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Introduction (in French)

Les graphes sont des structures mathématiques utilisées pour modéliser les relations
par paires entre objets. Plus formellement, un graphe est une paire ordonnée G =
(V,E), où V est un ensemble de sommets (ou noeuds) et E est un ensemble d’arêtes,
qui sont des sous-ensembles à 2 éléments de V . Un graphe peut donc être dessiné en
spécifiant un ensemble de points et en reliant ces paires qui forment des arêtes. Un
exemple de graphe est donné ci-dessous.

Figure 1: Un exemple de graphe

Malgré leur structure simple, les graphes ont des applications dans divers do-
maines tels que l’informatique, la physique, la biologie et la sociologie. Par exemple,
un graphe peut être utilisé pour modéliser une carte de transport public, où chaque
arrêt est un sommet et deux arrêts conscutifs de la même ligne forment une arête. Un
autre exemple est le réseau social, où chaque sommet représente une personne et où
il existe une arête entre deux personnes si elles se connaissent. La théorie des graphes
implique de répondre à plusieurs problèmes concernant certains graphes spécifiques
pour comprendre leur structure, ce qui peut conduire à de nombreuses applications
dans la vie réelle. Deux problèmes parmi eux, très célèbres et importants, sont la
coloration de graphe et la reconnaissance de graphe (ou la détection de graphe).
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4 INTRODUCTION

La coloration de graphe

Dans le problème de coloration, nous voulons assigner une couleur à chaque sommet
telle que deux sommets reçoivent des couleurs différentes s’ils sont connectés par
une arête, et le nombre de couleurs que nous utilisons est minimum. Ce problème
provient d’une question sur la coloration des cartes, à savoir le problème des quatre
couleurs proposée par Guthrie en 1852: supposons que vous ayez une carte divisée en
régions, de combien de couleurs avez-vous besoin pour colorer chaque région de telle
sorte que deux régions qui partagent une frontière commune ne reçoivent pas la même
couleur? Il a conjecturé que quatre couleurs étaient toujours suffisantes. Bien que
cette question ait suscité beaucoup d’attention de la part des mathématiciens, elle
est restée non résolue jusqu’en 1976, quand Appel et Haken ont finalement donné
une preuve. Il est clair que quatre couleurs ne sont jamais assez pour colorer les
graphes généraux, et en fait le nombre de couleurs dont nous avons besoin peut être
arbitrairement grand (par exemple, un graphe de n sommets tel qu’il y a une arête
entre chaque paire d’entre eux, a besoin d’au moins n couleurs). Le problème de
coloration des graphes est également difficile en le sens qu’il est NP-difficile (une
classe de problèmes où aucun algorithme polynomial n’est connu, et de plus, on
soupçonne qu’il n’en existe pas). Par conséquent, on peut se demander s’il existe un
algorithme en temps polynomial pour colorer certaines classes de graphes.

En 1960, Berge a défini la classe des graphes parfaits et formulé une autre con-
jecture sur la coloration des graphes, la Conjecture Forte des Graphes Parfaits, qui
concerne une caractérisation des graphes parfaits, initialement motivée par la notion
de Shannon de la capacité d’erreur zéro d’un graphe. En 1984, Grötschel, Lovász et
Schijver ont montré que des graphes parfaits peuvent être colorés en temps polyno-
mial. Cependant, leur algorithme implique l’utilisation de la méthode des ellipsöıdes,
qui n’est pas très efficace et peu pratique. L’existence d’un algorithme purement
combinatoire pour colorer des graphes parfaits n’est pas encore connue. Malgré les
efforts de nombreux scientifiques, la Conjecture Forte des Graphes Parfaits de Berge
sur des graphes parfaits est restée ouverte pendant plus de 40 ans. En 2002, elle a
été résolue par Chudnovsky, Robertson, Seymour et Thomas. Elle est maintenant
connue comme le Théorème Fort des Graphes Parfaits. Leur preuve est basée sur un
théorème de décomposition structurale profond.

La reconnaissance de graphe

Le deuxième problème que nous aimerions mentionner est la reconnaissance des
graphes. Ce n’est pas un problème particulier, mais un concept très général dans la
théorie des graphes. Fondamentalement, nous demandons s’il est possible de trouver



INTRODUCTION 5

un algorithme efficace pour reconnäıtre certaines classes de graphes (par exemple,
biparti, planaire, parfait, . . . ) ou pour détecter certaines structures spécifiques du
graphe d’entrée. Un graphe est un sous-graphe de G s’il peut être obtenu de G en
supprimant certains sommets et arêtes. D’un autre côté, un graphe est un sous-
graphe induit de G s’il peut être obtenu de G en supprimant certains sommets. Par
exemple, pour tout graphe fixe H, on peut vérifier en temps polynomial si un graphe
G contient H comme un sous-graphe (induit). La question devient plus difficile si
nous demandons si G contient une subdivision de H comme un sous-graphe (induit)
(une subdivision de H est obtenue de H en subdivisant ses arêtes, la définition plus
formelle est donnée dans le Chapitre 1). La différence entre le sous-graphe et le sous-
graphe induit par rapport à cette question est remarquable. Dans les années 1980,
le Graph Minor Project de Robertson et Seymour affirmait que pour la notion de
sous-graphe, il est toujours possible de trouver un algorithme en temps polynomial.
D’autre part, pour la notion de sous-graphe induit, on sait que pour certains graphes
H, le problème peut être résolu en temps polynomial et pour d’autres graphes, il
devient NP-difficile (voir [37] par exemple). De plus, cette dichotomie est encore
loin d’être complète. L’étude des graphes parfaits a également conduit à plusieurs
questions sur la détection des sous-graphes induits. Suite à la preuve du Théorème
Fort des Graphes Parfaits, un algorithme en temps polynomial pour reconnäıtre
des graphes parfaits a été découvert par Chudnovsky, Cornuéjols, Liu, Seymour et
Vušković. La complexité de la détection de certains types de décomposition et de cer-
taines structures spécifiques utilisées dans la preuve du Théorème Fort des Graphes
Parfaits (par exemple, les configurations de Truemper [23]) est également considérée.

L’objectif principal de ce travail est de continuer l’étude des problèmes de col-
oration et de détection dans le cadre de classes de graphes fermées par sous-graphes
induits (que nous appelons classes de graphes héréditaires).

La résumé du document

Voyons brièvement le contenu de cette thèse.
Dans le Chapitre 1, nous rappelons quelques notions de base en théorie des

graphes, ainsi que certaines structures et décompositions particulières dans le con-
texte des sous-graphes induits que nous utilisons tout au long de la thèse. Les lecteurs
qui connaissent le sujet peuvent passer ce chapitre. Dans chacun des chapitres suiv-
ants (du Chapitre 2 au Chapitre 4), nous donnons d’abord une courte introduction
du problème et quelques définitions spécifiques qui ne sont utilisées que dans ce
chapitre, puis nous montrons la preuve de nos résultats et éventuellement d’autres
discussions.
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L’objet principal de Chapitre 2 est l’étude des graphes sans ISK4 - les graphes qui
ne contiennent aucune subdivision de K4 en tant que sous-graphe induit. Le premier
résultat de ce chapitre est présenté dans la Section 2.1. Nous montrons que le nombre
chromatique de cette classe est limité à 24, une amélioration considérable par rapport
à la borne existant précédemment mentionnée dans [38]. Nous donnons aussi une
meilleure borne dans le cas sans triangle: le nombre chromatique des graphes sans
ISK4 et sans triangle est limité à 4. Notez que, juste après nos résultats, Chudnovsky
et al. [12] améliore la limite dans le cas sans triangle à 3 en utilisant la technique de
décomposition. Cependant, notre preuve est beaucoup plus simple et donne encore
une belle propriété structurelle de la classe. Dans la Section 2.2, le deuxième résultat
est présenté: nous montrons qu’il existe un algorithme en temps polynomial pour
détecter cette classe de graphes, qui répond à une question de Chudnovsky et al. [15]
et Lévêque et al. [37].

Le Chapitre 3 est consacré à l’étude de graphes sans trou pair, une classe de
graphes proche des graphes parfaits. Plus spécifiquement, nous travaillons sur les
graphes sans trou pair et sans étoile d’articualtion. Nous donnons une limite supérieure
optimale de son nombre chromatique en termes de nombre de clique et un algorithme
en temps polynomial pour les colorer. Ce dernier est, en fait, une conséquence directe
de notre preuve que cette classe a rank-width bornée.

Dans le Chapitre 4, nous étudions les graphes sans griffes qui se colorient pour
n’importe quel ordre connexe glouton. Ce problème est motivé par le point de vue
algorithmique du problème de coloration. L’une des stratégies les plus connues pour
colorier un graphe consiste à utiliser un algorithme glouton: on considère un ordre
des sommets v1, v2, . . . , vn du graphe d’entrée et on assigne à vi la plus petite couleur
disponible qui n’est pas utilisée par les voisins de vi parmi v1, v2, . . . , vi−1 (en ajoutant
une nouvelle couleur si nécessaire). Le nombre de couleurs que nous utilisons par
cet algorithme dépend fortement de l’ordre choisi. Ici nous considérons seulement les
ordres connexes, c’est-à-dire où chaque vi a au moins un voisin parmi v1, v2, . . . , vi−1.
Un graphe G est bon si pour chaque sous-graphe induit connexe H de G, chaque
ordre connexe donne H une coloration optimale. Nous donnons la caractérisation
complète de bons graphes sans griffes en termes de sous-graphes induits minimaux
interdits.



Introduction

Graphs are mathematical structures used to model pairwise relations between ob-
jects. More formally, a graph is an ordered pair G = (V,E), where V is a set of
vertices (or nodes) and E is a set of edges, which are 2-element subsets of V . A
graph therefore can be drawn just by specifying a set of points and connecting those
pairs which form edges. An example of a graph is given below.

Figure 2: An example of a graph

Despite their simple structure, graphs have applications in various areas like
computer science, physics, biology and sociology. For example, a graph can be used
to model a public transport map, where each stop is a vertex and two consecutive
stops of the same line form an edge. Another example is the social network, where
each vertex represents a person and there exists an edge between two people if they
know each other. Graph theory involves answering several problems concerning some
specific graphs to understand their structures, which might lead to many real-life
applications. Two problems among them which are very famous and important are
graph coloring and graph recognition (or graph detection).

Graph coloring

In coloring problem, we would like to assign for each vertex a color such that two
vertices receive different colors if they are connected by an edge, and the number
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8 INTRODUCTION

of colors that we use is minimum. This problem originates from a question about
coloring of maps, namely the Four-Color Conjecture proposed by Guthrie in 1852:
suppose that you have a map divided into regions, how many colors do you need
to color each region such that no two regions that share a common border receive
the same color? He conjectured that four colors were always enough. Although
this question attracted a lot of attention from mathematicians, it remained unsolved
until 1976, when Appel and Haken finally gave a proof. It is clear that four colors
are never enough to color general graphs, and in fact the actual number of colors
that we need might be arbitrarily large (for instance, a graph of n vertices such
that there is an edge between every pair of them, needs at least n colors). The
graph coloring problem is also proved to be difficult in a sense that it is NP-hard
(a class of problems where no polynomial-time algorithm is known, and moreover, it
is suspected that there does not exist one). Therefore, one might wonder whether
there exists a polynomial-time algorithm to color certain graph classes.

In 1960, Berge defined the class of perfect graphs and formulated another conjec-
ture about graph coloring, the Strong Perfect Graph Conjecture, which concerns a
characterization of perfect graphs, originally motivated by Shannon’s notion of the
zero-error capacity of a graph. In 1984, Grötschel, Lovász and Schijver showed that
perfect graphs can be colored in polynomial time. However, their algorithm involves
the use of ellipsoid method, which is not very efficient and impractical. The exis-
tence of a purely combinatorial algorithm to color perfect graphs is still not known.
Despite the efforts of many scientists, the Berge’s Strong Perfect Graph Conjecture
on perfect graphs remained open for more than 40 years. Until 2002, it was settled
by Chudnovsky, Robertson, Seymour and Thomas. It is now known as the Strong
Perfect Graph Theorem. Their proof based on a deep structural decomposition the-
orem.

Graph recognition

Second problem that we would like to mention is graph recognition. This is not
a particular problem, but a very general concept in graph theory. Basically, we
ask whether it is possible to find an efficient algorithm to recognize certain graph
classes (e.g. bipartite, planar, perfect,. . . ) or to detect some specific structures of
the input graph. A graph is a subgraph of G if it can be obtained from G by deleting
some vertices and edges. On the other hand, a graph is an induced subgraph of G
if it can be obtained from G by deleting some vertices. For example, for any fixed
graph H, one can check in polynomial time whether a graph G contains H as a
(induced) subgraph. The question becomes more difficult if we ask if G contains
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a subdivision of H as a (induced) subgraph (a subdivision of H is obtained from
H by subdividing its edges, more formal definition is given in Chapter 1). The
difference between subgraph and induced subgraph with respect to this question are
remarkable. In the 1980s, the Graph Minor Project by Robertson and Seymour
asserted that for subgraph, it is always possible to find a polynomial algorithm.
On the other hands, for induced subgraph, we know that for some graphs H, the
problem is polynomial-time solvable and for some other graphs, it becomes NP-
hard (see [37] for example). Moreover, this dichotomy is still very far from being
complete. The study of perfect graphs also led to several questions on detecting
induced subgraphs. Subsequent to the proof of Strong Perfect Graph Theorem, a
polynomial algorithm for recognizing perfect graphs was discovered by Chudnovsky,
Cornuéjols, Liu, Seymour and Vušković. The complexity of detecting certain kinds
of decomposition and some specific structures used in the proof of Strong Perfect
Graph Theorem (for example, Truemper configurations [23]) is also considered.

The main focus of this thesis is to continue the study of the coloring and detecting
problem in the setting of graph classes closed under taking induced subgraphs (which
we call hereditary graph classes).

Outline of the document

Let us briefly review the content of this thesis.
In Chapter 1, we recall some basic notions in graph theory, as well as some

particular structures and decompositions in the context of induced subgraph that we
use throughout the thesis. The readers who are familiar with the subject can skip
this chapter. In each of the following chapters (from Chapter 2 to Chapter 4), we
first give a short introduction of the problem and some specific definitions that are
only used in that chapter, and then we show the proof of our results and possibly
some further discussions.

The main object of Chapter 2 is ISK4-free graphs - the graphs that do not contain
any subdivision of K4 as an induced subgraph. The first result of this chapter is
presented in the Section 2.1. We prove that the chromatic number of this class is
bounded by 24, a big improvement compared to the best known bound which was
mentioned in [38]. We give also a much better bound in triangle-free case: the
chromatic number of (triangle, ISK4)-free graphs is bounded by 4. Note that, right
after our results, Chudnovsky et al. [12] improve the bound in triangle-free case to
3 by using decomposition technique. However, our proof is much simpler and still
gives a nice structural property of the class. In Section 2.2, the second result is
presented: we prove that there exists a polynomial-time algorithm for detecting this
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graph class, which answers a question by Chudnovsky et al. [15] and Lévêque et al.
[37].

Chapter 3 is devoted to the study of even-hole-free graphs, a graph class which
is close to perfect graphs. More specifically, we work on even-hole-free graphs with
no star cutset. We give an optimal upper bound for its chromatic number in terms
of clique number and a polynomial-time algorithm to color them. The latter is, in
fact, a direct consequence of our proof that this class has bounded rank-width.

In Chapter 4, we study claw-free graphs which are good to color with respect
to any greedy connected order. This problem is motivated by algorithmic point of
view of coloring problem. One of the most well-known strategy to color a graph is
by using a greedy algorithm: we consider an order of the vertices v1, v2, . . . , vn of the
input graph and assign for vi the smallest available color which is not used by vi’s
neighbors among v1, v2, . . . , vi−1 (adding a new color if needed). The number of color
we use by this algorithm heavily depends on the chosen order. Here we consider only
connected order, an order where each vi has at least a neighbor among v1, v2, . . . , vi−1.
A graph G is good if for every connected induced subgraph H of G, every connected
order gives H an optimal coloring. We give the complete characterization of good
claw-free graphs in terms of minimal forbidden induced subgraphs.



Chapter 1

Basic notions

In the first section of this chapter, we recall some basic notions of graph theory that
we use throughout the thesis. Most of them are standard and the reader is referred
to [22] for any undefined terms. In the following sections, we introduce several more
specific definitions: the notion of χ-boundedness, some kinds of decomposition and
some particular graphs. The readers who are familiar with this field can also skip
these sections.

1.1 Graphs

A graph G is an ordered pair (V,E) consisting of a vertex (node) set V and an edge
set E ⊆

(
V
2

)
, where

(
V
2

)
is the set of all the subsets of size 2 of V . An element {u, v}

of E is also denoted by uv or vu. We also refer to V and E as V (G) and E(G),
respectively. Two vertices u and v in V (G) such that uv ∈ E(G) are said to be
adjacent, and we also say that u is a neighbor of v. The (open) neighborhood of a
vertex v, denoted by NG(v), is the set of neighbors of v. The closed neighborhood of v,
denoted by NG[v], is defined as NG(v)∪{v}. The degree of v in G is |NG(v)|. We also
extend this notion for a subset X ⊆ V (G) by defining NG(X) := (∪v∈XNG(v)) \X
and NG[X] := NG(X)∪X. We might also write N(v), N [v], N(X), N [X] instead of
NG(v), NG[v], NG(X), NG[X], respectively, if there is no ambiguity. For some subsets
K ⊆ V (G) and C ⊆ V (G) \ K, we denote by NK(C) the set of neighbors of C in
K, or NK(C) := N(C) ∩K. The complement of G is the graph G = (V,E), where
E =

(
V
2

)
\E. A clique in G is a set of vertices that are pairwise adjacent. A stable set

(or an independent set) in G is a set of vertices that are pairwise non-adjacent. The
size of a clique or a stable set is its number of vertices. Let A and B be two disjoint
subsets of V (G), we say that A is complete to B if for every u ∈ A and every v ∈ B,

11



12 CHAPTER 1. BASIC NOTIONS

uv ∈ E(G). If the set A is of size 1, say A = {u}, we also say that u is complete
to B (instead of saying that {u} is complete to B). The complete graph Kn is the
graph on n vertices that are pairwise adjacent. A graph is called complete bipartite
(resp. complete tripartite) if its vertex set can be partitioned into two (resp. three)
non-empty stable sets that are pairwise complete to each other. If these two (resp.
three) sets have size p, q (resp. p, q, r) then the graph is denoted by Kp,q (resp.
Kp,q,r, see Figure 1.1 for example). Given a graph H, the line graph of H, denoted
by L(H), is the graph with vertex set E(H) and edge set {ef : e ∩ f 6= ∅}. The
edge subdivision operation for an edge uv ∈ E(G) is the deletion of uv from G and
the addition of two edges uw and wv along with the new vertex w. This operation
generates a new graph H = (V ∪ {w}, (E \ {uv}) ∪ {uw,wv}). A subdivision of G
is a graph that can be derived from G by a sequence of edge subdivision operations.
See Figure 1.2 for an example of subdivisions and line graphs.

(a) K3,3 (b) K2,2,2

Figure 1.1: An example of a complete bipartite graph and a complete tripartite graph

(a) A subdivision of a K4
(b) Its line graph

Figure 1.2: An example of subdivisions and line graphs

A path P on k vertices (k ≥ 1) is a graph with vertex set {p1, . . . , pk} such that
either k = 1, or for i, j ∈ {1, . . . , k}, pi is adjacent to pj if and only if |i − j| = 1
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(this is often referred to as induced path or chordless path in literature). We call p1
and pk the ends of the path P . The interior of P is {p2, . . . , pk−1} and each vertex
in the interior of P is said to be an interior (internal) vertex of P . Let u, v ∈ V (P ),
we denote by uPv the subpath of P from u to v and denote by P ∗ the subpath of P
from p2 to pk−1 (i.e. P ∗ := p2Ppk−1). A path P is flat in G if all the interior vertices
of P are of degree 2 in G. The length of a path on k vertices is (k − 1). A path on
k vertices is denoted by Pk. A cycle C on k vertices (k ≥ 3) is a graph with vertex
set {p1, . . . , pk} such that for i, j ∈ {1, . . . , k}, pi is adjacent to pj if |i − j| = 1,
where the index is taken modulo k. All the other edges of C (the edges pipj such
that |i− j| > 1) are its chords. A cycle is said to be chordless (or induced) if it has
no chord. The length of a cycle on k vertices is k. A hole is a chordless cycle of
length at least 4. A hole of length k is called a k-hole and is denoted by Ck. A hole
is said to be odd (resp. even) if its length is odd (resp. even). An antihole is the
complement of a hole. Note that K3 is a chordless cycle but it is not a hole. The
girth of a graph is the smallest length of its cycle. See Figure 1.3 for an example of
paths and holes.

(a) P6

(b) C6

Figure 1.3: An example of paths and holes

Let G = (V,E), G′ = (V ′, E ′). We say that G is isomorphic to G′ if there exists
a bijection φ : V → V ′ such that uv ∈ E ⇐⇒ φ(u)φ(v) ∈ E ′. Graph G′ is said to
be a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. For some graph H, we say that graph
G contains H as a subgraph if there exists X ⊆ V and Y ⊆ E such that (X, Y )
is isomorphic to H. If X ⊆ V , the subgraph of G induced by X, denoted by G[X],
is (X,EX) where EX = {uv|uv ∈ E and u, v ∈ X}. A subgraph G′ of G is said
to be an induced subgraph of G if there exists X ⊆ V such that G′ = G[X]. For
convenience, the subgraph of G induced by V \X is often denoted by G \X instead
of G[V \ X]. For v ∈ V , we also write G \ v instead of G \ {v}. For some graph
H, we say that graph G contains H as an induced subgraph if there exists X ⊆ V
such that G[X] is isomorphic to H. A graph is H-free if it does not contain H as
an induced subgraph. Given a family of graphs H, a graph G is said to be H-free
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if it is H-free for every H ∈ H. A class of graphs is hereditary if it is closed under
taking induced subgraphs. It is clear that a graph class defined by forbidding a list of
graphs is hereditary. Since hereditary graph classes are the main focus of our work,
for convenience, we often say that a graph G contains a graph H if G contains H as
an induced subgraph.

1.2 Perfect graphs and χ-boundedness

Let us first introduce three graph parameters which play an important role in graph
theory. Computing any of them for general graphs is well-known to be NP-hard [33].

• The chromatic number of G, denoted by χ(G), is the smallest number of colors
needed to color the vertices of G so that no two adjacent vertices receive the
same color (such a coloring is called proper). Equivalently, one can define
the chromatic number of G as the smallest number k such that V (G) can be
partitioned into k stable sets. A coloring of G with χ(G) colors is called an
optimal coloring of G.

• The clique number of G, denoted by ω(G), is the size of a largest clique in G.

• The stability number (or independence number) of G, denoted by α(G), is the
size of a largest stable set in G.

It is clear that χ(G) ≥ ω(G), since a clique of size k needs at least k different
colors in any proper coloring of G. Therefore, clique number gives a natural lower
bound for chromatic number. The question is: when does the equality hold? It
is clear that the equality does not hold for every graph since a hole of length 5
has ω(C5) = 2, but χ(C5) = 3. In fact, the gap between χ(G) and ω(G) can be
arbitrarily large. A triangle is a graph isomorphic to a K3. In 1955, Mycielski gave
a construction of a family of triangle-free graphs which has large chromatic number
[39]. Later, using probabilistic method, Erdős even generalized this result by proving
the existence of a graph whose girth and chromatic number are both large [25].

Perfect graphs are defined in such a way that this equality holds for them. A
graph G is perfect if for every induced subgraph H of G, χ(H) = ω(H). In Berge’s
initial work on perfect graph, he made some nice conjectures on their structure [5].
The most important one, called Strong Perfect Graph Conjecture, was proved by
Chudnovsky, Robertson, Seymour and Thomas around 40 years later [13]. An odd
antihole is the complement of an odd hole. The graphs that do not contain an odd
hole nor an odd antihole as an induced subgraph are known as Berge graphs.
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Theorem 1.2.1 (Strong Perfect Graph Theorem [13]). A graph is perfect if and only
if it is a Berge graph.

The concept of χ-boundedness was introduced by Gyárfás [30] as a natural ex-
tension of perfect graphs: a class of graph G is χ-bounded with χ-bounding function
f if, for every graph G ∈ G, χ(G) ≤ f(ω(G)). It is clear that the class of perfect
graphs is χ-bounded with the χ-bounding function f(x) = x. Now the question is:
which induced subgraphs need to be forbidden to get a χ-bounded class of graphs?
The previously mentioned result of Erdős [25] implies that forbidding only one in-
duced subgraph H may lead to a χ-bounded class only if H has no cycle. Gyárfás
conjectured that this is sufficient:

Conjecture 1.2.2 (Gyárfás [30]). The class of H-free graphs is χ-bounded if H is
a forest.

Another way to obtain a χ-bounded class is to forbid infinite number of graphs.
A lot of questions on the χ-boundedness of graph classes defined by forbidding odd
holes, even holes, long holes,. . . have been asked [30]. In this thesis, we consider this
problem on ISK4-free graphs (see Chapter 2) and even-hole-free graphs with no star
cutset (see Chapter 3).

1.3 Some kinds of decomposition and graph oper-

ations

In this section, we define some kind of decomposition that we use throughout the
thesis. Let G = (V,E) be a graph. A cutset in graph G is a subset S ( V (G) such
that G \ S is disconnected.

• For any k ≥ 0, a k-cutset is a cutset of size k.

• The only vertex of a 1-cutset is called the cut-vertex.

• A cutset S is a star cutset if S contains a node x adjacent to every node in
S \ x.

• A cutset S is a clique cutset if S is a clique. It is clear that clique cutset is a
particular star cutset.

• A proper 2-cutset is a 2-cutset {a, b} such that ab /∈ E, V (G) \ {a, b} can be
partitioned into two non-empty sets X and Y so that there is no edge between
X and Y and each of G[X ∪{a, b}] and G[Y ∪{a, b}] is not a path from a to b.
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The 2-join was first defined by Cornuéjols and Cunningham [19]. A 2-join in a
graph G is a partition (X1, X2) of V (G) with specified sets (A1, A2, B1, B2) such that
the followings hold:

• |X1|, |X2| ≥ 3.

• For i = 1, 2, Ai ∪Bi ⊆ Xi and Ai, Bi are non-empty and disjoint.

• A1 is complete to A2, B1 is complte to B2 and these are the only adjacencies
between X1 and X2.

• For i = 1, 2, G[Xi] contains a path with one end in Ai and the other in Bi.
Furthermore, G[Xi] is not a path.

In this case, we call (X1, X2, A1, B1, A2, B2) a split of (X1, X2). We also denote by Ci

the set Xi \ (Ai ∪Bi) for i = 1, 2. Note that the first three conditions of a 2-join are
standard, while the last one is not. This is often referred to as connected non-path
2-join in literature. This condition varies since it depends on how we want to build
our blocks of decompositions with respect to a 2-join. Here we show how to do it
with respect to our definition. The blocks of decompositions of G with respect to
(X1, X2) are the two graphs G1, G2 built as follows. We obtain G1 by replacing X2

by a marker path P2 of length k2 ≥ 3, from a vertex a2 complete to A1, to a vertex b2
complete to B1 (the interior of P2 has no neighbor in X1). The block G2 is obtained
similarly by replacing X1 by a marker path P1 of length k1 ≥ 3 with two ends a1, b1.
Note that the way we choose P1, P2 (as well as their lengths) depends on the class we
are working with. This definition of a 2-join and this way of constructing blocks of
decomposition with respect to a 2-join are consistent throughout this thesis (mainly
for Chapter 3).

The next graph operation we introduce is called substitution. Given two graphs
G1 = (V1, E1), G2 = (V2, E2) (V1 and V2 are disjoint), and v ∈ V1, we say that G is
obtained from G1 by substituting G2 for v, or G is obtained from G1 by substituting
v by G2 if:

• V (G) = V1 ∪ V2 \ {v}.

• G[V2] = G2.

• G[V1 \ {v}] = G1[V1 \ {v}].

• For every v1 ∈ V1 \ {v} and v2 ∈ V2, v1v2 ∈ E(G) if and only if v1v ∈ E(G1).
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Now we present another graph operation named identification. Given two graphs
G1 = (V1, E1), G2 = (V2, E2) (V1 and V2 are disjoint) and for some 1 ≤ k ≤
min{|V1|, |V2|}, let X = {x1, . . . , xk} ⊆ V1 and Y = {y1, . . . , yk} ⊆ V2 be such
that xixj ∈ E1 if and only if yiyj ∈ E2 for every i, j ∈ {1, 2, . . . , k}. We say that G
is obtained from G1 and G2 by identifying xi with yi for every i ∈ {1, . . . , k} if:

• V (G) = (V1 \X) ∪ (V2 \ Y ) ∪ Z, where Z = {z1, . . . , zk}.

• G[V1 \X] = G1[V1 \X].

• G[V2 \ Y ] = G2[V2 \ Y ].

• For every i, j ∈ {1, 2, . . . , k}, zizj ∈ E(G) if and only if xixj ∈ E1 and yiyj ∈ E2.

• For every i ∈ {1, . . . , k}:

– For every u ∈ V1 \X, ziu ∈ E(G) if and only if xiu ∈ E1.

– For every u ∈ V2 \ Y , ziu ∈ E(G) if and only if yiu ∈ E2.

• There is no edge in G between V1 \X and V2 \ Y .

1.4 Some particular graphs

In this section, some particular graphs are presented. Recall that a triangle is a
graph isomorphic to a K3. A square is a graph isomorphic to a C4. A claw is a
graph with vertex set {u, x, y, z} and edge set {ux, uy, uz}, vertex u is called the
center of that claw (see Figure 1.4).

(a) triangle (b) square (c) claw

Figure 1.4: Some small graphs

Let us introduce Truemper configurations. These configurations play an impor-
tant role in understanding the structure of several classes of objects, such as regu-
lar matroids, balanceable matrices and perfect graphs. In decomposition theorem,
Truemper configurations appear both as excluded structures that are convenient to
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work with, and as structures where the actual decomposition takes place. We re-
fer the reader to [51] for a survey on Truemper configurations by Vušković. These
configurations include: theta, pyramid, prism and wheel.

(a) A theta (b) A pyramid (c) A prism

(d) A wheel

Figure 1.5: Example of Truemper configurations

• Let x, y be two distinct vertices. A theta is a graph induced by three paths
from x to y such that any two of them induce a hole (see Figure 1.5a). Note
that all these three path are of length greater than 1 by this condition.

• Let x1, x2, x3, y be four distinct vertices such that {x1, x2, x3} induces a triangle.
A pyramid is a graph induced by three paths: P1 from x1 to y, P2 from x2 to
y, P3 from x3 to y such that any two of them induce a hole (see Figure 1.5b).
A pyramid is long if all three paths are of length greater than 1.

• Let x1, x2, x3, y1, y2, y3 be six distinct vertices such that {x1, x2, x3} and {y1, y2, y3}
induce two triangles. A prism is a graph induced by three paths: P1 from x1
to y1, P2 from x2 to y2, P3 from x3 to y3 such that any two of them induce a
hole (see Figure 1.5c). A prism is long if all three paths are of length greater
than 1.

• A wheel is a graph consisting of a hole H and a vertex x /∈ V (H) that has at
least three neighbors on H (see Figure 1.5d).



Chapter 2

IKS4-free graphs

An ISK4 is a subdivision of K4 (K4 is also an ISK4). A graph is ISK4-free if it does
not contain any subdivision of K4 as an induced subgraph. Series-parallel graphs
and line graph of cubic graphs are some examples of ISK4-free graphs (see [38]).
The class of ISK4-free graphs has recently been studied. In [38], a decomposition
theorem for this class is given. However, it does not lead to a recognition algorithm.
Since the class of ISK4-free graphs contains the line graph of every cubic graph,
where finding the edge chromatic number is known to be NP-hard [32], we know
that finding the chromatic number of ISK4-free graphs is also NP-hard. In Section
2.1, we propose new upper bound for the chromatic number of ISK4-free graphs and
{ISK4, triangle}-free graphs. In Section 2.2, we give a polynomial-time algorithm
for recognizing this class, which answers a question by Chudnovsky et al. [15] and
Lévêque et al. [37]. We also note that the complexity of finding a maximum stable
set in ISK4-free graphs remains open. The results of this chapter are covered in the
following papers:

[I] N.K. Le. Chromatic number of ISK4-free graphs, Graphs and Combinatorics,
33(6): 1635-1646, 2017.

[II] N.K. Le. Detecting an induced subdivision of K4, arXiv preprint, submitted.
https://arxiv.org/abs/1703.04637

2.1 Chromatic number of ISK4-free graphs

2.1.1 Introduction

We recall the question concerning χ-boundedness: which induced subgraphs need
to be forbidden to get a χ-bounded class of graphs? One way to forbid induced

19

https://arxiv.org/abs/1703.04637
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structures is the following: fix a graph H, and forbid every induced subdivision of
H. We denote by Forb∗(H) the class of graphs that does not contain any subdivision
of H as an induced subgraph. The class Forb∗(H) has been proved to be χ-bounded
for a number of graph H. Scott [45] proved that for any forest F , Forb∗(F ) is χ-
bounded. In the same paper, he conjectured that Forb∗(H) is χ-bounded for any
graph H. Unfortunately, this conjecture has been disproved (see [42]). However,
there is no general conjecture on which graph H, Forb∗(H) is χ-bounded. This
question is discussed in [9]. We focus on the question when H = K4. In this case,
Forb∗(K4) is the class of ISK4-free graphs. Since K4 is forbidden, proving that the
class of ISK4-free graphs is χ-bounded is equivalent to proving that there exists
a constant c such that for every ISK4-free graph G, χ(G) ≤ c. Remark that the
existence of such constant was pointed out in [38] as a consequence of a result in

[36], but it is rather large (≥ 222
25

) and very far from these two conjectures:

Conjecture 2.1.1 (Lévêque, Maffray, Trotignon 2012 [38]). If G is an ISK4-free
graph, then χ(G) ≤ 4.

Conjecture 2.1.2 (Trotignon, Vušković 2016 [49]). If G is an {ISK4, triangle}-free
graph, then χ(G) ≤ 3.

No better upper bound is known even for the chromatic number of {ISK4,
triangle}-free graphs. However, attempts were made toward these two conjectures.
The optimal bound is known for the chromatic number of {ISK4, wheel}-free graphs
and {ISK4, triangle, C4}-free graphs:

Theorem 2.1.3 (Lévêque, Maffray, Trotignon 2012 [38]). Every {ISK4, wheel}-free
graph is 3-colorable.

Theorem 2.1.4 (Trotignon, Vušković 2016 [49]). Every ISK4-free graph of girth at
least 5 contains a vertex of degree at most 2 and is 3-colorable.

The proof of Theorems 2.1.3 and 2.1.4 relies on structural decompositions. One
way to prove Conjectures 2.1.1 and 2.1.2 is to find a vertex of small degree. This ap-
proach is successfully used in [49] to prove Theorem 2.1.4. Two following conjectures
will imply the correctness of Conjectures 2.1.1 and 2.1.2 (as shown in [38]):

Conjecture 2.1.5 (Trotignon 2015 [47]). Every {ISK4, K3,3, prism, K2,2,2}-free
graph contains a vertex of degree at most three.

Conjecture 2.1.6 (Trotignon, Vušković 2016 [49]). Every {ISK4, K3,3, triangle}-
free graph contains a vertex of degree at most two.
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However, we find a new bound for the chromatic number of ISK4-free graphs
using another approach. Our main results are the following theorems:

Theorem 2.1.7. Let G be an {ISK4, triangle}-free graph. Then χ(G) ≤ 4.

Theorem 2.1.8. Let G be an ISK4-free graph. Then χ(G) ≤ 24.

Remark that the bounds we found are much closer to the bound of the conjectures
than the known ones. The main tool that we use to prove these theorems is classical.
It is often used to prove χ-boundedness results relying on the layers of neighborhood.
This section is organized as follows. We first introduce some notations in Section
2.1.2. Sections 2.1.3 and 2.1.4 are devoted to the proof of Theorem 2.1.7 and 2.1.8,
respectively.

2.1.2 Preliminaries

In this section, we present some notations and useful lemmas which will be used later
in our proof. Let G = (V,E) be a graph, we denote by |G| the number of its vertices.
If the context is clear, we will sometimes write G for V (G). A complete bipartite or
tripartite graph is thick if it contains a K3,3. Let S = {u1, u2, u3, u4} induces a square
(i.e. C4) in G with u1, u2, u3, u4 in this order along the square. A link of S is a path
P of G with ends p, p′ such that either p = p′ and NS(p) = S, or NS(p) = {u1, u2}
and NS(p′) = {u3, u4}, or NS(p) = {u1, u4} and NS(p′) = {u2, u3}, and no interior
vertex of P has a neighbor in S. A rich square is a graph K that contains a square
S as an induced subgraph such that K \ S has at least two components and every
component of K \ S is a link of S. For example, K2,2,2 is a rich square (it is the
smallest one). We refer the reader to Chapter 1 for the remaining notions (clique
cutset, proper 2-cutset, prism, . . . ).

We use in this section some decomposition theorems from [38]:

Lemma 2.1.9 (see Lemma 3.3 in [38]). Let G be an ISK4-free graph that contains
K3,3. Then either G is a thick complete bipartite or complete tripartite graph, or G
has a clique cutset of size at most 3.

Lemma 2.1.10 (see Lemmas 6.1 and 7.2 in [38]). Let G be an ISK4-free graph that
contains a rich square or a prism. Then either G is the line graph of a graph with
maximum degree 3, or G is a rich square, or G has a clique cutset of size at most 3
or G has a proper 2-cutset.

Reducing a flat path P of length at least 2 means deleting its interior and adding
an edge between its two ends. The following lemma shows that a graph remains
ISK4-free after reducing a flat path:
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Lemma 2.1.11 (see Lemma 11.1 in [38]). Let G be an ISK4-free graph. Let P be a
flat path of length at least 2 in G and G′ be the graph obtained from G by reducing
P . Then G′ is ISK4-free.

It is shown in [38] that clique cutsets and proper 2-cutsets are useful for prov-
ing Conjecture 2.1.1 in the inductive sense. If we can find such a cutset in G,
then we immediately have a bound for the chromatic number of G, since χ(G) ≤
max{χ(G1), χ(G2)}, where G1 and G2 are two blocks of decomposition of G with
respect to that cutset (see the proof of Theorem 1.4 in [38]). Therefore, we only
have to prove Conjecture 2.1.1 for the class of {ISK4, K3,3, prism, K2,2,2}-free graphs
and prove Conjecture 2.1.2 for the class of {ISK4, K3,3, triangle}-free graphs since
the existence of K3,3, prism or K2,2,2 implies a good cutset or a structure that can
be appropriately colored by Lemmas 2.1.9 and 2.1.10.

For S,C ⊆ V (G), we say that S dominates C if NC(S) = C. The distance
between two vertices x, y in V (G) is the length of a shortest path from x to y in G.
Let u ∈ V (G) and i be an integer, we denote by Ni(u) the set of vertices of G that
are of distance exactly i from u. Note that there are no edges between Ni(u) and
Nj(u) for every i, j such that |i− j| ≥ 2.

Lemma 2.1.12. Let G be a graph, u ∈ V (G) and i be an integer ≥ 1. Let x, y be
two distinct vertices in Ni(u). Then, there exists a path P in G from x to y such that
V (P ) ⊆ {u} ∪N1(u) ∪ . . . ∪Ni(u) and |V (P ) ∩Nj(u)| ≤ 2 for every j ∈ {1, . . . , i}.
Proof. We prove this by induction on i. If i = 1, we have x, y ∈ N1(u). If xy ∈ E(G),
we choose P = xy, otherwise, choose P = xuy. Suppose that the lemma is true until
i = k, we prove that it is also true for i = k+1. If xy ∈ E(G), we choose P = xy. If x
and y have a common neighbor x′ in Nk(u), then we choose P = xx′y. Otherwise, let
x′, y′ be the vertices in Nk(u) such that x′x, y′y ∈ E(G). Note that xy′, x′y /∈ E(G).
We choose P = P ′ ∪ {x, y}, where P ′ is the path with two ends x′ and y′ generated
by applying induction hypothesis.

Such a path P in Lemma 2.1.12 is called an upstairs path of {x, y}. For three
distinct vertices x, y, z ∈ V (G), a graph H is a confluence of {x, y, z} if it is one of
the two following types:

• Type 1:

– V (H) = V (Px) ∪ V (Py) ∪ V (Pz).

– Px, Py, Pz are three paths having a common end u and Px \ u, Py \ u,
Pz \ u are pairwise disjoint. The other ends of Px, Py, Pz are x, y, z,
respectively.
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– These are the only edges in H.

• Type 2:

– V (H) = V (Px) ∪ V (Py) ∪ V (Pz).

– Px is a path with ends x and x′.

– Py is a path with ends y and y′.

– Pz is a path with ends z and z′.

– Px, Py, Pz are pairwise disjoint.

– x′y′z′ is a triangle.

– These are the only edges in H.

If H is a confluence of Type 1, the vertex u is called the center of H and if H
is a confluence of Type 2, the triangle x′y′z′ is called the center triangle of H. Note
that the length of Px can be 0 when x = u (for Type 1) or x = x′ (for Type 2).

Lemma 2.1.13. Let G be a graph, u ∈ V (G) and i be an integer ≥ 1. Let x, y, z be
three distinct vertices in Ni(u). Then, there exists a set S ⊆ {u}∪N1(u)∪. . .∪Ni−1(u)
such that G[S ∪ {x, y, z}] is a confluence of {x, y, z}.

Proof. Let G′ be the subgraph of G induced by {u}∪N1(u)∪ . . .∪Ni−1(u)∪{x, y, z}.
It is clear that G′ is connected. Let P be a path in G′ from x to y and Q be a path
in G′ from z to P (one end of Q is in P ). We choose P and Q subject to minimality
of |V (P ∪Q)|. It is easy to see that G[V (P ∪Q)] is a confluence of {x, y, z}.

The notions of upstairs path and confluence are very useful to find induced struc-
tures in our graph since they establish a way to connect two or three vertices of the
same layer through only the upper layers.

Lemma 2.1.14. Let G be a graph and u ∈ V (G). Then:

χ(G) ≤ max
i odd

χ(G[Ni(u)]) + max
j even

χ(G[Nj(u)]).

Proof. It is clear that in G, there are no edges between Ni(u) and Nj(u) if i 6= j
and i, j are of the same parity. Therefore, we can color all the odd layers with
maxi odd χ(G[Ni(u)]) colors and all the even layers with maxj even χ(G[Nj(u)]) other
colors. The lemma follows.
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2.1.3 Proof of Theorem 2.1.7

The next lemma shows that if there is a set S that dominates some hole C, then
there must exist some vertices in S which have very few (one or two) neighbors in
C.

Lemma 2.1.15. Let G be an {ISK4, triangle, K3,3}-free graph and C be a hole in
G. Let S ⊆ V (G) \ C such that S dominates C. Then one of the following cases
holds:

1. There exist four distinct vertices u1, u2, u3, u4 in S and four distinct vertices
v1, v2, v3, v4 in C such that for i ∈ {1, 2, 3, 4}, NC(ui) = {vi}.

2. There exist three distinct vertices u1, u2, u3 in S and three distinct vertices v1,
v2, v3 in C such that for i ∈ {1, 2, 3}, NC(ui) = {vi} and v1, v2, v3 are pairwise
non-adjacent.

3. There exist three distinct vertices u1, u2, u3 in S and four distinct vertices v1,
v2, v3, v′3 in C such that NC(u1) = {v1}, NC(u2) = {v2}, NC(u3) = {v3, v′3}
and v1, v3, v2, v′3 appear in this order along C.

Proof. We prove Lemma 2.1.15 by induction on the length of hole C. First, suppose
that the length of C is 4 and C = c0c1c2c3c0. Since G is triangle-free, a vertex in S
can only have one or two neighbors in C. We consider two cases:

• If some vertex u ∈ S has two neighbors in C, w.l.o.g, suppose NC(u) = {c0, c2}.
Since S dominates C, there exists some vertices v, w ∈ S such that vc1, wc3 ∈
E. If v = w then {u, v}∪C induces K3,3 (if uv ∈ E) or an ISK4 (if uv /∈ E), a
contradiction. Therefore, v 6= w and u, v, w are three vertices satisfying output
3 of the lemma.

• If every vertex in S has exactly one neighbor in C, output 1 of the lemma
holds.

Now, we may assume that |C| ≥ 5 and the lemma is true for every hole of length
at most |C| − 1. A vertex u ∈ S is a bivertex if NC(u) = {u′, u′′} and the two
paths P1, P2 from u′ to u′′ in C are of lengths at least 3. Suppose that S contains
such a bivertex u. Let C1 = P1 ∪ {u}, C2 = P2 ∪ {u}, note that |C1|, |C2| <
|C|. Consider the graph G′ obtained from G as follows: V (G′) = V (G) ∪ {a, b, c},
E(G′) = E(G) ∪ {au, bu′, cu′′}. It is clear that G′ is {ISK4, triangle, K3,3}-free. Let
S1 = {v ∈ S \ u|NC1(v) 6= ∅} ∪ {a, b, c} and S2 = {v ∈ S \ u|NC2(v) 6= ∅} ∪ {a, b, c}.
By applying the induction hypothesis on S1 and C1, we obtain that there is some



2.1. CHROMATIC NUMBER OF ISK4-FREE GRAPHS 25

vertex x ∈ S such that x has exactly one neighbor in P1 and this neighbor is in P ∗1
(x can be adjacent to u). We claim that x has exactly one neighbor in C. Indeed, if
x has exactly one neighbor x′ in P ∗2 then C ∪ {x, u} induces an ISK4 (if xu /∈ E(G))
or C1 ∪ {x} ∪ Q induces an ISK4 (if xu ∈ E(G)), where Q is the shorter path in
one of the two paths in C: x′P2u

′ and x′P2u
′′, a contradiction. If x has at least two

neighbors in P ∗2 , let x′, x′′ be the neighbors of x closest to u′, u′′ on P ∗2 , respectively.
Then C1∪{x}∪x′P2u

′∪x′′P2u
′′ induces an ISK4 (if xu /∈ E(G)) or C1∪{x}∪x′P2u

′

induces an ISK4 (if xu ∈ E(G)), a contradiction. So, x has no neighbor in P ∗2
and has exactly one neighbor in C as claimed. Similarly, by applying the induction
hypothesis on S2 and C2, we know that there is some vertex y ∈ S such that y has
exactly one neighbor in P ∗2 and this is also its only neighbor in C. Now, {x, y, u}
satisfies output 3 of the lemma. Hence, we may assume that S contains no bivertex.

Note that since G is ISK4-free, no vertex in S has exactly three neighbors in C.
Suppose that there is some vertex u in S which has at least four neighbors in C.
Let NC(u) = {u0, . . . , uk} where u0, . . . , uk (k ≥ 3) appear in that order along C.
Let Pu(i, i + 3) be the path of C from ui to ui+3 which contains ui+1 and ui+2 and
define amp(u,C) = maxk

i=0 |Pu(i, i + 3)| (the index is taken modulo k + 1). Note
that this notion is defined only for a vertex with at least four neighbors in C. Let
v ∈ S be such that amp(v, C) is maximum. Similarly, let NC(v) = {v0, . . . , vk}
where v0, . . . , vk (k ≥ 3) appear in that order along C. W.l.o.g suppose that Pv(0, 3)
is the longest path among all paths of the form Pv(i, i + 3). Let P0, P1, P2 be the
subpaths of Pv(0, 3) from v0 to v1, v1 to v2, v2 to v3, respectively. Let C0 = {v}∪P0,
C1 = {v}∪P1 and C2 = {v}∪P2. Consider the graph G′ obtained from G as follows:
V (G′) = V (G)∪{a, b, c}, E(G′) = E(G)∪{av, bv0, cv1}. It is clear that G′ is {ISK4,
triangle, K3,3}-free. Let S0 = {u ∈ S \ v|NC0(u) 6= ∅} ∪ {a, b, c}. By applying the
induction hypothesis on S0 and C0, we obtain that there is some vertex x ∈ S such
that x has exactly one neighbor x0 in P0 and x0 is in P ∗0 (x can be adjacent to v).
We claim that x has exactly one neighbor in C. Suppose that x has some neighbor in
P1. Let x1, x2 be the neighbors of x in P1 which are closest to v1 and v2, respectively
(x1 and x2 could be equal). Then we have {x, v} ∪ P0 ∪ v1P1x1 ∪ v2P1x2 induces
an ISK4 (if xv /∈ E(G)) or {x, v} ∪ P0 ∪ v1P1x1 induces an ISK4 (if xv ∈ E(G)),
a contradiction. Therefore, x has no neighbor in P1. Suppose that x has some
neighbor in P2, let x1 be the neighbor of x in P2 which is closest to v2. Let Q
be the path from x0 to x1 in C which contains v1. We have {x, v} ∪ Q ∪ v0P0x0
induces an ISK4 (if xv /∈ E(G)) or {x, v} ∪ Q induces an ISK4 (if xv ∈ E(G)), a
contradiction. Hence, x has no neighbor in P2. Now if x has at least four neighbors
in C, amp(x,C) > amp(v, C), a contradiction to the choice of v. Hence, x can have
at most one neighbor in the path from v0 to v3 in C which does not contain v1.
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Suppose x has one neighbor x′ in that path. By the assumption that we have no
bivertex, x′v0, v0x0 ∈ E(G). Let Q be the path from vk to x′ in C which does not
contain v0. We have {x, x′, v0, x0, v} ∪ Q ∪ v1P0x0 induces an ISK4 (if xv /∈ E(G))
or {x, x′, v0, x0, v} ∪ Q induces an ISK4 (if xv ∈ E(G)), a contradiction. Hence, x0
is the only neighbor of x in C, as claimed. Similarly, we can prove that there exist
two vertices y, z ∈ S such that they have exactly one neighbor in C which are in P ∗1 ,
P ∗2 , respectively. Note that the proof for y is not formally symmetric to the one for
x and z, but the proof is actually the same. In particular, a vertex y with a unique
neighbor in P ∗1 , no neighbor in P0, P2 and at least four neighbors in C also yields a
contradiction to the maximality of amp(v, C). Therefore, {x, y, z} satisfies output 2
of the lemma. Now, we can assume that no vertex in S has at least four neighbors
in C.

Hence, every vertex in S either has exactly one neighbor in C or exactly two
neighbors in C and is not a bivertex. Suppose there is some vertex u that has two
neighbors u′, u′′ on C and let x ∈ C be such that xu′, xu′′ ∈ E. Let v ∈ S be a vertex
adjacent to x. If v has another neighbor x′ in C then x′ must be adjacent to u′ or
u′′, since v is not a bivertex. So, we have that {u, v, x′, u′, x, u′′} induces an ISK4 (if
uv ∈ E(G)) or {u, v}∪C induces an ISK4 (if uv /∈ E(G)), a contradiction. So, v has
only one neighbor x in C. By the same argument, some vertex in V (C)\{u′, x, u′′} is
the unique neighbor in C of some vertex in S. Hence, if we have at least one vertex
which has two neighbors on C, then output 3 holds. If every vertex has exactly one
neighbor in C, the output 1 holds, which completes the proof.

Lemma 2.1.16. Let G be an {ISK4, triangle, K3,3}-free graph and u ∈ V (G). For
every i ≥ 1, G[Ni(u)] does not contain any hole.

Proof. Suppose for some i, G[Ni(u)] contains a hole C. For every vertex v ∈ C,
there exists a vertex v′ ∈ Ni−1(u) such that vv′ ∈ E. Hence there exists a subset
S ⊆ Ni−1(u) such that S dominates C. Let us apply Lemma 2.1.15 for S and C:

• If output 1 or 2 of Lemma 2.1.15 holds, then there exist three distinct vertices
u1, u2, u3 in S and three distinct vertices v1, v2, v3 in C such that for i ∈
{1, 2, 3}, NC(ui) = {vi}. By Lemma 2.1.13, since G is triangle-free, there
exists a confluence F of {u1, u2, u3} of Type 1, so F ∪ C induces an ISK4, a
contradiction.

• If output 3 of Lemma 2.1.15 holds, then there exist two distinct vertices u1,
u2 in S and three distinct vertices v1, v2, v

′
2 in C such that NC(u1) = v1,

NC(u2) = {v2, v′2}. By Lemma 2.1.12, there exists an upstairs path P of
{u1, u2}, so P ∪ C induces an ISK4, a contradiction.
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Proof of Theorem 2.1.7 We prove the theorem by induction on the number of
vertices of G. Suppose that G has a clique cutset K. So G \K can be partitioned
into two sets X, Y such that there is no edge between them. By induction hypothesis
χ(G[X∪K]) ≤ 4 and χ(G[Y ∪K]) ≤ 4, therefore χ(G) = max{χ(G[X∪K]), χ(G[Y ∪
K])} ≤ 4. Hence we may assume that G has no clique cutset. If G contains a K3,3,
then by Lemma 2.1.9, G is a thick complete bipartite graph and χ(G) ≤ 2. So
we may assume that G contains no K3,3. By Lemma 2.1.16, for every u ∈ V (G),
for every i ≥ 1, G[Ni(u)] is a forest, hence χ(G[Ni(u)]) ≤ 2. By Lemma 2.1.14,
χ(G) ≤ 4, which completes the proof.

2.1.4 Proof of Theorem 2.1.8

A boat is a graph consisting of a hole C and a vertex v that has exactly four consec-
utive neighbors in C (NC(v) induces a C4 if |C| = 4 or a P4 if |C| ≥ 5). A 4-wheel is
a particular boat whose hole is of length 4. Let C1 be the class of {ISK4, K3,3, prism,
boat}-free graphs, C2 be the class of {ISK4, K3,3, prism, 4-wheel}-free graphs and C3
be the class of {ISK4, K3,3, prism, K2,2,2}-free graphs. Remark that C1 ( C2 ( C3 (
ISK4-free graphs.

Lemma 2.1.17. Let G be a graph in C1. Then χ(G) ≤ 6.

Proof. We prove first the following.

Claim 2.1.18. Let u ∈ V (G) and i ≥ 1. Then G[Ni(u)] contains no triangle and
no C4.

Proof. Suppose G[Ni(u)] contains a triangle abc. No vertex is complete to abc since
G is K4-free. Suppose that there is some vertex x ∈ Ni−1(u) which has exactly two
neighbors in the triangle, w.l.o.g. assume that they are a and b. Let y be some
vertex in Ni−1(u) adjacent to c and P be an upstairs path of {x, y}. If y has exactly
one neighbor in abc (which is c), then P ∪ {a, b, c} induces an ISK4, a contradiction.
Hence y must have another neighbor in C, say a up to symmetry. In this case,
P ∪ {a, b, c} induces a boat, a contradiction. Then every vertex in Ni−1(u) has
exactly one neighbor in abc. Suppose there are three vertices x, y, z ∈ Ni−1(u) such
that Nabc(x) = {a}, Nabc(y) = {b} and Nabc(z) = {c}. By Lemma 2.1.13, there exists
a confluence S of {x, y, z}. If S is of Type 1, then S ∪ {a, b, c} induces an ISK4, a
contradiction. If S is of Type 2, then S ∪ {a, b, c} induces a prism, a contradiction.
Hence, G[Ni(u)] contains no triangle.
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Suppose Ni(u) contains a C4, namely abcd. Every vertex can only have zero,
one or two neighbors in abcd since a 4-wheel is a boat. Suppose there is some
vertex x ∈ Ni−1(u) which has exactly two non-adjacent neighbors in {a, b, c, d}, say
Nabcd(x) = {a, c}. Let y be some vertex in Ni−1(u) adjacent to d and P be an
upstairs path of {x, y}. If yb ∈ E, then {x, y, a, b, c, d} induces an ISK4 (if xy /∈ E)
or a K3,3 (if xy ∈ E), a contradiction. If ya ∈ E, P ∪ {a, c, d} induces an ISK4,
a contradiction. Then yc /∈ E also by symmetry, and Nabcd(y) = {d}. In this case
P ∪{a, b, c, d} induces an ISK4, a contradiction. Therefore, no vertex in Ni−1(u) has
two non-adjacent neighbors in {a, b, c, d}. Now, suppose that there is some vertex
x ∈ Ni−1(u) which has exactly two consecutive neighbors {a, b} in abcd. Let y be
some vertex in Ni−1(u) adjacent to d and P be an upstairs path of {x, y}. If y is
adjacent to c, then P ∪{a, b, c, d} induces a prism, a contradiction. If Nabcd(y) = {d},
then P ∪ {a, b, c, d} induces an ISK4, a contradiction. Hence Nabcd(y) = {a, d}. Let
z be some vertex in Ni−1(u) adjacent to c, Pxz be an upstairs path of {x, z} and
Pyz be an upstairs path of {y, z}. If zb ∈ E, Pyz ∪ {a, b, c, d} induces a prism, a
contradiction. If zd ∈ E, Pxz ∪ {a, b, c, d} induces a prism, a contradiction. Hence
Nabcd(z) = {c}. In this case, Pxz ∪ {a, b, c, d} induces an ISK4, a contradiction.
Therefore, there is no vertex in Ni−1(u) having two neighbors in {a, b, c, d}. So,
there are three vertices x, y, z ∈ Ni−1(u) such that Nabcd(x) = {a}, Nabcd(y) = {b},
Nabcd(z) = {c}. By Lemma 2.1.13, there exists a confluence S of {x, y, z}. If S is of
Type 1, S∪{a, b, c, d} induces an ISK4, a contradiction. If S is of Type 2, S∪{a, b, c}
induces an ISK4, a contradiction. Therfore, G[Ni(u)] contains no C4.

By Claim 2.1.18, the girth of Ni(u) is at least 5 for i ≥ 1. By Theorem 2.1.4,
χ(G[Ni(u)]) ≤ 3. By Lemma 2.1.14, χ(G) ≤ 6, which completes the proof.

Lemma 2.1.19. Let G be a graph in C2. Then χ(G) ≤ 12.

Proof. We first prove that: for any u ∈ V (G) and i ≥ 1, G[Ni(u)] contains no boat.
We may assume that i ≥ 2, since G[N1(u)] is triangle-free, the conclusion holds for
i = 1. Suppose for contradiction that G[Ni(u)] contains a boat consisting of a hole C
and a vertex x that has four neighbors a, b, c, d in this order on C. Since G contains
no 4-wheel, we can assume that |C| ≥ 5 and {a, b, c, d} induces a P4. Let P be the
path from a to d in C which does not go through b.

Claim 2.1.20. No vertex in Ni−1(u) is adjacent to both b and c.

Proof. Suppose there is a vertex y ∈ Ni−1(u) adjacent to both b and c. Since
{x, y, b, c} does not induce K4, xy /∈ E. If ya ∈ E, {a, b, c, x, y} induces a 4-wheel,
a contradiction. Hence, ya /∈ E. We also have yd /∈ E by symmetry. We claim
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that NC(y) = {b, c}. Suppose that y has some neighbor in P ∗. If y has exactly one
neighbor in P ∗, then {y} ∪ C induces an ISK4, a contradiction. If y has exactly
two consecutive neighbors in P ∗, then C ∪ {x, y} \ {c} induces a prism, a contradic-
tion. If y has at least three neighbors in P ∗, or two neighbors in P ∗ that are not
consecutive, then let z be the one closest to a and t be the one closest to d. Then
{x, y, b} ∪ zPa ∪ tPd induces an ISK4, a contradiction. So NC(y) = {b, c}. Let z be
a vertex in Ni−1(u) which has a neighbor in P ∗ and Pyz be an upstairs path of {y, z}.
If z has exactly one neighbor in C, then Pyz ∪ C induces an ISK4, a contradiction.
If z has exactly two consecutive neighbors in C, then Pyz ∪ C induces a prism, a
contradiction. If z has at least three neighbors in C or two neighbors in C which are
not consecutive, let t, w be the ones closest to b, c in C, respectively. Let Q be the
path from t to w in C which contains b. We have that Pyz ∪ Q induces an ISK4, a
contradiction.

By Claim 2.1.20, let y, z be two distinct vertices in Ni−1(u) such that yb, zc ∈ E,
yc, zb /∈ E and Pyz be an upstairs path of {y, z}.
Claim 2.1.21. xy, xz ∈ E.

Proof. Suppose xy /∈ E. Then xz /∈ E, otherwise Pyz ∪ {x, b, c} induces an ISK4.
Let t ∈ Ni−1(u) such that tx ∈ E, let Pty and Ptz be upstairs paths of {t, y} and
{t, z}, respectively. If tb ∈ E, then tc /∈ E by Claim 2.1.20, and Ptz ∪ {x, b, c}
induces an ISK4, a contradiction. If tc ∈ E, then tb /∈ E by Claim 2.1.20 and
Pty∪{x, b, c} induces an ISK4, a contradiction. So Nxbc(t) = {x}. By Lemma 2.1.13,
let S be a confluence of {y, z, t}. If S is of Type 1, S ∪ {x, b, c} induces an ISK4, a
contradiction. If S is of Type 2, S ∪ {x, b, c} induces a prism, a contradiction. Then
xy ∈ E. Symmetrically, xz ∈ E.

By Claim 2.1.21, yz /∈ E (for otherwise {x, b, c, y, z} induces a 4-wheel).

Claim 2.1.22. NC(y) = {b} and NC(z) = {c}.

Proof. We prove only NC(y) = {b}, the other conclusion is proved similarly. First,
ya /∈ E, otherwise {y, x, a, b} induces a K4. We also have yd /∈ E, otherwise
{x, y, b, c, d} induces a 4-wheel. If y has some neighbor in P ∗, let t be the one
closest to a. In this case, tPa ∪ {x, y, b} induces an ISK4, a contradiction. Hence
NC(y) = {b}.

Let t be a vertex in Ni−1(u) such that ta ∈ E and Pyt be an upstairs path of
{y, t}. By Claim 2.1.22, tb, tc /∈ E. We have tx ∈ E, otherwise Pyt∪{x, a, b} induces
an ISK4. Suppose that NC(t) = {a}. There exists a confluence S of {t, y, z} by
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Lemma 2.1.13. If S is of Type 1, S ∪ C induces an ISK4, a contradiction. If S is
of Type 2, S ∪ {a, b, c} induces an ISK4, a contradiction. Hence, t must have some
neighbor in P \{a}, let w be the one closest to d along P and Pw be the path from a
to w in C which contains b. Note that wa /∈ E, since otherwise (V (C)\{b, c})∪{x, t}
induces an ISK4.

Claim 2.1.23. t has some neighbor in Pyz.

Proof. Suppose that t has no neighbor in Pyz. Because G[u∪N1(u)∪ . . .∪Ni−2(u)] is
connected, there exists a path Q from t to some t′ such that Q\{t} ⊆ u∪N1(u)∪. . .∪
Ni−2(u) and t′ is the only vertex in Q which has some neighbor in Pyz. If t′ has exactly
one neighbor in Pyz, then Pw ∪ Q ∪ Pyz induces an ISK4, a contradiction. If t′ has
exactly two consecutive neighbors in Pyz, then Q∪Pyz∪{a, b, c} induces an ISK4. If t′

has at least three neighbors in Pyz or two neighbors in Pyz which are not consecutive,
let y′, z′ be the one closest to y, z, respectively, then Q∪Pw∪y′Pyzy∪z′Pyzz induces
an ISK4, a contradiction. Then t must have some neighbor in Pyz.

Let y′, z′ ∈ Pyz such that y′y, z′z ∈ E. Since t ∈ Ni−1(u), NPyz(t) ⊆ {y, z, y′, z′}.
If t has exactly one neighbor in Pyz, then {t} ∪ Pyz ∪ Pw induces an ISK4, a contra-
diction. If t has exactly two neighbors in Pyz, then {t, a, b, c} ∪Pyz induces an ISK4,
a contradiction. If t has exactly three neighbors in Pyz, then {t, b, c}∪Pyz induces an
ISK4, a contradiction. Hence, t has four neighbors in Pyz or NPyz(t) = {y, z, y′, z′}.
In particular, ty ∈ E and {x, t, y, a, b} induces a 4-wheel, a contradiction. Hence,
G[Ni(u)] is boat-free.

Now, for every i ≥ 1, G[Ni(u)] ∈ C1. By Lemma 2.1.17, χ(G[Ni(u)]) ≤ 6 . By
Lemma 2.1.14, χ(G) ≤ 12, completing the proof.

Lemma 2.1.24. Let G be a graph in C3. Then χ(G) ≤ 24.

Proof. Let u ∈ V (G) and i ≥ 1. We claim that G[Ni(u)] contains no 4-wheel.
Suppose that G[Ni(u)] contains a 4-wheel consisting of a hole abcd and a vertex x
complete to abcd. By similar argument as in the proof of Lemma 2.1.17 (the proof
of C4-free), the hole abcd cannot be dominated by only the vertices in Ni−1(u) which
has one or two neighbors in abcd. Hence, there exists some vertex y ∈ Ni−1(u)
complete to abcd. It is clear that xy /∈ E, otherwise {x, y, a, b} induces a K4. Now,
{x, y, a, b, c, d} induces a K2,2,2, a contradiction. So, G[Ni(u)] contains no 4-wheel.
By Lemma 2.1.19, χ(G[Ni(u)]) ≤ 12. By Lemma 2.1.14, we have χ(G) ≤ 24, which
proves the lemma.

Before the main proof, we have several lemmas proving the bound of chromatic
number of some basic graphs.
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Lemma 2.1.25. Let G be the line graph of a graph H with maximum degree three.
Then χ(G) ≤ 4.

Proof. To prove that G is 4-colorable, we only need to prove that H is 4-edge-
colorable. But since the maximum degree of H is three, this is a direct consequence
of Vizing’s theorem (see [6]).

Lemma 2.1.26. Let G be a rich square. Then χ(G) ≤ 4.

Proof. By the definition of a rich square, there is S = {u1, u2, u3, u4} that induces
a square in G such that every component of G \ S is a link of S. Assume that
u1, u2, u3, u4 appear in this order along the square. We show a 4-coloring of G as
follows. Assign color 1 to {u1, u3} and color 2 to {u2, u4}. Let P be a component
of G \ S with ends p, p′. If p = p′, give it color 3. If p 6= p′, give p, p′ color 3, 4,
respectively and assign color 1 and 2 alternately to the internal vertices of P .

Proof of Theorem 2.1.8 We prove the theorem by induction on the number of
vertices of G. Suppose that G has a clique cutset K. So G \K can be partitioned
into two sets X, Y such that there are no edges between them. By the induction
hypothesis, χ(G[X∪K]) ≤ 24 and χ(G[Y ∪K]) ≤ 24, therefore χ(G) = max{χ(G[X∪
K]), χ(G[Y ∪K])} ≤ 24. Hence we may assume that G has no clique cutset. If G
contains a K3,3, then by Lemma 2.1.9, G is a thick complete bipartite graph or
complete tripartite graph and χ(G) ≤ 3. So we may assume that G contains no
K3,3.

Suppose that G has a proper 2-cutset {a, b}. So G\{a, b} can be partitioned into
two sets X, Y such that there is no edge between them. Since G has no clique cutset,
it is 2-connected, so there exists a path PY with ends a and b and with interior in
Y . Let G′X be the subgraph of G induced by X ∪ PY . Note that PY is a flat path
in G′X . Let G′′X be obtained from G′X by reducing PY . Define a graph G′′Y similarly.
Since G′X is an induced subgraph of G, it contains no ISK4. So, by Lemma 2.1.11,
G′′X contains no ISK4. The same holds for G′′Y . By induction hypothesis, G′′X and
G′′Y admit a 24-coloring. Since a and b have different colors in both coloring, we can
combine them so that they coincide on {a, b} and obtain a 24-coloring of G. Now,
we may assume that G has no proper 2-cutset. If G contains a K2,2,2 (rich square) or
a prism, then by Lemma 2.1.10, G is the line graph of a graph with maximum degree
3, or a rich square, and by Lemmas 2.1.25 and 2.1.26, χ(G) ≤ 4 < 24. Therefore, we
may assume that G contains neither prism nor K2,2,2. So G ∈ C3 and χ(G) ≤ 24 by
Lemma 2.1.24.
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2.1.5 Conclusion

The bound found in Theorem 2.1.7 is not only close to the one stated in Conjecture
2.1.2, but the simple structure of each layer is also interesting. We believe that
it is very promising to settle Conjecture 2.1.2 by this way of looking at our class.
For Theorem 2.1.8, we are convinced that the bound 24 we found could be slightly
improved by this method if we look at each layer more carefully and exclude more
structures, but it seems hard to reach the bound mentioned in Conjecture 2.1.1.

In the course of reviewing this result, Conjecture 2.1.2 has been proved in [12].
Moreover, it was done by settling also Conjecture 2.1.6. However, we prefer to keep
our proof for Theorem 2.1.7 because of its nice and simple structure.

2.2 Detecting an ISK4

2.2.1 Introduction

We extend the notion of ISK4 to ISKn. For n ≥ 3, an ISKn is a subdivision of a
Kn. A graph that does not contain any subdivision of Kn as an induced subgraph is
ISKn-free. A twin wheel is a graph consisting of a hole C and a vertex with exactly
three consecutive neighbors in C. Note that K4 and twin wheels are two special
kinds of ISK4.

For a fixed graph H, one can check in polynomial time whether some graph G
contains a subdivision of H as a subgraph, as a consequence of the results of the
Graph Minors series [43]. However, checking whether G contains a subdivision of
H as an induced subgraph is much more complicated. The question of detecting an
induced subdivision of H (when H is fixed) in a given graph has been studied in
[37]. There are certain graphs H where the problem is known to be NP-hard and
graphs H where there exists a polynomial-time algorithm. For example, detecting
an induced subdivision of K3 is trivial since a graph is ISK3-free iff it is a forest.
On the other hand, detecting an induced subdivision of K5 has been shown to be
NP-hard [37]. So far, apart from the trivial cases, we only know a polynomial-time
algorithm to detect an induced subdivision of two subcubic graphs, which are K2,3

[14] (subsivision of K2,3 is also known as theta) and net [15]. In this section, we
answer the question of detecting an ISK4, which was asked in [37] and [15]. For
convenience in complexity analysis, we always denote by n the number of vertices of
the input graph.

Theorem 2.2.1. There is an algorithm with the following specifications:
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• Input: Graph G.

• Output:

– an ISK4 in G, or

– the conclusion that G is ISK4-free.

• Running time: O(n9).

Note that we have this theorem and several lemmas which correspond to some
algorithms. Therefore, it depends on the context that we may call them theorems
(lemmas) or algorithms.

2.2.2 Preliminaries

Let x, y, z be three distinct pairwise non-adjacent vertices in G. A graph H is an
(x, y, z)-radar in G if it is an induced subgraph of G and:

• V (H) = V (C) ∪ V (Px) ∪ V (Py) ∪ V (Pz).

• C is an induced cycle of length ≥ 3 containing three distinct vertices x′, y′, z′.

• Px is a path from x to x′, Py is a path from y to y′, Pz is a path from z to z′.

• Px, Py, Pz are vertex-disjoint and x′, y′, z′ are the only common vertices be-
tween them and C.

• These are the only edges in H.

Note that the length of each path Px, Py, Pz could be 0, therefore an induced
cycle in G passing through x, y, z is also considered as an (x, y, z)-radar. Note also
that an (x, y, z)-radar where the cycle C is a triangle, is a confluence of {x, y, z} of
Type 2. We now prove that Theorem 2.2.1 is a direct consequence of the following
lemma.

Lemma 2.2.2. There is an algorithm with the following specifications:

• Input: A graph G, four vertices u, x, y, z ∈ V (G) such that {u, x, y, z} induces
a claw with center u in G.

• Output: One of the followings:

– An ISK4 in G, or
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– Conclude that there is no (x, y, z)-radar in G′ = G \ (N [u] \ {x, y, z}).

• Running time: O(n5).

Lemma 2.2.3. An ISK4 is either K4, a twin wheel or contains a claw.

Proof of Theorem 2.2.1 by Lemma 2.2.2. We describe an algorithm to detect an ISK4
in G as follows. First, we check if there is a K4 or a twin wheel in G. Checking if
there exists a K4 takes O(n4). Checking if there is a twin wheel in G can be done
as follows: list all 4-tuples (a, b, c, d) of vertices in G such that they induce a K4 \ e
(a graph obtained from K4 by removing one edge, usually called a diamond) where
ad /∈ E(G); for each tuple, check if a and d are connected in G\((N [b]∪N [c])\{a, d}).
Since we have O(n4) such tuples, this can be done in O(n6). If there exists a K4 or
a twin wheel in G, then output that ISK4 in G. Otherwise, move on to next step.

Now we may assume that G is {K4, twin wheel}-free. The following claim is true
thanks to Lemma 2.2.3: G contains an ISK4 iff there exists some 4-tuple (u, x, y, z)
of vertices in G such that they induce a claw with center u and there is an (x, y, z)-
radar in G′. The last step in our algorithm is the following: generate every 4-tuple
(u, x, y, z) of vertices in G such that they induce a claw with center u and run
Algorithm 2.2.2 for each tuple. If for some tuple (u, x, y, z), we detect an ISK4 in G
then output that ISK4 and stop. If for all the tuples, we conclude that there is no
(x, y, z)-radar in G′ then we can conclude that G contains no ISK4. Since we have
O(n4) such tuples, and it takes O(n5) for each tuple by Algorithm 2.2.2, the running
time of our algorithm is O(n9).

The rest of this chapter is therefore devoted to the proof of Lemma 2.2.2. In the
next section, we introduce some useful structures and the main proof is presented in
Section 2.2.4.

2.2.3 Antennas and cables

First we introduce two useful structures in our algorithm.
Let x, y, z be three distinct pairwise non-adjacent vertices in G. An (x, y, z)-

antenna in G is an induced subgraph H of G such that:

• V (H) = {c} ∪ V (Px) ∪ V (Py) ∪ V (Pz).

• c /∈ {x, y, z} ∪ V (Px) ∪ V (Py) ∪ V (Pz).

• Px is a path from x to x′, Py is a path from y to y′, Pz is a path from z to z′.
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• Px, Py, Pz are vertex-disjoint and at least one of them has length ≥ 1.

• cx′, cy′, cz′ ∈ E(H).

• These are the only edges in H.

• For any vertex v in G \H:

– v has no neighbor in H or exactly one neighbor in H, or

– v has exactly two neighbors v1, v2 in H such that for some t ∈ {x, y, z},
v1, v2 ∈ Pt ∪ {c} and their distance in H is 1 (so they are adjacent) or 2.

We also define cable given three distinct pairwise non-adjacent vertices x, y, z in
G. An (x, y, z)-cable in G is an induced subgraph H of G such that:

• H is a path from x′ to z′ going through y′ for some permutation (x′, y′, z′) of
{x, y, z}.

• For any vertex v in G \H:

– v has no neighbor in H or exactly one neighbor in H, or

– v has exactly two neighbors v1, v2 in H such that for some t ∈ {x′, z′},
v1, v2 are in the path y′Ht and their distance in H is 1 or 2, or

– v has exactly three neighbors in H, which are y′ and two neighbors of y′

in H.

Note that the existence of an (x, y, z)-antenna or (x, y, z)-cable in G implies that
there is no vertex in G adjacent to all three vertices x, y, z.

The Steiner problem is the following. Given a graphG = (V,E) with non-negative
edge weights and let S ⊆ V be a subset of the vertices, called terminals. The task is
to find a minimum-weight Steiner tree - a tree in G that spans S. This problem is
well-known to be NP-hard in general [33]. We will use the following algorithm, which
is a direct consequence of Steiner problem in graphs for a fixed number of terminals:

Lemma 2.2.4. There is an algorithm with the following specifications:

• Input: A graph G, a subset X ⊆ V (G) of size k (k is fixed).

• Output: A minimum subgraph of G connecting every vertex in X (minimum
with respect to the number of vertices).

• Running time: O(n3).
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Proof. By considering X as the set of terminals and the weight of every edge is 1, the
solution for Steiner problem in G with k terminals gives a tree T (a subgraph of G)
connecting X with minimum number of edges. Since T is a tree, the number of its
vertices differs exactly one from the number of its edges, therefore graph G induced
by V (T ) is also a solution for the problem in Lemma 2.2.4. An O(n3) algorithm for
Steiner problem in graphs with fixed number of terminals is given in [24].

We refer the reader to Section 2.1.2 for the definition of a confluence.

Lemma 2.2.5. Given a connected graph G and three vertices x, y, z ∈ V (G), a
minimum subgraph H of G connecting x, y, z induces either:

1. A confluence of {x, y, z} of Type 1, or

2. A confluence of {x, y, z} of Type 2.

Proof. If there are more edges, we would find a smaller subgraph in G connecting
x, y, z, a contradiction.

From now on, we always denote by G, u, x, y, z the input of Algorithm 2.2.2 and
denote by G′ the graph G \ (N [u] \ {x, y, z}). The following algorithm shows that
we can detect some nice structures in G′ in polynomial time.

Lemma 2.2.6. There is an algorithm with the following specifications:

• Input: G, u, x, y, z.

• Output: One of the followings:

– An ISK4 in G, or

– Conclude that there is no (x, y, z)-radar in G′, or

– A vertex v ∈ G′ adjacent to all three vertices x, y, z, or

– An (x, y, z)-antenna H in G′, or

– An (x, y, z)-cable H in G′.

• Running time: O(n3).

Proof. First, we check if x, y, z are connected in G′ in O(n2). If they are not con-
nected, conclude that there is no (x, y, z)-radar in G′. Now suppose that they are
connected, we can find a minimum induced subgraph H of G connecting x, y, z by
Algorithm 2.2.4. By Lemma 2.2.5, if H is a confluence of Type 2, output H ∪ {u}
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as an ISK4 in G. Therefore, we may assume that H is a confluence of Type 1. If H
contains a vertex adjacent to both x, y, z, output that vertex and stop. Otherwise,
we will prove that H must be an (x, y, z)-antenna or an (x, y, z)-cable in G′, or G
contains an ISK4. It is clear that now H must have the same induced structure as an
antenna or a cable. We are left to prove that the attachment of a vertex v ∈ G′ \H
also satisfies the conditions in both cases:

• Case 1: H has the same induced structure as an (x, y, z)-antenna. Let c be the
center of the only claw in H. Let x′, y′, z′ be three neighbors of c such that x′

(y′, z′) is the one closest to x (y, z, respectively) in H. Denote by Px, Py, Pz the
paths from x to x′, y to y′, z to z′ in H, respectively. Let v ∈ G′\H. The following
is true:

– v cannot have neighbors in both Px, Py, Pz.

If v does, NH(v) = {x′, y′, z′, c} or NH(v) = {x′, y′, z′}, otherwise (H\{c, t})∪
{v} is a graph connecting x, y, z which is smaller than H, where t is one of
{x′, y′, z′}, a contradiction. If NH(v) = {x′, y′, z′, c}, {u, v, c}∪Px∪Py induces
an ISK4 in G. If NH(v) = {x′, y′, z′}, suppose that z′ 6= z (since v is not
adjacent to both x, y, z), then {u, v, c, z′} ∪ Px ∪ Py induces an ISK4 in G.

– v has at most two neighbors in Px ∪ {c} (this holds for Py, Pz also).

If v has at least four neighbors in Px ∪ {c}, let P be a shortest path from x
to c in H ∪ {v}, then P ∪ Py ∪ Pz induces a graph connecting x, y, z which is
smaller than H, a contradiction. If v has exactly three neighbors in Px∪{c},
suppose that v has no neighbor in Pz (since v cannot have neighbors in both
Px, Py, Pz), then {u, v, c} ∪ Px ∪ Pz induces an ISK4 in G.

– v cannot have neighbors in both two paths among Px, Py, Pz.

W.l.o.g, suppose v has neighbors in both Px and Py, we might assume that v
has no neighbor in Pz. If v has two neighbors in one of Px∪{c} and Py ∪{c},
suppose that is Px∪{c}, let t be the neighbor of v in Py which is closest to c.
In this case, {u, v} ∪ Px ∪ Pz ∪ tPyy

′ induces an ISK4 in G. Therefore, v has
exactly one neighbor in Px and one neighbor in Py and H ∪{u, v} induces an
ISK4 in G.

– If v has exactly two neighbors in Px ∪ {c}, they must be of distance 1 or 2 in
H.

Otherwise, we find a graph connecting x, y, z smaller than H, a contradiction.

• Case 2: H has the same induced structure as an (x, y, z)-cable. Suppose that H
is a path from x to z going through y. Let x′, z′ be the two neighbors of y in H
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such that x′ is closer to x in H. Denote by Px, Pz the paths from x to x′, z to z′

in H, respectively. Let v ∈ G′ \H. The following is true:

– v has at most two neighbors in Px ∪ {y}.
If v has four neighbors in Px ∪ {y}, let P be a shortest path from x to y
in H ∪ {v}, then P ∪ Pz is a subgraph connecting x, y, z which is smaller
than H, a contradiction. If v has exactly three neighbors in Px ∪ {y}, then
{u, v, y} ∪ Px induces an ISK4 in G.

– If v has neighbors in both Px, Pz, then NH(v) = {x′, y, z′}.
We first show that v is adjacent to y. Suppose that v is not adjacent to y. If
v has two neighbors in Px, let t be the neighbor of v in Pz which is closest
to y. In this case, {u, v, y} ∪ Px ∪ tPzz

′ induces an ISK4 in G. Therefore, v
has exactly one neighbor in Px and one neighbor in Py. But now, {u, v} ∪H
induces an ISK4 in G.

Now, v is adjacent to y. Since v has at most two neighbors in Px ∪ {y} and
two neighbors in Pz ∪{y}, v has exactly one neighbor in Px and one neighbor
in Pz. If v is not adjacent to x′, let t be the neighbor of v in Px. Now
{u, v, y} ∪ Pz ∪ xPxt induces an ISK4 in G. Therefore, NH(v) = {x′, y, z′}.

– If v has exactly two neighbors in Px, they must be of distance 1 or 2 in H.

Otherwise, we find a graph connecting x, y, z smaller than H, a contradiction.

Actually, there is an alternative way to implement Algorithm 2.2.6 more efficiently
by not using Algorithm 2.2.4. Basically, we only have to consider a shortest path
Pxy from x to y, then find a shortest path from z to Pxy. By that we would obtain
immediately an (x, y, z)-antenna or (x, y, z)-cable. However, we use Algorithm 2.2.4
since it gives us a more convenient proof. The first case we need to handle in
Algorithm 2.2.6 is when there is some vertex v adjacent to both x, y and z.

Lemma 2.2.7. There is an algorithm with the following specifications:

• Input: G, u, x, y, z, some vertex v ∈ G′ adjacent to x, y, z.

• Output: One of the followings:

– An ISK4 in G, or

– Conclude that v is not contained in any (x, y, z)-radar in G′.

• Running time: O(n2).
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Proof. It is not hard to see the following: v is contained in some (x, y, z)-radar in
G′ iff there exists a path from y to z in Gx = G′ \ ((N [x] ∪ N [v]) \ {y, z}) (up to a
relabeling of x, y, z). Therefore, we only have to test if y and z are connected in Gx

(and symmetries). If we find some path P from y to z in Gx, output {u, x, v} ∪ P
as an ISK4. If no such path exists, we can conclude that v is not contained in any
(x, y, z)-radar in G′. Since we only have to test the connection three times (between
y and z in Gx, and symmetries), the running time of this algorithm is O(n2).

We also have the following algorithm to handle with antenna.

Lemma 2.2.8. There is an algorithm with the following specifications:

• Input: G, u, x, y, z, an (x, y, z)-antenna H in G′.

• Output: One of the followings:

– An ISK4 in G, or

– Conclude that there is no (x, y, z)-radar in G′, or

– Some vertex c ∈ G′ which is not contained in any (x, y, z)-radar in G′.

• Running time: O(n4).

Proof. Denote by c, x′, y′, z′, Px, Py, Pz the elements of H as in the definition of an
antenna. In this proof, we always denote by N(X) the neighbor of X in G′. First,
we prove that any path connecting any pair of {x, y, z} in G′ \ c which contains at
most two neighbors of c certifies the existence of an ISK4 in G. Such a path can be
found by generating every pair (v, t) of neighbors of c in G′, and for each pair, find
a shortest path between each pair of {x, y, z} in G′ \ (N [c] \ {v, t}). It is clear that
if such a path is found by this algorithm, then it has at most two neighbors of c and
if no path is reported, we can conclude that it does not exist. Since we have O(n2)
pairs (v, t) and finding a shortest path between some pair of vertices in a graph takes
O(n2), this algorithm runs in O(n4). Now we prove that such a path certifies the
existence of an ISK4. Let P be a path between some pair in {x, y, z} that contains
at most two neighbors of c, w.l.o.g assume that P is from x to y. We say that a path
Q is a (Px, Py)-connection if one end of Q is in N(Px), the other end is in N(Py) and
Q∗ ∩ (N(Px)∪N(Py)) = ∅ (we make symmetric definitions for (x, z) and (y, z)). We
also say that a path Q is S-independent for some S ⊆ V (G′) if Q ∩ N [S] = ∅. We
consider following cases:
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1. P contains no neighbor of c.

It is clear that there exists a subpath P ′ of P such that P ′ is a (Px, Py)-
connection. Furthermore, we may assume that P ′ is Pz-independent since
otherwise there exists some subpath P ′′ of P ′ which is a (Px, Pz)-connection
and is Py-independent. Let x′′, y′′ be two ends of P ′ which are in N(Px)
and N(Py), respectively. In this case x′′ and y′′ are not adjacent to c since P ′

contains no neighbor of c. We have the following cases based on the attachment
on an antenna:

(a) x′′ and y′′, each has exactly one neighbor in Px and Py, respectively. Then
{u} ∪ P ′ ∪H induces an ISK4 in G.

(b) x′′ has exactly one neighbor in Px and y′′ has exactly two neighbors in Py

(or symmetric). Then {u, c} ∪ P ′ ∪ Px ∪ Py induces an ISK4 in G.

(c) x′′ and y′′, each has exactly two neighbors in Px and Py, respectively. Let
t be the neighbor of x in Px which is closer to c. Then {u, c}∪P ′∪ tPxx

′∪
Py ∪ Pz induces an ISK4 in G.

2. P contains exactly one neighbor of c.

Similar to the argument of the previous case, there exists a path P ′ with two
ends x′′ and y′′ such that P ′ is a (Px, Py)-connection and is Pz-independent.
We may assume that c has exactly one neighbor c′ in P ′, otherwise we are back
to previous case. In this case, at most one vertex in {x′′, y′′} can be adjacent
to c (in other words, at most one vertex in {x′′, y′′} can be identical to c′). We
consider the following cases:

(a) Each of {x′′, y′′} has exactly one neighbor in Px∪{c}, and therefore exactly
one neighbor in Px. Then {u, c} ∪ P ′ ∪ Px ∪ Py induces an ISK4 in G.

(b) x′′ has exactly one neighbor in Px∪{c} (this neighbor must be in Px) and
y′′ has exactly two neighbors in Px ∪{c} (or symmetric). If y′′ is adjacent
to c, then {u, c} ∪ P ′ ∪ Px ∪ Py induces an ISK4 in G. Otherwise y′′ has
two neighbors in Py and {u, c} ∪ c′P ′y′′ ∪ Px ∪ Py induces an ISK4 in G.

(c) Each of {x′′, y′′} has exactly two neighbors in Px ∪{c}. Since at most one
of them is adjacent to c, we might assume that y is not adjacent to c.
Then {u, c} ∪ c′P ′y′′ ∪ Py ∪ Pz induces an ISK4 in G.

3. P contains exactly two neighbors of c.

We may assume that P is Pz-independent since otherwise we have some subpath
of P which is a (Pz, Px)-connection or (Pz, Py)-connection and contains at most
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one neighbor of c that we can argue like previous cases. Therefore, {u, c}∪P∪Pz

induces an ISK4.

It is easy to see that above argument can be turned into an algorithm to output
an ISK4 in each case. Now we can describe our algorithm for Lemma 2.2.8. First,
test if there exists a path in G′ \ c between some pair of {x, y, z} which contains at
most two neighbors of c:

1. If such a path exists, output the corresponding ISK4 in G.

2. If no such path exists, test the connection between each pair of {x, y, z} in
G′ \ c:

(a) If {c} is a cutset in G′ disconnecting some pair of {x, y, z}, then conclude
that there is no (x, y, z)-radar in G′.

(b) Otherwise, conclude that c is the vertex not contained in any (x, y, z)-
radar in G′.

Now we explain why this algorithm is correct. If Case 1 happens, it outputs correctly
an ISK4 by the argument above. If Case 2 happens, we know that there are only two
possible cases for the connection between each pair of {x, y, z} in G′ \ c, for example
for (x, y):

• x and y are not connected in G′ \ c, or

• Every path from x to y in G′ \ c contains at least three neighbors of c.

Therefore, Case 2a corresponds to one of the following cases, both lead to the con-
clusion that there is no (x, y, z)-radar in G′:

• Each pair of {x, y, z} is not connected in G′ \ c.

• x is not connected to {y, z}, while y and z are still connected in G′ \ c (or
symmetric). In this case every path from y to z in G′ \ c contains at least three
neighbors of c.

If Case 2b happens, we know that each pair of {x, y, z} is still connected in G′ \c and
furthermore every path between them contains at least three neighbors of c. This
implies that c is not contained in any (x, y, z)-radar, since if c is in some (x, y, z)-
radar, we can easily find a path between some pair of {x, y, z} in that radar containing
at most two neighbors of c, a contradiction.

The complexity of the whole algorithm is still O(n4) since we can find an ISK4
in Case 1 in O(n2) and test the connection in Case 2 in O(n2).
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The next algorithm deals with cable.

Lemma 2.2.9. There is an algorithm with the following specifications:

• Input: G, u, x, y, z, an (x, y, z)-cable H in G′.

• Output: One of the followings:

– An ISK4 in G, or

– Conclude that there is no (x, y, z)-radar in G′, or

– Some vertex c ∈ G′ which is not contained in any (x, y, z)-radar in G′.

• Running time: O(n4).

Proof. W.l.o.g we can assume that cable H is a path from x to z containing y. Let
x′ be the neighbor of y in H which is closer to x and z′ be the other neighbor of y in
H. Let Px = xHx′ and Pz = zHz′. In this proof, we denote by N(X) the neighbor
of X in G′. We also say that a path Q is a (Px, Pz)-connection if one end of Q is
in N(Px), the other end is in N(Pz) and Q∗ ∩ (N(Px) ∪ N(Pz)) = ∅. Before the
algorithm, we first prove the followings:

(1) Every path P from x to z in G′ \ y containing no neighbor of y certifies an ISK4
in G.

Let P ′ be a subpath of P such that P ′ is a (Px, Pz)-connection. Let x′′ and z′′ be
two ends of P ′ such that x′′ ∈ N(Px) and z′′ ∈ N(Pz). Since P ′ has no neighbor
of y, both x′′ and z′′ are not adjacent to y. We consider the following cases based
on the attachment on a cable:

(a) x′′ and z′′, each has exactly one neighbor in Px and Pz, respectively. Then
{u} ∪H ∪ P ′ induces an ISK4 in G.

(b) x′′ has exactly two neighbors in Px and z′′ has exactly one neighbor in Pz

(or symmetric). Let t be the neighbor of z′′ in Pz.

• If t 6= z then {u, y} ∪ P ′ ∪ Px ∪ tPzz
′ induces an ISK4 in G.

• If t = z then {u, y, z} ∪ P ′ ∪ Px induces an ISK4 in G.

(c) x′′ and z′′, each has exactly two neighbors in Px and Pz, respectively. Let t
be one of the two neighbors of z′′ which is closer to y. Then {u, y} ∪ P ′ ∪
Px ∪ tPzz

′ induces an ISK4 in G.
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(2) Every path P from x to z in G′ \y containing exactly two neighbors of y certifies
an ISK4 in G.

It is clear since {u, y} ∪ P induces an ISK4 in G.

(3) Assume that every path from x to z in G′ \ y contains at least one neighbor of y.
If there exists some path from x to z in G′ \ y containing exactly one neighbor
of y, then a shortest such path P satisfies that P ∪ {y} is an (x, y, z)-antenna in
G′, or G contains an ISK4.

It is clear that P ∪ {y} has the same induced structure as an antenna, we only
have to prove the attachment on it. Let c be the only neighbor of y on P and
x′, z′ be the two neighbors of c different from y such that x′ is the one closer to
x in P . Denote Px = xPx′, Pz = zPz′. Let v be a vertex in G′ \ (P ∪ {y}), we
consider the following cases:

• v is not adjacent to y. The following is true:

– v cannot have neighbors on both Px and Pz.
If v does, there exists a path in G′ from x to z (passing through v)
containing no neighbor of y, a contradiction.

– v has at most two neighbors in Px ∪ {c}.
If v has at least three neighbors in Px∪{c}, they must be exactly three
consecutive neighbors in P , otherwise there exists a shorter path than
P satisfying the assumption. But if v has three consecutive neighbors
in Px ∪ {c}, then {u, v} ∪ P induces an ISK4.

– If v has exactly two neighbors in Px ∪ {c}, they must be of distance 1
or 2 in P .
Otherwise, we have a shorter path than P (passing through v) satisfying
the assumption.

• v is adjacent to y. The following is true:

– v cannot have neighbors on both Px and Pz.
If v does, N(v)∩Px = {x′} and N(v)∩Pz = {z′}, otherwise there exists
a shorter path than P (passing through v) satisfying the assumption. If
v is adjacent to c, then {u, v}∪P induces an ISK4. If v is not adjacent
to c, since v cannot adjacent to both x and z (by definition of cable),
assume v is not adjacent to x (or equivalently x 6= x′). In this case,
{u, v, y, x′} ∪ Pz induces an ISK4 in G.

– v cannot have at least three neighbors in Px ∪ {c}.
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If v does, there exists a path (passing through v) from x to z containing
exactly two neighbors of y (which are v and c). This path certifies an
ISK4 by (2).

– v cannot have exactly two neighbors in Px ∪ {c}.
If v does, {u, v, y, c} ∪ Px induces an ISK4.

– If v has exactly one neighbor in Px ∪ {c}, it must be c.
If v has exactly one neighbor in Px∪{c} which is not c, then {u, v, y}∪P
induces an ISK4.

The above discussion shows that either G contains an ISK4 (and we can detect
in O(n2)), or P ∪ {y} is an (x, y, z)-antenna in G′.

Now we describe our algorithm for Lemma 2.2.9:

1. Test if there exists a path P from x to z in G′ \ y containing no neighbor of y.

(a) If such a path exists, output an ISK4 by the argument in (1).

(b) If no such path exists, move to the next step.

2. Find a shortest path P from x to z in G′ \ y containing exactly one neighbor
of y if such a path exists.

(a) If such a path P exists, by the argument in (3), either we detect an ISK4
in G, output it and stop, or we find an (x, y, z)-antenna P ∪ {y} in G′,
run Algorithm 2.2.8 with this antenna as input, output the corresponding
conclusion.

(b) If no such path exists, move to the next step.

3. Test if there exists a path P from x to z in G′ \ y containing exactly two
neighbors of y.

(a) If such a path P exists, output an ISK4 in G by the argument in (2).

(b) If no such path exists, conclude there is no (x, y, z)-radar in G′ (Since at
this point, every path from x to z in G′\y contains at least three neighbors
of y).

Step 1 can be done in O(n2) by checking the connection between x and z in
G′ \ N [y]. Step 2 runs in O(n3) by generating every neighbor t of y and for each t,
find a shortest path between x and z in G′ \ (N [y] \ {t}). And pick the shortest one
over all such paths. Since we call the Algorithm 2.2.8, step 2a takes O(n4). Step 3
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can be done in O(n4) by generating every pair (t, w) of neighbors of y and for each
pair (t, w), check the connection between x and z in G′ \ (N [y] \ {t, w}). Therefore,
the total running time of Algorithm 2.2.9 is O(n4).

2.2.4 Proof of Lemma 2.2.2

Now we sum up everything in previous section and describe the algorithm for Lemma
2.2.2:

1. Run Algorithm 2.2.6. Output is one of the followings:

(a) An ISK4 in G: output it and stop.

(b) Conclude that there is no (x, y, z)-radar in G′ and stop.

(c) A vertex v adjacent to x, y, z: run Algorithm 2.2.7 with v as input.
Output is one of the followings:

i. An ISK4 in G: output it and stop.

ii. Conclude that v is not contained in any (x, y, z)-radar in G′: Run
Algorithm 2.2.2 recursively for (G \ v, u, x, y, z).

(d) An (x, y, z)-antenna H in G′: run Algorithm 2.2.8 with H as input. Out-
put is one of the followings:

i. An ISK4 in G: output it and stop.

ii. Conclude that there is no (x, y, z)-radar in G′ and stop.

iii. Some vertex c ∈ G′ which is not contained in any (x, y, z)-radar in
G′: Run Algorithm 2.2.2 recursively for (G \ c, u, x, y, z).

(e) An (x, y, z)-cable H in G′: run Algorithm 2.2.9 with H as input. Output
is one of the followings:

i. An ISK4 in G: output it and stop.

ii. Conclude that there is no (x, y, z)-radar in G′ and stop.

iii. Some vertex c ∈ G′ which is not contained in any (x, y, z)-radar in
G′: Run Algorithm 2.2.2 recursively for (G \ c, u, x, y, z).

The correctness of this algorithm is based on the correctness of the Algorithms
2.2.6, 2.2.7, 2.2.8 and 2.2.9. Now we analyse its complexity. Let f(n) be the com-
plexity of this algorithm. Since we have five cases, each case takes O(n4) and at most
a recursive call with the complexity f(n − 1). Therefore f(n) ≤ O(n4) + f(n − 1)
and f(n) = O(n5).
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2.2.5 Conclusion

In this section, we give an O(n9) algorithm to detect an induced subdivision of K4 in
a given graph. We believe that the complexity might be improved to O(n7) by first
decomposing the graph by clique cutset until there is no K3,3 (using decomposition
theorem in [38]). Now every (ISK4, K3,3)-free graph has a linear number of edges
since it is c-degenerate by some constant c as shown in [38]. Therefore, testing the
connection in this graph takes only O(n), instead of O(n2) as in the algorithm. Also,
we only have to consider O(n3) triples of three independent vertices and test every
possible center of that claw at the same time instead of generating all O(n4) claws.
But we prefer to keep our algorithm as O(n9) since it is simple and does not rely on
decomposition theorem. We leave the following open question as the conclusion:
Open question. Given a graph H of maximum degree 3, can we detect an induced
subdivision of H in polynomial time?



Chapter 3

Even-hole-free graphs

A graph is even-hole-free if it does not contain any hole of even length as an induced
subgraph. The study of even-hole-free graphs was motivated by perfect graphs, since
these two classes have a very close relation. In fact, the decomposition technique
which was developed during the study of even-hole-free graphs led to the proof of
Strong Perfect Graph Conjecture 1.2.1. In this chapter, we study even-hole-free
graphs with no star cutset. We give the optimal upper bound for its chromatic
number in terms of clique number in Section 3.3 and a polynomial-time algorithm to
color any graph in this class in Section 3.4. The latter is, in fact, a direct consequence
of our proof that this class has bounded rank-width. The results of this chapter are
covered in the following paper:

[III] N.K. Le. Coloring even-hole-free graphs with no star cutset, arXiv preprint,
submitted.

3.1 Introduction

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols,
Kapoor and Vušković in [17] and [18]. They were focused on showing that even-
hole-free graphs can be recognized in polynomial time, and their primary motivation
was to develop techniques which can then be used in the study of perfect graphs.
In [17], they obtained a decomposition theorem for even-hole-free graphs that uses
2-joins and star, double star and triple star cutsets, and in [18], they used it to obtain
a polynomial time recognition algorithm for even-hole-free graphs. That decompo-
sition technique is actually useful since the Strong Perfect Graph Conjecture was
proved in [13] by decomposing Berge graphs using skew cutsets, 2-joins and their
complements. Soon after, the recognition of Berge graphs was shown to be poly-
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nomial by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković in [11]. A better
decomposition theorem for even-hole-free graphs using only 2-joins and star cutsets
was given in [20].

Finding a maximum clique, a maximum independent set and an optimal coloring
are all known to be polynomial for perfect graphs [28, 29]. However, these algorithms
rely on the ellipsoid method, which is impractical. It is still an open question to find
a combinatorial algorithm for these problems. On the other hand, the complexities
of finding a maximum stable set and an optimal coloring are both open for even-
hole-free graphs. Note that a maximum clique of an even-hole-free graphs can be
found in polynomial time, since a graph without a hole of length 4 has polynomial
number of maximal cliques and one can list them all in polynomial time [26].

Therefore, we would like to see if the decomposition theorem can be used to
design polynomial-time algorithms for all these combinatorial problems. The general
answer should be impossible since there are some kinds of decomposition which
do not seem to be friendly with these problems like star or skew cutsets. On the
other hand, 2-joins look very promising. Indeed, in [48], Trotignon and Vušković
already gave the polynomial algorithms to find a maximum clique and maximum
independent set in the subclasses of even-hole-free and Berge graphs which are fully
decomposable by only 2-joins (namely, even-hole-free graphs with no star cutset and
perfect graphs with no balanced skew-partition, homogenous pair nor complement
2-join). In [16], they generalize the result for Berge graphs to perfect graph with no
balanced skew-partitions. Note that an O(nk) algorithm that computes a maximum
weighted independent set for a class of perfect graphs closed under complementation,
yields also an O(nk+2) algorithm that computes an optimal coloring for the same class
(see for instance [35, 44]). Hence, all three problems (clique, independent set and
coloring) are solved for perfect graph with no balanced skew-partitions. However, the
coloring problem for even-hole-free graphs with no star cutset remains open despite
its nice structure. In this chapter, we prove that this class has bounded rank-width,
a graph parameter which will be defined in the next section. This implies that it
also has bounded clique-width (a parameter which is equivalent to rank-width in
the sense that one is bounded if and only if the other is also bounded). Therefore,
coloring is polynomial-time solvable for even-hole-free graphs with no star cutset by
combining the two results: Kobler and Rotics [34] showed that for any constant q,
coloring is polynomial-time solvable if a q-expression is given, and Oum [40] showed
that a (8p − 1)-expression for any n-vertex graph with clique-width at most p can
be found in O(n3). Note that our result is strong in the sense that it implies that
every graph problem expressible in monadic second-order logic formula is solvable in
polynomial-time for even-hole-free graphs with no star cutset (including also finding
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a maximum clique and a maximum independent set).
We also know that even-hole-free graphs are χ-bounded by the concept introduced

by Gyárfás [30]. In [1], it is proved that χ(G) ≤ 2ω(G) − 1 for every even-hole-free
graph G. One might be interested in knowing whether this bound could be improved
for the class that we are considering, even-hole-free graphs with no star cutset. Let
rwd(G) denote the rank-width of some graph G. The main results of this chapter
are the two following theorems:

Theorem 3.1.1. Let G be a connected even-hole-free graph with no star cutset. Then
χ(G) ≤ ω(G) + 1.

Theorem 3.1.2. Let G be a connected even-hole-free graph with no star cutset. Then
rwd(G) ≤ 3.

The rest of this chapter is organized as follows. In Section 3.2, we formally define
every notion and mention all the results that we use in this chapter. The proof of
Theorem 3.1.1 is presented in Section 3.3 and the proof of Theorem 3.1.2 is given in
Section 3.4.

3.2 Preliminaries

Our proof heavily relies on the decomposition lemmas for even-hole-free graphs with
no star cutset given by Trotignon and Vušković in [48]. Hence, in the first part of this
section, the formal definitions needed to state these lemmas will be given. We refer
the reader to Section 1.3 of Chapter 1 for the definitions of several decompositions
(star cutset, clique cutset, 2-join,. . . ).

Since the goal of decomposition theorems is to break our graphs into smaller
pieces that we can handle inductively, we need a way to construct them. Blocks
of decomposition with respect to a 2-join (which will be defined below) are built
by replacing each side of the 2-join by a path and the next lemma shows that for
even-hole-free graphs, there exists a unique way to choose the parity of that path.

Lemma 3.2.1 ([48]). Let G be an even-hole-free graph and (X1, X2, A1, B1, A2, B2)
be a split of a 2-join of G. Then for i = 1, 2, all the paths with an end in Ai, an end
in Bi and interior in Ci have the same parity.

Let G be an even-hole-free graph and (X1, X2, A1, B1, A2, B2) be a split of a 2-join
of G. The blocks of decomposition of G with respect to (X1, X2) are the two graphs
G1, G2 built as follows. We obtain G1 by replacing X2 by a marker path P2 of length
k2, from a vertex a2 complete to A1, to a vertex b2 complete to B1 (the interior of
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P2 has no neighbor in X1). We choose k2 = 3 if the length of all the paths with an
end in A2, an end in B2 and interior in C2 is odd (they have the same parity due to
Lemma 3.2.1), and k2 = 4 otherwise. The block G2 is obtained similarly by replacing
X1 by a marker path P1 of length k1 with two ends a1, b1.

We refer the reader to Section 1.4 of Chapter 1 for the definition of a pyramid.
Note that in an even-hole-free graph, the lengths of all three paths of a pyramid have
the same parity. Now we introduce the last basic graph in our class.

An extended nontrivial basic graph R is defined as follows:

1. V (R) = V (L) ∪ {x, y}.

2. L is the line graph of a tree T .

3. x and y are adjacent, x, y /∈ V (L).

4. Every maximal clique of size at least 3 in L is called an extended clique. L
contains at least two extended cliques.

5. The nodes of L corresponding to the edges incident with vertices of degree one
in T are called leaf nodes. Each leaf node of L is adjacent to exactly one of
{x, y}, and no other node of L is adjacent to {x, y}.

6. These are the only edges in R.

Note that the definition of the extended nontrivial basic graph we give here is
simplified compared to the one from the original paper [20] (since they prove a
decomposition theorem for a more general class, namely, 4-hole-free odd-signable
graphs), but it is all we need in our proof. The following property of R is easy to
observe in even-hole-free graphs with no star cutset:

Lemma 3.2.2. x (and y) has at most one neighbor in every extended clique. Fur-
thermore, if x has some neighbor in an extended clique K, then N(y) ∩K = ∅.

Proof. If x has two neighbors a, b in some extended clique K, then N(a) \ {b} =
N(b)\{a}, implying that there is a star cutset S = ({a}∪N(a))\{b} in R separating
b from the rest of the graph, a contradiction. Also, if x and y both have a neighbor
in a same extended clique, called a and b, respectively, then {x, a, b, y} induces a
4-hole, a contradiction.

An even-hole-free graph is basic if it is one of the following graphs:

• a clique,
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• a hole,

• a long pyramid, or

• an extended nontrivial basic graph.

Now, we are ready to state the decomposition theorem for even-hole-free graphs
given by Da Silva and Vušković.

Theorem 3.2.3 (Da Silva, Vušković [20]). A connected even-hole-free graph is either
basic or it has a 2-join or a star cutset.

By this theorem, we already know that even-hole-free graphs with no star cutset
always have a 2-join. But we might prefer something a bit stronger for our purpose.
A 2-join is called extreme if one of its block of decomposition is basic. The two
following lemmas (which can be found in Sections 3 and 4 in [48]) say that: our
blocks of decomposition with respect to a 2-join remain in the class and our class is
fully decomposable by extreme 2-joins. This is convenient for an inductive proof.

Lemma 3.2.4 (Trotignon, Vušković [48]). Let G be a connected even-hole-free graph
with no star cutset and (X1, X2) is a 2-join of G. Let G1 be a block of decomposition
with respect to this 2-join. Then G1 is a connected even-hole-free graph with no star
cutset.

Lemma 3.2.5 (Trotignon, Vušković [48]). A connected even-hole-free graph with no
star cutset is either basic or it has an extreme 2-join.

By Lemmas 3.2.4 and 3.2.5, we know that even-hole-free graphs with no star cut-
set can be fully decomposed into basic graphs using only extreme 2-joins. However,
we need a little more condition to avoid confliction between these 2-joins, that is,
every 2-join we use is non-crossing, meaning that every marker path in the process
always lies entirely in one side of every following 2-joins (the edges between X1 and
X2 do not belong to any marker path). Now we define the 2-join decomposition tree
for this purpose. Note that this definition we give here is not only for even-hole-free
graphs with no star cutset, but also works in a more general sense. It is well de-
fined for any graph class with its own basic graphs. Let D be a class of graphs and
B ⊆ D be the set of basic graphs in D. Given a graph G ∈ D, a tree TG is a 2-join
decomposition tree for G if:

• Each node of TG is a pair (H,S), where H is a graph in D and S is a set of
disjoint flat paths of H.
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• The root of TG is (G, ∅).

• Each non-leaf node of TG is (G′, S ′), where G′ has a 2-join (X1, X2) such that
the edges between X1 and X2 do not belong to any flat path in S ′. Let S1, S2 ⊆
S ′ be the set of the flat paths of S ′ in G′[X1], G

′[X2], respectively (note that
S ′ = S1∪S2). Let G1, G2 be two blocks of decomposition of G′ with respect to
this 2-join with marker paths P2, P1, respectively. The node (G′, S ′) has two
children, which are (G1, S1 ∪ {P2}) and (G2, S2 ∪ {P1}).

• Each leaf node of TG is (G′, S ′), where G′ ∈ B.

Note that by this definition, each set S ′ in some node (G′, S ′) of TG is properly
defined in top-down order (from root to leaves). A 2-join decomposition tree is called
extreme if each non-leaf node of it has a child which is a leaf node.

Lemma 3.2.6 (Trotignon, Vušković [48]). Every connected even-hole-free graphs
with no star cutset has an extreme 2-join decomposition tree.

Observation 3.2.7. Every block of decomposition with respect to a 2-join of a con-
nected even-hole-free graph with no star cutset which is basic is either a long pyramid
or an extended nontrivial basic graph.

Let us review the definition of rank-width, which was first introduced in [41]. For
a matrix M = {mij : i ∈ R, j ∈ C} over a field F , let rk(M) denote its linear rank.
If X ⊆ R, Y ⊆ C, then let M [X, Y ] be the submatrix {mij : i ∈ X, j ∈ Y } of M .
We assume that adjacency matrices of graphs are matrices over GF (2).

Let G be a graph and A, B be disjoint subsets of V (G). Let M be the adjacency
matrix of G over GF (2). We define the rank of (A,B), denoted by rkG(A,B), as
rk(M [A,B]). The cut-rank of a subset A ⊆ V (G), denoted by cutrkG(A), is defined
by

cutrkG(A) = rkG(A, V (G) \ A).

A subcubic tree is a tree such that the degree of every vertex is either one or
three. We call (T, L) a rank-decomposition of G if T is a subcubic tree and L is a
bijection from V (G) to the set of leaves of T . For an edge e of T , the two connected
components of T \e correspond to a partition (Ae, V (G)\Ae) of V (G). The width of e
of the rank-decomposition (T, L) is cutrkG(Ae). The width of (T, L) is the maximum
width over all edges of T . The rank-width of G, denoted by rwd(G), is the minimum
width over all rank-decompositions of G (If |V (G)| ≤ 1, we define rwd(G) = 0).

Observation 3.2.8. The rank-width of a clique is at most 1 and the rank-width of
a hole is at most 2.



3.3. χ-BOUNDING FUNCTION 53

3.3 χ-bounding function

3.3.1 Special graphs

Recall that the bound of chromatic number for even-hole-free graphs (χ(G) ≤ 2ω(G)−
1) is obtained by showing that there is a vertex whose neighborhood is a union of
two cliques [1]. We would like to do the same things for our class. However, since our
class is not closed under vertex-deletion, instead of showing that there exists a vertex
whose neighborhood is “simple”, we have to show that there is an elimination order
such that the neighborhood of each vertex is “simple” in the remaining graph. To
achieve that goal, we introduce special graphs. In fact, this is just a way of labeling
vertices for the sake of an inductive proof.

A graph G is special if it is associated with a pair (CG, FG) such that:

• CG ⊆ V (G), FG ⊆ V (G) and CG ∩ FG = ∅.

• Every vertex in FG has degree 2.

• Every vertex in CG has at least one neighbor in FG.

Note that any graph can be seen as a special graph with CG = FG = ∅.
Suppose that G has some split (X1, X2, A1, B1, A2, B2) of a 2-join. Due to this

new notion of special graph, we want to specify the pairs (CG1 , FG1) and (CG2 , FG2)
for the blocks of decomposition G1, G2 of G with respect to this 2-join to ensure
that the two blocks we obtained are also special. Let Ci = CG ∩ Xi, Fi = FG ∩ Xi

(i = 1, 2), we choose the pair (CG1 , FG1) as follows:

• If |A1| = 1, the only vertex in A1 is in CG and A2 ∩ FG 6= ∅, then set Ca = ∅,
Fa = {a2}. Otherwise set Ca = {a2}, Fa = ∅.

• If |B1| = 1, the only vertex in B1 is in CG and B2 ∩ FG 6= ∅, then set Cb = ∅,
Fb = {b2}. Otherwise set Cb = {b2}, Fb = ∅.

• Finally, set CG1 = C1 ∪ Ca ∪ Cb, FG1 = F1 ∪ Fa ∪ Fb ∪ V (P ∗2 ).

The pair (CG2 , FG2) for block G2 is chosen similarly.

Lemma 3.3.1. Let G be a special connected even-hole-free graph with no star cutset
associated with (CG, FG) and (X1, X2, A1, B1, A2, B2) be a split of a 2-join of G. Let
G1 be a block of decomposition with respect to this 2-join. Then G1 is a special graph
associated with (CG1 , FG1).
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Proof. Remark that since G is 4-hole-free, one of A1 and A2 must be a clique (similar
for B1 and B2). Now we prove that if one of A1 and A2 intersects FG, then the other
set is of size 1. Suppose that A1 ∩ FG 6= ∅, we will prove that |A2| = 1. Indeed,
since f ∈ A1 ∩ FG has degree 2, |A2| ≤ 2. If |A2| = 2 then f is the only vertex in
A1 (otherwise, A2 must be a clique and N(f) is a clique cutset separating f from
the rest of G, a contradiction to the fact that G has no star cutset). Therefore, f
has no neighbor in X1, so there is no path from A1 to B1 in G[X1], a contradiction
to the definition of a 2-join. This proves that |A2| = 1. Now, G1 is a special graph
associated with (CG1 , FG1) because:

1. Every vertex f in FG1 has degree 2.

If f ∈ F1 \ (A1 ∪ B1), then degree of f remains the same in G and G1. If
f ∈ F1∩ (A1∪B1), say f ∈ F1∩A1, from the above remark, |A2| = 1, therefore
the degree of f remains the same in G and G1. If f ∈ Fa ∪ Fb then |A1| = 1
by the way we choose FG1 , so f has degree 2 in G1. If f ∈ P ∗2 , then it is an
interior vertex of a flat path, therefore it has degree 2.

2. Every vertex c in CG1 has at least a neighbor in FG1 .

If c ∈ C1 and its neighbor in FG is in X1, then c has a neighbor in F1. If c ∈ C1

and its neighbor in FG is in A2 ∪B2, say A2, then its neighbor in FG1 is a2. If
c ∈ Ca ∪ Cb, then its neighbor in FG1 is one of the two ends of P ∗2 .

3.3.2 Elimination order

Let G be a special graph associated with (CG, FG). A vertex v ∈ V (G) is almost
simplicial if its neighborhood induces a clique or a union of a clique K and a vertex
u such that u /∈ CG (u can have neighbor in K). An elimination order v1,. . . ,
vk of vertices of G \ FG is nice if for every 1 ≤ i ≤ k, vi is almost simplicial in
G \ (FG ∪ {v1, . . . , vi−1}). The next lemma is the core of this section.

Lemma 3.3.2. Let G be a special connected even-hole-free graph with no star cutset
associated with (CG, FG). Then G \ FG admits a nice elimination order.

By setting CG = FG = ∅, we have the following corollary of Lemma 3.3.2:

Corollary 3.3.3. Let G be a connected even-hole-free graph with no star cutset.
Then G admits a nice elimination order.



3.3. χ-BOUNDING FUNCTION 55

Theorem 3.1.1 follows immediately from the above corollary since we can greedily
color G in the reverse order of that nice elimination order using at most ω(G) + 1
colors. Therefore, the rest of this section is to devoted to the proof Lemma 3.3.2.

Lemma 3.3.4. Let G be a special basic even-hole-free graph with no star cutset
associated with (CG, FG) and G is neither a clique nor a hole. Let P be a flat path
of length at least 2 in G. We denote by u1, u2 the two ends of P .

• If N(u1) \ V (P ) is a clique, set K1 = N(u1) \ V (P ), otherwise set K1 = ∅.

• If N(u2) \ V (P ) is a clique, set K2 = N(u2) \ V (P ), otherwise set K2 = ∅.

Let QP = (K1 ∪ K2 ∪ V (P )) \ FG. Then G \ FG admits a nice elimination order
v1,. . . , vk, where QP is in the end of this order (i.e. QP = {vk−|QP |+1, . . . , vk}).

Proof. We prove the lemma when G is a long pyramid or an extended nontrivial basic
graph. In fact, since the proof for a long pyramid can be treated almost similarly, we
only show here the proof in the case where G is an extended nontrivial basic graph.
Suppose that V (G) = V (H) ∪ {x, y}, where H is the line graph of a tree. We may
assume the followings:

1. P is a maximal flat path in G (two ends of P are of degree ≥ 3).

If the lemma is true when P is a maximal flat path then it is also true for
all subpaths of P , because QP admits a perfect elimination order (an order of
vertices in which the neighborhood of a vertex induces a clique at the time it
is eliminated) where a fixed subpath of P is in the end of this order.

2. All the vertices in G \ (FG ∪QP ∪ {x, y}) are not in CG.

Observe that the neighborhood of every vertex v in G, except x and y, induces
a union of two cliques. Therefore, if v ∈ CG, it must have a neighbor of degree
2 in FG, then its neighborhood in G \ FG actually induces a clique and it can
be eliminated at the beginning of our order.

3. Every vertex in G \ (FG ∪QP ) has at most one neighbor in CG.

Indeed, by the assumption 2, CG ⊆ {x, y} ∪QP . If a vertex v ∈ G \ (FG ∪QP )
has two neighbors in CG, then it must have a neighbor u ∈ (CG ∩QP ) \ {x, y}.
By the definition of CG, v must be a vertex in FG since it is the only neighbor
of degree 2 of u, a contradiction to the choice of v.
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Let us first forget about the flat path P and the restriction of putting all the
vertices of QP in the end of the order. We will show how to obtain a nice elimination
order for G \ FG in this case. We choose an arbitrary extended clique KR in H and
call it the root clique. For each other extended clique K in H, there exists a vertex
v ∈ K whose removal separates the root clique from K \ v in H, we call it B-vertex.
We call a node E-vertex if it is adjacent to x or y. Note that in each extended clique
K, we have exactly one B-vertex and at most one E-vertex (by Lemma 3.2.2). For
the root clique KR, we also add a new vertex r adjacent to all the vertices of KR, and
let it be the B-vertex for KR. Now, if we remove every edge in every extended clique,
except the edges incident to its B-vertex, we obtain a tree TH rooted at r. Note that
V (TH) = V (H) ∪ {r}. We specify the nice elimination order for G where all the
vertices in V (KR) are removed last (we do not care about the order of eliminating
r, this vertex is just to define an order for V (G) more conveniently). Let OT be an
order of visiting V (TH) \ (V (KR) ∪ {r}) satisfying:

• A node u in TH is visited after all the children of u.

• If u is a B-vertex of some extended clique K, the children of u must be visited
in an order where the E-vertex in K (if it exists) is visited last.

Let us introduce some notions with respect to orders first. Let O1 = v1, . . . , vk
and O2 = u1, . . . , ut be two orders of two distinct sets of vertices. We denote by
O1⊕O2 the order v1, . . . , vk, u1, . . . , ut. If S is a subset of vertices of some order O1,
we denote by O1 \ S the order obtained from O1 by removing S. Let u be a vertex,
we also denote by u the order of one element u.

Let OKR
be an arbitrary elimination order for the vertices in KR. Now the

elimination order for G \ FG is O = (OT \ FG) ⊕ x ⊕ y ⊕ OKR
. We prove that this

elimination order is nice. Indeed, let u be a vertex of order OT , u /∈ FG. If u is not
an E-vertex, then its neighborhood at the time it is eliminated is either a subclique
of some extended clique (if its parent is a B-vertex) or a single vertex which is its
parent. If u is an E-vertex, since it is eliminated after all its siblings (the nodes share
the same parent), its neighborhood consists of only two vertices: its parent and x (or
y). And by assumption 3, at most one of these two vertices is in CG, so u is almost
simplicial. Now when x is removed in this order, it has at most two neighbors: one
is y and one is possibly a vertex in KR, also not both of them are in CG, so x is
almost simplicial. Vertex y has at most one neighbor at the time it is eliminated.
And finally, KR is a clique so any eliminating order for KR at this point is nice.

Now we have to consider the flat path P , and put all the vertices of QP in the
end of the elimination order. There are two cases:



3.3. χ-BOUNDING FUNCTION 57

• P is a flat path not containing x and y.

In this case, both K1 and K2 are non-empty. The graph obtained from G by
removing V (P )∪{x, y} contains two connected components H1, H2, where Hi

(i = 1, 2) is the line graph of a tree. By considering Ki as the root clique of Hi,
from the above argument, we obtain two elimination orders O1, O2 for H1 \K1

and H2 \K2. Now, all the vertices not yet eliminated in G are in {x, y} ∪QP .
We claim that at least one of x, y has at most two neighbors in the remaining
graph. Indeed, otherwise x and y both have at least three neighbors, implying
that they both have neighbors in K1 and K2, which contradicts Lemma 3.2.2.
Suppose x has at most two neighbors, in this case we eliminate x first, then
y. Note that x and y are both almost simplicial in this elimination order,
since they have at most two neighbors (not both of them in CG according
to assumption 3) at the time they were eliminated. Finally, choose for QP a
perfect elimination order OQ. Now the nice elimination order for G \ FG is
O = ((O1 ⊕O2) \ FG)⊕ x⊕ y ⊕OQ.

• x or y is an end of P .

W.l.o.g, suppose x is an end of P , say x = u1. In this case K1 = ∅, K2 6= ∅.
The graph H ′ obtained by removing V (P ) ∪ {y} from G is the line graph of a
tree. We consider K2 as the root clique of this graph. From above argument,
we have a nice elimination order OH′ for V (H ′)\K2. Now all the vertices left in
G are in {y}∪QP . Observe that y has at most two neighbors in the remaining
graph (x and possibly a vertex in K2), therefore y is almost simplicial and can
be eliminated. Note that x has no neighbor in K2, since if u ∈ K2 is adjacent
to x, then {u} ∪N(u) is a star cutset in G separating P ∗ from the rest of the
graph (P ∗ is non-empty since the length of P is at least two). Finally, choose
for QP a perfect elimination order OQ. Now the nice elimination order for
G \ FG is O = (OH′ \ FG)⊕ y ⊕OQ.

Proof of Lemma 3.3.2. By Lemma 3.2.6, G has an extreme 2-join decomposition tree
TG. Now, for every node (G′, S ′) of TG, G′ is a special connected even-hole-free graph
with no star cutset associated with (CG′ , FG′) (by Lemmas 3.2.4 and 3.3.1). Now we
prove that for every node (G′, S ′) of TG, G′ satisfies Lemma 3.3.2. This implies the
correctness of Lemma 3.3.2 since the root of TG corresponds to G.

First, we show that for every leaf node (G′, S ′) of TG, G′ satisfies Lemma 3.3.2. If
G′ is a clique then any elimination order of G′\FG′ is nice. If G′ is a hole, there exists
a vertex v such that one of its neighbors is not in CG′ , then v can be eliminated first.
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The vertices in the remaining graph induce a subgraph of a path, therefore G′ \ v
admits a nice elimination order. If G′ is a long pyramid or an extended nontrivial
basic graph, we have a nice elimination order for G′ by Lemma 3.3.4.

Now, let us prove that Lemma 3.3.2 holds for G′, where (G′, S ′) is a non-leaf
node of TG. Since TG is extreme, G′ admits an extreme 2-join with the split
(X1, X2, A1, B1, A2, B2) and let G1, G2 be the blocks of decomposition of G′ with
respect to this 2-join. We may assume that G1 is basic and G2 satisfies Lemma 3.3.2
by induction. Note that V (G′) = (V (G1) \V (P2))∪ (V (G2) \V (P1)). Now we try to
specify a nice elimination order for G′ by combining the orders for G1 and G2. Since
G1 is basic, apply Lemma 3.3.4 for G1 with P = P2, we obtain the nice elimination
order O1 for G1\(FG1∪QP ). Remark that all the vertices in O1 are in V (G′) since we
have not eliminated QP . By induction hypothesis, we obtain also a nice elimination
order O2 for G2 \ FG2 . We create an order O′2 from O2 for V (G′) as follows (a1, b1
are two ends of the marker path P1):

• If a1 ∈ CG2 and A1 is a clique, O′2 is obtained from O2 by substituting a1 in O2

by all the vertices in A1 (in any order), otherwise set O′2 = O2 \ {a1}.

• If b1 ∈ CG2 and B1 is a clique, O′2 is obtained from itself by substituting b1 in
O′2 by all the vertices in B1 (in any order), otherwise set O′2 = O′2 \ {b1}.

We claim that O = O1 ⊕ O′2 is a nice elimination order for G′ \ FG′ . Let N ′G′(u)
(N ′G1

(u), N ′G2
(u)) be the set of neighbors of u in the remaining graph when it is

removed with respect to order O (O1, O2, respectively).

• If u is a vertex in O1.

– If u /∈ A1 and B1, then NG′(u) = NG1(u), because u is almost simplicial
in G1 then it is also almost simplicial in G′ at the time it was eliminated.

– If u ∈ A1 or B1, w.l.o.g, suppose that u ∈ A1, then A1 is not a clique,
because we do not eliminate QP in O1. Since one of A1, A2 must be a
clique to avoid 4-hole, A2 is a clique. If a2 ∈ FG1 , then |A1| = 1 and A1

is a clique of size 1, a contradiction. Then a2 ∈ CG1 . Because a2 was not
eliminated at the time we remove u in order O1, a2 ∈ N ′G1

(u). We can
obtain N ′G′(u) from N ′G1

(u) by substituting a2 by A2, therefore u remains
almost simplicial in G′.

• If u is a vertex in O′2.

– If u ∈ X2\(A2∪B2), then NG′(u) = NG2(u), because u is almost simplicial
in G2 then it is also almost simplicial in G′ at the time it was eliminated.
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– If u ∈ A2 or B2, w.l.o.g, suppose u ∈ A2. We may assume that A1

is a clique, since otherwise it was eliminated in O1 before u, implying
N ′G′(u) ⊆ N ′G2

(u) and u is almost simplicial in G′.

∗ Suppose a1 ∈ CG2 . If u is eliminated after a1, then N ′G′(u) = N ′G2
(u)

and u is almost simplicial in G′. If u is eliminated before a1, we
can obtain N ′G′(u) from N ′G2

(u) by substituting a1 by A1, therefore u
remains almost simplicial.

∗ Suppose a1 ∈ FG2 . Since A1 is a clique and it contains a vertex
v ∈ FG′ , |A1| ≤ 2. If |A1| = 2, then NG′(v) is a clique cutset of size 2
(star cutset) separating v from the rest of G′, a contradiction. Thus
A1 = {v} and N ′G′(u) = N ′G2

(u) (since v is the only vertex in A1 and
v /∈ G′ \ FG′) and u is almost simplicial in G′.

– If u ∈ A1 or B1, w.l.o.g, suppose u ∈ A1, then A1 is a clique, since
otherwise it was removed in O1. We can obtain N ′G′(u) from N ′G2

(a1) by
creating a clique K, which is a subclique of A1 (K is actually the set
of vertices of A1 going after u in O′2), and make it complete to N ′G2

(a2).
Therefore, u remains almost simplicial in G′.

3.3.3 The bound is tight

Now we show how to construct for any k ≥ 3 an even-hole-free graph Gk with no
star cutset such that ω(Gk) = k and χ(Gk) = k + 1. The set of vertices of Gk:
V (Gk) = A ∪ B ∪ C ∪ D ∪ E ∪ F , where A, C, E are cliques of size (k − 1); B,
D are independent sets of size (k − 1) and F is an independent set of size (k − 2).
The vertices in each set are labeled by the lowercase of the name of that set plus an
index, for example A = {a1, . . . , ak−1}. The edges of Gk as follows:

• A is complete to B, C is complete to D.

• bi is adjacent to ci, di is adjacent to ei (i = 1, . . . , k − 1).

• ak−1 is complete to E.

• d1 is complete to F .

• ai is adjacent to fi (i = 1, . . . , k − 2).
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a1 a2 a3 a4

b1 b2 b3 b4 c1 c2 c3 c4

d1 d2 d3 d4

e1 e2 e3 e4f1 f2 f3

Figure 3.1: Graph G5 with ω(G5) = 5 and χ(G5) = 6

Figure 3.1 is an example of Gk, where k = 5. The fact that Gk is an even-hole-free
graph with no star cutset can be checked by hand.

Lemma 3.3.5. For every k ≥ 3, ω(Gk) = k and χ(Gk) = k + 1.

Proof. It is clear that ω(Gk) = k. We will show that Gk is not k-colorable. Suppose
we have a k-coloring of G. Because in that coloring, every clique of size k must be
colored by all k different colors, then all the vertices in B must receive the same color
1. Therefore, the clique C must be colored by (k− 1) left colors, and all the vertices
in D must be colored by color 1 also. Therefore, the k-clique {ak−1, e1, . . . , ek−1} is
not colorable since all of them must have color different from 1, a contradiction.

3.4 Rank-width

3.4.1 Bounded rank-width

Recall that the definition of rank-width and rank-decomposition are given in the last
part of Section 3.2. Given a graph G and some rank-decomposition (T, L) of G, a
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subset X of V (G) is said to be separated in (T, L) if there exists an edge eX of T
corresponding to the partition (X, V (G) \X) of V (G). Let d be an integer, we say
that graph G has property P(d) if for every set S of disjoint flat paths of length at
least 3 in G, there is a rank-decomposition (T, L) of G such that the width of (T, L)
is at most d and every flat path P ∈ S is separated in (T, L). The next lemma shows
the relation between 2-join and rank-width.

Lemma 3.4.1. Let D be a class of graphs and B ⊆ D be the set of its basic graphs
such that every graph G ∈ D has a 2-join decomposition tree. Furthermore, there
exists an integer d ≥ 2 such that every basic graph in D has property P(d). Then for
every graph G ∈ D, rwd(G) ≤ d.

Proof. Let G be a graph in D and TG be its 2-join decomposition tree. We prove
that every node (G′, S ′) of TG satisfies the following property P′(d): there is a rank-
decomposition (T, L) of G′ such that the width of (T, L) is at most d and every flat
path P ∈ S ′ is separated in (T, L). Note that property P′(d) is weaker than property
P(d) since it is not required to be true for every choice of the set of disjoint flat paths,
but only for a particular set S ′ associated with G′ in TG. Proving this property for
each node in TG implies directly the lemma since if the root of TG has property P′(d),
then rwd(G) ≤ d.

It is clear that every leaf node of TG has property P′(d) since every basic graph
has property P(d) by the assumption. Now we only have to prove that every non-
leaf node (G′, S ′) of TG has property P′(d) assuming that its two children (G1, S1)
and (G2, S2) already have property P′(d). For i ∈ {1, 2}, let (Ti, Li) be the rank-
decomposition of Gi satisfying property P′(d). We show how to construct the rank-
decomposition (T, L) of G′ satisfying this property. Recall that by the definition of a
2-join decomposition tree, G1 and G2 are two blocks of decomposition with respect
to some 2-join (X1, X2) of G′ together with some marker paths P2 ∈ S1, P1 ∈ S2,
respectively. For i ∈ {1, 2}, since (Gi, Si) satisfies property P′(d), P3−i is separated
in (Ti, Li) by some edge ei = uivi of Ti. Let Ci, Di be the two connected components
(subtrees) of Ti \ ei (the tree obtained from Ti by removing the edge ei), where
the leaves of Ci correspond to V (Gi) \ V (P3−i) and the leaves of Di correspond to
V (P3−i). W.l.o.g, we may assume that ui is in Ci and vi is in Di. The tree T is then
constructed from T1[V (C1) ∪ {v1}] and T2[V (C2) ∪ {v2}] by identifying u1 with v2
and u2 with v1. Note that T is a subcubic tree and the leaves of T now correspond
to V (G). The mapping L is the union of the two mappings L1 and L2 restricted in
X1 and X2, respectively. Now the node (G′, S ′) satisfies property P′d since:

• Every flat path P ∈ S ′ is separated in (T, L).

It is true since for i ∈ {1, 2}, every path P ∈ Si is separated in (Ti, Li).
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• The width of (T, L) is at most d.

It is easy to see that the width of the identified edge e = u1v1 of T is 2, since it
corresponds to the partition (X1, X2) of G′. For other edge e of Ci (for i = 1 or
2), it corresponds to a cut of G′ separating a subset Z of Xi from V (G′)\Z, and
we have cutrkG′(Z) = cutrkGi

(Z) (since the rank of the corresponding matrix
stays the same if we just add several copies of the columns corresponding to
the two ends of the marker path P3−i), which implies that cutrkG′(Z) ≤ d.

Thanks to Lemma 3.4.1 and the existence of a 2-join decomposition tree by
Lemma 3.2.6, to prove that the rank-width of even-hole-free graphs with no star
cutset is at most 3, we are left to only prove that every basic even-hole-free graph
with no star cutset has property P(3). Actually, by Observation 3.2.7, we do not
have to prove it for cliques and holes, since they never appear in the leaf nodes of
any 2-join decomposition tree of any graph in our class. Therefore, Theorem 3.1.2 is
a consequence of Observation 3.2.8 and the following lemma:

Lemma 3.4.2. Every basic even-hole-free graph with no star cutset, which is neither
a clique nor a hole, has property P(3).

Proof. Let G be a basic even-hole-free graph with no star cutset, which is different
from a clique and a hole. Since G is basic and G is neither a clique nor a hole, G
must be an extended nontrivial basic graph or a long pyramid. Since the case where
G is a long pyramid can be followed easily from the case where it is an extended
nontrivial basic graph. We omit the details for long pyramids here.

Let G be an extended nontrivial basic graph, V (G) = V (H) ∪ {x, y}, where H
is the line graph of a tree. Let S be some set of flat paths of length at least 3 in G.
Now we show how to build the rank-decomposition of G satisfying the lemma.

First, we construct the characteristic tree FH for H. We choose an arbitrary
extended clique in H as a root clique. Let E be the set of flat paths obtained from
H by removing all the edges of every extended clique in H. Now, we define the
father-child relation between two flat paths in E. A path B is the father of some
path B′ if they have an endpoint in the same extended clique in H and any vertex
of B is a cut-vertex in H which separates B′ from the root clique. If B is the father
of B′ then we also say that B′ is a child of B. Any path in E which has only one
endpoint in an extended clique is called leaf path, otherwise it is called internal path.
Now, we consider each path B in E as a vertex vB in the characteristic tree FH , and
associate with each node vB a set SvB = V (B). Each leaf path corresponds to a leaf
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in FH and each internal path corresponds to an internal node in FH , which reserves
the father-child relation (if a path B is the father of some path B′ then vB is the
father of vB′ in FH). We also add a root r for FH , and the children of r are all the
vertices vB, where B is a path with an endpoint in the root clique, let Sr = ∅. Now,
we add two special vertices x, y to attain the characteristic tree FG for G. If x (or y)
is an endpoint of some flat path P in S, then we set Sv = Sv ∪ {x} (Sv = Sv ∪ {y},
respectively), where v is the leaf in FH corresponding to the leaf path in E which
contains P \{x} (P \{y}, respectively). Otherwise set Sv = Sv∪{x} (Sv = Sv∪{y}),
where v is a leaf in FH corresponding to any path in E having an endpoint adjacent
to x (y, respectively). Figures 3.2 and 3.3 are the example of an extended nontrivial
basic graph G and its characteristic tree FG (the bold edges are the edges of flat
paths in S). Note that each node in FG corresponds to a subset Sv of V (G), they
are all disjoint, each of them induces a flat path in G and V (G) = ∪v∈FG

Sv.
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Figure 3.2: An extended nontrivial basic graph G with a set of flat paths.

Now, we show how to build the rank-decomposition of G from its characteristic
tree FG. We first define a special rooted tree, called k-caterpillar (k ≥ 1) to achieve
that goal. For k ≥ 1, a graph I is called k-caterpillar if:

• For k = 1, V (I) = {a1, l1}, E(I) = {a1l1} and a1 is the root of I.
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r

{1, 2}

{3, 4, . . . , 7, x} {8, 9, y} {13, 14, 15, 16} {17, 18, 19}

{10, 11, 12}
{20, 21, . . . , 29}

Figure 3.3: The characteristic tree FG for graph G in Figure 3.2.

• For k ≥ 2, V (I) = {a1, . . . , ak−1} ∪ {l1, . . . , lk}, E(I) = {aiai+1|1 ≤ i ≤
k − 2} ∪ {aili|1 ≤ i ≤ k − 1} ∪ {ak−1lk} and a1 is the root of I.

Notice that in the following discussion, for the sake of construction, the rank-
decomposition (T, L) we build for our graph is not exactly the same as in the def-
inition of a rank-decomposition mentioned in Section 3.2, since we allow vertex of
degree 2 in tree T , but it does not change the definition of rank-width. A flat path
in G is called mixed if it contains a flat path in S but it is not a flat path in S. We
start by constructing the rank-decomposition of a non-mixed flat path in G. For a
non-mixed flat path P = p1 . . . pk, we create a k-caterpillar TP which has exactly k
leaves l1, . . . , lk as in the definition and a bijection LP maps each vertex in P to a leaf
of TP such that LP (pi) = li. Since a mixed path can always be presented as a union
of vertex-disjoint non-mixed paths P = ∪ki=1Pi (where one end of Pi is adjacent to
one end of Pi+1 for 1 ≤ i ≤ k − 1), let (Ti, Li) be the rank-decomposition for each
non-mixed path Pi constructed as above, we can build the tree TP by creating a k-
caterpillar I which has exactly k leaves l1, . . . , lk as in the definition and identify each
root of Ti with the leaf li of I for 1 ≤ i ≤ k. Also, let the mapping LP from V (P ) to
the leaves of TP be the union of all the mappings Li’s for 1 ≤ i ≤ k. Now, we build
the rank-decomposition (TG, LG) of G from its characteristic tree FG by visiting each
node in FG in an order where all the children of any internal node is visited before
its father. For a vertex v ∈ FG, denote by Cv the union of all connected components
of FG \ v that does not contain r. Let FG(v) = FG[V (Cv) ∪ {v}], Xv = ∪u∈FG(v)Su.
At each node v of FG, we build the rank-decomposition (Tv, Lv) of the graph Gv

induced by the subset Xv of V (G) by induction:

1. If v is a leaf of FG, build the rank-decomposition (Tv, Lv) for the flat path
corresponding to v like above argument for mixed and non-mixed paths.
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2. If v is an internal node of FG different from its root and v1, . . . , vk are its
children. Let (T, L) be the rank-decomposition of the flat path corresponding
to v (built by above argument for mixed and non-mixed paths) and (Ti, Li)
(i = 1 . . . k) be the rank-decomposition of G[Xvi ]. We build Tv by constructing
a (k+1)-caterpillar having exactly (k+1) leaves l1, . . . , lk+1 as in the definition
and identify the root of T with l1, the root of Ti with li+1 for 1 ≤ i ≤ k. Let
the mapping Lv from Xvi to the leaves of Tv be the union of the mapping L
and all the mappings Li’s for 1 ≤ i ≤ k.

3. If v is the root of FG and v1, . . . , vk are its children. Let (Ti, Li) (i = 1 . . . k) be
the rank-decompositions of G[Xvi ]. We build Tv by constructing a k-caterpillar
having exactly k leaves l1, . . . , lk as in the definition and identify the root of Ti
with li for 1 ≤ i ≤ k. Let the mapping Lv from V (G) to the leaves of Tv be
the union of all the mappings Li’s for 1 ≤ i ≤ k.
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Figure 3.4: The rank-decomposition for graph G in Figure 3.2.

The rank-decomposition (Tr, Lr) corresponding to the root r of FG is the desired
rank-decomposition (T, L) for G (see Figure 3.4). Now we prove that this rank-
decomposition construction for the extended nontrivial basic graphs G satisfies the
lemma.

Proposition 3.4.3. Let (T, L) be the above constructed rank-decomposition for G.
Then, every flat path P in S is separated in (T, L).
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Proof. It is trivially true, because P is a non-mixed subpath of some flat path B in
E, so V (P ) is separated in the rank-decomposition of B. And each flat path B of
G is also separated in the rank-decomposition of G by our construction. So V (P ) is
separated in (T, L).

Proposition 3.4.4. The above constructed rank-decomposition (T, L) of G has width
at most 3.

Proof. We prove by the structure of the characteristic tree FG of G. For an internal
node v of FG, let v1, . . . , vk be its children, in some sense, the decomposition tree
Tv for Xv is obtained by “glueing” the decomposition tree for G[Sv] and all the
decomposition trees Ti for G[Xvi ] for 1 ≤ i ≤ k along a cut-vertex. Therefore, we
consider an edge e of Tv as an edge of T as well. Our goal is to prove that the width
of any edge e with respect to the rank-decomposition (T, L) of G is at most 3. For
the sake of induction, at each node v of FG, we prove that the width of any edge e
of Tv is at most 3 with respect to the rank-decomposition (T, L) of G (we mention v
here just to specify an edge in our tree T ):

1. If v is a leaf in FG. Every edge e of Tv corresponds to a partition of V (G) into
two parts where one of them is a subpath of the flat path corresponding to v,
so the width of e is at most 2.

2. If v is an internal node in FG and v1, . . . , vk are its children. Let (Ti, Li)
(i = 1 . . . k) be the rank-decompositions of G[Xvi ]. Let e be an edge of Tv. If
e is an edge of Ti then the width of e is at most 3 by induction. Otherwise, e
corresponds to one of the following situations:

• e corresponds to a partition (V (P ), V (G) \ V (P )) of V (G), where P is a
subpath of the flat path G[Sv]. In this case, the width of e is clearly at
most 2.

• e corresponds to a partition (U, V (G) \U) of V (G), where U is the union
of several Xvi ’s. Let K be the extended clique intersecting every Xvi . In
this case, there are only three types of neighborhood of vertices of U in
G \ U :

– K \ U ,

– x if x /∈ U , or N(x) \ U if x ∈ U , and

– y if y /∈ U , or N(y) \ U if y ∈ U .

Therefore, the width of e is at most 3.
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Lemma 3.4.2 is true because of the Propositions 3.4.3 and 3.4.4.

3.4.2 An even-hole-free graph with no clique cutset and un-
bounded rank-width

It is clear that clique cutset is a particular type of star cutset. However, the class
of even-hole-free graph with no clique cutset (a super class of even-hole-free graph
with no star cutset) does not have bounded rank-width. Since clique-width and
rank-width are equivalent, now we show how to construct for every k ≥ 4, k even an
even-hole-free graph Gk with no clique cutset and cwd(Gk) ≥ k. The set of vertices
of Gk: V (Gk) = ∪ki=0Ai, where each Ai = {ai,0, . . . , ai,k} is a clique of size (k + 1).
We also have edges between two consecutive sets Ai, Ai+1 (i = 0, . . . , k, the indexes
are taken modulo (k + 1)). They are defined as follows: ai,j is adjacent to ai+1,l iff
j + l ≤ k.

Lemma 3.4.5. For every k ≥ 4, k even, Gk is an even-hole-free graph with no clique
cutset.

Proof. By the construction, there is no hole in Gk that contains two vertices in some
set Ai and every hole must contain at least a vertex in each set Ai. Therefore, every
hole in Gk has exactly one vertex from each set Ai, so its length is (k + 1) (an odd
number). Hence, Gk is even-hole-free.

We see that every clique in Gk is contained in the union of some two consecutive
sets Ai, Ai+1. Hence, its removal does not disconnect Gk. Therefore, Gk has no
clique cutset.

Lemma 3.4.6. For every k ≥ 4, k even, cwd(Gk) ≥ k.

Proof. The graph obtained from Gk by deleting all the vertices in A0 ∪ki=1 {ai,0} is
isomorphic to the permutation graph Hk introduced in [27]. And because it was
already proved in that paper that cwd(Hk) ≥ k, and clique-width of Gk is at least
the clique-width of any of its induced subgraph then cwd(Gk) ≥ k.

Note that an example of a (diamond, even-hole)-free graph with no clique cuset
and unbounded rank-width was also given in [50] (a diamond is a graph obtained from
a complete graph on four vertices by removing one edge). This graph is constructed
differently from ours. It is built by specifying the edges between a long path and
a large clique in such a way that there is no even hole. However, our construction
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and theirs both contain a large clique. We do not know whether this is the case for
even-hole-free graphs in general. The following question was asked in [8]:
Open question. Is the rank-width of an even-hole-free graph bounded by a function
of its clique number?



Chapter 4

Connected greedy coloring

A natural way to color a graph is by using a greedy algorithm: we consider the vertices
of a graph in sequence and assign for each vertex the first available color. Although
this algorithm does not always give the optimal solution, it is very practical and may
give some information about the structure of a graph. Many researches have been
done for general orders (see [10, 21, 52, 7]): the complexity of computing Grundy
number (i.e. maximum k such that there exists an order producing a k-coloring),
the characterization of graphs where there exists a bad ordering, the complexity of
recognizing (hereditary) well-colored graphs, . . . . There are many ways to choose an
order of the vertices to hopefully improve the outcome of greedy algorithms. In this
chapter, we mainly focus on connected orders, an order where each vertex (except
the first one) has a neighbor before it in the order. Connected orders have also been
studied [31, 2, 4, 7]. We know that it is NP-hard to compute connected Grundy
number (a similar parameter for connected order). Some examples of graphs that
are not friendly with connected orders were also given. However, we know very little
about the characterization of good graphs with respect to connected orders. A graph
G is good if for every connected induced subgraph H of G and for every connected
order O of H, the greedy algorithm gives H an optimal coloring. In this chapter,
we give the characterization of good claw-free graphs in terms of minimal forbidden
induced subgraphs. This also implies an algorithm for recognizing good claw-free
graphs. Note that the complexity of recognizing good graphs remains open. The
result of this chapter is covered in the following paper:

[IV] N.K. Le, N. Trotignon. Connected greedy colouring in claw-free graphs,
arXiv preprint, submitted.
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4.1 Introduction

Let G be a graph and O = [v1, . . . , vn] be a linear ordering of its vertices. The greedy
coloring algorithm (greedy algorithm for short) applied to (G,O) consists in taking
the vertices in the order O, and giving to each vertex a color equal to the smallest
positive integer not used by its neighbours already colored. This obviously produces
a coloring.

For every graph, there exists an order O for the vertices such that the greedy
algorithm produces an optimal coloring. To see this, consider an optimal coloring π,
and consider the following ordering: first take vertices with color 1, then vertices with
color 2, and so on. But this method has no practical interest to compute optimal
colorings, since to find the ordering, an optimal coloring has to be known.

It is also well known that for some graphs, there exist orderings that produce
colorings very far from the optimal, for instance consider two disjoint sets on n
vertices, say A = {a1, . . . , an} and B = {b1, . . . , bn}. Add all possible edges between
A and B, except edges aibi, i ∈ {1, . . . , n}. This produces a bipartite graph G.
However, the greedy algorithm applied to the order [a1, b1, a2, b2, . . . , an, bn] produces
a coloring with n colors.

One might wonder for which graphs the greedy algorithm always gives an optimal
solution no matter what order is given. The operation Disjoint-Union consists in
building a new graph by taking the union of two vertex-disjoint graphs. The op-
eration Complete-Join consists in building a new graph by taking the union of two
vertex-disjoint graphs G1 and G2, and by adding all possible edges between V (G1)
and V (G2). Let Pk denote the path on k vertices. A cograph is a P4-free graph.
Seinsche [46] proved that cographs are exactly the graphs that can be produced by
starting with graphs on one vertex and by repeatedly apply the operations Disjoint-
Union and Complete-Join to previously constructed graphs. The graphs such that
the greedy algorithm on every order gives every induced subgraph of them an optimal
coloring are fully characterized.

Theorem 4.1.1 (see [21, 10]). For every graph G, the following properties are equiv-
alent.

• G is a cograph.

• For every induced subgraph H of G and every linear order O of V (H), the
greedy coloring algorithms applied to (H,O) produces an optimal coloring of
H.

There are many ways to order the vertices of a graph with the hope to obtain
a better coloring. In this paper, we focus on connected orders. An order O =
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[v1, . . . , vn] for a graph G is connected if for every 2 ≤ i ≤ n, there exists j < i
such that vjvi ∈ E(G). A connected order exists if and only if G is connected, and
is efficiently produced by search algorithms such as BFS, DFS (or more simply by
the algorithm generic search). We say that a graph G is good if for every connected
induced subgraph H of G and every connected order O of H, the greedy algorithm
produces an optimal coloring of H. Also, a connected order O of a graph G is good
if it produces an optimal coloring of G. A graph or a connected order is bad if it
is not good. A graph is minimally bad if it is bad and all other connected induced
subgraphs of it are good. Connected orders are better than general orders for coloring
bipartite graphs.

Theorem 4.1.2 (see [4]). Every bipartite graph is good.

However, unlike general orders, it is not true that for every graph, there exists
a connected order that provides an optimal coloring, see [2] for example. A similar
claw-free example is given in Figure 4.1.

Figure 4.1: A claw-free graph where every connected order is bad.

The connected greedy coloring has recently been studied. In [4], they define
Γc(G) (also known as connected Grundy number) as the maximum number k such
that there exists a connected order producing a k-coloring of G. They also proved
that checking if Γc(G) ≥ k is NP-hard if k is a part of the input. In [7], they show
that this problem remains NP-hard even when k = 7. A graph G is good in our
definition if for every connected induced subgraph H of G, Γc(H) = χ(H). Note
that their results imply also that checking if there exists a bad connected order for a
graph is NP-hard, but do not imply NP-hardness on recognizing good graphs (since
a class of good graphs is hereditary by our definition). The complexity of recognizing
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good graphs remains open. In [2], they gave several examples of small graphs that
are not friendly with connected orders. They also proved that gem (see Figure 4.2)
is the unique smallest bad graph. In [31], they defined a more restricted good graph
with respect to connected orders and gave the complete characterization of this class.
Therefore, their class is also good by our definition.

However, the list of excluded induced subgraphs for the class of good graphs is
still unknown. Equivently, no description of minimally bad graphs is known. Our
goal is to prove an analogue of Theorem 4.1.1 for connected orders. If we restrict our
attention to claw-free graphs, we are able to give this description. This is our main
result that we now state precisely. The rest of the chapter is devoted to its proof.

The main result

Note that the definition of a prism is presented in Section 1.4 of Chapter 1. Here we
add the definitions of some particular types of prism. A prism is short if one of its
three paths is of length 1. A prism is parity if its three paths have the same parity
and is imparity otherwise. Note that a prism contains an odd hole if and only if it
is imparity. A parity prism is even (odd) if the lengths of its three paths are even
(odd).

rs

twin wheel 4-wheel
bracelet

gem fish claw

Figure 4.2: Some graphs

We also need several particular graphs, defined in Figure 4.2. We call obstructions
the graphs represented in Figure 4.3. Note that in Figures 4.2 and 4.3, all the straight
lines are edges, all the curved lines are paths of length ≥ 1. In Figure 4.2:
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• The path of a twin wheel is of length at least 2.

• A bracelet has six paths of length at least 2: two paths in the sides are of even
length; the other four paths are of odd length.

The graphs in Figure 4.3 have the following specifications:

• The orientation represented for each graph has no special meaning. It is an
indication of how a bad connected order can be found for it. The orientation
does not fully specify this order. The arrow should be seen from a small to a
big vertex with respect to this order. The chromatic number of each graph is
3 and the last vertex in every bad order receives color 4.

• The hole in F1 is odd.

• The only path in F2 is of length ≥ 1. The orientation of the only unoriented
edge depends on the parity of this path. F2 is a gem when the length of this
path is 1.

• The only path in F3 is of length ≥ 1.

• The hole in F5 is even.

• All paths in F7, F8, F9, F10 are of length ≥ 2.

• F7 is an imparity prism. The lower path is of different parity from the other
two paths.

• The prism in F8 is an even prism. The upper path of the prism contains two
flat paths: the first one is odd, the second is even.

• The prisms in F9 and F10 are odd prisms.

• The upper path of the prism in F9 contains two odd flat paths.

• The upper and lower paths of the prism in F10 contain four even flat paths.

• The length of the only long cycle in F11 is odd ≥ 3. If its length is 3, then F11

is a fish.

• The length of two flat paths in F12 is odd ≥ 3.

Our main result is the following.

Theorem 4.1.3. Let G be a claw-free graph. Then G is good if and only if G does
not contain any obstruction as an induced subgraph. Equivalently, a claw-free graph
is minimally bad if and only if it is an obstruction.
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F1 F2 F3 F4

F5 F6 F7 F8

F9 F10
F11 F12

Figure 4.3: List of obstructions

4.2 Some properties of minimally bad graphs

For any graph G, any order O of its vertices and any vertex v, let πG,O(v) be the
color that vertex v receives when applying the greedy coloring algorithm to G with
order O. We also write π(v) or πO(v) when the context is clear.

Let G be a graph with an ordering O = [v1, . . . , vn] of its vertices. For vertices
u, v of G, we use the notations u <O v, u >O v, u ≤O v, u ≥O v with the obvious
meaning. When clear from the context, we omit the subscript O. When v is a vertex
of G, we denote by G≤v the subgraph of G induced by {u ∈ V (G) such that u ≤ v}.
Similarly, we use the notations G<v, G≥v and G>v.

When X ⊆ V (G), we use the notation O[X] to denote the order induced by O on
X, and O\X to denote the order induced by O on V (G)\X. We write O\v instead
of O \ {v}. We denote by max(X) (resp. min(X)) the maximum (resp. minimum)
element in X.

Let G be a graph and O = [v1, . . . , vn] be a linear ordering of its vertices. The
greedy coloring algorithm starting with color 2 applied to (G,O) consists in giving
v1 color 2, and then taking the vertices from v2 on in the order O, and giving to
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each vertex a color equal to the smallest positive integer not used by its neighbours
already colored.

Lemma 4.2.1. When applied to a good graph, the greedy coloring algorithm starting
with color 2 produces an optimal coloring.

Proof. The coloring produced by this algorithm is the same as the coloring produced
by the connected order obtained from O by swapping the first two vertices. Hence
it is optimal.

For the rest of this section, G is a minimally bad graph with a bad order O =
[v1, . . . , vn]. Note that for any set S ( V (G), if O[S] is a connected order then it
produces an optimal coloring for G[S].

Lemma 4.2.2. For every x ∈ V (G) \ {vn}, π(x) ≤ χ(G) and π(vn) = χ(G) + 1.

Proof. Follows directly from the fact that O is a bad order and that G is a minimally
bad graph.

Lemma 4.2.3. If x ∈ V (G) \ {vn} and O \ x is connected, then for some vertex
y 6= x in G, πG\x,O\x(y) 6= πG,O(y).

Proof. The conclusion is true for y = vn. Because by the minimality of G, we have
πG\x,O\x(vn) ≤ χ(G \ x) ≤ χ(G) and by Lemma 4.2.2, π(vn) = χ(G) + 1.

Lemma 4.2.4. π(vn) ≥ 4.

Proof. Otherwise, π(vn) ≤ 3, so by Lemma 4.2.2, χ(G) ≤ 2, so G is bipartite, a
contradiction to Theorem 4.1.2.

Lemma 4.2.5. For every vertex v ∈ V (G), G≤v, G≥v, G<v and G>v are connected.
In particular, G is connected.

Proof. For G≤v, it comes from the definition of connected orders.
Suppose C1, . . . , Ck (k ≥ 2) are the connected components of G≥v. For i =

1, . . . k, set Gi = G[{u ∈ V (G) such that u < v} ∪ Ci] and let Oi be the order O
restricted to V (Gi). For every i ∈ {1, . . . , k} and for every vertex u ∈ Ci, we have
πG,O(u) = πGi,Oi

(u) because there are no edges in G between Ci and Cj for i 6= j.
But since G is minimally bad, V (Gi) ( V (G) and Oi is a connected order, πOi

is an
optimal coloring for Gi. So, for every vertex u in G, π(u) ≤ χ(Gi) ≤ χ(G), so π is
an optimal coloring, a contradiction.

The proof is the same for G<v and G>v (note that we view the empty graph as
a connected graph).
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Lemma 4.2.6. If S is a cutset of G, then for every component C of G \S except at
most one, max(C) < max(S). Furthermore, if C is the unique component such that
max(C) > max(S), then vn ∈ C.

Proof. For the first claim, if max(C) > max(S) for more than one component C,
then G>max(S) is disconnected, a contradiction to Lemma 4.2.5. The second claim
follows trivially.

Lemma 4.2.7. Suppose S is a clique cutset of G and C is a component of G \ S
such that max(S) < min(C) = v. If v is complete to S, then there exists u ∈ S ∪{v}
such that π(u) > |S|+ 1.

Proof. Otherwise, since S ∪ {v} is a clique, the colors 1, . . . , |S| + 1 are exactly the
colors used in S ∪ {v}. Now build an order O′ of G[S ∪ C] by first reordering the
vertices from S ∪ {v} by increasing order of their colors, and then taking the rest
of S ∪ C as it is ordered by O. This new order is connected (as O) and therefore
provides an optimal coloring of G[S ∪ C]. It also gives the same coloring as O for
G[S∪C]. Since by Lemma 4.2.6 vn ∈ C, it follows that π(vn) ≤ χ(G[S∪C]) ≤ χ(G),
a contradiction to Lemma 4.2.2.

Lemma 4.2.8. For v ∈ V (G), let S be a cutset of G≤v. If there exists a connected
component C of G≤v \ S such that min(C) < min(S) then v1 ∈ C.

Proof. If v1 /∈ C, then G<min(S) is not connected: v1 and min(C) are in different
components, a contradiction to Lemma 4.2.5.

It is sometimes convenient to view G and O as an oriented graph DG, obtained
from G by orienting from u to v every edge uv such that u < v. We therefore use the
notion of in-neighbor, outneighbor, source and sink in G (a source in G is a vertex
with no in-neighbor in DG and a sink in G is a vertex with no outneighbor in DG).

Lemma 4.2.9. G has a unique source that is v1 and a unique sink that is vn.

Proof. Obviously, v1 is a source and vn is a sink. If G has two sources u < v, then
G≤v is disconnected (u and v are in two distinct components), a contradiction to
Lemma 4.2.5. If G has two sinks u < v, then G≥u is disconnected (u and v are in
two distinct components), a contradiction to Lemma 4.2.5.

Lemma 4.2.10. Let v be a vertex of degree 2 in G and let b < a be its neighbors.
One and exactly one of the following outcome occurs:

• v = v1 is the source of G and v2 = b;
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• b < v < a.

Moreover, π(v) ∈ {1, 2}.

Proof. If b < a < v, then v is a sink of G and v = vn by Lemma 4.2.9. Since v has
degree 2, π(v) ≤ 3, a contradiction to Lemma 4.2.4.

If v < b < a then v is a source of G and v = v1 by Lemma 4.2.9. Hence, π(v) = 1.
Also, v2 = b because O is connected.

Otherwise, b < v < a. So, v has degree 1 in G≤v and π(v) ∈ {1, 2}.

Lemma 4.2.11. In coloring π, the colors of the internal vertices of any flat path in
G alternates between 1 and 2.

Proof. Clear by Lemma 4.2.10.

Lemma 4.2.12. If P is a flat path of G, then max(V (P )) is an end of P .

Proof. If P has length at most 1, the conclusion is trivial. Otherwise, the ends of
P form a cutset of G (note that G = P is impossible since a path is a good graph
by Theorem 4.1.2). If max(V (P )) is not an end of P , then by Lemma 4.2.6, vn is
an internal vertex of P . So, by Lemma 4.2.11, π(vn) ∈ {1, 2}, a contradiction to
Lemma 4.2.4.

A path P = p1 . . . pk in G is well ordered if p1 < p2 < · · · < pk or pk < · · · < p2 <
p1. A flat path in G is maximal if its two end are not of degree 2 in G.

Lemma 4.2.13. If P = a . . . b is a flat path in G then either it is well ordered, or
the source v1 is an internal vertex of P and aPv1, v1Pb are both well ordered. In
particular, there exists at most one maximal flat path in G that is not well ordered.

Proof. This follows from Lemmas 4.2.10 and the definition of connected orders.

Lemma 4.2.14. Let k ≥ 2 and S = {s1, . . . , sk} be a set of vertices in G such
that s1 < · · · < sk and sk is complete to {s1, . . . , sk−1}. Let a1, . . . , ak ∈ G \ S be
k distinct vertices of degree 2 in G and such that NS(ai) = {si}. Suppose that for
i = 1, . . . , k − 1, N(si) \ {ai, sk} ⊆ N(sk). If ak < sk then:

(1) For every v ∈ N(sk) \ {ak} such that v < sk, π(v) 6= π(ak).

(2) π(a1) = . . . = π(ak) = 1 or π(a1) = . . . = π(ak) = 2. In particular, {a1, . . . , ak}
is a stable set of G.
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Proof. To prove (1), suppose that there exists a vertex v ∈ N(sk) \ {ak} such that
v < sk and π(v) = π(ak). Let b 6= sk be the second neighbor of ak. Since ak < sk, by
Lemma 4.2.10, ak is the source of G, or b < ak < sk. In either case, we can see that
O \ ak is a connected order for G \ ak, because sk−1 < sk (and k ≥ 2).

If ak is not the source of G, order O \ ak gives an optimal coloring π′ of G \ ak
because G is minimally bad. Morevover, for every vertex u 6= ak in G, we have
π′(u) = π(u). For u = b this is because b < ak, for the other u < sk this is because ak
brings no constraint to u and for u = sk, this is because the only constraint brought
by ak is also brought by v (because π(v) = π(ak)). So, π is an optimal coloring of
G, a contradiction.

If ak is the source of G, then b = v2 because sk−1 < sk. Hence, π(b) = 2. We
consider the greedy algorithm starting with color 2 applied to (G \ ak,O \ ak). This
is a connected order, and it therefore provides an optimal coloring π′ of G \ ak by
Lemma 4.2.1. Again, for every vertex of G, u 6= ak, we have π′(u) = π(u), because
the only constraint brought by ak is given to sk, and v gives the same constraint. So,
π is an optimal coloring of G, a contradiction.

Let us now prove (2). By Lemma 4.2.10, we know that for i = 1, . . . , k, π(ai) = 1
or π(ai) = 2. If π(ak) = 1, then suppose that for some i < k, π(ai) = 2. No
neighbor of si smaller than si has color 1: for ai by assumption, and all others are
in N(sk) \ {ak}, so we know this by (1). Hence, π(si) = 1, contradicting (1). If
π(ak) = 2, the proof is similar.

Lemma 4.2.15. Suppose that G is claw-free. Let s1, s2 be two vertices in G such that
s1 < s2 and s1s2 ∈ E(G). Let a1, a2 be distinct vertices of degree 2 in G, such that
a1s1, a2s2 ∈ E(G) and a2 < s2. Suppose that N(s1)\{a1, s2} = N(s2)\{a2, s1} = K,
where K is a non-empty clique. Suppose that {s1, s2} is a cutset in G and C1, C2

are two connected components of G \ {s1, s2} such that a1, a2 ∈ C1 and K ⊆ C2.
So, π(a1) = π(a2) = 2, s1 < a1 and there exist vertices v ∈ K, p, q ∈ C2 \K such

that vpq is a triangle, v < s1 and v < s2.

Proof. We first prove that v = min(K) < s2. Otherwise, s2 < v. Also, v =
min(C2) because O is connected. In G≤s2 , s1 and s2 both have degree at most 2, so
π(s1), π(s2) ∈ {1, 2, 3}. In G≤v, v has degree 2, so π(v) ∈ {1, 2, 3}. Hence, the clique
cutset S = {s1, s2}, C2 and v contradict Lemma 4.2.7. This proves our claim.

By Lemma 4.2.14, we consider two cases.

Case 1: π(a1) = π(a2) = 1.
By Lemma 4.2.14, π(v) 6= 1. So, there exists x adjacent to v with x < v and

π(x) = 1. Note that x /∈ K because x < v and x /∈ {s1, s2} because π(x) = 1. If
s1 < v, then G<v is disconnected (x and s1 are in different components). Therefore,
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v < s1. We then have s1 < a1 for otherwise, G<s1 is disconnected (a1 and v are in
different components). So, π(s1) = 1 (since no vertex smaller than s1 in K has color
1 by Lemma 4.2.14). This is a contradiction because π(a1) = 1.

Case 2: π(a1) = π(a2) = 2.

First, π(s1) = 1 since if π(s1) ≥ 2, there exists a vertex u ∈ K such that u < s1
and π(u) = 1. So, s1 < a1 for otherwise G<s1 is disconnected. Since by Lemma 4.2.14
no vertex smaller than s1 in K receives color 2, s1 receives color 2, a contradiction.

By Lemma 4.2.14, π(v) 6= 2 and because of s1, π(v) 6= 1. So, π(v) ≥ 3. Hence,
some in-neighbor q of v (q /∈ K) satisfies π(q) = 2. If s1 < v, then G<v is disconnected
(s1 and q are in different components). So, v < s1. Therefore, v must have an
in-neighbor p /∈ K, with π(p) = 1. Now, pq ∈ E(G) since G is claw-free. Finally,
s1 < a1, for otherwiseG<s1 is disconnected (v and a1 are in different components).

4.3 Forbidden structures of minimally bad graphs

Throughout this section, let G be a minimally bad claw-free graph that is not an
obstruction.

A graph H is a cap in G if:

• V (H) = K ∪ V (P ).

• K is a clique disjoint from P , K = L∪R∪C such that L, R, C are non-empty.

• P is a flat path in G of odd length ≥ 1 with two ends a, b.

• a is complete to L, b is complete to R.

• These are the only edges in H.

• No vertex in L ∪R ∪ V (P ) has a neighbor in G \H.

Lemma 4.3.1. G does not contain a cap.

Proof. Suppose G contains a cap H and K, L, R, C, P , a, b are defined as in the
definition of a cap. Let a′ and b′ be the vertices adjacent to a and b in P , respectively.
By Lemma 4.2.12, we may assume up to symmetry that b = max(V (P )).

Claim 4.3.2. For every vertex v ∈ K, if v < b, then π(v) 6= π(b).



80 CHAPTER 4. CONNECTED GREEDY COLORING

Otherwise, there exists v < b such that π(v) = π(b). Note in particular that
by Lemma 4.2.2, b 6= vn. Also, the existence of v implies that O \ b is a connected
order for G \ b. We then see that for every vertex y 6= b, πG\b,O\b(y) = πG,O(y), a
contradiction to Lemma 4.2.3. This proves Claim 4.3.2.

Claim 4.3.3. If π(a) = 1 or π(a) = 2, then every vertex v ∈ K satisfies v > b.

Since π(a) = 1 or π(a) = 2, we have π(b′) = π(a) by Lemma 4.2.11 and the
parity of P . Suppose that there exists a vertex v ∈ K with v < b. Then, there exists
a vertex u ∈ L such that u < b, for otherwise G<b is disconnected (v and a are in
different components). Since by Claim 4.3.2, π(u) 6= π(b) and u has no neighbor
with color π(b), we have π(u) < π(b). But then, when the greedy algorithm visits b,
color π(u) is available for b (because π(u) 6= π(a) = π(b′) and u is complete to R), a
contradiction. This proves Claim 4.3.3.

By Claim 4.3.3, if π(a) = 1 or π(a) = 2, then π(b) = 3 − π(a) by the parity of
P . Since O is connected, in fact for every vertex v in V (G) \ V (P ), v > b. So, when
the greedy algorithm visits G \ P , the first vertex receives color 1 or 2, and it gives
exactly the same colors as the greedy algorithm starting with color 1 or 2 applied
to (G \ P , O \ P ). Hence, by Lemma 4.2.1, we see that O is a good order for G, a
contradiction. Hence, π(a) ≥ 3.

This implies that a has degree at least 2 in G≤a, so a has an in-neighbor u in
L. So, if a′ < a, then G<a is diconnected (a′ and u are in different components).
Hence, a < a′. So there exists a vertex in L with color 1 (to ensure that a has color
at least 3). Since a < a′, we know by Lemma 4.2.13 that P is well ordered. We
therefore have π(b′) = π(a) ≥ 3 (if b′ = a) or π(b′) = 2 by the parity of P . This
implies π(b) = 1, contradicting Claim 4.3.2.

A graph H is an even birdcage in G if:

• V (H) = ∪ki=1V (Pi) ∪ Ca ∪ Cb for some k ≥ 3.

• ∀i ∈ {1, . . . , k}, Pi is a flat path in G of even length ≥ 2 with two ends ai, bi
(all ai’s and bi’s are distinct).

• Sa = {a1, . . . , ak} and Sb = {b1, . . . , bk} are two cliques.

• Ka = Ca ∪ Sa and Kb = Cb ∪ Sb are two cliques (Ca and Cb may be empty).

• If Ca 6= ∅, then Sa is a clique cutset of G.

• If Cb 6= ∅, then Sb is a clique cutset of G.
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• These are the only edges in H.

• No vertex in ∪ki=1V (Pi) has a neighbor in G \H.

Lemma 4.3.4. G does not contain an even birdcage.

Proof. Suppose G contains an even birdcage H, with the notation as in the definition
of an even birdcage. Up to symmetry, we suppose bk = max(Sa ∪ Sb).

If Cb 6= ∅, let C1 be the connected component of G \ Sb that contains Sa and let
C2 be the connected component of G \ Sb that contains Cb. Since G is connected by
Lemma 4.2.5, C1 6= C2.

If Cb = ∅, then G \ Sb is connected (because G is connected). We then set
C1 = V (G) \ Sb and C2 = ∅.
Claim 4.3.5. max(C1) < bk.

Set v = max(C1). If v ∈ V (Pi) for some i ∈ {1, . . . , k}, then v < bk follows
from Lemma 4.2.12. Otherwise, G>max(Sa) is disconnected (v and bk are in different
components), a contradiction to Lemma 4.2.5. This proves Claim 4.3.5.

For all i ∈ {1, . . . , k}, let a′i, b
′
i be the vertices in Pi adjacent to ai, bi respectively.

By Lemma 4.2.14 applied to Sb, we consider the following two cases:

Case 1: For all i ∈ {1, . . . , k}, π(b′i) = 1.
Then, by the parity of P and Lemma 4.2.11, we also have π(a′i) = 1.

Claim 4.3.6. ∀i ∈ {1, . . . , k}, b′i < bi.

Suppose for some i ∈ {1, . . . , k}, b′i > bi. Then, when the greedy algorithm visits
bi, there must be an in-neighbor of bi with color 1 (because π(bi) 6= 1). This vertex
is an in-neighbor of bk with color 1, a contradiction to Lemma 4.2.14(1). This proves
Claim 4.3.6.

Claim 4.3.7. If Cb 6= ∅, then bk < min(C2).

Set v = min(C2). We know that v1 ∈ C1 by Claim 4.3.6 and Lemma 4.2.8 (applied
to Sb). So, v ∈ Cb since O is a connected order. Also, since no vertex in Sb has color
1, v receives color 1. Hence, by Lemma 4.2.14(1), bk < v. This proves Claim 4.3.7.

Claim 4.3.8. Ca contains a vertex x of color 1 (in particular, Ca 6= ∅).

By Lemma 4.2.13, we may assume up to symmetry that P1 is well ordered. Since
π(a1) 6= 1 and since color 1 does not appear in Sa, a1 must have an in-neighbor in
Ca with color 1. This proves Claim 4.3.8.

Now if Cb 6= ∅, then v = min(Cb) receives color 1 and b1, . . . , bk are colored with
colors 2, . . . , k + 1. This contradicts Lemma 4.2.7. If Cb = ∅ then bk = vn and
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π(vn) = k + 1 ≤ χ(G) (since Sa ∪ {x} is a clique of size (k + 1) in G), contradicting
Lemma 4.2.2.

Case 2: π(b′i) = 2 ∀i ∈ {1, . . . , k}
Then, by the parity of P and Lemma 4.2.11, we also have π(a′i) = 2. By

Lemma 4.2.13, up to symmetry, we may assume that P1 is well ordered. Suppose
that a1 > a′1 ≥ b′1 > b1 (the case a1 < a′1 ≤ b′1 < b1 is similar). Since π(b′1) = 2, we
have π(b1) = 1. Again, by Lemma 4.2.13 and up to symmetry, we may assume that
P2 is well ordered. Since π(b2) 6= 1, we must have b2 > b′2 ≥ a′2 > a2 and π(a2) = 1.

Now if P3 is also well ordered, we must have π(a3) = 1 or π(b3) = 1, a contradic-
tion. It follows by Lemma 4.2.13 that the source of G is an internal vertex of P3. By
the parity of P , it follows that min(a3, b3) receives color 1, a contradiction.

A graph H is an odd birdcage in G if:

• V (H) = Ca ∪ Cb ∪ (∪k
i=1V (Pi)) ∪ (∪mi=1Ki) for some k ≥ 3, m ≥ 0.

• P1 is a path of odd length ≥ 3 with two ends a1, b1.

• ∀i ∈ {2, . . . , k}, Pi is a flat path of odd length ≥ 3 with two ends ai, bi.

• All ai’s and bi’s are distinct.

• Sa = {a1, . . . , ak} and Sb = {b1, . . . , bk} are two cliques.

• Ka = Ca ∪ Sa and Kb = Cb ∪ Sb are two cliques (Ca and Cb might be empty).

• If Ca 6= ∅, then Sa is a clique cutset of G.

• If Cb 6= ∅, then Sb is a clique cutset of G.

• For i ∈ {1, . . . ,m}, ci’s, di’s are vertices of P1 such that:

– They appear in P1 in the following order: a1, c1, d1,. . . , cm, dm, b1.

– ∀i ∈ {1, . . . ,m}, cidi is an edge.

– a1P1c1 and dmP1b1 are flat paths of even length ≥ 2.

– ∀i ∈ {1, . . . ,m− 1}, diP1ci+1 is a flat path of odd length ≥ 3.

– ∀i ∈ {1, . . . ,m}, Ki is a non-empty clique complete to {ci, di}.
– ∀i ∈ {1, . . . ,m}, {ci, di} is a cutset of G.

• These are the only edges in H.
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• No vertex in ∪ki=1V (Pi) has a neighbor in G \H.

Lemma 4.3.9. G does not contain an odd birdcage.

Proof. Suppose G contains an odd birdcage H as in the definition of an odd birdcage.
For i ∈ {1, . . . , k}, let a′i, b

′
i be the neighbors of ai, bi in Pi respectively. For j ∈

{1, . . . ,m}, let c′j, d
′
j be the neighbors of cj, dj in P1 \ {cj, dj} respectively. Let

x = max(∪mi=1V (Pi)). By Lemma 4.2.12, we may assume that x = di for some
i ∈ {1, . . . ,m} or x = bj for some j ∈ {1, . . . , k}.
Case 1: x = di for some i ∈ {1, . . . ,m}.

By Lemma 4.2.15 applied to the cutset {ci, di}, there exist some vertices u ∈ Ki,
p, q /∈ Ki such that u, p, q is a triangle and π(c′i) = π(d′i) = 2, ci < c′i, u < ci and
u < di. Then m = i = 1 for otherwise G contains F12. Let C be the component of
G \ {c1, d1} that contains K1. By Lemma 4.2.8, the source of G is in C. Hence, by
Lemma 4.2.13, all flat paths in H are well ordered. In particular, c′1P1a1 is a directed
odd path from c′1 to a1. Since O is connected, c′1P1a1 contains the first vertices of
∪mi=1V (Pi), so that π(a1) = 1. Also, b1P1d

′
1 is a directed odd path from b1 to d′1, so

π(b1) = 1 because π(d′1) = 2.
Let bl = min(b1, . . . , bk). Note that if Cb 6= ∅, bl < min(Cb) for otherwise G<bl is

disconnected (c1 and min(Cb) are in different components). So, by the connectivity
of O, bl has an in-neighbor in Pl. Since b1P1d

′
1 is a directed odd path from b1 to

d′1, bl 6= b1. Also, Pl is well ordered, and since π(al) 6= 1 (because of a1), we have
π(a′l) = 1. By the parity of Pl, it follows that π(bl) = 1, a contradiction since
π(b1) = 1.

Case 2: x = bj for some j.
By Lemma 4.2.14, π(b′i) = 1 ∀i ∈ {1, . . . , k} or π(b′i) = 2 ∀i ∈ {1, . . . , k}. Suppose

first that π(b′i) = 1 ∀i ∈ {1, . . . , k}.
Then for every i ∈ {2, . . . , k}, π(a′i) = 2 by the parity of the flat paths. Also,

for every i ∈ {2, . . . , k}, b′i < bi since otherwise bi has color ≥ 2 and there must
exist in Kb some in-neighbor of bi having color 1, contradicting Lemma 4.2.14. By
Lemma 4.2.13, we may assume that P3 is well ordered. Since π(a′3) = 2, we have
π(a3) = 1. So, π(a2) 6= 1, and since π(a′2) = 2, we have a′2 < a2. So, P2 is not
well ordered. By Lemma 4.2.13, the source of G, v1, is an internal vertex of P2 and
v1P2a2 and v1P2b2 are both well ordered. If a2 < b2, then π(a2) = 1, a contradiction.
Hence, b2 < a2 and π(b2) = 2. The vertex v that comes just after b2 in O cannot be
a2, because then, again, we would have π(a2) = 1. Hence, v is in Kb and receives
color 1, a contradiction to Lemma 4.2.14.

Suppose now that π(b′i) = 2 ∀i ∈ {1, . . . , k}. Then for every i ∈ {2, . . . , k},
π(a′i) = 1 by the parity of the flat paths.
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Claim 4.3.10. If Cb 6= ∅, then for every vertex v ∈ Cb, v > bj.

Set v = min(Cb) and suppose v < bj.

If π(v) = 1 then v < bi for every i ∈ {1, . . . , k} for otherwise, min(Sb) would
receive color 1, a contradiction. Hence, by Lemma 4.2.8, the source of G is in the
component of G \ Sb containing v. Also, by Lemma 4.2.14, no in-neighbor of bj in
Kb has color 2. So, min(Sb) has no colored neighbor in {b′1, . . . , b′k} when the greedy
algorithm visits it, so it receives color 2, a contradiction.

If π(v) ≥ 3, then there exists some vertex q /∈ Cb adjacent to v having color 2. If
for some i, bi < v, then G<v is not connected (q and bi are in different components), a
contradiction. Then v < min(Sb), and because π(v) 6= 1 there exists a vertex p /∈ Cb

adjacent to v with color 1. We have pq ∈ E(G) because G is claw-free. Therefore G
contains F12, a contradiction. This proves Claim 4.3.10.

Claim 4.3.11. π(dm) = 1.

Assume that π(dm) 6= 1. We have π(d′m) = 2 by the parity of flat path b′1P1d
′
m.

If dm < d′m then π(dm) = 1, a contradiction. Therefore, d′m < dm. If π(b1) > 1,
then b′1 < b1 and by Lemma 4.2.13, v1 ∈ b′1P1d

′
m. So, if b1 < dm, π(b1) = 1, a

contradiction, and otherwise π(dm) = 1, a contradiction again. Hence, π(b1) = 1.
Therefore for every i 6= 1, b′i < bi for otherwise, b′i receives color 1. Now, consider
the cutset S = {dm, b2, . . . , bk}. Let C be the component of G \ S that contains
cm and D the component that contains b1. Note that dm must have an in-neighbor
in C, for otherwise it would receive color 1. So, we have min(C) < min(S). Also,
min(D) < min(S) because every vertex in S has an in-neighbor in D (clear for dm,
for the other ones, it follows from the fact that they have an in-neighbor with color
1, namely b1). This contradicts Lemma 4.2.8. This proves Claim 4.3.11.

Claim 4.3.12. π(c′m) = 1.

Suppose π(c′m) = 2. Then c′m < cm and dm < cm, so there exists an outneighbor v
of cm in Km (otherwise cm = vn, contradicting the maximality of bj). Therefore G>cm

is disconnected (v and bj are in different components), contradicting Lemma 4.2.5.
This proves Claim 4.3.12.

Similarly, we can prove π(di) = π(c′i) = 1 for all i ∈ {1, . . . ,m}, and therefore
π(a′1) = 1.

We must have a vertex of color 1 in Ca, otherwise a′i < ai for every i ∈ {1, . . . , k}.
Also, for some 1 ≤ i′ < i′′ ≤ k, we have b′i′ < bi′ and b′i′′ < bi′′ because color 1 appears
at most one time in Sb. Hence, G has two sources, a contradiction. So, we have this
vertex with color 1 in Ca, and in particular, Ca 6= ∅, so that χ(G) ≥ k + 1.
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If Cb 6= ∅ then let C ′ be the component of G\Sb that contains Cb. By Claim 4.3.10,
we have max(S) < min(C ′). Colors 1 and 3, . . . , (k+ 1) are used in Sb and color 2 is
used for v = min(Cb). This contradicts Lemma 4.2.7.

If Cb = ∅, then bj = vn, but π(bj) = k+1 ≤ χ(G), contradicting Lemma 4.2.2.

A graph H is a flower in G if:

• V (H) = Ca ∪ Cb ∪ Cc ∪ Cd ∪k
i=1 V (Pi) ∪mi=1 V (Qi) ∪ V (Pac) ∪ V (Pbd) for some

k,m ≥ 2.

• For i ∈ {1, . . . , k}, Pi is a flat path of odd length ≥ 3 with two ends ai and bi.

• For i ∈ {1, . . . ,m}, Qi is a flat path of odd length ≥ 3 with two ends ci and di.

• Pac is a flat path of even length ≥ 2 with two ends a0 and c0.

• Pbd is a flat path of even length ≥ 2 with two ends b0 and d0.

• All ai’s, bi’s, ci’s, di’s are distinct.

• Ka = Ca ∪ {a0, . . . , ak} and Kb = Cb ∪ {b0, . . . , bk} are cliques.

• Kc = Cc ∪ {c0, . . . , cm} and Kd = Cd ∪ {d0, . . . , dm} are cliques.

• If Ca 6= ∅, {a0, . . . , ak} is a clique cutset of G.

• If Cb 6= ∅, {b0, . . . , bk} is a clique cutset of G.

• If Cc 6= ∅, {c0, . . . , ck} is a clique cutset of G.

• If Cd 6= ∅, {d0, . . . , dk} is a clique cutset of G.

• These are the only edges in H.

• No vertex in G \H has a neighbor in H \ (Ca ∪ Cb ∪ Cc ∪ Cd).

Lemma 4.3.13. G does not contain a flower.

Proof. Suppose G contains a flower H as in the definition of a flower. W.l.o.g, let
bj = max(a0, . . . , ak, b0, . . . , bk, c0, . . . , cm, d0, . . . , dm). Let a′i, b

′
i, c
′
i, d
′
i be the unique

vertices of degree 2 adjacent to ai, bi, ci, di, respectively. By Lemma 4.2.12, b′j < bj.
Applying Lemma 4.2.14, there are two cases:

Case 1: π(b′i) = 1 ∀i ∈ {0, . . . , k}.



86 CHAPTER 4. CONNECTED GREEDY COLORING

We omit the proof in this case, because it is similar to the case π(b′i) = 1 in
Lemma 4.3.9 (but here, we have to consider only two flat paths P1 and P2).

Case 2: π(b′i) = 2 ∀i ∈ {0, . . . , k}: Then for every i ∈ {1, . . . , k}, π(a′i) = 1 by the
parity of the flat paths.

Claim 4.3.14. If Cb 6= ∅, then for every vertex v ∈ Cb, v > bj.

We omit the proof, because it is similar to the proof Claim 4.3.10 in the proof of
Lemma 4.3.9. This proves Claim 4.3.14.

Claim 4.3.15. π(d0) = 1.

We omit the proof, because it is similar to the proof of Claim 4.3.11 in the proof
of Lemma 4.3.9. This proves Claim 4.3.15.

Let bl = min(b0, . . . , bk). It is clear that π(bl) = 1 and b′i < bi for every i ∈
{0, . . . , k} \ {l}.
Claim 4.3.16. For i ∈ {1, . . . ,m}, π(d′i) = 1.

W.l.o.g suppose that for some 1 ≤ t ≤ m, {d′1, . . . , d′t} is the subset of vertices of
{d′1, . . . , d′m} having color 2. Let S = {d1, . . . , dt}. We have d′i < di for i ∈ {1, . . . , t}
(otherwise π(d′i) = 1). We also have d0 < di for i ∈ {1, . . . , t} since d0 is the only
vertex of color 1 in Kd. W.l.o.g, assume that dt = max(S). There does not exist
a vertex u in Kd such that u < dt and π(u) = 2 by applying Lemma 4.2.14 for S.
Therefore min(dt+1, . . . , dm) > max(S), otherwise one of them would receive color 2.

If b0 = bl, applying Lemma 4.2.8 for the cutset (S ∪ {b1, . . . , bk}) ∩ V (G≤max(S))
of G≤max(S), there are sources in both sides of this cutset, a contradiction.

If b0 6= bl, applying Lemma 4.2.8 for the cutset (S ∪ {b0}) ∩ V (G≤max(S)) of
G≤max(S), there are sources in both sides of this cutset, a contradiction.

This proves Claim 4.3.16.
By Claim 4.3.16 and the parity of all the flat paths Qi, π(c′i) = 2 for every

i ∈ {1, . . . ,m}.
Claim 4.3.17. π(c0) ≥ 2.

Suppose π(c0) = 1, then we have c0 < ci for i ∈ {1, . . . ,m} since c0 is the only
vertex of color 1 in Kc. We also have c′i < ci for i ∈ {1, . . . ,m} since otherwise some
vertex in {c′1, . . . , c′m} would have color 1.

If b0 = bl, applying Lemma 4.2.8 for the cutset {c1, . . . , cm, b1, . . . , bk} of G, there
are sources in both sides of this cutset, a contradiction.

If b0 6= bl, applying Lemma 4.2.8 for the cutset {c1, . . . , cm, b0} of G, there are
sources in both sides of this cutset, a contradiction. This proves Claim 4.3.17.
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Claim 4.3.18. π(c′0) = 1.

Suppose π(c′0) = 2, then c′0 < c0. There must exist a vertex v of color 1 in Kc

such that v < c0.
If b0 = bl, applying Lemma 4.2.8 for the cutset {c0, b1, . . . , bk} of G, there are

sources in both sides of this cutset, a contradiction.
If b0 6= bl, applying Lemma 4.2.8 for the cutset {c0, b0} of G, there are sources in

both sides of this cutset, a contradiction. This proves Claim 4.3.18.
By Claim 4.3.18 and the parity of Pac, π(a′0) = 1. We must have a vertex of

color 1 in Ca, otherwise a′i < ai for every i ∈ {1, . . . , k} and we have at least two
sources in G. Therefore, if Cb 6= ∅ then b0, . . . , bk receive colors 1 and 3, . . . , k+2 and
min(Cb) receives color 2, a contradiction to Lemma 4.2.7. If Cb = ∅ then bj = vn,
but π(bj) = k + 2 ≤ χ(G) (we have a clique of size (k + 2) in Ka), contradicting
Lemma 4.2.2.

A graph H is a sun in G if:

• V (H) = V (I) ∪ki=0 Ki for some k ≥ 0.

• I is a hole.

• For i ∈ {0, . . . , k}, ai’s, bi’s are distinct vertices of I such that:

– They appear in the following clock-wise order: a0, b0, . . . , ak, bk.

– For ∀i ∈ {0, . . . , k}, ai is adjacent to bi.

– For ∀i ∈ {0, . . . , k}, the path in I from bi to ai+1 is a flat path of length
≥ 2 (the subscript is taken modulo (k + 1)).

• For i ∈ {0, . . . , k}, Ki is a non-empty clique complete to {ai, bi}.

• For i ∈ {0, . . . , k}, {ai, bi} is a cutset of G.

• These are the only edges in H.

• No vertex in G \H has a neighbor in I.

Lemma 4.3.19. G does not contain a sun.

Proof. Suppose G contains a sun H as in the definition. For i ∈ {0, . . . , k}, let
a′i, b

′
i be the vertices of degree 2 adjacent to ai, bi in I. W.l.o.g, suppose bk =

max(a0, b0, . . . , ak, bk). Let C1, C2 be two connected components of G \ {ak, bk} such
that C2 contains Kk.
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By Lemma 4.2.12, b′k < bk. Applying Lemma 4.2.15 for the cutset {ak, bk}, we
have π(a′k) = π(b′k) = 2 and there exist some vertex u ∈ Kk, p, q ∈ C2 \Kk such that
upq is a triangle, ak < a′k, u < ak and u < bk. It is clear that v1 ∈ C2. If I is an
odd hole, then G contains F11, a contradiction. So, the length of I is even. If there
exist some ai, bi, for i 6= k such that the path bkIai and biIak (taken in clock-wise
order) are of odd length, then G contains F12, a contradiction. Hence, the flat path
bk−1Iak and bkIa0 are of even length, and each flat path biIai+1 is of odd length, for
∀i ∈ {0, . . . , k − 2}.

Claim 4.3.20. π(bk−1) = π(a′k−1) = 1.

Since we have ak < a′k, the flat path akIbk−1 (in counter-clockwise order) is
a directed path in DG from ak to bk−1. We have that min(Kk−1 ∪ ak−1) > bk−1,
otherwise if there exists a vertex v ∈ Kk−1 ∪ ak−1 such that v < bk−1 then G<bk−1

is not connected (b′k−1 and v are in different connected components). Therefore,
π(bk−1) = 1 since the flat path akIbk−1 is of even length. We have ak−1 < a′k−1
since otherwise G<ak−1

is not connected (bk−1 and a′k−1 are in different connected
components). Since π(ak−1) ≥ 2, π(a′k−1) = 1. This proves Claim 4.3.20.

By the same argument as in Claim 4.3.20, we can prove that: π(bi) = π(a′i) = 1 for
every i ∈ {0, . . . , k−1}. And by Lemma 4.2.11 and the parity of the flat path a0Ibk,
we have π(b′k) = 1, contradicting to the fact that π(b′k) = 2 which we mentioned
previously by Lemma 4.2.15.

4.4 Proof of Theorem 4.1.3

For our proof, we need results from [31]. A graph G is a parity graph if for every
pair u, v ∈ V (G), all induced paths from u to v have the same parity. A graph is
distance-hereditary if for every pair u, v ∈ V (G), all induced paths from u to v have
the same length. Clearly, every distance-hereditary graph is a parity graph. A graph
is chordal if it contains no hole.

Theorem 4.4.1 (see [3]). Every gem-free chordal graph is a distance-hereditary graph
and therefore a parity graph.

Theorem 4.4.2 (see [31]). Every fish-free parity graph is good.

Throughout the rest of this section, let G be a minimally bad claw-free graph
that is not an obstruction. Our goal is to prove that this implies a contradiction,
thus proving Theorem 4.1.3.
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Lemma 4.4.3. Let H = v0 . . . vk be a hole in G and u ∈ V (G) \ V (H) has some
neighbor in H. Then u has two or three neighbors in H and they induce a path (of
length 1 or 2), or u ∪ V (H) induces a 4-wheel.

Proof. If u is adjacent to some vertex vi in H, then u must be adjacent also to vi−1 or
vi+1, otherwise {vi, vi−1, u, vi+1} induces a claw. Suppose G[N(u)∩H] induces at least
two components, where {vi, . . . , vj} and {vk, . . . , vm} are its two consecutive compo-
nents in H (in clock-wise order, i, j, k,m are distinct) then {u, vj−1, vj, . . . , vk, vk+1}
induces F2, a contradiction. Then G[N(u) ∩H] induces only one component.

• If |H| ≥ 5: If u has at least four neighbors on H then u and its four consecutive
neighbors in H induce a gem (a special case of F2), a contradiction. Then u
has two or three neighbors in H and they induce a path.

• If |H| = 4: u can have two or three neighbors in H and they induce a path or
u is complete to H and u ∪ V (H) induces a 4-wheel.

Lemma 4.4.4. Let H = v0 . . . vk be a hole in G. For i ∈ {0, . . . , k}, let Si =
{u|N(u) ∩H = {vi−1, vi, vi+1}} and Ri = {u|N(u) ∩H = {vi, vi+1}}. Then for any
i ∈ {0, . . . , k}:

1. Si is a clique.

2. Ri is a clique.

3. Si is complete to Si+1 and anticomplete to Sj for any j /∈ {i− 1, i, i+ 1}.

4. Ri is anticomplete to Rj for any j 6= i.

5. Si is complete to Ri−1 and Ri.

6. If Si 6= ∅ then Rj = ∅ for any j /∈ {i− 1, i}.

7. If Ri 6= ∅ then Rj = ∅ for any j ∈ {i− 2, i− 1, i+ 1, i+ 2}.

Proof. We prove each statement following the index.

1. Let a, b ∈ Si. If a is not adjacent to b then {vi+1, a, b, vi+2} induces a claw, a
contradiction.

2. Let a, b ∈ Ri. If a is not adjacent to b then {vi+1, a, b, vi+2} induces a claw, a
contradiction.
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3. Let a ∈ Si, b ∈ Si+1 and c ∈ Sj. If a is not adjacent to b then {vi, vi−1, a, vi+1, b}
induces a gem, a contradiction. If a is adjacent to c then {a, c, vi, vi+1, . . . , vj−1, vj}
induces F3 or a gem, a contradiction.

4. Let a ∈ Ri and b ∈ Rj. If a is adjacent to b then {a, b, vi, vi+1, . . . , vj, vj+1}
contains F3 or a gem, a contradiction.

5. Let a ∈ Si and b ∈ Ri. If a is not adjacent to b then {vi, vi−1, a, vi+1, b} induces
a gem, a contradiction. Si is also complete to Ri−1 by symmetry.

6. Let a ∈ Si and b ∈ Rj. If a is adjacent to b then {a, b, vi, vi+1, . . . , vj, vj+1}
contains F3 or a gem, a contradiction. If a is not adjacent to b then {a, b}∪V (H)
contains F1, F5, F6 or a fish (a special case of F11). So, Rj = ∅.

7. Let a ∈ Ri, b ∈ Ri+1 and c ∈ Ri+2. If a is not adjacent to b, then {a, b}∪V (H)
induces F2, a contradiction. If a is adjacent to b, then {vi+1, vi, a, b, vi+2}
induces a gem, a contradiction. So, Ri+1 = ∅. If a is not adjacent to c, then
{a, c} ∪ V (H) induces F3. If a is adjacent to c, then {a, c, vi, vi+1, vi+2, vi+3}
induces either F3 or F4, a contradiction. So, Ri+2 = ∅. The proof for Ri−2 and
Ri−1 is similar.

Lemma 4.4.5. G does not contain a 4-wheel.

Proof. Suppose G contains a 4-wheel consisting of a hole H = v0v1v2v3 and a vertex
x complete to that hole. For i ∈ {0, . . . , 3}, let Si = {u|N(u)∩H = {vi−1, vi, vi+1}},
Ri = {u|N(u) ∩H = {vi, vi+1}} and T = {u|N(u) ∩H = {v0, v1, v2, v3}}. Note that
x ∈ T .

Claim 4.4.6. For i ∈ {0, . . . , 3}, Ri = ∅.
Let a ∈ Ri. If a is not adjacent to x, then {vi, vi−1, x, vi+1, a} induces a gem,

a contradiction. If a is adjacent to x, then {x, vi−2, vi−1, vi, a} induces a gem, a
contradiction. So, Ri = ∅. This proves Claim 4.4.6.

Claim 4.4.7. For i ∈ {0, . . . , 3}, Si is complete to T .

Let a ∈ Si and b ∈ T . If a is not adjacent to b then {vi−1, vi−2, b, vi, a} induces a
gem, a contradiction. This proves Claim 4.4.7.

By Lemma 4.4.4, Si is a clique complete to Si+1 and anticomplete to Si+2. So,
G[∪3i=0Si] is P4-free.

Claim 4.4.8. V (G) = T ∪3i=0 Si ∪ V (H).
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Suppose there exists some vertex v ∈ V (G) \ (T ∪3i=0 Si ∪ V (H)) and v has some
neighbors in T ∪3i=0 Si ∪ V (H). If v has a neighbor in V (H), then v ∈ T ∪3i=0 Si, a
contradiction. If v has a neighbor u in Si for some i but no neighbor in V (H), then
{u, v, vi−1, vi+1} forms a claw, a contradiction. If v has a neighbor u in V (T ) but
no neighbor in V (H), then {u, v0, v2, v} forms a claw, a contradiction. This proves
Claim 4.4.8.

We haveG[T ] is P4-free (otherwise v0 and some P4 inG[T ] form a gem), G[∪3i=0Si∪
V (H)] is P4-free and T is complete to ∪3i=0Si∪V (H), then G is P4-free and therefore
is good by Theorem 4.1.1, a contradiction.

A twin wheel is a graph consisting of a hole H and a vertex x has three consecutive
neighbors on H (see Figure 4.2). Note that this definition of a twin wheel was already
mentioned in Section 2.2.

Lemma 4.4.9. G does not contain a twin wheel.

Proof. Suppose G contains a twin wheel consisting of a hole H = v0 . . . vk and a
vertex x that has three neighbors on H: v0, v1, v2. We can assume that H is an
even hole since otherwise G contains F1. For i ∈ {0, . . . , k}, let Si = {u|N(u)∩H =
{vi−1, vi, vi+1}} and Ri = {u|N(u) ∩H = {vi, vi+1}}. We consider two cases:

Case 1: There exists some vertex y ∈ Rj for some j. Then j ∈ {0, 1} by Lemma
4.4.4. W.l.o.g, suppose j = 1 then R0 = ∅ by Lemma 4.4.4. Also by Lemma 4.4.4,
Si = ∅ for i /∈ {1, 2}. Now, S1∪S2∪R1∪V (H) forms a cap in G with L = S1∪{v1},
R = S2 ∪ {v2}, C = R1 and P is the flat path from v0 to v3 in H, contradicting
Lemma 4.3.1.

Case 2: For every i ∈ {0, . . . , k}, Ri = ∅. By Lemma 4.4.4, each Si is a clique
complete to Si+1. It is clear that V (G) = ∪ki=0Si ∪ V (H). Hence, G is a parity
graph. Also, G is fish-free because the fish is an obstruction. Therefore, G is good
by Theorem 4.4.2, a contradiction.

From now on, by Lemmas 4.4.5 and 4.4.9, the neighborhood of any vertex on a
hole in G induces an edge.

Lemma 4.4.10. G does not contain a short prism.

Proof. Otherwise, G contains F3 or F4, a contradiction.

From now on, we know that that every prism in G is not short, or in another
word, its three paths are of length at least 2.

Lemma 4.4.11. G does not contain an imparity prism.
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Proof. Otherwise, it contains F7, a contradiction.

A graph H is a prism system if:

• V (H) = ∪ki=1V (Pi) for some k ≥ 3.

• ∀i ∈ {1, . . . , k}, Pi is a path of length ≥ 2 with two ends ai, bi. All Pi’s are
disjoint.

• Sa = {a1, . . . , ak} and Sb = {b1, . . . , bk} are two cliques.

• These are the only edges in H.

Note that if k = 3 then H is simply a prism. A prism system is even (odd) if the
lengths of all path Pi’s are even (odd).

Lemma 4.4.12. G does not contain an even prism.

Proof. Suppose G contains an even prism. Then there exists an even prism system in
G as in the description, choose such a prism system H with maximum value of k. Let
Ca = {v ∈ V (G)\V (H)|N(v)∩Sa 6= ∅} and Cb = {v ∈ V (G)\V (H)|N(v)∩Sb 6= ∅}.
Claim 4.4.13. All paths Pi’s are flat.

If there exists a vertex v ∈ V (G) \ V (H) which has some neighbors {a, b} in the
interior of some path Pi, then G contains F2, F3 or F8, a contradiction. This proves
Claim 4.4.13.

Claim 4.4.14. Ca is a clique complete to Sa and Cb is a clique complete to Sb.

Follows directly from Lemma 4.4.4. This proves Claim 4.4.14.

Claim 4.4.15. We have the followings:

1. If Ca 6= ∅, Sa is a clique cutset of G.

2. If Cb 6= ∅, Sb is a clique cutset of G.

We prove only the first statement, the second is similar. Suppose that there
exists a path P from some vertex in Ca to some vertex in Cb. The length of P is even
otherwise G contains F7, then H ∪ P is a bigger even prism system, a contradiction
to the choice of H. This proves Claim 4.4.15.

By Claims 4.4.13, 4.4.14 and 4.4.15, H ∪Ca ∪Cb forms an even birdcage, contra-
dicting Lemma 4.3.4.
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A bracelet (see Figure 4.2) has six paths of length ≥ 2: two paths in the sides are
of even length; the other four paths are of odd length.

A graph H is a bracelet system if:

• V (H) = ∪ki=1V (Pi) ∪mi=1 V (Qi) ∪ V (Pac) ∪ V (Pbd) for some k,m ≥ 2.

• For i ∈ {1, . . . , k}, Pi is a path of odd length ≥ 3 with two ends ai and bi.

• For i ∈ {1, . . . ,m}, Qi is a path of odd length ≥ 3 with two ends ci and di.

• Pac is a path of even length ≥ 2 with two ends a0 and c0.

• Pbd is a path of even length ≥ 2 with two ends b0 and d0.

• All path Pi’s, Qi’s, Pac, Pbd are disjoint.

• Sa = {a0, . . . , ak} and Sb = {b0, . . . , bk} are cliques.

• Sc = {c0, . . . , cm} and Sd = {d0, . . . , dm} are cliques.

• These are the only edges in H.

Note that if k = m = 2, then H is simply a bracelet.

Lemma 4.4.16. G does not contain an odd prism.

Proof. Suppose G contains an odd prism. We consider the following cases:

Case 1: G contains a bracelet. Then there exists a bracelet system in G as in
the description, choose such a system H with maximum value of k + m. Let Ca =
{v ∈ V (G) \ V (H)|N(v) ∩ Sa 6= ∅}, Cb = {v ∈ V (G) \ V (H)|N(v) ∩ Sb 6= ∅},
Cc = {v ∈ V (G)\V (H)|N(v)∩Sc 6= ∅} and Cd = {v ∈ V (G)\V (H)|N(v)∩Sd 6= ∅}.
Claim 4.4.17. All the paths Pi’s, Qi’s, Pac, Pbd are flat.

Suppose there is some vertex v ∈ V (G) \ V (H) has some neighbor in the interior
of one of these paths. If v has some neighbor on Pac or Pbd, then G contains F2, F3

or F9, a contradiction. If v has some neighbor on some Pi or Qi, then G contains F2,
F3, F9 or F10, a contradiction. This proves Claim 4.4.17.

Claim 4.4.18. Ca is a clique complete to Sa.

Follows directly from Lemma 4.4.4. This proves Claim 4.4.18.
We have a similar statement for Cb, Cc and Cd.

Claim 4.4.19. If Ca 6= ∅, Sa is a clique cutset in G.
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Otherwise, if there exists some path P from a vertex in Ca to some vertex in Cc

or Cd, then G contains an even prism, contradicting Lemma 4.4.12. If there exists
some path P from a vertex in Ca to some vertex in Cb, then P is of odd length and
therefore H ∪P is a bigger bracelet system, a contradiction to the choice of H. This
proves Claim 4.4.19.

We also have similar statement for Sb, Sc and Sd. By Claims 4.4.17, 4.4.18 and
4.4.19, H ∪ Ca ∪ Cb ∪ Cc ∪ Cd is a flower in G, contradicting Lemma 4.3.13.

Case 2: G does not contain bracelet. There exists an odd prism system in G as
in the description, choose such a prism system H with maximum value of k. Let
Ca = {v ∈ V (G)\V (H)|N(v)∩Sa 6= ∅} and Cb = {v ∈ V (G)\V (H)|N(v)∩Sb 6= ∅}.
Claim 4.4.20. Let v ∈ V (G) \ V (H) be a vertex has some neighbor {a, b} in the
interior of some path Pi (a is closer to ai than b in Pi). Then two paths aiPia and
biPib are of even length ≥ 2.

Otherwise G contains F2, F3 or F9, a contradiction. This proves Claim 4.4.20.

Claim 4.4.21. If v ∈ V (G) \ V (H) has some neighbors in Pi, then all path Pj’s are
flat for any j 6= i.

Otherwise G contains F10, a contradiction. This proves Claim 4.4.21.
W.l.o.g, suppose that P1 is the only path among Pi’s which might not be flat. For

some m ≥ 0, let {c1, d1}, . . . , {cm, dm} be all the possible positions in P1 to which a
vertex v ∈ V (G)\V (H) can be adjacent (cidi is an edge; all vertices are listed in order
from a1 to b1). For i ∈ {1, . . . ,m}, let Ki = {v ∈ V (G) \ V (H)|N(v) ∩ {ci, di} 6= ∅}.
Claim 4.4.22. Ca is a clique complete to Sa; Cb is a clique complete to Sb and Ki

is a clique complete to {ci, di} for i ∈ {1, . . . ,m}.
Follows directly from Lemma 4.4.4. This proves Claim 4.4.22.

Claim 4.4.23. a1P1c1 and dmP1b1 are flat paths of even length ≥ 2; diP1ci+1 is a
flat path of odd length ≥ 3 for i ∈ {1, . . . ,m− 1}.

Follows from Claim 4.4.20. This proves Claim 4.4.23.

Claim 4.4.24. If Ca and Cb 6= ∅, Sa, Sb, {ci, di} are clique cutsets in G for i ∈
{1, . . . ,m}.

Otherwise, if there is a path from some vertex in Ki to some vertex in Kj for
some i 6= j, then G contains a bracelet, a contradiction. If there is a path from some
vertex in Ca to some vertex in Ki for some i, then G contains F7 or an even prim,
a contradiction. If there is a path P from a vertex in Ca to some vertex in Cb, then
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H ∪P is a bigger odd prism system, a contradiction to the choice of H. This proves
Claim 4.4.24.

By Claims 4.4.21, 4.4.22, 4.4.23 and 4.4.24, H ∪ Ca ∪ Cb ∪mi=1 Ki forms an odd
birdcage in G, contradicting Lemma 4.3.9.

By Lemmas 4.4.10, 4.4.11, 4.4.12 and 4.4.16, G is prism-free.

Lemma 4.4.25. G does not contain a hole.

Proof. Suppose G contains a hole I. For some k ≥ 0, let {a0, b0}, . . . , {ak, bk} be
all the possible positions in I to which a vertex v ∈ V (G) \ I can be adjacent (aibi
is an edge; all the vertices are listed in clock-wise order). For i ∈ {0, . . . , k}, let
Ki = {v ∈ V (G) \ I|N(v) ∩ {ai, bi} 6= ∅}.
Claim 4.4.26. For i ∈ {0, . . . , k}, Ki is a clique complete to {ai, bi}.

Follows directly from Lemma 4.4.4. This proves Claim 4.4.26.

Claim 4.4.27. For i ∈ {0, . . . , k}, {ai, bi} is a cutset of G.

Otherwise, there is a path from a vertex in Ki to some vertex in Kj, for some
j 6= i, so G contains a prism, a contradiction. This proves Claim 4.4.27.

By Claims 4.4.26 and 4.4.27, I∪ki=0Ki forms a sun inG, contradicting Lemma 4.3.19.

By Lemmas 4.4.25, G is chordal. And since G is gem-free, G is a parity graph
by Theorem 4.4.1. Hence G is a fish-free parity graph and is therefore good by
Theorem 4.4.2, a contradiction. This proves that every minimally bad claw-free
graph is an obstruction.

To prove Theorem 4.1.3, we are left to prove that every obstruction is a minimally
bad claw-free graph. Suppose that it is not true for some graph F in the list of
obstructions. Since F is bad (as we already specify a bad order for every obstruction),
F must contain a minimally bad claw-free graph F ′ as an induced subgraph. Since
every minimally bad claw-free graph is an obstruction, F ′ is also an obstruction.
However, it is easy to check that there do not exist two obstructions in our list such
that one contains the other as an induced subgraph, a contradiction.

4.5 Conclusion

In this chapter, we give the characterization of good claw-free graphs in terms of
minimal forbidden induced subgraphs. Note that the arguments in Sections 4.3 and
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4.4 can be turned into a polynomial algorithm for recognizing this class, where each
structure in Section 4.3 corresponds to a kind of decomposition. A full characteriza-
tion of good graphs seems hard to achieve, as we observe that the actual structure
of minimally bad graphs could be much more complicated. The following question
is open:
Open question. Is the chromatic number of every minimally bad graph 3?

We see that this is true for claw-free graphs. The next step would be finding the
characterization for good perfect graphs, or some interesting subclasses of perfect
graphs.



Conclusion

Throughout the thesis, we have studied the coloring and recognition problem for
several graph classes. In this last chapter, let us review all these and discuss some
open questions.

In Chapter 2, we focus on ISK4-free graphs. The study of this class is motivated
by Scott’s question [45] on χ-boundedness of graph classes defined by forbidding
all the subdivisions of a fixed graphs and the dichotomy between polynomial and
NP-hardness on detecting an induced subdivision [37]. We prove that the chromatic
number of ISK4-free graphs is bounded by some small constant (and even smaller
in triangle-free case) and propose a polynomial-time recognition algorithm. Recall
that Forb∗(H) is a graph class defined by forbidding all subdivision of H as induced
subgraphs. There are examples of graph H such that Forb∗(H) is χ-bounded and
examples of graph H where Forb∗(H) is not χ-bounded. Similarly, there exist some
examples of graph H such that Forb∗(H) can be recognized in polynomial-time
and examples of graph H where Forb∗(H) is NP-hard to detect. However, the
complete characterization of whether Forb∗(H) is χ-bounded and whether Forb∗(H)
is recognizable in polynomial-time is still very far from completion. We do not even
know an instance of a subcubic graph H where detecting Forb∗(H) is NP-hard. In
other words, we do not know if it is possible to detect Forb∗(H) in polynomial-time
for every subcubic graph H.

In Chapter 3, we studied even-hole-free graphs with no star cutset. This was
motivated by even-hole-free graphs (a graph class which is closely related to per-
fect graphs) and the use of decomposition technique in solving some optimization
problems. We prove the optimal χ-bounding function for even-hole-free graphs with
no star cutset and also show that this class has bounded rank-width, which implies
the existence of a polynomial-time coloring algorithm. The complexity of finding a
maximum stable set and an optimal coloring for even-hole-free graphs remains open,
even though we know the positive answers for a number of its subclasses.

In Chapter 4, connected greedy coloring is considered. This was motivated by
the greedy coloring algorithm applied to some order of the vertices. Many researches
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have been done for general orders (see [10, 21, 52, 7]): the complexity of computing
Grundy number, the characterization of graphs where there exists a bad ordering,
the complexity of recognizing (hereditary) well-colored graphs, . . . . Connected orders
have also been studied [31, 2, 4, 7]. We know that it is NP-hard to compute connected
Grundy number. Some examples of graphs that are not friendly with connected
orders were also given. However, we know very little about the characterization of
good graphs with respect to connected orders. In this chapter, we gave the complete
characterization of a good claw-free graphs in terms of minimal forbidden induced
subgraphs. This implies also a polynomial-time algorithm for recognizing good claw-
free graphs. We would like to know the complexity of recognizing and the full
characterization of good graphs in general. The next direction should be to study
this question for some interesting classes, for example perfect graphs.
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[7] É. Bonnet, F. Foucaud, E. J. Kim, and F. Sikora. Complexity of grundy coloring
and its variants. In International Computing and Combinatorics Conference,
pages 109–120. Springer, 2015.

[8] K. Cameron, S. Chaplick, and C. T. Hoàng. On the structure of (pan, even
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part I: Decomposition theorem. Journal of Graph Theory, 39(1):6–49, 2002.

[18] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even-hole-free graphs
part II: Recognition algorithm. Journal of graph theory, 40(4):238–266, 2002.
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