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Résumé

L’analyse des risques est un élément essentiel pour la prise de décision réglementaire
liée aux industries à haut risques. Une analyse systématique des risques se compose de
trois étapes: (i) l’identification des scénarios indésirables de risque. (ii) l’estimation de la
probabilité d’occurrence des scénarios des risques. (iii) le calcul d’effet des conséquences
des scénarios de risque identifiés. L’analyse de la vraisemblance et de la gravité s’effectue
à l’aide de modèles qui dépendent de plusieurs paramètres d’entrée.

Cependant, la fiabilité de l’analyse de risque est limitée grâce à diverses sources
d’incertitude. L’incertitude des paramètres, du modèle et d’incomplétude sont les princi-
pales sources d’incertitude. L’incertitude de paramètres découle de l’incapacité de définir
des valeurs exactes à certains paramètres d’entrée utilisés pour l’analyse de la proba-
bilité et de l’effet. L’incertitude de l’incomplétude provient de ne pas tenir compte de
l’ensemble des contributions au risque dans le processus d’identification (certains événe-
ments initiateurs sont ignorés). L’incertitude du modèle n’est pas prise en compte dans
ce travail.

L’INERIS (Institut national de l’environnement industriel et des risques) a développé
une approche semi-quantitative d’intervalle pour l’évaluation de la probabilité des risques
qui utilise des informations quantitatives si disponibles ou des informations qualitatives,
sinon. Cependant, cette approche semi-quantitative d’intervalle présente certains incon-
vénients en raison de l’incertitude des paramètres.

L’information concernant les paramètres d’entrée des modèles d’effets est souvent in-
complète, vague, imprécise ou subjective. En outre, certains paramètres peuvent être
de nature aléatoire et ont des valeurs différentes. Cela conduit à deux différents types
d’incertitude des paramètres. L’incertitude aléatoire dû à la variabilité naturelle. L’autre
est l’incertitude épistémique, causée par le manque d’informations, par exemple, une im-
précision de mesure.
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De plus, dans les méthodes d’analyse de risque actuelles, l’étape d’identification est
incomplète. Juste les scénarios liés à la sûreté causés par des événements accidentels sont
pris en compte durant l’analyse. L’introduction de systèmes connectés et de technolo-
gies numériques dans l’Industrie crée de nouvelles menaces de cyber-sécurité qui peuvent
entraîner des accidents de sûreté indésirables. Ces événements liés à la cyber-sécurité
doivent être pris en compte lors de l’analyse des risques industriels.

Cette recherche vise à développer des méthodologies d’analyse d’incertitude pour
traiter l’incertitude dans le processus d’analyse de risque de l’INERIS. En d’autres ter-
mes, analyser l’incertitude dans l’analyse de la probabilité, l’analyse des effets et l’étape
d’identification. Dans ce travail, nous traitons les limites de l’approche semi-quantitative
d’intervalle en introduisant la notion de nombres flous au lieu d’intervalles. Les nombres
flous sont utilisés pour traiter l’incertitude dans les données d’entrée.

Une méthodologie hybride qui traite chaque cause de l’incertitude des paramètres
dans l’analyse des effets avec la bonne théorie est développée. La théorie de la prob-
abilité est utilisée pour représenter la variabilité, les nombres flous sont utilisés pour
représenter l’imprécision et la théorie d’évidence est utilisée pour représenter l’ignorance,
l’incomplétude ou le manque de consensus.

Une nouvelle méthodologie d’identification des risques qui considère la sûreté et la
sécurité ensemble lors de l’analyse des risques industriels est développée. Cette approche
combine Noeud-Papillon (BT), utilisé pour l’analyse de sûreté, avec une nouvelle version
étendue de l’arbre d’attaque (AT), introduite pour l’analyse de cybersécurité des sys-
tèmes de contrôle industriel. L’utilisation combinée d’AT-BT fournit une représentation
exhaustive des scénarios de risque en termes de sûreté et de sécurité.
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Abstract

The French ministerial order of 29/09/2005 imposes the assessment of risks of critical
facilities with toxic, flammable, explosive or mixtures substances to prevent the occurrence
of undesirable accidents and protect the surroundings people and the environment. The
outcomes of risk calculations are used for permit granting and for land-use planning. A
systematic risk analysis is made up of three steps: (i) identifying the undesirable risk
scenarios that can lead to major accidents. A risk scenario is characterized by referencing
to the potential event with its causes and consequences. (ii) Estimating the likelihood of
occurrence of risk scenarios. (iii) Calculating the severity of consequences of the identified
risk scenarios. Likelihood and severity analysis are carried out with the help of models
that depend on several number of input parameters.

However, the trustworthiness of risk analysis is limited when inaccuracies in the re-
sults can occur, and are due to various sources of uncertainty. Parameter, model and
completeness uncertainties are the main sources of uncertainty that affect an assessment.
Parameter Uncertainty arises from the inability to set exact values for certain input pa-
rameters used for likelihood and severity analysis. Model uncertainty stems from the
fact that risk models used for severity analysis are representations of reality and based
on simple mathematical equations. Completeness uncertainty originates from not con-
sidering all contributions to risk in the identification process (some initiating events are
ignored). In this study parameter and completeness uncertainties are addressed. Model
uncertainty is difficult to quantify and it can be mitigated by validating the risk models
against experiments.

Likelihood analysis can be qualitative or quantitative depending on the types of inputs
data. Input data for likelihood analysis are either derived from databases (based on the
data collected at the time of on-site investigations or similar facilities) or expert judgments
if the former is not available. Qualitative analysis is subjective and not precise, while
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quantitative analysis is often too expensive to perform. For these reasons, the INERIS has
developed an interval semi-quantitative approach that uses both quantitative information
if available or qualitative information if not. However, this interval semi-quantitative
approach has some drawbacks due to parameter uncertainty and in some cases can lead
to likelihood underestimation.

Models used for severity analysis are complex and depend on a large number of input
parameters. However, Inability in determining precise values for models’ input param-
eters may be faced due to time and financial constraints. Information regarding model
parameters is often incomplete, vague, imprecise or subjective. Moreover, some of the pa-
rameters may be random in nature and have different values. This leads to two different
types of parameter uncertainty that need to be accounted for an accurate risk analysis and
effective decision-making. Aleatoric uncertainty arises from randomness due to natural
variability resulting from the variation of a value in time. Or epistemic uncertainty caused
by the lack of information resulting, for example, from measurement errors, subjectivity
expert judgment or incompleteness.

Moreover, in today’s risk analysis methodologies, the identification step is incomplete
where only safety related scenarios caused by accidental events (component failures, hu-
man errors, etc.) are considered. The introduction of connected systems and digital
technology in process industries creates new cyber-security threats that can lead to unde-
sirable safety accidents. These cyber-security related events should be considered during
industrial risk analysis. Safety and security are assessed separately when they should not
be. This is because a security threat can lead to the same dangerous phenomenon as
a safety incident. Thus, a new risk identification methodology that deal with complete-
ness uncertainty by considering safety and security together during risk analysis is an
important need.

This research aims to develop uncertainty analysis methodologies to evaluate industrial
risks for critical facilities under parameter uncertainty. And proposing a modeling tool
to complete the risk analysis process by introducing cyber-security related risks into the
identification step. The research has the following specific objectives:

— To deal with parameter uncertainty during risk analysis, and provide a guidance for
risk assessors and decision makers on how the best to handle parameter uncertainty
and taking decisions in an uncertain universe.

X To develop a methodology for likelihood analysis, update the interval semi-
quantitative in order to remove the existing drawbacks, and to deal with pa-
rameter uncertainty that affect the input data;

X To develop an uncertainty analysis methodology that separately handle aleatory
and epistemic uncertainty in effect analysis using the best suitable represen-
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tation and propagation theories regarding the causes of uncertainty and based
on the only available information;

— To develop a risk identification methodology and risk modeling technique to in-
troduce cyber-security related threats in industrial risk analysis for an exhaustive
representation of risk scenarios;

— To demonstrate the applicability and effectiveness of the developed methodologies
and the utility of the tool by applying them on real case studies.

In this work, we propose a fuzzy semi-quantitative approach to deal with parameter
uncertainty in the likelihood analysis step. We handle the limits of the interval semi-
quantitative approach by introducing the concept of fuzzy numbers instead of intervals.
Fuzzy numbers are used to represent subjectivity in expert judgments and covers uncer-
tainty in the quantitative data if this data exists. This proposed fuzzy-based methodology
contributes to a simpler and effective alternative to the quantitative approach and more
precise to the qualitative approach while keeping the virtue of being based on real accident
frequency data if presented, and with the consideration of uncertainty.

A hybrid methodology to treat the two types of uncertainty separately in severity
analysis is proposed. Probability theory is used to represent variability, fuzzy numbers
are used to represent imprecision and evidence theory is used to represent vagueness,
incompleteness and the lack of consensus. The represented parameters are propagated
using MC simulation and/or fuzzy and evidence calculus depending on the type of the
risk model. A comparison between the proposed methodology and the existing ones is
performed to validate the effectiveness and preciseness of the method. Then guidelines for
choosing the best approach to represent uncertain parameters based on the only available
information is provided. And we proved that the use of an inappropriate approach in an
inappropriate place may lead to under or overestimation of risk and subsequently to a
bad decision.

A new risk identification methodology that considers safety and security together
during industrial risk analysis is developed. This approach combines Bow-Tie Analysis
(BTA), commonly used for safety analysis, with a new extended version of Attack Tree
Analysis (ATA), introduced for security analysis of industrial control systems. The com-
bined use of AT-BT provides an exhaustive representation of risk scenarios in terms of
safety and security.

This research develops an approach for evaluating the likelihood level of safety/security
risk scenarios based on two-term likelihood parts, one for safety and one for security. Two-
term likelihood parts are used because safety and security events are different in nature.
This differentiation helps in identifying the sequences of events (minimal cut sets) that
are purely related to safety, security or to both. The resulting output of different types
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of cut sets offers richer information for decision making.
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1
Introduction

Summary: This chapter presents the overall context of the
thesis. In the first place, we present the motivations and objectives
of conducting this work. Secondly, the main contributions of the
thesis are highlighted. The chapter ends by outlining the structure
of the thesis.
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1.3 Contributions and Methodology . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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Chapter 1. Introduction

1.1 Background

Disaster and major industrial accidents (explosion, dispersion, etc.) in critical facilities
classified SEVESO pose a significant threat to humans and the environment. Managing
risks linked to these facilities is of crucial importance to minimize and prevent the asso-
ciated hazards by implementing the right measures to ensure appropriate preparedness
and that risks are managed according to defined acceptance criteria.

In 1990, the French Government established the INERIS institute as the National
competence center for Industrial Safety and Environmental Protection. INERIS has de-
veloped expertise in the areas of chronic and hazardous risks. After the major accident of
Toulouse and the related consequences as presented in Figure 1.1, the French ministerial
laws paid more attention on industrial major risks and encourage the use of probabilistic
analysis in all regulatory matters. INERIS and based on its expertise has developed a
systematic probabilistic analysis methodology to analyze risks in order to protect people
and the environment from major accidents. This methodology is made up of three steps:

1. risk identification: explore how an undesirable hazard can be developed starting
from causes and ending with the consequences;

2. likelihood analysis: estimate the likelihood of identified risk scenarios;

3. severity analysis: calculate the impact of identified risk scenarios on surrounding
environments in terms of people.

Figure 1.1 – Toulouse chemical factory explosion consequences.

However, due to the uncertainty involved, the credibility of risk analysis results is still
a major issue. Addressing uncertainty during risk analysis has become an important part
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1.1 Background

for a health risk analysis. International regulatory guides and risk management standards
recognize the importance of the identification and treatment of uncertainty that are part of
the risk analysis. The international standardization ISO-31000 defines risk as the effect of
uncertainty on objectives. Regulatory commissions further note in their policy statements
that the "treatment of uncertainty is an important issue for effective decision-makings".
These references provide guidance on this subject to varying degrees. However, they do
not provide explicit methodologies on the treatment of uncertainty regarding the sources
and causes of this uncertainty. Most risk analysis studies struggle with how addressing
uncertainty and yet uncertainty is not systematically treated. An important aspect in
obtaining meaningful risk analysis is knowing what are the sources of uncertainty, the
causes of these sources and the impact of these uncertainties on the analysis predictions.
Capturing uncertainty regarding its sources and causes is vital in order to perform a sound
uncertainty assessment.

Uncertainty in risk analysis has different sources, it can be either parameter, model or
completeness. Parameter uncertainty is generated from the inability of giving precise val-
ues to some input parameters. Parameter uncertainty can be aleatoric caused by natural
variability (randomness associated with the parameters of the model), or epistemic due to
lack of information caused from imprecision, subjectivity, etc. The impact of parameter
uncertainty is gained through quantification. Model uncertainty is due to assumptions
and simplifications made during building risk models. Completeness uncertainty is caused
from omitting some risk contributors intentionally or not. The causes of completeness un-
certainty are characterized in terms of how they affect the assessment (e.g., introduction
of a new type of initiating events, changes in the likelihood representation of events due
to the introduction of initiating events, etc.).

In risk analysis, confidence in the information used for likelihood and severity analyses
is an important issue. Uncertainty can occur in the input parameters of the likelihood
or effect mathematical models (the frequency of occurrence value of an initiating event
for example). This parameter uncertainty can result in risk under or overestimation and
then to a inappropriate decision. Consequently, most of today’s risk analysis only con-
sider safety related risk causes generated from accidental component failures and human
errors. However, introducing technology and connected systems into critical facilities has
generated new type of risk causes that are related to cyber-security. Security threats that
may lead to major accidents are not yet considered during industrial risk management.
This result in completeness uncertainty that should be addressed (cyber-security related
risk are omitted). Thus, initiation of work to modify the analysis to be up-to-date and
meet the today’s safety needs is necessary. For these reasons, this work aims to analyze:

— parameter uncertainty in quantifying the likelihood and severity of the identified
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Chapter 1. Introduction

risk scenarios;

— the effect of neglecting or not considering exhaustively all kind of risk scenarios.

The methodology for treatment of uncertainties in this study is intended to provide a
reasonable process to support the decision making. It should be noted that the treatment
of uncertainty methodology contained in this report can be followed to treat uncertainty
in any field.

The following chapter will give a background to the motivation behind the research,
as well as the gap that presented the research opportunity. It then highlights the key
contributions, and follows up with an overview of the thesis outline.

1.2 Motivations and objectives

The output of risk analysis used for decision making may be inaccurate due to param-
eter uncertainty that affect the inputs used for conducting the analysis. Assess parameter
uncertainty is inevitable to conduct a valuable risk analysis and make the right decision.
Addressing parameter uncertainty is achieved by: (i) representing the uncertain input
data, and (ii) propagating these uncertain data after being represented through the risk
model to obtain representations of uncertainty for the outputs.

However, existing risk analysis frameworks developed for decision making do not ad-
dress parameter uncertainty correctly in a proper way. Existing approaches to address
parameter uncertainty are either probabilistic, no probabilistic or a mix of both. As
we mentioned before, parameter uncertainty can be aleatory or epistemic. The litera-
ture review on uncertainty modeling acknowledge a hybrid or mix (probabilistic non-
probabilistic) approach to address these two types of parameter uncertainty separately
in a single framework. However, several hybrid approaches have been proposed by sev-
eral authors in the literature, but these mixed approaches suffer from some limitations
regarding the mathematical theories used for representing of available data as well as the
propagation of these data after being represented. In addition, there is no guideline to se-
lect a proper parameter uncertainty analysis techniques according to the types and causes
of parameter uncertainty, and in respecting to models used in the analysis for propagation
of represented uncertain data.

On the other hand, today critical facilities replace mechanical devices and closed sys-
tems by digital devices and interconnect systems. The introduction of technology and
connected systems by embedding sensing, computing, and communication into critical
facilities creates new and challenging threats to safety that are related to cyber-security.
These threats may lead to major accidents that affect human lives and the environment.

Yet, cyber-security related threats are not considered during industrial risk analysis.
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1.2 Motivations and objectives

Safety and security are assessed separately when they should not be. Security experts
interest only on CIA (confidentiality, integrity and availability) when analyzing security
for critical facilities. Likewise, many risk assessors, do not automatically think about
how a hacker might exploit plant designs to harm people or cause physical damage (so-
called adversarial thinking). For these reasons, risk analysis for critical facilities requires
expansive thinking about security that affect safety. Research that bridges this divide for
a complete risk analysis is necessary as critical facility becomes increasingly dependent
on cyber-control systems. Thus, finding ways how safety and security measures can be
leveraged together to improve the overall security and safety of such systems and facilities
would be valuable.

This thesis is motivated by the need to study the unreliable treatment of parameter
uncertainty on the risk analysis results, and the impact of no-considering cyber-security.
Diagram 1.2 shows how this research approached key questions regarding quantifying
parameter uncertainty and not considering cyber-security during industrial risk analysis.

RESEARCH DOMAIN

RISK EVALUATION

Main questions Main questions

Parameter uncertainty Completeness uncertainty

Q.U.1 - What are the types and 
causes of uncertainty that affect the 

result of a risk analysis? 

Q.U.2 - How these types can be 
represented regarding the causes of 

uncertainty and based on the 
available information? 

Q.S.1 - How cyber-security risks that 
may lead to major accident can be 
introduced and modeled within a 

safety risk scenario?

Q.S.2 – How security-related events 
can be represented?

Q.S.4 - How the risk level is 
determined after cyber security 
related risks being introduced?

Q.S.5 - How decision can be made 
considering safety and security 

together? 

Q.S.3 – How probability analysis can 
be performed? and how security 

related events can be characterized 
in terms of frequency?

Q.U.3 - How uncertainty can be 
propagated through the probability 

and effect models?

Q.U.5 - How decision can be made in 
an uncertain universe?  

Q.U.4 - How risk level can be 
determined regarding uncertainty?

Detailed risk analysis

LIKELIHOOD ANALYSIS

SEVERITY ANALYSIS:
Based on effect analysis 

and the number of 
affected people

RISK REPRESENTATION

Preparation for detailed risk 
analysis

Figure 1.2 – Research overview and main questions.

The objective of this thesis is to provide technical guidance for establishing the level of
confidence that can be placed in a decision based on the analysis of risk by: (i) providing
a guideline on modeling and quantifying data uncertainty to help risk assessors choose
the most accurate and suitable representation of the available data, (i) developing a
risk evaluation method that can analyze and demonstrate causal relationships in high
safety/security risk scenarios. Achieving these goals will provide an exhaustive and global
industrial safety/security risk analysis framework that consider uncertainties for more
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effective decision-making.
The specific aims of this research include:

— assessing data or parameter uncertainty during likelihood and effect analyses
X examine the causes of parameter uncertainty in both likelihood and severity

analyses;

X review the mathematical representations of uncertain knowledge presented in
the literature;

X propose robust approaches to handle parameter uncertainty in likelihood and
effect analyses by providing the most suitable representation to each cause of
parameter uncertainty.

— Handling completeness uncertainty by considering cyber-security during risk anal-
ysis
X propose a new global definition of risk that covers safety and security;

X develop an identification and representation method of a safety/security risk
scenario;

X develop a likelihood analysis methodology to quantify the likelihood a safe-
ty/security risk scenario with the consideration of the difference in frequency
of occurrence between safety and security related events;

X provide a global safety/security likelihood levels to be used for decision making.
— provides guidance on how to treat uncertainties associated with industrial risk anal-

ysis used for decision making. Perform uncertainty analyses on real case studies
to understand the impact of the uncertainties on the risk analysis results, and to
provide examples that help risk assessors in analyzing risks under uncertain envi-
ronment.

1.3 Contributions and Methodology

In this work, a global industrial risk analysis methodology that address parameter and
completeness uncertainties is developed. Diagram 1.3 shows the proposed hierarchy to
answer the key research questions and achieve the objectives. The diagram shows at a
macro level how parameter uncertainty is treated, and how cyber-security related risks
are introduced (completeness uncertainty). Taken together, the proposed methodology
allow us to answer the oriented questions posed in the previous section as depicted in
Diagram 1.3.

To provide a sound parameter uncertainty assessment, in this study, the most com-
monly used approaches to deal with parameter uncertainty: interval analysis, fuzzy theory,
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1.3 Contributions and Methodology

Proposed methodology and conducted 
work 

Handling parameter uncertainty Handling completeness uncertainty

A.U.1 – Study and discover the types 
of uncertainties that may affect the 

inputs for probability and effect 
analyses 

A.U.2 – Represent variability using 
probability theory and epistemic 
uncertainty using either fuzzy or 

evidence theory depending on the 
causes of uncertainty

A.S.1 – Combine attack trees used 
for security analysis within bow-tie 

trees used for safety analysis

A.S.2 – A security event is 
represented in terms of double: 

vulnerabilities and attacks

A.S.2 – The likelihood level in 
represented in terms of couple 

(security, safety), which is translated 
on a global likelihood level

A.S.2 – Minimal cut sets are 
determined to help taking the right 

decision 

A.S.2 – A new method to quantify 
the probability of a security event is 

introduced regarding the 
exploitability level and the difficult 

of conducting the attachA.U.3 – Propagating input data after 
being represented using MC or/and 
fuzzy calculus or/and depending on 

the risk model

A.U.3 and A.U.4 – A guideline on 
how probability and effect levels can 
be determined and how decision can 

be made is provided RISK EVALUATION

Detailed risk analysis

PROBABILITY ANALYSIS

SEVERITY ANALYSIS:
Based on effect analysis 

and the number of 
affected people

RISK REPRESENTATION

Preparation for detailed risk 
analysis

Figure 1.3 – The research methodology this work provides.

probability theory, evidence theory, and the mixed probabilistic-fuzzy approach are re-
viewed. The drawbacks of these approaches in dealing with certain causes of parameter
uncertainty are identified. Then, an uncertainty analysis guidance is concluded to help
risk assessors in determining the best representation method for the input parameters re-
garding the type of available information (cause of parameter uncertainty) as presented in
Figure 1.4. Based on this guideline, new uncertainty analysis methodology is developed.
In this methodology, randomness (probability theory), possibility (fuzzy numbers) and be-
lief (evidence theory) are combined to treat the different causes of parameter uncertainty
separately with the right mathematical theory. Coupled with completeness uncertainty,
a new definition of risk is introduced where a risk scenario now covers safety and security
sequences of events. The bow-tie analysis used to model safety related risks scenarios
is combined with an extended version of the attack tree analysis that is introduced for
security analysis to result in a cyber-bow-tie analysis. In sum, we are able to logically
support answers to the following key questions:

1. How parameter uncertainty can be best addressed and based on the available infor-
mation?

2. How safety and security related risk that can lead to major accidents can be analyzed
together?

3. How should risk management efforts be allocated by implementing safety and secu-
rity measures that work together so as to more effectively mitigate the probability
and impacts of accidents?
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Variability 
(randomness) 

• Subjectivity or 
vagueness

• Imprecision 
• Ignorance

Total uncertainty

Aleatory 
uncertainty

Epistemic 
uncertainty

Probability 
distributions

Fuzzy numbers

Dempster – Shafer theory 
of evidence with fuzzy 

focal elements

Fuzzy Random 
variables

mixture

Lack of consensus 
between multiple sources 

of information

Figure 1.4 – The most suitable theories to represent uncertain input parameters regarding the
causes of parameter uncertainty that affect each parameter.

1.4 Thesis outline

Chapter 1 is an introductory chapter on motivation behind the research, its approach,
analysis contributions, and an outline for the following thesis.

Chapter 2 precises the context of the study. risk analysis for critical facilities is
detailed. Then, the major problem (uncertainty) from what today’s industrial risk analysis
methodologies suffer is highlighted. The main sources of uncertainty: (i) completeness,
(ii) model and (iii) parameter uncertainties that might affect an assessment are exhibited.
The causes of each source of uncertainty are discussed. Then, an overview on the steps
behind dealing with the presented uncertainty sources is presented. At the end, we identify
at which stages and where these uncertainties affect the risk analysis process.

Chapter 3 presents a state of the art review on two major fields: (i) literature review
on parameter uncertainty analysis and representing, propagating of uncertain knowledge.
These most common approaches used to characterize parameter uncertainty in model
inputs obtained from different sources, such as statistical data and expert judgments are
detailed. An overview on interval analysis, fuzzy theory, probability theory, evidence
theory, and the mixed probabilistic-fuzzy approach is given. (ii) cyber-security for critical

14



1.4 Thesis outline

facilities and industrial control system. This in order to treat the know completeness
uncertainty. The definition of security related risks is provided, and an exhaustive review
on the different threats and vulnerabilities on control systems are highlighted. This review
will pave the way to handle the known completeness uncertainty by introducing cyber-
security within industrial risk analysis.

In Chapter 4, we propose a new fuzzy semi-quantitative methodology to handle param-
eter uncertainty during likelihood analysis. A semi-quantitative approach was proposed
by the INERIS for likelihood analysis as an alternative to the drawbacks existed in the
pure quantitative or qualitative approach. This semi-quantitative approach uses interval
analysis to characterize input parameters. However, interval analysis may lead to likeli-
hood underestimation in some cases due to parameter uncertainty. Thus, fuzzy theory
is introduced as an alternative to interval theory to deal with parameter uncertainty due
to imprecision of recorded data and subjectivity of expert elicitation. The qualitative
approach proposed in chapter 4 for safety/security likelihood analysis using ATBT is
replaced by the fuzzy semi-quantitative to dispose the shortcomings of the qualitative
approach. The application of the proposed approach is demonstrated using a case study
that cover safety and security.

In Chapter 5, we take a deeper look at parameter uncertainty that affects the ef-
fect analysis of risk scenarios. A fuzzy-probabilistic approach is proposed to deal with
two causes of parameter uncertainty: imprecision and randomness. Then a comparison
between the proposed approach and the existing approaches for uncertainty analysis is
done by the application of these approaches to a loss of containment scenario (LOC),
representing one of the most likely situations to occur in industry. The overall aim is to
compare the different approaches, and to identify which mathematical theories should be
used to represent uncertainty regarding the available information. Indeed, the existing
uncertainty quantification approaches can lead to different representations of uncertainty
in the outputs and hence to different decisions. We prove that the use of an inappropriate
approach in an inappropriate place may lead to under or overestimation of risk and sub-
sequently to a bad decision. Based on this comparison, a global methodology that mixes
probability theory, fuzzy numbers and Dempster-Shafer theory of evidence is proposed to
treat each cause of parameter uncertainty with the best suitable theory.

Chapter 6 addresses one aspect of completeness uncertainty which is known. A new
methodology to introduce cyber-security related risks within industrial risk analysis is
proposed. This approach combines Bow-Tie Analysis, commonly used for safety analysis,
with a new extended version of Attack Tree Analysis, introduced for security analysis
of industrial control systems. The combined use of bow-tie and attack tree provides an
exhaustive representation of risk scenarios in terms of safety and security. The difference
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in nature between safety and security initiating event causes some obstacles for likelihood
analysis. For these reasons, we propose an approach for evaluating the safety/security
likelihood level based on two-term likelihood parts, one for safety and one for security.
The likelihood analysis approach presented in this chapter is qualitative. The aim is to
show how can separately characterize safety and security events in order to evaluate safe-
ty/security scenarios in terms of likelihood. The shortcomings of this approach are listed
and discussed. The end of this chapter, the application of this approach is demonstrated
using the case study of a risk scenario in a chemical facility.

The end of this document is a summary of the initial objectives, the proposed method-
ologies and main contributions, the key findings and lessons of the thesis with conclusions
and proposes work for future research.
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2
Context & problematic

Summary: In this chapter, we present the context of the
risk analysis process used by the INERIS. The different steps the
INERIS follows to analyze riks for critical facilities are detailed
(Section 2.2).

Moreover, the major problem that faces the risk analysis pre-
diction is introduced. The different sources, types and causes of
uncertainties are presented (Section 2.3). Why uncertainty should
be considered during risk analysis (Section 2.4) and the different
steps to deal with these uncertainties are discussed (Section 2.5).
Then, where these uncertainties affect the INERIS’s risk analysis
process is discovered (Section 2.6).
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2.1 Introduction

2.1 Introduction

The French regulation introduces the obligation for SEVESO critical facilities to carry
out a compulsory hazard analysis and to update it every five years. The hazard analy-
sis has to identify all known and possible major accident scenarios, together with their
prevention and mitigation barriers. This analysis must present the probability and the
possible consequences of each identified major accident. The INERIS provides this service
by a team of risk experts that follow a systematic methodology based on the INERIS ex-
pertise. In the current Chapter, the INERIS risk analysis methodology used for SEVESO
critical facilities is described as presented in Section 2.2.

In Section 2.3, the major problem of the hazard analysis process (uncertainty) is
presented. The different sources of uncertainty: parameter, model and completeness
uncertainties are detailed.

— parameter uncertainty: relates to the uncertainty in the computation of the input
parameter values for conducting the assessment such as initiating event frequencies,
etc,.

— model uncertainty: relates to the uncertainty in the assumptions made in order to
build the models used in the assessment.

— completeness uncertainty: relates to contributions to risk that have been excluded
from the assessment intentionally or not.

To illustrate the effects of uncertainties and why uncertainties should be considered
during risk assessment, two different illustrative examples are given in Section 2.4. The
first example is a real major accident that happened from not being open about uncer-
tainty. The second example is about conclusions extracted from the European benchmark
study ASSURANCE on the effect of uncertainty on the risk analysis prediction.

Uncertainties affect the risk assessment process at different phases. Section 2.6 identi-
fies the sources of uncertainty that affect each phase in the INERIS risk analysis process.
Parameter uncertainty affects likelihood analysis due to some limits in the interval semi-
quantitative approach. The effect analysis step suffers from parameter uncertainty due
to the lack of information regarding values of some input parameters and the natural
variability of others. Completeness uncertainty affects the identification phase as well as
the likelihood analysis phase due to non-consideration of cyber-security related threats.

Section 2.7 draws some conclusions and summarizes the Chapter.
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2.2 Understanding hazard analysis for critical facili-
ties in France - The INERIS methodology

In the French regulatory framework industrial activities are classified according to
their potential hazard. For high hazard facilities (also called ‘AS’ or ‘Upper tier Seveso
establishments’), a hazard analysis is compulsory. Hazard analysis aims to demonstrate
the public safety and it represents a tool for the inspection by the authorities. The results
of the hazard analysis are used for the permit to operate and definition of the requirements
for risk reduction on site.

In this section, we will present the different steps of conducting a systematic hazard
analysis of high hazard facilities. Figure 2.1 presents the steps for assessing risks of critical
industries in France as proposed by the INERIS [90].

— context establishment: aims to define the objectives of the risk management (what
should be protected) and the decision criteria (when a risk is acceptable and when
it is not);

— risk analysis: this step is the most substantial part of the hazard analysis process
for decision making. It aims to analyze in details risk scenarios that may have
effects outside the facility being studied. It involves the identification of mechanisms
that lead to failure of equipment and loss of containment (central events), and the
identification of consequence effects that may follow the loss of containment. In the
INERIS method, the working group identifies the central events to be used in the
risk analysis. INERIS then aims to find an exhaustive list of causes for the central
events defined. The main sub-steps of this step are as follows:

X risk identification: risk identification is the step of modeling risk scenarios
(undesirable events) that could potentially harm people and the environment.
A risk scenario is modeled as a sequence of events starting from the causes of the
undesirable event ending by the related consequences (dangerous phenomena).
This step is detailed in Section 2.2.1.

X likelihood analysis: aims to calculate the probability of occurrence of the iden-
tified risk scenarios. More details are given in Section 2.2.2.

X severity analysis: combination of dangerous phenomena effect intensity and
the vulnerability of people potentially exposed at a given point. This step is
more detailed in Section 2.2.3.

— decision making: the results of likelihood and severity analyses are mapped in a risk
matrix to give a level of risk to each risk scenario. This matrix allows the authorities
to assess the acceptability of risks generated by a facility in a given environment.
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If the risk matrix is acceptable, the facility is considered to be compatible with its
environment and a permit to operate will be given. If not, unacceptable risks should
be treated and residual risks are then evaluated. Or the permission is withdrew or
refused. More details on conducting this step are given in Section 2.2.4.

CONTEXT ESTABLISHMENT

RISK ANALYSIS in a work team

RISK EVALUATION: 
positioning of major 

accidents in the risk matrix

Detailed risk analysis

PROBABILITY ANALYSIS

Quantifying the severity 
of consequences:

EFFECT ANALYSIS  + 
NUMBER OF PEOPLE 

AFFECTED

TECHNICAL REPORT

D
EC

IS
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N
-M
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K

IN
G

Add safety barriers 
and re-evaluate

residual risks

If risk matrix is 
not acceptable

Exhaustive determining of 
possible risk scenarios

Select risk scenarios that 
have external effects

RISK REPRESENTATION

Figure 2.1 – The hazard analysis process for high hazard critical facilities.

Risk analysis is the most critical step in the hazard study process. This step represents
a challenging problem due to uncertainty. In order to highlight this problem, the rest of
this section details the different steps of a detailed risk analysis. The representation of
risk scenarios, likelihood analysis and severity analysis are presented.

2.2.1 Representation of risk scenarios

This step aims to model each risk scenario from its root causes via central event
to related consequences. In the methodology used by INERIS, the representation of
accident scenarios is usually realized through a modeling methodology such as bow-tie
analysis. Bow-tie analysis is a very prominent method to identify and model risk scenarios
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[55]. It presents a combination between fault tree analysis (FTA) and event tree analysis
(ETA). FTA and ETA respectively describe the relationship between the undesirable
event (the main event of a risk scenario), its causes and its consequences for a systematic
representation of hazard ([136]; [53]).

To identify and represent risk scenarios, a working group will be created. It could,
for example, consist of the plant safety manager, several operators and risk experts. This
working group will identify the following elements of each accident scenario:

— The undesirable central event (UCE) or main event to be considered;

— The initiating events (root causes) lying underneath the undesirable central event.
Typical root causes are seal failure, operator errors, falling objects, etc.;

— The secondary events such as ignition after the UCE;

— The consequence events (dangerous phenomena) and the associated major accidents
of the central events;

— The safety barriers which may prevent the occurrence of the accident. Preven-
tion (before the central event) and protection (after the central event) barriers are
considered if they meet the following requirements:

X independence regarding the occurrence of the event they prevent;

X effectiveness;

X response time adapted to the kinetic of the accident they prevent;

X maintainable;

X testable.

When a mitigation barrier is identified in an accident scenario, both the scenario
describing the consequences following the function and the malfunction of the safety
barrier need to be taken into account.

These risk contributors are then connected together to construct the bow-tie. Figure
2.2 presents a schematic diagram of the bow-tie analysis and how the risk contributors
listed below are connected using AND or OR gates. If any of the root causes can cause
the intermediate event, an OR operator is used. If multiple root causes are required for
the occurrence of the intermediate event, an AND operator is used. The definition of each
term is detailed in Table 2.1.

Once the identification process is realized, the scenarios’ likelihoods can be calculated.
Bow-tie analysis and in addition of being a tool for representing a risk scenario, it implicitly
provides a likelihood analysis methodology. This methodology aims to propagate the
frequency or probability of initiating events after being characterized through the bow-tie
in order to calculate the probability of dangerous phenomena.
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Figure 2.2 – Elements of a “Bow-Tie” diagram.

In France, probability analysis can be qualitative, quantitative or semi-quantitative.
Quantitative information to perform a precise likelihood analysis is often missing due to
time and financial constraints. On the other hand, quantitative information, if available,
is lost by using a qualitative probability analysis. For these reasons, the INERIS has
developed an interval semi-quantitative approach as a solution to handle these issues. In
the next section, a brief details on likelihood analysis using bow-tie based on the interval
semi-quantitative approach is provided.

2.2.2 Probability analysis using bow-tie based on the interval
semi-quantitative approach

Evaluating probability of an accident using bow-tie analysis is performed by: (i) char-
acterizing input data, (ii) propagating these characterized inputs through the bow-tie anal-
ysis. Characterizing input data aims to qualitatively, quantitatively or semi-quantitatively
represent the information provided either by experts or derived from historical data, with
the consideration of uncertainty. Propagating the characterized inputs through the bow-
tie aims to calculate the probability of ERC, PhDs (dangerous phenomena) and AMs.
This is done by solving the AND and OR gates, considering the occurrence of secondary
events and the existence of risk barriers. The interval semi-quantitative approach uses
frequency classes instead of probability to characterize inputs and outputs for probability
analysis, section 2.2.2.3 shows the translation of frequency classes obtained after conduct-
ing the interval semi-quantitative approach into probability levels outlined by the French
ministerial laws.
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Abbreviation Signification Definition

IE Initiative event
Direct cause of a loss of containment or physical 

integrity

E Event
Physical integrity caused by the occurrence basic 

events

UCE Undesirable central event
The unwanted event such as a loss of containment, 

etc.  

SE Secondary event
Characterize the source term of an accident, event 

such as ignition occur after the UCE

DF Dangerous phenomenon
Physical phenomena that can cause major accidents, 

explosion, dispersion, fire

ME Major Effect
Damages caused by the effects of an PhD on people, 

environment or goods

Safety barrier
Measures taken place to reduce the probability of 

undesirable event and the effects of accidents

AND, OR gates Describe the relationships between events

Tableau 2.1 – Abbreviations, significations and definitions of elements listed in the Bow-Tie
diagram.

2.2.2.1 characterizing input data

The interval semi-quantitative approach characterizes the relevant input data on a
scale of different classes characterized by probability or frequency ranges. For probability
analysis using bow-tie based on the semi-quantitative approach, three types of nodes
should be characterized:

— basic events - in terms of annual frequency of occurrence (Section 2.2.2.1.1);

— secondary events - in terms of conditional probability of occurrence after the occur-
rence of ERC (Section 2.2.2.1.2);

— risk barriers - in terms of confidence levels (CL). A CL depends on the probability
of failure for each risk barrier (Section 2.2.2.1.3).

Before starting, it should be noted that there is a difference between probability and
frequency. But in a simplified manner, these two notions of probability and frequency
coincide when frequencies are low (less than 1 time every 10 years) [40].

2.2.2.1.1 Characterizing frequencies of basic events

The interval semi-quantitative scale used by INERIS to characterize the input data is
presented in Table 2.2. A class of frequency in terms of an interval is given to each basic
event as input. Each class is considered to cover a broad range of occurrence frequencies.
Giving a frequency class to an input event is based on the process of asking experts, or
by translating the quantitative data into a class. A class is linguistically elicited from
experts since they prefer linguistic judgments rather than precise value. The translation

24



2.2 Understanding hazard analysis for critical facilities in France - The INERIS
methodology

of a quantitative value into a class is performed based on Equation 2.1 below:

Class(f) = −Ent(log(f))− 1. (2.1)

where, Ent is the integer part, log is the logarithm base 10 and f is the frequency
value of the event under translation (e.g. an event with a frequency equals 4× 10−4 is of
class F3).

F-2 10+1/year ≤ frequency ≤ 10+2/year 10 to 100 times/year
F-1 100/year ≤ frequency ≤ 10+1/year 1 to 10 times/year
F0 10−1/year ≤ frequency ≤ 100/year 1 time every 1 to 10 years
F1 10−2/year ≤ frequency ≤ 10−1/year 1 time every 10 to 100 years
FX 10−(X+1)/year ≤ frequency ≤ 10−X/year

Tableau 2.2 – Determining the frequency classes based on the semi-quantitative approach.

2.2.2.1.2 Characterizing the occurrence probabilities of secondary events
(ESs)

INERIS has proposed a semi-quantitative method to evaluate the occurrence proba-
bility of secondary events [65]. The probability of failure of an SE based on this semi-
quantitative approach can be equal to 1 for a conservative analysis, or a factor of 10
inspired from (i) databases after being rounded-up to sub power of 10 or (ii) from expert
opinions. For example, it can be 10−1 for a leakage of a product which the expert judges
to be low flammable, 10−2 for less flammable material.

The different probability values used to characterize the probability of ESs are pre-
sented in Table 2.3.

Probability values 𝟏𝟎−𝟑 𝟏𝟎−𝟐 𝟏𝟎−𝟏 1

Probability Class P3 P2 P1 P0

Tableau 2.3 – Representative values of the probability of failure of ESs.

2.2.2.1.3 Characterizing probability of failures for risk barriers in terms of
Confidence Level - CL

Because little feedback from industrial sites is available, there is insufficient data to cal-
culate the failure probabilities of risk barriers. To compensate for this weakness, INERIS
has proposed a semi-quantitative approach to give a confidence level for a risk barrier
based on norms ISO IEC 61508 and 61511 ([85]; [36]). These norms provide principles
that allow attributing CLs for the safety instrumented systems. INERIS has expanded
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these principles to cover the whole type of industrial risk barriers. The CL shall be de-
rived by taking into account the required risk reduction that is provided by the risk barrier
(see [87] for more guidance) or probability of failure data if existed. Table 2.4 presents
how CLs can be determined based on either the average probability of failure on demand
(PFDavg) or the risk reduction (RR). This CL will be used in calculating the output
frequency classes of ERC, PhDs and EMs.

Confidence level (CL)
Average probability of failure 

on demand (𝑃𝐹𝐷𝑎𝑣𝑔)
Risk reduction (𝑅𝑅)

4 10−5 ≤ 𝑃𝐹𝐷𝑎𝑣𝑔 < 10−4 10 000 < 𝑅𝑅 ≤ 100 000

3 10−4 ≤ 𝑃𝐹𝐷𝑎𝑣𝑔 < 10−3 1 000 < 𝑅𝑅 ≤ 10 000

2 10−3 ≤ 𝑃𝐹𝐷𝑎𝑣𝑔 < 10−2 100 < 𝑅𝑅 ≤ 1 000

1 10−2 ≤ 𝑃𝐹𝐷𝑎𝑣𝑔 < 10−1 10 < 𝑅𝑅 ≤ 100

0 10−1 ≤ 𝑃𝐹𝐷𝑎𝑣𝑔 < 1 1 < 𝑅𝑅 ≤ 10

Tableau 2.4 – Confidence Level: probability of failure on demand.

2.2.2.2 propagating input data

After characterized the inputs for probability analysis, these characterizations are then
propagated through the bow-tie in order to give occurrence frequency classes for ERC,
PhDs and AMs [86]. Only the propagation rules for the AND and OR gates (Eqs 2.2
et 2.3, respectively) based on the interval semi-quantitative approach are described in
section to be used in the next section. The other roles will be described in details in
Chapter 5.

— In the case of OR gate, the frequency class of the intermediate event is equal to the
minimum frequency class of the root causes as presented in Eq 2.2. The minimum
operator is used here conversely to the usual because the used scale is exponential;

Class(ORoutput) = min[Class(EI1), ..., Class(EIn)] (2.2)

— In the case of AND gate, the frequency class of the intermediate event is equal to the
maximum of the frequency classes of the input root causes. The output frequency
class of an AND gate with n input is as calculated below:

Class(ANDoutput) = max[Class(EI1), ..., Class(EIn)] (2.3)
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Finally, after the end of the propagation process, a frequency class is given to each of
the ERC, PhDs and AMs.

2.2.2.3 Final probability

In France, the ministerial laws precise that the probability of dangerous phenomena
should be determined regarding the scale presented in Table 2.5

Qualitative 
scale

Level Designation
Quantitative 

meaning

E Very unlikely event: event that is practically 
impossible, very low chance of occurrence

D
Unlikely event: Low chance of occurrence, already 
happened but the presence of risk measures reduce 

the probability of occurrence

C Moderate event: similar events have already been 
seen in the activity sector

B Likely event: already occurred or may occur during 
operational life of the installation

A Very likely event: can frequently occur (several 
times) during operational life

10−5

10−4

10−3

10−2

Li
ke

lih
o

o
d

Tableau 2.5 – Probability of occurrence scale extracted from the French ministerial order of
29/09/2005 related to the evaluation of risk.

In the interval semi-quantitative approach, annual frequency classes are given to the
outputs (ERC, PhDs and EMs). These frequency classes are translated into probability
level as follows:

— if the frequency class is greater than zero (frequency is less 1 time/year), then the
approximations of frequency classes in terms of probability levels is as presented in
Table 2.6. Level E is given to any frequency classes less than 5.

Quantitative 
scale

Frequency 
classes

F5 F4 F3 F2 F1

Probability
levels

𝑬 𝑫 𝑪 𝑩 𝑨

10−210−310−410−5

Tableau 2.6 – Transforming of frequency classes into probability levels.

— if the frequency class is less than zero (for example, an event may occur two times
a month and it is class of frequency is F-2), then the probability level can not
be assimilated to the frequency class. In this case, the level is approximated as:
level(probability) = [10−1, 1] which is of level A.
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2.2.3 Severity analysis

In the French regulatory context, the severity of risks are determined regarding the in-
tensity of effects of dangerous phenomena and the number of persons exposed. Dangerous
phenomena may have three types of effects: thermal, toxic and over-pressure. Different
levels of intensity are attached to each type of effect as presented in Table 2.7. Three
levels are distinguished to classify the intensity of dangerous phenomena:

— significant lethal effect (about 5% probability of fatality);

— lethal effect (about 1% probability of fatality);

— irreversible effect (irreversible health effects).

TYPES of effects

Thermic Toxic Over-pressureThreshold effects 
on human

LETHAL 

SIGNIFICANT 

(SELS)

LETHAL (SEL)

IRREVERSIBLE (SEI)

INDIRECT

(broken windows)

8kW/m²
ou

(1 800 kW/m2)4/3.s
200 mbarCL 5%

5kW/m²
ou

(1 000 kW/m2)4/3.s
140 mbarCL 1%

3kW/m²
ou

(600 kW/m2)4/3.s
50 mbar

20 mbar

SEI

Tableau 2.7 – French end-point values for the intensity of thermal radiation, toxic and over-
pressure effects.

The INERIS uses complex mathematical models to perform effect analyses for the
identified risk scenarios. These models are representations of phenomena being studied.
The aim of effect analysis is to determine the distances of affected zones (distance mod-
eling) by the defined types of effect. The used mathematical models depend on large
number of input parameters, such of these parameters are:

— occurrence conditions of the phenomenon under study: the term sources by defining
for example the size of the crack, temperature, pressure, etc.

— conditions related to the environment: meteorological data such as the stability
classes;

— etc.

Values of input parameters to perform effect analyses are determined based on exper-
imental or statistical data. However, if experimental data is not available, the INERIS is
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based on the state of the art and the experience of its experts to set the values of input
parameters used for effect analysis.

Finally, the severity of a given potential major accident is deduced from the number
of persons exposed to the pre-defined levels of intensity as presented in Table 2.8.

DESASTROUS

CATASTROPHIC

SERIOUS

MODERATE

IMPORTANT

LETHAL 
SIGNIFICANT (SELS) LETHAL (SEL) IRREVERSIBLES (SEI)

> 10

1 à 10

1

0

10 à 100

1 à 10

1

100 à 1000

10 à 100

1 à10

< 10 0

> 100 > 1000

Affected area (Intensity)

S
e

v
e

ri
ty

Resulting severity 
class

Tableau 2.8 – French scale for the classification of the severity of a potential accident.

2.2.4 Decision-Risk matrix

Probabilities of major accidents and their severity of consequences are introduced in a
decision tool called risk matrix. This matrix allows the authorities to assess the societal
acceptability of the risk generated by a facility in a given environment. If the risk matrix
is acceptable, the facility is considered to be compatible with its environment. Table 2.9
is the risk matrix used by the French authorities to asses this compatibility. Each major
accident identified during the risk analysis and based on its probability range (Table 2.5)
and its severity class (Table 2.8) is mapped on one of the cells in Table 4. Once all
identified accidents are characterized with regard to this matrix, the overall acceptability
of the matrix, and thereby the overall acceptability of the permit of the facility, is assessed.

This risk matrix consists of three areas:

— an acceptable area (in white): if all identified scenarios are in the acceptable area,
the permit to operate is granted;

— an unacceptable area (in red): if one or more scenarios are in the unacceptable area,
the permit to operate is not granted (risk measures need to be set) or withdrawn
(if risks are really high);

— an ’ALARP’ (As Low As Reasonably Practicable) area (in yellow): for each accident
scenario in this area, continuous improvement of the safety is asked to operators.
There are two specific cases among the ALARP areas:
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probability
VERY LOW

E

LOW

D

AVERAGE

C

HIGH

B

VERY HIGH

Agravity

DISASTROUS

CATASTROPHIC

IMPORTANT

SERIOUS

MODERATE

UnacceptableRisk to be reducedAcceptable

ALARP class 
2

ALARP 

ALARP class 
2

ALARP class 
2

ALARP class 
2

ALARP class 
2

ALARP 

ALARP 

Tableau 2.9 – French risk matrix.

X the area disastrous/E (upper left box): If an accident scenario is in this area, a
distinction is made between new and existing facilities. For a new facility the
situation is acceptable if and only if this scenario has at least one barrier, and
if this barrier was not considered, the remaining frequency would still be E.
For an existing facility, ALARP class 2 conditions is applied for the scenarios
in this box;

X ALARP class 2: The total number of accidents in the ALARP 2 boxes of the
diagram must be five or lower. If there are more than five accident scenarios,
additional technical barriers must be installed in such a way that the amount
of ALARP class 2 accident scenarios reduces to five (or less). More than five
ALARP class 2 accidents scenarios are acceptable if and only if:

� all these ALARP class 2 accident scenarios have probability class E;

� all these ALARP class 2 accident scenarios have at least one barrier;

� if this barrier was not considered, the remaining frequency would still be E
(for each of these ALARP class 2 accident scenarios). All other situations
with more than five ALARP class 2 accident scenarios are unacceptable.

If a facility generates a risk that is considered as unacceptable, the operator has the
responsibility, on its own funds, to improve the safety in the establishment and to install
additional safety measures. The safety must be improved until the situation becomes
acceptable or ALARP. If the situation is ALARP, the operator must prove in the risk
analysis that all risk reducing measures at an acceptable cost have been implemented.
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2.3 Introducing uncertainty in industrial risk analy-
sis: the different sources of uncertainty

Uncertainty is a measure of the “goodness” of an estimate. Without such a measure,
it is impossible to judge how closely the estimated value relates to or represents reality.
However, to help understand the concept of uncertainty, and to be able to treat uncertainty
in a structured manner, this Section presents a detailed summary on sources of uncertainty
and their related causes. Uncertainty in risk analysis has three main sources presented as
follows [47]:

— parameter uncertainty: is the uncertainty in the values of the parameters of a model
given that the mathematical form of that model has been agreed to be appropriate.
Detailed definition of parameter uncertainty, its types and causes are given in Section
2.3.1;

— model uncertainty: is related to an issue for which no consensus approach or model
exists and where the choice of approach or model is known to have an effect on the
risk analysis prediction. See Section 2.3.2 for further details;

— completeness uncertainty: relates to risk contributors that are not considered in the
analysis. Section 2.3.3 highlights the different causes of completeness uncertainty.

2.3.1 Parameter uncertainty

Parameter uncertainty relates to the uncertainty in the computation of the input pa-
rameter values used to quantify the likelihood and severity of a risk scenario[47]. Examples
of such parameters are initiating event frequencies, failure probabilities, and wind speed
(used in effect analysis of risk). This uncertainty arises from the inability to set exact
values for these input parameters ([33]; [170]; [53]). Where some of these parameters
vary randomly while others are imprecisely known due to measurement errors, lack of
knowledge or other causes. This results in two different types of parameter uncertainty:
aleatoric and epistemic.

However, misunderstandings and conflicts are presented by confusing the “causes of
parameter uncertainty” with the “types of parameter uncertainty”. Types of parameter
uncertainty are an upper level in the hierarchy of defining parameter uncertainty compar-
ing to the causes of parameter uncertainty. In other words, type is determined regarding
the causes of parameter uncertainty, where each type has different causes. In what follows,
the main types and causes of parameter uncertainty are separately discussed as presented
in Sections 2.3.1.1 and 2.3.1.2, respectively.
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2.3.1.1 Types of parameter uncertainty

In risk studies, we differentiate between two types of parameter uncertainty affecting
the analysis as follows:

— stochastic or aleatory uncertainty is due to randomness or natural variability (e.g.
wind speed, time of failure of a mechanical component). The wind speed can be
3m/s at time t and 5m/s at t+ δt. Thus, if the parameter sometimes has one value
and sometimes has another value, then it has aleatory uncertainty ([69]; [23]; [70];
[78]);

— epistemic uncertainty is due to imprecision , vagueness or ignorance (e.g. a release
breach diameter). If the parameter has one value but we don’t know what it is due
to lack of information, then the parameter has epistemic uncertainty ([130]; [49];
[173]; [156]; [61]). If a person “X” is guessing the height of his/her friend “Y,”
the answer would be uncertain (around a cm or between a cm and b cm). In this
case, epistemic uncertainty is attached. This uncertainty can be reducing by adding
information (ask the person about his/her height).

It should be noted that epistemic uncertainty can be reduced by further studies while
aleatory uncertainty cannot ([14]; [46]). Additional effort may yield a better estimate of
the magnitude of variability, but it will not tend to reduce it. However, both types of
parameter uncertainty can influence the same parameter. While some parameter values
are random and known statistically in terms of probability distributions, the mean or
standard deviation of their distribution is uncertain, i.e. it is not precisely known. This
means that this parameter is affected by aleatory and epistemic uncertainty. In what
follows, we shall consider this last mixture as a new type of parameter uncertainty.

For risk evaluation to be effective, these different types of uncertainty relating to the
analysis’s input parameters must be represented and quantified. Figure 2.3 summarizes
the different types of parameter uncertainty with practical examples of aleatory, epistemic
and the mixture uncertainties. In the example of epistemic uncertainty in Figure 2.3, we
suppose that the expert has no empirical data about the depth of the vessel at first.

In the next section, the causes of these types of parameter uncertainty will be detailed.

2.3.1.2 Causes of parameter uncertainty

In industrial risk analysis, different causes of parameter uncertainty can be found
([172]; [167]):
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• Variability 
(randomness) 

• Imprecision (Vagueness) 
• Ignorance (Incompleteness)
• Measurement error
• Lack of knowledge
• Subjectivity

Parameter 
uncertainty

1. Aleatory 
uncertainty

Sources

Types 2. Epistemic 
uncertainty

What is the depth?

Example

Example

depth
When will it fail?

Use a measurement instrument 
and uncertainty will be null

Can be reduced by 
adding information 

Can not be reduced by 
adding information 

The failure is random, it might 
be now or in 10 minutes or in a 

year, etc. 

• Variability (randomness) 
and imprecision 

3. Mixture 
uncertainty

Example

Epistemic uncertainty can be 
reduced by adding information 

The rainfall distribution

The mean of the distribution is 
known with imprecision du to 

measurement error

Figure 2.3 – Types of parameter uncertainty.

Natural variability

Natural variability refers to changes in the value of a parameter with time. Variability
may result in a range of possible outcomes of a given situation. This cause of uncertainty
represents the only cause of aleatory uncertainty.

Lack of information or knowledge

Lack of information represent the principle cause for uncertainty. It represents the
situation when analysts approximately characterize the parameter of interest instead of
giving an exact characterization. Providing approximation for input parameters takes
place if there is no enough information to characterize these parameters, or when analysts
believe that error factors are attached to the measurements. Lack of information has
different classes presented as follows:

Measurement errors or imprecision Measurements refer to the engineering, i.e.
measurement of physical quantity such as weight, temperature, length, etc. that are
often affected by uncertainty. The quality of measurements depends on the experience
of the analysts who perform the measurements and the used instrumentation. Mistakes
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can be done that lead to errors in the measurement. This measurement errors result
in imprecision about the true value of the parameter being measured. Another source
of imprecision is the process of asking experts. Experts often provide a range (interval)
about the value of a parameter instead of a precise value (for example, the true value of
X is belong to the interval [a,b]).

Subjectivity or vagueness Subjectivity represents uncertainty in interpreting the
linguistic terms (words such as high, very high, etc.) provided by experts. However, these
words mean different things to different analysts. A simple example of this subjectivity
from a study done by [141] is presented in Figure 2.4. In that study risk analysts have been
asked about what they understood by the words low, moderate and high. The histograms
in Figure 2.4 show the range of variation in the individual interpretation of those words.
We can clearly see the wide difference between the interpretations of the words.

This cause of uncertainty can be reduced by translating the qualitative words into a
quantitative scale (e.g. ask the expert what does he/she mean by high quantitatively),
and gathering multiple opinions from different experts. But, resorting to the elicitation
of multiple expert opinions will generate an new cause of uncertainty which is the lack of
consensus(see Section 2.3.1.2 for more details).

0

0,2

0,4

0,6

0,8

0 10 20 30 40 50 60 70 80 90 100

LOW

The meaning of LOW in terms of probability [0 - 100%]

0

0,2

0,4

0,6

0,8

0 10 20 30 40 50 60 70 80 90 100

AVERAGE

The meaning of AVERAGE in terms of probability [0 - 100%]

0

0,2

0,4

0,6

0,8

0 10 20 30 40 50 60 70 80 90 100

HIGH

The meaning of HIGH in terms of probability [0 - 100%]

VERY HIGH

HIGH

LOW

VERY LOW

B :

C :

D :

E :

Verbal expression

A :

AVERAGE

What do these words 
mean for risk assessors?

How do risk assessors 
interpret them?

Expert-1 Expert-2

HIGH = [𝟓𝟎 − 𝟗𝟎%] HIGH = [6𝟎 − 𝟕𝟎%]

 There is no consensus about probability 
translations

 The same word means different things to 
different people

Example of the interpretation from two experts

Experts have been asked about the meaning of 
LOW, AVERAGE and HIGH 

Figure 2.4 – Uncertainty in using expert elicitation to characterizing likelihood of inputs.
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Lack of consensus between sources of data This cause is generated when a
database or an expert suggests a description or a value for an input parameter, while
others suggest a different one. This conflict can be due to different sources:

— different expert might have different opinions regarding a specific input depending
on their own experiences and knowledge;

— values in databases: (i) can be wrong affected by errors (but not identified as wrong),
(ii) are bias if the databases are generic and not relevant to the problem at hand,
or (iii) calculated using different not accurate methods and models.

Ignorance The term “ignorance” means a partial incertitude that arises because
of limits on empirical study or prediction. By means of the following example, suppose
that we want to model some data about the seasonal weather. Let us assume that the
possible outcome is either wet or dry. Now the meteorological institute provided evidence
that it will be a dry season with 0.6 probability and another set of evidence suggests a
wet season with a probability of 0.2. Since the probability of a dry and a wet season
adds up to (0.6 + 0.2 = 0.8), the remaining 0.2 actually implies ignorance with regards
to the weather. In other words, 20% of the season might be wet or dry, with uncertainty
(ignorance) about the true percentages.

It should be noted that, moving from an uncertain parameter to less uncertain or
certain parameter caused by lack of information can be achieved by gathering more data
about the parameter being characterized. To conclude this section, Figure 2.5 presents
the relations between types and causes of parameter uncertainty.

Parameter 
uncertainty

Epistemic
Lack of 

information

Lack of 
consensus 

between data

Subjectivity or 
vagueness

Ignorance

Measurement 
errors or 

imprecision
Aleatoric

Natural 
variability, 

randomness

Causes Types Total 

Figure 2.5 – Classification of parameter uncertainty.
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2.3.2 Model uncertainty

Model uncertainty stems from the fact that risk models are based on simple mathe-
matical equations which represent reality but cannot completely characterize the complex
physical processes of any given phenomenon ([76]; [138]). Different approaches may ex-
ist to represent certain aspects of a phenomenon and none is clearly more correct than
another. Model uncertainty is generated from two main causes:

1. limitations in the analyst’s phenomenon knowledge;

2. deliberate simplifications introduced by the analyst.

In real life when analyzing complex phenomena, compliance between the model as-
sumption and the properties of the system being analyzed never exists in an absolute
sense. Then a very important question may posed in this situation which is, the model
can be accepted in spite of infringing one or more of the conditions supporting the model.

As an example, consider application of the model given by Eq 2.4 in order to predict
the velocity of an object dropped from a height h. Where g is the acceleration due to
gravity. In this model, it can be argued that the air resistance against any dropped object
is not considered. The air resistance can modify the speed of a dropped object, and it is
influenced by the mass and the shape of the object (quantities that are not included).

v =
√

2gh (2.4)

Model uncertainty can be mitigated by validating the models against experiments
[159]. In [169], the authors suggest the “adjustment factor approach” to quantify model
uncertainty. The principle of this approach is to employ the best model available, denoted
Y ∗, and compensate for the error associated with Y ∗ by introducing a factor E. This
adjustment factor might be additive (Ea) or multiplicative (Em), resulting in Y = Y ∗+Ea
or Y = Y ∗ × Em.

However, this source of uncertainty is not addressed in this work. All the risk models
used are already validated and appropriate.

2.3.3 Completeness uncertainty

This section defines completeness uncertainty in the scope of industrial risk analysis.
Completeness uncertainty relates to risk contributors that are not addressed during the
analysis process. The causes of this source of uncertainty either are known but not
included in the analysis or not known and therefore not addressed in the analysis.

The known completeness uncertainty (not included in the analysis) could have sig-
nificant impact on the analysis outputs. Causes of this known incompleteness are the
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following:

— The scope of the analysis does not include some classes of initiating events because
they are related to new technologies introduced in the facility under study and are
complex to be introduced in the analysis (see Figure 2.6(a) - left side);

— Some of the risk contributors are omitted from the analysis because their relative
contribution is believed to be negligible (see Figure 2.6(a) - right side).

However, when a risk analysis is used for critical decision making that concerns human
lives, its scope needs to be exhaustive to match the changes and cover the nowadays risk
causes. If the analysis is incomplete, then either the analysis process should be upgraded
to include the missing piece(s) or it should be demonstrated that the missing elements are
not significant risk contributors. Section 2.6.3 details the known cause of completeness
uncertainty that is not considered in most nowadays risk analyses. Then, in Chapter 3
we proposed an approach to treat this known cause of incompleteness to provide a more
exhaustive and precise risk analysis.

The second type of completeness uncertainty is the unknown. The causes of this type
are due to the fact that some initiating events are unknown and the risk assessors are not
sure about if the analysis they made is complete or not, see Figure 2.6(b). These causes
of incompleteness are complex to be addressed during risk analysis.

2.4 Why uncertainty represents a major problem and
should be considered?

In this section, we will present the problem of not considering uncertainty during risk
analysis by the help of real examples as presented in Sections 2.4.1 and 2.4.2. These
example can illustrate the impact of not considering uncertainty extremely well. Section
2.4.1 presents the Red River flood accident of 1997 which devastated Grand Forks and
other cities along the Minnesota-North Dakota border, USA [141]. In Section 2.4.2, the
results of an European benchmark exercise on the effect of uncertainty in risk analysis
are discussed.

2.4.1 Red-River flood - Why risk analysts should be explicit
about uncertainty?

At the forefront of the story, the river was flooding each year, so community leaders
in cities located along the Red River had to manage the risk of flooding by levees. The
national risk analysis service provided predictions on how high the river would reach in
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How can we model this new 
types of risk causes? They are 

different, then ignore

The IE3 initiating event 
is not important and 

can be excluded

IE1

IE2

EOR

IE1

IE2

EOR

IE3
Different type 
of risk causes

a) Initiating events are omitted due to the 
complexity of being introduced (out of scope)

b) Initiating events are omitted due to their 
negligible contributions on the analysis prediction

(a) Causes of the known completeness uncertainty.

Is something 
missing? I am 

not sure

IE1

IE2

EOR

a) Some basic events might be missed 
unintentionally or inadvertently

(b) Cause of the unknown completeness un-
certainty.

Figure 2.6 – Examples of known and unkown causes of the completeness uncertainty.

Grand Forks. In 1997, the river height prediction was 49 feet while the levee height was 51
feet. However, uncertainty surrounding the estimate was calculated and it was +−9 feet.
But, this uncertainty was not considered or communicated to decision makers because of
concerns of alarming the public. Even so it was clear that there is a possibility that the
flood surpasses the levee.

In actual fact the flood in that particular year went to 54 feet. The consequences of that
was too high when damages were estimated about 3.5 billion $. The other consequence
was the lost of trust and confidence in the authority for managing the flood risk, and also
the authority for who provided the predictions. Ironically, some residents and Grand Forks
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officials insisted that the city would not have been lost if the analysis would have been
more accurate. In other words, uncertainty has been considered. The Grand Forks mayor
said, “I don’t like to be critical, but we were told 49 feet by the weather service”, had the
city known how high the waters would rise, the devastation “would have been preventable”.
Figure 2.7 shows the serious consequences from not having considered uncertainty.

Thus, two important reasons for considering uncertainty :

1. it is necessary for decision making, you need to know about uncertainty to make a
good decision;

2. if you are not open about uncertainty, then you risk losing credibility and trust.

Figure 2.7 – Grand Forks after levee over-topped.

2.4.2 The ASSURANCE benchmark project: Assessment of Un-
certainties in Risk Analysis of Chemical Establishments

ASSURANCE is a benchmark exercise, which was completed in 2001. Seven teams
from different European countries have joined this project. Each one of the joined teams
and based on its own input data and expertise has performed a risk analysis on the
same risk scenarios in an ammonia storage facility. The results for probability and effect
analysis of each team for the studied risk scenarios are presented in Table 2.10 and Figure
2.8, respectively.
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Tableau 2.10 – Deviation between frequencies of the top events of the common scenarios analyzed
by the partners (events per year).

Figure 2.8 – Variation of results for the consequence assessment of the reference scenarios.

From Table 2.10 and Figure 2.8, the results of the analysis show a great deviation
between the assessed frequencies and consequences of risk scenarios. The spread in the
results is due to uncertainty. However, this uncertainty will obviously be transferred to the
final risk evaluation and affect the decision making, mainly land use planning, emergency
planning and acceptability of risk. A risk scenario can be acceptable for a team and not
acceptable for another.

Therefore, the need to analyze these uncertainties, take measures to reduce them,
and inform the other stakeholders of risk-informed decisions about their existence and
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implications is a principal obligation for the risk analysis community. The outcome of
the ASSURANCE project should be seen in this context, i.e. as a contribution to the
understanding of the uncertainties.

In the next section, the steps behind addressing parameter and completeness uncer-
tainties will be presented.

2.5 Addressing uncertainty during risk assessment

The following provides an overview on how to address parameter and completeness
uncertainties. Detailed guidance on how we treated these uncertainties in the INERIS
risk analysis process appears in Chapters 3, 4, and 5.

2.5.1 Steps to address parameter uncertainty

Addressing this source of uncertainty is based on two main steps as presented in Figure
2.9 and detailed below:

1. uncertainty characterization: meaningfully representing the uncertain parameters
using mathematical theories and based on the available data;

2. uncertainty propagation: propagating the mathematical representations generated
from step-1 through the mathematical models in order to be able to represent pa-
rameter uncertainty in the outputs.

2.5.2 Addressing completeness uncertainty

Although the analysis of parameter uncertainty is fairly mature and is addressed ad-
equately through the use of mathematical theories on the values of the parameters, the
analysis of the completeness uncertainty cannot be handled in such a formal manner.
As presented in Section 2.3.3, completeness uncertainty has two types: known and un-
knowns. The typical response to the known completeness uncertainty is to understand
the importance of being up-to-date to introduce all risk contributors that can lead to
major accidents. Chapter 3 addresses the known completeness uncertainty that faces to-
day’s risk assessment methodologies (omission of cyber-security related risks). If not, risk
assessors should prove that omission of some risk contributors from the analysis would
not affect the output prediction neither the decision making.

The true unknowns (i.e., those related to issues whose existence is not recognized) can
be addressed analytically regarding the believe of who perform the analysis. However, in
the interests of making defendable decisions, these unknowns can be addressed during the
decision making by safety margins.
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Figure 2.9 – Steps to address parameter uncertainty during risk assessment.

2.6 Where uncertainties affect the INERIS risk as-
sessment process

In this section, we present the sources of uncertainties that affect each step of the
INERIS risk analysis process as shown in Figure 2.10. Then we discuss the causes of each
source of uncertainty at each step as follows:

— The interval semi-quantitative approach used by the INERIS for likelihood analysis
suffers from some limitations due to parameter uncertainty. Section 2.6.1 details
these limitations and highlights their impacts on the predictions of the likelihood
analysis.

— Inability in determining precise values for risk models’ input parameters used for
effect analysis may be faced due to parameter uncertainty. Some of these input
parameters are random in nature and have different values, while information re-
garding other parameters is often incomplete, imprecise or vague. These different
causes of parameter uncertainty should be treated separately with different represen-
tation theories. However, inappropriate representation of the available information
may lead to under or overestimation of risk and subsequently to a bad decision as
detailed in Section 2.6.2.

— The identification step is incomplete where only safety related scenarios caused by
accidental events (component failures, human errors, etc.) are considered. This
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no-consideration of cyber-security threats results in completeness uncertainty that
should be addressed. Section 2.6.3 details this problem as well as the obstacles in
dealing with it in order to introduce cyber-security related risks within industrial
risk analysis.

Completeness 
uncertainty

Parameter uncertainty Parameter uncertainty

Risk identification
Probability 

analysis
Effect analysis

Uncertainty in determining the
likelihood of input events:

 Imprecision;

 Subjectivity and vagueness;

Uncertainty affects the input
parameters:

 Variability;

 Imprecision due to 
measurement errors;

 Imprecision in the 
statistical data.

 ignorance

Risk scenarios are not
complete. Cyber security
related risks are not yet
considered during the
identification process.

Figure 2.10 – Where uncertainties affect the risk assessment process.

2.6.1 Uncertainty in likelihood analysis: drawbacks of the in-
terval semi-quantitative approach

This section highlights the causes of parameter uncertainty in the likelihood analysis
process. However, the interval semi-quantitative used by the INERIS has some limits that
can lead to probability underestimation in some cases and need to be addressed. These
limitations are presented by converting the statistical data into interval classes:

— Limit-1 : The discreteness of the frequency classes makes the conditions on the
border between two intervals not well defined. Vagueness on the extent of half the
range of the interval to which category it belongs is presented. The same class is
given to different frequencies even if the difference between them is too remarkable
(see Figure 2.11(a), the same class F − 1 is given to events E1 and E2 where their
frequencies are 11 and 99 per year respectively);

— Limit-2 : The interval representation of frequency classes can lead to probability
underestimation. Figure 2.11(b) presents an example of an OR gate of two inputs
EI1 and EI2 with quantitative frequencies equal 9.5× 10−2 and 9.6× 10−2 respec-
tively. Suppose that these quantitative information are certain, the quantitative
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output frequency of the OR gate is equal to 1.05 × 10−1. The translation of this
quantitative output frequency using the semi-quantitative scale results in a class F0
(see Equation 2.2 for how to solve the OR gate). While a frequency class equals F1
is obtained based on the interval semi-quantitative approach;

— Limit-3 : If we were wrong in determining the statistical data, i.e. an error factor
may affect the statistical value. This error or deviation can lead to a different class
and thus to a different result. Figure 2.11(c) shows an example of an OR gate
with two input events EI1 and EI2. The occurrence frequencies of the both input
events are equal to 9 times/year. Suppose we have an error factor due to the lack of
information or a measurement error, and the frequencies can be higher by a factor
of 2 times/year (e.g. 11 times/year). This deviation changes the class of events E1
and E2 from F − 1 to F − 2. The output of the OR gate is affected by this error
where its class is changed. Thus, a small deviation can lead to a great change in
the output.

(a) The same class is given to two dif-
ferent values.

(b) Deviation due to imprecision.

(c) Probability underestimation.

Figure 2.11 – Limitations presented in the traditional semi-quantitative approach.

2.6.2 Uncertainty in effect analysis

We shall now introduce the problem that risk analysts face when analyzing the effect
of a risk scenario. Complex mathematical models that depend on an important number of
input parameters are used in order to calculate the effect of an accident. However, input
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parameters for these models are fraught with uncertainties. These uncertainties might be
of different types (aleatoric, epistemic or mix of both types) depending on the types of
these input parameters and the sources of available data. The natural variability of some
of these parameters and the lack of knowledge and empirical data in the determination of
others make it difficult to assess the degree of exposure of certain effects. The particular
context of uncertainties in effect analysis is shown in Figure. 2.12.

This figure shows a representation of mathematical models utilized for effect analysis.
An effect model is made up of three: inputs, the model equation (the mathematical model
used to represent the dangerous phenomenon being studied), and outputs. The challenge
is to address the issues relating to the representation of parameter-related information
(see figure. 2.12). However, this information may not necessarily be accurate. It may be
based on experimental data and measurement, and therefore be known statistically, or
based on expert opinion and therefore be known with a certain degree of inaccuracy.

One method commonly used to address these uncertainties is the probabilistic method,
which applies probability theory and relies on a statistical representation of available
information. This approach aims to represent uncertain parameters using probability
distributions. This means that information on model’s parameters are generally supposed
to be random in nature (variability). Then these distributions are propagated through the
model by applying the Monte Carlo technique in order to get probability distributions for
the outputs. But, in order to build probability distributions, statistical data are required
and these are often missing. This means that assumptions must be made in order to build
the distributions. Indeed, in a risk analysis context for industries classified SEVESO, the
information available concerning certain parameters is often imprecise or incomplete due
to lack of data. The calibration of probability distribution by making assumptions on this
type of knowledge becomes subjective and arbitrary.

However, as we are going to prove in this work that the use of probabilistic method
to address uncertainty is not always the right choice, and choosing of the appropriate
method depends on the context and the type of uncertainty that affect the parameter
being studied. The use of an inappropriate approach in an inappropriate place may lead
to under or overestimation of risk and subsequently to a bad decision.

Thus, Our challenge is how to represent uncertainty relating to parameters when
there is insufficient information available for statistical identification (when there is epis-
temic uncertainty). Incorporating uncertainty into effect analysis is an important issue of
widespread interest.
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Figure 2.12 – Parameter uncertainty in effect analysis.
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2.6.3 Completeness uncertainty in the risk identification pro-
cess: No-considering of cyber-security threats

In this section we present the known cause of completeness uncertainty that makes the
identification step of the risk analysis process incomplete. New type of initiating events
related to cyber-security are generated due to the development of industries. Thus, the
analysis process should be updated to meet the development of critical industries and to
assure an appropriate risk analysis and effective decision-making.

Traditional industries were based on mechanical devices and closed systems [101].
Only safety related risks generated from accidental component failures and human errors
need to be addressed during risk analysis of these industries. However, today, industries
are influenced by the development of digital technology related to instrumentation and
industrial automation (IA). Supervisory Control And Data Acquisition (SCADA) systems
are introduced to monitor and control equipment that deals with critical and time-sensitive
materials or events. The shift from analog equipment towards technologies has a number
of benefits concerning production, but it also presents challenges [145]. This introduction
of automation technology increases the degree of complexity and communication among
systems. The use of Internet for connecting, remote controlling and supervising systems
and facilities has generated a new type of risk causes that related to cyber-security. These
systems and facilities have become more vulnerable to external cyber attacks. These new
security threats can affect the safety of systems and their surrounding environments in
terms of people, property, etc. ([89]; [99]). Then, introducing cyber-security related risks
that may lead to major accidents into industrial risk assessment is an important need.

The differences and similarities between safety and security are studied by many au-
thors ([101]; [62]). In general, safety is associated with accidental risks caused by com-
ponent failures, human errors or any non-deliberate source of hazard, while security is
related to deliberate risks originating from malicious attacks which can be accomplished
physically (which are excluded in this study) or by cyber means. In addition, causes of ac-
cidents related to safety are internal and considered to be rare events with low frequency.
Causes of security accidents can be internal or external (attacks via insider agents or
outsiders) and are classified as common events. Table 2.11 shows the difference between
safety and security regarding different criteria.

Until today, industrial risk analysis does not take into consideration the cyber-security
related risks that can affect the safety of the system and lead to major accidents. Systems
are designed to be reliable and safe, rather than cyber-secure. These various types of
critical infrastructure have unique requirements for both functionality and up-time, but
they were not built from the ground up to be security focused. At the time that many of
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these critical systems were being built, cyber terrorism, corporate cyber espionage, and
global interconnectivity simply were not issues of the day. Today is a far different story.
In recent years, there has been an increasing number of cyber attacks that target critical
facilities (e.g., Stuxnet in 2010 and Flame in 2012). According to Dell’s annual threat
report [42], cyber attacks against SCADA systems doubled in 2014. Dell SonicWALL saw
global SCADA attacks increase against its customer base from 91,676 in January 2012 to
163,228 in January 2013, and 675,186 in January 2014. Many authors have studied the
potential impact of security related threats on the safety of critical facilities and highlight
the importance of analyzing safety and security risks together [99]. Theft, corruption,
or outright destruction of these systems can have a crippling effect on human safety,
financial stability, and standard of living. Thus, concerns about approaches for industrial
risk analysis that consider safety and security together are a primary need.

Safety Security

The nature of 
risk

Technical and controllable 
problem, caused by any 

accidental sources of 
hazard

Human strategic 
aggressor, caused from 
malicious cyber-attacks 

Type of intent Internal, non-deliberate
Intentional, malicious, 

internal or external

Likelihood of 
occurrence

Rare events with low 
frequency of occurrence

Classified as common 
events with high 

likelihood of occurrence

Definition of 
risk (Section 

6.2.1 and 6.2.2)
𝑅𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦

= (𝑡𝑣, 𝑃𝑡𝑣 , 𝑋𝑡𝑣 )
𝑅𝑠𝑎𝑓𝑒𝑡𝑦

= ( 𝑆𝑒 , 𝑃𝑒 , 𝑋𝑆 )

Tableau 2.11 – Difference between safety and security.

2.7 Conclusion

This Chapter established the context of the study by presenting the different steps to
conduct a systematic industrial risk analysis. The definition, sources, types and causes
of uncertainty in risk analysis are presented. The main outcome of this Chapter is the
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definition of the research problem, and highlighting the obstacles that face risk assessors
when performing risk analysis for today’s critical facilities.

First we present the steps of performing a risk analysis for critical facilities based on
the INERIS approach. The identification and modeling of risk scenarios using the bow-tie
analysis detailed. The INERIS semi-quantitative approach to conduct likelihood analysis
is presented. The characterization of input data and the propagation through the bow-tie
model in order to calculate the likelihood of outcomes are detailed. Analyzing the effects
of risk scenarios is also detailed. The decision making process to see if the identified risk
scenarios are acceptable or not after being analyzed in terms of likelihood and effects is
presented.

Uncertainty represents a major problem when analyzing major risks. Uncertainty anal-
ysis is the measure of the “goodness” of an estimate. The different sources of uncertainty
with their causes are defined:

— Parameter uncertainty include not only imprecision due to small samples of recorded
data, but also uncertainties in experts’ judgments of parameter values when there
are not recorded data;

— Model uncertainty is the indefiniteness in the model’s comprehensiveness (i.e., does
the model considers all variables and the relations between these variables which
can significantly affect the results). Model uncertainty is similar in nature to the
completeness uncertainty but occur at the modeling level of consequences and not
at the initial stage of the analysis.

— Completeness uncertainty is the uncertainty as to whether all the significant risk
contributors have been considered in the analysis. There are two types of complete-
ness uncertainty: (1) known uncertainty (risk contributors are omitted intentionally
due to the complexity of introducing them, or these contributors do not have any
significance on the prediction), and (2) unknown completeness uncertainty (risk
contributors are not known or unintentionally missed);

The different sources of uncertainty that affect the INERIS risk analysis process are
identified. Parameter and completeness uncertainties affect the analysis process at its
different steps. Probability and effect analyses suffer from parameter uncertainty. Com-
pleteness uncertainty affects the risk identification step. As we are going to prove in this
work, inappropriate treatment of parameter uncertainty may have important effects on
the results and lead to under or overestimation of risk and subsequently to a bad deci-
sion. Completeness uncertainty is faced in analyzing risks for critical facilities that use
technologies to control and monitor their systems.
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Literature review

Summary: This chapter is divided in two parts. The first part
of this Chapter presents a state of art on the different theories and
approaches to treat parameter uncertainty as presented in Section
3.1. The most commonly used approaches to quantify uncertainty
in risk analysis: interval analysis, fuzzy theory, probability theory,
evidence theory, and the mixed probabilistic-fuzzy approach are
presented. Characterizing parameter uncertainty in model inputs
and propagating these inputs through the model based on these
approaches are detailed.

The second part presents an introduction to industrial control
systems, cyber-security and cyber-security analysis in critical fa-
cilities (Section 3.3). This introduction is followed by an overview
on existing approaches to analyze security risks alone and within
safety for critical facilities as presented in Sections 3.5 and 3.6,
respectively. Advantages and limits of these approaches are also
discussed.
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——————————————-

3.1 State of art on approaches for parameter uncer-
tainty analysis

Parameter uncertainty analysis is a process of representing, propagating of uncertain
knowledge to provide uncertainty representation for the output results. In risk analysis,
uncertainty in input parameters is described using mathematical theories in term of inter-
vals or distribution functions. Uncertainty in parameters is then propagated through the
model using mathematical rules or simulation such as interval roles or MC simulation.

Uncertainty analysis has been performed as part of risk analysis in various studies
in different fields and applications: characterization of uncertainty in a chemical plant
based on an analytical network process [103]; use of an integrated approach to modeling
uncertainty in risk assessment [14]; study of the uncertainty related to injury exposure
risks ([113]; [154]); ecological risks ([61]; [81]); chemical consequence risks [130]; software
development risks [109]; transportation risks [97]; dam safety risks [30]; human health
risks ([95]; [103]); microbial risks [39]; bridge risks [156]; risks relating to construction
projects ([165]; [155]; [21]; [128]); and supply chain risk management ([91]; [137]; [75]).

The rest of this section provides an overview of how parameter uncertainty can be
analyzed using interval analysis, the probabilistic approach, fuzzy theory and evidence
theory. However, these theories are not compared in this chapter. In Chapter 5, we apply
them on a real case study and compare their results.

3.1.1 Interval analysis

Interval analysis is the simplest way to represent uncertainty as it requires the smallest
amount of information: the lower and upper or minimum and maximum values are the
only information needed to build the interval and represent the uncertain parameter of
interest [116].

Propagating uncertain parameters represented by intervals is done by answering the
following question: what are the smallest and the largest possible values that can be ob-
tained when applying mathematical operations to the interval? In answer to this question,
a number of authors ([151]; [10]; [11]) have developed what is called interval arithmetic
to perform the basic mathematical operations on interval analysis. For instance, let
[a] = [a, a], b = [b, b] be real intervals while o is one of the basic mathematical opera-
tions (addition, subtraction, multiplication or division), in other words o ∈ {+,−,×, /}.
This makes it possible to define the corresponding operations for intervals [a] and [b] by
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[a]o[b] = {aob‖a ∈ [a], b ∈ [b]}, where 0 6∈ b can be shown as follows:

Addition: [a] + [b] = [a+ b, a+ b].

Subtraction: [a]− [b] = [a− b, a− b].

Multiplication: [a]× [b] = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}].

Division: [a]/[b] = [min{a/b, a/b, a/b, a/b},max{a/b, a/b, a/b, a/b}].

For example, let us suppose that the uncertainty associated with the two parameters
X and Y is represented by the intervals [0.1, 0.2] and [0.15, 0.35], respectively. Using the
equations given above, the output of Z = f(X + Y ) is the interval Z = [0.1 + 0.15, 0.2 +
0.35] = [0.25, 0.55].

As explained above, we can see that interval analysis is very simple to understand
offering a straightforward means of representing and propagating uncertainty. It should
be noted that for interval analysis, there is no structured shape of likelihood. Thus, a
decision is based on either the minimum or maximum value since no distribution shape
is provided. This means that the decision may be pessimistic and overestimate the risk.

3.1.2 Probabilistic approach

The probabilistic approach is the most common approach used to represent parameter
uncertainty ([13]; [52]). It enables uncertainty to be quantified, mainly by using distri-
butions of random variables instead of fixed values. A distribution describes the range of
possible values (e.g. wind speed varies between 1 and 3 mph), and shows which values
within the range are most likely ([15]; [26]).

Distribution probability covers discrete and continuous cases. In discrete cases, a
discrete probability distribution function d(x) : ω → [0, 1] exists where ∑ d(x) = 1
(ω is the sample space containing all the possible values for the random variable). In
continuous cases, on the other hand, a Probability Density Function (PDF) p(x) exists
such that

∫
ω p(x)dx = 1 [171].

The probability of any subset S of ω is:

P (S) =
∑
x∈S

P (x); where P (x) = d(x) in the discrete case. (3.1)
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p(S) =
∫
S
p(x)dx; in the continuous case. (3.2)

In continuous cases, calculating the probability that a specific element x will occur is
based on the Cumulative Distribution Function (CDF). This represents the probability
that a value smaller than or equal to x will occur.

P (x) = P (]−∞, x]) = P (X ≤ x) =
∫ x

−∞
p(t)dt,∀x ∈ ω. (3.3)

Additional information on probability theory can be found in the work of various authors
([149]; [121]; [41]; [129]).

For propagation, Monte Carlo (MC) is the most widely used method to propagate
uncertainty when probability distributions are attached to uncertain variables ([37]; [20]).
For instance, let us consider a model whose output is a function Z = f(Y ) = f(X1, X2, ..., Xn)
of n uncertain variables which are represented by probability distributions. The propa-
gation of uncertainty calculated using the Monte Carlo method is based on the following
main steps (see figure 3.1):

1. set i = 1 and N = number of samples;

2. take sample i, yi = (x1, x2, ..., xn) where xi, i = 0, ..., n are randomly generated from
each distribution Xi;

3. calculate zi = f(yi) = f(x1, x2, ..., xn);

4. go back to step 2 if any samples are left, otherwise go to 5;

5. generate the pdf of results(Z) by butting all the zi on a histogram and the CDF of
Z as F (z) = 1

N

∑N
i=1 Hi where Hi = 1 if zi < z and 0 elsewhere.

3.1.3 Fuzzy approach

By definition, fuzzy numbers represent a family of nested sets or so-called α − cuts
[164]. A fuzzy variable is associated with a possibility distribution or membership function
(µ) in the same manner as a random variable is associated with a probability distribution
([131]; [96]). [4] and [1] provide a detailed explanation of the difference between probability
and possibility. However, considering a fuzzy set F on the range X and a given x ∈
X, the membership function value µF,X(x) represents the degree of compatibility of the
value x with the concept expressed by F [119]. Furthermore, fuzzy numbers represent an
important alternative for information representation, especially when this representation
is given by experts and is hence by nature qualitative ([132]; [88]; [111]; [56]; [55]; [43];
[136]).
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Figure 3.1 – Monte Carlo propagation of probability distributions.

To explore this further, let us take an example where the only information about an
uncertain parameter x is that it can take a value in the interval [4, 8], where 6 represents
the most likely value to be the true value of x. This information can be represented using
a triangular fuzzy number (TFN) on the interval [4, 8] with a possibility degree equal to
1 at 6 (see figure 3.2). The membership function for a TFN is presented as follows:

µ(A)(x) =



x− a1

a2 − a1
a1 ≤ x ≤ a2

a3 − x
a3 − a2

a2 ≤ x ≤ a3

(3.4)

where (a1, a2, a3) are the lower, most likely and upper values respectively. Based on
this equation (eq. 3.4), we can calculate any α − cut interval (Aα) at any degree (α)
between 0 and 1. AXα = {x : πX(x) ≥ α} is the set of x values for which the possibility
function is greater than or equal to α. For example, AX0.5 = [5, 7], which means that there
is a 50% possibility that this interval contains the true value.
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Figure 3.2 – Triangular possibility distribution on the interval [4, 8], where the most possible
value equals 6.

With respect to uncertainty propagation, let a model Y = f(X1, X2, ..., Xn), where all
the inputs are affected by uncertainty and represented by fuzzy sets with their possibility
distributions πX1 , πX2 , ..., πXn . The propagation of uncertainty can be performed using
fuzzy calculus based on interval analysis with different α− cuts ([161]; [58]; [48]).

The different steps for propagating uncertainty using alpha-cuts or fuzzy calculus are
presented as follows:

1. Set α− cut = 0;

2. Select the α − cut intervals (AαX1 , A
α
X2 , ..., A

α
Xn) from the fuzzy inputs. An interval

is obtained from each input parameter.

3. Calculate the smallest (lower) and largest (upper) values of the result Y at the set
α− cut by performing interval analysis to obtain AαY = f(AαX1 , A

α
X2 , ..., A

α
Xn).

4. If α = 1, then the propagation is finished and the possibility distribution is cal-
culated (a set of nested α − cuts representing the fuzzy output is obtained). If
α < 1, then set α = α + Dα (Dα is determined step-wise as [0 : 1

q
: 1], where

q ∈ N) and return to step 2.

To explore this further, let us take a simple example of Y = X1 + X2, where X
and Y are uncertain and represented by triangular possibility distributions πX1(x1) =
(1, 5, 9) and πX2(x2) = (7, 9, 11) (see figure 3.3). The bottom of figure 3.3 shows the
triangular distribution πY of the output obtained by fuzzy-interval analysis and with
Dα = 0.1, q = 10. For instance, the output interval at α = 0.5 is: A0.5

Y = A0.5
X1 + A0.5

X2 =
[A0.5

X1L + A0.5
X2L, A

0.5
X1U + A0.5

X2U ] = [3 + 8, 7 + 10] = [11, 17]. See figure 3.3.
It should be noted that the fuzzy approach assumes that the input parameters are

totally dependent [124].
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Figure 3.3 – The triangular distributions of X1, X2 and Y = X1 +X2 are shown in the top right,
top left and bottom of the figure respectively.

3.1.4 Evidence approach

Evidence or Dempster-Shafer theory ([143]; [147]; [44]; [73]; [160]) provides an alterna-
tive way of representing uncertainty but with less restrictive statements about likelihood
than probability theory [78]. Evidence theory is an extension of probability theory which
allows us to quantify the probability of intervals instead of precise values when input
variables are uncertain. These intervals are called focal elements and their probabilities
are called basic probability assignments (bpa). In summary, an application of evidence
theory involves the specification of a triple (ρ, S,m), where

— ρ is the set of everything that could occur;

— S is a collection of subsets of ρ;
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— m is the bpa associated with each subset Ai ∈ S, where
∑
Ai∈S(m) = 1.

Evidence theory is characterized by two measurement functions called belief and plau-
sibility, which are defined from the mass distribution m as follows:

Bel(A) =
∑
D⊆A

m(D)

Pl(A) =
∑

D∩A 6=∅
m(D)

Moreover, as in probability theory, a CDF can be used to provide summaries of the
information contained in a probability space. Similarly, cumulative belief and plausibility
functions can be constructed and used to summarize the information provided by an
evidence space. Cumulative belief and plausibility (CBF and CPF) are defined by sets of
points as follows:

CBF = {[v,Bel(ρv)], v ∈ ρ} (3.5)

CPF = {[v, P l(ρv)], v ∈ ρ} (3.6)

where ρv is defined as {x : x ∈ ρ and x < v}. Therefore Bel(ρv) and Pl(ρv) are
respectively the belief and plausibility that a value smaller than or equal to v will occur.

To explain the propagation of uncertainty using this approach, let us take the same
model Y = f(X) = f(X1, X2, ..., Xn) but with n variables described here by evidence
spaces. Each one of the input variables is characterized by its discrete set of focal elements
and corresponding probability masses (Xij = {[xLij, xUij],mi} i = 1...n and j = 1...qi,
where n is the number of input parameters and qi is the number of focal elements of
the parameter Xi). To explore this approach further, two different propagation methods
for independent and dependent input parameters are presented in the next two sections
(3.1.4.1 and 3.1.4.2). However, Section 3.1.4.3 discusses why evidence theory is the right
method to treat ignorance.

3.1.4.1 Independent input parameters

This method assumes that there is total independence between the input parameters.
The body of evidence of the output is computed by constructing the Cartesian product,
where the probability masses (bpas) are obtained by the traditional multiplication of the
input masses of the uncertain inputs.

For example, let X be represented by the body of evidence as follows:
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Z = X + Y [1, 3] : 0.2 [3, 5] : 0.5 [4, 6] : 0.3

[1, 4] : 0.4 [2, 7] : 0.08 [4, 9] : 0.2 [5, 10] : 0.12

[2, 6] : 0.1 [3, 9] : 0.02 [5, 11] : 0.05 [6, 12] : 0.03

[4, 8] : 0.5 [5, 11] : 0.1 [7, 13] : 0.25 [8, 14] : 0.15

Tableau 3.1 – Body of evidence for the output Z = X + Y obtained by means of the Cartesian
product.

X = {[1, 3] : 0.2; [3, 5] : 0.5; [4, 6] : 0.3}

and Y by

Y = {[1, 4] : 0.4; [2, 6] : 0.1; [4, 8] : 0.5}

The result of Z = X + Y is calculated and depicted in table 3.1 and figure 3.4
respectively.

3.1.4.2 Dependent input parameters

In this case, the combinations are taken differently than in the case of independence.
Combinations at the same level of likelihood are chosen (see figure 3.5, right) instead of all
the possible combinations (figure 3.5 left). The CBFs and CPFs of the input parameters
are used to generate these combinations in order to calculate the CBF and CPF of the
output. The main calculation steps are listed below:

1. based on the CBFs and CPFs of the inputs, determine the vector of all the different
percentiles. The different percentiles are the likelihood percentiles each time the
CBF or CPF is changed. For the example taken in section 3.1.4.1, and based on
the inputs X and Y , the vector of different percentiles is v = {0.2, 0.4, 0.5, 0.7, 1.0}.

2. for each percentile from the vector derived in step 1, an interval (xit, t is the chosen
percentile) is derived from the cumulative distributions of each input parameter Xi

(see figure 3.5, right);

3. calculate the output interval yt = f(xit). This interval represents the cumulative
output for the percentile t (the minimum and maximum of yt are the values of y
where CBF and CPF equal t);

4. return to step 2 if any percentile is left, otherwise go to 5;

5. generate the CBF and CPF of the output.
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Figure 3.4 – Upper and lower CDFs of X, i.e. PlX(−∞, x) and BelX(−∞, x) in the top left;
upper and lower CDFs of Y, i.e. PlY (−∞, y) and BelY (−∞, y) in the top right; upper and lower
CDFs of Z = X + Y , i.e. PlZ(−∞, z) and BelX(−∞, z) in the bottom middle.

(a) Independent input parameters. (b) Dependent input parameters.

Figure 3.5 – Propagation of uncertainty represented in terms of bodies of evidences when input
parameters are considered to be independent (left) and dependent (right).

The result for the same example in section 3.1.4.1 when X and Y are considered to
be totally dependent is depicted in figure 3.6.
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Figure 3.6 – Body of evidence for the output Z = X + Y when total uncertainty between X and
Y is considered.

3.1.4.3 Why evidence theory is the best to treat ignorance

Evidence theory describes uncertainty by defining a subsets S of focal elements where
the real value lies in. These focal elements are assigned with degrees of likelihood m (bpa)
between 0 and 1. The unassigned pba (i.e., 1 −m(S), where m(S) = ∑

m(si) and si is
the pba of the focal element i) represents the ignorance or incompleteness in the expert
knowledge [55]. In terms of example, let us suppose that the subjective probability of an
event to occur is either low or high. And evidences have been collected about this event
where it can be low with a likelihood of 0.6 and high with a likelihood of 0.2. Since the
sum of the probabilities is not equal to 1, the remaining 0.2 implies ignorance with regard
to the POC. Perhaps we might think that this problem can be solved by probability
theory by choosing a suitable outcome space {[low], [high], [low, high]}. Then we define
now that p([low]) = 0.6, p([high]) = 0.2, and p([low, high]) = 0.2. But, if we compute the
probability of the union of low and high, then p([low∪ high]) = p([low]) + p([dry]) = 0.8,
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which is in contradiction with p([low, high]) = 0.2.

3.2 Industrial Automation and Control System - IACS

Industrial automation is the use of Industrial Control System (ICS), such as computers
and information technologies for handling different processes in an industry. The use of
ICS helps in increasing productivity, quality and flexibility in the manufacturing process
[12].

The SCADA system is one of the most important parts of IACS, which refers to an
industrial computer system that monitors and controls processes and systems distributed
over limited or large geographical areas ([120]; [31]). The principal function of SCADA
is acquiring the data from devices such as valves, pumps, etc. and providing control of
all of these devices using a host software platform ([106]; [139]). The monitoring of the
process is provided using a remote method of capturing data and alarm events, where
instruments can be regulated and turned on and off at the right time. The SCADA
system also provides more functions such as displaying graphics, alarming facilities and
storing data. Malfunctions of SCADA may cause undesirable consequences ranging from
financial loss to environmental damages [123].

SCADA systems throughout the world supervise and control electric grids, power
plants, water systems, chemical plants, pipelines, manufacturing, transportation, and
other physical processes [157]. Figure 3.7 shows the basic hierarchy and architecture of
an IACS, which is classified into five distinct levels. SCADA operates on levels 1 and 2.
The different levels of IACS are presented as follows:

— level 0 - field instruments: the lowest level of the control hierarchy which includes
to sensors, pumps, actuators, etc. that are directly connected to the plant or equip-
ment. They generate the data that will be used by the other levels to supervise and
control the process;

— level 1 - control level using Programmable Logic Controller (PLC): PLC is an
adapted industrial digital computer that controls the manufacturing processes. It
is linked to the field instruments, and to the SCADA host software using a commu-
nication network;

— level 2 - SCADA: monitor, maintain and engineer processes and instruments;
— level 3 - MES: this level is responsible for process scheduling, material handling,

maintenance, inventory, etc;
— level 4 - ERP: the top level of the industrial automation which manages the whole

control or automation system. This level deals with commercial activities including
production planning, customer and market analysis, orders and sales, etc.
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Industrial communication networks are most prominent in IAS which represents the
link that relays data from one level to the other in order to provide continuous flow of
information. This communication network can be different from one level to another.

The SCADA system represents the most sensitive and targeted part of the industrial
automation in terms of cyber-security. Cyber attacks on the SCADA system are classified
into three different categories: (i) hardware, (ii) software, (iii) communication network.

Level 4
Enterprise Level 

Level 3
Management Level 

Level 2
Supervision Level 

Level 1
Control Level 

Level 0 
Field Level 

ERP

MES

SCADA

PLC / PAC

Sensors, Pumps, 
Actuators, 
etc.

Firewall Internet

Plant Network

Control Network

Filed-Level Network

Corporate Network

Figure 3.7 – Components and architecture of IAS.

3.3 Cyber-security for industrial control systems

Within modern communication environments, such as the corporate infrastructure for
managing the business that drives operations in plant control systems, there are people,
processes and technology related vulnerabilities that need to be addressed ([82]; [142]).
Historically, these issues have been the responsibility of the IT security by providing
security policies to protect vital information assets. As control systems become part
of these large architectures, the main concern is providing relevant security procedures
that cover the control system and assure the safety for the facility and the surrounding
environments.

Introducing technology in critical facilities provided different benefits in terms of con-
trol and production, but it also generated challenges that are related to securing these
facilities:

— increased connectivity: today’s ICS are increasingly connected to the enterprise busi-
ness level and are accessible through the Internet. Even though these connections
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improve operability, they also create security vulnerabilities because improvements
in the security measures of control systems are not concurrent.

— inter-dependencies: due to the high degree of interdependency among infrastructure
sectors, failures within one sector can spread into others. A successful cyber attack
might be able to take advantage of these interdependencies to produce cascading
impacts and amplify the overall economic damage.

— complexity: the demand for real-time control has increased system complexity in
several ways: 1) access to ICS is being granted to more users business; 2) ICS are
interconnected, and, 3) the degree of interdependency among infrastructures has
increased. Dramatic differences in the training and concerns of those in charge of
IT systems and those responsible for control system operations have led to challenges
in coordinating network security between these two key groups.

— system accessibility: even limited connection to the Internet exposes ICS to all of
the inherent vulnerabilities of interconnected computer networks, including viruses,
worms, hackers, and terrorists. Control channels that use wireless or leased lines that
pass through commercial telecommunications facilities may also provide minimal
protection against forgery of data or control messages. These issues are of particular
concern in industries that rely on interconnected enterprise and control networks
with remote access from within or outside the company.

— information availability: manuals and training videos on ICS are publicly available,
and many hacker tools can now be downloaded from the Internet and applied with
limited system knowledge. Attackers do not have to be experts in control operations
to create an impact.

ICS-CERT (Industrial control systems - cyber emergency response team ) listed over
250 attacks on ICS in 2013:

— 59% of attacks targeted the energy sector

— 79 attacks successfully compromised the target

— 57 attacks did not succeed in compromising the target

— 120 attacks were not identified/investigated

In addition, cyber-security should be put in place together with safety and not sep-
arated. Cyber-security protects control systems to keep the critical facility processes
working safely. It ensures data communication confidentiality and integrity. It also keeps
computers and the control systems protected from viruses, worms, Trojans and other so-
phisticated threats that can sabotage these systems and cause damages. Cyber-security
assure access restrictions by allowing the right people the have access on controls and
important information and keeps the wrong people out of the controls.
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3.4 The security risk analysis process for industrial
control systems

The methodology of security risk analysis comprises a number of basic steps. These
differ between authors, but in general include:

1. risk identification:

— asset identification: this step aims to identify what to protect: hardware, soft-
ware, information, infrastructure, people, etc. Here we care about protecting
people and the environment from major accidents;

— threat identification: identify potential causes of an unwanted incident, which
may result in harm to an asset or set of assets. A thorough understanding of
the threats to the system is required in order to protect the assets;

— vulnerability identification: identify weaknesses of the system that can be ex-
ploited by a threat or set of threats.

2. likelihood analysis: the aim of likelihood analysis is to estimate the probability of
exposure of the system to a threat (or set of threats), and how likely these threats are
able to exploit the system’s vulnerabilities in order to harm its assets. Determining
likelihood is related to the current security measures and the environment in which
they are applied;

3. consequence analysis: calculating the impacts of threats exploiting vulnerabilities
on the assets.

3.5 A review of cyber-security risk analysis approaches
for Industrial Control Systems

This section reviews the sate of art in cyber-security risk analysis of industrial control
systems. We select the most common approaches that provide graphical representation
of security risks. We choose to review only graph-based methods because INERIS uses a
graph-based approach (bow-tie analysis) to analyze safety risks. Graph-based approaches
are widespread and more practical for modeling systems’ components and functionalities.
Moreover, they are able to analyze the security of complex systems with a high level
of precision and details. We describe the methods in terms of aim, concept and the
application domain. These approaches are then analyzed and discussed to highlight their
advantages and limits. Based on this review, we point out the most suitable approach to
be used to deal with our problem.
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Before proceeding, graphical-based methods are risk analysis methods that are based
on a graphical model such as fault tree, attack tree, etc. These methods, in the majority
of cases, are supported by mathematical models to enable qualitative or quantitative
likelihood analysis [32].

However, since the use of probabilistic risk analysis approaches is an obligation in
France, only probabilistic approaches is reviewed in this section.

3.5.1 Attack-tree-based approaches

The « Attack Tree » technique as initially presented by [140] is a graph that describes
the sequence of steps in order to perform an attack. It represents an attack against
a system in a tree structure [67]. The root (main event) of the tree is the goal of an
attack. This root is connected to intermediate and starting (leaf nodes) events in order
to represent the different ways to achieve the attack.

The concept of the attack tree is inspired from the fault tree. As in fault tree, AND
and OR gates are used to describe the combinations between nodes. Figure 3.8 presents
a demonstrative example of attack tree as in its creation form by [140]. The goal of the
attack is the top event. To achieve this goal, attackers can follow two paths, Node-1 or
(Node-2 and Node-3). The Node-E is a sub-goal in the tree, and its children are ways
to achieve this sub-goal. However, this initial version of attack tree shows only the steps
that attackers should follow in order to compromise a system. In other word, system’s
vulnerabilities are not modeled.

Top-event

Node-1 Node-E

Node-2 Node-3

OR

AND

Figure 3.8 – Attack tree structure using an example as developed by [140].

In the rest of this section, we present some papers that are based on the attack
tree methodology. In these papers, the attack tree is either extended (new modeling
components are added) or combined with other models.
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3.5.1.1 Attack trees for assessing vulnerabilities in SCADA [28]

In this paper, [28] describe the application of the attack tree methodology to assess
vulnerabilities in the common MODBUS/TCP-based SCADA system. The same mod-
eling structure proposed by [140] is used in [28]. By assessing the possible attacks and
security vulnerabilities on SCADA systems using attack trees, the authors suggest possible
best practices for SCADA operators and improvement to the MODBUS communication
protocol.

According to [28], several factors are taken in order to evaluate the security risks:

— Technical Difficulty of attack (it is believed to be the most critical indicator);

— Probability of Apprehension;

— Cost of Attack;

— Site Conditions;

— Installed Countermeasures.

The purpose of the assessment is to determine all the attacker final goals that intruders
might attempt to achieve against a MODBUS-based SCADA system, and to identify all
possible ways to achieve these final goals. To do this, a team of experts identifies all
possible goals of attackers against the SCADA system and the causes of each goal to design
the attack trees. Then, each leaf node of an attack tree is assigned a level of technical
difficulty using a qualitative scale “Trivial-Moderate-Difficult-Unlikely”. Based on the
AND/OR logical functions as the maximum/minimum of the children nodes difficulty
values, the difficulties of leaf nodes are propagated through the tree and the difficulty
of each attack goal is calculated. Then, each attack goal is ranked in terms of attack
difficulty, likelihood of detection and the potential severity of impact.

The study presents a sample of attack tree (Figure 3.9) with the estimated attack
difficulty of its nodes. The authors concluded that the attack trees can be a very useful
tool for modeling threats and vulnerabilities in a wide variety of systems.

Figure 3.9 – Attack tree example for the MODBUS-based SCADA system given in [28].
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3.5.1.2 Through the Description of Attacks: a Multidimensional View [67]

In [67], an extended version of attack tree is proposed. This extended version allows the
consideration of more information than just the attack steps, such as attacker resources,
motivations, etc. The term, shape and definition of each event are presented in Table 6.1.
Figure 3.10 shows an example of the attack tree as presented in [67].

Tableau 3.2 – Description of events used for representing an attack scenario.

shape Signification Definition

Operation
Any step representing an operation

made by the attacker in order to 
perform the attack

Vulnerability
Any step describing a vulnerability 

required in order to realize the attack

Assertion
Any step representing assumptions,

results, or requirements characterizing 
the attack process

Intermediate/
top event

A security breach caused by the 
occurrence of input events

In
p

u
t 

ev
en

ts

3.5.1.3 Attack countermeasure trees (ACT): towards unifying the constructs
of attack and defense trees [135]

In [135], a novel attack tree model called attack countermeasure tree (ACT) is pro-
posed. The aim of the ACT is to place attacks as well as defense mechanisms on the
same model by combining the defense trees within the attack trees. There are three types
of events in an ACT: attack event, detection event and mitigation event. Figure 3.11
presents an example of the ACT.

ACT provides qualitative and quantitative security analyses. Qualitative analysis
allows the identification of the minimal combinations of attack events that lead to the
occurrence of the top event and the determination of the most critical event in the ACT.
Quantitative analysis using ACT allows the computation of success attacks probabilities
based on the probabilities of single attack events. Several quantities can be calculated:
the cost of attacks, the impact of attacks, birnbaum or reliability importance measure,
risk to the attacker and the system, the benefits to attackers from attacks and the benefits
of defenders from implementing countermeasures. Quantitative analysis using ACT can
be viewed from two distinct viewpoints: attackers’ viewpoint and defender’s (or security
analyst’s) viewpoint. The measures such as attack cost and benefits of attackers reflect
the attacker’s perspective whereas the security investment cost, risk, impact and benefits
of defenders represent the defender’s perspective.
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Figure 3.10 – Example of the attack tree proposed in [67].

The ACT in [135] has been implemented in the software tool SHARPE (Symbolic
Hierarchical Automated Reliability and Performance Evaluator). The use of the ACT is
demonstrated using three case studies (ACT for BGP attack, ACT for SCADA attack
and ACT for malicious insider attack).

3.5.2 Security Modeling with BDMP: From Theory to Imple-
mentation [126]

Boolean logic Driven Markov Process (BDMP) is a good solution to model and analyze
complex systems. The concept of BDMP is inherited from combining fault trees and
Markov models. In [126], the BDMP is adapted to the security domain in order to
graphically model cyber attacks.

Different types of leaf events are used for security analysis using BDMP: (1) the At-
tacker Action (AA), (2) the Timed Security Event (TSE), (3) the Instantaneous Security
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Figure 3.11 – ATC with one attack and multiple pairs of detection and mitigation events [135].

Event (ISE).
The BDMP provides a useful qualitative and quantitative security analysis. The ap-

plication of the BDMP in the security domain is demonstrated using complex case studies:
modeling STUXNET attack [100].

3.5.3 Evaluating the risk of cyber attacks on SCADA systems
via Petri net analysis with application to hazardous liquid
loading operations [80]

A analytic technique to analyze security risks for SCADA systems is developed in
[80]. The technique constitutes a novel application of Petri net state coverability analysis
coupled with process simulation. It consists of three main components:

— a Petri net-based model to represent the attack scenarios;

— a technique to assess both the depth and breadth of an attack;

— a technique for mapping Petri net coverability to operational consequences.

The objective of the method is to identify and mitigate the system’s vulnerabilities in
order to prevent malicious induction of catastrophic process failure modes.

This approach does not take likelihood as a notion to evaluate the risk. Instead, risk
is measured in terms of the extent to which an attacker can manipulate process control
elements, the consequences due to disruption of the controlled physical process, and the
vulnerability of the SCADA system to malicious intrusion. The method is demonstrated
by the application on a hazardous liquid loading process.
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3.5.4 Network Vulnerability Assessment using Bayesian Net-
works [108]

In [108], the Bayesian network is used to model attack paths. The proposed approach
is called "Bayesian attack graph". The graph is made up of nodes and edges to relate the
nodes. Each node in the graph represents a single security state. An edge corresponds
to an exploitation of one or several vulnerabilities. A series nodes and edges represent a
path of a potential attack.

For probability analysis, the probability of a successful exploit is assigned as the weight
to each edge. Each node in the graph can be in two different states {false : 0, true : 1}.
A true state indicates a compromised system state that accomplished by an attacker.
Figure 3.12 presents a simple example of Bayesian attack graph.

Figure 3.12 – A Simple Example of Bayesian Attack Graph [108].

Figure 3.12 shows three nodes A, B and C where each node represents a potential
security violation state. Two vulnerabilities v1 and v2 exhibit on node C. v1 is exploitable
from host A with the probability of success p(e1). v2 is exploitable from host B with the
probability of success p(e2). Both exploitations result in the same compromised state on
node C. The probability of C is calculated using the conditional probability specifications.
The approach is tested on an experimental network.

3.5.5 Discussion

In this section, we summarized the graphical-based approaches that help integrating
cyber-security within safety risk analysis. We reviewed the most common methods to
analyze security for ICS that are either based on: attack tree, defense tree as well as other
security analysis methods based on directed graphs (e.g. Petri net and Bayesian network)
that fall under the category of probabilistic risk analysis (Section 3.5). In particular,
we discuss the used models, type of the analysis and the application of the method.
Comparison between these approaches is coming in the rest of this section.
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Only graph-based approaches are reviewed here because we believe that they are the
most promising and suitable approaches to meaningfully model and analyze risks. Large
efforts are currently conducted to develop these approaches ([115], [102]).

Traditionally, risk analysis methods are classified into qualitative and quantitative
([148]; [93]; [110]). However, we classified the reviewed approaches regarding different
categories as presented in Table 3.3. From Table 3.3, the results of comparison between
the examined approaches is as follows:

NO. Ref.
Key security risk concept in the attack tree Type of likelihood analysis Applicability

Asset Vulnerability Threat/Attack countermeasures Qualitative Quantitative Simple Complex

1 [28]

2 [67]

3 [134]

4 [125]

5 [80]

6 [108]

Tableau 3.3 – List of approaches combining safety and security for ICS.

— key risk concepts: show which key concepts (Asset, Vulnerability, threat or/and
countermeasures) are considered by the method examined for likelihood analysis and
scenario representation. We conclude that none of the examined methods takes into
account the existence of countermeasures, and only two have taken how vulnerable
the system is to a specific attack step;

— type of likelihood analysis: Only the method proposed by [28] is qualitative while the
others use quantitative likelihood analysis to evaluate the security risks. Qualitative
analysis is easy to conduct but not always precise. Statistical data is needed to
perform a quantitative likelihood analysis which is often unavailable. For security
analysis, qualitative analysis is preferable since no much statistical data has been
recorded to conduct a quantitative likelihood analysis;

— applicability of the methods for security analysis: applying methods that use attack
trees is simple and rapid. While applying BDMP, Bayesian network or Petri net
based approaches is time consuming and complex due to their dynamic concept.
However, we can not ignore the effectiveness of these latter in reliability analysis of
complex and dynamic system.
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Based on this overview and discussion, we believe that attack tree is the most suitable
method for us to use. Bow-tie analysis used by the INERIS for risk analysis is of static
nature. Thus, there is no need for using a complex dynamic modeling for security analysis.
A static simple modeling is more preferable.

However, existing attack tree based approaches do not provide a thorough modeling
of a risk scenario. More information should be plotted on the attack tree beside the
attack steps in order to detail the system’ weaknesses. A system might be more or
less vulnerable to a certain attack steps. This information will be helpful to provide more
precise likelihood analysis and detailed risk representation. For this latter, a new extended
attack tree will be proposed in order to provide a complete modeling of cyber attacks.
This method is then combined within bow-tie analysis to integrates cyber-security risks
within safety industrial risk analysis as presented in the next chapter.

3.6 Existing Approaches that combine safety and se-
curity for industrial control systems

With the growing awareness that safety and security analyses should be coordinated
in risk analysis for complex systems, working groups and researchers have initiated work
to bridge the gap between safety and security [102]. Approaches to analyze safety and
security together have been developed in some specific domains such as the nuclear domain
[127], the aerospace industry [25] and in air traffic control management [133].

In this section and for the same reasons discussed in the previous section, the most
reputed graph-based approaches are reviewed and discussed. For other methods, [102]
provided a detailed survey on initiatives standards and approaches that integrate cyber-
security and safety. We outline the challenges facing the domain and the limits of the
existing approaches. We also give a hint of the solution.

3.6.1 Integrating cyber attacks within fault trees [68]

In [134], a new graph-based method to analyze security within safety for complex
systems is proposed. The method combines the attack tree introduced by [67] (reviewed
in Section 3.5.1.2) within fault tree analysis. Combining attack trees with the fault tree
allows capturing accidental (safety) and malicious (security) risks that can lead to safety
accidents.

The approach is made up of the following steps:

1. constructing the fault tree: identify the top event and all its related sequences of
causes;
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2. security analysis of the fault tree: identify which events in the fault tree developed
step 1 can be triggered using malicious attacks;

3. constructing the attack trees: for each event (e) identified in step 2, construct the
attack tree and attach it to the event (e) in the fault tree using an OR gate with
its children.

The approach also provides a quantitative probability analysis in order to calculate
the probability of top event in the fault tree. Quantitative probability values are assigned
to the leaf and basic events in the attack and fault trees, respectively. The mathematical
equations to propagate the probability of input events through the proposed attack/fault
tree model are provided. The approach is tested on a simple example.

3.6.2 Modeling safety and security inter-dependencies with BDMP
(Boolean logic driven Markov processes) [125]

In [125], the BDMP discussed in Section 3.5.2 is applied to analyze safety and security
inter-dependencies. BDMP is used to graphically model the different causes of undesir-
able events in a system. These causes can related either to accidental (safety causes) or
malicious events (security causes) [102].

For probability analysis, each basic safety and security leaf in the BDMP is assigned
a mean time to success and a mean time to failure, respectively. These input data is
on assumptions made by security and safety experts. Then this input data is propa-
gated through the BDMP to provide a quantitative likelihood estimation of the modeled
undesirable event.

3.6.3 Studying interrelationships of safety and security for soft-
ware assurance in cyber-physical systems: Approach based
on Bayesian belief networks [98]

In this paper, [98] analyzed safety and security jointly using Bayesian belief network.
The Bayesian technique was applied to determine the impact of equipment failures or
security vulnerabilities on the overall security and safety of the entire system. Nodes
and arcs in the Bayesian graph are used to model system components failures and the
transition from a state to another, respectively.

The Bayesian approach in [98] provides a quantitative safety/security likelihood evalu-
ation. The approach uses failure rates of system components and connections or likelihood
of incidents impacting safety and security to quantitatively evaluate the achievement or
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denial of safety and security. The approach is demonstrated using a case study of a
SCADA system in an oil pipeline control.

3.6.4 Modeling and analysis of safety-critical cyber physical sys-
tems using state/event fault trees [134]

In [134], a common model to analyze safety and security aspects for critical physical
systems is proposed. This method extends the state/event fault trees with an attacker
model to develop an common model to deal jointly with safety and security. This extension
provides a modeling and analysis approach that integrates security aspects into a safety
model and enables quantitative analysis of safety and security.

The proposed modeling tool enables the trees to be modeled and converted into ex-
tended deterministic stochastic Petri nets for quantitative analysis; which are then ana-
lyzed using the Time Net tool and steady state analysis or Monte Carlo simulation.

This approach is evaluated case study of a tire pressure monitoring system.

3.6.5 Discussion

In this section, we reviewed the approaches that analyze safety and security jointly
during risk analysis (Section 3.6). The approaches presented in the literature are based on
either adapting an approach from the safety or security domains, or combining different
methods from the two domains. Combining different techniques developed in each domain
(safety and security) presents some advantages:

— relationships between safety and security become more visible;

— differentiation between risk causes related to each domain is provided;

— the use of existing models is easier than developing a new one to combine the both
aspects of safety and security. Where in this case, guides about the methods and
real case applications are available;

— more information for decision makers is presented. Separation of properties would
permit recognizing if a high level risk is returned to safety or security causes.

However, in this section, we only reviewed papers that use: attack tree, BDMP,
Bayesian Network or Petri net alone or in combination with other safety methods. In
other words, we reviewed approaches that use the approaches presented in Section 3.5.

Fault trees and attack trees are the most used approaches for safety and security
analysis respectively. Beside their static nature, they are simple to apply and provide a
clear risk modeling of the system being studied. In addition, likelihood analysis using
fault or attack trees is easy to conduct and demands low-level of expertise. Likelihood
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analysis can be qualitative or quantitative. It can be manually conducted without the
need of a computer software or simulation.

Bayesian belief networks is a good quantitative probabilistic framework to analyze risk
but it also has many limits. This technique is time consuming, computationally expensive
and hard to interpret. Petri nets provide qualitative and quantitative modeling of safety
and security risks. The limitations of Petri net model are: not trivial to be built and can
be difficult to analyze. The use Markov chain increase exponentially the complexity of
computation and the number of states when the number of events increase.

Furthermore, in all the examined approaches, safety and security are treated within
the same scale in probability analysis when they should not be. By providing single
likelihood index for safety and security, decision makers would not be able to know if the
unacceptable likelihood is generated from safety or security related causes. These limits
will be handled by proposing an approach for evaluating the risk level based on two-terms
likelihood parts, one for safety and one for security.

As conclusion, combining attack tree and fault tree is the most appropriate approach.
However, due to the limits of existing attack tree models as discussed in Section 3.6.5,
none of these approaches will be used. In the next chapter, an extended attack tree will be
proposed and combined within the bow-tie analysis to provide an exhaustive risk analysis
that jointly consider safety and security.

The theories presented in this section are rich in content and powerful to quantify
parameter uncertainty. But, different types and causes of parameter uncertainty require
different methods of analysis. Each theory suits a specific type of parameter uncertainty
regarding the causes of this type. Thus, classifying parameter uncertainty into corre-
sponding types according to their causes simplifies their analysis and modeling by the
most suitable theories. Appropriate analysis of uncertainty will lead to more accurate
risk predictions and consequently to a better decision making.

In Chapter 5, fuzzy theory will be introduced instead of interval theory to handle the
limits of the interval semi-quantitative approach for likelihood analysis.

In Chapter 6, new approaches for parameter uncertainty analysis are developed to
treat uncertainty regarding the type and causes. These proposed approaches and the
approaches presented above shall be applied to an LOC scenario in order to calculate the
toxic concentration at a specific end-point after an undesired event has occurred taking
into account parametric uncertainty. The aim is to see the effect of this uncertainty on
the output result, compare the different results of each approach and determine where a
specific approach should be used and where it should not. Java software was developed
to implement the theories of uncertainty representation, the propagation algorithms and
the risk models.
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3.7 Conclusion

The first part of this chapter reviews the most common approaches to handle param-
eter uncertainty. The purpose of quantifying uncertainty is to meaningfully represent un-
certain parameters, then to propagate these representations through mathematical models
in order to be able to represent uncertainty in the outputs. In this chapter, representing
and propagating parameter uncertainty using: interval analysis, fuzzy theory, probability
theory, evidence theory are presented. These approaches are used to characterize un-
certainty in model inputs obtained from different sources, such as statistical data and
expert judgments, and to which different types of parameter uncertainty can be attached.
But, these theories are of different nature. In other words, each approach represent and
propagate parameter uncertainty in a specific way and different than the others. Sim-
ple examples on how addressing parameter uncertainty based on each theory are also
provided.

However, these approaches were not compared in this chapter. Chapter 5 shows the
application of these approaches on a real case study and discuss the difference between
them. The purpose of this comparison is checking how these approaches differ in terms of
analyzing parameter uncertainty and sizing up the advantages and disadvantages of each
one. This comparison aims to identify which theory or approach is the most suitable to
deal with parameter uncertainty regarding the types and causes of this uncertainty.

The part focuses on cyber-security of critical industries and how it might affect the
safety these industries. Cyber attacks on ICS and SCADA systems are increasing every-
day. Today’s security analysis approaches focus on protecting information and assuring
the availability of the system where they ignore safety. Luckily, until now major disasters
due to cyber-attacks have not been occurred. But, without taking precautions we may
not hope for this to happen in future as attackers get more sophisticated, experienced
and malicious.

However, due to the incompleteness of safety risk analysis methods, the actual value
of the probability of undesirable events occurrence is higher than estimated. For example,
for incidents in power industry it was noted that “While these may not be frequent in an
absolute sense, there are good reasons to believe that they will be far more frequent than
quantitative tools such as probabilistic risk assessments predict". Therefore, introducing
cyber-security is important to provide a precise risk evaluation.

This second part of this chapter contains a structured comprehensive overview of
graph-based security and security/safety risk analysis methods. Overall, the findings of
the first part of this chapter are:

— a review on the state of art in security analysis for ICS and safety/security combined
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for critical facilities;

— highlighting the advantages and disadvantages of the reviewed methods and pointing
out the most suitable to be used;

— outline the research challenges in the domain of considering cyber-security related
risks with safety analysis that existing approaches did consider.

This review indicates that despite the fact that existing approaches can jointly con-
sider security within safety but they still suffer from challenging limits. Risk analysis
methodology that jointly consider safety and security can be improved in terms of: (1)
Modeling attack as well as system characteristics on the same view, and (2) consider-
ing the difference in likelihood of occurrence between safety and security related causes.
Addressing these limits is very important to provide a more detailed and effective risk
analysis for decision making.
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4
Treatment of uncertainty in
probability analysis: a fuzzy
semi-quantitative approach

Summary: In this chapter, we develop a fuzzy semi-quantitative
bow-tie analysis to address data uncertainty and as an alternative
for losing quantitative data or adding unjustified information. A
fuzzy-based approach is used for handling subjectivity and mea-
surement errors in the input parameters. The application of the
proposed approach is demonstrated using the case study of a loss
of containment scenario (LOC) in a chemical facility.
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4.1 Introduction

4.1 Introduction

Probability analysis may be qualitative or quantitative depending on the circumstances
[104]. Data for performing a probability analysis is either from historical incident data or
expert elicitations [3].

Qualitative probability analysis uses a scale of qualitative expressions (low, medium,
high, etc.) to describe an event’s probability or frequency. The advantage of the qualita-
tive methodology is its simplicity of applying and understanding by the relevant personnel.
Expert judgments represent an important source of data to apply this methodology which
are subjective in nature. This subjectivity represents a disadvantage when quantitative
or more precise information is available.

The quantitative approach uses a numerical scale with real values to describe the event
frequencies based on statistical data. A problem of this approach is the imprecision and
lack of such data can affect the quality of the analysis [2]. The quantitative methodology is
often too expensive and complex to be performed in terms of time and cost since statistical
and empirical data are needed. It can lead to probability underestimation if uncertainty
is not taken into consideration [4]. For these disadvantages, a semi-quantitative approach
represents a better alternative based on the available information.

INERIS has developed an interval semi-quantitative bow-tie analysis to model and
quantify the probability of risk scenarios based on the available information as presented
in Chapter 2, Section 2.2.2. This approach is mainly based on the INERIS expertise
and the results of the European project ARAMIS ([83]; [84]). It uses historical accident
data (quantitative) or expert elicitations (qualitative) if the former is not available. It
is easy to use, effective and implicitly takes uncertainty into consideration. Based on an
international benchmark exercise, this semi-quantitative approach proved to be effective
and precise for estimating the probability of risks in comparison with the approaches used
in the United Kingdom, the Netherlands and the Walloon Region of Belgium which are
either qualitative or quantitative ([71]; [105]).

However, as highlighted in Chapter 2, Section 2.6.1, the interval semi-quantitative
presents some limits. In some cases, this interval semi-quantitative approach can lead
to probability underestimation. We handle these limits by introducing the concept of
fuzzy numbers instead of intervals. Fuzzy numbers are used to represent subjectivity in
expert judgments and covers uncertainty in the quantitative data if this data exists. This
proposed fuzzy semi-quantitative bow-tie contributes to a simpler and effective alternative
to the quantitative approach and more precise to the qualitative approach while keeping
the virtue of being based on real accident frequency data if presented, and with the
consideration of uncertainty.
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In order to present the advantages offered by this fuzzy semi-quantitative approach
for probability analysis, this Chapter is structured as follows: Section 4.2 examines the
proposed methodology to deal with the limitations of the interval semi-quantitative ap-
proach, and how the methodology handles the limits of the interval semi-quantitative
approach. Section 4.3 presents a case study and compares the fuzzy-based approach
with the interval-based approach and the quantitative approach. Finally, a number of
conclusions are drawn in Section 4.4.

4.2 Proposed methodology: fuzzy semi-quantitative
approach

In this section, we present the added improvements to the interval semi-quantitative
approach. The characterization of input data in terms of fuzzy numbers and the propa-
gation rules to calculate the occurrence probabilities of ERC and outcomes are discussed
in Sections 4.2.2 and 4.2.3, respectively. The framework developed in Figure 4.1 presents
the steps of the proposed methodology for probability estimation under uncertainty using
bow-tie analysis. The details of each step in this framework is given in the rest of this
section.

4.2.1 Characterizing inputs for probability analysis using the
fuzzy semi-quantitative approach

In this section, we will detail how intervals are replaced by fuzzy numbers to charac-
terize input data in order to handle the limits of the interval semi-quantitative approach.
Fuzzy scales are proposed to characterize the frequency of basic events, probability of oc-
currence of SEs and the CLs of risk barriers as respectively presented in Sections 4.2.1.1,
4.2.1.2 and 4.2.1.3. Section 4.2.2 describes how input data are translated into fuzzy inputs
based on the proposed fuzzy scales.

4.2.1.1 Define basic event frequencies using a fuzzy scale

Fuzzy numbers are used to express the linguistic frequencies as shown in Figure 4.2.
In this fuzzy scale, a fuzzy number covers three intervals comparing to the interval scale.
As shown in Figure 4.3, a class FX in the fuzzy scale covers the class FX and half of
FX−1 and FX+1 in the interval scale. A fuzzy class covers three interval class in order
to handle the vagueness on the borders between two classes in the interval scale. The
middle point in the interval class FX is considered to be with the highest membership
degree equals 1 for the fuzzy class FX. This membership degree decreases in the both
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Figure 4.1 – Framework for estimating the probability of accidents in Bow-Tie analysis based on
the fuzzy semi-quantitative approach.
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sides once recede from the middle point of the interval class FX until it gets 0 at the
middle of the interval classes FX − 1 and FX + 1.

Because the frequency classes follow a logarithmic scale, the grades FX, X ∈ N in
the fuzzy scale are not triangular fuzzy numbers. FX is divided in three parts (see Figure
4.3) and derived with its membership function using Equations 4.1 and 4.2, respectively.

FX = [a, b, c, d, e] =
[

10−(X+2) + 10−(X+1)

2 ; 10−(X+1); 10−(X+1) + 10−X
2 ; 10−X ; 10−X + 10−X+1

2

]
(4.1)

µFX(x) =



x− a
b− a

× 0.5 a ≤ x ≤ b

1− x− c
b− c

× 0.5 b ≤ x ≤ c

1 + x− c
c− d

× 0.5 c ≤ x ≤ d

e− x
e− d

× 0.5 d ≤ x ≤ e

(4.2)

In the fuzzy scale, each value has its own possibility degrees to which classes it belongs
(see Section 4.2.5 for more details). In Section 4.2.2, we will explain how to represent
each type of input data based on this fuzzy semi-quantitative scale.

𝟏𝟎−𝟑/𝒚𝒆𝒂𝒓 𝟏𝟎−𝟐/𝒚𝒆𝒂𝒓 𝟏𝟎−𝟏/𝒚𝒆𝒂𝒓

1.0

0.5

𝟏𝟎𝟎/𝒚𝒆𝒂𝒓𝟏𝟎−𝟒/𝒚𝒆𝒂𝒓

𝑭𝟑 𝑭𝟐 𝑭𝟏

… …

Universe of discourse

𝑭𝟎

A

0.4

0.6

Frequency

Interval scale

Fuzzy scale

𝑭𝟑 𝑭𝟐 𝑭𝟏 𝑭𝟎

Figure 4.2 – Mapping event frequencies on fuzzy scale.

4.2.1.2 Define secondary events probability of occurrence using a fuzzy scale

The used semi-quantitative approach to characterize the probability of ESs may lead
to data lost due to the rounding-up. Therefore, because of this limitation, fuzzy scale
is proposed to characterize the input probability of failure for secondary events. Figure
4.4 maps the probability of occurrences of secondary events on a fuzzy scale. The same
type of fuzzy number used in the previous section is used here, but the values used in the
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Figure 4.3 – Fuzzy frequency class FX.

interval approach (the rounded up values) to represent probability of occurrence of ESs
are considered to be the most possible values.

𝟏𝟎−𝟐 𝟏𝟎−𝟏 𝟏𝟏𝟎−𝟑

1.0

0.5

𝟎 Frequency of 
ES

𝑷3 𝑷𝟐 𝑷𝟏 𝑷𝟎

Figure 4.4 – Mapping probability of secondary events on fuzzy scale.

4.2.1.3 Define risk barriers confidence levels using a fuzzy scale

For the same issues discussed in Section 2.6.1, fuzzy numbers are used to provide a
fuzzy scale for determining NCs of risk barriers. The same type of fuzzy number utilized
in scaling the frequencies of input events is used to scale the NCs. This fuzzy scale is
depicted in Figure 4.5.

4.2.2 Representing (fuzzifiying) input data based on the pro-
posed fuzzy scales

Statistical accident data and expert elicitations are both used in the fuzzy semi-
quantitative approach. Thus, quantitative crisp values and qualitative verbal expressions
represent the input of the analysis. These inputs from statistical data or provided by
experts and represented as follows:
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Figure 4.5 – Mapping confidence levels on fuzzy scale.

— The crisp values derived from statistical data are mapped on the universe of dis-
course. This process is called fuzzification. This fuzzification gives two membership
degrees to each crisp value. See the second step (characterizing input data) in the
framework in Figure 4.1 the quantitative part. Figure 4.2 shows an example of event
A of frequency that belongs to classes F3 and F2 with membership degrees equal
0.4 and 0.6 respectively. It should be noted that uncertainties attached to statistical
values are considered to be covered by the fuzzy classes.

— Experts are asked to give verbal expressions in terms of frequency classes to such
an event if statistical data is not provided. The provided class or classes are taken
to be the input for the event. If the expert describes the event using one class that
means the elicited frequency class is of membership 1. See Figure 4.1 the second
step the qualitative input. The case of risk barriers can be an illustrative example.
Experts’ elicitations regarding a risk barrier can be:

X the frequency is of one class: this barrier is of NC2 class and thus membership
is equal to 1;

X the frequency is of two classes: this barrier is a good known technology, thus it
is a good NC2. Or it is a not known and new technology, thus it is a bad NC2.
Using the fuzzy scales, good or bad NC2 means NC2 : 0.8 and NC3 : 0.2 (0.8
and 0.2 are is the membership degree) orNC2 : 0.8 andNC3 : 0.2, respectively.

Thus, a fuzzy frequency class (fuzzy number) or two membership degrees for two
different fuzzy classes represent the frequency of an event as input. The same process is
used to the CLs of risk barriers and the occurrence probability of ESs.

The propagation process of this representation of input data is described in the next
section.

4.2.3 Propagating fuzzy frequencies through the Bow-Tie

This section aims to set the fuzzy rules for propagating the fuzzy inputs through
the Bow-Tie analysis. Propagating inputs is achieved by solving the gates between the
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events, aggregating the confidence levels of risk barriers and the occurrence probabilities
secondary events. The Fuzzy semi-quantitative rules are presented as follows:

— Treatment of OR and AND gates (section 4.2.3.1 and 4.2.3.2 respectively);

— Treatment of secondary events (section 4.2.3.3);

— Treatment of security barriers (section 4.2.3.4).

4.2.3.1 Treatment of OR gate

OR gate signifies that the output event occurs if either of the input events has occurred.
Figure 4.6(a) presents an OR gate with two input events EI1 and EI2, E occurs after
the occurrence of EI1 or EI2. Based on the fuzzy approach, each one of EI1 and EI2

may be attached to one or two classes depending of the type of available data. Then, to
generate all the possible combinations, the frequency of the OR gate is calculated using
the Cartesian product where the Class and the possibility degree of the table cases are
calculated based on the two equations below:

Class(E) = min[Class(EI1), Class(EI2)] (4.3)

Degree(Class(E)) = Degree
(
min[Class(EI1), Class(EI2)]

)
. (4.4)

We based this on fuzzy rules to generate this equation [4]
For example, let EI1 and EI2 belong to [F2, F3] and [F3, F4] with possibility de-

grees equal [0.4, 0.6] and [0.5, 0.5] respectively. The Cartesian product for the output
is presented in Table 4.6(b). If the same class Fi has different possibility degrees in the
Cartesian table, then the maximum degree between them is selected for the Fi. The
output frequency is [F2, F3] with possibility degrees of [0.4, 0.6].

EI1

EI2

EOR

0.4 in F2
0.6 in F3

0.5 in F3
0.5 in F4

0.4 in F2
0.6 in F3

(a) The output of the OR gate based on the
fuzzy semi-quantitative approach.

Event EI1

F2:0.4 F3:0.6

F2:0.4 F3:0.6

F2:0.4 F3:0.6Ev
e

n
t 

EI
2

OR
gate

F3
:0
.5

F4
:0
.5

(b) Cartesian product table for the OR gate
example.

Figure 4.6 – OR gate example.
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4.2.3.2 Treatment of AND gate

AND gate signifies that the output event E occurs if the input events occur simulta-
neously. The classes and membership degrees of the output event are determined based
on Eq 4.5 and Eq 4.6, respectively. An example is presented in Figure 4.7. The red rect-
angle beside each event in Figure 4.7(a) contains its fuzzy frequency. The output fuzzy
frequency of event E is generated using the Cartesian product presented in Table 4.7(b).

Class(E) = max[Class(EI1), Class(EI2)] (4.5)

Degree(Class(E)) =
(
min[Degree(Class(EI1)), Degree(Class(EI2))]

)
(4.6)

0.4 in F2
0.6 in F3

0.5 in F3
0.5 in F4

0.5 in F3
0.5 in F4EI1

EI2

EAND

(a) The output of the AND gate based on
the fuzzy semi-quantitative approach.

Event EI1

F2:0.4 F3:0.6

F3:0.4 F3:0.5

F4:0.4 F4:0.5Ev
e

n
t 

EI
2

AND
gate

F3
:0
.5

F4
:0
.5

(b) Cartesian product table for the AND
gate example.

Figure 4.7 – AND gate example.

4.2.3.3 Treatment of secondary events

Figure 4.8 presents how secondary event is modeled in the bow-tie. PhD1 occurs if
ERC occurs and ES occurs conditionally after ERC. PhD2 occurs after the occurrence of
ERC and no occurrence of ES. The input data here are the frequency classes of the ERC
and the conditional probability classes of ES (noted p). Where p is a real number between
0 and 1. The output frequencies and degrees are calculated based on the equations below:

Class(PhD1) = [Class(ERC) + Class(ES)]; [86] (4.7)

Degree(Class(PhD1)) =
(
min[Degree(Class(ERC)), Degree(Class(ES))]

)
(4.8)
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Class(PhD2) = [Class(ERC)]; [86] (4.9)

Degree(Class(PhD2)) = Degree
(
[Class(ERC)]

)
(4.10)

The Cartesian product table and the output fuzzy frequencies of PhD1 and PhD2 are
respectively presented in Table 4.8(b) and Figure 4.8(a).

ERC PhD1

PhD2

ES

YES

NO

0.4 in F2
0.6 in F3

0.4 in F3
0.4 in F4
0.6 in F5

0.4 in F2
0.6 in F3

0.4 in P1
0.6 in P2

(a) The fuzzy output of dangerous phenomena
after the occurrence of an ES.

ERC

F2:0.4 F3:0.6

F4:0.4 F5:0.6

F3:0.4 F4:0.4

ES

Secondary 
event

P
2
:0
.6

P
1
:0
.4

(b) The output fuzzy frequency of PhD1 ob-
tained by means of the Cartesian product.

Figure 4.8 – Consideration of an ES within the fuzzy semi quantitative approach.

4.2.3.4 Treatment of security barriers

The INERIS approach consists firstly in verifying, on the basis of certain criteria,
whether the security barrier can be used for the studied scenario. A security barrier
operates after the occurrence of the event that this barrier is attached to. A proper
functioning of a risk barrier will lead to a less dangerous complementary event (Ē), see
Figure 4.9(a). In the other case (if the security barriers does not operate), another more
dangerous but less probable complementary event E will occur.

The fuzzy classes of the output events E and Ē are calculated based on the Cartesian
product. The Frequency class and degree of each case in the Cartesian table is determined
using the equations below:

Class(E) = Class(EI) +NC = F (x+NC); where x is the class of EI (4.11)

Degree(Class(E)) = min
[
Degree(Class(EI)), Degree(NC)

]
(4.12)

Class(Ē) = Class(EI) (4.13)
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Degree(Class(Ē)) = Degree
(
[Class(EI)]

)
(4.14)

Figure 4.9 presents an example of a risk barrier treatment. The fuzzy inputs are
plotted in the rectangles beside the EI and above the risk barrier in Figure 4.9(a). The
Cartesian product of the event E is shown in Figure 4.9(b), where the fuzzy frequency of
Ē is the same as EI.

EI 𝑬

 𝑬

0.4 in F3
0.6 in F4

0.3 in F4
0.4 in F5
0.6 in F6

0.4 in F3
0.6 in F4

0.3 in NC1
0.7 in NC2

(a) The fuzzy outputs of events E and Ē.

EI

F3:0.4 F4:0.6

F5:0.4 F6:0.6

F4:0.3 F5:0.3
𝐂
𝐨
𝐧
𝐟𝐢
𝐝
𝐞
𝐧
𝐜𝐞

𝐥𝐞
𝐯
𝐞
𝐥

Security 
barrier

𝐸

Output

𝑵
𝑪
𝟐
:𝟎
.𝟕

𝑵
𝑪
𝟏
:𝟎
.𝟑

(b) The output fuzzy frequency of E and Ē
obtained by means of the Cartesian product.

Figure 4.9 – Consideration of a security barrier within the fuzzy semi quantitative approach.

4.2.4 Decision making under fuzzy environment

The result obtained from the propagation is a fuzzy variable, which may cover different
frequency classes with different membership degrees. In this section we will explain the
different ways of how the decision can be made based on the fuzzy output. It should be
noted that the decision is also related to engineers who are making the decision and the
type of the dangerous phenomenon being studied (if the phenomenon is high risk or not).

Here are the different options that are possible:

— Choosing a membership threshold - this threshold is set from 0 to 1 where frequency
classes with membership degrees less than the chosen threshold will be eliminated.
Then, decision-makers can return to choices 1 or 2 below to make their decision.

1. being conservative - in this case decision-makers decide to be conservative (pes-
simistic) and take the highest frequency class;

2. being realistic - here decision-makers take the frequency class with the highest
membership degree as it represents the most likely class that the true frequency
value lies in.

It should be noted that membership threshold can be set to zero if decision makers
want to be conservative 100%. Figure 4.10 shows an example of the different decision
options that can be used.

92



4.2 Proposed methodology: fuzzy semi-quantitative approach

1
𝐹2 𝐹1

0.5

0.2

𝐹3

0.8

Frequency of a dangerous phenomenon (A) in terms of 3 different frequency classes 
F1, F2 and F3 with membership degrees 0.2, 0.5 and  0.8 respectively.

1
𝐹2

Decision-making 
options

Option – 1 : being conservative

F2 is considered to represent the frequency 
class of A as it is the highest.  

1
𝐹3

0.8

1
𝐹2𝐹3

0.5

0.8

Option – 2: most possible

Set up a membership degree threshold

In this case, F3 is considered to represent the 
frequency class of A as it has the highest 

membership degree.  

Here the threshold is set at 0.3, class F1 is removed 
as its membership degree is less than 0.3. Then 

option-1 or 2 can be used to determine the class of 
A.

Step-1 

Step-2
0.5

Figure 4.10 – Decision making under fuzzy environment.

4.2.5 Handling the existing limitations of the interval approach

This section presents how the introducing of fuzzy concept deals with the limitations
1, 2 and 3 of the interval semi-quantitative approach discussed in Section 2.6.1. The
improvements that solve problems 1, 2 and 3 are presented below in Solutions 1, 2 and 3,
respectively.

— Solution-1 : for the discreteness issue, two events with different frequencies now
belong to different classes with different degrees (see events E1 and E2 in Figure
4.11(a)).

— Solution-2 : Figure 4.11(b) presents how the fuzzy approach solves the probability
underestimation problem. The output frequency is of classes F0 and F1, which
cover the output of the quantitative approach.
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— Solution-3 : a deviation due to error in the determination of input frequencies will
not affect the result nor the decision. The same example taken in Section 2.6.1 is
depicted in Figure 4.12. A small change in the possibility degrees is generated due
to the deviation where the classes are the same. Here, lies the effectiveness of fuzzy
theory in handling uncertainty.

F-1 F-2

…  

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚
𝒐𝒇 𝑩𝑬

𝑬𝟏 ∶ 11
𝑡𝑖𝑚𝑒𝑠/𝑦𝑒𝑎𝑟

…  
𝑬𝟐 ∶ 99

𝑡𝑖𝑚𝑒𝑠/𝑦𝑒𝑎𝑟

10
𝑡𝑖𝑚𝑒𝑠/𝑦𝑒𝑎𝑟

100
𝑡𝑖𝑚𝑒𝑠/𝑦𝑒𝑎𝑟

F-3

Fuzzy scale to handle vagueness

(a) Handling vagueness.

E

EI2

EI1

OR

𝟗. 𝟐 × 𝟏𝟎−𝟐

𝟗 × 𝟏𝟎−𝟑

𝟎. 𝟒𝟏 𝒊𝒏 𝑭𝟎
𝟎. 𝟓𝟗 𝒊𝒏 𝑭𝟏

𝟏. 𝟏 × 𝟏𝟎−𝟏

Fuzzy semi-
quantitative approach

Quantitative approach

Class 𝐹0

𝟎. 𝟑𝟗 𝒊𝒏 𝑭𝟏
𝟎. 𝟔𝟏 𝒊𝒏 𝑭𝟐

𝟎. 𝟒𝟏 𝒊𝒏 𝑭𝟎
𝟎. 𝟓𝟗 𝒊𝒏 𝑭𝟏

(b) Conservative estimation of output prob-
abilities.

Figure 4.11 – How the fuzzy semi-quantitative approach deals with the limitations mentioned in
Section 2.6.1.

E

EI2

EI1

1

…  
0.6

0.4

0.6 in F-1
0.4 in F-2

0.4 in F-1
0.6 in F-2

0.6 in F-1
0.4 in F-2

0.49 in F-1
0.51 in F-2

0.49 in F-1
0.51 in F-2

0.49 in F-1
0.51 in F-2

With deviation

Without deviation

The output without considering the deviation

The output with considering the deviation

…  

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚
𝒐𝒇 𝑩𝑬

…  

10
𝑡𝑖𝑚𝑒𝑠/𝑦𝑒𝑎𝑟

100
𝑡𝑖𝑚𝑒𝑠/𝑦𝑒𝑎𝑟

deviation𝜎 =

E1

𝜎

𝐹0 𝐹 − 1 𝐹 − 2

The output in terms of fuzzy numbers

𝐹 − 1 𝐹 − 2

…  

1

…  

𝐹 − 1 𝐹 − 2

…  
0.51
0.49

AND

Figure 4.12 – A deviation will not lead to different result that affects the decision.

This methodology will be illustrated in the next section and applied to a loss of
containment scenario.
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4.3 Case study

In this section, a bow-tie analysis for a LOC scenario is utilized to prove the utility and
effectiveness of the proposed methodology. This bow-tie is obtained from a risk analysis
study done by the INERIS for a legislation demand. The risk analysis is affiliated to
a tank farm of flammable solvents. Several solvents are implemented (methanol, iso-
octane, acetone, etc.). The main risk event is the spreading of these solvents in the
atmosphere. Causes and consequences of this main event were identified and the bow-tie
was constructed as presented in Figure 4.13. The goal is to determine the probability of
dangerous phenomena and major accidents.

The input data were collected from two different data bases (GT-DLT - [64] and BEVI
- [29]) and an expert in the field. Input for the analysis are extracted and calculated as
follows:

— frequencies of basic events: Five basic events were identified as presented below.

X basic events 1 & 2 - overfilling containers: This event may occur during unload-
ing the trucks to fill the tanks, eight tanks are concerned. It is caused from the
no re-circulation of substance from tank to tank due to industrial waste from
workshops. Two basic events are distinguished here depending on the presence
or not of persons (see Figure 4.13, the first two basic events). Based on GT-
DLI, the frequency of overfilling is 5.10−4/container/year. Eight containers
are concerned, then frequency is equal to 4.0× 10−3;

X basic event 3 - leak in tanks: the value suggested by the BEVI for leak in a
tank (1.1 × 10−4/tank/year) is used. Eight vessels are concerned, then the
frequency value of this basic event is equal to 8.8× 10−4;

X basic event 4 - leak in pumps: The value presented in BEVI (4.5 × 10−3) for
leak in a pump is used. Four pumps are presented in the farm, two are used
continuously for recycling (8760 hours/year). The other two are used to trans-
fer solvents where one is used 190 hours/year and the other 395 hours/year.
Thus, the input frequency value for this basic event is as calculated below:

Frequency = (4.5× 10−3) ∗ (1 ∗ 190 + 1 ∗ 395 + 2 ∗ 8760) = 9.3× 10−3 (4.15)

X basic event 5 - leak in pipes: The value suggest by the BEVI depends on the
length of the pipe (6.0× 10−6). Different pipes for different missions are used.
Pipes for recycling of length 20m that are full time used (8760hours/year) and
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others are less in use with length of 20m. The frequency value is:

Frequency = (6.0× 10−6) ∗ (20 ∗ 8760 + 20 ∗ 1620) = 1.4× 10−4 (4.16)

— probabilities of secondary events: probability of ignitions are determined based on
data from GT-DLI and of values equal 0.1;

— CLs of safety barriers: CLs of safety barriers are either elicited from the expert or
from BEVI. Four risk barrier are presented:

X barrier 1 - a human barrier on the overfilling event with presence of persons
that concerns of closing the valve if anything wrong happens. The CL of this
barrier is elicited from the expert who suggested CL1;

X barriers 2 & 3 - sensors that automatically close the valve in the case of over-
filling with probability of failure equal to 9.1× 10−1;

X barrier 4 - a gas detector with a probability of failure equals 1.0× 10−1.

These inputs are translated into fuzzy classes (the dashed rectangle beside each event
or risk barrier). These fuzzy classes are propagated through the Bow-Tie using the fuzzy
rules set in Section 4.2.3. The output fuzzy frequencies of the ERC and outcomes are
written on the bow-tie (the red dashed rectangles in Figure 4.13).

In addition to the proposed approach, quantitative and interval semi-quantitative
analyses were also performed for the same bow-tie. In order to compare these approaches,
the outputs are presented in Table 4.1. The output probabilities of the quantitative
approach are translated into classes for comparison purposes. The quantitative approach
does not consider uncertainty in the analysis. As there is no consideration of uncertainty,
this may lead to risk underestimation in some cases. However, the fuzzy approach presents
more accuracy than the interval approach where the output fuzzy classes cover the class
obtained using the quantitative approach. Fuzzy approach is more conservative than
the quantitative approach as uncertainty is considered (fuzzy numbers are used instead
of crisp values). Again the result from the quantitative approach lies within the result
obtained by the proposed approach, which makes the later more conservative.

For more clarity, let us make a decision about the formation of toxic gas dangerous
phenomenon. If we want to be conservative based on the fuzzy semi-quantitative ap-
proach, then class F1 is considered which is of probability level equal to A (see Table 2.6).
While F2 (probability level equals B ) and F3 (probability level equals C) are respectively
represent the frequency using the quantitative and the interval-based approach. This
example explain how fuzzy approach is more conservative than the two other approaches.

It should be noted that this difference between those three approaches is not often
the case. The fuzzy-based approach has been applied to different bow-ties were the same
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Outcomes
Quantitative 

approach

Interval semi-
quantitative 

approach

Fuzzy semi-
quantitative

approach

Spreading solvents 
in a large quantity

2.3 × 10−3 : F2 F3
0.42 𝑖𝑛 𝐹1
0.5 𝑖𝑛 𝐹2
0.63 𝑖𝑛 𝐹3

Explosion
UVCE

2.3 × 10−4 : F3 F4
0.42 𝑖𝑛 𝐹2
0.5 𝑖𝑛 𝐹3
0.63 𝑖𝑛 𝐹4

Formation of toxic 
gas

2.3 × 10−3 : F2 F3
0.42 𝑖𝑛 𝐹1
0.5 𝑖𝑛 𝐹2
0.63 𝑖𝑛 𝐹3

Pool fire 2.3 × 10−4 : F3 F4
0.42 𝑖𝑛 𝐹2
0.5 𝑖𝑛 𝐹3
0.63 𝑖𝑛 𝐹4

Toxic effect 2.3 × 10−3 : F2 F3
0.42 𝑖𝑛 𝐹1
0.5 𝑖𝑛 𝐹2
0.63 𝑖𝑛 𝐹3

D: Unlikely C: Moderate B: Likely A: Very LikelyProbability levels, see Table 5

Tableau 4.1 – Estimated results obtained using quantitative, interval semi-quantitative and fuzzy
semi quantitative approaches.

result as the quantitative and the interval-based approach in term of final probability level
were obtained.

4.4 Conclusion

Probability analysis of dangerous phenomena has become a necessary step in risk
analysis. Qualitative or quantitative probability analysis can be performed depending on
the type of data available. This data is derived from different sources (historical accident
data or expert judgments in terms of numerical values or linguistic variables, respectively).
Quantitative information for a quantitative analysis is expensive and not always provided.
Qualitative analysis is subjective and may lead to loss of quantitative information if it
exists. In addition, the accuracy of the analysis based on these approaches still a major
issue since uncertainty is not taken into consideration. That is why this chapter proposes a
fuzzy-semi quantitative approach relying on the available information from historical data
or experts if the former is not available. Fuzzy theory is introduced to handle uncertainty
due to imprecision and vagueness in defining the frequency scale. Fuzzy rules are set to
propagate the fuzzy input classes through the Bow-Tie analysis.

This methodology is applied to a Bow-Tie case study for a LOC scenario. A com-
parison with the quantitative and the interval semi-quantitative approaches is discussed.
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The results show that the proposed methodology provides more simplicity and accuracy
in the quantification, in addition to the consideration of uncertainty.
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Figure 4.13 – The bow-tie diagram of the LOC scenario under study.
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5
Treatment of aleatory and epistemic
uncertainties in analyzing the effect

of risks
Summary: Quantifying uncertainty during risk analysis has

become an important part of effective decision-making. In this
chapter, we will present global approaches to treat uncertainty in
effect analysis. A fuzzy-probabilistic approach to treat imprecision
and variability separately is proposed. A global approach to treat
all causes of uncertainty with the best theory is developed.
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Chapter 5. Treatment of aleatory and epistemic uncertainties in analyzing the effect of
risks

5.1 Introduction

In this chapter we are going to propose uncertainty analysis methodologies to treat
the two types of parameter uncertainty separately. The first methodology is a hybrid
fuzzy-probabilistic approach that deal with the two most faced causes of parameter un-
certainty: variability and imprecision. The second methodology is an extension of the
first methodology where Dempster-Shafer theory of evidence is introduced to deal with
ignorance, incomplete information and lack of consensus. This methodology represents
a global, exhaustive approach that can treat all causes of parameter uncertainty if affect
the same analysis with the best representations.

Section 5.2 presents the hybrid fuzzy-probabilistic approach. In Section 5.2, first, we
will start by a review on existing hybrid approaches that separately deal with epistemic
and aleatoric uncertainties. Then we present the limits of these existing approaches and
why a new hybrid approach with a new propagation algorithm is needed. The proposed
methodology uses probability theory, fuzzy numbers and fuzzy random variables to rep-
resent variability, imprecision and if these two causes of uncertainty affect the same input
parameter, respectively. Monte Carlo simulations are performed to propagate these rep-
resentations through the risk models. The proposed hybrid approach is applied to an
over-pressure scenario in a propylene oxide polymerisation reactor to prove its utility and
effectiveness.

In Section 5.3, the proposed hybrid approach and the approaches reviewed in Chapter
3, Section 3.1 (not-hybrid) are applied to a case study of an atmospheric dispersion sce-
nario. This application aims to compare between the hybrid and the existing approaches
and to prove why different causes should be treated separately with different represen-
tations. Based on this comparison, a guidance on how parameter uncertainty should be
treated is provided.

The last part of this Chapter develops a methodology that cover an overall uncertainty
analysis approach and a decision making framework under parameter uncertainty (Section
5.4). This methodology aims to treat each cause of parameter uncertainty with the best
suitable mathematical tool. In this methodology, probability theory is used to represent
variability, fuzzy numbers are used to represent imprecision and evidence theory is used to
represent ignorance, incompleteness and the lack of consensus. The represented parame-
ters are propagated using a 2-stages MC simulation. The proposed methodology is applied
on a loss of containment scenario (LOC). The objective is to calculate the toxic effect at
a specific end point with consideration of parameter uncertainty. Finally, the developed
methodology is discussed and compared against the pure probabilistic approach.

It should be noted that the proposed approaches can be used in any filed to solve any
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problem regarding parametric uncertainty. The provided guidelines will help risk analysts
at any domain to treat parameter uncertainty that affect the input parameters with the
best representation, the least time consuming and the most precise calculation based on
the available data at hand.

5.2 A new uncertainty analysis approach with ran-
domness and fuzzy theory to deal with variability
and imprecision

5.2.1 Introduction

In this section, we propose a hybrid random-fuzzy approach for capturing uncertainty
during risk analysis. The approach proposed here is not the first hybrid fuzzy-probabilistic
approach. The hybrid approach is a new approach proposed in recent studies by ([168];
[24]; [74]; [95]). It uses a combination of probability and possibility theories to address
uncertainty related to model parameters. In [14], the authors argue that probabilistic
methods are not sufficient to represent epistemic uncertainty. Therefore, this approach
aims to represent variability due to aleatory uncertainty and the vagueness and impreci-
sion related to epistemic uncertainty using probability distributions and fuzzy numbers
respectively. The method presented in this study is considerably different from the exist-
ing mixed approaches in that random fuzzy numbers are introduced and a new uncertainty
propagation algorithm adapted to all cases and to dynamic systems is proposed. The al-
gorithms of existing methods can produce results that are wrong. A detailed explanation
of the advantages of this approach will be given later.

In order to present the possibilities offered by this mixed approach: in section 2, we
present the problem of not treating epistemic and aleatory uncertainties separately; in
section 3, we present the proposed hybrid approach; in section 4, we apply the proposed
approach to a case study in a chemical reactor.

5.2.2 Problem statement

We shall now introduce the problem and discuss the overall methodology behind the
proposed solution. The problem has been crafted to enable us to focus on the issues of risk
analysis when calculating the severity of risk taking into account parameter uncertainty.

Very often, the parameters influencing the risk of exposure to failure in industry are
fraught with uncertainty. One method commonly used to address this uncertainty is the
Monte Carlo method, which applies probability theory and relies on a statistical repre-
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sentation of available information. Our challenge is how to represent uncertainty relating
to parameters when there is insufficient information available for statistical identification
(epistemic uncertainty). This is the problem we shall study when the risk model input
values are imprecise.

As mentioned in Chapter 1, calculating the effect of risk is most often described by
a mathematical model. This mathematical representation is affected by both types of
uncertainty. Uncertainty can occur in the parameters of the mathematical model. The
particular context of our study is shown in Figure.5.1.

Figure 5.1 – Uncertainty presented in the analysis and its effects.

This figure shows a mathematical model for calculating the effect of a risk. We consider
that the system model is made up of: input parameters (x1, x2, ..., xn) derived from two
analyst teams, the model equation (the mathematical model used by the simulation), and
outputs. The challenge is to address the issues relating to the representation of parameter-
related information (see Figure 5.1). However, this information may not necessarily be
accurate. It may be based on experimental data and measurement, and therefore be
known statistically, or based on expert opinion and therefore be known with a certain
degree of inaccuracy. Both types of uncertainty can influence parameters. In addition,
while some parameter values are known statistically, the mean or standard deviation of
their distribution is uncertain, i.e. it is known in terms of intervals. This means that
these parameters are affected by aleatory and epistemic uncertainty.
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5.2.3 Proposed fuzzy-probabilistic approach

In this section we present the structure of the proposed approach. This approach will
be applied in the next section on a chemical process example. Before proceeding, it is
significant to note that, as we mention in the introduction, this approach is not the first to
mix probability and fuzzy numbers. However, existing approaches are based on the Monte
Carlo method combined with fuzzy calculus to propagate parameter uncertainties through
the risk model. Fuzzy calculus using the α− cut method is the same as interval analysis
but for different levels of likelihoods. The existing methods can lead to incorrect results
in some cases. The first is when computer programs are used for the analysis, they can
act as black boxes (model equations inside these programs are not known). Knowledge
relating to the input parameters of these black boxes can be uncertain. Interval analysis
can be problematic when the program’s models are hidden. For example, suppose the
program hides the expression F = 1/y, then the lower bound of the input must be used
to calculate the upper bound of result. A second issue which is often presented in the
dynamic models when they are not-monotonic [59]. For example, f(y) = (y − 1)2 and
y = [0, 4]; using interval analysis the result of this equation is calculated using the two
bounds of the inputs interval (f(0) = (0− 1)2 = 1 and f(4) = (4− 1)2 = 9). Hence, the
result is equal to [1, 9]. The true lower bound of the output is obtained from the input
value y = 1 (f(1) = (1− 1)2 = 0) which is presented inside the input interval. Thus, the
non-monotonicity requires the entire interval to be considered. In this case, simulation
methods such as the Monte Carlo method would be useful. Other techniques also exist,
such as the method proposed in [117].

5.2.3.1 Difference between probability and possibility

Before going into detail, it is important to explain the difference between fuzzy logic
and randomness. We will do this with the help of the bottle example shown in Figure
5.2. The figure shows two bottles of water, A and B, where ‘A’ has a membership value
of 0.9 in the set of all potable liquids, while bottle ‘B’ has a 0.9 probability of containing
potable liquid. Let us assume that a thirsty person happens upon these two bottles of
water with their uncertainty in relation to their suitability for drinking. The question is
which one should the person choose?

The rational decision is to choose bottle ‘A’, since a 0.9 membership means that 0.9
of its content is potable liquid, making it almost perfectly potable. Since ‘B’ has a 0.9
probability of containing potable liquid, this means there is a 10% chance that the contents
are swamp water or lethal. In other words, there is a 1 in 10 chance that anybody who
drinks it may be poisoned. Let us assume that after sampling, A contains a drinkable
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Figure 5.2 – Two bottles of liquid with their uncertainty representations.

liquid (juice) while B contains a toxic liquid. This means that the membership value
remains the same, whereas the probability value of B is resolved from 0.9 to 0. The
example therefore shows that a probability value is not the same as a fuzzy value.

5.2.3.2 Why a different new hybrid approach is needed

As seen, different mathematical theories are used in this approach when most uncer-
tainty analysis focus on pure probabilistic approaches. Recently, several researchers have
agreed that epistemic and aleatory uncertainty must be treated separately ([16]; [168];
[17]). [60] have demonstrated that, due to the vagueness, the treatment of epistemic
uncertainty using probability theory may result in an unconservative estimation (mini-
mization) of risk when additional and unjustified information is provided for the output
result.

To understand this further, let us consider the example taken by [60] adding a number
of modifications to pinpoint the importance of using a mixed or hybrid approach for
dealing with uncertainties in the risk assessment process. Suppose that f = A+B, where
A and B are two numbers somewhere between {1, 3} and {1, 5}. This represents the only
available information about these two parameters. At first, the treatment of uncertainties
related to these two parameters using the possibility theory aims to give a possibility
distribution in terms of fuzzy numbers for A and B. When there is no information about
the shape of the distributions, the same degree of possibility equal to one is given to each
element inside the two intervals (see Figure 5.3(a)). The addition of the fuzzy numbers A
and B is the interval [2, 8] with a constant membership function (possibility distribution)
equal to one for all elements within this interval.

On the other hand, a probabilistic representation of these parameters is given in terms
of uniform probability distributions for both variables. Choosing any other distribution
would involve additional unjustified information about the parameters. The probability
density function and the cumulative distribution of the addition are shown in Figure
5.3(b). The result of this case tells us that the addition must lie between 2 and 8, as in
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the previous case, but has a greater chance of being a value close to the central tendency.
At 95 percentile of probability, the addition would be less than or equal to 7 (risk decisions
are mostly made at 95 of probability).

In the third case (see Figure 5.3(c)), we represent A using a uniform probability
distribution while B is represented using a possibility distribution. The result is depicted
as a bunch of fuzzy numbers (a fuzzy number is generated for each sample from the
probability distribution). The fuzzy cumulative distribution is also shown in the same
Figure. In this case, at 95 percentile of probability would be the fuzzy number [3.9, 7.9]
with the possibility equal to 1 in the entire interval (the values obtained in the three
methods are accurate obtained from a real simulation).

Figure 5.3 clearly shows that handling uncertainty using a purely probabilistic ap-
proach may result in an underestimation of the risk when insufficient information is
available to build the distribution and assumptions must be made about the missing
information. On the other hand, if all the parameters were represented by fuzzy numbers,
despite the fact that some could be justifiably represented by PDFs, the range of results
would be too conservative. Thus, a mixed approach offers an effective alternative between
the missing information and the risk underestimation.

(a) Representing and propagating uncertainty in A and B using the fuzzy approach.

(b) Representing and propagating uncertainty in A and B using the probabilistic ap-
proach.

(c) Representing and propagating uncertainty in A and B using the mixed probabilistic-
fuzzy approach.

Figure 5.3 – Addition of A and B with the consideration of uncertainty.
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As highlighted above, the mixed approach uses all the available information and en-
sures that the risk calculation is conservative. This ensures that the true value of the risk
is between the calculated bounds. It should be noted that in risk analysis and in addition
to the precise parameters that may be provided, others vary randomly when we can ob-
serve the frequency of their values. Furthermore, knowledge relating to other parameters
is either poor or inexistent due to imprecision and vagueness. Frequencies, if available,
provide a structure on which to build probability distributions, while a lack of informa-
tion often restricts the performance of the analysis. In this situation, expert elicitation
provides an alternative to collecting more information for the analysis ([35]; [57]; [53];
[54]). Several techniques have been proposed to address uncertainty in relation to expert
judgment and the fuzzy representation of expert elicitation is one of the most popular
[158]. [19] propose a chart to define the elicitation of experts in terms of triangular fuzzy
numbers where the only required data are the most likely values ( see related articles by
[19]; [107]; [136]). Thus, all these reasons approve why an alternative mixed approach will
result in a better estimating and understanding of uncertainty in risk analysis.

5.2.4 Uncertainty representation

The first step is to represent uncertainty. The types of uncertainty can be found and
represented as follows:

1. aleatory uncertainty will be represented by random variables based on probability
theory;

2. epistemic uncertainty due to imprecision will be represented in terms of fuzzy num-
bers;

3. the third case can be observed when both types of uncertainty affect the same
parameters. In this special case, fuzzy random variables are used to represent the
mixture of both types. The concept of Fuzzy Random Variables is detailed in the
rest of this section.

Randomness and fuzziness can be merged to formulate a fuzzy random variable (FRV).
An “FRV can be seen as a random variable taking fuzzy values”. An FRV can be repre-
sented by its set of membership functions and its associated probabilities. For example,
for two alternatives with probabilities p1 and p2:

FRV =


(h1, h2, h3) with probability p1

(b1, b2, b3) with probability p2
(5.1)
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FRVs are used when there are sources of uncertainty that random variables or fuzzy
numbers cannot accommodate alone. This is the case, for example, when a parameter is
known but with a certain degree of imprecision. In other words, it has a range of values
and that range of values can have a random variation.

A detailed presentation of concepts and definitions relating to the theory of fuzzy
random variables is given by [144]. A fuzzy random variable X might be described math-
ematically by a fuzzy probability distribution function F̃ (x). Figure 5.4(a) presents an
example of a PDF (Probability Density Function), where the distribution mean is a fuzzy
number (Triangular Fuzzy Number) which gives a PDF for each µ between µL and µU .
The lower, upper and middle PDF (greater membership value) are represented in the
same figure. The cumulative fuzzy distribution function is presented in figure 5.4(b). The
figure also shows the fuzzy version of F(x) while the solid line represents F(x) for µ = 1,
and the dashed lines µ = 0. The figure also shows the membership associated with F̃ (xj)
for a given Xj.

(a) The fuzzy mean of the distribution. (b) The fuzzy cumulative distribution function.

Figure 5.4 – Representation of a fuzzy random variable.

Thus, probability distributions, fuzzy numbers and fuzzy random variables can be
used to represent uncertainty related to inputs as well as to the output. A simulation
approach based on the Monte Carlo analysis can be used to propagate uncertainty in the
input as described in what follows.

5.2.5 Uncertainty propagation

Figure 5.5 shows how we incorporate the three types of uncertainty in the risk analysis
of dynamic systems and the general algorithm used for the simulations. The dynamic
system is described by a mathematical model. The parameters of this model are described
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by probability distribution, fuzzy numbers or fuzzy random variables according to the type
of uncertainty, which may be epistemic or aleatory or a mixture of both types.

Figure 5.5 – Representation and propagation of uncertainty.

In order to explain our algorithm, we shall start by presenting the MC simulation for
random variables. Following this, we shall show how this is extended to propagate the
fuzzy numbers. We shall then use the same approach in a 2-stages scheme to propagate
the fuzzy random variables. A detailed description of these propagation techniques is
presented in the next three sections.

5.2.5.1 Monte Carlo to propagate Random Variables

In this case, where we take into consideration the existing aleatory uncertainty, the sys-
tem’s parameters are described by random variables in terms of probability distributions
(see Figure 5.6). The main simulation steps are listed in Chapter 3, Section 3.1.2.

Figure 5.6 – Use of Monte Carlo to estimate the output probability distribution.

5.2.5.2 Monte Carlo to propagate uncertainty described by fuzzy numbers

The principle of the simulation is based on the Monte Carlo method that relies on
repeated random sampling. For the parameters described by a fuzzy number, sampling
is performed according to a uniform law or a Gaussian law to give more or less weight to
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the extremities. Then the membership function is associated with the sampled value (see
Figure 5.7). To understand the basics of this propagation, let us assume that Z = f(Y ) =
f(X1, X2, ..., Xn). This represents the model of a system together with its uncertain
variables, which are represented by fuzzy numbers. The propagation steps are listed
below:

— set i = 1 and N = number of samples;

— for each imprecise parameter represented by fuzzy numbers, take a value with its
membership degree using MC (these values and the related membership values rep-
resent the input parameters in the model system equations) where for each sample
yi = (x1, x2, ..., xn) and α(yi) = (α(x1), α(x2), ..., α(xn)) are taken and α is the
membership degree;

— calculate the value zi = f(yi) = f(x1, x2, ..., xn), where the membership of zi
is obtained using the extension principle of fuzzy numbers (α(zi) = minimum of
(α(x1), α(x2), ..., α(xn)), if zi has been obtained earlier from another sample then
the maximum membership between it and the old membership is given to zi);

— if i < N set i = i+ 1 then return to step 2. Otherwise, go to 5;

— after n MC samples, n values are obtained with their possibility degrees that generate
the fuzzy result, see Figure 5.7.

Figure 5.7 – Use of Monte Carlo to estimate the fuzzy result.

5.2.5.3 2D Monte Carlo to propagate Fuzzy Random Variables

Existing approaches cannot be used on this complex case. Instead, a two-dimensional
Monte Carlo simulation is performed using the system’s parameters in order to estimate
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the random fuzzy output. Figure 5.8 and the framework in Figure 6.2 show the steps
required to apply the proposed method: let us assume that Z = f(Y ) = f(Ai, Bj, Ck) =
f(A1, ..., An, B1, ..., Bm, C1, ..., Cq) representing the model of the system where Ai, i =
1, ...n are affected by aleatory uncertainty, Bj, j = 1...m by epistemic and Ck, k = 1, ...q
by a mixture of both.

1. set v = 0, w = 0 and M, N are the numbers of samples for the first and second loop
MC respectively;

2. from each stochastic and mixed uncertainty (represented by fuzzy random vari-
ables), a value (crisp value from each probability distribution) and a triangular
fuzzy number (from each fuzzy random variable) are obtained using the first Monte
Carlo sampling: av = (av1, ..., avn) and c = (cv1, ..., cvq), where cvk are triangular
fuzzy numbers;

3. a second Monte Carlo loop is performed to take samples from the fuzzy numbers
(those taken in the first loop and those reflecting epistemic uncertainty) as explained
above; this means that y = f(av1, ..., avn, bw1, ..., bwm, cvw1, ..., cvwq) where bwj and
cvwk are crisp values from the triangular fuzzy numbers;

4. calculate zvw = y = f(av1, ..., avn, bw1, ..., bwm, cvw1, ..., cvwq) to obtain a crisp value
with its membership degree. The membership of zvw is obtained using the extension
principle of fuzzy numbers as follows:

(α(zvw) = minimum of (α(av1), ..., α(avn), ..., α(cvw1), ..., α(cvwq))

if zvw has been obtained earlier from another sample then the maximum membership
between it and the old membership is given to zvw);

5. if w < N , return to step 3, otherwise go to 6;

6. generate the fuzzy number zv from the N calculated samples;

7. if v < M , go back to step 2, otherwise go to 7;

8. after the simulations, M triangular fuzzy numbers are obtained. The CDFs of these
results are plotted.

This algorithm will be illustrated in the next section and applied to the case of a
chemical reactor.
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Figure 5.8 – Use of a 2D Monte Carlo simulation to handle aleatory, epistemic and mixed uncer-
tainties in risk assessment for dynamic systems.
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Figure 5.9 – Modeling simulations of the system using fuzzy input.

5.2.6 Case study - Application of the proposed hybrid approach
to effect analysis with considering of parameter uncertain-
ties

5.2.7 Description

The methodology developed is applied to an over-pressure scenario in a Propylene
Oxide Polymerization Reactor. The aim is to calculate the intensity of a runaway reac-
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tion caused by a failure in the cooling water system taking uncertainty into consideration.
The severity associated with this cooling failure is very high. Java software was devel-
oped to implement the differential equations of the reactor, the theories of uncertainty
representation and the computation algorithms.

Figure 5.10 – Polymerization reactor with its cooling unit and bursting disk.

5.2.7.1 Reactor model

Propylene oxide polymerization is a highly exothermic process performed at high pres-
sures. An almost isothermal operation is required in order to prevent runaway conditions
and the build-up of pressure exceeding the reactor’s design pressure. The safety problems
associated with the operation of such a reactor are described by [66]. The reactor, which
includes a bursting disk for pressure relief in the event of excessive pressure build-up,
was mathematically modeled and simulated by [112]. These researchers considered the
manufacture of a polyol lubricant by step-wise condensation of the propylene oxide with
butanol:

C4H9OH + (n+ 1)C3H6O − > C4H9(OC3H6)nOCH2CHOHCH3 + heat (5.2)

The catalyzed alcohol is loaded into the reactor up to the “initial” level. The oxide
is fed into the reactor at a constant rate until the batch is ready and the reactor is full.
Excess heat from the reaction is removed via an external heat removal system. The
reaction must be completed at the highest possible rate for economical reasons. The
reaction rate is a function of the temperature, catalyst concentration, and the liquid
phase oxide concentration (which is a function of the pressure). The limits in relation
to the reactor temperature and the catalyst concentration are set according to thermal
degradation and purification difficulties. To maximize the reaction rate, the pressure must
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be kept as high as possible for the entire duration of the batch. The higher limits of the
pressure and reaction rate are dictated by the reactor system pressure suitability and the
feasible heat removal rate.

The mathematical model of the reactor, the heat removal system and the bursting
disk orifice, as proposed by [112], is shown in Table 5.1. In the system model, Eq.
A1-1 corresponds to the variation of the total mass in the reactor (M) over time. The
concentration of oxides is given by Eq. A1-19, where C is the oxide mass (Eq. A1-2) per
total mass in the reactor. The mass of oxide reacted is calculated by Eq. A1-3, where X is
the mass of oxide reacted at time t. Eq. A1-4 enables the calculation of the temperature
in the system. Under normal operating conditions, the reacting mass is re-circulated
through the external heat removal system at a flow rate of Fc and cooled to temperature
T0 (see equations A1-4 and A1-15 in Table 5.1). The bursting disk is intact (Open = 0,
see equation A1-5) and the vapor discharge rate through orifice V is zero (see eq. A1-7).
If, for some reason, the pressure exceeds the limit of Pburst, the bursting disk ruptures. In
this case, the variable ‘Open’ becomes greater than zero (eq. A1-5) and vapor discharge
is initiated (eq. A1-7) at either a sonic (eq. A1-9) or subsonic (eq. A1-10) discharge rate.
The latent heat of vaporization of the discharging oxide cools down the reactor (see eqs.
A1-4 and A1-13) and the reaction essentially stops. When the disk ruptures, the feed to
the reactor is stopped (eq. A1-6).

5.2.7.2 Computation of exposed area

In our study we propose to use the TNT equivalent method to calculate the zone
affected by the explosion in the case of failure (runaway reaction). For a given TNT
mass, the distance at which a pressure is reached is given by the following relation:

di = λi(MTNT )(1/3) (5.3)

The λ value is determined based on the pressure using the TM5 1300 abacus, Table
5.2. The equivalent TNT mass of a product is determined by the equation:

MTNT = n
M.4H

4690 (5.4)

where

— M is the mass released;

— n in Eq. 5.4 is the performance coefficient with an order of 10 %;

— 4H is the combustion enthalpy of product (kJ/kg), in our system 4H = 45790.
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Tableau 5.1 – Model equations and output variable description for the system.

No. Name Definition Initial value Model equation - Runaway polymer-
ization reaction

A1-1 M Total mass in the reactor(Kg) M(0)=4400 d(M/d(t))=F-V
A1-2 MC Oxide mass in the reactor(Kg) MC(0)=0 d(MC/d(t))=F-V-r
A1-3 X The mass of oxide reacted (kg) X(0)=0 d(X)/d(t) = r
A1-4 TR Temperature in the reactor(C) TR(0)=80 d(TR)/dt=(Hc-Hv-Qg-

Qr)/(M*Cp)
A1-5 Open Status of the burst disk: 0 closed,

>0 open
Open(0)=0 d(Open)/d(t) = if (P <Pburst) then

(0) else (0.001)
A1-6 F Oxide feed rate (kg/min) F = if (Open>0) then (0) else (100)
A1-7 V Vapor discharge rate (kg/min) V = if ((P<=1) or (Open==0))

then (0) else (V1)
A1-8 V1 Vapor discharge rate (kg/min) V1 = if (P<1.9) then (Vsubs) else

(Vs)
A1-9 Vs Sonic vapor discharge rate

(kg/min)
Vs=0.85*Kv*P/sqrt(TR+273)

A1-10 Vsubs Sub-sonic - vapor discharge rate
(kg/min)

V subs = Kv ∗P/sqrt((TR+ 273)) ∗
sqrt(1 + 1/P 2)

A1-11 r Reaction rate (kg oxide/min) r = k*MC
A1-12 Hc Feed enthalpy change (kJ/min) Hc= F*Cp*(T0-TR)
A1-13 Hv Latent heat of vapor discharge

(kJ/min)
Hv=V*Lamda

A1-14 Qg Heat of reaction (kJ/min) Qg=r*HR
A1-15 Qr Heat removal (kJ/min) Qr=Fc*Cp*(TR-T0)
A1-16 P Oxide vapor pressure (bar) P = if (P1<1) then (1) else (P1)
A1-17 P1 Oxide vapor pressure (bar) P1 = (exp(-

3430/(TR+273)+11.7)+1.45e-
3*MW)*C

A1-18 k Reaction rate coefficient k = 9e9*exp(-E/(R*(TR+273)))
A1-19 C Oxide concentration (kg/kg) C = MC/M
A1-20 MW Molecular weight of the polymer

(kg/mol)
MW = (M0+X)/(M0/74)

A1-21 T0 Feed temperature (◦C) T0 = 80
A1-22 Lamda Lamda Heat of vaporization of

the oxide (kj/kg)
Lamda = 670

A1-23 Cp Spec. heat of feed reacting mass
(kJ/kg-◦C)

Cp = 3.5

A1-24 HR Heat of reaction (kJ/ kg oxide) HR = -1660
A1-25 Fc Re-circulation mass flow rate

(kg/min)
Fc = 3300

A1-26 Pburst Disk rupture pressure (bar) Pburst = 8
A1-27 R Gas constant R = 1.987
A1-28 E Activation energy E = 21000
A1-29 M0 Initial alcohol charge (kg) M0 = 4400
A1-30 Kv Valve discharge coefficient Kv = 100

5.2.7.3 Uncertainty modeling

This section will define the uncertain parameters presented in the system under study.
A suitable representation is then given for each one based on the type of uncertainty
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Over-pressure(mbar) Reduced Distance λ (TM5-1300 abacus)(m)
50 22
140 10.1
170 8.9
200 7.6

Tableau 5.2 – Lamda using the TM5 1300 abacus.

affecting it. These uncertain parameters are presented as follows:

— the time of failure of the cooling system is modeled using random variables based
on an exponential probability distribution - this is an aleatory uncertainty;

— the initial mass and temperature of the reactor are known but with a certain de-
gree of imprecision (based on an expert elicitation) - epistemic uncertainty -
represented by triangular fuzzy numbers (see Table 5.3);

— the time response of the operator in an emergency situation is more complex when
it comes to modeling and we shall therefore use fuzzy random variables since it
involves both - aleatory and epistemic uncertainty.

Fuzzy numbers Lower value Mean value Upper value
Initial mass in the reactor [Kg] 4400 5000 6000
Temperature in the reactor [◦C] 80 90 100

Tableau 5.3 – Fuzzy numbers for uncertain parameters.

5.2.7.4 Simulation conditions

The model of the system under study includes six differential equations: mass balance
in the reactor (yields the total mass); component balance (yields the mass of the oxide
component); enthalpy balance (yields the temperature in the reactor); reaction rate (yields
the mass of oxide reacted); the bursting disk (open or closed); and the vapor discharge
rate. These equations are solved using an ODE solver. The simulations of this system are
developed for a batch duration of 800 min. The first simulation is under normal conditions
(i.e. no breakdown) to see how the system behaves, how the temperature varies over time,
etc. The second is under abnormal conditions. The aim is again to see how the system
behaves but also to calculate the severity of the consequences (areas affected), but without
taking into account input data uncertainty. The third simulation takes into account input
data uncertainty to see what the effects of this uncertainty are.
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5.2.7.4.1 Simulation under normal conditions

We first simulate the system under normal conditions without considering uncertainty.
All the system’s parameters are crisp values and are presented in Table 5.1.

The changes to the system are computed while the total mass in the reactor (M in kg),
the Oxide mass in the reactor (Mc in kg), the temperature, the mass of the oxide reacted
(Kg), the status of the bursting disk (Open), and the Vapor discharge rate (kg/min−1)
are plotted over time (see Figure 5.11). This simulation is used as a reference.

5.2.7.4.2 Abnormal condition without uncertainty

Let us consider a situation where there is a cooling water failure lasting 12 minutes
and occurring 700 minutes from the start of the batch. In order to simulate the reactor’s
operation under such abnormal conditions, some necessary changes are introduced into
the model’s equations.

if ( (t > 700) & (t < 712) ) {Fc = 0}

The results for the output parameters (M, MC, TR, X, Open, V) for normal and
abnormal conditions are presented in Figure 5.11 and Figure 5.12 respectively. Using
this new model, we can make a comparison between the output parameters under normal
conditions and in the case where there is a cooling failure. It is clear that in the abnormal
case the temperature reaches a maximal value of 310 ◦C (see Figure C5.12(c)), whereas
under normal conditions the maximal value is 112 ◦C (see Figure C5.11(c)). This ab-
normal increase in temperature ruptures the bursting disk resulting in a release of toxins
(Figures C5.12(e) and C5.12(f)). The mass released (mass of vapor discharged after the
failure, see Figure C5.12(f)) following the cooling failure is used to calculate the area
affected when the explosion takes place (see Section 5.2.7.2). After estimating the mass
released, the affected area for this mass is calculated. The distance is represented by a
crisp value since uncertainty is not taken into account in this case.

The mass released and the radius of the affected area in the case of failure are:

Mass released = 318.92

Affected area represented by a crisp value

Affected area = 217.23

we will use these values as reference in the next section.
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(a) Total mass of the reactor. (b) Oxide mass in the reactor.

(c) Temperature in the reactor. (d) The mass of oxide reactor.

(e) Status of the burst disk. (f) Vapor discharge rate.

Figure 5.11 – Simulation under normal conditions with normal numbers.
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(a) Total mass of the reactor. (b) Oxide mass in the reactor.

(c) Temperature in the reactor. (d) The mass of oxide reactor.

(e) Status of the burst disk. (f) Vapor discharge rate.

Figure 5.12 – Simulation under abnormal conditions with normal numbers.
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5.2.7.4.3 Abnormal conditions with uncertainty

To provide a better understanding of how to handle each type of uncertainty, three
kinds of simulation are performed. The first simulation aims to represent and propagate
aleatory uncertainty presented in the time-to-failure of the cooling system using the Monte
Carlo method, as explained in Section 5.2.5.1. The second aims to propagate epistemic
uncertainty relating to certain input parameters and stemming from the inability to de-
termine exact values (see Section 5.2.5.2). The last aims to represent all uncertainty types
affecting the system under study (aleatory, epistemic and mixed), see Section 5.2.5.3.

Figure 5.13 – CDF of mass released after consideration of aleatory uncertainty.

Uncertainty represented by random variables In this simulation, only the
aleatory uncertainty is taken into account. The time of failure of the cooling system
is the only uncertain parameter and is represented by a random variable. Instead of
being represented by a crisp value, the time of failure is randomly chosen as in Section
5.2.7.4.2. 12 minutes is taken as the duration of each failure. The simulation is performed
as detailed in Section 5.2.5.1 with 104 samples and depicted in Figure 5.13.

The result shows that a variation in failure time leads to a variation in the mass
released. Failing to take this uncertainty into account may result in an underestimation
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of the outputs or other issues in the analysis.

Uncertainty represented by fuzzy numbers The initial inputs are represented
by crisp and triangular fuzzy numbers to reflect the imprecise parameters. As mentioned
in Section 5.2.7.3, the imprecise parameters are as follows:

— M=(4400, 5000, 6000); // Triangular fuzzy number

— TR=(80, 90, 100);// Triangular fuzzy number

The principle of the simulation is presented in Figure 5.7.
To understand the extent of the imprecision, the time of cooling system failure is taken

to be the same as in Section 5.2.7.4.2. In order to know the sample numbers required to
perform an efficient Monte Carlo simulation, the simulations are performed with 5, 000
and 10, 000 simulations according to Uniform and Gaussian distribution laws. Then, the
fuzzy mass released is generated and the fuzzy distance is calculated.

The results of these simulations are presented in Figure 5.14. We can see that 5, 000
samples are sufficient to generate a correct estimation as are 10, 000. In addition, the
laws used to generate the samples do not affect the output since both laws show the same
result.

After estimating the fuzzy mass released, we generate the minimum and maximum
mass released to restrict the distances affected by this fuzzy mass. The values for the
fuzzy mass released and the fuzzy zone affected are depicted in Table 5.4. The outputs
of the simulation show that the mass released and the distance affected, calculated in
Section 5.2.7.4.2, are between the two borders of the fuzzy outputs (see Table 5.4).

Tableau 5.4 – Fuzzy distance and fuzzy mass released for the simulations.
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(a) Masses with Uniform law 5000 samples. (b) Masses with Gaussian law 5000 samples.

(c) Masses with Uniform law 10000 samples. (d) Masses with Gaussian law 10000 samples.

Figure 5.14 – Masses released after the simulations.

Uncertainty represented by fuzzy random variable In this case, as well as rep-
resenting the variability of the cooling system time of failure and parameter imprecision,
an operator acting on a sprinkler system has been added to the model. This makes it
possible to adjust the failure of the cooling system if presented. Statistically, the response
of this operator is imprecisely known, meaning that both uncertainty types apply. Thus,
the system model is affected by all three types of uncertainty: aleatory, epistemic and
mixed. The response of the sprinkler is represented using a fuzzy random variable because
it is manually turned on in an abnormal situation. Several operators (human beings) are
responsible for doing this although each uses his/her own personal experience when re-
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acting to such a situation. Their behavior can thus differ. These different “experts” may
therefore respond differently (variability between the different experts can be observed).
The imprecision relating to each operator’s response can be presented according to their
experience and what they are doing when the abnormal situation happens.

To represent the operator in the model, a new term Qdeluge will be added to the relation
dTR/dt in Table 5.1 eq. 3.

dTR = (Hc−Hv −Qg −Qr −Qdeluge)/(M ∗ Cp) (5.5)

where

Qdeluge = Fdeluge ∗ A ∗ Cp ∗ (TR− T0) (5.6)

Fdeluge must be set by test error to obtain a cooling time response able to adjust the
failure and prevent the runaway reaction (details are presented in the next section). This
cooling helps to minimize the pressure and thus limits the release.

The simulation is performed as explained in Section 5.2.5.3. Figure 5.15 shows the
fuzzy cumulative distribution function of mass released, the first loop MC is repeated
5, 000 times (5, 000 fuzzy numbers are generated). With each repetition, an intern loop
of 5, 000 samples is also performed. However, decision making based on this result will be
effective, precise and conservative. Degree of conservativeness from 0% to 100% can be
chosen from the output FRV. This degree of conservativeness will be discussed in more
details in Section 5.3 when we compare this mixed approach with the existing approaches.

Efficiency analysis of the sprinkler system This section aims to evaluate the
effectiveness of the sprinkler. The evaluation is based on monitoring of the same simulation
performed in the previous section with 1, 000 × 1, 000 as the dimension of the first and
second loop.

After running the first simulation, the random failure value obtained is equal to 487.6
and (4.5, 6.2, 10.3) is the triangular fuzzy number of the response time presented in Figure
5.16. After finishing the simulations, we observe 308 unresolved failures from the 1, 000
samples (1, 000 samples were selected from the triangular response time of the sprinkler
out of which 308 were unable to prevent the release).

We then take the same sprinkler’s response time (to see the relation between the
response time and the time of failure of the cooling system). The failure time observed
is 752.5. The output shows that the number of unresolved failures is 1,000, which is
greater than before (308 at a failure time of 487.6). The third simulation with the same
fuzzy response and a failure time of 334.0 shows zero unresolved failures. The results are
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Figure 5.15 – CDF of results after taking into consideration all uncertainty types.

Figure 5.16 – Triangular fuzzy number of the response time.
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(a) TTF(time to failure) = 752.5 and Response
time = (4.5, 6.2, 10.3).

(b) TTF(time to failure) = 752.5 and Response
time = (2.7, 4.0, 6.6).

(c) TTF(time to failure) = 752.5 and Response
time = (2.0, 3.1, 5.2).

(d) TTF(time to failure) = 752.5 and Response
time = (1.0, 1.8, 3.5).

Figure 5.17 – Estimation of the fuzzy mass released for TTF = 752.5 and different reponse times.

presented in Table 5.5.

Failure time [min] Failure not resolved
752.5 1000
487.6 308
334.0 0

Tableau 5.5 – Results for fixed fuzzy time response (4.5, 6.2, 10.3)

The next step aims to fix the failure time and simulate the system at different fuzzy
response times. The results for the simulations of the system at a failure time of 752.5
are presented in Table 5.6) and Figure 5.17.
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Triangular fuzzy response [min] Failure not resolved
(4.5, 6.2, 10.3) 1000
(2.7, 4.0, 6.6) 684
(2.0, 3.1, 5.2) 393
(1.0, 1.8, 3.5) 0

Tableau 5.6 – Result at failure time(752.5)

The solution for the cooling water failure at time 752.5 is resolved by the sprinkler
system with a quick response time:

— (1.0, 1.8, 3.5) fuzzy time response.

Fuzzy time response [min] Fdeluge [Kg/min] Failure not resolved
(4.5, 6.2, 10.3) 3000 1000

4000 463
5000 0

(2.0, 3.1, 5.2) 3000 1000
4000 0
5000 0

Tableau 5.7 – Result at time of failure equal to 752.5.

Furthermore, a third simulation, which consists in fixing the time of failure and the
fuzzy response, is then run to change the flow rate value (Fdeluge). The results obtained
are represented in Table 5.7. The output of the simulation presented in Table 5.7 shows
that at a failure time equal to 752.5 we have 1, 000 unresolved failures for a flow value
equal to 3, 000 (Fdeluge) for both fuzzy time response (4.5, 6.2, 10.3) and (2.0, 3.1, 5.2),
while for Fdeluge equal to 4,000, the number of unresolved failures is 463 for (4.5, 6.2, 10.3)
and 0 for (2.0, 3.1, 5.2). These results prove that the Fdeluge value can be lower when the
sprinkler time response is fast enough.

The results for this section show that introducing the sprinkler system prevents the
temperature runaway. With the right strategy parameters for the proposed solution to the
cooling water failure (sprinkler system), the level of vulnerable variables (temperature and
pressure) stays well below the disk rupture threshold value. Thus, the batch is successfully
completed.

Therefore, the system’s response depends on several conditions to prevent the runaway
reaction. A healthy response depends on the failure, response times and the flow value
(Fdeluge). It should be emphasized that failure after a long reactor run time requires
a rapid response time and a high flow value. Finally, in spite of all the uncertainties
presented in the system under study, we manage to maintain its stability thanks to an
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efficient sprinkler response and the only remaining risk is linked to the failure of the
sprinkler system.

5.3 Comparison of the proposed hybrid approach with
the existing approaches: applying uncertainty anal-
ysis to a Loss Of Containment scenario

The purpose of this section is to compare the proposed approach of the previous
section with the approaches reviewed in Chapter 3, Section 3.1 to quantify uncertainty,
checking how they differ and sizing up the advantages and disadvantages of each one and,
finally, establishing why one is more suitable than another in certain cases. The interval,
fuzzy (possibilistic), probabilistic, evidence and probabilistic-fuzzy approaches will be
compared by applying them to a real LOC scenario. According to the bibliographic
research performed, this will be the first time that all the above-mentioned approaches
are systematically compared with regard to uncertainty in risk analysis.

The case involves the total loss of containment of a pressurized vessel holding Hy-
drochloric acid (HCL). The assessment will consider the release of the HCL following the
appearance of a crack in the storage vessel and aims to calculate the concentration at
end-points (x, y, z), as explained in figure 5.18. Two mathematical models, one for dis-
charge and one for dispersion, will be used to calculate the concentrations as presented
in the next section.

Figure 5.18 – Loss of containment scenario
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5.3.1 Models used in the analysis

This section highlights the characteristics of the two mathematical models used in the
assessment: (1) a discharge model for estimating the source terms and (2) a dispersion
model for estimating the concentration of HCL at a specific end-point as presented in Eqs
5.7 and 5.8 respectively.

Discharge model

The equation used for the mass discharge rate is taken from [34] and refers to discharge
from a pressurized tank.

Q = ACd

√√√√2(P0 − Pa)
Vf

(5.7)

where

— Q is the mass discharge rate [Kg/s];

— A is the area of the hole [m2];

— Cd is the discharge coefficient;

— Vf is the specific volume of liquid [m3/kg];

— P0 is the storage pressure [N/m2];

— Pa is the ambient pressure [N/m2].

Dispersion model

C(x, y, z) = Q

2πUσyσz

exp
−(z − h)2

2σ2
z

+ exp

−(z + h)2

2σ2
z


exp

−(y)2

2σ2
y

. (5.8)

where

— x, y, z are the downwind, crosswind and vertical distances respectively;

— C(x, y, z) is the average concentration [kg/m3];

— Q is the continuous release rate;

— σy, σz are the dispersion coefficients in the y and z directions [m];

— U is the wind speed [m/s].
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Dispersion coefficients and stability classes

The horizontal and vertical dispersion coefficients, σy and σz, are obtained after deter-
mining the atmospheric stability class ([153]; [45]). Six stability classes (Pasquill-Gifford-
Turner classes) from A to F were defined by [122]. The list of these classes and their
relationship to wind speed and cloud cover are given in table 5.8.

Tableau 5.8 – Pasquill stability classes

Many schemes have been proposed in different studies in order to estimate the hor-
izontal and vertical dispersion coefficients through the stability classes ([22]; [77]; [152];
[146]; [162]). In this study, the estimation of these coefficients is based on the scheme
proposed by [27]. It is characterized by a number of advantages when surface roughness
is taken into account. The mathematical equation to calculate each σ is expressed as:

σ = ax(1 + bx)−1/2

where a and b are the fitting constants given in table 5.9.

5.3.2 Calculation of the concentration without considering un-
certainty

In this section, the concentration of HCL at grid point (x, y, z) = (500, 0, 0) is calcu-
lated without considering input parameter uncertainty. The output of this section will
be used as a reference to see the effect of uncertainty on the output. The stability class
used in the calculation is assumed to be B, and two wind speed values are taken into con-
sideration, 3 and 5[m/s]. The input parameters for the discharge and dispersion models
are presented in table 5.10. The resulting concentrations for the two different wind speed
values are:

133



Chapter 5. Treatment of aleatory and epistemic uncertainties in analyzing the effect of
risks

Tableau 5.9 – Briggs’ Fitting Constants for σy and σz

Concentration for U = 3 [m/s]:

C(500, 0, 0) = 518 [mg/m3];

Concentration for U = 5 [m/s]:

C(500, 0, 0) = 310 [mg/m3];

Input variables Values

A, hole area 3.5E − 3 [m2]

Cd, discharge coefficient 0.7

Vf , specific volume 8.4× 10−4 [kg/m3]

P0, storage pressure 2.1× 105 [N/m2]

P1, ambient pressure 1× 105 [N/m2]

U , wind speed 3 5 [m/s]

Tableau 5.10 – Input values used to calculate the concentration at a grid point without considering
uncertainty
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Uncertain parameters Type of uncertainty Source of data

A, hole area Epistemic expert elicitation

Cd, discharge coefficient Epistemic expert elicitation

U , wind speed Aleatory statistical data

Tableau 5.11 – Types of uncertainty and sources of information about the uncertain parameters

5.3.3 Uncertainty modeling

This section aims to identify all the uncertain parameters presented in the models used,
the type of uncertainty that affects each parameter, and the available data pertaining to
these parameters together with their source (see table 5.11 and figure 5.19). Information
relating to these uncertain parameters is either derived from statistical data or based on
expert judgment. It is presented below:

— A: somewhere between [20E − 3, 50E − 3] but more likely to be close to the central
tendency;

— Cd: between the interval [0.7, 0.9] but more likely to be close to the central tendency;

— U : based on statistical data, u follows a triangular distribution of inputs (3, 4, 5).

𝐴, hole area

𝐶𝑑, discharge 
coefficient

𝑃𝑙, Liquid 
density

𝑃0, storage 
pressure

𝑃1, ambient 
pressure

𝑈, wind 
speed

Discharge
&

Dispersion 
Models
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at the end point (𝑥, 𝑦, 𝑧)

Inputs

output

𝑦 𝑧, 
dispersion 
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Certain parameters

Uncertainty in the inputs 
results in uncertainty in 
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randomly

Unknown due to
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Figure 5.19 – Uncertain and precise input parameters used to calculate the concentration at a
specific end-point
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In the following sections, the different approaches to modeling uncertainty will be used
to represent these uncertain variables as well as to propagate them through the models
in order to achieve a representation of uncertainty for the output concentration.

5.3.4 Uncertainty analysis using interval analysis

This analysis aims to represent all the uncertain variables stated in Section 5.3.3 in
terms of intervals. Each interval should represent a conservative bound of the uncertain
parameter. The chosen bounds of the intervals are the minimum and maximum values
provided by experts or based on statistical data. They are presented in table 5.12. Note
that the stability class is taken as equal to B as in the previous section and will remain
so in the following sections. The propagation of these intervals results in a concentration
interval equal to:

C(500, 0, 0) = [177, 951] mg/m3

Input variables Values

A, hole area [2E − 3, 5E − 3] [m2]

Cd, discharge coefficient [0.7, 0.9]

U , wind speed [3, 5] [m/s]

Tableau 5.12 – Uncertain variables represented as intervals

It is clear that the interval of the output concentration includes the values obtained
in the case where uncertainty is not considered. This is due to the way in which the
imprecision and subjectivity in hole area determination are treated, as well as to the
discharge coefficient and wind speed variability.

5.3.5 Uncertainty analysis using the fuzzy approach

With this method for treating uncertainty, all uncertain variables are specified as
triangular fuzzy numbers (i.e. the best representation of the information provided in
paragraph 5.3.3 in order to produce the closest likelihood when approaching the central
interval tendency). The lower and upper bounds for the input parameters at α = 0 are
the same as the minimum and maximum values taken in the analysis using the interval
approach. Table 5.13 presents the fuzzy numbers for all the uncertain variables. The
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distribution of the resulting fuzzy concentration at grid point C(500, 0, 0) is shown in
figure 5.20. The lower, most likely and upper values are as follows:

C(500, 0, 0) = (177, 444, 951) mg/m3

Input variables Values

A, hole area TFN (2E − 3, 3.5E − 3, 5E − 3) [m2]

Cd, discharge coefficient TFN (0.7, 0.8, 0.9)

U , wind speed TFN (3, 4, 5) [m/s]

Tableau 5.13 – Uncertain variables specified as triangular fuzzy numbers

Figure 5.20 – Fuzzy concentration at grid point C(500, 0, 0)

Not surprisingly, the range of the resulting concentration at α = 0 is the same as for
interval analysis. This α = 0 range represents the most conservative range (to be sure
that the true value is within the interval). A crisp value equal to 444 is obtained at α = 1,
which is not the middle of the interval at α = 0 as is the case for the inputs. Furthermore, a
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Figure 5.21 – Cumulative necessity function (CNF), and cumulative possibility function (CPoF)
at grid point C(500, 0, 0)

level of conservativeness is given by the different intermediate α levels, which can render
the decision-making more flexible. This conservativeness decreases when α increases.
The fuzzy cumulative distribution (cumulative possibility (CPoF) and necessity (CNF)
functions) is presented in figure 5.21, where an interval is obtained at each percentile (%)
(the minimum and maximum values are obtained from the CPoF and CNF respectively).
The decision can either be optimistic or pessimistic based on either the CPoF or CNF
respectively.

Moreover, this approach provides more information than interval analysis, which is
useful both in terms of representing uncertainty and contributing to the decision-making
process. Firstly, in terms of uncertainty representation, when experts believe that the
true value is more likely to be somewhere inside the interval. Secondly, the possibility
distribution shape can provide more information to help with the decision-making process
(see figure 5.22). Figure 5.22 presents an example of how the distribution shape can be
a useful tool for decision makers. The example represents decisions for the effect of risk
(concentration) in a end-point using the fuzzy approach versus the interval approach. The
red line specifies a decision criterion where the effect is acceptable if the concentration is
lower than the criterion (left hand side). Using the interval approach only the maximum
and minimum values provide information for representing uncertainty and it is clear that
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the maximum value exceeds the criterion. Therefore, the effect cannot be accepted since
the likelihood of the concentration exceeding the criterion is not known. However, for
clarification purposes, two cases based on the fuzzy approach can be considered. Two
different decisions can be taken for these cases. According to the distribution shape, case
1 shows that it is highly likely that the concentration exceeds the criterion while case 2
shows the opposite. Hence the effect of risk cannot be accepted in case 1 while it can in
case 2.

Interval approach: no
information about the
likelihood is provided

Fuzzy approach: shape showing
likelihood of concentration
values falling within the interval

Scale

The risk can be accepted since there
is a low likelihood of the
concentration exceeding the
threshold

High possibility (likelihood) that
the concentration exceeds the
threshold: the risk is not
acceptable

Risk cannot be accepted because of
the lack of information about the
likelihood.

Decision maker opinions

Possibility 
shape

Case-1

Case-2

Effect acceptance criterion: 
concentration must not exceed 

this value
Acceptability: if the concentration is below 

the criterion then risk is acceptable

Figure 5.22 – How distribution shapes can contribute to decision making.

5.3.6 Uncertainty analysis using the probabilistic approach

As mentioned in Section 3.1.2, the probabilistic approach uses probability distributions
to represent uncertain parameters which are then propagated through an MC simulation.
However, in order to build probability distributions, statistical data are required and
these are often missing. This means that assumptions must be made in order to build
the distributions. Thus, the assumptions made represent the uncertain parameters using
probability distributions that have the same shape as the possibility distributions in the
previous section. These assumptions show the difference between treating uncertainty
using probability and fuzzy theories. In table 5.14, the distributions for the uncertain
variables are all represented by triangular probability distribution (TPD).
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Input variables Values

A, hole area TPD (2E − 3, 3.5E − 3, 5E − 3) [m2]

Cd, discharge coefficient TPD (0.7, 0.8, 0.9)

U , wind speed TPD (3, 4, 5) [m/s]

Tableau 5.14 – Uncertain variables represented using probability distributions.

Once the uncertain parameters have been specified using probability distribution, 107

iterations are conducted using the MC method in order to calculate the distribution of
the output concentration. The output pdf and CDF at grid point C(500, 0, 0) are shown
in figures 5.23 and 5.24 (the uncertain variables are assumed to be independent). Here,
the decision can be made with a level of conservativeness or according to the compliance
criteria on which the decision must be based. For instance, let us assume that according to
the compliance criteria a concentration > x kg/m3 should not have a probability higher
than 5%. This information can easily be extracted and checked from the cumulative
probability distribution at 95%. As shown in figure 5.24, there is a 95% certainty that
the concentration will not exceed 614 mg/m3.

5.3.7 Uncertainty analysis using Evidence theory

This section aims to represent the uncertain variables using a sets of focal elements
with their bodies of evidence. The possibility distributions used in Section 5.3.5 are
encoded into discrete focal elements as follows:

— generate q nested focal sets from the possibility distribution of the uncertain pa-
rameter X using α− cuts Xαi = [xαi , xαi ], where i = 1, ..., q and α1 = 1 > ... > αq >

αq+1 > 0.

— build the bpa of the focal sets by assigning mαi = αi − αi+1

The focal elements are extracted from the fuzzy distribution in order to make com-
parisons between these two approaches (see Section 5.3.9). Table 5.15 provides the ev-
idence spaces for the uncertain variables. These will be propagated through the model
as explained in Section 3.1.4. Independence and total dependence between the input
parameters are considered in order to see the effects of dependence on the output. The
uncertainty in the output concentration will be represented in terms of an evidence space
and summarized with the cumulative belief and plausibility functions.

The resulting CBF and CPF of the output evidence spaces at grid point C(500, 0, 0)
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Figure 5.23 – The pdf for the concentration at grid point C(500, 0, 0) using the Monte Carlo
simulation

Input variables Values

A, hole area (2E − 3, 3.5E − 3, 5E − 3), q = 20 mXαi
= 0.05 [m2]

Cd, discharge coefficient (0.7, 0.8, 0.9), q = 20 mXαi
= 0.05

U , wind speed (3, 4, 5), q = 20 mXαi
= 0.05 [m/s]

Tableau 5.15 – Uncertain variables specified as spaces of evidence

for both dependent and independent parameters are shown in figure 5.25. These two
cumulative functions display the lowest and highest probabilities that may be assigned
to an output value for each case. The lower and upper concentrations (minimum and
maximum values) are the same as the two bounds obtained using interval analysis for
the two cases of dependence. As with the probabilistic approach, a decision can be made
with a level of conservativeness depending on the probability percentile taken but, as
in the fuzzy approach, an interval is obtained instead of a single point. For example,
[426, 916] and [370, 833] represent the concentration range at a likelihood percentile of 95
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Figure 5.24 – The CDF for the concentration at grid point C(500, 0, 0)

for independence and total dependence respectively. However, there is clearly a difference
between the two cases due to input dependence being considered. Furthermore, the
outputs of the evidence approach, where total dependence is considered, and of the fuzzy
approach are the same (see Figure 5.26 where the distributions do not totally coincide due
to the discrete intervals chosen in the evidence approach, where q is equal to 20). This
comparison between the evidence approach with independent input parameters and the
fuzzy approach reveals that the cumulative distributions produced by the two approaches
are different. This dissimilarity means that the fuzzy approach is significantly influenced
by the total dependence of the uncertain input parameters.

5.3.8 Uncertainty analysis using the probabilistic-fuzzy approach

In this mixed approach, aleatory uncertainty is represented using probability distri-
bution (if statistical information is available to build the distribution), while imprecision
and subjectivity linked to expert elicitation are represented in terms of fuzzy numbers. It
should be noted that FRVs are not used since the parameters affected by both types of
uncertainty are not presented. Table 5.16 shows the representation of uncertain variables
in terms of probability distributions and fuzzy numbers. As expected, this recently devel-
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Figure 5.25 – The CBF and CPF for the concentration at grid point C(500, 0, 0)

oped approach seems to be the most interesting and accurate to date. In order to build the
distributions the probabilistic approach uses assumptions and guesswork when statistical
data are not available while the fuzzy approach can neglect important information when
experimental and statistical data are available. Hence, this recent approach offers an al-
ternative to neglecting information and adding unjustified assumptions. Furthermore, it
allows for separate treatment of both types of uncertainty (aleatory and epistemic).

Input variables Values

A, hole area TFN (2E − 3, 3.5E − 3, 5E − 3) [m2]

Cd, discharge coefficient TFN (0.7, 0.8, 0.9)

U , wind speed TPD (3, 4, 5) [m/s]

Tableau 5.16 – Uncertain variables represented using probability distributions

Based on the 2-stages MC method explained in Section 5.2.5.3, figure 5.27 shows the
resulting fuzzy random variables for the concentration of HCL. The black lines represent
the lower and upper distributions for α = 0, whereas the red line represents the most
likely distribution for α = 1. Using this approach, a decision is based on a combination
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Figure 5.26 – Difference between the fuzzy approach and the evidence approach based on total
dependence

of probabilistic-fuzzy decisions where at each % of probability a fuzzy concentration is
obtained. The minimum, maximum and most likely values for the fuzzy number at a
confidence level of 95% are (267, 535, 861).

In what follows, the different approaches presented above shall be compared.

5.3.9 Comparison of all approaches

This section aims to compare the results obtained in the previous sections. Figure
5.28 displays the output derived from the interval approach, fuzzy approach, probabilistic
approach, evidential approach and the probabilistic-fuzzy approach. The output distribu-
tions of the evidence approach with dependent input parameters are not depicted because
they are the same as those obtained with the fuzzy approach.

For interval analysis there is no representation of likelihood. Instead, the minimum
and maximum bounds are plotted on the Figure. These bounds represent the best and
worst estimations (the most optimistic and pessimistic values), respectively. A decision
based on this approach would be too conservative and may result in the risk being over-
estimated since there is no distribution for the likelihood of the values falling within the
interval. Thus, a distribution shape inside the interval may allow for greater decision-
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Figure 5.27 – Lower, most likely and upper distributions for the concentration at grid point
C(500, 0, 0)

making flexibility.
This shape is given by each of the other approaches. Furthermore, the minimum and

maximum values provided by each one are exactly the same as for the interval approach.
However, a difference between these shapes can be observed in spite of the fact that the
initial information used is the same. To be able to compare these approaches, a confidence
interval of 90% is chosen from each one. Table 5.17 shows the confidence interval for each
approach. For the probabilistic approach, the two values at confidence levels equal to 5%
and 95% represent the minimum and maximum bounds of the confidence interval. For
the fuzzy approach, on the other hand, an α−cut interval at α = 0.05 is shown (the same
interval can be obtained from the CPoF and CNF, see table 5.17 where the minimum
and maximum values of the confidence interval are the CPoF at 5% and the CNF at 95%
respectively). For evidence theory, the confidence interval is derived in the same way as
for the fuzzy approach where the CPF and CBF are used instead of the CPoF and CNF.
For the mixed probabilistic-fuzzy approach, the confidence levels at 5% and 95% are fuzzy
numbers. The minimum and maximum values at 5% and 95% for α − cut = 0 are used
to build the confidence.

Table 5.17 clearly shows that the probabilistic approach is the most optimistic ap-
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Figure 5.28 – Comparison of the results generated from the different approaches.

Approach
Confidence levels

Confidence Interval Gap size
5% 95%

Probabilistic 302 614 [302, 614] 40.3%

Fuzzy [187, 462] [426, 916] [187, 916] 94.2%

Evidence [208, 530] [370, 833] [208, 833] 80.7%

Probabilistic-fuzzy (188, 443, 608) (267, 535, 861) [188, 861] at α = 0 86.9%

Tableau 5.17 – 90% confidence intervals for each of the approaches used.

proach as it presents the smallest gap between the confidence intervals used. The fuzzy
and evidence approaches based on dependent input parameters, on the other hand, are
the most pessimistic as they present the largest gap between the borders of the 90%
confidence interval. The confidence interval for the fuzzy approach is more conservative
than the evidence approach based on independent input variables. This is due to the
fact that the fuzzy approach is automatically based on total dependence. The size of
the gap produced by each approach is presented in the last column of table 5.17 (the
largest interval obtained for the interval approach is assumed to have a gap size equal to
100%). Moreover, the confidence intervals obtained for the fuzzy, evidence and mixed ap-
proaches cover the confidence interval obtained for the probabilistic approach. However,
these observations can be interpreted in two different ways: they are either due to (i)
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Figure 5.29 – Summary of the characteristics of the approaches highlighted in this comparison

preciseness or (ii) non-conservativeness. The probabilistic approach is precise if the prob-
ability distributions used to represent uncertainty are based on justifiable statistical data
(i.e. real data and not assumptions). The approach is non-conservative if imprecise or
subjective information is used, as is the case with expert elicitation. Non-conservativeness
may result in an underestimation of the risk and subsequently to wrong decision making.
On the other hand, if all the parameters were represented by fuzzy numbers or evidence
spaces, despite the fact that some could be justifiably represented by PDFs, the range of
results would be too conservative and statistical information would be lost. This is why
the mixed approach offers an effective compromise between lack of information and risk
underestimation. The confidence interval obtained for the mixed approach lies between
the intervals obtained for the probabilistic and fuzzy approaches and offers a more precise
gap than the evidence approach.

Figure 5.29 summarizes the differences and similarities between the approaches de-
scribed. Probability theory offers the best approach for dealing with aleatory uncertainty
when statistical data are available. The evidence and fuzzy approaches, on the other hand,
deal with epistemic uncertainty. Both approaches can provide the same or a different out-
put according to whether or not input parameter dependence is taken into account. As
already stipulated, the fuzzy approach automatically considers that the input parameters
are totally dependent while the evidence approach offers this as an option. Hence, it is
not desirable to use fuzzy numbers with independent parameters.

Based on these studies, the guidelines for choosing the best approach can be given as
follows:

— use probability distributions if there are enough statistical data to build them;
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— use fuzzy theory if the information is imprecise and there is total dependence be-
tween the input parameters;

— use evidence theory in the case of independent input parameters and if the avail-
able information can be interpreted as a set of non-nested intervals with different
likelihoods (cannot be continuously represented). It should be noted that, unlike
fuzzy theory, evidence theory uses non-continuous distribution for representing un-
certainty. In addition, evidence theory is the best theory to deal with ignorance (see
Section 3.1.4.3);

— if statistical information is available for some parameters whereas subjective infor-
mation or minimum and maximum values are available for others, a mixed proper
algorithm will produce a more credible and accurate analysis allowing the decision
to be made with the best available information.

However, important research questions can be generated here: what if all these causes
of parameter uncertainty affect the same analysis? How uncertainty should be repre-
sented? And how uncertainty can be propagated if fuzzy numbers, probability distribu-
tions, evidence focal elements and FRVs are used as inputs. The answer to these questions
is presented in the next section. The next section proposes a global parameter uncertainty
analysis approach that treat all causes of parametric uncertainty within the same analysis.

5.4 A global approach to treat all types and causes of
uncertainty in effect analysis: the ALI-Aggregated
Likelihood Index

As we proved in the previous sections of this Chapter that the use of a wrong math-
ematical tool to represent data that are uncertain may lead to miss-evaluation of risk.
From the literature review, a global approach that correctly deal with parameter uncer-
tainty regarding the causes of this uncertainty does not exist. Epistemic uncertainty has
different causes and each cause should be treated apart and with the right mathematical
representation. Imprecision and vagueness if affect an analysis, they should not be treated
with the same mathematical tool. Uncertainty analysts claim that the best theories to
treat imprecision and vagueness are fuzzy and evidence theories, respectively. However,
existing approaches for modeling and quantifying parameter uncertainty do not take this
problem into consideration. Existing approaches model epistemic and aleatoric uncertain-
ties within a single mathematical representation, or using a hybrid approach that treat
epistemic and aleatoric uncertainties separately. Hybrid approaches model the epistemic
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uncertain parameters by the same mathematical representation, even if they have different
causes of uncertainty.

For these reasons, a new global approach is needed. The main questions that our
approach is going to answer are: (i) How parameter uncertainty regarding their causes
are going to be modeled or represented? Section 5.4.1 answers this question in details.
(ii) How the represented data are going to be propagated though the risk models? A
propagation algorithm is developed as presented in Section 5.4.2. And (iii) how decision
is going to be made under uncertainty?. A decision making guidelines is presented in
Section 5.4.3. We name this approach the ALI (Aggregated Likelihood Index) approach
because it combines different likelihoods indexes (probability, belief and possibility) in a
single framework.

This approach is used when all causes of uncertainty affect the same analysis. In
other words, some input parameters for the analysis are random, others are imprecise
and available information about some others is incomplete. In this case, probability
theory, fuzzy numbers and evidence theory and FRVs are used together to best deal with
uncertainty. The framework of the proposed approach is presented in Figure 5.30.

5.4.1 Uncertainty representation: characterizing each uncertain
parameter based on the available information

For an effective uncertainty analysis, the types and causes of parameter uncertainty
define the selection of mathematical theories to analyze uncertainty. This section aims
to present how analysts can characterize uncertain parameters with best suitable math-
ematical theories regarding the available information. For example, if a given parameter
is deterministic and known, it will be represented by a precise value, such as the pipe
length or diameter. If a parameter varies randomly, then it will be represented by a
probability distribution. If a parameter is affected by epistemic uncertainty but sufficient
information to build the probability distribution is available, then probability distribu-
tion is the appropriate representation. If the information is qualitative and imprecise, it
will be represented by fuzzy membership function or possibility distribution. If the input
information is incomplete, then evidence theory is the best to use. Other types of data
might need different representations. Figure 5.31 shows a flow chart on how uncertain
parameters can be appropriately represented regarding the available information.

Moreover, the chart shows the appropriate representation for other types of data in-
cluding conflictive data (lack of consensus between data sources if multiple sources of
data are used); and imprecise statistical information (The distribution is known but its
parameters are imprecise). Lack of consensus or if information regarding a parameter
is imprecise and incomplete at the same time are represented using BOE (Body Of Ev-
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idence) with fuzzy focal elements. Fuzzy focal elements are used instead of intervals
in order to represent imprecision or subjectivity in data from different sources. Section
5.4.1.1 presents more details in terms of an example.

The developed flow chart in Figure 5.31 proves that there is no one knowledge repre-
sentation theory that fits all, in other word that can characterize all causes of parameter
uncertainty. As listed, uncertain parameters can be characterized by probability distri-
butions, fuzzy numbers (includes interval analysis), fuzzy random variables, or evidence
with fuzzy focal elements regarding the available information. A MC-based algorithm to
propagate these representation together through the risk model is developed in the next
section.

5.4.1.1 Evidence theory with fuzzy focal elements

Focal elements of an evidence can be fuzzy numbers instead of normal intervals. This
representation allows the analysts to give shapes inside the intervals in the case if they
believe that some values are more likely than the others. This representation provides a
mathematical tool to combine knowledge from different sources in the same formalism .

The use of input data from multiple sources provides better approximation of risk and
makes the analysis more reliable. Whereas, it may lead in inconsistency in the inputs
since different sources may give different elicitation regarding the same parameters. In
the remainder of this section, we present how to use BOE (Body Of Evidence) with fuzzy
focal elements to combine data derived from multiple sources. The knowledge from each
source of data can be fuzzy numbers or evidence structures. The general fusing equations
to combine all data in the same evidence formalism are presented as follows:

P = ∪pij and mij(P ) = wj∑
wj
mij (5.9)

Where P is the set of all focal elements for the output after combination, pij are the
focal elements from the source of data (expert or database) j, mij are the BPMs of focal
elements pij and wj is the weighting factor given to the source of data j (expert). A
weighting factor represents the experience and the familiarity of the expert in the field
under study.

To better understand the combination algorithm, let us take a parameter A which is
uncertain. Regarding the uncertainty in A, two different expert knowledge are elicited
about its value. Expert-1 said, A is most likely to be equal 0.5. While A is somewhere
between [0.3, 0.4] or it is with more likelihood to be in [0.6, 0.7] based on the opinion of
expert-2. In addition, it is more possibly to be near to the center of the interval in the
both cases. We supposed that the two experts have different ratings, a weighting values
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equal 0.4 and 0.6 are given to expert-1 and expert-2 respectively. However, it is clearly
seen that a lack of consensus between these two experts is presented. Information from
Expert-1 is represented in terms of a TFN, while a Fuzzy-DS structure is used to represent
the knowledge from Expert-2 (see figure 5.32). Note that a bpa equal 1 is given to the TFN
of expert-1 to perform the aggregation. Based on the combination equations explained
above, the output fuzzy-DS structure is depicted in figure 5.32. The next section explains
how to interpret this representation and construct the fuzzy belief and plausibility.

5.4.1.2 Construction of the Fuzzy belief and plausibility for a BOE with fuzzy
focal elements

The construction of cumulative belief and plausibility when the focal elements are
fuzzy numbers can be performed using α − cut principles. In the example (figure 5.32),
at each α − cut, an interval is generated from each fuzzy number (the blue and red
lines represent the intervals for α − cut = 0.0 and 0.5 respectively where single points is
obtained for α − cut = 1.0). Thus, at each α, a CBF and CPF are generated. In figure
5.32, CBF and CPF for three different α − cut are depicted (the cumulative belief and
plausibility at α− cut = 1.0 coincide). Finally, a fuzzy CDF from these cumulative belief
and plausibility functions is obtained. The fuzzy CDF can be discretized into percentiles
where a fuzzy membership function is obtained at each percentile. Also figure 5.32 shows
the fuzzy value of A at 60 percentile. Finally, the strength of this new representation
exists in its capability of benefiting from all the available data and without conflicting,
neglecting nor adding of unjustified knowledge.

5.4.2 Uncertainty propagation

In this section, input parameter are represented using probability distributions, fuzzy
numbers, body of evidences and FRVs. In other words, we suppose that different causes
of parameter uncertainty affect the same analysis. This step aims to propagate all these
representations through the risk model. However, propagating uncertainty here can be
complex and time consuming depending on the complexity and the type of the risk model.

In the following we will detail the steps on how to propagate uncertainties through the
risk model using 2-stages (steps) MC simulation and all possible combinations. Figure
5.33 shows the steps required to apply this approach. Let us assume that

Z = f(Y ) = f(Ai, Bj, Ck, Dl) = f(A1, ..., An, B1, ..., Bm, C1, ..., Cq, D1, ..., Dt)

representing the risk model where Ai, i = 1, ...n are affected by epistemic uncertainty due
to ignorance or lack of consensus, Bj, j = 1...m by aleatory uncertainty, Ck, k = 1, ...q by
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epistemic uncertainty due to imprecision, and Dl, l = 1, ...t by a mixture of both types of
uncertainty due to variability and imprecision.

1. set h = 0, v = 0, v = 0 and L, M, N are the number of all possible combinations of
fuzzy focal elements, and samples for the first and second loop MC respectively;

2. from each parameter represented using a body of evidence, a fuzzy number with
its mass degree are taken from each body of evidence. Thus, at each h, we obtain
ahi = (ah1, ..., ahn) which are fuzzy numbers.

3. from each stochastic and mixed uncertainty (represented by fuzzy random variables),
a value (crisp value from each probability distribution) and a triangular fuzzy num-
ber (from each fuzzy random variable) are obtained using the first Monte Carlo
sampling: bvj = (bv1, ..., bvm) and dvl = (dv1, ..., dvt), where dvl are triangular fuzzy
numbers;

4. a second Monte Carlo loop is performed to take samples from the fuzzy numbers
(those obtained from step 2, those taken in the first MC loop (step 3) and those
reflecting epistemic uncertainty due to imprecision) as explained above; this means
that

y = f(ahw1, ..., ahwn, bv1, ..., bvm, cw1, ..., cwq, dvw1, ..., dvwt)

where ahwi, cwk and dvwl are crisp values from the triangular fuzzy numbers;

5. calculate zvw = y = f(ahw1, ..., ahwn, bv1, ..., bvm, cw1, ..., cwq, dvw1, ..., dvwt) to obtain
a crisp value with its membership and mass degrees. The membership of zvw is
obtained using the extension principle of fuzzy numbers as follows:

(α(zhvw) = minimum of (α(ahw1), ..., α(ahwn), α(cw1), ..., α(cwq), α(dvw1), ..., α(dvwt))

if zhvw has been obtained earlier from another sample then the maximum member-
ship between it and the old membership is given to zhvw). The mass degree of zhvw is
obtained by multiplying the mass degree off all input ahw1, ..., ahwn (the mass degree
of ahwi is the same degree as ai);

6. if w < N , return to step 4, otherwise go to 7;

7. generate the fuzzy number zv from the N calculated samples;

8. if v < M , go back to step 3, otherwise go to 8;

9. after the second MC is completed, M triangular fuzzy numbers are obtained that
represent a FRV. The CDFs of these results are plotted.

10. if h < L, go back to step 2, otherwise go to 9;
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11. after the simulations, L FRVs are obtained, where a mass degree is attached to each
one. In other word, we can say that the output is a body of evidence where the
focal elements are FRVs.

The output obtained after propagating all these representation of uncertainty are hard
to be interpreted. A bunch of FRVs with their mass degrees is obtained. This forms a body
of evidence where the focal elements are FRVs. But we believe that this is the best way to
represent parameter uncertainty regarding its causes. For these reasons, the next section
proposes a method that simplifies the shape of the obtained representation of uncertainty
for the output. This method aims to combine the likelihoods in a single likelihood index
to provide a more meaningful representation that is simpler to be interpreted.

However, this propagation algorithm is used when the both types of parameter un-
certainty affect the same analysis and due to different causes. Simpler propagation algo-
rithms can be used depending on the causes of uncertainty that affect the input data as
summarized in the flowchart of Figure 5.34.

5.4.3 Decision Making under uncertain environment

The shape obtained as result from propagating uncertainty in terms of a body of
evidence with FRV focal elements is quite complex to be interpreted. In this section, we
propose a new simpler representation for the output obtained from the previous section.

This new representation aims to aggregate the likelihoods obtained in the previous
section in a single likelihood index (ALI) as presented in Figure 5.35. From the previous
section, at each 2-stages sample using MC, as crisp value yhij with its (m,µ, p) are ob-
tained. Here we multiply m,µ and p to generate a single index I. Thus, at the end of
the propagation step, a single distribution is obtained instead of a BOE with FRV focal
elements.

In Figure 5.35, if the cumulative ALI distribution does not reach 1, 1 − Imax implies
ignorance. If this ignorance is not accepted, analysts should gather more information to
reduce it and re-perform the analysis.

An important and criticizing question can be asked here: why do not we use probability
distributions to represent all types of uncertainties if the output of ALI methodology looks
like a probability distribution. The answer of this question will be given in the next section
after the application of the ALI approach. The next section applies the ALI method and
the pure probabilistic approach on the LOC case study. The objective is to compare the
output provide by the ALI methodology against the pure probabilistic approach.

It should be noted that decision making can be always based on the output of Section
5.4.2. But here we wanted to provide simpler information for decision makers.

153



Chapter 5. Treatment of aleatory and epistemic uncertainties in analyzing the effect of
risks

5.4.4 Case study - Applying of the developed approach to a loss
of containment scenario

In this section, the proposed methodology is applied to the same LOC case study pre-
sented in Section 5.3. The same mathematical models for the discharge and the dispersion
are used as presented in Eqs 5.7 and 5.8, respectively. The objective is to calculate the
concentration at the end point (500, 0, 0) taking parameter uncertainty into consideration.
However, uncertainty regarding the input parameters is studied in more details in this
case study.

Figure 5.36 presents the uncertain parameters and the related causes of this uncer-
tainty. The wind speed is statistically known in terms of a probability distribution, but
the parameters of this distribution are imprecise. In addition, uncertainty in calculating
the horizontal and vertical dispersion coefficients is considered. A new method based on
fuzzy logic is developed to calculate σy and σz. Fuzzy logic is introduced to deal with
imprecision and vagueness in determining the stability classes used for calculating the
dispersion coefficients. Section 5.4.4.1 details the causes of parameter uncertainty in cal-
culating the dispersion coefficients and how introducing of fuzzy logic is the solution for
this issue.

5.4.4.1 Introducing fuzzy logic to analyze parameter uncertainty in calculat-
ing σy and σz

As explained in Section 5.3.1, σy and σz are calculated depending on the stability
class. The atmospheric stability class is determined regarding two input parameters: (i)
the surface wind speed (WS) and (ii) the daytime incoming solar radiation (SR), or cloud
cover (CC) at night as presented in Section 5.3.1, Table 5.8. This scheme is extensively
used due to the availability of data for the wind speed and the could cover provided by
the national weather institutions [38]. But it has some limits because of uncertainty.

From Table 5.8, five different wind speed intervals are taken by Pasquil. For the
incoming solar radiation during the day, three different linguistic terms are used. Strong
refers that the solar elevation is greater than 60◦, while moderate refers that the solar
elevation lies between 35◦ and 60◦. If the solar elevation is less than 35◦, then the incoming
solar radiation is referred to as slight. For the Cloud Cover at night, two ranges are used:
thinly overcast (if it is ≥ 4/8 cloud) or clear overcast (if it is ≤ 3/8 cloud).

Thus, input parameters to determine the stability class are represented in terms of
intervals (WS) or linguistic terms (SR and CC). However, because of discreetness between
the input intervals and linguistic terms, conditions on the border between two intervals
or two linguistic terms are vague and not well defined. However, replace intervals and
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linguistic terms by fuzzy numbers will remove vagueness and imprecision.
Intervals of WS and linguistic terms of SR and CC are represented using fuzzy numbers

as shown in Figure 5.37. Using fuzzy scales, uncertainty on the borders between two
categories is removed. Precise values of inputs for WS, SI or CC can be used instead
of just intervals or linguistic terms. Where each input value is belong to one or two
categories. For example, a WS of value equals 1.9 is very low with a possibility degree
equals 0.7 and low with a possibility degree equals 0.3 as depicted in Figure 5.37.

Determining the stability classes now is based on Table 5.18. In Table 5.18, the wind
speed intervals are exchanged by linguistic terms that signify fuzzy numbers. Based on the
proposed fuzzy scheme, if we have quantitative values for WS and SR, one or more stability
classes with different possibility degrees can be obtained. After the fuzzy stability classes
being determined, the Briggs’ Fitting Constants Xi where X ∈ {a, b} and i ∈ {y, z} are
calculated based on Eq 5.10 and Table 5.9.

Wind 
speed

Daytime incoming solar radiation
Night-time 

Cloud Cover

(m/s) Strong Moderate Slight ≥ 4/8 ≤ 3/8

Very low A B B - -

low B B C E F

Moderate B C C D E

High C D D D D

Very high C D D D D

Tableau 5.18 – Determining the stability class based on the proposed fuzzy scale

Xi =
∑F
n=A µSC(n)×Xit(n)∑F

n=A µSC(n)
(5.10)

where n is a stability class, µSC(n) is the membership degree of being in class n, Xit(n)
is the old fitting constant determined from Table 5.9 of being in class n. At the end, the
dispersion coefficients are calculated by placing the values Xi in Eq 5.10.

σ = ax(1 + bx)−1/2 (5.11)

As an example, let us suppose that the WS is equal to 1.9 and the solar elevation
angle is 30◦. each of these two quantities returns to two different linguistic terms in the
fuzzy scale (see Table 5.19). WS is VeryLow and Low with membership degrees equal 0.7
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and 0.3, respectively. And SR is slight and moderate with membership degrees equal 0.6
and 0.4, respectively. Then based on the proposed fuzzy scheme, the stability classes are
obtained as presented in Table 5.19. From Table 5.19, the output stability classes are B
with a membership degree equals 0.6 and C with membership degree equals 0.3. a and b
are calculated using Eq 5.10 and Table 5.9 as follows:

ay = 0.6× 0.16 + 0.3× 0.11
0.6 + 0.3 = 0.143;

az = 0.6× 0.12 + 0.3× 0.08
0.6 + 0.3 = 0.106;

by = 0.6× 0.00001 + 0.3× 0.00001
0.6 + 0.3 = 1.0e−05;

bz = 0.6× 0 + 0.3× 0.0002
0.6 + 0.3 = 6.666666666666667e−05;

σy and σz are determined using Eq 5.11:

σy = ayx(1 + byx)−1/2 = 0.143 ∗ 500(1 + 0.00001 ∗ 500) = 71.4881

σz = azx(1 + bzx)−1/2 = 0.106 ∗ 500(1 + 6.666666666666667e−05 ∗ 500) = 52.466

Wind Speed (WS) = 1.9

Very low: 0.7 Low: 0.3

B: 0.4 B: 0.3

B: 0.6 C: 0.3So
la

r 
R

ad
ia

ti
o

n
 

(S
R

) 
= 

3
0

°

Determining the 
stability classes 

based on the 
fuzzy scheme 

M
o
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e:

 
0

.4
Sl

ig
h

t:
0

.6

The output stability classes 
are: B and C with 

membership degrees equal 
0.6 and 0.3, respectively. 

Note

The class B appears in
different cases in the table
with different membership
degrees. The highest
membership degree is taken
for the output.

Tableau 5.19 – Example of determining the stability classes based on the fuzzy scheme

It should be noted that WS, SR or CC still can be represented in terms of linguistic
terms if quantitative data is unavailable.

5.4.4.2 Calculation of the concentration based on the proposed approach

In this section, calculating the concentration of HCL is conducted. Information relat-
ing to these uncertain parameters presented below:
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— A: somewhere between [20E − 3, 50E − 3] but more likely to be close to the central
tendency;

— Cd: between the interval [0.7, 0.9] but more likely to be close to the central tendency;

— U : based on statistical data, u follows a uniform distribution of inputs (3, Umean, 5),
where Umean is imprecise. Umean: measurements show that the mean of the
distribution is an interval [3.8, 4.2];

— SE: based on experts’ opinions, during the day, incoming solar radiation moderate
half of the daytime, strong 40% of the daytime and they do not know the rest of
the time. The “do not know” verbal expression here represents the ignorance.

Based on this information, table 5.20 presents the used theory to represent each un-
certain input parameter.

Input variables Values

A, hole area TFN (2E − 3, 3.5E − 3, 5E − 3) [m2]

Cd, discharge coefficient TFN (0.7, 0.8, 0.9)

U , wind speed FRV = TPD(3, Umean, 5) [m/s],

where Umean = TFN(3.8, 4, 4.2)

SE, solar elevation angle BOE = {moderate : 0.5, strong : 0.4, ignorance : 0.1}

Tableau 5.20 – Uncertain variables represented using either probability distributions, fuzzy num-
bers, FRV and body of evidence

Based on the 2-stages MC with evidence calculus method depicted in Figure 5.33,
Figure 5.38 shows the resulting ALI distribution for the concentration of HCL at the grid
point C(500, 0, 0). The ALI distribution does not reach 1 as presented in Figure 5.38. This
represents the ignorance about the calculation of the concentration of HCL. To present the
effectiveness and simplicity of decision of the ALI approach, the second section presents
a comparison between this proposed approach against the pure probabilistic approach.

5.4.4.3 Comparing the proposed approach with the pure probabilistic ap-
proach

This section aims to compare the proposed ALI approach with the pure probabilistic
approach. The pure probabilistic and the ALI approaches are performed on the same
LOC case study presented in the previous section. But here, uncertainty about the
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solar radiation is not considered since the pure probabilistic approach can not deal with
ignorance as discussed in Section 5.4.1.1. The representation of uncertain input parameter
for both the ALI and the pure probabilistic approaches are presented in Tables 5.21 and
5.22, respectively. It should be noted that a 2-stages MC simulation is to propagate
uncertainty for the both ALI and the pure probabilistic approaches.

Input variables Values

A, hole area TFN (2E − 3, 3.5E − 3, 5E − 3) [m2]

Cd, discharge coefficient TFN (0.7, 0.8, 0.9)

U , wind speed FRV = TPD(3, Umean, 5) [m/s],

where Umean = TFN(3.8, 4, 4.2)

SE, solar elevation angle moderate

Tableau 5.21 – Uncertain variables represented using probability distributions, Fuzzy numbers
and FRVs

Input variables Values

A, hole area TPD (2E − 3, 3.5E − 3, 5E − 3) [m2]

Cd, discharge coefficient TPD (0.7, 0.8, 0.9)

U , wind speed TPD = TPD(3, Umean, 5) [m/s],

where Umean = TPD(3.8, 4, 4.2)

SE, solar elevation angle moderate

Tableau 5.22 – Uncertain variables represented using probability distributions

In order to compare these approaches, a confidence interval of 90% is chosen from each
approach as presented in Table 5.23. The minimum and maximum bounds of this interval
are respectively the two values at confidence levels equal to 5% and 95% for the ALI or
the probability distributions. From Table 5.23, the 90%-ALI confidence interval is more
conservative than confidence interval extracted from the pure probabilistic approach. This
is because we have chosen the right theory to represent each uncertain input parameter
as discussed in Section 5.3.9.
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Approach
Confidence levels

Confidence Interval
5% 95%

ALI approach 188 400 [188, 400]

Pure probabilistic approach 203 374 [203, 374]

Tableau 5.23 – 90% confidence intervals for the ALI-approach vs the pure probabilistic approach.

5.5 Conclusion

Given the substantial development of high-risk industries today, and the expansion of
populations around them, a risk analysis must be capable of building a certain amount
of confidence in the results so as to support the decision making process. This level of
confidence, or accuracy, is difficult to achieve when the analysis inputs suffer from impre-
cision, lack of information, vagueness and variability. In this case, handling parameter
uncertainty is the most important and expensive part of the analysis if confidence in the
results and accurate risk predictions are to be achieved.

Effect analysis is an important tool in the decision-making process. To be still more
valuable, effect analysis must take into account parameter uncertainty. This chapter
proposes two approaches to take into account the different types of parameter uncertainty
in the model parameters commonly used for assessing the effects of risks. The objective
of these approaches is to allow an uncertainty representation and propagation that is
consistent with the information actually available. A growing number of researchers in
the field of risk analysis promote the importance of separately representing information
variability (aleatory) and lack of information in the evaluation of risk.

The first approach combines fuzzy theory and randomness to separately tread vari-
ability and imprecision. This approach also presents a propagation method based on a
2-stages Monte Carlo simulation developed for propagating all types of parameter un-
certainty and illustrated through a case study of a chemical reactor. The results of this
study can contribute to the decision-making process for the management of this chemical
reactor. The approach described demonstrates that the system can be safe whatever the
time of failure.

The proposed fuzzy-probabilistic approach is compared to the approaches presented
in Chapter 3 Section 3.1. Five theories or approaches for dealing with uncertainty are
compared: interval analysis, probability theory, evidence theory, the fuzzy approach and
the mixed probabilistic-fuzzy approach.
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These methods are applied to the atmospheric dispersion of a toxic cloud formed after
a total loss of containment in a pressurized vessel of HCL. This scenario presents a major
interest for two reason: the HCL is a very common substance with many uses, and it
is a toxic, corrosive and non-flammable substance. Two risk models are used to predict
the toxic concentration at a specific end-point: a discharge model to calculate the source
term and a Gaussian type dispersion model. Model input uncertainties are characterized
and propagated to obtain a prediction.

The results show that the treatment of uncertainty using interval analysis is the easiest
and also the least demanding in terms of information required (the interval borders are the
only information needed). However, this method proves to be the most pessimistic and
the least representative (only minimum and maximum values are provided). It can also
result in missing information (if the data available exceed the two borders). Fuzzy analy-
sis provides more information than just an interval. Based on possibility distribution, this
method calculates the likelihood of the values being inside the interval. It is also very use-
ful for representing imprecision (when conservativeness is needed) and subjective expert
elicitation when historical and empirical data are not provided. However, it considers that
the input parameters are totally dependent and this can influence the output. The prob-
abilistic approach is easy to interpret but it may result in the risk being underestimated
when no historical information is provided and assumptions must therefore be made in or-
der to build the probability distributions. The evidence approach is less pessimistic than
the interval approach (the distribution shape is provided) and less demanding in terms of
information than probability theory. The evidence approach provides the same result as
the fuzzy approach in the case of dependent input parameters. It is preferable to use the
evidence approach in the case of independent input parameters. Finally, the treatment of
variability in a non-probabilistic approach when empirical data are provided results in a
large deviation in the confidence level and can lead to the risk being overestimated and
a pessimistic decision being taken. The probabilistic-fuzzy approach offers a solution in
this respect as it produces the most accurate results where imprecision, subjectivity and
variability are treated separately. This mixed approach represents an alternative with
regard to missing information and risk underestimation but assumes total dependence
between epistemic uncertain parameters. However, as underlined in this chapter, param-
eter uncertainty characterization (representation) must be managed correctly so that it
can then be propagated through risk models and produce a satisfactory output.

Based on this comparison, a new approach that treat each cause of parameter uncer-
tainty with the right theory is needed. We handle this problem by combining random-
ness, possibility and belief. We extended the fuzzy-probabilistic approach by introducing
evidence theory to represent ignorance and incompleteness of information. A new prop-
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agation algorithm is developed that uses 2-stages MC simulation and evidence calculus.
The approach is named the ALI-approach because we aggregated the different likelihood
index (probability, possibility and belief) in a single one. The output of the ALI approach
after aggregating the likelihood indexes is a single distribution. Aggregating likelihood
indexes provides simpler output for decision makers.

The ALI approach is demonstrated on the same atmospheric dispersion case study
mentioned above in this section. Then ALI approach is compared with the pure proba-
bilistic approach. The ALI approach provides the best suitable representation of uncer-
tainty regarding the available information. Moreover, guidelines on how representing and
propagating parameter uncertainty regarding the available information and the types of
risk models are also provided.
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Figure 5.30 – The ALI framework to deal with uncertainties
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Figure 5.31 – Flow chart for representing parameter uncertainty based on the available information
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Figure 5.32 – Aggregating multiple sources of data in the same formalism.
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Figure 5.34 – Decision tree for selecting the more appropriate uncertainty propagation technique
regarding the risk model and uncertain input data
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6
Handling one aspect of completeness

uncertainty: introducing
cyber-security within industrial risk

analysis
Summary: In this chapter, a new method that considers safety

and security together during industrial risk analysis is proposed.
This approach combines bowtie analysis, commonly used for safety
analysis, with a new extended version of attack tree analysis, intro-
duced for security analysis of industrial control systems. We then
propose an approach for evaluating the risk level based on two-term
likelihood parts, one for safety and one for security.
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Chapter 6. Handling one aspect of completeness uncertainty: introducing cyber-security
within industrial risk analysis

6.1 Introduction

This Chapter provides a guidance on addressing one cause of known completeness
uncertainty; i.e., the cyber-security related risk contributors that have not been included in
the scope of the risk analysis. As discussed in Section 2.6.3, the analysis process should be
exhaustive and up-to-date with the new risks to support the decision under consideration.
It should be noted that in this study we are interested in cyber-security breaches that can
lead to major accident hazards. In other words, accidents that have effects on human life
and the environment and not on confidentiality, integrity or availability of information.

The contributions of this Chapter are as follows:

— proposing a new definition of risk that cover safety and security (Section 6.2): com-
bine safety and security definitions of risk in one global definition;

— proposing a risk analysis approach that introduces security within safety (Section
6.3):

X developing new modeling technique for identifying and representing safety/se-
curity risk scenarios that can lead to major accidents (Section 6.3.2): a new
modeling technique is developed by combining the bow-tie analysis with a new
extended attack tree;

X proposing a likelihood analysis methodology to evaluate the probability of oc-
currence of safety/security risk scenarios (Section 6.3.3): a qualitative like-
lihood analysis methodology based on the combined attack tree/bow-tie is
proposed. This methodology uses two-term likelihood parts to evaluate the
likelihood level of a risk scenario, one for safety and one for security.

— demonstrating the developed approach in real case studies: the application of this
approach is demonstrated for safety/security risk analysis using the case study of
a risk scenario in a chemical facility (Section 6.4). Section 6.5 demonstrates the
applicability of the proposed attack tree in the security domain by modeling the
Stuxnet virus.

The chapter finishes by giving hints for future work and drawing some conclusions as
presented in Sections 6.6 and 6.7, respectively.

6.2 Global definition of industrial risk

In this section, we present the definitions of safety and security related risks (Sections
6.2.1 and 6.2.2, respectively). These two definitions will be used to generate a new global
definition of industrial risk that covers safety and cyber-security related risks and suited for
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the risk analysis perspectives in each domain. The reasons for proposing a new definition
are explained in Section 6.3.

6.2.1 Definition of risks related to safety

In general, safety related risk is defined or defined as follows [92]:

Rsafety = {Sei , Pei , Xei}; i = 1, 2, ..., N ; (6.1)

where

— Rsafety - safety related risk which is defined as a set of {};

— Se - scenario representation of the undesirable event under study (e) by identifying
safety causes of e and its related consequences;

— Pe - likelihood of occurrence of Se;

— Xe - severity of consequences of Se;

— N - is the number of possible scenarios or undesirable events that can cause damages.

6.2.2 Definition of risks related to security

In the context of cyber-security, risk is defined in terms of likelihood and effects of a
given threat exploiting a potential vulnerability ([150]; [79]):

Rsecurity = {(tv)j, P(tv)j , X(tv)j}; j = 1, 2, ...,M ; (6.2)

where

— Rsecurity - security related risk which is defined as a set of {};

— tv - scenario representation of a security breach: threat or attack (t) exploits a
vulnerability v;

— Ptv - likelihood of t exploits v;

— Xtv - severity of consequences if t exploits v;

— M - is the number of possible attacks.

6.2.3 Definition of risks related to safety and security

This section contributes a new global definition of industrial risk that covers safety and
security. In the safety domain, risk is described as a set of undesirable events scenarios Se
with their related likelihoods and impacts (see Section 6.2.1). In the security domain, risk
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is described as a set of scenarios that consist of threats exploiting vulnerabilities with the
attached likelihoods and impacts (6.2.2). However, undesirable safety events can occur
due to cyber threats after exploiting specific vulnerabilities. Thus, safety/security risk is
defined in terms of a triplet as follows:

R = (S(tv,e)i , P (se, sa)i, X(tv,e)i); i = 1, 2, ..., N ; (6.3)

where

— S(tv,e) - Scenario description of the undesirable event (e) that can result from safety
incidents (safety causes) or/and security breaches (tv: threats exploit vulnerabilities
- see the definition of security risk in Section 6.2.2);

— P (se, sa) - likelihood of occurrence of S(tv,e), where se and sa are respectively the
likelihoods related to security and safety;

— X(tv,e) - Severity of consequences of S(tv,e);

— N - is the number of possible scenarios or undesirable events that can cause damages.

6.3 Methodology for combined safety/security risk
analysis

6.3.1 Introduction behind the global idea

To represent (step 1 in the risk analysis process) and evaluate the likelihood (step 2
in the risk analysis process) of a risk scenario, in the domain of safety, a bowtie analysis
is constructed and then we use this bow-tie to calculate the likelihood. In the domain of
security, the chain of a security breach is represented by a graph called attack tree. The
structures of the trees are close, here we propose a common representation by combining
them as presented in Figure 6.1.

In both cases (safety and security), the risk is measured by a pair Likelihood/Severity.
However, we realized that it is not possible to use a common qualitative scale for likelihood
analysis. Indeed, if we consider an undesired event that can be generated from a compo-
nent failure (safety) or a cyber attack (security), it is preferable to keep a double measure
of likelihood (safety, security) rather than aggregating the two likelihood information into
one. This gives a better idea on the importance of the two aspects and eventually, the
use of the common model to detect an attack.

Let us take the example of a door lock which is controlled via the Internet. If the IT
protection mechanism is moderate reliable, and the lock is difficult to break, then the risk
is moderate (it needs a mechanical attack or a cyber attack). In comparison to a purely
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Global definition of industrial RISK
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Rsafety = ( 𝑆𝑒 , 𝑃𝑒 , 𝑋𝑆 )
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Rsecurity = (𝑡𝑣, 𝑃𝑡𝑣 , 𝑋𝑡𝑣 )

Attack tree (AT) Bow-Tie analysis (BT)

Combined AT-BT for a
global representation of a
risk scenario (undesirable
event) and exhaustive
likelihood evaluation

Connect 
AT to BT

Figure 6.1 – Global definition of risk.

mechanical lock that is a little less resistant, this will present the same level of risk. The
two systems appear to be similar whereas only the first one presents a residual cyber risk.

Thus, the proposed methodology to analyze safety/security risks is based on three
main steps:

X identifying risk scenarios: we propose a methodology that combines BT with ad-
justed AT to identify the safety and security related causes and consequences of the
undesirables events being studied. AT is extended to handle the limits of existing
ATs as presented in Section 3.6.5. However, combining BT and AT analyses can
be effectively used for an integrated safety/security assessment of critical systems.
This methodology identifies and considers all safety incidents and security threats
that can lead to the same undesirable event generating damages.

X likelihood evaluation: as BT and AT offer likelihood evaluation for safety and se-
curity risk scenarios, respectively, then the combined ATBT offers the same option
for a safety/security risk scenario. But, as we said, sources of risk for safety and
security are of different nature. Usually the likelihood of cause events related to
safety are very low in comparison to the likelihood of security related cause events.
For this reason, different likelihood scales, one for safety and another for security
are defined to characterize the likelihood of input events. This differentiation helps
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in identifying the sequences of events (minimal cut sets) that are purely related to
safety, security or to both. The resulting output of different types of cut sets offers
richer information for decision making and provides inputs for intrusion detection
systems. In the rest of this chapter we are going to prove the importance of con-
sidering safety and security together and show that purely security risk sequences
should be treated first.

X severity of consequences evaluation: this step aims to quantify the loss in terms of
system assets, human life and environmental damage if the undesirable event has
occurred. Here, the severity of an individual scenario is considered to be the same
whatever the causes are related to safety or security. This part is not considered in
this chapter. A detailed analysis of this step is presented in Chapter 5.

In the rest of this section, we will detail the proposed methodology for a combined
safety/security industrial risk analysis. A risk scenario will be a combination of all ex-
pected security and safety events that can result in the undesirable event being studied.
This modeling will be the first step in our methodology and it is conducted as presented
in Section 4.2.2.

Next, we explain the second step that aims to evaluate a risk scenario in terms of
likelihood as presented in Section 6.3.3. But, due to the difference in nature between
safety and security related events, they will be characterized separately for likelihood
analysis.

Figure 6.2 shows the framework to apply the proposed methodology. The proposed
methodology will provide a deep, exhaustive analysis on safety/security for industrial risk
scenarios in a given facility.

6.3.2 Step-1: representation of a risk scenario

In this section, first we will introduce a new extended AT as depicted in Section
6.3.2.1, respectively. Then, we show how the proposed ATs can be integrated within
BT (presented in 2.2.2) for richer and complete safety/security representation of a risk
scenario (see Section 6.3.2.2).

6.3.2.1 Security risk analysis using a new extended Attack Tree

Traditional AT presents some limitations to be used for industrial risk analysis (Section
3.6.5). Showing just the steps that an attacker or a team of attackers follow to achieve a
particular goal is not enough to understand the system’s weaknesses. On the other hand,
traditional AT does not present all the information needed to evaluate the likelihood of a
successful attack on the target system. Thus, mapping information on the target system
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Identifying a safety risk scenario

Constructing BT for the identified scenario

For each event in the BT: identify security scenarios that 
can lead to the occurrence of this event

Safety Security

Constructing the AT of each scenario

If any scenario left?
yes

Attach the AT to the event in the BT

yes

Evaluating likelihood of the combined safety/security risk 
scenario

Decision-Making to improve system safety/security

Calculating the likelihood of each minimal cut set

Determining likelihoods of safety/security input events

If any event left?

If any scenario left?
yes

Determining the minimal cut sets categorized: purely safety, 
purely security or a mixture related to safety/security

Figure 6.2 – Framework of the proposed approach for safety/security risk analysis.
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such as vulnerabilities in addition to attack steps is essential for an effective security risk
analysis using AT.

In this section, we will propose an extended version of attack tree with new modeling in
order to characterize a security risk scenario. This extended version allows the considera-
tion of significant information such as the target system vulnerabilities to suit the security
risk analysis perspective. The AT’s leaf nodes (security input events) are represented by
a combination of attack events and vulnerabilities. This representation help the decision
makers understanding the system’s vulnerabilities (or weaknesses) and the different types
of attacks that can be contacted in order to provide the right countermeasures.

As in BT, the AND/OR gates are used to link the tree’s events and define the rela-
tionship between them. Table 6.1 presents the term, shape and definition of each event
used in the proposed AT.

shape Signification Definition

Vulnerability
Any step describing a 

vulnerability required in order to 
realize the attack

Attack
The attack process in order to 
exploit a system vulnerability

Security basic 
event

Direct cause of a security breach 
resulting from exploiting a given 

vulnerability

Intermediate
A security breach caused by the 

occurrence of input events

Top event
The main goal of an attack 

generated from one or several 
security breaches

In
p

u
t 

ev
en

ts

Tableau 6.1 – Description of events used for representing an attack scenario.

The goal of this new AT is to model how attackers can exploit system vulnerabilities
in order to cause damage. Figure 6.3 shows in a schematic way the reality behind how
attackers target a system by exploiting its vulnerabilities. Here, attackers should run
three different attacks and exploit three different vulnerabilities in order to achieve their
goal. This attack can be modeled by the proposed AT as shown in Figure 6.4. Figure
6.4 shows the breach layers to attain the attack goal. This concept of layers would help
propose the right countermeasure in the right place.

It should be noted that different attack events may be needed to exploit a specific
vulnerability and vice versa. In these cases, the forms of the basic security events are
presented in Figure 6.5. If we take the WannaCry ransomware attack as an example, the
attack event is sending an unsolicited email that contains a link to exploit two different
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Attacker goal

Attack 
event-1

Vulnerabilities

Attack 
event-2

Attack 
event-3

System’s
assets

V-1

V-2

V-3

Figure 6.3 – How attackers exploit system vulnerabilities in order to cause damages.

vulnerabilities: (1) the computer runs Windows operating system that is a not updated
and (2) the unawareness of the user (if he/she clicks on the link). The security event will
be as presented in Figure 6.6.

6.3.2.2 Combined ATBT analysis

This step aims to combine AT and BT analyses for a combined safety/security indus-
trial risk analysis. The goal of this combination is to provide a complete representation of
risk scenarios by plotting on the same scheme safety and security events that can lead to
the same undesirable events. Additionally, integrating ATs within BT analysis can help in
understanding how attackers can exploit systems’ weaknesses in order to cause damages
besides non-deliberate incidents.

This step is conducted as follows:

1. construct BT for the chosen undesirable event being analyzed;

2. for each safety event in BT, identify if there are security incidents that can lead to
the occurrence of this event. If yes, construct the AT and attach its goal to the
corresponding event (see Figure 6.7). This means that this event can occur due to
accidental (safety) or deliberate (security) incidents.

Finally, a cyber-security BT (ATBT) is obtained for the undesirable event being stud-
ied.
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Figure 6.4 – Example of the structure of the proposed attack tree.

… …

An attack event exploits 
one or several 

vulnerabilities to breach 
an asset

One or several attack events 
are needed to exploit a specific 
vulnerability for breaching an 

asset

Breach Breach

…

One or several attack events are 
needed to exploit one or several
vulnerabilities for breaching an 

asset

Breach

…

= 𝐴𝑁𝐷 𝑜𝑟 𝑂𝑅 𝑔𝑎𝑡𝑒;

LO LO LO LO

Note: The red and blue colors signify the type of the logical gate LO

Figure 6.5 – The different form of a security basic event.

6.3.3 Step-2: likelihood evaluation

This section proposes an approach for conducting a qualitative likelihood analysis of
a safety/security risk scenario. This likelihood analysis methodology is made up of three
main steps: (i) determining the minimal cut sets to understand the structural weaknesses
of a system, (ii) characterizing likelihoods of input events using a two-levels representation
and (iii) quantify the likelihood of each MC to prioritize the system’s weaknesses (see
Sections 6.3.3.1, 6.3.3.2 and 6.3.3.3, respectively).

We should repeat that we are required to characterize likelihood of safety and security
events separately because they are intrinsically different and the control in terms of safety
or security barriers should be managed independently of the two safety and security
aspects.
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Sending 
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Encrypting files

AND

Windows 
operating system

Unawareness of 
the user

Vulnerabilities

Figure 6.6 – Modeling WannaCry ransomware attack using the proposed AT.

E-1BE-1

E-1

BE-1

OREvent E-1 can occur due 
to the safety event BE-1 

or to security threats

goal

A-2
A-1

OR

V-1
V-2

Construct the AT

After constructing the AT, the goal is attached to 
the event E-1 using an OR gate

Figure 6.7 – Example of how we attach an AT to its corresponding event in BT.

6.3.3.1 Determining minimal cut sets

Finding out the MCs represents the first step of likelihood evaluation in our approach.
An MC is the smallest combination of input events which causes the occurrence of the
undesirable event. MCs present the different ways in which component failures or events
alone or in combination with others make the occurrence of the top event (minimal cut
sets with one or several components or events). Here, the MCs are obtained using rules
of boolean algebra [163]. Each MC set is a combinations of AND gates containing a set
of basic inputs necessary and sufficient to cause the top event (see [72], appendix D for
more details).

We separate between three types of minimal cuts:

— purely related to security: all events of the MC are due to deliberate attacks;

— purely related to safety: the MC does not contain any security related event;

— related to a mixture of both security and safety: accidental and deliberate causes
exist in the MC.

The importance of this differentiation between types of MCs is to discover the system’s
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weaknesses where a pure security MC represents a weak point due to the high likelihood
of occurrence of security causes. This reasoning will be detailed and demonstrated in the
rest of this chapter.

6.3.3.2 Characterizing likelihoods of occurrence of input events

In safety, the likelihood of occurrence is the probability (expected frequency) or pos-
sibility of something happening. But when we talk about security, the likelihood of
occurrence is the probability that a given threat is capable of exploiting a vulnerability
(or set of vulnerabilities).

Likelihood analysis can be qualitative or quantitative depending on the type of avail-
able data. This data is either quantitative derived from historical incident or qualitative
based on experts’ elicitations. Because of the difficulties in estimating quantitative like-
lihood of occurrence of an attack or an accidental cause, a qualitative scale is used. The
advantage of the qualitative methodology is its simplicity of applying and understanding
by the relevant personnel.

As we presented in the beginning of this section, there are different concepts to define
likelihood related to safety and security. Due to the deviation in the likelihood translation,
high likelihood in safety is different than high likelihood in security regarding the number
of observed safety and security incidents (we see cyber attacks on critical facilities every
day, while safety incidents are rare). Two different scales Ls : security and Lf : safety
of respectively five and six levels are proposed. The first level of each scale represents an
undefined value (likelihood equals zero) in order to specify if an event is purely related to
safety or security. Thus, each event is characterized by couples (Ls, Lf ).

Based on this likelihood representation in terms of couples, we can differ between three
different types of events presented as follows:

— events that are purely related to safety with likelihood (N/A,Lf ) for each event;

— events that are purely related to cyber-security with likelihood (Ls, N/A) for each
event. If the event is a security cause (basic event in terms of two parts), Ls will
depend on the vulnerability level and the technical difficulties of conducting the
attack as we will detail in Section 6.3.3.2.2;

— events (intermediate events) related to both safety and security with likelihood
(Ls, Lf ) for each event.

6.3.3.2.1 Characterizing likelihood for safety risk events

Likelihood characterization here aims to determine the likelihood of occurrences of
input events (BEs and Es in BT) and the likelihood of failures of risk barriers according
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Qualitative 
scale

Safety 
Level

Designation
Quantitative 

meaning

N/A Not Applicable: event is purely related to security, 
not safety

E Very unlikely: event that is practically impossible, 
very low chance of happening

D
Unlikely: Low chance of occurrence even if we 

consider several systems of the same type, but has to 
be considered as a possibility

C Moderate: may occur during total operational life if 
considering several systems of the same type

B Likely event: may occur during total operational life 
of a system

A Very likely event: can frequently occur (several 
times) during operational life

10−5
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10−2

0

Li
ke

lih
o

o
d

Tableau 6.2 – Qualitative scale to characterize the frequency of input safety events.

to a specific scale. The same scale presented in Section 2.2.2 for safety analysis is used in
this study. Table 6.2 presents the safety scale with the added first level (N/A).

6.3.3.2.2 Characterizing likelihood for security risk events

In the context of a security risk analysis, the likelihood of occurrence depends on the
capability that a given threat (or set of threats) exploiting a potential vulnerability (or
set of vulnerabilities). Thus, the likelihood is a function of the difficulty of performing
a needed attack to exploit a vulnerability, and the level of vulnerability depending on
the existing counter measures. In this article, two different criteria are considered to
determine the likelihood of a security initial event presented as follow:

— vulnerability level: given to a vulnerability in the ATBT to represent how easy
or hard exploiting this vulnerability depending on the existing countermeasures.
Figure 6.8(a) shows the three different levels proposed to evaluate this criterion.
Level 1 (E) means that the vulnerability is easy to be exploited (for example, a
password that should be a number of four digit represents an easy vulnerability).
Vulnerabilities of level 2 (M) or 3 (H) are harder to be exploited due to the presence
of security measures. If we take the same example, a password that should be a
number of eight digit would be of level 2. While an eight digit password that should
contains lower and upper case letters in addition to numbers would be of level 3;

— technical difficulty of conducting an attack: given to an attack event to show the
needed level of expertise or difficulty to conduct the attack. Figure 6.8(b) presents
the levels of difficulty of an attack inspired from [28]. Four levels {T,M,D, V D}
are used to describe the difficulty of executing an attack. (T) is the easiest to
conduct where normal computer skills are required (for example, running a Denial
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Qualitative 
scale

Security 
Level

Designation

N/A
Not Applicable: Event is purely related to safety, 

not security

1
Low: High unlikely to occur, attack is hard to 

perform, existence of effective security measures

2
Moderate: Possibility to occur, but existed security 

measures reduce the likelihood of occurrence

3
High: Likely to occur, limited countermeasures are 

presented

4 
Strong: Is almost certain to occur, system is an easy 

target 
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Tableau 6.3 – Qualitative scale to characterize the likelihood of input security events.

Of Service Attack). (M) demands some programming and security skills (running
an SQL injection). (D) needs a hacking expert (man in the middle attack). (VD)
is the hardest where a team of competent hackers are needed to conduct the attack
(implementing a sophisticated warm).

These two criteria should then be combined in order to provide a likelihood for the
security initial (or basic) events. The difficulty of the attack is combined with the vul-
nerability levels as presented in Figure 6.8(c). Four different security likelihood levels in
addition to the N/A level are proposed to represent the combination. The definition of
each security likelihood level is presented in Table 6.3. From Table 6.3, we can note that
likelihood levels of security events are different from those of safety events (Table 6.2).

6.3.3.3 Calculating the likelihoods of MCs

This step aims to prioritize the system weaknesses by calculating the likelihood of each
MC in order to help decision makers propose the right countermeasure where MCs with
highest likelihood should be treated first.

Calculating the likelihood of an MC only needs the AND gate to be solved. AND
gate signifies that the output event occurs if all its input events have occurred. Since
qualitative scales are used for safety and security likelihood characterization, the min rule
is used to solve the AND gate. Suppose an AND gate with n input events EVi, i = 1, ..., n,
the output likelihood is calculated as presented in Eq 6.4 [86].

L(ANDout) = min[L(EVi)] = (min[Lsecurity(EVi)],min[Lsafety(EVi)])
= (min[Lsecurity(EV1), ..., Lsecurity(EVn)],

min[Lsafety(EV1), ..., Lsafety(EVn)])

(6.4)
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Likelihood 
levels

Likelihood of safety events

E D C B A N/A

N/A VL L M H VH

4 VL L M H VH VH

3 VL L M H H H

2 VL L M M M H

1 VL L L L L M
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Tableau 6.4 – Analysis scale - Overall likelihood.

where L(EV1), ..., L(EVn) are the likelihoods of occurrence attached to EV1, ..., EVn,
respectively.

Finally, for each MC, the two determined likelihoods for safety and security should be
taken together to provide one meaningful likelihood to be used for prioritizing MCs and
for risk evaluation using the likelihood-consequence risk matrix (which is not discussed
in this chapter). Table 6.4 presents the overall scale regarding the proposed safety and
security scales. This overall scale defines five different qualitative expressions from low
(L) to very high (VH).

It should be noted that this overall-likelihood can not replace the double part likeli-
hoods (Lsecurity, Lsafety) which is important for decision-making and in choosing the right
countermeasure, because decision makers should know if the high likelihood is related to
safety, security or to both.

Figure 6.9 presents an example on how to calculate the likelihood of an MC. The
MC in Figure 6.9 presents four basic events, two are related to safety (BE − 1 and
BE − 2) and the other two are security related (SBE − 1 and SBE − 2). Based on
the proposed approach, experts are asked to characterize the likelihood of safety basic
events, and (i) difficulty of attacks and (ii) exploitability of vulnerabilities for security
basic events. From (i) and (ii), the likelihood security basic events are determined based
on Figure 6.8 (For example, SBE − 1 is of level 4 since the vulnerability level is E
and the needed attacker skills are T). The dashed rectangle beside each event in the
figure presents its likelihood. These likelihood are then propagated through the MC.
The likelihood of events SE-1 and E-1 are calculated based on Eq 4.5. L(E − 1) =
min(L(BE−1), L(BE−2)) = (min[Lsecurity(BE−1), Lsecurity(BE−2)],min[Lsafety(BE−
1), Lsafety(BE − 2)]) = (min[N/A,N/A],min[A,C]) = (N/A,C), where L(E − 2) =
min(L(SBE−1), L(SBE−2)) = (min[4, 3],min[N/A,N/A]) = (3, N/A). The likelihood
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of the top event is equal tomin(L(E−1), L(E−2)) = (min[N/a; 3],min[C;N/A]) = (3, C)
which is of level Moderate (M) based on Table 6.4.

This approach will be illustrated in the next section and applied to an overheating
scenario in a chemical reactor.

6.4 Case study

6.4.1 Description

This case study illustrates the implementation of the proposed approach, which can
be applied in any industrial context. The case study concerns an industrial site of a
propylene oxide polymerisation reactor [2]. The same reactor presented in Chapter 5 is
used for this case study. The structure of the reactor is more detailed in this chapter.
The reactor runs a high exothermic chemical reaction at high pressure. It is located in a
manufacturing site located south of a small town. Risks associated with the operation of
the reactor are of high consequences.

In a systematic representation of the reactor, a production system, a cooling sys-
tem and a power supply are interacting in order to perform the operation under normal
conditions (regulated temperature and pressure). Components of these systems (valves,
pumps, etc.) are controlled by Siemens PLCs and supervised by a SCADA system. The
information collected by the SCADA system is accessible by all the site managers from
their offices using wireless remote control. The manager of the utility can control the
facility using its tablet or smart phone via Internet. Controlling the process via Internet
would allow the manager to handle the situation from where he/she is before it is too late,
rather than waking up at midnight racing to the plant to handle the situation. Figure
6.10 shows the architecture of the system under study. The architecture of the system is
taken from the “Risk analysis: socio-technical and industrial systems” book [63].

The reactor is used in batch mode to run a chemical reaction in order to produce
a product C from two reactives A and B. The temperature of the reaction is regulated
with industrial water. At the end of the reaction, after the mixture A, B is completely
transformed. The output C is transferred toward another unit in the facility by opening
the valve XV33021. This process is controlled by PLC1.

The cooling system E33040 receives cold industrial water as input which is used to
cool down the content of reactor R33030 using a double jacket. The temperature of
the cooling system and the water flow rate are measured by the sensor TI33061 and
TI33062, respectively. The data collected by these two sensors is sent to PLC2 which
regulates the water flow rate by controlling P1, P2, CV33063 and XYSV33027. Under
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normal conditions, the pressure in the reactor is less than six bars when the temperature
is controlled under 120 ◦C. An automated safety valve PSV33009 opens in the case of
over-pressure to limit the pressure to 10 bars. This safety valve is connected to host
computers. After PSV33009 opened, the exhausted gases are cleaned by scrubber.

6.4.2 Application

In this case study, the most likely undesirable scenario with the highest consequences
due to overheating/overpressure is considered for risk analysis. This scenario can be
generated after the occurrence of deliberate attacks or accidental errors. Overheating
occurs if the temperature and pressure exceed the threshold.

The two first steps for risk analysis (risk identification and likelihood evaluation) using
the proposed methodology are applied on the overheating scenario as depicted in Sections
6.4.2.1 and 6.4.2.2, respectively.

6.4.2.1 Step-1: Constructing ATBT for safety/security analysis

This step contains two sub-steps as presented in the proposed methodology:

1. constructing the BT for safety analysis: Figure 6.11 presents the BT for the undesir-
able event under study. The undesirable main event is an overheating and increase
in pressure inside the reactor. This event occurs after an abnormal increasing of the
temperature and pressure which is due to:

(a) an error in the cooling system: this event can be generated from accidental
failures if the valve XYSV33027 breaks down (BE-1), pumps P1 or P2 break-
down (BE-2 or BE-3), the valve XYSV33063 breaks down (BE-4), or failure in
the power supply (BE-5). It can also be initiated by deliberate attacks on the
control system (as detailed in the next paragraph: constructing ATs);

(b) over loading: an excessive loading of the reactor due to a human error (BE-6);

(c) agitation system breakdown: if the power supply or the motor of the system
breaks down (BE-7 or BE-8).

However, this rise in pressure is limited by an automated safety valve. If this does
not accomplish its purpose due to mechanical failure (BE-9) or cyber-attack (see
next paragraph), it would result in the explosion of the reactor. Thus, nine safety
related basic events are investigated as causes of the overheating in the reactor.

2. constructing ATs for security analysis: two events in the BT of Figure 6.11 can
occur due to security breaches. The first event is the failure of the automated
safety valve due to an attack on the hardware (SBE-6 in Figure 6.11: exploiting the
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control surveillance vulnerability by running a Doorknob rattling attack). To run
a doorknob attack, the attacker attempts a few common username and password
combinations on several computers resulting in very few failed login attempts. This
attack can go undetected unless the data related to login failures from all the hosts
are collected and aggregated to check for doorknob-rattling from any remote desti-
nation ([166]; [18]). The second is by sabotaging the cooling system after gaining
unauthorized access to the SCADA system. SCADA system can be exploited by
attacking the computer software or the communication network as shown in Figure
6.12 and detailed below:
— attacking the communication network: this can be achieved by sending a ma-

licious email to steal access information from an authorized target (employees
inside the facility) to exploit the no existence of email surveillance (exploit
confidentiality), see SBE-5 in Figure 6.12. Or, exploiting the weakness of the
encryption algorithm (integrity of information) used for communication be-
tween the SCADA and the control level. Different attacks can be performed to
exploit integrity: message spoofing, replay attack or man in the middle attack
(SBE-4). The communication network can also be hacked by running a Denial
Of Service attack where the system is vulnerable and reached from a big sized
network (SBE-3).

— attacking the computer software: variety of applications software are imple-
mented to complete the functionality of the control system. Furthermore,
their are large databases that save confidential information and data about
the process. SCADA applications software are susceptible to be hacked by so-
phisticated threats. Most of these applications are written in C programming
language which make them vulnerable to the Buffer Overflow attack (SBE-2).
This attack aims to insert lines of assembly codes such that can result in cor-
rupting the memory. A successful Buffer Overflow attack can corrupt data,
crash the program, or cause the execution of malicious codes. SQL injection
also represents a threat to the computer software (SBE-1). SQL injection is
one of the top Web attacks that affects the security of SCADA systems. It
occurs when an adversary is able to manipulate a malicious SQL query into a
Web application that fails to properly sanitize the query.

6.4.2.2 Step-2: Likelihood evaluation

(a) determining minimal cut sets: The ATBT shown in Figure 6.11 yields to 21
MCs. All minimal combinations of basic events that result in the occurrence of
the main event are identified. Figure 6.13 shows an example of the MC number
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19. The MC in Figure 6.13 is related to mixture safety/security because safety
and security basic events (respectively BE-9 and SBE-4 in the Figure) should
occur together to cause the occurrence of the undesirable event. These MCs
are divided into 7 that are purely related to security, 7 that are purely related
to safety and 7 that are related to mixture safety/security.

(b) characterizing likelihood of occurrence of input events: Experts in the field
are asked to characterize likelihoods of safety and security basic events. The
characterized likelihoods in terms of couple (Lsecurity, Lsafety) are drawn beside
the basic events in the ATBT (see figures).

(c) calculating likelihood of MCs: safety/security likelihood of each MC is calcu-
lated using Eq 6.4 as shown in Table 6.5. Then the overall likelihood of each
MC is determined based on Table 6.4. As an example, Figure 6.13 presents
calculating the likelihood of MC number 19. MC number 19 contains two ba-
sic events BE-9 and SBE-4 with likelihoods equal to (N/A,D) and (4, N/A)
(derived based on Figure 6.8(c)), respectively. After propagating these likeli-
hoods, the likelihood of the explosion event is equal to (4, D) which is of level
L.

6.4.3 Discussion and improvement

As shown in Table 6.5, the MCs ranked high (H) and (VH) are purely due to cyber-
security. This reveals the importance of considering security risks during safety
risk analysis. However, the presence of a safety event in an MC will lead to less
likelihood of occurrence. We can clearly see that between MC-5 and MC-19 where
their attached likelihoods are equal to VH and L respectively, MC-19 is of less
likelihood because it contains the accidental event BE-9.

To show the importance of analyzing safety and security together, a burst disk is
added which represents a mechanical component (no security breaches are related)
as improvement for the process. The re-determination of MCs shows that there is
no MC that is related to pure security. Table 6.6 shows the re-determined MCs
with their re-estimated likelihoods. The introduced improvement diminishes the
likelihoods into the lowest level. Thus, the presence of a mechanical failure (safety
event) in a cut set will insure the prevention of malicious attacks and vice versa.
For these reason, safety and security being treated together will lead to a better risk
analysis and effective decision making.
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MCS Likelihood Level MCS Likelihood Level

1 SBE-1; SBE-6 (2, N/A) M 12 BE-6, BE-9 (N/A, D) L

2 SBE-2; SBE-6 (2, N/A) M 13 BE-7, BE-9 (N/A, D) L

3 SBE-3; SBE-6 (4, N/A) VH 14 BE-8, BE-9 (N/A, D) L

4 SBE-4(V-4, A-4.1) ; SBE-6 (3, N/A) H 15 SBE-1; BE-9 (2, D) L

5 SBE-4(V-4, A-4.2) ; SBE-6 (4, N/A) VH 16 SBE-2; BE-9 (2, D) L

6 SBE-4(V-4, A-4.3) ; SBE-6 (3, N/A) H 17 SBE-3; BE-9 (4, D) L

7 SBE-5; SBE-6 (4, N/A) VH 18 SBE-4(V-4, A-4.1) ; BE-9 (3, D) L

8 BE-1, BE-9 (N/A, D) L 19 SBE-4(V-4, A-4.2) ; BE-9 (4, D) L

9 BE-2, BE-3, BE-9 (N/A, D) L 20 SBE-4(V-4, A-4.3) ; BE-9 (3, D) L

10 BE-4, BE-9 (N/A, D) L 21 SBE-5; BE-9 (4, D) L

11 BE-5, BE-9 (N/A, D) L

Purely security related MC Mix related MC Purely safety related MC

Tableau 6.5 – The identified MCs for the scenario under study.

6.5 Modeling Stuxnet using the ATBT

Stuxnet is one of the most sophisticated and advanced computer worms that can
affect ICS. For this purpose and in order to present the utility of the proposed
AT in the security domain and not just to combine safety/security, we modeled
the Stuxnet warm to examine the impact of computer worms on industrial control
systems. In the rest of this section, we detail how Stuxnet operates to sabotage the
control system.
The different operations (attacks) and vulnerabilities Stuxnet exploits are modeled
in Figures 6.14, 6.15, 6.16.
Stuxnet is one of the most sophisticated worm that was designed to target a specific
Siemens PLC ([51]; [114]). The main goal of Stuxnet is to gain unauthorized access
to this PLC in order to attack and sabotage the industrial system [94]. To do
so, Stuxnet shall install itself after being injected into the facility, spread via the
network to find the PLC and lastly run the attack as respectively presented in
Figures 6.16, 6.15 and 6.14. From Figure 6.16, Stuxnet can infect a computer inside
using different paths. Injecting an infected removable drives and open it. The virus

192



6.5 Modeling Stuxnet using the ATBT

MCS Likelihood Level MCS Likelihood Level

1 SBE-1; SBE-6; BE-10 (2, E) VL 12 BE-6, BE-9; BE-10 (N/A, E) VL

2 SBE-2; SBE-6; BE-10 (2, E) VL 13 BE-7, BE-9; BE-10 (N/A, E) VL

3 SBE-3; SBE-6; BE-10 (4, E) VL 14 BE-8, BE-9; BE-10 (N/A, E) VL

4 SBE-4(V-4, A-4.1) ; SBE-6; BE-10 (3, E) VL 15 SBE-1; BE-9; BE-10 (2, E) VL

5 SBE-4(V-4, A-4.2) ; SBE-6; BE-10 (4, E) VL 16 SBE-2; BE-9; BE-10 (2, E) VL

6 SBE-4(V-4, A-4.3) ; SBE-6; BE-10 (3, E) VL 17 SBE-3; BE-9; BE-10 (4, E) VL

7 SBE-5; SBE-6; BE-10 (4, E) VL 18
SBE-4(V-4, A-4.1) ; BE-9; BE-

10
(3, E) VL

8 BE-1, BE-9; BE-10 (N/A, E) VL 19
SBE-4(V-4, A-4.2) ; BE-9; BE-

10
(4, E) VL

9 BE-2, BE-3, BE-9; BE-10 (N/A, E) VL 20
SBE-4(V-4, A-4.3) ; BE-9; BE-

10
(3, E) VL

10 BE-4, BE-9; BE-10 (N/A, E) VL 21 SBE-5; BE-9; BE-10 (4, E) VL

11 BE-5, BE-9; BE-10 (N/A, E) VL

Purely security related MC Mix related MC Purely safety related MC

Tableau 6.6 – The re-identified MCs after the added improvement.
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will spread to the computer by exploiting the Auto-run or the LNK vulnerabilities.
Or via internet by sending a malicious email as modeled by SBE-3. After infecting
a computer inside the facility, Stuxnet installs itself by stealing a digital certificate
(exploiting the Realtek vulnerability) and loading a dropper (.ddl) file (exploiting
the Windows vulnerabilities) as represented by SBE-4 and SBE-5, respectively.
The second step of Stuxnet is to spread inside the facility searching for its target
(Siemens PLC). Stuxnet can spread using different ways as shown in Figure 6.15
and presented below ([118]):
— spread via WinCC vulnerability: Stuxnet searches for computers running the

SCADA interface Simatic WinCC and connects into WinCC using a password
hard-coded (SBE-6). Then attacks using SQL injection (SBE-7). If these two
have been done successfully, Stuxnet uploads and copies itself on the WinCC
computer.

— spread via Network shares (SBE-8): Stuxnet can exploit the existing of shared
folders to spread throughout the local network. It places a Trojan.dropper file
to install the virus on the target computers that share the same folders.

— spread via the MS10-061 print spooler 0-day vulnerability (SBE-9): Stuxnet
uploads copies of itself on remote computers by exploiting this vulnerability.
By executing these copies, Stuxnet infects the remote machines.

— spread via the MS08-067 SMB vulnerability (SBE-10): if a remote computer
has this vulnerability, Stuxnet can send a malformed path over SMB (a protocol
for sharing files and other resources between computers) to execute arbitrary
code on the remote machine, thereby propagating itself to it.

The last step for Stuxnet represents the attack phase to compromise and sabotage
the SCADA system (see Figure 6.14). After spreading and finding its target, Stuxnet
checks the connection to PLC as well as other specific configuration (PLC model,
Profibus configuration, speed regulators number). Stuxnet sends this information
to its senders in order to get updated (SBE-11). Once it is updated, Stuxnet looks
for WinCC/Step7 software on the control PC used to configure the PLC in order to
proceeds infecting and modifying PLC function blocks. If found, it installs a rootkit:
it loads a library file (s7otbxdx.dll) used for the communication between the control
PC and the PLC, renames it (s7otbxsx.dll) and inserts malicious codes into the
new file (SBE-12). Beside this step, Stuxnet conceals the attack activities (SBE-
13): it collects data for a period of 13 to 90 days before conducting the attack and
sending modified control data. Thus, the malware operates without being detected.
As result, Stuxnet sends wrong control data and displays to the operator that the
system is under normal conditions.
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6.6 Limitations and future work

The MCs of Stuxnet scenario with their likelihoods are determined as presented in
Table 6.7. Table 6.7 presents 20 different paths Stuxnet can follow to sabotage the system.
The given input data for SBEs is subjective and can be changed depending on the structure
of the system under study. The results reflect the potential attack sequences and gave a
likelihood of occurrence of each one. These results would help preventing or reducing the
likelihoods of high likelihood attack sequences by providing the right security measures
in the right place.

MCS Likelihood Level MCS Likelihood Level

1
SBE-1(V1, A-1.1); SBE-2(V-2.1, A-2); 
SBE-4; SBE-5; SBE-6; SBE-7; SBE-11; 

SBE-12; SBE-13
(1, N/A) L 11

SBE-1(V1, A-1.1); SBE-2(V-2.2, A-
2); SBE-4; SBE-5; SBE-9; SBE-11; 

SBE-12; SBE-13
(3, N/A) H

2
SBE-1(V1, A-1.2); SBE-2(V-2.1, A-2); 
SBE-4; SBE-5; SBE-6; SBE-7; SBE-11; 

SBE-12; SBE-13
(1, N/A) L 12

SBE-1(V1, A-1.2); SBE-2(V-2.2, A-
2); SBE-4; SBE-5; SBE-9; SBE-11; 

SBE-12; SBE-13
(3, N/A) H

3
SBE-1(V1, A-1.1); SBE-2(V-2.2, A-2); 
SBE-4; SBE-5; SBE-6; SBE-7; SBE-11; 

SBE-12; SBE-13
(1, N/A) L 13

SBE-1(V1, A-1.1); SBE-2(V-2.1, A-
2); SBE-4; SBE-5; SBE-10; SBE-11; 

SBE-12; SBE-13
(2, N/A) M

4
SBE-1(V1, A-1.2); SBE-2(V-2.2, A-2); 
SBE-4; SBE-5; SBE-6; SBE-7; SBE-11; 

SBE-12; SBE-13
(1, N/A) L 14

SBE-1(V1, A-1.2); SBE-2(V-2.1, A-
2); SBE-4; SBE-5; SBE-10; SBE-11; 

SBE-12; SBE-13
(2, N/A) M

5
SBE-1(V1, A-1.1); SBE-2(V-2.1, A-2); 
SBE-4; SBE-5; SBE8; SBE-11; SBE-12; 

SBE-13
(3, N/A) H 15

SBE-1(V1, A-1.1); SBE-2(V-2.2, A-
2); SBE-4; SBE-5; SBE-10; SBE-11; 

SBE-12; SBE-13
(2, N/A) M

6
SBE-1(V1, A-1.2); SBE-2(V-2.1, A-2); 

SBE-4; SBE-5; SBE-8; SBE-11; SBE-12; 
SBE-13

(3, N/A) H 16
SBE-1(V1, A-1.2); SBE-2(V-2.2, A-
2); SBE-4; SBE-5; SBE-10; SBE-11; 

SBE-12; SBE-13
(2, N/A) M

7
SBE-1(V1, A-1.1); SBE-2(V-2.2, A-2); 

SBE-4; SBE-5; SBE-8; SBE-11; SBE-12; 
SBE-13

(3, N/A) H 17
SBE-3; SBE-4; SBE-5; SBE-6; SBE-7;

SBE-11; SBE-12; SBE-13
(1, N/A) L

8
SBE-1(V1, A-1.2); SBE-2(V-2.2, A-2); 

SBE-4; SBE-5; SBE-8; SBE-11; SBE-12; 
SBE-13

(3, N/A) H 18
SBE-3; SBE-4; SBE-5; SBE-8; SBE-

11; SBE-12; SBE-13
(2, N/A) M

9
SBE-1(V1, A-1.1); SBE-2(V-2.1, A-2); 

SBE-4; SBE-5; SBE-9; SBE-11; SBE-12; 
SBE-13

(3, N/A) H 19
SBE-3; SBE-4; SBE-5; SBE-9; SBE-

11; SBE-12; SBE-13
(2, N/A) M

10
SBE-1(V1, A-1.2); SBE-2(V-2.1, A-2); 

SBE-4; SBE-5; SBE-9; SBE-11; SBE-12; 
SBE-13

(3, N/A) H 20
SBE-3; SBE-4; SBE-5; SBE-10; SBE-

11; SBE-12; SBE-13
(2, N/A) M

Tableau 6.7 – The identified MCs for the Stuxnet attack scenario.

6.6 Limitations and future work

The methodology in this chapter focuses on introducing cyber-security related threats
within industrial risk analysis. Beside the advantages this methodology presents, it hides
some limits:

— the step of characterizing likelihood for security related events (Section 6.3.3.2.2)
could be improved. Many other criteria could be taken into account to evaluate the
likelihood of security related events: connectivity of systems, control of internal and
external stakeholders, technology and communication protocols used, organization
set up to monitor and patch vulnerabilities, etc.;
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— the approach presented for likelihood analysis is qualitative. As we said, the ad-
vantage of this qualitative approach is its simplicity of applying and understanding
by the relevant personnel. But, this qualitative approach is subjective and heavily
dependent on the experience of experts who are performing the analysis and it can
be influenced by personal idiosyncrasies. Consequently, it can lead to inaccurate
and imprecise risk predictions. Moreover, statistical data, if available, is lost by us-
ing a qualitative likelihood analysis. Therefore, moving towards a semi-quantitative
approach that uses statistical data if available or qualitative data if not is a focus
of interest;

— in general, each dangerous phenomenon is partly analyzed in terms of likelihood/-
severity. Nevertheless, in case of security, it can be imagined that several scenarios
can occur at the same time. An attacker could try to cause several phenomena at
the same time to maximize the effects. For example, if there are several tanks of
dangerous materials, in traditional risk analysis, the fire of each tank is assessed
separately. But, if there are several simultaneous fires, the severity would be greater
and the the intervention to reduce accidents would be more difficult.

These limits will enhance future research about introducing cyber-security with safety
risk analysis.

6.7 Conclusion

The use of technology in critical facilities exposes systems’ safety to security related
threats. These threats are due the use of Internet, standardized protocols and electronic
components for connectivity and remote controls.

Nowadays, most of the existing approaches for industrial risk analysis ignore cyber-
security. On the other hand, cyber-security analysis ignore the benefits of non-digital
systems in decreasing the likelihood of security scenarios. In light of security threats,
there is an urgent need for complete and effective safety risk analysis. That is why this
chapter proposes an approach that integrates ATs with BT analysis for a combined safety
and security industrial risk analysis. Bowtie analysis is used for analyzing safety accidents.
A new concept of Attack Tree is introduced to consider potential malicious attacks that
can affect the system’s safety. The steps of combining AT within BT is presented and the
process for likelihood evaluation is explained.

There is complexity in quantifying likelihoods of attacks and a lack of consistency in
the likelihood of occurrence between deliberate and accidental causes of risk. For these
reasons, two different qualitative likelihood scales one for safety and another for security
are proposed for representing the likelihood of basic events related to safety and security.
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The different likelihood scales lead to three different types of events sequences (MCs). A
qualitative mathematical rule is used to calculate the likelihoods of MCs.

The outputs of the approach show important results in terms of representation of risk
scenarios as well as in likelihood quantification. MCs due to purely safety, security or
both can be separately extracted. This separation between MCs helps understand the
origins of risk and provide the right control measures.

The application of the proposed approach on an undesirable scenario in a chemical
reactor shows that the highly likelihood MCs are purely related to security. The added
improvement diminishes the unacceptable likelihood to an acceptable level. The results
show that the moves from purely security MCs to mix safety/security MCs is the safest
risk treatment.

The applicability of the proposed AT in the security domain is also approved by mod-
eling the Stuxnet virus. A graphical representation of the different steps and event com-
binations of Stuxnet is provided. The minimal attack sequences of Stuxnet are extracted
and their likelihoods are calculated.

At the end of this chapter, we outlined the limits presented in our proposed approach.
These limits revolve around the use of a qualitative approach for likelihood analysis. We
invite researchers to address the list of the limits, and to continue the work in considering
safety and security jointly. Shared understanding of the challenges facing the domain will
facilitate its rapid maturing.
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(a) Qualitative scale to characterize the vulnerability levels.
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Level

Designation

1 Trivial (T): Little technical skill required

2
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(b) Qualitative scale to characterize the difficulty of conduct-
ing an attack.
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(c) Combining attack difficulty levels with the vulnerability
levels to determine the likelihood of security input events.

Figure 6.8 – Characterizing the likelihood of security basic events.

198



6.7 Conclusion

Top event

A-2A-1V-1 V-2
SBE-1

(4,N/A)
SBE-2

(3,N/A)

(E) (T) (M) (M)

(3,N/A)

A
N

D

A
N

D

A
N

D

BE-1 BE-2

E-1(N/A, C)E-2

BE-1
(N/A, A)

BE-2
(N/A, C)

(3, C)Level M,  
see Table. 5 

Figure 6.9 – Example of how calculating the likelihood of an MC.
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Figure 6.10 – The chemical reactor with its control system structure.
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Figure 6.11 – Combined ATBT of the scenario under study.
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Figure 6.12 – AT for the goal: gain unauthorized access to SCADA.
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Figure 6.15 – Attack tree of the “spreading of Stuxnet".
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Global conclusion and perspectives

Risk analysis is a critical part for regulatory decision-making related to high-risk risk
industries. A systematic risk analysis process is made up of three steps: risk identification
of undesirable risk scenarios, likelihood analysis and effect analysis. Identifying a risk
scenario aims to explore how an undesirable hazard can be developed starting from causes
and ending with the consequences. Likelihood analysis aims to estimate the likelihood of
occurrence of risk scenarios. Effect or consequence analysis aims to calculate the effects of
risk scenarios on human life and the environment. The INERIS uses the bow-tie analysis
for identifying risk scenarios and analyzing their likelihoods. Complex mathematical
models are used for effect analysis.

Chapter Sections Scientific process

1

- Background
- Motivations and objectives: research questions and goals
- Contributions : overview on the developed approaches 
- Synthesis

Overview

2

Defining risk and risk analysis
Defining uncertainty and uncertainty analysis

Research problem: - Uncertainty in likelihood analysis;
- Uncertainty in effect analysis;
- Uncertainty in the risk identification step.

Context

Problematic

3
Part-1: mathematical theories to represent uncertain knowledge
Part-2: review on approaches that jointly consider safety and security

State of art

4 Handling parameter uncertainty in likelihood analysis

Contributions 
and applications

5 Handling parameter uncertainty in effect analysis

6
Handling completeness uncertainty: introducing cyber-security within safety risk 

analysis

Global conclusion and perspectives: summarize the and gives hints on possible future work

Figure 6.17 – A global vision of the thesis structure.

However, most risk analysis studies struggle with uncertainty analysis and yet un-
certainty with respect to its sources, types and causes is not well treated. Quantifying
uncertainty during risk analysis has become an important part of effective decision-making
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and health risk analysis. This thesis is motivated by the need of quantifying uncertainty
in order to perform a sound risk analysis. Figure 6.17 presents how this document is
structured in order to present the research problems and detail the proposed solutions.

Chapter 1 provides an overview on the motivations and objectives for conducting this
work. Chapter 2 presents the different steps of a risk analysis process, the definition of
uncertainty, the different sources, types and causes of uncertainty, why is it important
to address uncertainty and how to address each source of uncertainty. The rest of chap-
ter 2 highlights the research problem by identifying what sources of uncertainty affect
the INERIS risk analysis process. Parameter and completeness uncertainties affect the
analysis process as follows:

1. the likelihood analysis step suffers from parameter uncertainty: the interval semi-
quantitative methodology used by the INERIS to estimate the probabilities of risk
scenarios might lead to unreliable estimation due to uncertainty. Interval analysis
is not the right mathematical theory to treat uncertainty during likelihood analysis.
The use of interval analysis may lead to probability underestimation in specific
cases. However, replacing interval analysis with the right mathematical theory to
deal with uncertainty is the solution.

2. the effect analysis step suffers from parameter uncertainty: input parameters for
these effect models are fraught with uncertainties. These uncertainties might be of
different types (aleatoric, epistemic or mix of both types) depending on the types
of these input parameters and the sources of available data. Epistemic uncertainty
can be of different causes: imprecision, subjectivity, ignorance and lack of consen-
sus. However, yet parameter uncertainty regarding its causes is not well treated.
Different mathematical theories are needed to accurately represent each cause of
parameter uncertainty. For this reason, a global new approach that use the right
mathematical theory to treat each cause of parameter uncertainty is needed;

3. the identification process is incomplete: one of the most important incompleteness
source is the introduction of connected systems and digital technology in process
industries. This introduction creates new cyber-security vulnerabilities that can be
exploited by sophisticated threats and lead to undesirable safety accidents. Thus,
identifying these vulnerabilities during risk analysis becomes an important part for
effective industrial risk evaluation. However, nowadays, safety and security are ana-
lyzed separately when they should not be. This is because a security threat can lead
to the same dangerous phenomenon as a safety incident. However, these security
related causes are not considered during risk analysis. Thus, a new risk analysis
methodology that introduces security within safety risk analysis is an important
need.

208



Conclusion gnrale et perspectives

After presenting the context of the study and subtracting the research problems, a
review of the literature on the subject was presented in Chapter 3. We have focused
particularly on the different mathematical theories to represent uncertain knowledge and
the existing approaches that jointly consider safety and security during risk analysis. We
compare these approaches and discuss their limits in dealing with the problem we are
facing.

Chapters 4, 5 and 6 present our contributions to deal with the above highlighted
problems. These contributions are summarize in the next section. Section 6.7 gives hints
on future work related to each contribution.

Contributions of this work

After investigation of the different sources of uncertainty that affect the INERIS risk
analysis process, three main contributions are developed in this work.

The first contribution is the development of a fuzzy semi-quantitative approach to treat
parameter uncertainty in the likelihood analysis step (Chapter 4). As we said previously,
the interval semi-quantitative approach used by the INERIS for probability analysis may
result in probability underestimation in some cases due to uncertainty. For this reason,
Chapter 4 proposes a fuzzy semi-quantitative bow-tie analysis to address data uncertainty
and overcome the limits of the interval-based approach. A fuzzy-based approach is used
for handling subjectivity and imprecision in the input parameters. By introducing fuzzy
logic, we solved the problem of probability underestimation of interval-based approach.
The discreteness and vagueness between frequency classes are removed. A measurement
error in the input data will not affect the decision making anymore. Furthermore, the
fuzzy semi-quantitative approach shows a simple more conservative approach than the
interval semi-quantitative, the pure quantitative and the qualitative approaches;

The second contribution is the development of a global approach to deal with pa-
rameter uncertainty in effect analysis (Chapter 5). Here, we rode out from the fact that
different methods are needed to represent variability, imprecision, ignorance and lack of
consensus. Chapter 5 first proposes a mixed fuzzy-probabilistic approach to separately
treat variability and imprecision. This approach is then compared with the existing ap-
proaches to treat parameter uncertainty in effect analysis. As result, a guideline on how
the best to treat parameter uncertainty is provided. We concluded that probability dis-
tributions, fuzzy numbers and evidence theory are the most suitable theories to deal
with variability, imprecision and vagueness. Based on this conclusion, a new approach
that treat each cause of parameter uncertainty with the right theory is developed. This
approach combines probability, possibility and belief to separately represent and treat
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variability, imprecision and ignorance. A new propagation algorithm is develop that uses
2-stages MC simulation and evidence calculus to propagate the represented uncertain pa-
rameters through the effect models. The approach is named the ALI-approach because
after propagating uncertainty we aggregate the different likelihood indexes (probability,
possibility and belief) in a single one. The output of the ALI approach after aggregating
the likelihood indexes is a single distribution. This approach provides the most precise
treatment of parameter uncertainty and simpler output for decision makers by aggregating
likelihood indexes;

The third contribution is the proposition of a new approach for the treatment of
incompleteness uncertainty by introducing cyber-security beside safety within industrial
risk analysis (Chapter 6). This approach combines bow-tie analysis developed by the
INERIS, with a new extended version of attack tree analysis, introduced for security
analysis of industrial control systems. The proposed new version of attack tree depict
more information about the target system in order to provide a more meaningful modeling
of security risk scenarios. The combined use of bow-tie and attack tree provides an
exhaustive representation of risk scenarios in terms of safety and security. We then propose
an approach for evaluating the risk level based on two-term likelihood parts, one for safety
and one for security. Two-term likelihood parts are proposed to declare the difference
between safety and security related risk causes.

These contributions are demonstrated on real case studies. This work has resulted in
publications in international journals ([4], [7] and [9]). We also published our findings at
international conferences ([2], [3], [5] and [6]) and national ([50]).

Suggestions for Future Work

As general perspectives for this work, we mention here the most important:

— the fuzzy semi-quantitative approach can be extended by using multiple sources of
data in probability analysis. Different data bases or experts may provide different
probabilities regarding the same parameter. This result in lack of consensus between
the different sources of data. Thus, rating and aggregating the data from different
sources will lead to a more robust probability quantification approach for bow-tie
analysis. Rating the sources of data can be based on how detailed the data bases
are, and the level of expertise of experts in the filed of the analysis. The questions
here are: how to combine all sources of data in the same formalism, and how to
propagate this information through the bow-tie model. By using all information
from the all available sources of data, the decision making will be more effective and
conservative;
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— in this document, we discuss decision-making under uncertainty in a simplified way.
A decision making framework under uncertainty can be developed to facilitate mak-
ing decisions for the concerned authorities. Providing guidelines for decision makers
is an important research subject. The guidelines would help in choosing the best
degree of confidence for the decision regarding specific criteria such as the types
of related hazards, the surrounding environment etc,. Based on this, a reasonable
decision would be made rather than being non-conservative or too conservative;

— the qualitative approach for a combined safety/security risk analysis can be extended
by proposing a more robust likelihood evaluation technique based on the developed
cyber bow-tie. The fuzzy semi-quantitative approach developed in Chapter 6 for
likelihood analysis can be adjusted and applied for safety/security likelihood analy-
sis. The idea is to propose fuzzy scales to characterize the criteria used to evaluate
the likelihood of security related events (attack difficulties and vulnerability levels).
The likelihood of security related events will be represented in terms of frequency
classes with their membership degrees. Moving toward a fuzzy semi-quantitative
approach based on the proposed cyber bow-tie analysis (the ATBT developed in
Chapter 6) will provide more precise likelihood evaluation of safety/security risks.
Section 6.4.3 of Chapter 6 details more possible improvements and future work;

— omitting or ignoring risk events can affect both the accuracy and precision of the
analysis results. So, it might be desirable to address the unknown completeness
uncertainty and study its impact on the analysis. Providing a level of confidence on
how complete the analysis is will provide a helpful information for risk assessors and
decision makers. Knowing if the analysis is complete or not would help its updating
once more information is available in the future.
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