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Abstract

In the present dissertation, we discuss the controllability of the bilinear
Schrédinger equation appeared in literature after the seminal work on bilin-
ear systems [BMS82] by Ball, Mardsen and Slemrod, then mostly popular-
ized by Beauchard and Laurent with the work [BL10].

In order to facilitate the reading, we present below a brief outline of the
manuscript.

Chapter 1: We provide a wide overview about the existing works on
the topic and we explain the main outcomes obtained in the thesis.

Chapter 2: We study the global exact controllability of the bilinear
Schrédinger equation in order to provide explicit controls and times
for the result.

Chapter 3: Given infinitely many bilinear Schrédinger equations, we
prove the simultaneous global exact controllability “in projection”.

Chapter 4: We consider the bilinear Schrodinger equation on com-
pact graphs. We prove the well-posedness, the global exact controlla-

bility and the “energetic controllability”.

Appendix A: We show some results about the solvability of the so-
called “moment problem”.

Appendix B: We exploit some techniques of perturbation theory
adopted in the manuscript.

Notation: We collect the main notations used in the thesis in order
to avoid misunderstandings and simplify the reading.
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Chapter 1

Introduction

In non-relativistic quantum mechanics, any pure state of a system is math-
ematically represented by a wave function v in the unit sphere of a Hilbert
space JZ. For T > 0, its time evolution is described by a Cauchy problem

iOyp(t) = H(t)p(t), t€(0,T),
»(0) = ¢,

where H(t) is a time-dependent self-adjoint operator, called Hamiltonian.

We aim to describe the evolution of a particle confined in a bounded region

and subjected to an external electromagnetic field that plays the role of a

control. A standard choice for such a setting is 5 = L?(2,R), where
models the spatial domain, and the Hamiltonian H(¢) appearing in (1.1) is

(1.2) H(t) = A+ u(t)B.

(1.1)

The influence of the external field is modeled by the second term in (1.2),
where the symmetric operator B describes the action of the field and the
function u its (time-dependent) intensity. The operator A is the Laplacian
equipped with suitable self-adjoint type boundary conditions, e.g.

Q= (071)7 D(A) :Hg((()? 1),C)ﬂH01((O, 1),@)),

Ap = — Ay, Vi) € D(A).

We call I'} the unitary propagator generated by H (¢) (when it is defined) and
the dynamics of the particle is modeled by the so-called bilinear Schrédinger
equation

(BSE)

{iatwt) — AG(t) + u(t) B(1), te(0,1),
$(0) = .
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A natural question of practical implications is whether, given any couple
of states, there exists u € L?((0,T),R) steering the quantum system from
the first state in the second one and how to build explicitly this control
function.

The controllability of finite-dimensional quantum systems (i.e. modeled
by an ordinary differential equation) is currently well-established.
If we consider the problem (BSE) in CV such that A and B are N x N
Hermitian matrices and ¢t — u(t) € R is the control, then the controllability
of the the problem is linked to the rank of the Lie algebra spanned by A and
B (we refer to [AD03] by Albertini and D’Alessandro, [Alt02] by Altafini,
[Bro73] by Brockett and [Cor07] by Coron).
Nevertheless, the Lie algebra rank condition can not be used for infinite-
dimensional quantum systems (see [Cor07] for further details). This is why
different techniques were developed in order to deal with this type of prob-
lems.

Regarding the linear Schrodinger equation, the controllability and ob-
servability properties are reciprocally dual (which is often referred to the
Hilbert Uniqueness Method). One can therefore address the control problem
directly or by duality with various techniques: multiplier methods ([Fab92]
by Fabre, [Lio83] by Lions, [Mac94] by Machtyngier), microlocal analysis
([BLR92] by Bardos, Lebeau and Rauch, [Bur91] by Burq and [Leb92] by
Lebeau), Carleman estimates ([BMO08] by Baudouin and Mercado, [LT92]
by Lasiecka and Triggiani and [MORO08] by Mercado, Osses and Rosier).
For non-linear equations, we refer to the works [DGLO06] (by Dehman, Ger-
ard and Lebeau), [LT07] (by Lange and Teismann), [RZ09] (by Rosier and
Zhang), [Laul0Oa] and [LaulOb] (by Laurent).

Well-posedness in 7 and non-controllability result.

Even though the linear Schrédinger equation is widely studied in the
literature, the bilinear Schrodinger equation can not be approached with
the same techniques since it is non-controllable in D(A). We refer to the
seminal work on bilinear systems [BMS82] by Ball, Mardsen and Slemrod,
where the well-posedness and the non-controllability are provided.

In the case of the bilinear Schrodinger equation, the mentioned work guar-
antees that if B : D(A) — D(A) and u € L'((0,T),R) with T > 0, then
(BSE) admits a unique solution

Y e C(0,7), ),



for any initial state in . Moreover, let S be the unit sphere in s and
I'4pg be the value at time T > 0 of the solution of (BSFE) with initial state
o € SN D(A). The set of the attainable states from )y,

{Tapo: T >0, ue L*((0,T),R)},

is contained in a countable union of compact sets. Then, it has dense com-
plement in S N D(A). As a consequence, the exact controllability of the
bilinear Schrodinger equation can not be achieved in SN D(A) with controls
u € L} ((0,00),R) (see also [Tur00] by Turinici).

Despite this negative result, many authors address the problem with
weaker notions of controllability. Indeed, even though this outcome is not
guaranteed in D(A), there may exist suitable subspaces of D(A) where the
exact controllability can be verified.

Well-posedness in D(A%).

We start by mentioning Beauchard and Laurent [BL10] who study the
bilinear Schrédinger equation in # = L2((0,1),C) for A such that

D(A) = H2((Oa 1>7(C) N H(%((07 1)7(:)7

Ap=—Ay, Y€ D(A).

Let {¢x}ren be a complete orthonormal system of . composed by eigen-
functions of A and associated to the eigenvalues {\;}jen (Ax = 72k?). For
s > 0, they consider the spaces

[N

Hjy = D(A?), - Ny o= [ D 1785, ) e
j=1

In [BL10], Beauchard and Laurent prove the well-posedness of the bi-
linear Schrodinger equation in H, (30) when B is a multiplication operator for

p € H?((0,1),R). In particular, for T > 0, ¥° € Hpg, and u € L*((0,T),R),

they provide the existence of a unique mild solution of (BSFE) in H 5’0), ie.

(NS C’O([O,T],H(go)) such that

t
Y(t,x) = e A0 (2) — i / e A=) (y() () (s, x))ds, Vit € [0,T].

0
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Moreover, for every R > 0, there exists C' = C(T, u, R) > 0 such that, if

ull20,1)R) < R,

then the solution satisfies, for every y° € H (30), the following identities

[lleogorym,) < Cll @y, 1@ r = 1¥°1le ¥t € [0,T).
The peculiarity of the result is that the well-posedness in H, ?0) is guar-

anteed even if B does not stabilize H, (30) due to an hidden regularizing effect.
The main hypothesis used in its proof are

B: Hpy, — Hf), B: Hy,y — H?((0,1),C) N Hy((0,1),C).

The well-posedness can also be proved thanks to the arguments developed by
Kato in [Kat53]. When u € BV ((0,7),R) and B € L(H(20)), the mentioned

work shows that I'} stabilizes H (86) for every s; € [2,4]. However, in [BL10]
the result is provided for a wider class of controls.

Local exact controllability.

e Let M C 2 be anormed space and V' C M be a neighborhood of 1! €
M. The problem (BSFE) is said to be locally exactly controllable
(Figure 1.1) in V when, for every ¢ € V such that ||[¢?|» = [|[¢! |,
there exist 7> 0 and u € L?((0,T),R) such that

fapt = 42

Figure 1.1: The figure represents the dynamics for the local exact control-
lability driving ¢! € V to ¢? € V.

Another important outcome proved by Beauchard and Laurent in [BL10]
is the local exact controllability. They show that if B is a multiplication
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operator for a function u € H?((0,1),R) such that there exists C > 0
implying

C .
(1.3) (), 1) | > = VjeN,
then the bilinear Schrédinger equation is locally exactly controllable in a
neighborhood of the first eigenfunction of A in H, EO)O)'
Heuristically speaking, the condition (1.3) quantifies how much the operator
B mixes the eigenfunctions of A. In the current work, we adopt similar
assumptions which also appear in other recent manuscripts.

An important aspect of their work is that they popularize a set of tech-
niques that are widely used in literature for this type of results. In particular,
they prove that the local exact controllability is equivalent to the control-
lability of the linearized system in a neighborhood of the first eigenfunction
of A. It corresponds to the solvability of a “moment problem”

T
(14)  xp = / e!Pe =254, (5)ds, Vk € N, {z1}ren € £2(C)
0

for u € L2((0,T),R) and T > 0 large enough. In the proof, the validity of
the gap condition

inf [\, — A| > 0

k£

is crucial and it allows to use classical results of solvability of moment prob-
lems as Ingham’s Theorem and Haraux’s Theorem.

For the sake of completeness, we refer to the works [Bea05], [Bea08] and
[BCO6] for other local exact controllability results. Therefore, the controlla-
bility proved by Beauchard and Laurent belongs to the classical framework
of local controllability results for non-linear systems, proved with fixed point
arguments as [CCO09], [Ros97], [RZ96], [Zha99] and [Zua93].

Global approximate controllability.

e We say that the problem (BSF) is globally approximately control-
lable (Figure 1.2) in a normed space M C J if, for any !, ¢? € M
such that [|[9?||» = ||} and for every e > 0, there exist T > 0 and
u € L*((0,T),R) such that

Ty — 92|l < e
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M 12 e

1/11

Figure 1.2: The figure represents the dynamics for the global approximate
controllability driving ¢! € M close to ¥? € M.

Let us consider N € N symmetric operators {B;};j<n in a Hilbert space
A, the functions {u;}j<ny C L?((0,T),R) and a self adjoint operator A.
Results of global approximate controllability for dynamics generated by
Hamiltonians as

A+ u,(t)B;

J<N

are vastly studied in literature and the first examples that we present are
[BGRS15] and [BCMS12| where adiabatic techniques are adopted.

The global approximate controllability is provided by Lyapunov techniques
in [Mir09], [Ner09], [Nerl0] and [NN12], while by Lie-Galerking arguments
in [BCCS12], [BCS14] and [CMSB09].

The most useful for our purpose is the work [BACC13] by Boussaid, Capon-
igro and Chambrion, where Lie-Galerking arguments are adopted in order
to verify the global approximate controllability in D(]A|%) for some s > 0.

The main assumption considered in [BACC13] (common for this type of
results) is the so-called “non-degenerate chain of connectedness”. Let N = 1.
Heuristically speaking, the condition requires that {)\;};cn (the eigenvalues
of A) are non-resonant (all gaps are different) and By “sufficiently couples”
the eigenstates.

Technically, the assumption requires that the following hypotheses are
satisfied. Let N be the subset of N? given by all the couples (ki, k) such
that (¢, , B1¢r,)» # 0. We assume that

Aj 7 Ak

for every (j,k) € N such that j # k (resonant eigenvalues are not coupled
by Bj1). Let S be a subset of N such that the graph of vertices the elements
of N and whose edges are the elements of S is connected (see Figure 1.3).
The problem admits a “non-degenerate chain of connectedness” if, for every
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Figure 1.3: Each vertex of the graph represents an eigenstate of A. An edge
links two vertices j, k € N if and only if (¢;, B1¢g).» # 0.

(j1,72) € S and every (ki, ko) € N different from (j1,j2) and (j2,j1), there
holds

|)‘j1 - )‘j2’ 7& ’/\k1 - )‘k2"

In [BACC13], Boussaid, Caponigro and Chambrion show that for N =
1 and in presence of a non-degenerate chain of connectedness, if B; €
L(D(JA|?)) with s; > 0, then the problem is globally approximately con-
trollable in D(|A|2) for s € [0,s1).

In the present work, we refer to this result and we adopt perturbation
theory techniques in order to exhibit a non-degenerate chain of connected-
ness.

Simultaneous local and global exact controllability.

e Each type of controllability is said to be simultaneous (e.g. Figure
1.4) when it is simultaneously satisfied with the same control between
more couples of states.

9

4
H)

Figure 1.4: The figure shows the dynamics driving {¢}}r<s C M in
{¢2}r<s C M obtained by the simultaneous global exact controllability.

Relevant results of simultaneous local exact controllability are provided
by Morancey in [Morl4]. Let # = L?((0,1),C), N € {2,3} and B be
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a multiplication operator for a function p € H3((0,1),R) such that there
exists C' > 0 such that
¢

(1.5) (Pj, udk)we| > =, Vi€EN, k<N

<

(a similar condition to (1.3)). Morancey proves in [Mor14] the simultaneous
local exact controllability in H. ?0) for N bilinear Schrodinger equations when

w satisfies (1.5) and

(1.6) (D1, n1) e # (D2, uP2) s if N =2,
5(p1, pp1) e — 8(P2, p2) s + 3{p3, pp3) w # 0, if N =3.

In other words, Morancey proves that there exists a suitable neighborhood
V C (H(go))N of {¢;}j<n such that, for every T' > 0 and {¢j}j<y € V with
|1;llw =1 for j < N, there exists u € L?((0,7),R) such that

Y =7y, 1<j<N.

In the work, the author adopts the “Coron’s return method” but also the
technique already presented by Beauchard and Laurent in [BL10].

In [MN15], Morancey and Nersesyan extend the previous result and

achieve the simultaneous global exact controllability of any finite number
of (BSE).
Let N € N. They prove the existence of Q, a residual subset of H4((0,1),R)
(a countable intersection of dense open subsets of H*((0,1),R)), such that
for every multiplication operator B for u € @), the simultaneous global exact
controllability is verified in H ELO) for N bilinear Schrodinger equations.

In other words, let U() be the space of the unitary operators on J#.
For every (¢}, ...,9N), (1/)}, ,w}v) - Hzlo) unitarily equivalent, i.e. there
exists T € U(s7) such that ¢! = fw; for every 5 < N, there exist T > 0
and u € L?((0,T),R) such that

Pk =T4yF,  1<k<N.

In this work, the Coron’s return method and the technique from Beauchard
and Laurent [BL10] lead to the simultaneous local exact controllability of N
bilinear Schrodinger equations. The result is gathered with the simultaneous
global approximate controllability proved by Lyapunov techniques.
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1.1 Main results

Explicit times and controls for the global exact controllability.
Let © = (0,1), B a bounded symmetric operator and A such that
D(4) = H*((0,1),€) 1 HY((0,1),C)),
Ay = =AY, Vi € D(A).

In Chapter 2, we study the global exact controllability of the bilinear Schrédinger
equation. Even though this result is well-established (it can be deduced from
[MN15] by Morancey and Nersesyan), most of the existing works prove the
existence of controls and times without providing them explicitly. For this

reason, we ensure the global exact controllability with particular techniques
which allow to precise those elements.

First, for any couple of eigenfunctions ¢; and ¢, for £ € N such that
m? —k? £ k2 — 12, Vm,l €N,

we exhibit controls and times such that the relative dynamics of (BSE)

drives ¢; close to ¢ as much desired with respect to the H (30)—norm.

Second, we show a neighborhood of ¢ in H, (30) where the local exact con-

trollability is satisfied in a given time.

Third, by gathering the two previous results, we define a dynamics steering
any eigenstate of A in any other in an explicit time.

In conclusion, we generalize the result for every k € N.

In more technical terms, we prove the following outcomes.
e For any ¢; and ¢y, for £ € N such that
m? —k? £ k> — 12, Vm,l €N,
we construct a sequence of control functions {u, },en and a sequence
of positive times {7}, }nen such that
. : Un 4 0 _
d0eR : nh_)rgo 1T ¢j — e kll(3) = 0.
(U1,T1) (U27T2)

(us, T3) _w*

eie(bk °
(un, Tn)
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e We provide a neighborhood of ¢, with a suitable radius r > 0 where the
local exact controllability is satisfied and so that there exists n* € N
such that

1Ty b — eyl () < 7.
By gathering the two results, we explicit T > 0 so that there exists
u € L?((0,T),R) such that

F%F%Z: ¢j = 6i9(f)k.

By, (¢ "6n) &

Wpr , T )

3
H)

®;
e In conclusion, we generalize the result for every k € N.

In Chapter 2, we also treat the example of B : ¢ — z?1). We define
a control and a time such that the dynamics of (BSE) drives the second
eigenstate ¢o in the first ¢;. For

973

8 b
there exists 8 € R so that Hewqﬁ — F%(ZSQH(:;) < 2.4-107%. In addition, there
exists & € L?((0, 2),R) such that

T
u U _ 10
Tlig2 = e 1.
us

u(t) = (2,38-10'%°) 1 cos(37%), T = (2,38-10'%)

The provided dynamics steers ¢o in ¢ (up to a phase) in a time of 7' + %
and the initial state approaches the target up to a well-defined distance with
an explicit control.

The achieved result is far from being optimal since the aim of the chapter
is to show the techniques which can be used in order to achieve the result.
However, our intention is to optimize the provided estimates in later works.
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Simultaneous global exact controllability in projection.

In Chapter 3, we consider the same problem of Chapter 2 and we study
the simultaneous controllability (Figure 1.4) for infinitely many bilinear
Schrodinger equations. In particular, we provide explicit conditions in B
implying the simultaneous global exact controllability “in projection”.

The meaning of controllability in projection is the following. Let II be an
orthogonal projector mapping .7 in a suitable subspace of .7#. The problem

(BSE) is globally exactly controllable in projection in H (30) with respect to

II when, for every ¢!, ¢? € H(So) such that ||+ = ||v?| ., there exist
T >0 and u € L?((0,T),R) such that

I % = I T4yl
Hp, ¥? ’
wm
TI(H,) y? ¢

Figure 1.5: Controllability in projection: the dynamics drives ¢! in a state
sharing the same projection of the state 12 in II(H ?0)).

The simultaneous global exact controllability in projection of infinitely
many (BSFE) in H 5’0) follows the same idea when we consider infinite couples

of states in H ?O) with same norms.

In more technical terms, we consider
U= {;}jen C I, N (V) :=span{y;:j < N},

and 7y (¥) the orthogonal projector onto (V). We prove that the fol-
lowing result is valid under suitable assumptions on B and V.
Let {1[1]1-}]-61\;, {%Z)]Z}jeN C HE)’O) be unitarily equivalent. For any N € N, there

exist T > 0 and a control function u € L?((0,T),R) such that

mn(0) ¢ = 7n(0) Thej, e
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Figure 1.6: Example of compact graph

When ¥ = U2, we have

Thap; = o3, j<N,

T (U2) Tl = oy (02)52, j>N.
The result implies the simultaneous global exact controllability (without
projecting) of N bilinear Schrédinger equations. As we mentioned before, a
similar outcome is ensured by Morancey and Nersesyan in [MN15].
However, we provide a novelty since we exhibit explicit conditions in B
implying the validity of the result.

Another goal of the chapter is to prove the simultaneous local exact
controllability in projection up to phases for any T° > 0. To this aim, we
use different techniques from the Coron’s return method usually adopted for
those types of results, e.g. [Morl4] and [MN15].

Bilinear Schrodinger equation on graphs structures.

In Chapter 4, we consider the bilinear Schrédinger equation in 2 = ¢
a compact graph structure (e.g. Figure 1.6). Considering (BSFE) on such
a complex structure is useful when one has to study the dynamics of wave
packets on graph type model. The use of graph theory in condensed mat-
ter physics, pioneered by the work of many chemical and physical graph
theorists, is today well-established and gaining even more popularity af-
ter the recent discovery of graphene. Other important applications appear
in condensed matter physics, statistical physics, quantum electrodynamics,
electrical networks and vibrational problems.
Let us recall here the basic features that define the notion of compact graph.

e We call graph ¢ a set of points (vertices) connected by a set of seg-
ments (edges).
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e A graph ¢ is metric when it is equipped with a metric structure (see
[BK13, De finition 1.3.1]).

e A metric graph ¢ with a finite number of edges of finite length is said
to be compact.

We study the controllability of the bilinear Schrodinger equation in 7 =
L?(4,C) for B a bounded symmetric operator and u € L2((0,T),R). The
operator A is a Laplacian and the domain of A is composed by functions
satisfying Dirichlet or Neumann type boundary conditions in those vertices
that are connected with only one edge (external vertices).

In the remaining ones (internal vertices), we impose the “Neumann-Kirchhoff”
boundary conditions. In particular, a function f satisfies Neumann-Kirchhoff
boundary conditions in an internal vertex v when

{ f is continuous in v,
d
ZeeN(v) dge (U) = Oa

for N(v) the set of edges containing v. The derivatives are assumed to be
taken in the directions away from the vertex (outgoing directions).

Our purpose is to prove the controllability of the bilinear Schrédinger
equation in

£l

HS = D(A?)

for suitable s > 0. A peculiarity of the problem is that {Ag}ren, the ordered
eigenvalues of A, do not satisfy the following gap condition

inf [\ — :
llcr;él A —Ni| >0
We only know that there exist M € N and ¢ > 0 such that
‘)\]H_M*)\H > M3, Vk € N.

For this reason, the common techniques adopted for proving the local exact
controllability results can not be directly applied.
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Figure 1.7: Star graph, tadpole graph and double-ring graph

Well-posedness and global exact controllability: Let ¢ be such that,
for suitable € > 0, there exists C' > 0 such that

C
(1.7) ’)\k+1 — )\k’ > ?, Vk € N.

The well-posedness of the bilinear Schrodinger equation is guaranteed in
H;+d(€) when u € L?((0,T),R) with specific d(¢) > 0 depending on ¢ (under
suitable assumptions on B).

A crucial part of the proof is the interpolation features that we prove for
the Sobolev spaces Hg, as

(1.8) HZ%* = H) NH* T2 for s1 € NU{0}, s2 €[0,1/2).

According to the choice of boundary conditions, stronger relations can be
satisfied.

When the hypotheses of the well-posedness are verified and B satisfies
a similar condition to (1.3), we prove the global exact controllability of the
bilinear Schrédinger equation in H;—i_d(e).

By using diophantine approximation techniques and the Roth’s Theorem
[Rot56], we show some types of graphs such that the spectral assumptions
(1.7) are satisfied, e.g. star graphs, tadpole graphs and double-ring graphs
(Figure 1.7). We present examples of B and ¢ verifying the remaining
hypotheses of the global exact controllability.
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Contemporaneous global exact controllability: An interesting appli-
cation of the previous result is the following. Let ¢ = {I;};<n be a set of
bounded intervals of lengths {L;};<n for N € N and Fff’j be the unitary
propagator generated by

A‘Lz(]j) + UB|L2(Ij)-

When the global exact controllability is verified for the introduced graph
¥, we have the “contemporaneous global exact controllability”, i.e. for

{@D}}jSN, {TZJJZ}J'SN such that
s/2 .
b, 7 € Hi, = D(A}L/z(lj)), 17l L2(r,,0) = 195l L2r; ) Vj <N,
there exist T > 0 and u € L?((0,T),R) such that
LFg) =43, Vi< N

Heuristically speaking, the contemporaneous controllability allows to
control functions belonging to different Sobolev’s space at the same time
(Figure 1.8). The result is different from the simultaneous global exact con-
trollability which considers sequences of functions belonging to the same
Sobolev’s space.

s
Hj

e~ _— T,
v
Hi, e - 7

Hi, V3 U3

Figure 1.8: Example of contemporaneous global exact controllability.

We prove that if all the ratios Lj/L; are algebraic irrational numbers,
then the required spectral assumptions are verified and, under suitable as-
sumptions on B, the bilinear Schrodinger equation is contemporaneously
globally exactly controllable.
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Energetic controllability: When ¢ is a complex graph, it is not always
possible to verify the spectral hypothesis of the global exact controllability.

In those situations, we study the “energetic controllability”, i.e. the
existence of a subset {¢;} en of the eigenstates of A (corresponding to a
set of eigenvalues {11;}jen) such that, for every ¢;, i € {¢1}ien, there exist
T >0 and u € L?((0,T),R) such that

705 = k.

If {p;}jen corresponds to the set of the eigenvalues of A (not repeated
with their multiplicity), then the problem is said to be “fully energetically
controllable”.



Chapter 2

Construction of the control
function for the global exact
controllability

Let us consider the Hilbert space 2# = L?((0,1),C). We denote

(1, 92) = (b1, ) / U1(2)¢a(z Vi1, € H
and || - || = +/{-,-). In ## = L?((0,1),C), we consider the problem (BSE)
o) Da(D) = AU T uBU), e O.T)

»(0) =,

for T' > 0 and A = —A the Laplacian equipped with Dirichlet type boundary
conditions, i.e.

D(A) = H?*((0,1),C) N H§((0,1),C)).

Let {¢;};en be an orthonormal basis composed by eigenfunctions of A as-
sociated to the eigenvalues {\;}jen (A\r = m2k?) and

(2.2) ¢;(t) = e g, = e Nl
We define the following spaces for s > 0
o0 oo %
P = {{zihen < € Y limP <o, -l = (Z e |2> ,
j=1 k=1

23
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2

H{yy = H{y((0,1),C) := D(A32), - lles) = (; |k5<¢k,'>|2>

Let H® := H*((0,1),C) and Hj := H{((0,1),C). We introduce the following

notation for s > 0

W= Wageoey W Wy = I W agarg

IV o= W 2oz o)

In the current chapter, we consider the space H3 N H& equipped with the
3 .

norm ||+ || ganps = /25— 102 - |1

Assumptions (I). The bounded operator B satisfies the following condi-

tions.

1. For every k € N, there exists Cy, > 0 such that, for every j € N,

C
(65, Béj)| > j—;f.

2. Ran(B|p(a)) € D(A) and Ran(B|H(30)) C H3N H}.

Remark 2.1. If a bounded operator B satisfies Assumptions I, then B €

L(H(20)7H(20))' Indeed, B is closed in F and for every {up}nen C H such

that uy, 2y w and Bu, 2z, v, there holds Bu = v. Now, for every
H2 H?

{un}nen C H(ZO) such that u, % w and Bu, 9 v, the convergences with

respect to the € -norm are implied and then Bu = v. Hence the operator B

1s closed in H(20) and

B € L(Hpy, H))-
The same argument implies that B € L(H(?’O)7 H3n HY).
Let us define Bjj, := (¢, Boy) and
bim B BB IS max { I BII, Il Bl s}

only depending on the operator B. Now, {B;x}jen € ¢*(C) for every k € N
and {Bj j ken € £2(C) for every j € N. For every k,j € N, n € N, we denote

61l Bl (2)

E(j, k) :==e Porl k2 — j2PC k| B) k| 7" max{j, k}*,
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)

up(t) := cos ((k* — j*)m t), C':= sup {

i (1P =™
TR =]

n (ILm)eN’
N o= {(Im) € N?: {Lm} N {j.k} £0, |1 —m2]§;]k2—j2],
|l2 _m2| 7é ‘k,Q _j ‘7 <¢17B¢m> 7é 0}7
T
T = )
| Br 5

We present the main result of the chapter in the following theorem.
Theorem 2.2. Let j,n € N and k € N be such that k # j and
(2.3) m? —k? £ k2 — 12, Vm,l €N, m,l # k.

Let B satisfy Assumptions I. If n > 6*2712b (1+C")E(j, k), then there exists
0 € R such that

[T 65 = €| ) < CROE*K | BIIZ) ™

for Cy. defined in Assumptions I. Moreover, there exists u € L*((0, %),R)
such that

Ck n 1]
HUHLQ((O’%LR) < W, FZT*% = oy

Proof. See Paragraph 2.5. O

Examples of values k € N satisfying the relation (2.34) are the ones such
that k£ < 3. However, the result of Theorem 2.2 can be generalized for every
k € N as it is showed in the following paragraph.

Remark. The result of Theorem 2.2 is not optimal. The aim of the work is
to show how to proceed for this type of problems and we present an approach
that can be used in order to establish times and controls for the global exact
controllability in H (30)

The purpose of Theorem 2.2 is to exhibit readable results for generic opera-
tors B and levels j, k. For any specific choice of B, j and k, it is possible
to retrace the proof in order to obtain sharper bounds by using stronger es-
timates. We briefly treat the example of B : ¢ — 2%, j = 2 and k = 1
i Paragraph 2.7. In addition, we present in Paragraph 2.6 how to compute
and remove the phase appearing in the target state, even though this is not
particularly relevant from a physical point of view.

Remark 2.3. In the proof of Theorem 2.2, the choice of the control function
u comes from the techniques developed in [Chal2]. Similar results for other
M}f%/\j'—periodic controls are valid from the theory exposed in [Chal2).
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2.1 Time reversibility

An important feature of the bilinear Schrédinger equation is the time re-
versibility. If we substitute ¢ with T'—¢ for T' > 0 in the bilinear Schrédinger
equation (BSE), then we obtain

i T4y = —ATY 0 — u(T — ¢)BT%_ 4", te (0,T),
F%—OQZ)O — F%w() — wl.

We define I'¥ such that Iy 0 = Tyl for u(t) := u(T — t) and

(2.4) {iatftawl = (~A—u(t)B)T{y, te(0,7),

iy = ¢l
Thanks to ¢° = f%f‘%wo and 1! = F%f%d)l, it follows
b= =T
The operator l:ta describes the reversed dynamics of I'} and represents the

propagator of (2.4) generated by the Hamiltonian (—A — u(t)B).

Thanks to the time reversibility, Theorem 2.2 can be generalized for
every k € N by defining, for every ¢; and ¢, a dynamics steering ¢; in
¢r and passing from the state ¢1. Indeed, the theorem is also valid for
the reversed dynamics and there exist 61,05 € R, 77,75 > 0 and u; €
L2((0,T1),R), wug € L?((0,T3),R) such that

0 02 7% i [(62—0
IR =g =PI, = Tplpe; =% g,

for wa(-) = wa(T2 — -). We resume this result in the following corollary.
To this purpose, we temporarily redefine the notation introduced in the
previous paragraph by adding the dependence from the parameters j, k € N
as follows. Let us define 77, := Bl and
) ‘ZQ _ m2‘
“«ﬂw—ﬁo

Bl
NG = {(dom) €825 (Lm0 {5k} 0, 12— m?] < S0 = 2],
17 = m?| # |K* = 12|, (é1, Bém) # 0}.

cos ((k? — j2)m%t .
un;j,k(t) = (( ) ) ) Cl(]v k) = sup
n (I,m)eN (4,k)

)
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Corollary 2.4. Let j,k,n1,ny € N be such that k # j and let B satisfy
Assumptions 1. If

ny > 62720 (14 C'(j,1))E(j,1),  ng > 62720 (14 C'(1,k))E(1, k),
then there exist uy,us € L2((0,2),R) such that, for

Ung;1,k(+) = Ungi1 k(n2T7  — ),
there holds
Up, U, ;
T 21kruzrulr 1J1¢j :ez%k_

nzT* 1-4 an*

2.2 Well-posedness

As mentioned in the introduction, Beauchard and Laurent prove in [BL10)]
the well-posedness of (BSFE) in H (30) when B is a multiplication operator for

a suitable function p € H3((0,1),R). Let the Cauchy problem in %

0r0(t) = A (t) + ult)u(t), te(0,7),
(2.5) o
$(0) = 4.

Proposition 2.5. [BL10, Lemma 1; Proposition 2]
1) LetT > 0 and f € L*((0,T), HiNH3). The function G : t — f €45 f(s)ds
belongs to CO([0, T, H(B’O)). Moreover,

Gl oo 0,y 13y < (T )Hf”L?( (0,T),H3NH}

) ©)’

where the constant c1(T') is uniformly bounded with T in bounded intervals.

2) Let p € H3((0,1),R), T > 0, ¢° € HE)’) and v € L?((0,T),R). There

exists a unique mild solution of (2.5) in H(O), e P € C’O([O,T],Hgo)) such
that
(2.6)

t
Yt x) = e A0(z) —i / e A (u(s) () (s, x))ds, Vit e[0,T].
0
Moreover, for every R > 0, there exists C = C(T, u, R) > 0 such that, for
every ¥ € H(30)7 if
lull 20,1y m) < R,

then the solution satisfies

[lleoqorym,) < Cll M@y, 1@ e =190 Vt€(0,T].
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Remark 2.6. The outcome of Proposition 2.5 is not only valid for multipli-

cation operators. Indeed, the same proofs of [BL10, Lemma 1] and [BL10, Proposition 2|
lead to the well-posedness of (BSE), also when B is a bounded symmetric

operator such that

B € L(H{,, H® N Hy), B € L(H,)).

The only difference in the proof is that one has to substitute p with B and
| gell s with ||B‘|L(H?O),H3mH§)- In Proposition 4.11 (Chapter 4.2), we extend

this result by considering domains that are compact graphs.

2.3 Local exact controllability in H (30)

Now, we rephrase the so-called “Generalized Inverse Function Theorem”.

Proposition 2.7. [Lue69, Theorem 1; p. 240] Let F : X — 'Y be a differ-
entiable map between two Banach spaces X and Y. Let g € X be such
that the linear differential map dyoF : Typo X — Tp(,0)Y is surjective. There
exists a neighborhood V' of F(xg) in'Y (i.e. a ball centered in F(xg)) such
that, for each y € V, there exists x € X such that

F(x) =y.

Let us provide a brief proof of the local exact controllability in H (30) by

rephrasing the existing results of local controllability as [Bea05], [BL10],
[Mor14] and [MN15]. Our purpose is to introduce the tools that we use in
the proof of Theorem 2.2. For ¢ € H?o) and € > 0, we define

Bya (¥.€) = {t € Hip)| [[¢] = [ll, [~ ¥l < e}
Theorem 2.8. Let B satisfy Assumptions I. For every | € N such that
(2.7) m? —12 £ 1% —n?, Ym,n €N, m,n#1,

there exist T > 0 and € > 0 such that, for every ¢ € EH?O)(QSZ(T), €), there
exists a control function u € L*((0,T),R) such that

b =T7d.

Proof. First, the local exact controllability is equivalent to the local surjec-
tivity of the map

Ty w e L2((0,T),R) — Tl € Hy)
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for T" > 0. Second, we consider the decomposition
Tigr = ou(t)(dr(t), Tien)
k=1

and the map oy(u) = {oy,(u) }ren such that

ar(u) = (or(T), Tpey), k€N,

We know that I'.¢; € H(?’O) for every u € L%((0,T),R) and then oy(u) €

h3(C) for every u € L%((0,T),R). The local existence of the control function
is equivalent to prove the local surjectivity of

ar: L2((0,T),R) — Q := {x:= {ar}ren € B*(C) | |xll2 = 1}

for T' > 0 large enough. To this end, we use the Generalized Inverse Func-
tion Theorem (Proposition 2.7) and we study the surjectivity of the Fréchet
derivative of ay, v;(v) := (dy;(0)) - v, the sequence with elements

T
Vea(v) : = <q§k(T), —i/ eiA(TS)v(S)BeiAs¢lds>
0
T .
= —i/ v(s)ez()‘k_)‘l)sdsBkJ, k €N,
0

for By ; = (¢r, Boj) = (Bow,¢;) = Bji. We identify the space where
v takes value by considering that (x,x)2 = |[x[|% = 1 for every x :=
{z1}ren € Q. Let x¢ : (0,€) — @ be a smooth curve for € > 0 such that

d
x0 = (0) = & = {0k} ren, (%Xt> (t=0)=v ={v}en.
‘We notice that

d<Xt s Xt>g2
dt

which implies iv; € R and then

0= (0) = (v, 81)p2 + (81, V)2 = 2R (),
v L2(<0,T),]R) — T@lQ = {{mk}keN S h3<(C) ’ ir] € R}

The surjectivity of v; in T5,() consists in proving the solvability of the mo-
ment problem

Lk T i(Ak—A
(2.8) — = —i/ u(s)e’ A3 g
By 0
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As B is symmetric, we have B;; € R and i(atl/Bu) € R. Moreover, the se-
quence {Jka];ll}keN € (?(C) since {x}}ren € h3(C). Thanks to the relation
(2.7), for every k,j € N with k,j # [, we know that

Me =N =12k =) #1212 - 55 =N — N\
The solvability of (2.8) for u € L?((0,T),R) is guaranteed by Remark A.8,
which follows from Ingham’s Theorem (Proposition A.5, Appendix A.1) for

27

>?, glzﬂ'z.

T

In particular, for X defined in Remark A.8, the map ; : X — T5,Q) is an
homeomorphism. Thus, v, : L2((0,T),R) — T5,Q is surjective in T5,Q for
T large enough and the proof is achieved thanks to the Generalized Inverse
Function Theorem (Proposition 2.7), which provides the local surjectivity
of the map «; in Q) at the same time T'. O

2.3.1 Local exact controllability neighborhood estimate

For any given eigenfunction, we explicit a neighborhood where the local ex-
act controllability is verified in a specific time by using the following lemma.

Lemma 2.9. Let V be an open subset of a Banach space X. Let g:V —Y
and h :' V =Y be two maps from V to a Banach space Y such that

e the application g is an homeomorphism from V to an open set g(V') C
Y;

e there exists M > 0 such that, for every x,y € V,

lg(z) —gW)lly = Mllz —yl|x;

e the map h is a Lipschitz application for a constant k < M, i.e. for
each z,y €V,

[h(z) = h(y)lly < kllz—ylx.
The map f = g+h is an homeomorphism from V to the open set f(V) C Y.

Proof. The map f is injective since, for every x1,x2 € V,

[ f(z1)—f(z2)lly = lg(z1)—g(@2)lly —[|h(z1)—h(22)lly = (M —F)||x1—22] x "
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For any = € % with % a Banach space and r > 0, we denote By(x,r) the
closed ball in £ of center x and radius r, while Bg(z,r) is the open ball in
A of center x and radius r.

In order to prove that f(V') is open in Y and f is a homeomorphism of
V in f(V), it is sufficient to prove that f is an open map or that the image
under f of every open ball contained in V and center x € V contains an
open ball of center f(x). As every open ball contains a closed ball with the
same center and positive radius, for every x € V and r > 0 such that

Bx(z,r)CV,

we prove that B
f(Bx(z,r)) 2 By (f(z),7)

for a suitable # > 0. Let z € V and 7 > 0 such that Bx(z,r) C V. As g is
an homeomorphism, g(V') is an open set of Y containing g(x). Then, there
exists r1 > 0 such that

By (g(x),m1) € g(V).
Let y € Y such that
ly = f@)ly < (M = k)int (12,7)
For every & € V verifying ||Z — z||x < inf (3, 7), we have
ly = h(@) — g(@)lly < lly = h(z) = g(@)lly + [h(x) = h(2)]y
< (M — k) inf (%r) + kinf (%r)
< M inf (%,r) <.

Hence, y — h(%) € By (g(x),m1) € g(V) and we can consider g~'(y — h(Z)).
The domain of the map

T — py(x) = gy — h(z))
contains By (w, inf (Tﬁl, r)) For every couple (x1,z2) in this domain,
ley(@1) = py(@2)llx < llg™" (v = h(@1)) — g7 (y — h(w2)) | x
_ k
< M7H[h(@1) = h(2)lly < F7len = sl x.
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The map ¢, is Lipschitz for the constant % < 1 non-depending on y and
maps By (az, inf (Tﬁl, r)) in itself since, for every & € Bx (a:, inf (rﬁl, r)),

loy(#) — zllx = llg™ (v — h(@)) — g~ (9()) 1 x
< M7y = (@) - g@)ly < inf (177).

The ball Bx <a:, inf (%, r)) is complete and the Fixed-Point Theorem leads
to the existence of Z in this ball such that

py(@) =gy~ h(@) =7, = [f(@) =9(@) +h@) =
The point y € f(EX(x,inf(rl/M, r))), which implies that y € f(?x(ac,r)).
Now, f(EX(x, T)) D By (f(x), (M —Fk) inf (rl/M, 7“)) and then f(EX(x, 7’)) D
By (f(x), (M — k)inf (r1/M,r)). O

For v € H (30) and r > 0, we recall the following definition
BH3 (@)= (e Hyy [ 10l =191, 19— ¢l <}

Proposition 2.10. Let B satisfy Assumptions I. Let | € N be such that
(2.9) m? —12 £ 1% —n?, Vm,n €N, m,n#1

and C; be defined in Assumptions I. For every

02
(UNS BH <¢l< ) 6213 H|lB “|3>

there exists a control function u € L*((0,4/7),R) such that

C
lullz2(0,4/m)R) < - g Y =T4%d
D= 1B )5 v
Proof. Let us define the following notation
- ez oy, ) = I Wz UM pes, e2o )z = I W gz 22y,
I+ oo oy, mz ) = 1 Nzgemss N - llzeqorymy = Il - ll2-

(0)

Let T > 27 for ¥ = n? (as in the proof of Theorem 2.8). We consider
the space X defined in Remark A.8 (Appendix A.1) and equipped with the
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L?—norm. The local exact controllability provided in the proof of Theorem
2.8 is equivalent to the local surjectivity of the map

A() =Ty LA(0,T),R) = {v € Hy = |4l =1}
such that
. T .
Aj(u) = e N T gy — 2/ e~ AT=5)y(s) BT Y yds.
0
Indeed, due to the proof of Theorem 2.8 (that refers to to Remark A.8), the
map

Fi(): X = {y € Hiy : {(6;(T),9)}jen € T5,Q} = {0 € Hfy, : i{en(T), ) € R}

such that Fj(u) := ((dyA;(v =0)) - u) is an homeomorphism, which implies
the local surjectivity of A; thanks to the Generalized Inverse Function The-
orem (Proposition 2.7). We estimate the radius of a neighborhood where
the map A; is surjective with Lemma 2.9. The proof is composed by the
following steps.

e First, X and {¢ € H(So) . {¢(T),7) € R} are Banach spaces and

F:X—>{ye H?O) . i{py(T),v) € R} is an homeomorphism for T’

large enough. We compute a constant M > 0 such that
IR() — B, > Mlu—tllonn, — YeveX.
e Second, we fix T' > 0 large enough. We provide a neighborhood U C X
and a constant M7 < M such that
(A= Fi) () = (A = )0y, < MilJu—vllpaorymy Vv €U.
e Thanks to Lemma 2.9, the map A; : U — A4;(U) is an homeomor-
phism.

e From the proof of Lemma 2.9, we deduce that if U D {u € X :
HUHL2((07T)7R) < r} with r > 0, then

AU) > (Y € By 10— diD)lly, < r(M = My)} = M.

¢ In conclusion, the map A; is surjective in M.
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1) We show a constant M > 0 such that
IF@) - )l = Mo —wlz,  Yo,we X.
Let us suppose || B | 3 = 1. By recalling the proof of Theorem 2.8, we know

that the surjectivity of Fj in H, ?0) is equivalent to the surjectivity of +; in h3.
For every ¢ € H ?0), there exist T > 0 and v € X such that

(2.10) (9;(T1), %) = vju(w) = (¢;(T), Fi(u)) Vj€EN
and
(2.11) F(y) = .

For Cj defined in Assumptions I, thanks to Remark A.8 (the relation (A.9);
Appendix A.1), there exists C(T) > 0 such that

_ Smaes (W) 2 _ C(1)? N
5 @I = i < G2 32| D < COR S g
j=1 35l l j=1
O(T)?

<
- 2
Cl

2
1ol

In the last inequality, we used (2.10) and (2.11). For each ¢, ¢ € H(SO), there

exist v,w € X such that ¢ = Fj(v), ¢ = Fj(w) and

c(r
Ci

~—

lv—wll2 < 1F7 @ = @)ll2 < I1E I a2yl — @lls) < 1Y =),

which implies

C
(2.12) 1Fi(v) = Fy(w)]l3) > =—lv — w]2.

C(T)

Then, we choose M = G

c(m)’
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2) Let u € X and

T s
Hi(u) :== —/ eiA(Ts)u(s)B(/ eiiA(S*T)u(T)BFITLd)ldT)dS.
0

0

Thanks to the Duhamel’s formula,
Ay(u) =Ty = e T —i / e ATy () Be™ N gyds
0

T s
—/ eiA(Ts)u(s)B</ e*iA(S*T)u(T)BFZ@dT)ds
0

0
= e Ny 1+ Fy(u) + Hy(u).

We exhibit a ball U C X with center u = 0 such that, for every u € U, the
map A; :u € U — I'hg; € A(U) is an homeomorphism thanks to Lemma
2.9 and

(A~ F)(w) — (A~ B)@)llws, = 1 Hulw) = Hiw)lgs Vv € X.
We define U as the neighborhood such that there exists M; < M /2 so that
| Hy(u) — Hi(v) |3y < Mil|u — ||, Vu,v e U.

First, we notice that

T s
Hy(u) — H(v) = — / e*iA(T*%(s)B( /0 e*iA<S*T>u(T)Brg¢ldr)ds

0

T s
+/ 6_iA(T_S)v(s)B(/ 6_iA(s_T)’U(T)BF:¢ldT)dS
0

0
T . S .
= —/0 e HAT=8) (y(s) — v(s))B(/O eilA(S*T)u(T)BF?(j)ldT) ds

— /OT e_iA(T_S)v(s)B</S e_iA(S_T)(u(T) — U(T))BI“TLQSZdT) ds

0
T s )
- / e_iA(T_S)v(s)B</ e ATy (7)) B(T4 gy — Fﬁ(b;)dr) ds.
0 0

Thanks to Proposition 2.5 and Remark 2.6, there exists a constant C(T") > 0
such that, for every 1 € H3N H} and u € L?((0,T),R),

" < C)ull2 1B 51191 oo 3
3

T
/ e AT =9y (s) Byds

(2.13) ’ i
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Then

(2.14)
[ Hi(u) — Hi(v)||3) <

By using the same technique adopted by (2.14), we obtain

t
ITY o0 — T dull ooz < H/ eI BTV ¢y — uI‘?qﬁl)‘
v 0 Lo H}
< CM) I Bll sllolior — ul'idull pee iz < C(T)|lo — wll2l|IT il oo s
+ C(D)vl[2lTF = T ppe rr3-
Let p>1. U ={ue X : |lullz < (uC(T))"'}, then

nC(T)
w—1

Ty — T dull ooz < v = ull2[T il Lo 3

for every u,v € U. The relation (2.14) becomes
1Hi(u) — Hi(0)llz) < C(T)?[lo = ullz(|ullz + [vll2) T dill o s
I 2
+ EC?’(T)HUH%”U —ull2lITdull oz < ;C(T)HU — ull2/T¢ 1l oo g3

C(T . 2 —1 .
A= Y ey < (g O — T e s

Thanks to the relation (2.13) and to the Duhamel’s formula

Tl Loz < llillsy + C(D)lull2 | B 1Tl Lo

and we obtain

P11l (3) pul?
F“(;Sl oo 73 S S 9
IWrollere < T =Gl BT, < 51
2u—1
== | Hy(u) — Hi(v)||3) < WZ:SC(T)HU — ulf2.

In order to apply Lemma 2.9, we set My = (i‘ii_l)lgl?’C(T) and we estimate p

such that

(2.15) M; < =M.

1
2
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In other words, we choose 1 > 1 such that
b s
and for a; = %@, the inequality is satisfied when
(2.16) p> a4+ ag(a + 1) + 1.

Let us establish an upper bound for C(T)C(T) by studying the constants
C1,Cy appearing in Ingham’s Theorem (Proposition A.5, Appendix A.1).
First, we refer to Remark A.8 (Appendix A.1) and we set T = &I = % for
¢ = 72. Let I be such that |I'| := %T =4 and

e ™ _
f=" GO =5 ID=[L+l], m=(IIL") =2
~ RZ-1 I
a=4R?, G(O):(2)7T, R:|2|:2.

By substituting the constants in the proof of Ingham’s Theorem [KL05, pp. 62 — 65]),
we obtain
_ 2m7G(0)r

02—7:

B 27rG(0) 3w

8
S0 = ==L
- ! o 16

The proof of Proposition 2.5 (presented in [BL10]) and the relation (A.9)
(Remark A.8; Appendix A.1) imply

(2.17) C(%) — 373 max {\/502, \/3} - Qi\?.

In addition, we have é(%) =2C7! and

(2)o(t) <t

Now, we know that a; = MT)Cﬂ and q; < 1—52&'1 for @; := 13/C) (C) is
defined in Assumptions I). Moreover,

Cr < [(¢1, Bop| < | Bl =1,
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which ensures that a; > 1. We need to define p such that (2.16) is verified
and

12 /12
a; + v/ a al—i— —|—1<<al+\/al< al—l—l)—i—l)

5 5

If we choose p = %5 then p > a; + v/ai(a; + 1) + 1 as required in (2.16).
We recall

U - {u €X: ulls < wo(i))l}

and, thanks to the relation (2.15), Lemma 2.9 is satisfied. In conclusion, the
following map is an homeomorphism

AU C L*((0,4/7),R) = A(U) C H.

3) We show a neighborhood of ¢; with respect to the H3 (0y"norm included in
Ai(U). Let

Bx(z,r) :={% € X | & — 2l 12(0,4)r) <7}

We notice that ,uC’(%) < 3% and we set

- C
U—BX< 3lg>cU

From the proof of Lemma 2.9, we know that A;(U) contains a ball of center
Ai(0) = ¢(2) and radius (M — My)inf(r,r1/M). The parameter r > 0
is the radius of a ball contained in U and center v = 0, while r; > 0 is
the radius of a ball contained in F;(U) and center Fj(0). Now, U is a ball
contained in U of radius 3% and, thanks to (2.12), F;(U) C F(U) contains
a ball of radius M . Hence, A;(U) contains a ball of radius (M — Ml)

303
and center ¢;(2). Thanks to the relation (2.15), we know that

C 3nC
>

N ONER
and

G - Y\ -~ 4y C2
i (x (0:555) ) 2 B, (4000 =215 ) 2 B, () o)

1 1
M~ My > oM > 3 (M — M) >672C;
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In the first part of the proof, we suppose || B |5 = 1, but we can generalize
the result for || B|| 5 # 1 thanks to the identity

B
3

To this purpose, we consider the operator MBLM and the control u || B |

and we substitute to C; with C | B || 5' (defined in Assumptions I). We also
notice that if

Cl Cl
Xl ueBX(o,> — wenclo 9 )
’ 353 Bl 5 33| B2

In conclusion, we obtain

- 4 C? C
Vo e B D, %) 3ueBy|0, L
V€ Bug, <¢l(w) 6213 |y|B|y|§> X( 313 |||BIII§)

sit. Aj(u) =. O

2.4 Explicit control function for the global approx-
imate controllability

For j, k € N, we recall the definition of B;j = (¢;, B¢i) and we denote

o T Cr- 27 () = cos ((k* — j2)7r2t)’
| Bj k| Ak — Al n
4 2 . AL — Am | |~ T
= —— K=—— (C'= sup ‘sm(ﬂi)‘ },
Ak = Al | Bj k| (1m)eA { Ak — A

. 3
N={(lm)eN": {I,m}n{jk}#0, |\ —An| < 51Ak -\l

A= Am| # [ Ak — Ajl, By # 07}

Proposition 2.11. Let B satisfy Assumptions I. For every j, k € N, j # k,
and n € N such that

3(1+C|Biwl "I Bl *
- k2 = 5| 7
there exist T,, € (nT* — T, nT* +T) and 0 € R such that

(2.18)

3% Bl M1+ )| B|

Un 4 10 2
HFTnd)J e’ ¢kHjZ” < 7”L|k32 —j2|
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Proof. Thanks to [Chal2, Proposition 6], for any n € N, there exists T,, €
(nT* — T,nT* + T) such that

L= [0 T oi)l _ (14 C) Il (65(5, ) + dnlon DB
L+2K B~ n '

We point out that the definition of 7* provided in [Chal2, Proposition 6] is
incorrect and the formulation that we provide can be deduced from [Chal2, Proposition 2].
In addition, we have

(A +2K | B+ BT

1 (T 5)] < X — Ry,
- Z‘ ¢l7 ¢l7¢k Z’ (blv
14k 1£k
A9 ST T )2 — (e To )% = 1 — {5, T ) ?
=1

< (L= Uew, I765)]) (L + [, T 67)]) < 2R,
Afterwards, fixed n € N, there exists § € R (depending on n) such that
(2:20) [(0rs € dn) — (0 Ty 0)) | < 3.
From (2.19) and (2.20), we obtain

(2.21) Ry, = [[e“¢r — Tl ¢;|1> < 2R, + R}
B
As |Bix 7 I B = l<¢ﬂ‘73ﬂk>| > 1, we have
r = WH2K[BINA+C) BT _ (1+C) (Bl ™" + 4Bk ) I Bl °I
" n B n
5(1+ CYBiwl I BIPT _ 301+ C)IBjwl "I BII®
- n - n|k? —]2|

In conclusion, if

3(L+C")[Bjsl I BII*
n = 2= 2 s JFk,

then R, <1, REL < R,, and

3% Bl M1+ NI B|

i o112 2
Hez (bk - Fg:'n(ﬁ]H < 2R, + Rn <3R, < n|k‘2 _j2|

O]
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Proposition 2.12. Let B satisfy Assumptions I. For every j, k € N, j # k,
and n € N satisfying (2.18) such that

(2.22) n =4[ Bl ()

there exists T, € (nT* — T,nT* +T) and 6 € R such that

611 Bl (2)

2153%6m12(1 4 C")e Pkl || BI| Gy Il B I *|** — 577 max{j, k}**

H T, ¥ ||(3) |Bj,k|7n

Proof. 1) Propagation of regularity from H(20) to H(40): In the first
part of the proof, we show that the propagator I'%. preserves H Elo) and B €
L(H (20)). Let us introduce the following notation

I fllBvery = IfllBv(0r)R) = sup Z |f(t5) — f(ti-1)l,

{ti}i<neP j=1

for f € BV((0,T),R), where P is the set of the partitions of (0,7") such
that
to=0<t1 <...<t,=T.

Let € >0, Ac = [| Bl g€, A = Ac + [unll oo (o)) | Bl 2 and
H{y) := D(A(ie — A)).
We refer to [Kat53] and we prove that the propagator U™ generated by
A+ un(t)B = illun| Lo 0,m)») I Bl ()

satisfies the condition ||U;™ 94y < C||9]|(4) for every ¢ € H(40) and suitable
C > 0. Indeed, if —i(A+un(t) B —il[un| Lo (0,1)r) | Bl (2)) is maximal dis-
sipative, then Hille-Yosida Theorem implies that the semi-group generated
by —i(A+un(t) B —illun| L 0,1)) | Bl (2)) is & semi-group of contraction
and the techniques adopted in the proofs of [Kat53, Theorem 2; Theorem 3]
are valid. First, —i(A + un(t)B — t||lun||L=(0,1)r) Il Bl (2)) is dissipative in
H(QO) as for every ¢ € HELO) and A > 0,

(A + lunl Lo 0,m)r) I Bl (2) + i(A + un(t) B) Y|l (2)
2 |(A+ llunll Lo o,1)r) Il Bl (2) + i4)% | 2) — llun(t) Bl (2)
= (A unllze o) ®) Bl @) ¥l 2) = lun O Bl 2[1¥]l2) = Al ll2)-
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Second, it is maximal dissipative thanks to Kato-Rellich’s Theorem [Dav95, Theorem 1.4.2]
and, for n > 3¢, we introduce

M = N — A — uy(t 1
tes[(?};n] Il Bl L(H(O)’ (0))

— sup | (A — A)(iAc— A= un()B) ||

te[0,T5]
= sup | (I —ua(t)B(iAe — A7)l (o)
te[0,7m]
~ 3 1
NOW, |||un(t)B(z)\€— ) 1|” @ IIIB\H<2 |||(2 —A)” ||| § |||B|”(2 <1 and
(2.23)
M= suwp || Z un(t)B(iAe — A) 7' 5 <Z I BiAe = A) " I o)
tE[OTn —
<Zn*’ 1B Iy Il (iAe = A) [ g < ! =1 <2
>~ 2 € 2) = TN —1 — .
= ® O E 1Bl gn-AT n—e

We know that ||k+f ()| pv(0.1) &) = Il Bv(0,1) r) for every f € BV((0,T),R)
and k£ € R. The same idea leads to

= oA = A= unCIBI (0.1, w01, 2, )

= llunllgvn) 1B 1 (B, H2, )

Thanks to [Kat53, Section 3.10], there holds
(A + un(Tn) B = id) Uy 65l 2) < Me™[[(A = iA) 8l 2)
< MMV +A)s% < MeMN<7r + A+ llull o)) Il Bl )"

Now, for every ¢ € H ELO),
2 ~
1BYIZ) < (lAvloy + I Bl o llle)?® < 262 (I AvlZ, + 326]3,)-
As (A = R)WIIZ, = [|A%]Z, + 32[]13,, it follows
Bl < 26314 - R)ulRy) < 22001,

and N < ev2||un| v (r,)- In addition, thanks to the relation (2.23), it is
verified that

IACA + un(T) B = ide) "l o) £ M+ ([ A(A = ide) 7] )M < 4.
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For every j € N, we know that
_ oo " _t "
U 5lay = e~ Wnli=cono W @ e g, ) < 7w P ho Ty 5l
and, for n satisfying (2.22),
Tn Y
T4 65l 4y = IATE b2y < e WEN@ |[(A + un () B — id) US4 2)

Ty -
<8 n Il B (2)+2ﬁ5”“nHBV(Tn) (72 + )\e)j4

MBI 2y 2Bl 2
< 8e [B; k| nm|k2—j52]

+2v/2€|jun | n _ .
@ B ) (™! + oo o,7)2))5

B (2
< 8e 1B k|

L 12v2¢||un .
Frmlev e (2 B gy ()

For e = (2\/§||un||BV(Tn))_1, we have
(2.24)

Bl (2
T b5l (a) < 8e Fik!

+3/2 1\ -
(1 + 22 unll sy 1 Bl ) + 1 Bl ")

The interval [0,nT* + T] contains less than d quarters of period of the
function u, for d := 2w2n|k? — j2||B, x|~ + 4 since

up(NT*+T) = %sin (WQ(kz—jQ)(nT*—i—T)) = d= (wz(kQ—jZ)(nT*+T))%
From (2.22), we know that n > || B ||| (57 2|52 — k?|~!) that implies

mnlk* — 52| Bkt > 5
and

(2.25)  unllpvir,) < llunllpymr—r) < (d+1)/n < 302|k* — 2||Bjk| ™

(also the assumption n > 3e is verified). Thanks to || B[ o) = [Bjk
| Bl > |Bjkl|, the relation (2.24) becomes

and

(2.26)
Il Bl
Pl < 8¢ Pl 222 4 3. 232 || Bl ok — 5211Byl " + | Bl gy )5
IT7 bl 4y < 8e 5 (% + || Bl ()] 3Bkl + 1Bl @n)J
Bl (2)
<8 T (52 4 3.0V || B oK — 521Byl !

NB I (o)
+57 2| Bl g I BII U152 = B2)5* < 228%% T3kl || B o)k — 21| Byl 15",

When u € BV (T'), the propagator I'%. preserves H, (40) if Be L(H (20)).
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2) Conclusion: Let f, := ¢ ¢y, —F%Z ¢;. First, we point out that, for every
s> 0,

1 £allfs) < (K + T 65l 5))-
As ¢;, 1 € H( 0y for every s > 0, the point 1) ensures that I'}.¢; and I'}.¢;

belong to H (40) for u € BV (0,T). Thanks to the Cauchy-Schwarz inequality,
we have

A2 full* = ((A2 fo, A2 £))% < ((A2f, Af))? < 1A% Ful P A1,

IASall? = (Afns Afa) < (A fa, fa) < 1A Fullll Ful
= fallGsy < IfallPlfallGy)
For R,, defined in the proof of Proposition 2.11, the relation (2.26) implies

I Bl 2y

1 £allfs) < 3Ra(2°8%n%e Pkl ||| Bl ()|k* — 5% Bj| =" max{j, k}*)°
6l Bl _
= 4 (1+ OBkl I BII®

< (2'83%712% Ek | B ?2)1142 — 721°Bj |~ ® max{j, k}**) nlk? — 2|

61l Bl (2

< (293572 (1 + Ce || Bl (g I BIIPIK® = 52 P 1Byl ™ max{j, k}**)n~

O

Proposition 2.13. Let B satisfy Assumptions I. For every j, k € N, j # k,
and n € N satisfying (2.18), (2.22) and such that

S

— T +3/2 1.
@21)  nze T B 6 Bl o)l Bisl ",
there exists @ € R such that [T ¢; ew(ﬁkH?g) is not larger than
6l Bl () )
62°712(1+ C")e ikl || Bl ¢y | Bl max{ || BII, || Bl s}|k* — j°|> max{j, k}*'

|Bj x|

Proof. Fist, we notice that the hypotheses of Proposition 2.12 are verified.
Second, we estimate sup;cp,p—rnr= 11 13" ¢ — U7 #5l(3) and we consider
the arguments adopted in (2.24). The uniformly bounded constant C(-) is
increasing and the relation (2.17) implies

24+/2
sp (it —Tal) < CT) < Clfm) = 222
tenT*—TnT*+T) T



2.4. GLOBAL APPROXIMATE CONTROLLABILITY 45

Thanks to Proposition 2.5 and Remark 2.6,

sup 0oy~ Tyl =sup{  sup [[Tfng; — T T
te[nT*—T,nT*+T) tenT*—T,T]
sup [Ty, Ty — T s |
tE[Tp ,nT*+T]
Ty
<swp{ s CT-0l|BI, [ lun)ldsITE o
te[nT*—T,Ty] t
t
sup  C(t=T) 1Bl [ fun(s)ldslTs6 o)}
te[Tn,nT*+T) Th
nT*+T
<c(NBI, [ lwnllds s {Igasl,  sw 06l )
T*—T tE[NT*~T,Ty)

The techniques adopted in (2.24) lead to

1B (2
sup  [[TY" ¢l (a) < sup  8e Pkl
te[nT*—T,Tn) te[nT*~T,Tp)

LIS
1+3/2
< 8¢ Bikl o (

+3/2 :
(1+2v2uall sy Il Bll )5

1+ 2v2|un gy (z,) | Bl (2))5°
Hence
sup ”F?"@ - Fu ¢J||(3)

te(nT* =T nT*+T)

Il Bl (2)
Bl /2

<o(;)e B 11525 22502 | Bl oy 82 — 72118yl

IN

4 ”|B\”(2)+3/2 9od 9 ) ) L
C(2)e Pl R B 23 B o - 1Bl
Bl (2
B

232 || B —1;
e st R IE s gz gy 40151

IN

Now, we obtain

(2.28)
Ry = |Thie ¢y — € dnells)
< 27 su ||FUn¢ o Fun¢,||8 + ||Fun¢ o ezﬂgb ||8
< P t @5 — L1, Pill3) T, Pi k1l (3)
(nT*—TnT*+T)

. mém(f)”/? 5 5 o1 8 8
<o | (e Pl By 632 | Bl oy Bial 0l + 1l
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We keep in mind that [| B[ and [| B || ) are not smaller than [Bj| for
B (g
every j,k € N. If n > e 5kl

+3/2 L
Bl 57> 62 | B (3| Bjl 4, then

Bl ()

8
5~ +3/2 L R
(6 Pank] I Bl5 6°7* | BIl (2Bl ' 1J4>

Il Bl (2
<e 1B k|

+3/2 1 1.
I Bl 6% | Bl oy Byl 05

and

[
7 LLATONEY 392 1 —1.4 8
<27 e ikl I Bl 5 6°7 | Bl 2| Bjel ™ 1™ 5" + [l fnlls)

0@ 45 m? ||| B[ 36% | Bl 25

< 27¢ TBjkl

n|Bj k|

Sl Bl ()

. 6 2 . .

N 2203%7 2 (1 + e Pl || B¢y I B I7|** — 5%[° max{j, k}**
|Bj x| ™n
611 Bl (2)

_ 6*0712(1 + C"e Wit I B¢ Il B max{ [ Bl Il Bl 335> — 52[° max{j, k}**
- |Bjx|™n '

O

2.5 Proof of Theorem 2.2

The proof follows from the validity of Proposition 2.10 and Proposition 2.13
as the conditions (2.18), (2.22) and (2.27) are satisfied. Let R} be introduced
in the proof of Proposition 2.13. We know lim,,_,~ R), = 0 and there exist
n* and 0 (depending on n*) such that

(2:29) Litpeds € By, (70, CRER | BIIDT).
16
6k || B}

For 0 < s < 3 and j,k € N, we know that || B[ = Ck and [[| B[ =
|Bj k| For

—

16
b= (I Bl ¢y 1B B I 5" max { | BII I Bl 5},



2.6. COMPUTING THE PHASE 47

the relation (2.29) is valid when
61l Bl (2)
6427T126 [Bj k| b(l + Cl)‘kQ —j2‘5/€24 max{j, k}24
B Gy Byl '

n*

The local exact controllability is verified in a neighborhood of ¢y (4/7) =
e”kzﬁgbk = ¢, while our dynamics is pointing e?¢;. For this reason, we
have to pay attention to the phase of the target state. For

_ cos ((k* — j*)m?t) T

*t — *T: *
un() n* y N n ’Bj,k"

thanks to Proposition 2.10 and to the time reversibility of the problem (2.1)
(see Paragraph 2.1), there exists u € L?((0, 2),R) such that

™

(2.30) T4, ) = oy

2.6 Computing the phase

Let N € N. We define the N x N matrix M” such that, for I,m € N,

Bim [T ir2uz_me 2 —me
0 J
for v(t) the reciprocal function of t fg | cos(m2(k2 — j2)s)|ds, otherwise
MY =0. Let 6Y € R* be the smallest value such that " = (¢, 62|Bk,j|71MN¢j>

Im —
and

9N
(Jm)?
In the following proposition, we provide a similar result of Proposition 2.13
without the presence of the phase ambiguity in the target state.

Proposition 2.14. Let B satisfy Assumptions 1. Let j, k € N, j # k, and
n € N satisfy (2.18), (2.22) and (2.27). For N € N such that

(35, ) (32 ) < !
Bj x| bk b = nr2[k2 - 12|

I=N+1 I=N+1

~N

then
Ty Ty 65 — Gkl <

6l Bl (2)

10 626572(1 4 C")e skl || B &) I BII* max{ || BI|, || Bl 3}[k* — 52> max{j, k}**
|Bjk|®n '
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Proof. The proof follows from [Chal2] that defines the phase 6 introduced
in the propositions 2.11, 2.12 and 2.13. By referring to [Chal2, Section 3.1],
we estimate N > max{j, k} such that

(2.31) K([(1 = 7n)B(6j (¢, ) + Ouldr, )l < Ra,
for mn(-) == S py Pldr,-). We have

KI[|(1 = mn)B(9j (05, ) + ¢r{dr )
< K|(1 = mn) B(¢j (¢, )l + KII(1 = 7n) B(¢r(r )

< (3 )+ (3 ) = ma

I=N+1 I=N+1

As % < R, we impose that N > max{j, k} is such that

LS ) (5 ) =
‘Bk’ ’ »J - 717'(2“{2—]‘2"

J I=N+1 I=N+1

Let X ZLN) (t, s) be the finite-dimensional propagator defined in the first part of

[Chal2, Section 2.1]. Thanks to the proof of [Chal2, Proposition 2|, there
exists 1), € (nT* — T, nT* + T) such that

(232) [0k, M7 65) = (B X (%) (10, 0)65)| < Rny,  WnEN.

We point out that ]((f)k,eKMch)jH = 1 since MN = iM for M a N x
N matrix with real entries (see also [Chal2,p. 5]). Now, 0V € Rt is
the smallest value such that ¢ = <¢k,eKMN¢j>, which follows from
[Chal2, relation 11]. Indeed, the term etMNzn(O) appearing in the men-
tioned equation corresponds to the free finite-dimensional propagator after
a time reparameterization and the averaging procedure performed in the
first part of [Chal2, Section 2|. Moreover, from [Chal2, relation (14)] and
the following one, we can notice that the time reparameterization maps K in
T,,. Now, we use [Chal2,relations (18), (19)] as in [Chal2, relation (20)]
and we obtain

(2.33)
(1 X35y (T, 0)65) — (01, Tz 67)| < K1 = m) B(03{65,) + dn, )]
+AK Ry|(1 — m) B || < R+ 8Bl | B Ru < 91Bl " || B| R
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Hence, from (2.32) and (2.33), it follows
1~ [, T )] < 1€ — (60, T8 )
<[ — (Gn, X (%o (T, 0) )| + (ks X (5 (Tos 0)65) — {1, Tz )|
< R+ 9|Bjs| " | Bl R < 10[Bj| " [| B| R =: Ry

Thus, we substitute R,, with R, in the proofs of the propositions 2.11, 2.12
and 2.13 which leads to change the relation (2.28) as follows

Lole s | BI56° I Bl (25"

HFnT* 29 ¢k||(3) < 27 [Bj kI +3 n‘Bk|
-]7
10 10 258021+ C) || B By I B — 2P ma, Y
+e 'Pik
‘ ]7k’n
sl Bl (2
_ 0601+ e Pr | Bl 1B max{ | BI|, | B I}k - 7P max{s, b}
- | Bjk*n

In conclusion, e_ngbj = FOTN ¢; for ™ = )\;10]\[ and then

T T b5 — k(s

6l Bl (2
_ 1 62712(1 4+ C"e Pl || B Gy 1 BI* maxc{ || B, ||| B 5} %> — 52|° max{j, k}**
- | Bjk[*n '
Theorem 2.15. Let j,n € N and k € N be such that k # j and
(2.34) m? — k% # k% — 12, Vm,l €N, m,l # k.

Let n > 6%2 10 7'2b (1 + C") || B || E(4,k)|Bjk| ™' and N > max{j, k}. For
N € N large enough such that

29 o > )+ (3 1o )5—%’

I=N+1 I=N+1

then
[T Ty 5 — ¢>kH < CR(6%K || B5) "

Moreover, there exists u € L?((0, %),R) such that HuHLg((O 4y gy < fﬂleF(;W
771- ki 3

and
r rgg*roNqu = dp.

Proof. The proof follows from the validity of Proposition 2.10 and Proposi-
tion 2.14 thanks to the arguments of the proof of Theorem 2.2. O
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2.7 Example: dipolar moment

In the current paragraph, we retrace the proof of the first point of Theorem
2.2 by fixing B and j, k € N. For B : 1 — x%¢, we define a control function
and a time such that the dynamics of (2.1) drives the second eigenstate ¢2
in the first ¢;.

First, for

(pj, 2 i) = 2/ 2% sin(/\;z) sin( (VApz)de = 2/ x?sin(mjz) sin(mkax)dz,

we notice that Assumptions I are satisfied since B;; € R and

(—1)7* (—1)JtF 4jk :
’<¢ja$2¢/€>| = ‘(] _ k)27['2 - (] _|_k)27.‘.2 = (]2 _22)2ﬂ2’ J 75 k’
1 1
\<¢k,$2¢k>|=’§—m7 keN.

Now, for every ¢ € H?O), we know that 22y € H3NHE, |0, < ||024] and,

thanks to the Poincaré inequality, we have [[1| < 7~ !(|0,v| and ||02¢| <
771034]|. In addition, we know that |z < %H@Z)H, l|lz2ep|| < %Hd}” and

102 (%) | < [|229]] + [la* a0 ]| < \fWH + \}SH%WI

jowvl < (2L o201,

2V/15 + 4v/5m 4+ /37
el

6115 4 6v/5m + /37
V157

(5 78)
107 ()| < [129]] + [[420:9]| + |2 20|| < (

10326 | < 602 + 62026 + #2030 < ( ) 182611
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Thus
IBl;= sup (10270 + 0220 + [|[932]?)
wero)
llll 3y <1
2v/5 + /31 2 2v/15 + 4v/57 + /371 2
< sup (S ok + ( ) ok
ver, N VIbw V15
1l (z)<1
n <6x/ﬁ+ 657 + ﬁ”fua%\? < (2\/ﬁ+ 457 + \/§7T>2
V157 v - V1572
n <2\/5+ \/§7r>2 n (6\/E+ 657 + \/§7r>2
V1572 V157

and || B3 <5,93 . Equivalently || B || 2 <34, Bl =1/v5, C" =0.
Moreover,

2 —3 8 4
—_— Big|=Cy = — = .
672 [Br2 27 op2’ 32
We retrace the proof of the first point of Theorem 2.2. Let T' = 3%, u(t) =
cos(3mt), T* = %, K= %. For uy,, := 7, there exists § € R such that

|B11] =C1 =

- 2
32|Bl,%’ I BII"  27x2
n|22 — 12| 40n’

€1 — T a* <
Afterwards, for n large enough, thanks to (2.25),
[t By (0nr+7) < 3T2[K* — 52| Bji| Tt < 312737
By following the proof of Theorem 2.2 for I := [nT* — T, nT™* + T], we have
€61 — i3 0alfy < 27 (le¥61 — Tz 6ol 1 — Tz a]?)

+ s (2D Ty
te[nT*—=T,nT*+T)

7r2
< 9T S (Bl 4322723, 47 t2t 1)
n

4£5,93-3,4-63.2. 97T4n_1) < 2,61-10M0,1,

3,4 6 (27772

In the neighborhood B 3, (gbl, 2,4- 10_6) , the local exact controllability is
verified and the first point of Theorem 2.2 is satisfied for

n=2,38-10'%.
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In conclusion, there exists # € R such that for

9 3

u(t) = (2,38 - 10'5) L cos(3n%t), T =(2,38- 10185)%7

there holds Hei0¢1 - F%@H(?’) < 2,4 -1075. In addition, there exists @ €
L?((0, %),R) such that

[y

% Zéf)z = 6i9¢1-
T

2.8 Moving forward

The nature of the work opens several questions, first and foremost, if the
techniques developed may be adopted in the simultaneous global exact con-
trollability with the approaches of Chapter 3 (see also [MN15]).

Moreover, the results provided in Theorem 2.2 are far from being optimal
and one might be interested in optimizing them.

1. As already mentioned in Remark 2, Theorem 2.2 can be stated for
other M}f%)\.l—periodic controls by using the theory exposed in [Chal2].

J
A natural question is when it is possible to retrace the theory of this

chapter with different controls and obtain sharper estimates for n.

2. By using the techniques adopted in the proof of Proposition 2.10,
one can look for a larger neighborhood of validity of the local exact
controllability. A try is to change the time % and study the variation
of the radius as a time-dependent function.

3. The solvability of the moment problem (2.8) can be ensured with “Ha-
raux’s Theorem” (Proposition A.6, Appendix A.1) instead of Ingham’s
Theorem (Proposition A.5, Appendix A.1).

By retracing the steps of the proof of Proposition 2.10, one can es-
tablish the new constants and study how the neighborhood changes
according to the time.



Chapter 3

Simultaneous global exact
controllability in projection

In the present chapter, we consider the Hilbert space # = L?((0,1),C).
We denote

1
(11, ¥2) := (1, Ya) o = / P1(z)e(x)dr, Vip1, 92 € A
0
and || - || = /(). We study the simultaneous global exact controllability

of infinitely many (BSE) in s# = L?((0,1),C), i.e. the following infinite
Cauchy problems

(3.1) i0p);(t) = A (t) + u(t)Bi;(t), te (0,7), VjeN,
¥;(0) = Y
for T > 0. The operator A = —A is the Laplacian with Dirichlet type

boundary conditions

D(4) = H*((0,1),C) N Hy((0,1),C),
uis a L?((0,T),R) control function and B is a bounded symmetric operator.
The state 1/1?(1:) is the j-th initial state, while the j-th solution of (3.1) is
P;(t) = I‘;‘w?. We call I'} the unitary propagator of (3.1) when it is defined.
3.1 Framework and main results
We keep the notation introduced in Chapter 2 and we define

(3.2) IV = {(,k) e Nx{1,...,N}:j #k}, N eN.

53
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Assumptions (II). The operator B satisfies the following conditions.

1. For any N € N, there exists Cy > 0 such that, for every j, k € N with
J< N,

2. Ran(B]H(QO)) C H(20) and Ran(B|H(30)) C H3nN H.

3. For every N € N and (4, k), (I, m) € IV such that (j, k) # (I,m) and
5=k =P +m? =0,
there holds (¢;, Bg;) — (¢x, Bow) — (1, Bor) + (¢m, Bdm) # 0.

The first two points of Assumptions II compose Assumptions I intro-
duced in the previous chapter. The second condition ensures that B decou-
ples the resonant eigenvalues gaps, i.e. A\j—X\, = \j— Ay, for (4,k), (I, m) € I
with (j,k) # (I, m).

Example 3.1. In Paragraph 2.7, we prove that Assumptions I are satisfied
for B : 1 x%¢. Assumptions II are also verified for this operator since

(it itk

|<¢j7$2¢k>’ = ‘(j—k)27r2 ~ GrR)ZaZ | J#k
’<¢k7m2¢k>’:‘%—ﬁ =3~ ot kel

The condition 3) is guaranteed as follows. Let (j, k), (I,m) € IV be such
that (j, k) # (I,m) and

(3.3) P2k -1 +m?=0.
First, the relation (3.3) leads to
0=(2—k?? = (2= m?? = —25%k> + 2°m> + j* + k* — 1* — m*
(3.4) = —25%k% +21m? + (52 = 1) (5% + 1*) + (K* — m?)(k* + m?)
= —252k% +20%m* + (52 — 1*)((7° + 1?) + (K* + m?)).
Second, from the relation (3.4), we know that j2 —1? # 0 as j # 1 and
G =G+ + (R +m?) £0 = R

In conclusion, for j # k, we have

212 g2 2
N N o J =k IF—m
PR T = e
, 1 1 j2 — k? ,
2 2 _ 2.2 2,2
=0 _k)<j2k2_l2m2>_j2k2l2m2(lm —Jk) 0.



3.1. FRAMEWORK AND MAIN RESULTS 55

Let U := {4 }jen C € and N (¥) := span{y); : j < N}. We define
7nn (W) the orthogonal projector onto J#y(¥). We call {¢;};en a complete
orthonormal basis composed by eigenfunctions of A associated to the eigen-
values {\;};en such that Ay = 72k? and

d)](t) — 6—iz4t¢j — e_i/\jtqu-

Definition 3.2. The problems (3.1) are said to be simultaneously glob-
ally exactly controllable in projection in H?o) if there exist T > 0 and
VU := {4} jen C S such that the following property is verified. For every
{wjl}jeN, {wjz}jeN C H(?’O) unitarily equivalent, there exists u € L2((0,7),R)
such that

N (U)YF = 7 (O)THj, vjeN.

In other words, there holds
(Y, ¥3) = (U, T1Y5),  VjkeN, k<N.
Definition 3.3. Let us define

Ocr ={ {5 }jen € Hiy| (s, 0) = i sup |y — d5(Dlls) < e}
JEN

The problems (3.1) are said to be simultaneously locally exactly controllable
in projection in O, C H 5’0) up to phases if there exist ¢ > 0, T' > 0 and

U := {4 }jen € O such that the following property is verified. For every
{1hj}jen € Ocrr, there exist {0;}jen C R and u € L?((0,T),R) such that

TN (U)h) = mn (V)e Ty, Vj € N.

In other words, there holds
(Wi, vy) = €% (Y Tiey), Vi k€N, k<N

Let U(A) be the space of the unitary operators on s#. We present the
simultaneous local exact controllability in projection for any positive times
up to phases.

Theorem 3.4. Let B satisfy Assumptions II. For every T > 0, there exist
e >0 and ¥ := {¢;}jen € Ocr such that the following holds. For any

{1 }jen € Ocr and T € U(H) such that {4} }jen = {Té;}jen, if

(3.5) {1765} e C Hip),
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then there exist {0;};<n CR and u € L*((0,T),R) such that

TN () = (W)e?iTh ), J <N,
TN (O)hj = TN (O)THapj, j>N.
Proof. See Proposition 3.10. O

Now, we present the simultaneous global exact controllability in projec-
tion up to phases in the components.

Theorem 3.5. Let B satisfy Assumptions II and W3 = {w;’}jeN - HE”O)
be an orthonormal system. Let {w}}jeN, {wjz}jeN, C H?o) be complete or-

thonormal systems so that there exists T € U() such that {fqﬁ;}jeN =
{w]z}jeN- If

(3.6) {Ty3}jen C HYy),

then for any N € N, there exist T > 0, u € L*((0,T),R) and {0} r<y C R
such that

(3.7) (e uf) = Wi Th)),  YikeEN, k<N
Proof. See Paragraph 3.3. O
In Theorem 3.5, if ¥3 = U2, then f*wj?’ € H(SO). By considering that
e (YR, ) = e on; = e (U}, 4], Vi €N,
the relation (3.7) becomes

N (0%) €0pF = mn (7)), j <N,
N (U?) 97 = mn (V)5 j>N.

As U2 is composed by orthogonal elements, then

2 .

1 JSN7
3.8 an(02) 2 ={ "7
(3.8) N(V7) 5 {07 s N

and the next corollary follows.
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Corollary 3.6. Let B satisfy Assumptions II. Let W' := {w}}jeN, U2 =
{@Djz}jeN C H?o) be complete orthonormal systems. For any N € N, there
evist T >0, u € L*((0,T),R) and {0;};<n C R such that

Tyl = ey, j<N,
i (U2) Tl =0, i> N

Let Pqﬂ;_ be the projector onto the orthogonal space of ¢; and the operator

BOM) = B0y~ 4),) 7 (0~ A)],) " PeB) " PLB

for M,j € N. When (A, B) satisfies Assumptions II and the following as-
sumptions, the phase ambiguities {0;};<ny C R appearing in Theorem 3.5
can be removed.

Let 0™ := {a;}j<n € Q" be such that a; =0 for every j <n and n € N.
Assumptions (A). If there exists {r;};<, € Q" \ 0™ with n € N such that

n
T1 + ZT]')\]' = 0,
7j=2

then either we have 2?22 rjB;; # 0, or there exists M € N such that
n ~
> il B(M, §)é;) #0.
j=2

Remark. When the operator B is such that {B;;}en are rationally inde-
pendent, the Assumptions A are verified (also the third point of Assumptions
II). In other words, when for any n € N and {r;};<,Q" \ 0", there holds

n
> riBj; #0.
j=1

Theorem 3.7. Let B satisfy Assumptions II and Assumptions A. Let \I/?j\::
{@D?}jgN - H(So) and {1/)]1-}]-@\1, {wjz}jeN, C H?o) such that there exists I' €

U(H) such that {T¢} }jen = {42} jen. If
(3.9) {TyYien € Hy),
then for any N € N, there exist T > 0 and u € L*((0,T),R) such that

TN (U%) F = an () Thej,  jEN.
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Proof. See Paragraph 3.3. O

As Corollary 3.6 follows from Theorem 3.5, the next corollary can be
deduced from Theorem 3.7.

Corollary 3.8. Let B satisfy Assumptions I and Assumptions A. Let U1 .=
{1/1]1-}jeN7 U2 .= {wjz}jeN - H?o) be unitarily equivalent. For any N € N,
there exist T > 0 and u € L*((0,T),R) such that

Thap = 92, J<N,
N (0?) o) = mn (92) 47, j > N.

3.2 Simultaneous locale exact controllability in pro-
jection for T > 0
3.2.1 Preliminaries

In this paragraph, we discuss the simultaneous local exact controllability in
projection. We explain first why we modify the problem.

Let ® = {¢;} en be an Hilbert basis composed by eigenfunctions of A.
We start by studying the local exact controllability in projection in O, r
with respect to mn(®). We would like to adopt a similar technique of the
one adopted in the proof of Theorem 2.8. Let

Ty =Y ér(T)(or(T), 1)
k=1

be the solution of the j-th problem of (3.1). We consider the map a(u) as
the infinite matrix with elements

o j(u) = (0 (T), T705), k,jeN, k<N.

Our goal is to prove the existence of € > 0 such that for any {1 }jen € Oc 7,
there exists u € L?((0,7T),R) such that

7TN(<I)>F%¢J = 7TN<(I))¢J‘, Vj e N.

This outcome is equivalent to the local surjectivity of the map « for T" > 0.
To this end, we want to use the Generalized Inverse Function Theorem



3.2. SIMULTANEOUS LOCAL CONTROLLABILITY 59

(Proposition 2.7) and we study the surjectivity of Fréchet derivative of «,
v(v) := (dya(0)) - v. The map ~ is the infinite matrix with elements

T
Vi, (V) = <¢k(T), —i/o eiA(TS)v(s)BeiAs¢jds>

T
= —i/ v(s)e_l()‘j_A’f)sdsBkJ, k<N, jeN,
0

for B ; = (¢r, Boj) = (Boy, ¢;) = Bjr. The surjectivity of v consists in
proving the solvability of the moment problem

Tkj g i(\j—A
(3.10) == = —i/ u(s)e " TA3 g,
By,j 0

for each infinite matrix z, with elements x, ;, belonging to a suitable space.
One would use Haraux Theorem as explained in Remark A.9 (Theorem A.6,
Appendix A.1) but the eigenvalues resonances occur: for some j, k,n,m € N,
(4, k) # (n,m) and k,m < N, there holds A\j — A\ = A\, — A, which implies

Tk j T :
—l = —i/ u(s)e AT MRIS g
j 0
'/T ( ) —i(An—A )sd Ln,m
=—i | wu(s)e T Am)dg =
0 Bn,m

An example is Ay — A\ = Ag — A4, but they also appear for all the diagonal
terms of v since A\; — A, =0 for j = k.

We avoid the problem by adopting the following procedure.

o We decompose
A+u(t)B=(A+uyB)+ui(t)B

for ug € R and u; € L%((0,7T),R). We consider A + ugB instead of A
and we modify the eigenvalues gaps by using ugB as a perturbating
term in order to remove all the non-diagonal resonances.

e We redefine o in a map @ depending on the parameter ug. We intro-
duce a0 by acting phase-shifts in order to remove the resonances on
the diagonal terms

(3.11) {/%(t,x) = %%(t, x) = az(’](u) = Mak,j(u).
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3.2.2 The modified problem

Let N € N and u(t) = up + ui(t), for up and uy(t) real. We introduce the
following Cauchy problem
(3.12)

iatwj(t) = (A + UOB)ij(t) + Ul(t)B¢j(t), t € (0, T), jEeN,

V) = ;(0).

Its solutions are 9;(t) =T f“”lw?, where I'}T" is the unitary propagator
of the dynamics, which is equivalent to the one of the problems (3.1).

Remark 3.9. A bounded perturbation of an operator with compact resolvent
18 an operator with compact resolvent. Thus, A + ugB has pure discrete
spectrum.

Due to Remark 3.9, we call {/\}LO }jen the eigenvalues of A 4+ ugB that
correspond to an Hilbert basis composed by eigenfunctions ¢%0 := {gb;.‘o }ien.
We set

$u(T) = &N T,

Let us introduce the following space

(3.13)
Oy = {{wj}jeN C Hiy| (5, 9n) = 645 Sup 195 — ¢5° (D)l 3) < 60}-
j
In addition, we choose |ug| small enough such that A\;° # 0 for every k € N

(Lemma B.6, Appendix B.1). The introduction of the new Hilbert basis
imposes to define

oe] 1
~ 3 w3 2\ 2
(.14)  Hy =D(A+wBE). -l = (I3 Con)) "
k=1
However, from now on, due to Lemma B.8 (Appendix B.1),
773 _ 173

We define @, the infinite matrices with elements for ¥ < N and j € N
such that ay, j(u1) = (¢,°(T), F:z;o+u1¢;to> and the map o¥0 with elements

(3.15) apy(ur) = %ak,j(ul)y j, k <N,
Oézoj(ul) = @k,j(ul), j> N, k<N.



3.2. SIMULTANEOUS LOCAL CONTROLLABILITY 61

Now, for j € N,

(3.16) mn(PU0)e T Y0 = Z¢ Yol (wr), €= M
@5 ()]

Thus, the local surjectivity of the map o*° in a suitable space is equivalent
to the simultaneous local exact controllability in projection up to N phases
on OgOOT for a suitable €y > 0.

Let v (v) = ((du,@"°)(0))-v be the Fréchet derivative of a"* and B} =
(90, B¢y°) for k < N and j € N. Defined 7, ;(v) = ((du,@)(0)) - v, we
compute v (v) such that

WG = (37,505 + Tkg — Ok R(Fj5)), Jik <N,

Thus for K < N and j € N,

~ . T — )\“0 .
gary =k = U e TN s B, b,
Yok = ROkx) =0, k= .

The relation 7,5 = 0 comes from the fact that (i9y4) € R since Yy j = 3k

for j,k < N. Due to (3.11), the diagonal elements of v“0 are all 0.

Remark. For every {fi}ren € OF 1 (see (3.13)), we know that

(fis £5) = Ok

for every j,k € N. Let £y = {f;(t)}jen : (0,€) — Ogoo,T be a smooth curve
for € > 0 such that, for every j, k € N,

d
fo = " = {¢°}jen, (dtft)( =0) =v = {v;}jen.

We notice that

0= AT () g, o) 4 (610, ),

which implies (¢,°,v;) = <¢?°,vk>. Thus, we can define the tangent space
to O“OT at ®“0 as follows

Tyuo O ={ {5} jen C L(Hy)| (010, 15) = — (67", ¥n) }-
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We have Tou O 1 C EOO(H(?’O)) since supjen [ — ¢;°ll(3) < €0 for every
{¥j}jen € O 1. Moreover, for every k € N, thanks to Lemma B.8, there
exists C' > 0 such that

+oo +oo
Zj6|azf}j|2 = Zj6|<F%O+U1¢ZO’ ¢;L0>|2 = ||I‘%o+u1¢zo||%(30) < C||F%0+u1¢zo||%3) <0
Jj=1 Jj=1

as the propagator 1:%0“71 (defined in Paragraph 2.1) preserves H(Bo)- Hence,

{QZ(}}jeN € h3(C) for every k € N and the maps a“° and v"° take respec-
tively values in

QN 3:{{1?k,j}k,jeN S (h3((C))N‘ Tk € R, k< N},
k<N

N ={{apgtnjen € (BW(O)Y] ar; = ~Tjx, wrp =04,k < N}
E<N

3.2.3 Proof of Theorem 3.4

In the next proposition, we ensure the simultaneous local exact controllabil-
ity in projection for any 7" > 0 up to phases.

Proposition 3.10. Let N € N and B satisfy Assumptions I. For every
T > 0, there exist € > 0 and ug € R such that, for any {1;}jen € Oer
satisfying the relation (3.5), there exist a sequence of real numbers {0;}en =

{{gj}jgN’O’ ..} and w € L*((0,T),R) such that
TN (2"0)1h; = i (20) eI Th g0, Vj e N.

Proof. 1) Let ug belong to the neighborhoods defined in Appendix B.1 by
Lemma B.6, Lemma B.7, Lemma B.8 and Remark B.11.
First, the relation (3.5) is required for the following reason. Let

{1465} jen = {T}jen

for T > 0, w € L*((0,T),R) and Te U(F). For |up| small enough, thanks
to Lemma B.6 (Appendix B.1), there exists C; > 0 such that

j6 < CIP\}LO‘?).

On the one hand, thanks to Lemma B.8 (Appendix B.1), there exists Cy > 0
such that, for every k € N,

“+oo —+00
D iUk T =D ST s ¢5°) 1 < CIHF%%H%?O) < C1C| L7y < oo
7=1 7=1
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On the other hand, for every k € N,

+oo
> 30 bn, THes0) 2 ZJ |(bx, b)) Zy (T, )7 = T 13

j=1 j=1 Jj=1

Second, thanks to the third point of Remark B.11 (Appendix B.1), the
controllability in O“OT implies the controllability in O6 7 for suitable € > 0.
Indeed, if |ug| is small enough, then supjey |45 — °||(3) < €9 (Remark
B.11). For every {¢;}jen € O, we have {1);}jen € Ogﬁo,T since

sup [[¢; — ¢;(T) 3y < sup [¢° — &;(T)l(3) +sup [ — ¢7° (1)l (3) < 2€0.
JEN jeN jeN

Third, thanks to the discussion about the relation (3.16), the local surjectiv-
ity of the map a"° guarantees the simultaneous local exact controllability in
projection up to phases (Definition 3.3) of (3.1) with initial state {¢7°}jen
on O for €y small enough.

We consider Generalized Inverse function Theorem (see Proposition 2.7)
since QY and G are real Banach spaces. If %0 is surjective in GV, then
the local surjectivity of o in Q is ensured. The map Y% is surjective
when the following moment problem is solvable

uo

X, . T U u,
(3.18) Bkug = —i/ u(s)e_z(/\fo_kko)sds, jeN, k<N, k#j
kg 0

for every {xzoj} € GV. The equations of (3.18) for k = j are redundant

7,keN
k<N
uy uyg

as 1, = 0 and 239, = 0 for every k < N and {z;°}rjen € GY. Thus, we
) . k‘SN
prove the solvability of the moment problem for j # k and j = k = 1. Now,

Ti }j,kseN e (B*)", {7 }g weny € (B2

k<N k<N

From Lemma B.7 (Appendix B.1), it follows

{285/ Bi% Y pen € ()Y, {9/ B pen € ()Y

k<N k<N

Thanks to Lemma B.10 (Appendix B.1), for I defined in (3.2), there exist

! . . u u u u
G = o (mf)EIN INFO = N0 = AR+ AR] >0,
Js ,(n,m

(4,k)#(n,m)
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9= sup (om0 AR A ) 2
ACIN \ Gk (nmyerN\a - 7
(4,k)#(n,m)

where A runs over the finite subsets of IV. Hence, for T > 257?, Haraux The-
orem (Theorem A.6, Appendix A.1) implies the solvability of the moment
problem (3.18) (as explained in Remark A.9) by considering the sequence of
numbers

u [
{0 =AY ken ken -
j#k or j=k=1

Indeed, 21y = 0 and Remark B.11 ensures that A[% — X\ # \/© — AJ0 for
every j,k,l,m € N. The proof is achieved since a*° is locally surjective for
T > 0 large enough.

2) Now, we show that the first point is valid for every 7" > 0 by proving
that ¢ = 4o00. Let

AM = {(j,n) e N}| j,n > M; j #n}

for M € N. Thanks to the relation (B.4) in the proof of Lemma B.6 (Ap-
pendix B.1), for |ug| small enough and for every K € R, there exists Mg > 0
large enough such that

inf (A% — \W| > [
(j,meAMK' I |

Indeed, the relation (B.4) implies that, for |ug| small enough,

A = X201 2 A = Al = Ofuol) > 22 min{A 1 — Ay desr — e — Offua)
> 272 min{j,n} — O(Jug|).

Thus
4 > su inf  [A¥0 — \¥0| — 2)%9) > (.
Me%((j,n)GAM| ! 3 N)

Now, for |ug| small enough, Lemma B.6 (Appendix B.1) implies the exis-
tence of C' > 0 such that

S . : a1
g_C(]\}linoo(j’;)réfAMP\J An| = 2AN)

> C lim (A2 — Arp1 — 2N?72) = +oo. O
M—o0
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3.3 Simultaneous global exact controllability in pro-
jection

The common approach adopted in order to prove the global exact control-
lability (also simultaneous) consists in gathering the global approximate
controllability and the local exact controllability.

However, this strategy can not be used to prove the controllability in pro-

jection as the propagator I'7 does not preserve the space WN(\IJ)HEO) for

any ¥ := {¢;}jen C H ?0), making impossible to reverse and concatenate
dynamics.

We adopt an alternative strategy that we call “transposition argument” (see
remark below). In particular, under suitable assumptions, we prove that the
controllability in projection onto an N dimensional space is equivalent to
the controllability of N problems (without projecting).

Remark 3.11. The time reversibility (Paragraph 2.1) implies that, for every

J, k€N,
o W LU0\ —iAL0 u U ug\ __ _—iX, 0 U w\k LU
(3.19) <¢k0(T),FT¢jO) = e K T¢j0a¢k0> = e " T<¢j0’(FT) o°)
’ _ —i()\zo—‘r)\l-to)T uo T U L uo
=e ’ <¢] (T),Tpdy°).
Now, eI TN Goes not depend on u and the relation (3.19) implies that

the surjectivity of the map
(3.20)

{(83° (1), Flfﬁ¢?°>}j;€k<eNN : L*((0,7),R) — {{xk,j}jklzeNN : {zrj}jen € h*(C), Yk < N}

1s equivalent to the surjectivity of
(3.21)

{{(#5°(1), fgﬁoﬂjéiieNN L L*((0,T),R) — {{fﬁj,k}jl,clieNN : {zjr}jen € 3 (C), VE < N}

As explained in Paragraph 3.2.1, the decomposition
N
TN (@UTHO =) o (1)@ (1), The;0), Vi €N,
k=1

ensures that the surjectivity of the map (3.20) is equivalent to simultaneous
global exact controllability in projection of the problems (3.1). From the same
idea, the surjectivity of (3.21) is equivalent to the surjectivity of the map

01 ien  L2((0.7).B) — ()",
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which implies the simultaneous global exact controllability of N problems
(2.4) or (3.1) (as (2.4) represents the reversed dynamics of (3.1)). For this
reason, the simultaneous global exact controllability in projection onto a suit-
able N dimensional space is equivalent to the controllability of N problems
(without projecting).

The transposition argument is particularly important as it allows to

concatenate and reverse dynamics on (H 30 )Y, which is preserved by the
propagator when one wants to prove the controllability in projection.
For the simultaneous local exact controllability result, we can use Proposi-
tion 3.10 with the transposition argument, but this is not always the most
convenient approach. Indeed, when B satisfies Assumptions A, we consider
[MN15, Theorem 4.1] that requires stronger assumptions on the operator
B but provides the result without phase ambiguities (as in Theorem 3.5).

3.3.1 Approximate simultaneous controllability

In this paragraph, we prove the simultaneous global approximate controlla-
bility of the problems (3.1).

Definition 3.12. Let (A, B) be the couples of operator introduced in the
problem (3.1). A subset of N? is said to couple two levels j and k in N, if
there exists a finite sequence ((s1,s3), ..., (s}, sh)) in S such that

1. st =j and sh = k;

2. sh = s for every 1 <1< p—1;

3. <¢)511,B<15312>750f0r1§l§p.

S is called a connectedness chain (respectively m-connectedness chain) if S
(respectively S N {1,...,m?}) couples every pair of levels in N (respectively

{1,...,m}).

The couples (A, B) admits a connectedness chain, which is said non-degenerate
if, for every (si1,s2) in S, such that Bg, 5, # 0 and |As; — Asy| = [Am — A
with m, ! € N implies {s;,s2} = {m,l} or B,,; = 0.

Definition 3.13. The problems (3.1) are said to be simultaneously globally
approximately controllable in H fo) if, for every N € N, ¢1,.....,¥ny € H fo),
Te U(#) such that fzpl, ....,fi/JN € H(SO) and € > 0, then there exist T' > 0
and u € L?((0,T),R) such that, for every 1 <k < N,

T — Tl sy < e.
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Theorem 3.14. Let B satisfy Assumptions II. The problems (3.1) are si-
multaneously globally approximately controllable in H (30).

Proof. Let N € N and ug belong to the neighborhoods provided by Remark
B.9 and Remark B.11 (Appendix B.1). We define the norms || - ||, =

: s s a d
I W g,y 20

I fllBvry = IfllBvor)r) =  sup Z |f(t;) — f(tj—1)l,

tito<j<n€P j—1

where f € BV ((0,7),R) and P is the set of the partitions of (0,7") such
that to=0<t1 < ... <t, =1T.

We aim to prove that for every N € N, 1)1, ....,¢n € H(30), T e U(S)

such that fzpl,....,fsz € H(?’O) and € > 0, there exist T > 0 and u €

L?((0,T),R) such that, for every 1 <k < N,

Ty — Tl s < e

We consider the techniques adopted in the proof of Proposition 2.12 and
developed by Chambrion in [Chal2]. We start by choosing

1/)]' :(25]', Vj 6{1,...,N}.
Let 7, be the orthogonal projector
- L2
Tm @ H — Ay = span{p; : j<m} vYm € N.
The couple (A + uoB, B) admits a non-degenerate chain of connectedness
thanks to Remark B.11 (Appendix B.1). Up to a reordering of {¢x}ren,

we can assume that for every m € N, the couple (7, (A + uB) T, T Bmm)
admits a non-degenerate chain of connectedness in 7,.

1) Preliminaries

Claim. For every e > 0, there exist N7 € N and Ty, € U(A) such
that 7TN1FN17TN1 € SU(%NI) and

(3.22) ITn, 6 —Tosllsy <€, Vj<N.
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Let N "€ N be such that N’ > N. We apply the Gram-Schmidt process to
{WN’FQSj}jSN- For

j—1

p1:=mn T, pji=mnlg; — > (mnlej,ou)er,  V2<j<N,
k=1

we denote (Zj = Wzﬁ for every 7 < N. We complete {ggj}jSN in an or-

thonormal basis of J#y: that we call {q?ﬁj}jg ~+. The operator 'y is the
unitary map such that

Tn; = b, Vj < N'.
As limp_yoo [|TarTor|| = [Tk = 1 and T'gy, € H(?’O) for every k < N', we
have
T'o ’
. = = . TN/ ~
lim |[Tygr — Ty = lim || —— —T¢
N’ = 2 0
T ~ ~ 2
— lim >[4 <‘z’£ —F¢1,¢,> + Y ‘k3 <r¢1,¢l>’ —0.
N'=eo i [mnTon | I=N'+1
Equivalently, since limN/_mO(wN/quj,wN/fqbw = 6 for every j,k < N,

there follows

Jim Py =Tl =0, Vj < N.
Thus, for every € > 0, there exists N’ € N large enough such that
(3.23) ITxrdy —Tsllsy <e, Vi<

From now on, we denote N7 the number N’ > N such that the relation
(3.23) is verified.

2) Finite dimensional controllability

We denote T,4 the set of the admissible transitions, i.e. the couples (j, k) €
{1,...,N1}2 such that Bj,k 7& 0 and ‘)\j — /\k‘ = ‘)\m — /\l‘ with m,l e N
implies {j, k} = {m,l} or B,,; =0.

For every (j,k) € {1,...,N1}? and 6 € [0,27), we define Eﬁk the Ny x Ny
matrix with elements

(Ej)im =0, (Ef)jn =€, (B ry =—e 7,
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for (I,m) € {1,..., N1}2\ {(4, k), (k,)}. We call
Eag={Ey : (j,k) € Tug, 0 €[0,2m)}.

Let Matn,xn, be the space of the N1 x N; matrices. For every My, Ms €
MatleNl, we define [Ml,MQ] = M1M2 — MQMI. Let F,G Q MatleNl.
We denote

[F,G] = {M S MatN1XN1 ’ dM, € F, dM5 € G : M= [Ml,MQ]}.

Let By = Eyq and E; = [Eqq, Ej_1]+ E;_; for every j € N so that j > 2. As
the elements of E,4 are N1 x N7 matrices, we know that there exists m € N
such that dim(FE,,+1) = dim(E,,) for every m > m. We call

Lie(Eqq) = Es.
We introduce the following finite dimensional control system on SU (/% )
t(t) = x(t)v(t te (0
20 B =a(u(t),  tE(0,7),
2(0) = Idsy(my,)

where the set of admissible controls v is the set of piecewise constant func-
tions taking value in E 4y and 7 > 0.

Claim. The problem (3.24) is controllable, i.e. for every R € SU (4, ),
there exist p € N, My, ..., M), € Euq, a1, ..., o € RT such that

R=enM o oMy,

Thanks to [Sac00, Theorem 6.1], the controllability of (3.24) is equiv-
alent to prove that Lie(E.q) 2 su(s#y,) for su(s#,) the Lie algebra of
SU (N, ). For every (j, k) € {1,..., N1}2, we define the following N1 x Nj
matrices:

o Ity is such that for (1m) € {1, NiP*\ {(G, k), (k. )},
(Rj,k)l,m =0, (Rj,k)j,k - _(Rj,k)k,j —1;
o Cjy is such that for (I,m) € {1,.... N} \ {(j, k), (k. )},

(Cjx)im =0, (Cin)jk = (Cir)rj =15
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e D, is such that for (I,m) € {1,..., N1}2\ {(1,1), (4, 5)},
(Dj)im =0, (Dj)ra = —=(Dj)j; = i-

Now, e := {R; 1} jk<n, U{Cjr}jr<n, U{D;}j<n, is a basis of su(Hy,). In

order to prove that Lie(E,q) 2 su(#%, ), we show that each element of e

belongs to Lie(FEqq).

e For every (j, k) € T,q, we have R;j, = E;{k and Cjj = E%Q

e Forevery (j, k) & Toq such that there exists j; < Nj so that (7, 71), (j1, k) €

] and Cj;, = [EY. , ET/2

[0 0
Tod, we have R, = [E7 ;| E 3.1’ juk’]'

g1 Tk

e By repeating a finite number of times the previous point, we see that

it is possible to generate each element R;; and Cj; with (j,k) €

{1,..., N1}2. For every (j,k) & T,a, there exist m < Ny and {j;}i<m
such that

(.jv.jl)a L) (.jm; k) € Tad~

We call S = {(j,71),--s (Jm> k)}. The matrices R;;, and Cjj can be
obtained by iterated Lie brackets of Eﬁm for (I,m) € S and 0 € [0, 27).

o If (1,) € Tug, then 2D; = [E9, EZ ], while if (1, ) ¢ Tog and there
exists j; < Nj such that (1,71), (j1,7) € Tyq, then

0 jus
]7 [El,jpE]?l,j]] .

In conclusion, it is possible to obtain the matrices D; for every j < Ny
by iterated Lie brackets of elements in 4.

E2

—2D; = [[E§ J1.g

17.]’17

Then, Lie(Eqq) 2 su(#,) and the controllability of (3.24) follows from
[Sac00, Theorem 6.1].

3) Finite dimensional estimates

Thanks to the previous claim and to the fact that 7wy, Ly, 7y, € SU (A, ),
there exist p € N, My, ..., M), € Eyq and a, ..., € RT such that

(3.25) mn Dy, = e Mo o erMr,
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Claim. For every | < p and for each rotation e®M introduced in
(3.25), there exist {T };en € RY and {ul,},en such that ul, : (0, T%) —
R for every n € N and

. l
(3.26) lim (|05 g — e Mgyl =0, ¥k <Ny,
sup lut | (7, < 00, sup [l | Lo ((0,10) ) < 00,
(3.27) ne l ne
sup (TnHunHL"O((O,Tn),R)) < 0.
neN

As in the proof of Proposition 2.12, we consider the results developed by
Chambrion in [Chal2]. Indeed, e®™! is a rotation in a two dimensional space
for every | € {1,...,p}. The mentioned work allows to explicit {T!. };cny C R
and {ul, }nen such that !, : (0,T%) — R for every n € N and

!
lm |7y, Ty e — e® Mgyl =0, Vk < Ny,
n—oo n
sup |[up || gy (1,) < 00, sup [|ub | oo (0.1 7) < 00,
neN neN

sup (Tl || oo ((0,7,).7)) < 00
neN

As e M ¢ SU(Hy,) and F;g} € U(S2) for every n € N, we have lim,,_, HﬂNlF;ifqﬁkH =

l
le®Migy| = 1 for every k < N;. However, T x|l = 1 for every n € N
and

o0

. h ho1)2 . hooy(2
Jim [T g — v, D g = lim > [{bm. T d)|* = 0,
m=N1+1
which implies
l
Tim [Dyrge —e®Migyl| =0, Vk < N

In particular, for every I < p, there exist (j, k) € T,q and 6 € [0,27) such
that M; = Ejok As in Chapter 2, we can choose

_ cos ((K* = %)%t +v)
' n

Tl€<n T 21w " T n 2 )
" [Brjl (M= [Brgl e — Al

)
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with n € Nand v € R (v is required in order to deal with the phase #). Now,
we consider the propagation of regularity adopted in the proof of Proposition
2.12 and developed by Kato in [Kat53]. For every T'> 0, u € BV ((0,T),R)
and ¢ € Hélo)’ there exists C'(K) > 0 depending on

K = (llull gv(ry, lull oo (0,1 8) Tllull Lo (0.7, R))

such that [Ty < C(K)||¥]l(s)- Then, thanks to (3.27), there exists a
constant C' > 0 such that

ul
TS 1l oy < C.

The interpolation argument adopted in the proof of Proposition 2.12 and
the relation (3.26) lead to

ul o
Jim [T g — @ Mgyl ) = 0, Vk < N1

4) Infinite dimensional estimates

Claim. There exist K1, Ko, K3 > 0 such that for every € > 0, there
exist T > 0 and u € L?((0,T),R) such that

IT% ¢ — Tonllz <€, VE<N,

|ullgv(ry < K1, [l oo 0,7, R) < Ka2, Tllull oo 0,1y r) < Ks.

Let us assume p = 2. However, the following result is valid for any
p € N. Thanks to (3.26) and to the propagation of regularity from [Kat53],
for every € > 0 and Ny € N, there exists n € N large enough such that, for
every k < N,
(3.28)

2 1 2 1
T30 dr — 22 Mgy || ) < (|73 (Tyd o — e M) [ 3)

2 2 1

+ (T3 — e®22) e Mgyl ) < IT73 I 5 IT7 0 — e el 3)

2

Ny
u2 « [ Uy urll [}
+ 3 I — e®2M20n) (dr, e M gi) 3y < T3 Il 3y |77 bk — € M1 | )
=1

NI

N1
e Mg ll (Il (Tyion — 22 Mean) 7)) < e.
=1
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In the previous inequality, we considered that e®Mig, € A, and that
2
T2 |l (3) is uniformly bounded in n € N thanks to the propagation of
regularity from [Kat53] and to (3.27).
The relation (3.28) is valid for every p € N and the identity (3.25) leads

to the existence of K1, Ko, K3 > 0 such that for every € > 0, there exist
T >0 and u € L?((0,T),R) such that

(3.29)
|ull gy (ry < Ki, 1wl oo 0,1),R) < K2, Tllull oo (0,7),R) < K3,

IT%¢r — Ty drlls <€ Vk<N.

The relation (3.22) and the triangular inequality achieve the claim.

4) Conclusion

For every {¢;}j<n C H(o)v I € U(A#) such that {fz/Jj}jSN C H?o) and
€ > 0, there exists M € N such that for every I < N,

2 2

M
> drldr || e Tl <

k=1

41l (3) < Te

®3)

M A~
> Towlr, )
k=1

3)
The proof is achieved by simultaneously driving {¢g}k<as close enough to

{fgf)k}kSM since, for every | < N, T > 0 and u € L?((0,T),R) satisfying
(3.29),

M

> (T ér — Do) (6n, vr)

k=1

ITs4br — T 5) < + (IT7 Ml ) + e

()

M
< 3 [Pt T 1okl + (N ) + D
k=1

M 2
< el (Z 1T — Faﬁk!?g)) + (IITZ [l gy + e O
k=1

3.3.2 Proofs of Theorem 3.5, Theorem 3.7 and Corollary 3.16

In the current paragraph, we provide the proofs of Theorem 3.5 and Theorem
3.7, which require the following proposition.

Proposition 3.15. Let N € N and B satisfy Assumptions I1.
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1. For any {¢}tk<n, {¥iti<n C H?o) orthonormal systems, there exist
T >0, u€ L*(0,T),R) and {0x}r<n C R such that

ey =Ty, k< N.

2. If B satisfies Assumptions A, then for any {1i }k<n, {¥i}r<n C H(?’O)
orthonormal systems, there exist T > 0 and u € L?((0,T),R) such
that

i =T4yl, k<N

Proof. Let N € N and let ug € R belong to the neighborhoods provided by
Lemma B.7, Lemma B.8 and Remark B.11 (Appendix B.1).

1) Let "0 be the map with elements

a5 (u1)]

8ye) ay,j(u1), J,k <N,
ag,j(u1), k>N, j<N.

The proof of Proposition 3.10 can be repeated in order to prove the local
surjectivity of a0 for every T' > 0, instead of o0 introduced in (3.15). As
explained in Remark 3.11, this result corresponds to the simultaneous local
exact controllability up to phase of N problems (3.1) in a neighborhood

N
oM = {{%Z)j}jgN C Hiyy| (5, 9x) = 0jn; D Iy = 6%l sy < 6}
j=1

with € > 0 small enough. In other words, for every {¢y}r<n € OéVT, there
exist u € L2((0,T),R) and {0;};<n C R such that

$oi0 =iy, Vi< N.

Theorem 3.14 implies the simultaneous global approximate controllabil-
ity for N problems. For any {w}}jSN C H(30) composed by orthonormal

elements, there exist 77 > 0 and u; € L?((0,T1),R) such that
€

1
T = 0% le) <

for every j < N and then

{T5i i }jen € O
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The local controllability is also valid for the reversed dynamics of (2.4), for
every T > 0, there exist u € L*((0,T),R) and {6;};<ny C R such that

{T}; %hqv—{ew] 765" i<,

which implies
{e " TH P  jan = {6 }j<n-

Then, there exist T, > 0 and us € L?((0,T%),R) such that

{e T2  ien = {65 }j<n.

Now, the same property is valid for the reversed dynamics of (2.4) and,
for every {%Z}js N CH ?0) composed by orthonormal elements, there exist

T3 >0, uz € L*((0,T3),R) and {#)};<n C R such that

{e7 Ty jan = {87} i<
In conclusion, for us(-) = uz(T3 — -), the proof is achieved as

{7 OOy} = {92} <.

2) The proof of the second claim follows as the previous one, with the dif-
ference that if B satisfies Assumptions A, then Remark B.12 provides the
validity of a simultaneous local exact controllability without phase ambigu-
ities.

Indeed, keeping in mind our notation, let H(?’V) be the space defined in

[MN15]. We know that H (3V) corresponds to H ?0) when V' = ugB and B is

a suitable multiplication operator. We consider the assumptions (C3), (C4)
and (C5) introduced in [MN15, p. 10]. If we substitute V' with upB and p

by —B, then the statement of [MN15, Theorem 4.1] is valid. The condition
(C3) is ensured by Lemma B.7 (Appendix B.1), while the assumptions (C4)
and (C5) respectively follow from the first point of Remark B.11 and Remark
B.12 (Appendix B.1).

Lemma B.7 (Appendix B.1) allows to obtain the result of [MN15, Theorem 4.1],
not only in a neighborhood of H3 (0)’ but also in O?fT CH 5’0) as

Iy = Iz,
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Due to [MN15, Theorem 4.1], the simultaneous local exact controllability
is guaranteed in O?fT for suitable € > 0 and T > 0 large enough, i.e. for

every {vr <y € OéYT, there exists u € L?((0,7T),R) such that
Y =T’ Yk < N.
The remaining part of the proof is achieved as in 1). O

Proof of Theorem 3.5. Let N € N and let ug € R belong to the neighbor-
hoods provided by Lemma B.7, Lemma B.8 and Remark B.11 (Appendix

B.1). Let U3 := {Tﬁ;’}jeN € HEO’O) be an orthonormal systems. We consider

{ﬂ’}}jeN» {%Z}jeN C H(30) complete orthonormal systems and T e U(I)

such that fzp]l = w]z and f*wf € H ?0) for every j € N. The last relation
implies that, for every k < N,

Yo=Y Ui ) =Y ol Twl vl) = wi(e] Ty =Ty} € HY).
j=1 j=1 j=1

Thanks to the first point of Proposition 3.15, there exist T > 0, u €
LQ((O,T),R) and {Gk}kSN C R such that

ey, = T3
for each kK < N. Hence
(W}, TRy = (e0ip), erapy) = (43, ePrapd), Vi, k€N, k< N.
Thanks to the time reversibility (Paragraph 2.1), we have

(Tapd, 93y = () Thd) = (92, e y}), VikeN, k<N. O

Proof of Theorem 3.7. Let N € N and let up € R belong to the neighbor-
hoods provided by Lemma B.7, Lemma B.8, Remark B.11 and Remark
B.12 (Appendix B.1).
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1) Controllability in projection of orthonormal systems: Let U3 :=
{@Ds}jeN € H?o) be an orthonormal system. Let us consider {11)} }iens {zb]?}jeN C

H Eo’ 0) be complete orthonormal systems and TeU () be such that fl/J]l =

¢2 and I‘*d}g € H(o) for every 7 € N. As in the proof of Theorem 3.5, for
every k < N we define

Ui =y (07, 9).
j=1

Thanks to the second point of Proposition 3.15, there exist T > 0 and
u € L2((0,T),R) such that

vk = Dy
for each k£ < N. Hence
(W) THeR) = () 0n) = (07, 40),  VikeEN, k<N
Thanks to Paragraph 2.1, we have
(T, 0R) = (4, Thoid) = (W3, 9})
and then
(3.30) v (U)y? = an(UIFy),  VjeN.
2) Controllability in projection of unitarily equivalent functions:
Let us consider {w}}jeN,{ij}jeN - H(?’O) unitarily equivalent. Let U3 :=
{@ZJ }jen be an orthonormal system. We suppose the existence of I' € U ()
such that F1/11 wQ and F*w3 € H(o) for every 5 € N. One knows that, for
every j € N, there exists {ak}keN € /%(C) such that
=D o
keN
However, {fw? }jen is an Hilbert basis of 7 and
=Ty) =Y alTy;.
keN
The point 2) implies that there exist T > 0 and u € L?((0,T),R) such that
() Tt = my () T
for every k € N, and then for any j € N,
o (U°) Do) = 3 al (v (V%) Thod) = an (V%) ) T = mn (9°) 47

keN keN
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3) Controllability in projection with generic projector: Let W3 =
{w;’}jeN C H (30) be a sequence of linearly independent elements. For every
N € N, by considering the Gram-Schmidt orthonormalization process, there
exists an orthonormal system W3 := {{J?}jSN, 0,...} such that

spcm{w;? : J< N} = span{zzg? : J< N}

The claim follows since N
7y (P3) = 7y (T3).

If U3 = {¢§}j€N C H (30) is a generic sequence of functions, then one can

extract from W3 a subsequence of linearly independent elements and repeat
as above. O

3.4 Global exact controllability in projection of
density matrices

Let ¢!, ¢? € 2. We define the rank one operator |¢1)(1)?| such that

[ WPy = N ), VY e A
For any I' € U(.%), we have
Ty (2] = [Tty (92|
and R R
[y (T = ) (T2
since, for every v € J7,
[y (AT = (2, Ty = 1 (T2, ¢) = [ ) (Ty?|y.

In non-relativistic quantum mechanics, any statistical ensemble can be de-
scribed by a wave function ¥ € S (pure state) or by a density matrix
(mixed state). A density matrix p is a positive operator of trace 1 so that
there exists a sequence {1;};en C A such that

331 L= LWl DL=1 20, VjieN

JjeN jeN

The sequence {1);};ecn is a set of eigenvectors of p and {/;};en are the cor-
responding eigenvalues. If jo € N is such that l;, = 1, then [; = 0 for each
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j # jo and the corresponding density matrix represents a pure state up to a
phase. For this reason, the density matrices formalism extends the common
formulation of the quantum mechanics in terms of wave function.

Let any couple of unitarily equivalent density matrices pi1, pa € T(H).
If there exist T > 0 and u € L?((0,T),R) such that

D01 (T%)" = po,

then there exist two orthonormal systems {@bjl }ien, and {@bJQ} jen composed
by eigenfunctions respectively of p; and ps such that

ST LA W3] = po = Thpr(TR)* =Y T8 h) (T80,

JEN jeN

for {l;}jen the sequence of eigenvalues of both p; and py (as p1 and po
are unitarily equivalent, they have the same spectrum). The last spectral
decomposition implies that controlling a density matrix is equivalent to the
simultaneous controllability of orthonormal systems.

Corollary 3.16. Let B satisfy Assumptions II and Assumptions A p*, p? €

T () be two density matrices such that Ran(p'), Ran(p?) C H(?’o)' We

suppose the existence of I € U(H) such that p* = Tp'T*. Let W3 :=
{¢§’}jeN C H(30) be such that

{Ty3}jen C Hiy,

for every j € N. For any N € N, there exist T > 0 and a control function
u € L?((0,T),R) such that

TN (U%) T (T4)* mn (U%) = 7y (U2) p® o (T9).

Proof. Let T > 0 large enough and U3 := {Ib?}jeN € H(?’O). Let pt, p? €
T'() be two unitarily equivalent density matrices such that Ran(p ) Rcm( %) C
HE’O). We suppose that the unitary operator I' € U(.5#) such that p? = Fp r

satisfies the condition f*w? € H (30) for every j € N. One can ensure the exis-

tence of two complete orthonormal systems W' := {wjl ben, U2 = {¢]2}jeN S
H ?0) respectively composed by eigenfunctions of p' and p? such that

=D Lluhwll, Z i Wl
i=1 7=l
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The sequence {/;}jen C R corresponds to the spectrum of p' and p?. Now,
thanks to Theorem 3.7, there exists a control function u € L?((0,T),R) such
that

oy (U%) Tipj = mn (1) 7.

Thus

o (U%) Tip! (D) mn (B7) = 3 Uil (U%) Do) (4 Dy (9°) |
j=1

=Y 1 (U9) [92) (2| (B°) = 7y (T°) pPrn (9). O
j=1



Chapter 4

Global exact controllability
of the bilinear Schrodinger
potential type models on
graphs

In this chapter, we study the controllability of the bilinear Schrédinger equa-
tion (BSE) on compact graphs (Figure 4.1). We analyze how the boundary
conditions and the structure of the graph affect the controllability.

A/
NN

Figure 4.1: Example of compact graph

81



82 CHAPTER 4. CONTROLLABILITY ON GRAPHS

4.1 Main results

Let & be a compact graph composed by N edges {e; }j<n of lengths {L;};<n
connecting M vertices {v;}1<j<m. Let

Ve :={v €{vhigi<m|Ie € {e;}j<n v E e},

Vii={vihi<j<m \ Ve

We respectively call V. and V; the external and the internal vertices of ¥.
For each j < M, we denote

N(’U]) = {l € {1,,N} ‘ Vj S €l}7

n(v;) := [N (v;)|

(n(vj) represents the cardinality of N(v;)). For f := (f%,...,fV): ¢ - C
such that f7 : ej — C for j < N, we define the Hilbert space

N
H =12(%,C) = [[L*((0,L;),C),
=1

equipped with the scalar product

N
(1,92) = > (W], 98) 120,15)
J=1

We denote || - || := || - ||l.¢ = v/ (-, ). In 5, we consider the following Cauchy
problem
w0 = A0+ uBu), re(.7)
7/)(0) = Q;Z)(]v
which corresponds to
i0pI (t, ) = AT (t, ) + u(t) BYI (¢, z), 1<j<N, te(0,T),
I (0,7) = (), z € (0,L;).

The operator B is bounded and symmetric, ¢y = (wé, e w(])\/ ) is the initial
state, u € L?((0,7),R) and T'¥ is the unitary propagator of (4.1). The
operator A is a Laplacian with self-adjoint type boundary conditions. Each
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v € V; is equipped with Neumann-Kirchhoff (MK) boundary conditions
when for every f € D(A),

f is continuous in v,
0,
ZEGN(’U) Tag;(v) =0.

The derivatives are assumed to be taken in the directions away from the
vertex (outgoing directions). Each v € V, is equipped with Dirichlet (D) or
Neumann (N') boundary conditions, i.e. for every f € D(A),

(NK) : {

(): J0) =0, () Lw)=0

respectively.

As we consider the self-adjoint operator A on the graph, ¢ is denoted
quantum graph.
We stress the fact that when we introduce a compact quantum graph ¥,
we are implicitly introducing a Laplacian A equipped with self-adjoint type
boundary conditions.
From now on, we say that a compact quantum graph is equipped with one
of the previous boundary conditions in a vertex v € ¢, when each function
of D(A) satisfies this boundary condition in v.

We also adopt the following notation.

e We say that a quantum graph ¢ is equipped with (D)-(NK) (or (N)-
(NK)) when, for every f € D(A) and v € V¢, the function f satisfies
(D) (or (N)) in v and verifies (NK) in every v € V.

e We say that a quantum graph ¢ is equipped with (D/N)-(NK) when,
for every f € D(A) and v € V., the function f satisfies (D) or (N) in
v and, for every v € V;, the function f verifies (MVK) in v.

For every compact graph ¢, the operator A admits purely discrete spec-
trum (see [Kuc04,Theorem 18]). We call {);}jen the non-decreasing se-
quence of eigenvalues of A and

{#j}jen

a Hilbert basis of .7 composed by the corresponding eigenfunctions. Let

¢](t) — e—iAt(bj — e_i/\jt(bj
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and [r] be the entire part of a real number r € R. For s > 0, we define the
spaces

H® = H*(¥,C) HHS e;,C

(4.2)
Hji = {d) € H® | 9*™ is continuous in v, ¥n € NU{0}, n < [(s+1)/2];

Z 82"+1f ) =0, Vn e NU{0}, n < [8/2], You € V}},

eeN(v
Hj = Hy(@,C) = DA, |-l = - iy, = (X ko))
, k=1 . %
P(C) = {{axhen € C| Y Wl <o |-l = (- 12)*.
k=1 k=1

Remark 4.1. 10 ¢ o(A) (the spectrum of A), then |- | = [|A[f - | icc.
there exist C1,Cy > 0 such that

Cull - I3y < II1412 Z|2 (o) < Coll - 12,

Indeed, from [BK13, Theorem 3.1.8] and [BK13, Theorem 3.1.10], there ex-
ist C3,Cyq > 0 such that
Csk? < Ay < Cyk?

for every k > 2 when \y = 0, otherwise for every k € N (see Remark 4.17
for further details on this identity). If 0 € o(A), then there exists ¢ € R
such that 0 ¢ o(A+ ¢) and

-l = A+ ef2 - .

For any compact quantum graph ¢, the only eigenvalue which can be 0
is A1 and there exists M € N and § > 0 such that

inf |\ - A oM.
(4.3) inf [Aerat = Ae| > 5M

Indeed, thanks to [DZ06, relation (6.6)], there exist M € N and ¢’ > 0 such
that

inf VAt — V| > ' M
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and

inf (Mg = M| > V22 Vi — V| > M.

Let n > 0 and a > 0. We define the following assumptions on the couple
(A, B) for

(4.4) I:={(j,k) €N?:j #k}.
Assumptions (I11(n)). The operator B satisfies the following conditions.
1. There exists C' > 0 such that, for every j € N,

C
(05 Bou| 2

2. For every (j, k), (I,m) € I such that (j,k) # (I, m) and
Aj = A=A — Ay
it holds

(#j, Boj) — (dr, Bor) — (@1, Bér) + (dm, Bom) # 0.

Assumptions ITI(n) generalize Assumptions II introduced in the previous
chapter. Heuristically speaking, the first condition quantifies how much the
operator B mixes the eigenstates of A. The second assumption ensures
that B decouples the resonant eigenvalues gaps, i.e. A\j — A\, = N — Ay, for
(J, k), (l,m) € I with (j,k) # (I,m).

Assumptions (IV(n,a)). Let Rcm(B]Hé) C HZ and one of the following
assumptions be satisfied.

1. When ¥ is equipped with (D/N)-(NK) and a +n € (0,3/2), there
exists d € [max{a + n,1},3/2) such that

Ran(B] 2+4) C H*™nH2.

2. When ¢ is equipped with (N)-(NK) and a + 7 € (0,5/2), there exist
d € [max{a +1,2},5/2) and d; € (d,5/2) such that

Ran(B|yz+4) C H>™ N Hye 0 HZ, Ran(B|ya ) € HY.
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3. When ¢ is equipped with (N)-(NK) and a +n € (0,7/2), there exist
d € [max{a +n,2},7/2) and dy € (d,7/2) such that

d
Ran(B|yz14) C H* 0 A0 HY, Ran(Bl s, sy ) € Hiye

4. When ¥ is equipped with (D)-(NK) and a+n € (0,5/2), there exists
d € [max{a +n,1},5/2) such that

d d
Ran(B|pz2+4) C H*Mn HE N H,.
If a + n > 2, then there exists d; € (d,5/2) such that

Ran(B|y4,) € HY.

From now on, we omit the parameters  and a from the notations As-
sumptions III and Assumptions IV in those contexts where they are not
relevant or already defined.

4.1.1 Global exact controllability

Definition 4.2. The problem (4.1) is said to be globally exactly controllable
in Hg, for s > 0 if, for any Pl Y2 € HZ, such that ||| = []1?]|, there exist
T >0 and u € L?((0,T),R) such that

92 =Ty,

Theorem 4.3. Let 4 be a compact quantum graph and let {\;}ren be the
spectrum of A.

1. Let d >0 and C > 0 be such that it is satisfied

(4.5) Most — Al > Ck %M1 VkeN.

If the couple (A, B) satisfies Assumptions Ill(n) and Assumptions

IV(n,d) for some n > 0, then the problem (4.1) is globally exactly
controllable in Hy for s =2+ d and d from Assumptions IV.

2. Let G be an entire function such that G € L*(R) and there exist
J, I > 0 such that

IG(2)| < JeIl vzec.
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Figure 4.2: Examples of star graphs

The numbers {\/A;j}jen and {—\/Aj}jen are simple zeros of G and
there exist d > 1, C > 0 such that, for every j € N,

o N T/ w B

J

| Q

<
IS

If the couple (A, B) satisfies Assumptions Ill(n) and Assumptions
IV(n,d — 1) for n > 0 and €1 > €, then the problem (4.1) is glob-
ally exactly controllable in HG for s =2+ d and d from Assumptions
1V.

Proof. See Paragraph 4.3. O

Definition 4.4. For every N € N, we define AL(N) C (RT)Y as follows.
For every {L;};<n € AL(N), the numbers {1,{L;};j<n} are linearly inde-
pendent over Q and all the ratios Lj/L; are algebraic irrational numbers.

o We denote tadpole a compact quantum graph composed by an edge
connected to a circle in an internal vertex v.

e We define two-tails tadpole a compact quantum graph composed by
a circle connected with two edges in an internal vertex v.

¢ We call double-rings graph a compact quantum graph formed by
two circles connected in an internal vertex v.

o We denote star graph a compact quantum graph composed by M +1
edges connected in an internal vertex v (M is the number of vertices).
We associate the 0 coordinate with each external vertex. (Figure 4.2)

We show that for these types of graphs (Figure 4.3) the spectral hypothesis
of Theorem 4.3 are satisfied.
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S (O OO

Figure 4.3: Respectively a star graph, a tadpole graph and a double-rings
graph

Theorem 4.5. Let {L;}j<ny € AL(N).

1. Let 4 be either a tadpole, a two-tails tadpole, a double-rings graph
or a star graph of N < 4 edges and let 4 be equipped with (D/N )-
(NK). If the couple (A, B) satisfies Assumptions II1(n) and Assump-
tions IV(n,€) for n,e > 0, then the problem (4.1) is globally exactly
controllable in Hj for s =2+ d and d from Assumptions IV.

2. Let 4 be a star graph equipped with (D)-(NK). If the couple (A, B)
satisfies Assumptions III(n) and Assumptions 1V(n,€) for n,e > 0,
then the problem (4.1) is globally exactly controllable in Hj for s =
2+d and d from Assumptions IV.

Proof. See Paragraph 4.4. O

4.1.2 Contemporaneous controllability

Let ¢ = {I;}j<n be a compact quantum graph composed by a set of
bounded unconnected intervals. In this context, the problem (4.1) is equiv-
alent to the following Cauchy problems, each one of them in L?(I 5, C):

(4 6) iatwj(ﬂ = Ajwj(t) + u(t)ijj(t)? te (OaT)7 1<j<N,
' ¥ (0) = ¥},
for B; := Bl|r2(;;)- The operator A; := Alpz(y;) is the Laplacian on I;

equipped with self-adjoint type boundary conditions (D) or (N). Let I‘;"j
be the propagator generated by A; + u(t)B; and

H; = D(AY?), s> 0.

Definition 4.6. The problem (4.6) is said to be contemporaneously globally
exactly controllable in H;V:I Hj for s > 0 if, for any {@Z)}}jSN, {ZZ)JQ'}J'SN
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unitarily equivalent such that 1;, ¢? € H 7, and [pill = [[¥3] for every
j < N, then there exist 7' > 0 and u € L?((0,T),R) such that

I/t =92, ¥j < N.

Theorem 4.7. Let 4 = {I;}<n be a compact quantum graph composed by
a set of bounded unconnected intervals. Let the couple (A, B) satisfy As-
sumptions III(n) and Assumptions IV(n,€) for somen,e > 0. If {Ly}r<n €
AL(N), then the problem (4.6) is contemporaneously globally exactly con-
trollable in vazl HIsj for s=2+d and d from Assumptions IV.

Proof. See Paragraph 4.4. O

4.1.3 Energetic controllability

Let @ := {¢k}ren € ® be an orthonormal system composed by some eigen-
functions of A and corresponding to eigenvalues

{preen C { M }ren,

— 2
i.e. App = puper and o Z 0. Let n,a € (0,4) and 52 := span{¢y, | k € N} v

Now, we introduce a set of assumptions for the couple (A, B) which can
also be satisfied when the hypotheses of Theorem 4.3 fail.

Assumptions (V(¢,n,a)). The couple (A, B) satisfies Assumptions III,
Assumptions IV and the hypotheses of one of the two points of Theorem 4.3
in J7.

In other words, the following conditions are satisfied.

1. There exists C' > 0 such that |(p;, By1)| > ]2% for every j € N.

2. For every (j,k),(l,m) € I such that (j,k) # (I,m) and p; — pp =
W — M, it holds

(¢, Boj) — (pr, Bor) — (o1, Bor) + (@m, Bom) # 0.

3. Ran(Bl,. ) C HZ N .
£ g ©

4. The hypotheses of one of the two points of Theorem 4.3 are satisfied
with respect to {pg tren-

Let one of the following assumptions be satisfied.
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1. When ¢ is equipped with (D/N)-(NK) and a + 7 € (0,3/2), there
exists d € [max{a + 7, 1},3/2) such that

Ran(B|,2+a., ) C H*NHZ N A
2

m}z”v)

2. When ¢ is equipped with (N)-(NK) and a + 7 € (0,5/2), there exist
d € max{a +n,2},5/2) and d; € (d,5/2) such that

Ran(B| H?dﬂj% C H*"NHY NHZNA,  Ran(B|ya) C HANA.

3. When ¢ is equipped with (N)-(NK) and a + 7 € (0,7/2), there exist
d € [max{a +n,2},7/2) and d; € (d,7/2) such that

Ran(B|yzrac,77) C H* N PN HZ N2,

Ran(B| CHb.NA.

Hé mij}Km}fv)

4. When ¥ is equipped with (D)-(NK) and a+n € (0,5/2), there exists
d € [max{a +n,1},5/2) such that

2+d 2+d 2 v
Ran(B|H;+dm%v)§H mHNIC QH@O%
If a + n > 2, then there exists d; € (d,5/2) such that

Ran(B| 4, 7) € H' 0 2.
From now on, we omit the parameters @, n and a from the notation
Assumptions V in those contexts where they are not relevant or already

defined.

Definition 4.8. The problem (4.1) is said to be energetically controllable
with respect to {y;}jen if, for any ¢, ©n € {¢;}jen, there exist T > 0 and
a control function u € L*((0,T),R) such that

TPm = Pn.

If {1} jen corresponds to the sequence of eigenvalues of A (not repeated with
their multiplicity), then we say that (4.1) is fully energetically controllable

in {Mj}jeN-
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Theorem 4.9. Let 4 be a compact quantum graph and the couple (A, B)

satisfy Assumptions V(@,n,d) for some n,d > 0. The problem (4.1) is
energetically controllable in {y;}jen and globally exactly controllable in HZN

e%/zfor s =2+d, d from Assumptions V.

Proof. First, as B : Hé nNA — Hé N ,%/Z, the propagator I'}' preserves
HZN A

Second, the statement of Theorem 4.3 is valid in 2 implying the global
exact controllability in Hg N .77 for some s > 0.

In conclusion, the energetic controllability follows from the fact that ¢; €
H;}ﬂ%fzforevery5>0andj€N. O

Remark 4.10. The energetic controllability can be adopted in order to study
those complex quantum graphs 4 such that the hypotheses of Theorem 4.3
can not be verified. An example is when ¢ contains a finite number of
particular subgraphs {%}] <N called uniform chains of edges, each one

composed by edges of length L; such that {Lj}j<ﬁ € AE(N).

We say that a graph 4 is an uniform chain of edges if 9 is a se-
quence of edges of equal length connecting M € N wertices {vi}r<nr such
that ve, ...,vp—1 € V; are equipped with (NKC) and one of the following sit-
uation is verified.

e The vertices vi,vy € Ve are equipped with (D).
o The vertices v1 = vy € V; are equipped with (NK).

Let us consider the connected graph represented on Figure 4.4 with all the
external vertices equipped with (D). Let ¥ contain a sub-graph & composed
by two edges e1 and ey of equal length. The edges connect two external
vertices to an internal vertex v.

Figure 4.4:
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We can exhibit some eigenfunctions of A as follows. For every j € N,
we 1mpose

o {supp«oj) -9,
@j‘el = _Spj‘eg'

We assume that each function go‘el is the j-th eigenfunction of the operator
Ap with domain

D(AD) = Hz((ov L): C) N H(%((OvL)a (C)

and such that Apf = —Af for every f € D(Ap), where L is the length of
each er. Now, ¢;(0) = 0 and the (NK) boundary conditions are satisfied
thanks to (4.7). The sequence of functions

{@i}ien

are eigenfunctions of A on ¢ corresponding to the eigenvalues

2 2
{,u] }JEN { 12 jEN'

B ﬁ/\ Cs
: = _

Figure 4.5:

If we repeat this procedure for every uniform chains of edges {G}r<s
contained in the graph & (Figure 4.5), then the previous argument allows to
construct 5 sequences of eigenfunctions {@?}jeN of A. We define

k<5

,%”:span{ga?: jeN, k<5}.

The hypotheses of Theorem 4.3 can verified in A as the spectrum and the
eigenfunctions of A in € are explicit. Then the bilinear Schridinger equa-
tion can be energetically controllable (under suitable assumptions on B) since

{SD?}JZJIEEN c AN Hg, Vs > 0.
<5
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4.2 Well-posedness and interpolation properties of
the spaces H;

Proposition 4.11. Let the couple (A, B) satisfy Assumptions IV and the
hypotheses of one of the two points of Theorem 4.3.

1. Let T >0 and f € L*((0,T), H***N H2). The map

t
t— G(t) = /0 AT f(T)dr

belongs to C°([0, T7, H;+d) and there exists C(T') > 0 uniformly bounded
for T lying on bounded intervals such that

HGHLoo((O,T),HE;d < C(DIf 20,1, m2+anmz)-

2. LetT >0, y¥ € H{?d and u € L*((0,T),R). There exists a unique
mild solution of (4.1) in Hgfd (see Proposition 2.5).

Now, we present some interpolation features of the spaces Hg, for s > 0.
The proof of Proposition 4.11 is provided in the end of the paragraph.

Proposition 4.12. Let &4 be a compact graph.
o If9 is a graph equipped with (D/N )-(NK), then
H*™ = H}) NHT2(4,C)  for s1 € NU{0}, s2 €[0,1/2).
o If9 is a graph equipped with (N )-(NK), then
H% 2 = H) NH3E? for 51 € 2NU {0}, s2 € [0,3/2).
o If 4G is a graph equipped with (D)-(NK), then
H T2t = gt gipts ™t for sp € 2NU {0}, so € [0,3/2).

Proof. We recall that by defining ¢ as a quantum graph, we are implicitly
introducing a Laplacian A equipped with suitable boundary conditions over
the graph ¢. We also refer to (4.2) for the definitions of the spaces Hj,.
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1) (a) Interpolation properties for ¢ a bounded interval: Let ¢4 be a
quantum graph such that 4 = IV for IV a bounded interval equipped with
(N) on the external vertices. Thanks to [Grul6, p. 3], for each s; € 2NU{0}
and sp € [0,3/2), we have

(4.8) H3™2 = H3\ 0 H9T52(IV, C).

Indeed, according to [Grul6, Definition 2.1], we have H3, = H*? (IV,C)
for so € [0,3/2), while for £ € NU{0} and 1+2k < s1+s2—1/2 < 1+42(k+1),

H2 = (g € H P2 (1V,C) | 0, Ao =0 0< 1<k}

When the quantum graph ¢ is an interval I” equipped with (D), thanks
to [Grul6, p. 3], there follows that, for each s; € 2NU {0}, s2 € [0,3/2) and
53 € [Oa 1/2)a

(4.9)  HLPt = oLt 0 HR et (1P ©), H3% = H%(IP,C).

Let the quantum graph ¢ be an interval I equipped with (D) on
one external vertex v; and (N) on the other vy. We prove that, for each
s1 € NU{0} and s5 € [0,1/2),

(4.10) H32 = Hiy, n HO P2 (1M C).
We consider s; = 0 and s3 € [0,1/2), but the proof is also valid when s; € N.

e We define the quantum graph I2 C I an interval of length %|I M,

containing v; and equipped in both the external vertices with (D).

e We define the quantum graph TN C ™ that is an interval of length
%]I M|, containing vo and equipped in both the external vertices with

(N
e We consider I C I’ an interval of length $1IM], containing v;.

Let the partition of unity x so that x(z) =1 in I, x(z) = 0in IM\ I? and
x(z) € (0,1) in I”\ I. There holds that x¢ € H?, and (1—x)y € H?, and
() = x(@)P(z) + (1 = x(2))P(2).

The same property is valid for functions belonging to L?(I™, C) and H*(I™, C)
for s € (0, 2]. Those decompositions allow to see the functions in these spaces
as vectors of functions and

Hiu =HZ, x Hi,, L*(IM,C) = L2(IP,C) x L*(IV,0),
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H(IM,C) = H*(IP,C) x H*(IV,C).

As in [Tri95, Definition, Chapter 1.9.2], for X and Y suitable spaces, we
define
[x.¥]
0

their complex interpolation for 0 < § < 1. From [Tri95, Remark 1, Chapter 1.15.1]
as A is a self-adjoint positive operator, [Tri95, Theorem, Chapter 1.15.3] is
valid and
2(TN 2 s )
|:L (I 7C)7H}7\/}s2/2 - H’fj\f’
2/7D 2 S D)
[L (I ,(C),HTDLz/Q = HZ,.
Thanks to [Tri95, relation (12), Chapter 1.18.1], the interpolation between
two products of spaces is the product of the two respective interpolations
and
Hi = [L2(M,0), B = [12(0Y,€) x 12(1°,C), 1, x HE,

$2/2 s2/2

- [L2(I~N,C),H%N} X [L2(.7D,(C),H%D} = HZ2, x HZ.

s2/2 s2/2

The previous part of the proof leads to
H3, = H2 x HZ = H*(V,C) x H*(I”,C) = H*(I",C),

In conclusion, the introduced argument shows that, for each s; € NU {0}
and sp € [0,1/2),

H3L = Hiy N HO P2 (1M C).

(b) Interpolation properties for ¢ a star graph with equal edges:
Let Aans be a Laplacian defined on a bounded interval I of length L and
equipped with Neumann type boundary conditions. We call I N the relative
quantum graph and

{f_yl }jEN
an Hilbert basis of L?(I,C) composed by the eigenfunctions of Axr.
Let Aaq be a Laplacian on I equipped with Dirichlet boundary conditions

in one of the external vertices of I and with Neumann boundary conditions
in the other. We call I the relative quantum graph and
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{f7}jen

another Hilbert basis of L?(I, C) composed by eigenfunctions of Ar¢. Thanks
to 1) (a), for each s € [0,1/2) and ¢ € H*(I,C), we know that

which imply
S g’ < o, S 2,0’ < o
JEN jEN

Let ¢4 be a star graph equipped with (N)-(NK) and composed by N edges
of length L. We explicit {¢x}ren a Hilbert basis of L?(¢,C) composed by
eigenfunctions of A. The (N) conditions in the external vertices imply that

o = (a}, cos(\/Arx), ..., ap cos(v/Az)), VkeN

and {al} yex C C. For every I,m < N, the (NK) condition in the internal
I<N

vertex imply
N

(4.11)  dfcos(v/ ML) = aft cos(v/ ML) =¢, > ajsin(y/ ML) =0,
=1

Let {S\k} ken be the sequence { A }reny where the eigenvalues are not repeated
with their multiplicity. By substituting ¢ = 0 in the identity (4.11), we

obtain the sequence of eigenvalues {%}n enu{o} while for ¢ # 0, we

(2 e M,

of multiplicity (N-1) (see also [BK13,p. 15] for further explanations). Now,
for every k € N, there exists j(k) € N such that one of the following is
verified

have

either qﬁi, = cggfjl(k) for ci/, e C, |c§§\ <1, WViedl,.., N},

(412) I _ 1 g2 [ [
or O =crfig for ¢ €C, g/ <1, Vie{l,. N}

We call

Jl = {keN|3j(k) eN:Vie{l,.,N},3decC, |4 <1 : ¢§€:c§€fj1(k)}
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and J2 := N\ J!. We have

k< (N—-1)-j(k)
since each eigenvalue has multiplicity at most (N — 1). We call {e;}jen
the edges composing ¢ and we notice that they correspond to the interval I
introduced above as they have the same length L. We consider the quantum
graphs I and IV defined in the first part of 1) (b). Thanks to 1) (a),
for s € [0,1/2), we have

N N
H*(%,C) = (H HS(ej,C)) _ (H H;‘M),

ijl jjvl
w#,0)= ([1#.0) = ([T #),

which implies that, for every ¢ = (¢!, ...,9"V) € H*(¥4,C) and | < N, we
have

SR e <00, D IR 120,07 < 0.
k=1 k=1

Now, there exists C7; > 0 such that

1

Il = (3 166k W2 0)2)

keN

(Z kszck Fiy ¥ e,,@)’>5 (Z kSZN: L2 k)wm%c)’)é
keJ1 keﬂ =1
- Cl(z Z ks<fj1(k)’¢l>L2(ez(C ) )é +C1<Z Z k5 (f ](k)’ LQ(eZ, )‘2)5
mhkest =1 keJ?
=G SZ (Z ‘*7 iy L?(el,c)D;
=1 keN
N
+OWV -1y Z (Z ‘J ](k L2(el,c))2);.
=1 keN

The function j(-) : N — N is increasing and, for each n € N, there exist at
most (N — 1) values k € N such that j(k) = n as each eigenvalue of ¢ has
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multiplicity at most (N — 1). Thus, there exists Co > 0 such that

1, < cgi (>

I=1 jeN

+C2i<z

I=1 jeN

3°(f5 ¢Z>L2(el,(c)‘2>%

2\ L
js<fj2awl>L2(el,C)‘ )2 < 0.

Thus, H*(¢¥,C) C Hj, for s € [0,1/2), which implies Hj = H*(¥,C).

The same techniques leads to the claim for every s; € N U {0} and
sg € [0,1/2) by noticing the two following facts. First, for s > 0 and for
every

¥ = ...,vN) € HY,

we have
e HY(IM, C), e HY(IV, C), VI<N

thanks to the identities (4.12). Second, as in 1) (a), for each s; € NU {0}
and s2 € [0,1/2),

HLE? = HoL 0 HO P2 (1M ),
and, for every s; € 2NU {0} and s2 € [0,3/2),
H32 = Hiy nH9T2(IV, C).
In conclusion, for s € NU {0} and s2 € [0,1/2), it is verified that

(4.13) H}" = HZ) N H*'72(4,C).

(c) Interpolation properties for a generic graph ¥: Let ¢4 be a graph
equipped with (D/N)-(NK) and N be the number of edges of &. Let
L <min{Ly/2: k € {1,..,N}} and let v € V; UV, be a vertex of 4. We
define ¢ (v) as follows.

o If v € V;, then ¢ (v) is a star subgraph of ¢ equipped with (N)-(N'K),
with n(v) edges of equal lengths L, with internal vertex v.

e If v € V,, then ¥(v) is an interval of length L with external vertex
v equipped with the same boundary conditions that v has in 4. We
impose (N) on the other vertex.
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Afterwards, we construct a family of intervals {I; }j  for N < N as follows.

For each v, ¥ such that ¢(v) and ¢ (?) have respectively two external vertices
wy and ws lying on the same edge e and such that wy & ¢(v), we construct an
interval strictly containing wq and ws, strictly contained in e and equipped
with (AV). Thanks to 1) (a) and 1) (b), for every v € V;UV,, j < N,
s1 € NU{0} and s9 € [0,1/2),

s1+s2 _ rrs1 Ss1+s2
g(’l)) - H(i(v) N H (g(v)7 C)?

Hp ™™ = Hp' 0 H* 772 (1;,C).

We define

G =A{Gi}jcnn =9 W) i< U{TL} i
and we notice that G covers 4. As in 1) (a), we see each function with
domain ¥ as a vector of functions each one with domain G for a suitable
j < M + N. Now, [Tri95, relation (12), Chapter 1.18.1] implies that the
interpolation between two products of spaces is the product of the respective
interpolations and, for each s; € NU {0} and s € [0,1/2),

H3%*2 = HJ) 0 H9 P2 (9,C).

2) Let ¥ be a graph equipped with (N)-(NK). We define & from & as
follows. For every external vertex v € V., we remove on the edge including v
a section of length L /2 containing v. We equip the new external vertex with
(N) and we call N, € N the number of external vertices of ¢. By recalling

the definition of the intervals 4 (v) for every v € V., introduced in 1) (c),
we have

G =A{G}jen 11 = {9 (0)}oev, U{Z}

covers ¢. We see each function with domain ¢ as a vector of functions, each
one with domain G;- for a suitable j < N, 4+ 1. Thanks to the argument of
1) (a), for every v € V¢, s1 € 2NU {0} and s € [0,3/2), we have

H3T2 = B3 N H2(4(v),C).
B

9 (v) (v)

The techniques adopted in 1) (a) and recalled in 1) (c) lead to the proof.
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3) The same arguments mentioned in 2) ensure the claim by considering
{9 (v) }vev, as intervals equipped with (D). O

Proof of Proposition 4.11. The proof is inspired by the ones of [BL10, Lemma 1]
and [BL10, Proposition 2]. The first part introduces the techniques that are
valid for any type of ¢, while the second considers ¢ equipped only with
(N) in the external vertices in which stronger results can be achieved.

Generic graphs:

1) Let f(s) € H®N HZ for almost every s € (0,t), t € (0,T) and f(s) =
(f1(s), ..., [N (s)). We prove that G € C°([0,T], H3). Thanks to the defini-
tion of G(t), we have G(t) = S22, ¢, [5 €™ (¢, f(s))ds and

1
2) 2
We estimate the terms (¢, f(s,-)) for £ € N and s € (0,¢). We suppose
that A\ # 0. Let 0, f( ) = (0xf1(8), ..., 0ufN(s) be the derivative of f(s)
N
k

1G() (i

k=1

/ DS (g, f(5))ds

and P(¢r) = (P(¢h), ..., P(¢ ):; e the primitive of ¢ such that

P(dy) = —jkaxask.

We call de the set of the two points composing the boundaries of an edge e.
For every v € V, © € V; and j € N(9), there exist a(v),a’(?) € {~1,+1}
such that

(4.14)
(64, F(5)) = A—<¢k,a2f =5 | sy

1 j y
- Z [P@@ 8P eo)], =5 [ Podwoss i
= 22 )02k (0) 03 f (s, v) + QZ Z a’ (v ng)] )02 fI(s,v)

k vev, k vev; jeN

3
3 /g Datr ()02 £ (5, y)dy

From [BK13, Theorem 3.1.8] and [BK13, Theorem 3.1.10], there exist C; >
0 such that )\,:3 < C1k75 for every k € N (we provide further explanations
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on this property in Remark 4.17), then
(4.15)
t .
B [ e on, (5))ds| =
0
Cy
e

k vEVe

K /0 N 0,021 ()

DY

veV; jEN (v)

t
3Iqbk(v)/ eMs92 f(s,v)ds| +
0

AN20,01, = MAL 2000

t
oo [| P v
0

t .
+ 1 e / Dur(y)02 f (s, y)dyds
4

Remark 4.13. We point out that

for every k € N, where A’ = —A is a self-adjoint Laplacian with compact
resolvent and domain defined as follows. For every vertex v € V. where each
g € D(A) satisfies (D), we impose that every f € D(A’) satisfies (N'). For
every v € V, such that each g € D(A) satisfies (N'), we impose that every
f € D(A") satisfies (D). Moreover, for every v € V; and f = (f1,..., fV) €
D(A"), we have

Zje N(v) fj(v) = 07
8 echg,0).

Inaddition, ||\, 20, 0] = (N 2000k, A P0uk) = (61, N Ade) = 1
and then {A,;l/zamk}keN is a Hilbert basis of .

Before studying (4.15), we consider that there exist a! = {a}} C C and
= {bl.} C C for every [ € {1,..., N} so that

d)k —akcos\/>x +bksm\/>x

(4.16) A 20,8k (x) = —al, sin(v/Apx) + b cos(v/ M),
Now, 2 > |\ 2008k 1220y + 841122000y = (lak[? + [B4[?) er] for every k € N

and [ € {1,..., N}, which implies a!, bl € ¢>°(C). Thus, from (4.16), there
exists Cy > 0 such that, for every k € Nand v € V., UV,

I 20,0 (v)] < C
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and

(4.17)

g N (5, () ds “ksazfﬂrs,v)ds

)

/BQfJ 5,0)er0%ds

)

For every ¢t > 0, thanks to Proposition A.18 (Appendix A.2), there exists
C3(t) > 0 uniformly bounded for ¢ lying on bounded intervals, such that for
every v € V., UV, and j € N(v),

<C;
UEVUVEJEN

/ s / 0 o1(y) O F (s, y)dyds

1/2

02

= 6o <cl(cg S O%

veVLUV; jEN (v)

[ a0y s

(4.18)

|

t
| &P emeods| < oIPCloner
14

Thus, there exists Cy(t) > 0 uniformly bounded for ¢ lying on bounded
intervals such that

/82]‘7 5,0)e 03 ds

02

1Gllms, < C <C2 > Z

veVeUV; jEN (v

+ ’ /0 <A()1/28I¢()(8)78§f(8)> ei)\(A)SdS >
02
(4.19)
< Cl 02 Z Z / 82f] S U 1)\( )SdS
UGVeUV jEN 2

+\/%</ H Ao, ),8§f(s)>HZ2ds)%>
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and
HG||H3 <0 | Gy Z Z / 82]‘7 (s,v) “\()Sds
veVeUV; jEN (v) 22
t 3 %

Cs(t) > Z 10217, )l L2 ((0,6),0)

veVeUV; jEN (v)
+ \[HfHB 00,83 < Ca(O[If (-, )HLQ((O,t),Hi”mH?g)'

If Ay = 0, then relations (4.14), (4.15) and (4.17) are still valid for £ > 1 and
¢1 = 1. There exists C5(t) > 0 uniformly bounded for ¢ lying on bounded
intervals such that

(91, f(s))ds
0

< CsONSC)zz(0,0),m30m2)-

Then, we modify (4.18) as follows

(4.21)
\\G(t)\(3>s<§ o [ e Lo ) (' [0 de2>
gL el

The techniques adopted in the relations (4.19) and (4.20) are still valid and
they lead to the existence of Cg(t) > 0 uniformly bounded for ¢ lying on
bounded intervals such that

1Gll gz < Co@ILfC )l L2 (0,0, m30m2,)-

For every t € [0, T], the inequality shows that G(t) € H3NHZ and t — G(t)
is continuous since the upper bounds provided are uniformly bounded. The
Dominated Convergence Theorem ensures the property.

In conclusion, if f(s) = (f(s), ..., f¥(s)) € H3> N HZ for almost every s €
(0,t) and t € (0,T"), then

G € C°([0,T), H}).

D=
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Now, if d € [1,5/2) and f(s) = (f1(s), ..., fN(s)) € Hf\ﬁgﬂHé for almost
every s € (0,t) and t € (0,7), then the previous steps lead to

G € C°(0,T], H3).

Let 0,4 = A'9, for A’ defined in Remark 4.13. We consider G as a vector
of functions such that G(t) = (G*(t),...,GN(t)) and, for every | < N,

cﬂﬂzéemv%m&

If > e N 02t fl(s,v) = 0 for n € N, v € V, and for every s € (0,t) and
€ (0,7), then

b ’
Z 8§"+1Gl(t,v):/ etA's Z ¥l f(s,v) | ds = 0.

IEN (v) 0 IEN (v)

If 92" f(s,v) = 0 for n € N, v € V; and for every s € (0,t) and t € (0,7T),
then

t
PG (t,v) = / 592 f(5,v)ds = 0.
0

Now, we have G € C°([0, T, jQ\}",Cd) and, thanks to Proposition 4.12, there
follows Hytd N HY = HJ™ for d € [1,5/2), which implies

G € C%[0,T], HZ™).

In conclusion, if d € [1,5/2) and f(s) = (f'(s),..., fN(s)) € HJQ\?,'Cd N HZ for
almost every s € (0,¢) and ¢ € (0,T), then

G € C°([0,T), HZ ).

When d € [1,3/2) and f(s) € H>*? N HZ for almost every s € (0,1)
and t € (0,T), we have G € C°([0,T], H3) and G € C°([0,T], H*™). Now,
>0 g3 = H2' for d € [1,3/2), thanks to Proposition 4.12. Hence

G € C%[0,T], HZ™).
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2) Let problem (4.1) verify the first or the fourth point of Assumptions IV.

We adopt the techniques of the proof of [BL10, Proposition 2]. Thanks to

the arguments of Remark 2.1 and to the fact that Ran(B|2+4) € H*TNHZ,
<4

we have B € L(Hé+d, H*tdn Hé) For every ¢ € Héer, we define the map
F such that
t
Fis F()(t) = At — / ¢~ HAU=5)y () By(s)ds € C°([0, T], HZH).
0

For every ', 1% € H{?rd, thanks to the first point of the proof, there exists
C(t) > 0 uniformly bounded for ¢ lying on bounded intervals, such that

IF@N () - PO ara < H [ B ) - v2(e))as

(2+4d)

< C(t)HUHL2((O,t),R) |” B |” L(H;+d’H2+de%)“¢l - wZHLOQ((OJ)’H?;rd)-

If ||lull £2((0,1),r) is small enough, then F' is a contraction and Banach Fixed
Point Theorem implies that there exists ¢ € C°([0,T], H5t") such that
F(y) = . When ||lulz2(4)r) is not sufficiently small, one can consider
{tj}o<j<n a partition of [0,t] for n € N. We choose a partition such that
each [lullz2(i,_, ;) 1S so small that the map F, defined on the interval
[tj—1,t;], is a contraction. The previous argument leads to the result.

Graphs equipped with (N) on the external vertices:

1) Let f(s) € H'NHZ N H3/y for almost every s € (0,¢) and t € (0,T). We
notice the spectrum of A is simple and A; = 0 under the chosen hypotheses.
We proceed as in (4.21) and we notice that the first two terms of the last
line of (4.14) are equal to zero. First, 92f(s) € C” as f(s) € Hic and, for
v € Ve, we have 0,¢(v) = 0 thanks to (N) boundary conditions. Second,
for every v € V;, thanks to the (MK) in v € V;, we have

>l (v)8,¢](v) = 0.

JEN(v)

Indeed, the terms a’(v) assume different signs according to the orientation of
the edges connected in v. If their orientations are assumed in the directions
away from the vertex, then we have a’(v) = a'(v) for every 1,5 € N(v).
Thus, the first two terms of the relation (4.14) become, for s € (0,¢) and
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te (0,7),
5 D a0)e () (5, 0) + 33 3 Z 0) s, (0)02f7 (5, )
k UEVe Ak E€Vi jEN (v
= B Z d2f(s,v) Z a (V)0 ) (v) =
k vev; JEN (v)

In the relation (4.14), integration by parts leads to gain one order of regu-
larity since

(4.22)
(6, 1(5)) = —% | et r(s.ty = 5 3 atwdon1o2(s)
k eve
3 B Apig
ZV; PGP () + 55 /q S ()01 (5,9)dy

Since {¢y }ren is a Hilbert basis, we can proceed as before by using Propo-
sition A.18 (Appendix A.2) as done for generic graphs. Hence, there exists
C4(t) > 0 uniformly bounded for ¢ lying in bounded intervals such that

1Glms, < CL@OITC ez 0,0, 74013 -

When d € [2,5/2) and f(s) € H*TINHZNH3 for almost every s € (0,1)
and t € (0,7), then we have

G e C°([0,T], Hy™),

thanks to H2*4N Hy = H;er for d € [2,5/2) due to Proposition 4.12.

If d € [2,7/2) and f(s) € Hﬁ;’,g N HZ for almost every s € (0,t) and
€ (0,T), then
G e C%([0,T],HZ™),

thanks to H 2+d NHy = H2+d for d € [2,7/2) due to Proposition 4.12.

2) Let (4.1) verify the second or the third point of Assumptions IV. The
second claim follows as in the proof dedicated to the generic graphs. O

4.3 Proof of Theorem 4.3

The proof follows the ideas of the ones of Theorem 2.2 and Theorem 3.5.
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4.3.1 Local exact controllability in

By referring to the proofs of Theorem 2.8 or Proposition 3.10 (see also
[Bea05], [BL10], [Morl4] and [MN15]), it is possible to see the following
fact. Let Assumptions III be verified and let

s ={v € Hy| 10l =1, 1Y = 61(T)ll < e

Let us consider the decomposition
o0
Tigr = ¢r(t){on(t), Tiér).
k=1

As in the proof of Theorem 2.8, we define the map «, the sequence with
elements

a(u) = (or(T), T'p¢r), Vk e N
so that

a LQ((O,T),R) — Q = {X = {xk}kEN S hs((C) | Hx”p = 1}.

Ensuring the local existence of the control function for a time T > 0 is
equivalent to prove the local surjectivity of . To this end, we use the
Generalized Inverse Function Theorem (Proposition 2.7). As in the proof
of Theorem 2.8, for a(0) = & = {0 1}ren, we study the surjectivity of
v(v) := (dy(0)) - v the Fréchet derivative of a such that

v L2(<O,T),R) — T@Q = {X = {xk}keN S hS(C) ‘ 1] € R}

(see the proof of Theorem 2.8 for further details on 75@)). The map ~ is the
sequence with elements

T . .
Yi(v) : = <<Z>k(T), —i/o e_ZA(T_T)v(s)Be_ZAT¢1dT>

T
= —i/ v(r)eM A qr (g Bhy),  keN.
0

Thanks to Proposition 4.11, the well-posedness of (4.1) is guaranteed in H
and both « and ~ take value in ~A®. Thus, the local surjectivity of a can be
proved by ensuring the solvability of the moment problem

Tk

i(Ak—A1)
4.23 TR )etAe=A)T g
( ) < k,B 1> 1/0 u( )e T
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1) In the hypotheses of the first point of Theorem 4.3, Proposition Al4
(Appendix A.2) leads to the solvability of (4.23) in h9. Indeed, if we consider
the sequence of numbers

{M — M een

and {xp}ren € hd+2+n then the hypotheses of Proposition A.14 are sat-
isfied since By € R as B is symmetric, the element iz1/B;; € R and
{kal;ll}keN € hd thanks to the first point of Assumptions III.

In conclusion, {v(u)}ren € h* for every u € L2((0,T),R) and the moment
problem (4.23) is solvable for {zj}ren € h* C h2FAHN with s = d + 2 since
d>d+n.

2) In the hypotheses of the second point of Theorem 4.3, the solvability of
(4.23) is guaranteed by Proposition A.17 (Appendix A.2) in A%~! thanks to
the relation (4.3).

Indeed, from [BK13, Theorem 3.1.8] and [BK13,Theorem 3.1.10], there ex-
ist C1,Cy > 0 such that C1k < VA, < Cok, for every k € N (in Remark
4.17 we provide further explanations on this property).

By considering the first point of Assumptions III, {x}reny has to be in
R4 swhich is true since {7y (u)}reny € h° for every u € L%((0,T),R) and
then {x}}reny € h* C W1TIH for s = d + 2.

4.3.2 Global approximate controllability in Hj:

Let s = d + 2 for d introduced in Assumptions IV. The approximate con-
trollability of the problem (4.1) in H, follows from the proof of Theorem
3.14. In other words, for every ¢ € HJ, Te U(S€) such that Ty € HZ, and
€ > 0, there exist T > 0 and u € L2((0,T),R) such that

T — T4 o) < €.

The only difference with the mentioned proof is that the propagation of reg-
ularity from Kato [Kat53] has to be applied by considering different spaces.
Let B: Hy' — Hg} for s > 0. As in the proof of Proposition 2.12, for every
T>0,ue BV((0,T),R) and ¢ € H{}l“, there exists C'(K) > 0 depending
on K = (|lull gv(o,1)r): 1l Lo (0,7),R)s Tleel| oo (0,7),)) such that

1T (s142) < CUE)|P]](5142)-

This last result and the proof of Theorem 3.14 lead to the global approximate
controllability in H with s € [s1,s1 4+ 2) when B : H}} — Hj}'.
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Let d be introduced in Assumptions IV and the hypotheses of Theorem
4.3 be satisfied.

e Ifd < 2,then B : Hé — Hé and the global approximate controllability
is verified in Hé+2 since d + 2 < 4.

e If d € [2,5/2) and the second or the fourth point of Assumptions IV is
verified, then B : H® — H% for dy € (d,5/2) from Assumptions IV.
Now, Hél = H% ﬁHé, thanks to Proposition 4.12, and B : Hé — Hé
implies B : Hél — Hél. The global approximate controllability is
verified in Héﬁ since d + 2 < dy + 2.

o If d € [5/2,7/2), then B : Hil — Hiy for di € (d,7/2) and HY' =
H/‘f},C N Hé from Proposition 4.12. Now, B : Hé — Hé that implies
B : Hél — Hél. The global approximate controllability is verified in
Hg/“ since d + 2 < dy + 2.

4.3.3 Global exact controllability in [

The global exact controllability follows by gathering the local exact con-
trollability and the global approximate controllability as in the proof of
Proposition 3.15, thanks to the time reversibility (see Paragraph 2.1).

We recall that s = 2 + d for d defined in Assumptions IV. The global ap-
proximate controllability and the local exact controllability are valid for the
problem (4.1) and for the reversed dynamics (2.4). For any 1!, ¢* C HS
so that |9 = [|1/?|| = p, there exist Ty, T > 0 and u; € L?((0,T}),R),
us € L*((0,73),R) such that

pITHY € Olp, p ' TEY? € 0

Thanks to the local exact controllability, there exist T > 0 and us,us €
L?((0,T),R) such that

pITET Y = ¢y = p T T v,
In conclusion, the time reversibility (Paragraph 2.1) leads to

TRTHTY T by = 1.



110 CHAPTER 4. CONTROLLABILITY ON GRAPHS

4.4 Proofs of Theorem 4.5 and Theorem 4.7

We rephrase in the following proposition the so-called Roth’s theorem, which
represents an important tool for the proofs of Theorem 4.5 and Theorem 4.7.

Proposition 4.14. (Roth’s Theorem; [Rot56]) If z is an algebraic irrational
number, then for every e > 0 the inequality

1s satisfied for at most a finite number of n,m € Z.

Lemma 4.15. Let {)‘llﬂ}keN
tively obtained by reordering

k272 k272
T 9 [ k,lEN, {"’7}19,1‘61\1’
{ L? }lgNl L2 Ji<n,

for N\,No € N and {Ll}lSNl,{ii}iSNg C R. If all the ratios ]NLi/Ll are
algebraic irrational numbers, then for every € > 0, there exists a constant
C > 0 such that

2
and {)‘k}keN be sequences of numbers respec-

C
Moyt = M2, VREN.

Proof. Let z be an algebraic irrational number. Roth’s Theorem introduced
in Proposition 4.14 implies that, for every e > 0,

nlS 1
‘Z B E‘ — m2te’
for every m,n € N, up to a finite number of n,m € N. Moreover, z # “* for
every n,m € N. Then, for every ¢ > 0 and for C > 0 small enough, there

holds
C

W, Vm,nGN

n
Z——| 2
m

Now, for every k € N, there exist m,n € N and i,/ < N such that A,lcﬂ =

mzlf, )\i = %’;, )\]1€+1 #* )\%. We suppose L; < L;. If m < n, then for each

€ > 0, there exists C; > 0 small enough

o ) -
L? L? CINL o L/\NL L L 'Ly L
S 2 ~2772‘I:Z- _ E‘ S 201m2~71'2 ZClzrz'
T L2 1Ly oml T m2te[2 T mel?
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When m > n, it follows
m2n?  n?r? 9 of 1 1
7 27 (o)
i L L
In conclusion, there exists Co > 0 such that

Cy G
(k+ 1)¢ = 2

N1 — ARl >

for k € N and the proof is achieved. O

The following proposition rephrases the results of [BK13, Theorem 3.1.8]
and [BK13,Theorem 3.1.10]. Let {)‘Elf}keN be the spectrum of A on a

generic compact quantum graph ¢.
Proposition 4.16.

1. Let w, v be two vertices of 4 equipped with (NK) or (N') boundary
conditions. If 4" is the graph obtained by merging in 4 the vertices w
and v in one unique vertex equipped with (NKC), then

AN <N <L, Vk € N.

2. Let w be a vertex of 4. If 47 is the graph obtained by imposing (D)
boundary condition on w, then

A < AT <, Vk € N.

Remark 4.17. Let ¥ be any compact quantum graphs composed by edges
of lengths {L; }i<n. Thanks to Proposition 4.16, there exist C1,Ca > 0 such
that for k > 2,

(4.24) C1k? < \Y < Cok?.

Indeed, we define the quantum graph 4P from 4 by imposing (D) boundary
conditions in each vertexr. We also denote 9N the quantum graph obtained
from 4 by disconnecting each edge and by imposing (N) boundary conditions
in each vertex. The graphs 97 and GV are respectively obtained in at most
M and 2N steps from & (M and N are respectively the numbers of vertices
and edges). Thanks to Proposition 4.16, for k > 2N, we have

gN g 4P
Arcan S A < Ay
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The sequences )f,fN and )f,fD are respectively obtained by reordering

{ k22 } { (k —1)272 }
L JIsy L Jlsy

Thus, for each I > 2N + 1,

gN (I—-2N —1)r 1272

A
2N = N2 maX{L2 J< N} 222N+ N2 max{LJQ- TR

and
)\ (l+M)27T2 - l222M7T2
H'M min{|L;[?: j < N} ~ min{L3:j < N}’
The claim is valid for every k > 2 as A\, # 0. In conclusion, if A1 # 0, then
there exists Cs,Cyq > 0 such that

Csk? < A < C4k2, Vk € N.

Proof of Theorem 4.5. Let {)\J}keN be the eigenvalues A for a graph q.
Let ¢ be a tadpole graph equipped with (D)-(NK). Let 4P be the graph
obtained from ¢ by imposing (D) on v € V;. Let e; be the edge connecting
v to itself. We define 4"V the graph obtained by disconnecting e; in one
side and by imposing (N) on the new external vertex of e;. Thanks to
Proposition 4.16, for £ € N, it holds

(4.25) <A <A <AL <. <A <A <ML <
Now, {)\fD}k N and {)\%’N} pen are respectively obtained by reordering
k*m? { (2k — 1)2x? }

L? jek{ellfz} | (L1 + Lo)? keN

If {L1, Lo} € AL, then {Ly, Lo, L1 + Lo} € AL. Thanks to the techniques
leading to Proposition 4.15, there exists a constant C' > 0 such that, for
every € > 0, there holds ‘)‘kH -7 > |)\fjrv1 —)\ng > Ck~¢, for each k € N.
Hence, the relation (4.5) is verified and the claim is guaranteed by the first
point of Theorem 4.3.

e The same techniques can be used when ¥ is a tadpole equipped with

(N)-(NK).
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When ¥ is a two-tails tadpole equipped with (D/N)-(NK), we define
@N Dby disconnecting the ring v1 from ¢. The graph ¥V is composed
by a ring v; and an edge vy + v3. By defining 4P as before, the
introduced argument leads to the claim.

When ¢ is a double-rings graph, it is possible to define 4 as before
and 9V by dividing ¢ in two rings. The spectra of A on 4P and ¥V
are explicit, which implies to the result.

In conclusion, the same procedure in valid when ¥ is a generic star
graph with N < 4 edges. Indeed, if we define 9V by disconnecting
v1 and vy from ¢ and by connecting them together in a new internal
vertex equipped with (MK), the previous techniques lead to the result.

2) Let ¢ be a star graph equipped with (D)-(N'K). The conditions (D) on
the external vertices of ¢ imply that

¢k—ak81nfx aksm\/»:c

for {a}};<n C C. By imposing (NK) in the internal vertex vg, we obtain

Then,

absin(v/ApL1) = ... = al sin(\/ M\ Ln),
N
z:a§€ cos(v/ArLy) =0
=1

{V Ak }ken are the zeros of the function ZZZL cot(zLy), i.e

N
> " cot(v/ArLy) =0, Vk € N.
=1

Let us define the maps

First,
every

N N N
G(z) :=| | sin(zLy) Zcot xLp) = Zcos xLy) H sin(zLy,),
=1 =1 =1 Ml
N N I
G(z) =[] sin(zLy) Z 27l
Py — sin*(xLy)

we notice that G is an entire function such that G € L>°(R) and, for
z € C,
G(z)] < 2V Nell iy L
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since
|cos(zLy)| < 2eM12 |sin(zLy)] < 2912 vi< N

We prove that G satisfies the hypotheses of the second point of Theorem
4.3. For L* :=min{L; : 1 <1 < N} and for every k € N and z € R, we have

IT.5, [sin(eLo)| 3,51 Li [T sin® (2 Ly)

|G(x)] =

[T, sin®(zLy)
(4.27) Zl 1 LiTles sin®(zLy,) iv: [Tiz | sin(zLy)|
. lel |sin(zLy)| — | sin(xL;)]
N
> 1) [ Isin(zLy)]
I=1 k£l
and

N
GVl = LY T Isin(v/AuLy)l.

1=1 k£l

Now, G'(vVA,) = —G(v/A,) for each n > 2 since
) g N N
G'(z) = -G(x)+ H(z), H(x):= %(Hcos(mLZ)) Zcot(:nLl)
=1 =

and H(v/A,) = 0. We refer to [DZ06, Corollary A.10; (2)] which contains
a misprint as the relation is valid for every

1
A > §max{Lk/Lj : J,k < N}
Then, for every n > f with 7 € N such that

1
iy > imaX{Lk/Lj . k< N}

and for every € > 0, there exists C1 > 0 such that

Ch
G (\/ A |>L*ZH\sm (VA Li)| 76
=1 k£l (VAR
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Remark 4.18. For everyn € N and k < N, we have

6k (L) # 0,

otherwise the (NK) conditions would imply the existence of at least two
indices [,m < N so that

¢£¢(Ll) = afl Sin(Ll\/E) =a,’ sin(L, \/E) = ¢;n(Lm) =0,
¢, # 0, o # 0,

which is absurd since
al a™ +#0, {L;} € AL.

Thus, sin(Liv/A,) # 0 for each k < N and n € N (see also [BK13,p. 15]
where it is explained that the spectrum of A is simple).

In conclusion, thanks to Remark 4.18, we have |G'(v/A,) # 0 for every
n < n and, for € > 0, there exists Cy > 0 such that

— Cs
/

thanks to Remark 4.17. The function G(x) satisfies the hypotheses of the
second point of Theorem 4.3 for d = 1 + €. Indeed, the numbers {{/\;} en

and {—4/A;}jen are simple zeros of G and there exist d>1,C > 0 such
that, for every j € N,

IG'(VA) = =, G (=2 > =

Proof of Theorem 4.7. The claim follows from [Rot56] since

N (k —1)%n2
{Ajtien C {4L? pgen”

In fact, thanks to the arguments adopted in the proof of Proposition 4.15,
for every € > 0, there exists C1 > 0 such that

Cq

E7

| Q
| QY

. g

<
,

<
SW

‘)\kJrl — /\k‘ > Vk € N.

The proof is achieved thanks to Theorem 4.3. O
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4.5 Examples

Let B be a bounded operator on . We define B|;2(,) the action of B on
the k-th component of any function ¢ = (', ...,9N) € ,%” such that

By = (B’LQ(el)Qpl) <00y B’L2(8N)1/}N)'

Example 4.19. Let & be a star graph equipped with (D)-(NK) and B be
such that
Blp2ey) = (& — L), Blr2(e,) =0

for k € {2,...,N}. There exists C C (RT)N countable such that, for every
{L;}j<n € AL(N)\C, the problem (4.1) is globally exactly controllable in

Hyte eec(0,1/2).

Proof. First, we prove that the couple (A, B) satisfies Assumptions ITI(2+¢)
for € > 0. The conditions (D) on the external vertices imply that each
eigenfunction

¢g:(¢]177¢§v)7 vj GN,
satisfies gzbg- (0) = 0 for every | < N. Then

¢; = (a; Lsin(z/)), ...,aj-v sin(z/A;))
for {aé}lgN C C such that {¢;};en forms a Hilbert basis of 72, i.e.
2 S 112 o2
L=l =3 / b sin (/)

iv: e L cos(Ll\/)\»)sm(Llﬁ)
=" 2V '

Thanks to the condition (AMK) on the internal vertex, for every j € N, there
hold

N
ajl sin(v/A\jL1) = ... = aév sin(v/A;Ln), Zaé cos(y/A;L;) =0
=1

Hence, for every j € N,

N
Zcot(\/)\»le) =0, Z \al 1?sin(L;\/A;) cos(Liy/Aj) = 0.
=1
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Now, 1 = Zl]il |a§~]2L1/2 and the continuity implies

! 1sm \FLl

a .

i~  sin \FLZ

for every I # 1 and j € N. For every j € N, we have
112 sin® (/A L1
aj L+ L = 2.
251 ( ! Z lsm (VL) )
Thus,

2 [T,z s102(y/A, L)
>oee Lk [ sin® (V/Aj L)
Each aé- can be computed from a} which is defined, up to phase, from the or-

thonormality of {¢;};en. Thanks to [DZ06, Proposition A.11] and Remark
4.17, for every € > 0, there exist C7,Cs > 0 such that, for every j € N,

(4.28) laj|* =

Vi € N.

| = [ sin® (VA L) 2
(429) Sy Ly Tes 802 (/25 L) SV Lysin T2 (/A Ly)
Cy

> = .
El]\il Llcl_2)\j1‘+€ — ]1+e

We notice ( fC,Bqﬁé) =0 for every 2 <[ < N and k,j € N. Moreover, by
calculation, we have

—30v/Ai L1 + 208/ A L3 + 4/ L + 15sin(2v/A1 Ly)
40v/A; '
When j € N\ {1}, the scalar product By ; = (¢1, B(bjl) corresponds to

L —6(VAL = /ALy + (VAL = /A)2LE + 6sin((VAL — \/Aj)L1)
J (VA1 — \/>

= \ﬁ+\/>[,1+ \ﬁ+\/>3L:{’+651n \ﬁ+\/>L1
J \ﬁ+\/>

Biy = |a}|?

2a1a

— 2a1a

8\/)\1\a§all|L:f
3
VA

(430) = |Bil= +O((VN)?),  Vixz2
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For j > 2, we define the non-constant analytic functions

=30V + 208/ a® 4 4y e + 15sin(2V/ A z)

Bl({L') : 40\//\—15 ’
B (@) i 28V = VA (VR — V) 6sin(VRr = V)

T (VA - VA)
SR VA + (VAL V)P 4 6sin(VAL + y/Aj))
(VAL + VA ’

such that By ; = aa;Bj(Ll) for every j € N. The set of positive zeros

of each function Bj, that we denote ‘N/j, is a discrete subset of RT and
V' =,enVj is countable. For every {L;};<n € AL(N) such that Ly ¢ V,
we have |By ;| # 0 for every j € N. Thanks to Remark 4.17, we use the
inequality (4.29) in (4.30) and the first point of Assumptions III(2 + €) is
verified since, for each € > 0, there exists C5 > 0 such that

Cs

Bisl > e vj e N.

Let (k,j),(m,n) € I, (k,j) # (m,n) for I defined in (3.2). By calcula-

tion, we have

3 5 .
Bjj _ |a}|2 *30\/)\]'[/1 + 20\/)\]' Lz{) + 4«/)\]‘ LEI) + 15 5111(2\/)\]-[/1)'

10/,
For every j € N, we define the map
(4.31)
2[Tpne1 si0°(\/Aj Lim)
a;(z)

SN Lysin®(/A ) H”;Z’i 502 (v/A L) + @ [T g 0% (/A L)

such that a;(L1) = |ajl-|2. Thanks to Remark 4.18, for every j € N, the map
a;j(z) is analytic for > 0. We define the map

—30v/ Az + 208/ A5 23 + 4y 2P + 15 sin(2v/Ag)
40V

We notice that F;(L1) = Bj; and we denote

Fi(z) := a;(a)

Fjpm(x) = Fj(z) — Fp(x) — Fi(z) + Fn(2).
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Now, F}j r1m(L1) = Bjj—Bir—Bii+Bmm and Fj . m(x) is a non-constant
analytic function for x > 0. Furthermore Vj 1 ; ., the set of the positive zeros
of Fjr1.m(x), is discrete and

V= |J Vikim
J,k,l,meN

JFkFFm

is a countable subset of R*. For each {L;};<n € AL(N) such that L; ¢
V UV, Assumptions III(2 + €) are verified.

The fourth point of Assumptions IV(2+ €, €2) is valid for each €1,e3 > 0
such that e; + €2 € (0,1/2) since B stabilizes HZ, H™ and H}} for m €
(0,9/2). Indeed, let v € V;.

e For every v € H/IWO we have By(v) = 0, By € C°(¥4,C) and By €
H}qp.

e For every ¢ € HJQWC, we have 0,(Bv)(v) = 0, which implies By €
H./Q\/IC-

e For every ¢ € Hj;, there hold 92(Bvy)(v) = 0, 92(By) € C*(¥4,C)
and By € Hf{/,c.

e For every 1 € Hj, there hold 92(Bv)(v) = 0 and By € Hyy.

In conclusion, from the second point of Theorem 4.5, the controllability is
achieved in Hy ™ for every € € (0,1/2). O

Example 4.20. Let 4 = {I;}j<n be a compact quantum graph composed
by a set of bounded unconnected intervals equipped with (D). Let B be such
that

B:y=@ . V) = i fo?z/ﬂ(fix),...,i L;xQz/;j( L; a;)

There exists C C (RT)N countable such that, for every {L;};<n € AL(N)\C,
the problem (4.1) is contemporaneously globally exactly controllable in

N
11 Hpt, Ve € (0,3/2).
Jj=1
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Proof. First, the conditions (D) imply that each eigenfunction

is such that
#L(0)=0, k(L) =0, VI<N.

The fact that {L;};<n € AL(N) implies that, for each k € N, there exist
m(k) € N and (k) < N such that

m(k)?m? I(k) [ 2
)\k = 759 (x) = T SID( )\kl’),
LZQ(k) g Ly

or=0, n#lk).

Hence, {\;}ren is the sequence obtained by reordering { % } e’ Now
l m,le

1
2 2
By,| = ‘<¢11(1)(x)’ LZQ(j)l‘ ¢;(j)(Ll(j) x>>L2(Il(1)vc)‘

1
5 L
Liy @

b 1, o m@)T Ly N L om(D)r
—2Ll(1)‘/0 ?(1)3: sm( Ly, Ll(1)$> sm( L) x)d:n)

1
>2min{L}: | < N}‘ / z2 sin(m(j)rx) sin(m(l)wx)dm‘.
0
It is the same integral that we treat in Paragraph 2.7 and in Example 3.1.
Then, for every j € N, there exists C7 > 0 such that

G _ G
m(G? =

|Bj1] > Vj €N
since m(j) < j. Now

2 2
Logy  Lug
3 2m(j)%m2’

1
(4.32) B;; =2L? )/ 22 sin?(m(j)rz)de =
0

m(j

As done in the proof of Example 4.19, we define the maps

2
F. _TmG) _ TmG) Vi e N
]('rlv ,ZUn) T 3 2m(]~)2ﬂ_27 J € .
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N

Figure 4.6: Examples of star graphs with equal length edges

We notice that F;(L1,...,Ly) = Bj; and we denote, for j, k,l,m € N,
ijm,m(xl, ...,xN) = Fj(.%'l, ...,xN)—Fk(xl, ...,xN)—Fl(xl, ...,.ZL'N)—l-Fm(.%'l,...,.%'N).

Now, Fj,k,l,m(Lla ceey LN) = Bj,j_Bk7k_Bl,l+Bm,m and each F’j,lal,m(xly ey l'n)
is a non-constant analytic function for (z1,...,zy) € (RT)Y. Furthermore
Vi k,i,m, the set of the positive zeros of F}; ,, is discrete and

Vi= U Vikim
.kl meN
JERAEm
is countable. For each {L;};<n € AL(N)\V, Assumptions III(1) are verified.

The fourth point of Assumptions IV(1,¢) is valid for each e € (0,3/2)
since B stabilizes H2 and H™ for m > 0 (H™ = Hj} as there are not
internal vertices in ¢). Moreover, B maps

HZ — g2 g2vic HE — HE.

Thus, for every d > 0, B maps H;er in H*t4n Hé N H/Q\;kd In conclusion,
Theorem 4.7 achieves the controllability for every € € (0,3/2) in

N
3+€ __ 3+e€
Hy = HE O
j=1

Example 4.21. Let 4 be a star graph with edges of equal length L (Figure
4.6) and equipped with (D)-(NK). Let the operator B be such that
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There exists {¢rtren € {@)}jen such that (4.1) is globally exactly control-

lable in .
HIt N2, Ve € [0,1/2)

and fully energetically controllable in
k22
{ 412 }keN'
Proof. For N = 3, the (D) conditions lead to
Jay, a3, a} : dp = (ap sin(y/ ), ai sin(\/ M), aj sin(/\p2)).

By imposing (MK) in the internal vertex vg, we obtain

ay. sin(\/ArL) = a2 sin(v/ L) = a? sin(v/ A\ L) = ¢
ar cos(v/ ML) 4 a2 cos(v/ ML) + a3 cos(v/ ML) = 0.

For ¢ # 0, we can compute the sequence of eigenvalues

{ (1+ 2n)2x? }
AL neNU{0}

corresponding to the eigenfunctions { gy, }nen such that each g, is equal to

(/g (). g (). o (53272) )

For ¢ = 0, we obtain

n27r2
("} e
neN

of multiplicity two that we associate to couples of eigenfunctions f! and f2
such that

= (= asin (200). o s () sin (272,
f2.= (0, —\/Esin (%x), \/Esin (%x))

{fé}neN U {f?%}neN U {gn}neN

Moreover,
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is an Hilbert basis of 7. Without considering the multiplicity, the sequence
{Ak }ren is obtained by reordering

{nzwz} g {(1 —l—2n)27r2}
L2 ] en AL neNU{0}

(see also [BK13, p. 15] for further explanations). The operator A+ uB maps
2

L
span{f2: n € N} in itself as the propagator I'}f. We call ¢ = {¢;};en
the sequence obtained by reordering

{fé }nen U {gn fnen

and I'Y stabilizes
— L2
H = Span{@n}neN

The second point of Assumptions ITI(1) follows since there exist Cs,Cy > 0
such that, for every j € N, we have

- Cy
BjJ‘ = <g0j,Bg0j> =Cs5+ j72 eRT

and p; = %. Thus, thanks to Example 3.1, there holds

Bi— ik — i+ =0 = Bjj— By — B+ Bpnm # 0.

The first point of Assumptions III(1) is verified in A since By € RT and
there exists C1, Cy > 0 such that

CivV v _ Os
_ 1 1 >i —_Z .
{1, Bek)| = [(¢1, Ber)| = Ow— M2 = 8 VEeN

The first point of Assumptions IV(1,0) in A is achieved since B stabilizes
A (N HS.

Now, {1;}jen, the eigenvalues corresponding to {¢y }ren, is the sequence of
eigenvalues of A (not repeated with their multiplicity). Thanks to

2

inf | =
j,lklzleN M — Ky VPR
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the hypotheses of Theorem 4.3 are satisfied in A Then, the couple (A4, B)
satisfies Assumptions V(1,0) and the problem is globally exactly controllable
in

HYr N
for each € € [0,1/2) and fully energetically controllable.

When N > 3, the spectrum contains simple eigenvalues and eigenvalues
of multiplicity N —1 (see [BK13, p. 15]). To each (N —1)-tuple, we construct
N — 1 eigenfunctions such that N — 2 of them have null component in e;.
We call ' the closure with respect to the L?-norm of the span of all
those (N — 2)-tuples. The propagator I'}* stabilizes .#” and its orthogonal
complement . The spectrum of A in A corresponds to {i;}jen, which
allows to achieve the proof as before. O

Example 4.22. Let 4 be a star graph containing two edges e; and ea of
equal length L connecting the internal vertez, equipped with (NIKC), with two
external vertices both equipped with (D). Let B be such that

Blraen¥' = =Blr2(e,)¥” = 2* (' (z) — *(x)),

Blr2(e* =0, Vk € {3,..,N}.

for every ¢ = (Y1, ..., 0N) € H. There exists {¢}ren C {¢j}jen such that
(4.1) is globally exactly controllable in

H3n .2, Ve €[0,1/2).
and energetically controllable in
k2m?
{ L? }keN'
Proof. The proof follows the techniques of the proof of Example 4.21. One

can compute a sequence of eigenfunction @ = {pk}ren, corresponding to
C { Ak }ken, so that

. 2.2
the eigenvalues { kL—’; } keN

1 k

In addition, (¢, By;) = 4(p}, a:2g0]1-> and Assumptions III(1) follow thanks
to Example 3.1. Now, we set

— 2
H = span{p, : n € N}L
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Figure 4.7: Example of graph described in Example 4.23

and we notice that, for every f = (f!,..., f") € s D(A) and v € V;, there
hold

f(v) =0,
{%(v)—i—%ﬁ(v) =0.

Then, for every 1) € N D(A), we have

(B)!(v) = L' (L)—¢*(L)) = L*(0-0) = 0 = (BY)*(v) = ... = (BY)™ (v),
> OB ) <o (z) - v2(L) - 2L (E) — v(D)
JEN (v)
o (0Pt 9P 2O PPN
(5 +50) PG e ) =0
Now, By € A ND(A) and, as in Example 4.21, the propagator I'}" stabilizes
2 N D(A). The result is achieved equivalently to Example 4.21. O

Example 4.23. Let & be a star graph containing an even number of exter-
nal vertices equipped with (D) and an internal vertex equipped with (NK).
Let 4 be composed by N/2 couples of edges {eak—1,e2k}tr<ny2 of lengths
{Li}r<ny2 € AL(N/2) (Figure 4.7). Let B be such that

2k 2k—1 ol Lj% o2 (Li 2j-1( L
B‘L2(62k)¢ = _B‘L2(62k—1)¢ - Z Em (w ’ (ka> — v (fkm>>’
J=1 L

for every o = (Y1, ..., N) € H# and k < N/2. There exists {op}ren C
{¢;}jen such that (4.1) is globally exactly controllable in

H3n o2, Ve € (0,1/2)
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and energetically controllable in

k22
U oy

Proof. The example follows the idea of Example 4.22 by using the arguments
of Example 4.20. For every couple of edges of the same length L;, one

can compute a sequence of eigenfunction {cpi}keN, corresponding to the

eigenvalues
k272
{ 72 } C { Mk tren,
J ) keN

so that, for | < N, [ # 25 — 1 and [ # 2j, there holds

i i 1 km
25—1 27 . 1
¥ = "%k =[5 (7[3;)’ ¢y, = 0.
g F J J

Let {p ren be obtained by reordering

k272
L? keN
J ) j<N/2

For each k € N, there exist m(k) € N and [(k) < N/2 such that

m(k)2m2 _ 1 .
Mk = (L2)’ @il(k) 1(95) = —wil(k) (z) = I, o (VAk),
1(k) U(k)

or =0, n #2l(k), n#2l(k)—1.

Now, for [-] the entire part of a number, the number | By, ;| corresponds to

202 x? L

1(k i1 ! 11

9 <¢Z< (). — 0} ‘”(LZE; x)>
Ll(k) L2(ey(,C)

Luwy 1 m(1)m Ly) m(k)m
=4L ——a?sin ——=x|sin | ——x |dx
l("f)‘/o Lz, (Ll(l) 7 ) (Ll(k) ) ‘

> 4min{L}: [ < N}‘ /01 z%sin(m(1)mz) Sin(m(kz)wx)d:v‘.
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Thus, Assumptions ITI(1) are verified in jfi;, as in Example 4.20 and Example
4.22. Thanks the techniques leading to Lemma 4.15, already adopted in the
proofs of Theorem 4.5 and Theorem 4.7, we have the validity of the condition
(4.5). Indeed, if we call {py }ren the sequence reordered of

2 b
LJ' keN

JSN/2

then we know that, for every € > 0, there exists C; > 0 such that, for every
keN,

s G
b1 — pre| > Jee

In conclusion, the techniques adopted in Example 4.22 imply the validity of
the first point of Assumptions IV(1,¢) for € € (0,1/2) in 5 and Theorem
4.9 ensures the claim. O
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Appendix A

Moment problem

Let H be a Hilbert space over a field K for = C or R and {f,}nez be a
sequence of elements of H. In the current appendix, we study the so-called
“moment problem”, which consists in finding v € H such that, for a given
{xn}nez € €2(K), there holds

(A1) Ty = (fn, V) H, n € Z.
A possible way that we can follow is to look for {vy}rez € H such that
Sj = {fi v ms Vi, k € Z.

The sequence {vy }rez € H is said to be biorthogonal to {fx}nez and it can
be used in order to solve the moment problem. Indeed, under additional
summability conditions on {zy}rez € £2(K) as

> Jaklllorll g < oo,

keZ

the function
v(t) = Zwkvk(t)
keZ

satisfies the relation (A.1). This approach leads to the solvability of (A.1),
but it is not the only one as we show in the current appendix. This type
of problems appears in a natural way in the study of control problems. In
this work, it is crucial to prove the local exact controllability of the bilinear
Schrodinger equation as in Theorem 2.8. In our framework, we assume
H = L*((0,7),R) and {fn}nen = {0 },en that lead to the moment
problem

T
(A.2) Ty = /0 ensu(s)ds, {zn}nen € £3(C).

129
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In the next paragraph of this appendix, we present another approach leading
to the solvability of (A.2).

Definition A.1. A family of functions {f,},ez belonging to an Hilbert
space 7 is a Riesz basis of

H
span{fi: k € Z}
if it is the image of some orthonormal family by an isomorphism of 7.

Proposition A.2. Let {fi}rez be a family of functions belonging to an
Hilbert space 7 over C. If {fx}rez is a Riesz basis of

span{fy: k€ Z} %,
then there exist C1,Co > 0 such that
(A.3) Crllxllee < flullr < Callx|l e

for every x = {zp}rez € 2(C) and u(t) =3 ,cq feTk-

Proof. First, there is not ambiguity in the definition of the series u(t) =
> rez Jrrr. Indeed, {fi}rez is the image of an orthonormal family {ex }rez C
S by an isomorphism V : J# — . For every {z)}rez € £2(C), the ele-
ment ), exxy € S and V (Zkez 6kl‘k) € X thanks to the definition of
V. Then

|4 (Z ek:ck> = Z V(ek)xk = Z kak
kEZ keZ kEZ

Second, for every x = {z}rez € £%(C), thanks to Parseval’s identity, we
know that for Co = ||V ||| 1),

13" Sl < IV (D enae) o < WV I oI el

keZ keZ keZ
< VAN oy lIxlle2 < Callx]l ez

The opposite inequality is verified for C; = || V! || 2(1%,) as

Il < IS exallor = 1V (3 fia) e < NV ol 3 fiill e

keZ keZ keZ
O
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Remark A.3. Sometimes the inequality (A.3) is used as definition for a
Riesz basis since it is possible to prove that a family of functions { fx}rez is
a Riesz basis if and only if (A.3) is verified.

Remark A.4. When Proposition A.2 is satisfied, { fx}rez is a Riesz Basis
mn

X = span{ f : kEZ}%Q%.
For {vi }rez the unique biorthogonal family to { fitrez ([BL10, Remark 7)),
{vk}rez is also a Riesz Basis of X ([BL10, Remark 9]). If {fx}rez is the
image of an orthonormal family {ex}kez C H by an isomorphism V' : # —
H, then {vi }rez is the image of {ey ez, C H by the isomorphism (V*) 71 :
I — . Indeed, for every k,n € Z, we have
Ok,j = (ks fi) o = (v, V(€5)) e = (V" (vk), €5) ¢

that implies (V*)~(ex) = vy for every k € Z. Thus, the arguments of the
proof of Proposition A.2 and the relations

VT =S WV lweey = IV e, TV Mo = BV e
lead to a similar inequality to (A.3) as
Cy® ) lawl® < llul%e < €72 ) lanl?,
keZ keZ

Jor every u(t) = Y, cp xrvr(t) with square-summable complex coefficients
x. The constants Cy,Cy > 0 are the same of the relation (A.3). Moreover,
for every u € X, we know that

u=> vp(fu, u)r
keZ

since { f trez and {vg }rez are reciprocally biorthonoromal (see [BL10, Remark 9])
and

(A4) Gy (Z|<fkau>3f|2) < ullwr <Gt (ZI(fk,ubeQ) :

kEZ keZ

A.1 Uniformly separated sequences of real num-
bers

Now, we present Ingham’s Theorem and Haraux’s Theorem that are two
important results implying the solvability of (A4.2).
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Proposition A.5. [KL05 Theorem 4.3] Let {\}rez be a family of real
numbers satisfying the uniform gap condition

= inf [N\ — A .
G ,gléjlkk il >0

If I is a bounded interval of length |I| > %’r, then there exist Cp,Cy > 0 such
that

(A.5) S faf? < /\u(t)y%zt <0 Yl
I

keZ keZ

for every u(t) = > oz zRet with square-summable complex coefficients

T -

Proposition A.6. [KL05,Theorem 4.6] Let {\;}rez be a family of real
numbers satisfying the uniform gap condition

= inf |\ — A
G él;ij Ajl >0

and such that
G':=sup inf |\, —\;|>0

Kcz k#j
k,jEZ\K

where K runs over the finite subsets of Z. For every bounded interval |I| >
%, there exist C1,Co > 0 such that

(A.6) Yol < [ fut)fie < €2 Y o
I

keZ keZ

for every u(t) = > ey zRe ™t with square-summable complex coefficients

T.

In Proposition A.5 and Proposition A.6, there is no ambiguity on the
interpretation of the convergence of the sums. As in the case of orthogonal
series, the series that we provide have only countable non-zero terms and
they converge in norm unconditionally. The relations (A.5) and (A.6) lead
to the fact that the family of functions {€**t}cz is a Riesz Basis. The
same argument is valid for the infinite sums that we treat in the following
part of this appendix.

Remark A.7. For T > 0 large enough, the relations (A.5) or (A.6) guar-
antee that { )}y is a Riesz Basis in

. L?
X = span{e™0) : kez} C L*(0,T),C)
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(see Remark A.3). Thanks to Remark A.4 (relation (A.4)), for {vi}kez
the unique biorthogonal family to {€™) Y cp and # = L*((0,T),C), the
following inequality is satisfied

(A7)

Cy! (Z\(e“’“('),w%!z) < lul

kEZ

N[
N|—=

w < Cr (Z |<e“’“<‘),u>%)\2>

kEZ

Then, the map

FiueX+— {(e”"“('),u}%ﬂ}k , € /2(C)
€

is invertible. For every sequence {x}rez € £2(C), there exists a function
u € € such that

T
T = / u(s)e” A3 ds, Vk € Z.
0
Remark A.8. We refer to the proof of Theorem 2.8 and we consider {\; }ken =
{7%(k? — 1) }gen for | € N such that
(A8) M- N=m2(k -1} #7212 -2 =N -\, Vk,j € N.

For k > 0, we call wp, = —M\, while we impose wp = A_x for k < 0 and
k # —1. We call Z* = Z\ {0}. The sequence {wy}rez~\{—1} satisfies the
hypotheses of Proposition A.5 thanks to the relation (A.8), which implies

= inf |wy, — w;| > 72
G ]1613&] lwp —wj| >
Given {x}ren € £2(C), we introduce {Zy}rez-\(—1y € €*(C) such that &y =

xy for k >0, while T, = T_ for k <0 and k # —1. Thanks to Remark A.7,
for T > 27 /G, there exists u € L*((0,T),C) such that

T
Ty = / u(s)e ks ds, Vk e Z"\ {-1},
0
xp = OT u(s)e*3ds, ke N\ {l},
= T = OT u(s)e™M3ds ke N\{l},
xR = OT u(s)ds, k=1,
xR = OT u(s)eM*sds, ke N\ {l},
e o =[] u(s)ePsds ke N\ {1},
T = OT u(s)ds, k=1,



134 APPENDIX A. MOMENT PROBLEM

which implies that if ©; € R, then u is real. For {vi}ren the biorthogonal
family to {0} on, we have vy € R and {Ty }ren is the biorthogonal family
to {e= ™} en. Thus

= kavk(t) + Z T_,og(t) = 2yu(t) + 2 Z (rrvg(t

kEN keN\{l} keN\l

The relation (A.7) leads to

N

1
2

Cy! Z 2kl | < llullz2omyr) < C1 Z S

(A.9) kezZ*\{-1} l keZ*\{ 1}
! (Z !wk2> < lullzzom)r) < 207 (leﬁ)
keN keN

For x := {x1}rez~\[-1} belonging to
G(C) = {{zk}rezn\(—iy - {zr}ren € P(C); 2 =Tf, —k e N\ {I}; 2 € R},
we define ux(t) =z + 23 o gy R@kor) and

X :={ux: x€(C)}.

From (A.9), the map J : u € X — {(u, eiwk(')>}kez*\{_l} € (3(C) is an
homeomorphism (for {wk}ken defined above), which implies that

Jiu€ X — {{u, e N}ey € {{zrtren € £2(C) : 2 € R}
s also an homeomorphism.

Remark A.9. Let {\g}ren be an ordered sequence of real numbers such
that A\, #= —N; for every k,l € N. If

= inf —\;
G Ilcl;éj’)\k Aj| >0,

G':=sup inf |\ — N\,
KCN k#j
k,jEN\K

where K runs over the finite subsets of Z, then a similar result of Remark
A.8 is valid. Indeed, as in the mentioned remark, for every {zy}ren € €2(C)
and for T > 27 /G’ there ewists u € L*((0,T),R) such that

T
T = / u(s)e s ds, Vk € N.
0
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A.2 Sequences of pairwise distinct real numbers

Let Z* = Z \ {0}. We treat the solvability of the moment problem (A.2)
when the numbers A = {\}xez+ are not uniformly separated but pairwise
distinct. We also assume that there exist M € N and 6 > 0 such that

(A.10) Jnf, Akt m — A = M.

From (A.10), we notice that there does not exist M consecutive k € Z* such
that
’Ak+1 - )\k’ < (5

This fact leads to a partition of Z* in subsets that we call E,, with m € Z*.
By definition, for every m € Z*, if k,n € E,,, then

(A = An| < 6(M —1),
while if k € E,,, and n € E,,, then
[Ae — An| > 0.

Moreover, the partition defines an equivalence relation in Z* such that k,n €
Z* are equivalent if and only if there exists m € Z* such that k,n € E,,.
The sets {Ep, }mez are the corresponding equivalence classes and i(m) :=
|Em| < M — 1. For every sequence x := {x; };cz+, we define the vectors

XM= {xl}leEma meZ".

Let h = {hi}i<iom) € Cim). We denote F,(h) : Ci(™) — Cim) the matrix
with elements, for every j, k <i(m),

[T 1z (R — hy)~t, J<k,
~ 1<1<k
Fjr(h) i= 1 j=k=1,
0, j> k.

Let us introduce the following linear operator on the Hilbert space ¢?(C)
F(A): D(F(A)) — £2(C).

For each k € Z*, we know that there exists m(k) € Z* such that k € E,,)
and we introduce

(PR, = (P (W™ O)xm) v = {aghieze € D(F(A)),
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H(A) :== D(F(A)) = {x:= {z}}kez- € *(C) : F(A)x € £*(C)}.

For K =C or R and for A =N or Z*, we define

hs(K) = {x = {@ihrea € B(K) =Y Kol < oo}, s> 0.
keA

Proposition A.10. Let A := {Ar}kez+ be an ordered sequence of real num-
bers satisfying (A.10). If there exist d > 0 and C > 0 such that

(A11) kst — Ml = CI| 5T vk e 27,

then H(A) D h4(C).

Proof. Thanks to (A.11), for every m € Z* and j, k € E,,, we have

I\ — Akl > Cmin{|I| 7! € B} ¥
There exists C; > 0 such that, for every 1 < j, k < i(m),

m N
’Fm;j,k(A )| < Cl(max{\l\ c Em}M—l)

)M—l

< Oy (max{|i] € B} T < 2Bl min{i] € Ep}¢

< 012(M_1)d~min{|l| € Em}d~

and |Fi.1,1(A™)| = 1. The last relation implies that there exists Cp > 0
such that, for every j <i(m),

(Fn(A™)* Fyn(A™)) . - < Coymin{|l] € By},

for F,,(A™)* the transposed matrix of F,(A™). Thus, there exists C3 > 0
such that )
Tr(Fm(Am)*Fm(Am)> < Cymin{|l] € B},

By calling p(-) the spectral radius of a matrix, we denote || M || = \/p(M*M)
the euclidean norm of a matrix M. As (Fy,(A™)*E,(A™)) is positive-
definite, for each m € Z*, we have

| Fn(A™) 12 = p(Fr(A™)* Fro(A™)) < Camin{|l] € By}
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In conclusion, the proof is achieved since, for every x := {zy }rez+ € hj((C),
it follows

IE(A)x]7 < Y [(EA)xP < D I EaA™) 17 ) |l

leZ* mezZ* leEn,
< (s Z min{|l| € E,, }*¢ Z l7|? < Cs Z 124y
mez* leEm lez*
= Gyl 0

Corollary A.11. If A := { )i }kez+ is an ordered sequence of pairwise dis-
tinct real numbers satisfying (A.10), then F(A) is an invertible map from
H(A) to Ran(F(A)).

Proof. By referring to [DZ06, p. 48], if the elements of { Ay }rez+ are pairwise
distinct, then we can define F,,,(A™)~! as the inverse matrix of F,(A™)
for every m € Z*. We call F(A)~! the operator such that, for every x €
Ran(F(A)) and k € Z*, there holds

F(A)! —(F Am(k) —1_,m(k)

(F(8) %) = (Fngy (A"®) 1 @)
which implies F(A)"'F(A) = Idy(p), F(A)F(A)™" = Idgan(p(a)). Hence,
F(A)~! is the inverse operator of F(A). O

For every k € Z*, we know the existence of m(k) € Z* such that k €
Epky- We define F'(A)* the infinite matrix such that, for every sequence
x = {xk }kez+ and k € Z*,

(F(A)%);, = (Fn (A" F) B

where Fm(k)(Am(k))* is the transposed matrix of F, ) (A™k)), For T >0,
we introduce
e:={e?'} ez € L*((0,7),C).

Let t € (0,T) with T'> 0. We call
&k(t) = (F(A){e™" Y jezs),

for every k € Z*. By considering each &(t) as time-dependent function, we
denote
E = {&(t) }rezr = F(A)*e C L*((0,T),C).
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Remark A.12. Thanks to Proposition A.10, when { Ay }rez~ satisfies (A.10),
the space H(A) is dense in £2(C) as H(A) D he. Indeed, for every x =
{21 vez € €% and € > 0, there exists M € N such that

00 —00 1/2
(Z ENEY |33k:|2> <e

I=M+1 l=—M-1

Now, x' = {xp}_m<r<m € h? and ||x — x/||;2 < €, which implies that h?
is dense in €% with respect to the >-norm. As H(A) D he¢, H(A) is dense
in 02 with respect to the (>-norm. In this case, we can consider the infinite
matriz
F(A)

as the unique adjoint operator of F(A) with domain H(A)* := D(F(A)*) C
??(C). By transposing each F,,(A™) for m € Z*, we obtain the following
properties of the operator F(A)*.

e The arguments of the proof of Corollary A.11 lead to the invertibility of
the map F(A)* : H(A)* — Ran(F(A)*) and (F(A)*)~! = (F(A)~1)*.

e Thanks to the techniques of the proof of Proposition A.10, we know
that H(A)* D he.

In the following theorem, we rephrase a result of Avdonin and Moran
[AMO1], which is also proved by Baiocchi, Komornik and Loreti in [BKLO02].

Theorem A.13 (Theorem 3.29; [DZ06]). Let {\g}rez+ be an ordered se-
quence of pairwise distinct real numbers satisfying (A.10). If T > 27/0, then
{& trez+ forms a Riesz Basis in the space

X = span{& k €27} < L2((0,7),0).

Proposition A.14. Let {wi}ren C RT U{0} be an ordered sequence of real
numbers with wi = 0 such that there exist d,d,C > 0 and M € N with

infng |wk+M — wk| Z~ 5/\/1,
Wisr —w| > Ck™ ™1, Wk eN.

Then, for T > 27/§ and {zy}ren € h‘i((C) with x1 € R, there exists u €
L?((0,T),R) such that

T
(A.12) T = / u(T)erT dr, Vk € N.
0
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Proof. Let {\x}rez+ be an ordered sequence of real numbers satisfying (A.10)
and (A.11). Thanks to Theorem A.13, Proposition A.2 is valid. The argu-
ments of Remark A.7 imply that

M:ge X {{k9)r2 c) trezr € £2(C)

is invertible and, for every k € Z*, we have

(&ks 9) r2((0,1),0) = (F(A)™ (e, 9) r2((0,1),0) )k

Thanks to Remark A.12, (F(A)* ) an(F(A)*) — H(A)" is invertible
and H(A)* D h%(C). Thus, for M~ o F(A)*(h%(C)), the following
map is invertible

(F(A)) oM :ge X {(e,9) 12010 hezs € h(C).

Now, we define the complex conjugation map I : x € £2(C) — X € ¢*(C)
and

Io(F(A) ) oM :ge X {{g,)r201)c) thez+ € hY(C)

is invertible. For every {zj}rez+ € h‘i((C), there exists g € X such that
T .
T / g(r)eMTdr, Vk € Z*.
0
For u =g € L?((0,T),C), we have
T .
T = / u(T)eMdr, Vk € Z*.
0

When k > 0, we call \y = wj, while we impose A\, = —w_g, for £ < 0 such
that k # —1. The sequence {\j}yez+ (-1} is such that there exists C1 > 0
satisfying

infkeN |)\k+2/\/l - )\k| > nga
|Akr1 — il ZCl\krﬁa Vk € Z"\ {-1}.

As in Remark A.8, the solvability of (A.12) is guaranteed for u real when
r1 € R. O
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Lemma A.15. Letv := {vy }kez be an ordered sequence of pairwise distinct
real numbers satisfying (A.10). Let G be an entire function such that G €
L*(R) and there exist J,I > 0 such that

IG(2)| < JeIl, vzecC.

If {v;}jez~ are simple zeros of G such that there exist d>0,C >0 such
that

C
(A.13) |G,(V]')‘ > | |d'a Vj ez, vy # 0,
J
then there exists C > 0 such that
Tr <Fm(vm)*Fm(vm)) < Cmin{|l| € B}, Ym € Z*.

Proof. Construction of a biorthogonal sequence to {ei”k(')}kez*: The
sequence {v}rez satisfies (A.10) and there exist M € N and § > 0 such
that

inf — > M.
klenZ*‘ykJrM V| > oM

If 21 < 27/6, then, for every I) > I,
|G(2)| < JellFl < Jelilzl,
We set T' > 27 /6 and, for every k € Z*, we define the function

G(z)
(z —vk)

Gi(z) ==

Thanks to the Paley-Wiener’s Theorem [DZ06, T'heorem 3.19], for every k €
7*, there exists wy € L? with support in [0, T] such that

T
Gr(z) = / eiZte_iz%wk(t)dt = / eizte_i‘z%wk(t)dt.
R 0
For j, k € Z* and ¢ := G'(vy), we call v(t) := ei”k%@(t) and

(O, €Y 207y .0) = O G (Vi) = 04j G (Vi) = O

The sequence {vy}rez+ is biorthogonal to {e™*0) /i rez+ and {vk/ck}rezs
is biorthogonal to {e®*()}cz-.
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Thanks to the Plancherel’s identity, |[vk|lr2(0,1),c) = |Gkl 2(rr)- We show
that from the Phragmén-Lindelof Theorem (e.g. [You80 . 82 Theorem 11]),
there exists C7 > 0 such that

(A.14) lvellzzor)c) = IGkll2@r) < G, VEEZ™.

Indeed, G is an entire function such that there exist I and J such that
|G(2)| < Jel*l for every z € C. Moreover, there exists M > 0 such that
|G(z)] < M for every x € R. From [You80, p. 82; T'heorem 11|, we have

1G(z +iy)| < Me'W,  va,yeR.

For every k € Z*, we consider ||Gk||%2(]R Iz Gi(2)Gy(z) dx = fR = Ii %) 4
and there exists ¢; > 0 not depending on k such that

G(z)G GG
Gullgy = [ GOy [ CWO),
|lx—vg|<1 lz—v|>1

(2 — 1) &= )2
_ GWG) Gla+m)Gla+m)
_/x i<t (@ = vk)? ! Jr/R\( 141) a? !

< / M dx + M? / iQ da
le—vg|<1 (z — ) R\(=1,41) &

S/ de+M201
|z—vg|<1 (])—Vk)

We analyze the term flw—l/kl <1 (9(6 )VG()I) dxr and we notice that z — 7(§i)ig§)

is an entire function. Hence, by Cauchy Integral Theorem

o) | Ee)
/|x—uk§1 (.%' - Vk)2 do /|z—uk1 F2>0 (Z - Vk)2 de=0

G(2)G(x)

= 5 dr = —/ Gy + €9)G (v, + €?)ie=" df.
0

|z—vg|<1 (z — )

Now, there exists co > 0 not depending on k such that

/ G(x)G(x2)dl' S/ |G(W)]\G(uk+e’9)]d9 < M2/ eQIsin(G) do = Mch.
lz—vg| <1 (x —vg) 0 0

In conclusion, the relation (A.14) is valid as M?c; and M?2cy do not depend
on k, then [|Gy[3. )< M?(cy + cg) for every k € Z*.
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Construction of a Riesz basis and conclusion: Let v := {vy }xez+ and
e = {e"}cze C L*((0,7),C). For B = {&rezr = {(F(v)*€)i}rez,
thanks to Proposition A.13, the sequence of functions {{ } ez forms a Riesz
basis in

2
X = spaniéy : k€ 27}~ C L2((0,T),C).
We call v := {0 }rez+ the corresponding biorthogonal sequence which is also
a Riesz basis of X. Thanks to Remark A.12, the map F(v) is invertible from
H(v)* to Ran(F(v)*) and
(F(v)) ™= (F(v))"
Asv/c = {vi/ci }wez~ is biorthogonal to {e™+()} 7., we have {vy/ci }pezs =
F(v)v. Indeed, for every j, k € N, it holds
Org = (on/cr, €M) 20.my0) = (vk /i (F(A))T'E)j) p2(0.m).)
= ((F(A)7'V/O)k: &) r2(0.1).0)»

which implies that (F(A)~!v/c), = x. The uniqueness of the biorthogonal
family to 2 implies the uniqueness of the biorthogonal family to e. From
Theorem A.2, there exist Cy, Cs > 0 such that

T
Collx% < / fu(s) [2ds < Cs x|,
0

for u(t) = Y ez &k and x € (2(C). Thanks to the biorthogonality, we
have

T
T = (Oks W) L2((0,1),C) = /0 O (T)u(r)dr, Vk e Z*.

For every k € Z*, we call m(k) € Z* the number such that k € E,, ).
Thanks to (A.13) and (A.14), there exist Cy,C5 > 0 such that, for every
k € Z*, we have

[(F(v)x)k| = [((F(V){{01, w) 2 0,1),0) hez)kl
= [{(F(v)0)k, w) r2(0,1),0)l = [{vk/ k> w) £2((0,1),0)]

vkl 20,10 1wl L2 (0,1),0) < Gkl L2 m ) 1%l 2
|ck| -8 |G ()]

< Cylk|¥x|lz < Csmin{|l] € By 1%l 2.

Then, for every j,k < i(m), we obtain

|(Frsje(v™)] < Comin{|l| € B, }2.
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The arguments of the proof of Proposition A.10 lead to the existence of
C > 0 such that

Tr(Fm(vm)*Fm(vm)> < Cmin{|l| € B}, O

Proposition A.16. Let {\;}rez+ be an ordered sequence of distinct real

numbers and
{bnezs = {sgn(0) VT |
keZ*

satisfy (A.10). We assume that there exist Cy,Co > 0 such that, for every
k € Z* with v, # 0, the following inequality is verified

(A.15) Cl‘]{’ S |l/k‘ S 02“{’

Let G be an entire function such that G € L*(R) and there exist J, I > 0
such that
1G(2)| < Je'Fl, vzec.

If {vj}jez are simple zeros of G and there exist d>1, C >0 such that

C ) N
Gz G VieZ vA0

then the space H(A) contains hd-1,

Proof. If {vgtrez = {sgn()\k)\/|)\k]}k " then Ay = sgn(vy)v} for every
G *
k € Z*. There exist 6 > 0 and M € N such that

inf Vg —vgl > 0M > 6 inf {|y;|, 1} M.
keZ* JEZ*

l/j;éo
For every k € N such that Ay and Ag have the same sign, we have

At = Al = [Vt = Vil + vil 2 6 inf {Jo;], 13M.
0 #0
For every a,b > 0, we know that |a? + b?| > min{a, b}|a + b| and, for every
k € Z* such that A\p4 ¢ and A have opposite signs, we obtain
Nt = Ml = [+ V21 2 if (gl THomeas — vl = inf {log, 1}6M,

Iij;ﬁo l]/j;ﬁo

Both sequences A := { g }rez+ and v := {v }rez satisfy (A.10) with respect

to ¢ := inf ez {lvj],1}6 and M, which leads to the same the equivalence
vj
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classes Fy, in Z*. Then, the theory exposed in the current appendix is valid
for both the sequences A and v. Now, we notice that {vy }rez+ verifies the
hypotheses of Lemma A.15 with respect to ¢’ and M and

Tr (Fm(vm)*Fm(vm)> < Cmin{|l| € En)*,  Vmez*.
As above, we notice
k1 = Akl = [sgn(vis)vipr — sgn(vi)vid] > min|vel, Vg ke — vil-

For every m € Z* and I C E,, such that |I| > 2, we have |I| < |E,| < M—1.
For C; = min ;.- {|1|M~3, |y|}, there holds

1|0
IT 2 = Xl = (in{jw] = 1€ 1w # 0D T v — vl
kel J,kel
> glg{lwlM‘?’,le}min{lwl: Lel |l #0} I] v —v
lvi|#£0 Jkel
> Crmin{ly|: L€ 1, ul # 0} [T vk —vl.

J,kel
For every m € Z* and j, k € E,,, the following inequality is valid

|Fm;j,k(vm)‘

E.in(A™)] < C1— )
‘ 7.7’k( )| - 1m1n{|ul|1 leEmaVl?éO}

Thanks to the arguments adopted in the proof of Proposition A.10, from
Proposition A.15, there exists Cy > 0 such that

Tr (Fm(vm)*Fm(vm)>
min{v? : | € Ep,, v # 0}

(M — 1)2C2min{|l| € B}
min{v? : | € Ep, v #0}

Tr (Fm(Am)*Fm(Am)> e

< C?

As in the proof of Proposition A.10, thanks to the relation (A.15), for every
m € Z*, there exists C3 > 0 such that

Il Fn(A™) 1| < Camin{li] € By},

which leads to h9~1 C H(A) . 0
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Proposition A.17. Let {\/w; }ren C RT U {0} be an ordered sequence of
pairwise distinct numbers such that wy = 0 and there exist §,C' > 0 and
M € N such that

;gghﬁmM — Vwg| > dIM.

We assume that there exist C1,Co > 0 such that, for every k € N with
wi # 0, the following inequality is verified

Cik < wp < Chk.

Let G be an entire function such that G € L*(R) and there exist J, I > 0
such that
1G(2)| < JelFFl, vzecC.

If {\/wk tken and {—\/wi tren are simple zeros of G and there exist d>1,
C > 0 such that
) |GI(_\/wk)‘ >

|G (Vwr)| = ;o VieN,

e
e

then, for T > 27/§ and for every {zi}tren € h‘i_l((C) with x1 € R, there
exists u € L*((0,T),R) such that

T
T = / u(T)e" T dr, Vk € N.
0

Proof. First, we construct a sequence v := {vj}rez such that v, = |/wy
for k > 0 and v, = —/w_¢ for k < 0. Second, we call A := {\;}rez+ such
that Ay = wy for £ > 0 and A\, = —w_ for k < 0 with k # —1. Now, the
hypotheses of Proposition A.16 are satisfied with respect to v and A that
imply i

H(A) D b1,

The validity of Remark A.12 is guaranteed and H(A)* 2 h?1. In conclu-

sion, as in Proposition Remark A.8 and A.14, for every {xj}ren € h‘i_l((C)
with 1 € R, there exists u € L2((0,T),R) such that

T
T = / u(s)eds, Vk € N. O
0

Proposition A.18. Let the hypotheses of one of the two points of Theorem
4.3 be satisfied. For every T > 0, there exists C(T) > 0 uniformly bounded
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for T lying on bounded intervals such that, for every g € L*((0,T),C), we

have
T .
’ / GM(‘)SQ(S)dS
0

Proof. 1) Uniformly separated eigenvalues: Let {wi}ren C R be such
that

B < C(Mgllzzco,1).0)-

= inf |wg, —w;| >0
g k;éj| il

Thanks to Proposition A.5 and Remark A.7, for T > 27“, the family of

functions {¢*()},cz is a Riesz Basis in

2
X = span{e®r() : k € N} g C L*((0,T),C)

(Remark A.3). Moreover, as in the relation (A.7), there exists C1(7) > 0
such that

1
2
(Z |<€W’“('),U)L?((o,T),C)P) < Cio(D)lull L2 0,m),0)

keN

for every u € X. We denote with P the orthogonal projector mapping
L?((0,T),C) in X and, for every g € L?((0,7T),C),

HUGM(')’9>L2((07T),C)}k€N o H{@iwk(')vP9>L2((0,T),C)}keN

62

< CL(D)IPyll 2 (0,m),c) < CL(DIgll L2 ((0,7),0)-

2) Pairwise distinct eigenvalues: Let the hypotheses of one of the two
points of Theorem 4.3 be satisfied. For any graph, there exists M € N and
0 > 0 such that

inf |\ - A oM.
inf [Aprat = Ae| > dM

We can define {)\i} rjen such that { Ay }ren is obtained by reordering {)\i} ,jeN
J<M J<M

and 4 '
]{;r;éflp\fc—)\ﬂ > oM, Vi < M.

Now, for every j < M, we apply the result of the point 1) by considering

{witren = {)\i}keN-
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For every T' > 27 /§M and g € L?((0,T),C), there exist {Cj(T)}j<m C RT
and C(T') > 0 uniformly bounded for T' lying on bounded intervals such
that

ZH{ M L2 0,T) (C)}keN

H{ Z/\k LQ((O T),C) }keN 2

M
<Y " CiDlglr2o,my.0) < MCD)gll2((0.1).0)+

which implies that

T T ]
/ z)\( VT ( )dt / efz)\(.)Tg(T)dt
0 0

< MCE(D)gllL2(0,7),c) = MOl L2((0,7),0)-

Then, for every g € L%((0,T),C),

T .
’ / e”‘(')Tg(T)dt
0 V4

In conclusion, for T' > 27/ M, we choose the smallest value possible for
C(T). When T < 27/6M, for g € L*((0,T),C), we define

52

62

] < MC(D)lgll z2¢0,1),0)-

g e L*(0,2n/6M +1),C)

such that g =g on (0,7) and g =0 in (T, 27/dM + 1). Then
T 27 /S M+1
‘ / 61)‘(')Tg(7')dt / z)\( )T~ ( )dt
0 0

Let 0 < Ty < Ty < +00, g € L*(0,T}) and g € L*(0,T») be defined as § = g
on (0,77) and g = 0 on (T1,T>). By applying the inequality on g, we obtain
C(Th) < C(Ty). O

< MC2r/SMAD) gl L2((0,1),0)-
62

02 ‘
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Appendix B

Analytic Perturbation

B.1 Bilinear Schrodinger equation on a bounded
interval

Let us consider the problem (3.12) and the eigenvalues {\;°}jen of the
operator A + ugB. Let B be a bounded symmetric operator satisfying As-
sumptions II. We introduce some results from Kato [Kat95].

Definition B.1. Let D be a domain of the complex plan. A family T(z)
for z € D of closed operators from a Banach space X to a Banach space Y
is said to be a holomorphic family of type (A) when D(T'(z)) is independent
of z and T'(z)u is holomorphic for z € D and for every v € D(T(z)).

Theorem B.2. [Kat95, Theorem VII1.3.9] Let T(z) be a self-adjoint holo-
morphic family of type (A) defined for z in a neighborhood of an interval
I C R. Furthermore, let T'(z) have a compact resolvent. Then all eigenval-
ues of T(z) can be represented by functions that are holomorphic in I. More
precisely, there is a sequence of scalar-valued functions z — {A\,(2) }nen and
operator-valued functions z — {¢n(2) tnen, all holomorphic on I, such that
for z € I, the sequence {\,(2)}nen represents all the repeated eigenvalues of
T(z) and {¢n(2) }nen forms a complete orthonormal family of the associated
eigenvectors of T(z).

When B is a bounded symmetric operator satisfying Assumptions IT and
A = —A is the Laplacian with Dirichlet type boundary conditions

D(A) = HQ((Oﬂ 1),C)n H&((Ov 1),C),

thanks to [Kat95, Theorem V11.2.6], there exists a neighborhood D C R
containing 0 such that the self-adjoint family of operators A 4+ ugB is holo-

149
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morphic of type (A) (Definition B.1) for ug € D. Then, the following
proposition follows from Theorem B.2.

Proposition B.3. Let B be a bounded symmetric operator satisfying As-
sumptions II. There exists a neighborhood D of uw = 0 in R small enough
where the maps w— A} are analytic for every j € N.

The next lemma proves the existence of perturbations, which do not
shrink the eigenvalues gaps. Let {¢y}reny be a complete orthonormal sys-
tem of L?((0,1),C) composed by eigenfunctions of A and associated to the
eigenvalues {\;}jen (A\p = m2k?).

Lemma B.4. Let B be a bounded symmetric operator satisfying Assump-
tions II. There exists a neighborhood U(0) in R of u = 0 such that, there
exists r > 0 such that, for every ug € U(0) and j € N,

_ AT A

/"L] T 2
Proof. Let D be the neighborhood provided by Proposition B.3. First, we
prove that, for ug € D small enough, the operator (A+uoB—p;) is invertible

with bounded inverse for every j € N. We know that (A — p;) is invertible
in a bounded operator and j; € p(A) (resolvent set of A). Let

€ p(A+uoB), (A +uoB = )Ml < 7.

§ = Ij%l£{|>‘j+l — Ajl}

We know that

2 2

A— )7 < sup = < -.

¢ 2 kel |1 — Ml (A=Al T 0

Thus
_ _ 2
Il (A= ) uoB | < Juol Il (A= ) MBI < 5|Uo\ Il Bl
and if 5(1 )
—€
lug) < =———= for €€ (0,1),

2(| Bl

then we have
(A= pj)ruoB | <1—e

The operator (A + ugB — p;) is invertible and, for every ¢ € D(A),

6 o(1—
(A +u0B — )l > (4 - )] By > (5 - 209

d€
5 — = Il = Sl

In conclusion, || (A+ugB —p;) || < %' =
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Lemma B.5. Let B be a bounded symmetric operator satisfying Assump-
tions II. There exists a neighborhood U(0) of 0 in R such that, for every
Uy € U(O),

(A+uoPy B — \[°)

is invertible with bounded inverse from D(A) N qﬁi to ¢,J€-, for every k € N
and P(;c 1s the projector onto the orthogonal space of ¢y,.

Proof. Let D be the neighborhood provided by Lemma B.4. For any ug € D,
one can consider the decomposition

(A+ugPy B — A\j°) = (A= A[°) + uoPy. B.

The operator A — \}° is invertible with bounded inverse when it acts on the
orthogonal space of ¢ and we estimate

(A= X)) 0P Bl
However, for every ¢ € D(A) N Ran(P(;;) such that ||¢| = 1, we have

(A= X0l > mind A = XL N = M [H]

Let
6 == min {|Agr1 — A°] [AR — A}

Thanks to Lemma B.4, for [ug| small enough, A, € (Ak‘l;rA’“, AHS"’“) and
then

Ak + Akt ‘

Ak—1+ A
2 - A’“‘l‘}

o = min { [ Ays1 - 5
< (2k — 1)72

- 2

> k.

Afterwards,

" _ 1
(A = X)) uo P Bl < 5, ol Il B

and, if |ug| < (1 —7) m%m for r € (0,1), then it follows

(A = X)) uo P Bl < (1—7) <1.
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The operator Ay, := (A — \° + uqufk B) is invertible when it acts on the
orthogonal space of ¢ and

ARN = A= XN = NuoPg Bl > 6, — lluoPy, Bl
92 6k — |uol [| Bl = 6k — (1 — 7)ok = rog.
In conclusion, as

u _ 1 1
(B.1) (4 =2 + 0Py By ) I < o < s

the proof is achieved. O

Lemma B.6. Let B be a bounded symmetric operator satisfying Assump-
tions II. There ezists a neighborhood U(0) of 0 in R such that, for any
ug € U(0), we have AJ° # 0 and \J° =< \; for every j € N. In other words,
there exist two constants C,Co > 0 such that, for each j € N,

(B.2) 01/\j < )\}LO < Cg)\j.

Proof. Let ug € D for D the neighborhood provided by Lemma B.5. We de-
compose the eigenfunction gﬁ}‘o = a;¢; +nj, where a; is an orthonormalizing
constant and 7); is orthogonal to ¢;. Hence

A0y = (A4 uoB)(ardr + nk)
and
Nlagdr + N0k = Aapdp + Ang 4 uoBaydy, + uo By,
By projecting onto the orthogonal space of ¢y,
Nio = Ang + uo Py, Bagdy + uo Py, By
(A+uoPy, B — Aj°)m, = —uo Py, Baggy.

However, Lemma B.5 ensures that A + uqublk B — X\° is invertible with
bounded inverse when it acts on the orthogonal space of ¢, and then

(B.3) M, = —a((A+ugPy, B — AZO)]%)‘IUUP(;CB%.
Afterwards,
A0 = (a;¢; +nj, (A +uoB)(ajd; + nj))

= |aj|*Aj + uo{a;jo;, Ba;d;) + (a;j¢;, (A +uoB)n;)
+ (5 (A +uoB)ajds) + (nj, (A +ugB)nj).
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By using the relation (B.3),
(nj, (A+uoB)n;) = (nj, (A +uoPy B — Xi)n;) + X[ |
=i 12 + (13, —a;(A + uo Py B = X°)
(A+uoPiB - AyO)yﬁ)—luquﬁLjB@)

However, (A + uoPdij — AP ((A+ uOP(bLj)B — )\;‘0)’#)_1 = Id and then

(nj, (A+uoB)n;) = X||nj||* — woa;(n;, Py, Bey).
Moreover, we have
(05, (A + uoB)n;) = uo(dj, Bny) = uo( Py, Boj, ;)

and equivalently (n;, (A + uoB)¢;) = uo(n;, qulj B¢j). Thus
(B.4) N = laj*Aj + uolag[* By + A°|nj||* + woaj(Py; By, ).

One can notice that |a;| € [0,1] and ||n;|| are uniformly bounded in j. We
show that the first accumulates at 1 and the second at 0. Indeed, from (B.1)
and (B.3), we know that there exists a constant C; > 0 such that

;1% < fuol* Il ((A + wo Py, B ~ A7) )T *lajI?||1Bo;

(B5) [uol*[1Bo;]* _ €y

S R
for r € (0, 1), which implies that lim;_, ||7;]| = 0. Afterwards, by contradic-
tion, if |a;| does not converge to 1, then there exists {aj, }ren a subsequence

of {a;}jen such that |a; | := limy_,o |aj, | € [0,1). Now, we have
1= lim 652 < lim o[l @5]] + lImjell = Hm Ja, |+ [0z, [l = laj.| <1

that is absurd. Then, lim;, [a;| = 1. From (B.4), it follows A1% < A; for
|ug| small enough. The relation also implies that )\}m # 0 for every j € N
and |up| small enough. O

Lemma B.7. Let B be a bounded symmetric operator satisfying Assump-
tions II. For every N € N, there exists a neighborhood U(0) of 0 in R such
that there exists Cy > 0 such that, for any ug € U(0), k € N and j < N,

C
(B.6) (@50, BOJ) = 5
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Proof. We prove (B.6) for fixed j < N, then the generalization follows by
using the minimum of all the constants defined for every j < N.

We start by choosing k& € N such that k£ # j and ug € D for D the
neighborhood provided by Lemma B.6. Thanks to Assumptions II, we have

(61", Bo3*) = [andr + mk, Blajéj +n;))|

> Cn 3 |ax (dn, Bn;) + aj(nk, Boj) + (i, Bn;)|.

1) Expansion of (n, Bo;), (or, Bnj), (ne, Bnj):
Thanks to (B.3), for every k € N and j < N,
(e, Boj) = (n, Py, Boj) =

B.8 5 _
(B.5) (—an((A+uoPg B = Xi*)| ;)™ uo Py Bow, Py, Boy).

For |up| small enough,

U, —1

((A+uoPy B = NO),0) =

(A= X©)Py )t Z (uo((A = X{*)Py.) "' Py BP;. )"
n=0

and by defining

M= 3 (uo((A = N Py,)™ Py B) " P,

n=0
the relation (B.8) becomes
(B.9) (i, Bo;) = —uo{arMyBey, (A — X{°) Py )" Py Bg;).
Thanks to B : D(A) — D(A), for every k € Nand j < N,
(A= N©YPL) " PLBo; = PLB((A-N9)PE) s,

— [P B, (A= N0)P3 )" Py 165 = Py BUA = \) Py )™ ¢
— (A= X)Ps) " Py [BL AJ((A = X") Py ) 1oy

and by calling

By, = (A= N Py, )~ Py, 1B, Al
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we have

w1 (A7 AO)PE)LPL Bo; = P (B + Br)((A— A" PE) L,
= Py (B + B = A5

Let us consider (B.9). From (B.10), for every k € N and j < N, we have

Up

o (M By, (B + BL)o;)-
i~ Ak

(B.11) (i, Boj) = —

Now, one can use the same techniques. For every k € N and 7 < N, we
obtain

|(nk, Bnj)| = [(Bne,n;)| = [(uoar B((A — \{°) Py, )~ My Bey,

-2

a;aRugy ‘
IR0 Lo b
M\ — )\;{0 <¢k’ k7.7¢.7>

B.12
B12) uoa;((A — /\ELO)P¢§)_1MJ‘B¢J'>‘ = ‘

with
Ly = (A= X)) BM((A — XY PE )" Py B((A — \Y)PL) ™' M; B.
k,j j k k Pk Pk J o J

Now, there exists € > 0 such that |a| € (¢, 1) for every I € N. Thanks to
(B.11), (B.12) and (B.7), there exists Cy such that

Uug

~ 1
uo U0 > -
’<¢k 7B¢] >‘—CN]{;3 ‘)\]_Az()

(M Bow, (B + By)o)|
(B.13) "

_ ‘)%_)\JUO«B + Ej)¢k,MjB¢j>’ - ’)\kﬁg)\?o<¢k7Lk7j¢j>"

2) Features of the operators My, Ek, Ly ;:
Let k € N. First, the operators M}, are uniformly bounded in L(H?2

o Hi
when ug is small enough such that

)

lluo (4 = i) PE)  PEABPA Il e ) < 1.
Second, the relation (B.10) implies that
> pl 1\—1pl 1L 1L 1L
BkP¢k =((A- XZO)PM) P¢kB(A o AZO)P@C o P¢kBP¢k‘
Hence, the operators Ek are uniformly bounded in & in

L(H(ZO) N Ran(P;k), Hfo) N Ran(Py,)).
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Third, one can notice that
B((A—=X/°)Py)"'M;B € L(Hpy, Hy)),  VjeN.

Then, for every k € Nand j < N

(A= NJO)BM((A = NPy )~ Py,

= (A= X)B((A= NPy )" Y (uoPy B((A— N) Py ) ") " Py,

n=0

= (A= X°)((A = \{°)Pg.) ' Py (By, + B)Mj,

for

M, = > (uoPpLB((A— N PL) )" P

Now, the operators M, & are uniformly bounded in L(H (20), H (20)) as Mj. Hence

Ly, j are uniformly bounded in L(H (20), H (20)).

Let { F} };en be an infinite uniformly bounded family of operators in L(H (20), H (20)).
We know that, for every [, j € N, there exists ¢; ; > 0 such that

Cl 7j

k2’

> K (b, Fig))? < 00, = [{n, Fiy)| < Vk € N.
P

Now, the constant ¢;; can be assumed uniformly bounded in [ since, for
every k,7 € N,

sup |k (¢, Figpj)|> < sup Y |m*(dm, Fiss)|* < sup || Figj 7y < oo
1eN leN leN

Thus, for every infinite uniformly bounded family of operators {F;};en in
L(H (20), H (20)) and for every j € N, there exists a constant ¢; such that

o
(B.14) or, Fig;)| < 1?]2 Vk,l € N.



B.1. (BSE) ON A BOUNDED INTERVAL 157

3) Conclusion:
We know that [A; — A\;°|~! and |\, — )\j“-o|*1 asymptotically behave as k2
thanks to Lemma B.6. From the previous point, the families of operators

{BMy(B + Ekz)}keN, {Lk ;}ken are uniformly bounded in L(H(QO), H(ZO)) and
BM;(B + EJ) € L(H(QO),H(QO)) for every 1 < j < N. Hence, we use the
relation (B.14) in (B.13) and there exist C},Cs,C3,Cs > 0 depending on
j € N such that, for |ug| small enough and k € N large enough,

1 01”1L0|

K ZO(T)aBQS?O(T)H = |<¢z073¢?0>| > CN@ - W

B.15
(B.15) _ Ofuol  Galuo 1
e — ATR2 T [ — AR[R2 = RS
Let K € N be so that
1

[(¢x° (1), Bo;°(T))| = C4 vk > K.

k3’

For j € Nfixed, the zeros of the analytic map ug — {[(¢,°(T), Bo;°(T))[}r<k €
R are discrete. Then, for |ug| small enough,

(@2 (T), B3 (T))| # 0, Vk < K.

Thus, for every j € N and |ug| small enough, there exists C; > 0 such that
w0 (7), Bgwo(T))| > I Vk e N
gy (T), B (1) = . EN.

In conclusion, the identity (B.6) is valid for every k¥ € N and j < N by
considering Cy = min{C; : j < N}. O

Lemma B.8. Let B be a bounded symmetric operator satisfying Assump-
tions II. There exists a neighborhood U(0) of 0 in R contained in the one
introduced in Lemma B.6 such that, for any uy € U(0),

<§: }|A?°|g<¢?°, '>}2) = (i 153(65, .>|2>%.
j=1 P

Proof. Let D be the neighborhood provided by Lemma B.6. For |ug| small
enough, we prove that there exist C7 > 0 such that

N[

1A +uoBI3¢| < Cull|Al2 |
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for s = 3. We start by assuming s = 4 and we recall that B € L(H (20))
thanks to Remark 2.1. For any ¢ € H Elo)v there exist Cs, C'3 > 0 such that

1A+ uoBPo| = (A +uoB)26] < [|A2]| + uo|2[ B2
+ [uol[ABY| + uol [ BAY| < [ A%
+ ol B2 + ol Il B Il zz, | A%

+ Juo| [l BIIl|AV]| < C2]| A%|| + Cs]l|
< (G2 + C3)|[| APy

Thus, there exists C'(2) > 0 such that, for every ¢ € H

+o0
D e {gme, d)P < C(2) men,
n=1

(0)’

and
400 +o0o
DI (80, dud (e, ) ZI/\ *|{bns ¥
n=1 =1

The operators |A| and [A + ugB| are positive and invertible for |ug| <
72/ || B||. For every ¢» € D(A), we consider ¢ € 2 such that 1) = |A| 1 =

Sy A tdn(dn, ¥) and

+o0 +o0o
DRI AT OR ) (o ZA °, 0) (b, 1) < C2)[19)1%
n=1 =1

Let ¢ € 5 and

“+00
fw tz=5+ay > Z(/\ZO)Q(SWVIA!*S”%,¢Z°>< ;Llo, |A’fsfiyw>

n=1

where, for every = € C, |A[*$ = 75 A6(6;,4). Then, by [BBR10] for
s =0 and s = 2, there exists C(s) >0 Such that

|fo(s +ay)| < CEONAITT¥Y) 1Al ) < Clo)lwl>.

If 4 is finite linear combination of the vectors {¢;} en, then the function fy,
is analytic on the strip {z € C: 0 < R(s) < z} and continuous on its closure
as uniform limits of a partial sum in n. Since it is bounded on the boundary,
by Hadamar Three-Lines Theorem [RS80, Appendix IX 4], it is bounded on
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the strip and log(supg.)—s | fy(2)]) is a convex function of s € [0,2]. For
€ (0,2), we obtain

+0o0o

PR SR Zl)\ % {dns )]

n=1
Then, there exists C' > 0 such that, for every ¢ € H (30),

3 3
9llz, = 4 +uoBl2¢ll < CllIA[29].

Now, H(z) = D(JA]) = D(|JA + wB|) = I;T(QO) and B preserves ﬁ(QO) since
B : H(QO) — H(20). The arguments of Remark 2.1 imply that B € L(H(20))

and the opposite inequality follows as above thanks to the identity A =
(A+UOB)—UoB. ]

Remark B.9. Let B be a bounded symmetric operator satisfying Assump-
tions II. The techniques of the proof of Lemma B.8 also allow to prove that,
for s € (0,3), there exists a neighborhood U(0) of 0 in R such that, for any
ug € U(O),

Il = (S lomserar)’ <Z|a 09" =1

Lemma B.10. Let B be a bounded symmetric operator satisfying Assump-
tions II and N € N. Let € > 0 small enough and IV be the set defined in
(3.2). There exists U C R\ {0} of positive measure such that, for each
ug € U€7

N \

inf AFO = A0 = A AR > e
(3:k),(n,m)eIN
(4:K)#(n,m)

Moreover, for every 6 > 0 small there exists € > 0 such that dist(U,0) < 4.

Proof. Let us consider the neighborhood D provided by Lemma B.5. The
maps )\}‘ — Al — Ay + A, are analytic for each j,k,n,m € Nand u € D. One
can notice that the number of elements such that

(B.16) N =M —An+An=0, jneN, km<N

is finite. Indeed Ay = k?72 and (B.16) corresponds to j — k? = n? — m2.
We have
7% = n®| = [k* —m* < N* -1,
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which is satisfied for a finite number of elements. Thus, for IV (defined in
(3.2), the following set is finite

R:= {((]7 k)v (na m)) € (IN)2 : (]7 k) 7é (n>m); >\j - )\k - )\n + )\m = 0}
1) Let ((4,k), (n,m)) € R, the set
Vi) = {1 € D| Xj = X = X5+ A, = 0}
is a discrete subset of D or equal to D. Thanks to the relation (B.4),

A=A = A+ A, =
|aj[*A; + ulaj|*Bjj + At |lnj|* + uaj(Py; By, n;)
— lag|* M — ulag[* Be g — Mllnwll> — war(Py, Bow, i)
— lan*An — u‘anPBn,n — Nl |I* — UQ<P¢J>;B¢m M)
+ ‘am|2>‘m + u|am|2Bm,m + )‘qun||77mH2 + UW<P¢J§”B¢m’ M)
(B.17)
= AV =N = A = aPA = JarP Ak = JanlAn 4 Jam P Am
+ (|aj|QBj,j - ’ak‘ysz,k - ‘an‘QBn,n + ’amPBm,m)u + o(u).

For |u| small enough, thanks to lim|u|_>0|aj|2 =1 and to the third point of
Assumptions I, ¥ — Ajy — Al + A7, can not be constantly equal to 0. Then,
Vijk,n,m) 18 discrete and

V ={ueD|3(j,knm)eR: A\l — A — X!+ A, =0}
is a discrete subset of D. As R is a finite set
Uci={u € D V(i kynym) € B NS = N = X+ M| > e}

has positive measure for € > 0 small enough. Moreover, for any ¢ > 0 small,
there exists ey > 0 such that dist(0,Us,) < 6.

2) Let ((4, k), (n,m)) € (IV)?\ R be different numbers. We know that
A = AR = A) + MY | =752 — K2 —n® + m?| > 7.
First, thanks to (B.4),

N <lagPAj+ ulCr, MY > a4y P — [ulCo
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for suitable constants C7,Cy > 0 non depending on the index j. Thus
‘)‘}L — Ak = Ap AL > H%‘P)\j - |ak|2)‘k - ’an|2)‘n + ’am’2)‘m’
— ”U,‘(ch + 202).

Now, thanks to the relation (2.21), limg_,o |ax|? = 1. For any u in D and e
small enough, there exists M, € N such that, for R¢ := (IV)?\ R,

llag2A; = lax* Ak = lan*An + |am[*Am| > 7* — ¢,

V((], k)’ (n’m)) € RC? j7k7n7m Z Me-

However limy,_q |ax|* = 1 uniformly in k thanks to (B.5) and then there
exists a neighborhood W, C D such that, for each u € W¢,

llaj 12X = lar* A = lan*An + lam[*Am| > 72 — ¢,
¥((j,k), (n,m)) € R, 1< j,k,n,m < Me.
Thus, for each u € W, and ((j, k), (n,m)) € R® such that (j,k) # (n,m),
[A] = Ak — A+ A0 >n? —e.
3) The proof is achieved since, for €; > 0 small enough, (761 N W, is a non-

zero measure subset of D. For any u € U, "W, and for any ((j, k), (n,m)) €
(IV)? such that (4, k) # (n,m), we have

A = Ak = An 4 Al > min{n® — €, €1 }. O

Remark B.11. Let B be a bounded symmetric operator satisfying Assump-
tions II. By using the techniques of the proofs of Lemma B.7 and Lemma
B.10, one can ensure the existence of a neighborhood Uy of ug in R and Us,
a countable subset of R such that, for any uy € U(0) := (Uy \ Uz) \ {0}, we
have:

1. For every N € N, (4,k),(n,m) € IV (see (3.2)) such that (j, k) #
(n,m), there holds

AP = A = AR AR #£ 0.
2. B;“t‘;g = (¥;°(T), B,°(T)) # 0 for every j,k € N.
3. For € > 0, if |ug| is small enough, then

sup [[¢; — ¢3°ll(3) < e
JEN



162 APPENDIX B. ANALYTIC PERTURBATION

Let 0™ := {a;j}j<n € Q" be such that a; =0 for every j <n and n € N.

Remark B.12. Let B be a bounded symmetric operator satisfying Assump-
tions II and Assumptions A. As Remark B.11, there exists a neighborhood
Uy of up in R and Us, a countable subset of R containing v = 0 such that,
for any ug € U(0) := (U1 \ Ua) \ {0}, the numbers

{1} U {/\}‘O}jeN

are rationally independent, i.e. for any n € N and {r;};<, € Q™ \ 0%, it
holds

n
r1+ ZT]‘)\}LO 75 0.
j=2
Indeed, we notice that (1 — ||n;||?) = |a;|* for every j € N and we denote
= B = A),) 7 (g - a)] )71PLB>MPLB Vj, M € N
M T j o+ J o) 19 ;1 % '

By using (B.3) in the relation (B.4), for |ug| small enough, we obtain

(B.18) 2 2
" || |
/\'O — )\+u0 i §
R e [ N 1 S
|0‘j|2 1L 1L u -1 1L
=\ +uoBjj — u0<p(;j3¢j, ((A+ uoqujB — A?D)]#)_luoP(jngZ)j)
= Aj +uoBy;

u -1 u 151 o
+u(2)<¢j,B(()\j°—A)|¢jL) ((I—uo(()\jO—A){(ﬁj) qujB)y#) P} Bo; )
= Aj +uoBj;

2{¢;, B(\o — 4)| )" S xo_ ) ) eiB) pLB
(0, B = A),) 7 Y (w((N° = 4)],,) ' PLB) Py Boy)
M=0
+o0o
= Aj +uoBj; + U%<¢j7 > (up'ahy) ¢j>-
M=0

Now, for every j, M € N, we have

_ _ M
|u1()i‘r£1>0:n§{f}w = TjM = <¢jaB(()\rA)’¢]+) 1(((%*1‘1)@) 1qujB) quj3¢j>-
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We underline that, for every j, M € N,

TjM = <¢]7B(M7])¢j>

with B(M, j) introduced in Assumptions A. Let n € N and r := {rj}tj<n €
Q" \ 0". Thanks to Assumptions A, the map u v+ 1+ > o1\ is non-
constant and analytic. The set Vi of its positive zeros is discrete. The
property is valid for Uy := Upen Ureqn Vi that is countable.

B.2 Bilinear Schrodinger equation on compact graphs

The aim of this paragraph is to adapt the perturbation theory techniques
provided in Appendix B.1 where we consider the bilinear Schrédinger equa-
tion (4.1) in L*(¢,C) for 4 = (0,1) and A the Dirichlet Laplacian. In the
mentioned framework, we have

inf |A\z — A 0
kllneN‘k l|> 5

)

which is not guaranteed if ¢ is a generic compact graph. Even though we
know that there exist M € N and § > 0 such that

Inf [Aegat = Aol 2 b Vol v/ Ak = VAR > M

thanks to [DZ06, Proposition 6.2; 3)]. First, we modify (4.1) as in Appendix
B.1. Let {A\j°}jen be the spectrum of A + ugB corresponding to some
eigenfunctions {gb?o }jen. We refer to the definition of the equivalence classes
E,, with m € Z* provided in the first part of Appendix A.2. We denote

e n:N — Nmaps j € Nin the value n(j) such that j € E,);
e s:N — Nis such that \y;) = inf{\, > \; | k € B}
e m: N — Nis such that \,,;) =sup{\ < A\j | k & Epj)};
e p: N — Nis such that \,;) = sup{k € E,;}.
The proofs of Lemma B.4 and Lemma B.5, imply the following lemma.

Lemma B.13. Let the hypotheses of Theorem 4.3 be satisfied. Let j € N
and PjL be the projector onto

L2

span{ém : m & Ey(;)}

There exists a neighborhood U(0) small enough of u =0 in R such that
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1. there exists ¢ > 0 such that, for every up € U(0) and k € N
(A +uB =) ' <

with
As(k) = Ap(k)

V=

2. for every ug € U(0), the operator (A+uoPB — \}°) is invertible with
bounded inverse from D(A) N Ran(Pi) to Ran(Pg) for every k € N.

Lemma B.14. Let the hypotheses of Theorem 4.3 be satisfied. For each
neighborhood small enough U(0) of u = 0 in R up to a countable subset Q
we have

A0 — U0 — B0 (B0 2L, (04", Boj®) # 0, uo € U(0)\ @

for every (k,j), (m,n) € I, (k,j) # (m,n) (see (4.4)).

Proof. For k € N, we decompose the perturbed eigenfunction as follows

(B.19) GO =apdr+ > Biey+m

J€EL (1) \{F}

where a5 € C, {B]k} C C and n is orthogonal to ¢; for every | € E,q).
Moreover, limy,|o |ag| = 1 and limj,o ]6;“[ = 0 for every j,k € N. By
following the techniques of the proof of Lemma B.6,

ANOGO = (At uoB)(axde + Y Bid;+m) = Aapdy
JEE, () \{F}

+ Z 5;?14(25]' + An + upBag o + ug Z ﬁquﬁj + uo B
TE€En (k) \{k} GE€Eny\{k}

Now, Lemma B.13 leads to the existence of C7 > 0 such that, for every
keN,

(B.20)

w —1
e =— ((A+uPEB — ") PL) g (akp,qusk + Y ﬁ]’?P,jBQsj),
JEEL (1) \ 1K}

(B.21) = |l < Crluol.
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We compute A0 = (¢,°, (A +uoB)¢,°) and for By, j := (¢x, Boy),
A = lag PN + (g, (A +uoB)nk) + Z Aj|BE
J€Enm)\{F}
+uo Y |BfIPBrk +uo > BE 81 By
JEE, (1) \{F} ILEE 1y \{k} j#l

+2uR( Y B Bé) @ > BiBr +ax(on Bu))

JE€EL (k) \{F} JEEL k) \{F}
+ug > |BJP(Bj; — Brg) + uolar|* Bry.

JE€EL 1) \{F}

Thanks to (B.20), it follows (n, (A+uoB)ng) = A ||| +O(ud) and there
exist fx, f;, such that lim, |0 fx = 0, lim,y|—o f;, = 0 uniformly in k and

X = (1= [l ™ (Janl Mo + wolar Bex

+ Y N WIBIPrufet e D> 18P

JE€EE, (1) \{k} JEE, (1 \{k}
tug Y BB~ Bew +uw Y B Be) + O()
JEE, (1) \{k} JEEw () \{k}
= (1=l (a2 A B )
JEE, ) \{k}

+uo(t = el (el + Y0 15 B

JE€EE, 1y \{k}

+uo fi + O(ug)-
For ay, := (1_”77kH2)_1(|ak|2+2jeEn(k)\{k} \BﬂQ) thanks to (B.21), it follows

lim [dg] = 1
|ug|—0

uniformly in k. From [DZ06, Proposition 6.2; 5)], we have

2
lim &: il

2 N 2
e (21:1 Ll)
and, thanks to sup,cy |Ej| < N, we obtain

lim  inf  AMN T = lim osup AN =1
k—+o00 jEE,, 1) \{k} k=400 je B, 1)\ {k}
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For
a = (= ) el + D0 A/ARIBEP).
JEE, (1) \{F}
limy |0 [ax| = 1 uniformly in k& and
(B.22) N0 = G\, + oy By + uo fr + O(ud).

When A\, = 0, the result is still valid. For each (k,j),(m,n) € I such that
(k,j) # (m,n), there exists fi jm n such that lim, |0 fk,jm,n = 0 uniformly
in k,j,m,n and

/\ZO — )\}LO — )\%) + )\ZO = Qp\p — 5]')\]' — AmAm + GnAp, + uofk7j7m7n

+ uo(@r By — @i Bjj — GmBmm + GnBnn) = arAe — a5,

— A Am + anAn + Uo(akBng — aij,j — amBm’m + aan’n) + O(U(Q))
Thanks to the third point of Assumptions III, there exists U(0) a neighbor-

hood of v = 0 in R small enough such that, for each u € U(0), we have that
every function A;® — AY® — AJ0 4 A0 is not constant.

Now
Vikjmm) = {0 € D| Al — X — X + X" = 0}

is a discrete subset of D and
Vz{u€D| A((k,j), (m,n)) cI?: };—)\;‘—)\%%—)\Z:O}

is a countable subset of D.

The second relation is achieved with the same technique by considering
that, for every j, k € N, the analytic functions ug — (¢;°, B¢,°) can not be
constantly zero since (¢;, Boy) # 0. In fact, one can prove that

W = {ue D| 3(k,j) € I : (¢, Bg}) = 0}
is a countable subset of D. O

Lemma B.15. Let the hypotheses of Theorem 4.3 be satisfied. Let T > 0
and s = d + 2 for d introduced in Assumptions IV. Let ¢ € R such that
0¢& o(A+ugB+c) (the spectrum of A+wuoB+c) and such that A+uoB+c
is a positive operator. There exists a neighborhood U(0) of 0 in R such that,
for any uy € U(0),

H|A+uOB+c|%-

= |-l
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Proof. Let D be the neighborhood provided by Lemma B.14. We define a
neighborhood U(0) C D such that the claim is achieved. The proof follows
the one of Lemma B.8. We suppose that 0 € (A + uyB) and A + ugB is
positive such that we can assume ¢ = 0. If ¢ # 0, then the proof follows from
the same arguments. We prove the existence of a neighborhood U(0) C D
such that, for any uy € U(0),

(Il of)
j=1

[SIES
[SIE

< (505 0P)
j=1

Thanks to Remark 4.1, we have || - [|(5) < ||A|Z - ||. We prove the existence
of C1,Cy, C3 > 0 such that, for every ¢ € D(|A +uoB|2) = D(]A]2),
1A +uoBI2¢p|| = [[(A+uoB) 29| < Cul| A9

(B.23) .
+ Col[9|| < Csl|A2y]|.

Let s/2 = k € N. The relation (B.23) is proved by iterative argument.
First, it is true for k = 1 and k = 2 since if B € L(D(A")) for 1 < k; < 2,
then there exists C' > 0 such that [|ABY| < C[| B[ pam) || AF14p]| for every
¥ € D(A). As B € L(5¢), there exist Cy, Cs, Cg, C7 > 0 such that, for every
Y € D(4%),
1(A +uoB)?l| < [ A% + [uo*| B> + Juol [ ABY|| + |uo| | BAY|

< (1A% + luo* I B> || 14

+ Caluol I BIIl Lipary 19l ey + Tuol Il BIII¥lle2)

< Cs]| A9 + Co|v|| < Cr[| A%
Second, we assume the validity of (B.23) for k € N when B € L(D(A"))
for k—j—1 < k;j < k—j and for every j € {0,....k — 1}. We prove
the relation (B.23) for k + 1 when B € L(D(A%)) for k —j < k; <

k — 4+ 1 and for every 57 € {0,...,k}. There exists C > 0 such that
J Yy J
|A*By|| < C|| B D(AkO)HAk%DH for every ¢ € D(A¥*1). Thus, there exist

Cs, Cy, C10, C11 > 0 such that, for every ¢ € D(AF!),
(A +uoB)* || = (A +uoB)*(A+uoB)y|
< G| A*(A + uoB)y[| + Col|(A + uo B)y|
< Cs|| A9 + Csluol [ A* By | + Col| A
+ |uo| Crol| Bl < Cs[| A" bl + Cuoluol || BIIl piparoy 1]
+ Col|9ll(2) + luol Co [ B 1] < Cral|A*F 4.
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As in the proof of Lemma B.8, the relation (B.23) is valid for any s < k
when B € L(D(A*0)) for k—1< ko < sand B € L(D(A%)) for k—j—1 <
kj < k —j and for every j € {1,....,k — 1}. The opposite inequality follows
by decomposing A = A + ugB — upB.

In our framework, Assumptions IV ensure that s = 2 + d.

e If the third point of Assumptions IV is verified for s € [4,11/2), then B
preserves Hff},c and Hé for dp introduced in Assumptions IV. Propo-
sition 4.12 claims that B : Hél — Hél and the argument of Remark
2.1 implies B € L(Hg').

e If the second or the fourth point of Assumptions IV is verified for s €
[4,9/2), then B € L(), B € L(H2) and B € L(HZ') for d; € [d,9,2)
since B stabilizes H® and Hé for d; introduced in Assumptions IV.
Thanks to Proposition 4.12, B : Hél — Hél and the argument of
Remark 2.1 implies B € L(H;jﬁl).

e If s < 4 instead, then the conditions B € L(J#) and B € L(H2) are
sufficient (see Remark 2.1). O

Remark B.16. The techniques of Lemma B.15 allow to prove the following
claim. Let the hypotheses of Theorem 4.3 be satisfied and 0 < s1 < d+ 2 for
d introduced in Assumptions IV. Let ¢ € R such that 0 € oc(A+ugB+c¢) and
such that A + ugB + ¢ is a positive operator. There exists a neighborhood
U(0) of 0 in R such that, for any ug € U(0),

o0

(KA +uB +aF e )P)F = (b 6s R
j=1

i=1



Notation

We set some notation that we widely use in the work.

e Let # = L?(Q,C) for Q the bounded interval (0,1) or a generic
compact graph. We denote

(6n,1ba) = (i1, o) / D1 (2)en(e Vibr, s € A,

ol i= e = [ Wo@pda, Ve .
We call H® := H*(Q,C), Hj := H5(Q2,C) and U(4€) the space of the
unitary operators on JZ.

e When 2 is a compact graph composed by N € N edges {e;};j<n, any
function f € J# = L?(4,C) can be denoted as vector of functions
such that

f=0r e 1M, f7 e L?(¢;,C), Vj<N

and

N - .
<1/117¢2> == /Q'(ﬁl(l‘)d@(ll?)dl? = Z w{(x)lz)%(ﬂf)d% Viﬁlﬂﬁ? S %)
j=17¢

¥l = /|¢ Qd:vJZ |9 (z)|2d, Vip € A
17¢€

e In the current work, A is the Laplacian equipped with self-adjoint type
boundary conditions. The sequence {¢ }ren is an Hilbert basis of J#
composed by eigenfunctions of A associated to the eigenvalues {\;};en
and

(bj(t) _ €_iAt¢j _ e—i)\jt¢j_
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e The operator B is bounded and symmetric and

Bj = (¢;, Bén), Vi, k € N.

For u € L*((0,T),R), T > 0 and t € (0,T), we denote I'# the unitary
propagator generated by
A+u(t)B

and f? the unitary propagator generated by
—A—u(t)B
for u(-) = w(T — ).
e When Q = (0,1) and A is such that
D(A) = H?((0,1),C) N Hy((0,1), C)),
A = =Adh, Vip € D(A),

we introduce

=

HFO) = H&SO)((Oﬂ 1)7(C) = D(A%)7 H ’ H(s) - (Z ‘ks<¢k7 >‘2>
k=1

e When 2 = ¢ is a compact graph, we call

1

Hy = H{)(4,C) := D(A2), |-l = (Z LS ->|2>
k=1

e We use the following notation for s > 0
Il = - W 2oy I MW sy = I I peasy.peasy:
e We denote the following norm

IflBvery = I fllBv0,m)R) = Z|f tj) — f(tj—1)l,

{t]}J<n€P

for f € BV((0,T),R), where P is the set of the partitions of (0,7
such that
to=0<t1 <..<t,=T.
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e For x! = {2} }ren € %(C) and x2 = {27 }en € £%(C), we define

—+00
> |zl
k=1

+oo
<X17X2>€2 = Z‘/El{;xia HXIHﬂ =
k=1

Moreover, for s > 0,

h(©) = {{zj}yen € C| Yol m? <oof,  |lllue = (Z 5 - |2)
J=1 k=1

1=

2

e For any Hilbert space X, we call (-, -)x its scalar product.

e For any Banach manifold X equipped with the norm || - || x, we denote

Bx(¢r)={¢€X: [¢—¢lx<r},  YEX r>0
For every x € X, we define T, X the tangent space to X at the point
T.

Let F: X — Y be a differentiable map between two Banach manifolds
X and Y. For zp € X, we call dyo F' : Ty X — Tyz,)Y its linear
differential map.

We denote with L(X,Y") the space of the bounded operators from X
to Y, while with L(X, X) or L(X) the space of the bounded operators
from X to X.

e For any real number r, we call

[r] :=r —min|r — n|,
neN
n<r

its entire part. If r € C, then we call £(r) its real part and Imm(r)
its imaginary part.

e For every interval I, we denote its length as |I].

Notation Chapter 2
e We define

-l L(L2((0,7) R) HE, ) = -1 oz mazys M- L(H,) L2(0.T).R)) = -1 s, 2y

-z o,ry,m3,) = I Npgemz - 2oy ry = I+ ll2,
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o We call

up(t) == cos (k- j2)7r2t)’ C':= sup {

n (I,m)en’

sin 777|l2_m2| o
k% — 52| ’

. 3 .
{(t,m) e N*: {l,m} N {j,k} #0, |I> —m?| < §|/€2 Sl

12 — m?| # [k* — §%|, (¢, Bém) # 0},

T 2 4
T = —— T=—5—5% I'= :
| Brej|’ mlk? — 52|’ 72|k? — 52|

A

e Let N € N. We define the N x N matrix M”" such that, for [,m € N,

Bl,m ! im2(12—m?)v(z : |l2_m
M = (1M 0) = 22 [ s, it Gy

for v(t) the reciprocal function of ¢ — fg | cos(m?(k? — j%)s)|ds, other-
wise Ml% =0.

e Let 0V € RT be the smallest value such that ¢ = (or, 2B~ MY ®j)

and N
G

()

Notation Chapter 3

o Let ¥ := {9;}jen C € and (V) := span{y); : j < N}. We define
mn(¥) the orthogonal projector onto (V).

e We denote

Ocr ¢={{1/1j}jeN C Hiyy | (W5, 0%) = 055 sup [0 — 05(T) (3 < 6}-
jEN

o Let u(t) = ug + uyi(t), for up and w;(t) real. A bounded perturbation
of an operator with compact resolvent is an operator with compact
resolvent. Thus, A+wuyB has pure discrete spectrum. We call {)\;‘0 }ien
the eigenvalues of A + ugB that correspond to an Hilbert basis of 57
composed by eigenfunctions 40 := {qb}‘o (x)}jen. We set

U (T) = &N T g,
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We denote
Otny = {{wshien € Hiy| (s 00) = a5 sup g = (Tl < o}
J

We define

D=

= DA+ uwB3),  -lg = (X I3 o)

Let ¢!, 92 € 2. We call [¢')(¢)?| the rank one operator such that
W) (WP = M (WP Y), Ve A

A density matrix p is a positive operator of trace 1 such that there
exists a sequence {9 }jcn C A such that

p=> L)Wyl D =1, ;>0 VjeN,

JEN JEN
Notation Chapter 4

e Let & be a compact graph composed by N edges {e;};j<n of lengths
{L;}jen connecting M vertices {v;}1<j<nm. Let

Ve:i={v € {vjhcjcm|Ale € {ej}j<n v ee},  Vii={vih<j<m\Ve.

We respectively call V., and V; the external and the internal vertices
of 4. For each j < M,

N(vj) := {l e{l,.,N}|vje el}, n(v;) == |N(vj)],
where | N (v;)| represents the cardinality of the set N(v;).

e Each v € V; is equipped with (NK) (Neumann-Kirchhoff boundary
conditions) when for every f € D(A),

f is continuous in v,
0,
ZeEN(v) Tafe(v) =0.

The derivatives are assumed to be taken in the directions away from
the vertex (outgoing directions).

(NK) : {

Each v € V is equipped (D) when is equipped with Dirichlet boundary
conditions. In addition, v is equipped with (N) when it is equipped
with Neumann boundary conditions.
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e We say that a graph ¢ is equipped with (D)-(NK) (or (N)-(NK))
when every v € V, is equipped with (D) (or (NV)) and every v € V; is
equipped with (NK).

We say that a graph ¢ is equipped with (D/A)-(N'K) when, for every
v € Vg, v is equipped with (D) or (N) and every v € V; is equipped
with (NVK).

e We introduce the following space for s > 0 ( [-] denote the entire part
of a number)

Hipyo = {w € H* | 92™) € C°(%,C) ¥n e NU{0}, n < [(s+1)/2];

3 92 () =0, Vo e Vi, Vne NU{0}, n < [3/2]}.
eeN(v)

e For every N € N, we define AL(N) C (R*)V as follows. For every
{L;}j<n € AL(n), the numbers {1,{L;};j<n} are linearly indepen-
dent over Q and all the ratios Ly /L; are algebraic irrational numbers.

e We usually denote ¢ := {¢i}ren C {dx}ren an orthonormal system
of eigenfunctions of A corresponding to the eigenvalues {pj}ren C

{ Mk }ren, i.e. Apy = prpr and @ # 0.

e Asin [Tri95, Definition, Chapter 1.9.2], we define [-, ]y the complex
interpolation for 0 < 6 < 1.

Notation Appendix A

o Let Z* =7\ {0} and {\g}rez- be pairwise distinct. We assume that
there exists M € N and § > 0 such that

inf |\ — Ai| > oM.
(24) Jnf Ak = Akl = OM

From (A.10), we notice that there does not exist M consecutive k € Z*
such that
‘)\k+1 - Ak‘ < (5

This fact leads to a partition of Z* in subsets that we call F,, with
m € Z*. The partition defines an equivalence relation in Z* such
that k,n € Z* are equivalent if and only if there exists m € Z* such
that k,n € E,,. The sets {E, }mez are the corresponding equivalence
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classes and i(m) := |Ey,| < M — 1. For A := {\ }iez+, we define the
vectors

A" = {\}ieE,, m e Z".

Let h = {hj}i<iom) € Ci(m). We denote Fy,(h) : Cim) — Cim) the
matrix with elements, for every j, k < i(m),

IT 1z (hj—h)~, J<k,
~ 1<i<k
Fm;j,k(h) =931, j=k=1,
0, j>k.

On the Hilbert space ¢2(C), we introduce the linear operator F(A) :
D(F(A)) — £?(C) as follows. For every k € Z*, we know that there
exists m(k) € Z* such that k € E,, ;) and, for every x = {x}cz+ €
D(F(A)), we define

(F(A)); = (B (A" O)x®)

H(A) == D(F(A)) = {x = {zx}rez- € *(C) : F(A)x € *(C)}.
When H(A) is dense in £?(C), we can define
F(A)*

the unique adjoint operator of F'(A) of domain H(A)* := D(F(A)*).
We know that, for k € Z*, there exists m(k) € Z* such that k € E,, ).
The operator F/(A)* is the infinite matrix such that, for every sequence
X = {2k }rez- € H(A)* and k € Z*,

(F(A)%);, = (B (A7 F) B

where Fj,, 1) (A™*))* is the transposed matrix of Fm(k)(Am(k)).
For T' > 0, we introduce

e:={eM'}jez € L*((0,T),C), EB:i={&}rezr = F(A)%e.

Let s be an Hilbert space. The families of functions { fx }xez+, {9k ez C
¢ are biorthogonal if

(fr>91) 0 = Ok Vk,l € Z*.
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ECOLE DOCTORALE
CARNOT - PASTEUR

Titre : Analyse de la contrdlabilité de systéme bilinéaires quantiques fermés

Mots clés : EDP - I'équation de Schrédinger — contrdle quantique

Résumé : La premicre partic de la thése est dédiée a la
controlabilité¢ exacte globale de 1'équation de Schrodinger
bilinéaire (BSE). Nous montrons comment construire un
voisinage de toute fonction propre du Laplacien Dirichlet ou la
controlabilité exacte locale est satisfaite a un temps explicit.
Ensuite, pour tout couple de telles fonctions propres, nous
étudions comment construire des contrdles et des temps tels que
le flot de (BSE) envoie la premiére sur un voisinage de la
seconde arbitrairement petit. Finalement, en regroupant les
deux résultats précédents, nous définissons une dynamique
entre états propres et nous fournissons un temps explicite requis
pour atteindre I'état propre ciblé.

Dans la deuxiéme partie, nous étudions la controlabilité exacte
globale en projection d'une infinité d'équation de type (BSE) et
nous prouvons la controlabilité exacte locale en projection a des
termes de phases prés pour tout temps positif. Dans la
démonstration, nous adoptons différentes techniques provenant
de la méthode du retour de Coron habituellement utilisée pour
ces types de résultats. La principale nouveauté de ce travail est
le fait que nous fournissons un ensemble de conditions en le
champ de contrdle, impliquant la validité du résultat. Pour un
champs de contréle donné, nous pouvons vérifier si ces
hypothéses sont satisfaites.

La troisieme partie du travail traite de la controlabilité de
I'équation de Schrodinger bilinéaire (BSE) sur des graphes
compactes. Considérer (BSE) sur un telle structure est utile
quand nous devons étudier la dynamique des paquets d'ondes
sur un modele de type graphes. Nous étudions les hypothéses
sur le graphe et le champ de contrdle impliquant que (BSE)
soit bien posée dans des espaces appropriés que nous
caractérisons en utilisant les méthodes d'interpolation. Ensuite,
nous fournissons la controlabilité exacte globale dans ces
espaces en ¢tudiant comment la structure du graphe et des
conditions de bords affectent le résultat. Nous donnons
également des exemples de graphes et de champ de contréle,
tels que les hypothéses spectrales de la controlabilité exacte
globale soient vérifiées, par exemple les graphes en étoile,
graphe dit « tétard » et graphe a double anneau. Enfin, quand
nos hypothéeses de la contrdlabilité exacte globale ne sont pas
vérifiées, nous définissons une notion plus faible de
contrdlabilité appelée « controlabilité énergétique » qui assure
l'existence d'un ensemble d'états liés pour lesquels la
contrblabilité exacte est vérifiée. En d'autres termes, nous
prouvons l'existence de niveaux d'énergie pour lesquelles il est
possible de changer 1'état du systeme. Cette technique permet
de traiter un grand nombre de problémes intéressants. En effet,
pour des graphes complexes, il n'est pas possible de vérifier
les hypothéses spectrales donnant la controlabilité exacte
globale. Cependant, la contrdlabilité énergétique permet
d'obtenir des résultats intéressants en regardant seulement des
sous-graphes particuliers.
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Resume : The first part of the research is dedicated to the
global exact controllability of the bilinear Schrodinger
equation (BSE). We show how to construct a neighborhood of
some eigenfunctions of the Dirichlet Laplacian where the local
exact controllability is satisfied in a specific time. Then, for
any couple of those eigenfunctions, we study how to construct
controls and times such that the relative dynamics of (BSE)
drives the first close to the second as much desired. Third, by
gathering the two previous results, we define a dynamics
steering eigenstates in eigenstates and we provide an explicit
time required to reach the target.

In the second part, we study the simultaneous global exact
controllability in projection of infinitely many (BSE) and we
prove the simultaneous local exact controllability in projection
up to phases for any positive time. In the proof, we use
different techniques from the Coron's return method usually
adopted for those types of results. The main novelty of the
work is the fact that it provides a set of conditions implying
the validity of the result. Given any control field, one can
verify if those assumptions are satisfied

The third part of the work treats the controllability of the
bilinear Schrodinger equation (BSE) on compact graph.
Considering (BSE) on such a complex structure is useful when
one has to study the dynamics of wave packets on graph type
model. We investigate assumptions on the graph and on the
control field implying the well-posedness of (BSE) in suitable
spaces that we characterize by providing peculiar interpolation
features. Then, we provide the global exact controllability in
those spaces by studying how the structure of the graph and
the boundary conditions affect the result. We also provide
examples of graphs and control fields so that the spectral
assumptions of the global exact controllability are satisfied,
e.g. star graphs, tadpole graphs and double-ring graphs.
Afterwards, when the hypothesis for the global exact
controllability fail, we define a weaker notion of
controllability, the so-called “energetic controllability” which
ensures the existence of a set of bounded states for which the
exact controllability is verified. In other words, we prove the
existence of energy levels in which it is possible to change the
energy of the system. This technique allows to treat a large
number of interesting problems. Indeed, for complex graphs,
it is not possible to verify the spectral hypothesis of the global
exact controllability. However, the energetic controllability
allows to obtain interesting results only by looking for
particular substructure contained in the graph.
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