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Notations

• D ⋐ R
d denotes that D is an open, bounded and simply connected

subset of Rd;

• ∂D denotes the boundary of the open set D ∈ R
d;

• We say that ∂D is of type C1,α, for 0 < α < 1, if ∂D is locally Lipschitz
of order 0 < α < 1;

• ν denotes the outward normal to ∂D and ∂
∂ν the outward normal deriva-

tive;

• ϕ
∣∣
±(x) = limt→0+ ϕ(x± tν), x ∈ ∂D;

• Id denotes the identity operator;

• Hs(∂D) denotes the usual Sobolev space of order s on ∂D;

• (·, ·)− 1
2
, 1
2

denotes the duality pairing between H− 1
2 (∂D) and H

1
2 (∂D);

• For any functional space F (∂D) defined on ∂D, F0(∂D) denotes its
zero mean subspace;

• L(E,F ) denotes the set of bounded linear applications from E to F
and L(E) := L(E,E);

• For α = (α1, α2) ∈ N
2, ∂α := ∂α1

1 ∂α2
d and α! := α1!α2!;

• χ(S), denotes the characteristic function of the set S;

• ℜz denotes the real part of z;

• ℑz denotes the imaginary part of z;

• |x| denotes the norm of x ∈ R
d;

• We denote by the Sommerfeld radiation condition for a function u in
dimension d = 2, 3, the following condition:

∣∣∣∣
∂u

∂|x| − ikmu

∣∣∣∣ ≤ C|x|−(d+1)/2

as |x| → +∞ for some constant C independent of x.
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Introduction

Light has been a major field of scientific curiosity and study since the begin-
ning of science. Despite the age of the field, research in photonics is more
active than ever, as evidenced by 2015 being proclaimed by the United Na-
tions General Assembly as the "International Year of Light and Light-based
Technologies". In the last decades, the field of photonics has seen a rev-
olution due to the study of the anomalous properties of metallic particles,
no bigger than some tens of nanometers, and their interaction with light.
At this scale, and for some specific range of frequencies, this nanoparticles
have the unique capability of enhancing the brightness and directivity of
light, confining strong electromagnetic fields into advantageous directions.
This phenomenon, called "plasmonic resonances for nanoparticles" or "sur-
face plasmons", open a door for a wide range of applications, from novel
healthcare techniques to efficient solar panels. To harvest such opportuni-
ties, a deep mathematical understanding of the interactive effects between
the particle size, shape and contrasts in the electromagnetic parameters is
required.

Although very significant experimental and modeling advances have been
achieved in the field of nanoplasmonic during recent decades, very few prop-
erties have been introduced and analyzed in the mathematical literature.
There is a clear lack of deep understanding of the theory of plasmonic reso-
nance. The goal of this work is to fill some of these gaps - understand the
mathematical structure of inverse problems arising in nanophotonics and pro-
pose, from a better mathematical basis, pertinent applications of plasmonic
nanoparticles that will best meet the challenges of emerging nanotechnolo-
gies.

Plasmonic nanoparticles

Plasmonic nanoparticles are particles, typically made of gold or silver, whose
size range in the order of a few to a hundred nanometers. At this scale,
they behave as metamaterials, meaning that their conductivity and/or pre-
meabilitty has negative real part. When an external light wave is incident
on the nanoparticle, the cloud of free electrons on the surface of the par-
ticule oscilates at some specific frequencies, entering in a resonance mode;
see Figure 1. These resonances depend on the electromagnetic parameters of
the nanoparticle, those of the surrounding material, and the particle shape
and size. High scattering and absorption cross sections (see [43] for precise
definitions of these quantities) and strong near-fields are unique effects of
plasmonic resonant nanoparticles; see Figure 2.

Even though plasmonic nanoparticles have drawn the attention of scien-
tists mainly in the 20th century, they have been first put into use thousands
of years ago, when ancient civilizations made use of them for decoration and
artistic purposes. Figure 3 shows the Lycurgus cup, a decorative Roman
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Figure 3: Lycurgus cup. Its galss contains gold-silver
nanoparticles that resonates with red frequencies of incoming

ight. (trustees of the British museum)

Driven by the search for new materials with interesting and unique op-
tical properties, the field of plasmonic nanoparticles has grown immensely
in the last decade [68]. Recent advances in nanofabrication techniques have
made it possible to construct complex nanostructures such as arrays using
plasmonic nanoparticles as components, allowing the design of new kinds of
materials. Among this structures we find the so called "metasurfaces", con-
sisting in a thin layer of periodically arranged nanoparticles mounted over
a dielectric. This kind of composites are capable to control and transform
optical waves in order to reduce scattering and make objects invisible or even
trap electromagnetic waves in the goal of making efficient photovoltaic cells.

Another thriving interest for optical studies of plasmon resonant nanopar-
ticles is due to their recently proposed use in molecular biology, where the
strong field enhancement can be used as efficient contrast for biological and
cell imaging applications [48].

Nanoparticles are also being used in thermotherapy as nanometric heat-
generators that can be activated remotely by external electromagnetic fields.
Nanotherapy relies on a simple mechanism. First nanoparticles become at-
tached to tumor cells using selective biomolecular linkers. Then heat gen-
erated by optically-simulated plasmonic nanoparticles destroys the tumor
cells [51].

Scientists have long dreamt of an optical microscope that can be used
to see, noninvasively and in vivo, the details of living matter and other ma-
terials. When attempting to image nanoscale structures with visible light,
a fundamental problem arises: diffraction effects limit the resolution to a
dimension of roughly half the wavelength. Recently, the use of plasmonics
nanoparticles has been proposed in a number of emerging techniques that
achieve resolution below the conventional resolution limit into what is called
super-resolution techniques.

Contributions

It is important to understand the collective behavior of plasmonic nanoparti-
cles to derive the macroscopic optical properties of materials with a dilute set
of plasmonic inclusions. In this regard, we have obtained effective properties
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of a periodic arrangement of arbitrarily-shaped nanoparticles and derived a
condition on the volume fraction of the nanoparticles that insures the validity
of the Maxwell-Garnett theory for predicting the effective optical properties
of systems embedded in a dielectric host material at the plasmonic reso-
nances.

One of the most important parameters in the context of applications
is the position of the resonances in terms of the wavelength or frequency.
A longstanding problem is to tune this position by changing the particle
size or the concentration of the nanoparticles in a solvent [49, 68]. It was
experimentally observed, for instance, in [49, 89] that the scaling behavior
of nanoparticles is critical. The question of how the resonant properties of
plasmonic nanoparticles develops with increasing size or/and concentration
is therefore fundamental.

According to the quasi-static approximation for small particles, the sur-
face plasmon resonance peak occurs when the particle’s polarizability is max-
imized. At this limit, since resonances are directly related to the Neumann-
Poincaré integral operator, they are size-independent. However, as the par-
ticle size increases, a shift in the value of the resonances can be observed, for
instance, in [49,81,89]. Using the Helmholtz equation to model light propa-
gation we have precisely quantified the shift of the plasmonic resonance and
the scattering absorption enhancement for a single nanoparticle.

At the quasi-static limit, we gave a proof that the averages over the
orientation of scattering and extinction cross-sections of a randomly oriented
nanoparticle are given in terms of the imaginary part of the polarization
tensor. Moreover, we have derived bounds in dimension two (optimal bounds)
and three for the absorption and scattering cross-sections.

Later on, we have generalized these results, providing the first mathe-
matical study of the shift in plasmon resonance using the full Maxwell equa-
tions. Surprisingly, it turns out that in this case not only the spectrum of the
Neumann-Poincaré operator plays a role in the resonance of the nanoparti-
cles, but also its negative. We have explained how in the quasi-static limit,
only the spectrum of the Neumann-Poincaré operator can be excited and that
its negative can only be excited as in higher-order terms in the expansion of
the electric field versus the size of the particle.

Due to their high absorption enhancement, monitoring the temperature
generated by the nanoparticles in the plasmonic resonance could be crucial
for thermoterapy success. We have established an asymptotic expansion for
the temperature in the border of arbitrary shaped particles, which turns out
to be related, again, to the eigenvalues of the Neumann-Poincaré operator.

If we consider the scattering by a layer of periodic plasmonic nanoparti-
cles mounted on a perfectly conducting sheet, as the thickness of the layer,
which is of the same order as the diameter of the individual nanoparticles,
is negligible compared with the wavelength, it can be approximated by an
impedance boundary condition. We have proved that at some resonant fre-
quencies, the thin layer has anomalous reflection properties and can be viewed
as a metasurface allowing the control and transformation of electromagnetic
waves.

We have also proved that using plasmonic resonances one can classify the
shape of a class of domains with real algebraic boundaries and on the other
hand recover the separation distance between two components of multiple
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connected domains. These results have important applications in nanopho-
tonics. They can be used in order to identify the shape and separation dis-
tance between plasmonic nanoparticles having known material parameters
from measured plasmonic resonances, for which the scattering cross-section
is maximized.

The main objective of super-resolution is to create imaging approaches
for objects significantly smaller than half the wavelenght, based on the use of
resonant plasmonic nanoparticles. In a homogeneous space, particles smaller
than half the wavelength cannot be resolved because the point spread func-
tion, which is the imaginary part of the Green function, has a width of roughly
half the wavelenght. By following the methodology of [30], we have shown
that super-resolution can be achieved when replacing the homogeneous media
by a composite made of plasmonic nanoparticles.

Moreover, we have shown that we can make use of plasmonic nanoparti-
cles to recover fine details of a subwavelength non plasmonic nanoparticles,
providing a mathematical foundation for plasmonic biosensing. These results
open a door for the ill-posed inverse problem of reconstructing small objects
from far-field measurements.

The results obtained in this thesis have been published in [22–27].
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10 Chapter 1. The Quasi-Static Limit

1.1 Introduction

Consider the scattering problem of iluminating a nanoparticle immersed in
a homogeneous medium. When the size of the nanoparticle is significantly
smaller than the wavelength of the incomming light, Maxwell equations can
be approximated by the equation (1.3) [87]. We say that we are working in
the quasi-static limit. This regime have been extensively used by the physics
community to model the scattering of light by small nanoparticles such as
plasmonic nanoparticles. In the mathematics community, the first efforts to
give rigourous results on the plasmonic resonance phenomena have been done
in this framwork [52]. In the first part of this chapter we give a brief review
of the mathematical analysis of the plasmonic resonances for nanoparticles
in the quasi-static regime. This analysis rely strongly in the use of layer
potential techniques for the Laplace equation.

Secondly, we investigate the overall optical properties of a collection of
plasmonic nanoparticles. We treat a composite material in which plasmonic
nanoparticles are embedded and isolated from each other. The Maxwell-
Garnett theory provides a simple model for calculating the macroscopic op-
tical properties of materials with a dilute inclusion of spherical nanopar-
ticles [18]. Here, we extend the validity of the Maxwell-Garnett effective
medium theory in order to describe the behavior of a system of arbitrary-
shaped plasmonic resonant nanoparticles. We rigorously derive a condition
on the volume fraction of the nanoparticles that insures its validity at the
plasmonic resonances. To do so, we introduce the notion of plasmonic reso-
nances for particles with anisotropic electromagnetic materials. This notion
is introduced here for the first time.

In section 1.4 we analyze the anisotropic quasi-static problem in terms of
layer potentials and define the plasmonic resonances for anisotropic nanopar-
ticles. Formulas for a small anisotropic perturbation of resonances of the
isotropic formulas are derived.

Section 1.5 is devoted to establish a Maxwell-Garnett type theory for ap-
proximating the plasmonic resonances of a periodic arrangement of arbitrary-
shaped nanoparticles.

1.2 Preliminaries

In this section we recall important properties of the layer potentials for the
Laplacian that will be of great use throughout this thesis.

1.2.1 Layer potentials for the Laplace equation

Consider a domain D with boundary ∂D of type C1,α for 0 < α < 1. Let ν
denote the outward normal to ∂D. Define the single layer potential

SD[ϕ](x) =

∫

∂D
G(x, y)ϕ(y)dσ(y), x ∈ ∂D, x ∈ R

d\∂D,

where G(x, y) is the green function for the Laplacian.
For d = 2

G(x, y) =
1

2π
log |x− y|.
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For d = 3

G(x, y) = − 1

4π|x− y| .

We have the following lemma

Lemma 1.2.1. 1. For ϕ ∈ H− 1
2 (∂D), SD[ϕ] ∈ H1(Rd\∂D) is an Har-

monic function on R
d\∂D;

2. SD[ϕ](x)
∣∣
+
= SD[ϕ](x)

∣∣
−;

3. For d = 3, SD[ϕ](x) = O( 1
|x|2 ) as |x| → ∞ and SD[·] : H− 1

2 (∂D) →
H

1
2 (∂D) is invertible, negative definite and self-adjoint for the duality

paring H− 1
2 (∂D), H

1
2 (∂D);

4. Same for d = 2 under condition that
∫
∂D ϕdσ = 0.

A more detailed analysis for the case d = 2 is given in Appendix A.
The Neumann-Poincaré operator (NP) K∗

D associated with D is defined
as follows:

K∗
D[ϕ](x) =

1

2π

∫

∂D

〈x− y, νx)

|x− y|d ϕ(y)dσ(y), x ∈ ∂D.

It is related to the single layer potential SD by the following jump relation:

∂SD[ϕ]

∂ν

∣∣∣
±
= (±1

2
I +K∗

D)[ϕ] for ϕ ∈ H−1/2(∂D). (1.1)

It can be shown that the operator λI − K∗
D : H−1/2(∂D) → H−1/2(∂D)

is invertible for any |λ| > 1/2. Furthermore, K∗
D is compact, its spectrum is

discrete and contained in ] − 1/2, 1/2] with 0 being an accumulation point;
see for instance [18,32] for more details.

In general, K∗
D is not symmetric for the pairing (·, ·) 1

2
,− 1

2
. Nevertheless,

using Calderon’s identity

KDSD = SDK∗
D,

K∗
D can be symmetrized with the following inner product

(u, v)H∗ := −(SD[v], u) 1
2
,− 1

2
.

It can be shown that in R
3, (·, ·)H∗ defines a Hilbert space, equivalent to

H−1/2(∂D) [12,32,61,65]. In R
2 a similar analysis can be done to symmetrize

K∗
D. We refer the reader to Appendix A.

Let (λj , ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunc-
tion pair of K∗

D in H∗(∂D). From the spectral theorem, we know that λj → 0
for j → ∞ and ϕj form a base of H∗(∂D). Therefore, the following repre-
sentation formula holds: for any ϕ ∈ H−1/2(∂D),

K∗
D[ϕ] =

∞∑

j=0

λj(ϕ,ϕj)H∗ ⊗ ϕj .



12 Chapter 1. The Quasi-Static Limit

From the jump formula (1.1), we can see that 1/2 is always an eigenvalue
of K∗

D. If the D is simply connected, there is only one eigenvalue taking the
value 1/2. We denote this eigenvalue by λ0 and its corresponding eigenfunc-
tion ϕ0.

In R
3, let H(∂D) be the space H

1
2 (∂D) equipped with the following

equivalent inner product

(u, v)H = ((−SD)
−1[u], v)− 1

2
, 1
2
. (1.2)

Then, SD is an isometry between H∗(∂D) and H(∂D).
A smilar result can be found in R

2, see Appendix A.

1.3 Layer potential formulation for the scattering
problem

We consider the scattering problem of a time-harmonic wave ui incident on
a plasmonic nanoparticle. The homogeneous medium is characterized by its
electric permittivity εm that we assume to be real and strictly positive. The
particle occupying a bounded and simply connected domain D ⋐ R

d of class
C1,α for some 0 < α < 1 is characterized by electric isotropic permittivity εc
which may depend on the frequency of the incoming wave ω by the Drude
model as

εc = εc(ω) =

(
1−

ω2
p

ω(ω + iγ)

)
ε0.

Here, ωp is called the plasmon frequency, γ the damping parameter and ε0
is the permittivity of the free space.

Assume that ℜεc < 0, ℑεc > 0, and define

εD = εmχ(R
d\D) + εcχ(D).

where χ denotes the characteristic function. When the wavelength of the
incoming wave is much larger than the particle’s size, the following is a good
approximation of the Maxwell equations.





∇ · εD∇u = 0 in R
d\∂D,

u+ − u− = 0 on ∂D,

εc
∂u
∂ν

∣∣
+
− εm

∂u
∂ν

∣∣
− = 0 on ∂D,

u− ui = O( 1
|x|d−1 ), |x| → ∞.

(1.3)

Here u corresponds to the electric potential. For some ϕ ∈ H− 1
2 (∂D), the

solution u can be written as

u(x) = ui + SD[ϕ].

From Lemma 1.2.1 we can see that only the transmission conditions

εc
∂u

∂ν

∣∣
+
− εm

∂u

∂ν

∣∣
− = 0 on ∂D,
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need to be satisfied. This translates into

εc
∂SD[ϕ]

∂ν
(x)
∣∣
+
− εm

∂SD[ϕ]

∂ν
(x)
∣∣
− = (εm − εc)

∂ui

∂ν
on ∂D.

From the jump formula for the single layer potential SD, i.e

∂SD[ϕ]

∂ν
(x)
∣∣
± =

(
± 1

2
Id+K∗

D

)
[ϕ](x), x ∈ ∂D.

we have
(
λ−K∗

D

)
[ϕ] =

∂ui

∂ν
, (1.4)

with

λ =
εm + εc

2(εm − εc)
.

Finally

u = ui + SD(λ−K∗
D)

−1[
∂ui

∂ν
]

= ui +
∞∑

j=1

(∂u
i

∂ν , ϕj)H∗

λ− λj
SD[ϕj ]. (1.5)

Recall that λj are eigenvalues K∗
D and they satisfy |λj | < 1/2. In

the plasmonic case, ℜεc(ω) can take negative values. Then it holds that
|ℜλ(ω)| < 1/2 and 0 ≤ ℑεc(ω) ≪ 1. So, for a certain frequency ωj , the value
of λ(ωj) can be very close to an eigenvalue λj of the NP operator. Then, in

(1.5), the mode SD[ϕj ] will be amplified provided that (∂u
i

∂ν , ϕj)H∗ is non-
zero. As a result, the scattered field u − ui will show a resonant behavior.
This phenomenon is called the plasmonic quasi-static resonance.

1.3.1 Contracted generalized polarization tensors

Decomposition (1.5) of u together with

ui(x) =
∑

α∈Nd

1

α!
∂αui(0)xα

and

G(x, y) =

+∞∑

|β|=0

(−1)|β|

β!
∂βxΓ(x)y

β , y in a compact set, |x| → +∞,

where G(x, y) is the fundamental solution to the Laplacian, yields the far-
field behavior [4, p. 77]

(u− ui)(x) =
∑

|α|,|β|≥1

1

α!β!
∂αui(0)

[ ∫

∂D
yβ(λI −K∗

D)
−1[

∂xα

∂ν
](y)dσ(y)

]
∂βG(x, 0)(1.6)
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as |x| → +∞. Introduce the generalized polarization tensors [4]:

Mαβ(λ,D) :=

∫

∂D
yβ(λI −K∗

D)
−1[

∂xα

∂ν
](y) dσ(y), α, β ∈ N

d.

They will be of great use in chapter 8. We callM :=Mαβ for |α| = |β| = 1
the first-order polarization tensor.

Suppose that D = z+ δB, where B has size of order 1. Then, from (1.6)
we have

Theorem 1.3.1. In the far field

us(x) = ui(x)−∇yG(x, 0)M(λ,D)∇ui(0) +O
( δd+1

dist(λ, σ(K∗
D))

)
.

For a positive integer m, let Pm(x) be the complex-valued polynomial

Pm(x) = (x1 + ix2)
m :=

∑

|α|=m

amα x
α + i

∑

|β|=m

bmβ x
β . (1.7)

Using polar coordinates x = reiθ, the above coefficients amα and bmβ can also
be characterized by

∑

|α|=m

amα x
α = rm cosmθ, and

∑

|β|=m

bmβ x
β = rm sinmθ. (1.8)

We introduce the contracted generalized polarization tensors to be the fol-
lowing linear combinations of generalized polarization tensors using the co-
efficients in (1.7):

M cc
mn =

∑

|α|=m

∑

|β|=n

amα a
n
βMαβ , M cs

mn =
∑

|α|=m

∑

|β|=n

amα b
n
βMαβ ,

M sc
mn =

∑

|α|=m

∑

|β|=n

bmα a
n
βMαβ , M ss

mn =
∑

|α|=m

∑

|β|=n

bmα b
n
βMαβ .

It is clear that

M cc
mn =

∫

∂D
ℜ(Pn)(λI −K∗

D)
−1[

∂ℜ(Pm)

∂ν
] dσ,

M cs
mn =

∫

∂D
ℑ(Pn)(λI −K∗

D)
−1[

∂ℜ(Pm)

∂ν
] dσ,

M sc
mn =

∫

∂D
ℜ(Pn)(λI −K∗

D)
−1[

∂ℑ(Pm)

∂ν
] dσ,

M ss
mn =

∫

∂D
ℑ(Pn)(λI −K∗

D)
−1[

∂ℑ(Pm)

∂ν
] dσ.

We refer to [18] for further details
As recently shown [11, 18], the contracted generalized polarization ten-

sors can efficiently be used for domain classification. They provide a natural
tool for describing shapes. In imaging applications, they can be stably re-
constructed from the data by solving a least-squares problem. They capture
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high-frequency shape oscillations as well as topology. High-frequency oscilla-
tions of the shape of a domain are only contained in its high-order contracted
generalized polarization tensors.

1.4 Plasmonic resonances for the anisotropic prob-
lem

In this section, we consider the scattering problem of a time-harmonic wave
ui, incident on a plasmonic anisotropic nanoparticle. The homogeneous
medium is characterized by its electric permittivity εm, while the particle
occupying a bounded and simply connected domain Ω ⋐ R

3 of class C1,α

for 0 < α < 1 is characterized by electric anisotropic permittivity A. We
consider A to be a positive-definite symmetric matrix.

In the quasi-static regime, the problem can be modeled as follows:

∇ ·
(
εmIdχ(R

3\Ω̄) +Aχ(Ω)
)
∇u = 0,

|u− ui| = O(|x|−2), |x| → +∞,
(1.9)

where χ denotes the characteristic function and ui is a harmonic function in
R
3.

We are interested in finding the plasmonic resonances for problem (1.9).
First, introduce the fundamental solution to the operator ∇·A∇ in dimension
three

GA(x) = − 1

4π
√

det(A)|A∗x|

with A∗ =
√
A−1. From now on, we denote GA(x, y) := GA(x− y).

The single-layer potential associated with A is

SA
Ω [ϕ] : H

− 1
2 (∂Ω) −→ H

1
2 (∂Ω)

ϕ 7−→ SA
Ω [ϕ](x) =

∫

∂Ω
GA(x, y)ϕ(y)dσ(y), x ∈ R

3.

We can represent the unique solution to (1.9) in the following form [18]:

u(x) =

{
ui + SΩ[ψ], x ∈ R

3\Ω̄,
SA
Ω [φ], x ∈ Ω,

where (ψ, φ) ∈
(
H− 1

2 (∂Ω)
)2

is the unique solution to the following system
of integral equations on ∂Ω:





SΩ[ψ]− SA
Ω [φ] = −ui,

εm
∂SΩ[ψ]

∂ν

∣∣∣
+
− ν ·A∇SA

Ω [φ]
∣∣∣
−

= −εm
∂ui

∂ν
.

(1.10)

Lemma 1.4.1. The operator SA
Ω : H− 1

2 (∂Ω) → H
1
2 (∂Ω) is invertible. More-

over, we have the jump formula

ν ·A∇SA
Ω

∣∣∣
±
= ±1

2
Id+ (KA

Ω)
∗
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with

(KA
Ω)

∗[ϕ](x) =
∫

∂Ω
−

(
x− y, ν(x)

)

4π
√

det(A)|A∗(x− y)|3
ϕ(y)dσ(y).

Proof. Let TA∗ ∈ L(Hs(∂Ω̃), Hs(∂Ω)) be such that TA∗ [ϕ](x) = ϕ(A∗x) for
ϕ ∈ Hs(∂Ω̃) and Ω̃ = A∗Ω. Let rν ∈ L(Hs(∂Ω), Hs(∂Ω)) be such that
rν [ϕ](x) = |A−1

∗ ν(x)|ϕ(x). It follows by the change of variables ỹ = A∗y
that dσ(ỹ) = det

√
A∗|A−1

∗ ν(y)|dσ(y). Thus,

SA
Ω = TA∗SΩ̃

T −1
A∗
r−1
ν ,

and in particular SA
Ω is invertible and its inverse (SA

Ω )
−1 = rνTA∗S−1

Ω̃
T −1
A∗

.
Note that, for x ∈ ∂Ω,

ν̃(x̃) =
A−1

∗ ν(x)

|A−1
∗ ν(x)|

,

where ν̃(x̃) is the outward normal to ∂Ω̃ at x̃ = A∗x. We have

ν ·A∇SA
Ω

∣∣∣
±

= ν ·A∇x

(
TA∗SΩ̃

T −1
A∗
r−1
ν

)∣∣∣
±

= ν ·AA∗
(
TA∗∇x̃SΩ̃

T −1
A∗
r−1
ν

)∣∣∣
±

= |A−1
∗ ν|ν̃ ·

(
TA∗∇x̃SΩ̃

T −1
A∗
r−1
ν

)∣∣∣
±

= ±1

2
Id+ (rνTA∗)K∗

Ω̃
(rνTA∗)

−1. (1.11)

The result follows from a change of variables in the expression of the operator

(KA
Ω)

∗ := (rνTA∗)K∗
Ω̃
(rνTA∗)

−1.

Lemma 1.4.2. SA
Ω is negative definite for the duality pairing (·, ·)− 1

2
, 1
2

and

we can define a new inner product

(u, v)H∗
A
= −(u,SA

Ω [v])− 1
2
, 1
2

with which H∗
A(∂Ω), the space induced by (·, ·)H∗

A
, is equivalent to H− 1

2 (∂Ω).

Proof. Let ϕ ∈ H− 1
2 (∂Ω). Using Lemma 1.4.1, we have

ϕ = ν ·A∇SA
Ω [ϕ]

∣∣∣
+
− ν ·A∇SA

Ω [ϕ]
∣∣∣
−
.
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Thus
∫

∂Ω
ϕ(x)SA

Ω [ϕ](x)dσ(x)

=

∫

∂Ω
ν ·A∇SA

Ω [ϕ]
∣∣∣
+
(x)SA

Ω [ϕ](x)dσ(x)−
∫

∂Ω
ν ·A∇SA

Ω [ϕ]
∣∣∣
−
(x)SA

Ω [ϕ](x)dσ(x)

= −
∫

R3\Ω̄
∇SA

Ω [ϕ](x) ·A∇SA
Ω [ϕ](x)dσ(x)−

∫

R3\Ω̄
SA
Ω [ϕ](x)∇ ·A∇SA

Ω [ϕ](x)dσ(x)

−
∫

Ω
∇SA

Ω [ϕ](x) ·A∇SA
Ω [ϕ](x)dσ(x) +

∫

Ω
SA
Ω [ϕ](x)∇ ·A∇SA

Ω [ϕ](x)dσ(x)

= −
∫

R3

∇SA
Ω [ϕ](x) ·A∇SA

Ω [ϕ](x)dσ(x) ≤ 0,

where the equality is achieved if and only if ϕ = 0. Here we have used
an integration by parts, the fact that SA

Ω [ϕ](x) = O(|x|−1) as |x| → ∞,
∇ ·A∇SA

Ω [ϕ](x) = 0 for x ∈ R
3\∂Ω and that A is positive-definite.

In the same manner, it is known that

‖ϕ‖2H∗ = −
∫

∂Ω
ϕ(x)SΩ[ϕ](x)dσ(x) =

∫

R3

|∇SΩ[ϕ](x)|2dσ(x).

Since A is positive-definite we have

c‖ϕ‖2H∗ ≤ −
∫

∂Ω
ϕ(x)SA

Ω [ϕ](x)dσ(x) ≤ C‖ϕ‖2H∗

for some constants c, C > 0.
Using the fact that H∗(∂Ω) is equivalent to H− 1

2 (∂Ω), we get the desired
result.

From (1.10) we have φ = (SA
Ω )

−1(SΩ[ψ] + ui), whereas, by Lemma 1.4.1,
the following equation holds for ψ:

QA[ψ] = F (1.12)

with

QA =
1

2

(
εmId+ (SA

Ω )
−1SΩ

)
+
(
εmK∗

Ω − (KA
Ω)

∗(SA
Ω )

−1SΩ

)
, (1.13)

and

F = −εm
∂ui

∂ν
+ ν ·A∇SA

Ω [(SA
Ω )

−1ui]
∣∣∣
−
.

Propsition 1.4.1. QA has a countable number of eigenvalues.

Proof. It is clear that (KA
Ω)

∗ : H− 1
2 (∂Ω) → H− 1

2 (∂Ω) is a compact operator.
Hence, εmK∗

Ω − (KA
Ω)

∗(SA
Ω )

−1SΩ is compact as well. Therefore, only the
invertibility of 1

2

(
εmId+ (SA

Ω )
−1SΩ

)
needs to be proven.

Since SA
Ω is invertible, the invertibility of 1

2

(
εmId+ (SA

Ω )
−1SΩ

)
is equivalent

to that of εmSA
Ω + SΩ.

Consider now, the bilinear form, for (ϕ, ψ) ∈ (H− 1
2 (∂Ω))2

B(ϕ, ψ) = −εm
∫

∂Ω
ϕ(x)SA

Ω [ψ](x)dσ(x)−
∫

∂Ω
ϕ(x)SΩ[ψ](x)dσ(x),
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where εm > 0. From Lemma 1.4.2, we have

B(ψ, ψ) ≥ c‖ψ‖2
H− 1

2 (∂Ω)

for some constant c > 0.
It follows then, from the Lax-Milgram theorem that εmSA

Ω + SΩ is invertible

in H− 1
2 (∂Ω), whence the result.

Recall that the electromagnetic parameter of the problem, A, depends on
the frequency, ω of the incident field. Therefore the operator QA is frequency
dependent and we should write QA(ω).
We say that ω is a plasmonic resonance if

|eigj(QA(ω))| ≪ 1 and is locally minimal for some j ∈ N,

where eigj(QA(ω)) stands for the j-th eigenvalue of QA(ω).
Equivalently, we can say that ω is a plamonic resonance if

ω = argmax
ω

‖Q−1
A (ω)‖L(H∗(∂Ω)). (1.14)

From now on, we suppose that A is an anisotropic perturbation of an
isotropic parameter, i.e., A = εc(Id+ P ), with P being a symmetric matrix
and ‖P‖ ≪ 1.

Lemma 1.4.3. Let A = εc(Id + δR), with R being a symmetric matrix,
‖R‖ = O(1) and δ ≪ 1. Let Tr denote the trace of a matrix. Then, as
δ → 0, we have the following asymptotic expansions:

SA
Ω =

1

εc

(
SΩ + δSΩ,1 + o(δ)

)
,

(SA
Ω )

−1 = εc
(
S−1
Ω + δBΩ,1 + o(δ)

)
,

(KA
Ω)

∗ = K∗
Ω + δK∗

Ω,1 + o(δ)

with

SΩ,1[ϕ](x) = −1

2
Tr(R)SΩ[ϕ](x)−

1

2

∫

∂Ω

(
R(x− y), x− y

)

4π|x− y|3 ϕ(y)dσ(y),

BΩ,1 = −S−1
Ω SΩ,1S−1

Ω ,

K∗
Ω,1 = −1

2
Tr(R)K∗

Ω[ϕ](x)−
3

2

∫

∂Ω

(
R(x− y), x− y

)(
x− y, ν(x)

)

4π|x− y|5 ϕ(y)dσ(y).

Proof. Recall that, for δ small enough,

√
(I + δR)−1 = Id− δ

2
R+O(δ2),

det(I + δR) = = 1 + δTr(R) + o(δ),

(1 + δx+ o(δ))s = 1 + δsx+ o(δ), s ∈ R.

The results follow then from asymptotic expansions of − 1

4π
√

det(A)|A∗x|β
,

β = 1, 3 and the identity

(SA
Ω )

−1 = εc(Id+ δS−1
Ω SΩ,1 + o(δ))−1S−1

Ω .
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Plugging the expressions above into the expression of QA we get the
following result.

Lemma 1.4.4. As δ → 0, the operator QA has the following asymptotic
expansion

QA = QA,0 + δQA,1 + o(δ),

where

QA,0 =
εm + εc

2
Id+ (εm − εc)K∗

Ω,

QA,1 = εc
(
(
1

2
Id−K∗

Ω)BΩ,1SΩ −K∗
Ω,1

)
.

We regard the operator QA as a perturbation of QA,0. As in section 3.3,
we use the standard perturbation theory to derive the perturbed eigenvalues
and eigenvectors in H∗(∂Ω).

Let (λj , ϕj) be the eigenvalue and normalized eigenfunction pairs of K∗
Ω

in H∗(∂Ω) and τj the eigenvalues of QA,0. We have

τj =
εm + εc

2
+ (εm − εc)λj .

For simplicity, we consider the case when λj is a simple eigenvalue of the
operator K∗

Ω. Define

Pj,l = (QA,1[ϕj ], ϕl)H∗ .

As δ → 0, the perturbed eigenvalue and eigenfunction have the following
form:

τj(δ) = τj + δτj,1 + o(δ),

ϕj(δ) = ϕj + δϕj,1 + o(δ),

where

τj,1 = Pjj ,

ϕj,1 =
∑

l 6=j

Pjl(
εm − εc

)
(λj − λl)

ϕl.

1.5 A Maxwell-Garnett theory for plasmonic nanopar-
ticles

In this subsection we derive effective properties of a system of plasmonic
nanoparticles. To begin with, we consider a bounded and simply connected
domain Ω ⋐ R

3 of class C1,α for 0 < α < 1, filled with a composite material
that consists of a matrix of constant electric permittivity εm and a set of
periodically distributed plasmonic nanoparticles with (small) period η and
electric permittivity εc.
Let Y =] − 1/2, 1/2[3 be the unit cell and denote δ = ηβ for β > 0. We set
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the (re-scaled) periodic function

γ = εmχ(Y \D̄) + εcχ(D),

where D = δB with B ⋐ R
3 being of class C1,α and the volume of B, |B|, is

assumed to be equal to 1. Thus, the electric permittivity of the composite is
given by the periodic function

γη(x) = γ(x/η),

which has period η. Now, consider the problem

∇ · γη∇uη = 0 in Ω, (1.15)

with an appropriate boundary condition on ∂Ω. Then, there exists a homo-
geneous, generally anisotropic, permittivity γ∗, such that the replacement,
as η → 0, of the original equation (1.15) by

∇ · γ∗∇u0 = 0 in Ω

is a valid approximation in a certain sense. The coefficient γ∗ is called an
effective permittivity. It represents the overall macroscopic material property
of the periodic composite made of plasmonic nanoparticles embedded in an
isotropic matrix.

The (effective) matrix γ∗ = (γ∗pq)p,q=1,2,3 is defined by [18]

γ∗pq =
∫

Y
γ(x)∇up(x) · ∇uq(x)dx,

where up, for p = 1, 2, 3, is the unique solution to the cell problem





∇ · γ∇up = 0 in Y,

up − xp periodic (in each direction) with period 1,
∫
Y up(x)dx = 0.

(1.16)

Using Green’s formula, we can rewrite γ∗ in the following form:

γ∗pq = εm

∫

∂Y
uq(x)

∂up
∂ν

(x)dσ(x). (1.17)

The matrix γ∗ depends on η as a parameter and cannot be written explicitly.
The following lemmas are from [18].

Lemma 1.5.1. For p = 1, 2, 3, problem (1.16) has a unique solution up of
the form

up(x) = xp + Cp + SD♯(λεId−K∗
D♯)

−1[νp](x) in Y,
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where Cp is a constant, νp is the p-component of the outward unit normal to
∂D, λε is defined by (3.17), and

SD♯[ϕ](x) =

∫

∂D
G♯(x, y)ϕ(y)dσ(y),

K∗
D♯[ϕ](x) =

∫

∂D

∂G♯(x, y)

∂ν(x)
ϕ(y)dσ(y)

with G♯(x, y) being the periodic Green function defined by

G♯(x, y) = −
∑

n∈Z3\{0}

ei2πn·(x−y)

4π2|n|2 .

Lemma 1.5.2. Let SD♯ and K∗
D♯ be the operators defined as in Lemma 1.5.1.

Then the following trace formula holds on ∂D

(±1

2
Id+K∗

D♯)[ϕ] =
∂SD♯[ϕ]

∂ν

∣∣∣
±
.

For the sake of simplicity, for p = 1, 2, 3, we set

φp(y) = (λεId−K∗
D♯)

−1[νp](y) for y in ∂D. (1.18)

Thus, from Lemma 1.5.1, we get

γ∗pq = εm

∫

∂Y

(
yq + Cq + SD♯[φq](y)

)∂
(
yp + SD♯[φp](y)

)

∂ν
dσ(y).

Because of the periodicity of SD♯[φp], we get

γ∗pq = εm

(
δpq +

∫

∂Y
yq
∂SD♯[φp]

∂ν
(y)dσ(y)

)
. (1.19)

In view of the periodicity of SD♯[φp], the divergence theorem applied on Y \D̄
and Lemma 1.5.2 yields (see [18])

∫

∂Y
yq
∂SD♯[φp]

∂ν
(y) =

∫

∂D
yqφp(y)dσ(y).

Let

ψp(y) = φp(δy) for y ∈ ∂B.

Then, by (1.19), we obtain

γ∗ = εm(Id+ fP ), (1.20)

where f = |D| = δ3(= η3β) is the volume fraction of D and P = (Ppq)p,q=1,2,3

is given by

Ppq =

∫

∂B
yqψp(y)dσ(y). (1.21)

To proceed with the computation of P we will need the following Lemma [18].
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Lemma 1.5.3. There exists a smooth function R(x) in the unit cell Y such
that

G♯(x, y) = − 1

4π|x− y| +R(x− y).

Moreover, the Taylor expansion of R(x) at 0 is given by

R(x) = R(0)− 1

6
(x21 + x22 + x23) +O(|x|4).

Now we can prove the main result of this section, which shows the validity
of the Maxwell-Garnett theory uniformly with respect to the frequency under
the assumptions that

f ≪ dist(λε(ω), σ(K∗
B))

3/5 and (Id− δ3R−1
λε(ω)

T0)
−1 = O(1), (1.22)

where R−1
λε(ω)

and T0 are to be defined and dist(λε(ω), σ(K∗
D)) is the distance

between λε(ω) and the spectrum of K∗
B.

Theorem 1.5.1. Assume that (1.22) holds. Then we have

γ∗ = εm
(
Id+ fM(Id− f

3
M)−1

)
+O

( f8/3

dist(λε(ω), σ(K∗
B))

2

)
, (1.23)

uniformly in ω. Here, M = M(λε(ω), B) is the polarization tensor (3.36)
associated with B and λε(ω).

Proof. In view of Lemma 1.5.3 and (1.18), we can write, for x ∈ ∂D,

(λε(ω)Id−K∗
D)[φp](x)−

∫

∂D

∂R(x− y)

∂ν(x)
φp(y)dσ(y) = νp(x),

which yields, for x ∈ ∂B,

(λε(ω)Id−K∗
B)[ψp](x)− δ2

∫

∂B

∂R(δ(x− y))

∂ν(x)
ψp(y)dσ(y) = νp(x).

By virtue of Lemma 1.5.3, we get

∇R(δ(x− y)) = −δ
3
(x− y) +O(δ3)

uniformly in x, y ∈ ∂B. Since
∫
∂B ψp(y)dσ(y) = 0, we now have

(Rλε(ω) − δ3T0 + δ5T1)[ψp](x) = νp(x),

and so

(Id− δ3R−1
λε(ω)

T0 + δ5R−1
λε(ω)

T1)[ψp](x) = R−1
λε(ω)

[νp](x), (1.24)

where

Rλε(ω)[ψp](x) = (λε(ω)Id−K∗
B)[ψp](x),

T0[ψp](x) =
ν(x)

3
·
∫

∂B
yψp(y)dσ(y),

‖T1‖L(H∗(∂B)) = O(1).
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Since K∗
B is a compact self-adjoint operator in H∗(∂B) it follows that [50]

‖(λε(ω)Id−K∗
B)

−1‖L(H∗(∂B)) ≤
c

dist(λε(ω), σ(K∗
B))

(1.25)

for a constant c.
It is clear that T0 is a compact operator. From the fact that the imaginary
part of Rλε(ω) is nonzero, it follows that Id− δ3R−1

λε(ω)
T0 is invertible.

Under the assumption that

(Id− δ3R−1
λε(ω)

T0)
−1 = O(1),

δ5 ≪ dist(λε(ω), σ(K∗
B)),

we get from (1.24) and (1.25)

ψp(x) = (Id− δ3R−1
λε(ω)

T0 + δ5R−1
λε(ω)

T1)
−1R−1

λε(ω)
[νp](x),

= (Id− δ3R−1
λε(ω)

T0)
−1R−1

λε(ω)
[νp](x) +O

( δ5

dist(λε(ω), σ(K∗
B))

)
.

Therefore, we obtain the estimate for ψp

ψp = O
( 1

dist(λε(ω), σ(K∗
B))

)
.

Now, we multiply (1.24) by yq and integrate over ∂B. We can derive from
the estimate of ψp that

P (Id− f

3
M) =M +O

( δ5

dist(λε(ω), σ(K∗
B))

2

)
,

and therefore,

P =M(Id+
f

3
M)−1 +O

( δ5

dist(λε(ω), σ(K∗
B))

2

)

with P being defined by (1.21). Since f = δ3 and

M = O
( δ3

dist(λε(ω), σ(K∗
B))

)
,

it follows from (1.20) that the Maxwell-Garnett formula (1.23) holds (uni-
formly in the frequency ω) under the assumption (1.22) on the volume frac-
tion f .

Remark 1.5.1. As a corollary of Theorem 1.5.1, we see that in the case when

fM = O(1), which is equivalent to the scale f = O
(
dist(λε(ω), σ(K∗

B))
)
, the

matrix fM(Id − f
3M)−1 may have a negative-definite symmetric real part.

This implies that the effective medium is plasmonic as well as anisotropic.

Remark 1.5.2. It is worth emphasizing that Theorem 1.5.1 does not only
prove the validity of the Maxwell-Garnett theory but it can also be used to-
gether with the results in section 1.4 in order to derive the plasmonic reso-
nances of the effective medium made of a dilute system of arbitrary-shaped
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plasmonic nanoparticles, following (1.14)

ω = argmax
ω

‖Q−1
γ∗ (ω)‖L(H∗(∂Ω)).

1.6 Concluding remarks

In this chapter we have analyzed the plasmonic resonance phenomena as-
suming a quasi-static approximation, which is valid for particles consider-
ably smaller than the wavelength of the incoming wave. We have presented
a rigorous mathematical framework for its analysis, given beforehand the
necessary mathematical tools, relying mainly in layer potential techniques.
The plasmonic resonances depend strongly in the spectral properties of the
Neumann-Poincaré operator K∗

D associated with D. We remark that this
operator is scale invariant. This imply that the quasi-static model cannot
explain changes in the resonances given by the scaling of nanoparticiles. This
problem is analyzed in chapter 2 and 3 with the study of Helmholtz and
Maxwell equations, respectively

We have also studied the anisotropic quasi-static problem in terms of layer
potentials and defined the plasmonic resonances for anisotropic nanoparticles.
Formulas for a small anisotropic perturbation of resonances of the isotropic
formulas have been derived.

The Maxwell-Garnett theory provides a simple model for calculating the
macroscopic optical properties of materials with a dilute inclusion of spher-
ical nanoparticles [18]. In this chapter we have rigorously obtained effective
properties of a periodic arrangement of arbitrary-shaped nanoparticles and
derived a condition on the volume fraction of the nanoparticles that insures
the validity of the Maxwell-Garnett theory for predicting the effective op-
tical properties of systems of embedded in a dielectric host material at the
plasmonic resonances.
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2.1 Introduction

As seen in chapter 1, plasmon resonances in nanoparticles can be treated at
the quasi-static limit as an eigenvalue problem for the Neumann-Poincaré
integral operator. This leads to direct calculation of resonance values of
permittivity and optimal design of nanoparticles that resonate at specified
frequencies. At this limit, they are size-independent. However, as the particle
size increases, they are determined from scattering and absorption blow up
and become size-dependent. This was experimentally observed, for instance,
in [49, 81,89].

In this chapter, using the Helmholtz equation to model light propaga-
tion, we first prove that, as the particle size increases and crosses its critical
value for dipolar approximation which is justified in [9], the plasmonic reso-
nances become size-dependent. The resonance condition is determined from
absorption and scattering blow up and depends on the shape, size and elec-
tromagnetic parameters of both the nanoparticle and the surrounding ma-
terial. Then, we precisely quantify the scattering absorption enhancements
in plasmonic nanoparticles. We derive new bounds on the enhancement fac-
tors given the volume and electromagnetic parameters of the nanoparticles.
At the quasi-static limit, we prove that the averages over the orientation of
scattering and extinction cross-sections of a randomly oriented nanoparticle
are given in terms of the imaginary part of the polarization tensor. More-
over, we show that the polarization tensor blows up at plasmonic resonances
and derive bounds for the absorption and scattering cross-sections. We also
prove the blow-up of the first-order scattering coefficients at plasmonic res-
onances. The concept of scattering coefficients was introduced in [20] for
scalar wave propagation problems and in [21] for the full Maxwell equations,
rendering a powerful and efficient tool for the classification of the nanoparti-
cle shapes. Using such a concept, we have explained in [6] the experimental
results reported in [35].

The chapter is organized as follows. In section 2.3 we introduce a layer
potential formulation for plasmonic resonances and derive asymptotic formu-
las for the plasmonic resonances and the near- and far-fields in terms of the
size. In section 7.2 we consider the case of multiple plasmonic nanoparticles.
Section 6.3 is devoted to the study of the scattering and absorption enhance-
ments. The scattering coefficients are simply the Fourier coefficients of the
scattering amplitude [20, 21]. In section 6.4 we investigate the behavior of
the scattering coefficients at the plasmonic resonances.

2.2 Preliminaries

2.2.1 Layer potentials for the Helmholtz equation

Let G be the Green function for the Helmholtz operator ∆ + k2 satisfying
the Sommerfeld radiation condition.

The Sommerfeld radiation condition can be expressed in dimension d =
2, 3, as follows: ∣∣∣∣

∂u

∂|x| − ikmu

∣∣∣∣ ≤ C|x|−(d+1)/2

as |x| → +∞ for some constant C independent of x.
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In R
3, G is given by

G(x, y, k) = − eik|x−y|

4π|x− y| .

The single-layer potential and the Neumann-Poincaré integral operator for
the Helmholtz equation are defined as follows

Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ R

3,

(Kk
D)

∗[ϕ](x) =
∫

∂D

∂G(x, y, k)

∂ν(x)
ϕ(y)dσ(y), x ∈ ∂D,

Let us recall some well known properties [12]:

(i) Sk
D : H− 1

2 (∂D) → H
1
2 (∂D), H1

loc(R
2\∂D) is bounded;

(ii) (∆ + k2)Sk
D[ϕ](x) = 0 for x ∈ R

2\∂D, ϕ ∈ H− 1
2 (∂D);

(iii) (Kk
D)

∗ : H− 1
2 (∂D) → H− 1

2 (∂D) is compact;

(iv) Sk
D[ϕ], ϕ ∈ H− 1

2 (∂D), satisfies the Sommerfeld radiation condition at
infinity;

(v)
∂Sk

D[ϕ]

∂ν

∣∣∣
±
= (±1

2I + (Kk
D)

∗)[ϕ].

We have that, for any ψ, φ ∈ H− 1
2 (∂D),

u :=

{
ui + Skm

D [ψ], x ∈ R
2\D,

Skc
D [φ], x ∈ D,

(2.1)

with km = ω
√
εmµm and kc = ω

√
εcµc, satisfies ∆u + k2mu = 0 in R

2\D̄,
∆u+ k2cu = 0 in D and u− ui satisfies the Sommerfeld radiation condition.

To satisfy the boundary transmission conditions, ψ, φ ∈ H− 1
2 (∂D) need

to satisfy the following system of integral equations on ∂D





Skm
D [ψ]− Skc

D [φ] = −ui,

1
εm

(
1
2I + (Kkm

D )∗
)
[ψ] + 1

εc

(
1
2I − (Kkc

D )∗
)
[φ] = − 1

εm

∂ui

∂ν
.

(2.2)

The following result shows the existence of such a representation [19].

Theorem 2.2.1. The operator

T :
(
H− 1

2 (∂D)
)2

→ H
1
2 (∂D)×H− 1

2 (∂D)

(ψ, φ) 7→
(
Skm
D [ψ]− Skc

D [φ],
1

εm

(1
2
I + (Kkm

D )∗
)
[ψ] +

1

εc

(1
2
I − (Kkc

D )∗
)
[φ]

)

is invertible.
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2.3 Layer potential formulation for the scattering
problem

2.3.1 Problem formulation and some basic results

We consider the scattering problem of a time-harmonic wave incident on a
plasmonic nanoparticle. We use the Helmholtz equation instead of the full
Maxwell equations. The homogeneous medium is characterized by its electric
permittivity εm and its magnetic permeability µm, while the particle occupy-
ing a bounded and simply connected domain D ⋐ R

3 (the two-dimensional
case can be treated similarly using results from Appendix B.3) of class C1,α

for some 0 < α < 1 is characterized by electric permittivity εc and magnetic
permeability µc, both of which may depend on the frequency. Assume that
ℜµc < 0,ℑµc > 0,ℑεc > 0, and define

km = ω
√
εmµm, kc = ω

√
εcµc,

and
εD = εmχ(R

3\D̄) + εcχ(D̄), µD = εmχ(R
3\D̄) + εcχ(D),

where χ denotes the characteristic function. Let ui(x) = eikmd·x be the
incident wave. Here, ω is the frequency and d is the unit incidence direction.
Throughout this chapter, we assume that εm and µm are real and strictly
positive and that ℑkc > 0.

Using dimensionless quantities, we assume that the particle D has size of
order one and also the following condition holds.

Condition 2.1. We assume that the numbers εm, µm, εc, µc are dimension-
less and are of order one. In addition, ℑµc = o(1). We also assume that ω
is dimensionless and is of order o(1).

It is worth emphasizing that in this section the variables ω refers to
the ratio between the size of the particle and the incident wavelength. For
real plasmonic nanoparticles made of noble metals such as silver and gold,
their electric permittivity is only negative over a small range of frequencies
in the optical regime. This is also the frequency range in which Condition
2.1 holds and also plasmonic resonance occurs. For the frequencies that are
beyond that range, especially those near the origin, we shall assume that εc
and µc are constant there. This assumption avoids complicated discussion
on the dispersive property of electromagnetic parameters in that regime,
and enables us to focus on the interesting frequency range when plasmonic
resonance occurs. We also note that ω = o(1) implies that the plamsmonic
nanoparticles have size much smaller than the incident wavelength. This is
the case when plamsonic resonance occurs.

The scattering problem can be modeled by the following Helmholtz equa-
tion





∇ · 1

µD
∇u+ ω2εDu = 0 in R

3\∂D,

u+ − u− = 0 on ∂D,

1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

(2.3)
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Here, ∂/∂ν denotes the normal derivative and the Sommerfeld radiation con-
dition.

The model problem (2.3) is referred to as the transverse magnetic case.
Note that all the results of this chapter hold true in the transverse electric
case where εD and µD are interchanged.

Let

F1(x) = −ui(x) = −eikmd·x,

F2(x) = − 1

µm

∂ui

∂ν
(x) = − i

µm
kme

ikmd·xd · ν(x)

with ν(x) being the outward normal at x ∈ ∂D.
By using the following single-layer potential and Neumann-Poincaré in-

tegral operator of section 2.2 we can represent the solution u in the following
form

u(x) =

{
ui + Skm

D [ψ], x ∈ R
3\D̄,

Skc
D [φ], x ∈ D,

(2.4)

where ψ, φ ∈ H− 1
2 (∂D) satisfy the following system of integral equations on

∂D [12]:

{
Skm
D [ψ]− Skc

D [φ] = F1,

1
µm

(
1
2Id+ (Kkm

D )∗
)
[ψ] + 1

µc

(
1
2Id− (Kkc

D )∗
)
[φ] = F2,

(2.5)

where Id denotes the identity operator. In the sequel, we set S0
D = SD.

We are interested in the scattering in the quasi-static regime, i.e., for
ω ≪ 1. Note that for ω small enough, Skc

D is invertible [12]. We have

φ = (Skc
D )−1

(
Skm
D [ψ]− F1

)
, whereas the following equation holds for ψ

AD(ω)[ψ] = f, (2.6)

where

AD(ω) =
1

µm

(1
2
Id+ (Kkm

D )∗
)
+

1

µc

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1Skm
D , (2.7)

f = F2 +
1

µc

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1[F1]. (2.8)

It is clear that

AD(0) = AD,0 =
1

µm

(1
2
Id+K∗

D

)
+

1

µc

(1
2
Id−K∗

D

)
=
( 1

2µm
+

1

2µc

)
Id−

( 1
µc

− 1

µm

)
K∗

D,

(2.9)
where the notation K∗

D = (K0
D)

∗ is used for simplicity.
We are interested in finding AD(ω)

−1. We first recall some basic facts
about the Neumann-Poincaré operator K∗

D stated in chaper 1. See also [12,
32,61,65].

Lemma 2.3.1. (i) The following Calderón identity holds: KDSD = SDK∗
D;

(ii) The operator K∗
D is self-adjoint in the Hilbert space H− 1

2 (∂D) equipped
with the following inner product

(u, v)H∗ = −(u,SD[v])− 1
2
, 1
2

(2.10)
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with (·, ·)− 1
2
, 1
2

being the duality pairing between H− 1
2 (∂D) and H

1
2 (∂D),

which is equivalent to the original one;

(iii) Let H∗(∂D) be the space H− 1
2 (∂D) with the new inner product. Let

(λj , ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunction
pair of K∗

D in H∗(∂D), then λj ∈ (−1
2 ,

1
2 ] and λj → 0 as j → ∞;

(iv) The following trace formula holds: for any ψ ∈ H∗(∂D),

(−1

2
Id+K∗

D)[ψ] =
∂SD[ψ]

∂ν

∣∣∣
−
;

(v) The following representation formula holds: for any ψ ∈ H−1/2(∂D),

K∗
D[ψ] =

∞∑

j=0

λj(ψ,ϕj)H∗ ⊗ ϕj .

It is clear that the following result holds.

Lemma 2.3.2. Let H(∂D) be the space H
1
2 (∂D) equipped with the following

equivalent inner product

(u, v)H = ((−SD)
−1[u], v)− 1

2
, 1
2
. (2.11)

Then, SD is an isometry between H∗(∂D) and H(∂D).

We now present other useful observations and basic results. The following
holds.

Lemma 2.3.3. (i) We have (−1
2Id+K∗

D)S−1
D [1] = 0.

(ii) Let λ0 =
1
2 . Then the corresponding eigenspace has dimension one and

is spanned by the function ϕ0 = cS−1
D [1] for some constant c such that

||ϕ0||H∗ = 1.

(iii) Moreover, H∗(∂D) = H∗
0(∂D) ⊕ {µϕ0, µ ∈ C}, where H∗

0(∂D) is the
zero mean subspace of H∗(∂D) and ϕj ∈ H∗

0(∂D) for j ≥ 1, i.e.,
(ϕj , 1)− 1

2
, 1
2
= 0 for j ≥ 1. Here, {ϕj}j is the set of normalized eigen-

functions of K∗
D.

From (2.9), it is easy to see that

AD,0[ψ] =

∞∑

j=0

τj(ψ, ϕj)H∗ϕj , (2.12)

where

τj =
1

2µm
+

1

2µc
−
( 1
µc

− 1

µm

)
λj . (2.13)

From (2.9), it is easy to see that

AD,0[ψ] =

∞∑

j=0

τj(ψ, ϕj)H∗ϕj , (2.14)
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where

τj =
1

2µm
+

1

2µc
−
( 1
µc

− 1

µm

)
λj . (2.15)

We now derive the asymptotic expansion of the operator A(ω) as ω → 0.
Using the asymptotic expansions in terms of k of the operators Sk

D, (Sk
D)

−1

and (Kk
D)

∗ proved in Appendix B.1, we can obtain the following result.

Lemma 2.3.4. As ω → 0, the operator AD(ω) : H∗(∂D) → H∗(∂D) admits
the asymptotic expansion

AD(ω) = AD,0 + ω2AD,2 +O(ω3),

where

AD,2 = (εm − εc)KD,2 +
εmµm − εcµc

µc
(
1

2
Id−K∗

D)S−1
D SD,2. (2.16)

Proof. Recall that

AD(ω) =
1

µm

(1
2
Id+ (Kkm

D )∗
)
+

1

µc

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1Skm
D . (2.17)

By a straightforward calculation, it follows that

(Skc
D )−1Skm

D = Id+ ω
(√
εcµcBD,1SD +

√
εmµmS−1

D SD,1

)
+

ω2
(
εcµcBD,2SD +

√
εcµcεmµmBD,1SD,1 + εmµmS−1

D SD,2

)
+O(ω3),

= Id+ ω
(√
εmµm −√

εcµc
)
S−1
D SD,1 +

ω2
(
(εmµm − εcµc)S−1

D SD,2 +
√
εcµc(

√
εcµc −

√
εmµm)S−1

D SD,1S−1
D SD,1

)

+O(ω3),

where BD,1 and BD,2 are defined by (B.5). Using the facts that

(1
2
Id−K∗

D

)
S−1
D SD,1 = 0

and
1

2
Id− (Kk

D)
∗ =

(1
2
Id−K∗

D

)
− k2KD,2 +O(k3),

the lemma immediately follows.

We regard AD(ω) as a perturbation to the operator AD,0 for small ω.
Using standard perturbation theory [85], we can derive the perturbed eigen-
values and their associated eigenfunctions. For simplicity, we consider the
case when λj is a simple eigenvalue of the operator K∗

D.
We let

Rjl =
(
AD,2[ϕj ], ϕl

)
H∗ , (2.18)

where AD,2 is defined by (2.16).
As ω goes to zero, the perturbed eigenvalue and eigenfunction have the

following form:

τj(ω) = τj + ω2τj,2 +O(ω3), (2.19)

ϕj(ω) = ϕj + ω2ϕj,2 +O(ω3), (2.20)
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where

τj,2 = Rjj , (2.21)

ϕj,2 =
∑

l 6=j

Rjl(
1
µm

− 1
µc

)
(λj − λl)

ϕl. (2.22)

2.3.2 First-order correction to plasmonic resonances and field

behavior at the plasmonic resonances

We first introduce different notions of plasmonic resonance as follows.

Definition 2.1. (i) We say that ω is a plasmonic resonance if

|τj(ω)| ≪ 1 and is locally minimal for some j.

(ii) We say that ω is a quasi-static plasmonic resonance if |τj | ≪ 1 and is
locally minimized for some j. Here, τj is defined by (2.15).

(iii) We say that ω is a first-order corrected quasi-static plasmonic resonance
if |τj + ω2τj,2| ≪ 1 and is locally minimized for some j. Here, the
correction term τj,2 is defined by (2.21).

Note that quasi-static resonances are size independent and is therefore a
zero-order approximation of the plasmonic resonance in terms of the particle
size while the first-order corrected quasi-static plasmonic resonance depends
on the size of the nanoparticle (or equivalently on ω in view of the non-
dimensionalization adopted herein).

We are interested in solving the equation AD(ω)[φ] = f when ω is close
to the resonance frequencies, i.e., when τj(ω) is very small for some j’s. In
this case, the major part of the solution would be the contributions of the
excited resonance modes ϕj(ω). We introduce the following definition.

Definition 2.2. We call J ⊂ N index set of resonance if τj’s are close to
zero when j ∈ J and are bounded from below when j ∈ Jc. More precisely,
we choose a threshold number η0 > 0 independent of ω such that

|τj | ≥ η0 > 0 for j ∈ Jc.

Remark 2.3.1. Note that for j = 0, we have τ0 = 1/µm, which is of size one
by our assumption. As a result, throughout this chapter, we always exclude
0 from the index set of resonance J .

From now on, we shall use J as our index set of resonances. We assume
throughout that the following conditions hold.

Condition 2.2. Each eigenvalue λj for j ∈ J is a simple eigenvalue of the
operator K∗

D.

Condition 2.3. Let

λ =
µm + µc

2(µm − µc)
. (2.23)

We assume that λ 6= 0 or equivalently, µc 6= −µm.

Condition 2.3, which is crucial to our analysis, implies that the set J is
finite. Otherwise, infinity resonance modes may be excited and the problem
becomes unstable. We refer to [44,47,79] for detailed discussion on this case.
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Remark 2.3.2. Note that in the ideal case when ℑµc = 0, we know that
τj = 0 if λ defined in (2.23) is equal to λj. This the usual definition in the
quasi-static limiting case when the wavelength is infinite. In the case ℑµc 6= 0
but ℑµc = o(1), one may neglect the imaginary part and still use the definition
to find the resonance frequency. The draw back of this definition is that the
resonance frequency is independent of the size of the particle. Now, with
the asymptotic expansion (8.11), we may find ω, the resonance frequency,
according to the criterion in Definition 3.3 (i) in a small neighborhood of the
resonant frequency of the quasi-static limiting case. The difference of the two
frequency yields the shift of resonance frequency with respect to size of the
particle.

We now define the projection PJ(ω) such that

PJ(ω)[ϕj(ω)] =

{
ϕj(ω), j ∈ J,
0, j ∈ Jc.

In fact, we have

PJ(ω) =
∑

j∈J
Pj(ω) =

∑

j∈J

1

2πi

∫

γj

(ξ −AD(ω))
−1dξ, (2.24)

where γj is a Jordan curve in the complex plane enclosing only the eigenvalue
τj(ω) among all the eigenvalues.

To obtain an explicit representation of PJ(ω), we consider the adjoint
operator AD(ω)

∗. By a similar perturbation argument, we can obtain its
perturbed eigenvalue and eigenfunction, which have the following form

τ̃j(ω) = τj(ω), (2.25)

ϕ̃j(ω) = ϕj + ω2ϕ̃j,2 + o(ω2). (2.26)

Using the eigenfunctions ϕ̃j(ω), we can show that

PJ(ω)[x] =
∑

j∈J

(
x, ϕ̃j(ω)

)
H∗ϕj(ω). (2.27)

Throughout this chapter, for two Banach spaces X and Y , by L(X,Y ) we
denote the set of bounded linear operators from X into Y .

We are now ready to solve the equation AD(ω)[ψ] = f . First, it is clear
that

ψ = AD(ω)
−1[f ] =

∑

j∈J

(
f, ϕ̃j(ω)

)
H∗

τj(ω)
+AD(ω)

−1[PJc(ω)[f ]]. (2.28)

The following lemma holds.

Lemma 2.3.5. The norm ‖AD(ω)
−1PJc(ω)‖L(H∗(∂D),H∗(∂D)) is uniformly

bounded in ω for ω sufficiently small.

Proof. Consider the operator

AD(ω)|Jc : PJc(ω)H∗(∂D) → PJc(ω)H∗(∂D).
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For ω small enough, we can show that dist(σ(AD(ω)|Jc), 0) ≥ η0
2 , where

σ(AD(ω)|Jc) is the discrete spectrum of AD(ω)|Jc . Then, it follows that

‖AD(ω)
−1(PJc(ω)f)‖ = ‖

(
AD(ω)|PJc

)−1
(PJc(ω)f)‖ .

1

η0
exp(

C1

η20
)‖PJc(ω)f‖,

where the notation A . B means that A ≤ CB for some constant C.
On the other hand,

PJ(ω)f =
∑

j∈J

(
f, ϕ̃j(ω)

)
H∗ϕj(ω) =

∑

j∈J

(
f, ϕj +O(ω)

)
H∗

(
ϕj +O(ω)

)

=
∑

j∈J

(
f, ϕj

)
H∗ϕj(ω) +O(ω).

Thus,
‖PJc(ω)‖ = ‖(Id− PJ(ω))‖ . (1 +O(ω)),

from which the desired result follows immediately.

Second, we have the following asymptotic expansion of f given by (2.8)
with respect to ω.

Lemma 2.3.6. Let

f1 = −i√εmµmeikmd·z
(

1

µm
[d · ν(x)] + 1

µc

(1
2
Id−K∗

D

)
S−1
D [d · (x− z)]

)

and let z be the center of the domain D. In the space H∗(∂D), as ω goes to
zero, we have

f = ωf1 +O(ω2),

in the sense that, for ω small enough,

‖f − ωf1‖H∗ ≤ Cω2

for some constant C independent of ω.

Proof. A direct calculation yields

f = F2 +
1

µc

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1[F1]

= −ω i

µm

√
εmµme

ikmd·z[d · ν(x)] +O(ω2) +

1

µc

((1
2
Id−K∗

D

)(
(SD)

−1 + ωBD,1

)
+O(ω2)

)
[−eikmd·z(1 + iω

√
εmµm[d · (x− z)]

)

+O(ω2)]

= −e
ikmd·z

µc

(1
2
Id−K∗

D

)
S−1
D [1]− ωeikmd·z

µc

(1
2
Id−K∗

D

)
BD,1[1]−

ωi
√
εmµme

ikmd·z
(

1

µm
[d · ν(x)] + 1

µc

(1
2
Id−K∗

D

)
S−1
D [d · (x− z)]

)
+O(ω2)

= −ωi√εmµmeikmd·z
(

1

µm
[d · ν(x)] + 1

µc

(1
2
Id−K∗

D

)
S−1
D [d · (x− z)]

)

+O(ω2),
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where we have made use of the facts that

(1
2
Id−K∗

D

)
S−1
D [1] = 0

and
BD,1[χ(∂D)] = cS−1

D [χ(∂D)]

for some constant c; see again Appendix B.1.

Finally, we are ready to state our main result in this section.

Theorem 2.3.1. Let D has size of order one. Under Conditions 2.1, 2.2,
and 2.3 the scattered field us = u − ui due to a single plasmonic particle D
has the following representation:

us = Skm
D [ψ],

where

ψ =
∑

j∈J

ω
(
f1, ϕ̃j(ω)

)
H∗ϕj(ω)

τj(ω)
+O(ω),

=
∑

j∈J

ikme
ikmd·z(d · ν(x), ϕj

)
H∗ϕj +O(ω2)

λ− λj +O(ω2)
+O(ω)

with λ being given by (2.23).

Proof. We have

ψ =
∑

j∈J

(
f, ϕ̃j(ω)

)
H∗ϕj(ω)

τj(ω)
+AD(ω)

−1(PJc(ω)f),

=
∑

j∈J

ω
(
f1, ϕj

)
H∗ϕj +O(ω2)

1
2µm

+ 1
2µc

−
(

1
µc

− 1
µm

)
λj +O(ω2)

+O(ω).

We now compute
(
f1, ϕj

)
H∗ with f1 given in Lemma 2.3.6. We only need

to show that
((1

2
Id−K∗

D

)
S−1
D [d · (x− z)]

)
, ϕj

)

H∗

= (d · ν(x), ϕj)H∗ . (2.29)
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Indeed, we have

(
(
1

2
Id−K∗

D)S−1
D [d · (x− z)], ϕj

)
H∗

= −
(
S−1
D [d · (x− z)],

(1
2
Id−KD

)
SD[ϕj ]

)
− 1

2
, 1
2

= −
(
S−1
D [d · (x− z)],SD

(1
2
Id−K∗

D

)
[ϕj ]

)
− 1

2
, 1
2

= −
(
d · (x− z),

(1
2
Id−K∗

D

)
[ϕj ]

)
− 1

2
, 1
2

= −
(
d · (x− z),−∂SD[ϕj ]

∂ν

∣∣∣
−

)
− 1

2
, 1
2

=

∫

∂D

∂[d · (x− z)]

∂ν
SD[ϕj ]dσ

−
∫

D

(
∆[d · (x− z)]SD[ϕj ]−∆SD[ϕj ][d · (x− z)]

)
dx

= −
(
d · ν(x), ϕj

)
H∗
,

where we have used the fact that SD[ϕj ] is harmonic in D. This proves the
desired identity and the rest of the theorem follows immediately.

Corollary 2.3.1. Assume the same conditions as in Theorem 3.3.2. Under
the additional condition that

min
j∈J

|τj(ω)| ≫ ω3, (2.30)

we have

ψ =
∑

j∈J

ikme
ikmd·z(d · ν(x), ϕj

)
H∗ϕj +O(ω2)

λ− λj + ω2
(

1
µc

− 1
µm

)−1
τj,2

+O(ω).

More generally, under the additional condition that

min
j∈J

τj(ω) ≫ ωm+1,

for some integer m > 2, we have

ψ =
∑

j∈J

ikme
ikmd·z(d · ν(x), ϕj

)
H∗ϕj +O(ω2)

λ− λj + ω2
(

1
µc

− 1
µm

)−1
τj,2 + · · ·+ ωm

(
1
µc

− 1
µm

)−1
τj,m

+O(ω).

Re-scaling back to original dimensional variables, we suppose that the
magnetic permeability µc of the nanoparticle is changing with respect to the
operating angular frequency ω while that of the surrounding medium, µm, is
independent of ω. Then we can write

µc(ω) = µ′(ω) + iµ′′(ω). (2.31)
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Because of causality, the real and imaginary parts of µc obey the following
Kramer–Kronig relations:

µ′′(ω) = − 1

π
p.v.

∫ +∞

−∞

1

ω − s
µ′(s)ds,

µ′(ω) =
1

π
p.v.

∫ +∞

−∞

1

ω − s
µ′′(s)ds,

(2.32)

where p.v. stands for the principle value.
The magnetic permeability µc(ω) can be described by the Drude model;

see, for instance, [86]. We have

µc(ω) = µ0(1− F
ω2

ω2 − ω2
0 + iτ−1ω

), (2.33)

where τ > 0 is the nanoparticle’s bulk electron relaxation rate (τ−1 is the
damping coefficient), F is a filling factor, and ω0 is a localized plasmon
resonant frequency. When

(1− F )(ω2 − ω2
0)

2 − Fω2
0(ω

2 − ω2
0) + τ−2ω2 < 0,

the real part of µc(ω) is negative.
We suppose that D = z + δB. The quasi-static plasmonic resonance is

defined by ω such that

ℜ µm + µc(ω)

2(µm − µc(ω))
= λj

for some j, where λj is an eigenvalue of the Neumann-Poincaré operator
K∗

D(= K∗
B). It is clear that such definition is independent of the nanoparti-

cle’s size. In view of (8.11), the shifted plasmonic resonance is defined by

argmin

∣∣∣∣
1

2µm
+

1

2µc(ω)
−
( 1

µc(ω)
− 1

µm

)
λj + ω2δ2τj,2

∣∣∣∣,

where τj,2 is given by (2.21) with D replaced by B.

2.4 Scattering and absorption enhancements

In this section we analyze the scattering and absorption enhancements. We
prove that, at the quasi-static limit, the averages over the orientation of scat-
tering and extinction cross-sections of a randomly oriented nanoparticle are
given by (2.43) and (2.44), where M given by (2.40) is the polarization ten-
sor associated with the nanoparticle D and the magnetic contrast µc(ω)/µm.
In view of (2.48), the polarization tensor M blows up at the plasmonic res-
onances, which yields scattering and absorption enhancements. A bound
on the extinction cross-section is derived in (2.50). As shown in (2.53) and
(2.55), it can be sharpened for nanoparticles of elliptical or ellipsoidal shapes.

2.4.1 Far-field expansion

For simplicity, we assume throughout this section that D contains the origin.
We first prove the following representation for the scattering amplitude.
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Propsition 2.4.1. Let ui = eikmd·x with d being a unit vector. Let x ∈ R
3

be such that |x| ≫ 1/ω. Then, we have

us(x) =
eikm|x|

|x| A∞

(
x

|x| , d
)
+O

(
1

|x|2
)

(2.34)

with

A∞

(
x

|x| , d
)

= − 1

4π

∫

∂D
e
−ikm

x
|x|

·y
ψ(y)dσ(y) (2.35)

being the scattering amplitude and ψ being defined by (2.5).

Proof. We recall that the scattered field us can be represented as follows:

us(x) = Skm
D [ψ](x)

= − 1

4π

∫

∂D

eikm|x−y|

|x− y| ψ(y)dσ(y).

From

|x− y| = |x|
(
1− x · y

|x|2 +O(
1

|x|2 )
)
,

it follows that

us(x) = −e
ikm|x|

4π|x|

∫

∂D
e
−ikm

x
|x|

·y
ψ(y)

(
1 +

(x · y)
|x|2

)
dσ(y) + o

(
1

|x|2
)
,

which yields the desired result.

2.4.2 Energy flow

The following definitions are from [43]. We include them here for the sake
of completeness. The analogous quantity of the Poynting vector in scalar
wave theory is the energy flux vector; see [43]. We recall that for a real
monochromatic field

U(x, t) = ℜ
[
u(x)e−iωt

]
,

the averaged value of the energy flux vector, taken over an interval which is
long compared to the period of the oscillations, is given by

F (x) = −iC [u(x)∇u(x)− u(x)∇u(x)] ,

where C is a positive constant depending on the polarization mode. In the
transverse electric case, C = ω/µm while in the transverse magnetic case
C = ω/εm. Assume that the particle is contained in the ball BR of radius R
and center the origin. We now consider the outward flow of energy through
the sphere ∂BR:

W =

∫

∂BR

F (x) · ν(x)dσ(x),

where ν(x) is the outward normal at x ∈ ∂BR.
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As the total field can be written as U = us + ui, the flow can be decom-
posed into three parts:

W = W i +Ws +W ′,

where

W i =− iC

∫

∂BR

[
ui(x)∇ui(x)− ui(x)∇ui(x)

]
· ν(x) dσ(x),

Ws =− iC

∫

∂BR

[us(x)∇us(x)− us(x)∇us(x)] · ν(x) dσ(x),

W ′ =− iC

∫

∂BR

[
ui(x)∇us(x)− us(x)∇ui(x)− ui(x)∇us(x) + us(x)∇ui(x)

]
· ν(x) dσ(x).

It is straightforward to check that W , W i, Wa, and W ′ in the above defini-
tions are independent of the radius R as long as the particle is contained in
BR. In the case where ui is a plane wave, we can see that W i = 0:

W i = −iC
∫

∂BR

[
ui(x)∇ui(x)− ui(x)∇ui(x)

]
dσ(x),

= −iC
∫

∂BR

[
e−ikmd·xikmde

ikmd·x + eikmd·xkmde
−ikmd·x

]
· ν(x) dσ(x),

= 2Ckmd ·
∫

∂BR

ν(x) dσ(x),

= 0.

In a non absorbing medium with non absorbing scatterer, W is equal to zero
because the electromagnetic energy would be conserved by the scattering
process. However, if the scatterer is an absorbing body, the conservation of
energy gives the rate of absorption as

Wa = −W.

Therefore, we have

Wa +Ws = −W ′.

Here, W ′ is called the extinction rate. It is the rate at which the energy is
removed by the scatterer from the illuminating plane wave, and it is the sum
of the rate of absorption and the rate at which energy is scattered.

2.4.3 Extinction, absorption, and scattering cross-sections

and the optical theorem

Denote by U i the quantity U i(x) =
∣∣∣ui(x)∇ui(x)− ui(x)∇ui(x)

∣∣∣. In the

case of a plane wave illumination, U i(x) is independent of x and is given by
U i = 2km.



40 Chapter 2. The Helmholtz Equation

Definition 2.3. The scattering cross-section Qs, the absorption cross-section
Qa and the extinction cross-section are defined by

Qs =
Ws

U i
, Qa =

Wa

U i
, Qext =

−W ′

U i
.

Note that these quantities are independent of x for a plane wave illumination.

Theorem 2.4.1 (Optical theorem). If ui(x) = eikmd·x, where d is a unit
direction, then

Qext =Qs +Qa =
4π

km
ℑ [A∞(d, d)] , (2.36)

Qs =

∫

S2

|A∞(x̂, d)|2dσ(x̂) (2.37)

with A∞ being the scattering amplitude defined by (2.35).

Proof. The Sommerfeld radiation condition gives, for any x ∈ ∂BR,

∇us(x) · ν(x) ∼ ikmu
s(x). (2.38)

Hence, from (2.34) we get

us(x)∇us(x) · ν(x)− us(x)∇us(x) · ν(x) ∼ −2ikm
|x|2

∣∣∣∣A∞

(
x

|x| , d
)∣∣∣∣

2

,

which yields (2.37). We now compute the extinction rate. We have

∇ui(x) · ν(x) = ikmd · ν(x)eikmd·x. (2.39)

Therefore, using 2.38 and 2.39, it follows that

ui(x)∇us(x) · ν(x)− us(x)∇ui(x) · ν(x) ∼
(
ikm

eikm(|x|−d·x)

|x| d · ν + ikm
eikm(|x|−d·x)

|x|
)
A∞

(
x

|x| , d
)

=
ikme

ikm|x|−d·ν(x)

|x| (d · ν(x) + 1)A∞

(
x

|x| , d
)
.

For x ∈ ∂BR, we can write

ui(x)∇us(x) · ν(x)− us(x)∇ui(x) · ν(x) ∼ ikme
−ikmRν(x)·(d−ν(x))

R
(d · ν(x) + 1)A∞

(
x

|x| , d
)
.

We now use Jones’ lemma (see, for instance, [43, Chapter 13.3]) to write the
following asymptotic expansion as R→ ∞

1

R

∫

∂BR

G(ν(x))e−ikmd·ν(x)dσ(x) ∼ 2πi

km

(
G(d)e−ikmR − G(−d)eikmR

)
,

to obtain
∫

∂BR

[
ui(x)∇us(x)− us(x)∇ui(x)

]
· ν(x) ∼ −4πA∞(d, d) as R→ ∞.
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Therefore,

W ′ =− i4πC
[
A∞(d)−A∞(d)

]
= 8πCℑ [A∞(d)] .

Since
∣∣∣ui(x)∇ui(x)− ui(x)∇ui(x)

∣∣∣ = 2km,

we get the result.

2.4.4 The quasi-static limit

We start by recalling the small volume expansion for the far-field. Let λ be
defined by (2.23) and let

M(λ,D) :=

∫

∂D
(λId−K∗

D)
−1[ν]x dσ(x) (2.40)

be the polarization tensor. The following asymptotic expansion holds. It can
be proved by exactly the same arguments as those in [9].

Propsition 2.4.2. Assume that D = δB+ z. As δ goes to zero the scattered
field us can be written as follows:

us(x) = −k2m
(
εc
εm

− 1

)
|D|G(x, z, km)ui(z)−∇zG(x, z, km) ·M(λ,D)∇ui(z)

+O

(
δ4

dist(λ, σ(K∗
D))

)

(2.41)
for x away from D. Here, dist(λ, σ(K∗

D)) denotes minj |λ−λj | with λj being
the eigenvalues of K∗

D.

We denote the first term in the right hand side of (2.41) by us1 and the
second term by us2. It is clear that us1 represent monopole radiation and us2
the dipole radiation. We explicitly compute the scattering amplitude A∞ in
(2.34). Take ui(x) = eikmd·x and assume again for simplicity that z = 0.
Note that

us2(x) =
eikm|x|

4π|x| ikm
(
ikm

x

|x| −
x

|x|2
)
·M(λ,D)d.

In the far-field region, i.e. for |x| ≫ 1
ω ,

us2(x) = −k2m
eikm|x|

4π|x|

(
x

|x| ·M(λ,D)d

)
+O

(
1

|x|2
)
.

On the other hand,

us1(x) = k2m
eikm|x|

4π|x|

(
εc
εm

− 1

)
· |D|.

Throughout the chapter, we are interested in the case when the fre-
quency is near the plasmonic resonant frequency, then the polarization ten-
sor M(λ,D) blow up and hence the magnitude of the dipole part us2 is much
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greater than that of the monopole part us1. Therefore, the leading term in
the scattered field (2.41) is given by the dipole part, i.e.

us(x) ≈ −k2m
eikm|x|

4π|x|

(
x

|x| ·M(λ,D)d

)
. (2.42)

In the next proposition we write the extinction and scattering cross-
sections in terms of the polarization tensor.

Propsition 2.4.3. Near plasmonic resonant frequency, the leading-order
term (as δ goes to zero) of the average over the orientation of the extinc-
tion cross-section of a randomly oriented nanoparticle is given by

Qext
m =

4πkm
3

ℑ [TrM(λ,D)] , (2.43)

where Tr denotes the trace of a matrix. The leading-order term of the av-
erage over the orientation scattering cross-section of a randomly oriented
nanoparticle is given by

Qs
m =

k4m
9π

|TrM(λ,D)|2 . (2.44)

Proof. Remark from (2.42) that the scattering amplitude A∞ in the case of
a plane wave illumination is given by

A∞

(
x

|x| , d
)

= −k
2
m

4π

x

|x| ·M(λ,D)d. (2.45)

Using Theorem 2.4.1, we can see that for a given orientation

Qext = −4πkmℑ [d ·M(λ,D)d] .

Therefore, if we integrate Qext over all illuminations we find that

Qext
m =− kmℑ

[∫

S2

d ·M(λ,D)d dσ(d)

]
.

Since ℑM(λ,D) is symmetric, it can be written as ℑM(λ,D) = P tN(λ)P
where P is unitary and N is diagonal and real. Then, by the change of
variables d = P tx and using spherical coordinates, it follows that

Qext
m = −km

[∫

S2

x ·N(λ)xdσ(x)

]
,

and therefore,

Qext
m = −4πkm

3
[TrN(λ)] = −4πkm

3
ℑ [TrM(λ,D)] . (2.46)
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Now, we compute the averaged scattering cross-section. Let ℜM(λ,D) =
P̃ tÑ(λ)P̃ where P̃ is unitary and Ñ is diagonal and real. We have

Qs
m =

k4m
16π2

∫∫

S2×S2

|x ·M(λ,D)d|2 dσ(x) dσ(d),

=
k4m
16π2

[ ∫∫

S2×S2

∣∣∣x̃ ·N(λ)d̃
∣∣∣
2
dσ(x̃)dσ(d̃) +

∫∫

S2×S2

∣∣∣x̃ · Ñ(λ)d̃
∣∣∣
2
dσ(x̃) dσ(d̃)

]
.

Then a straightforward computation in spherical coordinates gives

Qs
m =

k4m
9π

|TrM(λ,D)|2 ,

which completes the proof.

From Theorem 2.4.1, we obtain that the averaged absorption cross-section
is given by

Qa
m = −4πkm

3
ℑ [TrM(λ,D)]− k4m

9π
|TrM(λ,D)|2 .

Therefore, under the condition (2.30), Qa
m blows up at plasmonic resonances.

2.4.5 An upper bound for the averaged extinction cross-section

The goal of this section is to derive an upper bound for the modulus of the
averaged extinction cross-section Qext

m of a randomly oriented nanoparticle.
Recall that the entries Ml,m(λ,D) of the polarization tensor M(λ,D) are
given by

Ml,m(λ,D) :=

∫

∂D
xl(λI −K∗

D)
−1[νm](x) dσ(x). (2.47)

For a C1,α domain D in R
d, K∗

D is compact and self-adjoint in H∗. Thus, we
can write

(λId−K∗
D)

−1[ψ] =

∞∑

j=0

(ψ, ϕj)H∗ ⊗ ϕj

λ− λj
,

with (λj , ϕj) being the eigenvalues and eigenvectors of K∗
D in H∗ (see Lemma

2.3.1). Hence, the entries of the polarization tensor M can be decomposed
as

Ml,m(λ,D) =
∞∑

j=1

α
(j)
l,m

λ− λj
, (2.48)

where α
(j)
l,m := (νm, ϕj)H∗(ϕj , xl)− 1

2
, 1
2
. Note that (νm, χ(∂D))− 1

2
, 1
2
= 0. So,

considering the fact that λ0 = 1/2, we have (νm, ϕ0)H∗ = 0 and so, α
(0)
l,m = 0.

The following lemmas are useful for us.

Lemma 2.4.1. We have

α
(j)
l,l ≥ 0, j ≥ 1.
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Proof. For d = 3, we have

(ϕj , xl)− 1
2
, 1
2

=
((1

2
− λj

)−1(1
2
Id−K∗

D

)
[ϕj ], xl

)
− 1

2
, 1
2

=
−1

1/2− λj

(∂SD[ϕj ]

∂ν

∣∣∣
−
, xl

)
− 1

2
, 1
2

=

∫

∂D

∂xl
∂ν

SD[ϕj ]dσ −
∫

D

(
∆xlSD[ϕj ]− xl∆SD[ϕj ]

)
dx

=
(νl, ϕj)H∗

1/2− λj
,

where we used the fact that SD[ϕj ] is harmonic in D. The same result holds

for d = 2 if we change SD by S̃D (see Appendix B.3). Since |λj | < 1/2 for
j ≥ 1, we obtain the result.

Lemma 2.4.2. Let

Ml,m(λ,D) =

∞∑

j=1

α
(j)
l,m

λ− λj

be the (l,m)-entry of the polarization tensor M associated with a C1,α domain
D ⋐ R

d. Then, the following properties hold:

(i)

∞∑

j=1

α
(j)
l,m = δl,m|D|;

(ii)

∞∑

j=1

λi

d∑

l=1

α
(j)
l,l =

(d− 2)

2
|D|;

(iii)

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l =

(d− 4)

4
|D|+

d∑

l=1

∫

D
|∇SD[νl]|2dx.

Proof. The proof can be found in Appendix C.

Let λ = λ′ + iλ′′. We have

∣∣ℑ(Tr(M(λ,D)))
∣∣ =

∞∑

j=1

|λ′′|
∑d

l=1 α
(j)
l,l

(λ′ − λj)2 + λ′′2
. (2.49)

For d = 2 the spectrum σ(K∗
D)\{1/2} is symmetric. For d = 3 this is no

longer true. Nevertheless, for our purposes, we can assume that σ(K∗
D)\{1/2}

is symmetric by defining α
(j)
l,l = 0 if λj is not in the original spectrum.

Without loss of generality we assume for ease of notation that Conditions
2.2 and 2.3 hold. Then we define the bijection ρ : N

+ → N
+ such that
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λρ(j) = −λj and we can write

∣∣ℑ(Tr(M(λ,D)))
∣∣ =

1

2




∞∑

j=1

|λ′′|βj
(λ′ − λj)2 + λ′′2

+

∞∑

j=1

|λ′′|β(ρ(j))
(λ′ + λj)2 + λ′′2




=
|λ′′|
2

∞∑

j=1

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))(

(λ′ − λj)2 + λ′′2
)(
(λ′ + λj)2 + λ′′2

) ,

where βj =
d∑

l=1

α
(j)
l,l .

From Lemma 2.4.1 it follows that

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))(

(λ′ − λj)2 + λ′′2
)(
(λ′ + λj)2 + λ′′2

) ≥ 0.

Moreover,

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))(

(λ′ − λj)2 + λ′′2
)(
(λ′ + λj)2 + λ′′2

) ≤

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′λj(β(j) − β(ρ(j)))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
).

Hence,

∣∣ℑ(Tr(M(λ,D)))
∣∣ ≤

|λ′′|
2

∞∑

j=1

(λ′2 + λ′′2 + λ2j )(β
(j) + β(ρ(j))) + 2λ′(λjβ(j) + λρ(j)β

(ρ(j)))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
).

Using Lemma 2.4.2 we obtain the following result.

Theorem 2.4.2. Let M(λ,D) be the polarization tensor associated with a
C1,α domain D ⋐ R

d with λ = λ′ + iλ′′ such that |λ′′| ≪ 1 and |λ′| < 1/2.
Then,

∣∣ℑ(Tr(M(λ,D)))
∣∣ ≤ d|λ′′||D|

λ′′2 + 4λ′2
+

1

|λ′′|(λ′′2 + 4λ′2)

(
dλ′2|D|+ (d− 4)

4
|D|+

d∑

l=1

∫

D
|∇SD[νl]|2dx+ 2λ′

(d− 2)

2
|D|
)

+

O(
λ′′2

4λ′2 + λ′′2
).

The bound in the above theorem depends not only on the volume of
the particle but also on its geometry. Nevertheless, we remark that, since
|λj | < 1

2 ,

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l <

d|D|
4

.

Hence, we can find a geometry independent, but not optimal, bound.
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Corollary 2.4.1. We have

∣∣ℑ(Tr(M(λ,D)))
∣∣ ≤ 1

|λ′′|(λ′′2 + 4λ′2)

(
d|D|

(
λ′2 +

1

4

)
+ 2λ′

(d− 2)

2
|D|
)
+

d|λ′′||D|
λ′′2 + 4λ′2

+O(
λ′′2

4λ′2 + λ′′2
).

(2.50)

Bound for ellipses

If D is an ellipse whose semi-axes are on the x1- and x2- axes and of length
a and b, respectively, then its polarization tensor takes the form [12]

M(λ,D) =




|D|
λ− 1

2
a−b
a+b

0

0
|D|

λ+ 1
2
a−b
a+b


 . (2.51)

On the other hand, it is known that in H∗(∂D) [65]

σ(K∗
D)\{1/2} =

{
±1

2

(
a− b

a+ b

)j

, j = 1, 2, . . .

}
.

Then, from (2.48), we also have

M(λ,D) =




∞∑

j=1

α
(j)
1,1

λ− 1
2

(
a−b
a+b

)j
∞∑

j=1

α
(j)
1,2

λ− 1
2

(
a−b
a+b

)j

∞∑

j=1

α
(j)
1,2

λ− 1
2

(
a−b
a+b

)j
∞∑

j=1

α
(j)
2,2

λ− 1
2

(
a−b
a+b

)j



.

Let λ1 =
1

2

a− b

a+ b
and V(λj) = {i ∈ N such that K∗

D[ϕi] = λjϕi}. It is clear

now that

∑

i∈V(λ1)

α
(i)
1,1 =

∑

i∈V(−λ1)

α
(i)
2,2 = |D|,

∑

i∈V(λj)

α
(i)
1,1 =

∑

i∈V(−λj)

α
(i)
2,2 = 0 (2.52)

for j ≥ 2 and ∑

i∈V(λj)

α
(i)
1,2 = 0

for j ≥ 1.
In view of (2.52), we have

β(j)

(λ′ − λj)2 + λ′′2
+

β(ρ(j))

(λ′ + λj)2 + λ′′2
≤ 4λ′2β(j) + λ′′2(β(j) + β(j))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
).

Hence,

|ℑ(Tr(M(λ,D)))| ≤ |λ′′|
2

∞∑

j=1

4λ′2β(j) + λ′′2(β(j) + β(j))

λ′′2(4λ′2 + λ′′2)
+O(

λ′′2

4λ′2 + λ′′2
).
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Note that for for any ellipse D̃ of semi-axes of length a and b, ℑ(Tr(M(λ, D̃))) =
ℑ(Tr(M(λ,D))). Then using Lemma 2.4.2 we obtain the following result.

Corollary 2.4.2. For any ellipse D̃ of semi-axes of length a and b, we have

|ℑ(Tr(M(λ, D̃)))| ≤ |D̃|4λ′2
|λ′′|(λ′′2 + 4λ′2)

+
2|λ′′||D̃|
λ′′2 + 4λ′2

+O(
λ′′2

4λ′2 + λ′′2
). (2.53)

Figure 2.1 shows (2.53) and the average extinction of two ellipses of semi-
axis a and b, where the ratio a/b = 2 and a/b = 4, respectively.
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Figure 2.1: Optimal bound for ellipses.

We can see from (2.49), Lemma 2.4.1 and the first sum rule in Lemma
2.4.2 that for an arbitrary shape B, |ℑ(Tr(M(λ,B)))| is a convex combination

of |λ′′|
(λ′−λj)2+λ′′2 for λj ∈ σ(K∗

B)\{1/2}. Since ellipses put all the weight of

this convex combination in ±λ1 = ±1
2
a−b
a+b , we have for any ellipse D̃ and any

shape B such that |B| = |D̃|,

|ℑ(Tr(M(λ∗, B)))| ≤ |ℑ(Tr(M(λ∗, D̃)))|

with λ∗ = ±1
2
a−b
a+b + iλ′′.

Thus, bound (2.53) applies for any arbitrary shape B in dimension two.
This implies that, for a given material and a given desired resonance fre-
quency ω∗, the optimal shape for the extinction resonance (in the quasi-static
limit) is an ellipse of semi-axis a and b such that λ′(ω∗) = ±1

2
a−b
a+b .
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Bound for ellipsoids

Let D be an ellipsoid given by

x21
p21

+
x22
p22

+
x23
p23

= 1. (2.54)

The following holds [12].

Lemma 2.4.3. Let D be the ellipsoid defined by (2.54). Then, for x ∈ D,

SD[νl](x) = slxl, l = 1, 2, 3,

where

sl = −p1p2p3
2

∫ ∞

0

1

(p2l + s)
√
(p21 + s)(p22 + s)(p23 + s)

ds.

Then we have

3∑

l=1

∫

D
|∇SD[νl]|2dx = (s21 + s22 + s23)|D|.

For a rotated ellipsoid D̃ = RD with R being a rotation matrix, we have
M(λ, D̃) = RM(λ,D)RT and so Tr(M(λ, D̃)) = Tr(M(λ,D)). Therefore,
for any ellipsoid D̃ of semi-axes of length p1, p2 and p3 the following result
holds.

Corollary 2.4.3. For any ellipsoid D̃ of semi-axes of length p1, p2 and p3,
we have

ℑ(Tr(M(λ, D̃))) ≤ |D̃|
(
3λ′2 + λ′ − 1

4 + (s21 + s22 + s23)
)

|λ′′|(λ′′2 + 4λ′2)
+

3|λ′′||D̃|
λ′′2 + 4λ′2

+O(
λ′′2

4λ′2 + λ′′2
),

(2.55)
where for j = 1, 2, 3,

sj = −p1p2p3
2

∫ ∞

0

1

(p2j + s)
√

(p21 + s)(p22 + s)(p23 + s)
ds.

2.5 Link with the scattering coefficients

Our aim in this section is to exhibit the mechanism underlying plasmonic res-
onances in terms of the scattering coefficients corresponding to the nanopar-
ticle. The concept of scattering coefficients was first introduced in [20]. It
plays a key role in constructing cloaking structures. It was extended in [21] to
the full Maxwell equations. The scattering coefficients are simply the Fourier
coefficients of the scattering amplitude A∞. In Theorem 2.5.1 we provide an
asymptotic expansion of the scattering amplitude in terms of the scattering
coefficients of order ±1. Our formula shows that, under physical conditions,
the scattering coefficients of orders ±1 are the only scattering coefficients
inducing the scattering cross-section enhancement. For simplicity we only
consider here the two-dimensional case.
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2.5.1 The notion of scattering coefficients

From Graf’s addition formula [12] and (2.4) the following asymptotic formula
holds as |x| → ∞

us(x) = (u− ui)(x) = − i

4

∑

n∈Z
H(1)

n (km|x|)einθx
∫

∂D
Jn(km|y|)e−inθyψ(y)dσ(y),

where x = (|x|, θx) in polar coordinates, H
(1)
n is the Hankel function of the

first kind and order n, Jn is the Bessel function of order n and ψ is the
solution to (2.6).
For ui(x) = eikmd·x we have

ui(x) =
∑

m∈Z
am(ui)Jm(km|x|)eimθx ,

where am(ui) = eim(π
2
−θd). By the superposition principle, we get

ψ =
∑

m∈Z
am(ui)ψm,

where ψm is solution to (2.6) replacing f by

f (m) := F
(m)
2 +

1

µc

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1[F
(m)
1 ]

with

F
(m)
1 (x) = −Jm(km|x|)eimθx ,

F
(m)
2 (x) = − 1

µm

∂Jm(km|x|)eimθx

∂ν
.

We have

us(x) = (u− ui)(x) = − i

4

∑

n∈Z
H(1)

n (km|x|)einθx
∑

m∈Z
Wnme

im(π
2
−θd),

where

Wnm =

∫

∂D
Jn(km|y|)e−inθyψm(y)dσ(y). (2.56)

The coefficients Wnm are called the scattering coefficients.

Lemma 2.5.1. In the space H∗(∂D), as ω goes to zero, we have

f (0) = O(ω2),

f (±1) = ωf
(±1)
1 +O(ω2),

f (m) = O(ωm), |m| > 1,

where

f
(±1)
1 = ∓

√
εmµm

2

( 1

µm
ei±θν +

1

µc
(
1

2
Id−K∗

D)S̃−1
D [|x|ei±θx ]

)
.
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Proof. Recall that J0(x) = 1 +O(x2). By virtue of the fact that

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1[χ(∂D)] = O(ω2),

we arrive at the estimate for f (0) (see Appendix B.3). Moreover,

J±1(x) = ±x
2
+O(x3)

together with the fact that

(1
2
Id− (Kkc

D )∗
)
(Skc

D )−1 = (
1

2
Id−K∗

D)S̃−1
D +O(ω2 logω)

gives the expansion of f (±1) in terms of ω (see Appendix B.3).
Finally, Jm(x) = O(xm) immediately yields the desired estimate for f (m).

From Theorem 3.3.2, we can see that

ψm =
∑

j∈J

(
f (m), ϕ̃j(ω)

)
H∗ϕj(ω)

τj(ω)
+AD(ω)

−1(PJc(ω)f). (2.57)

Hence, from the definition of the scattering coefficients,

Wnm =
∑

j∈J

(
f (m), ϕ̃j(ω)

)
H∗

(
ϕj(ω), Jn(km|x|)e−inθx

)
− 1

2
, 1
2

τj(ω)
+

∫

∂D
Jn(km|y|)e−inθyO(ω)dσ(y).

(2.58)
Since

Jm(x) ∼ 1√
(2π|m|)

( ex

2|m|
)|m|

as m→ ∞, we have

|f (m)| ≤ C |m|

|m||m| .

Using the Cauchy-Schwarz inequality and Lemma 2.5.1, we obtain the fol-
lowing result.

Propsition 2.5.1. For |n|, |m| > 0, we have

|Wnm| ≤ O(ω|n|+|m|)
minj∈J |τj(ω)|

C |n|+|m|

|n||n||m||m|

for a positive constant C independent of ω.

2.5.2 The leading-order term in the expansion of the scat-

tering amplitude

In the following, we analyze the first-order scattering coefficients.
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Lemma 2.5.2. Assume that Conditions 1 and 2 hold. Then,

ψ0 =
∑

j∈J

O(ω2)

τj(ω)
+O(ω),

ψ±1 =
∑

j∈J

±ω
√
εmµm

2

(
1
µm

− 1
µc

)
(e±iθν , ϕj)H∗ϕj +O(ω3 logω)

τj(ω)
+O(ω).

Proof. The expression of ψ0 follows from (2.57) and Lemma 2.5.1. Chang-

ing SD by S̃D in Theorem 3.3.2 gives
(
(
1

2
Id − K∗

D)S̃−1
D [|x|eiθx ], ϕj

)
H∗

=

−(eiθν , ϕj)H∗ . Using now Lemma 2.5.1 in (2.57) yields the expression of
ψ±1.

Recall that in two dimensions,

τj(ω) =
1

2µm
+

1

2µc
−
( 1
µc

− 1

µm

)
λj +O(ω2 logω),

where λj is an eigenvalue of K∗
D and λ0 = 1/2. Recall also that for 0 ∈ J we

need τj → 0 and so µm → ∞, which is a limiting case that we can ignore. In
practice, PJ(ω)[ϕ0(ω)] = 0. We also have (ϕj , χ(∂D))− 1

2
, 1
2
= 0 for j 6= 0.

It follows then from the above lemmas and the expression (2.58) of the scat-
tering coefficients that

W00 =
∑

j∈J

O(ω4 logω)

τj(ω)
+O(ω),

W0±1 =
∑

j∈J

O(ω3 logω)

τj(ω)
+O(ω),

W±10 =
∑

j∈J

O(ω3)

τj(ω)
+O(ω2).

Note that W±1±1 has a special structure. Indeed, from Lemma 2.5.2 and
equation (2.58), we have

W±1±1 =
∑

j∈J

±± ω
√
εmµm

2

(
1
µm

− 1
µc

)(
ϕj , J1(km|x|)e∓iθx

)
− 1

2
, 1
2

(
e±iθν , ϕj

)
H∗ +O(ω4 logω)

τj(ω)

+O(ω2),

=
∑

j∈J

±± ω2 εmµm

4

(
1
µm

− 1
µc

)(
ϕj , |x|e∓iθx

)
− 1

2
, 1
2

(
e±iθν , ϕj

)
H∗ +O(ω4 logω)

τj(ω)
+O(ω2),

=
k2m
4


∑

j∈J

±±
(
ϕj , |x|e∓iθx

)
− 1

2
, 1
2

(
e±iθν , ϕj

)
H∗ +O(ω2 logω)

λ− λj +O(ω2 logω)
+O(1)


 ,
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where λ is defined by (2.23). Now, assume that minj∈J |τj(ω)| ≫ ω2 logω.
Then,

W±1±1 =
k2m
4


∑

j∈J

±±
(
ϕj , |x|e∓iθx

)
− 1

2
, 1
2

(
e±iθν , ϕj

)
H∗

λ− λj
+O(1)


 . (2.59)

Define the contracted polarization tensors by

N±,±(λ,D) :=

∫

∂D
|x|e±iθx(λI −K∗

D)
−1[e±iθν ](x) dσ(x).

It is clear that

N+,+(λ,D) = M1,1(λ,D)−M2,2(λ,D) + i2M1,2(λ,D),

N+,−(λ,D) = M1,1(λ,D) +M2,2(λ,D),

N−,+(λ,D) = M1,1(λ,D) +M2,2(λ,D),

N−,−(λ,D) = M1,1(λ,D)−M2,2(λ,D)− i2M1,2(λ,D),

whereMl,m(λ,D) is the (l,m)-entry of the polarization tensor given by (2.40).
Finally, considering the above we can state the following result.

Theorem 2.5.1. Let A∞ be the scattering amplitude in the far-field defined
in (2.35) for the incoming plane wave ui(x) = eikmd·x. Assume Conditions 1
and 2 and

min
j∈J

|τj(ω)| ≫ ω2 logω.

Then, A∞ admits the following asymptotic expansion

A∞

(
x

|x|

)
=

x

|x|
T
W1d+O(ω2),

where

W1 =

(
W−11 +W1−1 − 2W11 i

(
W1−1 −W−11

)

i
(
W1−1 −W−11

)
−W−11 −W1−1 − 2W11

)
.

Here, Wnm are the scattering coefficients defined by (2.56).

Proof. From (2.45), we have

A∞

(
x

|x|

)
= −k2m

x

|x|
T
M(λ,D)d.

Since K∗
D is compact and self-adjoint in H∗, we have

N±,±(λ,D) =
∞∑

j=1

(
ϕj , |x|e±iθx

)
− 1

2
, 1
2

(
e±iθν , ϕj

)
H∗

λ− λj

=
∑

j∈J

(
ϕj , |x|e±iθx

)
− 1

2
, 1
2

(
e±iθν , ϕj

)
H∗

λ− λj
+O(1).
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We have then from (2.59) that

−k
2
m

4
N+,+(λ,D) = W−11 +O(ω2),

−k
2
m

4
N+,−(λ,D) = −W11 +O(ω2),

−k
2
m

4
N−,+(λ,D) = −W11 +O(ω2),

−k
2
m

4
N−,−(λ,D) = W1−1 +O(ω2).

In view of

M11 =
1

4
(N+,+ +N−,− + 2N+,−) ,

M22 =
1

4
(−N+,+ −N−,− + 2N+,−) ,

M12 =
−i
4

(N+,+ −N−,−) ,

we get the result.

2.6 Concluding remarks

In this chapter, based on perturbation arguments, we studied the scattering
by plasmonic nanoparticles when the frequency of the incoming light is close
to a resonant frequency.

We have derived the shift and broadening of the plasmon resonance with
changes in size. The localization algorithms developed in [12, 41] can be
extended to the problem of imaging plasmonic nanoparticles. We have pre-
cisely quantified the scattering and absorption cross-section enhancements
and gave optimal bounds on the enhancement factors. We have also linked
the plasmonic resonances to the scattering coefficients and showed that the
leading-order term of the scattering amplitude can be expressed in terms of
the ±-one order of the scattering coefficients.

The generalization to the full Maxwell equations of the methods and
results of the chapter are the subject of chapter 3.
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3.1 Introduction

The optical response of plasmon resonant nanoparticles is dominated by the
appearance of plasmon resonances over a wide range of wavelengths [68]. For
individual particles or very low concentrations in a solvent of non-interacting
nanoparticles, separated from one another by distances larger than the wave-
length, these resonances depend on the electromagnetic parameters of the
nanoparticle, those of the surrounding material, and the particle shape and
size. High scattering and absorption cross sections and strong near-fields
are unique effects of plasmonic resonant nanoparticles. One of the most
important parameters in the context of applications is the position of the
resonances in terms of wavelength or frequency. A longstanding problem is
to tune this position by changing the particle size or the concentration of
the nanoparticles in a solvent [49, 68]. It was experimentally observed, for
instance, in [49,89] that the scaling behavior of nanoparticles is critical. The
question of how the resonant properties of plasmonic nanoparticles develops
with increasing size or/and concentration is therefore fundamental.

At the quasi-static limit, plasmon resonances in nanoparticles can be
treated as an eigenvalue problem for the Neumann-Poincaré integral operator
[9, 52,72,73]. Unfortunately, at this limit, they are size-independent.

This chapter provides the first mathematical study of the shift in plasmon
resonance using the full Maxwell equations. It generalizes to the full Maxwell
equations the results obtained in chapter 2 where the Helmholtz equation
was used to model light propagation. Theorem 3.3.1 gives an asymptotic
expansion of the plasmonic resonances in terms of the size of the nanoparticle.
Theorem 3.3.2 provides the near field behavior of the electromagnetic fields
near the plasmonic resonant frequencies. The far-field behavior is described
in Theorem 3.4.1. Theorem 3.4.2 shows the blow up rate of the extinction
cross section (the sum of the absorption and scattering cross sections) at the
plasmonic resonance. Theorem 3.5.1 in section 3.5 considers the special case
of spherical nanoparticles.

The chapter is organized as follows. In section 3.2 we first review com-
monly used function spaces. Then we introduce layer potentials associated
with the Laplace operator and recall their mapping properties. Of particular
interest is the Neumann-Poincaré operator K∗

D associated with the particle
D defined in (3.4). We state some of its important properties in Lemma
3.2.1.

In section 3.3 we first derive a layer potential formulation for the scat-
tering problem for the full Maxwell equations in (3.11). Then we obtain
a first-order correction to plasmonic resonances in terms of the size of the
nanoparticle in Theorem 3.3.1.

This enables us to analyze the shift and broadening of the plasmon res-
onance with changes in size and shape of the nanoparticles. The resonance
condition is determined from absorption and scattering blow up and depends
on the shape, size and electromagnetic parameters of both the nanoparticle
and the surrounding material. Surprisingly, it turns out that in this case not
only the spectrum of the Neumann-Poincaré operator plays a role in the res-
onance of the nanoparticles, but also its negative, i.e., −σ(K∗

D). We explain
how in the quasi-static limit, only the spectrum of the Neumann-Poincaré
operator can be excited. This is an important finding in our chapter. Note
that it is not clear for what kind of geometries in R

3 the spectrum of the
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Neumann-Poincaré operator has symmetry, that is, if λ ∈ σ(K∗
D) so does

−λ. For instance, such symmetry is not present in the case of a spheri-
cal nanoparticle while for a spherical shell the spectrum of the associated
Neumann-Poincaré operator is symmetric around zero.

When the particle size increases and deviates from the dipole approx-
imation, the resonances become size-dependent. Moreover, a part of the
spectrum of negative of the Neumann-Poincaré operator can be excited as in
higher-order terms in the expansion of the electric field versus the size of the
particle.

In section 3.4, using the quasi-static limit for the electromagnetic fields,
we derive a formula for the enhancement of the extinction cross-section.

Finally, in seccion 3.5 we provide calculations for the case of spheri-
cal nanoparticles and explicitly compute the shift in the spectrum of the
Neumann-Poincaré operator and the extinction cross-section. In section 3.6
we consider the case of a spherical shell and apply degenerate perturbation
theory since the eigenvalues associated with the corresponding Neumann-
Poincaré operator are not simple. The explicit results obtained in sections
3.5 and 3.6 illustrate our main findings in sections 3.3 and 3.4.

3.2 Preliminaries

Here and throughout this chapter, we assume that D is bounded, simply
connected, and of class C1,α for 0 < α < 1. We note by ∇× the curl operator
for a vector field in R

3. We denote by Hs(∂D) the usual Sobolev space of
order s on ∂D and

Hs
T (∂D) =

{
ϕ ∈

(
Hs(∂D)

)3
, ν · ϕ = 0

}
.

We also need the space H1
loc(R

3) of functions locally in H1(R3).
We introduce the surface gradient, surface divergence and Laplace-Beltrami

operator and denote them by ∇∂D, ∇∂D· and ∆∂D, respectively. We de-
fine the vectorial and scalar surface curl by ~curl∂Dϕ = −ν × ∇∂Dϕ for

ϕ ∈ H
1
2 (∂D) and curl∂Dϕ = −ν · (∇∂D × ϕ) for ϕ ∈ H

− 1
2

T (∂D), respec-
tively. We remind that

∇∂D · ∇∂D = ∆∂D,

curl∂D ~curl∂D = −∆∂D,

∇∂D · ~curl∂D = 0,

curl∂D∇∂D = 0.

We introduce the following functional space:

H
− 1

2
T (div, ∂D) =

{
ϕ ∈ H

− 1
2

T (∂D),∇∂D · ϕ ∈ H− 1
2 (∂D)

}
.

Let G be the Green function for the Helmholtz operator ∆+ k2, that is,

(∆ + k2)G(x, y, k) = δy,
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where δy is the Dirac mass at y, subject to the Sommerfeld radiation condi-
tion in dimension three

lim
|x|→+∞

|x|
(
∂G

∂|x| − ikG

)
= 0,

uniformly in x/|x|.
The Green function G is given by

G(x, y, k) = − eik|x−y|

4π|x− y| , x 6= y. (3.1)

Define the following boundary integral operators and refer to [18,78] for their
mapping properties:

~Sk
D[ϕ] : H

− 1
2

T (∂D) −→ H
1
2
T (∂D) or H1

loc(R
3)3 (3.2)

ϕ 7−→ ~Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D or x ∈ R

3;

Sk
D[ϕ] : H

− 1
2 (∂D) −→ H

1
2 (∂D) or H1

loc(R
3) (3.3)

ϕ 7−→ Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D or x ∈ R

3;

K∗
D[ϕ] : H

− 1
2 (∂D) −→ H− 1

2 (∂D) (3.4)

ϕ 7−→ K∗
D[ϕ](x) =

∫

∂D

∂G(x, y, 0)

∂ν(x)
ϕ(y)dσ(y), x ∈ ∂D;

Mk
D[ϕ] : H

− 1
2

T (div, ∂D) −→ H
− 1

2
T (div, ∂D) (3.5)

ϕ 7−→ Mk
D[ϕ](x) =

∫

∂D
ν(x)×∇x ×G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D;

Lk
D[ϕ] : H

− 1
2

T (div, ∂D) −→ H
− 1

2
T (div, ∂D) (3.6)

ϕ 7−→ Lk
D[ϕ](x) = ν(x)×

(
k2 ~Sk

D[ϕ](x) +∇Sk
D[∇∂D · ϕ](x)

)
, x ∈ ∂D.

Throughout this chapter, we denote ~S0
D,S0

D,M0
D by ~SD,SD,MD, respec-

tively. We also denote KD by the (·, ·)− 1
2
, 1
2
-adjoint of K∗

D, where (·, ·)− 1
2
, 1
2

is

the duality pairing between H− 1
2 (∂D) and H

1
2 (∂D).

We recall now some useful results on the operator K∗
D. See chapter 1

and [12,32,61,65].

Lemma 3.2.1. (i) The following Calderón identity holds: KDSD = SDK∗
D;

(ii) The operator K∗
D is compact self-adjoint in the Hilbert space H− 1

2 (∂D)
equipped with the following inner product

(u, v)H∗ = −(u,SD[v])− 1
2
, 1
2
, (3.7)
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with which H∗(∂D), the space induced by (·, ·)H∗ , is equivalent to H− 1
2 (∂D);

(iii) Let (λj , ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunc-
tion pair of K∗

D in H∗(∂D). Then, λj ∈ (−1
2 ,

1
2 ], λj 6= 1/2 for j ≥ 1,

λj → 0 as j → ∞ and ϕj ∈ H∗
0(∂D) for j ≥ 1, where H∗

0(∂D) is the
zero mean subspace of H∗(∂D);

(iv) The following representation formula holds: for any ψ ∈ H−1/2(∂D),

K∗
D[ψ] =

∞∑

j=0

λj(ψ, ϕj)H∗ ⊗ ϕj ;

(v) The following trace formula holds: for any ψ ∈ H∗(∂D),

(±1

2
Id+K∗

D)[ϕ] =
∂SD[ϕ]

∂ν

∣∣∣
±
.

(vi) Let H(∂D) be the space H
1
2 (∂D) equipped with the following equivalent

inner product
(u, v)H = −(S−1

D [u], v)− 1
2
, 1
2
. (3.8)

Then, SD is an isometry between H∗(∂D) and H(∂D).

In (vi) in Lemma 3.2.1, we refer to [18] for the invertibility of the single-
layer potential SD in three dimensions.

The following result holds.

Lemma 3.2.2. The following Helmholtz decomposition holds [38]:

H
− 1

2
T (div, ∂D) = ∇∂DH

3
2 (∂D)⊕ ~curl∂DH

1
2 (∂D).

Remark 3.2.1. The Laplace-Beltrami operator ∆∂D : H
3
2
0 (∂D) → H

− 1
2

0 (∂D)

is invertible. Here H
3
2
0 (∂D) and H

− 1
2

0 (∂D) are the zero mean subspaces of

H
3
2 (∂D) and H− 1

2 (∂D) respectively.

The following results on the operator MD are of great importance. We
refer to [78] for a proof of the following compactness property of MD.

Lemma 3.2.3. The operator MD : H
− 1

2
T (div, ∂D) −→ H

− 1
2

T (div, ∂D) is a
compact operator.

Lemma 3.2.4. The following identities hold [9, 53]:

MD[ ~curl∂Dϕ] = ~curl∂DKD[ϕ], ∀ϕ ∈ H
1
2 (∂D),

MD[∇∂Dϕ] = −∇∂D∆
−1
∂DK∗

D[∆∂Dϕ] + ~curl∂DRD[ϕ], ∀ϕ ∈ H
3
2 (∂D),

where
RD = −∆−1

∂Dcurl∂DMD∇∂D. (3.9)
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3.3 Layer potential formulation for the scattering
problem

We consider the scattering problem of a time-harmonic electromagnetic wave
incident on a plasmonic nanoparticle. The homogeneous medium is charac-
terized by electric permittivity εm and magnetic permeability µm, while the
particle occupying a bounded and simply connected domain D ⋐ R

3 of class
C1,α for 0 < α < 1 is characterized by electric permittivity εc and magnetic
permeability µc, both of which depend on the frequency. Define

km = ω
√
εmµm, kc = ω

√
εcµc,

and
εD = εmχ(R

3\D̄) + εcχ(D), µD = εmχ(R
3\D̄) + εcχ(D),

where χ denotes the characteristic function.
For a given incident plane wave (Ei, H i), solution to the Maxwell equa-

tions in free space

∇× Ei = iωµmH
i in R

3,

∇×H i = −iωεmEi in R
3,

the scattering problem can be modeled by the following system of equations

∇× E = iωµDH in R
3\∂D,

∇×H = −iωεDE in R
3\∂D, (3.10)

ν × E
∣∣
+
− ν × E

∣∣
− = ν ×H

∣∣
+
− ν ×H

∣∣
− = 0 on ∂D,

subject to the Silver-Müller radiation condition:

lim
|x|→∞

|x|
(√
µm(H −H i)(x)× x

|x| −
√
εm(E − Ei)(x)

)
= 0

uniformly in x/|x|. Here and throughout the chapter, the subscripts ± indi-
cate, as said before, the limits from outside and inside D, respectively.

Using the boundary integral operators (3.2) and (3.5), the solution to
(3.10) can be represented as [90]

E(x) =

{
Ei(x) + µm∇× ~Skm

D [ψ](x) +∇×∇× ~Skm
D [φ](x), x ∈ R

3\D̄,

µc∇× ~Skc
D [ψ](x) +∇×∇× ~Skc

D [φ](x), x ∈ D,
(3.11)

and

H(x) = − i

ωµD
(∇× E)(x) x ∈ R

3\∂D, (3.12)
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where the pair (ψ, φ) ∈
(
H

− 1
2

T (div, ∂D)
)2

is the unique solution to




µc + µm
2

Id+ µcMkc
D − µmMkm

D Lkc
D − Lkm

D

Lkc
D − Lkm

D

(
k2c
2µc

+
k2m
2µm

)
Id+

k2c
µc

Mkc
D − k2m

µm
Mkm

D



(
ψ
φ

)

=

(
ν × Ei

iων ×H i

) ∣∣∣∣∣
∂D

.

(3.13)
Let D = z + δB where B contains the origin and |B| = O(1). For any

x ∈ ∂D, let x̃ = x−z
δ ∈ ∂B and define for each function f defined on ∂D, a

corresponding function defined on B as follows

η(f)(x̃) = f(z + δx̃). (3.14)

Throughout this chapter, for two Banach spaces X and Y , by L(X,Y ) we
denote the set of bounded linear operators from X into Y . We will also
denote by L(X) the set L(X,X).

Lemma 3.3.1. For ϕ ∈ H
− 1

2
T (div, ∂D), the following asymptotic expansion

holds

Mk
D[ϕ](x) = MB[η(ϕ)](x̃) +

∞∑

j=2

δjMk
B,j [η(ϕ)](x̃),

where

Mk
B,j [η(ϕ)](x̃) =

∫

∂B

−(ik)j

4πj!
ν(x̃)×∇x̃ × |x̃− ỹ|j−1η(ϕ)(ỹ)dσ(ỹ).

Moreover, ‖Mk
B,j‖L

(
H

− 1
2

T (div,∂B)
) is uniformly bounded with respect to j. In

particular, the convergence holds in L
(
H

− 1
2

T (div, ∂B)
)

and Mk
D is analytic

in δ.

Proof. We can see, after a change of variables, that

Mk
D[ϕ](x) =

∫

∂B
ν(x̃)×∇x̃ ×G(x̃, ỹ, δk)η(ϕ)(ỹ)dσ(ỹ).

A Taylor expansion of G(x̃, ỹ, δk) yields

G(x̃, ỹ, δk) = −
∞∑

j=0

(iδk|x̃− ỹ|)j
j!4π|x̃− ỹ| = − 1

4π|x̃− ỹ| +
∞∑

j=1

δj
(ik)j

4πj!
|x̃− ỹ|j−1.

Hence,

Mk
D[ϕ](x) = MB[η(ϕ)](x̃) +

∞∑

j=2

δj
∫

∂B

−(ik)j

4πj!
ν(x̃)×∇x̃ × |x̃− ỹ|j−1η(ϕ)(ỹ)dσ(ỹ).

Note that from the regularity of |x̃− ỹ|j−1, j ≥ 2, ‖Mk
B,j [η(ϕ)]‖

H
− 1

2
T (div,∂B)

is

uniformly bounded with respect to j, and therefore, ‖Mk
B,j‖L

(
H

− 1
2

T (div,∂B)
)
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is uniformly bounded with respect to j as well.

Lemma 3.3.2. For ϕ ∈ H
− 1

2
T (div, ∂D), the following asymptotic expansion

holds

(Lkc
D − Lkm

D )[ϕ](x) =

∞∑

j=1

δjωLB,j [η(ϕ)](x̃),

where

LB,j [η(ϕ)](x̃) =

Cjν(x̃)×
(∫

∂B
|x̃− ỹ|j−2η(ϕ)(ỹ)dσ(ỹ)−

∫

∂B

|x̃− ỹ|j−2(x̃− ỹ)

j + 1
∇∂B · η(ϕ)(ỹ)dσ(ỹ)

)
,

and

Cj =
ij(kj+1

c − kj+1
m )

ω4π(j − 1)!
.

Moreover, ‖LB,j‖
L
(
H

− 1
2

T (div,∂B)
) is uniformly bounded with respect to j. In

particular, the convergence holds in L
(
H

− 1
2

T (div, ∂B)
)

and Lk
D is analytic in

δ.

Proof. The proof is similar to that of Lemma 3.3.1.

Using Lemma 3.3.1 and Lemma 3.3.2, we can write the system of equa-
tions (3.13) as follows:

WB(δ)

(
η(ψ)
ωη(φ)

)
=




η(ν × Ei)

µm − µc
η(iν ×H i)

εm − εc




∣∣∣∣∣
∂B

, (3.15)

where

WB(δ) =




λµId−MB + δ2
µmMkm

B,2 − µcMkc
B,2

µm − µc

1

µm − µc
(δLB,1 + δ2LB,2)

1

εm − εc
(δLB,1 + δ2LB,2) λεId−MB + δ2

εmMkm
B,2 − εcMkc

B,2

εm − εc


+

+O(δ3), (3.16)

and the material parameter contrasts λµ and λε are given by

λµ =
µc + µm

2(µm − µc)
, λε =

εc + εm
2(εm − εc)

. (3.17)

It is clear that

WB(0) = WB,0 =

(
λµId−MB 0

0 λεId−MB

)
.

Moreover,

WB(δ) = WB,0 + δWB,1 + δ2WB,2 +O(δ3),



3.3. Layer potential formulation for the scattering problem 63

in the sense that

‖WB(δ)−WB,0 − δWB,1 − δ2WB,2‖ ≤ Cδ3

for a constant C independent of δ. Here ‖A‖ = supi,j ‖Ai,j‖
H

− 1
2

T (div,∂B)
for

any operator-valued matrix A with entries Ai,j .
We are now interested in finding W−1

B (δ). For this purpose, we first consider
solving the problem

(λId−MB) [ψ] = ϕ (3.18)

for (ψ,ϕ) ∈
(
H

− 1
2

T (div, ∂B)
)2

and λ 6∈ σ(MB), where σ(MB) is the spectrum
of MB.

Using the Helmholtz decomposition of H
− 1

2
T (div, ∂B) in Lemma 3.2.2, we

can reduce (3.18) to an equivalent system of equations involving some well
known operators.

Definition 3.1. For u ∈ H
− 1

2
T (div, ∂B), we denote by u(1) and u(2) any two

functions in H
3
2
0 (∂B) and H

1
2 (∂B), respectively, such that

u = ∇∂Bu
(1) + ~curl∂Bu

(2).

Note that u(1) is uniquely defined and u(2) is defined up to a constant
function.

Lemma 3.3.3. Assume λ 6= 1
2 , then problem (3.18) is equivalent to

(λId− M̃B)

(
ψ(1)

ψ(2)

)
=

(
ϕ(1)

ϕ(2)

)
, (3.19)

where (ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂B)×H

1
2 (∂B) and

M̃B =

(
−∆−1

∂BK∗
B∆∂B 0

RB KB

)
.

Here, RB is defined by (3.9) with D replaced with B.

Proof. Let (ψ(1), ψ(2)) ∈ H
3
2
0 (∂B) × H

1
2 (∂B) be a solution (if there is any)

to (3.19) where (ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂B)×H

1
2 (∂B) satisfies

ϕ = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2).

We have

(
λId+∆−1

∂BK∗
B∆∂B

)
[ψ(1)] = ϕ(1), (3.20)

λψ(2) −RB[ψ
(1)]−KB[ψ

(2)] = ϕ(2). (3.21)

Taking ∇∂B in (3.20), ~curl∂B in (3.21), adding up and using the identities of
Lemma 3.2.4 yields

(λId−MB) [∇∂Bψ
(1) + ~curl∂Bψ

(2)] = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2).
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Therefore

ψ = ∇∂Bψ
(1) + ~curl∂Bψ

(2),

is a solution of (3.18).

Conversely, let ψ be the solution to (3.18). There exist (ψ(1), ψ(2)) ∈ H
3
2
0 (∂B)×

H
1
2 (∂B) and (ϕ(1), ϕ(2)) ∈ H

3
2
0 (∂B)×H

1
2 (∂B) such that

ψ = ∇∂Bψ
(1) + ~curl∂Bψ

(2),

ϕ = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2),

and we have

(λId−MB) [∇∂Bψ
(1) + ~curl∂Bψ

(2)] = ∇∂Bϕ
(1) + ~curl∂Bϕ

(2). (3.22)

Taking ∇∂B· in the above equation and using the identities of Lemma 3.2.4
yields

∆∂B

(
λId+∆−1

∂BK∗
B∆∂B

)
[ψ(1)] = ∆∂Bϕ

(1).

Since (ψ(1), ϕ(1)) ∈ (H
3
2
0 (∂B))2 we get

(
λId+∆−1

∂BK∗
B∆∂B

)
[ψ(1)] = ϕ(1).

Taking curl∂B in (3.22) and using the identities of Lemma 3.2.4 yields

∆∂B(λψ
(2) −RB[ψ

(1)]−KB[ψ
(2)]) = ∆∂Bϕ

(2).

Therefore, there exists a constant c such that

λψ(2) −RB[ψ
(1)]−KB[ψ

(2)] = ϕ(2) + cχ(∂B).

Since KB(χ(∂B)) =
1

2
χ(∂B) we have

λ
(
ψ(2) − c

λ− 1/2

)
−RB[ψ

(1)]−KB

[
ψ(2) − c

λ− 1/2

]
= ϕ(2).

Hence,
(
ψ(1), ψ(2)− c

λ− 1/2

)
∈ H

3
2
0 (∂B)×H 1

2 (∂B) is a solution to (3.19)

Let us now analyze the spectral properties of M̃B in

H(∂B) := H
3
2
0 (∂B)×H

1
2 (∂B), (3.23)

equipped with the inner product

(u, v)H(∂B) = (∆∂Bu
(1),∆∂Bv

(1))H∗ + (u(2), v(2))H,

which is equivalent to H
3
2
0 (∂B)×H

1
2 (∂B).

By abuse of notation we call u(1) and u(2) the first and second components
of any u ∈ H(∂B).
We will assume for simplicity the following condition.
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Condition 3.1. The eigenvalues of K∗
B are simple.

Recall that K∗
B and KB are compact and self-adjoint in H∗(∂B) and

H(∂B), respectively. Since KB is the (·, ·)− 1
2
, 1
2

adjoint of K∗
B, we have

σ(KB) = σ(K∗
B), where σ(KB) (resp. σ(K∗

B)) is the (discrete) spectrum
of KB (resp. K∗

B).
Define

σ1 = σ(−K∗
B)\
(
σ(KB) ∪ {−1

2
}
)
,

σ2 = σ(KB)\σ(−K∗
B), (3.24)

σ3 = σ(−K∗
B) ∩ σ(KB).

Let λj,1 ∈ σ1, j = 1, 2 . . . and let ϕj,1 be an associated normalized eigenfunc-

tion of K∗
B as defined in Lemma 3.2.1. Note that ϕj,1 ∈ H

− 1
2

0 (∂B) for j ≥ 1.
Then,

ψj,1 =

(
∆−1

∂Bϕj,1

(λj,1Id−KB)
−1RB[∆

−1
∂Bϕj,1]

)

satisfies

M̃B[ψj,1] = λj,1ψj,1.

Let λj,2 ∈ σ2 and let ϕj,2 be an associated normalized eigenfunction of KB.
Then,

ψj,2 =

(
0
ϕj,2

)

satisfies

M̃B[ψj,2] = λj,2ψj,2.

Now, assume that Condition 3.1 holds. Let λj,3 ∈ σ3, let ϕ
(1)
j,3 be the associ-

ated normalized eigenfunction of K∗
B and let ϕ

(2)
j,3 be the associated normal-

ized eigenfunction of KB. Then,

ψj,3 =

(
0

ϕ
(2)
j,3

)

satisfies

M̃B[ψj,3] = λj,3ψj,3,

and λj,3 has a first-order generalized eigenfunction given by

ψj,3,g =


 c∆−1

∂Bϕ
(1)
j,3

(λj,3Id−KB)
−1P

span{ϕ(2)
j,3}⊥

RB[c∆
−1
∂Bϕ

(1)
j,3 ]


 (3.25)

for a constant c such that P
span{ϕ(2)

j,3}
RB[c∆

−1
∂Bϕ

(1)
j,3 ] = −ϕ(2)

j,3 . Here, span{ϕ(2)
j,3}

is the vector space spanned by ϕ
(2)
j,3 , span{ϕ(2)

j,3}⊥ is the orthogonal space to
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span{ϕ(2)
j,3} in H(∂B) (Lemma 3.2.1 ), and P

span{ϕ(2)
j,3}

(resp. P
span{ϕ(2)

j,3}⊥
is

the orthogonal (in H(∂B)) projection on span{ϕ(2)
j,3} (resp. span{ϕ(2)

j,3}⊥).
We remark that the function ψj,3,g is determined by the following equation

M̃B[ψj,3,g] = λj,3ψj,3,g + ψj,3.

Consequently, the following result holds.

Propsition 3.3.1. The spectrum σ(M̃B) = σ1 ∪ σ2 ∪ σ3 = σ(−K∗
B) ∪

σ(K∗
B)\{−

1

2
} in H(∂B). Moreover, under Condition 3.1, M̃B has eigen-

functions ψj,i associated to the eigenvalues λj,i ∈ σi for j = 1, 2, . . . and
i = 1, 2, 3, and generalized eigenfunctions of order one ψj,3,g associated to
λj,3 ∈ σ3, all of which form a non-orthogonal basis of H(∂B) (defined by
(3.23)).

Proof. It is clear that λ−M̃B is bijective if and only if λ /∈ σ(−K∗
B)∪σ(K∗

B)\
{−1

2}.
It is only left to show that ψj,1, ψj,2, ψj,3, ψj,3,g, j = 1, 2, . . . form a non-
orthogonal basis of H(∂B).
Indeed, let

ψ =

(
ψ(1)

ψ(2)

)
∈ H(∂B).

Since ψ
(1)
j,1 ∪ ψ(1)

j,3,g, j = 1, 2, . . . form an orthogonal basis of H∗
0(∂B), which

is equivalent to H
− 1

2
0 (∂B), there exist ακ, κ ∈ I1 := {(j, 1) ∪ (j, 3, g) : j =

1, 2, . . . } such that

ψ(1) =
∑

κ∈I1
ακ∆

−1
∂Bψ

(1)
κ ,

and

∑

κ∈I1
|ακ|2 ≤ ∞.

It is clear that ‖ψ(2)
κ ‖

H
1
2 (∂B)

is uniformly bounded with respect to κ ∈ I1.

Then

h :=
∑

κ∈I1
ακψ

(2)
κ ∈ H

1
2 (∂B).

Since ψ
(2)
j,2 ∪ ψ(2)

j,3 , j = 1, 2, . . . form an orthogonal basis of H(∂B), which is

equivalent to H
1
2 (∂B), there exist ακ, κ ∈ I2 := {(j, 2)∪ (j, 3) : j = 1, 2, . . . }

such that

ψ(2) − h =
∑

κ∈I2
ακψ

(2)
κ ,
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and

∑

κ∈I2
|ακ|2 ≤ ∞.

Hence, there exist ακ, κ ∈ I1 ∪ I2 such that

ψ =
∑

κ∈I1∪I2
ακψκ,

and

∑

κ∈I1∪I2
|ακ|2 ≤ ∞.

To have the compactness of M̃B, we need the following condition.

Condition 3.2. σ3 is finite.

Indeed, if σ3 is not finite we have M̃B({ψj,3,g; j ≥ 1}) = {λj,3ψj,g,3 +
ψj,3; j ≥ 1} whose adherence is not compact. However, if σ3 is finite,

using Proposition 3.3.1 we can approximate M̃B by a sequence of finite-rank
operators.
Throughout this chapter, we assume that Condition 3.2 holds, even though
an analysis can still be done for the case where σ3 is infinite; see section 3.6.

Definition 3.2. Let B be the basis of H(∂B) formed by the eigenfunctions

and generalized eigenfunctions of M̃B as stated in Lemma 3.3.1. For ψ ∈
H(∂B), we denote by α(ψ,ψκ) the projection of ψ into ψκ ∈ B such that

ψ =
∑

κ

α(ψ,ψκ)ψκ.

The following lemma follows from the Fredholm alternative.

Lemma 3.3.4. Let

ψ =

(
ψ(1)

ψ(2)

)
∈ H(∂B).

Then,

α(ψ, ψκ) =





(ψ, ψ̃κ)H(∂B)

(ψκ, ψ̃κ)H(∂B)

, κ = (j, i), i = 1, 2,

(ψ, ψ̃κ′)H(∂B)

(ψκ, ψ̃κ′)H(∂B)

, κ = (j, 3, g), κ′ = (j, 3),

(ψ, ψ̃κg)H(∂B) − α(ψ,ψκg)(ψκg , ψ̃κg)H(∂B)

(ψκ, ψ̃κg)H(∂B)

, κ = (j, 3), κg = (j, 3, g),

where ψ̃κ ∈ Ker(λ̄κ − M̃∗
B) for κ = (j, i), i = 1, 2, 3; ψ̃κ ∈ Ker(λ̄κ − M̃∗

B)
2

for κ = (j, 3, g) and M̃∗
B is the H(∂B)-adjoint of M̃B.

The following remark is in order.
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Remark 3.3.1. Note that, since ϕj,1 and ϕ
(1)
j,3 form an orthogonal basis of

H∗
0(∂B), equivalent to H

− 1
2

0 (∂B), we also have

α(ψ, ψκ) =

{
(∆∂Bψ

(1), ϕj,1)H∗ , κ = (j, 1),
1
c (∆∂Bψ

(1), ϕ
(1)
j,3 )H∗ , κ = (j, 3, g),

where c is defined in (3.25).

Remark 3.3.2. For i = 1, 2, 3, and j = 1, 2, . . . ,

(λId− M̃B)
−1[ψj,i] =

ψj,i

λ− λj,i
,

(λId− M̃B)
−1[ψj,3,g] =

ψj,3,g

λ− λj,3
+

ψj,3

(λ− λj,3)2
.

Now we turn to the original equation (3.13). The following result holds.

Lemma 3.3.5. The system of equations (3.13) is equivalent to

WB(δ)




η(ψ)(1)

η(ψ)(2)

ωη(φ)(1)

ωη(φ)(2)


 =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(iν ×H i)(1)

εm − εc
η(iν ×H i)(2)

εm − εc




∣∣∣∣∣
∂B

, (3.26)

where

WB(δ) = WB,0 + δWB,1 + δ2WB,2 +O(δ3)

with

WB,0 =

(
λµId− M̃B O

O λεId− M̃B

)
,

WB,1 =




O
1

µm − µc
L̃B,1

1

εm − εc
L̃B,1 O


 ,

WB,2 =




1

µm − µc
M̃µ

B,2

1

µm − µc
L̃B,2

1

εm − εc
L̃B,2

1

εm − εc
M̃ε

B,2


 ,

and

M̃B =

(
−∆−1

∂BK∗
B∆∂B 0

RB KB

)
,

M̃µ
B,2 =

(
∆−1

∂B∇∂B · (µmMkm
B,2 − µcMkc

B,2)∇∂B ∆−1
∂B∇∂B · (µmMkm

B,2 − µcMkc
B,2)

~curl∂B

−∆−1
∂Bcurl∂B(µmMkm

B,2 − µcMkc
B,2)∇∂B −∆−1

∂Bcurl∂B(µmMkm
B,2 − µcMkc

B,2)
~curl∂B

)
,



3.3. Layer potential formulation for the scattering problem 69

M̃ε
B,2 =

(
∆−1

∂B∇∂B · (εmMkm
B,2 − εcMkc

B,2)∇∂B ∆−1
∂B∇∂B · (εmMkm

B,2 − εcMkc
B,2)

~curl∂B

−∆−1
∂Bcurl∂B(εmMkm

B,2 − εcMkc
B,2)∇∂B −∆−1

∂Bcurl∂B(εmMkm
B,2 − εcMkc

B,2)
~curl∂B

)
,

L̃B,s =

(
∆−1

∂B∇∂B · LB,s∇∂B ∆−1
∂B∇∂B · LB,s

~curl∂B
−∆−1

∂Bcurl∂BLB,s∇∂B −∆−1
∂Bcurl∂BLB,s

~curl∂B

)
,

for s = 1, 2.
Moreover, the eigenfunctions of WB,0 in H(∂B)2 are given by

Ψ1,j,i =

(
ψj,i

O

)
, j = 0, 1, 2, . . . ; i = 1, 2, 3,

Ψ2,j,i =

(
O
ψj,i

)
, j = 0, 1, 2, . . . ; i = 1, 2, 3,

associated to the eigenvalues λµ − λj,i and λε − λj,i, respectively, and gener-
alized eigenfunctions of order one

Ψ1,j,3,g =

(
ψj,3,g

O

)
,

Ψ2,j,3,g =

(
O

ψj,3,g

)
,

associated to eigenvalues λµ − λj,3 and λε − λj,3, respectively, all of which
form a non-orthogonal basis of H(∂B)2.

Proof. The proof follows directly from Lemmas 3.3.1 and 3.3.3.

We regard the operator WB(δ) as a perturbation of the operator WB,0 for
small δ. Using perturbation theory, we can derive the perturbed eigenvalues
and their associated eigenfunctions in H(∂B)2.
We denote by Γ =

{
(k, j, i) : k = 1, 2; j = 1, 2, . . . ; i = 1, 2, 3

}
the set of

indices for the eigenfunctions of WB,0 and by Γg =
{
(k, j, 3, g) : k = 1, 2; j =

1, 2, . . .
}

the set of indices for the generalized eigenfunctions. We denote by
γg the generalized eigenfunction index corresponding to eigenfunction index
γ and vice-versa. We also denote by

τγ =

{
λµ − λj,i, k = 1,
λε − λj,i, k = 2.

(3.27)

Condition 3.3. λµ 6= λε.

In the following we will only consider γ ∈ Γ with which there is no
generalized eigenfunction index associated. In other words, we only consider
γ = (k, i, j) ∈ Γ such that λj,i ∈ σ1 ∪ σ2 (see (3.24) for the definitions).
We call this subset Γsim. Note that Conditions 3.1 and 3.3 imply that the
eigenvalues of WB,0 indexed by γ ∈ Γsim are simple.

Theorem 3.3.1. As δ →, the perturbed eigenvalues and eigenfunctions in-
dexed by γ ∈ Γsim have the following asymptotic expansions:

τγ(δ) = τγ + δτγ,1 + δ2τγ,2 +O(δ3), (3.28)

Ψγ(δ) = Ψγ + δΨγ,1 +O(δ2),
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where

τγ,1 =
(WB,1Ψγ , Ψ̃γ)H(∂B)2

(Ψγ , Ψ̃γ)H(∂B)2
= 0,

τγ,2 =
(WB,2Ψγ , Ψ̃γ)H(∂B)2 − (WB,1Ψγ,1, Ψ̃γ)H(∂B)2

(Ψγ , Ψ̃γ)H(∂B)2
,(3.29)

(τγ −WB,0)Ψγ,1 = −WB,1Ψγ .

Here, Ψ̃γ′ ∈ Ker(τ̄γ′ −W ∗
B,0) and W ∗

B,0 is the H(∂B)2 adjoint of WB,0.

Using Lemma 3.3.4 and Remark 3.3.2 we can solve Ψγ,1. Indeed,

Ψγ,1 =
∑

γ′∈Γ
γ′ 6=γ

α(−WB,1Ψγ ,Ψγ′)Ψγ′

τγ − τγ′
+
∑

γ′g∈Γg

γ′ 6=γ

α(−WB,1Ψγ ,Ψγ′
g
)

(
Ψγ′

g

τγ − τγ′
+

Ψγ′

(τγ − τγ′)2

)

+ α(−WB,1Ψγ ,Ψγ)Ψγ .

By abuse of notation,

α(x,Ψγ) =

{
α(x1, ψκ) γ = (1, j, i), κ = (j, i),
α(x2, ψκ) γ = (2, j, i), κ = (j, i),

(3.30)

for

x =

(
x1
x2

)
∈ H(∂B)2

with α being introduced in Definition 3.2.

Consider now the degenerate case γ ∈ Γ\Γsim =: Γdeg = {γ = (k, i, j) ∈ Γ
s.t λj,i ∈ σ3}. It is clear that, for γ ∈ Γdeg, the algebraic multiplicity of the
eigenvalue τγ is 2 while the geometric multiplicity is 1.
In this case every eigenvalue τγ and associated eigenfunction Ψγ will split
into two branches, as δ goes to zero, represented by a convergent Puiseux
series as [28]:

τγ,h(δ) = τγ + (−1)hδ1/2τγ,1 + (−1)2hδ2/2τγ,2 +O(δ3/2), h = 0, 1,(3.31)

Ψγ,h(δ) = Ψγ + (−1)hδ1/2Ψγ,1 + (−1)2hδ2/2Ψγ,2 +O(δ3/2), h = 0, 1,

where τγ,j and Ψγ,j can be recovered by recurrence formulas. We refer to [62]
for more details.

3.3.1 First-order correction to plasmonic resonances and field

behavior at the plasmonic resonances

Recall that the electric and magnetic parameters, εc and µc, depend on the
frequency of the incident field, ω, following the Drude model [9]. Therefore,
the eigenvalues of the operator WB,0 and perturbation in the eigenvalues
depend on the frequency as well, that is,

τγ(δ, ω) = τγ(ω) + δ2τγ,2(ω) +O(δ3), γ ∈ Γsim,

τγ,h(δ, ω) = τγ + δ1/2(−1)hτγ,1(ω) + δ2/2(−1)2hτγ,2(ω) +O(δ3/2), γ ∈ Γdeg, h = 0, 1.
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In the sequel, we will omit frequency dependence to simplify the notation.
However, we will keep in mind that all these quantities are frequency depen-
dent.
We first recall different notions of plasmonic resonance, see chapter 2.

Definition 3.3. (i) We say that ω is a plasmonic resonance if |τγ(δ)| ≪ 1
and is locally minimized for some γ ∈ Γsim or |τγ,h(δ)| ≪ 1 and is
locally minimized for some γ ∈ Γdeg, h = 0, 1.

(ii) We say that ω is a quasi-static plasmonic resonance if |τγ | ≪ 1 and is
locally minimized for some γ ∈ Γ. Here, τγ is defined by (3.27).

(iii) We say that ω is a first-order corrected quasi-static plasmonic resonance
if |τγ + δ2τγ,2| ≪ 1 and is locally minimized for some γ ∈ Γsim or
|τγ + δ1/2(−1)hτγ,1| ≪ 1 and is locally minimized for some γ ∈ Γdeg,
h = 0, 1. Here, the correction terms τγ,2 and τγ,1 are defined by (3.29)
and (3.31).

Note that quasi-static resonance is size independent and is therefore a
zero-order approximation of the plasmonic resonance in terms of the particle
size while the first-order corrected quasi-static plasmonic resonance depends
on the size of the nanoparticle.

We are interested in solving equation (3.26)

WB(δ)Ψ = f,

where

Ψ =




η(ψ)(1)

η(ψ)(2)

ωη(φ)(1)

ωη(φ)(2)


 , f =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(iν ×H i)(1)

εm − εc
η(iν ×H i)(2)

εm − εc




∣∣∣∣∣
∂B

for ω close to the resonance frequencies, i.e., when τγ(δ) is very small for
some γ’s ∈ Γsim or τγ,h(δ) is very small for some γ’s ∈ Γdeg, h = 0, 1. In this
case, the major part of the solution would be the contributions of the excited
resonance modes Ψγ(δ) and Ψγ,h(δ).

We introduce the following definition.

Definition 3.4. We call J ⊂ Γ index set of resonances if τγ’s are close to
zero when γ ∈ Γ and are bounded from below when γ ∈ Γc. More precisely,
we choose a threshold number η0 > 0 independent of ω such that

|τγ | ≥ η0 > 0 for γ ∈ Jc.

From now on, we shall use J as our index set of resonances. For simplicity,
we assume throughout this chapter that the following condition holds.

Condition 3.4. We assume that λµ 6= 0, λε 6= 0 or equivalently, µc 6= −µm,
εc 6= −εm.
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It follows that the set J is finite.
Consider the space EJ = span{Ψγ(δ),Ψγ,h(δ); γ ∈ J, h = 0, 1}. Note that,
under Condition 3.4, EJ is finite dimensional. Similarly, we define EJc as the
spanned by Ψγ(δ),Ψγ,h(δ); γ ∈ Jc, h = 0, 1 and eventually other vectors to
complete the base. We have H(∂B)2 = EJ ⊕ EJc .

We define PJ(δ) and PJc(δ) as the (non-orthogonal) projection into the
finite-dimensional space EJ and infinite-dimensional space EJc , respectively.
It is clear that, for any f ∈ H(∂B)2

f = PJ(δ)[f ] + PJc(δ)[f ].

Moreover, we have an explicit representation for PJ(δ)

PJ(δ)[f ] =
∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ) +
∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ).

(3.32)
Here, as in Lemma 3.3.4,

αδ(f,Ψγ(δ)) =
(f, Ψ̃γ(δ))H(∂B)2

(Ψγ(δ), Ψ̃γ(δ))H(∂B)2
, γ ∈ J ∩ Γsim,

αδ(f,Ψγ,h(δ)) =
(f, Ψ̃γ,h(δ))H(∂B)2

(Ψγ,h(δ), Ψ̃γ,h(δ))H(∂B)2
, γ ∈ J ∩ Γdeg, h = 0, 1,

where Ψ̃γ ∈ Ker(τ̄γ,h(δ)−W ∗
B(δ)), Ψ̃γ,h ∈ Ker(τ̄γ,h(δ)−W ∗

B(δ)) and W ∗
B(δ)

is the H(∂B)2-adjoint of WB(δ).
We are now ready to solve the equation WB(δ)Ψ = f . In view of Remark

3.3.2,

Ψ =W−1
B (δ)[f ] =

∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ)

τγ,h(δ)
+W−1

B (δ)PJc(δ)[f ].

(3.33)
The following lemma holds. A similar result was proved for δ = 0 in [6].

Lemma 3.3.6. The norm ‖W−1
B (δ)PJc(δ)‖L(H(∂B)2,H(∂B)2) is uniformly bounded

in ω and δ.

Proof. Consider the operator

WB(δ)|Jc : PJc(δ)H(∂B)2 → PJc(δ)H(∂B)2.

We can show that for every ω and δ, dist(σ(WB(δ)|Jc), 0) ≥ η0
2 , where

σ(WB(δ)|Jc) is the discrete spectrum of WB(δ)|Jc . Here and throughout
the chapter, dist denotes the distance. Then, it follows that

‖W−1
B (δ)PJc(δ)[f ]‖ = ‖W−1

B (δ)|JcPJc(δ)[f ]‖ .
1

η0
exp(

C1

η20
)‖PJc(δ)[f ]‖ .

1

η0
exp(

C1

η20
)‖f‖,

where the notation A . B means that A ≤ CB for some constant C inde-
pendent of A and B.

Finally, we are ready to state our main result in this section.
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Theorem 3.3.2. Let η be defined by (3.14). Under Conditions 3.1, 3.2, 3.3
and 3.4, the scattered field Es = E − Ei due to a single plasmonic particle
has the following representation:

Es = µm∇× ~Skm
D [ψ](x) +∇×∇× ~Skm

D [φ](x) x ∈ R
3\D̄,

where

ψ = η−1
(
∇∂Bψ̃

(1) + ~curl∂Bψ̃
(2)
)
,

φ =
1

ω
η−1
(
∇∂Bφ̃

(1) + ~curl∂Bφ̃
(2)
)
,

Ψ =




ψ̃(1)

ψ̃(2)

φ̃(1)

φ̃(2)




=
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg

ζ1(f)Ψγ + ζ2(f)Ψγ,1 +O(δ1/2)

τγ,0(δ)τγ,1(δ)
+O(1),

and

ζ1(f) =
(f, Ψ̃γ,1)H(∂B)2τγ − (f, Ψ̃γ)H(∂B)2(τγ,1 + τγ

a2
a1
)

a1
,

ζ2(f) =
(f, Ψ̃γ)H(∂B)2

a1
,

a1 = (Ψγ , Ψ̃γ,1)H(∂B)2 + (Ψγ,1, Ψ̃γ)H(∂B)2 ,

a2 = (Ψγ , Ψ̃γ,2)H(∂B)2 + (Ψγ,2, Ψ̃γ)H(∂B)2 + (Ψγ,1, Ψ̃γ,1)H(∂B)2 .

Proof. Recall that

Ψ =
∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ)

τγ,h(δ)
+W−1

B (δ)PJc(δ)[f ].

By Lemma 3.3.6, we have W−1
B (δ)PJc(δ)[f ] = O(1).

If γ ∈ J ∩ Γsim, an asymptotic expansion on δ yields

αδ(f,Ψγ(δ))Ψγ(δ) = α(f,Ψγ)Ψγ +O(δ).

If γ ∈ J∩Γdeg then (Ψγ , Ψ̃γ)H(∂B)2 = 0. Therefore, an asymptotic expansion
on δ yields

αδ(f,Ψγ,h(δ))Ψγ,h(δ) =
(−1)h(f, Ψ̃γ)H(∂B)2Ψγ

δ−1/2a1
+

1

a1

((
(f, Ψ̃γ,1)H(∂B)2 − (f, Ψ̃γ)H(∂B)2

a2
a1

)
Ψγ + (f, Ψ̃γ)H(∂B)2Ψγ,1

)

+O(δ1/2)



74 Chapter 3. The Full Maxwell Equations

with

a1 = (Ψγ , Ψ̃γ,1)H(∂B)2 + (Ψγ,1, Ψ̃γ)H(∂B)2 ,

a2 = (Ψγ , Ψ̃γ,2)H(∂B)2 + (Ψγ,2, Ψ̃γ)H(∂B)2 + (Ψγ,1, Ψ̃γ,1)H(∂B)2 .

Since τγ,h(δ) = τγ + δ1/2(−1)hτγ,1 + O(δ), the result follows by adding the
terms

αδ(f,Ψγ,0(δ))Ψγ,0(δ)

τγ,0(δ)
and

αδ(f,Ψγ,1(δ))Ψγ,1(δ)

τγ,1(δ)
.

The proof is then complete.

Corollary 3.3.1. Assume the same conditions as in Theorem 3.3.2. Under
the additional condition that

min
γ∈J∩Γsim

|τγ(δ)| ≫ δ3, min
γ∈J∩Γdeg

|τγ(δ)| ≫ δ, (3.34)

we have

Ψ =
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ + δ2τγ,2
+

∑

γ∈J∩Γdeg

ζ1(f)Ψγ + ζ2(f)Ψγ,1 +O(δ1/2)

τ2γ − δτ2γ,1
+O(1).

Corollary 3.3.2. Assume the same conditions as in Theorem 3.3.2. Under
the additional condition that

min
γ∈J∩Γsim

|τγ(δ)| ≫ δ2, min
γ∈J∩Γdeg

|τγ(δ)| ≫ δ1/2, (3.35)

we have

Ψ =
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ
+

∑

γ∈J∩Γdeg

α(f,Ψγ)Ψγ

τγ
+ α(f,Ψγ,g)

(
Ψγ,g

τγ
+

Ψγ

τ2γ

)
+O(1).

Proof. We have

lim
δ→0

W−1
B (δ)Pspan{Ψγ,0(δ),Ψγ,1(δ)}[f ] = lim

δ→0

αδ(f,Ψγ,0(δ))Ψγ,0(δ)

τγ,0(δ)
+
αδ(f,Ψγ,1(δ))Ψγ,1(δ)

τγ,1(δ)

= W−1
B,0(δ)Pspan{Ψγ ,Ψγg}[f ]

=
α(f,Ψγ)Ψγ

τγ
+ α(f,Ψγ,g)

(
Ψγ,g

τγ
+

Ψγ

τ2γ

)
,

where γ ∈ J ∩Γdeg, f ∈ H(∂B)2 and )PspanE is the projection into the linear
space generated by the elements in the set E.

Remark 3.3.3. Note that for γ ∈ J ,

τγ ≈ min
{
dist

(
λµ, σ(K∗

B) ∪ −σ(K∗
B)
)
, dist

(
λε, σ(K∗

B) ∪ −σ(K∗
B)
)}
.

It is clear, from Remark 3.3.3, that resonances can occur when exciting
the spectrum of K∗

B or/and that of −K∗
B. We substantiate in the following

that only the spectrum of K∗
B can be excited to create the plasmonic reso-

nances in the quasi-static regime.
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Recall that

f =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(iν ×H i)(1)

εm − εc
η(iν ×H i)(2)

εm − εc




∣∣∣∣∣
∂B

,

and therefore,

f1 :=
η(ν × Ei)(1)

µm − µc
=

∆−1
∂B∇∂B · η(ν × Ei)

µm − µc
.

Now, suppose γ = (1, j, 1) ∈ J (recall that J is the index set of resonances).
Then τγ = λµ − λ1,j , where λ1,j ∈ σ1 = σ(−K∗

B)\σ(K∗
B). From Remark

3.3.1,

α(f,Ψγ) = (∆∂Bf1, ϕj,1)H∗ = α(f,Ψγ) =
1

µm − µc
(∇∂B · η(ν × Ei), ϕj,1)H∗ ,

where ϕj,1 ∈ H∗
0(∂B) is a normalized eigenfunction of K∗

B(∂B).
A Taylor expansion of Ei gives, for x ∈ ∂D,

Ei(x) =

∞∑

β∈N3

(x− z)β∂βEi(z)

|β|! .

Thus,

η(ν × Ei)(x̃) = η(ν)(x̃)× Ei(z) +O(δ),

and

∇∂B · η(ν × Ei)(x̃) = −η(ν)(x̃) · ∇ × Ei(z) +O(δ)

= O(δ).

Therefore, the zeroth-order term of the expansion of ∇∂B · η(ν × Ei) in δ is
zero. Hence,

α(f,Ψγ) = 0.

In the same way, we have

α(f,Ψγ) = 0,

α(f,Ψγg) = 0

for γ = (2, j, 1) ∈ J and γg such that γ ∈ J .
As a result we see that the spectrum of −K∗

B is not excited in the zeroth-
order term. However, we note that σ(−K∗

B) can be excited in higher-order
terms.
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3.4 The extinction cross-section at the quasi-static
limit

The aim of this section is to derive an expression of the extinction cross
section and estimate its blow up at the plasmonic resonances. We first re-
call the quasi-static limit of the electric field at plasmonic resonances. The
formula was first obtained in [9], but it can be derived by pursuing further
computations in Corollary 3.3.2. In this formula, the polarization tensor is
a key ingredient. It allows to express the quasi-static limit or zeroth-order
approximation of the electromagnetic fields far away from the particle. The
polarization tensor is given by [18]

M(λ,D) =

∫

∂D
(λId−K∗

D)
−1[ν](x)x dσ(x), (3.36)

where λ ∈ C\(−1/2, 1/2). In view of Lemma 3.2.1, we have

M(λ,D) =
∞∑

j=1

1

λ− λj
(ν, ϕj)H∗(ϕj , x)− 1

2
, 1
2
, (3.37)

since (ν, ϕ0)H∗ = 0;
The following result follows from [9].

Theorem 3.4.1. Let dσ = min
{
dist

(
λµ, σ(K∗

D) ∪ −σ(K∗
D)
)
, dist

(
λε, σ(K∗

D) ∪ −σ(K∗
D)
)}

.
Then, for D = z+δB ⋐ R

3 of class C1,α for 0 < α < 1, the following uniform
far-field expansion holds

Es = − iωµm
εm

∇×Gd(x, z, km)M(λµ, D)H i(z)− ω2µmGd(x, z, km)M(λε, D)Ei(z) +O(
δ4

dσ
),

where

Gd(x, z, km) = εm
(
G(x, z, km)Id+

1

k2m
D2

xG(x, z, km)
)

is the Dyadic Green (matrix valued) function for the full Maxwell equations.

In order to express the extinction cross section we need to write the
far-field behavior of the electric and magnetic fields. We first recall the
representation for the scattering amplitude [78]. It is well-known that the
solution (E,H) to the system (3.10) has the following far-field expansion as
|x| → +∞:

Es(x) = −e
ikm|x|

4π|x| A∞(x̂) +O

(
1

|x|2
)
,

and

Hs(x) = −e
ikm|x|

4π|x| x̂×A∞(x̂) +O

(
1

|x|2
)
,

where

A∞(x̂) = −iµmkmx̂×
∫

∂D
e−ikmx̂·yψ(y)dσ(y)− k2mx̂× x̂×

∫

∂D
e−ikmx̂·yφ(y)dσ(y),
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and x̂ = x
|x| .

We also need the optical cross-section theorem for the scattering of elec-
tromagnetic waves [43], which can be stated as follows. Assume that the
incident fields are plane waves given by

Ei(x) = peikmd·x,

H i(x) = d× peikmd·x,

where p ∈ R
3 and d ∈ R

3 with |d| = 1 are such that p · d = 0. Then, the
extinction cross-section is given by

Qext =
4π

km
ℑ
[
p ·A∞(d)

|p|2
]
,

where A∞ is the scattering amplitude.
From Taylor expansions on the formula of Theorem 3.4.1, it follows that

the following far-field asymptotic expansion holds:

Es =

−e
ikm|x|

4π|x|
(
ωµmkme

ikm(d−x̂)·z(x̂× Id
)
M(λµ, D)(d× p)− k2me

ikm(d−x̂)·z(Id− x̂x̂t
)
M(λε, D)p

)

+O(
1

|x|2 ) +O(
δ4

dσ
),

where x̂ = x/|x|. Therefore, up to an error term of order O( δ
4

dσ
), we have

A∞(x̂) = ωµmkme
ikm(d−x̂)·z(x̂×Id

)
M(λµ, D)(d×p)−k2meikm(d−x̂)·z(Id−x̂x̂t

)
M(λε, D)p.

(3.38)
Formula (3.38) allows us to compute the extinction cross-section Qext in
terms of the polarization tensors associated with the particle D and the
material parameter contrasts. Moreover, an estimate for the blow up of Qext

at the plasmonic resonances follows immediately from (3.37).

Theorem 3.4.2. We have

Qext =
4π

km|p|2ℑ
[
p ·
[
ωµmkm

(
d× Id

)
M(λµ, D)(d× p)− k2m

(
Id− ddt

)
M(λε, D)p

]]
,

where M(λµ, D) and M(λε, D) are the polarization tensors associated with
D and λ = λµ and λ = λε, respectively.

3.5 Explicit computations for a spherical nanopar-
ticle

In this section we consider a spherical nanoparticle and explicitly compute
the first order correction in terms of radius of its plasmonic resonances. We
also derive and explicit formula for the extinction cross section.

3.5.1 Vector spherical harmonics

Let x̂ = x
|x| . For m = −n, ..., n and n = 1, 2, ..., set Y m

n to be the spherical

harmonics defined on the unit sphere S = {x ∈ R
3, |x| = 1}. For a wave
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number k > 0, the function

vn,m(k;x) = h(1)n (k|x|)Y m
n (x̂)

satisfies the Helmholtz equation ∆v + k2v = 0 in R
3 \ {0} together with the

Sommerfeld radiation condition

lim
|x|→∞

|x|
(∂vn,m
∂|x| (k;x)− ikvn,m(k;x)

)
= 0.

Similarly, let ṽn,m(x) be defined by

ṽn,m(x) = jn(k|x|)Y m
n (x̂),

where jn is the spherical Bessel function of the first kind. Then the function
ṽn,m satisfies the Helmholtz equation in R

3.
Next, define the vector spherical harmonics by

Un,m =
1√

n(n+ 1)
∇SY

m
n (x̂) and Vn,m = x̂× Un,m

for m = −n, ..., n and n = 1, 2, .... Here, x̂ ∈ S and ∇S denote the sur-
face gradient on the unit sphere S. The vector spherical harmonics form a
complete orthogonal basis for L2

T (S).
Using the vectorial spherical harmonics, we can separate the solutions of

Maxwell’s equations into multipole solutions; see [78, Section 5.3]. Define
the exterior transverse electric multipoles, i.e., E · x = 0, as





ETE
n,m(x) = −

√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂),

HTE
n,m(x) = − i

ωµ
∇×

(
−
√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂)

)
,

(3.39)

and the exterior transverse magnetic multipoles, i.e., H · x = 0, as





ETM
n,m(x) =

i

ωǫ
∇×

(
−
√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂)

)
,

HTM
n,m (x) = −

√
n(n+ 1)h(1)n (k|x|)Vn,m(x̂).

(3.40)

The exterior electric and magnetic multipoles satisfy the Sommerfeld radi-
ation condition. In the same manner, one defines the interior multipoles

(ẼTE
n,m, H̃

TE
n,m) and (ẼTM

n,m , H̃
TM
n,m ) with h

(1)
n replaced by jn, i.e.,





ẼTE
n,m(x) = −

√
n(n+ 1)jn(k|x|)Vn,m(x̂),

H̃TE
n,m(x) = − i

ωµ
∇× ẼTE

n,m(x),
(3.41)

and 



H̃TM
n,m (x) = −

√
n(n+ 1)jn(k|x|)Vn,m(x̂),

ẼTM
n,m(x) =

i

ωǫ
∇× H̃TM

n,m (x).
(3.42)
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Note that one has

∇× ETE
n,m(k;x) =

√
n(n+ 1)

|x| Hn(k|x|)Un,m(x̂) +
n(n+ 1)

|x| h(1)n (k|x|)Y m
n (x̂)x̂

(3.43)
and

∇× ẼTE
n,m(k;x) =

√
n(n+ 1)

|x| Jn(k|x|)Un,m(x̂) +
n(n+ 1)

|x| jn(k|x|)Y m
n (x̂)x̂,

(3.44)
where

Jn(t) = jn(t) + tj′n(t), Hn(t) = h(1)n (t) + t(h(1)n )′(t).

For |x| > |y|, the following addition formula holds:

G(x, y, k)I =−
∞∑

n=1

ik

n(n+ 1)

ǫ

µ

n∑

m=−n

ETM
n,m(x)ẼTM

n,m(y)
T

−
∞∑

n=1

ik

n(n+ 1)

n∑

m=−n

ETE
n,m(x)ẼTE

n,m(y)
T

− i

k

∞∑

n=1

n∑

m=−n

∇vn,m(x)∇ṽn,m(y)
T
. (3.45)

Alternatively, for |x| < |y|, we have

G(x, y, k)I =−
∞∑

n=1

ik

n(n+ 1)

ǫ

µ

n∑

m=−n

ẼTM
n,m(x)ETM

n,m(y)T

−
∞∑

n=1

ik

n(n+ 1)

n∑

m=−n

ẼTE
n,m(x)ETE

n,m(y)T

− i

k

∞∑

n=1

n∑

m=−n

∇ṽn,m(x)∇vn,m(y)T . (3.46)

3.5.2 Explicit representations of boundary integral operators

Let D be a sphere of radius r > 0. We have the following results.

Lemma 3.5.1. Let ∂D = {|x| = r}. Then, for r′ > r, we have

ν ×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= (−ikr)h(1)n (kr′)Jn(kr)Un,m, (3.47)

ν ×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik
r2

r′
jn(kr)Hn(kr

′)Vn,m, (3.48)

ν ×∇×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= −ik r
r′
Jn(kr)Hn(kr

′)Vn,m, (3.49)

ν ×∇×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik(kr)2jn(kr)h
(1)
n (kr′)Un,m. (3.50)
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For r′ < r,

ν ×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= (−ikr)jn(kr′)Hn(kr)Un,m, (3.51)

ν ×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik
r2

r′
Jn(kr

′)h(1)n (kr)Vn,m, (3.52)

ν ×∇×∇× ~Sk
D[Un,m]

∣∣+
|x|=r′

= −ik r
r′
Jn(kr

′)Hn(kr)Vn,m, (3.53)

ν ×∇×∇× ~Sk
D[Vn,m]

∣∣+
|x|=r′

= ik(kr)2jn(kr
′)h(1)n (kr)Un,m. (3.54)

Proof. We only consider (3.47). The other formulas can be proved in a similar
way.

From (3.43), (3.44), and the definitions of ETE
n,m, E

TM
n,m , Ẽ

TE
n,m and ẼTM

n,m ,
we have

∇x ×G(x, y, k)Un,m(ŷ)

=−
∞∑

n=1

ik

n(n+ 1)

ǫ

µ

n∑

m=−n

∇× ETM
n,m(x)ẼTM

n,m(y) · Up,q(ŷ)

+
∞∑

n=1

ik

n(n+ 1)

n∑

m=−n

∇× ETE
n,m(x)ẼTE

n,m(y) · Up,q(ŷ)

=−
∞∑

n=1

ik√
n(n+ 1)

ǫ

µ

n∑

m=−n

∇× ETM
n,m(x)

−i
ωε

1

r
Jn(kr)Un,m(ŷ) · Up,q(ŷ)

+
∞∑

n=1

ik√
n(n+ 1)

n∑

m=−n

∇× ETE
n,m(x)(−1)jn(kr)Vn,m(ŷ) · Up,q(ŷ)

for |y| = r and |x| > |y|. Therefore, we get on |x| = r

∇× ~Sk
D[Un,m]

∣∣
+
= ∇x ×

∫

|y|=r
G(x, y, k)Un,m(ŷ)

=
kr√

n(n+ 1)

1

ωµ
Jn(kr)(∇× ETM

n,m(x))||x|=r. (3.55)

Since

∇× ETM
p,q =

i

ωε
∇×∇× ETE

p,q =
i

ωε
k2ETE

p,q ,

we obtain

x̂×∇× ~Sk
D[Un,m]

∣∣
+
=

ikr√
n(n+ 1)

Jn(kr)(x̂× ETE
n,m(x))||x|=r

= (−ikr)h(1)n (kr)Jn(kr)Un,m on |x| = r,

which completes the proof.
Note that

ν ×∇× ~Sk
D[φ]

∣∣
± = (∓1

2
I +Mk

D)[φ] on ∂D,

and recall the following identity, which was proved in [90],

ν ×∇×∇× ~Sk
D[φ] = Lk

D[φ] on ∂D.
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For m = −n, . . . , n and n = 1, 2, 3, . . ., let Hn,m(∂D) be the subspace of
H(∂D) defined by

Hn,m(∂D) = span{Un,m, Vn,m}.

Let us represent the operators Mk
D and Lk

D explicitly on the subspaceHm,n(∂D).
Using Un,m, Vn,m as basis vectors, we obtain the following matrix represen-
tations for Mk

D and Lk
D on the subspace Hn,m(∂D):

Mk
D =



1

2
− ikrh(1)n (kr)Jn(kr) 0

0
1

2
+ ikrjn(kr)Hn(kr)


 , (3.56)

and

Lk
D =

(
0 ik(kr)2jn(kr)h

(1)
n (kr)

−ikJn(kr)Hn(kr) 0

)
. (3.57)

3.5.3 Asymptotic behavior of the spectrum of WB(r)

Now we consider the asymptotic expansions of the operator WB(r) and its
spectrum when r ≪ 1.

It is well-known that, as t→ 0,

jn(t) =
tn

(2n+ 1)!!

(
1− 1

2(2n+ 3)
t2 +O(t4)

)
,

h(1)n (t) = −i((2n− 1)!!)t−n−1
(
1 +

1

2(2n− 1)
t2 +O(t4)

)
. (3.58)

By making use of these asymptotics of the spherical Bessel functions, we
obtain that

iJn(t)h
(1)
n (t̃) =

n+ 1

2n+ 1

( t
t̃

)n 1
t̃
+

n+ 1

2(2n− 1)(2n+ 1)

( t
t̃

)n
t̃− n+ 3

2(2n+ 1)(2n+ 3)

( t
t̃

)n+1
t+O(t3),

ijn(t)Hn(t̃) =
−n

2n+ 1

( t
t̃

)n 1
t̃
+

−n+ 2

2(2n− 1)(2n+ 1)

( t
t̃

)n
t̃+

n

2(2n+ 1)(2n+ 3)

( t
t̃

)n+1
t+O(t3),

ijn(t)h
(1)
n (t̃) =

1

2n+ 1

( t
t̃

)n 1
t̃
+

1

2(2n− 1)(2n+ 1)

( t
t̃

)n
t̃− 1

2(2n+ 1)(2n+ 3)

( t
t̃

)n+1
t+O(t3),

iJn(t)Hn(t̃) =
(−n)(n+ 1)

2n+ 1

( t
t̃

)n 1
t̃
+

(n+ 1)(−n+ 2)

2(2n− 1)(2n+ 1)

( t
t̃

)n
t̃+

n(n+ 3)

2(2n+ 1)(2n+ 3)

( t
t̃

)n+1
t

+O(t3), (3.59)

for small t, t̃≪ 1 with t ≈ t̃.
So, we have

Mk
D =




(−1)

2(2n+ 1)
+ (kr)2rn 0

0
1

2(2n+ 1)
+ (kr)2sn


+O(r4), (3.60)
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and

Lk
D =




0 k2rpn
n(n+ 1)

2n+ 1

1

r
+ k2rqn 0


+O(r3), (3.61)

where

pn =
1

2n+ 1
,

qn =
(n+ 1)(n− 2)

2(2n− 1)(2n+ 1)
− n(n+ 3)

2(2n+ 1)(2n+ 3)
,

rn = − n+ 1

2(2n− 1)(2n+ 1)
+

(n+ 3)

2(2n+ 1)(2n+ 3)
,

sn = − n− 2

2(2n− 1)(2n+ 1)
+

n

2(2n+ 1)(2n+ 3)
. (3.62)

Therefore, we can obtain

WB(r) = WB,0 + rWB,1 + r2WB,2 +O(r3),

where

WB,0 =




λµ − (−1)

2(2n+ 1)
0 0 0

0 λµ − 1

2(2n+ 1)
0 0

0 0 λε −
(−1)

2(2n+ 1)
0

0 0 0 λε −
1

2(2n+ 1)




,

(3.63)

WB,1 =




0 0 0 ωCµpn
0 0 ωCµqn 0
0 ωCεpn 0 0

ωCεqn 0 0 0


 , (3.64)

WB,2 =




ω2Dµrn 0 0 0
0 ω2Dµsn 0 0
0 0 ω2Dεrn 0
0 0 0 ω2Dεsn


 , (3.65)

and

Cµ =
µcεc − µmεm
µm − µc

, Cε =
µcεc − µmεm
εm − εc

, (3.66)

Dµ =
εcµ

2
c − εmµ

2
m

µm − µc
, Dε =

ε2cµc − ε2mµm
εm − εc

. (3.67)
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By applying the standard perturbation theory, the asymptotics of eigenvalues
of WB(r) are obtained as follows: up to an error term of order O(r3),

λµ − (−1)

2(2n+ 1)
+ (rω)2

[
CεCµ

pnqn
λµ − λε + pn

+Dµrn

]
+O(r3),

λµ − 1

2(2n+ 1)
+ (rω)2

[
CεCµ

pnqn
λµ − λε − pn

+Dµsn

]
+O(r3),

λε −
(−1)

2(2n+ 1)
+ (rω)2

[
CεCµ

pnqn
λε − λµ + pn

+Dεrn

]
+O(r3),

λε −
1

2(2n+ 1)
+ (rω)2

[
CεCµ

pnqn
λε − λµ − pn

+Dεsn

]
+O(r3),

and the asymptotics of the associated eigenfunction are given by

[1, 0, 0, 0]T + rω
Cεqn

λµ − λε + pn
[0, 0, 0, 1]T +O(r2),

[0, 1, 0, 0]T + rω
Cε

2n+ 1

1

λµ − λε − pn
[0, 0, 1, 0]T +O(r2),

[0, 0, 1, 0]T + rω
Cµqn

λε − λµ + pn
[0, 1, 0, 0]T +O(r2),

[0, 0, 0, 1]T + rω
Cµ

2n+ 1

1

λε − λµ − pn
[1, 0, 0, 0]T +O(r2).

3.5.4 Extinction cross-section

In this subsection, we compute the extinction cross-section Qext. We need
the following lemma.

Lemma 3.5.2. Let D be a sphere with radius r > 0 and suppose that Ei is
given by

Ei(x) =

∞∑

n=1

n∑

l=−n

αTE
nl Ẽ

TE
n,l (x; km) + αTM

nl ẼTM
n,l (x; km),

for some coefficients αTE
nl , α

TM
nl . Then the scattered wave can be represented

as follows: for |x| > r,

Es(x) =

∞∑

n=1

n∑

l=−n

αTE
nl S

TE
n ETE

n,l (x; km) + αTM
nl STM

n ETM
n,l (x; km),

where STE
n and STM

n are given by

STE
n =

µcjn(kcr)Jn(kmr)− µmjn(kmr)Jn(kcr)

µmJn(kcr)h
(1)
n (kmr)− µcjn(kcr)H(kmr)

,

STM
n =

εcjn(kcr)Jn(kmr)− εmjn(kmr)Jn(kcr)

εmJn(kcr)h
(1)
n (kmr)− εcjn(kcr)H(kmr)

.
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Proof. Let Ei = ẼTE
n,l (x; km). We look for a solution of the following form:

E =

{
a ẼTE

n,l (x; kc), |x| < r

ẼTE
n,l (x; km) + bETE

n,l (x; km), |x| > r.

Then, from the boundary condition on ∂D, we easily see that

(
jn(kmr)
1
µm

Jn(kmr)

)
=

(
jn(kcr) −h(1)n (kmr)
1
µc
Jn(kcr) − 1

µm
Hn(kmr)

)(
a
b

)
. (3.68)

Therefore, the coefficient a and b can be obtained as follows:

(
1/a
b/a

)
=

(
jn(kmr) h

(1)
n (kmr)

1
µm

Jn(kmr)
1
µm

Hn(kmr)

)−1(
jn(kcr) h

(1)
n (kcr)

1
µc
Jn(kcr)

1
µc
Hn(kcr)

)(
1
0

)
,

=
µmkmr

i

(
1
µm

Hn(kmr) −h(1)n (kmr)

− 1
µm

Jn(kmr) jn(kmr)

)(
jn(kcr)
1
µc
Jn(kcr)

)
,

= −ikmr



Hn(kmr)jn(kcr)−

µm
µc
h(1)n (kmr)Jn(kcr)

−Jn(kmr)jn(kcr) +
µm
µc
jn(kmr)Jn(kcr)


 , (3.69)

where we have used the following Wronskian identity for the spherical Bessel
function:

jn(t)Hn(t)− h(1)n (t)Jn(t) = t
(
jn(t)(h

(1)
n )′(t)− j′n(t)h

(1)
n (t)

)
=
i

t
.

Therefore, we immediately see that

b =
µcjn(kcr)Jn(kmr)− µmjn(kmr)Jn(kcr)

µmJn(kcr)h
(1)
n (kmr)− µcjn(kcr)H(kmr)

.

Now suppose that Ei = ẼTM
n,l (x; km). We look for a solution in the

following form:

E =

{
c ẼTM

n,l (x; kc), |x| < r,

ẼTM
n,l (x; km) + dETM

n,l (x; km), |x| > r.

Then, from the boundary conditions on |x| = r, we obtain

(
1
εc
Jn(kcr)

1
εc
Hn(kcr)

jn(kcr) h
(1)
n (kcr)

)(
c
0

)
=

(
1
εm

Jn(kmr)
1
εm

Hn(kmr)

jn(kmr) h
(1)
n (kmr)

)(
1
d

)
.

(3.70)

By solving (3.70), we get

d =
εcjn(kcr)Jn(kmr)− εmjn(kmr)Jn(kcr)

εmJn(kcr)h
(1)
n (kmr)− εcjn(kcr)H(kmr)

.

By the principle of superposition, the conclusion immediately follows.
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We also need the following lemma concerning the scattering amplitude
A∞.

Lemma 3.5.3. Suppose that the scattered electric field Es is given by

Es(x) =
∞∑

n=1

n∑

l=−n

βTE
nl E

TE
n,l (x; km) + βTM

nl ETM
n,l (x; km)

for R
3 \D. Then the scattering amplitude A∞ can be represented as follows:

A∞(x̂) =
∞∑

n=1

n∑

l=−n

4π(−i)n
ikm

√
n(n+ 1)

(
βTE
nl Vn,l(x̂) +

√
µm
εm

βTM
nl Un,l

)
.

Proof. It is well-known that

h(1)n (t) ∼ 1

t
eite−in+1

2
π as t→ ∞,

and

(h(1)n )′(t) ∼ 1

t
eite−in

2
π as t→ ∞.

Then one can easily see that as |x| → ∞,

ETE
n,m(x; km) ∼ −e

ikm|x|

km|x| e
−in+1

2
π
√
n(n+ 1)Vn,l(x̂)

and

ETM
n,m(x; km) ∼ −e

ikm|x|

km|x|

√
µm
εm

e−in+1
2

π
√
n(n+ 1)Un,l(x̂).

By applying these asymptotics to the series expansion of Es, the conclusion
follows.

A plane wave can be represented as a series expansion. The following
lemma is proved in [66].

Lemma 3.5.4. Let Ei be a plane wave, that is, Ei(x) = p eikmd·x with d ∈ S
and p · d = 0. Then we have the following series representation for a plane
wave as follows:

Ei(x) =

∞∑

n=1

n∑

l=−n

αpw,TE
nl ẼTE

n,l (x; km) + αpw,TM
nl ẼTM

n,l (x; km),

where 



αpw,TE
nl =

(−1)4πin√
n(n+ 1)

i
(
Vn,l(d) · p

)
,

αpw,TM
nl =

(−1)4πin√
n(n+ 1)

√
εm
µm

(
Un,l(d) · p

)
.

Now we are ready to compute the extinction cross-section Qext.

Theorem 3.5.1. Assume that Ei(x) = p eikmd·x with d ∈ S and p · d = 0.
Let D be a sphere with radius r. Then the extinction cross-section is given
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by

Qext =
∞∑

n=1

n∑

l=−n

(4π)3

k2m|p|2ℑ
(
(−1)STE

n (Vn,l(d) · p)2 + iSTM
n (Un,l(d) · p)2

)
.

Moreover, for small r > 0, we have

Qext =
1∑

l=−1

(−1)(4πkmr)
3

k2m|p|2 ℑ
(
i
2

3

µc − µm
2µm + µc

(V1,l(d) · p)2 +
2

3

εc − εm
2εm + εc

(U1,l(d) · p)2
)

+O((kmr)
4).

Proof. Let us first compute the scattering amplitude A∞ when Ei is a plane
wave. From

A∞(x̂) =

∞∑

n=1

n∑

l=−n

4π(−i)n
ikm

√
n(n+ 1)

×
(
αpw,TE
nl STE

n Vn,l(x̂) +

√
µm
εm

αpw,TM
nl STM

n Un,l

)

=
∞∑

n=1

n∑

l=−n

(4π)2

km

(
(−1)STE

n (Vn,l(d) · p)Vn,l + iSTM
n (Un,l(d) · p)Un,l

)
.

Therefore, we have

Qext =
4π

km
ℑ
[
p ·A∞(d)

|p|2
]

=

∞∑

n=1

n∑

l=−n

(4π)3

k2m|p|2ℑ
(
(−1)STE

n (Vn,l(d) · p)2 + iSTM
n (Un,l(d) · p)2

)
.

Now we assume that r ≪ 1. By applying (3.58), one can easily see that

STE
1 = i

2

3

(µc − µm)(kmr)
3

2µm + µc
+O(r4),

STM
1 = i

2

3

(εc − εm)(kmr)
3

2εm + εc
+O(r4),

STE
n , STM

n = O(r4), for n ≥ 2.

Therefore, we obtain, up to an error term of order O(r4),

Qext =

1∑

l=−1

(−1)(4π)3

k2m|p|2 ℑ
(
i
2

3

(µc − µm)(kmr)
3

2µm + µc
(V1,l(d) · p)2 +

2

3

(εc − εm)(kmr)
3

2εm + εc
(U1,l(d) · p)2

)
.

The proof is complete.

3.6 Explicit computations for a spherical shell

In this section we consider a spherical shell. Since, in this case, the eigenval-
ues associated with the corresponding Neumann-Poincaré operator are not
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simple, we apply degenerate perturbation theory in order to compute the
first order effect of the size.

3.6.1 Explicit representation of boundary integral operators

Let Ds and Dc be a spherical shell with radius rs and rc with rs > rc > 0.
Let

(ε, µ) =





(εm, µm) in Dc,

(εs, µs) in Ds \ D̄c,

(εm, µm) in R
3 \ D̄s.

Let
ρ =

rc
rs
.

The solution to the transmission problem can be represented as follows

E(x) =





µc∇× ~Skc
Ds

[ψs](x) +∇×∇× ~Skc
Ds

[φs](x)

+µc∇× ~Skc
Dc

[ψc](x) +∇×∇× ~Skc
Dc

[φc](x) x ∈ Dc,

µs∇× ~Sks
Ds

[ψs](x) +∇×∇× ~Sks
Ds

[φs](x)

+µs∇× ~Sks
Dc

[ψc](x) +∇×∇× ~Sks
Dc

[φc](x) x ∈ Ds \ D̄c,

Ei + µm∇× ~Skm
Ds

[ψs](x) +∇×∇× ~Skm
Ds

[φs](x)

+µm∇× ~Skm
Dc

[ψc](x) +∇×∇× ~Skm
Dc

[φc](x) x ∈ R
3\D̄s,

(3.71)
and

H(x) = − i

ωµD
(∇× E)(x) x ∈ R

3\∂D, (3.72)

where the pair (ψs, φs, ψc, φc) ∈
(
H

− 1
2

T (div, ∂Ds)
)2×

(
H

− 1
2

T (div, ∂Dc)
)2

is the
unique solution to

W sh




ψs

φs
ψc

φc


 :=

(
W sh

11 W sh
12

W sh
21 W sh

22

)



ψs

φs
ψc

φc


 =




ν × Ei

iων ×H i

0
0




with

W sh
11 =




µs + µm
2

Id+ µsMks
Ds

− µmMkm
Ds

Lks
Ds

− Lkm
Ds

Lks
Ds

− Lkm
Ds

(
k2s
2µs

+
k2m
2µm

)
Id+

k2s
µs

Mks
Ds

− k2m
µm

Mkm
Ds


 ,

(3.73)

W sh
12 =




µsν ×∇× ~Sks
Dc

− µmν ×∇× ~Skm
Dc

ν ×∇×∇× ~Sks
Dc

− ν ×∇×∇× ~Skm
Dc

ν ×∇×∇× ~Sks
Dc

− ν ×∇×∇× ~Skm
Dc

k2s
µs
ν ×∇× ~Sks

Dc
− k2m
µm

ν ×∇× ~Skm
Dc


 ,

(3.74)
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W sh
21 =




−µcν ×∇× ~Skc
Ds

+ µsν ×∇× ~Sks
Ds

−ν ×∇×∇× ~Skc
Ds

+ ν ×∇×∇× ~Sks
Ds

−ν ×∇×∇× ~Skc
Ds

+ ν ×∇×∇× ~Sks
Ds

−k
2
c

µc
ν ×∇× ~Skc

Ds
+
k2s
µs
ν ×∇× ~Sks

Ds


 ,

(3.75)

W sh
22 =




−µc + µs
2

Id− µcMkc
Dc

+ µsMks
Dc

−Lkc
Dc

+ Lks
Dc

−Lkc
Dc

+ Lks
Dc

−
(
k2c
2µc

+
k2s
2µs

)
Id− k2c

µc
Mkc

Dc
+
k2s
µs

Mks
Dc


 .

(3.76)
Note that W sh

11 and W sh
22 are similar to the operator in left-hand side of

(3.13). In the previous section for the sphere case, we have already obtained
the matrix representation of this operator and its asymptotic expansion.

By Lemma 3.5.1, we can represent ν × ∇ × ~Sk
D||x|=r′ and ν × ∇ × ∇ ×

~Sk
D||x|=r′ in a matrix form as follows(using Un,m, Vn,m as basis):

(i) For r′ > r,

ν ×∇× ~Sk
D||x|=r′ =

(
(−ikr)Jn(kr)h

(1)
n (kr′) 0

0 ik r2

r′ jn(kr)Hn(kr
′)

)
,

(3.77)

ν ×∇×∇× ~Sk
D||x|=r′ =

(
0 ik(kr)2jn(kr)h

(1)
n (kr′)

−ik r
r′Jn(kr)Hn(kr

′) 0

)
;

(3.78)

(ii) For r′ < r,

ν ×∇× ~Sk
D||x|=r′ =

(
(−ikr)jn(kr′)Hn(kr) 0

0 ik r2

r′ Jn(kr
′)〈(1)n (kr)

)
,

(3.79)

ν ×∇×∇× ~Sk
D||x|=r′ =

(
0 ik(kr)2jn(kr

′)h(1)n (kr)
−ik r

r′Jn(kr
′)Hn(kr) 0

)
.

(3.80)

Using the above formulas, the matrix representation of the operators W sh
12

and W sh
21 can be easily obtained.

We now consider scaling of W sh. First, we need some definitions. Let
Ds = z + rsBs where Bs contains the origin and |Bs| = O(1). Let Bc be
defined in a similar way. For any x ∈ ∂Ds (or ∂Dc), let x̃ = x−z

rs
∈ ∂Bs (or

∂Bc with rs replaced by rc) and define for each function f defined on ∂Ds

(or ∂Dc), a corresponding function defined on B as follows

ηs(f)(x̃) = f(z + rsx̃), ηc(f)(x̃) = f(z + rcx̃). (3.81)
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Then, in a similar way to the sphere case, let us write

W sh
B (rs)




ηs(ψs)
ωηs(φs)
ηc(ψc)
ωηc(φc)


 =




η(ν×Ei)
µm−µs

η(iν×Hi)
εm−εs
0
0


 .

Using (Un,m, Vn,m, Un,m, Vn,m)× (Un,m, Vn,m, Un,m, Vn,m) as basis, we can
representW sh

B (rs) in a 8×8 matrix form in a subspaceHn,m(∂Bs)×Hn,m(∂Bc).
Then, by using (3.59), their asymptotic expansion can also be obtained.

Here, the resulting asymptotics of the matrix W sh
B are given as follows.

Write
Wsh

B (rs) = Wsh
B,0 + rsWsh

B,1 + r2sWsh
B,2 +O(r3s), (3.82)

where

Wsh
B,0 =

(
Λµ,ε

Λµ,ε

)
+

(
P0,n Q0,n

R0,n −P0,n

)
, (3.83)

Wsh
B,1 =

(
P1,n Q1,n

R1,n −P1,n

)
, Wsh

B,2 =

(
P2,n Q2,n

R2,n −P2,n

)
.

Here, the matrix Pj,n, Qj,n and Rj,n are given by

Λµ,ε =




λµ
λµ

λε
λε


 , P0,n =




pn
−pn

pn
−pn


 ,

Q0,n = ρ2




gn
fn

gn
fn


 , R0,n =




fn
gn

fn
gn


 ,

P1,n = ω




Cµpn
Cµqn

Cεpn
Cεqn


 , P2,n = ω2




Dµrn
Dµsn

Dεrn
Dεsn


 ,

Q1,n = ωρ




Cµp̃n
Cµq̃n

Cεp̃n
Cεq̃n


 , Q2,n = ω2ρ




Dµr̃n
Dµs̃n

Dεr̃n
Dεs̃n


 ,

R1,n = −ωρ−1




Cµp̃n
Cµq̃n

Cεp̃n
Cεq̃n


 ,
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R2,n = ω2ρ−1




Dµs̃n
−Dµr̃n

Dεs̃n
−Dεr̃n


 .

Here, pn, qn, rn, sn are defined as (3.62) and p̃n, q̃n, r̃n, s̃n, Dµ and Dε are
defined as follows:

fn = ρn
n

2n+ 1
, gn = ρn−1 n+ 1

2n+ 1
, (3.84)

p̃n =
1

2n+ 1
ρn+1, (3.85)

q̃n =
(n+ 1)(n− 2)

2(2n− 1)(2n+ 1)
ρn − n(n+ 3)

2(2n+ 1)(2n+ 3)
ρn+2, (3.86)

r̃n = − n+ 1

2(2n− 1)(2n+ 1)
ρn +

(n+ 3)

2(2n+ 1)(2n+ 3)
ρn+2, (3.87)

s̃n = − n− 2

2(2n− 1)(2n+ 1)
ρn+1 +

n

2(2n+ 1)(2n+ 3)
ρn+3, (3.88)

and

Dµ =
εsµ

2
s − εmµ

2
m

µm − µs
, Dε =

ε2sµs − ε2mµm
εm − εs

. (3.89)

3.6.2 Asymptotic behavior of the spectrum of Wsh
B (rs)

Let us define

λshn =
1

2(2n+ 1)

√
1 + 4n(n+ 1)ρ2n+1.

Note that ±λshn are eigenvalues of the Neumann-Poincaré operator on the
shell.

It turns out that the eigenvalues of W sh
B,0 are as follows

λµ + λshn , λµ − λshn , λε + λshn , λε − λshn ,

for n = 0, 1, 2, ..., and their multiplicities is 2. Their associated eigenfunctions
are as follows:

λµ + λshn −→ E0
1 := (λshn + pn)e1 + fne5, E0

2 := (λshn − pn)e2 + gne6,

λµ − λshn −→ E0
3 := (−λshn + pn)e1 + fne5, E0

4 := (−λshn − pn)e2 + gne6,

λε + λshn −→ E0
5 := (λshn + pn)e3 + fne7, E0

6 := (λshn − pn)e4 + gne8,

λε − λshn −→ E0
7 := (−λshn + pn)e3 + fne7, E0

8 := (−λshn − pn)e4 + gne8,

where {ei}8i=1 is standard unit basis in R
8.

To derive asymptotic expansions of the eigenvalues, we apply degener-
ate eigenvalue perturbation theory (since the multiplicity of each of these



3.6. Explicit computations for a spherical shell 91

eigenvalues is 2). To state the result, we need some definitions. Let

T16,n = Cε
(λshn − pn)a1,n − b1,n

|E0
1 ||E0

6 |
, T18,n = Cε

(−λshn − pn)a1,n − b1,n
|E0

1 ||E0
8 |

,

T25,n = Cε
(λshn + pn)a2,n − b2,n

|E0
2 ||E0

5 |
, T27,n = Cε

(−λshn + pn)a2,n − b2,n
|E0

2 ||E0
7 |

,

T36,n = Cε
(λshn − pn)a3,n − b3,n

|E0
3 ||E0

6 |
, T38,n = Cε

(−λshn − pn)a3,n − b3,n
|E0

3 ||E0
8 |

,

T45,n = Cε
(λshn + pn)a4,n − b4,n

|E0
4 ||E0

5 |
, T47,n = Cε

(−λshn + pn)a4,n − b4,n
|E0

4 ||E0
7 |

,

T52,n =
Cµ

Cε
T16,n, T54,n =

Cµ

Cε
T18,n, T61,n =

Cµ

Cε
T25,n, T63,n =

Cµ

Cε
T27,n,

T72,n =
Cµ

Cε
T36,n, T74,n =

Cµ

Cε
T38,n, T81,n =

Cµ

Cε
T45,n, T83,n =

Cµ

Cε
T47,n,

where

a1,n = (λshn + pn)qn + ρfnq̃n,

a2,n = (λshn − pn)pn + ρgnp̃n,

a3,n = (−λshn + pn)qn + ρfnq̃n,

a4,n = (−λshn − pn)pn + ρgnp̃n,

and

b1,n = fngnqn + ρ−1(λshn + pn)gnq̃n,

b2,n = fngnpn + ρ−1(λshn − pn)fnp̃n,

b3,n = fngnqn + ρ−1(−λshn + pn)gnq̃n,

b4,n = fngnpn + ρ−1(−λshn − pn)fnp̃n.

We also define

K1,n = Dµ
(λshn + pn)((λ

sh
n + pn)rn + ρfnr̃n) + fn((λ

sh
n + pn)ρ

−1s̃n − fnrn)

|E0
1 |2

,

K2,n = Dµ
gn((−λshn + pn)ρ

−1r̃n − gnsn) + (λshn − pn)((λ
sh
n − pn)sn + ρgns̃n)

|E0
2 |2

,

K3,n = Dµ
(−λshn + pn)((−λshn + pn)rn + ρfnr̃n) + fn((−λshn + pn)ρ

−1s̃n − fnrn)

|E0
3 |2

,

K4,n = Dµ
gn((λ

sh
n + pn)ρ

−1r̃n − gnsn) + (−λshn − pn)((−λshn − pn)sn + ρgns̃n)

|E0
4 |2

,

K5,n =
Dε

Dµ
K1,n, K6,n =

Dε

Dµ
K2,n, K7,n =

Dε

Dµ
K3,n, K8,n =

Dε

Dµ
K4,n.
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Now we are ready to state the result. The followings are asymptotics of
eigenvalues of W sh

B (rs)

λµ + λε + (rsω)
2

(
T16,nT61,n
λµ − λε

+
T18,nT81,n

λµ − λε + 2λshn
+K1,n

)
+O(r3s),

λµ + λε + (rsω)
2

(
T16,nT61,n
λµ − λε

+
T18,nT81,n

λµ − λε + 2λshn
+K2,n

)
+O(r3s),

λµ − λε + (rsω)
2

(
T36,nT63,n

λµ − λε − 2λshn
+
T38,nT83,n
λµ − λε

+K3,n

)
+O(r3s),

λµ − λε + (rsω)
2

(
T36,nT63,n

λµ − λε − 2λshn
+
T38,nT83,n
λµ − λε

+K4,n

)
+O(r3s),

λε + λµ + (rsω)
2

(
T52,nT25,n
λε − λµ

+
T54,nT45,n

λε − λµ + 2λshn
+K5,n

)
+O(r3s),

λε + λµ + (rsω)
2

(
T52,nT25,n
λε − λµ

+
T54,nT45,n

λε − λµ + 2λshn
+K6,n

)
+O(r3s),

λε − λµ + (rsω)
2

(
T72,nT27,n

λε − λµ − 2λshn
+
T74,nT47,n
λε − λµ

+K7,n

)
+O(r3s),

λε − λµ + (rsω)
2

(
T72,nT27,n

λε − λµ − 2λshn
+
T74,nT47,n
λε − λµ

+K8,n

)
+O(r3s).

We also have the following asymptotic expansions of the eigenfunctions:

E0
1 + rsω

(
T16,n
λµ − λε

E0
6 +

T18,n
λµ − λε + 2λshn

E0
8

)
+O(r2s),

E0
2 + rsω

(
T25,n
λµ − λε

E0
5 +

T27,n
λµ − λε + 2λshn

E0
7

)
+O(r2s),

E0
3 + rsω

(
T36,n

λµ − λε − 2λshn
E0

6 +
T38,n
λµ − λε

E0
8

)
+O(r2s),

E0
4 + rsω

(
T45,n

λµ − λε − 2λshn
E0

5 +
T47,n
λµ − λε

E0
7

)
+O(r2s),

E0
5 + rsω

(
T52,n
λµ − λε

E0
2 +

T54,n
λµ − λε + 2λshn

E0
4

)
+O(r2s),

E0
6 + rsω

(
T61,n
λµ − λε

E0
1 +

T63,n
λµ − λε + 2λshn

E0
3

)
+O(r2s),

E0
7 + rsω

(
T72,n

λµ − λε − 2λshn
E0

2 +
T74,n
λµ − λε

E0
4

)
+O(r2s),

E0
8 + rsω

(
T81,n

λµ − λε − 2λshn
E0

1 +
T83,n
λµ − λε

E0
3

)
+O(r2s).

Interestingly, the first-order term (of order δ) is still zero in the asymp-
totic expansions of the eigenvalues. This is due to the fact that degenerate
eigenfunctions does not interact with each other.

3.7 Concluding remarks

In this chapter, we have given the first rigorous detailed description of the
scaling behavior of plasmonic resonances for the full Maxwell equations, im-
proving our understanding of light scattering by plasmonic nanoparticles.
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The particle dimension and interparticle distances are considered to be in-
finitely small compared with the wavelength of the interacting light.

We have also shown formulas indicating the blow up rate of the extinction
cross section at the plasmonic resonance and give explicit formulas for the
case of spherical and spherical shell nanoparticles.
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4.1 Introduction

Our aim in this chapter is to provide a mathematical and numerical frame-
work for analyzing photothermal effects using plasmonic nanoparticles. At
or near the plasmonic resonant frequencies, strong enhancement of scatter-
ing and absorption occurs, see chapter 2, 3 and [86]. This translates into an
efficient heat generation in the presence of electromagnetic radiation. More-
over, plasmonic nanoparticles biocompatibility makes them suitable for use
in nanotherapy [36].

Nanotherapy relies on a simple mechanism. First nanoparticles become
attached to tumor cells using selective biomolecular linkers. Then heat gen-
erated by optically-simulated plasmonic nanoparticles destroys the tumor
cells [51]. In this nanomedical application, the temperature increase is the
most important parameter [71,83]. It depends in a highly nontrivial way on
the shape, the number, and the arrangement of the nanoparticles. Moreover,
it is challenging to measure it at the surface of the nanoparticles [51].

In this chapter, we derive an asymptotic formula for the temperature
at the surface of plasmonic nanoparticles of arbitrary shapes. Our formula
holds for clusters of simply connected nanoparticles. It allows to estimate
the collective response of plasmonic nanoparticles. In particular, it shows
that the total amount of heat generated by two interacting nanoparticles
is significantly different from the heat created by two single nanoparticles.
The more interacting nanoparticles, the stronger the temperature increase.
Our results in this chapter formally explain the experimental observations
reported in [51].

The chapter is organized as follows. In section 4.2 we describe the math-
ematical setting for the physical phenomena we are modeling. To this end,
we use the Helmholtz equation to model the propagation of light which we
couple to the heat equation. Later on, we present our main results in this
chapter which consist on original asymptotic formulas for the inner field and
the temperature on the boundaries of the nanoparticles. In section 4.3 we
prove Theorems 4.2.1 and 4.2.2. These results clarify the strong dependency
of the heat generation on the geometry of the particles as it depends on the
eigenvalues of the associated Neumann-Poincaré operator. In section 4.4 we
present numerical examples of the temperature at the boundary of single and
multiple particles.

4.2 Setting of the problem and the main results

In this chapter, we use the Helmholtz equation for modeling the propagation
of light. This can be thought of as a special case of Maxwell’s equations, when
the incident wave ui is a transverse electric or transverse magnetic (TE or
TM) polarized wave. This approximation, also called paraxial approximation
[54], is a good model for a laser beam which are used, in particular, in full-
field optical coherence tomography. We will therefore model the propagation
of a laser beam in a host domain (tissue), hosting a nanoparticle.

Let the nanoparticle occupy a bounded domain D ⋐ R
2 of class C1,α for

some 0 < α < 1. Furthermore, let D = z + δB, where B is centered at the
origin and |B| = O(1).

We denote by εc(x) and µc(x), x ∈ D, the electric permittivity and
magnetic permeability of the particle, respectively, both of which may depend



4.2. Setting of the problem and the main results 99

on the frequency ω of the incident wave. Assume that εc(x) = ε0ε
′
c, µc(x) =

µ0µ
′
c and that ℜε′c < 0,ℑε′c > 0,ℜµ′c < 0,ℑµ′c > 0. Here and throughout, ε0

and µ0 are the permittivity and permeability of vacuum.
Similarly, we denote by εm(x) = ε0ε

′
m and µm(x) = µ0µ

′
m, x ∈ R

2\D
the permittivity and permeability of the host medium, both of which do not
depend on the frequency ω of the incident wave. Assume that εm and µm
are real and strictly positive.

The index of refraction of the medium (with the nanoparticle) is given
by

n(x) =
√
ε′cµ′cχ(D)(x) +

√
ε′mµ′mχ(R

2\D)(x),

where χ denotes the indicator function.
The scattering problem for a TE incident wave ui is modeled as follows:





∇ · c
2

n2
∇u+ ω2u = 0 in R

2\∂D,

u+ − u− = 0 on ∂D,

1

εm

∂u

∂ν

∣∣∣∣
+

− 1

εc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition at infinity,
(4.1)

where ∂
∂ν denotes the outward normal derivative and c = 1√

ε0µ0
is the speed

of light in vacuum. We use the notation ∂
∂ν

∣∣∣
±

indicating

∂u

∂ν

∣∣∣
±
(x) = lim

t→0+
∇u(x± tν(x)) · ν(x),

with ν being the outward unit normal vector to ∂D.
The interaction of the electromagnetic waves with the medium produces

a heat flow of energy which translates into a change of temperature governed
by the heat equation [37]





ρC
∂τ

∂t
−∇ · γ∇τ =

ω

2π
ℑ(ε)|u|2 in (R2\∂D)× (0, T ),

τ+ − τ− = 0 on ∂D,

γm
∂τ

∂ν

∣∣∣∣
+

− γc
∂τ

∂ν

∣∣∣∣
−
= 0 on ∂D,

τ(x, 0) = 0,

(4.2)

where ρ = ρcχ(D)+ρmχ(R
2\D) is the mass density, C = Ccχ(D)+Cmχ(R

2\D)
is the thermal capacity, γ = γcχ(D)+ γmχ(R

2\D) is the thermal conductiv-
ity, T ∈ R is the final time of measurements and ε = εcχ(D) + εmχ(R

2\D).
We further assume that ρc, ρm, Cc, Cm, γc, γm are real positive constants.
Note that ℑ(ε) = 0 in R

2\D and so, outside D, the heat equation is
homogeneous.

The coupling of equations (4.1) and (4.2) describes the physics of our
problem.
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We remark that, in general, the index of refraction varies with tempera-
ture; hence, a solution to the above equations would imply a dependency on
time for the electric field u, which contradicts the time-harmonic assumption
leading to model (4.1). Nevertheless, the time-scale on the dynamics of the
index of refraction is much larger than the time-scale on the dynamics of the
interaction of the electromagnetic wave with the medium. Therefore, we will
not integrate a time-varying component into the index of refraction.

Let G(·, k) be the Green function for the Helmholtz operator ∆ + k2

satisfying the Sommerfeld radiation condition. In dimension two, G is given
by

G(x, k) = − i

4
H

(1)
0 (k|x|),

where H
(1)
0 is the Hankel function of first kind and order 0. We denote

G(x, y, k) := G(x− y, k).
Recall the definition of the single-layer potential and Neumann-Poincaré

integral operator for the Helmholtz equation

Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D or x ∈ R

2,

and

(Kk
D)

∗[ϕ](x) =
∫

∂D

∂G(x, y, k)

∂ν(x)
ϕ(y)dσ(y), x ∈ ∂D.

Our main results in this chapter are the following.

Theorem 4.2.1. For an incident wave ui ∈ C2(R2), the solution u to (4.1),
inside a plasmonic particle occupying a domain D = z+δB, has the following
asymptotic expansion as δ → 0 in L2(D),

u = ui(z)+
(
δ(x− z) + SD

(
λεId−K∗

D

)−1
[ν]
)
·∇ui(z)+O

(
δ3

dist(λε, σ(K∗
D))

)
,

where ν is the outward normal to D, σ(K∗
D) denotes the spectrum of K∗

D in

H− 1
2 (∂D) and

λε :=
εc + εm

2(εc − εm)
.

Theorem 4.2.2. Let u be the solution to (4.1). The solution τ to (4.2) on
the boundary ∂D of a plasmonic particle occupying the domain D = z + δB
has the following asymptotic expansion as δ → 0, uniformly in (x, t) ∈ ∂D×
(0, T ),

τ(x, t) = FD(x, t, bc)− Vbc
D (λγId−K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
,
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where ν is the outward normal to D and

λγ :=
γc + γm

2(γc − γm)
,

bc :=
ρcCc

γc
,

FD(x, t, bc) :=
ω

2πγc
ℑ(εc)

∫ t

0

∫

D

e
− |x−y|2

4bc(t−t′)

4πbc(t− t′)
|u|2(y)dydt′,

Vbc
D [f ](x, t) :=

∫ t

0

∫

∂D

e
− |x−y|2

4bc(t−t′)

4πbc(t− t′)
f(y, t′)dydt′.

Remark 4.2.1. We remark that Theorem 4.2.1 and Theorem 4.2.2 are inde-
pendent. A generalization of Theorem 4.2.2 to R

3 is straightforward and the
same type of small volume approximation can be found using the techniques
presented in this chapter. In fact, in R

3, the operators involved in the first
term of the temperature small volume expansion are

FD(x, t, bc) :=
ω

2πγc
ℑ(εc)

∫ t

0

∫

D

e
− |x−y|2

4bc(t−t′)

(
4πbc(t− t′)

) 3
2

|E|2(y)dydt′,

Vbc
D [f ](x, t) :=

∫ t

0

∫

∂D

e
− |x−y|2

4bc(t−t′)

(
4πbc(t− t′)

) 3
2

f(y, t′)dydt′.

Here E is the vectorial electric field as a result of Maxwell equations. A small
volume expansion for E inside the nanoparticle for the plasmonic case can
be found using the same techniques of chapter 3.

4.3 Heat generation

In this section we consider the coupling of equations (4.1) and (4.2), that is,





∇ · c
2

n2
∇u+ ω2u = 0 in R

2\∂D,

u+ − u− = 0 on ∂D,

1

εm

∂u

∂ν

∣∣∣∣
+

− 1

εc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition at infinity,

ρcCc

γc

∂τ

∂t
−∆τ =

ω

2πγc
ℑ(εc)|u|2 in D × (0, T ),

ρmCm

γm

∂τ

∂t
−∆τ = 0 in (R2\D)× (0, T ),

τ+ − τ− = 0 on ∂D,

γm
∂τ

∂ν

∣∣∣∣
+

− γc
∂τ

∂ν

∣∣∣∣
−
= 0 on ∂D,

τ(x, 0) = 0.

(4.3)
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Under the assumption that the index of refraction n does not depend on
the temperature, we can solve equation (4.1) separately from equation (4.2).

Our goal is to establish a small volume expansion for the resulting tem-
perature at the surface of the nanoparticle as a function of time. To do so,
we first need to compute the electric field inside the nanoparticle as a result
of a plasmonic resonance. The results of the following sections rely heavily
on the use of layer potentials for the Helmholtz equation. We refer to chapter
2 for a summary.

4.3.1 Small volume expansion of the inner field

We proceed in this section to prove Theorem 4.2.1.

Rescaling

Since we are working with nanoparticles, we want to rescale equation (2.2) to
study the solution for a small volume approximation by using representation
(2.1).

Recall that D = z + δB. For any x ∈ ∂D, x̃ := x−z
δ ∈ ∂B and for each

function f defined on ∂D, we introduce a corresponding function defined on
∂B as follows

η(f)(x̃) = f(z + δx̃). (4.4)

It follows that

Sk
D[ϕ](x) = δSδk

B [η(ϕ)](x̃),

(Kk
D)

∗[ϕ](x) = (Kδk
B )∗[η(ϕ)](x̃),

(4.5)

so system (2.2) becomes





Sδkm
B [η(ψ)]− Sδkc

B [η(φ)] = −η(u
i)

δ
,

1
εm

(
1
2Id+ (Kδkm

B )∗
)
[η(ψ)] + 1

εc

(
1
2Id− (Kδkc

B )∗
)
[η(φ)] = − 1

εm
η(
∂ui

∂ν
).

(4.6)
Note that the system is defined on ∂B.
For δ small enough Sδkm

B is invertible (see Appendix B.3). Therefore,

η(ψ) = (Sδkm
B )−1Sδkc

B [η(φ)]− (Sδkm
B )−1[

η(ui)

δ
].

Hence, we have the following equation for η(φ):

AI
B(δ)[η(φ)] = f I ,

where

AI
B(δ) = 1

εm

(
1
2I + (Kδkm

B )∗
)
(Sδkm

B )−1Sδkc
B + 1

εc

(
1
2Id− (Kδkc

B )∗
)
,

f I = − 1

εm
η(
∂ui

∂ν
) + 1

εm

(
1
2Id+ (Kδkm

B )∗
)
(Sδkm

B )−1[
η(ui)

δ
].

(4.7)
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Proof of Theorem 4.2.1

To express the solution to (4.1) in D, asymptotically on the size of the
nanoparticle δ, we make use of the representation (2.1). We derive an asymp-
totic expansion for η(φ) on δ to later compute δSδkc

B [η(φ)] and scale back to
D. We divide the proof into three steps.

Step 1. We first compute an asymptotic for AI
B(δ) and f I .

Let H∗(∂B) be defined by (A.3) with D replaced by B. In L(H∗(∂B)),
we have the following asymptotic expansion as δ → 0 (see Appendix B.3)

(Sδkm
B )−1Sδkc

B = PH∗
0
+ Uδkm(S̃B +Υδkc) +O(δ2 log δ),

1

2
Id± (Kδk

B )∗ =
(1
2
Id±K∗

B

)
+O(δ2 log δ).

Let ϕ0 be an eigenfunction of K∗
B associated to the eigenvalue 1/2 (see

Appendix A) and let Uδkm be defined by (B.12) with k replaced with δkm.
Then it follows that

(1
2
Id+K∗

B

)
Uδkm = Uδkm .

Therefore, in L(H∗(∂B)),

AI
B(δ) =

(( 1

2εm
+

1

2εc

)
Id+

( 1

εm
− 1

εc

)
K∗

B

)
PH∗

0
+

1

εm
Uδkm(S̃B +Υδkc) +O(δ2 log δ),

and from the definition of Uδkm we get

AI
B(δ) =

(( 1

2εm
+

1

2εc

)
Id+

( 1

εm
− 1

εc

)
K∗

B

)
PH∗

0
+

1

εm

SB[ϕ0] + τδkc
SB[ϕ0] + τδkm

(·, ϕ0)H∗ϕ0+O(δ2 log δ).

(4.8)
In the same manner, in the space H∗(∂B),

f I =
1

εm

(
−η(∂u

i

∂ν
) +

(1
2
Id+K∗

B

)
PH∗

0
S̃−1
B [

η(ui)

δ
] + Uδkm [

η(ui)

δ
] +O(δ2 log δ)

)
.

We can further develop f I . Indeed, for every x̃ ∈ ∂B, a Taylor expansion
yields

η(
∂ui

∂ν
)(x̃) = ν(x̃) · ∇ui(δx̃+ z) = ν(x̃) · ∇ui(z) +O(δ),

η(ui)

δ
(x̃) =

ui(δx̃+ z)

δ
=

ui(z)

δ
+ x̃ · ∇ui(z) +O(δ).

The regularity of ui ensures that the previous formulas hold in H∗(∂B).
The fact that x̃ · ∇ui(z) is harmonic in B and Lemma A.0.4 imply that

−ν · ∇ui(z) = (
1

2
Id−K∗

B)PH∗
0
S̃−1
B [x̃ · ∇ui(z)]

in H∗(∂B).
Thus, in H∗(∂B),

f I =
1

εm

(
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] + Uδkm [

ui(z)

δ
+ x̃∇ui(z)] +O(δ)

)
.
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From the definition of Uδkm we get

f I =
1

εm

(
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] + ui(z)ϕ0

δ(SB[ϕ0] + τδkm)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkm
+O(δ)

)
.

(4.9)

Step 2. We compute (AI
B(δ))

−1f I .

We begin by computing an asymptotic expansion of (AI
B(δ))

−1.

The operator AI
0 :=

((
1

2εm
+ 1

2εc

)
Id+

(
1
εm

− 1
εc

)
K∗

B

)
maps H∗

0 into H∗
0.

Hence, the operator defined by (which appears in the expansion of AI
B(δ))

AI
B,0 := AI

0PH∗
0
+

1

εm

SB[ϕ0] + τδkc
SB[ϕ0] + τδkm

(·, ϕ0)H∗ϕ0,

is invertible of inverse

(AI
B,0)

−1 = (AI
0)

−1PH∗
0
+ εm

SB[ϕ0] + τδkm
SB[ϕ0] + τδkc

(·, ϕ0)H∗ϕ0.

Therefore, we can write

(AI
B)

−1(δ) =
(
Id+ (AI

B,0)
−1O(δ2 log δ)

)−1
(AI

B,0)
−1.

Since K∗
B is a compact self-adjoint operator in H∗(∂B) it follows that

‖(AI
0)

−1‖L(H∗(∂B)) ≤
c

dist(0, σ(AI
0))

, (4.10)

for a constant c. Therefore, for δ small enough, we obtain

(AI
B(δ))

−1f I =
(
Id+ (AI

B,0)
−1O(δ2 log δ)

)−1
(AI

B,0)
−1f I

=
(
Id+ (AI

B,0)
−1O(δ2 log δ)

)−1

(
ui(z)ϕ0

δ(SB[ϕ0] + τδkc)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+

(AI
0)

−1 1

εm
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] +O

(
δ

dist(0, σ(AI
0))

))

=
ui(z)ϕ0

δ(SB[ϕ0] + τδkc)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+ (AI

0)
−1 1

εm
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] +

O

(
δ

dist(0, σ(AI
0))

)
.
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Using the representation formula of K∗
B described in Lemma A.0.2 we can

further develop the third term in the above expression to obtain

(AI
0)

−1PH∗
0
S̃−1
B [x̃ · ∇ui(z)] =

∞∑

j=1

(S̃−1
B [x̃ · ∇ui(z)], ϕj)H∗ϕj(
1
2 + εm

2εc

)
−
(
εm
εc

− 1
)
λj

=

∞∑

j=1

(
(S̃−1

B [x̃ · ∇ui(z)], ϕj)H∗ϕj(
1
2 + εm

2εc

)
−
(
εm
εc

− 1
)
λj

− (S̃−1
B [x̃ · ∇ui(z)], ϕj)H∗ϕj

)

+PH∗
0
S̃−1
B [x̃ · ∇ui(z)]

= PH∗
0
S̃−1
B [x̃ · ∇ui(z)] +

∞∑

j=1

(λj −
1

2
)
(S̃−1

B [x̃ · ∇ui(z)], ϕj)H∗ϕj

λ− λj
.

Using the same arguments as those in the proof of Lemma A.0.4, we have

(λj −
1

2
)(S̃−1

B [x̃ · ∇ui(z)], ϕj)H∗ =
(ν · ∇ui(z), ϕj)H∗

λj − 1
2

,

and consequently,

(AI
0)

−1 1

εm
PH∗

0
S̃−1
B [x̃ · ∇ui(z)] = PH∗

0
S̃−1
B [x̃ · ∇ui(z)] + (λεId−K∗

B)
−1[ν] · ∇ui(z).

Therefore,

(AI
B(δ))

−1f I =
ui(z)ϕ0

δ(SB[ϕ0] + τδkc)
− (S̃−1

B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+ PH∗

0
S̃−1
B [x̃ · ∇ui(z)] +

(λεId−K∗
B)

−1[ν] · ∇ui(z) +O

(
δ

dist(0, σ(AI
0))

)
.

Step 3. Finally, we compute η(u) = δSδkc
B (AI

B(δ))
−1f I .

From Appendix B.3, the following holds when Sδkc
B is viewed as an oper-

ator from the space H∗(∂B) to H(∂B):

Sδkc
B = S̃B +Υδkc +O(δ2 log δ).

In particular, we have

Sδkc
B [ϕ0] = SB[ϕ0] + τδkc +O(δ2 log δ).

It can be verified that the same expansion holds when viewed as an operator
from H∗(∂B) into L2(B).

Note that the following identity holds

−(S̃−1
B [x̃ · ∇ui(z)], ϕ0)H∗ϕ0

SB[ϕ0] + τδkc
+ PH∗

0
S̃−1
B [x̃ · ∇ui(z)] =

−Υδkc

[
S̃−1
B [x̃ · ∇ui(z)]

]
ϕ0

SB[ϕ0] + τδkc
+ S̃−1

B [x̃ · ∇ui(z)].
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Straightforward calculations and the fact that SB is harmonic in B yields

δSδkc
B (AI

B(δ))
−1f I = ui(z) + δ

(
x̃+ SB

(
λεId−K∗

B

)−1
[ν]
)
· ∇ui(z) +O

(
δ2

dist(λε, σ(K∗
B))

)

in L2(B). Using Lemma A.0.3 to scale back the estimate to D leads to the
desired result.

4.3.2 Small volume expansion of the temperature

We proceed in this section to prove Theorem 4.2.2. To do so, we make use
of the Laplace transform method [46,58,69].

Consider equation (4.3) and define the Laplace transform of a function
g(t) by

L(g)(s) =

∫ ∞

0
e−stg(t)dt.

Taking the Laplace transform of the equations on τ in (4.3) we formally
obtain the following system:





s
ρcCc

γc
τ̂(·, s)−∆τ̂(·, s) = L(gu)(·, s) in D,

s
ρmCm

γm
τ̂(·, s)−∆τ̂(·, s) = 0 in R

2\D,

τ̂+(·, s)− τ̂−(·, s) = 0 on ∂D,

γm
∂τ̂

∂ν

∣∣∣∣
+

− γc
∂τ̂

∂ν

∣∣∣∣
−
= 0 on ∂D,

τ̂(·, s) satisfies the Sommerfeld radiation condition at infinity,
(4.11)

where τ̂(·, s) and L(gu)(·, s) are the Laplace transforms of τ and gu :=
ω

2πγc
ℑ(εc)|u|2, respectively, and s ∈ C\(−∞, 0].
A rigorous justification for the derivation of system (4.11) and the validity

of the inverse transform of the solution can be found in [58].

Using layer potential techniques we have that, for any p̂, q̂ ∈ H− 1
2 (∂D),

τ̂ defined by

τ̂ :=

{
−Sβγm

D [p̂], x ∈ R
2\D,

−F̂D(·, y, βγc)− Sβγc
D [q̂], x ∈ D,

(4.12)

satisfies the differential equations in (4.11) together with the Sommerfeld

radiation condition. Here βγm := i
√
sρmCm

γm
, βγc := i

√
sρcCc

γc
and

F̂D(·, βγc) :=
∫

D
G(·, y, βγc)L(gu)(y)dy.
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To satisfy the boundary transmission conditions, p̂ and q̂ ∈ H− 1
2 (∂D)

should satisfy the following system of integral equations on ∂D:





−Sβγm
D [p̂] + Sβγc

D [q̂] = −F̂D(·, βγc),

−γm
(
1
2Id+ (Kβγm

D )∗
)
[p̂] + γc

(
− 1

2Id+ (Kβγc
D )∗

)
[q̂] = −γc

∂F̂D(·, βγc)
∂ν

.

(4.13)

Re-scaling of the equations

Recall that D = z + δB, for any x ∈ ∂D, x̃ := x−z
δ ∈ ∂B, for each function

f defined on ∂D, η is such that η(f)(x̃) = f(z + δx̃) and

Sk
D[ϕ](x) = δSδk

B [η(ϕ)](x̃),
(Kk

D)
∗[ϕ](x) = (Kδk

B )∗[η(ϕ)](x̃).

We can also verify that

F̂D(x, βγc) = δ2F̂B(x̂, δβγc),

∂F̂D

∂ν
(x, βγc) = δ

∂F̂B

∂ν
(x̂.δβγc).

Note that in the above identity, in the left-hand side we differentiate with
respect to x while in the right-hand side we differentiate with respect to x̃.
To simplify the notation, we will use F̂B to refer to F̂B(·, δβγc).

We rescale system (4.13) to arrive at





−Sδβγm
B [η(p̂)] + Sδβγc

B [η(q̂)] = −δF̂B,

−γm
(
1
2Id+ (Kδβγm

B )∗
)
[η(p̂)] + γc

(
− 1

2Id+ (Kδβγc
B )∗

)
[η(q̂)] = −γcδ

∂F̂B

∂ν
.

For δ small enough, Sδβγc
B is invertible (see Appendix B.3). Therefore, it

follows that

η(p̂) = (Sδβγm
B )−1Sδβγc

B [η(q̂)] + (Sδβγm
B )−1

[
δF̂B

]
.

Hence, we have the following equation for η(q̂):

Ah
B(δ)[η(q̂)] = fh,

where

Ah
B(δ) = −γm

(
1
2Id+ (Kδβγm

B )∗
)
(Sδβγm

B )−1Sδβγc
B + γc

(
− 1

2Id+ (Kδβγc
B )∗

)
,

fh = −γcδ
∂F̂B

∂ν
+ γm

(
1
2Id+ (Kδβγm

B )∗
)
(Sδβγm

B )−1
[
δF̂B

]
.

(4.14)

Proof of Theorem 4.2.2

To express the solution of (4.2) on ∂D× (0, T ), asymptotically on the size of
the nanoparticle δ, we make use of the representation (4.12). We will compute
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an asymptotic expansion for η(q̂) on δ to later compute δSδβγc
B [η(q̂)] on ∂B,

scale back to D and take Laplace inverse.
Using the asymptotic expansions of Appendix B.3 the following asymp-

totic for Ah
B(δ) holds in L(H∗(∂B))

Ah
B(δ) = Ah

0+O(δ2 log δ),

where

Ah
0 = −

(
1

2

(
γc + γm

)
Id−

(
γc − γm

)
K∗

B

)
.

In the same manner, in H∗(∂B),

fh = −γcδ
∂F̂B

∂ν
+ γm

(1
2
Id+K∗

B

)
S̃−1
B [δF̂B] +O

(
δ5 log δ

dist(λε, σ(K∗
D))

2

)

= −γcδ
∂F̂B

∂ν
− γm

(1
2
Id−K∗

B

)
S̃−1
B [δF̂B] + γmS̃−1

B [δF̂B] +O

(
δ5 log δ

dist(λε, σ(K∗
D))

2

)
.

Here the remainder comes from the fact that F̂B = O
(

δ2

dist(λε,σ(K∗
D))2

)
.

Note that ∆F̂B = η(L(gu))− δ2β2γcF̂B in B and ∆F̂B = 0 in R
2\D̄. We

can further verify that F̂B satisfies the assumption required in Lemma A.0.4.
Thus we have

(1
2
Id−K∗

B

)
S̃−1
B [δF̂B] = −δ ∂F̂B

∂ν
+ Cuϕ0 + γmS̃−1

B [δF̂B] +O

(
δ5

dist(λε, σ(K∗
D))

2

)
,

where Cu is a constant such that Cu = O
(

δ3

dist(λε,σ(K∗
D))2

)
.

After replacing the above in the expression of fh we find that

η(q̂) = (Ah
B(δ))

−1fh

= (λγId−K∗
B)

−1[δ
∂F̂B

∂ν
] +

Cuγm

(γc − γm)(λγ − 1
2)
ϕ0 +O

(
δ5 log δ

dist(λε, σ(K∗
D))

2

)
,

(4.15)
where

λγ =
γc + γm

2(γc − γm)
.

Finally, in H∗(∂B),

η(τ̂) = −δ2F̂B−δSδβγc
B (λγId−K∗

B)
−1[

∂δF̂B

∂ν
]− Cuγm

(γc − γm)(λγ − 1
2)
δSδβγc

B [ϕ0]+O

(
δ6 log δ

dist(λε, σ(K∗
D))

2

)
.

(4.16)
It can be shown, from the regularity of the remainders, that the previous
identity also holds in L2(∂B).

Using Holder’s inequality we can prove that

‖Sδβγc
B [ϕ]‖L∞(∂B) ≤ C‖ϕ‖L2(∂B),

for some constant C. Hence, we find that identity (4.16) also holds true

uniformly on ∂B and CuδSδβγcf

B [ϕ0](x̃) = O
(

δ4 log δ
dist(λε,σ(K∗

D))2

)
, uniformly in
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∂B. Scaling back to D gives

τ̂(x, s) = −F̂D(x, βγc)− Sβγc
D (λγId−K∗

D)
−1[

∂F̂D(·, βγc)
∂ν

] +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
.(4.17)

Before we take the inverse Laplace transform to (4.17) we note that (see
[69])

L
(
K(x, ·, bc)

)
= −G(x, βγc),

where bc := ρcCc

γc
and K(x, ·, bc) is the fundamental solution of the heat

equation. In dimension two, K is given by

K(x, t, γ) =
e−

|x|2

4bct

4πbct
.

We denote K(x, y, t, t′, bc) := K(x − y, t − t′, bc). By the properties of the
Laplace transform, we have

−F̂D(x, βγc) = −
∫

D
G(x, y, βγc)L(gu)(y)dy = L

(∫ ·

0

∫

D
K(x, y, ·, t′, bc)gu(y)dydt′

)
.

We define FD as follows

FD(x, t, bc) :=

∫ t

0

∫

D
K(x, y, t, t′, bc)gu(y)dydt

′. (4.18)

Similarly, we have that for a function f

−
∫

∂D
G(x, y, βγc)L(f)(y)dy = L

(∫ ·

0

∫

∂D
K(x, y, ·, t′, bc)f(y, t′)dydt′

)
.

We define Vbc
D as follows

Vbc
D [f ](x, t) :=

∫ t

0

∫

∂D
K(x, y, t, t′, bc)f(y, t

′)dydt′. (4.19)

Finally, using Fubini’s theorem and taking Laplace inverse we find that

τ(x, t) = FD(x, t, bc)− Vbc
D (λγId−K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
,

uniformly in (x, t) ∈ ∂D × (0, T ).

4.3.3 Temperature elevation at the plasmonic resonance

Suppose that the incident wave is ui(x) = eikmd·x, where d is a unit vector.
For a nanoparticle occupying a domain D = z+δB, the inner field u solution
to (4.1) is given by Theorem 4.2.1, which states that, in L2(D),

u ≈ eikmd·z(1 + ikmSD

(
λεId−K∗

D

)−1
[ν] · d

)
,
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and hence

|u|2 ≈ 1+2kmℜ
(
iSD

(
λεId−K∗

D

)−1
[ν] · d

)
+
∣∣∣kmSD

(
λεId−K∗

D

)−1
[ν]
)
·d
∣∣∣
2
.

(4.20)
Using Lemma A.0.2, we can write

SD

(
λεId−K∗

D

)−1
[ν] · d =

∞∑

j=1

(ν · d, ϕj)H∗SD[ϕj ]

λε − λj
,

and therefore, for a given plasmonic frequency ω, we have

SD

(
λεId−K∗

D

)−1
[ν] · d ≈ (ν · d, ϕj∗)H∗SD[ϕj∗ ]

λε(ω)− λj∗
.

Here j∗ is such that λj∗ = ℜ(λε(ω)) and the eignevalue λj∗ is assumed to be
simple. If this was not the case, (ν · d, ϕj∗)H∗SD[ϕj∗ ] should be replaced by
the corresponding sum over an orthonormal basis of eigenfunctions for the
eigenspace associated to λj∗ .

Replacing in (4.20) we find

|u|2 ≈ 1 + 2km
(ν · d, ϕj∗)H∗SD[ϕj∗ ]

|λε(ω)− λj∗ |
+ k2m

(ν · d, ϕj∗)
2
H∗SD[ϕj∗ ]

2

|λε(ω)− λj∗ |2
.

Thus, at a plasmonic resonance ω,

FD[gu] ≈
(
FD[1] + 2km

(ν · d, ϕj∗)H∗

|λε(ω)− λj∗ |
FD[SD[ϕj∗ ]] + k2m

(ν · d, ϕj∗)
2
H∗

|λε(ω)− λj∗ |2
FD[SD[ϕj∗ ]

2]

)
,

∂FD

∂ν
≈

(
2km

(ν · d, ϕj∗)H∗

|λε(ω)− λj∗ |
∂FD[SD[ϕj∗ ]]

∂ν
+ k2m

(ν · d, ϕj∗)
2
H∗

|λε(ω)− λj∗ |2
∂FD[SD[ϕj∗ ]

2]

∂ν

)
.

Then, the temperature on the boundary of a nanoparticle at the plasmonic
resonance can be estimated by plugging the above approximations of FD and
∂FD(x, t, bc)

∂ν
into

τ(x, t) = FD(x, t, bc)− Vbc
D (λγId−K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
.

4.3.4 Temperature elevation for two close-to-touching parti-

cles

Lemma A.0.4 implies that

∂FD(x, t, bc)

∂ν
= −

(1
2
Id−K∗

D

)
S̃−1
D [FD](x, t) +O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
.

Therefore, we can write the temperature on the boundary of the nanoparticle
as

τ(x, t) = FD(x, t, bc)+Vbc
D (λγId−K∗

D)
−1PH∗\E 1

2

[
∂FD(·, ·, bc)

∂ν
](x, t)+O

(
δ4 log δ

dist(λε, σ(K∗
D))

2

)
,

(4.21)
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where PH∗\E 1
2

is the projection into H∗\E 1
2
: the complement in H∗(∂D) of

the eigenspace associated to the eigenvalue 1
2 of K∗

D. This implies that, even

if λγ is close to 1
2 , the quantity (λγId − K∗

D)
−1PH∗\E 1

2

[
∂FD(·, ·, bc)

∂ν
](x, t)

will remain of order O
(

δ2

dist(λε,σ(K∗
D))2

)
, provided that the second largest

eigenvalue of K∗
D is not close to 1

2 .
Even if this is in general the case for smooth boundaries ∂D, it turns out

that for nanoparticles with two connected close-to-touching subparts with
contact of order m, a family of eigenvalues of K∗

D in H∗\E 1
2

approaches 1
2 as

(see [42])

λζn ∼ 1

2
− cnζ

1− 1
m + o(ζ1−

1
m ),

where ζ is the distance between connected subparts and cn is an increasing
sequence of positive numbers.

Now, λγ ≈ 1
2 is the kind of situations encountered for metallic nanoparti-

cles immersed in water or some biological tissue. As an example, the thermal
conductivity of gold is γc = 318 W

mK and that of pure water is γm = 0.6 W
mK .

This gives λγ ≈ 0.5019.
In view of this, the second term in (4.21) may increase considerably for

some type of close-to-touching particles.
We stress, nevertheless, that this is not the general case. For a more re-

fined analysis, asymptotics of the eigenfunctions of K∗
D should be also studied.

4.4 Numerical results

The numerical experiments for this work can be divided into two parts. The
first one is the Helmholtz equation solution approximation, which is obtained
by using Theorem 4.2.1. The second part is the Heat equation solution
computation, which is obtained using Theorem 4.2.2.

The major tasks surrounding the numerical implementation of these for-
mulas are integrating against a singular kernel. The numerical computations
of the operators FD[·] and ∂νFD[·] can be achieved by meshing the domain
D and integrating semi-analytically inside the triangles that are close to the
singularities. We used the following formula to avoid numerical differentia-
tion:

∂FD(x, t, bc)

∂ν
=

1

2πbc

∫

D
exp

(−|x− y|2
4bct

) 〈y − x, νx〉
|x− y|2 gu(y)dy, x ∈ ∂D.

(4.22)
For all the presented simulations, we considered an incident plane wave

given by
ui(x) = eikmd·x,

where d = (1, 1)/
√
2 ∈ R

2 is the illumination direction and km = 2π/750 ·109
is the frequency (in the red range). The considered nanoparticles are ellipses
with semi-axes 30nm and 20nm, respectively.

It is worth noticing that the illumination direction d is relevant solely in
the asymptotic formula in Theorem 4.2.1. Its role is to define the coefficients
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of a linear combination of both components of SD(λǫId−K∗
D)

−1[v] ∈ R
2. We

will see from the numerical simulations that this is fundamental if we wish
to maximize the produced electromagnetic field, and therefore the generated
heat inside the nanoparticles.

With respect to the asymptotic formula established in Theorem 4.2.1,
besides the nanoparticle’s shape D, the sole parameter that is left is λǫ. For
all the following simulations we will consider this as a free parameter that
we will use to excite the eigenvalues of the Neumann-Poincaré operator and
hence to generate resonances. The physical justification that allows us to
do this is based on the Drude model [9]. Whenever we mention that we
approach a particular eigenvalue λj of K∗

D, we will adopt λǫ = λj + 0.001i.
With respect to the heat equation coefficients, we use realistic values of

gold for nanoparticles, and water for tissues.

4.4.1 Single-particle simulation

We consider one elliptical nanoparticle D ⋐ R
2 centered at the origin, with

its semi-major axis aligned with the x-axis.

Single-particle Helmholtz resonance

Resonance is achieved by approaching the eigenvalues of the Neumann-Poincaré
operator K∗

D with λǫ, and afterwards applying it to each of the components
of the normal ν to ∂D. It turns out that for some eigenfunctions of K∗

D, the
normal of the shape is almost orthogonal, in H∗(∂D), to them. Therefore,
we cannot observe resonance for their associated eigenvalues. In Figure 4.1
we can see values of the inner product between the eigenfunctions of K∗

D

and the components νx and νy of ν. Figure 4.1 suggests us which are the
available resonant modes with the respective strength of each coordinate. In
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Figure 4.1: Inner product in H∗(∂D) between the eigen-
functions of K∗

D and the components νx and νy of the normal
ν to ∂D.

Figure 4.2 we present the absolute value of the inner field for the first three
resonant modes, corresponding to the second, third and sixth eigenvalue of
K∗

D, respectively. In Figure 4.3 we decompose the inner field into the zeroth-
order and the first-order terms respectively given by ui(z) + δ(x− z)∇ui(z)
and SD

(
λεId − K∗

D

)−1
[ν] · ∇ui(z). Figure 4.4 shows the components of the

vector SD(λǫId−K∗
D)

−1[v].
From Figure 4.3, we can see that when we excite the nanoparticle at its

resonant mode, the largest contribution to the electromagnetic field comes
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First resonance mode Second resonance mode Third resonance mode

Figure 4.2: Absolute value of the electromagnetic field in-
side the nanoparticle at the first resonant modes, being those
when λǫ approaches the second, third and sixth eigenvalue

of K∗

D.

Zeroth-order component First-order component

Figure 4.3: First resonant mode of the nanoparticle de-
composed in its first- and second-order term in the formula
given by Theorem 4.2.1. Both images are absolute values of

the respective component.

The x-component The y-component

Figure 4.4: Absolute value of the vectorial components of
the first-order term for the first resonant mode.

from the first-order term of the small volume expansion formula established
in Theorem 4.2.1.

Observing the vectorial components of the first-order term in Figure 4.4
tells us how important is the illumination direction as the x-component is
significantly stronger than the y-component. If we wish to maximize the
electromagnetic field and therefore the generated heat, the recommended il-
lumination direction would be around d = (1, 0)t (with t being the transpose),
as it was initially suggested by Figure 4.1.

Single-particle surface heat generation

Considering the electromagnetic field inside the nanoparticle given by the first
resonant mode presented in Figure 4.2, following the formula given by Theo-
rem 4.2.2, we compute the generated heat on the surface of the nanoparticle.
In Figure 4.5 we plot the generated heat in three dimensions and present
a two dimensional plot obtained by parameterizing the boundary. In Fig-
ure 4.6 we decompose the heat in its first- and second-order terms given by
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formula 4.2.2, being FD(x, t, bc) and −Vbc
D (λγId − K∗

D)
−1[

∂FD(·, ·, bc)
∂ν

](x, t)

respectively. In Figure 4.7, we integrate the total heat on the boundary and
plot it as a function of time, for each component.

3D plot of generated heat at time

T = 1
2D plot of generated heat at time

T = 1
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Figure 4.5: At the left-hand side, we can see a three-
dimensional plot of the nanoparticle heat, the red shape is
a reference value to show where the nanoparticle is located.
At the right-hand side we can see a two-dimensional plot of
the generated heat, where the boundary was parametrized
following p(θ) = (a cos(θ), b sin(θ)), θ ∈ [−π, π], with a and
b being the semi-major and semi-minor axes, respectively.

Two-dimensional plot of the

zeroth-order term at T = 1
Two-dimensional plot of the

first-order term at T = 1
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Figure 4.6: Two-dimensional plots of the zeroth- and first-
order components of the heat on the boundary when time
is equal to one. As time goes on, each point of the graph

increases, but the general shape is preserved.

Integrated heat over time
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Figure 4.7: Time-logarithmic plots showing the total heat
on the boundary for each component of the heat. The values
were obtained for each fixed time, by integrating over the
boundary the computed heat. From left- to right-hand side:
The total heat, the zeroth-order and its first-order, according
to formula given by Theorem 4.2.2. Notice that the first-

order term is plotted in a log-log scale.

We can observe that the heat is not symmetric, this can be noticed from
the total inner field for the first resonance mode in Figure 4.2. The reason
behind this non symmetry is because we are illuminating with direction d =
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(1, 1)t/
√
2 over an ellipse. From Figure 4.7 we can notice that the first-order

term converges, while the zeroth-order term increases logarithmically, as it
is expected from the known solution of the heat equation for constant source
in two dimensions that the heat increases logarithmically.

4.4.2 Two particles simulation

We consider two elliptical nanoparticles D1, D2, D = D1∪D2, with the same
shape and orientation as the nanoparticle considered in the above example.
The particle D1 is centered at the origin and D2 is centered at (0, 4.1 ·10−9),
resulting in a separation distance of 0.1nm between the two particles.

Two particles Helmholtz resonance

Following the same analysis as the one for one particle, in Figure 4.8 we
present the inner product between the eigenfunctions of K∗

D with each com-
ponent of the normal of D. We can observe that there are more available
resonant modes. In particular we can see that when λǫ approaches the 36th
or 37th eigenvalues, we achieve strong resonant modes.
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Figure 4.8: inner product in H∗∂D between the eigenval-
ues of K∗

D and each component of the normal of ∂D, νx and
νy.

In Figure 4.2 we present the absolute value of the inner field for the res-
onant modes corresponding to the 6th, 37th and 38th eigenvalues of K∗

D.
Similarly to the case with one particle, the dominant term in the electromag-
netic field for each case is the first-order term. In Figure 4.10 we decompose
the first-order term in its x-component and y-component.

As suggested by Figure 4.8, for the resonant mode associated to the 38th
eigenfunction of K∗

D, the stronger component is the one on the y direction,
meaning that if we wish to maximize the electromagnetic field, and therefore
the generated heat, it is suggested to consider the illumination vector d =
(0, 1)t.

Two particles surface heat generation

Similarly to the analysis carried out for one particle, we now compute the
generated heat for these two particles while undergoing resonance for the
resonant mode associated to the 38th eigenvalue of K∗

D. In Figure 4.11 we
plot generated heat in the boundary of the two nanoparticles. In Figure 4.12
we decompose the generated heat in its zeroth and first-order component, for
each of the two nanoparticles.
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Resonant mode associated

to the 6th eigenvalue of

K∗
D

Resonant mode associated

to the 37th eigenvalue of

K∗
D

Resonant mode associated

to the 38th eigenvalue of

K∗
D

Figure 4.9: Absolute value of the electromagnetic field in-
side the nanoparticle at the resonant modes associated to
the 6th, 37th and 38th resonant modes, obtained when λǫ

approaches the respective eigenvalues of K∗

D.

The x-component The y-component

Figure 4.10: Absolute value of the vectorial components
of the first-order term for the 38th resonant mode.

Similarly to the single nanoparticle case, there is no symmetry on the
heat values on the boundary, which is due to the illumination. We have
not provided the plots of the heat integrated along the boundary, as the
conclusions are the same as the ones in the single nanoparticle case: The
total heat on the boundary increases logarithmically, initially on time the
dominant term is the fist-order one, but as time increases the zeroth-order
term becomes the predominant one.

4.5 Concluding remarks

In this chapter we have derived an asymptotic formula for the tempera-
ture elevation due to plasmonic nanoparticles. We have considered thermal
coupling within close-to-touching nanoparticles, where the temperature field
deviates significantly from the one generated by single nanoparticles. Com-
bined with the methods developed in [13,14], our results can be used for the
optical and thermal detection and localization of plasmonic nanoparticles.
As reported in [77], the detection and localization of nanoparticles in highly
scattering media such as biological tissue remains a challenge. They can also
be used for monitoring temperature elevation due to plasmonic nanoparticles
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3D plot of heat on ∂(D1 ∪D2) at time

T = 1.
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Figure 4.11: Generated heat on the boundary of the
nanoparticles for time equal to 1. On the left we can see
a three dimensional view of the heat, the red shapes are ref-
erential to show the location of the nanoparticles. On the
right-hand side we can see the two dimensional heat plots
corresponding to each nanoparticle. To obtain these plots
we parameterized the boundary of each nanoparticle with
p(θ) = (a cos(θ), b sin(θ)) + z, θ ∈ [−π, π], where z ∈ R

2

corresponds to the center of each nanoparticle. On the top
we can see nanoparticle D2 and on the bottom nanoparticle

D1.

based on the photoacoustic signal recently analyzed in [91]. Thermoacous-
tic signals generated by nanoparticle heating can be computed numerically
based on the successive resolution of the thermal diffusion problem consid-
ered in this chapter and a thermoelastic problem, taking into account the
size and shape of the nanoparticle, thermoelastic and elastic properties of
both the particle and its environment, and the temperature-dependence of
the thermal expansion coefficient of the environment. For sufficiently high
illumination fluences, this temperature dependence yields a nonlinear rela-
tionship between the photoacoustic amplitude and the fluence [82].
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Figure 4.12: Two-dimensional plots of the zeroth and first
component of the heat at time 1, for each nanoparticle. On
the left column we have the zeroth component of the heat,
on the right-hand side column we have the first component
of the heat. On top we show the values for nanoparticle D2,

on the bottom we show the values for nanoparticle D1.
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5.1 Introduction

In this chapter we consider the scattering by a layer of periodic plasmonic
nanoparticles mounted on a perfectly conducting sheet. We design the layer
in order to control and transform waves. Since the thickness of the layer,
which is of the same order of the diameter of the individual nanoparticles,
is negligible compared to the wavelength, it can be approximated by an
impedance boundary condition. Our main result is to prove that at some
resonant frequencies, which are fully characterized in terms of the periodicity,
the shape and the material parameters of the nanoparticles, the thin layer has
anomalous reflection properties and can be viewed as a metasurface. Since
the period of the array is much smaller than the wavelength, the resonant
frequencies of the array of nanoparticles differ significantly from those of
single nanoparticles. As shown in this chapter, they are associated with
eigenvalues of a periodic Neumann-Poincaré type operator. In contrast with
quasi-static plasmonic resonances of single nanoparticles, they depend on
the particle size. For simplicity, only one-dimensional arrays embedded in
R
2 are considered in this chapter. The extension to the two-dimensional case

is straightforward and the dependence of the plasmonic resonances on the
parameters of the lattice is easy to derive.

The array of plasmonic nanoparticles can be used to efficiently reduce
the scattering of the perfectly conducting sheet. We present numerical re-
sults to illustrate our main findings in this chapter, which open a door for
a mathematical and numerical framework for realizing full control of waves
using metasurfaces [2, 76, 92]. Our approach applies to any example of peri-
odic distributions of resonators having resonances in the quasi-static regime.
It provides a framework for explaining the observed extraordinary or meta
properties of such structures and for optimizing these properties. The results
presented in this chapter hold for arbitrary-shaped nanoparticles. Simula-
tions with disks, ellipses, and rings are shown. In this connection, we refer to
the recent works [59, 70, 80, 93]. It is also worth highlighting that at optical
frequencies, a perfectly conducting approximation breaks down and needs to
be replaced by a proper material response. In this chapter, the perfectly con-
ducting boundary condition is used only for simplicity of the presentation.
Similar effective boundary conditions can be obtained by using exactly the
same approach presented here for penetrable half-space.

The chapter is organized as follows. We first formulate the problem of
approximating the effect of a thin layer with impedance boundary conditions
and give useful results on the one-dimensional periodic Green function. Then
we derive the effective impedance boundary conditions and give the shape
derivative of the impedance parameter. In doing so, we analyze the spectral
properties of the one-dimensional periodic Neumann-Poincaré operator de-
fined by (5.10) and obtain an explicit formula for the equivalent boundary
condition in terms of its eigenvalues and eigenvectors. Finally, we illustrate
with a few numerical experiments the anomalous change in the equivalent
impedance boundary condition due to the plasmonic resonances of the peri-
odic array of nanoparticles. For simplicity, we only consider the scalar wave
equation and use a two-dimensional setup. The results of this chapter can
be readily generalized to higher dimensions as well as to the full Maxwell
equations.
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5.2 Setting of the problem

We use the Helmholtz equation to model the propagation of light. This
approximation can be viewed as a special case of Maxwell’s equations, when
the incident wave ui is transverse magnetic (TM) or transverse electric (TE)
polarized.

Consider a particle occupying a bounded domain D ⋐ R
2 of class C1,α

for some 0 < α < 1 and with size of order δ ≪ 1. The particle is char-
acterized by electric permittivity εc and magnetic permeability µc, both of
which may depend on the frequency of the incident wave. Assume that
ℑmεc > 0,ℜe µc < 0,ℑmµc > 0 and define

km = ω
√
εmµm, kc = ω

√
εcµc,

where εm and µm are the permittivity and permeability of free space respec-
tively and ω is the frequency. Throughout this chapter, we assume that εm
and µm are real and positive and km is of order 1.

We consider the configuration shown in Figure 5.1, where a particle D is
repeated periodically in the x1-axis with period δ, and is at a distance of order
δ from the boundary x2 = 0 of the half-space R

2
+ := {(x1, x2) ∈ R

2, x2 > 0}.
We denote by D this collection of periodically arranged particles and Ω :=
R
2
+ \ D.

Figure 5.1: Thin layer of nanoparticles in the half space.

Let ui(x) = eikmd·x be the incident wave. Here, d is the unit incidence
direction. The scattering problem is modeled as follows





∇ · 1

µD
∇u+ ω2εDu = 0 in R

2
+ \ ∂D,

u+ − u− = 0 on ∂D,
1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

u− ui satisfies an outgoing radiation condition at infinity,

u = 0 on ∂R2
+ = {(x1, 0), x1 ∈ R},

(5.1)

where

εD = εmχ(Ω) + εcχ(D), µD = εmχ(Ω) + εcχ(D),

and ∂/∂ν denotes the outward normal derivative on ∂D.
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Following [1], under the assumption that the wavelength of the incident
wave is much larger than the size of the nanoparticle, a certain homogeniza-
tion occurs, and we can construct z ∈ C such that the solution to





∆uapp + k2muapp = 0 in R
2
+,

uapp + δz
∂uapp

∂x2
= 0 on ∂R2

+,

uapp − ui satisfies outgoing radiation condition at infinity,

(5.2)

gives the leading order approximation for u. We will refer to uapp+δz
∂uapp

∂x2
=

0 as the equivalent impedance boundary condition for problem (5.1). A
proof of existence and uniqueness of a solution to (5.2) follows immediately
from [45].

5.3 One-dimensional periodic Green function

Consider the function G♯ : R
2 → C satisfying

∆G♯(x) =
∑

n∈Z
δ(x+ (n, 0)). (5.3)

We call G♯ the 1-d periodic Green function for R
2.

Lemma 5.3.1. Let x = (x1, x2), then

G♯(x) =
1

4π
log
(
sinh2(πx2) + sin2(πx1)

)
,

satisfies (5.3).

Proof. We have

∆G♯(x) =
∑

n∈Z
δ(x+ (n, 0))

=
∑

n∈Z
δ(x2)δ(x1 + n)

=
∑

n∈Z
δ(x2)e

i2πnx1 , (5.4)

where we have used the Poisson summation formula
∑

n∈Z δ(x1 + n) =∑
n∈Z e

i2πnx1 .
On the other hand, since G♯ is periodic in x1 of period 1, we have

G♯(x) =
∑

n∈Z
βn(x2)e

i2πnx1 ,

therefore
∆G♯(x) =

∑

n∈Z
(β

′′

n(x2) + (i2πn)2βn)e
i2πnx1 . (5.5)

Comparing (5.4) and (5.5) yields

β
′′

n(x2) + (i2πn)2βn = δ(x2).



5.3. One-dimensional periodic Green function 123

A solution to the previous equation can be found by using standard tech-
niques for ordinary differential equations. We have

β0 =
1

2
|x2|+ c,

βn =
−1

4π|n|e
−2π|n||x2|, n 6= 0,

where c is a constant. Subsequently,

G♯(x) =
1

2
|x2|+ c−

∑

n∈Z\{0}

1

4π|n|e
−2π|n||x2|ei2πnx1

=
1

2
|x2|+ c−

∑

n∈N\{0}

1

2πn
e−2πn|x2| cos(2πnx1)

=
1

4π
log
(
sinh2(πx2) + sin2(πx1)

)
,

where we have used the summation identity (see, for instance, [57, pp. 813-
814])

∑

n∈N\{0}

1

2πn
e−2πn|x2| cos(i2πnx1) =

1

2
|x2| −

log(2)

2π

− 1

4π
log
(
sinh2(πx2) + sin2(πx1)

)
,

and defined c = − log(2)

2π
.

Let us also denote by G♯(x, y) := G♯(x − y). In the following we define
the 1-d periodic single layer potential and 1-d periodic Neumann-Poincaré

operator, respectively, for a bounded domain B ⋐
(
− 1

2
,
1

2

)
× R which we

assume to be of class C1,α for some 0 < α < 1. Let

SB♯ : H
− 1

2 (∂B) −→ H1
loc(R

2), H
1
2 (∂B)

ϕ 7−→ SB,♯[ϕ](x) =

∫

∂B
G♯(x, y)ϕ(y)dσ(y)

for x ∈ R
2, x ∈ ∂B and let

K∗
B♯ : H

− 1
2 (∂B) −→ H− 1

2 (∂B)

ϕ 7−→ K∗
B,♯[ϕ](x) =

∫

∂B

∂G♯(x, y)

∂ν(x)
ϕ(y)dσ(y)

for x ∈ ∂B. As in [65], the periodic Neumann-Poincaré operator can be
symmetrized. The following lemma holds.

Lemma 5.3.2. (i) For any ϕ ∈ H− 1
2 (∂B), SB♯[ϕ] is harmonic in B and

in
(
− 1

2
,
1

2

)
× R\B;
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(ii) The following trace formula holds: for any ϕ ∈ H− 1
2 (∂B),

(−1

2
Id+K∗

B♯)[ϕ] =
∂SB♯[ϕ]

∂ν

∣∣∣
−
;

(iii) The following Calderón identity holds: KB♯SB♯ = SB♯K∗
B♯, where KB♯

is the L2-adjoint of K∗
B♯;

(iv) The operator K∗
B♯ : H

− 1
2

0 (∂B) → H
− 1

2
0 (∂B) is compact self-adjoint

equipped with the following inner product

(u, v)H∗
0
= −(u,SB♯[v])− 1

2
, 1
2

(5.6)

with (·, ·)− 1
2
, 1
2

being the duality pairing between H
− 1

2
0 (∂B) and H

1
2
0 (∂B),

which makes H∗
0 equivalent to H

− 1
2

0 (∂B). Here, by E0 we denote the
zero-mean subspace of E.

(v) Let (λj , ϕj), j = 1, 2, . . . be the eigenvalue and normalized eigenfunction
pair of K∗

B♯ in H∗
0(∂B), then λj ∈ (−1

2 ,
1
2) and λj → 0 as j → ∞.

Proof. First, note that a Taylor expansion of sinh2(πx2) + sin2(πx1) yields

G♯(x) =
log |x|
2π

+R(x),

where R is a smooth function such that

R(x) =
1

4π
log(1 +O(x22 − x21)).

We can decompose the operators SB♯ and K∗
B♯ on H∗

0(∂B) accordingly. We
have

SB♯ = SB + GB, K∗
B♯ = K∗

B + FB,

where SB and K∗
B are the single layer potential and Neumann-Poincaré op-

erator (see [18]), respectively, and GB,FB are smoothing operators. Using
this fact, the proof of the Lemma follows the same arguments as those given
in [12,18].

5.4 Boundary layer corrector and effective impedance

In order to compute z, we introduce the following asymptotic expansion [1,3]:

u = u(0) + u
(0)
BL + δ(u(1) + u

(1)
BL) + ... (5.7)

where the leading-order term u(0) is solution to





∆u(0) + k2mu
(0) = 0 in R

2
+,

u(0) = 0 on ∂R2
+,

u(0) − ui satisfies an outgoing radiation condition at infinity.
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The boundary-layer correctors u
(0)
BL and u

(1)
BL have to be exponentially de-

caying in the x2-direction. Note that according to [1, 3], u
(0)
BL is introduced

in order to correct (up to the first-order in δ) the transmission condition on
the boundary of the nanoparticles, which is not satisfied by the leading-order

term u(0) in the asymptotic expansion of u, while u
(1)
BL is a higher-order cor-

rection term and does not contribute to the first-order equivalent boundary
condition in (5.2).

We next construct the corrector u
(0)
BL. We first introduce a function α

and a complex constant α∞ such that they satisfy the rescaled problem:





∆α = 0 in
(
R
2
+\B

)
∪ B,

α|+ − α|− = 0 on ∂B,
1

µm

∂α

∂ν

∣∣∣∣
+

− 1

µc

∂α

∂ν

∣∣∣∣
−
=
( 1

µc
− 1

µm

)
ν2 on ∂B,

α = 0 on ∂R2
+,

α− α∞ is exponentially decaying as x2 → +∞.

(5.8)

Here, ν = (ν1, ν2) and B = D/δ is repeated periodically in the x1-axis with
period 1 and B is the collection of these periodically arranged particles.

Then u
(0)
BL is defined by

u
(0)
BL(x) := δ

∂u(0)

∂x2
(x1, 0)

(
α(
x

δ
)− α∞

)
.

The corrector u(1) can be found to be the solution to





∆u(1) + k2mu
(1) = 0 in R

2
+,

u(1) = α∞ ∂u(0)

∂x2
on ∂R2

+,

u(1) satisfies an outgoing radiation condition at infinity.

By writing
uapp = u(0) + δu(1), (5.9)

we arrive at (5.2) with z = −α∞, up to a second order term in δ. We
summarize the above results in the following theorem.

Theorem 5.4.1. The solution uapp to (5.2) with z = −α∞ approximates
pointwisely (for x2 > 0) the exact solution u to (5.1) as δ → 0, up to a
second order term in δ.

In order to compute α∞, we derive an integral representation for the
solution α to (5.8). We make use of the periodic Green function G♯ defined
by (5.3). Let

G+
♯ (x, y) = G♯

(
(x1 − y1, x2 − y2)

)
−G♯

(
(x1 − y1,−x2 − y2)

)
,
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which is the periodic Green’s function in the upper half space with Dirichlet
boundary conditions, and define

S+
B♯ : H

− 1
2 (∂B) −→ H1

loc(R
2), H

1
2 (∂B)

ϕ 7−→ S+
B,♯[ϕ](x) =

∫

∂B
G+

♯ (x, y)ϕ(y)dσ(y)

for x ∈ R
2
+, x ∈ ∂B and

(K∗
B♯)

+ : H− 1
2 (∂B) −→ H− 1

2 (∂B)

ϕ 7−→ (K∗
B,♯)

+[ϕ](x) =

∫

∂B

∂G+
♯ (x, y)

∂ν(x)
ϕ(y)dσ(y)

(5.10)

for x ∈ ∂B.
It can be easily proved that all the results of Lemma 5.3.2 hold true for

S+
B♯ and (K∗

B♯)
+. Moreover, for any ϕ ∈ H− 1

2 (∂B), we have

S+
B,♯[ϕ](x) = 0 for x ∈ ∂R2

+.

Now, we can readily see that α can be represented as α = S+
B,♯[ϕ], where

ϕ ∈ H− 1
2 (∂B) satisfies

1

µm

∂S+
B,♯[ϕ]

∂ν

∣∣∣∣
+

− 1

µc

∂S+
B,♯[ϕ]

∂ν

∣∣∣∣
−
=
( 1

µc
− 1

µm

)
ν2 on ∂B.

Using the jump formula from Lemma 5.3.2, we arrive at

(
λµId− (K∗

B♯)
+
)
[ϕ] = ν2,

where

λµ =
µc + µm

2(µc − µm)
.

Therefore, using item (v) in Lemma 5.3.2 on the characterization of the
spectrum of K∗

B♯ and the fact that the spectra of (K∗
B♯)

+ and K∗
B♯ are the

same, we obtain that

α = S+
B,♯

(
λµId− (K∗

B♯)
+
)−1

[ν2].

Lemma 5.4.1. Let x = (x1, x2). Then, for x2 → +∞, the following asymp-
totic expansion holds:

α = α∞ +O(e−x2),

with

α∞ = −
∫

∂B
y2
(
λµId− (K∗

B♯)
+
)−1

[ν2](y)dσ(y).
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Proof. The result follows from an asymptotic analysis of G+
♯ (x, y). Indeed,

suppose that x2 → +∞, we have

G+
♯ (x, y) =

1
4π log

(
sinh2(π(x2 − y2)) + sin2(π(x1 − y1))

)

− 1

4π
log
(
sinh2(π(x2 + y2)) + sin2(π(x1 − y1))

)

=
1

4π
log
(
sinh2(π(x2 − y2))

)

− 1

4π
log
(
sinh2(π(x2 + y2))

)

+O
(
log

(
1 +

1

sinh2(x2)

))

=
1

2π

(
log
(eπ(x2−y2) − e−π(x2+y2)

2

)

− log
(eπ(x2+y2) − e−π(x2−y2)

2

))
+O

(
log
(
1 + e−x2

2

) )

= −y2 +O(e−x2),

which yields the desired result.

Finally, it is important to note that α∞ depends on the geometry and
size of the particle B.

Since (K∗
B♯)

+ : H∗
0 → H∗

0 is a compact self-adjoint operator, where H∗
0 is

defined as in Lemma 5.3.2, we can write

α∞ = −
∫

∂B
y2
(
λµId− (K∗

B♯)
+
)−1

[ν2](y)dσ(y),

= −
∫

∂B
y2

∞∑

j=1

(ϕj , ν2)H∗
0
ϕj(y)

λµ − λj
dσ(y),

=
∞∑

j=1

(ϕj , ν2)H∗
0
(ϕj , y2)− 1

2
, 1
2

λµ − λj
,

where λ1, λ2, . . . are the eigenvalues of (K∗
B♯)

+ and ϕ1, ϕ2, . . . is a corre-
sponding orthornormal basis of eigenfunctions.

On the other hand, by integrating by parts we get

(ϕj , y2)− 1
2
, 1
2
=

1
1
2 − λj

(ϕj , ν2)H∗
0
.

This together with the fact that ℑmλµ < 0 (by the Drude model [9]), yield
the following lemma.

Lemma 5.4.2. We have ℑmα∞ > 0.

Finally, we give a formula for the shape derivative [16] of α∞. This
formula can be used to optimize |α∞| , for a given frequency ω, in terms of
the shape B of the nanoparticle. Let Bη be an η-perturbation of B; i.e., let



128 Chapter 5. Plasmonic Metasurfaces

h ∈ C1(∂B) and ∂Bη be given by

∂Bη =

{
x+ ηh(x)ν(x), x ∈ ∂B

}
.

Following [17] (see also [12]), we can prove that

α∞(Bη) = α∞(B) + η(
µm
µc

− 1)

×
∫

∂B
h

[
∂v

∂ν

∣∣
−
∂w

∂ν

∣∣
− +

µc
µm

∂v

∂τ

∣∣
−
∂w

∂τ

∣∣
−

]
dσ,

where ∂/∂τ is the tangential derivative on ∂B, v and w periodic with respect
to x1 of period 1 and satisfy





∆v = 0 in
(
R
2
+\B

)
∪ B,

v|+ − v|− = 0 on ∂B,
∂v

∂ν

∣∣∣∣
+

− µm
µc

∂v

∂ν

∣∣∣∣
−
= 0 on ∂B,

v − x2 → 0 as x2 → +∞,

and 



∆w = 0 in
(
R
2
+\B

)
∪ B,

µm

µc
w|+ − w|− = 0 on ∂B,

∂w

∂ν

∣∣∣∣
+

− ∂w

∂ν

∣∣∣∣
−
= 0 on ∂B,

w − x2 → 0 as x2 → +∞,

respectively. Therefore, the following lemma holds.

Lemma 5.4.3. The shape derivative dSα∞(B) of α∞ is given by

dSα∞(B) = (
µm
µc

− 1)

[
∂v

∂ν

∣∣
−
∂w

∂ν

∣∣
− +

µc
µm

∂v

∂τ

∣∣
−
∂w

∂τ

∣∣
−

]
.

If we aim to maximize the functional J := 1
2 |α∞|2 over B, then it can

be easily seen that J is Fréchet differentiable and its Fréchet derivative is
given by ℜe dSα∞(B)α∞(B). As in [11], in order to include cases where
topology changes and multiple components are allowed, a level-set version of
the optimization procedure described below can be developed.

5.5 Numerical illustrations

5.5.1 Setup and methods

We use the Drude model [9] to model the electromagnetic properties of the
materials of our problem. We use water for the half space and gold for the
metallic nanoparticles. We recall that, from the Drude model, the properties
of the materials depend on the frequency of the incoming wave, or equiv-
alently, on the wavelength. To compute |α∞| and the integral (geometry
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dependent) operators involved on its expression, we make a simple uniform
discretization with 200 points of the corresponding geometric figures and use
a standard quadrature midpoint rule.

Figure 5.2 shows |α∞| as a function of the wavelength for disks of different
sizes, all centered at (0, 0.5).

Figure 5.3 shows |α∞| as a function of the wavelength for two disks of the
same fixed radius equal to 0.2 but centered at two different distances from
x2 = 0.

In Figures 5.4 and 5.5 we plot |α∞| as a function of the wavelength for a
disk and a group of three well-separated disks. We can see that a disk can be
excited roughly at one single frequency whereas three disks can be excited
at different frequencies but with lower values of |α∞|.

The previous results consist only of nanodisks. Here we give a few other
examples to confirm how general are the conclusions obtained. Figure 5.6
shows the blow up of |α∞| for an ellipse. In Figure 5.7 we consider a triangle
with rounded corners. In Figure 5.8, values of |α∞| are computed for a
circular ring.

5.5.2 Results and discussion

An important conclusion is that the spectrum of the periodic Neumann-
Poincaré operator defined by (5.10) varies with the position and size of the
particles. Our results hold for arbitrary-shaped nanoparticles. The reso-
nances of the effective impedance α∞ depend not only on the geometry of
the particle B but also on its size and position. One can see (Figures 5.2
and 5.3) a change in the magnitude and a shift of the resonances. The plas-
monic resonances shift to smaller wavelengths and the magnitude of the peak
value increases with increasing volume. We remark that this is not particular
to the examples considered here. In fact, this is the case for any particle.
These two phenomena are due to the strong interaction between the particles
and the ground that appears as their sizes increase while the period of the
arrangement is fixed.

Note also that in our analysis we did not assume the particles to be
simply connected. In fact, the theory is still valid for particles which have
two or more components. This allows for more possibilities when choosing
a particular geometry for the optimization of the effective impedance. For
instance, one may want to design a geometry such that a single frequency
is excited with a very pronounced peak or, on the other hand, to excite not
only a specific frequency but rather a group of them.

5.6 Concluding remarks

In this chapter we have considered the scattering by an array of plasmonic
nanoparticles mounted on a perfectly conducting plate and showed both an-
alytically and numerically the significant change in the boundary condition
induced by the nanoparticles at their periodic plasmonic frequencies. We
have also proposed an optimization approach to maximize this change in
terms of the shape of the nanoparticles. Our results in this chapter can be
generalized in many directions. Different boundary conditions on the plate as
well as curved plates can be considered. Our approach can be easily extended
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to two-dimensional arrays embedded in R
3 and the lattice effect can be in-

cluded. Full Maxwell’s equations to model the light propagation can be used.
The observed extraordinary or meta properties of periodic distributions of
subwavelength resonators can be explained by the approach proposed in this
chapter.
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Figure 5.2: |α∞| as a function of the wavelength for disks
of different radii, ranging from 0.1 to 0.4.
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Figure 5.3: |α∞| as a function of the wavelength for a disk
centered respectively at distance 0.25 and 0.45 from x2 = 0.
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Figure 5.4: Well localized resonance for a disk.
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Figure 5.5: Delocalized resonances for three well-
separated disks.
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Figure 5.6: Well localized resonance for an ellipse.
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Figure 5.7: Delocalized resonances for a triangle with
rounded corners.
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Figure 5.8: Wide resonance for a ring.
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6.1 Introduction

In this chapter, we prove that based on plasmonic resonances we can on one
hand classify the shape of a class of domains with real algebraic boundaries
and on the other hand recover the separation distance between two compo-
nents of multiple connected domains. These results have important applica-
tions in nanophotonics. They can be used in order to identify the shape and
separation distance between plasmonic nanoparticles having known material
parameters from measured plasmonic resonances, for which the scattering
cross-section is maximized.

A real algebraic curve is the zero level set of a bivariate polynomial.
Domains enclosed by real algebraic curves (henceforth simply called algebraic
domains) are dense, in Hausdorff metric among all planar domains. On a
simpler note, every smooth curve can be approximated by a sequence of
algebraic curves. This observation turns algebraic curves into an efficient
tool for describing shapes [64, 88, 94]. Note that an algebraic domain which
is the sub level set of a polynomial of degree n can uniquely be determined
from its set of two-dimensional moments of order less than or equal to 3n
[55, 67]. In this chapter we consider a class of algebraic curves determined
via conformal mappings by two parameters m and δ, with m being the order
of the polynomial parametrizing the curve and δ being a shape parameter,
see (6.1) and (6.2). One can think of algebraic domains as non-generic, but
dense, among all planar domains, as much as polynomials are non-generic,
but dense among all continuous functions on a compact set. In either case, the
identifications/reconstructions have to be complemented by a fine analysis
of the rate of convergence.

The main results of the present chapter are:
(i) Algebraic domains described by (6.2) have only two plasmonic reso-

nances asymptotically (in δ). Based on these two plasmonic resonances, one
can classify them;

(ii) Two nearly touching disks have an infinite number of plasmonic reso-
nances and the separating distance can be determined from the measurement
of the first plasmonic resonance.

The chapter is organized as follows. In section 6.2 we give explicit cal-
culations of the Neumann-Poincaré operator associated with an algebraic
domain. Moreover, we analyze its asymptotic behavior as δ approaches zero.
We compute the first- and second-order contracted polarization tensors, and
show how to use them to determine the two parameters describing the al-
gebraic boundaries. In section 6.3 we consider two nearly touching disks.
We use the bipolar coordinates to compute the spectrum of the associated
Neumann-Poincaré operator. We show that all the eigenvalues of the asso-
ciated Neumann-Poincaré operator contribute to the set of plasmonic reso-
nances. From the first-order polarization tensor, we show that we can recover
the separating distance between the disks. In section 6.4 we illustrate our
main findings in this chapter with several numerical examples.
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6.2 Plasmonic resonance for algebraic domains

6.2.1 Algebraic domains of class Q
Let Ω be the unit disk in C. For m ∈ N and a ∈ R, define Φm,a : C \Ω → C

by

Φm,a(ζ) = ζ +
a

ζm
.

Assume that Φm,a is injective on C \ Ω. We introduce the class Q as the
collection of all bounded domains D ⊂ C bounded by the curves

∂D = {Φm,a(ζ) : |ζ| = r0} for some r0 > 1, m ∈ N and a ∈ R.

Note that Φm,a is a conformal mapping from {|ζ| > r0} onto C \ D. In
what follows, we shall suppress the subscript m, a from Φm,a for the ease of
notation.

Conformal images of the unit disc by rational functions are also called
quadrature domains. We refer to [56, 84] for details and ramifications of the
theory of quadrature domains. In particular, up to the inversion z 7→ 1/z,
the complements of the domains in class Q are quadrature domains. We
write for convenience ζ = eρ+iθ. Let ρ0 be such that r0 = eρ0 . Let J be the
Jacobian defined by

J =
∣∣∂ξ
(
Φ(eξ)

)
|ξ=ρ+iθ

∣∣.
In the (ρ, θ) plane, the normal derivative ∂/∂ν on ∂D is represented as

∂

∂ν
=

1

J

∂

∂ρ
.

Moreover, the boundary ∂D is parametrized by

θ 7→ Φ(eρ0+iθ) = eρ0+iθ + ae−mρ0−imθ.

If we fix the constant a and change ρ0, then the size and the shape of ∂D
will change accordingly. In order to leave the shape unchanged, we need to
represent the constant a in a different way. We write

a = e(m+1)ρ0δ. (6.1)

Then the boundary ∂D can be represented as

θ 7→ Φ(eρ0+iθ) = eρ0(eiθ + δe−imθ). (6.2)

Now, if we fix the constant δ and change ρ0, then it is clear that only the size
changes and the shape stays unaffected. The parameter eρ0 can be considered
as a generalized radius of D because it determines the size. In conclusion,
the shape of D is determined by the two parameters m and δ, while the size
by the parameter ρ0.

6.2.2 Explicit computation of the Neumann-Poincaré opera-

tor

In this section, we compute the Neumann-Poincaré operator on ∂D explic-
itly. We need to compute K∗

D[J
−1 cosnθ] and K∗

D[J
−1 sinnθ] explicitly. Our
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strategy is as follows. Let u = SD[J
−1 cosnθ] and v = SD[J

−1 sinnθ]. If
u, v can be obtained explicitly, then K∗

D[J
−1 cosnθ] and K∗

D[J
−1 sinnθ] are

immediately derived by using the following identity:

K∗
D[ϕ] =

1

2

(
∂S[ϕ]
∂ν

∣∣∣
+
+
∂S[ϕ]
∂ν

∣∣∣
−

)
, (6.3)

which follows from (1.1). For simplicity, we consider only u. By using the
continuity of the single layer potential and the jump relation (1.1), we can
see that the function u is the solution to the following problem:





∆u = 0 in C \ ∂D,
u|− = u|+ on ∂D,

∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−
= J−1 cosnθ on ∂D,

u = O(|z|−1) as |z| → ∞.

(6.4)

Let ũ(ρ, θ) = (u ◦ Φ)(eρ+iθ). Since Φ(ζ) is conformal on |ζ| > eρ0 , the above
problem can be rewritten as follows:





∆u = 0 for ρ < ρ0,

∆ũ = 0 for ρ > ρ0,

ũ|− = ũ|+ on ρ = ρ0,

∂ũ

∂ρ

∣∣∣
+
− ∂ũ

∂ρ

∣∣∣
−
= cosnθ on ρ = ρ0,

ũ = O(e−ρ) as ρ→ ∞.

(6.5)

Note that in (6.5), the first equation for u|D is not represented in terms of ũ.
This is due to the singularity of Φ(ζ) near ζ = 0. Hence, we need to consider
u|D more carefully. If a = 1 and m = 1, then D becomes an ellipse and (ρ, θ)
are called the elliptic coordinates. In this case, equation (6.5) for ũ can be
easily solved by imposing some appropriate conditions on ρ = ρ0 and ρ = 0.
However, for general shaped domains, this is not easy.

Fortunately, we can overcome this difficulty by the fact that the shape
of the domain D is defined by a rational function Φ(ζ) = ζ + a/ζm. Our
strategy is to seek a solution to (6.5) such that

u(z) = ℜ{a polynomial of degree n in z} for z ∈ D.

We can show that, for 1 ≤ n ≤ m, u|D in equation (6.5) can be explicitly
solved by using the following ansatz:

u|D(z) ∝ ℜ{zn} = ℜ
{(
ζ +

a

ζm

)n}

= ℜ
n∑

k=0

(
n
k

)
ζn−k

( a

ζm

)k
(ζ = eρ+iθ)

= enρ cosnθ +
n∑

k=1

ak
(
n
k

)
e−tmn

k ρ cos tmn
k θ, (6.6)
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where the constant tmn
k is defined by

tmn
k = (m+ 1)k − n, 0 ≤ k ≤ n.

As will be seen later, for the purpose of computing the polarization tensor,
we consider only the case where 1 ≤ n ≤ m. (If n > m, u|D(z) turns out to
be more complicated polynomial than zn but is still a polynomial of degree
n.)

Let us assume 1 ≤ n ≤ m. In view of (6.6), we define

w(ρ, θ) : =





enρ cosnθ +
n∑

k=1

ak

(
n

k

)
e−tmn

k ρ cos tmn
k θ, ρ < ρ0,

e−n(ρ−2ρ0) cosnθ +
n∑

k=1

ak

(
n

k

)
e−tmn

k ρ cos tmn
k θ, ρ > ρ0.

Note that w is harmonic in {ρ < ρ0} and {ρ > ρ0} and w = O(e−ρ) as
ρ→ ∞. Moreover,





w|+ = w|− on ρ = ρ0,

∂w

∂ρ

∣∣∣
+
− ∂w

∂ρ

∣∣∣
−
= (−2)nenρ0 cosnθ on ρ = ρ0.

(6.7)

Therefore, the function w is equal to ũ up to a multiplicative constant. More
precisely, we have

ũ(ρ, θ) = − 1

2n
e−nρ0w(ρ, θ). (6.8)

Now we are ready to compute K∗
D[J

−1 cosnθ]. We can check that

1

2

(
∂w

∂ρ

∣∣∣
+

ρ=ρ0
+
∂w

∂ρ

∣∣∣
−

ρ=ρ0

)
=

n∑

k=1

−tmn
k ak

(
n
k

)
e−tmn

k ρ0 cos tmn
k θ. (6.9)

Then it follows from (6.3) and (6.8) that

K∗
D[J

−1 cosnθ] =
1

J

n∑

k=1

δk
tmn
k

2n

(
n
k

)
cos tmn

k θ (6.10)

for 1 ≤ n ≤ m. In exactly the same manner, we can show that

K∗
D[J

−1 sinnθ] = − 1

J

n∑

k=1

δk
tmn
k

2n

(
n
k

)
sin tmn

k θ. (6.11)

It is worth mentioning that we can also compute the single layer potentials
for J−1 cosnθ and J−1 sinnθ:

SD[J
−1 cosnθ] = − 1

2n
cosnθ − 1

2n

n∑

k=1

δk
(
n
k

)
cos tmn

k θ, (6.12)
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and

SD[J
−1 sinnθ] = − 1

2n
sinnθ +

1

2n

n∑

k=1

δk
(
n
k

)
sin tmn

k θ. (6.13)

6.2.3 Asymptotic behavior of the Neumann-Poincaré opera-

tor K∗
D

If δ is small enough, then the shape of ∂D is close to a circle. Next we
investigate the asymptotic behavior of the Neumann-Poincaré operator and
its spectrum for small δ. From (6.10), we infer

K∗
D[J

−1 cosnθ] = δ
(m+ 1− n)

2
J−1 cos(m+ 1− n)θ +O(δ2),

K∗
D[J

−1 sinnθ] = −δ (m+ 1− n)

2
J−1 sin(m+ 1− n)θ +O(δ2) (6.14)

for small δ and 1 ≤ n ≤ m. One can verify the decay

K∗
D[J

−1 cosnθ], K∗
D[J

−1 sinnθ] = O(δ2) (6.15)

for small δ and n ≥ m+ 1.
Let us denote by

vcn = J−1 cosnθ, vsn = J−1 sinnθ,

and let Vc and Vs be the subspaces defined by

Vc = span{vc1, vc2, . . . , vcn, . . . , vcm, . . .} and Vs = span{vs1, vs2, . . . , vsn, . . . , vsm, . . .}.

In view of (6.14) and (6.15), we can easily see that the Neunamm-Poincaré
operator K∗

D can be approximated by a finite rank operator for small δ. To
state this fact, we define a finite rank operator Fc

m by

Fc
m[vcn] =

{
(m+ 1− n)vcm+1−n, 1 ≤ n ≤ m,

0, n ≥ m+ 1.

Fc
m[vsn] = 0, n ≥ 1.

Similarly, we define Fs
m by

Fs
m[vsn] =

{
(m+ 1− n)vsm+1−n, 1 ≤ n ≤ m,

0, n ≥ m+ 1.

Fs
m[vcn] = 0, n ≥ 1.

Then, on the subspace Vc, we have

K∗
D =

δ

2
Fc
m +O(δ2).

Similarly, on the subspace Vs, we have

K∗
D = −δ

2
Fs
m +O(δ2). (6.16)
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Here, O(δ2) is with respect to the operator norm.
Since the operators Fc

m and Fs
m are of finite rank, they have matrix rep-

resentations. Using {vcn}mn=1 as basis, Fc
m can be represented as the following

matrix MD,m:

MD,m :=




0 0 . . . 1
0 . . . 2
. . . . . . . . .

m− 1 . . . 0
m . . . 0 0




(6.17)

Clearly, Fs
m has the same matrix representationMD,m using {vsn}mn=1 as basis.

Let us now consider the eigenvalues and the associated eigenvectors of
the matrix MD,m. The following lemma can be easily proven.

Lemma 6.2.1. (i) If m is odd, that is, m = 2k − 1 for some k ∈ N, then
the matrix MD,m has the following eigenvalues:

k,±
√
1 ·m,±

√
2 · (m− 1), . . . ,±

√
(k − 1) · (k + 1),

and the associated eigenvectors are given by

ek, e1±
√
m em, e2±

√
m− 1 em−1, . . . ,

√
k − 1 ek−1±

√
k + 1 ek+1,

where ei is the unit vector in the i-th direction.

(ii) If m is even, that is, m = 2k for some k ∈ N, then the matrix MD,m

has the following eigenvalues:

±
√
1 ·m,±

√
2 · (m− 1), . . . ,±

√
k · (k + 1),

and the associated eigenvectors are given by

e1 ±
√
m em,

√
2 e2 ±

√
m− 1 em−1, . . . ,

√
k ek ±

√
k + 1 ek+1.

Using (6.16), Lemma 6.2.1 and the perturbation theory [62], we get the
following asymptotic result for K∗

D on Vc.

Theorem 6.2.1. For small δ, we have the following asymptotic expansions
of eigenvalues and eigenfunctions of K∗

D on Vc:

(i) If m is odd, that is, m = 2k − 1 for some k ∈ N:

Eigenvalues: up to order δ

δ

2
×

{
k, ±

√
1 ·m, ±

√
2 · (m− 1) , . . . , ±

√
(k − 1) · (k + 1)

}
.

Eigenfunctions: up to order δ0

vck, vc1±
√
mvcm,

√
2 vc2±

√
m− 1 vcm−1, . . . ,

√
k − 1 vck−1±

√
k + 1 vck+1.

(ii) If m is even, that is, m = 2k for some k ∈ N:

Eigenvalues: up to order δ

δ

2
×

{
±

√
1 ·m, ±

√
2 · (m− 1) , . . . , ±

√
k · (k + 1)

}
.
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Eigenfunctions: up to order δ0

vc1 ±
√
mvcm,

√
2 vc2 ±

√
m− 1 vcm−1, . . . ,

√
k vck ±

√
k + 1 vck+1.

Similarly, we have the following result for K∗
D on the subspace Vs.

Theorem 6.2.2. We have the following asymptotic expansion of eigenvalues
and eigenfunctions of the Neumann-Poincaré operator K∗

D on the subspace
Vs for small δ:

(i) If m is odd, that is, m = 2k − 1 for some k ∈ N:

Eigenvalues: up to order δ

−δ
2

×
{
k, ±

√
1 ·m, ±

√
2 · (m− 1) , . . . , ±

√
(k − 1) · (k + 1)

}
.

Eigenfunctions: up to order δ0

vsk, vs1±
√
mvsm,

√
2vs2±

√
m− 1vsm−1, . . . ,

√
k − 1 vsk−1±

√
k + 1 vsk+1.

(ii) If m is even, that is, m = 2k for some k ∈ N:

Eigenvalues: up to order δ

−δ
2

×
{
±

√
1 ·m, ±

√
2 · (m− 1) , . . . , ±

√
k · (k + 1)

}
.

Eigenfunctions: up to order δ0

vs1 ±
√
mvsm,

√
2 vs2 ±

√
m− 1 vsm−1, . . . ,

√
k vsk ±

√
k + 1 vsk+1.

Corollary 6.2.1. Suppose that m is odd, that is, m = 2k−1 for some k ∈ N.
In other words, D is a star-shaped domain with 2k petals. Then, up to order
δ, the Neumann-Poincaré operator K∗

D has the following 2k eigenvalues:

δ

2
×

{
±
√
1 ·m, ±

√
2 · (m− 1) , . . . , ±

√
(k − 1) · (k + 1), ±

√
k · k

}
.

6.2.4 Generalized polarization tensors and their spectral rep-

resentations

First-order polarization tensor

Let us compute the first-order polarization tensor associated with D and λ.
Recall the definition of λ,

λ :=
εm + εc

2(εm − εc)
,

for a domain D with permittivity εc and backgroud with permittivity εm.
See chapter 1 for a brief introduction on generalized polarization tensors.
For simplicity, we consider only the case when m is odd, that is, m =

2k−1 for some k ∈ N. The case where m is even can be treated analogously.
Numerical results are presented in section 6.4 for both cases.
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Since m is odd, the shape of D has even symmetry with respect to both
x1-axis and x2-axis. Thanks to this symmetry, M(λ,D) has the following
simple form [18]:

M(λ,D) = m11

[
1 0
0 1

]
,

where m11 is given by

m11 =
(
x1, (λI −K∗

D)
−1[ν1]

)
1
2
,− 1

2
.

Let λj and ϕj , j ∈ N, be the eigenvalues and the (normalized) eigenfunctions
of K∗

D, respectively. Then, from the spectral decomposition of K∗
D, we have

(see chapter 1)

m11 =
∑

j

1

λ− λj

(x1, ϕj) 1
2
,− 1

2
(−SD[ν1], ϕj) 1

2
,− 1

2

(−SD[ϕj ], ϕj) 1
2
,− 1

2

=
∑

j

(12 − λj)

λ− λj

|(x1, ϕj) 1
2
,− 1

2
|2

(−SD[ϕj ], ϕj) 1
2
,− 1

2

.

By Theorems 6.2.1 and 6.2.2, one can see that only the following two
eigenvalues and two eigenfunctions contribute to m11 up to order δ:

eigenvalues λ± := ±1

2
δ
√
m,

eigenfunctions ϕ± := vc1 ±
√
mvcm.

In fact, for other eigenfunctions, we have (x1, ϕj) 1
2
,− 1

2
= O(δ). In what

follows we calculate (x1, ϕ±) 1
2
,− 1

2
and (x1,SD[ϕ±]) 1

2
,− 1

2
.

First, since dσ = Jdθ and

x1|∂D = ℜ{Φ(eρ0+iθ)} = eρ0 cos θ + ae−mρ0 cosmθ,

we have

(x1, ϕ±) 1
2
,− 1

2
=

∫ 2π

0
(eρ0 cos θ + ae−mρ0 cosmθ)(cos θ ±

√
m cosmθ) dθ,

= πeρ0(1 + 2λ±).

Now, we compute (SD[ϕ±], ϕ±) 1
2
,− 1

2
. Note that, from (6.12), we have

SD[v
c
n] = − 1

2n
cosnθ − 1

2
δ cos(m+ 1− n)θ +O(δ2).

Consequently,

(−SD[ϕ±], ϕ±) 1
2
,− 1

2
= (−SD[v

c
1 ±

√
mvcm], vc1 ±

√
mvcm) 1

2
,− 1

2

=

∫ 2π

0
(cos θ ±

√
m cosmθ)

× (
1

2
cos θ +

δ

2
cosmθ ± 1

2
√
m

cosmθ ±
√
m
δ

2
cos θ) dθ +O(δ2)

= π(1 + 2λ±) +O(δ2).
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Finally, we are ready to obtain an approximation formula for m11.

Theorem 6.2.3. We have

m11 =
π

2
e2ρ0

( 1

λ− λ+
+

1

λ− λ−

)
+O(δ2), (6.18)

as δ → 0.

Second-order contracted generalized polarization tensors

Let M cc
mn,M

ss
mn,M

sc
mn, and M cs

mn be the contracted generalized polarization
tensors. One can easily see that M sc

22 = M cs
22 = 0 and M12 = M21 = 0. We

only need to consider M cc
22 and M ss

22 . It turns out that only the following two
eigenvalues and two eigenfunctions contribute to M cc

22(up to the order δ):

eigenvalues λ′± := ±1

2
δ
√

2 · (m− 1),

eigenfunctions ϕ′
± :=

√
2 vc2 ±

√
m− 1 vcm−1.

Let H := ℜ
{
(x1 + ix2)

2
}
. Then we have

H|∂D = e2ρ0(cos 2θ + 2δ cosmθ + δ2 cos 2mθ).

Therefore,

(H,ϕ′
±) 1

2
,− 1

2
=

∫ 2π

0
e2ρ0(cos 2θ + 2δ cosmθ + δ2 cos 2mθ)(

√
2 cos 2θ ±

√
m− 1 cos(m− 1)θ) dθ

=
√
2πe2ρ0 .

Now we compute (−SD[ϕ
′
±], ϕ

′
±) 1

2
,− 1

2
. Since

SD[v
c
n] = − 1

2n
cosnθ − 1

2
δ cos(m+ 1− n)θ +O(δ2),

we obtain

(−SD[ϕ
′
±], ϕ

′
±) 1

2
,− 1

2
= (−SD[

√
2 vc2 ±

√
m− 1 vcm−1],

√
2 vc2 ±

√
m− 1 vcm−1) 1

2
,− 1

2

=

∫ 2π

0
(
√
2 cos 2θ ±

√
m− 1 cos(m− 1)θ)

× (
1

2
√
2
cos 2θ +

δ√
2
cos(m− 1)θ

± 1

2
√
m− 1

cos(m− 1)θ ±
√
m− 1

δ

2
cos 2θ) dθ +O(δ2)

= π(1 + 2λ′±) +O(δ2).

Finally, we find

M cc
22 =

∑

j

(12 − λj)

(λ− λj)

|(H,ϕj) 1
2
,− 1

2
|2

(−SD[ϕj ], ϕj) 1
2
,− 1

2

,

= πe4ρ0
( (12 − λ′+)

(12 + λ′+)(λ− λ′+)
+

(12 + λ′−)

(12 − λ′−)(λ− λ′−)

)
+O(δ2). (6.19)
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Similarly, one can show that M ss
22 has similar asymptotic expansion.

6.2.5 Classification of algebraic domains in the class Q
The identification of the parameters ρ0 and m is now straightforward using
the results of the previous subsection. Suppose that we can obtain the values
of λ±, λ′± approximately from m11 and M cc

22. Then, by formula (6.18), we
can easily find the parameter ρ0, which determines the size of D. In order
to reconstruct the parameters m and δ we turn to the definitions of λ+ and
λ′+:

λ+ =
1

2
δ
√
m, λ′+ =

1

2
δ
√

2 · (m− 1).

It is worth emphasizing that the eigenvalues λ+ and λ′+ are first-order ap-
proximations of the exact eigenvalues of Neumann-Poincaré operator K∗

D for
small δ.

Solving the above equations for m and δ yields the exact formulas:

m =
λ2+

λ2+ − (λ′+)2/2
, δ = 2

√
λ2+ − (λ′+)2/2.

6.3 Plasmonic resonances for two separated disks

In this section, we consider the spectrum of the Neumann-Poincaré operator
when two conductors are located closely to each other in R

2. As an appli-
cation of the spectral decomposition of the Neumann-Poincaré operator, we
derive the (1, 1)-entry, m11, of the first-order polarization tensor associated
with the two disks. See chapter 1 for a brief introduction on polarization
tensors.

6.3.1 The bipolar coordinates and the boundary integral op-

erators

Let B1 and B2 be two disks with conductivity σ embedded in the background
with conductivity 1. The conductivity is such that 0 < σ 6= 1 < ∞. Let
σB1∪B2 denote the conductivity distribution, i.e.,

σB1∪B2 = σχ(B1) + σχ(B2) + χ(R2 \ (B1 ∪B2), (6.20)

where χ is the characteristic function. Let ǫ be the distance between two
disks, that is,

ǫ := dist(B1, B2).

We set Cartesian coordinates (x1, x2) such that x1-axis is parallel to the line
joining the centers of the two disks.

(Definition) Each point x = (x1, x2) in the Cartesian coordinate system
corresponds to (ξ, θ) ∈ R× (−π, π] in the bipolar coordinate system through
the equations

x1 = α
sinh ξ

cosh ξ − cos θ
and x2 = α

sin θ

cosh ξ − cos θ
(6.21)
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with a positive number α. In fact, the bipolar coordinates can be defined
using a conformal mapping. Define a conformal map Ψ by

z = x1 + ix2 = Ψ(ζ) = α
ζ + 1

ζ − 1
.

If we write ζ = eξ−iθ, then we can recover (6.21).

(The coordinate curve) From the definition, we can derive that the coor-
dinate curves {ξ = c} and {θ = c} are, respectively, the zero-level set of the
following two functions:

fξ(x, y) =

(
x− α

cosh c

sinh c

)2

+ y2 −
( α

sinh c

)2
(6.22)

and

fθ(x, y) = x2 +
(
y − α

cos c

sin c

)2
−
( α

sin c

)2
.

(Basis vectors) Orthonormal basis vectors {êξ, êθ} are defined as follows:

êξ :=
∂x/∂ξ

|∂x/∂ξ| and êθ :=
∂x/∂θ

|∂x/∂θ| .

(Normal- and tangential derivatives and line element) In the bipolar
coordinates, the scaling factor h is

h(ξ, θ) :=
cosh ξ − cos θ

α
.

The gradient of any scalar function g is

∇g = h(ξ, θ)

(
∂g

∂ξ
êξ +

∂g

∂θ
êθ

)
. (6.23)

Moreover, the normal and tangential derivatives of a function u in bipolar
coordinates are





∂u

∂ν

∣∣∣
ξ=c

= ∇u · vξ=c = −sgn(c)h(c, θ)
∂u

∂ξ

∣∣∣
ξ=c

,

∂u

∂T

∣∣∣
ξ=c

= −sgn(c)h(c, θ)
∂u

∂θ

∣∣∣
ξ=c

,

(6.24)

and the line element dσ on the boundary {ξ = ξ0} is

dσ =
1

h(ξ0, θ)
dθ.
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(Separation of variables) The bipolar coordinate system admits separa-
tion of variables for any harmonic function f as follows:

f(ξ, θ) = a0 + b0ξ + c0θ +
∞∑

n=1

[
(ane

nξ + bne
−nξ) cosnθ+

(
cne

nξ + dne
−nξ) sinnθ

]
,

(6.25)

where an, bn, cn and dn are constants.
For ξ > 0, we have

sinh ξ − i sin θ

cosh ξ − cos θ
=
eζ + e−ζ

eζ − e−ζ
= 1 + 2

∞∑

n=1

e−nξ(cosnθ − i sinnθ), (6.26)

with ζ = (ξ + iθ)/2.
Using (6.21), we have the following harmonic expansions for the two linear

functions x1 and x2:

x1 = sgn(ξ)α

[
1 + 2

∞∑

n=1

e−n|ξ| cosnθ

]
, (6.27)

and

x2 = 2α

∞∑

n=1

e−n|ξ| sinnθ.

Let K
∗ be the Neumann-Poincaré operator given by

K
∗ :=




K∗
B1

∂

∂ν(1)
SB2

∂

∂ν(2)
SB1 K∗

B2


 ,

and define the operator S by

S =

[
SB1 SB2

SB1 SB2

]
.

Here, ν(i) is the outward normal on ∂Bi, i = 1, 2.
Then, from [7], K∗ is self-adjoint with the inner product

(ϕ, ψ)H∗ := −(S[ψ], ϕ)H1/2(∂B1)×H1/2(∂B2),H−1/2(∂B1)×H−1/2(∂B2)
,

for ϕ, ψ ∈ H
−1/2
0 (∂B1)×H

−1/2
0 (∂B2).

6.3.2 Neumann Poincaré-operator for two separated disks

and its spectral decomposition

First we introduce some notations. Set

α =

√
ǫ(r +

ǫ

4
) and ξ0 = sinh−1

(α
r

)
, for j = 1, 2, (6.28)

where r is the radius of the two disks and ǫ their separation distance. Note
that

∂Bj = {ξ = (−1)jξ0}, for j = 1, 2. (6.29)
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Let us denote the Neumann-Poincaré operator for two disks separated by
a distance ǫ by K

∗
ǫ . To find out the spectral decomposition of the Neumann-

Poincaré operator K
∗
ǫ , we use the following lemma [7].

Lemma 6.3.1. Assume that there exists u a nontrivial solution to the fol-
lowing equation:





∆u = 0 in B1 ∪B2 ∪ R
2 \ (B1 ∪B2),

u|+ = u|− on ∂Bj , j = 1, 2,
∂u

∂ν

∣∣∣
+
= σ0

∂u

∂ν

∣∣∣
−

on ∂Bj , j = 1, 2,

u(x) → 0 as |x| → ∞,

(6.30)

where σ0 = −1 + 2λ0
1− 2λ0

< 0. If we set

ψj :=
∂u

∂ν

∣∣∣
+

∂Bj

− ∂u

∂ν

∣∣∣
−

∂Bj

, for j = 1, 2,

then ψ =

[
ψ1

ψ2

]
is an eigenvector of K∗

ǫ corresponding to the eigenvalue λ0.

One can see that the following function un is a solution to (6.30):

u±n (ξ, θ) = (const.) +





∓ 1

2|n|(e
|n|ξ0 ∓ e−|n|ξ0)e|n|ξ+inθ, for ξ < −ξ0,

1

2|n|e
−|n|ξ0(e|n|ξ ∓ e−|n|ξ)einθ, for − ξ0 < ξ < ξ0,

1

2|n|(e
|n|ξ0 ∓ e−|n|ξ0)e−|n|ξ+inθ, for ξ > ξ0.

(6.31)
From (6.31) and Lemma 6.3.1, we obtain eigenvalues and eigenvectors to K

∗
ǫ

λ±ǫ,n = ±1

2
e−2|n|ξ0 and Φ±

ǫ,n(θ) = einθ
[
h(−ξ0, θ)
∓h(ξ0, θ)

]
.

Note that the above eigenvectors are not normalized.
We compute (−S[Φ±

ǫ,n],Φ
±
ǫ,n) 1

2
,− 1

2
. From (6.31), one can see that

S[Φ±
ǫ,n] = (const.) +

[
∓ 1

2|n|(1∓ e−2|n|ξ0)einθ

1
2|n|(1∓ e−2|n|ξ0)einθ

]
.

It follows that

(−S[Φ±
ǫ,n],Φ

±
ǫ,n) 1

2
,− 1

2
=

2π

|n|(1∓ e−2|n|ξ0).

Therefore, we arrive at the following result.

Theorem 6.3.1. We have the following spectral decomposition of K∗
ǫ :

K
∗
ǫ =

∑

n 6=0

1

2
e−2|n|ξ0Ψ+

ǫ,n ⊗Ψ+
ǫ,n +

∑

n 6=0

(
−1

2
e−2|n|ξ0

)
Ψ−

ǫ,n ⊗Ψ−
ǫ,n,
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where Ψ±
ǫ,n are the normalized eigenvectors defined by

Ψ±
ǫ,n(θ) :=

√
|n|einθ√

2π(1∓ e−2|n|ξ0)

[
h(−ξ0, θ)
∓h(ξ0, θ)

]
. (6.32)

Note that

(SB1 [Ψ
±
ǫ,n,1] + SB2 [Ψ

±
ǫ,n,2])(ξ, θ) = (const.) +

√
|n|√

2π(1∓ e−2|n|ξ0)
(6.33)

×





∓ 1

2|n|(e
|n|ξ0 ∓ e−|n|ξ0)e|n|ξ+inθ, for ξ < −ξ0,

1

2|n|e
−|n|ξ0(e|n|ξ ∓ e−|n|ξ)einθ, for − ξ0 < ξ < ξ0,

1

2|n|(e
|n|ξ0 ∓ e−|n|ξ0)e−|n|ξ+inθ, for ξ > ξ0.

(6.34)

6.3.3 The Polarization tensor

Let us compute the (1, 1)-entry mǫ
11 of the first-order polarization tensor for

two separated disks. Note that

mǫ
11 =

(
ϕ, (λI−K

∗
ǫ )

−1[ψ]
)

1
2
,− 1

2
,

where

φ =

[
x1|∂B1

x1|∂B2

]
, ψ =

[
ν1|∂B1

ν1|∂B2

]
.

The spectral decomposition of K∗
ǫ implies

mǫ
11 =

∑

n 6=0

〈φ,Ψ+
ǫ,n) 1

2
,− 1

2
(Ψ+

ǫ,n, ψ)H∗

λ− λ+ǫ,n
+
∑

n 6=0

〈φ,Ψ−
ǫ,n) 1

2
,− 1

2
(Ψ−

ǫ,n, ψ)H∗

λ− λ−ǫ,n

=
∑

n 6=0

(
1
2 − λ+ǫ,n

)
|〈φ,Ψ+

ǫ,n) 1
2
,− 1

2
|2

λ− λ+ǫ,n
+
∑

n 6=0

(
1
2 − λ−ǫ,n

)
|〈φ,Ψ−

ǫ,n) 1
2
,− 1

2
|2

λ− λ−ǫ,n
.

From (6.27), we derive the expansion

x1 = sgn(ξ)α
∞∑

m=−∞
e−|m||ξ|+imθ. (6.35)

Therefore,

〈φ,Ψ+
ǫ,n) 1

2
,− 1

2
= 2

∫ 2π

0

[
−α

∞∑

m=−∞
e−|m|ξ0+imθ

] √
|n|h(−ξ0, θ)e−inθ

√
2π(1− e−2|n|ξ0)

1

h(−ξ0, θ)
dθ

= −2
√
2πα

√
|n|e−|n|ξ0

√
1− e−2|n|ξ0

,

and
〈φ,Ψ−

ǫ,n) 1
2
,− 1

2
= 0.

As a consequence, we arrive at the following result.
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Propsition 6.3.1. We have

mǫ
11 =

∑

n 6=0

4πα2|n|e−2|n|ξ0

λ− λ+ǫ,n
= 8πα2

∞∑

n=1

ne−2nξ0

λ− 1
2e

−2nξ0
,

where α is given by (6.28).

6.3.4 Reconstruction of the separation distance

Suppose that the first eigenvalue

λ+ǫ,1 =
1

2
e−2ξ0

is measured. Then we immediately find the value of eξ0 . From (6.28), we
have

r cosh ξ0 =
ǫ

2
+ r.

By solving the above quadratic equation, we can determine the distance ǫ
between the two disks.

6.4 Numerical illustrations

In this section we illustrate our main findings in this chapter with several
numerical examples.

We use the material parameters of gold nanoparticles and suppose that
we can measure their first- and second-order polarization tensors for a range
of wavelengths in the visible regime.

Figure 6.1 shows the variations of the real and imaginary parts of λ,
defined by (2.23), as function of the wavelength using Drude’s model for
σ = σ(ω), which is depending on the operating frequency ω [9].

As shown in Figure 6.1, the imaginary part of λ is very small. Therefore,
when the real part of λ hits an eigenvalue that contributes to the first-order
polarization tensor (and therefore to the plasmonic resonances), we should
see a peak in the graph of |m11| and |M cc

22| with respect to the wavelength.
This allow us, in the case of class Q of algebraic domains, to recover λ+ and
λ′+ and, in the case of two separated disks, to recover λ+ǫ,1.

Figures 6.2, 6.3, and 6.4 present examples of algebraic domains and their
reconstructions, where a circle of radius one has been transformed for differ-
ent values of m and δ.

Figures 6.5 and 6.6 present examples of algebraic domains and their re-
constructions, where a circle of radius one has been transformed for m = 4
and m = 6 and δ = 0.02.

Figures 6.7, 6.8, and 6.9 show examples of two circles of radius one sep-
arated by a distance ǫ, and their reconstructions.

6.5 Concluding remarks

In this chapter we have proved for a class of algebraic domains that the
associated plasmonic resonances can be used to classify them. It would be
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Figure 6.1: Real and imaginary parts of λ as function of
the wavelength.

very interesting to prove a similar result for all quadrature domains or all
algebraic domains. We have also reconstructed the separation distance be-
tween two nanoparticles of circular shape from measurements of their first
collective plasmonic resonances. Another challenging problem would be to
generalize this result to more components and arbitrary shaped particles.
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7.1 Introduction

Super-resolution is a set of techniques meant to cross the barrier of diffrac-
tion limits by reducing the focal spot size. This resolution limit applies only
to light that has propagated for a distance substantially larger than its wave-
length [39,40]. It is known that the resolution limit (or the diffraction limit)
in a general inhomogeneous space is determined by the imaginary part of the
Green function in the associated space [4]. An idea to break the resolution
limit is to insert subwavelength resonators in the homogeneous space. This
way, we can introduce propagating subwavelength resonance modes which,
when excited at the right frequency, encode subwavelength informations.
This yield a Green’s function whose imaginary part exhibits subwavelength
peaks and therefore break the resolution limit (or diffraction limit) in the
homogeneous space. The principle has been mathematically demonstrated
in [30].

Super-focusing is the counterpart of super-resolution. It is a concept for
waves to be confined to a length scale significantly smaller than the diffrac-
tion limit of the focused waves. As for the resolution problem, the focusing
capacity is also determined by the imaginary part of the Green function in
the associated space. The super-focusing phenomenon is being intensively
investigated in the field of nanophotonics as a possible technique to focus
electromagnetic radiation in a region of order of a few nanometers beyond
the diffraction limit of light and thereby causing an extraordinary enhance-
ment of the electromagnetic fields.

Here, using the fact that plasmonic particles are ideal subwavelength
resonators, we consider the possibility of super-resolution (super-focusing)
by using a system of identical plasmonic particles.

First, a precise analisys of field behavior of multiple plasmonic particles
is in order.

7.2 Multiple plasmonic nanoparticles

7.2.1 Layer potential formulation in the multi-particle case

We consider the scattering of an incident time harmonic wave ui by multiple
weakly coupled plasmonic nanoparticles in three dimensions. Our motivation
is to demonstrate the principle of super-resolution in resonant media; see
Section 7.3. The analysis done in this section follows the same lines as those in
chapter 2. The scattering from multiple weakly coupled, non-resonant small
particles can be analyzed in the same way. However, no super-resolution can
be achieved in this case.

For ease of exposition, we consider the case of L particles with an identical
shape. We assume that Condition 2.1 holds. Moreover, in contrast to Section
2.3 where the size of the particle is assumed to be of order one, we assume
the following condition in this section.

Condition 7.1. All the identical particles have size of order δ which is a
small parameter and the distances between neighboring ones are of order one.

We write Dl = zl + δB, l = 1, 2, . . . , L, where B has size one and is
centered at the origin. Moreover, we denote D0 = δB as our reference
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nanoparticle. Denote by

D =
L⋃

l=1

Dl, εD = εmχ(R
3\D̄) + εcχ(D̄), µD = µmχ(R

3\D̄) + µcχ(D).

The scattering problem can be modeled by the following Helmholtz equa-
tion:





∇ · 1

µD
∇u+ ω2εDu = 0 in R

3\∂D,

u+ − u− = 0 on ∂D,

1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

(7.1)

Let

ui(x) = eikmd·x,

Fl,1(x) = −ui(x)
∣∣
∂Dl

= −eikmd·x∣∣
∂Dl

,

Fl,2(x) = −∂u
i

∂ν
(x)

∣∣∣∣
∂Dl

= −ikmeikmd·xd · ν(x)
∣∣
∂Dl

,

and define the operator Kk
Dp,Dl

by

Kk
Dp,Dl

[ψ](x) =

∫

∂Dp

∂G(x, y, k)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂Dl.

Analogously, we define

Sk
Dp,Dl

[ψ](x) =

∫

∂Dp

G(x, y, k)ψ(y)dσ(y), x ∈ ∂Dl.

The solution u of (7.1) can be represented as follows:

u(x) =





ui +
L∑

l=1

Skm
Dl

[ψl], x ∈ R
3\D̄,

L∑

l=1

Skc
Dl
[φl], x ∈ D,

where φl, ψl ∈ H− 1
2 (∂Dl) satisfy the following system of integral equations





Skm
Dl

[ψl]− Skc
Dl
[φl] +

∑

p 6=l

Skm
Dp,Dl

[ψp] = Fl,1,

1

µm

(1
2
Id+ (Kkm

Dl
)∗
)
[ψl] +

1

µc

(1
2
Id− (Kkc

Dl
)∗
)
[φl]

+
1

µm

∑

p 6=l

Kkm
Dp,Dl

[ψp] = Fl,2,
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and 



Fl,1 = −ui on ∂Dl,

Fl,2 = − 1

µm

∂ui

∂ν
on ∂Dl.

7.2.2 Feld behavior at plasmonic resonances in the multi-

particle case

We consider the scattering in the quasi-static regime, i.e., when the incident
wavelength is much greater than one. With proper dimensionless analysis,
we can assume that ω ≪ 1. As a consequence, Skc

D is invertible. Note that

φl = (Skc
Dl
)−1
(
Skm
Dl

[ψl] +
∑

p 6=l

Skm
Dp,Dl

[ψp]− Fl,1

)
.

We obtain the following equation for ψl’s,

AD(w)[ψ] = f,

where

AD(w) =




AD1(ω)
AD2(ω)

. . .

ADL
(ω)


+




0 A1,2(ω) · · · A1,L(ω)
A2,1(ω) 0 · · · A2,L(ω)

... · · · 0
...

AL,1(ω) · · · AL,L−1(ω) 0


 ,

ψ =




ψ1

ψ2
...
ψL


 , f =




f1
f2
...
fL


 ,

and

ADl
(ω) =

1

µm

(1
2
Id+ (Kkm

Dl
)∗
)
+

1

µc

(1
2
Id− (Kkc

Dl
)∗
)
(Skc

Dl
)−1Skm

Dl
,

Al,p(ω) =
1

µc

(1
2
Id− (Kkc

Dl
)∗
)
(Skc

Dl
)−1Skm

Dp,Dl
+

1

µm
Kkm

Dp,Dl
,

fl = Fl,2 +
1

µc

(1
2
Id− (Kkc

Dl
)∗
)
(Skc

Dl
)−1[Fl,1].

The following asymptotic expansions hold (see chapter 1 for the definition
of H∗(∂D) and chapter 2 and Appendix B for the definition of the operators).

Lemma 7.2.1. (i) Regarded as operators from H∗(∂Dp) into H∗(∂Dl),
we have

ADj (ω) = ADj ,0 +O(δ2ω2),

(ii) Regarded as operators from H∗(∂Dl) into H∗(∂Dj), we have

Al,p(ω) =
1

µc

(1
2
Id−K∗

Dl

)
S−1
Dl

(
Sp,l,0,1+Sp,l,0,2

)
+

1

µm
Kp,l,0,0+O(δ2ω2)+O(δ4).
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Moreover,

(1
2
Id−K∗

Dl

)
◦ S−1

Dl
◦ Sp,l,0,1 = O(δ2),

(1
2
Id−K∗

Dl

)
◦ S−1

Dl
◦ Sp,l,0,2 = O(δ3),

Kp,l,0,0 = O(δ2).

Proof. The proof of (i) follows from Lemmas 2.3.4 and B.2.3. We now prove
(ii). Recall that

1

2
Id− (Kkc

Dl
)∗ =

1

2
Id−K∗

Dl
+O(δ2ω2),

(Skc
Dl
)−1 = S−1

Dl
− kcS−1

Dl
SDl,1S−1

Dl
+O(δ2ω2),

Skm
Dp,Dl

= Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2 + kmSp,l,1 + k2mSp,l,2,0 +O(δ4) +O(ω2δ2)

Kkm
Dp,Dl

= Kp,l,0,0 +O(ω2δ2).

Using the identity
(1
2
Id−K∗

Dl

)
S−1
Dl

[χ(Dl)] = 0,

we can derive that

Al,p(ω) =
1

µc

(1
2
Id−K∗

Dl

)
(Skc

Dl
)−1Skm

Dp,Dl
+

1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
Id−K∗

Dl

)
S−1
Dl

Skm
Dp,Dl

+
1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
Id−K∗

Dl

)
S−1
Dl

(
Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2 + kmSp,l,1 + k2mSp,l,2,0 +O(δ4)

)

+
1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
Id−K∗

Dl

)
S−1
Dl

(
Sp,l,0,1 + Sp,l,0,2

)
+

1

µm
Kp,l,0,0 +O(δ2ω2) +O(δ4).

The rest of the lemma follows from Lemmas B.2.3 and B.2.6.

Denote by H∗(∂D) = H∗(∂D1)× . . .×H∗(∂DL), which is equipped with
the inner product

(ψ, φ)H∗ =

L∑

l=1

(ψl, φl)H∗(∂Dl).

With the help of Lemma 7.2.1, the following result is obvious.

Lemma 7.2.2. Regarded as an operator from H∗(∂D) into H∗(∂D), we have

AD(ω) = AD,0 +AD,1 +O(ω2δ2) +O(δ4),

where

AD,0 =




AD1,0

AD2,0

. . .
ADL,0


 , AD,1 =




0 AD,1,12 AD,1,13 . . .
AD,1,21 0 AD,1,23 . . .

. . .
AD,1,L1 . . . AD,1,LL−1 0
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with

ADl,0 =
( 1

2µm
+

1

2µc

)
Id− (

1

µc
− 1

µm
)K∗

Dl
,

AD,1,pq =
1

µc

(1
2
Id−K∗

Dp

)
S−1
Dp

(
Sq,p,0,1 + Sq,p,0,2

)
+

1

µm
Kq,p,0,0.

It is evident that

AD,0[ψ] =
∞∑

j=0

L∑

l=1

τj(ψ, ϕj,l)H∗ϕj,l, (7.2)

where

τj =
1

2µm
+

1

2µc
−
( 1
µc

− 1

µm

)
λj , (7.3)

ϕj,l = ϕjel (7.4)

with el being the standard basis of RL.
We take AD(ω) as a perturbation to the operator AD,0 for small ω and

small δ. Using a standard perturbation argument, we can derive the per-
turbed eigenvalues and eigenfunctions. For simplicity, we assume that the
following conditions hold.

Condition 7.2. Each eigenvalue λj, j ∈ J , of the operator K∗
D0

is simple.
Moreover, we have ω2 ≪ δ.

In what follows, we only use the first order perturbation theory and derive
the leading order term, i.e., the perturbation due to the term AD,1. For each
l, we define an L× L matrix Rl by letting

Rl,pq =
(
AD,1[ϕl,p], ϕl,q

)
H∗ ,

=
(
AD,1[ϕlep], ϕleq

)
H∗
,

=
(
AD,1,pq[ϕl], ϕl

)
H∗ .

Lemma 7.2.3. The matrix Rl = (Rl,pq)p,q=1,...,L has the following explicit
expression:

Rl,pp = 0,

Rl,pq =
3

4πµc
(λj −

1

2
)
∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(zp − zq)
α+β

|zp − zq|5
xαyβϕl(x)ϕl(y)dσ(x)dσ(y)

+
( 1

4πµc
− 1

4πµm

)
(λj −

1

2
)

∫

∂D0

∫

∂D0

x · y
|zp − zq|3

ϕl(x)ϕl(y)dσ(x)dσ(y)

= O(δ3), p 6= q.

Proof. It is clear that Rl,pp = 0. For p 6= q, we have

Rl,pq = RI
l,pq +RII

l,pq +RIII
l,pq,



7.2. Multiple plasmonic nanoparticles 163

where

RI
l,pq =

1

µc

((1
2
Id−K∗

Dp

)
S−1
Dp

Sq,p,0,1[ϕl], ϕl

)
H∗(∂Dl)

,

RII
l,pq =

1

µc

((1
2
Id−K∗

Dp

)
S−1
Dp

Sq,p,0,2[ϕl], ϕl

)
H∗(∂Dl)

,

RIII
l,pq =

1

µm

(
Kq,p,0,0[ϕl], ϕl

)
H∗(∂Dl)

.

We first consider RI
l,pq. By the following identity

(1
2
Id−K∗

Dp

)
SDl

[ϕl] = SDl

(1
2
Id−KDp

)
[ϕl] = (λj −

1

2
)ϕl,

we obtain

RI
l,pq = − 1

µc

((1
2
Id−K∗

Dp

)
S−1
Dp

Sq,p,0,1[ϕl],SDl
[ϕl]
)
L2(∂Dl)

,

=
1

µc
(λj −

1

2
)
(
Sq,p,0,1[ϕl],SDl

[ϕl]
)
L2(∂Dl)

.

Using the explicit representation of Sq,p,0,1 and the fact that (χ(∂Dj), φl)L2(∂Dj) =
0 for j 6= 0, we further conclude that

RI
l,pq = 0.

Similarly, we have

RII
l,pq =

1

µc
(λj −

1

2
)
(
Sq,p,0,2[ϕl],SDl

[ϕl]
)
L2(∂Dl)

,

=
1

µc
(λj −

1

2
) ·

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(3(zp − zq)
α+β

4π|zp − zq|5
xαyβ +

δαβx
αyβ

4π|zp − zq|3
)
ϕl(x)ϕl(y)dσ(x)dσ(y),

=
3

4πµc
(λj −

1

2
)
∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(zp − zq)
α+β

|zp − zq|5
xαyβϕl(x)ϕl(y)dσ(x)dσ(y)

+
1

4πµc
(λj −

1

2
)
∑

|α|=1

∫

∂D0

∫

∂D0

1

|zp − zq|3
xαyαϕl(x)ϕl(y)dσ(x)dσ(y).

Finally, note that

Kq,p,0,0[ϕl] =
1

4π|zp − zq|3
a · ν(x) = 1

4π|zp − zq|3
3∑

m=1

amνm(x),

where am =
(
(y − zq)m, ϕl

)
L2(∂Dq)

, and a = (a1, a2, a3)
T .
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By identity (2.29), we have

RIII
l,pq = − 1

µm

(
Kq,p,0,0[ϕl], ϕl

)
H∗(∂Dl)

= − 1

4π|zp − zq|3µm
(
a · ν(x), ϕl

)
H∗(∂Dl)

= − 1

4π|zp − zq|3µm

((1
2
Id−K∗

Dp

)
S−1
Dp

(a · (x− zp)), ϕl

)

H∗(∂Dl)

= − 1

4π|zp − zq|3µm
(λj −

1

2
)
(
a · (x− zp), ϕl

)
L2(∂Dp)

= − 1

4π|zp − zq|3µm
(λj −

1

2
)

∫

∂D0

∫

∂D0

x · yϕl(x)ϕl(y)dσ(x)dσ(y).

This completes the proof of the lemma.

We now have an explicit formula for the matrix Rl. It is clear that Rl

is symmetric, but not self-adjoint. For ease of presentation, we assume the
following condition.

Condition 7.3. Rl has L-distinct eigenvalues.

We remark that Condition 7.3 is not essential for our analysis. Without
this condition, the perturbation argument is still applicable, but the results
may be quite complicated. We refer to [62] for a complete description of the
perturbation theory.

Let τj,l and Xj,l = (Xj,l,1, · · · , Xj,l,L)
T , l = 1, 2, . . . , L, be the eigenvalues

and normalized eigenvectors of the matrix Rj . Here, T denotes the transpose.
We remark that each Xj,l may be complex valued and may not be orthogonal
to other eigenvectors.

Under perturbation, each τj is splitted into the following L eigenvalues
of A(ω),

τj,l(ω) = τj + τj,l +O(δ4) +O(ω2δ2). (7.5)

The associated perturbed eigenfunctions have the following form

ϕj,l(ω) =
L∑

p=1

Xj,l,pepϕj +O(δ4) +O(ω2δ2). (7.6)

We are interested in solving the equation AD(ω)[ψ] = f when ω is close
to the resonance frequencies, i.e., when τj,l(ω) are very small for some j’s.
In this case, the major part of the solution would be based on the excited
resonance modes ϕj,l(ω). For this purpose, we introduce the index set of
resonance J as we did in chapter 2 for a single particle case.

We define

PJ(ω)ϕj,m(ω) =

{
ϕj,m(ω), j ∈ J,
0, j ∈ Jc.

In fact,

PJ(ω) =
∑

j∈J
Pj(ω) =

∑

j∈J

1

2πi

∫

γj

(ξ −AD(ω))
−1dξ, (7.7)

where γj is a Jordan curve in the complex plane enclosing only the eigenvalues
τj,l(ω) for l = 1, 2, . . . , L among all the eigenvalues.
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To obtain an explicit representation of PJ(ω), we consider the adjoint op-
erator AD(ω)

∗. By a similar perturbation argument, we can obtain its per-
turbed eigenvalue and eigenfunctions. Note that the adjoint matrix R̄T

j = R̄j

has eigenvalues τj,l and corresponding eigenfunctions Xj,l. Then the eigen-
values and eigenfunctions of AD(ω)

∗ have the following form

τ̃j,l(ω) = τj + τj,l +O(δ4) +O(ω2δ2),

ϕ̃j,l(ω) = ϕ̃j,l +O(δ4) +O(ω2δ2),

where

ϕ̃j,l =
L∑

p=1

X̃j,l,pepϕj

with X̃j,l,p being a multiple of Xj,l,p.
We normalize ϕ̃j,l in a way such that the following holds

(ϕj,p, ϕ̃j,q)H∗(∂D) = δpq,

which is also equivalent to the following condition

Xj,p
T
X̃j,q = δpq.

Then, we can show that the following result holds.

Lemma 7.2.4. In the space H∗(∂D), as ω goes to zero, we have

f = ωf0 +O(ω2δ
3
2 ),

where f0 = (f0,1, . . . , f0,L)
T with

f0,l = −i√εmµmeikmd·zl
(

1

µm
d · ν(x) + 1

µc

(1
2
Id−K∗

Dl

)
S−1
Dl

[d · (x− z)]

)
= O(δ

3
2 ).

Proof. We first show that

‖u‖H∗(∂D0) = δ
3
2
+m‖u‖H∗(∂B), ‖u‖H(∂D0) = δ

1
2
+m‖u‖H(∂B)

for any homogeneous function u such that u(δx) = δmu(x). Indeed, we have

η(u)(x) = δmu(x). Since ‖η(u)‖H∗(∂B) = δ−
3
2 ‖u‖H∗(∂D0) (see Appendix

B.2), we obtain

‖u‖H∗(∂D0) = δ
3
2 ‖η(u)‖H∗(∂B) = δ

3
2
+m‖u‖H∗(∂B),

which proves our first claim. The second claim follows in a similar way. Using
this result, by a similar argument as in the proof of Lemma 2.3.6 we arrive
at the desired asymptotic result.

Denote by Z = (Z1, . . . , ZL), where Zj = ikme
ikmd·zj . We are ready to

present our main result in this section.

Theorem 7.2.1. Under Conditions 2.1, 2.2, 2.3, 7.1, and 7.3, the scattered
field by L plasmonic particles has the following representation

us = Skm
D [ψ],
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where

ψ =
∑

j∈J

L∑

l=1

(
f, ϕ̃j,l(ω)

)
H∗ϕj,l(ω)

τj,l(ω)
+AD(ω)

−1(PJc(ω)f)

=
∑

j∈J

L∑

l=1

(d · ν(x), ϕj)H∗(∂D0)ZX̃j,l ϕj,l +O(ω2δ
3
2 )

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(ωδ
3
2 ).

Proof. The proof is similar to that of Theorem 3.3.2.

As a consequence, the following result holds.

Corollary 7.2.1. With the same notation as in Theorem 7.2.1 and under
the additional condition that

min
j∈J

|τj,l(ω)| ≫ ωqδp,

for some integer p and q, and

τj,l(ω) = τj,l,p,q + o(ωqδp),

we have

ψ =
∑

j∈J

L∑

l=1

(d · ν(x), ϕj)H∗(∂D0)ZX̃j,l ϕj,l +O(ω2δ
3
2 )

τj,l,p,q
+O(ωδ

3
2 ).

7.3 Super-resolution (super-focusing) by using plas-
monic particles

In [30,31], a rigorous mathematical theory is developed to explain the super-
resolution phenomenon in microstructures with high contrast material around
the source point. Such microstructures act like arrays of subwavelength sen-
sors. A key ingredient is the calculation of the resonances and the Green func-
tion in the microstructure. By following the same methodology, we show in
this section that one can achieve super-resolution using plasmonic nanopar-
ticles as well.

7.3.1 Asymptotic expansion of the scattered field

In order to illustrate the super-resolution phenomenon, we set

ui(x) = G(x, x0, km) = − eikm|x−x0|

4π|x− x0|
.

Lemma 7.3.1. In the space H∗(∂D), as ω goes to zero, we have

f = f0 +O(ωδ
3
2 ) +O(δ

5
2 ),

where f0 = (f0,1, . . . , f0,L)
T with

f0,l = − 1

4π|zl − x0|3
(

1

µm
(zl − x0) · ν(x) +

1

µc
(
1

2
Id−K∗

Dl
)S−1

Dl
[(zl − x0) · (x− zl)]

)
= O(δ

3
2 ).
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Proof. The proof is similar to that of Lemma 2.3.6. Recall that

fl = Fl,2 +
1

µc

(1
2
Id− (Kkc

Dl
)∗
)
(Skc

Dl
)−1[Fl,1].

We can show that

Fl,2 = − 1

µm

∂ui

∂ν
= − 1

4πµm|zl − x0|3
(zl−x0)·ν(x)+O(δ

5
2 )+O(ωδ

3
2 ) in H∗(∂Dl).

Besides,

ui(x)|∂Dl
= − eikm|zl−x0|

4π|zl − x0|
χ(∂Dl)+

1

4π|zl − x0|3
(zl−x0)·(x−zl)+O(δ

5
2 )+O(ωδ

3
2 ) in H(∂Dl).

Using the identity (12Id−K∗
Dl
)S−1

Dl
[χ(∂Dl)] = 0, we obtain that

1

µc

(1
2
Id−(Kkc

Dl
)∗
)
(Skc

Dl
)−1[Fl,1] = − 1

4π|zl − x0|3µc
(
1

2
Id−K∗

Dl
)S−1

Dl
[(zl−x0)·(x−zl)].

This completes the proof of the lemma.

We now derive an asymptotic expansion of the scattered field in an inter-
mediate regime which is neither too close to the plasmonic particles nor too
far away. More precisely, let C be a fixed sufficient large positive number,
we consider the following domain

Dδ,k,C =
{
x ∈ R

3; min
1≤l≤L

|x− zl| ≥ Cδ, max
1≤l≤L

|x− zl| ≤
1

Ck

}
.

Lemma 7.3.2. Let ψl ∈ H∗(∂Dl) and let v(x) = Sk
Dl
[ψl](x). Then we have

for x ∈ Dδ,k,C ,

v(x) = G(x, zl, k)
( 1

|x− zl|
− ik

) x− zl
|x− zl|

·
∫

∂D0

yψl(y)dσ(y) +O(δ
5
2 )‖ψl‖H∗(∂Dl)

+G(x, zl, k)

∫

∂D0

ψl(y)dσ(y).

Moreover, the following estimates hold

v(x) = O(δ
3
2 ) if

∫

∂D0

ψl(y)dσ(y) = 0,

v(x) = O(δ
1
2 ) if

∫

∂D0

ψl(y)dσ(y) 6= 0.

Proof. We only consider the case when l = 0. The other case follows similarly
or by coordinate translation. We have

v(x) = Sk
D0

[ψ](x) =

∫

∂D0

G(x, y, k)ψ(y)dσ(y) = −
∫

∂D0

eik|x−y|

4π|x− y|ψ(y)dσ(y).

Since

G(x, y, k) = G(x, 0, k) +
∑

|α=1|

∂G(x, 0, k)

∂yα
yα +

∑

m≥2

∑

|α=m|

∂mG(x, 0, k)

∂yα
yα,
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and

∂G(x, 0, k)

∂yα
= − eik|x|

4π|x|
( 1

|x| − ik
) x
|x| = G(x, 0, k)

( 1

|x| − ik
)xα
|x| ,

we obtain the required identity for the case l = 0. The estimate follows from
the fact that

‖yα‖H(∂D0) = O(δ
2|α|+1

2 ).

This completes the proof of the lemma.

Denote by

Sj,l(x, k) = G(x, zl, k)
x− zl
|x− zl|2

·
∫

∂D0

yϕj(y)dσ(y),

Sl(x, k) = G(x, zl, k)

∫

∂D0

ϕ0(y)dσ(y),

Hj,l(x0) = − 1

4π|zl − x0|3
(
(zl − x0) · ν(x), ϕj

)
H∗(∂D0)

.

It is clear that the following size estimates hold

Sj,l(x, k) = O(δ
3
2 ), Sl(x, k) = O(δ

1
2 ), Hj,l(x0) = O(δ

3
2 ) forj 6= 0, HO,l(x0) = 0.

Theorem 7.3.1. Under Conditions 2.1, 2.2, 2.3, 7.1, and 7.3, the Green
function Γ(x, x0, km) in the presence of L plasmonic particles has the follow-
ing representation in the quasi-static regime: for x ∈ Dδ,km,C ,

Γ(x, x0, km) = G(x, x0, km)

+
∑

j∈J

L∑

l=1

Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, km) +O(δ4) +O(ωδ3)

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(δ3).

Proof. With ui(x) = G(x, x0, km), we have

ψ =
∑

j∈J

∑

1≤l≤L

aj,lϕj,l +
∑

1≤l≤L

a0,lϕ0,l +O(δ
3
2 ),

where

aj,l = (f, ϕ̃j,l)H∗(∂D) = (f0, ϕ̃j,l)H∗(∂D) +O(ωδ
3
2 ) +O(δ

5
2 ),

= (
1

µc
− 1

µm
)X̃j,l,pHj,p(x0) +O(ωδ

3
2 ) +O(δ

5
2 ),

a0,l = (f, ϕ̃0,l)H∗(∂D) = O(δ
5
2 ).

By Lemma 7.3.2,

Skm
D [ϕj,l](x) =

∑

1≤p≤L

Skm
D [Xj,l,pϕjep](x) =

∑

1≤p≤L

Xj,l,pSkm
Dp

[ϕj ](x)

=
∑

1≤p≤L

Xj,l,pSj,p(x, km) +O(δ
5
2 ) +O(ωδ

3
2 ).
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On the other hand, for j = 0, we have

Skm
D [ϕ0,l](x) = O(δ

1
2 ),

τ0,l(ω) = τ0 +O(δ4) +O(δ2ω2) = O(1).

Therefore, we can deduce that

us = Skm
D [ψ](x) =

∑

j∈J

∑

1≤l≤L

aj,lSkm
D [ϕj,l] +

∑

1≤l≤L

a0,lSkm
D [ϕ0,l] +O(δ3),

=
∑

j∈J

L∑

l=1

1

τj,l(ω)

(
(
1

µc
− 1

µm
)Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, km) +O(ωδ3) +O(δ4)

)

+O(δ3),

=
∑

j∈J

L∑

l=1

Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, km) +O(ωδ3) +O(δ4)

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(δ3).

7.3.2 Asymptotic expansion of the imaginary part of the

Green function

As a consequence of Theorem 7.3.1, we obtain the following result on the
imaginary part of the Green function.

Theorem 7.3.2. Assume the same conditions as in Theorem 7.3.1. Under
the additional assumption that

λ− λj +
( 1
µc

− 1

µm

)−1
τj,l ≫ O(δ4) +O(δ2ω2),

ℜ
(
λ− λj +

( 1
µc

− 1

µm

)−1
τj,l

)
. ℑ

(
λ− λj +

( 1
µc

− 1

µm

)−1
τj,l

)

for each l and j ∈ J , we have

ℑΓ(x, x0, km) = ℑG(x, x0, km) +O(δ3) +

∑

j∈J

L∑

l=1

ℜ
(
Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, 0) +O(ωδ3) +O(δ4)

)

×ℑ
(

1

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l

)
,

where x, x0 ∈ Dδ,km,C .

Note that ℜ
(
Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, 0)

)
= O(δ3). Under the condi-

tions in Theorem 7.3.2, if we have additionally that

ℑ
(

1

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l

)
= O(

1

δ3
)

for some plasmonic frequency ω, then the term in the expansion of ℑΓ(x, x0, km)
which is due to resonance has size one and exhibits subwavelength peak with
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width of order one. This breaks the diffraction limit 1/km in the free space.
We also note that the term ℑG(x, x0, km) has size O(ω). Thus, we can con-
clude that super-resolution (super-focusing) can indeed be achieved by using
a system of plasmonic particles.

7.4 Concluding remarks

In this chapter, by analyzing the imaginary part of the Green function of
a medium populated by plasmonic resonators, we have shown that one can
achieve super-resolution and super-focusing using plasmonic nanoparticles.
We have assumed a weak interaction between nanoparticles. Results on
strong interaction between plasmonic nanoparticles could be acheived using
ideas of chapter 1 and [31]. Indeed, by considering a periodic arrangement
of nanoparticles we could construct a high contrast media, thus allowing
super-resolution.
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8.1 Introduction

The inverse problem of reconstructing fine details of small objects by using
far-field measurements is severally ill-posed. There are two main reasons for
this. The first is the diffraction limit. When illuminated by an incident wave
with wavelength Ω, the scattered field excited from the object which carries
information on the scale smaller than Ω are confined near the object itself and
only those with information on the scale greater than Ω can propagate into
the far-field and be measured. As a result, from the far-field measurement
one can only retrieve information about the object on the scale less than Ω.
Especially in the case when the object is small (size smaller than Ω), one
can only obtain very few information. The second is the low signal to noise
ratio. We know that small objects scatter "weakly". This results very weak
measurement in the far-field. In the presence of measurement noise, one has
low signal to noise ratio and hence poor reconstruction. In this chapter,
we propose a new methodology to overcome the ill-posedness of this inverse
problem. Our method is motivated by plasmonic bio-sensing. The key is to
use a plasmonic particle to interact with the object to propagate its near field
information into far-field in term of shifts of plasmonic resonance frequencies.

The plasmon resonance frequency is one of the most important character-
ization of a plasmonic particle. It depends not only on the electromagnetic
properties of the particle and its size and shape, but also the electromag-
netic properties of the environment. It is the last property which enables the
sensing application of plasmonic particles. Motivated by [34], we establish
in this chapter a rigorous quantitative analysis for the sensing application.
We show that plasmonic resonance can be used to reconstruct fine details of
small objects. We also remark that plasmonic resonance can also be used to
identify the shape of the plasmonic particle itself, see chapter 6.

The methodology we propose is closely related to super-resolution in
imaging. Super-resolution is about the separation of point sources. In super-
resolution technology near field microscopy, the basis idea is to obtain the
near field of sources which contains high resolution information. This is made
possible by propagating the near field information into the far field through
certain near field interaction mechanism, see chapter 7. In this chapter, we
are interested in reconstructing the fine details of small objects in comparison
to their positions and separability which are the focus of super-resolution.
The idea is similar. The near field information of the object is obtained from
the near field interaction of the object and the plasmonic nanoparticle.

In this chapter we consider a system composed of a known plasmonic
particle and the unknown object whose geometry and electromagnetic prop-
erties are the quantities of interest. Under the illumination of incident waves
with frequencies in certain range, we observe the color of the system or mea-
sure the frequencies where the peaks in the scattering field occur. These
are the resonant frequencies or spectroscopic data of the system. By vary-
ing the relative position of the two particles, we obtain different resonant
frequencies due to the varying interactions between the two particles. We
assume that the unknown particle is small compared to the plasmonic par-
ticle. In the intermediate regime when the distance of the two particles is
comparable to the size of the plasmonic particle, we show that the presence
of the small unknown particle can be viewed as a small perturbation to the
homogenous environment of the plasmonic particle. As a result, it induces a
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small shift to the plasmonic resonance frequencies of the plasmonic particle,
which can be read from the observed spectroscopic data. By using rigorous
asymptotic analysis, we obtain analytical formula for the shift which shows
that the shift is determined by the generalized polarization tensors [18] of
the unknown object. Therefore, from the far-field measurement of the shift
of resonant frequencies, we can reconstruct the fine information of the object
by using its generalized polarization tensors.

In this chapter, for the sake of simplicity, we consider the quasi-static
approximation for the interaction between the electromagnetic field and the
system of the two particles. Thus, we shall use the conductivity equation
instead of the Helmholtz equation and the Maxwell equations. In addition,
we only consider the intermediate interaction regime, the strong interaction
regime when the object is close to the plasmonic particle is also very inter-
esting and will be reported in future works.

This chapter is organized in the following way. In Section 8.2, we con-
sider the forward scattering problem of the incident field interacting with a
system composed of a normal particle and a plasmonic particle. We derive
the asymptotic of the scattered field in the case of intermediate regime. In
Section 8.3, we consider the inverse problem of reconstructing the geometry
of the normal particle. This is done by first constructing the generalized
polarization tensors of the particles through the resonance shift it induced
to the plasmonic particle. In Section 8.4, we provide numerical examples to
justify our theoretical results.

8.2 The forward problem

We consider a system composed of a small ordinary particle and a plasmonic
particle embedded in a homogeneous medium; see Figure 8.1. The ordinary
particle and the plasmonic particle occupy a bounded and simply connected
domain D1 ⊂ R

2 and D2 ⊂ R
2 of class C1,α for some 0 < α < 1, respectively.

We denote the permittivity of the ordinary particle D1 (or the plasmonic
particle D2) by ε1 (or ε2), respectively. The permittivity of the background
medium is denoted by εm. In other words, the permittivity distribution ε is
given by

ε := ε1χ(D1) + ε2χ(D2) + εmχ(R
2\(D1 ∪D2)).

The permittivity ε2 of the plasmonic particle depends on the operating fre-
quency and is modeled by the Drude model as

ε2 = ε2(ω) = 1−
ω2
p

ω(ω + iγ)
.

We assume the following condition on the size of the particles D1 and D2.

Condition 8.1. The plasmonic particle D2 has size of order one and is
centered at a position that we denote by z; the ordinary particle D1 has size
of order δ ≪ 1 and is centered at the origin. Specifically, we write D1 = δB,
where the domain B has size of order one.
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The total electric potential u satisfies the following equation:





∇ · (ε∇u) = 0 in R
2\(∂D1 ∪ ∂D2),

u|+ = u|− on ∂D1 ∪ ∂D2,

εm
∂u

∂ν

∣∣∣
+
= ε1

∂u

∂ν

∣∣∣
−

on ∂D1,

εm
∂u

∂ν

∣∣∣
+
= ε2

∂u

∂ν

∣∣∣
−

on ∂D2,

(u− ui)(x) = O(|x|−1), as |x| → ∞,

(8.1)

where ui(x) = d · x is the incident potential with a constant vector d ∈ R
2.

Figure 8.1: Scattering of an incident wave ui by a system
of a plasmonic (D2) - non plasmonic (D1) particles.

8.2.1 The Green function in the presence of a small particle

Let GD1(·, y) be the Green function at the source point y of a medium con-
sisting of the particle D1, which is embedded in the free space. For every
y /∈ D1, GD1(·, y) satisfies the following equation:





∇ ·
(
ε1χ(D1) + εmχ(R

2\D1)
)
∇u = δy in R

2\∂D1,

u|+ = u|− on ∂D1,

εm
∂u

∂ν

∣∣∣∣
+

= ε1
∂u

∂ν

∣∣∣∣
−

on ∂D1,

u(x) = O(|x|−1), as |x| → ∞.

(8.2)

We look for a solution of the form:

GD1(x, y) := G(x, y) + SD1 [ψ](x), x ∈ R
2\D1 . (8.3)

Note that GD1 satisfies the second and fourth conditions in (8.2). From
the third condition in (8.2) and the jump formula (1.1) for the single layer
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potential, the density ψ must satisfy the following equation on ∂D1:

εm
(1
2
Id+K∗

D1

)
[ψ] + ε1

(1
2
Id−K∗

D1

)
[ψ] = (ε1 − εm)

∂

∂ν
G(·, y). (8.4)

So we obtain

ψ =
(
λD1Id−K∗

D1

)−1
[ ∂
∂ν
G(·, y)

]
,

λD1 =
ε1 + εm

2(ε1 − εm)
.

Therefore, from (8.3) and the uniqueness of a solution to (8.2), we have the
following representation for the Green’s function GD1 :

GD1(x, y) = G(x, y)+SD1

(
λD1Id−K∗

D1

)−1
[ ∂
∂ν
G(·, y)

]
(x) for x, y ∈ R

2\D1.

(8.5)

8.2.2 Representation of the total potential

Here we derive a layer potential representation of the total potential u, which
is the solution to (8.1).

Let uD1 be the total field resulting from the incident field ui and the
ordinary particle D1 (without the plasmonic particle D2). Note that uD1 is
given by

uD1(x) = ui(x) + SD1

(
λD1Id−K∗

D1

)−1
[
∂ui

∂ν1
](x), for x ∈ R

2\D1.

To consider the total potential u, we also need to represent the field generated
by the plasmonic particle D2. For this, we introduce a new layer potential
SD2,D1 as follows:

SD2,D1 [ϕ](x) =

∫

∂D2

GD1(x, y)ϕ(y)dσ(y).

The total potential u can be represented in the following form:

u(x) = uD1(x) + SD2,D1 [ψ](x), x ∈ R
2\D2. (8.6)

We need to find a boundary integral equation for the density ψ. It follows
from (8.5) that, for any ϕ,

SD2,D1 [ϕ](x) = SD2 [ϕ](x) + S1
D2,D1

[ϕ](x),

where S1
D2,D1

is given by

S1
D2,D1

[ϕ](x) :=

∫

∂D2

SD1

(
λD1Id−K∗

D1

)−1
[
∂

∂ν1
G(·, y)](x)ϕ(y)dσ(y).
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The expression of S1
D2,D1

[ϕ] can be further developed using the following
spectral expansion of the free-space Green function G(x, y) [32]:

G(x, y) = −
∞∑

j=1

SD2 [ϕj ](x)SD2 [ϕj ](y) + SD2 [ϕ0](x), for x ∈ R
2\D2 and y ∈ D2,

where ϕj , j = 1, 2, ... are eigenfunctions of K∗
D2

on H∗(∂D2) and ϕ0 is an
eigenfunction associated to the eigenvalue 1/2. Then, for any ϕ ∈ H∗(∂D2),
we get

∫

∂D2

G(x, y)ϕ(y)dσ(y) =

∞∑

j=1

SD2 [ϕj ](x)(ϕ,ϕj)H∗(∂D2) + SD2 [ϕ0](x)

∫

∂D2

ϕ(y)dσ(y)

=

∞∑

j=1

SD2 [ϕj ](x)(ϕ,ϕj)H∗(∂D2).

Therefore, for any ϕ ∈ H∗(∂D2), we have,

S1
D2,D1

[ϕ](x) =

∫

∂D2

SD1

(
λD1Id−K∗

D1

)−1
[
∂

∂ν1
G(·, y)](x)ϕ(y)dσ(y)

= SD1

(
λD1Id−K∗

D1

)−1 ∂

∂ν1
SD2

[ ∞∑

j=0

(ϕ,ϕj)H∗ϕj

]
(x)

= SD1

(
λD1Id−K∗

D1

)−1 ∂SD2 [ϕ]

∂ν1
(x),

where we have used the notation ∂
∂νi

to indicate the outward normal deriva-
tive on ∂Di.

Combining the boundary conditions in (8.1), the representation formula
(8.6) and the jump formula (1.1) yields the following equation for ψ

(AD2,0 +AD2,1) [ψ] =
∂uD1

∂ν2
,

where

AD2,0 = λD2Id−K∗
D2
,

λD2 =
ε2 + εm

2(ε2 − εm)
, (8.7)

AD2,1 =
∂S1

D2,D1

∂ν2
=

∂

∂ν2
SD1

(
λD1Id−K∗

D1

)−1 ∂SD2

∂ν1
. (8.8)

8.2.3 Intermediate regime and asymptotic expansion of the

scattered field

Here we introduce the concept of intermediate regime and derive the asymp-
totic expansion of the scattered field u− ui for small δ.

Definition 8.1 (Intermediate regime). We say that D2 is in the inter-
mediate regime with respect to the origin if there exist positive constants C1

and C2 such that C1 < C2 and

C1 ≤ dist(0, D2) ≤ C2.
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Definition 8.1 says that the plasmonic particle D2 is located not too close
to D1 nor far from D1. Throughout this chapter, we assume the plasmonic
particle D2 is in the intermediate regime. We have the following result.

Propsition 8.2.1. If D2 is in the intermediate regime, then ‖AD2,1‖H∗ =
O(δ2) as δ → 0.

Proof. Fix ϕ ∈ H∗(∂D2) and let

ϕ̃ := (λD1Id−K∗
D1

)−1
[∂SD2 [ϕ]

∂ν1

]
.

Since SD2 [ϕ] is harmonic in D1, the Green’s identity gives
∫
∂D1

∂
∂ν1

SD2 [ϕ] =

0. Then it can be proved that
∫
∂D1

ϕ̃ = 0. So we get

SD1 [ϕ̃](x) =

∫

∂D1

(log |x− y| − log |x|)ϕ̃(y)dσ(y) + log |x|
∫

∂D1

ϕ̃(y)dσ(y)

=

∫

∂D1

(log |x− y| − log |x|)ϕ̃(y)dσ(y).

Therefore, since |y−x| ≥ C ′ and |y| ≤ Cδ for (y, x) ∈ (∂D1, ∂D2), we obtain

‖AD2,1[ϕ]‖H∗(∂D2) =
∥∥ ∂

∂ν2
SD1 [ϕ̃]

∥∥
H∗(∂D2)

≤ Cδ‖ϕ̃‖H∗(∂D1).

Now it suffices to prove that

‖ϕ̃‖H∗(∂D1) ≤ Cδ. (8.9)

Recall that D1 = δB. Let fδ(y) = f(δy). Then the function fδ belongs to
H∗(∂B) for f ∈ H∗(∂D1). Since it is known that K∗

Ω is scale-invariant for
any Ω, we have K∗

D1
[f ] = K∗

B[fδ]. Therefore,

ϕ̃ =
(
λD1Id−K∗

D1

)−1
[f ]d(δσ(y)) = (λD1Id−K∗

B)
−1 [fδ]d(δσ(y)).

Again, since |y−x| ≥ C ′ for (y, x) ∈ (∂D1, ∂D2) and |∂D1| = O(δ), we arrive
at

‖ϕ̃‖H∗(∂D1) = ‖ (λD1Id−K∗
B)

−1
[(∂SD2 [ϕ]

∂ν1

)
δ

]
‖H∗(∂B)

≤ C‖ ∂

∂ν1
SD2 [ϕ]‖H∗(∂D1) ≤ Cδ.

The proof is completed.

From Proposition 8.2.1, we can view AD2,1 as a perturbation of AD2,0.
Using standard perturbation theory [85], we can derive the perturbed eigen-
values and associated eigenfunctions.

Let λj and ϕj be the eigenvalues and eigenfunctions of K∗
D2

on H∗(∂D2).
For simplicity, we consider the case when λj is a simple eigenvalue of the
operator K∗

D2
. Let us define

Rjl =
(
AD2,1[ϕl], ϕj

)
H∗(∂D2)

, (8.10)

where AD2,1 is given by (8.8). Note that Rjl = O(δ2).
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The perturbed eigenvalues have the following form:

τj(δ) = λD2 − λj + Pj ,

where Pj are given by

Pj = Rjj +
∑

l 6=j

RjlRlj

λj − λl
+

∑

(l1,l2) 6=j

Rjl2Rl2l1Rl1j

(λj − λl1)(λj − λl2)

+
∑

(l1,l2,l3) 6=j

Rjl3Rl3l2Rl2l1Rl1j

(λj − λl1)(λj − λl2)(λj − λl3)
+ · · · . (8.11)

Also, the perturbed eigenfunctions have the following form:

ϕj(δ) = ϕj +O(δ2). (8.12)

Here the remainder term is with respect to the norm ‖ · ‖H∗(∂D2).

Remark 8.2.1. Note that Pj depends not only on the geometry and material
properties of D1, but also on D2’s properties, in particular its position z.

Theorem 8.2.1. If D2 is in the intermediate regime, the scattered field
usD2

= u − uD1 by the plasmonic particle D2 has the following representa-
tion:

usD2
= SD2,D1 [ψ],

where ψ satisfies

ψ =
∞∑

j=1

(
∇ui(z) · ν, ϕj

)
H∗(∂D2)

ϕj +O(δ2)

λD2 − λj + Pj

with λD2 being given by (8.7).

As a corollary, we have the following asymptotic expansion of the scat-
tered field u− ui.

Theorem 8.2.2. We have the following far field expantion:

(u− ui)(x) = ∇ui(z) ·M(λD1 , λD2 , D1, D2)∇G(x, z) +O(δ2) +O

(
δ3

dist(λD2 , σ(K∗
D2

))

)
,

as |x| → ∞. Here, M(λD1 , λD2 , D1, D2) is the polarization tensor satisfying

M(λD1 , λD2 , D1, D2)l,m =

∞∑

j=1

(νl, ϕj)H∗(∂D2)(ϕj , xm)− 1
2
, 1
2
+O(δ2)

λD2 − λj + Pj
, (8.13)

for l,m = 1, 2.

We remark that the scattered field in the above expression depends on the
frequency (since λD2 does so) and exhibit local peaks at certain frequencies
when one of the denominators is close to zero and is minimized while the
associated nominator is not zero. These frequencies are called the resonant
frequencies of the system. It is clear that these resonant frequencies also
depend on the geometry and the electric permittivity of D1 through the
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perturbative terms Pj ’s. We shall use this fact in the next section to solve the
associated inverse problem of reconstructing D1 by using those frequencies.

8.2.4 Representation of the shift Pj using CGPTs

Here we show that the term Pj in the plasmonic resonances can be expressed
in terms of the contracted generalized polarization tensors (CGPTs), see
chapter 1. The CGPTs carry information on the geometry and material
properties of D1. See [18] for a detailed reference. We shall reconstruct the
ordinary particle D1 from the measurement of the shift Pj .

Propsition 8.2.2. If D2 is in the intermediate regime, then the perturbative
terms Rjl can be represented using CGPTs Mm,n(λD1 , D1) associated with
D1 as follows:

Rjl =

(
1

2
− λj

) M∑

m=1

N∑

n=1

ajmMm,n(λD1 , D1)(a
l
n)

t +O(δM+N+1), (8.14)

where the superscript t denotes the transpose and ajm = (ajm,c, a
j
m,s) with

ajm,c = − 1

2πm

∫

∂D2

cos(mθy)

rmy
ϕj(y)dσ(y),

ajm,s = − 1

2πm

∫

∂D2

sin(mθy)

rmy
ϕj(y)dσ(y).

Here, (ry, θy) denote the polar coordinates of y and {ϕj}j is an orthonormal
basis of eigenfunctions of K∗

D2
on H∗.

Proof. To simplify the notation, let us denote

Fl = SD1

(
λD1Id−K∗

D1

)−1 ∂SD2 [ϕl]

∂ν1
.

Then, from the Green’s identity and the jump formula (1.1), we obtain

Rjl =
(
Fl, ϕj

)
H∗ = −

(∂Fl

∂ν2
,SD2 [ϕj ]

)
1
2
,− 1

2

= −
(
Fl,

∂SD2 [ϕj ]

∂ν2

∣∣∣∣
−

)
1
2
,− 1

2
= −

(
Fl, (−

1

2
+K∗

D2
)[ϕj ]

)
1
2
,− 1

2
.

Since ϕj is an eigenfunction of K∗
D2

with an eigenvalue λj , we have

Rjl =
(1
2
− λj

)(
Fl, ϕj

)
1
2
,− 1

2
.

Let (rx, θx) be the polar coordinates of x. It is known from [12] that, for
|x| < |y|,

G(x, y) =

∞∑

n=0

(−1)

2πn

cos(nθy)

rny
rnx cos(nθx) +

(−1)

2πn

sin(nθy)

rny
rnx sin(nθx). (8.15)
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By interchanging x and y and the fact that G(x, y) = G(y, x), we have, for
|x| > |y|,

G(x, y) =
∞∑

n=0

(−1)

2πn

cos(nθx)

rnx
rny cos(nθy) +

(−1)

2πn

sin(nθx)

rnx
rny sin(nθy). (8.16)

If x ∈ ∂D1 and y ∈ ∂D2, then |x| < |y|. So, applying (8.15) gives

∂SD2 [ϕl]

∂ν1
(x) =

∂

∂ν1

∫

∂D2

G(x, y)ϕldσ(y)

=
∞∑

n=1

∂rnx cos(nθx)

∂ν1
aln,c +

∂rnx sin(nθx)

∂ν1
aln,s.

On the contrary, if y ∈ ∂D1 and x ∈ ∂D2, then |x| > |y|. We have from
(8.16) that, for any f ,

SD1 [f ](x) =

∫

∂D1

G(x, y)[f ](y)dσ(y)

=
∞∑

m=0

− 1

2πm

cos(mθx)

rmx

∫

∂D1

rmy cos(mθy)[f ](y)dσ(y)

+
∞∑

m=0

− 1

2πm

sin(mθx)

rmx

∫

∂D1

rmy sin(mθy)[f ](y)dσ(y).

Therefore, from the definition of Mm,n, we get

Rjl =

(
1

2
− λj

)(
SD1

(
λD1Id−K∗

D1

)−1 ∂SD2 [ϕl]

∂ν1
, ϕj

)
1
2
,− 1

2

=

(
1

2
− λj

) ∞∑

m=0,n=1

(ajm,c, a
j
m,s)Mm,n(λD1 , D1)(a

l
n,c, a

l
n,s)

t.

For any λ ∈ C andD = δB, it is easy to check thatMm,n(λ,D) = δm+nMm,n(λ,B).
Since D2 is in the intermediate regime, aln,c and aln,s satisfy

|ajm,c|, |ajm,s| ≤
1

m
C−m, |aln,c|, |aln,s| ≤

1

n
C−n,

for some constant C > 1 independent of δ. Moreover, it can be shown that
(see [15])

∞∑

n=1

(aj0,c, a
j
0,s)M0,n(λD1 , D1)(a

l
n,c, a

l
n,s)

t = 0.

Then the conclusion immediately follows.

Corollary 8.2.1. We have

Pj(z)−
∑

l 6=j

Rjl(z)Rlj(z)

λj − λl
−

∑

(l1,l2) 6=j

Rjl2Rl2l1Rl1j

(λj − λl1)(λj − λl2)
. . .

=

(
1

2
− λj

) M∑

m=1

N∑

n=1

ajmMm,n(λD1 , D1)(a
l
n)

t +O(δM+N+1).
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In the LHS, the summation should be truncated so that all the terms which
contain Rjlk · · ·Rlkj = O(δ2(k+1)) with 2(k + 1) ≤M +N + 1 are ignored.

8.3 The inverse problem

In this section, we consider the inverse problem associated with the forward
system (8.1). We assume that the plasmonic particle D2 is known, i.e.,
we know its electric permittivity ε2 = ε2(ω), its shape D2 and position
z. The ordinary particle D1 is unknown. For simplicity, we assume that
its permittivity ε1 is known. For each of many different positions z of the
plasmonic particle D2, we measure the resonant frequency and use these
resonant frequencies to reconstruct the shape of the ordinary particle D1.

As illustrated by Theorem 8.2.2, the resonance in the scattered field oc-
curs when λD2(ω)−λj+Pj is minimized and (νl, ϕj)H∗(ϕj , xm)− 1

2
, 1
2
6= 0. So

by varying the frequency ω, we can measure the value of λj−Pj . Moreover, in
the absence of the ordinary particle, the resonance occurs when λD2(ω)− λj
is minimized and (νl, ϕj)H∗(ϕj , xm)− 1

2
, 1
2
6= 0. Since we assume that the plas-

monic particle D2 is known, we can get the value of λj a priori. Therefore,
by comparing λj −Pj and λj , we can measure the shift Pj of the eigenvalue.

Finding Pj for many different positions of D2 will yield a linear system
of equations that will allow the recovery of the CGPTs associated with D1.
From the recovered CGPTs, we will reconstruct the ordinary particle D1.
Here, we only consider the shape reconstruction problem. Nevertheless, by
using the CGPTs associated with D1, it is possible to reconstruct the per-
mittivity ε1 of D1 in the case it is not a priori given [12].

From now on, we denote Mm,n =Mm,n(λD1 , D1).

8.3.1 CGPTs recovery algorithm

We propose a recurrent algorithm to recover the GPTs of order less or equal
to k up to an order δ2k−1, using measurements of Pj at different positions
of D2. For simplicity, we only consider the shift of a single eigenvalue λj
with a fixed j. To gain robustness and efficiency, the shift in other resonant
frequencies could also be considered.

We now explain our method for reconstructing GPTs Mm,n,m+ n ≤ K
for a given K ∈ N from the measurements of the shift Pj .

Suppose we measure precisely Pj for three different positions z1, z2, z3 of
the plasmonic particle D2. First we reconstruct M1,1 approximately. Since
M t

1,1 =M1,1, the matrix M1,1 is symmetric. We look for a symmetric matrix

M
(2)
1,1 satisfying

Pj(z1) =

(
1

2
− λj

)
aj1(z1)M

(2)
1,1 (a

j
1)

t(z1)

Pj(z2) =

(
1

2
− λj

)
aj1(z2)M

(2)
1,1 (a

j
1)

t(z2)

Pj(z3) =

(
1

2
− λj

)
aj1(z3)M

(2)
1,1 (a

j
1)

t(z3).

The above equations can be seen as a linear system of equations for three

independent components (M
(2)
1,1 )11, (M

(2)
1,1 )12 and (M

(2)
1,1 )22. We emphasize
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that ajm(zi) can be a priori given because the particle D2 is known. Since,
from Corollary 8.2.1 and the fact that Rjl = O(δ2), we have

Pj(zk) =

(
1

2
− λj

)
aj1(zk)M1,1(a

j
1)

t(zk) +O(δ3), k = 1, 2, 3,

we see that M1,1 is well approximated by M
(2)
1,1 . Specifically, we have M1,1 −

M
(2)
1,1 = O(δ3).
Next we reconstruct and update the higher order GPTs Mn,m in a re-

cursive way. Towards this, we need more measurement data of the shift Pj .
Let k ≥ 3. Due to the symmetry of harmonic combinations of the non con-
tracted GPTs (see [18]), we have Mm,n =M t

n,m. One can see that, by using
this symmetry property, the set of GPTs Mm,n satisfying m+ n ≤ k contains
ek independent variables where ek is given by

ek =

{
k(k − 1) + k/2, if k is even,
k(k − 1) + (k − 1)/2, if k is odd.

Therefore, we need ek measurement data for Pj to reconstruct the GPTs
Mm,n for m+ n ≤ k.

Suppose we have ek − 2 more measurement data Pj at different positions

z4, z5, ..., zek . Let {M (k)
m,n}m+n≤k be the set of matrices satisfying [M

(k)
n,m]t =

M
(k)
m,n and the following linear system:

P̃(k−1)
j (z1) =

(
1

2
− λj

) ∑

m+n≤k

ajm(z1)M
(k)
m,n(a

j
n)

t(z1)

P̃(k−1)
j (z2) =

(
1

2
− λj

) ∑

m+n≤k

ajm(z2)M
(k)
m,n(a

j
n)

t(z2)

... =
...

P̃(k−1)
j (zek) =

(
1

2
− λj

) ∑

m+n≤k

ajm(zek)M
(k)
m,n(a

j
n)

t(zek), (8.17)

where

P̃(k−1)
j (zi) := Pj(zi)−

∑

l 6=j

R
(k−1)
jl (zi)R

(k−1)
lj (zi)

λj − λl
− . . . , i = 1, 2, ..., ek,

(8.18)
and

R
(k−1)
jl (z) :=

(
1

2
− λj

) ∑

m+n≤k−1

ajm(z)M (k−1)
m,n (aln)

t(z).

Note that M
(k)
m,n are defined recursively. In (8.18), the summation should be

truncated as in Corollary 8.2.1.

Then M
(k)
m,n becomes a good approximation of the CGPT Mm,n for m+

n ≤ k. Moreover, the accuracy improves as the iteration goes on. Indeed,
we can see that

Mm,n −M (k)
m,n = O(δ2k−1), m+ n ≤ k. (8.19)
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In fact, (8.19) can be verified by induction. We already know that this is

true when k = 2. Let us assume Mm,n−M
(k−1)
m,n = O(δ2k−3), m+n ≤ k− 1.

Then, from Proposition 8.2.2, we have

Rjl(z)−R
(k−1)
jl (z) = O(δ2k−3).

Hence, from Corollary 8.2.1 and the fact that Rjl = O(δ2), we obtain

P̃(k−1)
j (zi)−


Pj(zi)−

∑

l 6=j

Rjl(zi)Rlj(zi)

λj − λl
− · · ·


 = O(δ2k−1).

Therefore, in view of Corollary 8.2.1 and the linear system (8.17), we obtain

(8.19). In conclusion, M
(k)
m,n is indeed precise up to an order δ2k−1.

Remark 8.3.1. In practice, Pj might be subject to noise and could not be
measured precisely. In this case only the low order CGPTs could be recovered.

8.3.2 Shape recovery from CGPTs

To recover the shape of D1 from its CGPTs, we search to minimize the
following shape functional ( [12])

J (l)
c [B] :=

1

2

∑

n+m≤k

∣∣∣N (1)
mn(λD1 , B)−N (1)

mn(λD1 , D1)
∣∣∣
2
, (8.20)

where

N (1)
m,n(λ,D) = (M cc

m,n −M ss
m,n) + i(M cs

m,n −M sc
m,n).

To minimize J (l)[B] we need to compute the shape derivative, dSJ (l)
c , of

J (l)
c .

For ǫ small, let Bǫ be an ǫ-deformation of B, i.e., there is a scalar function
h ∈ C1(∂B), such that

∂Bǫ := {x+ ǫh(x)ν(x) : x ∈ ∂B}.

Then, according to [11,12,17], the perturbation of a harmonic sum of GPTs
due to the shape deformation is given as follows:

N (1)
m,n(λD1 , Bǫ)−N (1)

m,n(λD1 , D1)

= ǫ(kλD1
− 1)

∫

∂B
h(x)

[
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−
+

1

kλD1

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x) dσ(x) +O(ǫ2),

where
kλD1

= (2λD1 + 1)/(2λD1 − 1), (8.21)
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and u and v are respectively the solutions to the problems:





∆u = 0 in B ∪ (R2\B) ,

u|+ − u|− = 0 on ∂B ,

∂u

∂ν

∣∣∣
+
− kλD1

∂u

∂ν

∣∣∣
−
= 0 on ∂B ,

(u− (x1 + ix2)
m)(x) = O(|x|−1) as |x| → ∞ ,

(8.22)

and





∆v = 0 in B ∪ (R2\B) ,

kλD1
v|+ − v|− = 0 on ∂B ,

∂v

∂ν

∣∣∣
+
− ∂v

∂ν

∣∣∣
−
= 0 on ∂B ,

(v − (x1 + ix2)
n)(x) = O(|x|−1) as |x| → ∞ .

(8.23)

Here, ∂/∂T is the tangential derivative.
Let

wm,n(x) = (kλD1
− 1)

[
∂u

∂ν

∣∣∣
−

∂v

∂ν

∣∣∣
−
+

1

kλD1

∂u

∂T

∣∣∣
−

∂v

∂T

∣∣∣
−

]
(x), x ∈ ∂B .

The shape derivative of J (l)
c at B in the direction of h is given by

〈dSJ (l)
c [B], h〉 =

∑

m+n≤k

δN 〈wm,n, h〉L2(∂B) ,

where
δN = N (1)

m,n(λD1 , B)−N (1)
m,n(λD1 , D1) .

Next, using a gradient descent algorithm we can minimize, at least locally,

the functional J (l)
c .

8.4 Numerical Illustrations

In this section, we support our theoretical results by numerical examples. In
the sequel, we assume that D2 is an ellipse with semi-axes a = 1 and b = 2,
as shown in Figure 8.2. In this case the resonances in the far-field can only
occur at λ1 = 1

2
a−b
a+b = −1

6 and λ2 = −1
2
a−b
a+b = 1

6 . Thus, for a fixed position
of D2, we can measure two shifts of the plasmonic resonance: P1 and P2.

We consider the case of D1 being a triangular-shaped and a rectangular-
shaped particle with known contrast λD1 = 1, as shown in Figure 8.3.

Figure 8.4 shows the shift in the plasmonic resonance around λ1, for
random positions of D2 around a triangular-shaped particle D1. From these
measurements, P1 can be precisely estimated from the resonance peaks and
the equation Pj = λj − λr, where λr is the value at which we achieve the
maximum of the resonant peak.

It is worth mentioning that, for the sake of simplicity and clarity, we plot
the graph not by varying the frequency but the parameter λ directly. We
assume Re(λD2) ranges from −1/2 to 1/2 and Im(λD2) = 10−4. In a more
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Figure 8.2: Plasmonic particle D2.

realistic setting, corrections in the peaks of resonances should be included,
by considering the Drude model for λD2 . But they are essentially equivalent.

To recover geometrical properties of D1 from measurements of P1, we
recover the CGPTs using the algorithm described in 8.3.1 and then minimize
functional (8.20) to reconstruct an approximation of D1.

To recover the first CGPTs of order 5 or less we make 22 measurements
around D1 as shown in Figure 8.5, and measure the shift from λ1 = −1

6 .
In the following we show a comparison between the recovered CGPTs of

order less or equal to 4 and their theoretical value, for each iteration.

Triangle-shaped D1:

Theoretical values:

M11 =

(
0.2426 0

0 0.2426

)
M12 =

(
0 −0.0215

−0.0215 0

)

M22 =

(
0.043 0
0 0.043

)
M13 =

(
0 0
0 0

)

Recovered:

M
(2)
11 =

(
0.2444 −0.0007
−0.0007 0.2408

)
M

(3)
11 =

(
0.2438 0

0 0.2414

)

M
(4)
11 =

(
0.2429 −0.0001
−0.0001 0.2430

)
M

(5)
11 =

(
0.2426 0

0 0.2426

)

M
(3)
12 =

(
0.0008 −0.2414
−0.0212 −0.0087

)
M

(4)
12 =

(
0 −0.2413

−0.0213 0

)

M
(5)
12 =

(
0 −0.2415

−0.0215 0

)
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Figure 8.3: Non plasmonic particles D1. Triangular-
shaped (left) and rectangular-shaped (right).

M
(4)
22 =

(
0.0180 0.2204
0.2204 0.0389

)
M

(5)
22 =

(
0.0368 0.0010
0.0010 0.0497

)

M
(4)
13 =

(
0.0093 −0.1126
−0.1123 −0.0019

)
M

(5)
13 =

(
0.0032 −0.0005
−0.0005 −0.0032

)

Rectangular-shaped D1:

Theoretical values:

M11 =

(
0.2682 0.0000

0 0.2682

)
M12 =

(
0 0
0 0

)

M22 =

(
0.0544 0

0 0.0402

)
M13 =

(
0.0054 0

0 −0.0054

)

Recovered:

M
(2)
11 =

(
0.2703 0.0001
0.0001 0.2661

)
M

(3)
11 =

(
0.2696 0

0 0.2662

)

M
(4)
11 =

(
0.2682 0

0 0.2681

)
M

(5)
11 =

(
0.2682 0

0 0.2681

)
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Figure 8.4: (right) Modulus of the entry (1,1) of the first
order polarization tensor given in Theorem 8.2.2, for different
positions ofD2 around a triangular-shaped particleD2 (left).

M
(3)
12 =

(
0.0038 −0.0001

0 −0.0112

)
M

(4)
12 =

(
0 0
0 0

)

M
(5)
12 =

(
0 0
0 0

)

M
(4)
22 =

(
0.0530 −0.0007
−0.0007 0.0425

)
M

(5)
22 =

(
0.0537 0.0006
0.0006 0.0416

)

M
(4)
13 =

(
0.0064 0.0003
0.0004 −0.0063

)
M

(5)
13 =

(
0.0060 −0.0003
−0.0003 −0.0059

)

The results of minimizing the functional (8.20) with a gradient descent
approach and using the recovered CGPTs of order less or equal to 5 are
shown in Figures 8.6 and 8.7. We take as initial point the equivalent ellipse
to D1, given by the first order polarization recovered with Algorithm 8.3.1,

i.e M
(5)
11 .

8.5 Concluding remarks

In this chapter, using the quasi-static model, we have shown that the fine
details of a small object can be reconstructed from the shift of resonant
frequencies it induces to a plasmonic particle in the intermediate regime. This
provides a solution for the ill-posed inverse problem of reconstructing small
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Figure 8.5: Positions ofD2 for which we measure P1. (left)
Triangular-shaped particle D1, (right) rectangular-shaped

particle D1.

objects from far-field measurements and also laid a mathematical foundation
for plasmonic bio-sensing. The idea can be extended in several directions:
(i) to investigate the strong interaction regime when the small object is close
to the plasmonic particle; (ii) to study the case when the size of object is
comparable to the size of plasmonic particle; (iii) to analyze the case with
multiple small objects and multiple plasmonic particles; (iv) to consider the
more practical model of Maxwell equations, and (v) to investigate other types
of subwavelength resonances such as Minnaert resonance [10, 75] in bubbly
fluids. These new developments will be reported in forthcoming works.
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Figure 8.6: Shape recovery of a triangular-shaped particle
D1. From left to right, we show both, the original shape and
the recovered one after 0 iterations, after 8 iterations and

after 30 iterations.
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Figure 8.7: Shape recovery of a rectangular-shaped parti-
cle D1. From left to right, we show both, the original shape
and the recovered one after 0 iterations, after 30 iterations

and after 100 iterations.
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Appendix A

Layer Potentials for the

Laplacian in two Dimensions

In R
2 the single-layer potential SD : H−1/2(∂D) → H1/2(∂D) is not, in

general, invertible. Hence, −(u,SD[v])− 1
2
, 1
2

does not define an inner product

and the symmetrization technique described in 1 is no longer valid.
Here and throughout, (·, ·)− 1

2
, 1
2

denotes the duality pairing betweenH−1/2(∂D)

and H1/2(∂D).
To overcome this difficulty, we will introduce a substitute of SD, in the

same way as in [32].
We first need the following lemma.

Lemma A.0.1. Let C = {ϕ ∈ H−1/2(∂D); ∃ α ∈ C, SD[ϕ] = α}. We have
dim(C) = 1.

Proof. It is known that

AD : H−1/2(∂D)× C → H1/2(∂D)× C

(ϕ, a) →
(
SD[ϕ] + a,

∫

∂D
ϕdσ

)
,

is invertible [18, Theorem 2.26].
We can see that C = Π1A−1

D (0,C), where Π1[(ϕ, a)] = ϕ. The invertibility
of AD implies that Ker(Π1A−1

D (0, ·)) = {0}. Thus, by the range theorem we
have

1 = dim(Im(Π1A−1
D (0, ·))) + dim(Ker(Π1A−1

D (0, ·))) = dim(Im(Π1A−1
D (0, ·))) = dim(C).

Definition A.1. We call ϕ0 the unique element of C such that
∫
∂D ϕ0dσ = 1.

Note that for every ϕ ∈ H−1/2(∂D) we have the decomposition

ϕ = ϕ−
(∫

∂D
ϕdσ

)
ϕ0 +

(∫

∂D
ϕdσ

)
ϕ0 := ψ +

(∫

∂D
ϕdσ

)
ϕ0,

where we can see that (ψ, 1)− 1
2
, 1
2
= 0. This kind of decomposition, ϕ =

ψ + αϕ0, with (ψ, 1)− 1
2
, 1
2
= 0 is unique.

Note that we can decompose H−1/2 as a direct sum of elements with

zero-mean and multiples of ϕ0, H
−1/2(∂D) = H

−1/2
0 (∂D) ⊕ {µϕ0, µ ∈ C}.

This allows us to define the following operator.
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Definition A.2. Let S̃D be the linear operator that satisfies

S̃D : H−1/2(∂D) → H1/2(∂D)

ϕ →
{

SD[ϕ] if (ϕ, 1)− 1
2
, 1
2
= 0,

−1 if ϕ0 = ϕ.

Remark A.0.1. When SD is invertible, S̃D is similar enough to keep the
invertibility. When SD is not invertible, then C = ker(SD) and the operator
S̃D becomes an invertible alternative to SD that images the kernel C to the
space {µχ(∂D), µ ∈ C}.
Remark A.0.2. S̃D : H−1/2(∂D) → H1(D) follows the same definition.

Theorem A.0.1. S̃D is invertible, self-adjoint and negative for (·, ·)− 1
2
, 1
2

and

satisfies the following Calderón identity: S̃DK∗
D = KDS̃D.

Proof. The invertibility is a direct consequence of Lemma A.0.1.
Indeed, since SD is Fredholm of zero index, so is S̃D. Therefore, we only

need the injectivity. Suppose that, ∃ ϕ 6= 0 such that S̃D[ϕ] = 0. This mean
that, ∃ α 6= 0 ∈ C such that ϕ = αϕ0. Therefore, S̃D[ϕ] = αS̃D[ϕ0] = −α =
0, which is a contradiction. Hence ϕ = 0.

The self-adjointness comes directly form that of SD. Noticing that ϕ0 is
an eigenfunction of eigenvalue 1/2 of K∗

D we get the Calderón identity from
a similar one satisfied by SD: SDK∗

D = KDSD; see [12, Lemma 2.12].
It is known that

∫
∂D ψSD[ψ]dσ < 0 if (ψ, 1)− 1

2
, 1
2
= 0 and ψ 6= 0, see

[12, Lemma 2.10]. Therefore, writing ϕ = ψ +
( ∫

∂D ϕdσ
)
ϕ0, with ψ =

ϕ −
( ∫

∂D ϕdσ
)
ϕ0, and noticing that

∫
∂D ϕ0S̃D[ψ]dσ =

∫
∂D S̃D[ϕ0]ψdσ =

−
∫
∂D ψdσ = 0, we have

∫

∂D
ϕS̃D[ϕ]dσ =

∫

∂D
ψS̃D[ψ]dσ +

(∫

∂D
ϕdσ

)2
S̃D[ϕ0]

=

∫

∂D
ψSD[ψ]dσ −

(∫

∂D
ϕdσ

)2
< 0,

if ϕ 6= 0.

Definition A.3. We define the space H∗(∂D) as the Hilbert space resulting
from endowing H−1/2(∂D) with the inner product

(u, v)H∗ := −(u, S̃D[v])− 1
2
, 1
2
. (A.1)

Similarly, we let H to be the Hilbert space resulting from endowing H1/2 with
the inner product

(u, v)H = −(S̃−1
D [u], v)− 1

2
, 1
2
. (A.2)

If D is C1,α, we have the following result.

Lemma A.0.2. Let D be a C1,α bounded domain of R
2 and let S̃D be the

operator introduced in Definition A.2. Then
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(i) The operator K∗
D is compact self-adjoint in the Hilbert space H∗(∂D)

and H∗(∂D) is equivalent to H− 1
2 (∂D); Similarly, the Hilbert space

H(∂D) is equivalent to H
1
2 (∂D).

(ii) Let (λj , ϕj), j = 0, 1, 2, . . . , be the eigenvalue and normalized eigen-
function pair of K∗

D with λ0 = 1
2 . Then, λj ∈ (−1

2 ,
1
2 ] and λj → 0 as

j → ∞;

(iii) The following representation formula holds: for any ϕ ∈ H−1/2(∂D),

K∗
D[ϕ] =

∞∑

j=0

λj(ϕ,ϕj)H∗ ⊗ ϕj .

The following lemmas are needed in the proof of Theorem 4.2.1 and The-
orem 4.2.2.

Lemma A.0.3. Let D = z + δB and η be the function such that, for every
ϕ ∈ H∗(∂D), η(ϕ)(x̃) = ϕ(z + δx̃), for almost all x̃ ∈ ∂B. Then

‖ϕ‖H∗(∂D) = δ‖η(ϕ)‖H∗(∂B).

Similarly, if for every ϕ ∈ L2(D), η(ϕ)(x̃) = ϕ(z+δx̃), for almost all x̃ ∈ B,
then

‖ϕ‖L2(D) = δ‖η(ϕ)‖L2(B).

Proof. We only prove the scaling in H∗(∂D). From the proof of Theorem
A.0.1, we have

‖ϕ‖2H∗(∂D) = −
∫

∂D
ψSD[ψ]dσ +

(∫

∂D
ϕdσ

)2
,

where ψ = ϕ−
( ∫

∂D ϕdσ
)
ϕ0. Note that (ψ, 1)− 1

2
, 1
2
= 0 and so, (η(ψ), 1)− 1

2
, 1
2
=

0 as well.
By a rescaling argument we find that

‖ϕ‖2H∗(∂D) = −δ2
∫

∂B

∫

∂B

1

2π
log |δ(x̃− ỹ)|η(ψ)(x̃)η(ψ)(ỹ)dσ(x̃)dσ(ỹ) + δ2

(∫

∂B
η(ϕ)dσ

)2

= − 1

2π
δ2 log(δ)

(∫

∂B
η(ψ)dσ

)2
+ δ2

(
−
∫

∂B
η(ψ)SD[η(ψ)]dσ +

(∫

∂B
η(ϕ)dσ

)2)

= δ2‖η(ϕ)‖2H∗(∂B).

Lemma A.0.4. Let g ∈ H1(D) be such that ∆g = f with f ∈ L2(D). Then,
in H∗(∂D),

(
1

2
I −K∗

D)S̃−1
D [g] = −∂g

∂ν
+ Tf .

For some Tf ∈ H∗(∂D) and ‖Tf‖H∗ ≤ C‖f‖L2(D) for a constant C.
Moreover, if g ∈ H1

loc(R
2), ∆g = 0 in R

2\D̄, lim|x|→∞ g(x) = 0, then

Tf = cfϕ0 + S̃−1
D [g],
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with

cf =

∫

D
f(x)dx−

∫

∂D
S̃−1
D [g](y)dσ(y),

where ϕ0 is given in Definition A.1. Here, by an abuse of notation, we still
denote by g the trace of g on ∂D.

Proof. Let ϕ ∈ H∗(∂D). Then

(
(
1

2
I −K∗

D)S̃−1
D [g], ϕ

)
H∗

= −
(
S̃−1
D [g],

(1
2
I −KD

)
S̃D[ϕ]

)
− 1

2
, 1
2

= −
(
S̃−1
D [g], S̃D

(1
2
I −K∗

D

)
[ϕ]
)
− 1

2
, 1
2

= −
(
g,
(1
2
I −K∗

D

)
[ϕ]
)
− 1

2
, 1
2

= −
(
g,−∂S̃D[ϕ]

∂ν

∣∣∣
−

)
− 1

2
, 1
2

=

∫

∂D

∂g

∂ν
S̃D[ϕ]dσ −

∫

D

(
f S̃D[ϕ]−∆S̃D[ϕ]

(
g
))
dx

= −
(∂g
∂ν
, ϕ
)
H∗

−
∫

D
f S̃D[ϕ]dx.

We have used the fact that S̃D is harmonic in D.
Consider the linear application Tf [ϕ] := −

∫
D f S̃D[ϕ]dx. We have

|Tf [ϕ]| ≤ C‖f‖L2(D)‖S̃D[ϕ]‖L2(D) ≤ Cf‖S̃D[ϕ]‖H1(D) ≤ Cf‖S̃D[ϕ]‖
H

1
2 (∂D)

≤ Cf‖ϕ‖
H− 1

2 (∂D)
.

Here we have used Holder’s inequality, a standard Sobolev embedding, the
trace theorem and the fact that S̃D : H− 1

2 (∂D) → H
1
2 (∂D) is continuous.

By the Riez representation theorem, there exists v ∈ H∗(∂D) such that
Tf [ϕ] = (v, ϕ)H∗ , ∀ϕ ∈ H∗(∂D).

By abuse of notation we still denote Tf := v to make explicit the depen-
dency on f . It follows that

‖Tf‖2H∗ = −
∫

D
f S̃D[Tf ]dx ≤ C‖f‖L2(D)‖S̃D[Tf ]‖L2(D)

≤ C‖f‖L2(D)‖S̃D[Tf ]‖H1(D)

≤ C‖f‖L2(D)‖S̃D[Tf ]‖
H

1
2 (∂D)

≤ C‖f‖L2(D)‖Tf‖H∗ .

We now show that in H∗
0(∂D), Tf = S̃−1

D [g].
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Indeed, let ϕ ∈ H∗
0(∂D), then

(
S̃−1
D [g], ϕ

)
H∗

= −
(
S̃−1
D [g], S̃D[ϕ]

)
− 1

2
, 1
2

= −
(
g, ϕ

)
− 1

2
, 1
2

= −
(
g,
∂S̃D[ϕ]

∂ν

∣∣∣
+
− ∂S̃D[ϕ]

∂ν

∣∣∣
−

)
− 1

2
, 1
2

=

∫

∂D

∂g

∂ν
S̃D[ϕ]dσ −

∫

∂D

∂g

∂ν
S̃D[ϕ]dσ +

∫

∂B∞

∂g

∂ν
S̃D[ϕ]dσ −

∫

∂B∞

g
∂S̃D[ϕ]

∂ν
dσ

−
∫

R2

(
f S̃D[ϕ]−∆S̃D[ϕ]

(
g
))
dx

= −
∫

D
f S̃D[ϕ]dx.

Here we have used the assumption on g, the fact that S̃D[ϕ] is harmonic
in D and R

2\D̄ and that for ϕ ∈ H∗
0(∂D) we have S̃D[ϕ](x) = O( 1

|x|) and

∂S̃D[ϕ]

∂ν
(x) = O( 1

|x|) for |x| → ∞.

Therefore,

Tf = (Tf − S̃−1
D [g], ϕ0)H∗ϕ0 + S̃−1

D [g].

Finally, re-scaling the definition of ϕ0 given in Definition A.1 we obtain that

(Tf − S̃−1
D [g], ϕ0)H∗ =

∫

D
f(x)dx−

∫

∂D
S̃−1
D [g](y)dσ(y).
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Appendix B

Asymptotic Expansions

In this section, we derive asymptotic expansions for the Helmholtz integral
operators with respect to k, of some boundary integral operators defined on
the boundary of a bounded and simply connected smooth domain D.

B.1 Asymptotic expansions in R
3

We consider a domain D ⋐ R
3 whose size is of order one.

Recall the definition of the single layer potential

Sk
D[ψ](x) =

∫

∂D
G(x, y, k)ψ(y)dσ(y), x ∈ ∂D,

where

G(x, y, k) = − eik|x−y|

4π|x− y|
is the Green function of Helmholtz equation in R

3, subject to the Sommerfeld
radiation condition. Note that

G(x, y, k) = −
∞∑

j=0

(ik|x− y|)j
j!4π|x− y| = − 1

4π|x− y| −
ik

4π

∞∑

j=1

(ik|x− y|)j−1

j!
.

We get

Sk
D = SD +

∞∑

j=1

kjSD,j , (B.1)

where

SD,j [ψ](x) = − i

4π

∫

∂D

(i|x− y|)j−1

j!
ψ(y)dσ(y).

In particular, we have

SD,1[ψ](x) = − i

4π

∫

∂D
ψ(y)dσ(y), (B.2)

SD,2[ψ](x) = − 1

4π

∫

∂D
|x− y|ψ(y)dσ(y). (B.3)

Lemma B.1.1. ‖SD,j‖L((H∗(∂D),H(∂D)) is uniformly bounded with respect to
j. Moreover, the series in (B.1) is convergent in L(H∗(∂D),H(∂D)).

Proof. It is clear that

‖SD,j‖L(L2(∂D),H1(∂D)) ≤ C,
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where C is independent of j. On the other hand, a similar estimate also
holds for the operator S∗

D,j . It follows that

‖SD,j‖L(H−1(∂D),L2(∂D)) ≤ C.

Thus, we can conclude that ‖SD,j‖L(H− 1
2 (∂D),H

1
2 (∂D))

is uniformly bounded

by using interpolation theory. By the equivalence of norms in the H− 1
2 (∂D)

and H
1
2 (∂D), the lemma follows immediately.

Note that SD is invertible in dimension three, so is Sk
D for small k. By

formally writing

(Sk
D)

−1 = S−1
D + kBD,1 + k2BD,2 + . . . , (B.4)

and using the identity (Sk
D)

−1Sk
D = Id, we can derive that

BD,1 = −S−1
D SD,1S−1

D , BD,2 = −S−1
D SD,2S−1

D + S−1
D SD,1S−1

D SD,1S−1
D .
(B.5)

We can also derive other lower-order terms BD,j .

Lemma B.1.2. The series in (B.4) converges in L(H(∂D),H∗(∂D)) for
sufficiently small k.

Proof. The proof can be deduced from the identity

(Sk
D)

−1 = (Id+ S−1
D

∞∑

j=1

kjSD,j)
−1S−1

D .

We now consider the expansion for the boundary integral operator (Kk
D)

∗.
We have

(Kk
D)

∗ = K∗
D + kKD,1 + k2KD,2 + . . . , (B.6)

where

KD,j [ψ](x) = − i

4π

∫

∂D

∂(i|x− y|)j−1

j!∂ν(x)
ψ(y)dσ(y) = − i

j(j − 1)

4πj!

∫

∂D
|x−y|j−3(x−y)·ν(x)ψ(y)dσ(y).

In particular, we have

KD,1 = 0, KD,2[ψ](x) =
1

4π

∫

∂D

(x− y) · ν(x)
|x− y| ψ(y)dσ(y). (B.7)

Lemma B.1.3. The norm ‖KD,j‖L(H∗(∂D),H∗(∂D)) is uniformly bounded for
j ≥ 1. Moreover, the series in (B.6) is convergent in L(H∗(∂D),H∗(∂D)).

B.2 Asymptotic expansion in R
3: multiple particles

In this section, we consider the multiple particle case in dimension three.
We assume that the particles have size of order δ which is a small number
and the distance between them is of order one. We write Dj = zj + δD̃,

j = 1, 2, . . . ,M , where D̃ has size one and is centered at the origin. Our
goal is to derive estimates for various boundary integral operators that are
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defined on small particles in terms of their size. For this purpose, we denote
by D0 = δD̃. For each function f defined on ∂D0, we define a corresponding
function on D̃ by

η(f)(x̃) = f(δx̃).

In this section, we denote by χ(∂Dj) the constant function equal one over
the border of Dj .

We first state some useful results.

Lemma B.2.1. The following scaling properties hold:

(i) ‖η(f)‖
L2(∂D̃)

= δ−1‖f‖L2(∂D0);

(ii) ‖η(f)‖H(∂D̃)
= δ−

1
2 ‖f‖H(∂D0);

(iii) ‖η(f)‖H∗(∂D̃)
= δ−

3
2 ‖f‖H∗(∂D0).

Proof. The proof of (i) is straightforward and we only need to prove (ii) and
(iii). To prove (iii), we have

‖f‖2H∗(∂D0)
=

∫

∂D0

∫

∂D0

f(x)f(y)

4π|x− y|dσ(x)dσ(y)

= δ3
∫

∂D̃

∫

∂D̃

η(f)(x̃)η(f)(ỹ)

4π|x̃− ỹ| dσ(x̃)dσ(x̃)

= δ3‖η(f)‖2H∗(∂D̃)
,

whence (iii) follows. To prove (ii), recall that

‖f‖H(∂D0) = ‖S−1
D0
f‖H∗(∂D0).

Let u = S−1
D0

[f ]. Then f = SD0 [u]. We can show that

η(f) = δS
D̃
(η(u)).

As a result, we have

‖η(f)‖H(∂D̃)
= δ‖S

D̃
(η(u))‖H(∂D̃)

= δ‖η(u)‖H∗(∂D̃)
= δ−

1
2 ‖u‖H∗(∂D0) = δ−

1
2 ‖f‖H(∂D0),

which proves (ii).

Lemma B.2.2. Let X and Y be bounded and simply connected smooth do-
mains in R

3. Assume 0 ∈ X,Y and X = δX̃, Y = δỸ . Let R and R̃ be two
boundary integral operators from D′(∂Y ) to D′(∂X) and D′(∂Ỹ ) to D′(∂X̃),
respectively. Here, D′ denotes the Schwartz space. Assume that both opera-
tors have the same Schwartz kernel R with the following homogeneous scaling
property

R(δx, δy) = δmR(x, y).

Then,

‖R‖L(H∗(∂Y ),H∗(∂X)) = δ2+m‖R̃‖L(H∗(∂Ỹ ),H∗(∂X̃))
,

‖R‖L(H∗(∂Y ),H(∂X)) = δ1+m‖R̃‖L(H∗(∂Ỹ ),H(∂X̃))
.
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Proof. The result follows from Lemma B.2.1 and the following identity

R = δ2+mη−1 ◦ R̃ ◦ η.

We first consider the operators Sk
Dj

and (Kk
Dj

)∗. The following asymptotic
expansions hold.

Lemma B.2.3. (i) Regarded as operators from H∗(∂Dj) into H(∂Dj), we
have

Sk
Dj

= SDj + kSDj ,1 + k2SDj ,2 +O(k3δ3),

where SDj = O(1) and SDj ,m = O(δm);

(ii) Regarded as operators from H(∂Dj) into H∗(∂Dj), we have

(Sk
Dj

)−1 = S−1
Dj

+ kBDj ,1 + k2BDj ,2 +O(k3δ3),

where S−1
Dj

= O(1) and BDj ,m = O(δm);

(iii) Regarded as operators from H∗(∂Dj) into H∗(∂Dj), we have

(Kk
Dj

)∗ = K∗
Dj

+ k2O(δ2),

where K∗
Dj

= O(1).

Proof. The proof immediately follows from Lemmas B.2.2, B.1.1, and B.1.3.

We now consider the operator Sk
Dj ,Dl

. By definition,

Sk
Dj ,Dl

[ψ](x) =

∫

∂Dj

G(x, y, k)ψ(y)dσ(y), x ∈ ∂Dl.

Using the expansion

G(x, y, k) =
∞∑

m=0

kmQm(x, y),

where

Qm(x, y) = − i
m|x− y|m−1

4π
,

we can derive that
Sk
Dj ,Dl

=
∑

m≥0

kmSj,l,m,

where

Sj,l,m[ψ](x) =

∫

∂Dj

Qm(x, y)ψ(y)dσ(y).

We can further write
Sj,l,m =

∑

n≥0

Sj,l,m,n,
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where Sj,l,m,n is defined by

Sj,l,m,n[ψ](x) =

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂|α|+|β|

∂xα∂yβ
Qm(zl, zj)(x−zl)α(y−zj)βψ(y) dσ(y).

In particular, we have

Sj,l,0,0[ψ](x) = − 1

4π|zj − zl|
(ψ, χ(∂Dj))H−1/2(∂Dj),H1/2(∂Dj)

χ(Dl),

Sj,l,0,1[ψ](x) =
∑

|α|=1

(zl − zj)
α

4π|zl − zj |3
(
(x− zl)

α(ψ, χ(∂Dl))H−1/2(∂Dj),H1/2(∂Dj)
+

(
(y − zj)

α, ψ
)
χ(Dl)

)
,

Sj,l,0,2[ψ](x) =
∑

|α|+|β|=2

1

α!β!

∂2Q0(zl, zj)

∂xα∂yβ
(x− zl)

α(y − zj)
βψ(y)dσ(y),

Sj,l,1[ψ](x) = − i

4π
(ψ, χ(∂Dj))H−1/2(∂Dj),H1/2(∂Dj)

χ(Dl),

Sj,l,2,0[ψ](x) =
1

4π
|zl − zj |(ψ, χ(∂Dj))H−1/2(∂Dj),H1/2(∂Dj)

χ(Dl).

The following estimate holds.

Lemma B.2.4. We have ‖Sj,l,m,n‖L(H∗(∂D),H(∂D)) . O(δn+1).

Proof. After a translation of coordinates, the stated estimate immediately
follows from Lemma B.2.2.

Similarly, for the operator Kkm
Dj ,Dl

defined in the following way

Kk
Dj ,Dl

[ψ](x) =

∫

∂Dj

∂G(x, y, k)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂Dl,

we have
Kk

Dj ,Dl
=
∑

m≥0

km
∑

n≥0

Kj,l,m,n,

where

Kj,l,m,n[ψ](x) =

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x−zl)β(y−zj)α(x−y)·ν(x)ψ(y)dσ(y)

with

Km(x, y) = − i
m(m− 1)|x− y|m−3

4πm!
.

In particular, we have

Kj,l,0,0[ψ](x) =
1

4π|zl − zj |3
[
(x− zl) · ν(x)

(
ψ, χ(∂Dj)

)
H−1/2(∂Dj),H1/2(∂Dj)

−
(
ψ, (y − zj) · ν(x)

)
H−1/2(∂Dj),H1/2(∂Dj)

+(zl − zj) · ν(x)
(
ψ, χ(∂Dj)

)
H−1/2(∂Dj),H1/2(∂Dj)

]
, (B.8)

Kj,l,1,m[ψ] = 0 for all m. (B.9)
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Lemma B.2.5. We have ‖Kj,l,m,n‖L(H∗(∂Dj),H∗(∂Dl)) . O(δn+2).

Proof. Note that

Kj,l,m,n[ψ](x) =

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x− zl)

β(y − zj)
α(x− zl) · ν(x)ψ(y)dσ(y),

−
∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x− zl)

β(y − zj)
α(y − zj) · ν(x)ψ(y)dσ(y),

+

∫

∂Dj

∑

|α|+|β|=n

1

α!β!

∂nKm(zl, zj)

∂xβ∂yα
(x− zl)

β(y − zj)
α(zl − zj) · ν(x)ψ(y)dσ(y).

After a translation of coordinates, we can apply Lemma B.2.2 to each one of
the three terms above to conclude that Kj,l,m,n = O(δn+3) + O(δn+2). This
completes the proof of the lemma.

To summarize, we have proven the following results.

Lemma B.2.6. (i) Regarded as an operator from H∗(∂Dj) into H(∂Dl)
we have,

Sk
Dj ,Dl

= Sj,l,0,0+Sj,l,0,1+Sj,l,0,2+kSj,l,1+k
2Sj,l,2,0+O(δ4)+O(k2δ2).

Moreover,
Sj,l,m,n = O(δn+1).

(ii) Regarded as an operator from H∗(∂Dj) into H∗(∂Dl), we have

Kk
Dj ,Dl

= Kj,l,0,0 +O(k2δ2).

Moreover,
Kj,l,0,0 = O(δ2).

B.3 Asymptotic expansions in R
2

Let us now consider the single-layer potential for the Helmholtz equation in
R
2 given by

Sk
D[ϕ](x) =

∫

∂D
G(x, y, k)ϕ(y)dσ(y), x ∈ ∂D,

where G(x, y, k) = − i

4
H

(1)
0 (k|x− y|) and H

(1)
0 is the Hankel function of first

kind and order 0. We have, for k ≪ 1,

− i

4
H

(1)
0 (k|x− y|) = 1

2π
log |x− y|+ τk +

∞∑

j=1

(bj log k|x− y|+ cj)(k|x− y|)2j ,

where

τk =
1

2π
(log k+γe−log 2)− i

4
, bj =

(−1)j

2π

1

22j(j!)2
, cj = −bj

(
γe − log 2− iπ

2
−

j∑

n=1

1

n

)
,
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and γe is the Euler constant. Thus, we get

Sk
D = Ŝk

D +
∞∑

j=1

(
k2j log k

)
S(1)
D,j +

∞∑

j=1

k2jS(2)
D,j , (B.10)

where

Ŝk
D[ϕ](x) = SD[ϕ](x) + τk

∫

∂D
ϕdσ,

S(1)
D,j [ϕ](x) =

∫

∂D
bj |x− y|2jϕ(y)dσ(y),

S(2)
D,j [ϕ](x) =

∫

∂D
|x− y|2j(bj log |x− y|+ cj)ϕ(y)dσ(y).

Lemma B.3.1. The norms ‖S(1)
D,j‖L(H∗(∂D),H(∂D)) and ‖S(2)

D,j‖L(H∗(∂D),H(∂D))

are uniformly bounded with respect to j. Moreover, the series in (B.10) is
convergent in L(H∗(∂D),H(∂D)) for k < 1.

Observe that
(
SD − S̃D

)
[ϕ] =

(
SD − S̃D

)
[PH∗

0
[ϕ]+(ϕ,ϕ0)H∗ϕ0] = (ϕ,ϕ0)H∗ (SD[ϕ0] + 1) .

Then it follows that

Ŝk
D[ϕ] = S̃D[ϕ]+(ϕ,ϕ0)H∗ (SD[ϕ0] + 1)+τk

∫

∂D
PH∗

0
[ϕ]+(ϕ,ϕ0)H∗ϕ0dσ = S̃D[ϕ]+Υk[ϕ],

where
Υk[ϕ] = (ϕ,ϕ0)H∗ (SD[ϕ0] + 1 + τk) . (B.11)

Therefore, we arrive at the following result.

Lemma B.3.2. For k small enough, Ŝk
D : H∗(∂D) → H(∂D) is invertible.

Proof. Υk is clearly a compact operator. Since S̃D is invertible, the invert-
ibility of Ŝk

D is equivalent to that of Ŝk
DS̃−1

D = I +ΥkS̃−1
D . By the Fredholm

alternative, we only need to prove the injectivity of I +ΥkS̃−1
D .

Since ∀ v ∈ H1/2(∂D), ΥkS̃−1
D [v] ∈ C, for

(
I +ΥkS̃−1

D

)
[v] = 0, we need to

show that v = S̃D[αϕ0] = −α ∈ C.
We have
(
I +ΥkS̃−1

D

)
S̃D[αϕ0] = α(SD[ϕ0] + τk) = 0 iff SD[ϕ0] = −τk or α = 0.

Since we can always find a small enough k such that SD[ϕ0] 6= −τk, we need
α = 0. This yields the stated result.

Lemma B.3.3. For k small enough, the operator Sk
D : H∗(∂D) → H(∂D)

is invertible.

Proof. The operator Sk
D − Ŝk

D : H∗(∂D) → H(∂D) is a compact operator.

Because Ŝk
D is invertible for k small enough, by the Fredholm alternative only

the injectivity of Sk
D is necessary. From the uniqueness of a solution to the

Helmholtz equation we get the result.
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Lemma B.3.4. The following asymptotic expansion holds for k small enough:

(Sk
D)

−1 = PH∗
0
S̃−1
D + Uk − k2 log kPH∗

0
S̃−1
D S(1)

D,1PH∗
0
S̃−1
D +O(k2)

with

Uk = −(S̃−1
D [·], ϕ0)H∗

SD[ϕ0] + τk
ϕ0. (B.12)

Note that Uk = O(1/ log k).

Proof. We can write (B.10) as

Sk
D = Ŝk

D + Gk,

where Gk = k2 log kS(1)
D,1 + O(k2). From Lemma B.3.2 and Lemma B.3.3 we

get the identity

(Sk
D)

−1 =
(
I + (Ŝk

D)
−1Gk

)−1
(Ŝk

D)
−1.

Hence, we have

(Ŝk
D)

−1 =
(
S̃−1
D Ŝk

D

)−1

︸ ︷︷ ︸
Λ−1
k

S̃−1
D .

Here,

Λk = I − (·, ϕ0)H∗(SD[ϕ0] + 1 + τk)ϕ0

= PH∗
0
− (·, ϕ0)H∗(SD[ϕ0] + τk)ϕ0.

Then,

Λ−1
k = PH∗

0
− (·, ϕ0)H∗

1

SD[ϕ0] + τk
ϕ0,

and therefore,

(Ŝk
D)

−1 = PH∗
0
S̃−1
D − (S̃−1

D [·], ϕ0)H∗

SD[ϕ0] + τk
ϕ0.

It is clear that ‖(Ŝk
D)

−1‖L(H(∂D),H∗(∂D)) is bounded for k small. Since ||Gk||L(H(∂D),H∗(∂D))

goes to zero as k goes to zero, for k small enough, we can write

(Sk
D)

−1 = (Ŝk
D)

−1 − (Ŝk
D)

−1Gk(Ŝk
D)

−1 +O
(
k4(log k)2

)
,

which yields the desired result.

We now consider the expansion for the boundary integral operator (Kk
D)

∗.
We have

(Kk
D)

∗ = K∗
D +

∞∑

j=1

(
k2j log k

)
K(1)

D,j +
∞∑

j=1

k2jK(2)
D,j , (B.13)
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where

K(1)
D,j [ϕ](x) =

∫

∂D
bj
∂|x− y|2j
∂ν(x)

ϕ(y)dσ(y),

K(2)
D,j [ϕ](x) =

∫

∂D

∂
(
|x− y|2j(bj log |x− y|+ cj)

)

∂ν(x)
ϕ(y)dσ(y).

Lemma B.3.5. The norms ‖K(1)
D,j‖L(H∗(∂D),H∗(∂D)) and ‖K(2)

D,j‖L(H∗(∂D),H∗(∂D))

are uniformly bounded for j ≥ 1. Moreover, the series in (B.13) is convergent
in L(H∗(∂D),H∗(∂D)).
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Appendix C

Sum Rules for the Polarization

Tensor

Let f be a holomorphic function defined in an open set U ⊂ C containing

the spectrum of K∗
D. Then, we can write f(z) =

∞∑

j=0

ajz
j for every z ∈ U .

Definition C.1. Let

f(K∗
D) :=

∞∑

j=0

aj(K∗
D)

j ,

where (K∗
D)

j := K∗
D ◦ K∗

D ◦ .. ◦ K∗
D︸ ︷︷ ︸

j times

.

Lemma C.0.1. We have

f(K∗
D) =

∞∑

j=1

f(λj)(·, ϕj)H∗ϕj .

Proof. We have

f(K∗
D) =

∞∑

i=0

ai(K∗
D)

i =

∞∑

i=0

ai

∞∑

j=1

λij(·, ϕj)H∗ϕj

=
∞∑

j=1

( ∞∑

i=0

aiλ
i
j

)
(·, ϕj)H∗ϕj

=

∞∑

j=1

f(λj)(·, ϕj)H∗ϕj .

From Lemma C.0.1, we can deduce that

∫

∂D
xlf(K∗

D)[νm](x) dσ(x) =

∞∑

j=1

f(λj)α
(j)
l,m. (C.1)

Equation (C.1) yields the summation rules for the entries of the polarization
tensor.
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In order to prove that
∞∑

j=1

α
(j)
l,m = δl,m|D|, we take f(λ) = 1 in (C.1) to

get
∞∑

j=1

α
(j)
l,m =

∫

∂D
xlνm(x) dσ(x) = δl,m|D|.

Next, we prove that

∞∑

j=1

λj

d∑

l=1

α
(j)
l,l =

(d− 2)

2
|D|.

Taking f(λ) = λ in (C.1), we obtain

∞∑

j=1

λj

d∑

l=1

α
(j)
l,l =

d∑

l=1

∫

∂D
xlK∗

D[νl](x) dσ(x),

∫

∂D
xlK∗

D[νl](x) dσ(x) =

∫

∂D
xl

(
1

2
νl(x) +

∂SD[νl]

∂ν

∣∣∣
−
(x)

)
dσ(x),

=
|D|
2

+

∫

∂D
xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x). (C.2)

Integrating by parts we arrive at

∫

∂D
xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) =

∫

D
el(x) · ∇SD[νl](x)dx+

∫

D
xl∆SD[νl](x)dx.

Since the single-layer potential is harmonic on D,

∫

∂D
xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) =

∫

D
el(x) ·

(∫

∂D
∇xΓ(x, x

′)νl(x
′)dσ(x′)

)
dx.

Summing on i and using ∇xΓ(x, x
′) = −∇x′Γ(x, x′), we get

d∑

l=1

∫

∂D
xl
∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x) =−

∫

D

(∫

∂D
ν(x′) · ∇x′Γ(x, x′)dσ(x′)

)
dx,

=−
∫

D
DD[1](x)dx,

=− |D|, (C.3)

where DD is the double-layer potential. Hence, summing equation (C.2) for
i = 1, . . . , d, we get the result.

Finally, we show that

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l =

d− 4

4
|D|+

d∑

l=1

∫

D
|∇SD[νl]|2dx.
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Taking f(λ) = λ2 in (C.1) yields

∞∑

j=1

λ2j

d∑

l=1

α
(j)
l,l =

d∑

l=1

∫

∂D
xl(K∗

D)
2[νl](x) dσ(x)

=
d∑

l=1

∫

∂D
KD[yl](x)K∗

D[νl](x) dσ(x)

=
d∑

l=1

∫

∂D
KD[yl]

νl
2
dσ +

d∑

l=1

∫

∂D
KD[yl]

∂SD[νl]

∂ν
|−dσ

=
(d− 2)

4
|D| −

d∑

l=1

∫

∂D

yl
2

∂SD[νl]

∂ν

∣∣∣
−
dσ

︸ ︷︷ ︸
I1

+
d∑

l=1

∫

∂D
DD[yl]

∣∣∣
−

∂SD[νl]

∂ν

∣∣∣
−
dσ

︸ ︷︷ ︸
I2

.

From (C.3) it follows that

I1 = −|D|
2
.

Since xl is harmonic, we have xl = DD[yl](x)|−−SD[νl](x) on ∂D, and thus,

I2 =

d∑

l=1

∫

∂D
(xl + SD[νl](x))

∂SD[νl]

∂ν

∣∣∣
−
(x)dσ(x),

= −|D|+
d∑

l=1

∫

∂D
SD[νl]

∂SD[νl]

∂ν

∣∣∣
−
dσ,

= −|D|+
d∑

l=1

∫

D
|∇SD[νl]|2dx.

Replacing I1 and I2 by their expressions gives the desired result.
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Résumé
Cette thèse porte sur l’étude mathématique des interac-

tions entre la lumière et certains types de nanoparticules.

A l’échelle du nanomètre, des particules métalliques comme

l’or ou l’argent subissent un phénomène de résonance

lorsque leurs électrons libres interagissent avec un champ

électromagnétique. Cette interaction produit une aug-

mentation du champs électrique proche et lointain, leur

permettant d’améliorer la luminosité et la directivité de la

lumière, confinant des champs électromagnétiques dans

des directions avantageuses. Ce phénomène, appelé

"résonances plasmoniques pour des nanoparticules" ou-

vre une porte sur une large gamme d’applications, des

nouvelles techniques d’imagerie médicale à des panneaux

solaires efficaces. En utilisant des techniques issues des

potentiels de couches et de la théorie de la perturba-

tion, nous proposons une étude de la dispersion d’ondes

électromagnétiques par une et plusieurs nanoparticules

plasmoniques, dans le cadre quasi-statique, Helmholtz

et Maxwell. Nous étudions ensuite certaines applications

tel que la génération de chaleur, les métasurfaces et

l’imagerie super-résolue.

Mots Clés
operateur de Neumann-Poincaré, potentiels de couche,

nanoparticules plasmoniques, resonance de plasmon,

analyse asymptotique

Abstract
This thesis deals with the mathematical study of the inter-

actions between light and certain types of nanoparticles.

At the nanometer scale, metal particles such as gold or

silver undergo a resonance phenomenon when their free

electrons interact with an electromagnetic field. This in-

teraction results in an enhancement of the near and far

electric field, enabling them to improve the brightness

and the directivity of the light, confining electromagnetic

fields in advantageous directions. This phenomenon, called

"plasmonic resonances for nanoparticles", opens a door

to a wide range of applications, from new medical imag-

ing techniques to efficient solar panels. Using layer po-

tentials techniques and perturbation theory, we propose

a study of the scattering of electromagnetic waves by one

and several plasmonic nanoparticles in the quasi-static,

Helmholtz and Maxwell framework. We then study some

applications such as heat generation, metasurfaces and

super-resolution.

Keywords
Neumann Poincaré operator, layer potentials, plasmonic

nanoparticles, plasmonic resonances, asymptotic analy-

sis
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