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Notations

D € R% denotes that D is an open, bounded and simply connected
subset of R%;

D denotes the boundary of the open set D € R%;

We say that 9D is of type C1'®, for 0 < a < 1, if 9D is locally Lipschitz
of order 0 < o < 1;

v denotes the outward normal to 0D and % the outward normal deriva-
tive;

go}i(x) = lim;_,o+ ¢(z £ tv), = € OD;

Id denotes the identity operator;

H?#(0D) denotes the usual Sobolev space of order s on 9D;
(" ')7

For any functional space F'(0D) defined on 0D, Fy(0D) denotes its
zero mean subspace;

denotes the duality pairing between H —3 (0D) and H 3 (0D);

11
2'2

L(E,F) denotes the set of bounded linear applications from E to F'
and L(F) := L(E,E);

For o = (a1, a2) € N2, 9, := 07105? and o! == aqlag!;
x(5), denotes the characteristic function of the set S;
Rz denotes the real part of z;

Sz denotes the imaginary part of z;

|| denotes the norm of x € RY;

We denote by the Sommerfeld radiation condition for a function u in
dimension d = 2, 3, the following condition:

< C|:U|_(d+1)/2

‘ Ou — tknu

9|

as |x| — 400 for some constant C' independent of z.
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Introduction

Light has been a major field of scientific curiosity and study since the begin-
ning of science. Despite the age of the field, research in photonics is more
active than ever, as evidenced by 2015 being proclaimed by the United Na-
tions General Assembly as the "International Year of Light and Light-based
Technologies". In the last decades, the field of photonics has seen a rev-
olution due to the study of the anomalous properties of metallic particles,
no bigger than some tens of nanometers, and their interaction with light.
At this scale, and for some specific range of frequencies, this nanoparticles
have the unique capability of enhancing the brightness and directivity of
light, confining strong electromagnetic fields into advantageous directions.
This phenomenon, called "plasmonic resonances for nanoparticles" or "sur-
face plasmons", open a door for a wide range of applications, from novel
healthcare techniques to efficient solar panels. To harvest such opportuni-
ties, a deep mathematical understanding of the interactive effects between
the particle size, shape and contrasts in the electromagnetic parameters is
required.

Although very significant experimental and modeling advances have been
achieved in the field of nanoplasmonic during recent decades, very few prop-
erties have been introduced and analyzed in the mathematical literature.
There is a clear lack of deep understanding of the theory of plasmonic reso-
nance. The goal of this work is to fill some of these gaps - understand the
mathematical structure of inverse problems arising in nanophotonics and pro-
pose, from a better mathematical basis, pertinent applications of plasmonic
nanoparticles that will best meet the challenges of emerging nanotechnolo-
gies.

Plasmonic nanoparticles

Plasmonic nanoparticles are particles, typically made of gold or silver, whose
size range in the order of a few to a hundred nanometers. At this scale,
they behave as metamaterials, meaning that their conductivity and/or pre-
meabilitty has negative real part. When an external light wave is incident
on the nanoparticle, the cloud of free electrons on the surface of the par-
ticule oscilates at some specific frequencies, entering in a resonance mode;
see Figure[I] These resonances depend on the electromagnetic parameters of
the nanoparticle, those of the surrounding material, and the particle shape
and size. High scattering and absorption cross sections (see [43| for precise
definitions of these quantities) and strong near-fields are unique effects of
plasmonic resonant nanoparticles; see Figure

Even though plasmonic nanoparticles have drawn the attention of scien-
tists mainly in the 20th century, they have been first put into use thousands
of years ago, when ancient civilizations made use of them for decoration and
artistic purposes. Figure [3| shows the Lycurgus cup, a decorative Roman
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Metallic Electron Cloud
Nanoparticle

v

F1GURE 1: Electron cloud oscilating under the presence of
an electric field. (nanohybrids.net)
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FIGURE 2: Scattering response as a function of the wave-
length of the incoming electromagnetic wave, for different

geometries of the plasmonic nanoparticle. (V.A.G. Rivera et
al.)

treasure from about AD400; it is made of a glass containing gold-silver al-
loyed nanoparticles and reveals a brilliant red when light is shone through
it. The reason for this? the nanoparticles in the glass resonate at the red-
colored frequencies. For this and other examples one can observe the range of
different colors (blue to red) mainly arose from different metal /metal oxides
particles embedded in a dielectric (ceramic) matrix. In the late 8th century,
the Iranian chemist Jaber-ibn-Hayyan, was one of the first researchers who
studied the technical recipes dealing with the manufacture of colored glasses,
making lustre-painted glass (stained glass) and coloring gemstones.

The physical understanding of this phenomenon started in the first decade
of the 20th century with the work of Mie and Ritchie for small particles and
flat interfaces, respectively. However, it was the work of Otto, Economou
and Kretschmann that started the modern plasmonics field by providing a
detailed theoretical description and experimental methods to excite surface
plasmon polaritons on films of noble metals.
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FIGURE 3: Lycurgus cup. Its galss contains gold-silver
nanoparticles that resonates with red frequencies of incoming
ight. (trustees of the British museum)

Driven by the search for new materials with interesting and unique op-
tical properties, the field of plasmonic nanoparticles has grown immensely
in the last decade [68]. Recent advances in nanofabrication techniques have
made it possible to construct complex nanostructures such as arrays using
plasmonic nanoparticles as components, allowing the design of new kinds of
materials. Among this structures we find the so called "metasurfaces", con-
sisting in a thin layer of periodically arranged nanoparticles mounted over
a dielectric. This kind of composites are capable to control and transform
optical waves in order to reduce scattering and make objects invisible or even
trap electromagnetic waves in the goal of making efficient photovoltaic cells.

Another thriving interest for optical studies of plasmon resonant nanopar-
ticles is due to their recently proposed use in molecular biology, where the
strong field enhancement can be used as efficient contrast for biological and
cell imaging applications [48].

Nanoparticles are also being used in thermotherapy as nanometric heat-
generators that can be activated remotely by external electromagnetic fields.
Nanotherapy relies on a simple mechanism. First nanoparticles become at-
tached to tumor cells using selective biomolecular linkers. Then heat gen-
erated by optically-simulated plasmonic nanoparticles destroys the tumor
cells [51].

Scientists have long dreamt of an optical microscope that can be used
to see, noninvasively and in vivo, the details of living matter and other ma-
terials. When attempting to image nanoscale structures with visible light,
a fundamental problem arises: diffraction effects limit the resolution to a
dimension of roughly half the wavelength. Recently, the use of plasmonics
nanoparticles has been proposed in a number of emerging techniques that
achieve resolution below the conventional resolution limit into what is called
super-resolution techniques.

Contributions

It is important to understand the collective behavior of plasmonic nanoparti-
cles to derive the macroscopic optical properties of materials with a dilute set
of plasmonic inclusions. In this regard, we have obtained effective properties
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of a periodic arrangement of arbitrarily-shaped nanoparticles and derived a
condition on the volume fraction of the nanoparticles that insures the validity
of the Maxwell-Garnett theory for predicting the effective optical properties
of systems embedded in a dielectric host material at the plasmonic reso-
nances.

One of the most important parameters in the context of applications
is the position of the resonances in terms of the wavelength or frequency.
A longstanding problem is to tune this position by changing the particle
size or the concentration of the nanoparticles in a solvent [49,/68]. It was
experimentally observed, for instance, in [49,/89] that the scaling behavior
of nanoparticles is critical. The question of how the resonant properties of
plasmonic nanoparticles develops with increasing size or/and concentration
is therefore fundamental.

According to the quasi-static approximation for small particles, the sur-
face plasmon resonance peak occurs when the particle’s polarizability is max-
imized. At this limit, since resonances are directly related to the Neumann-
Poincaré integral operator, they are size-independent. However, as the par-
ticle size increases, a shift in the value of the resonances can be observed, for
instance, in |49,81,[89]. Using the Helmholtz equation to model light propa-
gation we have precisely quantified the shift of the plasmonic resonance and
the scattering absorption enhancement for a single nanoparticle.

At the quasi-static limit, we gave a proof that the averages over the
orientation of scattering and extinction cross-sections of a randomly oriented
nanoparticle are given in terms of the imaginary part of the polarization
tensor. Moreover, we have derived bounds in dimension two (optimal bounds)
and three for the absorption and scattering cross-sections.

Later on, we have generalized these results, providing the first mathe-
matical study of the shift in plasmon resonance using the full Maxwell equa-
tions. Surprisingly, it turns out that in this case not only the spectrum of the
Neumann-Poincaré operator plays a role in the resonance of the nanoparti-
cles, but also its negative. We have explained how in the quasi-static limit,
only the spectrum of the Neumann-Poincaré operator can be excited and that
its negative can only be excited as in higher-order terms in the expansion of
the electric field versus the size of the particle.

Due to their high absorption enhancement, monitoring the temperature
generated by the nanoparticles in the plasmonic resonance could be crucial
for thermoterapy success. We have established an asymptotic expansion for
the temperature in the border of arbitrary shaped particles, which turns out
to be related, again, to the eigenvalues of the Neumann-Poincaré operator.

If we consider the scattering by a layer of periodic plasmonic nanoparti-
cles mounted on a perfectly conducting sheet, as the thickness of the layer,
which is of the same order as the diameter of the individual nanoparticles,
is negligible compared with the wavelength, it can be approximated by an
impedance boundary condition. We have proved that at some resonant fre-
quencies, the thin layer has anomalous reflection properties and can be viewed
as a metasurface allowing the control and transformation of electromagnetic
waves.

We have also proved that using plasmonic resonances one can classify the
shape of a class of domains with real algebraic boundaries and on the other
hand recover the separation distance between two components of multiple
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connected domains. These results have important applications in nanopho-
tonics. They can be used in order to identify the shape and separation dis-
tance between plasmonic nanoparticles having known material parameters
from measured plasmonic resonances, for which the scattering cross-section
is maximized.

The main objective of super-resolution is to create imaging approaches
for objects significantly smaller than half the wavelenght, based on the use of
resonant plasmonic nanoparticles. In a homogeneous space, particles smaller
than half the wavelength cannot be resolved because the point spread func-
tion, which is the imaginary part of the Green function, has a width of roughly
half the wavelenght. By following the methodology of [30|, we have shown
that super-resolution can be achieved when replacing the homogeneous media
by a composite made of plasmonic nanoparticles.

Moreover, we have shown that we can make use of plasmonic nanoparti-
cles to recover fine details of a subwavelength non plasmonic nanoparticles,
providing a mathematical foundation for plasmonic biosensing. These results
open a door for the ill-posed inverse problem of reconstructing small objects
from far-field measurements.

The results obtained in this thesis have been published in [22-27].
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10 Chapter 1. The Quasi-Static Limit

1.1 Introduction

Consider the scattering problem of iluminating a nanoparticle immersed in
a homogeneous medium. When the size of the nanoparticle is significantly
smaller than the wavelength of the incomming light, Maxwell equations can
be approximated by the equation [87]. We say that we are working in
the quasi-static limit. This regime have been extensively used by the physics
community to model the scattering of light by small nanoparticles such as
plasmonic nanoparticles. In the mathematics community, the first efforts to
give rigourous results on the plasmonic resonance phenomena have been done
in this framwork [52]. In the first part of this chapter we give a brief review
of the mathematical analysis of the plasmonic resonances for nanoparticles
in the quasi-static regime. This analysis rely strongly in the use of layer
potential techniques for the Laplace equation.

Secondly, we investigate the overall optical properties of a collection of
plasmonic nanoparticles. We treat a composite material in which plasmonic
nanoparticles are embedded and isolated from each other. The Maxwell-
Garnett theory provides a simple model for calculating the macroscopic op-
tical properties of materials with a dilute inclusion of spherical nanopar-
ticles |18]. Here, we extend the validity of the Maxwell-Garnett effective
medium theory in order to describe the behavior of a system of arbitrary-
shaped plasmonic resonant nanoparticles. We rigorously derive a condition
on the volume fraction of the nanoparticles that insures its validity at the
plasmonic resonances. To do so, we introduce the notion of plasmonic reso-
nances for particles with anisotropic electromagnetic materials. This notion
is introduced here for the first time.

In section we analyze the anisotropic quasi-static problem in terms of
layer potentials and define the plasmonic resonances for anisotropic nanopar-
ticles. Formulas for a small anisotropic perturbation of resonances of the
isotropic formulas are derived.

Section [1.9]is devoted to establish a Maxwell-Garnett type theory for ap-
proximating the plasmonic resonances of a periodic arrangement of arbitrary-
shaped nanoparticles.

1.2 Preliminaries

In this section we recall important properties of the layer potentials for the
Laplacian that will be of great use throughout this thesis.

1.2.1 Layer potentials for the Laplace equation

Consider a domain D with boundary 0D of type C* for 0 < a < 1. Let v
denote the outward normal to dD. Define the single layer potential

Splel(x) = - G(z,y)e(y)do(y), xe€dD,xeRNID,

where G(z,y) is the green function for the Laplacian.
For d = 2

1
Gla,y) = - loglz — yl.
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Ford =3

1

G(z,y) = —m-

We have the following lemma

Lemma 1.2.1. 1. For ¢ € H_%(aD), Sply] € H' (RNOD) is an Har-
monic function on RN\OD;

2. Splel(x)|, = Solel(2)

3. For d =3, Splgl(z) = O({s) as |z] — oo and Spl] : H~2(ID) —
H%((‘)D) is invertible, negative definite and self-adjoint for the duality
paring H 2 (0D), H? (0D);

—

4. Same for d = 2 under condition that faD pdo = 0.

A more detailed analysis for the case d = 2 is given in Appendix [A]
The Neumann-Poincaré operator (NP) K7, associated with D is defined
as follows:

Kplole) = o [ B2 )ioty), v eop.

It is related to the single layer potential Sp by the following jump relation:

ISplyl )
ov |+

_ (%1 )] for o € HY2(AD). (1.1)

It can be shown that the operator A\ — K%, : H~/2(dD) — H~'/2(9D)
is invertible for any |A| > 1/2. Furthermore, K7}, is compact, its spectrum is
discrete and contained in | — 1/2,1/2] with 0 being an accumulation point;
see for instance [18,32] for more details.

In general, K}, is not symmetric for the pairing (-,-) . Nevertheless,

1_1
272

using Calderon’s identity
KpSp = SpKp,
K7 can be symmetrized with the following inner product

(uv v)?-l* = _(SD [U]a u)

1_1
272

It can be shown that in R3, (-,-)3+ defines a Hilbert space, equivalent to
H~12(0D) [12,32,61,65]. In R? a similar analysis can be done to symmetrize
K7. We refer the reader to Appendix@

Let (A\j,¢4), 5 =0,1,2,... be the eigenvalue and normalized eigenfunc-
tion pair of K7, in H*(0D). From the spectral theorem, we know that A\; — 0
for j — oo and ¢; form a base of H*(0D). Therefore, the following repre-
sentation formula holds: for any ¢ € H~1/2(dD),

Kplel =Y M@, o) ® 95
5=0
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From the jump formula , we can see that 1/2 is always an eigenvalue
of K. If the D is simply connected, there is only one eigenvalue taking the
value 1/2. We denote this eigenvalue by A\ and its corresponding eigenfunc-
tion .

In R3, let H(OD) be the space H%((?D) equipped with the following
equivalent inner product

(u, ) = ((=Sp)~[ul,v)

Then, Sp is an isometry between H*(0D) and H(9D).
A smilar result can be found in R?, see Appendix

(1.2)

11.
272

1.3 Layer potential formulation for the scattering
problem

We consider the scattering problem of a time-harmonic wave u’ incident on
a plasmonic nanoparticle. The homogeneous medium is characterized by its
electric permittivity e, that we assume to be real and strictly positive. The
particle occupying a bounded and simply connected domain D € R? of class
Ch for some 0 < a < 1 is characterized by electric isotropic permittivity e,
which may depend on the frequency of the incoming wave w by the Drude

model as
— )= (1-
Fo = e = w(w +1i7v) £0-

Here, w,, is called the plasmon frequency, v the damping parameter and &
is the permittivity of the free space.
Assume that Re. < 0, Se. > 0, and define

ED = 5mX(Rd\b) + 5cX(D)'

where x denotes the characteristic function. When the wavelength of the
incoming wave is much larger than the particle’s size, the following is a good
approximation of the Maxwell equations.

V-epVu=0 in RN\ID,
Uy —u—_ =0 on dD,

EC%’-}- — sm% =0 ondD, (1.3)

u—u' = O(m%), |x| — oo.

Here u corresponds to the electric potential. For some ¢ € H_%(OD), the
solution u can be written as

u(a) = u' + Sply].
From Lemma [T.2.1] we can see that only the transmission conditions

ou
o

ou
ov “"

—sma‘_ =0 ondD,
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need to be satisfied. This translates into

Ec@Sé)y[(ﬂ] (»’U)Lr —€m BSE?V[@] ()|_ = (em — Ec)églf on OD.

From the jump formula for the single layer potential Sp, i.e

5 (x)‘i:(iild—i—lCD)[(p}(x), x € 0D.
we have Ny
Vi = 2%
(= Kp)lel = 5. (14)
with
Em + €c
A= 2(em —€c)
Finally
7 * O\ — auz
u = u'+SpA—Kp) 1[8y]
= V?SO 7'[*
= u +Z —Splp). (1.5)

Recall that \; are eigenvalues K}, and they satisfy |\;] < 1/2. In
the plasmonic case, Re.(w) can take negative values. Then it holds that
IRA(w)] < 1/2 and 0 < Ye.(w) < 1. So, for a certain frequency wy, the value
of A(wj) can be very close to an eigenvalue A; of the NP operator. Then, in
, the mode Splp;| will be amplified provided that (%, ©;j)3+ is non-
zero. As a result, the scattered field v — u* will show a resonant behavior.
This phenomenon is called the plasmonic quasi-static resonance.

1.3.1 Contracted generalized polarization tensors

Decomposition ([1.5)) of u together with

u'(x) = Z éao‘ui(O)xo‘

aeNd
and
X (—1)lAl
G(z,y) = Z a1 OPT(z)y?, vy in a compact set, |z| — +o0,
Bl=0

where G(z,y) is the fundamental solution to the Laplacian, yields the far-
field behavior |4 p. 77]

(=) = 3 o0 [P Or - k) et 9°G(a0(1.0)

o], 8]21
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as |z| — +o00. Introduce the generalized polarization tensors [4):

ox®

v =Kp) T [ -l w)doly), o, B €N

Mag(A, D) = /

oD

They will be of great use in chapter[8, We call M := M for |o| = |3] = 1
the first-order polarization tensor.

Suppose that D = z+ 0B, where B has size of order 1. Then, from (|1.6))
we have

Theorem 1.3.1. In the far field

5d+ 1

uf(z) = u'(x) — V,G(x,0)M (X, D)Vu'(0) + O(m).

For a positive integer m, let P,,(z) be the complex-valued polynomial

Pp(x) = (21 +izg)™ = Y aga®+i Y bgal
|8=m

(1.7)

la|=m

Using polar coordinates z = re?, the above coefficients a™ and bjg" can also
be characterized by

Z ap'x® =r" cosmb, and Z b’ﬁnasﬁ = r"" sinm. (1.8)

18]=m

|a|=m

We introduce the contracted generalized polarization tensors to be the fol-
lowing linear combinations of generalized polarization tensors using the co-

efficients in :
M= > > adagMes, Mgy, = Y > albiMags,

laj=m |B|=n laj=m |B|=n

S bragMag, M =Y > bIbEMag.

laj=m |B|=n laf=m |B]=n

sc __
M. =

It is clear that

e = [ RE)OI - k) 2R 4
oD ov
Mz = [ s - k)~ 122 Em)y 4
oD ov
C\
vz = [ wpyoT - k) () g,
oD ov

93 (Pu)

sz, = [ @) - ) 1o
oD aV

We refer to |18| for further details

As recently shown [11,/18], the contracted generalized polarization ten-
sors can efficiently be used for domain classification. They provide a natural
tool for describing shapes. In imaging applications, they can be stably re-
constructed from the data by solving a least-squares problem. They capture
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high-frequency shape oscillations as well as topology. High-frequency oscilla-
tions of the shape of a domain are only contained in its high-order contracted
generalized polarization tensors.

1.4 Plasmonic resonances for the anisotropic prob-
lem

In this section, we consider the scattering problem of a time-harmonic wave
u!, incident on a plasmonic anisotropic nanoparticle. The homogeneous
medium is characterized by its electric permittivity e,,, while the particle
occupying a bounded and simply connected domain € R3 of class C1®
for 0 < a < 1 is characterized by electric anisotropic permittivity A. We
consider A to be a positive-definite symmetric matrix.

In the quasi-static regime, the problem can be modeled as follows:

V- (emIdx(R*\Q) + Ax(Q))Vu = 0,

. (1.9)
ju—u'| = O(|z|7?), |z] = +oo,
where y denotes the characteristic function and 4’ is a harmonic function in
R3.
We are interested in finding the plasmonic resonances for problem ([1.9)).
First, introduce the fundamental solution to the operator V-AV in dimension
three

GAz) =

1
4 /det(A)| Azl

with A, = VA~L. From now on, we denote G4 (z,y) := G4(z — y).
The single-layer potential associated with A is

Silel: H2(0Q) — Hz(09Q)

o — 56‘[@](33)=/890A(x,y)w(y)d0<y)7 z R’

We can represent the unique solution to (1.9) in the following form |18]:

B u' + Sqlv], r € R3\Q,
ule) = { S414], zEeQ,

where (¢, ¢) € (H_%(GQ))Q is the unique solution to the following system
of integral equations on 0€:

Sal¥] — S§¢] = —u,
8ui (1.10)

_ . A — .
Em ey L v AVSQ[qﬁ]i Em 5

Lemma 1.4.1. The operator S H_%(ﬁﬁ) — H%((?Q) is invertible. More-
over, we have the jump formula

V- AVSS‘;‘L - i%Id+ (KKA)*
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with

(K&)*[e)(z) = / (z = y.v(x))

Y] _47T\/M|A*(x ) e(y)do(y).

Proof. Let Ta, € L(H*(0S2), H*(052)) be such that Ta,[p](z) = p(Asz) for
p € H%(09Q) and Q = AQ. Let r, € L(H*(0Q), H*(022)) be such that
r[p](z) = |A7tv(z)|p(x). Tt follows by the change of variables § = A,y
that do(y) = detv/A.|A; v(y)|do(y). Thus,

A —1,.—1
SQ - TA*SQ,];‘* Ty,

and in particular S is invertible and its inverse (S3)~! = ry7j4*851711.
Note that, for z € 99,

where (%) is the outward normal to dQ at ¥ = A,z. We have

v AVS{Zl N v- AV, (ﬂ*sﬁmlT’jl) ‘i

= V-AA*(ﬂ*Visﬁmlr’jl)’i

= AT (Ta VasaTaln )|

_ i%IdJr(rﬂh*)/%(Tuﬂ*)_l' (L.11)

The result follows from a change of variables in the expression of the operator

(K@) = (r Ta )5 (1 Ta.) "

Lemma 1.4.2. Sé is negative definite for the duality pairing (-,-)_
we can define a new inner product

(uv U)"ng = _(u7 Sé[v])—

[SIE
[SIE

with which H3 (08), the space induced by (-, -)uy, , is equivalent to Hfé((?Q).
Proof. Let ¢ € Hf%((‘)(l). Using Lemma we have

p=v-AVSAl)| —v- AVSHly)| .
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Thus

/ (@) SA ] (2)do ()
oN

- / v- AVSALl| (@)SEll(@)do() - / v AVSALE| ()88 (e (x)do(x)
0N +

o -

= = [ V@) ATSiA @) — [ il - AVSiaio)

R3\Q)

/VSQ ) - AVSE [ /SQ )V - AVSE ) (z)do ()

- —A3vsﬂ[w1<x>-Avsé[ J(2)do(x) <0,

where the equality is achieved if and only if ¢ = 0. Here we have used
an integration by parts, the fact that Syl¢](z) = O(|z|™1) as |z| — oo,
V- AVSH[pl(z) = 0 for z € R*\0N and that A is positive-definite.

In the same manner, it is known that

lol3 = - /m (2)Sali / IV Salg)(z) do(x).

Since A is positive-definite we have

cllolZe < - /8 e@SHlel@)do(z) <

for some constants ¢, C' > 0. )
Using the fact that H*(09) is equivalent to H™2(9), we get the desired
result. O

From (T.10) we have ¢ = (S3) ™' (Sq[¢] + u?), whereas, by Lemma
the following equation holds for :

Quly] = F (1.12)

with
Q4= %kmld +(80) ' Sa) + (emKh — (KG)"(SH)7'Sa),  (1.13)

and

F= _gm‘?;i + v AVSA|(SA) ]

Propsition 1.4.1. Q4 has a countable number of eigenvalues.

Proof. Tt is clear that (K§)* : H_%(aﬁ) — H_%((?Q) is a compact operator.
Hence, £,K8 — (K§)*(S3)"1Sq is compact as well. Therefore, only the
invertibility of %(smI d+ (86‘)*189) needs to be proven.

Since S is invertible, the invertibility of 3 (g,,/d + (S§)'Sq) is equivalent
to that of emSé + Sq.

Consider now, the bilinear form, for (¢, ) €

H™2(0))?
)

(
p(x)Saly](x)do(z),
oN

Blp. ) = —em /a o)Al (@) -
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where €, > 0. From Lemma [[.4.2] we have

B(y,$) = cllv]?

1
T2(09)

for some constant ¢ > 0.
It follows then, from the Lax-Milgram theorem that smSél + Sq is invertible

in H2 (02), whence the result. O

Recall that the electromagnetic parameter of the problem, A, depends on
the frequency, w of the incident field. Therefore the operator Q4 is frequency
dependent and we should write Q4 (w).

We say that w is a plasmonic resonance if

leig;(Qa(w))| <1 and is locally minimal for some j € N,

where eig;(Qa(w)) stands for the j-th eigenvalue of Q4(w).
Equivalently, we can say that w is a plamonic resonance if

W = argmax HQZI(M)HE(H*(QQ)) (114)

From now on, we suppose that A is an anisotropic perturbation of an
isotropic parameter, i.e., A = e.(Id + P), with P being a symmetric matrix
and ||P|| < 1.

Lemma 1.4.3. Let A = ¢.(Id + 0R), with R being a symmetric matriz,
|R|| = O(1) and 6 < 1. Let Tr denote the trace of a matriz. Then, as
0 — 0, we have the following asymptotic expansions:

1
Sy = 8f(sﬂ + 68,1 + 0(d)),

(S = ec(Sgt + B + 0(d)),
(K& = Ko+ 6Ks, +o(0)

with
B 1 1 (R(m—y),az—y)
Saalella) = —5TESalele) —5 [ I )day),
Boi = —85'S0185%,
) 1 . 3 [ (R@—y)z—y)(z—yv)
= —7T —_ = .
Kon = —5T(RK@ -5 [ Tt oly)do(y)
Proof. Recall that, for § small enough,
(I+0R)"1 = Id- gR + 0(6%),
det(I +0R) = = 1+ 0Te(R)+ o(0),
(14+0x+0(0)" = 1+dsx+o0(5), seR.

The results follow then from asymptotic expansions of —

1
Amy/det(A)|A,z|B’

6 =1,3 and the identity

(84) 7 = e.(Id+ 685 Sa1 + 0(5)) 1S5
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O

Plugging the expressions above into the expression of Q4 we get the
following result.

Lemma 1.4.4. As 6 — 0, the operator Qa has the following asymptotic
eTpansion

Qa=0Qu0+09a1+ 0(9),

where

Emt+ € «
Qap = m2 SId+ (e — e0)KG,

1
Qa1 = sc((§fd—K5)BQ,ISQ_’C?2,1)‘

)

We regard the operator Q4 as a perturbation of Q4. As in section @
we use the standard perturbation theory to derive the perturbed eigenvalues
and eigenvectors in H*(092).

Let (Aj, ;) be the eigenvalue and normalized eigenfunction pairs of kg
in H*(092) and 7; the eigenvalues of Q4. We have

Em + €c
T = B

+ (€m — 60))\j.

For simplicity, we consider the case when \; is a simple eigenvalue of the
operator Kg,. Define

Pj1 = (Qa1les], 1) w-

As 6 — 0, the perturbed eigenvalue and eigenfunction have the following
form:

Tj(é) = Tj+5Tj71+0(5),
©j(6) = @i+ dpj1+o(d),

where

Ti1 = Pjj,

P;
Yi1 = E ©i1-
] = (em —ec)(Nj — N)

1.5 A Maxwell-Garnett theory for plasmonic nanopar-
ticles

In this subsection we derive effective properties of a system of plasmonic
nanoparticles. To begin with, we consider a bounded and simply connected
domain Q € R? of class C® for 0 < a < 1, filled with a composite material
that consists of a matrix of constant electric permittivity e, and a set of
periodically distributed plasmonic nanoparticles with (small) period 1 and
electric permittivity e..

Let Y =] —1/2,1/2[? be the unit cell and denote § = n® for § > 0. We set
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the (re-scaled) periodic function
v =emx(Y\D) +ecx(D),

where D = §B with B € R? being of class C1** and the volume of B, |B], is
assumed to be equal to 1. Thus, the electric permittivity of the composite is
given by the periodic function

() = (/)
which has period 7. Now, consider the problem
Vv, Vu, =0 in Q, (1.15)

with an appropriate boundary condition on 9€2. Then, there exists a homo-
geneous, generally anisotropic, permittivity ~+*, such that the replacement,

as n — 0, of the original equation ([1.15]) by
V"V*VUOZO in Q

is a valid approximation in a certain sense. The coefficient v* is called an
effective permittivity. It represents the overall macroscopic material property
of the periodic composite made of plasmonic nanoparticles embedded in an
isotropic matrix.

The (effective) matrix v* = (7,,)pg=1.2,3 is defined by [1§]

oy = [ A@Vuyla) - V().
where u,, for p = 1,2, 3, is the unique solution to the cell problem

V-9Vu,=0 inY,
up — xp periodic (in each direction) with period 1, (1.16)

Jy up(x)dx = 0.

Using Green’s formula, we can rewrite v* in the following form:

Tpg = Em /8Y uq(x)g(w)da(x)_ (1.17)

The matrix v* depends on 7 as a parameter and cannot be written explicitly.
The following lemmas are from [18].

Lemma 1.5.1. For p = 1,2,3, problem (1.16) has a unique solution u, of
the form

up(x) = xp + Cp + Spy(AId — ICEﬁ)_l[I/p] (x) inY,
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where C), is a constant, vy, is the p-component of the outward unit normal to

0D, ). is defined by (5.17), and

Sodella) = [ Glaa)eiat),
Kidlele) = [ 2282 o)day)

with Gy(x,y) being the periodic Green function defined by

ei27rn~(x—y)

Gti(%y) = - W

nezZ3\{0}

Lemma 1.5.2. Let Spy and Ky be the operators defined as in Lemmam
Then the following trace formula holds on 0D

For the sake of simplicity, for p = 1,2, 3, we set
op(y) = (AId — K}*jﬁ)fl[up] (y) foryin OD. (1.18)
Thus, from Lemma [1.5.1] we get

= [+ Cut Spalon)i) 2 AW g )
)% 14

Because of the periodicity of Spy[¢p], we get

Tpq = Em <5pq + /6Y yq%gi/[gép}(y)da(y)). (1.19)

In view of the periodicity of Spy[¢p], the divergence theorem applied on Y\ D

and Lemma yields (see |18])

OSpyldyl , \ _
/aqu oy W= [9qu¢p(y)d0(y).

Let
Up(y) = ¢p(dy) for y € OB.
Then, by , we obtain
v = em(Id+ fP), (1.20)

where f = |D| = §3(= *’) is the volume fraction of D and P = (Ppy)pq=12.3
is given by

Fpg = /83 Yq¥p(y)do(y). (1.21)

To proceed with the computation of P we will need the following Lemma [18§].
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Lemma 1.5.3. There exists a smooth function R(x) in the unit cell Y such
that
1

Gy(z,y) = T +

R(z —y).
Moreover, the Taylor expansion of R(x) at 0 is given by
1
R(z) = R(0) — 6(3:% + 23 + 23) + O(|z]h).

Now we can prove the main result of this section, which shows the validity
of the Maxwell-Garnett theory uniformly with respect to the frequency under
the assumptions that

f < dist(A\o(w), o(K5))*°  and (Id — 53R;81(W)T0)—1 =0(1), (1.22)

where R;:(w) and Tp are to be defined and dist(A:(w), o(K7,)) is the distance
between A.(w) and the spectrum of 3.

Theorem 1.5.1. Assume that holds. Then we have

. J - f83
7" = em(Id+ fM(Id = $M) 1)+o(dist(%(w)7a(l%))2), (1.23)

uniformly in w. Here, M = M(\.(w), B) is the polarization tensor (3.30)
associated with B and A (w).

Proof. In view of Lemma[1.5.3|and (|1.18)), we can write, for z € 9D,

Octd = Ko@) - [ 205, 4)do) = vy (o).
which yields, for = € 0B,
Oc)rd = Kp)ludw) -8 [ Py )do(y) = o)

By virtue of Lemma [1.5.3] we get

VR(G( ) = —3 (&~ 9) + O(")
uniformly in @,y € OB. Since [, ¥p(y)do(y) = 0, we now have
(Ra.(w) = 8°To + 8°T1) [1hy) (x) = v (),
and so

(Id = &Ry To + 6° Ry Tl (x) = By vl (), (1.24)

where

By pl(x) = (Ae(w)ld = Kp)p](2),

niwla) = U5 o)

IT1ll = oBy) = O(1).
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Since K73 is a compact self-adjoint operator in H*(0B) it follows that [50]

I(Ae(w)Id = K3) "l 2ae-0m)) (1.25)

c
<
~ dist(Ac(w), 0(K%))
for a constant c.
It is clear that Tp is a compact operator. From the fact that the imaginary
part of R)_(,) is nonzero, it follows that Id — 53R;61(W)T o is invertible.
Under the assumption that

(Id— &Ry, To) ™" = O(1),

§° < dist(A\o(w), 0 (K%)),

we get from ([1.24]) and (|1.25))

vp(z) = (Id—=8Ry,To+ 38Ry Th) 'Ry [)(@),

e 5
= (Id— &Ry} o) "Ry (@) + O+ ).

Therefore, we obtain the estimate for 1,

Y = O(dist(/\e(wl)’UUC*B)))

Now, we multiply ([1.24) by y, and integrate over 9B. We can derive from
the estimate of 1), that

f

55
P(Id— 5M) :M+0(

dist(Ac (w), O‘(’C*B))Z)7

and therefore,

. >
P=M(Id+ M) + O(dist()\g(w)aU(K*B))Q)

with P being defined by (1.21)). Since f = 6% and

53

M= O(dist()\g(w),a(lC*B))>’

it follows from (|1.20]) that the Maxwell-Garnett formula ([1.23) holds (uni-
formly in the frequency w) under the assumption ([1.22]) on the volume frac-
tion f. O

Remark 1.5.1. As a corollary of Theorem we see that in the case when
fM = O(1), which is equivalent to the scale f = O(dist()\e(w), J(IC*B))), the

matriz fM(Id — %M)*1 may have a negative-definite symmetric real part.
This implies that the effective medium is plasmonic as well as anisotropic.

Remark 1.5.2. It is worth emphasizing that Theorem does not only
prove the validity of the Mazwell-Garnett theory but it can also be used to-
gether with the results in section in order to derive the plasmonic reso-
nances of the effective medium made of a dilute system of arbitrary-shaped
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plasmonic nanoparticles, following (|1.14))

w = argmax || Q. (w) | £+ (992)) -

1.6 Concluding remarks

In this chapter we have analyzed the plasmonic resonance phenomena as-
suming a quasi-static approximation, which is valid for particles consider-
ably smaller than the wavelength of the incoming wave. We have presented
a rigorous mathematical framework for its analysis, given beforehand the
necessary mathematical tools, relying mainly in layer potential techniques.
The plasmonic resonances depend strongly in the spectral properties of the
Neumann-Poincaré operator K7, associated with D. We remark that this
operator is scale invariant. This imply that the quasi-static model cannot
explain changes in the resonances given by the scaling of nanoparticiles. This
problem is analyzed in chapter ] and [B] with the study of Helmholtz and
Maxwell equations, respectively

We have also studied the anisotropic quasi-static problem in terms of layer
potentials and defined the plasmonic resonances for anisotropic nanoparticles.
Formulas for a small anisotropic perturbation of resonances of the isotropic
formulas have been derived.

The Maxwell-Garnett theory provides a simple model for calculating the
macroscopic optical properties of materials with a dilute inclusion of spher-
ical nanoparticles [18]. In this chapter we have rigorously obtained effective
properties of a periodic arrangement of arbitrary-shaped nanoparticles and
derived a condition on the volume fraction of the nanoparticles that insures
the validity of the Maxwell-Garnett theory for predicting the effective op-
tical properties of systems of embedded in a dielectric host material at the
plasmonic resonances.
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2.1 Introduction

As seen in chapter [I}, plasmon resonances in nanoparticles can be treated at
the quasi-static limit as an eigenvalue problem for the Neumann-Poincaré
integral operator. This leads to direct calculation of resonance values of
permittivity and optimal design of nanoparticles that resonate at specified
frequencies. At this limit, they are size-independent. However, as the particle
size increases, they are determined from scattering and absorption blow up
and become size-dependent. This was experimentally observed, for instance,
in [4981,89].

In this chapter, using the Helmholtz equation to model light propaga-
tion, we first prove that, as the particle size increases and crosses its critical
value for dipolar approximation which is justified in [9], the plasmonic reso-
nances become size-dependent. The resonance condition is determined from
absorption and scattering blow up and depends on the shape, size and elec-
tromagnetic parameters of both the nanoparticle and the surrounding ma-
terial. Then, we precisely quantify the scattering absorption enhancements
in plasmonic nanoparticles. We derive new bounds on the enhancement fac-
tors given the volume and electromagnetic parameters of the nanoparticles.
At the quasi-static limit, we prove that the averages over the orientation of
scattering and extinction cross-sections of a randomly oriented nanoparticle
are given in terms of the imaginary part of the polarization tensor. More-
over, we show that the polarization tensor blows up at plasmonic resonances
and derive bounds for the absorption and scattering cross-sections. We also
prove the blow-up of the first-order scattering coefficients at plasmonic res-
onances. The concept of scattering coefficients was introduced in [20] for
scalar wave propagation problems and in |21] for the full Maxwell equations,
rendering a powerful and efficient tool for the classification of the nanoparti-
cle shapes. Using such a concept, we have explained in [6] the experimental
results reported in [35].

The chapter is organized as follows. In section 2.3 we introduce a layer
potential formulation for plasmonic resonances and derive asymptotic formu-
las for the plasmonic resonances and the near- and far-fields in terms of the
size. In section we consider the case of multiple plasmonic nanoparticles.
Section [6.3]is devoted to the study of the scattering and absorption enhance-
ments. The scattering coefficients are simply the Fourier coefficients of the
scattering amplitude [20,21]. In section we investigate the behavior of
the scattering coefficients at the plasmonic resonances.

2.2 Preliminaries

2.2.1 Layer potentials for the Helmholtz equation

Let G be the Green function for the Helmholtz operator A + k? satisfying
the Sommerfeld radiation condition.

The Sommerfeld radiation condition can be expressed in dimension d =
2,3, as follows:

ﬂ —iknu

|

as |x| — 400 for some constant C' independent of x.

< C‘x’—(d-i-l)/Z
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In R3, G is given by
o " ez‘k|m—y\
(z,y,k) = —m-

The single-layer potential and the Neumann-Poincaré integral operator for
the Helmholtz equation are defined as follows

Splel(x) = o G(z,y, k)p(y)do(y), z € R3,

. _ [ 9G(z,y.k)
byl = [ FEEE o). e oD,

Let us recall some well known properties [12]:
(i) 8% : H2(dD) — H2(dD), H. (R2\D) is bounded;
(i) (A + k2)SK[p](z) = 0 for z € R2\D, p € H™2(dD);

(i) (KK)*: H_%(aD) — H_%(('J?D) is compact;

(iv) SEl¢], p € H *%((‘)D), satisfies the Sommerfeld radiation condition at
infinity;
OSp )

(v) 2B = 4+ ()l

We have that, for any ¢, ¢ € H_%(ﬁD),

{ ul + Sf)’" [¥], r € R2\D,
u =

. (2.1)
SDC[¢]7 U Dv

with k,, = w\/Emitm and k. = w\/E.lic, satisfies Au + k?nu =0in RQ\D,
Au+ k*>u=0in D and u — u’ satisfies the Sommerfeld radiation condition.

To satisfy the boundary transmission conditions, ¥, ¢ € H _%(8D) need
to satisfy the following system of integral equations on 9D

Shrp) — Sklo] = —,

i 2.2
L3+ (Kl + (- (Kl = =5 (22)

The following result shows the existence of such a representation [19].

Theorem 2.2.1. The operator

T (H—%(ap))2 s H3(OD) x H 3(9D)
o) = (Sl - Sl =G+ ()l + (T - ()

E€m

15 invertible.
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2.3 Layer potential formulation for the scattering
problem

2.3.1 Problem formulation and some basic results

We consider the scattering problem of a time-harmonic wave incident on a
plasmonic nanoparticle. We use the Helmholtz equation instead of the full
Maxwell equations. The homogeneous medium is characterized by its electric
permittivity €,, and its magnetic permeability p,,, while the particle occupy-
ing a bounded and simply connected domain D € R? (the two-dimensional
case can be treated similarly using results from Appendix of class C1@
for some 0 < a < 1 is characterized by electric permittivity €. and magnetic
permeability u., both of which may depend on the frequency. Assume that
Rue < 0,Spe > 0,e. > 0, and define

kp = W/ EmMtm, ke = Wy/Eclhe,

and
€D = ng(R?)\D) +€cX(D)7 Up = 5mX(R3\D) +5CX(D)7

where Y denotes the characteristic function. Let u'(z) = e*m9® be the
incident wave. Here, w is the frequency and d is the unit incidence direction.
Throughout this chapter, we assume that ¢, and p,, are real and strictly
positive and that Sk. > 0.

Using dimensionless quantities, we assume that the particle D has size of
order one and also the following condition holds.

Condition 2.1. We assume that the numbers €, fim, €c, e are dimension-
less and are of order one. In addition, Spu. = o(1). We also assume that w
is dimensionless and is of order o(1).

It is worth emphasizing that in this section the variables w refers to
the ratio between the size of the particle and the incident wavelength. For
real plasmonic nanoparticles made of noble metals such as silver and gold,
their electric permittivity is only negative over a small range of frequencies
in the optical regime. This is also the frequency range in which Condition
holds and also plasmonic resonance occurs. For the frequencies that are
beyond that range, especially those near the origin, we shall assume that e,
and p. are constant there. This assumption avoids complicated discussion
on the dispersive property of electromagnetic parameters in that regime,
and enables us to focus on the interesting frequency range when plasmonic
resonance occurs. We also note that w = o(1) implies that the plamsmonic
nanoparticles have size much smaller than the incident wavelength. This is
the case when plamsonic resonance occurs.

The scattering problem can be modeled by the following Helmholtz equa-
tion

1
V.- —Vu+w?’epu=0 inR3\ID,
KUD

uy —u— =0 ondD,
1 Ou 1 Ou

fm OV |, e v

=0 ondD,
+  He ov

s

u® = u — u' satisfies the Sommerfeld radiation condition.
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Here, 0/0v denotes the normal derivative and the Sommerfeld radiation con-
dition.

The model problem is referred to as the transverse magnetic case.
Note that all the results of this chapter hold true in the transverse electric
case where ep and up are interchanged.

Let
Fi(z) = —u'(z) = —e™nd,
1 ou j :
At = R0 Lttt

with v(x) being the outward normal at = € 9D.

By using the following single-layer potential and Neumann-Poincaré in-
tegral operator of section 2.2 we can represent the solution u in the following
form

w48, 2 eRN\D,

where ¥, ¢ € H ~3 (0D) satisfy the following system of integral equations on
oD |12]:

{ Syl = S [¢) = P,

o (21 (KB )W)+ - (37d = (KB)) 9] = P,

where Id denotes the identity operator. In the sequel, we set S% =Sp.
We are interested in the scattering in the quasi-static regime, i.e., for

w < 1. Note that for w small enough, SF is invertible [12]. We have
¢ = (S%)_l (Sf)m [¥] — Fl), whereas the following equation holds for 1)

Ap(w)[¥] = f, (2.6)
where
—Ll km % il _ ke * ke—1 ckm
Ap(w) = P (2Id+(ICD ) )+# (21d (K5 ) (SE) I SEr, (2.7)
1.1
fr= B+ —(5ld=(K)")(Sp) ' F]. (2.8)
It is clear that
1,1 11 R SR TS S SR
Ap(0) = Apo = M*m(gfdJF’CD)JFE(gId_’CD) = (2,um+2ﬂc)ld (Mc(2 g)m) D>

where the notation Kj, = (K%)* is used for simplicity.

We are interested in finding Ap(w)~!. We first recall some basic facts
about the Neumann-Poincaré operator K7, stated in chaper [1| See also [12}
32,61,65].

Lemma 2.3.1. (i) The following Caldercn identity holds: KpSp = SpK}y;

(it) The operator K7, is self-adjoint in the Hilbert space H> (0D) equipped
with the following inner product

(u, V)= = —(u, Sp[v]) (2.10)

11
272
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with (+,+)_ 11 being the duality pairing between H ™ (8D) and H2 (0D),

which s equwalent to the original one;

(iii) Let H*(OD) be the space Hii(aD) with the new inner product. Let
(Aj,¢5), 5 =0,1,2,... be the eigenvalue and normalized eigenfunction
pair of K7, inH*(aD) then A; € (=1, 1] and A\; — 0 as j — oo;

(iv) The following trace formula holds: for any v € H*(9D),

OSp[yY]| .
o |-

(—5Td+Kp)lw] =

(v) The following representation formula holds: for any v € H*1/2(8D),

D
Z/\j 1, (Pj H* @ @j.
7=0

It is clear that the following result holds.

Lemma 2.3.2. Let H(OD) be the space H%(ﬁD) equipped with the following
equivalent inner product

(u,v) = ((=Sp) ™ {u],v) (2.11)

11
272
Then, Sp is an isometry between H*(OD) and H(OD).

We now present other useful observations and basic results. The following
holds.

Lemma 2.3.3. (i) We have (—3Id+ K}3)Sp'[1] = 0.

(ii) Let A\g = % Then the corresponding eigenspace has dimension one and
s spanned by the function pg = 0851[1] for some constant ¢ such that

ol = 1.

(111) Moreover, H*(0D) = H§(OD) & {ppo, 1 € C}, where Hi(0D) is the
zero mean subspace of H*(OD) and ¢; € H{(OD) for j > 1, i.e.,
(5, 1)_%,% =0 for j > 1. Here, {¢;}; is the set of normalized eigen-
functions of K7,.

From (12.9), it is easy to see that

Apolt] =D (v, 05)n-05, (2.12)
=0
where ] 1 ] 1
T, = —— 4+ —(— — — )\, 2.13
! 2pm, 2e (Hc Mm) ! ( )

From ([2.9)), it is easy to see that

Apolt] = D 7i(v, 01)u 25, (2.14)

J=0
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where
_ (i—i)Aj. (2.15)
20m, 2pie He Hm,
We now derive the asymptotic expansion of the operator A(w) as w — 0.
Using the asymptotic expansions in terms of k of the operators Sf), (Sf))_l

and (IC]B)* proved in Appendix we can obtain the following result.

7j

Lemma 2.3.4. Asw — 0, the operator Ap(w) : H*(0D) — H*(0D) admits
the asymptotic expansion

Ap(w) = Apo +w?Ap s + O(w?),

where

EmMm — Ec,u'c(

1
Apo = (em —ec)Kp2 + ld - K5)Sp'Sp 2. (2.16)

e
Proof. Recall that
Ap(w) = (2ra v (i) + L (Lra— (o)) st sk (27
D(W)—M (2 +(D))+M(2 (D))(D) D - (2.17)
m Cc

By a straightforward calculation, it follows that

(Sl]gc)_lS]]S’" = Id+ w(vecpeBpiSp + \/WSBISDJ) +
w? (ectteBp 2SD + v/EcheEmbmBDiSD1 + EmimSp Sp.2) + O(w?),
= Id+w(vEmbm — Veahe)Sp'Spa +
w? ((Empun — €cttc)Sp Sp2 + v/Eche(v/Ecke — /Embm)Sp Sp1Sp' Sp,1)
+0(w?),

where Bp 1 and Bp o are defined by (B.5). Using the facts that
1
(57d—=Kp)Sp'Spy =0

and
1 1
gld - (Kh)* = (iId —Kp) — K*Kp2 + O(K?),

the lemma immediately follows. O

We regard Ap(w) as a perturbation to the operator Ap for small w.
Using standard perturbation theory [85], we can derive the perturbed eigen-
values and their associated eigenfunctions. For simplicity, we consider the
case when \; is a simple eigenvalue of the operator K7,.

We let

Rji = (Ap2l@il, ¢1) e (2.18)
where Ap » is defined by (2.16]).

As w goes to zero, the perturbed eigenvalue and eigenfunction have the
following form:

Ti(w) = T+ szjg + O(w3), (2.19)
pj(w) = @ +wpjs+0W?), (2.20)
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where
Tj72 = Rjj’ (221)
i
; = . 2.22
(p],2 lzj(l—l)(Aj—)\l)SOl ( )
#j \Hm He

2.3.2 First-order correction to plasmonic resonances and field
behavior at the plasmonic resonances

We first introduce different notions of plasmonic resonance as follows.

Definition 2.1. (i) We say that w is a plasmonic resonance if

|7j(w)| <1 and is locally minimal for some j.

(i) We say that w is a quasi-static plasmonic resonance if |1;| < 1 and is
locally minimized for some j. Here, 7; is defined by .

(iii) We say that w is a first-order corrected quasi-static plasmonic resonance
if |1j + w?rja] < 1 and is locally minimized for some j. Here, the
correction term Tj o is defined by .

Note that quasi-static resonances are size independent and is therefore a
zero-order approximation of the plasmonic resonance in terms of the particle
size while the first-order corrected quasi-static plasmonic resonance depends
on the size of the nanoparticle (or equivalently on w in view of the non-
dimensionalization adopted herein).

We are interested in solving the equation Ap(w)[¢] = f when w is close
to the resonance frequencies, i.e., when 7;(w) is very small for some j’s. In
this case, the major part of the solution would be the contributions of the
excited resonance modes ¢;(w). We introduce the following definition.

Definition 2.2. We call J C N index set of resonance if 7;’s are close to
zero when j € J and are bounded from below when j € J¢. More precisely,
we choose a threshold number ng > 0 independent of w such that

|| >m0 >0 for jeJ.

Remark 2.3.1. Note that for j = 0, we have 19 = 1/, which is of size one
by our assumption. As a result, throughout this chapter, we always exclude
0 from the index set of resonance J.

From now on, we shall use J as our index set of resonances. We assume
throughout that the following conditions hold.

Condition 2.2. FEach eigenvalue \; for j € J is a simple eigenvalue of the
operator K7,.

Condition 2.3. Let
Ham + fe

2<Nm - Mc) .
We assume that A # 0 or equivalently, pe # —pim, .

A= (2.23)

Condition 23] which is crucial to our analysis, implies that the set J is
finite. Otherwise, infinity resonance modes may be excited and the problem
becomes unstable. We refer to |[44,/47.[79] for detailed discussion on this case.
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Remark 2.3.2. Note that in the ideal case when Su. = 0, we know that
7; = 0 if X defined in is equal to X\j. This the usual definition in the
quasi-static limiting case when the wavelength is infinite. In the case Sue # 0
but Spe. = o(1), one may neglect the imaginary part and still use the definition
to find the resonance frequency. The draw back of this definition is that the
resonance frequency is independent of the size of the particle. Now, with
the asymptotic expansion (8.11), we may find w, the resonance frequency,
according to the criterion in Deﬁnition (i) in a small neighborhood of the
resonant frequency of the quasi-static limiting case. The difference of the two
frequency yields the shift of resonance frequency with respect to size of the
particle.

We now define the projection P;(w) such that

Pl ={ P 1]

In fact, we have

Pie) =3 P =Y o [ - Ap) a0

jeJ jeJ i

where «; is a Jordan curve in the complex plane enclosing only the eigenvalue
7j(w) among all the eigenvalues.

To obtain an explicit representation of Pj(w), we consider the adjoint
operator Ap(w)*. By a similar perturbation argument, we can obtain its
perturbed eigenvalue and eigenfunction, which have the following form

Tjw) = 7(w), (2.25)

oiw) = ¢j+ w2@j,2 + o(w?). (2.26)
Using the eigenfunctions ¢;(w), we can show that

Py(w)le] = Y (2,3;()) 305w (2.27)
JjEJ

Throughout this chapter, for two Banach spaces X and Y, by £(X,Y) we
denote the set of bounded linear operators from X into Y.

We are now ready to solve the equation Ap(w)[y)] = f. First, it is clear
that

v =Apw)'[f] =) W‘ + Ap(@) [Pre@)fll (228)
=Y J

The following lemma holds.

Lemma 2.3.5. The norm ||Ap(w)~"Pse(w)|l ce+(00),1+(op)) s uniformly
bounded in w for w sufficiently small.

Proof. Consider the operator

Ap(w)|je : Pre(w)H*(OD) — Pje(w)H*(OD).
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For w small enough, we can show that dist(c(Ap(w)|se),0) > 2, where

o(Ap(w)|se) is the discrete spectrum of Ap(w)|je. Then, it follows that

[ AD(@) " (Pre(@) )l = 1 (Ap(@)|pye) " (Pre(@) Il S %exp(%)llPJc(W)fllv

where the notation A < B means that A < CB for some constant C.
On the other hand,

Pi)f = Y (£:8@)y.0iw) =D (05 + OW)),. (95 + Ow))

JjeJ JjeJ
= > (f95) 505 (w) + Ow).
JjeJ
Thus,
[Pre(@)|| = [[(Id = Pr(w))]| S (1+ O(w)),
from which the desired result follows immediately. O

Second, we have the following asymptotic expansion of f given by (2.8))
with respect to w.

Lemma 2.3.6. Let

1 1.1 ) o
@)+ - (51d = Kp)Sp'ld- <w—2”>

fi = —iv/Empme ™t <

and let z be the center of the domain D. In the space H*(OD), as w goes to
zero, we have

f = wfl + O(w2)7

in the sense that, for w small enough,
2
If —wfillu < Cw

for some constant C independent of w.

Proof. A direct calculation yields

[ Rt (= ())(S5) )

= —w'UJL Emtime 2 [d - v(z)] + O(w?) +

m

;((;Id —K5)((Sp)™' +wBpa) + O(w2)> [—e*mdZ(1 + iw\/Empim|d - (x — 2)])
+0(w?)]
= k) = Y g k) Bt -
He 2 fe 2 ’
iy B (Ll v + (514~ Kp)Spd - (o = 2)]) +0(?)
= wi/Ememd <M1m[d (@) + :C(;Id CK)SHd - (o — z)]>

+O(w?),
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where we have made use of the facts that

1 N
(214 Kp)Sp' 1] =0

and
Bp[x(dD)] = ¢S, [x(dD))]
for some constant c¢; see again Appendix O

Finally, we are ready to state our main result in this section.

Theorem 2.3.1. Let D has size of order one. Under Conditions
and the scattered field u®* = u — u* due to a single plasmonic particle D
has the following representation:

u® = Sk,
where

Y = Z w(flv%'(w))ﬁ*ipj(w)

+ O(w),
= 7j(w) )
k'm tkmd-z d- Ny L0 O 2
_ ikme ( v(z) gpj)H ©; + O(w?) L Ow)
Z. A=A+ 0O(w?)
JjeJ

with A being given by .
Proof. We have

b = Z(fa&j(w))g{*@j(w)

7j(w)

+ Ap (W)~ (Pre(w) f),

jeJ
-y w(f1,05) 405 + OW?)
- 1

1 1 1
5 i T G )N+ 0(?)

+ O(w).

Me

We now compute ( fi, goj)H* with f; given in Lemma We only need
to show that

(G- Kp)S5d- = 2)ps) = (@ vl 229
»
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Indeed, we have

(GIa-Kp)sp - (o= 2es), = —(85'd- (=), (314~ K)Sples))

H*

where we have used the fact that Sp[ep;] is harmonic in D. This proves the
desired identity and the rest of the theorem follows immediately. O

Corollary 2.3.1. Assume the same conditions as in Theorem[3.3.2 Under
the additional condition that

min |75 (w)| > w?, (2.30)
jeJ

we have

o= Z ik, etkmdz (d -v(x), 90]')7_[* p; + O(w?)

+ O(w).
1 1\~1
jed A=A+ w?(n = an) T2
More generally, under the additional condition that
min 75 (w) > W™,
ed 7j(w)
for some integer m > 2, we have
ikmeikmdhz (d : V($)7 SOJ') «Pj + O(WQ)
¢:Z 2(1 11 " m( 1 11 +0W)
G AN W =) et AW (s — o) Tim

Re-scaling back to original dimensional variables, we suppose that the
magnetic permeability u. of the nanoparticle is changing with respect to the
operating angular frequency w while that of the surrounding medium, g, is
independent of w. Then we can write

pre(w) = p'(w) +ip" (). (2.31)
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Because of causality, the real and imaginary parts of u. obey the following
Kramer—Kronig relations:

" 1 oo 1 /
piw) =——pv. p'(s)ds,
> (2.32)

() = = / L s
W)= —p.V. S S
1 S :

where p.v. stands for the principle value.
The magnetic permeability p.(w) can be described by the Drude model,
see, for instance, [86]. We have

w2

w) = po(l — F : 2.33
pre(w) = po( wQ_ngT_lw) (2.33)
where 7 > 0 is the nanoparticle’s bulk electron relaxation rate (7! is the
damping coefficient), F' is a filling factor, and wp is a localized plasmon
resonant frequency. When

(1—F)(w? —wd)? — Fud(w? —wd) + 772w? < 0,

the real part of u.(w) is negative.
We suppose that D = z + dB. The quasi-static plasmonic resonance is
defined by w such that

Nm+ﬂc(w) oy
G — pe(w)) ~ M

for some j, where ); is an eigenvalue of the Neumann-Poincaré operator
K3 (= K%). It is clear that such definition is independent of the nanoparti-
cle’s size. In view of (8.11), the shifted plasmonic resonance is defined by

| 1 1
+ - — —)\j + w7zl
S @)~ ) " 7?2

argmin
where 7; 5 is given by (2.21)) with D replaced by B.

2.4 Scattering and absorption enhancements

In this section we analyze the scattering and absorption enhancements. We
prove that, at the quasi-static limit, the averages over the orientation of scat-
tering and extinction cross-sections of a randomly oriented nanoparticle are
given by and , where M given by is the polarization ten-
sor associated with the nanoparticle D and the magnetic contrast pi.(w)/pim,.
In view of , the polarization tensor M blows up at the plasmonic res-
onances, which yields scattering and absorption enhancements. A bound
on the extinction cross-section is derived in . As shown in and
(2.55)), it can be sharpened for nanoparticles of elliptical or ellipsoidal shapes.

2.4.1 Far-field expansion

For simplicity, we assume throughout this section that D contains the origin.
We first prove the following representation for the scattering amplitude.
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Propsition 2.4.1. Let u’ = e*m%® with d being a unit vector. Let x € R3

be such that |z| > 1/w. Then, we have

ut(z) = eii:‘mleo (é’,d) +0 (;’2) (2.34)

with

1 ik 2
e (\ffl’d) T an o€ E T (y)do (y) (2.35)

being the scattering amplitude and v being defined by .

Proof. We recall that the scattered field u® can be represented as follows:
ui(z) = Spr¥l(x)
1 / eikm|x—y\
= —— | ————¥(y)do(y).
Am Jop |z =yl W)doty)
From
=9l = Il (1- T2+ 0( )
x—y|=|x - — —
! ERRTVA
it follows that
etkmlz|

Wz) = —— [ eI Ve(y) (1 + (Tﬂg)) do(y) + o <|5512> ,

dr|z| Jap

which yields the desired result. O

2.4.2 Energy flow

The following definitions are from [43]. We include them here for the sake
of completeness. The analogous quantity of the Poynting vector in scalar
wave theory is the energy flur vector; see [43]. We recall that for a real
monochromatic field

U(z,t) =R [u(az)e_i“’t] ,

the averaged value of the energy flux vector, taken over an interval which is
long compared to the period of the oscillations, is given by

F(z) = —iC [u(x)Vu(z) — u(z)Vu(z)],

where C is a positive constant depending on the polarization mode. In the
transverse electric case, C' = w/u,, while in the transverse magnetic case
C = w/ey,. Assume that the particle is contained in the ball By of radius R
and center the origin. We now consider the outward flow of energy through
the sphere 0Bpg:

W = F(z)-v(x)do(x),
OBr

where v(z) is the outward normal at © € 0Bg.
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As the total field can be written as U = u® + u’, the flow can be decom-
posed into three parts:

W =W+ W+ W,
where

W= —iC [E(x)vui(x) — i (2)Vui(z)| - v(z) do(z),
OBRr

WH=—iC [us(z)Vu'(z) — u’(x)Vus(x)] - v(z) do(x),
9Br

W =—iC [ﬁ(m)Vus(a:) — u¥(x)Vui(z) — u'(z) Vud (z) + ﬁ(m)Vu’(m)} -v(z)do(x).
OBp

It is straightforward to check that YW, Wi, W, and W in the above defini-
tions are independent of the radius R as long as the particle is contained in
Bp. In the case where u’ is a plane wave, we can see that W' = 0:

Wi o= —iC [E(x)vui(x)—ui(x)vﬁ(x)] do(z),
OBRr

= —iC - [e*ikmd*""ikmdeikmd'x + eikmd'kade*ikmd"”} -v(x)do(x),
R

= 2Ckyd- / v(z)do(zx),
O0BRr
= 0.

In a non absorbing medium with non absorbing scatterer, W is equal to zero
because the electromagnetic energy would be conserved by the scattering
process. However, if the scatterer is an absorbing body, the conservation of
energy gives the rate of absorption as

W= —W.
Therefore, we have
W+ W = -W.

Here, W' is called the extinction rate. It is the rate at which the energy is
removed by the scatterer from the illuminating plane wave, and it is the sum
of the rate of absorption and the rate at which energy is scattered.

2.4.3 Extinction, absorption, and scattering cross-sections
and the optical theorem
Denote by U’ the quantity U'(z) = ‘J(w)vw(x) — u/(x)Vui(z)|. In the

case of a plane wave illumination, U?(z) is independent of x and is given by
Ut = 2ky,.
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Definition 2.3. The scattering cross-section Q°, the absorption cross-section
Q% and the extinction cross-section are defined by
4% we

rr a _ ext _
UZ‘? Q UZ? Q

_W/

Q: Ui -’

Note that these quantities are independent of x for a plane wave illumination.

Theorem 2.4.1 (Optical theorem). If u’(z) = e*m?® where d is a unit
direction, then

Q¢ =Q° + Q* = :—”% [As(d,d)], (2.36)
Q = / |Ano (2, ) 2do (2) (2.37)
SQ

with A being the scattering amplitude defined by .

Proof. The Sommerfeld radiation condition gives, for any = € dBg,
Vu®(z) - v(z) ~ iknu’(z). (2.38)

Hence, from ([2.34) we get

W (@)VE(2) - () — T ()Yl () - v(z) ~ —ﬁfg A <|””x|,d> g
which yields . We now compute the extinction rate. We have
Vul(z) - v(z) = ikpnd - v(z)emte, (2.39)
Therefore, using and it follows that
Wi (2) Vs (2) - v(z) — v (@) Vul(z) - v(z) ~ (ikm‘Wd v+ zk:me]%(‘;r”) o (f‘ )

ikmeikmw\fd-u(z)

= (d-v(z)+1) A (,Z,d) .

||

For x € 0BpR, we can write

,l-kme—ikm Ry(z)-(d—v(z))

. (d-v(z)+1) A (,d) .

i (2)Vud (z) - v(z) — u’(2)Vui(z) - v(z) ~

We now use Jones’ lemma (see, for instance, [43, Chapter 13.3]) to write the
following asymptotic expansion as R — oo

l (V(x))e*ikmd'l/(x)do'(aj) ~ @ (g(d)e*ika . g(—d)eika> :
R Jon, .
to obtain

/ [ @)V (&) — (@) Vi (2)] - vl) ~ ~AmAc(did) 25 R oo,
OBRr
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Therefore,
W' = —idnC [Ax(d) — Ao (d)] = 87CS [Ase(d)]
Since
W (2) Vi (z) — ui(x)vﬁ(m)‘ = %%k,
we get the result. O

2.4.4 The quasi-static limit

We start by recalling the small volume expansion for the far-field. Let A be
defined by (2.23) and let

M(\, D) := /aD(/\Id — ) [z do(x) (2.40)

be the polarization tensor. The following asymptotic expansion holds. It can
be proved by exactly the same arguments as those in [9].

Propsition 2.4.2. Assume that D = 0B+ 2. As § goes to zero the scattered
field u® can be written as follows:

u(z) = —k2 <§C - 1> |D|G(x, 2, km)u'(2) — V.G(x, 2, k) - M(X\, D)Vu'(z2)

m

54
+O <dist()\,a(ICj5))> -

for x away from D. Here, dist(\,0(K7))) denotes min; |\ — \;| with \; being
the eigenvalues of K7, .

We denote the first term in the right hand side of by uj and the
second term by u3. It is clear that u] represent monopole radiation and u3
the dipole radiation. We explicitly compute the scattering amplitude A, in
(2.34). Take u’(z) = e*?* and assume again for simplicity that z = 0.
Note that

ikm ||
w(z) = S ik <zkm’x‘ * > - M()\, D)d.

47 || x| |zf?

In the far-field region, i.e. for |z| > %,

ikm|z| 1
s 2 € €
— L MO\ D ).
@) =~k ] <\mr * ”)*O(\xr?)

On the other hand,

ikm ||
wl(z) = k2 & (50_1> |D.

" Ar|z| \em

Throughout the chapter, we are interested in the case when the fre-
quency is near the plasmonic resonant frequency, then the polarization ten-
sor M (A, D) blow up and hence the magnitude of the dipole part 3 is much
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greater than that of the monopole part uj. Therefore, the leading term in
the scattered field (2.41)) is given by the dipole part, i.e.

()~ k2 (”3 M), D)d). (2.42)

T ane] \ o]

In the next proposition we write the extinction and scattering cross-
sections in terms of the polarization tensor.

Propsition 2.4.3. Near plasmonic resonant frequency, the leading-order
term (as § goes to zero) of the average over the orientation of the extinc-
tion cross-section of a randomly oriented nanoparticle is given by

ext _ %s [TtM (), D), (2.43)

m

where Tr denotes the trace of a matrixz. The leading-order term of the av-
erage over the orientation scattering cross-section of a randomly oriented
nanoparticle is given by

ki4
Q= g [TeM (), D). (2.44)

Proof. Remark from ([2.42)) that the scattering amplitude A, in the case of

a plane wave illumination is given by

T k2 x
Ao | —,d) =—-—-"2— -M(\ D)d. 2.45
(ﬂ?\ > 4r x| (. D) (2:45)

Using Theorem [2.4.T] we can see that for a given orientation
Q" = —4rk,, I [d- M(\, D)d].
Therefore, if we integrate Q¢! over all illuminations we find that
Q% = — kS U d- M\, D)dda(d)] .
S2
Since SM (), D) is symmetric, it can be written as SM (X, D) = P! N(\)P

where P is unitary and N is diagonal and real. Then, by the change of
variables d = P!z and using spherical coordinates, it follows that

et _ _p [/Szx ) N()\):Eda(l‘)] ;

and therefore,

4rk,,
3

_ 4rk,,

Qb = [TeN (V)] = =S [TeM (A, D). (2.46)
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Now, we compute the averaged scattering cross-section. Let RM (A, D) =
P'N ()\)P where P is unitary and N is diagonal and real. We have

Q= //H - M(\, D)df? do() do(d),

167r2
= // z-N(A cﬂ do(z dor //
167T S2xS§2 S2xS2

Then a straightforward computation in spherical coordinates gives

a:Nﬂda da}

k2 9
5= -|TrM(\, D
Qm 97I_ | ( I )‘ ?
which completes the proof. ]
From Theorem [2.4.1} we obtain that the averaged absorption cross-section
is given by
4k ki
Q= =S [TM (), D)) - g [TrM (X, D).
T

Therefore, under the condition (2.30)), Q%, blows up at plasmonic resonances.

2.4.5 An upper bound for the averaged extinction cross-section

The goal of this section is to derive an upper bound for the modulus of the
averaged extinction cross-section Q¢! of a randomly oriented nanoparticle.
Recall that the entries M, (X, D) of the polarization tensor M (A, D) are
given by

MmN, D) := /6D (N — K3) " Hvm)(x) do(z). (2.47)

For a Cb® domain D in R?, K7 is compact and self-adjoint in H*. Thus, we
can write

(= ) ) = 3 S,
=0

with (A;, ¢;) being the eigenvalues and eigenvectors of K}, in H* (see Lemma
2.3.1). Hence, the entries of the polarization tensor M can be decomposed
as

PN
Mym(A, D) = 5~ v (2.48)
j=1
where ozl(’jgl = (Vm, ©j)n= (goj,xl)_%é. Note that (Vm,x(8D))_%7% = 0. So,
considering the fact that A\g = 1/2, we have (v, po)n+ = 0 and so, al(,??)’L =0.

The following lemmas are useful for us.

Lemma 2.4.1. We have
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Proof. For d = 3, we have

1 1,1 i}
(era)_yy = (G=2) 7" Gld=Kp)leila)
272
B -1 OSp|p;j]
C1/2- ( v ‘_’x’>_;,§
0
= [ Gnspleildo — [ (AnSples) - midSpler))ds
ap Ov D
_ (ei)w
1/2— X

where we used the fact that Sp[p;] is harmonic in D. The same result holds
for d = 2 if we change Sp by Sp (see Appendix . Since |Aj| < 1/2 for
7 > 1, we obtain the result. O

Lemma 2.4.2. Let 4)

oo
M (M, D) Z
7j=1

be the (I, m)-entry of the polarization tensor M associated with a C* domain
D € R%. Then, the following properties hold:

(1)

(i)

%) d
' (d—2)
ZAiZaz(,Jz) = 9 |Dl;
(i)
o0 d d
) (d—4) 2
Z)\ Za7 = T!D\ + Z i |VSp[u]|“dz.
j=1 =1 =1
Proof. The proof can be found in Appendix [C] O
Let A = X +i)\’. We have

[ee) ‘)\//|Zl 10(
|S(Tx(M (N, D)))| = Z +l;”2 (2.49)

J:1

For d = 2 the spectrum o(K7},)\{1/2} is symmetric. For d = 3 this is no
longer true. Nevertheless, for our purposes, we can assume that o(K7,)\{1/2}
is symmetric by defining agjl) = 0 if A; is not in the original spectrum.

Without loss of generali‘éy we assume for ease of notation that Conditions

and hold. Then we define the bijection p : N* — NT such that
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A

o) = —Aj and we can write

L[ [A"]8; - )\"’5 (Pl
\wMMMMM=:QZhX +X,2+ZX e
I\ oo ()\/2 N2 4 )\?)(/6(] + ﬁ )+ 2)\/)\j(ﬁ(j) _ /B(P(j)))

2 = (()\/ _ )\])2 + )\/12) (()\/ 4 AJ)2 + )\/12) )

where 3; = Z o
From Lemma B4 Tlit follows that

(N2 + N2+ )\JZ)(g(j) + BPEDY 42X );(BW) — BlPla))

(()\/ _ /\j)2 4 )\//2) (()\/ + )\j)Q 4 )\//2) = 0.

Moreover,

(V2 4 N2 A?)(B(j) + BNy 42X N;(BY) — glPl))
(()\/ _ /\j)2 + )\//2) (()\/ + /\,)2 )\//2) -
(N2 + X2 4+ 22)(B9) 4 B0)) 4 2XN (80 — BloliD) X2
/\//2(4)\/2 i /\//2) + 0(4)\/2 L\2

).
Hence,

[S(Te(M (A, D)) <
V| & (N2 4+ V72 )\jz)(ﬂ(j) + el 4 QA’()\jB(j) + )\p(j)ﬁ(ﬂ(j))) A2

2 )\/12 (4)\/2 + )\//2) + 0(4)\/2 + )\/12 )
j=1

Using Lemma [2.4.2] we obtain the following result.

Theorem 2.4.2. Let M(\, D) be the polarization tensor associated with a
CY domain D € R with A = N + i\ such that |N'| < 1 and |N| < 1/2.
Then,
d|\'"||D
ST, Dy | < A
)\//2 4+ 4N2

! (dA’2]D|+ (d— )1D|+Z/ |VSp[v][? da:+2)\’(d )yD\>

|/\//| ()\//2 + 4)\/2)

)\IIZ
0(4)\/2 + )\//2 )

The bound in the above theorem depends not only on the volume of
the particle but also on its geometry. Nevertheless, we remark that, since
I\l < 3

00 d

) _ d|D]
Sl < P
j=1

=1

Hence, we can find a geometry independent, but not optimal, bound.
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Corollary 2.4.1. We have

1 1 (d—2) d|\"|| D] "2
Cx < 12 - / )
1S(Te(M (A, D)))| < VIO AN <d|D\()\ +3) 2N ‘D|>(2+5AO")2+4X2+0(4X2+A"2)

Bound for ellipses

If D is an ellipse whose semi-axes are on the z1- and xo- axes and of length
a and b, respectively, then its polarization tensor takes the form [12]

Dl

_ la*lé 0
2 a+
M(\, D) = D) . (2.51)
1a—b
A+ 2a+b

On the other hand, it is known that in H*(9D) [65|

. 1 /a—0b\’ )
U(KD)\{1/2}:{:I:2 (a—i—b)’ j:1,2,...}.

Then, from ([2.48)), we also have

MMAD)=| o) o0 o)
Z 1,2 Z 2,2
J J
Fa-i(ay Faoi(m)
la—10 ) .
Let \; = 2070 and V(\;) = {i € N such that KC},[¢;] = \jpi}. It is clear
now that
S afi= ¥ =l X efi= ¥ afi=o e
i€V(A1) i€V(=A1) iEV();) iEV(=A;)
for j > 2 and '
agg =0
1€V(Xj)
for j > 1.
In view of , we have
B Br(3) 4N2B0) 4 )\//2(5(3‘) + 5(1’)) 72
()\/ _ A])Q + )\//2 + ()\/ + A])Q + )\//2 - )\//2 (4)\/2 + )\//2) (4)\/2 + )\//2 )
Hence,
|/\//‘ 0 4/\/2/8(j) +/\//2(6(j) +5(j)) 22

|%(T‘I‘(M(A’ D)))| S 2 A//2(4)\/2 + A//Q) + O(4A/2 + )\//2)'
1

j=
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Note that for for any ellipse D of semi-axes of length a and b, S(Tr(M (), D))) =
I(Tr(M (A, D))). Then using Lemma we obtain the following result.

Corollary 2.4.2. For any ellipse D of semi-azxes of length a and b, we have

‘]5|4)\/2 2’)‘//H5‘ o \/'2

’%(TT(M()\’ D)))’ S ’A//‘(A//Q _|’_ 4)\/2) )\//2 _|’_ 4)\/2 (4A/2 _j’_ )\//2

). (2.53)

Figure shows ([2.53) and the average extinction of two ellipses of semi-
axis a and b, where the ratio a/b = 2 and a/b = 4, respectively.

25
—— Bound
--—-a/b=2
---a/b=4

Averaged extinction

Wavelength of the incoming plane wave 1077

Ficure 2.1: Optimal bound for ellipses.

We can see from (2.49)), Lemma and the first sum rule in Lemma
that for an arbitrary shape B, |3(Tr(M (), B)))| is a convex combination

of % for A\; € o(K%)\{1/2}. Since ellipses put all the weight of
J
la—d

this convex combination in £A; = £5 {7, we have for any ellipse D and any
shape B such that |B| = |D,

[S(Tr(M (A", B)))| < [S(Tx(M (X", D)))|

with \* = £4922 + i),

Thus, bound (2.53)) applies for any arbitrary shape B in dimension two.
This implies that, for a given material and a given desired resonance fre-
quency w*, the optimal shape for the extinction resonance (in the quasi-static

limit) is an ellipse of semi-axis a and b such that N (w*) = :t%g—j_g.
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Bound for ellipsoids
Let D be an ellipsoid given by

2 2 2
LI N S (2.54)
b7 b5 D3

The following holds [12].
Lemma 2.4.3. Let D be the ellipsoid defined by (2.54). Then, for x € D,

SD[I/Z](CC) = S|1ry, | = 1,2,3,

where

_ _Pipaps 1

> ds.
2 /o (p7 +8)/ (0T + 5) (D5 + 5) (05 + 5)

Then we have
3
S [ 19SpluPae = (3 + 5 + 1D
=1

For a rotated ellipsoid D = RD with R being a rotation matrix, we have
M(X\, D) = RM(X, D)RT and so Tr(M (X, D)) = Tr(M (X, D)). Therefore,
for any ellipsoid D of semi-axes of length pi,po and ps the following result
holds.

Corollary 2.4.3. For any ellipsoid D of semi-azes of length p1,ps and ps,
we have

~ ID| (3XN2 4+ N — L4 (st +s3+53)  3\||D| A2
%(Tr(M()\’ D))) S |>\//‘()\//2 _I_ 4)\/2) A//Q _|_ 4)\/2 (4)\/2 + )\//2 )7
(2.55)
where for j =1,2,3,
_ pipap3 [ 1
5 =0 5 5 5 > ds.
0 (5 +5)V/ (T +5)(03 + 5)(P3 + 9)

2.5 Link with the scattering coefficients

Our aim in this section is to exhibit the mechanism underlying plasmonic res-
onances in terms of the scattering coefficients corresponding to the nanopar-
ticle. The concept of scattering coefficients was first introduced in [20]. It
plays a key role in constructing cloaking structures. It was extended in [21] to
the full Maxwell equations. The scattering coefficients are simply the Fourier
coefficients of the scattering amplitude Ao,. In Theorem 2.5.1] we provide an
asymptotic expansion of the scattering amplitude in terms of the scattering
coeflicients of order +1. Our formula shows that, under physical conditions,
the scattering coefficients of orders +1 are the only scattering coefficients
inducing the scattering cross-section enhancement. For simplicity we only
consider here the two-dimensional case.
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2.5.1 The notion of scattering coefficients
From Graf’s addition formula [12] and (2.4)) the following asymptotic formula

holds as |z| — oo

w(@) = (0~ u)(x) =~ 3 HD (k] /wJn<km\y|>e—m%<y>da<y>,

nez

where x = (|z|,0,) in polar coordinates, HY is the Hankel function of the
first kind and order n, J, is the Bessel function of order n and ¢ is the
solution to (2.6]).

For u'(z) = e*n9% we have

u'(2) = ) am(u’) Jon (k2] €™,

meEZ

where a,,(u') = ¢"(3=04) By the superposition principle, we get
U= am(u)tm,

where 1)y, is solution to (2.6|) replacing f by

£ = B 4 (51— () SB) 7 IF™)

He

with

F'™(z) = —Jp(km|a|)e™,

(m) _Lajm(km’x‘)eimoz

Fy(r) = . 5 )

We have
Wi (@) = (u—u)(z) = _i ST HD (2 ]) e 3 Wy ™G0,
nez meZ
where
Wom = /aD Jn(km’y|)6_74n9y,¢)m(y)do'(y)_ (2.56)

The coefficients W,,,, are called the scattering coefficients.
Lemma 2.5.1. In the space H*(OD), as w goes to zero, we have
O = oW,

= w40,
Fm = O@w™), |m|>1,

Vembm (1 i
O = (H—eie u”d Kp)Sp lale™]).



50 Chapter 2. The Helmholtz Equation

Proof. Recall that Jo(z) = 1+ O(z?). By virtue of the fact that
(57d ~ (0C5)") (8) ™ x(@D)] = 0@w?),
we arrive at the estimate for f(©) (see Appendix B.3)). Moreover,
Ji1(z) = % +0(z%)
together with the fact that
(314~ (Kf5))(85) ™" = (3 1d — Kp)Sp" + 0w logw)

gives the expansion of f&1) in terms of w (see Appendix .
Finally, J,(z) = O(z™) immediately yields the desired estimate for f(™).

O
From Theorem we can see that
F™, () 1 p(w) _
Ym = V2Dt | g (). (2.57)
: 7j(w)
jeJ
Hence, from the definition of the scattering coeflicients,
(1,35 (13(0), Tnhmla)e=n0%) |
Wy =3 i [ Dalblye 0o (1),
ier 7j(w) oD
(2.58)

Since

as m — 0o, we have

Using the Cauchy-Schwarz inequality and Lemma [2.5.1] we obtain the fol-
lowing result.

Propsition 2.5.1. For |n|,|m| > 0, we have

O(wlni+mly — Cln+im

minje 7 [7;(w)] |n|I"lm]Im!

[Wam| <
for a positive constant C' independent of w.

2.5.2 The leading-order term in the expansion of the scat-
tering amplitude

In the following, we analyze the first-order scattering coefficients.
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Lemma 2.5.2. Assume that Conditions 1 and 2 hold. Then,

Yo = ZO<W2)+O(W)7

jed 7()
£V (G~ L) ey + 0 og)
Yy = ]ze; 75 (w) +O)

Proof. The expression of 1y follows from (2.57) and Lemma Chang-
ing Sp by Sp in Theorem [3.3.2] gives ((QId — KB)§51[|x|ei9x],<pj>H =

—(eiol’,goj)q.[*. Using now Lemma |2.5.1| in (2.57)) yields the expression of
Y1 O

Recall that in two dimensions,

1 1 — (i—i))\ijO(leogw),

Ti(w) = —
i) 20m  2pe He  Hm

where ); is an eigenvalue of K7, and A\g = 1/2. Recall also that for 0 € J we
need 7; — 0 and so fi,, — 00, which is a limiting case that we can ignore. In
practice, Py(w)[po(w)] = 0. We also have (¢;, X(aD))féé =0 for j # 0.

It follows then from the above lemmas and the expression of the scat-
tering coefficients that

Woo = 3. O(w!logw) +OW),

o T

Wor1 = Z O(f(lz;éw) + O(w),
jeJ J

Wi = Z O(Zj)) + O(w2).
jeJ J

Note that Wi141 has a special structure. Indeed, from Lemma [2.5.2) and

equation ([2.58)), we have

£ ¥, (l% - i) (95, J1 (km|z|)eT) (e*i0, (‘Dj)H* + O(wlogw)

2 m 11
Wiis1 = ) 22
jeJ 7j
+0(w?),
B e 1 (i =) (P P17y (5 ) + Ot ome)
< 7j(w)

k2
_ m |
4 Z A=A+ O(w?logw) O |

£+ (o, xleT) 4 1 (e, 4,0]')7_[* + O(w? logw)
272
jeJ J
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where A is defined by (2.23). Now, assume that minje; |7j(w)| > w? logw.
Then,

0 +1i0
2 + o+ (g, [2]e™) 1 1 (€57 05) 4,
Wiigr = Tm . ;'2 +0(1)|. (2.59)
jeJ J

Define the contracted polarization tensors by

Nea(\ D)= /6 e (AT = ) (@) (o).

It is clear that

Ny +(\,D) M 1(\, D) — Mas(X, D) +i2Mi 2(A, D),
Ni_(\,D) = Mi1(\ D)+ Mas(\ D),
N_1(\,D) = Mi1(\, D)+ Mya2(\,D),
N__(\,D) = Mi1()\, D) — Mys(\ D) —i2M;2(\, D),

where M, (A, D) is the (I, m)-entry of the polarization tensor given by ([2.40)).
Finally, considering the above we can state the following result.

Theorem 2.5.1. Let A be the scattering amplitude in the far-field defined
n for the incoming plane wave u'(x) = e*m?®  Assume Conditions 1
and 2 and

min |7j(w)| > w? logw.

jeJ

Then, A admits the following asymptotic expansion

T
An <x> = Z Wid + O(w?),
|| ||

where

W — W_i1 + Wi —2Wn i(Wioy — Won)
! i(Wio1 — W_p) —W_i1 =Wig =2Wn )

Here, Wy, are the scattering coefficients defined by .
Proof. From ({2.45)), we have

T
Aso (&) = k22 M()\, D)d.

" x|

Since K7, is compact and self-adjoint in H*, we have

© (@jv |=T|€ii6“),; 1 (eiw”, SOJ')’H*
— 2’2
NewD) = D Py
Jj=1
90',|x’eiiaz 1 eiial,’w, X
S Shain S L)

jeJ J
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We have then from ([2.59) that

]{12
N (WD) = Wi+ O(w?),
k2 9
— 4y VoA D) = Wi+ 0w,
]{72
N (D) = Wi+ O(w?),
]{32
N -(AD) = Wi+ O(w?).
In view of
1
Mu = 7 (Nyy+ N 2Ny ),
1
My = 7(=Nit—N_-+2N;-),
—1
My = - (Nyy = N--),
we get the result. O

2.6 Concluding remarks

In this chapter, based on perturbation arguments, we studied the scattering
by plasmonic nanoparticles when the frequency of the incoming light is close
to a resonant frequency.

We have derived the shift and broadening of the plasmon resonance with
changes in size. The localization algorithms developed in [12,41] can be
extended to the problem of imaging plasmonic nanoparticles. We have pre-
cisely quantified the scattering and absorption cross-section enhancements
and gave optimal bounds on the enhancement factors. We have also linked
the plasmonic resonances to the scattering coefficients and showed that the
leading-order term of the scattering amplitude can be expressed in terms of
the +-one order of the scattering coefficients.

The generalization to the full Maxwell equations of the methods and
results of the chapter are the subject of chapter [3
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3.1 Introduction

The optical response of plasmon resonant nanoparticles is dominated by the
appearance of plasmon resonances over a wide range of wavelengths [68|. For
individual particles or very low concentrations in a solvent of non-interacting
nanoparticles, separated from one another by distances larger than the wave-
length, these resonances depend on the electromagnetic parameters of the
nanoparticle, those of the surrounding material, and the particle shape and
size. High scattering and absorption cross sections and strong near-fields
are unique effects of plasmonic resonant nanoparticles. One of the most
important parameters in the context of applications is the position of the
resonances in terms of wavelength or frequency. A longstanding problem is
to tune this position by changing the particle size or the concentration of
the nanoparticles in a solvent |49,/68]. It was experimentally observed, for
instance, in |49,89] that the scaling behavior of nanoparticles is critical. The
question of how the resonant properties of plasmonic nanoparticles develops
with increasing size or/and concentration is therefore fundamental.

At the quasi-static limit, plasmon resonances in nanoparticles can be
treated as an eigenvalue problem for the Neumann-Poincaré integral operator
[9L/52,/72,[73]. Unfortunately, at this limit, they are size-independent.

This chapter provides the first mathematical study of the shift in plasmon
resonance using the full Maxwell equations. It generalizes to the full Maxwell
equations the results obtained in chapter [2| where the Helmholtz equation
was used to model light propagation. Theorem [3.3.1] gives an asymptotic
expansion of the plasmonic resonances in terms of the size of the nanoparticle.
Theorem [3:3.2] provides the near field behavior of the electromagnetic fields
near the plasmonic resonant frequencies. The far-field behavior is described
in Theorem [3:4.1] Theorem [3.4.2] shows the blow up rate of the extinction
cross section (the sum of the absorption and scattering cross sections) at the
plasmonic resonance. Theorem |3.5.1]in section [3.5| considers the special case
of spherical nanoparticles.

The chapter is organized as follows. In section [3.2] we first review com-
monly used function spaces. Then we introduce layer potentials associated
with the Laplace operator and recall their mapping properties. Of particular
interest is the Neumann-Poincaré operator K7, associated with the particle
D defined in . We state some of its important properties in Lemma
B21

In section [3.3| we first derive a layer potential formulation for the scat-
tering problem for the full Maxwell equations in . Then we obtain
a first-order correction to plasmonic resonances in terms of the size of the
nanoparticle in Theorem |3.3.1

This enables us to analyze the shift and broadening of the plasmon res-
onance with changes in size and shape of the nanoparticles. The resonance
condition is determined from absorption and scattering blow up and depends
on the shape, size and electromagnetic parameters of both the nanoparticle
and the surrounding material. Surprisingly, it turns out that in this case not
only the spectrum of the Neumann-Poincaré operator plays a role in the res-
onance of the nanoparticles, but also its negative, i.e., —o(K},). We explain
how in the quasi-static limit, only the spectrum of the Neumann-Poincaré
operator can be excited. This is an important finding in our chapter. Note
that it is not clear for what kind of geometries in R? the spectrum of the
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Neumann-Poincaré operator has symmetry, that is, if A € o(K})) so does
—\. For instance, such symmetry is not present in the case of a spheri-
cal nanoparticle while for a spherical shell the spectrum of the associated
Neumann-Poincaré operator is symmetric around zero.

When the particle size increases and deviates from the dipole approx-
imation, the resonances become size-dependent. Moreover, a part of the
spectrum of negative of the Neumann-Poincaré operator can be excited as in
higher-order terms in the expansion of the electric field versus the size of the
particle.

In section [3.4] using the quasi-static limit for the electromagnetic fields,
we derive a formula for the enhancement of the extinction cross-section.

Finally, in seccion [3.5] we provide calculations for the case of spheri-
cal nanoparticles and explicitly compute the shift in the spectrum of the
Neumann-Poincaré operator and the extinction cross-section. In section [3.6]
we consider the case of a spherical shell and apply degenerate perturbation
theory since the eigenvalues associated with the corresponding Neumann-
Poincaré operator are not simple. The explicit results obtained in sections

and [3.6] illustrate our main findings in sections [3.3] and

3.2 Preliminaries

Here and throughout this chapter, we assume that D is bounded, simply
connected, and of class C1® for 0 < o < 1. We note by V x the curl operator
for a vector field in R3. We denote by H*(9D) the usual Sobolev space of
order s on 0D and

H(0D) = {(p e (H*(0D))* v = o} .

L (R3) of functions locally in H'(R3).

We introduce the surface gradient, surface divergence and Laplace-Beltrami
operator and denote them by Vgp, Vgp- and Agp, respectively. We de-
fine the vectorial and scalar surface curl by ClrrlaDgo = v x Vapyp for

We also need the space Hi!

¢ € H2(dD) and curlypy = —v - (Vap x @) for ¢ € H;2(dD), respec-
tively. We remind that

Vop-Vop = Asp,

curlyp (31;1“13 D = —Asp,
VQ D * curla D = O,
Curla D Va D = 0.

We introduce the following functional space:

[N

_ _1
Hy?(div,0D) = {go € Hy?(0D),Vop - ¢ € H—%(ap)} .

Let G be the Green function for the Helmholtz operator A + k2, that is,

(A +K%)G(z,y, k) = &y,
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where d, is the Dirac mass at y, subject to the Sommerfeld radiation condi-

tion in dimension three
lim |z| <8G - ik‘G> =0,

uniformly in z/|x|.
The Green function G is given by

eik|m_y|

G(x,y, k) = T # . (3.1)

drlz =y’

Define the following boundary integral operators and refer to |18(78| for their
mapping properties:

_1 1
Shlel : Hp2(0D) — HZ(OD) or HL (R?)? (3.2)
o — Shlpl(a) = G(z,y,k)p(y)do(y), =€ D or v € R?;
oD

Sklp]: H2(dD) — H2(dD) or HL (R?) (3.3)
p — Splel(x) = | Gl@y.k)el)do(y), zedDorze R?;
Kple] : H2(dD) — H™2(dD) (3.4)

¢ Kplello) = [ TCLED o)doty), e ob

MYle]: Hy : (div,6D) — Hp : (div,dD) (3.5)

o — Mblgl) = / v(z) X Va x G(z,y, K)p(y)do(y), =€ OD;
oD

_1 _1
LYe] s Hp? (div,dD) —  Hy?(div,dD) (3.6)

o E’B[e@](x)ZV(x)X<k2§E[¢](x)+VSf>[VaD-w](x)>7 reaD.

Throughout this chapter, we denote 5%, S%, ./\/l% by §D, Sp, Mp, respec-
tively. We also denote Kp by the (+,-)_1 1-adjoint of K¥,, where (-, ) is
272
the duality pairing between H (0D) and H> (0D).
We recall now some useful results on the operator K7,. See chapter
and [12,[32,/611/65].

_11
2°2

Lemma 3.2.1. (i) The following Calderén identity holds: KpSp = SpK7);

(it) The operator K7, is compact self-adjoint in the Hilbert space H™3 (0D)
equipped with the following inner product

(U’U)H* = _(quD[v])f ) (37)

11
2°2
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with which H*(OD), the space induced by (-, )y, is equivalent to H> (0D);

(ii) Let (N\j,¢j), j =0,1,2,... be the eigenvalue and normalized eigenfunc-
tion pair of K%, in H*(0D). Then, \j € (—3,3], \j # 1/2 for j > 1,
Aj =0 asj— oo and ¢; € H5(OD) for j > 1, where Hi(OD) is the
zero mean subspace of H*(0D);

() The following representation formula holds: for any » € H~Y2(9D),
Z)\] 7/1790] H* & Yj;
7=0

(v) The following trace formula holds: for any v € H*(9D),

OSp|y]

(eyTd+Kp)le] = 222

(vi) Let H(OD) be the space H%(aD) equipped with the following equivalent
mmner product

(u,v)y = —(Sp*ul,v) 1 1. (3.8)

272

Then, Sp is an isometry between H*(0D) and H(ID).

In (vi) in Lemma we refer to [18] for the invertibility of the single-
layer potential Sp in three dimensions.
The following result holds.

Lemma 3.2.2. The following Helmholtz decomposition holds [38]:
1 .
H,*(div,dD) = VopH? (D) @ curlgp H2 (9D).

1
Remark 3.2.1. The Laplace Beltmmz operator Agp : H (0D) — H, *(0D)

is invertible. Here H2 (0D) and H, (8D) are the zero mean subspaces of
H%(aD) and H~ (BD) respectively.

The following results on the operator M p are of great importance. We
refer to |78| for a proof of the following compactness property of Mp.

_1 _1
Lemma 3.2.3. The operator Mp : Hp.?(div,0D) — H,?(div,0D) is a
compact operator.

Lemma 3.2.4. The following identities hold [9,|55:

Mopleutlypy] = curlypKplel, Ve € Hz(9D),
Mp[Vappl = —VopAsLKh[Aspe] + citlapRplyl, Ve € H?(0D),
where

Rp = —AgécurlaDMDVaD. (3.9)
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3.3 Layer potential formulation for the scattering
problem

We consider the scattering problem of a time-harmonic electromagnetic wave
incident on a plasmonic nanoparticle. The homogeneous medium is charac-
terized by electric permittivity €, and magnetic permeability p,,, while the
particle occupying a bounded and simply connected domain D & R3 of class
Ch* for 0 < a < 1 is characterized by electric permittivity . and magnetic
permeability p., both of which depend on the frequency. Define

km = WA/ Emtm, ke = WA/Eclbc,

and
ep = emX(R3\D) + e.x(D), pp = emx(R3\D) + e.x(D),

where x denotes the characteristic function.
For a given incident plane wave (E’, H"), solution to the Maxwell equa-
tions in free space

VxE = iwunH' inR3
VxH = —iwen,E' inR3,
the scattering problem can be modeled by the following system of equations
VxE = dwupH inR3\0D,

VxH = —iwepE inR3\dD, (3.10)
VXE‘+—VXE|_ = VXH‘+—Z/><H|_:0 on 0D,

subject to the Silver-Miiller radiation condition:

lim o] (y/fin (H = H')(2) X = /e (B = E')(x)) = 0

jaf >0 ]

uniformly in z/|z|. Here and throughout the chapter, the subscripts + indi-

cate, as said before, the limits from outside and inside D, respectively.
Using the boundary integral operators and , the solution to

can be represented as [90]

Bla) { ENx) 4 pmV x SEr[9](x) + V X V x SErlg)(z),  x € R3\D,
1V X Ske[] () + V x V x Ske[g] (), z €D,
(3.11)
and .
H(z)= ———(V x E)(z) € R3\aD, (3.12)
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1
where the pair (¢, ¢) € (Hy ?(div, <9D))2 is the unique solution to

He & Hm J;“m Id + peMEs — i M ke _ gl ’
Lhs — Lhm < + > Id+ c/\/l’“c -~ —Mkm ¢
b b ' 2pe  2pm e M
_ < vxE )
“\ dwr x H
oD
(3.13)
Let D = z + 0B where B contains the origin and |B| = O(1). For any
r €dD, let T = %=
corresponding function defined on B as follows
1(F)(E) = £z + 63). (3.14)
Throughout this chapter, for two Banach spaces X and Y, by £(X,Y) we
denote the set of bounded linear operators from X into Y. We will also
denote by £(X) the set L(X,X).
_1
Lemma 3.3.1. For ¢ € H},?(div,0D), the following asymptotic expansion
holds
MBplel(x) = Mpn(e)](@) + > 5 M iIn(9)](E),
j=2
where
- —(ik) . e - -
M TN = [ S (@) x Ve x 5 = 300 (D)o (D)
aB *T)-
Moreover, ||M%J||E(H7%(div o) is uniformly bounded with respect to j. In
particular, the convergence holds in E( (d1V GB)) and M, is analytic
ind.
Proof. We can see, after a change of variables, that
Mlpl(a) = [ v(d) x Vi x 6(2,5,00n() 3)do ().
A Taylor expansion of G(Z, g, 0k) yields
o o (10k|E —gl) > (ik)! -
G 0k) = — gl .
(%9, 0K) ;) JMr|z — g 47r\x—y\ Zl 47r]'
Hence,
k _ —(ik)! NPy o N
Mblel(w) = )+ 26 | TR u@) x Ve x 16 = 3 () 0)do (),
Note that from the regularity of |#—g[7~1, j > 2, ||./\/l%7j ]l 1 is

_ﬁ(dw dB)

uniformly bounded with respect to j, and therefore, || M% H e o)
2 (div,0B
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is uniformly bounded with respect to j as well. O

_1
Lemma 3.3.2. For ¢ € H;?(div,0D), the following asymptotic expansion
holds

(Lhs — Lhlel(@) = > dwlp in(0)(@),
j=1

where

Lpin(p)(7) =

T—gl2@—g
C@ x ([ 5= 2ao@io - [ FE NG00 ) @)i0(@),

and

o _ PO KT
T waAn(j - 1)!

Moreover, ||Lp ;| is uniformly bounded with respect to j. In

c(Hy 3 (div,0B))

_1
particular, the convergence holds in E(HT 2 (div,@B)) and E’B s analytic in
0.

Proof. The proof is similar to that of Lemma [3:3:1] O

Using Lemma [3.3.7] and Lemma we can write the system of equa-

tions ([3.13)) as follows:

n(v x EY)
() ) T
Wa(0 = fim * Ee, ; 3.15
0 e (v x 1Y) || (8.15)
Em — Ec
where
Auld — Mp + 62 Hm 5,2 Zc B2 ﬁ@ﬁ]g@ L)
Wg(d) = m — Me I
o EmM%mz — 86/\/1%2 +
e (6LpB,1+ 0°LB2) Ald — Mp + 62 5’ — :
0@ (3.16)

and the material parameter contrasts A, and \. are given by

e + fm A\ — Ec+Em

Ay = y Ao = —————— .
b 20 — pe) 2(em — €c)

(3.17)
It is clear that

A Jdd — M 0
Wg(0) ZWB,o:( ’ B )

0 Ald — Mp
Moreover,

WB((5) = WB70 + (5WB71 + (52WB72 + 0(53),
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in the sense that

IWE(8) = Wpo — dWp1 — 6*Wp| < C5°

for a constant C' independent of 6. Here [|A]| = sup, ; [[Aij|| _1 for
’ H,

7 2 (div,0B)
any operator-valued matrix A with entries A4; ;.

We are now interested in finding W§1(5). For this purpose, we first consider
solving the problem

(Md—Mp)[] = (3.18)

_1
for (v, ¢) € (Hyp 2 (div, 63))2 and A € 0(Mp), where 0(Mp) is the spectrum
of Mp.
_1
Using the Helmholtz decomposition of Hp?(div,0B) in Lemma (3.2.2, we
can reduce (3.18)) to an equivalent system of equations involving some well
known operators.

_1
Definition 3.1. For u € Hy*(div,dB), we denote by u") and u?) any two
3
functions in Hg (0B) and H %(83), respectively, such that

U= VaBu(l) + chlaBu(z).

Note that u) is uniquely defined and u(? is defined up to a constant
function.

Lemma 3.3.3. Assume \ # %, then problem (3.18)) is equivalent to

— P oM
3
where (M), o)) € HZ (0B) x H%(GB) and

~ [ —AjpK5Mss O
MB_( oKiton 0 ).

Here, Rp is defined by with D replaced with B.

3
Proof. Let (M), 4(?) € HZ (0B) x H%(OB) be a solution (if there is any)
3
to ([3:19) where (p(M), ) € HZ (0B) x H%((‘)B) satisfies
p = Vope) + cutlypp®.
We have

(Md + A pKpAop) M) = o1, (3.20)
M) — Rl — Kp[p®] = @, (3.21)

Taking Vg in (3.20), curlyp in (3.21)), adding up and using the identities of
Lemma [3:2.4] yields

(Ad — Mp) VoW + curlppyy@] = Voge® + curlype®.
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Therefore
¥ = VoppW + curlypy®@,

is a solution of (3.18).
3
Conversely, let 1 be the solution to (3.18). There exist (w(l), 1/1(2)) € H; (0B)x
3
H%(GB) and (oM, @) € H? (B) x H%(OB) such that

v = VappW + curlypyp®,
©w = VaBSO(l)JrCJﬂan(Q),

and we have
(AMd — Mg) VoD + curlypyp@] = Vope + curlgpe®.  (3.22)

Taking Vyp- in the above equation and using the identities of Lemma [3.2.4]
yields

Nop(Md+ Ay KE008) [ = Agpp.
Since (™), M) € (HO% (0B))? we get
(Md + A5 pKEA0) 1] = 1.
Taking curlyp in and using the identities of Lemma yields
Aop(Mp? = R[] — Kp[p®)]) = Agpe®®.

Therefore, there exists a constant ¢ such that

M@ — Rep®] — K@) = @ + ex(0B).

Since Kp(x(0B)) = %X((?B) we have

C

_c b)
A—1/2

|-

)\(lb@) ~5 _61/2) ~Rp[pW] - Kg|p® -

3
Hence, (¢(1),w(2) ) € H; (0B) XH%(GB) is a solution to (3.19) O

__ ¢
A—1/2
Let us now analyze the spectral properties of M B in
H(9B) = HE (0B) x H3(0B), (3.23)
equipped with the inner product

(u,v)oB) = (AaBu(l), Aan(l))H* + (u(2), U(Q))H,

3
which is equivalent to HZ (0B) x H2(9B).

By abuse of notation we call u") and u(® the first and second components
of any u € H(0B).

We will assume for simplicity the following condition.
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Condition 3.1. The eigenvalues of K are simple.

Recall that K}, and Kp are compact and self-adjoint in H*(0B) and
H(0B), respectively. Since Kp is the (-,-) 11 adjoint of K7}, we have
o(Kp) = o(K}), where 0(Kp) (resp. o(K%)) is the (discrete) spectrum
of Kp (resp. K%).

Define
. 1
o = o(=Kp)\(o(Kp)U{-3}):
oo = o(Kp)\o(—K%3), (3.24)
o3 = o(—Kp)No(Kp).
Let A\j1 € 01,5 =1,2... and let ;1 be an associated normalized eigenfunc-

_1
tion of K} as defined in Lemma [3.2.1] Note that ;1 € H, *(0B) for j > 1.
Then,

—1
Vi1 = ( AanjJ -1 >
7 (Njild — Kp) " RplA;5051]
satisfies
MB[%J] = X\j19j 1.

Let Aj2 € o2 and let ¢;2 be an associated normalized eigenfunction of Kp.

Then,
0
Vi = ( 2 )

Mp (V2] = Ajat)ja.

satisfies

Now, assume that Condition holds. Let \j3 € 03, let goglg be the associ-

ated normalized eigenfunction of K% and let (p(-Q) be the associated normal-

3,3
ized eigenfunction of Kp. Then,
y 0
3 = 2
’ ¥j3

M[W;s] = \isjs,

satisfies

and ;3 has a first-order generalized eigenfunction given by

-1 (1)
CAaB‘Pj,s

¢ 39 = _ _ 1 (325)
72,9 ()\j73[d — ICB) lpspan{gofg}J-RB [CAdé(p;S)]

_ 1 2 2
for a constant ¢ such that ,Pspan{tpfg}RB [cAallg@; )] = —<p§.’3). Here, span{gogg}
is the vector space spanned by @523), Span{(pg-Z??}J‘ is the orthogonal space to
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span{cpfg} in H(0B) (Lemma [3.2.1|), and P resp. P

is
span{e()} ( span{p{) )+

the orthogonal (in H(9B)) projection on span{cpf?))} (resp. span{apfg}J-).
We remark that the function v; 3 4 is determined by the following equation

MBYiag) = Njstisg + ¥js.

Consequently, the following result holds.

Propsition 3.3.1. The spectrum o(Mp) = oy U oy U oy = o(=K3) U
1 N
G(K*B)\{—i} in H(OB). Moreover, under Condition Mp has eigen-

functions 1;; associated to the eigenvalues \j; € o; for j = 1,2,... and
i = 1,2,3, and generalized eigenfunctions of order one ;3,4 associated to
Aj3 € o3, all of which form a non-orthogonal basis of H(OB) (defined by

5.79)).

Proof. Tt is clear that A— M g is bijective if and only if A ¢ o(—K5)Uo(KE)\
1

It is only left to show that ;1,v;2,%;3,%j34, 7 = 1,2,... form a non-
orthogonal basis of H(0B).

Indeed, let
1)

Since 1/1](11) U 1/1](-713)19, j = 1,2,... form an orthogonal basis of H{(0B), which
_1
is equivalent to H, *(0B), there exist a.,k € I1 = {(j,1) U (4,3,9) : j =
1,2,...} such that
W =3 anA iy,
rely
and

Z |oz,.€|2 < 0.

kel

It is clear that Hi/Jg)H
Then

3 (58) is uniformly bounded with respect to x € I.

hi=Y a? € H2(0B).
rely
Since 1/1](722) U %(',23)7 j =1,2,... form an orthogonal basis of H(9B), which is
equivalent to H%(('?B), there exist ay, k € T2 :={(J,2)U(5,3): j=1,2,...}
such that

W& —h=3 " aw?,

rels
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and
Z || < o0
AT
Hence, there exist oy, x € I1 U Is such that
1/} = Z an%,
kel Uls
and

Z e |? < 0.

ke Ul

To have the compactness of M B, we need the following condition.
Condition 3.2. o3 is finite.

Indeed, if o3 is not finite we have MVB({de,gg; g >1}) = {\jsjg3 +
Y;3; j > 1} whose adherence is not compact. However, if o3 is finite,
using Proposition we can approximate M B by a sequence of finite-rank
operators.

Throughout this chapter, we assume that Condition holds, even though
an analysis can still be done for the case where o3 is infinite; see section [3.6]

Definition 3.2. Let B be the basis of H(OB) formed by the eigenfunctions

and generalized eigenfunctions of Mp as stated in Lemma m For ¢ €
H(0B), we denote by a(,1y) the projection of ¥ into 1, € B such that

Y= (), ).

The following lemma follows from the Fredholm alternative.

Lemma 3.3.4. Let

Then,
(%@%)H(@B) o= (1) i 1.2
(@ijipn)H(aB)

oW ) = e )mom) 5= (3,06 = (7,3),

N (s ) r10B)
(¢a ¢ng)H(8B) - 04(1/% ¢i€g)(wxgv ¢KQ)H(8B)

(s Dy ) H(5B)

, R= (]7 3)7’{9 = (j73vg)a

where 1, € Ker(\, — M*B) for k= (j,i), i =1,2,3; 1, € Ker(A, — M*B)Q
for k = (j,3,9) and M7, is the H(0B)-adjoint of Mp.

The following remark is in order.
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Remark 3.3.1. Note that, since pj1 and @513) form an orthogonal basis of

_1
H5(0B), equivalent to H, * (0B), we also have

(DoY) we, k= (5,1),

a\Y, V) = ]
(1/) ¢ ) { %(A(}Bd}(l)’@gg H*y K = (],379)7

where ¢ is defined in (3.25)).
Remark 3.3.2. Fori=1,2,3, and j =1,2,...,

(I
A= Aji
Vj3.9

=11 — Vis
(= Mp) " Tisel = 25+ o

(Md—Mp) [y =

Now we turn to the original equation (3.13). The following result holds.

Lemma 3.3.5. The system of equations (3.13)) is equivalent to

n(v x Ei)(l)

Hm — He
nw)(li n(v x Ez)(z)
n(y)? -
Wg(8 = Hm = fe 3.26
EO o) | 7| @ ] (320
WU(¢)(2) €m — Ec
n(iv x HY)®)
Em — Ec
where
WB((5) = W370 + (SWBJ + (52W372 + 0(53)
with
Wpo = Add — Mp O N ’
' @) Aeld — Mp
1 ~
0] — LB
WB,l — 1 _ Hm — He ,
Lp1 @)
Em — Ec¢
1 —~ 1 ~
T T
WB,Q — m 1 c Z m1 c/v5 ,
Em — Ec b2 m — Ec B2
and
~ ASLCEA 0
_ 6B’~VB—0B
MB < RB ICB > )
i [ BoVon - (Mg = peMigy)Von  AgpVon - (tmMiFy — peMigy)eurlop
B2 —Agéculrlag(um/\/l%”f2 — MCM%Q)V{)B —A5]15,curlaB(um/\/llfg’:l2 — MCM%’Q)curlaB

)



3.3. Layer potential formulation for the scattering problem 69

-1 km ke -1 km ke i
NEB A 5VaB - (esm./\/lB’2 — ECMBQ)VQB Ay pVop - (z;“m/\/lR2 — 6CMB72)curlaB
2= -1 Fom k. ~1 [ ke \ .7
—AchurlaB(<€m./\/lB72 - ECMB72)V33 —Aypcurlpp (esm./\/lR2 - ECMBQ)CUI‘IQB

1 1 -
fp. = AyVop - LesVop  AypVes - Lpscurlyp
® —AgécurlaBEBﬁsVaB —AgécurlaBEBVScurlaB ’

fors=1,2.
Moreover, the eigenfunctions of Wp o in H(0B)? are given by

Vi = (1/}(7)1), j=0,1,2,...;1=1,2,3,

Woji = (Jj) j=0,1,2,...;9=1,23,

associated to the eigenvalues N\, — Nj; and A\ — Nj;, respectively, and gener-
alized eigenfunctions of order one
Vi
O b

0]
Uojsg = ( Yisg >,

associated to eigenvalues N\, — N\j3 and A\e — A\j3, respectively, all of which
form a non-orthogonal basis of H(OB)?.

V13,9

Proof. The proof follows directly from Lemmas and O

We regard the operator Wg(J) as a perturbation of the operator Wp g for

small §. Using perturbation theory, we can derive the perturbed eigenvalues
and their associated eigenfunctions in H(9B)?.
We denote by I' = {(k,7,4) : k = 1,2;5 = 1,2,...;4 = 1,2,3} the set of
indices for the eigenfunctions of Wg ¢ and by I'y = {(k,j, 3,9) k=12, =
1,2,... } the set of indices for the generalized eigenfunctions. We denote by
¢ the generalized eigenfunction index corresponding to eigenfunction index
~ and vice-versa. We also denote by

A=Ay, BE=1,
Ty = { M= A k=2 (3.27)

Condition 3.3. A\, # A..

In the following we will only consider v € I' with which there is no
generalized eigenfunction index associated. In other words, we only consider
v = (k,i,j) € T such that \;; € o1 U oy (see (3.24) for the definitions).
We call this subset Isi,. Note that Conditions and imply that the
eigenvalues of Wp  indexed by v € I'siy are simple.

Theorem 3.3.1. As § —, the perturbed eigenvalues and eigenfunctions in-
dexed by v € T'sim have the following asymptotic expansions:
5 (8) = Ty 471 + 7T + O(6?), (3.28)
U,(5) = Wy 400, + O),
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where
(WBJ\I’% \va)H(aB)Q
Tyl = ~ :07
(\I’% ‘I’w)H(E)B)2
= (WB,z‘I’w‘I’v)H(aBV: (WB,l‘I’w,h‘I’w)H(aB)Q(sgg)
(¥y, ¥y) r(oB)?
(TW_WB,O)\II'y,l = —WBJ\IJV.

Here, @7/ € Ker(7y — Wg ) and Wg o is the H(0B)? adjoint of Wp .

Using Lemma [3.3.4] and Remark [3.3.2 we can solve W., ;. Indeed,

a(—Wp ¥ ,\I//\I// v, L\
U, = Z (=WpaV,, V)T, + Z a(—WBJ\ILY,\I/%)( Yo v )

_ _ 2
Ser Ty =Ty Vhely Ty =Ty (T = Ty)
tiatl v #y

+ a(—WB71\I!7,\I/7)\I/7.
By abuse of notation,

1a]:al:)7 k= (j’l)’ (3.30)

for

with a being introduced in Definition |3.2

Consider now the degenerate case v € I'\I'sim =: I'qeg = {7y = (k,4,j) € T’
st Aji € o3}. It is clear that, for 7 € I'geq, the algebraic multiplicity of the
eigenvalue 7, is 2 while the geometric multiplicity is 1.

In this case every eigenvalue 7., and associated eigenfunction ¥, will split
into two branches, as d goes to zero, represented by a convergent Puiseux
series as [28]:

() = 7+ (1) + (1) 5 + 0(6%?), h=0,(3.31)
U n(8) = W, + (=D)Y20,; + (1)216%20, 5 + 0(6%?), h=0,1,

where 7, j and U, ; can be recovered by recurrence formulas. We refer to [62]
for more details.

3.3.1 First-order correction to plasmonic resonances and field
behavior at the plasmonic resonances

Recall that the electric and magnetic parameters, €, and y., depend on the
frequency of the incident field, w, following the Drude model [9]. Therefore,
the eigenvalues of the operator Wp o and perturbation in the eigenvalues
depend on the frequency as well, that is,

(0,w) = 7y(w)+ (527%2(w) +0(6%), v € Tgim,
Ton(6w) = 7+ 02 (=) (W) + 672 (1)1 o(w) + O(6%?), 4 €Taeg, h=0,1.
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In the sequel, we will omit frequency dependence to simplify the notation.
However, we will keep in mind that all these quantities are frequency depen-
dent.

We first recall different notions of plasmonic resonance, see chapter

Definition 3.3. (i) We say that w is a plasmonic resonance if |7, (6)| < 1
and is locally minimized for some v € Tsim or |7y p(0)] < 1 and is
locally minimized for some v € I'qeg, h =0, 1.

(i) We say that w is a quasi-static plasmonic resonance if |7y| < 1 and is
locally minimized for some v € I'. Here, T, is defined by (3.27).

(iii) We say that w is a first-order corrected quasi-static plasmonic resonance
if |y + 827y 2| < 1 and is locally minimized for some v € Dgm or
|7, 4+ 6Y2(=1)"r, 1| < 1 and is locally minimized for some vy € Teg,
h =0,1. Here, the correction terms Ty and 71 are defined by (3.29))
and (331).

Note that quasi-static resonance is size independent and is therefore a
zero-order approximation of the plasmonic resonance in terms of the particle
size while the first-order corrected quasi-static plasmonic resonance depends
on the size of the nanoparticle.

We are interested in solving equation (|3.26))

where

n(v x Ei)(l)

Hm — He
7](10)8 n(v x B
_ n(y) _ Um — e
R PO REA IO O op
WT](¢)(2) Em — E¢
n(iv x H)®
Em — Ec

for w close to the resonance frequencies, i.e., when 7,(d) is very small for
some ’s € I'yim or 7, 4(0) is very small for some ¥’s € I'qeq, h =0, 1. In this
case, the major part of the solution would be the contributions of the excited
resonance modes W (6) and W, 5 (9).

We introduce the following definition.

Definition 3.4. We call J C T" index set of resonances if 7,’s are close to
zero when v € T' and are bounded from below when v € I'°. More precisely,
we choose a threshold number nyg > 0 independent of w such that

|7y| > 10 >0 for ve JO.

From now on, we shall use .J as our index set of resonances. For simplicity,
we assume throughout this chapter that the following condition holds.

Condition 3.4. We assume that A\, # 0, A\ # 0 or equivalently, jtc # —fim,
Ec F —Em.
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It follows that the set J is finite.
Consider the space £; = span{V,(d), V¥, ,(d); v € J, h = 0,1}. Note that,
under Condition [3.4] &7 is finite dimensional. Similarly, we define £je as the
spanned by W (8), ¥, ,(0); v € J h = 0,1 and eventually other vectors to
complete the base. We have H(0B)? = &£; @ &e.

We define Pj(d) and Pj<(9) as the (non-orthogonal) projection into the
finite-dimensional space £; and infinite-dimensional space & jc, respectively.
It is clear that, for any f € H(0B)?

[ =Pi(O)[f] + Pse()[f]-

Moreover, we have an explicit representation for Py(d)

Pi©O)fl= D as(f, ¥ N+ Y, «a ACHASTACHE
"/e‘]mrslm 'Ye‘]:;(lieg
' (3.32)

Here, as in Lemma

| _ _ A ¢ , eJn Fsinu
as(f, ¥4 (9)) (04(0), U4 (0)) om)2 !
(f, Uy n(6) miom)2
| _ h , € JNIgeg, h=10,1,
as(f, ¥y n(9)) (Uy,1(6), s 0 (0)) (0)2 ! B

where U, € Ker (7, ,(6) — W5(0)), Uy € Ker (7, 1(6) — W5(8)) and W (5)
is the H(0B)?-adjoint of Wg(¥).
We are now ready to solve the equation Wg(0)¥ = f. In view of Remark

B3.2

~¥€JMTgim v 'thJﬁOF(Ijeg v,h
(3.33)

The following lemma holds. A similar result was proved for § = 0 in [6].

Lemma 3.3.6. The norm |W5'(6)Pye(d) |2 (0B)2, H(0B)2) 15 uniformly bounded
inw and 9.

Proof. Consider the operator
Wg(8)|se : Pye(8)H(OB)* — Pje(8)H(OB)?,

We can show that for every w and 4, dist(oc(Wp(0)|sc),0) > &, where

o(Wg(0)]se) is the discrete spectrum of Wg(d)|je. Here and throughout
the chapter, dist denotes the distance. Then, it follows that

W5 (8)Pre ()11l = W5 ()]s« Pre ()Nl S ieXP(7)||PJc( OIS ieXp( )||f||
o UR) 1o

where the notation A < B means that A < CB for some constant C' inde-
pendent of A and B. O

Finally, we are ready to state our main result in this section.
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Theorem 3.3.2. Let n be defined by (3.1 (-) Under Condztwnsm . -
(md. the scattered field E° = E — E' due to a single plasmonic particle

has the following representation:

E* = 1V X SEn[p)(z) + V x V x SEnlpl(z) =€ R3\D,

where
Y = U_I(VaBi(l)JrClIrlaB@Z(z)),
= %7771 (VaBa(l) + CIIrlaBa(Q)),
{/,V(l)
5(2)
v o= | ¥
o
(5(2)
0 NG O(6/2
¥€JNCgim v weJaneg REUNSARE
and
(f, \i/%l)H(E)B)”'W - (f, ﬁ/v)H(aBP (7'%1 + 7’7%)
G(f) = ,
a1
(- 9y) mon):
G(f) = 'Y—()’
al
ar = (Yo, Uy 1) mony2 + (Ya1, Yy) mon)2s
az = (Yo, Vs 2)gamy + (Yy2, V) mamy2 + (Yy1, Uy 1) H(0B)2-
Proof. Recall that
as(f, ¥, (0))V A (0))¥q n(6) 1
\I/ == : P c .
> G Lpoy b ) + W5 (0)Pre(9)[f]
~€JMgim v YEINT gog Vs
h=0,1

By Lemma we have W5 (6)Pye(0)[f] = O(1).

If v € J N gm, an asymptotic expansion on § yields

as(f, V4(6)) ¥~ (0) = alf, ¥,) ¥y + O(0).

If v € JNTgeg then (¥, ‘i’w)H(aBV = 0. Therefore, an asymptotic expansion
on ¢ yields

(=D"(f, V) o) ¥y
o~ 1/2a1

as(f, Uy n(0) ¥y n(d) =

~ as
a

+0(6Y/?)

1 B
— <((f7 Yy 1) @By — (f, ‘I’V)H(BB)Q(T) v+ (£, 9 m@on)2 Yq >
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with

!

ar = (U, Uy )menpe + (Y1, Uy) rom)e,

az = (U0, Uo2)momy + (U2, W) momy + (Py1, Uat) o).

Since 7., 1(8) = 7, + 8/2(=1)7, 1 + O(5), the result follows by adding the

terms
as(f, Uy0(0)¥y0(0) 0 as(f, ¥4,1(0)951(8)
77,0(0) 77.1(0)
The proof is then complete. O

Corollary 3.3.1. Assume the same conditions as in Theorem[3.3.2 Under
the additional condition that

. 3 )
@) > 8% min |n(9)] >4, (3.34)
we have
7\11 v O(6 \\ ] 9] 51/2
v= Y a(f,¥,) ;Jr ©) 3 G(f) 7+<§(f) 1t ( )+O(1).
Ty + 67y 2 S
’yEJﬁFsim ’YEJQFdeg by ~,

Corollary 3.3.2. Assume the same conditions as in Theorem[3.3.9 Under
the additional condition that

; 2 . 1/2
(o |7 (0)> 6%, min |m(6)] > 8V, (3.35)
we have
(0] f7\I/ )\ + O(6 o f’\Ij N\ ] 7 U
U= Z (f; W)Wy ( )+ Z (V)W—i-oz(f,\llmg)( 79+27> o).
T. - = =
v€JNlsim v YEJNL deg v Y v

Proof. We have

, . _as(f,050(6)Pa0(0) | as(f ¥y,1(6))¥q1(0)
Lim Wi (8) Popan{w. o (9) w1 (63 1f] = lim ;70@) =t 1%1(5) -

= WB?i)((S)Pspan{\I!,y,\Il,yg}[f]

alf,¥,)0 U, U
= W—I_a(f;\:[]'y,g)( ’Yg_‘_;)’
Ty Ty T3

where v € JNTgeg, f € H(0B)? and ) PspanE is the projection into the linear
space generated by the elements in the set F. O

Remark 3.3.3. Note that for v € J,
7y ~ min {dist(\,, o(K5) U =0 (K3)), dist (A, 0 (Kp) U —a(K})) } -

It is clear, from Remark that resonances can occur when exciting
the spectrum of K} or/and that of —K7%. We substantiate in the following
that only the spectrum of K% can be excited to create the plasmonic reso-
nances in the quasi-static regime.
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Recall that

n(v x Ei)(l)

Hm — e
n(v x EZ)(z)
f = Mm - ’lﬁc(l) y
n(iv x H") 0B
Em — Ec
n(iv x H*)?)
Em — Ec

and therefore,

o= n(v x Ei)(l) _ AgéVaB (v x E’)
Hm — He Hm — He

Now, suppose v = (1,7,1) € J (recall that J is the index set of resonances).
Then 7, = A\, — A1, where A\ ; € 01 = 0(—K}3)\o(K}%). From Remark

B.3.1]
a(f, Uy) = (Ao fr.pj)u = af, ¥y) = Ml_u(VaB (v x E'), 01

where ;1 € H;(0B) is a normalized eigenfunction of K5 (0B).
A Taylor expansion of E? gives, for x € 9D,

; 2 (z—2)P0PE (2

et 8!
Thus,
(v x B')() = n(v)(Z) x E'(2) + O(3),
and
Vop-nvx BN (&) = —n)(Z) Vx E'(2)+0(5)
= 0(9).

Therefore, the zeroth-order term of the expansion of Vg - n(v x E') in d is
zero. Hence,

a(f,¥,)=0.

In the same way, we have

a(quj’v) = 07
Oé(f7\1j’7g) =

for v = (2,7,1) € J and ~,4 such that v € J.

As a result we see that the spectrum of —K7% is not excited in the zeroth-
order term. However, we note that o(—K7) can be excited in higher-order
terms.
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3.4 The extinction cross-section at the quasi-static
limit

The aim of this section is to derive an expression of the extinction cross
section and estimate its blow up at the plasmonic resonances. We first re-
call the quasi-static limit of the electric field at plasmonic resonances. The
formula was first obtained in |9], but it can be derived by pursuing further
computations in Corollary 3.3.2] In this formula, the polarization tensor is
a key ingredient. It allows to express the quasi-static limit or zeroth-order
approximation of the electromagnetic fields far away from the particle. The
polarization tensor is given by [18]

M\, D) = /a (M= K) Pl (wado(a), (3.36)

where A € C\(—1/2,1/2). In view of Lemma we have
= 1

M, D) = Z A—i)\j(y’ @i)n (5, ) _
j=1

, (3.37)

since (v, go)ye = 0
The following result follows from [9).

Theorem 3.4.1. Let d, = min {dist(\,, o (K%) U —c(K})), dist(Az, o(K}) U —a(K3)) }-

Then, for D = z+6B € R? of class CH* for 0 < a < 1, the following uniform

far-field expansion holds

oy 4 4 54
E° = _zo;,u V x Gq(x, z, k)M (N, D)H' (2) — wZ,umGd(a:, 2, km)M (e, D)E*(2) + O(d—)7
where
1
Ga(z, 2, km) = em (G (2, 2, k) Id + aDiG(w, z,km))

is the Dyadic Green (matriz valued) function for the full Mazwell equations.

In order to express the extinction cross section we need to write the
far-field behavior of the electric and magnetic fields. We first recall the
representation for the scattering amplitude [78]. It is well-known that the
solution (E, H) to the system has the following far-field expansion as
|z| — +o0:

B e @ o
(@) = = gaay A=® + Qw»
and
H* @) 10
() = = ey @ X Ael®)F (ﬂ»’
where

Ao(#) = —ipimbmd x / e~ T V(y)do (y) — kopd X & X / e Y g(y)do(y),
oD oD
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and & = &.
||

We also need the optical cross-section theorem for the scattering of elec-
tromagnetic waves [43|, which can be stated as follows. Assume that the

incident fields are plane waves given by

EZ(ZL‘) — peikmdm’
Hi(z) = dx pelmd®

where p € R? and d € R3 with |d| = 1 are such that p-d = 0. Then, the
extinction cross-section is given by

47‘(0

Qext:\$|:

= p~Aoo(d)]7

Ipl?
where A, is the scattering amplitude.

From Taylor expansions on the formula of Theorem [3.4.1] it follows that
the following far-field asymptotic expansion holds:

B =
ikm|z| . . . .
_64 | | (wumkmelkm(dfx)-z(:i % Id)M()\M,D)(d % p) o kgnelkm(dfz)-z(jd_ JA}JA}t)M()\g,D)p>
T
1 &t
+O(W) + O(@)a

A~ 4
where & = z/|x|. Therefore, up to an error term of order O(g—), we have

Aoo(#) = Witmkm e @=D= (2 [d) M(N,,, D) (dxp)—kZ,e*m( =82 ([d—z3") M (A, D)p.
(3.38)

Formula allows us to compute the extinction cross-section Q%! in

terms of the polarization tensors associated with the particle D and the

material parameter contrasts. Moreover, an estimate for the blow up of Q¢**

at the plasmonic resonances follows immediately from .

Theorem 3.4.2. We have

Q' = p 4%2% [p. [wumkm (d x Id)M Ay, D)(d x p) — k2, (1d — dd") M (A, D)p” :

where M (XA, D) and M(Ae, D) are the polarization tensors associated with
D and X\ = X\, and X\ = X, respectively.

3.5 Explicit computations for a spherical nanopar-
ticle

In this section we consider a spherical nanoparticle and explicitly compute
the first order correction in terms of radius of its plasmonic resonances. We
also derive and explicit formula for the extinction cross section.

3.5.1 Vector spherical harmonics

Let 2 = \% For m = —n,..,nand n = 1,2, ..., set Y" to be the spherical

harmonics defined on the unit sphere S = {z € R3, |z| = 1}. For a wave
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number k£ > 0, the function
Un,m (ks ) = WY (k[2])Y;7(2)

satisfies the Helmholtz equation Av + k%v = 0 in R3\ {0} together with the
Sommerfeld radiation condition

lim ||
|z|—00

(8vn m

o] (kyz) — ikvmm(kz;x)) =0.

Similarly, let Uy, () be defined by

On,m (%) = Jn (Kl2)Y"(2),

where j, is the spherical Bessel function of the first kind. Then the function
Un,m satisfies the Helmholtz equation in R3.
Next, define the vector spherical harmonics by

1
Upm = —F——=V3sY,"(2) and Vim=2xUym
n(n+1)
for m = —n,...,nand n = 1,2,.... Here, £ € S and Vg denote the sur-

face gradient on the unit sphere S. The vector spherical harmonics form a
complete orthogonal basis for L2(S).

Using the vectorial spherical harmonics, we can separate the solutions of
Maxwell’s equations into multipole solutions; see |78 Section 5.3]. Define
the exterior transverse electric multipoles, i.e., E-x =0, as

BT (z) = —/n(n + DA (klz]) Vi m (%),
Hgfn(x)z——Vx< \/Th (k|z|) nm(:ﬁ)> (3.39)

wh

and the exterior transverse magnetic multipoles, i.e., H - x = 0, as

Eiﬂn{(m):iw( Vn(n+ DRW (klz)) nm(:@))
HIM(z) = —/n(n + DAY (k|z]) Vi (@)

The exterior electric and magnetic multipoles satisfy the Sommerfeld radi-
ation condition. In the same manner, one defines the interior multipoles

(ETE HTE) and (ETM HTM) with h( ) replaced by j,, i.e.,

(3.40)

Eqi(@) = —=v/n(n + 1)jn (k) Vim(£),
o e (3.41)
Hnm(x):_ivXE ( )
, Wi
and _
Hy o () = —v/n(n + 1) (k|z]) Vi (2),
(3.42)

EM(x) = Ev X HZ%( ).
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Note that one has

1 1
v x B8 ) = I a0 @) + O i )2
(3.43)
and
~TE n(n+1) o, n(nt1) m( Ay
VX By (k) = 2] TIn(Kl2)Unm(2) + Tjn(’f\ﬂfl)yn (#),
(3.44)
where
Tn(t) = Gn() + i (), Halt) = B (1) +1(hED)' (2).
For |z| > |y|, the following addition formula holds:
oo n . = T
Z Y m_Z_n (@) ETE (y)
i — —T
L Z Z vvn,m(a:)vvn,m(y) . (3.45)
n=1m=-n
Alternatively, for |z| < |y|, we have
- ik € = =
G(z,y. k) an(H 1>um; o (@) ()
_ ETE ETE T
Z n(n+1) Z m(y)
- — Z Z Y m () VUnm(y) T (3.46)

n=1m=-n
3.5.2 Explicit representations of boundary integral operators
Let D be a sphere of radius > 0. We have the following results.
Lemma 3.5.1. Let 0D = {|z| = r}. Then, for v’ > r, we have

= (—ikr)h) (kr") T (k1) Upyoms (3.47)

2
v x V x ShWVaml[ L = z’k:—,jn(kr)’i-tn(kr’)vmm, (3.48)

v XV X SB[Unml [

{|m|:r’

v XV XV x SpUnml]] = —ik%jn(krmn(kr’)vn,m, (3.49)

XV x VxS Voml[ = ik(kr)2n(kr)h) (k1)U . (3.50)
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Forr' <,
v XV X SH[Unmll s = (=ikr) ju(kr' Y Mo (k) Ur (3.51)
vxVxSh [Vn,m]\‘; = ik’jjn(kr’)hg)(kr)vn,m, (3.52)
v XV XV x Sh[Unmllf_,, = —ik%jn(kr’)ﬂn(kr)vn,m, (3.53)
vx V x VxS [Vn,m]\‘; = ik (kr) g (ke )P (k) Up . (3.54)

Proof. We only consider ([3.47)). The other formulas can be proved in a similar
way

From (3.43), (3.44), and the definitions of ETE ETM ETE anq ETM

n,m? n,m? n,m n,m:?
we have

N S

Z V X ETM 7*jn(kT)Un,m(g> Upq(9)

m=—n

n—l—l M

Zm > B () julbr)Varn(3) - Upal)

m=—n

for |y| = r and |z| > |y|. Therefore, we get on |z| =7

V X SH[Unml|, = Va x G(x, Y, k) Un.m(9)
lyl=r
kr 1 M
= J (kr)(V x By (2))|jgj=r- (3.55)
n(n+1)w
Since ]
T™ _ Y TE 2pTE
VXE,, —EVXVXEM wsk P 0
we obtain
ikr

XV % 55 [Unm Tn(kr) (& x Ep 1 (2))] )=

H+ B n(n + 1)
= (- Zkr) (kr)jn(kr) nom on |zl =r,

which completes the proof. O
Note that

vV x S]], = (5T + M6 on aD,

and recall the following identity, which was proved in [90],

v x VxVx8hlo] = L5[¢] on dD.
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For m = —n,...,n and n = 1,2,3,..., let Hy,,,(0D) be the subspace of
H(0OD) defined by

Hn,m(aD) = Span{Un,ma Vn,m}

Let us represent the operators M % and L”f) explicitly on the subspace Hyy, »(9D).
Using Up,m, Va,m as basis vectors, we obtain the following matrix represen-
tations for M¥ and L% on the subspace H,, ,,(9D):

1
= —ikrh M (kr) Ty (kr) 0
MIB — |2 1T , (3.56)
0 5t ikt (kr)Hy (k)
and
- 0 ik (k)2 (kr) RS (k)
o= (—z’k:jn(k:r)Hn(k:r) 0 ‘ (3:57)

3.5.3 Asymptotic behavior of the spectrum of Wgy(r)

Now we consider the asymptotic expansions of the operator Wg(r) and its
spectrum when r < 1.
It is well-known that, as t — 0,

, t"
) = G (1 2020+ 3)t2 * O(t4))’
h{D(t) = —i((2n — D)) (1 + th + O(t4))- (3.58)

By making use of these asymptotics of the spherical Bessel functions, we
obtain that

, . on+1 t\nl n+1 tyns n+3 tyn+1

iR (F) = on + 1 (2) 7 202n—1)(2n+1) (Z) 2(2n + 1) (2n +3) (2) t+0(t%),
.. ~ —n /t\nl —n—|—2 tn t\n+1
UnOHa() = 57275 (Z) 7T 2en- 1 2n+1 (Z) T oon+ 1)(2n +3) (%) t+0(t),
D (0 = ot (3)" T+ ()"~ ! (5)" v o)
kb m+1\i) 1 2(2n—1 )2n+ 1) \7 2(2n + 1)(2n + 3) \7 ’
, -~ (=n)(n+1) N2l (n+1)(—n+2) L\ n(n + 3) AN
Wn(tHalt) = 50 +1 (2) it 2(2n — 1)(2n + 1) (:) b+ 2(2n +1)(2n + 3) (:> t

+0(t%), (3.59)

for small t,f < 1 with ¢t ~ £
So, we have

(=1
A — 22n+1) + (kr)rp 0

0 — + (kr)an
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and
. 0 krp, ,
LH=|nn+1)1 9 + O(r?), (3.61)
——+k 0
2n+1 r R
where
_ 1
Pn = o1
_ (D=2  nn+3)
" 2@2n—-1)2n+1) 2(2n+1)(2n+3)’
n+1 (n+3)
Ty = —
" 22n —1)(2n+1)  22n+1)(2n+3)’
n—2 n
- . 3.62
T T a2n - )@2n 1 1) " 2(2n + 1)(2n + 3) (3.62)
Therefore, we can obtain
Wa(r) =Wso +rWai1 +1°Waz + 0(r%),
where
(1)
" 900+ 1) 0 0 0
1
0 — 0 0
W o — “o2(2n+1)
e (1)
0 O e O
2(2n + 1)
1
0 0 0 e —
o2(2n+1)
(3.63)
0 0 0 wCpn
_ 0 0 wCluan 0
W= 0 wCepn 0 0 ’ (3'64)
WCEQn 0 0 0
wQD/ﬂ'n 0 0 0
. 0 W2Du3n 0 0
W372 - 0 O W2D5Tn 0 9 (365)
0 0 0 w?D.sy,
and
CN = M7 Ca = M, (366)
Hm — He Em — Ec
Ecpi? — e 210 — €2 i,
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By applying the standard perturbation theory, the asymptotics of eigenvalues
of Wg(r) are obtained as follows: up to an error term of order O(r3),

(_1) 2 Pndn | 3
A 72(2n 1) + (rw) 050#7/\“ i + D#rn_ + O(r?),
A —;+(rw)200M+D sn-—l—O(rg)
,u 2(2n—|—1) ‘ #)\p_)\a_pn g i ’
(_1) 2 Pndn | 3
Ae ont 1) + (rw) Cscui&_ - + Dsrn_ + O(r°),
e e, — P p o Vo
T 2@2n+1) R ’

and the asymptotics of the associated eigenfunction are given by

Cean

—=10,0,0,1]7 + O(r?),
)\p—)\s+pn[ ] (%)

[1,0,0,0]% + rw

C. 1
0,1,0,0]% + rw

1 T 2
2n+1)\u—/\g—pn[0’0’ O +00),

C
0,0,1,0]7 + rw%[& 1,0,0]7 + O(r?),
e — Ay T DPn

C 1
[0,0,0, 17 + rw—~

1,0,0,017 + O(r?).
2n+1)\5_Alu_pn[’ b ’] + (T)

3.5.4 Extinction cross-section

In this subsection, we compute the extinction cross-section Q**. We need
the following lemma.

Lemma 3.5.2. Let D be a sphere with radius r > 0 and suppose that E* is
given by

o n
E'@) =) Y ol Enf (@iknm) + gl Ex} (x5 k),
n=1l=—n

for some coefficients azlE, aglM. Then the scattered wave can be represented

as follows: for |z| >,

o0 n
E’(x) = Z Z aE,ESEEE@E(:c; km) + aZlMSgMEfay(x; Em),

n=1l=—n
where SEE and SIM are given by
GTE _ toedn(ker) Tn(kmt) — tmgn(kmr) In (ker)
Mmjn(kcr)hgll) (kmr) - MC.]’IZU%T),H(ka)

STM _ Ecjn(kcr>~7n<km7ﬂ) B Emjn(kmr)jn(kcr) .
" e Tn(ker) WD (k) — ecn(ler)YH (k)
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Proof. Let E' = Eg E(x;kpm). We look for a solution of the following form:

_ faBTE@ik,), 2l < r
Eif(x;km)—i-bEiF(x;km), |z| > 7.

Then, from the boundary condition on 0D, we easily see that
(bt ) = (ol D (k) (4) (3.68)
7 In(kmr) o In(ker)  —=Hu(kmr) | \b
Therefore, the coefficient a and b can be obtained as follows:

(1/a> o) BP0 N k) A (k) <1>
b/a) — \ETulkmr)  =Ha(knr) - Tnlker) - Ha(ker) ) \O)”
bt [ A H(kr) =B (k) (jnw))
T\ Tk galkmr) )\ Tnker) )

Ho (ko) o (k) — ‘;ﬂhgﬂ(kmmjn(kcr)

—TIn(kmr)jn(ker) + ijn(kmr)jnwcr)

where we have used the following Wronskian identity for the spherical Bessel
function:

in(Ha(t) ~ KOOTD) = (3 BDY ) — SOBD @) = -

Therefore, we immediately see that

,ucjn(kcr)jn(ka) - ,umjn(kmr)jn(ch)

b= :
T (ker) ) (k) = pcgn(kerYH (ki)
Now suppose that E! = ~E§V‘[(x,km) We look for a solution in the

following form:

_ JeETY (ko) o] <7,
B Eﬂ\/[(x,km)—i—dEﬂw(mkm), |z| > r.

Then, from the boundary conditions on |z| = r, we obtain
éjn(kcr) étHn(ch) (C> _ %jn(kmr) %Hn(kmr) <1)
Galker) B (ker) ) \O Gnlkmr) B (k) ) \d)
(3.70)

By solving (3.70)), we get

Ecjn(kcr)jn(kmr) - 5mjn(kmr)~7n(kcr)

d= 0
Emjn(kcr)hn (k'm'r) - 5cjn(kc"")7'[(kmr)

By the principle of superposition, the conclusion immediately follows.
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We also need the following lemma concerning the scattering amplitude
As.

Lemma 3.5.3. Suppose that the scattered electric field E° is given by
[o.¢] n
=) BB (@i k) + BuM En Y (a5 kim)
n=1l=—n
for R3\ D. Then the scattering amplitude A can be represented as follows:

Z Z 47T n(n + 1) <ﬁ7j;lEVn,l(i') + /;;lzﬁsz;MUn,l> .

n=1ll=—n
Proof. 1t is well-known that

1 ., _.n
A (£) ~ ;elteﬂ%” as t — 0o,

and )
(WY (t) ~ Eeite_’%” as t — oo.

Then one can easily see that as |z| — oo,

ikm|z|
BLtwidn) ~ g TV DY@
b m T 7
and
eikm\x|

Eg’%(x;k‘m)w— e " /n(n + 1) VUn (&

k|| 5m

By applying these asymptotics to the series expansion of E?  the conclusion
follows.
O]
A plane wave can be represented as a series expansion. The following
lemma is proved in [66].

Lemma 3.5.4. Let E* be a plane wave, that is, E*(x) = pe*m®® with d € S
and p-d = 0. Then we have the following series representation for a plane
wave as follows:

ZZ prEE k? )+ prME ( ;km),

n=1l=—n

where

pw,TE (-1)47’[’2” .
a = i(Vau(d) - p),
nl n(n+1) ( :l( ) p)

pwTM _ (=Ddri"  [em
Q Upi(d)-p
nl / n + 1 ( ( ) )
Now we are ready to compute the extinction cross-section Q¢*t.

Theorem 3.5.1. Assume that E'(z) = pe*®* with d € S and p-d = 0.
Let D be a sphere with radius r. Then the extinction cross-section is given
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by

Qemt Z Z

n=11l=—n

S (VST Vo) 97+ s )57

Moreover, for small > 0, we have

1

gt =3 Mg <z‘2”‘3_“’m(Vu(d) p)?+ gM(Ul,z(d) -p)?

=1 k72n|p’2 3 2pm + ple 32, +€c
+ O((kmr)h).

Proof. Let us first compute the scattering amplitude A, when E’ is a plane
wave. From

As() = Z Z w n(n+1)

X <a§§”vTES,{EVn,Z(§;) +,/’5‘maf;f AM My >
m

=5 S O () STEW, () - p) Vi + 85T (Una(d) - p)Uy)

)

Therefore, we have

4T p- Aoo(d):|
ext _ i |:
M

Z Z 2 |p,2° (=1)83 ¥ (Vaa(d) - p)? + iS5 (Una(d) - p)?) -

n=1[]=—

Now we assume that r < 1. By applying (3.58]), one can easily see that

2 (e — mr)?
S?E:i*('ujc fim) (k) Lo,

3 2+ pe
2 (ec—em)(k T‘)3
g™ _ ;= (e m)(Fm O(r2
! 3 2em + Ec +0(r),

STE STM — O@r*),  for n > 2.

Therefore, we obtain, up to an error term of order O(r4),

1

Qea:t _ Z (—1)(47r)3% <.2 (fhe — um)(kmr)?’ (Vu(d) 'p)Q + 2 (ec — 5m)(kmr)3

k2, [p[? 3 2+ pe

I=-1

The proof is complete.

3.6 Explicit computations for a spherical shell

In this section we consider a spherical shell. Since, in this case, the eigenval-
ues associated with the corresponding Neumann-Poincaré operator are not

)
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simple, we apply degenerate perturbation theory in order to compute the
first order effect of the size.

3.6.1 Explicit representation of boundary integral operators

Let D; and D, be a spherical shell with radius rs and r. with r5 > r. > 0.
Let

(5m7 Nm) in De,

(57 ,u) = (587 ,Us) in D, \ D,

(Em, ptm)  in R3\ Dy,
Let
Te
pP=—"
Ts

The solution to the transmission problem can be represented as follows

peV x 855 [1s) () + V x V x S5 o] ()
+1cV X S [l () + V x V x S5 [¢(x)  x € D,

psV x S5 [hs](x) + V x V x S5 [65](x)

Ble) = TV % S5 [0 (2) + V x V x S5 [6d()  we D\ D,
E' 4 iV x Sp[vs](@) + V x V x S (o] ()
HumV X SE el (2) +V x V x SEr[o(z) @ € R3\D;,
(3.71)
and )
H(z)= - (V x B)(z) = €R\aD, (3.72)

WHD

_1 _1
where the pair (s, ¢s, Ve, dc) € (Hp ? (div, dDy))” x (Hy 2 (div, dD,))? is the
unique solution to

1/13 % v x E!
pysh O ': < Wb wieh ) o _ | wr H
Ve | Wil Wiy e 0
bec be 0
with
_l’_
B oM, — M .~ L
Wit = . K2R B2 k2
LY — Lhm 5+m>ld+sM3—mMm
Ds Ds < 2ts 2m Hs Ds Hm Ds
(3.73)
e usyxngf;C—umyxngff 1/><2VXV><§§SC—V2><V><V><§E’Z
12 = yxVxngg—yxVxngg’" nynggs—k—myxnggm
c (& MS (& u c

(3.74)
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—ucyxVX§§CS+usyxVX§]]SSS —VXVXVX§k5+VXVXVX§kS
Wzsfl = Ske Sks k2 kc k2 ks
v XV xVXxS5y +vxVxVxS8Sy ——vxVxS8; —1/><V><S
S S /JLC
(3 75)
_He B rg o Ms 4 p M —che 4 he
wsh — 2 2 2 T 2
22 ke 4ok (e RS pg e ke o FS ke
De De 2phe 21s He De Hs De
(3.76)

Note that WP and Wik are similar to the operator in left-hand side of
. In the previous section for the sphere case, we have already obtained
the matrix representation of this operator and its asymptotic expansion.

By Lemma we can represent v X V X S}“)Mﬂ:ﬂ and v x V x V x
5_'75||x‘:,,/ in a matrix form as follows(using Uy, m,, Vi,m as basis):

(i) For ' > r,

y VxS = [ (R Talhr)al) (kr) 0
Pl 0 kg () (') )
(3.77)
g 0 ik (k)25 (k)b (ke
VX7 % T x S = ( N ]
(3.78)
(ii) For ' < r,
- | (=ikr)ju(kr Y Hp (k) 0
vV X Sl = ( 0 ik T (k') (D (k)
(3.79)
e 0 ik (kr) 2 (kr" YRS (o)
v XV %XV X8plig=r ( ikE T (kY () 0 .
(3.80)

Using the above formulas, the matrix representation of the operators Wth
and W3l can be easily obtained.

We now consider scaling of W*". First, we need some definitions. Let
Dy = z + rsBs where By contains the origin and |Bs| = O(1). Let B. be
defined in a similar way. For any = € 0D; (or dD.), let z = &= € 9B (or
0B, with rg replaced by r.) and define for each function f deﬁned on 0D
(or 0D.), a corresponding function defined on B as follows

ﬁs(f)(f) = f(z + Ts%)v nc(f)(i) = f(z + ch). (3'81)
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Then, in a similar way to the sphere case, let us write

7s(10s) 2l
S\7s Hm—Hs
(ivx H")
WSh s wn$(¢$) — 777”7_3
B( ) 77c(¢c) € 05
wne(de) 0

Using (Un.m, Vim, Unoms Vam) X (Unoms Vams Unom, Vim) as basis, we can
represent Wgh(rs) in a 8x8 matrix form in a subspace Hy, 1, (0Bs) X Hp, m (0B¢).
Then, by using , their asymptotic expansion can also be obtained.

Here, the resulting asymptotics of the matrix Wgh are given as follows.
Write

W (rs) = Wity + 1 W + Wiy + 0(rd), (3.82)
where
A P, Qo
Wiy = 7" + ( o > , 3.83
Bo < Au,a) RDJL _POm, ( )

P, Q1n h <P2 n Q2n )
WSh — ;N ) , W5 — ) ) .
Bl <R1,n _Pl,n> B2 R2,n _P2,n

Here, the matrix Pj,,Q;, and R;, are given by

A Pn
A —p
Au,s = K )\5 5 PO,n = " D 5
Ae —Pn
gn fn
2 fn gn
= , R )
QO,n P In 0,n fn
In dn
Cupn D,ry,
CuLq D,s
P,=w p , Py, =w? pen
Ln Cepn 2 Dery
Ceqn
C“ﬁn Dufn
_ Cu(jn 2 Dugn
Ql,n = wp Ceﬁn , Q2,n =wp
Cean
Cupn
_ C.4a
Rl,n = —wp ! C ij ,qu 3
ePn

CE (jn
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D;Lgn
_ —-D,r
R2 n = U)Q,O 1 u'n ~
' D.5,
_Da":n

Here, pp, qn, rn, sn are defined as (3.62) and py, Gn, 7n, 55, Dy, and D. are
defined as follows:

n n n—1 n+ 1
p— — pr— . 4
fn oyt =P (3.84)
A 1 n+1
e e VAN (3.85)
~ n+1)(n—2 nn—+3
22n—1)(2n+1) 2(2n+1)(2n +3)
~ n -+ 1 n (n + 3) n+2
- _ 3.87
" e en+ D’ Taen+ e+’ (3.87)
< n—2 n+1 n n+3
- _ 3.88
T T en - D)eEn+ )’ 2en+ 1)(2n+3)” (3.88)
and

Hm — Hs E€m — Es

3.6.2 Asymptotic behavior of the spectrum of W3l (r,)

Let us define

Ash — ) V1 +4n(n +1)p2n+L,

2(2n 41

Note that +\3" are eigenvalues of the Neumann-Poincaré operator on the
shell.
It turns out that the eigenvalues of Wj_f—;f:‘o are as follows

D WRED LD WD SRID WD LA VD Wi

forn =0,1,2, ..., and their multiplicities is 2. Their associated eigenfunctions
are as follows:

Mo N — BV = (N +pa)er + faes, B3 = (A" — pa)ez + gnes,
M= N — B = (=N 4 pa)er + faes, Ef = (=A" — pa)ez + gnes,
A+ N — EY = (N4 pn)es+ faer,  Eg = (A" — pn)es + gnes,
Ae =N — EYi= (=X +pa)es+ fuer, B = (=A)" — pn)es + gnes,

where {e;}5_; is standard unit basis in R.
To derive asymptotic expansions of the eigenvalues, we apply degener-
ate eigenvalue perturbation theory (since the multiplicity of each of these
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eigenvalues is 2). To state the result, we need some definitions. Let

()\%h — pn)al,n - bl,n (_)\flh - pn)al,n - bl,n

Tien = C , Tign=C ,
T | Y| ER) T | B EQ)
(ASh +pn)a2 n b2 n (_)\Sh +pn)a2 n — bQ n
Tosn = Ce=— ’ =, Ty =Cc—" ] =,
S | B9 E3) e | E9||EX)|
(>‘Sh _pn)a?)n —bsn (_)\Sh _pn)a?)n — b3y
T30 = Cc—" ’ =, Tygp=Cc—" ; =,
T | E9|| G| T | E9|| Q|
()\Sh + pn)a4 n — b4 n (—)\Sh +pn)a4 n b4 n
T45’ — C n il ) , 1"477 — C n ) 3y ,
e |EQI|E3) e |EQI|ER)
c c c c
Tson = éTIG,n’ Ts4p = ?ZTl&n’ To1,n = éT%,n, T3 = CZ To7 n,
C C
Tropn = ?ZT%,m Tram = ?ZT?,&m Ts1n = ?I:T457n7 Ts3n = C’l: Ta7n,
where

= (A 4 pu)an + pfndn,
= (A" = pn)pn + pgnDn,
(=X + Pn)an + pfrin,
= (= A" = Pn)Pn + PGnn;

A
A
and

! >\Sh + pn)Qan

/\Sh pn)fnpnu
)\s

bin = fngngn +p (
n = fngnpn +p~
(=X + D) gnn

(=A% = Pn) fnbn-

b n:fngnQn+p !

ban = fngnpn +p~ !

h

We also define

(A:Lh + pn)(()\flh + pn)T’n + pfnfn) + fn((Ath + pn)p_lgn - fnrn)

= b EP |

K. - D gn((_)‘fzh + pn)p_lfn B gnsn) + (>‘th — pn)(()‘fzh — pn)sn + pgngn)
e B2 |

K - D (_)‘Zh +pn)((_/\fzh + pn)rn + pfnfn) + fn((_)‘fzh + pn)p_lgn — fnrn)
R (B2 |

K - D gn((/\fzh +pn)p_1fn — gnsn) + (_>‘th - pn)((_)‘%h - pn)sn + pgngn)
e B2 |

D D D D
KS,n = iKl ns Kﬁn = JKQ n K?n = LKS n KSn = LKZL n-

D'u ’ ’ Dlu ’ ’ D‘u ’ ’ Dlu ’
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Now we are ready to state the result. The followings are asymptotics of
eigenvalues of Wl (r)

T16,nT61,n Ti8nT81,n
A —Ae | Ap— Aot 2

A+ Ae + (rsw)? (

T16,nT61,n T18,nT81,n
A —Ae | Ap— Aot 2

+ K2,n

T T T 7
)2 36,n163,n - 38,n183,n + K3,n
Me— Ao — 22 T A
T36,nT63,n T38 nT83,n Ky

)
( )
( )
(Au—Aa—zAz” M= e )
( )
( )
( )

)

T50.0nTo5 p T54.0 150
A=Ay Ac— Aut 2
T52,nT5.n T540Ta5n
A=Ay A A, t 2
T72 0 To7 5 Tran Tt
D WS E R W :
Tro.nTo7n Tr4nTa7n
D WS E S W

+ K5,n

Ae — Ap+ (TSW)Q ( + Kgn

We also have the following asymptotic expansions of the eigenfunctions:

EY 4 row (/\MTIE’;\ EO + » _?8: o ) +0(r?),
EY + rsw (AZEEK EQ + " _1):27: oA 9) + 0(r?),
ES 4 row <)\u _i%f 2/\ShE6 + )\Z—?i\gEg> +0(r)),
By o (Rt g B 1 B ) 062,
E2 + rew (;5?36 EY + » ::5:: 2)\;’1E2> +0(r?),
EQ + rsw (AZ}?Z\ EY + " _1;63: 2AShE§> + 0(r?),
E% 4 row (Au _1):72f oA E9 + )57;4’7\8 Eff) +0(r)),

Tg1,n T33n 2
Ed+rgw | —" —F)+ "_EY) 4+ O(r?).
810 <)\“—)\5—2/\;§h LD VD Wl (rs)

Interestingly, the first-order term (of order 0) is still zero in the asymp-
totic expansions of the eigenvalues. This is due to the fact that degenerate
eigenfunctions does not interact with each other.

3.7 Concluding remarks

In this chapter, we have given the first rigorous detailed description of the
scaling behavior of plasmonic resonances for the full Maxwell equations, im-
proving our understanding of light scattering by plasmonic nanoparticles.
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The particle dimension and interparticle distances are considered to be in-
finitely small compared with the wavelength of the interacting light.

We have also shown formulas indicating the blow up rate of the extinction
cross section at the plasmonic resonance and give explicit formulas for the
case of spherical and spherical shell nanoparticles.
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4.1 Introduction

Our aim in this chapter is to provide a mathematical and numerical frame-
work for analyzing photothermal effects using plasmonic nanoparticles. At
or near the plasmonic resonant frequencies, strong enhancement of scatter-
ing and absorption occurs, see chapter and [86]. This translates into an
efficient heat generation in the presence of electromagnetic radiation. More-
over, plasmonic nanoparticles biocompatibility makes them suitable for use
in nanotherapy [36].

Nanotherapy relies on a simple mechanism. First nanoparticles become
attached to tumor cells using selective biomolecular linkers. Then heat gen-
erated by optically-simulated plasmonic nanoparticles destroys the tumor
cells [51]. In this nanomedical application, the temperature increase is the
most important parameter [71,[83]. It depends in a highly nontrivial way on
the shape, the number, and the arrangement of the nanoparticles. Moreover,
it is challenging to measure it at the surface of the nanoparticles [51].

In this chapter, we derive an asymptotic formula for the temperature
at the surface of plasmonic nanoparticles of arbitrary shapes. Our formula
holds for clusters of simply connected nanoparticles. It allows to estimate
the collective response of plasmonic nanoparticles. In particular, it shows
that the total amount of heat generated by two interacting nanoparticles
is significantly different from the heat created by two single nanoparticles.
The more interacting nanoparticles, the stronger the temperature increase.
Our results in this chapter formally explain the experimental observations
reported in [51].

The chapter is organized as follows. In section [£.2] we describe the math-
ematical setting for the physical phenomena we are modeling. To this end,
we use the Helmholtz equation to model the propagation of light which we
couple to the heat equation. Later on, we present our main results in this
chapter which consist on original asymptotic formulas for the inner field and
the temperature on the boundaries of the nanoparticles. In section [£.3] we
prove Theorems and These results clarify the strong dependency
of the heat generation on the geometry of the particles as it depends on the
eigenvalues of the associated Neumann-Poincaré operator. In section we
present numerical examples of the temperature at the boundary of single and
multiple particles.

4.2 Setting of the problem and the main results

In this chapter, we use the Helmholtz equation for modeling the propagation
of light. This can be thought of as a special case of Maxwell’s equations, when
the incident wave u’ is a transverse electric or transverse magnetic (TE or
TM) polarized wave. This approximation, also called paraxial approximation
[54], is a good model for a laser beam which are used, in particular, in full-
field optical coherence tomography. We will therefore model the propagation
of a laser beam in a host domain (tissue), hosting a nanoparticle.

Let the nanoparticle occupy a bounded domain D € R? of class C1'® for
some 0 < a < 1. Furthermore, let D = z + B, where B is centered at the
origin and |B| = O(1).

We denote by e.(x) and p.(z), z € D, the electric permittivity and
magnetic permeability of the particle, respectively, both of which may depend
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on the frequency w of the incident wave. Assume that e.(z) = eoel, pe(x) =
popt, and that Rel, < 0,3l > 0, Ry, < 0,Jul. > 0. Here and throughout, ey
and po are the permittivity and permeability of vacuum.

Similarly, we denote by &,,(z) = eoel, and pm(v) = popl,, * € R2\D
the permittivity and permeability of the host medium, both of which do not
depend on the frequency w of the incident wave. Assume that €, and
are real and strictly positive.

The index of refraction of the medium (with the nanoparticle) is given
by

n(a) = \/eux (D) (@) + /e x (R*\D)(x),
where x denotes the indicator function.
The scattering problem for a TE incident wave u* is modeled as follows:
2
V. 5Vu+w?u=0 inR*\dD,
n
uy —u_ =0 ondD,

if)u 1 ou

bl Il R D
-y 0 ondD,

L EcOv

u® :=u — u' satisfies the Sommerfeld radiation condition at infinity,
(4.1)

L_ is the speed

VEOHO

where a% denotes the outward normal derivative and ¢ =

of light in vacuum. We use the notation 8% indicating
+

ou
—| (z) = lim Vu(z £tv(z)) - v(z),
2| (@)= lim Va(e+ (@) - v(2)
with v being the outward unit normal vector to dD.
The interaction of the electromagnetic waves with the medium produces
a heat flow of energy which translates into a change of temperature governed
by the heat equation [37]

( or w
— —-V- — 2 2
pC T V -AVT 27T\s(6)]u\ in (R*\9D) x (0,7),
7+ —7-=0 ondD,
or or (4.2)
Tmys +—%5 ) =0 on dD,
7(x,0) =0,

where p = pex(D)+pmx(R?\D) is the mass density, C' = C.x(D)+Cp,x(R?\D)
is the thermal capacity, 7 = X (D) + Ym X (R?\D) is the thermal conductiv-
ity, T € R is the final time of measurements and € = .x(D) + e x(R?\D).
We further assume that pc, pm, Ce, Cm, Ve, Ym are real positive constants.
Note that 3(¢) = 0 in R?2\D and so, outside D, the heat equation is
homogeneous.
The coupling of equations and describes the physics of our

problem.
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We remark that, in general, the index of refraction varies with tempera-
ture; hence, a solution to the above equations would imply a dependency on
time for the electric field u, which contradicts the time-harmonic assumption
leading to model . Nevertheless, the time-scale on the dynamics of the
index of refraction is much larger than the time-scale on the dynamics of the
interaction of the electromagnetic wave with the medium. Therefore, we will
not integrate a time-varying component into the index of refraction.

Let G(-, k) be the Green function for the Helmholtz operator A + k?
satisfying the Sommerfeld radiation condition. In dimension two, G is given
by

1
Gl k) = — Hy' (K.

where H(()l) is the Hankel function of first kind and order 0. We denote
G(IL‘, Y, k) = G(:E - Y k)

Recall the definition of the single-layer potential and Neumann-Poincaré
integral operator for the Helmholtz equation

Splelx) = | G(z,y,k)e(y)do(y), x€ 9D orzeR2
oD

and
G (z,y, k)

O )

oD
Our main results in this chapter are the following.
Theorem 4.2.1. For an incident wave u* € C%(R?), the solution u to ([4.1)),

inside a plasmonic particle occupying a domain D = z4+0B, has the following
asymptotic expansion as § — 0 in L?*(D),

. 1 . §3
=u' oz — Aeld — K7 Vu'
u=u (z)+( (z —2) + Sp( Kb) [1/]) Vu'(z)+0 <dist()\€,a(lCB))>
where v is the outward normal to D, o(K7,) denotes the spectrum of K7, in
H‘%(@D) and

Ee+Em
2(ec — €m)’

Theorem 4.2.2. Let u be the solution to (4.1). The solution T to (4.2)) on
the boundary 0D of a plasmonic particle occupying the domain D = z+ 6B
has the following asymptotic expansion as 6 — 0, uniformly in (x,t) € dD X
(0,7),

g T

8FD() y bC)

§*log 6

7(z,t) = Fp(z,t,b.) — Vi (A Id — Kp) 7

1%

](:c,t)—i—O(

dist(A-, o (K5))2

)
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where v is the outward normal to D and

U Ve + Ym

T 2(’70*’7m)’

b. = pccc,

Ye
o —yl?
Fio (o1, be) //“““”r?wddy
= u

DT 8, e 27r’yc Ah.(t — ) Y

z—y|

Vhe t) = ¢ B ¥yt
Siwn = [ [ o i,

Remark 4.2.1. We remark that Theorem[].2.1] and Theorem[{.2.9 are inde-
pendent. A generalization of Theorem to R3 is straightforward and the
same type of small volume approximation can be found using the techniques
presented in this chapter. In fact, in R3, the operators involved in the first
term of the temperature small volume expansion are

I"Cy

Fo(z,t,b,) // ¢ "D pRy)dydt
D\Z, T, O¢ = y)ayat ,
27% (4mbe(t —t! )%

z—yl® y|?
b e T abe(t—t7) ,
VB[l 1) = / |ty
oD (4mbe(t —t'))2

Here I is the vectorial electric field as a result of Mazwell equations. A small
volume expansion for E inside the nanoparticle for the plasmonic case can
be found using the same techniques of chapter [

4.3 Heat generation

In this section we consider the coupling of equations ({.1]) and ( ., that is,

2

V- S Vu+wlu=0 inR\ID,
n
uy —u— =0 ondD,
1 ou 1 Ou
——22 =0 ondD
Em (‘3V €. Ov|_ on g
u® :=u — u' satisfies the Sommerfeld radiation condition at infinity,
C. o0t w .
”C%CE —Ar= 27%%(56)@\2 in D x (0,T), (4.3)
mCm O _
- a% —Ar=0 in (R2\D) x (0,7),
T4 —7- =0 on dD,
or or
bl IO D
’ymay . %81/ ) 0 ondD,
7(z,0) = 0.
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Under the assumption that the index of refraction n does not depend on
the temperature, we can solve equation (4.1f) separately from equation (4.2)).

Our goal is to establish a small volume expansion for the resulting tem-
perature at the surface of the nanoparticle as a function of time. To do so,
we first need to compute the electric field inside the nanoparticle as a result
of a plasmonic resonance. The results of the following sections rely heavily
on the use of layer potentials for the Helmholtz equation. We refer to chapter
[ for a summary.

4.3.1 Small volume expansion of the inner field

We proceed in this section to prove Theorem

Rescaling

Since we are working with nanoparticles, we want to rescale equation to
study the solution for a small volume approximation by using representation
&1).

Recall that D = z + 6B. For any x € D, 7 := *5* € OB and for each
function f defined on 0D, we introduce a corresponding function defined on
0B as follows

n(f)(@) = f(z +6z). (4.4)
It follows that

Shlel(x) = 68 n(p)](@),

4.5
Kby lele) = (KF) )@, -
S0 system becomes
Sy - 85 =~
L (b1 () )] + 2 (31— (5 @) = ———n(e).

Note that the system is defined on 0B.
For ¢ small enough Sj,;km is invertible (see Appendix . Therefore,

n(w) = (S 15% [n(g)] — (S2m)~ 1))

4]
Hence, we have the following equation for n(¢):
A (8)n(9)] = f7,
where
AB() = (51 + (Kgm)*)(Sp) 7Sy + L (31d — (Ki)"),

1 ou

r — __-
f - Emn( 81/

n(u?) (4.7)
5

)+ L (31d+ (KE™)*) (Sym) 7Y
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Proof of Theorem 4.2.7]

To express the solution to in D, asymptotically on the size of the
nanoparticle ¢, we make use of the representation . We derive an asymp-
totic expansion for 7(¢$) on ¢ to later compute 0S5 [n(¢)] and scale back to
D. We divide the proof into three steps.

Step 1. We first compute an asymptotic for AL(8) and f1.

Let H*(0B) be defined by (A.3) with D replaced by B. In L(H*(0B)),
we have the following asymptotic expansion as § — 0 (see Appendix [B.3])

(SY™)TISYe = Puy +Usk, (S + Tor,) + O(6*logd),

1 1
Sl =+ (K¥y* = (§Id + K3) + O(6% log 9).

Let ¢ be an eigenfunction of K7}; associated to the eigenvalue 1/2 (see
Appendix and let Uy, be defined by (B.12) with k replaced with dk,.
Then it follows that

1
(ijd + K*B)ngm = ngm.

Therefore, in L(H*(0B)),

1 1 1 1 1 ~
I _ . * . 2
AL(6) = ((26m + —2€C)Id + (?m eC)KB> Prs + ?mu‘s’“m(SB + Ysk,) + O(6° log d),
and from the definition of Usy,, we get
1 1 11 1 Splgo] + Tsk
I = e —_— I - — — * * B c (. * 21 .
AL(5) ((2% - 26C) d+ (Em EC)ICB) pHOJrgm Splool T ok (-, 00)#+po+0(5% log §)

(4.8)
In the same manner, in the space H*(9B),

7= 2 (a4 k)PS5 )+t 18]+ 057106 ).

We can further develop fI. Indeed, for every & € 9B, a Taylor expansion
yields

77((?;5)(92‘) = v(&)-Vu'(07 +2) = v(F)- Vu'(z) + 0(5),
nw) o uw0T+z)  u'(z) o
5 () = 5 = +z-Vu'(z) + 0(0).

The regularity of u’ ensures that the previous formulas hold in H*(0B).
The fact that & - Vu'(z) is harmonic in B and Lemma imply that

) 1 ~ .
—v- Vu'(2) = (;1d - K5)Py:Sp' & - Vu'(2)]

in H*(0B).
Thus, in H*(0B),

7= (Pl 9 2+ i, [+ 590021+ 06))

Em 1)
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From the definition of Usg,, we get

1 S-1(n o u'(2)¢o (S5'[# - Vui(2)], o)nr o
I 1 i B
= — | PysSp (2 - Vu'(2)] + - +0(0) | .
f Em ( ;S | )] 6(Saleol + 7ok, ) Sglwo] + Tsk,, ©)
(4.9)
Step 2. We compute (AL(6))71fL.
We begin by computing an asymptotic expansion of (AL(5))7?.
The operator A} := ((ﬁ + i)[d—l— (i - é)lC*B) maps H; into Hj.
Hence, the operator defined by (which appears in the expansion of AL(4))
L Sglwo] + sk
AL o = APy + — T (00,
B,0 0/7HG Em SB[SDO] +T6km( SOO)H ®o
is invertible of inverse
_ _ Sglpo] + ok
ABo) ™ = (A Pus + em e+, 0) 1+ 0.
(Apo) (Ao)™ P Snlpo] + on. (s 0)3 Po
Therefore, we can write
_ _ ~1 _
(AB)~H(8) = (Id + (AB) ' O(6% log )~ (Aj ) "
Since K3 is a compact self-adjoint operator in H*(0B) it follows that
AN g opy < —— 4.10
1(A0) " Nz om)) < dist(0, o (AD) (4.10)
for a constant c¢. Therefore, for ¢ small enough, we obtain
_ _ ~1 _
(AL(8) " = (Id+ (A )1 0(6%10g 8))  (Apo)
- ' Sp'[E - V' (2)], 00) w0
_ Id + AI —10 5210 5 1 U (Z)()OO N ( B ) +
( (A5,0) 705 108 9)) 6(Saleo] + Tok.) Sglpo] + ok,

(Aé)—l;pHagBl[i - Vu'(2)] + O <dist(0,(i(.4ﬂo))> )

u'(2)%0 (55" [F- Vel ()l w0 w0 | ana Lo s o
- B + (A — P+ S .V +
5(Sglpol + 7on,) Salol + 7o ()" —PusSp [ Vu'(2)]

0<<ﬁst<o,i<xuo>>>'
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Using the representation formula of K% described in Lemma we can
further develop the third term in the above expression to obtain

ey Elie o o (Sp'[E - VUl (2)], 0i)nr0j
AN P S - VUi (2)] = ! !
( 0) H B[ ()] ]; (%_i_;?c)_(%:_l))\j

(S5 [E - V()] st)ws@j)

Using the same arguments as those in the proof of Lemma[A.0.4] we have

(v Vu'(2), pj) 3
Ni— 3 ’

10~ 4, i
(A = (S5 - VU (2)] i) =
and consequently,

(Aé)l;PHSS‘]}l[:E S VU(2)] = Pz Sptla - V' (2)] + (\eId — Kjp) '] - V' (2).

Therefore,
I 10 _ u'(2) o _ (351[55 - V' (2)], 00) 1 po S5 Tui( s
(AR = g aoey gt R g P S i V) 4
(Aeld — K) 71 [v] - Vui(z) + O (M) .

Step 3. Finally, we compute n(u) = (55%’Cc (AL (&)L fL
. . Ske s s
From Appendix the following holds when S%* is viewed as an oper-
ator from the space H*(0B) to H(0B):
SYe=8p+ 7T 2
B B+ Lsk, +O(5 logé)‘
In particular, we have
Sgkc (0] = SBlo] + Tsk, + O(6%logd).

It can be verified that the same expansion holds when viewed as an operator
from H*(0B) into L*(B).
Note that the following identity holds

. (551[5,‘ . VUZ(,Z)], ()OO)H*SOO ) <1 = ui Al —
Spleo] + Tsk, + P Sp [T - Vu'(2)] =
_Tékc [ggl[j; . Vui(z)]]goo s :
Salpo] + Tok. +Sp 18- Vu'(z)]
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Straightforward calculations and the fact that Sp is harmonic in B yields

553 (AL () ! = w'(z) + 6(3 + Sp(ATd — IC*B)_l[V]) -Vu'(z) + O <dist()\ja(lq‘;))>

in L?(B). Using Lemma to scale back the estimate to D leads to the
desired result.

4.3.2 Small volume expansion of the temperature

We proceed in this section to prove Theorem To do so, we make use
of the Laplace transform method [46.[58}69].
Consider equation (4.3) and define the Laplace transform of a function

g(t) by
Lig)(s) = /0 e tg(t)dr,

Taking the Laplace transform of the equations on 7 in (4.3)) we formally
obtain the following system:

$LCs ()~ A#(8) = L(gu)(,s) in D,
Ye
sprf;cm%(-, s)—A7(-,s) =0 in RQ\E,
7+(-,s) —7-(-,s) =0 on 0D,
or or
ma_ — Jeq = Dv
o ovl, /Y(‘)Vf 0 ond
7(-, s) satisfies the Sommerfeld radiation condition at infinity,

(4.11)
where 7(-,s) and L(gy)(-,s) are the Laplace transforms of 7 and g, :=
ﬁ%i‘s(scﬂuﬁ respectively, and s € C\(—o0, 0].

A rigorous justification for the derivation of system and the validity
of the inverse transform of the solution can be found in [5§].

Using layer potential techniques we have that, for any p,§ € H *%(8D),
7 defined by

_ ﬁ’Ym A 2\
7A_ e . SD [p]v ﬂw R T E R \D7 (412)
_FD(',%/B%)_SDC[QL reD,

satisfies the differential equations in (4.11)) together with the Sommerfeld

. . . . mem e ch(;
radiation condition. Here 8, :=i4/s o By = iy /855 and

Fp(B) = /D G4, ) L(g) ) dy.
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To satisfy the boundary transmission conditions, p and § € H _%(8D)
should satisfy the following system of integral equations on 9D:

—Sym Il + S5l = —F( ),
o ($Id+ (K5 ] + e (= 31+ (K5e))d] = _,,CGFD(; Bae)
(4.13)

Re-scaling of the equations

Recall that D = 2z + B, for any z € 0D, = :=
f defined on 0D, n is such that n(f)(z) = f(z 4+ 6x) and

Splel(x) = 08xn(0)(@)
(KB lel(x) = (KF)*n(»)]@)

We can also verify that

A ( 7/8’7c) = 52FA‘B(§:‘ 5/6’Yc)7

OF OF
o @By = 0 (#.08s,).

Note that in the above identity, in the left-hand side we differentiate with
respect to x while in the right-hand side we differentiate with respect to .
To simplify the notation, we will use Fig to refer to Fp(-,88,,).

We rescale system (4.13)) to arrive at

=Sy " )] + Sy @) = ~6Fs,
(b1 ()@ 2 1+ )@ = o

For 4 small enough, Sz 0By is invertible (see Appendix . Therefore, it
follows that

1) = (S57) 7S5 (@) + (S5 [oF]

Hence, we have the following equation for n(g):

where
AL(S) = = (BT + (KK ™)) (Sy ™) So 7 4 ye( — A1d + (K <)),
oF .
1= =0 g (3 + () (S [0 -

(4.14)

Proof of Theorem (4.2.2]

To express the solution of (4.2)) on 0D x (0,7"), asymptotically on the size of
the nanoparticle ¢, we make use of the representation (4.12)). We will compute
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an asymptotic expansion for 7(¢) on § to later compute 58};5 "[n(¢)] on OB,
scale back to D and take Laplace inverse.

Using the asymptotic expansions of Appendix [B.3] the following asymp-
totic for A% (8) holds in L(H*(0B))

Al (5) = Al 4+0(6% 1og d),

where

1
Ag = - (2(7c +'Ym)ld_ (70 - 'Vm)’C*B> :

In the same manner, in H*(9B),

OF 1 ~ 1ron 6°logd
h B * —1 g
= —v = m (=1 F .
/ 1605, am (1 + K5) Sy [0Fs] + O <dlst()\5,a(IC)5))2>
dFg 1 S lren S lren §5log &
= — 667 — Ym *Id — * F m F : :
6052 (510~ K) 3567 5] + 95 78] + O T T
. i 52
Here the remainder comes from the fact that Fg = O (7&“(/\670“}5))2).

Note that AFp = n(L(gy)) — 52636}7}; in B and AFp = 0 in R2\D. We
can further verify that Ez satisfies the assumption required in Lemma
Thus we have

1 s OFg . 55
(514 =K5)Sp BF5] = —075.7 + Cupo + S BF5] + 0 <dist(/\€,a(IC}5))2>’
where C,, is a constant such that C, = O (L)
u v = Y\ st o (K507 )

After replacing the above in the expression of f” we find that

(@ = (AR(0) "

... .0Fg CuYm < 6% log & >
= (MId—K5)7Y6 + 0| = )
Ay ) 81/] (fyc—'ym)()w—%)@o dist(Ae, 0(KF,))?
(4.15)
where
Ye + Ym
Ay = ————.
! 2(Ye — ¥m)

Finally, in H*(0B),

a(sﬁB]_ CoYm
o " (Yo = vm)(Ay — 3)

n(#) = —82Fp—08Y (A Id—Kg) ™| 5827 (o] +0 <

(4.16)
It can be shown, from the regularity of the remainders, that the previous
identity also holds in L?(9B).
Using Holder’s inequality we can prove that

§%log 6
dist(Ac,0(K5))2 )

1)
1837 (] 1o (08 < CllellL20)s

for some constant C. Hence, we find that identity (4.16) also holds true

uniformly on 9B and CU(SS%B”C’C [po](Z) = O ((ﬁst(;t’l%), uniformly in
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0B. Scaling back to D gives

- 8F 5*logé
(2, 8) = ~Fp(e,B,) — Spe (1 — k) T2 D)y g (dism (;g(,%))z)w)

Before we take the inverse Laplace transform to (4.17)) we note that (see
169])

L(K(l’, Y bc)) =—G(z,By.),

where b, = pifc and K(z,-,b.) is the fundamental solution of the heat
equation. In dimension two, K is given by

2
=]

6_ 4bct

Ah.t

K(z,t,7v) =

We denote K(z,y,t,t',b.) := K(x —y,t —t',b.). By the properties of the
Laplace transform, we have

~Fe6) = = [ Glo 5,000 ( | [ ®wur >u<y>dydt'>.

We define Fp as follows

(x,t,be) / / K(z,y,t,t',be)gu(y)dydt’. (4.18)

Similarly, we have that for a function f

- G(w,y,ﬁwL(f)(y)dy:L( | BDK(w,y,-,t’,bc)f(y,t’)dydt’>.

oD

We define V% as follows

t
Vi, 1) 12/0 . K(z,y,t,t',be) f(y, t')dydt’. (4.19)

Finally, using Fubini’s theorem and taking Laplace inverse we find that

7(2,t) = Fp(z,t,b.) — Vi (A Id — Kp) 7

aFD(‘u‘ubC) 5410g6
o ](x’t)—i_o(dist()\e,a(}CB))? !

uniformly in (z,t) € 9D x (0,T).

4.3.3 Temperature elevation at the plasmonic resonance
Suppose that the incident wave is u'(x) = ehmdT where d is a unit vector.

For a nanoparticle occupying a domain D = z+ 3B, the inner field u solution
to ([4.1) is given by Theorem [4.2.1] which states that, in L?(D),

u e €= (1 4 ik, Sp(AId — Kp) V] - d),
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and hence

uf? ~ 14 2k, R <iSD(>\EId —Kp) - d) n ‘kmsp (\Id—K}) ' []) -d‘Q.

(4.20)
Using Lemma [A.0.2] we can write

(v-d,p;)n-Splypj]
N

Sp(Add—Kp) '] -d=

J=1

and therefore, for a given plasmonic frequency w, we have

_ .d’ )y« S .
Sp(red — Kp) '] -dn Y Aszzi}))vi Al-)[% |
£ 7"

Here j* is such that Aj+ = R(A:(w)) and the eignevalue A« is assumed to be
simple. If this was not the case, (v - d, ¢;+)3+Sple;-] should be replaced by
the corresponding sum over an orthonormal basis of eigenfunctions for the
eigenspace associated to Aj«.

Replacing in (4.20) we find

]2

|Ae(w) — Aji+ [Ae(w) — )‘j*’2

Thus, at a plasmonic resonance w,

Folg] ~ (FDm ok, W e o ) k2 MWFD[SDWF]) ,

[Ae(w) = Aje| T Ac(w) = Age[?
OFp (o - doj)u OFpSplejll | 12 (v-d i)y OFp[Sple;]
v e (W) — A v A (w) = Aje|? v '

Then, the temperature on the boundary of a nanoparticle at the plasmonic

resonance can be estimated by plugging the above approximations of Fp and

OFp(z,t,b.)
ov

into

. . 4
r(o,1) = Fp(r,1,b0) — Vs Id — k)1 2200 be) 0" log d )

o, @) +0 <dist()\€,a(IC’l‘)))2

4.3.4 Temperature elevation for two close-to-touching parti-
cles
Lemma [A.0.4] implies that

8FD(x, t, bc)
ov

:_(;Id_zcg>§51[FD]<x,t>+0( S loed >

dist(Ae, o (K5))?

Therefore, we can write the temperature on the boundary of the nanoparticle
as

OFp (.- be 5 1og 6
7(,6) = Fo(a,t,bo)+ V5 (0 1d=Kp) ™ Prey s, 2Fp(s:be) °8 ) ,

o ]@’t)*()(distug?a(/%))?
(4.21)
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where Py« g, is the projection into H*\E1: the complement in H*(9D) of
b 2

the eigenspace associated to the eigenvalue % of K7. This implies that, even

Fp(-, - be
if Ay is close to &, the quantity (A Id — K}) ™ Py s, [aD(a;j’b)](z:,t)
2

will remain of order O (W), provided that the second largest
€5 D

eigenvalue of K7, is not close to %

Even if this is in general the case for smooth boundaries 9D, it turns out
that for nanoparticles with two connected close-to-touching subparts with
contact of order m, a family of eigenvalues of K}, in H*\E 1 approaches % as

(see |42])

AS ~ % - cnclfi + o(Ck%),
where ( is the distance between connected subparts and ¢, is an increasing
sequence of positive numbers.

Now, A\, =~ % is the kind of situations encountered for metallic nanoparti-
cles immersed in water or some biological tissue. As an example, the thermal
conductivity of gold is v, = 31877%( and that of pure water is v, = O.6m—m;{.
This gives Ay ~ 0.5019.

In view of this, the second term in may increase considerably for
some type of close-to-touching particles.

We stress, nevertheless, that this is not the general case. For a more re-
fined analysis, asymptotics of the eigenfunctions of K7, should be also studied.

4.4 Numerical results

The numerical experiments for this work can be divided into two parts. The
first one is the Helmholtz equation solution approximation, which is obtained
by using Theorem [£.:2.1] The second part is the Heat equation solution
computation, which is obtained using Theorem

The major tasks surrounding the numerical implementation of these for-
mulas are integrating against a singular kernel. The numerical computations
of the operators Fp[-] and 0, Fp[-] can be achieved by meshing the domain
D and integrating semi-analytically inside the triangles that are close to the
singularities. We used the following formula to avoid numerical differentia-
tion:

OFp(x,t,b.) 1 “lz — 2\ (y - z,ve)
ov - 27b, /D exp < 4b,t |l’ — y|2 gu(y)dy, x € 0D.
(4.22)

For all the presented simulations, we considered an incident plane wave
given by
ul(x) _ eikmd-x

where d = (1,1)/v/2 € R? is the illumination direction and k,, = 27/750-10°
is the frequency (in the red range). The considered nanoparticles are ellipses
with semi-axes 30nm and 20nm, respectively.

It is worth noticing that the illumination direction d is relevant solely in
the asymptotic formula in Theorem [£:2.1] Its role is to define the coefficients
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of a linear combination of both components of Sp(AId—K%)~Lv] € R2. We
will see from the numerical simulations that this is fundamental if we wish
to maximize the produced electromagnetic field, and therefore the generated
heat inside the nanoparticles.

With respect to the asymptotic formula established in Theorem [.2.T]
besides the nanoparticle’s shape D, the sole parameter that is left is A¢. For
all the following simulations we will consider this as a free parameter that
we will use to excite the eigenvalues of the Neumann-Poincaré operator and
hence to generate resonances. The physical justification that allows us to
do this is based on the Drude model [9]. Whenever we mention that we
approach a particular eigenvalue \; of K7,, we will adopt A = A; + 0.0015.

With respect to the heat equation coefficients, we use realistic values of
gold for nanoparticles, and water for tissues.

4.4.1 Single-particle simulation

We consider one elliptical nanoparticle D € R? centered at the origin, with
its semi-major axis aligned with the z-axis.

Single-particle Helmholtz resonance

Resonance is achieved by approaching the eigenvalues of the Neumann-Poincaré
operator K7, with A, and afterwards applying it to each of the components
of the normal v to dD. It turns out that for some eigenfunctions of K7,, the
normal of the shape is almost orthogonal, in H*(9D), to them. Therefore,
we cannot observe resonance for their associated eigenvalues. In Figure [4.]]
we can see values of the inner product between the eigenfunctions of K7,
and the components v, and v, of v. Figure Fi;fl suggests us which are the
available resonant modes with the respective strength of each coordinate. In
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FIGURE 4.1: Inner product in H*(9D) between the eigen-
functions of K7, and the components v, and v, of the normal
v to 0D.

Figure [£.2] we present the absolute value of the inner field for the first three
resonant modes, corresponding to the second, third and sixth eigenvalue of
K7, respectively. In Figure we decompose the inner field into the zeroth-
order and the first-order terms respectively given by u'(z) + 0(z — 2)Vu'(z)
and Sp(AId — K},) " [v] - Vu'(z). Figure 4.4]shows the components of the
vector Sp(AId — K%) " Lv).

From Figure [4.3] we can see that when we excite the nanoparticle at its
resonant mode, the largest contribution to the electromagnetic field comes
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FIGURE 4.2: Absolute value of the electromagnetic field in-

side the nanoparticle at the first resonant modes, being those

when A\, approaches the second, third and sixth eigenvalue
of K.
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FIGURE 4.3: First resonant mode of the nanoparticle de-

composed in its first- and second-order term in the formula

given by Theorem [£.2.1] Both images are absolute values of
the respective component.
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FIGURE 4.4: Absolute value of the vectorial components of
the first-order term for the first resonant mode.

from the first-order term of the small volume expansion formula established
in Theorem [£.2.71

Observing the vectorial components of the first-order term in Figure [1.4]
tells us how important is the illumination direction as the z-component is
significantly stronger than the y-component. If we wish to maximize the
electromagnetic field and therefore the generated heat, the recommended il-
lumination direction would be around d = (1,0)! (with ¢ being the transpose),
as it was initially suggested by Figure [L.1]

Single-particle surface heat generation

Considering the electromagnetic field inside the nanoparticle given by the first
resonant mode presented in Figure [1.2] following the formula given by Theo-
rem [4.2.2] we compute the generated heat on the surface of the nanoparticle.
In Figure [£.5] we plot the generated heat in three dimensions and present
a two dimensional plot obtained by parameterizing the boundary. In Fig-
ure [4.6] we decompose the heat in its first- and second-order terms given by



114 Chapter 4. Heat Generation with Plasmonic Nanoparticles

Fp(-, -, be
formula |4.2.2) being Fp(z,t,b.) and —V% (A, Id — KE)_I[M](@",IS)

respectively. In Figure [I.7] we integrate the total heat on the boundary and
plot it as a function of time, for each component.

3D plot of generated heat at time 2D plot of generated heat at time
T=1 T=1
x1071
14
15 16 x10 _ _
// \\ N\
1.4 14 / \ \
/ \ o/
1.3 12 / \ / \
1.2
1
2 2 - /2 0 w/2 ™

%1078 0 2 0 x1078

-2

FIGURE 4.5: At the left-hand side, we can see a three-
dimensional plot of the nanoparticle heat, the red shape is
a reference value to show where the nanoparticle is located.
At the right-hand side we can see a two-dimensional plot of
the generated heat, where the boundary was parametrized
following p(0) = (acos(), bsin(d)), 0 € [—n, x|, with a and
b being the semi-major and semi-minor axes, respectively.

Two-dimensional plot of the Two-dimensional plot of the
zeroth-order term at T'=1 first-order term at 7' =1
-15 -
23 *x10 14 x10
. N .
3.28 RN / \ 1.2 /7 N\ 77N\
/ \ / \ / \ / \
< / J’J \\ /
3.26 \ 1 \ /
> / \/ \
3.24 0.8
s -m/2 0 /2 W - -mi/2 0 /2 T

FI1GURE 4.6: Two-dimensional plots of the zeroth- and first-

order components of the heat on the boundary when time

is equal to one. As time goes on, each point of the graph
increases, but the general shape is preserved.

Integrated zeroth-order Integrated first-order
Integrated heat over time component of heat over component of heat over
time time
x10°20 x10°% 1070
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1.25 o 5 10

o= — 42 1025 —

107 107 10° 10 107 10° 107 107 10°
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FIGURE 4.7: Time-logarithmic plots showing the total heat

on the boundary for each component of the heat. The values

were obtained for each fixed time, by integrating over the

boundary the computed heat. From left- to right-hand side:

The total heat, the zeroth-order and its first-order, according

to formula given by Theorem [{:2.2] Notice that the first-
order term is plotted in a log-log scale.

We can observe that the heat is not symmetric, this can be noticed from
the total inner field for the first resonance mode in Figure The reason
behind this non symmetry is because we are illuminating with direction d =
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(1,1)*/4/2 over an ellipse. From Figure we can notice that the first-order
term converges, while the zeroth-order term increases logarithmically, as it
is expected from the known solution of the heat equation for constant source
in two dimensions that the heat increases logarithmically.

4.4.2 Two particles simulation

We consider two elliptical nanoparticles Dy, Dy, D = DU D5, with the same
shape and orientation as the nanoparticle considered in the above example.
The particle Dy is centered at the origin and D is centered at (0,4.1-107),
resulting in a separation distance of 0.1nm between the two particles.

Two particles Helmholtz resonance

Following the same analysis as the one for one particle, in Figure [I.8] we
present the inner product between the eigenfunctions of K7, with each com-
ponent of the normal of D. We can observe that there are more available
resonant modes. In particular we can see that when A, approaches the 36th
or 37th eigenvalues, we achieve strong resonant modes.

12
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10+ * "
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FIGURE 4.8: inner product in H*0D between the eigenval-
ues of K}, and each component of the normal of 0D, v, and
Vy.

In Figure we present the absolute value of the inner field for the res-
onant modes corresponding to the 6th, 37th and 38th eigenvalues of K7,.
Similarly to the case with one particle, the dominant term in the electromag-
netic field for each case is the first-order term. In Figure [1.10] we decompose
the first-order term in its x-component and y-component.

As suggested by Figure [I.8] for the resonant mode associated to the 38th
eigenfunction of K7,, the stronger component is the one on the y direction,
meaning that if we wish to maximize the electromagnetic field, and therefore

the generated heat, it is suggested to consider the illumination vector d =
(0,1)".

Two particles surface heat generation

Similarly to the analysis carried out for one particle, we now compute the
generated heat for these two particles while undergoing resonance for the
resonant mode associated to the 38th eigenvalue of K7,. In Figure @ we
plot generated heat in the boundary of the two nanoparticles. In Figure {.12]
we decompose the generated heat in its zeroth and first-order component, for
each of the two nanoparticles.
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Resonant mode associated Resonant mode associated Resonant mode associated
to the 6th eigenvalue of to the 37th eigenvalue of to the 38th eigenvalue of
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FIGURE 4.9: Absolute value of the electromagnetic field in-

side the nanoparticle at the resonant modes associated to

the 6th, 37th and 38th resonant modes, obtained when A,
approaches the respective eigenvalues of K7,.
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FIGURE 4.10: Absolute value of the vectorial components
of the first-order term for the 38th resonant mode.

Similarly to the single nanoparticle case, there is no symmetry on the
heat values on the boundary, which is due to the illumination. We have
not provided the plots of the heat integrated along the boundary, as the
conclusions are the same as the ones in the single nanoparticle case: The
total heat on the boundary increases logarithmically, initially on time the
dominant term is the fist-order one, but as time increases the zeroth-order
term becomes the predominant one.

4.5 Concluding remarks

In this chapter we have derived an asymptotic formula for the tempera-
ture elevation due to plasmonic nanoparticles. We have considered thermal
coupling within close-to-touching nanoparticles, where the temperature field
deviates significantly from the one generated by single nanoparticles. Com-
bined with the methods developed in , our results can be used for the
optical and thermal detection and localization of plasmonic nanoparticles.
As reported in , the detection and localization of nanoparticles in highly
scattering media such as biological tissue remains a challenge. They can also
be used for monitoring temperature elevation due to plasmonic nanoparticles



4.5. Concluding remarks 117

3D plot of heat on 9(D1 U D2) at time Heat on 8D, at time T' = 1
T=1. <10 M
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FIGURE 4.11: Generated heat on the boundary of the
nanoparticles for time equal to 1. On the left we can see
a three dimensional view of the heat, the red shapes are ref-
erential to show the location of the nanoparticles. On the
right-hand side we can see the two dimensional heat plots
corresponding to each nanoparticle. To obtain these plots
we parameterized the boundary of each nanoparticle with
p(0) = (acos(),bsin(h)) + z, 0 € [—m, 7], where z € R?
corresponds to the center of each nanoparticle. On the top

we can see nanoparticle Dy and on the bottom nanoparticle
D;.

based on the photoacoustic signal recently analyzed in [91]. Thermoacous-
tic signals generated by nanoparticle heating can be computed numerically
based on the successive resolution of the thermal diffusion problem consid-
ered in this chapter and a thermoelastic problem, taking into account the
size and shape of the nanoparticle, thermoelastic and elastic properties of
both the particle and its environment, and the temperature-dependence of
the thermal expansion coefficient of the environment. For sufficiently high
illumination fluences, this temperature dependence yields a nonlinear rela-
tionship between the photoacoustic amplitude and the fluence [82].
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FIGURE 4.12: Two-dimensional plots of the zeroth and first
component of the heat at time 1, for each nanoparticle. On
the left column we have the zeroth component of the heat,
on the right-hand side column we have the first component
of the heat. On top we show the values for nanoparticle Do,
on the bottom we show the values for nanoparticle D;.
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5.1 Introduction

In this chapter we consider the scattering by a layer of periodic plasmonic
nanoparticles mounted on a perfectly conducting sheet. We design the layer
in order to control and transform waves. Since the thickness of the layer,
which is of the same order of the diameter of the individual nanoparticles,
is negligible compared to the wavelength, it can be approximated by an
impedance boundary condition. Our main result is to prove that at some
resonant frequencies, which are fully characterized in terms of the periodicity,
the shape and the material parameters of the nanoparticles, the thin layer has
anomalous reflection properties and can be viewed as a metasurface. Since
the period of the array is much smaller than the wavelength, the resonant
frequencies of the array of nanoparticles differ significantly from those of
single nanoparticles. As shown in this chapter, they are associated with
eigenvalues of a periodic Neumann-Poincaré type operator. In contrast with
quasi-static plasmonic resonances of single nanoparticles, they depend on
the particle size. For simplicity, only one-dimensional arrays embedded in
R? are considered in this chapter. The extension to the two-dimensional case
is straightforward and the dependence of the plasmonic resonances on the
parameters of the lattice is easy to derive.

The array of plasmonic nanoparticles can be used to efficiently reduce
the scattering of the perfectly conducting sheet. We present numerical re-
sults to illustrate our main findings in this chapter, which open a door for
a mathematical and numerical framework for realizing full control of waves
using metasurfaces |2,76,/92]. Our approach applies to any example of peri-
odic distributions of resonators having resonances in the quasi-static regime.
It provides a framework for explaining the observed extraordinary or meta
properties of such structures and for optimizing these properties. The results
presented in this chapter hold for arbitrary-shaped nanoparticles. Simula-
tions with disks, ellipses, and rings are shown. In this connection, we refer to
the recent works [59,[70%/80,(93]. It is also worth highlighting that at optical
frequencies, a perfectly conducting approximation breaks down and needs to
be replaced by a proper material response. In this chapter, the perfectly con-
ducting boundary condition is used only for simplicity of the presentation.
Similar effective boundary conditions can be obtained by using exactly the
same approach presented here for penetrable half-space.

The chapter is organized as follows. We first formulate the problem of
approximating the effect of a thin layer with impedance boundary conditions
and give useful results on the one-dimensional periodic Green function. Then
we derive the effective impedance boundary conditions and give the shape
derivative of the impedance parameter. In doing so, we analyze the spectral
properties of the one-dimensional periodic Neumann-Poincaré operator de-
fined by and obtain an explicit formula for the equivalent boundary
condition in terms of its eigenvalues and eigenvectors. Finally, we illustrate
with a few numerical experiments the anomalous change in the equivalent
impedance boundary condition due to the plasmonic resonances of the peri-
odic array of nanoparticles. For simplicity, we only consider the scalar wave
equation and use a two-dimensional setup. The results of this chapter can
be readily generalized to higher dimensions as well as to the full Maxwell
equations.
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5.2 Setting of the problem

We use the Helmholtz equation to model the propagation of light. This
approximation can be viewed as a special case of Maxwell’s equations, when
the incident wave v is transverse magnetic (TM) or transverse electric (TE)
polarized.

Consider a particle occupying a bounded domain D € R? of class Ch®
for some 0 < o < 1 and with size of order 6 <« 1. The particle is char-
acterized by electric permittivity €. and magnetic permeability p., both of
which may depend on the frequency of the incident wave. Assume that
Sme. > 0, Re pe < 0,3m p. > 0 and define

km = W/ EmMtm, ke = Wy/Eclhc,

where €, and p,, are the permittivity and permeability of free space respec-
tively and w is the frequency. Throughout this chapter, we assume that &,
and p., are real and positive and ky, is of order 1.

We consider the configuration shown in Figure where a particle D is
repeated periodically in the x1-axis with period ¢, and is at a distance of order
§ from the boundary z = 0 of the half-space R2 := {(21,22) € R?, x5 > 0}.
We denote by D this collection of periodically arranged particles and €2 :=
R2 \ D.

5ma Mm
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FI1GURE 5.1: Thin layer of nanoparticles in the half space.

Let u’(z) = e*m% be the incident wave. Here, d is the unit incidence
direction. The scattering problem is modeled as follows

;

1
V- —Vu+w?’epu=0 inR3\ D,

[ 25>)
Uy —u— =0 on 9D,
10 10
=g 29 g on oD, (5.1)
i OV + e OV | _

u —u' satisfies an outgoing radiation condition at infinity,

([ u=0 ondR2 ={(1,0), 21 € R},

where

ep = emx(Q) +ecx(D), pp =emx(Q) +ecx(D),

and 0/0v denotes the outward normal derivative on 9D.
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Following [1], under the assumption that the wavelength of the incident
wave is much larger than the size of the nanoparticle, a certain homogeniza-
tion occurs, and we can construct z € C such that the solution to

2 2
Atapp + kptapp = 0 in RY,

Uapp + 02 Bgzzp =0 on JRZ, (5.2)

Uapp — U’ satisfies outgoing radiation condition at infinity,
gives the leading order approximation for u. We will refer to wapp+02 8;;;’? =
0 as the equivalent impedance boundary condition for problem (5.1). A
proof of existence and uniqueness of a solution to ([5.2)) follows immediately
from [45].

5.3 One-dimensional periodic Green function

Consider the function G} : R? — C satisfying

AGy(z) =Y 6z + (n,0)). (5.3)

ne”

We call Gy the 1-d periodic Green function for R2.

Lemma 5.3.1. Let x = (x1,x2), then
1
Gy(z) = o log ( sinh?(7zs) + sin®(7wz1)),
T

satisfies (|5.3)).
Proof. We have

AGy(z) = > 8(z+ (n,0))

ne”Z

= > 6(z2)6(z1 + n)

ne”

= Z ()€™ (5.4)

ne”

where we have used the Poisson summation formula ) _,d0(z; + n) =

Z 7 ei27rnml
n .
On the other hand, since Gy is periodic in x1 of period 1, we have

Gyl(x) =Y Palw)e™™,
nez

therefore

AGy(x) = 37 (Bl (e2) + (2mn)Bu)e>™ . (5.5)

neL

Comparing (|5.4) and (5.5)) yields

B (x2) + (1270)% B0 = 6(2).
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A solution to the previous equation can be found by using standard tech-
niques for ordinary differential equations. We have

1

Bo = gleal+e
-1

Bn = ——e2lleal 2
47|n ’ ’

where ¢ is a constant. Subsequently,

1 1 .
Gylz) = Sleal+c— 3 T o~ 2|n|[z2] ji2mna,
neZ\{0}
1 1
- §|$2‘ tec— Z ﬂe—%nlrzl cos(2mnry)
neN\{0}

1 . 19 . 92
= Elog (sinh?(7ra2) + sin®(7wz1)),

where we have used the summation identity (see, for instance, |57, pp. 813-
814])

1 g

2mn 2
neN\{0}

1
. log ( sinh?(7rzs) + sin®(rz1)),
™

log(2)

and defined ¢ = —
27

O]

Let us also denote by Gy(x,y) := Gy(x — y). In the following we define
the 1-d periodic single layer potential and 1-d periodic Neumann-Poincaré

x R which we

1
operator, respectively, for a bounded domain B & ( 5 5)

assume to be of class C1® for some 0 < a < 1. Let
Sps: H 2(0B) — HL (R?),H2(0B)

¢ — Spylel(x) = [ Gylz,y)e(y)do(y)
0B

for x € R%,z € OB and let

Ky : H2(0B) — H 2(dB)
¢ Kiglolo) = [ 28D )a0(y)

for z € 0B. As in [65], the periodic Neumann-Poincaré operator can be
symmetrized. The following lemma holds.

Lemma 5.3.2. (i) For any ¢ € Hfé(ﬁB), Spily] is harmonic in B and
11 —
in (—=,=) x R\B;
i (~ 55) X R\B;
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(ii) The following trace formula holds: for any ¢ € H_%(OB),

<_2Id+ICBﬁ)[S0] - v 0

(1ii) The following Calderon identity holds: KpySpy = SpiKly, where Kpy
is the L*-adjoint of IC*Bﬁ;

1 _1
(iv) The operator Ky : Hy *(0B) — H, *(9B) is compact self-adjoint
equipped with the following inner product

(w, v)ny = —(U,SBMUD_%% (5.6)

_1 1
with (-, -) being the duality pairing between H, * (0B) and Hg (0B),

11
—%3
_1
which makes H equivalent to H, *(0B). Here, by Ey we denote the
zero-mean subspace of E.

(v) Let (Nj,j), j =1,2,... be the eigenvalue and normalized eigenfunction
pair of Ky in H3(0B), then \; € (—3.3) and A\j = 0 as j — <.

Proof. First, note that a Taylor expansion of sinh?(wzy) + sin?(7z;) yields

log |z
Gu(w) = B | oy,

where R is a smooth function such that
1
R(x) = yym log(1 + O(x% — a:%))

We can decompose the operators Spy and Kpy on H(0B) accordingly. We
have

SBﬁ =S8+ Gg, ]C*Bﬁ = /CE + Fp,

where Sp and K% are the single layer potential and Neumann-Poincaré op-
erator (see [18]), respectively, and Gp, Fp are smoothing operators. Using
this fact, the proof of the Lemma follows the same arguments as those given
in [121[18]. O

5.4 Boundary layer corrector and effective impedance
In order to compute z, we introduce the following asymptotic expansion [113]:

u=u® + ug)L +6(u™ + ugz) + ... (5.7)
where the leading-order term (%) is solution to

Au® + k24 =0 in RZ,
u©® =0 on 8]1%3_,

u©) — o’ satisfies an outgoing radiation condition at infinity.
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The boundary-layer correctors uSBO}J and ug% have to be exponentially de-

)

caying in the wo-direction. Note that according to |1,[3], ugL is introduced
in order to correct (up to the first-order in §) the transmission condition on
the boundary of the nanoparticles, which is not satisfied by the leading-order
term ©(?) in the asymptotic expansion of u, while ugj): is a higher-order cor-
rection term and does not contribute to the first-order equivalent boundary
condition in .

We next construct the corrector ug)%. We first introduce a function «
and a complex constant ., such that they satisfy the rescaled problem:

Aa=0 in (Ri\g> UB,

aly —al-=0 on JB,
1 1 1 1
1 a) 10a = (— — —)VQ on 0B, (5.8)
B OV | e OV |_ He  fm
a=0 on 8Ri,

a — Qo 1s exponentially decaying as o — 4-00.

Here, v = (v1,12) and B = D/§ is repeated periodically in the x;-axis with
period 1 and B is the collection of these periodically arranged particles.
Then ug_g% is defined by

A0 T
ufgy () 1= 0 —(21,0) (al5) o).

The corrector u) can be found to be the solution to

AuM + k24 =0 in Ra_,

u®) = a ag;z) on OR?
u®) satisfies an outgoing radiation condition at infinity.
By writing
Uapp = 0O + sull), (5.9)

we arrive at (5.2) with 2 = —ax, up to a second order term in §. We
summarize the above results in the following theorem.

Theorem 5.4.1. The solution uapp to with z = —as approximates
pointwisely (for xo > 0) the exact solution u to as & — 0, up to a
second order term in §.

In order to compute a, we derive an integral representation for the
solution a to (5.8). We make use of the periodic Green function Gy defined

by (5.3). Let

Gy (x,y) = Gy((x1 — y1, 22 — y2)) — Gy (21 — y1, =22 — 92)),
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which is the periodic Green’s function in the upper half space with Dirichlet
boundary conditions, and define

H™2(0B) — H}.(R?),H?(B)

o — Silel) = /a G p)elu)doly)

+ .
Sty

for x € Ri,x € 0B and

(Kj)* : H2(dB) — H™2(9B)
oG] (z, 5.10
¢F—+(KE¢)W¢Kx)=béB‘££$fﬁ¢aﬁda@) 010

for z € 0B.
It can be easily proved that all the resul‘gs of Lemma hold true for
Sy and (Kgy)*. Moreover, for any ¢ € H™2(9B), we have
ngﬁ[cp] (x) =0 forx € ORZ.

Now, we can readily see that a can be represented as o = Sgﬁ[go], where
@€ H_%(ﬁB) satisfies

0SE IS+,
1MM_1MM‘:C_1)WOMB
/l/m 87/ + ,U/C al/ /'I/C Iu’m

Using the jump formula from Lemma [5.3.2] we arrive at

(Audd — (Kpy) ") ] = v2,
where

He + Bm

A= —F————.
: 2(phe — Him)

Therefore, using item (v) in Lemma on the characterization of the
spectrum of K7, and the fact that the spectra of (/C*Bu)+ and K7, are the
same, we obtain that

* —1
a =8, (A\dd — (Kgy) )~ ).

Lemma 5.4.1. Let x = (x1,22). Then, for xo — +00, the following asymp-
totic expansion holds:

= o +0(e™?),

with

oo = — / 1o (\uTd — () ™)~ o] () dor(y)-
0B
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Proof. The result follows from an asymptotic analysis of G} (x,y). Indeed,
suppose that zo — +00, we have

G;(:c,y) = £ log (sinh?(m(za — y2)) + sin?(n(

- log (sinh?(7(x2 + y2)) + sin®(7(z1 — 1))

=0 log (sinh?(m(z2 — y2)))

—1)))

i log (sinh2(7r(a:2 + yz)))

1
+0(1 1+ ———
(log < * sinhQ(:z:g)> )
1 1 eﬂ-(x27y2) — eiﬂ(x2+y2)
27T 8 (

)

—log (e il _2@—7r(w2—y2))> +O(log (1 + e—x%) )

= —Y2 + O(€_$2),

which yields the desired result

O
Finally, it is important to note that a., depends on the geometry and
size of the particle B.

Since (Ky)*

Hy — H{ is a compact self-adjoint operator, where Hj is
defined as in Lemma [5.3.2] we can write

(6759

- /a v (\ud — (Ki) ™) " vl (v)do(y),
_ —/831122 2 1,

()0]71/2 ’H* gojayQ)

J

11
2°32

Y
1 J

where A1, Ao, are the eigenvalues of (IC*Bﬁ)JF and o1, o, ..
sponding orthornormal basis of eigenfunctions

. is a corre-
On the other hand, by integrating by parts we get

1
(@j;yQ), \ (SojaVQ)'Ha'
27

This together with the fact that Im A, < 0 (by the Drude model [9]), yield
the following lemma.

Lemma 5.4.2. We have Smay > 0

Finally, we give a formula for the shape derivative [16] of oo
formula can be used to optimize ||

This
for a given frequency w, in terms of
the shape B of the nanoparticle. Let B, be an n-perturbation of B; i.e., let
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h € C1(0B) and 9B, be given by
0B, = {x + nh(z)v(x),x € 8B}.

Following [17] (see also [12]), we can prove that

aoo(By) = ase(B) + (" —1)
e
v, Ow e OV, Ow
R e S P

where 0/07 is the tangential derivative on 0B, v and w periodic with respect
to z1 of period 1 and satisfy

Av=0 in (Ri\g> U B,

vl —v|- =0 on JB,

@
ov

o OV

=0 on 0B,
+  He ov

v—x9 — 0 asxzy— +00,

and
Aw =0 in (Ra_\g> U B,

%w|+—w]_ =0 on 0B,
a—w — a—w =0 on 9B,
ov|, Ov|_

L w—22—0 asxzy— 400,

respectively. Therefore, the following lemma holds.

Lemma 5.4.3. The shape derivative dsaso(B) of aee is given by

b ov, Ow fe OV Ow
d B)=(—-1)|%z|_ — | =1
500 (B) (,uc )[aV’aV+MmaT‘3T
If we aim to maximize the functional J := %|on0|2 over B, then it can

be easily seen that J is Fréchet differentiable and its Fréchet derivative is
given by Redgaoo(B)aoo(B). As in |11], in order to include cases where
topology changes and multiple components are allowed, a level-set version of
the optimization procedure described below can be developed.

5.5 Numerical illustrations

5.5.1 Setup and methods

We use the Drude model |9] to model the electromagnetic properties of the
materials of our problem. We use water for the half space and gold for the
metallic nanoparticles. We recall that, from the Drude model, the properties
of the materials depend on the frequency of the incoming wave, or equiv-
alently, on the wavelength. To compute |ao| and the integral (geometry
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dependent) operators involved on its expression, we make a simple uniform
discretization with 200 points of the corresponding geometric figures and use
a standard quadrature midpoint rule.

Figureshows |ao| as a function of the wavelength for disks of different
sizes, all centered at (0,0.5).

Figure|5.3|shows || as a function of the wavelength for two disks of the
same fixed radius equal to 0.2 but centered at two different distances from
x9 = 0.

In Figures and [5.5| we plot |aso| as a function of the wavelength for a
disk and a group of three well-separated disks. We can see that a disk can be
excited roughly at one single frequency whereas three disks can be excited
at different frequencies but with lower values of ||

The previous results consist only of nanodisks. Here we give a few other
examples to confirm how general are the conclusions obtained. Figure [5.6]
shows the blow up of |« | for an ellipse. In Figure We consider a triangle
with rounded corners. In Figure values of |as| are computed for a
circular ring.

5.5.2 Results and discussion

An important conclusion is that the spectrum of the periodic Neumann-
Poincaré operator defined by varies with the position and size of the
particles. Our results hold for arbitrary-shaped nanoparticles. The reso-
nances of the effective impedance a, depend not only on the geometry of
the particle B but also on its size and position. One can see (Figures
and a change in the magnitude and a shift of the resonances. The plas-
monic resonances shift to smaller wavelengths and the magnitude of the peak
value increases with increasing volume. We remark that this is not particular
to the examples considered here. In fact, this is the case for any particle.
These two phenomena are due to the strong interaction between the particles
and the ground that appears as their sizes increase while the period of the
arrangement is fixed.

Note also that in our analysis we did not assume the particles to be
simply connected. In fact, the theory is still valid for particles which have
two or more components. This allows for more possibilities when choosing
a particular geometry for the optimization of the effective impedance. For
instance, one may want to design a geometry such that a single frequency
is excited with a very pronounced peak or, on the other hand, to excite not
only a specific frequency but rather a group of them.

5.6 Concluding remarks

In this chapter we have considered the scattering by an array of plasmonic
nanoparticles mounted on a perfectly conducting plate and showed both an-
alytically and numerically the significant change in the boundary condition
induced by the nanoparticles at their periodic plasmonic frequencies. We
have also proposed an optimization approach to maximize this change in
terms of the shape of the nanoparticles. Our results in this chapter can be
generalized in many directions. Different boundary conditions on the plate as
well as curved plates can be considered. Our approach can be easily extended
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to two-dimensional arrays embedded in R? and the lattice effect can be in-
cluded. Full Maxwell’s equations to model the light propagation can be used.
The observed extraordinary or meta properties of periodic distributions of
subwavelength resonators can be explained by the approach proposed in this
chapter.

1.5 2 25 3 35
wavelength %1077

FIGURE 5.2: |aso| as a function of the wavelength for disks
of different radii, ranging from 0.1 to 0.4.
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FIGURE 5.3: |aco| as a function of the wavelength for a disk
centered respectively at distance 0.25 and 0.45 from x5 = 0.
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FI1GURE 5.6: Well localized resonance for an ellipse.
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rounded corners.
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6.1 Introduction

In this chapter, we prove that based on plasmonic resonances we can on one
hand classify the shape of a class of domains with real algebraic boundaries
and on the other hand recover the separation distance between two compo-
nents of multiple connected domains. These results have important applica-
tions in nanophotonics. They can be used in order to identify the shape and
separation distance between plasmonic nanoparticles having known material
parameters from measured plasmonic resonances, for which the scattering
cross-section is maximized.

A real algebraic curve is the zero level set of a bivariate polynomial.
Domains enclosed by real algebraic curves (henceforth simply called algebraic
domains) are dense, in Hausdorff metric among all planar domains. On a
simpler note, every smooth curve can be approximated by a sequence of
algebraic curves. This observation turns algebraic curves into an efficient
tool for describing shapes [64,88.,/94]. Note that an algebraic domain which
is the sub level set of a polynomial of degree n can uniquely be determined
from its set of two-dimensional moments of order less than or equal to 3n
[55,/67]. In this chapter we consider a class of algebraic curves determined
via conformal mappings by two parameters m and J, with m being the order
of the polynomial parametrizing the curve and ¢ being a shape parameter,
see and . One can think of algebraic domains as non-generic, but
dense, among all planar domains, as much as polynomials are non-generic,
but dense among all continuous functions on a compact set. In either case, the
identifications/reconstructions have to be complemented by a fine analysis
of the rate of convergence.

The main results of the present chapter are:

(i) Algebraic domains described by have only two plasmonic reso-
nances asymptotically (in §). Based on these two plasmonic resonances, one
can classify them;

(ii) Two nearly touching disks have an infinite number of plasmonic reso-
nances and the separating distance can be determined from the measurement
of the first plasmonic resonance.

The chapter is organized as follows. In section [6.2] we give explicit cal-
culations of the Neumann-Poincaré operator associated with an algebraic
domain. Moreover, we analyze its asymptotic behavior as § approaches zero.
We compute the first- and second-order contracted polarization tensors, and
show how to use them to determine the two parameters describing the al-
gebraic boundaries. In section [6.3] we consider two nearly touching disks.
We use the bipolar coordinates to compute the spectrum of the associated
Neumann-Poincaré operator. We show that all the eigenvalues of the asso-
ciated Neumann-Poincaré operator contribute to the set of plasmonic reso-
nances. From the first-order polarization tensor, we show that we can recover
the separating distance between the disks. In section [6.4) we illustrate our
main findings in this chapter with several numerical examples.
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6.2 Plasmonic resonance for algebraic domains

6.2.1 Algebraic domains of class Q

Let © be the unit disk in C. For m € N and a € R, define ®,,,: C\Q — C
by

@

Cm

Assume that ®,,, is injective on C \ Q. We introduce the class Q as the
collection of all bounded domains D C C bounded by the curves

Pa(C) =C+

0D ={®,,(¢): |¢|=1ro} forsomery>1 meNandaecR.

Note that ®,,, is a conformal mapping from {|¢| > 7} onto C\ D. In
what follows, we shall suppress the subscript m,a from ®,,, for the ease of
notation.

Conformal images of the unit disc by rational functions are also called
quadrature domains. We refer to [56L84] for details and ramifications of the
theory of quadrature domains. In particular, up to the inversion z — 1/z,
the complements of the domains in class Q are quadrature domains. We
write for convenience ( = ePtif Tet po be such that rg = e”°. Let J be the
Jacobian defined by

J = [0¢((e%)) le=p+io|.
In the (p, #) plane, the normal derivative 0/0v on 0D is represented as
o0 _19
o Jop’
Moreover, the boundary 9D is parametrized by

6 — <I>(ep°+i9) = ePotil 4 qe—mpo—imf

If we fix the constant a and change pg, then the size and the shape of 9D
will change accordingly. In order to leave the shape unchanged, we need to
represent the constant a in a different way. We write

a = emtheog, (6.1)
Then the boundary 0D can be represented as
0 — B(ePoti0) = ero (el 4 §emimY), (6.2)

Now, if we fix the constant § and change pg, then it is clear that only the size
changes and the shape stays unaffected. The parameter e can be considered
as a generalized radius of D because it determines the size. In conclusion,
the shape of D is determined by the two parameters m and J, while the size
by the parameter pg.

6.2.2 Explicit computation of the Neumann-Poincaré opera-
tor

In this section, we compute the Neumann-Poincaré operator on 9D explic-
itly. We need to compute K3[J ! cosnf] and K,[J ! sin nd] explicitly. Our
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strategy is as follows. Let u = Sp[J ! cos nH} and v = Sp[J Lsinnd]. If
u,v can be obtained explicitly, then K}[J ™! cosnf] and K§[J !sinnf] are
immediately derived by using the followmg identity:

-3 -5E]) e

which follows from ([1.1). For simplicity, we consider only u. By using the
continuity of the single layer potential and the jump relation (1.1, we can
see that the function u is the solution to the following problem:

Au=0 in C\ 0D,

ul— = ul4+ on 0D,

ou ou 1 (6.4)
EL_%’*_J cosnf on 0D,

u=0(z]"") as |z| — oo.

Let (p,0) = (uo ®)(ert). Since ®(() is conformal on |¢| > €0, the above
problem can be rewritten as follows:

([ Au=0 for p < po,
Au=0 for p > po,
ul- =ul+ on p = po, (6.5)
ou ou
a—pL—a—p’_:cosnO on p = po,
L u=0(e"") as p — o0o.

Note that in , the first equation for u|p is not represented in terms of .
This is due to the singularity of ®(¢) near ( = 0. Hence, we need to consider
u|p more carefully. If @ = 1 and m = 1, then D becomes an ellipse and (p, 6)
are called the elliptic coordinates. In this case, equation for w can be
easily solved by imposing some appropriate conditions on p = pg and p = 0.
However, for general shaped domains, this is not easy.

Fortunately, we can overcome this difficulty by the fact that the shape
of the domain D is defined by a rational function ®(¢) = ¢ + a/¢™. Our
strategy is to seek a solution to such that

u(z) = R{a polynomial of degree n in z} for z € D.

We can show that, for 1 < n < m, u|p in equation (6.5)) can be explicitly
solved by using the following ansatz:

ulp(z) o R{="} = R{ (¢ + 7))
e

=0

n
="’ cosnb + Z a® <Z> e P costm, (6.6)
k=1
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where the constant ¢;" is defined by
" =(m+1)k—n, 0<k<n.

As will be seen later, for the purpose of computing the polarization tensor,

we consider only the case where 1 <n < m. (If n > m, u|p(z) turns out to

be more complicated polynomial than 2™ but is still a polynomial of degree
Let us assume 1 < n < m. In view of , we define

n
e’ cosnb + Z a” <Z> e l"P cos tTY, p < po,
k=1

w(p,0): =

n

n mn

e—n(P—QPO) cosnb + E ak (k;) et P cos t?ne, P > po.
k=1

Note that w is harmonic in {p < po} and {p > po} and w = O(e™?) as
p — 00. Moreover,

w|4 = w|- on p = po,
P 9 (6.7)
571: + 871;)) _ (=2)ne"” cosnb on p = po.

Therefore, the function w is equal to @ up to a multiplicative constant. More
precisely, we have

(p,0) = —%e*mw(p, 0). (6.8)

Now we are ready to compute K% [J ! cosnf]. We can check that

— — —|— —ti"a L P cog G, 6.9
2< = ap p= ﬂO) Z ( ) g (69)

9p lp=po

Then it follows from and . that

1 tmn
Kp[J ! cosnb] = i deg—n <Z> cost;"0 (6.10)
k=1

for 1 < n < m. In exactly the same manner, we can show that
k n n
Kp[J sinnf] = Z o - 2n < > sin¢t;'"6. (6.11)

It is worth mentioning that we can also compute the single layer potentials
for J~!cosnf and J ! sinné:

1 1< n
1 = = k mn 192
Sp[J ™" cosnb] = o cos nf 5 kg 1 o <k> costy™0, (6.12)
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and

n

1 1 <
-1 _ : k i 4mn
Sp[J ™ " sinnf] = 5y, S0 nb + o ,;_1 4] <k> sint]'""0. (6.13)

6.2.3 Asymptotic behavior of the Neumann-Poincaré opera-
tor K7,

If 6 is small enough, then the shape of 0D is close to a circle. Next we
investigate the asymptotic behavior of the Neumann-Poincaré operator and
its spectrum for small §. From (/6.10)), we infer

1—
Kp[J 7t cosnb] = 5(m—i—2n)J_1 cos(m + 1 —n)f 4+ 0(6?),
K3 [J ! sinnd] = —5<7”+21_”)J—1 sin(m+1—n)f +0(32)  (6.14)

for small § and 1 < n < m. One can verify the decay
K[t cosnd), Kh[J ' sinnb] = O(6?) (6.15)

for small 6 and n > m + 1.
Let us denote by

c _ 71-1 s _ 7-1:
v, =J “cosnf, v, =J " sinnd,

and let V, and V; be the subspaces defined by

C c S S

— c ¢ _ S S
Ve = span{v{,v5, ..., v, ..., v, ...} and Vi = span{v],v5,..., 05, ..., 05, ...}

In view of (6.14]) and (6.15]), we can easily see that the Neunamm-Poincaré
operator K7, can be approximated by a finite rank operator for small 6. To
state this fact, we define a finite rank operator F, by

F¢ [UC] _ (m +1- ”)vawl—n: I<n<m,
men 0, n>m+ 1.
Folvp]l =0, n>1.
Similarly, we define F;;, by
F ] = (m+1-=n)v) 1 ., 1<n<m,
men 0, n>m+ 1.

Folve] =0, n>1.
Then, on the subspace V., we have

)

Similarly, on the subspace Vs, we have

K3 = —gf;; + 0(82). (6.16)
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Here, O(6?) is with respect to the operator norm.

Since the operators F;, and F};, are of finite rank, they have matrix rep-
resentations. Using {vS}7" | as basis, F5, can be represented as the following
matrix Mp p,:

0 0 1
0 2
Mpym = |... (6.17)
m—1 ... 0
m 0 0

Clearly, F;, has the same matrix representation Mp ,, using {vj, }"_; as basis.
Let us now consider the eigenvalues and the associated eigenvectors of
the matrix Mp ,,. The following lemma can be easily proven.

Lemma 6.2.1. (i) If m is odd, that is, m = 2k — 1 for some k € N, then
the matriz Mp ., has the following eigenvalues:

E,AV1-m,+y/2-(m—1),...,2/(k—1) - (k+ 1),
and the associated eigenvectors are given by
ey, eitvme,, etvm-—1le, 1, ..., Vk—Tley 1=Vk+legyq,

where e; is the unit vector in the i-th direction.

(it) If m is even, that is, m = 2k for some k € N, then the matriz Mp p,
has the following eigenvalues:

+V1-m,+/2-(m—1),...,2/k- (k+ 1),

and the associated eigenvectors are given by
e1+vmen, V2estvm—len_1, ..., Vkep+tVk+ lep .

Using (6.16), Lemma and the perturbation theory [62], we get the
following asymptotic result for £}, on V..

Theorem 6.2.1. For small §, we have the following asymptotic expansions
of eigenvalues and eigenfunctions of K7 on V,.:

(i) If m is odd, that is, m = 2k — 1 for some k € N:

FEigenvalues: up to order §

g X {k +V1-m, i\/Q-(m—l),...,i\/(k—l)-(k—l—l)}.

FEigenfunctions: up to order §°
v, vEVmat,, V2uSEvm — 16y, ..., VE—1vi_ £VE+1v.

(i1) If m is even, that is, m = 2k for some k € N:

FEigenvalues: up to order §

g « {j:\/l-m, i\/z-(m—l),...,i\/m}
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Eigenfunctions: up to order §°
vf £ vmas,, V2§ Evm—105,_,, ..., Vkvi+VEk+ Log, .

Similarly, we have the following result for £}, on the subspace V.

Theorem 6.2.2. We have the following asymptotic expansion of eigenvalues
and eigenfunctions of the Neumann-Poincaré operator K}, on the subspace
Vs for small §:

(i) If m is odd, that is, m = 2k — 1 for some k € N:

Eigenvalues: up to order 0

—g X {k +V1-m, j:\/2-(m—1),...,i\/(k—l)'(k—i—l)}.

Figenfunctions: up to order 6°

v, viEvmul,, V2usEvm —1vi,_q, ..., VEk—1vi_ 1 EVE+1v].
(ii) If m is even, that is, m = 2k for some k € N:

FEigenvalues: up to order §

0y {i\/m,i 2-(m—1),...,:i:\/m}.

2

Eigenfunctions: up to order §°
vf £ vmod, V2us+tvm—1os_y, ..., VEkvi£VE+ v,

Corollary 6.2.1. Suppose that m is odd, that is, m = 2k—1 for some k € N.
In other words, D is a star-shaped domain with 2k petals. Then, up to order
9, the Neumann-Poincaré operator K7, has the following 2k eigenvalues:

g X {ix/ym, i\/2-(m—1),...,i\/(k—l)-(k+1),i\/k-k}.

6.2.4 Generalized polarization tensors and their spectral rep-
resentations

First-order polarization tensor

Let us compute the first-order polarization tensor associated with D and A.
Recall the definition of A,

Em + Ec

A= 2(em —€c)’

for a domain D with permittivity . and backgroud with permittivity &,,.
See chapter [1| for a brief introduction on generalized polarization tensors.
For simplicity, we consider only the case when m is odd, that is, m =
2k — 1 for some k € N. The case where m is even can be treated analogously.
Numerical results are presented in section [6.4] for both cases.
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Since m is odd, the shape of D has even symmetry with respect to both
x1-axis and xg-axis. Thanks to this symmetry, M (A, D) has the following
simple form [18|:

1 0
M()\,D) = mii |:0 1:| s

where mq; is given by
my = (1, (A — Kp) 1))

1_1
2772

Let \j and ¢j, j € N, be the eigenvalues and the (normalized) eigenfunctions
of K7, respectively. Then, from the spectral decomposition of K7,, we have
(see chapter |1])

;|2

1
mip = Z Y
j J
[(T1,05)1 1

(l_>‘j) 272
:; f\—/\j(

z1,¢4)1 _1(=Splnls ¢;)
(=Spleil, @)

N

1
PR

1_1
272

—=Splels ¢5)

1 _1
272

By Theorems [6.2.1] and [6.2.2], one can see that only the following two
eigenvalues and two eigenfunctions contribute to mi; up to order ¢:

1
eigenvalues Ay := :|:§5\/ﬁ,
eigenfunctions o4 1= v§ £ /mvS,.

In fact, for other eigenfunctions, we have (z1,¢;)1 1 = O(4). In what

27 2

follows we calculate (z1,p+)1 1 and (z1,Splp+])1
27 2

First, since do = Jdf and

_ 1.
T2

»

z1lop = R{®(e”T)} = e cos O + ae~™° cos mb,

27
= / (€ cos O + ae~ """ cos mb)(cos O & v/m cos mf) db,
0
=meP (1 +2A4).

Now, we compute (Sp[p+], ¢+) Note that, from (6.12), we have

1 _1.
272

1 1
Sp[ve] = — = cosnf — =dcos(m + 1 — n)d + O(6%).
2n 2
Consequently,
(~Splipsl ps)s s = (~Spluf £ Vimes],of £ vineg,); s

2m
= / (cos 6 + +/m cosm#)
0

1 0 1
X (§COSQ—|—§COS7TL9:|: N

= m(1+2\y) + O(6?).

cosmf + v/'m g cos 0) df + O(5?)
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Finally, we are ready to obtain an approximation formula for m;;.

Theorem 6.2.3. We have

_ T 2po 1 1 2
i = e (A_M+A_L)+0(5 ), (6.18)

as 6 — 0.

Second-order contracted generalized polarization tensors

Let Mge M35  M3C . and MSS be the contracted generalized polarization

mn? mn? mn?

tensors. Omne can easily see that M35 = M35 = 0 and Mz = Ma; = 0. We
only need to consider M55 and M35. It turns out that only the following two
eigenvalues and two eigenfunctions contribute to Ms5(up to the order 9):

eigenvalues Xy := :I:%(S\/m,

eigenfunctions ¢/ == v2v§ + vm — 1v5,_;.
Let H := R{ (21 + iz2)?}. Then we have

H|op = €% (cos 20 4 26 cos mb + 62 cos 2mb).

Therefore,

(H,¢%)

D=

1
3

2
= / %P0 (cos 260 4 28 cos mb + 6% cos 2mh) (V2 cos 20 + v/m — 1 cos(m — 1)6) df
0
= V2me?r,

Now we compute (—=Sp[¢i], ¥'t) Since

1 _1.
272

Splvg] = —% cosnf — %5cos(m +1—n)f+ 0(6%),

we obtain

= (=SplV2v§ £ Vm =105, 4], V205 £ vVm — 11, )
= /QW(\@ cos 20 £ v/m — 1 cos(m — 1)8)
0

(=Spl¢], L)

1
T2

(NI

1
X (—=cos 26 + i cos(m —1)6

2v2 V2
1
+ SN cos(m—1)0 £ vm—1 g cos 20) df + O(6%)

=7(1+2X) + 0(62).

Finally, we find

1_
ME =3 (i
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Similarly, one can show that M35 has similar asymptotic expansion.

6.2.5 Classification of algebraic domains in the class Q

The identification of the parameters pg and m is now straightforward using
the results of the previous subsection. Suppose that we can obtain the values
of Ay, N, approximately from mq; and MSS. Then, by formula (6.18), we
can easily find the parameter pg, which determines the size of D. In order
to reconstruct the parameters m and § we turn to the definitions of A4 and

)\’_‘_:
Ay = %wm, X, = %5\/2 1),

It is worth emphasizing that the eigenvalues Ay and X, are first-order ap-
proximations of the exact eigenvalues of Neumann-Poincaré operator K7, for
small 4.

Solving the above equations for m and ¢ yields the exact formulas:

AQ
m= T 0T A - (W2

6.3 Plasmonic resonances for two separated disks

In this section, we consider the spectrum of the Neumann-Poincaré operator
when two conductors are located closely to each other in R2. As an appli-
cation of the spectral decomposition of the Neumann-Poincaré operator, we
derive the (1,1)-entry, mii, of the first-order polarization tensor associated
with the two disks. See chapter [I] for a brief introduction on polarization
tensors.

6.3.1 The bipolar coordinates and the boundary integral op-
erators

Let B; and B> be two disks with conductivity ¢ embedded in the background
with conductivity 1. The conductivity is such that 0 < ¢ # 1 < oo. Let
0B,uB, denote the conductivity distribution, i.e.,

0OB{UBy; = UX(Bl) + UX(BQ) + X(RZ \ (Bl U Bz), (6.20)

where x is the characteristic function. Let € be the distance between two
disks, that is,
€ := dist(B1, Ba).

We set Cartesian coordinates (x1,x2) such that xj-axis is parallel to the line
joining the centers of the two disks.

(Definition) Each point x = (x1,x2) in the Cartesian coordinate system
corresponds to (£, 0) € R x (—m, 7] in the bipolar coordinate system through
the equations

sinh & sin 0
1 =a—————— and 9=

21
cosh & — cos 6 (6.21)

Y cosh & —cost



144 Chapter 6. Shape Recovery of Algebraic Domains

with a positive number «. In fact, the bipolar coordinates can be defined
using a conformal mapping. Define a conformal map ¥ by

c(+1
(-1
If we write ¢ = e$7% then we can recover (6.21)).

z=x1+ixg =VY(() =«

(The coordinate curve) From the definition, we can derive that the coor-
dinate curves {¢ = ¢} and {0 = ¢} are, respectively, the zero-level set of the
following two functions:

Fe(a,y) = <$_acoshc>2+y2_< o )2 (6.22)

sinh ¢ sinh ¢

and

foley) =+ (y -0 "2) - (L2)7)

sin ¢ sin ¢

(Basis vectors) Orthonormal basis vectors {€¢, &y} are defined as follows:

. 0x/0¢ and 8y = ox/00

% Jox /o] "~ Jox/00]

(Normal- and tangential derivatives and line element) In the bipolar
coordinates, the scaling factor h is

cosh & — cos6

(&, 0) = 5
The gradient of any scalar function g is
dg . dg .
= = = . 2
Vg =h(,0) <a§e5 + (%eg) (6.23)

Moreover, the normal and tangential derivatives of a function u in bipolar
coordinates are

—au’ = Vu - ve=c = —sgn(c)h(c, 9)—8u’ ,

ov E=c 845 E=c (6 24)
ou = —sgn(c)h(c 0)@ |
AT le=c ~ ® 790 le=e’

and the line element do on the boundary {{ = &} is

1
h(&o,0)

do = de.
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(Separation of variables) The bipolar coordinate system admits separa-
tion of variables for any harmonic function f as follows:

f(&,0) = aop+ bo& + cof + Z [(aneng + bne_"g) cos n@—i—(cne”f + dne_"é) sin n@],
n=1

(6.25)

where a,,, b,, ¢, and d,, are constants.
For £ > 0, we have

sinh§ —isinf S +e ¢
coshé —cosf el —e¢

=142 e ™(cosnfd —isinng),  (6.26)
n=1

with ¢ = (£ +i6)/2.
Using (6.21]), we have the following harmonic expansions for the two linear
functions x1 and xs:

zy =sgn(&a |1+ 2 Z e el cosnd | (6.27)

n=1

and
o0
T9 = 2« Z e el gin ng.

n=1

Let K* be the Neumann-Poincaré operator given by

0

K* = aICBl 8V(1) SB2 ,
a@®n Kb

and define the operator S by

s_ [ Se Se,
Sp, Sp, |

Here, (%) is the outward normal on dB;, i = 1, 2.
Then, from |7], K* is self-adjoint with the inner product

(¢, )3 == —(S[¢], @)Hl/z(aBl)XH1/2(332),H—1/2(331)XH—I/?(aBQ)a

for ¢, € Hy *(0By) x Hy "*(0B,).
6.3.2 Neumann Poincaré-operator for two separated disks
and its spectral decomposition

First we introduce some notations. Set

a=4fe(r+ i) and & = sinh~! (9) , forj=1,2 (6.28)
T

where r is the radius of the two disks and e their separation distance. Note

that '
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Let us denote the Neumann-Poincaré operator for two disks separated by
a distance € by K?. To find out the spectral decomposition of the Neumann-
Poincaré operator K¥, we use the following lemma [7].

Lemma 6.3.1. Assume that there exists u a nontrivial solution to the fol-
lowing equation:

Au=0 iTLBlUBQUR2\(31UB2),
uly = ul- on 0Bj,j = 1,2,
ou ou (6.30)
—| =o00=— 0B;,j=1,2
5V‘+ JO@V‘— on 08i,J B
u(x) — 0 as |x| — oo,
142X
where og = —1 i_ 2)\2 < 0. If we set
ou |+ ou |~
= - — i=1,2
¢] 31/ ‘833‘ 81/ ‘8Bj’ fOT J B
then ¢ = [ il } s an eigenvector of K¥ corresponding to the eigenvalue \.
2

One can see that the following function u,, is a solution to (|6.30)):

( 1 X
:Fm(e\n\ﬁo e e*\n\€0)€|n\£+m97 for £ < —&,
1
u(€,0) = (const.) + 72|n|€ |n|§0( Inlg e_‘"|€) ml o for — & < € < &,

2|n|( elnléo ¢ g=Inléo)e=Inl&+imd — for ¢ 5 ¢,
(6.31)

From (6.31]) and Lemma we obtain eigenvalues and eigenvectors to K?*

1 no | P(—S0,0)
+ _ 4 —2nfé + _ inf 05
A :|:2€ and @7, (0) =e [ Fh(€o, 0) ] .

Note that the above eigenvectors are not normalized.
We compute (—S[@fn], ®Z,)1 _1. From ([6.31)), one can see that

1
2:72
2| ( :':672|n|§0) in@]

S <I>jE onst.) + |
[ ] ( ) %(1 ¥ 672|n\§0) inb

It follows that

Therefore, we arrive at the following result.

Theorem 6.3.1. We have the following spectral decomposition of K :

1 1
K = Z 56—2|n|50\p2:n @V, + Z (_26—2n£o> Ve, @V,
n#0 n#0
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where UE  are the normalized eigenvectors defined by

_ /InJe™ h(—£0,9)
VEn(6) = V21 (1 F e=2Inlo) [ Fh(&o,0) ] ' (6.52)
Note that
(8B, (U5, 1] + S5, [V, o) (€,0) = (const.) vinl (6.33)

+
V27 (1 F e~2Inléo)

co1 ‘
:Fm(eln\fo T e Mleoyelnleting - for ¢ < g,
1 .
X —2|n|6_‘"|5° (elnle 7 emInl€)em?  for — gy < € < &,
1 .
72’7%’ (elnlfo F €_|”|§0)6_|n|§+m07 fOI" é- > é—o

(6.34)

6.3.3 The Polarization tensor

Let us compute the (1, 1)-entry m§; of the first-order polarization tensor for
two separated disks. Note that

miy = (o, AL=K) ™' [¥])1 s,

)

| zilam, B VllaBl]
¢ [l‘llaBJ’ v [VllaBQ '

The spectral decomposition of K} implies

NG
[NIE

where

L= (V) (Y ) (6, @)1 1 (Ve )ne
mll_z N\ — )\ +Z A — \"

n#0 €,n n#0 €,n

_ (% - )‘;n) ‘<¢7 \Ilg:n)%,fyz " Z (% - )\;n) |<¢’ \Ilﬁ_n)%yfép

B A= A= Aen '
n#0 ’ n#0 )

From ([6.27)), we derive the expansion
e .
x1 = sgn(§)a Z e~ Imllgl+imd, (6.35)
m=—o00o

Therefore,

2 i A h(=&,0)e"™ 1
(¢ e,n)%,—% 0 [ Z \/Qﬁ(l_e—%n\éo) h(—&o,0)

m=—0oQ

_ oy MIne M
/1 — e—2Inléo 7

and

(6,9 )1 =0.

1 _1
2072

As a consequence, we arrive at the following result.
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Propsition 6.3.1. We have

47ra2|n|€72‘n|50 o —2né&o

€ _ —

mn = Z A — A\ Z l e—2n&’
n;ﬁO €, n=1

l\?

where a is given by .

6.3.4 Reconstruction of the separation distance

Suppose that the first eigenvalue

L
)\::1 = 56 %o
is measured. Then we immediately find the value of e%°. From (6.28)), we
have

rcosh &y = % + 7.

By solving the above quadratic equation, we can determine the distance €
between the two disks.

6.4 Numerical illustrations

In this section we illustrate our main findings in this chapter with several
numerical examples.

We use the material parameters of gold nanoparticles and suppose that
we can measure their first- and second-order polarization tensors for a range
of Wavelengths in the visible regime.

Figure shows the variations of the real and imaginary parts of A,
defined by , as function of the wavelength using Drude’s model for
o=o(w), Wthh is depending on the operating frequency w [9).

As shown in Figure the imaginary part of X is very small. Therefore,
when the real part of A hits an eigenvalue that contributes to the first-order
polarization tensor (and therefore to the plasmonic resonances), we should
see a peak in the graph of |mj1| and |M§§| with respect to the wavelength.
This allow us, in the case of class O of algebralc domains, to recover A4 and

! and, in the case of two separated disks, to recover )\:1

Figures[6.2] [6.3] and [6.4] present examples of algebraic domains and their
reconstructions, where a circle of radius one has been transformed for differ-
ent values of m and §.

Figures and present examples of algebraic domains and their re-
constructions, where a circle of radius one has been transformed for m = 4
and m = 6 and § = 0.02.

Figures and show examples of two circles of radius one sep-
arated by a distance €, and their reconstructions.

6.5 Concluding remarks

In this chapter we have proved for a class of algebraic domains that the
associated plasmonic resonances can be used to classify them. It would be
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FIGURE 6.1: Real and imaginary parts of A as function of
the wavelength.

very interesting to prove a similar result for all quadrature domains or all
algebraic domains. We have also reconstructed the separation distance be-
tween two nanoparticles of circular shape from measurements of their first
collective plasmonic resonances. Another challenging problem would be to
generalize this result to more components and arbitrary shaped particles.
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FIGURE 6.2: From top to bottom and left to right: initial
shape, reconstructed shape, |m11| and |Mg5| with respect to
the wavelength for m = 3 and 6 = 0.066667.
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shape, reconstructed shape, |mq1| and | MSS| with respect to
the wavelength for m = 5 and § = 0.03333.
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shape, reconstructed shape, |m11| and |Mg5| with respect to
the wavelength for m =7, § = 0.021978.
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shape, reconstructed shape, |m11| and |Mg5| with respect to
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7.1 Introduction

Super-resolution is a set of techniques meant to cross the barrier of diffrac-
tion limits by reducing the focal spot size. This resolution limit applies only
to light that has propagated for a distance substantially larger than its wave-
length |394{40]. It is known that the resolution limit (or the diffraction limit)
in a general inhomogeneous space is determined by the imaginary part of the
Green function in the associated space |4]. An idea to break the resolution
limit is to insert subwavelength resonators in the homogeneous space. This
way, we can introduce propagating subwavelength resonance modes which,
when excited at the right frequency, encode subwavelength informations.
This yield a Green’s function whose imaginary part exhibits subwavelength
peaks and therefore break the resolution limit (or diffraction limit) in the
homogeneous space. The principle has been mathematically demonstrated
in [30].

Super-focusing is the counterpart of super-resolution. It is a concept for
waves to be confined to a length scale significantly smaller than the diffrac-
tion limit of the focused waves. As for the resolution problem, the focusing
capacity is also determined by the imaginary part of the Green function in
the associated space. The super-focusing phenomenon is being intensively
investigated in the field of nanophotonics as a possible technique to focus
electromagnetic radiation in a region of order of a few nanometers beyond
the diffraction limit of light and thereby causing an extraordinary enhance-
ment of the electromagnetic fields.

Here, using the fact that plasmonic particles are ideal subwavelength
resonators, we consider the possibility of super-resolution (super-focusing)
by using a system of identical plasmonic particles.

First, a precise analisys of field behavior of multiple plasmonic particles
is in order.

7.2 Multiple plasmonic nanoparticles

7.2.1 Layer potential formulation in the multi-particle case

We consider the scattering of an incident time harmonic wave 1’ by multiple
weakly coupled plasmonic nanoparticles in three dimensions. Our motivation
is to demonstrate the principle of super-resolution in resonant media; see
Section[7.3] The analysis done in this section follows the same lines as those in
chapter 2l The scattering from multiple weakly coupled, non-resonant small
particles can be analyzed in the same way. However, no super-resolution can
be achieved in this case.

For ease of exposition, we consider the case of L particles with an identical
shape. We assume that Condition 2.1]holds. Moreover, in contrast to Section
where the size of the particle is assumed to be of order one, we assume
the following condition in this section.

Condition 7.1. All the identical particles have size of order & which is a
small parameter and the distances between neighboring ones are of order one.

We write D; = z; + 6B, 1 = 1,2,...,L, where B has size one and is
centered at the origin. Moreover, we denote Dy = 0B as our reference
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nanoparticle. Denote by

L
D=JDi, ep=emx(R\D)+ex(D), pp=pmx(R*\D) + pcx(D).
I=1
The scattering problem can be modeled by the following Helmholtz equa-
tion:
1 2 3
V:—Vu+w?epu=0 in R°\0D,
“D
ur —u— =0 on dD,
1 Ou 1 Ou

— 2 - =22 =0 ondD,
m OV

+ He ov

u® :=u — u' satisfies the Sommerfeld radiation condition.

Let
uz(x) — eikmd-:z:7
F - _ 7 — ikmd-x
11() w(@)]pp, = =€ op,s
Fo(z) = faui (x) = —ikpeFmndd. V($)}
1,2 ov oD, m oDy’
and define the operator leDm p, by
0G(z,y, k)
K = R (y)d D.
ool = [ TGP utiot), < o

Analogously, we define

S]E)p,Dl [1/)](:(}) - oD G(Q?,y, kW(y)dU(y)v T € al)l

The solution u of ([7.1) can be represented as follows:

L
u'+ > SErl],  w e RA\D,
=1

u(zx) = .

ZSECZ[QSZL reD,

=1

where ¢, € H -3 (0D;) satisty the following system of integral equations

( SErln] = Slan + Y SEr b, [ve] = Fun,
p#l
11 1,1
(Gl () ) ) + - (514 = (Kl5)) [0
S K ] = e,

\ M p£l
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and .
F1=—u" ondDy,
1 ou
Fo=—— Y on 0D;.
’ o, OV

7.2.2 Feld behavior at plasmonic resonances in the multi-
particle case

We consider the scattering in the quasi-static regime, i.e., when the incident
wavelength is much greater than one. With proper dimensionless analysis,
we can assume that w < 1. As a consequence, S]kj is invertible. Note that

o1 = (Sp) " (SEr il + Y SE by [ = Fi).-
p#l

We obtain the following equation for ;’s,

Ap(w)[¥] = f,
where
Ap, (w) 0 Aj 2 (w)
A A 0
Ap(w) = P() + 2’1:(w) .
Ap, (w) Ap1(w) Ap-1(w)
P fi
o f2
w: : bl f: : )
YL fr
and
1,1 - 1.1 ke \%\ [ oke\—1 okm
Ap,(w) = 7(51d+(/ch) )+M—(§Id—(/ch) )(Sp) Tt Spr
1.1 " _ 1
Ajpw) = E(?d—(/c’;;l) )(SE) 15@21)#@“1@2,&7
1.1

T = B+ —(5Id = (Kp5)")(Sp5) " [Fal.

C

The following asymptotic expansions hold (see chapter for the definition
of #*(8D) and chapter[2]and Appendix[B|for the definition of the operators).

Lemma 7.2.1. (i) Regarded as operators from H*(0Dp) into H*(0D;),

we have

-AD]- (w) = ADJ-70 + 0(62w2),
(it) Regarded as operators from H*(0D;) into H*(0D;), we have
1,1

_ 1
App(w) = ;(ﬁfd—/c;gl)sD} (Spr01+S ,l,o,g)+M—micp,l,o,o+0(52w2)+0(54).

C

Aj 1 (w)

)

As 1 (w)

)
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Moreover,
1 N _
(ild_ICDl) OSDLI oSp,l,O,l = 0(52)7

1
(57d=Kp,) o Sp, ©Spr02 = 0O,
Kpioo = O(82).

Proof. The proof of (i) follows from Lemmas [2.3.4] and [B.2.3] We now prove
(ii). Recall that

1 * 1 *
gld - (KE): = Sld—Kp, + 0(5%w?),

(sl’gcl)*l - sl;} - kcsjgllle,lsg} + 0(6%?),

SH oy = Sp100+Sp101 +Spr02 + kmSpi1 + knSpra0 + O(6) + O(w?6?)
Kip, = Kpioo+ 0w,

Using the identity
1 N _
(ifd - ’CDZ)SDll [x(Dy)] =0,

we can derive that

1,1 1
Arp(w) = p ( Id - Kp,)(S55)™ 18’5?,@ + T’Cp,l,o,o-i-O((SzWQ)
1,1 1
= p (2Id ICDl)SDSSﬁ"‘ p, r/Cp,l,o,o + O(8°w?)
1,1
= u ( Id— ]CDl)S (Sp,l,oo-i-s 1,0,1 + S 102+k S ll-i—k 8p120+0(54))
+Tlcp,l70,o + 0(52w2)
1,1 4
= ( Id - Kp,)Sp, (Spl01+8l02)+7lcp,l00+0(6w)+0(5 ).
The rest of the lemma follows from Lemmas [B.2.3] and [B.2.6] ]

Denote by H*(0D) = H*(0D1) X ... x H*(0Dy), which is equipped with
the inner product

L
Z Vi, 1)+ 9D,
=1

With the help of Lemma [7.2.T] the following result is obvious.
Lemma 7.2.2. Regarded as an operator from H*(0D) into H*(0D), we have

Ap(w) = Apo+Api+ O(w2(52) + 0(54),
where

ADb1 0 0 Api12  Apa13
Ap 121 0 Ap123

Ap; 0 Api,r1 e Apirr-1 0
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with
1 1 1 1
A = (—+ Id— (— - —/)K% ,
P (2/~Lm 2/110) (,U@ Nm) D
1
Apipg = ( Id = K}, )Sp, (S4p0.1 + Sap02) + —Kgp00-
He Hm
It is evident that
oo L
-ADO ZZTJ P, @jl H*Pjls (72)
7=0 I=1
where
1 1 1 1
T, = — -+ —(— = —) A 7.3
J 2/'Lm 2#0 (/"'C ,U’m) J ( )
pil = pjel (7.4)

with e; being the standard basis of RE.

We take Ap(w) as a perturbation to the operator Ap  for small w and
small §. Using a standard perturbation argument, we can derive the per-
turbed eigenvalues and eigenfunctions. For simplicity, we assume that the
following conditions hold.

Condition 7.2. Each eigenvalue \j, j € J, of the operator K7, is simple.
Moreover, we have w? < 6.

In what follows, we only use the first order perturbation theory and derive
the leading order term, i.e., the perturbation due to the term Ap ;. For each
I, we define an L x L matrix R; by letting

Rl,pq = (AD71 [@l,p], ()Ol,q)H*7
= (Ap,l [wiep), goleq)w,
= (ADVLPQ[SDZ:'?()OI)H*'

Lemma 7.2.3. The matriz Rj = (R pq)p.q=1,...,1. has the following explicit
eTpTression:

Rippy = 0,
3 1 — )oc—l—ﬁ
Ripg = -i=35 / / 7(190 Yy do(z)do
T 2)| 5y Jomo Jop, 1zp = 247 “eu@)ey)do(@)do(y)
1 D,
+ y)do(x)do(y
(47T,uC 47r oDy JoD, |Zp—zq\3¢l( z)(y)do(x)do(y)
= 0(3%), p#aq

Proof. 1t is clear that R;,, = 0. For p # ¢, we have

11T
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where
Rl _ i((ljd—lc* )SHLS [ei] )
lpg — He 2 D, Dy q,p,0,1 bl el ’H*(aDl)’
1 1
11 H)Sh!
= — 71 - ’ ) ’
Rl,pq e ((2 d KDp)SDp Sq’p70,2[90l] 4 H*(0Dy)
1
Rl{;{)é = 'uim (’Cq,p,0,0 [(pl]v Sol)'H* (0Dy)"

We first consider R/ . By the following identity
l,pq

1 . 1 1
(31d = Kp,)Spileil = Sp,(51d = K, ) v = (A = 5)n
we obtain
1
Rl:pq = _/’LC ((21(1 ICDp)S S 7p70 1[90l] SDZ [gpl}>L2(8Dl)7
1 1
= — (N = 3)(Seporlels Soilel]) 125,
Lhe 2 (0Dy)

Using the explicit representation of S; 0,1 and the fact that (x(9D;), ¢1) 20 D;) =
0 for j # 0, we further conclude that

RI

lpqg —

Similarly, we have

1 1
Rl,pq = E()\j —5)(8q,p,0,2[@l}aSDl[@l])Lz(aDl)a
1 1
_ 70\, _ ,) :
— +5 5. aq®aB
(zp — 2q) o, B aftyY
—— % + ———"—pi(z)p(y)do(x)do(y),
| | ‘B' 1/6D0 [;DO 47T|ZP_ZQ|5 47T’Zp—2q|3> ( ) ( )
3 1 — 2 a+p
= -3 X / / _7‘1)1‘ v’ a(@)euly)do (z)do (y)
T lhe Ial =1 9Do JODo |2p — 2
1
+ Lo, / / L)y do(2)do
) X [ e ataiowio )

I\l

Finally, note that

1

Kapo0lel] = mﬁ v(x) = 47r|zp — zq]3 Z A Vi (T
P q

where a,, = ((y — Zq)m; (pl)Lg(aDq), and a = (a1, az,a3)”.
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By identity ([2.29), we have

1
Rl{é{] — —M?(Kq7p,0,0[¢l]’ @l)%*(aDl)

1

= T @ V@) 0oy
1 1

¢ ((Crd=rxS Y a (- 7(101)

4Ar|zp — 243 tm <(2 5p)5p, (- (@ = %)) H*(0D)

1 1

= iy~ aaPan T D @) @) n,)

1 1
e V) /a N /6 & vaiaay)do (@)do (y)

This completes the proof of the lemma.
O

We now have an explicit formula for the matrix R;. It is clear that R;
is symmetric, but not self-adjoint. For ease of presentation, we assume the
following condition.

Condition 7.3. R; has L-distinct eigenvalues.

We remark that Condition [7.3]is not essential for our analysis. Without
this condition, the perturbation argument is still applicable, but the results
may be quite complicated. We refer to [62] for a complete description of the
perturbation theory.

Let 75, and X;; = (X1, -+, Xjur)t, 1 =1,2,..., L, be the eigenvalues
and normalized eigenvectors of the matrix [2;. Here, T" denotes the transpose.
We remark that each X;; may be complex valued and may not be orthogonal
to other eigenvectors.

Under perturbation, each 7; is splitted into the following L eigenvalues
of A(w),

(W) = 75 + 7i0 + O(6%) + O(w?6?). (7.5)

The associated perturbed eigenfunctions have the following form
L
pi1(w) =Y Xjipepps + O(8") + O(w?6?). (7.6)
p=1

We are interested in solving the equation Ap(w)[¢p] = f when w is close
to the resonance frequencies, i.e., when 7;;(w) are very small for some j’s.
In this case, the major part of the solution would be based on the excited
resonance modes ¢;;(w). For this purpose, we introduce the index set of
resonance J as we did in chapter [2| for a single particle case.

We define

jm (W), | € ‘]a
Prlpsmte) ={ Sl TET

In fact,
1 _
Piw) =3 P =Y o [ - Ao a0
jeJ jeJ R
where v; is a Jordan curve in the complex plane enclosing only the eigenvalues
7ji(w) for l =1,2,..., L among all the eigenvalues.
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To obtain an explicit representation of Py(w), we consider the adjoint op-
erator Ap(w)*. By a similar perturbation argument, we can obtain its per-
turbed eigenvalue and eigenfunctions. Note that the adjoint matrix R]T =R,

has eigenvalues 7;; and corresponding eigenfunctions X;;. Then the eigen-
values and eigenfunctions of Ap(w)* have the following form

Tiuw) = 7+ 7750+ 0(8) + O(w?6?),
Giw) = @i+ 0(6") + Ow?s?),
where

L
Bii =Y X160
p=1

with Xj,l,p being a multiple of X, ,
We normalize ¢;; in a way such that the following holds

(). Pia)#-@D) = Opqs
which is also equivalent to the following condition
T~
Xjp Xjg = Opq-
Then, we can show that the following result holds.

Lemma 7.2.4. In the space H*(0D), as w goes to zero, we have
f = wfo+0w??),

where fo = (foa,-- .,f07L)T with

fo1 = —iy/Empime Fmd-= (;d v(z) + :(;Id — Kh,)Spd - (x — z)]> =05

Proof. We first show that

§ m l m
lull3=opg) = 02 Jullz= 0By, Nullmony) = 627" lullzom)

for any homogeneous function u such that u(dz) = 6™ u(z). Indeed, we have
. 3 .
n(u)(z) = 6™u(x). Since [[n(u)lly=op) = 0 2|ulls-(o9py) (see Appendix

B.2)), we obtain

3 s,
lullx@pg) = 02 0(u) I+ o) = 627 ™ |ull = 0m),

which proves our first claim. The second claim follows in a similar way. Using
this result, by a similar argument as in the proof of Lemma [2.3.6] we arrive
at the desired asymptotic result. ]

Denote by Z = (Z1,...,Z1), where Z; = ikpye*md2  We are ready to
present our main result in this section.

Theorem 7.2.1. Under Conditions[2.) and[7.3, the scattered

field by L plasmonic particles has the following representation

u® = S]]f;m [¥],
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where

. L fa@jl ))7{*@]1() 1
Vo= D) W) + Ap(w)™ (Pre(w)f)

jeJ =1
L SOJ)H*(()DO)ZXJZQOJI +O(w?67) 3
= T + O(wd2).
jerim AT A (* - ;Tm) i+ 0(6%) + O(6°w?)
Proof. The proof is similar to that of Theorem [3.3.2 O

As a consequence, the following result holds.

Corollary 7.2.1. With the same notation as in Theorem and under
the additional condition that

min |7 (w)] > w?é?,
Jje€J
for some integer p and q, and
Tj1(w) = Tjipq + 0(w!0F),

we have

L 92¢3
d- P )2 (e ZXi1 01 + 0w -
= Z (d-v(x), 0j)m0D0)Z X1 pj0 + Ow?d2) L OWwsd),

]GJ l:1 .77l7p7q

7.3 Super-resolution (super-focusing) by using plas-
monic particles

In [30L31], a rigorous mathematical theory is developed to explain the super-

resolution phenomenon in microstructures with high contrast material around

the source point. Such microstructures act like arrays of subwavelength sen-

sors. A key ingredient is the calculation of the resonances and the Green func-

tion in the microstructure. By following the same methodology, we show in

this section that one can achieve super-resolution using plasmonic nanopar-
ticles as well.

7.3.1 Asymptotic expansion of the scattered field
In order to illustrate the super-resolution phenomenon, we set

eik:m|x—:c0|

u'(z) = Gz, 20, k) = —

dt|r — zo|”
Lemma 7.3.1. In the space H*(OD), as w goes to zero, we have
f = fo+O(ws?) +0(52),

where fo = (fo1,-.., for)? with

Jor= -t <1<Zl—xo>-u<x> (ST~ K ) [(z1 — w0) <m—zl>1)

47T|Zl —.%‘0‘3 m, He
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Proof. The proof is similar to that of Lemma [2.3.6] Recall that

1,1 " _
fr=Fua+ —(51d — (K}5)*)(SF;) ' [Fial.

C

We can show that
1 ou 1

5 3
F = - e — . 5 5 3 * D .
" pim OV 47Tﬂm!zz—a:0!3(zl o) v(2)+0(52)+0(wdz)  in H*(IDy)
Besides,
i S oD : O(62)+0(wd?) in H(OD
u(z)|aDl——m><( l)+m(zl—xo).(m—zl)+ (63)+0(wd3) in H(OD)).

Using the identity (3Id — ’CEZ)Sﬁll [X(0D;)] = 0, we obtain that

1,1
,uc(

This completes the proof of the lemma. O

1

Td=(K5,)")(Sp) " 1Pl = — =5 -5

( 1d—Kp,)Sp, [(21—w0)-(z—21)].

We now derive an asymptotic expansion of the scattered field in an inter-
mediate regime which is neither too close to the plasmonic particles nor too
far away. More precisely, let C' be a fixed sufficient large positive number,
we consider the following domain

1
D = R3: — > — < —
5kC = {x € 1r<mn |z — z| > C9, 1I£1ax |z — 2] ol

Lemma 7.3.2. Let ¢ € H*(0D;) and let v(x) = Sf)l [i](x). Then we have
for x € D(S,k;,C,

o) = Gla,z,k)( —ik)f;’”- /BD yi(y)do(y) + O62)[illa o)

|z — 2| x — z|

+G(z, 21, k) - Yi(y)do(y).

Moreover, the following estimates hold

o) = 0(7) if di(y)do(y) =0,

0Dg

o@) = 0(0%) if | (y)doly) #0.

0D

Proof. We only consider the case when [ = 0. The other case follows similarly
or by coordinate translation. We have

— sk — | Gy k)(y)doly) = )
o) = bl = [ Glay ot = - | S doty)
Since

G(z,y, k) = G(z,0,k) + Z M Z Z om Gl‘Ok S

|a=1| m>2 |a=m)|
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and

0G(z,0,k)  e*ll 1
gy Arlz| Mzl

—ik) = Gl 0.k (—

|z] ||

we obtain the required identity for the case [ = 0. The estimate follows from
the fact that

—ik)—,

]

o 2|al+1
1y* lreapg) = OO~ 2
This completes the proof of the lemma. O
Denote by
Tr — Z
Sj,l(-iva k) = G({L‘, 2l k‘)ﬁ ’ Yo (y)da(y),
|z — 2| dDg
Siek) = Gleak) [ aly)doty),
0Dy
1
Hj,l(xO) _m(('zl - :EO) ) l/(l’), ij)H*(aDoy

It is clear that the following size estimates hold

3
2

Siu(z k) = 0(62), Si(z,k) = 0(52), Hjy(ze) =0(52) forj #0, Hp,(x) =0.

Theorem 7.3.1. Under Conditions 23 2.3 and [7.3, the Green
function T'(x, xo, k) in the presence of L plasmonic particles has the follow-
ing representation in the quasi-static regime: for x € Dsy,. ¢,

D(z,x0,km) = G(z, xo,k: )

+ZZ H;jp(o) J,l,p Jl,qlsjq_(x km, )+O(54)+02(w253)+0(53).
jeri=1 A— )“"( ﬁ) TJZ+O(5)+O(5W)

Proof. With u'(x) = G(z, %0, km), we have

¢ Z Z a],l@jl‘{' Z aOlSDOZ+O %)

jeJ 1<I<L 1<I<L
where
~ ~ § §
aji = (f,@50)uop) = (fo, 8j0)m=@p) + O(wd?) + O(62),
1 1 . =
- (I - T)X],l,pﬂjp(xo) +O(wd3) + 0(5%)

ao; = (f.P00)w-(om) = O(82).
By Lemma [7.3.2
ngm [pjal(z) = Z 8 Xjippiep(x Z ipSpr el (@)

1<p<L 1<p<L

- Z ilpSip(T, k )+O(5g)+0(w5%).

1<p<L



7.3. Super-resolution (super-focusing) by using plasmonic particles 169

On the other hand, for j = 0, we have

Skrlpod(x) = 0(0%2),
T1(w) = 10+ 0(8) + 0(6%w?) = 0(1).

Therefore, we can deduce that

uo= SEWI@) =)0 Y auSErlei + Y aoSElees + O(6?),

jeJ 1<I<L 1<i<L
1 v 3 4
= ZZ - ( — ) (30 X1 X .0Sa(@, k) + Ow0?) + 0(5"))
oo T Fom
+O(53)
= ZZ Hjp(w0) X 7PXquSJ a(z, km) + O(wd®) + O(8%) +O(5%.
jerim1 AT A (* - ;%m)_ T+ O(6%) + O(8°w?)

O

7.3.2 Asymptotic expansion of the imaginary part of the
Green function

As a consequence of Theorem [7.3.1] we obtain the following result on the
imaginary part of the Green function.

Theorem 7.3.2. Assume the same conditions as in Theorem [Z.3.1l. Under
the additional assumption that

1 1.
A—%+%~77)%J> 0(5%) + 0(6%w?),
1 1.1 1 1.1
m(x—x+— TO < S(A—X+— TO
j (Mc Mm) j j (MC #m) j

for each l and j € J, we have

QST (x, o, k) = (‘G(x 0, km )+O(53)

Z Z% ( i (Z0) JIPX]J ¢5,4(,0) + O(ng) + 0(54)>
jeJ =1

XJ< S )
A — )\-l-(c uim) Tl

where x,xy € D(S,km,C'

Note that R | ]p(mo)Xj7l,pXj7l7quq(w 0)) = 0(6%). Under the condi-
7.3.2,

tions in Theorem |7 if we have additionally that

2

S ! _ o2
\y</\ Aj +(—1)1Tj,l> ~ o)

e Hm

for some plasmonic frequency w, then the term in the expansion of ST'(x, zo, k)
which is due to resonance has size one and exhibits subwavelength peak with
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width of order one. This breaks the diffraction limit 1/, in the free space.
We also note that the term SG(x, zo, k) has size O(w). Thus, we can con-
clude that super-resolution (super-focusing) can indeed be achieved by using
a system of plasmonic particles.

7.4 Concluding remarks

In this chapter, by analyzing the imaginary part of the Green function of
a medium populated by plasmonic resonators, we have shown that one can
achieve super-resolution and super-focusing using plasmonic nanoparticles.
We have assumed a weak interaction between nanoparticles. Results on
strong interaction between plasmonic nanoparticles could be acheived using
ideas of chapter [If and [31]. Indeed, by considering a periodic arrangement
of nanoparticles we could construct a high contrast media, thus allowing
super-resolution.
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8.1 Introduction

The inverse problem of reconstructing fine details of small objects by using
far-field measurements is severally ill-posed. There are two main reasons for
this. The first is the diffraction limit. When illuminated by an incident wave
with wavelength €, the scattered field excited from the object which carries
information on the scale smaller than €2 are confined near the object itself and
only those with information on the scale greater than ) can propagate into
the far-field and be measured. As a result, from the far-field measurement
one can only retrieve information about the object on the scale less than €.
Especially in the case when the object is small (size smaller than ), one
can only obtain very few information. The second is the low signal to noise
ratio. We know that small objects scatter "weakly". This results very weak
measurement in the far-field. In the presence of measurement noise, one has
low signal to noise ratio and hence poor reconstruction. In this chapter,
we propose a new methodology to overcome the ill-posedness of this inverse
problem. Our method is motivated by plasmonic bio-sensing. The key is to
use a plasmonic particle to interact with the object to propagate its near field
information into far-field in term of shifts of plasmonic resonance frequencies.

The plasmon resonance frequency is one of the most important character-
ization of a plasmonic particle. It depends not only on the electromagnetic
properties of the particle and its size and shape, but also the electromag-
netic properties of the environment. It is the last property which enables the
sensing application of plasmonic particles. Motivated by [34], we establish
in this chapter a rigorous quantitative analysis for the sensing application.
We show that plasmonic resonance can be used to reconstruct fine details of
small objects. We also remark that plasmonic resonance can also be used to
identify the shape of the plasmonic particle itself, see chapter [0}

The methodology we propose is closely related to super-resolution in
imaging. Super-resolution is about the separation of point sources. In super-
resolution technology near field microscopy, the basis idea is to obtain the
near field of sources which contains high resolution information. This is made
possible by propagating the near field information into the far field through
certain near field interaction mechanism, see chapter [/l In this chapter, we
are interested in reconstructing the fine details of small objects in comparison
to their positions and separability which are the focus of super-resolution.
The idea is similar. The near field information of the object is obtained from
the near field interaction of the object and the plasmonic nanoparticle.

In this chapter we consider a system composed of a known plasmonic
particle and the unknown object whose geometry and electromagnetic prop-
erties are the quantities of interest. Under the illumination of incident waves
with frequencies in certain range, we observe the color of the system or mea-
sure the frequencies where the peaks in the scattering field occur. These
are the resonant frequencies or spectroscopic data of the system. By vary-
ing the relative position of the two particles, we obtain different resonant
frequencies due to the varying interactions between the two particles. We
assume that the unknown particle is small compared to the plasmonic par-
ticle. In the intermediate regime when the distance of the two particles is
comparable to the size of the plasmonic particle, we show that the presence
of the small unknown particle can be viewed as a small perturbation to the
homogenous environment of the plasmonic particle. As a result, it induces a
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small shift to the plasmonic resonance frequencies of the plasmonic particle,
which can be read from the observed spectroscopic data. By using rigorous
asymptotic analysis, we obtain analytical formula for the shift which shows
that the shift is determined by the generalized polarization tensors [18]| of
the unknown object. Therefore, from the far-field measurement of the shift
of resonant frequencies, we can reconstruct the fine information of the object
by using its generalized polarization tensors.

In this chapter, for the sake of simplicity, we consider the quasi-static
approximation for the interaction between the electromagnetic field and the
system of the two particles. Thus, we shall use the conductivity equation
instead of the Helmholtz equation and the Maxwell equations. In addition,
we only consider the intermediate interaction regime, the strong interaction
regime when the object is close to the plasmonic particle is also very inter-
esting and will be reported in future works.

This chapter is organized in the following way. In Section [8.2] we con-
sider the forward scattering problem of the incident field interacting with a
system composed of a normal particle and a plasmonic particle. We derive
the asymptotic of the scattered field in the case of intermediate regime. In
Section [8:3] we consider the inverse problem of reconstructing the geometry
of the normal particle. This is done by first constructing the generalized
polarization tensors of the particles through the resonance shift it induced
to the plasmonic particle. In Section we provide numerical examples to
justify our theoretical results.

8.2 The forward problem

We consider a system composed of a small ordinary particle and a plasmonic
particle embedded in a homogeneous medium; see Figure The ordinary
particle and the plasmonic particle occupy a bounded and simply connected
domain Dy C R? and Dy C R? of class C® for some 0 < v < 1, respectively.
We denote the permittivity of the ordinary particle Dy (or the plasmonic
particle Dg) by €1 (or £2), respectively. The permittivity of the background
medium is denoted by &,,. In other words, the permittivity distribution ¢ is
given by
e :=e1x(D1) + 2x(D2) + emx(R*\(D1 U Dy)).

The permittivity €5 of the plasmonic particle depends on the operating fre-
quency and is modeled by the Drude model as

2
“p

£9 :éz(w) =1- m

We assume the following condition on the size of the particles D1 and Ds.

Condition 8.1. The plasmonic particle Do has size of order one and is
centered at a position that we denote by z; the ordinary particle D1 has size
of order § < 1 and is centered at the origin. Specifically, we write D1 = §B,
where the domain B has size of order one.
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The total electric potential u satisfies the following equation:

(V- (eVu) =0 in R2\ (0D U dDy),
uly = ul- on 0Dy U 0Dy,
ou ou
emay |, = 515‘_ on 0D, (8.1)
ou ou
€m% +—52$’7 on dDo,
(u—u)(@) = O(le|Y),  as [2] = ox,

where u’(z) = d - z is the incident potential with a constant vector d € R2,

E€m

D27€2

FIGURE 8.1: Scattering of an incident wave u’ by a system
of a plasmonic (Ds) - non plasmonic (D7) particles.

8.2.1 The Green function in the presence of a small particle

Let Gp, (-,y) be the Green function at the source point y of a medium con-
sisting of the particle D;, which is embedded in the free space. For every
y ¢ D1, Gp, (-, y) satisfies the following equation:

(V- (e1x(D1) + emx(R:\D1))Vu =46,  in R?\9Dy,
uly = ul— on 0Dy,
(8.2)
am@ 51% on dDq,
ov n ov
u(z) = O(|z| 1Y), as |z| — oo.
We look for a solution of the form:
Gp,(z,y) == G(z,y) + Sp, [¥](z), r € R?\D; . (8.3)

Note that Gp, satisfies the second and fourth conditions in (8.2). From
the third condition in (8.2) and the jump formula ([1.1)) for the single layer
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potential, the density ¥ must satisfy the following equation on dD;:

0

5, G0 (34)

em(%ld—i- K}, )] —i—sl(%ld — K}, )W) = (e1 —em)

So we obtain

BNERY:
?l) = ()‘Dlld_K:Dl) 1[%G(,y)],
. 51+5m
Apy = 2(e1 —&m)’

Therefore, from (8.3)) and the uniqueness of a solution to (8.2]), we have the
following representation for the Green’s function Gp,:

0

G, (2.y) = Gla.y)+Sp, (Ap Id = Kp,) ™ |£-G(y)|(2) for 2,y € RA\D.

(8.5)

8.2.2 Representation of the total potential

Here we derive a layer potential representation of the total potential u, which
is the solution to .

Let up, be the total field resulting from the incident field u* and the
ordinary particle Dy (without the plasmonic particle Dy). Note that up, is
given by

_1.0u

up, () = uz(x) +Sp, ()\led — IC}SI) [8V1](m), for x € RQ\E.

To consider the total potential u, we also need to represent the field generated
by the plasmonic particle Ds. For this, we introduce a new layer potential
Sp,,p, as follows:

Sp,.p, [¢l(7) = - Gp, (%, y)p(y)do(y).

The total potential v can be represented in the following form:
u(a:) = Up, (‘T) + SD2,D1 W(SU% T € RQ\E (86)

We need to find a boundary integral equation for the density 1. It follows
from (8.5)) that, for any ¢,

SD2,D1 [90] (:E) = SDz [(p](:L’) + Sb%Dl [(/7] (x)v
where 811)27 p, 1s given by

Shuplel(@)i= [ b, (A Td = Kp,) ™ [ Gll@)e(u)doty).
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The expression of 8%2’ p, [¢] can be further developed using the following
spectral expansion of the free-space Green function G(z,y) |32]:

ZSDQ ©il(@)Sp,1eil(y) + Sp,[wol(x),  for z € R*\Dy and y € Do,

where ¢;,j = 1,2, ... are eigenfunctions of K}, on H*(9Dz2) and ¢g is an
eigenfunction associated to the eigenvalue 1/2. Then, for any ¢ € H*(9D2),
we get

G(z,y)p ZSDQ ©i()(0, ¢5)10D,) + Spslol(x )/ P(y)do(y)
7=1

6D2 8D2

Z (@5 ©5) 2+ (0Ds) -

Therefore, for any ¢ € H*(0D3), we have,

Shaplel@) = [ So, (\nytd = Kp,)” (-G l@hp)doty)
= Sp, Ap Id—Kp,) " 88 SDQ[Z(%%)H*%} (x)
7=0
= SDl ()\Dljd - ,Czh)il aSaDQ [SO] ($>,
41

where we have used the notation a to indicate the outward normal deriva-
tive on 0D);.

Combining the boundary conditions in , the representation formula
and the jump formula yields the following equation for

8uD
(Ap,,0 + Apy1) [U] = 8u21 ;
where
Ap,o = Ap,ld— IC}SQ,
o €2+ Em
)\D2 - 2(52 o Em)’ (87)

85}72 o 0 « \—10S8p,

AD271 - 671/2 - 8711281)1 ()\Dlld - ,CD1) aljl . (88)

8.2.3 Intermediate regime and asymptotic expansion of the
scattered field

Here we introduce the concept of intermediate regime and derive the asymp-
totic expansion of the scattered field v — u® for small 6.

Definition 8.1 (Intermediate regime). We say that Do is in the inter-
mediate regime with respect to the origin if there exist positive constants C
and Cy such that Ch < Cy and

1 < dist(O,Dg) < (Cs.
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Definition [B:1] says that the plasmonic particle Dy is located not too close
to Dj nor far from D;. Throughout this chapter, we assume the plasmonic
particle Do is in the intermediate regime. We have the following result.

Propsition 8.2.1. If Dy is in the intermediate regime, then || Ap,1|lus =
0(62) as § — 0.

Proof. Fix ¢ € H*(0D3) and let

OSp, ] } .

5= (n Jd = Kp,) ™ | =52

Since Sp,[¢] is harmonic in D;, the Green’s identity gives faD1 8%15/32 [o] =
0. Then it can be proved that faD1 @ =0. So we get

Sp, [#](z) =/6D (log |z — y| —log |z])@(y)do(y) + log |z| - P(y)do(y)

— [ (togla ~ gl - log o) Fu)doy).
0D
Therefore, since |y —xz| > C" and |y| < C6 for (y,z) € (0D1,9D3), we obtain

0 ~
I AD, 16|l (oD2) = HGTQSDl @134 o) < CONBll3e-(aD1)-
Now it suffices to prove that

[@ll#+opy) < C6. (8.9)

Recall that D1 = dB. Let fs5(y) = f(dy). Then the function f5 belongs to
H*(0B) for f € H*(OD;). Since it is known that g is scale-invariant for
any €2, we have K}, [f] = K3[fs]. Therefore,

7= (Ap,Id— Kp,) ' [fld(bo(y)) = (Ap,Id — K3) ' [f5)d(6a(y)).

Again, since |y—z| > C' for (y,x) € (0D1,0D2) and |0D1| = O(J), we arrive
at

~ . dSp, v
oo = 1 Oy d = K5 [(2521) o)
0
< C"%SDQ [l opy) < C6.
The proof is completed. O

From Proposition we can view Ap, 1 as a perturbation of Ap, o.
Using standard perturbation theory [85], we can derive the perturbed eigen-
values and associated eigenfunctions.

Let A;j and ¢; be the eigenvalues and eigenfunctions of K7, on H*(OD3).
For simplicity, we consider the case when \; is a simple eigenvalue of the
operator Kp, . Let us define

le = (ADQ,II:()OZ:I’ @j)H*(aDz)’ (8'10)

where Ap, 1 is given by (8.8). Note that Rj = O(6?).
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The perturbed eigenvalues have the following form:
7j(6) = Ap, = Aj + P,

where P; are given by

o R Ry Rji, Riy1, Ry j
P]_R“JFZM—M ps (A7 =) (A = An)
I#j (I1,12)#7

Ry Rigt, Rigiy Ryy
+ N (8.11)
“ l;;) (A = )y = M) (A = Aig)

Also, the perturbed eigenfunctions have the following form:
;) = pj + O0(8%). (8.12)

Here the remainder term is with respect to the norm || - [|2+(ap,)-

Remark 8.2.1. Note that P;j depends not only on the geometry and material
properties of Dy, but also on Ds’s properties, in particular its position z.

Theorem 8.2.1. If Dy is in the intermediate regime, the scattered field
up, = u —up, by the plasmonic particle Dy has the following representa-
tion:

uSDg = 8D27D1 [1/}];

where 1 satisfies

’SOJ)H*((?D )SOJ + 0(5 )
—Aj+P;

Y=
7=1
with Ap, being given by .

As a corollary, we have the following asymptotic expansion of the scat-
tered field u — u’.

Theorem 8.2.2. We have the following far field expantion:

(u—u')(x) =Vu'(z) - M(Ap,, Ap,, D1, D2)VG(x, z) + 0% +0 (dist()\D(SU(IC}B ))> ,

as |x| — oo. Here, M(Ap,, Ap,, D1, D2) is the polarization tensor satisfying

[e.9]

M(Ap,, Apy, D1, Do)y =
7=1

+ 0(6?)

(1, 05) 3 (92) (P55 Tm) 1 1 (8.13)

Apy — A + P;

forl,m=1,2.

We remark that the scattered field in the above expression depends on the
frequency (since Ap, does so) and exhibit local peaks at certain frequencies
when one of the denominators is close to zero and is minimized while the
associated nominator is not zero. These frequencies are called the resonant
frequencies of the system. It is clear that these resonant frequencies also
depend on the geometry and the electric permittivity of D; through the
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perturbative terms P;’s. We shall use this fact in the next section to solve the
associated inverse problem of reconstructing D; by using those frequencies.

8.2.4 Representation of the shift P, using CGPTs

Here we show that the term P; in the plasmonic resonances can be expressed
in terms of the contracted generalized polarization tensors (CGPTs), see
chapter [II The CGPTs carry information on the geometry and material
properties of D;. See |18| for a detailed reference. We shall reconstruct the
ordinary particle Dy from the measurement of the shift P;.

Propsition 8.2.2. If Dy is in the intermediate regime, then the perturbative
terms Rj; can be represented using CGPTs M, n(ADy, D1) associated with
Dy as follows:

M N
1 .
Ry = (2 _Aj> § j § “al, Mm.n(Apy, D1)(al)! + O(SM TN+ (8.14)

m=1n=1

where the superscript t denotes the transpose and afn = (a%7c,a%75) with

~ 1 cos(mb,)

J - _ Y2 o (y)d
e 2 Jop, vj(y)do(y),
: 1 sin(m@

G = "00) o (4)do ()

2rm Jop, Ty

Here, (ry,0,) denote the polar coordinates of y and {¢;}; is an orthonormal
basis of eigenfunctions of Kp,, on H*.

Proof. To simplify the notation, let us denote

-1 aSDz [SOZ]

Fi = 8p, (ApyId = Kp,) ™~ =52

Then, from the Green’s identity and the jump formula ([1.1]), we obtain

OF
le = (ﬂa(pj)H* = _(8V2l7SD2[S0J])%’_%
IS, (5] I
= —(Fbaifaj _)%7_% = —(Fb( 5 +ICD2)[QP]])%7_%'

Let (74, 6,) be the polar coordinates of . It is known from [12] that, for
] < lyl,

Glzy) =) ﬂwr; cos(nby) + 7%1“; sin(nf,). (8.15)
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By interchanging x and y and the fact that G(x,y) = G(y, z), we have, for
|z > [yl,

G(z,y) = Z ﬂwr” cos(nby) + ﬂwr” sin(nfy). (8.16)

Y Y
= 2rm Y 2rm 7R

If x € 9Dy and y € OD2, then |z| < |y|. So, applying (8.15]) gives

dSp, 0
2y = [ Gleadat)
B . Or cos(nby) | or?sin(nby)

On the contrary, if y € 0Dy and « € 0D, then |z| > |y|. We have from

that, for any f,
Sp,lfl@) = /8  Gla)f)w)doty)

> 1 cos(mby)

= > O [ cos(md, )£ (5)do ()
Tx 0D1

— 2mm
> 1 sin(mb, m
-3 _mng) / 75 sn(mey L)) dory).

Therefore, from the definition of M,, ,, we get

1 x \—1 68D [@l]
R = <2 - )\j) (Spy (Ap,Id — KD, 78;1 ,903')%,,%
1 > . ,
= (3-0) X @t Monho D))

m=0,n=1

For any A € C and D = ¢ B, it is easy to check that M, (A, D) = 8™ " M, ,,(\, B).

. . . . . . l l .
Since Dy is in the intermediate regime, a;, . and a,, ; satisfy

: ; L ! I L
’agn,cyv ‘O’{n,s’ < EC m? ’an,c|7 ’an,s < EC n?

for some constant C' > 1 independent of §. Moreover, it can be shown that

(see [15])

Z(aé,cv ag),s)MOJL()‘Dl ) Dl)(afm,cv aiz,s)t = 0.

n=1

Then the conclusion immediately follows. O

Corollary 8.2.1. We have

Rji(2)Ri;(2) Rji, Ryt Ry
Sy R e e Wi
(ll,lz);ﬁj ] 1 ] 2

M N
— (32) X M Ohny D))+ OGN,

m=1n=1
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In the LHS, the summation should be truncated so that all the terms which
contain Ry, -~ Ry j = O(6** D)) with 2(k + 1) < M + N + 1 are ignored.

8.3 The inverse problem

In this section, we consider the inverse problem associated with the forward
system . We assume that the plasmonic particle Dy is known, i.e.,
we know its electric permittivity €3 = e9(w), its shape Dy and position
z. The ordinary particle D; is unknown. For simplicity, we assume that
its permittivity 1 is known. For each of many different positions z of the
plasmonic particle Do, we measure the resonant frequency and use these
resonant frequencies to reconstruct the shape of the ordinary particle Dy.

As illustrated by Theorem the resonance in the scattered field oc-
curs when Ap, (w) — \j+P; is minimized and (v, ;)= (¢;, mm)_%% # 0. So
by varying the frequency w, we can measure the value of A\;—P;. Moreover, in
the absence of the ordinary particle, the resonance occurs when Ap, (w) — A;
is minimized and (v, ¢;)u=(¢5, xm)f%,é # 0. Since we assume that the plas-
monic particle Dy is known, we can get the value of \; a priori. Therefore,
by comparing \; —P; and ), we can measure the shift P; of the eigenvalue.

Finding P; for many different positions of Do will yield a linear system
of equations that will allow the recovery of the CGPTs associated with D;.
From the recovered CGPTs, we will reconstruct the ordinary particle D;.
Here, we only consider the shape reconstruction problem. Nevertheless, by
using the CGPTs associated with Dy, it is possible to reconstruct the per-
mittivity £; of Dj in the case it is not a priori given [12].

From now on, we denote My, , = My, n(Ap,, D1).

8.3.1 CGPTs recovery algorithm

We propose a recurrent algorithm to recover the GPTs of order less or equal
to k up to an order §2*71, using measurements of P; at different positions
of Dy. For simplicity, we only consider the shift of a single eigenvalue A;
with a fixed j. To gain robustness and efficiency, the shift in other resonant
frequencies could also be considered.

We now explain our method for reconstructing GPTs M, ,,m +n < K
for a given K € N from the measurements of the shift P;.

Suppose we measure precisely P; for three different positions z1, 22, 23 of
the plasmonic particle Dy. First we reconstruct M ; approximately. Since
Mf,1 = M 1, the matrix M 1 is symmetric. We look for a symmetric matrix

Ml(zl) satisfying
Pt = (5 %) alGomad) )
Pj(z) = <

Pia) = (54 a3 .

L

2

1 2),
50 ) e o
1

2

The above equations can be seen as a linear system of equations for three
independent components (M1(21) )11,(M1(?1) )12 and (Ml(?l))gg. We emphasize
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that ai,l(zi) can be a priori given because the particle Dy is known. Since,
from Corollary and the fact that Rj = O(?), we have

Pji(z1) = (; - Aj> al (z) M1 (a)) (z1) + O(6%), k=1,2,3,

we see that M 1 is well approximated by M1(,21)~ Specifically, we have My 1 —

M = 0(8%).

Next we reconstruct and update the higher order GPTs M, ;,, in a re-
cursive way. Towards this, we need more measurement data of the shift P;.
Let k£ > 3. Due to the symmetry of harmonic combinations of the non con-
tracted GPTs (see [18]), we have M, ,, = M} .. One can see that, by using
this symmetry property, the set of GPTs M, ,, satisfying m + n < k contains
er independent variables where ey is given by

| k(k—1)+k/2, ifkis even,
U\ k(k—1)+ (k—1)/2, if kis odd.

Therefore, we need e;, measurement data for P; to reconstruct the GPTs
My, for m +n < k.
Suppose we have e, — 2 more measurement data P; at different positions

24,25, .oy Zep,- Lt {Mr(f)n}erngk be the set of matrices satisfying [M,Skgl}t =

M,gf )n and the following linear system:

~(1._ 1 . .

A = (5-0) 5 aheddh@) )
m+n<k

~(k—1 1 ; ;

PV = (5-0) S M e e

m+n<k
where
(k1) plk—1)
. R (zi)R (2)
P](k 1)(22) :PJ(ZZ)_Z i )\_g - ) = 1727 y €k
£ g
(8.18)
and

BTG =(3-0) T dhmt ) o)

m4n<k—1

Note that M,(f ), are defined recursively. In (8.18), the summation should be
truncated as in Corollary [8:2.1]

Then Méf)n becomes a good approximation of the CGPT M,y ,, for m +
n < k. Moreover, the accuracy improves as the iteration goes on. Indeed,
we can see that

My — MP) =00, m+n<k. (8.19)

) m,n
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In fact, (8.19) can be verified by induction. We already know that this is

true when k = 2. Let us assume M, ,, — M(k b= = 0(6% 3, m+n<k-1

Then, from Proposition 8:2.2] we have

Ru(z) - Ry V(z) = 0(6%3).

Hence, from Corollary and the fact that Rj = 0O(6?), we obtain

= (k— Rji(2i) Rij(2i) _
PP () — | Polen) = 3 P | =00,
1#] J

Therefore, in view of Corollary and the linear system (8.17)), we obtain

(8.19). In conclusion, M,(f )n is indeed precise up to an order §2¢~1.

Remark 8.3.1. In practice, P; might be subject to noise and could not be
measured precisely. In this case only the low order CGPTs could be recovered.

8.3.2 Shape recovery from CGPTs

To recover the shape of D; from its CGPTs, we search to minimize the
following shape functional ( [12])

2
TOB =5 3 NG Oo,,B) = N, D) (8:20)
n+m<k

where
NSRS D) = (Mg, — My ,) + (M3, — Mye ).

To minimize J®[B] we need to compute the shape derivative, dgJe (l),
Jc(l).
For € small, let B¢ be an e-deformation of B, i.e., there is a scalar function
h € CY(0B), such that
0B :={x + eh(x)v(z) : z € OB}.

Then, according to |11,/12{17], the perturbation of a harmonic sum of GPTs
due to the shape deformation is given as follows:

N oAby Be) = N (Ap,, D1)

ou| Ov 1 Ou| Ov
— -1 el B ov 22
g, =) | o) [é’V‘@V’ + ool

where

() do(z) + O(€),

k)\Dl = (2)\D1 + 1)/(2)\D1 — 1), (8.21)
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and u and v are respectively the solutions to the problems:

Au=0 in BU (R*\B) ,
uly —ul-=0 on 0B,
ou Oou (8.22)

il —| = B
ovle  APigy- 0 on 98B,

(u— (21 +iz2)™)(2) = O(|2| ™) as [z = o0,

and
Av =0 in BU (R?\B) ,
kap, v+ —v[- =0 on 0B,
ov dv (8.23)
ah—%(i_o on 0B,
(v = (z1 +iz2)")(x) = O(|z[7") s |z] = 0.

Here, 0/0T is the tangential derivative.

Let
ou| Ov 1 Ou| Ov
wm,n(l')_(k')\Dl —1) lay)_ay‘_‘Fk)\DlaT, —87T B (IL‘), x € 0B.

The shape derivative of jc(l) at B in the direction of h is given by

<d5'jc(l)[B]7h> = Z 6N<wm,nvh>L2(8B)a

m+n<k

where

SN = N

m,n

()\D17B) - N7(nl,)n()‘D17D1) :

Next, using a gradient descent algorithm we can minimize, at least locally,
the functional Jc(l).

8.4 Numerical Illustrations

In this section, we support our theoretical results by numerical examples. In
the sequel, we assume that D is an ellipse with semi-axes a = 1 and b = 2,
as shown in Figure In this case the resonances in the far-field can only

occur at A\; = %Z—Iz = —% and \y = —12=b — %. Thus, for a fixed position

of Dy, we can measure two shifts of the2 f)fzi)smonic resonance: P and Ps.

We consider the case of Dy being a triangular-shaped and a rectangular-
shaped particle with known contrast Ap, = 1, as shown in Figure

Figure |8.4] shows the shift in the plasmonic resonance around A, for
random positions of Dy around a triangular-shaped particle D;. From these
measurements, P; can be precisely estimated from the resonance peaks and
the equation P; = A; — A, where A, is the value at which we achieve the
maximum of the resonant peak.

It is worth mentioning that, for the sake of simplicity and clarity, we plot
the graph not by varying the frequency but the parameter A\ directly. We
assume Re(\p,) ranges from —1/2 to 1/2 and Im(Ap,) = 1074 In a more
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FIGURE 8.2: Plasmonic particle Ds.

realistic setting, corrections in the peaks of resonances should be included,
by considering the Drude model for Ap,. But they are essentially equivalent.

To recover geometrical properties of D from measurements of P;, we
recover the CGPTs using the algorithm described in [8.3.1] and then minimize
functional to reconstruct an approximation of Dj.

To recover the first CGPTs of order 5 or less we make 22 measurements
around D; as shown in Figure and measure the shift from \; = —%.

In the following we show a comparison between the recovered CGPTs of
order less or equal to 4 and their theoretical value, for each iteration.

Triangle-shaped D;:

Theoretical values:

0.2426 0 0 —0.0215
Mu = ( 0  0.2426 > Mz = < -0.0215 0 >
0043 0 0 0
M22_< 0 0.043> M13_<0 0)
Recovered:

—0.0007  0.2408 0 0.2414

4 0.2429  —0.0001 5 0.2426 0
Ml(l) = ( ) Ml(l) = ( )

2 0.2444  —0.0007 3 0.2438 0
Ml(l) = ( ) Ml(l) = ( )

—0.0001  0.2430 0  0.2426
y® _ (00008 02414\ ) _ 0  —0.2413
127 { —0.0212 —0.0087 12 = —0.0213 0

(5) _ 0 —0.2415
My = ( —0.0215 0
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08
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06

-0.8 %

08

0.6

04

06

-0.8 %

FicURE 8.3: Non plasmonic particles D;. Triangular-
shaped (left) and rectangular-shaped (right).

0.2204 0.0389 0.0010 0.0497

0.0093 —0.1126 (5) _ 0.0032  —0.0005
—0.1123 —0.0019 137\ —0.0005 —0.0032

4 0.0180 0.2204 5 0.0368 0.0010
MQ(Q) = ( ) Mz(z) = ( )
s

1(3)

Rectangular-shaped D;:

Theoretical values:

0.2682 0.0000 0 0
My = ( ) Mo = < >

0  0.2682 00
0.0544 0 0.0054 0
Moz = ( 0 0.0402 ) Mus = ( 0 —0.0054 >

Recovered:

@ _ (02703 00001 ) _ (02696 0
17\ 0.0001 0.2661 = 0  0.2662

@ (02682 0 ) (02682 0
Mi _< 0 o261 ) M= 0  0.2681
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M, (D,D,)

-10 +

15 Il Il Il Il
-0.167 -0.1669-0.1668 -0.1667 -0.1666 -0.1665

real(\ 2)

FIGURE 8.4: (right) Modulus of the entry (1,1) of the first
order polarization tensor given in Theorem[8:2.2] for different
positions of Dy around a triangular-shaped particle Do (left).

3 _ ( 0.0038 —0.0001 @_ (00
M _< o —oot2 ) M2={o o

5 0 0

0.0530 —0.0007 (5) 0.0537 0.0006
My =

(4) _
My = —0.0007  0.0425 0.0006 0.0416
4) 0.0064 0.0003 0.0060 —0.0003

(4) _ (5) _
Mis = ( 0.0004 —0.0063 ) Mis = ( —0.0003  —0.0059 >

The results of minimizing the functional with a gradient descent
approach and using the recovered CGPTs of order less or equal to 5 are
shown in Figures [8:0] and B7] We take as initial point the equivalent ellipse
to Dl(, ;given by the first order polarization recovered with Algorithm
ie MY

8.5 Concluding remarks

In this chapter, using the quasi-static model, we have shown that the fine
details of a small object can be reconstructed from the shift of resonant
frequencies it induces to a plasmonic particle in the intermediate regime. This
provides a solution for the ill-posed inverse problem of reconstructing small



188 Chapter 8. Sensing Beyond the Resolution Limit

10 : [, B ‘\\
(1
O 9

[NA
o [ I

b

\
I
/
L . f .
-15 -10 5 0 5 10 15

T T T T
r"' \
[y
sk
L
6 \ .
4t f
T
\

<&

L]

y /
) %@ L0
/@»

0 -

-1 0

FIGURE 8.5: Positions of Dy for which we measure P;. (left)
Triangular-shaped particle D;, (right) rectangular-shaped
particle Dy.

objects from far-field measurements and also laid a mathematical foundation
for plasmonic bio-sensing. The idea can be extended in several directions:
(i) to investigate the strong interaction regime when the small object is close
to the plasmonic particle; (ii) to study the case when the size of object is
comparable to the size of plasmonic particle; (iii) to analyze the case with
multiple small objects and multiple plasmonic particles; (iv) to consider the
more practical model of Maxwell equations, and (v) to investigate other types
of subwavelength resonances such as Minnaert resonance [104/75] in bubbly
fluids. These new developments will be reported in forthcoming works.
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0 0 0

FIGURE 8.6: Shape recovery of a triangular-shaped particle

D;. From left to right, we show both, the original shape and

the recovered one after O iterations, after 8 iterations and
after 30 iterations.

0 0 0

FIGURE 8.7: Shape recovery of a rectangular-shaped parti-

cle D;. From left to right, we show both, the original shape

and the recovered one after 0 iterations, after 30 iterations
and after 100 iterations.
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Appendix A

Layer Potentials for the
Laplacian in two Dimensions

In R? the single-layer potential Sp : H~'/?(dD) — HY?(dD) is not, in
general, invertible. Hence, —(u,Sp[v]) 1 1 does not define an inner product
and the symmetrization technique descrierd in [ is no longer valid.

Here and throughout, (-, -)7%’% denotes the duality pairing between H~/2(dD)

and HY?(0D).

To overcome this difficulty, we will introduce a substitute of Sp, in the
same way as in [32].

We first need the following lemma.

Lemma A.0.1. Let C = {p € HY2(dD); 3a € C, Sply] = a}. We have
dim(C) = 1.

Proof. 1t is known that
Ap : HV?2(0D)x C — HY*(0D)x C
(w.a) > (Solel+a, [ pdo).
oD
is invertible |18, Theorem 2.26].
We can see that C = T11.4,,! (0, C), where TT; [(p, a)] = ¢. The invertibility
)

of Ap implies that Ker(IT;. A, (0,-)) = {0}. Thus, by the range theorem we
have

1 = dim(Im(TT1.A (0, -))) + dim(Ker(TT1.A51 (0, -))) = dim(Im(TT;.A51(0, -))) = dim(C).
O

Definition A.1. We call pg the unique element of C such that faD wodo = 1.

Note that for every ¢ € H~Y/2(9D) we have the decomposition

p=p-— (ADwdo)¢o+(/aD¢da)¢o :=¢+(/8D<pd0)soo,

where we can see that (v, 1)_%7% = 0. This kind of decomposition, ¢ =
Y + apg, with (1, 1)7%7% = 0 is unique.

Note that we can decompose H1/2 as a direct sum of elements with
zero-mean and multiples of g, H=Y/2(dD) = HO_I/Q(GD) ® {upo, p € C}.
This allows us to define the following operator.
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Definition A.2. Let gD be the linear operator that satisfies

Sp: HVX9D) — H'*(9D)
o {SDM if (p,1)_11 =0,

272

-1 if o = .

Remark A.0.1. When Sp is invertible, gp 1s stmilar enough to keep the
invertibility. When Sp is not invertible, then C = ker(Sp) and the operator
Sp becomes an invertible alternative to Sp that images the kernel C to the

space {px(0D), n € C}.
Remark A.0.2. Sp : H~Y2(8D) — H(D) follows the same definition.
Theorem A.0.1. Sp is invertible, self-adjoint and negative for (-,-) and

satisfies the following Calderon identity: gDIC*D = ICD§D.

_11
2°2

Proof. The invertibility is a direct consequence of Lemma [A.0.1]

Indeed, since Sp is Fredholm of zero index, so is Sh. Therefore, we only
need the injectivity. Suppose that, 3 ¢ # 0 such that g'D[Lp] = 0. This mean
that, 3 a # 0 € C such that ¢ = ag. Therefore, Sply] = aSp[po] = —a =
0, which is a contradiction. Hence ¢ = 0.

The self-adjointness comes directly form that of Sp. Noticing that g is
an eigenfunction of eigenvalue 1/2 of K}, we get the Calder6n identity from
a similar one satisfied by Sp: SpK}, = KpSp; see |12, Lemma 2.12].

It is known that [, ¥Sp[¢]do < 0 if (1), 1)_%7% = 0 and v # 0, see

[12, Lemma 2.10]. Therefore, writing ¢ = ¥ + (faD cpdo) 0o, with ¢ =

0 — (faD goda)goo, and noticing that [, cpogp[w]da = faDgp[gog]wda =
— faD wdo = 0, we have

/6 @Solelds = | 4Splyldo + ( /{9 N do) "8l

= [ wsolilao ([ )" <o

if o #0.
O

Definition A.3. We define the space H*(OD) as the Hilbert space resulting
from endowing H='/2(0D) with the inner product

(u,v)3 == —(u, Splv])_ (A1)

11.
272

Similarly, we let H to be the Hilbert space resulting from endowing HY? with
the inner product

(u, 0)30 = —(Sp'ul )
If D is C®, we have the following result.

Lemma A.0.2. Let D be a CH® bounded domain of R? and let Sp be the
operator introduced in Definition[A.3 Then

(A.2)

11
2°2
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(i) The operator K7}, is compact self-adjoint in the Hilbert space H*(0D)
and H*(0D) is equivalent to Hfé(({)D); Similarly, the Hilbert space
H(OD) is equivalent to H%(aD),

(it) Let (Nj,¢;), 7 = 0,1,2,..., be the eigenvalue cmd normalized eigen-
function pair oflC with )\0 = 5. Then, \j € (—3,3] and \; — 0 as
J = 00;

27 2
(ii) The following representation formula holds: for any ¢ € H='/2(dD),

o
Z)‘] @, 05+ @ pj.
7=0

The following lemmas are needed in the proof of Theorem [.2.1] and The-
orem [4.2.2)

Lemma A.0.3. Let D = z+ 6B and n be the function such that, for every
w € H*(OD), n(¢)(Z) = w(z + 6Z), for almost all & € OB. Then

l¢ll2+ap) = Sln(@)ll2-am)-

Similarly, if for every o € L?(D), n(p)(Z) = p(2+6%), for almost all & € B,
then

el 2y = Slln(@)ll2(m)-

Proof. We only prove the scaling in H*(0D). From the proof of Theorem

[AZ0:1] we have

2
leleom = = [ wSoluldo+ ([ gdo)’

where 1) = p— ( Jop wda) ¢o. Note that (¢,1)_
0 as well.
By a rescaling argument we find that

= 0 and so, (n(¢)a 1)_

D=

)

D=

11
272

lll3 o)

2
= 5 os®)( [ nwyda) + (— | nw)sotntunds + (
= 52H77(90)|"2H*(33)-
O

Lemma A.0.4. Let g € HY(D) be such that Ag = f with f € L*(D). Then,
in H*(0D),

Yy
S ov

For some Ty € H*(OD) and || Ty||ux < CHfHLz y for a constant C.
Moreover, if g € HL (R?), Ag =0 in R? \D hm|x|_,oog( x) =0, then

1 N
(5—7 —Kp)Sp'lgl = + Ty

T; = ¢ro0 + S5l

/aB

5 [ [ log 6@~ i) @n() (dr(@dr(i) + 52 [ (o)

(e
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with
e = /D fayde = [ 55 lal)do(y),

where @y is gwen in Definition [A1, Here, by an abuse of notation, we still
denote by g the trace of g on 0D.

Proof. Let ¢ € H*(0D). Then

(GI-K0)35' ), = (85Il (37 - Ko)Sple])

= | SeSolldn— [ (#Splel - ASplel(a) )ds
= —(gi, )H*— ngD[@]de

We have used the fact that S, D is harmonlc in D.
Consider the linear application T;[p] := — | D fS pleldz. We have

77 (el < Cll N2y ISpll 20y < CollSlelll i (o) < CrllSnlelll, HEop) =
Here we have used Holder’s inequality, a standard Sobolev embedding, the
trace theorem and the fact that Sp : 7’(8D) — H2 (0D) is continuous.
By the Riez representation theorem, there exists v € H*(0D) such that
Trlel = (v, )= Vo € H*(OD).

By abuse of notation we still denote 7; := v to make explicit the depen-
dency on f. It follows that

IA

Cll f 2oy ISpIT7 22y
Cllf 2oy ISDITH 1 ()
Cllfllz2(pylISp[Ty]
Cl 2oy Tell2ex-

1772 = — /D 18pITyde

IN

IN

HH%(BD)

IN

We now show that in Hg(0D), Tr = ggl[g}.
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Indeed, let ¢ € H{(OD), then

(S5'lale),. = (§1[g],§D[¢])_§é
= ~(99)_,,
- _(9’ 88(;[9@] ‘+ B asal)u[w] ‘_>_;,;

B dg 99 & 99 & dSply]
— /8D 8VSD[<,0]dJ - aVSD[cp]dU+/8BOO 8y8p[<,0]d0 /BBoog £y do

- [, (£30le] - ASblel(s) )do
R2

—/ f8plelda.
D

Here we have used the assumption on g, the fact that Sp [¢] is harmonic
in D and R?\D and that for ¢ € H}(0D) we have Splp](x) = O(ﬁ) and

&gaDV[(p](x) = O() for |z| — oo.

|]
Therefore,

T = (T5 — 85 g, o) =20 + S5 g

Finally, re-scaling the definition of g given in Definition we obtain that

(77 - 85 1g o) = /D f@yiz = | 85 lal(w)do )






197

Appendix B

Asymptotic Expansions

In this section, we derive asymptotic expansions for the Helmholtz integral
operators with respect to k, of some boundary integral operators defined on
the boundary of a bounded and simply connected smooth domain D.

B.1 Asymptotic expansions in R?

We consider a domain D & R? whose size is of order one.

Recall the definition of the single layer potential

Spl@) = | Gle,y.kp)doly), < oD,
where ‘
o o etklz—y|
(z,y,k) = —m

is the Green function of Helmholtz equation in R3, subject to the Sommerfeld
radiation condition. Note that

o~ (ik|z —y])! 1 ik <~ (ik|z —y[)/"
Glz,y, k) = — =- ) P e
@y, k) jgo Jldm|z — y| A7)z — y| 47?3';1 j!
We get
Sh=3Sp+ Y KS8p, (B.1)
j=1
e N
Spstil@) =~ [ (o),
In particular, we have
Soaldl@) = —p- [ vw)do(y) (B.2)
1
Spalll@) = —g- | e =yl )do(y). (B.3)

Lemma B.1.1. ||Sp |l 2+ 0D)1(0D)) s uniformly bounded with respect to
j. Moreover, the series in is convergent in L(H*(OD), H(0D)).

Proof. It is clear that

|SD.jllc(2(ap), 11 (0D)) < C-
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where C' is independent of j. On the other hand, a similar estimate also
holds for the operator &7, ;- It follows that

ISp.;

|c(-1(0D),22(0D)) < C-

Thus, we can conclude that ||S D’jHE( is uniformly bounded

H™2(0D),H? (D))
1

by using interpolation theory. By the equivalence of norms in the H~2(9D)

and H %(8D), the lemma follows immediately. O

Note that Sp is invertible in dimension three, so is Sf) for small k. By
formally writing

(Sk)y =S, + kBpa1 +k*Bpa+ ..., (B.4)
and using the identity (S¥)71S% = Id, we can derive that

BDJ = —SBISDJS_I, BDQ = —SBISDQSBl + SBISDJSBISDJSBI.
(B.5)
We can also derive other lower-order terms Bp ;.

Lemma B.1.2. The series in converges in L(H(OD),H*(OD)) for
sufficiently small k.

Proof. The proof can be deduced from the identity
(Sp) ' =Td+ S kSt Sp
j=1
O

We now consider the expansion for the boundary integral operator (IC’L‘Z))*.
We have

(Kk)* =K +kKp1 + k*Kpa+ ..., (B.6)
where
i A(ilz —y|)7 P (j—1) j—
Koslilla) =~ [ F I —itwdoty) = =4 | eyl ey via)vi)iots).
In particular, we have
_ _ 1 (z—y) v(z)
Kp1=0, KpqlYl(z)= I /aD Ww(y)do(y) (B.7)

Lemma B.1.3. The norm ||Kp |l £+ 0D),1* D)) s uniformly bounded for
j > 1. Moreover, the series in is convergent in L(H*(OD), H*(0D)).

B.2 Asymptotic expansion in R?: multiple particles

In this section, we consider the multiple particle case in dimension three.
We assume that the particles have size of order § which is a small number
and the distance between them is of order one. We write D; = z; + 5]5,
7 =1,2,..., M, where D has size one and is centered at the origin. Our
goal is to derive estimates for various boundary integral operators that are
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defined on small particles in terms of their size. For this purpose, we denote
by Do = dD. For each function f defined on 9Dy, we define a corresponding
function on D by

n(f)(x) = f(07).

In this section, we denote by x(0D;) the constant function equal one over
the border of D;.
We first state some useful results.

Lemma B.2.1. The following scaling properties hold:
(i) ||77(f)HL2(35) = 5_1Hf||L2(aD0);
.. _1
(i) [n(H)l3y0m) = 0 2HfH;Lt(aDo);

(i) 1n(H)lla0p

*(0Dy) -

Proof. The proof of (i) is straightforward and we only need to prove (ii) and
(iii). To prove (iii), we have

Hng{*(aDO) - /aDo 8Dy 47r]:n—(y)|da( )do(v)

g DD 4o a0
= o [ MO0

3 2
P05 2 o

whence (iii) follows. To prove (ii), recall that
£ l2eo0) = IS0 £
Let u = SB; [f]. Then f = Sp,[u]. We can show that

n(f) = 6Sp(n(w)-

H*(0Do)"

As a result, we have

_1 1
(N 305y = NS5 zy05) = AWl op) = 62 lulla=@pe) = 672 fllr@Do):
which proves (ii). O

Lemma B.2.2. Let X and Y be bounded and simply connected smooth do-
mains in R3. Assume 0 € X,Y and X = 5X Y =68Y. Let R and R be two
boundary integral operators from D' (9Y) to D’(@X) and D' (3Y) to D'(0X),
respectively. Here, D' denotes the Schwartz space. Assume that both opera-
tors have the same Schwartz kernel R with the following homogeneous scaling
property

R(0x,0y) = 0" R(z,y).

Then,

24+m ||
RN ooy m=@x)y = O IR £ apn(09) 30 (05))

14+m
||RHE(H*(8Y),H(BX)) = &t HR||[;(H*(317)79{(,3)~())-
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Proof. The result follows from Lemma [B.2.1] and the following identity
R=56+t""ToRon.
O

We first consider the operators Sj’%j and (ICjkjj )*. The following asymptotic
expansions hold.

Lemma B.2.3. (i) Regarded as operators from H*(0D;) into H(0D;), we
have

Sh, = Sp; + kSp; 1 + k°Sp, 2 + O(k*6%),

where Sp;, = O(1) and Sp; m = O(0™);

(i1) Regarded as operators from H(OD;) into H*(0D;), we have

(Sp,) " = Sp, + kBp,;1 + k*Bp, 2 + O(k*6%),

where 85; = O(1) and Bp; m = O(6™);

(tit) Regarded as operators from H*(0Dj) into H*(0D;), we have

(Kh,)" = Kb, + k°0(8%),

where K, = O(1).

Proof. The proof immediately follows from Lemmas [B.2.2] [B.1.1] and [B.1.3]
O

We now consider the operator Sgﬁ p,- By definition,

Slk)j,Dl [w] (‘T) = oD G(x7y7 k)w(y)da(y)7 HAS 8Dl
Using the expansion

o0

Glz,y,k) = D K" "Qm(z,y),

m=0

where | | .
M —y|™m

Qm ((E, y) - 47_[_ 9

we can derive that

SDijl = k Sj7l7m’

m>0

where

SjimlY](zx) = Qm(z,y)(y)do(y).

oD;

We can further write

Sitm =Y _ Sjtmm;

n>0
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where S;; p, pn is defined by

1 lel+isl
. — _ Np— o\ (— > )P
S],l,m,n[w](x) = /(‘)Dj lal%:n alB! 9z 0yB Q’m(zlaz])(x 21)*(y zj) Y (y) do(y).
In particular, we have
1
Sjpo0ltl(z) = _m(waX(aDj))H*1/2(8Dj),H1/2(8Dj)X(Dl)7
(21— 2)*

SjroalY)(z) = Z

la|=1
((y = 2)% e)x(D),
1 0%Qo(z, zj)

4|z — 23 ((x = 2) (W x(OD1) g-112(0,), 11/2(9;) +

Sjpo2l¥](z) = Z !Bl 9zedyP (. —2)%(y — Zj)%(y)da(y),
jad +181=2 Y
SjialY](@) = —ﬁ(w, X(aDj))H*l/?(aDj),Hl/2(aDj)X(Dl)7
1
Sp20l¥l(@) = —la = 2|, x(0D;)) g-12(0p,),11/2(9D,) X (D1)-

The following estimate holds.

Lemma B.2.4. We have HSj,l,m,n||£("H*(8D),’H(8D)) ,S O(5n+l)

Proof. After a translation of coordinates, the stated estimate immediately
follows from Lemma [B.2.2 O

Similarly, for the operator /C]]‘_—”;;, D, defined in the following way

0G(z,y, k)
k 'y Yy
— bl b A RS D
K, i) = | g utiot), e oD,
we have

K%],Dl = Z kaIC]7l?m?n7

m>0 n>0

where

Kmaltlla) = [ 5 T o g o) (@)oo )

18! OxBoy~
) ol pi=n @0 070U
with ( | s
i(m — 1)|x —y|™
K., 3 = - .
(z,y) 4m)!
In particular, we have
1
’Cj,l,o,o[i/)] () = W [(l’ —21) - V(x)(w7X(aDj))H71/2(5Dj)7H1/2(8Dj)

(¥, (y — 2) - V(ff))Hfl/'z‘(aDj),Hl/?(aDj)

+(Zl - zj) : I/($) (¢7 X(aDj))H—1/2(8Dj),H1/2(8Dj):| ’ (B'8)
Kjiaiml] = 0 forall m. (B.9)
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Lemma B.2.5. We have || 1mnllci-0D;) 1+ 0D1) S O(6"2).

Proof. Note that

B 1 O"Kp(z, 24) \a '
Kjimnl¥l(z) = /BDJ_ a|+§|,§‘:n N P —2)(y — 2)™ (@ — ) - v(@)p(y)do(y),

[ T e - - %) - ) @) ),
I laf+|Bl=n

of o e i) (¢ )Py ) - ) V) ).

After a translation of coordinates, we can apply Lemma [B.2.2] to each one of
the three terms above to conclude that ;. = O(6"3) + O(6™2). This
completes the proof of the lemma. O

To summarize, we have proven the following results.

Lemma B.2.6. (i) Regarded as an operator from H*(0D;) into H(0D;)
we have,

S%th = Sj,l,O,O + Sj717071 + Sjyl,oyg + k‘Sj,M + k28j,l7270 + 0(54) + O(k2(52).

Moreover,
_ +1
Sitmn =0("").

(it) Regarded as an operator from H*(0D;) into H*(0D;), we have
’CIB]-,DZ = Kj100 + O(k*6%).
Moreover,
Kji00 = O(5%).
B.3 Asymptotic expansions in R?

Let us now consider the single-layer potential for the Helmholtz equation in
R? given by

Splel(x) = | Gley.k)e(y)da(y), e€dD.

where G(z,y, k) = —%Hél)(kh: —yl|) and Hél) is the Hankel function of first
kind and order 0. We have, for k < 1,

i 1 - ,
1 HE (klz = yl) = - log o — yl+ 7+ Y (b log kla =yl + ;) (klz — ),
j=1
where
1 i (-1 1 , in a1
T = %(logk—I—’ye—logZ)—Z, bj = 55, G = —bj <’ye —log2 — 5 Z n) ,

n=1
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and -, is the Euler constant. Thus, we get
Sh=38h+Y_ (K logh) Sp); + > kIS, (B.10)
where
blel@) = Solel@)+m [ gdo,
oD
1 .
SELE@ = [ bl yPietoty)

Spilel(@) = /E,D | = y[* (bjlog |z — y| + ¢;)p(y)do(y).

1 2
Lemma B.3.1. The norms \|31(),)]-HL(H*(6D),7{(3D)) and HSJ(),)]'HL(H*(GD H(OD))
are uniformly bounded with respect to j. Moreover, the series in (B.10)) s

convergent in L(H*(0D), H(0D)) for k < 1.
Observe that

(50 =8p) el = (80 — 8b) [P el +(o. n)-s00] = (2. 0)- (Spleo] +1).

Then it follows that

where
Tile] = (@, p0)n (Spleo] + 1+ 7k). (B.11)

Therefore, we arrive at the following result.

Lemma B.3.2. For k small enough, S¥ : H*(0D) — H(OD) is invertible.

Proof. Ty, is clearly a compact operator. Since Sp is _invertible, the invert-
ibility of Sf) is equivalent to that of 85)851 =1+ TkSgl. By the Fredholm
alternative, we only need to prove the injectivity of I + TkSBI.

Since V v € HY/2(9D), Tkggl[v] € C, for (I + Tkggl) [v] = 0, we need to
show that v = Sp[ayg] = —a € C.

We have

<I+ Tk§51> gp[acpo] = a(Splpo] + ) =0 iff Splpog] = —7% or a =0.

Since we can always find a small enough k such that Sp[po] # —7%, we need
a = 0. This yields the stated result. O

Lemma B.3.3. For k small enough, the operator S% : H*(0D) — H(9D)
is invertible.

Proof. The operator S¥ — Sk : H*(dD) — H(dD) is a compact operator.
Because S ’f) is invertible for k£ small enough, by the Fredholm alternative only
the injectivity of S/]_f) is necessary. From the uniqueness of a solution to the
Helmholtz equation we get the result. O
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Lemma B.3.4. The following asymptotic expansion holds for k small enough:
(Sp)t = 77%;551 + Uy — K log kPHS§BISS,)1PH3§51 +0(k?)

with <
(Sp ] v0) 2

U, = —
K SD[(po]—i-Tk

(B.12)
Note that U, = O(1/logk).
Proof. We can write (B.10) as

where Gy, = k?log k‘Sj(jl)l + O(Kk?). From Lemma |B.3.2|and Lemma [B.3.3| we
get the identity

-1 "

(Sh)™ = (1+(Sh)"6)  (Sh™
Hence, we have

(Sh) = (85'8h) Spt

—_———
ALt
Here,
A = TIT—(,00)nu(Spleo] +1+m)¢o
= Puz — (-, 00)n (Splpol + 7k)po.
Then,
At = Prg = (ol g
BT THE TR0 SD[‘PO]‘FTkSOO

and therefore, N
(Sp [, po)ue .

Sky-1 _p, Sl
( D) H;CD SD[SDO]+7'k

It is clear that ||(Sf) ! | 2(2(0D) 1+ (9D)) 1s bounded for k small. Since ||Gy|| (o), 2+(0D))
goes to zero as k goes to zero, for k small enough, we can write

(SH) ™" = (SH) ™" = (8H)'Gr(8B) " + O (K (logk)?) ,
which yields the desired result. O

We now consider the expansion for the boundary integral operator (IC’Z))*.
We have

(KKk)* = Kt + Z (¥ log k) K5 + ST KYKE) (B.13)

J=1
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where

—
KBl = [ M et

Xr — 2j i 10g (X — Cj
’Cg,)j[w](x) = /aD O(z—y J(béi(i)‘ il J>)so(y)dff(y)-

1 2
Lemma B.3.5. The norms HIC(D,)] HE('H*(@D),’H* (6D)) and HIC(D) HE(H*(@D),’H*(OD))
are uniformly bounded for 7 > 1. Moreover, the series in s convergent
in L(H*(OD), H*(0D)).
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Appendix C

Sum Rules for the Polarization
Tensor

Let f be a holomorphic function defined in an open set U C C containing

o0
the spectrum of K},. Then, we can write f(z) = Z ajzj for every z € U.
§=0

Definition C.1. Let
f(KDp) :

[l
.
L[M]2
RS
S
b*

where (K%3)) :=KpoKpo..oKp.
J times

Lemma C.0.1. We have

o0

FIKD) =D FO)C i) meje
j=1

Proof. We have

FK) = D aKp) = ai Y N 0)uee
i=0 i=0  j=1
= Z(Za%) (03 @;
j=1 \i=0

[
WE

TN G @) 5

j=1
0
From Lemma we can deduce that
/8 nf (Kp)lval@)do(@) = 3 FA)af), (1)

Equation (C.1)) yields the summation rules for the entries of the polarization
tensor.
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In order to prove that Zal(]% = 0m|D|, we take f(A) = 1in (C.1)) to
j=1
get

Zal(% = /6D () do(z) = 6;m|D).

j=1  I=1 =1
. B 1 dSplv]
[ akptl@doto) = [ (e + 2] @) asto)
D] OSp|v] "
- LD M (@)do(e). (C2)

Integrating by parts we arrive at

dSp(v]
/BD x 8DI/ l ’_(x)da(a;) —/Del(x)-VSD[VI](x)d$+/leASD[l/l](a?)da;.

Since the single-layer potential is harmonic on D,

/8D 7 8S§V[Vz] ‘_(:c)da(x) = /Del(x) : (/aD VxF(.%,x/)yl(x/)dg(x/)) de.

Summing on ¢ and using V,I'(z,2’) = =V T'(z,2), we get

Ii /8 L asgy[,,l] \_(:c)da(x) =- /D < /8 ol vx/r(az,x’)da@’)) dz,
=1

=—memmm,

=—|D|, (C.3)

where Dp is the double-layer potential. Hence, summing equation (|C.2)) for
i1=1,...,d, we get the result.
Finally, we show that

d
j d—4
SN e =" ‘D|‘|‘Z/D|VSD[VZ]|2d$-
=1

j=1  I=1
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Taking f(\) = A* in (C.1) yields
) d
S 8> af) =3 [ alkhP il doo)
=1 i=1 =1 /9D
d
=Y | Kolyl@)Kpkl(z)do(x)
d d
i l 68D [Vl]
=3 | Kotgar+ 3 [ Kol
=1 =1
d
d 2 Y1 88[) 8SD[VI]
D ( d Dolyl| =5 do.
|\ Z/@D EY U+l§:aD plyl| o 1%
I L
From (C.3)) it follows that
D
ool
Since z; is harmonic, we have z; = Dplyi|(x)|— —Sp[v](z) on D, and thus,

d
=3 [t solen 5,0 @)

d

. BSD[Z/Z]

——\D|+;/3DSD[VA o) o,
d

:_\D|+Z/ IVSp][2de.
1=17P

Replacing I7 and I by their expressions gives the desired result.
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Résumé

Cette thése porte sur I'étude mathématique des interac-
tions entre la lumiére et certains types de nanoparticules.

Al'échelle du nanométre, des particules métalliques comme

I'or ou I'argent subissent un phénoméne de résonance
lorsque leurs électrons libres interagissent avec un champ
électromagnétique. Cette interaction produit une aug-
mentation du champs électrique proche et lointain, leur
permettant d’améliorer la luminosité et la directivité de la
lumiére, confinant des champs électromagnétiques dans
des directions avantageuses. Ce phénomene, appelé
"résonances plasmoniques pour des nanoparticules" ou-
vre une porte sur une large gamme d’applications, des
nouvelles techniques d'imagerie médicale a des panneaux
solaires efficaces. En utilisant des techniques issues des
potentiels de couches et de la théorie de la perturba-
tion, nous proposons une étude de la dispersion d’'ondes
électromagnétiques par une et plusieurs nanoparticules
plasmoniques, dans le cadre quasi-statique, Helmholtz
et Maxwell. Nous étudions ensuite certaines applications
tel que la génération de chaleur, les métasurfaces et
I'imagerie super-résolue.

Mots Clés

operateur de Neumann-Poincaré, potentiels de couche,
nanoparticules plasmoniques, resonance de plasmon,
analyse asymptotique

Abstract

This thesis deals with the mathematical study of the inter-
actions between light and certain types of nanoparticles.
At the nanometer scale, metal particles such as gold or
silver undergo a resonance phenomenon when their free
electrons interact with an electromagnetic field. This in-
teraction results in an enhancement of the near and far
electric field, enabling them to improve the brightness
and the directivity of the light, confining electromagnetic
fields in advantageous directions. This phenomenon, called
"plasmonic resonances for nanoparticles", opens a door
to a wide range of applications, from new medical imag-
ing techniques to efficient solar panels. Using layer po-
tentials techniques and perturbation theory, we propose
a study of the scattering of electromagnetic waves by one
and several plasmonic nanoparticles in the quasi-static,
Helmholtz and Maxwell framework. We then study some
applications such as heat generation, metasurfaces and
super-resolution.

Keywords

Neumann Poincaré operator, layer potentials, plasmonic
nanoparticles, plasmonic resonances, asymptotic analy-
sis
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