropriate guess to initiate the perturbed density
matrix whereas the off-diagonal components are taken as the iterative part using the
eigenvectors of the non perturbed Fock matrix.

3.3 Density matrix coupled perturbed self-consistent
field formulation

In the AO-CPSCF formalism, calculation of the perturbed density matrix D(k) requires
the eigenstates of the unperturbed Fock matrix, which implies a high computational effort
for systems of increasing size. In this work, we also consider the density matrix-based
perturbation formalism originally proposed by Oschenfeld and Head-Gordon,[37] and
reformulated by Oschenfeld and Kussmann.[43, 44, 153] The approach relies on solving

—self-consistently— the commutation relations (3.10) using a conjugate-gradient-based
minimization. It will be referred in this manuscript to as CG-CPSCF. The simple
derivation[43] of the CG-CPSCF formalism from the background equations (3.9) and
(3.10) is presented below.

3.3.1 First-order response

The idea behind the Oschenfeld and Kussmann method is to constrain Eq. (3.10a) to
commute with the unperturbed density matrix. That is, multiplying Eq. (3.10a) from
the left and from the right separately by D, and substracting, leads to

[
F,
[
D,D(1)

]]
+ 2DF (1)D −

{
D,F (1)

}
= 0 (3.39)

This correponds to the first-order CG-CPSCF equation. Relying on the symmetry
properties for the perturbed density and Fock matrices, this equation is also Hermitian.
It is worthwhile to note that on multiplying the CG-CPSCF equation (3.39) from the left
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by D, and from the right by D̄, the AO-CPSCF equation Eq. (3.16) is recovered. This
clearly demonstrates the relationships between the two formalisms. Nevertheless, unlike
the AO-CPSCF, the resolution of the first-order CG-CPSCF equation yields directly to
the first-order perturbed density matrix D(1).

3.3.2 Second- and third-order response

If we want to write down the second-order CG-CPSCF equations using only the perturbed
density matrices, that is, without relying on the resolution of the identity given in
Eq. (3.11), we need to re-formulate the diagonal components in terms of D. Then, if we
start from Eqs. (3.14), (3.21a) and (3.21b), we can recast Eq. (3.23) as

D(2)
oo = −(D(1)D(1))oo = −DD(1)D(1)D

D(2)
vv = +(D(1)D(1))vv = +D̄D(1)D(1)D̄

If we want to circumvent the use of D̄ to define D(2)
vv and use instead D, first, we should

perform the following transformations:

D(2)
vv = D̄D(1)D(1)D̄

= (D(1)D(1))vv

= D(1)
vv D

(1)
vv +D(1)

vo D
(1)
ov [using Eq. (3.21b)]

= D(1)
vo D

(1)
ov [using Eq. (3.14)]

= (D̄D(1)D)(DD(1)D̄)
= D̄(D(1)DD(1))D̄ [using Eq. (3.1a)] (3.40)

Also, by noting that:
D(2)

vv = D̄D(2)D̄

= D̄(D̄D(2)D̄)D̄
= D̄(D(2)

vv )D̄ (3.41)

we can deduce the expression for 2nd order CG-CPSCF initial guess:

D(2)
oo = −DD(1)D(1)D, D(2)

vv = D(1)DD(1) (3.42)
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As for the first-order response, the commutator between the non-perturbed density matrix
and Eq. (3.9b) yields to the second-order CG-CPSCF equation,2 following:

[
F,
[
D,D(2)

]]
+ 2DF (2)D −

{
D,F (2)

}
=
[
D,
[
D(1), F (1)

]]
(3.43)

Using Eqs. (3.14) and (3.28) Eq. (3.28f), the diagonal contributions for the 3rd-order
response can be recast as:

D(3)
oo = −

(
(D(2)D(1))oo + (D(1)D(2))oo

)
= −(DD(2)D(1)D +DD(1)D(2)D)

D(3)
vv = +

(
(D(2)D(1))vv + (D(1)D(2))vv

)
= D̄(D(2)D(1))D̄ + D̄(D(1)D(2))D̄

Applying the transformations (3.40) and (3.41), we obtain:

D(3)
vv = D̄D(3)

vv D̄ = D̄(D(2)DD(1))D̄ + D̄(D(1)DD(2))D̄ (3.45)

The 3rd order CG-CPSCF initial guess is therefore given by

D(3)
oo = −D(D(2)D(1) +D(1)D(2))D

D(3)
vv = D(2)DD(1) +D(1)DD(2)

Finally, 3rd-order CG-CPSCF equation reads:

[
F,
[
D,D(3)

]]
+ 2DF (3)D −

{
D,F (3)

}
=
[
D,
[
D(1), F (2)

]]
+
[
D,
[
D(2), F (1)

]]
(3.47)

Compared to AO-CPSCF equations (3.31), the solution of this equation should lead to
D(3)

ov , if we perform a spectral resolution of D(3).

3.3.3 kth-order response

Consequently, we can easily generalize the CG-CPSCF equations at any kth-order, the
diagonal components D(k)

oo and D(k)
vv defining the initial guess, according to

D(k)
oo = −D

(
k−1∑
i=1

D(k−i)D(i)
)
D (3.48)

D(k)
vv =

k−1∑
i=1

D(k−i)DD(i) (3.49)

2Obviously, the projection of Eq. (3.43) onto the subspace Hocc-virt or Hvirt-occ leads to the second
order AO-CPSCF equations (3.24).
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with the kth-order transition matrices being the solutions of the following equation

[
F,
[
D,D(k)

]]
+ 2DF (k)D −

{
D,F (k)

}
=
[
D,

k∑
i=1

[
D(k−i), F (i)

]]
(3.50)

In Eq. (3.50), the right-hand side changes with respect to the density and the Fock matrices
at lower orders, whereas the left-hand side (lhs) depends only on the kth order density
matrix to be determined. As a result, solving the CG-CPSCF equation is analogous to
solve a linear system of equations AX = B. The description of the CG-CPSCF equation
resolution using a conjugate-gradient algorithm is given in Appendix D.

3.4 Perturbed projection by trace-correcting purifi-
cation

Derived from the generalized equations for the SCF conditions (3.10) and for the idempo-
tency constraints (3.9), the AO-CPSCF method uses the eigenstates of the unperturbed
Fock matrix, while the CG-CPSCF method employs uniquely the density matrix. Both
approaches require to proceed order by order. In other words, given a perturbed Fock
matrix we are solving a linear problem at each order. On the other hand, it is possible
to compute, the perturbed density matrix at a desired order without prior calculation
of the lower terms, ie. all the perturbed density matrices of lower orders, all of them,
being computed on-the-fly during the CPSCF processus. In other words, we are solving
a non-linear set of equations.

This approach proposed by Weber and co-workers[38, 39], is based on inserting the
perturbative expansions (3.7) obtained for the density and Fock matrices within the
trace correcting purification (TCP) formalism.[110] By doing so, they show that the
approach is capable to purify the kth and lower orders perturbed density matrices within
the SCF loop. This perturbed purification method is called the perturbed projection by
the trace-correcting purification (TC2-CPSCF). The unperturbed TCP aims to purify
simultaneously each perturbed density matrix following the relation:

Dλ,n+1 =
 D2

λ,n if Tr{Dλ,n} ≥ N

2Dλ,n −D2
λ,n if Tr{Dλ,n} < N

(3.51)

using the following initial guess:

Dλ,0 = (ϵmaxI − Fλ)/(ϵmax − ϵmin) (3.52)
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On introducing the perturbative expansion (3.7) in Eqs. (3.51) and (3.52), the unperturbed
TCP equation transforms to

Dn+1 =
 (∑3

k=0 D
(k)
n )2 if Tr{∑3

k=0 D
(k)
n } ≥ N

2(∑3
k=0 D

(k)
n )− (∑3

k=0 D
(k)
n )2 if Tr{∑3

k=0 D
(k)
n } < N

D0 =
(
ϵmaxI −

3∑
k=0

F (k)
)
/ (ϵmax − ϵmin) (3.54)

Considering the trace,

Tr{(Dn +D(1)
n +D(2)

n +D(3)
n )} = Tr{D}+ Tr{D(1)

n }+ Tr{D(2)
n }+ Tr{D(3)

n }
= N + δN (1) + δN (2) + δN (3)

If we start from a well-conditioned initial guess, such as: δN (k) < τ, ∀k ≥ 1, where τ is
some threshold parameter (typically about 10−3), we may expect the perturbed density
matrix to preserve the trace, that is,

Tr{(Dn +D(1)
n +D(2)

n +D(3)
n )} ≃ Tr{Dn} (3.56)

This constraint means that the perturbation does not create nor annihilate particles. By
developing and assembling terms by perturbation order, Eq. (3.53) can be recast in the
following form

Tr{Dn} ≥ N



Dn+1 = D2
n

D
(1)
n+1 =

{
Dn, D

(1)
n

}
D

(2)
n+1 =

(
D(1)

n

)2
+
{
Dn, D

(2)
n

}
D

(3)
n+1 =

{
Dn, D

(3)
n

}
+
{
D(1)

n , D(2)
n

} (3.57)

Tr{Dn} < N



Dn+1 = 2Dn −D2
n

D
(1)
n+1 = 2D(1)

n −
{
Dn, D

(1)
n

}
D

(2)
n+1 = 2D(2)

n −
[(
D(1)

n

)2
+
{
Dn, D

(2)
n

}]
D

(3)
n+1 = 2D(3)

n −
[{
Dn, D

(3)
n

}
+
{
D(1)

n , D(2)
n

}] (3.58)



90 Density matrix perturbation theory

The initial guesses are defined accordingly,

D = (ϵmaxI − F )/(ϵmax − ϵmin)
D(1) = −F (1)/(ϵmax − ϵmin)
D(2) = −F (2)/(ϵmax − ϵmin)
D(3) = −F (3)/(ϵmax − ϵmin)

We can even generalize the perturbed TCP at any order k (≥ 0)

D
(k)
n+1 =


∑k

l=0 D
(l)
n D

(k−l)
n if Tr{Dn} ≥ N

2D(k)
n −

∑k
l=0 D

(l)
n D

(k−l)
n if Tr{Dn} < N

(3.60)

with the initial guess as
D(k) = −F (k)/(ϵmax − ϵmin) (3.61)

In principle, the perturbed projection can be derived from any purification approach. In
this work, we have combined this method with the hole-particle canonical purification
(HPCP).

3.5 Perturbed projection by hole-particle canonical
purification

Regarding its polynomials, the TCP is the simplest method, compared to other purifi-
cations. However, let us recall that, using the TCP the density matrix trace reaches
the correct value only at convergence [cf. Section 2.2.4], whereas the HPCP maintains
the N -representability conditions throughout the purification process. As a result, our
objective is to compare the performances of the two polynomials in terms of efficiency
and reliability. From Eqs. (2.29), (2.31) and (2.32)], the HPCP perturbed projection
equations are given below up to the 3rd-order.

0th order
Dn+1 = (1− 2cn)Dn + 2(1 + cn)D2

n − 2D3
n

D = αDmin + (1− α)Dmax

Dmin = λo(µI − F ) + θI, Dmax = λq(µI − F ) + θI

(3.62)

1st order
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D
(1)
n+1 = (1− 2cn)D(1)

n + 2(1 + cn)
{
Dn, D

(1)
n

}
− 2

[
DnD

(1)
n Dn +

{
D2

n, D
(1)
n

}]
D(1) = αD

(1)
min + (1− α)D(1)

max

D
(1)
min = −λoF

(1), D(1)
max = −λqF

(1)

(3.63)

2nd order

D
(2)
n+1 = (1− 2cn)D(2)

n + 2(1 + cn)
[(
D(1)

n

)2
+
{
Dn, D

(2)
n

}]
− 2

[
DnD

(2)
n Dn +D(1)

n DnD
(1)
n +

{
D2

n, D
(2)
n

}
+
{
Dn,

(
D(1)

n

)2
}]

D(2) = αD
(2)
min + (1− α)D(2)

max

D
(2)
min = −λoF

(2), D(2)
max = −λqF

(2)

(3.64)

3rd order

D
(3)
n+1 = (1− 2cn)D(3)

n + 2(1 + cn)
[{
Dn, D

(3)
n

}
+
{
D(1)

n , D(2)
n

}]
− 2

[(
D(1)

n

)3
+
{
D2

n, D
(3)
n

}
+
{
Dn,

{
D(1)

n , D(2)
n

}}]
− 2

[
DnD

(3)
n Dn +D(1)

n DnD
(2)
n +D(2)

n DnD
(1)
n

]
D(3) = αD

(3)
min + (1− α)D(3)

max

D
(3)
min = −λoF

(3), D(3)
max = −λqF

(3)

(3.65)

Finally, the generalization of the perturbed HPCP at any order k (k ≥ 1) reads

D
(k)
n+1 = (1− 2cn)D(k)

n + 2(1 + cn)
k∑

l=0
D(l)

n D
(k−l)
n − 2

k∑
l,j=0

D(l)
n D

(j)
n D(k−l−j)

n

D(k) = αD
(k)
min + (1− α)D(k)

max

D
(k)
min = −λoF

(k), D(k)
max = −λqF

(k)

(3.66a)

(3.66b)
(3.66c)

We emphasize that, the constants cn in Eq. (2.18) and µ in Eq. (2.32c) are not expected
to change since the constraint is applied on the trace of the unperturbed density matrix.
Compared to the CG-based minimization [cf. Section 3.3], the generalized idempotency
constraints (3.9e) constitute the kernel of the polynomials for the perturbed projections.
The SCF conditions of Eq. (3.10e) are used in this case to accelerate the perturbed
projection.
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3.6 Derivative of direct inversion of the iterative
subspace

The simultaneous SCF computation for all the perturbed density matrices (from the
1st up to 3rd order) can be accelerated by means of the D-DIIS[154] (derivative direct
inversion in the Iterative subspace), which is an extension of the DIIS method presented
in Chapter 1 and used for the calculation of the non-perturbed density matrix [cf.
Section 1.6.2]. For perturbation orders k ≥ 1, we have implemented the D-DIIS inside
the perturbed projection algorithms. The analogue of the DIIS update [cf. Eq. (1.96)]
for the derivatives of the Fock matrix is given by

F̃ (k)
n :=

n∑
i=n−m

c
(k)
i F

(k)
i (3.67)

The coefficients {c(k)
i } of the linear combination are obtained by minimizing the norm of

the error vectors, {e(k)
i }, defined as the commutators between perturbed density matrices

and the corresponding Fock matrices [cf. Section 1.6.2]. For the D-DIIS algorithm[154],
these error vectors read

e
(1)
i :=

[
Fi, D

(1)
i

]
+
[
F

(1)
i , Di

]
e

(2)
i :=

[
Fi, D

(2)
i

]
+
[
F

(1)
i , D

(1)
i

]
+
[
F

(2)
i , Di

] (3.68a)

(3.68b)

which can be recognized as the SCF conditions of Eq. (3.10a) and (3.10b), respectively.
As a result, from Eq. (3.10e), the error vector can be generalized at any kth-order,
following:

e
(k)
i :=

k∑
l=0

[
F

(l)
i , D

(k−l)
i

]
(3.69)

The D-DIIS procedure is identical to the DIIS, the only difference being the definition of
the error vectors. The minimization of the norm of the error is performed following the
constraint of normalization of the coefficients [cf. Section 1.6.2, Eq. (1.98)], such as

min
f (D-)DIIS,

n∑
i=n−m

c
(k)
i = 1

 (3.70)

with
fD-DIIS(c(k)

n−m, ..., c
(k)
n ) :=

n∑
l,p=n−m

c
(k)
l c(k)

p (e(k)
l · e(k)

p ) (3.71)



3.7 Discussions 93

The solution to the problem (3.70) is given by the Euler-Lagrange equation (1.103), which
corresponds to a system of (m+ 1) linear equations, corresponding to the m coefficients
{c(k)

i } to be determined, including the Lagrange multiplier λ.
 B(k) 1t

1 0

 c(k)

λ

 =
 0

1


with: 0 = (0, ..., 0) and 1 = (1, ..., 1)

c(k) = (c(k)
n−m, ..., c

(k)
n )

B
(k)
lp = (e(k)

l · e(k)
p )

(3.72)

(3.73)
(3.74)
(3.75)

The pseudo-algorithm using the DIIS/D-DIIS is presented in the Appendix A.

3.7 Discussions

In this Chapter we have derived three density matrix-based perturbation methods: (i)
the standard AO-CPSCF based on the diagonalization, (ii) the conjugate-gradient based
method CG-CPSCF, and (iii) the perturbed projections TC2-CPSCF and HPCP-CPSCF.
For all the methods, the density matrix sparsity can be controlled by means of sparse
matrix algebra [Section 2.3.2] and a truncation scheme [Section 2.3.1]. This allows, in
principle, to perform linear scaling CPSCF calculation. However, we noted that the linear
scaling regime already achieved was based only on the numerical truncation.[39, 38, 43, 44].
In Table {3.1} is reported the number of matrix multiplication (MM) involved at each CG-

Method 1st order 2nd order 3rd order kth-order
AO-CPSCF 5 8 14 5 + 1.5× k!, k ≥ 2
CG-CPSCF 4 7 11 5 + k! + (6), k ≥ 2
TC2-CPSCF 1 2 4 2k−1, k ≥ 1

HPCP-CPSCF 4 8 16 2k+1, k ≥ 1
Table 3.1 Number of matrix multiplication for the density matrix methods at different
perturbation orders.

step or perturbed projection for all the methods, at any kth-order. For the AO-CPSCF
and CG-CPSCF, this number includes the iterative and non-iterative parts. The number
given in parenthesis for the CG-CPSCF at the kth-order correponds to the number of
MM during the line search of the conjugate gradient. Using these methods, the k order
perturbed density matrix is computed and will be used for the evaluation of molecular
properties, such as the static non-linear optical properties.





Chapter 4

Applications to non-linear optical
properties of π-conjugated systems
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4.1 Non linear optical properties

The Chapter 3 has discussed the density matrix perturbation methods. However, this
discussion was rather general in regards of perturbation to be considered. The molecular
properties, as measured by spectroscopy, are the observable responses of the molecular
system to an external perturbation. In other terms, the considered perturbartion allows
to probe specific properties of the molecular system. We focus here on the response(s)
induced by a pertubative external static electric field(s), which define the static optical
properties of the molecular system.

4.1.1 Perturbed energy expression for the PPP model

On considering the molecular system in the static electric field E⃗ , the interaction between
the system and the field is pictured by the electric molecular dipole.[155, 1] The classical
molecular dipole is defined from the sum of the nuclear contributions, added to the sum
over the ponctual electronic charge times the electron position operator. Since in the
present formalism nuclei position are not quantized, and we are dealing with a minimal
HF-PPP approach [cf. Section 1.4], only the contributions from the π-electrons are
relevant. The perturbation operator describing the coupling of the electric field (λ := E⃗ )
with the electronic dipole p⃗, is defined by

∆̂λ := −p⃗ · E⃗ (4.1)

with

p⃗ := −
Ne∑
i

ri (4.2)

Since ∆̂λ is a one-electron operator, when added to the electronic Hamiltonian [cf.
Eq. (1.34)], its contributions appear only within the one-electron contribution of Eq. (1.60b),
according to

hλ
µν :=

∫
dr1ϕ

∗
µ(r1)

[
−1

2∇
2
1 − r1 · E⃗ −

M∑
A=1

ZA

r1A

]
ϕν(r1) (4.3)

The latter can be decomposed into two terms:

hλ
µν = hµν + ∆λ

µν (4.4)
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where h is the original non-perturbed one-electron matrix and ∆λ is the dipole-electric
field coupling matrix, whose elements are given by:

∆λ
µν = ⟨µ|r · E⃗ |ν⟩ =

∑
a∈{x,y,z}

Ea⟨µ|a|ν⟩ (4.5)

In the equation above, Ea is the component of the electric field along the cartesian
direction a. The additional term in the one-electron core hamiltonian due to the presence
of the electric field is incorporated during the whole SCF procedure. Consequently, the
quantities such as the density and the Fock matrices along with the energies are necessarily
modified. As a result, we may express the perturbed Fock matrix and electronic energy
by

Fλ = hλ +G (Dλ)
Eλ = Tr{Dλ (hλ + F (Dλ))}

(4.6a)
(4.6b)

where we made explicit the dependence of the two-electron contribution to the perturbed
density matrix Dλ. Referring to Chapter 1, the expectation value of an operator is the
trace of the product between this operator and the density matrix. As a result, for each
cartesian component a ∈ {x, y, z}, we have:

⟨p(a)⟩ := −Tr{Dh(a)} (4.7)

where h(a) is the dipole moment matrix of elements ⟨µ|a|ν⟩. Within the HF-PPP model,
it nicely simplifies to

h(a) = ⟨a⟩δµν (4.8)

This corresponds to a diagonal matrix, with for elements, the position vector component
along the direction a.

4.1.2 Energy and response expansions

The conventional expansion[156] of the energy for a system perturbed by an external
electric field E⃗ is given by

E(E⃗ ) = E −
∑

a

µaEa −
1
2!
∑
a,b

αabEaEb+

− 1
3!
∑
a,b,c

βabcEaEbEc −
1
4!

∑
a,b,c,d

γabcdEaEbEcEd − ... (4.9)
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where (a, b, c, d) ∈ {x, y, z}, and E is the non perturbed total electronic energy. The
response tensors µ (1st rank ≡ vector), α (2nd rank), β (3rd rank) and γ (4th rank)
refer to the dipole moment, the polarizability, the first hyperpolarizability and the
second hyperpolarizability, respectively. The density matrix and the Fock matrix are also
expanded in terms of the electric field,[156] according to

D(E⃗ ) = D +
∑

a

D(a)Ea + 1
2!
∑
a,b

D(ab)EaEb+

+ 1
3!
∑
a,b,c

D(abc)EaEbEc + 1
4!

∑
a,b,c,d

D(abcd)EaEbEcEd + ... (4.10)

F (E⃗ ) = F +
∑

a

F (a)Ea + 1
2!
∑
a,b

F (ab)EaEb+

+ 1
3!
∑
a,b,c

F (abc)EaEbEc + 1
4!

∑
a,b,c,d

F (abcd)EaEbEcEd + ... (4.11)

where (F (a), F (ab), ..., F (k)) are the perturbed Fock matrices and correspond to kth deriva-
tive of Eq. (4.6a), which are defined, at any order, by

F (k) =
 h(k) + 2J [D(k)]−K(D(k)), k = 1 (= a)

2J [D(k)]−K(D(k)) k > 1 (= ab, abc, abcd, ...)
(4.12)

where h(1) is the dipole moment matrix as defined above. J and K are respectively
the Coulomb matrix and the exchange matrix, defining the bi-electronic term G and
depending on the perturbed density matrix D(k). On taking the first derivative of Eq. (4.9)
with respect to the electric field components, leads to the dipole moment.

p(a)(E⃗ ) = −µa −
1
2!
∑

b

αabEb+

− 1
3!
∑
b,c

βabcEbEc −
1
4!
∑
b,c,d

γabcdEbEcEd − ... (4.13)
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Inserting firstly Eq. (4.10) into (4.7), then comparing the resulting equations with
Eq. (4.13), leads to the following definitions for the response tensors,

µa = Tr{h(a)D}
αab = Tr{h(a)D(b)}
βabc = Tr{h(a)D(bc)}
γabcd = Tr{h(a)D(bcd)}

(4.14a)
(4.14b)
(4.14c)
(4.14d)

That system gives the basic definition of the response tensors (up to 4th order) for a
molecular system within a static electric field. Each tensor is defined by a perturbed
density matrix, as already outlined for the density matrix perturbation methods discussed
in Chapter 3. The alternative to compute these quantities is based on differentiating the
electronic energy E with respect to the applied field components at the zero field limit.
Formally this writes:

µa = −∂E(E⃗ )
∂Ea

∣∣∣∣∣∣
E⃗ =0

, αab = −∂
2E(E⃗ )
∂Ea∂Eb

∣∣∣∣∣∣
E⃗ =0

,

βabc = − ∂3E(E⃗ )
∂Ea∂Eb∂Ec

∣∣∣∣∣∣
E⃗ =0

, γabcd = − ∂4E(E⃗ )
∂Ea∂Eb∂Ec∂Ed

∣∣∣∣∣∣
E⃗ =0

(4.15)

The Eq. (4.1.2) has actually presented two definitions of the response tensors for a
molecular system under a static electric field: (i) the analytic definition of Eq. (4.14)
using the density matrix perturbation methods and, (ii) the numerical definition of
Eq. (4.15) where the response tensors are evaluated by a numerical differentation using
the finite field difference method (FFD). Detailed description of the FFD applied to
the calculation of static NLO properties is presented in Appendix E. It is worth to
mention that the idempotency relation for the density matrix in a FFD is not verified.
As a result, the perturbed electronic energy can not be calculated using a purification
or a minimization method. In the algorithm that we have implemented for the finite
difference method [Appendix E], the perturbed density matrix is calculated by means of
the diagonalization.
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Input: Atomic positions

Interatomic
distances rµν

PPP parameterizations

Hopping terms tµν
PPP parameters Γµν

TB Hamiltonian tµν

Diag./O(N) methods

Density matrix D0 TB energy

Fock matrix
F (tµν ,Γµν , Dµν) = F [Dn]

Diag./O(N) methods

Density matrix Dn

PPP energy

n = n + 1

TB

PPP

Converged?

Yes

No

SCF cycle

Fig. 4.1 Outline of the implementation giving the steps of the unperturbed SCF PPP
calculation.
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4.2 Outline of the implementation

Before presenting the results of our calculations of optical properties, this section oultines
our implementation. We have modified a pre-existing code,[73] written in Fortran90.
The Intel Math Kernel library[157] (MKL) routines were used for the diagonalization
and CSC algebra. We note that any other package/routine can be easily adapted to the
code.

The various steps for the computation of the unperturbed density matrix is outlined
in Figure {4.1}. Given the atomic coordinates of the system, the distance matrix is
calculated up to a predefined radial cutoff. From the chosen PPP parameterization, the
hopping terms tµν and the PPP parameters Γµν are evaluated accordingly. In Figure {4.1},
D0 is the converged density matrix obtained from a TB calculation, which is used as the
starting guess for the SCF calculation. In TB or PPP calculation, the density matrix
is calculated using the diagonalization (Diag) or the O(M) methods (Min). The O(M)
methods include the density matrix purifications and minimizations, combined with the
numerical or radial truncations.

Set initial C0

Fock matrix
F = F [Cn]

F C = C E

Energies En,
Coefficients CnDiag.

Cn vs. Cn+1

C∞

Convergence
n = n + 1

No

Yes

(a)

Set initial D0

Fock matrix
F = F [Dn]

FD = DF

Density matrix Dn
Min.

Dn vs. Dn+1

D∞

Convergence
n = n + 1

No

Yes

(b)

Fig. 4.2 SCF procedure using: (a) the diagonalization [Diag], and (b) the density matrix
energy minimizations [Min].

4.3 Perturbed dense matrix calculation

In this Section we aim to determine the perturbed density matrices D(1), D(2) and
D(3) for the evaluation of the static optical properties. For that purpose, we have
considered a benchmark of 2D π-conjugated systems. We will first compare the reliability
of the various density matrix pertubation theory (DMPT) methods, along with the FFD
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D∞

Set initial D
(1)
0

F (1) = F (1)[D
(1)
n ]

∑j=1
l=0

[F (l), D(j−l)] = 0

Density matrix D
(1)
n

AO-CPSCF

CG-CPSCF

D
(1)
n vs. D

(1)
n+1

D
(1)
∞

Convergence

n = n + 1 Set initial D
(2)
0

D
(2)
0 = D

(2)
0 (D

(1)
∞ )

F (2) = F (2)[D
(2)
n ]

∑j=2
l=0

[F (l), D(j−l)] = 0

Density matrix D
(2)
n

AO-CPSCF

CG-CPSCF

D
(2)
n vs. D

(2)
n+1

D
(2)
∞

Convergence

n = n + 1

No

Yes

No

Yes

(a) Procedure for AO-CPSCF and CG-CPSCF

Set initial D0

F = F [Dn]

F (1) = F (1)[D
(1)
n ]

F (2) = F (2)[D
(2)
n ]

∑j=2
l=0

[F (l), D(j−l)] = 0

Dn, D
(1)
n , D

(2)
n

TC2-CPSCF

HPCP-CPSCF

Dn vs. Dn+1

D
(1)
n vs. D

(1)
n+1

D
(2)
n vs. D

(2)
n+1

D∞, D
(1)
∞ , D

(2)
∞

Convergencen = n + 1

No

Yes

(b) Procedure for TC2-CPSCF and HPCP-CPSCF

Fig. 4.3 CPSCF density matrix perturbation methods. (a) AO-CPSCF and CG-CPSCF,
(b) TC2-CPSCF and HPCP-CPSCF.
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approach.[158] In a second step, we will increase the size of the molecules and investigate
the convergences.

Fig. 4.4 Benchmark of molecules.
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Polarizability 1st hyperpolarizability 2nd hyperpolarizability (×104)

αxx αyy ⟨α⟩ βxxx βxyy ⟨β⟩ γxxxx γyyyy γxxyy ⟨γ⟩
Benzene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

38.91
38.9173
38.8585
38.8585
38.8585
38.8616
38.8585

38.9173
38.8585
38.8585
38.8585
38.8616
38.8585

25.94
25.9449
25.9057
25.9057
25.9057
25.9077
25.9057

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0.158
0.1583
0.1576
0.1577
0.1577
0.1576
0.1576

0.1583
0.1576
0.1576
0.1576
0.1576
0.1576

0.0528
0.0525
0.0524
0.0525
0.0525
0.0525

0.084
0.0844
0.0841
0.0842
0.0842
0.0841
0.0841

Naphthalene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

98.57
98.5811
98.5899
98.5899
98.5899
98.5899
98.5899

65.1941
65.1123
65.1123
65.1123
65.1123
65.1123

54.59
54.5917
54.5674
54.5674
54.5674
54.5674
54.5674

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

2.73
2.7249
2.7468
2.7468
2.7469
2.7468
2.7468

1.6631
1.6600
1.6600
1.6601
1.6600
1.6600

−0.5855
−0.5767
−0.5766
−0.5765
−0.5766
−0.5767

0.643
0.6434
0.6507
0.6507
0.6508
0.6508
0.6507

Anthracene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

178.37
178.3843
178.5480
178.5480
178.5480
178.5480
178.5480

102.4862
102.3152
102.3152
102.3152
102.3152
102.3152

93.62
93.6235
93.6211
93.6211
93.6211
93.6211
93.6211

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

11.95
11.9506
12.0748
12.0748
12.0747
12.0748
12.0750

2.5780
2.6028
2.6027
2.6027
2.6028
2.6028

−1.8144
−1.7922
−1.7922
−1.7922
−1.7922
−1.7922

2.180
2.1799
2.2186
2.2185
2.2186
2.2186
2.2186

Phenanthrene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

159.19
159.2031
159.2354
159.2354
159.2354
159.2354
159.2354

92.2974
92.3038
92.3038
92.3038
92.3038
92.3038

83.83
83.8335
83.8464
83.8464
83.8464
83.8464
83.8464

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

6.09
6.0937
6.2105
6.2106
6.2106
6.2105
6.2105

1.5063
1.5112
1.5112
1.5112
1.5112
1.5112

2.0834
2.0920
2.0921
2.0621
2.0920
2.0920

2.35
2.3533
2.3811
2.3811
2.3812
2.3812
2.3811

Azulene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

129.2114
129.3624
129.3624
129.3625
129.3624
129.3625

70.1698
70.1411
70.1411
70.1420
70.1411
70.1411

66.4604
66.5012
66.5012
66.5015
66.5012
66.5012

700.9358
703.2813
703.2816
703.2816
703.2817
703.2816

−4.9089
−6.7156
−6.7156
−6.7156
−6.7157
−6.7151

417.6161
417.9394
417.9396
417.9396
417.9396
417.9399

−0.5129
−0.5148
−0.5147
−0.5168
−0.5148
−0.5148

0.0419
0.0365
0.0365
0.0367
0.0365
0.0365

1.3646
1.3498
1.3498
1.3498
1.3498
1.3498

0.4516
0.4443
0.4443
0.4238
0.4443
0.4443

Table 4.1 Calculated π-polarizabilities, first and second π-hyperpolarizabilities of aromatic
hydrocarbons in au.
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Polarizability 1st hyperpolarizability 2nd hyperpolarizability (×104)

αxx αyy ⟨α⟩ βxxx βxyy ⟨β⟩ γxxxx γyyyy γxxyy ⟨γ⟩
Triafulvene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

39.0978
38.9546
38.9546
38.9546
38.9546
38.9548

22.7843
22.6620
22.6620
22.6620
22.6620
22.6619

20.62
20.6274
20.5389
20.5389
20.5389
20.5389
20.5389

−153
−152.5390
−154.5884
−154.5884
−154.5884
−154.5880
−154.5625

141.4826
139.6921
139.6721
139.6721
139.6920
139.6910

−6.6338
−8.9378
−8.9378
−8.9378
−8.9376
−8.9229

−0.4775
−0.4656
−0.4656
−0.4657
−0.4656
−0.4652

−0.4248
−0.4160
−0.4160
−0.4160
−0.4160
−0.4160

0.1805
0.1777
0.1778
0.1778
0.1777
0.1777

−0.108
−0.1082
−0.1052
−0.1052
−0.1051
−0.1052
−0.1052

Pentafulvene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

86.5924
86.3699
86.3699
86.3699
86.3699
86.3699

23.8389
23.7416
23.7416
23.7416
23.7416
23.7416

36.81
36.8104
36.7038
36.7038
36.7038
36.7038
36.7038

−343
−342.8855
−337.6135
−337.6135
−337.6134
−337.6134
−337.6135

109.2706
109.6390
109.6390
109.6390
109.6390
109.6390

−140.1689
−136.7847
−136.7847
−136.4698
−136.7847
−136.7847

−1.2895
−1.2628
−1.2628
−1.2627
−1.2628
−1.2628

1.8434
1.8349
1.8349
1.8348
1.8349
1.8349

−0.5733
−0.5657
−0.5566
−0.5567
−0.5657
−0.5657

−0.119
−0.1185
−0.1119
−0.1119
−0.1119
−0.1119
−0.1119

Heptafulvene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

124.0441
123.8373
123.8473
123.8474
123.8373
123.8373

48.8482
48.7077
48.7077
48.7077
48.7077
48.7077

57.63
57.6308
57.5150
57.5150
57.5150
57.5150
57.5150

78
78.2542
72.2241
72.2238
72.2238
72.2238
72.2238

−71.4721
−72.9804
−72.9804
−72.9805
−72.9804
−72.9804

4.0692
−0.4538
−0.4539
−0.4540
−0.4539
−0.4539

−3.2889
−3.2299
−3.2298
−3.2298
−3.2297
−3.2298

0.7894
0.8156
0.8156
0.8156
0.8157
0.8156

1.2868
1.2914
1.2914
1.2915
1.2914
1.2914

0.015
0.0148
0.0337
0.0337
0.0338
0.0338
0.0337

Nonafulvene

Ref. [158]
FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

171.2162
171.0467
171.0467
171.0468
171.0467
171.0467

82.3483
82.1730
82.1730
82.1730
82.1730
82.1730

84.51
84.5215
84.4066
84.4066
84.4066
84.4066
84.4066

82
81.4279
90.3619
90.3623
90.3624
90.3626
90.3524

117.6384
120.7017
120.7018
120.7017
120.7018
120.7017

119.4398
126.6382
126.6385
126.6383
126.6386
126.6385

−1.7328
−1.6062
−1.6060
−1.6061
−1.6062
−1.6060

4.4402
4.5153
4.5152
4.5151
4.5153
4.5153

0.9958
1.0251
1.0251
1.0251
1.0251
1.0251

0.940
0.9398
0.9919
0.9919
0.9918
0.9919
0.9919

Table 4.2 Calculated π-polarizabilities, first and second π-hyperpolarizabilities of fulvenes
in au.
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Polarizability 1st hyperpolarizability 2nd hyperpolarizability (×104)

αxx αyy ⟨α⟩ βxxx βxyy ⟨β⟩ γxxxx γyyyy γxxyy ⟨γ⟩
Triafulvalene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

56.8454
56.6513
56.6513
56.6513
56.6513
56.6513

48.5862
48.3306
48.3306
48.3306
48.3306
48.3306

35.1439
34.9940
34.9940
34.9940
34.9940
34.9940

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

−0.5645
−0.5437
−0.5436
−0.5437
−0.5437
−0.5437

−1.3163
−1.2906
−1.2906
−1.2907
−1.2906
−1.2906

1.6566
1.6471
1.6472
1.6470
1.6471
1.6471

0.2865
0.2920
0.2920
0.2919
0.2920
0.2920

Triapentafulvalene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

119.4234
119.4403
119.4403
119.4404
119.4403
119.4403

43.8181
43.6747
43.6747
43.6748
43.6747
43.6747

54.4138
54.3717
54.3717
54.3717
54.3717
54.3717

362.1458
349.9607
349.9595
349.9596
349.9594
349.9594

93.8790
91.5937
91.5935
91.5937
91.5937
91.5937

273.6149
264.9327
264.9318
264.9319
264.9318
264.9318

−4.7450
−4.7839
−4.7738
−4.7639
−4.7839
−4.7839

0.8016
0.8021
0.8021
0.8022
0.8021
0.8021

−0.2202
−0.2220
−0.2219
−0.2220
−0.2220
−0.2219

−0.8768
−0.8852
−0.8851
−0.8851
−0.8851
−0.8852

Triaheptafulvalene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

166.9462
166.8266
166.8266
166.8266
166.8266
166.8266

67.7813
67.5549
67.5549
67.5549
67.5549
67.5549

78.2425
78.1271
78.1271
78.1271
78.7271
78.1271

−478.4360
−485.2264
−485.2270
−485.2270
−485.2269
−485.2270

300.1587
298.7197
298.7197
298.7197
298.7196
298.7197

−106.9664
−111.9040
−111.9044
−111.9044
−111.9044
−111.9044

−5.8718
−5.7734
−5.7734
−5.7732
−5.7734
−5.7735

0.2168
0.2473
0.2472
0.2473
0.2473
0.2473

2.8864
2.8941
2.8940
2.8940
2.8941
2.8941

0.0235
0.0524
0.0524
0.0525
0.0524
0.0524

Pentafulvalene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

206.8605
206.6937
206.6937
206.6937
206.6937
206.6937

41.6074
41.4710
41.4710
41.4710
41.7410
41.4710

82.8226
82.7216
82.7216
82.7216
82.7216
82.7216

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

−5.1002
−4.9177
−4.9176
−4.9177
−4.9177
−4.9177

3.0939
3.0797
3.0797
3.0795
3.0797
3.0797

−1.4609
−1.4406
−1.4406
−1.4404
−1.4406
−1.4406

−0.9856
−0.9439
−0.9438
−0.9437
−0.9438
−0.9438

Pentaheptafulvalene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

267.7461
267.9667
267.9667
267.9667
267.9667
267.9667

70.6512
70.5457
70.5457
70.5457
70.5457
70.5457

112.7991
112.8375
112.8375
112.8375
112.8375
112.8375

−2227.6425
−2198.9172
−2198.8878
−2198.8879
−2198.8878
−2198.8878

332.3833
336.6577
336.6577
336.6577
336.6577
336.6577

−1137.1555
−1117.3557
−1117.3380
−1117.3381
−1117.3381
−1117.3381

−24.8398
−25.0370
−25.0370
−25.0370
−25.0369
−25.0369

1.4563
1.4722
1.4721
1.4720
1.4722
1.4722

−0.0315
−0.0306
−0.0306
−0.0307
−0.0306
−0.0306

−4.6893
−4.7252
−4.7252
−4.7521
−4.7252
−4.7252

Heptafulvalene

FFD∗

FFD
AO-CPSCF
CG-CPSCF
TC2-CPSCF

HPCP-CPSCF

360.4462
360.5862
360.5862
360.5862
360.5862
360.5862

91.5110
91.3361
91.3361
91.3361
91.3361
91.3361

150.6524
150.6407
150.6407
150.6407
150.6407
150.6407

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

−34.0243
−33.5601
−33.5601
−33.5600
−33.5598
−33.5598

0.5761
0.6145
0.6145
0.6144
0.6145
0.6145

4.7407
4.7902
4.7900
4.7900
4.7902
4.7902

−4.7934
−4.6730
−4.6730
−4.6729
−4.6730
−4.6730

Table 4.3 Calculated π-polarizabilities, first and second π-hyperpolarizabilities of ful-
valenes in au.
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4.3.1 Applications and comparison for small systems

The benchmark set of molecules is given in Figure {4.4}. All the carbon-carbon distances
have been fixed to 1.4 Å. All the results presented in the following are in au.[159] A very
tight convergence parameter of 10−14 has been used for the all SCF calculations. The
mean values of the (hyper)polarizability tensors,[160] have been calculated according to
the standard definitions:

⟨α⟩ = 1
3 (αxx + αyy)

⟨β⟩ = 3
5 (βxxx + βxyy) (x = major symmetry axis)

⟨γ⟩ = 1
5 (γxxxx + γyyyy + 2γxxyy)

We have performed the FFD calculation using the same parameterization as in Ref. [158],
which is referred as FFD∗ in Table {4.1} to {4.3}. It is rather clear that our FFD∗ and
results from Ref. [158] are in good agreement. We have also performed a FFD calculation
using the conventional Ohno’s parameterization [cf. Table {1.1}]. On comparing the
values obtained from the FFD and DMPT approaches using the same parameterization,
we found that the methods are in perfect agreement demonstrating the reliability of
our implementation. Note that the 1st hyperpolarizability β is expected to be zero for
the centro-symmetric structures such as Phenanthrene compared to molecules without
inversion symmetry such as Triaheptafulvalene, which is related to the rank of the tensor.
It is worth to note that in our implementation, no symmetry constraints were applied to
the Fock matrix.

4.3.2 Methods efficiency for larger systems

In order to expand the comparison of the methods, we have investigated the convergence
of (hyper)polarizabilities with respect to the system size. For this purpose, we have
used dense density matrices, ie. without employing a truncation scheme. The models
used in this section are the polymers presented in Figure {4.5}. Polymer A and B
are the transpolyacetylene (TPA) and the polyphenylene vinylene (PPV), respectively.
Polymer C (TPA+) and polymer D (PPV+), are structurally derived from polymer A
and polymer B. TPA+ and PPV+ were added to the benchmark in order to bypass
inversion symmetry, and obtain non zero first hyperpolarizabilities. We also specify that
two sets of calculation were performed: (i) for polymers with carbon-carbon distances
varying between 1.35 and 1.45 Å (Set 1), (ii) for polymers with fixed carbon-carbon
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distance of 1.4 Å (Set 2). All the polymers were replicated in the longitudinal direction
x. Tables {4.4} and {4.5} present the results obtained for αxx, βxxx and γxxxx using

Fig. 4.5 Benchmark of polymers.

the 4 different methods. The responses using the exact method (AO-CPSCF) and the
absolute errors for the same responses with respect to the AO-CPSCF (∆(CG-CPSCF),
∆(TC2-CPSCF) and ∆(HPCP-CPSCF) ) for the three other methods are reported. In
both Tables, the error is evaluated with respect to the system size (number of cells)
at each perturbation order. The perturbed density matrices D(x), D(xx) and D(xxx) are
explicitly calculated using the protocol in Figure {4.3}, then the responses αxx, βxxx

and γxxxx are deduced from Eq. (4.14). The FFD was excluded from our investigations
because of the SCF instabilities. These issues might be related to unconsistencies between
the size of the system with respect to the strength of the electric field.

At first glance, the results of Tables {4.4} and {4.5} are quite surprising. For both
sets of polymers, the numerical accuracy is dramatically reduced for the CG-CPSCF and
TC2-CPSCF, as the perturbation order and the size are increased (blue color in the table),
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Order n̄ cells AO-CPSCF ∆(CG-CPSCF) ∆(HPCP-CPSCF) ∆(TC2-CPSCF)

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
TPA

1st, αxx

18
26
34
42
50

114
122
130

1.40 × 103

2.07 × 103

2.73 × 103

3.39 × 103

4.05 × 103

8.69 × 103

9.36 × 103

1.00 × 104

4.49 × 104

1.08 × 105

1.98 × 105

3.11 × 105

4.41 × 105

5.83 × 105

8.92 × 105

1.05 × 106

4.60 × 10−2

6.65 × 10−2

2.28 × 10−2

2.86 × 10−2

3.43 × 10−2

7.45 × 10−2

8.03 × 10−2

8.60 × 10−2

4.21 × 10−3

6.51 × 10−1

5.52 × 10−4

5.38 × 10−3

1.66 × 10−2

5.92 × 10−2

2.69 × 10−1

4.88 × 10−1

3.05 × 10−6

4.56 × 10−6

6.20 × 10−6

7.82 × 10−6

2.91 × 10−8

8.02 × 10−5

1.00 × 10−7

1.09 × 10−7

7.97 × 10−9

2.81 × 10−8

1.14 × 10−6

2.00 × 10−7

4.94 × 10−6

4.93 × 10−5

6.87 × 10−7

1.19 × 10−7

3.05 × 10−6

4.56 × 10−6

6.20 × 10−6

7.82 × 10−6

2.91 × 10−8

8.02 × 10−5

1.00 × 10−7

1.09 × 10−7

7.97 × 10−4

2.79 × 10−4

1.27 × 10−5

2.02 × 10−4

4.94 × 10−3

4.40 × 10−5

1.59 × 10−7

4.59 × 10−7

3rd, γxxxx

18
26
34
42
50

114
122
130

7.84 × 106

1.21 × 107

1.65 × 107

2.09 × 107

2.52 × 107

7.32 × 107

7.75 × 107

8.19 × 107

4.36 × 1010

4.41 × 1011

2.16 × 1012

6.83 × 1012

1.61 × 1013

3.12 × 1013

7.94 × 1013

1.11 × 1014

6.71 × 10−2

1.05 × 10−2

8.90 × 10−1

4.53 × 10−1

2.11 × 10−1

4.17
5.86

1.74 × 101

5.46 × 10−2

1.51 × 10−2

2.16 × 10−1

1.16 × 10−1

2.65
9.08

1.93 × 101

2.47 × 101

7.77 × 10−7

2.01 × 10−8

6.39 × 10−7

1.65 × 10−6

4.17 × 10−6

5.78 × 10−5

9.98 × 10−7

3.13 × 10−6

4.71 × 10−7

2.01 × 10−8

3.64 × 10−6

1.54 × 10−7

9.78 × 10−6

4.85 × 10−6

7.14 × 10−5

6.41 × 10−6

6.79 × 10−7

4.00 × 10−7

4.99 × 10−7

2.60 × 10−6

2.00 × 10−6

3.47 × 10−3

5.06 × 10−3

6.03 × 10−3

2.97 × 10−4

9.76 × 10−4

1.00 × 10−2

3.20 × 10−1

1.20
4.85

3.07 × 101

6.00 × 101

TPA+

1st, αxx

18
26
34
42
50

114
122
130

1.62 × 103

2.28 × 103

2.95 × 103

3.61 × 103

4.27 × 103

7.58 × 103

8.25 × 103

8.91 × 103

7.50 × 104

1.90 × 105

3.56 × 105

5.38 × 105

7.10 × 105

1.48 × 106

1.64 × 106

1.81 × 106

3.36 × 10−2

1.35 × 10−2

1.94 × 10−2

2.52 × 10−2

3.09 × 10−2

5.97 × 10−2

6.54 × 10−2

7.12 × 10−2

1.68 × 10−1

1.41 × 10−1

6.21
1.04 × 101

1.55 × 101

1.62 × 101

1.46 × 101

1.25 × 101

6.09 × 10−7

7.13 × 10−7

8.63 × 10−7

9.89 × 10−7

3.39 × 10−6

1.10 × 10−5

1.57 × 10−6

1.98 × 10−6

6.82 × 10−7

2.40 × 10−6

3.21 × 10−7

2.14 × 10−6

3.36 × 10−5

1.63 × 10−7

1.32 × 10−7

3.49 × 10−6

6.09 × 10−7

7.12 × 10−7

8.64 × 10−7

9.89 × 10−7

3.39 × 10−6

1.10 × 10−5

1.58 × 10−6

1.99 × 10−6

2.25 × 10−6

2.38 × 10−3

1.80 × 10−6

2.14 × 10−2

2.49 × 10−5

8.51 × 10−2

6.38 × 10−2

2.00
2nd, βxxx

18
26
34
42
50

114
122
130

2.946 × 104

2.958 × 104

2.966 × 104

2.972 × 104

2.976 × 104

2.986 × 104

2.987 × 104

2.988 × 104

−4.80 × 107

−3.89 × 108

−1.56 × 109

−3.60 × 109

−5.61 × 109

−7.96 × 109

−8.55 × 109

−8.96 × 109

2.61
1.23
1.25
1.26
1.27
1.28
1.28
1.28

1.63
4.94
7.65
1.11

2.82 × 101

3.41 × 101

5.74 × 101

3.08 × 101

9.03 × 10−6

3.58 × 10−7

3.32 × 10−6

8.90 × 10−6

5.18 × 10−5

5.21 × 10−5

3.19 × 10−6

1.95 × 10−5

7.68 × 10−6

6.52 × 10−6

1.55 × 10−7

3.43 × 10−6

4.00 × 10−5

8.54 × 10−7

7.54 × 10−7

4.29 × 10−6

9.05 × 10−6

3.51 × 10−7

3.30 × 10−6

8.92 × 10−6

5.18 × 10−4

5.21 × 10−4

2.76 × 10−6

1.94 × 10−4

7.62 × 10−4

6.52
1.41 × 10−3

3.43 × 102

3.98 × 10−1

3.64 × 10−3

4.54 × 101

9.42 × 101

3rd, γxxxx

18
26
34
42
50

114
122
130

1.41 × 107

1.84 × 107

2.27 × 107

2.71 × 107

3.14 × 107

3.58 × 107

4.01 × 107

4.88 × 107

−1.75 × 1010

1.25 × 1012

1.69 × 1013

7.12 × 1013

1.49 × 1014

3.10 × 1014

3.45 × 1014

3.81 × 1014

8.84 × 10−2

3.05 × 10−1

4.17 × 10−1

2.93
5.27

6.31 × 10−1

9.62 × 10−1

1.23

5.46 × 10−1

1.51 × 10−1

2.16
1.16 × 101

2.65
9.08 × 102

1.93 × 102

2.47 × 102

7.24 × 10−6

1.66 × 10−5

4.54 × 10−5

2.38 × 10−7

9.54 × 10−6

2.71 × 10−5

3.44 × 10−6

1.33 × 10−6

1.34 × 10−7

7.48 × 10−5

6.21 × 10−6

9.04 × 10−6

7.77 × 10−7

3.22 × 10−8

4.01 × 10−6

7.87 × 10−5

3.31 × 10−3

3.68 × 10−5

6.01 × 10−5

2.44 × 10−4

1.14 × 10−3

5.91 × 10−3

5.46 × 10−3

4.83 × 10−2

6.90 × 10−3

1.89 × 10−1

1.30
3.15 × 101

7.10 × 101

1.78 × 101

2.11 × 102

7.01 × 102

Table 4.4 Numerical accuracy ∆ with respect to the AO-CPSCF for the CG-CPSCF,
TC2-CPSCF and HPCP-CPSCF, at each perturbation order and for increasing molecular
size. Results are obtained for TPA and TPA+.
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Order n̄ cells AO-CPSCF ∆(CG-CPSCF) ∆(HPCP-CPSCF) ∆(TC2-CPSCF)

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
PPV

1st, αxx

4
6
8

10
12
28
30
32

5.59 × 102

8.32 × 102

1.10 × 103

1.37 × 103

1.65 × 103

3.56 × 103

3.83 × 103

4.10 × 103

1.18 × 103

1.80 × 103

2.42 × 103

3.05 × 103

3.67 × 103

9.29 × 103

9.92 × 103

1.11 × 104

2.48 × 10−6

3.88 × 10−6

9.15 × 10−7

1.47 × 10−6

1.99 × 10−6

6.53 × 10−6

7.18 × 10−6

6.95 × 10−6

5.96 × 10−7

1.57 × 10−6

2.68 × 10−6

3.90 × 10−6

5.22 × 10−6

1.93 × 10−5

2.11 × 10−5

2.46 × 10−5

7.55 × 10−8

9.58 × 10−8

6.89 × 10−7

7.53 × 10−7

8.80 × 10−7

1.16 × 10−8

1.24 × 10−8

1.34 × 10−8

6.09 × 10−8

4.86 × 10−8

6.69 × 10−8

1.06 × 10−7

1.78 × 10−7

1.82 × 10−8

1.34 × 10−8

5.80 × 10−9

7.56 × 10−8

9.58 × 10−8

6.89 × 10−7

7.53 × 10−7

8.80 × 10−7

1.16 × 10−8

1.25 × 10−8

1.34 × 10−8

6.08 × 10−8

4.86 × 10−8

6.71 × 10−8

1.06 × 10−7

1.77 × 10−7

1.81 × 10−8

1.33 × 10−8

6.00 × 10−9

3rd, γxxxx

4
6
8

10
12
28
30
32

1.32 × 106

2.10 × 106

2.89 × 106

3.69 × 106

4.48 × 106

1.08 × 107

1.16 × 107

1.23 × 107

1.17 × 107

2.05 × 107

2.94 × 107

3.83 × 107

4.72 × 107

1.36 × 108

1.54 × 108

1.63 × 108

7.01 × 10−4

2.31 × 10−4

2.16 × 10−3

9.48 × 10−3

5.04 × 10−2

4.42 × 10−1

6.90 × 10−1

8.09 × 10−1

4.15 × 10−5

1.52 × 10−4

7.04 × 10−3

6.21 × 10−3

9.81 × 10−2

6.23 × 10−1

5.78 × 10−1

8.46 × 10−1

9.05 × 10−8

3.30 × 10−8

5.18 × 10−7

1.93 × 10−8

5.21 × 10−6

1.94 × 10−6

3.19 × 10−7

3.74 × 10−7

8.74 × 10−9

6.01 × 10−8

2.61 × 10−7

5.03 × 10−7

9.10 × 10−6

1.17 × 10−7

7.78 × 10−7

8.36 × 10−7

8.00 × 10−8

2.06 × 10−6

1.76 × 10−5

7.78 × 10−5

2.49 × 10−4
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1.10 × 107

1.18 × 107

3.10 × 107

3.83 × 107

4.69 × 107

5.56 × 107

6.45 × 107

1.09 × 108

1.17 × 108

1.53 × 108

6.64 × 10−1

9.07
5.15

6.01 × 101

2.10 × 102

3.08 × 103

6.42 × 104

7.90 × 104

5.20 × 10−2

7.76 × 10−2

2.26 × 10−1

3.04 × 10−1

9.48
7.41

6.64 × 10−1

1.42 × 10−1

9.05 × 10−8

3.30 × 10−7

5.8 × 10−6

3.33 × 10−6

1.01 × 10−6

2.74 × 10−8

5.21 × 10−6

4.24 × 10−6

8.03 × 10−8

2.34 × 10−7

6.00 × 10−7

5.74 × 10−6

1.49 × 10−5

3.08 × 10−8

8.25 × 10−7

9.41 × 10−7

5.46 × 10−2

1.77
1.51 × 101

6.01 × 101

2.16 × 102

9.08 × 103

1.42 × 104

1.01 × 104

2.05 × 101

9.59 × 10−6

3.14 × 10−4

2.60 × 10−3

1.14 × 10−2

9.84 × 10−4

9.95 × 10−4

3.21 × 10−3

Table 4.5 Numerical accuracy ∆ with respect to the AO-CPSCF for the CG-CPSCF,
TC2-CPSCF and HPCP-CPSCF, at each perturbation order and for increasing molecular
size. Results are obtained for PPV and PPV+.
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Fig. 4.6 Trace of the density matrices during the SCF iterations for the HPCP-CPSCF,
TC2-CPSCF and CG-CPSCF, at zero (D), first (D(1) = D(x)), second (D(2) = D(xx))
and third (D(3) = D(xxx)) orders. Results obtained for PPV+ of Set 1 with n̄ = 28.
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while the HPCP-CPSCF always conserves a remarkable numerical accuracy, whatever the
order of perturbation. In order to understand these results, we have probed the density
matrix during the SCF iterations, for each method at all the orders. Figures {4.6} and
{4.7} display the trace and the idempotency characters of the density matrix, respectively,
the latter being evaluated by

∆Idemp =∥ D(k) −
k∑

l=0
D(l)D(k−l) ∥ (4.17)
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Fig. 4.7 Idempotency of the density matrices during the SCF iterations for the
HPCP-CPSCF, TC2-CPSCF and CG-CPSCF, at zero (D), first (D(1) = D(x)), sec-
ond (D(2) = D(xx)) and third (D(3) = D(xxx)) orders. Results obtained for PPV+ of Set
1 with n̄ = 28.

Basically, the trace of the unperturbed density matrix must correspond to the number
of occupied states. On the other hand, at any perturbation order, the traces of the
perturbed density matrices must be zero. For the HPCP-CPSCF, from first to third
order, the trace of the perturbed density matrices is always zero during the iterations.
This should be compared to the CG-CPSCF and TC2-CPSCF approaches, where the
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trace oscillates, to eventually reach non-zero values. The same behaviour is also observed
for the idempotency in Figure {4.7}. In view of these results, the conservation of the
numerical accuracy especially at third order for HPCP-CPSCF, is likely due to the
conservation of the trace of the unperturbed density matrix D at each iteration step.
Even though a good preconditioning may prevent convergence instabilities, the fact that
the TC2-CPSCF and CG-CPSCF do not enforce N -representability conditions, they can
not avoid any departure from the physical requirements. However, it is worthwhile to
note that, in terms of error percentage CG-CPSCF and TC2-CPSCF remain valid. For
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Fig. 4.8 Frobenius norm of the error vector [cf. Eq. (3.69)] of the density matrices during
the SCF iterations for the HPCP-CPSCF, TC2-CPSCF and CG-CPSCF, at zero (D),
first (D(1) = D(x)), second (D(2) = D(xx)) and third (D(3) = D(xxx)) orders. This example
is for PPV+ of Set 1 with n̄ = 28.

example, for the largest error (PPV+ of Set 1, with n̄=32), %error ∼ 0.1% which is
insignificant. Using the two forms of matrix illustration already used in Section 2.4.2, the
Figures {4.9} and {4.10}, display the profile of the density matrix obtained at the end of
the SCF procedure. As the order is increasing, the number nnz of significant elements in
the density matrix is also increasing, whereas their magnitude decreases.
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Fig. 4.9 First form of illustration for the converged density matrices using the HPCP,
from zero to third order. nnz is the number of non zero elements at 10−3. This example
is for PPV+ of Set 1 with n̄ = 28. D(1) = D(x), D(2) = D(xx), D(3) = D(xxx).
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Fig. 4.10 Second form of illustration for the converged density matrices using the HPCP,
from zero to third order. nnz is the number of non zero elements at 10−3. This example
is for PPV+ of Set 1 with n̄ = 28. D(1) = D(x), D(2) = D(xx), D(3) = D(xxx).
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From Figures {4.7}, we note the number of iterations for both TC2-CPSCF and
HPCP-CPSCF at third order is large compared at first and second orders. This result is
explained by the norm of the error vector [cf. Eq. (3.69)] represented in Figure {4.8}.
The value of ∼ 103 at the early steps of the 3rd-order calculation compared to ∼ 1 at first
and second order demonstrates that we are beyond the domain of applicability of the
D-DIIS[83, 81]. As a result, in our implementation, we found a convergence instability
for TC2-CPSCF and HPCP-CPSCF at third order. However, as shown on Figure {4.11},
the number of iterations obtained for lower orders and for each of the density matrix
perturbation methods, shows clearly that the perturbed projections are the most efficient
in terms of SCF iterations.

A0-CPSCF CG-CPSCF TC2-CPSCF HPCP-CPSCF
0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 

S
C

F 
it

e
ra

ti
o
n
s

Cells grouped by perturbation methods

18

26

34

42

50

58

66

74

82

(a) 1st order, TPA+

A0-CPSCF CG-CPSCF TC2-CPSCF HPCP-CPSCF
0

20

40

60

80

100

N
u
m

b
e
r 

o
f 

S
C

F 
it

e
ra

ti
o
n
s

Cells grouped by perturbation methods

(b) 2nd order, TPA+

A0-CPSCF CG-CPSCF TC2-CPSCF HPCP-CPSCF
0

20

40

60

80

100

N
u
m

b
e
r 

o
f 

S
C

F 
it

e
ra

ti
o
n
s

Cells grouped by perturbation methods

4

6

8

10

12

14

16

18

20

(c) 1st order, PPV+

A0-CPSCF CG-CPSCF TC2-CPSCF HPCP-CPSCF
0

20

40

60

80

100

N
u
m

b
e
r 

o
f 

S
C

F 
it

e
ra

ti
o
n
s

Cells grouped by perturbation methods

(d) 2nd order, PPV+

Fig. 4.11 Histogram of number of SCF iterations with respect to the size of the systems,
for the four density matrix perturbation methods at first and second orders. The results
are obtained for TPA+ and PPV+ of Set 1.
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The calculation time for αxx and βxxx is represented as a function of number of atoms
on Figure {4.12}. The TC2-CPSCF and HPCP-CPSCF are the most efficent, with a
better performance for the TC2-CPSCF. Curve fitting reveals that the AO-CPSCF
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Fig. 4.12 Calculation time for the polarizability αxx and first hyperpolarizability βxxx as
a function of number of atoms. Results are obtained for TPA+ (Set 1). For each density
matrix perturbation method, the calculation time is pictured along with its fit.
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scales as a power of 4 compared to the cubic scaling of the CG-CPSCF, TC2-CPSCF
and HPCP-CPSCF. This demonstrates that the density matrix methods are already
more efficient than the diagonalization.

4.4 Perturbed linear scaling calculation
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Fig. 4.13 Histogram of number of SCF iterations with respect to the numerical threshold
τ . Results are obtained for the four density matrix perturbation methods at first and
second orders. The number of cells is fixed at 250 for TPA+ and 62 PPV+ of Set 1.

In Figure {4.13} is presented the number of iterations obtained for different values
of numerical threshold τ (for a fixed size of polymer). We observe that the perturbed
projections TC2-CPSCF and HPCP-CPSCF lead to better performances compared to
the CG-CPSCF. However, the CG-CPSCF is more stable with a regular number of
iterations whatever is the value of τ . The calculation time and the convergence of the
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Fig. 4.14 In (a) and (b), representation of the total calculation time as a function of
the number of atoms, for TPA+ (Set 1). This representation compares the AO-CPSCF,
CG-CPSCF, TC2-CPSCF and HPCP-CPSCF. The density matrix methods are all trun-
cated at τ = 10−4 and τ = 10−8. In (c) and (d), convergence for (hyper)polarizability
per atom as a function of number of atoms. The polarizability αxx and first hyperpolar-
izability βxxx are calculated using the HPCP-CPSCF truncated at τ = 10−8 for the 4
polymers of Set 1.



120 Applications to non-linear optical properties of π-conjugated systems

responses with respect to the system size are presented in Figure {4.14}. Independently
on the method, in Figure {4.14}(a) and (b), we found that the linear scaling is achieved
and the TC2-CPSCF is clearly the most efficient. From Figure {4.14}(c) and (d), we
observe that a number of 10,000 atoms is sufficient to reach the plateau related to the
infinite chain limit.



Conclusions and outlooks

In this thesis, we have confirmed that solving electronic structure without relying on the
resolution of the Schrödinger equation is a promising approach which can be extended
to the perturbation theory. As a matter of fact, the alternative solution deriving from
the Liouville-von Neumann equation is the kernel of this work. For single-determinant
approximation, the one-particle density matrix is necessary and sufficient to access all the
electronic properties of the system and allows to bypass the computational demanding
task related to the eigenvalue problem resolution, ie. the diagonalization. In a first part,
from the description of the general framework of the density matrix minimization and
polynomial expansion, we have proposed a canonical density matrix purification which
respects the N -representability constraints. We have emphasized that this purification
method is self-consistent, in the sense that, it does not rely on heuristic adjustement of
the polynomial during the iterative process. From numerical experiments, the purification
polynomial has shown good performances with respect to the other schemes, although
its efficiency degrades for the pathological cases. Furthermore, when combined with
sparse-matrix algebra to reach the linear-scaling regime, this new purification method is
the second most efficient in terms of CPU time. However, as the other density matrix
purifications, our variant approach presents the same instability symptoms when using
the radial truncation. As a solution to this issue, we have proposed to relax the radial
truncation when close to critical points. It is important to specify that this solution
is not fully satisfactory. The problem of the radial truncation to the density matrix
purifications truly deserves more attention.

In a second part, assuming an orthogonal basis, a detailed development of the density
matrix perturbation theory has been presented. One of the presented perturbative
methods is related to our new purification variant, corresponding to a new canonical and
non heuristic density matrix perturbation method. Comparisons with other perturbed
purification and minimization methods have been performed. A detailed analysis of the
results has revealed that our method is more robust with a remarkable numerical accuracy,
despite its important number of matrix multiplications. The new canonical density matrix
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perturbation method developed in this thesis is very promising thanks to the explicit
consideration of the N -representability properties. The different density-matrix based
pertubation methods discussed in this manuscript have been implemented in a code
based on the Pariser-Parr-Pople Hartree-Fock model. The most likely next step is to
extend this work to a general code including explicit non-orthogonal basis sets where
the filling factor significantly deviates from 1/2. The idea will be then to investigate in
more details the performance of the method within the linear-scaling regime, especially
the influence of the sparsity on the accuracy of the perturbed quantities. Application to
dynamic response calculation through the resolution of the time-dependent Liouville-von
Neumann equation can also be envisaged.

From our very recent works, we finally noted that the N -representability properties
for the density matrix can also be applied to the energy functional minimization. We
found that it is possible to enforce these properties during the minimization, that is,
the trace is conserved and the density matrix eigenvalues lied in the range 0 to 1, by
using a suitably preconditioned conjugate gradient algorithm. Solving this point would
be benificial for curing deficiencies observed in energy functional based density matrix
perturbation theory.
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Appendix A

Derivative direct inversion of
iterative subspace

The Algorithm {1} outlines how we have implemented the DIIS/D-DIIS extrapolation for
the calculations we have performed in this thesis work. In a SCF procedure, we start the
DIIS/D-DIIS procedure only after ten iterations around, so that the error vector norm is
about the thousandth of the initial error vector norm (step 10). First, this allows to get
the solution closer to the convergence region as the norm of the error vector falls gradually.
And secondly, this allows to use a sufficient number m of c(k)

i optimization coefficients
in order to get the averaged effective Fock matrix in the convergence domain. The
chosen number m of c(k)

i coefficients has to be reasonable (not too small, not too large)
as indicated at step 11. The resolution of c(k)

i coefficients at step 12 can be performed
using a standard linear-equation solver such as the DGESV function from LAPACK
library[161]. The step 14 requires the method to be used to compute the density matrix.
As a result, one can compute one density matrix (unperturbed order), and even several
density matrices at the same time (perturbed propjection). In the case of the perturbed
projection, each order is defined by a density matrix, a Fock matrix, and the error vector
requiring the lower orders density and Fock matrices.
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1: ! Initialization
2: D

(k)
0 , ∥ e(k)

0 ∥, n = 0
3: ! Iterations
4: while ∥ Dn+1 −Dn ∥> tolerance do
5: n = n+ 1
6: Build the density matrix D(k)

n and Fock matrix F (k)
n .

7: Compute the error matrix e(k)
n using Eq. (3.69).

8: Store F (k)
n and e(k)

n .
9: After ten iterations around, start the DIIS/D-DIIS extrapolations:

10: if ∥ e(k)
n ∥ ≲ 10−3 ∥ e(k)

0 ∥
11: Keep m (6 to 8) latest error matrix e(k)

n to assemble B(k) using Eq. (3.75).
12: Resolve the c(k)

i coefficients from Eq. (3.72) as



B
(k)
n−mn−m ... B

(k)
n−mi ... B

(k)
n−mn 1

... ... ... ... ... 1
B

(k)
in−m ... B

(k)
ii ... B

(k)
in 1

... ... ... ... ... 1
B

(k)
nn−m ... B

(k)
ni ... B(k)

nn 1
1 1 1 1 1 0





c
(k)
n−m
...
c

(k)
i
...
c(k)

n

λ


=



0
0
0
0
0
1



13: Assemble the average effective Fock matrix F̃ (k)
n with Eq. (3.67).

14: Compute the new density matrix D(k)
n with F (k)

n or F̃ (k)
n .

15: end while
16: ! Result: Converged density matrix
17: D(k)

∞ = D
(k)
n+1

Algorithm 1 Pseudo-code using the DIIS or D-DIIS extrapolations.



Appendix B

LNV minimizations and conjugate
gradient routine by Jorge Nocedal

The algorithms in this appendix are for the three versions of LNV minimization. Actually,
these algorithms present the key steps of the line search performed by the CGFAM
routine.[117] The CGFAM routine is described below. After the line search, the density
matrix is purified under the threshold parameter. In our calculations, threshold = 10−2.
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1: ! Data: F, D, µ, tolerance,threshold.
2: ! Initialization
3: F̃ = F − µI
4: D = D0
5: G0 = H0 = −∇ΩLNV(D0)
6: n = 0
7: ! Line search by CGFAM routine
8: while ∥ D̃n+1 − D̃n ∥> tolerance do
9: n = n+ 1

10: Ñe = Tr{Dn}
11: ΩLNV(Dn) = Tr{F̃ (3D2

n − 2D3
n)}

12: ∇ΩLNV(Dn) = 3(DnF̃ + F̃Dn)− 2(D2
nF̃ +DnF̃Dn + F̃D2

n)
13: bn = −Tr{HnGn}
14: cn = Tr{3H2

nF̃ − 2
(
H2

nDnF̃ +HnDnHnF̃ +DnH
2
nF̃
)
}

15: dn = −2Tr{H3
nF̃}

16: Minimal root of (bn + 2cnλn + 3dnλ
2
n) = 0

17: Dn+1 = Dn + λnHn

18: Gn+1 = −∇ΩLNV(Dn+1)

19: γn =


Gn+1Gn

GnGn
: (FR)

or
(Gn+1−Gn)Gn+1

GnGn
: (PR)

20: Hn+1 = Gn+1 + γnHn

21: δN = |Ñe − Tr{Dn}|
22: ! Slight purification by McWeeny
23: if δN > threshold then
24: D̃n+1 = 3D2

n+1 − 2D3
n+1

25: end if
26: end while
27: ! Result: Converged density matrix
28: D∞ = D̃n+1

Algorithm 2 LNV minimization at constant µ (µ-LNVm)
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1: ! Data: F, D, N, tolerance,threshold.
2: ! Initialization
3: 10−3 < αXS < 10−2

4: D = D0
5: G0 = H0 = −∇ΩXS(D0)
6: n = 0
7: ! Line search by CGFAM routine
8: while ∥ D̃n+1 − D̃n ∥> tolerance do
9: n = n+ 1

10: Ñe = Tr{Dn}
11: µn+1 = µn + αXS

(
N − Ñe

)
12: F̃n = Fn − µnI
13: ΩXS(Dn) = Tr{F̃n(3D2

n − 2D3
n)}

14: ∇ΩXS(Dn) = 3(DnF̃n + F̃nDn)− 2(D2
nF̃n +DnF̃nDn + F̃nD

2
n)

15: bn = −Tr{HnGn}
16: cn = Tr{3H2

nF̃n − 2
(
H2

nDnF̃n +HnDnHnF̃n +DnH
2
nF̃n

)
}

17: dn = −2Tr{H3
nF̃}

18: Minimal root of (bn + 2cnλn + 3dnλ
2
n) = 0

19: Dn+1 = Dn + λnHn

20: Gn+1 = −∇ΩXS(Dn+1)

21: γn =


Gn+1Gn

GnGn
: (FR)

or
(Gn+1−Gn)Gn+1

GnGn
: (PR)

22: Hn+1 = Gn+1 + γnHn

23: δN = |Ñe − Tr{Dn}|
24: ! Slight purification by McWeeny
25: if δN > threshold then
26: D̃n+1 = 3D2

n+1 − 2D3
n+1

27: end if
28: end while
29: ! Result: Converged density matrix
30: D∞ = D̃n+1

Algorithm 3 Xu-Scuseria’s modified LNV minimization (XS-LNVm)
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1: ! Data: F, D, N, tolerance, threshold.
2: ! Initialization
3: D = D0
4: G0 = H0 = −∇ΩMS(D0)
5: n = 0
6: ! Line search by CGFAM routine
7: while ∥ D̃n+1 − D̃n ∥> tolerance do
8: n = n+ 1
9: Ñe = Tr{Dn}

10: µn = Tr{2DnFDn − F (3Dn − 2D2
n)− (3Dn − 2D2

n)F}/M
11: ΩMS(Dn) = Tr{F (3D2

n − 2D3
n)}+ µn (Tr{Dn} −N)

12: ∇ΩMS(Dn) = 3(DFn + FDn)− 2(D2
nF +DnFDn + FD2

n) + µnI
13: bn = −Tr{HnGn}
14: cn = Tr{3H2

nF̃n − 2
(
H2

nDnF̃n +HnDnHnF̃n +DnH
2
nF̃n

)
}

15: dn = −2Tr{H3
nF̃}

16: Minimal root of (bn + 2cnλn + 3dnλ
2
n) = 0

17: Dn+1 = Dn + λnHn

18: Gn+1 = −∇ΩMS(Dn+1)

19: γn =


Gn+1Gn

GnGn
: (FR)

or
(Gn+1−Gn)Gn+1

GnGn
: (PR)

20: Hn+1 = Gn+1 + γnHn

21: δN = |Ñe − Tr{Dn}|
22: ! Slight purification by McWeeny
23: if δN > threshold then
24: D̃n+1 = 3D2

n+1 − 2D3
n+1

25: end if
26: end while
27: ! Result: Converged density matrix
28: D∞ = D̃n+1

Algorithm 4 Millam-Scuseria’s modified LNV minimization (XS-LNVm)
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In order to minimize functions, the present works uses the routine CGFAM, written
by Jorge Nocedal.[117] This routine briefly described below is included in the CG+
code. CG+ is a conjugate gradient code for solving large scale, unconstrained, nonlinear
optimization problems. CG+ implements three different versions of the conjugate
gradient method: the Fletcher-Reeves method, the Polak-Ribiere method, and the
positive Polak-Ribiere method (β always non-negative). A web-based server which solves
unconstrained nonlinear optimization problems using this CG code can be found at:
http://users.iems.northwestern.edu/~nocedal/CG+.html

subroutine CGFAM( N, X, F, G, D, GOLD, IPRINT,
EPS, W, IFLAG, IREST, METHOD, FINISH )

Subroutine parameters:

integer: N, IPRINT(2), IFLAG, IREST, METHOD
double precision: X(N), G(N), D(N), GOLD(N), W(N), F, EPS
logical: FINISH

N (input) = Number of variables
X (output) = Iterate
F (input) = Function value
G (input) = Gradient value
GOLD (input) = Previous gradient value
IPRINT (input) = Frequency and type of printing

IPRINT(1) < 0 : No output is generated
IPRINT(1) = 0 : Output only at first and last iteration
IPRINT(1) > 0 : Output every iprint(1) iterations
IPRINT(2) : Specifies the type of output generated;

the larger the value (between 0 and 3),
the more information

IPRINT(2) = 0 : No additional information printed
IPRINT(2) = 1 : Initial x and gradient vectors printed
IPRINT(2) = 2 : X vector printed every iteration
IPRINT(2) = 3 : X vector and gradient vector printed

every iteration
EPS (input) = Convergence constant
W (input) = Working array

http://users.iems.northwestern.edu/~nocedal/CG+.html
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IFLAG (output) = Controls termination of code, and return to main
program to evaluate function and gradient
IFLAG = -3 : Improper input parameters
IFLAG = -2 : Descent was not obtained
IFLAG = -1 : Line search failure
IFLAG = 0 : Initial entry or

successful termination without error
IFLAG = 1 : Indicates a re-entry with new function values
IFLAG = 2 : Indicates a re-entry with a new iterate

IREST (input) = 0 (no restarts); 1 (restart every N steps)
METHOD (input) = 1 : Fletcher-Reeves

2 : Polak-ribiere
3 : Positive Polak-Ribiere ( β=max{β, 0} )

FINISH (input) = Termination test
First initialized to .false., then must be set to .true.
when the termination test is satisfied.



Appendix C

Purification algorithms

1: ! Data: F, M, N, µ, m, tolerance.
2: ! Initialization
3: ϵmin, ϵmax ← F
4: α = min

{
βm [ϵmax − µ]−1 , (1− βm) [µ− ϵmin]−1

}
5: µ̄ = (µ− ϵmin)(ϵmax − ϵmin)−1

6: D0 = α(µI − F ) + βmI
7: n = 0
8: ! Density matrix purification
9: while ∥ Dn+1 −Dn ∥> tolerance do

10: n = n+ 1
11: if µ̄ ≥ 0.5 then
12: Dn+1 = I − (I −Dn)m(I + mDn)
13: else
14: Dn+1 = Dm

n [I + m(I −Dn)]
15: end if
16: end while
17: ! Result: Converged density matrix
18: D∞ = Dn+1

Algorithm 5 Generalized Grand canonical purification (GCp)
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1: ! Data: F, M, N, tolerance.
2: ! Initialization
3: ϵmin, ϵmax ← F
4: µ̄ = Tr{F}/M
5: α = min

{
N

ϵmax−µ̄
, M−N

µ̄−ϵmin

}
6: D0 = α(µ̄I − F ) + (N/M)I
7: n = 0
8: ! Density matrix purification
9: while ∥ Dn+1 −Dn ∥> tolerance do

10: n = n+ 1
11: if ∥ Tr{Dn −D2

n} ∥< 10−4 then
12: cn = 0.5
13: else
14: cn = Tr{D2

n −D3
n}/Tr{Dn −D2

n}
15: end if
16: if cn ≥ 0.5 then
17: Dn+1 = [(1 + cn)D2

n −D3
n] /cn

18: else
19: Dn+1 = [(1− 2cn)Dn + (1 + cn)D2

n −D3
n] /(1− cn)

20: end if
21: end while
22: ! Result: Converged density matrix
23: D∞ = Dn+1

Algorithm 6 Canonical purification (Cp)

1: ! Data: F, N, tolerance, m(> 2).
2: ! Initialization
3: ϵmin, ϵmax ← F
4: D0 = (1− 2βm)(ϵmaxI − F )/(ϵmax − ϵmin) + βmI
5: n = 0
6: ! Density matrix purification
7: while ∥ Dn+1 −Dn ∥> tolerance do
8: n = n+ 1
9: if Tr{Dn} < N then

10: Dn+1 = I − (I −Dn)m(I + mDn)
11: else
12: Dn+1 = Dm

n [I + m(I −Dn)]
13: end if
14: end while
15: ! Result: Converged density matrix
16: D∞ = Dn+1

Algorithm 7 Generalized Trace Correcting purification (TCp)
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1: ! Data: F, N, tolerance.
2: ! Initialization
3: ϵmin, ϵmax ← F
4: γmin = 0, γmax = 6
5: D0 = (ϵmaxI − F )/(ϵmax − ϵmin)
6: n = 0
7: ! Density matrix purification
8: while ∥ Dn+1 −Dn ∥> tolerance do
9: n = n+ 1

10: F (Dn) = D2
n(4Dn − 3D2

n)
11: G(Dn) = D2

n(1−Dn)2

12: if ∥ Tr{G(Dn)} ∥< 10−4 then
13: γn = 3.0
14: else
15: γn = (N − Tr{F (Dn)}) /Tr{G(Dn)}
16: end if
17: if γn > γmax then
18: Dn+1 = 2Dn −D2

n

19: else if γn < γmin then
20: Dn+1 = D2

n

21: else
22: Dn+1 = F (Dn) + γnG(Dn)
23: end if
24: end while
25: ! Result: Converged density matrix
26: D∞ = Dn+1

Algorithm 8 Trace Resetting purification (TRSp)
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1: ! Data: F, M, N, tolerance.
2: ! Initialization
3: ϵmin, ϵmax ← F
4: µ̄ = Tr{F}/M , θ = N/M , λ1 = N

M(ϵmax−µ̄) , λ2 = M−N
M(µ̄−ϵmin) , 0 < α < 1

5: λo = min {λ1, λ2}, λq = max {λ1, λ2}
6: Dmin = λo(µ̄I − F ) + θI, Dmax = λq(µ̄I − F ) + θI
7: D0 = αDmin + (1− α)Dmax
8: n = 0
9: ! Density matrix purification

10: while ∥ Dn+1 −Dn ∥> tolerance do
11: n = n+ 1
12: if ∥ Tr{Dn −D2

n} ∥< 10−4 then
13: cn = 0.5
14: else
15: cn = Tr{D2

n −D3
n}/Tr{Dn −D2

n}
16: end if
17: Dn+1 = (1− 2cn)Dn + 2(1 + cn)D2

n − 2D3
n

18: end while
19: ! Result: Converged density matrix
20: D∞ = Dn+1

Algorithm 9 Hole-particle canonical purification (HPCP)

1: ! Data: F, N, tolerance, Rc.
2: ! Initialization
3: ϵmin, ϵmax ← F
4: D0 = (ϵmaxI − F )/(ϵmax − ϵmin)
5: n = 0
6: ! Density matrix purification
7: while ∥ D̃n+1 − D̃n ∥> tolerance do
8: n = n+ 1
9: D̃n = FILTER( Dn , Rc )

10: if Tr{D̃n} ≥ N then
11: D̃n+1 = D̃2

n

12: else
13: D̃n+1 = 2D̃n − D̃2

n

14: end if
15: end while
16: ! Result: Converged density matrix
17: D∞ = D̃n+1

Algorithm 10 Trace correcting purification (TC2) using radial truncation
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D-CPSCF equation solver and
routine by Michael Saunders

Generalized D-CPSCF equations at k order:

[
F,
[
D,D(k)

]]
+ 2DF (k)D −

{
D,F (k)

}
=
[
D,

k−1∑
i=1

[
D(k−i), F (i)

]]

In order to determine D(k), we use a conjugate gradient solving Ax = b where

Ax :=
[
F,
[
D,D(k)

]]
+ 2DF (k)D −

{
D,F (k)

}
(LHS)

b :=
[
D,

k−1∑
i=1

[
D(k−i), F (i)

]]
(RHS)

Ax and b are vectors while the terms of D-CPSCF equations are matrices. However, we
can suppose the terms of D-CPSCF equations are reshaped in vectors. The resolution
seems more technical. b is known since it involves the density matrices from lower orders.
x is D(k). A does not need neither to be known nor explicitly extracted in some way. On
the contrary, we straight need the matrix-vector product Ax which is LHS. Algorithm {11}
outlines how we implement this resolution. We implement a routine (APROD) which
constructs LHS. The APROD routine has only one variable, D(k). D and F are like
parameters since they are already calculated at 0th order (unperturbed order). SYMMLQ
is the routine which performs the conjugate gradient where D(k) is the only variable
which changes during the iterations. Of course, there are other parameters required in
SYMMLQ routine in order to control the convergence. The feature of SYMMLQ routine
is to solve Ax = b without explicitly requiring the matrix A. SYMMLQ only needs an
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1: Compute D and F at 0th order
2: Assemble the density matrices from lower orders to construct b.
3: ! Call APROD routine which constructs LHS
4: function APROD(D(k),D,F )
5: F (k) = F (k)

[
D(k)

]
6: return

[
F,
[
D,D(k)

]]
+ 2DF (k)D −

{
D,F (k)

}
7: end function
8: Initialize D(k)

9: ! Call SYMMLQ, the Saunders routine which resolves Ax = b
10: function SYMMLQ(D(k),APROD,b,...)
11: b: input which is the RHS.
12: APROD: external routine required by SYMMLQ and which supplies the matrix-

vector product Ax, so the LHS.
13: D(k): output
14: end function
15: ! Result: Converged density matrix
16: D(k)

Algorithm 11 Resolution of D-CPSCF by Ax = b solver

external routine which straight supplies the matrix-vector product Ax. SYMMLQ is the
routine written by Michael Saunders. This routine can be found at:
http://web.stanford.edu/group/SOL/software/symmlq/
SYMMLQ is designed to solve the system of linear equations

Ax = b

where A is an N by N symmetric matrix and b is a given vector. The matrix A is not
required to be positive definite. (If A is known to be definite, the method of conjugate
gradients might be preferred, since it will require about the same number of iterations as
SYMMLQ but slightly less work per iteration.) The matrix A is intended to be large
and sparse. It is accessed by means of a subroutine call of the form

call APROD(N, x, y)

which must return the product y = Ax for any given vector x. More generally, SYMMLQ
is designed to solve the system

(A− SHIFT IN)x = b

http://web.stanford.edu/group/SOL/software/symmlq/


151

where SHIFT is a specified scalar value. If SHIFT and b are suitably chosen, the computed
vector x may approximate an (unnormalized) eigenvector of A, as in the methods of
inverse iteration and/or Rayleigh-quotient iteration. Again, the matrix (A - SHIFT IN )
need not be positive definite. The work per iteration is very slightly less if SHIFT = 0.

A further option is that of preconditioning, which may reduce the number of iterations
required. If M = CCt is a positive definite matrix that is known to approximate (A -
SHIFT IN) in some sense, and if systems of the form My = x can be solved efficiently,
the parameters PRECON and MSOLVE may be used (see below). When PRECON =
.true., SYMMLQ will implicitly solve the system of equations

P (A− SHIFT IN)P tx̄ = Pb,

i.e.
Āx̄ = b̄

where
P = C−1,

Ā = P (A− SHIFT IN)P t,

b̄ = Pb,

and return the solution
x = P tx̄.

The associated residual is

r̄ = b̄− Āx̄
= P (b− (A− SHIFT IN)x)
= P r.

EPS refers to the machine precision computed by SYMMLQ.

subroutine SYMMLQ( N, B, R1, R2, V, W, X, Y, APROD, MSOLVE,
CHECKA, GOODB, PRECON, SHIFT, NOUT, ITNLIM,
RTOL, ISTOP, ITN, ANORM, ACOND, RNORM, YNORM

)

Subroutine parameters:

external: APROD, MSOLVE
integer: N, NOUT, ITNLIM, ISTOP, ITN
logical: CHECKA, GOODB, PRECON
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double precision: SHIFT, RTOL, ANORM, ACOND, RNORM, YNORM,
B(N), R1(N), R2(N), V(N), W(N), X(N), Y(N)

N (input) = The dimension of the matrix A
B(N) (input) = The right hand side vector b
R1(N) (input) = Workspace
R2(N) (input) = Workspace
V(N) (input) = Workspace
W(N) (input) = Workspace
X(N) (output) = Returns the computed solution x

Y(N) (input) = Workspace
APROD (input) = The external subroutine defining the matrix A

For a given vector x, the statement
call APROD ( N, x, y )

must return the product y = A x

without altering the vector x
MSOLVE (input) = The optional external subroutine defining a

preconditioning matrix M , which should
approximate (A - SHIFT IN) in some sense.
M must be positive definite.
For a given vector x, the statement

call MSOLVE ( N, x, y )
must solve the linear system M y = x

without altering the vector x.
In general, M should be chosen so that Ā has
clustered eigenvalues. For example,
if A is positive definite, Ā would ideally
be close to a multiple of IN .
If A or (A - SHIFT IN) is indefinite, Ā might
be close to a multiple of IN .
NOTE: The program calling SYMMLQ must declare
APROD and MSOLVE to be external.

CHECKA (input) = If CHECKA = .true., an extra call of APROD will
be used to check if A is symmetric. Also,
if PRECON = .true., an extra call of MSOLVE
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will be used to check if M is symmetric.
GOODB (input) = Usually, GOODB should be .false.

If x is expected to contain a large multiple of
b (as in Rayleigh-quotient iteration),
better precision may result if GOODB = .true.
When GOODB = .true., an extra call to MSOLVE
is required.

PRECON (input) = If PRECON = .true., preconditioning will
be invoked. Otherwise, subroutine MSOLVE
will not be referenced; in this case the
actual parameter corresponding to MSOLVE may
be the same as that corresponding to APROD.

SHIFT (input) = Should be zero if the system A x = b is to be
solved. Otherwise, it could be an
approximation to an eigenvalue of A, such as
the Rayleigh quotient btAb/(btb)
corresponding to the vector b.
If b is sufficiently like an eigenvector
corresponding to an eigenvalue near shift,
then the computed x may have very large
components. When normalized, x may be
closer to an eigenvector than b.

NOUT (input) = A file number.
If NOUT > 0, a summary of the iterations
will be printed on unit NOUT.

ITNLIM (input) = An upper limit on the number of iterations.
RTOL (input) = A user-specified tolerance. SYMMLQ terminates

if it appears that ∥r̄∥ is smaller than
RTOL ∥Ā∥ ∥x̄∥,

where r̄ is the transformed residual vector,
r̄ = b̄− Ā x̄.

If SHIFT = 0 and PRECON = .false., SYMMLQ
terminates if ∥b− Ax∥ is smaller than

RTOL ∥A∥ ∥x∥.
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ISTOP (output) = An integer giving the reason for termination...
-1: β = 0 in the Lanczos iteration; i.e. the

second Lanczos vector is zero. This means the
RHS is very special.
If there is no preconditioner, b is an
eigenvector of A.
Otherwise (if PRECON is true), let My = b.
If SHIFT is zero, y is a solution of the
generalized eigenvalue problem Ay = λMy,
with λ = α from the Lanczos vectors.
In general, (A - SHIFT IN)x = b

has the solution x = (1/α)y
where My = b.

0: b = 0, so the exact solution is x = 0.
No iterations were performed.

1: ∥r̄∥ appears to be less than
the value RTOL ∥Ā∥ ∥x̄∥.
The solution in x should be acceptable.

2: ∥r̄∥ appears to be less than
the value EPS ∥Ā∥ ∥x̄∥.
This means that the residual is as small as
seems reasonable on this machine.

3: ∥Ā∥ ∥x̄∥ exceeds ∥b∥/EPS,
which should indicate that x has essentially
converged to an eigenvector of A
corresponding to the eigenvalue shift.

4: ACOND (see below) has exceeded 0.1/EPS, so
the matrix Ā must be very ill-conditioned.
x may not contain an acceptable solution.

5: The iteration limit was reached before any of
the previous criteria were satisfied.

6: The matrix defined by APROD does not appear
to be symmetric.
For certain vectors y = A v and r = A y, the
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products yty and rtv differ significantly.
7: The matrix defined by MSOLVE does not appear

to be symmetric.
For vectors satisfying M y = v and M r = y, the
products yty and rtv differ significantly.

8: An inner product of the form xtM−1x

was not positive, so the preconditioning matrix
M does not appear to be positive definite.
If ISTOP ≥ 5, the final x may not be an
acceptable solution.

ITN (output) = The number of iterations performed.
ANORM (output) = An estimate of the norm of the matrix operator

Ā = P (A - SHIFT IN) P t, where P = C−1.
ACOND (output) = An estimate of the condition of Ā above.

This will usually be a substantial
under-estimate of the true condition.

RNORM (output) = An estimate of the norm of the final
transformed residual vector,
P (b - (A - SHIFT IN) x).

YNORM (output) = An estimate of the norm of x̄
This is

√
xtMx. If PRECON is false,

P (b - (A - SHIFT IN) x).
YNORM is an estimate of ∥x∥.





Appendix E

The principle of finite differences

Finite differences of univariate functions

Let be a scalar function f of unidimensional variable x. The derivative of f , denoted
here by f (1), is commonly defined by

f (1)(x) = lim
ξ→0

f(x+ ξ)− f(x)
ξ

(E.1)

Since limξ→0 can not be computed, a discrete analogue is used instead,

f (1)(x) = f(x+ ξ)− f(x)
ξ

+ O(ξ) (E.2)

where ξ (> 0) is a finite small step on the discret set of points x. The relation (E.2) is
known as the forward Euler difference (FED) approximation[162–164] since it uses forward
differencing. There exists also the backward Euler difference (BED) approximation:

f (1)(x) = f(x)− f(x− ξ)
ξ

+ O(ξ) (E.3)

and the centered Euler difference (CED) approximation:

fk1(x) = f(x+ ξ)− f(x− ξ)
2ξ + O(ξ2) (E.4)

The difference between these three approximations is given by their intrinsic error. Let
us remind that a Taylor series is a representation of function, infinitely differentiable, by
an infinite sum of terms, which are calculated from the values of the function derivatives
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at a single point. For example,

f(x+ ξ) = f(x) + ξf (1)(x) + ξ2

2! f (2) + ... =
∞∑

k=0

ξk

k! f
(k)(x)

f(x− ξ) = f(x)− ξf (1)(x) + ξ2

2! f (2) + ... =
∞∑

k=0
(−1)k ξ

k

k! f
(k)(x)

(E.5a)

(E.5b)

where f (k) denotes the kth order derivative of f . By Rearranging for instance Eq. (E.5a),
such that

f(x+ ξ)− f(x)
ξ

− f (1)(x) = ξ

2! f
(2)(x) + ξ2

3! f (3)(x) + ...︸ ︷︷ ︸
Truncation Error

(E.6)

one can observe that the FED in Eq. (E.2) corresponds to a Taylor series truncated
after the second term. The rhs of Eq. (E.6) is the error in terminating the series and is
referred to as the truncation error (TE).[165–167] The TE can be defined as the difference
between the partial derivative and its finite difference representation.

The finite difference representation described above evaluates the function to be
derived in a 2 points approximation.[158]. In order to maximize the numerical accuracy
of a finite difference representation, one can evaluate the function with a higher number
of points. That involves a higher order Taylor series. For example, let us first set

f(x+ 2ξ) =
∞∑

k=0

(2ξ)k

k! f (k)(x)

f(x− 2ξ) =
∞∑

k=0
(−1)k (2ξ)k

k! f (k)(x)

(E.7a)

(E.7b)

then proceeding as

f (1)(x) = 1
2ξ [−4Eq. (E.5a) + Eq. (E.7a)]

f (1)(x) = 1
2ξ [4Eq. (E.5b)− Eq. (E.7b)]

f (1)(x) = 1
12ξ [8Eq. (E.5a)− Eq. (E.7a)− 8Eq. (E.5b) + Eq. (E.7b)]

(E.8a)

(E.8b)

(E.8c)

leads to a FED with a second order TE,

f (1)(x) = −f(x+ 2ξ) + 4f(x+ ξ)− 3f(x)
2ξ + O(ξ2) (E.9)
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to a BED with a second order TE,

f (1)(x) = 3f(x)− 4f(x− ξ) + f(x− 2ξ)
2ξ + O(ξ2) (E.10)

and to a CED with a fourth order TE,

f (1)(x) = −f(x+ 2ξ) + 8f(x+ ξ)− 8f(x− ξ) + f(x− 2ξ)
12ξ + O(ξ4) (E.11)

In Eq. (E.9) and Eq. (E.10), the function is now evaluated in 3 points, while in Eq. (E.11)
the function is now evaluated in 4 points. The relation (E.8) means that the Taylor series
evaluated in many different points, are combined in some appropriate way so that one
can generalize a relation between the dth order derivative function and its finite difference
representation by[168]

ξd

d! f (d)(x) =
mmx∑

m=mmn

cmf(x+mξ) + O(ξd+p) (E.12)

where p (> 0) is the integer order of the TE, selected as desired. cm are the coefficients
of the finite difference represensation. In order to determine cm, one uses the Taylor
series for f(x+mξ), which is

f(x+mξ) =
∞∑

k=0
mk ξ

k

k! f
(k)(x) (E.13)

Introducing Eq. (E.13) into Eq. (E.12) yields

ξd

d! f (d)(x) =
mmx∑

m=mmn

cm

∞∑
k=0

mk ξ
k

k! f
(k)(x) + O(ξd+p)

=
∞∑

k=0

(
mmx∑

m=mmn

mkcm

)
ξk

k! f
(k)(x) + O(ξd+p)

=
d+p−1∑

k=0

(
mmx∑

m=mmn

mkcm

)
ξk

k! f
(k)(x) + O(ξd+p) (E.14)

and that finally leads to

f (d)(x) = d!
ξd

d+p−1∑
k=0

(
mmx∑

m=mmn

mkcm

)
ξk

k! f
(k)(x) + O(ξp) (E.15)
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From the last equation, the simplest way to determine the cm coefficients is to constrained
cm to have the property of the Lagrange polynomials[91–94] such that

mmx∑
m=mmn

mkcm =
 0, 0 ≤ k ≤ d+ p− 1 and k ̸= d

1, k = d

 (E.16)

in order to have a unique solution for cm. The relation (E.16) corresponds a set of (d+ p)
linear equations in (mmx −mmn + 1) unkowns.

FED BED CED

(d,p) mmn = 0
mmx = d+ p− 1

mmn = −(d+ p− 1)
mmx = 0

mmn = −(d+ p− 1)/2
mmx = (d+ p− 1)/2

Table E.1 Indices (mmn,mmx) for cm given by (d,p) corresponding to the type of finite
representation difference approximation.

The Table {E.1} gives the number of coefficients cm, so the different points m in the
finite difference representation from the derivative order d and the TE order p, for the
differente approximation. In other words, Table {E.1} gives a relationship between the
number of terms in the finite difference representation and the number of terms in the
Taylor series. For this reason, in Eq. (E.15), the sum over k or the number of terms in
the Taylor series is no more infinite. Note that in Table {E.1}, for CED approximation,
d+ p is necessarily an odd number, while p can be chosen to be even regardless of the
parity of d.

In order to understand Eq. (E.16) which gives the coefficients cm of the finite difference
representation, let us approximate for example f (3)(x) with a FED and a 1st order TE ie.
O(ξ), so d = 3 and p = 1. Using Table {E.1} gives mmn = 0 and mmx = 3. The linear
system given by Eq. (E.16) is then


(0)0 (1)0 (2)0 (3)0

(0)1 (1)1 (2)1 (3)1

(0)2 (1)2 (2)2 (3)2

(0)3 (1)3 (2)3 (3)3




c0

c1

c2

c3

 =


0
0
0
1

 (E.17)
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Assuming that 00 = 1, we have


1 1 1 1
0 1 2 3
0 1 4 9
0 1 8 27




c0

c1

c2

c3

 =


0
0
0
1

 (E.18)

This equation is easily resolved by hand and its solution is (c0, c1, c2, c3) = (−1, 3,−3, 1)/6.
In other words, using Eq. (E.12),

f (3)(x) = −f(x) + 3f(x+ ξ)− 3f(x+ 2ξ) + f(x+ 3ξ)
ξ3 + O(ξ) (E.19)

Let us now approximate f (3)(x) with a CED and error O(ξ2). Proceeding in the same
way, d = 3 and p = 2, gives mmx = −mmn = 2. The resulting linear system is



(−2)0 (−1)0 (0)0 (1)0 (2)0

(−2)1 (−1)1 (0)1 (1)1 (2)1

(−2)2 (−1)2 (0)2 (1)2 (2)2

(−2)3 (−1)3 (0)3 (1)3 (2)3

(−2)4 (−1)4 (0)4 (1)4 (2)4





c−2

c−1

c0

c1

c2


=



0
0
0
1
0


(E.20)

which corresponds to


1 1 1 1 1
−2 −1 0 1 2
4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16





c−2

c−1

c0

c1

c2


=



0
0
0
1
0


(E.21)

and has solution (c−2, c−1, c0, c1, c2) = (−1, 2, 0,−2, 1)/12. Finally, the expression for
f (3)(x) is

f (3)(x) = −f(x− 2ξ) + 2f(x− ξ)− 2f(x+ ξ) + f(x+ 2ξ)
2ξ3 + O(ξ2) (E.22)

Finite differences of bivariate functions

The CED approximation is enough used for finite field difference methods applied to the
response tensors[158, 169–173]. For example, we have implemented the finite field differ-
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ence of Ref. [158] which uses a CED with 7 points. That involves m = {0,±1,±2,±3},
hence mmx = −mmn = 3. We can now deduce the approximate expressions for the
derivatives of the response tensors given in Eq. (4.15) such that

Dipole moment µ

d = 1, p = 6 

1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27
81 16 1 0 1 16 81
−243 −32 −1 0 1 32 243
729 64 1 0 1 64 729





c−3

c−2

c−1

c0

c1

c2

c3


=



0
1
0
0
0
0
0


(E.23)

which approximates the first order derivative of the energy with respect to the electric
field as

µ = ∂E(E⃗ )
∂E

≈ 1
60ξ (E+3 − 9E+2 + 45E+1

−45E−1 + 9E−2 − E−3) + O(ξ6) (E.24)

Polarizability α

d = 2, p = 5 

1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27
81 16 1 0 1 16 81
−243 −32 −1 0 1 32 243
729 64 1 0 1 64 729





c−3

c−2

c−1

c0

c1

c2

c3


=



0
0
1
0
0
0
0


(E.25)

which approximates the second order derivative of the energy with respect to the electric
field as

α = ∂2E(E⃗ )
∂E 2 ≈ 1

180ξ2 (2E+3 − 27E+2 + 270E+1

−490E0 + 270E−1 − 27E−2 + 2E−3) + O(ξ5) (E.26)
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First hyperpolarizability β

d = 3, p = 4 

1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27
81 16 1 0 1 16 81
−243 −32 −1 0 1 32 243
729 64 1 0 1 64 729





c−3

c−2

c−1

c0

c1

c2

c3


=



0
0
0
1
0
0
0


(E.27)

which approximates the third order derivative of the energy with respect to the electric
field as

β = ∂3E(E⃗ )
∂E 3 ≈ 1

8ξ3 (−E+3 + 8E+2 − 13E+1

+13E−1 − 8E−2 + E−3) + O(ξ4 ) (E.28)

Second hyperpolarizability γ

d = 4, p = 3 

1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27
81 16 1 0 1 16 81
−243 −32 −1 0 1 32 243
729 64 1 0 1 64 729





c−3

c−2

c−1

c0

c1

c2

c3


=



0
0
0
0
1
0
0


(E.29)

which approximates the fourth order derivative of the energy with respect to the electric
field as

γ = ∂4E(E⃗ )
∂E 4 ≈ 1

6ξ4 (−E+3 + 12E+2 − 39E+1

+56E0 − 39E−1 + 12E−2 − E−3) + O(ξ3 ) (E.30)

In Eq. (E.24), Eq. (E.26), Eq. (E.28) and Eq. (E.30), ξ is the differentation step of the
finite field difference representation for the energy derivative with respect to the electric
field E⃗ . The unit of ξ is that of the electric field strength, ξ ∼ 10−3 au[158]. And E±i is

E±i = E(E⃗ ± iξ) (E.31)
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the energy of the system calculated for the strength of the electric field equal to E⃗ ± iξ
with i = {0, 1, 2, 3}. On the other hand, it is important to emphasize that the finite
field difference representation of Eq. (E.24), Eq. (E.26), Eq. (E.28) and Eq. (E.30) is
for an univariate function. That implies the electric field changes only in one direction,
ie. E±i = E(Ex ± iξ) in the x direction. In the case where the electric field changes in
two directions x and y[158], the finite difference representation basically requires two
differentiation steps ξx and ξy, respectively. Supposing that ξx and ξy can be comparable,
then we can find a step ξ so that: ξx = iξ and ξy = jξ. We may write the energy as

E±i,±j = E(Ex ± iξ,Ey ± jξ) (E.32)

This energy is associated to Eq. (4.3) which the expression is

hλ
µν = hµν + i⟨x⟩ξδµν + j⟨y⟩ξδµν (E.33)

where (i, j) = {0,±1,±2,±3}. and ⟨x⟩ and ⟨y⟩ represent the position vector components
along the x and y directions. We obtain an energy matrix such as

Ei,j =



E−3,−3 E−2,−3 E−1,−3 E0,−3 E+1,−3 E+2,−3 E+3,−3

E−3,−2 E−2,−2 E−1,−2 E0,−2 E+1,−2 E+2,−2 E+3,−2

E−3,−1 E−2,−1 E−1,−1 E0,−1 E+1,−1 E+2,−1 E+3,−1

E−3,0 E−2,0 E−1,0 E0,0 E+1,0 E+2,0 E+3,0

E−3,+1 E−2,+1 E−1,+1 E0,+1 E+1,+1 E+2,+1 E+3,+1

E−3,+2 E−2,+2 E−1,+2 E0,+2 E+1,+2 E+2,+2 E+3,+2

E−3,+3 E−2,+3 E−1,+3 E0,+3 E+1,+3 E+2,+3 E+3,+3


(E.34)

In this matrix, a row(column) means that the field changes in x(y) direction while is
fixed in y(x) direction. The fourth row(column) corresponds to the univariate case where
the field exits only in x(y). As a result, a derivative of this energy with respect to Ex

(Ey) requires the seven energies along a row (column) of this matrix. The formulas in
Eq. (E.24), Eq. (E.26), Eq. (E.28) and Eq. (E.30) using the energies of the 4th row
(column) give the diagonal components of the tensors along x (y), since the field is
applied only in a single direction. For example for the component βyyy, we need to take
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the formula of Eq. (E.28) with the energies


E0,−3

E0,−2

E0,−1

E0,0

E0,+1

E0,+2

E0,+3


While for the non-diagonal components of tensors, one has to apply some combinations
of formulas (E.24), (E.26), (E.28) and (E.30), as the field is applied in several directions.
The value of the field changes in a direction while it is fixed in the other directions. As
an example, for

γxxyy = ∂2

∂E 2
x

(
∂2E(Ex,Ey)

∂E 2
y

)
= ∂2X(Ex)

∂E 2
x

we first use Eq. (E.26) for each column, which leads to a row vector
(
X−3 X−2 X−1 X0 X+1 X+2 X+3

)
For the elements of this vector, X+1 for instance means the EyEy − second derivative
while the field at Ex is fixed to i = +1, and so on. Then, by applying once more
Eq. (E.26) to this vector, we finally obtain the non-diagonal component γxxyy. The below
algorithm outines the finite field difference method which evaluates the optical properties.
This method is from Ref. [158] and uses a seven points representation. The energy is
calculated at different points. The resulting energies are then used in combinations of
sums of energies that define the derivatives for the response tensors.
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1: ! Data: F, ξ, tolerance.
2: ! Initialization
3: D = D0
4: n = 0
5: ! Computation of seven energy points
6: for i = −3, 3 do
7: for j = −3, 3 do
8: while ∥ D̃n+1 − D̃n ∥> tolerance do
9: n = n+ 1

10: F̃n = F [Dn] + ξ (i⟨x⟩+ j⟨y⟩) I
11: D̃n+1 ← F̃n

12: Ẽn+1 ← D̃n+1
13: end while
14: end for
15: end for
16: E(i, j) = Ẽ∞

17: E(i, j) Eq.(E.24),Eq.(E.26),Eq.(E.28),Eq.(E.30)−−−−−−−−−−−−−−−−−−−−−−→ µ, α, β, γ

Algorithm 12 Finite field difference method for µ, α, β and γ (optical properties).


	Table of contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	1 Density matrices and electronic structure
	1.1 Density operator and stationary condition
	1.2 Density matrix for fermion systems
	1.2.1 Generalities
	1.2.2 Reduced density matrices
	1.2.3 Density matrix for a single determinant
	1.2.4 Density matrix representation in finite non-orthogonal basis

	1.3 Restricted Hartree-Fock energy
	1.4 Pariser-Parr-Pople method
	1.4.1 Zero-differential-overlap approximation
	1.4.2 Pariser-Parr-Pople model parameterization

	1.5 Minimization of the Hartree-Fock energy
	1.6 The self-consistent field procedure
	1.6.1 Constant damping algorithm
	1.6.2 Direct inversion of the iterative subspace extrapolation


	2 Density matrix purifications and minimizations
	2.1 Density matrix minimization principle
	2.1.1 Idempotency error functional minimization
	2.1.2 Energy functional minimization

	2.2 Density matrix polynomial expansion
	2.2.1 Canonical purification
	2.2.2 Trace-correcting and trace-resetting purifications
	2.2.3 Hole-particle canonical purification
	2.2.4 Extended comparison of density matrix purifications

	2.3 Linear scaling strategies
	2.3.1 Density matrix truncations
	2.3.2 Sparse matrix representations

	2.4 Applications to carbon nanotubes
	2.4.1 Carbon nanotubes
	2.4.2 Numerical truncation for SCF calculations
	2.4.3 Radial truncation for SCF calculations
	2.4.4 Linear scaling SCF calculations and conclusion


	3 Density matrix perturbation theory
	3.1 Theoretical background
	3.2 Wavefunction coupled perturbed self-consistent field formulation
	3.2.1 First-order response
	3.2.2 Second-order response
	3.2.3 Third-order response
	3.2.4 kth-order response

	3.3 Density matrix coupled perturbed self-consistent field formulation
	3.3.1 First-order response
	3.3.2 Second- and third-order response
	3.3.3 kth-order response

	3.4 Perturbed projection by trace-correcting purification
	3.5 Perturbed projection by hole-particle canonical purification
	3.6 Derivative of direct inversion of the iterative subspace
	3.7 Discussions

	4 Applications to non-linear optical properties of -conjugated systems
	4.1 Non linear optical properties
	4.1.1 Perturbed energy expression for the PPP model
	4.1.2 Energy and response expansions

	4.2 Outline of the implementation
	4.3 Perturbed dense matrix calculation
	4.3.1 Applications and comparison for small systems
	4.3.2 Methods efficiency for larger systems

	4.4 Perturbed linear scaling calculation

	Conclusions and outlook
	References
	Appendix A Derivative direct inversion of iterative subspace
	Appendix B LNV minimizations and conjugate gradient routine by Jorge Nocedal
	Appendix C Purification algorithms
	Appendix D D-CPSCF equation solver and routine by Michael Saunders
	Appendix E The principle of finite differences

