Electrodes à base d’aérogels de SnO2, résistantes à la corrosion pour la réduction de l’oxygène dans les piles à combustible à membrane échangeuse de protons (PEMFC) - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Corrosion resistive tin oxide aerogels based electrodes for the oxygen reduction reaction in proton exchange membrane fuel cells (PEMFC)

Electrodes à base d’aérogels de SnO2, résistantes à la corrosion pour la réduction de l’oxygène dans les piles à combustible à membrane échangeuse de protons (PEMFC)

Résumé

In order to tackle the problem of low durability, tin dioxide aerogels were studied to replace carbon black as a catalyst support in proton exchange membrane fuel cells (PEMFCs). SnO2 is a well-known n-type semi-conductor whose electronic conductivity can be improved by doping with hypervalent cations such as Nb5+, Ta5+ or Sb5+. In addition, as a catalyst support, this material has to develop a high specific surface area with adequate mesoporous morphology to allow both good dispersion and activity of the catalyst (Pt). To this end, our objective was to develop doped SnO2 aerogels. In this study, SnO2 based-aerogels were successfully synthesized following an acid-catalyzed sol–gel route starting with metal alkoxides as precursors. Our materials have shown a very interesting airy morphology with among other a reasonable specific surface area (80–90 m2/g). Moreover, all Sb-doped aerogels exhibited significant improvement in electronic conductivity and reach a value of around 0.12 S/cm. Platinum nanoparticles were then deposed on the Sb doped SnO2 aerogel surface using three different methods. The method based on chemical reduction using a polyol route provided the best result in term of mass catalytic activity measured by RDE (Is = 32 mA/mgPt). This value is even higher than that of the reference electrocatalyst TEC10E40E (Is = 27 mA/mgPt). Sb doped SnO2 aerogel based MEAs have exhibited a very good durability at high potentials.
Afin d’augmenter la durabilité des PEMFC, des aérogels de dioxyde d'étain ont été étudiés pour remplacer le carbone comme support de catalyseur cathodique. SnO2 est un semi-conducteur de type n dont la conductivité électronique peut être améliorée en le dopant par des cations hypervalents tels que Nb5+, Ta5+ ou Sb5+. Pour être un support de catalyseur efficace, le matériau doit aussi posséder une surface spécifique élevée avec une morphologie mésoporeuse pour permettre à la fois la dispersion et l'activité du catalyseur (Pt). À cette fin, notre objectif était de développer des aérogels de SnO2 dopé. Dans cette étude, les aérogels ont été synthétisés par voie sol-gel en milieu acide à partir d’alcoxydes métalliques comme précurseurs. Nos matériaux présentent une morphologie aérée très intéressante avec une surface spécifique relativement élevée (80-90 m2/g). De plus, tous les aérogels SnO2 dopés au Sb ont présenté une amélioration très significative de la conductivité électronique pour atteindre une valeur d’environ 0,12 S/cm. Les nanoparticules de platine ont ensuite été déposées sur la surface de l'aérogel SnO2 dopé Sb en utilisant trois méthodes différentes. La méthode basée sur la réduction chimique par l’intermédiaire d’un polyol fournit le meilleur résultat en terme d'activité catalytique massique, mesurée en électrode à disque tournant (Is = 32 mA/mgPt). Cette valeur est, par ailleurs, encore plus élevée que celle de l'électrocatalyseur TEC10E40E (Is = 27 mA/mgPt). Les AMEs intégrant notre aérogel SnO2 dopé au Sb ont enfin montré une très bonne durabilité à des potentiels élevés.
Fichier principal
Vignette du fichier
2017PSLEM060_archivage.pdf (8.25 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01830433 , version 1 (05-07-2018)

Identifiants

  • HAL Id : tel-01830433 , version 1

Citer

Guillaume Ozouf. Electrodes à base d’aérogels de SnO2, résistantes à la corrosion pour la réduction de l’oxygène dans les piles à combustible à membrane échangeuse de protons (PEMFC). Matériaux. Université Paris sciences et lettres, 2017. Français. ⟨NNT : 2017PSLEM060⟩. ⟨tel-01830433⟩
265 Consultations
707 Téléchargements

Partager

Gmail Facebook X LinkedIn More