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Abstract:  

Maintaining genome integrity through replication is an essential process for the cell cycle. However, 

many factors can compromise this replication and thus genome integrity. Mitomycin C (MMC) is a 

genotoxic agent that creates a covalent link between the two DNA strands. When the replication fork 

encounters the DNA crosslink, it breaks and creates a DNA double strand break (DSB). Escherichia coli 

(E.coli) is a widely used model for studying complex DNA mechanisms. When facing a DNA double strand 

break, E. coli activates the SOS response pathway. The SOS response comprises over 50 genes that are 

under the control of a LexA-repressed promoter. Upon a DSB induction, RecA, a central protein of the 

SOS response will trigger the degradation of LexA and all the SOS genes will be expressed. 

We have developed a novel molecular biology tool that reveals contacts between sister chromatids that 

are cohesive. It has been shown (Lesterlin et al. 2012) that during a regular cell cycle, the two newly 

replicated sister chromatids stay in close contact for 10 to 20 min before segregating to separate cell 

halves thanks to the action of Topoisomerase IV. This step is called sister chromatid cohesion (SCC). We 

have used this molecular biology tool to study sister chromatid cohesion upon a genotoxic stress 

induced by (MMC). We have shown that sister chromatid cohesion is maintained and prolonged when 

the cell is facing a DSB. Moreover, this SCC is dependent on RecN, an SOS induced structural 

maintenance of chromosome-like (SMC-like) protein. In the absence of RecN, the proximity between 

both sister chromatids is lost and this has a deleterious effect on cell viability. By tagging the 

chromosome with fluorescent proteins, we have revealed that RecN can also mediate a progressive 

regression of two previously segregated sister chromatids. This is coordinated with a whole nucleoid 

compaction. Further studies showed that this genome compaction is orderly and is not the result of a 

random compaction in response to DNA damage. 

Interestingly, inhibiting Topoisomerase IV in a recN mutant fully restored viability and sister chromatid 

cohesion, suggesting that RecN has a structural action on sister chromatid cohesion. Preserving cohesion 

through topological linking of the chromatids is sufficient to favor repair and cell viability even in the 

absence of RecN. 

An RNA-seq experiment in a WT strain and a recN mutant revealed that the whole SOS response is 

downregulated in a recN mutant. This suggests that RecN may have an effect on the induction of the 

SOS response and thus RecA filament formation. This is in good agreement with the change in RecA-

mcherry foci dynamics we observed. In the WT strain, RecA-mcherry forms descrete foci as described in 

previous work. However, in the recN mutant, the RecA-mcherry foci form bundle like structures. Such 

RecA bundles have been previsously described by Lesterlin et al. in the particular case of a DSB occurring 

on a chromatid that has already been segregated from its homolog. This could mean that in the absence 

of recN, the sister chromatids segregate and RecA forms bundle like structures in order to search for the 

intact homologous sister chromatid. 

Altogether, these results reveal that RecN is an essential protein for sister chromatid cohesion upon 

genotoxic stress. RecN favors sister chromatid cohesion by preventing their segregation. Through a 

whole nucleoid rearrangement, RecN mediates sister chromatid regression, favoring DNA repair and cell 

viability. 



 
 

Titre : Etude de la cohésion des chromatides sœurs en réponse à un stress génotoxique chez E. coli 

Mots clés :  Escherichia coli – RecN – Réparation de l’ADN – topologie – RecA – mitomycine C 

Résumé : 

La réplication fidèle de l’ADN au cours du cycle cellulaire est essentielle au maintien de l’intégrité du 

génome à travers les générations. Toutefois, de nombreux éléments peuvent perturber et 

compromettre la réplication et donc cette intégrité. La mitomycine C (MMC) est une molécule 

génotoxique utilisée en chimiothérapie. Elle forme des liaisons covalentes entre les deux brins d’ADN, 

ce qui est un obstacle à la bonne réplication de l’ADN. La rencontre de la fourche de réplication avec une 

liaison covalente entre les deux brins d’ADN aboutit à une cassure double brin. Escherichia coli (E. coli) 

est un modèle d’étude très répandu car facile d’utilisation et permettant d’aborder des notions 

complexes. E. coli possède divers mécanismes pour réparer les cassures de l’ADN dont le régulon SOS. 

Le régulon SOS est un ensemble de gènes sous contrôle d’un promoteur réprimé par la protéine LexA. 

En réponse à des dommages à l’ADN, LexA est dégradé et les gènes du régulon sont activés.  

En utilisant une technique de biologie moléculaire qui permet de quantifier l’interaction entre deux 

chromatides sœurs restées cohésives derrière la fourche de réplication (Lesterlin et al. 2012) (étape 

appelée cohésion des chromatides sœurs), nous avons montré qu’en réponse à des cassures double brin 

générées par la MMC, la cohésion entre les chromatides sœurs nouvellement répliquées est maintenue. 

Ce phénomène est dépendant de RecN, une protéine induite de façon précoce dans le régulon SOS. RecN 

est une protéine de type SMC (structural maintenance of chromosomes), un groupe de protéines 

impliquées dans la dynamique et la structure du chromosome qui est essentielle pour la survie à des 

stress génotoxiques de type MMC. En parallèle, des techniques de microscopie confocale et de 

marquage du chromosome par des protéines fluorescentes ont permis de montrer que la protéine RecN 

est impliquée dans une condensation globale du nucléoide suite à un traitement par la MMC. Cette 

condensation du nucléoide s’accompagne d’un rapprochement des chromatides sœurs préalablement 

ségrégées. Ces deux phénomènes, médiés par RecN, pourraient permettre une stabilisation globale des 

nucléoides et favoriser l’appariement des chromatides sœurs pour permettre la recombinaison 

homologue.  

De façon intéressante, l’inhibition de Topoisomérases de Type II (Topoisomerase IV et Gyrase) permet 

de restaurer la perte de cohésion entre chromatides sœurs et la perte de viabilité d’un mutant recN. Les 

Topoisomérases sont des protéines impliquées dans le maintient de l’homéostasie topologique du 

nucleoide. La Topoisomérase IV en particulier permet d’éliminer les liens topologiques formés entre les 

chromatides nouvellement répliquées. Ces liens topologiques non éliminés par les Topoisomerases 

pourraient permettre de garder les chromatides sœurs cohésives et favoriser la réparation par 

recombinaison homologue, même en l’absence de RecN.  

De plus, une expérience de RNA seq (séquençage de tout le transcriptome de la bactérie) a révélé que 

dans un mutant recN, le régulon SOS est moins induit que dans les cellules sauvages. Ceci va de pair avec 

une déstructuration des foci de réparation RecA. Il est possible que le rapprochement des chromatides 

sœurs médié par RecN permette de stabiliser le filament RecA et donc l’induction de la réponse SOS. 

L’ensemble de ces résultats suggère que RecN, une protéine du régulon SOS, permet de maintenir la 

cohésion entre les chromatides sœurs nouvellement répliquées, favorisant la réparation de cassures 

double brins par recombinaison homologue. 
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ROS: Reactive Oxygen Species 
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SCI: Sister Chromatid Interactions 

SMC: Structural Maintenance of Proteins 
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ssDNA: Single Strand DNA 

ssGap: Single Strand Gap 

TC-NER: Transcription coupled Nucleotide excision Repair 

Topo I: Topoisomerase I 

Topo III: Topoisomerase III 

Topo IV: Topoisomerase IV 
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 Introduction 

In every cell, DNA carries the genetic information making all life forms possible. Maintaining 

genome integrity is therefore essential to ensure faithful transmission of the genetic 

information to the next generation. Replication allows the duplication of one DNA molecule 

into two identical DNA molecules before cell division. However, DNA is constantly threatened 

by intracellular and extracellular factors that are a menace to the faithful replication of the 

genome. Indeed, when DNA is compromised during replication, various DNA lesions may 

occur. Single strand gaps and double strand breaks are highly deleterious. If they remain 

unrepaired, they can lead to a loss of genetic information, which in turn, can provoke cell 

death or trigger genetic mutations, often involved in cancer. To limit these threats, every cell 

has developed a large repertoire of proteins dedicated to the removal of DNA lesions and the 

repair of broken DNA. These proteins work coordinately in specific pathways for each type of 

lesion.  

Cancers are frequently caused or facilitated by mutations in genes involved in DNA repair 

pathways (P53, BCRA-2, FANC-A …) (Chae et al., 2016). Some chemotherapy and radiotherapy 

treatments aim at weakening cancer cells by inducing DNA damage. However, different repair 

pathways help ensure highly efficient repair of DNA damage and efficient replication often at 

the cost of genome integrity. Although essential for genome maintenance, DNA damage repair 

pathways render chemotherapy less efficient. By studying and understanding the DNA repair 

mechanisms that are triggered by chemotherapeutic drugs, researchers hope to optimize 

chemotherapy treatment and decrease the strong side effects linked to the lack of specificity 

of action of the drugs. 

 

In this bibliographic introduction, I will start by describing the fundamentals of genome 

duplication in the model organism, the Escherichia coli bacterium. I will focus on DNA 

replication, segregation and particularly on sister chromatid cohesion: What is sister 

chromatid cohesion? How is sister chromatid cohesion formed? What purpose may it have? I 

will then extensively guide you through the different forms of DNA damage and DNA damage 

response (DDR) pathways. Finally, I will address the potential importance of sister chromatid 
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cohesion for DNA repair, and give you a state of the art of the knowledge on the promising 

role that the SOS-induced RecN protein may have in this step. 

 

 Replication 

 
Escherichia coli (E. coli) is a single cell micro-organism. It has a unique circular chromosome. 

The genome of K12 MG1655 E. coli is 4.6 Mbp long, but some pathogenic strains have a 

genome going up to 5 Mbp long. Once stretched out, it is equivalent to 1.6 mm, approximately 

1000 times longer than the size of an average E. coli cell. The duplication time of an E. coli cell 

can be very short, ~30 min in a rich medium and at an optimal temperature (O’Donnell et al., 

2013). It is therefore crucial that E. coli replicates its chromosome with a high efficiency and 

at a maximum speed (~1kb/sec). However, as mentioned previously, replication is a key step 

to guarding the genome’s integrity, and although replication must occur with a high 

processivity, it must also remain highly accurate. This accuracy of replication is partly due to 

mechanisms that immediately remove mis-incorporated nucleotides (this is called 

proofreading). Cells also present mechanisms that detect and eliminate lesions that are 

present on the DNA. Moreover, cells use mechanisms that repair DNA after a breakage of 

continuity. Among them, homologous recombination (HR) uses the intact sister chromatid to 

copy the information and repair.  

The whole process of DNA replication is divided into three phases: Initiation, elongation and 

termination. 

 

1. Replication initiation 

 

In E. coli, oriC is the unique site of replication initiation. DnaA, the initiator protein at oriC, 

binds to a nine base pair sequence called a DnaA box. Five different DnaA boxes are in the oriC 

region, and DnaA has a different affinity for each box.  DnaA oligomerizes by binding to these 

DnaA boxes, and induces a local unwinding of the adjacent AT-rich region of the double helix, 

by using ATP-hydrolysis. DnaA then recruits DnaB, a processive DNA helicase, which is loaded 
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onto the single stranded DNA by DnaC, the helicase loader (Jameson and Wilkinson, 2017; 

Kaguni, 2011). 

Once DnaB is loaded on the single stranded DNA, DnaC must dissociate so that DnaB can 

unwind the duplex DNA. DnaB helicase also recruits DnaG, the DNA primase. The interaction 

of these two proteins leads to primer formation. DnaG synthesizes a ~12 RNA nucleotide, 

which will serve as a primer for Polymerase III (Pol III). The interaction of DnaB and DnaG 

induces a conformational change, leading to the dissociation of DnaC from DnaB and marking 

the switch from initiation to elongation (Makowska-Grzyska and Kaguni, 2010). 

 

2. Replication elongation 

 

Once DNA polymerases and helicases are loaded, the helicase can move bidirectionally 

towards the left and the right arms of the chromosome. The replication machinery is generally 

referred to as the “replisome”. It consists of four DNA polymerase complexes, the DNA 

helicase, the DNA primase, a clamp loader and the DNA Polymerase I. DnaB helicase is at the 

head of the replication fork, and moves on the lagging strand in the 5’ to 3’ direction, thus 

unwinding and separating the two DNA strands in an ATP-dependent manner (Jameson and 

Wilkinson, 2017). DnaB having separated the two DNA strands, Single Strand Binding Protein 

(SSB), coats and polymerizes on the single strand DNA (ssDNA), protecting them from the 

action of nucleases. 

Replication of the leading strand is continuous. Pol III moves continuously in the 3’ to 5’ 

direction, extending the RNA primer synthesized by DnaG. Pol III is composed of three 

subunits, α, ε and θ. Pol III moves forward, interacting with DnaN, also known as the β-clamp. 

DnaN sits behind Pol III and enhances its processivity (Jameson and Wilkinson, 2017). DNA 

polymerases only synthesize DNA in the 5’ to 3’ direction. Therefore, on the lagging strand, 

DnaG forms a complex with DnaB, and synthesizes an RNA primer once DnaB has exposed 

enough ssDNA. This new RNA primer, called an Okazaki fragment, is around 1200 nucleotides 

long and serves as a starting point for synthesis by Pol III (Balakrishnan and Bambara, 2013). 

Pol III polymerizes a new segment of DNA until it reaches the adjacent Okazaki fragment. At 

that point, DNA Polymerase I (Pol I) replaces Pol III. Pol I removes the RNA primer thanks to 
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its 5’ to 3’ exonuclease activity and fills in the gap by synthesizing DNA. DNA ligase will then 

ligate the two adjacent DNA fragments (figure 1). 

 

 

 

 
 

It was recently shown that an active E. coli replisome is formed of three Pol III polymerases, 

but only two are active at a given time. Two of these polymerases may be dedicated to lagging 

strand synthesis, and the third one is the processive leading strand polymerase (Reyes-

Lamothe et al., 2010). It seems quite obvious that processing of the leading strand and lagging 

strand must occur in a coordinated manner to avoid gaps in DNA replication on the lagging 

strand (which could lead to breaks), and insure that replication is completed simultaneously 

on both strands. Interestingly though, very recent work has shown that the DNA polymerases 

of the lagging strand and the leading strand have discontinuous rates, and exhibit random 

pauses. The helicase somehow senses these pauses and can reduce its speed by 80%, allowing 

for a recoupling of the helicase and the polymerase. This suggests that replication can process 

without such a tight coordination of the lagging strand and leading strand (Graham et al., 

2017). 

 

 

Figure 1. Schematic representation of E. coli replisome 

Replication is carried out by DnaB helicase, DnaG primase, DNA Pol III, the β-clamp, the clamp 

loader and lagging strand Pol I and DNA ligase. 
Figure from Jameson & Wilkinson, 2017 
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 DNA polymerase proofreading 

Considering the high processivity with which the replisome synthesizes new DNA, the error 

rate in E. coli is very low 10-10 (Drake et al., 1998). This high rate of fidelity is partly due to the 

polymerase’s proofreading activity, which enhances fidelity by around 200 fold (Fersht and 

Knill-Jones, 1983). Brutlag & Kornberg showed in 1972, that DNA polymerase exhibits 3’ to 5‘ 

exonuclease activity that serves as a proofreading of correct DNA replication. Incorporation of 

a mispaired nucleotide will inhibit incorporation of a new nucleotide and the mispaired 

nucleotide will be removed before replication can move on (Brutlag and Kornberg, 1972; Loeb 

and Kunkel, 1982). 

The DNA polymerase holoenzyme has seven subunits. The α subunit encoded by dnaE, the ε 

subunit encoded by dnaQ, and the θ subunit form the Polymerase III core (McHenry and Crow, 

1979). The α subunit harbours the polymerase activity and the ε subunit contains the 

proofreading activity (Maki et al., 1985; Scheuermann et al., 1983). 

 

3. Replication termination 

 

Moving bidirectionnally, the replisomes of both the left arm and the right arm simultaneously 

reach the terminus region, opposite to oriC, called Ter. Bird et al. first described the concept 

of a replication terminus in 1972 (Bird et al., 1972). It has been shown that this terminus region 

of E. coli is composed of several ter sites (23 pb sequences, named terA to terJ) bound by a 

Tus protein, that arrest replication from one direction only, creating a trap for both replisomes 

in the Ter region (Neylon et al., 2005) (figure 2). 
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For a long time, it has been unclear how a Tus-ter complex can block a replisome coming from 

one direction but not the other. The replisome can replicate past the first 5 Tus-ter complexes 

it encounters when it is coming from the correct direction, but will be blocked at the following 

5 Tus-ter complexes because it will be considered coming from the wrong direction (Hill, 

1992). Several studies have given new insight into this matter and three distinct models are 

currently discussed. One model suggests that the helicase DnaB physically interacts with one 

side of the Tus-ter complex, rendering its processing permissive when it encounters it from 

one side and non-permissive when it encounters it from the other side (Hill et al., 1987). The 

second model suggests that a difference in binding between the Tus protein and the two ends 

of the ter sequence. Binding of Tus with  the different ends of the ter sequence induces a 

different blocking efficiency, letting the helicase move forward in one case but not the other 

Figure 2. Schematic of chromosomal positionning of ter sites on the E. coli chromosome 

terC to terH allow replication from the right replichore to proceed. Replication from the left replichore 

is arrested because it is coming from the wrong direction. terB to terJ allow replication from the left 

replichore to proceed but replication coming from the opposite direction is arrested. 
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(Kamada et al., 1996). Finally, the third model, called the mouse trap model suggests that 

when DnaB encounters the Tus-ter complex from one side, it induces some sort of 

conformational change, that reorients the specific C(6) base into a cytosine binding pocket in 

the Tus protein, ultimately causing an arrest of the helicase (Berghuis et al., 2018; Pandey et 

al., 2015). Today, although the two first models are not excluded, an extended, multistep and 

more complex mouse trap model seems to be favored (Berghuis et al., 2018). Once the 

replisomes are arrested in the Ter region, final segregation of the two new sister chromatids 

in the Ter domain can occur. This is a complex step of DNA replication, which I will discuss in 

another section.  

 

4. Origin independent replication 

 

Unlike Eukaryotic cells that fire replication at many origins all over the chromosome, 

replication is initiated at a single position called oriC in E. coli. Therefore, if a replication fork 

of one of the replisomes is blocked during replication, before reaching the terminus region, 

the remaining portion of that replichore will not be replicated while the opposite fork is still 

ongoing. This can create a delay in cell cycle completion, segregation defects or even worse, 

cell death. To circumvent these deleterious events, several mechanisms promoting replication 

fork rescue and replication restart exist. 

It has been well characterized that in particular conditions replication can initiate at 

chromosomal sites that are far from oriC. This replication has been called constitutive stable 

DNA replication (cSDR). In cells replicating by cSDR, DNA-RNA hybrids (called R-loops) serve as 

primers for replication initiation. rnase HI or recG mutants, that are involved in eliminating R-

loops, exhibit DNA synthesis even in the absence of oriC and DnaA (Kogoma, 1997).  It has 

been suggested that the mechanism by which cSDR carries out replication in the rnaseHI 

mutant and the recG mutant differs (Rudolph et al., 2013). Indeed, it is proposed that cSDR 

arising in recG mutants is the consequence of unresolved fork collisions in the Ter region. In 

recG mutants, replication initiated at the terminus can be suppressed by mutating priA or 

deleting the priB gene. These proteins are involved in DnaB loading at stalled replication forks, 

suggesting that a substrate for PriA loading and replisome assembly is formed. It was 

suggested that replication fork collisions may trigger the formation of 3’ssDNA flaps, providing 
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a substrate for PriA-dependent replication fork assembly (Rudolph et al., 2009) (the rescue of 

stalled replication forks will be discussed in section C). recG dnaA mutants exhibit replication 

firing in both directions from the Ter, but the extent is limited since it is restricted by the 

Tus/ter boundaries. Moreover, destabilizing the transcription complexes with an rpoB*35 

mutation also allows further extension of replication. Combining these mutations enables cells 

to grow and form colonies in the absence of oriC initiation. Interestingly, in a recG rpoB*35 

tus/ter dnaA mutant, when oriC is moved from its original locus, the forks meet opposite to 

the ectopic oriC and replication is initiated in this new artificial Ter region (Rudolph et al., 

2013). DnaA independent replication is further increased in recG mutants treated with UV-

irradiation. UV irradiation may favor the assembly of new replication forks linked to the repair 

of such lesions, provoking more fork collisions (Rudolph et al., 2009). 

 

5. Avoiding over initiation: the role of SeqA 

 

SeqA is a protein that is involved in preventing re-initiation of replication at oriC immediately 

after it has been replicated. SeqA protein binds to hemimethylated DNA at OriC and by doing 

so, prevents DnaA binding and prevents dnaA transcription since dnaA gene is one of the first 

transcribed genes (Jameson and Wilkinson, 2017). Campbell et al. showed that although 

methylation by Dam methylase occurs right after replication over the chromosome, the OriC 

region remains hemimethylated for a short period before dam methylase fully methylates it 

(Campbell and Kleckner, 1990). Moreover, the dnaA promoter contains a GATC site that 

undergoes the same sequestration phenomenon, thus reducing its transcription and lowering 

its amount in the cell, which is essential for replication initiation (Slater et al., 1995). By binding 

the GATC hemimethylated sequences at oriC and in the dnaA promoter, SeqA sequesters the 

origin of replication for up to one third of the cell cycle. A combination of SeqA dissociation 

and methylation of the hemimythalted DNA will lead to a release of the sequestered origin 

and allow a new round of replication (Jameson and Wilkinson, 2017). 

There exists other systems to repress over-initiation events, for instance, the datA locus 

contains five DnaA boxes that favor binding of many DnaA proteins, thus decreasing the 

amount of free DnaA proteins available for oriC initiation events (Kitagawa et al., 1998). 
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6. Dealing with topology during replication 

 

Replication of the E. coli chromosome is a topological challenge. Indeed, the processing of the 

replisome on a circular chromosome creates topological tension, called supercoiling, ahead of 

the replication fork and behind the replication fork (Postow et al., 1999). These supercoils 

need to be dealt with to avoid chromosome breakage. However, many biological processes 

such as transcription, initiation of replication, enzyme activity or even site-specific 

recombination require a certain degree of supercoiling, rendering it essential for cell survival. 

It is therefore very important to maintain a steady state level of topological tension on the 

DNA throughout the cell cycle (Postow et al., 1999; Zechiedrich et al., 2000). 

A group of enzymes called topoisomerases is responsible for managing this supercoiled 

homeostasis of the chromosome. Topoisomerases have the ability to change the supercoiling 

state of the DNA by introducing or removing knots. They can be divided into two types (Type 

I and Type II) depending on whether their activity involves the breakage of one or two strands 

of DNA. 

 

a) Type I topoisomerases 

 

i. Topoisomerase I 

 

Topoisomerase I (Topo I) is a Type I topoisomerase that catalyzes the cleavage on a single 

strand of DNA allowing for the relaxation of negative supercoiling. It is mainly dedicated to 

topological homeostasis during transcription and recent studies have actually suggested a 

direct interaction between Topo I and the RNA polymerase (Banda et al., 2017; Tiwari et al., 

2016). Topo I mutants are synthetically lethal with rnaseH null mutants, due to overproduction 

of R-loops suggesting a role for Topo I in R-loop (DNA-RNA hybrids) removal during 

transcription (Drolet et al., 1995).  It has been shown that Topo I actually inhibits R-loop 

formation during transcription by relieving the negative supercoils accumulated by the RNA 

polymerase. Indeed, unremoved negative supercoils behind the RNA polymerase may leave 

place for reannealing of RNA to DNA and promote R-loop formation. In cells lacking Topo I, R-

loop mediated cSDR is increased (Martel et al., 2015) and the overexpression of RnaseH 
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partially restores a Topo I deficient mutant (Drolet et al., 1995; Massé and Drolet, 1999). 

Besides removing R-loops, Topoisomerase I does not seem to be crucial in the replication cell 

cycle. 

 

ii. Topoisomerase III 

 

Although Topoisomerase I and Topoisomerase III have the same mode of action (i.e. relaxing 

negatively supercoiled DNA by cleaving a single strand of DNA), their roles differ greatly. To 

better understand the role of Topoisomerase III (Topo III), it is important to explain what 

precatenanes are and how they form. 

During replication, as mentioned in the previous section, topological tension accumulates on 

the chromosome. As the replication fork moves forward, it creates an excess of positive 

supercoils. Gyrase deals with these positive supercoils ahead of the replisome, but Champoux 

& Been suggested that these positive supercoils may also diffuse behind the replication fork 

as the replisome swivels and create precatenanes. Precatenanes are topological links, formed 

between the two newly replicated sister chromatids.  The name precatenane comes from the 

term catenane, because precatenanes, if unresolved lead to catenated chromosomes at the 

end of replication (Champoux et al., 1979) (figure 3). 
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No obvious phenotype for topB (the gene encoding Topo III) mutants has been observed but 

a Topo III overexpression in a temperature sensitive mutant of Topoisomerase IV (the main 

precatenane removing enzyme, see section B) can restore viability and restore chromosome 

segregation. This means that Topo III can act as a decatenase during replication by removing 

precatenanes, although a single strand gap is required as a substrate (Nurse et al., 2003). 

Other interesting activities have been described for Topoisomerase III. Zhu et al. described in 

2001 that Topo III and RecQ can act together to resolve recombination intermediates such as 

Holliday Junctions (HJ) before chromosome segregation (Zhu et al., 2001). It was later shown 

that RecQ and Topo III act together to resolve stalled converging replication forks. Their action 

is mediated by SSB protein. These two different functions of the RecQ-Topo III pair results 

Figure 3. Formation of precatenanes and catenanes 

Positive supercoils ahead of the fork are eliminated by Gyrase. Precatenanes formed behind the 

replication fork are removed by Topoisomerase IV. Unresolved precatenanes may lead to the 

formation of catenated chromosomes at the end of replication. 
Adapted from Reyes-Lamothe et al. 2012 
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from a different activity of RecQ in both reactions. The former being linked to RecQ’s branch 

migration activity and the latter to its DNA unwinding activity (Suski and Marians, 2008). The 

overexpression of RuvABC (a resolvase of recombination intermediates) rescued a double 

Topo IV/Topo III mutant. These Topo IV/Topo III double mutants are barely viable, even at the 

permissive temperature. They grow very slowly and have segregation defects. The rescue of 

this mutant by overexpression of RuvABC confirms a possible role for Topo III in managing 

recombination intermediates (Lopez et al., 2005). 

 

b) Type II topoisomerases 

i. Gyrase 

 

As the replication fork moves forward, topological tension accumulates ahead of the fork. 

These positive supercoils are mainly dealt with by Gyrase. Gyrase is a specific topoisomerase 

that only exists in bacteria. It is the only topoisomerase that has the ability to introduce 

negative supercoils, in an ATP-dependent manner (Gellert et al., 1976). Gyrase is composed 

of two subunits, GyrA and GyrB. GyrA has the DNA binding motif and GyrB exhibits the ATP-

hydrolysis activity. Gyrase’s ATP-hydrolytic activity allows the introduction of negative 

supercoils ahead of the replication fork, thus acting against the natural accumulation of 

positive supercoils created by replication. The introduction of negative supercoils is essential 

to let the DNA polymerase move forward. 

 

ii. Topoisomerase IV 

Topoisomerase IV is a type II topoisomerase formed of two subunits, ParE and ParC. It is the 

main decatenase in E.coli (Zechiedrich et al., 1997). Topoisomerase IV can act behind the 

replication fork to relieve topological links called precatenanes (Lesterlin et al., 2012; Wang et 

al., 2008). However, Topoisomerase IV is mainly required at the end of replication for the 

resolution of catenantion links that have persisted after replication (Espeli et al., 2003). 

The role and action of Topoisomerase IV will be further discussed in section B.2. 
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 Sister chromatid cohesion and segregation 
 

1. Sister chromatid cohesion in Eukaryotes 

 

During replication in Eukaryotic cells, the newly replicated sister chromatids stay cohesive 

during the subsequent gap (G2) phase and during early mitosis, prophase, prometaphase, and 

metaphase. This physical connection between sister chromatids is called Sister Chromatid 

Cohesion (SCC). This step is crucial to avoid premature sister chromatid separation and thus 

ensure proper chromosome segregation. It has been proposed that this SCC step is essential 

for proper bi-orientation of the chromosomes on the mitotic spindle (Tanaka et al., 2000). 

Moreover, SCC creates tension by resisting the forces of the microtubules which is highly 

important for the correct segregation of the chromatids (Nasmyth and Schleiffer, 2004). A 

defect in SCC can be very detrimental for the cell and several human diseases have been linked 

to an inappropriate segregation of chromosomes. For instance, cohesion defects and 

subsequent chromosome instability are associated to Hodgkins lymphoma (Sajesh et al., 

2013). 

 

a) Eukaryotic SMC proteins 

 

In Eukaryotes, sister chromatid cohesion is mediated by Cohesin. Cohesin is a multiproteic 

complex, formed of several subunits that are part of the SMC protein family (originally, SMC 

stood for stability of mini-chromosomes, but it is also referred to as structural maintenance 

of chromosomes). There exist at least six SMC proteins, SMC1 to SMC6, which have different 

roles in chromosome dynamics, cohesion, condensation and even gene expression. SMC 

proteins are typically between 150-170 kb and each SMC dimer has an amino- and a carboxy- 

terminal globular domain, also called head domain, carrying the Walker A motif at the amino 

terminal and a DA box (resembling the Walker B box) at the carboxy- terminal. These motifs 

are highly conserved structures involved in ATP binding and hydrolysis (figure 4A) (for review, 

(Cobbe and Heck, 2000). The two head domains associate by folding of the hinge domains, 

forming a coiled coil (figure 4A). 
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In Eukaryotic cells, SMC proteins associate by the hinge domain to form heterodimers. SMC1 

associates with SMC3, SMC2 with SMC4 and SMC5 associates with SMC6. SMC2/4 forms the 

Condensin complex, responsible for chromosome compaction during metaphase. The SMC5/6 

heterocomplex is involved in DNA repair and homologous recombination although other 

genome maintenance functions may be attributed to the SMC5/6 complex (Kegel and Sjögren, 

2010). This particular SMC complex will further be discussed in section D). 

 

b) SMC1/3, the Eukaryotic Cohesin 

 

The SMC1/3 complex is the Eukaryotic Cohesin. SMC1 and SMC3 bind together through their 

hinge domain. The association of their globular heads forms a nucleotide binding domain 

(NBD) that is connected by the kleisin protein Scc1 (Michaelis et al., 1997). The association of 

these three proteins forms a tripartite ring-like structure that may entrap the sister 

chromatids. A fourth subunit, (Scc3 in yeast or SA in higher Eukaryotes)  binds Scc1 and  is 

essential for sister chromatid cohesion (Gruber et al., 2003; Haering et al., 2002). Other 

proteins, such as Wapl/Rad61, Pds5, and Sororin can bind to Scc1 or Scc3 and influence 

cohesion. These kleisins or other kleisin-associated subunits can vary depending on the 

organism (figure 4B). 
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Cohesin is associated to chromosomes during S phase and its loading is dependent on Scc2 

and Scc4 proteins, the two subunits of the Adherin complex (Ciosk et al., 2000). Cohesin can 

be loaded onto chromosomes throughout the cell cycle but cohesion will only be established 

during replication (Uhlmann and Nasmyth, 1998) (figure 4C).. It has been proposed that DNA 

entry into the Cohesin ring requires a transient dissociation of the hinge domains of SMC1 and 

SMC3 (Gruber et al., 2006). Interestingly, ChIP experiments in Saccharomyces cerevisiae have 

revealed that Adherin complexes and Cohesin are bound at different sites on the 

chromosome. It has been proposed that Cohesins may be loaded onto DNA at the Adherin 

Figure 4.  Schematic representation of a Eukaryotic SMC protein 

A- Schematic representation of an SMC protein. The protein is folded at the hinge domain forming 

a long coiled coil domain bringing the two globular heads together. B- Schematic representation of 

the Cohesin complex. The names of the subunits are the yeast names. SMC1 and SMC3 are 

associated by the Scc1 kleisin and kleisin-associated proteins. C- Cohesin cycle in yeast. Scc2 and 

Scc4 load Cohesin onto chromosomes. Cohesion is established between sister chromatids.Cohesion 

leads to tension at the centromeres and biopolar orientation is achieved. Separase cleaves Scc1 

subunit and Cohesin dissociates from the chromosomes allowing segregation. 
Adapted from Kegel & Sjogren, 2010 and Nasmyth & Haering, 2005 
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sites and that they translocate and slide to other chromosomal regions. More specifically, it 

was shown that Cohesin accumulates between genes of converging transcription, meaning 

that Cohesin binding is rather defined by transcription than the recognition of a specific DNA 

sequence. These observations, coupled to experiments suggesting that Cohesin can slip off 

small linearized chromosomes lead to the proposal that Cohesin can move laterally along DNA 

(Ivanov and Nasmyth, 2005). Cohesin binding sites expanded over approximately 4 kb and the 

distance between two neighboring binding sites varied between 2 to 35 kb   (Lengronne et al., 

2004). Once bound to sister chromatids, Cohesin keeps the sister chromatids connected until 

the onset of division in anaphase. Cleavage of Scc1 by Separase releases Cohesin from the 

sister chromatids, abolishing SCC and allowing segregation (Uhlmann et al., 2000). 

 

2. Sister chromatid cohesion  in Escherichia coli 

 

a) Existence of a sister chromatid colocalization before 

segregation 

 

In E. coli, cohesion of sister chromatids as described in Eukaryotes does not exist because they 

lack Cohesin proteins. However, experiments have shown that there exists a lag between the 

replication and the segregation of a given locus. Fluorescence in situ hybridization (FISH) 

microscopy in synchronized cells showed that a chromosomal locus situated near oriC had 

only one single fluorescent focus for approximately 35 min, before exhibiting two distinct 

fluorescent foci suggesting that although the locus is replicated, there is an extensive lag 

before it segregates. These observations were confirmed for other loci in the origin proximal 

half of the chromosome. A possible role for MukBEF complex (an E. coli SMC protein) but not 

Dam methylase in these events was described (Sunako Yumi et al., 2002). Later, Bates and 

Kleckner proposed that the splitting of the sister chromatids could occur simultaneously over 

a large portion of the nucleoid (except for the Ori and Ter regions that behave differently) and 

that it is followed by a chromosome reorganization that leads to chromosome segregation at 

the onset of cell division (Bates and Kleckner, 2005). Using live cell microscopy and fluorescent 

labelling of chromosomal loci, Espeli et al. showed that the dynamics and mobility of 

chromosomal loci actually vary depending on the macrodomain they belong to. These 
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experiments further revealed the segregation pattern of the various macrodomains. The Ori 

macrodomain and the non-structured regions segregate first, followed by the left and right 

macrodomains.  Loci in the non-structured regions appear to be less constrained than foci in 

the left or right macrodomains. Interestingly, foci in the macrodomains segregate 

progressively, following the genetic map, but foci in the non-structured regions present 

irregular and unpredictable segregation timings. This suggests that the colocalization step 

following replication depends on its chromosomal position and thus its belonging to a given 

macrodomain or non-structured region (Espeli et al., 2008). 

 

b) Role of Topoisomerase IV in sister chromatid colocalization and 

sister chromatid cohesion 

 

Topoisomerase IV is a Type II topoisomerase that removes positive supercoils and catenanes. 

It is formed of two subunits, ParE and ParC. Topo IV mutants are not viable and ParE or ParC 

temperature sensitive mutants exhibit a long elongated cell phenotype with a nucleoid 

partitioning defect when placed at a non-permissive temperature (Kato et al., 1990). 

An original DNA microarray experiment, based on gene copy number and the relative 

abundance of replicated DNA over non-replicated DNA, allowed to measure fork progression 

in conditions where Topoisomerase IV was inhibited or not. This revealed that Topoisomerase 

IV promotes fork progression by relieving positive supercoils ahead of the replication fork at 

1/3 of the rate provided by Gyrase (Khodursky et al., 2000). But the main activity of Topo IV 

appears to be DNA ring decatenation (Zechiedrich et al., 1997).  

Topoisomerase IV is essential to decatenate E. coli chromosomes (Kato et al., 1990). It was 

later shown that inhibition of Topo IV prevents locus segregation, and conversely, 

overexpression of Topo IV dramatically reduces the time of sister chromatid cohesion. 

Interestingly, inhibition of Topo IV did not prevent ongoing replication, but did prevent 

segregation of sister loci (Wang et al., 2008). 

A site-specific recombination assay, based on loxP recombination, revealed that sister 

chromatids stay cohesive for a tightly controlled period of time before segregating and 

confirmed that their segregation relies on Topo IV activity. This site specific recombination 
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assay detects contacts between sister chromatids at a molecular level rather than probing 

sister chromatid colocalization as described in the previous studies (Bates and Kleckner, 2005; 

Espeli et al., 2008; Sunako Yumi et al., 2002) (figure 5). 

 

 

 

 

 

Figure 5. Schematic description of the loxP recombination assay principle 

A- Principle of the loxP site specific recombination assay. Upon Cre induction the two consecutive 

loxP sites can only recombine with the loxP sites carried by the sister chromatid. Recombination 

gives rise to the recombination products: 1loxP site on one chromatid and 3loxP sites on the other 

chromatid (Adapted from Lesterlin et al. 2012). B- Illustration of the amount of loxP recombination 

as a function of distance between loxP sites (and hence, sister chromatids). 
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This assay revealed that recombination occurred more frequently between homologous 

sequences, meaning that the sister chromatids are tightly and physically bound (enough for 

loxP recombination to occur between homologous chromatids), and not just colocalized, 

which could have been the case with conclusions solely inferred from fluorescence microscopy 

experiments. It was further estimated that the region of cohesion behind the replication fork 

varies between 400 kb and 1M bp, corresponding to a time frame of 10 to 30 min after 

replication (Lesterlin et al., 2012). This observation is consistent with the work of Bates & 

Kleckner and Espeli et al. and could also be explained by the existence of particular 

chromosomal regions called SNAPS (Joshi et al., 2011). 

 

c) The Snaps regions 

 

Although the loss of interactions between sister loci has been described as progressive and 

coordinated with replication (Lesterlin et al., 2012), imaging of individual loci revealed regions 

with delayed segregation. Two regions near the origin of replication, defined as SNAPs, exhibit 

late splitting. These two regions, that are about 150 kb long, are both situated on the right 

replichore. Loci situated in both SNAP regions segregate concomitantly and are linked to the 

appearance of the bilobed form of the nucleoid (Joshi et al., 2011). Sites such as gln, or psd 

and fecR that are in two different SNAP regions, separate at the same time although they are 

over 150 kb apart on the genetic map. Moreover, these two regions exhibit prolonged 

cohesion even though the flanking regions have already segregated. The gln locus in one of 

the SNAP regions also presented an increased frequency of sister loci interactions in the loxP 

recombination assay compared to other loci (Lesterlin et al., 2012).  Although “the raison” 

d’être of such regions is not quite clear, it is proposed that internal forces and accumulation 

of segregation tension in these SNAP regions, may be of high relevance for proper sister 

chromatid segregation and partitioning to opposite cell halves. 
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d) Precatenane formation and removal by Topoisomerase IV 

 

As previously mentioned, during replication, unwinding of the duplex DNA by helicases causes 

overwinding ahead of the replisome. Gyrase and Topoisomerase IV manage the positive 

supercoils accumulated ahead of the fork, but these supercoils can also diffuse behind the 

replication fork due to a rotation of the replisome, and form what are called precatenanes 

(Cebrián et al., 2015; Peter et al., 1998).  

Precatenanes were originally described on plasmids (Postow et al., 1999). If left unresolved, 

these precatenanes may lead to catenanes that topologically link the chromosomes at the end 

of replication (Champoux et al., 1979). In 2008, Wang and coworkers showed that segregation 

of newly replicated loci was impaired when Topoisomerase IV is inhibited and accelerated 

when Topo IV was increased (Wang et al., 2008). Later, Lesterlin et al. linked sister chromatid 

cohesion to the formation of putative precatenanes. Indeed, using the site specific loxP 

recombination assay, they showed that the recombination frequency was drastically 

increased when the activity of Topo IV is impaired in a parEts or parCts mutant, suggesting that 

sister chromatids stay tightly bound together when Topo IV activity is inhibited. These 

observations lead to a model where precatenanes form behind the replication fork, 

interlocking the newly replicated sister chromatids, keeping them cohesive for a period of 

time before the action of Topoisomerase IV allows their segregation. This step is defined as 

the sister chromatid cohesion period in E. coli (Bermejo et al., 2008; Lesterlin et al., 2012) 

(figure 6). Recently, similar topological links have been directly observed in yeast suggesting 

that precatenanes do form on the chromosome (Mariezcurrena and Uhlmann, 2017). 
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e) Other proteins involved in sister chromatid cohesion during 

replication 

 

Although Topoisomerase IV seems to be the main factor directly involved in precatenane 

removal, other proteins may be indirectly influencing precatenane removal and sister 

chromatid cohesion. Indeed, the rate of precatenane formation is much slower than the rate 

of Topo IV decatenation activity, suggesting that Topo IV activity may be negatively regulated, 

in order to maintain a steady state of precatenanes behind the fork and keep sister chromatids 

cohesive (Lesterlin et al., 2012). Lesterlin et al. in 2012 and Joshi et al. in 2013 tested several 

candidate proteins for their possible action on sister chromatid cohesion (Joshi et al., 2013; 

Lesterlin et al., 2012). Using the site specific loxP recombination assay, Lesterlin et al. tested 

Figure 6. Representation of sister chromatid cohesion mediated by precatenanes in E. coli 

Gyrase relieves positive supercoils ahead of the replication fork. Topoisomerase IV removes 

precatenanes behind the replication fork. 
Adapted from Lesterlin et al.2012 
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the effect of MukB (an SMC-like protein) and MatP (Ter macrodomain organizing protein) on 

sister chromatid interactions, and showed that neither of these proteins significantly 

influenced specific homologous sister chromatid interactions. Using fluorescence microscopy, 

Joshi et al. tested various candidate proteins: MukB and RecN (SMC like proteins), HNS, IHF 

and Fis (nucleoid associated proteins), and SeqA (replication fork tracking protein) as well as 

its regulator, Dam (Adenine DNA methylase). Of these tested proteins, only SeqA and Dam 

had an effect on sister chromatid cohesion during replication. They observed that in a seqA 

mutant, the cohesion period of the gln locus dropped from 30 min to 12 min. They propose 

that SeqA binds immediately behind the replication fork, on hemimethylated DNA, and 

specifically on GATC sites, thus delaying precatenane removal by Topo IV. Interestingly, they 

found that SNAP regions had a high frequency of GATC sequences, and that SeqA binding, 

revealed by Chip-qPCR experiments was over 10 times stronger in these regions, shedding 

light on the particular cohesion pattern observed in these regions. Naturally, dam- mutants 

exhibited a similar cohesion phenotype to that observed in a seqA mutant (figure 7). It was 

later shown that there was an increased spacing of GATC sites around the Topo IV cleavage 

sites. This could be linked to SeqA binding at GATC, creating a barrier to Topo IV cleavage. 

Interestingly, Topo IV cleavage sites are rare in the SNAPs regions. However, no effect of seqA 

deletion was observed on Topo IV cleavage at two sites outside of the SNAPs, suggesting that 

the effect of SeqA might be limited to regions with a high density of GATC (El Sayyed et al., 

2016).  
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f) Final segregation of sister chromatids: Topo IV and XerCD-dif 

 

We have extensively discussed the segregation of sister chromatids, which is concomitant with 

replication. However, although most of the sister chromatids have migrated into different cell 

halves during replication, they remain bound in the terminus region, where they need to be 

decatenated. Topoisomerase IV plays a crucial role in precatenane removal but most of its 

activity is detected late in G2 phase, presumably for the final decatenation step of fully 

replicated chromosomes (Espeli et al., 2003). 

In fact, the terminus region follows an original pattern of segregation. The sister loci of the Ter 

macrodomain do not segregate until the onset of cell division. This extended colocalization 

period is partly due to MatP, the Ter macrodomain organizing protein. MatP binds specifically 

to the 23 matS sites spread throughout the terminus region. In the absence of either MatP 

protein, or the matS sites, the Ter region presented an early segregation pattern (Mercier et 

Figure 7. Schematic model for SeqA binding 

SeqA binds hemi-methylated DNA behind the replication fork. SeqA binding may prevent access of 

the hemi-methylated region to Topoisomerase IV and thus prevent Topoisomerase IV action and 

subsequent segregation. Upon methylation of the second strand of DNA, SeqA is removed and 

Topoisomerase IV may bind and eliminate precatenanes. 
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al., 2008). Interestingly, although deleting matP had an effect on late sister chromatid 

segregation and co-localization, it did not have a strong effect on sister chromatid interactions 

revealed by site-specific loxP interactions. This confirms MatP’s role as a global Ter 

macrodomain organizer, that does not necessarily favor contacts between homologous 

regions of sister chromatids, as is the case with precatenanes (Lesterlin et al., 2012). 

MatP plays many roles in chromosome segregation. First, its association with ZapB, a septal 

ring protein, forces the colocalization of the two newly replicated Ter regions at mid-cell 

forming a colocalization focus (Espeli et al., 2012). Second, MatP stimulates the dissociation 

of MukB with the Ter regions. MukB binds transiently to matS sites and is rapidly ejected by 

MatP that catalyses the ATP hydrolysis of MukB (Nolivos et al., 2016). This activity creates a 

large region around dif where MukB influence on chromosome folding differs from the rest of 

the chromosome (Lioy et al., 2018). MukB displacement from this region is necessary to form 

clusters at Ori (Nicolas et al., 2014; Nolivos et al., 2016). These MukB clusters are required for 

correct positioning of the origin of replication to the quarter position of the cell, which is 

important for chromosome partitioning. This differential positioning of MukB influences Topo 

IV decatenation activities and seems important for the formation of Topo IV clusters near the 

origin, although direct effect of mukB deletion on Topo IV cleavage in the Ter or another strong 

cleavage site has not been observed. However, Topo IV binding analyzed by ChIP-seq follows 

an oriC –dif gradient that might be compatible with MukB depletion in the Ter domain by MatP 

(El Sayyed et al., 2016).  

In the final step of segregation, FtsK, a DNA translocase acts to release MatP-mediated 

cohesion. It then actively segregates the terminus region of sister chromatids by translocating 

DNA following the orientation of the polar KOPS motifs (Stouf et al., 2013). 

When there is an uneven number of recombination events during replication, the two new 

chromosomes may form chromosome dimers that need to be resolved for proper segregation. 

The resolution of these dimers is performed at dif, thanks to the action of XerC and XerD 

recombinases. El Sayyed et al. showed that Topo IV activity was strongest at dif, the site of 

catenane resolution. This activity was dependent on XerC binding and the xerC box but not 

XerD. MatP is also required for Topo IV loading at the dif site for the faithful decatenation of 

fully replicated chromosomes (Sayyed et al., 2016). 
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 DNA damage and the DNA damage response pathways in 

Escherichia coli 
 

1. Avoiding replication errors during a regular cell cycle: Mismatch 
repair (MMR) 

 

Although the proofreading activity of the DNA holoenzyme Pol III is very efficient, some errors 

persist once the replication fork has passed. These mis-paired bases need to be dealt with 

because they can lead to mutations and thus disease or cancer. 

In 1976, Wagner and Meselson showed that mismatches introduced into E. coli triggered 

repair reactions. They also hypothesized that this mismatch repair reaction could serve to 

correct mis-paired bases incorporated during replication (Wagner and Meselson, 2005). One 

of the critical steps of the Mismatch Repair (MMR) pathway is to identify which of the two 

strands has incorporated the wrong base. In E. coli, the detection of the incorrect strand relies 

on DNA methylation. Since MMR is a post-replicative DNA damage response, the newly 

synthesized strand is not yet methylated. The DNA is in a hemi-methylated state, targeting 

correction to the un-methylated strand (Lu et al., 1983; Pukkila et al., 1983). Mismatch 

recognition may differ depending on the species. For instance, in B. subtilis, the β-clamp 

directs MutS to the DNA for mismatch recognition (Simmons et al., 2008). In E. coli, MutS 

recognizes and binds the mismatch (Su and Modrich, 1986). Interaction of MutS and MutL 

activates MutH, an endonuclease that recognizes and cleaves the strand carrying the mis-

paired base, at an unmethylated GATC site (Au et al., 1992). UvrD helicase uses the incision 

made by MutH to initiate unwinding of the nascent strand and goes beyond the mis-paired 

base (Grilley et al., 1993). Through a direct interaction, MutL enhances UvrD helicase activity 

more than 10 fold (Yamaguchi et al., 1998) and UvrD thus unwinds DNA, exposing a single 

strand, which is the substrate for MMR exonucleases. SSB binds to the parental DNA, 

protecting it from exonuclease activity (Ramilo et al., 2002). Whether the un-methylated 

sequence, dGATC that will direct repair of the mismatch is situated 3’ or 5’ to the mismatch, 

different exonucleases are recruited. When the dGATC sequence is 5’ to the mismatch, 

Exonuclease VII or RecJ, exhibiting a 5’ to 3’ exonucleolytic activity are required, whereas 
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Exonuclease I is recruited for 5’ to 3’ exonuclease activity (Cooper et al., 1993). Regardless of 

the orientation of the mismatch, excision by the exonucleases (for both directions), was 

shown not to exceed 100 nucleotides beyond the mis paired base. DNA Pol III then fills the 

gap and ligase seals it (Lahue et al., 1989) (figure 8). 

 

 

 

 

Figure 8. Mismatch repair pathway in E. coli 

MutS recognizes and binds the mismatch. MutS and MutL intarct and activate MutH. MutH 

recognizes the mispaired base thanks to the hemimethylated state of the DNA and incises the 

DNA. UvrD helicase unwinds the DNA and the appropriate exonuclease degrades up to 100 

nucleotides on the strand carrying the mismatch. Pol III fills in the gap and ligase reseals it. 
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2. DNA damage lesions 

Extracellular and intracellular events compromise DNA and create various types of DNA 

lesions. These lesions can be dealt with through different repair pathways, and in the most 

detrimental situations, lead to DNA double strand breaks (DSBs). Some DNA lesions change 

the structure and nature of the DNA. They modify the bases, create covalent links or even 

change the chemistry of the bases. 

 

a) Modified bases 

 

i. Spontaneous base deamination 

 

Deamination is a frequent source of spontaneous mutagenesis. It is a reaction where cytosine, 

adenine, guanine and 5-methyl cytosine have their amine group replaced by an oxygen atom 

to become uracil, hypoxanthine, xanthine and thymine respectively (Chatterjee and Walker, 

2017). Deaminated cytosines are rapidly removed by uracil DNA glycosylase, but thymine for 

instance, resulting from the deamination of 5-methyl cytosine, is poorly removed. Indeed, 

thymine, that is naturally part of DNA is more difficultly recognized, making it one of the major 

sources of single site genetic diseases (Cooper and Youssoufian, 1988). These highly 

mutagenic lesions are dealt with through the Base Excision Repair (BER) pathway (figure 9A). 

ii. Abasic sites 

 

An abasic site appears on duplex DNA when the N-glycosyl bond between a nucleobase and 

the deoxyribose is hydrolysed. This reaction can occur spontaneously but also arises as an 

intermediate of the Base Excision Repair (BER) pathway. Indeed, the removal of uracil by uracil 

DNA glycosylase creates a transient abasic site, also called apurinic or apyrimidinique site (AP 

site), that is managed by the BER pathway. In humans, a defect in the BER pathway leaves AP 

sites unattended and leads to genetic mutations or cancer (figure 9B). 
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Recent studies in E. coli have shown the surprising role of GAPDH in the BER pathway and the 

repair of spontaneous or drug induced abasic sites (Ferreira et al., 2015). In E.coli GAPDH 

catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) to 1,3-

bisphosphoglycerate (BPG) using the cofactor NAD and phosphate during glycolysis and 

gluconeogenesis in E. coli. 

Using pull down assays, Ferreira et al. showed that GAPDH most likely interacts with 

Endonuclease IV and the uracil DNA glysosylase. However, the actual role of GAPDH in DNA 

repair and the BER pathway remains unknown. 

Figure 9. Modified bases 

A- Spontaneous deamination of a base results from the replacement of the NH2 group by an oxygen 

atom. B- An abasic site appears when the N-glycosylic bond between the deoxyribose and the base 

is cleaved. Depending on whether the cleaved base is a purine or a pyrimidine, the abasic site may be 

called an apurinic or an apyrimidinic site (AP site). 
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b) DNA adducts 

 

DNA adducts result from the covalent attachment of a chemical to a DNA base in a reaction 

called alkylation and are highly mutagenic if not removed (figure 10). 

 

 

 

 

Although a wide variety of different types of adducts exist, they all rely on the reaction 

between the electrophile alkylating agent and the nucleophilic DNA. 

There are different alkylating agents, such as Méthyl-methanesulfonate (MMS) or N-methyl-

N’-nitro-N-nitroxoguanidine (MNNG) that can be used in chemotherapy, but a large variety of 

alkylating agents derive from food, cigarette smoke or pesticides (Chatterjee and Walker, 

2017). Initially un-harmful, these agents are modified during cellular metabolism and give rise 

to toxic molecules such as nitrosamines, aflatoxins, aromatic amines, and polycyclic aromatic 

hydrocarbons. 

Interestingly, certain DNA adducts arise from molecules contained in food or beverages. For 

instance, high temperature cooked meat has been shown to be carcinogenic in rat prostate, 

possibly due to the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazol [4,5-b] 

pyridine (PhIP), one of the most abundant heterocyclic amines contained in high temperature 

cooked meat (Nakai et al., 2007). On the other hand, red wine (and other beverages such as 

Figure 10. DNA adduct formation 

DNA adducts result from the formation of a covalent link called alkylation between a chemical and 

a nucleobase. Here is the illustration of an adduct between Guanine and Cytosine formed by EMS 

(Ethyl methanesulfonate). 
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beer or coffee) diminish PhIP mutagenicity by altering its metabolism. Resveratrol, an 

antioxidant present in red wine, may inhibit PhIP-DNA adduct formation (Dubuisson et al., 

2002; Rybicki et al., 2011). So if you’re eating well cooked meat, make sure to sip on some red 

wine! 

c) DNA protein crosslinks 

 

DNA protein crosslinks (DPCs) result from a covalent link between a protein and a DNA 

nucleotide. They can form through various ways, including environmental factors (UV light, 

radiation…), and therapeutic drugs or treatments (ionizing radiation, cisplatin, nitrogen 

mustards…). A large amount of DPCs arises from endogenous non-enzymatic and enzymatic 

activity (Barker et al., 2005). 

Reactive aldehydes are formed through non-enzymatic cellular metabolism such as amino acid 

metabolism. They can form a stable covalent bond between an arginine or a lysine residue of 

a protein, thus creating a DPC. Acetaldehyde and formaldehyde are also DPC inducing 

aldehydes. Formaldehyde is a well-known lab chemical, but it is also formed in vivo as a 

byproduct of methyl group removal from DNA (Trewick et al., 2002). 

DPCs also form during enzymatic reactions involving proteins that transiently form a covalent 

link with the DNA. A common and widely studied example of enzymatically induced DPCs is 

frozen topoisomerases. As described previously in this introduction, Type II topoisomerases 

covalently link to DNA and cut the DNA, creating a transient double strand break through 

which a second DNA strand may pass. Many chemotherapeutic drugs target Type II 

topoisomerases, while they are linked to DNA, in the cutting conformation (figure 11). 
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An interesting study showed that inhibiting Topoisomerase II at a semi-sensitive temperature 

maintained viability but conferred resistance to anti-Topoisomerase II drugs, suggesting that 

the action of anti-Topo II drugs was indeed linked to the activity of the enzyme rather than its 

transcription or protein amount in the cell (Nitiss et al., 1993). These anti-topoisomerase drugs 

trap the enzyme when it is covalently bound to DNA, exposing a double strand break. 

However, this complex is reversible and work from different teams has shown that it is the 

collision of Helicase (Howard et al., 1994) or the replication fork (Hiasa et al., 1996) with the 

complex that renders it toxic for the cell. Conversely, Hiasa et al. showed that the encounter 

of the replication fork with a frozen topoisomerase that was not in the cutting conformation 

did not create a double strand break, and it is only during the denaturation step, to remove 

the frozen topoisomerase that the double strand break occurred (Hiasa et al., 1996). 

 

d) Oxidative DNA damage 

 

Reactive oxygen species (ROS) are formed in many cellular processes such as cellular 

respiration (in Eukaryotes) but also anabolic processes or peroxisomal metabolism (Henle and 

Linn, 1997). The most common and abundant ROS are hydrogen peroxide (H2O2), superoxide 

Figure 11. Schematic representation of a frozenTopoisomerase Type II 

Chemical drugs can covalently link to topoisomerases while they are in the cutting conformation 

creating an exposed double strand break. 
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ion (O2
-) and hydroxyl radical (OH.).  OH radicals are the most deleterious form of ROS. They 

can react with lipids, proteins and DNA. When reacting with DNA bases, they can cause a wide 

variety of DNA damage, amongst which adding a double bond, subtracting hydrogen atoms 

from their methyl groups, attacking the sugar residue, and even double strand breaks (Breen 

and Murphy, 1995).  

The repair of such ROS induced DNA damage is mainly done by Base Excision Repair (BER), but 

it has been shown in Saccharomyces cerevisiae that nucleotide excision repair (NER) and 

homologous recombination (HR) can also be involved in the repair of such lesions (Swanson 

et al., 1999). In E. coli, ROS can lead to DNA damage, stalled replication forks and subsequent 

SOS induction. dinF, a protein induced by the SOS response, protects against ROS induced DNA 

damage possibly by reducing protein carbonylation and reducing intracellular levels of ROS 

(Rodríguez-Beltrán et al., 2012). 

Other species, such as Coxiella Burnettii have the ability to fight against ROS in their host 

human cells by expressing specific repair genes and enzymes capable of destroying the ROS 

(Mertens and Samuel, 2012). 

 

e) Inter-strand and intra-strand crosslinks 

 

Inter-strand crosslinks (ICLs) arise when a chemical compound creates a covalent bond 

between the two DNA strands. An intra-strand crosslink results from the same mechanisms 

but covalently binds two bases from the same DNA strand. Crosslinking agents involve damage 

on both DNA strands, which makes them the most deleterious form of genotoxic agents 

(Mendelsohn et al., 1992). They have been shown to cause large chromosomal 

rearrangements and promote sister chromatid exchanges, probably due to a high rate of 

homologous recombination (Noll et al., 2006). Widely spread crosslinking agents are psoralen, 

nitrogen mustard, platinum compounds, or Mitomycin C (MMC). Mitomycin C is the genotoxic 

crosslinking agent that is mainly used in our laboratory. It is a product of the mold 

Streptomyces caespitosis and a common chemotherapeutic drug used for treating cancer. 

MMC reacts with the guanine residue of a 3’-CG-5’ sequence. Through a series of complicated 

chemical reactions, MMC first forms a mono-adduct with the guanine from one strand and 
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ultimately forms a crosslink with a guanine on the opposite strand (Noll et al., 2006). MMC 

actually crosslinks in the minor groove, thus hardly perturbing the structure and bending of 

the DNA. This particularity of MMC can be important when considering its detection in DNA. 

If left unattended, crosslinks can be highly toxic because they lead to double strand breaks. 

Inter-strand crosslinks have been the focuses of many studies and many uncertainties still 

remain on their repair. Unlike other forms of DNA damage, ICLs involve many different repair 

pathways. The error-prone translesion synthesis (TLS) pathway is involved but homologous 

recombination (HR) and NER (that ultimately ends by HR) seem to be the main repair pathways 

of ICLs (Noll et al., 2006). In fact, a commonly accepted model suggests a combination of NER 

and HR for the repair of ICLs (Cole, 1973). This will be further detailed in the next section. 

 

3. Management of DNA lesions 

 

DNA is constantly under exogenous or endogenous attacks, under many forms and leading to 

very different types of damage as discussed in the section above. The cell possesses a variety 

of DNA damage response pathways, whose role is to avoid the occurrence of a single strand 

or double strand break. 

 

a) Base excision repair (BER) 

 

Base excision repair (BER) corrects DNA lesions that do not significantly change the structure 

of the DNA. Such lesions result from deamination, base oxidation, alkylation… 

In 1974, Thomas Lindahl found that the uracil DNA glycosylase can cleave uracil from DNA, 

leaving an apyrimidinic site (AP site). He showed that this uracil DNA glycosylase specifically 

cleaved uracil from double stranded or single stranded DNA, and not RNA, dUMP or uridine 

(Lindahl, 1974). This was one of the first steps in unravelling the BER pathway. BER pathway is 

thus initiated by the removal of a damaged base by one of the several DNA glycosylases (Nth 

or FpG in E. coli for instance). Once the damaged base has been removed, an apurinic or 
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apyrimidynic endonuclease catalyzes the cleavage of a 5’ phosphodiester bond to the AP site. 

E. coli has two AP endonucleases, Endonuclease IV and Exonuclease III, which in spite of its 

name, exhibits mainly an AP endonuclease activity (Cunningham et al., 1986). The remaining 

sugar phosphate residue is then removed by RecJ and DNA Polymerase I then fills in the one 

nucleotide gap and a DNA ligase rejoins the ends. However, an alternative pathway exists, 

resulting in the replacement of several nucleotides rather than the single damaged base 

(Dianov and Lindahl, 1994). The initial steps, involving the DNA glycosylase and the AP 

endonuclease remain unchanged, but the next step is carried out by Pol I rather than RecJ. Pol 

I creates a strand displacement coupled to resynthesis of the displaced bases creating a 2 to 5 

nucleotide overhang. This overhang is then cleaved by the 5’ nuclease activity of Pol I (figure 

12). 

  

 

 

Figure 12. Base Excision Repair (BER) pathway 

DNA glycosylase cleaves the damaged site creating an AP site. An AP endonuclease cleaves the 

phosphosiester bond and RecJ removes the remaining sugar phosphate; Polymerase I fills in the 

gap. 
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b) Nucleotide excision repair (NER) 

 

Unlike BER, Nucleotide Excision Repair (NER) targets larger DNA adducts (called bulky 

adducts), that have introduced a conformational change in the DNA structure. Two of the most 

common bulky adducts that are repaired by NER are pyrimidine dimers, and 6,4 

photoproducts, induced by ultraviolet light (UV light). However, a number of adducts induced 

by crosslinking agents, such as Mitomycin C or psoralen are also partly repaired via the NER 

pathway (Wood, 2010). In 1964, Setlow and Carrier first described the removal of pyrimidine 

dimers induced by UV light, and showed that this was a prerequisite for DNA synthesis to 

resume after being blocked by the adduct (Setlow and Carrier, 1964). Further work was done 

by Sancar and Rupp on the identification of UvrA, UvrB and UvrC, the three central proteins 

of the NER pathway (Sancar et al., 1981a, 1981b, 1981c). 

The first step of NER is the recognition of the lesion. This primarily happens by recognition of 

a structural distortion of the double helix induced by the chemical adduct. UvrA is a DNA-

binding protein that has a higher affinity for damaged DNA than non-damaged DNA. UvrA is 

considered as the DNA damage recognition enzyme of the triplet UvrABC exinuclease (for 

excision endonuclease). UvrA dimerizes, forming UvrA2, and binds UvrB to form the 

(UvrA2)(UvrB1) complex. Under this protein-complex conformation, UvrA delivers UvrB to the 

damaged DNA. Once UvrB has been delivered, UvrA dissociates, leaving a stable UvrB-DNA 

complex (Orren and Sancar, 1989). It has been suggested that UvrB also dimerizes, forming a 

(UvrA2)(UvrB2) complex that binds DNA. Once the (UvrA2)(UvrB2) complex is bound to a 

possible site of damage, DNA wraps around one of the UvrB monomers which probes one 

strand for DNA damage. If the lesion is not recognized on this strand by the first UvrB 

monomer, the DNA wraps around the second UvrB protein that will probe the other strand 

for damage (Verhoeven et al., 2002). UvrA may facilitate wrapping of the DNA around UvrB 

(Wang et al., 2009). This UvrB recognition step involves a β-hairpin insertion between the two 

strands of DNA, thus confirming damage recognition and determining which DNA strand 

carries the lesion (Truglio et al., 2006). The efficiency with which the UvrA and UvrB proteins 

recognize the lesion can depend on the type of adduct and the extent of structural distortion, 

but overall, the Uvr proteins can sense a wide variety of DNA lesions (Jia et al., 2009; Truglio 

et al., 2006). Recent experiments using photoactivated localization microscopy (PALM) have 
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demonstrated that UvrA binds first, scanning the genome for damage and then recruits UvrB 

once the damage is detected, without forming a complex prior to DNA binding. These new 

observations  are in opposition to the previous models described above and will undoubtedly 

lead to further investigations (Stracy et al., 2016). 

Actual incision of the bulky adduct is carried out by UvrC after it binds the UvrB-DNA complex 

(Orren and Sancar, 1989) (figure 13). 

 

 

 

Figure 13. Nucleotide excision repair (NER) pathway 

UvrA recognizes the damaged nucleotides and targets UvrB to the site. UvrC cleaves both sides of 

the damaged nucleotide. UvrD helicase releases UvrC and excises the damaged nucleotide. 

Polymerase I fills in the gap and ligase seals it. 
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The UvrC protein contains two distinct catalytic sites. The N-terminal half of the protein carries 

the catalytic activity for cleavage of the 3’ side and the C-terminal half of the protein is 

responsible for incision on the 5’ side of the lesion (Lin and Sancar, 1992; Verhoeven et al., 

2000). UvrC thus hydrolyses the 4th or 5th phosphodiester bond on the 3’ side of the lesion, 

and immediately after, hydrolyses the 8th phosphodiester bond on the 5’ side. A truncated N-

terminal UvrC protein is capable of incising the 5’ if the substrate is prenicked in 3’, meaning 

that the C-terminal side of the protein is autonomous for 5’ incision (Verhoeven et al., 2000). 

An UvrC homolog, Cho (UvrC homolog), has also been described as part of the NER pathway. 

Unlike UvrA, UvrB and UvrC, Cho is poorly conserved and is only present in a few Prokaryote 

branches. Cho, like UvrA and UvrB, but unlike UvrC, is SOS induced (Courcelle et al., 2001; 

Moolenaar et al., 1987). Cho is capable of incising DNA at the 3’ side of the lesion but not the 

5’ side. The incision made by Cho is 4 nucleotides further away from the adduct, probably 

because Cho binds to a different domain of UvrB than UvrC does. Depending on the type of 

damage, Cho’s 3’ incision efficiency can be higher than that of UvrC, meaning that the activity 

of Cho or UvrC can be better suited depending of the type of damaged substrate. However, 

Cho’s activity is limited to the 3’ incision and UvrC is strictly required for the subsequent 5’ 

incision (Moolenaar et al., 2002; Van Houten et al., 2002). 

Once the UvrABC proteins have carried out recognition and incision of the lesion, UvrD 

helicase (also called helicase II) excises the damaged oligonucleotide. Orren et al. showed in 

1992 that once UvrC (and/or Cho) have performed incision, UvrB-UvrC and the damaged DNA 

stayed bound together, forming a post-incision complex. Binding of UvrD releases UvrC and 

the damaged oligonucleotide, and UvrB stays bound to the single strand gap until Polymerase 

I binds and promotes its removal (Orren et al., 1992). Polymerase I fills the gap by synthesizing 

the new oligonucleotide and DNA ligase seals the ends. 

Because the main drug we are using in the laboratory is Mitomycin C (MMC), I will briefly 

resume state of the art knowledge on MMC-induced NER. 

As previously mentioned, MMC is an inter-strand crosslinking agent which most usually leads 

to DSBs, dealt with by homologous recombination. It has been shown that the NER pathway 

is involved in the repair of MMC ICLs but various models, all leading to a DSB, are proposed. 
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In 1973, Cole proposed a first model involving sequential NER and HR steps. The ICL is first 

incised on each side. A nuclease widens the gap and this allows for strand exchange between 

homologous sisters. One of the DNA strands still carries the ICL adduct, which is then excised 

by NER enzymes in a final step (Cole, 1973). 

In Eukaryotes, a different nonexclusive model exists. Replication forks may stall at an ICL and 

wait for endonucleases to process the ICL and create a double strand break, further processed 

by HR (Hanada et al., 2006; Kuraoka et al., 2000). 

Another model, proposed by Weng and coworkers proposes that the UvrABC proteins can 

make a dual incision on both strands of the ICL, creating a double strand break and generating 

DNA fragments corresponding to the liberated DNA inter-strand crosslink (Weng et al., 2010). 

The group of Greenberg confirmed this model. They showed in vitro, that 15% of the ICLs 

created by C4′-oxidized abasic site (C4-AP) lead to a toxic double strand break. However, this 

type of ICL is particular because it is adjacent to a nick (Sczepanski et al., 2009). Soon after, 

they showed that in the case of an inter-strand crosslink produced by DNA radicals or radical 

ions arising from gamma-radiation, double strand breaks occur in 25-29% of the incision 

events. They propose that these double strand breaks are the result of a double incision by 

UvrC occurring on both strands. The hypothesis of a double incision is favored rather than a 

re-association of the protein after a first round of incision because UvrABC is not expected to 

bind the ternary complex created following the initial incision (Peng et al., 2010). 

 

c) Transcription-coupled Nucleotide excision repair 

 

Transcription coupled NER (TC-NER) is a specific NER pathway that removes lesions of the 

transcribed strand of expressed genes. TC-NER initiates when the RNA polymerase stalls at a 

lesion in the DNA template. It was first shown that removal of pyrimidine dimers on the 

transcribed strand is much quicker than that of the non-transcribed strand (Mellon and 

Hanawalt, 1989). This bias is the result of Mfd (mutation frequency decline) protein activity. 

Mfd, also called transcription repair coupling factor, dislodges the stalled RNA polymerase and 

enhances NER repair by promoting rapid recruitment of UvrA to the lesion (Selby and Sancar, 

1993, 1995). The downstream events are analogous to NER as described above. 
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4. Formation of DNA breaks by unrepaired lesions: single strand Gaps 
(SSG), Single strand Breaks (SSBs) and double strand breaks (DSBs) 

 

a) Single Strand Gaps 

 

Single strand gaps are stretches of DNA where one of the DNA strands carries a gap of 

nucleotides. Such gaps can occur naturally during replication, which distinguishes them from 

single strand breaks. 

 

i. Replication lesion bypass 

 

MMR, BER and NER repair pathways are very efficient at eliminating DNA lesions. However, 

some lesions remain unresolved. It was originally described that when the replication fork 

encounters a DNA lesion, it stalls, but the DnaB helicase keeps unwinding, creating a single 

strand gap opposite the lesion. Pol III may dissociate and resume replication downstream of 

the lesion (Rupp and Howard-Flanders, 1968). Later, work from Yeeles and Marians revealed 

that upon encounter with a lesion, the replication fork does not dissociate from the DNA, it 

“skips” the lesion, and resumes replication downstream of the damage in a DnaG-dependant 

leading strand re-priming manner (Yeeles and Marians, 2011). Another model suggests that 

the replisome may dissociate, allowing replication to continue on the lagging strand, and 

creating subsequent single strand DNA regions on the leading strand (figure 14) (Heller and 

Marians, 2006). Such replication lesion bypasses give rise to single stranded gaps that will be 

further processed by Translesion Synthesis (TLS) or Homologous Recombination (Fujii et al., 

2006). 
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ii. Chain terminators: The example of AZT 

 

Chain terminators act by stalling replication forks rather than damaging the DNA itself. Various 

chemicals act as chain terminators (stavudine D4T, didanosine ddI…), but one of the most 

commonly used is 3’-Azidothymidine (AZT).  

Figure 14. Two models for replication lesion bypass 

In the Polymerase skipping model, the Polymerase does not dissociate from the DNA. It skips the lesion 

and resumes replication after the lesion. In the Polymerase dissociation model, the polymerase 

dissociates. DnaB helicase keeps unwinding and the Polymerase then reassociates downstream of the 

lesion.  
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AZT is used to treat HIV by preventing reverse transcription of the viral RNA to DNA. The azido 

group replaces the 3’OH of thymidine and blocks replication (Cooper et al. 2011). AZT has been 

shown to be highly genotoxic for cells and induces the SOS response (Mamber et al., 1990). 

By blocking replication of the bacterial DNA, AZT leads to the formation of large single strand 

gaps (ssGaps) (figure 15).  

 

 

 

 

 

RecFOR proteins are involved in the repair of ssGaps by homologous recombination. 

Sensitivity of RecFOR mutants to AZT suggests that Recombination is initiated by these 

SSGaps. Interestingly, RecBCD mutants (repair of DSBs by homologous recombination) are also 

highly sensitive, meaning that a large amount of these single strand gaps may be converted to 

double strand breaks, repaired by HR. This hypothesis is strengthened by the sensitivity of 

RuvABC mutants, involved in the resolution of Holliday Junction HR-intermediates (Cooper 

and Lovett, 2011). The sensitivity of Exonuclease III (Exo III) mutants suggests that Exo III (also 

involved in the excision of damaged bases in BER) is required to remove the residual AZT from 

DNA. 

 

Figure 15. Formation of single strand Gaps by AZT incorporation 

AZT is incorporated in replicating DNA and halts replication. This forms large single stranded gaps on 

the lagging or leading strand. 
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iii. Nucleotide depletion: the example of Hydroxyurea (HU) 

 

HU is an inhibitor of ribonucleotide reductase (RNR), the enzyme responsible for dNTP 

synthesis, thereby reducing the cellular levels of deoxynucleotide precursors for DNA 

replication (Timson, 1975). HU has been shown to reduce the dNTP pool in a variety of 

mammalian cells and in E. coli (Sneeden and Loeb, 2004), thereby provoking DNA damage 

independent stalling. Translesion polymerases, Pol IV and Pol V play a role in the processing 

of DNA damage independent replication stalling (Godoy et al., 2006). Pol IV and Pol V affinity 

for dNTPs is much lower than that of Pol III, which could explain why they can function in 

nucleotide-depleted cells. Surprisingly, wild type cells still manage to replicate upon HU 

treatment, albeit at a slower rate. This could be due to a cycling of translesion synthesis 

polymerase recruitment and subsequent handoff to the replicative Pol III (Godoy et al., 2006). 

HU treatment induces the SOS response. Indeed, a micro array experiment revealed that SOS 

genes such as SulA, RecN, RuvA and UvrB were overexpressed in HU treated cells suggesting 

that various repair pathways may be involved in the HU stress response (Davies et al., 2009).  

 

b) Single strand Breaks 

 

The main sources of single strand breaks (SSBs) are frozen Topoisomerase I, oxidative damage 

or spontaneous disintegration of deoxyribose  (Hegde et al., 2008; Wang, 2002). But SSBs also 

arise from failure to complete repair mechanisms such as BER and NER  (Uphoff et al., 2013).  

 

c) Double strand Breaks 

 

Crosslinking agents, DNA adducts or thymidine dimers induced by UV light can ultimately 

provoke DSBs if not correctly removed and repaired. Indeed, these unattended lesions can 

provoke single strand breaks that, upon encounter with the replication fork will create a 

double strand break (Kuzminov, 2001). Another less common, but highly damageable double 

strand break inducing factor is ionizing radiations (Schulte-Frohlinde, 1994). 
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i. Arrested replication forks lead to double strand breaks 

 

It has been quite extensively documented that Double Strand Breaks (DSBs) can arise during 

replication (Kuzminov, 1995; Michel et al., 1997). Such DSBs can result from the encounter of 

the replication fork with a nick or a gap in the template DNA (Kuzminov, 1995), but compelling 

evidence shows that these DSBs may be the result of arrested replication forks. Indeed, 

homologous recombination seems to be essential for viability in certain DNA helicase mutants 

such as rep and dnaB, meaning that replication defects cause DNA damage that needs HR for 

repair (Michel et al., 1997, 2001). 

Ligase and Pol I mutants require RecBCD and RecA for viability (Kuzminov, 1995), probably due 

to small nicks and gaps in the lagging strand, resulting from unsealed Okazaki fragments. 

holD (subunit of the Pol III clamp loader) mutants require RecBCD for viability. These mutants 

undergo frequent replication arrest, suggesting that lesions induced by replication fork arrest 

require recombinational proteins (Flores et al., 2001). 

 

ii. Double strand breaks induced by Replication Fork 

Reversal  

 

Replication forks can also be arrested by blocking lesions (resulting from UV irradiation for 

example), or bona fide replication blocks such as the Tus/Ter complex (Horiuchi et al., 1994). 

When such replication forks are arrested, they undergo a specific reaction called replication 

fork reversal (RFR), transforming the blocked replication fork into a recombination substrate 

(figure 16). 
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Indeed, double strand breaks formed by stalled replication forks in rep recBts recCts mutants 

are suppressed by inactivating RuvA or RuvB (Seigneur et al., 1998). RuvA and RuvB are two 

proteins belonging to the RuvAB operon. They are involved in the late steps of Holliday 

Junction resolution (Lloyd et al., 1984). Seigneur et al. propose that a Holliday Junction 

recombination intermediate is formed at blocked replication forks and that the action of 

RecBCD and RuvAB rescues these blocked forks, avoiding the formation of DSBs and allowing 

the reconstitution of a new replication fork. RuvAB may bind to the arrested replication fork, 

favoring the formation of a Holliday Junction. Once formed, the junction migrates, either 

toward the terminus or toward the replication origin, creating a double strand tail, a substrate 

for RecBCD helicase. RecBCD then resects up to the RuvAB-DNA complex, allowing the 

assembly of a new replication fork and PriA dependent replication restart, without creating a 

chromosome break (Seigneur et al., 2000). 

An alternative yet not incompatible model, suggests that RecG is involved in the processing of 

stalled replication forks by reversing the fork. In 2000, McGlynn and Lloyd demonstrated that 

Figure 16. Replication fork encounter with a DNA lesion may lead to replication fork reversal 

Upon encounter of the replication fork with a lesion, the two newly synthesized strands can re-

anneal and form a recombination substrate. 
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RuvAB does not catalyze the actual formation of Holliday Junctions although these proteins 

can be involved in their resolution. They rather propose that RecG acts on stalled replication 

forks to form a Holliday Junction that does not require subsequent cleavage for replication 

resumption. This particular feature circumvents the creation of a possibly deleterious double 

strand break (McGlynn and Lloyd, 2000). A year later, they showed that RecG can unwind the 

leading and lagging strands in vitro (McGlynn and Lloyd, 2001).  

Interestingly, it was proposed that UvrD, the NER helicase, may also be acting at stalled 

replication forks. Flores and coworkers constructed different genetic backgrounds prone to 

replication fork reversal: a DnaNts mutant (thermosensitive allele of the β-lamp loader) and a 

DnaEts mutant (Catalytic subunit of the Pol III holoenzyme). They combined these mutations 

with inactivation of RecBC to measure the amount of linear DNA in the presence or absence 

of UvrD. In these mutants, the Holliday Junctions formed by the subsequent fork reversal are 

processed by RuvAB independently of DSB end processing by RecBC.  

In a DnaNts RecBCts uvrD mutant, the amount of linear DNA is decreased suggesting that less 

DSBs are formed. This observation gives rise to a role for UvrD in the formation of reversed 

forks. These UvrD formed reversed forks would be toxic and lead to DSBs (i.e linear DNA) in a 

DnaNts RecBCts mutant. The same phenotype was observed for a DnaEts RecBCts uvrD mutant. 

They propose that UvrD could act to unwind the leading and/or lagging strand, maybe with 

another protein. An alternate model could be that UvrD removes proteins that are bound to 

the blocked fork, allowing another protein to catalyze fork reversal per se (Flores et al., 2004) 

(figure 17). PriA then directs the reestablishment of the replisome and replication resumption 

(Marians, 2000). Once the fork is recovered, the lesion can be repaired (Singleton et al., 2001). 
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Figure 17. Formation of a double strand break upon replication fork reversal 

RecG and/or UvrD unwind the leading and lagging strand. RuvABC forms a Holliday Junction. In WT 

cells, RecBCD resects the reversed fork and allows for the assembly of a new fork. In RecBts mutants, 

RuvC cleaves the HJ intermediate leading to a DSB. 
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iii. Overview of MMC-induced double strand breaks 

 

Since MMC is the main genotoxic agent I used for my experiments, I have summarized the 

main causes of MMC-induced double strand breaks in (figure 18). However, this is not an 

exclusive summary as other pathways may lead to MMC-induced double strand breaks. It is 

interesting to note that the DSBs seem to arise in the case of pathogenic or poorly processed 

repair pathways. 

 

 

 

Figure 18. MMC-induced double strand breaks 

Various pathways can lead to MMC-induced double strand breaks. A) During the NER management of an 

MMC-ICL, UvrC can perform a double incision leading to a double strand break and liberate the ICL 

associated DNA fragment. B) During the NER pathway, UvrC performs a single incision creating a single 

strand gap. If this single strand gap is not correctly processed by polymerase I and Ligase, the subsequent 

encounter with the replication fork may lead to a DSB. C) The encounter of a replication fork with an MMC 

induced ICL may lead to replication fork reversal. Such RFR can lead to a DSB if it not correctly processed. 
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5. Repair of single strand gaps, single strand breaks and double strand 
breaks 

 

a) General overview of the the SOS response 

 

In 1974, Miroslav Radman first described the existence of a pathway induced upon DNA 

damage in E. coli: the SOS response (Radman, 1975). Other Prokaryote species also have 

similar DNA damage inducible responses but to date, the E. coli SOS response has been the 

most extensively characterized. Two main proteins, LexA and RecA regulate the SOS response. 

In the absence of DNA damage, LexA forms a dimer that binds to a 20 bp palindromic sequence 

called a lexA box. These lexA boxes are in the promoter region of the SOS genes. When LexA 

dimer is bound to the lexA boxes, the expression of the genes is repressed. Although LexA and 

RecA are constitutively expressed, they are also under the control of a lexA box (Brent and 

Ptashne, 1981). When DNA is damaged, single strand DNA regions are bound by RecA, which 

polymerizes along the ssDNA, in an ATP-dependent manner, forming a nucleoprotein filament. 

Under this polymerized form, RecA’s coprotease activity is activated, triggering the auto-

cleavage of LexA. When LexA is cleaved, it cannot bind the lexA boxes, and the repressed genes 

can thus be transcribed. Over 100 genes are regulated by lexA boxes, involved in different 

functions of DNA repair (Courcelle et al., 2001) (figure 19).  
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When damage has been repaired, the availability of ssDNA decreases, RecA filament 

decreases and LexA can dimerize and bind the lexA boxes, thus repressing the SOS genes 

(Walker, 1984). In the next section, I will describe the various induction steps and responses 

of the SOS pathway, emphasizing on the regulation and activity of the key players, LexA and 

RecA. 

b) LexA, the SOS repressor 

 

LexA protein (locus for x-ray sensitivity A) is encoded by the lexA gene. LexA protein has two 

major domains: the N-terminal domain which is important for dimerization and the C-terminal 

domain which is important for auto-cleavage. Serine 119 and lysine 156 are the two essential 

residues for LexA auto-cleavage (Slilaty and Little, 1987). Actual cleavage of the protein occurs 

at a specific site between Ala84 and Gly85 (Horii et al., 1981).  

Figure 19. Simple representation of the induction of the SOS response in E. coli 

RecA binds to ssDNA which activates autocleavage of LexA, the repressor of SOS genes. Once LexA 

is cleaved, expression of the SOS response genes is permitted. When the break is repaired, ssDNA 

decreases, RecA does not bind ssDNA and cleavage of LexA is repressed. 
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In 1980, Little et al. showed that RecA specifically catalyzed this cleavage reaction (Little et al., 

1980). Later, it was shown that in the absence of RecA, cleavage of LexA could also be 

stimulated by alkaline pH, notably by Co2+, Ca2+ or Mg2+. This observation lead to the 

hypothesis that RecA was not cleaving LexA in a direct reaction, as a protease would, but could 

rather be an allosteric effector of the protein or act by lowering the pK of a critical LexA lysine 

residue. The term “co-protease” rather than protease was thus proposed, to emphasize 

RecA’s indirect role in LexA cleavage (Little, 1984, 1991).  

The mechanism by which RecA stimulates LexA cleavage has been extensively studied but 

remains unclear. The resolution of crystal structures of LexA revealed that LexA can adopt 

different conformations, one that is compatible with cleavage and the other that isn’t (Luo et 

al., 2001). Giese and coworkers showed in 2008 that RecA can bind LexA in its non-cleavable 

form and promote the conversion to its cleavable form through an allosteric mechanism 

(Giese et al., 2008). The fragments produced by the auto-cleavage of LexA are further 

degraded by ClpXP protease. ClpXP specifically recognizes the cleaved peptides of LexA and 

not the full length of LexA protein, ensuring that ClpXP degrades LexA once RecA has catalyzed 

the auto-cleavage of LexA and allowed induction of the SOS response and not in the absence 

of DNA damage. Lon Protease has also been shown to degrade LexA peptides (Neher et al., 

2006). Various mutants of LexA have been characterized. The most commonly used are the 

lexA ind- (lexA3) and the lexA null mutants that I have both used during my thesis. The lexA 

ind- mutant is non cleavable. Mutations around the cleavage site (Ala84-Gly85) or near the 

Ser 119 and Lys 156 residues, which are important for the cleavage reaction, lead to the lexA 

ind- phenotype (Lin and Little, 1988). A lexA deficient mutant allows constitutive SOS 

induction, but its mutation must be combined to a mutation in the sulA gene that induces 

excessive cell filamentation if not repressed (Mount, 1977; O’Reilly and Kreuzer, 2004). 

 

c) RecA, the central protein of the SOS response 

 

i. RecA’s general function 

 

RecA is undoubtedly the key protein of the SOS response. It belongs to the family of DNA 

strand exchange proteins comprising RecA and Rad51 protein family that are essential for 
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homologous recombination (Lin et al., 2006). The protein has three main functions in the cell: 

Pairing and strand exchange of homologous DNA molecules; Induction of the SOS response 

and the activation of Polymerase V for Translesion Synthesis.  

 

ii. RecA loading 

 

The structure of RecA was first described in 1992 by Story and Steitz. One RecA monomer 

binds three nucleotides, thus polymerizing nonspecifically on ssDNA (and to a lesser extent, 

dsDNA) in an ATP-ase dependent manner. RecA bound to ssDNA forms  a helical 

nucleofilament, which is the active form of the protein for DNA strand exchange and LexA 

cleavage (Story and Steitz, 1992). RecA is a polypeptide containing 352 amino acid residues 

and has a molecular mass of 38 kDa, that is basally expressed at a level of approximately 1000 

monomers per cell (figure 20). 

 

 

 

Figure 20. Structure of RecA presynaptic nucleofilament 

Construction of the filament results from fusion of 6 RecA genes in tandem spaced with linkers 

between them. DNA binding, DNA-dependent ATPase and strand-exchange activities of the RecA5 

and RecA6 are comparable to those of monomeric RecA. The 6 RecA protomers are numbered from 

the N-terminal of the RecA fusion protein. DNA backbone is in red. 
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Two distinct pathways serve to load RecA, the RecFOR pathway and the RecBCD pathway. 

 RecFOR mediated loading of RecA 

The RecF pathway has been described to manage the repair of single strand gaps (ssGaps)  

(Horii and Clark, 1973). A mutant protein of RecA, RecA803 gave further insight into the 

possible role of RecFOR on RecA loading. This RecA mutant is a suppressor of RecF, RecO and 

RecR mutations (Volkert and Hartke, 1984; Wang and Smith, 1986). RecA803 can displace SSB 

protein from single stranded DNA with a higher efficiency than the wild type RecA. It was thus 

hypothesized that RecF, RecO and RecR are involved in RecA loading on single stranded DNA 

(Sawitzke and Stahl, 1992). It was further demonstrated that it is the combined action of the 

three proteins that is required for loading of RecA specifically onto SSB coated ssGaps. RecF 

recognizes the 5’ end of dsDNA at the junction between ssDNA and dsDNA. RecO and RecR 

then bind RecF and help load RecA onto the SSB-coated ssDNA. Moreover, RecFOR provides a 

stabilizing function for RecA filament formation against the competitive effect of SSB protein, 

but only on ssGaps (Morimatsu and Kowalczykowski, 2003). It is further suggested that in the 

RecFOR pathway, a mediator protein may be required for targeting of RecFOR to the dsDNA-

ssDNA junction at the end of a DNA gap (Sakai and Cox, 2009) (figure 21A).  

In 2009, Sakai and Cox showed that RecOR can define a distinct pathway from RecFOR for 

RecA loading onto ssDNA.  When no duplex DNA is adjacent to the loading site, RecOR is more 

efficient for RecA loading. This pathway depends on the interaction of RecO with the C-

terminus region of SSB (Sakai and Cox, 2009).  RecO may displace SSB protein from the ssDNA, 

but RecA does not load until RecR has bound RecO (Inoue et al., 2008) (figure 21B). 

Interestingly, in the RecFOR pathway, the interaction of RecO with SSB is not required. Instead, 

RecO may serve to load RecR rings onto the DNA, thus helping RecR as a RecA loader. 

 



Introduction 

53 
 

 

 

 

 

 RecBCD mediated loading of RecA 

In the case of a double strand break rather than a single strand gap, RecBCD enzyme activity 

is necessary for RecA binding. RecBCD substrate is a free double strand DNA nearly blunt end 

(no more than 25 nucleotides offset between the 3’ and 5’ end) (Taylor and Smith, 1985). 

Figure 21. RecA loading through the RecFOR pathway 

A) RecFOR loading of RecA. RecF recognizes the 5’ end of the ssDNA-dsDNA junction. RecO (green) 

and RecR (red) bind RecF and help RecA displace SSB. B) RecOR loading of RecA. RecO interacts with 

the C-terminus of SSB and may displace it. RecR binds RecO and helps loading of RecA. 
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RecBCD is a helicase-nuclease, where RecB and RecD are helicases that exhibit different 

processivity, travelling in the same direction but opposite polarities (Dillingham et al., 2003). 

RecBC unwinds while simultaneously degrading the DNA (Taylor & Smith, 1985). RecD helicase 

is faster than RecB helicase, resulting in the formation of a loop ahead of RecB (Taylor and 

Smith, 2003). As RecBCD translocates along the dsDNA, the 3’ terminated strand is passed 

through a chi recognition site in the RecC protein (Handa et al., 2012). In E. coli, chi (Crossover 

Hotspot Instigator) is an octamer sequence (5’-GCTGGTGG-3’). Interaction of RecBCD with the 

chi site induces a switch in the nuclease polarity activity. The 3’ to 5’ nuclease activity is 

attenuated and the 5‘ to 3’ activity is enhanced (Anderson and Kowalczykowski, 1997), 

creating a dsDNA with a ssDNA tail, terminated at its 3’ end. RecBCD’s end resection activity 

has recently been observed with the use of a fluorescent reporter in vivo. RecBCD resection is 

very fast (approx. 1.6kb/sec) and processive (approx. 1kb). It can even resect as far as 250kb 

from the break on the Ori-distal side of the break. Interestingly, degradation is not 

symmetrical on both sides of the break. The Ori-distal region is more extensively degraded 

than the Ori-proximal end of the break. This can be simply explained by the amount of chi sites 

that is higher near the origin in order to better protect it from degradation (Wiktor et al., 

2018). 

RecBCD further enables RecA loading onto the single strand tail created by RecBCD activity 

(figure 22). Loading of RecA onto the chi containing strand results from the combined activity 

of RecA and RecBCD, alleviating the inhibitory effect of SSB (Anderson and Kowalczykowski, 

1997). More specifically, it was proposed that it is the RecBC enzyme that loads RecA onto the 

ssDNA . RecD subunit may act to block RecA loading, until the encounter with the chi site 

(Churchill et al., 1999).  
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iii. Formation of RecA nucleofilament 

 

RecA assembly on ssDNA occurs in the 5’ to 3’ direction, and preferentially nucleates at ssDNA-

dsDNA junctions containing 5’ termini (Register and Griffith, 1985). The direct observation of 

filament assembly on double stranded DNA, using fluorescently labeled RecA, revealed that 

filament growth rates range from 3 to 10 nm.sec-1 (Galletto et al., 2006). DNA entrapped in 

the RecA nucleofilament is relaxed 1.5 times compared to unbound DNA (Nishinaka et al., 

1997).  

Binding of RecA on double stranded DNA has been described but is not the major substrate 

for RecA polymerization (Pugh and Cox, 1987). Nucleation rates on ssDNA are much higher 

than on dsDNA at a neutral pH. When RecA nucleation occurs on ssGaps (rather than a single 

stranded overhang), it may nucleate out of the gap and polymerize on the contiguous dsDNA 

(Shan and Cox, 1997). On a ssDNA substrate, it was shown that one RecA monomer binds 

Figure 22. RecA loading through the RecBCD pathway 

RecBCD resects the DNA until it encounters a X site. Upon encounter with the χ sequence, RecBCD’s 

activity is altered creating a single strand DNA extension. RecBCD then helps RecA to load onto the 

ssDNA by displacing SSB. 
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approximately 3 nucleotides and has a helical pitch of 6 monomers per turn. The bound RecA 

subunits were shown to be arranged in order to expose RecA-bound DNA, enabling contact 

with dsDNA, probably to facilitate homology search (Egelman and Stasiak, 1986). 

As described above, RecA binding onto ssDNA in the absence of DNA damage is inhibited by 

preferential binding of SSB. Binding of ssDNA by SSB is important to protect ssDNA from 

nucleolytic activity but also to avoid the formation of non-necessary secondary structures and 

homologous recombination. Thus, there exists a competition between SSB and RecA for 

ssDNA binding. SSB-ssDNA prevents RecA filament assembly. In the presence of DNA damage, 

RecFOR helps RecA displace SSB and bind to ssDNA. 

Recently, a direct interaction between RecA and SSB was proposed using a single molecule 

tethered particle motion (TPM) technique (Wu et al., 2017). Using monitored amounts of SSB, 

a RecA filament assembly involving a RecA-SSB interaction was shown. RecOR stimulates RecA 

binding onto SSB-ssDNA. They propose that RecOR stimulation reveals the required RecA 

binding domain for SSB interaction. This interaction however, is weak as it was not identified 

by pull down assays. Moreover, a strong interaction would maintain SSB bound to RecA, 

leading to inefficient RecA filament formation (Wu et al., 2017). 

Regulation of the RecA nucleoprotein filament is crucial since RecA filament directs SOS 

induction, homology search and drives homologous recombination. Poor regulation of RecA 

nucleofilament could therefore affect these steps of the DNA damage response and 

compromise efficient DNA repair. Many proteins are thus involved in the regulation of RecA 

filament formation and stabilization. RecX, DinI, PsiB, RdgC and possibly other uncharacterized 

proteins participate in RecA filament dynamics.  

RecX is a 19.4 kDa protein that is necessary to overcome deleterious effects of RecA 

overexpression (De Mot et al., 1994). In vitro, RecX inhibits the ATPase strand exchange 

activity of RecA. RecX is therefore a negative regulator of RecA protein activities. Drees & 

coworkers showed that RecX’s function is to block RecA filament assembly. Through a direct 

RecA-RecX interaction, RecX caps the assembly ends of the filaments and limits its extension. 

(Drees et al., 2004). In vitro, independently of RecX, dissociation of RecA subunits requires 

ATP-hydrolysis and proceeds at approximately 70 monomers per minute per filament end 
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(Arenson et al., 1999). Monomers disassemble primarily at the end opposite to which 

assembly occurred. 

In vivo, the DinI protein stabilizes RecA filament formation. DinI acts to prevent disassembly 

of RecA filaments but does not enhance its formation. Interestingly, at high concentrations, 

DinI destabilizes the RecA filaments. At very high concentrations, DinI has a very deleterious 

effect on RecA filaments, and most RecA activities are inhibited (Lusetti et al., 2004; Yasuda et 

al., 1998).  

The concerted action of DinI and RecX seems essential for proper RecA filament assembly and 

stabilization. In fact, there may be some sort of competition between RecX and DinI. RecX can 

bind at the end of the RecA filament, preventing filament extension, but also along the 

filament length. Binding of RecX along the filament competes directly with DinI binding, and 

slow dissociation of one protein allows binding of the other protein. Thus, these two proteins 

exhibit mutually exclusive and opposite activities that are key modulators for RecA activity 

and the SOS response (Lusetti et al., 2004).  

Another regulator of RecA is RdgC. RdgC is a DNA binding protein that binds ssDNA and dsDNA 

aspecifically. It was proposed that RdgC may bind DNA and inhibit RecA binding and filament 

formation (Moore et al., 2003). RdgC was later shown to inhibit RecA activities (LexA cleavage, 

strand exchange at RecA’s ATPase activity). RdgC and SSB have additive effects, and a high 

concentration of RdgC in SSB expressing cells can suppress RecA filament formation. It is 

therefore suggested that RdgC, somewhat like SSB, inhibits RecA filament formation by 

competing with RecA for ssDNA (Drees et al., 2006). 

PsiB protein has also been shown to inhibit RecA activity. Unlike the other described genes, 

psiB is carried by the R6-5 plasmid, near the origin of conjugational transfer. Induction of the 

SOS response triggered by the entry of a conjugational plasmid in the cell may be highly 

deleterious due to division arrest or the induction of translesion synthesis polymerases. PsiB 

may inhibit SOS induction by inhibiting RecA function, thus protecting the conjugational 

plasmid and the host cell from the detrimental effects of an unwanted SOS induction (Bailone 

et al., 1988). PsiB protein actually binds RecA directly, when it is free from DNA, sequestering 

it, and preventing it from binding its ssDNA substrate (Petrova et al., 2009). If RecA cannot 
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bind DNA the amount of RecA available for ssDNA binding is reduced and so is the SOS 

induction (figure 23). 

 

 

 

 

 

iv. RecA mediated induction of the SOS response 

 

As mentioned above, one of the main functions of RecA is to induce the autocleavage of LexA, 

the SOS regulon repressor. Once bound to single stranded DNA, RecA mediates the cleavage 

of LexA repressor, which will allow the induction of SOS genes.  

 

Figure 23. Regulation of RecA nucleoprotein filament formation 

PsiB may bind free RecA, preventing it from binding ssDNA. RecFOR helps RecA binding on ssGaps. 
RecX caps the filament end and prevents its extensive propagation. On the other hand, DinI stablizes 
RecA filament by interacting with its C-terminal end. RdgC may inhibit RecA binding by competing 
for ssDNA. 
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v. Homology search and strand invasion 

 

Undoubtedly, the most fascinating yet poorly understood function of RecA is its ability to 

perform homology search. This function of RecA protein has been extensively studied, 

however it remains quite unclear how RecA, bound to ssDNA, can find the homologous 

sequence out of a 4.6 Mbp nucleoid. 

 

 Homology search 

The method by which ssDNA-RecA samples the dsDNA is controversial and may be the 

combination of various events. Previous in vitro studies revealed a possible 1D sliding of the 

RecA nucleoprotein filament on short DNA sequences. RecA diffuses along the dsDNA, 

sampling several hundred base pairs for homology, before dissociating when homology is not 

found (Ragunathan et al., 2012). The same year, Forget & Kowalczykowski proposed a “3D 

inter-segmental contact sampling model”. They showed that RecA could bind non-specifically 

and simultaneously distant dsDNA segments. This sampling is dependent on the 3D 

conformation and the length of the nucleoprotein filament (Forget and Kowalczykowski, 

2012). Indeed, the coiled structure of the dsDNA is crucial for proper homology search. As 

coiling of the dsDNA is increased, the local concentration of DNA is higher. This enhances the 

probability of the RecA nucleoprotein filament to encounter multiple segments of dsDNA at a 

time. A recent paper shows that the RecA-mediated homology search occurs in various steps 

and time scales and could be the combination of both 1D sliding and 3D inter segmental 

transfers. Using Atomic Force Microscopy (AFM) they showed that multiple RecA-ssDNA 

nucleoprotein filaments associate with dsDNA, occupying nearly 20% of the target sequence 

space. Then, the sequences having found homology stay tightly bound, while the other 

sequences dissociate (Lee et al., 2017) (figure 24). 
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In 2013, Lesterlin et al. published a non-exclusive model, describing the formation of “RecA 

bundles”, when a double strand break occurs on a sister chromatid previously segregated and 

distant from its homolog (i.e. a DSB induced by the I-sceI endonuclease). They propose that 

RecA bundles can promote the pairing of distant sister homologs, subsequently leading to the 

RecA-mediated strand invasion. The cut locus moves towards the uncut homologous locus, on 

the other side of the cell, irrespective of whether the homolog is present or not. If homology 

is found, pairing is observed. Super-resolution three-dimensional structured illumination 

microscopy (3D-SIM) and live cell time-lapse imaging gave some insight on the structure of 

these RecA bundles: RecA-bundles contain about 70% of the total amount of RecA protein, 

and are mainly DNA-free (Lesterlin et al., 2014). 

 

 

Figure 24. Model for homology search by short 1D sliding and 3D hoping 

RecA can perform long range 3D hoping and short range 1D slidding along the chromosome. 
From Forget and Kowalczykowski, 2012 
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 Homology recognition 

RecA has two DNA binding sites. The first DNA site binds the initial ssDNA and the secondary 

binding site can bind ssDNA or dsDNA (Müller et al., 1990). Mazin et al. later suggested that 

the secondary site can bind dsDNA first, allowing for homology search. Once the homologous 

sequence is found, it binds the ssDNA with a higher affinity than dsDNA (Mazin and 

Kowalczykowski, 1996). Considering RecA ATP-hydrolysis is not required for homologous 

recombination and strand exchange, it was hypothesized that it is not an active process. 

The ssDNA bound by RecA is globally stretched but locally maintains a B-form structure. 

Binding of the dsDNA in the secondary site may induce a conformational change and stretch 

of the dsDNA (Chen et al., 2008). The bases of this locally disrupted dsDNA may rotate out of 

their hydrogen bond and sample the incoming ssDNA by forming a new, transient hydrogen 

bond (De Vlaminck et al., 2012). A minimum of 8 bp is required for stable homology pairing. 

In this case, the complex is highly stable and strand exchange can occur (figure 25). 

 

 

 

 

When homology is found by correct recognition between the ssDNA and the dsDNA, the bond 

becomes stable and RecA can proceed with strand invasion. Strand invasion by RecA forms a 

D-loop structure, independently of ATP hydrolysis (Menetski et al., 1990). 

Figure 25. Mechanism for homology recognition by RecA 

ssDNA is sampled by incoming dsDNA. Homology recognition is achieved when both DNA strands 

of the incoming dsDNA are bound to the ssDNA binding sites of the RecA filament. Homology 

pairing requires 8 bp for a stable complex to form and strand exchange to occur. 
Adapted from De Vlanmick et al. 2012 
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vi. Branch migration and resolution 

 

After D-loop formation, the original DNA strand from the dsDNA homolog is displaced and the 

ssDNA from the RecA nucleoprotein filament replaces it, forming a Holliday Junction (HJ). RecA 

then drives branch migration. ATP-hydrolysis renders polymerization unidirectional, in the 5‘ 

to 3’ direction with respect to single stranded DNA. Rossi et al. showed that this ATP-hydrolysis 

dependency is the result of an association/ dissociation mechanism of RecA which is itself, 

dependent on ATP-hydrolysis (Rossi et al., 2011). In the presence of ATP-hydrolysis, the extent 

of branch migration is dependent on the length of available homology. In the absence of ATP 

hydrolysis, branch migration does not extend over a few kbs (Jain et al., 1994). The branch 

migration is capable of overcoming mismatches and various deletions or modified bases 

(Livneh and Lehman, 1982). 

Branch migration is further processed by RuvA and RuvB. RuvA and RuvB stimulate strand 

exchange by RecA by acting upon the recombination intermediates formed by RecA. RuvA 

provides specificity by directly binding the HJ intermediate and RuvB acts as a motor for 

branch migration by ATP hydrolysis (Tsaneva et al., 1992).  

RuvC nuclease, cleaves the Holliday Junction intermediate, at preferred sequences (Bennett 

et al., 1993) giving rise to a nicked DNA duplex that can be repaired by ligase. PriA helps load 

DnaB helicase to reassemble a functional replisome and allow replication restart (Kogoma et 

al., 1996) (figure 26). 
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Interestingly, in vitro, RecG protein seems to have overlapping activities with RuvA and RuvB 

but not RuvC. However, a slight deficiency in recombination of each single mutant suggests 

that their activities are not fully interchangeable and are somewhat complementary. RecG is 

an ATPase that can bind Holliday Junctions and catalyze branch migration, but no evidence 

has been found that RecG can actually cleave the junctions (Lloyd and Sharples, 1993). 

Figure 26. Homologous Recombination reaction in E. coli 

RecA bound to the ssDNA catalyzes strand invasion and forms a Holliday Junction. RecA then drives 

branch migration. RuvAB catalyzes strand exchange and RuvC cleaves the HJ. PriA helps DnaB loading 

and replisome assembly for replication restart. 
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Another protein, RadA has been described to exhibit redundant activities with those of RuvAB 

and RecG. A radA deletion was strongly synergistic with a recG mutation and triple radA, 

ruvAB, recG mutants showed comparable sensitivity to recA mutants when treated with UV, 

AZT or Ciprofloxacin. Moreover, the sensitivity of a radA recG mutant can be suppressed by 

deleting recA, suggesting that toxic recombination intermediates accumulate in radA recG 

mutants, possibly because they remain unresolved (Beam et al., 2002). It was later shown in 

vitro, that RadA can stimulate RecA’s branch migration activity and thus RecA-mediated 

recombination. Interestingly, they showed that RadA can promote branch migration, even in 

the absence of RecA (Cooper and Lovett, 2016).  

The efficiency of homologous recombination (HR) controls the pathway choice between HR 

and the error prone DNA damage bypass pathway, Translesion Synthesis (TLS). Indeed, in RecA 

mutants that are incapable of performing D-loops, homologous recombination is 

downregulated and translesion synthesis is increased (Naiman et al., 2016). 

 

vii. Induction of translesion polymerases and translesion 

synthesis 

 

As mentioned above, RecA bound to single stranded DNA induces the SOS response. If RecA 

is unable to perform D-loops and strand invasion, the SOS induction signal persists. This signal 

mediates cleavage of UmuD, a translesion polymerase thus activating it for its function in 

translesion synthesis (TLS). 

The TLS pathway allows replication over the lesion, without prior repair and without leaving a 

single strand gap. Although DNA breakage is avoided, the process is highly error-prone. RecA 

bound to the single stranded DNA resulting from the gap created by replication bypass induces 

the SOS response, which will in turn activate Polymerase V by autocleavage of UmuD into 

UmuD’. Pol V (umuD’2C) is one of the two TLS polymerases in E. coli. The dinB gene encodes 

the other polymerase, Polymerase IV. Both TLS polymerases are SOS induced. They fill in the 

gap by insertion of nucleotides opposite the lesion (Fuchs, 2016; Fuchs and Fujii, 2013). 

Lesions persisting in the daughter cells should be processed before the second round of 

replication (Bichara et al., 2011) (figure 27). 



Introduction 

65 
 

 

 

 

 

viii. Mutants of RecA activity 

 

Certain alleles of RecA that constitutively induce the SOS response, even in the absence of 

DNA damage, were isolated. These alleles had a higher affinity for single stranded DNA than 

SSB, favoring RecA binding on ssDNA at the replication fork for instance, thus explaining the 

constitutive SOS induction (Knight et al., 1984).< 

Figure 27. Translesion Synthesis (TLS) pathway 

The polymerase encounters the DNA lesion and skips it creating a single strand gap. RecA bound to 

the ssDNA induces TLS polymerases that are bind to the β-clamp and they replicate past the gap. 
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d) Characteristics of various SOS response proteins 

 

As mentioned above, the SOS response comprises over 100 proteins. The belonging of a given 

protein to the SOS response depends on its regulation by LexA. LexA binds to a consensus 

sequence 5'-TACTG(TA)5CAGTA-3’. Based on a mathematical formula developed by Berg & 

Von Hippel, Lewis et al. defined a Heterology Index (HI index) that indicates the deviation of a 

given LexA binding sequence from the palindromic consensus. Sequences having a low HI are 

closer to the LexA binding consensus sequence (Berg and von Hippel, 1988; Lewis et al., 1994). 

Computational approaches using the LexA binding consensus sequence allowed the 

identification of over 60 genes with a potential LexA site (Henestrosa et al., 2000). At the same 

period, Courcelle and coworkers identified several dozen proteins that were upregulated in a 

LexA-dependent manner upon UV light exposure (Courcelle et al., 2001). Other stresses such 

as oxidative stress (Baharoglu and Mazel, 2014; Rodríguez-Beltrán et al., 2012), γ irradiation 

(Kozubek et al., 1990) or even high pressure (Aertsen et al., 2004) can trigger the induction of 

the LexA regulated proteins. Among these genes, some remain of unknown function but most 

of them are known and related to DNA repair (RecA, RuvABC, UvrAB…), replication (Umu 

proteins…), mutagenesis or even metabolism. 

 

i. Proteins of unknown function 

 

Many proteins have been described to be regulated by LexA but their actual function in the 

DNA damage response remains unknown. For instance, such proteins are: 

 YdjM, which has been described as an inner membrane protein (Henestrosa et al., 

2000). 

 RmuC, which has been poorly described, but seems to be involved in DNA 

rearrangements and inversions (Slupska et al., 2000). 

 DinQ, which seems to be able to modulate membrane-dependent functions such as 

membrane polarization or intracellular ATP concentrations (Weel-Sneve et al., 2013). 
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ii. Other SOS induced proteins 

 

 SulA (also called SfiA) inhibits cell division (Huisman et al., 1984). SulA blocks the septal 

ring formation by inhibiting Z ring formation by FstZ (Mukherjee et al., 1998). 

Preventing cell division when DNA is compromised prevents segregation of damaged 

DNA to the daughter cells.  

 DinF’s function in the SOS response is poorly characterized. However, recent work has 

described DinF’s role in protection against oxidative damage. DinF possibly detoxifies 

the cell from high intracellular levels of Reactive Oxygen Species (ROS) (Rodríguez-

Beltrán et al., 2012) 

 RecJ is a single strand DNA exonuclease that degrades substrates in the 5’ to 3’ 

direction  (Lovett and Kolodner, 1989). It was identified for its role in a RecBC-

independent repair pathway (Lovett and Clark, 1984) and has been shown to mediate 

the excision step of mismatch repair after UvrD unwinding. 

 DinD is highly expressed upon UV-light exposure and has recently been shown to 

inhibit RecA during strand exchange in vitro. DinD appears to be able to halt the 

progression of DNA pairing by promoting the disassembly of RecA (Uranga et al., 2011). 

 TisB is a LexA regulated toxic peptide, which is part of the toxin/antitoxin system 

IstR/TisB. Induction of TisB leads to cell growth inhibition (Unoson and Wagner, 2008). 

 

iii. RecN protein 

 

RecN protein is an SMC-like protein (Rostas et al., 1987) that was first described in 1984 by 

Robert Lloyd. He showed that the recN gene product (originally called radB (Sargentini and 

Smith, 1983)) was important for cell survival to MMC and ionizing radiation but not UV 

exposure (Picksley et al., 1984) . It was soon demonstrated that RecN is rapidly induced after 

MMC treatment, through an SOS dependent pathway (Finch et al., 1985). 

A few years later, viability tests on double mutants suggested that RecJ and RecN act in two 

different pathways. RecN seems to act in the RecBC DSB repair pathway while RecJ is mainly 

involved in the daughter strand gap repair pathway (Wang and Smith, 1988). 



Introduction 

68 
 

Little is known about the actual function of RecN protein in DNA repair despite various studies 

over the years. In 2004, Kosa et al. observed a strong requirement of RecN for survival to 

bleomycin treatment, a drug creating double strand breaks (Kosa et al., 2004). In good 

agreement with the apparently specific requirement of RecN for DSB repair, it was shown that 

RecN is essential when cells are challenged with more than one iSceI double strand break 

(Meddows et al., 2005). Interestingly, they showed that SOS induction in a recN mutant was 

increased nearly two-fold. In the same study, a genetic screen for mutations increasing 

sensitivity to Mitomycin C highlighted DksA’s role in survival to MMC. Combining a recN and 

dksA knock down increased sensitivity of each single mutant, showing a synergistic action of 

both proteins. However, the synergism between dksA and recN is more likely due to the effect 

of DksA on transcription than to a direct role for DksA in DNA repair per se, although they 

showed that the levels of RecA, RecB, RecG or Ruv expression were not altered in the absence 

of RecN. Another possible explanation is that DksA destabilizes the RNAP and transcription 

complexes, clearing the way for repair proteins and replication fork reassembly (Meddows et 

al., 2005). 

Microscopy experiments using a RecN-GFP fusion protein demonstrated that RecN forms 

aggregates at the pole and on the nucleoid when it is damaged. A genetic screen for RecA 

mutants that mimic a recN phenotype (sensitive to MMC, but resistant to UV) lead to the 

isolation of a RecA mutant, RecAQ300R. In this mutant, RecN-GFP does not form nucleoid 

associated foci. All RecN-GFP foci are located at the poles, strongly suggesting that RecN 

requires RecA for proper loading.  A RecN mutant deficient for ATPase activity, RecNK35A is 

capable of forming foci but is not released from damaged DNA, meaning that ATP hydrolysis 

is not required for binding but necessary for the release of RecN (Keyamura et al., 2013). Once 

RecN is released from the break, it is degraded by the ClpXP protease. Its removal is essential 

for recovery after DNA repair since accumulation of RecN aggregates in the cytoplasm are 

toxic for the cell (Nagashima et al., 2006).  

Interestingly, RecN promotes a nucleoid compaction after a UV irradiation of 3 J.m-2. This DNA 

compaction is transient, and lasts for approximately 15-20 min before decompacting. In the 

absence of RecN, no compaction, nor decompaction is observed (Odsbu and Skarstad, 2014). 

The observation of such a strong phenotype for RecN in UV irradiated cells is surprising 

considering recN mutants are not sensitive to UV light exposure (Picksley et al., 1984). It is 
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possible that RecN mediates this nucleoid compaction in response to all DNA damage, 

regardless of whether it is necessary or not for the repair of a given lesion. 

RecN is a highly conserved protein, present in almost all Prokaryotes. It has been shown to be 

involved in survival to gamma rays in D. radiodurans (Funayama et al., 1999), homologous 

recombination dependent repair in Neisseria gonorrhoeae (Skaar et al., 2002) and DNA repair 

in B.subtilis (Kidane et al., 2004). Work on RecN in E. coli has been limited due the difficulty of 

purifying it. However, thanks to its highly conserved structure, it is possible to infer some of 

its functions from in vitro work done in D.radiodurans or B.subtilis, although the repair 

mechanisms of these two species differs from that of E. coli. 

In Bacillus subtilis, in vitro and in vivo studies revealed that RecN may bind 3’ssDNA ends of 

DSBs, in an ATP dependent manner, before RecA binds (Sanchez and Alonso, 2005). In fact, 

the same group later showed that RecN is one of the first proteins to recognize and be 

recruited to the break (Kidane et al., 2004; Sanchez et al., 2006). RecN may tether the 3’ss 

DNA ends together, concentrating all the DNA ends into what is termed a repair center, and 

facilitating the access of the broken DNA to RecA (Sanchez et al., 2008). 

The function of RecN in B. subtilis and E. coli may be very different though. Indeed, the SOS 

response system differs between both species. In B.subtilis, the SOS response is induced at a 

basal level and SOS induction is not required for survival to ionizing radiation in WT cells 

(Simmons et al., 2009). A basal induction of the SOS proteins (and thus, RecN) make it possible 

for RecN to act before RecA binding to ssDNA. In E. coli, RecN is expressed by SOS induction, 

in a RecA dependent manner rendering it difficult to imagine that RecN would act before RecA. 

RecN-YFP forms a single focus localized at the break as is the case in B.subtilis (Sanchez et al., 

2006), although RecN expression is also increased upon the induction of a double strand break 

(Cardenas et al., 2014).  

In Caulobacter crescentus, RecN is involved in nucleoid dynamics when one break occurs on a 

chromatid previously segregated from its homolog. It was proposed that RecN may structure 

the DNA in a way that is important for the repair dynamics without actually moving the DNA 

per se (Badrinarayanan et al., 2015; Wang and Maier, 2008). 
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In vitro RecN from D. radiodurans can stimulate intermolecular ligation of linear DNA in the 

presence of ATP. ATP hydrolysis by RecN is stimulated by duplex DNA but not ssDNA and is 

dependent on the concentration of RecN protein suggesting that RecN-RecN interactions may 

be required (Reyes et al., 2010). Pieces of D.radiodurans RecN have also been crystallized 

shedding light on a putative structure of the full protein. The head domain (with the C and N 

ter ends) was expressed and purified allowing a partial structural analysis. This domain forms 

a globular head by interaction of the N- and C- terminal ends of RecN protein. The coiled-coil 

domain was later purified allowing its structural analysis. These partial structures permitted a 

full representation of RecN structure by Pellegrino and coworkers. RecN resembles a 

Structural Maintenance of Chromosome (SMC) – like protein, adopting a conformation similar 

to other SMC proteins (figure 28).  

 

 

 

 

 

However its coiled coils are much shorter than other known SMC proteins, suggesting it may 

act in a different manner (Graumann and Knust, 2009). The structural analysis and biochemical 

experiments led to a model where RecN, as one of the first actors to the break, may bind and 

Figure 28. Architecture of Full-length RecN 

Structure is predicted from purification of pieces of RecN from D. radiodurans 
From Pellegrino et al. 2012 
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tether the DNA ends, polymerize along the double stranded damaged DNA and encircle the 

two DNA molecules (Pellegrino et al., 2012). 

Very recently, an interesting article by the team of Shelley Lusetti described a functional 

interaction between RecA and RecN from D. radiodurans in vitro, consistent with previously 

published data in E. coli (Keyamura et al., 2013). They further showed that RecN stimulates 

strand invasion by RecA, thus acting pre-synaptically. This D-loop stimulation is dependent on 

the ATPase activity of RecN, and incubating RecA bound to DNA can actually stimulate RecN’s 

ATPase activity up to 20 fold. Interestingly, the order with which the different partners are 

added influences the rapidity of the reaction, suggesting that a defined order is important for 

the reaction: RecA binds DNA, recruiting RecN, that will then stimulate D-loop formation and 

dissociate following ATP hydrolysis (Keyamura et al., 2013; Uranga et al., 2017). 
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 Sister chromatid cohesion and DNA repair 

 
Many DNA repair pathways involve the presence of an intact homolog to serve as a template 

for repair of the broken sister, in order to avoid losing genetic information. Intuitively, the 

presence of an intact sister homolog near a DSB occurring on the other sister should be 

beneficial for homologous recombination and DNA repair, possibly by helping homology 

search. Indeed, in Eukaryotes, the cohesin complex is required for efficient double strand 

break repair after γ-irradiation  (Sjögren and Nasmyth, 2001). 

 

1. Eukaryotic Cohesins are essential for survival to DNA damage 

 

Eukaryotes have at least six Structural of Maintenance of Chromosome (SMC) proteins. The 

SMC1/SMC3 complex (Cohesin) is the most characterized complex. It mediates sister 

chromatid cohesion during replication and controls chromosome dynamics, meiosis and 

mitosis. The SMC2/SMC4 complex forms Condensin, necessary for chromosome 

condensation, chromosome assembly and segregation. The SMC5/SMC6 complex has been 

shown to be involved in DNA repair, although it also has a role in the maintenance of non-

damaged chromosomes (See Section B).  

Cohesin complexes are recruited during normal DNA replication, but de novo recruitment of 

Cohesins is induced upon DNA double strand breaks. Cohesin complexes are recruited to the 

damaged and undamaged sister chromatids. In unbroken chromosomes, Cohesins can load 

during G2/M phase but cannot generate cohesion. They only generate cohesion during the S 

phase. However, in the presence of a DSB, cohesion can be generated genome wide (on the 

broken and unbroken chromosomes) even during G2/M phase (Ström and Sjögren, 2007; Unal 

et al., 2007). Interestingly, it was shown that it is the cohesion between sister chromatids that 

is required for repair rather than the Cohesin protein complex per se (Sjögren and Nasmyth, 

2001).  
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Although SMC5/SMC6 has been shown to be involved in various pathways and functions, 

growing evidence shows that the complex is strongly recruited during DNA damage. The 

SMC5/6 complex associates with several non-SMC proteins (Nse proteins), including Nse1-6. 

In undamaged cells, ChIP on ChIP experiments revealed that SMC5/6 binds to the 

chromosomes as soon as they are replicated. These experiments further revealed a specific 

role for the SMC5/6 complex in the maintenance of long chromosomes and that SMC5/6 

requires Cohesin (directly or indirectly) for proper localization on chromosomes. Overall, in 

undamaged cells, the chromosomal binding pattern of SMC5/6 is similar to the binding pattern 

of SMC1/3 although SMC1/3 seems to prevent early segregation of chromosomes and SMC5/6 

favors their partitioning (Lindroos et al., 2006). 

SMC5/6 mutants are sensitive to DNA damaging agents (Lehmann et al., 1995). A study in 

human cells showed that SMC5/6 is recruited to DSBs and recruits the SMC1/3 complex to the 

break to favor cohesion and homologous recombination (Potts et al., 2006). Although the 

Cohesin complex favors HR and DNA repair by merely keeping the sister chromatids in close 

contact (Ström et al., 2004), the SM5/6 complex, associated at the sites of DSBs but also at 

collapsed replication forks, may be involved in repair induced replication or correct 

management of the sister chromatids during repair (Lindroos et al., 2006).  

SMC5/6 has also been shown to be crucial for meiosis since Nse1 mutants show severe meiotic 

segregration defects and impaired homologous recombination (Pebernard et al., 2004). 

 

2. Sister chromatid cohesion and DNA repair in E. coli 

 

As described in the previous sections, sister chromatid cohesion in E. coli is mediated by 

topological links such as precatenanes rather than Cohesins. To date, very little work has been 

done on the putative role of precatenanes in DNA repair and no Cohesins have been 

characterized in E. coli. 
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 Thesis Objectives 

 
My PhD project focuses on this particular sister chromatid cohesion step in response to DNA 

damage and its possible relevance for DNA repair and homologous recombination. The role of 

cohesion in DNA repair has been studied in Eukaryotes but the molecular mechanisms 

underlying it are far from being characterized. E. coli has a high experimental potential 

allowing complex questions. Using E. coli as a model, my PhD project aimed at addressing the 

following questions: 

i) Is sister chromatid cohesion modified in response to DNA damage? 

ii) What is the impact of different drugs (and thus, different DNA breaks) on sister 

chromatid cohesion? 

iii) Is this process dependent on the SOS response? If so, what proteins of the SOS 

response are involved? 

iv) What role may Topoisomerases have in DNA damage mediated SCC? 

To answer these questions, I used a site-specific recombination assay that reveals direct 

interactions between homologous chromosomes. I combined this with cell biology methods 

such as live cell fluorescence imagining and microfluidics. In order to identify different proteins 

involved in DNA damage mediated SCC, I performed high throughput experiments such as 

RNAseq, Co-immunoprecipitation and iPOND. 

I showed that sister chromatid interactions are maintained during the repair of a DSB induced 

by genotoxic stress (such as Mitomycin C treatment). The preservation of sister chromatid 

interactions (SCIs) upon genotoxic stress is fully dependent on the SOS response. Indeed, in a 

lexA non inducible mutant, most SCIs are lost upon MMC treatment. More specifically, I have 

shown that the RecN protein, belonging to the SOS response, is an essential protein for double 

strand break induced SCIs. We observed that the loss of SCIs observed in a recN mutant can 

be fully rescued by the inhibition of Topoisomerase IV activity, suggesting that the main 

activity of RecN is to maintain sister chromatids in close proximity during the repair of a DSB. 

The rescue of SCIs by Topoisomerase IV alteration is coupled with a rescue in viability, directly 

linking sister chromatid cohesion and cell viability in response to genotoxic stress. 
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Among the SOS proteins that we tested, only RecN and RecA (because it contributes to RecN 

induction and loading) had an effect on SCI preservation.  

Another interesting feature of the RecN protein that we discovered is its capability to promote 

the merging of previously segregated sister chromatids. This specific merging of sister loci is 

coordinated with a large, whole nucleoid merging and compaction. This RecN-dependent DNA 

compaction is transient. We rapidly observe a decompaction of nucleoids accompanied by cell 

filamentation. Moreover, I observed that the RecA foci dynamics is strongly altered in a recN 

mutant, suggesting that RecN may interact with RecA. This hypothesis was confirmed by co-

immunoprecipitation experiments that revealed a direct interaction between RecN and RecA.  

These results are the object of a publication in Nature Communications (Vickridge et al., 2017). 

However, other experiments and questions arose during my PhD that I will present in the 

Complementary Results Chapter 

.
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A
ll cells must accurately copy and maintain the integrity of
their DNA to ensure faithful transmission of their genetic
material to the next generation. DNA double-strand

breaks (DSBs), single-stranded gaps (SSGs) and DNA adducts
such as interstrand crosslinks (ICLs) are serious lesions that, if left
unrepaired, are potentially lethal to the cell. DSBs, SSGs and DNA
adduct repair involve homologous recombination (HR) path-
ways1,2. On the basis of current models, there are two major
pathways for recombinational repair and homologous
recombination in Escherichia coli3. The daughter strand gap
repair pathway requires RecFOR, RecA and RuvABC gene
products and the DSB-repair pathway requires RecBCD, RecA
and RuvABC gene products4. The initial step of DNA damage
repair by HR requires RecA loading on single-stranded DNA
(ssDNA). It is achieved either by RecFOR on SS gaps, or DNA
resection up to a chi site, by RecBCD on a DSB. RecA loading and
strand invasion are essential for homologous pairing and
regeneration of replication fork structures5. RecA protein
bound to ssDNA triggers the autoproteolysis of LexA and the
induction of many genes from the SOS regulon6–8.

The DSB-repair pathway strongly relies on RecA-mediated
pairing of the damaged DNA molecule with an undamaged copy
serving as a template during the repair process, presumably the
sister chromatid. In eukaryotes, during replication, cohesins keep
the newly replicated sister chromatids together before segrega-
tion9. Cohesins have been shown to be important for DSB repair
in G2 phase and post-replicative recruitment of cohesins has been
observed at the site of the DSB10–12. However, the DSB-induced
cohesion is not limited to broken chromosomes but occurs also
on unbroken chromosomes, suggesting that cohesion provides
genome-wide protection of chromosome integrity13,14.

In bacteria, following replication, sister loci do not immediately
segregate, and the duration of cohesion is controlled by the
activity of topoisomerase IV (Topo IV)15–17. The role of Topo IV
in the segregation of sister chromatids has led to a well-accepted,
but yet undemonstrated model, involving precatenane links as the
major post-replicative cohesion factor in E. coli. Using a site-
specific recombination assay, we demonstrated that interactions
and genetic exchanges between sister loci (sister chromatid
interactions (SCIs)) are favored for a 10–20 min period following
replication16. These SCIs rapidly decrease when replication is
arrested but persist if Topo IV activity is impeded, suggesting that
post-replicative topological links enhance genetic exchange
between homologous regions.

Previously, the absence of identified cohesins and the progressive
segregation of bacterial sister chromosomes following replication
have suggested that homologous recombination in bacteria requires
a genome-wide homology search. Recent studies have demon-
strated that a site-specific DSB can be efficiently repaired using
distant sister homology18. These processes correlate with the
formation of a RecA bundle and the merging of sister foci. In
another study, DSB formation by a replication fork encountering a
frozen topoisomerase provokes the rapid association of large
regions of the previously segregated sister chromatids19.

The SOS-inducible recN gene, which encodes an SMC
(structural maintenance of chromosomes)-like protein, was
identified over 20 years ago20,21. Expression of the recN gene is
regulated by the LexA repressor, and following derepression, the
RecN protein is one of the most abundantly expressed proteins in
response to DNA damage7,22. RecN is also involved in the
RecBCD-dependent DSBR pathway21,23,24. recN mutants are
sensitive to ionizing radiation, I-SceI cleavage and mitomycin C
(MMC)24,25 but do not exhibit extensive DNA degradation
following DSB25. In vitro assays have been developed with RecN
from Deinococcus radiodurans. D. radiodurans RecN enhances
ligation of linear DNA fragments suggesting DNA end bridging

or cohesin-like activities26,27. In addition, Bacillus subtilis RecN,
which is among the first actors to the site of a DSB, promotes the
ordered recruitment of repair proteins to the site of a lesion28,29.
Interestingly, a different activity has been observed for RecN in
Caulobacter cresentus and E. coli. It has been reported that RecN
in this system is implicated in nucleoid dynamics following DSB
repair30,31.

Considering the sister chromatid cohesion and segregation
mechanism in E. coli and the intriguing but unclear role of the
SOS protein, RecN, we sought to investigate the importance of
DNA precatenane-mediated sister chromatid cohesion in DNA
repair. In this study, we used genotoxic agents to evaluate the role
of topological links between sister chromatids in the repair of
DNA damage. Our results demonstrate that SCIs are preserved
upon treatment with MMC. Upon MMC treatment, SCIs become
dependent on the induction of the recN gene product by the SOS
response. Interestingly, a recN deletion can be fully rescued by a
thermosensitive mutation in Topoisomerase IV, suggesting that
the main function of RecN during DNA repair is to maintain
SCIs, as precatenanes do under normal conditions. The loading of
RecN onto sister chromatids is dependent on the presence of
DSBs processed by RecA. Therefore, RecN can be considered as a
DSB-specific cohesion factor. Because the presence of RecN
accelerates growth resumption following genotoxic stress and
affects the shape and dynamics of RecA repair structures, we
propose that RecN-mediated preservation of SCIs is a key
element in the repair of DSBs.

Results
SCIs are preserved in MMC-treated cells. SCIs are essential for
genomic stability. During the bacterial cell cycle, SCIs are deter-
mined by the balance between the rates of chromosomal repli-
cation and segregation16 (Fig. 1a). We have previously developed
a system that detects and accurately measures sister chromatid
cohesion in vivo16. This LacloxP assay is based on the Cre-loxP
site-specific recombination systems of bacteriophage P1. We
engineered a cassette containing two adjacent loxP sites that can
only recombine when Cre encounters the homologous region on
the sister chromatid. The frequency of Cre recombination events
is therefore dependent on the proximity between sister loci16.
LoxP recombination was used in this study to monitor the
organization and dynamics of sister chromatids following DNA
damage induced by MMC. MMC is a potent antibiotic that
inhibits DNA synthesis by reacting with guanines of
complementary DNA at CpG sequences creating interstrand-
crosslinks32. MMC treatment (i) promotes the formation of
replicative lesions: SSGs33 and DSBs34), (ii) induces the SOS
response35, (iii) blocks the completion of oriC-dependent
chromosome replication (Supplementary Fig. 1A) and (iv)
rapidly halts DNA replication (Fig. 1b,c). We placed the loxP
cassette at the ori-3 locus (positioned 450 kb from oriC) and used
this assay to measure SCIs in the presence and absence of MMC.
To stimulate recombination, 20 min pulses of Cre induction were
performed before MMC addition, immediately after MMC
addition (0–20 min), 20 min after MMC addition (20–40 min)
or 40 min after MMC addition (40–60 min). The recombination
frequency slightly increased after MMC addition (Fig. 1d). This
observation is in sharp contrast with the abrupt drop of the
recombination frequency observed in a dnaC allele (dnaCts) when
initiation of replication is blocked at a non-permissive
temperature (40 �C; Fig. 1d). Interestingly, in the presence of
MMC, SCIs also persist in the dnaCts strain at a non-permissive
temperature (Fig. 1d). These observations suggest that MMC
impedes sister chromatid segregation and renders SCIs
independent of replication.
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SCIs are dependent on RecA and RecN in the presence of MMC.
We sought to determine the role of HR and the SOS response in
SCIs. Indeed, HR and more particularly the repair intermediates
such as holliday junctions could promote SCIs. We observed that

the degree of SCIs in the presence of MMC was strongly reduced in
the absence of RecA (Fig. 1e, Supplementary Fig. 1B). This
observation could suggest that RecA is required for preserving
these interactions or that DNA degradation happening in the recA
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mutant could more dramatically affect sister chromatids that are
interacting (that is, the closest to the replication fork) than segre-
gated sister chromatids. We used EdU incorporation to monitor
DNA degradation. A brief incorporation of EdU before addition of
MMC allowed us to measure degradation of the newly replicated
DNA regions. We estimate that EdU labelling extended over 500 kb
during the pulse, a distance that corresponds to the region involved
in SCIs. In the WT strain, EdU foci were present in every cell for
more than 3 h after MMC addition (Supplementary Fig. 1C,D) and
the average fluorescence intensity of EdU labelling slowly decreased
over the 3 h time course (Supplementary Fig. 1E). In some cells
fluorescence intensity of EdU labelling increased at later time
points (2 and 3 h). This increasing intensity is correlated with a
reduction in the number of foci and a compaction of the nucleoids
(Supplementary Fig. 1C). In the absence of RecA, the reduction of
EdU intensity and the number of cells presenting EdU foci is only
manifest after 1 h of treatment (Supplementary Fig. 1D,E). How-
ever, since DNA degradation was not significant during the first
hour after MMC addition it was not correlated with the SCIs
reduction observed in the first 40 m following MMC. Interestingly,
in a mutant that is unable to induce the SOS response
(lexA ind-)36, we also observed a reduction of SCIs and loss of
viability (Fig. 1e, Supplementary Fig. 1B,F). In order to test the
relationship between the defects in SCIs and the ability of a strain
to perform HR, we measured SCIs in the recAQ300A mutant. This
mutant is strongly deficient in HR (o10% of the activity of a WT
strain) but exhibits WT levels of LexA cleavage activity and SOS
upregulation37. We observed that, despite a dramatic drop in the
viability upon MMC treatment (Supplementary Fig. 1G), SCIs were
maintained at a high level in the recAQ300A mutant compared to
the recA mutant (Fig. 1e). Altogether, these observations indicate
that completion of DNA repair and efficient HR are not required
for the preservation of SCIs. Therefore we considered that a
member of the SOS regulon may be responsible for SCI
preservation upon MMC treatment.

To identify the SOS proteins responsible for maintaining SCIs,
we analysed 15 mutants of SOS-inducible genes which functions
has not been clearly established, for their ability to preserve SCIs
after DNA damage. We observed that of the 15 mutants tested,
only a recN mutation significantly reduced SCIs in the presence of
MMC (Fig. 1e, Supplementary Fig. 1H). In good agreement with a
low basal level of expression (Supplementary Fig. 2A,B), a recN
deletion had no effect on SCIs under normal growth conditions
(Supplementary Fig. 1B). We measured the persistence of SCIs in
the absence of RecN using pulses of Cre induction, as described in
Fig. 1d. LoxP recombination progressively decreased during the
60 min following MMC addition (Fig. 1f), suggesting that SCIs
disappear in the absence of RecN. In good agreement with the fact
that RecN is only expressed after RecA loading on ssDNA, the recN
mutant did not present any DNA degradation phenotype upon
I-SceI cleavage25 or MMC treatment (Supplementary Fig. 1C–E).
In the recN mutant, EdU foci degradation was comparable to WT
cells even at the latest time points. Therefore the decrease of loxP
recombination observed in the recN strain is not the consequence
of DNA degradation. We favour the hypotheses that RecN is either
involved in preserving SCIs or in the formation of de novo SCIs in
the presence of MMC. Interestingly, the level of SCIs in the absence
of RecN was significantly higher than in the recA or lexA ind-
mutants, suggesting that other processes are altered in these
mutants and perhaps an additional, yet-unidentified, SOS-induced
protein participates in maintaining SCIs.

RecN impedes segregation of damaged sister chromatids. Our
observations suggest that in the presence of MMC, RecN is
required to maintain SCIs. To examine whether RecN is directly

capable of preventing segregation of sister chromatids, we per-
formed live cell imaging of sister chromatid dynamics. We utilized
strains containing a dnaCts allele to synchronize the replication
cycle and treated the cells with or without MMC 5 min after the
estimated replication of a parS/ParB-GFP tag at the ori-3 locus.
Replication synchrony and timing were measured by marker fre-
quency analysis38. In the absence of MMC, both WT cells and recN
mutant cells presented a reproducible segregation pattern in the
20 min following replication (Fig. 1g,h). In the presence of MMC,
segregation was only observed in 20% of WT cells, the remaining
cells contained either a single focus for the entire time course or
brief alternating cycles of duplication and merging back of sister
foci. In contrast, the majority (65%) of recN mutant cells presented
a separation of the initial focus into two foci. These observations
demonstrated that RecN is able to limit segregation of sister
chromatids in the presence of MMC and therefore functions as a
DNA damaged-induced cohesion factor in E. coli.

The lack of RecN is compensated by extensive precatenation. It
has previously been demonstrated that sister chromatids stay
cohesive behind the replication fork, forming structures known as
precatenanes16. The type II Topoisomerase IV is responsible for
the decatenation of these structures and ensures the correct
segregation of both sister chromatids. We used a Topo IV
thermosensitive mutant (parEts), in both WT and recN
backgrounds, to test whether preventing the removal of
precatenanes can maintain SCIs and restore viability in the
presence of different DNA damaging agents. In untreated
conditions, we observed an increase in post-replicative SCIs
when the parEts mutant was shifted to a non-permissive
temperature16. Following treatment with MMC, the frequency
of SCIs decreased in the parEts cells but remained at a greater
level than that observed in WT cells. Interestingly, the level of
SCIs following MMC treatment was unaffected by either a recA or
recN deletion in the parEts mutant (Fig. 2a, Supplementary
Fig. 3A–F). This suggests that, in this context, maintaining
precatenanes behind the replication fork can compensate for the
absence of RecN, and that more generally; in spite of a DSB most
precatenane links do not immediately disappear.

Preservation of SCIs is linked to MMC-treated cell survival. To
assess whether the preservation of SCIs observed in the parEts
recN mutant facilitates efficient DNA repair and cell survival
upon MMC treatment, we performed CFU measurements in WT,
recN, recA, parEts, parEts recN and parEts recA strains in the
presence of MMC (Fig. 2b). Following a brief period at a non-
permissive temperature, the recA and recN cells were strongly
sensitive to MMC but the parEts cells were only slightly sensitive
when compared to WT cells. Interestingly, the double recN parEts
mutant presented a similar viability to the parEts mutant, sug-
gesting that the decrease in viability in the recN mutant can be
compensated by an increase in topological linking between sister
chromatids during replication. On the other hand, inhibiting
TopoIV in a recA mutant did not rescue viability, suggesting a
specific role for RecN in the maintenance of SCIs (Fig. 2b and
Supplementary Fig. 3G). We also measured the CFU in a parEts
lexA ind- strain where the SOS response is down but RecA is
present in basal levels (Supplementary Fig. 3H). The inhibition of
TopoIV in a lexA ind- strain did not rescue the loss of viability of
the lexA ind- strain. These observations strengthen the hypothesis
that topological links, when they are artificially maintained,
specifically compensate for a lack of RecN and therefore suggests
that RecN is playing a structural role by maintaining sister
chromatids close together.
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RecN requires DSBs and RecA to load on DNA. To test whether
the overproduction of RecN in a wild-type strain could affect
SCIs, we constructed a vector containing RecN under control of a
leaky promoter (pZARecN). Overexpressing RecN in the recN
mutant restored viability and preserved SCIs following MMC

treatment (Fig. 2c, Supplementary Fig. 4A–D). However, RecN
overexpression did not modify SCIs in untreated WT cells, in
contrast to the Topo IV parEts mutation. These observations
suggest that RecN is inactive in the absence of DNA lesions. To
determine whether RecA itself or another SOS-inducible protein
is responsible for RecN activation, we constructed an SOS con-
stitutive strain (sfiA lexA51) in which recA is deleted but the SOS
induction is maintained39. The sfiA lexA51 recA strain presented
strong sensitivity to MMC (Supplementary Fig. 4E). In the sfiA
lexA51 recA, we observed a low frequency of recombination,
suggesting that DNA damage-induced SCIs are directly
dependent on RecA (Supplementary Fig. 4F). We performed
co-immunoprecipitation experiments in WT strains expressing
RecN-Flag. In the presence of MMC, RecN was robustly
co-immunoprecipated with an anti RecA antibody.
Co-immunoprecipitation of RecA with an anti Flag antibody
was less specific. Nevertheless in the presence of MMC and RecN-
Flag induction the amount of co-immunoprecipitated RecA
significantly increased (Supplementary Fig. 5). These observations
demonstrate an interaction between RecA and RecN and that
perhaps RecA serves as a loader for RecN. Interestingly,
immunoprecipitation experiments revealed that a small amount
of RecN was present even in the absence of MMC
(Supplementary Fig. 5). We cannot distinguish if it corresponds
to a basal level of RecN in all cells or to a fraction of cells inducing
RecN through SOS in response to spontaneous damages.
Considering the first hypothesis, this would suggest that RecN
could intervene very early following DNA damage. To test
whether RecA bound to SS DNA was sufficient to observe RecN-
mediated SCIs, we used Azidothymidine (AZT) which is a DNA
chain terminator. RecA is loaded on SS gaps in the presence of
AZT; however, we observed no requirement of RecN on viability
or SCIs in these conditions (Fig. 2d,e). SCIs disappeared rapidly
in the presence of AZT in WT strain but were kept at high level
when Topo IV was inhibited. This suggests that in these
conditions precatenanes are rapidly removed and that RecN
does not participate to SCI near SS gaps.

RecN promotes the regression of segregated chromosomes. Our
data have demonstrated that RecN can prevent the segregation of
newly replicated sister chromatids. However, it has recently been
reported in C. crescentus, that RecN participates in DNA
dynamics following the regression of segregated loci in response
to an I-SceI-induced DSB30. We used time-lapse microscopy to
evaluate RecN’s putative role in sister chromatid dynamics
following an MMC-induced DSB. We used a parBpmT1-YFP
fusion that binds to a parS site inserted at the ori-3 locus
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(450 kb from oriC). In the absence of MMC, at time 0, more than
80% of WT cells contained two foci and we observed the
segregation of the two foci into four foci immediately before cell
division, each daughter cell containing two new foci (Fig. 3a, Type
I and Fig. 3b). The presence of MMC significantly altered focus
segregation. In most cases, bacteria with two foci at time point 0
failed to produce four foci, and eventually, the two segregated foci
regressed back into one central focus that either persisted in this
state for an extended period of time (Type II, 45% of the
population) or regressed transiently into one focus (Type III,
39%; Fig. 3a,b and Supplementary Movie 1). This phenotype was
strongly dependent on RecN (Fig. 3a,b and Supplementary
Movie 2). We observed the beginning of regression between 12
and 47 min after MMC treatment. We tagged additional loci on

the chromosome to evaluate RecN’s influence at various distances
from the replication fork and thus the DSB. Focus regression
occurred at a high frequency near to oriC (100 and 450 kb away
from oriC), less frequently in the middle of the left replichore
(1,300 kb) and very infrequently near the terminus (2,300 kb from
oriC). This suggests that RecN can mediate merging of sister foci
upstream from a replication fork but is not able to re-anneal fully
segregated chromosomes.

To observe the whole nucleoid dynamics associated with the
foci merging, we used cells containing the HU protein fused to
mCherry. HU is a histone-like protein that binds ubiquitously to
the whole nucleoid. We detected the merging of segregating
nucleoids in response to MMC treatment (Fig. 3c,d). This
phenomenon was observed 10±10 min after MMC addition and,
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as previously described, was dependent on both the RecA and
RecN proteins31. Regression of sister foci was observed a few
minutes following nucleoid merging (Fig. 3e,f and Supplementary
Movie 3). These observations suggest that RecN-mediated
preservation of SCIs, regression of segregated sister loci and
nucleoid merging are coordinated steps in the repair process of
DSBs.

RecN do not promote nucleoid condensation. The merging of
nucleoids observed following MMC treatment may result from
two distinct phenomena: a global DNA compaction, mediated by
RecN and favoring the random encounter of sister homologues,
or an ordered re-zipping that realigns homologous regions of the
nucleoid. To distinguish between these two hypotheses, we
measured the distance between two loci tagged with parSpMT1

and parSP1 sites spaced 188 kb apart on the same replichore

(975 kb from oriC and 1,163 kb from oriC). When cells were
treated for 15 min with MMC (at this moment most bi-lobbed
cells have merged their nucleoids), the number of foci per cell
decreased substantially in the WT strain (1.4 foci per cell on
average in the presence of MMC compared to 1.7 in regular
conditions, Fig. 4a,b). By contrast, this number remained con-
stant in the absence of RecN (1.65 foci per cell in the presence of
MMC compared to 1.7 in regular conditions, Fig. 4c,d). In spite of
the reduction of the number of foci, the distance between the
tagged loci was unchanged, even though the nucleoids were
merged at this time point (Fig. 4e and Supplementary Table 1).
After 45 min of MMC application, the distance between the loci
increased significantly, reflecting the nucleoid decondensation
observed with HU-mCherry and cell filamentation. Importantly,
the distance between the two tagged foci was independent on
RecN (Fig. 4f). To check that a chromosomal condensation can
indeed be observed with our experimental set-up, we performed

WT
–MMC

WT
+15 min MMC

WT
+45 min MMC

0

2

4

6

8

10

1 focus 2 foci 3 foci 4 foci

%
 o

f c
el

ls

0

10

20

30

40

50

60

70

80

90

100 WT - MMC
WT 15 min MMC
WT 45 min MMC

0

10

20

30

40

50

60

70

80

90

100 WT - MMC
WT 15 min MMC
WT 45 min MMC

1 focus 2 foci 3 foci 4 foci

a b c

%
 o

f c
el

ls

e

1 focus 2 foci 3 foci 4 foci

d

0

10

20

30

40

50

60

70

80

90

100

1 focus 2 foci 3 foci 4 foci

recN - MMC
recN 15 min MMC
recN 45 min MMC

recN - MMC
recN 15 min MMC
recN 45 min MMC

%
 o

f c
el

ls

recN
–MMC

recN
+15 min MMC

recN
+45 min MMC

0

2

4

6

8

10
f

0

2

4

6

8

WT
–cam

WT
+15 min cam

WT
+45 min cam

g
10

***

NS

yajQ-yajR::parSPMT1 yajQ-yajR::parSPMT1crl::parSP1

crl::parSP1

0

10

20

30

40

50

60

70

80

90

100

%
 o

f c
el

ls

D
is

ta
nc

e 
be

tw
ee

n 
ya

jQ
-y

aj
R

::p
ar

S
P

M
T

1

an
d 

cr
l::

pa
rS

P
1  (

pi
xe

ls
)

D
is

ta
nc

e 
be

tw
ee

n 
ya

jQ
-y

aj
R

::p
ar

S
P

M
T

1

an
d 

cr
l::

pa
rS

P
1  (

pi
xe

ls
)

D
is

ta
nc

e 
be

tw
ee

n 
ya

jQ
-y

aj
R

::p
ar

S
P

M
T

1

an
d 

cr
l::

pa
rS

P
1  (

pi
xe

ls
)

Figure 4 | RecN influences SCC but not DNA condensation. (a) The number of foci per cell at the yajR-yajQ::parSpMT1 site was counted in cells treated with
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distance between two loci on the same replichore of the chromosome, spaced by 188 kb and tagged with a parSP1 or a parSpMT1 site (crl::parSP1 and yajQ-

yajR::parSpMT1, respectively), was measured after treatment with 10mg ml� 1 MMC for 0, 15 or 45 min. The results are shown as a box plot representing the

median, first and forth quartiles (N¼ 300). (f) Same as e, but performed in the recN mutant. (g) The distance between two loci on the same replichore of

the chromosome, spaced by 188 kb and tagged with a parSP1 or a parSpMT1 site (crl::parSP1 and yajQ-yajR::parSpMT1, respectively), was measured after

treatment with 30mg ml� 1 of chloramphénicol for 0, 15 or 45 min. (t-test ***Po10� 30, NS (not significant) P410� 5).
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the same experiment in the presence of chloramphenicol, an
antibiotic that is known to strongly condense the chromosome40.
The interfocal distance was decreased in the presence of
chloramphenicol when compared to untreated cells (Fig. 4g).
These observations demonstrate that RecN does not participate in
nucleoid condensation and that nucleoid merging is ordered and
only leads to encounters between homologous loci. We thus
propose that RecN is a cohesion factor that promotes strict
realignment of an extensive part of the nucleoid initiating at the
site of a damaged replication fork.

RecN stimulates cell cycle restart after genotoxic stress. To
evaluate the influence of RecN and SCIs on DNA repair effi-
ciency, we analysed cell cycle restart after MMC treatment at the
single-cell level on a microfluidic platform. WT and recN cells
were grown in the microfluidic chamber for 20 min, 10 mg ml� 1

MMC was injected for 10 min and immediately washed out with
fresh medium. In these conditions, the WT and recN strains show
almost similar viability to the untreated cells. We can thus
observe the impact of RecN on the efficiency of repair rather than
viability. Cell division and nucleoid dynamics were followed for
3 hours after washing (Fig. 5a,b and Supplementary Movies 4
and 5). In the presence of RecN, 70% of the bacteria recovered
from the MMC treatment and underwent one (9%), two (50%) or
three divisions (41%) in the ensuing 2 h. In the absence of RecN,
only 36% of the cells recovered and performed one (16%), two
(59%) or three divisions (25%). The number of filamenting cells
at the end of the time course was also strongly reduced in the
presence of RecN (15% in WT cells compared to 56% in the recN
mutant). Altogether, these results suggest that RecN activity
contributes to accelerate the repair process and thus allows a
rapid return to normal growth.

The absence of RecN modifies RecA dynamics. It has been
proposed that RecA contributes to RecN loading onto nucleoids
via a direct RecA–RecN interaction23, and our results suggest that
RecN favors the rapid repair of MMC-induced lesions. We
therefore sought to determine whether RecN influences RecA-
mediated homology search and RecA-mediated DNA repair by
preserving SCIs. RecA forms repair foci in the cell in the presence
of DNA damage41, and the presence of Rad51 or 52 repair foci in
eukaryotic cells is considered a good reporter of ongoing DNA
repair42. Thus, we performed time-lapse fluorescence microscopy
in the presence of MMC in strains containing an ectopic recA-
mCherry fusion in addition to the wild-type recA gene. RecA-
mCherry formed large aggregated foci at the pole as well as small
dynamic foci that likely correspond to repair foci (Fig. 5c). The
repair foci were very dynamic, and their fluorescence was weak.
In the continuous presence of MMC, these foci only persisted at a
given position for 10–20 min (Fig. 5e). In the absence of RecN,
RecA formed foci and elongated dynamic structures (Fig. 5d–f).
Elongated structures were observed in 21% of recN cells at any
given time point (Fig. 5g), but almost every cell presented one at
some point during the 90 min time course. They persisted for
30±10 min. Such structures, called RecA bundles, have been
described following sister chromatid cleavage by I-SceI, although
their role in recombination repair is not yet understood18.
However, in contrast with this previous report, we observed very
few bundles in WT cells after MMC treatment, suggesting that
bundles form preferentially when the broken sister is far from its
intact homologue.

Discussion
Repair of DNA damage by homologous recombination requires
the presence of an undamaged sister homologue. In E. coli, during

a regular cell cycle, sister chromatids are kept in close contact by
topological links called precatenanes16,17,43. They allow for
perfect alignment of sister chromatids and thus promote site-
specific recombination between sister loci16. SCIs are thought to
favour homologous recombination and could thus accelerate the
repair process. However, because topological structures diffuse
extensively on DNA, topological cuffing of sister chromatids
might not persist if DNA is broken. In the present work, we
unravel a role for SCIs in DNA damage repair induced by MMC.
Furthermore, their preservation in the presence of MMC requires
induction of the SOS response. We demonstrate here that RecN is
a central protein for the preservation of SCIs (Fig. 1). The lack of
recN is not as detrimental as recA or lexA ind- mutants for SCIs
preservation, suggesting that another yet unknown factor may
also participate in the process.

RecN is a well-conserved bacterial SMC protein, and its
involvement in the repair of DSBs has been known for some time.
In E. coli, RecN expression is repressed under regular growth
conditions but is strongly expressed by the SOS regulon in the
presence of MMC, ultraviolet, quinolone drugs or oxidative
stress7,44. Based on research in D. radiodurans and B. subtilis, two
different functions have been proposed for RecN: a cohesion
function27 and an end-joining function26,28. Recent work has
suggested that RecN loading onto DSBs requires interaction with
RecA23. In our study, we demonstrate that RecN induction allows
for preservation of SCIs and abolishes segregation of newly
replicated loci (Fig. 1). In theory, preservation of SCIs may be
possible if the binding of RecN to DNA ends prevents
precatenane diffusion through the DSB. Importantly, because
the absence of RecN can be rescued by a mutation that affects
Topoisomerase IV function, we propose that RecN bridges sister
chromatids in a manner similar to cohesins (Fig. 6). We cannot
exclude that RecN participates in DSB end joining in E. coli,
however our observations demonstrate that end joining is not the
only function of RecN in E. coli. This is in good agreement with
the huge amount of RecN produced upon SOS induction7,22.
ChIP-seq experiments demonstrated that RecA filaments extend
over 20 kb from a double-strand break, this is much less than the
extent of the genome affected by RecN activity (SCI preservation
and the regression of segregated sister foci) suggesting that even if
RecA directly interacts with RecN near the DSB, RecN should be
able to escape and propagate on the genome (Fig. 6). Such a
process is reminiscent with what has been observed for other
bacterial SMC proteins, such as MukB and SMC (B. subtilis or C.
crescentus) that are respectively loaded by MatP45 and ParB46–49.
The mechanism by which RecN promotes cohesion is not yet
understood. As E. coli RecN is a small SMC protein (B1/3 of
SMC3), it is unlikely that a dimer alone could form a ring that
entraps two DNA double strands. Multimers of of D. radiodurans
RecN have been observed, therefore, we can postulate that head-
to-tail RecN multimerization can favour long stretches of sister
chromatid pairing (Fig. 6).

Theoretically, replication-dependent precatenanes could facil-
itate repair via homologous recombination by increasing SCIs.
However, the observations that RecN is required to preserve SCIs
in the presence of MMC suggest that precatenanes are not
sufficient to maintain SCIs under these conditions. We observed
that Topo IV alteration, which prevents the removal of post-
replicative precatenanes, can fully compensate for the absence of
RecN in the presence of MMC. This means that when post-
replicative precatenanes are not efficiently removed by Topo IV,
they facilitate homology search and homologous recombination.
It has been proposed that precatenanes do not accumulate
homogeneously along the chromosome15,16, some regions called
SNAPs tend to remain colocalized, presumably because SeqA
bound to these regions inhibits Topo IV activity43. SCIs are
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perfused for 10 min and immediately washed with clean medium, and incubation and imaging were continued for over 3.5 h. Cell lineage was measured for

100 cells; each colour corresponds to a given state of the cell. (b) The same experiment as described in a was performed in the recN mutant, which exhibits

delayed cell cycle restart. (c) Representative time-lapse microscopy of RecA-mCherry focus dynamics in the presence of MMC in the WT strain. Time-

lapse imaging starts at 5 min after initial contact with MMC. Pictures were acquired every 3 min for 2 h on an agarose pad with MMC. (d) RecA-mCherry

focus dynamics in the presence of MMC in the recN mutant. Experiments were performed as described for c. (e) Analysis of RecA focus dynamics.

Kymograph and time series of cell slices for RecA-mCherry WT. The experiment was performed as described in c. (f) Analysis of RecA foci dynamics in the

recN mutant. The experiment was performed as described in d. (g) The frequency of bundles was estimated as a function of the shape of the RecA mCherry

signal in WT and the recN mutant. The WT and recN distribution are significantly different (t-test P¼ 10� 30). Scale bar is 1mm.
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preserved in SNAPs, and it would be interesting to ascertain
whether this corresponds to improved homologous
recombination at these sites.

In addition to preserving SCIs, MMC provokes regression of
segregated sister foci. Similar observations have been previously
reported for I-SceI18,19,31. This regression of sister chromatids
over a large distance is correlated with the re-merging of
segregating nucleoids. SCI preservation, sister regression and
nucleoid merging are dependent on the RecA and RecN proteins.
The fluorescent labelling of two loci spaced 188 kb apart on the
same replichore revealed that MMC induces RecN-dependent
realignment of the nucleoids rather than random condensation.
Our observations suggest that inhibition of sister segregation is
the first activity of RecN when recruited to the DSB by RecA and
that segregated loci regression is a secondary step. However, we
do not yet understand the mechanism promoting this or the
purpose of such a profound chromosomal reorganization.

Bacteria experience a large number of stresses in the
environment or in their host, many of which induce DSBs. To
survive DSBs, E. coli induces the SOS response, which blocks cell
division and suspends the bacterial cell cycle. Following genotoxic
stress, it is essential for damaged bacteria to restart growth as
quickly as possible. Therefore, SOS induction could be essential
for survival in an environment in which competition among
bacterial species is high. Our observations demonstrate that
growth recovery is significantly accelerated in the presence of
RecN (Fig. 5a,b), and this capacity of RecN to accelerate repair
might be responsible for its high conservation among bacteria. In
this way, RecN can be viewed as an ancestor of the SMC5/6
complex that maintains stalled replication forks in a recombina-
tion-competent conformation50,51.

Methods
Strains. The strains and plasmids used in this study are described in
Supplementary Table 1. All strains are derived from wild-type MG1655 or MG1656
(Dlac MluI). Strains containing loxP sites were constructed by l red recombination
using the plasmid pGBKDlaclox as matrix16. The strains used for microscopy were
constructed by l red recombination using the plasmid pGBKDparS-pMT1 as
matrix52. Details of the construction are presented in the Supplementary Methods.
The RecA-mCherry fusion is a gift from Bénédicte Michel; its construction is
described in the Supplementary Methods.

LoxP assays. Every experiment is performed in the same conditions. An overnight
culture was diluted 1:200 in Minimum Media A supplemented with 0.2% glycerol
and 0.2% casamino acids. Three to five biological replicates where performed for
each sample. The cells were grown at the indicated temperature to an OD600nm of
B0.2. In these conditions, generation time at 37 �C is 65 min. Cre expression was
induced by the addition arabinose (0.1%) to growth media. Genotoxic stress was

induced by the addition of 10 mg ml� 1 MMC to the growth media at time point 0.
At each time point, 1.5 ml of cells was flash frozen in liquid nitrogen. Genomic
DNA was extracted using the Pure Link Genomic DNA Mini Kit (Life Technol-
ogies) and quantified using a Nanodrop spectrophotometer (Thermo Scientific).
Genomic DNA was diluted to 2 ng ml� 1, and PCR was performed using ExTaq
polymerase (Takara). The amplified DNA was analysed using the DNA 1000 Assay
on a Bioanalyzer (Agilent). The frequency of recombination was measured as
follows: (amount of 1loxP DNAþ amount of 2loxP DNA)/(total amount of loxP
DNA).

Colony forming unit measurement. At an OD600nm of 0.2, 10mg ml� 1 MMC or
1 mg ml� 1 AZT was added to the culture. Cell viability was followed every 10 min
for 40 min. At each time point, cells were serially diluted in LB (100–10� 6) and
plated on LB agar plates. Plates were incubated for 16 h at 37 �C, and colonies were
counted.

EdU staining. At an OD600nm of 0.2, the cells were either incubated with
10 mg ml� 1 of MMC for 10 min and then incubated with an equal amount of 2X
EdU (Click-IT Assay Kit, Thermo Fisher Scientific) (to monitor DNA replication)
or first incubated with an equal amount of 2X EdU for 10 min and then MMC
(to monitor DNA degradation). Cells were then fixed with Formaldehyde mix
(5% Formaldehyde, 0.05% Glutaraldehyde and 1� PBS) for 10 min at room
temperature and 50 min on ice. Cells were washed three times with 1� PBS and
resuspended in 98ml of fresh GTE buffer (50 mM glucose, 20 mM Tris pH 8,
10 mM EDTA). Cells can be left ON at 4 �C. Following this step, 2 ml of freshly
prepared 500 mg ml� 1 lysozyme were added to each sample and the sample was
then immediately transferred onto a poly-lysine-coated slide and left for 3 min at
room temperature. The slide was rinsed twice with 1� PBS, and 150ml Click-It
Cocktail (prepared according to manufacturer’s instructions) was added; the
sample was then incubated in the dark at room temperature for 30 min. The slides
were rinsed two times with 1� PBSþDAPI (1mg ml� 1). The slides were then
rinsed 10 times with 1� PBS and left to dry at room temperature. Finally, 10 ml of
SlowFade (Thermo Fisher Scientific) were added to the slide. The slides were stored
at 4 �C for one hour before imaging.

Microscopy. An overnight culture was diluted 1:200 in Minimum Media A sup-
plemented with 0.2% casamino acids and 0.25% glucose (to limit overexpression of
ParB protein glucose is used instead of glycerol for microscopy experiments). In
these conditions, generation time at 37 �C is 50 min. The cells were grown to an
OD600nm¼ 0.2 at 37 �C, pelleted and resuspended in 50 ml of fresh medium. One
per cent Agarose pad slides were prepared within a gene frame (VWR)53.
Genotoxic stress was induced by the addition of 10 mg ml� 1 MMC or 1 mg ml� 1

AZT to the agarose pad. Time-lapse microscopy was performed using a confocal
spinning disk (X1 Yokogawa) on a Nikon Ti microscope at 100� magnification
controlled by Metamorph (Molecular Imaging) and an EMCCD camera (Roper).
Definite focus (Nikon) was used for each time point. Images were acquired every
3 min for 2 h at 30 �C. Five positions were observed simultaneously for each
experiment, with 20–50 cells per position. Snapshot experiments for focus counting
and inter-foci distance measurements were performed as previously described53.

Microfluidic experiments. An overnight culture was diluted 1:200 in Minimum
Media A supplemented with 0.2% casamino acids and 0.25% glucose. The cells
were grown to an OD600nm of approximately 0.2. A microfluidic plate was set-up
according to the Merck Millipore protocol for bacteria. Medium changes were
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Figure 6 | Roles of RecN during repair of an induced DSB. Our observations suggest that when a replicative DSB occurs, RecA (Green) is responsible for

RecN (orange) expression (through the SOS response) and RecN loading onto the sister chromatids. RecN loading prevents the complete removal of SCIs

by Topo IV (blue) and may participate in DNA end joining. In a second step, RecN may propagate on the newly replicated chromatids to mediate regression

of the segregated sister chromatids and re-mixing of brother nucleoids.
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controlled by the Onyx system from Merck Millipore. Fresh minimum medium A
was perfused for 20 min at 37 �C; 10 mg ml� 1 MMC was perfused for 10 min and
fresh medium was perfused for 3 h. Images were acquired every 3 min using a
confocal spinning disk (Yokogawa W1) on a Zeiss Axio imager microscope at a
� 63 magnification with an Orca Flash 4 camera (Hamamatsu). Time-lapse images
were acquired using Metamorph (Molecular Imaging) and analysed with ImageJ
software.

Data availability. All relevant data, material and methods are available from the
authors.
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Supplementary Fig. 1 brings supplementary data regarding Figure 1 of the manuscript. Experiments on RecN's role on DNA 

degradation and the preservation of SCIs. 
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 Supplementary Figure 1  

A) MMC provokes a rapid replication arrest. We used a strain with a dnaAts allele to block the initiation of 

replication when placed at 40°C. The ori/ter ratio was monitored by qPCR. In the repressive condition the 

progression of replication provokes an increase of the amount of terminus region. In the presence of MMC 

the ori/ter ratio is constant, suggesting replication arrest. B) Frequency of loxP/Cre recombination at the ori-

3 locus for various mutants. LoxP assays were performed 10, 20, 30 and 40 min after addition of 10μg/ml 

MMC. LoxP recombination frequency was monitored in the WT, recA, lexA ind-  

Supplementary Fig. 1 brings supplementary data regarding Figure 1 of the manuscript. Experiments on 

RecN's role on DNA degradation and the preservation of SCIs.  

(SOS down) and recN mutants treated with MMC (10μg/ml) or not. The frequency of recombination products 

(1 +3 loxP) compared to non recombined products (2 loxP) was measured by PCR and bioanalyzer detection. 

Results are expressed as the loxP recombination frequency at each timepoint (1+3loxP)/(1+2+3loxP). Error 

bars are standard deviation of 4 experiments. C) Monitoring degradation of newly replicated DNA in the WT, 

recN and recA mutants. EdU was incorporated for 10 min before addition of MMC, at the indicated time-

point, after addition of MMC, the cells were washed, fixed and immuno-stained (red), DNA was stained with 

DAPI (green). D) Quantification of the average number of EdU foci per nucleoids of the cells presented in 

panel C. E) Quantification of the average intensity of EdU fluorescence in the cells presented in panel C. F) 

Cell viability in response to MMC (10μg/ml) for the indicated mutants. Bacteria were treated for the indicated 

amount of time with MMC then washed and plated on LB plates. The data are plotted as a ratio between the 

number of colonies formed in the absence of MMC and the number of colonies formed in the presence of 

MMC. Error bars are standard deviation of 200 cells. G) Cell viability in response to MMC (10μg/ml) for the 

indicated mutants. Experiments were performed as in Fig S1G. H) loxP recombination in response to 10μg/ml 

MMC treatment for various SOS mutants. Mutants were treated for 40 min with 10μg/ml MMC or not. 

Results are expressed as the mutant recombination frequency with MMC over the wild type recombination 

frequency with MMC. 
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Supplementary Figure 2  

A) Cell viability of the RecN flag-tagged strain compared to the WT and recN strains. Cells were treated for 10, 20, 

30 or 40 min with 10μg/ml MMC. Cell viability was assessed for each time point. Error bars are standard deviation 

of 3 experiments. B) RecN protein is expressed in cells treated with 10μg/ml MMC or 1μg/ml AZT. Western blot 

analysis on a RecN-flag protein reveals that RecN protein is induced in response to a 40 min MMC treatment or a 

40 min AZT treatment. RecN is strongly repressed in the absence of DNA damage. Secondary antibody coupled with 

Horse radish peroxidase was used to reveal RecN-flag protein. The MW marker lane was acquired using bright field 

light.  

Supplementary Fig. 2 brings supplementary data regarding Figure 2 of the manuscript. Experiments show viability 

curves and a WB of the induction of the RecN-flag construction 
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Supplementary Fig. 3 brings supplementary data regarding Figure 3 of the manuscript. Experiments show the effect of 

Topoisomerase IV inhibition on SCIs and viability in a WT, a recN and a recA background 

Supplementary Figure 3  

A-F) Measure of SCIs following Topo IV alterations in the presence of MMC. loxP assays were performed 10, 20, 30 and 

40 min after addition of 10μg/ml MMC. Results are expressed as the loxP recombination frequency for each timepoint. 

The cells were incubated 25min at 42°C prior to addition of arabinose (for Cre induction) and MMC (10μg/ml). Error bars 

are standard deviation of 3 experiments. G) Cell viability in response to MMC (2μg/ml) for the indicated mutants. H) Cell 

viability in response to MMC (10μg/ml) for the indicated mutants. Error bars are standard deviation of 3 experiments. 
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Supplementary Figure 4  

A-D) Influence of RecN overexpression on SCIs. recN was cloned onto a plasmid with a leaky promoter. LoxP 

recombination frequency was measured at 10, 20, 30 and 40min. Results are expressed as the percentage of loxP 

recombination at each time point. E) Cell viability of constitutively induced SOS strains. Cells were treated for 10, 20, 

30 or 40min with 10μg/ml MMC. Cell viability was assessed for each time point. F) SCIs of constitutively induced SOS 

strains. Cells were treated for 40min with 10 μg/ml of MMC. Due to poor growth conditions in minimum medium, 

the assay was performed in LB. Results are expressed as the percentage of loxP recombination at each time point. 

Error bars are standard deviation of 3 experiments. 

Supplementary Fig. 4 brings supplementary data regarding Figure 4 of the manuscript. Experiments show the effect of RecN 

overexpression on SCIs and the effect of constitutive lexA induction on SCIs and viability 



  

  

94 
 

  

Supplementary Fig. 5 brings supplementary data regarding Figure 5 of the manuscript. Experiments show WB revelation 

of a RecN IP blotted by anti-RecN and anti-RecA and a RecA IP blotted by anti-RecN and anti-RecA 

Supplementary Figure 5  

A) RecA co-immunoprecipitates with RecN. Immunoprecipitation with an anti-flag antibody was done on the RecN 

protein tagged with a flag peptide and a WT MG1655 strain. Samples were blotted with an anti-flag antibody (top 

panel) or an anti-RecA antibody (bottom panel) revealing an interaction between RecN and RecA. B) RecN co-

immunoprecipitates with RecA. Immunoprecipitation with an anti-RecA antibody was performed on the WT MG1655 

strain and the strain carrying the RecN-flag protein. Samples were blotted with an anti-flag antibody (top panel) or an 

anti-RecA antibody (bottom panel) revealing an interaction between RecN and RecA. The percentage of IP signal 

compared to Input signal is indicated.  
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Supplementary Table. 1 brings supplementary data regarding Figure 4 of the manuscript. The table shows statistical 

significance of the inter-focal distances measured between two foci spaced by 188 kb in the WT strain and recN mutant. 

Supplementary Table 1  

Statistical significance (t-test) of the difference between inter-focal distances measured in the WT and recN 

mutant in Fig 4E and 4F. 
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 Complementary results 

 
In this paragraph are presented complementary results to the work that led to the article 

published in Nature Communications (Vickridge et al., 2017) and also new results that I 

obtained after the publication of the article and a few very recent results obtained by Adrien 

Camus, a master student under my supervision.  These results bring a complementary view 

on RecN interplay with Topoisomerases, sister chromatid cohesion in the presence of drugs 

leading to single strand gaps , and chromosome and chromatin dynamics  in the presence of 

DSBs. 

1. Implication and role of Topoisomerases in sister chromatid cohesion 
in response to genotoxic stress 

 

a) Inhibition of Gyrase compensates the loss of viability and sister 

chromatid interactions of a recN mutant 

 

It has been demonstrated that the inhibition of Topoisomerase IV leads to an increase of sister 

chromatid interactions during replication, due to inhibition of precatenane removal (Lesterlin 

et al., 2012). 

As described in Vickridge et al., the loss of SCIs observed in a recN mutant can be compensated 

by an inhibition of Topoisomerase IV. Inhibiting Topoisomerase IV in a recN mutant also 

compensates the loss of viability of recN (Vickridge et al., 2017). Considering these intriguing 

results, I thought to test the possible involvement of other Topoisomerases in sister chromatid 

cohesion (SCC) during DNA damage. Gyrase is a Type II Topoisomerase that can compensate 

for the overwinding generated by the replication fork on the unreplicated region, ahead of the 

replication fork. When Gyrase’s activity is insufficient, the positive supercoils ahead of the fork 

may also diffuse behind the replication fork, creating topological links called precatenanes, 

which are further relieved by the action of Topoisomerase IV. Gyrase is 100 fold less efficient 

than Topoisomerase IV for decatenation, it is therefore postulated that its activity is very 

limited on precatenanes. Gyrase activity is essential to promote replication at an optimum 
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speed (Khodursky et al., 2000) but also to maintain topological homeostasis during 

transcription. 

To test the impact of the inhibition of Gyrase on sister chromatid interactions (SCIs) in the 

presence of DSBs, I used a Gyrase thermosensitive mutation in the B subunit of Gyrase called 

GyrBts. At 30°C, Gyrase is active and cells are viable. At 40°C, Gyrase is inactive and cells cannot 

form colonies. I tested the inhibition of Gyrase on viability and SCIs in a WT and recN 

background. 

As observed in a Topo IVts mutant, inhibition of Gyrase at a non-permissive temperature in 

untreated cells lead to an increase of SCIs (1.3x). This is in good agreement with an increase 

of the catenation of sister chromatids.  In the presence of MMC, I observed an increase of SCIs 

in the GyrBts mutant compared to the WT strain and a slight decrease of SCIs relative to the 

untreated GyrBts sample. These results suggest that when topological tension increases 

because of a Gyrase inhibition, the Topo IV molecules present in the cell are not able to 

globally increase their activity to deal with the excess of links between sister chromatids.  

Interestingly, deleting recN in the GyrBts mutant did not significantly decrease the level of SCIs. 

These observations are comparable to the ones observed in the Topo IVts recN mutant (figure 

29A). We can hypothesize that the effect seen in the Gyrase mutant which is similar to the 

effect of the Topo IVts mutant, is the consequence of the supercoils accumulated ahead of the 

fork and diffusing behind the replication fork. 

To test whether these high levels of SCIs were also favorable to viability and could compensate 

for the loss of viability of the recN mutant, I performed a CFU experiment (figure 29B). The 

inhibition of Gyrase rescued a portion of the viability of the recN mutant. However, the results 

differ from what was observed with Topo IVts where the rescue was total. These observations 

confirm that DNA topology management is an important aspect of DSB repair and that RecN 

is really at the interface between DNA repair and DNA topology or DNA organization. 

Interestingly, unlike the Topo IVts mutant, the GyrBts mutant alone was not sensitive to MMC. 

It has been shown that replication is slow in a Gyrase mutant (Khodursky et al., 2000) while it 

progresses at full speed in Topo IVts mutant (Wang et al., 2008). This could explain that the 

Gyrase mutant was less sensitive to MMC than the Topo IVts mutant even if topological 

problems are comparable. These observations give rise to several questions that remain 
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unanswered. If Gyrase is inhibited and the precatenanes are diffused behind the fork, why 

isn’t Topo IV action enough to release the topological links causing SCIs? Could there be an 

excess of precatenanes that Topo IV is unable to handle? Are these precatenanes partly 

involved in the rescue of the recN viability? 

We can hypothesize that replication may be only partly arrested, moving gradually forward as 

the supercoils ahead of the fork diffuse behind. The GyrBts mutant alone would therefore be 

less sensitive than the Topo IVts mutant because it encounters less frequently an ICL. 

Moreover, replication being decreased in the Gyrasets mutant, the NER pathway may have 

more time to excise the ICLs before the replication fork encounters a crosslink leading to a 

DSB. Interestingly, the viability of the Topo IVts and Gyrasets mutant differed, but the amount 

of SCIs was equivalent suggesting that the sensitivity of the Topo IVts mutant may be specific 

to its action on precatenanes or may be linked to another of its function’s, maybe during 

decatenation. These points will be adressed in the discussion section. 

  



  Results

  

99 
 

 

 

 

  

Figure 29. Inhibition of Gyrase activity compensates the loss of SCIs and viability of a recN mutant 

A- Measurement of SCIs following Gyrase alteration in the presence of 10 µg/ml MMC. Results 

after a 30 min of MMC treatment are presented. Results are expressed as a relative loxP 

recombination, normalized to the untreated WT. Cells were incubated at 40°C for 20 min prior to 

addition of 10 µg/ml MMC and 0.1% arabinose. B- Measurement of cell viability following Gyrase 

alteration in the presence of 15 µg/ml MMC. Cells were incubated at 40°C for 20 min prior to MMC 

addition and plated in serial dilutions at 10, 20, 30, and 40 min after MMC addition. 
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b) Topoisomerase III acts at ssGaps created by AZT but not HU 

 

Topoisomerase III is a Type I Topoisomerase. It was shown that overexpression of Topo III can 

compensate for the loss of viability of a Topo IVts mutant, suggesting that it can act to release 

precatenanes (Nurse et al., 2003). Its potential role in the resolution of Holliday Junctions (HJs) 

during Homologous Recombination (HR), described by Zhu et al. in 2001 was also an 

interesting observation that lead to testing Topo III’s possible implication in MMC mediated 

SCC (Zhu et al., 2001). Deleting topB (the Topo III gene) in a WT or a recN background did not 

alter the SCI profile in the absence or presence of MMC treatment (figure 30A). When using a 

recA mutant that is ineffective for HR, we showed that the SCIs observed in response to MMC 

treatment were not the result of HR intermediates (Vickridge et al., 2017). Considering that 

Topo III may act to resolve Holliday Junctions during HR, it is possible that there is no effect 

on SCIs linked to this property of Topo III. An interesting experiment would be to overexpress 

Topo III in a Topo IVts mutant to see if it reverts the compensation of the recN mutant by Topo 

IV inhibition thanks to its capacity to remove precatenanes. 

We tested the deletion of Topo III on sister chromatid cohesion in response to AZT or 

Hydroxyurea (HU) treatment. AZT is a chain terminator creating single strand gaps, which may 

lead to DSBs if they are not repaired before an encounter with the next replication fork. 

Hydroxyurea treatment reduces the pool of nucleotides, resulting in a rapid replication arrest 

and creating single strand gaps. 

When cells were treated with AZT, the frequency of inter sister chromatid loxP/Cre 

recombination is drastically reduced (figure 30B). This was also observed when cells were 

treated with HU (figure 30C). I used an intra-molecular recombination cassette to test if Cre 

expression or activity could have been reduced because of AZT or HU treatment (figure 30D). 

Intra-molecualar recombination was not altered in the presence of AZT or HU suggesting that 

the loss of SCIs is not due to poor Cre induction. The substantial loss of inter-molecualr SCIs in 

response to AZT or HU was very puzzling. Our first interpretation was that replication was 

arrested and Topoisomerase IV very efficiently removed the remaining topological links. In 

this case, RecN might not be able to intervene on sister chromatids. When replication is 

inhibited in a DnaCts mutant, we observe a gradual drop of SCIs. In this mutant, Ori-dependant 

initiation is prevented at the origin but ongoing rounds of replication can carry on. In cells 
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treated by HU or AZT, replication forks are arrested at any genomic location by incorporation 

of AZT, a chain terminator, or by nucleotide pool depletion (HU treatment) and no ongoing 

replication can continue. This may explain the discrepancy observed between both 

experiments. Interestingly, deleting Topo III lead to a slight increase of SCIs when treated with 

AZT. This increase was independent of RecN, suggesting that Topo III may partially act at 

ssGAPs to remove the topological links. These topological links are not suitable substrates for 

RecN cohesion activity since deleting recN in the Topo III mutant had no effect on SCIs when 

treated with AZT (figure 29B). Topo III deletion did not enhance SCIs in cells treated with HU, 

suggesting that the replication arrest and the ssGaps created by HU may not be analogous to 

AZT formed ssGaps and are not a suitable substrates for the action of Topo III (figure 29C).  

These observations are interesting because the role of Topo III remains mysterious. Here we 

observed for the first time a direct, but modest, topological role of Topo III in a wild type 

genetic context.  
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Figure 30. Topo III acts at ssGaps induced by AZT but not by HU 

A- Measurement of SCIs in a topB mutant in the presence of 10 µg/ml MMC. Results after a 30 min 

MMC treatment are presented. Results are expressed as a relative loxP recombination, normalized 

to the untreated WT. B- Measurement of SCIs in a topB mutant in the presence of 1 µg/ml AZT. 

Results after a 30 min AZT treatment are presented. Results are expressed as a relative loxP 

recombination, normalized to the untreated WT. C- Measurement of SCIs in a topB mutant in the 

presence of 10X Hydroxy Urea. Results after a 30 min HU treatment are presented. Results are 

expressed as a relative loxP recombination, normalized to the untreated WT. D- Intramolecular 

recombination of 2 loxP sites inserted on either side of a rifampicine resistance gene was measured 

at 5, 10 and 20 min after arabinose addition in the presence of AZT, HU or MMC. Results are 

expressed as a percentage of recombination. 
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2. RecN influences nucleoid dynamics  

 

As published in Vickridge et al., timelapse experiments with an HU-mcherry fluorescent 

protein in a WT and recN mutant revealed an unexpected function of RecN for nucleoid 

dynamics when the cells were treated with MMC. Indeed, upon MMC addition, the nucleoids 

merge transiently in a process that is dependent on RecN. When MMC is maintained in the 

medium, the nucleoids decondense after a ~10min compaction period, as the cells filament. 

Microfluidics experiments revealed that when MMC is washed after 10 minutes, the nucleoids 

also decondense as the cells filament. 

The shortness of the compaction period was surprising. How can such a brief phenomenon be 

sufficient to promote repair? A hypothesis for this brief nucleoid merging is that filamentation 

of the cells changes the physical constraint on the nucleoids, and the decondensation 

observed results from a passive nucleoid expansion due to cell volume increase. To test this 

hypothesis, I observed nucleoid merging and decondensation in a sulA mutant. SulA is a highly 

induced SOS protein that inhibits cell division in response to DNA damage. I performed 

timelapse experiments in the presence of MMC and observed cell division with phase contrast 

acquisitions. I also observed the nucleoids with HU-mcherry labelling. Interestingly, I observed 

two different phenotypes. 42 % of cells divided once after MMC addition, as we could expect 

in a sulA mutant, but 58% of cells did not divide, as the WT would. In the cells that were 

capable of dividing, DNA was not at the septum (two nucleoids already separated in the two 

daughter cells). They divided after a brief compaction of each nucleoid, but the nucleoids 

remained in distinct cells halves, the septum ring may have already been formed. After 

division, the cells filamented, as observed in WT strains and the nucleoids decondensed as the 

cells filamented (figure 31A). I observed that the cells that did not divide at all may have had 

DNA at their septum (nucleoids were not clearly distinct), suggesting the action of another cell 

division inhibition process, maybe SlmA. SlmA is another checkpoint protein which is SOS 

independent and prevents cell division when DNA is detected at the septum (Bernhardt and 

de Boer, 2005) (figure 31B). Unfortunately, I did not find conditions where I observed nucleoid 

merging in the absence of subsequent cell filamentation. In all conditions, the cells ended up 

filamenting, and the nucleoids decondensed. It could have been relevant to test a slmA sulA 

mutant to fully impede cell filamentation. In order to address the question of space constraint 
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on nucleoid compaction and decondensation, we could also make the cells filament first, with 

cephalexin for instance, and then treat the cells with MMC and measure the compaction 

volume or measure whether the time of compaction is shorter when the cell is bigger. 

 

 

  

Figure 31. Influence of sulA deletion on nucleoid compaction and cell filamentation 

Images were taken every three minutes for 80 min. A- Image montage of the HU-mcherry signal of 

a cell that divides and then filaments. B- Image montage of the HU-mcherry signal of a cell that 

does not divide but filaments. 
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3. The mobility of fluorescent foci is increased in a recN mutant 

 

An article published in 2012 by the team of Rodney Rothstein revealed that the mobility of 

fluorescently marked loci was increased when the chromosome is damaged in yeast. They 

suggested that a higher mobility favored homology search, allowing the broken DNA end to 

explore a larger portion of the chromosome (Miné-Hattab and Rothstein, 2012). Similar 

observations were made by Dion and coworkers in 2012. Later, Strecker et al. confirmed these 

observations and showed the impact of centromere tethering on DSB induced foci mobility. 

In the absence of DNA damage, centromeres constrain chromatin mobility. Upon induction of 

a DSB, this constraint is counteracted by various proteins, allowing an increase of mobility of 

the broken DNA ends (Dion et al., 2012; Strecker et al., 2016) . 

One of the hypothesis for the role of RecN in the repair process is that it could enhance 

homology search and therefore may influence DNA mobility. To investigate whether RecN 

could be involved in such a process in E. coli, I tagged a given locus near the origin, with a 

fluorescent protein and measured the mobility of the foci in a WT strain or a recN mutant after 

DNA damage induced by MMC, during a timelapse experiment. The mobility of the foci was 

measured for 10 min with 10 sec intervals, approximately 10 min after MMC induction.  I used 

the mosaic plugin on imageJ to analyze the movement of the foci. Here are represented the 

mean square displacement slopes which are characteristic of a subdiffusive movement (MSD 

= c (t


) = MSD slope), for each focus over the course of the timelapse. The mean square 

displacement gives the average distance (here in pixels, 1 pixel = 100nm) that a particle travels 

in a given time (here, 10 seconds). After MMC addition, we calculated the mean MSD slope of 

hundreds of fluorescent foci.  The MSD slope was increased in the WT strain (= 0.52+/- 0.13) 

relative to the MSD slope in untreated cells (= 0.46+/- 0.11). This is in good agreement with 

the work of R. Rothstein (figure 32A). In the recN mutant, MSD slopes was not increased when 

treated with MMC (= 0.43+/- 0.11) (figure 32B and 32C). Complementary analyses are 

required to characterize these changes and confirm the eventual influence of RecN in the 

process.   

Although RecN acts to keep sister chromatids cohesive in response to DNA damage, possibly 

reducing the mobility of the whole chromatids, it may, at a local level, favor the mobility of 
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the DNA and favor homology search or protein diffusion. Moreover, Rothstein’s work 

describes that the increase of DNA dynamics is dependent on early the steps of HR. This RecN-

dependent increase of mobility could therefore be the indirect consequence of RecN’s 

involvement in early steps of HR, maybe via its interaction with RecA. In the absence of RecN, 

HR may be decreased and associated loci mobility too. 

 

 

 

Figure 32. Effect of MMC on MSD slopes of fluorescent foci in a WT strain and recN mutant 

A fluorescent tag was inserted near the origin in the WT strain and the recN mutant. A timelapse was 
performed in the presence or absence of MMC. The mean square displacement slope (MSD slope) 
was measured for each fluorescent focus. A- Comparaison of MSD slopes in the WT strain treated 
with MMC versus the untreated WT. B- Comparaison of MSD slopes in the recN mutant treated with 
MMC versus the untreated recN C- Comparaison of MSD slopes in the recN mutant treated with MMC 
versus the WT strain treated with MMC. 



  Results

  

107 
 

4. FRAP microscopy reveals RecN’s influence on the diffusion of a DNA 
binding protein 

 

To further understand and characterize the observation on foci dynamics and the whole 

nucleoid compaction observed in MMC treated cells, I performed FRAP experiments on HU-

GFP stained nucleoids of a WT strain and a recN mutant. FRAP (Fluorescence Recovery After 

Phtobleaching) is a method used in microscopy to measure the diffusion rate of proteins 

through cells. As a reporter of chromatin dynamics, I used an HU-GFP fluorescent protein in 

the WT and recN mutant and photobleached a region corresponding to approximately half the 

nucleoid. The intention was to infer a diffusion coefficient of the DNA, attached by HU-GFP 

protein. However, the diffusion rate was short, suggesting that we might actually be 

measuring the diffusion rate of HU-GFP protein on the nucleoid rather than movement of the 

nucleoid itself. 

Considering the nucleoids undergo different conformations when treated with MMC 

(compacted, decompacted), I performed FRAP on nucleoids in the different stages of nucleoid 

dynamics in the WT strain and recN mutant. Phase 1 corresponds to timepoint 0 after MMC 

addition. Phase 2 corresponds to 10-15 min after MMC addition, the nucleoids are in a 

compacted form, and phase 3 corresponds to 25-30 min after MMC addition when the 

nucleoids have decompacted and the cells are filamenting. Regardless of the stage the 

nucleoid was in, we observed that the diffusion rate of HU was much shorter in the WT than 

in the recN mutant. When performing FRAP on the nucleoids before they underwent 

compaction (phase1), the half-life of fluorescence regeneration was 1.37sec in the WT strain 

and 2.33 seconds in the recN mutant, suggesting that even before the compaction is visible, 

structural reorganization may be happening. In the second phase, when WT nucleoids were 

compacted and recN nucleoids weren’t (phase2), the half-life of fluorescence regeneration 

was substantially different: 0.19 sec in the WT compacted nucleoids and 1.38 sec in the recN 

mutant. Interestingly, the half-life also decreased in the recN mutant, although to a much 

lesser extent than in the WT. Finally, in the last phase, corresponding to decondensed 

nucleoids (phase 3), the half-life of fluorescence recovery decreased, although very slightly, in 

the WT and the recN mutant (figure 33A, 33B and 33C). This observation is quite surprising 

since one could expect the half-life to increase when the nucleoids are decondensed. It is 
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possible that at this stage, the cells are dying or the DNA is highly damaged, maybe 

fragmented, favoring quick movement of the HU-GFP protein. 

Altogether, these results suggest that protein diffusion may be decreased in a recN mutant, 

due to a different state of structure of the nucleoid. By promoting a whole nucleoid 

compaction, RecN may favor the diffusion and recruitment of the proteins to the break. 

Interestingly, these results match the foci mobility and nucleoid dynamics experiments. 

Indeed, RecN favors nucleoid compaction and protein diffusion along the damaged nucleoid, 

consistent with an increased mobility of broken loci.  Altogether, these results suggest that 

RecN strongly alters chromosome dynamics, protein diffusion and nucleoid mobility during 

DNA damage. 
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Figure 33. RecN influences the diffusion dynamics of HU protein 

A- Measurement of the medium half-life of fluoresecence recovery after photobleaching in a WT strain. 

FRAP photobleaching was performed in WT cells marked with an HU-GFP fusion, treated with 10µg/ml 

MMC. Photobleaching was carried out on nucleoids in three different phases. Phase1: Nucleoids before 

DNA compaction. Phase2: Nucleoids during DNA compaction. Phase3: Nucleoids after DNA compaction. 

For each phase, the medium half-life of fluorescence recovery was measured in seconds. B- 

Measurement of the medium half-life of fluoresecence recovery after photobleaching in a recN mutant. 

C- Characteristic curve of fluorescence during photobleaching and fluorescence recovery in the WT 

strain and the recN mutant for the three phases. 

A 

B 
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5. The hunt for RecN’s partner(s): Identifing other proteins involved in 
SCC 

 

Eukaryotic Cohesins are large multi-proteic complexes that usually comprise several proteins. 

In 2002, Schleiffer defined a superfamily of proteins forming Ring-like structures with SMC 

proteins in Eukaryotes and Prokaryotes, called kleisins. Such proteins are Scc1 for the SMC1/3 

complex, Nse4, Nse1 and Nse3 for the SMC5/6 complex or ScpA for B.subtilis SMC (Schleiffer 

et al., 2003) . They form a tripartite complex capable of entrapping the two DNA molecules, 

gendering cohesion. Mutations affecting the interaction of kleisins with SMC proteins also 

affect the association of Cohesins with DNA (Gligoris et al., 2014). Later, Palecek and Gruber 

described another set of SMC partners, the kite proteins. They associate with kleisins and are 

essential elements of the SMC complex. Such kite proteins are ScpB for B.subtilis SMC or MukE 

for the E.coli MukBEF protein for instance. Interestingly, the Eukaryotic SMC5/6 complex 

possesses a kite protein, Nse1 or Nse3 but Cohesin and Condensin don’t (Palecek and Gruber, 

2015). 

Considering RecN has an SMC-like structure, we thought to look for a possible partner, maybe 

a kleisin-like or kite-like protein. 

 

a) RecN co-immuniprecipitation reveals possible proteins 

interacting with RecN 

 

Co-immunoprecipitation experiments, performed with a Flag tagged version of RecN, coupled 

to a western blot with an anti-RecA antibody revealed a direct interaction between RecN and 

RecA. To further test if the RecN Co-immunoprecipitation could reveal other proteins possibly 

interacting with RecN, we used Mass Spectometry analysis of the immune precipitated 

samples. The MG1655 strain carrying wild type untagged RecN was treated with 10 µg/ml 

MMC for 20 min, and a strain carrying a RecN-FLAG protein was treated, or not, with 10 µg/ml 

MMC for 20 min. Immunoprecipitation was carried out with an anti-FLAG antibody and the 

three samples were analyzed by mass spectometry. Over a hundred proteins were identified 

in each IP sample. Among them, a large quantity of highly expressed membrane and ribosomal 



  Results

  

111 
 

proteins were pulled down, suggesting that a large amount of unspecific proteins were 

sequenced. Increasing the stringency of the washing procedure did not significantly change 

the protein repertoire in the samples. We decided to use a normalized peptide count 

measurement to compare the samples and obtain a semi-quantitative estimation of protein 

enrichment in each sample. To establish the specificity of the identified proteins in the RecN-

FLAG strain treated with MMC, all peptide counts were normalized to the total amount of 

reads for each sample. We then subtracted the number of reads in the untreated sample from 

the number of reads in the MMC treated sample (figure 34A). With this procedure, RecN itself 

had a score of 25 and RecA had a score of 11. The distribution went from 45 to -35, and we 

considered all scores above 5 to be possibly interesting. To test if the method was pertinent 

to identify RecN partners, I focused on proteins of the SOS response or proteins with a known 

function in DNA repair that had a high score. Of these proteins, UvrA had a score of 11, 

pinpointing the NER pathway. Also, RadA had a score of 5,5 making it an interesting candidate 

to test. 

UvrA is part of the UvrABC complexe and is a central protein of the Nucleotide Excision Repair 

(NER) pathway. It is the first protein to bind DNA and recognize the damaged region, before 

UvrB actually recognizes the nucleotides to incise and UvrC carries out the incision. If a dual 

incision by UvrC is made on both sides of the ICL, a double strand break may be formed (Peng 

et al., 2010; Weng et al., 2010). 

RadA protein has been less extensively characterized in E. coli. However, increasing evidence 

suggests that RadA may have a role in branch migration or the resolution of intermediate 

recombination structures (Cooper et al., 2015). Combination of a radA mutation with a recG 

mutant conferred extreme sensitivity to MMC and UV light. This genetic redundancy with recG 

confirms RadA’s possible implication in the stabilization of branched molecules or 

recombination intermediates (Beam et al., 2002). 

To further test UvrA and RadA’s possible implication in SCIs and their putative interaction with 

RecN, we constructed uvrA and radA mutants that we combined or not with the recN deletion. 

We first tested the viability of these mutants when treated with MMC. The uvrA mutant alone 

was very sensitive to MMC, as was the recN mutant. Combining both mutations had a strong 

additive effect, suggesting that both proteins may be acting in alternative pathways allowing 
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survival to ICL lesions (figure 34B). Quite surprisingly, the SCI profile did not match the 

interpretation of the viability curves. In the uvrA mutant when cells were treated with MMC, 

SCIs dropped suggesting that in the absence of uvrA, RecN mediated SCIs cannot be conserved. 

When the uvrA mutation was combined with recN, SCIs were at approximately the same level 

as the single uvrA mutant (figure 34C). This phenotype is similar to a recA deletion. These 

results indicate that UvrA action, or a subsequent DNA repair intermediate may be required 

for RecN loading or action and SCI conservation upon MMC treatment. 

Interestingly, the radA mutant phenotype was quite different. Viability assays revealed that 

radA mutant alone was not sensitive to MMC. However, combining the recN and radA 

deletions lead to complete cell death after a 40 min MMC treatment (figure 34B). This 

synergistic effect between both mutations suggests that in the absence of RecN the pathway 

involving RadA becomes essential for survival, while its role is minor in the presence of RecN. 

SCI analysis revealed that radA mutant alone did not exhibit a loss in SCIs. When combined 

with a recN deletion SCIs dropped to the same level as the recN mutant alone. This means that 

the synergistic effect observed on viability is not the result of RadA’s action on sister chromatid 

interactions (figure 34C). 

The results obtained with UvrABC and RadA suggest that the Co-IP approach could be 

interesting to find proteins that collaborate with RecN. However, the large amount of proteins 

recovered with the actual protocol, limits our chance to identify them. These results need to 

be repeated and further experiments need to be carried out. We have recently obtained a 

strain expressing a functional 3X FLAG tagged RecN. This strain opens the possibility to 

enhancing IP efficiency. We will also use isobaring labeling (iTRAQ) to enhance our ability to 

compare samples with mass spectrometry.  
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Figure 34. Co-immunoprecipitation with RecN reveals possible partners or interacting proteins 

A- List of proteins with a score of 5 or above. All peptide counts were normalized to the amount of 
total reads for each sample. Score was calculated by subtracting the amount of reads in the 
untreated sample from the amount of reads in the MMC treated sample. 

A 
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Figure 34. Co-immunoprecipitation with RecN reveals possible partners or interacting proteins 

B- Measurement of cell viability after 5µg/ml MMC treatment in various mutants revealed by the 

Co-IP experiment. C- Measurement of SCIs after 10µg/ml MMC treatment for various mutants 

revealed by the Co-IP experiment. Results at 30 min are presented. Each sample is normalized to 

the untreated WT sample. 
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b) The SOS response is downregulated in a recN mutant 

 

We performed an RNAseq experiment in order to test whether the absence of RecN induced 

a change in expression of other genes, maybe from another DNA damage response pathway. 

Indeed, in the recN mutant, we only observe a 50% loss of SCIs, suggesting that another 

pathway may also be involved. 

The RNAseq experiment was performed in the WT strain and in the recN mutant. The cells 

were treated for 0, 20 or 40min with 10 µg/ml MMC. RNA was extracted and sent to 

sequencing. We confirmed that MMC induces the SOS response but also found that many of 

the SOS response genes were downregulated in the recN mutant, at 20 and 40 min after MMC 

addition (figure 35A). To control the specificity of this downregulation, we compared the 

expression profile in the WT strain treated with MMC and the untreated WT. In the MMC 

treated sample, we observed a strong change in the expression profile, confirming the effect 

of MMC on gene expression in the WT strain (figure 35B). We also compared the expression 

profile between the WT strain treated with MMC and the recN mutant treated with MMC. We 

found that the global gene expression profile in the WT and recN mutant treated with MMC 

is the same, suggesting that it is not an inhibition of expression at the whole genome level or 

a global loss of transcription that is observed in the recN mutant (figure 35C). These controls 

suggest that the downregulation of gene expression observed in the recN mutant is specific 

to the genes of the SOS response. These results were then validated by RT-qPCR and checked 

in a sulA mutant, confirming that the downregulation of the SOS response genes is specific to 

the recN mutant (figure 35D).  

I further thought to investigate whether the Topo IV alteration in the recN mutant could also 

rescue the downregulation of the SOS response as it does for SCIs and viability. Interestingly, 

expression of the SOS response genes was not restored in the parEts recN mutant (figure 35D). 

This could suggest that the downregulation observed in the recN mutant is not exclusively the 

result of a loss of SCIs. This also suggests that the loss of viability observed in the recN mutant 

is not due to a downregulation of the SOS genes, since Topo IV alteration compensates the 

loss of viability without restoring SOS gene expression. These observations however did not 

allow the identification of a gene or a pathway that was significantly upregulated in the 

absence of RecN. 
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The down regulation of the SOS response could be linked to RecN’s effect on RecA filament 

formation or RecA dynamics. Indeed, in a recN mutant, RecA foci dynamics are altered. In the 

recN mutant, we observe the formation of RecA bundles, structures described by Lesterlin et 

al. in the particular context of a DSB occurring on a sister chromatid that is distant from its 

homolog (in a WT background). Such bundles monopolize approximately 70% of the RecA 

protein pool. If RecA is strongly recruited for bundle formation, there may be a shortage of 

RecA for its function in the SOS induction (Lesterlin et al., 2014). Another hypothesis could be 

that RecN promotes the stabilization of the RecA filament by keeping sister chromatids 

together, most likely favoring homology search and strand invasion, thus defining a new 

modulator of RecA filament dynamics. Studying the effect of RecN on RecA filament stability 

is quite difficult in the absence of in vitro tools. Indeed, E. coli RecN has not yet been 

completely purified which strongly limits the possibility of experiments. To alternatively test 

these hypotheses, I tried to monitor LexA degradation by WB in a WT strain and a recN mutant. 

If RecN helps stabilize RecA filaments and subsequent SOS induction, LexA, the SOS repressor 

should be less degraded. Such experiments have been described before, (Mustard and Little, 

2000) however, they were more difficult than anticipated, and in my hands, never led to clean 

conclusions. Alternatively I tried to perform FRAP experiments on the RecA-mcherry foci and 

RecA-mcherry bundles to test whether the dynamics of the RecA filaments were altered in a 

recN mutant. The resolution of the FRAP laser wasn’t good enough the bleach only a small 

portion of the bundle or the RecA-focus, also rendering the analysis impossible. 

Unfortunately, this part of the project was set aside to focus on other aspects, more promising 

at the time. However, I believe there may be some interesting leads to follow up from these 

results. There has been encouraging effort put into the purification of E. coli RecN, and our 

collaborator Mauro Modesti has recently purified soluble RecN. This opens the possibility to 

a wide variety of in vitro studies, often used to study RecA dynamics and RecA filament 

formation.  
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Figure 35. Expression of SOS response genes is downregulated in a recN mutant 

A- Fold change of gene expression between treated and untreated cells, in the WT (red) and recN 

mutant (green). The number of reads in the MMC treated sample was normalized to the number of 

reads in the untreated sample for each given gene. B- Comparaison of the number of reads between 

the untreated WT sample and the MMC treated sample. C- Comparaison of the number of reads in the 

MMC treated recN mutant and the MMC treated WT strain. D- RT-qPCR validation of the RNAseq 

experiment. An RT-qPCR was performed in the sulA, recN, parEts and parEts recN mutants for various 

genes of the SOS response. Results are shown as the fold change between gene expression in the 

mutant over the WT. 
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c) Characterization of genes involved in a back-up pathway for 

RecN 

 

We used a genetic screen as a different approach to look for possible proteins that can be 

used in back-up pathways when RecN is deficient. We used a library of plasmids that 

overexpress E. coli genes (approximately 5-10 genes per plasmid (Mossessova et al., 2000)). 

This library was transformed into a recN mutant. Transformed cells were treated for 30 min 

with 15 µg/ml MMC and plated on LB. Conditions were optimized to plate approximately 

40 000 clones. Clones surviving to MMC were selected and growth was verified on LB plates 

with 1 µg/ml MMC, 2 µg/ml MMC or LB. Fifteen clones grew on either 2µg/ml MMC or 1µg/ml 

MMC plates, a concentration that kills 100% of recN mutant strain but keeps 80% of the WT 

strain alive. Plasmids from these clones were extracted and sequenced. To test whether 

survival of the clones is due to overexpression of drug efflux pumps, the clones were also 

grown on chloramphenicol at different concentrations. Five clones showed growth resistance 

enhancement to chloramphenicol. We sequenced all of them, and found that they contain at 

least one gene coding for known or predicted pumps. These clones were discarded.  

The overexpressing plasmids of all the other clones were sequenced. Two clones seemed of 

particular interest because they grew well on 2µg/ml MMC plates. One clone contained the 

genes comprised in between ArgM and YnjA, and another clone contained the genes 

comprised between YeeR and DacD. In these two clones, a few genes seemed of particular 

interest: 

SbmC was identified in 1998 by the group of Onhuki. They showed that SbmC (also called GyrI) 

can inhibit the supercoiling activity of Gyrase in vitro (Nakanishi et al., 2002) . Later, Chatterji 

and coworkers showed that overexpression of SbmC had no significant effect on the 

supercoiling state of the DNA in vivo suggesting that the inhibition of Gyrase by SbmC is largely 

dampened in vivo. These contradictory observations have not been further studied by other 

groups. However, Chatterjii and coworkers also showed that overexpression of SbmC can 

negate the effects of MMC, up to a concentration of 20 µg/ml but has no effect on UV light 

induced lesions (Chatterji et al., 2003). Although SbmC’s role in DNA repair still seems largely 

unknown, picking up SbmC in the screen was thus quite exciting. Viability and SCIs when 

overexpressing SbmC in a WT and recN background were tested. Surprisingly, overexpressing 
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SbmC in the WT strain had no consequence on viability. Moreover, overexpression of SbmC in 

the recN mutant did not restore the loss of viability, suggesting that SbmC overexpression 

cannot compensate for recN deletion as observed with the direct inhibition of Gyrase. This 

observation does not match the results of the overexpression screening. I do not have a valid 

explanantion for this discrepancy (figure 36A). Regarding the SCI profile, the overexpression 

of SbmC in a WT strain induced a very slight, though significant, increase in SCIs but had 

absolutely no effect in the recN mutant (figure 36B). Deleting sbmC in a WT background also 

increased SCIs but this increase was independent of MMC treatment, meaning it may not be 

the effect of sbmC deletion in response to MMC. Deleting sbmC in a recN background had no 

significant effect (figure 36C). Although the described function of SbmC and our experimental 

data seemed to indicate a possible role for SbmC in DNA damage mediated SCC, we did not 

manage to reveal an action of SbmC on protection against MMC treatment or on a rescue of 

the loss of SCIs in a recN mutant.  

Another interesting protein revealed by the screening was XthA. XthA, also called Exo III is a 

known Exonuclease of E. coli. Despite its name, it mainly exhibits an endonuclease activity. It 

catalyzes the hydrolysis of an Apurinic or Apyrimidinic DNA 5’ to the site of the lost base 

resulting from the action of glycosylases in the BER pathway (Gossard and Verly, 1978). In 

2008, Centore and coworkers from S. Sandler’s team showed that XthA mutants have a large 

increase in the number of RecA-GFP foci. This increase is RecBCD-dependent and xthA recBCD 

double mutants exhibit two fold more double strand breaks than the RecBCD mutant alone. 

They suggest that there may be a competition between XthA and RecBC for DSB end 

processing. If XthA degrades the DSB, it will create a 5’ssDNA overhang, which is not a suitable 

substrate for RecA loading (Centore et al., 2008). They propose that a RecBCD/RecA 

independent pathway, possibly dependent on RecN, may repair DSBs processed by Exo III. 

We therefore decided to test the effect of XthA overexpression on viability and SCIs in a WT 

strain and recN mutant. When overexpressing XthA in a WT strain, we observed no significant 

effect on cell viability nor SCIs. However, contrary to the screening result, overexpressing XthA 

in a recN mutant rendered the cells more sensitive to MMC although having no effect on SCIs, 

suggesting that the effect on viability of XthA overexpression in the recN mutant may not be 

linked to sister chromatid cohesion (figure 35D and 35E). Although this observation is 
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contradictory with our screening results, the sensitivity to MMC of the recN XthA OE mutant 

seems to fit the hypothesis of Centore and coworkers.  

Although the results of this screening experiment gave interesting leads, they unfortunately 

did not allow the clear identification of proteins involved in a back-up pathway in the recN 

mutant. In spite of the disappointing results observed for SbmC deletion, I still consider that 

this protein, by its ability to inhibit Gyrase (see section 1 of results on Gyrase inhibition) has 

features that could make it a good alternative pathway to RecN. It remains possible that we 

did not find the adequate conditions to reveal SbmC influence on DNA repair of ICLs.  
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Figure 36. Genetic screen reveals possible RecN partners 

A- Influence of SbmC overexpression in a WT strain and recN mutant. Cell viability was measured at 0, 

10, 20, 30 min after 15 µg/ml MMC addition. B- Relative loxP expression when SbmC is overexpressed 

in a WT strain or recN mutant. Cells were treated for 10, 20, 30 or 40 min with 10 µg/ml MMC. Results 

at 30 min are shown. C- Relative loxP recombination in an sbmC and sbmC recN mutant. Cells were 

treated for 10, 20, 30 or 40 min with 10 µg/ml MMC. Results at 30 min are shown. 
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Figure 36. Genetic screen reveals possible RecN partners 

 

D- Influence of XthA overexpression in a WT strain and recN mutant. Cell viability was measured at 

0, 10, 20 and 30 min after 15 µg/ml MMC addition E- Relative loxP expression when XthA is 

overexpressed in a WT strain or recN mutant. Cells were treated for 10, 20, 30 or 40 min with 15 

µg/ml MMC. Results at 30 min are shown. 
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d) iPOND reveals protein profile at undamaged and damaged forks 

 

iPond (Immunoprecipitation of nascent DNA) is a new method developed to 

immunoprecipitate proteins bound to incorporated EdU in DNA. EdU is a thymidine analog 

incorporated at the replication fork in the nascent DNA. After fixation and permeabilisation of 

the cells, a click chemistry reaction between EdU and biotin allows immunoprecipitation of 

the biotin-EdU complex and pull down of all the associated proteins (Dungrawala and Cortez, 

2015). This method was used to pull down and identify proteins that are recruited at active 

and damaged replication forks in Eukaryotes (Sirbu et al., 2011). We used iPOND to identify 

proteins that may be recruited at the replication fork when cells are facing a replicative DSB 

induced by MMC, in our model organism, E. coli. We also performed the experiment with a 

thymidine chase, allowing the identification of proteins that are recruited further away from 

the fork. 

In the first experiment, I added EdU for 5 min and then performed a thymidine chase for 15 

min. Proteins were crosslinked and pulled down by a streptavidin-biotin interaction. As 

observed in the co-IP experiment, over 100 proteins were sequenced. We used the normalized 

peptide count ratios to rank the proteins. As shown in figure 37A, the proteins enriched near 

the replication fork mainly corresponded to nucleoid-associated proteins (SeqA, MukB…) or 

topology associated proteins (Gyrase, Topo IV…). This confirmed that the experiment worked 

and was well adapted to the E. coli cell model. Surprisingly, most transcription related proteins 

were depleted near the replication fork and were only detected at a distance of 1 Mbp or 

more from the replicating fork. For instance, RNA polymerase was strongly depleted near the 

replication fork, so was Fis, Hfq or elongation factors G and Tu. This particular protein profile 

has never been observed before and suggests that transcription may be inhibited by the 

replication fork apparatus or environment. This inhibition of transcription may be specific, to 

avoid transcription/replication collisions. Another hypothesis is that the amount of proteins 

recruited near the replication fork (polymerases, SeqA, Gyrase, Topo IV…) renders it 

impossible for transcription factors to bind properly, due to steric occupation. An RT-qPCR of 

genes near the fork in synchronized cells could confirm this observation, and performing 

another iPond experiment with shorter or more controlled EdU incorporation kinetics should 

be done. 
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When performing the experiment with MMC, the profile of the proteins enriched at the 

replication fork in the presence of MMC-induced DNA damage was comforting as we detected 

high amounts of RecN, UvrD or RecA for instance (figure 37B). In fact, RecN was one of the 

most highly enriched proteins. This confirms that RecN is strongly induced and recruited at or 

near the break, as is RecA. Surprisingly, RadA was depleted near the replication fork, although 

it had been identified by mass spectrometry in the RecN Co-IP experiment. Proteins that were 

depleted in the presence of DNA damage corresponded to nucleoid associated proteins, 

transcription factors, or, interestingly, Gyrase. 

When performing the thymidine chase for 15 min and then adding MMC for 15 min, we pulled 

down RecN with the chased EdU (figure 37C), strengthening the hypothesis that RecN is 

possibly recruited at the DSB near the replication fork but is also present on a large portion of 

the nucleoid, even as far as 1 Mbp from the break. This is consistent with the whole nucleoid 

compaction phenotypes we observe and the high amount of RecN protein that is produced in 

response to DNA damage. 

These experiments will be pursued with mutant strains and iTRAQ will be used to improve 

quantification.  
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Figure 37. Immunoprecipitation of EdU crosslinked proteins 

A- Proteins recruited near the replication fork differ from the proteins recruited at over 1 Mbp from 

the fork. EdU was incorporated for 5 min and thymidine chase was performed for 15min B- Edu pull 

down in the presence of an MMC induced double strand break reveals proteins recruited at the 

damaged replication fork. EdU was incroporated for 5 min and 10 µg/ml MMC were added for 

15min C- RecN is strongly recruited at the DSB near the replication fork but also at a distance going 

up to 1Mbp from the damaged fork. EdU was incorporated for 5min, chased for 15 min with fresh 

thymidine and 10 µg/ml MMC was added for an extra 15min. 
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 Discussion 

 

 Sister chromatid cohesion and homology search 

 
We have shown that during DNA repair in E. coli, sister chromatids are kept together by an 

SOS-induced protein, RecN. Indeed, upon MMC treatment, in the absence of RecN, sister 

chromatid cohesion is decreased. Moreover, RecN induces global chromosome 

rearrangements such as nucleoid compaction and the merging of previously segregated sister 

chromatids. recN mutants are very sensitive to MMC, suggesting that RecN’s action on 

nucleoid dynamics and sister chromatid cohesion is important for DNA repair and subsequent 

cell survival (figure 38). Interestingly several problems appearing in the absence of RecN can 

be rescued by Topo IV alteration suggesting that RecN plays a structuring role on sister 

chromatids as catenanes do during unperturbed cell cycles. 

 

 

Figure 38. Model for RecN action on sister chromatid cohesion and nucleoid merging 

RecA binds the ssDNA extension created at the DSB and induces the SOS response, including RecN. RecN 

binds to RecA and then propagates along the DNA, keeping sister chromatids in close contact. RecN 

propagation on a large portion of the nucleoid induces merging of previously segregated sister chromatids 

and a whole nucleoid compaction. 
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1. Importance of RecN for homology search 

 

The repair of DSBs by homologous recombination may require the presence of an intact 

homologue in order to repair without the loss of genetic information. The mechanism by 

which RecA filaments find and identify the correct homologous sequence amongst the ocean 

of non-homologous DNA is still debated. The latest models describe a 3D sampling of the DNA 

by RecA nucleofilament, with a combination of short distance “sliding” and long distance 

“hopping” (Forget and Kowalczykowski, 2012) . Although this system may be very efficient, 

the presence of the intact homologous sequence in close vicinity of the damaged region in 

response to a DSB would avoid extensive sampling and enhance the efficiency and kinetics of 

the process. This is in good agreement with the results I obtained with microfluidics 

experiments. Indeed, when the MMC is washed after 10 min (conditions that are not lethal 

for the recN mutant), the WT cells manage to resume a regular cell division pattern in under 

3h. However, in the recN mutant, most cells do not resume cell division, even 3h after MMC 

is washed. Cells do not die, but they keep filamenting. This suggests that the presence of RecN 

strongly enhances the kinetics of repair, possibly by facilitating the early RecA-driven 

homology search. Moreover, the few cells that do manage to divide in the recN mutant show 

an asymmetrical division. After division, one new born cell resumes extensive filamentation 

whereas the other is capable of performing another cell division. This could mean that in the 

absence of RecN, one chromosome may go through a round of DNA repair whereas the other 

may not have time due to reduced repair kinetics. This would lead to a new cell with a 

chromosome still damaged. RecN may also serve to stabilize the recombination products and 

ensure the accuracy of the HR reaction. In fact, it was very recently demonstrated that RecN 

can actually stimulate RecA D-loop formation in vitro, in D. radiodurans (Uranga et al., 2017). 

This function of RecN may be complementary to, or a consequence of, its function on sister 

chromatid cohesion. 
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2. RecN’s influence on RecA filament formation 

 

The importance of RecN for homology search and RecA filament formation was further studied 

by observing RecA-mcherry foci in live cells, in a WT strain and in the recN mutant. 

Interestingly, we observed a substantial change in RecA foci shapes and dynamics. In the WT 

cells, RecA formed bright fluorescent foci on the nucleoids and at the poles. These structures 

have been previously observed and described in E. coli (Renzette et al., 2005) but also in B. 

subtilis for instance (Simmons et al., 2007). In the recN mutant, these RecA structures were 

strongly altered. We observed elongated filaments, resembling the RecA bundles described 

by Lesterlin et al. in 2014 (Lesterlin et al., 2014). Such bundles form in the particular context 

of a single, I-SceI-induced double strand break occurring on a chromatid that has already 

segregated from its homolog. They proposed that these structures are RecA filaments 

performing homology search on the distant homologous chromosome. The fact that we 

observe such RecA bundles in the recN mutant strongly suggests that RecA performs a longer 

scale homology search when the sister chromatid is not kept close by RecN when the break 

occurs (figure 39). 

 

 

Figure 39. Model for RecA bundle formation in the absence of RecN 

In a recN mutant, sister chromatids segregate prematurely, before RecA nucleofilament can find the 

homologous strand for repair by HR. 

RecA forms a bundle-like structure in order to find the unbroken homologous strand. Bundle formation 

may also be the consequence of poor control of filament elongation in the absence of RecN. 
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It is also possible to imagine that RecN is actually a modulator of RecA filament dynamics and 

that the occurrence of the RecA bundles is not the result of homology search but rather the 

unfortunate consequence of poorly controlled elongation of the filament. This could be in 

good agreement with the interaction we observed between RecN and RecA and the effect of 

recN deletion on the SOS induction. Indeed, an RNAseq experiment showed that the 

expression of the SOS genes was downregulated in a recN mutant. By influencing RecA 

dynamics, RecN may favour the correct binding of RecA to ssDNA and subsequent SOS 

induction. It could be interesting to observe the RecA bundles with an I-SceI DSB system to 

see whether RecN has an effect on RecA dynamics when the sister chromatid is already 

distant. Testing the SOS induction in these conditions could also shed light on the cause of its 

downregulation in the recN mutant. 

 

 RecN’s influence on chromosome dynamics 

 

1. RecN induces a whole nucleoid compaction 

 

We observed whole nucleoid dynamics thanks to HU-mcherry labelling and timelapse 

fluorescence microscopy. When the cells are treated with MMC, the nucleoids undergo a large 

compaction, consistent with previous observations (Odsbu and Skarstad, 2014; Shechter et 

al., 2013). In the recN mutant, the nucleoids do not compact. Nucleoids decondense as the 

cells filament. To date, it remains unclear why and how the nucleoids compact in this manner.  

Nucleoid compaction could favour a three dimensional conformation that would be 

favourable to the 3D homology search of RecA by bringing closer to each other distant regions. 

In this compacted state, RecA would only perform homology search on very short distances, 

hence the observation of RecA-foci rather than bundle structures. We inserted two distinct 

fluorescent foci on the same replichore, spaced by approximately 200 kb and observed a 

specific pairing of homologous loci but not an increased proximity of the distant loci. This 

suggests that RecN promotes the ordered realignment of homologous sequences rather than 

a random compaction. Our previously stated hypothesis is that RecN multimerizes along the 
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chromosome, progressively realigning the segregated sister chromatids. But why would RecN 

engage in such a large scale rearrangement if the DSB is at the replication fork, where sister 

chromatids are originally cohesive thanks to topological links?  

Co-Immunoprecipitation experiments revealed the potential role of UvrA and the NER 

pathway in response to MMC (these observations will be further discussed below). In vitro, 

DSBs can occur during NER after a double incision by UvrC, on both sides of the MMC-induced 

ICL (Peng et al., 2010). Considering that MMC is inserted all over the DNA, multiple DSBs may 

be occurring over the genome. RecN would thus be recruited to these various DSB sites, 

maybe keeping the DNA ends together. This function of RecN has been previously proposed 

from the observation of enhanced ligation efficiency between linear DNAs in the presence of 

purified RecN from B. subtilis (Sanchez et al., 2008) and D. radiodurans (Pellegrino et al., 2012) 

(figure 40).   

 

 

 

Figure 40. Model for DSB recognition in D.radiodurans 

DSB recognition occurs through the head domains. Head-head interactions lead to RecN 

polymerization. RecN molecules on either side of the break keep the broken DNA ends together.  
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RecN may also be helping D-loop formation by RecA for repair of the DSBs at sites of NER. This 

could explain the massive induction of RecN, and the several RecA-mcherry foci we observe 

in WT strains, which would correspond to several RecA-dependent repair sites occurring over 

the chromosome. We can question how this could fit with the merging of distant sister 

chromatids. Indeed, RecN is an SMC-like protein that is only 1/3 of the size of Eukaryotic SMC 

proteins. It is therefore difficult to imagine that RecN could entrap the DNA as Cohesins do, 

let alone bring distant homologous chromosomes together. An in vitro model with D. 

radiodurans RecN suggests that RecN may form head to tail interactions, nucleating at the 

break and multimerizing along the DNA (Pellegrino et al., 2012) (figure 41). RecN may bind via 

RecA, at the site of the break, somehow maintaining the DNA ends together and keeping the 

sister chromatids close when they are already in a cohesive state. RecN could then slide along 

the DNA as Cohesins do (Ivanov and Nasmyth, 2005) , or multimerize on a certain portion 

around the break by head to tail interactions, subsequently promoting the merging of distant 

homologs. 

 

 

 

 

 

Figure 41. Model for RecN binding at sites of NER induced double strand breaks 

a- RecN (green) binds via RecA (red) at DSBs created by the NER pathway, maybe also performing end-

joining of the broken ends 

b- RecN propagates and polymerizes out of its binding site 

c- RecN gradually promotes global nucleoid compaction and merging of previously segregated sister 

chromatids 
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2. Could the MMC-induced genome compaction favour protein 
diffusion? 

 

Hoping to gain more insight into the structure of the compacted nucleoid form, we performed 

FRAP on HU-GFP stained nucleoids in WT cells and in the recN mutant. HU was used as a proxy 

of chromatin dynamics. In the WT strain, the diffusion of the HU protein was substantially 

increased when the nucleoids were in the compacted form. This increase was dependent on 

RecN. This suggests that this RecN-dependent compacted form is enhancing protein diffusion 

and that we are not observing the aspecific effect of MMC on DNA. 

These observations lead us to consider models proposed by the Minsky group. Studies 

performed in E.coli under starving conditions, found that the nucleoid aggregates into crystal-

like structures and that these structures are dependent on the unspecific DNA binding protein, 

Dps. These results suggest that under stressful conditions, the chromosome is capable of 

assembling into ordered structures, helping it to protect against damage and a stressful 

environment (Minsky, 2003). In vitro studies and computational simulations have established 

that scanning of the DNA during homology search must be accelerated and facilitated in order 

to be carried out in an appropriate time frame. This is mediated by the co-aggregation of the 

presynaptic filaments (here RecA-ssDNA) and the dsDNA target into a linear array (Levin-

Zaidman et al., 2000). In this conformation, homology search is performed through a one‐

dimensional slide that is enforced by the parallel organization of the assembly rather than 

scanning the genome through three‐dimensional random encounters (Minsky, 2003). It was 

proposed that reactions such as blunt end ligation, which do not require the specific homolog, 

could be enhanced by a simple increase in DNA concentration, and thus, a random DNA 

compaction. On the other hand, reactions that depend upon homologous search and 

recombination are likely to be facilitated by a dynamic ordered crystal-like structure in which 

1D sliding is promoted (Minsky, 2003). 

To further understand the diffusion of the proteins on the DNA, in silico studies were 

conducted. They established that protein diffusion relies on 3D diffusion but also 1D sliding 

(similar to the process used by RecA). It is dependent on several factors including the structural 

fluctuation of DNA that may enhance collisions between proteins and increase their diffusion. 
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Proteins with a low affinity for DNA are capable of hopping along the DNA, thus increasing 

their sliding speed (Ando and Skolnick, 2014). 

Hu et al. also showed that after dissociation of a protein (during the 3D diffusion), the 

probability of associating with any given locus of the chromosome is equal when DNA is 

randomly organized. In this non-structured conformation, search would thus be random and 

time consuming. However, in other more structured DNA conformations, the probability of 

re-associating near the dissociation point is stronger and may avoid “unorganised” and 

“random” hopping all over the chromosome. Search can proceed in an orderly and progressive 

manner. The biocrystals formed under stressful conditions may accelerate homology search 

by promoting an organised association and dissociation scan (Hu et al., 2006). 

In the FRAP experiments I performed, the protein observed is HU, which is a DNA binding 

protein. HU may follow these 3D hopping and 1D sliding mechanisms for diffusion along the 

DNA. We can thus hypothesize that under MMC treatment, in a RecN-dependent manner, the 

chromosome is rearranged into an ordered structure, resembling the biocrystal structures, 

that may favour protein diffusion and recruitment to the break (Levin-Zaidman et al., 2000). 

This nucleoid compaction could also favour a three dimensional conformation that would be 

favourable to the 3D homology search of RecA by bringing closer to each other distant regions. 

In this compacted state, RecA would only perform homology search on very short distances, 

hence the observation of RecA-foci rather than bundle structures in the fluorescence 

microscopy experiments (figure 42).  
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3. RecN’s influence on damaged DNA mobility 

 

Further experiments on foci dynamics in WT cells and in the recN mutant revealed that the 

Mean Square displacement slope (MSD slope) of the tagged fluorescent focus was greater in 

the WT strain than in the recN mutant when treated with MMC. Considering RecN holds sister 

chromatids together, we could have expected an increase in foci mobility in the absence of 

RecN. However, this observation seems to be in good agreement with the model proposed by 

R. Rothstein (Miné-Hattab and Rothstein, 2012). He suggests that upon DNA damage, the 

broken DNA ends are more mobile, in order to explore a greater portion of the nucleoid during 

homology search. We can thus imagine that although RecN acts to keep sister chromatids 

Figure 42. An ordered chromosomal structure may facilitate homology search 

The macroscopic compaction state of the nucleoid facilitates 3D homology search. 

At a local level, the chromosome may adopt a biocrystal-like structure facilitating 1D diffusion by 

RecA (red) 

Inspired from Mirny et al. 2009 
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cohesive in response to DNA damage, possibly reducing the mobility of the chromatids on a 

large scale, it may, at a local level, favor the general mobility of the chromosome to promote 

homology search. Unpublished results from the laboratory suggest that in an unperturbed E. 

coli cell cycle, the mobility of cohesive loci is reduced compared to segregated loci. In the case 

of damaged chromosomes it might be different. Replacing topological links by RecN might be 

a way to enhance mobility of cohesive sister chromatids. In fact, recent work in Saccharomyces 

cerevisiae described similar observations. Zeocin treatment increases foci dynamics and even 

a single DSB induced at a given locus can lead to an increase of foci mobility over the genome. 

Further computational simulations linked this increase of chromatin mobility to an increase of 

chromatin rigidity, which is consistent with our observations and RecN’s action on sister 

chromatid cohesion (Herbert et al., 2017). Such chromatin mobility changes linked to 

homologous recombination are also reminiscent of meiosis events where paired homologs 

perform many coordinated movements with the purpose to eliminate unwanted connections 

(Koszul et al., 2008, 2009). We can propose that RecN favors the diffusion of proteins and 

maybe their recruitment to the break. In this structured, rigid conformation, loci mobility 

would be increased in a RecN dependent manner possibly favoring homology search driven 

by RecA, or limiting unwanted chromosome exchanges. It would therefore be interesting to 

measure genome rearrangements generated by a MMC treatment in the presence or absence 

of RecN.  

These observations confirm the role of chromosomal morphology in preserving and restoring 

the integrity of the genome during DNA damage and RecN’s central action in this process. 

 

 Interplay between RecN and the Nucleotide Excision 

Repair pathway 

 
As mentioned above, co-immunoprecipitation experiments revealed a possible interaction 

between the NER proteins and RecN. Interestingly, epistatic analysis revealed an intriguing 

synergy between RecN and UvrA. Briefly, we observed that a uvrA mutant is sensitive to MMC, 

confirming an involvement of the NER in removing MMC induced ICLs. Interestingly, 
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combining a uvrA and a recN mutation lead to total death after 40 min of MMC treatment. 

This could suggest that UvrA and RecN are acting in two alternative pathways.  

However, the sister chromatid cohesion analysis suggests a rather different model. SCIs are 

strongly decreased in a uvrA mutant, more than the recN mutant alone. The double uvrA recN 

mutant has the same profile as the uvrA mutant alone. A preliminary hypothesis for these 

observations could be that the RecN-dependant SCC observed in response to MMC mainly 

results from RecN’s action on breaks arising from the NER pathway. 

The recN mutant only shows a loss of 50% of SCIs suggesting that another protein is involved 

in keeping the sister chromatids together. This protein could be UvrA but it seems unlikely 

that UvrA is capable of performing cohesion alone and I favour the hypothesis of another 

protein, acting in a different pathway, that would be capable of creating cohesion. 

The intriguing discrepancy between the viability tests and the SCI assay could reflect the 

existence of another function of RecN, acting independently of UvrA which is important for 

viability and DNA repair but not for sister chromatid cohesion. This function could be end 

joining of the two ends of the DSB (figure 43). 
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Interestingly, a paper published in 1985 described that the induction of RecA and UmuC was 

decreased in a uvrA mutant, resembling the observation we made with the RNAseq 

experiment in the recN mutant (Yamamoto et al., 1985). 

Considering the novelty of these results and the small set of mutants tested in these assays 

for the moment, strong conclusions should not be inferred from these data. 

 

 Impact of the supercoiling density on DNA repair 

 
In Eukaryotes and Prokaryotes, Homologous Recombination is the essential process for the 

repair of highly deleterious double strand breaks. During HR, the presence of the undamaged 

homologous sister chromatid is required in order to avoid the loss of genetic information. In 

Eukaryotes, this sister chromatid cohesion is ensured during the whole cell cycle by the action 

of different SMC complexes. In E. coli, sister chromatid cohesion results from topological 

Figure 43. Putative viability and SCC pathway for recN and uvrA mutants  

A- Cell viability measurements suggest RecN and UvrA are acting in different pathways. B- SCIs profile reveal 

that RecN’s action on SCC is mainly dependent on UvrA. 



  Discussion 
 

138 
 

linking between sister chromatids. These links are called precatenanes and are removed upon 

the action of Topoisomerase IV. We showed that during the repair of a DSB induced by MMC, 

sister chromatid cohesion was conserved thanks to the action of RecN, an SMC-like protein 

induced by the SOS response. When inhibiting Topo IV in a recN mutant, SCIs are preserved 

and so is viability. Maintaining topological links between sister chromatids seems sufficient to 

restore the loss of SCIs and viability of the recN mutant. Similar observations were made with 

a Gyrasets mutant. Identifying SbmC, a gyrase inhibitor, in a screening experiment thus seemed 

quite promising. However, overexpression of SbmC did not enhance protection against MMC 

treatment. Moreover, when Topoisomerase IV was inhibited in cells expressing RecN (the 

simple Topo IVts mutant), SCIs were maintained but viability was impaired in comparison to 

the WT strain. This suggests that Topoisomerase IV may be playing a role in the repair of MMC 

induced DSBs possibly by maintaining a topological homeostasis that is favourable for DNA 

repair. Although the direct implication in the resolution of HJ intermediates of Topoisomerase 

III has been suggested (Lopez et al., 2005), little work has been done on the importance of 

DNA supercoiling for DNA repair and the resolution of repair intermediates. However, one 

could imagine that the supercoiling state and the supercoiling density of the nucleoid can 

affect the capacity of the incoming DNA strand to invade the intact homolog. Indeed, it was 

shown that the extent to which the D-loop can migrate is determined by the supercoiling state 

of the DNA (Wright et al., 2018). In a Topo IVts mutant, RecN may block the diffusion or the 

removal of excess precatenanes. The DNA would thus be in a highly catenated state which 

would be deleterious to strand invasion and branch migration. Interestingly, the Gyrasets 

mutant is also highly supercoiled but viability is not affected. We can thus hypothesize that it 

is the excess of precatenanes in the Topo IV mutant rather than the global supercoiling density 

that is deleterious to DNA repair (figure 44). 
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To test this hypothesis, the supercoiling density on the whole nucleoid of a Topo IVts mutant 

relative to a WT strain or a recN mutant could be measured by psoralen intercalation. Psoralen 

crosslinks DNA but preferentially binds negatively supercoiled DNA. The frequency of psoralen 

intercalation can give a measure of the nucleoid supercoiling density (Lal et al., 2016; Sinden 

et al., 1980). A more recent method has permitted visualization of DNA intertwining in 

budding yeast. By using site-specific recombination, topologically intertwined DNA is excised 

as catenated circles whereas topologically free sister chromatids are excised as two free DNA 

circles. The two products can be distinguished by gel electrophoresis. 

It could also be interesting to test whether DNA repair is more or less efficient depending on 

the different regions of the chromosome. Indeed, some regions, called SNAPS, are highly 

cohesive due to SeqA binding. Although repair may be enhanced due to prolonged sister 

chromatid cohesion in these regions, it may also be impaired by an excess of DNA 

precatenanes and topological constraints. 

Figure 44. Excessive catenantion may impede branch migration 

In the Topo IV
ts

 mutant, Topoisomerase IV does not remove precatenantion links and RecN prevents 
their diffusion. Branch migration is inhibited and viability is impaired. 

In the Topo IV
ts

 recN mutant, Topoisomerase IV does not remove precatenantion links, in the absence 
of RecN, precatenanes may diffuse. Branch migration can proceed and viability is maintained. 
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 Is transcription repressed by cohesion? 

 
In order to identify possible new partners of RecN and in a more general interest of identifying 

proteins that may be recruited to DSBs induced at the replication fork, I used a new method 

called iPOND. iPOND allows the purification of proteins on newly synthesized forks by 

performing an EdU pull down. By adding a thymidine chase with fresh medium, we can also 

identify proteins at a larger distance from the fork. 

The protein profile obtained after a 5 min EdU incorporation (it is estimated that EdU has 

incorporated over 250-350 kb) revealed the presence of nucleoid associated proteins and 

topoisomerases such as Topoisomerase IV, MukB or SeqA. This is in good agreement with the 

current knowledge on these proteins. Interestingly, Gyrase was also identified behind the 

replication fork. Our experiments do not allow us to know whether Gyrase also binds on the 

whole chromosome or not but to our knowledge, this is one of the first observations of Gyrase 

acting behind the replication fork. When performing a 15 min thymidine chase (it is estimated 

that EdU has incorporated over 1Mbp), the protein profile is substantially changed. Proteins 

that were pulled down correspond to transcription factors, RNA polymerases and proteins 

associated to translation, such as RpoB, RpoC of Hfq. The absence of translation factors in the 

300kb region behind the fork may be due a repression of transcription in this region since 

translation is coupled to transcription. 

 

1. What mechanisms are responsible for transcription repression? 

 

This exclusion of transcription related proteins behind the replication fork could be the mere 

consequence of “overcrowding” by other proteins relative to replication. Indeed, proteins 

such as SeqA, MukB or Topoisomerase IV act behind the replication fork to manage 

replication. However, Eukaryotic RNA polymerases are capable of overcoming the crowded 

nucleosomal environment and are even capable of displacing histones in vitro (Bintu et al., 

2011). 
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A second hypothesis is that when the replication fork goes forward, it “kicks off” the 

transcription-associated proteins (and associated translation machinery). As the proteins are 

cleared, they may preferably bind to other regions of the chromosome. However, the fact that 

they don’t re-associate immediately behind the replication fork is surprising. One explanation 

could be that a physical barrier formed behind the replication fork by sister chromatid 

cohesion prevents re-association of the transcription machinery.  Indeed, the two sister 

chromatids are bound by precatenation links, creating a supercoiled environment. 

Considering that transcription itself creates positive and negative supercoils (Liu and Wang, 

1987) it may be in conflict with replication associated precatenanes (figure 45). 

 

 

 

Figure 45. Model for transcription repression behind the replication fork 

As the replication fork moves forward, it may kick off the transcription machinery and translation 
proteins. Proteins bind on the newly synthesized DNA at a distance of over 250 kb from the fork 
due to repression by sister chromatid cohesion. 
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Such a hypothesis would need to be further investigated. If sister chromatid cohesion is 

repressing transcription near the replication fork, the transcription pattern of a Topo IVts 

mutant should be altered. This could be tested by performing a whole transcriptome analysis 

by RNAseq in a Topo IVts mutant or by simply testing gene transcription by RT-qPCR. 

 

2. Why is there a transcription repression? 

 

The “raison d’être” of such a transcription repression behind the fork should be discussed.  

One reason could be to avoid transcription/replication interferences. By avoiding transcription 

near the replisome, the chances of conflicts between RNA polymerases and the replicative 

DNA polymerase is decreased. However, the chances of such conflicts seem quite low since 

the elongation rate of DNA polymerase is ~1kb/sec (Hirose et al., 1983) and the elongation 

rate of RNA polymerase is ~50 nucleotides/sec (Gotta et al., 1991), thus making it difficult for 

RNA polymerase to “catch up” with the DNA polymerase.  

A more probable hypothesis could be that repressing transcription behind the fork decreases 

the risk of transcription problems linked to DNA damage. Indeed, as presented in the 

introduction, most DNA damage occurs at the replication fork, and often leads to DSBs. In the 

event of a DSB, part of the DNA is degraded (up to 250 kb) by RecBCD (Wiktor et al., 2018), 

and gene transcription could thus be impeded which would be highly detrimental. In 

Saccharomyces cerevisiae, it was shown that a double strand break causes transcriptional 

inhibition and mutants defective for resection fail to inhibit transcription (Manfrini et al., 

2015). We can therefore imagine that by inhibiting transcription around the replication fork 

(the most susceptible zone to undergo a DSB) in a controlled manner, the cell could avoid un-

programmed loss of transcription of essential genes. Interestingly, our iPOND results show 

that some of these transcription factors were also depleted around the fork in MMC treated 

cells, confirming a possible inhibition of transcription around the DSB. 
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 Concluding remarks 

 
Altogether, the work accomplished during my PhD has demonstrated the importance of sister 

chromatid cohesion for DNA repair in E.coli. More specifically, I have shown the importance 

of RecN, an SMC-like protein that is induced by the SOS response. RecN prevents sister 

chromatid segregation upon DNA damage and mediates a whole chromosome 

rearrangement. RecN is a highly conserved protein among Prokaryotes which strengthens the 

importance of sister chromatid cohesion for DNA repair, possibly by enhancing the efficiency 

of homology search and subsequent homologous recombination. The complementary results 

obtained recently give rise to new questions and suggest a more complicated mechanism or 

maybe a dual function of RecN’s action. This paves the way for new experiments, more 

discussions, more papers and maybe a new PhD project…! 
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 Material & Methods 

Most methods used during my thesis are described in the material and methods chapter of 

my publication. In the following chapter, I have described additional methods required for the 

supplementary results of the publication and the complementary results performed after my 

paper was published. 

 Strains 

 

The strains and plasmids used during my thesis are listed below. All strains are derived from 

an MG1655 or MG1556 (delta Lac MluI). Construction of microscopy strains was done using 

lamda red recombination using the pGBKDparS-pMT1 plasmid as a matrix. Construction of 

lacloxP strains was done using the pGBKDlaclox plasmid as a matrix. 
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 Ori/ter quantification by qPCR assay on dnaAts strains  

 

An overnight culture was diluted 1:200 in minimum medium A supplemented with 0.2% 

casamino acids and 0.25% glucose. Cells were grown at 30°C until OD600~0.2 and immediately 

placed at 42°C for inactivation of DnaA. At the same time, 10μg/ml of MMC was added or not. 

1,5ml of cells was flash frozen at each time point and genomic DNA was extracted as described 

above. qPCR was performed on a MyiQ Biorad lightcycler qPCR machine. Results are expressed 

as the difference between ori Ct and ter Ct.  

 Cell viability assay 

 

An overnight culture was diluted 1:200 in LB and grown at 30°C because of the thermo-

sensibility of the Gyrasets mutants. At OD~0.2, cultures were put at 40°C for 20 min and then 

15 µg/ml MMC was added. Viability was measured by serial dilution every 10 minutes for 40 

min. For each dilution, 2 µl drops were plated on LB and plates were incubated ON at 30°C. 

Colonies were counted the next day. 

 Construction of microscopy strains  

 

To integrate the parS sequence in the chromosome of the MG1655 strain, we used a vector 

derived from pKD4 (Datsenko and Wanner, 2000) called pGBKD3-parS pMT1 (Espéli et al., 

2012) . All the tags were inserted in intergenic regions of non-essential genes (Espeli et al., 

2008). The expression of the ParB–YGFP fusion protein is driven by the pFH2973 plasmid  

(Espéli et al., 2012). 

 FRAP (Fluorescence Recovery After Photobleaching) 

 

An overnight culture was diluted 1:200 in minimum medium A 1X supplemented with 0.25% 

glucose and 0.2% casminoacids and grown at 37°C to OD600~0.2. Cells were pelleted and 

resuspended in 50 µl of fresh medium. 1% agarose pads were made with VWR geneframes, 



  Material & Methods 
 

149 
 

supplemented with 10 µg/ml MMC or not. 5µl of cells were deposited on the agarose pad and 

FRAP experiment was performed using a confocal spinning disk (X1 Yokogawa) on a Nikon Ti 

microscope at 100 x magnification, using an EMCCD camera controlled by metamorph 

software. For each condition small Regions of Interest (ROI) were defined on the HU-GFP 

stained nucleoid and fluorescence was acquired using the FRAP module of metamorph 

software. Analysis was done with imageJ and Excel. The half-life of fluorescence recovery was 

defined for each ROI and averaged. 

 Foci dynamics 

 

An overnight culture was diluted 1:200 in minimum medium A 1X supplemented with 0.25% 

glucose and 0.2% casminoacids and grown at 37°C to OD600~0.2. Cells were pelleted and 

resuspended in 50 µl of fresh medium. 1% agarose pads were made with VWR geneframes, 

supplemented with 10 µg/ml MMC or not. 5 µl of cells were deposited on the agarose pad and 

timelapse was performed using a confocal spinning disk (X1 Yokogawa) on a Nikon Ti 

microscope at 100X magnification, using an EMCCD camera controlled by metamorph 

software. One image was acquired every 10 seconds for 20 min. 

Analysis was done with the Mosaic plugin from imageJ. Radius was set at 3, cutoff at 0 and 

percentile at 0.1. Linkage range and displacement were set at 3. The histograms plot the MSD 

slope of approximately 500 foci per strain and per condition. 

 RNAseq 

 

An overnight culture of an MG1655 wild type strain and an MG1655 recN strain were diluted 

1:200 in 30 ml minimum medium A 1X supplemented with 0.2% casaminoacids and 0.25% 

glucose and grown to OD600 ~0.2 at 37°C. Cells were treated with 10 µg/ml MMC or not, for 20 

min or 40 min. At each time point, 30 ml of cells were immediately pelleted and RNA was 

extracted using the ThermoFisher RNA extraction kit. TE buffer, lysis buffer and Ethanol 

volumes were doubled considering the large volume of cells. RNA was quantified using the 

nanodrop from thermofisher. Samples were centrifuged, washed in 70% ethanol and 

speedvaced for 10 min at 40°C. Pellets were resuspended in 10 µl RNase free water from 
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Invitrogen and quality of RNAs was controlled using RNA nano chips from Agilent and the 

bioanalyzer. The concentration of each sample and the RNA Integrity Number (RIN) was 

validated for each sample and RNA was went to the imagif platform for sequencing. 

The results are shown as an induction fold i.e. a number of reads in the treated sample versus 

the untreated sample. 

 RecN Co-immunoprecipitation 

 

An overnight culture of MG1655 wild type strain and a strain carrying the RecN protein tagged 

with a flag peptide were diluted 1:200 in 100 ml Minimum Media A 1X supplemented with 

0.2% casamino acids and 0.25% glucose. The cells were grown to an OD600 ~0.2. 100 ml of 

culture was then treated with 10 μg/ml MMC for 30 min and pelleted at 4°C for 10 min. Cells 

were washed 3 times with ice cold 1X PBS. Pellets were resuspended in 300 μl of lysis buffer 

(100mM NaCl; 10mM Tris-HCl pH7.8; 10mM EDTA; 20% sucrose; 1mg/ml lysozyme +1 

complete tablet/10ml Complete protease inhibitor mixture EDTA-free (Roche)) and sonicated 

for 25 cycles for 30” ON and 30” OFF using a bioruptor sonicator from Diagenode. Cells were 

pelleted and the supernatant was incubated ON at 4°C with an anti-flag antibody (Sigma 

F3165) (1:300) or anti-RecA antibody (abcam 63797) (1:300).  

The next day, 100 μl of magnetic anti-proteinA beads were placed on the dynamag  magnetic 

rack and beads were separated from the buffer. 350µl of the antibody-lysate mix was added 

to the 100 µl of beads and incubated for 2h at RT. Lysate was then placed on the dynamag and 

washed three times with 1X PBS. Elution was performed with 100 µl of an SDS buffer (2% SDS, 

100 mM Tris-HCl, 10% glycerol and 0.5mM EDTA).  

After elution, proteins were concentrated using a Pal nanosep column (3 kDa cut off or more 

depending on the size of the proteins of interest). Centrifugation was carried out at 13000g 

for 12-15 min. Final volume left is ~40 µl.  

Western blot was done on RecNflag and MG1655 samples using an anti-flag antibody 1:500 

(sigma) for the RecN-flag and RecA IP.  

Western blot was done on RecNflag and MG1655 samples using an anti-RecA antibody 1:1000 

(Abcam) for the RecA and RecNflag IP. 
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 iPond 

 

An overnight culture was diluted 1:200 in minimum medium A 1X supplemented with 0.25% 

glucose and 0.2% casminoacids and grown at 37°C to OD ~0.2. Cells were incubated with 10µM 

EdU (stock 10mM) for 5min [100µl of EdU stock at 10mM]. 

When performing the chase, cells were washed once with 10 µM fresh thymidine (stock 

10mM) and chased with 10 µM (stock 10mM) thymidine in minimum medium A 1X 

supplemented with 0.25% glucose and 0.2% casminoacids for 15 min. 

After the chase, 10 µg/ml MMC was added to the culture or not. At the end of each timepoint, 

cultures were crosslinked with 2% formaldehyde from sigma (37% stock) for 15 min. 

Crosslinking was quenched with 0.125% glycine for 5 min. Cultures were then washed 3 times 

in cold PBS. Pellets can be frozen at -80°C and the rest of the experiment can be carried out 

later. 

Pellets were resuspended in 2 ml of fresh lysozyme (4mg/ml PBS1X) and incubated at RT for 

20 min. One wash was done with 0.5% BSA in PBS 1X and one wash is done with PBS1X. 

Pellets were then resuspended in the click solution: 2ml of fresh sodium-L-ascorbate at 10 mM 

(sigma); 1µl of biotin TEG and 40µl CuSO4 (stock at 100 mM). Reaction was carried out at RT 

for 2h, in the dark. Pellets were then washed twice with 2 ml of 0.5% BSA and twice with PBS. 

Cells were resuspended in 400 µl of fresh COLD lysis buffer [100mM NaCl; 10mM Tris pH7.8; 

10mM EDTA; 20% sucrose; 1mg/ml lysozyme + 1 tablet of complete] and sonication was 

performed in a bioruptor from diagenode for 25 cycles (30” ON and 30” OFF). Cells were then 

centrifuged at 13000 rpm for 3 min at 4°C. 50 µl were set aside for input and immediately 

boiled for 30 min in 5x laemmli. Inputs can be stored at -20°C. The remaining 350 µl were 

transferred to low bind eppendorfs. 50 µl of ademtech beads per sample were washed in the 

same volume of lysis buffer. Samples were then incubated with the beads for 15-20 h in the 

dark, at RT. The next day, beads + sample were put on the magnetic rack for 10-15 min, at 4°C 

to separate beads from proteins. Do not centrifuge as it may favor unspecific binding to the 

beads. The beads were then washed once with 1ml lysis buffer, once with 1ml 500mM NaCl, 

and twice with 1X PBS 0.02% tween. Crosslinking was reversed and elution was done in 1% 

SDS, 10mM Tris-HCL, 1mM EDTA for 30 min at 95°C. Supernatants can be stored at -80°C. 
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Coomassie gel was done with a precast gradient gel from biorad, with a very short migration 

as to not separate all protein bands and mass spectrometry was done by the imagif platform. 

 Gene overexpression bank 

 

An overnight culture of an MG1655 recN was transformed with a library of pBR322 plasmids 

overexpressing all the genes of the genome. As a negative control, MG1655 recN was also 

transformed with the pBR322 #inc3, empty vector. Enough plates were plated to obtain 

40 000 clones. Clones were harvested and a CFU was performed after a 30 min treatment of 

15 µg/ml MMC. 100 µl of culture were plated at a 10-3 dilution on 10 kanamycin plates to 

optimize the amount of clones obtained. Approximately 30 clones grew on kanamycin plates 

after a 30 min MMC treatment. Clones were verified on kanamycin, MMC 1 µg/ml or MMC 2 

µg/ml plates. Of the 30 clones originally obtained, only five grew again on MMC at 1 µg/ml or 

MMC at 2 µg/ml. Resistance to chloramphenicol was tested to check whether the resistance 

to MMC wasn’t due to overexpression of efflux pumps. This test discarded two extra clones. 

Clones were sent for sequencing to identify the genes contained on the plasmid and extra 

viability and laclox assays were performed on the validated clones. 

 Construction of recA-mcherry fusion 

 

The strain JC13509 {Citation}carries a RecA-GFP fusion inserted at the recA chromosomal 

locus. In addition to the C-terminal fusion with GFP, this RecA-GFP allele carries two 

mutations, a recAo1403 operator mutation (T to A) that increases two-fold the basal level of 

recA transcription and a recA4155 mutation (R28A) that prevents the formation of DNA-

independent polar RecA-GFP foci 1. In a first step, the ssb gene from the plasmid pKD3-ssb-

mcherry was replaced by the recAo1403 4155 gene. For this purpose, the recAo1403 4155 was 

amplified from JC13509 using the following oligonucleotides: 5’ AAC CCA CTC GTG CAC GGC 

GGG AAT GCT TCA GCG GCG A 3’ and 5’ TTC ATG TTC GAA TGA TGC TCC CAA AAT CTT CGT TAG 

TTT CTG C 3’ and the PCR products were cleaved with ApaLI and BstBI. The restriction product 

was cloned into pKD3-ssb-mcherry restricted with ClaI and ApaLI, producing the plasmid 

pKD3-RecA-mcherry. In a second step, the recA-mcherry CmR region of pKD3-RecA-mcherry 
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was amplified using the following oligonucleotides, which contain homology regions with the 

chromosomal lacI and lacZ sequences: 3’-GCA GCT GGC ACG ACA GGT TTC CCG ACT GGA AAG 

CGG GCA GTG AGG CGG GAA TGC TTC AGC GGC GA 5’ and 3’TCA TCA TAT TTA ATC AGC GAC 

TGA TCC ACC CAG TCC CAG ACG AAG ATG AAT ATC CTC CTT AGT TCC TA- 5’. The PCR product 

was used to electroporate MG1655 [pKD46]as described (Datsenko and Wanner, 2000) 

creating a recA-mcherry fusion gene inserted into the lac operon under the control of its own 

promoter recAo1403 (strain JJC5789). The presence of the correct insertion was verified by 

PCR and by sequencing. The presence of polar foci was unexpected since the RecA-mcherry 

allele carries the R28A mutation that prevents RecA-GFP polar foci formation (Renzette et al., 

2005). We demonstrated that an increased number of polar foci is the consequence of co-

expression of RecA-mCherry and wild type RecA. 

 Construction of LoxP strains  

 

The wild type strain was E. coli K12 MG1655 (ΔlacMluI). The LacloxP cassette was constructed 

by the integration of a double stranded oligonucleotide 5”- 

CGTAATAACTTCGTATAATGTATGCTATACGAAGTTATGGATCCCCGGGTACCGAGCTCATAACTTCG

TATAATGTATGCTATACGAAGTTATCCTA-3” into the ClaI restriction site of the lacZ gene. The 

LacloxP cassette was integrated in the chromosome, using a vector derived from pKD4 called 

pGBKD3-Laclox (Lesterlin et al., 2012). These vectors contained the LacloxP cassettes adjacent 

to the chloramphenicol resistance gene. Laclox::Cm was inserted into the intergenic regions 

of non-essential genes using the standard ‘lambda red’ technique (Datsenko and Wanner, 

2000). Expression of the Cre recombinase was driven by a pSC101 carrying the arabinose-

inducible Cre gene derived from pFX465, kindly given by FX Barre. The lacloxP::Cm cassettes 

inserted at the different chromosome sites were then moved into different strain backgrounds 

by using P1 transductions.  

 LoxP recombination assays 

 

LoxP recombination assays were performed as described in Vickridge et al. from Methods in 

Molecular Biology (Vickridge et al., 2017). 
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The experiments with the Gyrasets and Topo IVts mutants were performed as described in 

Vickridge et al. 2017, except that the strains were incubated for 20 min a 40°C before 10 µg/ml 

MMC and 0.1% arabinose addition. 

 Published article in Methods in Molecular Biology:  The 

Bacterial Nucleoid 
 

The loxP/Cre recombination assay was the object of an article published in The Methods in 

Molecular Biology book in 2017. 
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Abstract 

Site specific recombination methods have been used in several occasions to probe chromosome 

structure. Site specific recombinases only recognize DNA in an adequate structure. These properties 

have been used to reveal different DNA structuring features. The supercoiling density of E. coli 

plasmids has been measured in vivo and in vitro according to the recombination frequency  of l Int/Xis 

recombinase on attL/R sites (Bliska and Cozzarelli, 1987). Biases in l Int/Xis mediated recombination 

also revealed macrodomain structures in the E. coli chromosome (Valens et al., 2004). Tn3/  

recombination has been used to monitor supercoiling microdomains (Deng et al., 2004; Staczek and 

Higgins, 1998) in S. typhimurium.  In yeast, the loxP/Cre recombination system has allowed to measure 

interactions between  homologous and ectopic loci (Burgess and Kleckner, 1999). Here we describe a 

simple assay based on the loxP/Cre recombination system that reveals interactions between sister 

chromatids and allows to follow segregation of loci in a quantitative manner (Lesterlin et al., 2012). 

This method can be used to study sister chromatid interactions in a normal cell cycle, in response to 

genotoxic stress or in various mutants. 

 

1.Introduction 

Two consecutive loxP sites, spaced by only 20bp are cloned at a given site on the chromosome. In our 

original set-up they were cloned into an ectopic lacZ gene, thus preventing its transcription. The plated 

colonies are white. When the two sister chromatids are in very close proximity, the loxP sites from 

each sister chromatid will be able to recombine with one another, once Cre is induced with 0.1% 

arabinose. The products formed by this recombination are a 1loxP site on one sister chromatid and 

3loxP sites on the other sister chromatid. These three loxP sites on one sister chromatid will 

recombine together, eventually leading to a 1 loxP site. When there is only one loxP site in the 

lacZ gene, the open reading frame of lacZ is reconstituted and the colonies become blue when 

plated on Xgal. The frequency of recombination which is directly linked to the proximity 



  Material & Methods 
 

156 
 

between sister chromatids can be assessed by a white/blue colony count. In this chapter, we also 

present a new method to immediately analyze recombination products formed in the minutes 

following Cre recombination with a semi quantitative PCR and a Bioanalyzer. The amount of 1 loxP 

product versus the total amount of DNA gives the recombination frequency and thus, the amount of 

sister chromatid interactions (Figure 1). 

2.Material 

Store all reagents as indicated on the product. The bioanalyzer reagents must be equilibrated at room 

temperature for at least an hour before use. 

2.1 Plasmids, strains and primers  

Strains: 
MG1655 (E. coli K12) 
MG1656 (E. coli K12 Δlac MluI) 
 
Plasmids: 
pGBKD3-LacloxP (Lesterlin et al., 2012) 
pGBKD3-Lacloxrif (Espéli et al., 2012) 
pCre (Lesterlin et al., 2012) 
 
Primers for insertion of loxP sites onto the chromosome: 
LacloxP-ins-Forward:  [50nt of homology upstream of insertion site - GAT TGT GTA GGC TGG AGC 

TGC] 

LacloxP-ins-Reverse: [50nt of homology downstream of insertion site - GG TCT GCT ATG TGG TGC TAT 

CT] 

Primers for analysis of loxP recombination products by PCR: 

LacloxP-Forward: CTTCTGCTTCAATCAGCGTGCCGTC 

LacloxP-Reverse: GATCAGGATATGTGGCGGATGAGCGG 

2.2 Reagents: stock solutions 

All solutions must be prepared using ultrapure water (by purifying deionized water, to attain a 
sensitivity of 18 MΩ-cm at 25 °C) 
 
Prepare the following buffers and stock solutions. Unless otherwise specified, filter solutions using a 
0.2 µm low protein binding non-pyrogenic membrane. 
 

20% (w/v) Arabinose in H2O 
40% Glycerol  in H2O  
20% Glucose in H2O 

20 mg/ml Xgal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) in dimethylformamide 
20% Casaminoacids in H2O 
100 mg/ml Spectinomycin in H2O 
30 mg/ml Chloramphenicol in absolute Ethanol 
1M MgSO4 
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2M MgCl2 

Dimethyl Sulfoxide (DMSO) 
10X Minimum Medium A: 0.26M KH2PO4, 0. 06M K2HPO4, 0.01M tri sodium citrate, 2mM MgSO4, 

0.04M  (NH4)2 SO4  

Transformation and Storage Solution (TSS): LB, 10 % PEG 6000, 10mM MgSO4, 10 mM MgCl2, 5% 

DMSO 

LB Broth (Lennox Broth) 
Select agar 
10X TBE: 1M Tris, 1M Borate, 0.02M EDTA  
1.7% Agarose (molecular grade) in 1X TBE  
 
DNA Ladder 100bp DNA 
 
2.3 Medium  
 
For LoxP recombination assays in Escherichia coli and related bacteria, grow cells in 1X Minimum 

Medium A supplemented with 0.2% casaminoacids and 0.25 % glycerol. pCre transformation and 

measure of recombination can be performed in Minimum Medium A supplemented with 0.2% glucose, 

0.25% casaminoacids, 40 µg/ml  Xgal and 100 µg/ml spectinomycin or on LB agar plates supplemented 

with 40 µg/ml  Xgal and 100 µg/ml spectinomycin. 

 

2.4 Genomic DNA extractions  

Liquid nitrogen 

Genomic DNA extraction kit 

 

2.4 Genomic DNA and PCR product quantification 

  

DNA quantification using a Nanodrop (ThermoScientific) 

 

2.5 PCR  

Primers for strain constructions (see section 2.1) 

Insertion of LacloxP and LacloxP-rif cassettes on the chromosome: 

Four 50µl of reactions were assembled using 1ng of plasmid DNA as matrix (pGBKD3-LacloxP or 

pGBKD3-LacloxP-rif), primers LacloxP-ins-Forward and LacloxP-ins-Reverse (20 µM), dNTPs (10µM 

each), Mg2+ plus buffer and TaKaRa Ex Taq (see Note 1).  

Amplification of loxP sites: 

50µl of reaction was assembled using 1µL of genomic DNA at 2ng/µl, primers LacloxP-Forward  and 

LacloxP-Reverse (20 µM), dNTPs (10µM each) and Mg2+ plus buffer and TaKaRa Ex Taq.  

2.6 PCR product verification on agarose gel 

1.7% agarose gel electrophoresis in 1X TBE 
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2.6 Detection of loxP recombination events by bioanalyzer  

Agilent DNA 1000 kit 

 

3.Methods 

  3.1 Strain constructions  
 
The LacloxP cassette that allows measuring of intermolecular recombination was constructed by the 
integration of a double stranded oligonucleotide 
5’CGTAATAACTTCGTATAATGTATGCTATACGAAGTTATGGATCCCCGGGTACCGAGCTCATAACTTCGTATAA
TGTATGCTATACGAAGTTATCCTA-3’ into the ClaI restriction site of the lacZ gene of the pGBKD3-lacZ 
plasmid. We called this plasmid pGBKD3-LacloxP (Lesterlin et al., 2012).  For the control of 
intramolecular recombination, a rifampicin resistance gene (rif) and its promoter were introduced 
between the 2 loxP sites by cloning into the BamHI site of pGBKD3-Laclox. We called this plasmid 
pGBKD3-Laclox-rif (Lesterlin et al., 2012). The pGBKD3-LacloxP or pGBKD3-Laclox-rif were used as 
matrices to insert the intermolecular and intramolecular cassettes inside intergenic regions of non-
essential genes of the DY330 strain with the standard ‘lambda red’ method (Datsenko and Wanner, 
2000). These vectors contained the LacloxP or the LacloxP-rif cassettes adjacent to the 
chloramphenicol resistance gene. The LacloxP::Cm or the LacloxP-rif::Cm cassettes were then P1 
transduced into the genome of MG1656 strain.  Expression of the Cre recombinase was driven by an 
arabinose-inducible promoter on a plasmid (pFX465) derived from pSC101, we called this plasmid pCre 
(Lesterlin et al., 2012). pCre also contains a PLac promoter antisens to cre that can be used to further 
repress Cre expression with IPTG  in some conditions (see Note 2). 
 

3.2 Measuring LoxP recombination as a function of the number of Lac+ colonies on plate  

Day 1: 

Transformation of the pCre plasmid in the MG1656-lacloxP and MG1656 LacloxP-rif strains. 

1. Inoculate 100ml of LB with 1ml of overnight culture of MG1656 LacloxP and MG1656 LacloxP-

rif at 37°C. Let the cells grow to an OD600nm≈0.5-0.6.  

2. Centrifuge at 6000 rpm, 10 min at 4°C.  

3. Resuspend the pellet in a 1/10 volume of cold TSS.  

4. Leave the cells for 10 min on ice.  

5. Mix 100 µl of cells with 2 to 4 ng of pCre plasmid. 

6. Leave the cells with the plasmid for 10 min on ice.  

7. Induce a heat shock at 37°C for 3min or 42°C for 90 sec.  

8. Leave the sample on ice for 30 sec and add 900 µl of LB. 

9. Incubate for 60 min at 37°C.  

10. Plate 100µl of the transformation on LB supplemented with 40µg/ml Xgal and 100µg/ml 

spectinomycin.  

11. Incubate over night at 37°C (see Note 3). 
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Day 2 

1. Select a white colony and streak on a fresh plate of Minimum Medium A supplemented with 

0.2% glucose, 0.25% casaminoacids, 40µg/ml Xgal and 100 µg/ml spectinomycin. 

Day 3 

1. Prepare three different 1.5 ml cultures from three different white colonies in Minimum 

Medium A supplemented with 0.2% glucose, 0.25% casaminoacids and 100µg/ml 

spectinomycin final concentration for both the intramolecular strain and the intermolecular 

strain.  

2. Incubate overnight at 37°C. 

 

  Day 4 

1. Dilute the overnight cultures at 1/200 in minimum medium A supplemented with 0.2% 

casaminoacids and 0.2% glycerol at 37°C, under shaking. Use a 100ml Erlenmeyer and 25ml of 

medium. (see Notes 4). 

2. At OD600nm≈0.2 take two 100 µl aliquots of each culture; dilute them at a convenient dilution 

to obtain about 200 colonies per 100 µl plating. This is the non-induced recombination 

frequency reference. Add 0.1% arabinose to each culture (see Note 5 and 6). 

This step is crucial because recombination occurs as soon as the arabinose is added; specific 

care must be taken for the timing.  

3. For each time-point 5, 10, 15, 20 min for intermolecular recombination and between 3, 5, 10 

min for intramolecular recombination (see Notes 7 and 8), dilute samples 1/100 in minimum 

medium A,  casaminoacids and glycerol in order to dilute the arabinose and stop Cre induction 

We observed that Cre recombination dramatically dropped down in the minutes following 

arrest of induction (Lesterlin et al., 2012) (see Note 9) 

4. Then, dilute each sample at a convenient dilution to obtain about 200 colonies per 100 µl 

plating (see Note 10).  

5. Plate two times 100 µl of each sample on LB plates supplemented with 40 µg/ml Xgal and 

100µg/ml spectinomycin.  

6. Incubate at 37°C overnight.  

7. Count the number of white and blue colonies for each plate and each sample. 

8. Quantification of recombination: (number of blue colonies/number of white colonies INTER)/ 

(number of blue colonies/number of white colonies INTRA). The intramolecular recombination 

rate serves as normalization for Cre recombination efficiency per se, which depends on the 

locus considered, growth conditions and the genetic background. 

 

3.3 LacloxP assay by PCR method 

This alternative method relies on quantification of the loxP recombination products by combining a 

PCR amplification of the loxP products with their quantification on an Agilent Bioanalyzer. This method 

significantly facilitates interpretation of the results when working with mutants whose viability is 
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affected or with drugs that affect the cell cycle. In addition we observed higher reproducibility of the 

results with the PCR-Bioanalyzer method than with the plating method.  

For growth conditions and Cre induction, see section 3.2 Day 3 and Day 4 (1-2) 

1. Before Cre induction and at chosen time-points after induction, take 1.5 ml of the given 

samples and flash freeze them immediately in liquid nitrogen in a 2 ml test tubes. Frozen 

samples may be stored at -20°C for several weeks. 

2. Gently thaw samples and centrifuge them for 3 min at 9000 rpm. Remove the supernatant and 

proceed to genomic DNA extraction according to manufacturer instructions. Elute DNA in 100 

µl of elution buffer.(see Note 11) 

3. Quantify DNA with the Thermo Fisher Scientific Nanodrop. Expected DNA concentration is 

between 20 and 80 ng/µl.  

4. Dilute all samples to 2 ng/µl in molecular grade water. 

5. Perform a PCR on each sample using Ex Taq enzyme from TaKaRa. Use 1µl of diluted sample 

for each 50µl reaction. Tm=58°C, 28 cycles. Elongation step is 30 seconds  

6. Verify the PCR products with a 1.7% agarose gel in TBE 1X (see Note 12). Migration should be 

done at no more than 10V/cm for 1 hour in order to reveal the loxP recombination products. 

7. Take out the DNA 1000 agilent kit from 4°C about one hour before use to equilibrate reagents 

to room temperature. 

8. Load chip with amplified PCR products according to the manufacturer protocol (see note 13). 

9. Bioanalyzer software automatically performs DNA intensity peak calling and quantification. 

Typical results are described on figure 2A and 2B. Results are then expressed as a frequency of 

recombination by the following formula: (Amount of 1loxP + 3loxP products (in 

ng/ml))/(amount of 1loxP+2loxP+3loxP products (in ng/ml)). 

 

Notes 

 

1. We noticed that many Taq polymerases failed to properly amplify two and three successive 

loxP sites. The best results were obtained with TaKaRa Ex Taq in Mg2+ plus buffer. 

2. In some genetic backgrounds or growth conditions a high level of Cre recombination of the 

Laclox-rif cassette can be observed immediately after pCre transformation even in the absence 

of induction. If required, IPTG 20 µg/ml can be used to further repress Cre expression.  

3. Strains with the pCre plasmid cannot be stored at -80°C. The pCre plasmid must be 

transformed fresh before each experiment.  

4. The induction of pCre by arabinose in LB medium rapidly produces a high level of 

recombination. 100% of recombination products are observed in less than 10 min. We noticed 

that such a short time window does not allow obtaining highly reproducible results.  We 

recommend performing the experiments in minimum media A or M9 supplemented with 

casaminoacids 0.2% and glycerol 0.2% or succinate 0.2% as a carbon source. Avoid glucose to 

assure the proper induction of the arabinose promoter. 

5. A residual Cre recombination can be observed in some cases even in the absence of induction. 

This background recombination should be kept below 5% and must be subtracted from the 

recombination samples before analysis.   
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6. Growth conditions are critical for reproducibility. We recommend the systematic usage of 

100ml erlenmeyers, with 8ml of culture for your experiment. Best results were obtained when 

growth was carried in a water bath shaker (250 rpm).  

7. Timing is very important when adding the arabinose and the drug. Indeed, recombination 

occurs very quickly after arabinose induction and a bias can occur between samples if not 

timed properly. 

8. The Cre induction length should be adjusted according to the growth conditions and the 

genetic background. Recombination frequency is linear as a function of time between 5% and 

70%. We recommend using appropriate time points for your experiments depending on the 

chosen conditions. Recombination frequency is strongly affected by temperature. Intra 

molecular normalization is required for each temperature change.  

9. When doing the experiment on plate, recombination rates are higher than with the PCR 

method. Time points for kinetics must be shorter than with the PCR method. We do not yet 

fully understand this observation. Our current hypothesis is that a significant part of the 

recombination reaction initiated during the induction period only gives rise to resolved 

recombination products after this induction period and therefore could remain undetected by  

the PCR method (Lesterlin et al., 2012).   

10. When using the plate method, samples have to be diluted at 1/100e directly for each time 

point to stop the induction of Cre as quickly as possible. When using drugs affecting cell 

viability, make sure to calibrate dilutions for plating in order to have a countable amount of 

bacteria on plate 

11. Variation between experiments can be observed when changing genomic extraction kits. We 

suggest you always use the same supplier for your experiments. 

12. TBE 1X rather than TAE 0.5X should be used for the agarose gel verification for a better 

separation of the loxP products.  

13. The DNA 1000 Agilent chip is sensitive. It is important to avoid the amplification of non-specific 

products by PCR. The Tm and the number of cycles of the PCR are important factors allowing 

optimization of this step. When using the piko PCR machine from Thermo Scientific, optimal 

Tm is 58°C and 28 cycles are enough. These parameters may need changing and optimization 

if using a different PCR machine. 
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Figure 1  
A) The intermolecular loxP recombination reaction occurs between two close sister chromatids. The frequency of sister 
chromatid interactions can be assessed by a blue/white colony count or by a semi -quantitative PCR by amplifying the 
recombination products. B) The intramolecular loxP recombination frequency is measured by the loss of the rifampicin 
resistance gene by recombination of the two loxP sites spaced by 1kb. 

Figure 2 
A) Typical Electrophoresis run of a wild type strain upon Cre induction by arabinose. Cells were treated for 10, 20, 
30 or 40 min with 0.1% arabinose and analyzed with an agilent bioanalyzer.  B) Typical electrophoregram of a wild 
type strain upon Cre induction by arabinose. The result after 40 min of Cre induction is shown. The results are 
shown as Fluorescence Units (FU) in function of the time of elution. 

10 20 30 40 min 

A 

A 

B 



  Résumé de Thèse en français 
 

163 
 

 Résumé de thèse en français 

Dans toutes les cellules, Eucaryotes, comme Procaryotes, le maintien de l’intégrité du génome 

est essentiel à la survie des cellules afin de correctement transmettre l’information génétique 

aux prochaines générations. 

Lorsqu’une cassure survient sur une des molécules d’ADN, l’information génétique de la 

cellule peut être compromise, ce qui est extrêmement délétère, voire mortel. La réparation 

de telles cassures se fait principalement par recombinaison homologue (RH) entre la molécule 

lésée et son homologue intact (Pâques and Haber, 1999). Escherichia coli (E.coli) est un 

organisme modèle largement utilisé car il permet d’aborder des questions complexes et 

fondamentales tout en étant simple à manipuler. Son utilisation a d’ailleurs permis de grandes 

avancées en termes de recherche sur la réparation de l’ADN et les processus de recombinaison 

homologue. Chez E.coli, lorsqu’une cassure survient sur une des molécules d’ADN, RecA, la 

protéine centrale de la réponse SOS, se charge sur l’extrémité simple brin créée par l’hélicase 

RecBC et permet l’induction de la réponse SOS. La réponse SOS est un ensemble de plus de 

100 protéines impliquées dans la réparation de l’ADN chez E. coli (Kreuzer, 2013).  Ensemble, 

ces protéines vont orchestrer les différentes étapes de la réparation de la cassure, notamment 

via le processus de recombinaison homologue (RH). Ce processus est une étape essentielle à 

la réparation d’une cassure double brin survenant sur une des deux molécules d’ADN. En effet, 

la molécule d’ADN lésée se sert de sa chromatide sœur homologue comme matrice afin de 

réparer la lésion sans perdre d’information génétique, ce qui serait extrêmement délétère 

pour la survie de la cellule (Kowalczykowski et al., 1994). La proximité de la chromatide sœur 

homologue est alors essentielle à l’efficacité de la réaction de RH. En effet, une recherche 

extensive de la région homologue intacte semble chronophage et donc néfaste à l’efficacité 

de la réparation. Chez les Eucaryotes, des complexes multi-protéiques appelés Cohésines 

maintiennent les chromatides sœurs ensemble derrière la fourche de réplication. Certaines 

Cohésines telles que le complexe SMC5/SMC6 sont essentielles à la survie lorsque les cellules 

sont irradiées par des rayons γ et il a été montré que ces Cohésines pourraient être impliquées 

dans la réparation de l’ADN (Lehmann et al., 1995; Lindroos et al., 2006). Chez E.coli, qui ne 

possède pas de telles cohésines, une étape de cohésion des chromatides sœurs existe mais 

elle est assurée par des liens topologiques. En effet, lors d’un cycle de réplication normal, les 
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chromatides sœurs nouvellement répliquées restent liées entre elles, derrière la fourche de 

réplication, grâce à des liens topologiques appelés précaténanes. Ces précaténanes sont 

ensuite éliminées par la Topoisomérase IV permettant ainsi la ségrégation des deux 

chromatides (Wang et al., 2008). Ces précaténanes peuvent s’étendre sur une distance allant 

jusqu’à 1 Mpb derrière la fourche de réplication et définissent la phase dite de cohésion des 

chromatides sœurs. 

Mon projet de thèse s’intéresse à cette étape de cohésion des chromatides sœurs pour la 

réparation de cassures survenant sur l’ADN et pour la recombinaison homologue chez E.coli. 

Elle s’articule autour de différents axes. i) La cohésion des chromatides sœurs chez E.coli est-

elle modifiée lors de cassures à l’ADN ? ii) Quel est le rôle de la réponse SOS et quelles 

protéines de la réparation de l’ADN sont impliquées dans ce processus ? iii) L’altération des 

Topoisomérases influence-t-elle  la réparation de l’ADN ? iv) Quel est l’impact des différentes 

drogues chimiothérapeutiques sur la cohésion des chromatides et la réparation de l’ADN ? 

Grâce à une technique de biologie moléculaire reposant sur la recombinaison site spécifique 

entre sites loxP portés par deux chromatides sœurs homologues, j’ai montré que l’étape de 

cohésion des chromatides sœurs est prolongée lorsque l’ADN est endommagé par des lésions 

liées à la Mitomycine C (MMC). Lors d’un traitement par la MMC, la ségrégation des 

chromatides sœurs est inhibée de façon dépendante de la réponse SOS et j’ai montré plus 

particulièrement de la protéine RecN est largement impliquée dans ce processus. RecN 

appartient au régulon SOS et possède une structure de type SMC (Maintient de la Structure 

des Chromosomes). Chez E. coli il a été montré qu’elle est importante pour la survie à un 

traitement MMC, à une coupure site spécifique IsceI et aux radiations ionisantes (Picksley et 

al., 1984). Elle n’a pas encore été purifiée chez E.coli mais chez D. radiodurans des études in 

vitro montrent que RecN serait capable de liguer deux extrémités d’ADN et présenterait une 

structure similaire à celles d’une Cohésine Eucaryote, bien qu’étant plus petite (Pellegrino et 

al., 2012). Chez B.subtilis, une fonction similaire a été décrite. RecN pourrait protéger les 

extrémités de la cassure double brin et les maintenir proches, facilitant l’accès de la cassure à 

RecA et aux autres protéines de la réparation de l’ADN (Sanchez et al., 2006). En revanche, j’ai 

montré que les cassures de type gap simple brin, comme celles créées par l’AZT ou 

l’hydroxyurée n’induisent pas une prolongation de l’étape de cohésion des chromatides sœurs 
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et leur réparation est indépendante de RecN. RecN semble donc être une protéine spécifique 

de la réparation des cassures double brin. 

Il a été démontré que l’inhibition de la Topoisomérase IV prolonge la phase de cohésion des 

chromatides sœurs en inhibant leur ségrégation (Lesterlin et al., 2012). Dans le but de tester 

l’influence d’une inhibition de la Topo IV sur la cohésion des chromatides sœurs en réponse à 

des dommages à l’ADN, j’ai réalisé des expériences de recombinaison loxP et des tests de 

viabilité. J’ai observé que la perte de cohésion observée dans un mutant recN peut être 

compensée par une inhibition de la Topoisomérase IV, suggérant que l’action principale de 

RecN est de maintenir des liens entre les chromatides sœurs lors de la réparation d’une 

cassure. Le maintien de proximité entre chromatides sœurs, assuré par les liens topologiques, 

se traduit par une compensation de la perte de viabilité du mutant recN. Ceci suggère que 

maintenir les chromatides sœurs proches est favorable à la survie à un traitement à la MMC 

et donc à la réparation de l’ADN. 

L’observation par microscopie confocale de la dynamique de foci fluorescents marqués sur le 

nucléoide a permis de mettre en évidence un second rôle de RecN. En effet, lorsque deux 

chromatides sœurs ont déjà été ségrégées, elles sont capables de se réapparier après un 

traitement à la MMC. Ce réappariement est dépendant de RecN et s’accompagne d’une 

compaction globale des nucléoides, démontrant que RecN est capable d’empêcher la 

ségrégation de chromatides sœurs déjà cohésives mais aussi d’induire le rapprochement et le 

réappariement de chromatides sœurs préalablement ségrégées. Ce rapprochement pourrait 

néanmoins être la conséquence d’une compaction globale et aspécifique du nucléoide en 

réponse à la MMC, semblable à l’action d’une condensine. Afin de distinguer entre une 

possible fonction de condensine ou de cohésine de RecN, j’ai inséré deux sites parS distincts, 

reconnus par deux fluorophores différents à une distance de 188 kb sur le même réplichore. 

Lorsque les cellules sont traitées à la MMC, la distance entre les deux foci fluorescents ne 

décroit pas, bien que l’on observe un rapprochement des chromatides sœurs ségrégées. Ceci 

semble suggérer que RecN est capable de médier le rapprochement des chromatides sœurs 

sans induire une compaction globale et aspécifique du nucléoide, comme c’est le cas avec 

certains antibiotiques comme le chloramphénicol. 
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Un RNAseq mené dans une souche sauvage et une souche recN a permis de mettre en 

évidence une influence de RecN sur l’induction de la réponse SOS. En effet, en l’absence de 

RecN, l’induction de nombreux gènes de la réponse SOS est réduite. Cette réduction est 

spécifique des gènes de la réponse SOS étant donné que l’expression des autres gènes n’est 

pas affectée par la délétion de recN. L’influence de RecN sur la réponse SOS pourrait être liée 

à une influence de RecN sur RecA étant donné que RecA est la protéine centrale d’induction 

de la réponse SOS. En 2013, le groupe de Hishida a montré une potentielle interaction entre 

RecN et RecA (Keyamura et al., 2013). Afin d’approfondir cette observation j’ai décidé de 

regarder la dynamique et la formation des foci RecA en microscopie à haute résolution dans 

un mutant recN. Dans une souche sauvage, RecA forme plusieurs foci sur l’ADN lorsque les 

cellules sont traitées à la MMC. En revanche, dans un mutant recN, RecA forme des structures 

de type « bundle » décrites en 2013 par Lesterlin et al. Ce type de filaments de RecA se forme 

dans un contexte particulier, lorsqu’une cassure double brin survient sur une chromatide sœur 

déjà ségrégée, dans le but de la réapparier avec son homologue. La formation de ces filaments 

en l’absence de RecN pourrait résulter d’une recherche de l’homologue intacte, étant donné 

que les deux chromatides ne sont plus maintenues proches par RecN. D’autres expériences 

ont permis de conclure que RecN nécessite RecA pour se charger sur l’ADN, définissant RecA 

comme un loader de RecN. 

L’ensemble de ces travaux ont mené à une publication dans Nature Communications en 2017 

(Vickridge et al., 2017). 

La recherche d’éventuels partenaires et l’étude d’aspects plus mécanistiques sur le 

chargement de RecN ont fait l’objet de la suite de ma thèse. 

Afin d’aborder ces questions, différentes approches ont été mises en œuvre. La surexpression 

de différents gènes dans un mutant recN, et la sélection des clones capables de pousser après 

un traitement à la MMC a permis l’identification de plusieurs gènes dont la surexpression 

pourrait compenser la perte de viabilité de recN. Une étude plus poussée de ces gènes, (sbmC, 

xthA ou encore dacD)  n’ont cependant pas permis de mettre en évidence une potentielle 

interaction ou synergie avec RecN.  

Deux approches de biochimie différentes, la co-immunoprécipitation avec RecN et l’IPOND 

(immunoprecipitation of proteins on nascent DNA) ont révélé une possible interaction entre 
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RecN et UvrA, UvrB, UvrC et RadA. Les protéines Uvr font partie de la voie de réparation par 

NER (réparation par excision de nucléotides), impliquée lors de dommages par MMC pour 

éliminer les liens convalents entre les deux molécules d’ADN crées par la MMC. RadA est une 

protéine impliquée dans le processus de recombinaison homologue. Il a été montré que RadA 

est capable, même en l’absence de RecA, de promouvoir l’extension de branche lors de la 

recombinaison homologue (Cooper and Lovett, 2016). Des experiences préliminaires ont 

montré que la cohésion entre chromatides sœurs révélée par recombinaison loxP est réduite 

dans un mutant uvrA. Le double mutant uvrA recN possède un phénotype semblable à celui 

du simple mutant uvrA suggérant que RecN agirait principalement via un mécanisme lié à 

UvrA. Lors de l’excision de MMC par la voie du NER, il arrive que UvrC, l’endonuclease qui 

excise la lésion, fasse une double incision, créant ainsi une cassure double brin  (Peng et al., 

2010; Weng et al., 2010). Il est possible d’envisager que RecN soit recruté à ces cassures 

doubles brins, pour éventuellement maintenir les extrêmités de la cassure ensemble et 

favoriser la réparation par recombinaison homologue. Ces résultats, encore préliminaire 

devront faire l’objet d’une étude plus poussée. 

L’ensemble de mes travaux de thèse a permis de démontrer l’importance de la cohésion des 

chromatides sœurs pour la réparation de l’ADN chez E. coli. Plus particulièrement, j’ai montré 

l’importance de RecN, une protéine de type SMC, induite par la réponse SOS. RecN empêche 

la ségrégation des chromatides sœurs lors de cassures à l’ADN et permet un réarrangement 

global des nucleoids endommagés. RecN est une protéine très conservée chez les Procaryotes 

ce qui renforce son importance pour la cohésion des chromatides sœurs et la réparation de 

l’ADN, possiblement en favorisant la recherche de la séquence homologue. Les résultats 

complémentaires obtenus soulèvent des questions interessantes et des mécanismes 

complexes qui feront l’objet, je n’en doute pas, de nouvelles recherches. 
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 Annex 

Annex 1. During my PhD, I got the opportunity to participate in Hafez El Sayyed’s article, published 

in Plos Genetics in 2016. 

Hafez’s PhD consisted in mapping the Topoisomerase IV binding sites and cutting sites on the E.coli 

chromosome. Interestingly, one observation that he made was that Topo IV cleavage at the dif site 

was impaired in a matP mutant. Complementary experiments lead to the conclusion that MatP may 

be important for targeting Topo IV to dif. It was hypothesized that the activity of Topo IV at dif could 

be specific to post-replication decatenation events linked to circular chromosomes. Cleavage was 

completely lost in a strain with a linear chromosome suggesting that Topo IV’s activity is only required 

at dif with circular chromosomes. To test whether the phenotypes associated with matP deletion were 

also dependent on the circularity of the chromosome, I constructed matP mutants in a strain with a 

circular chromosome and in a strain where the chromosome is linearized. I then observed the 

nucleoids by microscopy and DAPI staining in the different backgrounds. I found that the phenotypes 

associated with matP deletion were suppressed by the linearization of the chromosome, also 

confirming that cleavage of Topo IV at dif is specific to circular chromosomes. 
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Abstract
Catenation links between sister chromatids are formed progressively during DNA replica-

tion and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacte-

rial type II topoisomerase involved in the removal of catenation links both behind replication

forks and after replication during the final separation of sister chromosomes. We have

investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic

and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E.
coli chromosome is controlled by DNA replication. During replication, Topo IV has access to

most of the genome but only selects a few hundred specific sites for its activity. Local chro-

matin and gene expression context influence site selection. Moreover strong DNA-binding

and catalytic activities are found at the chromosome dimer resolution site, dif, located oppo-

site the origin of replication. We reveal a physical and functional interaction between Topo

IV and the XerCD recombinases acting at the dif site. This interaction is modulated by

MatP, a protein involved in the organization of the Ter macrodomain. These results show

that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chro-

mosome management during the cell cycle.

Author Summary

DNA topoisomerases are ubiquitous enzymes that solve the topological problems associ-
ated with replication, transcription and recombination. Type II Topoisomerases play a
major role in the management of newly replicated DNA. They contribute to the condensa-
tion and segregation of chromosomes to the future daughter cells and are essential for the
optimal transmission of genetic information. In most bacteria, including the model organ-
ism Escherichia coli, these tasks are performed by two enzymes, DNA gyrase and DNA
Topoisomerase IV (Topo IV). The distribution of the roles between these enzymes during
the cell cycle is not yet completely understood. In the present study we use genomic and
molecular biology methods to decipher the regulation of Topo IV during the cell cycle.
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Here we present data that strongly suggest the interaction of Topo IV with the chromo-
some is controlled by DNA replication and chromatin factors responsible for its loading to
specific regions of the chromosome. In addition, our observations reveal, that by sharing
several key factors, the DNA management processes ensuring accuracy of the late steps of
chromosome segregation are all interconnected.

Introduction
DNA replication of a circular bacterial chromosome involves strong DNA topology constraints
that are modulated by the activity of DNA topoisomerases [1]. Our current understanding of
these topological modifications comes from extensive studies on replicating plasmids [2, 3]
These studies suggest that positive supercoils are formed ahead of the replication fork, while
precatenanes are formed on newly replicated sister strands. At the end of a replication round,
unresolved precatenanes accumulate in the region of replication termination and are converted
to catenanes between the replicated sister chromosomes. Neither precatenanes or catenanes
have been directly observed on chromosomes but their presence is generally accepted and fail-
ure to resolve them leads to chromosome segregation defects and cell death [4].

Topo IV is a type II topoisomerase formed by two dimers of the ParC and ParE subunits
and is the main decatenase in Esherichia. coli [5]. in vitro, its activity is 100 fold stronger on cat-
enated circles than that of DNA gyrase [6]. Topo IV activity is dependent on the topology of
the DNA substrate; Topo IV activity is strongest on positively supercoiled DNA and has a
marked preference for L-braids, which it relaxes completely and processively. Topo IV can also
unlink R-braids but only when they supercoil to form L-plectonemes [7–9]. In vivo, DNA gyr-
ase appears to have multiple targets on the E. coli chromosome [10–12], whereas Topo IV
cleavage sites seem to occur less frequently [11]. Interestingly, Topoisomerase IV activity is not
essential for replication itself [13] but is critical for chromosome segregation [14]. The pattern
of sister chromatid separation has been shown to vary upon Topo IV alteration, leading to the
view that precatenanes mediate sister chromatid cohesion by accumulating for several hundred
kilobases behind the replication forks keeping the newly replicated DNA together [13, 15]. The
regulation of Topo IV and perhaps the accessibility of the protein to chromosome dimers was
proposed to be an important factor controlling chromosome segregation [15, 16]. Topo IV
activity can be modulated by a number of proteins including MukB and SeqA. MukB, is an
SMC-related protein in E. coli and is reported to bind to the C-terminus of Topo IV [17] to
enhance Topo IV unlinking activities [18, 19]. MukB also appears to be important in favoring
the formation of Topo IV foci (clusters) near the origin of replication [20]. SeqA, a protein
involved in the control of replication initiation, and Topo IV also interact [21]. These interac-
tions may play a role in sister chromatid segregation at the late segregating SNAP regions near
the origin of replication of the chromosome [16].

Beside its role in the resolution of precatenanes, Topo IV is mostly required in the post-rep-
licative (G2) phase of the cell cycle for the resolution of catenation links. Indeed, Espeli et al.
showed that Topo IV activity is mostly observed during the G2 phase, suggesting that a number
of catenation links persist after replication [22]. Recent cell biology experiments revealed that
in G2, the terminal region (ter) opposite oriC segregates following a specific pattern [23–25].
Sister ter regions remain associated from the moment of their replication to the onset of cell
division. This sister-chromosome association is mediated by the Ter macrodomain organizing
protein, MatP [26]. At the onset of cell division, the FtsK DNA-translocase processes this
region, releasing the MatP-mediated association. This process ends at the dif site, when the
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dimeric forms of the sister chromosomes are resolved by the XerC and XerD recombinases. A
functional interaction between the MatP/FtsK/XerCD-dif system and Topo IV has long been
suspected. FtsK interacts with Topo IV, enhancing its decatenation activity in vitro [27, 28]
and the dif region has been reported as a preferential site of Topo IV cleavage [29]. This func-
tional interaction has been poorly documented to date and is therefore remains elusive.

In this study we have used genomic and molecular biology methods to characterize Topo IV
regulation during the Escherichia coli cell cycle on a genome-wide scale. The present work
revealed that Topo IV requires DNA replication to load on the chromosome. In addition, we
have identified two binding patterns: i) regions where Topo IV binds DNA but is not engaged
in a cleavage reaction; ii) numerous sites where Topo IV cleavage is frequent. We show that
Topo IV-mediated removal of precatenanes is influenced by both local chromatin structure
and gene expression. We also demonstrate that at the dif site, Topo IV cleavage and binding
are enhanced by the presence of the XerCD recombinase and the MatP chromosome-structur-
ing factor. The enhancement of Topo IV activity at dif promotes decatenation of fully repli-
cated chromosomes and through interaction with other DNA management processes, this
decatenation ensures accurate separation of the sister chromosomes.

Results

Topoisomerase IV binding on the E. coli chromosome
To identify Topo IV binding, we performed ChIP-seq experiments in ParE and ParC Flag tagged
strains. The C-terminus fusions of ParE and ParC replaced the wild-type (WT) alleles without
any observable phenotypes (S1 Fig). We performed three independent experiments, two ParE-
flag IPs and one ParC-flag IP, with reproducible patterns identified in all three experiments. A
Pearson correlation of 0.8, 0.9 and 0.7 was observed for ParC-ParE1, ParE1-ParE2 and ParC--
ParE2 respectively. A map of enriched regions observed in each experiment is represented on Fig
1A (red circles). Four of the highly-enriched sites are illustrated at a higher magnification in Fig
1A—right panels. Interestingly one of these sites corresponds to the dif site (position 1.58Mb),
which has previously been identified as a strong Topoisomerase IV cleavage site in the presence
of norfloxacin [29]. We also observed strong enrichment over rRNA operons, tRNA and IS
sequences. To address the significance of the enrichment at rRNA, tRNA and IS, we monitored
these sites in ChIP-seq experiments performed in the same conditions with a MatP-flag strain
and mock IP performed with strain that did not contain any flag tagged protein. Both MatP and
Mock IP presented significant signals on rRNA, tRNA and IS loci (S2 Fig). This observation sug-
gested that Topo IV enrichment at rRNA, tRNAs and IS was an artifact of the ChIP-Seq tech-
nique. By contrast no enrichment was observed at the dif site in the MatP and mock-IP
experiments (S2 Fig), we therefore considered dif to be a genuine Topo IV binding site and com-
pared every enriched region (>2 fold) with the dif IP. We filtered the raw data for regions pre-
senting the highest Pearson correlation with the dif signal (>0.7). This procedure discarded
many highly enriched regions (Fig 1A orange circles). We identified 19 sites throughout the
chromosome where Topo IV IP/input signal suggested a specific binding for at least two of the
experiments (Fig 1A, outer circle histogram, S1 Table). Most Topo IV binding sites span a 200
bp region. These sites frequently overlapped intergenic regions, with their mid-points located
inside the intergenic region, and did not correlate with any identifiable consensus sequence. In
addition to dif, which exhibited a 10-fold enrichment, three other sites were strongly enriched.
These sites corresponded to positions 1.25Mb (9.4x), 1.85Mb (31x) and 2.56Mb (19x) on the
chromosome (Fig 1A, right panels). Beside these specific sites, Topo IV IP showed non-specific
enrichment in the oriC proximal half of the chromosome. This bias was not a consequence of
locus copy number, as the enrichment remained after copy number normalization (Fig 1B). We
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Fig 1. Topo IV binding pattern of replicating chromosome. A) Circos plot of the ChIP-seq experiments for ParC-flag and ParE-
flag. The IP / input ratio over the entire E. coli genome is presented for three independent experiments, one IP on the parC-flag
strain and two IPs on the parE-flag strain. From the center to the outside, circles represent: genomic coordinates, macrodomain
map, position of tRNA genes and ribosomal operons, ParE-Flag 1 ChIP-seq (untreated data, orange), ParE-Flag 1 ChIP-seq
(filtered data, red), ParE-Flag 2 ChIP-seq (untreated data, orange), ParE-Flag 2 ChIP-seq (filtered data, red), ParC-Flag ChIP-seq
(untreated data, orange), ParC-Flag ChIP-seq (filtered data, red), position of the 19 validated Topo IV binding sites. The right
panels represent magnifications for four specific Topo IV binding sites, position 1.25 Mb, position 1.58 Mb (dif), position 1.85 Mb
and position 2.56Mb. The three first rows correspond to filtered IP/Input ratio for ParC-Flag, ParE-Flag1 and ParE-Flag2 IPs, the
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usedMatP-Flag IP [30] and a control IP in a strain that does not contain a Flag tagged gene to
differentiate non-specific Topo IV binding from experimental noise (S3A Fig). In addition, Topo
IV enrichment was also observed in GC rich regions of the chromosomes (S3B Fig). Importantly,
the ori/ter bias was not a result of the GC% bias along the chromosome since it was still explicit
after GC% normalization (S3C Fig). More precisely, the Topo IV binding pattern closely fol-
lowed gene dosage for a ~3Mb region centered on oriC (S3D and S3E Fig and S1 Text). In the
complementary ter-proximal region, gene dosage (input reads) was higher than the ChIP-seq
profile, suggesting that the nonspecific Topo IV binding was lower or lasts for a shorter time in
the cell cycle (since these data are population-averaged). The Terminus region that is depleted in
Topo IV binding (1.6Mb) surpassed, by far, the size of the Ter macrodomain (800kb).

Topo IV binding is influenced by replication
The influence of Topo IV on sister chromatid interactions [15] prompted the question of how
Topo IV would follow replication forks and bind to the newly replicated sister chromatids
throughout the cell cycle. We performed ChIP-seq experiments in E. coli dnaC2 strains under
conditions suitable for cell cycle synchronization of the entire population. Synchronization was
achieved through a double temperature shift, as described previously [15]. Using these condi-
tions, in each cell, S phase is initiated on one chromosome, lasts for 40–45 min and is followed
by a G2 phase (20 min) (S4 Fig). We analyzed ParE binding before the initiation of replication,
in S phase 20 min (S20) and 40 min (S40) after the initiation of replication and in G2 phase.
The synchronization of replication in the population was monitored by marker frequency anal-
ysis of the Input DNA (Fig 1C). The profile observed for bacteria that did not replicate at non-
permissive temperature was strictly flat, but the S20 replication profile presented two sharp
changes of the marker frequency slope around positions 500kb and 2700kb. This suggested
that each replication fork had crossed approximately 1000 to 1300 kb in 20 min. The S40 repli-
cation profile demonstrated that most cells had finished replication, with the unreplicated
region being limited to 300 kb around dif in no more than 20% of the bacteria. In G2 phase the
marker frequency was flat. We used flow cytometry to demonstrate that at G2, the amount of
DNA in each bacterium was double compared to that of the G1 bacteria, indicating that cytoki-
nesis has not yet occurred (S4 Fig). We analyzed Topo IV binding at specific binding sites (Fig
1D). Binding at these sites was strongly impaired in the absence of replication. Binding at every
site started in the S20 sample and was maximal in the S40 or G2 samples, without showing any
marked decrease, even in the oriC-proximal region. These observations suggest that Topo IV
binds to specific sites during S phase. However, since enrichment was observed for non-repli-
cated loci and was maintained for a long time after replication, it was not compatible with a
model of Topo IV migration with the replication forks. Synchronization experiments with a
higher temporal resolution are required to clarify this observation.

Only certain Topo IV binding sites correspond to Topo IV cleavage sites
To measure Topo IV cleavage at the binding sites, we took advantage of the fact that norfloxa-
cin covalently links Topoisomerase II to the gate segment of DNA and prevent its relegation

fourth and fifth rows correspond respectively to the forward and reverse raw read numbers of the parC-flag experiment. The
position and orientation of genes are illustrated at the bottom of each panel. B) Sliding averages of the IP (blue, left Y axis), Input
(red, left Y axis) and IP/input (green, right Y axis) data for the parC-flag experiment over 60 kb regions along the genome. To
facilitate the reading, oriC is positioned at 0 and 4.639 Mb. C) Analysis of Topo IV binding during the bacterial cell cycle. Marker
frequency analysis was used to demonstrate the synchrony of the population at each time point. Stars represent the position of the
selected Topo IV sites. D) IP/input ratio for 7 regions presenting specific Topo IV enrichment during S and G2 phases. For each
genomic position the maximum scale is set to the maximum IP/Input ratio observed.

doi:10.1371/journal.pgen.1006025.g001
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[31]. We first monitored Topo IV activity on the Topo IV enriched regions (1.2, 1.8, 2.5, 3.2
Mb and dif) by incubating bacteria with norfloxacin for 10 minutes before genomic extraction
and performing Southern blot analysis to detect the cleaved DNA products [10, 29]. This
revealed cleavage fragments induced by both DNA Gyrase and Topo IV poisoning in the WT
strain, but only Topo IV cleavage in a nalR strain where DNA Gyrase is resistant to norfloxa-
cin. Among the 5 tested sites, only two displayed clear Topo IV cleavage at the expected posi-
tion (Fig 2A). As expected, the dif site exhibited strong cleavage. Moreover cleavage was also
observed at position 2.56 Mb. However the 1.2, 1.8 and 3.2 Mb sites did not show any Topo IV
mediated cleavage in the presence of norfloxacin.

Topo IV presents hundreds of cleavage sites on the chromosome
The above result prompted us to investigate Topo IV cleavage at the genome-wide scale. We
performed IPs in the presence of norfloxacin as a crosslinking agent instead of formaldehyde.
Following this step, all downstream steps of the protocol were identical to that of the ChIP-Seq
assay. We referred to this method as NorflIP. The NorflIP profile differed from the ChIP-seq
profile (Fig 2B). Regions immunoprecipitated with Topo IV-norfloxacin cross-links were fre-
quently observed (Fig 2C orange circle). Similarly to the ChIP-seq experiments, the NorflIP
profile revealed strong enrichment over the rRNA operons and IS sequences but not at the
tRNA genes (S5A Fig). We used a Southern blot cleavage assay to demonstrate that these signal
did not correspond to Topo IV cleavages (S5B Fig). The NorflIP peaks correspond to a ~170
bp forward and reverse enrichment signal separated by a 130 bp segment, which is not
enriched. This pattern is the consequence of the covalent binding of Topo IV to the 5’ bases at
the cleavage site. After Proteinase K treatment the cleaving tyrosine residue bound to the 5’
extremity resulted in poor ligation efficiency and infrequent sequencing of the cleaved extremi-
ties. (S6A and S6B Fig) This observation confirmed that we were observing genuine Topoisom-
erase cleavage sites. We used this pattern to define an automatic peak calling procedure (S6C
Fig) that identified between 134 and 458 peaks in the three NorflIP experiments, two experi-
ments performed with ParC-Flag and one with ParE-Flag (Fig 2C purple circles and Fig 2D).
We observed a total of 571 possible sites in the three experiments with about half of the sites
common to at least two experiments and approximately 88 sites common to all three experi-
ments (S1 Table). We analyzed sequencing reads for the three experiments around the dif, 0.2
Mb and 1.92Mb positions. It revealed abrupt depletions of forward and reverse reads in a
100bp center region suggesting that it corresponds to the site of cleavage. We extrapolated this
result for every peak to estimate the cleavage positioning of Topo IV (~150bp downstream of
the center of the forward peak, S6D Fig) We manually validated 172 sites that were common to
ParC-1 and ParE-1 experiments (S1 Table) for further analysis.

Characteristics of Topo IV cleavage sites
The Topo IV cleavage at the dif site was the most enriched of the chromosome (~ 30 fold),
fourteen sites were enriched from 5 to 10 fold and other positions were enriched from 2 to 5
fold (Fig 2E). Most NorflIP sites did not correspond to significant peaks in the ChIP-seq exper-
iment (Fig 2E). We also did not observe any cleavage for the majority of the strong binding
sites observed by ChIP-seq. This is illustrated for the binding site at 1.85 Mb (Fig 2E). We veri-
fied several Topo IV cleavage sites by Southern blot, a significant cleaved DNA fragment was
observed at the expected size for each of them (Fig 2F). Southern blotting experiments follow-
ing DNA cleavage in the presence of norfloxacin on synchronized cultures revealed that, like
its binding, Topo IV cleavage is coordinated with DNA replication. In good agreement with
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Fig 2. Topo IV cleavage at the Topo IV binding sites. A) Norfloxacin mediated DNA cleavage revealed by Southern blot with a
radiolabeled probe near the dif site, the 1.25 Mb, 1.85 Mb, 2.56 Mb and the 3.24 Mb site. The size of the expected fragment
generated by Topo IV cleavage is marked by an arrow. Topo IV cleavage can be differentiated from gyrase cleavages because of
their presence in a nalR strain. B) Genome browser image of a 15kb region representative of Topo IV cleavage frequency (purple).
These cleavage sites are not correlated with Topo IV enrichment in the ChIP-seq experiments described in Fig 1 (red). C) Circos plot
of the NorflIP experiments. From the center to the outside, circles represent: genomic coordinates, macrodomain map, position of
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ChIP-seq experiments, increased cleavage was observed as soon as 20 minutes after initiation
of replication for the dif and 2.56 Mb sites (Fig 2G).

Genomic distribution of Topo IV cleavage sites
The general genomic distribution of Topo IV cleavage sites was not homogeneous; a few regions
had a large number of sites clustered together, while the 1.2Mb– 2.5 Mb region contained a low
density of sites (Fig 2H). We further analyzed the distribution of cleavage sites in the terminus
and the oriC regions. In the terminus region, the average distance of consecutive cleavage sites
was long (around 30 kb in the 1.5–2.5 Mb region) compared to 8 kb in the 0.8–1.5 Mb or the
2.5–3.1 Mb regions (S7A Fig). The oriC region displays a mixed distribution (S7B Fig), a high
density of sites near oriC flanked by two depleted regions, including the SNAP2 region [16]. At
the gene scale, the mid-point of Topo IV cleavage signal can be localized inside genes (82%) or
intergenic regions (16%) but it presents a bias toward the 5’ or 3’ gene extremities (S7C Fig).
Since the cleavage signal spans approximately 200bp, nearly 50% of the sites overlapped, at least
partly, with intergenic regions that account for only 11% of the genome. Finally, we did not
identify any robust consensus between sets of Topo IV cleavage sites. The only sequence traits
that we identified are a bias for GC dinucleotides near the center of the sites (S7D Fig) and an
increased spacing of GATCmotifs around cleavage sites (S7E Fig).

Targeting of Topo IV cleavage activity is influenced by local environment
The bias in the distribution of cleavage sites (Fig 2H) was very similar to the Topo IV binding
bias revealed by ChIP-seq (Fig 1C). NorflIP and ChIP-seq data were compared on Fig 3A.
Despite the lack of corresponding ChIP-seq enrichment at the position of most highly enriched
NorflIP sites, a number of consistencies were observed between these two data sets. Overall the
NorflIP and ChIP-seq datasets had a Pearson correlation of 0.3 and the averaged data (1 kb
bin) revealed a Pearson correlation of 0.5. First a small amount of local enrichment in the
ChIP-seq experiments was frequently observed in the regions containing many cleavage sites
(Fig 3A and 3C). This led us to consider that trapped Topo IV engaged in the cleavage reaction
could contribute to a small amount of local enrichment in the ChIP-seq experiments. Second,
both Topo IV cleavages and binding sites were rare in highly expressed regions (Fig 3A), only
one of the 172 manually validated Topo IV cleavage site overlapped a highly expressed region.
However cleavages sites were more frequently, than expected for a random distribution,
observed in their vicinity (Fig 3C and S8 Fig). Thirty percent (50/172) of the Topo IV sites are
less than 2 kb away from the next highly expressed transcription unit (Fig 3).

We explored correlations between the localization of Topo IV cleavages and binding sites of
various NAPs thanks to the Nust database and tools [32]. A significant correlation was only
observed for Fis binding sites (Fig 3B). Sixty eight genes present both Fis binding [33] and
Topo IV cleavage (P value 2x10-03). Thirty-three of the 172 manually validated cleavage sites

tRNA genes and ribosomal operons, ParC-Flag 1 NorflIP (untreated data, orange), ParC-Flag 1 NorflIP (filtered data, purple),
ParE-Flag NorflIP(filtered data, purple), ParC-Flag 2 NorflIP (filtered data, purple), validated TopoIV sites present in the ParC-Flag 1,
ParE-Flag and ParC-Flag 2 experiments. For visualization purpose, the maximum scale of NorflIP data has been fixed to an IP/input
ratio of 10. D) Peak calling procedure, dedicated to DNA cleavage mediated by TopoIV in the presence of norfloxacin (S6 Fig),
revealed 571 sites in total, in three experiments. Venn diagrams of common Topo IV cleavage sites in two experiments. About 200
common sites are observed in each pair of experiments. E) Genome browser zooms on the dif, 1.85, 1.92 and 2.56 Mb regions for
Topo IV cleavage (purple) and Topo IV binding revealed by ChIP-seq (red). F) DNA cleavage mediated by TopoIV in the presence
of norfloxacin revealed by Southern blot with a radiolabeled probe at 0.02, 1.92 Mb and the 3.2 Mb sites. G) Cleavage experiments
performed on synchronized cultures, revealed a replication dependency (AS asynchronous, NR not replicating, S20 20 min after the
initiation of replication (IR), S40 40 min after IR, S60 60 min after IR. H) Distribution of the ParC-Flag 1 NorflIP validated sites on the
genome by 50 kb bins.

doi:10.1371/journal.pgen.1006025.g002
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Fig 3. Targeting Topo IV cleavage sites along the E. coli genome. A) Circos plot of the ParC-Flag Chipseq and ParC-Flag 1 NorflIP experiments.
From the center to the outside, circles represent: genomic coordinates, macrodomain map, Fis binding sites in mid exponential phase, % of bases
bound by Fis per 20 kb windows of genomic DNA, H-NS binding sites in mid exponential phase, % of bases bound by H-NS per 20 kb windows of
genomic DNA [33], ParC-Flag ChIP-seq (depleted regions blue, IP/input <1), ParC-Flag ChIP-seq (enriched regions red, IP/input >1), ParC-Flag 1
NorflIP (depleted regions blue, IP/input <1), ParC-Flag 1 NorflIP (enriched regions red, IP/input >1), gene expression data (RNA-seq results performed
in the ChIP-seq and NorflIP conditions). For visualization purpose, the maximum scale of RNAseq data has been fixed to 500 reads which
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overlapped at least partially with a Fis binding site, 80 of them are located less than 400 bp
away from a Fis binding site. At the genome scale this correlation is difficult to observe (Fig
3A), but close examination clearly revealed overlapping Topo IV cleavages and Fis binding
sites (Fig 3C). Fis binding sites are more numerous than Topo IV cleavage sites, therefore a
large number of them do not present enrichment for Topo IV (Fig 3C). By contrast, Topo IV
peaks are excluded from H-NS rich regions (Fig 3A, 3B and 3C). Only one of the 172 manually
validated Topo IV cleavage site overlapped with an H-NS binding site. As observed for highly
expressed regions TopoIV cleavage sites were frequently observed at the border of H-NS rich
regions (Fig 3C). Moreover H-NS rich regions contain less Topo IV than the rest of the chro-
mosome (Fig 3A–3D and S9A Fig). H-NS rich regions correspond to an AT rich segment of
the chromosome (Fig 3C and 3D). Indeed background level of Topo IV binding and cleavage
were significantly reduced in AT rich regions (S9B Fig). In rare occasions binding of H-NS has
been observed in regions with a regular AT content (Fig 3C), notably Topo IV binding and
cleavage were also reduced in these regions. This observation suggested that H-NS itself rather
than AT content limits the accessibility of Topo IV to DNA. This observation was confirmed
by the identification of Topo IV cleavage in regions with an AT content ranging from 20 to
80% (S9C and S9D Fig).

We performed Southern blot analysis of Topo IV cleavage on representative sites to test
whether gene expression and chromatin factors influenced Topo IV site selection. First, we
observed that the exact deletion of cleavage sites at position 1.92 Mb and 2.56 Mb did not abol-
ish Topo IV cleavage activity (Fig 3D and 3E). Second, since these loci also contain a Fis bind-
ing site overlapping Topo IV cleavage signal, we deleted the fis gene. However, deletion of the
fis gene did not modify Topo IV cleavage (Fig 3D and 3E). Finally we performed cleavage
assays in the presence of rifampicin to inhibit transcription. To limit the pleiotropic effects of
rifampicin addition we performed the experiment with a 20 min pulse of rifampicin. Rifampi-
cin treatment abolished Topo IV cleavage (Fig 3E). These results suggest that gene expression
rather than chromatin factors influences Topo IV targeting.

XerC targets Topo IV to the dif site
Our analysis confirms that the dif region is a hot spot for Topo IV activity [29]. Indeed, ChIP-
seq and NorflIP show that Topo IV binds to and cleaves frequently in the immediate proximity
of dif. We measured DNA cleavage by Topo IV in the presence of norfloxacin in various
mutants affecting the structure of dif or genes implicated in chromosome dimer resolution.
Southern blot was used to measure Topo IV cleavage (Fig 4A). We observed that exact deletion
of dif totally abolished Topo IV cleavage. Interestingly, the deletion of the XerC-binding
sequence (XerC box) of dif was also sufficient to abolish cleavage, while the deletion of the
XerD box only had a weak effect. Deletion of the xerC and xerD genes abolished Topo IV cleav-
age at dif. However, cleavage was restored when the catalytically inactive mutants XerC K172A
or XerC K172Q were substituted for XerC (Fig 4B). This suggests that the role of XerCD/dif in

approximately corresponds to the 400 transcription units that were the most expressed (the distribution of read counts scaled from 0 to 30 000). B)
Correlation between the localization of Topo IV cleavages and chromatin markers. The NUST [32] hypergeometric test was used to compare Topo IV
and chromatin markers localization. The set of 172 validated Topo IV cleavage sites was used. The number of common localizations over the total
number of chromatin marker localization is indicated. The P value of a Fisher’s exact test is indicated. C) Genome browser magnifications of the panel
A’s pink and yellows regions. Mid log phase Fis and H-NS binding sites are respectively indicated with burgundy and black boxes [33]. D) Magnification
of the 2.56 Mb Topo IV binding and cleavage site that overlaps a Fis binding site. The position of the deleted Topo IV site is marked by vertical lines
(frt). Southern blot analysis of Topo IV cleavage at the 2.56 Mb locus, in the nalR strain, the nalR strain with a deletion of the Topo IV cleavage and
binding site and the deletion of fis. E) Same as D for the 1.92 Mb Topo IV cleavage site. Southern blot analysis of Topo IV cleavage at the 1.92 Mb
locus, in the WT, the nalR strain, the nalR strain with a deletion of the Topo IV cleavage and Fis binding site and the nalR strain with fis deletion. The
cleavage was also analyzed following a 20 min treatment with rifampicin (rif).

doi:10.1371/journal.pgen.1006025.g003
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Fig 4. Determinants of Topo IV activity at dif. A) Southern blot analysis of the Topo IV cleavage at the dif site. Genomic DNA
extracted fromWT, Δdif::Tc, Δdif, ΔxerD box, ΔxerC box, ΔxerD, and ΔxerC strains was digested by PstI; the size of the fragment
generated by Topo IV cleavage at dif is marked by an arrow. The average percentage of cleavage observed in two independent
experiments is presented. B) Southern blot analysis of the Topo IV cleavage at the dif site. Genomic DNA extracted fromWT,
ΔxerC, ΔxerC pUCxerC, ΔxerC pUCxerCK172A, ΔxerC pUCxerCK172Q strains was digested with PstI; the size of the cleaved
fragment in dif is marked by an arrow. C) Topo IV cleavage at the 1.9Mb site in theWT, ΔxerC and Δdif. D) Plating of parEts, parEts
xerC, parEts xerD and parEts recNmutants at 30 and 37°C. E) Colony Forming Unit (CFU) analysis of theWT and nalR strains
deleted for the dif site, the xerC, xerD genes or the C-terminal domain of FtsK in the presence of ciprofloxacin. F) EMSA on a 250
bp CY3 probe containing dif (green) and a 250 bp CY5 control probe (red). The amount of Topo IV, XerC or XerD proteins present
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the control of Topo IV activity is structural and independent of XerCD catalysis. Deletion of
dif or xerC did not significantly alter cleavage at any of the other tested Topo IV cleavage sites
(Fig 4C). This suggests that influence of XerC on Topo IV is specific to dif.

To evaluate the role of XerCD-mediated Topo IV cleavage at dif, we attempted to construct
parEts xerC, parEts xerD and parCts xerC double mutants. We could not obtain parCts xerC
mutants by P1 transduction at any tested temperature. We obtained parEts xerC and parEts
xerDmutants at 30°C. The parEts xerC double mutant presented a growth defect phenotype at
30°C and did not grow at temperature above 35°C (Fig 4D). The parEts xerDmutant presented
a slight growth defect at 37°C compared to parEts or xerDmutants. None of the parEtsmutant
grew above 42°C. Next, we used quinolone sensitivity as a reporter of Topo IV activity. To this
aim, we introduced mutants of the FtsK/Xer system into a gyrAnalR (nalR) strain; Topo IV is
the primary target of quinolones in such strains. The absence of XerC, XerD, the C-terminal
activating domain of FtsK or dif exacerbated the sensitivity of the nalR strain to ciprofloxacin
(Fig 4D). We therefore concluded that the impairment of Topo IV was more detrimental to the
cell when the FtsK/Xer system was inactivated. Among partners of the FtsK/Xer system the
absence of XerC was significantly the most detrimental, suggesting a specific role for XerC in
this process.

The above results suggest an interaction between Topo IV and the XerCD/dif complex. We
therefore attempted to detect this interaction directly in vitro (Fig 4E and 4F). We performed
EMSA with two fluorescently labeled linear probes, one containing dif and the other containing
a control DNA not targeted by Topo IV in our genomic assays. Topo IV alone bound poorly to
both probes (Kd> 100nM). Binding was strongly enhanced when XerC or both XerC and
XerD were added to the reaction mix. In contrast, Topo IV binding to dif was slightly inhibited
in the presence of XerD alone. These results were consistent with the observation that deletion
of the XerC box but not of the XerD box inhibited Topo IV cleavage at dif and pointed to a spe-
cific role for XerC in Topo IV targeting. The control fragment showed that these effects are spe-
cific to dif. Topo IV-XerC/dif complexes were stable and resisted a challenge by increasing
amount of XerD (S10A Fig). The positive influence of XerCD on TopoIV binding was also
observed on a negatively supercoiled plasmid containing dif. In the presence of XerCD
(50nM), a delay in the plasmid migration was observed with 40nM of TopoIV. By contrast, 200
nM was required in the absence of XerCD (S10B Fig). The Southern blot cleavage assay showed
that overexpression of the ParC C-terminal domain (pET28parC-CTD) strongly reduced
cleavage at dif but enhanced cleavage at the Topo IV site located at 2.56Mb. This suggested
that, as observed for MukB [17], Topo IV might interact with XerC through its C-terminal
domain (Fig 4G).

Topo IV activity at dif depends on dynamics of the ter region and
chromosome circularity
We assayed the effects of the reported Topo IV modulators and proteins involved in chromo-
some segregation the activity of Topo IV at dif. MukB has previously been shown to influence
the activity of Topo IV [17, 18]. We measured Topo IV cleavage in amukBmutant at dif and at
position 2.56 Mb, cleavage was reduced at dif but no significant effect was observed at position
2.56Mb (Fig 5A). We did not detect any effect of a seqA deletion on Topo IV cleavage at either
position (Fig 5B). We next assayed the effect of MatP, which is required for compaction and

in each line is indicated above the gel. G) Quantification of Topo IV EMSA presented in C, data are an average of three
experiments. H) Southern blot analysis of Topo IV cleavage at dif and position 1.92Mb in a strain overexpressing the C-terminal
domain of ParC.

doi:10.1371/journal.pgen.1006025.g004
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intracellular positioning of the ter region as well as for the its progressive segregation pattern
ending at dif [25, 26]. The Topo IV cleavage at dif was significantly impaired in thematP
mutant (Fig 5C). The Topo IV cleavage site at position 1.9Mb is included in the Ter macrodo-
main, but cleavage at this site was almost unchanged in the absence of MatP (Fig 5C). Intro-
duction of amatP deletion into the nalR strain yielded an increase in ciprofloxacin sensitivity
(Fig 5D). We also constructed a parEts matP double mutant. Growth of this strain was signifi-
cantly altered compared to the parEts parental strain at an intermediate temperature (Fig 5E).
Such a synergistic effect was not found when combining thematP deletion with a gyrBtsmuta-
tion. Taken together, these results led us to consider that MatP itself or the folding of the Ter
macrodomain might be important for Topo IV targeting at dif.

Fig 5. Role of the dif site for the management of circular chromosomes. A) Southern blot analysis of Topo IV cleavage at the dif and 2.56 Mb sites
in themukBmutant grown in minimal medium at 22°C. B) Southern blot analysis of Topo IV cleavage at the dif and 2.56 Mb sites in the seqAmutant
grown in minimal medium at 37°C. C) Southern blot analysis of Topo IV cleavage at the dif and 1.9 Mb sites in thematPmutant grown in LB at 37°C. D)
Colony Forming Unit (CFU) analysis of theWT and nalR strains deleted for the dif site, the xerC andmatP genes in the presence of ciprofloxacin. E)
Colony Forming Unit (CFU) analysis of theWT, parEts and gyrBts strains deleted for thematP at a semi permissive temperature (38°C). F) Southern blot
analysis of the Topo IV cleavage at the dif and 1.9Mb sites in cells with a circular or linearized chromosome. G) Phenotypes observed during
exponential growth in LB in thematPmutant strains with circular or linear chromosome (DNA is labeled with DAPI, green). Scale bar is 5μm.

doi:10.1371/journal.pgen.1006025.g005
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Since the FtsK/Xer/dif system is dedicated to post-replicative events that are specific to a cir-
cular chromosome, it was tempting to postulate that the activity of Topo IV at dif is also dedi-
cated to post-replicative decatenation events and is strictly required for circular chromosomes.
To address this question, we used E. coli strains harboring linear chromosomes [34]. In this
strain, expression of TelN from the N15 phage promotes linearization of the chromosome at
the tos site inserted a 6kb away from dif. Indeed, chromosome linearization suppresses the phe-
notypes associated with dif deletion [34]. We analyzed cleavage at the dif site by Topo IV in the
context of a linearized chromosome. Cleavage was completely abolished; showing that Topo
IV activity at dif is not required on linear chromosomes. This effect was specific to the dif site,
since cleavage at the 1.9Mb site remained unchanged after chromosome linearization (Fig 5F).
We next assayed if the phenotypes associated withmatP deletion, i.e., formation of elongated
cells with non-partitioned nucleoids [26], depend on chromosome circularity. Strikingly, most
of the phenotypes observed in thematPmutant were suppressed by linearization of the chro-
mosome (Fig 5G). Interestingly, the frequency of cleavage at dif sites inserted far (300 kb) from
the normal position of dif or in a plasmid were significantly reduced compared to the WT situ-
ation (S11 Fig) confirming that Topo IV cleavage at dif is specific to circular chromosomes.

Discussion

Specific Topo IV binding and cleavage sites on the chromosome
Whole genome analysis of Topo IV binding by ChIP-seq revealed approximately 10 Topo IV
binding sites across the E. coli genome. Among them, only 5 sites were strongly enriched in
every experiment and these were mapped to positions 1.25, 1.58 (dif), 1.85, 2.56 and 3.24 Mb.
We did not identify any consensus sequence that could explain specific binding to these sites.
Band shift experiments at the dif site and the 1.25 Mb site revealed that Topo IV binding is not
sequence-dependent.

This led us to favor models involving exogenous local determinants for Topo IV binding as it
is the case for the dif site in the presence of XerC. Because XerC is only known to bind to dif, we
could speculate that other chromatin factors might be involved in Topo IV targeting. Topo IV
and Fis binding sites [33] overlap more frequently than expected (Nust P value 10e-03 [32].
Topo IV and Fis binding sites overlap at the positions 1.25 and 2.56 Mb; it is therefore possible
that Fis plays a role in defining some Topo IV binding sites. However our EMSA, cleavage and
ChIP experiments did not show any cooperative binding of Topo IV with Fis. In spite of its co-
localization with Topo IV, Fis does not contribute in defining Topo IV binding or cleavage sites.
Nevertheless, the role of the chromatin in Topo IV localization was also illustrated by the strong
negative correlation observed for the Topo IV and H-NS bound regions. H-NS rich regions were
significantly less enriched for nonspecific Topo IV binding than the rest of the chromosome.

Topo IV mediated DNA cleavage sites
We postulated that loci where Topo IV is catalytically-active could be identified by DNA cleavage
mediated by the quinolone drug norfloxacin. We designed a new ChIP-seq strategy that con-
sisted of capturing DNA-norfloxacin-Topo IV complexes. We called it NorflIP. Three indepen-
dent experiments show that Topo IV was trapped to a large number of loci (300 to 600) with
most of these loci observed in two out of three experiments. A hundred of these loci were identi-
fied in all three experiments.Dif presented a strong signal in the NorflIP as in the ChIP-seq but
this is not the case for most of the other ChIP-seq peaks. NorflIP peaks presented a characteristic
pattern suggesting that they are genuine DNA-norfloxacin-Topo IV complexes. Considering
that norfloxacin does not alter Topo IV specificity, our results suggest that for Topo IV the
genome is divided into five categories: i) Loci where Topo IV binds strongly but remains inactive
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for most of the cell cycle; ii) Loci where Topo IV is highly active but does not reside for very long
time; iii) Loci where we observed both binding and activity (dif and 2.56 Mb); iv) regions where
Topo IV interacts non-specifically with the DNA and where topological activity is not stimu-
lated; v) regions where non-specific interactions are restricted (the Ter domain, chromatin rich
regions (tsEPODs [35], H-NS rich regions). Detection of norfloxacin-mediated genomic cleavage
by pulse field electrophoresis has previously revealed that when Topo IV is the only target of nor-
floxacin the average fragment size is 300–400 kb while it drops to 20 kb when Gyrase is the target
[11]. This suggests that, for each cell, no more than 10 to 20 Topo IV cleavages are formed in 10
min of norfloxacin treatment. To fit this observation with our data, only a small fraction (10–20
out of 600) of the detected Topo IV cleavage sites would actually be used in each cell. This might
explain why Topo IV cleavage sites were hardly distinguishable from background in the ChIP-
seq assay (Fig 3). This is in good agreement with the estimation that the catalytic cycle only pro-
vokes a short pause (1.8 sec) in Topo IV dynamics [36]. The mechanism responsible for the
choice of specific Topo IV cleavage sites is yet to be determined. As indicated by our findings
that deletion of the cleavage site resulted in the formation of a new site or sites in the vicinity,
cleavage is not directly sequence-related. We observed several biases that might be involved in
determination of cleavage sites (GC di-nucleotide skew, GATC spacing, positioning near gene
ends or intergenic regions, proximity with highly expressed genes and Fis binding regions). Inter-
estingly inhibition of transcription with rifampicin inhibits Topo IV cleavage (Fig 3). This raises
the possibility that transcription, that can be stochastic, may influence stochastic determination
of Topo IV activity sites. The influence of transcription could be direct, if RNA polymerase
pushes Topo IV to a suitable place, or indirect if the diffusion of topological constraints results in
their accumulation near barriers imposed by gene expression [37, 38]. This accumulation could
then, in turn, signal for the recruitment of Topo IV.

Replication influences Topo IV binding and activity
Synchronization experiments revealed that, like Topo IV binding at specific sites, Topo IV cleav-
age activity is enhanced by chromosome replication. Enrichment was the highest in late S phase or
G2 phase; it seems to persist after the passage of the replication fork at a defined locus. Enrichment
in asynchronous cultures was significantly reduced compared to S40 or G2 synchronized cultures
suggesting that Topo IV is not bound to the chromosome for the entire cell cycle. Unfortunately
our experiments did not have the time resolution to determine at what point of the cell cycle Topo
IV leaves the chromosome and if it would leave the chromosome during a regular cell cycle. The
role of DNA replication of Topo IV dynamics has recently been observed by a very different
approach [36]. The authors propose that Topo IV accumulates in the oriC proximal part of the
chromosome in a MukB and DNA replication dependent process. These observations are in good
agreement with our data and suggest that Topo IV is loaded on DNA at the time of replication,
accumulate towards the origin of replication and remains bound to the DNA until a yet unidenti-
fied event triggers its release. Formation of positive supercoils and precatenanes ahead and behind
of the replication forks respectively, could be the reason for Topo IV recruitment. One could
hypothesize that MukB is used as a DNA topology sensor that is responsible for redistribution of
Topo IV. However we only detected a modest effect ofmukB deletion on Topo IV cleavage at dif
(Fig 5). Putative events responsible for Topo IV release could be, among others, complete decate-
nation of the chromosome, SNAPs release, or stripping by other proteins such as FtsK.

Non-specific Topo IV binding
Non-specific Topo IV binding presents a very peculiar pattern; it is significantly higher in the
oriC proximal 3Mb than in the 1.6Mb surrounding dif. This pattern is not simply explained by
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the influence of replication (S3 Fig). Interestingly, ChIP-seq and ChIP-on-Chip experiments
have already revealed a similar bias for DNA gyrase [12] and SeqA [39]. The CbpA protein has
been shown to present an inverse binding bias [40], with enrichment in the terminal region
and a reduction in the oriC proximal domain. The HU regulon has also presented a similar
bias [41]. The terminus domain defined by these biases always comprises the Ter macrodo-
main but it extends frequently beyond the extremematS sites. The role of MatP in the defini-
tion of these biases has not yet been tested. The group of G. Mushelishvili proposed a
topological model to interpret the DNA gyrase and HU regulon biases, suggesting that HU
coordinates the global genomic supercoiling by regulating the spatial distribution of RNA poly-
merase in the nucleoid [41]. Topo IV could benefit from such a supercoiling gradient to load
on the chromosome. Interestingly, the strongest Topo IV binding and cleavage sites are local-
ized inside the Terminus depleted domain. One possibility could be that these sites minimize
Topo IV binding to adjacent nonspecific sequences. Alternatively one can propose that a
regional reduction of non-specific binding creates a selective advantage for optimal loading on
to specific sites.

Dif and the control of decatenation
Dif was the strongest Topo IV cleavage site detected by NorflIP, it was also detected in the
ChIP-seq assays. We have used Southern blot to analyze the determinants involved in this
activity. The binding of XerC on the xerC box of dif and the region downstream of the xerC
box are essential. In vitro, XerC also strongly favors binding of Topo IV at dif. Interestingly
XerD and the xerD box did not improve Topo IV binding or cleavage. We propose that XerC
works as a scaffold for Topo IV, simultaneously stimulating its binding and its activity. Topo
IV activity at dif is also dependent on the circularity of the chromosome, suggesting that when
topological constraints can be evacuated through chromosome ends, Topoisomerase IV does
not catalyze strand passage at dif. This suggests that topological complexity is directly responsi-
ble for Topo IV activity. Topo IV cleavage activity at dif is not influenced by SeqA or FtsK,
which are two known Topo IV partners. Interestingly,mukB andmatP deletion mutants
slightly reduced this activity. The synergistic effect observed when amatP deletion is combined
with a parEtsmutation suggests that MatP indeed influences Topo IV activity. The phenotypes
of thematPmutant are rescued by the linearization of the chromosome. A similar rescue has
been observed for the difmutant [34]. Therefore it is likely that a significant part of the prob-
lems that cells encounter in the absence ofmatP corresponds to failure in chromosome topol-
ogy management, either decatenation or chromosome dimer resolution [25]. In conclusion, we
propose that genomic regulation of Topo IV consists of: (1) Topo IV loading during replica-
tion, (2) Topo IV binding to specific sites that may serve as reservoirs, (3) Topo IV activation
to remove precatenanes or positive supercoils in a dozen of stochastically chosen loci (4) XerC
and MatP ensuring the loading of Topo IV at the dif site for faithful decatenation of fully repli-
cated chromosomes.

Materials and Methods

ChIP-seq assay
ParE-flag and ParC-flag C-terminus fusions were constructed by lambda red recombination
[42]. Cultures were grown in LB or Minimal medium A supplemented with succinate (0.2%)
and casamino acids (0.2%). Cells were fixed with fresh Formaldehyde (final concentration 1%)
at an OD600nm 0.2–0.4. Sonication was performed with a Bioruptor Pro (Diagenode). Immuno-
precipitations were performed as previously described 26. Libraries were prepared according to
Illumina's instructions accompanying the DNA Sample Kit (FC-104-5001). Briefly, DNA was
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end-repaired using a combination of T4 DNA polymerase, E. coli DNA Pol I large fragment
(Klenow polymerase) and T4 polynucleotide kinase. The blunt, phosphorylated ends were
treated with Klenow fragment (3’ to 5’ exo minus) and dATP to yield a protruding 3- 'A' base
for ligation of Illumina's adapters which have a single 'T' base overhang at the 3’ end. After
adapter ligation DNA was PCR amplified with Illumina primers for 15 cycles and library frag-
ments of ~250 bp (insert plus adaptor and PCR primer sequences) were band isolated from an
agarose gel. The purified DNA was captured on an Illumina flow cell for cluster generation.
Libraries were sequenced on the Genome Analyzer following the manufacturer's protocols.

Norflip assay
Norfloxacin (final concentration 2μM) was added to the cultures at OD600nm 0.2 LB for 10 min
before harvesting. Sonication and immunoprecipitation were performed as described for the
ChIP-seq assay.

Analysis of sequencing results
Sequencing results were processed by the IMAGIF facility. Base calls were performed using
CASAVA version 1.8.2. ChIP-seq and NorflIP reads were aligned to the E. coli NC_000913
genome using BWA 0.6.2. A custom made pipeline for the analysis of sequencing data was
developed with Matlab (available on request). Briefly, the number of reads for the input and IP
data was smoothed over a 200bp window. Forward and reverse signals were added, reads were
normalized to the total number of reads in each experiment, strong non-specific signals
observed in unrelated experiments were removed, data were exported to the UCSC genome
browser for visualization and comparisons. The strongest peaks observed with NorflIP experi-
ments (dif and 1.9 Mb) present a characteristic shape (S6 Fig) that allows the automatic detec-
tion of lower amplitude peaks but preserves the characteristic shape. We measured Pearson
correlation coefficient with the dif and the 1.9 Mb site for 600bp sliding windows over the
entire genome. Peaks with a Pearson correlation above 0.72 were considered as putative Topo
IV cleavage sites. Sequencing data are available on the GEO Repository (http://www.ncbi.nlm.
nih.gov/geo/)with the accession number GSE75641. Data were plotted with the Circos tool
[43] and UCSC Archaeal Genome Browser [44].

Southern blot
Cleavage of DNA by Topo IV in the presence of Norfloxacin was monitored by Southern blot
as previously described [10]. DNA was extracted from E. coli culture grown in minimal
medium supplemented with glucose 0.2% and casaminoacids 0.2%. Norfloxacin (final concen-
tration 10μM) was added to the cultures at OD 0.2 for 10 min before harvesting. DNA was
transferred by neutral blotting on nitrocellulose membranes. For synchronization experiments
a flash freeze step in liquid nitrogen is included before harvesting. Quantification was per-
formed with Image J software.

EMSA
Experiments were conducted using Cy3-coupled probes harboring the dif site and a
Cy5-coupled dye as control. Reactions were carried out in EMSA reaction buffer (1mM spermi-
dine, 30mM potassium glutamate, 10mMDTT, 6mMmagnesium chloride, 10% glycerol, pH
7.4). Reactions were incubated for 15 min at RT, loaded on 4% native PAGE gel at 25 volts and
then run at 125 volts for 2 hours. Gels were then visualized using a Typhoon FLA 5000 scanner
(GE healthcare Life Science). EMSA of plasmids were performed with unlabeled supercoiled
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plasmid in the same reaction buffer. Electrophoresis was performed in a 0.8% agarose gel in 0.5x
TAE buffer at 4°C for 80 min at 150V. DNA labeling was performed with SYBR green.

Supporting Information
S1 Fig. A)Measure of the colony formation unit (CFU) of the WT, nalR, ParC-Flag, ParC-Flag
nalR and ParE-Flag nalR strains. Culture were grown until OD 0.2 and treated for 40 minutes
with norfloxacin 2μM and plated on LB plates. B)Measure of the growth rate of the nalR,
ParC-Flag nalR and ParE-Flag nalR strains. C) Southern blot analysis of Topo IV mediated
cleavage in the presence of norfloxacin at the 1.9 Mb site in the WT, nalR and ParC-Flag nalR
and ParE-Flag nalR strains.
(PDF)

S2 Fig. Genome browser magnifications illustrating common non-specific signal observed
over rRNA operons, tRNA and IS sequences. ParE-Flag ChIP-seq is represented in red,
MatP-Flag ChIP-seq is represented in blue, Mock IP with a strain that did not contain Flag
tagged proteins is represented in black. Genes, ribosomal operons and tRNA are represented
below ChIPseq signals
(PDF)

S3 Fig. A) Analysis of the Topo IV nonspecific binding. Normalized enrichment (Average
number of reads in a 1kb sliding window divided by the total amount of reads) of each flag
immuno-precipitation experiment was plotted as a function of the genomic position. Left
panel a 100 kb region near oriC (positions 4.26 to 4.36 Mb) is represented. Right panel a 100 kb
region around dif (positions 1.55 to 1.65 Mb) is represented. B) Scatter plot of the average GC
content according to parC-flag IP/Input. 60 kb sliding windows were used for GC content and
IP/Input. C) Average IP/Input values were normalized for GC content.D) Null model I, a
Topo IV comet follows replication forks. Illustration of the Topo IV binding kinetics under
null model I described in S1 Text. The x axis in the plots represents the chromosome coordi-
nate s, going between 0 (ori) and L (ter). The y axis represents cell cycle time. The shaded areas
are the positions of the Topo IV comets (also sketched as red lines on a circular representation
of the chromosome), and the numbers represent the number of bound regions per replichore.
Left panel: case of non-overlapping rounds. Right panel: case of overlapping rounds, in the
case where the B period starts after the termination of replication within the same cell cycle. E)
Topo IV binding bias, shown by the specific Input/IP values (each normalized by total reads).
This bias is not compatible with a model where Topo IV binding follows replication and per-
sists for a characteristic period of time (purple trace).
(PDF)

S4 Fig. Flow cytometry analysis of the synchronization experiment. Samples were fixed in
ethanol at different time points: after 1h30 at 40°C (G1), 20 min after downshift to 30°C (S20),
40 min after downshift to 30°C (S40), 60 min after downshift to 30°C (G2) and in stationary
phase.
(PDF)

S5 Fig. A) Genome browser magnifications illustrating common non specific signal observed
over rRNA operon, IS sequences in the NorflIP and ChIP-seq experiments. ParE-Flag NorflIP
is represented in purple, MatP-Flag ChIP-seq is represented in blue, Mock IP with a strain that
did not contained Flag tagged proteins is represented in black. Genomic localization are the
same as in S2 Fig B) Southern blot cleavage assays performed in WT and nalR strains at the
insH locus, ribosomal operon A and ribosomal operon B. TopoIV did not present any cleavage
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in this regions confirming the artefactual nature of the corresponding signals in the NorflIP
experiments. Arrows indicated the position on the corresponding bottom map.
(PDF)

S6 Fig. A) Snapshots of the ChIP-seq and NorflIP experiments at the position 1.85 and 1.92
Mb. Topo IV binding to position 1.85 Mb was only revealed by the ChIP-seq experiment in the
presence of formaldehyde. Topo IV cleavage at position 1.92 Mb was only revealed by the Nor-
flIP experiment. NorflIP peaks present a characteristic shape illustrated on the 1.92Mb with a
large 200 bp empty region in between the forward and reverse signal (arrow). B) Snapshot of
the ChIP-seq and NorflIP experiments at the dif position. Topo IV binding (ChIP-seq) and
cleavage (NorflIP) were detected at the dif position. C) Description of the NorflIP peak calling
procedure. Forward and reverse reads from the Flag immunoprecipitation were smoothed over
200 bp, and then subtracted from each other. The dif and 1.9Mb signals observed on a 2kb win-
dow were used as a probe to test the entire genome with 100 bp sliding intervals. Pearson coef-
ficient between the dif and 1.9 Mb signals and each interval were measured. Pearson
coefficients above 0.72 were considered as putative Topo IV peaks. The initial list of Topo IV
sites (S1 Table) corresponds to sites presenting a Pearson correlation above 0.72 in comparison
with dif and 1.9Mb. IP/input ratio was measured. 172 peaks with Pearson coefficient above
0.72 and an IP/input ratio>2 were manually validated as Topo IV sites (S1 Table).D) Analysis
of reads orientation in the NorflIP experiment at position 0.2Mb. Forward and reverse read
peaks are about 200 bp large, a 100 nucleotides gap is observed in between the peaks. For the
analysis of Topo IV cleavage site distribution we estimated that the center of the 100 nucleo-
tides gap corresponds to the position of Topo IV cleavage.
(PDF)

S7 Fig. Measure of the distance between two adjacent Topo IV cleavage sites in the dif region
(A) and the region containing oriC and SNAP2 (B). For this analysis the 571 Topo IV cleavage
sites observed in the 3 experiments were pooled. C) Distribution of the Topo IV cleavages
inside genes and intergenic regions. The gene sizes were normalized to 1.D) RSAT analysis of
the NorflIP peak calling results (http://www.rsat.eu/; Thomas-Chollier M, Defrance M,
Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J. (2011) RSAT 2011: regula-
tory sequence analysis tools. Nucleic Acids Res. 2011 Jul;39. Analysis of the dinucleotide bias in
172 manually validated NorflIP Topo IV cleavage sites. In average GC dinucleotides are
enriched near the middle of the ChIP signal. E) GATC spacing around Topo IV peaks detected
with the NorflIP experiment. Average distances between two consecutive GATC are measured
around (+/- 20 GATC sites) 172 validated Topo IV cleavage sites and 172 random sequences.
(PDF)

S8 Fig. A) Box plot of the distribution of distance between TopoIV cleavages and the closest
highly expressed transcription unit (T.U.). For this analysis the 571 Topo IV cleavage sites
observed in the 3 experiments were pooled. T.U. expression was determined by RNAseq. An
arbitrary threshold was set to 500 reads, it corresponds to the 10% of the T.U. the most
expressed. The distribution of a random set of cleavage sites was used as control. The two dis-
tributions are statistically different according to Anova test. The median distance is 8.5 kb for
the TopoIV cleavage set and 12.3 kb for the random set. B) Genome browser zoom on the
region 1.92 Mb were TopoIV cleavages were observed in a region with a number of highly
expressed T.U. C) Distribution of 458 Topo IV cleavages (black) and random sites (grey) in
between two consecutive highly expressed T. U. Topo IV cleavages are slightly more frequent
near the TU than in the middle of the region.
(PDF)
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S9 Fig. A) Distribution of ParE-Flag 1 ChIP-seq enrichment in the region overlapping or not
a H-NS binding site. B) Box plot of the distribution of GC% in the regions depleted for Topo
IV (IP/input<0.6) or enriched for Topo IV (IP/input>1.2) or enriched for H-NS. C)Distribu-
tion of the GC% in 172 validated Topo IV cleavage sites as function of NorflIP IP/input signal.
D)Measure of the GC% in the 172 validated cleavage sites. GC % was measured in sliding win-
dows of 20 bp and color coded.
(PDF)

S10 Fig. A) Analysis of the robustness of the Topo IV-XerC-dif complex in the presence of
increasing amounts of XerD protein. EMSA were performed with prebound Topo IV and
XerC on dif and subsequent addition of XerD for 10 minutes before loading on the gel. B)
Analysis of Topo IV binding to negatively supercoiled plasmid by EMSA on agarose gel. Topo
IV from 10, 50, 100, 200 nM was added to the pFC24 (dif) plasmid in the presence of XerCD
(25 or 50 nM).
(PDF)

S11 Fig. A) Southern Blot analysis of Topo IV cleavage in the nalR strain at dif and an ectopic
dif site located at 1.3Mb on the genomic map. B) Southern Blot analysis of Topo IV cleavage
on a plasmid (pFC25) carrying the dif region (10 kb around dif) + or–dif
(PDF)

S1 Table. Sheet 1) Validated ChIP-seq sites. Sheet 2) NorflIP sites observed in the ParC-Flag
1 NorflIP, ParE-Flag NorflIP and ParC-Flag 2 NorflIP. Sheet 3) Common NorflIP sites for the
different experiments. Sheet 4)Manually Validated Topo IV cleavages.
(XLSX)

S1 Text. Model to test the correlation between TopoIV binding and the progression of rep-
lication. To test if ParC and ParE ChIP-seq biases were related to chromosome replication we
constructed in silicomodels The result of this null model is that in all cases (overlapping or
non-overlapping rounds) the observed mean occupancy should follow the dosage. Hence the
occupancy gap observed in S3E Fig in the Ter region (when occupancy is normalized by dos-
age) has to be interpreted as a sign that this model does not apply, at least in this region.
(DOCX)
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