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Abstract 

As software systems are pervasive and play an important role in everyday life, the users 

are becoming more and more demanding. They mainly require more reliable systems that 

automatically adapt to different use cases. To satisfy these requirements, technical frameworks 

and design methods, upon which the systems development is based, must meet specific 

objectives mainly modularity, flexibility, and consistency. Service-Oriented Architecture 

(SOA) is a paradigm that offers mechanisms to increase the software flexibility and reduce 

development costs by enabling service orchestration and choreography. SOA promises also 

reliability through the use of services contracts as an agreement between the service provider 

and consumer. Model-driven SOA is a novel and promising approach that strengthens SOA 

with Model-Driven Engineering (MDE) technics that ease the specification, development, and 

verification of Service-Oriented Applications by applying abstraction and automation 

principles. 

Despite the progress to integrate MDE to SOA, there are still some challenging problems 

to be solved: (1) Rigorous verification of SOA system specifications. This is a challenging 

problem because to model SOA systems designers need more than one viewpoint, each of 

which captures a specific concern of the system. These viewpoints are meant to be 

semantically consistent with each other. This problem is called horizontal consistency 

checking and it is an important step to reduce inconsistencies in SOA models before 

transforming them into other forms (code generation, test cases derivation, etc.).  (2) 

Transformation of systems specifications into executable artifacts. Despite the maturity 

of SOA, the transformation of system specifications into executable artifacts is usually 

manual, fastidious and error-prone. The transformation of services choreographies into 

executable orchestrations particularly remains a problem because of the necessity to take into 

account critical aspects of distributed systems such as asynchrony and concurrency when 

executing centralized orchestrations. (3) Runtime verification. Even after verifying 

Horizontal consistency at design time, there could be unexpected and unspecified data 

interactions that are unknown during design-time. For this reason, we still need consistency 

verification at runtime to handle such unforeseen events. This problem is called Vertical 

consistency checking. 

This thesis work proposes a Model-driven SOA approach to address the above-

mentioned challenges. This approach includes a two-step model-driven methodology to 

horizontally and vertically verify the consistency of SOA systems specifications described 

using the SoaML standard from the Object Management Group (OMG). The horizontal 

consistency checking problem, which is the first challenge, is solved by means of static 

validation of the system specification at the design level. The second challenge is solved by 

specifying the transformation from a choreography specification model to an executable 

orchestration implementing the choreography logic. Our transformation takes into 

consideration the asynchronous nature of the communications between distributed services. 

The vertical consistency checking problem, which is the third challenge, is solved by our 

approach thanks to offline analysis that allows consistency verification between both design 

and runtime levels. The entire methodological proposal was implemented as an extension to 

the open source UML modeling tool Papyrus. 



 

 

Résumé 

L’omniprésence des systèmes logiciels et le rôle important qu’ils jouent dans la vie 

quotidienne rendent les utilisateurs de plus en plus exigeants. Entre autre, ils demandent plus de 

fiabilité et des systèmes qui peuvent s’adapter à leur contexte d’utilisation. Afin de satisfaire ces 

demandes, les cadres techniques et les méthodes de conception sous-jacents au développement 

des systèmes doivent répondre à des objectifs spécifiques principalement la modularité, la 

flexibilité et la consistance. L’architecture orientée service (SOA pour « Service-Oriented 

Architecture ») est un paradigme qui offre des mécanismes permettant une grande flexibilité des 

architectures des systèmes logiciels tout en réduisant leurs coûts de développement puisqu’elle 

se base sur des entités modulaires et réutilisables appelées services.  Ces services peuvent être 

réutilisés dans le cadre d’une composition ou d’une chorégraphie de services pour la construction 

de nouveaux processus métiers transverses. SOA promet aussi d’augmenter la fiabilité des 

systèmes au travers de la notion de contrat de services. De son côté, le paradigme de l’Ingénierie 

Dirigée par les Modèles (IDM) offre au travers de ses deux principes fondateurs, l’abstraction et 

l’automatisation, deux moyens puissants de gestion de la complexité sans cesse croissante des 

systèmes. Combiner les deux paradigmes et concevoir ainsi une approche de type SOA dirigée 

par les modèles semble une piste prometteuse pour résoudre les défis précédemment cités. 

Malgré les progrès des deux paradigmes, IDM et SOA, il y a encore des défis à résoudre 

lors de l’application de l’IDM dans le processus de développement des applications orientées 

services. Notamment, on peut citer : (1) La vérification rigoureuse des spécifications des 

systèmes conformes aux principes de SOA. Ce premier point constitue un défi car pour 

modéliser les systèmes, les concepteurs ont besoin de plus d'un point de vue représentant chacun 

une préoccupation spécifique du système et bien sûr ces points de vue doivent être 

sémantiquement cohérents. Ce problème est appelé la vérification de la consistance horizontale, 

une tâche manuellement difficile qui constitue une étape importante pour réduire les 

incohérences dans les modèles des applications orientées services avant de les transformer en 

d'autres formes (du code, des cas de tests, etc.). (2) La transformation des spécifications des 

systèmes SOA en artefacts exécutables. Malgré la maturité de l’architecture SOA, la 

transformation des spécifications des systèmes SOA en artefacts exécutables s'avère encore une 

étape fastidieuse et est généralement effectué manuellement. Les opérations manuelles sont 

autant de sources potentielles d’introduction d’erreurs. En particulier, la transformation des 

chorégraphies de services en orchestrations exécutables reste un problème en raison de la 

nécessité de prendre en compte les aspects complexes des systèmes distribués, tels que 

l’asynchronisme et la concurrence lors de l'exécution des orchestrations centralisées. (3) La 

vérification de l’exécution. Même après la vérification de la cohérence horizontale au moment 

de la spécification, des comportements inattendus peuvent encore apparaitre lors de l’exécution. 

Pour cette raison, il est nécessaire de pouvoir vérifier la conformité de l'exécution d’un système 

par rapport à sa spécification. Ce problème est appelé la vérification de la consistance verticale. 

Ce travail de thèse propose ainsi une approche de type SOA dirigée par les modèles 

résolvant les défis mentionnés précédemment. Cette approche comprend une méthodologie en 

deux étapes pour la vérification de la consistance horizontale et verticale des systèmes SOA dont 

les spécifications ont été décrites en utilisant la norme SoaML de l’OMG (Object Management 
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Group). Le problème de vérification de la consistance horizontale, qui est le premier défi, est 

résolu au moyen de l'analyse statique de la spécification des systèmes. Le deuxième défi est 

résolu en spécifiant les règles de transformation d'un modèle de spécification de chorégraphie de 

services en une orchestration exécutable qui implémente la logique de la chorégraphie. Notre 

transformation prend en considération la nature asynchrone des communications entre les 

services distribués. Le problème de vérification de la consistance verticale, qui est le troisième 

défi, est résolu par notre approche par l'analyse hors ligne des traces d’exécution d’un système, 

ce qui permet la vérification de la cohérence entre le niveau de la spécification et celui de 

l'exécution. L’ensemble de la proposition méthodologique a été implanté sous la forme d’une 

extension à l’outil de modélisation UML open-source Papyrus. 



 

 

Condensé 
Contexte et motivation 

Les logiciels sont de plus en plus présents dans notre vie quotidienne, et ce dans différents 

domaines d’application comme l’industrie, la santé, les réseaux d’électricité intelligente, etc. Ces 

logiciels jouent un rôle important dans la vie des utilisateurs, ce qui les rend de plus en plus 

exigeants. Entre autre, ils demandent plus de fiabilité et des systèmes qui peuvent s’adapter à leur 

contexte d’utilisation et à leurs nouvelles exigences plus rapidement. Afin d’assurer ces enjeux 

sociétaux et satisfaire les utilisateurs, les cadres techniques et les méthodes de conception sous-

jacents au développement des systèmes doivent être modulaires, flexibles et consistants. Dans le 

domaine du génie logiciel, les paradigmes d'ingénierie dirigée par les modèles (IDM) et des 

architectures orientées-services (SOA), qui sont des paradigmes relativement récents, se sont 

révélés bénéfiques pour faciliter le développement et gérer la complexité des systèmes logiciels 

[1]. L’architecture SOA est connue par sa modularité qui la rend plus flexible. De sa part, l’IDM 

aide à gérer et à améliorer la spécification et le développement de logiciels complexes [2]. 

Depuis la fin des années 90, l’Ingénierie Dirigée par les Modèles (IDM) est considéré comme 

une approche incontestée pour assumer la complexité des systèmes distribués et ce en se basant 

sur deux principes très importants dans le développement logiciel qui sont : l'abstraction et de 

l'automatisation. L’abstraction se base sur la représentation des systèmes sous forme de modèle 

pour faciliter la compréhension de l’architecture et du comportement de ces systèmes. Cette 

approche se base complètement sur les modèles. Ces modèles serviront comme un point de départ 

dans le processus de spécification, de développement et d’analyse. Ils peuvent être utilisés pour 

comprendre, évaluer, communiquer et produire du code [1]. Ces transformations automatisées 

augmentent la productivité et diminuent le coût de développement. L’IDM met l'accent sur les 

modèles spécifiques aux domaines, qui peuvent être plus utiles pour la spécification des 

applications et pour la génération du code. Afin de modéliser des systèmes complexes de taille 

raisonnable, les concepteurs ont besoin de dissocier  le modèle en plusieurs vues, chacune capture 

une préoccupation spécifique du système. Ces différentes vues du modèle sont régies par des 

points de vue et sont utilisées pour faciliter les taches de conception, d'analyse et de 

développement des logiciels.  

L’architecture orientée-service (SOA) est une architecture prometteuse qui propose des 

solutions pour augmenter la flexibilité des systèmes logiciels puisqu’elle se base sur des entités 

modulaire et réutilisable appelées services. Le but derrière SOA est de transformer les 

composants d'un système d'information en services, intégrables à la volée, pour construire des 

processus métier transverses d’une manière flexible. Cette architecture permet aussi la définition 

de contrats de services qui  définissent un engagement entre les fournisseurs et les 

consommateurs de services pour garantir plus de fiabilité. SOA permet aussi la définition de 

collaborations entre les services sous forme de chorégraphie ou orchestration de services.  Cela 

est très bénéfique parce que le développement de logiciels passe du développement 

d’applications à partir de zéro, au développement de services qui forment des blocs de 

construction réutilisables pour construire d’autres applications. Les chorégraphies ne sont pas 

destinées à être exécutables. Le but d’une chorégraphie est de spécifier «quels» sont les échanges
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de messages qui doivent avoir lieu entre les services afin d’atteindre l’objectif de cette 

chorégraphie. Contrairement à la chorégraphie, une orchestration décrit l'exécution de ce 

processus d'orchestration.  Elle met l'accent sur «comment» ces services peuvent coopérer 

ensemble du point de vue d'un seul participant appelé orchestrateur. La chorégraphie de services 

est par conséquence plus déclarative, ce qui explique le fait qu’elle est utilisée le plus souvent 

pour la spécification de la composition de services tandis que l’orchestration est utilisée au niveau 

de l’exécution. Dans notre travail, nous utilisons les chorégraphies pour la description des 

compositions des services au niveau de la spécification des systèmes SOA. 

Une application SOA peut être constituée de plusieurs objets tels que les services, les contrats, 

les participants, les relations et les contraintes de qualité. Le développement de ces applications 

pourrait devenir une tâche complexe. Pour faire face à ce problème, une bonne façon serait de 

modéliser ces architectures orientées services. Les modèles SOA aident à expliquer, formaliser 

et comprendre ces architectures. Les travaux de recherche montrent que l'application de l’IDM 

au développement des SOA est bénéfique [3] [4]. Un des principaux avantages de l’application 

de l’IDM pour SOA est que l'application SOA soit modélisée à différents niveaux d'abstraction 

séparant par exemple la vue fonctionnelle et comportementale du système de la vue 

technologique [5].  

Énoncé du problème  

Comme expliqué ci-dessus, nous travaillons dans le cadre de l’ingénierie dirigée par les 

modèles pour le développement des systèmes SOA (IDM pour SOA). Dans une approche IDM, 

une étape cruciale dans le développement de ces systèmes logiciel en général et des systèmes 

SOA en particulier est l’étape modélisation. A ce stade, il est très important de vérifier la 

consistance de ces modèles, appelée consistance horizontale. La vérification de la consistance 

horizontale consiste à vérifier la cohérence des modèles de spécification. L’incohérence de ces 

modèles produit de mauvais résultats qui se situent entre des comportements inattendus du 

système au cours  de l’exécution, et l’impossibilité de la génération de code à partir de ces 

modèles. En plus, la résolution de ces problèmes d’incohérence dans les premières phases de 

conception permettrait d'économiser beaucoup de temps et d'argent. La vérification de la 

cohérence des modèles de spécification devient donc une étape inévitable avant la transformation 

de ces modèles en d'autres formes (génération de code, dérivation de cas de test, etc.). Cependant, 

cette vérification s’annonce difficile en raison de la complexité des modèles SOA et ce à cause 

des multiples points de vue dans un système SOA et à cause de la grande taille de ces systèmes 

qui impliquent un grand nombre de services.  

Après l'étape de spécification des systèmes SOA, les modèles qui en résultent doivent être 

transformées en objets exécutables. Les deux modèles structurels et comportementaux doivent 

être transformés en modèles ciblant une ou plusieurs plates-formes d’exécution spécifiques. Pour 

les modèles de comportement, nous nous intéressons à la spécification de la composition de 

service. Ce mécanisme est l’un des principes fondamentaux de l’architecture SOA puisqu’il 

permet la réutilisation des services existants pour créer de nouvelles applications à valeur ajoutée. 

Comme elles sont plus déclaratives, nous sommes intéressés aux chorégraphies de services pour 

décrire des compositions de services. Premièrement, nous devons choisir le langage de 

modélisation le plus approprié pour spécifier des chorégraphies de services. Ensuite, les 

spécifications de la chorégraphie doivent être transformées en orchestrations exécutables qui 
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intègrent la logique des chorégraphies. Cette transformation est généralement réalisée 

manuellement et est fastidieuse et sujette aux erreurs. Elle devient plus difficile quand un grand 

nombre de services sont impliqués dans la chorégraphie ou lorsque la chorégraphie inclut des 

dépendances d'échange de messages compliquées (par exemple l'ordre de séquencement des 

messages ou les choix exclusifs entre deux possibilités d’exécution). La transformation de 

chorégraphie de service vers une orchestration doit aussi prendre en compte la nature des 

communications  (synchrone ou asynchrone) ainsi que les délais de transmission et leurs 

éventuelles conséquences sur la communication.  

Après la génération de code, les objets générés sont déployés dans des plateformes 

d’exécution. A ce stade, il pourrait y avoir des interactions inattendues et non précisées qui sont 

inconnues lors de la conception et qui sont, par conséquence, non incluses dans le modèle. Cela 

est dû au fait que la vérification horizontale lors de la phase de spécification ne révèle pas tous 

les problèmes potentiels qui pourraient survenir lors de l'exécution. Pour cette raison, les 

systèmes ont encore besoin d’une deuxième vérification, appelée vérification de la consistance 

verticale, pour garantir la cohérence entre le modèle de spécification et celui d’exécution. Cette 

vérification permet la détection de tels événements imprévus lors de l'exécution et de rectifier 

par suite les problèmes observés. 

A partir des problèmes listés ci-dessus nous avons identifié trois questions de recherche qui 

couvrent différentes phases du cycle de vie du logiciel, i.e., la phase de spécification, la phase de 

développement et la phase de vérification. Les questions de recherche identifiées sont les 

suivants : 

Question 1 : "Comment renforcer la consistance horizontale des spécifications des systèmes 

orientés-services?". Cette question de recherche concerne la phase de spécification et vise à 

améliorer la cohérence de la spécification d’un système SOA.  

Question 2 : "Comment transformer une spécification de haut niveau en artefacts 

exécutables ? En particulier, comment transformer une chorégraphie de services en une 

orchestration exécutable qui intègre la logique de la chorégraphie?". Cette question de recherche 

concerne la phase de développement et vise à fixer les règles de transformation du modèle de 

spécification d’une application orientée services vers un modèle exécutable.   

Question 3 : "Comment renforcer la consistance verticale entre le modèle de spécification et 

le modèle d’exécution pour les systèmes SOA?". Cette question de recherche concerne la phase 

de vérification des systèmes.  

Contributions 

Une première étape consiste à fixer un langage de modélisation pour les applications orientées 

services. Ce langage doit contenir tous les éléments nécessaires pour la conception de ces 

applications. Dans la littérature, il existe plusieurs initiatives de modélisation SOA [6] [7]. Une 

initiative a été récemment prise par l’OMG qui a proposé le langage de modélisation pour les 

architectures orientées-service appelé SoaML (pour Service oriented architecture Modeling 

Language [8]). SoaML fournit un profil UML fournissant un ensemble complet de concepts pour 

la modélisation d'applications orientées services. Pour faciliter la compréhension des systèmes 

SOA, SoaML permet la définition de plusieurs vues dans un même modèle : la vue Services, la 

vue de contrats de services, la vue des composants qui implémentent ces services, la vue de 
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données et la vue des architectures de services. SoaML permet aussi la définition de chorégraphie 

de services qui peuvent être rattachées à des contrats de services. SoaML donne la liberté du 

choix du langage de chorégraphie au concepteur du système selon le besoin. Pour ces raisons, 

nous avons choisi la norme SoaML comme un langage de modélisation. Ce standard fait la liaison 

entre SOA et IDM en fournissant un langage de modélisation. 

Le but de notre travail est de proposer une approche IDM pour la spécification, le 

développement et la vérification des systèmes SoaML. Cette approche doit en particulier traiter 

les trois questions de recherche mentionnées précédemment. Au niveau de la spécification, 

puisque nous avons choisi SoaML comme langage de spécification, le problème de la vérification 

de la consistance horizontale des systèmes orientées services est adressé par l'enrichissement de 

SoaML avec des mécanismes d'analyse statique dont le but est de vérifier la cohérence d’un 

modèle SoaML par rapport à la syntaxe et aux sémantiques définis par la spécification SoaML 

[8]. Au niveau du développement, nous avons d’abord choisi de modéliser les chorégraphies de 

service sous forme de diagrammes de séquences et nous avons choisi les Services Web comme 

technologie cible. WS-BPEL (ou simplement BPEL pour Business Process Execution Language) 

est utilisé pour exprimer les orchestrations de services. Après avoir défini les langages d’entrée 

et de sortie, nous avons défini les règles de transformation du langage d’entrée vers les langages 

de sortie, plus précisément, de SoaML vers des Services Web et d’un diagramme de séquence 

exprimant une chorégraphie de service dans un modèle SoaML vers une orchestration exécutable 

exprimée en BPEL. Finalement, le problème de la vérification de la consistance verticale est 

adressé par une approche d'analyse hors ligne des traces du système afin de vérifier la cohérence 

de l’implémentation du système par rapport aux modèles de spécification. 

La Figure 1.3.1 illustre le processus global de notre approche. Les paragraphes suivants 

donnent plus de détails sur les trois contributions de cette thèse.   

 
Figure 0.1: Aperçu de l’approche. 
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Contribution 1 : La vérification de la consistance horizontale: vérification de la cohérence 

des modèles SoaML par rapport à la sémantique définie par la spécification SoaML. 

SoaML permet la définition de plusieurs vues dans un même système, chacune est destinée à 

représenter une perspective différente de celui-ci. Ces vues sont sémantiquement liées et doivent 

être cohérentes entre elle. En plus, la spécification SoaML spécifie un ensemble de contraintes 

qui représentent une certaine condition, restriction ou affirmation liée aux concepts définis par le 

langage sous forme d’un profil UML. Certaines contraintes sont destinées à restreindre ou 

imposer la syntaxe du langage (un exemple de ces contraintes est appliqué sur l’élément 

« Services Architecture » qui ne peut contenir que des propriétés UML typés par un Participant 

ou Capability), d’autres permettent de gérer la relation entre différents concepts (un exemple de 

ces contraintes est appliqué sur un Participant qui, pour jouer un rôle dans un contrat de services, 

doit être compatible avec ce rôle). Les contraintes SoaML sont exprimées en langage naturel. 

L’utilisation de langage naturel pour l’expression des contraintes de modélisation présente 

certains inconvénients. En fait, ces contraintes ne peuvent être vérifiées que manuellement. La 

vérification manuelle s’avère une tâche difficile et pourrait causer une perte de temps inutile 

surtout quand il s’agit de modélisation de systèmes à grande échelle ou quand il s’agit de 

contraintes complexe reliant plusieurs vues du modèle. Par conséquence, l’automatisation de 

cette tâche s’avère nécessaire. De plus, les contraintes SoaML sont exprimées parfois de manière 

confuse, ce qui peut conduire à des erreurs d'interprétation et l'analyse incorrecte des modèles. 

Dans la spécification SoaML, certaines contraintes présentent  des points de variation sémantique 

sans  préciser une sémantique par défaut ou une liste de variantes possibles. Pour résoudre ces 

problèmes, nous avons besoin de formaliser les contraintes décrites pas la norme et fixer le 

maximum possible de points de variation sémantique et ce en fixant par exemple un choix de 

modélisation en fonction de nos objectifs.  

Nous avons d'abord extrait les contraintes décrites dans la spécification SoaML. Puis, nous avons 

procédé à l’analyse de ces contraintes afin de les formaliser par la suite en utilisant le standard 

OCL (Object Constraint Language), un langage standard "formel" d’expression de contraintes 

utilisées par UML. Les contraintes OCL permettent la vérification statique de la syntaxe et de la 

sémantique des modèles SoaML par rapport à la spécification SoaML. Ils permettent de vérifier 

la cohérence entre les différentes vues d’un même modèle SoaML et couvrent à la fois les 

diagrammes structurels et comportementaux. 

Afin de valider les contraintes OCL, nous avons développé un Framework pour la 

modélisation et la vérification des applications orientées services basé sur le standard SoaML. 

Ce Framework est implémenté comme une extension de Papyrus pour la modélisation des 

applications SOA, Papyrus4SOA. Papyrus4SOA intègre un support pour le langage de 

modélisation graphique SoaML et un support pour la vérification des modèles SoaML par rapport 

à la syntaxe et la sémantique définies par la norme. 

Contribution 2 : génération automatique de code à partir d’une spécification basée sur 

SoaML : transformation de la partie structurelle et comportementale, i.e., transformation 

des chorégraphies de services en orchestrations exécutables. 

Le langage SoaML permet aux concepteurs de spécifier des applications orientées services à un 

haut niveau d'abstraction. Une spécification basée sur SoaML couvre non seulement la partie 

structurelle d’un système (la définition des interfaces de services, la définition des composants 

implémentant ces services et de leurs architecture interne, etc.), mais aussi la partie 

comportementale de celui-ci. Dans notre cas, les modèles comportementaux définissent la 
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manière dont les participants collaborent ensemble dans d’une chorégraphie afin de satisfaire un 

objectif commun (en réponse à une demande d’un utilisateur de ces services). Après avoir étudié 

les différentes possibilités pour modéliser une chorégraphie de services, nous avons choisi de les 

décrire en utilisant les interactions UML sous forme de diagrammes de séquence.  

Après la phase de modélisation, l’étape suivante dans une approche IDM est de mapper le 

modèle de spécification vers un modèle exécutable qui est relié à une plate-forme technologique 

spécifique. SoaML est un langage de modélisation général qui pourrait être mappé vers 

différentes technologies comme les services Web, SCA et OSGI. Dans ce travail, nous avons 

choisi les services Web comme une technologie cible, vu que cette technologie est soutenue par 

plusieurs grands fournisseurs informatiques (notamment Microsoft et IBM). Trois langages de 

services web ont été ciblés: (1) Le langage de définition de schéma de données XML (XSD) pour 

la définition de la structure des données échangées entre les services Web, (2) WSDL (pour Web 

Service Description Langage) pour définir les interfaces de services et (3) WS-BPEL pour décrire 

les orchestrations de services traduisant les chorégraphies spécifiées au niveau du modèle 

SoaML. Nous avons défini ensuite les règles de transformation d’un modèle SoaML enrichi avec 

des Interactions UML exprimant des chorégraphies de services vers les normes de services Web 

listées ci-dessus. Pour automatiser la transformation, ces règles de transformation ont été 

implémentées en QVTo (pour Query/View/Transformation Operational), un langage standardisé 

par l’OMG pour exprimer des transformations de modèles. La partie structurelle des modèles 

SoaML, plus précisément les Participants (qui représentent les composants implémentant les 

services) ont été transformés en des définitions de services Web (WSDL / XSD) et la partie 

comportementale, c.-à-d. les chorégraphies de services, ont été transformées en orchestrations 

BPEL. Nos transformations prennent en considération la nature asynchrone des communications 

entre les services distribués. Les orchestrateurs générés traitent aussi le problème des appels 

simultanés en traitant les messages entrants le plus rapidement possible. 

Pour la validation de notre transformation, nous avons implémenté le module de 

transformation automatique de modèles SoaML vers des services Web et des processus BPEL 

sous forme de plugins Eclipse qui font partie de notre Framework Papyrus4SOA. Ce module 

intègre les règles de transformation implémentées en QVTo. Afin de valider le comportement 

des artefacts générés, une fois déployés, nous avons vérifié la conformité entre les traces du 

système en cours d'exécution et le comportement modélisé. Ceci est notre troisième contribution.   

(3) Vérification de la cohérence verticale: Vérification de la cohérence entre les 

comportements des orchestrations générées et les chorégraphies spécifiées au niveau 

modèle. 

Dans le cadre de notre travail, la vérification de cohérence verticale se fait à travers l’analyse 

automatisée des traces d'exécution en se basant sur des tests basés sur les modèles (Model-Based 

Testing, MBT) et sur le calcul d’oracle en particulier. Après le déploiement du système sur la 

plateforme services Web, nous procédons à la collecte des traces d'échanges de messages pour 

les comparer par suite avec le comportement attendu spécifié par les modèles de diagrammes de 

séquence.  En raison de l’accès limité aux points d’observation (ex. services tiers ou sur Cloud), 

certains services ne peuvent pas être instrumentés. Dans ce cas, nous proposons d’exploiter les 

traces collectées au niveau de l'orchestrateur afin de vérifier la cohérence de l’orchestration de 

services par rapport à la chorégraphie. En fait, l’orchestrateur joue le rôle d'intermédiaire dans la 

chorégraphie, ce qui fait que les traces récupérées au niveau d’un orchestrateur sont informatives 

et reflètent les échanges entre les services. Dans notre processus d’analyse, chaque chorégraphie 
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est analysée séparément en récupérant les traces de l’orchestrateur correspondant à (c'est-à-dire 

généré à partir de) cette chorégraphie. Nous effectuons ainsi une corrélation entre les traces 

impliquées dans un même contrat en fonction de la relation de précédence de message définie 

dans la chorégraphie correspondante. Toutes les traces d'exécution possibles sont déduites à partir 

de la trace récupérée au niveau de l’orchestrateur en tenant compte des délais de transmission 

des messages (ex. le fait qu’un message m1 peut être reçu après un message m2 alors que m1 a 

été envoyé avant m2). Ensuite, nous comparons ces traces avec l'ensemble de toutes les traces 

définies par le diagramme de séquence. Comme le montre la Figure 1.3.1, en se basant sur 

l'analyse des résultats, l'ingénieur de validation du système peut alors vérifier et résoudre les 

problèmes existants ou valider l'implémentation du système. 

Dans le cadre de ce travail, la vérification de l’inclusion de traces est effectuée en utilisant 

Diversity1, un moteur d’exécution symbolique de modèle développé dans notre laboratoire. 

Diversity permet de tester des systèmes en utilisant des modèles comme références. Nous avons 

étendu la plateforme Diversity pour permettre de calculer toutes les traces possibles à partir d’une 

trace récupérée au niveau d’un orchestrateur de services. Les traces inférées sont stockées dans 

une représentation compacte sous forme d’un arbre Radix [171], une structure de données qui 

facilite à la fois l’inférence de traces et le calcul du verdict du test. Ensuite, la spécification 

chorégraphique en tant que digramme de séquence est utilisée pour générer un (pour Input/Output 

Symbolic Transition Systems [9] qui sont des automates symboliques utilisés pour spécifier les 

comportements des systèmes réactifs), qui est utilisé avec les traces du système comme entrée à 

Diversity afin d'analyser ces traces en calculant un verdict sur l'inclusion de traces par rapport à 

une relation conformité orch-conf que nous avons définie. Cette relation de conformité permet 

de raisonner sur la confirmité d’une implémentation en l’absence de points d’observation, en 

tenant en compte les délais de transmission. L’objectif de cette analyse est de savoir si au moins 

une parmi des traces inférées est incluse dans le modèle de chorégraphie en utilisant la 

fonctionnalité d’inclusion de Diversity. Si une telle trace existe alors un verdict PASS est émis, 

un FAIL est renvoyé autrement.  

Validation. En plus de l’implémentation des prototypes, les résultats de nos contributions ont 

été validés avec des recherches dans la littérature, des exemples, des études de cas et des retours 

obtenus lors de l'élaboration et la présentation des publications scientifiques évaluées par des 

pairs.  

Nous avons commencé notre travail avec une recherche dans la littérature des résultats des 

travaux, des techniques et des outils qui sont liés à notre travail. Nous avons continué à examiner 

de nouveaux résultats pendant les trois années de cette thèse de doctorat. Deuxièmement, et pour 

comprendre et identifier les problèmes potentiels, nous avons utilisé et établi des exemples et des 

études de cas qui ont ensuite été réutilisés pour valider notre approche. Les deux principales 

études de cas sont le « Dealer Network Architecture », une étude de cas bien connue que nous 

avons extraite de la spécification SoaML. Cette étude de cas est utilisée le long de cette thèse 

pour illustrer notre approche. La deuxième étude de cas est celui d’un système de gestion de 

voyage, qui est une étude de cas classique dans les applications web où un client utilise un 

système de gestion de voyage pour rechercher les vols et les hôtels. Cet exemple a été extrait de 

[10].  

Les trois principaux prototypes ont été développés durant cette thèse pour illustrer et valider les 

                                            
1 http://projects.eclipse.org/proposals/diversity/ 



Condensé  19 

 

 

contributions. Le premier prototype est un éditeur SoaML, qui fournit des supports pour la 

spécification et la vérification des modèles SoaML. Notre éditeur permet de vérifier la cohérence 

d’un modèle SoaML par rapport à la syntaxe et aux sémantiques définîtes par le standard. Le 

deuxième prototype est le générateur de code, qui automatise la génération de définition de 

services Web (WSDL) et de processus d’orchestration BPEL à partir des modèles SoaML. Le 

troisième prototype est un plug-in qui étend l'outil Diversity pour supporter le passage 

asynchrone des signaux / opérations et pour supporter l'analyse hors ligne des chorégraphies de 

service dans des conditions d'observabilité partielle. 

Nos contributions scientifiques ont été révisées par des pairs dans des conférences 

internationales. Notre publication a eu le prix du meilleur papier dans une conférence 

international spécialisée (SOCA’15 pour Service-Oriented Computing and Applications) Nos 

principaux résultats ont été évalués par des chercheurs internationaux spécialisés, ce qui renforce 

encore la validité de nos contributions scientifiques. 

Nous croyons que la validation de nos résultats de recherche en utilisant des études de cas, des 

exemples, des prototypes, et les publications scientifiques évaluées par des pairs, montre la 

pertinence des résultats obtenus. 
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This Chapter presents an introduction to this thesis, in which we give an overview of the 

topics it deals with. First, we present the context and motivations of this thesis. Then, we give 

the research questions that we have identified. After, we enumerate the contributions of the 

thesis and finally, we present the structure of this thesis document. 

1.1 Context and motivations 

Software systems are increasingly present in our daily lives and in different application fields 

such as industry, health, smart grids, etc. They play an important role in the lives of their users 

that are becoming increasingly demanding. They require more reliability and systems that can 

adapt to their context of use and their new requirements faster. To ensure these social issues 

and satisfy the users, technical frameworks and methods underlying design to system 

development must be modular, flexible and consistent. Since the late 1990s, the relatively recent 

software engineering paradigms model-driven engineering (MDE) and service-oriented 

architecture (SOA) have proved to be promising when developing complex software systems 

[11] [3]. SOA is known by its modularity, which makes the SOA systems more flexible. On the 

other hand, MDE technologies help managing and improving the specification and 

development of complex software [2]. 

Model-Driven Engineering (MDE) is a development approach that is based on two time-

proven principles, which are abstraction and automation [12]. Abstraction consists of the use 

of models in the process of software development. The idea is to simplify the design process 

by separating the business concerns from the platform concerns. Models can be used to 

understand, estimate, communicate, test and produce code [2]. System specification is used to 

automatically generate the executable code of the system to increase productivity, improve the 

quality of the code and reduce the software cost. Once validated, the automatic generation of 

the code guarantees (by construction) its conformity with the initial platform independent model 

and reduces the errors compared with traditional software development.  

A MDE approach is generally based on a domain-specific modeling language (DSML) [11]. A 
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DSML defines a syntax that specifies domain-specific concepts in terms of metamodels and 

semantics behind these concepts. DSMLs should be written in the right level of abstraction, 

sometimes very high and sometimes very low depending on the problem to solve. 

The Model Driven Architecture (MDA) is a well-known initiative proposed by the Object 

Management Group (OMG) for implementing a model-driven approach by providing a set of 

tools that manage models [13]. In MDA, the development process is separated into three 

different abstraction levels, which are computation-independent models (CIMs), platform-

independent models (PIMs) and platform-specific models (PSMs). The PIM abstracts from 

platform-specific details, which are considered in PSMs. The distinction between PIM and 

PSM facilitates and reduces the cost of the migration of applications from one platform to 

another [1]. 

Service Oriented Architecture (SOA) has emerged as an architectural style for distributed 

computing that promotes flexible application development and reuse. SOA provides flexible IT 

solutions that can react to changing business requirements quickly and economically. This 

flexibility is due to the extension of the component-based architecture by adding an upper layer 

caller service layer. This layer defines individual and autonomous entities called services, which 

represent the functionalities provided and required by the components. These services can be 

published and discovered over a network, often by means of a service registry. Consumers can 

access SOA services in a standardized way and without needing to understand how the service 

is implemented [6]. 

SOA allows building new applications or systems as a composition of independent existing 

services, known as “services composition”. This is beneficial in software development because 

the focus of developers changes from developing applications from scratch to developing an 

application from reusable building blocks, which are the services.  

There are two approaches in services composition: choreographies and orchestrations. The 

purpose of choreography is to specify the public contracts that govern the message exchange 

between the services required to achieve a business goal. Choreographies are not intended to be 

executable. It reflects “what” a business goal is to be achieved. In contrast to choreography, 

orchestration focuses on “how” multiple services can cooperate together from the perspective of 

a unique participant called the orchestrator. It describes the execution of the orchestration 

process. The choreography is then more declarative, so it is usually used for modeling services 

compositions at a high-level of abstraction.  

Both SOA and MDE paradigms help managing and improving complex software projects in 

several aspects [3] [4] [4]. SOA offers mechanisms to lower development costs of software 

systems by using service orchestration and choreography [14]. MDE deals with system 

complexity by separating technology dependent models from technology independent ones [5]. 

It can be used to code generation. A promising approach would be to apply MDE approach in 

the development of SOA applications [3].  

A SOA application can be composed of several artifacts such as services, components, 

contracts and data. These artifacts are related to each other and must be consistent with each 

other. This may not be an easy task especially for large systems containing a large number of 
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artifacts. A good way to deal with this problem would be to model these artifacts in order to 

understand them well and specify the relation between these artifacts in order to guarantee their 

consistency.  

The use of high-level models helps in formalizing and understanding system architectures by 

dividing the problems into smaller ones depending on the concerns (e.g., describing the business 

view, the architectural view, the behavioral view of the system, etc.). SOA models would then 

be described using several views of the system making the SOA application more 

understandable. In addition, thinking in terms of model would also facilitate the description of 

the relations between the system artifacts especially in the case of large systems.  

1.2 Research questions  

Based on the need to use models to specify SOA systems before developing them and the 

need to check consistency of the SOA models before their development and to verify the 

coherence between the models and the running system, the main research statement of our work 

is to investigate: 

“How to guarantee effective consistency checking of a SOA system specification and 

transform this specification into executable artifacts consistent with it?” 

 

The research question sets the context of our research agenda, which we decomposed into three 

finer-grained, more focused topics that constitute the main concerns of this dissertation: 

1. Support for consistency checking of SOA-based systems at design level: 

As explained before, in order to model complex SOA systems, designers need more 

than one perspective, each of which captures a specific concern of the system. A model 

of a SOA-based system might include a view that specifies the existing services. This 

view might detail the service interfaces, which include the functional operations and their 

parameters. Another view might detail the data exchanged between the services. The 

same model might include a view that describes the contracts between the existing 

services. A contract could be specialized with another view that describes messages 

exchanges between the services (e.g., service choreography). 

The use of multiple views to capture several concerns reduces the complexity of one 

single view, making it easier for a developer to build correct models [15], [16]. However, 

these views depend on each other and are semantically related to each other and, 

therefore, must be consistent with each other. Checking the consistency of multiple view 

models is not an easy task. In fact, the changes that could occur in a view would require 

changes in one or more different views. For applications of reasonable size, changes of 

interrelated views can quickly become difficult to manage for a system designer.  

In MDE, models are the main artifacts of the software development process. For that 

reason, the consistency of models is a crucial issue, as any defect or inconsistency not 

captured at the model level is transferred to the code level, where it requires more time 

and effort to be detected and corrected [17]. It becomes obvious according to the 

aforementioned discussion, to verify the consistency of a SOA system specification at 

the time of design in order to reduce inconsistencies and errors in the subsequent stages 

to avoid unnecessary waste of time and money. 
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“Research Question 1. How to support consistency checking of SOA-based system 

specifications?” 

 

2. Support for the transformation of choreographies into executable orchestrations. 

After the specification step, the resulting models need to be transformed into 

executable artifacts. Both structural and behavioral models need to be transformed into 

platform specific models. For the behavioral models, we are interested in the 

specification of service composition. In fact, service composition is one of the major 

benefits of SOA. It allows the development of applications from reusable building 

blocks (services) in a flexible way.  

There are two approaches in service composition: choreographies and orchestrations. 

A choreography specifies “what” business goal is to be achieved in contrast to 

orchestration that focuses on “how” services can cooperate together from an orchestrator 

perspective. Choreographies are then more suitable at the specification level. However, 

existing tools do not support direct execution of choreographies, which therefore need to 

be transformed into orchestrations that embed the choreography logic and which can be 

directly executed. This transformation is usually performed manually and is painstaking 

and error-prone. It becomes harder when a large number of services are involved in the 

choreography or when the choreography includes complicated message exchange 

dependencies (e.g., sequence order, exclusive choices). Furthermore, many parameters 

should be taken into consideration when transforming choreography specification into 

an orchestration; such as the nature of the communication (i.e., synchronous or 

asynchronous), the network delays and the problems resulting from it.  

Automating the generation of an executable orchestrator from a specified 

choreography reduces the development cost and guarantees consistency between the 

specification level and the execution level, and also makes it easier to modify or create 

new business interactions.  

 

“Research Question 2. How to transform services choreographies into executable 

orchestrations that embed their logic?” 

 

3. Support for guaranteeing the consistency between the specification models of the 

SOA-based systems and their executable models. 

A common issue in software development is to ensure that the product delivered meets 

a set of design specifications. After transforming the choreography models into an 

executable orchestration, we need to verify the consistency between the specification 

model and its implementation and thereby validate the automatic transformation. 

Moreover, after the system deployment, there could be unexpected and unspecified 

behaviors that are unknown during design-time and are, therefore, not included in the 

model. Design-time cannot reveal all potential issues that could happen at runtime. For 

these reasons, consistency verification at the time of design is not enough, we still need 

consistency verification at runtime in order to handle such unforeseen events produced 

at runtime and that were not expected.   
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“Research Question 3. How to support consistency checking between the specification 

model and the executable model in the context of SOA?” 

The definition of these three research topics was necessary to set the boundaries and the 

focus of the research presented in this dissertation. The results of the research and development 

on these research topics, guided by Question 1, Question 2 and Question 3, lead to the major 

contributions of this Ph.D. dissertation. 

1.3 Contribution overview 

The first step in our work was to define the most appropriate language to specify a SOA 

system. There are several initiatives to model SOAs [7]. Recently, the OMG proposed the 

specification of a modeling language called Service oriented architecture Modeling Language 

(SoaML) [8], released in 2012, it provides a metamodel and a UML profile for the specification 

and design of services within a SOA. SoaML provides a complete set of concepts for modeling 

service-oriented applications. It defines several views of the service-oriented applications: 

services view, contract view, participants view, data view and services architecture view. For 

those reasons, we have selected the SoaML standard as a modeling language. This standard 

links SOA and MDE by providing a language that defines the complete set of concepts for 

modeling SOA-based systems.  

Our methodology has to deal with the three research questions mentioned before, and 

thereby it has to deal with the different phases of the software lifecycle (specification phase, 

development phase, and verification phase). At the specification phase, the research question 

(1) “How to support consistency checking of SOA-based system specifications?” is addressed 

by enriching SoaML with verification mechanisms for verifying the consistency of the SoaML 

models. The research question (2) “How to transform services choreographies into executable 

orchestrations that embed their logic?” is addressed by the definition of transformation rules 

from choreography into an executable orchestration. We have chosen Web Services technology 

as a target technology. We then propose a model-driven generation of executable Web Services 

artifacts from SoaML models. Business Process Execution Language (WS-BPEL or simply 

BPEL) is used to express service orchestration. The research question (3) “How to support 

consistency checking between the specification model and the executable model in the context 

of SOA?” is addressed by an offline analysis approach of the system traces for verifying the 

consistency of the implementation with respect to the specified behavioral models. The 

following provides further details of these contributions. 

In our thesis work, we propose a Model-driven Methodology for the Development and the 

verification of Service-oriented applications. This methodology is depicted in Figure 1.3.1. 

Our methodology provides guidelines for how to use SoaML to define and specify a service-

oriented application from both a business and an IT perspective. The methodology prescribes 

building a set of model artifacts following a top-down approach. SoaML models are refined by 

adding high-level choreography specification designed as UML Interactions, which provide 

adequate information sufficient both for expressing complex choreographies and for allowing 

code generation. We then define transformation rules from choreography models to executable 

orchestrations. Our methodology includes a two-step model-driven consistency verification: (1) 
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Horizontal consistency verification applied at design time that allows verifying the coherence 

between the model diagrams at the same level of abstraction (specification level) and (2) 

Vertical consistency verification based on offline analysis of execution traces that enables 

consistency verification between both design and runtime levels.  

 

Figure 1.3.1: Approach overview. 

(2) Horizontal consistency verification: Verification of SoaML-model consistency with the 

syntax and the semantics defined in SoaML Specification. 

SoaML defines multiple views of the system design, which are semantically intertwined. 

The SoaML specification provides a syntax in the form of a metamodel and a profile. This 

syntax is enriched by a set of constraints that represent several conditions, restrictions or 

assertions related to an element that owns the constraint or several elements. Some 

constraints manage the relationship between the different concepts defined in the 

specification. The SoaML constraints are expressed in natural language, which presents 

some drawbacks. In fact, these constraints can only be checked manually which is a hard 

task especially with large-scale systems and can cause a loss of time. To address that 

problem, an automated verification must be carried out. In addition, the SoaML constraints 

are sometimes expressed in a confusing way and this may lead to misinterpretations and to 

the improper analysis of the models. Some of the constraints present variation points 

without default semantics or a list of possible variations. To deal with these problems, we 

need to formalize these constraints and fix the variation points according to our goals. We 

first extract as many constraints as possible from the SoaML specification in order to 

analyze them. Then we formalize them using OCL (Object Constraint Language).  OCL 

constraints allow the verification of the syntax and the semantics of SoaML models with 

respect to the SoaML specification in a static way. It allows verifying the consistency 

between the different views of SoaML model covering both structural and behavioral 

models. 
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(3) Automatic code generation: Transformation of SoaML model into executable artifacts, 

specifically the transformation of a service choreography designed using sequence diagram 

into BPEL-based executable orchestration. 

Now, a SoaML-based specification model needs to be mapped into an implementation 

model. Structural parts of the system have to be mapped into a service-oriented platform. 

The choreography specification models describing high-level interactions need to be 

mapped into executable sending and receiving operations. SoaML gives the system 

designer the freedom to choose the UML behavioral model to specify services 

choreographies. We have chosen UML Interaction in the form of a sequence diagram to 

model service interactions within the choreography.  

SoaML is a general modeling language that could be mapped to various implementation 

technologies like Web Services, SCA and OSGI. In this work, we have chosen the Web 

Services technology as an implementation technology because it is supported by several 

major computing vendors (notably Microsoft and IBM)2. Three Web Services languages 

have been targeted: (1) The XML schema definition (XSD) language for defining service 

messages, (2) the Web Service Description Language (WSDL) for defining service 

interfaces and (3) the WS-BPEL language for defining service choreographies. In order to 

automatically generate executable code from the SoaML models, we define the mapping 

rules between SoaML and the Web Service standards. These mappings allow transforming 

the structural part of the system specification into Web Service Definitions (WSDL/XSD) 

and the behavioral part (choreographies) into BPEL orchestrations. Our transformations 

take into consideration the asynchronous nature of the communications between distributed 

services. We propose an implementation pattern to be applied at runtime level to deal with 

the concurrency problem of the communications between distributed services. 

 

(4) Vertical consistency verification: Verification of the consistency between the behaviors 

of generated artifacts with the system specification defined using SoaML choreographies. 

Vertical consistency verification is an automated model-based execution analysis that 

verifies the conformity between the modeled behavior and the message traces of the 

running system. In our case, it is based on black box techniques. Once the system has been 

deployed, we pick up traces of message exchanges and we compare them with the expected 

behavior specified at design-time. Due to the observation limitations (e.g., some services 

cannot be instrumented at their deployment locations), the trace recorded at the orchestrator 

level could be exploited to deduce the execution traces. We correlate traces involved in the 

same contract based on message precedence relationships defined in the corresponding 

SoaML Service Contract. Then we compare those traces to the set of all the traces 

characterized by the sequence diagram of that contract. As shown in Figure 1.3.1, based on 

the analysis results, the system validation engineer can then check and resolve existing 

problems or validate the system implementation.  

(5) Implementation of a framework supporting the proposed approach: The final 

contribution of this thesis is the implementation of a prototype that integrates a support for 

the SoaML graphical modeling language and automatic transformation of SoaML models 

                                            
2 http://www.gartner.com/it-glossary/web-services/ 
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to Web services and BPEL processes reflecting the high-level choreography models. The 

horizontal and vertical consistency checking of SoaML specifications are also 

implemented as part of the framework. Three main tool prototypes have been developed in 

this thesis : 

 SoaML-Papyrus editor, which provides support for the specification and the validation 

of SoaML-based models. This prototype checks consistency between SoaML views 

with respect to the syntax and the semantics described in SoaML specification.   

 SoaML2WS generator, which automates the generation of Web services artifacts from 

SoaML models. 

 Plug-ins extending Diversity tool, a symbolic analysis, and testing platform, to support 

the asynchronous passing of signals/operations and to support offline analysis of service 

choreographies under partial observability conditions. 

1.4 Thesis structure  

This thesis is structured in three parts and several appendices, plus the bibliography references 

and acronyms, the contents of the rest of this thesis manuscript being as follows: 

Part 1 – MDE for SOA-Related Work and studies 

This part of the manuscript gives an overview of the related work and studies that make 

use of MDE technology in the specification and development of SOA. 

Part 2 – Thesis contributions 

This part contains the main research work of this thesis. It is composed of three chapters:  

Chapter 1 – Horizontal consistency verification 

This chapter details the first contribution of this thesis work. It is about formalizing 

consistency checking rules to ensure the horizontal consistency of SoaML model.  

Chapter 2 – Model-driven generation of executable artifacts from SoaML models  

This chapter describes the automatic generation of Web services artifacts from SoaML 

models by means of the definition of QVT transformations  

Chapter 3 – Vertical consistency verification: offline analysis of Web service 

choreographies 

This chapter describes our offline analysis method whose purpose is to guarantee the 

coherence between the Web service choreography implementation and specification level 

and reveal unspecified behavior that may occur at runtime.   

Part 3 – Validation 

This chapter presents the validation of the thesis contributions. To validate our approach, 

we implemented a framework, that we called Papyrus4SOA, for the modeling and 

verification of SOA systems. This framework embeds the vertical and horizontal 

consistency verification methods and the code generator. We then experimented our 

approach with two well-known case studies.  

Part 4– Conclusions and future work 

This part presents the conclusions of this thesis work, analyzes the attainment of objectives 

and the contributions of the work, the scientific publications achieved, along with the 

research lines open for future work. 

Appendices:  

The Appendices included extend and clarify information to give a better understanding of 
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some of the issues presented in previous chapters. The list of Appendices is as follows: 

Appendix A – Horizontal consistency verification of SoaML models 

A.1 SoaML Editor 

A.2 Prerequisites of OCL language 

A.3 Implementation of consistency constraints using OCL 

Appendix B – QVT transformations code 

B.1 Overview of target WSDL and WS-BPEL metamodels 

B.2 Transformation of structural models  

B.3 Transformation of services choreographies 

Appendix C – Offline analysis 

C.1 Semantic-based traces of sequence diagram  

C.2 Reconstitution of the global trace from services traces 

Appendix D – Travel Management System case study choreographies implementations 

WS-BPEL and trace analysis. 

 

 

 

 

 



 

 

Part I: MDE FOR 

SOA-RELATED WORK 

AND STUDIES 
This part aims at assessing the state of the art of Model-Driven Engineering (MDE) 

approaches for SOA systems (MDE for SOA). We have explore the state of the art in three 

directions: (1) what are the main existing modeling methods for SOA systems; (2) how far do 

such models support automatic code generation; and (3) what are the existing testing approaches 

for SOA systems.  
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1 SOA modeling methods 

and languages 
In this section, we first introduce a few relevant MDE concepts. Then, we review existing 

modeling approaches for Service-oriented Architectures. Thereafter, we explain why we selected 

SoaML as a modeling language. We further give a brief introduction to SoaML and existing tool 

support. 

1.1 Overview of SOA modeling approaches 

Domain-Specific Language. Most of the MDD approaches are based on Domain-Specific 

Language (DSL, called also Domain-Specific Modeling Language, DSML). The use of DSL is 

very advantageous. In fact, contrary to general-purpose languages, such as java or C++, that are 

intended to be used for any application domain, DSLs are designed to be used in a specific 

domain. The goal behind DSLs is to simplify the design and development of domain-specific 

applications by providing a domain-specific concrete syntax that defines the concepts related to 

that specific application domain [18]. The definition of such a syntax allows avoiding syntactic 

clutter that often results when using a general-purpose language. In fact, each DSL can have its 

own domain-specific (static) analyzer that can find more errors than general-purpose language 

analyzers and that can be customized to report errors in a language that is familiar to the domain 

expert. Each DSL can also have its own editors, debuggers, version control and other domain-

specific tool supports that would provide more intelligent tool support for developers of this 

specific domain. 

A DSL can be implemented as a textual or a graphical language. It can be implemented as 

interactive Graphical User Interfaces (wizards, editors, forms), or as extensions of other 

programming languages [19]. There are several tools and platforms that support DSL 

implementation and processing, such as, Microsoft Visual Studio Visualization and Modeling 

SDK3, Generic Modeling Environment (GME)4, MetaEdit+5 and Eclipse Modeling Project6. The 

Eclipse Modeling Project includes several modeling tools such as Papyrus7, which is a tool 

developed in our laboratory.  

In this dissertation, we propose a model-driven approach for the specification, the 

development and the verification of SOA systems based on a standard DSL called SoaML 

(described in Section 1.2), which is a DSL that allows for the specification of SOA-based 

systems. In the following, e will discuss the existing modeling languages for SOA and justify our 

choice. 

 

                                            
3 http://code.msdn.microsoft.com/vsvmsdk 

4 http://www.isis.vanderbilt.edu/Projects/gme/ 
5 http://www.metacase.com 

6 http://www.eclipse.org/modeling/ 
7 https://www.eclipse.org/papyrus/ 
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Over the last decade, there has been a growing interest for SOA as an architecture style to build 

more flexible systems.  This results in several modeling methods and languages applying the 

SOA principles. The following gives a brief evaluation of each modeling method: 

- OASIS Reference Model for SOA (SOA-RM, 2006) [20]: is an OASIS standard that 

provides a common vocabulary and semantics for the specification of SOA systems across 

different implementations. It is written at a high abstraction level and it defines concepts 

related to service description, contracts, policies, execution context, etc. [20]. The purpose 

of SOA-RM is to explain SOA core concepts and understand them, but no modeling 

language was proposed.  

- OASIS Reference Architecture for SOA (SOA-RA, 2011) [21]: is an OASIS standard 

that addresses the issues involved in constructing, using or owning a SOA-based system. 

It is intended to provide an abstract and foundational reference architecture addressing the 

ecosystem viewpoint for building and interacting within the SOA paradigm. It specifies 

three viewpoints, namely, the participants in a SOA Ecosystem viewpoint, the Realization 

of a SOA viewpoint, and the Ownership in a SOA viewpoint. The purpose of SOA-RA is 

to understand SOA from different viewpoints. SOA-RA is less abstract than the reference 

model but still no concrete modeling language was provided, they only use UML2 to 

visualize the proposed concepts.  

- Open Group SOA Ontology (SOA Ontology, 2010) [22]: is an Open Group standard 

intended to define a formal ontology for a better understanding of the core SOA concepts 

and to facilitate the development of SOA using a model-driven approach. This ontology 

extends, refines, and formalizes some of the core concepts of the OASIS Reference Model. 

It defines the concept, terminology, and semantic of SOA in both business and technical 

terms. The goal of Open group SOA Ontology is then explaining SOA core concepts. It 

uses OWL as a modeling language and UML to illustrate classes and properties in SOA 

modeling but there is no domain specific language. 

- Open Group SOA Reference Architecture (2012) [23]: The Open Group SOA Reference 

Architecture is a layered architecture from the consumer and provider perspective with 

crosscutting concerns describing these architectural building blocks and principles that 

support the realizations of SOA. It is used for understanding the different elements of SOA, 

deployment of SOA in the enterprise, basis for an industry or organizational reference 

architecture, implication of architectural decisions, and positioning of vendor products in 

SOA context. The goal of this reference architecture is to help to understand SOA from 

different viewpoints and to focus on business integration.  

- Service-oriented Modeling Framework (SOMF, 2008) [7]: The SOMF is an agile 

model-driven methodology proposed by Micheal Bell [24]. It offers a modeling language 

and guidance that can be used during the different stages of the software development life 

cycle. SOMF offers eight models of implementation [25]: discovery, analysis, design, 

technical architecture, construction, quality assurance, operations, business architecture 

and governance [26]. The tools proposed by SOMF are commercial, which may explain 

the remarkable fact that there are few research papers about SOMF. SOMF Includes 

support for standard notations such as the SoaML language presented in the following. 

- Platform-independent Model for SOA (PIM4SOA, 2007) [27]: The PIM4SOA project 

aims to develop a metamodel for SOA. PIM4SOA metamodel covers four important 

aspects: (1) service including access, operation and types; (2) process which defines logic 
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order in terms of action, control flows and service interaction; (3) information related to 

the messages or structures exchanged by services; and (4) quality of service including 

extra-functional qualities that can be applied to services, information and processes. 

However Service contracts, choreographies, and service discovery are not covered. The 

PIM4SOA project also provides a set of MDA-based transformations that link the 

metamodel with specific platforms such as agents, Web services, etc. 

- IBM Service-oriented Modeling and Architecture (SOMA, 2004) [28]: SOMA is a 

modeling technique for developing and building SOA-based systems proposed by IBM in 

2004. SOMA is widely used in multiple industries [29]. SOMA activities focus includes 

service identification (discovering candidate service and interaction between them), service 

specification (making the decision for exposing services), and service realization 

(capturing service realization) [29]. The main focus of SOMA is on the service model, 

reusing services through service components and flows [6]. SOMA is based on a 

commercial modeling language.  

Modeling of Service-Oriented Architectures with UML. 

The use of UML is very advantageous; this is because it gives a common standard language for 

communication, among different stakeholders. There are many existing attempts for modeling 

SOA systems using UML:   

- UML-S (UML for Services) was proposed by Dumez et al. ([30], 2008) as an extension of 

the UML 2.0 class and activity diagram to support developing composite Web services. 

This UML extension covers some of the functional criteria and compositions but misses a 

lot of other aspects such as participants, discovery, definition of constraints etc.  

- Lopez-Sanz et al. ([31], 2008) proposed a UML profile for modeling PIM level 

architecture. This profile is intended to model different service execution platforms (Web 

services, CORBA, etc.). The profile defines a way to model several types of services and 

contracts in UML using stereotypes at the PIM level. Besides this paper, little information 

is available concerning their metamodel. 

- Wada et al. ([32], 2006) focused on modeling non-functional aspects in SOA architecture. 

They proposed a UML profile for the specification and maintenance of non-functional 

aspects in SOA in a platform-independent manner. However, the proposed profile does not 

provide a way to model the functional aspects of a SOA system.  

- Service oriented architecture Modeling Language (SoaML): is a recently proposed 

OMG standard for specifying service-oriented applications. It is proposed in March 2012 

and updated in May 2012. The SoaML modeling language is becoming increasingly 

popular [33] [34].  Since 2012, SOMA has been replaced by SoaML as the main modeling 

language8 for SOA application in IBM. SoaML uses UML as a core-modeling standard. 

The last version of SoaML, version 1.0.1, extends UML2.1 by providing a meta-model and 

a profile for the specification and design of SOA artifacts. The SoaML approach prescribes 

a process close to the one of SOMA. SoaML language extends UML concepts for modeling 

of components, assembling components into services and services into services 

collaborations in the form of contracts and services architectures. It allows designers to 

specify service choreographies through service contracts.  

 

                                            
8 http://www.cs.vu.nl/~patricia/Patricia_Lago/IBM_Course_files/SOMA%20and%20SoaML%20Overview.pdf 
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In this thesis, we have chosen SoaML as a modeling language for many reasons. First of all, 

SoaML is a standard modeling language. A standard modeling language serves as a commonly 

agreed metamodel that consolidates the approaches on which they are based. Using a common 

language helps to combine these approaches for providing more holistic solutions. Secondly, 

SoaML is based on UML, which is a widely-used modeling language in the field of software 

engineering. It is used by experts to analyze, design, and implement software-based systems. 

Thirdly, another advantage of SoaML is that it is implementation-independent. That is to say that 

it could be mapped into many specific technologies (such as SCA, OSGI and Web services). In 

addition, SoaML allows the designer to model both business and IT models. At the business 

level, service choreographies could be specified by means of service contracts that could be 

refined using a behavioral model. SoaML gives the designer the freedom to choose adequate 

behavioral diagrams to specify the message exchanges between the collaborating services. 

Section 3 gives more details about some choreography languages that are relevant to our work 

and the semantics behind each of these languages.   

1.2  SoaML tool supports 

Since SoaML is a standard published in March 2012, its tool support is still limited. OMG’s 

SoaML wiki9 lists five available tool supports for SoaML. Table 1.2.1 gives an overview of these 

SoaML modeling tools. 
Table 1.2.1: Overview of the existing SoaML modeling tools. 

Name Description  Licensing 

ModelPro ModelPro is a general purpose MDA provisioning engine 

based on the Eclipse tooling framework. SoaML is 

implemented as a UML profile. 

 

Open 

source 

Cameo SOA+ 

suite (NoMagic 

MagicDraw)  

ModelPro with SoaML has been bundled with the Cameo 

SOA+ suite from NoMagic. This suite addresses the full 

lifecycle of SOA solutions from modeling in MagicDraw™ 

UML to producing executable solutions. SOA+ provides 

customized support for creating standard SoaML 

architectures to enhance usability and scalability.  With this 

suite, it is possible to visually model SoaML application in 

both MagicDraw and Eclipse. 

Commercial  

Modelio CASE 

(Softeam) 

Modelio is a commercial modeling tool with an open-source 

SoaML designer extension10. It is compatible with version 

1.0 of SoaML and implements a dedicated GUI including 6 

new diagrams: Capabilities, Service Contract, Service 

Architecture, Message, Service Interfaces, and Participant 

diagrams. SoaML was integrated into SOFTEAM's 

methodology for Enterprise Architectures.  

Commercial 

(partly open 

source) 

IBM Rational 

Software 

Commercial software architect tool supporting SoaML 

modeling. To be used in combination with other IBM 

Commercial 

                                            
9 Object Management Group, “SoaML Wiki - Tool support.” Available at 

http://www.omgwiki.org/SoaML/doku.php?id=tool_support, Accessed 26 July 2016. 
10 Available at http://modeliosoft.com, Accessed 26 July 2016. 

http://www.omgwiki.org/SoaML/doku.php?id=tool_support
http://modeliosoft.com/
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Architect Rational products [51]. A complete implementation of 

SoaML based on its profile.  

SparxSystems 

Enterprise 

Architect 

SparxSystems is a commercial software architect tool 

SoaML is supported in the Corporate, Systems Engineering, 

Business and Software Engineering and Ultimate editions of 

Enterprise Architect. 

Commercial 

SoaML Eclipse 

Plug-in by 

Delgado et al. 

[35] 

Eclipse plug-in is based on Eclipse EMF and GEF. This 

plugin implements the SoaML profile, supports visual 

modeling with a Papyrus extension. 

Open source 

(source code 

Not available 

yet) 

SoaML Eclipse 

Plug-in by Ali 

et. al. [5] 

This is an Eclipse plug-in that allows architects to 

graphically design SoaML models developed using the 

Graphical Modeling Framework (GMF) [5].  

SoaML metamodel has been implemented as an Ecore 

model using the Eclipse Modeling Framework (EMF).  

Open source 

(source code 

Not available 

yet) 

Whenever possible, we prefer open-source tooling for our work because we are then not 

limited by licenses. As shown in the table, there are few open-source SoaML modelers. This 

encourages us to implement our own modeler based on Papyrus, a tool developed in our 

laboratory, LISE. Papyrus provides support for UML profiles. Every part of it may be 

customized: model explorer, diagram editors, property editors, etc. We give more details about 

our SoaML modeler in the second chapter of the contributions.  

2 Consistency verification of 

SOA specification models 
As we discussed in the introduction section, models are the main artifacts of the software 

development process. Therefore, verifying the consistency of SOA system models is an 

important step before transforming the model specification into other forms (e.g., executable 

code).  In this section, we first identify the elements of a language definition that will serve to 

better understand the notion of consistency checking of specification models and then we explain 

the existing consistency checking classes in the following sub-sections.  

2.1 Elements of a language definition  

Authors in [36] define three main elements in a language (which are valuable for both textual 

and graphical languages), namely abstract syntax, syntactic mapping, and semantics:  

 The abstract syntax defines the concepts of a language and their relationships. One 

popular methods to define abstract syntax is metamodeling. The defined syntax must be 

independent of any particular concrete syntax.  

 The syntactic mapping consists of a set of rules that defines the relationship between 

the abstract syntax and their representation in a concrete syntax. The concrete syntax may 

be textual or graphical. In the case of textual languages, it defines how to form sentences. 
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While, in the case of graphical languages, it defines the graphical appearance of the 

language concepts and how they may be combined.   

 The semantics describes the meaning of the concepts in the abstract syntax. Semantics 

are often defined in an informal way through examples and simple natural language [37]. 

For more rigorous semantics, UML proposes the Object Constraint Language (OCL) as 

a formal specification language that allows the system designer to define rigid rules that 

can be applied to a modeling language.  

In this work, we are interested in UML-based modeling language (DSLs that extend UML), 

since UML is a mature language and since it provides a common and useful visual notation for 

describing many of the software artifacts used in modern OO analysis, design, and development. 

UML is also used pervasively in the industry to document and discuss software designs [38] [39]. 

UML-based modeling languages offer a rich set of concepts and diagrams. However, sometimes 

there is a limitation on the expressiveness of the diagram or ambiguity on the semantics and the 

constraints described by natural languages in the specification of these languages. The use of 

natural language introduces a number of problems related to under-specified constructs, 

ambiguities [17]. Therefore, it is important to have a precise semantics of UML models. Precise 

meanings are required since the model will be used for the next development and maintenance 

steps, i.e., analysis, validation, verification, and transformation.  

2.1 Consistency checking 

Research has been conducted in classifying consistency checking techniques for UML models 

(e.g., [40], [41] and [42]). Five most relevant classes of consistency are identified in [42]:  

- Horizontal consistency, also called intra-model Consistency, which refers to consistency 

within a model, within the same diagram or between different diagrams of the same model 

at the same level of abstraction (e.g., class and sequence diagrams), and within the same 

version [41]. 

- Vertical consistency, also called inter-model Consistency, which refers to consistency 

between models at different levels of abstraction (e.g., analysis vs. design) in a given version 

of a model. 

- Evolution Consistency, where consistency is validated between different versions of the 

same diagram in the process of evolution [41]. For example, when a class diagram evolves, 

it is possible for its associated state diagrams and sequence diagrams to partially become 

inconsistent. 

- Syntactic Consistency, which ensures that a model conforms to its language definition, 

typically specified by an abstract syntax that describes a metamodel, e.g., to check that all 

model elements are defined in its language. Syntax consistency requires the overall model 

to be well-formed [43]. 

- Semantic Consistency, which ensures that intended meanings of different views or models 

are compatible, i.e., there is no contradiction between them. It requires that all the behavior 

of diagrams in one or several models to be semantically compatible [44]. This consistency 

is not restricted to behavioral diagrams but covers other diagrams. For instance, operation’s 

contracts (e.g., pre and post-conditions) provided in a class diagram specify semantics as 

well.  Semantic consistency applies at one level of abstraction (with horizontal consistency), 
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at different levels of abstraction (vertical consistency), and during model evolution 

(evolution consistency) [43]. 

2.2 Related work 

Most of the existing verification approaches of UML and UML–based models deal with 

horizontal consistency [45], [46], [47], [48], [49]. Only few works deal with vertical consistency 

[50], [51], [52], others deal with both, such as [53], which translates UML models with OCL 

invariants and pre/post-conditions into formal specifications using B formal specifications for 

the analysis and verification of the uml/ocl models. A recent mapping study undergone by Torre 

et al. [43] studied 95 papers about UML consistency. This mapping study shows that the great 

majority of UML consistency rules are horizontal and syntactic rules, respectively with 98.10% 

(258 of 263 rules) and 88.21% (232 of 263 rules) of the total of collected UML consistency rules. 

Only 1.90% of UML consistency rules are vertical (5 of 263 rules). 

Both horizontal and vertical consistency checking are indispensable steps in the system 

development process [43]. Horizontal consistency ensures the consistency of specification 

models. At that level, inconsistencies may be a source of faults in software systems and must be 

therefore detected, analyzed and (hopefully) fixed. Detecting these inconsistencies at an early 

design phase is easier and more cost effective than detecting them at a later stage. Otherwise, all 

the inconsistencies will be transmitted to the further development stages where it would be more 

difficult and more expensive to correct them. Moreover, inconsistencies at the specification level 

can make (semi-)automatic generation impossible.  

Vertical consistency ensures the consistency between models at different levels of abstraction. 

For example, one may verify the consistency between platform independent model (PIM) and 

platform specific model (PSM). PIM represents the system at higher levels of abstraction than 

PSM. The former does not contain details of a specific platform, on the other hand, the latter 

takes into account the features of the specific platform in which the system will be implemented 

[40]. Changes in the PSM model may produce inconsistencies with respect to its more abstract 

model. Checking vertical consistency is, therefore, essential to maintain the consistency between 

these models. This problem is generally overlooked in the approaches handling inconsistency 

problems. Consequently, vertical consistency becomes one of the most relevant unresolved 

problems in the literature. 

In this dissertation, we focus on checking both horizontal and vertical consistency of SOA 

systems. As previously discussed, we believe that these are two essential steps in the 

development process of a software system in general and particularly for the development 

process of SOA systems. In fact, horizontal consistency verification of SOA system specification 

is very important since SOA systems need more than one diagram or view to capture different 

concerns. These views detail the service interfaces, the data exchanged between the services, the 

contracts that could be specialized with other views that describe messages exchanges, etc. All 

these views need to be consistent with each other. On the other hand, it is also very important to 

guarantee the consistency between what has been specified at a high level and what has been 

specified as a platform dependent model of a SOA system. When checking horizontal 

consistency, we focus on both syntactic and semantic consistencies. The evolution consistency 

is, however, out of the scope of our work. The syntactic consistency ensures the well-formedness 
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of a model with respect to the abstract syntax specified by the meta-model and the semantic 

consistency requires that intended meaning of different models are compatible.  

Lack of tool support to check the consistency of software models. According to the mapping 

study done by Torre et al. [43], only 25.26% (24 of 95 papers) of the UML consistency rules 

proposed by researchers are supported by automatic tools, 30.53% (29 of 95 papers) of the rules 

are supported by semi-automatic tools, and the larger number of papers are based on manual 

verification (44.21%, 42 of 95 papers). Automatic tools are those that check the UML consistency 

rules without human intervention; Semi-automatic means the rules were partially automated (for 

instance when the check of a UML model needs the support of user to finish the process); and 

manual means that the UML consistency rules were not supported by any implemented and 

automatic tool [43].  

There are many proposals for checking the consistency of UML models based on the OCL 

standard [54], [55]. Some of them propose tools to check the coherence between different UML 

models [56]. Clearly, a tool is essential to check consistency. It allows the system designer not 

only to automatically check the consistency constraints but also to help them to find and correct 

errors rapidly and efficiently. Tools also helps in the quick validation of the proposed work. 

Existing SoaML frameworks are partially compliant with the SoaML standard [8]. In fact, the 

standard specifies a set of semantic and syntactic consistency rules written in natural language. 

These rules must be verified at the design time to guarantee valid SoaML models. However, 

within the existing tools (see Table 2.2.1), model validation functions are either poor, i.e., the 

transformation only has few constraints that don’t capture all possible errors in the generated 

code, or not clearly explained. Existing tools performing static verification for SoaML models 

are Cameo SOA+ (NoMagic) [57], Enterprise Architect (Sparx), Objecteering (Softeam) and 

RSA (IBM). The CameoSOA+ Plugin includes a list of validation rules listed in the CameoSOA+ 

user guide11. These validation rules are not specified and are compliant with version 1.0 of 

SoaML. Sparxsystems12 includes SoaML-specific model validation (to verify horizontal 

consistency of SoaML models) but no documentation on the validation rules is available. None 

of these tools provide vertical consistency verification.  

 

Table 2.2.1: support for verification by the SoaML tool supports. 

 
 

SoaML tool support 

Horizontal consistency 

verification 

Vertical consistency 

verification 

 

License 

ModelPro13 No No  Open source 

Cameo SOA+ suite  

(NoMagic MagicDraw)14 

Partial No   Commercial 

Modelio SoaML Designer  

(Softeam)15 

No   No Commercial 

(partially open 

source) 

                                            
11 Available at https://www.nomagic.com/files/manuals/CameoSOA+%20Plugin%20UserGuide.pdf, Accessed 25 

July 2016 
12 Available at http://www.sparxsystems.com.au/press/articles/soaml.html, Accessed 26 July 2016 

13 http://portal.modeldriven.org/project/ModelPro, Accessed 25 July 2016 
14 http://www.nomagic.com/products/magicdraw-addons/cameo-soa.html, Accessed 25 July 2016 

15 http://www.modeliosoft.com/en/technologies/soa.html, Accessed 25 July 2016 

https://www.nomagic.com/files/manuals/CameoSOA+%20Plugin%20UserGuide.pdf
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IBM Rational Software  

Architect (RSA)
16

 

No No Commercial 

SparxSystems 

Enterprise Architect 

 

No documentation 

No Commercial 

SoaML Eclipse plug-in by  

 Delgado et al.[35] 

 Ali et al. [5] 

 

No  No Open source 

(not available yet) 

 

3  Model-driven 

transformation of SOA 

systems 
MDE approach promises automatic code generation from specified models. In this section, 

we are interested in studying the existing MDE-based transformations for the purpose of 

generating code or executable SOA artifact from SOA models. We first give you an overview of 

the existing transformation approaches. We first give an overview of choreography and 

orchestration and comparing them in the context of SOA. Then, we detail transformation 

approaches from choreography specifications into executable orchestration(s). A new mapping 

study ([58], 2015) on the development of service-oriented architectures using model-driven 

development shows that a great majority of MDD methods use PIMs as input model types (UML 

Class and Activity diagrams are widely used). PSM and code are the output of these approaches.  

In the context of mapping formalized service designs onto Web service implementation 

artifacts, many approaches already exist. They consider either the derivation from SoaML-based 

models [59] [60], or UML models with their owned applied UML profiles [61], or standard UML 

models [62].  

A SOA system model includes a structural and a behavioral part. Structural models capture 

the static features of a system, for example, the existing components, their internal structure, the 

data structure, etc. These static parts are mainly classes, interfaces, objects, components, and 

nodes17. It is mainly modeled using class and composite structure diagrams (Object, Component, 

and Deployment diagrams are also used to model the system structure). Behavioral models 

describe the dynamic nature of the system and the interactions between the system components. 

They can also describe the internal behavior of a system component.   

The transformation of the structural part of SOA system models has been widely studied in 

the literature. The majority of these studies define transformation rules from UML and its 

extensions (including SoaML) to WSDL definition (e.g., [63, 62, 64]). IBM [64] introduces 

general (i.e., not described in detail) mapping rules from UML to WSDL. In [62], the authors 

propose a transformation from UML to WSDL, specifically from composite services (that may 

                                            
16 http://www.ibm.com/developerworks/downloads/r/architect/index.html, Accessed 25 July 2016 

17 The nodes are physical entities where the components are deployed 
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have provided and required interfaces) to WSDL document. Although these transformations are 

based on standard UML elements, they are applicable for SoaML-based models as they use the 

same structure elements (using UML Class) to define services and their provided and required 

interfaces (using UML Class or Interface), etc.  

The work in [59, 63] present a transformation from SoaML to BPEL, WSDL, and XSD 

artifacts. For the structural part, the transformation rules from a service definition into WSDL 

file in [59, 63] are coherent with [64]. There are some differences between the two approaches 

mainly the use of SCA as a target technology in [63]. Thus, participants are mapped into SCA 

component in [63] and into WSDL Service: Port in [59]. For the behavioral part, BPEL processes 

are generated from UML activity diagrams in [63] and from BPMN processes in [59]. The 

activity and BPMN diagrams describe the expected behavior of the system components. All these 

works do not provide detailed mapping rules, they provide source and target elements for the 

mappings and illustrate them using simple scenarios.  

Table 2.2.1 gives an overview of these SoaML modeling tools and their supports for code 

generation. Most of them (e.g., SparxSystems Software Architect [65] and IBM Rational 

Software Architect [64]) generate artifacts based on XSD, WSDL, Service Component 

Architecture (SCA) and BPEL. Some of them (e.g., Modelio) cover the transformation of both 

structural and behavioral parts of the system model, others (e.g., ModelPro) cover only the 

transformation of the structural part. 

Table 2.2.1: Overview of existing supports for code generation from SoaML models. 

Name Support for code generation 

ModelPro The SoaML cartridge for ModelPro is able to produce executable Web service 

implementations for services architectures defined in SoaML. Current 

technologies supported include Web Services, Eclipse, and JEE. 

Cameo SOA+ 

suite (NoMagic 

MagicDraw)  

Code generation is supported in combination with ModelPro18. 

Modelio CASE 

(Softeam) 

Modelio includes transformation features to various implementation models 

including XSD, WSDL, BPEL and Java. Modelio allows users to generate Web 

service skeletons from BPMN models that are used to specify the Participants 

behaviors. 

IBM Rational 

Software 

Architect 

Several transformations are supported by this tool, namely UML to SoaML, 

BPMN to SoaML and Java to SoaML. It also supports transformations to XSD, 

WSDL, and BPEL from activity diagram19. 

SparxSystems 

Enterprise 

Architect 

No documentation is available about code generation supports from SoaML.  

SoaML Eclipse 

Plug-in by 

Delgado et al. 

[35] 

SoaML models can be imported and exported as XMI files, but the tool seems 

to lack full SoaML support, because, for instance, service behavior cannot be 

modeled. 

SoaML Eclipse The tool allows the generation of OSGi Declarative Services Models from 

                                            
18 More information are available at http://soaplus.cameosuite.com. 

19 http://www.uio.no/studier/emner/matnat/ifi/INF5120/v10/undervisningsmateriale/modelingwithsoaml-5.pdf  

http://forge.modelio.org/projects/soaml-modelio3-user-manual-english/wiki/Web_Service_generation
http://forge.modelio.org/projects/soaml-modelio3-user-manual-english/wiki/Web_Service_generation
http://soaplus.cameosuite.com/
http://www.uio.no/studier/emner/matnat/ifi/INF5120/v10/undervisningsmateriale/modelingwithsoaml-5.pdf
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Plug-in by Ali et 

al. [5] 

SoaML models. 

Concerning the transformation of the behavioral part, the internal behavior of SOA 

components and their transformation is out of the scope of this thesis. Contrary to previously 

mentioned works, we are interested in the transformation of the interactions between the services 

in a SOA system as a composition model. We are particularly interested in the transformation of 

the choreography specification models into executable orchestrations. In the literature many 

transformation approaches focused on that, however, to the best of our knowledge, none of them 

have taken SoaML as a source model for their transformation. In the following, we provide an 

outlook of the existing choreography modeling paradigms. We discuss both approaches for 

generating orchestrations from choreographies, namely centralized and decentralized 

transformation, and finally, we present and compare the relevant developments that aim to 

transform a choreography into an orchestration. 

3.1 Service composition: orchestration versus choreography  

One of the major advantages of “service-oriented” is that it allows the development of 

applications from the reuse of distributed and collaborating services, e.g., services exposed by 

software components, Web services, or Software as a Service in cloud environments. In SOA, 

services provide fine-grained functionalities. Alone, a service has a limited functionality and is 

often not sufficient to fulfill the customer’s request. On the other hand, real life applications are 

coarse grained and thus require combined services. The process of service composition performs 

this combination where services are aggregated together to offer a new value added services. 

Service composition can be achieved using orchestration and choreography mechanisms. The 

following sections give an overview of service choreography, orchestration and of the 

relationship between them. 

3.1.1 Service choreography  

Service choreography is a contract between existing services to make the interaction between 

them possible and facilitate their integration in a composition. Such a contract specifies from a 

global point of view the interactions that must take place among a set of peers.  

The W3C’s Web Service Choreography Working Group [66], defines choreography as “the 

definitions of the sequences and conditions under which multiple cooperating independent agents 

exchange message in order to perform a task to achieve a goal state”. 

Choreography describes the public (i.e., globally visible) message exchanges, and thus defines 

how multiple independent services should interact with each other. More specifically, it defines 

interaction rules and agreements that occur between multiple business process endpoints, rather 

than a specific business process that is executed by a single party [67]. This agreement concerns 

many aspects including, for example, the order of exchanged messages. A choreography specifies 

the interactions without revealing unnecessary details about the internal control flow of the 

involved parties. This is beneficial in the case where the system specification is incomplete and 

therefore the internal control flow may not exist when the choreography is specified. In some 

systems, especially when the involved parties are competitors, hiding the internal behavior from 

the other parties may be a requirement for safety and confidentiality reasons.  



Part I: State of the arte   41 

 

 

In SoaML, “the choreography is a specification of what is transmitted and when it is 

transmitted between parties to enact a service exchange” [8]. It defines what happens between 

the provider and consumer participants at a high level of abstraction without defining their 

internal processes. A service contract choreography is a UML Behavior as it may be presented 

on an interaction diagram or activity diagram that is owned by the ServiceContract. “The service 

contract separates the concerns of how all parties agree to provide or use the service from how 

any party implements their role in that service - or from their internal business process” [8].  

 

3.1.2 Service orchestration  

After defining a contract describing the interactions that must take place to achieve a specific 

goal, it is necessary to define how we can achieve that goal in terms of concrete implementation. 

Such concrete implementation is called service orchestration, which refers to an executable 

business process that has the flexibility to interact with external services. These interactions 

include the business logic and execution order of the exchanged messages from the perspective 

and under the control of a single endpoint. This particular endpoint, called orchestrator, is a 

service embedding a process in order to describe long-lived and useful new functions by 

coordinating other Web services [67] [68]. Orchestration describes how Web services interact 

with each other at the message level. Orchestration contains enough information to enable the 

execution of the business process by an orchestration engine. It may include internal actions such 

as data transformations or internal service module invocations.  

Orchestration languages. WS-BPEL [69] represents the de facto standard for orchestrating Web 

services. It has broad industrial support from companies such as IBM, Microsoft, and Oracle. 

Several tools and mappings are being developed to generate BPEL code from graphical 

representations like the IBM WebSphere Choreographer, Eclipse BPEL Designer, and the Oracle 

BPEL Process Manager. However, the graphical notations proposed by these tools are simply 

graphical representations of the source code, and does not provide really abstraction with the 

code level. They are directly related to the BPEL constructs [70]. This implies that users must 

have an expert knowledge of BPEL to think in terms of BPEL constructs. It is more interesting 

to generate BPEL code from a model representing a higher level of abstraction so that designers 

can specify complex scenarios in an easier way without thinking of execution details. Some work 

has been done in this direction. 

3.1.3 Choreography and orchestration relationship 

Both, choreography and orchestration are intended to specify a service composition, yet there 

are noticeable differences. One of the main differences is that choreography and orchestration 

specify the composition from different viewpoints. In fact, orchestration describes the execution 

of a specific business process from a local view so that it encompasses internal details of the 

services, which may not want to share these internal details with the other services. . However, a 

choreography describes a coordinated set of interactions between partners from a global view, so 

that only public message exchange has to be shared with the other services. In addition, 

orchestration focuses on generating executable business processes. However, choreography 

focuses on specifying the public contracts containing the necessary rules to achieve business 
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engagements. Another point to note is, contrary to orchestration, in a choreography, there is no 

central controller that governs the specification, all participants are equivalent and each of them 

plays a role in this global contract.  

From the previous discussion, we can deduce that choreography and orchestration 

complement each other [71]. In other words, a choreography reflects “what” business goal is to 

be achieved by specifying public message exchanges and an orchestration defines “how” the 

business goal is achieved. An orchestration has to deal with both public and private message 

exchanges and thus specifies a lower level of design. These differences explain the use of 

choreography essentially as a design-level artifact while an orchestration is used as an executable 

artifact at runtime level. Based on choreography specification, we can generate the code skeleton 

of the orchestration that implements the choreography logic.   

3.2 Service choreography modeling languages 

Figure 3.2.1 provides an overview of the existing styles of choreography modeling paradigms; 

each style is used to accentuate a specific modeling perspective, e.g. the global perspective on 

the overall choreography, the perspective of specific roles or an abstract perspective based on 

explicitly modeling the evolution of the status of business artifacts [72]. As shown in Figure 

3.2.1, there are four types of choreography modeling paradigms. Two of them are well-known in 

the state of the art, namely interconnection and interaction choreography modeling. The two other 

paradigms have recently emerged, namely declarative and artifact-centric. 

In the Interconnection Choreography Modeling, the choreography is specified in each role 

separately in terms of received and sent message order by and from each role. This is the case of 

BPEL4Chor [73], which extends BPEL by introducing an interconnection layer on top of abstract 

BPEL processes, thus leading to interconnected behavioral interface descriptions. Contrary to 

interconnection choreographies, Interaction Choreographies are modeled from a global 

perspective. They allow the modeler to specify exactly what message exchanges need to be 

enacted without having to specify the internal details of each participant. BPMN v2.0 

Collaboration Diagrams can be used to model both interconnection and interaction 

choreographies. In Declarative Choreography Modeling paradigm, the order of the message 

exchanges among participants is modeled implicitly by means of constraints that define pre-and 

post-conditions. This choreography modeling style is investigated only in the scope of academic 

research [74], [75]. Finally, in the Artifact-Centric Choreography Modeling, choreographies 

are specified implicitly following the way the states of the artifacts evolve. A choreography 

describes artifacts, their states, and how the message exchanges occurring among the participants 

alter the states of the artifacts.  
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Figure 3.2.1: Classification of Choreography Modeling Paradigms. 

 

In this work, we are interested in interaction choreographies. There are several academic and 

industrial languages for modeling interaction choreographies. Some of them are based on Process 

Algebra (also known as process calculi), for example, the work in [76] and [77]. Others are based 

on Automata and other State-Transition Systems, they mainly model choreographies using Finite 

State Machines (FSMs) or State-Transition Systems (STSs). Most of the work that uses FSM and 

STSs to model choreographies adopt the interconnection modeling so that they model each role 

in the choreography as a separate automaton [78]. Only a few of these works [79], [80] adopt the 

interaction choreography modeling.  

There are several other academic languages for modeling interaction choreographies in the 

literature, for example including Petri nets [81], Let’s Dance [82] Dynamic Logic [83], 

Distributed States Temporal Logic [84] and SCIFF [85]. The interested reader will find in [72] a 

detailed description of these choreography languages.  In our state of the art, we are more 

interested in industrial languages, which are languages that undergo a standardization process in 

the scope of organizations or consortia like the World Wide Web Consortium (W3C)20, 

                                            
20 W3C website: http://www.w3c.org 
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International Telecommunication Union (ITU), the Object Management Group (OMG)21 or the 

Organization for the Advancement of Structured Information Standards (OASIS)22.  

One of the most popular choreography languages is Web Services Choreography Description 

Language (WS-CDL), a W3C standard candidate proposed in 2004. However, WS-CDL is 

technology dependent language that is destined for the coordination between Web services. In 

our work, we prefer to use technology independent languages at a specification level so that the 

same model can be used to generate code for several platforms.  

The following details other popular choreography languages, namely BPMN, Message 

Sequence Chart formalisms and UML 2.x diagrams for specifying choreographies: collaboration 

diagram, sequence diagram, and interaction overview diagram.  

3.2.1 BPMN 

Business Process Modeling Notation (BPMN) was developed by the Business Process 

Management Initiative (BPMI) and has gone through a series of revisions. In 2005, the BPMI 

group merged with the OMG, which released BPMN 2.0 in January 2011. The first OMG 

standard profile for BPMN was released in July 2014. It created a more detailed standard for 

business process modeling, using a richer set of symbols and notations for Business Process 

Diagrams. The main goal of BPMN [86] is to provide a standard notation that is readily 

understandable by all business stakeholders of a system to communicate a wide variety of 

information on business processes to a wide variety of audiences. BPMN is typically used on 

Business or domain models level23 (historically called computation-independent models (CIMs) 

level [13]) to define business processes at a very high level of abstraction without looking into 

technical details (PIM and PSM). The BPMN profile is intended to cover many types of modeling 

and allows the definition of end-to-end business processes. It allows the specification of both 

non-executable and executable processes describing choreographies and collaborations between 

the process participants or business entity. 

Business processes may be used to specify different levels of abstraction of the business process, 

from a high-level description down to task flows which detail the process specification [86].  To 

specify these different levels of abstraction, BPMN has three types of diagrams shown in Figure 

3.2.2, namely process diagram, collaboration diagram and choreography diagram:  

- A Process Diagram describes a sequence or flow of activities in an organization with the 

objective of carrying out work. A process contains Activities, Events, Gateways, and 

Sequence Flows that define its execution semantics. Collaboration Diagrams are a 

collection of Participants shown as Pools, and their interactions as shown by Message 

Flows.  

- A Collaboration Diagram may also include Processes within the Pools and/or 

Choreographies between the Pools. 

- A Choreography Diagram was introduced in version 2.0, before hand, (in BPMN 1.x) 

BPMN was focusing only on orchestrations and interconnection choreography. This new 

                                            
21 OMG website: http://www.omg.org 

22 OASIS website: https://www.oasis-open.org 
23 Business models specify exactly what the system is expected to do, but hides all information technology to 

remain independent of how that system will be implemented. “A CIM only describes business concepts whereas a 
PIM may define a high-level systems architecture to meet business needs. For example, a PIM may define a Service 
Oriented Architecture (SOA) for an information sharing need defined in a CIM.” [179]. 
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diagram formalizes the interconnections between business Participants. It focuses on the 

exchange of information (Messages) between these Participants. 
 

   
(a) Process Diagram      (b) Collaboration Diagram       (c) Choreography Diagram 

 

Figure 3.2.2: BPMN Diagrams. 
 

 As we focus on interaction choreography, we are only interested in the BPMN choreography 

diagram. BPMN v2.0 choreography diagram includes a choreography process made of 

choreography tasks (i.e., activities that represent message exchanges), sequence flows, gateways 

(to combine the tasks) and events (e.g., beginning, completion and termination). 

A running example of BPMN v2.0 Choreography Diagram is shown in Figure 3.2.3. This 

example is taken from [72]. There are three participants in the choreography: the Buyer, the 

Seller, and the Payment Processor. A choreography activity is depicted as a rectangle. The two 

bands, one at the top and one at the bottom, represent the parties involved in the interaction 

captured by the activity. A white band is used for the sender whilst a dark band is used for the 

receiver. An envelope represents a message sent by the corresponding party. The dark envelope 

is the response of a two-way interaction. The ordering of choreography tasks and events is 

controlled by sequence flows and gateways. 

 BPMN is constructed rich and may even be too complicated compared to other choreography 

languages. There are two types of message exchanges: one-to-one and one-to-many (i.e., there 

can be multiple recipients for one message). There are three types of flows; in these three types, 

the activation of a flow can be either when the source element is activation (normal flow) or after 

the verification of a condition or by default. There are five types of gateways: data-based, event-

based, inclusive, parallel and complex (i.e., to be specified by the modeler) gateways. 

In the example of Figure 3.2.3Figure 3.2.2, the Buyer initiates the choreography by sending 

the Order message to Seller. Then, the latter communicates the Payment Info to Payment 

Processor to initiate the payment process. At this point in the choreography, there are two, 

mutually-exclusive execution choices. In the first alternative, the Buyer sends an Order 

Cancellation to the Seller, which, in turn, triggers the sending of Payment Process Cancellation 

to Payment Processor. In the second alternative, the Payment Processor may send a Payment 

Solicitation to Buyer, who will answer with the Payment Authorization; after the receipt of the 

Payment Authorization, a notification (the Payment Confirmation message) sent from the 

Payment Processor to the Seller concludes then the choreography. 
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Figure 3.2.3: BPMN of Purchase choreography. 

 

Despite its very large variety of constructs, BPMN lacks a formal specification of the 

operational semantics of its constructs. In addition, the BPMN v2.0 specification of choreography 

diagram is affected by serious defects; this is probably a result of its complexity. For example, 

the specification allows the designer to directly attach a catch event to choreography tasks instead 

of being connected by means of sequence flows, however, the XML serialization does not support 

that. More issues have been identified when modeling interactions with Web services in BPMN 

v2.0 [87]. 

As per July 2016, there are 393 issues listed in the BPMN v2.0 bug list of the OMG24, over 37 

issues of which are related to the choreography part of the specification. These errors are 

increasing over the years (363 per April 2014), it is still unclear if, when and how the issues 

affecting BPMN v2.0 will be tackled [72]. 

3.2.2 Message Sequence Chart  

Message Sequence chart (MSC) [88] is a popular visual ITU standard formalism for modeling 

choreographies (it is often used for modeling scenarios25). It is widely used and since its first 

introduction in 1992, it was updated several times, and the specification also defines formal 

semantics for the basic elements of the language based on process theory. 

MSC describes the communication between several system components from a global 

perspective. MSC can be used to describe the communication between these components and the 

rest of the world (i.e., the environment).  Figure 3.2.4 shows an example of MSCs that models 

the Purchase choreography conversation. Figure 3.2.4-a shows a conversation in which the buyer 

finalizes the payment and Figure 3.2.4 shows a conversation in which he canceled his order. 

Lifelines represent roles, each one is depicted as a box containing the name of the role and a line 

originating from it that represent the instance axis. There are three roles for each choreography: 

the Buyer, the Seller, and the Payment Processor. 

                                            
24 http://issues.omg.org/issues/lists/bpmn2-rtf, last accessed on 23 July 2016. 

25 A scenario is specific “threads” of interactions [180]. Scenarios could be merged to obtain detailed interaction-

based choreography models (also called interaction models for short). 
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(a)  Successfully finalized payment scenario    (b) Cancellation scenario  

 

  Figure 3.2.4: Example of MSC diagram for Process Payment choreography. 
  

The communication between system components is performed by means of messages depicted 

as arrows between the lifelines. Each message specifies the sending and consumption of two 

asynchronous events. Messages may also specify a method call that may be either asynchronous 

or synchronizing. An asynchronous call implies that the caller may continue without waiting for 

the reply of the call. On the other hand, a synchronizing call implies that the caller will enter a 

suspension region where no events occur until the return of the reply. The ordering of message 

exchanges is imposed via a partial ordering26 on the set of events being contained in the MSC. 

Specifically, if no structural concepts (like coregion that specifies unordered events on an 

instance) are introduced, the time is running from top to bottom along each lifeline. Events of 

different instances are ordered via messages – a message must first be sent before it is consumed 

– or via the generalized ordering mechanism, which explicitly orders events covered by different 

instances (even in different MSCs).  

The MSC specification allows designers to specify several operators, namely alternative, 

parallel and sequential composition, iteration, exception and optional regions. Figure 3.2.5 shows 

an example of alternative operator used to combine both previously presented MSCs. 

 

 
  Figure 3.2.5: MSC of Purchase choreography. 

 

The MSC standard (in the version of 1996 and later) also defines High-level Message 

Sequence Charts (HMSCs) diagrams, which is a combination of multiple MSCs using in-line 

expressions (i.e., control flow constructs such as iteration, choice, and concurrency) [88]. In the 

same way, HMSCs can be composed. 

                                            
26 A partial ordering is a binary relation which is transitive, antisymmetric and irreflexive [181]. 
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Message Sequence Charts are used to specify choreography between distributed systems in many 

works [89] [90] [88]. MSC model has also been used in modeling and verification of Web 

services choreographies in [91].  

3.2.3 UML 2.x diagrams for specifying choreographies 

In this work, we are especially interested in UML-based languages, since we have chosen 

SoaML as a modeling language. Insofar, we studied UML diagrams for specifying 

choreographies. In UML 2.x, an interaction can be displayed in three different types of diagrams: 

communication diagrams, sequence diagrams, and interaction overview diagrams. 

Communication diagram.  UML 2.x Communication diagram, which is a simplified version of 

UML1.x collaboration diagram, shows the interaction between some parties through an 

architectural view. Participating objects and/or parts are represented as lifelines and 

communicate together using sequenced messages whose order is given through a sequence 

numbering scheme. The same example of Purchase choreography is modeled using a UML 2.x 

Communication diagram shown in Figure 3.2.6. As shown in the figure, a communication 

diagram is shown within a rectangular frame that mainly contains lifelines and messages. Each 

lifeline represents a specific role in the choreography. The roles are connected with each other 

by lines that denote one-to-one message exchanges. The direction of the arrow of a connection 

defines the direction of the communication to define which role is the sender and which one is 

the receiver of the message. The sequential order is specified through a sequence expression, i.e., 

nesting notation, to specify the correlations between the message exchanges. Messages that differ 

in one integer term are sequential at that level of nesting. For example, in Figure 3.2.6 the 

message exchange Order has sequence number 1, and the Payment Info has sequence number 

1.1 then we can deduce that Payment Info is the result of Order message. Only choices and 

conditional message exchanges can be specified. These structuring mechanisms are modeled 

using the [condition] notation that defines the triggers. The use of sequence numbers and limited 

structuring mechanisms are rather complicated and have been pointed out as the reason why 

MSCs are far more often used in the practice for modeling choreographies than communication 

diagrams [38]. 

 

 
 

Figure 3.2.6: UML 2.x communication diagram of Purchase choreography. 

 

Sequence diagram. The sequence diagram has been significantly changed in the UML 2.0 

compared to the latest versions. Several elements were borrowed from MSC in order to increase 

the expressiveness of the language. Many new complex elements and new semantics were added 
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to the sequence diagram metamodel specifically combining operators. The new elements are very 

similar to MSCs in terms of both notations and semantics. The similarities are noticeable when 

comparing the MSC in Figure 3.2.5 with the equivalent sequence diagram shown in Figure 3.2.7. 

In an interaction, operators are called CombinedFragments and are used to represent, for 

example, a choice of behavior (e.g., to designate that at most one behavior  will be chosen from 

alternative ones or to model a parallel merge between some behaviors).  

Similarly to MSC, choreography participants are represented by lifelines, which communicate 

through Messages. A message is a request from a sender for either an Operation call or Signal 

reception by a receiver. Each message is associated with two events the event of sending the 

message and the event of receiving it. These events are called Message Occurrence 

Specifications.  

The message is a general term; it can be synchronous (has filled arrowhead) or asynchronous 

(has an open arrow head.), it can mean calling an Operation or sending a Signal (specified by 

its MessageSort attribute). A Signal is asynchronous and is the result of an asynchronous send 

action. On the other hand, operations can be called synchronously or asynchronously (Figure 

3.2.7 contains only asynchronous messages).  

Interaction models emergent behaviors27 as a set of traces, i.e., a sequence of event 

occurrences. A partial order restricts the order in which the traces occur. Like in the case of MSC, 

in a sequence diagram, each vertical line describes the timeline for a process, where time 

increases from top to bottom, however, no time scale is assumed28. There is no global notion of 

time between the instances in an interaction. Each instance operates independently from the 

others. The only dependencies between the timing of the instances come from the restriction that 

a message must be sent before it is received (called causality model).  

Section 1.2 of the contributions details the metamodel architecture of a sequence diagram and 

the relationship between the metamodel elements. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2.7: UML 2.x sequence diagram of Purchase choreography. 

 

Sequence diagrams are used to model interaction choreographies, like in the case of [92], [93] 

and [14], which is probably the most-quoted publication concerning choreographies.  

                                            
27 Emergent behaviors are behaviors resulting from the interaction of one or more participant objects that are 

themselves carrying out their own individual behaviors (sub clause 13.1 in [98]). 
28 The distance between two events on a time-line does not represent any literal measurement of time (only that 

non-zero time has passed) [98]. 
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Interaction overview diagram. Interaction overview diagrams combine multiple sequence and 

communication diagrams in a way that promotes overview of the control flow, thus, are the UML 

2.x equivalent of HMSCs. As shown in Figure 3.2.8, an interaction overview diagram describes 

the flow of control through a variant of Activity Diagrams (namely initial node, flow final node, 

activity final node, decision node, merge node, fork node and join node) where nodes of the flow 

are interactions or interaction uses. In Figure 3.2.8, we use interaction overview diagram to 

models the Purchase choreography. A decision node is used to express alternative choices. We 

also use initial and final nodes to respectively indicate the start and the end of the flow. 

 

 
 

Figure 3.2.8: UML 2.x Interaction Overview diagram of Purchase choreography. 

 

Since we have chosen SoaML as a modeling language for SOA systems, we concentrated 

on choreography models that are based on UML. In SoaML, a choreography is modeled as a UML 

Behavior that is owned by a ServiceContract, a UML Collaboration that is used to model contracts 

between some services.  As we discussed previously, UML provides a rich variety of 

choreography languages. There is a UMG standard profile for BPMN2.0, however, this profile 

only specifies process and collaboration concepts and does not include choreography concepts. In 

addition, as we discussed before, BPMN choreographies are too complicated compared to the 

other choreography languages such as sequence diagram. When comparing the same 

choreography representation using BPMN in Figure 3.2.3 and sequence diagram in Figure 3.2.7, 

we found that sequence diagram is easier to understand. Then, we choose to define choreography 

using UML Interactions, which indeed enable services interactions description without going into 

details of services implementations. In particular, Sequence Diagrams simplify the specification 

and understanding of complex services choreographies. Service contracts can then be refined 

using sequence diagrams to describe services interactions in the context of service contracts. 
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3.3 Transformation approaches: Decentralized versus 

Centralized orchestration   

As we explained in section 3.1, a choreography provides an abstract specification of “what” 

business goal is to be achieved and orchestration provides execution details needed to specify 

“how” the business goal is to be realized. Therefore, an approach is needed to transform a 

choreography into a set of orchestrations. Current practices of transforming choreography 

specifications into executable orchestrations are typically manual, which is a time-consuming 

and error-prone task. This task becomes even harder when a large number of services are 

involved in a choreography or when the choreography includes complicated message exchange 

dependencies. Various dependencies can be defined in a choreography such as a sequence order 

(i.e., a given exchange must occur before another one), exclusion dependencies (i.e., a given 

interaction excludes or replaces another one), etc. These dependencies make the process, and 

consequently, the transformation more complex. To deal with this complexity, one solution is to 

automate the transformation. The (semi-) automatic transformation from choreography to 

orchestration is advantageous not only to considerably speed up the development process but 

also to minimize the risk of inconsistencies that could be introduced when the transformation is 

done manually. But the transformation itself could be incorrect or could not consider all the 

specified scenarios. Therefore, one should guarantee the conformance between the generated 

orchestrations and the specification (i.e., vertical consistency). Conformance relation is defined 

in [94] as follows: “The conformance relation relates two models at different abstraction levels. 

It defines that a model at a lower abstraction level must be a correct implementation of a model 

at a higher abstraction level.” An important factor in determining the correctness of the 

transformation from choreography to orchestrations is to guarantee that the business goal 

specified in the choreography is preserved by the orchestration resulting from the transformation 

[95].  

In the following, we first give an overview of the existing approaches for transforming 

choreography specification models into executable orchestrations. In the literature, there are two 

transformation approaches: either (1) the choreography is transformed into a centralized 

orchestration where a central entity (i.e., the orchestrator) is responsible for implementing the 

choreography; or (2) the choreography is transformed into a decentralized orchestration where the 

choreography logic is divided or portioned into distributed orchestrators. In this section, we briefly 

compare decentralized and centralized orchestrations based on the information available in 

relevant literature. These transformation approaches are shown in Figure 3.3.1 taken from [95].  

At the top of Figure 3.3.1, we represent a choreography as a collection of message exchanges 

between the participating services. A choreography has an overall responsibility of fulfilling the 

goal of the customer. When transforming a choreography into an orchestration, this responsibility 

can be assigned either to a third party service or divided between the services. In the first case, the 

transformation results in a centralized orchestration illustrated in the bottom left of Figure 3.3.1 , 

and in the second case, it results in the decentralized orchestration illustrated in the bottom right 

of the figure.  
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Figure 3.3.1: Centralized and decentralized transformation from choreography into orchestration 

[95]. 
 

We discuss the transformation of a choreography into both orchestration variants in the 

following subsections. 

From choreography to centralized orchestration. The term orchestration is mostly used to 

denote centralized orchestration. In a centralized orchestration, the generated orchestrator is a 

third party that is not specified in the choreography and whose role is to implement the 

choreography as an orchestration that embeds the choreography logic and follows it.   

The orchestrator would be responsible for forwarding the messages as specified in the 

choreography. More specifically, in a choreography specification, each message has a source and 

a target. Such a message exchange should be maintained first by sending the message from source 

to the orchestrator and then from the orchestrator to the target as specified in the choreography.  

The orchestrator should be then able to forward the message to its specified target. The 

orchestrator is also responsible for coordinating the message exchanges while maintaining the 

message exchange ordering specified in the choreography. In addition, the orchestrator 

implementation should also take into consideration the eventual errors that could occur at runtime 

and implement fault and compensation handling mechanisms to deal with this error. 

Centralized orchestration has many advantages. In fact, the orchestrator can monitor all the 

messages and has the complete control of the orchestration process [96]. As a consequence and 

thanks to the orchestrator’s global vision, it becomes easier to locate and handle errors and faults. 

In addition, the coordination between the participating services is easier, since it is the 

responsibility of a single entity to designate the service to be invoked as specified. On the other 

hand, centralized orchestration has some drawbacks, all the messages are forwarded through a 

central point, and therefore this central point could become a performance bottleneck. Moreover, 

a sender cannot forward a message directly to its destination, it has to send it to the orchestrator, 

which in its turn forwards this message to its final destination. This introduces unnecessary traffic 

on the network. In other words, the additional network traffic and performance degradation may 

reduce the overall performance of the application especially when the number of services to be 

orchestrated gets larger. This problem is known as the scalability problem.  
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From choreography to decentralized orchestration. The choreography is used to derive the 

local orchestration models for each party playing a role in the choreography. Each party is then 

implemented by an orchestration process that must comply with the overall choreography. In other 

words, the responsibility of the choreography specification is distributed into sub-responsibilities 

accorded to the participating services.  

Decentralized orchestration has two major advantages, which are the enhancement of the 

scalability and the decrease of the network traffic. However, the distribution of the responsibility 

of the choreography specification between the individual services is not an easy task to do. The 

absence of a central coordinator makes the message exchanges among the services difficult. A 

coordination mechanism must take place between the services to ensure a correct (i.e., that is 

coherent with the specification) execution. This mechanism would be able to allow the services 

to know when to participate in the collaboration and to whom the responsibility should be 

accorded next. Fault and error handling is also more complex than centralized orchestration since 

the localization of the error would be more difficult and the responsibility of fault and error 

handling is divided between the services.  

Another point to highlight is the comparison between the centralized and the decentralized 

approaches are easily adaptable to changes in the specification. In a decentralized orchestration, 

even small changes in the choreography specification result in big changes to some or all the 

generated processes [97], contrary to the centralized approach where services remain unchanged 

and only the generated orchestrator should take into consideration these changes. 

3.4 Transformation approaches: related work 

The transformation from choreography specifications into orchestration processes is a 

particular case of a well-known problem in the literature where scenario-based specifications have 

to be transformed into lower level designs, generally unit designs. 

From scenario-based specification into unit designs. Scenarios may be expressed in UML 

using Sequence Diagrams or using Collaboration Diagrams [98] (which contain similar 

information without the temporal dimension). A lot of progress has been made on the synthesis of 

unit designs from such UML scenarios, for instance in [99] [93], [100], [101], [9]. These designs 

represent each behavioral reference specification for an involved entity in the scenario and are 

inferred using projection mechanisms. The synthesis problem has also been addressed for other 

scenario-based languages such as Message Sequence Charts (MSCs) [88] and variants in [102], 

[103], [104] and [105].  

In the context of service-oriented applications, scenarios have been used for the synthesis of 

unitary designs for involved servers in [106], [91] and [107]. Note that authors in [107] introduce 

a seemingly different scenario-based notation from Sequence Diagrams and MSCs as Labelled 

Transition System (LTS) [108] in which labels are pieces of interaction between services. Some 

of these works [107], [109], [80], [110] have been conducted under realizability29 conditions 

and/or conformance assumptions [107], [9]. In this context, many pathologies in scenario-based 

models have been addressed, in particular, race conditions [111], non-local choice [112] and 

implied scenarios [113], which, if not handled properly by services implementations, can cause 

                                            
29 Realizability checks whether the choreography can be realized by implementing each service conforming to the 

played role [117] 
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problems at runtime. In [107], authors have introduced a conformance notion, which allows the 

characterization of the correctness of the resulting orchestration and hence can be used to validate 

it using simulation or testing techniques. 

In the following, we discuss the existing transformation from choreography to orchestration, 

which is a particular transformation from scenario-based into lower-level designs. We are mainly 

focusing on if they are tool-supported, if they handle asynchronous communications, and if they 

verify the coherence between the specification model and the generated code. 

From high-level choreography models into orchestrations. Several synthesis techniques for 

building orchestration models from a choreography description have been developed. As we 

mentioned in the previous section, there are two general approaches for that. The first is to 

generate decentralized orchestrations, one for each participant [114], [115], [73], [116]. They 

generally aim at deducing the behavior of each participant which is not implemented yet and 

whose generated behavior must comply with the overall choreography. Some work aims at 

generating software entities (called Controllers in [107] and Coordination Delegates [117]) to 

enforce the choreography logic between some existing services.  

The second approach is to generate a centralized orchestration that controls the whole 

choreography [70], [99], [92], [118]. This approach aims at reusing existing services and 

generating an orchestrator to act as glue between them. Some other Works define mapping from 

BPMN to BPEL [118], [119], [120]. All of them use BPMN to describe the orchestrator behavior 

and not the choreography logic.  

In [70], [99], [92], [118], the starting point of the transformation is a choreography between 

some parties. However, contrary to our approach, the orchestrator behavior is specified as a 

participant in the choreography. That is to say, the generated orchestration is the implementation 

of a singular participant in the choreography. In our approach, the orchestrator behavior is deduced 

from the choreography logic. The generated orchestrator is then a third party whose role is to 

implement the choreography as an orchestration that embeds the choreography logic and follows 

it. 

More details about the source and the target languages of these works and other relevant works 

in the area are provided in Table 3.4.1. In addition to the source and target languages, the table 

specifies the type of the choreography, i.e., interaction or interconnection choreography. Some 

work specifies the behavior of the orchestrator in the choreography, we consider these 

specifications as orchestrations. A choreography may describe basic scenarios (BS) or global 

scenario composed of a set of BSs (a comparative survey of scenario-based to state-based model 

synthesis approaches [121] has defined this categorization for scenario-based models). For target 

languages of these transformation approaches, Table 3.4.1 provides an overview of the synthesis 

path and specifies if the resulting code is centralized or decentralized orchestration. Then the table 

gives an overview of what is considered in the transformation approaches: if combining operator 

or a collection of scenarios are taken into consideration, if asynchronous communications are 

taken into consideration in the transformation or not, what was the verification methodology that 

has been applied to validate these transformations and finally if it is supported by tool or not.  

For example, the work in [122] proposes a transformation from choreography captured as a 

collection of state machines (FSMs) exchanging messages between them, into centralized 

orchestration defined using BPMN or BPEL, their transformation is based on synchronous 

communication. They first merge the FSMs into a single one, englobing all possible sequence of 

message exchanges. This results in a verbose and complex process due to state explosion, a 
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drawback encountered where several messages may be exchanged in any order. To improve the 

readability of the generated behaviors of the orchestrators, they first generate Petri nets from the 

resulting FSM before generating the BPMN or BPEL models.  

In most cases, the proposed transformations generate a simple skeleton of BPEL processes like 

the work undergone by Bauer et Muller [92], Khadka et al. [70] and McIlvenna, Dumas et al. 

[122], which do not include all implementation details (e.g., data manipulation). In addition, these 

transformations do not deal [122] or partially deal [70] with high-level combining operators. In 

[92] gives an informal and incomplete definition of a mapping between sequence diagram and 

BPEL. 

Another point to raise is that few works are based on a MDE approach [70], [123]. In addition, 

the majority of the mentioned transformation approaches are either based on XSLT or on general 

purpose programming languages like Java. Unlike MDE-based transformations, such 

transformations are in general hard to maintain and understand [124]. In our work, we use MDE 

not only for the transformation by applying model transformation techniques, but also for the 

verification of the generated code by comparing execution traces to specification models using a 

formal conformance definition implemented in a symbolic automatic analysis tool.      
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Table 3.4.1: transformation approaches from choreographies to orchestrations. 
 

 

 

 

 

Approach 

Source 

 

Target Support of 

Combining 

operators/A 

collection of 

scenarios 

Synchronous/ 

 asynchronous 

communication 

Verification 

Methodology 

Tool support 

 

language Choreography 

type 

language 

 

Synthesis path: Centralized/ 

Decentralized orchestration 

Leue et al. 

’98 [102] 

MSC Interconnection: 

a collection of 

BSs 

ROOM Decentralized: A room per 

controller 

A collection of 

BSs 

synchronous simulation Yes 

Krüger et al. 
’99 [103] 

MSC Interconnection: 
a collection of 

BSs 

 

Statechart Decentralized: Only one 
Statechart is generated for a 

specific component in the 

choreography. 

A collection of 
BSs 

synchronous No verification No 

Uchitel et al. 

’01 [104] 

 

MSC 

 

Interaction: 

A collection of 

BSs (hMSC) 

FSP + LTS Decentralized: a LTS is generated 

per component  

 

A collection of 

BSs 

synchronous Formal proof Yes 

(Prototype) 

Abdallah et al ’15 
[125] 

MSC Interaction 
 

local FSM Decentralized: An asynchronous 
FSM per component 

Support for 
combining 

operators 

 

asynchronous Formal proof Yes 
(Prototype) 

 

Harel et al. ’02 
[105] 

LSC Interaction 
BS 

 

Statechart Decentralized: a statechart is 
generated per component. 

No synchronous Formal proof Yes 
(prototype) 

Whittle and. 
Schumann 

’00 [99] 

 

SD orchestration 
BS 

Statechart Centralized: one Statechart in 
generated from a collection of 

SDs. The statechart is generated 

for the orchestrator (a specific 

partner in the SDs). 

No synchronous Case study Yes 
(Prototype) 

Ziadi et al. 

’04 [93] 

SD Interaction 

A collection of 

BSs 
 

Statechart Decentralized: A statechart is 

generated per component out of a 

collection of described scenarios 
using SD 

Support for 

combining 

operators 
 

asynchronous Case study Yes 

(prototype) 

Mendeling et al. 

’08 [114] 

WS-

CDL 

Interaction 

 

BPEL Decentralized: a BPEL process is 

generated per participant. 

Support for 

combining 

operators 

synchronous running 

example 

Yes  

(prototype) 
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McIlvenna, 

Dumas et al. ’09 
[122] 

FSMs Interaction 

A collection of 
BSs 

BPMN or 

BPEL 

A centralized BPMN or BPEL is 

generated to handle 
communication between 

decentralized parties.  

A collection of 

BSs 

synchronous A formal proof Yes 

(prototype) 

Khadka et al. ’13 

[70] 

WS-

CDL 

Orchestration BPEL A centralized BPEL orchestrator 

is generated for a specific 
component in the specification. 

Only 

concurrent 
calls 

synchronous Running 

example 

Yes 

(prototype) 

VerChor ’15 

[107] 

BPMN Interaction LOTOS NT 

(LNT) 

process 
algebra 

A centralized LNT: BPMN 

choreographies are transformed 

into CIF, which are transformed 
into LOTOS NT (LNT) process 

algebra. 

Support of 

combining 

operators 
 

both Formal 

verification 

method 

Yes 

Bauer et 

Muller’04 [92] 

SD Orchestration  BPEL A centralized BPEL orchestration 

is generated per sequence diagram 
choreography 

Support of 

combining 
operators 

 

synchronous No No 

 
HMSC: High-Level MSCs    MSC: Message Sequence Charts  SD: Sequence Diagrams 

bMSCs*: Basic MSCs     hMSC**: High-level MSCs    SDL: Specification and Description Language   
CD: Collaboration Diagrams    IOD: Interaction Overview Diagrams   ROOM: real time object oriented modeling 

MSN: Message Sequence Nets    UCM: Use Case Maps     CSD: Composite Structure Diagrams   

LSC: Live Sequence Charts    PN: Petri Nets      FSP: Finite Sequential Processes  

LTS: Labeled Transition Systems   CIF: choreography intermediate format  
 

*bMSCs are used to specify simple sequences of behavior. 

**hMSC are directed graphs with as nodes and edges indicating their possible order. 
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4  SOA testing approaches: 

related work 
Several testing technics (e.g. [126, 127, 128]) have been proposed in the last few years. This is 

because the SOA and especially Web services have been adopted by the industry to develop mission 

critical applications for different domains, such as robotics, enterprise software and pervasive 

applications [129, 130]. Comprehensive and excellent surveys on SOA testing approaches can be 

found in [131, 132, 133].  

4.1 Classification of testing approaches in SOA  

The work in [134, 132] (see Figure 4.1.1) propose a classification of the testing approaches based 

on the contexts of service-oriented applications. According to these works, the testing approaches are 

divided into (1) testing of single services (e.g., [135, 136]); and (2) testing of services composition 

(e.g., [128], [137]).  

 

Figure 4.1.1:  Classification of service testing approaches [134]. 

Testing of single services. Testing of single services is similar to unit testing so that services are 

tested individually without considering its integration with the other units (i.e., other services or 

applications). Authors in [138] propose an approach for single service testing. Service behaviors are 

modeled using Extended Finite State Machines (EFSMs). Then each EFSM is transformed into a 

WSDL specification. Their approach is based on forms filling and no tool is provided. In [139], 

authors generate test cases covering both control flow and data flow of the EFSMs models. 

Testing of services composition. In SOA, many applications are defined as a composition of services 

deployed on a distributed infrastructure where services are reused and composed to automate a 

particular task or business process. In that case, single service testing is not enough and it becomes 

essential to cover other aspects related to the service composition (e.g., the integration of a service 

with other services and applications). In fact, the testing of composite services creates new challenges 

because the service composition has, in addition to the characteristics common to the traditional 

software, other characteristics that must be taken into consideration in the testing approach mainly 

the distributed nature, the asynchronous behavior of the communications between the services and 

the observation limitations [134]. Testing a composition of services creates the need for covering the 

different scenarios and the different communications media. In this context, many testing difficulties 
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have to be anticipated mainly the controllability and observability problems. In fact, communications 

cannot being observed instantaneously because of the transmission delays. Further, sometimes reused 

service cannot be instrumented because of restricted access to the observation points. 

Our work falls within this class testing, the testing of composite services, which in turn is divided 

into two sub-categories depending on the type of the composition, namely service orchestration or 

service choreography testing, as shown in Figure 4.1.1. There is an obvious difference between the 

number of studies for service orchestration testing and those for choreography testing. The former is 

much higher. This is probably due to the lack of consensus and standard modeling languages for 

choreography. For orchestration, WS-BPEL is used as the standard executable language for 

orchestration. However, for choreography, there is no consensus. WS-CDL is the most cited one, 

however, it is a technology dependent language. Recently, many studies have been interested in the 

new OMG standard for service-oriented applications SoaML [134]. 

   In choreography testing, studies either deal with test generation (e.g., [140, 141, 137] ), or 

coverage criteria (e.g., [142]) or conformance testing (e.g.,  [143, 144, 145, 79, 128]). Mei et al. [142] 

defines some adequacy criteria for WS-CDL choreographies using XPath queries. The work in [141] 

applies algorithms defined for conformance checking to derive test cases from choreography 

specification. Another work [146] transforms choreography models into UML diagrams in order to 

generate test cases from these diagrams. The work in [147] applies model checking technics to 

generate integration tests for choreography models that are based on Message Choreography Models 

(MCM)30.   

4.2 Model-based testing techniques for SOA 

Model Based Testing (MBT) is a well-studied software testing technique for about twenty years 

[148]. It consists mainly of three activities: test case description (and derivation), test execution and 

execution analysis through the calculation of a test verdict (the test result is either success or failure, 

etc.). The central element of the MBT is the model, which describes the expected behavior of the 

System Under Test (SUT). Several models are used, mainly FSM, Statecharts, UML (formal parts), 

transition systems, B Methods, algebraic specifications, pre/post-conditions, CSP and Promela. The 

use of the model helps to derive test cases that put the system under test in specific situations (i.e., 

test objective - a behavior that we want to test) to observe its reactions. It helps also to check the 

conformity of the observed and collected reactions during the system execution with regard to the 

expected behaviors described in the models. In this work, we are mainly interested on the second 

activity which consists of the analysis of the reactions with respect to the model for the service 

oriented systems.  There are several approaches to verify the consistency between the running 

orchestrations with respect to the choreography model.  

In our work, we use the black box testing techniques [149] to investigate the correctness of SOA 

systems with respect to a reference specification. This testing technique treats the system as a black 

box where only formal inputs and expected outputs are known by the tester (i.e., no knowledge about 

the internal functionality and structure of the system is available). We can find several approaches in 

recent literature (e.g. [126, 127, 128, 150]) that uses this technique to verify the behavior of a running 

system. Both approaches in [126, 127] use active testing techniques, which assume that the tester can 

                                            
30 MCM consists of three different model types: a global Choreography Model, which consists of a labeled transition 

system that specifies the global conversation between the services, a Local Partner Model, which specifies the behavior 

of each service and a channel model used to specify the characteristics of the communication channel (e.g., whether the 

messages order is preserved during transmission). 
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interact with a SOA (sub-) system at runtime.  

In [127], authors propose an MBT approach based on a model of the orchestrator designed using 

IOLTSs (Input Output Labeled Transition Systems [151]). They define a conformity relation in 

context where the orchestrator is connected with Web Services (and is consequently no longer fully 

controlled by the tester) contrary to unit testing where the orchestrator is tested in isolation. They 

discuss problem of observability for this configuration of test and they define an online testing 

algorithm where the tester interacts with the orchestrator. During the execution, the tester calculates 

an entry from the model (and the test objective is to follow a path in the tree), sends it to the 

orchestrator, checks the conformity of the reaction then recalculates another input and so on.  

Andrés et al. [150] propose a black box choreography testing approach that extends [152] and which 

consists of checking the conformance of local logs with both local and global invariants (which 

expresses global properties). Yet, the global invariants cannot detect a violation of the execution order 

among peers. Halle et al. [153] propose a runtime monitoring and verification technique for 

choreography constraints expressed in Linear Temporal Logic (LTL). Yet, there is no explicit 

conformance relation.  

In [79], Baldoni et al. propose a framework inspired from multi-agent systems for conformance 

testing between the individual peer (single services) behavior and the global behavior of the 

choreography. The notion of conformance is defined by means of the finite-state automaton, however, 

it is restricted only to compositions of two services. In [143, 144, 145], authors study the conformance 

between a choreography model against an implementation defined as compositions of orchestrations 

each of which implementing a service role in the choreography. In our thesis work, we rather propose 

to synthesize a central entity, i.e., orchestrator, which implements the choreography logic provided 

the services implementations are given. 

Most of the works that have been discussed previously either state the conformance of an 

orchestrator with respect to an orchestration model [127] or services implementation with respect to 

choreography model [128]. For the specification step, most of them are based on an abstract logic 

[152, 153] rather than using a specification expressed in a choreography language. Our work has the 

advantage of using a much simpler and higher levels of abstraction formalism to describe 

choreography which is UML Interaction in the form of sequence diagram. 

Our work relates more closely to the work in [128], in which Nguyen et al. propose a conformance 

testing of an IUT with reference to a choreography specification written using a high-level 

choreography language (Chor) and addresses this issue using a passive testing approach. The analysis 

method in [128] is relevant when observations can be made at the level of the services. However in 

this work, our concern is to validate choreography implementation under partial observability and 

under the hypothesis of asynchronous communication. This work is an extension of the work in [165] 

since this latter gave interesting results in the case of asynchronous unit testing. 
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5 Background: modeling with 

SoaML 
This chapter lays the foundations to understand the contributions of this dissertation. It is 

composed of two sections: the first section offers a glimpse of “the main concepts of SoaML” 

language and gives a few details about the syntax and semantics proposed by the SoaML 

specification. The second section provides an overview of “how to model choreographies using 

sequence diagrams” in SoaML and presents a part of the metamodel elements of the sequence diagram 

and relationships between them. 

5.1 SoaML main concepts 

The Object Management Group (OMG) has recently introduced a standard language for modeling 

SOA-based application called Service oriented architecture Modeling Language (SoaML) [8]. The 

last version (1.0.1) was released in May 2012 (SoaML was released in its first version beta 131 in 

April 2009). The SoaML language is becoming increasingly popular for the modeling of SOA-based 

systems. The proposed language is destined to provide a rigorous specification of service-oriented 

applications in a standardized way to form a foundation for dialog and common understanding in the 

SOA field.  

To support the modeling of SOA concepts, SoaML introduces a new syntax extending existing 

Unified Modeling Language (UML) concepts with additional semantics. The extensions provide the 

required syntax to model the SOA concepts. SoaML is based specifically on the UML 2.1 and 

specifically defines a UML metamodel and a UML profile for the specification and design of services 

within a service-oriented architecture. Metamodels and profiles provide a generic extension 

mechanism for customizing UML models for particular domains and platforms and are for the most 

part defined by respectively using metaclasses and stereotypes.  

The use of UML and specifically UML 2.0 and later versions is very advantageous. In fact, 

contrary to other modeling languages such as BPMN 2.032, which make limited or no distinction 

between classes and instances, UML 2.0 and later versions provide explicit support for class and 

instance modeling to avoid this semantic ambiguity. UML Classes can be used to define specific 

contexts where parts in their internal structure explicitly model references to instances of other classes 

in an assembly. The same classes can be used in an independent way to define other parts in some 

other context. This decoupling is fundamental for reuse, which is an important principle in SOA. 

The SoaML language has many other advantages. In fact, one of the major advantages of the SOA 

approach is that it helps with separating the concerns of “what” needs to get done, referred to as 

“business architecture”, from “how” it gets done, referred to as “systems architecture”, taking into 

account the needs and the concerns of the different stakeholders. These concerns are usually modeled 

using different modeling languages, which makes it difficult to directly understand and know the 

                                            
31 http://www.omg.org/spec/SoaML/1.0/Beta1/, last access on 23 May 2016. 

32 Pools in BPMN can represent both Participants and instances. 

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Domain_model
http://www.omg.org/spec/SoaML/1.0/Beta1/
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relationship between the two levels. SoaML has the advantage of providing a common modeling 

language for both business and system architects in order to bridge the gap between these levels so 

that it enables business and system architects with a better collaboration and a better control on the 

IT systems implementation. The following details the main SoaML concepts used to model the 

aforementioned two design levels.  

5.1.1 Business architecture 

SOA is intended as “a way of organizing and understanding organizations, communities and 

systems to maximize agility, scale and interoperability. SOA, then, is an architectural paradigm for 

defining how people, organizations, and systems provide and use services to achieve results.” [8]. 

Thus, quite naturally SoaML puts the same importance for the specification of the “cooperation” 

between the different parts of the system. Clearly, SoaML, being a UML profile, specifies 

cooperations using UML collaborations33. The SoaML specification defines the stereotypes 

ServicesArchitecture and ServiceContract, both of them extend UML collaboration metaclass as 

shown in Figure 5.1.1. 

A services architecture shows a high-level view of the collaboration between Participants. 

Collaborations are based on the concepts of roles to define how entities are involved in that 

collaboration in order to reach a certain purposes. Participants inside a services architecture 

collaborate together through ServiceContracts. A service contract defines the agreement between the 

provider and the consumers of a service.  

 

Figure 5.1.1: The SoaML UML Profile – Contracts [8]. 

Figure 5.1.2 shows an example of a services architecture. These diagrams have been exported from 

Papyrus34 which is an open source graphical editing tool of the Eclipse platform for UML2 

implemented in our laboratory. It is about the Dealer Network Architecture example, which is 

extracted from the SoaML reference specification [8]. We will use this example to illustrate the main 

concepts of the SoaML language. The Dealer Network Architecture allows defining a collaboration 

schema between dealers, manufacturers, shippers, and escrow agents in order to make business 

                                            
33 A collaboration is a BehaviouredClassifier which may be extended with behavior attached to it. 

34 Available at https://www.eclipse.org/papyrus/, Accessed 25 June 2015 
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arrangements. As shown in the Figure, it is composed of four properties, each one represents a 

Participant role: Dealer, Manufacturer, EscrowAgent, and Shipper. 

 

Figure 5.1.2: Dealer network services architecture. 

The three ellipses inside ServicesArchitecture depicted in Figure 5.1.2 are UML 

CollaborationUses and refer to ServiceContracts. We identify three ServiceContracts: 

ShippingStatus, ShippingRequest, and SecurePurchase. The Servicesarchitecture binds each 

Participant to a given role in a ServiceContract using RoleBinding relations depicted as dashed lines 

labeled with the role names. For example, the Participants Manufacturer and Shipper are respectively 

bound to the ShippingRequest contract by the role bindings sender and shipper.  

A service contract defines the terms, conditions, interfaces and choreography that cooperating 

Participants must agree in order to be a part of that contract. Figure 5.1.3 shows the ShippingRequest 

contract. A contract describes the static structural part of a collaboration. In fact, a contract specifies 

only the Participants roles (at least two roles, e.g., provider, consumer) connected together in order 

to model their service interchange. Figure 5.1.3 shows the internal structure of the ShippingRequest 

contract specifying the two connected roles sender and shipper. 

 

Figure 5.1.3: Shipping request service contract. 

 On the other hand, the behavioral part of a contract can be specified by a UML behavioral 

diagram. The SoaML does not specify which kind of behavioral notation to use, it gives the designer 

the freedom to choose the most appropriate diagram that meets the needs. A behavior may have any 

UML form: interaction (e.g., sequence diagrams which are the most common kind of Interaction 

Diagram), state machines, activity diagrams, timed diagrams, etc.  

In case a ServiceContract is enriched with a UML Behavior, this behavior is then required of any 

Participant who plays a role in these services. Each Participant has to be compatible with the roles it 
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plays in the service contracts. The contract behavior then represents a formal agreements or 

requirements that must be fulfilled exactly by the Participants playing a role in the contract. In this 

thesis, we are interested in exploring and specifying a specific behavior that shows how the messages 

are “choreographed” in the service contract (what flows between who, when, and why). More simply, 

we are interested in the service interactions at a high level of abstraction.  

In UML, interactions are modeled through UML Interaction Diagrams that focus on the observable 

exchange of information between connectable elements [98]. There are two Interaction Diagrams 

suitable for modeling choreographies: sequence diagram and communication diagram that shows 

interactions through a structural view. Since the static structural view is already described in the 

contract, we choose sequence diagrams for specifying choreographies attached to contracts. 

The ShippingRequest contract choreography is specified by the sequence diagram 

ShippingRequestChoreography shown in Figure 5.1.4. Each lifeline represents a contract role, and 

messages denote service operation sendings and receptions which are ordered in time along the 

lifeline axis. The choreography describes details of message exchanges between the sender and 

shipper roles. First, sender requests for shipping giving information about the order. As a response, 

it gets the order shipping response information. And finally, when the shipment ends, shipper sends 

a shipping confirmation to sender giving details about the shipment. 

 

Figure 5.1.4: Shipping request choreography. 

5.1.2 System architecture  

The system architecture provides a description of “how” all the parts will work together to meet 

the business needs. This description includes the definition of specific functions and data exchanged 

between these parts. Consequently, the system architecture is mainly composed of two views: the 

services and the service data views.  

The services view contains definitions of components and services. Components are called 

Participants, which may represent people, organizations, or information system components. 

Participants provide and/or require services through their Ports. A port is a part or feature of a 

Participant that is the interaction point where a service is provided or consumed by a Participant. A 

port where a service is offered may be designated as a Service port and the port where a service is 

consumed may be designated as a Request port. A request port is a "conjugate" port, which means 

that the provided and required interfaces of the port type are inverted (i.e., the port does not implement 

the port type but uses it) [8]. Both Request and Service extend Port (see Figure 5.1.5).  
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A port is defined (i.e., typed) through a service specification, which describes how a Participant 

may interact to provide or use a service. A service can be either simple or bidirectional. A simple 

service is defined through a UML interface and is used to specify one-way interaction. A bi-

directional service is defined through a ServiceInterface, which extends UML class and interface as 

shown at the top left of Figure 5.1.5. A service Interface specifies the provided interface by a 

Participant on a port as well as the interface, if any, expected from the consumer.  

 

Figure 5.1.5: SoaML UML Profile – Services [8]. 

The Participants Dealer, Manufacturer, EscrowAgent, and Shipper are shown in Figure 5.1.6. 

Shipper has a Service port typed with ShippingService, which is a ServiceInterface (see Figure 5.1.7). 

It provides ShippingOrder Interface and requires ScheduleUpdating Interface. Thus, Shipper is 

compatible with its shipper role in the ShippingRequest contract. The manufacturer has a Request 

port typed with the same type [8]. This means that it provides the ScheduleUpdating Interface and 

requires the ShippingOrder Interface. 

 
 

Figure 5.1.6: Dealer Network Participants. 
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Figure 5.1.7: Shipping Request Interfaces. 

As shown in Figure 5.1.7, interfaces give details about services operations or signal receptions. For 

example, SheduleUpdating interface has two UML Receptions35, orderShippingResponse and 

shippingConfimation. 

To define the information exchanged between service consumers and providers, SoaML introduces 

the concept of MessageType, which extends Class, DataType and Signal (see Figure 5.1.8). The 

message type may be used to correlate long-running conversations between services (if isID is equal 

to true). 

 

Figure 5.1.8: SoaML UML Profile - Service Data [8]. 

5.2 Modeling choreographies using sequence diagrams 

In this section, we give an overview of the metamodel architecture of a sequence diagram, which 

is the most common kind of interaction diagram. The sequence diagram is a high-level view of system 

behavior that focuses on the message interchange between different lifelines. Figure 5.2.1 shows an 

example of a choreography containing combined fragment from the Dealer Network Architecture 

example. The choreography shown in Figure 5.2.1 is attached to the SecurePurchase contract. The 

Interaction element corresponds to the frame of the sequence diagram itself. A Lifeline represents a 

Participant in the interaction. In a SoaML model, a lifeline represents a role in the service contract. A 

Message describes a specific kind of communication between lifelines. The element 

OccurrenceSpecification denotes a point in the lifeline where an execution occurs. 

MessageOccurenceSpecification is a specialization of OccurrenceSpecification which represents 

such events such as the sending and receipt of signals or invoking or receipt of operation calls (see 

Figure 5.2.1). Finally, a CombinedFragment is a combining operator that allows to express an 

aggregation of multiple traces36 encompassing complex and concurrent behaviors. It is defined by an 

InteractionOperator (e.g., alt) and corresponding InteractionOperand(s). 

The SecurePurchase choreography contains a loop operator, which defines repetitive behavior and 

                                            
35 A UML Reception is a behavioral feature declaring that this interface is prepared to react to the receipt of a 

signal [98]. 
36 A trace is a sequence of event occurrences [98] 
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an alt operator that defines alternative behaviors (two or more). First, a deposit is made by the 

Purchaser to an EscrowService. Later, a delivery is made and either (alt) accepted or a grievance is 

sent to the EscrowService that forwards it to the Seller. The Seller files a justification. This process 

repeats until (loop) the EscrowService concludes the transaction and either makes the escrow payment 

to the seller (in the case where delivery was completed) or refunds it to the buyer (if delivery was not 

completed). 

 

Figure 5.2.1: Secure purchasing choreography. 

 

 

Figure 5.2.2 shows the relations between the metamodel elements of the sequence diagram 

mentioned in the example.   

 
 

Figure 5.2.2: UML sequence diagram metamodel: a simplified view. 
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As shown in Figure 5.2.3 (which is a part of the metamodel in Figure 5.2.3), 

Interactionfragment represents the most general interaction unit. Each interaction fragment is 

conceptually like an interaction by itself. It generalizes among others the elements Interaction, 

CombinedFragment, OccurrenceSpecification and ExecutionSpecification.  

 

Figure 5.2.3: UML interaction fragment. 

An Interaction is composed of a set of Lifelines, a set of Messages and an ordered set of 

InteractionFragments (see Figure 5.2.4). 

 

Figure 5.2.4: Composition of an Interaction. 

A lifeline may be associated with a set of InteractionFragments as shown in Figure 5.2.5. A lifeline 

is covered by a set of InteractionFragments, each of which covers a set of lifelines (this is the case 

when the InteractionFragment denotes a combined fragment and thus, it covers all lifelines that go 

through it).  

 

Figure 5.2.5: UML occurrences and message ends. 
  

A Message is associated with at most one MessageEnd with the role sendEvent and one 

MessageEnd with the role receiveEvent (see  

Figure 5.2.6). On the other hand, at most two message ends are associated with a Message. A 

MessageOccurrenceSpecification is a kind of MessageEnd and OccurrenceSpecification when it 

denotes a point on the lifeline of a reception or an emission of a message.  

 
Figure 5.2.6: UML occurrences and message ends.   
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Part II: THESIS 

CONTRIBUTIONS 
 

 

 

This part details the contributions of this dissertation, namely the horizontal consistency 

verification of SoaML models, the model-driven generation of executable artifacts from the SoaML 

models and the vertical consistency verification of SOA-based systems.  



 

 

 

 
 

Chapter 1 

 

1 Horizontal consistency 

verification 
 

 

In the previous chapter, we gave an overview of how to model SOA systems using the SoaML 

modeling language. We detailed the SoaML and Interaction metamodels that are required for the 

understanding of this chapter. Herein, we detail our consistency verification approach of the SOA 

system specifications. We first present an overview of the proposed approach for horizontal 

consistency verification. Then we detail the verification rules of horizontal consistency and their 

validation. 

 Horizontal consistency verification approach 

One of the main usage of MDA is to generate code from UML models. Nowadays, the 

specification model is also used for other purposes to cope with the increasing complexity of the 

systems. Models are used for analysis purposes (offline and online analysis), for example, runtime 

models are used for reconfiguration purposes [154], etc. However, given the level of complexity of 

such systems, the specification model itself can easily not be consistent. The Webster’s dictionary 

definition of inconsistency is: “the relation between propositions that cannot be true at the same time 
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or the lack of harmonious uniformity among parts”. In the context of a design model, a specification 

may contain conflicting information about the system, and/or violates predefined constraints. 

Motivation. Talking about consistency leads to a very important question: why do we need to check 

consistency in UML-based models?  

One of the most important motivations for model consistency checking is correctness. Typically, 

consistency problems reveal design problems or misuse of the modeling language (syntactic or 

semantic inconsistency). When those inconsistencies are discovered early in the design phase, it is 

easier and more cost effective to fix than if they were discovered at a later stage. In fact, all the 

constructed artifacts would inherit the initial inconsistencies and it would be more difficult and more 

expensive to correct them in the further stages. Therefore, consistency verification at the design time 

becomes a crucial step before transforming the design model into other forms (code generation, test 

cases derivation, etc.). It has becomes so important that designers have a tool to check the consistency 

of a UML model to find and to fix any problems as early as possible before implementing them.   

Another motivation for model consistency checking is implementability, which usually consists 

of translating a consistent UML model into a programming language, which typically has precise and 

unambiguous notation. In fact, constraints can be more detailed than visual models. 

Another important issue to mention is the increasing difficulty of model consistency verification 

when the specification model involves several viewpoints and a number of contributors with different 

skills. This is the case of SoaML models where we can model different views of the system. As we 

mentioned in the previous chapter, a SoaML-based system specification require the definition of 

different views of the system. These views describe both the business and the system architecture 

levels and allow modeling both structural and behavioral aspects of a SOA-based system. This results 

in separate views of the system model that are intended to be consistent with each other. Without 

consistency analysis, it would be hard to make the model evolve and ensure that these views are 

coherent with each other. 

How the SoaML specification defines the consistency constraints?   

In order to meet the requirements of particular application domains, SoaML provides a profile that 

extends the UML metamodel with stereotypes that allow defining new syntax encapsulating new 

semantic meaning to a specific domain. Consistency constraints are part of the profile definition. In 

fact, a stereotype may define additional constraints to refine its semantics. A constraint on a 

stereotype is interpreted as a constraint on all types to which the stereotype is applied.  In the SoaML 

specification, a constraint attached to a stereotype is defined by means of an informal explanation 

written in natural language and listed in the “Constraints” sub-section inside the section describing 

the stereotype. Other semantic constraints could be extracted from the “Semantics” sub-section.  

The use of natural language to express the constraints has many drawbacks: 

- First, these constraints are not machine-readable and therefore can only be checked 

manually, which can be a hard and time consuming task. This task becomes harder especially 

in the case of complex rules that check the coherence between different views of the model 

specification. Another case where manual consistency checking becomes harder is in the case 

of complex system specification containing a large number of artifacts. In such a case, 

manually checking the model consistency is time-consuming. To deal with this problem, one 

may automate the consistency checking of the SoaML model. Constraints need to be added to 
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the design of elements belonging to the same view, as well as the relationships between 

different views. 

- Second, the constraints are determined by humans. Therefore, they are sometimes ambiguous 

or written is a confusing way. This may lead to misinterpretations and to the improper analysis 

of the models. The challenge here is to carefully analyze these constraints, resolve ambiguity 

and then formalize them. 

- Third, some constraints present some semantic variation points. UML opts sometimes for 

providing intentional degrees of freedom for the interpretation of the metamodel semantics in 

the form of semantic variation points. The goal behind these semantic variation points is to 

provide a metamodel sharing many commonalities and variabilities that one can customize 

for a given application domain.  An example of variation point in the SoaML specification is 

the choice of the behavioral model attached to the service contracts. SoaML gives the users 

the freedom of choosing a behavior among the existing UML behaviors. Then, SoaML 

specifies constraints related to that behavior, which must be compatible with the participating 

service descriptions. The manner in which a behavior attached to a service contract is 

compatible with the participating service descriptions is a semantic variation point that 

depends on the chosen behavior. In fact, a modeler can decide to use a sequence diagram, an 

activity diagram, or another suitable behavioral diagram to model the service interactions. The 

compatibility will depend on the chosen behavior, i.e., checking the consistency between the 

participating services and a sequence diagram will differ from checking the consistency 

between these services and an activity diagram. Moreover, the SoaML specification does not 

provide default semantics or a list of possible variations, nor does it formally constrain the 

semantics that can be plugged into variation points. As a consequence, users can accidentally 

assign a semantics that is inconsistent with the semantics of related concepts. To deal with 

this problem, a semantic variation point must be identified and then fixed either by defining a 

default semantic or by defining some possible semantics [155]. 

These reflections lead us to propose a SoaML framework allowing the verification of the 

consistency of SoaML models. Our goal is to develop a software design environment that automates 

the detection and resolution of design inconsistencies in SoaML design models. Hence, the support 

environment should indicate inconsistencies to the designer in a flexible and indicative way. Our 

approach helps the designer to automatically detect and track inconsistencies and to inform him about 

the precise inconsistency problems in their models, their locations, and likely solutions.  

OCL as a formalism to express metamodel constraints: 

To verify model consistency, there is a need to constrain the design of elements belonging to the 

model on the most appropriate level of abstraction and using the most appropriate formalism. The 

UML infrastructure is defined as a four-layer metamodel architecture: Level M3 defines a language 

for specifying metamodels, level M2 defines the UML metamodel, level M1 consists of UML models 

specified by the M2 metamodel, and level M0 consists of object configurations specified by the 

models at level M1. The UML metamodel M2 level is the most appropriate level of abstraction to 

constrain the model level M1. Indeed, adding constraints to the UML metamodel results in a 

specialized metamodel that specifies a subset of valid UML models.  

We have choose the Object Constraint Language (OCL) [156] as a formalism to express 

metamodel constraints. OCL is a largely used language that allows software developers to write 
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constraints over object models. Section 2.2.1 gives more details about the OCL language and how to 

define an OCL constraint.  

Steps to specify and validate horizontal consistency constraints: 

In order to specify and verify the SoaML constraints, we follow a general approach, which is 

depicted in Figure 1.1.1: 

(1) Specification of the consistency constraints. These constraints are textually stated in the 

specification. We pick up these constraints and we identify for each on the context where it 

will be applied. 

(2) Implementation of consistency constraints. The consistency constraints are formalized in 

terms of OCL constraints and are attached to their associated context identified in the previous 

step. Then these OCL constraints are integrated into a validation framework that extends the 

SoaML profile.  

(3) Validation of consistency constraints. The previously formulated consistency constraints 

need to be syntactically validated. Then the validity of these constraints with respect to the 

semantics and syntax defined by the SoaML specification need to be validated. We need to 

verify that the implemented tool detects incoherencies in the SoaML models.  

 

 

 

Figure 1.1.1: Steps to specify and validate horizontal consistency constraints. 

 Specification of the SoaML consistency constraints  

Like any other language, SoaML language defines its own unique syntax and semantics. SoaML 

defines its new syntax and semantics using a profile, which extend part of the UML concepts. The 

profile defines new elements that extend some UML elements and constraints these elements with 

new constraints.  To be consistent with the SoaML profile, a SoaML model must be consistent with 

the syntax and semantics defined by the SoaML specification.  

As explained in Part I (section 2), syntactic consistency is concerned with the structural well-

formedness of the abstract syntax as specified in the SoaML specification and must be a prerequisite 

to any further consistency checking. In other words, syntax consistency is what makes the model 

readable and therefore, verifiable. One example of the syntactic requirement in UML is that a 

classifier must have a unique fully qualified name. An example of a syntactic constraint imposed by 

SoaML is: “MessageType cannot contain owned operations.”. In this example, MessageType is a new 

concept introduced by the SoaML specification. This concept extends DataType, Class or Signal. In 

case the Message Type instance is a DataType or Class, UML allows to add operations to that 

element, however, this will be syntactically false in a SoaML model.   

While syntax guarantees the well-formedness of the model, semantics is what gives meaning to 

language constructs. An example of semantic constraints in UML is the following: when there is a 

generalization relationship between two classifiers, the classifier at the source of a generalization 

inherits all the target classifier’s structure and behavior. Semantic consistency in SoaML is concerned, 

for example, with the meaning of a stereotype. For example, the “isConjugated property of a 

“Request” must be set to true”. This is because a Request must behave is the same way in which 

Specification of the 
consistency 
constraints 

Implementation of 
the consistency 

constraints 

Validation of the 
consistency 
constraints 
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behaves a UML port whose property isConjugate evaluates to true (this constraint and others are 

detailed in Section 2.2.3). Semanticvb is also concerned with the coherence between the semantics of 

two related views, for example, the coherence between a behavioral diagram attached to a service 

contract and the roles specified in that service contract.  

Syntactic and semantic constraints may concern individual views of the system specification 

(intra-view constraints) or different views of the system specification (inter-view constraints). These 

constraints have been extracted from the SoaML specification document (version 1.0.1) and are 

summarized in Table 1.2-1. We give for each constraint: (1) the constraint identifier that we gave for 

that constraint, (2) the description of the consistency constraint taken from the OMG SoaML 

specification document, and (3) the classification of that constraint according to aforementioned 

criteria, namely Semantic/Syntactic and Intra/Inter-view. For easier reading of the table, each 

constraint type is colored in a different color. 

Table 1.2-1: Summary and classification of SoaML constraints. 

 

Constraint Name 

 

Description 

 

Semantic/ 

Syntactic 

 

Intra/ 

Inter-

view 

 

isActive Agents should always be active.  semantic Intra 

noRealizedUsedInter

face 

A Participant cannot realize or use Interfaces directly; it 

must do so through service ports, which may be Service 

or Request. 

syntactic Inter 

portTypes A Participant port is either a Request port or Service port. syntactic Intra 

requestType The type of a Request must be a ServiceInterface or an 

Interface. 

syntactic Inter 

isConjugatedTrue The isConjugated property of a “Request” must be 

set to true. 

semantic Intra 

serviceType The type of a Service must be a ServiceInterface or an 

Interface. 
 

syntactic Inter 

isConjugatedFalse The direction property of a Service must be incoming. 

 

semantic Intra 

serviceChannelEndT
ypes 

One end of a ServiceChannel must be a Request and the 
other a Service in an architecture. 

semantic Inter 

serviceChannelEnds

Compatible 

The Request and Service connected by a ServiceChannel 

must be compatible. 

semantic Intra 

noOwnedOperations Message Type cannot contain owned operations. 
 

syntactic Intra 

noOwnedBehaviors MessageType cannot contain owned behaviors. 

 

syntactic Intra 

publicAttributes All ownedAttributes of a MessageType must be public. 
 

syntactic Intra 

partsTypesOfService

Interface 

All parts of a ServiceInterface must be typed by the Interfaces 

realized or used by the ServiceInterface. 
syntactic Intra 
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 Implementation of consistency constraints using OCL  

After the identification of the consistency constraints, the next step is to formalize these constraints 

using the OCL language (Prerequisites for OCL language are given in Annex A.1). The fact that the 

SoaML specification provides a profile makes the integration of consistency constraints easier. All 

we need is to identify the constrained element and then attach the constraint to that element as a UML 

Constraint. In our case, we have attached the OCL constraints to the elements the SoaML profile, i.e., 

the stereotypes. In this section, we detail the OCL constraints associated with each constraint 

extracted from the SoaML specification. The constraints are classified according to their types: 

syntactic or semantic constraints, each of which is divided into inter or intra-view constraints. An 

overview of OCL language is given in Annex A.1) to better understand the constraints.  

1.3.1 Syntactic consistency constraints 

In the following, for each constraint, we give the description of some examples of syntactic 

constraints extracted from the SoaML specification. Then we give the corresponding formalization 

using OCL language followed by its explanation. More syntactic constraints, which are also extracted 

from the SoaML specification, are given in Annex A.3.1 Syntactic consistency constraints. 

 Intra-view  

 SoaML constraint: MessageType cannot contain owned behaviors or owned operations. 

MessageTypes represent “pure data” that may be communicated between service consumers and 

providers. SoaML imposes then that MessageTypes cannot have owned behaviors or owned 

ParticipantsRoleCom

patibility 

Each Participant satisfying roles in a 

ServicesArchitecture shall have a port for each role 

binding attached to that Participant. This port shall have 
a type compliant with the type of the role used in the 

ServiceContract. 

 

semantic Inter 

partsTypes The parts of a ServicesArchitecture must be typed by a 
Participant or capability. 

 

syntactic Inter 

RoleType Each service role in a service contract has a type, which 

must be a ServiceInterface or UML Interface or Class 
stereotyped as “Provider” or “Consumer.” 

 

syntactic Inter 

AttachedBehaviorCo
mpatibility 

If a ServiceContract has an attached behavior, this 
behavior should be compatible with the parts of the 

ServiceContract. 

 

semantic Inter 

RoleBindingClientSu
pplierCompatibility 

A part that is bound to a CollaborationUse, whose  
property  “isStrict” evaluates to true, must be compatible 

with the roles they are bound to. A value of false 

indicates the modeler warrants the part is capable of 
playing the role even though the type may not be 

compatible. 

 

semantic Inter 
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operations. We have decided to divide this constraint into two constraints in order to help the designer 

to find the problem as quickly as possible.  

Sub-constraint 1: MessageType cannot contain owned operations. 

Constrained element: MessageType 

OCL constraint: 

context SoaML:: MessageType inv NoOwnedOperation: 

if self.base_Class<>null 

then self.base_Class.ownedOperation->size()=0   

else 
      if self.base_DataType<>null  

      then self.base_DataType.ownedOperation->size()=0 
      else self.base_Signal<>null implies true endif   

endif 

 

This OCL constraint is evaluated in the context of a MessageType. A MessageType could be either a 

DataType or a Class or a Signal. Then, the constraint verifies that there are no owned operations 

(ownedOperation -> size()=0) in the case where the MessageType is a Class (base_Class<>null) or 

a DataType. This condition is true for Signal because a Signal is a specific classifier that cannot have 

any operations.  

Sub-constraint 2: MessageType cannot contain ownedBehaviors. 

Constrained element: MessageType 

OCL constraint : 

context SoaML:: MessageType inv noOwnedBehaviors 

self.base_Class<>null   

implies  

self.base_Class.ownedBehavior->size()=0 

This OCL constraint is evaluated in the context of a MessageType. This is only the case where the 

MessageType is a Class that the user could attach a behavior to that MessageType otherwise, in UML, 

a signal or a DataType cannot have a behavior attached to them. Then the constraint verifies that there 

is no owned behavior (ownedBehavior -> size()=0) only in the case where the MessageType is a class 

(base_Class<>null).  

 Inter-view  

 SoaML constraint: A Participant cannot  realize or use Interfaces directly; it must do so through 

service ports, which may be Service or Request. 

Constrained element: Participant 

Participants realize and use Interfaces only via ports. A Port represents the interaction point for a 

service, where it is provided or consumed. Figure 1.3.1 shows the Participant Invoicer, which 

provides the InvoicingService interface through a Service port.  
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Figure 1.3.1: Invoicer Participant providing the invoicing service [8]. 

OCL constraint: 

context SoaML:: Participant inv NoDirectInterfaceRealization: 

Realization.allInstances()->select(r|r.client->includes(self.base_Class))->size()=0  

and  
Usage.allInstances()->select(r|r.client->includes(self.base_Class))->size()=0 

This OCL constraint is evaluated in the context of a Participant. The constraint look for all the UML 

Realization and Usage instances in the model using allInstances() function, verifies that there are no 

instances (size()=0) which have as client property the Participant itself. 

 SoaML constraint: A Participant port is either a Request port or Service port.  

Constrained element: Participant 

As explained before, “Service” and “Request” stereotypes are the interaction points where services  

are respectively offered or consumed. 

OCL constraint: 

context SoaML:: Participant inv PortType: 

let portsSet: OrderedSet(UML::Port)= self.base_Class.ownedPort()  

in 
   portsSet->size()>0  

   implies  
   portsSet->forAll(p|p.getAppliedStereotypes() ->select(s|s.name='Request' or    s.name='Service')->size()=1)  

 

This OCL constraint is evaluated in the context of a Participant. It computes the set of all Participant 

ports, portsSet, then verifies that each of them has either Service or Request stereotype using a 

select statement for applied stereotypes names. 

 SoaML constraint: The type of a Request must be a ServiceInterface or an Interface. 

We found that this constraint is incomplete. In fact, as explained in the semantics of Participant 

stereotype, a port can also be typed by a Consumer, which “is intended to be used as the Port type of 

a Participant that uses a service”[8]. A Consumer extends both UML Interface (in the case of a non-

composite service contract) and UML Class (in the case of a composite service contract). 

Consequently, a port type of Request can be a class stereotyped as Consumer. This case is not 

included in the constraint proposed by the specification. We choose to add it so that the resulting 

constraint is: “The type of a Request must be a ServiceInterface or an Interface or a Consumer”.  

Constrained element: Request 

OCL constraint: 
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context SoaML:: Request inv RequestType: 

if base_Port.type.oclIsUndefined()then false  

else 
let portType: Type=  base_Port.type  

in 
    portType.getAppliedStereotypes()->select(s|s.name='ServiceInterface' or  s.name='Consumer' )->size()=1           

   or    portType.oclIsTypeOf(Interface) 

endif 

This OCL constraint is evaluated in the context of a Request port. It first of all verifies that the 

service port has a type, computes that type (portType), then verifies that the port type is either a 

UML Interface or is stereotyped by either ServiceInterface or Consumer. 

1.3.2 Semantic consistency constraints 

In the following, we give some examples of semantic constraints extracted from the SoaML 

specification and the corresponding OCL formalization. More syntactic constraints are given in 

Annex A.3.2 Semantic consistency constraints. 

 Intra-view 

 SoaML constraint: The isConjugated property of a “Request” must be set to true. 

Constrained element: Request 

In UML, the port attribute isConjugated specifies the way that the provided and required Interfaces 

are derived from the Port’s Type. A conjugate port indicates that the provided and required interfaces 

of the port type are inverted, creating a port that uses the port type rather than implementing it. In 

SoaML, “if the type of a “Request” is a ServiceInterface, then the Request’s provided Interfaces are 

the Interfaces used by the ServiceInterface while its required Interfaces are those realized by the 

ServiceInterface. If the type of a “Request” is a simple Interface, then the required interface is that 

Interface and the provided interfaces are those interfaces used by the simple interface, in any.” [8]. In 

order to ensure that the request will provide and use the Interfaces in this way, the property 

isConjugated must evaluate to true. 

OCL constraint: 

context SoaML:: Service inv isConjugatedTrue: 

  base_Port.isConjugated 

 

This OCL constraint is evaluated in the context of a Request. It verifies if the property isConjugated 

evaluates to true.  

 SoaML constraint: The Request and Service connected by a ServiceChannel must be 

compatible. 

This rule is explained in the SoaML specification as follows:  

“A Request is compatible with, and may be connected to a Service through a ServiceChannel if:  

1. The Request and Service have the same type, either an Interface or ServiceInterface.  

2. The type of the Service is a specialization or realization of the type of the Request.  

3. The Request and Service respectively have compatible needs and capabilities. This means the 
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Service must provide an Operation for every Operation used through the Request, the Request must 

provide an Operation for every Operation used through the Service, and the protocols for how the 

capabilities are compatible with the Request and Service.  

4. Any of the above are true for a subset of a ServiceInterface as defined by a port on that service 

interface.” [8]. 

Constrained element: ServiceChannel 

For a service and a request to be compatible, either (1) they have the same type or (2) one is the 

specialization or realization of the other or  (3) they have compatible needs and capabilities. For the 

third condition, we only evaluate that Service (resp. Request) provides an Operation for every 

Operation used by the Request (resp. Service). In our approach, concerning protocol compatibility, 

we choose to not specify a protocol at the Service and Request level but rather a common protocol 

specified at the contract level. In fact, SoaML distinguishes between two approaches for defining 

services. In the first approach, each service has a service description that defines the purpose of the 

service and any interaction or communication protocol for how to properly use and provide a service. 

The service description then defines the complete interface for a service from its own perspective, 

independently of any consumer. In the second approach, there is only one common agreement defined 

in one place between a consumer request and provider service that is captured in a common service 

contract. This common agreement constrains both the consumer’s request service interface and the 

provider’s service interface. The specification gives the user the choice between these two design 

approaches. In our case, we choose a contract-based approach. This means that there is only one 

protocol that is provided by the service contract. Consequently, we are not concerned with verifying 

the protocols for how the capabilities are compatible with the Request and Service. 

OCL constraint: 

context SoaML:: Participant inv PortsCompatibility: 
let  

 requestTypeClassifier: UML::Classifier=self.base_Connector.end->select(p|p.oclIsTypeOf(UML::Port) and 

oclIsTypeOf(SoaML::Request)) -> select(p|p.oclAsType(UML::Port).type.oclIsTypeOf(Classifier))  
->first().oclAsType(UML::Port).type.oclAsType(Classifier), 
 serviceTypeClassifier: UML::Classifier=self.base_Connector.end->select(p|p.oclIsTypeOf(UML::Port) and 

oclIsTypeOf(SoaML::Service)) ->select(p|p.oclAsType(UML::Port).type.oclIsTypeOf(Classifier)) 
->first().oclAsType(UML::Port).type.oclAsType(Classifier)  

in  
not requestTypeClassifier.oclIsUndefined()--Verify if both the request and service are typed 

and  
not serviceTypeClassifier.oclIsUndefined()  

implies  
requestTypeClassifier=serviceTypeClassifier --1. Verify if Request and Service have the same type. 

or 
 serviceTypeClassifier.Generalization.general->closure(general)-> includes(requestTypeClassifier) --2. Verify if type of the 
Service is realization of the type of the Request.   

or 
requestTypeClassifier.allUsedInterfaces()->includes(serviceTypeClassifier) - -2. Verify if type of the Service is a specialization 
of the type of the Request.   

or 
--3. Verify if Service provides an Operation for every Operation used through the Request and the Request provides an Operation 

for every Operation used through the Service  
(requestTypeClassifier.allUsedInterfaces().getAllOperations() -> 
includesAll(serviceTypeClassifier.allRealizedInterfaces().getAllOperations() )  

and  
requestTypeClassifier.allRealizedInterfaces().getAllOperations()-> 
includesAll(serviceTypeClassifier.allUsedInterfaces().getAllOperations()) 
) 
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This OCL constraint is evaluated in the context of a ServiceChannel. It first computes the type of 

request port, requestTypeClassifier, which is a UML Classifier. It also computes the type of service 

port, serviceTypeClassifier, which is also a UML Classifier. Then, if these two variables are not null, 

which means that there the port associated with this connector (the ServiceChannel) are typed, then 

the constraint verifies if (1) the serviceTypeClassifier is equal to  the requestTypeClassifier; (2) the 

serviceTypeClassifier is a generalization of the requestTypeClassifier or the latter have a usage 

dependency with the serviceTypeClassifier; and (3) the operations used through the 

requestTypeClassifier includes all the operation realized by the serviceTypeClassifier. 

 Inter-view 

 SoaML constraint: If a ServiceContract has an attached behavior, this behavior should be 

compatible with the parts of the ServiceContract. 

Constrained element: ServiceContract 

A ServiceContract can have a UML behavior attached to it to refine the service interactions. This 

behavior shows how the Participants work together within the context of the service typing the role 

defined in the ServiceContract. As described by the constraint, when attaching a behavioral diagram 

to the contract definition, it is mandatory to verify the compatibility of this behavior with the service 

description.  

In SoaML, verifying the compatibility between the behavior and the system structure is a semantic 

variation point depending on the chosen behavior. As described in section 5.1.1, choreographies are 

modeled using UML Interactions in the form of UML SDs. Then, we verify the signature of each 

message received by each lifeline. We are particularly verifying if all signatures of asynchronous 

messages match operations or signals of the associated definitions of services. 

OCL constraint : 

context SoaML:: ServiceContract inv AttachedBehaviorCompatibility 

self.base_Collaboration.ownedBehavior->size()>0  

implies  
(self.base_Collaboration.ownedBehavior->asOrderedSet()->first().oclIsTypeOf(UML::Interaction)  

implies  

let  
lifelines=self.base_Collaboration.ownedBehavior-> asOrderedSet()-> 

first().oclAsType(UML::Interaction).lifeline, 

messages= self.base_Collaboration.ownedBehavior-> asOrderedSet()-> 

first().oclAsType(UML::Interaction).message, 
messOccuSpec=self.base_Collaboration.ownedBehavior->asOrderedSet()-> 

first().oclAsType(UML::Interaction).fragment  

->select(f|f.oclIsTypeOf(MessageOccurrenceSpecification))  

in  
lifelines->size()>0  

implies lifelines->forAll(l|  

self.base_Collaboration.role -> includes(l.oclAsType(UML::Lifeline).represents))  

and  
--the message signature must be one of the operations or signal of the corresponding service 

declaration 
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messages->size()>0  

implies messages->forAll(m| 

m.signature.oclIsTypeOf(Operation)  

implies  
m.receiveEvent.oclAsType(MessageOccurrenceSpecification).covered-> flatten() 

->asOrderedSet() 

->first().oclAsType(Lifeline).represents.type.oclAsType(Classifier).ownedElement 
->select(oclIsTypeOf(Operation)) -> includes(m.signature.oclAsType(Operation))  

and  
m.signature.oclIsTypeOf(Signal)  

implies  
m.sendEvent->asOrderedSet()->first().oclAsType(MessageOccurrenceSpecification).covered 

->asOrderedSet()->first().oclAsType(Sequence) -> asOrderedSet()-> 
first().oclAsType(Lifeline).represents.type.oclAsType(Classifier).ownedElement 

                      ->select(oclIsTypeOf(Signal)) ->includes(m.signature.oclAsType(Signal))) ) 

This constraint is evaluated in the context of a contract. It starts by computing the set of lifelines and 

messages in the sequence diagram attached to it. It then verifies if roles in the contract include all 

lifelines representations. Finally, it checks if all messages signature are included into owned 

operations or receptions of the associated covered representation (which is a role type). We 

distinguish two cases: the first is the case where the message signature is an Operation and the second 

is the case where the message signature is a Signal. In the first case, we verify that the operation of 

the service definition, which is the type of the role represented by the lifeline that covers the receive 

event (which is a MessageOccurrenceSpecification) of the message includes this operation (the message 

signature). In the second case where the message signature is a signal, we check that the type of role 

represented by the lifeline that covers the send event of the message has this signal as ownedElement.   

1.3.3  SoaML constraints summary 

Table 1.3-1 summarizes the SoaML constraints. We give for each constraint: (1) the name, (2) the 

constrained element, which is the SoaML stereotype to which the constraint is applied, and (3) the 

error message displayed to the user when the constraint is violated.  

 

Table 1.3-1: Summary of SoaML constraints and associated error messages. 

 

Constraint Name 

 

Constrained 

Element 

 

Error Message 

isActive Agent Agent must be active. 

noRealizedUsedInter

face 

Participant Participant cannot realize or use Interfaces directly. 

portTypes Participant Port must be a Request or a Service. 

requestType Request  The type of a Request must be a ServiceInterface or an 
Interface 

isConjugatedTrue Request The isConjugated property of a “Request” must be set to true. 

serviceType Service The type of a Service must be a ServiceInterface or an 

Interface. 
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isConjugatedFalse Service The isConjugated property of a “Service” must be set to 

false. 

serviceChannelEndT

ypes 

ServiceChannel One end of a ServiceChannel must be a Request and the other 

a Service. 

serviceChannelEnds

Compatible 

ServiceChannel The Request and Service connected by a ServiceChannel 

must be compatible. 

noOwnedOperations MessageType MessageType cannot contain ownedOperation 

noOwnedBehaviors MessageType MessageType cannot contain owned Behaviors. 

publicAttributes MessageType All ownedAttributes must be Public. 

partsTypesOfService

Interface 

ServiceInterface A part must be typed by the Interfaces realized or used by the 

ServiceInterface 

ParticipantsRoleCom
patibility 

ServicesArchite
cture 

Each Participant satisfying roles in a ServicesArchitecture 
shall have a port for each role binding attached to that 

Participant. 

partsTypes ServicesArchite

cture 

The parts of a ServicesArchitecture must be typed by a 

Participant or capability 

RoleType ServiceContract Role type of ServiceContract must be a ServiceInterface or 

UML Interface or Class stereotyped as Provider or 

Consumer. 

AttachedBehaviorCo
mpatibility 

ServiceContract Attached behavior should be compatible with the parts of the 
ServiceContract 

RoleBindingClientSu

pplierCompatibility 

CollaborationUs

e  

The parts must be compatible with the roles they are bound 

to. 

 
 

 Consistency constraints integration in the SoaML profile 

The OCL constraints are implemented as UML Constraints. A UML Constraint represents certain 

conditions, restrictions or assertions that must be satisfied by any valid realization of the model 

containing the Constraint. It can be attached to one or more constrainedElements to enrich it with 

additional information. A UML Constraint is usually specified by a Boolean expression which must 

evaluate to a true or false. For a model, to be a correctly designed, all the constraints must be satisfied 

(i.e. they must evaluate to true). In UML, several languages can be used to express constraints, such 

as OCL, Java or natural language. We have already expressed these constraints in OCL. All we need 

now is to associate each OCL expression with its constrainedElement (i.e., a SoaML stereotype). In 

order to do this, the constraint string written in OCL language is placed in a note symbol (same as 

used for comments) and attached to the constrained elements by a dashed line as shown in Figure 

1.4.1. A note symbol is shown as a rectangle containing the body of the constraint with the upper 

right corner bent. Figure 1.4.1 is a screenshot of the Agent stereotype and the OCL constraint attached 

to it.   
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Figure 1.4.1: Agent and Participants stereotypes and their associated OCL constraints. 

 

As previously mentioned, we have specified an error message for each constraint. This error message will 

be displayed when a constraint is violated in order to provide the user with a helpful indication of the type of 

the error. Papyrus supports a UML profile that enables a developer to refine how constraints are violated. This 

profile is called Domain Specific Modeling Language (DSML37), since it is often used in the context of profiles 

that adds domain specific concepts to UML. We have used the DSML profile to refine our constraints with the 

following properties: 

 Mode: Defines if the validation of the constraint is done in “batch” or “live” mode. We have selected the 

“batch” mode for all the constraints. This will avoid displaying errors unnecessarily. 

 Severity: Defines the severity of the constraint violation. It can be one of following alternatives: 

INFORMATION, WARNING or ERROR. In our case, we have selected ERROR as severity for all the 

constraints. 

 Message: Defines the message that will be displayed if the constraint is violated. 

 Description: Provides a description of the constraint. 

 Enabled by default: Defined if this constraint should be enabled by default or not. All the constraints that 

we have specified are enabled by default. 

These properties are the properties of the stereotype ValidationRule (Figure 1.4.1) applied to a UML 

Constraint and are shown in Figure 1.4.2. 

 

Figure 1.4.2: Specification of constraint properties using the DSML profile. 

 

 Validation    

After implementing the OCL constraints, the next step is to validate them. To do that, we followed 

a validation method divided into three steps. Firstly, we have validated the syntax of the OCL 

constraints using the Papyrus validation function. Secondly, we have done a functional validation of 

the constraints through fault injection. Thirdly, we enforced the functional validation by testing with 

                                            
37 Available at https://wiki.eclipse.org/Papyrus/UserGuide/Profile_Constraints. 
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real users. Each of these steps is described in detail in the following subsections.  

1.5.1 Syntactic validation 

Syntactic validation is our first step to validate the OCL constraints. As we mentioned before, we 

use Papyrus to edit the constraints and to verify their syntactic correctness. Papyrus provides an 

automatic validation editor, which allows us to check the correctness of a constraint when editing it. 

Figure 1.5.1  presents two examples of OCL text entry: at the right of the figure a valid OCL constraint 

and at the left a non-valid one. A text syntactically invalid is automatically highlighted in red. Figure 

1.5.2 shows an example of an error marker that is shown for a non-valid constraint. We resolved all 

the syntactic inconsistencies with the help of these error messages and we consequently verified the 

syntactic correctness of all the OCL constraints. 

  

    
 

Figure 1.5.1: Syntactic validation of OCL constraints. 

 

 

Figure 1.5.2: Papyrus syntactic validation. 

1.5.2 Functional validation 

After the validation of the syntax of the OCL constraints, we proceed with their validation from a 

functional perspective. The goal of this validation step is to ensure that the tool is able to detect the 

violation of the specified OCL constraints at the model level (M1).  

Each constraint has been validated by means of simple models where we inject the associated 

inconsistencies(s) one by one and we verified the detection of each constraint by the tool. We 

specifically verified that the error message associated with the injected fault appears in the concerned 

element in the model.  
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To start automatic validation, users should use the validation menu shown in Figure 1.5.3. This 

menu appears when clicking the right mouse button on the model and results in applying the 

constraints on the model elements.  

 

Figure 1.5.3: Validate model menu. 

In the following, we give several examples of the injected inconsistencies and of how we 

verified that the tool detects these inconsistencies.  

The first example of the injected inconsistencies is a syntactic one that we introduced into a participant 

instance to detect the violation of the following constraint: “A Participant cannot realize or use 

Interfaces directly; it must do so through service ports, which may be Service or Request.”. As shown 

in the left of Figure 1.5.4, we violated this constraint by adding a UML Realization dependency 

between a Participant instance and a service definition (i.e., a ServiceInterface in that case). When 

validating the model, an error message appears as intended showing the error message that we have 

specified. We repeat the same test with a Usage dependency and with a simple interface for the service 

definition.  

We show another example of syntactic inconsistencies in the right of Figure 1.5.4. It is about the 

following constraint which applies to MessageType stereotype: “Message Type cannot contain 

owned operations”. To verify that the tool detects the violation of this constraint, we added a UML 

operation to a MessageType instance. As shown in the figure, the intended error message appears. 

Similarly, we add a behavioral model to verify the detection of the violation of another constraint that 

applies to this stereotype (the constraint is the following: “Message Type cannot contain owned 

behaviors”). 
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Figure 1.5.4: Examples of error messages displayed at the model level. 

In addition to the diagram windows, the error messages also appear in the “Model Validation” 

window. Figure 1.5.5 shows the different locations of the error messages in the model diagram and 

model validation windows.  

 

 

Figure 1.5.5: Locations of Error messages in the model diagram and model validation windows. 

The Model Validation window shows the element of concern (Figure 1.5.6), the path of that element 

and the type of the problem. This information would help the user to find the concerned element and 

resolve the inconsistency problems in the model.  

 

Figure 1.5.6: Error messages screenshot. 

Figure 1.5.7 shows an example of an error message associated with a semantic constraint (i.e., 

“AttachedBehaviorCompatibility”). 

 

Figure 1.5.7: Error message for attached behavior to ServiceContract. 

1.5.3 Functional validation with real users 

As we explained before, the purpose of our proposal to formalize and automate the validation of 

SoaML models is to help SoaML designers to specify correct model and find inconsistencies rapidly. 

To check if we had reached our goal, we need to test our verification tool with real users. To do that, 

we need first to provide a SoaML editor. We have implemented the SoaML editor upon Papyrus, 
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which offers facilities to support UML profiles. More details about the SoaML Papyrus editor are 

given in annex A.2. The implementation is available at: 

http://download.eclipse.org/modeling/mdt/papyrus/updates/nightly/mars/ 

Table 1.5-1 shows the results of the experiments with SoaML users. We experienced with 10 users 

who already know SoaML modeling language and we give them the  constraints table. After reading 

the table, each user had 12 experiments to do. Four SoaML models are given to him/her. There were 

three experiments to do with each model. In the first experiment, we injected one inconsistency then 

we asked the user to correct the inconsistency in the model first without seeing the error messages 

and then after seeing them. In the second experiment we injected 5 inconsistencies and in the third, 

we injected 10 inconsistencies in the model and we asked the same thing as in the first experiment. 

We stop the experiment after 5, 10 and 20 minutes for respectively 1, 5 and 10 injected inconsistencies 

in the model. The inconsistencies are all different from each other. 

 

 

 

 

 

 

 

Table 1.5-1: experimental results with users. 

 

System specification 

 

SCs 

 

Msgs 

 

Ps 

 

Ss 

Injected 

inconsis

tencies 

Nbr 

Adjusted inconsistencies 

Time Without EMs With EMs 

Avg  % 

 

Avg % 

Model Game 1 11 3 3 1 

5 

10 

5 

10 

20 

0.7 

2.2 

4.9 

70 

44 

49 

1 

4.5 

9.9 

100 

90 

99 

Yogurt production 3 7 5 8 1 

5 

10 

5 

10 

20 

0.6 

2 

5.1 

60 

40 

51 

1 

4.1 

9.3 

100 

82 

93 

Dealer Network 

Architecture 

5 27 4 11 1 

5 

10 

5 

10 

20 

0.2 

2.6 

3 

20 

52 

30 

0.9 

4.2 

7.3 

90 

84 

73 
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Travel management 

system 

11 44 11 32 1 

5 

10 

5 

10 

20 

0.3 

2.1 

3.2 

30 

42 

32 

0.8 

3.9 

9.1 

80 

78 

91 
Time is measured in minutes. 
SC: ServiceContract number, Msgs: Messages number, Ps: Participants number, Ss: Service definitions, EM: error 

message, Nbr: Number. 

Avg: is the number of manually detected inconsistencies in average. For example, in the first experiment, which 

corresponds to the first line in the table, 0.2 over 1 inconsistencies  is detected per user in average. This means that only 

two out of the ten users detected the injected fault. In the second line, 1.6 over 5 inconsistencies are detected per user in 

average. 

%: is the percentage of detected inconsistencies per user, which is calculated by dividing the “Avg” of detected 

inconsistencies by the  number of inconsistencies in the model, multiplied by 100. 

What we can deduce from the table is that the more the specification is complex, the more it becomes 

difficult to retrieve the inconsistencies in the model and to correct them (with or without error 

messages). This result is clearer in the histogram shown in Figure 1.5.8, which shows the number of 

the detected inconsistencies in experiments with (1) the Model Game model, (2) the Yogurt 

production model, (3) the Dealer Network Architecture, (4) the Travel management system and 

finally (6) the average detection of the inconsistencies in the models in all the experiments.  

 

  

 

 Blue: without the verification tool (i.e., without EM) 
 Red: with the verification tool 

1: Model Game, 2: Yogurt production, 3: Dealer Network Architecture 

4: Travel management system, 6: Average detection of the inconsistencies in all expériments. 

Figure 1.5.8: Detected inconsistencies with and without the verification tool. 

Now, if we compare the results with and without the error messages, we found that the error messages 
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help a lot to locate the inconsistencies and to correct them. There is a clear difference between the 

number of eliminated inconsistencies with the verification tool (after reading the error messages) and 

without it. The number of eliminated inconsistencies with the verifcation tool is double what it is 

without. During the same periods of time (i.e., 5, 10 and 20 minutes), users correct twice as many 

inconsistencies with the help of error message than they would correct without error messages. This 

indicates that the automatic consistency checking of the model saves time and effort for the SoaML 

designers.  

 Conclusion 

In this chapter, we have targeted the problem of inconsistency in service-oriented application 

models. Software models are the primary artifacts of the development process in MDE-based 

approaches. Consequently, their correctness is essential to ensure the quality of the final application. 

In particular, SOA system models comprise several views describing both business and the system 

architecture levels and allowing for modeling both the structural and the behavioral aspects of a SOA-

based system. These views are intended to be consistent with each other, otherwise, inconsistencies 

in the system models would result in other problems in the further development stages where it would 

be more difficult and more expensive to correct them. 

To tackle the problem of model inconsistencies, we have provided a novel approach based on Model-

Driven Development. Our approach is compliant with the OMG standard modeling language for 

service-oriented architecture, SoaML. It is about a horizontal verification of SoaML models. The 

validation is performed in a static way and ensures both syntactic and semantic conformance of 

service-oriented application models according to the SoaML standard. The constraint rules are 

described in the SoaML specification in natural language, which always result in ambiguities. We 

have proposed to formalize these constraints using OCL language, which allows writing unambiguous 

constraints that remain easy to read and write for system modelers.    

Our approach is fully implemented in a free open-source tool, Papyrus. We have implemented a 

framework for the design and verification of service-oriented applications compliant with SoaML. 

We implemented our consistency verification approach as a set of plugins on top of the Papyrus 

Eclipse-based modeling environment. These plugins are already integrated into Papyrus project and 

can be found in the Papyrus nightly build. To validate the tool and to make sure that it detects 

inconsistencies in SoaML models, we have tested our tool with well-known and large-scale case 

studies and have experimented it with real users. 



 

   

 
 

 

Chapter 2 
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 In the previous chapter, we described our solution to verify the consistency of the SOA system 

specification, a very important step to reduce errors before transforming the specification into 

executable artifacts. SoaML is a general modeling language that can be mapped to various 

implementation formalisms like Web services, OSGi and CORBA. In this chapter, we present the 

transformation rules of the SoaML specification into executable Web services. We choose the Web 

service as an implementation technology because it is a promising technology that offers high 

flexibility thanks to orchestration and choreography mechanisms offered by Web service artifacts 

like WS-BPEL and WS-CDL. We then detail the transformation from SoaML specification models 

into executable Web service artifacts. First, we give an overview of our transformation approach. 

Second, we present the transformation of both structural and behavioral models that specify the 

services choreographies. We give some background information needed for the comprehension of 

the transformation of the behavioral models. 
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 Transformation overview  

Figure 2.1.1 shows an overview of our transformation approach. SoaML model elements are 

depicted at the top of the figure. As explained in the previous chapter, SoaML allows a system 

designer to specify both business and IT architectures. The IT architecture is described through 

services and participants definition. The Business part can be defined using a services architecture 

that contains one or more services contracts with behavioral models attached to them. Each 

behavioral model specifies a services choreography modelled using a UML Interaction in the form 

of sequence diagram. In our transformation, Participants and service interfaces are mapped into 

functional services based on Web service technology. As shown in the Figure, each participant is 

mapped into a Web project and each choreography is mapped into an executable orchestration.  

 

Figure 2.1.1: Transformation approach. 

 Identified issues for the transformation 

2.2.1 Service reuse 

In SOA, a service is often stateless and autonomous (independent from a specific business role) 

so that it can be reused in different choreographies. This is one of the main principles in the SOA 

architecture that leads to a major benefit, which is the increase of system flexibility. The SoaML 

modeling language follows this SOA principle by allowing the system designer to specify services 

choreographies while preserving the stateliness of the services specification. In fact, in SoaML, a 

service choreography is designed using a contract that defines roles, each one representing a service. 

Service definition is independent of their roles and consequently, the defined services could play 

other roles in other contracts. The service implementations specified through the participant concept 

are also independent of the possible choreographies the service would be taking part in. This is 

because the participant provides and consumes the services only through their definitions.   
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When transforming the SOA system specification, it is very important to be aware of that principle 

and to preserve it at design time. We were inspired by this principle in our transformation approach. 

In fact, our goal was to maintain the stateliness of the services and to separate the choreography 

logic from the services implementations. For that reason, we choose to generate stateless web 

services based only on the service definitions and independently from the choreographies, which 

will be transformed into separate orchestrators implementing the choreography logic.   

2.2.2 Decentralized versus centralized composition 

As explained in chapter Part I.3, there are two approaches to transform choreographies into 

orchestrations: decentralized and centralized composition approaches. The first is to generate 

decentralized orchestrations, one for each participant, while the second is to generate a centralized 

orchestration that controls the whole choreography.  In one hand, the decentralized approach has 

the advantages of distributed systems. In particular, distributing the data decreases network traffic 

and thus transfer time and distributing the control improves concurrency and enhances scalability. 

However, even small changes in the process flow result in big changes to all the different processes 

[97]. On the other hand, the centralized approach has the advantages of centralized systems. In 

particular, this centralized view leads to relatively straightforward monitoring and management of 

process executions. The main advantage of the centralized approach is revealed in fault handling 

and recovery, and strategies to mitigate business constraint violation, which become easier thanks 

to the centralized view. However, the centralized approach has scalability limitation, since it is 

based on a centralized coordinator, which can be a potential performance bottleneck and single 

point of failure [97]. It may also decrease scalability and cause unnecessary network traffic and 

performance degradation, which may overall reduce performance when the number of services to 

be orchestrated gets larger. Selecting a useful location of the central engine could be a solution to 

reduce the effect of additional traffic.  

In our transformation approach, we choose to implement the choreography logic into a 

centralized orchestrator. The orchestrator would act as an intermediary between the calling and 

called services. It would be responsible for the reception and sending of messages from and to the 

various participants, based on the specified choreography, while ensuring the correct ordering of 

message exchange. We choose the centralized approach because it makes it easy to analyze and 

control the services choices contrarily to decentralized orchestrations, which introduce various 

issues as a result of the distribution and partitioning of responsibilities between services in the 

choreography [96]. Resulting orchestrations need to be synchronized to follow the choreography 

logic [157]. For example, in the case of a non-local choice [112] covering more than one 

participant, each participant must be aware of each decision made by the others and must follow 

the same choice to be coherent with that choice.  Figure 2.2.1 shows an example of a global choice. 

There are two alternative choices, either A will invoke op1 of B or C will invoke op3 of A. To be 

sure that only one alternative choice will be executed A, and C must have a synchronization 

mechanism. This is not trivial in decentralized approach and may need additional synchronization 

messages and may consequentially cause unnecessary delays. 
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Figure 2.2.1 : Global choice synchronization problem. 

For the scalability problem, thanks to the way SoaML specifies the system behavior (i.e., 

SoaML decomposes the system behavior into independent parts, each one specifying a part of the 

entire behavior as a choreography), even with a centralized approach we still benefit from the 

advantages of the distributed approach. This is because the behavior specification of a SOA system 

is composed of many choreographies whose granularity is defined by the system designer. Each 

choreography describes a part of the system behavior and will be transformed into an orchestration. 

Then, the result of the transformation of the whole system behavior specification will be a set of 

decentralized orchestrations, each implementing part of the whole system behavior. This reduces 

the scalability problem caused by the use of the centralized approach. 

2.2.3 The need of automatic transformation 

 When generating executable code from the high-level model, one important issue to take into 

consideration is the readability of generated code. In fact, users may need to add additional 

information to the generated BPEL code (e.g., to add conditions on data). Therefore, it is important 

that the generated BPEL code is intuitive and maintainable. Otherwise, it will be difficult for the 

users to extend or customize the generated BPEL code.  

Our transformation is based on Model Driven Engineering (MDE) technologies. It is about 

transforming a platform-independent model into a system designed to run on top of a specific 

platform. Once validated, the automatic generation guarantees the conformity of the code with the 

initial platform independent model. 

The transformation is performed using the Query/View/Transformation operational (QVTo) 

language [158], which is an OMG standard language for specifying model transformations in the 

context of MDA. We define rules to implement the mapping between source model elements into 

target model elements and helpers to perform computations. 

As shown in Figure 2.2.2, three Web Services languages have been targeted: (1) The XML 

schema definition (XSD) for defining service messages, (2) the Web Service Description 

Language (WSDL) for defining service interfaces and (3) the WS-BPEL language for defining 

service choreographies. Each UML Interaction is transformed into a centralized orchestration 

where services interactions can be seen as communications through a business partner 

(orchestrator). We choose WS-BPEL as a target language to execute orchestration since it is an 

OASIS standard and because it allows the simple and fast implementation of both synchronous 

and asynchronous processes. In addition, BPEL is strongly supported by tools thanks to its rich set 

of primitive activities and control structures. BPEL is widely supported by commercial vendors 

and open-source communities. Three niche players, namely IBM, Oracle and PNMsoft, in the 2015 
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Gartner Magic Quadrant for Intelligent Business Process Management Suites38, have supports for 

BPEL processes. 

 

Figure 2.2.2: Transformation from SoaML to Web Services artifacts using QVTo. 

The generated BPEL processes were deployed using the Apache ODE. Apache ODE was chosen 

as the Execution Engine because it is compliant with WS-BPEL and offers mature hot-deployment. 

For the structural part of the model, the generated web projects have been deployed in different 

Apache Tomcat server. 

 Transformation of structural models 

In SoaML, a services architecture is defined to provide a context for exploring the participants 

and how they are connected to accomplish a result. Each participant offers or consumes services 

through ports. In our transformation, each participant is mapped into a Web project. First, a WSDL 

file is generated from the participant definition in the SoaML model. Then, we use Apache CXF39 

to generate the implementation of each realized or used service. A client implementation is 

generated for each used interface and a Java Bean Skeleton is generated for the realized interfaces. 

The services implementations should then be completed by the application developer. 

In this part of the work, we detail the mapping of a Participant definition into a WSDL file. This 

mapping is shown at the top of Figure 2.3.1 (R1). Mapping rules are depicted as arrows linking 

the SoaML concepts at the left of the figure into WSDL concepts at the right. Each mapping 

corresponds to a mapping function in the QVTo code from SoaML source model element(s) to one 

or more element(s) in the WSDL target model. The QVTo code is given in ANNEX C. First, the 

rule R1 is applied for each participant. Each port belonging to a Participant has a type (the port 

type must be either ServiceInterface or Interface). This type is mapped into a WSDL Service of 

                                            
38 Available at http://www.pega.com/insights/resources/2015-gartner-magic-quadrant-intelligent-business-process-

management-suites\#sthash.xb8Kg9st.dpuf, Accessed 1 October 2015 
39 http://cxf.apache.org/ 
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the same name (see R2 in Figure 2.3.1) inside the WSDL definition. In case the type is a 

ServiceInterface, the realized interface is mapped to a WSDL port that contains a binding 

associated with a WSDL portType using the mapping rule R3 in Figure 2.3.1. For each portType, 

there must be at least one WSDL binding with type name equal to the portType name. 

  

 

Figure 2.3.1: Mapping between definitions of services and WS Artifacts. 

Each interface operation is transformed into a WSDL operation in the portType with an input 

and output message. In fact, the message concept describes the data being exchanged between the 

web service providers and the consumers whether it is an input or an output. An input message is 

generated only if there is an operation parameter with a direction property set to in or inout (R5 in 

Figure 2.3.2). Whereas, an output message is generated only if there is an operation parameter with 

a direction property set to out or inout (R6 in Figure 2.3.2). Then, each operation parameter is 

mapped into a part in the already generated messages. Each part has an element. In case the 

operation parameter type is a complex type, the element will have a reference to that Complex 

type. In fact, complex data types, namely DataTypes, Classes and signals, are mapped into XSD 

complex types using the mapping rule R7 as shown in Figure 2.3.2. In case the operation parameter 

type is a simple type, this parameter will be mapped to an element containing a ComplexType with 

one element that has the same type as the operation parameter type.  
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Figure 2.3.2: Mapping of operations and parameters. 

Figure 2.3.3 shows the result of the mapping of the ShippingService, which is a ServiceInterface 

typing the Shipper Participant (this example is taken from the Dealer Network Architecture case 

study). As shown in the figure at right, the ShippingService is mapped into a WSDL Service of the 

same name, ShippingService. Only the realized interface, which is the ShippingOrder Interface, is 

mapped to a WSDL port, called ShippingOrderPort, that contains a binding associated with a 

WSDL portType. Each interface operation is transformed into a WSDL operation in the 

ShippingOrderPortType with an input and output message. 

 

          
 

 

Figure 2.3.3: Mapping example of a structural model. 

 

 Transformation of services choreographies 

In the previous section, we exposed mapping rules from structural elements of SoaML models 

to Web service artifacts. In this section, we are interested in the mapping of behavioral models. We 

will detail the mapping from the choreographies designed in the form of sequence diagrams into 

<Service name=”ShippingService”> 
<Port name=”ShippingOrderPort” Binding=”tns:ShippingOrderBinding”>  

<address location=””/> 

</Port> 
</Service> 
<PortTypes name=”ShippingOrderPortType”> 

<Operation name=”orderShippingResponse”> 

 <Input message=”tns:orderShippingRequestInput”/> 
<Output message=”tns:orderShippingRequestOutput”/> 

</Operation> 
</PortTypes> 

 



Chapter 2: Model-driven generation of 
executable artifacts from SoaML models 

 98 

 

 

WS-BPEL processes. The major challenge of this work consists in transforming the choreography 

logic into an orchestration taking into account the asynchronous aspect of the service’s 

communications. Asynchronous communication architecture allows the sender to not be blocked 

waiting for a reply but to continue processing as soon as the message is sent. Indeed, for the 

development of long running processes, asynchronous communications have proven to be the best 

pattern since participants may take part in many contracts at the same time and blocking service 

calls may impact their availability [8]. Our solution is based on the asynchronous interaction pattern 

and takes into consideration several problems resulting from this pattern. This is a challenging work 

because the orchestrator must be able to handle requests from concurrent and distributed services. 

It must particularly take into consideration the concurrency between the communications. 

For the transformation, we make a distinction between basic choreographies and structured ones 

for which rules are given in section 2.4.1 and 2.4.2 respectively. A basic choreography refers to a 

UML sequence diagram that describes message exchanges without combined fragments and a 

structured choreography refers to a sequence diagram that contains combined fragments 

expressing multiple execution choices (alt, opt or loop fragments). We will later explain the 

problem resulting from the concurrency problem in the context of asynchronous communications. 

This kind of problem needs more sophisticated patterns. In the following, we will use running 

choreography examples to explain the transformation rules of both basic and structured 

choreographies.  

2.4.1 Transformation of basic choreographies 

This section details the mapping of a basic choreography designed using a UML Interaction 

into an orchestration implemented with BPEL concepts. The mapping rules are denoted in Figure 

2.4.1. The first rule to execute, R1, transforms an Interaction into a BPEL process. As shown in 

Figure 2.4.1, R1 contains other sub-rules R2, R3 and R4. Each mapping corresponds to a mapping 

function in the QVTo code from a source model element (in the Interaction) to a target model 

element (in the BPEL process model).  

 

Figure 2.4.1: Transformation rules of basic choreographies. 

Generation of PartnerLinks. The mapping rule R2 transforms each Lifeline of the interaction into 

a PartnerLink in the generated BPEL process. Each PartnerLink is characterized by 

partnerLinkType and partnerRole parameters. The partnerLinkType has a portType parameter that 

allows the process to establish a bidirectional communication with the associated external partner 
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service represented by a lifeline in the specified choreography. The portTypes are already 

generated when transforming the structural part of the SoaML model.  

In addition to PartnerLinks that results from the mapping of the lifelines, R2 generates a 

PartnerLink element for the orchestrator itself. This PartnerLink is characterized by 

partnerLinkType and myRole parameters. The partnerLinkType refers to a portType that provides 

all the operations provided by the orchestrator partners. This is to enable the orchestrator 

PartnerLink to receive all the operation calls in order to forward them to their destinations (i.e., 

external partnerLinks that result from the mapping of the lifelines).  

Generation of Variables. The mapping rule R3 generates two local variables per message in the 

interaction, one variable to store a received message information and another to forward it.  

Generation of the BPEL activities. After the generation of PartnerLinks that allow the BPEL 

process to communicate with its associated external partner services and the generation of 

variables that allow the process to store data, now we need to map the choreography logic (i.e., the 

sequencing of the sending and reception of messages). As being a sequence diagram, the 

choreography logic is constrained as follows [98]: 

(1) Lifelines in an Interaction operate independently from each other. There is no global notion 

of time between them. 

(2) Along each instance axis, the time is running from top to bottom (no time scale is assumed). 

If no coregion or parallel operator is introduced, a total time ordering of events is assumed 

along each instance. 

(3) A message must be sent before it is received.  

A BPEL process contains a single “main” activity that may in turns contain other BPEL activities. 

This activity contains the flow control logic. The mapping rule R4, that is explained later, 

generates and structures the BPEL activity. For reasons of clarity, we will show the results of the 

mappings in the form of BPEL diagrams instead of XML code. Figure 2.4.2 associates to each 

BPEL construct an icon. 

 

Figure 2.4.2: graphical representation of BPEL activities. 

The use of BPEL activities to capture concurrent interactions in sequence diagram. We will 

explain this transformation solution through the same choreography example shown in Figure 

2.4.3-a. Figure 2.4.3-b presents the newly generated process. We will first discuss our 

transformation choices and then we will give the transformation rules. Despite the fact that there 

are multiple possible sequences of message exchange, the resulting BPEL activities are still 
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readable and much easier to understand in comparison with the BPEL process resulting from the 

first solution. For these reasons, we choose to follow this transformation solution that we explain 

in the following paragraphs.  

 

 

 

 

 

(a) Sequence diagram.                 (b) Associated BPEL process.  

Figure 2.4.3: Transformation of basic sequence diagram example. 

Handling concurrent receptions. Lifelines in an Interaction operate independently from each 

other, the orchestrator may then communicate independently with each partnerLink (i.e., a lifeline 

representing a role in the choreography). We have chosen to implement the main activity of the 

BPEL process as a flow activity and the communication with each partner as a branch in the “main” 

flow as shown in Figure 2.4.3-b. In fact, the use of flow activity ensures concurrency between the 

communications of the orchestrator with the partnerLinks.  

Messages are ordered in time along the lifeline axis where time increases down the line. The 

communications with each partnerLink are handled using a Sequence activity to prescribe an order 

between the sendings and receptions of messages corresponding to the events that belong to a 

specific lifeline. As shown in sub-Figure 2.4.3-b, the transformation results in four sequence 

activities inside the “main” flow activity, each of which is generated to handle the communication 

with a specific PartnerLink.  

In BPEL, to perform asynchronous interactions, an invoke activity is used for an asynchronous 

operation call and a receive activity is used for the reception of an operation call. In our 

transformation, a send event is mapped into a receive activity using the mapping rule R9 (followed 

by an assign to handle data) and is used for the reception of an operation call. This is due to the 

mirror effect that the orchestrator plays. When a message is sent (resp. received) the orchestrator 

receives (resp. sends) this message from the source (resp. to the destination). For example, 

MessageOccurrenceSpecification related to message calling operation op1 will be mapped as 

follows: the “send” event is mapped into a receive activity (Receive op1 in sub-Figure 2.4.3-b) in 

sequence handling communication with A and the “receive” event will be mapped into an invoke 

activity (invoke op1 in sub-Figure 2.4.3-b) in sequence handling the communication with B. Assign 

activities are responsible for the assignment of data from variables specified by the receive 

activities to variables specified by the invoke activities. 

Message forwarding. A message must be sent before it is received. We use the link constructs 
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inside the flow activity to synchronize the send and the receive events of messages. The link 

construct is used to express these synchronization dependencies between activities inside a flow 

such that one activity starts when another ends. In our mapping, we use links to express 

dependency relation between messages receive and invoke activities thereby ensuring the 

constraint between the received and sent events. Links are represented by blue arrows. For 

example, the blue arrow that connects the sequence handling the communication with D with the 

one handling the communication with C will ensure that the reception of operation call op2 from 

D (which corresponds to the send event of op2 from D) is before the sending of op2 to C (which 

corresponds to the receive event of op2 by C). 

The mapping rule R4, shown in Figure 2.4.4, generates and structures the flow Activity as follows: 

R7 maps each lifeline into a Sequence BPEL activity inside the flow activity, a helper H5 maps 

each MessageOccurrenceSpecification into an invoke (using the mapping rule R8) or receive 

(using the mapping rule R9) activity depending on its type and R6 maps each message into a link 

(R6, R7 and H5 are explained in detail in the following). 

 

Figure 2.4.4: Generation of the choreography logic. 

. 

 As we mentioned before, helper H5 is used to map a UML MessageOccurrenceSpecification 

into receive or invoke activity depending on its type known through the value of boolean properties 

isReceive and isSend of a MessageOccurrenceSpecification (which is a specialization of 

MessageEnd). The helper H5 contains two mapping rules R8 and R9 (see Figure 2.4.4) that are 

used to map MessageOccurrenceSpecifications. A receive event is mapped into an invoke using 

the mapping rule R8 and is used for an asynchronous operation call.  

 As we mentioned before, R6 is responsible for generating link constructs. As shown in Figure 

2.4.5, each message is mapped into a link construct connecting the already generated receive and 

invoke activities associated with that message. A source and a target are then added to the receive 

and invoke activities respectively corresponding to the send and receive events of a message (see 

Figure 2.4.5). 
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Figure 2.4.5: Generation of link constructs. 

To handle the requests of different clients and ensure that the same process instance will handle 

messages belonging to a given client, a BPEL engine needs a correlation between messages 

belonging to the same instance. Inbound Messages must be correlated, otherwise they cannot be 

forwarded to their associated instances. The message parameter that will be used as correlation 

properties must be defined by the designer so they can be translated into correlation sets. The 

application designer must tag these parameters in the Interaction. The SoaML standard proposes a 

kind of value object that represents information exchanged between service providers and 

consumers designated by MessageType stereotype (which extends either the metaclass DataType 

or Class or Signal). MessageType has attributes isID which may be used to correlate long-running 

conversations between services. The correlations could be generated from these MessageTypes 

specified in the model. Otherwise, they could be added manually to the BPEL process after the 

code generation.  

2.4.2 Transformation of structured choreographies 

This section describes the mapping rules from structured choreography to BPEL activities. 

Structured choreographies denote a UML sequence diagram expressing a choice with combining 

operators (i.e., choose between alternatives, reiterate or quit a loop, etc.). When communications 

are asynchronous, messages can arrive before the associated activity is activated. This is called a 

race condition in BPEL specification [69]. The race condition can lead to faulty or inappropriate 

decisions at the execution time and can consequently affect the choreography logic if it is not 

handled properly. In the following, we explain the race condition using a running example and 

show how we adapt and extend the previous transformation in order to take the race condition into 

consideration. 

 Running choreography example 

In this section, we present a running choreography example, which will be used later to explain the 



Chapter 2: Model-driven generation of 
executable artifacts from SoaML models 

 103 

 

 

transformation rules from SoaML structured choreographies into BPEL constructs.  Figure 2.4.6 

depicts the running choreography example and the related concepts using SoaML diagrams. This 

example is an adaptation of the Game choreography from [159]. It is about three participants 

playing a game: two players and an arbiter. The services architecture “GameServicesArchitecture” 

shown in sub-Figure 2.4.6-a describes the global architecture of the participants collaborating 

together by providing and using services through a service contract called “GameContract”. This 

contract is shown as a dashed ellipse inside the services architecture. Its definition is shown in 

details on the right in Sub-Figure 2.4.6-a.  

 

(a) Services Architecture and contract 

        

(b) GameContract choreography 

Figure 2.4.6: SoaML diagrams for the running example. 

A service contract defines roles played by the possible participants. For example in the 

“GameContract”, there are three roles: Alice (A), Bob (B) and Carol (C). The services architecture 

binds each participant to a given role in the contract using RoleBinding relations depicted as dashed 

lines labeled with A, B and C. A contract designs a choreography between several services. This 

choreography is refined using a sequence diagram to describe the interactions between these 

services. Sub-Figure 2.4.6-b shows the sequence diagram describing the services choreography 

between A, B and C.  

The choreography may be initiated by an invitation from Alice (A) to Bob (B) to start the game 
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(invb). Consequently, «B» invites Carol (C) and, after that, sends an acknowledgment (ack) to «A». 

The latter starts the game. Then, «A» may either send bWin to «B» or cWin to «C» to decide who 

wins this time. This is described through Alt fragment. «A» continues to send one of these messages 

in a loop (see loop fragment) until one of the players wins the game. To be a winner, a player must 

win two consecutive times. Each time «B» wins, it notifies «C» by sending close. Consequently, 

«C» could conclude about the results and if one of the players wins, «C» sends the result to «B» 

which sends a signal (sig) to «A» and a confirmation (conf) to «C». All the messages in a sequence 

diagram are asynchronous messages. An asynchronous call sends a message and proceeds 

immediately without waiting for a return value. 

 Race condition 

A race condition occurs at execution time when multiple messages arrive before the activation 

of receive or pick activity. Figure 2.4.7-a shows an example where race conditions may occur. A 

process that receives a series of messages in a Loop and each iteration of the Loop is associated 

with a choice between two alternatives. The resulting BPEL process structure will have 

systematically different alternative branchings that reflect the combined fragments in the 

Choreography Interaction. As illustrated in Figure 2.4.7-b, when a choice between two alternative 

messages (here bWin and cWin) is defined with an alt, one may use the pick activity, which, in 

BPEL, allows specifying alternative branches. Each branch is activated upon the reception of one 

of the two messages. The outcome of the choice is unpredictable by the BPEL process, which will 

be aware of which branch of the pick to follow only at the receipt of the associated message event. 

Now the choice may be specified inside a repetitive behavior (with a loop). As communications 

are asynchronous, received messages may be accumulated and internally stored in the BPEL 

engine before being processed, more precisely before the branching point of the pick is activated. 

The BPEL standard [69] identifies such situation as a race condition and does not impose or 

recommend any specific event selection strategy: 

“The pick activity waits for the occurrence of exactly one event from a set of events [...]. If a race 

condition occurs between multiple events, the choice of the event is implementation dependent.” 

We have experimented race conditions with the Apache ODE engine on the example of Figure 

2.4.7-a. Obtained execution logs are depicted as sequence diagrams in Figure 2.4.7-c and Figure 

2.4.7-d. Following the execution log depicted in Figure 2.4.7-d, the orchestrator chooses to forward 

cWin then bWin while bWin was the first to arrive. As a consequence, C may conclude that it wins: 

nevertheless, this is not the case. Apache ODE selects events in a non-deterministic manner, which 

in this example modified the choreography logic. Concurrent incoming messages compete for the 

process instance lock and the message that gets the lock is executed, whereas other messages are 

rescheduled to try and acquire the lock. In conclusion, Apache ODE is able to internally store events 

that arrive early, however it does not guarantee that they are stored in the same order as they arrive 

which is completely compliant with the pick activity semantics as we have seen before. 
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  (a) alt example               (b) alt mapping 

       

(c) Scenario 1     (d) Scenario 2 

Figure 2.4.7: Example of Race problem. 

 Proposed BPEL pattern  

To get around race conditions in such cases, the idea is to propose a BPEL pattern to store 

received messages as soon as they arrive in order to keep the message arrival order. We propose 

to separate the inbound message reception from the choreography logic in a separate branch, which 

is executed in parallel with the other branches (responsible for the communication with external 

services). To address the changes in the transformation, rules R1, R4, H5 and R6 are adjusted as 

shown in Figure 2.4.8 while R2 and R3 remain unchanged.  The rule R4' (adjusted R4) generates, 

in addition to the branches handling communications with partnerLinks, another new branch for 

the receptions. The helper H5' (adjusted H5), which is responsible for mapping 

MessageOccurrenceSpecification, is adapted to map only receive events. In fact, send events are 

already mapped in the new branch.  
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Figure 2.4.8: Transformation rules of structured choreographies. 

(a) Generation of the main flow activity. We introduce an additional branch in the main flow 

structuring the resulting BPEL process (R4'). A while activity is added to the main flow activity. 

Inside the while activity, a pick activity is added to handle the inbound messages corresponding to 

operation calls. The mapping rule R12 shown in Figure 2.4.8 generates, for each message 

signature, an onMessage activity. This While activity iterates after the reception of a new message 

and until the completion of the execution of the other branches. 

The new branch generated by R4' for storing inbound messages is depicted in Figure 2.4.9. It is 

composed of a while activity that includes a pick activity which waits for any kind of operation 

calls that may be exchanged in the choreography specification. An onMessage waits for the receipt 

of an inbound message. At each iteration of the while activity, the pick allows the reception of one 

inbound message and its storage in a dedicated local variable called iQ, which would serve as an 

internal queue for the received messages. It iterates until the completion of the execution of the 

other branches or the expiry of the maximum period of inactivity, Timeout, during which no 

message is received. Hence, the guard of the while loop is: NOT (completed1 AND…AND 

completedk OR Timeout), where completed1… completedk   are Boolean variables that evaluate to 

true when their associated branches terminate and Timeout evaluates to true when a maximum 

period of inactivity is reached. This period is a multiple of d, i.e., n*d, where n is a natural number 

fixed by an expert and d is a certain duration, d that we explain in the following. 

In addition to the onMessages, we also generate an onAlarm activity associated with the pick. 

The onAlarm is triggered by a timer mechanism waiting for a certain duration, d. This duration 

represents the time interval between any two consecutive operation calls at the orchestrator. It is a 

parameter that has to be specified by the application expert. Assuming this minimum duration 

guarantees that, for each iteration, we have at most one operation call destined to the pick activity 

(stored by the BPEL engine). Therefore, on the basis of this timing information, the local queue 

variable will be storing inbound messages in the same order as they arrived since, at each iteration, 

the process has stored only one message at the end of the iQ. The parameters Timeout and d have 

to be specified by the application expert. 
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Figure 2.4.9:  Additional branch in the orchestrator. 

(b) Mapping of interaction fragments (H5’). The helper H5’ maps each Interaction Fragment into 

activities inside already generated branches. The mapping output depends on the type of the 

fragment, namely Message Occurrence Specification or Combined Fragment. In the first case, H5’ 

is adapted to our solution so that it translates only receive message occurrence specifications. In 

the second case, the processing of combined fragments depends on the kind of its 

interactionOperator (e.g. loop, alt and opt). 

In the remaining of the section, we explain how we modify the other branches of the BPEL main 

flow in order to select operation calls from the local queue (and then forward them to the 

appropriate partner service using invoke activities). We will show alt and loop operand 

transformation results into BPEL through the running example. But before, we need to explain the 

generated activities, namely, iEvent() and seq(Invoke(opi); dequeue(iQ)), which are given in the 

legend box (refer to the lower left of Figure 2.4.11).  

iEvent() is an activity that waits for a set of internal events to occur. It is denoted iEvent(E, Q) 

where E is a set of events and Q is a queue of these events. It allows the BPEL process to block a 

branch in the flow activity until the occurrence of at least one of the E events in Q. The activity 

iEvent is defined as an empty while activity40 which iterates if the following condition holds: 

NOT(elem(E,Q)), where elem() is a predicate that evaluates to true if at least one of the events in 

E is present in Q. Seq(Invoke(opi), dequeue(iQ)) is a sequence activity, that contains two assigns 

and an invoke activity. The first assign activity initializes the input variable of the invoke activity 

from an internal queue iQ. invoke activity is used to invoke operation opi and the second assign 

activity is for dequeuing the variable from iQ. 

                                            
40 For our experiments with the Apache ODE engine, when we have introduced the ievent(E, Q) inside the while loop, 

we have putted a wait activity with smaller durations than the arrival delay time d of the operation calls. As a wait is 

a blocking activity, this allows us to enforce the fairness in the parallel communication branches execution in the 

Apache ODE. Thus, when a branch is waiting for a message to arrive, other branches could be executed and in 

particular the branch responsible for the reception of inbound messages.  
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Each receive MessageOccurrenceSpecification in the Interaction is translated into an 

iEvent(opi, Q) activity followed by a seq(Invoke(opi); dequeue(iQ)) activity. The iEvent(opi, iQ) 

activity allows verifying that the orchestrator has already received the inbound message destined 

to operation opi before forwarding it. For example, consider the branch CommWithC shown in 

Figure 2.4.11: op2 is blocked until the occurrence of its inbound message of op2 in the iQ. 

Transformation of the alt fragment. The alt operator specifies a choice between two or more 

alternative behaviors in the Interaction. A choice is resolved upon the reception of specific 

operation call(s), which we call “decision events”. These are calculated in a static manner by 

getDecisionEvents function (explained later). A decision event is the first message receive event 

in a choice. BPEL activities resulting from the mapping of the alt fragment of the running example 

shown in Figure 2.4.6 are inside the sequence activity colored in red (Figure 2.4.11). There are two 

alternative choices and each one has one decision event, namely, the reception of op4 or op5 

operation call. Then, at the reception of a message invoking a decision event, for example, op4 (see 

pick activity in Figure 2.4.11), two variables: #op4B and #op4C are added to an internal queue called 

iQorch. One variable is generated for each lifeline involved in the choices.  

The transformation of an alt fragment is as follows. Decision events are first calculated for each 

operand of the alt fragment through the getDecisionEvents function. Then, as shown in Figure 

2.4.10 the first operand of the alt fragment is mapped into an If construct using the mapping rule 

R15, whereas the next operands are mapped into Elseif constructs using the mapping rule R16. 

Then, a “sub-sequence” activity is added to the already generated constructs If and Elseif. Finally, 

to fill the newly added "sub-sequence" activities, H5’ is recursively called for each operand of the 

alt fragment. As aforementioned, this rule is adapted to the new solution so it translates only 

receive MessageOccurrenceSpecifications into invokes preceded by an assign activity to assign 

the input of the invoke activity and followed by another assign activity to dequeue the FIFO. The 

BPEL activities generated from a MessageOccurrenceSpecification is added to the sub-sequence 

generated from its covered lifeline. 

 

Figure 2.4.10:  Transformation of alt fragment. 
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As shown in Figure 2.4.11, in the case of branch CommWithC (resp. CommWithB), the iEvent 

waits for the reception of either operation #op4C or #op5C (resp. #op4B or #op5B). The reception of 

op4, for example, will unblock the first choice of all the involved communication branches 

(CommWithB and CommWithC). This ensures synchronization between the branches; all of them 

will follow the same choice described in the Interaction. Then, each branch handles this event by 

invoking the associated operation, and finally, both iQ and iQorch are dequeued. 

Note that when a lifeline is involved in a choice and does not own a receive 

MessageOccurrenceSpecification in both alternatives, we simplify the associated communication 

branch of the useless branching as in the case of the lifeline A and its corresponding CommWithA 

branch.  
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Figure 2.4.11:  BPEL process associated with the running example.



 

 

As aforementioned, the set of decision events is calculated through the getDecisionEvents function 

whose pseudo-code is denoted in algorithm 1. It is a recursive function taking as input a combined 

fragment “f” and providing, as a result, the decision events for that branching point in the 

choreography. If “f” is an alt fragment, then the decision events are calculated for each operand of 

the alt. It is the set of the first receive events, dEvt, in each operand (If the fragment inside the operator 

is a combined fragment then the getDecisionEvents function calls itself to calculate the decision 

events of that combined fragment). If f is a loop (resp. opt) fragment, the decision events are 

calculated for both the loop (resp. opt) operand and the fragments after the loop (resp. opt). The 

algorithm assumes that there is at least one decision event per branch and that the decision events are 

distinct. Once these conditions are met, the generated orchestrator will be able to choose between one 

of the branching point specified in the choreography upon the reception of one of these decision 

events.   

 

Function 1: getDecisionEvents pseudo-code 

Data: A UML Combined Fragment, f 
Result: A list of events to unblock the branch execution, List(MOS) 

1       
2       result = emptyList(); 
3       if (f .interactionOperator = alt) then 

4  for each operand in f.operand do 
5                dEvt = getFirstReceive(operand.fragments()); 
6                if isEmpty(dEvt) then 
7   throw exception “precondition violated” 

8                else 
9   result.add(dEvt) 

10       else 
11  if (f.interactionOperator = loop or f.interactionOperator =opt) then 
12          dEvt = getFirstReceive(f.operand.getFirst().fragments()); 
13           if isEmpty(dEvt) then 
14   throw exception “precondition violated” 

15           else 
16   result.add(dEvt) 
17           dEvt = getFirstReceive(f.nextFragments()) /*nextFragments returns the fragments next to f*/; 

18           if isEmpty(dEvt) then 
19           throw exception “precondition violated” 

20           else 
21   result.add(dEvt) 
22       if (containsDuplicate(result)) then /*test if result contains duplicate decision events */ 

23        throw exception “precondition violated” 
24       return result 

 

Function 2: getFirstReceivepseudo-code 

Data: An OrderedSet of InteractionFragment, fragments 
Result: A list of Message Occurrence Specification 

1 

2      var result=emptyList(); 
3       for frag in fragments do 
4 if frag.isMOS then /*test if frag is a Message Occurrence Specification*/ 
5           if frag.isReceive then /*test if frag is a receive event*/ 
6   result.add(frag) ; 
7   return result 

8  else 
9          if frag.isCombinedFragment then /*test if frag is a is a Combined Fragment*/ 

10   return decisionEvents(frag); 
11  return result 

Transformation of the opt fragment. The opt fragment can be seen as an alt fragment with only 

one operand. As shown in Figure 2.4.12, the transformation of an alt fragment is as follows. Like the 

transformation of the alt fragment, decision events are calculated for the opt operand. Then, the 
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operand of the alt fragment is mapped into an If construct using the mapping rule R15, the same 

mapping rule used in the transformation of the first operand of the alt fragments. Then, a "sub-

sequence" activity is added to the already generated constructs If construct. Finally, to fill the newly 

added "sub-sequence" activities, H5’ is recursively called for each element in the operand of the opt 

fragment.  

 

Figure 2.4.12:  Transformation of opt fragment. 

Transformation of the loop fragment. The loop operator can be seen as the choice of leaving or 

reiterating the loop. The difference is that the first choice can’t be reiterated numerous times. This is 

translated into a RepeatUntil activity nested successively by the iEvent() activity then an IF activity 

as shown in Figure 2.4.11. The iEvent() activity waits for events to either proceed the loop or break 

it to proceed to the next event when the Boolean variable breakiX is equal to true. The latter is set to 

true upon the reception of the first decision event to quit the loop fragment. After calculating the 

decision events of the loop fragment considering the fragments inside and after the loop, we generate 

by the same logic as alt the BPEL activities for each concerned branch. The interaction operand of 

the loop fragment is mapped into an if activity added to the sequence activities handling the 

communication with the partners covered by the loop activity. This is performed by the mapping R20 

shown in Figure 2.4.13. MessageOccurenceSpecifications are mapped using the same mapping rules 

as the ones inside an alt operator (R5’).  
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Figure 2.4.13:  Transformation of loop fragment. 

Consider the branch CommWithC in Figure 2.4.11 recopied into Figure 2.4.14, we have a 

RepeatUntil activity containing the activity iEvent(E1C, iQorch), in which E1C = {#op4C, #op5C, 

#op7C}, mapping the loop operator. E1C is the result of applying the decisionEvents function to the 

loop fragment. We have two alternatives: reiterating or breaking the loop, mapped respectively into 

If and Elseif constructs. In the second choice (quit the loop upon the reception of op7C), the break 

condition break1C is set to true. Suppose that the orchestrator receives the sequence op4: cWin, op6: 

cLose, op6: cLose, and op9: conf, to be delivered to partner C. In that case, the branch CommWithC 

will follow the first alternative of the alt fragment, after which it will follow the second alternative 

twice, and finally leave the loop. 
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Figure 2.4.14:  Sequence activity handling the communication with C. 

Generation of Links. Links can no longer be used to maintain the constraint between send and 

receive events associated with a message as in the case of basic choreographies (see Figure 2.4.11). 

This is because the send MessageOccurrenceSpecifications are mapped into a separate branch that is 

a while construct41. As the orchestrator plays a mediator role between the choreography partners, we 

used the link to ensure that the orchestrator will forward a message only if the previous one was 

already sent. This will ensure the ordering of consecutive receive MessageOccurrenceSpecifications 

in the choreography. An example of consecutive receive events in Figure 2.4.6 occurs between the 

receive MessageOccurrenceSpecifications of the message invoking the operation op1 and the one 

invoking op2. This is the result of the fact that the receive MessageOccurrenceSpecification of op1 

and the send MessageOccurrenceSpecification of op2 are covered by the same lifeline, and the 

causality between send and receive MessageOccurrenceSpecifications of the message invoking op2. 

The rule R6' search for consecutive receive MessageOccurrenceSpecifications and generates, for each 

pair, a link between their already generated BPEL activities. The resulting links for our running 

example are shown in Figure 2.4.11. 

 

                                            
41 A link MUST NOT cross the boundary of a repeatable construct [69] 
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 Summary 

After the specification step, a SoaML model need to be transformed into executable Web service 

artifacts (i.e., WSDL/XSD definitions and BPEL processes). Both structural and behavioral models 

need to be transformed into platform specific models.  

This chapter has presented the transformation rules from SoaML models into Web service artifacts.  

For the structural part, the transformation rules allows the generation of WSDL definitions from 

structural models describing participant’s architectures, i.e., provided and required services through 

ports. These WSDL files could be used to generate the code skeleton of the specified services. Note 

that our goal was not to fully automate the code generation of the complete Web applications, but 

rather to use Model-Driven Engineering technics to ease developers’ work and to increase the 

scalability aspects in the development by applying one of the main SOA principles, which is the 

service reuse through composition mechanisms. In fact, following the SOA principles, SoaML allows 

for the specification of a services level at the top of the component level. This allows for to define 

service choreographies independently from the component level.   

Thanks to such a modeling pattern, it becomes possible to specify a system behavior as a set of 

independent behaviors that specifies services choreographies. Each choreography describing a part 

of the system behavior will be transformed separately into an orchestration. This would increase the 

scalability of the development and the analysis of the service choreographies. Services 

choreographies are modeled using UML Interactions via sequence diagrams. Then, we have mapped 

each sequence diagram into a centralized and executable orchestration written in BPEL. The 

transformation rules deal with the complexity of high-level UML combining operators in sequence 

diagrams (e.g., loop and alt). It takes into account the asynchronous nature of communication between 

distributed choreography parties. In fact, the generated orchestrators are able to handle requests from 

concurrent and distributed services in an asynchronous way.   
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In the previous chapter, we defined an automatic transformation of SoaML choreography models 

into executable orchestration designs. In this chapter, we are interested in automating the testing of 

the resulting orchestrations. Testing consists mainly of three activities: test case description (they can 

also be generated), test execution, and oracle mechanisms to decide whether the test passed or failed. 

Often, testing is manual and is consequently time-consuming: between 40% and 70% of the 

development effort is spent on testing [160]. Model-based Testing [161] is a well-establish testing 

technique which comes with the required automation by using models that specify the intended 

behavior of an Implementation Under Test (IUT): (i) to derive test cases which put the IUT in specific 

situations in order to observe its behavior; and (ii) as oracles to verify the consistency between the 

test execution and those intended behavior. Our focus is mainly on oracle mechanisms. We show how 
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to analyze orchestrations executions with respect to their related choreography models, which specify 

the intended service interactions as shown in Figure 4.1.  

To initiate the choreography, a system tester stimulates the client service, s, which will, in turn, 

initiate the choreography as described by the UML Interaction diagram (i.e., sequence diagram). The 

tester plays the role of real clients, which will interact with the client Web service via a front end 

interface (e.g., an HTML page). The analysis of the orchestration execution can be conducted on-line 

or off-line. The online testing (also called runtime verification technique) means that a model-based 

testing tool is connected directly to the SUT and immediately checks an observable trace whenever 

an input/output event occurs. Conversely, the off-line testing means checking an execution trace after 

it is collected for a period of time [162]. We adopt an off-line testing process which classically has 

the advantage of being technically easier to set up: there is no need for a run-time coupling between 

the analysis algorithms and the test bench environment. Besides, as we will see in the remaining of 

this chapter, we require on our analysis to read a quiescence state of all involved services in order to 

ensure that all the outputs have been observed. At this quiescence situation, the offline analysis can 

be conducted. The proposed approach in this chapter encompasses (i) an adaptation of earlier results 

which have been stated in MBT literature [148] for asynchronous and centralized testing in order to 

characterize the conformance of the generated service orchestrations; (ii) and, a tooled off-line 

analysis process based on the formalized conformance.  

 

Figure 4.1:   Analysis of orchestration executions with respect to choreography models. 

This chapter is structured as follows: first, we present the issues resulting from the asynchronous 

aspect of the communications when validating the generated orchestrators, then we define the 

conformance relation of an orchestration execution with respect to its associated choreography model. 

After that, we present our testing process and discuss experimental results of the process by applying 

it to the Dealer Network Architecture case study. Finally, we review some related works. 
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 Issues in validating the generated orchestrations 

The offline analysis is based on the information collected during the execution in the form of 

traces/logs, which are sequences of observations (inputs/outputs). The availability of points of 

observations (i.e., artifacts where traces are collected from) influences the analysis hypothesis and 

consequently the analysis method. We have identified two problems: (1) there are limitations of 

observability at some services level which cannot be instrumented at their deployment locations; (2) 

the trace recorded at the orchestrator level could be exploited to deduce the execution traces 

(interactions between the services). However, the asynchronous nature of the communications leads 

to delayed receptions of the messages by the orchestrator that could lead to erroneous interpretations 

of the deduced traces. In the following, we will discuss these two problems in detail. 

Even though remotely collected, a trace obtained from the viewpoint of the orchestrator is 

informative about the events that happened at each service location. All communications between the 

services pass through the orchestrator, which plays the role of a mediator. As a consequence, the 

system trace could be deduced from the orchestrator trace. We still need yet to adapt the conformance 

analysis in order to consider situations where the network latency may delay some of the observations 

made at the orchestrator location. These delays must be taken into consideration when deducting the 

global trace of the running system. 

3.1.1 Illustrative example  

Figure 3.1.1 is an illustrative example extracted from the SoaML specification case study detailed 

in Part I: chapter 5 (Background: modeling with SoaML). A sender sends an order shipping request to 

a shipper then receives a response followed by a confirmation message.   

 

Figure 3.1.1: ShippingRequest choreography example. 

 

Figure 3.1.2-a shows a possible execution of the specified choreography. As shown in the figure, 

while both operations op2:OrderShippingResponse and op3:ShippingConfirmation are sent by the  

shipper as specified and shown in Figure 3.1.1 (i.e., in the same order as in the choreography), they 

are received by the orchestrator in a swapped order due to network latency. 
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(a) Delayed reception due to communication latency.  (b) Service quiescence. 

Figure 3.1.2: Observed ordering from orchestrator viewpoint. 

 

When analyzing the conformance of the choreography implementation with its specification, we 

need to consider all the possible service traces that can be inferred from the observed ordering at the 

orchestrator level. For instance, let’s consider the following traces where "!" and "?" denote 

respectively a sending and a reception of message invoking operation opi (trace format will be 

formalized next): 

σ1=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op2).(!,s2,s1,op3) 

σ2=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op3).(!,s2,s1,op2) 

If we consider the trace σ1, the orchestrator received operation op1 call from service s1. The same 

operation call is forwarded then to s2. After it received respectively operation calls op2 and op3.Traces 

σ1 and σ2 differ in the ordering of the last two sending actions (!,s2,s1,op2) and  (!,s2,s1,op3). Both 

traces are equally likely to have occurred in the choreography implementation.  

Note that both σ1 and σ2 are recorded at the orchestrator location after executing the choreography 

several times and both of them are considered as valid traces. We next show how we consider such 

situation in the execution analysis.  

3.1.2 Observing service quiescence  

In order to infer more accurate service traces, we have exploited another information about the 

services, called services quiescence. The notion of quiescence was introduced in the context of black-

box testing theories [149]. It means that there is a given deadline beyond which a service does not 

react. It is supposed that it will never react unless it receives a new operation invocation. Concerned 

services are those that do not proceed autonomously and/or interact with the environment (e.g. the 

client service, s, of the choreography shown in Figure 4.1). Quiescence allows guessing the ordering 

of actions at the service location in some cases. For example, in the choreography shown in Figure 

3.1.2-b, thanks to the quiescence observation of service s2 we can conclude that op2 necessarily 

occurred after the reception of op1 (not before). We make the hypothesis that the orchestrator can 

observe the quiescence of the services participating in the choreography. We implement it in practice 

by observing timeouts at the orchestrator location. 

We will show how to characterize acceptable traces which consider both delayed communications 

and the observation of services quiescence (Definition 1 and 2) and we introduce a new conformance 

relation orch-conf (Definition 3) which allows us to reason about the correctness of the services 

choreography implementation under partial observability, i.e., only from the viewpoint of the 
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orchestrator.   

 

 Service Orchestration conformance w.r.t a choreography 

3.2.1 Background: symbolic-based semantics of sequence diagram  

In our work, we have followed the traces semantics proposed in [9]. Authors ground their testing 

approach on symbolic execution techniques, which are proven to be successful in the context of MBT 

[148]. Symbolic execution [163] consists in executing programs, not for concrete numerical values 

but for symbolic parameters, and computing logical constraints on those parameters at each step of 

the execution, which allows computing semantics of programs (or models) and representing them 

officially in an abstract manner. Symbolic techniques have some major advantages, principally the 

limitation of state space explosion, as the variables in the specification are symbolic and there is no 

need to instantiate these variables with all of their possible values.  

The work in [9] is based specifically on Timed Input/Output Symbolic Transition Systems 

(TIOSTS), which are symbolic automata used to specify behaviors of reactive systems42 with the 

symbolic processing of variables, parameters, and inter-process value passing. TIOSTS and 

especially their untimed version IOSTS have been widely used in black box testing approach based 

on symbolic execution [164].  

Authors show how to transform a timed sequence diagram into TIOSTS models. The symbolic 

execution of such TIOSTS model results in a tree-like structure that characterizes all possible 

executions of the system specified by the sequence diagram. 

We have slightly modified the trace semantics of UML Interaction proposed in [9] and its 

implementation in Diversity to match to the format of choreography specifications as defined in 

SoaML model. In fact, lifelines in [9] represent typed ports whereas they will represent service 

definition in our case.  Consequently, in our work, messages convey operation (and signals) calls, 

which may specify parameters representing the data exchanged between the services. The entire trace 

semantics and the transformation process of a sequence diagram into IOSTS with the modifications 

that we have done are detailed in Appendix C. The resolution of the constraints of the path of a 

symbolic tree makes it possible to deduce all the traces associated with the path. If we make the 

resolution for each path, we obtain the (concrete) traces of the whole tree, thus of the IOSTS. 

Trace format. A Choreography Chor is defined over a signature Σ=(S,Op) where S is a set of service 

roles with members s1…sn and Op is a set of names of services operations. We use a data model M 

which includes most common types (natural numbers, integers, booleans, etc.) in order to define data 

being parameters of an operation. The set of communication actions over Σ, denoted Act(Σ), is of the 

form IM(Σ) ∪ OM(Σ) where IM(Σ) ={(?, s, s’, op(w))|s, s’∈S, op∈Op, w∈M*}43 denotes the set of 

inputs and OM(Σ) ={(!, s, s’, op(w))|s, s’∈S, op∈Op, w∈M*} denotes the set of outputs. For such an 

action, we note the identifiers s and s’ respectively snd(act) and rcv(act).  

Remind that Chor is actually a UML Interaction denoted as a Sequence Diagram. A trace of a UML 

Interaction is a word from Act(Σ)*. Note that a trace respects the causal order inferred from the 

asynchronous signal passing defined in the sequence diagram (see the Annex C for more details). The 

set of traces of a choreography (Chor) denoted Traces(Chor) contains such traces and is closed under 

                                            
42 Reactive systems are systems that produce outputs in response to external stimuli. 

43 We use the asterisk (*) to denote zero or more arguments of operations. By convention when an operation have no 

arguments, w = ϵ, where ϵ denotes empty word.      
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prefix (i.e., prefixes of such traces are also in Traces(Chor)). We note the set of prefixes of a trace σ, 

Pref(σ).  

In the following, we give one possible trace of the Shipping Request choreography.  

Figure 3.2.1 shows the Shipping Request choreography and its associated Interfaces. The 

choreography defines the exchanged signals between the services through UML Receptions. The 

latter is a behavioral feature declaring that this interface is prepared to react to the receipt of a signal. 

For example, the SheduleUpdating interface has two UML Receptions, orderShippingResponse, and 

shippingConfimation. The orderShippingResponse has three arguments, namely currentStatus, which 

represents the current status of the shipment order, deliveryDate which represents the estimated 

delivery date, and orderNo, which represents the order number or identifier. 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.2.1: Shipping Request Choreography and its associated interface and data model. 

 

One possible trace of the Shipping Request choreography is the following: 

σ = (!,s1,s2,op1(“b1200”.“AS4”.“FAST”.23.2)).(?,s1,s2,op1(“b1200”.“AS4”.“FAST”.23.2)). 

(!,s2,s1,op2 (“In preparation”.“17/09/2016”.“b1200”)). (!,s2,s1,op2(“In 

preparation”.“17/09/2016”.“b1200”)).(!,s2,s1,op3(“ok”). (?,s2,s1,op3(“ok”)). 

The sequence “b1200”.“AS4”.“FAST”.23.2 corresponds to the concrete parameters of the operation 

op1: their order in the sequence corresponds to the order in which the parameters of the operation are 

declared. Note that an empty sequence denotes an operation without parameters.  

3.2.2 Conformance w.r.t a choreography 

In this section, we define the conformance relation, which allows us to reason about the correctness 

of an orchestration of services with respect to a choreography model. The specification of this relation 

allows reasoning on traces collected at the orchestrator level in the absence of point of observations 

at the level of the involved services as explained in the section 3.2.1. 

It is assumed that orchestrator can observe the quiescence of some/all the services s1 …sn∈S. In order 

to capture services quiescence, we introduce the set of quiescence labels Δ, which is of the form 

{δ1…, δn} where for 1 ≤ k ≤ n, δk denotes the quiescence of the service sk. 

The implementation of the choreography can be considered as a mathematical object, denoted I, 

represented as well by a set of traces, denoted Traces(I) as words in (ActM(Σ) ∪ Δ)*. We introduce 

some intermediate notions used to define the conformance, namely 𝐼𝑀
𝑘 (Σ) which denotes the set 

containing any action act of IM(Σ) such that rcv(act) = sk, and 𝑂𝑀
𝑘 (Σ) which denotes the set containing 

any action act of OM(Σ) such that snd(act) = sk. Act(σ) denotes the set of actions occurring in σ, i.e., 
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if σ is of the form act.σ’ where act∈ActM(Σ) then Act(σ)={act} ∪ Act(σ’); otherwise Act(ϵ) is the 

empty set. 

We require the traces to be well-formed with respect to the quiescence notion. The following 

definition states the well-formedness notion of a trace. 

Definition 1 (well-formed trace). We say a trace σ in (ActM(Σ) ∪ Δ)* is well-formed, denoted WF(σ) 

if and only if: 

[Quiescence consistency] for all σ', σ'' in (Act(Σ) ∪ Δ)* such that σ is of the form  

σ'.δk. σ'' with 1 ≤ k ≤ n, we have that for all σu, σv in Pref(σ'') and act∈O(Σ) such that σu is of the form 

σv
.act: if act∈𝑂𝑀

𝑘 (Σ) then exists act’∈Act(σv) ∩ 𝐼𝑀
𝑘 (Σ).   

[Ending with quiescence] for all 1 ≤ k ≤ n, there exists a decomposition of σ of the form σ'.δk. σ'' 

with σ', σ'' in (Act(Σ) ∪ Δ)* such that Act(σ'') ∩ 𝐼𝑀
𝑘 (Σ) = Ø. 

Quiescence consistency states that if after observing the quiescence of a service if that service invokes 

an operation, it has necessarily received in between some invocation itself44. In other words, this 

condition verifies then that the service is re-activated after a quiescence period only at the reception 

of an operation call. Ending with quiescence property requires traces to end with the quiescence of 

all services in order to ensure that we do not stop logging traces before a given service reacts to an 

operation call as classically used in testing [149]. Note that we do not test the quiescence as we test 

the conformance of service interactions. Our objective is to use these observations to infer more 

accurate traces. 

Illustration of well-formedness conditions. In the following, we use some traces examples to 

illustrate the definition of a well-formed trace. Let's consider the trace σ1, collected at the orchestrator 

place: 

σ1= δ2. (!,s1,s2,op1). (!,s2,s1,op2). (?,s1,s2,op1). (?,s2,s1,op2). δ1. δ2. 

The “Ending with quiescence” condition is verified since the trace ends with the quiescence of all 

services participating in the choreography, namely δ1 and δ2 denoting quiescence of services s1 and 

s2 respectively. Now let’s check if the “Quiescence consistency” condition is also verified. Initially, 

the orchestrator observed the quiescence of the service s2. Then it received operation op1 call from 

service s1. But after, despite the fact that the service s2 is quiescent, the orchestrator received a call of 

the operation op2 from the service s2. This trace is considered as malformed since service s2 is 

quiescent and cannot, therefore, produce spontaneously an output. In a well-formed trace service s2 

would wait for an input to be able to produce an output which is the case of the trace σ2:   

σ2= δ2. (!,s1,s2,op1).(?,s1,s2,op1). (!,s2,s1,op2). δ1. δ2. 

In σ2 the orchestrator forwarded the operation call of op1 to s2 which produced consequently the call 

for operation op2 that was sent to the orchestrator.  

Generation of all possible traces. When analyzing the conformance of the choreography 

implementation, we need to consider all possible service traces that can be inferred from the observed 

one. In the asynchronous setting, the responses of services to operation calls may be observed with a 

latency delay from the viewpoint of the orchestrator. We propose a generalization of the delay 

                                            
44 In practice, when the Quiescence consistency condition does not hold the validation engineer reports the inadequacy 

of quiescence deadline. 
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operator proposed in [165] in order to allow the inference of all traces that are likely to occur at the 

services locations. 

Definition 2 (delay). Let σ be a trace in (ActM(Σ) ∪ Δ)* and act∈ActM(Σ), delay(σ, act) ⊆ (Act(Σ) ∪ Δ)* 

is the smallest set of traces containing σ.act and is such that if σ’.act’.act”.σ”∈delay(σ, act) then 

σ’.act”.act’.σ”∈delay(σ, act) if one of the following conditions holds: 

(i) we have that act’∈IM(Σ) and act”∈IM(Σ); 

(ii) we have that act”∈𝑂𝑀
𝑘  (Σ) and if there exists a decomposition of σ’of the form σu δk σ

v in which 

δk∉Act(σv), then Act(σv) ∩ 𝐼𝑀
𝑘  (Σ) ≠ Ø. 

The set delay(σ) is inductively defined on the form of σ as follows: delay(σ) is {ϵ} if σ = ϵ; and 

∪σu
∈delay(σ’) delay(σu, act) if σ = σ’.act. 

Note that in [165], the delay operator comes down to swapping specific actions in a trace involving a 

tester and an Implementation Under Test (IUT) without taking into consideration the quiescence. In 

our case, the delay operator applies on a trace involving an orchestrator and several services taking 

into consideration the services quiescence. 

We define next the conformance relation orch-conf which takes into account delayed communications 

using the delay operator. In general, conformance relations specify the correctness properties of an 

IUT by comparing its actual behavior observed during test execution to the possible behaviors 

specified by the model [166].   

In the following, a hiding operator, hideΔ(σ), is used to extract a sub-trace from σ, in which actions in 

Δ are removed. If σ is of the form act.σ’ where act∈ActM(Σ) then hideΔ(σ)=act.hideΔ(σ’); if σ is of the 

form act.σ’ where act∈Δ then hideΔ(σ)=hideΔ(σ’); otherwise hideΔ(ϵ)=ϵ. 

Definition 3 (Conformance). Let Chor be a sequence diagram choreography and I be an 

implementation of Chor, both defined over Σ. We have I orch-conf Chor if and only if for any σ in 

Traces(I), we have WF(σ) and there exist σ’ in Traces(Chor) such that σ’ in hideΔ (delay(σ)).  

According to the orch-conf conformance relation, in order to be conform to a choreography model, a 

trace has firstly to be well-formed, and secondly, that at least one of the inferred traces by the delay 

operator is specified in the sequence diagram, i.e., included in Traces(Chor).  

Illustration of the Conformance Relation. In the following, we illustrate the use of the delay 

operator based on the Shipping Request choreography example (see Figure 3.2.2).  

 
Figure 3.2.2: Illustrative example of the result of the delay operator. 

 

Let's consider the trace σ1, depicted in the left of Figure 3.2.2 collected at the orchestrator. 

σ1=δ2. (!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op3).(!,s2,s1,op2) 
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Initially, the orchestrator observes the quiescence of the service s2. Then, it received operation op1 

call from service s1. The same operation call is forwarded then to s2. Then it received respectively 

operation calls op3 and op2. This is despite the fact that s2 sent op2 then op3 in accordance with the 

choreography specification. Operations op2 and op3 were received in a swapped order because of 

network delays. By applying the delay operator on σ1, we obtain the following traces illustrated in 

Figure 3.2.2 (after applying hideΔ operator, which hide the services quiescence):  

σ11=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op2).(!,s2,s1,op3) 

σ12=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op3).(!,s2,s1,op2) 

Traces σ11 and σ12 differ in the ordering of the last two sending actions (!,s2,s1,op2) and (!,s2,s1,op2) 

and are equally likely to have occurred in the choreography implementation. As the trace σ12 belongs 

to the set of the choreography traces, we can conclude that the choreography implementation is correct 

(by the definition of conformance). This allows us to not discard such valid implementations because 

of delayed messages. Note that, if we don't observe the quiescence of the service s2, the delay operator 

generates other traces besides these two traces. One possible trace is the following: 

σ13=(!,s1,s2,op1).(!,s2,s1,op2).(?,s1,s2,op1).(!,s2,s1,op3) 

As s2 is not quiescent, op2 is not necessarily the result of the call of operation op1.  

Now let's consider another trace σ2 collected at the orchestrator level:  

σ2=(!,s1,s2,op1).(!,s2,s1,op2).(?,s1,s2,op1) 

This is a non-valid trace. In fact, the delay operator computes the following traces:  

σ21=(!,s1,s2,op1).(!,s2,s1,op2).(?,s1,s2,op1) 

σ22=(!,s2,s1,op2).(!,s1,s2,op1).(?,s1,s2,op1) 

According to the sequence diagram specification of Figure 3.2.2, operation op2 must be received after 

the sending of op1, this is because both the reception of op1 by s2 and the sending of op2 by s2. σ21 and 

σ22 are both not included in the choreography traces, hence the non-conformance. 

Let's consider another trace σ3 collected at the orchestrator level:  

σ3= (?,s1,s2,op1). (!,s1,s2,op1) 

The delay operator will result in one trace (the trace itself, i.e., σ3), which is a non-valid trace. This is 

because a message must first be sent before it is consumed. Consequently, this trace is not included 

in the choreography traces.   

 Testing process and experiments 
In this section, we present the testing process along with the algorithms that have been defined to 

implement our approach. We conclude the section with preliminary experimental results on a 

representative example. Note that the reader can refer to the experimentation on the case study will 

be detailed in Part III: VALIDATION. 

3.3.1 Testing process and tooling overview 

We remind that we use IOSTS to formalize the semantics of UML sequence diagrams. As 

mentioned before, we use Diversity45, which is a multi-purpose and customizable platform for formal 

analysis based on symbolic execution. Diversity relies on symbolic execution techniques to compute 

a symbolic tree representing all possible executions of an IOSTS. In the resulting symbolic execution 

tree, a path represents a possible behavior specified by the IOSTS and defined by the sequence 

diagram. Diversity has many modules that correspond to different purposes. In our work, we are 

                                            
45 Available at http://projects.eclipse.org/proposals/diversity/, Accessed 25 June 2016 
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interested in the offline analysis module. This module allows for test verdict computation based on 

the work presented in [167] where system traces are analyzed in order to generate a verdict about the 

conformance of the traces with respect to a specification model TIOSTS. The transformation of a 

sequence diagram into an IOSTS was implemented as a plug-in in Diversity [168]. As part of our 

work, we have extended this implementation to support the asynchronous passing of 

signals/operations and their associated arguments which represent service invocations in a 

choreography. More details on those extensions could be found in ANNEX C. 

As we discussed before, the goal of our testing process is to validate the transformation of the 

service choreography and to detect inconsistencies between both the runtime behavior and the 

specification. As already explained, under partial observability limitations (i.e., in the case of a 

restricted access to observation points), we reason on the conformance of the traces collected at the 

orchestrator level. Figure 3.3.1 shows the different steps of our testing process. We first verify the 

well-formedness of the traces collected at the orchestrator place according to the well-formed trace 

notion. If the trace is not well formed, Diversity returns a Fail verdict. This trace is then checked by 

the system validation engineer in order to identify and resolve existing problems (e.g., the inadequacy 

of the quiescence delays). However, a well-formed trace will be used to infer all possible traces of 

the choreography execution, which is the second step of the testing process. In this step, the delay 

operator is used to calculate the traces that might have taken place taking into consideration network 

delays in the asynchronous context. We have implemented the delay operator (the pseudocode of the 

delay operator is given later in Algorithm 1). The inferred traces are stored in a compact 

representation as a radix data structure [169] that facilitates the calculation of the test verdict. Then, 

in the third step of the testing process, the choreography specification is used to generate an IOSTS, 

which is used along with the system traces as an input to Diversity in order to analyze these traces by 

computing a verdict on trace inclusion with respect to the orch-conf conformity relation (see 

Definition 3). In other words, our goal is to find out if at least one of the traces inferred from the 

orchestrator trace is included in the choreography model using the testing functionality of Diversity. 

If such a trace exists then a PASS verdict is emitted, a FAIL is returned otherwise. 

 
Figure 3.3.1: Testing process under partial observability limitations. 

3.3.2 Testing algorithms 

In the following, we give the algorithm implementing the delay operator. It takes as input the 

observed trace collected at the orchestrator location and allows the generation of all possible traces 

in the form of a radix tree. But before, we will explain why we have chosen this data structure to store 

the inferred traces instead of storing them as a simple set. We recall that a radix tree data structure is 

simply a collection of nodes starting at a root node: each node is associated with a value, which is an 

action in our case, and has a list of references to its child nodes, with the constraint that no reference 
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is duplicated, and none points to the node in a previous level. Figure 3.3.2 shows an example of a 

radix tree inferred from the trace: σ =δ2.(!,s1,s2,op1).(?,s1,s2,op1).(!,s1,s2,op2).(?,s1,s2,op2).δ1.δ2 

For the sake of simplicity, we only note the sending and reception of an operation in the generated 

tree in Figure 3.3.2, instead of showing all the constituent parts of the action (e.g., ?op1 in place of 

(?,s1,s2,op1)). As we mentioned before, we use the radix data structure to facilitate the search of a 

valid trace in the set of inferred traces. In fact, when looking progressively for a valid trace, one test 

can conclude on the failure of many traces having a common prefix. For example, if at a level j of a 

tree the common path is not a valid trace, we can conclude that all the traces in question are not valid 

(see Figure 3.3.2). This allows us to not redo the same test many times in the case where each of the 

traces is considered separately. For example, let’s consider the right branch in the tree shown in Figure 

3.3.2, the first action after the root element (which contains the quiescence of the service s2) is the 

reception of op2. At this level the resulting trace, σ’ =δ2.(!,s1,s2,op2), will generate a Fail, which means 

that the trace σ’ is not a valid trace. Consequently, we can conclude that the two traces in question 

are not valid.   

 

Figure 3.3.2:  Example of radix tree. 

We will use these following operations on radix trees: 

 emptyTree() returns an empty tree, i.e., without any node. 

 given an action act, and a set of actions Act={act1,..,actn} where for all i ≠ j ≤ n we have acti 

≠ actj, Tree(act, Act) creates a tree with a root containing the action act and n children, each 

of which containing one of the actions act1,.., actn. 

 given a radix tree T, T.leaves() returns the leaves of the tree T, T.children() returns all the 

children of that tree, T.insert(T’) inserts the tree T’ as a child of the tree T ; parent(T,T’) returns 

the parent of the tree T in the tree T’ (i.e., T in a node in T’). Note that, the tree resulting from 

T.insert(T’) is a radix tree. The function insert() merge the branches that have the same prefix.  

We remind that Algorithm 1 computes a radix tree T containing all possible traces of the choreography 

implementation based on the observed trace σ at the orchestrator location. Algorithm 1 starts first by 

initializing T as an empty tree (line 2). The root element will contain the first element of the trace 

(line 3-4).  The algorithm is applied inductively on the orchestrator trace deprived of its lastly 

collected action last(σ) denoted act and the resulting sub-trace is denoted rest(σ). The recursion call 

(line 7) allows us to compute progressively the radix tree by inserting each time the action act at all 

possible positions from an insertion node nodei, until which act can be delayed using the auxiliary 

function insertAtAnyPositionFrom() (line 33). In other words, nodei is the node from which the last 

action, act, can be inserted at any place. Algorithm 1 searches first for all the insertion nodes Nodei 
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(line 20 and 28) for each trace beginning from leaves (line 16 and 24). Then insert act from each of 

the calculated insertion nodes (line 30-31). The set of leaves, Leaves, is updated each time to avoid 

unnecessary recalculation of insertion nodes (line 21 and 29). This is explained in detail in the 

following.  

The insertion node depends on the kind of the action act. In fact, there are three cases: (case line 8) 

If act denotes a quiescence then it is simply inserted at the end of each leaf, consequently, act is 

simply added at the end of each path; (case line 12) If act is an output then it can be delayed in each 

path until the first input subsequent to the last observed quiescence of the sender service calculated 

using the auxiliary function firstInputAfterQuiescence() (line 19); (case line 22) If act is an input then 

it can be delayed until the last observation made at the orchestrator, i.e., either being a quiescence or 

an output of any service calculated using the auxiliary function lastQuiescenceOrOutputOfAny() (line 

27).  

 

Note that all the traces inferred by Algorithm 1 are by construction well-formed. In fact, outputs are 

delayed until the first input subsequent to the last observed quiescence of the sender service. 

Consequently, the Quiescence consistency condition is always true. Besides, quiescence of services 

is simply inserted at the end of the traces (i.e., as a child for each leaf). Since the input trace is a well-

formed trace, the inferred traces will be also well-formed because they will end with the quiescence 

of all the services exactly like the input trace. Therefore, the Ending with quiescence condition is 

always true. 
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In the following, we show the pseudo code of the auxiliary functions used in Algorithm 1. The 

function firstInputAfterQuiescence(ID, node, T) looks for the last node containing an input action, 

beginning from a node node toward its parents and before reaching the last quiescence of service sID. 

lastOutputOrQuiescenceOfAny(node,T) look for the last quiescence or output action of any service 

beginning from a node node toward its parents. The function insertAtAnyPositionFrom(act,T) is used 

to insert an action act in all possible positions from the root node of the tree T and until the leaves.  

 

 

 

To better understand the auxiliary function insertAtAnyPositionFrom(act,T), we apply it to an 

example shown in Table 3.3-1. The function insertAtAnyPositionFrom is applied on an action 

act=(?,s1, s2,op2) and a node n2 belonging to a tree T shown in the column on the left. The two other columns 

show the results of the next two iterations of the function insertAtAnyPositionFrom.    
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Table 3.3-1: Application of the insertAtAnyPositionFrom function on a tree example. 

 Iteration 1  Iteration 2 

act= (?,s1, s2,op2) 

Nodei
= {n2} 

insertAtAnyPositionFrom(act,n2) 

n2.insert(Tree(act,n3)); 

insertAtAnyPositionFrom(act,n3) 

 

 n3.children = Ø  

      then 

      n3.insert(Tree(act)) 

Input Result of Iteration 1 Result of Iteration 2: T’ 

T 

 

 

T’ 

 

 

 

By construction, the function insertAtAnyPositionFrom results in the same set of actions in the 

branches that are stemming from the same node. In other words, given a node with more than one 

child branch, it is only the order of the actions that is changed from one child branch to another. For 

that reason, given an action act, if the insertion node nodei of act belongs to a common path between 

a set of traces, nodei is then the insertion node for all these traces (i.e., the traces stemming from 

nodei). This is because the set of actions until the insertion node is the same, thus, if none of these 

actions is the insertion node then none of the actions belonging to the other branches is an insertion 

node. Let’s consider the example shown in Table 3.3-1. Assuming that one calculates the insertion 

node of a given action act beginning from the left branch (the branch ending with the reception of 

operation op2) and finds that n1 is the insertion node for the tree T’. This means that, contrary to action 

!op1, actions ?op1, !op2 and ?op2 can be interleaved with act. If we would calculate the nodei from the 

branch at the right, before reaching the previously calculated insertion node, n1, we will test 

respectively if the actions ?op1, ?op2 and !op2 can be interleaved with act. According to the previous 

tests, none of these actions is the insertion node. Consequently, n1 is also the insertion node of act for 

that trace. In conclusion, if we find that the insertion node belongs to a common path between some 

traces, we can conclude that it will be the same for the others and we don’t need to recalculate it (line 

21 and 29 in Algorithm 1).  

Note that the function insertAtAnyPositionFrom always results in a radix tree. This is because it 

adds the new branches after taking into consideration the common paths between the newly added 

branches and the already existing ones. Table 3.3-2 shows some intermediate results of the application 

of the function insertAtAnyPositionFrom(act, n2) on and action act and the first child of the node n2 

of the previous example. As shown by the example, the structure of radix tree is respected and the 

resulting tree is a prefix tree. In fact, the insertion node node is updated from an iteration to another 

to insert only the new sub-branches (second and third column). Similarly, the function is then applied 

on the second child of the node n2 (i.e., !op2). Note that the function insert() ensures also the 

preservation of the radix data structure.   

Table 3.3-2: Application of the insertAtAnyPositionFrom function on a second tree example. 
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In the following, we apply the Algorithm 1 (delay operator) to a simple example of a well-formed 

trace, σ1=δ2 (!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op2).(!,s2,s1,op3).(?,s2,s1,op2).(?,s2,s1,op3).δ1δ2, and we 

show some intermediate results when applying the delay operator on that trace, i.e., for illustration 

purposes, we will apply the delay operator only on the first five actions. 

The Algorithm 1 is recursively called and a set of intermediate traces is calculated in the following 

order: σ2, σ3, σ4, σ5 (such that σj=rest( σj-1)). These intermediate traces are shown on the column on the 

left of Table 3.3-3. When the intermediate trace σ5 containing a single element is reached, the 

algorithm returns the intermediate tree T (see Table 3.3-3), which is the result of the intermediate 

computations shown in middle column. The resulting tree, T, contains only a root element whose 

value is equal to the single element in the trace (i.e., δ2). T is used for the computation of the tree 

resulting from the application of the delay operator on σ4. Since act is an output, nodei is calculated 

using the function firstInputAfterQuiescence(), which return by default the root if there is no input 

actions. Then the function insertAtAnyPositionFrom() is applied from nodei, which corresponds in 

this case to the root. The calculated act is then simply added as a child to the root node. The delay 

operator is then applied on σ3, where act is an input. The insertion node, nodei, corresponds then the 

last output action or quiescence of any service. Since the node n1 is output, act is inserted from n1 (i.e, 

as a child). The algorithm is then applied σ2, and finally to σ1.      

 Table 3.3-3: intermediate results for the application of the Delay operator on a trace example. 

Intermediate Traces  Intermediate computations  Intermediate Tree 

σ5=δ2 T=Tree(δ2)  

 n0 

 

act ∈OM(Σ)  

nodei
 

firstInputAfterQuiescence(1,n0,T) = 

n0  

Nodei
  {n0} 

insertAtAnyPositionFrom(act, n0) 
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act ∈IM(Σ)  

nodei
  

lastOutputOrQuiescenceOfAny(n1,T)

=n1 

Nodei
  {n1} 

insertAtAnyPositionFrom(act, n1) 
 

 

act ∈OM(Σ)  

nodei
  

firstInputAfterQuiescence(2,n2,T) = 

n2  

Nodei
  {n2} 

insertAtAnyPositionFrom(act,n2) 

 

 

act ∈OM(Σ)  

nodei
  

firstInputAfterQuiescence(n3,T) = n2  

Nodei
 {n2} 

insertAtAnyPositionFrom(act, n2): 

 n2.insert(Tree(act, n3))                         

 n3.insert(Tree(act)) 

 

Verdict computation. As explained above, our goal in our testing process is to find a valid trace 

between all inferred traces calculated by the offline operator. To do that, we implemented Algorithm 2 

(offline), which is a Depth-first search [170] (DFS) algorithm to find a valid trace in a generated radix 

tree. The algorithm starts the exploration of an input radix tree T at the root node and searches as far 

as possible along each path in order to find a valid trace. The algorithm has as an input a radix tree 

and a trace where a potential valid trace is progressively saved. It begins at the root of the tree with 

an empty trace. Since an empty tree is a valid trace, the algorithm begins with verifying if the tree T 

is empty, if so then it returns a “PASS” (line 2-3) . In case the tree is not empty, the algorithm verifies 

if the result of the concatenation of the already calculated valid trace with the action saved at the root 

node is a valid trace. As we mentioned before, we use Diversity to generate an inclusion verdict by 

calling the inclusion function, which takes as input the choreography specification in addition to the 

trace to test. If the result returned by the inclusion function is a PASS then the algorithm is recursively 

called until the tree is completely explored, i.e., there are no children which are equivalent to an empty 

tree (line 2). If none of the sub-paths is a valid trace then the algorithm look for a valid trace under 

the next child (line 7).  
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3.3.3 Preliminary experimental results 

In this section, we present some experimental results coming from the case study of the Dealer 

Network Architecture, taken from the SoaML specification. In practice, the tester wait for the 

quiescence of all the services to capture the traces of a choreography. Then, he sends the message of 

initiation, which will, in turn, trigger the initiation of the choreography. After, he waits for the 

quiescence of all the services and he collects the traces at the orchestrator level.     

Capturing of services quiescence. In practice, the logs collected at the orchestrator contain only 

communication actions with timestamps. An example of such log is the following: 

σ1=t0.t1.(!,s1,s2,op1).t2.(?,s1,s2,op1).t3.(!,s2,s1,op2).t4.(?,s2,s1,op2).t5.(!,s1,s2,op3).t6.(?,s1,s2,op3).t7.t8. 

The detection of the quiescence of the services is based on the timestamps of the logs and the 

durations d1..dk provided by an expert where each dj is the duration beyond which the service j 

remains silent. For example in σ1, t0-t1> d1 and t0-t1> d2, this is transformed into two quiescence, δ1 and 

δ2, at the beginning of the trace. t3-t2> d1, then a service quiescence of s1 is added before the reception 

of op2. The resulting trace is then: 

σ1= δ1.δ2.(!,s1,s2,op1).(?,s1,s2,op1).δ1.(!,s2,s1,op2).(?,s2,s1,op2).(!,s1,s2,op3).(?,s1,s2,op3).δ1.δ2. 

Note that, between two timestamps, we must observe at least the duration d specified at the OnAlarm 

activity of the Pick activity responsible for the reception of all the incoming operation calls. 

Experimentations. The experimental results are presented in Table 3.3-4. We run a series of 

experiment, shown in Table 3.3-4. For the first experimentation, line (i) in the table, we varied the 

trace length to study the scalability of testing in the orch-conf framework. As shown in the line (i), 

the number of inferred traces and consequently the cost of testing becomes increasingly higher as the 

number of involved roles increases. However, such testing is still interesting in the case where few 

roles are involved in the service contract. In this experimentation, we also compared the number of 

inferred traces with and without considering service quiescence observations. It turns out that the 

observed quiescence reduces considerably the number of inferred traces and substantially reduces the 

risk of explosion of that number. 
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Table 3.3-4: Experimental Results. 

 Orchestrator Injected Fault Trace Observed  #Inferred #Inclusion  Verdict 

 Name Nature Length Quiescence Traces Test    

                         

 orch-chor1 none 6 0 24 3  PASS 

   7 1 9 4  PASS 

(i) orch-chor2 none 26 0 1.625 50  PASS 

   29 3 0.224 62  PASS 

 orch-chor2 none 44 0 5.079 176  PASS 

   46 2 2.087 228  PASS 

(ii) orch-chor1 missing response 7 1 22 5  FAIL 

 orch-chor2 wrong choice 18 0 1.427 86  FAIL 

(iii) orch-chor1 premature response 8 2 122 32  PASS 

 

orch-chor1: orchestrator implementing the Shipping Request Choreography (Figure 3.3.3-a).  

orch-chor2: orchestrator implementing the Escrow Purchase Choreography. (Figure 3.3.3-b). 

observed quiescence: we didn’t consider the ending quiescence of all the services. 

 

        

(a) Shipping request choreography.    (b) Escrow Purchase choreography. 

Figure 3.3.3:  choreography examples from the Dealer Network Architecture. 

In the next two series of experiments, we studied: (ii) the kind of faults that can be systematically 

detected using the orch-conf conformance relation; (iii) and the ones that may be detected only in 

specific situations. In the experiments (ii), we injected a fault that we called the wrong choice. The 

latter consists in making a service doing a choice that is inconsistent with its role in the choreography. 

An example of a wrong choice that could be made by the EscrowService is sending a grievance just 

after receiving the invocation deliveryAcceptance which is not coherent with respect to the alt 

semantics in the choreography. We found that wrong choice failures were successfully detected by 

Diversity tool. Finally, in the last experiments (iii), we injected another fault that we call premature 

response, which consists of sending a response by a service before being invoked. Thus, we modified 

the behavior of the orchestrator of the Escrow Purchase Choreography to wait for the quiescence of 

the service ShippingOrder before invoking its operation. The service itself was modified in a way to 

send the response for orderShippingRequest before receiving that request. This experiment shows 
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that the premature response fault can be revealed during the execution when it happens that the 

service quiescence delay appears in between two successive invocations of the service for example. 

Otherwise, such fault can be masked by communication delays as discussed before and will not be 

detected by Diversity.  

Table 3.3-4 also presents the number of inclusion tests realized for the generated trees using the offline 

operator. The results show that the number of inclusion tests is considerably lower than the number 

of inferred traces, which validate the interest of using the radix tree to structure the inferred traces for 

the purpose of optimizing the test verdict computation. 

 Summary 

In this chapter, we described a novel model-driven offline analysis approach to deal with the 

problem of vertical consistency verification in service-oriented applications (i.e., consistency 

between design and runtime levels). Our approach precisely verifies the coherence between a 

choreography model specified using a sequence diagram and its implementation designed using an 

orchestration between the involved services. Our contribution has dealt with observation limitations 

and asynchronous testing issues where we have defined the well-formedness of a trace and a delay 

operator to infer all possible trace executions when taking into consideration network delays in the 

asynchronous context. We detailed the steps of our analysis process under partial observability 

limitations (i.e., in the case of a restricted access to observation points). We showed that the 

orchestrator traces could be used to infer the global trace since it plays an intermediate role in the 

services choreography. Thus, in our analysis process, we reason on the conformance of the traces 

collected at the orchestrator level with respect to the specification model taking into consideration the 

asynchronous nature of the communication and the network delays. These traces are then analyzed 

using the Diversity tool to verify their conformance with the choreography specification according to 

a conformance relation that we have defined. As a part of this work, we extended Diversity tool, a 

symbolic automatic analysis and testing platform developed in our laboratory, with algorithms to 

allow the verification the well-formedness of a choreography traces and to allow to infer all possible 

traces from the traces captured at an orchestrator location.



 

 

 

 

 

 

 

 

 

 

Part III: VALIDATION 
 

 

In this validation part, we apply our three steps Model-Driven System Engineering approach to a 

well-known and representative case study to validate the approach.
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This chapter illustrates the use of model validation, code generation, and offline testing technics by 

applying them to a case study. This case study is extracted from a doctoral dissertation [10]. It is a 

well-known case study of a client planning vacation using an online service for travel management. 

It provides reservation services for flights and hotels. The travel management system collaborates 

with other online services such as air travel or hotel management services to respond to the client 

request. This case study is representative of the domain and is representative of the complexity of the 

problems that may occur in the industry. 

 Case study objectives 

The purpose of conducting this case study is to evaluate our Model-Driven System Engineering 

approach. As explained before, we follow a three-step approach. The goal of these steps is to verify 

that: 

1. The service-oriented specification model is compliant with SoaML semantics. This 

property is referred to as horizontal consistency. This consistency checking mechanism 

concerns two kinds of validation:
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a) Each view of the service model is compliant with the underlying service meta-model 

semantics (SoaML).  

b) The multiple views of the service-oriented software are consistent with each other.  

2. By applying our model to model transformation, each service choreography is transformed 

into an executable BPEL orchestrator and each component definition in the SoaML models is 

transformed into a Web service definition that could be used to automatically generate the 

component code.      

3. Derived software applications behavior is consistent with the specified behavior. This 

property is referred to as vertical consistency. 

 Specification of the case study  

For the specification and the development of our case study, we are inspired by the Model-

Driven Software Engineering (MDSE) methodology defined in the SHAPE project [171] and SoaML 

specification recommendations. Both SoaML specification recommendations and the MDSE 

methodology followed by the SHAPE project aim to integrate SoaML with existing business 

modeling practices, allowing building upon and extending existing modeling practices rather than 

replacing them. The methodology of SHAPE project proposes building a set of model artifacts 

following the iterative and incremental process paradigm. The methodology starts by specifying the 

Business Architecture Model (BAM), then specifying Software Architecture Model (SAM) as a 

refinement for the BAM and finally automatically generating the Platform-Specific Model (PSM).  

Our methodology, inspired by [171], follows the same three levels of specification BAM, SAM, 

and PSM. We have adapted the three sub-steps to our specification needs. In fact, the SHAPE project 

was focusing on the behavior of the components contrarily to our work, where we are focusing on 

interactions between these components. Figure 4.2.1 shows our MDSE process. The icons indicate 

the associated diagram(s) for each work artifact and the arrows show the most common path through 

the set of work artifacts within an iteration. 

The BAM level describes the business perspectives of a SOA system. It expresses the business 

operations and processes that have to be supported by the system [171]. This level includes the 

requirements/goals usually written in natural languages, business processes in the form of 

Business Process Modeling Notation (BPMN) process diagram, services architecture, and service 

contracts. A BPMN business process defines the expected process of the whole SOA architecture. 

This process is refined using a services architecture that describes the contracts between the 

participants and the role they play in each contract. The SAM provides more details about the software 

architecture by specifying the system components in the form of Participants and Agents, the service 

interfaces, the service choreographies as a refinement of the contracts and in the form of sequence 

diagrams and finally the interfaces and the messages by means of data types, message types, and 

classes. The PSM contains the design and implementation artifacts of the specified service-oriented 

architecture in the chosen technology platforms, i.e., Web Services and WS-BPEL. 
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Figure 4.2.1: The overall Model-Driven Software Engineering process. 

In the following sections, we provide guidelines for how to follow the previously presented MDSE 

in order to specify the Travel Management System case study. We illustrate the different steps of the 

system specification starting by the business processes descriptions.   

4.2.1 Business Architecture Model (BAM) 

The specification was mainly written in natural languages in the doctoral dissertation [10] and 

illustrated using a UML Collaboration and a Collaboration Behavior Diagram. The goal of this step 

is to extract the purpose and the requirement of the system from that document and translate them 

into business architecture models that specify the goals, business rules, business processes, business 

services and business contracts.  

 Process model specification 

In our approach, we use BPMN [86] processes to model the process at the BAM modeling level. 

BPMN is used to define the processes, which are relevant to the whole SOA architecture, and which 

will enable the goals to be met. At that level, the roles of the resources that perform those processes 

(contracts) are fixed. Those roles must be fulfilled by the components to be specified at the PIM level 

and then developed at the PSM level. Since we are essentially focused on formalizing the interactions 

between Participants, we choose the BPMN Choreography Diagram to specify the global business 

process of the Travel Management System. The resulting choreography diagram is shown in Figure 

4.2.2 and is followed by an explanation of the activities and gateways used in the figure.  

 



Chapter 4. Case study  139 

 

  

 

Figure 4.2.2: BPMN business process of the Travel Management System.  

 : is a Choreography Task which is an atomic Activity in a Choreography Process. It 

represents an Interaction, which is one or two Message exchanges between two Participants. Pools 

are the graphic representation of Participants in a Collaboration. A Pool can be a specific Partner 

Entity (e.g., a company) or can be a more general Partner Role (e.g., a buyer, seller, or manufacturer).  

 : is a Sequence Flow, which is used to show the order of the activities.  

: is a Parallel Gateway used to create parallel flows without checking any conditions and to 

synchronize (combine) them. For incoming flows, the Parallel Gateway will wait for all incoming 

flows before triggering the flow through its outgoing Sequence Flows.  

: is an Exclusive Gateway. A diverging Exclusive Gateway (Decision) is used to create 

alternative paths within a Process flow.  

The BPMN business process focuses on the first order processes, which are relevant to the SOA 

without going into details about how they are realized. The process is the following: 

i) The client (Client) visits the Travel Management System (TMS) website looking for a flight 

and a hotel. 

ii) The “Client” searches for a flight and a hotel and chooses the desired dates of travel and the 

destination. 

iii) The travel management system “TMS” queries for the best suitable matches, so it sends a 

request to the Air Travel Management Server (AMS) and Hotel Management Server (HMS). 

iv) To get the best flight, “AMS” requests two flight companies, Fast Airways (F) and Reliable 

Airways (R). These flight companies answer back to “AMS” with corresponding price 

options, which get processed.  

v) The “HMS” server processes the request to get the suitable hotel by invoking two hotel 

companies Excellent Hotel (E), and Premium Hotel (P), which respond back with their 

availabilities and prices.  
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vi) The “TMS” receives the best flight and the hotel information as a response to its query.  

vii) The “TMS” presents the price to the customer after adding its own profit.  

viii) The client may refuse the presented choices. In this case, he/she may go back to Step ii) with 

perhaps a revised set of dates and destinations. However, if he/she accepts the options, then 

he/she selects the flight and the hotel.  

ix) The client has two options: either creating a new account or entering all information, which 

would include all the customer information, namely the credit card information and other 

information (name, customer number) or login with an existing account. When a client enters 

his information for the first time, the TMS validates his information namely his credit card 

information using a credit card validator service before sending a confirmation text message 

to his phone number. 

x) The customer initiates the process payment. The “TMS” sends the credit card information to 

the Bank (B) for the payment process. After processing the information, the Bank may either 

approve the payment or notify the “TMS” in case the transaction is declined. The “TMS” in 

turn notifies the customer. The latter enters a different credit card information. This process 

keeps on repeating until the credit card is successfully authorized. 

xi) Once the transaction is approved, the Bank notifies the “TMS”, which concurrently reserves 

the flight, and the hotel by respectively invoking the “AMS” and the “HMS”. 

xii) Finally, a confirmation email is sent to the client. 

 Specification of the services architectures  

A services architecture is modeled as a UML Collaboration with the stereotype 

ServicesArchitecture. First, we create a UML package. Then we add a services architecture inside it. 

In the previous step, we identified the different participants involved in the services architecture. 

These participants are added to the ServicesArchitecture as parts inside the collaboration typed by 

Participants or Capabilities. In this step, we only specify the participant’s names. Then, we identify 

the service contracts that define the possible interactions between these participants. The interactions 

are represented as collaboration Uses of service contracts defined as a UML collaboration with the 

stereotype ServiceContract. Like the participants, we only specify the names of the contracts and the 

roles they play in these contracts without specifying the involved services. The detailing of the service 

contracts will be elaborated in the next step. A participant is connected to a given role in a 

ServiceContract using RoleBinding relations. For example, the client, c, plays the role c (for the 

client) and the travel management system, tms, plays the role p (for the provider) in the search 

contract.  

The services architecture of the Travel Management System (TMS) is shown in Figure 4.2.3. The 

figure presents the structure of the Travel Management System, which consists of nine roles and 

eleven CollaborationUses among the roles.  The services architecture is composed of a customer, a 

Hotel Management Server (HMS), and an Air Travel Management Server (AMS). The Hotel 

Management Server Participant collaborates with two external airline companies, namely Excellent 

Hotel (eh) and Premium Hotel (ph). In the same way, the AMS Participant also collaborates with two 

airline companies, namely Fast Airways (fa) and Reliable Airways (ra). The Travel Management 

System also has a collaboration with a local Bank (b) for all its financial transactions.   
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Figure 4.2.3 Services architecture of Travel Management System. 

 Specification of the services contracts 

In the previous step, we identified the contract names and the roles names. However, we didn’t 

specify the contractual obligations of the concerned role. In other words, we didn’t specify how these 

roles are satisfied and which conditions a participant playing this role must satisfy. To do so, we need 

to identify the role type of the service contracts. Each role in a service contract must be associated 

with a service specification (except simple interface consumer roles, which mean that there is no 

obligation to consume the service). In this step, we don’t need to identify the interface operations, we 

identify only the names and possibly some high-level operations in the interfaces. These interfaces 

will be further specified in the software architecture modeling level. 

Figure 4.2.4 shows the service contracts specified as part of the services architecture of the TMS. 

The Search contract has two roles represented in the service contract as parts with a connection. The 

roles names are c for customer and p for the provider, but only the provider role has an interface type, 

namely ISearch. It represents a simple service where only the provider is specified. Which means that 

there are no obligations for the consumer to consume the service. Other service contracts like the 

Query contract or the EnterInfos contract specify more than one interface. For example, the service 

contract EnterInfos specifies the interface IEnterInfos for the provider role, the interface ICCVaidate 

for the role of the validator of the credit card and the interface IsendSMS for the role of the SMS 

sender service. 
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Figure 4.2.4: Services contract of the Travel Management System. 

4.2.2 Software Architecture Model (SAM) 

At this level, our goal is to specify the IT level of the system namely service interfaces, executable 

business processes as a refinement of business contracts. We first specify the UML Interfaces and the 

services interfaces, which provide and require those interfaces. After, we identify the operations 

provided by these interfaces. And finally, we specify the data exchanges as input and output of these 

operations.  

 Specification of the interfaces and the services interfaces  

In the previous step, we only specify the Interfaces names and may be some operations. In this 

step, we will refine the interfaces and we may also define the service interfaces, which provide and/or 

require this interfaces. After creating the services interfaces we can define the provided and required 

interfaces, which are modeled as UML interfaces, by adding a UML usage and realization 

dependencies between the services interfaces and the UML interfaces. 

Figure 4.2.5 shows an example of interfaces and service interfaces. The ISearch interface, shown 

in Figure 4.2.5-a, is the type of the provider role in the Search contract, which is a simple contract 

with a simple interface. The ISerach interface contains an operation named search that we have added 

in this step. For the process flight contract, we defined a service interface called SIPF ( for Service 

Interface Process Flight), which provides IprocessFlight and requires IConProcessFlight as shown 

in Figure 4.2.5-b. SIPF is a composite service that provides and requires other services. It must 
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implement all the operations of its provided interfaces. Figure 4.2.5-c shows the interfaces typing the 

roles within the Reserve Flight contract and the usage dependencies between them. The reserve flight 

is a multi-party contract. 

 

 

 

 

    

 

 

 

(a) ISearch interface      (b) Process flight interfaces and associated data  

 

(c) Reserve flight interfaces 

Figure 4.2.5 Services specification in SoaML.  

 Specification of the messages 

In SoaML, data can be modeled using MessageType stereotype (which extends either UML Class, 

DataType or Signal), UML DataType or UML Classes. It specifies the information exchanged 

between service consumers and providers. This data may have properties that can be modeled using 

UML properties. In this step, we define the necessary properties and associated classes to store the 

information to be exchanged between the service consumer and the service provider. Figure 4.2.6 

shows the data types exchanged in the Travel Management System. For example, the customer 

information is modeled as a data type, whose name is CustomInfos and which contains the name of 

the customer (name), his number (customNbr), his credit card information (CCInfos) and his mobile 

number (TelephoneNbr). The CCInfos contains the credit card type (cardType) and the credit card 

number (cardNumber). 

 
Figure 4.2.6 Data types.   
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 Specification of the services choreographies 

We first create an Interaction as an owned behavior of the service contract we want to refine. Then 

we choose UML sequence diagram as behavioral Diagram. We add lifelines and we specify, for each 

lifeline, the role it represents in the contract. Then we add the messages. The Search Sequence 

diagram is shown in Figure 4.2.7 where we specify that the consumer role could call the search 

operation of the provider role typed with ISerach interface. 

 

Figure 4.2.7: Sequence Diagram of Search contract.  

Figure 4.2.8 specifies the behavior of the EnterInfo contract. The customer, c, invokes the operation 

login on the provider, p, typed by the Interface IEnterInfos. Then p invokes the Validate operation of 

ccv, for credit card validator, typed by the Interface ICCValidate then ccv responds back with 

ValidateResp. Finally, p invokes the operation sendSMS of sms in order to send a confirmation SMS 

message to the client. 

 

Figure 4.2.8: Sequence Diagram of Enter Info contract. 

The Sequence Diagram of Process Payment contract is shown in Figure 4.2.9. This behavior contains 

combined fragment to express, for example, alternative choices (alt). As defined in the specification 

given in natural language. The customer initiates the payment process. This is carried out by calling 

the processPayment operation of the IProcessPayment service. Then, the latter sends the credit card 

information to the Bank for payment to be processed. This is carried out by calling the 

processPayment operation of the IBank service. The “TMS” adds the necessary information to 

proceed with the payment. After processing the information, the Bank may either approve the 

payment or notify the “TMS” in case the transaction is declined by calling respectively either approve 

or notify operations (alt operator). The “TMS” in turn notifies the customer. The latter enters a 

different credit card information (newCC). This process keeps on repeating (loop operator) until the 
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credit card is successfully authorized. 

 

Figure 4.2.9: Sequence Diagram of Process Payment contract. 

 Specification of the software components 

In this final step of the system specification, we define the components and how they are 

implementing the services. Once the participants are defined we can use a composite structure 

diagram to refine the component view by adding the port through which the components provide and 

require services. We can also refine the component specification by defining their internal structure. 

Components may contain internal parts communicating together through ports and connectors to join 

these ports. In the case of the complex internal structure of a participant, we can define a SoaML 

services architecture, therefore we can specify communication protocols between the internal parts 

of the components.  

Figure 4.2.10 shows the component view of our case study. Eleven components have been 

specified as SoaML participants that correspond to the participants at the business-level. These 

components collaborate together through services contracts and must be compatible with these 

contracts. To do that they must have ports compliant with the roles specified in the contracts. For 

example, the travel management system has a service port typed by ISearch interface, so it is 

compatible with its provider role in the Search contract.  
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Figure 4.2.10: Participants Diagram of the travel management system. 

The travel management system specification has in total: 11 participants, 11 contracts, 35 lifelines 

and 44 messages.  

 

 Horizontal verification of the SoaML-based specification 

model 

Now our system is specified as a set of UML concepts, before moving to the code generation of 

platform specific model, we need to validate this system specification. Figure 4.3.1 shows this first 

step of our validation process. The goal of this step is to verify the coherence of the system 

specification.  

 
Figure 4.3.1: Verification of SoaML models within the MDSE process. 

The specification should contain no errors and all specification views must be compatible with 

each other with respect to the syntactic and the semantic constraints defined in the SoaML 

specification. As we explained in Chapter 1: Background: modeling with SoaML, we have enriched 
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the SoaML specification with OCL constraints and we have implemented a SoaML editor along with 

a validation module upon Papyrus. All we need then is to use the tool to validate the TMS model.  

The SoaML validation tool allowed us to detect errors in the specification model, such as the 

errors shown in Figure 4.3.2 and Figure 4.3.3. The errors can be read either at the Papyrus diagram 

view or at the model explorer view.   

 
Figure 4.3.2: A screenshot of an error from the papyrus diagram view. 

 

 
Figure 4.3.3: A screenshot of an error from the model explorer view. 

This step is very important since if the model contains inconsistencies, these inconsistencies will 

be propagated to the code where it will be harder to correct them. For example, the error shown in 

Figure 4.3.3 is about a participant, which is playing a role in a services architecture without being 

compatible with that role, i.e., it does not implement an interface compatible with the role it plays in 

the service contract. These errors, if not adjusted, will influence the generated code for the concerned 

participant. When generating the WSDL corresponding to that participant, the resulting WSDL will 

not contain the definition of the missing interface. As we explained in Chapter 2, the WSDL files are 

used to generate the implementation skeleton on the participants. Consequently, this error would 

result in an incomplete implementation of the participant. To resolve the problem at the 

implementation level, the developer has to choose between two alternatives: either implementing the 

code of the missing service from scratch (which could be written in java, C++, C#, etc.) or rectifying 

the model and regenerate the code of the WSDL file.  

 

 Generation and deployment of the case study  

4.4.1 Generation  

As shown in Figure 4.4.1, in a services architecture, each participant is transformed into a web 

service and each service contract is transformed into a BPEL orchestration process.  

Participant is transformed into a WSDL file, from which a web project is automatically generated 

using Apache CXF (see Figure 4.4.1). The CXF tool generates fully annotated Java skeleton code 
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from a WSDL document. This skeleton has to be manually completed with the JAVA code describing 

the internal behaviors of the components. Note that we can use language like Alf to express the 

internal behaviors of the software component and automatically generate the code from such 

specification.  

Each contract is refined with a Sequence Diagram to specify a choreography between services. A 

BPEL process is generated by service contract as shown in Figure 4.4.1. The process is responsible 

for the sending and receiving of the exchanged messages between the participating services described 

through a sequence diagram. The generated processes are .xmi files that must be serialized into a 

.bpel file. Then additional files namely a deploy.xml, a .bpelex and artifacts.wsdl files are required to 

build successfully the BPEL process. The .wsdl file provides all the interfaces provided by the 

collaborating services to be able to play an intermediate role in the services choreography 

(specifically receives all the operation calls). After the completion of the missing files, we manually 

deploy BPEL project in Apache ODE engines. In our experiments, we use two Apaches ODE servers 

and we randomly deploy the BPEL processes on them.  In the next subsection, we will give the 

detailed deployment of an example of service contracts (the EnterInfo contract) and its associated 

services.  

 

 
Figure 4.4.1: Code generation and deployment process. 
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4.4.2 Deployment  

Figure 4.4.2 shows an example of ServiceContract deployment. In this example, we show the places 

where we deploy the BPEL process, the existing and the generated web services. It is about the 

EnterInfos contract, which contains four roles:  

- “c” refers to consumer role: this role has no type which means that there are no obligations 

imposed on the service playing this role. 

- “p” refers to provider role and is typed with IEnterInfos interface so the service playing this 

role must implement the operations of the IEnterInfos interface. 

- “sms” refers to sms sender role and is typed with ISendSMS interface. 

- “ccv” refers to credit card validator role and is typed with ICCValidate interface. 

Both CCValidate and IsendSMS web services are public web services that already exist and are 

accessible via the internet.  

 
Figure 4.4.2: Deployment of enter information contract. 

The CCValidate service validates any credit card number (Master Card, Visa, Amex, DINERS). Its 

WSDL file is available at this link: “http://www.webservicex.net/CreditCard.asmx?WSDL”. 

The SOAP message to invoke the CCValidate service is the following: 

<?xml version="1.0" encoding="utf-8"?> 

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/X

MLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 

  <soap:Body> 

    <ValidateCardNumber xmlns="http://www.webservicex.net"> 

      <cardType>string</cardType> 

      <cardNumber>string</cardNumber> 

    </ValidateCardNumber> 

  </soap:Body> 

</soap:Envelope> 

 

The response message has the following format: 

http://www.webservicex.net/CreditCard.asmx?WSDL
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<?xml version="1.0" encoding="utf-8"?> 

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/200

1/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 

  <soap:Body> 

    <ValidateCardNumberResponse xmlns="http://www.webservicex.net"> 

      <ValidateCardNumberResult>string</ValidateCardNumberResult> 

    </ValidateCardNumberResponse> 

  </soap:Body> 

</soap:Envelope> 

 

The ISendSMS service sends unlimited free SMS to different countries (e.g., Austria, Germany, 

USA, Canada, France and Spain). The WSDL file of this service is available at:  

“http://www.webservicex.net/sendsmsworld.asmx?WSDL”. 

We use reverse engineering to model the SoaML service interfaces from the WSDL definition. 

The IEnterInfos is a new service that we specify from the requirement definition phase. Thus, we 

generated the WSDL file for that service using our SoaML based code generator, then the Java code 

has been generated using CXF. We finally used our code generator to generate the BPEL process 

implementing the choreography logic.  

For the deployment of the web services, as we mentioned before both CCValidate and IsendSMS 

web services are already deployed on servers on the web. We deployed IEnterInfos on an Apache 

Tomcat Server ™ 7.0.68. The BPEL process is deployed on an Apache ODE (Orchestration Director 

Engine) server 1.3.3. Apache ODE was deployed as a web service in Axis 2, by deploying the ODE 

war distribution (ode.war) inside an application server like Apache tomcat.   

 Vertical verification 

 We must remind that for each choreography we generate a BPEL process, the goal of this subsection 

is to validate the transformation in the sense that the generated BPEL processes preserve the semantics 

of the specification language (i.e., UML Interaction in the form of sequence diagram) using the Travel 

Management case study. To perform this verification, after the deployment of the system artifacts, 

namely the Web services and the BPEL processes, we pick up traces of message exchanges and we 

compare them with the expected behaviors specified at design-time using symbolic execution 

techniques. Results are then provided to the system verification engineer in order to check and resolve 

existing problems or to validate the system implementation. This validation step is depicted in Figure 

4.5.1 

 

http://www.webservicex.net/sendsmsworld.asmx?WSDL
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Figure 4.5.1: Offline verification of SoaML models within the MDSE process. 

Since the service contract is independent, all we need is to validate the services contract one by one, 

so we validate local behavior specified by each Sequence Diagrams. Details about the validation 

process are given in the following subsections.  

4.5.1 Monitoring  

Apache ODE server gives the possibility to debug BPEL processes, to understand what is going 

inside the engine. This is allowed via message tracer, which enables the process tester to view the 

inbound and outbound messages to and from the process server. To enable message trace logs for 

BPEL processes, we have configured log4j.properties file located in the lib folder of the tomcat server 

containing the BPEL engine. The traces logs have been formatted to the trace format presented in 

Chapter 3.  

4.5.2 Validation of the service choreographies 

In the specification model, a service contract choreography is modeled with a Sequence Diagram, 

which characterizes a set of traces, i.e., sequences of sending/reception of actions. In order to examine 

the conformance of a choreography implementation with respect to a choreography specification, 

execution traces are collected at different points of observation and then compared to the specified 

sequence diagram using symbolic execution techniques. [149].  

Observers may be placed at each involved service location [128] and a global trace can then be 

deduced by reordering the sending and receiving actions according to their timestamps. However, it 

is sometimes impossible to monitor some web services. For example, in the EnterInfo choreography, 

we use a public Web service available at: http://www.webservicex.net/CreditCard.asmx?WSDL), for 

the credit card validation. Consequently, we cannot monitor its behavior. In that case, we have 

proposed to infer the possible global traces from the orchestrator traces while taking into 

consideration network delays and possibly observed service quiescence. Finally, we have defined a 

conformance relation to reason about the correctness of the services choreography implementation 

under this observability assumption. This conformance relation is verified using the Diversity 
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platform.  

In this section, we apply our process of vertical consistency checking in the TMS case study. As 

shown in  

Table 4.5-1, our case study contains six basic choreographies and five structured ones, which allow 

us to validate the transformations rules for respectively basic and structured choreography. Some 

structured choreographies separately implement the combined fragment opt (Select), par (Query) and 

alt (ReserveFlight and reserveHotel shown in Figure 4.5.2), which allows us to validate their 

behaviors separately. The Process Payment contract contains an alt inside a loop fragment, which 

allows us to validate the race conditions introduced in Chapter 3.  

          

(a) Query choreography         (b) EnterInfo choreography 

            

(c) ProcessFlight choreography   (d) ProcessPayment choreography 

 

(e) ReserveFlight choreography 

 

Figure 4.5.2: Choreography examples. 
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Table 4.5-1: Experimental Results. 

 

 PO Trace 

Length 

OQ Inferred 

Traces 

(status, 

verdict) 

Basic:      

Search OL 2 0 1 (C, P) 

 ProcessFlight OL 2 0 5 (C, P) 

ProcessHotel OL 5 1 2 (C, P) 

 PresentOptions OL 9 2 18 (C, P) 

 EnterInformation OL 9 1 45 (C, P) 

login OL 2 0 1 (C, P) 

Structured:      

Query OL 10 

11 

3 

4 

14 

8 

(C, P) 

(C, P) 

Select OL 2 0 2 (C, P) 

ProcessPayment 

 

 

 

(*) 

OL 

 

 

 

SL&OL 

7 

22 

20 

30 

9 

2 

4 

2 

5 

2 

10 

45 

707 

5070 

1 

(C, P) 

(C, P) 

(C, P) 

(C, P) 

(T, F) 

ReserveFlight 

 

SL&OL 9 

10 

1 

2 

44 

9 

(C, P) 

(C, P) 

 ReserveHotel 

(*) 

OL 

SL&OL 

10 

9 

2 

2 

35 

1 

(C, P) 

(C, P) 

PO: points of observation ∈ {SL: Services Level, OL: Orchestrator Level}. 

A trace is a sequence of sending/reception actions. 

Status: status of the orchestrator at the end of the execution ∈ {T: Timeout, C: Completed}. 

Verdict: calculated by Diversity ∈ {P: Pass, F: Fail} 

OQ: observed Quiescence 

Execution of all alternative choices. We have run a series of experiments for each service contract 

to cover all the possible alternative executions specified by the sequence diagrams. On each 

experiment, we modified one or more services implementations to force the execution of a choice. 

We aimed at verifying that the orchestrators can execute all the alternative choices described by the 

sequence diagram. For example, in the case of alt combined fragment (i.e., a combined fragment 

whose interaction operator is alt), we experimented will all the specified alternatives (each of which is 

defined inside an operand of the alt fragment). In the case of a loop fragment, we experimented with 

many iterations. In the case of par fragment, we varied the message execution order. We also kept 

track of the quiescence of the services. 

Concurrent executions. We have also run a series of experiments with concurrent operation calls. 

We aimed at showing how the proposed orchestrator correctly handles the concurrent arrival of 

messages. 

The sequence diagram in Figure 4.5.2-a shows an example of a choreography with two concurrent 

executions: the reception of the operation call ConvReq() and ConvRsp() by both raCnv and faCnv 
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lifelines. After the generation and deployment of the orchestrator, we re-executed the choreography 

many times, each time we changed the processing time of the requests by introducing latencies in the 

services implementation. After analyzing the traces, we found that the execution order of the 

operations at the Web Services level follows their reception order. The execution of one sequence 

(the reception then the invocation) is not blocking for the execution of the other sequences, they could 

overlap while preserving the constraints described by the sequence diagram. This result complies 

with the semantics of sequence diagrams and saves a lot of time for the execution of the whole 

choreography. 

Race condition. To test how the orchestrators react in case of race condition, we experimented with 

the ProcessPayment choreography shown in Figure 4.5.2-d. As shown in 

Table 4.5-1, the choreography was completed successfully for different iteration numbers of the loop.   

Lines that are marked with a star (*) are experiments where faults have been introduced in the Web 

Services implementations to make inconsistent choices. In the experiment with ProcessPayment 

choreography, the orchestrator received a call for notify() then approve() operations, then it was 

waiting for one of the operation calls: newCC() or ack() until the expiry of its Timeouts. The trace 

analysis with Diversity generates a Fail. In the experiment with ReserveFlight, the service represented 

by lifeline “a” was modified in a way to send two reservation requests for the two Airways flights 

and not only one of them. The orchestrator has only forwarded the first received reservation and 

continues the choreography. However, Diversity computed a Fail verdict. This experiment shows 

that our orchestrator ensures the conformity of the messages exchange with respect to the 

specification but does not guarantee the conformance of the behavior of the Web services.     

 Conclusion 

In this chapter, we have experimented our approach on a typical case study, the Travel 

Management System (TMS), where a client is booking a hotel and a flight. These experiments 

allowed as to validate our three main prototypes, namely the SoaML editor, the code generator and 

the extension of the Diversity testing platform. First, we statically validate the system specification. 

This step allows the detection of inconsistencies in the SoaML specification model. After resolving 

these inconsistencies, the system specification was used to generate executable Web service artifacts. 

Participants were transformed into Web services implemented using Java and choreographies were 

transformed into BPEL processes (An executable process is generated per sequence diagram, which 

is the refinement of a service contract). After that, we verified the conformance between the system 

specification and the running system. The results clearly revealed the pertinence of the implemented 

prototypes and consequently the pertinence of our approach in the different steps of a system 

development, i.e., specification, implementation, and testing.



 
 

 

Conclusions and future work 
In this dissertation, we addressed the issue of guaranteeing horizontal and vertical consistency of 

SOA systems modeled using the SoaML standard language. We also addressed the issue of deriving 

platform specific models based on Web services technology from the SoaML specification models. 

We have provided a novel Model-Driven Engineering approach covering the different steps of a 

system development, i.e., specification, implementation, and testing. Our approach is tool-supported 

and is developed upon Papyrus. This chapter summarizes the main contributions of the work 

presented in this dissertation, recapitulates how we validated them and finally identifies future 

research work. 

 

Summary of contributions. Our first contribution was to provide support for consistency checking 

of SOA-based systems at design level (horizontal consistency). In fact, in an MDE approach, models 

are the main artifacts of the software development process and their consistency is then a crucial issue 

of the entire process. In the SoaML specification, the model consistency is defined via constraints, 

which are expressed by means of an informal explanation written in natural language. These 

constraints are not machine-readable and can only be checked manually. They are also sometimes 

ambiguous. In addition, some of them may present semantic variation points. To deal with these 

problems, we have proposed to automate the consistency checking of the SoaML model by 

formalizing them using OCL. The use of this language resolves ambiguity and helps to a better 

understanding of these constraints. We have also identified the semantic variation points and fixed 

them either by defining a default semantic or by defining some possible semantic variations. The 

OCL constraints cover both syntactic and semantic consistency of SoaML models. 

After the verification of the system specification model, the latter needs to be transformed into 

executable artifacts, which is the goal of our second contribution. Our objective was to provide 

support for the transformation of choreographies into executable orchestrations. We have chosen 

Web services as a target technology and we have defined transformation rules from SoaML models 

into Web services artifacts. These rules cover both structural and behavioral parts of the system 

specification. The structural parts have been transformed into Web service definitions based on 

WSDL, whereas the behavioral part describing services choreographies has been mapped into Web 

service orchestrations based on WS-BPEL. The generated orchestrator implements the high-level 

choreography logic and keeps all the semantics defined at the design level. The challenge of this 

transformation was to propose an orchestrator pattern that takes into consideration many parameters 

such as the asynchronous nature of the communication, the network delays and the problems resulting 

from it mainly race conditions.  

Finally, our third contribution consists in providing support for guaranteeing the consistency 

between the specification model of a SOA-based system and its implementation (vertical 

consistency). We have proposed a novel testing process, which is based on black box techniques to 

verify the coherence between the traces collected at an orchestrator with respect to the corresponding 

choreography specification described using a sequence diagram. After taking into account the 

asynchronous aspect of the communications and the possible consequences of network delays, all 

possible executions traces are deduced from the orchestrator trace then compared with the 

specification model using a conformance relation that we have defined.
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Validation. The results were validated with literature searching, examples, and case studies, 

prototypes and feedback obtained during the elaboration and presentation of peer-reviewed scientific 

publication. 

First, we have started our work with a literature search of existing research results, techniques, and 

tools that are related to our work. We continued to review other new results during the three years of 

this Ph.D. thesis. Secondly, and, in order to understand and identify potential problems, we used and 

established examples and case studies, which were then reused to validate our approach. The main 

two case studies are the Dealer Network Architecture, a well-known case study taken from the SoaML 

Specification, and the Travel Management System [10], which is a common case study on Web-based 

applications where a client uses a Travel Management System to search for flights and hotels. The 

Dealer Network Architecture case study is used along this dissertation to illustrate our approach. 

Third, several prototypes have been developed to support the contributions and validate them. The 

main three prototypes are the SoaML editor, which provides support for the specification and the 

validation of SoaML-based models. This prototype checks consistency between SoaML views with 

respect to the syntax and the semantics described in SoaML specification.  The second prototype is 

the SoaML generator, which automates the generation of web services artifacts from SoaML models. 

Finally, the third prototype, is an extension of the symbolic analysis and testing platform, Diversity, 

to support offline analysis of service choreographies under partial observability conditions. Our main 

contributions were published in a peer-reviewed scientific conference whose best paper award was 

attributed to our paper [172]. Having our main results evaluated and validated by international 

specialized researchers further reinforces the validity of our contributions. 

 Future Work 
From the work we have accomplished in this dissertation, we see several research directions worth 

investigating. Several improvements can also be considered for the prototypes that have been 

implemented.  

Improvement of the current prototypes. In this dissertation work, we have implemented tool 

prototypes as proof of concepts. Part of our prototypes are already integrated to Papyrus and are 

available as open source code, namely the SoaML editor with the validation module integrated to it. 

Although our goals did not include the development of commercial tools, we realized that we needed 

to increase the usability of our code generator. That is to say, our generation process needs to be fully 

automated. In fact, our code generator prototype allows the automatic generation of WSDL/XSD 

services descriptions and BPEL processes from SoaML models. The generated BPEL process needs 

then to be completed manually by the system developer with other files necessary for the deployment 

of the process into a BPEL engine (e.g., the deployment descriptor file). This step could be done 

automatically as an improvement of our tool. Another step that we have suggested in the generation 

process is the use of an existing open source code generator to generate java code skeleton from the 

generated WSDL files. This step could be integrated into our tool so that the generation will result in 

Web services projects containing the code skeleton of the participants written in Java or other 

languages. This can lead us to another improvement, which is giving the user the possibility of 

choosing the target language and the model elements that he wants to transform.  

Decentralized orchestration. In our research, we only considered transforming a choreography into 

a centralized orchestration. In future work, we can consider defining and implementing 

transformation rules from a choreography into a decentralized orchestration. As we have already 
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mentioned, the generation of decentralized orchestration is a challenging work since the responsibility 

of the choreography has to be divided among the participants. Additional synchronization 

mechanisms must be defined to establish coherence between participating services, which must all 

behave in coherence with the choreography logic. 

Formalizing the transformation specification. In our research, we verify the correctness of the 

transformation from choreography to orchestration by analyzing the system traces and verifying the 

conformance between the traces and the expected behavior with respect to a conformance relation.  

Formalizing the transformation rules from choreography to orchestration and reasoning about the 

formal correctness of the transformation could be considered as a future work.  

Support for dynamic adaptation. The SOA architecture offers dynamism and flexibility. This is 

very advantageous for the development of self-adaptive systems, where system components (or 

services) are composed, and sometimes selected, at runtime to adapt to varying environmental 

conditions and requirements. In fact, the partition of complex systems into independent entities 

(services) facilitates the changes in the system by allowing dynamic selection and composition of 

services to deal with new business requirements. This partition also facilitates replacing a service 

with another if needed, thus fostering system dynamicity. A well- known pattern that could be applied 

to allow dynamic reconfiguration is the feedback loop that is provided by the MAPE-K cycle [173], 

which is the abbreviation for Monitor, Analyze (to detect problems), Plan (plan solutions), Execute 

(execute the planned solutions) and Knowledge (is the system context). As a future work, we can 

apply the MAPE-K pattern into the SoaML Participants, which would precisely be SoaML Agents 

that have the ability to adapt to their dynamic environment thanks to their ability to monitor their 

environment, analyze the changes in it to then be able to plan and execute adequate reconfigurations 

to adapt to these changes.  

Choreographies or more generally services contracts could also adapt to the changing 

environment. This work has been mainly focused on static choreography scenarios where the 

choreography scenario and the participating services are fixed at specification time. Future work 

would consider dynamic scenarios. Such scenarios should be related to contexts and may change to 

adapt to internal system changes (e.g., failure of a service) or environmental changes (new services 

with better properties or new user requirements). The SoaML models could be used as a 

model@run.time [154]. The idea of models@run.time is to “extend the applicability of models 

produced in model-driven engineering (MDE) approaches to the runtime environment” [174]. For 

example, SoaML models should be able to express runtime context and possible changes in the 

system. This leads us to think about expressing the variability and the commonalities in a SoaML 

model. Several variation points could be used to express possible variants. At execution, the system 

will dynamically choose the “most” suitable variants depending on the context [175]. These variants 

may provide a better quality of service (QoS), offer new services that did not make sense in the 

previous context, or discard some services that are no longer useful.  

SoaML models include many implicit commonalities and variabilities. For example, Capabilities 

can be used by themselves or in conjunction with Participants to represent general functionality or 

abilities that a Participant must have. Thus, capability could express common functionalities between 

some participants. There are also many implicit variation points that must be clarified. For example, 

in a composite service contract, the “sub-contracts” may express exclusiveness or coexistence of these 

contracts. This could be clarified using a feature model, which is a compact representation of all the 

products in a Software Product Line [176]. 



 

 

ANNEX 
 

I. ANNEX A 

A.1 SoaML editor 

The SoaML editor has been developed as an extension of Papyrus. In Papyrus, domain-specific 

modeling languages are defined using UML profiles. We then create the SoaML profile by adapting 

the xmi file containing the SoaML provided by the OMG in the following link:   

http://www.omg.org/spec/SoaML/20120501/SoaMLProfile.xmi.  

We have defined customized viewpoints in order to provide a user-friendly editor. In fact, viewpoints 

are a customization feature provided in Papyrus to allow the definition of new diagrams through the

http://www.omg.org/spec/SoaML/20120501/SoaMLProfile.xmi
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reuse and the customization of the original Papyrus diagrams. Viewpoints can be regarded as a set of 

diagrams, selected and customized from the original ones. We use this feature to define customized 

diagrams for our SoaML editor. As shown in Figure I.1, we have defined five viewpoints: 

Capabilities, Messages, Participants, ServicesArchitecture, ServiceContract and ServiceInterfaces 

viewpoints. For each viewpoint, we have defined a diagram (see Figure I.2, the red box).  

 

Figure I.1: SoaML viewpoints. 

 

Figure I.2: SoaML diagrams. 

Each diagram has its own customized palette. Figure I.3 shows the five customized palettes that we 

defined for each viewpoint. 
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(a) servicesArchitecture                (b) serviceContract                     

 

   

 

 

 

 

 

      (c) Service definition 

 

          (d) Participants   

 

 

 

 

 

          (e) capabilities          (f)  data 

Figure I.3: Palettes of the SoaML Papyrus editor. 

 



Annex  161 

 

  

A.2 Prerequisites for OCL language 

Object Constraint Language (OCL) [156] was initially developed in 1995 at IBM and is now a part 

of the UML standard. OCL is already added to many UML specifications like SysML specification 

document in order to provide a more precise definition of UML meta-models. OCL allows the 

definition of four types of constraints: an Invariant, a post-condition, a pre-condition and a guard. 

Preconditions must be true at the time of operation execution. Post Condition evaluates to true at 

the moment the operation ends. Guard must be true before state transition can occur. Finally, 

invariants are constraints that apply to all instances of the metamodel element. It is written as an 

expression that evaluates to true if the condition is met. An invariant condition must always evaluate 

to true for all instances at the model level (L1). In our work, we use invariant conditions that we 

attach to a SoaML stereotype. Then, these constraints must evaluate to true for all the model elements 

stereotyped by this stereotype.  

In OCL, invariants are defined as follows: 

context context type inv [Invariant name]: 

Boolean condition 

An example of OCL invariant constraint is the following: 

context Company inv:  

self.noEmployees <= 50 

This constraint indicates that the value of attribute noEmployees in instances of Company must be 

less than or equal to 50.  

An OCL invariant is defined in the “context” of a specific type, named the context type of the 

constraint. Its body, which is the Boolean condition to be checked, must be satisfied by all instances 

of the context type. In a Boolean condition, we can access objects and their properties, e.g., attributes, 

and navigate between them by using UML vocabulary. This navigation is syntactically denoted by a 

dot. “self” is used to indicate the current object and “result” the return value. OCL defines standard 

types (e.g., Boolean, Integer, Real, String), collection types (Collection, Set, Bag, and Sequence) and 

operations (e.g., not, if … then … else … endif, =, <>, or, and, xor, implies, etc.). 

A.3 Implementation of consistency constraints using OCL 

 SoaML constraint: All ownedAttributes of a MessageType must be Public. 

Constrained element: MessageType 

Message type represents data values that can be sent between parties. For that reason, the owned 

attributes of a MessageType must be public, otherwise, it cannot be accessed by another participant.    
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OCL constraint: 

context SoaML:: MessageType inv publicAttributes 

if self.base_Class<>null  
      then self.base_Class.attribute->size()>0 

 implies self.base_Class.attribute->forAll (a|a.visibility=UML::VisibilityKind::public) 

else  
      if self.base_DataType<>null  

then self.base_DataType.attribute->size()>0  

         implies self.base_DataType.attribute  ->forAll(a|a.visibility=UML::VisibilityKind::public) 

        else  
               self.base_Signal.attribute->size()>0  

  implies self.base_Signal.attribute -> forAll  (a|a.visibility=UML::VisibilityKind::public) 

        endif 
endif 

 

This constraint verifies that the visibility of all the attributes of a MessageType evaluates to 

“UML::VisibilityKind::public” in the case where the MessageType is a Class (base_Class<>null) or a 

DataType or a Signal. 

 SoaML constraint: All parts of a ServiceInterface must be typed by the Interfaces realized or 

used by the ServiceInterface. 

Constrained element: ServiceInterface 

A ServiceInterface defines the interface and responsibilities of a participant to provide or consume a 

service. It may represent  a simple or complex service. In the first case, there is no required interface 

and no protocol specified by the ServiceInterface (see Figure I.4 taken from the SoaML specification 

document). A complex ServiceInterface may specify “parts” and “owned behaviors” to further define 

the responsibilities of participants providing this service. Figure I.5 shows an example of complex 

ServiceInterface, InvoicingService. As shown in the figure, the parts inside the ServiceInterface, 

orderer and invoicing, are typed by the Interfaces realized (provided) and used (required) by the 

ServiceInterface, Invoicing and InvoiceProcessing respectively, in order to represent the possible 

consumers and providers of the functional capabilities defined in those interfaces. The 

ServiceInterface is then used to define a formal agreement between the eventual consumers and 

providers. 

 

Figure I.4: The StatusInterface as a simple service [8]. 
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Figure I.5: The InvoicingService ServiceInterface [8]. 

OCL constraint : 

context SoaML:: ServiceInterface inv partsTypesOfServiceInterface 

self.base_Class.ownedAttribute->forAll(a| 

self.base_Class.getAllUsedInterfaces()->includes(a.type)  

or  
 self.base_Class.allRealizedInterfaces()->includes(a.type)) 

This constraint verifies, for all the attributes of a ServiceInterface, if the attribute type is included 

into the used interfaces (getAllUsedInterfaces() returns ) or the realized interfaces of that 

ServiceInterface.

 SoaML constraint: The type of a Service must be a ServiceInterface or an Interface. 

Constrained element: Service 

Similarly to the Request constraint, we found that this constraint is incomplete. In fact, a port can also 

be typed by a Provider, which “is intended to be used as the port type of a Participant that provides a 

service”[8]. A provider extends both Interface and Class. Consequently, a port type of Request can 

be a class stereotyped as a Provider. The resulting constraint is then: “The type of a Request must be 

a ServiceInterface or an Interface or a provider”.  

OCL constraint: 

context SoaML:: Service inv ServiceType: 

if base_Port.type.oclIsUndefined()  

then false  

else 

let portType: Type=  base_Port.type  

in 

portType.getAppliedStereotypes()->select(s|s.name='ServiceInterface' or  s.name='Provider' )->size()=1     

or portType.oclIsTypeOf(Interface) 

endif 

 

This OCL constraint is evaluated in the context of a Service. It first verifies that the service port has 
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a type, computes that type (portType), then verifies that the port type is either a UML Interface or is 

stereotyped by either ServiceInterface or Provider. 

 SoaML constraint: The parts of a ServicesArchitecture must be typed by a Participant or 

capability46.  

Constrained element: ServicesArchitecture 

ServicesArchitecture provides a “high-level view of a Service Oriented Architecture that defines how 

a set of participants works together, forming a community, for a given purpose by providing and using 

services”. Parts in a services architecture represent roles played by a participant in that SOA 

application. Parts could also be typed by Capability to allow the specification of a role without regard 

for how that role might be implemented, since Capability can be realized by one or more Participants. 

Figure I.6 shows the Services architecture “Dealer Network Architecture”. The services architecture 

is composed of two parts, dealer and mfg, which are respectively typed by Dealer and Manufacturer.   

 

Figure I.6: Part type in a ServicesArchitecture [8]. 

OCL constraint : 

context SoaML:: ServicesArchitecture inv partsTypes 

let  
  properties : Set (UML::ConnectableElement) = self.base_Collaboration.role 

in 
  properties->notEmpty()  

  implies  
  properties-> forAll(p|p.type->exists(t| 

                                t.getAppliedStereotypes()->select(s|s.name='Participant' or   s.name='Capability'  
                                                                                        or s.name='Agent' )->size()=1) ) 

 

Remember that the ServicesArchitecture is a Collaboration. The parts of a collaboration are called 

roles. We first compute the set of the services architecture roles, properties. Then we verify that for 

each role in a services architecture, the role type is stereotyped either as Participant or as Capability 

or as Agent. 

                                            
46 Capabilities specify a cohesive set of functions or resources that a service provided by one or more Participants 

might offer. 
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 SoaML constraint: Each service role in a service contract has a type, which must be a 

ServiceInterface or UML Interface or Class stereotyped as “Provider” or “Consumer.” 

Constrained element: ServiceContract 

ServiceContract represents an agreement between several parties. To allow the reuse of a 

ServiceContract, the latter is specified between service definitions so that it does not require the 

specification of who, how, or why any party will fulfill their obligations under that ServiceContract. 

This provides loose coupling between the agreements and the service implementations defined using 

Participants so that the same contract can be used for several service implementations. 

OCL constraint : 

context SoaML:: ServiceContract inv RoleType 

let  
isComposit :  Boolean= self.base_Collaboration.ownedConnector->isEmpty() and  

self.base_Collaboration.getAllAttributes() 
->select(oclIsTypeOf(UML::CollaborationUse))->notEmpty(), 

isSimple :Boolean=  self.base_Collaboration.getAllAttributes() 

->select(oclIsTypeOf(UML::CollaborationUse))->isEmpty() 

in   
self.base_Collaboration.role-> notEmpty()  

implies  
isSimple and self.base_Collaboration.role-> forAll(role| (role.type->notEmpty() )  

implies role.type.oclIsTypeOf(UML::Interface)) 

or 
isComposit  and self.base_Collaboration.role->forAll(role|role.type.oclIsTypeOf(UML::Interface) 

or 
   (role.type.oclIsTypeOf(UML::Class) and  (role.type.oclIsTypeOf(UML::Class)  

        implies(role.type.getAppliedStereotypes()->select(s|s.name='Provider' or s.name='Consumer'  
                                                                                        or s.name='ServiceInterface') ->size()=1))) ) 

 

 

Remember that a ServiceContract is a UML Collaboration. The idea is to check that any type of a 

role (roleType) in the contract Collaboration is a UML Interface in the case of a simple contract or, 

in the case of a composite contract, either an Interface or a UML Class stereotyped with 

ServiceInterface or Provider or Consumer stereotypes. Simple contracts (isSimple=true) are 

contracts without nested contract and composite ones (isComposite=true) are contracts containing 

nested contract (CollaboationUse) without direct connection between parties (by Connectors). 

 SoaML constraint: Agents should always be active. The property isActive must always be true. 

Constrained element: Agent 

The isActive is an attribute in a UML Class. It determines whether an object specified by this Class 

is active or not. If true (resp. false), then the owning Class is referred to as an active (resp. passive) 

Class. When a UML Class is modeled as being active, this means that an instance of this class has 

some autonomous behavior. Similarly, in SoaML an Agent refers to an autonomous Participant that 

can adapt to and interact with their environment. 
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OCL constraint:  

context SoaML:: Agent inv IsActive: 

self.base_Class.isActive 

 

This OCL constraint is evaluated in the context of an Agent. It verifies that the property isActive 

evaluates to true.  

 SoaML constraint: The direction property of a Service port must be incoming. 

Constrained element: Service 

Contrary to Request, Service provides the Interfaces that are released by the ServiceInterface while 

it requires the Interfaces that are used by the ServiceInterface, so that the property isConjugated must 

evaluate to false. 

OCL constraint: 

context SoaML:: Service inv isConjugatedFalse 

not base_Port.isConjugated 

 

This OCL constraint is evaluated in the context of a Service. It verifies if the property isConjugated 

evaluates to false.  

 SoaML constraint: One end of a ServiceChannel must be a Request and the other a Service in 

a ServicesArchitecture.  

Constrained element: ServiceChannel 

Participants in a ServicesArchitecture are connected together through ServiceChannels. A 

ServiceChannel provides a communication path between a Request port of a consumer Participant 

and a Service port of a provider Participant. This explains the fact that one end of a ServiceChannel 

must be a Request and the other a Service. 

OCL constraint: 

context SoaML:: ServiceChannel inv serviceChannelEndTypes: 

let portsSet: OrderedSet(UML::ConnectorEnd)= self.base_Connector.end  

->select(e|e.oclIsTypeOf(UML::Port))  

in 

portsSet->size()>0  

implies  

portsSet->includes(p|p.getAppliedStereotypes()->select(s|s.name='Request')->size()=1) 

and  

portsSet->includes(p|p.getAppliedStereotypes()->select(s|s.name='Service')->size()=1) 

 

 

This OCL constraint is evaluated in the context of a ServiceChannel which is a UML Connector. It 

first computes the set of the ports, portsSet, connected to that Connector. Then verifies that portsSet 

includes one port stereotyped by Service and one port stereotyped by Request. 
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 SoaML constraint: If the CollaborationUse has isStrict=true, then the parts must be compatible 

with the roles they are bound to. For parts to be compatible with a role, one of the following must be 

true:  

1. The role and part have the same type.  

2. The part has a type that specializes the type of the role.  

3. The part has a type that realizes the type of the role.  

4. The part has a type that contains at least the ownedAttributes and ownedOperations of the 

role. In general, this is a special case of item 3 where the part has an Interface type that realizes 

another Interface. 

Constrained element: CollaborationUse 

The property  “isStrict” Indicates whether this particular fulfillment is intended to be strict. A value 

of true indicates that the roleBindings must bind the role to compatible part. Then the constraint is 

evaluated only if the property isStrict evaluates to true. 

OCL constraint : 

context SoaML:: CollaborationUse inv RoleBindingClientSupplierCompatibility 

self.isStrict=true  

implies 
self.base_CollaborationUse.roleBinding-> forAll(rb| 

(let 

supplierType =(rb.oclAsType(UML::Dependency).supplier->select(s|s.oclIsTypeOf(UML::Property)) 
->select(s|s.oclAsType(UML::Property).type.oclIsTypeOf(Class)) 

->collect(oclAsType(UML::Property).type ->asOrderedSet()->first())), 

clientType= (rb.oclAsType(UML::Dependency).client->select(s|s.oclIsTypeOf(UML::Property)) 

->collect(t:UML::NamedElement|t.oclAsType(UML::Property).type)->asOrderedSet()->first()) 
in ( 

     --1. The role and part have the same type. 

supplierType= clientType 

or 

--2. The part (the supplier) has a type that specializes the type of the role. 

 (clientType.oclAsType(Classifier).generalization.general->closure(general) 
->includes(supplierType))  

or 
--3. The part has a type that realizes the type of the role. 

 (clientType.oclAsType(Classifier).getRelationships().oclAsType(UML::Realization) 
->includes(supplierType))  

or 
--4. The part has a type that contains at least the ownedAttributes and ownedOperations of the role. 
 (supplierType.oclAsType(Classifier).getAllAttributes()  

->includesAll(clientType.oclAsType(Classifier).getAllAttributes())  

 and supplierType.oclAsType(Classifier).getAllOperations() 

->includesAll(clientType.oclAsType(Classifier).getAllOperations())) 
))) 

 

As we explained before, a CollaborationUse contains roleBindings that bind each of the roles of its 

Collaboration to a part. For each roleBinding, rb, we calculate the type of the supplier of the binding, 

supplierType and the type of the client of the binding, clientType. Then we verify the compliance for 

all of them.  

Compliance between the parts with the role they are bound to in a CollaborationUse is a semantic 

variation point. The specification gives a list of possible variations and it is up to the modelers to 
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determine which of the constraint choice(s) to apply [8]. In our specification, we choose to keep the 

four choices as alternatives (the expression evaluates to true if at least one of the variations is 

fulfilled). 

 SoaML constraint: Each Participant satisfying roles in a ServicesArchitecture shall have a port 

for each role binding attached to that Participant. This port shall have a type compliant with the type 

of the role used in the ServiceContract (This constraint comes from the UML2 Collaboration whose 

semantics are augmented with this requirement.) 

For example, in the Dealer Network Architecture example shown in Figure I.7. The Shipper plays 

role shipper in the ShipStatus contract. To be compatible with this role, it has a Request port typed 

with ShippingStatus Interface. Thus as specified in the service contract, it requires the service 

ShippingService. It is then compatible with its shipper role in the ShipStatus contract.  

The Shipper plays another role, called also shipper, in the ShippingRequest contract. The Shipper has 

a Service port typed with ShippingService ServiceInterface. It provides ShippingOrder Interface and 

requires ScheduleUpdating Interface as described in the ShippingRequest contract. Thus, it is 

compatible with the role it plays in that contract. 

 

                        

    

Figure I.7: Dealer Network Architecture. 

Constrained element: ServicesArchitecture 

OCL constraint : 
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context SoaML:: ServicesArchitecture inv ParticipantsRoleCompatibility 

let  
properties : Set (UML::ConnectableElement) = self.base_Collaboration.role, 

collBUses: Set(UML::Element)= self.base_Collaboration.collaborationUse  

in 
collBUses->notEmpty()  

implies  
collBUses.oclAsType(UML::CollaborationUse).roleBinding 

-> forAll(rb| --for all the role bindings of the CollaborationUse 

let  
--compute the set of the ports types 
portTypesOfSupplier = rb.oclAsType(UML::Dependency).supplier -> 

select(s|s.oclIsTypeOf(UML::Property)) 

->select(s|s.oclAsType(UML::Property).type.oclIsTypeOf(Class)) 
-> collect(oclAsType(UML::Property).type.oclAsType(Class).getAllAttributes()) 

-> select(att|att.oclIsTypeOf(UML::Port))->collect(oclAsType(UML::Port).type) ,  

--compute the type of the client property of the RoleBinding rb 
clientType=rb.oclAsType(UML::Dependency).client->select(s|s.oclIsTypeOf(UML::Property)) 

-> collect(t:UML::NamedElement|t.oclAsType(UML::Property).type)->asOrderedSet()->first() 

in  
--1. Verify if port types of the Participant includes the role type. 
portTypesOfSupplier->includes(clientType) 

--2. Verify if the Participant has a port type that specializes the type of the role. 

or 
(clientType.oclAsType(Classifier).generalization.general->closure(general)-> 

includes(portTypesOfSupplier))  

--3. Verify if the supplier has a port type that realizes the type of the role. 

or 
(clientType.oclAsType(Classifier).getRelationships().oclAsType(UML::Realization)  

->includes(portTypesOfSupplier))  

--4. Verify if the supplier has a port type that contains at least the ownedAttributes and 
ownedOperations of the role. 

or 

(portTypesOfSupplier.oclAsType(Classifier).getAllAttributes() 
-> includesAll(clientType.oclAsType(Classifier).getAllAttributes())  

   and  
portTypesOfSupplier.oclAsType(Classifier).getAllOperations() 

-> includesAll(clientType.oclAsType(Classifier).getAllOperations()) 
) 

 ) 

 

 

Any Participant playing a role in a service contract must be compliant with this role. We are verifying 

this compliance for each role binding (rb) attached to a contract (collBUses is the set of contracts in 

the ServicesArchitecture). The Participant bound to this rb must have a port type compliant with the 

type of the role bounded to it. First, we compute the set of the port types, portTypesOfSupplier, 

belonging to the Participant (called a supplier of the binding) and the role type, clientType, in the 

contract (called a client of the binding). Then, at least one of these four conditions must hold: The 

role type matches a port type of the supplier, the supplier has a port type that specializes the type of 

the role and the supplier has a port type that realizes the type of the role or the supplier has a port type 

that contains at least the ownedAttributes and ownedOperations of the role. 
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II. ANNEX B 

B.1 Overview of target WSDL and WS-BPEL metamodels  

As we mentioned before, SoaML model elements, namely the service definitions and the UML 

Interactions are transformed into WSDL, XSD and BPEL model element. The transformation rules 

are defined at the metamodel level. We already presented the metamodel element of SoaML language, 

and the main metamodel elements of a sequence diagram, being part of the source language. In this 

section we introduce the main metamodel elements of a WSDL definition and a WS-BPEL process, 

being the targeted language by the model transformation presented in the next section. 

B.1.1 WSDL metamodel 

Web Service Description Language47 (WSDL) is an XML language used to describe and locate 

web services. It describes the functionality of a web service and specifies how to access the service 

(binding protocol, message format, and etc.). Figure 5.1.1 shows the main elements of the WSDL 

metamodel.  

 

Figure II.1: Overview of the WSDL metamodel elements. 

A WSDL definition contains one or many Services. Each one contains a set of system functions 

and contains at least one Port that defines the address to a Web service typically represented by a 

simple HTTP URL string. Each port is connected to a Binding that specifies the binding style 

                                            
47 https://www.w3.org/TR/wsdl 
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(RCP/Document), the transport protocol (SOAP or REST) and the operations offered by the service. 

A Binding is associated with one PortType, which defines the Operations that can be performed, and 

the Messages that are used to perform the operations. In fact, Messages define the data elements for 

each operation. There are two kinds of messages: input messages for inbound ones (Request) and 

output messages for outbound ones (Response). Each message is made up of one or more logical 

Parts, which are a description of the logical content of a message and may represent parameters in 

the message.  

B.1.2 BPEL metamodel 

Web Services Business Process Execution Language (WS-BPEL or simply BPEL [69]) is an 

OASIS standardized executable language, which is intended to define business processes through web 

service orchestrations. It is used to describe the control logic required to coordinate web services in 

order to achieve a business goal. BPEL is defined in an XML format and utilizes several XML 

specifications: WSDL to define partner services; XML Schema type definitions to specify the data 

model; and, XPath and XSLT to provide support for data manipulation. In the following, we will show 

the main concepts of the BPEL language. 

Business process definition includes two elements [69]: a WSDL file that describes the business 

process functionalities (web services) together with their message data structures, service addresses, 

among others; and, a WS-BPEL file that defines the business process logic. In the following, we will 

give an overview of the BPEL metamodel elements and their syntax. This metamodel is not included 

in the BPEL OASIS specification but deduced from it. It is taken from the apache ODE plugins in the 

Eclipse framework. As shown in Figure II.2, a BPEL process is composed of PatnerLink(s), 

Variable(s) and one Activity at most. 

 

Figure II.2: Composition of BPEL process.  

 

Partner links. A BPEL process exports and imports functionalities by using web service Interfaces 

which are modeled as partnerLinks. Each partnerLink is characterized by a partnerLinkType defined 

in the WSDL definition. A partnerLinkType specifies the role and the type of a partner. An input 

communication activity is associated with the process's MyRole and an output communication activity 

is associated with the partner's PartnerRole. 

Variables. Variables are used to store data to be exchanged between partners. They allow processes to 

maintain state between message exchanges. BPEL supports three types of variables: WSDL message 

type, XML simple type, and XML schema element. WSDL message type variables are the most 

commonly used type of variables to store the data exchanged between business partners. The other 

two types of variables hold data that is used in business logic and for composing messages sent to 

partners.  

Activities. Figure II.3  shows a simplified view of the WS-BPEL metamodel of the BPEL activities. 
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Figure II.3: Overview of BPEL activities.  

BPEL allows modeling basic activities such as invoke or receive activities and structured activities 

such as an assign activity. This latter can be used to copy data from one variable to another, as well as 

to construct and insert new data using expressions. To call Web Services, BPEL defines an invoke 

activity. This activity enables the specification of the operation that will be invoked, which can be a 

request-response operation (in the case of synchronous web service) or one-way operation (in the case 

of asynchronous web service), matching the operation definition (WSDL).  

BPEL defines a receive and pick constructs that are used to receive inbound messages. A receive is a 

blocking activity that waits until a matching message is received by the process instance. The pick 

activity is similar to a receive activity in that it is a blocking activity. However, it waits for the 

occurrence of exactly one event from a set of events, each of which is defined by an onMessage, and 

then executes the activity associated with that event. After an event has been selected, the other events 

are no longer accepted by the pick activity. An onAlarm activity can be added to pick activity to specify 

a timeout alarm. The reply activity is used by a BPEL process to respond to a request previously 

accepted through an inbound message activity. BPEL defines several structure activities such as 

sequence activity, which defines a collection of activities to be performed in sequential order. 

Activities forEach, while and repeatUntil are used for repeated execution of a contained activity. 

Activities if and elseIf are used to model conditional branching. The flow activity is used to model 

parallel process flows. The wait activity specifies a delay for a certain period of time or until a certain 

deadline is reached.  

For a best understanding, the following subsections will look at BPEL process structure and syntax 

using an example taken from [177]. This example is illustrated in Figure II.4. 
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Figure II.4: BPEL process example. 

This scenario models communication rules between a seller S, a broker B and a client C. The seller 

relies on a broker to negotiate and sell an item to a client. First, it sends a message Item to the broker. 

The broker then enters a negotiation loop (Offer-Counter) with the client as many times as he chooses, 

then it has the choice to finishing the negotiation by concurrently sending both messages Final and 

Result to the seller and the client respectively.  

In the following, we give more information on the interaction patterns in BPEL (i.e., synchronous 

and asynchronous), parallel execution of flow branches, process instance, and correlation sets. 

Interaction Patterns in a BPEL Process: Synchronous versus Asynchronous processes. In a 

synchronous interaction, a client sends a request to a service and remains blocked until the receiving 

of the response. A BPEL process can be either a client or a service of a synchronous transaction. In 

case it is on the client side, it needs an invoke activity that both sends the request and receives the 

response. In case it is on the service side, it needs a receive activity to accept the incoming request, 

and a reply activity to return the requested information. 

In an asynchronous interaction, a client sends a request to a service and waits until the service 

replies. On the client side, the process needs an invoke activity to send the request and a receive activity 

to receive the reply (it can also use a pick activity with a timeout). On the service side, it needs a receive 

activity to accept the incoming request and an invoke activity to return the requested information. The 

example in Figure II.4 shows an asynchronous BPEL process, precisely a server. Each time the process 

receives an operation call through a receive activity, it replies using an invoke activity.   

Parallel execution of flow branches. Concurrent processing in BPEL is enabled through the definition 

of flow activities. Its activities are enabled to start concurrently when the flow starts. The latter is 

completed when all of these activities have completed. The flow activity also provides also 

synchronization mechanism by the link construct. Each WS-BPEL activity optionally contains sources 
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and targets, which respectively contain collections of the source and target elements. A source 

corresponds to the source of a link and a target corresponds to the target of a link. Links provide a level 

of dependency indicating that the activity that is the target of the link is only executed if the activity 

that is the source of the link has completed. This results in a synchronization relationship between the 

source and target activity. 

In several engines (i.e., oracle, Apache ODE, and ActiveBPEL), branches are executed serially in 

a single thread. The execution order of flow branches differs between these implementations. The 

execution is in an order fixed in advance in ActiveBPEL and Oracle BPEL (that is from left to right in 

ActiveBPEL and from right to left in Oracle BPEL [178]). One thread starts executing a flow branch 

until it reaches a blocking activity (for example, a receive activity). At this point, a new thread is 

created that starts executing the next branch. However, Apache Orchestration Director Engine 

(Apache ODE) engine executes the activities of the different branches in an unpredictable order to 

ensure some fairness between the executions of the different branches. For this reason, we chose 

Apache ODE for the execution of the BPEL processes.  

Process instance. In BPEL, instances are created upon receiving a message targeted for a “start” 

activity. This is the only way to instantiate a new business process. Then, a BPEL process must start 

with a start activity, which is a receive or pick activity that is annotated with a createInstance attribute 

set to “yes”. For each incoming message (i.e., message received by the process instance), BPEL engine 

creates a new process instance and starts its execution. It is possible to have multiple start activities. 

In most cases, messages are destined to an already existing stateful process (i.e., a stateful process is a 

process that generates its response by executing business logic on its state stored in persistent store), 

which are instantiated to act in accordance with the history of an existing interaction. Consequently, 

messages sent to stateful processes need to be delivered not only to the correct destination port but also 

to the correct instance of the business process providing this port.  

Correlation sets. Messages destined to the same instance should be correlated by means of some 

correlation data. In order to distinguish process instances, BPEL provides the correlation mechanism. 

A correlation set is a compound key made up of one or more property values (in Figure II.5, 

customerID and orderNb) that must be simple types and are mapped into message parameters by 

property aliases. Each property in the correlation set must have an alias for the concerned message 

parameter. An Alias defines the mapping rule set (one per message type) that determines the message 

fields used to identify an instance. CustomerID is respectively mapped to ID and cID in input message 

of the first and the second receive activities. The correlationSet must be associated with the appropriate 

communication activities (invoke, receive and reply activities; onMessage branches of pick activities, 

and onEvent variant of eventHandlers). The values of the properties for a correlation set must be 

identical for all the messages in all the operations that carry the correlation set to its completion. In 

Figure II.5, messages 1 and 2 are directed to the same instance because they have the same values of 

the properties customerID and orderNbr. 



Annex  175 

 

  

 
 

Figure II.5: BPEL CorrelationSet and instances. 

 

WS-BPEL also introduces systematic mechanisms for dealing with business exceptions and 

processing faults. Moreover, it introduces mechanisms to define how activities within a process are to 

be compensated when exceptions occur or a partner requests reversal. 

B.2 Transformation of structural models 

Algorithm 1 is the pseudo-code of the transformation that we have detailed in section 2.3. The pseudo-

code describes the mapping from SoaML to WSDL. 
 

Algorithm 1 SoaML to WSDL Transformation Pseudo-Code 

1: procedure SOAML2WSDL(SoaML Model,WSDL Model) 

2:  Apply stereotype soaml:SoaMLPackage; 

3:  Create wsdl:Definition from SoaML:Participant; 
4:  

5:  foreach SoaML:port in Participant do 

6:   Get the type(Service Interface) and create wsdl::Service 
7:   Get the Realized Interfaces by the type 

8:   foreach Interface of the Realized Interface do 

9:    Create wsdl::PortType 
10:    Get the Operations of Interface 

11:    foreach Operation do 

12:     Create wsdl::Operation 

13:     Get the Parameters 
14:     foreach Parameter do 

15:       if Input or Inout then 

16:        Create wsdl::Input 
17:       end if 

18:        if Output or Inout then 

19:        Create wsdl::Output 

20:        end if 

21:     end foreach 

22:     end foreach 

23:     Create wsdl::Binding 
24:     Get Operations 

25:     foreach Operation do 

26:      Create Messages 
27:     Get the Parameters 

28:     foreach Parameter do 

29:      Create wsdl::Part 

30:     end foreach 
31:      Get the Parameters 
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32:     foreach Parameter do 

33:      Create wsdl::Types 

34:      Create wsdl::ComplexType 
35:      Create Element with name and type 

36:     end foreach 

37:    end foreach 

38:   Create wsdl::Port 
39:  end foreach 

40:       end foreach 

41: end procedure 

First, each participant is mapped to a WSDL definition. Each port belonging to a Participant has a 

type, which may be a SoaML ServiceInterface or a simple UML Interface. This type is mapped into 

a WSDL Service of the same name. In the case of ServiceInterface, only realized interface are mapped 

into a WSDL port that contains a binding associated with a WSDL portType. For each portType there 

must be at least one WSDL binding with type name equal to the portType name. Each interface 

operation is transformed into a WSDL operation in the portType with an input and an output 

messages. Then, each operation parameter is mapped into a part in the already generated messages 

which has element reference and to a ComplexType containing one element if it is SimpleType or 

many in the case of Datatypes. 

Below is the QVT-o code of the transformation of SoaML participants into BPEL processes.  

QVT-o code SoaML2WSDL  

modeltype wsdl "strict" uses wsdl('http://www.eclipse.org/wsdl/2016/WSDL'); 

modeltype SoaML "strict" uses SoaML('http://Papyrus/SoaML/1'); 

modeltype UML "strict" uses uml('http://www.eclipse.org/uml2/5.0.0/UML'); 

modeltype RootElement "strict" uses RootElement('http:///RootElement.ecore');  //Modeltype of PortExtension  

 

transformation SoaMLToWSDL(in soamlin: UML, out wsdlout: wsdl);   

main() {soamlin.rootObjects()[SoaML::Participant]->map SoaML2wsdl();} 

 

mapping SoaML::Participant::SoaML2wsdl() : wsdl::Definition { 

targetNamespace:= "http://eclipse.org/wsdl/"+ self.base_Class.name ; 
xmlns:= "http://schemas.xmlsoap.org/wsdl/ "+ "xmlns:soap12=" + 

"http://schemas.xmlsoap.org/wsdl/soap12/"+"xmlns:soap="+"http://schemas.xmlsoap.org/wsdl/soap12/"; 

self.base_Class.ownedPort-> forEach(p){//Get all the Ports  

var wsPortSto : Stereotype := p.getAppliedStereotype("RootElement::PortExtension"); //Calling the 

PortExtension Stereotype  

var loc:= p.getValue(wsPortSto,"Location").toString(); //  

var bind: EnumerationLiteral := p.getValue(wsPortSto,"BindingType").oclAsType(EnumerationLiteral);  

var bindtype:=bind.name; 

var ReaInt:= p.type.oclAsType(Interface); 

 

if(bind.name='SOAP'){result.Bindings := ReaInt.map toSOAPBinding();} 
else {result.Bindings := ReaInt.map toRESTBinding(bindtype);}; 

 

result.PortTypes := ReaInt.map toPortType(); 

result.Types:=ReaInt.map toTypes(); //Mapping of all Elements and Parameters to SimpleElements or 

ComplexType 

result.Message:= ReaInt.ownedOperation.map toMessageOut().min; //Every operation has an input message 

and an output message  

result.Message+= ReaInt.ownedOperation.map toMessageOut().mout; // An input and an output message are 

created from an Operation  

result.Service := p.type.oclAsType(Interface).map toServicefromInterface(loc);}} 

     
mapping Interface::toTypes() : wsdl::Types  {result.schema:=self.map toSchema();} 
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mapping Interface::toSchema(): Schema{   

result.complexType:=self.ownedOperation.ownedParameter.map toComplexType(); // Transform DataTypes 

to ComplexType elements  

result.element:=self.ownedOperation.ownedParameter.map toMessageElement(); 

result.element+=self.ownedOperation.ownedParameter.map toMessageElementFromSimpleType(); // 

Transform PrimitiveTypes to Simple Elements} 

    

mapping Parameter::toComplexType() : wsdl::ComplexType when{self.type.oclIsTypeOf(DataType)}{   
result.name:=self.type.oclAsType(DataType).name; 

result.sequence:=self.type.oclAsType(DataType).map toSequence();} 

  

mapping DataType::toSequence() : wsdl::Sequence when{self.oclIsTypeOf(DataType)} {

 result.element+=self.ownedAttribute->map toElement();} 

  

mapping UML::Property::toElement() : wsdl::Element {    

result.name:= self.name; 

result.Type:=self.type.name;} 

   

mapping Parameter::toMessageElement(): wsdl::Element when{self.type.oclIsTypeOf(DataType)} 

{result.name:=self.name; 
result.Type:="tns:"+self.type.oclAsType(DataType).name;}  

 

mapping Parameter::toMessageElementFromSimpleType():wsdl::Element 

when{not self.type.oclIsTypeOf(DataType) and self.type.oclIsTypeOf(PrimitiveType)} { 

result.name:=self.name;     

result.Type:=self.type.name;    } 

 

mapping UML::Interface::toServicefromInterface(a:String) : wsdl::Service { 

 name:=self.name; 

 result.Port:=self.map toPort(a);} 

 
mapping UML::Interface::toPort(b:String) : wsdl::Port { 

name:= self.name+"Port"; 

binding:= "tns:"+self.name+ "Binding"; 

result.address:=self.map toAddress(b);}  

  

mapping UML::Interface::toAddress(b:String): wsdl::address{location:=b;} 

 

mapping UML::Interface::toPortType() : wsdl::PortType { 

name:= self.name+"PortType"; 

result.Operation:=self.ownedOperation->map toOperation();} 

 

mapping UML::Operation::toOperation() : wsdl::Operation { 
name:=self.name; 

var c=self.ownedParameter; 

result.Input:= object wsdl::Input{message:="tns:"+self.name+"MessageInput"}; //The message has the  

result.Output:=object wsdl::Output{message:="tns:"+self.name+"MessageOutput"};}  

  

mapping UML::Operation::toMessageOut(): min:wsdl ::Message,mout: wsdl::Message{ 

mout.name:=self.name + 'MessageOutput'; 

min.name:=self.name + 'MessageInput';  

mout.Part:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'out' or 

p.direction=ParameterDirectionKind::_'inout')->map toPart(); 

min.Part:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or 
p.direction=ParameterDirectionKind::_'inout')->map toPart();}  

 

mapping Parameter::toPart() : wsdl::Part { 

result.name:=self.name+'Part'; 

result.elementName:= "tns:"+ self.name;} 

      

mapping UML::Interface::toSOAPBinding() : wsdl::Binding { 

name:= self.name+"Binding";  
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type:= self.name+'PortType'; 

result.Operation:=self.ownedOperation->first().map toOpSOAP(); 

result.soapbinding:=self.map toBindingSOAP();} 

 

mapping UML::Interface::toBindingSOAP() : wsdl::SOAPBinding{ 

result.style:="document";  

result.transport:="http://schemas.xmlsoap.org/soap/http";} 

 

mapping UML::Operation::toOpSOAP() : wsdl::Operation { 
name:=self.name; 

result.Input:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or 

p.direction=ParameterDirectionKind::_'inout')->first()->map toInpSOAP(result); 

result.Output:=self.ownedParameter-> select(p|p.direction=ParameterDirectionKind::_'out' or 

p.direction=ParameterDirectionKind::_'inout')->first().map toOutSOAP(result);} 

 

mapping Parameter::toOutSOAP(op: wsdl::Operation) : Output { 

result.soapbody:=self.map toBody();} 

 

mapping Parameter::toInpSOAP(op:wsdl::Operation):Input{ 

result.soapbody:=self.map toBody();} 

 
mapping Parameter::toBody() : wsdl::soapbody {result.use:="literal";} 

 

mapping UML::Interface::toRESTBinding(a:String) : wsdl::Binding { 

name:= self.name+"Binding";  

type:= self.name+'PortType'; 

result.httpbinding:=self.map toHTTPBinding(a); 

result.Operation:=self.ownedOperation.map toOp();} 

 

mapping UML::Interface::toHTTPBinding(a:String) : wsdl::HTTPBinding{ 

if(a='RESTPost'){verb:='POST'} else {verb:='GET'};} 

 
mapping UML::Operation::toOp() : wsdl::Operation { 

name:=self.name; 

result.Input:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or 

p.direction=ParameterDirectionKind::_'inout')->first()->map toInp(result); 

result.Output:=self.ownedParameter-> select(p|p.direction=ParameterDirectionKind::_'out' or 

p.direction=ParameterDirectionKind::_'inout')->first().map toOut(result);} 

 

mapping Parameter::toOut(op: wsdl::Operation) : Output { 

result.mimecontent:=self.map toHTTPContent();} 

mapping Parameter::toInp(op: wsdl::Operation) : Input { 

result.mimecontent:=self.map toHTTPContent();} 

 
mapping Parameter::toHTTPContent(): HTTPContent{ 

result.type:="text/xml";} 

 

query UML::Type::isServiceInterface():Boolean{ 

return self.oclIsTypeOf(ServiceInterface);} 

 

query UML::Type::isInterface() : Boolean {return self.oclIsTypeOf(Interface);} 

query UML::Classifier::isDataType():Boolean{return self.oclIsTypeOf(DataType);} 

 

B.3 Transformation of services choreographies 

Algorithm 2 is the pseudo-code for the mappings of a SoaML choreography into a BPEL process.  

 

Algorithm 2 SoaML to BPEL Transformation Pseudo-Code 

1: procedure SOAML2BPEL(SoaML Model,BPEL Model) 

2:  Apply stereotype soaml:SoaMLPackage; 
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3:  Create BPEL:Process from UML:Interaction found in Service Contract; 

4:  foreach UML::Interaction do 

5:   Create BPEL::Variables (List of Variables) 
6:   Get the List of Messages 

7:   foreach Message in Interaction do 

8:    Create BPEL::VariableInput 

9:    Create BPEL::VariableOutput 
10:  end foreach 

11:   Create BPEL::PartnerLinks(List of Partnerlinks) 

12:   Get the List of Lifelines 
13:   foreach Lifeline in Interaction do 

14:    Create BPEL::PartnerLink 

15:    Create BPELpl::PartnerLinkTypes 
16:    Create BPELpl::PartnerRole 

17:  end foreach 

18:   Create Sequence (Sequence of activities) 

19:   Create Flow 
20:   foreach MOS in Interaction do 

21:    Sort MOSs into a set containing MOSs corresponding to one Lifeline 

22:    Create BPEL::Sequence 
23:    Check Type of MOS 

24:    foreach MOS of type “isSend” do 

25:     Create BPEL::Receive 
26:    end foreach 

27:    foreach MOS of type “isReceived” do 

28:     Create BPEL::Invoke 

29:    end foreach 

30:   end foreach 

31:   foreach Message in Interaction do 

32:    Create BPEL::Link 
33:   end foreach 

34:   foreach Link Created do 

35:    BPEL::Sources 

36:    Get Receive Events 
37:    Create BPEL::Source(Children) 

38:    Store the Receive Events (Invoke activity) into source 

39:    Create BPEL::Targets 
40:    Get Send Events 

41:    Create BPEL::Target(Children) 

42:    Store the Send Events (Receive activity) into Target 
43:   end foreach 

44:  end foreach 

45: end procedure 

 

First, an Interaction is mapped into a BPEL process. Each lifeline is mapped into a partnerLink in the 

generated BPEL process, each partner link has a partner role. After that, two local variables are 

generated per message, an input and an output variable. Afterward, we generate the flow activity and 

then we structure it by mapping each lifeline into a BPEL Sequence activity inside the Flow activity. 

Each Message Occurrence Specifications is mapped into invoke or receive activity depending on its 

type. Finally, each message is mapped into a link where we store the associated invoke activity into 

the list of sources of the link, and the receive activity into the list of the targets thereby ensuring the 

ordering between the received and send events of the message. 

Below is the QVT-o code of the transformation of basic choreographies into BPEL processes.  
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QVT-o code SoaML2BPEL 

modeltype SoaML "strict" uses SoaML('http://Papyrus/SoaML/1'); 

modeltype UML "strict" uses uml('http://www.eclipse.org/uml2/5.0.0/UML'); 

modeltype bpe "strict" uses  'http://docs.oasis-open.org/wsbpel/2.0/process/executable'; 

modeltype bpelpl "strict" uses 'http://docs.oasis-open.org/wsbpel/2.0/plnktype'; 

modeltype wsdl "strict" uses wsdl('http://www.eclipse.org/wsdl/2016/WSDL'); 
 

transformation toBPEL(in soamlin: UML, out bpel: bpe,out wsdlfile:bpelpl);   

main() {  

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map SoaML2WSDL(); 

soamlin.rootObjects()[UML::Model]->map SoaML2pbel(); //Generate a Sequence of BPEL Processes 

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map toRole(); //Generate 

WSDL File (Roles) 

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interface].map toPortType(); 

//GenerateWSDLFile(PortType) 

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction]->map BPELOrchestratorRole(); 

//Generate the Orchestrator Role} 

  
mapping UML::Interface::toPortType() :  wsdl::PortType@wsdlfile{ 

name:= self.name+"PortType"; 

result.Operation:=self.ownedOperation->map toOperation();} 

 

mapping UML::Interaction::BPELOrchestratorRole() : Role@wsdlfile { 

 name:='OrchestratorRole';} 

 

mapping UML::Operation::toOperation() : wsdl::Operation@wsdlfile { 

name:=self.name; 

self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or 

p.direction=ParameterDirectionKind::_'inout')->map toVariable();} 
 

mapping UML::Parameter::toVariable(): bpe::Variable@wsdlfile{name:=self.name;} 

 

mapping UML::Model::SoaML2pbel() : Sequence(bpe::Process) {     

self.ownedElement[UML::Interaction]->map InteractionToBpelProcess(); //Generate BPEL Process from 

every Interaction } 

 

mapping UML::Lifeline::SoaML2WSDL() : PartnerLinkType@wsdlfile { name:=self.name;} 

 

mapping UML::Lifeline::toRole(): bpelpl::Role@wsdlfile {name:=self.name+'Role';} 

 
mapping UML::Interaction::InteractionToBpelProcess() : bpe::Process { 

 name:=self.name; 

 targetNamespace:='http://eclipse.org.bpel/'+self.name; 

result.variables:= self.map MessagesToVariables(); //Generate the list of Variables 

result.activity:=self.map InteractionToMainSequenceActivity(); //Generate the Main Sequence 

result.partnerLinks:= self.map lifelinesToPartnerLinks(); //Generate List of Partnerlinks}  

  

mapping UML::Interaction::lifelinesToPartnerLinks() : bpe::PartnerLinks { 

children:= self.lifeline->map lifelinesToPartnerLink(); //Generate a Partnerlink for Every lifeline} 

 

mapping UML::Lifeline::lifelinesToPartnerLink() : bpe::PartnerLink {  

 name:=self.name; 
 result.PartnerLinkType:=self.resolveone(PartnerLinkType); 

  result.myRole:=self.resolveone(bpelpl::Role);} 

  

mapping UML::Interaction::MessagesToVariables() : bpe::Variables {  

//Generate for every message two variables 

children:= self.ownedElement[Message]->map messageToVariableInput(); //Generate Input Variable  

children:= self.ownedElement[Message]->map messageToVariableOutput(); //Generate output Variable} 

 

mapping UML::Message::messageToVariableInput() : bpe::Variable { 

result.name:= self.name+'MessageInput';} 
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mapping UML::Message::messageToVariableOutput() : bpe::Variable { 

result.name:= self.name+'MessageOutput';} 

   

mapping UML::Interaction::InteractionToMainSequenceActivity() : bpe::Sequence { 

name:='main'; 

result.activities:=self.map toFlow();}   //Generate Main flow  

 

mapping UML::Interaction::toFlow() : bpe::Flow { 
name:='flow'; result.links:=self.map toLinks(); //Generate List of Links  

result.activities:=self.lifeline->map toLifelineSequence(self);} 

 

mapping UML::Interaction::toLinks() : bpe::Links {  

result.children:=self.message.map toSingleLink();} 

mapping UML::Message::toSingleLink() : bpe::Link { name:=self.name+'Link'; } //Generate a Link for Every Message  

 

mapping UML::Lifeline::toLifelineSequence(a:UML::Interaction ) : bpe::Sequence  

{//Generate a Sequence for every Lifeline  

name:=self.name; 

var SetOfMOS:=self.interaction.fragment[MessageOccurrenceSpecification]; //Get List of Message Occurence 

Specifications 
var UMLLifeline := self;   

SetOfMOS->forEach(p) {   

if(p.covered->asOrderedSet()->first()=UMLLifeline) { 

result.activities+=p.map mosToBPELReceiveActivity();//Generate Receive from MOS 

result.activities+= p.map mosToBPELInvokeActivity();//Generate Receive from MOS 

result.activities+=p.map toAssignActivity();}}} // Generate Assign from MOS 

 

mapping MessageOccurrenceSpecification::toAssignActivity(): bpe::Assign when{self.isSend()}{   

 result.name:=self.message.name+'Assign'; 

 result.validate:=false; 

 result.copy:=self.map toAssignCopy(); 
 result.sources:=self.map toSources();} 

 

mapping MessageOccurrenceSpecification::toSources(): bpe::Sources { 

result.children:=self.map toSource();} //Generate List of Sources 

mapping MessageOccurrenceSpecification::toSource(): bpe::Source{  

result.Link:=self.message.resolveone(Link);}   ; //Generate Source  

 

mapping MessageOccurrenceSpecification::toAssignCopy(): bpe::Copy{ //Manipulate Data 

result._from:=self.map toAssignFrom(); 

result.to:=self.map toAssignTo();}  

 

mapping MessageOccurrenceSpecification::toAssignFrom(): bpe::From when{self.isSend()} 
 {var lifel:=self.covered->asOrderedSet()->first(); 

lifel.represents.type.oclAsType(Interface).ownedOperation; 

var a:=''; 

result._literal:=a ;} 

 

mapping MessageOccurrenceSpecification::toAssignTo(): bpe::To {} 

 

mapping MessageOccurrenceSpecification::mosToBPELReceiveActivity() : bpe::Receive  

when{self.isSend()}{ 

 result.name:=self.name; 

result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink); 
result.variable:=self.message.resolveoneIn(UML::Message::messageToVariableInput, bpe::Variable);} 

 

mapping MessageOccurrenceSpecification::mosToBPELInvokeActivity() : bpe::Invoke  

when{self.isReceive()}{ 

result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink); 

     result.name:=self.name; 

     result.targets:=self.map toTargets(); 

result.inputVariable:=self.message.resolveoneIn(UML::Message::messageToVariableOutput, 
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bpe::Variable);} 

 

mapping MessageOccurrenceSpecification::toTargets(): bpe::Targets  

{result.children:=self.map toTarget();} //Generate List of Targets  

mapping MessageOccurrenceSpecification::toTarget(): bpe::Target 

{result.Link:=self.message.resolveone(Link); }; //Generate Target 

 

 

Below is the QVT-o code of the transformation of structured choreographies into BPEL processes.  

 

QVT-o code SoaML2BPEL 

modeltype SoaML "strict" uses SoaML('http://Papyrus/SoaML/1'); 

modeltype UML "strict" uses uml('http://www.eclipse.org/uml2/5.0.0/UML'); 

modeltype bpel "strict" uses  'http://docs.oasis-open.org/wsbpel/2.0/process/executable'; 

modeltype bpelpl "strict" uses 'http://docs.oasis-open.org/wsbpel/2.0/plnktype'; 

modeltype wsdl "strict" uses wsdl('http://www.eclipse.org/wsdl/2016/WSDL'); 

 

transformation toBPEL(in soamlin: UML, out bpel: bpel ,out wsdlFile:bpelpl ); 

main(){  

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map SoaML2Secbpel(); 

//Generate WSDL File 

soamlin.rootObjects()[UML::Model]->map SoaML2pbel(); //Generate BPEL Process  

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map toRole(); //Generate 
Lifeline ROles 

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interface].map toPortType(); //Generate PortType 

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction]->map BPELOrchestratorRole(); 

//Generate Orchestrator Role 

soamlin.rootObjects()[UML::Model].ownedElement[UML::Message]->map toIQarrayWSDL(); //Generate 

the FIFO queue IQ  

soamlin.rootObjects()[UML::Model].ownedElement[UML::Operation]->map fromOptoQueue();} // Add 

Operation to Queue 

  

mapping UML::Message::toIQarrayWSDL():wsdl::ComplexType@wsdlFile{ 

result.sequence:= self.map toSequenceWSDLArray();}//Generate Sequence of Operations 
 

mapping UML::Message::toSequenceWSDLArray():wsdl::Sequence{} 

 

mapping UML::Interface::toPortType():wsdl::PortType@wsdlFile{ 

name:= self.name+"PortType"; 

result.Operation:=self.ownedOperation->map toOperation();} 

 

mapping UML::Operation::toOperation():wsdl::Operation@wsdlFile{//Generate Operations 

name:=self.name; 

self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or 

p.direction=ParameterDirectionKind::_'inout')->map toVariable();} 

 
mapping UML::Parameter::toVariable():bpel::Variable@wsdlFile{name:=self.name;} 

 

mapping UML::Model::SoaML2pbel():Sequence(bpel::Process) {//Sequence of Processes 

self.ownedElement[UML::Interaction]->map InteractionToBpelProcess(); //Generate a BPEL process from 

Every Interaction} 

 

mapping UML::Lifeline::SoaML2Secbpel() : PartnerLinkType@wsdlFile{ 

 name:=self.name;} 

 

mapping UML::Interaction::BPELOrchestratorPLT() : PartnerLinkType@wsdlFile { 

 name:='OrchestratorPL';} 
 

mapping UML::Interaction::BPELOrchestratorRole() : Role@wsdlFile { 

 name:='OrchestratorRole';} 
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mapping UML::Lifeline::toRole(): bpelpl::Role@wsdlFile {name:=self.name+'Role';} 

 

mapping UML::Interaction::InteractionToBpelProcess() : bpel::Process { 

 name:=self.name; 

 targetNamespace:='http://eclipse.org.bpel/'+self.name; 

 result.variables:= self.map MessagesToVariables();//Generate for each message 2 Variables  

 result.activity:=self.map InteractionToMainSequenceActivity();//Generate the Main Sequence 

 self.fragment.IntFragToActivities(); 

 partnerLinks:= self.map lifelinesToPartnerLinks();}  
  

mapping UML::Interaction::lifelinesToPartnerLinks() : bpel::PartnerLinks { 

 children:= self.lifeline->map lifelinesToPartnerLink(); 

children+=object bpel::PartnerLink{name:='Orchtestrator';myRole:=self.resolveone(Role); }; //Indicate Role 

for PartnerLink Type} 

 

mapping UML::Lifeline::lifelinesToPartnerLink() : bpel::PartnerLink { 

 name:=self.name;  

result.PartnerLinkType:=self.resolveone(PartnerLinkType); 

result.myRole:=self.resolveone(bpelpl::Role);} 

  

mapping UML::Interaction::MessagesToVariables() : bpel::Variables { 
children:= self.ownedElement[Message]->map messageToVariable();} 

 

mapping UML::Message::messageToVariable() : bpel::Variable { 

result.name:=  self.name+'Message';} 

   

mapping UML::Interaction::InteractionToMainSequenceActivity() : bpel::Sequence { 

name:='main'; 

result.activities:=self.map toFlow();}  //Generate the Flow  

 

mapping UML::Interaction::toFlow() : bpel::Flow { 

name:='flow'; result.links:=self.map toLinks(); 
result.activities:=self.lifeline->map toLifelineSequence(self); 

result.activities+=self.map toWhile();} //Generate the While Activity(Additional Branch) 

 

mapping UML::Interaction::toWhile() : bpel::While{ 

result.activity:=self.map toPick();result.name:='MsgReceptionLoop'; result.condition:=self.map 

toWhileCondition();} //Generate While Construct and its Condition 

 

mapping UML::Interaction::toWhileCondition():bpel::Condition{ 

result.expressionLanguage:='';}  

 

mapping UML::Interaction::toPick() : bpel::Pick{  

 result.messages:=self.ownedElement[Message]->collect (signature)->map ToOnMessage();} 
 

mapping UML::NamedElement::ToOnMessage(): bpel::OnMessage{  

result.activity:=self.map toOnMessageSequence(); //Generate List of OnMessage}  

 

mapping UML::NamedElement::toOnMessageSequence():bpel::Sequence{  

result.activities:=self.map toWhileBranchAssign();} 

 

mapping UML::NamedElement::toWhileBranchAssign():bpel::Assign{ name:=self.name;} 

 

mapping UML::Interaction::toLinks() : bpel::Links {  

result.children:=self.message.map toSingleLink();} //Generate Link 
 

mapping UML::Message::toSingleLink() : bpel::Link { name:=self.name+'Link'; } 

 

mapping UML::Lifeline::toLifelineSequence(a:UML::Interaction ) : bpel::Sequence { 

name:=self.name; 

var SetOfMOS:=self.interaction.fragment[MessageOccurrenceSpecification];  

var UMLLifeline := self;  

SetOfMOS->forEach(p) { 
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if(p.covered->asOrderedSet()->first()=UMLLifeline) { 

result.activities+=p.map mostoWhile(); //Generate Ievent() 

result.activities+=p.map mostoSequence();}}} 

 

mapping MessageOccurrenceSpecification::mostoSequence(): bpel::Sequence { 

result.activities+=self.map toAssignActivity(); //Generate Assign  

result.activities+=self.map mostoInvoke();  

result.activities+=self.message.signature.oclAsType(UML::Operation).map 

toAssignOpDequeue(self.message.resolveone(wsdl::ComplexType)); //Dequeue Operation from FIFO array} 
 

mapping MessageOccurrenceSpecification::mostoInvoke() : bpel::Invoke 

when{self.isReceive()}{} 

 

mapping MessageOccurrenceSpecification::toAssignActivity(): bpel::Assign when{self.isSend()}{  

 result.name:=self.message.name+'Assign'; 

 result.validate:=false; 

 result.copy:=self.map toAssignCopy(); //Manipulate Variable 

 //result.sources:=self.map toSources(); } 

 

mapping MessageOccurrenceSpecification::toAssignCopy(): bpel::Copy{ 

result._from:=self.map toAssignFrom(); 
result.to:=self.map toAssignTo();} 

 

mapping MessageOccurrenceSpecification::toAssignFrom(): bpel::From when{self.isSend()}{ 

var lifel:=self.covered->asOrderedSet()->first(); 

lifel.represents.type.oclAsType(Interface).ownedOperation; 

result.variable:=self.message.signature.oclAsType(Operation).ownedParameter.resolveone(bpel::Variable) ; 

var a:=''; 

result._literal:=a;} 

 

mapping MessageOccurrenceSpecification::toAssignTo(): bpel::To {} 

 
mapping MessageOccurrenceSpecification::mosToBPELReceiveActivity() : bpel::Receive  

when{self.isSend()}{  

 result.name:=self.name; 

 result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink); 

 result.variable:=self.message.resolveone(bpel::Variable);} 

mapping MessageOccurrenceSpecification::mosToBPELInvokeActivity() : bpel::Invoke  

when{self.isReceive()}{ 

result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink); 

result.name:=self.name;} 

 

helper UML::InteractionFragment::IntFragToActivities() { 

 switch {   
 case (self.oclIsTypeOf(CombinedFragment)) { 

// Check the Type of CombinedFragment 

if  (self.oclAsType(CombinedFragment).interactionOperator= InteractionOperatorKind::alt){ 

self.oclAsType(CombinedFragment).operand->toAltOperand();} 

else if (self.oclAsType(CombinedFragment).interactionOperator= InteractionOperatorKind::loop){ 

self.oclAsType(CombinedFragment).operand->toLoopOperand();} 

else if (self.oclAsType(CombinedFragment).interactionOperator= InteractionOperatorKind::opt){ 

self.oclAsType(CombinedFragment).operand->toOptOperand();}}   

  }} 

 

helper Set(InteractionOperand)::toAltOperand() { //In case of an Alt Operand 
var firstoperand:=self->asOrderedSet()->first(); 

firstoperand.covered->forEach(l){ var seq:= l.resolveone(bpel::Sequence); 

seq.activities+=l->map toIfconstruct(self);  //Generate If for the first Operand};} 

 

mapping UML::Lifeline::toIfconstruct (c:Set(uml::InteractionOperand)):bpel::If{ 

var sizeofset:=c->size(); 

var target:= sizeofset; 

var nextOperands:= c->asOrderedSet()->subOrderedSet(2,target); 
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result.activity:= object bpel::Sequence{}; 

nextOperands->forEach(o) {result.elseIf+=self.map toElseIfconstruct(o); //Generate IfElse for the rest of 

Operands }} 

 

mapping Lifeline::toElseIfconstruct(t:InteractionOperand):bpel::ElseIf { 

 condition:= self.map toCondition(t); 

 result.activity:= object bpel::Sequence{};} 

 

mapping Lifeline::toCondition(t:InteractionOperand):bpel::Condition {
 result.expressionLanguage:='elseIfCondiditon'+t.name; } 

 

mapping MessageOccurrenceSpecification::mostoWhile() : bpel::While 

when{self.isReceive()}{ result.activity:=object bpel::Empty{}; } 

 

helper InteractionOperand::toOptOperand() { 

self.covered->forEach(l){ var seq:= l.resolveone(bpel::Sequence); //Mapping of Opt Operand 

seq.activities+=l->map toIfOptconstruct(self);  //Map to If };} 

 

mapping UML::Lifeline::toIfOptconstruct (c:uml::InteractionOperand):bpel::If{ result.activity:= object 

bpel::Sequence{};} 

 
helper InteractionOperand::toLoopOperand(){  

self.covered->forEach(l){ var seq:= l.resolveone(bpel::Sequence); 

seq.activities+=l->map toRepeatLoopconstruct(self);  //Map Loop to Repeat Until }}   

   

mapping Lifeline::toRepeatLoopconstruct(c:uml::InteractionOperand):bpel::RepeatUntil {result.activity:=self.map 

toRepeatUntilSequence();} 

   

mapping Lifeline::toRepeatUntilSequence():bpel::Sequence{} 

    

mapping Operation::fromOptoQueue():wsdl::ComplexType@wsdlFile{ 

result.sequence:=self.map fromOptoQueueSequence();} 
 

mapping Operation::fromOptoQueueSequence():wsdl::_Sequence@wsdlFile{ result.element:=object 

wsdl::Element{name:=self.name}; 

result.element+=self.ownedParameter.map fromOptoQueueElement();} 

     

mapping Parameter::fromOptoQueueElement():wsdl::Element@wsdlFile{name:=self.name;}   

     

helper UML::Operation::addtoQueueOp(inout   a:wsdl::ComplexType){  

a.sequence:=object wsdl::_Sequence{element:=object wsdl::Element{name:=self.name;}};} // Add operation 

to queue  

 

helper UML::Operation::dequeueOp(inout a:wsdl::ComplexType){ 
self.map toAssignOpDequeue(a);} // Precise which operation to delete and from which queue 

mapping UML::Operation::toAssignOpDequeue( 

a:wsdl::ComplexType):bpel::Assign{a->excluding(a->first());} // Delete first element of the queue (FIFO) 

 

 

III. ANNEX C 

C.1 Semantic-based traces of sequence diagram 

In the following, we give an overview of the work elements that we reuse in our approach, 

specifically the generation of IOSTS from a sequence diagram specification. As we mentioned in 

chapter 3, we use Input/Output Symbolic Transition Systems (IOSTS) to formalize the trace 

semantics of UML sequence diagrams, which could be transformed into the same formalization. We 

follow the trace semantics proposed in [9] where sequence diagrams are formalized as IOSTS. The 

symbolic execution of such IOSTS results in a tree-like structure that characterizes all possible 
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executions of the system specified by the sequence diagram. The following paragraphs detail the 

formalization proposed in [9] that we have slightly modified to stick to the format of Choreography 

specifications in a SoaML model. 

Data signature. A Sequence diagram is associated with a so-called data signature Ω = (S, Op) where 

S is a set of all type names introduced in the sequence diagram and Op is a set of all operation names 

in the sequence diagram as well. A sequence diagram is also associated with a set of variables denoted 

V. Each variable has a type in S. TΩ(V ) denotes the set of terms over V and SenΩ(V ) denotes the set 

of all typed equational formulae which contains the truth values true, false and all formulae including 

the equality predicate (=) and the usual connectives (￢, ∨, ∧).  

An IOSTS is defined over a couple Σ= (A,C) where A denotes the set of data variables typed in S and 

C the set of communication channels. Executions of transitions in an IOSTS are associated to actions 

occurrence: an action is an element of the set Act(Σ) defined as: Act(Σ) ::= c?x|c!t|new(x)|τ, where c 

∈ C, x ∈ A, t ∈ TΩ(A). c?x is the reception of a value on channel c stored in x, c!t denotes the emission 

of the value assigned to t on channel c, new(x) denotes an arbitrary new assignment of x and τ is an 

unobservable action.  

Definition 1 (IOSTS) an IOSTS is defined as a triple (Q, q0, T), where Q is a set of 

states, q0 ∈ Q is the initial state and T is a set of transitions of the form (q, φ, act, ρ, 

q’) where q, q’ ∈ Q, φ ∈ SenΩ(A), act ∈ Act(Σ) and ρ is a substitution of variables 

of Ad in TΩ(A).  

From sequence diagram to IOSTS. In the following, we explain the key points of the translation 

mechanisms proposed in [9] through the transformation of the Shipping Request Choreography 

example shown in Figure 3.1.1 into IOSTS.  

A sequence diagram is represented textually as a couple of sets ({msg1…, msgl},{ΔLfs1,…,ΔLfsn}), 

where for all i ≠ j ≤ n we have si is a service interface and si ≠ sj. Elements of the form msg ∈ {msg1…, 

msgl} are of the form (φ, m), where φ is a formula and m is a message name with the convention that 

message name are distinct from one another. Lifelines are syntactically defined as ΔLfs::= ϵ | 

(φ,atoms). ΔLfs | (loop, o, ΔLfs). ΔLfs | (alt|strict,o, ΔLfs,o’, ΔLfs).ΔLfp, where, φ is a formula of 

SenΩ(V ), o, o’ are regions, and atoms is of the form: atoms::= m | new(x) | x =δ, where m is a message 

name, x is a variable of V , δ is a term of TΩ(V ) (= is the assignment operation), m is a message name 

of source or target s.   

The following details the transformation steps. 

1) Transformation of messages: each message msg = (φ, m) is mapped into an IOSTS Gmsg which 

communicates over channels of the form m.in and m.out respectively for reception and emission of 

operation calls between services. Figure III.1 shows the translation of operation call op1. Gmsg 

contains three transitions: an initialization transition, a reception transition to receive values through 

m.in and an emission transition to emit values through channel m.out. A FIFO queue variable fm stores 

the arriving values. 
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Figure III.1: Gop1, the transformation of op1 message. 

 

2) Transformation of lifelines: each lifeline is transformed into an IOSTS as follows: 

Empty lifeline of the form ϵ is mapped into the IOSTS Gϵ = ({q}, q, ∅) where q denotes a state which 

represents both the initial state of Gϵ, denoted init(Gϵ), and the final state of Gϵ, denoted final(Gϵ). 
Lifelines that cover a simple sequencing of message occurrence specifications are mapped as follows.  

Each message sending or receiving is mapped into a new transition and a new state. Generally, if the 

lifeline ΔLfs is of the form (φ, atoms).ΔLfs’. GΔLfs’ = (Q, q0, T) denotes the translation of the lifeline 

ΔLfs’. The transformation of the lifeline ΔLfs is denoted GΔLfs and is of the form GΔLfs = (Q ∪ {q}, 

q, T ∪ {tr}) where q is a new fresh state symbol denoting init(GΔLfs ), and tr is a transition depending 

on the atom form and whose target state is q0. final(GΔLfs) is final(GΔLfs’).  

 

Figure III.2: translation of lifelines into IOSTS. 

 

The result of the mapping of the sender and shipper lifelines are shown in Figure III.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)Translation of sender lifeline     (c) Translation of shipper lifeline    

Figure III.3: Translation of sender and shipper lifelines.  
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Details about the mapping of combination operator could be found in [9]. 

3) Completion operations: After the transformation of all the lifelines ΔLfs of the sequence diagram 

into IOSTS GΔLfs, the set of transitions of GΔLfs is enriched by additional operations, namely the 

addition of initialization transition and the addition of looping transitions for all states of the IOSTS. 

The purpose of the looping transition is to store all the region crossing decision made by lifelines 

sharing regions with ΔLfs.  

4) Full translation of a sequence diagram: Let sd be a sequence diagram ({msg1…, 

msgl},{ΔLfs1…,ΔLfsn}). The translation of sd is a TIOSTS Gsd defined as the composition of the 

transformations of msgi ∈ {msg1…, msgl} and ΔLfsj ∈ {ΔLfs1…, ΔLfsn}. The result of the 

composition of the transformations of messages and lifelines (see Figure III.1 and Figure III.2) is 

shown in Figure III.4.  

 

Figure III.4: Transformation of Shipping Request Choreography into IOSTS. 

C.2 Reconstitution of the global trace from services traces  

This Appendix presents the pseudo-code for the Algorithms allowing to reconstitute a global traces 

from the services traces when all of them are available. In this case, we dispose of a collection of 

traces each of which is recorded at the level a service interface. Now, we need to infer global system 

traces from these traces. This global trace is obtained by combining services traces based on 

timestamps information. In this section, we describe the algorithm that computes the global trace 

(Algorithm 1: GenFromServicesTraces). 

The idea is simple: Given for example two uncorrelated receptions (!, si, sj, op1) and (!, sk, sl, op2)  

occurring respectively at 11:15:34,895 and 11:15:35,046 of the same day. If local clocks work 

perfectly (as if we have a global clock) then we know that (!, si, sj, op1)  precedes (!, sk, sl, op2). 

Algorithm 1 compares timestamps of head actions in services traces (line 7): selects indexes of the 

one(s) with the earliest the timestamp (line 7-19); and then it is inductively applied on the rest of 

associated traces while keeping the other traces unchanged (lines 23, 26). Note that we assume that 

on the same service, timestamps are distinct and given in increasing order. When two actions of 

different services or more occur at the same timestamp, we choose to prioritize outputs over inputs in 

the resulting trace since most likely those outputs have been computed on the basis of earlier data 
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exchange between services (line 21–24). Finally, actions of the same kind are added in an arbitrary 

order. 

 
 

IV. ANNEX D 

Detailed specification of the Travel Management System   

The customer (c) visits the Travel Management System (TMS) website looking for a flight and a 

hotel. 

i) “c” chooses the desired dates of travel and the destination. This is modeled by the Search service 

contract, which is refined using a UML Interaction in the form of Sequence Diagram. The Search 

Sequence diagram is shown in Figure IV.1. 

 
Figure IV.1: Sequence Diagram of Search contract.  

ii) “TMS” sends a request to the Air Travel Management Server (AMS) and Hotel Management 
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Server (HMS) to search for the best suitable matches. This is specified through the Query service 

contract and refined using the Query Sequence Diagram shown in Figure IV.2. 

 
Figure IV.2: Sequence Diagram of Query contract. 

iii) To get the best flight, “AMS” contacts the two flight companies, Fast Airways (fa) and Reliable 

Airways (ra) with the request. These flight companies answer back to “AMS” with corresponding 

price options, which get processed. This is modeled by the Processes Flight service contract refined 

by the Sequence Diagram shown in Figure IV.3. 

 
Figure IV.3: Sequence Diagram of Process flight contract. 

iv) Processes Hotel service contract models another similar request which is made by H to the two 

hotel companies Excellent Hotel (eh), and Premium Hotel (ph), which respond back with their 

availabilities and prices (Figure IV.4).  

 
Figure IV.4: Sequence Diagram of Process Hotel contract. 

Note that, the Processes Flight and Processes Hotel service contracts are weakly sequenced, then both 
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of these service contracts may execute in parallel. 

v) “tsm” receive the best flight and the hotel information as a response to its query (Figure IV.5).  

 
Figure IV.5: Sequence Diagram of Respond to Query contract. 

vi) “tsm” presents the price to the customer after adding its own profit. This is shown in Figure IV.6, 

which illustrates the Sequence Diagram of Present Options service contract. 

 
Figure IV.6: Sequence Diagram of Present Options contract. 

vii) The client may refuse the presented choices. In this case, he/she may go back to Step ii) with 

perhaps a revised set of dates and destinations. However, if he/she accepts the options, then he/she 

selects the flight and the hotel, as modeled by Select Flight & Hotel service contract (Figure IV.7).  

 
Figure IV.7: Sequence Diagram of Select flight and Hotel contract. 

viii) The client has two options: either creating a new account and entering all information as specified 

by Enter Info contract or login with an existing account. In the first case, the login information will 

be validated, namely the credit card information will be validated by a credit card validator service, 

ICCValidate, then a validation SMS will be send by an SMS sender service (Figure IV.8). In the 

second case, the login request would include all the customer information, namely the credit card 

information and other information (name, customer number), which is modelled by the Login service 

contract shown in Figure IV.9. 
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Figure IV.8: Sequence Diagram of Enter Info contract. 

 
Figure IV.9: Sequence Diagram of Login contract. 

ix) The customer then initiates the process payment by invoking processPayment operation. “TMS” 

sends the credit card information to the Bank (b) for payment to be processed. This is specified by 

Process Payment Sequence Diagram shown in Figure IV.10. 

After processing the information, the Bank may either approve the payment or notify “TMS” in case 

the transaction is declined. “TMS” in turn notifies the customer. The latter enters a different credit 

card information. Also, this new credit card information is simultaneously updated in M’s database 

(dB). This is modeled by sub-collaboration Re-enter Financials. This process keeps on repeating until 

the credit card is successfully authorized. Because of the weak sequencing, it is possible for the update 

to the database to take some time and lag behind. Hence, a scenario may exist where the database is 

being updated for the credit card number from the 2nd attempt, while the client may be entering credit 

card information for the 5th time. 

xi) Once the transaction is approved, the Bank notifies “TMS”. “TMS” concurrently reserves the 

flight modeled by service contract Reserve Flight, and the hotel as modeled by the service contract 

Reserve Hotel with “AMS” and “TMS”, respectively. 

xii) A confirmation email is sent to the client, modelled by Confirmation Notice. 
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Figure IV.10: Sequence Diagram of Process Payment contract. 
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Titre : Approche dirigée par les modèles pour le développement et la vérification des applications 

orientées-services 

Mots clés : SOA dirigée par les modèles, consistances des modèles, vérification de l’exécution 

Résumé : L’objectif de ma thèse est de 

profiter des avantages de l’IDM dans la 
spécification et le développement des 

applications SOA. Cependant, la combinaison de 

ces deux paradigmes présente des problèmes, 

notamment : la vérification rigoureuse des 
modèles de spécification, la transformation de 

ces modèles en code exécutable, en particulier, 

les chorégraphies de service en orchestrations 
exécutables tout en préservant la sémantique des 

scénarios de haut niveau décrits par ces 

chorégraphies et finalement la vérification de 

l'exécution, une étape nécessaire pour détecter 
les comportements erronés lors de l’exécution. 

Pour relever ces défis, nous proposons une 

approche SOA dirigée par les modèles qui repose 
sur le standard OMG SoaML.  

 

Lors de la spécification, la cohérence des 

modèles SoaML est vérifiée en utilisant la 
validation statique des modèles moyennant des 

règles OCL que nous avons définies. Nous avons 

spécifié également des règles de transformation 

pour permettre la génération automatique 
d'artefacts exécutables. Enfin, nous avons défini 

un cadre de test à base de modèles pour vérifier 

la conformité de l’exécution des chorégraphies 
de services, incluant les orchestrateurs générés, 

aux modèles de spécification en tenant compte 

des aspects critiques inhérents aux systèmes 

distribués tels que l’asynchronisme. L'ensemble 
de notre méthode a été outillé en extension de 

l’outil de modélisation UML, Papyrus, et de 

l’outil d’analyse formelle, Diversity. 

 

 

Title: A model driven approach for the development and verification of service-oriented applications 

Keywords: Model-driven SOA, model consistency, execution verification. 

Abstract: The purpose of my thesis is to take 

advantage of the MDE in the specification and 

development of SOA applications. However, the 
combination of these two paradigms presents 

problems, including rigorous verification of 

specification models, transformation of these 
models into executable code, in particular 

service choreographies into executable 

orchestrations while preserving the semantics of 

the high-level scenarios described by these 
choreographies and finally the verification of 

the execution, a necessary step to detect the 

erroneous behaviors during the execution. To 
meet these challenges, we propose a model-

driven SOA approach based on the OMG 

SoaML standard.  

 

At the specification time, the consistency of the 

SoaML models is verified using OCL rules that 

we have defined. We have also specified 
transformation rules to allow the automatic 

generation of executable artifacts. Finally, we 

have defined a model-based test framework to 
verify the conformance between the 

choreography specification and its exection, 

including the generated orchestrators, taking 

into account the critical aspects inherent in 
distributed systems such as asynchrony. The 

entire methodological proposal was 

implemented as an extension to the open source 
UML modeling tool Papyrus, and the formal 

analysis tool, Diversity.  

 

 

 


