
HAL Id: tel-01827238
https://theses.hal.science/tel-01827238

Submitted on 2 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model driven approach for the development and
verification of service-oriented applications

Fadwa Rekik

To cite this version:
Fadwa Rekik. A model driven approach for the development and verification of service-oriented
applications. Computational Complexity [cs.CC]. Université Paris Saclay (COmUE), 2017. English.
�NNT : 2017SACLS088�. �tel-01827238�

https://theses.hal.science/tel-01827238
https://hal.archives-ouvertes.fr

NNT : 2017SACLS088

THESE DE DOCTORAT

DE

L’UNIVERSITE PARIS-SACLAY

PREPAREE A

L’UNIVERSITE PARIS-SUD

ÉCOLE DOCTORALE N°580

Sciences et technologies de l'information et de la communication

Spécialité de doctorat : Informatique

Par

Mme Fadwa REKIK

A model driven approach for the development and verification of

service-oriented applications

Thèse présentée et soutenue à Gif-sur-Yvette, le 19 Avril 2017 :

Composition du Jury :

Pr. Laurent Pautet, Professeur, Télécom ParisTech, Président du jury

DR. Sébastien Gérard, Directeur de Recherche, Université Paris-Saclay, Directeur de thèse

Dr. Boutheina Bannour, Ingénieur de Recherche, CEA/LIST, Co-encadrant

Pr. Olivier Barais, Professeur, Université de Rennes 1, Rapporteur

Pr. Jean-Michel Bruel, Professeur, Université de Toulouse, CNRS, Rapporteur

MdC. Selmin Nurcan, Maître de Conférences HDR, l'Université Paris 1, Examinateur

Pr. Mireille Blay Fornarino, Professeur, Université de Nice, Examinateur

To my family,

who have always been there for me.

Acknowledgements

The path to pursue a Ph.D. is not only embellished of fresh ideas, sudden inspiration and

scientific beauty; but also it is often a path with many obstacles and throwbacks. However, thanks

to God, I was able to make my way, in spite of all the difficulties.

Also, I would like to thank special people who accompanied and supported me. In the first

place, I want to express my deep gratitude to my thesis advisor Dr. Sébastien Gérard for giving

me of his knowledge as well as providing me with the accurate directions to carry out this thesis.

I want also to thank my two supervisors: Dr. Saadia Dhouib who helped me refine my style in

scientific thinking, working, and writing; and Dr. Boutheina Bannour with whom I had long

discussions about fundamental issues of my research. It has been a real pleasure to work with

both of them over these last years.

I want to extend my thanks to all the members of the LISE Research Group for the help and

support they have provided me with during these three years. Apart from my adviser and

supervisors, one of the most influential persons was Edward Mauricio Alférez Salinas to whom

I am grateful for his advice and suggestions. During the years of my Ph.D. studies I worked and

discussed with many other researchers who contributed to the evolution of my thinking and

understanding of many problems in computer science. Specifically, I want to thank Mr.

Christophe Gaston and Mr. Juan José Cadavid, with whom I had valuable discussions. I can not

name everyone here, and I do not want to forget anyone, so my thanks go to all the LISE trainees,

Ph.D. students and research engineers, with whom I have had the chance to share this time.

Working with them was an honor and a real pleasure. Their support, encouragement, and advice

have gone further than I would have imagined and expected.

Last but not least, the most important thanks go to my family, who have always been there for

me: my parents Raja and Hédi, who have made me who I am, my husband Mohamed, who

supported me during these three years, my sisters Mouna, Ines and Emna, with whom sharing

life has always been the best thing in the world. And finally, I extend my thanks to the sunshine

of my life, my pride and joy, my niece Malek and my nephews Mohamed and Ismail. Lastly, I

offer my regards to all my friends and relatives who supported me in many respects during this

period of my life.

Table of contents

Abstract 9

Résumé 10

Condensé 12

Contexte et motivation .. 12

Énoncé du problème .. 13

Contributions .. 14

1 Introduction 20

1.1 Context and motivations .. 20

1.2 Research questions .. 22

1.3 Contribution overview... 24

1.4 Thesis structure ... 27

Part I: MDE FOR SOA-RELATED WORK AND STUDIES 29

1 SOA modeling methods and languages 30

1.1 Overview of SOA modeling approaches .. 30

1.2 SoaML tool supports ... 33

2 Consistency verification of SOA specification models 34

2.1 Elements of a language definition.. 34

2.1 Consistency checking .. 35

2.2 Related work ... 36

3 Model-driven transformation of SOA systems 38

3.1 Service composition: orchestration versus choreography ... 40

3.1.1 Service choreography .. 40

3.1.2 Service orchestration ... 41

3.1.3 Choreography and orchestration relationship ... 41

3.2 Service choreography modeling languages .. 42

3.2.1 BPMN ... 44

3.2.2 Message Sequence Chart ... 46

3.2.3 UML 2.x diagrams for specifying choreographies .. 48

3.3 Transformation approaches: Decentralized versus Centralized orchestration 51

3.4 Transformation approaches: related work .. 53

4 SOA testing approaches: related work 58

4.1 Classification of testing approaches in SOA .. 58

4.2 Model-based testing techniques for SOA ... 59

5 Background: modeling with SoaML 61

5.1 SoaML main concepts ... 61

5.1.1 Business architecture ... 62

5.1.2 System architecture ... 64

5.2 Modeling choreographies using sequence diagrams ... 66

Part II: THESIS CONTRIBUTIONS 70

1 Horizontal consistency verification 71

 Horizontal consistency verification approach .. 71

 Specification of the SoaML consistency constraints .. 74

 Implementation of consistency constraints using OCL .. 76

1.3.1 Syntactic consistency constraints ... 76

1.3.2 Semantic consistency constraints ... 79

1.3.3 SoaML constraints summary ... 82

 Consistency constraints integration in the SoaML profile .. 83

 Validation ... 84

1.5.1 Syntactic validation ... 85

1.5.2 Functional validation ... 85

1.5.3 Functional validation with real users .. 87

 Conclusion .. 90

2 Model-driven generation of executable artifacts from SoaML models 91

 Transformation overview .. 92

 Identified issues for the transformation .. 92

2.2.1 Service reuse ... 92

2.2.2 Decentralized versus centralized composition .. 93

2.2.3 The need of automatic transformation .. 94

 Transformation of structural models .. 95

 Transformation of services choreographies .. 97

2.4.1 Transformation of basic choreographies... 98

2.4.2 Transformation of structured choreographies ... 102

 Summary... 115

3 Vertical consistency verification: offline analysis of Web service choreographies 116

 Issues in validating the generated orchestrations .. 118

3.1.1 Illustrative example ... 118

3.1.2 Observing service quiescence .. 119

 Service Orchestration conformance w.r.t a choreography .. 120

3.2.1 Background: symbolic-based semantics of sequence diagram 120

3.2.2 Conformance w.r.t a choreography .. 121

 Testing process and experiments ... 124

3.3.1 Testing process and tooling overview .. 124

3.3.2 Testing algorithms ... 125

3.3.3 Preliminary experimental results .. 132

 Summary... 134

Part III: VALIDATION 135

4 Travel management system case study 136

 Case study objectives .. 136

 Specification of the case study .. 137

4.2.1 Business Architecture Model (BAM) ... 138

4.2.2 Software Architecture Model (SAM) ... 142

 Horizontal verification of the SoaML-based specification model 146

 Generation and deployment of the case study .. 147

4.4.1 Generation ... 147

4.4.2 Deployment ... 149

 Vertical verification .. 150

4.5.1 Monitoring .. 151

4.5.2 Validation of the service choreographies.. 151

 Conclusion .. 154

Conclusions and future work 155

ANNEX 158

I. ANNEX A .. 158

A.1 SoaML editor ... 158

A.2 Prerequisites for OCL language ... 161

A.3 Implementation of consistency constraints using OCL ... 161

II. ANNEX B .. 170

B.1 Overview of target WSDL and WS-BPEL metamodels .. 170

B.2 Transformation of structural models ... 175

B.3 Transformation of services choreographies .. 178

III. ANNEX C .. 185

C.1 Semantic-based traces of sequence diagram ... 185

C.2 Reconstitution of the global trace from services traces ... 188

IV. ANNEX D .. 189

Bibliography 194

Abstract

As software systems are pervasive and play an important role in everyday life, the users

are becoming more and more demanding. They mainly require more reliable systems that

automatically adapt to different use cases. To satisfy these requirements, technical frameworks

and design methods, upon which the systems development is based, must meet specific

objectives mainly modularity, flexibility, and consistency. Service-Oriented Architecture

(SOA) is a paradigm that offers mechanisms to increase the software flexibility and reduce

development costs by enabling service orchestration and choreography. SOA promises also

reliability through the use of services contracts as an agreement between the service provider

and consumer. Model-driven SOA is a novel and promising approach that strengthens SOA

with Model-Driven Engineering (MDE) technics that ease the specification, development, and

verification of Service-Oriented Applications by applying abstraction and automation

principles.

Despite the progress to integrate MDE to SOA, there are still some challenging problems

to be solved: (1) Rigorous verification of SOA system specifications. This is a challenging

problem because to model SOA systems designers need more than one viewpoint, each of

which captures a specific concern of the system. These viewpoints are meant to be

semantically consistent with each other. This problem is called horizontal consistency

checking and it is an important step to reduce inconsistencies in SOA models before

transforming them into other forms (code generation, test cases derivation, etc.). (2)

Transformation of systems specifications into executable artifacts. Despite the maturity

of SOA, the transformation of system specifications into executable artifacts is usually

manual, fastidious and error-prone. The transformation of services choreographies into

executable orchestrations particularly remains a problem because of the necessity to take into

account critical aspects of distributed systems such as asynchrony and concurrency when

executing centralized orchestrations. (3) Runtime verification. Even after verifying

Horizontal consistency at design time, there could be unexpected and unspecified data

interactions that are unknown during design-time. For this reason, we still need consistency

verification at runtime to handle such unforeseen events. This problem is called Vertical

consistency checking.

This thesis work proposes a Model-driven SOA approach to address the above-

mentioned challenges. This approach includes a two-step model-driven methodology to

horizontally and vertically verify the consistency of SOA systems specifications described

using the SoaML standard from the Object Management Group (OMG). The horizontal

consistency checking problem, which is the first challenge, is solved by means of static

validation of the system specification at the design level. The second challenge is solved by

specifying the transformation from a choreography specification model to an executable

orchestration implementing the choreography logic. Our transformation takes into

consideration the asynchronous nature of the communications between distributed services.

The vertical consistency checking problem, which is the third challenge, is solved by our

approach thanks to offline analysis that allows consistency verification between both design

and runtime levels. The entire methodological proposal was implemented as an extension to

the open source UML modeling tool Papyrus.

Résumé

L’omniprésence des systèmes logiciels et le rôle important qu’ils jouent dans la vie

quotidienne rendent les utilisateurs de plus en plus exigeants. Entre autre, ils demandent plus de

fiabilité et des systèmes qui peuvent s’adapter à leur contexte d’utilisation. Afin de satisfaire ces

demandes, les cadres techniques et les méthodes de conception sous-jacents au développement

des systèmes doivent répondre à des objectifs spécifiques principalement la modularité, la

flexibilité et la consistance. L’architecture orientée service (SOA pour « Service-Oriented

Architecture ») est un paradigme qui offre des mécanismes permettant une grande flexibilité des

architectures des systèmes logiciels tout en réduisant leurs coûts de développement puisqu’elle

se base sur des entités modulaires et réutilisables appelées services. Ces services peuvent être

réutilisés dans le cadre d’une composition ou d’une chorégraphie de services pour la construction

de nouveaux processus métiers transverses. SOA promet aussi d’augmenter la fiabilité des

systèmes au travers de la notion de contrat de services. De son côté, le paradigme de l’Ingénierie

Dirigée par les Modèles (IDM) offre au travers de ses deux principes fondateurs, l’abstraction et

l’automatisation, deux moyens puissants de gestion de la complexité sans cesse croissante des

systèmes. Combiner les deux paradigmes et concevoir ainsi une approche de type SOA dirigée

par les modèles semble une piste prometteuse pour résoudre les défis précédemment cités.

Malgré les progrès des deux paradigmes, IDM et SOA, il y a encore des défis à résoudre

lors de l’application de l’IDM dans le processus de développement des applications orientées

services. Notamment, on peut citer : (1) La vérification rigoureuse des spécifications des

systèmes conformes aux principes de SOA. Ce premier point constitue un défi car pour

modéliser les systèmes, les concepteurs ont besoin de plus d'un point de vue représentant chacun

une préoccupation spécifique du système et bien sûr ces points de vue doivent être

sémantiquement cohérents. Ce problème est appelé la vérification de la consistance horizontale,

une tâche manuellement difficile qui constitue une étape importante pour réduire les

incohérences dans les modèles des applications orientées services avant de les transformer en

d'autres formes (du code, des cas de tests, etc.). (2) La transformation des spécifications des

systèmes SOA en artefacts exécutables. Malgré la maturité de l’architecture SOA, la

transformation des spécifications des systèmes SOA en artefacts exécutables s'avère encore une

étape fastidieuse et est généralement effectué manuellement. Les opérations manuelles sont

autant de sources potentielles d’introduction d’erreurs. En particulier, la transformation des

chorégraphies de services en orchestrations exécutables reste un problème en raison de la

nécessité de prendre en compte les aspects complexes des systèmes distribués, tels que

l’asynchronisme et la concurrence lors de l'exécution des orchestrations centralisées. (3) La

vérification de l’exécution. Même après la vérification de la cohérence horizontale au moment

de la spécification, des comportements inattendus peuvent encore apparaitre lors de l’exécution.

Pour cette raison, il est nécessaire de pouvoir vérifier la conformité de l'exécution d’un système

par rapport à sa spécification. Ce problème est appelé la vérification de la consistance verticale.

Ce travail de thèse propose ainsi une approche de type SOA dirigée par les modèles

résolvant les défis mentionnés précédemment. Cette approche comprend une méthodologie en

deux étapes pour la vérification de la consistance horizontale et verticale des systèmes SOA dont

les spécifications ont été décrites en utilisant la norme SoaML de l’OMG (Object Management

Condensé 11

Group). Le problème de vérification de la consistance horizontale, qui est le premier défi, est

résolu au moyen de l'analyse statique de la spécification des systèmes. Le deuxième défi est

résolu en spécifiant les règles de transformation d'un modèle de spécification de chorégraphie de

services en une orchestration exécutable qui implémente la logique de la chorégraphie. Notre

transformation prend en considération la nature asynchrone des communications entre les

services distribués. Le problème de vérification de la consistance verticale, qui est le troisième

défi, est résolu par notre approche par l'analyse hors ligne des traces d’exécution d’un système,

ce qui permet la vérification de la cohérence entre le niveau de la spécification et celui de

l'exécution. L’ensemble de la proposition méthodologique a été implanté sous la forme d’une

extension à l’outil de modélisation UML open-source Papyrus.

Condensé
Contexte et motivation

Les logiciels sont de plus en plus présents dans notre vie quotidienne, et ce dans différents

domaines d’application comme l’industrie, la santé, les réseaux d’électricité intelligente, etc. Ces

logiciels jouent un rôle important dans la vie des utilisateurs, ce qui les rend de plus en plus

exigeants. Entre autre, ils demandent plus de fiabilité et des systèmes qui peuvent s’adapter à leur

contexte d’utilisation et à leurs nouvelles exigences plus rapidement. Afin d’assurer ces enjeux

sociétaux et satisfaire les utilisateurs, les cadres techniques et les méthodes de conception sous-

jacents au développement des systèmes doivent être modulaires, flexibles et consistants. Dans le

domaine du génie logiciel, les paradigmes d'ingénierie dirigée par les modèles (IDM) et des

architectures orientées-services (SOA), qui sont des paradigmes relativement récents, se sont

révélés bénéfiques pour faciliter le développement et gérer la complexité des systèmes logiciels

[1]. L’architecture SOA est connue par sa modularité qui la rend plus flexible. De sa part, l’IDM

aide à gérer et à améliorer la spécification et le développement de logiciels complexes [2].

Depuis la fin des années 90, l’Ingénierie Dirigée par les Modèles (IDM) est considéré comme

une approche incontestée pour assumer la complexité des systèmes distribués et ce en se basant

sur deux principes très importants dans le développement logiciel qui sont : l'abstraction et de

l'automatisation. L’abstraction se base sur la représentation des systèmes sous forme de modèle

pour faciliter la compréhension de l’architecture et du comportement de ces systèmes. Cette

approche se base complètement sur les modèles. Ces modèles serviront comme un point de départ

dans le processus de spécification, de développement et d’analyse. Ils peuvent être utilisés pour

comprendre, évaluer, communiquer et produire du code [1]. Ces transformations automatisées

augmentent la productivité et diminuent le coût de développement. L’IDM met l'accent sur les

modèles spécifiques aux domaines, qui peuvent être plus utiles pour la spécification des

applications et pour la génération du code. Afin de modéliser des systèmes complexes de taille

raisonnable, les concepteurs ont besoin de dissocier le modèle en plusieurs vues, chacune capture

une préoccupation spécifique du système. Ces différentes vues du modèle sont régies par des

points de vue et sont utilisées pour faciliter les taches de conception, d'analyse et de

développement des logiciels.

L’architecture orientée-service (SOA) est une architecture prometteuse qui propose des

solutions pour augmenter la flexibilité des systèmes logiciels puisqu’elle se base sur des entités

modulaire et réutilisable appelées services. Le but derrière SOA est de transformer les

composants d'un système d'information en services, intégrables à la volée, pour construire des

processus métier transverses d’une manière flexible. Cette architecture permet aussi la définition

de contrats de services qui définissent un engagement entre les fournisseurs et les

consommateurs de services pour garantir plus de fiabilité. SOA permet aussi la définition de

collaborations entre les services sous forme de chorégraphie ou orchestration de services. Cela

est très bénéfique parce que le développement de logiciels passe du développement

d’applications à partir de zéro, au développement de services qui forment des blocs de

construction réutilisables pour construire d’autres applications. Les chorégraphies ne sont pas

destinées à être exécutables. Le but d’une chorégraphie est de spécifier «quels» sont les échanges

Condensé 13

de messages qui doivent avoir lieu entre les services afin d’atteindre l’objectif de cette

chorégraphie. Contrairement à la chorégraphie, une orchestration décrit l'exécution de ce

processus d'orchestration. Elle met l'accent sur «comment» ces services peuvent coopérer

ensemble du point de vue d'un seul participant appelé orchestrateur. La chorégraphie de services

est par conséquence plus déclarative, ce qui explique le fait qu’elle est utilisée le plus souvent

pour la spécification de la composition de services tandis que l’orchestration est utilisée au niveau

de l’exécution. Dans notre travail, nous utilisons les chorégraphies pour la description des

compositions des services au niveau de la spécification des systèmes SOA.

Une application SOA peut être constituée de plusieurs objets tels que les services, les contrats,

les participants, les relations et les contraintes de qualité. Le développement de ces applications

pourrait devenir une tâche complexe. Pour faire face à ce problème, une bonne façon serait de

modéliser ces architectures orientées services. Les modèles SOA aident à expliquer, formaliser

et comprendre ces architectures. Les travaux de recherche montrent que l'application de l’IDM

au développement des SOA est bénéfique [3] [4]. Un des principaux avantages de l’application

de l’IDM pour SOA est que l'application SOA soit modélisée à différents niveaux d'abstraction

séparant par exemple la vue fonctionnelle et comportementale du système de la vue

technologique [5].

Énoncé du problème

Comme expliqué ci-dessus, nous travaillons dans le cadre de l’ingénierie dirigée par les

modèles pour le développement des systèmes SOA (IDM pour SOA). Dans une approche IDM,

une étape cruciale dans le développement de ces systèmes logiciel en général et des systèmes

SOA en particulier est l’étape modélisation. A ce stade, il est très important de vérifier la

consistance de ces modèles, appelée consistance horizontale. La vérification de la consistance

horizontale consiste à vérifier la cohérence des modèles de spécification. L’incohérence de ces

modèles produit de mauvais résultats qui se situent entre des comportements inattendus du

système au cours de l’exécution, et l’impossibilité de la génération de code à partir de ces

modèles. En plus, la résolution de ces problèmes d’incohérence dans les premières phases de

conception permettrait d'économiser beaucoup de temps et d'argent. La vérification de la

cohérence des modèles de spécification devient donc une étape inévitable avant la transformation

de ces modèles en d'autres formes (génération de code, dérivation de cas de test, etc.). Cependant,

cette vérification s’annonce difficile en raison de la complexité des modèles SOA et ce à cause

des multiples points de vue dans un système SOA et à cause de la grande taille de ces systèmes

qui impliquent un grand nombre de services.

Après l'étape de spécification des systèmes SOA, les modèles qui en résultent doivent être

transformées en objets exécutables. Les deux modèles structurels et comportementaux doivent

être transformés en modèles ciblant une ou plusieurs plates-formes d’exécution spécifiques. Pour

les modèles de comportement, nous nous intéressons à la spécification de la composition de

service. Ce mécanisme est l’un des principes fondamentaux de l’architecture SOA puisqu’il

permet la réutilisation des services existants pour créer de nouvelles applications à valeur ajoutée.

Comme elles sont plus déclaratives, nous sommes intéressés aux chorégraphies de services pour

décrire des compositions de services. Premièrement, nous devons choisir le langage de

modélisation le plus approprié pour spécifier des chorégraphies de services. Ensuite, les

spécifications de la chorégraphie doivent être transformées en orchestrations exécutables qui

Condensé 14

intègrent la logique des chorégraphies. Cette transformation est généralement réalisée

manuellement et est fastidieuse et sujette aux erreurs. Elle devient plus difficile quand un grand

nombre de services sont impliqués dans la chorégraphie ou lorsque la chorégraphie inclut des

dépendances d'échange de messages compliquées (par exemple l'ordre de séquencement des

messages ou les choix exclusifs entre deux possibilités d’exécution). La transformation de

chorégraphie de service vers une orchestration doit aussi prendre en compte la nature des

communications (synchrone ou asynchrone) ainsi que les délais de transmission et leurs

éventuelles conséquences sur la communication.

Après la génération de code, les objets générés sont déployés dans des plateformes

d’exécution. A ce stade, il pourrait y avoir des interactions inattendues et non précisées qui sont

inconnues lors de la conception et qui sont, par conséquence, non incluses dans le modèle. Cela

est dû au fait que la vérification horizontale lors de la phase de spécification ne révèle pas tous

les problèmes potentiels qui pourraient survenir lors de l'exécution. Pour cette raison, les

systèmes ont encore besoin d’une deuxième vérification, appelée vérification de la consistance

verticale, pour garantir la cohérence entre le modèle de spécification et celui d’exécution. Cette

vérification permet la détection de tels événements imprévus lors de l'exécution et de rectifier

par suite les problèmes observés.

A partir des problèmes listés ci-dessus nous avons identifié trois questions de recherche qui

couvrent différentes phases du cycle de vie du logiciel, i.e., la phase de spécification, la phase de

développement et la phase de vérification. Les questions de recherche identifiées sont les

suivants :

Question 1 : "Comment renforcer la consistance horizontale des spécifications des systèmes

orientés-services?". Cette question de recherche concerne la phase de spécification et vise à

améliorer la cohérence de la spécification d’un système SOA.

Question 2 : "Comment transformer une spécification de haut niveau en artefacts

exécutables ? En particulier, comment transformer une chorégraphie de services en une

orchestration exécutable qui intègre la logique de la chorégraphie?". Cette question de recherche

concerne la phase de développement et vise à fixer les règles de transformation du modèle de

spécification d’une application orientée services vers un modèle exécutable.

Question 3 : "Comment renforcer la consistance verticale entre le modèle de spécification et

le modèle d’exécution pour les systèmes SOA?". Cette question de recherche concerne la phase

de vérification des systèmes.

Contributions

Une première étape consiste à fixer un langage de modélisation pour les applications orientées

services. Ce langage doit contenir tous les éléments nécessaires pour la conception de ces

applications. Dans la littérature, il existe plusieurs initiatives de modélisation SOA [6] [7]. Une

initiative a été récemment prise par l’OMG qui a proposé le langage de modélisation pour les

architectures orientées-service appelé SoaML (pour Service oriented architecture Modeling

Language [8]). SoaML fournit un profil UML fournissant un ensemble complet de concepts pour

la modélisation d'applications orientées services. Pour faciliter la compréhension des systèmes

SOA, SoaML permet la définition de plusieurs vues dans un même modèle : la vue Services, la

vue de contrats de services, la vue des composants qui implémentent ces services, la vue de

Condensé 15

données et la vue des architectures de services. SoaML permet aussi la définition de chorégraphie

de services qui peuvent être rattachées à des contrats de services. SoaML donne la liberté du

choix du langage de chorégraphie au concepteur du système selon le besoin. Pour ces raisons,

nous avons choisi la norme SoaML comme un langage de modélisation. Ce standard fait la liaison

entre SOA et IDM en fournissant un langage de modélisation.

Le but de notre travail est de proposer une approche IDM pour la spécification, le

développement et la vérification des systèmes SoaML. Cette approche doit en particulier traiter

les trois questions de recherche mentionnées précédemment. Au niveau de la spécification,

puisque nous avons choisi SoaML comme langage de spécification, le problème de la vérification

de la consistance horizontale des systèmes orientées services est adressé par l'enrichissement de

SoaML avec des mécanismes d'analyse statique dont le but est de vérifier la cohérence d’un

modèle SoaML par rapport à la syntaxe et aux sémantiques définis par la spécification SoaML

[8]. Au niveau du développement, nous avons d’abord choisi de modéliser les chorégraphies de

service sous forme de diagrammes de séquences et nous avons choisi les Services Web comme

technologie cible. WS-BPEL (ou simplement BPEL pour Business Process Execution Language)

est utilisé pour exprimer les orchestrations de services. Après avoir défini les langages d’entrée

et de sortie, nous avons défini les règles de transformation du langage d’entrée vers les langages

de sortie, plus précisément, de SoaML vers des Services Web et d’un diagramme de séquence

exprimant une chorégraphie de service dans un modèle SoaML vers une orchestration exécutable

exprimée en BPEL. Finalement, le problème de la vérification de la consistance verticale est

adressé par une approche d'analyse hors ligne des traces du système afin de vérifier la cohérence

de l’implémentation du système par rapport aux modèles de spécification.

La Figure 1.3.1 illustre le processus global de notre approche. Les paragraphes suivants

donnent plus de détails sur les trois contributions de cette thèse.

Figure 0.1: Aperçu de l’approche.

Condensé 16

Contribution 1 : La vérification de la consistance horizontale: vérification de la cohérence

des modèles SoaML par rapport à la sémantique définie par la spécification SoaML.

SoaML permet la définition de plusieurs vues dans un même système, chacune est destinée à

représenter une perspective différente de celui-ci. Ces vues sont sémantiquement liées et doivent

être cohérentes entre elle. En plus, la spécification SoaML spécifie un ensemble de contraintes

qui représentent une certaine condition, restriction ou affirmation liée aux concepts définis par le

langage sous forme d’un profil UML. Certaines contraintes sont destinées à restreindre ou

imposer la syntaxe du langage (un exemple de ces contraintes est appliqué sur l’élément

« Services Architecture » qui ne peut contenir que des propriétés UML typés par un Participant

ou Capability), d’autres permettent de gérer la relation entre différents concepts (un exemple de

ces contraintes est appliqué sur un Participant qui, pour jouer un rôle dans un contrat de services,

doit être compatible avec ce rôle). Les contraintes SoaML sont exprimées en langage naturel.

L’utilisation de langage naturel pour l’expression des contraintes de modélisation présente

certains inconvénients. En fait, ces contraintes ne peuvent être vérifiées que manuellement. La

vérification manuelle s’avère une tâche difficile et pourrait causer une perte de temps inutile

surtout quand il s’agit de modélisation de systèmes à grande échelle ou quand il s’agit de

contraintes complexe reliant plusieurs vues du modèle. Par conséquence, l’automatisation de

cette tâche s’avère nécessaire. De plus, les contraintes SoaML sont exprimées parfois de manière

confuse, ce qui peut conduire à des erreurs d'interprétation et l'analyse incorrecte des modèles.

Dans la spécification SoaML, certaines contraintes présentent des points de variation sémantique

sans préciser une sémantique par défaut ou une liste de variantes possibles. Pour résoudre ces

problèmes, nous avons besoin de formaliser les contraintes décrites pas la norme et fixer le

maximum possible de points de variation sémantique et ce en fixant par exemple un choix de

modélisation en fonction de nos objectifs.

Nous avons d'abord extrait les contraintes décrites dans la spécification SoaML. Puis, nous avons

procédé à l’analyse de ces contraintes afin de les formaliser par la suite en utilisant le standard

OCL (Object Constraint Language), un langage standard "formel" d’expression de contraintes

utilisées par UML. Les contraintes OCL permettent la vérification statique de la syntaxe et de la

sémantique des modèles SoaML par rapport à la spécification SoaML. Ils permettent de vérifier

la cohérence entre les différentes vues d’un même modèle SoaML et couvrent à la fois les

diagrammes structurels et comportementaux.

Afin de valider les contraintes OCL, nous avons développé un Framework pour la

modélisation et la vérification des applications orientées services basé sur le standard SoaML.

Ce Framework est implémenté comme une extension de Papyrus pour la modélisation des

applications SOA, Papyrus4SOA. Papyrus4SOA intègre un support pour le langage de

modélisation graphique SoaML et un support pour la vérification des modèles SoaML par rapport

à la syntaxe et la sémantique définies par la norme.

Contribution 2 : génération automatique de code à partir d’une spécification basée sur

SoaML : transformation de la partie structurelle et comportementale, i.e., transformation

des chorégraphies de services en orchestrations exécutables.

Le langage SoaML permet aux concepteurs de spécifier des applications orientées services à un

haut niveau d'abstraction. Une spécification basée sur SoaML couvre non seulement la partie

structurelle d’un système (la définition des interfaces de services, la définition des composants

implémentant ces services et de leurs architecture interne, etc.), mais aussi la partie

comportementale de celui-ci. Dans notre cas, les modèles comportementaux définissent la

Condensé 17

manière dont les participants collaborent ensemble dans d’une chorégraphie afin de satisfaire un

objectif commun (en réponse à une demande d’un utilisateur de ces services). Après avoir étudié

les différentes possibilités pour modéliser une chorégraphie de services, nous avons choisi de les

décrire en utilisant les interactions UML sous forme de diagrammes de séquence.

Après la phase de modélisation, l’étape suivante dans une approche IDM est de mapper le

modèle de spécification vers un modèle exécutable qui est relié à une plate-forme technologique

spécifique. SoaML est un langage de modélisation général qui pourrait être mappé vers

différentes technologies comme les services Web, SCA et OSGI. Dans ce travail, nous avons

choisi les services Web comme une technologie cible, vu que cette technologie est soutenue par

plusieurs grands fournisseurs informatiques (notamment Microsoft et IBM). Trois langages de

services web ont été ciblés: (1) Le langage de définition de schéma de données XML (XSD) pour

la définition de la structure des données échangées entre les services Web, (2) WSDL (pour Web

Service Description Langage) pour définir les interfaces de services et (3) WS-BPEL pour décrire

les orchestrations de services traduisant les chorégraphies spécifiées au niveau du modèle

SoaML. Nous avons défini ensuite les règles de transformation d’un modèle SoaML enrichi avec

des Interactions UML exprimant des chorégraphies de services vers les normes de services Web

listées ci-dessus. Pour automatiser la transformation, ces règles de transformation ont été

implémentées en QVTo (pour Query/View/Transformation Operational), un langage standardisé

par l’OMG pour exprimer des transformations de modèles. La partie structurelle des modèles

SoaML, plus précisément les Participants (qui représentent les composants implémentant les

services) ont été transformés en des définitions de services Web (WSDL / XSD) et la partie

comportementale, c.-à-d. les chorégraphies de services, ont été transformées en orchestrations

BPEL. Nos transformations prennent en considération la nature asynchrone des communications

entre les services distribués. Les orchestrateurs générés traitent aussi le problème des appels

simultanés en traitant les messages entrants le plus rapidement possible.

Pour la validation de notre transformation, nous avons implémenté le module de

transformation automatique de modèles SoaML vers des services Web et des processus BPEL

sous forme de plugins Eclipse qui font partie de notre Framework Papyrus4SOA. Ce module

intègre les règles de transformation implémentées en QVTo. Afin de valider le comportement

des artefacts générés, une fois déployés, nous avons vérifié la conformité entre les traces du

système en cours d'exécution et le comportement modélisé. Ceci est notre troisième contribution.

(3) Vérification de la cohérence verticale: Vérification de la cohérence entre les

comportements des orchestrations générées et les chorégraphies spécifiées au niveau

modèle.

Dans le cadre de notre travail, la vérification de cohérence verticale se fait à travers l’analyse

automatisée des traces d'exécution en se basant sur des tests basés sur les modèles (Model-Based

Testing, MBT) et sur le calcul d’oracle en particulier. Après le déploiement du système sur la

plateforme services Web, nous procédons à la collecte des traces d'échanges de messages pour

les comparer par suite avec le comportement attendu spécifié par les modèles de diagrammes de

séquence. En raison de l’accès limité aux points d’observation (ex. services tiers ou sur Cloud),

certains services ne peuvent pas être instrumentés. Dans ce cas, nous proposons d’exploiter les

traces collectées au niveau de l'orchestrateur afin de vérifier la cohérence de l’orchestration de

services par rapport à la chorégraphie. En fait, l’orchestrateur joue le rôle d'intermédiaire dans la

chorégraphie, ce qui fait que les traces récupérées au niveau d’un orchestrateur sont informatives

et reflètent les échanges entre les services. Dans notre processus d’analyse, chaque chorégraphie

Condensé 18

est analysée séparément en récupérant les traces de l’orchestrateur correspondant à (c'est-à-dire

généré à partir de) cette chorégraphie. Nous effectuons ainsi une corrélation entre les traces

impliquées dans un même contrat en fonction de la relation de précédence de message définie

dans la chorégraphie correspondante. Toutes les traces d'exécution possibles sont déduites à partir

de la trace récupérée au niveau de l’orchestrateur en tenant compte des délais de transmission

des messages (ex. le fait qu’un message m1 peut être reçu après un message m2 alors que m1 a

été envoyé avant m2). Ensuite, nous comparons ces traces avec l'ensemble de toutes les traces

définies par le diagramme de séquence. Comme le montre la Figure 1.3.1, en se basant sur

l'analyse des résultats, l'ingénieur de validation du système peut alors vérifier et résoudre les

problèmes existants ou valider l'implémentation du système.

Dans le cadre de ce travail, la vérification de l’inclusion de traces est effectuée en utilisant

Diversity1, un moteur d’exécution symbolique de modèle développé dans notre laboratoire.

Diversity permet de tester des systèmes en utilisant des modèles comme références. Nous avons

étendu la plateforme Diversity pour permettre de calculer toutes les traces possibles à partir d’une

trace récupérée au niveau d’un orchestrateur de services. Les traces inférées sont stockées dans

une représentation compacte sous forme d’un arbre Radix [171], une structure de données qui

facilite à la fois l’inférence de traces et le calcul du verdict du test. Ensuite, la spécification

chorégraphique en tant que digramme de séquence est utilisée pour générer un (pour Input/Output

Symbolic Transition Systems [9] qui sont des automates symboliques utilisés pour spécifier les

comportements des systèmes réactifs), qui est utilisé avec les traces du système comme entrée à

Diversity afin d'analyser ces traces en calculant un verdict sur l'inclusion de traces par rapport à

une relation conformité orch-conf que nous avons définie. Cette relation de conformité permet

de raisonner sur la confirmité d’une implémentation en l’absence de points d’observation, en

tenant en compte les délais de transmission. L’objectif de cette analyse est de savoir si au moins

une parmi des traces inférées est incluse dans le modèle de chorégraphie en utilisant la

fonctionnalité d’inclusion de Diversity. Si une telle trace existe alors un verdict PASS est émis,

un FAIL est renvoyé autrement.

Validation. En plus de l’implémentation des prototypes, les résultats de nos contributions ont

été validés avec des recherches dans la littérature, des exemples, des études de cas et des retours

obtenus lors de l'élaboration et la présentation des publications scientifiques évaluées par des

pairs.

Nous avons commencé notre travail avec une recherche dans la littérature des résultats des

travaux, des techniques et des outils qui sont liés à notre travail. Nous avons continué à examiner

de nouveaux résultats pendant les trois années de cette thèse de doctorat. Deuxièmement, et pour

comprendre et identifier les problèmes potentiels, nous avons utilisé et établi des exemples et des

études de cas qui ont ensuite été réutilisés pour valider notre approche. Les deux principales

études de cas sont le « Dealer Network Architecture », une étude de cas bien connue que nous

avons extraite de la spécification SoaML. Cette étude de cas est utilisée le long de cette thèse

pour illustrer notre approche. La deuxième étude de cas est celui d’un système de gestion de

voyage, qui est une étude de cas classique dans les applications web où un client utilise un

système de gestion de voyage pour rechercher les vols et les hôtels. Cet exemple a été extrait de

[10].

Les trois principaux prototypes ont été développés durant cette thèse pour illustrer et valider les

1 http://projects.eclipse.org/proposals/diversity/

Condensé 19

contributions. Le premier prototype est un éditeur SoaML, qui fournit des supports pour la

spécification et la vérification des modèles SoaML. Notre éditeur permet de vérifier la cohérence

d’un modèle SoaML par rapport à la syntaxe et aux sémantiques définîtes par le standard. Le

deuxième prototype est le générateur de code, qui automatise la génération de définition de

services Web (WSDL) et de processus d’orchestration BPEL à partir des modèles SoaML. Le

troisième prototype est un plug-in qui étend l'outil Diversity pour supporter le passage

asynchrone des signaux / opérations et pour supporter l'analyse hors ligne des chorégraphies de

service dans des conditions d'observabilité partielle.

Nos contributions scientifiques ont été révisées par des pairs dans des conférences

internationales. Notre publication a eu le prix du meilleur papier dans une conférence

international spécialisée (SOCA’15 pour Service-Oriented Computing and Applications) Nos

principaux résultats ont été évalués par des chercheurs internationaux spécialisés, ce qui renforce

encore la validité de nos contributions scientifiques.

Nous croyons que la validation de nos résultats de recherche en utilisant des études de cas, des

exemples, des prototypes, et les publications scientifiques évaluées par des pairs, montre la

pertinence des résultats obtenus.

1 Introduction

1.1 Context and motivations ... 20

1.2 Research questions ... 23

1.3 Contribution overview.. 25

1.4 Thesis structure .. 28

This Chapter presents an introduction to this thesis, in which we give an overview of the

topics it deals with. First, we present the context and motivations of this thesis. Then, we give

the research questions that we have identified. After, we enumerate the contributions of the

thesis and finally, we present the structure of this thesis document.

1.1 Context and motivations

Software systems are increasingly present in our daily lives and in different application fields

such as industry, health, smart grids, etc. They play an important role in the lives of their users

that are becoming increasingly demanding. They require more reliability and systems that can

adapt to their context of use and their new requirements faster. To ensure these social issues

and satisfy the users, technical frameworks and methods underlying design to system

development must be modular, flexible and consistent. Since the late 1990s, the relatively recent

software engineering paradigms model-driven engineering (MDE) and service-oriented

architecture (SOA) have proved to be promising when developing complex software systems

[11] [3]. SOA is known by its modularity, which makes the SOA systems more flexible. On the

other hand, MDE technologies help managing and improving the specification and

development of complex software [2].

Model-Driven Engineering (MDE) is a development approach that is based on two time-

proven principles, which are abstraction and automation [12]. Abstraction consists of the use

of models in the process of software development. The idea is to simplify the design process

by separating the business concerns from the platform concerns. Models can be used to

understand, estimate, communicate, test and produce code [2]. System specification is used to

automatically generate the executable code of the system to increase productivity, improve the

quality of the code and reduce the software cost. Once validated, the automatic generation of

the code guarantees (by construction) its conformity with the initial platform independent model

and reduces the errors compared with traditional software development.

A MDE approach is generally based on a domain-specific modeling language (DSML) [11]. A

Introduction 21

DSML defines a syntax that specifies domain-specific concepts in terms of metamodels and

semantics behind these concepts. DSMLs should be written in the right level of abstraction,

sometimes very high and sometimes very low depending on the problem to solve.

The Model Driven Architecture (MDA) is a well-known initiative proposed by the Object

Management Group (OMG) for implementing a model-driven approach by providing a set of

tools that manage models [13]. In MDA, the development process is separated into three

different abstraction levels, which are computation-independent models (CIMs), platform-

independent models (PIMs) and platform-specific models (PSMs). The PIM abstracts from

platform-specific details, which are considered in PSMs. The distinction between PIM and

PSM facilitates and reduces the cost of the migration of applications from one platform to

another [1].

Service Oriented Architecture (SOA) has emerged as an architectural style for distributed

computing that promotes flexible application development and reuse. SOA provides flexible IT

solutions that can react to changing business requirements quickly and economically. This

flexibility is due to the extension of the component-based architecture by adding an upper layer

caller service layer. This layer defines individual and autonomous entities called services, which

represent the functionalities provided and required by the components. These services can be

published and discovered over a network, often by means of a service registry. Consumers can

access SOA services in a standardized way and without needing to understand how the service

is implemented [6].

SOA allows building new applications or systems as a composition of independent existing

services, known as “services composition”. This is beneficial in software development because

the focus of developers changes from developing applications from scratch to developing an

application from reusable building blocks, which are the services.

There are two approaches in services composition: choreographies and orchestrations. The

purpose of choreography is to specify the public contracts that govern the message exchange

between the services required to achieve a business goal. Choreographies are not intended to be

executable. It reflects “what” a business goal is to be achieved. In contrast to choreography,

orchestration focuses on “how” multiple services can cooperate together from the perspective of

a unique participant called the orchestrator. It describes the execution of the orchestration

process. The choreography is then more declarative, so it is usually used for modeling services

compositions at a high-level of abstraction.

Both SOA and MDE paradigms help managing and improving complex software projects in

several aspects [3] [4] [4]. SOA offers mechanisms to lower development costs of software

systems by using service orchestration and choreography [14]. MDE deals with system

complexity by separating technology dependent models from technology independent ones [5].

It can be used to code generation. A promising approach would be to apply MDE approach in

the development of SOA applications [3].

A SOA application can be composed of several artifacts such as services, components,

contracts and data. These artifacts are related to each other and must be consistent with each

other. This may not be an easy task especially for large systems containing a large number of

Introduction 22

artifacts. A good way to deal with this problem would be to model these artifacts in order to

understand them well and specify the relation between these artifacts in order to guarantee their

consistency.

The use of high-level models helps in formalizing and understanding system architectures by

dividing the problems into smaller ones depending on the concerns (e.g., describing the business

view, the architectural view, the behavioral view of the system, etc.). SOA models would then

be described using several views of the system making the SOA application more

understandable. In addition, thinking in terms of model would also facilitate the description of

the relations between the system artifacts especially in the case of large systems.

1.2 Research questions

Based on the need to use models to specify SOA systems before developing them and the

need to check consistency of the SOA models before their development and to verify the

coherence between the models and the running system, the main research statement of our work

is to investigate:

“How to guarantee effective consistency checking of a SOA system specification and

transform this specification into executable artifacts consistent with it?”

The research question sets the context of our research agenda, which we decomposed into three

finer-grained, more focused topics that constitute the main concerns of this dissertation:

1. Support for consistency checking of SOA-based systems at design level:

As explained before, in order to model complex SOA systems, designers need more

than one perspective, each of which captures a specific concern of the system. A model

of a SOA-based system might include a view that specifies the existing services. This

view might detail the service interfaces, which include the functional operations and their

parameters. Another view might detail the data exchanged between the services. The

same model might include a view that describes the contracts between the existing

services. A contract could be specialized with another view that describes messages

exchanges between the services (e.g., service choreography).

The use of multiple views to capture several concerns reduces the complexity of one

single view, making it easier for a developer to build correct models [15], [16]. However,

these views depend on each other and are semantically related to each other and,

therefore, must be consistent with each other. Checking the consistency of multiple view

models is not an easy task. In fact, the changes that could occur in a view would require

changes in one or more different views. For applications of reasonable size, changes of

interrelated views can quickly become difficult to manage for a system designer.

In MDE, models are the main artifacts of the software development process. For that

reason, the consistency of models is a crucial issue, as any defect or inconsistency not

captured at the model level is transferred to the code level, where it requires more time

and effort to be detected and corrected [17]. It becomes obvious according to the

aforementioned discussion, to verify the consistency of a SOA system specification at

the time of design in order to reduce inconsistencies and errors in the subsequent stages

to avoid unnecessary waste of time and money.

Introduction 23

“Research Question 1. How to support consistency checking of SOA-based system

specifications?”

2. Support for the transformation of choreographies into executable orchestrations.

After the specification step, the resulting models need to be transformed into

executable artifacts. Both structural and behavioral models need to be transformed into

platform specific models. For the behavioral models, we are interested in the

specification of service composition. In fact, service composition is one of the major

benefits of SOA. It allows the development of applications from reusable building

blocks (services) in a flexible way.

There are two approaches in service composition: choreographies and orchestrations.

A choreography specifies “what” business goal is to be achieved in contrast to

orchestration that focuses on “how” services can cooperate together from an orchestrator

perspective. Choreographies are then more suitable at the specification level. However,

existing tools do not support direct execution of choreographies, which therefore need to

be transformed into orchestrations that embed the choreography logic and which can be

directly executed. This transformation is usually performed manually and is painstaking

and error-prone. It becomes harder when a large number of services are involved in the

choreography or when the choreography includes complicated message exchange

dependencies (e.g., sequence order, exclusive choices). Furthermore, many parameters

should be taken into consideration when transforming choreography specification into

an orchestration; such as the nature of the communication (i.e., synchronous or

asynchronous), the network delays and the problems resulting from it.

Automating the generation of an executable orchestrator from a specified

choreography reduces the development cost and guarantees consistency between the

specification level and the execution level, and also makes it easier to modify or create

new business interactions.

“Research Question 2. How to transform services choreographies into executable

orchestrations that embed their logic?”

3. Support for guaranteeing the consistency between the specification models of the

SOA-based systems and their executable models.

A common issue in software development is to ensure that the product delivered meets

a set of design specifications. After transforming the choreography models into an

executable orchestration, we need to verify the consistency between the specification

model and its implementation and thereby validate the automatic transformation.

Moreover, after the system deployment, there could be unexpected and unspecified

behaviors that are unknown during design-time and are, therefore, not included in the

model. Design-time cannot reveal all potential issues that could happen at runtime. For

these reasons, consistency verification at the time of design is not enough, we still need

consistency verification at runtime in order to handle such unforeseen events produced

at runtime and that were not expected.

Introduction 24

“Research Question 3. How to support consistency checking between the specification

model and the executable model in the context of SOA?”

The definition of these three research topics was necessary to set the boundaries and the

focus of the research presented in this dissertation. The results of the research and development

on these research topics, guided by Question 1, Question 2 and Question 3, lead to the major

contributions of this Ph.D. dissertation.

1.3 Contribution overview

The first step in our work was to define the most appropriate language to specify a SOA

system. There are several initiatives to model SOAs [7]. Recently, the OMG proposed the

specification of a modeling language called Service oriented architecture Modeling Language

(SoaML) [8], released in 2012, it provides a metamodel and a UML profile for the specification

and design of services within a SOA. SoaML provides a complete set of concepts for modeling

service-oriented applications. It defines several views of the service-oriented applications:

services view, contract view, participants view, data view and services architecture view. For

those reasons, we have selected the SoaML standard as a modeling language. This standard

links SOA and MDE by providing a language that defines the complete set of concepts for

modeling SOA-based systems.

Our methodology has to deal with the three research questions mentioned before, and

thereby it has to deal with the different phases of the software lifecycle (specification phase,

development phase, and verification phase). At the specification phase, the research question

(1) “How to support consistency checking of SOA-based system specifications?” is addressed

by enriching SoaML with verification mechanisms for verifying the consistency of the SoaML

models. The research question (2) “How to transform services choreographies into executable

orchestrations that embed their logic?” is addressed by the definition of transformation rules

from choreography into an executable orchestration. We have chosen Web Services technology

as a target technology. We then propose a model-driven generation of executable Web Services

artifacts from SoaML models. Business Process Execution Language (WS-BPEL or simply

BPEL) is used to express service orchestration. The research question (3) “How to support

consistency checking between the specification model and the executable model in the context

of SOA?” is addressed by an offline analysis approach of the system traces for verifying the

consistency of the implementation with respect to the specified behavioral models. The

following provides further details of these contributions.

In our thesis work, we propose a Model-driven Methodology for the Development and the

verification of Service-oriented applications. This methodology is depicted in Figure 1.3.1.

Our methodology provides guidelines for how to use SoaML to define and specify a service-

oriented application from both a business and an IT perspective. The methodology prescribes

building a set of model artifacts following a top-down approach. SoaML models are refined by

adding high-level choreography specification designed as UML Interactions, which provide

adequate information sufficient both for expressing complex choreographies and for allowing

code generation. We then define transformation rules from choreography models to executable

orchestrations. Our methodology includes a two-step model-driven consistency verification: (1)

Introduction 25

Horizontal consistency verification applied at design time that allows verifying the coherence

between the model diagrams at the same level of abstraction (specification level) and (2)

Vertical consistency verification based on offline analysis of execution traces that enables

consistency verification between both design and runtime levels.

Figure 1.3.1: Approach overview.

(2) Horizontal consistency verification: Verification of SoaML-model consistency with the

syntax and the semantics defined in SoaML Specification.

SoaML defines multiple views of the system design, which are semantically intertwined.

The SoaML specification provides a syntax in the form of a metamodel and a profile. This

syntax is enriched by a set of constraints that represent several conditions, restrictions or

assertions related to an element that owns the constraint or several elements. Some

constraints manage the relationship between the different concepts defined in the

specification. The SoaML constraints are expressed in natural language, which presents

some drawbacks. In fact, these constraints can only be checked manually which is a hard

task especially with large-scale systems and can cause a loss of time. To address that

problem, an automated verification must be carried out. In addition, the SoaML constraints

are sometimes expressed in a confusing way and this may lead to misinterpretations and to

the improper analysis of the models. Some of the constraints present variation points

without default semantics or a list of possible variations. To deal with these problems, we

need to formalize these constraints and fix the variation points according to our goals. We

first extract as many constraints as possible from the SoaML specification in order to

analyze them. Then we formalize them using OCL (Object Constraint Language). OCL

constraints allow the verification of the syntax and the semantics of SoaML models with

respect to the SoaML specification in a static way. It allows verifying the consistency

between the different views of SoaML model covering both structural and behavioral

models.

Introduction 26

(3) Automatic code generation: Transformation of SoaML model into executable artifacts,

specifically the transformation of a service choreography designed using sequence diagram

into BPEL-based executable orchestration.

Now, a SoaML-based specification model needs to be mapped into an implementation

model. Structural parts of the system have to be mapped into a service-oriented platform.

The choreography specification models describing high-level interactions need to be

mapped into executable sending and receiving operations. SoaML gives the system

designer the freedom to choose the UML behavioral model to specify services

choreographies. We have chosen UML Interaction in the form of a sequence diagram to

model service interactions within the choreography.

SoaML is a general modeling language that could be mapped to various implementation

technologies like Web Services, SCA and OSGI. In this work, we have chosen the Web

Services technology as an implementation technology because it is supported by several

major computing vendors (notably Microsoft and IBM)2. Three Web Services languages

have been targeted: (1) The XML schema definition (XSD) language for defining service

messages, (2) the Web Service Description Language (WSDL) for defining service

interfaces and (3) the WS-BPEL language for defining service choreographies. In order to

automatically generate executable code from the SoaML models, we define the mapping

rules between SoaML and the Web Service standards. These mappings allow transforming

the structural part of the system specification into Web Service Definitions (WSDL/XSD)

and the behavioral part (choreographies) into BPEL orchestrations. Our transformations

take into consideration the asynchronous nature of the communications between distributed

services. We propose an implementation pattern to be applied at runtime level to deal with

the concurrency problem of the communications between distributed services.

(4) Vertical consistency verification: Verification of the consistency between the behaviors

of generated artifacts with the system specification defined using SoaML choreographies.

Vertical consistency verification is an automated model-based execution analysis that

verifies the conformity between the modeled behavior and the message traces of the

running system. In our case, it is based on black box techniques. Once the system has been

deployed, we pick up traces of message exchanges and we compare them with the expected

behavior specified at design-time. Due to the observation limitations (e.g., some services

cannot be instrumented at their deployment locations), the trace recorded at the orchestrator

level could be exploited to deduce the execution traces. We correlate traces involved in the

same contract based on message precedence relationships defined in the corresponding

SoaML Service Contract. Then we compare those traces to the set of all the traces

characterized by the sequence diagram of that contract. As shown in Figure 1.3.1, based on

the analysis results, the system validation engineer can then check and resolve existing

problems or validate the system implementation.

(5) Implementation of a framework supporting the proposed approach: The final

contribution of this thesis is the implementation of a prototype that integrates a support for

the SoaML graphical modeling language and automatic transformation of SoaML models

2 http://www.gartner.com/it-glossary/web-services/

Introduction 27

to Web services and BPEL processes reflecting the high-level choreography models. The

horizontal and vertical consistency checking of SoaML specifications are also

implemented as part of the framework. Three main tool prototypes have been developed in

this thesis :

 SoaML-Papyrus editor, which provides support for the specification and the validation

of SoaML-based models. This prototype checks consistency between SoaML views

with respect to the syntax and the semantics described in SoaML specification.

 SoaML2WS generator, which automates the generation of Web services artifacts from

SoaML models.

 Plug-ins extending Diversity tool, a symbolic analysis, and testing platform, to support

the asynchronous passing of signals/operations and to support offline analysis of service

choreographies under partial observability conditions.

1.4 Thesis structure

This thesis is structured in three parts and several appendices, plus the bibliography references

and acronyms, the contents of the rest of this thesis manuscript being as follows:

Part 1 – MDE for SOA-Related Work and studies

This part of the manuscript gives an overview of the related work and studies that make

use of MDE technology in the specification and development of SOA.

Part 2 – Thesis contributions

This part contains the main research work of this thesis. It is composed of three chapters:

Chapter 1 – Horizontal consistency verification

This chapter details the first contribution of this thesis work. It is about formalizing

consistency checking rules to ensure the horizontal consistency of SoaML model.

Chapter 2 – Model-driven generation of executable artifacts from SoaML models

This chapter describes the automatic generation of Web services artifacts from SoaML

models by means of the definition of QVT transformations

Chapter 3 – Vertical consistency verification: offline analysis of Web service

choreographies

This chapter describes our offline analysis method whose purpose is to guarantee the

coherence between the Web service choreography implementation and specification level

and reveal unspecified behavior that may occur at runtime.

Part 3 – Validation

This chapter presents the validation of the thesis contributions. To validate our approach,

we implemented a framework, that we called Papyrus4SOA, for the modeling and

verification of SOA systems. This framework embeds the vertical and horizontal

consistency verification methods and the code generator. We then experimented our

approach with two well-known case studies.

Part 4– Conclusions and future work

This part presents the conclusions of this thesis work, analyzes the attainment of objectives

and the contributions of the work, the scientific publications achieved, along with the

research lines open for future work.

Appendices:

The Appendices included extend and clarify information to give a better understanding of

Introduction 28

some of the issues presented in previous chapters. The list of Appendices is as follows:

Appendix A – Horizontal consistency verification of SoaML models

A.1 SoaML Editor

A.2 Prerequisites of OCL language

A.3 Implementation of consistency constraints using OCL

Appendix B – QVT transformations code

B.1 Overview of target WSDL and WS-BPEL metamodels

B.2 Transformation of structural models

B.3 Transformation of services choreographies

Appendix C – Offline analysis

C.1 Semantic-based traces of sequence diagram

C.2 Reconstitution of the global trace from services traces

Appendix D – Travel Management System case study choreographies implementations

WS-BPEL and trace analysis.

Part I: MDE FOR

SOA-RELATED WORK

AND STUDIES
This part aims at assessing the state of the art of Model-Driven Engineering (MDE)

approaches for SOA systems (MDE for SOA). We have explore the state of the art in three

directions: (1) what are the main existing modeling methods for SOA systems; (2) how far do

such models support automatic code generation; and (3) what are the existing testing approaches

for SOA systems.

1 SOA modeling methods and languages ... 30

1.1 Overview of SOA modeling approaches ... 30

1.2 SoaML tool supports .. 33

2 Consistency verification of SOA specification models .. 34

2.1 Elements of a language definition ... 34

2.1 Consistency checking ... 35

2.2 Related work .. 36

3 Model-driven transformation of SOA systems .. 38

3.1 Service composition: orchestration versus choreography ... 40

3.1.1 Service choreography ... 40

3.1.2 Service orchestration .. 41

3.1.3 Choreography and orchestration relationship .. 41

3.2 Service choreography modeling languages .. 42

3.2.1 BPMN .. 44

3.2.2 Message Sequence Chart .. 46

3.2.3 UML 2.x diagrams for specifying choreographies ... 48

3.3 Transformation approaches: Decentralized versus Centralized orchestration 51

3.4 Transformation approaches: related work.. 53

4 SOA testing approaches: related work... 58

4.1 Classification of testing approaches in SOA .. 58

4.2 Model-based testing techniques for SOA .. 59

5 Background: modeling with SoaML ... 61

5.1 SoaML main concepts .. 61

5.1.1 Business architecture .. 62

5.1.2 System architecture .. 64

5.2 Modeling choreographies using sequence diagrams .. 66

Part I: State of the arte 30

1 SOA modeling methods

and languages
In this section, we first introduce a few relevant MDE concepts. Then, we review existing

modeling approaches for Service-oriented Architectures. Thereafter, we explain why we selected

SoaML as a modeling language. We further give a brief introduction to SoaML and existing tool

support.

1.1 Overview of SOA modeling approaches

Domain-Specific Language. Most of the MDD approaches are based on Domain-Specific

Language (DSL, called also Domain-Specific Modeling Language, DSML). The use of DSL is

very advantageous. In fact, contrary to general-purpose languages, such as java or C++, that are

intended to be used for any application domain, DSLs are designed to be used in a specific

domain. The goal behind DSLs is to simplify the design and development of domain-specific

applications by providing a domain-specific concrete syntax that defines the concepts related to

that specific application domain [18]. The definition of such a syntax allows avoiding syntactic

clutter that often results when using a general-purpose language. In fact, each DSL can have its

own domain-specific (static) analyzer that can find more errors than general-purpose language

analyzers and that can be customized to report errors in a language that is familiar to the domain

expert. Each DSL can also have its own editors, debuggers, version control and other domain-

specific tool supports that would provide more intelligent tool support for developers of this

specific domain.

A DSL can be implemented as a textual or a graphical language. It can be implemented as

interactive Graphical User Interfaces (wizards, editors, forms), or as extensions of other

programming languages [19]. There are several tools and platforms that support DSL

implementation and processing, such as, Microsoft Visual Studio Visualization and Modeling

SDK3, Generic Modeling Environment (GME)4, MetaEdit+5 and Eclipse Modeling Project6. The

Eclipse Modeling Project includes several modeling tools such as Papyrus7, which is a tool

developed in our laboratory.

In this dissertation, we propose a model-driven approach for the specification, the

development and the verification of SOA systems based on a standard DSL called SoaML

(described in Section 1.2), which is a DSL that allows for the specification of SOA-based

systems. In the following, e will discuss the existing modeling languages for SOA and justify our

choice.

3 http://code.msdn.microsoft.com/vsvmsdk

4 http://www.isis.vanderbilt.edu/Projects/gme/
5 http://www.metacase.com

6 http://www.eclipse.org/modeling/
7 https://www.eclipse.org/papyrus/

Part I: State of the arte 31

Over the last decade, there has been a growing interest for SOA as an architecture style to build

more flexible systems. This results in several modeling methods and languages applying the

SOA principles. The following gives a brief evaluation of each modeling method:

- OASIS Reference Model for SOA (SOA-RM, 2006) [20]: is an OASIS standard that

provides a common vocabulary and semantics for the specification of SOA systems across

different implementations. It is written at a high abstraction level and it defines concepts

related to service description, contracts, policies, execution context, etc. [20]. The purpose

of SOA-RM is to explain SOA core concepts and understand them, but no modeling

language was proposed.

- OASIS Reference Architecture for SOA (SOA-RA, 2011) [21]: is an OASIS standard

that addresses the issues involved in constructing, using or owning a SOA-based system.

It is intended to provide an abstract and foundational reference architecture addressing the

ecosystem viewpoint for building and interacting within the SOA paradigm. It specifies

three viewpoints, namely, the participants in a SOA Ecosystem viewpoint, the Realization

of a SOA viewpoint, and the Ownership in a SOA viewpoint. The purpose of SOA-RA is

to understand SOA from different viewpoints. SOA-RA is less abstract than the reference

model but still no concrete modeling language was provided, they only use UML2 to

visualize the proposed concepts.

- Open Group SOA Ontology (SOA Ontology, 2010) [22]: is an Open Group standard

intended to define a formal ontology for a better understanding of the core SOA concepts

and to facilitate the development of SOA using a model-driven approach. This ontology

extends, refines, and formalizes some of the core concepts of the OASIS Reference Model.

It defines the concept, terminology, and semantic of SOA in both business and technical

terms. The goal of Open group SOA Ontology is then explaining SOA core concepts. It

uses OWL as a modeling language and UML to illustrate classes and properties in SOA

modeling but there is no domain specific language.

- Open Group SOA Reference Architecture (2012) [23]: The Open Group SOA Reference

Architecture is a layered architecture from the consumer and provider perspective with

crosscutting concerns describing these architectural building blocks and principles that

support the realizations of SOA. It is used for understanding the different elements of SOA,

deployment of SOA in the enterprise, basis for an industry or organizational reference

architecture, implication of architectural decisions, and positioning of vendor products in

SOA context. The goal of this reference architecture is to help to understand SOA from

different viewpoints and to focus on business integration.

- Service-oriented Modeling Framework (SOMF, 2008) [7]: The SOMF is an agile

model-driven methodology proposed by Micheal Bell [24]. It offers a modeling language

and guidance that can be used during the different stages of the software development life

cycle. SOMF offers eight models of implementation [25]: discovery, analysis, design,

technical architecture, construction, quality assurance, operations, business architecture

and governance [26]. The tools proposed by SOMF are commercial, which may explain

the remarkable fact that there are few research papers about SOMF. SOMF Includes

support for standard notations such as the SoaML language presented in the following.

- Platform-independent Model for SOA (PIM4SOA, 2007) [27]: The PIM4SOA project

aims to develop a metamodel for SOA. PIM4SOA metamodel covers four important

aspects: (1) service including access, operation and types; (2) process which defines logic

Part I: State of the arte 32

order in terms of action, control flows and service interaction; (3) information related to

the messages or structures exchanged by services; and (4) quality of service including

extra-functional qualities that can be applied to services, information and processes.

However Service contracts, choreographies, and service discovery are not covered. The

PIM4SOA project also provides a set of MDA-based transformations that link the

metamodel with specific platforms such as agents, Web services, etc.

- IBM Service-oriented Modeling and Architecture (SOMA, 2004) [28]: SOMA is a

modeling technique for developing and building SOA-based systems proposed by IBM in

2004. SOMA is widely used in multiple industries [29]. SOMA activities focus includes

service identification (discovering candidate service and interaction between them), service

specification (making the decision for exposing services), and service realization

(capturing service realization) [29]. The main focus of SOMA is on the service model,

reusing services through service components and flows [6]. SOMA is based on a

commercial modeling language.

Modeling of Service-Oriented Architectures with UML.

The use of UML is very advantageous; this is because it gives a common standard language for

communication, among different stakeholders. There are many existing attempts for modeling

SOA systems using UML:

- UML-S (UML for Services) was proposed by Dumez et al. ([30], 2008) as an extension of

the UML 2.0 class and activity diagram to support developing composite Web services.

This UML extension covers some of the functional criteria and compositions but misses a

lot of other aspects such as participants, discovery, definition of constraints etc.

- Lopez-Sanz et al. ([31], 2008) proposed a UML profile for modeling PIM level

architecture. This profile is intended to model different service execution platforms (Web

services, CORBA, etc.). The profile defines a way to model several types of services and

contracts in UML using stereotypes at the PIM level. Besides this paper, little information

is available concerning their metamodel.

- Wada et al. ([32], 2006) focused on modeling non-functional aspects in SOA architecture.

They proposed a UML profile for the specification and maintenance of non-functional

aspects in SOA in a platform-independent manner. However, the proposed profile does not

provide a way to model the functional aspects of a SOA system.

- Service oriented architecture Modeling Language (SoaML): is a recently proposed

OMG standard for specifying service-oriented applications. It is proposed in March 2012

and updated in May 2012. The SoaML modeling language is becoming increasingly

popular [33] [34]. Since 2012, SOMA has been replaced by SoaML as the main modeling

language8 for SOA application in IBM. SoaML uses UML as a core-modeling standard.

The last version of SoaML, version 1.0.1, extends UML2.1 by providing a meta-model and

a profile for the specification and design of SOA artifacts. The SoaML approach prescribes

a process close to the one of SOMA. SoaML language extends UML concepts for modeling

of components, assembling components into services and services into services

collaborations in the form of contracts and services architectures. It allows designers to

specify service choreographies through service contracts.

8 http://www.cs.vu.nl/~patricia/Patricia_Lago/IBM_Course_files/SOMA%20and%20SoaML%20Overview.pdf

Part I: State of the arte 33

In this thesis, we have chosen SoaML as a modeling language for many reasons. First of all,

SoaML is a standard modeling language. A standard modeling language serves as a commonly

agreed metamodel that consolidates the approaches on which they are based. Using a common

language helps to combine these approaches for providing more holistic solutions. Secondly,

SoaML is based on UML, which is a widely-used modeling language in the field of software

engineering. It is used by experts to analyze, design, and implement software-based systems.

Thirdly, another advantage of SoaML is that it is implementation-independent. That is to say that

it could be mapped into many specific technologies (such as SCA, OSGI and Web services). In

addition, SoaML allows the designer to model both business and IT models. At the business

level, service choreographies could be specified by means of service contracts that could be

refined using a behavioral model. SoaML gives the designer the freedom to choose adequate

behavioral diagrams to specify the message exchanges between the collaborating services.

Section 3 gives more details about some choreography languages that are relevant to our work

and the semantics behind each of these languages.

1.2 SoaML tool supports

Since SoaML is a standard published in March 2012, its tool support is still limited. OMG’s

SoaML wiki9 lists five available tool supports for SoaML. Table 1.2.1 gives an overview of these

SoaML modeling tools.
Table 1.2.1: Overview of the existing SoaML modeling tools.

Name Description Licensing

ModelPro ModelPro is a general purpose MDA provisioning engine

based on the Eclipse tooling framework. SoaML is

implemented as a UML profile.

Open

source

Cameo SOA+

suite (NoMagic

MagicDraw)

ModelPro with SoaML has been bundled with the Cameo

SOA+ suite from NoMagic. This suite addresses the full

lifecycle of SOA solutions from modeling in MagicDraw™

UML to producing executable solutions. SOA+ provides

customized support for creating standard SoaML

architectures to enhance usability and scalability. With this

suite, it is possible to visually model SoaML application in

both MagicDraw and Eclipse.

Commercial

Modelio CASE

(Softeam)

Modelio is a commercial modeling tool with an open-source

SoaML designer extension10. It is compatible with version

1.0 of SoaML and implements a dedicated GUI including 6

new diagrams: Capabilities, Service Contract, Service

Architecture, Message, Service Interfaces, and Participant

diagrams. SoaML was integrated into SOFTEAM's

methodology for Enterprise Architectures.

Commercial

(partly open

source)

IBM Rational

Software

Commercial software architect tool supporting SoaML

modeling. To be used in combination with other IBM

Commercial

9 Object Management Group, “SoaML Wiki - Tool support.” Available at

http://www.omgwiki.org/SoaML/doku.php?id=tool_support, Accessed 26 July 2016.
10 Available at http://modeliosoft.com, Accessed 26 July 2016.

http://www.omgwiki.org/SoaML/doku.php?id=tool_support
http://modeliosoft.com/

Part I: State of the arte 34

Architect Rational products [51]. A complete implementation of

SoaML based on its profile.

SparxSystems

Enterprise

Architect

SparxSystems is a commercial software architect tool

SoaML is supported in the Corporate, Systems Engineering,

Business and Software Engineering and Ultimate editions of

Enterprise Architect.

Commercial

SoaML Eclipse

Plug-in by

Delgado et al.

[35]

Eclipse plug-in is based on Eclipse EMF and GEF. This

plugin implements the SoaML profile, supports visual

modeling with a Papyrus extension.

Open source

(source code

Not available

yet)

SoaML Eclipse

Plug-in by Ali

et. al. [5]

This is an Eclipse plug-in that allows architects to

graphically design SoaML models developed using the

Graphical Modeling Framework (GMF) [5].

SoaML metamodel has been implemented as an Ecore

model using the Eclipse Modeling Framework (EMF).

Open source

(source code

Not available

yet)

Whenever possible, we prefer open-source tooling for our work because we are then not

limited by licenses. As shown in the table, there are few open-source SoaML modelers. This

encourages us to implement our own modeler based on Papyrus, a tool developed in our

laboratory, LISE. Papyrus provides support for UML profiles. Every part of it may be

customized: model explorer, diagram editors, property editors, etc. We give more details about

our SoaML modeler in the second chapter of the contributions.

2 Consistency verification of

SOA specification models
As we discussed in the introduction section, models are the main artifacts of the software

development process. Therefore, verifying the consistency of SOA system models is an

important step before transforming the model specification into other forms (e.g., executable

code). In this section, we first identify the elements of a language definition that will serve to

better understand the notion of consistency checking of specification models and then we explain

the existing consistency checking classes in the following sub-sections.

2.1 Elements of a language definition

Authors in [36] define three main elements in a language (which are valuable for both textual

and graphical languages), namely abstract syntax, syntactic mapping, and semantics:

 The abstract syntax defines the concepts of a language and their relationships. One

popular methods to define abstract syntax is metamodeling. The defined syntax must be

independent of any particular concrete syntax.

 The syntactic mapping consists of a set of rules that defines the relationship between

the abstract syntax and their representation in a concrete syntax. The concrete syntax may

be textual or graphical. In the case of textual languages, it defines how to form sentences.

Part I: State of the arte 35

While, in the case of graphical languages, it defines the graphical appearance of the

language concepts and how they may be combined.

 The semantics describes the meaning of the concepts in the abstract syntax. Semantics

are often defined in an informal way through examples and simple natural language [37].

For more rigorous semantics, UML proposes the Object Constraint Language (OCL) as

a formal specification language that allows the system designer to define rigid rules that

can be applied to a modeling language.

In this work, we are interested in UML-based modeling language (DSLs that extend UML),

since UML is a mature language and since it provides a common and useful visual notation for

describing many of the software artifacts used in modern OO analysis, design, and development.

UML is also used pervasively in the industry to document and discuss software designs [38] [39].

UML-based modeling languages offer a rich set of concepts and diagrams. However, sometimes

there is a limitation on the expressiveness of the diagram or ambiguity on the semantics and the

constraints described by natural languages in the specification of these languages. The use of

natural language introduces a number of problems related to under-specified constructs,

ambiguities [17]. Therefore, it is important to have a precise semantics of UML models. Precise

meanings are required since the model will be used for the next development and maintenance

steps, i.e., analysis, validation, verification, and transformation.

2.1 Consistency checking

Research has been conducted in classifying consistency checking techniques for UML models

(e.g., [40], [41] and [42]). Five most relevant classes of consistency are identified in [42]:

- Horizontal consistency, also called intra-model Consistency, which refers to consistency

within a model, within the same diagram or between different diagrams of the same model

at the same level of abstraction (e.g., class and sequence diagrams), and within the same

version [41].

- Vertical consistency, also called inter-model Consistency, which refers to consistency

between models at different levels of abstraction (e.g., analysis vs. design) in a given version

of a model.

- Evolution Consistency, where consistency is validated between different versions of the

same diagram in the process of evolution [41]. For example, when a class diagram evolves,

it is possible for its associated state diagrams and sequence diagrams to partially become

inconsistent.

- Syntactic Consistency, which ensures that a model conforms to its language definition,

typically specified by an abstract syntax that describes a metamodel, e.g., to check that all

model elements are defined in its language. Syntax consistency requires the overall model

to be well-formed [43].

- Semantic Consistency, which ensures that intended meanings of different views or models

are compatible, i.e., there is no contradiction between them. It requires that all the behavior

of diagrams in one or several models to be semantically compatible [44]. This consistency

is not restricted to behavioral diagrams but covers other diagrams. For instance, operation’s

contracts (e.g., pre and post-conditions) provided in a class diagram specify semantics as

well. Semantic consistency applies at one level of abstraction (with horizontal consistency),

Part I: State of the arte 36

at different levels of abstraction (vertical consistency), and during model evolution

(evolution consistency) [43].

2.2 Related work

Most of the existing verification approaches of UML and UML–based models deal with

horizontal consistency [45], [46], [47], [48], [49]. Only few works deal with vertical consistency

[50], [51], [52], others deal with both, such as [53], which translates UML models with OCL

invariants and pre/post-conditions into formal specifications using B formal specifications for

the analysis and verification of the uml/ocl models. A recent mapping study undergone by Torre

et al. [43] studied 95 papers about UML consistency. This mapping study shows that the great

majority of UML consistency rules are horizontal and syntactic rules, respectively with 98.10%

(258 of 263 rules) and 88.21% (232 of 263 rules) of the total of collected UML consistency rules.

Only 1.90% of UML consistency rules are vertical (5 of 263 rules).

Both horizontal and vertical consistency checking are indispensable steps in the system

development process [43]. Horizontal consistency ensures the consistency of specification

models. At that level, inconsistencies may be a source of faults in software systems and must be

therefore detected, analyzed and (hopefully) fixed. Detecting these inconsistencies at an early

design phase is easier and more cost effective than detecting them at a later stage. Otherwise, all

the inconsistencies will be transmitted to the further development stages where it would be more

difficult and more expensive to correct them. Moreover, inconsistencies at the specification level

can make (semi-)automatic generation impossible.

Vertical consistency ensures the consistency between models at different levels of abstraction.

For example, one may verify the consistency between platform independent model (PIM) and

platform specific model (PSM). PIM represents the system at higher levels of abstraction than

PSM. The former does not contain details of a specific platform, on the other hand, the latter

takes into account the features of the specific platform in which the system will be implemented

[40]. Changes in the PSM model may produce inconsistencies with respect to its more abstract

model. Checking vertical consistency is, therefore, essential to maintain the consistency between

these models. This problem is generally overlooked in the approaches handling inconsistency

problems. Consequently, vertical consistency becomes one of the most relevant unresolved

problems in the literature.

In this dissertation, we focus on checking both horizontal and vertical consistency of SOA

systems. As previously discussed, we believe that these are two essential steps in the

development process of a software system in general and particularly for the development

process of SOA systems. In fact, horizontal consistency verification of SOA system specification

is very important since SOA systems need more than one diagram or view to capture different

concerns. These views detail the service interfaces, the data exchanged between the services, the

contracts that could be specialized with other views that describe messages exchanges, etc. All

these views need to be consistent with each other. On the other hand, it is also very important to

guarantee the consistency between what has been specified at a high level and what has been

specified as a platform dependent model of a SOA system. When checking horizontal

consistency, we focus on both syntactic and semantic consistencies. The evolution consistency

is, however, out of the scope of our work. The syntactic consistency ensures the well-formedness

Part I: State of the arte 37

of a model with respect to the abstract syntax specified by the meta-model and the semantic

consistency requires that intended meaning of different models are compatible.

Lack of tool support to check the consistency of software models. According to the mapping

study done by Torre et al. [43], only 25.26% (24 of 95 papers) of the UML consistency rules

proposed by researchers are supported by automatic tools, 30.53% (29 of 95 papers) of the rules

are supported by semi-automatic tools, and the larger number of papers are based on manual

verification (44.21%, 42 of 95 papers). Automatic tools are those that check the UML consistency

rules without human intervention; Semi-automatic means the rules were partially automated (for

instance when the check of a UML model needs the support of user to finish the process); and

manual means that the UML consistency rules were not supported by any implemented and

automatic tool [43].

There are many proposals for checking the consistency of UML models based on the OCL

standard [54], [55]. Some of them propose tools to check the coherence between different UML

models [56]. Clearly, a tool is essential to check consistency. It allows the system designer not

only to automatically check the consistency constraints but also to help them to find and correct

errors rapidly and efficiently. Tools also helps in the quick validation of the proposed work.

Existing SoaML frameworks are partially compliant with the SoaML standard [8]. In fact, the

standard specifies a set of semantic and syntactic consistency rules written in natural language.

These rules must be verified at the design time to guarantee valid SoaML models. However,

within the existing tools (see Table 2.2.1), model validation functions are either poor, i.e., the

transformation only has few constraints that don’t capture all possible errors in the generated

code, or not clearly explained. Existing tools performing static verification for SoaML models

are Cameo SOA+ (NoMagic) [57], Enterprise Architect (Sparx), Objecteering (Softeam) and

RSA (IBM). The CameoSOA+ Plugin includes a list of validation rules listed in the CameoSOA+

user guide11. These validation rules are not specified and are compliant with version 1.0 of

SoaML. Sparxsystems12 includes SoaML-specific model validation (to verify horizontal

consistency of SoaML models) but no documentation on the validation rules is available. None

of these tools provide vertical consistency verification.

Table 2.2.1: support for verification by the SoaML tool supports.

SoaML tool support

Horizontal consistency

verification

Vertical consistency

verification

License

ModelPro13 No No Open source

Cameo SOA+ suite

(NoMagic MagicDraw)14

Partial No Commercial

Modelio SoaML Designer

(Softeam)15

No No Commercial

(partially open

source)

11 Available at https://www.nomagic.com/files/manuals/CameoSOA+%20Plugin%20UserGuide.pdf, Accessed 25

July 2016
12 Available at http://www.sparxsystems.com.au/press/articles/soaml.html, Accessed 26 July 2016

13 http://portal.modeldriven.org/project/ModelPro, Accessed 25 July 2016
14 http://www.nomagic.com/products/magicdraw-addons/cameo-soa.html, Accessed 25 July 2016

15 http://www.modeliosoft.com/en/technologies/soa.html, Accessed 25 July 2016

https://www.nomagic.com/files/manuals/CameoSOA+%20Plugin%20UserGuide.pdf

Part I: State of the arte 38

IBM Rational Software

Architect (RSA)
16

No No Commercial

SparxSystems

Enterprise Architect

No documentation

No Commercial

SoaML Eclipse plug-in by

 Delgado et al.[35]

 Ali et al. [5]

No No Open source

(not available yet)

3 Model-driven

transformation of SOA

systems
MDE approach promises automatic code generation from specified models. In this section,

we are interested in studying the existing MDE-based transformations for the purpose of

generating code or executable SOA artifact from SOA models. We first give you an overview of

the existing transformation approaches. We first give an overview of choreography and

orchestration and comparing them in the context of SOA. Then, we detail transformation

approaches from choreography specifications into executable orchestration(s). A new mapping

study ([58], 2015) on the development of service-oriented architectures using model-driven

development shows that a great majority of MDD methods use PIMs as input model types (UML

Class and Activity diagrams are widely used). PSM and code are the output of these approaches.

In the context of mapping formalized service designs onto Web service implementation

artifacts, many approaches already exist. They consider either the derivation from SoaML-based

models [59] [60], or UML models with their owned applied UML profiles [61], or standard UML

models [62].

A SOA system model includes a structural and a behavioral part. Structural models capture

the static features of a system, for example, the existing components, their internal structure, the

data structure, etc. These static parts are mainly classes, interfaces, objects, components, and

nodes17. It is mainly modeled using class and composite structure diagrams (Object, Component,

and Deployment diagrams are also used to model the system structure). Behavioral models

describe the dynamic nature of the system and the interactions between the system components.

They can also describe the internal behavior of a system component.

The transformation of the structural part of SOA system models has been widely studied in

the literature. The majority of these studies define transformation rules from UML and its

extensions (including SoaML) to WSDL definition (e.g., [63, 62, 64]). IBM [64] introduces

general (i.e., not described in detail) mapping rules from UML to WSDL. In [62], the authors

propose a transformation from UML to WSDL, specifically from composite services (that may

16 http://www.ibm.com/developerworks/downloads/r/architect/index.html, Accessed 25 July 2016

17 The nodes are physical entities where the components are deployed

Part I: State of the arte 39

have provided and required interfaces) to WSDL document. Although these transformations are

based on standard UML elements, they are applicable for SoaML-based models as they use the

same structure elements (using UML Class) to define services and their provided and required

interfaces (using UML Class or Interface), etc.

The work in [59, 63] present a transformation from SoaML to BPEL, WSDL, and XSD

artifacts. For the structural part, the transformation rules from a service definition into WSDL

file in [59, 63] are coherent with [64]. There are some differences between the two approaches

mainly the use of SCA as a target technology in [63]. Thus, participants are mapped into SCA

component in [63] and into WSDL Service: Port in [59]. For the behavioral part, BPEL processes

are generated from UML activity diagrams in [63] and from BPMN processes in [59]. The

activity and BPMN diagrams describe the expected behavior of the system components. All these

works do not provide detailed mapping rules, they provide source and target elements for the

mappings and illustrate them using simple scenarios.

Table 2.2.1 gives an overview of these SoaML modeling tools and their supports for code

generation. Most of them (e.g., SparxSystems Software Architect [65] and IBM Rational

Software Architect [64]) generate artifacts based on XSD, WSDL, Service Component

Architecture (SCA) and BPEL. Some of them (e.g., Modelio) cover the transformation of both

structural and behavioral parts of the system model, others (e.g., ModelPro) cover only the

transformation of the structural part.

Table 2.2.1: Overview of existing supports for code generation from SoaML models.

Name Support for code generation

ModelPro The SoaML cartridge for ModelPro is able to produce executable Web service

implementations for services architectures defined in SoaML. Current

technologies supported include Web Services, Eclipse, and JEE.

Cameo SOA+

suite (NoMagic

MagicDraw)

Code generation is supported in combination with ModelPro18.

Modelio CASE

(Softeam)

Modelio includes transformation features to various implementation models

including XSD, WSDL, BPEL and Java. Modelio allows users to generate Web

service skeletons from BPMN models that are used to specify the Participants

behaviors.

IBM Rational

Software

Architect

Several transformations are supported by this tool, namely UML to SoaML,

BPMN to SoaML and Java to SoaML. It also supports transformations to XSD,

WSDL, and BPEL from activity diagram19.

SparxSystems

Enterprise

Architect

No documentation is available about code generation supports from SoaML.

SoaML Eclipse

Plug-in by

Delgado et al.

[35]

SoaML models can be imported and exported as XMI files, but the tool seems

to lack full SoaML support, because, for instance, service behavior cannot be

modeled.

SoaML Eclipse The tool allows the generation of OSGi Declarative Services Models from

18 More information are available at http://soaplus.cameosuite.com.

19 http://www.uio.no/studier/emner/matnat/ifi/INF5120/v10/undervisningsmateriale/modelingwithsoaml-5.pdf

http://forge.modelio.org/projects/soaml-modelio3-user-manual-english/wiki/Web_Service_generation
http://forge.modelio.org/projects/soaml-modelio3-user-manual-english/wiki/Web_Service_generation
http://soaplus.cameosuite.com/
http://www.uio.no/studier/emner/matnat/ifi/INF5120/v10/undervisningsmateriale/modelingwithsoaml-5.pdf

Part I: State of the arte 40

Plug-in by Ali et

al. [5]

SoaML models.

Concerning the transformation of the behavioral part, the internal behavior of SOA

components and their transformation is out of the scope of this thesis. Contrary to previously

mentioned works, we are interested in the transformation of the interactions between the services

in a SOA system as a composition model. We are particularly interested in the transformation of

the choreography specification models into executable orchestrations. In the literature many

transformation approaches focused on that, however, to the best of our knowledge, none of them

have taken SoaML as a source model for their transformation. In the following, we provide an

outlook of the existing choreography modeling paradigms. We discuss both approaches for

generating orchestrations from choreographies, namely centralized and decentralized

transformation, and finally, we present and compare the relevant developments that aim to

transform a choreography into an orchestration.

3.1 Service composition: orchestration versus choreography

One of the major advantages of “service-oriented” is that it allows the development of

applications from the reuse of distributed and collaborating services, e.g., services exposed by

software components, Web services, or Software as a Service in cloud environments. In SOA,

services provide fine-grained functionalities. Alone, a service has a limited functionality and is

often not sufficient to fulfill the customer’s request. On the other hand, real life applications are

coarse grained and thus require combined services. The process of service composition performs

this combination where services are aggregated together to offer a new value added services.

Service composition can be achieved using orchestration and choreography mechanisms. The

following sections give an overview of service choreography, orchestration and of the

relationship between them.

3.1.1 Service choreography

Service choreography is a contract between existing services to make the interaction between

them possible and facilitate their integration in a composition. Such a contract specifies from a

global point of view the interactions that must take place among a set of peers.

The W3C’s Web Service Choreography Working Group [66], defines choreography as “the

definitions of the sequences and conditions under which multiple cooperating independent agents

exchange message in order to perform a task to achieve a goal state”.

Choreography describes the public (i.e., globally visible) message exchanges, and thus defines

how multiple independent services should interact with each other. More specifically, it defines

interaction rules and agreements that occur between multiple business process endpoints, rather

than a specific business process that is executed by a single party [67]. This agreement concerns

many aspects including, for example, the order of exchanged messages. A choreography specifies

the interactions without revealing unnecessary details about the internal control flow of the

involved parties. This is beneficial in the case where the system specification is incomplete and

therefore the internal control flow may not exist when the choreography is specified. In some

systems, especially when the involved parties are competitors, hiding the internal behavior from

the other parties may be a requirement for safety and confidentiality reasons.

Part I: State of the arte 41

In SoaML, “the choreography is a specification of what is transmitted and when it is

transmitted between parties to enact a service exchange” [8]. It defines what happens between

the provider and consumer participants at a high level of abstraction without defining their

internal processes. A service contract choreography is a UML Behavior as it may be presented

on an interaction diagram or activity diagram that is owned by the ServiceContract. “The service

contract separates the concerns of how all parties agree to provide or use the service from how

any party implements their role in that service - or from their internal business process” [8].

3.1.2 Service orchestration

After defining a contract describing the interactions that must take place to achieve a specific

goal, it is necessary to define how we can achieve that goal in terms of concrete implementation.

Such concrete implementation is called service orchestration, which refers to an executable

business process that has the flexibility to interact with external services. These interactions

include the business logic and execution order of the exchanged messages from the perspective

and under the control of a single endpoint. This particular endpoint, called orchestrator, is a

service embedding a process in order to describe long-lived and useful new functions by

coordinating other Web services [67] [68]. Orchestration describes how Web services interact

with each other at the message level. Orchestration contains enough information to enable the

execution of the business process by an orchestration engine. It may include internal actions such

as data transformations or internal service module invocations.

Orchestration languages. WS-BPEL [69] represents the de facto standard for orchestrating Web

services. It has broad industrial support from companies such as IBM, Microsoft, and Oracle.

Several tools and mappings are being developed to generate BPEL code from graphical

representations like the IBM WebSphere Choreographer, Eclipse BPEL Designer, and the Oracle

BPEL Process Manager. However, the graphical notations proposed by these tools are simply

graphical representations of the source code, and does not provide really abstraction with the

code level. They are directly related to the BPEL constructs [70]. This implies that users must

have an expert knowledge of BPEL to think in terms of BPEL constructs. It is more interesting

to generate BPEL code from a model representing a higher level of abstraction so that designers

can specify complex scenarios in an easier way without thinking of execution details. Some work

has been done in this direction.

3.1.3 Choreography and orchestration relationship

Both, choreography and orchestration are intended to specify a service composition, yet there

are noticeable differences. One of the main differences is that choreography and orchestration

specify the composition from different viewpoints. In fact, orchestration describes the execution

of a specific business process from a local view so that it encompasses internal details of the

services, which may not want to share these internal details with the other services. . However, a

choreography describes a coordinated set of interactions between partners from a global view, so

that only public message exchange has to be shared with the other services. In addition,

orchestration focuses on generating executable business processes. However, choreography

focuses on specifying the public contracts containing the necessary rules to achieve business

Part I: State of the arte 42

engagements. Another point to note is, contrary to orchestration, in a choreography, there is no

central controller that governs the specification, all participants are equivalent and each of them

plays a role in this global contract.

From the previous discussion, we can deduce that choreography and orchestration

complement each other [71]. In other words, a choreography reflects “what” business goal is to

be achieved by specifying public message exchanges and an orchestration defines “how” the

business goal is achieved. An orchestration has to deal with both public and private message

exchanges and thus specifies a lower level of design. These differences explain the use of

choreography essentially as a design-level artifact while an orchestration is used as an executable

artifact at runtime level. Based on choreography specification, we can generate the code skeleton

of the orchestration that implements the choreography logic.

3.2 Service choreography modeling languages

Figure 3.2.1 provides an overview of the existing styles of choreography modeling paradigms;

each style is used to accentuate a specific modeling perspective, e.g. the global perspective on

the overall choreography, the perspective of specific roles or an abstract perspective based on

explicitly modeling the evolution of the status of business artifacts [72]. As shown in Figure

3.2.1, there are four types of choreography modeling paradigms. Two of them are well-known in

the state of the art, namely interconnection and interaction choreography modeling. The two other

paradigms have recently emerged, namely declarative and artifact-centric.

In the Interconnection Choreography Modeling, the choreography is specified in each role

separately in terms of received and sent message order by and from each role. This is the case of

BPEL4Chor [73], which extends BPEL by introducing an interconnection layer on top of abstract

BPEL processes, thus leading to interconnected behavioral interface descriptions. Contrary to

interconnection choreographies, Interaction Choreographies are modeled from a global

perspective. They allow the modeler to specify exactly what message exchanges need to be

enacted without having to specify the internal details of each participant. BPMN v2.0

Collaboration Diagrams can be used to model both interconnection and interaction

choreographies. In Declarative Choreography Modeling paradigm, the order of the message

exchanges among participants is modeled implicitly by means of constraints that define pre-and

post-conditions. This choreography modeling style is investigated only in the scope of academic

research [74], [75]. Finally, in the Artifact-Centric Choreography Modeling, choreographies

are specified implicitly following the way the states of the artifacts evolve. A choreography

describes artifacts, their states, and how the message exchanges occurring among the participants

alter the states of the artifacts.

Part I: State of the arte 43

Figure 3.2.1: Classification of Choreography Modeling Paradigms.

In this work, we are interested in interaction choreographies. There are several academic and

industrial languages for modeling interaction choreographies. Some of them are based on Process

Algebra (also known as process calculi), for example, the work in [76] and [77]. Others are based

on Automata and other State-Transition Systems, they mainly model choreographies using Finite

State Machines (FSMs) or State-Transition Systems (STSs). Most of the work that uses FSM and

STSs to model choreographies adopt the interconnection modeling so that they model each role

in the choreography as a separate automaton [78]. Only a few of these works [79], [80] adopt the

interaction choreography modeling.

There are several other academic languages for modeling interaction choreographies in the

literature, for example including Petri nets [81], Let’s Dance [82] Dynamic Logic [83],

Distributed States Temporal Logic [84] and SCIFF [85]. The interested reader will find in [72] a

detailed description of these choreography languages. In our state of the art, we are more

interested in industrial languages, which are languages that undergo a standardization process in

the scope of organizations or consortia like the World Wide Web Consortium (W3C)20,

20 W3C website: http://www.w3c.org

Choreography Modeling

Paradigms

Interconnection Interaction Declarative Artifact-centric

Process

Algebra

s

Automata and Other

State-Transition

Systems

Other

Formalisms

Petri

nets
Dynamic

Logic
Distributed States

Temporal Logic

SCIFF Let’s

Dance

Industrial Languages Academic Languages

Message

Sequence

Charts

Sequence

diagrams

Interaction

overview

diagrams

UML 2.x

Diagrams

Communication

diagrams

WS-CDL
BPMN

2.0

Part I: State of the arte 44

International Telecommunication Union (ITU), the Object Management Group (OMG)21 or the

Organization for the Advancement of Structured Information Standards (OASIS)22.

One of the most popular choreography languages is Web Services Choreography Description

Language (WS-CDL), a W3C standard candidate proposed in 2004. However, WS-CDL is

technology dependent language that is destined for the coordination between Web services. In

our work, we prefer to use technology independent languages at a specification level so that the

same model can be used to generate code for several platforms.

The following details other popular choreography languages, namely BPMN, Message

Sequence Chart formalisms and UML 2.x diagrams for specifying choreographies: collaboration

diagram, sequence diagram, and interaction overview diagram.

3.2.1 BPMN

Business Process Modeling Notation (BPMN) was developed by the Business Process

Management Initiative (BPMI) and has gone through a series of revisions. In 2005, the BPMI

group merged with the OMG, which released BPMN 2.0 in January 2011. The first OMG

standard profile for BPMN was released in July 2014. It created a more detailed standard for

business process modeling, using a richer set of symbols and notations for Business Process

Diagrams. The main goal of BPMN [86] is to provide a standard notation that is readily

understandable by all business stakeholders of a system to communicate a wide variety of

information on business processes to a wide variety of audiences. BPMN is typically used on

Business or domain models level23 (historically called computation-independent models (CIMs)

level [13]) to define business processes at a very high level of abstraction without looking into

technical details (PIM and PSM). The BPMN profile is intended to cover many types of modeling

and allows the definition of end-to-end business processes. It allows the specification of both

non-executable and executable processes describing choreographies and collaborations between

the process participants or business entity.

Business processes may be used to specify different levels of abstraction of the business process,

from a high-level description down to task flows which detail the process specification [86]. To

specify these different levels of abstraction, BPMN has three types of diagrams shown in Figure

3.2.2, namely process diagram, collaboration diagram and choreography diagram:

- A Process Diagram describes a sequence or flow of activities in an organization with the

objective of carrying out work. A process contains Activities, Events, Gateways, and

Sequence Flows that define its execution semantics. Collaboration Diagrams are a

collection of Participants shown as Pools, and their interactions as shown by Message

Flows.

- A Collaboration Diagram may also include Processes within the Pools and/or

Choreographies between the Pools.

- A Choreography Diagram was introduced in version 2.0, before hand, (in BPMN 1.x)

BPMN was focusing only on orchestrations and interconnection choreography. This new

21 OMG website: http://www.omg.org

22 OASIS website: https://www.oasis-open.org
23 Business models specify exactly what the system is expected to do, but hides all information technology to

remain independent of how that system will be implemented. “A CIM only describes business concepts whereas a
PIM may define a high-level systems architecture to meet business needs. For example, a PIM may define a Service
Oriented Architecture (SOA) for an information sharing need defined in a CIM.” [179].

Part I: State of the arte 45

diagram formalizes the interconnections between business Participants. It focuses on the

exchange of information (Messages) between these Participants.

(a) Process Diagram (b) Collaboration Diagram (c) Choreography Diagram

Figure 3.2.2: BPMN Diagrams.

 As we focus on interaction choreography, we are only interested in the BPMN choreography

diagram. BPMN v2.0 choreography diagram includes a choreography process made of

choreography tasks (i.e., activities that represent message exchanges), sequence flows, gateways

(to combine the tasks) and events (e.g., beginning, completion and termination).

A running example of BPMN v2.0 Choreography Diagram is shown in Figure 3.2.3. This

example is taken from [72]. There are three participants in the choreography: the Buyer, the

Seller, and the Payment Processor. A choreography activity is depicted as a rectangle. The two

bands, one at the top and one at the bottom, represent the parties involved in the interaction

captured by the activity. A white band is used for the sender whilst a dark band is used for the

receiver. An envelope represents a message sent by the corresponding party. The dark envelope

is the response of a two-way interaction. The ordering of choreography tasks and events is

controlled by sequence flows and gateways.

 BPMN is constructed rich and may even be too complicated compared to other choreography

languages. There are two types of message exchanges: one-to-one and one-to-many (i.e., there

can be multiple recipients for one message). There are three types of flows; in these three types,

the activation of a flow can be either when the source element is activation (normal flow) or after

the verification of a condition or by default. There are five types of gateways: data-based, event-

based, inclusive, parallel and complex (i.e., to be specified by the modeler) gateways.

In the example of Figure 3.2.3Figure 3.2.2, the Buyer initiates the choreography by sending

the Order message to Seller. Then, the latter communicates the Payment Info to Payment

Processor to initiate the payment process. At this point in the choreography, there are two,

mutually-exclusive execution choices. In the first alternative, the Buyer sends an Order

Cancellation to the Seller, which, in turn, triggers the sending of Payment Process Cancellation

to Payment Processor. In the second alternative, the Payment Processor may send a Payment

Solicitation to Buyer, who will answer with the Payment Authorization; after the receipt of the

Payment Authorization, a notification (the Payment Confirmation message) sent from the

Payment Processor to the Seller concludes then the choreography.

Part I: State of the arte 46

Figure 3.2.3: BPMN of Purchase choreography.

Despite its very large variety of constructs, BPMN lacks a formal specification of the

operational semantics of its constructs. In addition, the BPMN v2.0 specification of choreography

diagram is affected by serious defects; this is probably a result of its complexity. For example,

the specification allows the designer to directly attach a catch event to choreography tasks instead

of being connected by means of sequence flows, however, the XML serialization does not support

that. More issues have been identified when modeling interactions with Web services in BPMN

v2.0 [87].

As per July 2016, there are 393 issues listed in the BPMN v2.0 bug list of the OMG24, over 37

issues of which are related to the choreography part of the specification. These errors are

increasing over the years (363 per April 2014), it is still unclear if, when and how the issues

affecting BPMN v2.0 will be tackled [72].

3.2.2 Message Sequence Chart

Message Sequence chart (MSC) [88] is a popular visual ITU standard formalism for modeling

choreographies (it is often used for modeling scenarios25). It is widely used and since its first

introduction in 1992, it was updated several times, and the specification also defines formal

semantics for the basic elements of the language based on process theory.

MSC describes the communication between several system components from a global

perspective. MSC can be used to describe the communication between these components and the

rest of the world (i.e., the environment). Figure 3.2.4 shows an example of MSCs that models

the Purchase choreography conversation. Figure 3.2.4-a shows a conversation in which the buyer

finalizes the payment and Figure 3.2.4 shows a conversation in which he canceled his order.

Lifelines represent roles, each one is depicted as a box containing the name of the role and a line

originating from it that represent the instance axis. There are three roles for each choreography:

the Buyer, the Seller, and the Payment Processor.

24 http://issues.omg.org/issues/lists/bpmn2-rtf, last accessed on 23 July 2016.

25 A scenario is specific “threads” of interactions [180]. Scenarios could be merged to obtain detailed interaction-

based choreography models (also called interaction models for short).

Part I: State of the arte 47

(a) Successfully finalized payment scenario (b) Cancellation scenario

 Figure 3.2.4: Example of MSC diagram for Process Payment choreography.

The communication between system components is performed by means of messages depicted

as arrows between the lifelines. Each message specifies the sending and consumption of two

asynchronous events. Messages may also specify a method call that may be either asynchronous

or synchronizing. An asynchronous call implies that the caller may continue without waiting for

the reply of the call. On the other hand, a synchronizing call implies that the caller will enter a

suspension region where no events occur until the return of the reply. The ordering of message

exchanges is imposed via a partial ordering26 on the set of events being contained in the MSC.

Specifically, if no structural concepts (like coregion that specifies unordered events on an

instance) are introduced, the time is running from top to bottom along each lifeline. Events of

different instances are ordered via messages – a message must first be sent before it is consumed

– or via the generalized ordering mechanism, which explicitly orders events covered by different

instances (even in different MSCs).

The MSC specification allows designers to specify several operators, namely alternative,

parallel and sequential composition, iteration, exception and optional regions. Figure 3.2.5 shows

an example of alternative operator used to combine both previously presented MSCs.

 Figure 3.2.5: MSC of Purchase choreography.

The MSC standard (in the version of 1996 and later) also defines High-level Message

Sequence Charts (HMSCs) diagrams, which is a combination of multiple MSCs using in-line

expressions (i.e., control flow constructs such as iteration, choice, and concurrency) [88]. In the

same way, HMSCs can be composed.

26 A partial ordering is a binary relation which is transitive, antisymmetric and irreflexive [181].

Part I: State of the arte 48

Message Sequence Charts are used to specify choreography between distributed systems in many

works [89] [90] [88]. MSC model has also been used in modeling and verification of Web

services choreographies in [91].

3.2.3 UML 2.x diagrams for specifying choreographies

In this work, we are especially interested in UML-based languages, since we have chosen

SoaML as a modeling language. Insofar, we studied UML diagrams for specifying

choreographies. In UML 2.x, an interaction can be displayed in three different types of diagrams:

communication diagrams, sequence diagrams, and interaction overview diagrams.

Communication diagram. UML 2.x Communication diagram, which is a simplified version of

UML1.x collaboration diagram, shows the interaction between some parties through an

architectural view. Participating objects and/or parts are represented as lifelines and

communicate together using sequenced messages whose order is given through a sequence

numbering scheme. The same example of Purchase choreography is modeled using a UML 2.x

Communication diagram shown in Figure 3.2.6. As shown in the figure, a communication

diagram is shown within a rectangular frame that mainly contains lifelines and messages. Each

lifeline represents a specific role in the choreography. The roles are connected with each other

by lines that denote one-to-one message exchanges. The direction of the arrow of a connection

defines the direction of the communication to define which role is the sender and which one is

the receiver of the message. The sequential order is specified through a sequence expression, i.e.,

nesting notation, to specify the correlations between the message exchanges. Messages that differ

in one integer term are sequential at that level of nesting. For example, in Figure 3.2.6 the

message exchange Order has sequence number 1, and the Payment Info has sequence number

1.1 then we can deduce that Payment Info is the result of Order message. Only choices and

conditional message exchanges can be specified. These structuring mechanisms are modeled

using the [condition] notation that defines the triggers. The use of sequence numbers and limited

structuring mechanisms are rather complicated and have been pointed out as the reason why

MSCs are far more often used in the practice for modeling choreographies than communication

diagrams [38].

Figure 3.2.6: UML 2.x communication diagram of Purchase choreography.

Sequence diagram. The sequence diagram has been significantly changed in the UML 2.0

compared to the latest versions. Several elements were borrowed from MSC in order to increase

the expressiveness of the language. Many new complex elements and new semantics were added

Part I: State of the arte 49

to the sequence diagram metamodel specifically combining operators. The new elements are very

similar to MSCs in terms of both notations and semantics. The similarities are noticeable when

comparing the MSC in Figure 3.2.5 with the equivalent sequence diagram shown in Figure 3.2.7.

In an interaction, operators are called CombinedFragments and are used to represent, for

example, a choice of behavior (e.g., to designate that at most one behavior will be chosen from

alternative ones or to model a parallel merge between some behaviors).

Similarly to MSC, choreography participants are represented by lifelines, which communicate

through Messages. A message is a request from a sender for either an Operation call or Signal

reception by a receiver. Each message is associated with two events the event of sending the

message and the event of receiving it. These events are called Message Occurrence

Specifications.

The message is a general term; it can be synchronous (has filled arrowhead) or asynchronous

(has an open arrow head.), it can mean calling an Operation or sending a Signal (specified by

its MessageSort attribute). A Signal is asynchronous and is the result of an asynchronous send

action. On the other hand, operations can be called synchronously or asynchronously (Figure

3.2.7 contains only asynchronous messages).

Interaction models emergent behaviors27 as a set of traces, i.e., a sequence of event

occurrences. A partial order restricts the order in which the traces occur. Like in the case of MSC,

in a sequence diagram, each vertical line describes the timeline for a process, where time

increases from top to bottom, however, no time scale is assumed28. There is no global notion of

time between the instances in an interaction. Each instance operates independently from the

others. The only dependencies between the timing of the instances come from the restriction that

a message must be sent before it is received (called causality model).

Section 1.2 of the contributions details the metamodel architecture of a sequence diagram and

the relationship between the metamodel elements.

Figure 3.2.7: UML 2.x sequence diagram of Purchase choreography.

Sequence diagrams are used to model interaction choreographies, like in the case of [92], [93]

and [14], which is probably the most-quoted publication concerning choreographies.

27 Emergent behaviors are behaviors resulting from the interaction of one or more participant objects that are

themselves carrying out their own individual behaviors (sub clause 13.1 in [98]).
28 The distance between two events on a time-line does not represent any literal measurement of time (only that

non-zero time has passed) [98].

Part I: State of the arte 50

Interaction overview diagram. Interaction overview diagrams combine multiple sequence and

communication diagrams in a way that promotes overview of the control flow, thus, are the UML

2.x equivalent of HMSCs. As shown in Figure 3.2.8, an interaction overview diagram describes

the flow of control through a variant of Activity Diagrams (namely initial node, flow final node,

activity final node, decision node, merge node, fork node and join node) where nodes of the flow

are interactions or interaction uses. In Figure 3.2.8, we use interaction overview diagram to

models the Purchase choreography. A decision node is used to express alternative choices. We

also use initial and final nodes to respectively indicate the start and the end of the flow.

Figure 3.2.8: UML 2.x Interaction Overview diagram of Purchase choreography.

Since we have chosen SoaML as a modeling language for SOA systems, we concentrated

on choreography models that are based on UML. In SoaML, a choreography is modeled as a UML

Behavior that is owned by a ServiceContract, a UML Collaboration that is used to model contracts

between some services. As we discussed previously, UML provides a rich variety of

choreography languages. There is a UMG standard profile for BPMN2.0, however, this profile

only specifies process and collaboration concepts and does not include choreography concepts. In

addition, as we discussed before, BPMN choreographies are too complicated compared to the

other choreography languages such as sequence diagram. When comparing the same

choreography representation using BPMN in Figure 3.2.3 and sequence diagram in Figure 3.2.7,

we found that sequence diagram is easier to understand. Then, we choose to define choreography

using UML Interactions, which indeed enable services interactions description without going into

details of services implementations. In particular, Sequence Diagrams simplify the specification

and understanding of complex services choreographies. Service contracts can then be refined

using sequence diagrams to describe services interactions in the context of service contracts.

Part I: State of the arte 51

3.3 Transformation approaches: Decentralized versus

Centralized orchestration

As we explained in section 3.1, a choreography provides an abstract specification of “what”

business goal is to be achieved and orchestration provides execution details needed to specify

“how” the business goal is to be realized. Therefore, an approach is needed to transform a

choreography into a set of orchestrations. Current practices of transforming choreography

specifications into executable orchestrations are typically manual, which is a time-consuming

and error-prone task. This task becomes even harder when a large number of services are

involved in a choreography or when the choreography includes complicated message exchange

dependencies. Various dependencies can be defined in a choreography such as a sequence order

(i.e., a given exchange must occur before another one), exclusion dependencies (i.e., a given

interaction excludes or replaces another one), etc. These dependencies make the process, and

consequently, the transformation more complex. To deal with this complexity, one solution is to

automate the transformation. The (semi-) automatic transformation from choreography to

orchestration is advantageous not only to considerably speed up the development process but

also to minimize the risk of inconsistencies that could be introduced when the transformation is

done manually. But the transformation itself could be incorrect or could not consider all the

specified scenarios. Therefore, one should guarantee the conformance between the generated

orchestrations and the specification (i.e., vertical consistency). Conformance relation is defined

in [94] as follows: “The conformance relation relates two models at different abstraction levels.

It defines that a model at a lower abstraction level must be a correct implementation of a model

at a higher abstraction level.” An important factor in determining the correctness of the

transformation from choreography to orchestrations is to guarantee that the business goal

specified in the choreography is preserved by the orchestration resulting from the transformation

[95].

In the following, we first give an overview of the existing approaches for transforming

choreography specification models into executable orchestrations. In the literature, there are two

transformation approaches: either (1) the choreography is transformed into a centralized

orchestration where a central entity (i.e., the orchestrator) is responsible for implementing the

choreography; or (2) the choreography is transformed into a decentralized orchestration where the

choreography logic is divided or portioned into distributed orchestrators. In this section, we briefly

compare decentralized and centralized orchestrations based on the information available in

relevant literature. These transformation approaches are shown in Figure 3.3.1 taken from [95].

At the top of Figure 3.3.1, we represent a choreography as a collection of message exchanges

between the participating services. A choreography has an overall responsibility of fulfilling the

goal of the customer. When transforming a choreography into an orchestration, this responsibility

can be assigned either to a third party service or divided between the services. In the first case, the

transformation results in a centralized orchestration illustrated in the bottom left of Figure 3.3.1 ,

and in the second case, it results in the decentralized orchestration illustrated in the bottom right

of the figure.

Part I: State of the arte 52

Figure 3.3.1: Centralized and decentralized transformation from choreography into orchestration

[95].

We discuss the transformation of a choreography into both orchestration variants in the

following subsections.

From choreography to centralized orchestration. The term orchestration is mostly used to

denote centralized orchestration. In a centralized orchestration, the generated orchestrator is a

third party that is not specified in the choreography and whose role is to implement the

choreography as an orchestration that embeds the choreography logic and follows it.

The orchestrator would be responsible for forwarding the messages as specified in the

choreography. More specifically, in a choreography specification, each message has a source and

a target. Such a message exchange should be maintained first by sending the message from source

to the orchestrator and then from the orchestrator to the target as specified in the choreography.

The orchestrator should be then able to forward the message to its specified target. The

orchestrator is also responsible for coordinating the message exchanges while maintaining the

message exchange ordering specified in the choreography. In addition, the orchestrator

implementation should also take into consideration the eventual errors that could occur at runtime

and implement fault and compensation handling mechanisms to deal with this error.

Centralized orchestration has many advantages. In fact, the orchestrator can monitor all the

messages and has the complete control of the orchestration process [96]. As a consequence and

thanks to the orchestrator’s global vision, it becomes easier to locate and handle errors and faults.

In addition, the coordination between the participating services is easier, since it is the

responsibility of a single entity to designate the service to be invoked as specified. On the other

hand, centralized orchestration has some drawbacks, all the messages are forwarded through a

central point, and therefore this central point could become a performance bottleneck. Moreover,

a sender cannot forward a message directly to its destination, it has to send it to the orchestrator,

which in its turn forwards this message to its final destination. This introduces unnecessary traffic

on the network. In other words, the additional network traffic and performance degradation may

reduce the overall performance of the application especially when the number of services to be

orchestrated gets larger. This problem is known as the scalability problem.

Part I: State of the arte 53

From choreography to decentralized orchestration. The choreography is used to derive the

local orchestration models for each party playing a role in the choreography. Each party is then

implemented by an orchestration process that must comply with the overall choreography. In other

words, the responsibility of the choreography specification is distributed into sub-responsibilities

accorded to the participating services.

Decentralized orchestration has two major advantages, which are the enhancement of the

scalability and the decrease of the network traffic. However, the distribution of the responsibility

of the choreography specification between the individual services is not an easy task to do. The

absence of a central coordinator makes the message exchanges among the services difficult. A

coordination mechanism must take place between the services to ensure a correct (i.e., that is

coherent with the specification) execution. This mechanism would be able to allow the services

to know when to participate in the collaboration and to whom the responsibility should be

accorded next. Fault and error handling is also more complex than centralized orchestration since

the localization of the error would be more difficult and the responsibility of fault and error

handling is divided between the services.

Another point to highlight is the comparison between the centralized and the decentralized

approaches are easily adaptable to changes in the specification. In a decentralized orchestration,

even small changes in the choreography specification result in big changes to some or all the

generated processes [97], contrary to the centralized approach where services remain unchanged

and only the generated orchestrator should take into consideration these changes.

3.4 Transformation approaches: related work

The transformation from choreography specifications into orchestration processes is a

particular case of a well-known problem in the literature where scenario-based specifications have

to be transformed into lower level designs, generally unit designs.

From scenario-based specification into unit designs. Scenarios may be expressed in UML

using Sequence Diagrams or using Collaboration Diagrams [98] (which contain similar

information without the temporal dimension). A lot of progress has been made on the synthesis of

unit designs from such UML scenarios, for instance in [99] [93], [100], [101], [9]. These designs

represent each behavioral reference specification for an involved entity in the scenario and are

inferred using projection mechanisms. The synthesis problem has also been addressed for other

scenario-based languages such as Message Sequence Charts (MSCs) [88] and variants in [102],

[103], [104] and [105].

In the context of service-oriented applications, scenarios have been used for the synthesis of

unitary designs for involved servers in [106], [91] and [107]. Note that authors in [107] introduce

a seemingly different scenario-based notation from Sequence Diagrams and MSCs as Labelled

Transition System (LTS) [108] in which labels are pieces of interaction between services. Some

of these works [107], [109], [80], [110] have been conducted under realizability29 conditions

and/or conformance assumptions [107], [9]. In this context, many pathologies in scenario-based

models have been addressed, in particular, race conditions [111], non-local choice [112] and

implied scenarios [113], which, if not handled properly by services implementations, can cause

29 Realizability checks whether the choreography can be realized by implementing each service conforming to the

played role [117]

Part I: State of the arte 54

problems at runtime. In [107], authors have introduced a conformance notion, which allows the

characterization of the correctness of the resulting orchestration and hence can be used to validate

it using simulation or testing techniques.

In the following, we discuss the existing transformation from choreography to orchestration,

which is a particular transformation from scenario-based into lower-level designs. We are mainly

focusing on if they are tool-supported, if they handle asynchronous communications, and if they

verify the coherence between the specification model and the generated code.

From high-level choreography models into orchestrations. Several synthesis techniques for

building orchestration models from a choreography description have been developed. As we

mentioned in the previous section, there are two general approaches for that. The first is to

generate decentralized orchestrations, one for each participant [114], [115], [73], [116]. They

generally aim at deducing the behavior of each participant which is not implemented yet and

whose generated behavior must comply with the overall choreography. Some work aims at

generating software entities (called Controllers in [107] and Coordination Delegates [117]) to

enforce the choreography logic between some existing services.

The second approach is to generate a centralized orchestration that controls the whole

choreography [70], [99], [92], [118]. This approach aims at reusing existing services and

generating an orchestrator to act as glue between them. Some other Works define mapping from

BPMN to BPEL [118], [119], [120]. All of them use BPMN to describe the orchestrator behavior

and not the choreography logic.

In [70], [99], [92], [118], the starting point of the transformation is a choreography between

some parties. However, contrary to our approach, the orchestrator behavior is specified as a

participant in the choreography. That is to say, the generated orchestration is the implementation

of a singular participant in the choreography. In our approach, the orchestrator behavior is deduced

from the choreography logic. The generated orchestrator is then a third party whose role is to

implement the choreography as an orchestration that embeds the choreography logic and follows

it.

More details about the source and the target languages of these works and other relevant works

in the area are provided in Table 3.4.1. In addition to the source and target languages, the table

specifies the type of the choreography, i.e., interaction or interconnection choreography. Some

work specifies the behavior of the orchestrator in the choreography, we consider these

specifications as orchestrations. A choreography may describe basic scenarios (BS) or global

scenario composed of a set of BSs (a comparative survey of scenario-based to state-based model

synthesis approaches [121] has defined this categorization for scenario-based models). For target

languages of these transformation approaches, Table 3.4.1 provides an overview of the synthesis

path and specifies if the resulting code is centralized or decentralized orchestration. Then the table

gives an overview of what is considered in the transformation approaches: if combining operator

or a collection of scenarios are taken into consideration, if asynchronous communications are

taken into consideration in the transformation or not, what was the verification methodology that

has been applied to validate these transformations and finally if it is supported by tool or not.

For example, the work in [122] proposes a transformation from choreography captured as a

collection of state machines (FSMs) exchanging messages between them, into centralized

orchestration defined using BPMN or BPEL, their transformation is based on synchronous

communication. They first merge the FSMs into a single one, englobing all possible sequence of

message exchanges. This results in a verbose and complex process due to state explosion, a

Part I: State of the arte 55

drawback encountered where several messages may be exchanged in any order. To improve the

readability of the generated behaviors of the orchestrators, they first generate Petri nets from the

resulting FSM before generating the BPMN or BPEL models.

In most cases, the proposed transformations generate a simple skeleton of BPEL processes like

the work undergone by Bauer et Muller [92], Khadka et al. [70] and McIlvenna, Dumas et al.

[122], which do not include all implementation details (e.g., data manipulation). In addition, these

transformations do not deal [122] or partially deal [70] with high-level combining operators. In

[92] gives an informal and incomplete definition of a mapping between sequence diagram and

BPEL.

Another point to raise is that few works are based on a MDE approach [70], [123]. In addition,

the majority of the mentioned transformation approaches are either based on XSLT or on general

purpose programming languages like Java. Unlike MDE-based transformations, such

transformations are in general hard to maintain and understand [124]. In our work, we use MDE

not only for the transformation by applying model transformation techniques, but also for the

verification of the generated code by comparing execution traces to specification models using a

formal conformance definition implemented in a symbolic automatic analysis tool.

Part I: State of the arte 56

Table 3.4.1: transformation approaches from choreographies to orchestrations.

Approach

Source

Target Support of

Combining

operators/A

collection of

scenarios

Synchronous/

 asynchronous

communication

Verification

Methodology

Tool support

language Choreography

type

language

Synthesis path: Centralized/

Decentralized orchestration

Leue et al.

’98 [102]

MSC Interconnection:

a collection of

BSs

ROOM Decentralized: A room per

controller

A collection of

BSs

synchronous simulation Yes

Krüger et al.
’99 [103]

MSC Interconnection:
a collection of

BSs

Statechart Decentralized: Only one
Statechart is generated for a

specific component in the

choreography.

A collection of
BSs

synchronous No verification No

Uchitel et al.

’01 [104]

MSC

Interaction:

A collection of

BSs (hMSC)

FSP + LTS Decentralized: a LTS is generated

per component

A collection of

BSs

synchronous Formal proof Yes

(Prototype)

Abdallah et al ’15
[125]

MSC Interaction

local FSM Decentralized: An asynchronous
FSM per component

Support for
combining

operators

asynchronous Formal proof Yes
(Prototype)

Harel et al. ’02
[105]

LSC Interaction
BS

Statechart Decentralized: a statechart is
generated per component.

No synchronous Formal proof Yes
(prototype)

Whittle and.
Schumann

’00 [99]

SD orchestration
BS

Statechart Centralized: one Statechart in
generated from a collection of

SDs. The statechart is generated

for the orchestrator (a specific

partner in the SDs).

No synchronous Case study Yes
(Prototype)

Ziadi et al.

’04 [93]

SD Interaction

A collection of

BSs

Statechart Decentralized: A statechart is

generated per component out of a

collection of described scenarios
using SD

Support for

combining

operators

asynchronous Case study Yes

(prototype)

Mendeling et al.

’08 [114]

WS-

CDL

Interaction

BPEL Decentralized: a BPEL process is

generated per participant.

Support for

combining

operators

synchronous running

example

Yes

(prototype)

Part I: State of the arte 57

McIlvenna,

Dumas et al. ’09
[122]

FSMs Interaction

A collection of
BSs

BPMN or

BPEL

A centralized BPMN or BPEL is

generated to handle
communication between

decentralized parties.

A collection of

BSs

synchronous A formal proof Yes

(prototype)

Khadka et al. ’13

[70]

WS-

CDL

Orchestration BPEL A centralized BPEL orchestrator

is generated for a specific
component in the specification.

Only

concurrent
calls

synchronous Running

example

Yes

(prototype)

VerChor ’15

[107]

BPMN Interaction LOTOS NT

(LNT)

process
algebra

A centralized LNT: BPMN

choreographies are transformed

into CIF, which are transformed
into LOTOS NT (LNT) process

algebra.

Support of

combining

operators

both Formal

verification

method

Yes

Bauer et

Muller’04 [92]

SD Orchestration BPEL A centralized BPEL orchestration

is generated per sequence diagram
choreography

Support of

combining
operators

synchronous No No

HMSC: High-Level MSCs MSC: Message Sequence Charts SD: Sequence Diagrams

bMSCs*: Basic MSCs hMSC**: High-level MSCs SDL: Specification and Description Language
CD: Collaboration Diagrams IOD: Interaction Overview Diagrams ROOM: real time object oriented modeling

MSN: Message Sequence Nets UCM: Use Case Maps CSD: Composite Structure Diagrams

LSC: Live Sequence Charts PN: Petri Nets FSP: Finite Sequential Processes

LTS: Labeled Transition Systems CIF: choreography intermediate format

*bMSCs are used to specify simple sequences of behavior.

**hMSC are directed graphs with as nodes and edges indicating their possible order.

Part I: State of the arte 58

4 SOA testing approaches:

related work
Several testing technics (e.g. [126, 127, 128]) have been proposed in the last few years. This is

because the SOA and especially Web services have been adopted by the industry to develop mission

critical applications for different domains, such as robotics, enterprise software and pervasive

applications [129, 130]. Comprehensive and excellent surveys on SOA testing approaches can be

found in [131, 132, 133].

4.1 Classification of testing approaches in SOA

The work in [134, 132] (see Figure 4.1.1) propose a classification of the testing approaches based

on the contexts of service-oriented applications. According to these works, the testing approaches are

divided into (1) testing of single services (e.g., [135, 136]); and (2) testing of services composition

(e.g., [128], [137]).

Figure 4.1.1: Classification of service testing approaches [134].

Testing of single services. Testing of single services is similar to unit testing so that services are

tested individually without considering its integration with the other units (i.e., other services or

applications). Authors in [138] propose an approach for single service testing. Service behaviors are

modeled using Extended Finite State Machines (EFSMs). Then each EFSM is transformed into a

WSDL specification. Their approach is based on forms filling and no tool is provided. In [139],

authors generate test cases covering both control flow and data flow of the EFSMs models.

Testing of services composition. In SOA, many applications are defined as a composition of services

deployed on a distributed infrastructure where services are reused and composed to automate a

particular task or business process. In that case, single service testing is not enough and it becomes

essential to cover other aspects related to the service composition (e.g., the integration of a service

with other services and applications). In fact, the testing of composite services creates new challenges

because the service composition has, in addition to the characteristics common to the traditional

software, other characteristics that must be taken into consideration in the testing approach mainly

the distributed nature, the asynchronous behavior of the communications between the services and

the observation limitations [134]. Testing a composition of services creates the need for covering the

different scenarios and the different communications media. In this context, many testing difficulties

Part I: State of the arte 59

have to be anticipated mainly the controllability and observability problems. In fact, communications

cannot being observed instantaneously because of the transmission delays. Further, sometimes reused

service cannot be instrumented because of restricted access to the observation points.

Our work falls within this class testing, the testing of composite services, which in turn is divided

into two sub-categories depending on the type of the composition, namely service orchestration or

service choreography testing, as shown in Figure 4.1.1. There is an obvious difference between the

number of studies for service orchestration testing and those for choreography testing. The former is

much higher. This is probably due to the lack of consensus and standard modeling languages for

choreography. For orchestration, WS-BPEL is used as the standard executable language for

orchestration. However, for choreography, there is no consensus. WS-CDL is the most cited one,

however, it is a technology dependent language. Recently, many studies have been interested in the

new OMG standard for service-oriented applications SoaML [134].

 In choreography testing, studies either deal with test generation (e.g., [140, 141, 137]), or

coverage criteria (e.g., [142]) or conformance testing (e.g., [143, 144, 145, 79, 128]). Mei et al. [142]

defines some adequacy criteria for WS-CDL choreographies using XPath queries. The work in [141]

applies algorithms defined for conformance checking to derive test cases from choreography

specification. Another work [146] transforms choreography models into UML diagrams in order to

generate test cases from these diagrams. The work in [147] applies model checking technics to

generate integration tests for choreography models that are based on Message Choreography Models

(MCM)30.

4.2 Model-based testing techniques for SOA

Model Based Testing (MBT) is a well-studied software testing technique for about twenty years

[148]. It consists mainly of three activities: test case description (and derivation), test execution and

execution analysis through the calculation of a test verdict (the test result is either success or failure,

etc.). The central element of the MBT is the model, which describes the expected behavior of the

System Under Test (SUT). Several models are used, mainly FSM, Statecharts, UML (formal parts),

transition systems, B Methods, algebraic specifications, pre/post-conditions, CSP and Promela. The

use of the model helps to derive test cases that put the system under test in specific situations (i.e.,

test objective - a behavior that we want to test) to observe its reactions. It helps also to check the

conformity of the observed and collected reactions during the system execution with regard to the

expected behaviors described in the models. In this work, we are mainly interested on the second

activity which consists of the analysis of the reactions with respect to the model for the service

oriented systems. There are several approaches to verify the consistency between the running

orchestrations with respect to the choreography model.

In our work, we use the black box testing techniques [149] to investigate the correctness of SOA

systems with respect to a reference specification. This testing technique treats the system as a black

box where only formal inputs and expected outputs are known by the tester (i.e., no knowledge about

the internal functionality and structure of the system is available). We can find several approaches in

recent literature (e.g. [126, 127, 128, 150]) that uses this technique to verify the behavior of a running

system. Both approaches in [126, 127] use active testing techniques, which assume that the tester can

30 MCM consists of three different model types: a global Choreography Model, which consists of a labeled transition

system that specifies the global conversation between the services, a Local Partner Model, which specifies the behavior

of each service and a channel model used to specify the characteristics of the communication channel (e.g., whether the

messages order is preserved during transmission).

Part I: State of the arte 60

interact with a SOA (sub-) system at runtime.

In [127], authors propose an MBT approach based on a model of the orchestrator designed using

IOLTSs (Input Output Labeled Transition Systems [151]). They define a conformity relation in

context where the orchestrator is connected with Web Services (and is consequently no longer fully

controlled by the tester) contrary to unit testing where the orchestrator is tested in isolation. They

discuss problem of observability for this configuration of test and they define an online testing

algorithm where the tester interacts with the orchestrator. During the execution, the tester calculates

an entry from the model (and the test objective is to follow a path in the tree), sends it to the

orchestrator, checks the conformity of the reaction then recalculates another input and so on.

Andrés et al. [150] propose a black box choreography testing approach that extends [152] and which

consists of checking the conformance of local logs with both local and global invariants (which

expresses global properties). Yet, the global invariants cannot detect a violation of the execution order

among peers. Halle et al. [153] propose a runtime monitoring and verification technique for

choreography constraints expressed in Linear Temporal Logic (LTL). Yet, there is no explicit

conformance relation.

In [79], Baldoni et al. propose a framework inspired from multi-agent systems for conformance

testing between the individual peer (single services) behavior and the global behavior of the

choreography. The notion of conformance is defined by means of the finite-state automaton, however,

it is restricted only to compositions of two services. In [143, 144, 145], authors study the conformance

between a choreography model against an implementation defined as compositions of orchestrations

each of which implementing a service role in the choreography. In our thesis work, we rather propose

to synthesize a central entity, i.e., orchestrator, which implements the choreography logic provided

the services implementations are given.

Most of the works that have been discussed previously either state the conformance of an

orchestrator with respect to an orchestration model [127] or services implementation with respect to

choreography model [128]. For the specification step, most of them are based on an abstract logic

[152, 153] rather than using a specification expressed in a choreography language. Our work has the

advantage of using a much simpler and higher levels of abstraction formalism to describe

choreography which is UML Interaction in the form of sequence diagram.

Our work relates more closely to the work in [128], in which Nguyen et al. propose a conformance

testing of an IUT with reference to a choreography specification written using a high-level

choreography language (Chor) and addresses this issue using a passive testing approach. The analysis

method in [128] is relevant when observations can be made at the level of the services. However in

this work, our concern is to validate choreography implementation under partial observability and

under the hypothesis of asynchronous communication. This work is an extension of the work in [165]

since this latter gave interesting results in the case of asynchronous unit testing.

Part I: State of the arte 61

5 Background: modeling with

SoaML
This chapter lays the foundations to understand the contributions of this dissertation. It is

composed of two sections: the first section offers a glimpse of “the main concepts of SoaML”

language and gives a few details about the syntax and semantics proposed by the SoaML

specification. The second section provides an overview of “how to model choreographies using

sequence diagrams” in SoaML and presents a part of the metamodel elements of the sequence diagram

and relationships between them.

5.1 SoaML main concepts

The Object Management Group (OMG) has recently introduced a standard language for modeling

SOA-based application called Service oriented architecture Modeling Language (SoaML) [8]. The

last version (1.0.1) was released in May 2012 (SoaML was released in its first version beta 131 in

April 2009). The SoaML language is becoming increasingly popular for the modeling of SOA-based

systems. The proposed language is destined to provide a rigorous specification of service-oriented

applications in a standardized way to form a foundation for dialog and common understanding in the

SOA field.

To support the modeling of SOA concepts, SoaML introduces a new syntax extending existing

Unified Modeling Language (UML) concepts with additional semantics. The extensions provide the

required syntax to model the SOA concepts. SoaML is based specifically on the UML 2.1 and

specifically defines a UML metamodel and a UML profile for the specification and design of services

within a service-oriented architecture. Metamodels and profiles provide a generic extension

mechanism for customizing UML models for particular domains and platforms and are for the most

part defined by respectively using metaclasses and stereotypes.

The use of UML and specifically UML 2.0 and later versions is very advantageous. In fact,

contrary to other modeling languages such as BPMN 2.032, which make limited or no distinction

between classes and instances, UML 2.0 and later versions provide explicit support for class and

instance modeling to avoid this semantic ambiguity. UML Classes can be used to define specific

contexts where parts in their internal structure explicitly model references to instances of other classes

in an assembly. The same classes can be used in an independent way to define other parts in some

other context. This decoupling is fundamental for reuse, which is an important principle in SOA.

The SoaML language has many other advantages. In fact, one of the major advantages of the SOA

approach is that it helps with separating the concerns of “what” needs to get done, referred to as

“business architecture”, from “how” it gets done, referred to as “systems architecture”, taking into

account the needs and the concerns of the different stakeholders. These concerns are usually modeled

using different modeling languages, which makes it difficult to directly understand and know the

31 http://www.omg.org/spec/SoaML/1.0/Beta1/, last access on 23 May 2016.

32 Pools in BPMN can represent both Participants and instances.

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Domain_model
http://www.omg.org/spec/SoaML/1.0/Beta1/

Part I: State of the arte 62

relationship between the two levels. SoaML has the advantage of providing a common modeling

language for both business and system architects in order to bridge the gap between these levels so

that it enables business and system architects with a better collaboration and a better control on the

IT systems implementation. The following details the main SoaML concepts used to model the

aforementioned two design levels.

5.1.1 Business architecture

SOA is intended as “a way of organizing and understanding organizations, communities and

systems to maximize agility, scale and interoperability. SOA, then, is an architectural paradigm for

defining how people, organizations, and systems provide and use services to achieve results.” [8].

Thus, quite naturally SoaML puts the same importance for the specification of the “cooperation”

between the different parts of the system. Clearly, SoaML, being a UML profile, specifies

cooperations using UML collaborations33. The SoaML specification defines the stereotypes

ServicesArchitecture and ServiceContract, both of them extend UML collaboration metaclass as

shown in Figure 5.1.1.

A services architecture shows a high-level view of the collaboration between Participants.

Collaborations are based on the concepts of roles to define how entities are involved in that

collaboration in order to reach a certain purposes. Participants inside a services architecture

collaborate together through ServiceContracts. A service contract defines the agreement between the

provider and the consumers of a service.

Figure 5.1.1: The SoaML UML Profile – Contracts [8].

Figure 5.1.2 shows an example of a services architecture. These diagrams have been exported from

Papyrus34 which is an open source graphical editing tool of the Eclipse platform for UML2

implemented in our laboratory. It is about the Dealer Network Architecture example, which is

extracted from the SoaML reference specification [8]. We will use this example to illustrate the main

concepts of the SoaML language. The Dealer Network Architecture allows defining a collaboration

schema between dealers, manufacturers, shippers, and escrow agents in order to make business

33 A collaboration is a BehaviouredClassifier which may be extended with behavior attached to it.

34 Available at https://www.eclipse.org/papyrus/, Accessed 25 June 2015

Part I: State of the arte 63

arrangements. As shown in the Figure, it is composed of four properties, each one represents a

Participant role: Dealer, Manufacturer, EscrowAgent, and Shipper.

Figure 5.1.2: Dealer network services architecture.

The three ellipses inside ServicesArchitecture depicted in Figure 5.1.2 are UML

CollaborationUses and refer to ServiceContracts. We identify three ServiceContracts:

ShippingStatus, ShippingRequest, and SecurePurchase. The Servicesarchitecture binds each

Participant to a given role in a ServiceContract using RoleBinding relations depicted as dashed lines

labeled with the role names. For example, the Participants Manufacturer and Shipper are respectively

bound to the ShippingRequest contract by the role bindings sender and shipper.

A service contract defines the terms, conditions, interfaces and choreography that cooperating

Participants must agree in order to be a part of that contract. Figure 5.1.3 shows the ShippingRequest

contract. A contract describes the static structural part of a collaboration. In fact, a contract specifies

only the Participants roles (at least two roles, e.g., provider, consumer) connected together in order

to model their service interchange. Figure 5.1.3 shows the internal structure of the ShippingRequest

contract specifying the two connected roles sender and shipper.

Figure 5.1.3: Shipping request service contract.

 On the other hand, the behavioral part of a contract can be specified by a UML behavioral

diagram. The SoaML does not specify which kind of behavioral notation to use, it gives the designer

the freedom to choose the most appropriate diagram that meets the needs. A behavior may have any

UML form: interaction (e.g., sequence diagrams which are the most common kind of Interaction

Diagram), state machines, activity diagrams, timed diagrams, etc.

In case a ServiceContract is enriched with a UML Behavior, this behavior is then required of any

Participant who plays a role in these services. Each Participant has to be compatible with the roles it

Part I: State of the arte 64

plays in the service contracts. The contract behavior then represents a formal agreements or

requirements that must be fulfilled exactly by the Participants playing a role in the contract. In this

thesis, we are interested in exploring and specifying a specific behavior that shows how the messages

are “choreographed” in the service contract (what flows between who, when, and why). More simply,

we are interested in the service interactions at a high level of abstraction.

In UML, interactions are modeled through UML Interaction Diagrams that focus on the observable

exchange of information between connectable elements [98]. There are two Interaction Diagrams

suitable for modeling choreographies: sequence diagram and communication diagram that shows

interactions through a structural view. Since the static structural view is already described in the

contract, we choose sequence diagrams for specifying choreographies attached to contracts.

The ShippingRequest contract choreography is specified by the sequence diagram

ShippingRequestChoreography shown in Figure 5.1.4. Each lifeline represents a contract role, and

messages denote service operation sendings and receptions which are ordered in time along the

lifeline axis. The choreography describes details of message exchanges between the sender and

shipper roles. First, sender requests for shipping giving information about the order. As a response,

it gets the order shipping response information. And finally, when the shipment ends, shipper sends

a shipping confirmation to sender giving details about the shipment.

Figure 5.1.4: Shipping request choreography.

5.1.2 System architecture

The system architecture provides a description of “how” all the parts will work together to meet

the business needs. This description includes the definition of specific functions and data exchanged

between these parts. Consequently, the system architecture is mainly composed of two views: the

services and the service data views.

The services view contains definitions of components and services. Components are called

Participants, which may represent people, organizations, or information system components.

Participants provide and/or require services through their Ports. A port is a part or feature of a

Participant that is the interaction point where a service is provided or consumed by a Participant. A

port where a service is offered may be designated as a Service port and the port where a service is

consumed may be designated as a Request port. A request port is a "conjugate" port, which means

that the provided and required interfaces of the port type are inverted (i.e., the port does not implement

the port type but uses it) [8]. Both Request and Service extend Port (see Figure 5.1.5).

Part I: State of the arte 65

A port is defined (i.e., typed) through a service specification, which describes how a Participant

may interact to provide or use a service. A service can be either simple or bidirectional. A simple

service is defined through a UML interface and is used to specify one-way interaction. A bi-

directional service is defined through a ServiceInterface, which extends UML class and interface as

shown at the top left of Figure 5.1.5. A service Interface specifies the provided interface by a

Participant on a port as well as the interface, if any, expected from the consumer.

Figure 5.1.5: SoaML UML Profile – Services [8].

The Participants Dealer, Manufacturer, EscrowAgent, and Shipper are shown in Figure 5.1.6.

Shipper has a Service port typed with ShippingService, which is a ServiceInterface (see Figure 5.1.7).

It provides ShippingOrder Interface and requires ScheduleUpdating Interface. Thus, Shipper is

compatible with its shipper role in the ShippingRequest contract. The manufacturer has a Request

port typed with the same type [8]. This means that it provides the ScheduleUpdating Interface and

requires the ShippingOrder Interface.

Figure 5.1.6: Dealer Network Participants.

Part I: State of the arte 66

Figure 5.1.7: Shipping Request Interfaces.

As shown in Figure 5.1.7, interfaces give details about services operations or signal receptions. For

example, SheduleUpdating interface has two UML Receptions35, orderShippingResponse and

shippingConfimation.

To define the information exchanged between service consumers and providers, SoaML introduces

the concept of MessageType, which extends Class, DataType and Signal (see Figure 5.1.8). The

message type may be used to correlate long-running conversations between services (if isID is equal

to true).

Figure 5.1.8: SoaML UML Profile - Service Data [8].

5.2 Modeling choreographies using sequence diagrams

In this section, we give an overview of the metamodel architecture of a sequence diagram, which

is the most common kind of interaction diagram. The sequence diagram is a high-level view of system

behavior that focuses on the message interchange between different lifelines. Figure 5.2.1 shows an

example of a choreography containing combined fragment from the Dealer Network Architecture

example. The choreography shown in Figure 5.2.1 is attached to the SecurePurchase contract. The

Interaction element corresponds to the frame of the sequence diagram itself. A Lifeline represents a

Participant in the interaction. In a SoaML model, a lifeline represents a role in the service contract. A

Message describes a specific kind of communication between lifelines. The element

OccurrenceSpecification denotes a point in the lifeline where an execution occurs.

MessageOccurenceSpecification is a specialization of OccurrenceSpecification which represents

such events such as the sending and receipt of signals or invoking or receipt of operation calls (see

Figure 5.2.1). Finally, a CombinedFragment is a combining operator that allows to express an

aggregation of multiple traces36 encompassing complex and concurrent behaviors. It is defined by an

InteractionOperator (e.g., alt) and corresponding InteractionOperand(s).

The SecurePurchase choreography contains a loop operator, which defines repetitive behavior and

35 A UML Reception is a behavioral feature declaring that this interface is prepared to react to the receipt of a

signal [98].
36 A trace is a sequence of event occurrences [98]

Part I: State of the arte 67

an alt operator that defines alternative behaviors (two or more). First, a deposit is made by the

Purchaser to an EscrowService. Later, a delivery is made and either (alt) accepted or a grievance is

sent to the EscrowService that forwards it to the Seller. The Seller files a justification. This process

repeats until (loop) the EscrowService concludes the transaction and either makes the escrow payment

to the seller (in the case where delivery was completed) or refunds it to the buyer (if delivery was not

completed).

Figure 5.2.1: Secure purchasing choreography.

Figure 5.2.2 shows the relations between the metamodel elements of the sequence diagram

mentioned in the example.

Figure 5.2.2: UML sequence diagram metamodel: a simplified view.

Part I: State of the arte 68

As shown in Figure 5.2.3 (which is a part of the metamodel in Figure 5.2.3),

Interactionfragment represents the most general interaction unit. Each interaction fragment is

conceptually like an interaction by itself. It generalizes among others the elements Interaction,

CombinedFragment, OccurrenceSpecification and ExecutionSpecification.

Figure 5.2.3: UML interaction fragment.

An Interaction is composed of a set of Lifelines, a set of Messages and an ordered set of

InteractionFragments (see Figure 5.2.4).

Figure 5.2.4: Composition of an Interaction.

A lifeline may be associated with a set of InteractionFragments as shown in Figure 5.2.5. A lifeline

is covered by a set of InteractionFragments, each of which covers a set of lifelines (this is the case

when the InteractionFragment denotes a combined fragment and thus, it covers all lifelines that go

through it).

Figure 5.2.5: UML occurrences and message ends.

A Message is associated with at most one MessageEnd with the role sendEvent and one

MessageEnd with the role receiveEvent (see

Figure 5.2.6). On the other hand, at most two message ends are associated with a Message. A

MessageOccurrenceSpecification is a kind of MessageEnd and OccurrenceSpecification when it

denotes a point on the lifeline of a reception or an emission of a message.

Figure 5.2.6: UML occurrences and message ends.

Part I: State of the arte 69

Part II: THESIS

CONTRIBUTIONS

This part details the contributions of this dissertation, namely the horizontal consistency

verification of SoaML models, the model-driven generation of executable artifacts from the SoaML

models and the vertical consistency verification of SOA-based systems.

Chapter 1

1 Horizontal consistency

verification

In the previous chapter, we gave an overview of how to model SOA systems using the SoaML

modeling language. We detailed the SoaML and Interaction metamodels that are required for the

understanding of this chapter. Herein, we detail our consistency verification approach of the SOA

system specifications. We first present an overview of the proposed approach for horizontal

consistency verification. Then we detail the verification rules of horizontal consistency and their

validation.

 Horizontal consistency verification approach

One of the main usage of MDA is to generate code from UML models. Nowadays, the

specification model is also used for other purposes to cope with the increasing complexity of the

systems. Models are used for analysis purposes (offline and online analysis), for example, runtime

models are used for reconfiguration purposes [154], etc. However, given the level of complexity of

such systems, the specification model itself can easily not be consistent. The Webster’s dictionary

definition of inconsistency is: “the relation between propositions that cannot be true at the same time

Chapter 1. Horizontal consistency verification 72

or the lack of harmonious uniformity among parts”. In the context of a design model, a specification

may contain conflicting information about the system, and/or violates predefined constraints.

Motivation. Talking about consistency leads to a very important question: why do we need to check

consistency in UML-based models?

One of the most important motivations for model consistency checking is correctness. Typically,

consistency problems reveal design problems or misuse of the modeling language (syntactic or

semantic inconsistency). When those inconsistencies are discovered early in the design phase, it is

easier and more cost effective to fix than if they were discovered at a later stage. In fact, all the

constructed artifacts would inherit the initial inconsistencies and it would be more difficult and more

expensive to correct them in the further stages. Therefore, consistency verification at the design time

becomes a crucial step before transforming the design model into other forms (code generation, test

cases derivation, etc.). It has becomes so important that designers have a tool to check the consistency

of a UML model to find and to fix any problems as early as possible before implementing them.

Another motivation for model consistency checking is implementability, which usually consists

of translating a consistent UML model into a programming language, which typically has precise and

unambiguous notation. In fact, constraints can be more detailed than visual models.

Another important issue to mention is the increasing difficulty of model consistency verification

when the specification model involves several viewpoints and a number of contributors with different

skills. This is the case of SoaML models where we can model different views of the system. As we

mentioned in the previous chapter, a SoaML-based system specification require the definition of

different views of the system. These views describe both the business and the system architecture

levels and allow modeling both structural and behavioral aspects of a SOA-based system. This results

in separate views of the system model that are intended to be consistent with each other. Without

consistency analysis, it would be hard to make the model evolve and ensure that these views are

coherent with each other.

How the SoaML specification defines the consistency constraints?

In order to meet the requirements of particular application domains, SoaML provides a profile that

extends the UML metamodel with stereotypes that allow defining new syntax encapsulating new

semantic meaning to a specific domain. Consistency constraints are part of the profile definition. In

fact, a stereotype may define additional constraints to refine its semantics. A constraint on a

stereotype is interpreted as a constraint on all types to which the stereotype is applied. In the SoaML

specification, a constraint attached to a stereotype is defined by means of an informal explanation

written in natural language and listed in the “Constraints” sub-section inside the section describing

the stereotype. Other semantic constraints could be extracted from the “Semantics” sub-section.

The use of natural language to express the constraints has many drawbacks:

- First, these constraints are not machine-readable and therefore can only be checked

manually, which can be a hard and time consuming task. This task becomes harder especially

in the case of complex rules that check the coherence between different views of the model

specification. Another case where manual consistency checking becomes harder is in the case

of complex system specification containing a large number of artifacts. In such a case,

manually checking the model consistency is time-consuming. To deal with this problem, one

may automate the consistency checking of the SoaML model. Constraints need to be added to

Chapter 1. Horizontal consistency verification 73

the design of elements belonging to the same view, as well as the relationships between

different views.

- Second, the constraints are determined by humans. Therefore, they are sometimes ambiguous

or written is a confusing way. This may lead to misinterpretations and to the improper analysis

of the models. The challenge here is to carefully analyze these constraints, resolve ambiguity

and then formalize them.

- Third, some constraints present some semantic variation points. UML opts sometimes for

providing intentional degrees of freedom for the interpretation of the metamodel semantics in

the form of semantic variation points. The goal behind these semantic variation points is to

provide a metamodel sharing many commonalities and variabilities that one can customize

for a given application domain. An example of variation point in the SoaML specification is

the choice of the behavioral model attached to the service contracts. SoaML gives the users

the freedom of choosing a behavior among the existing UML behaviors. Then, SoaML

specifies constraints related to that behavior, which must be compatible with the participating

service descriptions. The manner in which a behavior attached to a service contract is

compatible with the participating service descriptions is a semantic variation point that

depends on the chosen behavior. In fact, a modeler can decide to use a sequence diagram, an

activity diagram, or another suitable behavioral diagram to model the service interactions. The

compatibility will depend on the chosen behavior, i.e., checking the consistency between the

participating services and a sequence diagram will differ from checking the consistency

between these services and an activity diagram. Moreover, the SoaML specification does not

provide default semantics or a list of possible variations, nor does it formally constrain the

semantics that can be plugged into variation points. As a consequence, users can accidentally

assign a semantics that is inconsistent with the semantics of related concepts. To deal with

this problem, a semantic variation point must be identified and then fixed either by defining a

default semantic or by defining some possible semantics [155].

These reflections lead us to propose a SoaML framework allowing the verification of the

consistency of SoaML models. Our goal is to develop a software design environment that automates

the detection and resolution of design inconsistencies in SoaML design models. Hence, the support

environment should indicate inconsistencies to the designer in a flexible and indicative way. Our

approach helps the designer to automatically detect and track inconsistencies and to inform him about

the precise inconsistency problems in their models, their locations, and likely solutions.

OCL as a formalism to express metamodel constraints:

To verify model consistency, there is a need to constrain the design of elements belonging to the

model on the most appropriate level of abstraction and using the most appropriate formalism. The

UML infrastructure is defined as a four-layer metamodel architecture: Level M3 defines a language

for specifying metamodels, level M2 defines the UML metamodel, level M1 consists of UML models

specified by the M2 metamodel, and level M0 consists of object configurations specified by the

models at level M1. The UML metamodel M2 level is the most appropriate level of abstraction to

constrain the model level M1. Indeed, adding constraints to the UML metamodel results in a

specialized metamodel that specifies a subset of valid UML models.

We have choose the Object Constraint Language (OCL) [156] as a formalism to express

metamodel constraints. OCL is a largely used language that allows software developers to write

Chapter 1. Horizontal consistency verification 74

constraints over object models. Section 2.2.1 gives more details about the OCL language and how to

define an OCL constraint.

Steps to specify and validate horizontal consistency constraints:

In order to specify and verify the SoaML constraints, we follow a general approach, which is

depicted in Figure 1.1.1:

(1) Specification of the consistency constraints. These constraints are textually stated in the

specification. We pick up these constraints and we identify for each on the context where it

will be applied.

(2) Implementation of consistency constraints. The consistency constraints are formalized in

terms of OCL constraints and are attached to their associated context identified in the previous

step. Then these OCL constraints are integrated into a validation framework that extends the

SoaML profile.

(3) Validation of consistency constraints. The previously formulated consistency constraints

need to be syntactically validated. Then the validity of these constraints with respect to the

semantics and syntax defined by the SoaML specification need to be validated. We need to

verify that the implemented tool detects incoherencies in the SoaML models.

Figure 1.1.1: Steps to specify and validate horizontal consistency constraints.

 Specification of the SoaML consistency constraints

Like any other language, SoaML language defines its own unique syntax and semantics. SoaML

defines its new syntax and semantics using a profile, which extend part of the UML concepts. The

profile defines new elements that extend some UML elements and constraints these elements with

new constraints. To be consistent with the SoaML profile, a SoaML model must be consistent with

the syntax and semantics defined by the SoaML specification.

As explained in Part I (section 2), syntactic consistency is concerned with the structural well-

formedness of the abstract syntax as specified in the SoaML specification and must be a prerequisite

to any further consistency checking. In other words, syntax consistency is what makes the model

readable and therefore, verifiable. One example of the syntactic requirement in UML is that a

classifier must have a unique fully qualified name. An example of a syntactic constraint imposed by

SoaML is: “MessageType cannot contain owned operations.”. In this example, MessageType is a new

concept introduced by the SoaML specification. This concept extends DataType, Class or Signal. In

case the Message Type instance is a DataType or Class, UML allows to add operations to that

element, however, this will be syntactically false in a SoaML model.

While syntax guarantees the well-formedness of the model, semantics is what gives meaning to

language constructs. An example of semantic constraints in UML is the following: when there is a

generalization relationship between two classifiers, the classifier at the source of a generalization

inherits all the target classifier’s structure and behavior. Semantic consistency in SoaML is concerned,

for example, with the meaning of a stereotype. For example, the “isConjugated property of a

“Request” must be set to true”. This is because a Request must behave is the same way in which

Specification of the
consistency
constraints

Implementation of
the consistency

constraints

Validation of the
consistency
constraints

Chapter 1. Horizontal consistency verification 75

behaves a UML port whose property isConjugate evaluates to true (this constraint and others are

detailed in Section 2.2.3). Semanticvb is also concerned with the coherence between the semantics of

two related views, for example, the coherence between a behavioral diagram attached to a service

contract and the roles specified in that service contract.

Syntactic and semantic constraints may concern individual views of the system specification

(intra-view constraints) or different views of the system specification (inter-view constraints). These

constraints have been extracted from the SoaML specification document (version 1.0.1) and are

summarized in Table 1.2-1. We give for each constraint: (1) the constraint identifier that we gave for

that constraint, (2) the description of the consistency constraint taken from the OMG SoaML

specification document, and (3) the classification of that constraint according to aforementioned

criteria, namely Semantic/Syntactic and Intra/Inter-view. For easier reading of the table, each

constraint type is colored in a different color.

Table 1.2-1: Summary and classification of SoaML constraints.

Constraint Name

Description

Semantic/

Syntactic

Intra/

Inter-

view

isActive Agents should always be active. semantic Intra

noRealizedUsedInter

face

A Participant cannot realize or use Interfaces directly; it

must do so through service ports, which may be Service

or Request.

syntactic Inter

portTypes A Participant port is either a Request port or Service port. syntactic Intra

requestType The type of a Request must be a ServiceInterface or an

Interface.

syntactic Inter

isConjugatedTrue The isConjugated property of a “Request” must be

set to true.

semantic Intra

serviceType The type of a Service must be a ServiceInterface or an

Interface.

syntactic Inter

isConjugatedFalse The direction property of a Service must be incoming.

semantic Intra

serviceChannelEndT
ypes

One end of a ServiceChannel must be a Request and the
other a Service in an architecture.

semantic Inter

serviceChannelEnds

Compatible

The Request and Service connected by a ServiceChannel

must be compatible.

semantic Intra

noOwnedOperations Message Type cannot contain owned operations.

syntactic Intra

noOwnedBehaviors MessageType cannot contain owned behaviors.

syntactic Intra

publicAttributes All ownedAttributes of a MessageType must be public.

syntactic Intra

partsTypesOfService

Interface

All parts of a ServiceInterface must be typed by the Interfaces

realized or used by the ServiceInterface.
syntactic Intra

Chapter 1. Horizontal consistency verification 76

 Implementation of consistency constraints using OCL

After the identification of the consistency constraints, the next step is to formalize these constraints

using the OCL language (Prerequisites for OCL language are given in Annex A.1). The fact that the

SoaML specification provides a profile makes the integration of consistency constraints easier. All

we need is to identify the constrained element and then attach the constraint to that element as a UML

Constraint. In our case, we have attached the OCL constraints to the elements the SoaML profile, i.e.,

the stereotypes. In this section, we detail the OCL constraints associated with each constraint

extracted from the SoaML specification. The constraints are classified according to their types:

syntactic or semantic constraints, each of which is divided into inter or intra-view constraints. An

overview of OCL language is given in Annex A.1) to better understand the constraints.

1.3.1 Syntactic consistency constraints

In the following, for each constraint, we give the description of some examples of syntactic

constraints extracted from the SoaML specification. Then we give the corresponding formalization

using OCL language followed by its explanation. More syntactic constraints, which are also extracted

from the SoaML specification, are given in Annex A.3.1 Syntactic consistency constraints.

 Intra-view

 SoaML constraint: MessageType cannot contain owned behaviors or owned operations.

MessageTypes represent “pure data” that may be communicated between service consumers and

providers. SoaML imposes then that MessageTypes cannot have owned behaviors or owned

ParticipantsRoleCom

patibility

Each Participant satisfying roles in a

ServicesArchitecture shall have a port for each role

binding attached to that Participant. This port shall have
a type compliant with the type of the role used in the

ServiceContract.

semantic Inter

partsTypes The parts of a ServicesArchitecture must be typed by a
Participant or capability.

syntactic Inter

RoleType Each service role in a service contract has a type, which

must be a ServiceInterface or UML Interface or Class
stereotyped as “Provider” or “Consumer.”

syntactic Inter

AttachedBehaviorCo
mpatibility

If a ServiceContract has an attached behavior, this
behavior should be compatible with the parts of the

ServiceContract.

semantic Inter

RoleBindingClientSu
pplierCompatibility

A part that is bound to a CollaborationUse, whose
property “isStrict” evaluates to true, must be compatible

with the roles they are bound to. A value of false

indicates the modeler warrants the part is capable of
playing the role even though the type may not be

compatible.

semantic Inter

Chapter 1. Horizontal consistency verification 77

operations. We have decided to divide this constraint into two constraints in order to help the designer

to find the problem as quickly as possible.

Sub-constraint 1: MessageType cannot contain owned operations.

Constrained element: MessageType

OCL constraint:

context SoaML:: MessageType inv NoOwnedOperation:

if self.base_Class<>null

then self.base_Class.ownedOperation->size()=0

else
 if self.base_DataType<>null

 then self.base_DataType.ownedOperation->size()=0
 else self.base_Signal<>null implies true endif

endif

This OCL constraint is evaluated in the context of a MessageType. A MessageType could be either a

DataType or a Class or a Signal. Then, the constraint verifies that there are no owned operations

(ownedOperation -> size()=0) in the case where the MessageType is a Class (base_Class<>null) or

a DataType. This condition is true for Signal because a Signal is a specific classifier that cannot have

any operations.

Sub-constraint 2: MessageType cannot contain ownedBehaviors.

Constrained element: MessageType

OCL constraint :

context SoaML:: MessageType inv noOwnedBehaviors

self.base_Class<>null

implies

self.base_Class.ownedBehavior->size()=0

This OCL constraint is evaluated in the context of a MessageType. This is only the case where the

MessageType is a Class that the user could attach a behavior to that MessageType otherwise, in UML,

a signal or a DataType cannot have a behavior attached to them. Then the constraint verifies that there

is no owned behavior (ownedBehavior -> size()=0) only in the case where the MessageType is a class

(base_Class<>null).

 Inter-view

 SoaML constraint: A Participant cannot realize or use Interfaces directly; it must do so through

service ports, which may be Service or Request.

Constrained element: Participant

Participants realize and use Interfaces only via ports. A Port represents the interaction point for a

service, where it is provided or consumed. Figure 1.3.1 shows the Participant Invoicer, which

provides the InvoicingService interface through a Service port.

Chapter 1. Horizontal consistency verification 78

Figure 1.3.1: Invoicer Participant providing the invoicing service [8].

OCL constraint:

context SoaML:: Participant inv NoDirectInterfaceRealization:

Realization.allInstances()->select(r|r.client->includes(self.base_Class))->size()=0

and
Usage.allInstances()->select(r|r.client->includes(self.base_Class))->size()=0

This OCL constraint is evaluated in the context of a Participant. The constraint look for all the UML

Realization and Usage instances in the model using allInstances() function, verifies that there are no

instances (size()=0) which have as client property the Participant itself.

 SoaML constraint: A Participant port is either a Request port or Service port.

Constrained element: Participant

As explained before, “Service” and “Request” stereotypes are the interaction points where services

are respectively offered or consumed.

OCL constraint:

context SoaML:: Participant inv PortType:

let portsSet: OrderedSet(UML::Port)= self.base_Class.ownedPort()

in
 portsSet->size()>0

 implies
 portsSet->forAll(p|p.getAppliedStereotypes() ->select(s|s.name='Request' or s.name='Service')->size()=1)

This OCL constraint is evaluated in the context of a Participant. It computes the set of all Participant

ports, portsSet, then verifies that each of them has either Service or Request stereotype using a

select statement for applied stereotypes names.

 SoaML constraint: The type of a Request must be a ServiceInterface or an Interface.

We found that this constraint is incomplete. In fact, as explained in the semantics of Participant

stereotype, a port can also be typed by a Consumer, which “is intended to be used as the Port type of

a Participant that uses a service”[8]. A Consumer extends both UML Interface (in the case of a non-

composite service contract) and UML Class (in the case of a composite service contract).

Consequently, a port type of Request can be a class stereotyped as Consumer. This case is not

included in the constraint proposed by the specification. We choose to add it so that the resulting

constraint is: “The type of a Request must be a ServiceInterface or an Interface or a Consumer”.

Constrained element: Request

OCL constraint:

Chapter 1. Horizontal consistency verification 79

context SoaML:: Request inv RequestType:

if base_Port.type.oclIsUndefined()then false

else
let portType: Type= base_Port.type

in
 portType.getAppliedStereotypes()->select(s|s.name='ServiceInterface' or s.name='Consumer')->size()=1

 or portType.oclIsTypeOf(Interface)

endif

This OCL constraint is evaluated in the context of a Request port. It first of all verifies that the

service port has a type, computes that type (portType), then verifies that the port type is either a

UML Interface or is stereotyped by either ServiceInterface or Consumer.

1.3.2 Semantic consistency constraints

In the following, we give some examples of semantic constraints extracted from the SoaML

specification and the corresponding OCL formalization. More syntactic constraints are given in

Annex A.3.2 Semantic consistency constraints.

 Intra-view

 SoaML constraint: The isConjugated property of a “Request” must be set to true.

Constrained element: Request

In UML, the port attribute isConjugated specifies the way that the provided and required Interfaces

are derived from the Port’s Type. A conjugate port indicates that the provided and required interfaces

of the port type are inverted, creating a port that uses the port type rather than implementing it. In

SoaML, “if the type of a “Request” is a ServiceInterface, then the Request’s provided Interfaces are

the Interfaces used by the ServiceInterface while its required Interfaces are those realized by the

ServiceInterface. If the type of a “Request” is a simple Interface, then the required interface is that

Interface and the provided interfaces are those interfaces used by the simple interface, in any.” [8]. In

order to ensure that the request will provide and use the Interfaces in this way, the property

isConjugated must evaluate to true.

OCL constraint:

context SoaML:: Service inv isConjugatedTrue:

 base_Port.isConjugated

This OCL constraint is evaluated in the context of a Request. It verifies if the property isConjugated

evaluates to true.

 SoaML constraint: The Request and Service connected by a ServiceChannel must be

compatible.

This rule is explained in the SoaML specification as follows:

“A Request is compatible with, and may be connected to a Service through a ServiceChannel if:

1. The Request and Service have the same type, either an Interface or ServiceInterface.

2. The type of the Service is a specialization or realization of the type of the Request.

3. The Request and Service respectively have compatible needs and capabilities. This means the

Chapter 1. Horizontal consistency verification 80

Service must provide an Operation for every Operation used through the Request, the Request must

provide an Operation for every Operation used through the Service, and the protocols for how the

capabilities are compatible with the Request and Service.

4. Any of the above are true for a subset of a ServiceInterface as defined by a port on that service

interface.” [8].

Constrained element: ServiceChannel

For a service and a request to be compatible, either (1) they have the same type or (2) one is the

specialization or realization of the other or (3) they have compatible needs and capabilities. For the

third condition, we only evaluate that Service (resp. Request) provides an Operation for every

Operation used by the Request (resp. Service). In our approach, concerning protocol compatibility,

we choose to not specify a protocol at the Service and Request level but rather a common protocol

specified at the contract level. In fact, SoaML distinguishes between two approaches for defining

services. In the first approach, each service has a service description that defines the purpose of the

service and any interaction or communication protocol for how to properly use and provide a service.

The service description then defines the complete interface for a service from its own perspective,

independently of any consumer. In the second approach, there is only one common agreement defined

in one place between a consumer request and provider service that is captured in a common service

contract. This common agreement constrains both the consumer’s request service interface and the

provider’s service interface. The specification gives the user the choice between these two design

approaches. In our case, we choose a contract-based approach. This means that there is only one

protocol that is provided by the service contract. Consequently, we are not concerned with verifying

the protocols for how the capabilities are compatible with the Request and Service.

OCL constraint:

context SoaML:: Participant inv PortsCompatibility:
let

 requestTypeClassifier: UML::Classifier=self.base_Connector.end->select(p|p.oclIsTypeOf(UML::Port) and

oclIsTypeOf(SoaML::Request)) -> select(p|p.oclAsType(UML::Port).type.oclIsTypeOf(Classifier))
->first().oclAsType(UML::Port).type.oclAsType(Classifier),
 serviceTypeClassifier: UML::Classifier=self.base_Connector.end->select(p|p.oclIsTypeOf(UML::Port) and

oclIsTypeOf(SoaML::Service)) ->select(p|p.oclAsType(UML::Port).type.oclIsTypeOf(Classifier))
->first().oclAsType(UML::Port).type.oclAsType(Classifier)

in
not requestTypeClassifier.oclIsUndefined()--Verify if both the request and service are typed

and
not serviceTypeClassifier.oclIsUndefined()

implies
requestTypeClassifier=serviceTypeClassifier --1. Verify if Request and Service have the same type.

or
 serviceTypeClassifier.Generalization.general->closure(general)-> includes(requestTypeClassifier) --2. Verify if type of the
Service is realization of the type of the Request.

or
requestTypeClassifier.allUsedInterfaces()->includes(serviceTypeClassifier) - -2. Verify if type of the Service is a specialization
of the type of the Request.

or
--3. Verify if Service provides an Operation for every Operation used through the Request and the Request provides an Operation

for every Operation used through the Service
(requestTypeClassifier.allUsedInterfaces().getAllOperations() ->
includesAll(serviceTypeClassifier.allRealizedInterfaces().getAllOperations())

and
requestTypeClassifier.allRealizedInterfaces().getAllOperations()->
includesAll(serviceTypeClassifier.allUsedInterfaces().getAllOperations())
)

Chapter 1. Horizontal consistency verification 81

This OCL constraint is evaluated in the context of a ServiceChannel. It first computes the type of

request port, requestTypeClassifier, which is a UML Classifier. It also computes the type of service

port, serviceTypeClassifier, which is also a UML Classifier. Then, if these two variables are not null,

which means that there the port associated with this connector (the ServiceChannel) are typed, then

the constraint verifies if (1) the serviceTypeClassifier is equal to the requestTypeClassifier; (2) the

serviceTypeClassifier is a generalization of the requestTypeClassifier or the latter have a usage

dependency with the serviceTypeClassifier; and (3) the operations used through the

requestTypeClassifier includes all the operation realized by the serviceTypeClassifier.

 Inter-view

 SoaML constraint: If a ServiceContract has an attached behavior, this behavior should be

compatible with the parts of the ServiceContract.

Constrained element: ServiceContract

A ServiceContract can have a UML behavior attached to it to refine the service interactions. This

behavior shows how the Participants work together within the context of the service typing the role

defined in the ServiceContract. As described by the constraint, when attaching a behavioral diagram

to the contract definition, it is mandatory to verify the compatibility of this behavior with the service

description.

In SoaML, verifying the compatibility between the behavior and the system structure is a semantic

variation point depending on the chosen behavior. As described in section 5.1.1, choreographies are

modeled using UML Interactions in the form of UML SDs. Then, we verify the signature of each

message received by each lifeline. We are particularly verifying if all signatures of asynchronous

messages match operations or signals of the associated definitions of services.

OCL constraint :

context SoaML:: ServiceContract inv AttachedBehaviorCompatibility

self.base_Collaboration.ownedBehavior->size()>0

implies
(self.base_Collaboration.ownedBehavior->asOrderedSet()->first().oclIsTypeOf(UML::Interaction)

implies

let
lifelines=self.base_Collaboration.ownedBehavior-> asOrderedSet()->

first().oclAsType(UML::Interaction).lifeline,

messages= self.base_Collaboration.ownedBehavior-> asOrderedSet()->

first().oclAsType(UML::Interaction).message,
messOccuSpec=self.base_Collaboration.ownedBehavior->asOrderedSet()->

first().oclAsType(UML::Interaction).fragment

->select(f|f.oclIsTypeOf(MessageOccurrenceSpecification))

in
lifelines->size()>0

implies lifelines->forAll(l|

self.base_Collaboration.role -> includes(l.oclAsType(UML::Lifeline).represents))

and
--the message signature must be one of the operations or signal of the corresponding service

declaration

Chapter 1. Horizontal consistency verification 82

messages->size()>0

implies messages->forAll(m|

m.signature.oclIsTypeOf(Operation)

implies
m.receiveEvent.oclAsType(MessageOccurrenceSpecification).covered-> flatten()

->asOrderedSet()

->first().oclAsType(Lifeline).represents.type.oclAsType(Classifier).ownedElement
->select(oclIsTypeOf(Operation)) -> includes(m.signature.oclAsType(Operation))

and
m.signature.oclIsTypeOf(Signal)

implies
m.sendEvent->asOrderedSet()->first().oclAsType(MessageOccurrenceSpecification).covered

->asOrderedSet()->first().oclAsType(Sequence) -> asOrderedSet()->
first().oclAsType(Lifeline).represents.type.oclAsType(Classifier).ownedElement

 ->select(oclIsTypeOf(Signal)) ->includes(m.signature.oclAsType(Signal))))

This constraint is evaluated in the context of a contract. It starts by computing the set of lifelines and

messages in the sequence diagram attached to it. It then verifies if roles in the contract include all

lifelines representations. Finally, it checks if all messages signature are included into owned

operations or receptions of the associated covered representation (which is a role type). We

distinguish two cases: the first is the case where the message signature is an Operation and the second

is the case where the message signature is a Signal. In the first case, we verify that the operation of

the service definition, which is the type of the role represented by the lifeline that covers the receive

event (which is a MessageOccurrenceSpecification) of the message includes this operation (the message

signature). In the second case where the message signature is a signal, we check that the type of role

represented by the lifeline that covers the send event of the message has this signal as ownedElement.

1.3.3 SoaML constraints summary

Table 1.3-1 summarizes the SoaML constraints. We give for each constraint: (1) the name, (2) the

constrained element, which is the SoaML stereotype to which the constraint is applied, and (3) the

error message displayed to the user when the constraint is violated.

Table 1.3-1: Summary of SoaML constraints and associated error messages.

Constraint Name

Constrained

Element

Error Message

isActive Agent Agent must be active.

noRealizedUsedInter

face

Participant Participant cannot realize or use Interfaces directly.

portTypes Participant Port must be a Request or a Service.

requestType Request The type of a Request must be a ServiceInterface or an
Interface

isConjugatedTrue Request The isConjugated property of a “Request” must be set to true.

serviceType Service The type of a Service must be a ServiceInterface or an

Interface.

Chapter 1. Horizontal consistency verification 83

isConjugatedFalse Service The isConjugated property of a “Service” must be set to

false.

serviceChannelEndT

ypes

ServiceChannel One end of a ServiceChannel must be a Request and the other

a Service.

serviceChannelEnds

Compatible

ServiceChannel The Request and Service connected by a ServiceChannel

must be compatible.

noOwnedOperations MessageType MessageType cannot contain ownedOperation

noOwnedBehaviors MessageType MessageType cannot contain owned Behaviors.

publicAttributes MessageType All ownedAttributes must be Public.

partsTypesOfService

Interface

ServiceInterface A part must be typed by the Interfaces realized or used by the

ServiceInterface

ParticipantsRoleCom
patibility

ServicesArchite
cture

Each Participant satisfying roles in a ServicesArchitecture
shall have a port for each role binding attached to that

Participant.

partsTypes ServicesArchite

cture

The parts of a ServicesArchitecture must be typed by a

Participant or capability

RoleType ServiceContract Role type of ServiceContract must be a ServiceInterface or

UML Interface or Class stereotyped as Provider or

Consumer.

AttachedBehaviorCo
mpatibility

ServiceContract Attached behavior should be compatible with the parts of the
ServiceContract

RoleBindingClientSu

pplierCompatibility

CollaborationUs

e

The parts must be compatible with the roles they are bound

to.

 Consistency constraints integration in the SoaML profile

The OCL constraints are implemented as UML Constraints. A UML Constraint represents certain

conditions, restrictions or assertions that must be satisfied by any valid realization of the model

containing the Constraint. It can be attached to one or more constrainedElements to enrich it with

additional information. A UML Constraint is usually specified by a Boolean expression which must

evaluate to a true or false. For a model, to be a correctly designed, all the constraints must be satisfied

(i.e. they must evaluate to true). In UML, several languages can be used to express constraints, such

as OCL, Java or natural language. We have already expressed these constraints in OCL. All we need

now is to associate each OCL expression with its constrainedElement (i.e., a SoaML stereotype). In

order to do this, the constraint string written in OCL language is placed in a note symbol (same as

used for comments) and attached to the constrained elements by a dashed line as shown in Figure

1.4.1. A note symbol is shown as a rectangle containing the body of the constraint with the upper

right corner bent. Figure 1.4.1 is a screenshot of the Agent stereotype and the OCL constraint attached

to it.

Chapter 1. Horizontal consistency verification 84

Figure 1.4.1: Agent and Participants stereotypes and their associated OCL constraints.

As previously mentioned, we have specified an error message for each constraint. This error message will

be displayed when a constraint is violated in order to provide the user with a helpful indication of the type of

the error. Papyrus supports a UML profile that enables a developer to refine how constraints are violated. This

profile is called Domain Specific Modeling Language (DSML37), since it is often used in the context of profiles

that adds domain specific concepts to UML. We have used the DSML profile to refine our constraints with the

following properties:

 Mode: Defines if the validation of the constraint is done in “batch” or “live” mode. We have selected the

“batch” mode for all the constraints. This will avoid displaying errors unnecessarily.

 Severity: Defines the severity of the constraint violation. It can be one of following alternatives:

INFORMATION, WARNING or ERROR. In our case, we have selected ERROR as severity for all the

constraints.

 Message: Defines the message that will be displayed if the constraint is violated.

 Description: Provides a description of the constraint.

 Enabled by default: Defined if this constraint should be enabled by default or not. All the constraints that

we have specified are enabled by default.

These properties are the properties of the stereotype ValidationRule (Figure 1.4.1) applied to a UML

Constraint and are shown in Figure 1.4.2.

Figure 1.4.2: Specification of constraint properties using the DSML profile.

 Validation

After implementing the OCL constraints, the next step is to validate them. To do that, we followed

a validation method divided into three steps. Firstly, we have validated the syntax of the OCL

constraints using the Papyrus validation function. Secondly, we have done a functional validation of

the constraints through fault injection. Thirdly, we enforced the functional validation by testing with

37 Available at https://wiki.eclipse.org/Papyrus/UserGuide/Profile_Constraints.

Chapter 1. Horizontal consistency verification 85

real users. Each of these steps is described in detail in the following subsections.

1.5.1 Syntactic validation

Syntactic validation is our first step to validate the OCL constraints. As we mentioned before, we

use Papyrus to edit the constraints and to verify their syntactic correctness. Papyrus provides an

automatic validation editor, which allows us to check the correctness of a constraint when editing it.

Figure 1.5.1 presents two examples of OCL text entry: at the right of the figure a valid OCL constraint

and at the left a non-valid one. A text syntactically invalid is automatically highlighted in red. Figure

1.5.2 shows an example of an error marker that is shown for a non-valid constraint. We resolved all

the syntactic inconsistencies with the help of these error messages and we consequently verified the

syntactic correctness of all the OCL constraints.

Figure 1.5.1: Syntactic validation of OCL constraints.

Figure 1.5.2: Papyrus syntactic validation.

1.5.2 Functional validation

After the validation of the syntax of the OCL constraints, we proceed with their validation from a

functional perspective. The goal of this validation step is to ensure that the tool is able to detect the

violation of the specified OCL constraints at the model level (M1).

Each constraint has been validated by means of simple models where we inject the associated

inconsistencies(s) one by one and we verified the detection of each constraint by the tool. We

specifically verified that the error message associated with the injected fault appears in the concerned

element in the model.

Chapter 1. Horizontal consistency verification 86

To start automatic validation, users should use the validation menu shown in Figure 1.5.3. This

menu appears when clicking the right mouse button on the model and results in applying the

constraints on the model elements.

Figure 1.5.3: Validate model menu.

In the following, we give several examples of the injected inconsistencies and of how we

verified that the tool detects these inconsistencies.

The first example of the injected inconsistencies is a syntactic one that we introduced into a participant

instance to detect the violation of the following constraint: “A Participant cannot realize or use

Interfaces directly; it must do so through service ports, which may be Service or Request.”. As shown

in the left of Figure 1.5.4, we violated this constraint by adding a UML Realization dependency

between a Participant instance and a service definition (i.e., a ServiceInterface in that case). When

validating the model, an error message appears as intended showing the error message that we have

specified. We repeat the same test with a Usage dependency and with a simple interface for the service

definition.

We show another example of syntactic inconsistencies in the right of Figure 1.5.4. It is about the

following constraint which applies to MessageType stereotype: “Message Type cannot contain

owned operations”. To verify that the tool detects the violation of this constraint, we added a UML

operation to a MessageType instance. As shown in the figure, the intended error message appears.

Similarly, we add a behavioral model to verify the detection of the violation of another constraint that

applies to this stereotype (the constraint is the following: “Message Type cannot contain owned

behaviors”).

Chapter 1. Horizontal consistency verification 87

Figure 1.5.4: Examples of error messages displayed at the model level.

In addition to the diagram windows, the error messages also appear in the “Model Validation”

window. Figure 1.5.5 shows the different locations of the error messages in the model diagram and

model validation windows.

Figure 1.5.5: Locations of Error messages in the model diagram and model validation windows.

The Model Validation window shows the element of concern (Figure 1.5.6), the path of that element

and the type of the problem. This information would help the user to find the concerned element and

resolve the inconsistency problems in the model.

Figure 1.5.6: Error messages screenshot.

Figure 1.5.7 shows an example of an error message associated with a semantic constraint (i.e.,

“AttachedBehaviorCompatibility”).

Figure 1.5.7: Error message for attached behavior to ServiceContract.

1.5.3 Functional validation with real users

As we explained before, the purpose of our proposal to formalize and automate the validation of

SoaML models is to help SoaML designers to specify correct model and find inconsistencies rapidly.

To check if we had reached our goal, we need to test our verification tool with real users. To do that,

we need first to provide a SoaML editor. We have implemented the SoaML editor upon Papyrus,

Chapter 1. Horizontal consistency verification 88

which offers facilities to support UML profiles. More details about the SoaML Papyrus editor are

given in annex A.2. The implementation is available at:

http://download.eclipse.org/modeling/mdt/papyrus/updates/nightly/mars/

Table 1.5-1 shows the results of the experiments with SoaML users. We experienced with 10 users

who already know SoaML modeling language and we give them the constraints table. After reading

the table, each user had 12 experiments to do. Four SoaML models are given to him/her. There were

three experiments to do with each model. In the first experiment, we injected one inconsistency then

we asked the user to correct the inconsistency in the model first without seeing the error messages

and then after seeing them. In the second experiment we injected 5 inconsistencies and in the third,

we injected 10 inconsistencies in the model and we asked the same thing as in the first experiment.

We stop the experiment after 5, 10 and 20 minutes for respectively 1, 5 and 10 injected inconsistencies

in the model. The inconsistencies are all different from each other.

Table 1.5-1: experimental results with users.

System specification

SCs

Msgs

Ps

Ss

Injected

inconsis

tencies

Nbr

Adjusted inconsistencies

Time Without EMs With EMs

Avg %

Avg %

Model Game 1 11 3 3 1

5

10

5

10

20

0.7

2.2

4.9

70

44

49

1

4.5

9.9

100

90

99

Yogurt production 3 7 5 8 1

5

10

5

10

20

0.6

2

5.1

60

40

51

1

4.1

9.3

100

82

93

Dealer Network

Architecture

5 27 4 11 1

5

10

5

10

20

0.2

2.6

3

20

52

30

0.9

4.2

7.3

90

84

73

Chapter 1. Horizontal consistency verification 89

Travel management

system

11 44 11 32 1

5

10

5

10

20

0.3

2.1

3.2

30

42

32

0.8

3.9

9.1

80

78

91
Time is measured in minutes.
SC: ServiceContract number, Msgs: Messages number, Ps: Participants number, Ss: Service definitions, EM: error

message, Nbr: Number.

Avg: is the number of manually detected inconsistencies in average. For example, in the first experiment, which

corresponds to the first line in the table, 0.2 over 1 inconsistencies is detected per user in average. This means that only

two out of the ten users detected the injected fault. In the second line, 1.6 over 5 inconsistencies are detected per user in

average.

%: is the percentage of detected inconsistencies per user, which is calculated by dividing the “Avg” of detected

inconsistencies by the number of inconsistencies in the model, multiplied by 100.

What we can deduce from the table is that the more the specification is complex, the more it becomes

difficult to retrieve the inconsistencies in the model and to correct them (with or without error

messages). This result is clearer in the histogram shown in Figure 1.5.8, which shows the number of

the detected inconsistencies in experiments with (1) the Model Game model, (2) the Yogurt

production model, (3) the Dealer Network Architecture, (4) the Travel management system and

finally (6) the average detection of the inconsistencies in the models in all the experiments.

 Blue: without the verification tool (i.e., without EM)
 Red: with the verification tool

1: Model Game, 2: Yogurt production, 3: Dealer Network Architecture

4: Travel management system, 6: Average detection of the inconsistencies in all expériments.

Figure 1.5.8: Detected inconsistencies with and without the verification tool.

Now, if we compare the results with and without the error messages, we found that the error messages

0

20

40

60

80

100

120

1 2 3 4 5 6

Chapter 1. Horizontal consistency verification 90

help a lot to locate the inconsistencies and to correct them. There is a clear difference between the

number of eliminated inconsistencies with the verification tool (after reading the error messages) and

without it. The number of eliminated inconsistencies with the verifcation tool is double what it is

without. During the same periods of time (i.e., 5, 10 and 20 minutes), users correct twice as many

inconsistencies with the help of error message than they would correct without error messages. This

indicates that the automatic consistency checking of the model saves time and effort for the SoaML

designers.

 Conclusion

In this chapter, we have targeted the problem of inconsistency in service-oriented application

models. Software models are the primary artifacts of the development process in MDE-based

approaches. Consequently, their correctness is essential to ensure the quality of the final application.

In particular, SOA system models comprise several views describing both business and the system

architecture levels and allowing for modeling both the structural and the behavioral aspects of a SOA-

based system. These views are intended to be consistent with each other, otherwise, inconsistencies

in the system models would result in other problems in the further development stages where it would

be more difficult and more expensive to correct them.

To tackle the problem of model inconsistencies, we have provided a novel approach based on Model-

Driven Development. Our approach is compliant with the OMG standard modeling language for

service-oriented architecture, SoaML. It is about a horizontal verification of SoaML models. The

validation is performed in a static way and ensures both syntactic and semantic conformance of

service-oriented application models according to the SoaML standard. The constraint rules are

described in the SoaML specification in natural language, which always result in ambiguities. We

have proposed to formalize these constraints using OCL language, which allows writing unambiguous

constraints that remain easy to read and write for system modelers.

Our approach is fully implemented in a free open-source tool, Papyrus. We have implemented a

framework for the design and verification of service-oriented applications compliant with SoaML.

We implemented our consistency verification approach as a set of plugins on top of the Papyrus

Eclipse-based modeling environment. These plugins are already integrated into Papyrus project and

can be found in the Papyrus nightly build. To validate the tool and to make sure that it detects

inconsistencies in SoaML models, we have tested our tool with well-known and large-scale case

studies and have experimented it with real users.

Chapter 2

2Model-driven generation

of executable artifacts

from SoaML models

 In the previous chapter, we described our solution to verify the consistency of the SOA system

specification, a very important step to reduce errors before transforming the specification into

executable artifacts. SoaML is a general modeling language that can be mapped to various

implementation formalisms like Web services, OSGi and CORBA. In this chapter, we present the

transformation rules of the SoaML specification into executable Web services. We choose the Web

service as an implementation technology because it is a promising technology that offers high

flexibility thanks to orchestration and choreography mechanisms offered by Web service artifacts

like WS-BPEL and WS-CDL. We then detail the transformation from SoaML specification models

into executable Web service artifacts. First, we give an overview of our transformation approach.

Second, we present the transformation of both structural and behavioral models that specify the

services choreographies. We give some background information needed for the comprehension of

the transformation of the behavioral models.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 92

 Transformation overview

Figure 2.1.1 shows an overview of our transformation approach. SoaML model elements are

depicted at the top of the figure. As explained in the previous chapter, SoaML allows a system

designer to specify both business and IT architectures. The IT architecture is described through

services and participants definition. The Business part can be defined using a services architecture

that contains one or more services contracts with behavioral models attached to them. Each

behavioral model specifies a services choreography modelled using a UML Interaction in the form

of sequence diagram. In our transformation, Participants and service interfaces are mapped into

functional services based on Web service technology. As shown in the Figure, each participant is

mapped into a Web project and each choreography is mapped into an executable orchestration.

Figure 2.1.1: Transformation approach.

 Identified issues for the transformation

2.2.1 Service reuse

In SOA, a service is often stateless and autonomous (independent from a specific business role)

so that it can be reused in different choreographies. This is one of the main principles in the SOA

architecture that leads to a major benefit, which is the increase of system flexibility. The SoaML

modeling language follows this SOA principle by allowing the system designer to specify services

choreographies while preserving the stateliness of the services specification. In fact, in SoaML, a

service choreography is designed using a contract that defines roles, each one representing a service.

Service definition is independent of their roles and consequently, the defined services could play

other roles in other contracts. The service implementations specified through the participant concept

are also independent of the possible choreographies the service would be taking part in. This is

because the participant provides and consumes the services only through their definitions.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 93

When transforming the SOA system specification, it is very important to be aware of that principle

and to preserve it at design time. We were inspired by this principle in our transformation approach.

In fact, our goal was to maintain the stateliness of the services and to separate the choreography

logic from the services implementations. For that reason, we choose to generate stateless web

services based only on the service definitions and independently from the choreographies, which

will be transformed into separate orchestrators implementing the choreography logic.

2.2.2 Decentralized versus centralized composition

As explained in chapter Part I.3, there are two approaches to transform choreographies into

orchestrations: decentralized and centralized composition approaches. The first is to generate

decentralized orchestrations, one for each participant, while the second is to generate a centralized

orchestration that controls the whole choreography. In one hand, the decentralized approach has

the advantages of distributed systems. In particular, distributing the data decreases network traffic

and thus transfer time and distributing the control improves concurrency and enhances scalability.

However, even small changes in the process flow result in big changes to all the different processes

[97]. On the other hand, the centralized approach has the advantages of centralized systems. In

particular, this centralized view leads to relatively straightforward monitoring and management of

process executions. The main advantage of the centralized approach is revealed in fault handling

and recovery, and strategies to mitigate business constraint violation, which become easier thanks

to the centralized view. However, the centralized approach has scalability limitation, since it is

based on a centralized coordinator, which can be a potential performance bottleneck and single

point of failure [97]. It may also decrease scalability and cause unnecessary network traffic and

performance degradation, which may overall reduce performance when the number of services to

be orchestrated gets larger. Selecting a useful location of the central engine could be a solution to

reduce the effect of additional traffic.

In our transformation approach, we choose to implement the choreography logic into a

centralized orchestrator. The orchestrator would act as an intermediary between the calling and

called services. It would be responsible for the reception and sending of messages from and to the

various participants, based on the specified choreography, while ensuring the correct ordering of

message exchange. We choose the centralized approach because it makes it easy to analyze and

control the services choices contrarily to decentralized orchestrations, which introduce various

issues as a result of the distribution and partitioning of responsibilities between services in the

choreography [96]. Resulting orchestrations need to be synchronized to follow the choreography

logic [157]. For example, in the case of a non-local choice [112] covering more than one

participant, each participant must be aware of each decision made by the others and must follow

the same choice to be coherent with that choice. Figure 2.2.1 shows an example of a global choice.

There are two alternative choices, either A will invoke op1 of B or C will invoke op3 of A. To be

sure that only one alternative choice will be executed A, and C must have a synchronization

mechanism. This is not trivial in decentralized approach and may need additional synchronization

messages and may consequentially cause unnecessary delays.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 94

Figure 2.2.1 : Global choice synchronization problem.

For the scalability problem, thanks to the way SoaML specifies the system behavior (i.e.,

SoaML decomposes the system behavior into independent parts, each one specifying a part of the

entire behavior as a choreography), even with a centralized approach we still benefit from the

advantages of the distributed approach. This is because the behavior specification of a SOA system

is composed of many choreographies whose granularity is defined by the system designer. Each

choreography describes a part of the system behavior and will be transformed into an orchestration.

Then, the result of the transformation of the whole system behavior specification will be a set of

decentralized orchestrations, each implementing part of the whole system behavior. This reduces

the scalability problem caused by the use of the centralized approach.

2.2.3 The need of automatic transformation

 When generating executable code from the high-level model, one important issue to take into

consideration is the readability of generated code. In fact, users may need to add additional

information to the generated BPEL code (e.g., to add conditions on data). Therefore, it is important

that the generated BPEL code is intuitive and maintainable. Otherwise, it will be difficult for the

users to extend or customize the generated BPEL code.

Our transformation is based on Model Driven Engineering (MDE) technologies. It is about

transforming a platform-independent model into a system designed to run on top of a specific

platform. Once validated, the automatic generation guarantees the conformity of the code with the

initial platform independent model.

The transformation is performed using the Query/View/Transformation operational (QVTo)

language [158], which is an OMG standard language for specifying model transformations in the

context of MDA. We define rules to implement the mapping between source model elements into

target model elements and helpers to perform computations.

As shown in Figure 2.2.2, three Web Services languages have been targeted: (1) The XML

schema definition (XSD) for defining service messages, (2) the Web Service Description

Language (WSDL) for defining service interfaces and (3) the WS-BPEL language for defining

service choreographies. Each UML Interaction is transformed into a centralized orchestration

where services interactions can be seen as communications through a business partner

(orchestrator). We choose WS-BPEL as a target language to execute orchestration since it is an

OASIS standard and because it allows the simple and fast implementation of both synchronous

and asynchronous processes. In addition, BPEL is strongly supported by tools thanks to its rich set

of primitive activities and control structures. BPEL is widely supported by commercial vendors

and open-source communities. Three niche players, namely IBM, Oracle and PNMsoft, in the 2015

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 95

Gartner Magic Quadrant for Intelligent Business Process Management Suites38, have supports for

BPEL processes.

Figure 2.2.2: Transformation from SoaML to Web Services artifacts using QVTo.

The generated BPEL processes were deployed using the Apache ODE. Apache ODE was chosen

as the Execution Engine because it is compliant with WS-BPEL and offers mature hot-deployment.

For the structural part of the model, the generated web projects have been deployed in different

Apache Tomcat server.

 Transformation of structural models

In SoaML, a services architecture is defined to provide a context for exploring the participants

and how they are connected to accomplish a result. Each participant offers or consumes services

through ports. In our transformation, each participant is mapped into a Web project. First, a WSDL

file is generated from the participant definition in the SoaML model. Then, we use Apache CXF39

to generate the implementation of each realized or used service. A client implementation is

generated for each used interface and a Java Bean Skeleton is generated for the realized interfaces.

The services implementations should then be completed by the application developer.

In this part of the work, we detail the mapping of a Participant definition into a WSDL file. This

mapping is shown at the top of Figure 2.3.1 (R1). Mapping rules are depicted as arrows linking

the SoaML concepts at the left of the figure into WSDL concepts at the right. Each mapping

corresponds to a mapping function in the QVTo code from SoaML source model element(s) to one

or more element(s) in the WSDL target model. The QVTo code is given in ANNEX C. First, the

rule R1 is applied for each participant. Each port belonging to a Participant has a type (the port

type must be either ServiceInterface or Interface). This type is mapped into a WSDL Service of

38 Available at http://www.pega.com/insights/resources/2015-gartner-magic-quadrant-intelligent-business-process-

management-suites\#sthash.xb8Kg9st.dpuf, Accessed 1 October 2015
39 http://cxf.apache.org/

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 96

the same name (see R2 in Figure 2.3.1) inside the WSDL definition. In case the type is a

ServiceInterface, the realized interface is mapped to a WSDL port that contains a binding

associated with a WSDL portType using the mapping rule R3 in Figure 2.3.1. For each portType,

there must be at least one WSDL binding with type name equal to the portType name.

Figure 2.3.1: Mapping between definitions of services and WS Artifacts.

Each interface operation is transformed into a WSDL operation in the portType with an input

and output message. In fact, the message concept describes the data being exchanged between the

web service providers and the consumers whether it is an input or an output. An input message is

generated only if there is an operation parameter with a direction property set to in or inout (R5 in

Figure 2.3.2). Whereas, an output message is generated only if there is an operation parameter with

a direction property set to out or inout (R6 in Figure 2.3.2). Then, each operation parameter is

mapped into a part in the already generated messages. Each part has an element. In case the

operation parameter type is a complex type, the element will have a reference to that Complex

type. In fact, complex data types, namely DataTypes, Classes and signals, are mapped into XSD

complex types using the mapping rule R7 as shown in Figure 2.3.2. In case the operation parameter

type is a simple type, this parameter will be mapped to an element containing a ComplexType with

one element that has the same type as the operation parameter type.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 97

Figure 2.3.2: Mapping of operations and parameters.

Figure 2.3.3 shows the result of the mapping of the ShippingService, which is a ServiceInterface

typing the Shipper Participant (this example is taken from the Dealer Network Architecture case

study). As shown in the figure at right, the ShippingService is mapped into a WSDL Service of the

same name, ShippingService. Only the realized interface, which is the ShippingOrder Interface, is

mapped to a WSDL port, called ShippingOrderPort, that contains a binding associated with a

WSDL portType. Each interface operation is transformed into a WSDL operation in the

ShippingOrderPortType with an input and output message.

Figure 2.3.3: Mapping example of a structural model.

 Transformation of services choreographies

In the previous section, we exposed mapping rules from structural elements of SoaML models

to Web service artifacts. In this section, we are interested in the mapping of behavioral models. We

will detail the mapping from the choreographies designed in the form of sequence diagrams into

<Service name=”ShippingService”>
<Port name=”ShippingOrderPort” Binding=”tns:ShippingOrderBinding”>

<address location=””/>

</Port>
</Service>
<PortTypes name=”ShippingOrderPortType”>

<Operation name=”orderShippingResponse”>

 <Input message=”tns:orderShippingRequestInput”/>
<Output message=”tns:orderShippingRequestOutput”/>

</Operation>
</PortTypes>

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 98

WS-BPEL processes. The major challenge of this work consists in transforming the choreography

logic into an orchestration taking into account the asynchronous aspect of the service’s

communications. Asynchronous communication architecture allows the sender to not be blocked

waiting for a reply but to continue processing as soon as the message is sent. Indeed, for the

development of long running processes, asynchronous communications have proven to be the best

pattern since participants may take part in many contracts at the same time and blocking service

calls may impact their availability [8]. Our solution is based on the asynchronous interaction pattern

and takes into consideration several problems resulting from this pattern. This is a challenging work

because the orchestrator must be able to handle requests from concurrent and distributed services.

It must particularly take into consideration the concurrency between the communications.

For the transformation, we make a distinction between basic choreographies and structured ones

for which rules are given in section 2.4.1 and 2.4.2 respectively. A basic choreography refers to a

UML sequence diagram that describes message exchanges without combined fragments and a

structured choreography refers to a sequence diagram that contains combined fragments

expressing multiple execution choices (alt, opt or loop fragments). We will later explain the

problem resulting from the concurrency problem in the context of asynchronous communications.

This kind of problem needs more sophisticated patterns. In the following, we will use running

choreography examples to explain the transformation rules of both basic and structured

choreographies.

2.4.1 Transformation of basic choreographies

This section details the mapping of a basic choreography designed using a UML Interaction

into an orchestration implemented with BPEL concepts. The mapping rules are denoted in Figure

2.4.1. The first rule to execute, R1, transforms an Interaction into a BPEL process. As shown in

Figure 2.4.1, R1 contains other sub-rules R2, R3 and R4. Each mapping corresponds to a mapping

function in the QVTo code from a source model element (in the Interaction) to a target model

element (in the BPEL process model).

Figure 2.4.1: Transformation rules of basic choreographies.

Generation of PartnerLinks. The mapping rule R2 transforms each Lifeline of the interaction into

a PartnerLink in the generated BPEL process. Each PartnerLink is characterized by

partnerLinkType and partnerRole parameters. The partnerLinkType has a portType parameter that

allows the process to establish a bidirectional communication with the associated external partner

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 99

service represented by a lifeline in the specified choreography. The portTypes are already

generated when transforming the structural part of the SoaML model.

In addition to PartnerLinks that results from the mapping of the lifelines, R2 generates a

PartnerLink element for the orchestrator itself. This PartnerLink is characterized by

partnerLinkType and myRole parameters. The partnerLinkType refers to a portType that provides

all the operations provided by the orchestrator partners. This is to enable the orchestrator

PartnerLink to receive all the operation calls in order to forward them to their destinations (i.e.,

external partnerLinks that result from the mapping of the lifelines).

Generation of Variables. The mapping rule R3 generates two local variables per message in the

interaction, one variable to store a received message information and another to forward it.

Generation of the BPEL activities. After the generation of PartnerLinks that allow the BPEL

process to communicate with its associated external partner services and the generation of

variables that allow the process to store data, now we need to map the choreography logic (i.e., the

sequencing of the sending and reception of messages). As being a sequence diagram, the

choreography logic is constrained as follows [98]:

(1) Lifelines in an Interaction operate independently from each other. There is no global notion

of time between them.

(2) Along each instance axis, the time is running from top to bottom (no time scale is assumed).

If no coregion or parallel operator is introduced, a total time ordering of events is assumed

along each instance.

(3) A message must be sent before it is received.

A BPEL process contains a single “main” activity that may in turns contain other BPEL activities.

This activity contains the flow control logic. The mapping rule R4, that is explained later,

generates and structures the BPEL activity. For reasons of clarity, we will show the results of the

mappings in the form of BPEL diagrams instead of XML code. Figure 2.4.2 associates to each

BPEL construct an icon.

Figure 2.4.2: graphical representation of BPEL activities.

The use of BPEL activities to capture concurrent interactions in sequence diagram. We will

explain this transformation solution through the same choreography example shown in Figure

2.4.3-a. Figure 2.4.3-b presents the newly generated process. We will first discuss our

transformation choices and then we will give the transformation rules. Despite the fact that there

are multiple possible sequences of message exchange, the resulting BPEL activities are still

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 100

readable and much easier to understand in comparison with the BPEL process resulting from the

first solution. For these reasons, we choose to follow this transformation solution that we explain

in the following paragraphs.

(a) Sequence diagram. (b) Associated BPEL process.

Figure 2.4.3: Transformation of basic sequence diagram example.

Handling concurrent receptions. Lifelines in an Interaction operate independently from each

other, the orchestrator may then communicate independently with each partnerLink (i.e., a lifeline

representing a role in the choreography). We have chosen to implement the main activity of the

BPEL process as a flow activity and the communication with each partner as a branch in the “main”

flow as shown in Figure 2.4.3-b. In fact, the use of flow activity ensures concurrency between the

communications of the orchestrator with the partnerLinks.

Messages are ordered in time along the lifeline axis where time increases down the line. The

communications with each partnerLink are handled using a Sequence activity to prescribe an order

between the sendings and receptions of messages corresponding to the events that belong to a

specific lifeline. As shown in sub-Figure 2.4.3-b, the transformation results in four sequence

activities inside the “main” flow activity, each of which is generated to handle the communication

with a specific PartnerLink.

In BPEL, to perform asynchronous interactions, an invoke activity is used for an asynchronous

operation call and a receive activity is used for the reception of an operation call. In our

transformation, a send event is mapped into a receive activity using the mapping rule R9 (followed

by an assign to handle data) and is used for the reception of an operation call. This is due to the

mirror effect that the orchestrator plays. When a message is sent (resp. received) the orchestrator

receives (resp. sends) this message from the source (resp. to the destination). For example,

MessageOccurrenceSpecification related to message calling operation op1 will be mapped as

follows: the “send” event is mapped into a receive activity (Receive op1 in sub-Figure 2.4.3-b) in

sequence handling communication with A and the “receive” event will be mapped into an invoke

activity (invoke op1 in sub-Figure 2.4.3-b) in sequence handling the communication with B. Assign

activities are responsible for the assignment of data from variables specified by the receive

activities to variables specified by the invoke activities.

Message forwarding. A message must be sent before it is received. We use the link constructs

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 101

inside the flow activity to synchronize the send and the receive events of messages. The link

construct is used to express these synchronization dependencies between activities inside a flow

such that one activity starts when another ends. In our mapping, we use links to express

dependency relation between messages receive and invoke activities thereby ensuring the

constraint between the received and sent events. Links are represented by blue arrows. For

example, the blue arrow that connects the sequence handling the communication with D with the

one handling the communication with C will ensure that the reception of operation call op2 from

D (which corresponds to the send event of op2 from D) is before the sending of op2 to C (which

corresponds to the receive event of op2 by C).

The mapping rule R4, shown in Figure 2.4.4, generates and structures the flow Activity as follows:

R7 maps each lifeline into a Sequence BPEL activity inside the flow activity, a helper H5 maps

each MessageOccurrenceSpecification into an invoke (using the mapping rule R8) or receive

(using the mapping rule R9) activity depending on its type and R6 maps each message into a link

(R6, R7 and H5 are explained in detail in the following).

Figure 2.4.4: Generation of the choreography logic.

.

 As we mentioned before, helper H5 is used to map a UML MessageOccurrenceSpecification

into receive or invoke activity depending on its type known through the value of boolean properties

isReceive and isSend of a MessageOccurrenceSpecification (which is a specialization of

MessageEnd). The helper H5 contains two mapping rules R8 and R9 (see Figure 2.4.4) that are

used to map MessageOccurrenceSpecifications. A receive event is mapped into an invoke using

the mapping rule R8 and is used for an asynchronous operation call.

 As we mentioned before, R6 is responsible for generating link constructs. As shown in Figure

2.4.5, each message is mapped into a link construct connecting the already generated receive and

invoke activities associated with that message. A source and a target are then added to the receive

and invoke activities respectively corresponding to the send and receive events of a message (see

Figure 2.4.5).

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 102

Figure 2.4.5: Generation of link constructs.

To handle the requests of different clients and ensure that the same process instance will handle

messages belonging to a given client, a BPEL engine needs a correlation between messages

belonging to the same instance. Inbound Messages must be correlated, otherwise they cannot be

forwarded to their associated instances. The message parameter that will be used as correlation

properties must be defined by the designer so they can be translated into correlation sets. The

application designer must tag these parameters in the Interaction. The SoaML standard proposes a

kind of value object that represents information exchanged between service providers and

consumers designated by MessageType stereotype (which extends either the metaclass DataType

or Class or Signal). MessageType has attributes isID which may be used to correlate long-running

conversations between services. The correlations could be generated from these MessageTypes

specified in the model. Otherwise, they could be added manually to the BPEL process after the

code generation.

2.4.2 Transformation of structured choreographies

This section describes the mapping rules from structured choreography to BPEL activities.

Structured choreographies denote a UML sequence diagram expressing a choice with combining

operators (i.e., choose between alternatives, reiterate or quit a loop, etc.). When communications

are asynchronous, messages can arrive before the associated activity is activated. This is called a

race condition in BPEL specification [69]. The race condition can lead to faulty or inappropriate

decisions at the execution time and can consequently affect the choreography logic if it is not

handled properly. In the following, we explain the race condition using a running example and

show how we adapt and extend the previous transformation in order to take the race condition into

consideration.

 Running choreography example

In this section, we present a running choreography example, which will be used later to explain the

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 103

transformation rules from SoaML structured choreographies into BPEL constructs. Figure 2.4.6

depicts the running choreography example and the related concepts using SoaML diagrams. This

example is an adaptation of the Game choreography from [159]. It is about three participants

playing a game: two players and an arbiter. The services architecture “GameServicesArchitecture”

shown in sub-Figure 2.4.6-a describes the global architecture of the participants collaborating

together by providing and using services through a service contract called “GameContract”. This

contract is shown as a dashed ellipse inside the services architecture. Its definition is shown in

details on the right in Sub-Figure 2.4.6-a.

(a) Services Architecture and contract

(b) GameContract choreography

Figure 2.4.6: SoaML diagrams for the running example.

A service contract defines roles played by the possible participants. For example in the

“GameContract”, there are three roles: Alice (A), Bob (B) and Carol (C). The services architecture

binds each participant to a given role in the contract using RoleBinding relations depicted as dashed

lines labeled with A, B and C. A contract designs a choreography between several services. This

choreography is refined using a sequence diagram to describe the interactions between these

services. Sub-Figure 2.4.6-b shows the sequence diagram describing the services choreography

between A, B and C.

The choreography may be initiated by an invitation from Alice (A) to Bob (B) to start the game

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 104

(invb). Consequently, «B» invites Carol (C) and, after that, sends an acknowledgment (ack) to «A».

The latter starts the game. Then, «A» may either send bWin to «B» or cWin to «C» to decide who

wins this time. This is described through Alt fragment. «A» continues to send one of these messages

in a loop (see loop fragment) until one of the players wins the game. To be a winner, a player must

win two consecutive times. Each time «B» wins, it notifies «C» by sending close. Consequently,

«C» could conclude about the results and if one of the players wins, «C» sends the result to «B»

which sends a signal (sig) to «A» and a confirmation (conf) to «C». All the messages in a sequence

diagram are asynchronous messages. An asynchronous call sends a message and proceeds

immediately without waiting for a return value.

 Race condition

A race condition occurs at execution time when multiple messages arrive before the activation

of receive or pick activity. Figure 2.4.7-a shows an example where race conditions may occur. A

process that receives a series of messages in a Loop and each iteration of the Loop is associated

with a choice between two alternatives. The resulting BPEL process structure will have

systematically different alternative branchings that reflect the combined fragments in the

Choreography Interaction. As illustrated in Figure 2.4.7-b, when a choice between two alternative

messages (here bWin and cWin) is defined with an alt, one may use the pick activity, which, in

BPEL, allows specifying alternative branches. Each branch is activated upon the reception of one

of the two messages. The outcome of the choice is unpredictable by the BPEL process, which will

be aware of which branch of the pick to follow only at the receipt of the associated message event.

Now the choice may be specified inside a repetitive behavior (with a loop). As communications

are asynchronous, received messages may be accumulated and internally stored in the BPEL

engine before being processed, more precisely before the branching point of the pick is activated.

The BPEL standard [69] identifies such situation as a race condition and does not impose or

recommend any specific event selection strategy:

“The pick activity waits for the occurrence of exactly one event from a set of events [...]. If a race

condition occurs between multiple events, the choice of the event is implementation dependent.”

We have experimented race conditions with the Apache ODE engine on the example of Figure

2.4.7-a. Obtained execution logs are depicted as sequence diagrams in Figure 2.4.7-c and Figure

2.4.7-d. Following the execution log depicted in Figure 2.4.7-d, the orchestrator chooses to forward

cWin then bWin while bWin was the first to arrive. As a consequence, C may conclude that it wins:

nevertheless, this is not the case. Apache ODE selects events in a non-deterministic manner, which

in this example modified the choreography logic. Concurrent incoming messages compete for the

process instance lock and the message that gets the lock is executed, whereas other messages are

rescheduled to try and acquire the lock. In conclusion, Apache ODE is able to internally store events

that arrive early, however it does not guarantee that they are stored in the same order as they arrive

which is completely compliant with the pick activity semantics as we have seen before.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 105

 (a) alt example (b) alt mapping

(c) Scenario 1 (d) Scenario 2

Figure 2.4.7: Example of Race problem.

 Proposed BPEL pattern

To get around race conditions in such cases, the idea is to propose a BPEL pattern to store

received messages as soon as they arrive in order to keep the message arrival order. We propose

to separate the inbound message reception from the choreography logic in a separate branch, which

is executed in parallel with the other branches (responsible for the communication with external

services). To address the changes in the transformation, rules R1, R4, H5 and R6 are adjusted as

shown in Figure 2.4.8 while R2 and R3 remain unchanged. The rule R4' (adjusted R4) generates,

in addition to the branches handling communications with partnerLinks, another new branch for

the receptions. The helper H5' (adjusted H5), which is responsible for mapping

MessageOccurrenceSpecification, is adapted to map only receive events. In fact, send events are

already mapped in the new branch.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 106

Figure 2.4.8: Transformation rules of structured choreographies.

(a) Generation of the main flow activity. We introduce an additional branch in the main flow

structuring the resulting BPEL process (R4'). A while activity is added to the main flow activity.

Inside the while activity, a pick activity is added to handle the inbound messages corresponding to

operation calls. The mapping rule R12 shown in Figure 2.4.8 generates, for each message

signature, an onMessage activity. This While activity iterates after the reception of a new message

and until the completion of the execution of the other branches.

The new branch generated by R4' for storing inbound messages is depicted in Figure 2.4.9. It is

composed of a while activity that includes a pick activity which waits for any kind of operation

calls that may be exchanged in the choreography specification. An onMessage waits for the receipt

of an inbound message. At each iteration of the while activity, the pick allows the reception of one

inbound message and its storage in a dedicated local variable called iQ, which would serve as an

internal queue for the received messages. It iterates until the completion of the execution of the

other branches or the expiry of the maximum period of inactivity, Timeout, during which no

message is received. Hence, the guard of the while loop is: NOT (completed1 AND…AND

completedk OR Timeout), where completed1… completedk are Boolean variables that evaluate to

true when their associated branches terminate and Timeout evaluates to true when a maximum

period of inactivity is reached. This period is a multiple of d, i.e., n*d, where n is a natural number

fixed by an expert and d is a certain duration, d that we explain in the following.

In addition to the onMessages, we also generate an onAlarm activity associated with the pick.

The onAlarm is triggered by a timer mechanism waiting for a certain duration, d. This duration

represents the time interval between any two consecutive operation calls at the orchestrator. It is a

parameter that has to be specified by the application expert. Assuming this minimum duration

guarantees that, for each iteration, we have at most one operation call destined to the pick activity

(stored by the BPEL engine). Therefore, on the basis of this timing information, the local queue

variable will be storing inbound messages in the same order as they arrived since, at each iteration,

the process has stored only one message at the end of the iQ. The parameters Timeout and d have

to be specified by the application expert.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 107

Figure 2.4.9: Additional branch in the orchestrator.

(b) Mapping of interaction fragments (H5’). The helper H5’ maps each Interaction Fragment into

activities inside already generated branches. The mapping output depends on the type of the

fragment, namely Message Occurrence Specification or Combined Fragment. In the first case, H5’

is adapted to our solution so that it translates only receive message occurrence specifications. In

the second case, the processing of combined fragments depends on the kind of its

interactionOperator (e.g. loop, alt and opt).

In the remaining of the section, we explain how we modify the other branches of the BPEL main

flow in order to select operation calls from the local queue (and then forward them to the

appropriate partner service using invoke activities). We will show alt and loop operand

transformation results into BPEL through the running example. But before, we need to explain the

generated activities, namely, iEvent() and seq(Invoke(opi); dequeue(iQ)), which are given in the

legend box (refer to the lower left of Figure 2.4.11).

iEvent() is an activity that waits for a set of internal events to occur. It is denoted iEvent(E, Q)

where E is a set of events and Q is a queue of these events. It allows the BPEL process to block a

branch in the flow activity until the occurrence of at least one of the E events in Q. The activity

iEvent is defined as an empty while activity40 which iterates if the following condition holds:

NOT(elem(E,Q)), where elem() is a predicate that evaluates to true if at least one of the events in

E is present in Q. Seq(Invoke(opi), dequeue(iQ)) is a sequence activity, that contains two assigns

and an invoke activity. The first assign activity initializes the input variable of the invoke activity

from an internal queue iQ. invoke activity is used to invoke operation opi and the second assign

activity is for dequeuing the variable from iQ.

40 For our experiments with the Apache ODE engine, when we have introduced the ievent(E, Q) inside the while loop,

we have putted a wait activity with smaller durations than the arrival delay time d of the operation calls. As a wait is

a blocking activity, this allows us to enforce the fairness in the parallel communication branches execution in the

Apache ODE. Thus, when a branch is waiting for a message to arrive, other branches could be executed and in

particular the branch responsible for the reception of inbound messages.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 108

Each receive MessageOccurrenceSpecification in the Interaction is translated into an

iEvent(opi, Q) activity followed by a seq(Invoke(opi); dequeue(iQ)) activity. The iEvent(opi, iQ)

activity allows verifying that the orchestrator has already received the inbound message destined

to operation opi before forwarding it. For example, consider the branch CommWithC shown in

Figure 2.4.11: op2 is blocked until the occurrence of its inbound message of op2 in the iQ.

Transformation of the alt fragment. The alt operator specifies a choice between two or more

alternative behaviors in the Interaction. A choice is resolved upon the reception of specific

operation call(s), which we call “decision events”. These are calculated in a static manner by

getDecisionEvents function (explained later). A decision event is the first message receive event

in a choice. BPEL activities resulting from the mapping of the alt fragment of the running example

shown in Figure 2.4.6 are inside the sequence activity colored in red (Figure 2.4.11). There are two

alternative choices and each one has one decision event, namely, the reception of op4 or op5

operation call. Then, at the reception of a message invoking a decision event, for example, op4 (see

pick activity in Figure 2.4.11), two variables: #op4B and #op4C are added to an internal queue called

iQorch. One variable is generated for each lifeline involved in the choices.

The transformation of an alt fragment is as follows. Decision events are first calculated for each

operand of the alt fragment through the getDecisionEvents function. Then, as shown in Figure

2.4.10 the first operand of the alt fragment is mapped into an If construct using the mapping rule

R15, whereas the next operands are mapped into Elseif constructs using the mapping rule R16.

Then, a “sub-sequence” activity is added to the already generated constructs If and Elseif. Finally,

to fill the newly added "sub-sequence" activities, H5’ is recursively called for each operand of the

alt fragment. As aforementioned, this rule is adapted to the new solution so it translates only

receive MessageOccurrenceSpecifications into invokes preceded by an assign activity to assign

the input of the invoke activity and followed by another assign activity to dequeue the FIFO. The

BPEL activities generated from a MessageOccurrenceSpecification is added to the sub-sequence

generated from its covered lifeline.

Figure 2.4.10: Transformation of alt fragment.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 109

As shown in Figure 2.4.11, in the case of branch CommWithC (resp. CommWithB), the iEvent

waits for the reception of either operation #op4C or #op5C (resp. #op4B or #op5B). The reception of

op4, for example, will unblock the first choice of all the involved communication branches

(CommWithB and CommWithC). This ensures synchronization between the branches; all of them

will follow the same choice described in the Interaction. Then, each branch handles this event by

invoking the associated operation, and finally, both iQ and iQorch are dequeued.

Note that when a lifeline is involved in a choice and does not own a receive

MessageOccurrenceSpecification in both alternatives, we simplify the associated communication

branch of the useless branching as in the case of the lifeline A and its corresponding CommWithA

branch.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 110

Figure 2.4.11: BPEL process associated with the running example.

As aforementioned, the set of decision events is calculated through the getDecisionEvents function

whose pseudo-code is denoted in algorithm 1. It is a recursive function taking as input a combined

fragment “f” and providing, as a result, the decision events for that branching point in the

choreography. If “f” is an alt fragment, then the decision events are calculated for each operand of

the alt. It is the set of the first receive events, dEvt, in each operand (If the fragment inside the operator

is a combined fragment then the getDecisionEvents function calls itself to calculate the decision

events of that combined fragment). If f is a loop (resp. opt) fragment, the decision events are

calculated for both the loop (resp. opt) operand and the fragments after the loop (resp. opt). The

algorithm assumes that there is at least one decision event per branch and that the decision events are

distinct. Once these conditions are met, the generated orchestrator will be able to choose between one

of the branching point specified in the choreography upon the reception of one of these decision

events.

Function 1: getDecisionEvents pseudo-code

Data: A UML Combined Fragment, f
Result: A list of events to unblock the branch execution, List(MOS)

1
2 result = emptyList();
3 if (f .interactionOperator = alt) then

4 for each operand in f.operand do
5 dEvt = getFirstReceive(operand.fragments());
6 if isEmpty(dEvt) then
7 throw exception “precondition violated”

8 else
9 result.add(dEvt)

10 else
11 if (f.interactionOperator = loop or f.interactionOperator =opt) then
12 dEvt = getFirstReceive(f.operand.getFirst().fragments());
13 if isEmpty(dEvt) then
14 throw exception “precondition violated”

15 else
16 result.add(dEvt)
17 dEvt = getFirstReceive(f.nextFragments()) /*nextFragments returns the fragments next to f*/;

18 if isEmpty(dEvt) then
19 throw exception “precondition violated”

20 else
21 result.add(dEvt)
22 if (containsDuplicate(result)) then /*test if result contains duplicate decision events */

23 throw exception “precondition violated”
24 return result

Function 2: getFirstReceivepseudo-code

Data: An OrderedSet of InteractionFragment, fragments
Result: A list of Message Occurrence Specification

1

2 var result=emptyList();
3 for frag in fragments do
4 if frag.isMOS then /*test if frag is a Message Occurrence Specification*/
5 if frag.isReceive then /*test if frag is a receive event*/
6 result.add(frag) ;
7 return result

8 else
9 if frag.isCombinedFragment then /*test if frag is a is a Combined Fragment*/

10 return decisionEvents(frag);
11 return result

Transformation of the opt fragment. The opt fragment can be seen as an alt fragment with only

one operand. As shown in Figure 2.4.12, the transformation of an alt fragment is as follows. Like the

transformation of the alt fragment, decision events are calculated for the opt operand. Then, the

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 112

operand of the alt fragment is mapped into an If construct using the mapping rule R15, the same

mapping rule used in the transformation of the first operand of the alt fragments. Then, a "sub-

sequence" activity is added to the already generated constructs If construct. Finally, to fill the newly

added "sub-sequence" activities, H5’ is recursively called for each element in the operand of the opt

fragment.

Figure 2.4.12: Transformation of opt fragment.

Transformation of the loop fragment. The loop operator can be seen as the choice of leaving or

reiterating the loop. The difference is that the first choice can’t be reiterated numerous times. This is

translated into a RepeatUntil activity nested successively by the iEvent() activity then an IF activity

as shown in Figure 2.4.11. The iEvent() activity waits for events to either proceed the loop or break

it to proceed to the next event when the Boolean variable breakiX is equal to true. The latter is set to

true upon the reception of the first decision event to quit the loop fragment. After calculating the

decision events of the loop fragment considering the fragments inside and after the loop, we generate

by the same logic as alt the BPEL activities for each concerned branch. The interaction operand of

the loop fragment is mapped into an if activity added to the sequence activities handling the

communication with the partners covered by the loop activity. This is performed by the mapping R20

shown in Figure 2.4.13. MessageOccurenceSpecifications are mapped using the same mapping rules

as the ones inside an alt operator (R5’).

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 113

Figure 2.4.13: Transformation of loop fragment.

Consider the branch CommWithC in Figure 2.4.11 recopied into Figure 2.4.14, we have a

RepeatUntil activity containing the activity iEvent(E1C, iQorch), in which E1C = {#op4C, #op5C,

#op7C}, mapping the loop operator. E1C is the result of applying the decisionEvents function to the

loop fragment. We have two alternatives: reiterating or breaking the loop, mapped respectively into

If and Elseif constructs. In the second choice (quit the loop upon the reception of op7C), the break

condition break1C is set to true. Suppose that the orchestrator receives the sequence op4: cWin, op6:

cLose, op6: cLose, and op9: conf, to be delivered to partner C. In that case, the branch CommWithC

will follow the first alternative of the alt fragment, after which it will follow the second alternative

twice, and finally leave the loop.

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 114

Figure 2.4.14: Sequence activity handling the communication with C.

Generation of Links. Links can no longer be used to maintain the constraint between send and

receive events associated with a message as in the case of basic choreographies (see Figure 2.4.11).

This is because the send MessageOccurrenceSpecifications are mapped into a separate branch that is

a while construct41. As the orchestrator plays a mediator role between the choreography partners, we

used the link to ensure that the orchestrator will forward a message only if the previous one was

already sent. This will ensure the ordering of consecutive receive MessageOccurrenceSpecifications

in the choreography. An example of consecutive receive events in Figure 2.4.6 occurs between the

receive MessageOccurrenceSpecifications of the message invoking the operation op1 and the one

invoking op2. This is the result of the fact that the receive MessageOccurrenceSpecification of op1

and the send MessageOccurrenceSpecification of op2 are covered by the same lifeline, and the

causality between send and receive MessageOccurrenceSpecifications of the message invoking op2.

The rule R6' search for consecutive receive MessageOccurrenceSpecifications and generates, for each

pair, a link between their already generated BPEL activities. The resulting links for our running

example are shown in Figure 2.4.11.

41 A link MUST NOT cross the boundary of a repeatable construct [69]

Chapter 2: Model-driven generation of
executable artifacts from SoaML models

 115

 Summary

After the specification step, a SoaML model need to be transformed into executable Web service

artifacts (i.e., WSDL/XSD definitions and BPEL processes). Both structural and behavioral models

need to be transformed into platform specific models.

This chapter has presented the transformation rules from SoaML models into Web service artifacts.

For the structural part, the transformation rules allows the generation of WSDL definitions from

structural models describing participant’s architectures, i.e., provided and required services through

ports. These WSDL files could be used to generate the code skeleton of the specified services. Note

that our goal was not to fully automate the code generation of the complete Web applications, but

rather to use Model-Driven Engineering technics to ease developers’ work and to increase the

scalability aspects in the development by applying one of the main SOA principles, which is the

service reuse through composition mechanisms. In fact, following the SOA principles, SoaML allows

for the specification of a services level at the top of the component level. This allows for to define

service choreographies independently from the component level.

Thanks to such a modeling pattern, it becomes possible to specify a system behavior as a set of

independent behaviors that specifies services choreographies. Each choreography describing a part

of the system behavior will be transformed separately into an orchestration. This would increase the

scalability of the development and the analysis of the service choreographies. Services

choreographies are modeled using UML Interactions via sequence diagrams. Then, we have mapped

each sequence diagram into a centralized and executable orchestration written in BPEL. The

transformation rules deal with the complexity of high-level UML combining operators in sequence

diagrams (e.g., loop and alt). It takes into account the asynchronous nature of communication between

distributed choreography parties. In fact, the generated orchestrators are able to handle requests from

concurrent and distributed services in an asynchronous way.

Chapter 3

3Vertical consistency

verification: offline

analysis of Web service

choreographies

In the previous chapter, we defined an automatic transformation of SoaML choreography models

into executable orchestration designs. In this chapter, we are interested in automating the testing of

the resulting orchestrations. Testing consists mainly of three activities: test case description (they can

also be generated), test execution, and oracle mechanisms to decide whether the test passed or failed.

Often, testing is manual and is consequently time-consuming: between 40% and 70% of the

development effort is spent on testing [160]. Model-based Testing [161] is a well-establish testing

technique which comes with the required automation by using models that specify the intended

behavior of an Implementation Under Test (IUT): (i) to derive test cases which put the IUT in specific

situations in order to observe its behavior; and (ii) as oracles to verify the consistency between the

test execution and those intended behavior. Our focus is mainly on oracle mechanisms. We show how

Chapter 3: Vertical consistency verification 117

to analyze orchestrations executions with respect to their related choreography models, which specify

the intended service interactions as shown in Figure 4.1.

To initiate the choreography, a system tester stimulates the client service, s, which will, in turn,

initiate the choreography as described by the UML Interaction diagram (i.e., sequence diagram). The

tester plays the role of real clients, which will interact with the client Web service via a front end

interface (e.g., an HTML page). The analysis of the orchestration execution can be conducted on-line

or off-line. The online testing (also called runtime verification technique) means that a model-based

testing tool is connected directly to the SUT and immediately checks an observable trace whenever

an input/output event occurs. Conversely, the off-line testing means checking an execution trace after

it is collected for a period of time [162]. We adopt an off-line testing process which classically has

the advantage of being technically easier to set up: there is no need for a run-time coupling between

the analysis algorithms and the test bench environment. Besides, as we will see in the remaining of

this chapter, we require on our analysis to read a quiescence state of all involved services in order to

ensure that all the outputs have been observed. At this quiescence situation, the offline analysis can

be conducted. The proposed approach in this chapter encompasses (i) an adaptation of earlier results

which have been stated in MBT literature [148] for asynchronous and centralized testing in order to

characterize the conformance of the generated service orchestrations; (ii) and, a tooled off-line

analysis process based on the formalized conformance.

Figure 4.1: Analysis of orchestration executions with respect to choreography models.

This chapter is structured as follows: first, we present the issues resulting from the asynchronous

aspect of the communications when validating the generated orchestrators, then we define the

conformance relation of an orchestration execution with respect to its associated choreography model.

After that, we present our testing process and discuss experimental results of the process by applying

it to the Dealer Network Architecture case study. Finally, we review some related works.

Chapter 3: Vertical consistency verification 118

 Issues in validating the generated orchestrations

The offline analysis is based on the information collected during the execution in the form of

traces/logs, which are sequences of observations (inputs/outputs). The availability of points of

observations (i.e., artifacts where traces are collected from) influences the analysis hypothesis and

consequently the analysis method. We have identified two problems: (1) there are limitations of

observability at some services level which cannot be instrumented at their deployment locations; (2)

the trace recorded at the orchestrator level could be exploited to deduce the execution traces

(interactions between the services). However, the asynchronous nature of the communications leads

to delayed receptions of the messages by the orchestrator that could lead to erroneous interpretations

of the deduced traces. In the following, we will discuss these two problems in detail.

Even though remotely collected, a trace obtained from the viewpoint of the orchestrator is

informative about the events that happened at each service location. All communications between the

services pass through the orchestrator, which plays the role of a mediator. As a consequence, the

system trace could be deduced from the orchestrator trace. We still need yet to adapt the conformance

analysis in order to consider situations where the network latency may delay some of the observations

made at the orchestrator location. These delays must be taken into consideration when deducting the

global trace of the running system.

3.1.1 Illustrative example

Figure 3.1.1 is an illustrative example extracted from the SoaML specification case study detailed

in Part I: chapter 5 (Background: modeling with SoaML). A sender sends an order shipping request to

a shipper then receives a response followed by a confirmation message.

Figure 3.1.1: ShippingRequest choreography example.

Figure 3.1.2-a shows a possible execution of the specified choreography. As shown in the figure,

while both operations op2:OrderShippingResponse and op3:ShippingConfirmation are sent by the

shipper as specified and shown in Figure 3.1.1 (i.e., in the same order as in the choreography), they

are received by the orchestrator in a swapped order due to network latency.

Chapter 3: Vertical consistency verification 119

(a) Delayed reception due to communication latency. (b) Service quiescence.

Figure 3.1.2: Observed ordering from orchestrator viewpoint.

When analyzing the conformance of the choreography implementation with its specification, we

need to consider all the possible service traces that can be inferred from the observed ordering at the

orchestrator level. For instance, let’s consider the following traces where "!" and "?" denote

respectively a sending and a reception of message invoking operation opi (trace format will be

formalized next):

σ1=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op2).(!,s2,s1,op3)

σ2=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op3).(!,s2,s1,op2)

If we consider the trace σ1, the orchestrator received operation op1 call from service s1. The same

operation call is forwarded then to s2. After it received respectively operation calls op2 and op3.Traces

σ1 and σ2 differ in the ordering of the last two sending actions (!,s2,s1,op2) and (!,s2,s1,op3). Both

traces are equally likely to have occurred in the choreography implementation.

Note that both σ1 and σ2 are recorded at the orchestrator location after executing the choreography

several times and both of them are considered as valid traces. We next show how we consider such

situation in the execution analysis.

3.1.2 Observing service quiescence

In order to infer more accurate service traces, we have exploited another information about the

services, called services quiescence. The notion of quiescence was introduced in the context of black-

box testing theories [149]. It means that there is a given deadline beyond which a service does not

react. It is supposed that it will never react unless it receives a new operation invocation. Concerned

services are those that do not proceed autonomously and/or interact with the environment (e.g. the

client service, s, of the choreography shown in Figure 4.1). Quiescence allows guessing the ordering

of actions at the service location in some cases. For example, in the choreography shown in Figure

3.1.2-b, thanks to the quiescence observation of service s2 we can conclude that op2 necessarily

occurred after the reception of op1 (not before). We make the hypothesis that the orchestrator can

observe the quiescence of the services participating in the choreography. We implement it in practice

by observing timeouts at the orchestrator location.

We will show how to characterize acceptable traces which consider both delayed communications

and the observation of services quiescence (Definition 1 and 2) and we introduce a new conformance

relation orch-conf (Definition 3) which allows us to reason about the correctness of the services

choreography implementation under partial observability, i.e., only from the viewpoint of the

Chapter 3: Vertical consistency verification 120

orchestrator.

 Service Orchestration conformance w.r.t a choreography

3.2.1 Background: symbolic-based semantics of sequence diagram

In our work, we have followed the traces semantics proposed in [9]. Authors ground their testing

approach on symbolic execution techniques, which are proven to be successful in the context of MBT

[148]. Symbolic execution [163] consists in executing programs, not for concrete numerical values

but for symbolic parameters, and computing logical constraints on those parameters at each step of

the execution, which allows computing semantics of programs (or models) and representing them

officially in an abstract manner. Symbolic techniques have some major advantages, principally the

limitation of state space explosion, as the variables in the specification are symbolic and there is no

need to instantiate these variables with all of their possible values.

The work in [9] is based specifically on Timed Input/Output Symbolic Transition Systems

(TIOSTS), which are symbolic automata used to specify behaviors of reactive systems42 with the

symbolic processing of variables, parameters, and inter-process value passing. TIOSTS and

especially their untimed version IOSTS have been widely used in black box testing approach based

on symbolic execution [164].

Authors show how to transform a timed sequence diagram into TIOSTS models. The symbolic

execution of such TIOSTS model results in a tree-like structure that characterizes all possible

executions of the system specified by the sequence diagram.

We have slightly modified the trace semantics of UML Interaction proposed in [9] and its

implementation in Diversity to match to the format of choreography specifications as defined in

SoaML model. In fact, lifelines in [9] represent typed ports whereas they will represent service

definition in our case. Consequently, in our work, messages convey operation (and signals) calls,

which may specify parameters representing the data exchanged between the services. The entire trace

semantics and the transformation process of a sequence diagram into IOSTS with the modifications

that we have done are detailed in Appendix C. The resolution of the constraints of the path of a

symbolic tree makes it possible to deduce all the traces associated with the path. If we make the

resolution for each path, we obtain the (concrete) traces of the whole tree, thus of the IOSTS.

Trace format. A Choreography Chor is defined over a signature Σ=(S,Op) where S is a set of service

roles with members s1…sn and Op is a set of names of services operations. We use a data model M

which includes most common types (natural numbers, integers, booleans, etc.) in order to define data

being parameters of an operation. The set of communication actions over Σ, denoted Act(Σ), is of the

form IM(Σ) ∪ OM(Σ) where IM(Σ) ={(?, s, s’, op(w))|s, s’∈S, op∈Op, w∈M*}43 denotes the set of

inputs and OM(Σ) ={(!, s, s’, op(w))|s, s’∈S, op∈Op, w∈M*} denotes the set of outputs. For such an

action, we note the identifiers s and s’ respectively snd(act) and rcv(act).

Remind that Chor is actually a UML Interaction denoted as a Sequence Diagram. A trace of a UML

Interaction is a word from Act(Σ)*. Note that a trace respects the causal order inferred from the

asynchronous signal passing defined in the sequence diagram (see the Annex C for more details). The

set of traces of a choreography (Chor) denoted Traces(Chor) contains such traces and is closed under

42 Reactive systems are systems that produce outputs in response to external stimuli.

43 We use the asterisk (*) to denote zero or more arguments of operations. By convention when an operation have no

arguments, w = ϵ, where ϵ denotes empty word.

Chapter 3: Vertical consistency verification 121

prefix (i.e., prefixes of such traces are also in Traces(Chor)). We note the set of prefixes of a trace σ,

Pref(σ).

In the following, we give one possible trace of the Shipping Request choreography.

Figure 3.2.1 shows the Shipping Request choreography and its associated Interfaces. The

choreography defines the exchanged signals between the services through UML Receptions. The

latter is a behavioral feature declaring that this interface is prepared to react to the receipt of a signal.

For example, the SheduleUpdating interface has two UML Receptions, orderShippingResponse, and

shippingConfimation. The orderShippingResponse has three arguments, namely currentStatus, which

represents the current status of the shipment order, deliveryDate which represents the estimated

delivery date, and orderNo, which represents the order number or identifier.

Figure 3.2.1: Shipping Request Choreography and its associated interface and data model.

One possible trace of the Shipping Request choreography is the following:

σ = (!,s1,s2,op1(“b1200”.“AS4”.“FAST”.23.2)).(?,s1,s2,op1(“b1200”.“AS4”.“FAST”.23.2)).

(!,s2,s1,op2 (“In preparation”.“17/09/2016”.“b1200”)). (!,s2,s1,op2(“In

preparation”.“17/09/2016”.“b1200”)).(!,s2,s1,op3(“ok”). (?,s2,s1,op3(“ok”)).

The sequence “b1200”.“AS4”.“FAST”.23.2 corresponds to the concrete parameters of the operation

op1: their order in the sequence corresponds to the order in which the parameters of the operation are

declared. Note that an empty sequence denotes an operation without parameters.

3.2.2 Conformance w.r.t a choreography

In this section, we define the conformance relation, which allows us to reason about the correctness

of an orchestration of services with respect to a choreography model. The specification of this relation

allows reasoning on traces collected at the orchestrator level in the absence of point of observations

at the level of the involved services as explained in the section 3.2.1.

It is assumed that orchestrator can observe the quiescence of some/all the services s1 …sn∈S. In order

to capture services quiescence, we introduce the set of quiescence labels Δ, which is of the form

{δ1…, δn} where for 1 ≤ k ≤ n, δk denotes the quiescence of the service sk.

The implementation of the choreography can be considered as a mathematical object, denoted I,

represented as well by a set of traces, denoted Traces(I) as words in (ActM(Σ) ∪ Δ)*. We introduce

some intermediate notions used to define the conformance, namely 𝐼𝑀
𝑘 (Σ) which denotes the set

containing any action act of IM(Σ) such that rcv(act) = sk, and 𝑂𝑀
𝑘 (Σ) which denotes the set containing

any action act of OM(Σ) such that snd(act) = sk. Act(σ) denotes the set of actions occurring in σ, i.e.,

Chapter 3: Vertical consistency verification 122

if σ is of the form act.σ’ where act∈ActM(Σ) then Act(σ)={act} ∪ Act(σ’); otherwise Act(ϵ) is the

empty set.

We require the traces to be well-formed with respect to the quiescence notion. The following

definition states the well-formedness notion of a trace.

Definition 1 (well-formed trace). We say a trace σ in (ActM(Σ) ∪ Δ)* is well-formed, denoted WF(σ)

if and only if:

[Quiescence consistency] for all σ', σ'' in (Act(Σ) ∪ Δ)* such that σ is of the form

σ'.δk. σ'' with 1 ≤ k ≤ n, we have that for all σu, σv in Pref(σ'') and act∈O(Σ) such that σu is of the form

σv
.act: if act∈𝑂𝑀

𝑘 (Σ) then exists act’∈Act(σv) ∩ 𝐼𝑀
𝑘 (Σ).

[Ending with quiescence] for all 1 ≤ k ≤ n, there exists a decomposition of σ of the form σ'.δk. σ''

with σ', σ'' in (Act(Σ) ∪ Δ)* such that Act(σ'') ∩ 𝐼𝑀
𝑘 (Σ) = Ø.

Quiescence consistency states that if after observing the quiescence of a service if that service invokes

an operation, it has necessarily received in between some invocation itself44. In other words, this

condition verifies then that the service is re-activated after a quiescence period only at the reception

of an operation call. Ending with quiescence property requires traces to end with the quiescence of

all services in order to ensure that we do not stop logging traces before a given service reacts to an

operation call as classically used in testing [149]. Note that we do not test the quiescence as we test

the conformance of service interactions. Our objective is to use these observations to infer more

accurate traces.

Illustration of well-formedness conditions. In the following, we use some traces examples to

illustrate the definition of a well-formed trace. Let's consider the trace σ1, collected at the orchestrator

place:

σ1= δ2. (!,s1,s2,op1). (!,s2,s1,op2). (?,s1,s2,op1). (?,s2,s1,op2). δ1. δ2.

The “Ending with quiescence” condition is verified since the trace ends with the quiescence of all

services participating in the choreography, namely δ1 and δ2 denoting quiescence of services s1 and

s2 respectively. Now let’s check if the “Quiescence consistency” condition is also verified. Initially,

the orchestrator observed the quiescence of the service s2. Then it received operation op1 call from

service s1. But after, despite the fact that the service s2 is quiescent, the orchestrator received a call of

the operation op2 from the service s2. This trace is considered as malformed since service s2 is

quiescent and cannot, therefore, produce spontaneously an output. In a well-formed trace service s2

would wait for an input to be able to produce an output which is the case of the trace σ2:

σ2= δ2. (!,s1,s2,op1).(?,s1,s2,op1). (!,s2,s1,op2). δ1. δ2.

In σ2 the orchestrator forwarded the operation call of op1 to s2 which produced consequently the call

for operation op2 that was sent to the orchestrator.

Generation of all possible traces. When analyzing the conformance of the choreography

implementation, we need to consider all possible service traces that can be inferred from the observed

one. In the asynchronous setting, the responses of services to operation calls may be observed with a

latency delay from the viewpoint of the orchestrator. We propose a generalization of the delay

44 In practice, when the Quiescence consistency condition does not hold the validation engineer reports the inadequacy

of quiescence deadline.

Chapter 3: Vertical consistency verification 123

operator proposed in [165] in order to allow the inference of all traces that are likely to occur at the

services locations.

Definition 2 (delay). Let σ be a trace in (ActM(Σ) ∪ Δ)* and act∈ActM(Σ), delay(σ, act) ⊆ (Act(Σ) ∪ Δ)*

is the smallest set of traces containing σ.act and is such that if σ’.act’.act”.σ”∈delay(σ, act) then

σ’.act”.act’.σ”∈delay(σ, act) if one of the following conditions holds:

(i) we have that act’∈IM(Σ) and act”∈IM(Σ);

(ii) we have that act”∈𝑂𝑀
𝑘 (Σ) and if there exists a decomposition of σ’of the form σu δk σ

v in which

δk∉Act(σv), then Act(σv) ∩ 𝐼𝑀
𝑘 (Σ) ≠ Ø.

The set delay(σ) is inductively defined on the form of σ as follows: delay(σ) is {ϵ} if σ = ϵ; and

∪σu
∈delay(σ’) delay(σu, act) if σ = σ’.act.

Note that in [165], the delay operator comes down to swapping specific actions in a trace involving a

tester and an Implementation Under Test (IUT) without taking into consideration the quiescence. In

our case, the delay operator applies on a trace involving an orchestrator and several services taking

into consideration the services quiescence.

We define next the conformance relation orch-conf which takes into account delayed communications

using the delay operator. In general, conformance relations specify the correctness properties of an

IUT by comparing its actual behavior observed during test execution to the possible behaviors

specified by the model [166].

In the following, a hiding operator, hideΔ(σ), is used to extract a sub-trace from σ, in which actions in

Δ are removed. If σ is of the form act.σ’ where act∈ActM(Σ) then hideΔ(σ)=act.hideΔ(σ’); if σ is of the

form act.σ’ where act∈Δ then hideΔ(σ)=hideΔ(σ’); otherwise hideΔ(ϵ)=ϵ.

Definition 3 (Conformance). Let Chor be a sequence diagram choreography and I be an

implementation of Chor, both defined over Σ. We have I orch-conf Chor if and only if for any σ in

Traces(I), we have WF(σ) and there exist σ’ in Traces(Chor) such that σ’ in hideΔ (delay(σ)).

According to the orch-conf conformance relation, in order to be conform to a choreography model, a

trace has firstly to be well-formed, and secondly, that at least one of the inferred traces by the delay

operator is specified in the sequence diagram, i.e., included in Traces(Chor).

Illustration of the Conformance Relation. In the following, we illustrate the use of the delay

operator based on the Shipping Request choreography example (see Figure 3.2.2).

Figure 3.2.2: Illustrative example of the result of the delay operator.

Let's consider the trace σ1, depicted in the left of Figure 3.2.2 collected at the orchestrator.

σ1=δ2. (!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op3).(!,s2,s1,op2)

Chapter 3: Vertical consistency verification 124

Initially, the orchestrator observes the quiescence of the service s2. Then, it received operation op1

call from service s1. The same operation call is forwarded then to s2. Then it received respectively

operation calls op3 and op2. This is despite the fact that s2 sent op2 then op3 in accordance with the

choreography specification. Operations op2 and op3 were received in a swapped order because of

network delays. By applying the delay operator on σ1, we obtain the following traces illustrated in

Figure 3.2.2 (after applying hideΔ operator, which hide the services quiescence):

σ11=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op2).(!,s2,s1,op3)

σ12=(!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op3).(!,s2,s1,op2)

Traces σ11 and σ12 differ in the ordering of the last two sending actions (!,s2,s1,op2) and (!,s2,s1,op2)

and are equally likely to have occurred in the choreography implementation. As the trace σ12 belongs

to the set of the choreography traces, we can conclude that the choreography implementation is correct

(by the definition of conformance). This allows us to not discard such valid implementations because

of delayed messages. Note that, if we don't observe the quiescence of the service s2, the delay operator

generates other traces besides these two traces. One possible trace is the following:

σ13=(!,s1,s2,op1).(!,s2,s1,op2).(?,s1,s2,op1).(!,s2,s1,op3)

As s2 is not quiescent, op2 is not necessarily the result of the call of operation op1.

Now let's consider another trace σ2 collected at the orchestrator level:

σ2=(!,s1,s2,op1).(!,s2,s1,op2).(?,s1,s2,op1)

This is a non-valid trace. In fact, the delay operator computes the following traces:

σ21=(!,s1,s2,op1).(!,s2,s1,op2).(?,s1,s2,op1)

σ22=(!,s2,s1,op2).(!,s1,s2,op1).(?,s1,s2,op1)

According to the sequence diagram specification of Figure 3.2.2, operation op2 must be received after

the sending of op1, this is because both the reception of op1 by s2 and the sending of op2 by s2. σ21 and

σ22 are both not included in the choreography traces, hence the non-conformance.

Let's consider another trace σ3 collected at the orchestrator level:

σ3= (?,s1,s2,op1). (!,s1,s2,op1)

The delay operator will result in one trace (the trace itself, i.e., σ3), which is a non-valid trace. This is

because a message must first be sent before it is consumed. Consequently, this trace is not included

in the choreography traces.

 Testing process and experiments
In this section, we present the testing process along with the algorithms that have been defined to

implement our approach. We conclude the section with preliminary experimental results on a

representative example. Note that the reader can refer to the experimentation on the case study will

be detailed in Part III: VALIDATION.

3.3.1 Testing process and tooling overview

We remind that we use IOSTS to formalize the semantics of UML sequence diagrams. As

mentioned before, we use Diversity45, which is a multi-purpose and customizable platform for formal

analysis based on symbolic execution. Diversity relies on symbolic execution techniques to compute

a symbolic tree representing all possible executions of an IOSTS. In the resulting symbolic execution

tree, a path represents a possible behavior specified by the IOSTS and defined by the sequence

diagram. Diversity has many modules that correspond to different purposes. In our work, we are

45 Available at http://projects.eclipse.org/proposals/diversity/, Accessed 25 June 2016

Chapter 3: Vertical consistency verification 125

interested in the offline analysis module. This module allows for test verdict computation based on

the work presented in [167] where system traces are analyzed in order to generate a verdict about the

conformance of the traces with respect to a specification model TIOSTS. The transformation of a

sequence diagram into an IOSTS was implemented as a plug-in in Diversity [168]. As part of our

work, we have extended this implementation to support the asynchronous passing of

signals/operations and their associated arguments which represent service invocations in a

choreography. More details on those extensions could be found in ANNEX C.

As we discussed before, the goal of our testing process is to validate the transformation of the

service choreography and to detect inconsistencies between both the runtime behavior and the

specification. As already explained, under partial observability limitations (i.e., in the case of a

restricted access to observation points), we reason on the conformance of the traces collected at the

orchestrator level. Figure 3.3.1 shows the different steps of our testing process. We first verify the

well-formedness of the traces collected at the orchestrator place according to the well-formed trace

notion. If the trace is not well formed, Diversity returns a Fail verdict. This trace is then checked by

the system validation engineer in order to identify and resolve existing problems (e.g., the inadequacy

of the quiescence delays). However, a well-formed trace will be used to infer all possible traces of

the choreography execution, which is the second step of the testing process. In this step, the delay

operator is used to calculate the traces that might have taken place taking into consideration network

delays in the asynchronous context. We have implemented the delay operator (the pseudocode of the

delay operator is given later in Algorithm 1). The inferred traces are stored in a compact

representation as a radix data structure [169] that facilitates the calculation of the test verdict. Then,

in the third step of the testing process, the choreography specification is used to generate an IOSTS,

which is used along with the system traces as an input to Diversity in order to analyze these traces by

computing a verdict on trace inclusion with respect to the orch-conf conformity relation (see

Definition 3). In other words, our goal is to find out if at least one of the traces inferred from the

orchestrator trace is included in the choreography model using the testing functionality of Diversity.

If such a trace exists then a PASS verdict is emitted, a FAIL is returned otherwise.

Figure 3.3.1: Testing process under partial observability limitations.

3.3.2 Testing algorithms

In the following, we give the algorithm implementing the delay operator. It takes as input the

observed trace collected at the orchestrator location and allows the generation of all possible traces

in the form of a radix tree. But before, we will explain why we have chosen this data structure to store

the inferred traces instead of storing them as a simple set. We recall that a radix tree data structure is

simply a collection of nodes starting at a root node: each node is associated with a value, which is an

action in our case, and has a list of references to its child nodes, with the constraint that no reference

Chapter 3: Vertical consistency verification 126

is duplicated, and none points to the node in a previous level. Figure 3.3.2 shows an example of a

radix tree inferred from the trace: σ =δ2.(!,s1,s2,op1).(?,s1,s2,op1).(!,s1,s2,op2).(?,s1,s2,op2).δ1.δ2

For the sake of simplicity, we only note the sending and reception of an operation in the generated

tree in Figure 3.3.2, instead of showing all the constituent parts of the action (e.g., ?op1 in place of

(?,s1,s2,op1)). As we mentioned before, we use the radix data structure to facilitate the search of a

valid trace in the set of inferred traces. In fact, when looking progressively for a valid trace, one test

can conclude on the failure of many traces having a common prefix. For example, if at a level j of a

tree the common path is not a valid trace, we can conclude that all the traces in question are not valid

(see Figure 3.3.2). This allows us to not redo the same test many times in the case where each of the

traces is considered separately. For example, let’s consider the right branch in the tree shown in Figure

3.3.2, the first action after the root element (which contains the quiescence of the service s2) is the

reception of op2. At this level the resulting trace, σ’ =δ2.(!,s1,s2,op2), will generate a Fail, which means

that the trace σ’ is not a valid trace. Consequently, we can conclude that the two traces in question

are not valid.

Figure 3.3.2: Example of radix tree.

We will use these following operations on radix trees:

 emptyTree() returns an empty tree, i.e., without any node.

 given an action act, and a set of actions Act={act1,..,actn} where for all i ≠ j ≤ n we have acti

≠ actj, Tree(act, Act) creates a tree with a root containing the action act and n children, each

of which containing one of the actions act1,.., actn.

 given a radix tree T, T.leaves() returns the leaves of the tree T, T.children() returns all the

children of that tree, T.insert(T’) inserts the tree T’ as a child of the tree T ; parent(T,T’) returns

the parent of the tree T in the tree T’ (i.e., T in a node in T’). Note that, the tree resulting from

T.insert(T’) is a radix tree. The function insert() merge the branches that have the same prefix.

We remind that Algorithm 1 computes a radix tree T containing all possible traces of the choreography

implementation based on the observed trace σ at the orchestrator location. Algorithm 1 starts first by

initializing T as an empty tree (line 2). The root element will contain the first element of the trace

(line 3-4). The algorithm is applied inductively on the orchestrator trace deprived of its lastly

collected action last(σ) denoted act and the resulting sub-trace is denoted rest(σ). The recursion call

(line 7) allows us to compute progressively the radix tree by inserting each time the action act at all

possible positions from an insertion node nodei, until which act can be delayed using the auxiliary

function insertAtAnyPositionFrom() (line 33). In other words, nodei is the node from which the last

action, act, can be inserted at any place. Algorithm 1 searches first for all the insertion nodes Nodei

Chapter 3: Vertical consistency verification 127

(line 20 and 28) for each trace beginning from leaves (line 16 and 24). Then insert act from each of

the calculated insertion nodes (line 30-31). The set of leaves, Leaves, is updated each time to avoid

unnecessary recalculation of insertion nodes (line 21 and 29). This is explained in detail in the

following.

The insertion node depends on the kind of the action act. In fact, there are three cases: (case line 8)

If act denotes a quiescence then it is simply inserted at the end of each leaf, consequently, act is

simply added at the end of each path; (case line 12) If act is an output then it can be delayed in each

path until the first input subsequent to the last observed quiescence of the sender service calculated

using the auxiliary function firstInputAfterQuiescence() (line 19); (case line 22) If act is an input then

it can be delayed until the last observation made at the orchestrator, i.e., either being a quiescence or

an output of any service calculated using the auxiliary function lastQuiescenceOrOutputOfAny() (line

27).

Note that all the traces inferred by Algorithm 1 are by construction well-formed. In fact, outputs are

delayed until the first input subsequent to the last observed quiescence of the sender service.

Consequently, the Quiescence consistency condition is always true. Besides, quiescence of services

is simply inserted at the end of the traces (i.e., as a child for each leaf). Since the input trace is a well-

formed trace, the inferred traces will be also well-formed because they will end with the quiescence

of all the services exactly like the input trace. Therefore, the Ending with quiescence condition is

always true.

Chapter 3: Vertical consistency verification 128

In the following, we show the pseudo code of the auxiliary functions used in Algorithm 1. The

function firstInputAfterQuiescence(ID, node, T) looks for the last node containing an input action,

beginning from a node node toward its parents and before reaching the last quiescence of service sID.

lastOutputOrQuiescenceOfAny(node,T) look for the last quiescence or output action of any service

beginning from a node node toward its parents. The function insertAtAnyPositionFrom(act,T) is used

to insert an action act in all possible positions from the root node of the tree T and until the leaves.

To better understand the auxiliary function insertAtAnyPositionFrom(act,T), we apply it to an

example shown in Table 3.3-1. The function insertAtAnyPositionFrom is applied on an action

act=(?,s1, s2,op2) and a node n2 belonging to a tree T shown in the column on the left. The two other columns

show the results of the next two iterations of the function insertAtAnyPositionFrom.

Chapter 3: Vertical consistency verification 129

Table 3.3-1: Application of the insertAtAnyPositionFrom function on a tree example.

 Iteration 1 Iteration 2

act= (?,s1, s2,op2)

Nodei
= {n2}

insertAtAnyPositionFrom(act,n2)

n2.insert(Tree(act,n3));

insertAtAnyPositionFrom(act,n3)

 n3.children = Ø

 then

 n3.insert(Tree(act))

Input Result of Iteration 1 Result of Iteration 2: T’

T

T’

By construction, the function insertAtAnyPositionFrom results in the same set of actions in the

branches that are stemming from the same node. In other words, given a node with more than one

child branch, it is only the order of the actions that is changed from one child branch to another. For

that reason, given an action act, if the insertion node nodei of act belongs to a common path between

a set of traces, nodei is then the insertion node for all these traces (i.e., the traces stemming from

nodei). This is because the set of actions until the insertion node is the same, thus, if none of these

actions is the insertion node then none of the actions belonging to the other branches is an insertion

node. Let’s consider the example shown in Table 3.3-1. Assuming that one calculates the insertion

node of a given action act beginning from the left branch (the branch ending with the reception of

operation op2) and finds that n1 is the insertion node for the tree T’. This means that, contrary to action

!op1, actions ?op1, !op2 and ?op2 can be interleaved with act. If we would calculate the nodei from the

branch at the right, before reaching the previously calculated insertion node, n1, we will test

respectively if the actions ?op1, ?op2 and !op2 can be interleaved with act. According to the previous

tests, none of these actions is the insertion node. Consequently, n1 is also the insertion node of act for

that trace. In conclusion, if we find that the insertion node belongs to a common path between some

traces, we can conclude that it will be the same for the others and we don’t need to recalculate it (line

21 and 29 in Algorithm 1).

Note that the function insertAtAnyPositionFrom always results in a radix tree. This is because it

adds the new branches after taking into consideration the common paths between the newly added

branches and the already existing ones. Table 3.3-2 shows some intermediate results of the application

of the function insertAtAnyPositionFrom(act, n2) on and action act and the first child of the node n2

of the previous example. As shown by the example, the structure of radix tree is respected and the

resulting tree is a prefix tree. In fact, the insertion node node is updated from an iteration to another

to insert only the new sub-branches (second and third column). Similarly, the function is then applied

on the second child of the node n2 (i.e., !op2). Note that the function insert() ensures also the

preservation of the radix data structure.

Table 3.3-2: Application of the insertAtAnyPositionFrom function on a second tree example.

Chapter 3: Vertical consistency verification 130

In the following, we apply the Algorithm 1 (delay operator) to a simple example of a well-formed

trace, σ1=δ2 (!,s1,s2,op1).(?,s1,s2,op1).(!,s2,s1,op2).(!,s2,s1,op3).(?,s2,s1,op2).(?,s2,s1,op3).δ1δ2, and we

show some intermediate results when applying the delay operator on that trace, i.e., for illustration

purposes, we will apply the delay operator only on the first five actions.

The Algorithm 1 is recursively called and a set of intermediate traces is calculated in the following

order: σ2, σ3, σ4, σ5 (such that σj=rest(σj-1)). These intermediate traces are shown on the column on the

left of Table 3.3-3. When the intermediate trace σ5 containing a single element is reached, the

algorithm returns the intermediate tree T (see Table 3.3-3), which is the result of the intermediate

computations shown in middle column. The resulting tree, T, contains only a root element whose

value is equal to the single element in the trace (i.e., δ2). T is used for the computation of the tree

resulting from the application of the delay operator on σ4. Since act is an output, nodei is calculated

using the function firstInputAfterQuiescence(), which return by default the root if there is no input

actions. Then the function insertAtAnyPositionFrom() is applied from nodei, which corresponds in

this case to the root. The calculated act is then simply added as a child to the root node. The delay

operator is then applied on σ3, where act is an input. The insertion node, nodei, corresponds then the

last output action or quiescence of any service. Since the node n1 is output, act is inserted from n1 (i.e,

as a child). The algorithm is then applied σ2, and finally to σ1.

 Table 3.3-3: intermediate results for the application of the Delay operator on a trace example.

Intermediate Traces Intermediate computations Intermediate Tree

σ5=δ2 T=Tree(δ2)

 n0

act ∈OM(Σ)

nodei


firstInputAfterQuiescence(1,n0,T) =

n0

Nodei
  {n0}

insertAtAnyPositionFrom(act, n0)

Chapter 3: Vertical consistency verification 131

act ∈IM(Σ)

nodei
 

lastOutputOrQuiescenceOfAny(n1,T)

=n1

Nodei
  {n1}

insertAtAnyPositionFrom(act, n1)

act ∈OM(Σ)

nodei
 

firstInputAfterQuiescence(2,n2,T) =

n2

Nodei
  {n2}

insertAtAnyPositionFrom(act,n2)

act ∈OM(Σ)

nodei
 

firstInputAfterQuiescence(n3,T) = n2

Nodei
 {n2}

insertAtAnyPositionFrom(act, n2):

 n2.insert(Tree(act, n3))

 n3.insert(Tree(act))

Verdict computation. As explained above, our goal in our testing process is to find a valid trace

between all inferred traces calculated by the offline operator. To do that, we implemented Algorithm 2

(offline), which is a Depth-first search [170] (DFS) algorithm to find a valid trace in a generated radix

tree. The algorithm starts the exploration of an input radix tree T at the root node and searches as far

as possible along each path in order to find a valid trace. The algorithm has as an input a radix tree

and a trace where a potential valid trace is progressively saved. It begins at the root of the tree with

an empty trace. Since an empty tree is a valid trace, the algorithm begins with verifying if the tree T

is empty, if so then it returns a “PASS” (line 2-3) . In case the tree is not empty, the algorithm verifies

if the result of the concatenation of the already calculated valid trace with the action saved at the root

node is a valid trace. As we mentioned before, we use Diversity to generate an inclusion verdict by

calling the inclusion function, which takes as input the choreography specification in addition to the

trace to test. If the result returned by the inclusion function is a PASS then the algorithm is recursively

called until the tree is completely explored, i.e., there are no children which are equivalent to an empty

tree (line 2). If none of the sub-paths is a valid trace then the algorithm look for a valid trace under

the next child (line 7).

Chapter 3: Vertical consistency verification 132

3.3.3 Preliminary experimental results

In this section, we present some experimental results coming from the case study of the Dealer

Network Architecture, taken from the SoaML specification. In practice, the tester wait for the

quiescence of all the services to capture the traces of a choreography. Then, he sends the message of

initiation, which will, in turn, trigger the initiation of the choreography. After, he waits for the

quiescence of all the services and he collects the traces at the orchestrator level.

Capturing of services quiescence. In practice, the logs collected at the orchestrator contain only

communication actions with timestamps. An example of such log is the following:

σ1=t0.t1.(!,s1,s2,op1).t2.(?,s1,s2,op1).t3.(!,s2,s1,op2).t4.(?,s2,s1,op2).t5.(!,s1,s2,op3).t6.(?,s1,s2,op3).t7.t8.

The detection of the quiescence of the services is based on the timestamps of the logs and the

durations d1..dk provided by an expert where each dj is the duration beyond which the service j

remains silent. For example in σ1, t0-t1> d1 and t0-t1> d2, this is transformed into two quiescence, δ1 and

δ2, at the beginning of the trace. t3-t2> d1, then a service quiescence of s1 is added before the reception

of op2. The resulting trace is then:

σ1= δ1.δ2.(!,s1,s2,op1).(?,s1,s2,op1).δ1.(!,s2,s1,op2).(?,s2,s1,op2).(!,s1,s2,op3).(?,s1,s2,op3).δ1.δ2.

Note that, between two timestamps, we must observe at least the duration d specified at the OnAlarm

activity of the Pick activity responsible for the reception of all the incoming operation calls.

Experimentations. The experimental results are presented in Table 3.3-4. We run a series of

experiment, shown in Table 3.3-4. For the first experimentation, line (i) in the table, we varied the

trace length to study the scalability of testing in the orch-conf framework. As shown in the line (i),

the number of inferred traces and consequently the cost of testing becomes increasingly higher as the

number of involved roles increases. However, such testing is still interesting in the case where few

roles are involved in the service contract. In this experimentation, we also compared the number of

inferred traces with and without considering service quiescence observations. It turns out that the

observed quiescence reduces considerably the number of inferred traces and substantially reduces the

risk of explosion of that number.

Chapter 3: Vertical consistency verification 133

Table 3.3-4: Experimental Results.

 Orchestrator Injected Fault Trace Observed #Inferred #Inclusion Verdict

 Name Nature Length Quiescence Traces Test

 orch-chor1 none 6 0 24 3 PASS

 7 1 9 4 PASS

(i) orch-chor2 none 26 0 1.625 50 PASS

 29 3 0.224 62 PASS

 orch-chor2 none 44 0 5.079 176 PASS

 46 2 2.087 228 PASS

(ii) orch-chor1 missing response 7 1 22 5 FAIL

 orch-chor2 wrong choice 18 0 1.427 86 FAIL

(iii) orch-chor1 premature response 8 2 122 32 PASS

orch-chor1: orchestrator implementing the Shipping Request Choreography (Figure 3.3.3-a).

orch-chor2: orchestrator implementing the Escrow Purchase Choreography. (Figure 3.3.3-b).

observed quiescence: we didn’t consider the ending quiescence of all the services.

(a) Shipping request choreography. (b) Escrow Purchase choreography.

Figure 3.3.3: choreography examples from the Dealer Network Architecture.

In the next two series of experiments, we studied: (ii) the kind of faults that can be systematically

detected using the orch-conf conformance relation; (iii) and the ones that may be detected only in

specific situations. In the experiments (ii), we injected a fault that we called the wrong choice. The

latter consists in making a service doing a choice that is inconsistent with its role in the choreography.

An example of a wrong choice that could be made by the EscrowService is sending a grievance just

after receiving the invocation deliveryAcceptance which is not coherent with respect to the alt

semantics in the choreography. We found that wrong choice failures were successfully detected by

Diversity tool. Finally, in the last experiments (iii), we injected another fault that we call premature

response, which consists of sending a response by a service before being invoked. Thus, we modified

the behavior of the orchestrator of the Escrow Purchase Choreography to wait for the quiescence of

the service ShippingOrder before invoking its operation. The service itself was modified in a way to

send the response for orderShippingRequest before receiving that request. This experiment shows

Chapter 3: Vertical consistency verification 134

that the premature response fault can be revealed during the execution when it happens that the

service quiescence delay appears in between two successive invocations of the service for example.

Otherwise, such fault can be masked by communication delays as discussed before and will not be

detected by Diversity.

Table 3.3-4 also presents the number of inclusion tests realized for the generated trees using the offline

operator. The results show that the number of inclusion tests is considerably lower than the number

of inferred traces, which validate the interest of using the radix tree to structure the inferred traces for

the purpose of optimizing the test verdict computation.

 Summary

In this chapter, we described a novel model-driven offline analysis approach to deal with the

problem of vertical consistency verification in service-oriented applications (i.e., consistency

between design and runtime levels). Our approach precisely verifies the coherence between a

choreography model specified using a sequence diagram and its implementation designed using an

orchestration between the involved services. Our contribution has dealt with observation limitations

and asynchronous testing issues where we have defined the well-formedness of a trace and a delay

operator to infer all possible trace executions when taking into consideration network delays in the

asynchronous context. We detailed the steps of our analysis process under partial observability

limitations (i.e., in the case of a restricted access to observation points). We showed that the

orchestrator traces could be used to infer the global trace since it plays an intermediate role in the

services choreography. Thus, in our analysis process, we reason on the conformance of the traces

collected at the orchestrator level with respect to the specification model taking into consideration the

asynchronous nature of the communication and the network delays. These traces are then analyzed

using the Diversity tool to verify their conformance with the choreography specification according to

a conformance relation that we have defined. As a part of this work, we extended Diversity tool, a

symbolic automatic analysis and testing platform developed in our laboratory, with algorithms to

allow the verification the well-formedness of a choreography traces and to allow to infer all possible

traces from the traces captured at an orchestrator location.

Part III: VALIDATION

In this validation part, we apply our three steps Model-Driven System Engineering approach to a

well-known and representative case study to validate the approach.

Chapter 4

4Travel management

system case study

4.1 Case study objectives ... 136

4.2 Specification of the case study ... 136

 (SAM) ... 142

4.3 Horizontal verification of the SoaML-based specification model .. 146

4.4 Generation and deployment of the case study ... 147

 .. 149

4.5 Vertical verification ... 150

4.6 Conclusion ... 154

This chapter illustrates the use of model validation, code generation, and offline testing technics by

applying them to a case study. This case study is extracted from a doctoral dissertation [10]. It is a

well-known case study of a client planning vacation using an online service for travel management.

It provides reservation services for flights and hotels. The travel management system collaborates

with other online services such as air travel or hotel management services to respond to the client

request. This case study is representative of the domain and is representative of the complexity of the

problems that may occur in the industry.

 Case study objectives

The purpose of conducting this case study is to evaluate our Model-Driven System Engineering

approach. As explained before, we follow a three-step approach. The goal of these steps is to verify

that:

1. The service-oriented specification model is compliant with SoaML semantics. This

property is referred to as horizontal consistency. This consistency checking mechanism

concerns two kinds of validation:

Chapter 4. Case study 137

a) Each view of the service model is compliant with the underlying service meta-model

semantics (SoaML).

b) The multiple views of the service-oriented software are consistent with each other.

2. By applying our model to model transformation, each service choreography is transformed

into an executable BPEL orchestrator and each component definition in the SoaML models is

transformed into a Web service definition that could be used to automatically generate the

component code.

3. Derived software applications behavior is consistent with the specified behavior. This

property is referred to as vertical consistency.

 Specification of the case study

For the specification and the development of our case study, we are inspired by the Model-

Driven Software Engineering (MDSE) methodology defined in the SHAPE project [171] and SoaML

specification recommendations. Both SoaML specification recommendations and the MDSE

methodology followed by the SHAPE project aim to integrate SoaML with existing business

modeling practices, allowing building upon and extending existing modeling practices rather than

replacing them. The methodology of SHAPE project proposes building a set of model artifacts

following the iterative and incremental process paradigm. The methodology starts by specifying the

Business Architecture Model (BAM), then specifying Software Architecture Model (SAM) as a

refinement for the BAM and finally automatically generating the Platform-Specific Model (PSM).

Our methodology, inspired by [171], follows the same three levels of specification BAM, SAM,

and PSM. We have adapted the three sub-steps to our specification needs. In fact, the SHAPE project

was focusing on the behavior of the components contrarily to our work, where we are focusing on

interactions between these components. Figure 4.2.1 shows our MDSE process. The icons indicate

the associated diagram(s) for each work artifact and the arrows show the most common path through

the set of work artifacts within an iteration.

The BAM level describes the business perspectives of a SOA system. It expresses the business

operations and processes that have to be supported by the system [171]. This level includes the

requirements/goals usually written in natural languages, business processes in the form of

Business Process Modeling Notation (BPMN) process diagram, services architecture, and service

contracts. A BPMN business process defines the expected process of the whole SOA architecture.

This process is refined using a services architecture that describes the contracts between the

participants and the role they play in each contract. The SAM provides more details about the software

architecture by specifying the system components in the form of Participants and Agents, the service

interfaces, the service choreographies as a refinement of the contracts and in the form of sequence

diagrams and finally the interfaces and the messages by means of data types, message types, and

classes. The PSM contains the design and implementation artifacts of the specified service-oriented

architecture in the chosen technology platforms, i.e., Web Services and WS-BPEL.

Chapter 4. Case study 138

Figure 4.2.1: The overall Model-Driven Software Engineering process.

In the following sections, we provide guidelines for how to follow the previously presented MDSE

in order to specify the Travel Management System case study. We illustrate the different steps of the

system specification starting by the business processes descriptions.

4.2.1 Business Architecture Model (BAM)

The specification was mainly written in natural languages in the doctoral dissertation [10] and

illustrated using a UML Collaboration and a Collaboration Behavior Diagram. The goal of this step

is to extract the purpose and the requirement of the system from that document and translate them

into business architecture models that specify the goals, business rules, business processes, business

services and business contracts.

 Process model specification

In our approach, we use BPMN [86] processes to model the process at the BAM modeling level.

BPMN is used to define the processes, which are relevant to the whole SOA architecture, and which

will enable the goals to be met. At that level, the roles of the resources that perform those processes

(contracts) are fixed. Those roles must be fulfilled by the components to be specified at the PIM level

and then developed at the PSM level. Since we are essentially focused on formalizing the interactions

between Participants, we choose the BPMN Choreography Diagram to specify the global business

process of the Travel Management System. The resulting choreography diagram is shown in Figure

4.2.2 and is followed by an explanation of the activities and gateways used in the figure.

Chapter 4. Case study 139

Figure 4.2.2: BPMN business process of the Travel Management System.

 : is a Choreography Task which is an atomic Activity in a Choreography Process. It

represents an Interaction, which is one or two Message exchanges between two Participants. Pools

are the graphic representation of Participants in a Collaboration. A Pool can be a specific Partner

Entity (e.g., a company) or can be a more general Partner Role (e.g., a buyer, seller, or manufacturer).

 : is a Sequence Flow, which is used to show the order of the activities.

: is a Parallel Gateway used to create parallel flows without checking any conditions and to

synchronize (combine) them. For incoming flows, the Parallel Gateway will wait for all incoming

flows before triggering the flow through its outgoing Sequence Flows.

: is an Exclusive Gateway. A diverging Exclusive Gateway (Decision) is used to create

alternative paths within a Process flow.

The BPMN business process focuses on the first order processes, which are relevant to the SOA

without going into details about how they are realized. The process is the following:

i) The client (Client) visits the Travel Management System (TMS) website looking for a flight

and a hotel.

ii) The “Client” searches for a flight and a hotel and chooses the desired dates of travel and the

destination.

iii) The travel management system “TMS” queries for the best suitable matches, so it sends a

request to the Air Travel Management Server (AMS) and Hotel Management Server (HMS).

iv) To get the best flight, “AMS” requests two flight companies, Fast Airways (F) and Reliable

Airways (R). These flight companies answer back to “AMS” with corresponding price

options, which get processed.

v) The “HMS” server processes the request to get the suitable hotel by invoking two hotel

companies Excellent Hotel (E), and Premium Hotel (P), which respond back with their

availabilities and prices.

Chapter 4. Case study 140

vi) The “TMS” receives the best flight and the hotel information as a response to its query.

vii) The “TMS” presents the price to the customer after adding its own profit.

viii) The client may refuse the presented choices. In this case, he/she may go back to Step ii) with

perhaps a revised set of dates and destinations. However, if he/she accepts the options, then

he/she selects the flight and the hotel.

ix) The client has two options: either creating a new account or entering all information, which

would include all the customer information, namely the credit card information and other

information (name, customer number) or login with an existing account. When a client enters

his information for the first time, the TMS validates his information namely his credit card

information using a credit card validator service before sending a confirmation text message

to his phone number.

x) The customer initiates the process payment. The “TMS” sends the credit card information to

the Bank (B) for the payment process. After processing the information, the Bank may either

approve the payment or notify the “TMS” in case the transaction is declined. The “TMS” in

turn notifies the customer. The latter enters a different credit card information. This process

keeps on repeating until the credit card is successfully authorized.

xi) Once the transaction is approved, the Bank notifies the “TMS”, which concurrently reserves

the flight, and the hotel by respectively invoking the “AMS” and the “HMS”.

xii) Finally, a confirmation email is sent to the client.

 Specification of the services architectures

A services architecture is modeled as a UML Collaboration with the stereotype

ServicesArchitecture. First, we create a UML package. Then we add a services architecture inside it.

In the previous step, we identified the different participants involved in the services architecture.

These participants are added to the ServicesArchitecture as parts inside the collaboration typed by

Participants or Capabilities. In this step, we only specify the participant’s names. Then, we identify

the service contracts that define the possible interactions between these participants. The interactions

are represented as collaboration Uses of service contracts defined as a UML collaboration with the

stereotype ServiceContract. Like the participants, we only specify the names of the contracts and the

roles they play in these contracts without specifying the involved services. The detailing of the service

contracts will be elaborated in the next step. A participant is connected to a given role in a

ServiceContract using RoleBinding relations. For example, the client, c, plays the role c (for the

client) and the travel management system, tms, plays the role p (for the provider) in the search

contract.

The services architecture of the Travel Management System (TMS) is shown in Figure 4.2.3. The

figure presents the structure of the Travel Management System, which consists of nine roles and

eleven CollaborationUses among the roles. The services architecture is composed of a customer, a

Hotel Management Server (HMS), and an Air Travel Management Server (AMS). The Hotel

Management Server Participant collaborates with two external airline companies, namely Excellent

Hotel (eh) and Premium Hotel (ph). In the same way, the AMS Participant also collaborates with two

airline companies, namely Fast Airways (fa) and Reliable Airways (ra). The Travel Management

System also has a collaboration with a local Bank (b) for all its financial transactions.

Chapter 4. Case study 141

Figure 4.2.3 Services architecture of Travel Management System.

 Specification of the services contracts

In the previous step, we identified the contract names and the roles names. However, we didn’t

specify the contractual obligations of the concerned role. In other words, we didn’t specify how these

roles are satisfied and which conditions a participant playing this role must satisfy. To do so, we need

to identify the role type of the service contracts. Each role in a service contract must be associated

with a service specification (except simple interface consumer roles, which mean that there is no

obligation to consume the service). In this step, we don’t need to identify the interface operations, we

identify only the names and possibly some high-level operations in the interfaces. These interfaces

will be further specified in the software architecture modeling level.

Figure 4.2.4 shows the service contracts specified as part of the services architecture of the TMS.

The Search contract has two roles represented in the service contract as parts with a connection. The

roles names are c for customer and p for the provider, but only the provider role has an interface type,

namely ISearch. It represents a simple service where only the provider is specified. Which means that

there are no obligations for the consumer to consume the service. Other service contracts like the

Query contract or the EnterInfos contract specify more than one interface. For example, the service

contract EnterInfos specifies the interface IEnterInfos for the provider role, the interface ICCVaidate

for the role of the validator of the credit card and the interface IsendSMS for the role of the SMS

sender service.

Chapter 4. Case study 142

Figure 4.2.4: Services contract of the Travel Management System.

4.2.2 Software Architecture Model (SAM)

At this level, our goal is to specify the IT level of the system namely service interfaces, executable

business processes as a refinement of business contracts. We first specify the UML Interfaces and the

services interfaces, which provide and require those interfaces. After, we identify the operations

provided by these interfaces. And finally, we specify the data exchanges as input and output of these

operations.

 Specification of the interfaces and the services interfaces

In the previous step, we only specify the Interfaces names and may be some operations. In this

step, we will refine the interfaces and we may also define the service interfaces, which provide and/or

require this interfaces. After creating the services interfaces we can define the provided and required

interfaces, which are modeled as UML interfaces, by adding a UML usage and realization

dependencies between the services interfaces and the UML interfaces.

Figure 4.2.5 shows an example of interfaces and service interfaces. The ISearch interface, shown

in Figure 4.2.5-a, is the type of the provider role in the Search contract, which is a simple contract

with a simple interface. The ISerach interface contains an operation named search that we have added

in this step. For the process flight contract, we defined a service interface called SIPF (for Service

Interface Process Flight), which provides IprocessFlight and requires IConProcessFlight as shown

in Figure 4.2.5-b. SIPF is a composite service that provides and requires other services. It must

Chapter 4. Case study 143

implement all the operations of its provided interfaces. Figure 4.2.5-c shows the interfaces typing the

roles within the Reserve Flight contract and the usage dependencies between them. The reserve flight

is a multi-party contract.

(a) ISearch interface (b) Process flight interfaces and associated data

(c) Reserve flight interfaces

Figure 4.2.5 Services specification in SoaML.

 Specification of the messages

In SoaML, data can be modeled using MessageType stereotype (which extends either UML Class,

DataType or Signal), UML DataType or UML Classes. It specifies the information exchanged

between service consumers and providers. This data may have properties that can be modeled using

UML properties. In this step, we define the necessary properties and associated classes to store the

information to be exchanged between the service consumer and the service provider. Figure 4.2.6

shows the data types exchanged in the Travel Management System. For example, the customer

information is modeled as a data type, whose name is CustomInfos and which contains the name of

the customer (name), his number (customNbr), his credit card information (CCInfos) and his mobile

number (TelephoneNbr). The CCInfos contains the credit card type (cardType) and the credit card

number (cardNumber).

Figure 4.2.6 Data types.

Chapter 4. Case study 144

 Specification of the services choreographies

We first create an Interaction as an owned behavior of the service contract we want to refine. Then

we choose UML sequence diagram as behavioral Diagram. We add lifelines and we specify, for each

lifeline, the role it represents in the contract. Then we add the messages. The Search Sequence

diagram is shown in Figure 4.2.7 where we specify that the consumer role could call the search

operation of the provider role typed with ISerach interface.

Figure 4.2.7: Sequence Diagram of Search contract.

Figure 4.2.8 specifies the behavior of the EnterInfo contract. The customer, c, invokes the operation

login on the provider, p, typed by the Interface IEnterInfos. Then p invokes the Validate operation of

ccv, for credit card validator, typed by the Interface ICCValidate then ccv responds back with

ValidateResp. Finally, p invokes the operation sendSMS of sms in order to send a confirmation SMS

message to the client.

Figure 4.2.8: Sequence Diagram of Enter Info contract.

The Sequence Diagram of Process Payment contract is shown in Figure 4.2.9. This behavior contains

combined fragment to express, for example, alternative choices (alt). As defined in the specification

given in natural language. The customer initiates the payment process. This is carried out by calling

the processPayment operation of the IProcessPayment service. Then, the latter sends the credit card

information to the Bank for payment to be processed. This is carried out by calling the

processPayment operation of the IBank service. The “TMS” adds the necessary information to

proceed with the payment. After processing the information, the Bank may either approve the

payment or notify the “TMS” in case the transaction is declined by calling respectively either approve

or notify operations (alt operator). The “TMS” in turn notifies the customer. The latter enters a

different credit card information (newCC). This process keeps on repeating (loop operator) until the

Chapter 4. Case study 145

credit card is successfully authorized.

Figure 4.2.9: Sequence Diagram of Process Payment contract.

 Specification of the software components

In this final step of the system specification, we define the components and how they are

implementing the services. Once the participants are defined we can use a composite structure

diagram to refine the component view by adding the port through which the components provide and

require services. We can also refine the component specification by defining their internal structure.

Components may contain internal parts communicating together through ports and connectors to join

these ports. In the case of the complex internal structure of a participant, we can define a SoaML

services architecture, therefore we can specify communication protocols between the internal parts

of the components.

Figure 4.2.10 shows the component view of our case study. Eleven components have been

specified as SoaML participants that correspond to the participants at the business-level. These

components collaborate together through services contracts and must be compatible with these

contracts. To do that they must have ports compliant with the roles specified in the contracts. For

example, the travel management system has a service port typed by ISearch interface, so it is

compatible with its provider role in the Search contract.

Chapter 4. Case study 146

Figure 4.2.10: Participants Diagram of the travel management system.

The travel management system specification has in total: 11 participants, 11 contracts, 35 lifelines

and 44 messages.

 Horizontal verification of the SoaML-based specification

model

Now our system is specified as a set of UML concepts, before moving to the code generation of

platform specific model, we need to validate this system specification. Figure 4.3.1 shows this first

step of our validation process. The goal of this step is to verify the coherence of the system

specification.

Figure 4.3.1: Verification of SoaML models within the MDSE process.

The specification should contain no errors and all specification views must be compatible with

each other with respect to the syntactic and the semantic constraints defined in the SoaML

specification. As we explained in Chapter 1: Background: modeling with SoaML, we have enriched

Chapter 4. Case study 147

the SoaML specification with OCL constraints and we have implemented a SoaML editor along with

a validation module upon Papyrus. All we need then is to use the tool to validate the TMS model.

The SoaML validation tool allowed us to detect errors in the specification model, such as the

errors shown in Figure 4.3.2 and Figure 4.3.3. The errors can be read either at the Papyrus diagram

view or at the model explorer view.

Figure 4.3.2: A screenshot of an error from the papyrus diagram view.

Figure 4.3.3: A screenshot of an error from the model explorer view.

This step is very important since if the model contains inconsistencies, these inconsistencies will

be propagated to the code where it will be harder to correct them. For example, the error shown in

Figure 4.3.3 is about a participant, which is playing a role in a services architecture without being

compatible with that role, i.e., it does not implement an interface compatible with the role it plays in

the service contract. These errors, if not adjusted, will influence the generated code for the concerned

participant. When generating the WSDL corresponding to that participant, the resulting WSDL will

not contain the definition of the missing interface. As we explained in Chapter 2, the WSDL files are

used to generate the implementation skeleton on the participants. Consequently, this error would

result in an incomplete implementation of the participant. To resolve the problem at the

implementation level, the developer has to choose between two alternatives: either implementing the

code of the missing service from scratch (which could be written in java, C++, C#, etc.) or rectifying

the model and regenerate the code of the WSDL file.

 Generation and deployment of the case study

4.4.1 Generation

As shown in Figure 4.4.1, in a services architecture, each participant is transformed into a web

service and each service contract is transformed into a BPEL orchestration process.

Participant is transformed into a WSDL file, from which a web project is automatically generated

using Apache CXF (see Figure 4.4.1). The CXF tool generates fully annotated Java skeleton code

Chapter 4. Case study 148

from a WSDL document. This skeleton has to be manually completed with the JAVA code describing

the internal behaviors of the components. Note that we can use language like Alf to express the

internal behaviors of the software component and automatically generate the code from such

specification.

Each contract is refined with a Sequence Diagram to specify a choreography between services. A

BPEL process is generated by service contract as shown in Figure 4.4.1. The process is responsible

for the sending and receiving of the exchanged messages between the participating services described

through a sequence diagram. The generated processes are .xmi files that must be serialized into a

.bpel file. Then additional files namely a deploy.xml, a .bpelex and artifacts.wsdl files are required to

build successfully the BPEL process. The .wsdl file provides all the interfaces provided by the

collaborating services to be able to play an intermediate role in the services choreography

(specifically receives all the operation calls). After the completion of the missing files, we manually

deploy BPEL project in Apache ODE engines. In our experiments, we use two Apaches ODE servers

and we randomly deploy the BPEL processes on them. In the next subsection, we will give the

detailed deployment of an example of service contracts (the EnterInfo contract) and its associated

services.

Figure 4.4.1: Code generation and deployment process.

Chapter 4. Case study 149

4.4.2 Deployment

Figure 4.4.2 shows an example of ServiceContract deployment. In this example, we show the places

where we deploy the BPEL process, the existing and the generated web services. It is about the

EnterInfos contract, which contains four roles:

- “c” refers to consumer role: this role has no type which means that there are no obligations

imposed on the service playing this role.

- “p” refers to provider role and is typed with IEnterInfos interface so the service playing this

role must implement the operations of the IEnterInfos interface.

- “sms” refers to sms sender role and is typed with ISendSMS interface.

- “ccv” refers to credit card validator role and is typed with ICCValidate interface.

Both CCValidate and IsendSMS web services are public web services that already exist and are

accessible via the internet.

Figure 4.4.2: Deployment of enter information contract.

The CCValidate service validates any credit card number (Master Card, Visa, Amex, DINERS). Its

WSDL file is available at this link: “http://www.webservicex.net/CreditCard.asmx?WSDL”.

The SOAP message to invoke the CCValidate service is the following:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/X

MLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ValidateCardNumber xmlns="http://www.webservicex.net">

 <cardType>string</cardType>

 <cardNumber>string</cardNumber>

 </ValidateCardNumber>

 </soap:Body>

</soap:Envelope>

The response message has the following format:

http://www.webservicex.net/CreditCard.asmx?WSDL

Chapter 4. Case study 150

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/200

1/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ValidateCardNumberResponse xmlns="http://www.webservicex.net">

 <ValidateCardNumberResult>string</ValidateCardNumberResult>

 </ValidateCardNumberResponse>

 </soap:Body>

</soap:Envelope>

The ISendSMS service sends unlimited free SMS to different countries (e.g., Austria, Germany,

USA, Canada, France and Spain). The WSDL file of this service is available at:

“http://www.webservicex.net/sendsmsworld.asmx?WSDL”.

We use reverse engineering to model the SoaML service interfaces from the WSDL definition.

The IEnterInfos is a new service that we specify from the requirement definition phase. Thus, we

generated the WSDL file for that service using our SoaML based code generator, then the Java code

has been generated using CXF. We finally used our code generator to generate the BPEL process

implementing the choreography logic.

For the deployment of the web services, as we mentioned before both CCValidate and IsendSMS

web services are already deployed on servers on the web. We deployed IEnterInfos on an Apache

Tomcat Server ™ 7.0.68. The BPEL process is deployed on an Apache ODE (Orchestration Director

Engine) server 1.3.3. Apache ODE was deployed as a web service in Axis 2, by deploying the ODE

war distribution (ode.war) inside an application server like Apache tomcat.

 Vertical verification

 We must remind that for each choreography we generate a BPEL process, the goal of this subsection

is to validate the transformation in the sense that the generated BPEL processes preserve the semantics

of the specification language (i.e., UML Interaction in the form of sequence diagram) using the Travel

Management case study. To perform this verification, after the deployment of the system artifacts,

namely the Web services and the BPEL processes, we pick up traces of message exchanges and we

compare them with the expected behaviors specified at design-time using symbolic execution

techniques. Results are then provided to the system verification engineer in order to check and resolve

existing problems or to validate the system implementation. This validation step is depicted in Figure

4.5.1

http://www.webservicex.net/sendsmsworld.asmx?WSDL

Chapter 4. Case study 151

Figure 4.5.1: Offline verification of SoaML models within the MDSE process.

Since the service contract is independent, all we need is to validate the services contract one by one,

so we validate local behavior specified by each Sequence Diagrams. Details about the validation

process are given in the following subsections.

4.5.1 Monitoring

Apache ODE server gives the possibility to debug BPEL processes, to understand what is going

inside the engine. This is allowed via message tracer, which enables the process tester to view the

inbound and outbound messages to and from the process server. To enable message trace logs for

BPEL processes, we have configured log4j.properties file located in the lib folder of the tomcat server

containing the BPEL engine. The traces logs have been formatted to the trace format presented in

Chapter 3.

4.5.2 Validation of the service choreographies

In the specification model, a service contract choreography is modeled with a Sequence Diagram,

which characterizes a set of traces, i.e., sequences of sending/reception of actions. In order to examine

the conformance of a choreography implementation with respect to a choreography specification,

execution traces are collected at different points of observation and then compared to the specified

sequence diagram using symbolic execution techniques. [149].

Observers may be placed at each involved service location [128] and a global trace can then be

deduced by reordering the sending and receiving actions according to their timestamps. However, it

is sometimes impossible to monitor some web services. For example, in the EnterInfo choreography,

we use a public Web service available at: http://www.webservicex.net/CreditCard.asmx?WSDL), for

the credit card validation. Consequently, we cannot monitor its behavior. In that case, we have

proposed to infer the possible global traces from the orchestrator traces while taking into

consideration network delays and possibly observed service quiescence. Finally, we have defined a

conformance relation to reason about the correctness of the services choreography implementation

under this observability assumption. This conformance relation is verified using the Diversity

Chapter 4. Case study 152

platform.

In this section, we apply our process of vertical consistency checking in the TMS case study. As

shown in

Table 4.5-1, our case study contains six basic choreographies and five structured ones, which allow

us to validate the transformations rules for respectively basic and structured choreography. Some

structured choreographies separately implement the combined fragment opt (Select), par (Query) and

alt (ReserveFlight and reserveHotel shown in Figure 4.5.2), which allows us to validate their

behaviors separately. The Process Payment contract contains an alt inside a loop fragment, which

allows us to validate the race conditions introduced in Chapter 3.

(a) Query choreography (b) EnterInfo choreography

(c) ProcessFlight choreography (d) ProcessPayment choreography

(e) ReserveFlight choreography

Figure 4.5.2: Choreography examples.

Chapter 4. Case study 153

Table 4.5-1: Experimental Results.

 PO Trace

Length

OQ Inferred

Traces

(status,

verdict)

Basic:

Search OL 2 0 1 (C, P)

 ProcessFlight OL 2 0 5 (C, P)

ProcessHotel OL 5 1 2 (C, P)

 PresentOptions OL 9 2 18 (C, P)

 EnterInformation OL 9 1 45 (C, P)

login OL 2 0 1 (C, P)

Structured:

Query OL 10

11

3

4

14

8

(C, P)

(C, P)

Select OL 2 0 2 (C, P)

ProcessPayment

(*)

OL

SL&OL

7

22

20

30

9

2

4

2

5

2

10

45

707

5070

1

(C, P)

(C, P)

(C, P)

(C, P)

(T, F)

ReserveFlight

SL&OL 9

10

1

2

44

9

(C, P)

(C, P)

 ReserveHotel

(*)

OL

SL&OL

10

9

2

2

35

1

(C, P)

(C, P)

PO: points of observation ∈ {SL: Services Level, OL: Orchestrator Level}.

A trace is a sequence of sending/reception actions.

Status: status of the orchestrator at the end of the execution ∈ {T: Timeout, C: Completed}.

Verdict: calculated by Diversity ∈ {P: Pass, F: Fail}

OQ: observed Quiescence

Execution of all alternative choices. We have run a series of experiments for each service contract

to cover all the possible alternative executions specified by the sequence diagrams. On each

experiment, we modified one or more services implementations to force the execution of a choice.

We aimed at verifying that the orchestrators can execute all the alternative choices described by the

sequence diagram. For example, in the case of alt combined fragment (i.e., a combined fragment

whose interaction operator is alt), we experimented will all the specified alternatives (each of which is

defined inside an operand of the alt fragment). In the case of a loop fragment, we experimented with

many iterations. In the case of par fragment, we varied the message execution order. We also kept

track of the quiescence of the services.

Concurrent executions. We have also run a series of experiments with concurrent operation calls.

We aimed at showing how the proposed orchestrator correctly handles the concurrent arrival of

messages.

The sequence diagram in Figure 4.5.2-a shows an example of a choreography with two concurrent

executions: the reception of the operation call ConvReq() and ConvRsp() by both raCnv and faCnv

Chapter 4. Case study 154

lifelines. After the generation and deployment of the orchestrator, we re-executed the choreography

many times, each time we changed the processing time of the requests by introducing latencies in the

services implementation. After analyzing the traces, we found that the execution order of the

operations at the Web Services level follows their reception order. The execution of one sequence

(the reception then the invocation) is not blocking for the execution of the other sequences, they could

overlap while preserving the constraints described by the sequence diagram. This result complies

with the semantics of sequence diagrams and saves a lot of time for the execution of the whole

choreography.

Race condition. To test how the orchestrators react in case of race condition, we experimented with

the ProcessPayment choreography shown in Figure 4.5.2-d. As shown in

Table 4.5-1, the choreography was completed successfully for different iteration numbers of the loop.

Lines that are marked with a star (*) are experiments where faults have been introduced in the Web

Services implementations to make inconsistent choices. In the experiment with ProcessPayment

choreography, the orchestrator received a call for notify() then approve() operations, then it was

waiting for one of the operation calls: newCC() or ack() until the expiry of its Timeouts. The trace

analysis with Diversity generates a Fail. In the experiment with ReserveFlight, the service represented

by lifeline “a” was modified in a way to send two reservation requests for the two Airways flights

and not only one of them. The orchestrator has only forwarded the first received reservation and

continues the choreography. However, Diversity computed a Fail verdict. This experiment shows

that our orchestrator ensures the conformity of the messages exchange with respect to the

specification but does not guarantee the conformance of the behavior of the Web services.

 Conclusion

In this chapter, we have experimented our approach on a typical case study, the Travel

Management System (TMS), where a client is booking a hotel and a flight. These experiments

allowed as to validate our three main prototypes, namely the SoaML editor, the code generator and

the extension of the Diversity testing platform. First, we statically validate the system specification.

This step allows the detection of inconsistencies in the SoaML specification model. After resolving

these inconsistencies, the system specification was used to generate executable Web service artifacts.

Participants were transformed into Web services implemented using Java and choreographies were

transformed into BPEL processes (An executable process is generated per sequence diagram, which

is the refinement of a service contract). After that, we verified the conformance between the system

specification and the running system. The results clearly revealed the pertinence of the implemented

prototypes and consequently the pertinence of our approach in the different steps of a system

development, i.e., specification, implementation, and testing.

Conclusions and future work
In this dissertation, we addressed the issue of guaranteeing horizontal and vertical consistency of

SOA systems modeled using the SoaML standard language. We also addressed the issue of deriving

platform specific models based on Web services technology from the SoaML specification models.

We have provided a novel Model-Driven Engineering approach covering the different steps of a

system development, i.e., specification, implementation, and testing. Our approach is tool-supported

and is developed upon Papyrus. This chapter summarizes the main contributions of the work

presented in this dissertation, recapitulates how we validated them and finally identifies future

research work.

Summary of contributions. Our first contribution was to provide support for consistency checking

of SOA-based systems at design level (horizontal consistency). In fact, in an MDE approach, models

are the main artifacts of the software development process and their consistency is then a crucial issue

of the entire process. In the SoaML specification, the model consistency is defined via constraints,

which are expressed by means of an informal explanation written in natural language. These

constraints are not machine-readable and can only be checked manually. They are also sometimes

ambiguous. In addition, some of them may present semantic variation points. To deal with these

problems, we have proposed to automate the consistency checking of the SoaML model by

formalizing them using OCL. The use of this language resolves ambiguity and helps to a better

understanding of these constraints. We have also identified the semantic variation points and fixed

them either by defining a default semantic or by defining some possible semantic variations. The

OCL constraints cover both syntactic and semantic consistency of SoaML models.

After the verification of the system specification model, the latter needs to be transformed into

executable artifacts, which is the goal of our second contribution. Our objective was to provide

support for the transformation of choreographies into executable orchestrations. We have chosen

Web services as a target technology and we have defined transformation rules from SoaML models

into Web services artifacts. These rules cover both structural and behavioral parts of the system

specification. The structural parts have been transformed into Web service definitions based on

WSDL, whereas the behavioral part describing services choreographies has been mapped into Web

service orchestrations based on WS-BPEL. The generated orchestrator implements the high-level

choreography logic and keeps all the semantics defined at the design level. The challenge of this

transformation was to propose an orchestrator pattern that takes into consideration many parameters

such as the asynchronous nature of the communication, the network delays and the problems resulting

from it mainly race conditions.

Finally, our third contribution consists in providing support for guaranteeing the consistency

between the specification model of a SOA-based system and its implementation (vertical

consistency). We have proposed a novel testing process, which is based on black box techniques to

verify the coherence between the traces collected at an orchestrator with respect to the corresponding

choreography specification described using a sequence diagram. After taking into account the

asynchronous aspect of the communications and the possible consequences of network delays, all

possible executions traces are deduced from the orchestrator trace then compared with the

specification model using a conformance relation that we have defined.

Conclusions and Future Work 156

Validation. The results were validated with literature searching, examples, and case studies,

prototypes and feedback obtained during the elaboration and presentation of peer-reviewed scientific

publication.

First, we have started our work with a literature search of existing research results, techniques, and

tools that are related to our work. We continued to review other new results during the three years of

this Ph.D. thesis. Secondly, and, in order to understand and identify potential problems, we used and

established examples and case studies, which were then reused to validate our approach. The main

two case studies are the Dealer Network Architecture, a well-known case study taken from the SoaML

Specification, and the Travel Management System [10], which is a common case study on Web-based

applications where a client uses a Travel Management System to search for flights and hotels. The

Dealer Network Architecture case study is used along this dissertation to illustrate our approach.

Third, several prototypes have been developed to support the contributions and validate them. The

main three prototypes are the SoaML editor, which provides support for the specification and the

validation of SoaML-based models. This prototype checks consistency between SoaML views with

respect to the syntax and the semantics described in SoaML specification. The second prototype is

the SoaML generator, which automates the generation of web services artifacts from SoaML models.

Finally, the third prototype, is an extension of the symbolic analysis and testing platform, Diversity,

to support offline analysis of service choreographies under partial observability conditions. Our main

contributions were published in a peer-reviewed scientific conference whose best paper award was

attributed to our paper [172]. Having our main results evaluated and validated by international

specialized researchers further reinforces the validity of our contributions.

 Future Work
From the work we have accomplished in this dissertation, we see several research directions worth

investigating. Several improvements can also be considered for the prototypes that have been

implemented.

Improvement of the current prototypes. In this dissertation work, we have implemented tool

prototypes as proof of concepts. Part of our prototypes are already integrated to Papyrus and are

available as open source code, namely the SoaML editor with the validation module integrated to it.

Although our goals did not include the development of commercial tools, we realized that we needed

to increase the usability of our code generator. That is to say, our generation process needs to be fully

automated. In fact, our code generator prototype allows the automatic generation of WSDL/XSD

services descriptions and BPEL processes from SoaML models. The generated BPEL process needs

then to be completed manually by the system developer with other files necessary for the deployment

of the process into a BPEL engine (e.g., the deployment descriptor file). This step could be done

automatically as an improvement of our tool. Another step that we have suggested in the generation

process is the use of an existing open source code generator to generate java code skeleton from the

generated WSDL files. This step could be integrated into our tool so that the generation will result in

Web services projects containing the code skeleton of the participants written in Java or other

languages. This can lead us to another improvement, which is giving the user the possibility of

choosing the target language and the model elements that he wants to transform.

Decentralized orchestration. In our research, we only considered transforming a choreography into

a centralized orchestration. In future work, we can consider defining and implementing

transformation rules from a choreography into a decentralized orchestration. As we have already

Conclusions and Future Work 157

mentioned, the generation of decentralized orchestration is a challenging work since the responsibility

of the choreography has to be divided among the participants. Additional synchronization

mechanisms must be defined to establish coherence between participating services, which must all

behave in coherence with the choreography logic.

Formalizing the transformation specification. In our research, we verify the correctness of the

transformation from choreography to orchestration by analyzing the system traces and verifying the

conformance between the traces and the expected behavior with respect to a conformance relation.

Formalizing the transformation rules from choreography to orchestration and reasoning about the

formal correctness of the transformation could be considered as a future work.

Support for dynamic adaptation. The SOA architecture offers dynamism and flexibility. This is

very advantageous for the development of self-adaptive systems, where system components (or

services) are composed, and sometimes selected, at runtime to adapt to varying environmental

conditions and requirements. In fact, the partition of complex systems into independent entities

(services) facilitates the changes in the system by allowing dynamic selection and composition of

services to deal with new business requirements. This partition also facilitates replacing a service

with another if needed, thus fostering system dynamicity. A well- known pattern that could be applied

to allow dynamic reconfiguration is the feedback loop that is provided by the MAPE-K cycle [173],

which is the abbreviation for Monitor, Analyze (to detect problems), Plan (plan solutions), Execute

(execute the planned solutions) and Knowledge (is the system context). As a future work, we can

apply the MAPE-K pattern into the SoaML Participants, which would precisely be SoaML Agents

that have the ability to adapt to their dynamic environment thanks to their ability to monitor their

environment, analyze the changes in it to then be able to plan and execute adequate reconfigurations

to adapt to these changes.

Choreographies or more generally services contracts could also adapt to the changing

environment. This work has been mainly focused on static choreography scenarios where the

choreography scenario and the participating services are fixed at specification time. Future work

would consider dynamic scenarios. Such scenarios should be related to contexts and may change to

adapt to internal system changes (e.g., failure of a service) or environmental changes (new services

with better properties or new user requirements). The SoaML models could be used as a

model@run.time [154]. The idea of models@run.time is to “extend the applicability of models

produced in model-driven engineering (MDE) approaches to the runtime environment” [174]. For

example, SoaML models should be able to express runtime context and possible changes in the

system. This leads us to think about expressing the variability and the commonalities in a SoaML

model. Several variation points could be used to express possible variants. At execution, the system

will dynamically choose the “most” suitable variants depending on the context [175]. These variants

may provide a better quality of service (QoS), offer new services that did not make sense in the

previous context, or discard some services that are no longer useful.

SoaML models include many implicit commonalities and variabilities. For example, Capabilities

can be used by themselves or in conjunction with Participants to represent general functionality or

abilities that a Participant must have. Thus, capability could express common functionalities between

some participants. There are also many implicit variation points that must be clarified. For example,

in a composite service contract, the “sub-contracts” may express exclusiveness or coexistence of these

contracts. This could be clarified using a feature model, which is a compact representation of all the

products in a Software Product Line [176].

ANNEX

I. ANNEX A

A.1 SoaML editor

The SoaML editor has been developed as an extension of Papyrus. In Papyrus, domain-specific

modeling languages are defined using UML profiles. We then create the SoaML profile by adapting

the xmi file containing the SoaML provided by the OMG in the following link:

http://www.omg.org/spec/SoaML/20120501/SoaMLProfile.xmi.

We have defined customized viewpoints in order to provide a user-friendly editor. In fact, viewpoints

are a customization feature provided in Papyrus to allow the definition of new diagrams through the

http://www.omg.org/spec/SoaML/20120501/SoaMLProfile.xmi

Annex 159

reuse and the customization of the original Papyrus diagrams. Viewpoints can be regarded as a set of

diagrams, selected and customized from the original ones. We use this feature to define customized

diagrams for our SoaML editor. As shown in Figure I.1, we have defined five viewpoints:

Capabilities, Messages, Participants, ServicesArchitecture, ServiceContract and ServiceInterfaces

viewpoints. For each viewpoint, we have defined a diagram (see Figure I.2, the red box).

Figure I.1: SoaML viewpoints.

Figure I.2: SoaML diagrams.

Each diagram has its own customized palette. Figure I.3 shows the five customized palettes that we

defined for each viewpoint.

Annex 160

(a) servicesArchitecture (b) serviceContract

 (c) Service definition

 (d) Participants

 (e) capabilities (f) data

Figure I.3: Palettes of the SoaML Papyrus editor.

Annex 161

A.2 Prerequisites for OCL language

Object Constraint Language (OCL) [156] was initially developed in 1995 at IBM and is now a part

of the UML standard. OCL is already added to many UML specifications like SysML specification

document in order to provide a more precise definition of UML meta-models. OCL allows the

definition of four types of constraints: an Invariant, a post-condition, a pre-condition and a guard.

Preconditions must be true at the time of operation execution. Post Condition evaluates to true at

the moment the operation ends. Guard must be true before state transition can occur. Finally,

invariants are constraints that apply to all instances of the metamodel element. It is written as an

expression that evaluates to true if the condition is met. An invariant condition must always evaluate

to true for all instances at the model level (L1). In our work, we use invariant conditions that we

attach to a SoaML stereotype. Then, these constraints must evaluate to true for all the model elements

stereotyped by this stereotype.

In OCL, invariants are defined as follows:

context context type inv [Invariant name]:

Boolean condition

An example of OCL invariant constraint is the following:

context Company inv:

self.noEmployees <= 50

This constraint indicates that the value of attribute noEmployees in instances of Company must be

less than or equal to 50.

An OCL invariant is defined in the “context” of a specific type, named the context type of the

constraint. Its body, which is the Boolean condition to be checked, must be satisfied by all instances

of the context type. In a Boolean condition, we can access objects and their properties, e.g., attributes,

and navigate between them by using UML vocabulary. This navigation is syntactically denoted by a

dot. “self” is used to indicate the current object and “result” the return value. OCL defines standard

types (e.g., Boolean, Integer, Real, String), collection types (Collection, Set, Bag, and Sequence) and

operations (e.g., not, if … then … else … endif, =, <>, or, and, xor, implies, etc.).

A.3 Implementation of consistency constraints using OCL

 SoaML constraint: All ownedAttributes of a MessageType must be Public.

Constrained element: MessageType

Message type represents data values that can be sent between parties. For that reason, the owned

attributes of a MessageType must be public, otherwise, it cannot be accessed by another participant.

Annex 162

OCL constraint:

context SoaML:: MessageType inv publicAttributes

if self.base_Class<>null
 then self.base_Class.attribute->size()>0

 implies self.base_Class.attribute->forAll (a|a.visibility=UML::VisibilityKind::public)

else
 if self.base_DataType<>null

then self.base_DataType.attribute->size()>0

 implies self.base_DataType.attribute ->forAll(a|a.visibility=UML::VisibilityKind::public)

 else
 self.base_Signal.attribute->size()>0

 implies self.base_Signal.attribute -> forAll (a|a.visibility=UML::VisibilityKind::public)

 endif
endif

This constraint verifies that the visibility of all the attributes of a MessageType evaluates to

“UML::VisibilityKind::public” in the case where the MessageType is a Class (base_Class<>null) or a

DataType or a Signal.

 SoaML constraint: All parts of a ServiceInterface must be typed by the Interfaces realized or

used by the ServiceInterface.

Constrained element: ServiceInterface

A ServiceInterface defines the interface and responsibilities of a participant to provide or consume a

service. It may represent a simple or complex service. In the first case, there is no required interface

and no protocol specified by the ServiceInterface (see Figure I.4 taken from the SoaML specification

document). A complex ServiceInterface may specify “parts” and “owned behaviors” to further define

the responsibilities of participants providing this service. Figure I.5 shows an example of complex

ServiceInterface, InvoicingService. As shown in the figure, the parts inside the ServiceInterface,

orderer and invoicing, are typed by the Interfaces realized (provided) and used (required) by the

ServiceInterface, Invoicing and InvoiceProcessing respectively, in order to represent the possible

consumers and providers of the functional capabilities defined in those interfaces. The

ServiceInterface is then used to define a formal agreement between the eventual consumers and

providers.

Figure I.4: The StatusInterface as a simple service [8].

Annex 163

Figure I.5: The InvoicingService ServiceInterface [8].

OCL constraint :

context SoaML:: ServiceInterface inv partsTypesOfServiceInterface

self.base_Class.ownedAttribute->forAll(a|

self.base_Class.getAllUsedInterfaces()->includes(a.type)

or
 self.base_Class.allRealizedInterfaces()->includes(a.type))

This constraint verifies, for all the attributes of a ServiceInterface, if the attribute type is included

into the used interfaces (getAllUsedInterfaces() returns) or the realized interfaces of that

ServiceInterface.

 SoaML constraint: The type of a Service must be a ServiceInterface or an Interface.

Constrained element: Service

Similarly to the Request constraint, we found that this constraint is incomplete. In fact, a port can also

be typed by a Provider, which “is intended to be used as the port type of a Participant that provides a

service”[8]. A provider extends both Interface and Class. Consequently, a port type of Request can

be a class stereotyped as a Provider. The resulting constraint is then: “The type of a Request must be

a ServiceInterface or an Interface or a provider”.

OCL constraint:

context SoaML:: Service inv ServiceType:

if base_Port.type.oclIsUndefined()

then false

else

let portType: Type= base_Port.type

in

portType.getAppliedStereotypes()->select(s|s.name='ServiceInterface' or s.name='Provider')->size()=1

or portType.oclIsTypeOf(Interface)

endif

This OCL constraint is evaluated in the context of a Service. It first verifies that the service port has

Annex 164

a type, computes that type (portType), then verifies that the port type is either a UML Interface or is

stereotyped by either ServiceInterface or Provider.

 SoaML constraint: The parts of a ServicesArchitecture must be typed by a Participant or

capability46.

Constrained element: ServicesArchitecture

ServicesArchitecture provides a “high-level view of a Service Oriented Architecture that defines how

a set of participants works together, forming a community, for a given purpose by providing and using

services”. Parts in a services architecture represent roles played by a participant in that SOA

application. Parts could also be typed by Capability to allow the specification of a role without regard

for how that role might be implemented, since Capability can be realized by one or more Participants.

Figure I.6 shows the Services architecture “Dealer Network Architecture”. The services architecture

is composed of two parts, dealer and mfg, which are respectively typed by Dealer and Manufacturer.

Figure I.6: Part type in a ServicesArchitecture [8].

OCL constraint :

context SoaML:: ServicesArchitecture inv partsTypes

let
 properties : Set (UML::ConnectableElement) = self.base_Collaboration.role

in
 properties->notEmpty()

 implies
 properties-> forAll(p|p.type->exists(t|

 t.getAppliedStereotypes()->select(s|s.name='Participant' or s.name='Capability'
 or s.name='Agent')->size()=1))

Remember that the ServicesArchitecture is a Collaboration. The parts of a collaboration are called

roles. We first compute the set of the services architecture roles, properties. Then we verify that for

each role in a services architecture, the role type is stereotyped either as Participant or as Capability

or as Agent.

46 Capabilities specify a cohesive set of functions or resources that a service provided by one or more Participants

might offer.

Annex 165

 SoaML constraint: Each service role in a service contract has a type, which must be a

ServiceInterface or UML Interface or Class stereotyped as “Provider” or “Consumer.”

Constrained element: ServiceContract

ServiceContract represents an agreement between several parties. To allow the reuse of a

ServiceContract, the latter is specified between service definitions so that it does not require the

specification of who, how, or why any party will fulfill their obligations under that ServiceContract.

This provides loose coupling between the agreements and the service implementations defined using

Participants so that the same contract can be used for several service implementations.

OCL constraint :

context SoaML:: ServiceContract inv RoleType

let
isComposit : Boolean= self.base_Collaboration.ownedConnector->isEmpty() and

self.base_Collaboration.getAllAttributes()
->select(oclIsTypeOf(UML::CollaborationUse))->notEmpty(),

isSimple :Boolean= self.base_Collaboration.getAllAttributes()

->select(oclIsTypeOf(UML::CollaborationUse))->isEmpty()

in
self.base_Collaboration.role-> notEmpty()

implies
isSimple and self.base_Collaboration.role-> forAll(role| (role.type->notEmpty())

implies role.type.oclIsTypeOf(UML::Interface))

or
isComposit and self.base_Collaboration.role->forAll(role|role.type.oclIsTypeOf(UML::Interface)

or
 (role.type.oclIsTypeOf(UML::Class) and (role.type.oclIsTypeOf(UML::Class)

 implies(role.type.getAppliedStereotypes()->select(s|s.name='Provider' or s.name='Consumer'
 or s.name='ServiceInterface') ->size()=1))))

Remember that a ServiceContract is a UML Collaboration. The idea is to check that any type of a

role (roleType) in the contract Collaboration is a UML Interface in the case of a simple contract or,

in the case of a composite contract, either an Interface or a UML Class stereotyped with

ServiceInterface or Provider or Consumer stereotypes. Simple contracts (isSimple=true) are

contracts without nested contract and composite ones (isComposite=true) are contracts containing

nested contract (CollaboationUse) without direct connection between parties (by Connectors).

 SoaML constraint: Agents should always be active. The property isActive must always be true.

Constrained element: Agent

The isActive is an attribute in a UML Class. It determines whether an object specified by this Class

is active or not. If true (resp. false), then the owning Class is referred to as an active (resp. passive)

Class. When a UML Class is modeled as being active, this means that an instance of this class has

some autonomous behavior. Similarly, in SoaML an Agent refers to an autonomous Participant that

can adapt to and interact with their environment.

Annex 166

OCL constraint:

context SoaML:: Agent inv IsActive:

self.base_Class.isActive

This OCL constraint is evaluated in the context of an Agent. It verifies that the property isActive

evaluates to true.

 SoaML constraint: The direction property of a Service port must be incoming.

Constrained element: Service

Contrary to Request, Service provides the Interfaces that are released by the ServiceInterface while

it requires the Interfaces that are used by the ServiceInterface, so that the property isConjugated must

evaluate to false.

OCL constraint:

context SoaML:: Service inv isConjugatedFalse

not base_Port.isConjugated

This OCL constraint is evaluated in the context of a Service. It verifies if the property isConjugated

evaluates to false.

 SoaML constraint: One end of a ServiceChannel must be a Request and the other a Service in

a ServicesArchitecture.

Constrained element: ServiceChannel

Participants in a ServicesArchitecture are connected together through ServiceChannels. A

ServiceChannel provides a communication path between a Request port of a consumer Participant

and a Service port of a provider Participant. This explains the fact that one end of a ServiceChannel

must be a Request and the other a Service.

OCL constraint:

context SoaML:: ServiceChannel inv serviceChannelEndTypes:

let portsSet: OrderedSet(UML::ConnectorEnd)= self.base_Connector.end

->select(e|e.oclIsTypeOf(UML::Port))

in

portsSet->size()>0

implies

portsSet->includes(p|p.getAppliedStereotypes()->select(s|s.name='Request')->size()=1)

and

portsSet->includes(p|p.getAppliedStereotypes()->select(s|s.name='Service')->size()=1)

This OCL constraint is evaluated in the context of a ServiceChannel which is a UML Connector. It

first computes the set of the ports, portsSet, connected to that Connector. Then verifies that portsSet

includes one port stereotyped by Service and one port stereotyped by Request.

Annex 167

 SoaML constraint: If the CollaborationUse has isStrict=true, then the parts must be compatible

with the roles they are bound to. For parts to be compatible with a role, one of the following must be

true:

1. The role and part have the same type.

2. The part has a type that specializes the type of the role.

3. The part has a type that realizes the type of the role.

4. The part has a type that contains at least the ownedAttributes and ownedOperations of the

role. In general, this is a special case of item 3 where the part has an Interface type that realizes

another Interface.

Constrained element: CollaborationUse

The property “isStrict” Indicates whether this particular fulfillment is intended to be strict. A value

of true indicates that the roleBindings must bind the role to compatible part. Then the constraint is

evaluated only if the property isStrict evaluates to true.

OCL constraint :

context SoaML:: CollaborationUse inv RoleBindingClientSupplierCompatibility

self.isStrict=true

implies
self.base_CollaborationUse.roleBinding-> forAll(rb|

(let

supplierType =(rb.oclAsType(UML::Dependency).supplier->select(s|s.oclIsTypeOf(UML::Property))
->select(s|s.oclAsType(UML::Property).type.oclIsTypeOf(Class))

->collect(oclAsType(UML::Property).type ->asOrderedSet()->first())),

clientType= (rb.oclAsType(UML::Dependency).client->select(s|s.oclIsTypeOf(UML::Property))

->collect(t:UML::NamedElement|t.oclAsType(UML::Property).type)->asOrderedSet()->first())
in (

 --1. The role and part have the same type.

supplierType= clientType

or

--2. The part (the supplier) has a type that specializes the type of the role.

 (clientType.oclAsType(Classifier).generalization.general->closure(general)
->includes(supplierType))

or
--3. The part has a type that realizes the type of the role.

 (clientType.oclAsType(Classifier).getRelationships().oclAsType(UML::Realization)
->includes(supplierType))

or
--4. The part has a type that contains at least the ownedAttributes and ownedOperations of the role.
 (supplierType.oclAsType(Classifier).getAllAttributes()

->includesAll(clientType.oclAsType(Classifier).getAllAttributes())

 and supplierType.oclAsType(Classifier).getAllOperations()

->includesAll(clientType.oclAsType(Classifier).getAllOperations()))
)))

As we explained before, a CollaborationUse contains roleBindings that bind each of the roles of its

Collaboration to a part. For each roleBinding, rb, we calculate the type of the supplier of the binding,

supplierType and the type of the client of the binding, clientType. Then we verify the compliance for

all of them.

Compliance between the parts with the role they are bound to in a CollaborationUse is a semantic

variation point. The specification gives a list of possible variations and it is up to the modelers to

Annex 168

determine which of the constraint choice(s) to apply [8]. In our specification, we choose to keep the

four choices as alternatives (the expression evaluates to true if at least one of the variations is

fulfilled).

 SoaML constraint: Each Participant satisfying roles in a ServicesArchitecture shall have a port

for each role binding attached to that Participant. This port shall have a type compliant with the type

of the role used in the ServiceContract (This constraint comes from the UML2 Collaboration whose

semantics are augmented with this requirement.)

For example, in the Dealer Network Architecture example shown in Figure I.7. The Shipper plays

role shipper in the ShipStatus contract. To be compatible with this role, it has a Request port typed

with ShippingStatus Interface. Thus as specified in the service contract, it requires the service

ShippingService. It is then compatible with its shipper role in the ShipStatus contract.

The Shipper plays another role, called also shipper, in the ShippingRequest contract. The Shipper has

a Service port typed with ShippingService ServiceInterface. It provides ShippingOrder Interface and

requires ScheduleUpdating Interface as described in the ShippingRequest contract. Thus, it is

compatible with the role it plays in that contract.

Figure I.7: Dealer Network Architecture.

Constrained element: ServicesArchitecture

OCL constraint :

Annex 169

context SoaML:: ServicesArchitecture inv ParticipantsRoleCompatibility

let
properties : Set (UML::ConnectableElement) = self.base_Collaboration.role,

collBUses: Set(UML::Element)= self.base_Collaboration.collaborationUse

in
collBUses->notEmpty()

implies
collBUses.oclAsType(UML::CollaborationUse).roleBinding

-> forAll(rb| --for all the role bindings of the CollaborationUse

let
--compute the set of the ports types
portTypesOfSupplier = rb.oclAsType(UML::Dependency).supplier ->

select(s|s.oclIsTypeOf(UML::Property))

->select(s|s.oclAsType(UML::Property).type.oclIsTypeOf(Class))
-> collect(oclAsType(UML::Property).type.oclAsType(Class).getAllAttributes())

-> select(att|att.oclIsTypeOf(UML::Port))->collect(oclAsType(UML::Port).type) ,

--compute the type of the client property of the RoleBinding rb
clientType=rb.oclAsType(UML::Dependency).client->select(s|s.oclIsTypeOf(UML::Property))

-> collect(t:UML::NamedElement|t.oclAsType(UML::Property).type)->asOrderedSet()->first()

in
--1. Verify if port types of the Participant includes the role type.
portTypesOfSupplier->includes(clientType)

--2. Verify if the Participant has a port type that specializes the type of the role.

or
(clientType.oclAsType(Classifier).generalization.general->closure(general)->

includes(portTypesOfSupplier))

--3. Verify if the supplier has a port type that realizes the type of the role.

or
(clientType.oclAsType(Classifier).getRelationships().oclAsType(UML::Realization)

->includes(portTypesOfSupplier))

--4. Verify if the supplier has a port type that contains at least the ownedAttributes and
ownedOperations of the role.

or

(portTypesOfSupplier.oclAsType(Classifier).getAllAttributes()
-> includesAll(clientType.oclAsType(Classifier).getAllAttributes())

 and
portTypesOfSupplier.oclAsType(Classifier).getAllOperations()

-> includesAll(clientType.oclAsType(Classifier).getAllOperations())
)

)

Any Participant playing a role in a service contract must be compliant with this role. We are verifying

this compliance for each role binding (rb) attached to a contract (collBUses is the set of contracts in

the ServicesArchitecture). The Participant bound to this rb must have a port type compliant with the

type of the role bounded to it. First, we compute the set of the port types, portTypesOfSupplier,

belonging to the Participant (called a supplier of the binding) and the role type, clientType, in the

contract (called a client of the binding). Then, at least one of these four conditions must hold: The

role type matches a port type of the supplier, the supplier has a port type that specializes the type of

the role and the supplier has a port type that realizes the type of the role or the supplier has a port type

that contains at least the ownedAttributes and ownedOperations of the role.

Annex 170

II. ANNEX B

B.1 Overview of target WSDL and WS-BPEL metamodels

As we mentioned before, SoaML model elements, namely the service definitions and the UML

Interactions are transformed into WSDL, XSD and BPEL model element. The transformation rules

are defined at the metamodel level. We already presented the metamodel element of SoaML language,

and the main metamodel elements of a sequence diagram, being part of the source language. In this

section we introduce the main metamodel elements of a WSDL definition and a WS-BPEL process,

being the targeted language by the model transformation presented in the next section.

B.1.1 WSDL metamodel

Web Service Description Language47 (WSDL) is an XML language used to describe and locate

web services. It describes the functionality of a web service and specifies how to access the service

(binding protocol, message format, and etc.). Figure 5.1.1 shows the main elements of the WSDL

metamodel.

Figure II.1: Overview of the WSDL metamodel elements.

A WSDL definition contains one or many Services. Each one contains a set of system functions

and contains at least one Port that defines the address to a Web service typically represented by a

simple HTTP URL string. Each port is connected to a Binding that specifies the binding style

47 https://www.w3.org/TR/wsdl

Annex 171

(RCP/Document), the transport protocol (SOAP or REST) and the operations offered by the service.

A Binding is associated with one PortType, which defines the Operations that can be performed, and

the Messages that are used to perform the operations. In fact, Messages define the data elements for

each operation. There are two kinds of messages: input messages for inbound ones (Request) and

output messages for outbound ones (Response). Each message is made up of one or more logical

Parts, which are a description of the logical content of a message and may represent parameters in

the message.

B.1.2 BPEL metamodel

Web Services Business Process Execution Language (WS-BPEL or simply BPEL [69]) is an

OASIS standardized executable language, which is intended to define business processes through web

service orchestrations. It is used to describe the control logic required to coordinate web services in

order to achieve a business goal. BPEL is defined in an XML format and utilizes several XML

specifications: WSDL to define partner services; XML Schema type definitions to specify the data

model; and, XPath and XSLT to provide support for data manipulation. In the following, we will show

the main concepts of the BPEL language.

Business process definition includes two elements [69]: a WSDL file that describes the business

process functionalities (web services) together with their message data structures, service addresses,

among others; and, a WS-BPEL file that defines the business process logic. In the following, we will

give an overview of the BPEL metamodel elements and their syntax. This metamodel is not included

in the BPEL OASIS specification but deduced from it. It is taken from the apache ODE plugins in the

Eclipse framework. As shown in Figure II.2, a BPEL process is composed of PatnerLink(s),

Variable(s) and one Activity at most.

Figure II.2: Composition of BPEL process.

Partner links. A BPEL process exports and imports functionalities by using web service Interfaces

which are modeled as partnerLinks. Each partnerLink is characterized by a partnerLinkType defined

in the WSDL definition. A partnerLinkType specifies the role and the type of a partner. An input

communication activity is associated with the process's MyRole and an output communication activity

is associated with the partner's PartnerRole.

Variables. Variables are used to store data to be exchanged between partners. They allow processes to

maintain state between message exchanges. BPEL supports three types of variables: WSDL message

type, XML simple type, and XML schema element. WSDL message type variables are the most

commonly used type of variables to store the data exchanged between business partners. The other

two types of variables hold data that is used in business logic and for composing messages sent to

partners.

Activities. Figure II.3 shows a simplified view of the WS-BPEL metamodel of the BPEL activities.

Annex 172

Figure II.3: Overview of BPEL activities.

BPEL allows modeling basic activities such as invoke or receive activities and structured activities

such as an assign activity. This latter can be used to copy data from one variable to another, as well as

to construct and insert new data using expressions. To call Web Services, BPEL defines an invoke

activity. This activity enables the specification of the operation that will be invoked, which can be a

request-response operation (in the case of synchronous web service) or one-way operation (in the case

of asynchronous web service), matching the operation definition (WSDL).

BPEL defines a receive and pick constructs that are used to receive inbound messages. A receive is a

blocking activity that waits until a matching message is received by the process instance. The pick

activity is similar to a receive activity in that it is a blocking activity. However, it waits for the

occurrence of exactly one event from a set of events, each of which is defined by an onMessage, and

then executes the activity associated with that event. After an event has been selected, the other events

are no longer accepted by the pick activity. An onAlarm activity can be added to pick activity to specify

a timeout alarm. The reply activity is used by a BPEL process to respond to a request previously

accepted through an inbound message activity. BPEL defines several structure activities such as

sequence activity, which defines a collection of activities to be performed in sequential order.

Activities forEach, while and repeatUntil are used for repeated execution of a contained activity.

Activities if and elseIf are used to model conditional branching. The flow activity is used to model

parallel process flows. The wait activity specifies a delay for a certain period of time or until a certain

deadline is reached.

For a best understanding, the following subsections will look at BPEL process structure and syntax

using an example taken from [177]. This example is illustrated in Figure II.4.

Annex 173

Figure II.4: BPEL process example.

This scenario models communication rules between a seller S, a broker B and a client C. The seller

relies on a broker to negotiate and sell an item to a client. First, it sends a message Item to the broker.

The broker then enters a negotiation loop (Offer-Counter) with the client as many times as he chooses,

then it has the choice to finishing the negotiation by concurrently sending both messages Final and

Result to the seller and the client respectively.

In the following, we give more information on the interaction patterns in BPEL (i.e., synchronous

and asynchronous), parallel execution of flow branches, process instance, and correlation sets.

Interaction Patterns in a BPEL Process: Synchronous versus Asynchronous processes. In a

synchronous interaction, a client sends a request to a service and remains blocked until the receiving

of the response. A BPEL process can be either a client or a service of a synchronous transaction. In

case it is on the client side, it needs an invoke activity that both sends the request and receives the

response. In case it is on the service side, it needs a receive activity to accept the incoming request,

and a reply activity to return the requested information.

In an asynchronous interaction, a client sends a request to a service and waits until the service

replies. On the client side, the process needs an invoke activity to send the request and a receive activity

to receive the reply (it can also use a pick activity with a timeout). On the service side, it needs a receive

activity to accept the incoming request and an invoke activity to return the requested information. The

example in Figure II.4 shows an asynchronous BPEL process, precisely a server. Each time the process

receives an operation call through a receive activity, it replies using an invoke activity.

Parallel execution of flow branches. Concurrent processing in BPEL is enabled through the definition

of flow activities. Its activities are enabled to start concurrently when the flow starts. The latter is

completed when all of these activities have completed. The flow activity also provides also

synchronization mechanism by the link construct. Each WS-BPEL activity optionally contains sources

Annex 174

and targets, which respectively contain collections of the source and target elements. A source

corresponds to the source of a link and a target corresponds to the target of a link. Links provide a level

of dependency indicating that the activity that is the target of the link is only executed if the activity

that is the source of the link has completed. This results in a synchronization relationship between the

source and target activity.

In several engines (i.e., oracle, Apache ODE, and ActiveBPEL), branches are executed serially in

a single thread. The execution order of flow branches differs between these implementations. The

execution is in an order fixed in advance in ActiveBPEL and Oracle BPEL (that is from left to right in

ActiveBPEL and from right to left in Oracle BPEL [178]). One thread starts executing a flow branch

until it reaches a blocking activity (for example, a receive activity). At this point, a new thread is

created that starts executing the next branch. However, Apache Orchestration Director Engine

(Apache ODE) engine executes the activities of the different branches in an unpredictable order to

ensure some fairness between the executions of the different branches. For this reason, we chose

Apache ODE for the execution of the BPEL processes.

Process instance. In BPEL, instances are created upon receiving a message targeted for a “start”

activity. This is the only way to instantiate a new business process. Then, a BPEL process must start

with a start activity, which is a receive or pick activity that is annotated with a createInstance attribute

set to “yes”. For each incoming message (i.e., message received by the process instance), BPEL engine

creates a new process instance and starts its execution. It is possible to have multiple start activities.

In most cases, messages are destined to an already existing stateful process (i.e., a stateful process is a

process that generates its response by executing business logic on its state stored in persistent store),

which are instantiated to act in accordance with the history of an existing interaction. Consequently,

messages sent to stateful processes need to be delivered not only to the correct destination port but also

to the correct instance of the business process providing this port.

Correlation sets. Messages destined to the same instance should be correlated by means of some

correlation data. In order to distinguish process instances, BPEL provides the correlation mechanism.

A correlation set is a compound key made up of one or more property values (in Figure II.5,

customerID and orderNb) that must be simple types and are mapped into message parameters by

property aliases. Each property in the correlation set must have an alias for the concerned message

parameter. An Alias defines the mapping rule set (one per message type) that determines the message

fields used to identify an instance. CustomerID is respectively mapped to ID and cID in input message

of the first and the second receive activities. The correlationSet must be associated with the appropriate

communication activities (invoke, receive and reply activities; onMessage branches of pick activities,

and onEvent variant of eventHandlers). The values of the properties for a correlation set must be

identical for all the messages in all the operations that carry the correlation set to its completion. In

Figure II.5, messages 1 and 2 are directed to the same instance because they have the same values of

the properties customerID and orderNbr.

Annex 175

Figure II.5: BPEL CorrelationSet and instances.

WS-BPEL also introduces systematic mechanisms for dealing with business exceptions and

processing faults. Moreover, it introduces mechanisms to define how activities within a process are to

be compensated when exceptions occur or a partner requests reversal.

B.2 Transformation of structural models

Algorithm 1 is the pseudo-code of the transformation that we have detailed in section 2.3. The pseudo-

code describes the mapping from SoaML to WSDL.

Algorithm 1 SoaML to WSDL Transformation Pseudo-Code

1: procedure SOAML2WSDL(SoaML Model,WSDL Model)

2: Apply stereotype soaml:SoaMLPackage;

3: Create wsdl:Definition from SoaML:Participant;
4:

5: foreach SoaML:port in Participant do

6: Get the type(Service Interface) and create wsdl::Service
7: Get the Realized Interfaces by the type

8: foreach Interface of the Realized Interface do

9: Create wsdl::PortType
10: Get the Operations of Interface

11: foreach Operation do

12: Create wsdl::Operation

13: Get the Parameters
14: foreach Parameter do

15: if Input or Inout then

16: Create wsdl::Input
17: end if

18: if Output or Inout then

19: Create wsdl::Output

20: end if

21: end foreach

22: end foreach

23: Create wsdl::Binding
24: Get Operations

25: foreach Operation do

26: Create Messages
27: Get the Parameters

28: foreach Parameter do

29: Create wsdl::Part

30: end foreach
31: Get the Parameters

Annex 176

32: foreach Parameter do

33: Create wsdl::Types

34: Create wsdl::ComplexType
35: Create Element with name and type

36: end foreach

37: end foreach

38: Create wsdl::Port
39: end foreach

40: end foreach

41: end procedure

First, each participant is mapped to a WSDL definition. Each port belonging to a Participant has a

type, which may be a SoaML ServiceInterface or a simple UML Interface. This type is mapped into

a WSDL Service of the same name. In the case of ServiceInterface, only realized interface are mapped

into a WSDL port that contains a binding associated with a WSDL portType. For each portType there

must be at least one WSDL binding with type name equal to the portType name. Each interface

operation is transformed into a WSDL operation in the portType with an input and an output

messages. Then, each operation parameter is mapped into a part in the already generated messages

which has element reference and to a ComplexType containing one element if it is SimpleType or

many in the case of Datatypes.

Below is the QVT-o code of the transformation of SoaML participants into BPEL processes.

QVT-o code SoaML2WSDL

modeltype wsdl "strict" uses wsdl('http://www.eclipse.org/wsdl/2016/WSDL');

modeltype SoaML "strict" uses SoaML('http://Papyrus/SoaML/1');

modeltype UML "strict" uses uml('http://www.eclipse.org/uml2/5.0.0/UML');

modeltype RootElement "strict" uses RootElement('http:///RootElement.ecore'); //Modeltype of PortExtension

transformation SoaMLToWSDL(in soamlin: UML, out wsdlout: wsdl);

main() {soamlin.rootObjects()[SoaML::Participant]->map SoaML2wsdl();}

mapping SoaML::Participant::SoaML2wsdl() : wsdl::Definition {

targetNamespace:= "http://eclipse.org/wsdl/"+ self.base_Class.name ;
xmlns:= "http://schemas.xmlsoap.org/wsdl/ "+ "xmlns:soap12=" +

"http://schemas.xmlsoap.org/wsdl/soap12/"+"xmlns:soap="+"http://schemas.xmlsoap.org/wsdl/soap12/";

self.base_Class.ownedPort-> forEach(p){//Get all the Ports

var wsPortSto : Stereotype := p.getAppliedStereotype("RootElement::PortExtension"); //Calling the

PortExtension Stereotype

var loc:= p.getValue(wsPortSto,"Location").toString(); //

var bind: EnumerationLiteral := p.getValue(wsPortSto,"BindingType").oclAsType(EnumerationLiteral);

var bindtype:=bind.name;

var ReaInt:= p.type.oclAsType(Interface);

if(bind.name='SOAP'){result.Bindings := ReaInt.map toSOAPBinding();}
else {result.Bindings := ReaInt.map toRESTBinding(bindtype);};

result.PortTypes := ReaInt.map toPortType();

result.Types:=ReaInt.map toTypes(); //Mapping of all Elements and Parameters to SimpleElements or

ComplexType

result.Message:= ReaInt.ownedOperation.map toMessageOut().min; //Every operation has an input message

and an output message

result.Message+= ReaInt.ownedOperation.map toMessageOut().mout; // An input and an output message are

created from an Operation

result.Service := p.type.oclAsType(Interface).map toServicefromInterface(loc);}}

mapping Interface::toTypes() : wsdl::Types {result.schema:=self.map toSchema();}

Annex 177

mapping Interface::toSchema(): Schema{

result.complexType:=self.ownedOperation.ownedParameter.map toComplexType(); // Transform DataTypes

to ComplexType elements

result.element:=self.ownedOperation.ownedParameter.map toMessageElement();

result.element+=self.ownedOperation.ownedParameter.map toMessageElementFromSimpleType(); //

Transform PrimitiveTypes to Simple Elements}

mapping Parameter::toComplexType() : wsdl::ComplexType when{self.type.oclIsTypeOf(DataType)}{
result.name:=self.type.oclAsType(DataType).name;

result.sequence:=self.type.oclAsType(DataType).map toSequence();}

mapping DataType::toSequence() : wsdl::Sequence when{self.oclIsTypeOf(DataType)} {

 result.element+=self.ownedAttribute->map toElement();}

mapping UML::Property::toElement() : wsdl::Element {

result.name:= self.name;

result.Type:=self.type.name;}

mapping Parameter::toMessageElement(): wsdl::Element when{self.type.oclIsTypeOf(DataType)}

{result.name:=self.name;
result.Type:="tns:"+self.type.oclAsType(DataType).name;}

mapping Parameter::toMessageElementFromSimpleType():wsdl::Element

when{not self.type.oclIsTypeOf(DataType) and self.type.oclIsTypeOf(PrimitiveType)} {

result.name:=self.name;

result.Type:=self.type.name; }

mapping UML::Interface::toServicefromInterface(a:String) : wsdl::Service {

 name:=self.name;

 result.Port:=self.map toPort(a);}

mapping UML::Interface::toPort(b:String) : wsdl::Port {

name:= self.name+"Port";

binding:= "tns:"+self.name+ "Binding";

result.address:=self.map toAddress(b);}

mapping UML::Interface::toAddress(b:String): wsdl::address{location:=b;}

mapping UML::Interface::toPortType() : wsdl::PortType {

name:= self.name+"PortType";

result.Operation:=self.ownedOperation->map toOperation();}

mapping UML::Operation::toOperation() : wsdl::Operation {
name:=self.name;

var c=self.ownedParameter;

result.Input:= object wsdl::Input{message:="tns:"+self.name+"MessageInput"}; //The message has the

result.Output:=object wsdl::Output{message:="tns:"+self.name+"MessageOutput"};}

mapping UML::Operation::toMessageOut(): min:wsdl ::Message,mout: wsdl::Message{

mout.name:=self.name + 'MessageOutput';

min.name:=self.name + 'MessageInput';

mout.Part:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'out' or

p.direction=ParameterDirectionKind::_'inout')->map toPart();

min.Part:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or
p.direction=ParameterDirectionKind::_'inout')->map toPart();}

mapping Parameter::toPart() : wsdl::Part {

result.name:=self.name+'Part';

result.elementName:= "tns:"+ self.name;}

mapping UML::Interface::toSOAPBinding() : wsdl::Binding {

name:= self.name+"Binding";

Annex 178

type:= self.name+'PortType';

result.Operation:=self.ownedOperation->first().map toOpSOAP();

result.soapbinding:=self.map toBindingSOAP();}

mapping UML::Interface::toBindingSOAP() : wsdl::SOAPBinding{

result.style:="document";

result.transport:="http://schemas.xmlsoap.org/soap/http";}

mapping UML::Operation::toOpSOAP() : wsdl::Operation {
name:=self.name;

result.Input:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or

p.direction=ParameterDirectionKind::_'inout')->first()->map toInpSOAP(result);

result.Output:=self.ownedParameter-> select(p|p.direction=ParameterDirectionKind::_'out' or

p.direction=ParameterDirectionKind::_'inout')->first().map toOutSOAP(result);}

mapping Parameter::toOutSOAP(op: wsdl::Operation) : Output {

result.soapbody:=self.map toBody();}

mapping Parameter::toInpSOAP(op:wsdl::Operation):Input{

result.soapbody:=self.map toBody();}

mapping Parameter::toBody() : wsdl::soapbody {result.use:="literal";}

mapping UML::Interface::toRESTBinding(a:String) : wsdl::Binding {

name:= self.name+"Binding";

type:= self.name+'PortType';

result.httpbinding:=self.map toHTTPBinding(a);

result.Operation:=self.ownedOperation.map toOp();}

mapping UML::Interface::toHTTPBinding(a:String) : wsdl::HTTPBinding{

if(a='RESTPost'){verb:='POST'} else {verb:='GET'};}

mapping UML::Operation::toOp() : wsdl::Operation {

name:=self.name;

result.Input:=self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or

p.direction=ParameterDirectionKind::_'inout')->first()->map toInp(result);

result.Output:=self.ownedParameter-> select(p|p.direction=ParameterDirectionKind::_'out' or

p.direction=ParameterDirectionKind::_'inout')->first().map toOut(result);}

mapping Parameter::toOut(op: wsdl::Operation) : Output {

result.mimecontent:=self.map toHTTPContent();}

mapping Parameter::toInp(op: wsdl::Operation) : Input {

result.mimecontent:=self.map toHTTPContent();}

mapping Parameter::toHTTPContent(): HTTPContent{

result.type:="text/xml";}

query UML::Type::isServiceInterface():Boolean{

return self.oclIsTypeOf(ServiceInterface);}

query UML::Type::isInterface() : Boolean {return self.oclIsTypeOf(Interface);}

query UML::Classifier::isDataType():Boolean{return self.oclIsTypeOf(DataType);}

B.3 Transformation of services choreographies

Algorithm 2 is the pseudo-code for the mappings of a SoaML choreography into a BPEL process.

Algorithm 2 SoaML to BPEL Transformation Pseudo-Code

1: procedure SOAML2BPEL(SoaML Model,BPEL Model)

2: Apply stereotype soaml:SoaMLPackage;

Annex 179

3: Create BPEL:Process from UML:Interaction found in Service Contract;

4: foreach UML::Interaction do

5: Create BPEL::Variables (List of Variables)
6: Get the List of Messages

7: foreach Message in Interaction do

8: Create BPEL::VariableInput

9: Create BPEL::VariableOutput
10: end foreach

11: Create BPEL::PartnerLinks(List of Partnerlinks)

12: Get the List of Lifelines
13: foreach Lifeline in Interaction do

14: Create BPEL::PartnerLink

15: Create BPELpl::PartnerLinkTypes
16: Create BPELpl::PartnerRole

17: end foreach

18: Create Sequence (Sequence of activities)

19: Create Flow
20: foreach MOS in Interaction do

21: Sort MOSs into a set containing MOSs corresponding to one Lifeline

22: Create BPEL::Sequence
23: Check Type of MOS

24: foreach MOS of type “isSend” do

25: Create BPEL::Receive
26: end foreach

27: foreach MOS of type “isReceived” do

28: Create BPEL::Invoke

29: end foreach

30: end foreach

31: foreach Message in Interaction do

32: Create BPEL::Link
33: end foreach

34: foreach Link Created do

35: BPEL::Sources

36: Get Receive Events
37: Create BPEL::Source(Children)

38: Store the Receive Events (Invoke activity) into source

39: Create BPEL::Targets
40: Get Send Events

41: Create BPEL::Target(Children)

42: Store the Send Events (Receive activity) into Target
43: end foreach

44: end foreach

45: end procedure

First, an Interaction is mapped into a BPEL process. Each lifeline is mapped into a partnerLink in the

generated BPEL process, each partner link has a partner role. After that, two local variables are

generated per message, an input and an output variable. Afterward, we generate the flow activity and

then we structure it by mapping each lifeline into a BPEL Sequence activity inside the Flow activity.

Each Message Occurrence Specifications is mapped into invoke or receive activity depending on its

type. Finally, each message is mapped into a link where we store the associated invoke activity into

the list of sources of the link, and the receive activity into the list of the targets thereby ensuring the

ordering between the received and send events of the message.

Below is the QVT-o code of the transformation of basic choreographies into BPEL processes.

Annex 180

QVT-o code SoaML2BPEL

modeltype SoaML "strict" uses SoaML('http://Papyrus/SoaML/1');

modeltype UML "strict" uses uml('http://www.eclipse.org/uml2/5.0.0/UML');

modeltype bpe "strict" uses 'http://docs.oasis-open.org/wsbpel/2.0/process/executable';

modeltype bpelpl "strict" uses 'http://docs.oasis-open.org/wsbpel/2.0/plnktype';

modeltype wsdl "strict" uses wsdl('http://www.eclipse.org/wsdl/2016/WSDL');

transformation toBPEL(in soamlin: UML, out bpel: bpe,out wsdlfile:bpelpl);

main() {

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map SoaML2WSDL();

soamlin.rootObjects()[UML::Model]->map SoaML2pbel(); //Generate a Sequence of BPEL Processes

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map toRole(); //Generate

WSDL File (Roles)

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interface].map toPortType();

//GenerateWSDLFile(PortType)

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction]->map BPELOrchestratorRole();

//Generate the Orchestrator Role}

mapping UML::Interface::toPortType() : wsdl::PortType@wsdlfile{

name:= self.name+"PortType";

result.Operation:=self.ownedOperation->map toOperation();}

mapping UML::Interaction::BPELOrchestratorRole() : Role@wsdlfile {

 name:='OrchestratorRole';}

mapping UML::Operation::toOperation() : wsdl::Operation@wsdlfile {

name:=self.name;

self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or

p.direction=ParameterDirectionKind::_'inout')->map toVariable();}

mapping UML::Parameter::toVariable(): bpe::Variable@wsdlfile{name:=self.name;}

mapping UML::Model::SoaML2pbel() : Sequence(bpe::Process) {

self.ownedElement[UML::Interaction]->map InteractionToBpelProcess(); //Generate BPEL Process from

every Interaction }

mapping UML::Lifeline::SoaML2WSDL() : PartnerLinkType@wsdlfile { name:=self.name;}

mapping UML::Lifeline::toRole(): bpelpl::Role@wsdlfile {name:=self.name+'Role';}

mapping UML::Interaction::InteractionToBpelProcess() : bpe::Process {

 name:=self.name;

 targetNamespace:='http://eclipse.org.bpel/'+self.name;

result.variables:= self.map MessagesToVariables(); //Generate the list of Variables

result.activity:=self.map InteractionToMainSequenceActivity(); //Generate the Main Sequence

result.partnerLinks:= self.map lifelinesToPartnerLinks(); //Generate List of Partnerlinks}

mapping UML::Interaction::lifelinesToPartnerLinks() : bpe::PartnerLinks {

children:= self.lifeline->map lifelinesToPartnerLink(); //Generate a Partnerlink for Every lifeline}

mapping UML::Lifeline::lifelinesToPartnerLink() : bpe::PartnerLink {

 name:=self.name;
 result.PartnerLinkType:=self.resolveone(PartnerLinkType);

 result.myRole:=self.resolveone(bpelpl::Role);}

mapping UML::Interaction::MessagesToVariables() : bpe::Variables {

//Generate for every message two variables

children:= self.ownedElement[Message]->map messageToVariableInput(); //Generate Input Variable

children:= self.ownedElement[Message]->map messageToVariableOutput(); //Generate output Variable}

mapping UML::Message::messageToVariableInput() : bpe::Variable {

result.name:= self.name+'MessageInput';}

Annex 181

mapping UML::Message::messageToVariableOutput() : bpe::Variable {

result.name:= self.name+'MessageOutput';}

mapping UML::Interaction::InteractionToMainSequenceActivity() : bpe::Sequence {

name:='main';

result.activities:=self.map toFlow();} //Generate Main flow

mapping UML::Interaction::toFlow() : bpe::Flow {
name:='flow'; result.links:=self.map toLinks(); //Generate List of Links

result.activities:=self.lifeline->map toLifelineSequence(self);}

mapping UML::Interaction::toLinks() : bpe::Links {

result.children:=self.message.map toSingleLink();}

mapping UML::Message::toSingleLink() : bpe::Link { name:=self.name+'Link'; } //Generate a Link for Every Message

mapping UML::Lifeline::toLifelineSequence(a:UML::Interaction) : bpe::Sequence

{//Generate a Sequence for every Lifeline

name:=self.name;

var SetOfMOS:=self.interaction.fragment[MessageOccurrenceSpecification]; //Get List of Message Occurence

Specifications
var UMLLifeline := self;

SetOfMOS->forEach(p) {

if(p.covered->asOrderedSet()->first()=UMLLifeline) {

result.activities+=p.map mosToBPELReceiveActivity();//Generate Receive from MOS

result.activities+= p.map mosToBPELInvokeActivity();//Generate Receive from MOS

result.activities+=p.map toAssignActivity();}}} // Generate Assign from MOS

mapping MessageOccurrenceSpecification::toAssignActivity(): bpe::Assign when{self.isSend()}{

 result.name:=self.message.name+'Assign';

 result.validate:=false;

 result.copy:=self.map toAssignCopy();
 result.sources:=self.map toSources();}

mapping MessageOccurrenceSpecification::toSources(): bpe::Sources {

result.children:=self.map toSource();} //Generate List of Sources

mapping MessageOccurrenceSpecification::toSource(): bpe::Source{

result.Link:=self.message.resolveone(Link);} ; //Generate Source

mapping MessageOccurrenceSpecification::toAssignCopy(): bpe::Copy{ //Manipulate Data

result._from:=self.map toAssignFrom();

result.to:=self.map toAssignTo();}

mapping MessageOccurrenceSpecification::toAssignFrom(): bpe::From when{self.isSend()}
 {var lifel:=self.covered->asOrderedSet()->first();

lifel.represents.type.oclAsType(Interface).ownedOperation;

var a:='';

result._literal:=a ;}

mapping MessageOccurrenceSpecification::toAssignTo(): bpe::To {}

mapping MessageOccurrenceSpecification::mosToBPELReceiveActivity() : bpe::Receive

when{self.isSend()}{

 result.name:=self.name;

result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink);
result.variable:=self.message.resolveoneIn(UML::Message::messageToVariableInput, bpe::Variable);}

mapping MessageOccurrenceSpecification::mosToBPELInvokeActivity() : bpe::Invoke

when{self.isReceive()}{

result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink);

 result.name:=self.name;

 result.targets:=self.map toTargets();

result.inputVariable:=self.message.resolveoneIn(UML::Message::messageToVariableOutput,

Annex 182

bpe::Variable);}

mapping MessageOccurrenceSpecification::toTargets(): bpe::Targets

{result.children:=self.map toTarget();} //Generate List of Targets

mapping MessageOccurrenceSpecification::toTarget(): bpe::Target

{result.Link:=self.message.resolveone(Link); }; //Generate Target

Below is the QVT-o code of the transformation of structured choreographies into BPEL processes.

QVT-o code SoaML2BPEL

modeltype SoaML "strict" uses SoaML('http://Papyrus/SoaML/1');

modeltype UML "strict" uses uml('http://www.eclipse.org/uml2/5.0.0/UML');

modeltype bpel "strict" uses 'http://docs.oasis-open.org/wsbpel/2.0/process/executable';

modeltype bpelpl "strict" uses 'http://docs.oasis-open.org/wsbpel/2.0/plnktype';

modeltype wsdl "strict" uses wsdl('http://www.eclipse.org/wsdl/2016/WSDL');

transformation toBPEL(in soamlin: UML, out bpel: bpel ,out wsdlFile:bpelpl);

main(){

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map SoaML2Secbpel();

//Generate WSDL File

soamlin.rootObjects()[UML::Model]->map SoaML2pbel(); //Generate BPEL Process

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction].lifeline->map toRole(); //Generate
Lifeline ROles

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interface].map toPortType(); //Generate PortType

soamlin.rootObjects()[UML::Model].ownedElement[UML::Interaction]->map BPELOrchestratorRole();

//Generate Orchestrator Role

soamlin.rootObjects()[UML::Model].ownedElement[UML::Message]->map toIQarrayWSDL(); //Generate

the FIFO queue IQ

soamlin.rootObjects()[UML::Model].ownedElement[UML::Operation]->map fromOptoQueue();} // Add

Operation to Queue

mapping UML::Message::toIQarrayWSDL():wsdl::ComplexType@wsdlFile{

result.sequence:= self.map toSequenceWSDLArray();}//Generate Sequence of Operations

mapping UML::Message::toSequenceWSDLArray():wsdl::Sequence{}

mapping UML::Interface::toPortType():wsdl::PortType@wsdlFile{

name:= self.name+"PortType";

result.Operation:=self.ownedOperation->map toOperation();}

mapping UML::Operation::toOperation():wsdl::Operation@wsdlFile{//Generate Operations

name:=self.name;

self.ownedParameter->select(p|p.direction=ParameterDirectionKind::_'in' or

p.direction=ParameterDirectionKind::_'inout')->map toVariable();}

mapping UML::Parameter::toVariable():bpel::Variable@wsdlFile{name:=self.name;}

mapping UML::Model::SoaML2pbel():Sequence(bpel::Process) {//Sequence of Processes

self.ownedElement[UML::Interaction]->map InteractionToBpelProcess(); //Generate a BPEL process from

Every Interaction}

mapping UML::Lifeline::SoaML2Secbpel() : PartnerLinkType@wsdlFile{

 name:=self.name;}

mapping UML::Interaction::BPELOrchestratorPLT() : PartnerLinkType@wsdlFile {

 name:='OrchestratorPL';}

mapping UML::Interaction::BPELOrchestratorRole() : Role@wsdlFile {

 name:='OrchestratorRole';}

Annex 183

mapping UML::Lifeline::toRole(): bpelpl::Role@wsdlFile {name:=self.name+'Role';}

mapping UML::Interaction::InteractionToBpelProcess() : bpel::Process {

 name:=self.name;

 targetNamespace:='http://eclipse.org.bpel/'+self.name;

 result.variables:= self.map MessagesToVariables();//Generate for each message 2 Variables

 result.activity:=self.map InteractionToMainSequenceActivity();//Generate the Main Sequence

 self.fragment.IntFragToActivities();

 partnerLinks:= self.map lifelinesToPartnerLinks();}

mapping UML::Interaction::lifelinesToPartnerLinks() : bpel::PartnerLinks {

 children:= self.lifeline->map lifelinesToPartnerLink();

children+=object bpel::PartnerLink{name:='Orchtestrator';myRole:=self.resolveone(Role); }; //Indicate Role

for PartnerLink Type}

mapping UML::Lifeline::lifelinesToPartnerLink() : bpel::PartnerLink {

 name:=self.name;

result.PartnerLinkType:=self.resolveone(PartnerLinkType);

result.myRole:=self.resolveone(bpelpl::Role);}

mapping UML::Interaction::MessagesToVariables() : bpel::Variables {
children:= self.ownedElement[Message]->map messageToVariable();}

mapping UML::Message::messageToVariable() : bpel::Variable {

result.name:= self.name+'Message';}

mapping UML::Interaction::InteractionToMainSequenceActivity() : bpel::Sequence {

name:='main';

result.activities:=self.map toFlow();} //Generate the Flow

mapping UML::Interaction::toFlow() : bpel::Flow {

name:='flow'; result.links:=self.map toLinks();
result.activities:=self.lifeline->map toLifelineSequence(self);

result.activities+=self.map toWhile();} //Generate the While Activity(Additional Branch)

mapping UML::Interaction::toWhile() : bpel::While{

result.activity:=self.map toPick();result.name:='MsgReceptionLoop'; result.condition:=self.map

toWhileCondition();} //Generate While Construct and its Condition

mapping UML::Interaction::toWhileCondition():bpel::Condition{

result.expressionLanguage:='';}

mapping UML::Interaction::toPick() : bpel::Pick{

 result.messages:=self.ownedElement[Message]->collect (signature)->map ToOnMessage();}

mapping UML::NamedElement::ToOnMessage(): bpel::OnMessage{

result.activity:=self.map toOnMessageSequence(); //Generate List of OnMessage}

mapping UML::NamedElement::toOnMessageSequence():bpel::Sequence{

result.activities:=self.map toWhileBranchAssign();}

mapping UML::NamedElement::toWhileBranchAssign():bpel::Assign{ name:=self.name;}

mapping UML::Interaction::toLinks() : bpel::Links {

result.children:=self.message.map toSingleLink();} //Generate Link

mapping UML::Message::toSingleLink() : bpel::Link { name:=self.name+'Link'; }

mapping UML::Lifeline::toLifelineSequence(a:UML::Interaction) : bpel::Sequence {

name:=self.name;

var SetOfMOS:=self.interaction.fragment[MessageOccurrenceSpecification];

var UMLLifeline := self;

SetOfMOS->forEach(p) {

Annex 184

if(p.covered->asOrderedSet()->first()=UMLLifeline) {

result.activities+=p.map mostoWhile(); //Generate Ievent()

result.activities+=p.map mostoSequence();}}}

mapping MessageOccurrenceSpecification::mostoSequence(): bpel::Sequence {

result.activities+=self.map toAssignActivity(); //Generate Assign

result.activities+=self.map mostoInvoke();

result.activities+=self.message.signature.oclAsType(UML::Operation).map

toAssignOpDequeue(self.message.resolveone(wsdl::ComplexType)); //Dequeue Operation from FIFO array}

mapping MessageOccurrenceSpecification::mostoInvoke() : bpel::Invoke

when{self.isReceive()}{}

mapping MessageOccurrenceSpecification::toAssignActivity(): bpel::Assign when{self.isSend()}{

 result.name:=self.message.name+'Assign';

 result.validate:=false;

 result.copy:=self.map toAssignCopy(); //Manipulate Variable

 //result.sources:=self.map toSources(); }

mapping MessageOccurrenceSpecification::toAssignCopy(): bpel::Copy{

result._from:=self.map toAssignFrom();
result.to:=self.map toAssignTo();}

mapping MessageOccurrenceSpecification::toAssignFrom(): bpel::From when{self.isSend()}{

var lifel:=self.covered->asOrderedSet()->first();

lifel.represents.type.oclAsType(Interface).ownedOperation;

result.variable:=self.message.signature.oclAsType(Operation).ownedParameter.resolveone(bpel::Variable) ;

var a:='';

result._literal:=a;}

mapping MessageOccurrenceSpecification::toAssignTo(): bpel::To {}

mapping MessageOccurrenceSpecification::mosToBPELReceiveActivity() : bpel::Receive

when{self.isSend()}{

 result.name:=self.name;

 result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink);

 result.variable:=self.message.resolveone(bpel::Variable);}

mapping MessageOccurrenceSpecification::mosToBPELInvokeActivity() : bpel::Invoke

when{self.isReceive()}{

result.partnerLink:=self.namespace.oclAsType(UML::Interaction).lifeline.resolveone(PartnerLink);

result.name:=self.name;}

helper UML::InteractionFragment::IntFragToActivities() {

 switch {
 case (self.oclIsTypeOf(CombinedFragment)) {

// Check the Type of CombinedFragment

if (self.oclAsType(CombinedFragment).interactionOperator= InteractionOperatorKind::alt){

self.oclAsType(CombinedFragment).operand->toAltOperand();}

else if (self.oclAsType(CombinedFragment).interactionOperator= InteractionOperatorKind::loop){

self.oclAsType(CombinedFragment).operand->toLoopOperand();}

else if (self.oclAsType(CombinedFragment).interactionOperator= InteractionOperatorKind::opt){

self.oclAsType(CombinedFragment).operand->toOptOperand();}}

 }}

helper Set(InteractionOperand)::toAltOperand() { //In case of an Alt Operand
var firstoperand:=self->asOrderedSet()->first();

firstoperand.covered->forEach(l){ var seq:= l.resolveone(bpel::Sequence);

seq.activities+=l->map toIfconstruct(self); //Generate If for the first Operand};}

mapping UML::Lifeline::toIfconstruct (c:Set(uml::InteractionOperand)):bpel::If{

var sizeofset:=c->size();

var target:= sizeofset;

var nextOperands:= c->asOrderedSet()->subOrderedSet(2,target);

Annex 185

result.activity:= object bpel::Sequence{};

nextOperands->forEach(o) {result.elseIf+=self.map toElseIfconstruct(o); //Generate IfElse for the rest of

Operands }}

mapping Lifeline::toElseIfconstruct(t:InteractionOperand):bpel::ElseIf {

 condition:= self.map toCondition(t);

 result.activity:= object bpel::Sequence{};}

mapping Lifeline::toCondition(t:InteractionOperand):bpel::Condition {
 result.expressionLanguage:='elseIfCondiditon'+t.name; }

mapping MessageOccurrenceSpecification::mostoWhile() : bpel::While

when{self.isReceive()}{ result.activity:=object bpel::Empty{}; }

helper InteractionOperand::toOptOperand() {

self.covered->forEach(l){ var seq:= l.resolveone(bpel::Sequence); //Mapping of Opt Operand

seq.activities+=l->map toIfOptconstruct(self); //Map to If };}

mapping UML::Lifeline::toIfOptconstruct (c:uml::InteractionOperand):bpel::If{ result.activity:= object

bpel::Sequence{};}

helper InteractionOperand::toLoopOperand(){

self.covered->forEach(l){ var seq:= l.resolveone(bpel::Sequence);

seq.activities+=l->map toRepeatLoopconstruct(self); //Map Loop to Repeat Until }}

mapping Lifeline::toRepeatLoopconstruct(c:uml::InteractionOperand):bpel::RepeatUntil {result.activity:=self.map

toRepeatUntilSequence();}

mapping Lifeline::toRepeatUntilSequence():bpel::Sequence{}

mapping Operation::fromOptoQueue():wsdl::ComplexType@wsdlFile{

result.sequence:=self.map fromOptoQueueSequence();}

mapping Operation::fromOptoQueueSequence():wsdl::_Sequence@wsdlFile{ result.element:=object

wsdl::Element{name:=self.name};

result.element+=self.ownedParameter.map fromOptoQueueElement();}

mapping Parameter::fromOptoQueueElement():wsdl::Element@wsdlFile{name:=self.name;}

helper UML::Operation::addtoQueueOp(inout a:wsdl::ComplexType){

a.sequence:=object wsdl::_Sequence{element:=object wsdl::Element{name:=self.name;}};} // Add operation

to queue

helper UML::Operation::dequeueOp(inout a:wsdl::ComplexType){
self.map toAssignOpDequeue(a);} // Precise which operation to delete and from which queue

mapping UML::Operation::toAssignOpDequeue(

a:wsdl::ComplexType):bpel::Assign{a->excluding(a->first());} // Delete first element of the queue (FIFO)

III. ANNEX C

C.1 Semantic-based traces of sequence diagram

In the following, we give an overview of the work elements that we reuse in our approach,

specifically the generation of IOSTS from a sequence diagram specification. As we mentioned in

chapter 3, we use Input/Output Symbolic Transition Systems (IOSTS) to formalize the trace

semantics of UML sequence diagrams, which could be transformed into the same formalization. We

follow the trace semantics proposed in [9] where sequence diagrams are formalized as IOSTS. The

symbolic execution of such IOSTS results in a tree-like structure that characterizes all possible

Annex 186

executions of the system specified by the sequence diagram. The following paragraphs detail the

formalization proposed in [9] that we have slightly modified to stick to the format of Choreography

specifications in a SoaML model.

Data signature. A Sequence diagram is associated with a so-called data signature Ω = (S, Op) where

S is a set of all type names introduced in the sequence diagram and Op is a set of all operation names

in the sequence diagram as well. A sequence diagram is also associated with a set of variables denoted

V. Each variable has a type in S. TΩ(V) denotes the set of terms over V and SenΩ(V) denotes the set

of all typed equational formulae which contains the truth values true, false and all formulae including

the equality predicate (=) and the usual connectives (￢, ∨, ∧).

An IOSTS is defined over a couple Σ= (A,C) where A denotes the set of data variables typed in S and

C the set of communication channels. Executions of transitions in an IOSTS are associated to actions

occurrence: an action is an element of the set Act(Σ) defined as: Act(Σ) ::= c?x|c!t|new(x)|τ, where c

∈ C, x ∈ A, t ∈ TΩ(A). c?x is the reception of a value on channel c stored in x, c!t denotes the emission

of the value assigned to t on channel c, new(x) denotes an arbitrary new assignment of x and τ is an

unobservable action.

Definition 1 (IOSTS) an IOSTS is defined as a triple (Q, q0, T), where Q is a set of

states, q0 ∈ Q is the initial state and T is a set of transitions of the form (q, φ, act, ρ,

q’) where q, q’ ∈ Q, φ ∈ SenΩ(A), act ∈ Act(Σ) and ρ is a substitution of variables

of Ad in TΩ(A).

From sequence diagram to IOSTS. In the following, we explain the key points of the translation

mechanisms proposed in [9] through the transformation of the Shipping Request Choreography

example shown in Figure 3.1.1 into IOSTS.

A sequence diagram is represented textually as a couple of sets ({msg1…, msgl},{ΔLfs1,…,ΔLfsn}),

where for all i ≠ j ≤ n we have si is a service interface and si ≠ sj. Elements of the form msg ∈ {msg1…,

msgl} are of the form (φ, m), where φ is a formula and m is a message name with the convention that

message name are distinct from one another. Lifelines are syntactically defined as ΔLfs::= ϵ |

(φ,atoms). ΔLfs | (loop, o, ΔLfs). ΔLfs | (alt|strict,o, ΔLfs,o’, ΔLfs).ΔLfp, where, φ is a formula of

SenΩ(V), o, o’ are regions, and atoms is of the form: atoms::= m | new(x) | x =δ, where m is a message

name, x is a variable of V , δ is a term of TΩ(V) (= is the assignment operation), m is a message name

of source or target s.

The following details the transformation steps.

1) Transformation of messages: each message msg = (φ, m) is mapped into an IOSTS Gmsg which

communicates over channels of the form m.in and m.out respectively for reception and emission of

operation calls between services. Figure III.1 shows the translation of operation call op1. Gmsg

contains three transitions: an initialization transition, a reception transition to receive values through

m.in and an emission transition to emit values through channel m.out. A FIFO queue variable fm stores

the arriving values.

Annex 187

Figure III.1: Gop1, the transformation of op1 message.

2) Transformation of lifelines: each lifeline is transformed into an IOSTS as follows:

Empty lifeline of the form ϵ is mapped into the IOSTS Gϵ = ({q}, q, ∅) where q denotes a state which

represents both the initial state of Gϵ, denoted init(Gϵ), and the final state of Gϵ, denoted final(Gϵ).
Lifelines that cover a simple sequencing of message occurrence specifications are mapped as follows.

Each message sending or receiving is mapped into a new transition and a new state. Generally, if the

lifeline ΔLfs is of the form (φ, atoms).ΔLfs’. GΔLfs’ = (Q, q0, T) denotes the translation of the lifeline

ΔLfs’. The transformation of the lifeline ΔLfs is denoted GΔLfs and is of the form GΔLfs = (Q ∪ {q},

q, T ∪ {tr}) where q is a new fresh state symbol denoting init(GΔLfs), and tr is a transition depending

on the atom form and whose target state is q0. final(GΔLfs) is final(GΔLfs’).

Figure III.2: translation of lifelines into IOSTS.

The result of the mapping of the sender and shipper lifelines are shown in Figure III.3.

(a)Translation of sender lifeline (c) Translation of shipper lifeline

Figure III.3: Translation of sender and shipper lifelines.

q
0

'

op
1
.out? x

op1

op
2
.in! x

op2

op
3
.in! x

op3

q
2

q
3

q
1

’

’

’

’

op
2
.out? x

op2

q
0

q
2

q
3

q
1

op
1
.in! x

op1

op
3
.out? x

op3

x
op1

= OrderShippingRequest
x

op2
= OrderShippingResponse

x
op3

= ShippingConformation

q
0

op
1
.in!x

op1

G
Δlf’s

Init(G

Δlf’s
)

final(G
Δlf’s

)= final(G
Δlfs

)

Annex 188

Details about the mapping of combination operator could be found in [9].

3) Completion operations: After the transformation of all the lifelines ΔLfs of the sequence diagram

into IOSTS GΔLfs, the set of transitions of GΔLfs is enriched by additional operations, namely the

addition of initialization transition and the addition of looping transitions for all states of the IOSTS.

The purpose of the looping transition is to store all the region crossing decision made by lifelines

sharing regions with ΔLfs.

4) Full translation of a sequence diagram: Let sd be a sequence diagram ({msg1…,

msgl},{ΔLfs1…,ΔLfsn}). The translation of sd is a TIOSTS Gsd defined as the composition of the

transformations of msgi ∈ {msg1…, msgl} and ΔLfsj ∈ {ΔLfs1…, ΔLfsn}. The result of the

composition of the transformations of messages and lifelines (see Figure III.1 and Figure III.2) is

shown in Figure III.4.

Figure III.4: Transformation of Shipping Request Choreography into IOSTS.

C.2 Reconstitution of the global trace from services traces

This Appendix presents the pseudo-code for the Algorithms allowing to reconstitute a global traces

from the services traces when all of them are available. In this case, we dispose of a collection of

traces each of which is recorded at the level a service interface. Now, we need to infer global system

traces from these traces. This global trace is obtained by combining services traces based on

timestamps information. In this section, we describe the algorithm that computes the global trace

(Algorithm 1: GenFromServicesTraces).

The idea is simple: Given for example two uncorrelated receptions (!, si, sj, op1) and (!, sk, sl, op2)

occurring respectively at 11:15:34,895 and 11:15:35,046 of the same day. If local clocks work

perfectly (as if we have a global clock) then we know that (!, si, sj, op1) precedes (!, sk, sl, op2).

Algorithm 1 compares timestamps of head actions in services traces (line 7): selects indexes of the

one(s) with the earliest the timestamp (line 7-19); and then it is inductively applied on the rest of

associated traces while keeping the other traces unchanged (lines 23, 26). Note that we assume that

on the same service, timestamps are distinct and given in increasing order. When two actions of

different services or more occur at the same timestamp, we choose to prioritize outputs over inputs in

the resulting trace since most likely those outputs have been computed on the basis of earlier data

Annex 189

exchange between services (line 21–24). Finally, actions of the same kind are added in an arbitrary

order.

IV. ANNEX D

Detailed specification of the Travel Management System

The customer (c) visits the Travel Management System (TMS) website looking for a flight and a

hotel.

i) “c” chooses the desired dates of travel and the destination. This is modeled by the Search service

contract, which is refined using a UML Interaction in the form of Sequence Diagram. The Search

Sequence diagram is shown in Figure IV.1.

Figure IV.1: Sequence Diagram of Search contract.

ii) “TMS” sends a request to the Air Travel Management Server (AMS) and Hotel Management

Annex 190

Server (HMS) to search for the best suitable matches. This is specified through the Query service

contract and refined using the Query Sequence Diagram shown in Figure IV.2.

Figure IV.2: Sequence Diagram of Query contract.

iii) To get the best flight, “AMS” contacts the two flight companies, Fast Airways (fa) and Reliable

Airways (ra) with the request. These flight companies answer back to “AMS” with corresponding

price options, which get processed. This is modeled by the Processes Flight service contract refined

by the Sequence Diagram shown in Figure IV.3.

Figure IV.3: Sequence Diagram of Process flight contract.

iv) Processes Hotel service contract models another similar request which is made by H to the two

hotel companies Excellent Hotel (eh), and Premium Hotel (ph), which respond back with their

availabilities and prices (Figure IV.4).

Figure IV.4: Sequence Diagram of Process Hotel contract.

Note that, the Processes Flight and Processes Hotel service contracts are weakly sequenced, then both

Annex 191

of these service contracts may execute in parallel.

v) “tsm” receive the best flight and the hotel information as a response to its query (Figure IV.5).

Figure IV.5: Sequence Diagram of Respond to Query contract.

vi) “tsm” presents the price to the customer after adding its own profit. This is shown in Figure IV.6,

which illustrates the Sequence Diagram of Present Options service contract.

Figure IV.6: Sequence Diagram of Present Options contract.

vii) The client may refuse the presented choices. In this case, he/she may go back to Step ii) with

perhaps a revised set of dates and destinations. However, if he/she accepts the options, then he/she

selects the flight and the hotel, as modeled by Select Flight & Hotel service contract (Figure IV.7).

Figure IV.7: Sequence Diagram of Select flight and Hotel contract.

viii) The client has two options: either creating a new account and entering all information as specified

by Enter Info contract or login with an existing account. In the first case, the login information will

be validated, namely the credit card information will be validated by a credit card validator service,

ICCValidate, then a validation SMS will be send by an SMS sender service (Figure IV.8). In the

second case, the login request would include all the customer information, namely the credit card

information and other information (name, customer number), which is modelled by the Login service

contract shown in Figure IV.9.

Annex 192

Figure IV.8: Sequence Diagram of Enter Info contract.

Figure IV.9: Sequence Diagram of Login contract.

ix) The customer then initiates the process payment by invoking processPayment operation. “TMS”

sends the credit card information to the Bank (b) for payment to be processed. This is specified by

Process Payment Sequence Diagram shown in Figure IV.10.

After processing the information, the Bank may either approve the payment or notify “TMS” in case

the transaction is declined. “TMS” in turn notifies the customer. The latter enters a different credit

card information. Also, this new credit card information is simultaneously updated in M’s database

(dB). This is modeled by sub-collaboration Re-enter Financials. This process keeps on repeating until

the credit card is successfully authorized. Because of the weak sequencing, it is possible for the update

to the database to take some time and lag behind. Hence, a scenario may exist where the database is

being updated for the credit card number from the 2nd attempt, while the client may be entering credit

card information for the 5th time.

xi) Once the transaction is approved, the Bank notifies “TMS”. “TMS” concurrently reserves the

flight modeled by service contract Reserve Flight, and the hotel as modeled by the service contract

Reserve Hotel with “AMS” and “TMS”, respectively.

xii) A confirmation email is sent to the client, modelled by Confirmation Notice.

Annex 193

Figure IV.10: Sequence Diagram of Process Payment contract.

Bibliography
[1] T. Gherbi, D. Meslati, and I. Borne, “Mde between promises and challenges,” in Computer Modelling

and Simulation, 2009. UKSIM’09. 11th International Conference on. IEEE, 2009, pp. 152–155.

[2] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineering in practice,” Synthesis
Lectures on Software Engineering, vol. 1, no. 1, pp. 1–182, 2012.

[3] G. Rempp, M. Starzmann, M. Löffler, and J. Lehmann, Model Driven SOA. Springer-Verlag, 2011.

[4] A. T. Zade, S. Rasulzadeh, and R. Torkashvan, “A middleware transparent framework for applying

mda to soa,” World academy of science, engineering, and technology, 2008.
[5] N. Ali, R. Nellipaiappan, R. Chandran, and M. A. Babar, “Model driven support for the service

oriented architecture modeling language,” in Proceedings of the 2nd International Workshop on Principles of

Engineering Service-Oriented Systems. ACM, 2010, pp. 8–14.
[6] N. Bieberstein, R. Laird, K. Jones, and T. Mitra, Executing SOA: a practical guide for the service-

oriented architect. Addison-Wesley Professional, 2008.

[7] Michael Bell, “Introduction to somf: Agile software modeling,” 2011,
http://www.modelingconcepts.com/pages/download.htm.

[8] Object Management Group, “Service oriented architecture modeling language (soaml),” 2012,

http://www.omg.org/spec/SoaML/.

[9] B. Bannour, C. Gaston, and D. Servat, “Eliciting unitary constraints from timed sequence diagram
with symbolic techniques: application to testing,” in 18th APSEC. IEEE, 2011.

[10] T. Israr, “Modeling and performance analysis of distributed systems with collaboration behaviour

diagrams,” Ph.D. dissertation, University of Ottawa, 2014.
[11] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-driven software development:

technology, engineering, management. John Wiley & Sons, 2006.

[12] B. Selic, “From model-driven development to model-driven engineering.” in ECRTS, 2007.

[13] Object Management Group, “Object management group model driven architecture (mda),” 2014,
http://www.omg.org/mda/.

[14] C. Peltz, “Web services orchestration and choreography,” Computer, 2003.

[15] P. B. Kruchten, “The 4+ 1 view model of architecture,” Software, IEEE, vol. 12, no. 6, pp. 42–50,
1995.

[16] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing the relationships between

multiple views in requirements specification,” Software Engineering, IEEE Transactions on, vol. 20, no. 10,
pp. 760–773, 1994.

[17] M. Richters et al., A precise approach to validating UML models and OCL constraints. Citeseer, 2002.

[18] K. Czarnecki, “Overview of generative software development,” in Unconventional Programming

Paradigms. Springer, 2005, pp. 326–341.
[19] J. Greenfield and K. Short, “Software factories: assembling applications with patterns, models,

frameworks and tools,” in Companion of the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications. ACM, 2003, pp. 16–27.
[20] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton, “Reference

model for service oriented architecture 1.0,” OASIS standard, vol. 12, 2006.

[21] ——, “Soa reference architecture technical standard,” OASIS standard, vol. 12, 2012.
[22] O. G. Standard, “Open group,” URL: https://www.opengroup.org/soa/source-

book/ontologyv2/index.htm, 2010.

[23] Open Group, “Reference architecture foundation for service oriented architecture version 1.0,” 2011,

https://www.opengroup.org//soa/source-book/soa_refarch/.
[24] M. Bell, SOA Modeling patterns for service-oriented discovery and analysis. Wiley Online Library,

2010.

[25] sparxsystems, “Service-oriented conceptualization model language specifications,” 2011,
http://www.sparxsystems.com/downloads/whitepapers/SOMF-2.1-Conceptualization-Model-Language-

Specifications.pdf.

[26] F. Truyen, “Enacting the service oriented modeling framework using enterprise architect,” Cephas

Bibliography 195

Consulting Group, 2010.

[27] “Pim4soa,” URL: http://pim4soa.sourceforge.net/, last access: 29/05/2016.

[28] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley, “Soma: A method for
developing service-oriented solutions,” IBM systems Journal, vol. 47, no. 3, pp. 377–396, 2008.

[29] A. Arsanjani and A. Allam, “Service-oriented modeling and architecture for realization of an soa,” in

null. IEEE, 2006, p. 521.

[30] C. Dumez, A. Nait-Sidi-Moh, J. Gaber, and M. Wack, “Modeling and specification of web services
composition using uml-s,” in Next Generation Web Services Practices, 2008. NWESP’08. 4th International

Conference on. IEEE, 2008, pp. 15–20.

[31] M. López-Sanz, C. J. Acuña, C. E. Cuesta, and E. Marcos, “Modelling of service-oriented
architectures with uml,” Electronic Notes in Theoretical Computer Science, vol. 194, no. 4, pp. 23–37, 2008.

[32] H. Wada, J. Suzuki, and K. Oba, “Modeling non-functional aspects in service oriented architecture,”

in Services Computing, 2006. SCC’06. IEEE International Conference on. IEEE, 2006, pp. 222–229.
[33] I. Todoran, Z. Hussain, and N. Gromov, “Soa integration modeling: an evaluation of how soaml

completes uml modeling,” in 2011 IEEE 15th International Enterprise Distributed Object Computing

Conference Workshops. IEEE, 2011, pp. 57–66.

[34] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck, “Evaluation of service designs
based on soaml,” in Software Engineering Advances (ICSEA), 2010 Fifth International Conference on. IEEE,

2010, pp. 7–13.

[35] A. Delgado, I. Garcá-rodrguez De Guzmán, F. Ruiz, and M. Piattini, “Tool support for service
oriented development from business processes,” in 2nd International Workshop on Model-Driven Service

Engineering (MOSEâ€™10) in 48th Int. Conf. on Objects, Models, Components, Patterns (TOOLSâ€™10),

Málaga, Spain. Citeseer, 2010.
[36] A. Kleppe, Software language engineering: creating domain-specific languages using metamodels.

Pearson Education, 2008.

[37] D. Harel and B. Rumpe, “Meaningful modeling: what’s the semantics of" semantics"?” Computer,

vol. 37, no. 10, pp. 64–72, 2004.
[38] M. Fowler, UML distilled: a brief guide to the standard object modeling language. Addison-Wesley

Professional, 2004.

[39] D. Thomas, “Mda: Revenge of the modelers or uml utopia?” Software, IEEE, vol. 21, no. 3, pp. 15–
17, 2004.

[40] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of uml model consistency management,”

Information and Software Technology, vol. 51, no. 12, pp. 1631–1645, 2009.

[41] Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sourrouille, “Consistency problems in uml-based software
development,” in UML Modeling Languages and Applications. Springer, 2004, pp. 1–12.

[42] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh, “Coordinating distributed viewpoints: the

anatomy of a consistency check,” Concurrent Engineering, 1994.
[43] D. Torre, Y. Labiche, and M. Genero, “Uml consistency rules: a systematic mapping study,” in

Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering.

ACM, 2014, p. 6.
[44] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, “Testing the consistency of dynamic uml

diagrams,” in Proc. Sixth International Conference on Integrated Design and Process Technology (IDPT

2002). Citeseer, 2002.

[45] J. Derrick, D. Akehurst, and E. Boiten, “A framework for uml consistency,” Kuzniarz et al.[19], pp.
30–45, 2002.

[46] B. Hnatkowska, Z. Huzar, L. Kuzniarz, and L. Tuzinkiewicz, “A systematic approach to consistency

within uml based software development process,” Blekinge Institute of Technology, Research Report, vol. 6,
pp. 16–29, 2002.

[47] W. Liu, S. Easterbrook, and J. Mylopoulos, “Rule-based detection of inconsistency in uml models,”

in Workshop on Consistency Problems in UML-Based Software Development, vol. 5, 2002.
[48] Z. Liu, X. Li, J. Liu, and H. Jifeng, “Consistency and refinement of uml models,” Consistency

Problems in UML-based Software Development: Understanding and Usage of Dependency, p. 19, 2004.

[49] H. Rasch and H. Wehrheim, “Consistency between uml classes and associated state machines,”

Kuzniarz et al.[19], pp. 46–60, 2002.
[50] H. Gomaa and D. Wijesekera, “Consistency in multiple-view uml models: a case study,” in Workshop

on Consistency Problems in UML-based Software Development II. Citeseer, 2003, p. 1.

[51] K. Lano, D. Clark, and K. Androutsopoulos, “Formalising inter-model consistency of the uml,”

Bibliography 196

Blekinge Institute of Technology, Research Report, vol. 6, pp. 133–148, 2002.

[52] W. Shen, Y. Lu, and W. L. Low, “Extending the uml metamodel to support software refinement,” in

Workshop on Consistency Problems in UML-based Software Development II, 2003, pp. 35–42.
[53] R. Marcano and N. Levy, “Using b formal specifications for analysis and verification of uml/ocl

models,” in In Workshop on consistency problems in UML-based software development. 5th International

Conference on the Unified Modeling Language. Citeseer, 2002, pp. 91–105.

[54] H. Malgouyres and G. Motet, “A uml model consistency verification approach based on meta-
modeling formalization,” in Proceedings of the 2006 ACM symposium on Applied computing. ACM, 2006.

[55] G. Engels, R. Heckel, and J. M. Küster, “Rule-based specification of behavioral consistency based on

the uml meta-model,” in Proc of Intl. Conf. UML. Springer, 2001.
[56] J.-P. Bodeveix, T. Millan, C. Percebois, C. Le Camus, P. Bazex, L. Feraud, and R. Sobek, “Extending

ocl for verifying uml models consistency,” in Workshop on Consistency Problems in UML-based Software

Development, 5th Intl. Conf. UML. Citeseer, 2002.
[57] NoMagic, “Magicdraw,” https://www.magicdraw.com/.

[58] D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch, and M. P. Papazoglou, “Development of

service-oriented architectures using model-driven development: A mapping study,” Information and Software

Technology, 2015.
[59] C. Hahn, D. Cerri, D. Panfilenko, G. Benguria, A. Sadovykh, and C. Carrez, “Model transformations

and deployment architecture description,” 2010.

[60] M. Philip, “Mdd4soa: Model-driven development for service-oriented architectures,” Ph.D.
dissertation, lmu, 2010.

[61] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore, and M. Friess, “A platform

independent model for service oriented architectures,” in Enterprise interoperability. Springer, 2007.
[62] R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik, “Model-driven web services development,” in

EEE’04. IEEE, 2004.

[63] M. Gebhart and J. Bouras, “Mapping between service designs based on soaml and web service

implementation artifacts,” in Seventh International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, 2012, pp. 260–266.

[64] IBM, “Interpretation of uml elements by uml-to-wsdl transformations,” http://www.ibm.com/-

developerworks/rational/library/08/0115_gorelik/.
[65] sparx, “Generate xsd,” http://www.sparxsystems.com.

[66] D. Austin, A. Barbir, E. Peters, and S. Ross-Talbot, “Web services choreography requirements,” W3c

working draft, vol. 11, p. W3C, 2004.

[67] M. P. Papazoglou and J.-j. Dubray, “A survey of web service technologies,” 2004.
[68] K. A. Suji and S. Sujatha, “A comprehensive survey of web service choreography, orchestration and

workflow building,” International Journal of Computer Applications, 2014.

[69] O. Standard, “Web services business process execution language version 2.0,” URL: http://docs. oasis-
open. org/wsbpel/2.0/OS/wsbpel-v2. 0-OS. html, 2007.

[70] R. Khadka, B. Sapkota, L. F. Pires, M. van Sinderen, and S. Jansen, “Model-driven approach to

enterprise interoperability at the technical service level,” Computers in Industry, 2013.
[71] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Choreography and orchestration: A

synergic approach for system design,” in International Conference on Service-Oriented Computing. Springer,

2005, pp. 228–240.

[72] M. Mancioppi et al., “Correction of unrealizable service choreographiesâ€™,” Tilburg University,
School of Economics and Management, Tech. Rep., 2015.

[73] G. Decker, O. Kopp, F. Leymann, and M. Weske, “Bpel4chor: Extending bpel for modeling

choreographies,” in ICWS’07. IEEE.
[74] N. Desai and M. P. Singh, “On the enactability of business protocols.” in AAAI, 2008, pp. 1126–1131.

[75] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh, “Interaction protocols as design abstractions

for business processes,” IEEE Transactions on Software Engineering, vol. 31, no. 12, pp. 1015–1027, 2005.
[76] C. Fournet, T. Hoare, S. K. Rajamani, and J. Rehof, “Stuck-free conformance,” in International

Conference on Computer Aided Verification. Springer, 2004, pp. 242–254.

[77] H. A. López, C. Olarte, and J. A. Pérez, “Towards a unified framework for declarative structured

communications,” arXiv preprint arXiv:1002.0930, 2010.
[78] J. Ponge, B. Benatallah, F. Casati, and F. Toumani, “Fine-grained compatibility and replaceability

analysis of timed web service protocols,” in International Conference on Conceptual Modeling. Springer,

2007, pp. 599–614.

Bibliography 197

[79] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Verifying the conformance of web

services to global interaction protocols: A first step,” in Formal Techniques for Computer Systems and

Business Processes. Springer, 2005, pp. 257–271.
[80] R. Kazhamiakin and M. Pistore, “Analysis of realizability conditions for web service choreographies,”

in International Conference on Formal Techniques for Networked and Distributed Systems. Springer, 2006,

pp. 61–76.

[81] G. Decker and M. Weske, “Local enforceability in interaction petri nets,” in Business Process
Management. Springer, 2007, pp. 305–319.

[82] J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede, “Letâ€™s dance: A language for service

behavior modeling,” in On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE. Springer, 2006, pp. 145–162.

[83] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Modeling agents in a logic action language,” in

Proc. of Workshop on Practical Reasoning Agents, FAPR. Citeseer, 2000.
[84] C. Montangero and L. Semini, “Distributed states temporal logic,” arXiv preprint cs/0304046, 2003.

[85] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, “Verifiable agent

interaction in abductive logic programming: the sciff framework,” ACM Transactions on Computational Logic

(TOCL), vol. 9, no. 4, p. 29, 2008.
[86] B. P. M. N. Specification, “Object management group,” Needham, MA, USA, 2006.

[87] C. Gutschier, R. Hoch, H. Kaindl, and R. Popp, “A pitfall with bpmn execution,” in Second

International Conference on Building and Exploring Web Based Environments (WEB 2014), Charmonix,
France, 2014, pp. 7–13.

[88] I. ITU-TS and Z. Recommendation, “120: Message sequence chart (msc) itu-ts,” 1994.

[89] R. Alur, K. Etessami, and M. Yannakakis, “Inference of message sequence charts,” Software
Engineering, IEEE Transactions on, vol. 29, no. 7, pp. 623–633, 2003.

[90] T. Bultan, C. Ferguson, and X. Fu, “A tool for choreography analysis using collaboration diagrams,”

in Web Services, 2009. ICWS 2009. IEEE International Conference on. IEEE, 2009, pp. 856–863.

[91] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verification of web service
compositions,” in Automated Software Engineering, 2003. Proceedings. 18th IEEE International Conference

on. IEEE, 2003.

[92] B. Bauer and J. P. Müller, “Mda applied: From sequence diagrams to web service choreography,” in
ICWS. Springer, 2004.

[93] T. Ziadi, L. Helouet, and J.-M. Jezequel, “Revisiting statechart synthesis with an algebraic approach,”

in Proceedings of the 26th International Conference on Software Engineering. IEEE Computer Society, 2004,

pp. 242–251.
[94] D. Quartel and M. van Sinderen, “On interoperability and conformance assessment in service

composition,” in Enterprise Distributed Object Computing Conference, 2007. EDOC 2007. 11th IEEE

International. IEEE, 2007, pp. 229–229.
[95] R. Khadka, “Model-driven development of service compositions: transformation from service

choreography to service orchestrations,” 2010.

[96] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized orchestration of composite web
services,” in Proceedings of the 13th international World Wide Web conference on Alternate track papers &

posters. ACM, 2004, pp. 134–143.

[97] R. K. M. Esfahani and S. M. Hashemi, “Decentralized electronic process execution framework in

global village services reference model.”
[98] Object Management Group, “The UML standard specification,” in

http://www.omg.org/spec/UML/2.5/.

[99] J. Whittle and J. Schumann, “Generating statechart designs from scenarios,” in Software Engineering,
2000. Proceedings of the 2000 International Conference on. IEEE, 2000, pp. 314–323.

[100] T. Bultan and X. Fu, “Realizability of interactions in collaboration diagrams,” Citeseer, Tech. Rep.,

2006.
[101] A. Alhroob, K. Dahal, and A. Hossain, “Transforming uml sequence diagram to high level petri net,”

in Software Technology and Engineering (ICSTE), 2010 2nd International Conference on, vol. 1. IEEE, 2010,

pp. V1–260.

[102] S. Leue, L. Mehrmann, and M. Rezai, “Synthesizing room models from message sequence chart
specifications,” 1998.

[103] I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From mscs to statecharts,” in Distributed and Parallel

Embedded Systems. Springer, 1999, pp. 61–71.

Bibliography 198

[104] S. Uchitel and J. Kramer, “A workbench for synthesising behaviour models from scenarios,” in

Proceedings of the 23rd international conference on Software engineering. IEEE Computer Society, 2001, pp.

188–197.
[105] D. Harel and H. Kugler, “Synthesizing state-based object systems from lsc specifications,”

International Journal of Foundations of Computer Science, vol. 13, no. 01, pp. 5–51, 2002.

[106] T. Bultan and X. Fu, “Specification of realizable service conversations using collaboration diagrams,”

Service Oriented Computing and Applications, vol. 2, no. 1, pp. 27–39, 2008.
[107] M. Gudemann, P. Poizat, G. Salaun, and L. Ye, “Verchor: A framework for the design and verification

of choreographies,” 2015.

[108] J. A. Bergstra, A. Ponse, and S. A. Smolka, Handbook of process algebra. Elsevier, 2001.
[109] R. Alur, K. Etessami, and M. Yannakakis, “Realizability and verification of msc graphs,” in Automata,

Languages and Programming. Springer, 2001, pp. 797–808.

[110] G. Gössler and G. Salaün, “Realizability of choreographies for services interacting asynchronously,”
in Formal Aspects of Component Software. Springer, 2011, pp. 151–167.

[111] R. Alur, G. J. Holzmann, and D. Peled, “An analyzer for message sequence charts,” in International

Workshop on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 1996, pp. 35–48.

[112] P. B. Ladkin and S. Leue, “Four issues concerning the semantics of message flow graphs,” in Formal
Description Techniques VII. Springer, 1995, pp. 355–369.

[113] S. Uchitel, J. Kramer, and J. Magee, “Incremental elaboration of scenario-based specifications and

behavior models using implied scenarios,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 13, no. 1, pp. 37–85, 2004.

[114] J. Mendling and M. Hafner, “From ws-cdl choreography to bpel process orchestration,” Journal of

Enterprise Information Management, 2008.
[115] W. Binder, I. Constantinescu, and B. Faltings, “Decentralized orchestration of compositeweb

services,” in ICWS’06. IEEE.

[116] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar, “Integrating quality of service

aspects in top-down business process development using ws-cdl and ws-bpel,” in EDOC. IEEE, 2007.
[117] M. Autili, A. B. Hamida, G. De Angelis, and D. Silingas, “Composing services in the future internet:

Choreography-based approach,” Future Strategies Inc., www. futstrat. com, volume Intelligent BPM Systems

(iBPMS) Book: Impact and Opportunity, 2013.
[118] S. White, “Using bpmn to model a bpel process,” BPTrends, 2005.

[119] S. Mazanek and M. Hanus, “Constructing a bidirectional transformation between bpmn and bpel with

a functional logic programming language,” Journal of Visual Languages & Computing, 2011.

[120] C. Ouyang, M. Dumas, A. H. Ter Hofstede, and W. M. Van Der Aalst, “Pattern-based translation of
bpmn process models to bpel web services,” International Journal of Web Services Research, vol. 5, no. 1,

p. 42, 2008.

[121] H. Liang, J. Dingel, and Z. Diskin, “A comparative survey of scenario-based to state-based model
synthesis approaches,” in Proceedings of the 2006 international workshop on Scenarios and state machines:

models, algorithms, and tools. ACM, 2006, pp. 5–12.

[122] S. McIlvenna, M. Dumas, and M. T. Wynn, “Synthesis of orchestrators from service choreographies,”
in Proceedings of the Sixth Asia-Pacific Conference on Conceptual Modeling-Volume 96. Australian

Computer Society, Inc., 2009, pp. 129–138.

[123] X. Yu, Y. Zhang, T. Zhang, L. Wang, J. Zhao, G. Zheng, and X. Li, “Towards a model driven

approach to automatic bpel generation,” in European Conference on Model Driven Architecture-Foundations
and Applications. Springer, 2007, pp. 204–218.

[124] S. Sendall and W. Kozaczynski, “Model transformation the heart and soul of model-driven software

development,” Tech. Rep., 2003.
[125] R. Abdallah, L. Hélouët, and C. Jard, “Distributed implementation of message sequence charts,”

Software & Systems Modeling, vol. 14, no. 2, pp. 1029–1048, 2015.

[126] T.-D. Cao, P. Felix, R. Castanet, and I. Berrada, “Online testing framework for web services,” in Proc
of Intl. Conf. ICST. IEEE, 2010.

[127] J. P. Escobedo, C. Gaston, P. L. Gall, and A. R. Cavalli, “Testing web service orchestrators in context:

A symbolic approach,” in Proc of Intl. Conf. SEFM, 2010.

[128] H. N. Nguyen, P. Poizat, and F. Zadi, “Passive conformance testing of service choreographies,” in
Proceedings of the 27th Annual ACM Symposium on Applied Computing. ÄCM, 2012.

[129] S. de Deugd, R. Carroll, K. Kelly, B. Millett, and J. Ricker, “SODA: service oriented device

Bibliography 199

architecture,” IEEE Pervasive Computing, vol. 5, no. 3, pp. 94–96, 2006. [Online]. Available: http://-

dx.doi.org/10.1109/MPRV.2006.59

[130] S. L. Remy and M. B. Blake, “Distributed service-oriented robotics,” IEEE Internet Computing,
vol. 15, no. 2, pp. 70–74, 2011.

[131] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verification in service-oriented architecture: a

survey,” Software Testing, Verification and Reliability, 2013.

[132] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing service composition,” in Proceedings of the
8th Argentine Symposium on Software Engineering (ASSEâ€™07), 2007.

[133] H. M. Rusli, M. Puteh, S. Ibrahim, and S. G. H. Tabatabaei, “A comparative evaluation of state-of-

the-art web service composition testing approaches,” in Proceedings of the 6th International Workshop on
Automation of Software Test, AST 2011, Waikiki, Honolulu, HI, USA, May 23-24, 2011, 2011, pp. 29–35.

[Online]. Available: http://doi.acm.org/10.1145/1982595.1982602

[134] A. T. Endo, “Model based testing of service oriented applications,” Ph.D. dissertation, Universidade
de São Paulo, 2013.

[135] A. Sinha and A. Paradkar, “Model-based functional conformance testing of web services operating on

persistent data,” in Proceedings of the 2006 workshop on Testing, analysis, and verification of web services

and applications. ACM, 2006, pp. 17–22.
[136] G. Canfora and M. Di Penta, “Soa testing technologies further reading web services-interoperability,”

IT Professional, vol. 8, no. 2, pp. 10–17, 2006.

[137] L. Zhou, J. Ping, H. Xiao, Z. Wang, G. Pu, and Z. Ding, “Automatically testing web services
choreography with assertions,” in International Conference on Formal Engineering Methods. Springer, 2010,

pp. 138–154.

[138] C. Keum, S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi, “Generating test cases for web services using
extended finite state machine,” in IFIP International Conference on Testing of Communicating Systems.

Springer, 2006, pp. 103–117.

[139] D. Dranidis, D. Kourtesis, and E. Ramollari, “Formal verification of web service behavioural

conformance through testing,” Annals of Mathematics, Computing & Teleinformatics, vol. 1, no. 5, pp. 36–43,
2007.

[140] S. Wieczorek, A. Stefanescu, and A. Roth, “Model-driven service integration testing-a case study,” in

Quality of Information and Communications Technology (QUATIC), 2010 Seventh International Conference
on the. IEEE, 2010, pp. 292–297.

[141] L. Frantzen, M. de las Nieves Huerta, Z. G. Kiss, and T. Wallet, “On-the-fly model-based testing of

web services with jambition,” in International Workshop on Web Services and Formal Methods. Springer,

2008, pp. 143–157.
[142] L. Mei, W. Chan, and T. Tse, “Data flow testing of service choreography,” in Proceedings of the 7th

joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. ACM, 2009, pp. 151–160.
[143] R. Kazhamiakin and M. Pistore, “Choreography conformance analysis: Asynchronous

communications and information alignment,” in International Workshop on Web Services and Formal

Methods. Springer, 2006, pp. 227–241.
[144] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Choreography and orchestration

conformance for system design,” in International Conference on Coordination Languages and Models.

Springer, 2006, pp. 63–81.

[145] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis of obligations in web service
choreography,” in Advanced Int’l Conference on Telecommunications and Int’l Conference on Internet and

Web Applications and Services (AICT-ICIW’06). IEEE, 2006, pp. 149–149.

[146] A. Stefanescu, S. Wieczorek, and A. Kirshin, “Mbt4chor: A model-based testing approach for service
choreographies,” in European Conference on Model Driven Architecture-Foundations and Applications.

Springer, 2009, pp. 313–324.

[147] S. Wieczorek, V. Kozyura, A. Roth, M. Leuschel, J. Bendisposto, D. Plagge, and I. Schieferdecker,
“Applying model checking to generate model-based integration tests from choreography models,” in Testing

of Software and Communication Systems. Springer, 2009, pp. 179–194.

[148] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J. Harrold,

P. McMinn et al., “An orchestrated survey of methodologies for automated software test case generation,”
Journal of Systems and Software, vol. 86, no. 8, pp. 1978–2001, 2013.

[149] J. Tretmans, “Test generation with inputs, outputs and repetitive quiescence,” Software - Concepts and

Tools, 1996.

Bibliography 200

[150] C. Andrés, M. E. Cambronero, and M. Núñez, “Passive testing of web services,” in International

Workshop on Web Services and Formal Methods. Springer, 2010, pp. 56–70.

[151] L. Frantzen and J. Tretmans, “Model-based testing of environmental conformance of components,” in
Formal Methods for Components and Objects. Springer, 2007, pp. 1–25.

[152] C. Andrés, M. G. Merayo, and M. Núñez, “Applying formal passive testing to study temporal

properties of the stream control transmission protocol,” in 2009 Seventh IEEE International Conference on

Software Engineering and Formal Methods. IEEE, 2009, pp. 73–82.
[153] S. Hallé and R. Villemaire, “Runtime monitoring of web service choreographies using streaming xml,”

in Proceedings of the 2009 ACM symposium on Applied Computing. ACM, 2009, pp. 2118–2125.

[154] N. Bencomo, R. B. France, B. H. Cheng, and U. Aßmann, Models@ run. time: foundations,
applications, and roadmaps. Springer, 2014, vol. 8378.

[155] R. France and B. Rumpe, “Model-driven development of complex software: A research roadmap,” in

2007 Future of Software Engineering. IEEE Computer Society, 2007, pp. 37–54.
[156] O. Uml, “2.0 ocl specification,” OMG Adopted Specification (ptc/03-10-14), 2003.

[157] X. Fu, T. Bultan, and J. Su, “Analysis of interacting bpel web services,” in Proceedings of the 13th

international conference on World Wide Web. ACM, 2004, pp. 621–630.

[158] OMG, “Meta object facility (mof) query/view/transformation specification 1.2,” Final Adopted
Specification (February 2015), 2015.

[159] J. Lange, E. Tuosto, and N. Yoshida, “From communicating machines to graphical choreographies,”

in SIGPLAN-SIGACT. ACM, 2015.
[160] B. Beizer, “Software testing techniques,” New York, Van Noshand, 1983.

[161] M. Utting and B. Legeard, Practical model-based testing: a tools approach. Morgan Kaufmann, 2010.

[162] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing approaches,” Software
Testing, Verification and Reliability, vol. 22, no. 5, pp. 297–312, 2012.

[163] J.-C. King, “A new approach to program testing,” Proc. of Intl. Confef. on Reliable Software, 1975.

[164] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science, vol. 126, no. 2,

pp. 183–235, 1994.
[165] J. Huo and A. Petrenko, “On testing partially specified IOTS through lossless queues,” in Testing of

Communicating Systems, 16th IFIP International Conerence, TestCom. Springer, 2004.

[166] J. Peleska, “Industrial-strength model-based testing-state of the art and current challenges,” arXiv
preprint arXiv:1303.1006, 2013.

[167] B. Bannour, J. P. Escobedo, C. Gaston, and P. L. Gall, “Off-line test case generation for timed

symbolic model-based conformance testing,” in ICTSS. Springer, 2012.

[168] B. Bannour, C. Gaston, A. Lapitre, and J. P. Escobedo, “Incremental symbolic conformance testing
from uml marte sequence diagrams: railway use case,” in Intl Symposium HASE. IEEE, 2012, pp. 9–16.

[169] C. Cérin, J.-S. Gay, G. Le Mahec, and M. Koskas, “Efficient data-structures and parallel algorithms

for association rules discovery,” in Computer Science, 2004. ENC 2004. Proceedings of the Fifth Mexican
International Conference in. IEEE, 2004, pp. 399–406.

[170] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on computing, vol. 1, no. 2,

pp. 146–160, 1972.
[171] B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen, and A. Solberg, “Model-driven

service engineering with soaml,” in Service Engineering. Springer, 2011, pp. 25–54.

[172] F. Rekik, B. Bannour, S. Dhouib, and S. Gerard, “Model-driven consistency verification for service-

oriented applications,” in 8th IEEE, SOCA, 2015.
[173] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp.

41–50, 2003.

[174] G. Blair, N. Bencomo, and R. B. France, “Models run. time,” Computer, vol. 42, no. 10, pp. 22–27,
2009.

[175] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg, “Models run. time to support dynamic

adaptation,” Computer, vol. 42, no. 10, pp. 44–51, 2009.
[176] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line engineering: foundations,

principles and techniques. Springer Science & Business Media, 2005.

[177] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani, “On global types and multi-party session,”

arXiv preprint arXiv:1203.0780, 2012.
[178] A. Lapadula, R. Pugliese, and F. Tiezzi, “A formal account of ws-bpel,” in COORDINATION.

Springer, 2008.

[179] M. OMG, “Guide version 1.0. 1,” Object Management Group, vol. 62, 2003.

Bibliography 201

[180] A. Barros, G. Decker, and M. Dumas, “Multi-staged and multi-viewpoint service choreography

modelling,” in Proceedings of the Workshop on Software Engineering Methods for Service Oriented

Architecture (SEMSOA), Hannover, Germany. CEUR Workshop Proceedings, vol. 244, 2007.
[181] I. ITU-TS and Z. Recommendation, “Message sequence chart (msc),” 2011.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Approche dirigée par les modèles pour le développement et la vérification des applications

orientées-services

Mots clés : SOA dirigée par les modèles, consistances des modèles, vérification de l’exécution

Résumé : L’objectif de ma thèse est de

profiter des avantages de l’IDM dans la
spécification et le développement des

applications SOA. Cependant, la combinaison de

ces deux paradigmes présente des problèmes,

notamment : la vérification rigoureuse des
modèles de spécification, la transformation de

ces modèles en code exécutable, en particulier,

les chorégraphies de service en orchestrations
exécutables tout en préservant la sémantique des

scénarios de haut niveau décrits par ces

chorégraphies et finalement la vérification de

l'exécution, une étape nécessaire pour détecter
les comportements erronés lors de l’exécution.

Pour relever ces défis, nous proposons une

approche SOA dirigée par les modèles qui repose
sur le standard OMG SoaML.

Lors de la spécification, la cohérence des

modèles SoaML est vérifiée en utilisant la
validation statique des modèles moyennant des

règles OCL que nous avons définies. Nous avons

spécifié également des règles de transformation

pour permettre la génération automatique
d'artefacts exécutables. Enfin, nous avons défini

un cadre de test à base de modèles pour vérifier

la conformité de l’exécution des chorégraphies
de services, incluant les orchestrateurs générés,

aux modèles de spécification en tenant compte

des aspects critiques inhérents aux systèmes

distribués tels que l’asynchronisme. L'ensemble
de notre méthode a été outillé en extension de

l’outil de modélisation UML, Papyrus, et de

l’outil d’analyse formelle, Diversity.

Title: A model driven approach for the development and verification of service-oriented applications

Keywords: Model-driven SOA, model consistency, execution verification.

Abstract: The purpose of my thesis is to take

advantage of the MDE in the specification and

development of SOA applications. However, the
combination of these two paradigms presents

problems, including rigorous verification of

specification models, transformation of these
models into executable code, in particular

service choreographies into executable

orchestrations while preserving the semantics of

the high-level scenarios described by these
choreographies and finally the verification of

the execution, a necessary step to detect the

erroneous behaviors during the execution. To
meet these challenges, we propose a model-

driven SOA approach based on the OMG

SoaML standard.

At the specification time, the consistency of the

SoaML models is verified using OCL rules that

we have defined. We have also specified
transformation rules to allow the automatic

generation of executable artifacts. Finally, we

have defined a model-based test framework to
verify the conformance between the

choreography specification and its exection,

including the generated orchestrators, taking

into account the critical aspects inherent in
distributed systems such as asynchrony. The

entire methodological proposal was

implemented as an extension to the open source
UML modeling tool Papyrus, and the formal

analysis tool, Diversity.

