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Introduction 1 Résumé

L'objet principal de cette thèse est l'étude des racines de plusieurs modèles de polynômes aléatoires. Il s'agit de comprendre le comportement macroscopique des racines de polynômes aléatoires dont le degré tend vers l'infini. Nous explorons la connexion existant entre racines de polynômes aléatoires et gaz de Coulomb afin d'obtenir des principes de grandes déviations pour la mesure empirique de ces racines. Dans un premier temps, nous revisitons un article de Zeitouni et Zelditch qui établit les grandes déviations de la mesure empirique pour plusieurs modèles de polynômes aléatoires dont les coefficients sont gaussiens complexes et nous étendons leur résultat au cas des coefficients gaussiens réels. Ensuite, nous prouvons que ce résultat peut être étendu à une large classe de lois sur les coefficients, faisant des grandes déviations pour ces modèles un phénomène universel. Nous montrons que ces résultats s'appliquent aux trois modèles historiques de polynômes aléatoires: les modèles de Kac, elliptique, et de Weyl. En poursuivant l'analogie entre gaz de Coulomb, matrices aléatoires et polynômes aléatoires, nous étudions la plus grande racine en module de polynômes aléatoires. Nous prouvons que, contrairement aux phénomènes observés pour les gaz de Coulomb et les matrices aléatoires, la plus grande racine ne présente pas de fluctuations universelles mais est une variable aléatoire à queues lourdes dont la loi dépend de la loi des coefficients. En particulier, elle ne converge pas vers le support de la limite des mesures empiriques. La question des grandes déviations pour des systèmes de particules "presque" coulombiens est aussi abordée à travers l'étude des ensembles biorthogonaux. Nous prouvons un principe de grandes déviations similaire à ce qui était connu jusqu'alors pour la mesure empirique de log-gaz en dimension 1.

Mots clés: Polynômes aléatoires, gaz de Coulomb, matrices aléatoires, grandes déviations, universalité.

Motivations

Le but de cette thèse est d'étudier les racines de polynômes aléatoires ainsi que certains aspects des gaz de Coulomb. Les polynômes aléatoires sont étudiés depuis les années 1930 mais leur lien avec les gaz de Coulomb n'a été mis en avant que dans les années 1990. Alors que la connexion entre matrices aléatoires et gaz de Coulomb a donné lieu à de nombreux résultats nouveaux, celle entre polynômes aléatoires et gaz de Coulomb a été assez peu étudiée. Ainsi, les racines de polynômes aléatoires forment un gaz de Coulomb dont le terme de confinement n'avait jamais pu être analysé finement avant l'article de Zeitouni et Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] où les auteurs ont montré un principe de grandes déviations pour la mesure empirique de polynômes aléatoires. Depuis l'article de Ben Arous et Guionnet [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF] démontrant un principe de grandes déviations pour les mesures empiriques de matrices du GUE, de nombreux auteurs se sont penchés sur l'étude de principes de grandes déviations 1 pour les gaz de Coulomb. Nous cherchons à nous inspirer de ces techniques pour obtenir des résultats similaires pour les racines de polynômes aléatoires.

Modèles de polynômes aléatoires

Dans cette section nous présentons les principaux modèles de polynômes aléatoires:

• Les polynômes de Kac:

P n (z) = n k=0 a k z k

• Les polynômes elliptiques:

P n (z) = n k=0 n k a k z k
• Les polynômes de Weyl:

P n (z) = n k=0 1 √ k! a k z k
Nous présentons succinctement les fonctions gaussiennes analytiques qui sont l'objet limite naturel des polynômes aléatoires. Enfin, nous introduisons les polynômes orthogonaux aléatoires qui joueront un rôle particulièrement important dans cette thèse. Il s'agit un modèle général de polynômes aléatoires qui couvre à la fois les trois modèles précédents. Historiquement, l'étude des polynômes aléatoires s'est concentrée autour de l'étude du nombre de racines réelles de P n . Pour chacun des modèles évoqués, nous donnons les propriétés les plus marquantes du nombre de racines réelles. Dans toute la suite, le nombre de racines réelles est noté N n .

L'étude de la répartition dans C des racines de P n occupe la majeure partie de ce manuscrit. Les racines de P n seront toujours notées {z 1 , . . . , z n } et nous introduisons la mesure empirique des racines

µ n = 1 n n k=1 δ z k .
Il s'agit d'une mesure de probabilité aléatoire qui encode le n-uplet des racines.

Pour chacun de ces modèles, nous faisons un bref historique des principaux résultats connus sur leurs racines.

Polynômes de Kac

Les polynômes de Kac sont de la forme

P n (z) = a 0 + • • • + a n z n = a n n k=1 (z -z k ) (1) 
où les coefficients a 0 , . . . , a n sont des variables aléatoires indépendantes et identiquement distribuées.

Nombre de racines réelles

Selon Todhunter [Tod14, p. 618], la plus ancienne référence à l'étude des racines de polynômes aléatoires remonte à Waring en 1782 dans Mediationes Algebricae. En 1864, Sylvester a également cherché à contrôler le nombre de racines réelles de certains polynômes aléatoires. Il est difficile de préciser le contenu de leurs travaux, nous renvoyons à l'article [START_REF] Holgate | Studies in the history of probability and statistics xli waring and sylvester on random algebraic equations[END_REF] pour plus de détails. Dans leur forme actuelle, les polynômes aléatoires semblent avoir été étudiés pour la première fois en 1923 par Bloch et Pólya [START_REF] Bloch | On the roots of certain algebraic equations[END_REF] qui s'intéressaient à l'espérance du nombre de racines réelles. Bloch et Pólya ont prouvé que, lorsque les coefficients sont uniformes sur {-1, 0, 1}, le nombre de racines réelles, N n , vérifie

E(N n ) = O( √ n).
Ainsi le nombre de racines réelles est négligeable lorsque le degré du polynôme tend vers l'infini. Dans les années 1940, Littlewood et Offord [START_REF] Edensor | On the number of real roots of a random algebraic equation[END_REF], [START_REF] Edensor | On the number of real roots of a random algebraic equation (iii)[END_REF], [START_REF] Edensor | On the distribution of the zeros and α-values of a random integral function (i)[END_REF], [START_REF] Edensor | On the distribution of zeros and a-values of a random integral function (ii)[END_REF] ont montré que pour de nombreuses lois sur les coefficients, telles que la loi gaussienne, Bernoulli, Rademacher et uniforme sur [-1, 1],

log n log log log n N n log 2 n avec probabilité 1 -o(1). En 1943, Kac a obtenu le résultat le plus important sur le nombre de racines réelles. Dans [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF], il a montré que lorsque les coefficients sont des variables aléatoires de loi gaussienne centrée, alors

E(N n ) ∼ 2 π log n. ( 2 
)
Cet article repose sur la formule de Kac-Rice1 permettant des calculs d'espérance pour des champs gaussiens. Suite à cet article, de nombreux auteurs ont cherché à démontrer un résultat analogue à (2) pour d'autres distributions de coefficients. Erdős et Offord [START_REF] Erdős | On the number of real roots of a random algebraic equation[END_REF] ont prouvé (2) dans le cas de variables aléatoires de Rademacher. En 1969, Stevens [START_REF] Stevens | The average number of real zeros of a random polynomial[END_REF] a montré que cet équivalent était valable pour des coefficients indépendants mais non identiquement distribués, dont le quatrième moment est uniformément borné et dont les queues sont contrôlées. En 1971, Ibragimov et Maslova [START_REF] Ibragimov | On the expected number of real zeros of random polynomials i. coefficients with zero means[END_REF] ont prouvé que si les coefficients sont centrés et dans le domaine d'attraction de la loi gaussienne, alors E(N n ) ∼ 2 π log n. Dans [START_REF] Ibragimov | On the expected number of real zeros of random polynomials. ii. coefficients with non-zero means[END_REF], ils ont montré que lorsque les coefficients vérifient E(a 0 ) = 0 , P(a 0 = 0) = 0 et appartiennent au domaine d'attraction de la loi gaussienne, alors

E(N n ) ∼ 1 π log n.
Ainsi, le comportement du nombre moyen de racines réelles est universel. En dehors de cette classe d'universalité, d'autres comportements sont possibles. Logan et Shepp [START_REF] Logan | Real zeros of random polynomials[END_REF] ont montré que si les coefficients sont des variables aléatoires de loi de Cauchy alors

E(N n ) ∼ c log n où c = 8 π 2 ∞ 0 xe -x x -1 + 2e -x dx.
Le théorème d'Ibragimov et Maslova correspond à l'universalité du premier ordre dans le développement asymptotique de E(N n ). Notons que Maslova [START_REF] Maslova | On the variance of the number of real roots of random polynomials[END_REF] [Mas74a] a montré que

Var(N n ) ∼ 4 π 1 - 2 π log n
et a prouvé que N n satisfait un théorème de la limite centrale. En 1988, Wilkins [START_REF] Wilkins | An asymptotic expansion for the expected number of real zeros of a random polynomial[END_REF] a donné un développement de E(N n ) = 2 π log n + c + . . . dans le cas des coefficients gaussiens. Ce résultat a été affiné par Edelman et Kostlan [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF] en 1995 qui ont prouvé que l'espérance du nombre de racines de P n est donnée par la longueur de la courbe (γ(t)) t∈R où γ(t) = (1, t, . . . , t n ) et γ(t) = γ(t) γ(t) .

Grâce à cette formule, ils ont obtenu le développement asymptotique

E(N n ) = 2 π log n + c + 2 πn + O( 1 n 2 ).
En 2015, Do, Nguyen et Vu [START_REF] Do | Real roots of random polynomials: expectation and repulsion[END_REF] ont montré que, dès lors que les coefficients sont centrés et ont des moments d'ordre 2 + ε, E(N n ) -2 π log n est bornée et admet une limite qui dépend de la loi des coefficients. Ainsi, le développement dû à Edelman et Kostlan n'est pas universel.

La probabilité qu'un polynôme de Kac ait exactement k racines réelles a été calculée par Dembo, Poonen, Shao et Zeitouni dans [START_REF] Dembo | Random polynomials having few or no real zeros[END_REF]. Majumdar et Schehr [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF] ont étudié l'intensité du processus ponctuel des racines réelles des polynômes de Kac dont les coefficients sont gaussiens réels et ont analysé la probabilité qu'il n'y ait aucune racine dans un intervalle donné.

Le nombre de racines réelles pour le cas de coefficients gaussiens dépendants est traité dans le livre de Farahmand [START_REF] Farahmand | Topics in random polynomials[END_REF] ainsi que le nombre de solutions aux équations du type P n (z) = K.

Comportement des racines complexes

La question du comportement des racines complexes a été abordée pour la première fois par Hammersley [START_REF] Michael | The zeros of a random polynomial[END_REF] qui a cherché à calculer la loi jointe du vecteur aléatoire (z 1 , . . . , z n ). Cependant, les formules obtenues sont trop complexes pour être utilisables. En 1962, Šparo et Šur [ŠŠ62] ont montré que pour tout α, β dans [0, 2π] et tout δ ≤ 1,

1 Argz∈[α,β] dµ n (z) ---→ n→∞ β -α 2π et 1 1-δ<|z|<1+δ dµ n (z) ---→ n→∞ 1 (3) 
en probabilité. Ce résultat est équivalent au fait que la mesure empirique converge vers la mesure uniforme sur le cercle unité de C, notée ν S (voir figure 1). Malheureusement, le cadre exact de leur article n'est pas facile à déterminer. En 1965, Arnold [START_REF] Arnold | Über die nullstellenverteilung zufälliger polynome[END_REF] a prouvé que si ∞ 0 | log x|dF (x) < ∞, où F est la fonction de répartition de la loi des coefficients, alors (3) est vraie. Ce n'est qu'en 2013 qu'Ibragimov et Zaporozhets [START_REF] Ibragimov | On distribution of zeros of random polynomials in complex plane[END_REF] ont prouvé l'équivalence µ n ν S ⇐⇒ E(log(1

+ |a 0 |)) < ∞ (4) où la notation µ n ν S désigne la convergence ∀f ∈ C 0 b , f (x)dµ n (x) P ---→ n→∞ f (x)dν S (x).
De plus, ils ont démontré que l'équirépartition des arguments de racines est valide quelle que soit la loi des coefficients. La paternité (4) n'est pas évidente. Il est donc difficile de déterminer ce qui est réellement prouvé dans les articles de Šparo et Šur et d 'Arnold 2 . Il semble que l'implication directe soit prouvée dans un article ultérieur et on en trouve une preuve dans le livre de Bharucha-Reid et Sambandham [START_REF] Bharucha | Random Polynomials: Probability and Mathematical Statistics: a Series of Monographs and Textbooks[END_REF]. Pour avoir une intuition de ce résultat, on peut d'abord remarquer que si la loi du vecteur aléatoire (a 0 , . . . , a n ) est la même que celle de (a n , . . . , a 0 ) alors la loi de {z 1 , . . . , z n } est invariante par l'inversion z → 1/z. Cela provient du fait que, dans ce cas, P n (z) et z n P n (1/z) ont la même loi. De plus, la condition E(log(1 + |a 0 |)) < ∞ est équivalente au fait que la série entière

P ∞ (z) = ∞ k=0 a k z k
a un rayon de convergence presque sûrement égal à 1, où (a k ) k∈N est une famille de variables aléatoires indépendantes de même loi. Ainsi, les zéros de P n ne peuvent s'accumuler en aucun point du disque unité car les zéros de P ∞ ne peuvent avoir aucun point d'accumulation à l'intérieur du disque ouvert de convergence. Ce type d'argument est essentiel dans le chapitre 3 où nous étudions les plus grandes et plus petites racines de P n en module. Ainsi, le fait que les racines de P n doivent s'accumuler autour du cercle unité n'est pas étonnant, mais il reste à prouver qu'elles s'y concentrent uniformément en arguments. Un résultat déterministe d'Erdős et Turan [START_REF] Erdős | On the distribution of roots of polynomials[END_REF] stipule que pour tout polynôme à coefficients complexes tel que a 0 a n = 0 alors pour tout α, β dans [0, 2π]

1 Argz∈[α,β] dµ n (z) - β -α 2π ≤ 16 √ n log max |z|=1 |P n (z)| |a 0 a n | . ( 5 
)
Lorsque les coefficients sont majorés et minorés, on déduit facilement l'équirépartition angulaire des racines. Dans le cas général, il faut contrôler le membre de droite de (5).

Lorsque la condition de moment E(log(1 + |a 0 |) < ∞ n'est pas vérifiée, d'autres comportements sont possibles. Götze et Zaporozhets [GZ] ont montré que si log(1 + log(1 + |a 0 |)) a une queue de distribution à variations lentes, alors les zéros de P n se concentrent sur 2 cercles dont les rayons tendent vers 0 et l'infini. Kabluchko et Zaporozhets [START_REF] Kabluchko | Roots of random polynomials whose coefficients have logarithmic tails[END_REF] ont étudié la transition entre localisation et délocalisation des racines en proposant un modèle interpolant entre le cas régulier (E(log(1 + |a 0 |) < ∞) et le modèle de Götze et Zaporozhets.

Pour ce modèle, ils ont montré que, lorsqu'on se rapproche des queues logarithmiques lourdes, les racines de P n se concentrent sur plusieurs cercles qu'ils caractérisent. Une fois le comportement macroscopique des racines établi, on peut alors se poser la question d'estimées plus fines sur cette concentration et de leur universalité. Ainsi, Shepp et Vanderbei [START_REF] Shepp | The complex zeros of random polynomials[END_REF] ont montré que, lorsque les coefficients sont gaussiens, réels et centrés,

E 1 e -δ/n <|z|<e δ/n dµ n (z) ---→ n→∞ 1 -e -2δ
1 + e 2δ -1 δ .

Ibragimov et Zeitouni [START_REF] Ibragimov | On roots of random polynomials[END_REF] ont étendu cette relation au cas où les coefficients sont dans le domaine d'attraction d'une loi α-stable, où cette relation devient

E 1 e -δ/n <|z|<e δ/n dµ n (z) ---→ n→∞ 1 -e -2δ
1 + e 2δ -2 αδ .

Ces résultats montrent comment les racines de polynômes de Kac se concentrent autour du cercle unité. L'universalité du comportement des racines de polynômes aléatoires est aussi valide au niveau microscopique, comme l'ont montré Tao et Vu [START_REF] Tao | Local universality of zeroes of random polynomials[END_REF]. Ils prouvent ainsi que les fonctions de corrélation sont localement universelles.

Zeitouni et Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] ont montré un principe de grandes déviations pour la suite des mesures empiriques des polynômes de Kac lorsque les coefficients sont des variables aléatoires de lois gaussiennes complexes N C (0, 1) 3 . Ghosh et Zeitouni [GZ16] ont prouvé un principe de grandes déviations similaire dans le cas de coefficients de loi exponentielle de paramètre 1.

Ces résultats sont détaillés dans la section 7.1 et font l'objet des deux premiers chapitres de cette thèse.

Polynômes elliptiques ou de Kostlan-Shub-Smale

Les polynômes elliptiques, parfois appelés polynômes de Kostlan-Shub-Smale ou polynômes SU (2) sont de la forme

P n (z) = n k=0 a k n k z k . ( 6 
)
Ces polynômes semblent avoir été étudiés pour la première fois dans les années 1990 par les physiciens Bogomolny, Bohigas et Leboeuf [START_REF] Bogomolny | Distribution of roots of random polynomials[END_REF], [START_REF] Bogomolny | Quantum chaotic dynamics and random polynomials[END_REF] comme modèle de système quantique chaotique. Ce genre de polynôme apparaît en mécanique quantique pour l'étude de systèmes de spin dont le module est conservé, les coefficients binomiaux proviennent du fait que l'espace des phases de ce système est une sphère. Ces polynômes ont aussi été étudiés par Kostlan [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF], ainsi que par Shub et Smale [START_REF] Smale | Complexity of bezout's theorem. ii. volumes and probabilities[END_REF], pour leurs propriétés mathématiques. Les polynômes elliptiques peuvent sembler au premier abord moins naturels que les polynômes de Kac, mais le grand nombre de symétries des zéros de P n rend ce modèle particulièrement agréable. Kostlan défend l'idée que ces polynômes seraient le modèle le plus naturel de polynômes aléatoires.

Comportement des racines complexes

Le comportement global des racines des polynômes elliptiques se déduit facilement des symétries du modèle. En effet, lorsque les coefficients sont gaussiens complexes, la projection des racines sur la sphère a une loi invariante par l'action SU (2) (d'où leur nom). 3 La loi gaussienne complexe, notée N C (0, 1), a pour densité sur C 1 π e -|z| 2 . Cela revient à dire que les parties réelles et imaginaires sont indépendantes de loi N R (0, 1/2).

C'est ainsi que Bogomolny, Bohigas et Leboeuf [START_REF] Bogomolny | Distribution of roots of random polynomials[END_REF], [START_REF] Bogomolny | Quantum chaotic dynamics and random polynomials[END_REF] ont montré que quel que soit n ∈ N

E(µ n ) = 1 π d C (z) (1 + |z| 2 ) 2 =: ω F S (7)
où d C est la mesure de Lebesgue sur C (voir figure 2). La mesure ω F S est parfois appelée mesure de Fubini-Study, ou mesure de Cauchy complexe. C'est l'image par la projection stéréographique de la mesure uniforme sur la sphère unité de R 3 , S 2 . De plus, Kabluchko et Zaporozhets [START_REF] Kabluchko | Roots of random polynomials whose coefficients have logarithmic tails[END_REF] ont montré un résultat d'universalité pour la mesure empirique similaire à celui d'Ibragimov et Zaporozhets:

µ n ω F S ⇐⇒ E(log(1 + |a 0 |)) < ∞. (8) 
La différence majeure entre les polynômes de Kac et les polynômes elliptiques est que les zéros de P n ne se concentrent pas sur le cercle unité mais "remplissent" l'espace. Si on compactifie par projection stéréographique inverse, les zéros des polynômes elliptiques se répartissent uniformément sur la sphère alors que les zéros des polynômes de Kac se concentrent sur l'équateur. Tout comme pour les polynômes de Kac, les fonctions de corrélation des zéros des polynômes elliptiques sont universelles d'après le résultat de Tao et Vu [START_REF] Tao | Local universality of zeroes of random polynomials[END_REF]. Zeitouni et Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] ont montré que la suite des mesures empiriques satisfait un principe de grandes déviations, qui est détaillé à la fin de l'introduction et étendu dans le cadre de cette thèse. 

Nombre de racines réelles

Le nombre de racines réelles des polynômes elliptiques à coefficients gaussiens réels est très différent du cas des polynômes de Kac. Edelman et Kostlan [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF] ont montré que l'intensité du processus ponctuel des racines est donnée par

ρ 1 (x) = √ n π(1 + x 2 ) ce qui implique E(N n ) = √ n.
Tao et Vu [TV15, théorème 5.6] ont montré que dès lors que la loi des coefficients est centrée, de variance unitaire et vérifiant 

E(|a 0 | 2+ε ) < C alors E(N n ) = √ n + o(n
P i (z 1 , . . . , z d ) = j ≤d i a j n j 1 . . . j d z j 1 1 . . . z j d d
où les a j sont des coefficients gaussiens réels indépendants. Sous ces hypothèses, Shub et Smale [START_REF] Smale | Complexity of bezout's theorem. ii. volumes and probabilities[END_REF] ont montré que le nombre moyen de solutions à ce système d'équations est exactement

E(N d n ) = d 1 . . . d m .
Cette estimée a été étendue à d'autres distributions par Azaïs et Wschebor [START_REF] Azaïs | On the roots of a random system of equations. the theorem of shub and smale and some extensions[END_REF], qui ont aussi obtenu la variance du nombre de solutions. Ces polynômes de Kostlan homogènes permettent de définir une notion de variété algébrique aléatoire en examinant le lieu des zéros dans CP n d'un polynôme de degré n, homogène de degré d. Ainsi, Kostlan a étudié le volume moyen de telles variétés algébriques réelles4 . Dans une direction similaire, Gayet et Welschinger [START_REF] Gayet | Expected topology of random real algebraic submanifolds[END_REF] (voir [START_REF] Welschinger | Topology of random real hypersurfaces[END_REF] pour une introduction) ont étudié la topologie de ces variétés algébriques réelles aléatoires.

Polynômes de Weyl

Les polynômes de Weyl sont de la forme

P n (z) = n k=0 a k 1 √ k! z k
où les a k sont des variables aléatoires indépendantes de loi N R (0, 1) ou N C (0, 1). Ces polynômes correspondent aux fonctions d'ondes associées à des systèmes quantiques [START_REF] Forrester | Exact statistical properties of the zeros of complex random polynomials[END_REF], [START_REF] Leboeuf | Random matrices, random polynomials and coulomb systems[END_REF]. Les auteurs de [CHS + 06] ont pu observer les racines des polynômes de Weyl expérimentalement en réalisant un gaz de Bose en rotation5 . Ce système de particules converge vers les racines de la fonction analytique aléatoire

P ∞ (z) = ∞ k=0 a k 1 √ k! z k .
Les zéros de P ∞ sont invariants en loi par les isométries du plan complexe. En raison de cette symétrie, ces polynômes sont souvent désignés comme étant le modèle "plat" (flat polynomials). Ces considérations sont détaillées dans la prochaine sous-section concernant les fonctions analytiques aléatoires gaussiennes.

Comportement des racines complexes

Lorsque les coefficients sont des variables aléatoires indépendantes de loi N C (0, 1), on peut calculer la loi jointe des zéros [START_REF] Forrester | Exact statistical properties of the zeros of complex random polynomials[END_REF]. On peut également montrer que la densité est approximativement uniforme sur D(0, √ n) et tend très rapidement vers 0 en dehors. Cette propriété est aussi vérifiée par les valeurs propres de l'ensemble de Ginibre et c'est la raison principale pour laquelle ces polynômes ont été étudiés.

La suite des mesures empiriques des racines des polynômes de Weyl ne converge pas. Afin d'observer une convergence, il est nécessaire de renormaliser les racines, comme pour les matrices de Ginibre. On considère la mesure empirique renormalisée de

P n μn = 1 n n k=1 δ z k / √ n .
Cette mesure est la mesure empirique associée aux polynômes de Weyl renormalisés

Q n (z) = P n ( √ nz) = n k=0 a k √ n k √ k! z k .
Le résultat d'universalité de Kabluchko et Zaporozhets [START_REF] Kabluchko | Asymptotic distribution of complex zeros of random analytic functions[END_REF] implique que

μn 1 |z|≤1 π C ⇐⇒ E(log(1 + |a 0 |)) < ∞.
Les racines des polynômes de Weyl vérifient donc la "loi du cercle" des matrices aléatoires. Nous verrons dans le chapitre 5 que la suite des mesures empiriques des polynômes de Weyl renormalisés satisfait un principe de grandes déviations lorsque les coefficients sont des variables aléatoires de loi N C (0, 1) ou N R (0, 1) indépendantes6 , et que ces deux principes de grandes déviations sont universels, l'un pour le cas des coefficients complexes à densité, l'autre pour les coefficients réels à densité.

Nombre de racines réelles

Lorsque les coefficients sont des variables indépendantes de loi N R (0, 1), on peut montrer que

E(N n ) = 2 π + o(1) √ n.
A l'aide des techniques développées dans [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF], on peut aussi calculer l'intensité de racines réelles sur R. Cette intensité est étudiée en détails dans l'article de Majumdar et Schehr [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF]. Tao et Vu [TV15, théorème 5.3] ont montré l'universalité du nombre de racines réelles pour ces polynômes. Ainsi, dès lors qu'il existe ε > 0 et C tels que

E(|a 0 | 2+ε ) ≤ C,
le nombre de racines réelles des polynômes de Weyl vérifie

E(N n ) = 2 π √ n + o(n 1/2-c ).
Dans le cas gaussien, un théorème limite central pour le nombre de racines réelles a très récemment été démontré par Do et Vu [START_REF] Do | Central limit theorems for the real zeros of weyl polynomials[END_REF]. Majumdar et Schehr [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF], puis Do et Vu, ont par ailleurs montré que la variance du nombre de racines réelles vérifie

Var(N n ) = (2K + o(1)) √ n
où K = 0.1819 . . . est une constante explicite. On peut alors dresser un tableau récapitulatif des propriétés des racines des polynômes de Kac, des polynômes elliptiques et des polynômes de Weyl.

Modèle

E(N n ) Var(N n ) Limite des mesures empiriques Kac 2 π log n + o(1) 4 π 1 -2 π log n µ n ν S Elliptique √ n(1 + o(1)) (K + o(1)) √ n µ n 1 π(1+|z| 2 ) 2 d C (z) Weyl 2 π √ n(1 + o(1)) (2K + o(1)) √ n μn 1 |z|<1 π d C (z)

Fonctions gaussiennes analytiques

Cette section est une courte introduction au domaine des fonctions analytiques gaussiennes (GAF pour Gaussian Analytic Functions en anglais). Il s'agit de fonctions analytiques aléatoires de la forme

f (z) = ∞ k=0 a k c k z k (9)
où les a k sont des variables aléatoires indépendantes de loi N C (0, 1). Les zéros de ces fonctions ont été beaucoup étudiés et nous renvoyons vers le livre de Hough, Krishnapur, Peres et Virág [START_REF] Hough | Zeros of Gaussian analytic functions and determinantal point processes[END_REF]. Ici, nous présentons les trois modèles limites correspondant aux modèles de polynômes aléatoires introduits précédemment. On définit ainsi pour un entier L fixé

• La GAF hyperbolique: f L (z) = ∞ k=0 a k √ L(L+1)...(L+k-1) √ k! z k (R = 1) • La GAF elliptique: f L (z) = L k=0 a k L k z k (R = ∞) • La GAF plate: f L (z) = ∞ k=0 a k √ L k √ k! z k (R = ∞).
Pour L = 1, la GAF hyperbolique est la limite des polynômes de Kac et la GAF plate est la limite des polynômes de Weyl. Lorsque L = n, la GAF elliptique correspond exactement au n-ième polynôme elliptique. Les zéros de ces différentes fonctions sont invariants en loi par certaines transformations, comme détaillé dans le tableau ci-dessous.

Modèle Domaine Symétries

Mesure invariante

Hyperbolique D = {|z| < 1} φ α,β (z) = αz+β βz+ ᾱ , |α| 2 -|β| 2 = 1 1 |z|<1 d C (1-|z| 2 ) 2 Elliptique C ∪ {∞} φ α,β (z) = αz+β -βz+ ᾱ , |α| 2 + |β| 2 = 1 d C (1+|z| 2 ) 2 Plat C φ α,β (z) = αz + β, |α| = 1 d C
Les preuves de ces résultats sont disponibles dans le livre [HKPV09, Section 2.2]. Ces trois GAF correspondent donc à une courbure négative (hyperbolique), une courbure positive (elliptique) et une courbure nulle (plate).

Les fonctions analytiques aléatoires (9) sont une généralisation des polynômes aléatoires. On peut considérer des suites de telles fonctions de la forme

f n (z) = ∞ k=0 a k c k,n z k
où les coefficients c k,n dépendent de n. On peut définir la mesure empirique de f n par

µ fn = z|fn(z)=0 δ z .
Kabluchko et Zaporozhets [START_REF] Kabluchko | Asymptotic distribution of complex zeros of random analytic functions[END_REF] ont démontré le théorème de convergence et d'universalité suivant pour la suite µ fn .

Théorème 1 (Théorème principal Kabluchko-Zaporozhets). Soit (a k ) k∈N une suite de variables aléatoires indépendantes et identiquement distribuées telles que

E(log(1 + |a 0 |)) < ∞.
On considère la série entière aléatoire dépendant de n

f n (z) = ∞ k=0 a k c k,n z k où les c n,k ∈ C sont des coefficients déterministes. On suppose qu'il existe une fonction g : [0, ∞) → [0, ∞) et un nombre T 0 ∈ (0, ∞] tels que 1. ∀t < T 0 , g(t) > 0 et ∀t > T 0 , f (t) = 0, 2. f est continue sur [0, T 0 ) et, si T 0 < ∞, g est continue à gauche en T 0 , 3. ∀A > 0, lim n→∞ sup k∈[0,An] |c n,k | 1/n -g( k n ) = 0, 4. R 0 := lim inf t→∞ g(t) -1/t ∈ (0, ∞] et lim inf n,k/n→∞ c -1/k n,k ≥ R 0 .
Sous ces conditions, la suite de mesures ( 1 n µ fn ) n∈N converge en probabilité vers une mesure µ ∞ de support inclus dans le disque de centre 0 et de rayon R 0 . La mesure µ ∞ est invariante par rotation et vérifie pour tout

r ≤ R 0 µ ∞ ({z ∈ C, |z| ≤ r}) = I (log r) où I(s) = sup t≥0 {st + log g(t)} est la transformée de Fenchel-Legendre de -log g.
La suite (c n,k ) est appelée "profil de variance". Ce terme provient du fait que lorsque les coefficients a k sont des variables aléatoires de loi gaussienne réelle ou complexe, on peut inclure les c n,k dans la variance des a k . Le théorème de Kabluchko et Zaporozhets identifie la limite des mesures empiriques uniquement à l'aide du profil de variance. Ainsi, l'universalité du comportement des mesures empiriques des racines des polynômes de Kac, elliptiques et de Weyl renormalisés peut se déduire de ce résultat général. À notre connaissance, l'universalité de la convergence des mesures empiriques des zéros des polynômes elliptiques et de Weyl renormalisés n'était pas connue avant ce résultat général.

Étudier le processus ponctuel des zéros de fonctions analytiques aléatoires est en général difficile. Le seul modèle pour lequel on dispose de toutes les informations sur ce processus est le celui de la GAF hyperbolique f 1 , associée aux polynômes de Kac. Peres et Virag [START_REF] Peres | Zeros of the iid gaussian power series: a conformally invariant determinantal process[END_REF] (voir aussi [HKPV09, chapitre 5]) ont montré que le processus des zéros forme un processus déterminantal dans le disque de centre 0 et de rayon 1, et de noyau

K(z, w) = 1 π(1 + z w) 2 .

Polynômes orthogonaux et propriété de Bernstein-Markov

On considère un produit scalaire sur C n [X] de la forme

P, Q = P (z)Q(z)e -nφ(z) dν(z) (10)
où ν est une mesure de probabilité sur C et φ est un poids. On peut aussi considérer des produits scalaires de la même forme sur le plan projectif CP 1 . On étudie alors des polynômes de la forme Les polynômes de Kac, les polynômes elliptiques (à un facteur √ n + 1 près qui n'affecte pas les racines) et les polynômes de Weyl sont des cas particuliers de ce modèle général comme le montre le tableau ci dessous. Pour chacun des modèles, nous précisons si le couple (φ, ν) satisfait la propriété de Bernstein-Markov qui est présentée ci dessous.

P n (z) = a 0 R 0 (z) + • • • + a n R n (z) (11) 

Modèle

ν φ Kac ν S uniforme sur S φ(z) = 0 Elliptique ω F S = d C π(1+|z| 2 ) 2 φ(z) = log(1 + |z| 2 ) Weyl 1 π e -|z| 2 d C (z) φ(z) = 0 Weyl renormalisé 1 π d C (z) φ(z) = |z| 2
Ces polynômes sont étudiés en détail dans l'article [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] qui fait l'objet du premier chapitre de cette thèse. On suppose toujours que le couple (φ, ν) satisfait la propriété de Bernstein-Markov ci-dessous.

Définition 2 (Propriété de Bernstein-Markov). Soit ν une mesure et φ une fonction continue. On dit que le couple (φ, ν) satisfait la propriété de Bernstein-Markov si, pour

tout n ∈ N et tout ε > 0, il existe une constante C ε telle que pour tout P ∈ C n [X] sup z∈supp(ν) |P (z)| 2 e -nφ(z) ≤ C ε e nε P 2 2 (12) où P 2 2 = |P (z)| 2 e -nφ(z) dν(z).
Il s'agit d'une comparaison entre la norme euclidienne et la norme L ∞ (ν) pondérée par φ. Ces normes sont équivalentes sur C n [X], donc la propriété de Bernstein-Markov stipule que le ratio de ces normes doit avoir une croissance sous-exponentielle. Cette propriété a été introduite pour la première fois par Berman et Bouksom [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] et a de fortes connexions avec la théorie du pluripotentiel. Nous renvoyons aux travaux [START_REF] Bloom | Random polynomials and (pluri) potential theory[END_REF], [START_REF] Bloom | Weighted polynomials and weighted pluripotential theory[END_REF], [START_REF] Bloom | Bernstein-markov: a survey[END_REF], [START_REF] Piazzon | Bernstein Markov properties and applications[END_REF] pour plus d'informations au sujet de la théorie du pluripotentiel et de la propriété de Bernstein-Markov.

Nous verrons dans le chapitre 1 que les couples associés aux polynômes de Kac et aux polynômes elliptiques satisfont cette propriété avec une mesure de probabilité. Le couple (φ, ν) associé aux polynômes de Weyl ne satisfait pas la propriété de Bernstein-Markov. Cependant, nous verrons dans le chapitre 5 que le couple associé aux polynômes de Weyl renormalisé vérifie la propriété de Bernstein-Markov, mais ν = 1 π C n'est pas une mesure finie 8 .

Zeitouni et Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] ont démontré un principe de grandes déviations pour la suite des mesures empiriques dans M 1 (CP 1 ) lorsque les a k sont des gaussiennes complexes N C (0, 1). Cela implique la convergence de la suite des mesures empiriques vers la mesure d'équilibre du support de ν 9 avec potentiel φ, sous réserve que le support de ν ne soit fin en aucun point. Cette hypothèse de régularité du support est vérifiée pour les courbes de Jordan, pour les ensembles connexes ayant plus d'un point et leurs unions finies. La notion de finesse est liée à la topologie fine 10 . L'article de Zeitouni et Zelditch fait l'objet du premier chapitre de cette thèse. Nous proposons une démonstration alternative de leur résultat et nous l'étendons au cas où les coefficients a k sont des gaussiennes indépendantes N R (0, 1).

Nous verrons dans le chapitre 5 qu'on peut modifier légèrement les démonstrations du chapitre 1 pour couvrir le cas des polynômes de Weyl renormalisés.

Gaz de Coulomb et matrices aléatoires

Dans cette section nous présentons quelques notions de théorie du potentiel qui servent à définir le modèle du gaz de Coulomb. Nous présentons aussi certains modèles de matrices aléatoires dont les valeurs propres forment des gaz de Coulomb dans R ou C.

Quelques éléments de théorie du potentiel

On définit la fonction de Green de R d par

G d (x) =        |x| si d = 1 -log |x| si d = 2 1 x d-2 si d ≥ 3.
Cette fonction est l'unique solution au sens des distributions de

-G d = c d δ 0 . ( 13 
) avec c d =        2 si d = 1 2π si d = 2 d(d-2)π d/2 Γ(1+d/2) si d ≥ 3.
On définit l'interaction coulombienne entre deux particules placées aux positions x et y comme étant égale à G d (x -y). En dimension 3, on retrouve la formule habituelle de l'énergie d'interaction coulombienne, proportionnelle à l'inverse de la distance entre les particules. À part en dimension 1, l'énergie d'interaction entre deux particules tend vers l'infini lorsque les particules se rapprochent: c'est une interaction répulsive.

Lorsqu'on a une distribution de charges modélisée par une mesure µ ∈ M(R d ), l'énergie potentielle générée par cette distribution de charges en un point x est définie par

U µ (x) := G d (x -y)dµ(y) = G d * µ(x). ( 14 
)
La fonction U µ est aussi appelée potentiel de la mesure µ. Cet objet caractérise la mesure µ car, grâce à la relation (13), on a U µ = µ au sens des distributions. On définit aussi l'énergie de Green d'une distribution de charges par

E(µ) := G d (x -y)dµ(x)dµ(y). ( 15 
)
L'énergie de Green peut être infinie, par exemple si la mesure µ possède un atome. En dimension 2, le logarithme n'étant pas de signe constant, la définition (15) peut donner lieu à une forme indéterminée. On lève cette ambiguïté en définissant l'énergie de Green par

E(µ) =    -log |x -y|dµ(x)dµ(y) si log(1 + |x|)dµ(x) < ∞ +∞ sinon.
On peut aussi définir cette fonction sur M 1 (R), elle est alors appelée entropie non commutative et a été introduite dans le cadre des probabilités libres par Voiculescu [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF]. Nous considérons toujours des distributions de charges normalisées, représentées par des mesures de probabilité. Bien qu'une grande partie des concepts présentés dans cette introduction soient valides en toute dimension, nous nous restreignons à présent au cas de la dimension 2. Ainsi, le potentiel de Green est aussi appelé potentiel logarithmique. L'énergie de Green et le potentiel sont à la base de la "théorie du potentiel" (voir [START_REF] La | Potential theory[END_REF] ou [START_REF] Ransford | Potential theory in the complex plane[END_REF] pour une introduction plus complète). La question de base de cette théorie est: quels sont les ensembles qui peuvent recevoir une charge électrique? Quelle est la distribution d'énergie minimale? Mathématiquement, cela revient à considérer pour E ⊂ R d compact le problème de minimisation suivant: Nous référons au livre de Landkof [Lan] pour une introduction à la théorie générale et au livre de Ransford [START_REF] Ransford | Potential theory in the complex plane[END_REF] pour le cas de la théorie du potentiel en dimension 2. Il existe une connexion intéressante entre le mouvement brownien et la capacité d'un ensemble: les ensembles de capacité positive sont ceux que le mouvement brownien a une probabilité positive de visiter11 . Cette connexion n'est pas exploitée dans cette thèse mais illustre bien la subtilité de la notion de capacité. La mesure d'équilibre ν E est particulièrement intéressante car elle correspond à la manière dont une densité de charges se répartirait dans le conducteur à l'équilibre. En général, la mesure d'équilibre est portée par la frontière extérieure de l'ensemble E. On peut ainsi montrer que la mesure d'équilibre d'un disque est la mesure uniforme sur sa frontière. Si on cherche à charger un disque métallique, à l'équilibre, les charges seront uniformément réparties sur un cercle correspondant au bord du disque. On peut aussi développer une théorie du potentiel dite "avec champ extérieur", dont le livre de Saff et Totik est une référence [START_REF] Saff | Logarithmic potentials with external fields[END_REF]. Il s'agit d'un problème similaire à (16) où on cherche à calculer min

min µ∈M 1 (E) E(µ). (16) 
µ∈M 1 (R d ) E(µ) + V dµ. ( 17 
)
Dans ce problème, on n'impose plus aux charges d'être portées par un ensemble spécifique mais on observe la compétition entre la répulsion coulombienne et l'effet d'une énergie de confinement V . Il existe une unique mesure ν eq qui minimise (17), et elle est caractérisée par les équations de Frostman

U νeq (z) + 1 2 V (z) = C pour tout z dans le support de ν eq (18) U νeq (z) + 1 2 V (z) ≥ C sauf sur un ensemble de capacité nulle. ( 19 
)
La fonction U νeq + 1 2 V est appelée potentiel effectif. On peut retrouver ces relations de manière intuitive en dérivant par rapport à la mesure µ la forme quadratique sur M 1 (C)

I(µ) = E(µ) + V dµ.
Le potentiel logarithmique intervient naturellement dans l'étude de la mesure empirique d'un polynôme grâce à la relation

U µn (z) = 1 n n k=1 -log |z -z k | = - 1 n log |P n (z)|.
Cette relation peut être utilisée pour étudier le spectre de matrices aléatoires, sous réserve de savoir contrôler le polynôme caractéristique de ces matrices. Cette approche ne se révèle pas très fructueuse car les coefficients du polynôme caractéristique ne sont pas une fonction simple des coefficients de la matrice. En revanche, dans l'étude des polynômes aléatoires, la loi des coefficients est connue à l'avance et on peut se servir de cette relation pour étudier la mesure empirique des racines. Une illustration particulièrement élégante de cette technique est la preuve de Kabluchko et Zaporozhets [START_REF] Kabluchko | Asymptotic distribution of complex zeros of random analytic functions[END_REF] de la convergence des mesures empiriques de nombreux modèles de fonctions analytiques aléatoires.

Gaz de Coulomb en dimension 1 ou 2

Un gaz de Coulomb, parfois appelé plasma à une composante (one component plasma ou OCP en anglais), est un modèle de particules en interaction issu de la physique statistique. Il s'agit d'étudier un système de n particules interagissant deux à deux. L'énergie d'interaction entre deux particules est donnée par la fonction de Green. L'énergie du système {x 1 , . . . , x n } est ainsi donnée par

H n (x 1 , . . . , x n ) = i =j -log |x i -x j | + n n i=1 V (x i ) (20) 
que l'on peut réécrire en fonction de la mesure empirique du système

µ n = 1 n n k=1 δ x k H n (x 1 , . . . , x n ) = n 2 E = (µ n ) + n 2 V (x)dµ n (x)
où E = est appelée énergie coulombienne hors diagonale et est définie par

E = (µ) := x =y -log |x -y|dµ(x)dµ(y). ( 21 
)
À température T n = 1/β n , la physique statistique stipule que le comportement du système est caractérisée par la mesure de probabilité sur

C n 1 Z n exp -β n (H n (x 1 , . . . , x n )) d C n (x 1 , . . . , x n ) (22)
où Z n est une constante de normalisation, ayant donc pour valeur

Z n = C n exp -β n (H n (x 1 , . . . , x n )) d C n (x 1 , . . . , x n ).
Cette mesure est appelée mesure de Botlzmann-Gibbs, ou modèle canonique, associée à l'énergie H n , à température T n . La probabilité d'observer deux particules très proches étant exponentiellement petite, on retrouve le caractère répulsif de l'interaction. Pour que ce modèle soit bien défini, il faut que Z n < ∞ ce qui impose que V doit tendre vers l'infini à l'infini suffisamment rapidement. En dimension 1, on appelle gaz logarithmique associé à (20) le système de particules {x 1 , . . . , x n } dont la loi jointe sur

R n est 1 Z n exp -β n (H n (x 1 , . . . , x n )) d R n (x 1 , . . . , x n ).
Ces gaz apparaissent dans la suite comme les valeurs propres de matrices aléatoires hermitiennes. Nous utilisons aussi le terme gaz de Coulomb en dimension 1. Cela constitue un abus de langage, l'interaction coulombienne en dimension 1 n'étant pas logarithmique. On peut cependant penser à ces systèmes comme des particules en dimension 2 contraintes à être sur l'axe réel.

Les gaz de Coulomb et les log-gaz ont été énormément étudiés et de nombreux livres leurs sont consacrés. Ils ont un lien très fort avec les matrices aléatoires [START_REF] Forrester | Log-gases and random matrices (LMS-34)[END_REF], [START_REF] Akemann | The Oxford handbook of random matrix theory[END_REF], les statistiques [START_REF] Wilks | Mathematical statistics[END_REF], la physique mathématique [START_REF] Blanc | The crystallization conjecture: a review[END_REF], [START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF].

Matrices aléatoires et gaz de Coulomb

Historiquement, l'étude des matrices aléatoires a naturellement conduit à l'étude des gaz de Coulomb. Les travaux de Wigner sont à l'origine du lien entre matrices aléatoires et gaz de Coulomb, et ont été inspirés par la découverte accidentelle de la loi des valeurs propres de l'ensemble de Wishart dans le livre de statistique de Wilks [START_REF] Wilks | Mathematical statistics[END_REF] 12 . Le gaz de Coulomb associé aux matrices de Wishart semble avoir été identifié dès les années 1930 par les statisticiens [START_REF] Wilks | Mathematical statistics[END_REF]. Cependant, l'essor des gaz de Coulomb a eu lieu dans les années 1960.

Matrices de Wigner

L'étude des matrices aléatoires a été amorcée en physique nucléaire par Wigner [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] qui cherchait à expliquer les niveaux d'énergie de noyaux d'atomes lourds. Ces niveaux d'énergie sont liés aux valeurs propres d'un opérateur hermitien. L'idée de Wigner a été de rendre cet opérateur aléatoire, afin d'étudier la répartition des valeurs propres d'un système typique. Afin de construire un opérateur aléatoire, il a considéré les spectres de matrices aléatoires hermitiennes dont la dimension tend vers l'infini. Ces matrices, dites de Wigner, sont de la forme Lorsque les coefficients diagonaux (a i,i ) sont des des variables aléatoires indépendantes de loi N R (0, 1), et que les autres coefficients (a i,j ) i<j sont des variables aléatoires indépendantes de loi N R (0, 1), N C (0, 1) ou N H (0, 1) 13 , la loi de M n est invariante par l'action par conjugaison de O n (R) (respectivement l'action de U n (C) ou du groupe symplectique).

M n =        a 1,1 a 1,2 . . . a 1,n a 1,2 a 2,2 . . . . . . . . . a 1,n . . . a n,n        ( 
Ces ensembles sont appelés GOE, GUE et GSE. Dyson a montré que, pour les ensembles GOE, GUE et GSE, la loi jointe des valeurs propres de 1 13 Il s'agit de la loi gaussienne symplectique, à valeurs dans le corps des quaternions. Les coordonnées dans la base (1, i, j, k) d'une variable aléatoire de loi N H (0, 1) sont des variables aléatoires de loi N R (0, 1/4) indépendantes.

√ n M n s'écrit 1 Z n exp - β 2   i =j -log |λ i -λ j | + n n i=1 |λ i | 2 2   d R n (λ 1 , . . . , λ n ) (24) où β = 1,
verrons plus tard que cette mesure est celle qui minimise la fonction

I(µ) = E(µ) + |x| 2 2 dµ(x).

Matrices de Wishart

En 1928, Wishart [START_REF] Wishart | The generalised product moment distribution in samples from a normal multivariate population[END_REF] a étudié les propriétés de matrices de covariance empirique

M m,n = 1 n T m,n T * m,n
où T m,n est une matrice à m lignes et n colonnes, m ≥ n, dont les coefficients sont des variables aléatoires de loi N R (0, 1) (β = 1) ou N C (0, 1) (β = 2) indépendantes. Dans ce cas, la loi jointe des valeurs propres est donnée par

1 Z n exp - β 2   i =j -log |λ i -λ j | + n n i=1 λ i   n i=1 λ β 2 (1+n-m)-1 i d R n + (λ 1 , . . . , λ n ).
Les valeurs propres des matrices de Wishart forment donc un gaz logarithmique sur R + . Notons que la loi jointe des valeurs propres de M n,m ne diffère de celle de M m,n que par la présence d'un atome en 0 de masse 1 -n/m. Dans le cas où n > m et si le rapport m/n a une limite λ < 1, alors la suite des mesures empiriques converge vers la mesure de Marchenko-Pastur [START_REF] Vladimir | Distribution of eigenvalues for some sets of random matrices[END_REF] ν MP (x) = 1 2π

((1 + √ λ) 2 -x)(x -(1 - √ λ) 2 ) λx 1 x∈[(1- √ λ) 2 ,(1+ √ λ) 2 ] dx.
Le comportement de la suite des mesures empiriques est universel: la convergence vers la distribution de Marchenko-Pastur a lieu dès que les coefficients de la matrice T m,n sont i.i.d., centrés et de variance unitaire [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]. 

Matrices de Ginibre

En 1965, Ginibre [START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF] a introduit un modèle de matrices non hermitiennes à coefficients indépendants dont les valeurs propres forment un gaz de Coulomb en dimension 2. Ainsi, Introduction on définit la matrice

M n =        a 1,1 a 1,2 . . . a 1,n a 2,1 a 2,2 . . . . . . . . . a n,1 . . . a n,n       
dont les coefficients sont des variables aléatoires de loi gaussienne complexe N C (0, 1). Ginibre [START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF] a montré que la loi jointe du spectre de 1

√ n M n est π -n n k=1 k! exp -   i =j -log |λ i -λ j | + n n i=k |λ k | 2   d C n (λ 1 , . . . , λ n ). ( 26 
)
Les valeurs propres des matrices aléatoires de 

Matrices de Ginibre réelles

Dans le cas où les coefficients de M n sont des gaussiennes réelles N R (0, 1), Lehmann et Sommers [START_REF] Lehmann | Eigenvalue statistics of random real matrices[END_REF] puis Edelman [START_REF] Edelman | The probability that a random real gaussian matrix haskreal eigenvalues, related distributions, and the circular law[END_REF] ont calculé la loi jointe des valeurs propres de 1 √ n M n . Ils ont montré que la distribution des valeurs propres est un mélange de lois, chacune correspondant à un nombre fixé de valeurs propres réelles. En effet, la loi des valeurs propres de l'ensemble de Ginibre réel ne peut pas être absolument continue par rapport à la mesure de Lebesgue sur C n car le polynôme caractéristique de ces matrices est un polynôme à coefficients réels. Il peut avoir des racines réelles 14 . Cela implique aussi que la loi du spectre est invariante par la conjugaison z → z. On observe cette symétrie dans la figure 5. Ainsi, si on note

d n,k (z 1 , . . . , z n ) = d R (z 1 ) . . . d R (z n-2k )d C (z n-k ) . . . d C (z n )
où les n -2k premières variables sont réelles et les autres sont complexes, la loi jointe des valeurs propres de 1

√ n M n s'écrit C n n/2 k=0 √ n n 2 2k exp - 1 2 -log |λ i -λ j | + n n k=1 |λ k | 2 2 (27) n j=n-k √ n (λ k )erfc( √ 2n (λ k )e 2 (λ k ) 2 N )d n,k (λ 1 , . . . , λ n ) (28) où erfc(x) = 1 √ π ∞ x e -t 2 dt et C n = 2 -n(n+1)/4 n n(n-1)/4 n k=1 Γ(k/2)
.

Une preuve de cette formule est disponible dans le livre de Forrester [For10, Section 15.10].

Matrices de Forrester-Krishnapur

Dans tous les modèles cités précédemment, la limite des mesures empiriques est une mesure à support compact. Cependant, ce n'est pas toujours le cas comme le prouve le modèle introduit par Krishnapur [START_REF] Krishnapur | Zeros of random analytic functions[END_REF], parfois appelé modèle de Forrester-Krishnapur15 . Considérons la matrice M n = A n B -1 n où A n et B n sont 2 matrices de Ginibre indépendantes. Krishnapur a montré que la loi jointe des valeurs propres de M n a pour densité par rapport à la mesure de Lebesgue sur La mesure π est vue comme un arrière plan uniforme de protons. Sa présence est due au fait que l'équation (13) n'a pas de solution lorsque l'on se place sur une variété compacte sans bord. On peut donc définir un gaz de Coulomb sur la sphère comme étant un système de particules (x 1 , . . . , x n ) dont la loi jointe est de la forme

C n 1 n! n n π n n k=1 n -1 k exp -   i =j -log |λ i -λ j | + (n + 1) n k=1 log(1 + |λ k | 2 )   . ( 29 
GOE/GUE/GSE R V (x) = β 2 |x| 2 , β = 1, 2, 4 σ = 1 2π √ 4 -x 2 1 |x|≤2 d R (x) Wishart R + V (x) = β 2 x, β = 1, 2 ν MP = 1 2π √ (b-x)(x-a) λx d R + (x) Ginibre C V (z) = β 2 |z| 2 , β = 1, 2 1 π 1 |z|≤1 d C (z) Krishnapur C V (z) = log(1 + |z| 2 ) ω F S = 1 π(1+|z| 2 ) 2 d C (z)
1 Z n exp -   i =j log x i -x j 2 + n n k=1 V (x k )   dπ ⊗n (x 1 , . . . , x n ). (30) 
L'interprétation est la même que dans R d : les particules se repoussent selon l'interaction coulombienne et subissent une énergie potentielle de position V (x). Le facteur n peut être remplacé par n + 1 dans certains modèles, sans que cela ait une influence importante sur les propriétés du gaz. Notre but dans cette section est de voir comment se comportent les gaz de Coulomb sur C lorsqu'on les envoie sur la sphère par projection stéréographique inverse. La projection stéréographique inverse (voir figure 4.4), notée T , est définie pour tout z ∈ C par

T (z) = (z) 1 + |z| 2 , (z) 1 + |z| 2 , |z| 2 1 + |z| 2 .
Afin de pouvoir calculer la loi image d'un gaz de Coulomb par T , il faut comprendre 

∀z, w ∈ C, |z -w| 2 = T (z) -T (w) 2 2 (1 -T (z) 2 2 )(1 -T (w) 2 2 ) . ( 31 
)
De plus, on en déduit que pour tout z ∈ C

1 -T (z) 2 2 = 1 1 + |z| 2 . ( 32 
)
Si on note (z 1 , . . . , z n ) le gaz de Coulomb dans C de loi jointe

1 Z n exp -   i =j -log |z i -z j | + (n + 1) n k=1 V (z k )   d C n (z 1 , . . . , z n ) le vecteur (x 1 , . . . , x n ) := (T (z 1 ), . . . , T (z n )) a pour loi 1 Z n exp -   i =j -log z i -z j 2 + (n + 1) n k=1 Ṽ (z k )   dπ ⊗n (x 1 , . . . , x n ) (33) où pour tout x ∈ S 2 Ṽ (x) = V (T -1 (x)) -log(1 + T -1 (x) 2 ).
Ainsi, on a une correspondance entre les gaz de Coulomb dans C et ceux sur la sphère S 2 . Nous présentons ici la correspondance pour les modèles de température β = 2 et pour lesquels nous avons choisi une normalisation (n+1) au lieu de n afin de rendre les formules plus légères. Le cas général est traité dans [START_REF] Hardy | A note on large deviations for 2D Coulomb gas with weakly confining potential[END_REF]. L'ensemble sphérique (29) étant le gaz de Coulomb associé au potentiel

V (z) = log(1 + |z| 2 ),
son image par projection stéréographique inverse est le gaz de Coulomb sur la sphère associé au potentiel V = 0

1 Z n i =j x i -x j 2 dπ ⊗n (x 1 , . . . , x n ). ( 34 
)
Sous cette forme, il devient facile de voir que, tout comme les racines des polynômes elliptiques à coefficients N C (0, 1), ce gaz de Coulomb est invariant par les isométries de la sphère. Cela implique que, quel que soit n ∈ N, E(µ n ) = π. Cette densité est très proche de la densité de l'image par projection stéréographique des racines de polynômes elliptiques, donnée dans la section 5.3.

Gaz de Coulomb et polynômes aléatoires

Dans cette section, nous présentons comment calculer la loi des racines de polynômes aléatoires, dans le cas où la loi des coefficients est absolument continue par rapport à la mesure de Lebesgue sur C ou R. Nous verrons que dans le premier cas, la loi des racines est absolument continue par rapport à la mesure de Lesbesgue sur C n et forme un gaz proche des gaz de Coulomb. Nous verrons aussi la forme de la loi image des racines de polynômes aléatoires par projection stéréographique inverse.

Loi des racines dans le cas général

Dès 1954, Hammersley [START_REF] Michael | The zeros of a random polynomial[END_REF] a calculé la loi jointe des racines de polynômes aléatoires de Kac à coefficients gaussiens, mais le lien entre polynômes aléatoires et gaz de Coulomb n'a été fait que dans les années 1990 avec les travaux de Bogomolny, Bohigas et Leboeuf [START_REF] Bogomolny | Distribution of roots of random polynomials[END_REF], [START_REF] Bogomolny | Quantum chaotic dynamics and random polynomials[END_REF]. Contrairement aux matrices aléatoires où le calcul de la loi jointe des valeurs propres n'est possible que pour certains modèles, le calcul de la loi jointe des racines de polynômes aléatoires est possible dès que les coefficients ont une loi absolument continue par rapport à la mesure de Lebesgue sur R ou C. Soit (R 0 , . . . , R n ) une base à degrés étagés 17 de C n [X] et considérons

P n (z) = a 0 R 0 + • • • + a n R n = a n n k=1 (z -z k ) .
L'application qui associe les racines aux coefficients dans la base canonique, donnés par les fonctions symétriques des racines,

G : C n+1 -→ C n+1 (z 1 , . . . , z n , a n ) -→ (a 0 , . . . , a n-1 , a n ) a pour déterminant jacobien 18 [HKPV09, Lemme 1.1.1] |det G| 2 = |a n | 2n i<j |z i -z j | 2 . Si (R k ) 0≤k≤n est une base de C n [X], l'application Gn Gn : C n+1 -→ C n+1 (z 1 , . . . , z n , a n ) -→ (a 0 , . . . , a n-1 , a n )
qui associe aux racines de P n ses coefficients dans la base (R k ) 0≤k≤n a pour déterminant jacobien det Gn

2 = |A n det G| 2 = |A n | 2 |a n | 2n i<j |z i -z j | 2 17 C'est-à-dire que, quel que soit k, degR k = k.
où |A n | 2 est le jacobien du changement de base de la base canonique à la base (R k ) 0≤k≤n . Cette application n'est pas inversible mais elle est surjective et, à un ensemble négligeable près, chaque vecteur (a 0 , . . . , a n ) a exactement n! antécédents. On peut alors montrer que si le vecteur aléatoire (a 0 , . . . , a n ) a une loi absolument continue par rapport à la mesure de Lebesgue sur C n+1 , de densité p n (a 0 , . . . , a n ), alors le vecteur (z 1 , . . . , z n ) a une loi absolument continue par rapport à la mesure de Lebesgue sur C n , de densité 

h n (z 1 , . . . , z n ) = |A n | 2 n! i<j |z i -z j | 2 C |a n | 2n p n (a 0 , . . . , a n )d C (a n ) (35 
p n (a 0 , . . . , a n ) = F n ( a )
où . est une semi-norme. En posant ã = (a 0 /a n , . . . , a n-1 /a n , 1), la loi jointe de (z 1 , . . . , z n ) devient

h n (z 1 , . . . , z n ) = |A n | 2 n! i<j |z i -z j | 2 ã 2n+2 ∞ 0 |u| 2n+1 F n (u)du.
Si les a k sont des variables aléatoires indépendantes de loi N C (0, 1), la densité du vecteur des racines (z 1 , . . . , z n ) devient

h n (z 1 , . . . , z n ) = |A n | 2 π n i<j |z i -z j | 2 ã 2n+2 2 . ( 36 
)
La formule (36) est déjà présente sous cette forme (pour la base canonique) dans l'article de Bogomolny, Bohigas et Leboeuf [START_REF] Bogomolny | Distribution of roots of random polynomials[END_REF] et était sans doute connue avant. La formule (35) est mentionnée par plusieurs auteurs. Le déterminant de Vandermonde au carré i<j |z i -z j | 2 est le même que le terme d'énergie d'interaction des gaz de Coulomb ou des matrices aléatoires. On peut donc penser aux racines de polynômes aléatoires comme à un gaz de Coulomb en dimension 2. Cependant, on ne peut pas définir de potentiel V comme c'est le cas pour les valeurs propres de matrices aléatoires. L'analogue du potentiel serait le terme 2 log ã 2 qui est une fonction symétrique des racines. Comme cette fonction n'est pas linéaire en la mesure empirique µ n , on parle de confinement non linéaire.

Dans [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF], Zeitouni et Zelditch ont donné une réécriture de la loi jointe des racines de polynômes de Kac à coefficients gaussiens qui permet de comprendre plus précisément la loi de (z 1 , . . . , z n ).

Dans le cas de polynômes orthogonaux aléatoires, la base (R k ) 0≤k≤n est orthonormale pour le produit scalaire sur C n [X]

P, Q = P (z)Q(z)e -nφ(z) dν(z).
On peut alors exprimer ã 2 en fonction des racines

ã 2 2 = 1 + n-1 k=0 |a k | 2 |a n | 2 = n k=1 |z -z k | 2 dν S (z). ( 37 
)
Ainsi, la densité (36) devient

h n = |A n | 2 π n exp -   i =j -log |z i -z j | + (n + 1) log n k=1 |z -z k | 2 e -nφ(z) dν(z)   . (38)

Polynômes de Kac et gaz de Coulomb

La loi des racines des polynômes de Kac à coefficients N C (0, 1) est un cas particulier de la formule (38). En choisissant ν = ν S la mesure uniforme sur le cercle unité et φ la fonction nulle on obtient le gaz de loi

1 π n exp -   i =j -log |z i -z j | + (n + 1) log n k=1 |z -z k | 2 dν S (z)   d C n (z 1 , . . . , z n ).
Le terme log n k=1 |z -z k | 2 dν S (z) joue un rôle de confinement car il pénalise les configurations où les racines sont loin du cercle unité. Contrairement aux valeurs propres des matrices de Ginibre (5), ce terme induit aussi une répulsion angulaire entre les racines. Pour que ce terme soit petit, il ne suffit pas que les racines soient proches du cercle unité, il faut aussi qu'elles soient uniformément réparties pour minimiser l'intégrale. Pour s'en convaincre, on peut comparer X n -1 2 2 = 2 et (X -1) n 2 2 ≥ 4 n . Peut-on comparer le gaz (38) à un gaz de Coulomb? En linéarisant le confinement en utilisant l'inégalité de Jensen, on obtient

log n k=1 |z -z k | 2 dν S (z) ≥ log n k=1 |z -z k | 2 dν S (z) = n k=1 2 log |z -z k |dν S (z).
Le terme log |z -z k |dν S (z) est le potentiel généré au point z k par une charge uniforme sur le cercle unité de C. Comme il n'y a pas de signe moins apposé au logarithme, cette charge est attractive. Le hamiltonien

H log + n (z 1 , . . . , z n ) = i =j -log |z i -z j | + (n + 1) n k=1 2 log |z -z k |dν S (z) (39) = i =j -log |z i -z j | + (n + 1) n k=1 2 log + |z k | (40) 
correspond donc à un système de n électrons de charge unitaire, se repoussant mutuellement, et étant attirés par une charge 2n + 2 uniformément répartie sur le cercle unité. Ainsi, il n'est pas étonnant que la mesure empirique de ce modèle converge vers la mesure uniforme sur le cercle unité de C. Le lien entre polynômes de Kac à coefficients gaussiens et gaz de Coulomb est donc particulièrement fort. Dans les autres cas, le déterminant de Vandermonde qui apparaît dans le changement de variables a un rôle répulsif, mais l'analyse ne peut pas être menée plus loin.

Polynômes elliptiques et gaz de Coulomb

Nous avons vu précédemment que les polynômes elliptiques sont un cas particulier de polynômes orthogonaux. Dans le cas où les coefficients sont des variables aléatoires de loi N C (0, 1), la loi jointe des racines a pour densité sur L'écriture de cette loi jointe ne permet pas de deviner facilement le comportement asymptotique des zéros. Rappelons que pour ces polynômes, on sait que

C n 1 Z n exp -   i =j -log |z i -z j | + (n + 1) log n k=1 |z -z k | 2 1 (1 + |z| 2 ) n d C π(1 + |z| 2 ) 2   .
µ n ---→ n→∞ ω F S = 1 π(1 + |z| 2 ) 2 d C (z).
La loi jointe du vecteur (T (z 1 ), . . . , T (z n )) est

1 Z n exp -   i =j -log x i -x j 2 + (n + 1) log S 2 n k=1 x -x i 2 2 dπ(x)   dπ ⊗n (x 1 , . . . , x n ).
On retrouve sur cette loi jointe l'invariance en loi du vecteur (T (z 1 ), . . . , T (z n )) par les isométries de la sphère. On peut interpréter cette distribution comme un gaz de Coulomb sur la sphère soumis à un confinement log

S 2 n k=1 x -x i 2 2 dπ(x).
Intuitivement, ce terme ne confine pas les particules car il favorise les configurations les plus régulières sur la sphère (voir figure (7)). La répulsion coulombienne et le confinement ne rentrent pas en compétition, contrairement aux autres modèles de gaz de Coulomb. Les deux termes favorisent les configurations les plus proches de la mesure uniforme sur la sphère. Il n'est pas surprenant que la mesure empirique du vecteur (T (z 1 ), . . . , T (z n )) converge très rapidement vers la mesure uniforme sur S 2 . L'article d'Armentano, Beltrán et Shub [START_REF] Armentano | Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials[END_REF] montre que les zéros de polynômes aléatoires fournissent un excellent moyen de minimiser l'énergie logarithmique discrète sur la sphère. L'utilisation du procédé de compactification joue un rôle clé dans le premier chapitre de cette thèse.

Polynômes à coefficients réels

Loi des racines dans le cas général

Lorsque la loi des coefficients est absolument continue par rapport à la mesure de Lebesgue sur R, la loi des racines ne peut pas être absolument continue par rapport à la mesure de Lebesgue sur C n . En effet, tout comme pour l'ensemble de Ginibre réel, cela impliquerait qu'il n'y ait presque sûrement aucune racine réelle 19 . Zaporozhets [START_REF] Zaporozhets | On the distribution of the number of real roots of a random polynomial[END_REF] a calculé la loi jointe des racines de

P n (z) = a 0 R 0 (z) + • • • + a n R n (z)
dans le cas où la famille (R k ) 0≤k≤n est une base à degrés étagés de R n [X] et où le vecteur aléatoire (a 0 , . . . , a n ) a une densité p n (a 0 , . . . , a n ) par rapport à la mesure de Lebesgue. Sous ces hypothèses, il a montré que la loi jointe des racines est 

n/2 k=0 2 k |A n | k!(n -2k)! i<j |z i -z j | R |a n | n p n (a 0 , . . . , a n )d R (a n ) d n,k (z 1 , . . . ,
2 k |A n | k!(n -2k)! i<j |z i -z j | ã n+1 R + |u| n F n (u)du d n,k (z 1 , . . . , z n ).
On peut, comme dans le cas complexe, simplifier une fois de plus cette loi si la base (R k ) 0≤k≤n est orthonormale par rapport à un produit scalaire (10) et si . est la norme euclidienne . 2 . On obtient une loi de la forme

n/2 k=0 1 Z n,k exp - 1 2   i =j -log |z i -z j | + (n + 1) log n k=1 |z -z k |e -nφ(z) dν(z)   d n,k .
(42) Comme pour les matrices de Ginibre réelles, on obtient un mélange de gaz de Coulomb, tous associés au même hamiltonien, mais avec un nombre différent de particules sur l'axe réel.

Polynômes de Kac à coefficients exponentiels

Le dernier modèle pour lequel la loi jointe des racines a une forme particulièrement agréable est celui des polynômes de Kac dont les coefficients a k sont des variables aléatoires de loi exponentielle de paramètre 1. La densité du vecteur (a 0 , . . . , a n ) s'écrit alors exp -

n k=0 a k n k=1 1 R + (a k ) = exp {-a 1 } n k=1 1 R + (a k ) = exp {-P n (1)} n k=1 1 R + (a k ).
19 Un polynôme de degré impair a au moins une racine réelle.

Ainsi, la loi jointe du vecteur (z 1 , . . . , z n ) est de la forme

n/2 k=0 1 Z n,k exp -   1 2 i =j -log |z i -z j | + (n + 1) n k=1 log |1 -z k |   1 Bn d n,k . ( 43 
)
où B n désigne l'ensemble des racines de polynômes à coefficients positifs. Ce calcul repose sur le fait que, les a k étant positifs,

ã 1 = 1 |a n | |P n (1)| = n k=1 |1 -z k |.
Ce 

I : ω → [0, ∞] si I est semi-continue inférieurement et si Borne supérieure: ∀B ∈ B, lim n→∞ 1 v n log µ n (B) ≤ -inf z∈Clo(B) I(z) Borne inférieure: ∀B ∈ B, lim n→∞ 1 v n log µ n (B) ≥ -inf z∈Int(B) I(z)
où Int et Clo désignent l'intérieur et l'adhérence d'un ensemble. Si les ensembles de niveaux de I sont compacts, on dit que I est une bonne fonction de taux. On peut voir de manière informelle un principe de grandes déviations comme l'équivalent est compact, les principes de grandes déviations forts et faibles sont équivalents. Dans le cas général, pour passer d'un principe de grandes déviations faible à un principe de grandes déviations fort, il suffit de montrer que la suite de mesures (µ n ) n∈N est exponentiellement tendue, c'est à dire qu'il existe une suite de compacts K m telle que

lim m→∞ lim n→∞ 1 v n log µ n (K c m ) = -∞.
Il est souvent plus simple de montrer un principe de grandes déviations faibles, car il suffit de montrer

Borne supérieure faible: ∀x ∈ Ω, lim

δ→0 lim n→∞ 1 v n log µ n (B(x, δ)) ≤ -I(x) Borne inférieure: ∀x ∈ Ω, lim δ→0 lim n→∞ 1 v n log µ n (B(x, δ)) ≥ -I(x).
Cette formulation nous est particulièrement utile dans les chapitres 1 et 3.

Grandes déviations pour les log-gaz associés aux matrices aléatoires

Le premier résultat de grandes déviations pour un gaz logarithmique a été obtenu par Ben Arous et Guionnet [BAG97] 20 . Ils ont montré que si (µ n ) n∈N est la suite des mesures empiriques des valeurs propres d'une famille de matrices M n ∈ M n (C) du GUE (24), alors la suite des lois de µ n satisfait un principe de grandes déviations dans M 1 (R), à vitesse n 2 de bonne fonction de taux I GUE définie sur M 1 (R) par

I GUE (µ) = E(µ) + x 2 2 dµ(x) - 3 8 - 1 4 log 2.
Ainsi, pour tout ensemble borélien A ∈ M 1 (R),

inf

IntA

I GUE ≤ lim n→∞ 1 n 2 log P(µ n ∈ A) ≤ lim n→∞ 1 n 2 log P(µ n ∈ A) ≤ -inf CloA I GUE .
Pour que ce théorème soit complet, il faut préciser la topologie choisie sur M 1 (R). Nous équipons M 1 (R) de la topologie de la convergence en loi (topologie étroite). Celle-ci est métrisable par la distance de Fortet-Mourier [START_REF] Fortet | Convergence de la répartition empirique vers la répartition théorique[END_REF] 21

d(µ, ν) = sup max{ f ∞, f Lip }≤1 f dµ -f dν .
Le principe de grandes déviations de Ben Arous et Guionnet a plusieurs conséquences. Tout d'abord, la fonction de taux étant strictement convexe, ce principe de grandes déviations donne une formulation variationnelle pour la mesure semi-circulaire (25)

σ = Argmin E(µ) + x 2 2 dµ(x) .
Cette formulation variationnelle permet d'écrire que la mesure σ satisfait des relations de type (18). De plus, à l'aide du lemme de Borel Cantelli, on peut montrer que presque sûrement

d(µ n , σ) ---→ n→∞ 0.
20 Cet article est inspiré des heuristiques de Voiculescu [START_REF] Voiculescu | The analogues of entropy and of fisher's information measure in free probability theory, i[END_REF] et corrige l'article de Chan [START_REF] Chan | Large deviations for empirical measures with degenerate limiting distribution[END_REF]. 21 En anglais, cette distance s'appelle la distance Bounded Lipschitz.

Pour les autres valeurs de β, la suite des mesures empiriques satisfait un principe de grandes déviations similaire de fonction de taux β 2 I GUE . De manière plus générale, si on considère le gaz logarithmique sur R de loi jointe

1 Z V n exp -   β i =j -log |λ i -λ j | + n n k=1 V (λ i )   d R n (λ 1 , . . . , λ n ), ( 44 
) où V est une fonction semi-continue inférieurement telle qu'il existe β ≥ β tel que lim |x|→∞ V (x) β log |x| > 1, (45) 
alors la suite de mesures empiriques associée à ce modèle satisfait un principe de grandes déviations dans M 1 (R) muni de la distance de Fortet-Mourier, à vitesse n 2 et de bonne fonction de taux

I β (µ) = βE(µ) + V dµ.
Ces résultats sont démontrés dans le livre [AGZ10, Section 2.6.1]. Comme pour le GUE, la fonction de taux I β est strictement convexe sur son domaine, elle admet donc un unique minimum ν β caractérisé par les relations

βU ν β (x) + 1 2 V (x) = C pour tout x dans le support de ν eq βU ν β (x) + 1 2 V (x) ≥ C sauf sur un ensemble de capacité nulle.
Pour montrer le principe de grandes déviations, la preuve classique consiste à montrer un principe de grandes déviations faible en contrôlant la densité (44) sur de petites boules et de montrer la tension exponentielle. Hardy a montré que l'hypothèse de confinement (45) pouvait être remplacée par l'hypothèse plus faible

∃β > β, β > 1, lim |x|→∞ V (x) -β log |x| > -∞.
En utilisant les mêmes techniques, on peut prouver des principes de grandes déviations similaires pour le log-gaz associé aux matrices de Wishart, parfois appelé gaz de Laguerre. Pour de nombreux modèles matriciels gaussiens, les valeurs propres forment un log-gaz, ce qui implique un principe de grandes déviations pour la suite des mesures empiriques. Que se passe-t-il lorsque les coefficients des matrices ne sont plus gaussiens? La réponse à cette question a été partiellement apportée par Bordenave et Caputo [START_REF] Bordenave | A large deviation principle for wigner matrices without gaussian tails[END_REF] qui ont prouvé que pour des matrices de Wigner dont les coefficients ont des queues de distribution de type e -|x| α , α ∈ (0, 2), alors la suite des mesures empiriques de 1 √ n M n satisfait un principe de grandes déviations dans M 1 (R), à vitesse n 1+α/2 et de bonne fonction de taux I α non explicite. Le principe de grandes déviations pour la mesure empirique dépend de la loi des coefficients et n'est donc pas universel. Pour les matrices de covariance empirique, Groux [START_REF] Groux | Asymptotic freeness for rectangular random matrices and large deviations for sample covariance matrices with sub-gaussian tails[END_REF] a montré un résultat similaire à celui de Bordenave et Caputo. Nous verrons que pour les polynômes aléatoires, les principes de grandes déviations sont, en un sens, universels.

Valeurs propres extrémales de matrices aléatoires

On peut aussi s'intéresser au comportement des valeurs propres extrêmes des modèles de matrices aléatoires évoqués précédemment. Pour le gaz associé au GOE, Ben Arous, Dembo et Guionnet [START_REF] Ben Arous | Aging of spherical spin glasses[END_REF] ont établi un principe de grandes déviations pour la plus grande valeur propre qui a été étendu à tous les ensembles β (44) dans [AGZ10, théorème 2.6.6 p. 81]. Dean et Majumdar [START_REF] Dean | Large deviations of extreme eigenvalues of random matrices[END_REF] ont aussi obtenu ces grandes déviations pour plusieurs modèles de matrices aléatoires.

Théorème 3 (Grandes déviations pour la plus grande valeur propre des ensembles β). Supposons que la constante de normalisation

Z V n satisfait lim n→∞ 1 n log Z nV /(n-1) n-1 Z V n = inf I β ( 46 
)
et que le potentiel V est fortement confinant (45). Quel que soit n ∈ N * , on note

λ (n) = max i∈{1,...,n} λ i
On note σ l'unique mesure qui minimise I β , son support est un comtpact de R dont l'extrémité droite est notée b. La suite de variables aléatoires (λ (n) ) n∈N * satisfait un principe de grandes déviations dans R, à vitesse n et de bonne fonction de taux

J β (x) = β -log |x -y|dσ(y) + V (x) -inf I β si x ≥ b +∞ sinon.
On peut remarquer que J β est le potentiel effectif. L'interprétation "physique" est la suivante: les particules se concentrent extrêmement rapidement sous la forme de la distribution σ. L'énergie de la plus grande particule en un point x est donc au premier ordre la somme du potentiel V (x) et du potentiel généré par la distribution de charges σ. Une version légèrement différente de ce résultat a été prouvée par Borot et Guionnet [START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF], [START_REF] Borot | All-order asymptotic expansion of beta matrix models in the multi-cut regime[END_REF] où la condition (46) n'est pas imposée.

Perret et Schehr [START_REF] Perret | Near-extreme eigenvalues and the first gap of hermitian random matrices[END_REF] puis Donati-Martin et Rouault [DMR + 16] se sont intéressés au comportement de la mesure empirique vue depuis la plus grande valeur propre.

Principes de grandes déviations de gaz de Coulomb

Gaz de Coulomb dans C et matrices aléatoires

Les principes de grandes déviations présentés dans la section précédente concernent des gaz logarithmiques sur R. Hiai et Petz [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF] ont montré un principe de grandes déviations pour les mesures empiriques du gaz associé aux matrices de Ginibre (26), à vitesse n 2 et de bonne fonction de taux I G définie sur M 1 (C) par

I(µ) = E(µ) + |x| 2 2 dµ(x) -inf ν∈M 1 (C) E(ν) + |x| 2 2 dν(x) .
Ce résultat n'est pas très étonnant, la loi jointe (26) étant la mesure de Gibbs à température inverse n 2 associée au hamiltonien

H n (µ n ) = E = (µ n ) + |x| 2 2 dµ n (x).
Nous avons vu que les grandes déviations pour les gaz logarithmiques en dimension 1 étaient valides pour une large classe de potentiels V confinants. Pour les gaz de Coulomb à température inverse n 2 associés à un potentiel V semi continu inférieurement vérifiant

∃β > 2, lim |x|→∞ V (x) -β log |x| > -∞, (47) 
la suite des mesures empiriques satisfait un principe de grandes déviations dans M 1 (C) à vitesse n 2 et de bonne fonction de taux

I V (µ) = E(µ) + V dµ -inf ν∈M 1 (C) E(ν) + V dν .
La condition de confinement faible a été énoncée pour la première fois par Hardy [START_REF] Hardy | A note on large deviations for 2D Coulomb gas with weakly confining potential[END_REF]. Une preuve possible de ce résultat consiste à compactifier le gaz de Coulomb en étudiant l'image du gaz par la projection stéréographique inverse. On prouve les grandes déviations sur la sphère et on en déduit le principe de grandes déviations dans C par principe de contraction. La condition (47) ne couvre pas le modèle de Forrester-Krishnapur (29).

Lorsque la normalisation devant le potentiel V est (n + 1) au lieu de n, la condition de confinement peut être relaxée en

Ṽ ((0, 0, 1)) = lim |x|→∞ V (x) -log(1 + |x| 2 ) > -∞.
Cela provient du fait que la normalisation (n + 1) permet d'écrire d'une manière particulièrement simple la loi du gaz compactifié (33). En appliquant les mêmes techniques que pour l'ensemble de Ginibre, on peut montrer que les mesures empiriques de gaz de Coulomb sur la sphère satisfont un principe de grandes déviations.

Gaz de Coulomb dans R d et généralisations

Les techniques décrites ci-dessus pour traiter les grandes déviations de gaz de Coulomb dans R, C ou même S 2 sont très robustes. Chafaï, Gozlan et Zitt [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF] ont étudié les grandes déviations pour la suite des mesures empiriques de gaz dont la loi jointe sur (R d ) n est donnée par

1 Z n exp -β n   1 n 2 i =j W (x i , x j ) + 1 n n k=1 V (x k )   d (R d ) n (x 1 , . . . , x n ).
Ils ont montré que si W et V satisfont certaines hypothèses de régularité assez générales et si β n n log n22 alors la suite de mesures empiriques satisfait un principe de grandes déviations dans M 1 (R d ) muni de la distance de Fortet-Mourier, à vitesse β n et de bonne fonction de taux

I(µ) = W (x, y)dµ ⊗2 (x, y) + V (x)dµ(x) -C où C = inf ν∈M 1 (R d ) W (x, y)dµ ⊗2 (x, y) + V (x)dµ(x).
Ce résultat englobe tous les principes de grandes déviations pour les matrices aléatoires et les gaz de Coulomb évoqués précédemment. On peut aussi s'intéresser aux gaz de Coulomb et aux gaz logarithmiques sur une variété riemannienne. Dans ce cadre, Berman [START_REF] Berman | Determinantal point processes and fermions on complex manifolds: large deviations and bosonization[END_REF], [START_REF] Berman | On large deviations for gibbs measures, mean energy and gamma-convergence[END_REF] a prouvé des principes de grandes déviations pour les mesures empiriques de ces gaz. Indépendamment, Garcia Zelada [START_REF] García | A large deviation principle for empirical measures on polish spaces: Application to singular gibbs measures on manifolds[END_REF] a étudié des principes de grandes déviations pour les mesures empiriques de systèmes de particules (x 1 , . . . , x n ) sur un espace polonais E de loi jointe

1 Z n exp (-nβ n W n (µ n )) dπ ⊗n E (x 1 , . . . , x n )
où π E est une mesure finie sur E. Garcia Zelada a ainsi montré que si la suite de fonctions W n converge vers une fonction limite W , alors la suite de mesures aléatoires (µ n ) n∈N satisfait un principe de grandes déviations de fonction de taux

I(µ) = W (µ) si lim n→∞ β n = ∞ βW (µ) + D(µ||π) si lim n→∞ β n = β
et à vitesse nβ n ou n dans le second cas. Le terme d'entropie relative D(µ||π) fait écho au théorème de Sanov. La démonstration de ce résultat repose sur une approche variationnelle, inspirée des travaux de Dupuis et Ellis [START_REF] Dupuis | A weak convergence approach to the theory of large deviations[END_REF]. Ce résultat général a de nombreuses applications. Tout d'abord, on obtient un principe de grandes déviations à vitesse n faisant intervenir l'entropie relative, comme le suggère le théorème de Sanov. De plus, l'article de Garcia Zelada [START_REF] García | A large deviation principle for empirical measures on polish spaces: Application to singular gibbs measures on manifolds[END_REF] étend l'analyse de Chafaï, Gozlan et Zitt [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF] aux variétés riemanniennes.

Résultats obtenus dans cette thèse

Dans cette section, nous présentons les différents résultats obtenus lors de cette thèse.

1. Dans le premier chapitre, nous démontrons des principes de grandes déviations pour les mesures empiriques des racines de polynômes orthogonaux dont les coefficients sont des variables aléatoires indépendantes de loi N C (0, 1) ou N R (0, 1). Nous détaillons ces résultats pour les cas particuliers que sont les polynômes de Kac et les polynômes elliptiques.

2. Dans le second chapitre, nous démontrons l'universalité des principes de grandes déviations obtenus dans le premier chapitre.

3. Dans le troisième chapitre, nous étudions la convergence en loi de la plus grande racine en module de polynômes de Kac. Nous y montrons que cette racine est en général une variable aléatoire à queues lourdes qui dépend fortement de la loi des coefficients.

4. Le quatrième chapitre porte sur les grandes déviations pour les mesures empiriques d'un modèle de log-gaz modifié: les ensembles biorthogonaux.

5. Dans le cinquième chapitre, nous vérifions que tous les principes de grandes déviations pour les mesures empiriques des polynôme orthogonaux s'étendent aux cas des polynômes de Weyl renormalisés. Pour cela, il nous faut adapter les preuves des deux premiers chapitres.

Chapitre 1: Grandes déviations pour les mesures empiriques de polynômes aléatoires à coefficients gaussiens

Le premier chapitre de cette thèse correspond à l'article [START_REF] Butez | Large deviations for the empirical measure of random polynomials: revisit of the zeitouni-zelditch theorem[END_REF]. Son but est d'adapter la preuve de Zeitouni et Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] des principes de grandes déviations pour la suite des mesures empiriques de polynômes orthogonaux (11) aléatoires et de les étendre au cas où les loi des coefficients gaussiens réels. Les coefficients sont des variables aléatoires i.i.d. de loi N C (0, 1) ou N R (0, 1). On fixe une mesure ν ∈ M 1 (C) et une fonction φ et on suppose que la base (R k ) 0≤k≤n est orthonormale par rapport au produit scalaire sur C n [X]

P, Q = P (z)Q(z)e -nφ(z) dν(z). ( 48 
)
On suppose que le couple (φ, ν) satisfait l'inégalité de Bernstein-Markov (12) et que le support de ν est un ensemble épais en chacun de ses points 23 .

Definition 1 (Ensemble épais). Soit S ⊂ C et z ∈ C. On dit que S est épais au point z si z ∈ S \ {z} et si pour toute fonction sous-harmonique u définie sur un voisinage de z,

lim sup x→z, x∈S\{z} u(x) = u(z).
Dans le cas contraire, on dit que l'ensemble S est fin en z.

Rappelons que lorsque les coefficients sont des variables aléatoires indépendantes de loi N C (0, 1) ou N R (0, 1), la loi jointe des racines de P n est donnée par (38) ou (42).

Théorème 4 (Cas complexe). Si les a k sont des variables aléatoires indépendantes de loi N C (0, 1), alors la suite de variables aléatoires (µ n ) n∈N satisfait un principe de grandes déviations dans M 1 (C) muni de la topologie étroite, à vitesse n 2 et de bonne fonction de taux

I O -inf I O où I O est définie sur M ∞ (C) par I O (µ) = -log |z -w| + 1 2 log(1 + |z| 2 ) + 1 2 log(1 + |w| 2 )dµ(z)dµ(w) (49) 
+ sup

z∈K log |z -w| 2 -log(1 + |w| 2 )dµ(w) -φ(z) . ( 50 
)
Lorsque log(1 + |z| 2 )dµ(z) < ∞, cette fonction peut s'écrire

I O (µ) = E(µ) + sup z∈K log |z -w| 2 dµ(w) -φ(z) .

Cela se traduit par le fait que pour tout ensemble borélien

A ⊂ M 1 (C) -inf IntA {I O -inf I O } ≤ lim n→∞ 1 n 2 log P(µ n ∈ A), lim n→∞ 1 n 2 log P(µ n ∈ A) ≤ -inf CloA {I O -inf I O } .
Le théorème 4 est dû à Zeitouni et Zelditch qui ont montré ce principe de grandes déviations dans M 1 (CP 1 ). Nous donnons une preuve de ce résultat ne faisant appel à aucune notion de géométrie complexe, en utilisant le procédé de compactification introduit par Hardy [START_REF] Hardy | A note on large deviations for 2D Coulomb gas with weakly confining potential[END_REF] afin de réécrire sur S 2 la loi jointe (38). Nous suivrons ensuite les idées de l'article de Zeitouni et Zelditch pour prouver un principe de grandes déviations sur la sphère. Le principe de grandes déviations sur C est obtenu par principe de contraction.

La démonstration du théorème 4 est très proche de la démonstration originale, mais elle présente l'avantage de s'étendre au cas des coefficients gaussiens réels. Ainsi, en suivant une stratégie semblable à celle de [START_REF] Ben | Large deviations from the circular law[END_REF], on peut montrer le résultat suivant.

Théorème 5 (Cas réel). Si les a k sont des variables aléatoires indépendantes de loi N R (0, 1), alors la suite des mesures empiriques (µ n ) n∈N satisfait un principe de grandes déviations dans M 1 (C) muni de la topologie étroite, à vitesse n 2 et de bonne fonction de taux Ĩ0 -inf Ĩ0 avec

Ĩ0 (µ) = 1 2 I 0 (µ) si µ est invariante par z → z +∞ sinon. ( 51 
)
Dans le chapitre 1, nous détaillons la démonstration dans le cas des polynômes de Kac et nous donnons une ébauche de démonstration pour les polynômes elliptiques et les polynômes orthogonaux aléatoires.

Pour les polynômes de Kac, la fonction de taux s'écrit sous sa forme simplifiée

I R (µ) = E(µ) + 2 sup z∈S log |z -w|dµ(w) (52)
où S désigne le cercle unité de C. On peut deviner cette fonction de taux en analysant la densité (38). La méthode de Laplace indique que le terme

1 n log n k=1 |z -z k | 2 dν S (z) = 1 n log e 2n log |z-w|dµn(w) dν S (z)
est équivalent à 2 sup z∈S log |z -w|dµ(w). Bien que la méthode de Laplace ne soit pas utilisée dans la preuve du théorème 4, elle permet d'avoir une intuition de la fonction de taux. Le lien entre ces deux termes est aussi réalisé par la propriété de Bernstein-Markov (12). On déduit de cette propriété que les deux termes sont exponentiellement équivalents. Ce lien est détaillé dans le premier chapitre.

Chapitre 2: Universalité des grandes déviations pour les polynômes aléatoires

Le second chapitre de cette thèse correspond à l'article [START_REF] Butez | Universal large deviations for kac polynomials[END_REF], écrit avec Ofer Zeitouni. Il traite de l'universalité des principes de grandes déviations pour les mesures empiriques de polynômes aléatoires. L'objet de ce chapitre est de déterminer des classes d'universalité à l'intérieur desquelles un même principe de grandes déviations est valide.

Principes de grandes déviations connus

Nous allons d'abord faire un court résumé des modèles pour lesquels un principe de grandes déviations est valide. Nous avons vu dans la section précédente que pour des polynômes orthogonaux aléatoires dont les coefficients sont des variables aléatoires indépendantes de loi N C (0, 1) ou N R (0, 1), la suite des mesures empiriques satisfait un principe de grandes déviations à vitesse n 2 . Bien que très similaires, les fonctions de taux associées à ces principes de grandes déviations, (49) et (51), sont différentes. Dans cette section, nous les notons respectivement I O,C et I O,R . Dans le cas particulier des polynômes de Kac, nous utilisons les notations I C et I R pour désigner les fonctions de taux associées aux principes de grandes déviations précédents.

Le seul autre modèle pour lequel un principe de grandes déviations est connu pour la suite des mesures empiriques est celui des polynômes de Kac à coefficients indépendants de loi exponentielle de paramètre 1. La loi jointe des racines est alors donnée par (43). Ghosh et Zeitouni [GZ16] ont prouvé que, pour ce modèle, la suite des mesures empiriques satisfait un principe de grandes déviations dans M 1 (C) muni de la topologie étroite, à vitesse n 2 et de fonction de taux

I R + (µ) =    1 2 E(µ) + log |1 -z|dµ(z) si µ ∈ P +∞ sinon. ( 53 
)
où P est l'adhérence dans la topologie faible pour l'ensemble des mesures empiriques de polynômes à coefficients positifs. La description de l'ensemble P est une question délicate qui a été résolue par Bergweiler et Eremenko [START_REF] Bergweiler | Distribution of zeros of polynomials with positive coefficients[END_REF]. On peut remarquer que cette fonction de taux est la même que celle du principe de grandes déviations pour les polynômes de Kac à coefficients N R (0, 1) lorsqu'elle prend des valeurs finies (le supremum de (52) est atteint en z = 1).

Universalité des principes de grandes déviations

Le chapitre 2 porte sur le théorème d'universalité suivant.

Théorème 6 (Universalité des grandes déviations). Soit E = C, R ou R + pour les polynômes de Kac, respectivement E = C ou R pour les polynômes orthogonaux. Si a 0 , . . . , a n sont des variables aléatoires i.i.d. dont la loi a pour densité g par rapport à la mesure de Lebesgue E sur E, et si

1. il existe ρ > 0, r > 0 et R > 0 tels que ∀z ∈ E, g(z) ≤ exp(-r|z| ρ + R), (54) 
2. il existe δ > 0 tel que pour tout λ > 0:

1 |x|≤δ 1 g(x) λ d E (x) < ∞ (55)
alors la suite de mesures empiriques (µ n ) n∈N satisfait un principe de grandes déviations dans M 1 (C) , à la vitesse n 2 et de bonne fonction de taux

I E , respectivement I O,E .
Ainsi, pour une même base (R k ) 0≤k≤n , le principe de grandes déviations pour la suite des mesures empiriques dépend du type des coefficients, réels ou complexes. La première hypothèse consiste en une décroissance exponentielle de la densité à l'infini. La seconde hypothèse signifie que la densité g(x) est plus grande que x α au voisinage de 0, quel que soit α > 0. En particulier, cette hypothèse est vérifiée dès que la densité g est continue et ne s'annule pas en 0.

Le théorème 6 repose sur le calcul explicite de la loi des racines et ne couvre donc que les lois absolument continues par rapport à la mesure de Lebesgue. Dès lors que la loi des coefficients est discrète, aucune des techniques utilisées n'est applicable.

L'universalité des grandes déviations est une propriété générale des polynômes aléatoires dont les coefficients ont une loi absolument continue par rapport à la mesure de Lebesgue sur R ou C. Ainsi, si on établit un principe de grandes déviations pour un nouveau modèle de polynômes aléatoires dont les coefficients sont gaussiens, on peut montrer que ce principe de grandes déviations est universel sous les mêmes hypothèses que dans le théorème 6. Une application de cette méthode est décrite dans le chapitre 5 où nous montrons des principes de grandes déviations pour les polynômes de Weyl ainsi que leur universalité.

Ce résultat marque une vraie différence entre matrices et polynômes aléatoires. Pour les matrices aléatoires [START_REF] Bordenave | A large deviation principle for wigner matrices without gaussian tails[END_REF], la vitesse du principe de grandes déviations dépend de la décroissance à l'infini de la densité des coefficients, ce qui n'est pas le cas pour les polynômes aléatoires.

Chapitre 3: Plus grande racine de polynômes de Kac

Le troisième chapitre de cette thèse porte sur l'article [START_REF] Butez | The largest root of random kac polynomials is heavy tailed[END_REF] où nous cherchons à comprendre le comportement de la plus grande racine en module de polynômes de Kac. Cette question est motivée par l'analogie entre polynômes aléatoires et matrices aléatoires. Pour les différents modèles de matrices aléatoires présentés dans cette thèse, on sait que la plus grande valeur propre en module converge vers le bord du support de la mesure empirique et que ce comportement est universel. Pour les β-ensembles, dont le GOE, GUE et GSE font partie, la suite des lois de la plus grande valeur propre satisfait un principe de grandes déviations [START_REF] Anderson | An introduction to random matrices[END_REF], [START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF], détaillé à la fin la section 6.2.

Les fluctuations de la plus grande valeur propre de matrices de Wigner24 est décrite par la loi de Tracy-Widom [START_REF] Tracy | Level-spacing distributions and the airy kernel[END_REF]. Dans le cadre des matrices de Wishart, le théorème des quatre moments [START_REF] Bai | Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a wigner matrix[END_REF] assure que la plus grande valeur propre converge vers le bord droit du spectre dès que les entrées ont un moment d'ordre 4 fini. La convergence de la plus petite valeur propre vers le bord gauche du support de la mesure limite a été récemment établie par Tikhomirov [START_REF] Tikhomirov | The limit of the smallest singular value of random matrices with iid entries[END_REF] dès que les entrées ont un moment d'ordre 2 fini.

Pour les gaz de Coulomb en dimension 2 dont le potentiel est fortement confinant, Chafaï et Péché [START_REF] Chafaï | A note on the second order universality at the edge of coulomb gases on the plane[END_REF] ont montré que la plus grande particule converge vers le support de la mesure limite et que ses fluctuations correspondent à la loi de Gumbel.

Dans ce contexte, on peut se demander si la plus grande racine en module de polynômes de Kac converge vers le cercle unité S, si un principe de grandes déviations est valide dans le cas gaussien et si on peut identifier les fluctuations de cette racine.

Le théorème suivant répond à toutes ces questions par la négative. La plus grande racine des polynômes de Kac ne converge pas vers le cercle unité. Elle converge en loi vers une variable aléatoire, en général à queues lourdes, dont on contrôle le nombre de moments finis. Dans le cas où les coefficients sont des gaussiennes complexes N C (0, 1), cela implique qu'aucun principe de grandes déviations pour le zéro de plus grand module n'est valide. On rappelle que

P n (z) = n k=0 a k z k = a n n k=1 (z -z (n) k ) et on note (z (∞)
k ) k∈N les zéros de la série entière aléatoire

P ∞ (z) = ∞ k=0 a k z k . Théorème 7. Soit a 0 une variable aléatoire telle que E(log(1 + |a 0 |)) < ∞, |a 0 | n'est pas déterministe et P(a 0 = 0) = 0. Soit n ∈ N ∪ {∞} et x (n) 1 = min k |z (n) k | et si n < ∞, x (n) n = max k |z (n) k |.
On a alors:

1. Les variables aléatoires x

(n) n et 1/x (n)
1 ont la même loi.

Il existe trois constantes

C 1 > 0 , r > 0 et A > 0 ne dépendant que de la loi de |a 0 | telles que ∀ 0 < t < C 1 , P x (n) 1 ≤ t ≥ P |a 0 | ≤ rt 2 A. ( 56 
)
3. S'il existe k ≥ 0, a > 0 et δ > 0 tels que

∀ t < δ, P(|a 0 | ≤ t) ≥ at k alors E((x (n) n ) k ) = ∞.

Presque sûrement, le processus ponctuel

χ n = z (n) k | |z (n) k | < 1 converge faiblement dans l'espace des mesures de Radon vers χ ∞ = z (∞) k . Cela signifie que pour toute fonction continue à support compact f définie dans le disque ouvert D(0, 1) on a k f (z (n) k ) a.s ---→ n→∞ k f (z (∞) k ).
5. La suite de variables aléatoires (x

(n) 1 ) n∈N converge presque sûrement vers x (∞) 1 et (x (n) n ) n∈N converge en loi vers x (∞) := 1/x (∞) 1 .
Dans le cas où les coefficients sont des variables aléatoires indépendantes de loi N C (0, 1), le résultat de Peres et Virág [START_REF] Peres | Zeros of the iid gaussian power series: a conformally invariant determinantal process[END_REF] sur les zéros de la fonction gaussienne hyperbolique f 1 (3.4) permet de montrer que la loi de x (∞) 1 a pour fonction de répartition pour t ∈ [0, 1]

F x (∞) 1 (t) = 1 - ∞ k=1 (1 -t 2k ).
La plus grande racine des polynômes de Kac se comporte donc très différemment de ce qui est connu pour les matrices aléatoires et les gaz de Coulomb. Il est surprenant de voir que l'universalité du comportement de la mesure empirique est plus forte pour les polynômes aléatoires que pour les matrices aléatoires, le principe de grandes déviations pour les mesures empiriques étant universel, mais que les propriétés fines semblent être moins robustes.

Ce résultat ne s'étend pas aux racines de polynômes orthogonaux et est évident dans le cas des polynômes elliptiques où (8) implique que presque sûrement x

(n) n → ∞.
Ainsi, le comportement de la racine de plus grand module des polynômes de Kac est très différent de ce qui est connu pour les gaz de Coulomb ou les matrices aléatoires.

Chapitre 4: Grandes déviations pour les ensembles biorthogonaux

Le chapitre 4 correspond à l'article [START_REF] Butez | Large deviations for biorthogonal ensembles and variational formulation for the dykema-haagerup distribution[END_REF]. Nous étudions les grandes déviations pour les mesures empiriques de gaz sur (0, ∞) dont la loi jointe est

1 Z n i<j |x i -x j | i<j |g(x i ) -g(x j )|e -n n i=1 V (x i ) n i=1 x b-1 i d (R + ) n (x 1 , . . . , x n ) (57)
où g est une fonction C 1 dont la dérivée est strictement positive en tout point de (0, ∞). Ce modèle a été introduit par Muttalib [START_REF] Abdul | Random matrix models with additional interactions[END_REF] en physique pour l'étude de la répartition des électrons dans un conducteur en présence d'impuretés, avec g(x) = Argsh 2 ( √ x). Ces ensembles ont été étudiés par Borodin [START_REF] Borodin | Biorthogonal ensembles[END_REF] en mathématiques où g est une fonction puissance. Forrester et Wang [START_REF] Forrester | Muttalib-borodin ensembles in random matrix theory. realisations and correlation functions[END_REF] ont étudié ces ensembles et donné plusieurs modèles qui les réalisent.

Ce modèle peut être vu comme la mesure de Gibbs à température inverse n 2 associée au hamiltonien

H n = 1 2 E = (µ n ) + 1 2 E = (g * µ n ) + V (x)dµ n (x) + 1 n (b -1) log xdµ n (x)
où g * µ désigne la mesure image (ou pushforward) de µ par g. Les ensembles biorthogonaux sont liés aux valeurs propres de matrices aléatoires. Cheliotis [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] a considéré un modèle de matrices T n ∈ M n (C) à coefficients indépendants de lois

X i,j ∼        N C (0, 1) si i > j, 0 si i < j, 1 πΓ(c j ) e -|z| 2 |z| 2(c j -1) d C (z) si i = j où θ ≤ 0 et b > 0 et avec c j = θ(j -1) + b. La loi jointe des valeurs propres de de 1 n T n T * n correspond à l'ensemble biorthogonal (57) où g(x) = x θ ou log(x) si θ > 0 ou θ = 0 et V (x) = x.
Pour θ = 0 et b = 1, la matrice T n est triangulaire à coefficients indépendants de loi N C (0, 1). Ce cas particulier a été étudié dans le cadre des probabilités libres par Dykema et Haagerup [START_REF] Dykema | Dt-operators and decomposability of voiculescu's circular operator[END_REF]. Ils ont montré que la suite des mesures empiriques de 1 n T n T * n converge vers une mesure déterministe à support dans [0, e].

Théorème 8 (Principe de grandes déviations pour les ensembles biorthogonaux). Soit µ n la mesure empirique associée au gaz (57). Soit g une fonction C 1 sur R + telle que g > 0. Soit V une fonction continue sur R + , minorée, et telle qu'il existe β > max(b, 1) tel que

lim x→∞ V (x) β log |x| + β log |g(x)| > 1. ( 58 
)
Soit I : M 1 (R + ) → R ∪ {+∞} défini par I(µ) =    1 2 E(µ) + 1 2 E(g * µ) + V (x)dµ(x) si V (x)dµ ( x) < +∞ +∞ sinon.
La suite des mesures empiriques (µ n ) n∈N satisfait un principe de grandes déviations dans M 1 (R + ), muni de la topologie étroite, à vitesse n 2 , et de bonne fonction de taux

Ĩ = I -inf I.
De plus, la fonction Ĩ est semi-continue inférieurement et strictement convexe.

Ce résultat était déjà connu dans le cas où g(x) = x k avec k un entier [START_REF] Eichelsbacher | Large deviations for disordered bosons and multiple orthogonal polynomial ensembles[END_REF]. On peut très facilement adapter la preuve pour couvrir le cas des ensembles biorthogonaux sur R. Le cas où V dépend de n peut aussi être traité (en modifiant la preuve de manière évidente) à condition que cette suite de fonctions converge uniformément vers une fonction V ∞ .

Une conséquence de ce théorème est une caractérisation variationnelle pour la distribution de Dykema-Haagerup. Ainsi, la mesure µ DH est l'unique minimiseur sur

M 1 (R + ) de la fonction µ → 1 2 E(µ) + 1 2 E(log * µ) + xdµ(x).

Chapitre 5: Grandes déviations pour les polynômes de Weyl renormalisés

Le chapitre 5 de cette thèse porte sur les polynômes de Weyl renormalisés. Nous avons vu qu'il s'agissait d'un cas particulier de polynômes orthogonaux. Plus précisément, la famille (

√ n √ n k √ k! X k ) k≤n forme une base orthonormale de C n [X] pour le produit scalaire P, Q = P (z)Q(z)e -n|z| 2 1 π d C (z).
On peut omettre le facteur √ n qui n'a aucune influence sur les zéros des polynômes et inclure les polynômes de Weyl renormalisés dans le modèle des polynômes orthogonaux. Lorsque les coefficients sont des variables aléatoires indépendantes de loi N C (0, 1), la loi des racines est alors donnée par

1 Z n exp -   i =j -log |z i -z j | + (n + 1) log n k=1 |z -z k | 2 e -n|z| 2 1 π d C (z)   d C n
et lorsque les coefficients sont des variables aléatoires indépendantes de loi N R (0, 1), la loi des racines est

n/2 k=0 1 Z n,k exp -   i =j -log |z i -z j | + (n + 1) log n k=1 |z -z k | 2 e -n|z| 2 1 π d C (z)   d n,k .
Ce modèle ne rentre pas exactement dans le cadre du chapitre 1. En effet, pour le modèle du chapitre 1, on se ramène à un gaz sur la sphère S 2 associé à un couple (φ, ν), où φ est une fonction continue et bornée sur la sphère et ν une mesure de probabilité sur la sphère. En suivant une stratégie similaire, on est alors conduit à considérer la mesure

T * C sur S 2 et la fonction sur S 2 φ(x) = |T -1 (x)| 2 + log(1 -|x| 2 ).
La fonction φ tend vers l'infini au pôle nord, il faut alors reprendre la preuve en localisant dans des compacts où φ est finie.

Ces modifications n'impliquent que des changements mineurs dans la preuve. Ainsi, la preuve donnée dans le chapitre 5 se concentre sur les éléments qui diffèrent de la preuve du chapitre 1.

Théorème 9 (Grandes déviations pour les polynômes de Weyl renormalisés). La suite des mesures empiriques associées aux polynômes de Weyl renormalisés à coefficients indépendants N C (0, 1) satisfait un principe de grandes déviations dans M 1 (C), à vitesse n 2 et de bonne fonction de taux

I W,C -inf I W,C où I W,C (µ) = -log |z -w| + 1 2 log(1 + |z| 2 ) + 1 2 log(1 + |w| 2 )dµ(z)dµ(w) (59) + sup z∈C log |z -w| 2 -log(1 + |w| 2 )dµ(w) -|z| 2 . ( 60 
)
Si log(1 + |z| 2 )dµ(z) < ∞, cette expression se simplifie en

I W,C (µ) = E(µ) + sup z∈C log |z -w| 2 dµ(w) -|z| 2 .
Dans le cas où les coefficients sont des variables aléatoires indépendantes de loi N R (0, 1), on peut prouver un principe de grandes déviations analogue à celui du chapitre 1.

Théorème 10 (Grandes déviations pour les polynômes de Weyl renormalisés réels). Lorsque les coefficients sont des variables aléatoires indépendantes de loi N R (0, 1), la suite des mesures empiriques des polynômes de Weyl renormalisés satisfait un principe de grandes déviations dans M 1 (C) pour la topologie étroite, à vitesse n 2 et de fonction de taux

I W,R -inf I W,R où I W,R (µ) = 1 2 I W,C (µ) si µ est invariante par z → z ∞ sinon.
Ce théorème ne présente aucune difficulté supplémentaire par rapport au chapitre 1. Le passage du théorème 9 au théorème 10 est presque automatique.

Une fois ces principes de grandes déviations prouvés, on peut aussi obtenir immédiatement leur universalité en suivant la mécanique développée dans le chapitre 2.

Théorème 11 (Universalité des grandes déviations pour les polynômes de Weyl renormalisés). Soit E = C ou R. On suppose que a 0 , . . . , a n sont des variables i.i.d. dont la loi a pour densité g par rapport à la mesure de Lebesgue E sur E. On suppose que

1. il existe ρ > 0, r > 0 et R > 0 tels que ∀z ∈ E, g(z) ≤ exp(-r|z| ρ + R), ( 61 
)
2. il existe δ > 0 tel que pour tout λ > 0:

1 |x|≤δ 1 g(x) λ d E (x) < ∞ (62)
Alors la suite de mesures empiriques (µ n ) n∈N satisfait un principe de grandes déviations dans M 1 (C) , à la vitesse n 2 et de bonne fonction de taux I W,E .

Ce chapitre nous permet de montrer des principes de grandes déviations pour le troisième modèle "canonique" de polynômes aléatoires. C'est également une illustration de la mécanique permettant de prouver l'universalité de principes de grandes déviations pour les mesures empiriques de polynômes aléatoires. Notons que toutes les techniques employées reposent sur le calcul explicite de la loi des racines et qu'aucun résultat ne persiste dans le cas discret.

Perspectives de recherche

Dans cette section nous présentons les différents axes de recherche qui sont envisagés après cette thèse.

Grandes déviations pour les particules extrêmes de gaz de Coulomb.

Nous avons vu qu'en dimension 1, la plus grande particule d'un log-gaz satisfait un principe de grandes déviations à vitesse n dont la fonction de taux est le potentiel effectif [AGZ10, théorème 2.6.6 p 81]. Un résultat analogue a été annoncé en dimension 2 par [START_REF] Deelan Cunden | Large deviations of radial statistics in the two-dimensional one-component plasma[END_REF]. Ces résultats reposent en partie sur l'existence d'un principe de grandes déviations pour la suite des mesures empiriques associées à ce modèle. On peut alors se poser la question de l'existence d'un principe de grandes déviations pour les particules "extrêmes" du modèle de gaz de Coulomb généralisé introduit par Chafaï, Gozlan et Zitt dans [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF]. On s'attend à un principe de grandes déviations dont la fonction de taux serait donnée par le potentiel effectif et dont la vitesse serait β n /n où β n est la vitesse du principe de grandes déviations pour les mesures empiriques. Ce décalage en vitesse entre les deux principes de grandes déviations apparaît dans tous les modèles de matrices aléatoires pour lesquels ce genre de résultat est connu [START_REF] Dean | Large deviations of extreme eigenvalues of random matrices[END_REF], [START_REF] Augeri | Large deviations principle for the largest eigenvalue of wigner matrices without gaussian tails[END_REF].

La preuve du principe de grandes déviations pour la plus grande valeur propre des ensembles β donnée dans les articles de Borot et Guionnet [START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF], [START_REF] Borot | All-order asymptotic expansion of beta matrix models in the multi-cut regime[END_REF] semble assez robuste pour avoir une chance de s'adapter à d'autres modèles.

Une autre approche consisterait à essayer d'adapter les techniques utilisées dans [Zel17] pour obtenir ce principe de grandes déviations.

Concentration pour les gaz de Coulomb sur des variétés

Ce projet, en collaboration avec Adrien Hardy et David Garcia Zelada, consiste à prouver des inégalités de concentration pour la mesure empirique de gaz de Coulomb définis sur des variétés compactes, telles que la sphère S 2 . Garcia Zelada [START_REF] García | A large deviation principle for empirical measures on polish spaces: Application to singular gibbs measures on manifolds[END_REF] a montré que la suite de mesures empiriques associée aux gaz de Coulomb sur une variété riemannienne satisfait un principe de grandes déviations, analogue aux principes de grandes déviations évoqués dans cette thèse. Pour ce modèle, la fonction de taux I M admet un unique minimiseur ν eq et on sait que la suite de mesures (µ n ) n∈N converge presque sûrement vers ν eq . Nous cherchons à prouver des inégalités du type P(d(µ n , ν eq ) > t) ≤ exp -at 2 n 2 + . . . où a est une constante explicite et où les points de suspension désignent des termes explicites d'ordre inférieur.

Ces inégalités de concentration sont une version non asymptotique des principes de grandes déviations. Ce travail est fortement inspiré de l'article de Chafaï, Hardy et Maïda [START_REF] Chafaï | Concentration for coulomb gases and coulomb transport inequalities[END_REF] qui prouvent des inégalités de concentration pour les mesures empiriques de gaz de Coulomb dans R d , d ≥ 2. Une des difficultés majeures concerne la régularisation des mesures empiriques. Pour pouvoir adapter l'approche de [START_REF] Chafaï | Concentration for coulomb gases and coulomb transport inequalities[END_REF], il convient de trouver une régularisation des mesures empiriques pour laquelle on contrôle précisément l'écart d'énergie entre ces mesures.

Principes de grandes déviations locaux pour des gaz de Coulomb sur des variétés

Ce projet est l'adaptation des travaux de Leblé et Serfaty [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF] sur des variétés. Il est mené en collaboration avec Adrien Hardy, David Garcia Zelada et Thomas Leblé.

Leblé et Serfaty ont montré un principe de grandes déviations à vitesse n au niveau microscopique pour les gaz de Coulomb et les gaz de Riesz. Ils ont introduit une énergie dite renormalisée qui intervient dans la fonction de taux du processus. Leur résultat est particulièrement intéressant car il permet de mieux comprendre les différents processus ponctuels qui apparaissent en matrices aléatoires. Ce résultat va au second ordre car il permet d'obtenir le développement asymptotique à l'ordre n de la fonction de partition du système et de comprendre son comportement microscopique.

Principes de grandes déviations locaux pour les racines de polynômes aléatoires

Le projet avec Thomas Leblé est sans doute le plus difficile des quatre. Il s'agit de comprendre le comportement microscopique des zéros de polynômes aléatoires, dans l'esprit de [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF]. Cela permettrait d'identifier le processus limite des racines et de comprendre leur répartition locale. Pour les polynômes elliptiques à coefficients gaussiens complexes, on sait que les racines se répartissent uniformément sur la sphère S 2 et on peut espérer voir un processus limite sur le plan tangent qui soit invariant par translation. La grande difficulté de ce problème est la compréhension du terme de confinement non linéaire

(n + 1) log n k=1 |z -z k | 2 dπ(z).
Si on tente de mener une analyse similaire à celle de Leblé et Serfaty, il faut comprendre la contribution de ce terme au niveau microscopique. Pour les gaz de Coulomb classiques, le potentiel a un effet local et ne joue qu'un rôle confinant. Il n'a aucune influence sur la répulsion entre les particules. Pour les polynômes aléatoires, le terme de confinement joue un rôle dans la répulsion entre les zéros et son analyse semble être une difficulté majeure. Ainsi, le terme de confinement semble ne pas être local et peut impliquer des interactions à grande distance entre les zéros. 

Introduction

We study three different models of random polynomials, orthogonal polynomials, Kac polynomials, and elliptic polynomial, the two last being examples of orthogonal polynomials. The coefficients are i.i.d. random variables which can be either:

Complex Gaussian coefficients a k = b k + ic k where b k c k ∼ N (0, 1 2 I 2 ) Real Gaussian coefficients a k ∼ N (0, 1 2 ).
We will always refer to those two possibilities as the complex and real case. Given (R 0 , . . . , R n ) a basis of C n [X] we consider the random polynomials:

P n = a 0 R 0 + a 1 R 1 + • • • + a n R n . (1.1)
In order to study the zeros z 1 , . . . , z n of the random polynomials P n we introduce their empirical measure:

µ n = 1 n n i=1 δ z i . (1.2)
We will focus on three classes of random polynomials corresponding to different choices of the polynomials R j 's:

Orthogonal polynomials R k orthonormal family in L 2 Kac polynomials R k = X k Elliptic polynomials R k = n k X k
The study of the zeros of random polynomials started with articles by Kac [START_REF] Kac | On the average number of real roots of a random algebraic equation[END_REF], Littlewood and Offord [START_REF] Edensor | On the distribution of the zeros and α-values of a random integral function (i)[END_REF], Hammersley [START_REF] Michael | The zeros of a random polynomial[END_REF] which focused on the number of real zeros. The literature about random polynomials is vast, we refer to the book by Bharucha-Reid and Sambandham [START_REF] Bharucha | Random Polynomials: Probability and Mathematical Statistics: a Series of Monographs and Textbooks[END_REF] and the article by Tao and Vu [START_REF] Tao | Local universality of zeroes of random polynomials[END_REF] for a nice account of the classical results. The study of the complex roots was initiated by Polya, Sparo and Sur. Recently, the minimal condition to obtain the convergence of (µ n ) n∈N was given by Kabluchko and Zaporozhets [START_REF] Ibragimov | On distribution of zeros of random polynomials in complex plane[END_REF].

The purpose of this article is to revisit the article of Zeitouni and Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF]. They prove that the empirical measures of the zeros of random orthonormal polynomials with respect to a scalar product in L 2 and complex Gaussian coefficients satisfy a large deviation principle in the projective space CP 1 . Here we revisit their proof of their theorem in an elementary way although the techniques used are mainly a reformulation of their work. Using a compactification technique based on inverse stereographic projection, we prove a large deviation principle for the push-forward problem on a sphere of R 3 and then obtain the result in C. The proof adapts to the case of real coefficients, which allows us to extend the theorem. The compactification technique was first introduced by Hardy [Har12] in order to prove a large deviation principle for Coulomb gases with weakly confining potential. The compactification method was also used by Bloom in [START_REF] Bloom | Logarithmic potential theory and large deviation[END_REF] in a more general framework.

Large deviations for empirical measures of random polynomials are only known for Gaussian complex coefficients [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF], which is the subject of the present work, and for exponential coefficients in the Kac case studied by Ghosh and Zeitouni in [GZ16]. We also mention the work [START_REF] Feng | Large deviations for zeros of p (φ) 2 random polynomials[END_REF] where the author proves a large deviations principle for a modification of the model of Zeitouni and Zelditch. All these cases rely on the ability to compute the law of the roots of P n . These results should be compared with their equivalent in random matrix theory: the Ginibre ensemble, real or complex. Many authors used the link between Coulomb gases and eigenvalues of random matrices to obtain large deviation principles as in Ben Arous and Guionnet [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF], Ben Arous and Zeitouni [START_REF] Ben | Large deviations from the circular law[END_REF], Hiai and Petz [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF]. In a more general setup, large deviation principle for empirical measures of a Coulomb gas are valid. See for example [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF] for a similar result in any dimension with general repulsion, Hardy [START_REF] Hardy | A note on large deviations for 2D Coulomb gas with weakly confining potential[END_REF], or Bloom [START_REF] Bloom | Logarithmic potential theory and large deviation[END_REF].

Orthogonal polynomials

Given a probability measure ν and a continuous function φ, we consider the scalar products on C n [X]:

P, Q = P (z)Q(z)e -nφ(z) dν(z).
(1.3) Let R 0 , . . . , R n be an orthonormal basis for this scalar product, we define

P n = n k=0 a k R k . (1.4)
We call K the support of ν. We assume that its compactification by inverse stereographic projection is non-thin at all the points of its closure. This notion comes from potential theory and is detailed in [START_REF] Ransford | Potential theory in the complex plane[END_REF]p. 78]. We can understand it as the requirement that the support of ν is not too degenerated. For instance, if the support of ν is connected and has more than one point, it is non-thin at all its points [Ran95, Thoerem 3.8.3 p 79]. It also holds if it has a finite number of connected components with more than one point. On the other hand, a polar set is thin at every point. We define the Berstein-Markov property, which will be one of the key elements in this article. For more information about this notion, see [START_REF] Bloom | Bernstein-markov: a survey[END_REF].

Definition 1.1 (Bernstein-Markov property). We say that the couple (φ, µ) satisfies the Bernstein-Markov property if, for every ε > 0, there exists a constant C ε > 0 such that, for any n ∈ N and for any polynomial P ∈ C n [X] we have:

sup z∈K {|P (z)| 2 e -nφ(z) } ≤ C ε e εn P 2 L 2
where K is the support of the measure ν.

We define the Hamiltonian:

H O (z 1 , . . . , z n ) = - 1 n 2 i =j log |z i -z j | + n + 1 n 2 log n i=1
|z -z i | 2 e -nφ(z) dν(z).

(1.5)

In the complex case, the distribution of the roots (z 1 , . . . , z n ) of P n is given by:

1 Z n exp (-β n H O (z 1 , . . . , z n )) d C n (z 1 , . . . , z n ). (1.6)
where C n is the Lebesgue measure on C n , and Z n is a constant. β n is the inverse of a temperature, so we can see 1/β n as a cooling scheme. In this article, we will always consider:

β n = n 2
which corresponds to the distribution of the roots of random polynomials. We can see (z 1 , . . . , z n ) as a system of particles in interaction. The term

- 1 n 2 i =j log |z i -z j |
corresponds to a repulsion between the particles and is compensated by the confinement

n + 1 n 2 log n i=1 |z -z i | 2 e -nφ(z) dν(z).
This model is very close to the classical Coulomb gas model, where the confinement takes the simpler form n i=1 V (z i ), which does not involve any interaction between the particles. This non-interaction property can be seen as linearity with respect to the empirical measure via the relation:

1 n n i=1 V (z i ) = V (w)dµ n (w) = V, µ n .
The confinement term associated to the Hamiltonian (1.5) is more complicated, but can still be compared to a classical potential thanks to the Jensen inequality.

The study of the real case is interesting only if the polynomials R k 's are real. In the real case, the distribution of the roots is not absolutely continuous with respect to the Lebesgue measure of C n as the probability to have a real root is positive. This distribution is given by the following mixture:

n/2 k=0 1 Z n,k exp -β n 1 2 H O (z 1 , . . . , z n ) d n,k (z 1 , . . . , z n ). (1.7)
where we defined, R and C being the Lebesgue measures on R and C,

d n,k (z 1 , . . . , z n ) = d R (z 1 ) . . . d R (z n-2k )d C (z n-k ) . . . d C (z n ) (1.8)
and where Z n,k are constants. The first n -2k particles are on the real line and with k pairs of complex numbers and their conjugates. In the complex case, all the results of this article are valid for any sequence β n n. In the real case, additional assumptions are needed, they are given in (1.43), (1.50) and (1.55).

In this article, the term weak topology corresponds to the topology of convergence in distribution, which is the weak topology associated to continuous and bounded test functions. This topology is associated to the Bounded Lipschitz metric d defined as:

∀µ, ν ∈ M 1 (C), d(µ, ν) = sup f f dµ -f dν
where the supremum is taken over functions bounded by 1 and 1-Lipschitz.

Theorem 1.2 (Large deviation principle for complex orthogonal polynomials). Let µ n be the empirical measure of the gas (1.6). Let us define

I O : M 1 (C) → R ∪ {∞}: I O (µ) = - log |z -w| - 1 2 log(1 + |z| 2 ) - 1 2 log(1 + |w| 2 ) dµ(z)dµ(w) + sup z∈K log |z -w| 2 -log(1 + |w| 2 )dµ(w) -φ(z) .
When log(1 + |w| 2 )dµ(w) < ∞ then we have:

I O (µ) = - log |z -w|dµ(z)dµ(w) + sup z∈K log |z -w| 2 dµ(w) -φ(z)
If the couple (φ, ν) satisfies the Bernstein-Markov property (1.1) then (µ n ) n∈N satisfies a large deviation principle in M 1 (C) with the weak topology, speed β n and good rate function

I O -inf I O .
This means that for any Borel set A ⊂ M 1 (C) we have:

-inf IntA (I O -inf I O ) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ -inf CloA (I O -inf I O ).
Theorem 1.3 (Large deviation principle for real orthogonal polynomials). Let µ n be the empirical measure of the gas (1.7). If the couple (φ, ν) satisfies the Bernstein-Markov property, then (µ n ) n∈N satisfies a large deviation principle in M 1 (C) with the weak topology, speed β n and good rate function:

ĨO (µ) = 1 2 (I O (µ) -inf I O ) if µ is invariant under the map z → z ∞ otherwise.
This means that for any Borel set A ⊂ M 1 (C) we have:

-inf IntA ĨO ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ -inf CloA ĨO .
Those last two theorems imply that, in both cases, almost surely: 

d(µ n , Argmin(I O )) ---→ n→∞ 0 (1.

Kac polynomials

The most important example of orthonormal polynomials are Kac polynomials:

P n = a o + a 1 X + • • • + a n X n .
(1.10)

The canonical basis is orthonormal with respect to the scalar product on C n [X]:

P, Q = P (z)Q(z)dν S (z) (1.11)
where ν S is the uniform measure on S, the unit circle of C. The sequence (µ n ) n∈N converges almost surely weakly towards the measure ν S . Although this result is quite ancient, we can deduce it from (1.9). We define the Hamiltonian:

H(z 1 , . . . , z n ) = - 1 n 2 i =j log |z i -z j | + n + 1 n 2 log n i=1 |z -z i | 2 dν S (z) (1.12)
In the complex case, the distribution of the roots is given by the Gibbs measure:

1 Z n exp (-β n H(z 1 , . . . , z n )) d C n (z 1 , . . . , z n ) (1.13)
In the real case, the distribution of the roots is the mixture:

n/2 k=0 1 Z n,k exp -β n 1 2 H(z 1 , . . . , z n ) d n,k (z 1 , . . . , z n ) (1.14)
where the Z n,k are constants.

Theorem 1.4 (Large deviations for complex Kac polynomials). Let µ n be the empirical measure of the gas (1.13). Let us define I : M 1 (C) → R ∪ {∞}:

I(µ) = - log |z -w| - 1 2 log(1 + |z| 2 ) - 1 2 log(1 + |w| 2 ) dµ(z)dµ(w) + sup z∈S log |z -w| 2 -log(1 + |w| 2 ) dµ(w).
When log(1 + |z| 2 )dµ(z) is finite, this function can be simplified to:

I(µ) = - log |z -w|dµ(z)dµ(w) + sup z∈S log |z -w| 2 dµ(w).
The random sequence (µ n ) n∈N satisfies a large deviation principle in M 1 (C) with the weak topology and with speed β n and good rate function I. For any Borel set A ⊂ M 1 (C) we have:

inf

IntA I ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ -inf CloA I.
(1.15)

Theorem 1.5 (Large deviations for real Kac polynomials). Let µ n be the empirical measure of the gas (1.14), then the random sequence (µ n ) n∈N satisfies a large deviation principle in M 1 (C) for the weak topology with speed β n and good rate function Ĩ where:

Ĩ(µ) = 1 2 I(µ) if µ is invariant under the map z → z ∞ otherwise.
This means that for any Borel set A ⊂ M 1 (C) we have:

-inf IntA Ĩ ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ -inf CloA Ĩ.

Elliptic polynomials

We will see how the study of Kac polynomials can be adapted to prove a large deviation principle for the empirical measure associated to the roots of polynomials of the form

P n = n k=0 a k n k 1/2 X k .
The polynomials

√ n + 1 n k 1/2
X k are orthonormal for the scalar product on C n [X]:

P, Q = P (z)Q(z) 1 (1 + |z| 2 ) n d C (z) π(1 + |z| 2 ) 2 .
As multiplying a polynomial by a constant does not change the zeros, the factor √ n + 1 is omitted. It is known that the random sequence (µ n ) n∈N converges almost surely weakly towards

d C (z) π(1 + |z| 2 ) 2
which is called the complex Cauchy measure1 . It can be seen as a consequence of (1.9). We define the Hamiltonian:

H E (z 1 , . . . , z n ) = - 1 n 2 i =j log |z i -z j | + n + 1 n 2 log n i=1 |z -z i | 2 (1 + |z| 2 ) n d C (z) π(1 + |z| 2 ) 2 (1.16)
and the Gibbs measure associated to the distribution of the roots in the complex case:

1 Z n exp (-β n H E (z 1 , . . . , z n )) d C n (z 1 , . . . , z n ).
(1.17)

In the real case, the roots form a mixture of Coulomb gases distributed with respect to:

n/2 k=0 1 Z n,k exp -β n 1 2 H E (z 1 , . . . , z n ) d n,k (z 1 , . . . , z n ) (1.18)
where the Z n,k are constants.

Theorem 1.6 (Large deviation principle for complex elliptic polynomials). Let µ n be the empirical measure of the gas (1.17). Let us define

I E : M 1 (C) → R ∪ {∞}: I E (µ) = - log |z -w| - 1 2 log(1 + |z| 2 ) - 1 2 log(1 + |w| 2 ) dµ(z)dµ(w) + sup z∈C log |z -w| 2 -log(1 + |w| 2 ) dµ(w) -log(1 + |z| 2 ) .
When log(1 + |z| 2 )dµ(z) < ∞, we can write:

I E (µ) = - log |z -w|dµ(z)dµ(w) + sup z∈C log |z -w| 2 dµ(w) -log(1 + |z| 2 ) .
(µ n ) n∈N satisfies a large deviation principle in M 1 (C) with the weak topology and with speed β n and good rate function I E -inf I E . This means that for any Borel set A ⊂ M 1 (C) we have:

inf

IntA (I E -inf I E ) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ -inf CloA (I E -inf I E ).
Theorem 1.7 (Large deviation principle for real elliptic polynomials). Let µ n be the empirical measure of the gas (1.18). (µ n ) n∈N satisfies a large deviation principle in M 1 (C) with the weak topology, speed β n and good rate function:

ĨE (µ) = 1 2 (I E (µ) -inf I E ) if µ is invariant under the map z → z ∞ otherwise.
This means that for any Borel set A ⊂ M 1 (C) we have:

-inf IntA ĨE ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ lim n→∞ 1 β n log P(µ n ∈ A) ≤ -inf CloA ĨE .

Outline of the article

We will give a full proof of the results for Kac polynomials, and then we will show how to adapt the proof for elliptic and orthogonal polynomials. The proofs of the previous theorems are similar, and will follow these steps:

1) Compute the distribution of the roots on C n ;

2) Use of inverse stereographic projection to push-forward every object on S 2 , the sphere in R 3 centered on (0, 0, 1 2 ) and of radius 1/2;

3) Prove a large deviation principle in M 1 (S 2 ); 4) Use of contraction principle to obtain the large deviation principle in M 1 (C).

We use inverse stereographic projection because, as M 1 (S 2 ) is compact, a weak large deviation principle is equivalent to a full large deviation principle, without proving exponential tightness. [DZ09, Lemma 1.2.18] In Section 2 we introduce the objects that will be studied in the article. In Section 3 we give a detailed proof of the result for Kac polynomials following the steps given above. Section 4 is about elliptic polynomials. As the proof is nearly the same, we focus on what should be changed to import the proof from the previous section. In Section 5 we prove the general result that was originally proved by Zeitouni and Zelditch in [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] and we extend it for real Gaussian coefficients.

In contrast, the article [ZZ10] has a more geometric and intrinsic approach. The scalar product (1.3) is related to a notion of curvature on CP 1 . The zeros are seen as elements of CP 1 and the rate function is expressed in terms of Green function and Green energy associated to this geometric setup.

Definitions and notations

We give some definitions that will be useful in the article. Definition 1.8 (Logarithmic potential, logarithmic energy). We call the logarithmic potential of a measure µ ∈ M 1 (C) the function:

U µ : z → -log |z -w|dµ(w).
We also define the logarithmic energy of a measure µ ∈ M 1 (C):

E(µ) =    -log |z -w|dµ(z)dµ(w) if log(1 + |z|)dµ(z) < ∞ ∞ otherwise.
and

J : M 1 (C) → R ∪ {∞} defined by J(µ) = sup z∈S log |z -w|dµ(w)
where S is the unit circle of C. 

E = (µ n ) = - 1 n 2 i =j log |z i -z j | = - = log |z -w|dµ n (z)dµ n (w) (1.19)
where = stands for the off-diagonal integral.

We will use the same notation for measures on C or on S 2 . Let us define now the inverse stereographic projection that will be the key tool in this article.

Definition 1.10 (Inverse stereographic projection). Let S 2 be the sphere in R 3 of center (0, 0, 1/2) and radius 1/2. We call the point N = (0, 0, 1) the north pole. Let T : C → S 2 be the inverse stereographic projection

T (z) = (z) 1 + |z| 2 , (z) 1 + |z| 2 , |z| 2 1 + |z| 2 .
We have the following relations, valid for any z and w in C:

|z -w| 2 = |T (z) -T (w)| 2 (1 -|T (z)| 2 )(1 -|T (w)| 2 ) (1.20) 1 -|T (z)| 2 = 1 1 + |z| 2 (1.21)
where if x ∈ R 3 , |x| is its Euclidean norm and when z is a complex number, |z| is its modulus. The same notation holds for the norm in C and the norm in R 3 .

The first relation can be found in [AN07, Lemma 3.4.2], and the second relation is obtained from the first one by squaring, taking the limit as w tends to infinity and using the Pythagorean theorem.

To avoid confusions between what lies in C and what lies in R, we will only use the letters z, w for complex numbers and the letters x, y for vectors in R 3 . Definition 1.11 (Push-forward of the objects on the sphere). We define the push-forward by T of the empirical measure:

μn = T * µ n = 1 n n i=1 δ T (z i ) .
Let µ ∈ M 1 (S 2 ), we call its logarithmic potential on the sphere the function:

U µ S 2 (x) = -log |x -y|dµ(y). U µ S 2 takes its values in [-∞, ∞).
We define on M 1 (S 2 ) the function:

E S 2 (ν) = - log |x -y|dν(x)dν(y).
The function U µ S 2 is called logarithmic potential. It inherits its name from U µ as it is the analog formula on the sphere. The name logarithmic potential is not really appropriate as this notion is already defined on the sphere in potential theory, but it is convenient as the formulas are the same.

Large deviations for Kac polynomials

This section deals with the Coulomb gases (1.13) and (1.14). We prove Theorems 1.4 and 1.5.

Step 1: Distribution of the roots

Theorem 1.12 (Distribution of the roots in the complex case). Let P n = n k=0 a k X k , the law of (z 1 , . . . , z n ) taken in uniform random order is absolutely continuous with respect to the Lebesgue measure on C n with density:

1 Z n i<j |z i -z j | 2 ( N i=1 |z -z i | 2 dν S ) n+1 = 1 Z n exp -β n E = (µ n ) + n + 1 n 2 log n i=1 |z -z i | 2 dν(z)
where Z n is a normalizing constant.

Proof. Let p(z) = z n + b n-1 z n-1 + • • • + b 0 = n i=1 (z -z i ).
Then the transformation

F : C n -→ C n (z 1 , . . . , z n ) -→ (b 0 , . . . , b n-1 ) has Jacobian determinant i<j |z i -z j | 2 [HKPV09, Lemma 1.1.1].
We compute the law of the random vector (z 1 , . . . , z n , a n ). The density of the law of (a 0 , . . . , a n ) is

1 (π) n+1 e -n k=0 |a k | 2
We consider now the function:

G : C n+1 -→ C n+1 (z 1 , . . . , z n , a n ) -→ (a 0 , . . . , a n-1 , a n ) whose Jacobian determinant is |a n | 2n i<j |z i -z j | 2 , as b i = a i /a n .
G is not a change of variables as it is not one-to-one. In order to overpass this problem we define a total order on C by:

z < w ⇐⇒ |z| < |w| arg(z) < arg(w) if |z| = |w| (1.22)
We want to compute the distribution of the ordered set of roots. We need to show that, almost surely, 2 roots cannot have the same modulus as soon as the distribution of the coefficients is absolutely continuous with respect to the Lebesgue measure on C. First, we show that almost surely, P n does not have double roots. The set N 0 of polynomials of C n [X] with at least a double root can be written

N 0 = P ∈ C n [X] | Res(P, P ) = 0
where Res is the resultant. This set is a submanifold of C n [X] of real codimension 2, hence it is negligible. We define the subset of (0, 2π)

× C n [X] M = (θ, P ) ∈ (0, 2π) × C n [X] | ∃z, w such that P (z) = P (w) = 0 and z = e iθ w = (θ, P ) ∈ (0, 2π) × C n [X] | Res(P (X), P (Xe -iθ )) = 0 .
This set is a submanifold of codimension 2 of (0, 2π) × C n [X]. Thanks to Sard's theorem [START_REF] Willard | Topology from the differentiable viewpoint[END_REF], the projection of M onto C n [X] is a negligible subset. This implies that

N = {P ∈ C n [X] | P n has 2 roots of same modulus.} is a negligible set. Hence, G is a change of variables from (z 1 , . . . , z n , a n ) ∈ C n+1 | |z 1 | < • • • < |z n | and a n = 0 to (C n × C * ) \ N.
Hence, the law of the ordered vector (z 1 , . . . , z n , a n ) is absolutely continuous with respect to the Lebesgue measure on C n+1 . We want to rewrite the density of the random vector (a 0 , . . . , a n ) with the new variables (z 1 , . . . , z n , a n ). We notice that if P = n k=0 a k X k then:

n k=0 |a k | 2 = |P (z)| 2 dν S (z) = |a n | 2 n k=1 |z -z k | 2 dν S (z) (1.23)
where ν S is the uniform probability measure on the unit circle of C. This relation comes from the fact that the canonical basis of C[X] is orthonormal for the scalar product (1.11).

The density of the distribution of (z 1 , . . . , z n , a n ) is:

|a n | 2n i<k |z i -z j | 2 (π) n+1 exp -|a n | 2 n k=1 |z -z k | 2 dν S (z) 1 z 1 <•••<zn 1 an =0 .
We integrate with respect to the variable a n and use the linear change of variables u = a n λ with λ = n k=1 |z -z k | 2 dν S (z) to obtain the law of the ordered vector (z 1 , . . . , z n ):

n! π n i<j |z i -z j | 2 ( N i=1 |z -z i | 2 dν S ) n+1 1 z 1 <•••<zn .
The distribution of (z 1 , . . . , z n ) taken in random uniform order is absolutely continuous with respect to the Lebesgue measure on C n with density:

1 π n i<j |z i -z j | 2 ( N i=1 |z -z i | 2 dν S ) n+1
Theorem 1.13 (Distribution of the roots in the real case.). The distribution of the random vector (z 1 , . . . , z n ) of the roots of P n in the real case is given by:

n/2 k=0 2 k Γ( n+1 2 ) k!(n -2k)!π (n-1)/2 i<j |z i -z j | ( n i=1 |z -z i | 2 dν S ) (n+1)/2 d n,k (z 1 , . . . , z n ).
This law can be re-written as:

n/2 k=0 1 Z n,k exp (-β n H(z 1 , . . . , z n )) d n,k (z 1 , . . . , z n ).
The density in the real case is nearly the same as in the complex case, except for the factor 1/2 in the exponent. In the complex case, the vector of the zeros is an element of R 2n while in the real case, we can see the zeros as an element of R n .

Proof. As the random vector (a 0 , . . . , a n ) has a joint distribution:

1 (π) n+1 2 exp - n k=0 |a k | 2 da 0 . . . da n .
we can use Zaporozhets' computation [START_REF] Zaporozhets | On the distribution of the number of real roots of a random polynomial[END_REF] in order to express the distribution of (z 1 , . . . , z n , a n ). We use again the relation (1.23) in order to simplify the expression of the distribution of the roots and we obtain:

n/2 k=0 2 k k!(n -2k)!π n+1 2 |a n | n i<j |z i -z j |e - |a n | 2 n i=1 |z -z i | 2 dν S (z) d n,k (z 1 , . . . , z n )d C (a n ).
We integrate with respect to a n , which ends the proof.

Remark 1.14 (Symmetries of the problem). It is easy to check that the law of the zeros is invariant under z → e iθ z as a Gaussian vector is invariant by rotation. The distribution of the zeros is also invariant under the mapping z → 1/z. This comes from the fact that (a 0 , . . . , a n ) has the same distribution as (a n , . . . , a 0 ), but if we call z 1 , . . . , z n the zeros of n k=0 a k X k , then the zeros of n k=0 a n-k X k are 1/z 1 , . . . , 1/z n .

Remark 1.15 (Limits of the normalizing constants Z n and Z n,k ). The distribution of the vector (z 1 , . . . , z n ) has been obtained thanks to a change of variables from a probability measure. Hence, we know exact formulas for the normalizing constants. We have:

Z n = 2(2π) n and Z n,k = k!(n -2k)!π n+1 2 2 k Γ( n+1 2 )
.

(1.24)

Notice that:

lim n→∞ 1 β n log Z n = lim n→∞ 1 β n log max Z n,k = lim n→∞ 1 β n log min Z n,k = 0.
This remark explains why the normalizing constants do not contribute to the rate function for Kac polynomials. For elliptic or orthogonal polynomials, the limit of the normalizing constant is non-trivial. This phenomenon is common in large deviations for Coulomb gases, see [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF], [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF], [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF] or [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF].

Step 2: Large deviations on the unit sphere

In order to prove the large deviation principles, we are going to use a compactification method introduced in [START_REF] Hardy | A note on large deviations for 2D Coulomb gas with weakly confining potential[END_REF]. When the potential does not grow faster than a logarithm at infinity, the standard proofs of large deviations principles do not hold. More precisely, exponential tightness of the sequence of measures cannot be proved using the standard techniques presented in [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF], [START_REF] Ben | Large deviations from the circular law[END_REF], [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF]. The gas we are studying is also weakly confining as the confinement term grows at infinity like log(1 + |z| 2 ) in each variable.

Using the inverse stereographic projection T (1.10) we will push the problem on the sphere S 2 in R 3 . As the sphere is a compact set, it is sufficient to prove a weak large deviation principle instead of a full one.

Remark 1.16 (Push Forward). In this article, we will use the notation T * µ for the push-forward of the measure µ by the function T . Definition 1.17 (Measure on S 2 ). We call L C the push-forward of the Lebesgue measure of C on S 2 by T and L R the push-forward of the Lebesgue measure on R by T , where R is seen as a subspace of C. We will use the notation:

dL n,k (x 1 , . . . , x n ) = dL R (x 1 ) . . . dL R (x n-2k )dL C (x n-k ) . . . dL C (x n ).
Proposition 1.18 (Pushing the complex case on the sphere). Let (z 1 , . . . , z n ) be the zeros of P n in the complex case, then the law of (T (z 1 ), . . . , T (z n )) is absolutely continuous with respect to the pushforward by T of the Lebesgue measure on C with density:

i<j |x i -x j | 2 ( n j=1 |x -x j | 2 2 n dT * ν S (x)) n+1 × n i=1 (1 -|x i | 2 ) 2 .
We call κ n the finite measure:

κ n = n i=1 (1 -|x i | 2 ) 2 dL C (x 1 ) . . . dL C (x n ).
This law can be written in the form:

1 Z n exp   -β n   E = (μ n ) + n + 1 n 2 log n j=1 |x -x j | 2 2 n dT * ν S (x)     dκ n .
(1.25)

Remark 1.19 (Identification of the uniform measure on S 2 ). We observe that the measure (1 -|x| 2 ) 2 dL R (x) on S 2 is proportional to the uniform measure on the sphere. Indeed if we pushforward this measure by the stereographic projection T -1 we obtain the measure

1 (1+|z| 2 ) 2 d C (z)
which is proportional to the complex Cauchy measure, which is known to be the projection of the uniform measure on the sphere.

Proof of proposition 1.18. We will now push the zeros of P n on the sphere S 2 . We compute the law of the vector (T (z 1 ), . . . , T (z n )). We use the relations (1.20) to obtain:

i<j |z i -z j | 2 = i<j |T (z i ) -T (z j )| 2 (1 -|T (z i )| 2 )(1 -|T (z j )| 2 )
and that:

N i=1 |z -z i | 2 dν S (z) n+1 =       n i=1 (1 -|T (z i )| 2 ) n i=1 |T (z) -T (z i )| 2 (1 -|T (z)| 2 ) -n dν S (z)       n+1 .
We notice that on the unit circle of C, the function z → |T (z)| 2 is constant equal to 1/2, so we can write:

i<j |z i -z j | 2 ( N i=1 |z -z i | 2 dν S (z)) n+1 = i<j |T (z i ) -T (z j )| 2 ( n i=1 |T (z) -T (z i )| 2 2 n dν S (z)) n+1 × n i=1 (1 -|T (z i )| 2 ) 2 .
(1.26) Proposition 1.20 (Pushing the real case on the sphere). Let (z 1 , . . . , z n ) be the zeros of P n in the real case, then the law of (T (z 1 ), . . . , T (z n )) is:

n/2 k=0 1 Z n,k i<j |x i -x j | × n i=1 (1 -|x i | 2 ) ( N i=1 |x -x i | 2 2 n dT * ν S ) (n+1)/2 dL n,k (x 1 , . . . , x n )
We call ρ n,k the finite measure:

dρ n,k = n i=1 (1 -|x i | 2 )dL n,k (x 1 , . . . , x n ).
This law can be written:

n/2 k=0 1 Z n,k exp -β n 1 2 E = (µ n ) - n + 1 2n 2 log N i=1 |x -x i | 2 2 n dT * ν S (x) dρ n,k . (1.27)
The proof of this proposition is exactly the same as the one of Proposition 1.18. The measure T * ν S is the uniform measure on the equator of the sphere S 2 . Seeing those measures on the sphere emphasizes the symmetries of the problem as the invariance with respect to inversion corresponds to the exchange of north and south pole of the sphere.

ρ n,k are finite measure. As ρ n,k is a product measure, we only have to see that every measure is finite. There are two types of measures in this product:

(1 -|x| 2 )dL R (x) = 1 1 + |x| 2 dx which is finite on R and (1 -|x| 2 )(1 -|y| 2 )dL C (x) = 1 (1 + |z| 2 )(1 + |z| 2 ) d C (z)
where x and y are the inverse stereographic projection of z and z. We now state the large deviation principle on the sphere S 2 .

Definition 1.21 (Rate function in M 1 (S 2 )). For any measure ν ∈ M 1 (S 2 ) we define:

J S 2 (ν) = sup x∈T (S)
log |x -y| 2 dν(y) + log 2 (1.28) 

I S 2 (ν) = E(ν) + J S 2 (ν) (1.
ĨS 2 (µ) = 1 2 I S 2 (µ) if T -1 * µ is invariant under z → z ∞ otherwise.
This means that for any Borel set A in M 1 (S 2 )

-inf IntA ĨS 2 ≤ lim n→∞ 1 β n log P(μ n ∈ A) ≤ lim n→∞ 1 β n log P(μ n ∈ A) ≤ -inf CloA ĨS 2 .

Step 3: Proof of the Large Deviations Principles

We now prove the Proposition 1.22 and Proposition 1.23. We start by studying the rate function, then we prove the lower and upper bound for the gas without the normalizing constants Z n and Z n,k . Finally, we obtain the full large deviation principle.

Study of the rate function on the sphere

Next proposition is the key of all the rest of the work and comes from [ZZ10, Lemma 26].

Proposition 1.24 (Rate function I S 2 ).

1)J S 2 is continuous for the weak topology of M 1 (S 2 ) and is bounded.

2)I 2 S is well defined on M 1 (S 2 ), takes its values in [0, ∞]. 3) I S 2 is lower semi-continuous.

4) I S 2 is strictly convex.

Proof of Proposition 1.24. First, we notice that since S 2 is a compact set in R, the function (x, y) → log |x -y| is bounded above on S 2 × S 2 . Hence, the function E S 2 is bounded from below and J S 2 is bounded from above. We cannot conclude yet that the function I S 2 is well defined. We will see that since J S 2 is continuous on the compact M 1 (S 2 ), it is bounded and I S 2 is well defined and takes its values in (-∞, ∞].

Fix M ∈ R and define log M (x) = log(x) ∨ (-M ). The function (x, y) → log M |x -y| is continuous on S 2 × S 2 . We define:

U ν M (x) = -log M |x -y|dν(y) E M S 2 (ν) = -log M |x -y|dν(x)dν(y) J M S 2 (ν) = sup x∈T (S)
log M |x -y| 2 dν(y) + log 2

I M S 2 (ν) = E M S 2 (ν) + J S 2 (ν).
We will now prove the upper semi-continuity and lower semi-continuity of the function J S 2 .

• Upper semi-continuity

The map W : (x, µ) → U µ M (x) is continuous because the function (x, y) → log M |x -y| is uniformly continuous. As T (S) is compact, J M S 2 is also continuous. Indeed, if µ n → µ weakly, then there exist a sequence (x n ) n∈N such that for any n, W (x n , µ n ) = J M S 2 (µ n ). Let c be an accumulation point of the sequence (J M S 2 (µ n )) n∈N . One can extract a convergving subsequence of (x n ) n∈N and call x ∞ its limit. Taking the limit of the inequality

W (x n , µ n ) ≥ W (x, µ n )
for any fixed x shows that c = J M S 2 (µ). Hence, J M S 2 is continuous. Now let µ n → µ weakly in M 1 (S 2 ), we have:

J S 2 (µ n ) ≤ J M S 2 (µ n ) ---→ n→∞ J M S 2 (µ)
If we take the limit superior of the last inequality we obtain:

lim n→∞ J S 2 (µ n ) ≤ J M S 2 (µ)
To conclude, we want to let M go to infinity, but we have to justify the exchange between the limit and the supremum. In order to do that, we use a short lemma given below:

Lemma 1.25. Let (f M ) M ∈R + be a decreasing sequence of continuous functions defined on a compact set K, converging point-wise towards a function f . Then we have:

lim M →∞ sup z∈K f M (z) = sup z∈K f (z).
Proof. It is easy to show that the function M → sup z∈K f M (z) is decreasing and is bounded below by sup z∈K f (z). Hence we obtain lim

M →∞ sup z∈K f M (z) ≥ sup z∈K f (z).
To prove the other inequality, fix ε > 0, then, as f M (x) decreases towards f (x), we have:

∀x ∈ K, ∃M x > 0 such that ∀M ≥ M x , f (x) ≥ f M (x) ≥ f (x) + ε.
As f Mx is continuous at x, there is an δ x such that for all y ∈ B(x, δ x ) : f (x) -ε ≤ f Mx (y) ≤ f (x) + 2ε. As the sequence f M is decreasing, this relation is also satisfied for all M ≥ M x . As K is compact, we can extract a finite family {x 1 , . . . , x p } such that K ⊂ ∪B(x i , δ i ). We set M ∞ = max i=1...p M x i so we have:

∀M ≥ M ∞ , ∀y ∈ K, ∃i ∈ {1, . . . , p} | f (x i ) -ε ≤ f M (y) ≤ f (x i ) + 2ε.
This last statement implies that sup K f M (z) ≤ sup K f (z) + 2ε and ends the proof.

We apply the lemma and we end the proof of the upper semi-continuity:

lim n→∞ J S 2 (µ n ) ≤ J S 2 (µ).

• Lower semi-continuity

This is where the notion of non-thinness is involved. We will use the fact that the support of T * ν S is non thin at all its points. Suppose that µ n ---→ n→∞ µ. We want to show that lim n→∞ J S 2 (µ n ) ≥ J S 2 (µ). We know that J S 2 (µ) < ∞. If J S 2 (µ) = -∞ then there is nothing to prove. For any ε > 0 we introduce the set:

A ε = {x ∈ S 2 | -2U µ (x) + log 2 ≥ J S 2 (µ) -ε}.
For any ε, A ε is closed by upper semi-continuity of -U µ . Let x 0 be a point where -U µ reaches its maximum on the equator T (S). We want to find a measure of positive and finite mass ν supported on A ε ∩ T (S) such that U ν is a continuous function, for any ε. We can find such a measure as soon as the capacity of A ε ∩ T (S) is positive [ST97, Chapter 1, Corollary 6.11]. If for some ε 0 > 0 the set A ε ∩ T (S) had zero capacity, it would be thin at any point [Ran95, Theorem 3.8.2 p. 79]. By the definition of the set A ε 0 , the complement of A ε ∩ T (S) in T (S) is thin at x 0 . Then, as the union of two thin sets at x 0 is thin at x 0 , T (S) is thin at x 0 . This is absurd as the equator is non-thin at all its points (as connected set, [Ran95, Theorem 3.8.3]). Now that we obtained the existence of ν, we can end the proof. Thanks to Fubini's theorem, we have:

lim n→∞ -U µn (x)dν(x) = lim n→∞ -U ν (x)dµ n (x) = -U ν (x)dµ(x) = -U µ (x)dν(x).
Since the support of ν is included in A ε , we have:

lim n→∞ J S 2 (µ n )dν(x) ≥ lim n→∞ -2U µn (x)dν(x) + log 2 ≥ (J S 2 (µ) -ε) dν(x).
We end the proof by noticing that ν has positive mass and that ε is arbitrary.

• Conclusion

As J S 2 is continuous on the compact M 1 (S 2 ), it is bounded and the function I S 2 is well defined.

For each fixed x, the functions µ → U µ M (x) and µ → E M S 2 (µ) are continuous on M 1 (S 2 ). Since E S 2 = inf M E M S 2 , E S 2 is a lower semi-continuous function. I S 2 is lower semi-continuous as the sum of a continuous and lower semi-continuous functions.

It is well known that the classical interaction energy E is a convex function [HP00, Proposition 5.3.2], [START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF]. For an measure with finite energy, we can write:

E S 2 (µ) = E((T -1 ) * µ) + log(1 + |z| 2 )d(T -1 ) * µ.
Since the function ν → log |1 + |z| 2 |dν is linear we have the convexity of E S 2 . On the other hand, J S 2 is the supremum of linear functions so is convex.

Large deviations upper bound

We will prove the upper bound for the non-normalized measures, the normalizing constant will be treated once we have both upper and lower bound.

• Bernstein-Markov inequality

We need to prove a Bernstein-Markov inequality for the measures ν S and T * ν S .

Theorem 1.26 (Bernstein-Markov for ν S ). Let N ∈ N, then for all P ∈ C N [X] we have:

sup z∈S 1 |P (z)| ≤ √ N P L 2 where P 2 L 2 = |P (z)| 2 dν S (z).
In particular, for all ε > 0, there is a constant C ε such that for all P ∈ C N [X] we have:

sup z∈S 1 |P (z)| ≤ C ε e εN P L 2 .
Proof. We start from the following identity:

P n (z) = P n (w) n k=0 z k wk dν S (w).
Then by the Schwarz inequality we obtain:

sup z∈S |P n (z)| ≤ sup z∈S n k=0 |z| 2k P n L 2 (ν S ) ≤ √ n P n L 2 (ν S ) .
Lemma 1.27. For all ε > 0, there exists an integer N 0 such that for all n > N 0 we have: Thanks to the Bernstein-Markov inequality, we have:

1 n log e 2n
n i=1 |z -z i | 2 dν S (z) 1/n ≥ sup z∈S n i=1 |z -z i | 2 C ε/2 e -nε/2 1/n .
We take the logarithm of this expression to obtain:

1 n log e 2n C log |z-w|dµn(w) dν S (z) ≥ 2 sup z∈S C log |z -w|dµ n (w) -ε/2 + log C ε /2 n
taking n > N 0 sufficiently large ends the proof of the lemma.

In fact, this inequality is used to prove the large deviations upper bound on C. To prove the large deviations upper bound on S 2 , we need an analog of this inequality.

Lemma 1.28. For all ε > 0, there exists an integer N 0 such that for all n > N 0 we have:

1 n log e 2n C log |x-y|dT * µn(y) dT * ν S (x) ≥ 2 sup x∈T (S) log |x -y|dT * µ n (y) -ε.
Proof. We start from Lemma 1.27 and lift it up on the sphere:

1 n log n i=1 |T (z) -T (z i )| 2 (1 -|T (z)| 2 )(1 -|T (z i )| 2 ) dν S (z) ≥ sup z∈S C log |T (z) -T (w)| 2 (1 -|T (z)| 2 )(1 -|T (w)| 2 ) dµ n (w) -ε + log C ε n .
In terms of push-foward measures we obtain:

1 n log n i=1 |x -x i |dT * ν S (z) ≥ sup x∈T (S) C log |x -x i |dT * µ n (w) -ε + log C ε n .
• Large deviations upper bound in the complex case

We prove the upper bound part of the large deviation principle in the complex case. Let σ ∈ M 1 (S 2 ), we prove that:

lim δ→0 lim n→∞ 1 β n log P(μ n ∈ B(σ, δ)) ≤ -I S 2 (σ).
Proving this inequality is sufficient to obtain the upper bound as S 2 is a compact set. Indeed, a weak large deviation principle implies a full large deviation principle when we have exponential tightness, which is automatic on a compact set.

If we write

A 1 = Z n P(μ n ∈ B(σ, δ))
then we have for any M > 0 and for any δ > 0, using Lemma 1.28:

A 1 = 1 μn∈B(σ,δ) exp -β n E = (μ n ) + n + 1 n 2 log n i=1 |x -x j | 2 2 n dT * ν S (x) dκ n ≤ 1 μn∈B(σ,δ) exp   -β n   - 1 n 2 i =j log M |x i -x j | + n + 1 n (J S 2 (µ n ) + ε)     dκ n ≤ 1 μn∈B(σ,δ) exp -β n = -log M |x -y|dμ n (x)dμ n (y) + n + 1 n (J S 2 (µ n ) + ε) dκ n .
We now observe the following:

1 n 2 i =j log M |x i -x j | = = log M |x -y|dμ n (x)dμ n (y) - M n = E M S 2 (μ n ).
(1.30)

We also notice that:

1 β n log 1dκ n ---→ n→∞ 0.
(1.31) Indeed, as κ n is a product of finite measures, we have 1 n log 1dκ n = log 1dκ 1 . Then, by taking the logarithm and the superior limit we obtain:

lim n→∞ 1 β n log Z n P(μ n ∈ B(σ, δ)) ≤ sup B(σ,δ) -I M S 2 + ε
As I M S 2 is a continuous function, we have when δ converges towards 0:

lim δ→0 lim n→∞ 1 β n log Z n P(μ n ∈ B(σ, δ)) ≤ -I M S 2 (σ) + ε.
We end the proof of the upper bound by letting M → ∞ (and using the monotone convergence theorem) and then letting ε → 0. We will get rid of the normalizing constant once we have proved the lower bound.

• Large deviations upper bound in the real case

We prove the same bound as previously in the real case. The proof is nearly the same and we will omit what is exactly the same in the two cases. The only difference is that the law of the roots of P n in the real case is not absolutely continuous with respect to a product measure, but is a mix between such measures.

As in the complex case, we want to prove that:

lim δ→0 lim n→∞ 1 β n log P(μ n ∈ B(σ, δ)) ≤ - 1 2 I S 2 (σ).
We begin with

P(μ n ∈ B(σ, δ)) = n/2 k=0 1 Z n,k I n,k,δ
where

I n,k,δ = 1 μn∈B(σ,δ) i<j |x i -x j | ( n i=1 |x -x i | 2 2 n dT * ν S ) (n+1)/2 dρ n,k .
(1.32)

We will prove the upper-bound for each of the I n,k,δ uniformly in k which will be sufficient to prove the upper bound for the non-normalized measure. The constants will be treated once we will have the full large deviation principle.

The estimates used in the complex case do no rely on the complex structures but only on "algebraic" inequalities so the same computations on the I n,k,δ can be done. As the formulas are the same, we obtain the same bounds.

I n,k,δ = 1 μn∈B(σ,δ) exp -β n 1 2 E = (μ n ) + n + 1 2n 2 log N i=1 |x -x i | 2 2 n dT * ν S (x) dρ n,k ≤ 1 μn∈B(σ,δ) exp   -β n   - 1 2n 2 i =j log M |x i -x j | + n + 1 2n (J S 2 (μ n ) + ε)     dρ n,k ≤ 1 μn∈B(σ,δ) exp -β n - 1 2 E M S 2 (μ n ) + n + 1 2n (J S 2 (μ n ) + ε) dρ n,k ≤ exp -β n n + 1 n sup B(σ,δ) -ĨM S 2 + ε 1dρ n,k .
We need to check that 1

β n log ρ n,k ---→ n→∞ 0.
Just like in the complex case, this is only a consequence of the fact that ρ n is a product measure.

Using again (1.31), we apply logarithm to both sides of the inequality, divide by β n to find: lim

n→∞ 1 β n log(I n,k,δ ) ≤ sup B(σ,δ) -ĨM S 2 + ε.
By the monotone convergence theorem, we let M → ∞ and then ε → 0 which ends the proof of the inequality. As the upper bound is uniform in k, it ends the proof of the lower bound.

Large deviations lower bound

In this section we prove the lower bound of the large deviation principle. We notice that the rate function is the sum of a lower semi-continuous function E S 2 and of the continuous function J S 2 . The continuity of J S 2 allows us to treat only the logarithmic energy, which is well known in potential theory.

• Large deviations lower bound in the complex case

Let σ ∈ M 1 (S 2 ), we prove that:

lim δ→0 lim n→∞ 1 β n log Z n P(μ n ∈ B(σ, δ)) ≥ -I S 2 (σ).
We can assume that the measure σ satisfies I S 2 (σ) < ∞ as if the rate function is infinite this bound holds clearly. We notice that it is equivalent to have E S 2 < ∞. In particular, such a measure σ has no atom (and σ({N }) = 0). For any (x 1 , . . . , x n ), we have:

1 n log n i=1 |x -x j | 2 2 n dT * ν S (x) ≤ J S 2 (μ n ).
(1.33)

If we write:

A 1 = Z n P(μ n ∈ B(σ, δ))
then we have, for any ε > 0, if δ is small enough, using (1.33):

A 1 = 1 μn∈B(σ,δ) exp -β n E = (μ n ) + n + 1 n 2 log n i=1 |x -x j | 2 2 n dT * ν S (x) dκ n ≥ 1 μn∈B(σ,δ) exp -β n E = (μ n ) + n + 1 n J S 2 (μ n ) dκ n ≥ exp -β n n + 1 n (J S 2 (σ) + ε) 1 μn∈B(σ,δ) exp (-β n E = (μ n )) dκ n .
The last inequality comes from the continuity of J S 2 . To study the right integral, we will use the stereographic projection T -1 . Thanks to the relation (1.20) we obtain:

i =j log |x i -x j | = i =j log |T -1 (x i ) -T -1 (x j )| -(n -1) n i=1 log(1 + |T -1 (x i )| 2 ).
Pushing back the measure κ n leads to:

1 μn∈B(σ,δ) exp (-β n E = (μ n )) dκ n = 1 µn∈T -1 B(σ,δ) exp -β n E = (µ n ) - n + 1 n 2 n i=1 log(1 + |z i | 2 ) d C n (z 1 , . . . , z n ).
We reduced the problem to prove the large deviations lower bound for a Coulomb gas in C with potential V (z) = log(1 + |z| 2 ) and temperature β n . We will prove in Proposition

1.29 that T * is an homeomorphism from M 1 (C) to M 1 (S 2 ) | µ({N }) = 0} so the set T -1 * B(σ, δ) is a neighborhood of T -1 * σ.
The proof of the lower bound can be found in [HP00, Chapter 5 p. 220]. We give a proof for the sake of completeness.

First, we explain why it is sufficient to prove the lower bound for "nice" measures σ. Let Q the law of the empirical measure of the gas:

1 Z n exp -β n E = (µ n ) + n + 1 n 2 n i=1 log(1 + |z i | 2 ) d C (z 1 , . . . , z n ).
where Z n is a normalizing constant. We will prove that for any sufficiently regular measure σ, we have:

inf G lim n→∞ 1 n 2 log Z n Q(µ n ∈ G) ≥ -E(σ) -log(1 + |z| 2 )dσ(z) (1.34)
where the infimum is take over G neighborhood of σ. In order to prove that this bound is sufficient to obtain the lower bound of the large deviations principle, we prove that the function φ : M 1 (C) → R given by:

φ(σ) = inf{ lim n→∞ 1 n 2 log Z n Q(µ n ∈ G), G neighborhood of σ} is upper semi-continuous. Let σ k → σ in M 1 (C).
Let G be a neighborhood of σ, then there exists an integer K such that for all k ≥ K, σ k ∈ G. This implies that for any k ≥ K:

inf G k lim n→∞ 1 n 2 log Q(µ n ∈ G k ) ≤ lim n→∞ 1 n 2 log Q(µ n ∈ G)
where G k are neighborhoods of σ k . Then if we take the limit superior of this inequality and the infimum over G neighborhood of σ we obtain the upper semi-continuity of φ. If we prove (1.34) for a dense set of measures, then for any measure σ ∈ M 1 (C), there exist measures σ k such that (1.34) holds and σ k → σ we get:

φ(σ) ≥ lim sup k φ(σ k ) ≥ lim sup k -I(σ k ).
We will consider a specific sequence of measures σ k such that for any k, σ k is absolutely continuous with respect to the Lebesgue measure on C, with compact support and density bounded from above and below by positive constants and such that:

-E(σ k ) ≥ -E(σ) lim k→∞ log(1 + |z| 2 )dσ k (z) = log(1 + |z| 2 )dσ(z).
Once we obtain this sequence, we will only have to prove the lower bound for the measures satisfying the regularity conditions given above.

Let

σ k = 1 z∈[-k,k] 2 σ([-k,k] 2 ) σ, and f (z, w) = -log |z -w| 2 + 1 2 log(1 + |z| 2 ) + 1 2 log(1 + |w| 2 )
then, as f is bounded from below, by the monotone convergence theorem we get:

lim k→∞ f (z, w)dσ k (z)dσ k (w) = f (z, w)dσ(z)dσ(w)
so we can assume that σ has compact support in C. Now let φ ε be a C ∞ probability density with support in [-ε, ε] 2 , then we set σ ε = φ ε * σ. The measures σ ε have compact support, continuous density and converge towards σ as ε goes to zero. Since it is easy to check that log(1 + |z| 2 )dσ ε (z) ---→ ε→0 log(1 + |z| 2 )dσ(z), we only have to prove that for any ε -E(φ ε * σ) ≥ -E(σ).

Recall that the function -E is concave, so if we notice that

φ ε * σ = φ ε (y)σ(• -y)dy
then, thanks to the Jensen inequality and the invariance by translation of the logarithmic energy, we obtained the desired inequality. The last thing we want for our "nice" measures is that the density is bounded from above and from below. As the density of the measures σ ε are continuous with compact support, those densities are already bounded from above.

Changing σ ε to δm + (1 -δ)σ ε where m is the uniform measure on the support of σ ε allows us to deal with measures with continuous density bounded from above and from below.

We can now assume that the measure σ is supported in a rectangle 

1 C ≤ h(z) ≤ C for some constant C > 0. For each n ∈ N, let m = √ n . Let x 0 = a < x 1 < • • • < x m = b such that for each j ∈ {0, . . . , n -1} σ([x j , x j+1 ] × [c, d]) = 1 m .
We have cut the support in vertical slides of equal mass. We divide each slide in rectangles of equal mass (see Figure 1.2)and we adjust their number in order to have a total of n parts. As m 2 ≤ n ≤ m(m + 2), we can find l 1 , . . . , l m satisfying n k=1 l k = n and for each j ∈ {0, n -1} a set of points y j,0 = c < y j,1 < • • • < y j,l j = d such that for every i ∈ {0, . . . , n -1} and every j ∈ {0, l i -1} we have:

σ([x i-1 , x i ] × [y j-1 , y j ]) = 1 ml i .
This construction gives us a set of rectangles. For each one of them, we consider the smaller rectangle with same center as the original one but homothetic with ratio 1 2 (see Figure 1.2 for an illustration). We call them

R i,j = [x i-1 , x i ] × [y j-1 , y j ].
As the density h is bounded from above and from below we see that the diameter of the rectangles uniformly tends towards 0 as n goes to infinity. More precisely we have:

lim n→∞ max i,j diam(R i,j ) → 0.
We will need to control the area of each rectangle, we want this area no to go to zero too fast such that the product of the areas of the rectangles is negligible compared to exp(-β n ). One can easily check that for each i, j we have, for some constant C 1 depending only of h: We label the n rectangles R 1 , . . . , R n (and R 1 , . . . , R n )and we define:

R i,j dσ(z) ≥ C 1 n . a x 1 x m-1 b c d y 1,1 y l1,1 R m,lm R 1,j1 R 1,1 R m,1
∆ n = {(z 1 , . . . , z n ) ∈ C n | ∀1 ≤ i ≤ n, z i ∈ R i }.
Let f be a bounded 1-Lipschitz function. For any n and any (z 1 , . . . , z n ) ∈ ∆ n we have:

f (z)dσ(z) - i,j 1 ml i f (z i,j ) ≤ i,j R i,j |f (z) -f (z i,j )|dσ(z) ≤ i R i,j |z -z i |dσ(z) ≤ max i,j (diamR i,j ) ---→ n→∞ 0
and for any bounded function f :

1 n i,j f (z i,j ) - i,j 1 ml i f (z i,j ) ---→ n→∞ 0.
Hence, for any fixed δ, if n is large enough, for any (z 1 , . . . , z n ) ∈ ∆ n :

1 n n i=1 δ z i ∈ B(σ, δ).
We define

∆ n = p∈σn {(z 1 , . . . , z n ) ∈ C n | (z p(1) , . . . , z p(n) ) ∈ ∆ n }.
We only made the definition of ∆ n symmetric, as there was no reason for z 1 to be at the top left corner of the support. It is clear that we still have, for any δ and n large enough, and for any (z 1 , . .

. , z n ) ∈ ∆ n , 1 n n k=1 δ z k ∈ B(σ, δ). Notice that: Vol(∆ n ) = n!Vol(∆ n ) ≥ n! C 1 n n which implies, as β n n lim n→∞ 1 β n log Vol(∆ n ) = 0.
Then we have, for n large enough:

1 µn∈T -1 B(σ,δ) exp -β n E = (µ n ) + n + 1 n 2 n i=1 log(1 + |z i | 2 ) d C n (z 1 , . . . , z n ) ≥ 1 ∆ n exp -β n E = (µ n ) + n + 1 n 2 n i=1 log(1 + |z i | 2 ) d C n (z 1 , . . . , z n ) ≥ exp   -β n   n + 1 n 2 n k=1 max z∈R i log(1 + |z| 2 ) - 1 n 2 i =j min z∈R i ,w∈R j log |z -w|     Vol(∆ n ).
To obtain the lower bound, it is sufficient to prove that we have: (1.36)

lim n→∞ n k=1 max z∈R i log(1 + |z| 2 ) = log(1 + |z| 2 )dσ(z) (1.
The first limit is easy to prove as z → log(1 + |z| 2 ) is uniformly continuous on the support of σ (which is a rectangle) and is deduced from the definition of the Riemann integral. As d n = max i,j diam(R i,j ) is of order 1 √ n and min R i ,R j |z -w| is also of order 1 √ n , then, thanks to the bound: max

R i ,R j |z -w| ≤ 2d n + min R i ,R j |z -w| (1.37)
there exists a constant A > 0 such that

A min z∈R i ,w∈R j |z -w| ≥ max z∈R i ,w∈R j |z -w|. (1.38)
This relation is the reason why we reduced the sizes of the rectangles in the construction so that we can control the distance between the rectangles. To end the proof we notice that, for any ε > 0, we have:

lim n→∞ 1 n 2 #{i = j | max z∈R i ,w∈R j |z -w| min z∈R i ,w∈R j |z -w| ≤ 1 + ε} = 1. (1.39)
Indeed, for any fixed ε > 0, the cardinal of the complement of the set considered above is O(n) as this condition is verified as soon as the rectangles are not too close. We call

B = E(σ) - i =j log min z∈R i ,w∈R j |z -w| 1 ml i × ml j . Since log |z -w|dσ(z)dσ(w) ≤ i =j log max z∈R i ,w∈R j |z -w| 1 ml i × ml j (1.40)
then for every i, n ≤ ml i then, for every ε > 0, then we have :

B ≤ i =j log max z∈R i ,w∈R j |z -w| 1 ml i × ml j - i =j log min z∈R i ,w∈R j |z -w| 1 ml i × ml j ≤ i =j log
max z∈R i ,w∈R j |z -w| min z∈R i ,w∈R j |z -w|

1 ml i × ml j ≤ 1 n 2 i =j log max z∈R i ,w∈R j |z -w| min z∈R i ,w∈R j |z -w| ≤ 1 n 2 #{i = j | max z∈R i ,w∈R j |z -w| min z∈R i ,w∈R j |z -w| ≤ 1 + ε} log(1 + ε) + 1 n 2 1 -#{i = j | max z∈R i ,w∈R j |z -w| min z∈R i ,w∈R j |z -w| } log A.
Then we take the limit superior in both sides, and the limit when ε → 0

E(σ) -lim n→∞ 1 n 2 i =j log min z∈R i ,w∈R j |z -w| 1 ml i × ml j ≤ lim n→∞ 1 n 2 i =j log max z∈R i ,w∈R j |z -w| min z∈R i ,w∈R j |z -w| = 0
which ends the proof of the lower bound in the complex case.

• Large deviations lower bound in the real case

In this section, we prove the lower bound of the large deviation principle of Proposition 1.23. We define:

P n,k (x 1 , . . . , x n ) = exp -β n 1 2 H(x 1 , . . . , x n ) dL n,k (x 1 , . . . , x n ) and P = n/2 k=0 P n,k .
We prove that for any σ ∈ M 1 (S 2 ):

lim δ→0 lim n→∞ 1 β n P(μ n ∈ B(σ, δ)) ≥ -I S 2 (σ).
We can assume that the measure σ satisfies ĨS 2 (σ) < ∞ as if the rate function is infinite this bound holds clearly. We notice that it is equivalent to have E S 2 (σ) < ∞ and the pushforward of σ by the inverse stereographic projection is invariant under conjugation.

The strategy adopted here is very similar to what was done in [START_REF] Ben | Large deviations from the circular law[END_REF] for the real Ginibre ensemble. The distribution of (z 1 , . . . , z n ) is a mixture between several distributions, each distribution being related to the number of real zeros. For any ε > 0, if δ is small enough, using (1.33) and as J S 2 is continuous:

P(μ n ∈ B(σ, δ)) = n/2 k=0 exp -β n 1 2 E = (μ n ) - n + 1 2n 2 log N i=1 |x -x i | 2 2 n dT * ν S (x) 1 μn∈B(σ,δ) dρ n,k ≥ n/2 k=0 exp -β n 1 2 E = (μ n ) - n + 1 2n J S 2 (μ n ) 1 μn∈B(σ,δ) dρ n,k ≥ exp -β n n + 1 n (J S 2 (σ) + ε) n/2 k=0 exp -β n 1 2 E = (μ n ) 1 μn∈B(σ,δ) dρ n,k ≥ exp -β n n + 1 n (J S 2 (σ) + ε) exp -β n 1 2 E = (μ n ) 1 μn∈B(σ,δ) dρ n, n/2 .
As we deal with a lower bound, we can only consider the last term of the sum, corresponding to zero or one real root (if n is even or odd). Like in the complex case, we use the inverse stereographic projection to express the last integral:

1 μn∈B(σ,δ) exp -β n 1 2 E = (μ n ) dρ n, n/2 = 1 µn∈T -1 B(σ,δ) exp -β n 1 2 E = (µ n ) - n + 1 2n 2 n i=1 log(1 + |z i | 2 ) d n, n/2 (z 1 , . . . , z n ).
Notice that when n is odd, the first coordinate is always real. Like in the complex case, we reduced the proof of the lower bound to the proof of the lower bound for a Coulomb gas in the plane with potential log(1 + |z| 2 ), except that this gas must have at most one particle on the real axis (depending on n). Strategy of the proof is exactly the same as previously: for regular measures (supported in a rectangle with density with respect to the Lebesgue measure bounded from above and from below), we prove the lower bound by approximating the measure with an atomic measure whose atoms can be anywhere in well chosen rectangles. To perform the approximation, we have to show that we can still make this construction respecting the invariance under conjugation and the fact that we must have at most one real root.

When n is even, we cut the upper half of the support in boxes of mass 1 2 √ n and take the half-sized sub-boxes (the R i 's and the R i 's), illustrated in Figure 1.3. Then we describe the lower part of the support by considering the conjugates of the rectangles Ri and R i . We define

∆ n = {(z 1 , . . . , z n ) ∈ C n | ∀1 ≤ i ≤ n, z i ∈ R i }
and the rest of the construction is exactly the same.

When n is odd, the construction is nearly the same, except that we must place one point on the real line. We divide the upper half of the support into columns of equal mass

1 2 √
n , then we divide each column in rectangles of equal mass such that the total number of rectangles is n+1 2 . We consider the conjugates of the rectangles so that we have cut the support of σ in rectangles of known mass respecting the symmetry by conjugation (Figure 1.4). Finally, on the 1st column, we consider the union of the two rectangles touching the real axis. Hence, we have a partition of the support in n rectangles. Now we can consider the smaller rectangles like we used to do, except for the one crossing the real axis for which

d c = -d (0, 0) a b y 1,l1-1 x 1 R 1,1 R1,1 R 1,l1 R1,l1 R m,1 R m,lm
Rm,1 Rm,lm we only keep the intersection of the smaller rectangle with R, represented by a thicker line in Figure 4. We can also define

∆ n = {(z 1 , . . . , z n ) ∈ R × C n-1 | ∀1 ≤ i ≤ n, z i ∈ R i }
which differs from the previous construction only by the fact that the first variable is real, and

∆ n = {(z 1 , . . . , z n ) ∈ R × C n-1 | ∃p ∈ σ{2, . . . , n}, (z 1 , z p(2) , . . . , z p(n) ) ∈ ∆ n }.
The rest of the inequalities are valid for this construction and it allows us to end the proof of the lower bound in the real case.

Large deviation principle for normalized measures

In this subsection we obtain the full large deviation principle on the sphere by treating the normalizing constants. Here we have an explicit formula for the constants Z n and Z n,k in Remark 1.15.

As lim n→∞ 1 βn log Z n = 0, the large deviation principle holds for the normalized measures. For any open O set in M 1 (S 2 ), we have:

-inf O I S 2 ≤ lim n→∞ 1 β n log Z n P(μ n ∈ O) ≤ lim n→∞ 1 β n log Z n P(μ n ∈ O) ≤ -inf clo(O) I S 2 . (1.41)
By taking O = M 1 (S 2 ) we get:

lim n→∞ 1 β n log Z n = -inf ν∈M 1 (S 2 ) I S 2 (ν) = 0. (1.42)
In this case, we know that the rate function I reaches its minimum for the uniform measure on the equator as we know that the random sequence µ n converges almost surely weakly c = -d (0, 0) towards the uniform measure on the unit circle. As I S 2 (T * ν S ) = I(ν S ) = 0 it will imply the (already known) almost sure weak convergence of (µ n ) n∈N towards ν S . This ends the proof of Proposition 1.22.

y 1,1 d a b x 1 R 1,1 R 1,l 1 R1,l 1 R m,1 R m,l m Rm,1 Rm,l m
In the real case, we have to check that

lim n→∞ min Z n,k = lim n→∞ max Z n,k = -inf ĨS 2 = 0. (1.43)
This is true when β n = n 2 (see Remark 1.15). For general β n , we have to assume that (1.43) is true. Then for any set A ∈ M 1 (S2) we have:

lim n→∞ 1 β n log n/2 k=0 1 Z n,k P n,k (A) ≤ lim n→∞ - 1 β n log min Z n,k -inf cloA I S 2 (1.44) and lim n→∞ 1 β n log n/2 k=0 1 Z n,k P n,k (A) ≥ lim n→∞ - 1 β n log Z n,k -inf int(A) I S 2 (1.45)
which proves the full large deviation principle in M 1 (S 2 ).

Step 4: Going back on the plane

We have proved large deviation principles for the real and complex case on the sphere. The next proposition is taken from [Har12, Lemma 2.1]. We recall that the point N = (0, 0, 1) is the north pole of the sphere.

Proposition 1.29 (Correspondence between C and S

2 \ {N }). T * is an homeomorphism from M 1 (C) to {µ ∈ M 1 (S 2 ) | µ({N }) = 0}.
Proof. As T is a continuous function, µ → T * µ is continuous for the weak topology. As T is a bijection from C to S 2 \ {N }, it follows that T * is a bijection with inverse (T -1 ) * . We only have to prove the continuity of (T -1 ) * . Let (ν n ) n∈N be a sequence of measures

in {ν ∈ M 1 (S 2 ) | ν({N }) = 0} that converges in {ν ∈ M 1 (S 2 ) | ν({N }) = 0}. Let ν ∞
the limit of this sequence. By outer regularity of ν ∞ and the Portmanteau theorem, for any ε, there is an open set B such that:

lim n→∞ µ n (B) ≤ µ(B) ≤ ε.
The last inequality shows that the sequence

((T -1 ) * ν n ) n is tight. It is easy to see that ((T -1 ) * µ n ) n converges vaguely towards (T -1 ) * ν ∞ hence weakly.
Proposition 1.30 (Rate functions). For any measure µ ∈ M 1 (C) , I S 2 (T * µ) = I(µ).

Proof of Proposition 1.30.

log |z -w|dµ(z)dµ(w) + 2 sup

z∈S 1 log |z -w|dµ(w) = - log |T (z) -T (w)| - 1 2 (log(1 -|T (z)| 2 ) + log(1 -|T (w)| 2 ) dµ(z)dµ(w) + 2 sup z∈S 1 log |T (z) -T (w)| - 1 2 (log(1 -|T (z)| 2 ) + log(1 -|T (w)| 2 ) dµ(w).
Hence we obtain:

I(µ) = - log |T (z) -T (w)|dµ(z)dµ(w) + 2 sup z∈S log |T (z) -T (w)|dµ(w) + log 2 = I S 2 (T * µ).
From the large deviation principles proved on the sphere, we can now deduce the large deviation principles on the plane for the complex case.

Proof of Theorem 1.4. Thanks to the inclusion principle [DZ09, Lemma 4.1.5], the random sequence (T * µ n ) n∈N satisfies a large deviation principle in

{µ ∈ M 1 (S 2 ) | µ({N }) = 0}
with speed β n and good rate function I S 2 . We can apply this theorem because, as soon as a measure µ has an atom at N (or at any other point), I S 2 (µ) is equal to +∞. Then, using the contraction principle [DZ09, Theorem 4.2.1] along (T -1 ) * , we deduce that the sequence (µ n ) n∈N satisfies a large deviation principle with the same speed and good rate function I thanks to Proposition 1.30. The function I is a good rate function as we have already proved that I S 2 is a good rate function.

Proof of Theorem 1.5. In the real case, the proof is exactly the same. We use the inclusion principle and the contraction principle to obtain a large deviation principle with speed β n and good rate function Ĩ (using Proposition 1.30 again).

Large deviations for Elliptic polynomials

In the last section we saw a large deviation principle for the empirical measures of zeros of random Kac polynomials. In this section, we study the gases (1.17) and (1.18). We prove Theorems 1.6 and 1.7 following the same steps as previously.

Step 1: Distribution of the roots

Theorem 1.31 (Elliptic polynomials are orthogonal polynomials). The family of polynomials

√ n + 1 n k 1/2 X k are an orthonormal basis in C n [X]
for the scalar product:

P, Q = P (z)Q(z) 1 (1 + |z| 2 ) n d C (z) π(1 + |z| 2 ) 2 .
In the complex case the distribution of the roots of

P n = n k=1 n k 1/2 a k X k , taken in random
uniform order, is given by:

1 Z n i<j |z i -z j | 2 n k=1 |z -z i | 2 1 (1+|z| 2 ) n d C (z) π(1+|z| 2 ) 2 n+1 d C n (z 1 , . . . , z n )
where Z n is a normalizing constant. This distribution can be written:

1 Z n exp (-β n H E (z 1 , . . . , z n )) d C n (z 1 , . . . , z n ).
In the real case, the distribution of the roots is given by:

n/2 k=0 1 Z n,k i<j |z i -z j | n k=1 |z -z i | 2 1 (1+|z| 2 ) n d C (z) π(1+|z| 2 ) 2 (n+1)/2 d n,k (z 1 , . . . , z n )
where the Z n,k areconstants. It can also be written

n/2 k=0 1 Z n,k exp -β n 1 2 H E (z 1 , . . . , z n ) d n,k (z 1 , . . . , z n ).
These polynomials are handled by the article of Zeitouni and Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] with the complex Cauchy (Fubini-Study) measure and the weight φ(z) = log(1 + |z| 2 ).

Proof of Theorem 1.31. First we prove that the polynomials

√ n + 1 n k 1/2 X k are an or- thonormal basis in C n [X].
As the weight and the measure are radial, it is clear that this family is orthogonal. We only have to compute the norm of each polynomial:

C |z| 2k (1 + |z| 2 ) n+2 d C (z) =2π R + r 2k+1 (1 + r 2 ) n+2 dr =π R + u k (1 + u) n+2 du =π k n + 1 R + u k-1 (1 + u) n+1 =π(n + 1) n k -1
.

The computation of the distribution of the roots of random elliptic polynomials with complex coefficients is very similar to the Kac case, except that we add a change of basis. One should first consider the distribution of the ordered vector z 1 < • • • < z n , where < is the order defined in equation (1.22) and then deduce the distribution of (z 1 , . . . , z n ) taken in uniform random order. Let (z 1 , . . . , z n ) be the zeros of

P n = n k=0 a k n k 1/2 X k , then we consider G(z 1 , . . . , z n , a n ) = (a 0 , . . . , a n ).
To compute the Jacobian determinant of G, we use the following decomposition:

(z 1 , . . . , z n , a n ) G / / U ( ( (a 0 , . . . , a n ) (b 0 , . . . , b n ) V 7 7
where U is the function giving the coefficients in the canonical basis of P n from its roots and leading coefficient and V is the change of basis from the canonical basis to the basis n k 1/2 X k . We have already seen that Jac(U ) = |a n | 2n i<j |z i -z j | 2 . We could compute the Jacobian determinant of V , but we will just call this quantity |A n | 2 .Hence, the real Jacobian determinant of G is:

|Jac(G)| 2 = |A n | 2 |a n | 2n i<j |z i -z j | 2 .
The end of the proof is the same as for Kac polynomials, the density of the random vector (a 0 , . . . , a n ) being e -P 2 π n+1 , we only have to integrate the distribution of (z 1 , . . . , z n , a n ) to obtain the announced distribution for the complex case.

In the real case, we use Zaporozhets' computation [START_REF] Zaporozhets | On the distribution of the number of real roots of a random polynomial[END_REF] to obtain the distribution of (z 0 , . . . , z n , a n ) in function of the distribution of the coefficients in the canonical basis (b 0 , . . . , b n ) and we use the additional change of variables from the canonical basis to the basis

√ n + 1 n k 1/2 X k .
The real Jacobian determinant of this change of variables is |A n |, so we obtain the distribution of (z 1 , . . . , z n , a n ):

n/2 k=0 |A n |2 k k!(n -2k)!π n+1 2 |a n | n i<j |z i -z j | × exp -|a n | 2 n j=1 |z -z j | 2 (1 + |z| 2 ) n d C (z) π(1 + |z| 2 ) 2 d n,k (z 1 , . . . , z n )d C (a n ).
and we integrate with respect the variable a n .

1.4.2

Step 2: Large deviations on the sphere Proposition 1.32 (Pushing elliptic polynomials on the sphere). Let (z 1 , . . . , z n ) be the zeros of P n in the complex case, then the law of (T (z 1 ), . . . , T (z n )) is absolutely continuous with respect to the pushforward by T (1.10) of the Lebesgue measure on C with density:

i<j |x i -x j | 2 ( n j=1 |x -x j | 2 dν S 2 (x)) n+1 × n i=1 (1 -|x i | 2 ) 2
where ν S 2 is the uniform measure on S 2 . Recall that κ n is defined in Proposition 1.18. This law can be written in the form:

1 Z n exp   -β n   - 1 n 2 i =j log |x i -x j | + n + 1 n 2 log n j=1 |x -x j | 2 dν S 2 (x)     dκ n .
Proof. The proof is nearly the same as the proof of Proposition 1.18. We use the relations (1.20) and (1.21):

i<j |z i -z j | 2 = i<j |T (z i ) -T (z j )| 2 (1 -|T (z i )| 2 )(1 -|T (z j )| 2 ) and n k=1 |z -z i | 2 1 (1 + |z| 2 ) n d C (z) π(1 + |z| 2 ) 2 = n i=1 |T (z) -T (z i )| 2 (1 -|T (z)| 2 ) 2 d C (z) π n i=1 (1 -|T (z i )| 2 )
to obtain the density:

i<j |T (z i ) -T (z j )| 2 ( n i=1 |T (z) -T (z i )| 2 dν S 2 ) n+1 n i=1 (1 -|T (z i )| 2 ) 2 .
Proposition 1.33 (Pushing the real case on the sphere). Let (z 1 , . . . , z n ) be the zeros of P n in the real case, then the law of (T (z 1 ), . . . , T (z n )) is:

n/2 k=0 1 Z n,k i<j |x i -x j | × n i=1 (1 -|x i | 2 ) ( N i=1 |x -x i | 2 dν S 2 (x)) (n+1)/2 dL n,k (x 1 , . . . , x n ).
Where ρ n,k is like in Proposition 1.20. This law can be written:

n/2 k=0 1 Z n,k exp -β n 1 2 E = (µ n ) - n + 1 2n 2 log N i=1 |x -x i | 2 dν S 2 (x) dρ n,k .
The proof of this proposition is the same as Proposition 1.33. We can now state theorem on the sphere. Proposition 1.34 (Large deviation principle in M 1 (S 2 )). In the complex case, the sequence of empirical measures satisfy a large deviation principle with speed n 2 in M 1 (S 2 ) with good rate function I E,S 2 -inf I E,S 2 where

I E,S 2 (µ) = - log |x -y|dµ(x)dµ(y) + sup x∈S 2 log |x -y| 2 dµ(y).
In the real case, the sequence of empirical measures also satisfies a large deviation principle with speed n 2 and good rate function:

ĨE,S 2 (µ) = 1 2 (I E,S 2 (µ) -inf I E,S 2 ) if µ is invariant under the map z → z ∞ otherwise.
Definition 1.35. We define J E : M 1 (C) → R by:

J E (µ) = sup z∈C { log |z -w| 2 dµ(w) -log(1 + |z| 2 )} (1.46)
and J E,S 2 : M 1 (S 2 ) → R by:

J E,S 2 (µ) = sup x∈S 2
log |x -y| 2 dµ(y).

(1.47)

Step 3: Proof of the large deviation principles

Proposition 1.36 (Rate function I E,S 2 ).

1) The function J E,S 2 is a continuous function for the weak topology of M 1 (S 2 ) and is bounded.

2) The function I E,S 2 is well defined on M 1 (S 2 ), takes its values in [0, ∞] and is finite as soon as the logarithmic energy is finite.

3) I E,S 2 is lower semi-continuous.

4) I E,S

2 is strictly convex.

Proof of Proposition 1.36. The proof is exactly the same as the proof of Proposition 1.24. We only have to check that S 2 is a compact set in S 2 , which is non-thin at all his points, which is true.

Large deviations upper bound

The only thing we need to import the proof of the large deviation principle for nonnormalized measures in the Kac case is the Bernstein-Markov inequality that was crucial to prove the upper bound.

Lemma 1.37 (Bernstein-Markov for elliptic polynomials). Let n ∈ N, then for all P ∈ C n [X] we have:

sup C |P (z)| 2 (1 + |z| 2 ) n ≤ (n + 1) P 2 L 2 where P 2 L 2 = |P (z)| 2 1 (1+|z| 2 ) n d C (z) π(1+|z| 2 ) 2 . proof of Lemma 1.37. Let K n (z, w) = n i=0 (n + 1) n k z k wk . Then we have: ∀P ∈ C n [X], P (z) = P (w)K(z, w) 1 (1 + |w| 2 ) n dw π(1 + |w| 2 ) 2 = P, K(., w)
Then by the Cauchy-Schwarz inequality we get, for all z ∈ C:

|P (z)| 2 ≤ P L 2 |K n (z, w)| 2 1 (1 + |w| 2 ) n dw π(1 + |w| 2 ) 2 = P L 2 (n + 1)K n (z, z). Considering that K n (z, ) 2 L 2 = (n + 1)K n (z, z) = (n + 1)(1 + |z| 2 ) n we get: sup C |P (z)| 2 (1 + |z| 2 ) n ≤ (n + 1) P 2 L 2 .
From this Bernstein-Markov inequality, we deduce the analogue for this model of Lemma 1.27 and Lemma 1.28 and we can easily prove the upper bound for non-normalized measures for elliptic polynomials in both real and complex cases.

Large deviations lower bound

As we know that J E,S 2 is a continuous function in M 1 (S 2 ), the proof of the lower bound is exactly the same. The same inequalities hold and we can reduce the problem to the classical lower bound for a Coulomb gas with confining potential log(1 + |z| 2 ).

Large deviation principles for normalized measures

In the complex case, we use the same trick of using the inequalities for the whole space (see (1.42)) to obtain:

lim n→∞ 1 β n log Z n = lim n→∞ 1 β n log Z n = -inf I E,S 2 (1.48)
so we obtain the full large deviation principle for normalized measures in M 1 (S 2 ). We also notice that this implies that:

lim n→∞ 1 β n log |A n | 2 = lim n→∞ 1 β n log |A n | 2 = -inf I E,S 2 .
(1.49)

In the real case, we notice that equation (1.49) implies that:

lim n→∞ 1 β n min Z n,k = lim n→∞ 1 β n max Z n,k = - 1 2 inf I E,S 2 (1.50)
and this allows us to prove the large deviation principle in the real case for normalized measures like in (1.44). For general β n we need to assume that (1.50) is true.

Step 4: Going back on the plane

The only thing to check is that the rate function given by the contraction principle is the rate function that was announced in the theorem. Using the relations (1.20) and (1.21) in the definition of the rate function I E,S 2 easily ends the proof.

General result of Zeitouni and Zelditch

In this section, we give the general statement of the result obtained by Zeitouni and Zelditch in [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] and we extend it to the case of real coefficients. We deal with the gases (1.6) and (1.7) associated to the orthogonal polynomials (1.4).

Step 1: Distribution of the roots

Theorem 1.38 (Distribution of the roots of P n ). In the complex case, the distribution of the random vector (z 1 , . . . , z n ), taken in uniform random order, is:

1 Z n exp -β n E = (µ n ) + n + 1 n 2 log n i=1 |z -z i | 2 e -nφ(z) dν(z) d C n (z 1 , . . . , z n )
When the polynomials R 0 , . . . , R n have real coefficients, in the real case, the distribution of (z 1 , . . . , z n ) is given by:

n/2 k=0 1 Z n,k exp -β n 1 2 H O (z 1 , . . . , z n ) d n,k (z 1 , . . . , z n ).
Proof of Theorem 1.38. The proof is the same as the proof of Theorem 1.31. We consider G(z 1 , . . . , z n , a n ) = (a 0 , . . . , a n ) where the a i are the coefficients in the orthonormal basis.

Then we use the same decomposition:

(z 1 , . . . , z n , a n ) G / / U ( ( (a 0 , . . . , a n ) (b 0 , . . . , b n ) V 7 7
and the same calculation holds to obtain:

|Jac(G)| 2 = |A n | 2 |a n | 2n i<j |z i -z j | 2
where |A n | 2 is the real Jacobian determinant of the change of basis of C n [X]. In the real case, when the R k 's are real polynomials, we can also do the same calculations, using [START_REF] Zaporozhets | On the distribution of the number of real roots of a random polynomial[END_REF].

1.5.2

Step 2: Large deviations on the sphere Proposition 1.39 (Pushing orthogonal polynomials on the sphere). Let (z 1 , . . . , z n ) be the zeros of P n in the complex case, then the law of (T (z 1 ), . . . , T (z n )) is absolutely continuous with respect to the pushforward by T (1.10) of the Lebesgue measure on C with density:

i<j |x i -x j | 2 ( n j=1 |x -x j | 2 e -n φ(x) dT * ν(x)) n+1 × n i=1 (1 -|x i | 2 ) 2 .
where φ(x) = φ(T -1 (x)) + log(1 -|x| 2 ). If κ n is defined as in Proposition 1.18 then we can write this law in the form:

1 Z n exp   -β n   E = (μ n ) + n + 1 n 2 log n j=1 |x -x j | 2 e -n φ(x) dT * ν(x)     dκ n .
Proposition 1.40 (Pushing the real case on the sphere). Let (z 1 , . . . , z n ) be the zeros of P n in the real case, then the law of (T (z 1 ), . . . , T (z n )) is:

n/2 k=0 1 Z n,k i<j |x i -x j | × n i=1 (1 -|x i | 2 ) ( n j=1 |x -x j | 2 e -n φ(x) dT * ν(x)) (n+1)/2 dL n,k (x 1 , . . . , x n ).
If we define ρ n,k as in Proposition 1.20, this distribution can be written:

n/2 k=0 1 Z n,k exp   -β n   1 2 E = (μ n ) - n + 1 2n 2 log n j=1 |x -x j | 2 e -n φ(x) dT * ν(x)     dρ n,k .
Definition 1.41. We define J O : M 1 (C) → R by:

J O (µ) = sup z∈C { log |z -w| 2 dµ(w) -φ(z)} (1.51)
and J O,S 2 : M 1 (S 2 ) → R by:

J O,S 2 (µ) = sup x∈S 2 { log |x -y| 2 dµ(y) -φ(x)}.
(1.52)

Steps 3 and 4

• Rate function. If we look at the proof of the large deviation principles for Kac polynomials and elliptic polynomials on the sphere, we see that the good definition of the rate function relies on the continuity of the function J O,S 2 . The proof of the continuity of this function is the same as in the previous cases under the assumptions that the support of T * ν non-thin at all its points, which is one of our hypothesis. We replace the function -U µ bu the function -U µ + φ. Note that the set A ε would be replaced in general by the set:

A ε = {x ∈ S 2 | -2U µ (x) + φ ≥ J O,S 2 (µ) -ε}.
• Upper Bound. The proof of the large deviations upper bound relies on the Bernstein-Markov property (1.1), which is assumed to be true.

• Lower Bound. As J O,S 2 is continuous, we can reproduce exactly the proof of the lower bound for Kac polynomials.

In order to prove the large deviation principle for the normalized measures, we use the same technique as in (1.42) and (1.49). We get:

lim n→∞ 1 β n log Z n = lim n→∞ 1 β n log Z n = -inf I O,S 2 (1.53) 
so we obtain the full large deviation principle for normalized measures in M 1 (S 2 ). We also notice that:

lim n→∞ 1 β n log |A n | 2 = lim n→∞ 1 β n log |A n | 2 = -inf I O,S 2 .
(1.54)

We deduce from (1.54) that we have:

lim n→∞ 1 β n min Z n,k = lim n→∞ 1 β n max Z n,k = - 1 2 inf I O,S 2 . (1.55)
This allows us to prove the large deviation principle for normalized measures as in (1.44).

For general β n we need to assume (1.55).

Proof of Theorem 1.2. Thanks to the inclusion principle [DZ09, Lemma 4.1.5], the random sequence (T * µ n ) n∈N satisfies a large deviation principle in Proof of Theorem 1.3. In the real case, the proof is exactly the same. We use the inclusion principle and the contraction principle to obtain a large deviation principle with speed β n and good rate function ĨO (using again Proposition 1.30).

{µ ∈ M 1 (S 2 ) | µ({N }) = 0}
and Zelditch1 proved in [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] that the sequence of empirical measures of zeros (which we denote by µ C n for this model) satisfies the large deviations principle (LDP) in M 1 (C) with speed n 2 and good rate function I C defined by

I C (µ) = - log |z -w| - 1 2 log(1 + |z| 2 ) - 1 2 log(1 + |w| 2 ) dµ(z)dµ(w) + sup z∈S 1 log |z -w| 2 -log(1 + |w| 2 ) dµ(w).
When log(1 + |z| 2 )dµ(z) is finite, it simplifies to:

I C (µ) = - log |z -w|dµ(z)dµ(w) + sup z∈S 1 log |z -w| 2 dµ(w).
This has been extended by Butez [But16] to the case of real-valued i.i.d. standard Gaussians (a i ): the empirical measure of zeros, denoted µ R n for that model, satisfies the LDP in M 1 (C) with speed n 2 and good rate function I R defined by

I R (µ) = 1 2 I C (µ) if µ is invariant under z → z ∞ otherwise.
Finally, when the coefficients (a i ) are i.i.d. standard exponential random variables, Ghosh and Zeitouni proved in [GZ16] that the sequence of empirical measures of zeros, denoted by µ R + n , satisfies the LDP in M 1 (C) with speed n 2 and good rate function I R + defined by:

I R + (µ) = 1 2 I C (µ) if µ ∈ P ∞ otherwise.
where P is the set of empirical measures of zeros of polynomials with positive coefficients and P is its closure for the weak topology. (An explicit description of P is provided in [START_REF] Bergweiler | Distribution of zeros of polynomials with positive coefficients[END_REF].) Apart for the models described above, to our knowledge no other LDPs for the empirical measure of zeros of Kac polynomials appear in the literature. (In a different direction, Zelditch [START_REF] Zelditch | Large deviations of empirical measures of zeros on Riemann surfaces[END_REF] extended the results of [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] to the case of Riemann surfaces, and Feng and Zelditch [START_REF] Feng | Large deviations for zeros of p (φ) 2 random polynomials[END_REF] studied some cases of non-i.i.d. coefficients in the context of more general P (φ) 2 random polynomials.)

Our main result concerns the universality of the above large deviation principles, under mild technical conditions. Theorem 2.1. Let E be C, R or R + . Let a 0 , . . . , a n be i.i.d. random variables with a density g with respect to the Lebesgue measure E on E. Assume that:

1. There exist ρ > 0, r > 0 and R > 0 such that

∀z ∈ C, g(z) ≤ exp(-r|z| ρ + R), ( 2 

.2)

2. There exits δ > 0 such that for all λ > 0:

1 |x|≤δ 1 g(x) λ d E (x) < ∞ (2.3)
Then the sequence of empirical measures (µ n ) n∈N satisfies a large deviations principle in M 1 (C) with speed n 2 and rate function I E .

The second assumption in Theorem 2.1 means that either the density g does not vanish around zero or, if it vanishes, g is greater than any |x| a in a neighborhood of zero.

Before describing the (simple) ideas behind the proof of Theorem 2.1, we explain some of the background and why we find the theorem somewhat surprising. The proof of the LDPs in the Gaussian and Exponential cases is based on an explicit expression for the joint distributions of zeros, that we review below. Given that expression, the proofs of the LDP follow (with some detours) a track well explored in the case of the empirical measure of eigenvalues of random matrices. For the latter, large deviations have been extensively studied, initially by Ben Arous and Guionnet [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF], Ben Arous and Zeitouni [START_REF] Ben | Large deviations from the circular law[END_REF] and Hiai and Petz [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF]. Recently, the large deviations for the empirical measure were proved for Wigner matrices with entries possessing heavier-than-Gaussian tails by Bordenave and Caputo [START_REF] Bordenave | A large deviation principle for wigner matrices without gaussian tails[END_REF], with a rate function depending on the tail of the entries. Very similar results were obtained by Groux [START_REF] Groux | Asymptotic freeness for rectangular random matrices and large deviations for sample covariance matrices with sub-gaussian tails[END_REF] for Wishart matrices. In particular, it follows from these results that in the random matrix setup, the rate function is known to be not universal; this is in sharp contrast with Theorem 2.1.

As mentioned above, the LDP for Kac polynomials in the Gaussian and exponential coefficients cases begin with an explicit expression for the density of zeros, which we now explain. We concentrate first on the case of complex Gaussian coefficients. Note that the second equality in (2.1) gives an n!-to-1 map between (a n , z 1 , . . . , z n ) and (a 0 , . . . , a n ). A classical computation of the Jacobian followed by integration over a n , see e.g. [START_REF] Bogomolny | Distribution of roots of random polynomials[END_REF], [START_REF] Butez | Large deviations for the empirical measure of random polynomials: revisit of the zeitouni-zelditch theorem[END_REF], [START_REF] Forrester | Log-gases and random matrices (LMS-34)[END_REF], [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF], shows that the distribution of (z 1 , . . . , z n ) possesses a density with respect to the Lebesgue measure d C n on C n given by:

1 π n i<j |z i -z j | 2 n k=1 |z -z k | 2 dν S 1 (z) n+1 = 1 π n i<j |z i -z j | 2 ã 2n+2 2 (2.4)
where ã = (a 0 /a n , . . . , a n-1 /a n , 1) is a continuous function of (z 1 , . . . , z n ) given explicitly by Viete's formula.

In the case of real Gaussian coefficients, the probability of having k real zeros is positive for k having the same parity of n. Following a computation of Zaporozhet in [START_REF] Zaporozhets | On the distribution of the number of real roots of a random polynomial[END_REF], one obtains that the distribution of the roots of P n is given by:

n/2 k=0 2 k Γ( n+1 2 ) k!(n -2k)!π (n-1)/2 i<j |z i -z j | ( n i=1 |z -z i | 2 dν S 1 ) (n+1)/2 d n,k (z 1 , . . . , z n ) = n/2 k=0 2 k Γ( n+1 2 ) k!(n -2k)!π (n-1)/2 i<j |z i -z j | ã n+1 2 d n,k (z 1 , . . . , z n )
where

d n,k (z 1 , . . . , z n ) = d R (z 1 ) . . . d R (z n-2k )d C (z n-k+1 ) . . . d C (z n ).
(2.5)

Note that the k-th term of the mixture corresponds to the case where P n has n -2k real roots.

Finally, in the case of positive exponential real coefficients, the distribution of the vector of the zeros is given by:

n/2 k=0 2 k n! k!(n -2k)! i<j |z i -z j | ( n i=1 |1 -z i |) (n+1) d n,k (z 1 , . . . , z n ) = n/2 k=0 2 k n! k!(n -2k)! i<j |z i -z j | ã n+1 1 d n,k (z 1 , . . . , z n ).
Main idea of the proof of Theorem 2.1. We will prove the universality of the LDP by comparing the distributions of the vectors of the zeros in the different models. Assume that the joint density of the zeros (z 1 , . . . , z n ) is h and µ n is the empirical measure associated to this model. Assume one could find two sequences (b n ) n∈N and (c n

) n∈N satisfying lim n→∞ 1 n 2 log b n = lim n→∞ 1 n 2 log c n = 0 (2.6)
and two probability densities on C n , F n and G n satisfying:

∀(z 1 , . . . , z n ) ∈ C n b n F n (z 1 , . . . , z n ) ≤ h(z 1 , . . . , z n ) ≤ c n G n (z 1 , . . . , z n ) (2.7)
such that, under the distribution given by F n or G n , the sequence of empirical measures (µ Fn n ) n∈N and (µ Gn n ) n∈N satisfies a LDP in M 1 (C), with speed n 2 and the same rate function I. Then, the sequence (µ n ) n∈N satisfies a LDP in M 1 (C) with speed n 2 and rate function I, since for any set A, P(µ n ∈ A) is an integral with respect to the distribution of the zeros and therefore one can use the bounds (2.7) to obtain the LDP.

In practice, we will obtain (2.7) by noting that if the joint distribution of the coefficients is a function of a norm . of the vector of the coefficients, the distribution of the zeros is roughly of the form:

i<j |z i -z j | 2 ã 2n+2 .
If . can be compared with . 2 with nice constants, then we can relate the density of zeros to the Gaussian cases in the spirit of (2.7). For i.i.d. variables, the first hypothesis of the theorem is used to replace the joint distribution of the coefficients by a function of a ρ and then we prove the upper bound for the latter distribution. The second hypothesis means that, for the lower bound, we can replace the joint distribution of a by a 1 a ∞≤δ which is also a function of a norm. We conclude this introduction by stating and proving a technical lemma that will be used in the proof of the LDP lower bound. Lemma 2.2. Let E be C, R or R + . Assume that there exits δ > 0 such that for all λ > 0,

c(λ) := 1 |x|≤δ 1 g(x) λ d E (x) < ∞.
(2.8)

Then, for any K > 0 and ε > 0 there exists n 0 = n 0 (K, δ, ε) such that for all n > n 0 ,

1 { n k=0 g(a i )≤e -εn 2 } 1 a ∞<δ d ⊗n E (a 0 , . . . , a n ) ≤ e -Kn 2 .
(2.9)

Proof of Lemma 2.2. Fix K > 0, mimicking the proof of Chernoff's inequality, we have:

1 { n k=0 g(a i )≤e -εn 2 } 1 a ∞<δ d E n+1 (a 0 , . . . , a n ) = 1 { n k=0 g(a i ) -λ ≥e λεn 2 } 1 a ∞<δ d E n+1 (a 0 , . . . , a n ) ≤ e -λεn 2 n k=0 g(a k ) -λ 1 |a k |<δ d E n+1 (a 0 , . . . , a n ) ≤ e -λεn 2 e (n+1)c(λ) .
The proof is completed by taking λ large enough so that λε > K and then taking n 0 large enough so that e -λεn 2 e (n+1)c(λ) ≤ e -Kn 2 for all n > n 0 .

Proof of Theorem 2.1

The proof of the main theorem is made in two steps: we start by proving the theorem when the coefficients are complex, and then we treat the real and the positive case. The proof of the three cases are very similar, the arguments and ideas are exactly the same.

Proof of Theorem 2.1. Complex coefficients.

Recall that the density of the distribution of the random vector of zeros (z 1 , . . . , z n ) (taken at random uniform order) with respect to C n is given by

p(z 1 , . . . , z n ) = 1 n! i<j |z i -z j | 2 |a n | 2n g(a 0 ) . . . g(a n )d C (a n )
where the a j 's are seen as functions of z 1 , . . . , z n and a n using Vieta's formula. See e.g. [HKPV09, Lemma 1.1.1] for a proof of this classical result. Upper Bound. Using the inequality (2.2), we obtain:

p(z 1 , . . . , z n ) ≤ 1 n! i<j |z i -z j | 2 |a n | 2n exp(-r n k=0 |a k | ρ )e (n+1)R d C (a n ) For a vector b = (b 0 , . . . , b n ) and ρ > 0, set b ρ = ( n i=0 |b i | ρ ) 1/ρ . Then, i<j |z i -z j | 2 |a n | 2n e -r n k=0 |a k | ρ d C (a n ) = i<j |z i -z j | 2 |a n | 2n e -r|an| ρ ã ρ ρ d C (a n )
where ã = (a 0 /a n , . . . , a n-1 /a n , 1). We note that ã only depends on the zeros and not on a n , so we can compute the last integral using the change of variables u = a n ã ρ to obtain:

p(z 1 , . . . , z n ) ≤ 1 n! e (n+1)R i<j |z i -z j | 2 ã 2n+2 ρ |u| 2n e -r|u| ρ d C (u).
Finally, using the classical inequalities on C n+1 , which are a consequence of the Holder inequality:

if ρ > 2, . ρ ≥ 1 n 1/2-1/ρ . 2 if ρ ≤ 2, . ρ ≥ . 2
we obtain that there exists a sequence (γ n ) n∈N such that, for any fixed ρ > 0,

. ρ ≥ γ n . 2 and lim n→∞ 1 n log γ n = 0.
(2.10)

Using this inequality we get

p(z 1 , . . . , z n ) ≤ 1 n! e (n+1)R i<j |z i -z j | 2 ã 2n+2 2 1 γ 2n+2 n |u| 2n e -r|u| ρ d C (u) ≤ 1 n! e (n+1)R 1 π n i<j |z i -z j | 2 ã 2n+2 2 × π n γ 2n+2 n |u| 2n e -r|u| ρ d C (u).
The first term of the product is the distribution µ C n , see (2.4), and thanks to (2.10) we have

c n := e (n+1)R π n n!γ 2n+2 n |u| 2n e -r|u| ρ d C (u) = e O(n log n) .
Let A ⊂ M 1 (C) be a Borel set. Then,

1 n 2 log P(µ n ∈ A) = 1 n 2 log 1 µn∈A p(z 1 , . . . , z n )d C n (z 1 , . . . , z n ) ≤ 1 n 2 log 1 π n 1 µn∈A i<j |z i -z j | 2 ( n k=1 |z -z k | 2 dν S 1 (z)) n+1 d C n (z 1 , . . . , z n ) + log c n n 2 = 1 n 2 log P(µ C n ∈ A) + log c n n 2 .
Therefore, using the LDP upper bound for µ C n , we complete the proof of the upper bound by noting that lim sup

n→∞ 1 n 2 log P(µ n ∈ A) ≤ -inf cloA I C .
Lower Bound. First, we show that the technical lemma allows us to reduce the problem to the proof of the lower bound for i.i.d. (a i ), with uniform distribution on the disk D(0, δ). Let A ⊂ M 1 (C) be a Borel set with inf intA I C < ∞, fix K > inf intA I C and ε > 0 then, thanks to Lemma 2.2 there exists n 0 such that for any n > n 0 :

P(µ n ∈ A) = 1 µn∈A n k=0 g(a k )d C (a 0 ) . . . d C (a n ) ≥ 1 { n k=0 g(a i )≥e -εn 2 } 1 µn∈A 1 a ∞<δ n k=0 g(a k )d C (a 0 ) . . . d C (a n ) ≥ e -εn 2 1 { n k=0 g(a i )≥e -εn 2 } 1 µn∈A 1 a ∞<δ d C (a 0 ) . . . d C (a n ) ≥ e -εn 2 1 µn∈A 1 a ∞<δ d C (a 0 ) . . . d C (a n ) -e -(K+ε)n 2 .
(2.11)

The integral 1 µn∈A 1 a ∞<δ d C (a 0 ) . . . d C (a n ) is, up to a normalizing factor (πδ 2 ) n+1 which is of order e O(n) , the probability that the empirical mesure of the zeros of a random polynomial with i.i.d. uniform coefficients on the disk D(0, δ) belongs to A.

Now we deal with this integral using the same techniques used for the upper bound:

1 µn∈A 1 a ∞<δ d C (a 0 ) . . . d C (a n ) = 1 µn∈A 1 n! i<j |z i -z j | 2 1 |an| ã ∞<δ |a n | 2n d C (a n )d C n (z 1 , . . . , z n ) = 1 µn∈A 1 n! i<j |z i -z j | 2 ã 2n+2 ∞ d C n (z 1 , . . . , z n ) |u| 2n 1 |u|<δ d C (u) = 1 π n 1 µn∈A i<j |z i -z j | 2 ã 2n+2 2 d C n (z 1 , . . . , z n ) π n n! |u| 2n 1 |u|<δ d C (u) = P(µ C n ∈ A) π n n! |u| 2n 1 |u|<δ d C (u).
Here we used the change of variables u = ã ∞ a n , using the fact that ã ∞ does not depend on a n and the inequality

. ∞ ≤ . 2 in C n+1 . Since lim n→∞ 1 n 2 log π n n! |u| 2n 1 |u|<δ d C (u) = 0, we obtain lim n→∞ 1 n 2 log 1 µn∈A i<j |z i -z j | 2 n! 1 |an| ã ∞<δ |a n | 2n d C (a n )d C n (z 1 , . . . , z n ) ≥ -inf intA I C .
Combined with (2.11) we obtain lim inf

n→∞ 1 n 2 log P(µ n ∈ A) ≥ -ε -inf intA I C .
Taking the limit as ε goes to zero completes the proof of the lower bound. Real coefficients. Let E be R or R + . The proof for real coefficients is essentially the same as for complex coefficients, except that the distribution of the roots is a mixture of measures instead of an absolutely continuous measure. We will apply the same ideas to each term of the mixture to obtain the upper and lower bound. If the coefficients a k 's are i.i.d. random variables with density g with respect to the Lebesgue measure on E, then the distribution of the vector (z 1 , . . . , z n , a n ) is given by:

n/2 k=0 2 k k!(n -2k)! |a n | n i<j |z i -z j | n k=0 g(a i )d E (a n )d n,k (z 1 , . . . , z n ) = n/2 k=0 2 k k!(n -2k)! p n,k (z 1 , . . . , z n , a n )d E (a n )d n,k (z 1 , . . . , z n ).
Using exactly the same reasoning as in the complex case, we define θ E n as:

θ E n =    π (n-1)/2 Γ( n+1 2 ) if E = R 1 n! if E = R +
and we notice that lim

n→∞ 1 n 2 log θ E n = 0.
We obtain that for any k:

p n,k (z 1 , . . . , z n )d E (a n ) ≤ 1 θ E n i<j |z i -z j | ( n i=1 |z -z i | 2 dν S 1 ) (n+1)/2 θ E n γ n+1 n e (n+1)R E |u| n e -r|u| ρ du.
This inequality implies that, for any Borel set A ∈ M 1 (C):

P(µ n ∈ A) = n/2 k=0 2 k k!(n -2k)! 1 µn∈A p n,k (z 1 , . . . , z n )d E (a n )d n,k (z 1 , . . . , z n ) ≤ θ E n γ n+1 n e (n+1)R E |u| n e -r|u| ρ duP(µ E n ∈ A).
Using the fact that

lim n→∞ 1 n 2 log θ E n γ n+1 n e (n+1)R E
|u| n e -r|u| ρ du = 0 and the large deviations principle for (µ E n ) n∈N ends the proof of the upper bound. The proof of the lower bound is very similar to the complex case, we use the technical lemma to deal with i.i.d. uniform random variables on the disk D(0, δ).

P(µ n ∈ A) = 1 µn∈A n k=0 g(a k )d E (a 0 ) . . . d E (a n ) ≥ 1 { n k=0 g(a i )≥e -εn 2 } 1 µn∈A 1 a ∞<δ n k=0 g(a k )d E (a 0 ) . . . d E (a n ) ≥ e -εn 2 1 µn∈A 1 a ∞<δ d E (a 0 ) . . . d E (a n ) -e -(K+ε)n 2 .
(2.12)

We transform this integral in order to compare it to one of the known cases.

1 µn∈A 1 a ∞<δ d E (a 0 ) . . . d E (a n ) = n/2 k=0 2 k k!(n -2k)! 1 µn∈A 1 a ∞<δ |a n | n i<j |z i -z j |d E (a n )d n,k (z 1 , . . . , z n ) = n/2 k=0 2 k k!(n -2k)! |u| n+1 1 |u|<δ d E (u) 1 µn∈A i<j |z i -z j | ã n+1 ∞ d n,k (z 1 , . . . , z n ). If E = R, we use the inequality . ∞ ≤ . 2 on R n+1 to obtain 1 µn∈A 1 a ∞<δ d R (a 0 ) . . . d R (a n ) ≥ n/2 k=0 2 k k!(n -2k)! |u| n+1 1 |u|<δ d R (u) 1 µn∈A i<j |z i -z j | ã n+1 2 d n,k (z 1 , . . . , z n ). If E = R + , we use the inequality . ∞ ≤ . 1 on R n+1 to obtain 1 µn∈A 1 a ∞<δ d R + (a 0 ) . . . d R + (a n ) ≥ n/2 k=0 2 k k!(n -2k)! |u| n+1 1 |u|<δ d R + (u) 1 µn∈A i<j |z i -z j | ã n+1 1 d n,k (z 1 , . . . , z n ).
Note that the only difference between the case R and the case R + is the reference norm employed. Using (2.12) with the last two inequalities, we obtain that for any ε > 0 fixed, we have:

lim inf n→∞ 1 n 2 log P(µ n ∈ A) ≥ lim inf n→∞ 1 n 2 log P(µ E n ∈ A) + lim n→∞ 1 n 2 log θ E n -ε ≥ -inf intA I E -ε.
Taking the limit as ε goes to zero ends the proof of the large deviations lower bound for the real and positive cases.

Concluding remarks and an open problem.

We focused in this note on Kac polynomials but we could as well study the universality of the large deviations for the zeros of

P n = n k=0 a k R k
where the R k 's are orthogonal polynomials satisfying the assumptions of regularity given in [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] and [START_REF] Butez | Large deviations for the empirical measure of random polynomials: revisit of the zeitouni-zelditch theorem[END_REF]. In this case, the distribution of the zeros can be computed ([But16, Theorem 5.1]) and, under the same hypotheses as in Theorem 2.1, the same large deviations principle as for Gaussian coefficients holds. Similar ideas apply to certain non i.i.d. models such as the P (φ) 2 model of [START_REF] Feng | Large deviations for zeros of p (φ) 2 random polynomials[END_REF].

A significant limitation of our approach is the use of the assumption (2.3) in Theorem 2.1. While it is possible that it can be relaxed, we note that some assumption of this type is necessary for the universality result. Indeed, if the support of the distribution of the coefficients is inside an annulus, it follows from Jensen's formula, see [START_REF] Hughes | The zeros of random polynomials cluster uniformly near the unit circle[END_REF], that µ n converges deterministically towards ν S 1 . Hence, no non-trivial LDP can hold in this case. An interesting test case is the case where the i.i.d. coefficients possess the density |z| α 1 |z|<δ for some α > 0 and δ > 0. In that case, the distribution of the zeros (z 1 , . . . , z n ) is absolutely continuous with respect to the Lebesgue measure on C n with density proportional to:

i<j |z i -z j | 2 |a n | 2n |a i | α 1 a ∞<δ d C (a n ) = i<j |z i -z j | 2 ã 2n+2+nα ∞ n k=0 |a k | |a n | .
If we are able to prove that the term n k=0

|a k |
|an| does not contribute to the large deviations, then a LDP at speed n 2 would hold with rate function

I α (µ) = - log |z -w|dµ(z)dµ(w) + (2 + α) sup z∈S 1 log |z -w|dµ(w).
In particular, we do not expect universality in that case. We have not been able to carry out the analysis of this setup.

Chapter 3

The largest root of Kac polynomials is heavy tailed

Ce chapitre correspond à la pré-publication arXiv [START_REF] Butez | The largest root of random kac polynomials is heavy tailed[END_REF]. Nous démontrons que la plus petite et la plus grande racine en module de polynômes de Kac ont un comportement non universel. Elles ne convergent pas vers le support de la limite des mesures empiriques et leur loi dépend fortement de la loi des coefficients. Nous montrons que la plus grande racine en module est généralement une variable aléatoire à queues lourdes dont le nombre de moments finis est contrôlé par le comportement à l'origine de la loi des coefficients. We prove that the largest and smallest root in modulus of random Kac polynomials have a non-universal behavior. They do not converge towards the edge of the support of the limiting distribution of the zeros. This non-universality is surprising as the large deviations principle for the empirical measure is universal. This is in sharp contrast with random matrix theory where the large deviations principle is non-universal but the fluctuations of the largest eigenvalue are universal. We show that the modulus of the largest zero is heavy tailed, with a number of finite moments bounded from above by the behavior at the origin of the distribution of the coefficients. We also prove that the random process of the roots of modulus smaller than one converges towards a limit point process. Finally, in the case of complex Gaussian coefficients, we use the work of Peres and Virág [START_REF] Peres | Zeros of the iid gaussian power series: a conformally invariant determinantal process[END_REF] to obtain explicit formulas for the limiting objects.

Introduction

Consider a random polynomial of the form

P n (z) = n k=0 a k z k = a n n k=1 (z -z (n) k )
where a 0 , . . . , a n are i.i.d. random variables and z

(n) 1 , . . . , z (n)
n are the complex zeros of P n . These polynomials are often called Kac polynomials. The zeros of these polynomials are known to concentrate on the unit circle of C as their degree tends to infinity under some moment condition on the coefficients. This universal behavior has been studied by many 93 authors since the work of Sparo and Shur [ŠŠ62] and we refer to the book [START_REF] Bharucha | Random Polynomials: Probability and Mathematical Statistics: a Series of Monographs and Textbooks[END_REF] for more precise information on the history of the topic. The most precise result about this convergence was given by Ibragimov and Zaporozhets in [START_REF] Ibragimov | On distribution of zeros of random polynomials in complex plane[END_REF], where they prove that for any bounded and continuous function f and any ε > 0

P 1 n n k=1 f (z (n) k ) - 1 2π 2π 0 f (e iθ )dθ > ε ---→ n→∞ 0 if and only if E(log(1 + |a 0 |)) < ∞ and P(a 0 = 0) < 1.
This result means that a proportion going to one of the zeros clusters uniformly on the unit circle. It does not prevent a negligible part of the zeros to be real or to be away from the unit circle. In this situation, it is natural to ask if max k |z

(n) k | and min k |z (n) k |
converge towards 1 as n goes to infinity. In this note, we prove that the behavior of the extremal zeros of P n is not universal and that the random variable max |z (n) k | is usually a heavy tailed random variable. We give an upper bound on the number of finite moments, depending on the cumulative distribution function of the coefficients at 0.

To study the zeros of P n for large n, we may want to see P n as the partial sum of a random entire series. If we assume that the random variable |a 0 | is non-deterministic and satisfies E(log(1 + |a 0 |)) < ∞, then the entire series P ∞ (z) = ∞ k=0 a k z k has almost surely a radius of convergence equal to 1 and P ∞ is a random non-constant holomorphic function on the unit disk. Hence P ∞ has a countable set of zeros {z (∞) k } which are counted with multiplicity. As P ∞ is almost surely a non-constant analytic function, its zeros are isolated and have no accumulation point inside the open unit disk. This ensures that there is a finite number of zeros inside any compact set in the disk. Theorem 3.1 (Main result). Assume that the random variable a 0 satisfies E(log(1 + |a 0 |)) < ∞, that |a 0 | is not deterministic and that P(a 0 = 0) = 0. Let n ∈ N ∪ {∞} and

x (n) 1 = min k |z (n) k | and if n < ∞, x (n) n = max k |z (n) k |.

The random variable x (n)

n has the same distribution as 1/x

(n) 1 .

2. There exists three constants C 1 > 0 , r > 0 and A > 0 depending only on the distribution of |a 0 | such that

∀ 0 < t < C 1 , P x (n) 1 ≤ t ≥ P |a 0 | ≤ rt 2 A.
(3.1)

3. If there exists k ≥ 0, a > 0 and δ > 0 such that

∀ t < δ, P(|a 0 | ≤ t) ≥ at k then E((x (n) n ) k ) = ∞.

Almost surely, the point process

χ n = z (n) k such that |z (n) k | < 1 converges weakly in the space of Radon measures towards χ ∞ = z (∞) k
. More precisely, for any continuous and compactly supported function f defined on the open unit disk D(0, 1), we have

k f (z (n) k ) a.s ---→ n→∞ k f (z (∞) k ).

The random variable x

(n) 1

converges almost surely towards x (∞) 1 and x

(n) n converges in distribution towards x (∞) := 1/x (∞) 1 .
The condition P(a 0 = 0) = 0 ensures that the degree of P n is n. Hence the zero set {z (n) k } is well defined. If we remove this condition, the theorem is still true if we take the convention that, for a polynomial of degree k < n, z

(n) k+1 = • • • = z (n) n = ∞.
In the case of real Gaussian coefficients, Majumdar and Schehr proved a similar result to the point 3 for the largest real root in [START_REF] Schehr | Real roots of random polynomials and zero crossing properties of diffusion equation[END_REF]. They use a Taylor expansion of the first intensity function of the real zeros at 0 to prove that the density of x (n) n decays at infinity like 1/t 2 .

Notice that the first three points of Theorem 3.1 are valid for any fixed n. The heavy tail behavior of the largest root is not asymptotic. The points (4) and (5) imply that the heavy tail phenomena do not vanish at infinity, namely that x (∞) does not have more finite moments that x (n) n . The point (4) is a deterministic statement and is a direct application of Hurwitz's theorem in complex analysis. It will allow us to obtain Corollary 3.2 which gives the limit of the point process χ n for complex Gaussian coefficients.

What does this theorem say for some classical distribution of the coefficients? If the distribution of |a 0 | is absolutely continuous with respect to the Lebesgue measure on R + with density g, then the point (3) can be linked to the density g at zero:

1. if g is continuous at 0 and g(0) > 0 then the largest root in modulus has infinite mean;

2. if g(t) ∼ αt at zero, then

n has an infinite second moment.

These two situations cover most of the classical examples of random variables. Real Gaussian random variables, exponential random variables, Cauchy random variables and many others are covered by the first part of the remark. Radial complex random variables such as complex Gaussian random variables are covered by the second point. This is a consequence of the polar change of coordinates which adds a factor 2πr to the density. This phenomenon is illustrated in Figure 3.1: when the coefficients are complex, the density of x (n) 1 vanishes at zero. If the distribution of the a k 's is supported in an annulus bounded away from zero, then all the roots lie in an annulus. This can be seen as a consequence of the Gershgorin circle theorem of localization of the eigenvalues of matrices, applied to the companion matrix of the polynomial P n . In this setting, we also know that the empirical measure of P n converges deterministically towards the uniform measure on the unit circle [START_REF] Hughes | The zeros of random polynomials cluster uniformly near the unit circle[END_REF] .

This theorem can be surprising if we compare it to similar results in random matrix theory. There is a strong analogy of results and techniques between random polynomials and random matrices. For Ginibre random matrices or Kac random polynomials, the empirical measures converge towards a deterministic measure and the explicit distribution of the eigenvalues (or zeros) can be computed when the coefficients are Gaussian (real or complex). Large deviation principles for the empirical measures were obtained with the same speed and very similar rate functions ([HP00], [START_REF] Ben | Large deviations from the circular law[END_REF] for Ginibre, [ZZ10] and [START_REF] Butez | Large deviations for the empirical measure of random polynomials: revisit of the zeitouni-zelditch theorem[END_REF] for Kac polynomials). For random matrices, the large deviations principle for the empirical measure is known not to be universal [START_REF] Bordenave | A large deviation principle for wigner matrices without gaussian tails[END_REF] and to depend on the tail of the coefficients of the matrix. For random polynomials, the large deviations principle is universal [START_REF] Butez | Universal large deviations for kac polynomials[END_REF]. For random matrices, the fluctuations of the largest eigenvalue at the edge of the limiting distribution have been studied by many authors since [START_REF] Tracy | Level-spacing distributions and the airy kernel[END_REF] and have proven to be universal.

When the a k 's are i.i.d. standard complex Gaussian random variables, the zeros of P n form a Coulomb gas in C n (see [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF]) with density of the form (z

(n) 1 , . . . , z (n) n ) ∼ 1 Z n exp   i =j log |z (n) i -z (n) j | -(n + 1) log 1 2π 2π 0 n k=1 |e iθ -z (n) k | 2 dθ   .
This is similar to the eigenvalues of complex Ginibre random matrices where the density of the eigenvalues on C n is of the form (see [START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF])

(λ 1 , . . . , λ n ) ∼ 1 Z n exp   i =j log |λ i -λ j | -n n k=1 |λ i | 2 2   .
They have in common the same interaction between the particles, but the confining term is different. Why does the largest particle have such a different behavior for polynomials and matrices? If we look at the behavior of the confining term in each variable for random polynomials, we see that it grows at infinity like log(|z|) while the confining term for Ginibre is V (z) = |z| 2 /2. We believe that it is a general fact for Coulomb gases: when the confining term is of order log |z| at infinity, the largest particle has a heavy tail and when the confining term is stronger than logarithm, the largest particle should converge towards the edge of the limiting distribution. The potential energy of the largest particle is approximativelylog |z -w|dµ ∞ (w) + V (z), where µ ∞ is the limiting distribution of the particles. Hence, if V grows faster than logarithm, the cost of having a particle far from the support of µ ∞ grows at infinity. On the other hand, if V and log |z -w|dµ ∞ (w) are of same order, the cost of having a particle far from the support of µ ∞ is finite. To our knowledge, this phenomenon is not treated in the literature. The heuristic above only relies on "energetic" considerations and has not been proved so far. The same phenomenon should appear for real Gaussian coefficients, as the distribution of the zeros of P n [START_REF] Butez | Large deviations for the empirical measure of random polynomials: revisit of the zeitouni-zelditch theorem[END_REF] is also very similar to the distribution of the eigenvalues of the real Ginibre ensemble [START_REF] Edelman | The probability that a random real gaussian matrix haskreal eigenvalues, related distributions, and the circular law[END_REF]: both form a mixture of Coulomb gases, each gas having a fixed number of particles on the real line.

If we compare the hypotheses of Theorem 3.1 with the one of the main theorem from [BZ17], we see that both rely on the behavior of the distribution of the coefficients at zero. Within the universality class of random Kac polynomials with Gaussian coefficients, the number of finite moments for the largest root is constant. 

Complex Gaussian coefficients.

Theorem 3.1 states that x (n) 1 and x (n) n converge in distribution but does not give any precise information on the limit. In the case of complex Gaussian coefficients, we can give a more precise result on this limiting distribution, as the zeros of P ∞ have been studied in the case of Gaussian Analytic Functions (GAF) by Peres and Virág in [START_REF] Peres | Zeros of the iid gaussian power series: a conformally invariant determinantal process[END_REF] P ∞ (z) = 2. The smallest root in modulus of P ∞ , z 1 , has a rotationally invariant distribution and its modulus,

x (∞)
1 , has a cumulative distribution function defined on (0, 1) given by:

F x (∞) 1 (t) = 1 - ∞ k=1 (1 -t 2k ).
This theorem is no more than the combination of the work of Peres and Virág [START_REF] Peres | Zeros of the iid gaussian power series: a conformally invariant determinantal process[END_REF] with Theorem 3.1. This allows us to compute the exact limit distribution of the smallest modulus of the zeros of P n . Notice that the cumulative distribution function F x (∞) 1 is of order t 2 around zeros, which implies that 1/x (∞) 1

has an infinite variance. Figure 3.2 is an illustration of the point (2) of Corollary 3.2. The histogram of x (500) 1 is very similar to the graph of the density of x ∞ 1 .

Proofs of the results

We start with a lemma that will be essential in the proof of Theorem 3.1.

Lemma 3.3 (Lemma 4.1 in [START_REF] Kabluchko | Asymptotic distribution of complex zeros of random analytic functions[END_REF]). Let (a k ) k∈N be i.i.d. random variables. Fix ε > 0. Then

sup k∈N |a k | e εk < ∞ a.s. ⇔ E(log(1 + a 0 )) < ∞.
Proof of the lemma. For every non negative random variable X we have: Those inequalities come from the relation: E(X) = R + P(X ≥ x)dx. Now we use them with the non negative variable

∞ k=1 P (X ≥ k) ≤ E(X) ≤ ∞ k=0 P(X ≥ k).
X = 1 ε log(1 + |a 0 |).
We deduce that e εk < ∞. The reverse implication relies on a similar reasoning, and will not be used in the proof of the theorem.

Proof of Theorem 3.1. Proof of 1. Let P n (z) = a 0 + a 1 z + • • • + a n z n and Q n (z) = z n P n (1/z) = a n + a n-1 z + • • • = a 0 z n .
As the a k are i.i.d. random variables, the distribution of the random polynomials P n and Q n are the same. If {z

(n) k } is the set of zeros of P n then the set of zeros of Q n is {1/z (n) k }. This implies that x (n) n and 1/x (n)
1 have the same distribution.

Proof of 2.

Fix n ∈ N∪{∞}. The random variable M := sup k≥2 |a k |/e k is almost surely finite. This is obvious for n < ∞ and this is a consequence of lemma 3.3 for n = ∞. There exists K such that P(M < K) > 0. Let us define C 2 = P(M < K) > 0. The key idea of this proof is to use Rouché's theorem [START_REF] Lang | Complex analysis[END_REF]p. 181] to show that P n and P 1 (z) = a 0 + a 1 z have the same number of roots in a neighborhood of the origin. Rouché's theorem is the following: if γ is a closed path holomogous to 0 in some open set U such that γ has an interior and f and g are two analytic functions on U such that for any z ∈ γ |f (z) -g(z)| < |f (z)| then f and g have the same number of zeros in the interior of γ.

To bound from below the probability that x (n) 1 is smaller than t, we compare it to the modulus of the root of P 1 . 

P(x

(n) 1 ≤ t) ≥ P x (n) 1 ≤ 2 |a 0 | |a 1 |
|z|=2|a 0 |/|a 1 | |P n (z) -P 1 (z)| < inf |z|=2|a 0 |/|a 1 | |P 1 (z)| and 2 |a 0 | |a 1 | ≤ t .
We notice that the triangle inequality implies that inf

|z|=2|a 0 |/|a 1 | |P 1 (z)| = inf |z|=2|a 0 |/|a 1 | |a 0 + a 1 z| ≥ inf |z|=2|a 0 |/|a 1 | |a 1 ||z| -|a 0 | = |a 0 | and that sup |z|=2|a 0 |/|a 1 | |P n (z) -P 1 (z)| ≤ k≥2 |a k | 2|a 0 | a 1 k ≤ M k≥2 e k 2|a 0 | a 1 k ≤ M 4e 2 |a 0 | 2 /|a 1 | 2 1 -2e|a 0 |/|a 1 | .
Let r be a constant such that C 3 = P(|a 1 | > r) > 0, then we obtain

P(x (n) 1 ≤ t) ≥ P M 4e 2 |a 0 | 2 /|a 1 | 2 1 -2e|a 0 |/|a 1 | < |a 0 | and 2 |a 0 | |a 1 | ≤ t ≥ P K 4e 2 |a 0 | 2 /|a 1 | 2 1 -2e|a 0 |/|a 1 | < r|a 0 | |a 1 | and |a 1 | > r and 2 |a 0 | |a 1 | ≤ t and M < K
As t < 1/(A + 1) then A t 2 1-t < t, we obtain that the event 2

|a 0 | |a 1 | ≤ t and |a 1 | > r is included in the event K 4e 2 |a 0 | 2 /|a 1 | 2 1 -2e|a 0 |/|a 1 | < r |a 0 | |a 1 | if t ≤ e -1 K/r + 1 .
For t ≤ e -1 K/r+1 = C 1 , we get, using the independence of the a k 's,

P(x (n) 1 ≤ t) ≥ P 2 |a 0 | |a 1 | ≤ t and |a 1 | > r and M < K ≥ P |a 0 | < rt 2 P (|a 1 | > r) P (M < K) ≥ C 2 C 3 P |a 0 | < rt 2 .
Proof of 3. Assume that there exist k ≥ 0, a > 0 and δ > 0 such that

∀ t < δ, P(|a 0 | < t) ≥ at k .
Let X be a non-negative random variable. Then the Fubini theorem implies that

1 k + 1 E(X k+1 ) = ∞ 0 t k P(X ≥ t)dt.
Using this along with the point (1), we get

1 k E((x (n) n ) k ) = ∞ 0 t k-1 P(x (n) n ≥ t)dt = ∞ 0 t k-1 P(x (n) 1 ≤ 1/t)dt ≥ A ∞ 1/C 1 t k-1 P(|a 0 | ≤ 2 rt )dt ≥ A 2 k r k ∞ 1/C 1 at k-1 t -k dt.
This implies that

E x (n) n k = ∞.
Proof of 4. Thanks to Lemma 3.3, we obtain that the radius of convergence of the random entire function P ∞ is almost surely 1. This implies that, almost surely, P n converges uniformly towards P ∞ on any closed disk D(0, ρ) with radius ρ < 1. In this setting, the almost sure convergence of the zeros of P n inside D(0, ρ) is exactly Hurwitz's theorem [START_REF] Conway | Functions of one complex variable[END_REF]p. 152] in complex analysis. Hurwitz's theorem is a consequence of Rouché's theorem, which is a consequence of the argument principle. We give a proof of the convergence of the point processes using directly Rouché's theorem. Let (Ω, F, P) be a probability space on which the a k 's are defined. Let N be a negligible set such that, for any ω ∈ Ω \ N , P ∞ is a non-constant entire series with radius of convergence one.

The rest of the proof is a deterministic result which is valid for any ω ∈ Ω \ N . Let z (∞) be a zero of P ∞ , with multiplicity β. As the zeros of P ∞ are isolated, for any ε small enough, P ∞ has no other zero than z (∞) in the closed disk D(z (∞) , ε). Thanks to Rouché's theorem, we know that if

sup |z-z (∞) |=ε |P n (z) -P ∞ (z)| < inf |z-z (∞) |=ε |P ∞ (z)| (3.2)
then P n and P ∞ have the same number of zeros inside D(z (∞) , ε). The inequality (3.2) is automatically satisfied for n large enough, as we fixed ε such that P ∞ does not have a zero on the boundary of the disk D(z (∞) , ε).

Here we proved that for any zero of multiplicity β of P ∞ , for any ε > 0 sufficiently small, one can find β zeros of P n at a distance at most ε of z (∞) . This implies that any fixed finite number of zeros of P n converges almost surely towards zeros of P ∞ .

Proof of 5. The fact that x is computed thanks to the knowledge of the distribution of the modulus of the zeros of the hyperbolic GAF [PV05, Theorem 2]. Let (U k ) k≥1 be a sequence of i.i.d. uniform random variables on (0, 1), then

P x (∞) 1 > t = P ∀k ≥ 1, |z (∞) k | > t = P ∀k ≥ 1, U 1/2k k > t = ∞ k=1 1 -t 2k
which ends the proof of the Corollary.

Comments.

Notice that the proof of points (1), ( 2) and (3) of Theorem 3.1 for finite n does not use the assumption E(log(1 + |a 0 |)) < ∞. These three points are always valid. This assumption is only needed to make sure that, almost surely, the a k 's do not grow faster than e k . An alternative proof of Theorem 3.1 uses Jensen's formula [START_REF] Lang | Complex analysis[END_REF]p. 341] for analytic functions. We chose to use an approach based on Rouché's Theorem as it also implies the convergence of the point process of the small roots.

In this note, the weak topology is associated to the bounded Lipschitz metric d. It is defined on M 1 (R + ), the set of probability measures on R + , by

∀µ, ν ∈ M 1 (R + ) d(µ, ν) = sup f f dµ -f dν
where the supremum runs over all functions f satisfying f ∞ ≤ 1 and which are 1-Lipschitz. This metric makes M 1 (R + ) a complete space, see [START_REF] Bogachev | Measure theory[END_REF]Section 8.3]. Definition 4.1 (Logarithmic energy). The logarithmic energy is the functional

E : M 1 (R + ) -→ R ∪ {+∞} µ -→    -log |x -y|dµ(x)dµ(y) if log(1 + |x|)dµ(x) < +∞, +∞ otherwise.
We also define the off-diagonal logarithmic energy

E = : M 1 (R + ) -→ R ∪ {+∞} µ -→      = -log |x -y|dµ(x)dµ(y) if log(1 + |x|)dµ(x) < +∞, +∞ otherwise.
where we integrate over the complement of the diagonal of R 2 + . The distribution (4.1) can be written in the form:

1 Z n exp -n 2 1 2 E = (µ n ) + 1 2 E = (g * µ n ) + V (x)dµ n (x) n j=1 x b-1 j d R + (x 1 ) . . . d R + (x n ) (4.
2) where g * µ is the push-forward of the measure µ by the function g. Theorem 4.2 (Large deviations principle for µ n ). Let µ n be the empirical measure of (4.1). Let g be a C 1 function on R + , such that its derivative is positive. Let V be a continuous function on R + , bounded from below, such that there exists a constant β > max(b, 1) such that

lim x→∞ V (x) β log |x| + β log |g(x)| > 1. (4.3) Let I : M 1 (R + ) → R ∪ {+∞} as I(µ) =    1 2 E(µ) + 1 2 E(g * µ) + V (x)dµ(x) if V (x)dµ ( x) < +∞, +∞ otherwise.
The random sequence (µ n ) n∈N satisfies a large deviations principle in M 1 (R + ), for the weak topology, with speed n 2 , and good rate function Ĩ = I -inf I. In other words, for any Borel set A ∈ M 1 (R + ), we have

Lower Bound: -inf IntA Ĩ ≤ lim n→∞ 1 n 2 log P(µ n ∈ A) (4.4)
Upper Bound:

lim n→∞ 1 n 2 log P(µ n ∈ A) ≤ -inf CloA Ĩ (4.5)
Moreover, the rate function Ĩ is lower semi-continuous and strictly convex on the set of measures on which it is finite.

This theorem is proved in Section 3.

Remark 4.3 (Assumptions on g and V ). The assumptions on V are standard in large deviations for Coulomb gases. They ensure that the distribution (4.1) is well defined and that the particles cannot escape to infinity. The assumptions on g mean that the two interaction terms have the same short-range repulsion effect. This corollary is proved at the end of Section 3. Large deviations for Coulomb gases and random matrices started with the article of Ben Arous and Guionnet [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF] for GUE matrices, Ben Arous and Zeitouni [START_REF] Ben | Large deviations from the circular law[END_REF] for real Ginibre matrices and Hiai and Petz [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF] for Ginibre and Wishart random matrices. In [START_REF] Eichelsbacher | Large deviations for disordered bosons and multiple orthogonal polynomial ensembles[END_REF], Eichelsbacher, Sommerauer and Stolz proved a large deviations principle for biorthogonal ensembles with g(x) = x θ , θ being a positive integer. Their proof of the large deviations lower bound cannot be adapted to cover the case considered in this note.

The article [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF] from Chafaï, Gozlan and Zitt provides a general framework to establish a large deviations principle for particles systems with two points interaction in any dimension. Surprisingly, their model covers the biorthogonal ensembles we consider. Using the results from [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF] requires to verify that the technical assumptions are fulfilled. In the case we consider, it is equally difficult to prove the large deviations directly or to prove that these hypotheses are satisfied, so we decided not to refer to their result.

Theorem 4.2 allows us to study large deviations for models such as the original model of Muttalib from [START_REF] Abdul | Random matrix models with additional interactions[END_REF] with g(x) = Argsh 2 ( √ x) or the model from [START_REF] Claeys | Random matrices with equispaced external source[END_REF] with g(x) = exp(x). Finally, the matrix model introduced by Cheliotis in [Che14] corresponds to g(x) = x θ or log x, θ > 0. We will give more details about the consequences of our theorem on Cheliotis's model in the Application section. The key point of this article is how we deal with the lower bound. Instead of following the proof of the lower bound originally given by Ben Arous and Guionnet in [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF], we adapt the proof of Hiai and Petz from [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF].

In [START_REF] Bloom | Modified logarithmic potential theory and applications[END_REF], a similar model to (4.1) is studied, where g is holomorphic but the density is integrated with respect to general measure on compact sets K ⊂ C. Remark 4.5 (Large deviations for the largest particle). Let (x 1 , . . . , x n ) be distributed according to (4.1) and let x * n = max 1≤i≤n x i . Suppose that the assumptions of Theorem 4.2 are satisfied. Let ν be the limit measure of (µ n ) n∈N and let M be the right endpoint of its support. Assume that

lim n→∞ 1 n log Z * n-1 Z n = inf I
where Z * n-1 is the normalizing constant of the gas (4.1) with n -1 particles and confining potential n n-1 V . It follows from the proof of the equivalent result in [AGZ10, Theorem 2.6.6] that (x * n ) n∈N satisfies a large deviations principle in R + with speed n and good rate function

J(x) =    -1 2 log |x -y| + log |g(x) -g(y)|dν(y) + V (x) -inf I if x ≥ M +∞ if x < M.
This is an adaptation of the work of Credner and Eichelsbacher [START_REF] Credner | Large deviations for the largest eigenvalue of disordered bosons and disordered fermionic systems[END_REF], who proved the same result for the model from [START_REF] Eichelsbacher | Large deviations for disordered bosons and multiple orthogonal polynomial ensembles[END_REF].

The rest of the note is organized as follows: in Section 2, we apply Theorem 4.2 to a model of triangular random matrices introduced by Cheliotis in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] and obtain results about the Dykema-Haagerup distribution. In Section 3, we prove Theorem 4.2 and Corollary 4.4. In Section 4, we suggest some extentions to the results presented in this note.

Application to triangular matrices.

In this section, we show that Theorem 4.2 can be used to obtain new results for a recent model of random triangular matrices. Cheliotis in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] considers the setting where T n is a lower triangular matrix with independent entries with distribution:

X i,j ∼    N C (0, 1) if i > j, 1 πΓ(c j ) e -|z| 2 |z| 2(c j -1) d C (z) if i = j
where c j = θ(j -1) + b and d C is the Lebesgue measure on the complex plane. The distribution of the eigenvalues of 1 n T n T * n is given by (4.1), with g(x) = x θ or log(x) if θ > 0 or θ = 0 and V (x) = x. Notice that for good choices of θ and b, we can obtain many classical ensembles, such as the Laguerre ensembles.

The special case where θ = 0 and b = 1 corresponds to the case where all the coefficients X i,j are independent complex Gaussian variables with variance 1. This particular case was studied using free probability theory by Dykema and Haagerup in [START_REF] Dykema | Dt-operators and decomposability of voiculescu's circular operator[END_REF]. They proved that the random sequence (µ n ) n∈N converges almost surely in probability towards a deterministic measure µ DH , known as the Dykema-Haagerup distribution. In [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF], the same result is proved using the moments method and path counting. The distribution µ DH is supported on [0, e] and is absolutely continuous with respect to the Lebesgue measure on R + with density

f DH (x) = 1 π Im - 1 xW 0 (x) 1 [0,e]
where W 0 is the Lambert function, see figure 4.1. As a corollary of our Theorem 4.2, we get the following result on the Dykema-Haagerup distribution in the setting of [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF]: 

(R + ) of µ → 1 2 E(µ) + 1 2 E(log * µ) + xdµ(x).
Cheliotis proved that the spectral radius of These inequalities combined with the exponential tightness of the sequence of measures Z n P(µ n ∈ .) imply that for any Borel set A in M 1 (R + ):

-inf intA I ≤ lim n→∞ 1 n 2 log Z n P(µ n ∈ A) ≤ lim n→∞ 1 n 2 log Z n P(µ n ∈ A) ≤ -inf cloA I. (4.6)
This is not exactly the large deviations principle we want to prove. To obtain the bounds (4.4) and (4.5), it is sufficient to prove that

lim n→∞ 1 n 2 log Z n = inf M 1 (R + ) I.
Fortunately, this is an immediate consequence of (4.6) using A = M 1 (R + ). The rest of the proof is organized as follows: first, we briefly explain how to obtain the properties of the rate function. Then we focus on the proof of (4.6). We only deal with the lower bound because the proof for the upper-bound is exactly the classical one. The proof of the weak lower bound relies on the approach of Hiai and Petz [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF]. set of measures, then for any measure σ ∈ M 1 (R + ), there exist measures σ k such that (4.10) holds and σ k → σ, we get

φ(σ) ≥ lim sup k φ(σ k ) ≥ lim sup k -I(σ k ).
We consider a specific sequence of measures σ k such that for any k, σ k is absolutely continuous with respect to the Lebesgue measure on R + , with compact support and density bounded from above and below by positive constants and such that (4.11)

Once we have obtained this sequence, we only have to prove the lower bound for the measures satisfying the regularity conditions given above. We can assume that σ has compact support in R + because if we set

σ k = 1 1/k≤x≤k σ([1/k, k]) σ,
then, as f is bounded from below, by the monotone convergence theorem

lim k→∞ I(σ k ) = lim k→∞ f (x, y)dσ k (x)dσ k (y) = f (x, y)dσ(x)dσ(y) = I(σ).
To show that we can assume that σ has a continuous density with respect to the Lebesgue measure, we find a sequence σ k converging to σ such that

-E(σ k ) ≥ -E(σ) (4.12) -E(g * σ k ) ≥ -E(g * σ) (4.13) lim k→∞ V (x)dσ k (x) = V (x)dσ(x). (4.14)
The inequalities above, along with the lower semicontinuity of I, imply that I(σ k ) converges to I(σ). Now let φ ε be a C ∞ probability density with support in [0, ε], then we set σ ε = φ ε * σ. The measures σ ε have compact support in R + with continuous density and converge towards σ as ε goes to zero. Since it is easy to check that V (x)dσ ε (x) ---→ ε→0 V (x)dσ(x), we only have to prove that for any ε

-E(φ ε * σ) ≥ -E(σ) and -E(g * φ ε * σ) ≥ -E(g * σ).
Recall that the functions -E and -E(g * .) are concave, so if we notice that

φ ε * σ = φ ε (y)σ(• -y)dy
then, thanks to Jensen's inequality and the fact that the logarithmic energy is invariant under translation, we obtained the desired inequalities.

The last thing we want for our "nice" measures is that the density is bounded from above and from below. As the densities of the measures σ ε are continuous with compact support, those densities are already bounded from above. Changing σ ε to δm + (1 -δ)σ ε , where m is the uniform measure on the support of σ ε , allows us to deal with measures with continuous density bounded from above and from below.

Second step: weak lower bound for "nice" measures.

From now on, σ will be a measure with compact support [a, A] ⊂ R + , with density h with respect to the Lebesgue measure on R + for which there exists a constant C > 0 such that

∀x ∈ [a, A] , 1 C ≤ h(x) ≤ C.
Let a 0 , . . . , a n be the 

d 1 n n i=1 δ z i , σ ≤ max k |a k+1 -a k | ≤ C n
where d is the bounded-Lipschitz distance. We are now ready to prove the lower bound. Let ρ 1 be the finite measure on R + x b-1 e -V (x) dx and ρ n = ρ 1 ⊗ • • • ⊗ ρ 1 the finite n-th product measure on R n + . Recalling (4.2), we have

Z n P(µ n ∈ B(σ, δ)) = 1 µn∈B(σ,δ) exp -n 2 1 2 E = (µ n ) + 1 2 E = (g * µ n ) + n -1 n V (x)dµ n (x) dρ n (x) ≥ 1 ∆n exp -n 2 1 2 E = (µ n ) + 1 2 E = (g * µ n ) + n -1 n V (x)dµ n (x) dρ n (x) ≥ exp -n 2 n -1 n 2 n i=1 max [c i ,d i ] V (x) × exp   -n 2   - 1 n 2 i<j min [c i ,d i ]×[c j ,d j ] log |x -y|     × exp   -n 2   - 1 n 2 i<j min [c i ,d i ]×[c j ,d j ] log |g(x) -g(y)|     1 ∆n dρ n (x).
We notice that:

1 n 2 log 1 ∆n dρ n (x) ---→ n→∞ 0.
Hence, to obtain the lower bound, it is sufficient to prove that

lim n→∞ 1 n n i=1 max [c i ,d i ] V = V (x)dσ(x) (4.16)
and, using the fact that g and the logarithm are increasing functions,

lim n→∞ 1 n 2 i<j -log(d j -c i ) ≥ 1 2 -log |x -y|dσ(x)dσ(y) = 1 2 E(σ) (4.17)
and also

lim n→∞ 1 n 2 i<j log(g(d j ) -g(c i )) ≥ 1 2 log |g(x) -g(y)|dσ(x)dσ(y) = 1 2 E(g * σ). (4.18)
If (4.16), (4.17) and (4.18) hold then the proof of the lower bound for regular measures is completed. The last step will consist in proving that these three inequalities indeed hold.

Last step: Proof of the inequalities.

First, (4.16) is easy to check as we approximate a continuous integrable function on [a, A] by simple functions.

We now prove (4.17) following the proof of [START_REF] Hiai | The semicircle law, free random variables and entropy[END_REF]. For the moment, let's assume that there exists a constant A 1 > 0 such that for i < j

A 1 (d j -c i ) ≥ (a j -a i-1 ) (4.19)
and also that

lim n→∞ 2 n 2 # (i, j) : i < j | (a j -a i-1 ) (d j -c i ) ≤ 1 + ε = 1. (4.20)
We postpone the proof of the inequalities (4.19) and (4.20) to prove (4.17). We call

B n = E(σ) - 2 n 2 i =j min [c i ,d i ]×[c j ,d j ]
log |x -y| and we want to prove that lim

n→∞ B n ≤ 0. Since log |z -w|dσ(z)dσ(w) ≤ 2 n 2 i<j log |a j -a i-1 | + 1 n 2 n i=1 log |a i -a i-1 |
then, for every ε > 0, we get

B n ≤ 2 n 2 i<j log |a j -a i-1 | - 2 n 2 i<j log |d j -c i | + 1 n 2 n i=1 log |a i -a i-1 | ≤ 2 n 2 i<j log (a j -a i-1 ) (d j -c i ) + 1 n 2 n i=1 log |a i -a i-1 | ≤ 2 n 2 #{i < j | (a j -a i-1 ) (d j -c i ) ≤ 1 + ε} log(1 + ε) + 1 n 2 n(n -1) -2#{i < j | (a j -a i-1 ) (d j -c i ) ≤ 1 + ε} log A 1 + 1 n 2 n i=1 log |a i -a i-1 |.
Then we take the limit superior of both sides, and the limit when ε → 0

E(σ) -lim n→∞ 2 n 2 i<j log |d j -c i | ≤ 0
which proves (4.17).

We prove now inequality (4.19). From inequality (4.15), we get for any k > 0

a i+k -a i-1 d i+k -c i ≤ (k + 1)C/n (k + 2/3)/Cn ≤ (k + 1)C 2 k + 2/3 ≤ 3C 2 2 
We deduce from this inequality that its left hand side is bounded by a constant independent of k and n, which proves (4.19). In order to prove (4.20), we start from

a i+k -a i-1 d i+k -c i = 1 + a i+k -d i+k d i+k -c i + c i -a i-1 d i+k -c i .
Using (4.15), we get

a i+k -d i+k d i+k -c i-1 ≤ C/3n k/Cn ≤ C 2 3k and c i -a i-1 d i+k -c i ≤ C/3n k/Cn ≤ C 2 3k .
Those two terms can be made as small as desired if k is sufficiently large, independently of n, which proves (4.20).

The proof of the inequality (4.18) mimics the proof of inequality (4.17). Like in the previous case, it is sufficient to find a constant A such that for any i < j

A (g(d j ) -g(c i-1 )) ≥ g(a j ) -g(a i-1 ) (4.21)
and to prove that

lim n→∞ 2 n 2 # i < j | g(a j ) -g(a i-1 ) g(d j ) -g(c i ) ≤ 1 + ε = 1. (4.22)
As the support of σ is a compact subset of R + , there exist two constants m and M such that for all x ∈ [a, A] m ≤ g (x) ≤ M.

The inequality (4.21) is a consequence of (4.19), using the mean value theorem for g and the fact that its derivative is bounded from above and from below

g(a i+k ) -g(a i-1 ) g(d i+k ) -g(c i ) ≤ M m a i+k -a i-1 d i+k -c i ≤ 3M C 2 2m .
To prove (4.22), it is sufficient to prove that the quantities

g(a i+k ) -g(d i+k ) g(d i+k ) -g(c i ) and g(c i ) -g(a i ) g(d i+k ) -g(c i )
can be made as small as desired when k is sufficiently large. Using the mean value theorem, we get

g(a i+k ) -g(d i+k ) g(d i+k ) -g(c i ) ≤ M m a i+k -d i+k d i+k -c i ≤ M m C 2 3k .
The other term is treated in the same way. Now that we have proved (4.21) and (4.22), the proof of (4.18) is the exactly the same as the proof of (4.17).

Proof of Corollary 4.4. As the function I is lower semi-continuous and strictly convex, it has a unique minimizer ν. Consider the sets

A ε = M 1 (R + ) \ B(ν, ε).
As I is lower semi-continuous, inf{ Ĩ(µ), µ ∈ A ε } > 0. We use the large deviations upper bound with the set A ε to prove that n∈N P(µ n ∈ A ε ) converges. The Borel-Cantelli lemma ensures that, for any fixed ε > 0, for sufficiently large n, µ n almost surely belongs to B(ν, ε). Restricting this result to rational ε implies that, almost surely,

d(µ n , ν) ---→ n→∞ 0.

Perspectives and comments.

Theorem 4.2 can easily be extended in several directions. The first direction would be to consider not only two interactions but any finite number of them, with different exponents:

i<j |f 1 (x i ) -f 1 (x j )| β 1 i<j |f 2 (x i ) -f 2 (x j )| β 2 • • • i<j |f p (x i ) -f p (x j )| βp
where each of the f k is locally a C 1 diffeomorphism and the β k 's are positive numbers. Large deviations will be valid if the confining potential V dominates all the functions log f k at infinity. One could prove the same theorem as we stated on R with the same assumptions. We stated the theorem on R + because biorthogonal ensembles were originally defined on the positive axis.

The result of this note can be proved to hold in any dimension, considering the Lebesgue measure on R d , but it would require stronger assumptions on the function g and stronger behavior at infinity for V . One could assume that g is continuously differentiable and that on any compact K ⊂ R d , there exist two constants m K and M K such that for any

x, y ∈ K m K x -y| ≤ g(x) -g(y) ≤ M K x -y .
The model studied by Götze and Venker in [START_REF] Götze | Local universality of repulsive particle systems and random matrices[END_REF] is not covered by this note, as they deal with a double interaction term of the type i<j |x i -x j | 2 φ(x i -x j ). This is really the combination of two different interactions whereas our model deals with the usual logarithmic interaction at two different scales. As this model is covered by the study [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF], one could try to find the optimal conditions of φ so that a large deviations principle is valid.

Chapter 5

Universal Large deviations for Weyl polynomials

Ce chapitre fera l'objet d'une pré-publication à l'avenir. Il n'est pour l'instant ni prépublié ni soumis. Le but de ce chapitre est d'adapter les démonstrations des principes de grandes déviations pour la suite des mesures empiriques des polynômes orthogonaux issus du chapitre 1 aux polynômes de Weyl renormalisés dont les coefficients sont des variables aléatoires de loi N C (0, 1) ou N R (0, 1). Nous démontrons l'universalité de ces principes de grandes déviations de manière similaire à ce que nous avons présenté dans le chapitre 2. 

Weyl polynomials and rescaled Weyl polynomials

Weyl polynomials are random polynomials of the form

P n (z) = n k=0 a k 1 √ k! z k (5.1)
where the coefficients a k are i.i.d. random variables. Weyl polynomials were first introduced in the physics literature by Leboeuf [Leb00], Forrester and Honner [START_REF] Forrester | Exact statistical properties of the zeros of complex random polynomials[END_REF] as the random polynomial counterpart to Ginibre random matrices. They computed the joint distribution of the roots of those polynomials in the case where the coefficients are independent N C (0, 1) random variables and showed that the intensity of the zeros is nearly constant on the disk D(0, √ n) and decays very fast outside this disk. We refer to the introduction of this thesis for a more complete introduction on the properties of Weyl polynomials.

We define the rescaled Weyl polynomials by

Q n (z) = P n ( √ nz) = n k=0 a k √ n k √ k! z k = a n √ n n √ n! n k=1 (z -z k ). (5.2) 115
The zeros of these polynomials are known to concentrate uniformly on the unit disk. To study the repartition in the complex plane of the zeros, we introduce the empirical measure of the zeros of Q n :

µ n = 1 n n k=1 δ z k .
When the coefficients are independent N C (0, 1) random variables, the joint distribution of the roots of Q n taken in random uniform order is given by

1 Z n exp -E = (µ n ) + (n + 1) log n k=1 |z -z k | 2 e -n|z| 2 1 π d C (z) d C n (z 1 , . . . , z n ) (5.3) where E = (µ n ) = 1 n 2 i =j -log |z i -z j | = = -log |z -w|dµ n (z)dµ n (w).
We will detail in Section 5.2 how to compute this distribution. When the coefficients a k are independent N R (0, 1) random variables, the distribution of the random vector (z 1 , . . . , z n ) taken in random uniform order is given by the mixture

n/2 k=0 1 Z n,k exp -n 2 E = (µ n ) + (n + 1) log n k=1 |z -z k | 2 e -n|z| 2 1 π d C (z) d n,k (5.4) where d n,k (z 1 , . . . , z n ) = d R (z 1 ) . . . d R (z n-2k )d C (z n-k ) . . . d C (z n ).
We mentioned in the introduction that the rescaled Weyl polynomials are a special case of orthogonal polynomials with the couple (φ, ν) equal to (z → |z| 2 , 1 π d C ). This statement is equivalent to Theorem 5.5.

The rescaled Weyl polynomials do not fit perfectly in the model of orthogonal polynomials introduced by Zeitouni and Zelditch [START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF], as the measure ν from the couple (φ, ν) defining the scalar product should be a probability measure and φ the image of a continuous function on the sphere. Nevertheless, one can prove a Bernstein-Markov property in this setting. 

∈ C n [X], we have sup z∈C |P (z)| 2 e -n|z| 2 ≤ n P 2 2 = n |P (z)| 2 e -n|z| 2 1 π d C (z).
The following theorems are very close to the results obtained in Chapter 1.

Theorem 5.2 (Large deviations principle for rescaled Weyl polynomials). The sequence of empirical measures associated to rescaled Weyl polynomials satisfies a large deviations principle in M 1 (C), with speed n 2 and good rate function I -inf I where

I W,C (µ) = -log |z -w| + 1 2 log(1 + |z| 2 ) + 1 2 log(1 + |w| 2 )dµ(z)dµ(w) (5.5) + sup z∈C log |z -w| 2 -log(1 + |w| 2 )dµ(w) -|z| 2 . (5.6) When log(1 + |z| 2 )dµ(z) < ∞, this expression becomes I W,C (µ) = E(µ) + sup z∈C log |z -w| 2 dµ(w) -|z| 2 .
This result looks very close to the theorem of Zeitouni and Zelditch. One has to check that the fact that 1 π d C (z) is not a probability measure and z → |z| 2 is not bounded is not a problem in the proof. This is equivalent to say that we consider a scalar product

P, Q = P (z)Q(z)e -(n-1)|z| 2 e -|z| 2 π d C (z).
With this way of writing the scalar product, we deal with a probability measure, but with a factor n -1.

Theorem 5.3 (Large deviations principle for real rescaled Weyl polynomials). Assume that the coefficients a k are independent N R (0, 1) random variables. The sequence of empirical measures of the zeros of rescaled Weyl polynomials satisfies a large deviations principle in M 1 (C) with speed n 2 and good rate function I W,R -inf I W,R where

I W,R (µ) = 1 2 I W,C (µ) if µ is invariant with respect to z → z ∞ otherwise.
We saw in Chapter 1 that the proof of Theorem 5.3 is very close from the proof of Theorem 5.2. All the measures involved in the mixture (5.4) behave like the measure (5.3). We can deal with the constants Z n,k because

Z n,k = k!(n -2k)! 2 k |A n |Γ(n/2 + 1) and Z n = π n |A n | 2
where |A n | is the determinant of the change of variables from the basis (X k ) k≤n to the basis (

√ n √ n k √ k! X k ) k≤n . This implies that uniformly in k, lim n→∞ 1 n 2 log Z n,k = 1 2 lim n→∞ - 1 n 2 log |A n | 2 = 1 2 inf I W,C .
This comes from the fact that the constants Z n,k are explicitly related to Z n . These ideas are not new and were introduced for the first time by Ben Arous and Zeitouni in [START_REF] Ben | Large deviations from the circular law[END_REF] to prove the large deviations for the empirical measures of the real Ginibre ensemble. We will not give the details of the proof of Theorem 5.3 as it is nearly the same as the one of Theorem 5.2 and can be easily adapted from Chapter 1. Once we have established the theorems 5.2 and 5.3, we obtain immediately the following universality result.

Theorem 5.4 (Universality of the large deviations). Let be E = C or R. Assume that a 0 , . . . , a n are i.i.d. random variables whose distribution has a density g with respect to the Lebesgue measure E on E. Assume that 1. there exist ρ > 0, r > 0 and R > 0 such that ∀z ∈ E, g(z) ≤ exp(-r|z| ρ + R),

(5.7)

2. there exists δ > 0 such that ∀λ > 0:

1 |x|≤δ 1 g(x) λ d E (x) < ∞ (5.8)
then (µ n ) n∈N satisfies a large deviations principle in M 1 (C) , with speed n 2 and good rate function I W,E .

The proof of this result is exactly the same as the one we gave for the corresponding result for Kac polynomials in Chapter 2. We recall the key elements of the proof in the complex case.

The rest of this chapter is organized as follows: in section 2 we prove that the distribution of the roots is given by 5.3 and 5.4 and that the couple (z → |z| 2 , 1 π d C ) satisfies the Bernstein-Markov property. In section 3 we show how to adapt the proofs of the large deviations principles from Chapter 1 to the model of rescaled Weyl polynomials. In section 4 we recall briefly how to prove the universality for the large deviations principle.

Distribution of the roots and Bernstein-Markov Property

In this section, we compute the distribution of the roots of rescaled Weyl polynomials with N C (0, 1) or N R (0, 1) independent coefficients. We also prove a Bernstein-Markov property for this model.

Theorem 5.5 (Distribution of the roots of rescaled Weyl polynomials). When the coefficients a k are independent N C (0, 1) random variables, the distribution of the random vector (z 1 , . . . , z n ) taken in random uniform order is given by

1 Z n exp -n 2 E = (µ n ) + (n + 1) log n k=1 |z -z k | 2 e -n|z| 2 1 π d C (z) d C n (z 1 , . . . , z n ).
When the coefficients a k are independent N R (0, 1) random variables, the distribution of the random vector (z 1 , . . . , z n ) taken in random uniform order is given by the mixture Proof. We saw in the introduction that the distribution of (z 1 , . . . , z n ) takes the form

1 Z n i =j |z i -z j | ã 2n+2 2 d C n (z 1 , . . . , z n )
where

ã 2 2 = 1 + n-1 k=0 |a k | 2 |a n | 2 .
The family ( √ n

√ n k √ k! X k
) k≤n is an orthonormal basis of C n [X] for the scalar product

P, Q = P (z)Q(z)e -n|z| 2 1 π d C (z).
Indeed, this family is orthogonal due to rotational invariance of the gaussian measure and which implies the result. The distribution of the roots when the a k are independent N R (0, 1) random variables is obtained in a similar way, combining (5.9) and Zaporozhet's general formula [START_REF] Zaporozhets | On the distribution of the number of real roots of a random polynomial[END_REF] given in the introduction.

X k = |z|
Proof of the Bernstein-Markov property 5.1. The strategy of this proof is similar to the one of the Bernstein-Markov property for elliptic polynomials in Chapter 1. We start by noticing that for any P ∈ C n [X] and z ∈ C P (z) = P (w)K n (z, w)e -n|z| 2 1 π d C (z) = P, K(z, .)

where K n is the reproducing kernel

K n (z, w) = n k=0 n n k k! z k wk .
Thanks to the Cauchy-Schwarz inequality, we obtain

|P (z)| 2 ≤ P 2 2 K n (z, .) 2 2 .
(5.10)

Using the orthogonality of the basis, we compute

K n (z, .) 2 2 = K n (z, z) = n n k=0 n k k! |z| 2k ≤ ne n|z| 2 .
We divide (5.10) by e n|z| 2 and take the supremum on both sides to obtain the Bernstein-Markov property.

Proof of Theorem 5.2.

We use exactly the same strategy of proof as in Chapter 1. First, we use the inverse stereographic projection to state a large deviations principle for the empirical measures associated to the vector (T (z 1 ), . . . , T (z n )) in M 1 (S 2 ). We prove a weak large deviations principle for these measures in M 1 (S 2 ). As M 1 (S 2 ) is a compact set, the weak large deviations principle implies a full large deviations principle. Finally, we obtain Theorem 5.2 using the contraction principle along with the stereographic projection.

Compactification of the system.

Let T : C → S 2 be the inverse stereographic projection presented in the introduction and Chapter 1. We recall the useful equalities (5.12)

where . 2 is the Euclidean norm of R 3 .

Proposition 5.6. The distribution of the random vector (x 1 , . . . , x n ) = (T (z 1 ), . . . , T (z n )) is absolutely continuous with respect to the product measure π ⊗n (x 1 , . . . , x n ) with density

1 Z n exp -   i =j
x i -x j + (n + 1) log n k=1

x -x k 2 e -nφ(x) 1 π dT * C (x) We use the notation

µ n = 1 n n k=1 δ T (z k ) = 1 n n k=1 δ x k
for the empirical measure associated to the vector (x 1 , . . . , x n ) = (T (z 1 ), . . . , T (z n )).

Proof of Proposition 5.6. First notice that i =j

z i -z j = i =j T (z i ) -T (z j ) 1 n k=1 (1 -T (z k ) 2 ) n(n-1)
and also Those two formulas imply the proposition.

In order to adapt the proofs from chapter 1, we define J W on M 1 (S 2 ) by We also use the notation

J W (µ) = sup
E =,S 2 (µ n ) = = -log x -y dµ n (x)dµ n (y) = 1 n 2 i =j -log x i -x j
which is useful to express the distribution of (T (z 1 ), . . . , T (z n )).

In order to prove Theorem 5.2, we need to prove a large deviations principle for the gas (5.13), which is stated in the next proposition.

Proposition 5.7 (Large Deviations principle for the compactified gas.). The sequence of empirical measures of the gas (5.13) satisfies a large deviations principle in M 1 (S 2 ) with the weak topology, with speed n 2 and good rate function I S 2 W -inf I S 2 W where I S 2 W (µ) = E S 2 (µ) + J W (µ).

We use the notation µ n for the empirical measure of (5.13). This is not an immediate consequence of Chapter 1 where we assumed that the function φ was continuous and bounded. Here the function φ tends to infinity at the north pole of the sphere.

The steps of the proof are the following:

1. Prove that J W is a continuous function on M 1 (S 2 ) and deduce that I S 2 W is a good rate function. We detail the proof of the first step which is the most important part of the proof. The second point is exactly the same as what we did for Kac polynomials and relies only on the Bernstein-Markov property. To prove the third point, we will use the same strategy as for Kac polynomials in Chapter 1. We reduce the problem of establishing the lower bound to the proof of a lower bound for the gas on the sphere with no confinement. This be a consequence of the continuity of J W . We saw in Chapter 1 that these two inequality on the sphere imply the full large deviations principle and that lim n→∞

1 n 2 log Z n = inf I S 2 W .
Step 1: study of the rate function

The Coulomb energy E S 2 is known to be lower-semicontinuous and strictly convex. The function J W is a supremum of linear functions, hence it is also convex. We prove that the function J W is continuous, which is enough to ensure that the function I S 2 W is a good rate function. The continuity of J W is also helpful in the proof of the large deviations lower bound.

Upper semicontinuity

For any M > 0, we define on M 1 (S 2 ) by The function W M is continuous on S 2 \ {N } × M 1 (S 2 ) where N = (0, 0, 1) is the north pole of S 2 . Notice that for any measure ν, as log x -y ≤ 0, the function x → (log x -y ∨ -M )dµ(y) -φ(x) tends to -∞ at the north pole of the sphere. This implies that for any measure µ, there exists x ∈ S 2 \ {N } such that W M (x, µ) = J M W (µ)

J M W (µ) = sup
as we can restrict the supremum to S 2 minus a small ball around the north pole. To show that J M W is continuous, we show that for any sequence (µ n ) n∈N converging weakly to some measure µ, the sequence (J M W (µ n )) n∈N has a unique accumulation point which is J M W (µ). Let µ ∈ M 1 (S 2 ) and let (µ n ) n∈N a sequence converging weakly towards µ. For any n, there exists x n ∈ S 2 such that

W M (x n , µ n ) = J M W (µ n ).
The sequence (x n ) n∈N has a converging subsequence (with limit x ∞ ) in S 2 \ {N } because, if we consider w such that log w -y dµ(y) > -∞, then, for n large enough, all the x k 's belong to the compact set {x ∈ S 2 , -φ(x) ≥ log w -y dµ(y) -1}. For any fixed x ∈ S 2 , we have

J M W (µ n ) = W M (x n , µ n ) ≥ W (x, µ n ).
Taking the limit of this inequality implies that for any x ∈ S 2 c ≥ W (x, µ) which is the definition of c = J M W (µ). Hence, the function J M W is continuous. To prove that the function J W is upper-semicontinuous, we consider µ n → µ and start from lim

n→∞ J W (µ n ) ≤ lim n→∞ J M W (µ n ) = J M W (µ)
and we want to the limit as M → ∞. To prove that we can exchange the limit and the supremum, we want to use the Lemma 1.25 from Chapter 1. All we have to do is to ensure that we can restrict to a compact set to apply the Lemma. Consider w such that log w -y dµ(y) > -∞ then for M large enough, one can restrict the supremum to the compact set {x ∈ S 2 , -φ(x) ≥ log w -y dµ(y) -1} (recalling that φ ≥ 0).

Lower semicontinuity

This part of the proof is very close to the general case from chapter 1. We reproduce the proof for completeness.

We want to show that for any measure µ ∈ M 1 (S 2 ) and for any sequence µ n → µ lim n→∞ J W (µ n ) ≥ J W (µ).

We assume that J W (µ) > -∞, otherwise the inequality is trivial. We fix such a measure µ and for any ε > 0, we introduce the set

A ε = x ∈ S 2 , log x -y dµ(y) -φ(x) ≥ J W (µ) -ε .
Notice that this set is bounded away from the north pole of the sphere for any ε. The set A ε has positive capacity. Otherwise it would be thin where J W reaches its maximum, and its complement would also be thin at the same point. This would imply that S 2 is thin at one point which is absurd (see [START_REF] Ransford | Potential theory in the complex plane[END_REF]p. 79]). Then, thanks to [ST97, Chapter 1, Corollary 6.11], there exists a probability measure ν supported on A ε such that x → log x -y dν(y) is a continuous function. Hence we get lim n→∞ log x -y -φ(x)dµ n (x)dν(y) = log x -y -φ(x)dν(y)dµ n (x) = log x -y dν(y) -φ(x) dµ(x).

Using the fact that the support of ν is included in A ε , we finally get lim n→∞ J W (µ n ) = lim n→∞ J W (µ n )dν ≥ lim n→∞ (log x -y dµ n (y) -φ(x)) dν(x) ≥ J W (µ)-ε.

Taking the limit as ε goes to zero ends the proof of the lower semicontinuity. Hence, J W is a continuous function and I S 2 W is well defined and lower semicontinuous.

Step 2: large deviations weak upper bound

We want to prove that for any σ ∈ M 1 (S x -x i 2 e -n(φ(x)) ≤ n n i=1

x -x i 2 e -n(φ(x)) 1 π dT * C (x).

Proof of the Lemma. The key of this proof will be the Bernstein-Markov property on the sphere for the couple (φ(x), 1 π dT * C ). It is easy to prove that if (z → |z| 2 , 1 π d C ) satisfies the Bernstein-Markov property, then so does the couple (φ(x), 1 π dT * C ). We start from x -x i 2 e -n(φ(x)) 1 π dT * C (x).

We are ready to prove the weak upper bound. Fix σ ∈ M 1 (S 2 ) and δ > 0, then let A = Z n P(µ n ∈ B(σ, δ)).

We use the Lemma 5.8 and the continuity of J W at σ A = 1 B(σ,δ) exp -n 2 E =,S 2 (µ n ) + (n + 1) log n k=1

x -x k 2 e -(n)φ(x) 1 π dT * C (x) dπ ⊗n ≤ e -(n+1) log sup x∈S 2 { n i=1 x-x i 2 e -n(φ(x)) } 1 B(σ,δ) exp -n 2 E =,S 2 (µ n ) dπ ⊗n ≤ e -n(n+1)J W (µn) 1 B(σ,δ) exp -n 2 E =,S 2 (µ n ) dπ ⊗n (x 1 , . . . , x n )

≤ e -n(n+1)(J W (σ)+ε) 1 B(σ,δ) exp -n 2 E =,S 2 (µ n ) dπ ⊗n (x 1 , . . . , x n )

where ε goes to zero as δ → 0. The end of the proof of the upper bound is the classical proof of the large deviations upper bound for a Coulomb gas. We consider the cut-off of the logarithm at 0, log M = log ∨ -M to obtain

E =,S 2 (µ n ) = 1 n 2 i =j -log x i -x j ≥ 1 n 2 i =j -log M x i -x j ≥ -log M x -y dµ n (x)dµ n (y) - M n .
Using this inequality and defining E M S 2 (µ) = -log M x -y dµ(x)dµ(y), we obtain 1 n 2 log Z n P(µ n ∈ B(σ, δ)) ≤ n(n + 1) n 2 (J W (σ) + ε) + inf µ∈B(σ,δ)

E M S 2 (µ) + M n .
Taking the limit in n, taking the limit as δ → 0 and letting M go to infinity gives This completes the proof of the weak upper bound.

Step 3: large deviations weak lower bound

We give a sketch of proof of the large deviations lower bound for the empirical measures of the gas on S 2 . We want to prove that for any σ ∈ M 1 (S 2 ) lim ε→0 lim n→∞ 1 n 2 log Z n P(µ n ∈ B(σ, ε)) ≥ -I S 2 W (σ).

We use the notation

E =,S 2 (µ n ) = 1 n 2 i =j -log x i -x j
and we define the finite measure on S 2 dγ(x) = e -φ(x) dT * C (x).

Z n P(µ n ∈ B(σ, ε))

= 1 B(σ,ε) exp -n 2 E =,S 2 (µ n ) + (n + 1) log n k=1

x -x k 2 e -(n-1)φ(x) dγ(x) dπ ⊗n ≥ e -(n+1) sup x∈S 2 {n log x-y 2 dµn(y)-(n-1)φ(x)} 1 B(σ,ε) e -(n 2 E =,S 2 (µn)) 1dγ(x)dπ ⊗n .

We define the function on M 1 (S 2 )

J n (µ) = sup This function is continuous on M 1 (S 2 ). This implies that for any δ > 0, if ε is small enough,

Z n P(µ n ∈ B(σ, ε)) ≥ e -(n+1)n(Jn(σ)-δ) e -(n 2 E =,S 2 (µn)) 1dγ(x) dπ ⊗n .

To prove the weak large deviations lower bound, we only have to prove that, for any measure σ ∈ M 1 (S 2 ), lim n→∞ J n (σ) ≤ J W (σ).

(5.15)

The rest of the proof is exactly the same as in Chapter 1.

To prove (5.15), we fix ε > 0 and we consider a sequence (x n ) n∈N such that for any n J n (σ) ≤ log x n -y dσ(y) + n -1 n φ(x n ) + ε.

As S 2 is compact, we assume that the sequence x n converges towards x ∞ . We apply Fatou's Lemma (for negative functions) to obtain

J n (σ) ≤ log x n -y dσ(y) + n -1 n φ(x n ) + ε ≤ log x ∞ -y dσ(y) + φ(x ∞ ) + ε ≤ J W (σ) + ε.
Letting ε go to zero ends the proof of (5.15) and the proof of the large deviations lower bound. This finishes the proof of Proposition 5.7. To deduce Theorem 5.2 from Proposition 5.7, we check easily that for all µ ∈ M 1 (C)

I W (µ) = I S 2 W (T * µ).
As µ → T -1 * µ is a bijection from {µ ∈ M 1 (S 2 ) | µ({N }) = 0} to M 1 (C), and I S 2 W is infinite on the set {µ ∈ M 1 (S 2 ) | µ({N }) > 0}, one can use the contraction principle to obtain Theorem 5.2.

Universality of the large deviations principles

In this section, we briefly discuss the proof of Theorem 5.4. The proof is exactly the same as the equivalent result for Kac polynomials in Chapter 2. We give some details about the complex case. Let a 0 , . . . , a n be i.i.d. random variables whose distribution is absolutely continuous with respect to the Lebesgue measure on C with density g satisfying the assumptions of Theorem 5.4. For this model, we write P n,g the distribution of the empirical measures associated to rescaled Weyl polynomials with those coefficients. This means that for any Borel set A ∈ M 1 (C)

P n,g (A) =   1 µn∈A |A n | 2 n! |a n | 2n i<j |z i -z j | 2 n k=0 g(a k )d C (a n )   d C n (z 1 , . . . , z n )
where |A n | 2 is the complex Jacobian of the change of variables from the basis (X k ) k≤n to the basis ( √ n √ n k √ k! X k ) k≤n . When the coefficients are independent N C (0, 1) random variables, we write P n,N C the distribution of the empirical measures of the zeros of rescaled Weyl polynomials. This means that for any Borel set A ∈ M 1 (C)

P n,N C (A) = 1 µn∈A |A n | 2 π n i<j |z i -z j | 2 ã 2n+2 d C n (z 1 . . . , z n ).
The idea of the proof is the following: if we can find two constants c n and C n such that for all Borel set A ∈ M 1 (C)

c n P n,N C (A) ≤ P n,g (A) ≤ C n P n,N C (A)
with lim n→∞ 1 n 2 log c n = lim n→∞ 1 n 2 log C n = 0 then this would imply that the large deviations principle for the sequence of measures (P n,N C ) n∈N is also valid for the sequence of measures(P n,g ) n∈N .

In fact, to get the optimal condition on g, this approach only works for the upper bound. If we replace the second hypothesis of Theorem 5.4 by the stronger assumption: ∃ε, δ > 0 such that ∀z ∈ C, g(z) ≥ ε1 |z|≤δ then the announced strategy works also for the lower bound.

We only give the proof of the upper bound to illustrate the techniques involved, as the proof of Theorem 5.4 is the same as the one we gave in Chapter 2.

Upper bound

We start from the hypothesis: there exist ρ > 0, r > 0 and R > 0 such that ∀z ∈ E, g(z) ≤ exp(-r|z| ρ + R).

(5.16)

This implies that for any Borel set A ∈ M 1 (C)

P n,g (A) =   1 µn∈A |A n | 2 n! |a n | 2n i<j |z i -z j | 2 n k=0 g(a k )d C (a n )   d C n (z 1 , . . . , z n ) ≤   1 µn∈A |A n | 2 n! |a n | 2n i<j |z i -z j | 2 n k=0 e -r|a k | ρ +R d C (a n )   d C n ≤   1 µn∈A |A n | 2 n! |a n | 2n i<j |z i -z j | 2 exp -r a ρ ρ e (n+1)R d C (a n )   d C n
where a ρ ρ = n k=1 |a k | ρ . We are in a similar situation as when we computed the distribution of the roots of a polynomial when the joint distribution of the coefficients was a function of a semi-norm. We compute the right hand-side integral and we obtain for all A ∈ M 1 (C)

P n,g (A) ≤ 1 µn∈A |A n | 2 e (n+1)R n! i<j |z i -z j | 2 ã 2n+2 ρ ∞ 0 |u| 2n+1 e -r|u| ρ du d C n
where ã = (a 0 /a n , . . . , 1). Finally, using the classical inequalities on C n+1 , which are a consequence of the Holder inequality:

if ρ > 2, . ρ ≥ 1 n 1/2-1/ρ . 2 if ρ ≤ 2, . ρ ≥ . 2
we obtain that there exists a sequence (γ n ) n∈N such that, for any ρ > 0, . ρ ≥ γ n . This implies that for any Borel set A ∈ M 1 (C)

P n,g (A) ≥ ε n+1 1 µn∈A |A n | 2 n! i<j |z i -z j | 2 ã 2n+2 ∞ |u| 2n 1 |u|<δ d C (u)d C n (z 1 , . . . , z n ).
Using the fact that • ∞ ≤ • 2 in C n+1 , we obtain

P n,g (A) ≥ π n n! |u| 2n 1 |u|<δ d C (u)P n,N C (A).
To end the proof of this (easier) case, we only have to set

c n = π n n! |u| 2n 1 |u|<δ d C (u)
and to verify that lim n→∞ 1 n 2 log c n = 0. The proof of the lower bound in the general case relies on the following Lemma.

Résumé

L'objet principal de cette thèse est l'étude des racines de plusieurs modèles de polynômes aléatoires. Il s'agit de comprendre le comportement macroscopique des racines de polynômes aléatoires dont le degré tend vers l'infini.

Nous explorons la connexion existant entre racines de polynômes aléatoires et gaz de Coulomb afin d'obtenir des principes de grandes déviations pour les mesures empiriques des racines. Nous revisitons l'article de Zeitouni et Zelditch qui établit un principe de grandes déviations pour un modèle général de polynômes aléatoires à coefficients gaussiens complexes. Nous étendons ce résultat au cas des coefficients gaussiens réels. Ensuite, nous démontrons que ces résultats restent valides pour une large classe de lois sur les coefficients, faisant des grandes déviations un phénomène universel pour ces modèles. De plus, nous démontrons tous les résultats précédents pour le modèle des polynômes de Weyl renormalisés. Nous nous intéressons aussi au comportement de la racine de plus grand module des polynômes de Kac. Celle-ci a un comportement non-universel et est en général une variable aléatoire à queues lourdes. Enfin, nous démontrons un principe de grandes déviations pour la mesure empirique des ensembles biorthogonaux.

Mots Clés

Polynômes aléatoires, gaz de Coulomb, grandes déviations, matrices aléatoires.

Abstract

The main topic of this thesis is the study of the roots of random polynomials from several models. We seek to understand the behavior of the roots as the degree of the polynomial tends to infinity. We explore the connexion between the roots of random polynomials and Coulomb gases to obtain large deviations principles for the empirical measures of the roots of random polynomials. We revisit the article of Zeitouni and Zelditch which establishes the large deviations for a rather general model of random polynomials with independent complex Gaussian coefficients. We extend this result to the case of real Gaussian coefficients. Then, we prove that those results are also valid for a wide class of distributions on the coefficients, which means that those large deviations principles are a universal property. We also prove all of those results for renormalized Weyl polynomials. study the largest root in modulus of Kac polynomials. We show that this random variable has a non-universal behavior and has heavy tails. Finally, we establish a large deviations principle for the empirical measures of biorthogonal ensembles.
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 1 Figure 1: Racines de polynômes de Kac à coefficients gaussiens complexes.

Figure 2 :

 2 Figure 2: Racines de petit module d'un polynôme elliptique de degré 200.
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 3 Figure 3: Histogramme des valeurs propres du GOE pour n = 1000.
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 4 Figure 4: Histogramme des valeurs propres d'une matrice de Wishart, λ = 0.2 et λ = 0.83.
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 5 Figure 5: Valeurs propres d'une matrice de Ginibre complexe ou réelle pour n = 1000.
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 6 Figure 6: Projection stéréographique inverse.
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 7 Figure 7: Racines de polynômes elliptiques à coefficients N C (0, 1) sur la sphère S 2
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  9) where Argmin(I O ) is the unique minimizer of function I O . This is a consequence of the Borel-Cantelli Lemma used with the sets {µ ∈ M 1 (C) | d(µ, Argmin(I O )) > ε}. The minimizer is the equilibrium measure of the support of ν, see [ZZ10, Lemma 30].
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 1 Figure 1.1: Inverse stereographic projection.

C

  log |z-w|dµn(w) dν S (z) ≥ 2 sup z∈S C log |z -w|dµ n (w) -ε. Proof of Lemma 1.27. e 2n C log |z-w|dµn(w) dν S (z) = n i=1 |z -z i | 2 dν S (z).

  [a, b] × [c, d] with a density h with respect to the Lebesgue measure on C satisfying for all z ∈ [a, b] × [c, d]:

Figure 1 . 2 :

 12 Figure 1.2: Division or the support in rectangles with n = 17. So we divide the support in 4 columns which we divide in 4 or 5 rectangles to obtain the total number of 17 pieces.

  z∈R i ,w∈R j log |z -w| ≥ log |z -w|dσ(z)dσ(w) = E(σ).

Figure 1 . 3 :

 13 Figure 1.3: Division or the support in rectangles, n even. Here n = 18, we divide the support in 4 columns. Then we divide the columns in order to obtain a total number of 18 rectangles.

Figure 1 . 4 :

 14 Figure 1.4: Division of the support in rectangles, n odd. Here n = 17 we divide the support in 4 columns. The thick line corresponds to the first rectangle, which is flat.

  with speed β n and good rate function I O,S 2 . Then by the contraction principle [DZ09, Theorem 4.2.1] along T -1 , the sequence (µ n ) n∈N satisfies a large deviation principle with the same speed and good rate function I O thanks to Proposition 1.30. The contraction principle ensures that the function I O is a good rate function as I O,S 2 is a good rate function.
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 3 Figure 3.1: Histogram of the x (500) 1 for exponential coefficients with mean 1 (left) and dµ = 1/2πe -|z| dz on C (right).

  k∈N a k z k . The corollary below is just a combination of Theorem 3.1 along with [HKPV09, Theorem 5.1.1 and Corollary 5.1.7]. Corollary 3.2 (Gaussian case). Let (a k ) k∈N be a sequence of i.i.d. standard complex Gaussian random variables. 1. The point process z (n) k such that |z (n) k | < 1 converges towards the determinantal point process in the open unit disk D(0, 1) with the Bergman Kernel∀z, w ∈ D(0, 1), K(z, w) = 1 π(1 -z w) 2 .As a consequence, the set {|z (∞) k |} k≥1 has the same law as the set {U 1/2k k } k≥1 , where (U k ) k≥1 is a sequence of i.i.d. uniform random variables on [0, 1].

Figure

  Figure 3.2: Histogram of x (500) 1 for complex Gaussian coefficients and density of x (∞) 1 .

∞ k=1 P

 k=1 |a k | e εk > 1 < ∞ and so we have, thanks to the Borel-Cantelli lemma, lim sup |a k | e εk ≤ 1, which implies sup k∈N |a k |

  Proof of the Corollary. The first point of the Corollary is nothing more than the combination of the item (5) of 3.1 along with [PV05, Theorem 1] and [PV05, Theorem 2]. The cumulative distribution function of x (∞) 1

Corollary 4. 4 (

 4 Almost sure convergence towards the minimizer). Under the assumptions of Theorem 4.2, Ĩ has a unique minimizer ν, and almost surely lim n→∞ d(µ n , ν) = 0.

Corollary 4. 6 (

 6 Variational formulation for the Dykema-Haagerup distribution). The empirical measure of 1 n T n T * n converges almost surely for the bounded-Lipschitz metric towards the Dykema-Haagerup distribution µ DH . In addition, the Dykema-Haagerup distribution is the unique minimizer on M 1
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 41 Figure 4.1: Density of the Dykema-Haagerup distribution.

  σ k ---→ k→∞ σ and lim k→∞ I(σ k ) = I(σ).
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  Lemma 5.1 (Bernstein-Markov Property). The couple (z → |z| 2 , 1 π C (z)) satisfies the Bernstein-Markov property. More precisely, for any n ∈ N and any polynomial P

  exp -n 2 E = (µ n ) + (n + 1) log n k=1 |z -z k | 2 e -n|z| 2 1 π d C (z) d n,k where d n,k (z 1 , . . . , z n ) = d R (z 1 ) . . . d R (z n-2k )d C (z n-k ) . . . d C (z n ).

0 r

 0 2k e -n|z| 2 1 π d C (z) = 2 ∞ 2k+1 e -n|z| 2 dr = ∞ 0 u k e -nu du = k! n k+1 .Using the orthonormality, we obtainã = n k=1 |z -z k | 2 e -n|z| 1 π d C (z)(5.9)

  ∀z, w ∈ C, |z -w| 2 = T (z) -T (w)

  where T * C (x) is the pushforward of the Lebesgue measure of C by T , dπ is the uniform measure on the sphere S 2 andφ(x) = |T -1 (x)| 2 + log(1 -x 2 ).

  T (z k ) 2 n(n+1) n k=1 T (z) -T (z k ) 2 (1 -T (z) 2 ) n e -n|z| 2 1 π d C (z).

  x∈S 2 log x -y dµ(y) -φ(x) and E S 2 (µ) = -log x -y dµ(x)dµ(y).

  Z n P(µ n ∈ B(σ, ε)) ≤ -I S 2 W (σ) 3. Prove the weak lower bound lim ε→0 lim n→∞ 1 n 2 log Z n P(µ n ∈ B(σ, ε)) ≥ -I S 2W (σ).

x∈S 2 (

 2 log x -y ∨ -M )dµ(y) -φ(x) and W M (x, µ) = (log x -y ∨ -M )dµ(y) -φ(x).

T

  sup z∈C |P (z)| 2 e -n|z| 2 ≤ n P 2 2 = n |P (z)| 2 e -n|z| 2 1 π d C (z)and we apply the (5.11) to both sides of the inequality. The left side givessup z∈C |P (z)| 2 e -n|z| 2 = sup z∈C n i=1 |z -z i | 2 e -n|z| 2 T (z i ) 2 ) 1 (1 -T (z) 2 ) n e -n|z| 2 (z) -T (z i ) 2 e -n(|z| 2 +log(1-T (z) 2 )) x i 2 ).and the right side gives|P (z)| 2 e -n|z| 2 1 π d C (z) = n i=1 |z -z i | 2 e -n|z| 2 x i 2 )hence we obtain for all x 1 , . . . ,x n ∈ S 2 \ {N } sup x∈S 2 n i=1x -x i 2 e -n(φ(x)) ≤ n i=1

lim δ→0 lim n→∞ 1 n 2

 2 log Z n P(µ n ∈ B(σ, δ)) ≤ -I S 2 W (σ).

  for any Borel set A ∈ M 1 (C)P n,g (A) ≤ π n e (n+1)R n! ∞ 0 |u| 2n+1 e -r|u| ρ du γ 2n+2 n 1 µn∈A |A n | 2 π n i<j |z i -z j | 2 ã 2n+2 2 d C n ≤ π n e (n+1)R n! ∞ 0 |u| 2n+1 e -r|u| ρ du γ 2n+2 n P nN C (A).To conclude the proof of the upper bound, we setC n = π n e (n+1)R n! ∞ 0 |u| 2n+1 e -r|u| ρ du γ 2n+2n and we check that lim n→∞ 1 n 2 log C n = 0. Lower Bound If we replace the second hypothesis of Theorem 5.4 by the stronger assumption ∃ε, δ > 0 such that ∀z ∈ C, g(z) ≥ ε1 |z|≤δ then one can follow the proof of the upper bound, reversing the inequalities and using n k=0 g(a k ) ≥ ε n+1 n k=0 1 |a k |≤δ = ε n+1 1 a ∞≤δ .

  où K est une constante explicite. Il a aussi prouvé un théorème limite central pour le nombre de racines réelles.Les racines de ces polynômes sont réparties uniformément sur la sphère S 2 . Cela en fait de meilleurs candidats à l'étude de systèmes d'équations polynômiales aléatoires. Shub et Smale ont étudié le nombre moyen de solutions d'un système d'équations algébriques aléatoires P

		1/2-c )
	où c est une constante qui dépend de ε et C. Dans le cas gaussien réel, Dalmao [Dal15] a
	démontré que	Var(N n ) = (K + o(1))	√	n

1 (z 1 , . . . , z d ) = • • • = P n (z 1 , . . . , z d ) = 0

où les P i sont des polynômes aléatoires homogènes en z 1 , . . . , z d , indépendants, de degré d i , de la forme

  nombres, la théorie des graphes, la combinatoire, les statistiques... Les références les plus complètes sur le sujet sont[START_REF] Anderson | An introduction to random matrices[END_REF] et[START_REF] Akemann | The Oxford handbook of random matrix theory[END_REF]. Le spectre de M n est réel et est noté (λ 1 , . . . , λ n ). Dyson[START_REF] Dyson | Statistical theory of the energy levels of complex systems. i[END_REF] a montré que les seuls groupes de symétrie possibles sont les groupes orthogonal O

23)

où les (a i,i ) i∈N et (a j,k ) j<k∈N sont des familles indépendantes de variables aléatoires indépendantes et identiquement distribuées. L'intuition de Wigner était que les écarts entre les valeurs propres ne dépendraient que très peu de la loi des coefficients et seraient donc universels. Nous ne présentons ici que les aspects des matrices aléatoires en lien direct avec les gaz de Coulomb et les polynômes aléatoires. Cependant, la théorie des matrices aléatoires présente des connexions avec les probabilités libres, les algèbres d'opérateurs, la théorie des n (R), unitaire U n (C) et symplectique Sp(2n).

4.4 Gaz de Coulomb sur la sphère S 2

  

	Dans la section précédente nous avons évoqué l'ensemble sphérique (29) et sa relation avec
	les gaz de Coulomb sur la sphère. Nous définissons la sphère S 2 comme étant la sphère de
	R 3 de centre (0, 0, 1/2) et de rayon 1/2. Cette convention est particulièrement agréable
	pour passer d'un gaz de Coulomb dans le plan C à un gaz sur la sphère. Nous définissons
	la fonction	E S 2 : M 1 (S 2 ) -→ R +
		µ -→	-log x -y 2 dµ(x)dµ(y)
	où . 2 est la norme euclidienne de R 3 . La notion de gaz de Coulomb existe aussi sur des
	variétés compactes sans bord, mais certains concepts diffèrent. Ainsi, la fonction de Green
	de S 2 au point x ∈ S 2 est l'unique solution de
		-y G(x, .) = δ x -π
	où π est la mesure uniforme sur S 2 et où y désigne le laplacien de la sphère par rapport
	à la seconde variable de G. On peut montrer [For10, Section 15.6 p. 729] que la fonction
	de Green de la sphère est
		G(x, y) = -log x -y 2 .

  | est le déterminant du changement de base de la base canonique à la base (R k ) 0≤k≤n . De la même manière que lorsque la loi des coefficients est absolument continue par rapport à la mesure de Lebesgue sur C n , lorsque la densité p n est de la forme

	z n )	(41)
	où |A n p n (a 0 , . . . , a n ) = F n ( a )	
	avec . semi-norme, cette loi jointe se simplifie en	
	n/2	
	k=0	

6 Grandes déviations pour les gaz de Coulomb 6.1 Principes de grandes déviations Soit

  

	modèle est remarquable car c'est le seul pour lequel la loi jointe des racines forme
	exactement un mélange de gaz de Coulomb. L'interprétation physique correspondante
	serait un nuage de n électrons, attirés par une charge positive (n + 1) placée au point 1.
	Cependant, cette interprétation se heurte à la présence du terme 1 Bn qui rend le système
	beaucoup plus complexe. Imposer aux racines de provenir d'un polynôme à coefficients
	positifs les empêche d'être trop près de l'axe réel positif car un polynôme à coefficients
	positifs n'a pas de racines positives. Pour ce modèle, Li [Li11] a calculé la probabilité que
	toutes les racines soient réelles. Ghosh et Zeitouni [GZ16] ont réussi à prouver un principe
	de grandes déviations pour la suite de mesures empiriques de ce modèle. Ce résultat est
	présenté plus en détails dans la section 7.2.

(µ n ) n∈N une suite de mesures de probabilité sur un espace métrique Ω muni de sa tribu borélienne B. On dit que cette suite satisfait un principe de grandes déviations à vitesse (v n ) n∈N et de fonction de taux

  Proposition 1.23 (Real Kac case on the sphere). Let μn be the empirical measure of the gas (1.27), then (μ n ) n∈N satisfies a large deviation principle in M 1 (S 2 ) with the weak topology, speed β n and good rate function ĨS 2 where:

	29)
	Proposition 1.22 (Complex Kac case on the sphere). Let μn be the empirical measure
	of the gas (1.25), then (μ

n ) n∈N satisfies a large deviation principle in M 1 (S 2 ) with the weak topology, speed β n and good rate function I S 2 . This means that for any Borel set A in M 1 (S 2 )

inf IntA I S 2 ≤ lim n→∞ 1 β n log P(μ n ∈ A) ≤ lim n→∞ 1 β n log P(μ n ∈ A) ≤ -inf CloA I S 2 .

  1 n -quantiles of σ, with a 0 = a and a n = A.Now divide each interval [a k-1 , a k ] in 3 equal parts and let [c k , d k ] be the central interval. If we set ∆ n = n i=1 [c i , d i ],then for any (z 1 , . . . , z n ) ∈ ∆ n , we have:

					For each k, we have
	1 Cn	≤ a k+1 -a k ≤	C n	.	(4.15)

  (Berstein-Markov property for (φ, 1 π dT * C ).). For all x 1 , . . . , x n ∈ S 2 \ {N }

				2 ) we have
		lim δ→0	lim n→∞	1 n 2 log Z n P(µ n ∈ B(σ, δ)) ≤ -I S 2 W (σ)	(5.14)
	Lemma 5.8 sup	n		
	x∈S 2	i=1		

Cette formule a été évoquée par Rice en 1936, puis démontrée par Kac en 1943 et Rice en 1944.

Le premier article est en russe et n'a jamais été traduit. Le second est en allemand et il semble qu'Arnold annonce des résultats qu'il démontrera dans un article ultérieur introuvable.

Dans [Kos93], il annonce un résultat à paraître, mais le preprint n'est pas disponible et n'a jamais été publié.

Il s'agit d'atomes confinés dans un plan par des lasers, soumis à un potentiel harmonique et en rotation. Les auteurs montrent que les vortex qui se forment correspondent aux racines de polynômes de Weyl.

Ce sont deux principes de grandes déviations distincts, avec des fonctions de taux différentes.

La notion de mesure d'équilibre d'un ensemble compact est issue de la théorie du potentiel. Elle est abordée dans la section 4.1.

Voir le livre de Mörters and Peres[START_REF] Mörters | Brownian motion[END_REF].

Voir le post de blog http://djalil.chafai.net/blog/2014/09/26/wigner-about-level-spacing-and-wishart/

Il semble que Krishnapur ait introduit ce modèle matriciel mais que le gaz de Coulomb associé ait été étudié bien avant par Forrester.

Le gaz libre sur la sphère est le gaz de Coulomb associé au potentiel V = 0 sur la sphère S 2 ⊂ R 3 .

On considère le jacobien entre espaces vectoriels réels de dimension 2n + 2, ce qui correspond au carré du module du déterminant jacobien.

µ n (B) ≈ e -vn inf B I .La suite de mesures (µ n ) n∈N charge exponentiellement peu les ensembles où la fonction de taux I est strictement positive. Par exemple, si on a (X n ) n∈N une suite de variables aléatoires dont les lois satisfont un principe de grandes déviations à vitesse n, de bonne fonction de taux I admettant un unique minimum, alors on peut montrer en utilisant le lemme de Borel-Cantelli que la suite (X n ) n∈N converge presque sûrement vers ce minimiseur. Par analogie avec les mesures de Gibbs, la fonction de taux I est vue comme le coût énergétique pour réaliser un événement rare. Nous renvoyons à [DZ09] pour plus d'informations concernant les grandes déviations.On peut également définir la notion de principe de grandes déviations faible, où la borne supérieure n'est valide que pour les ensembles relativement compacts. Si l'espace Ω

Cette hypothèse peut être facilement affaiblie en βn n grâce à une astuce de symétrisation qui nous a été communiquée par Thomas Leblé et qui est développée dans le premier chapitre.

En anglais: non thin at all its points. Cette notion est détaillée dans[START_REF] Ransford | Potential theory in the complex plane[END_REF] p. 79].

C'est aussi valable pour le gaz associé aux matrices de Wishart et bien d'autres modèles en dimension 1.

or Fubini-Study measure

In fact,[START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] work in CP 1 and consider more general ensembles of holomorphic polynomial with Gaussian coefficients, but it is not hard to check that their result, when specialized to Kac polynomials with complex Gaussian coefficients, is equivalent to the one here; this is implicitly stated in[START_REF] Zeitouni | Large deviations of empirical measures of zeros of random polynomials[END_REF] and explicitely checked in[START_REF] Butez | Large deviations for the empirical measure of random polynomials: revisit of the zeitouni-zelditch theorem[END_REF].
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Chapter 2

Universal Large deviations for Kac polynomials

Ce chapitre correspond à la note [START_REF] Butez | Universal large deviations for kac polynomials[END_REF], écrite en collaboration avec Ofer Zeitouni, et publiée dans Electronic Communications in Probability. Nous y prouvons que les principes de grandes déviations connus pour les polynômes de Kac sont universels. Les techniques employées s'étendent immédiatement aux autres modèles de polynômes aléatoires. 

Introduction and statement of the main result

Consider random polynomials of the form:

where a 0 , . . . , a n are i.i.d. random variables and z 1 , . . . , z n are the complex zeros of P n .

(Such random polynomials are often referred to as Kac polynomials.) There is a rich literature about the behavior of the zeros of P n and we refer to [START_REF] Tao | Local universality of zeroes of random polynomials[END_REF] for a nice recent review of the subject. An important aspect of the theory is universality. For example, introduce the empirical measure of zeros:

Then, Ibragimov and Zaporozhets in [START_REF] Ibragimov | On distribution of zeros of random polynomials in complex plane[END_REF] showed that (µ n ) n∈N converges weakly to the ν S 1 , the uniform measure on the unit circle, if and only if E(log(1 + |a 0 |)) < ∞; that is, the limit µ n is (modulo technical conditions) universal. Other universal properties include rescaled limits for µ n , see [START_REF] Ibragimov | On roots of random polynomials[END_REF], correlation functions for the point process of zeros [START_REF] Tao | Local universality of zeroes of random polynomials[END_REF], and more. Our interest in this note is in large deviations for the sequence µ n in the space M 1 (C) equipped with the topology of weak convergence, which makes it into a Polish space. In case the coefficients (a i ) are i.i.d. standard complex Gaussian random variables, Zeitouni Chapter 4

Large deviations for biorthogonal ensembles

Ce chapitre correspond à la note [START_REF] Butez | Large deviations for biorthogonal ensembles and variational formulation for the dykema-haagerup distribution[END_REF], publiée dans Electronic Communications in Probability. Nous y prouvons un principe de grandes déviations pour la suite des mesures empiriques associée aux ensembles biorthogonaux. 

Introduction and results

The aim of this note is to study the limiting distribution of the n-particles system on R + := (0, +∞) with joint distribution

where

This is a generalization of the biorthogonal ensembles introduced by Muttalib [START_REF] Abdul | Random matrix models with additional interactions[END_REF] in physics in the context of disordered systems and by Borodin [START_REF] Borodin | Biorthogonal ensembles[END_REF] in mathematics. This model covers the classical random matrix ensembles, biorthogonal Laguerre ensembles or the matrix model of Lueck, Sommers and Zirnbauer [START_REF] Lueck | Energy correlations for a random matrix model of disordered bosons[END_REF] for disordered bosons. In equation (4.1), the two first products are interpreted as a repulsion between the particles while the exponential term represents a confining potential preventing the particles from going to infinity. The last product term pushes the particles away from 0, which appears in some model such a Wishart matrices. The main focus of our study will be the empirical measure of the system of points {x 1 , . . . , x n } defined by
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Study of the rate function.

Definition 4.7. We set, for any x and y in R + ,

As, for any x and y in R,

This inequality implies that f is bounded from below. Hence the function I is well defined and takes its values in R ∪ {+∞}. This inequality is the key to prove that I is a good rate function. All the details are given in the reference book [AGZ10, Lemma 2.6.2 p. 72].

To prove that the rate function I is strictly convex where it is finite, we observe that the logarithmic energy µ → E(µ) is known to be a strictly convex function where it is finite, see [AGZ10, Lemma 2.6.2 p. 72]. As the function µ → g * µ is linear, the function µ → E(g * µ) is strictly convex where it is finite. The rate function I is the sum of two strictly convex functions and a linear function, hence it is strictly convex where it is finite.

Proof of the weak lower bound.

We want to prove that we have, for any σ ∈ M 1 (R + )

(4.9)

First

Step: Reduction to "nice" measures.

First, we show that it is sufficient to prove the weak lower bound with additional assumptions on σ. Notice that we can assume that I(σ) < +∞, as (4.9) is trivial if I(σ) = +∞. We introduce the function φ : M 1 (R + ) → R ∪ {-∞} given by:

Using this notation, the weak lower bound becomes

We claim that φ is upper semicontinuous. Let (σ k ) k∈N be a sequence of measures such that σ k → σ in M 1 (R + ). Let G be a neighborhood of σ, then there exists an integer K such that for all k ≥ K, σ k ∈ G. As G is a neighborhood of σ k , this implies that for any k ≥ K φ(σ k ) ≤ lim n→∞ 1 n 2 log Z n P(µ n ∈ G) Then if we take the limit superior in k of this inequality and the infimum over all neighborhoods G of σ, we obtain the upper semi-continuity of φ. If we prove (4.10) for a dense Lemma 5.9. Let E be C or R. Let X 0 , . . . , X n be i.i.d. random variables, uniformly distributed on the disk in E of center 0 and radius δ. Assume that there exits δ > 0 such that for all λ > 0,

(5.18)

Then, for any K > 0 and ε > 0 there exists n 0 = n 0 (K, δ, ε) such that for all n > n 0 ,

(5.19)

Proof of Lemma 5.9. Fix K > 0, mimicking the proof of Chernoff's inequality, we have:

The proof is completed by taking λ large enough so that λε > K and then taking n 0 large enough so that e -λεn 2 e (n+1)c(λ) ≤ e -Kn 2 for all n > n 0 .

This lemma implies that we can restrict all the integrals in the lower bound to the set { n k=0 g(a i ) -λ > e λεn 2 } for any ε. This lemma allows us to reduce the general proof to the case of g(a) = 1 |a|≤δ which has been studied.

Real Case

The proof of Theorem 5.4 when the coefficients are real random variables relies on the same ideas. We use the same strategy on each of the terms of the mixture giving the distribution of zeros. All the details are given for Kac polynomials in Chapter 2.