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General Remarks 
The work presented in this dissertation was carried out in the Laboratoire Hétérochimie 

Fondamentale et Appliquée at the Université de Toulouse III - Paul Sabatier under the guidance 

of Dr. Nicolas Mézailles and Dr. Noël Nebra-Muñiz from January 2014 to February 2017. 

The research presented in this thesis entitled “Nickel Mediated Negishi and Oxidative 

Couplings” aims at the formation of new C-C bonds by using chelated nickel complexes. This 

work is divided in two parts and consists overall of six chapters. The first part (Chapter 1 and 

2) is dedicated to nickel(bis-phosphine) catalyzed Negishi cross couplings whereas the second 

part investigates the activation and functionalization of CO2 with (bis-phosphine) and (bis-

NHC)-nickel complexes (Chapter 3 - 6). 
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Experimental conditions and theoretical studies 

1. General procedures 

All reactions were carried out under an atmosphere of dry argon using standard Schlenk 

techniques or in a nitrogen-filled MBraun LabStar glovebox. Acetonitrile, diethyl ether, THF, 

pentane and toluene were taken from a MBraun SPS-800 solvent purification system. 

Acetonitrile, methanol and water were degassed by bubbling argon and all the other solvents 

were degassed by using the freeze-pump-thaw procedure. [d8]-THF, C6D6, CD3CN and MeOD 

were degassed and stored over 4 Å molecular sieves.  

The chemicals were purchased in reagent grade purity from Acros, Alfa-Aesar, Cy-tech and 

Sigma-Aldrich and were used without further purification. CO, CO2 and ethylene were 

purchased from Air Liquide. 

 

2. NMR spectroscopy 

Solution 1H, 13C, 11B, 19F and 31P NMR spectra were recorded at RT on Bruker Avance 300, 

400 and 500 MHz spectrometers at the indicated frequencies. Chemical shifts (δ) are expressed 

in parts per million. 1H and 13C chemical shifts are referenced to residual solvent signals. 11B, 
19F and 31P chemical shifts are relative respectively to BF3.OEt2, CFCl3 and 85 % H3PO4 (aq.) 

external references. The following abbreviations are used: br, broad; s, singlet; d, doublet; t, 

triplet; quint, quintuplet; sext, sextet; sept, septuplet; m, multiplet. 1H and 13C resonance signals 

were attributed by means of 2D HSQC and HMBC experiments. 

 

3. IR spectroscopy  

IR spectra were recorded on a Varian 640 Fourier Transform Infrared Spectrometer.  

 

4. X-ray crystallography 

Crystallographic data were collected at 193(2) K on a Brucker-AXS Kappa APEX II Quazar 

diffractometer or on a Bruker D8-Venture Photon 100 diffractometer, with Mo Kα radiation (λ 

= 0,71073 Å) using an oil-coated shock-cooled crystal. The crystals were selected under the 
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microscope using Stalke’s X-Temp 2 device. [1] Phi- and omega-scans were used. Space groups 

were determined on the basis of systematic absences and intensity statistics. Semi-empirical 

absorption correction was employed. [2, 3] The structures were solved by direct methods 

(SHELXS-97), [4] and refined using the least-squares method on F². All non-H atoms were 

refined with anisotropic displacement parameters. Hydrogen atoms were refined isotropically 

at calculated positions using a riding model with their isotropic displacement parameters 

constrained to be equal to 1.5 times the equivalent isotropic displacement parameters of their 

pivot atoms for terminal sp3 carbon and 1.2 times for all other carbon atoms. 

The thermal ellipsoids determined by single crystal X-ray diffraction in this thesis are at the 

50 % probability level. The following color code indicating the respective atom type in the 

depicted molecular structures is used throughout the manuscript: hydrogen: white, carbon: grey, 

nitrogen: blue, oxygen: red, phosphorus: orange, nickel: dark green, aluminium: light pink. 

 

5. Theoretical calculations  

Theoretical calculations were performed by Dr. Nicolas Mézailles (Toulouse) at the DFT level 

theory using the Gaussian 09 program package. [5] Basis sets and functionals are detailed in the 

respective context.  
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1 State of the art 

1.1 Palladium catalyzed Csp2-Csp2 Negishi cross couplings 

1.1.1 Advantages of Negishi cross coupling reactions 

Cross couplings reactions have advanced to a major tool in synthetic organic chemistry and 

offer a very efficient method for C-C or C-heteroatom bond formation. [1] Cross coupling 

reactions find important applications among others in the pharmaceutical [1, 2] and agrochemical 

industries as well as in material science for the preparation of polymers [3], liquid crystals [4] 

and advanced materials. Richard Heck, Ei-ichi Negishi [5] and Akira Suzuki [6] were rewarded 

in 2010 with the Nobel Prize for their pioneering work in the field. More than 40 years after 

their discovery, the research of always more efficient catalytic systems, which couple ever more 

challenging substrates still remains a very active field. 

Metal catalyzed cross coupling reactions consist in the reaction between an electrophile, 

commonly an aryl halide and an organometallic species that acts as a nucleophile, as shown in 

Scheme 1.1. The most active systems known to date involve palladium catalysts. [7, 8] 

 

 

Scheme 1.1: General scheme of cross coupling reactions. 

 

Among them, the Negishi reaction employs zinc derivatives as nucleophiles, which present 

several advantages. First of all, zinc derivatives have a relatively low toxicity and a very large 

functional group tolerance compared to organolithium and Grignard reagents. [9, 10] 

Furthermore, a broad scope of zinc compounds is now available. Knochel especially contributed 

to the development of synthetic strategies to access a wide variety of derivatives, which are 

increasingly getting commercialized. [9] Additionally, Negishi couplings usually require mild 

conditions [9, 10] and can be performed with several transition metals such as palladium and 

nickel, but also less frequently used iron and cobalt. 
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1.1.2 Advances in palladium catalyzed Csp2-Csp2 Negishi cross couplings 

Since the first report of a palladium catalyzed cross coupling between aryl halides and zinc 

derivatives by Negishi in 1977, [11] the field has attracted a lot of attention. [9] 

 

 

Scheme 1.2: First palladium catalyzed Negishi cross coupling. [11]  

 

Great progress has been made in the Csp2-Csp2 coupling of aryl chlorides starting from the early 

2000s. In 2001, Fu reported the first general procedure for the Negishi cross coupling between 

aryl chlorides and aryl zinc chlorides. [12] The commercially available and air stable palladium 

catalyst [Pd(P(tBu)3)2] successfully promotes the coupling of ortho substituted, heteroaryl and 

vinyl substrates at only 2 mol% of catalyst loading in a mixture of THF and NMP at 100 °C, 

with TON greater than 3000. [12] 

 

Cl

+

ZnCl
2 mol% [Pd(P(tBu)3)2]

THF/NMP, 100 °C

= 76 - 97 %

R1
R1

R2

R2

 

Scheme 1.3: First general procedure for the palladium catalyzed Negishi cross coupling of aryl 

chlorides with zinc derivatives reported by Fu. [12] 

 

The following procedures developed by Buchwald [13, 14] and Organ [15, 16] count to the most 

efficient and general systems known to date for the palladium catalyzed Negishi coupling of 

aryl chlorides.  

The [Pd2(dba)3]/RuPhos system [13] and the palladacycle precatalyst supported by the 

dialkylbiaryl monophosphine XPhos [14] designed by Buchwald couple a wide range of 

otherwise challenging heteroaryls and functionalized substrates under mild conditions. 

[Pd2(dba)3]/RuPhos allows for efficient production of biaryls at 0.01 mol% catalyst in THF at 

70 °C and led for the first time to a tetra ortho substituted product. [13] The catalyst loading 
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could even be dropped down to 0.025 - 0.050 mol% at RT with the XPhos ligated palladacycle 

for the coupling of aryl halides, as shown in Scheme 1.4. [14] 

 

 

Scheme 1.4: Highly efficient Negishi cross coupling catalyzed by a XPhos palladacycle precatalyst 

designed by Buchwald. [14] 

 

While Buchwald used a phosphine derived catalyst, Organ synthesized in 2006 the easily 

affordable, air stable and highly active NHC based palladium precatalyst PEPPSI-IPr, [15] which 

enables Csp2-Csp2, Csp2-Csp3 and Csp3-Csp3 cross couplings of a very broad scope of iodide, 

bromide, chloride, triflate, tosylate and mesylate substrates.  

 

 

Scheme 1.5: Highly efficient Pd-PEPPSI-IPr and Pd-PEPPSI-IPent catalyzed Negishi cross coupling 

between aryl and heteroaryl bromides and chlorides and aryl zinc derivatives. [15, 16] 
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The reaction has a large functional group tolerance and affords the corresponding biaryls in 

high yields. [15, 17] The related PEPPSI-IPent precatalyst disclosed in 2010, can even couple 

some aryl and heteroaryl bromides and chlorides at 0 °C and tolerates strongly sterically 

hindered substrates yielding tetra ortho substituted biaryls. [16] 

All the examples presented above support that the palladium catalyzed Negishi cross coupling 

has advanced to a very powerful tool in the 2000s, that is now widely applied in modern 

synthetic organic chemistry. 

 

1.2 Nickel catalyzed Csp2-Csp2 Negishi cross couplings 

1.2.1 Advantages and challenges of nickel chemistry 

Palladium mediated reactions and especially cross coupling processes have been extensively 

investigated and are well understood but the corresponding nickel chemistry remains far less 

explored. 

Concern can be raised about the cost and low abundance of palladium. Nickel is therefore often 

considered as a cheap alternative to noble metal chemistry. Indeed, bulk nickel costs about 2000 

times less than palladium [18] and most Ni(II) precursors are two orders of magnitude cheaper 

than their palladium analogues. Nevertheless, some Ni(0) sources such as commonly used 

[Ni(COD)2] can still be quite expensive.  

Nickel as a first row transition metal possesses a small atomic radius and usually short metal-

ligand bonds. Overall, nickel has a rather hard character compared to its heavier group 10 

counterparts. [18]  

Furthermore, as a late transition metal, nickel is very electron rich and much more 

electropositive than palladium. This makes oxidative additions more favorable, [18, 19] even 

allowing insertion of nickel in otherwise quite unreactive derivatives such as alkyl halides, 

esters and ethers. [18, 20] Additionally, Ni-C bond dissociation energies (BDE) lie in general 

lower than Pd-C BDEs, also resulting in low activation barriers for reductive eliminations. [19] 

However, the eliminations are often only slightly exothermic. In contrast reductive eliminations 

on palladium complexes require higher activation energies but are strongly exothermic, 

rendering the processes highly favorable and irreversible. [19] 
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Moreover, more oxidation states are readily available to nickel complexes. Whereas most 

palladium cross coupling mechanisms are polar and involve exclusively Pd(0)/Pd(II) or 

Pd(II)/Pd(IV) intermediates, stable nickel compounds are commonly found in oxidation states 

ranging from 0 to +III. [18, 19] Nickel has also a greater propensity to homolytic bond cleavage 

than palladium, allowing SET and radical processes. [18, 19] A wide variety of mechanisms has 

thus been disclosed, with Ni(I)/Ni(III) cycles being predominant for the couplings of aryl 

halides with mono-phosphine substituted nickel complexes. [21, 22] Ni(0)/Ni(II) cycles are 

observed for cross couplings with phenol derivatives [23, 24] as well as for the amination of aryl 

chlorides using [(BINAP)Ni(η2-NC-Ph)]. [25] Even Ni(0)/Ni(I)/Ni(II) reaction pathways have 

been reported for the Negishi cross coupling of alkyl halides [26, 27] and an only Ni(I) based 

reactivity for the reductive cleavage of aryl ethers with silanes. [28]  

Nickel mediated reactions are therefore primarily cost-efficient compared to palladium 

catalysis but even more importantly they provide an extremely rich and active chemistry, 

despite the carcinogenic character of numerous nickel complexes. It might be difficult to 

predict, to control and to understand nickel chemistry but when it is fine-tuned it turns out very 

efficient and can be able to perform challenging reactions. [19]  

 

1.2.2 Advances in nickel catalyzed Csp2-Csp2 Negishi cross couplings 

The first nickel catalyzed Csp2-Csp2 Negishi cross coupling was reported as early as 1977. By 

employing 5 mol% of the Ni(0) precursor [Ni(PPh3)4] generated from commercially available 

[Ni(acac)2], PPh3 and DIBALH, Negishi managed to couple aryl halides with aryl zinc 

derivatives in good to excellent yields within 1 - 2 h. at RT. [11] Since then the field has been 

ever growing [10] and this paragraph will focus only on the coupling of aryl halides.  

 

 

Scheme 1.6: First nickel catalyzed Negishi cross-coupling reported in 1977. [11] 

 

Research aimed at using cheap and largely available electrophilic coupling partners as well as 

lowering the catalyst loadings. 
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On one side, lots of efforts were especially oriented towards the coupling of cheaper and readily 

available aryl chlorides in replacement for aryl bromides and iodides. Aryl chlorides are known 

to be more difficult to couple because of the poorer reactivity of C-Cl bonds compared to C-Br 

and C-I bonds. Miller reported in 1998 the first Negishi coupling of aryl chlorides catalyzed by 

2 mol% of [Ni(acac)2]/dppf. [29] Contributions by de Vries [30] and Kappe [31] followed in 2002 

and 2004. 

On the other side, nickel catalyzed Negishi reactions have become increasingly efficient in the 

last ten years, now being able to compete with their palladium counterparts. [10] Thorough ligand 

optimization initiated by Knochel in 2005 - 2006 allowed for the drastic lowering of the 

catalytic charge. [32, 33] The combination of 0.05 mol% of [NiCl2], 0.2 mol% of diethylphosphite 

(EtO)2P(O)H and 0.2 mol% of DMAP efficiently catalyzes a broad scope of aryl, heteroaryl 

and alkenyl bromides, sulfonates and activated chlorides in a mixture of THF and N-

ethylpyrrolidinone (NEP) at RT. The products are obtained in good yields with only small 

amounts of homocoupled side product within 1 - 48 h. [29, 30] 

 

 

Scheme 1.7: Negishi cross coupling procedure developed by Knochel using a combination of [NiCl2], 

(EtO)2P(O)H and DMAP. [32, 33] 

 

Extensive investigations led by Wang between 2007 and 2012 further disclosed the ability of 

pincer complexes to catalyze Negishi cross couplings involving chloro arenes and chloro 

pyridines. [34]. The first efficient and systematic coupling of aryl chlorides, presented in Scheme 

1.8, was reported in 2007. 0.01 mol% of nickel amido pincer complexes in a 1:1 mixture of 

THF and NMP were sufficient to synthesize the corresponding biaryls in good to excellent 

yields at 70 °C. The reaction tolerates a large variety of functional groups except nitro and 

aldehyde substituents. Higher catalytic charges as well as higher temperatures were required to 

couple sterically hindered ortho derivatives with zinc reagents in good yields. [35] Subsequently, 

Wang reported Negishi couplings between aryl chlorides and aryl zinc chlorides under similar 

conditions using various nickel pincer complexes [36 - 39], while Chen disclosed the first nickel 

NHC catalyzed Negishi cross coupling. [40] 
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Scheme 1.8: Nickel amido pincer complexes for the Negishi cross coupling between aryl chlorides 

and phenyl zinc chloride derivatives. [35] 

 

In 2011 Frech also described a very general and efficient procedure for the nickel catalyzed 

Negishi cross-coupling using diarylzinc reagents, in which both aryl moieties are involved in 

the reaction. [41] The highly active aminophosphine based nickel catalyst is generated by mixing 

NMP solutions of [NiCl2] and 1,1’,1’’-(phosphanetriyl)tripiperidine in air at RT. A very broad 

scope of activated, non-activated and sterically hindered ortho substituted aryl bromides and 

chlorides and even heterocyclic substrates were all coupled within 2 h. at 60 °C using 0.1 mol% 

catalyst. The catalytic loading could even be lowered down to 0.01 - 0.05 mol% and/or RT 

conditions for several substrates. High conversions and high yields were almost commonly 

obtained. Compared to other systems no inert atmosphere is required as well as no excess of 

ligand or other additives making it the most efficient system nowadays. [41]  

 

X

+
R1
X = Br, Cl

2 Zn

R2

0.1 mol% [NiCl2]
0.2 mol% L

NMP / THF (4:1)
60 °C, 0.5 - 2 h.

2
R1 R2

= 54 - 98 %

P
N

N N

L =

R2

 

Scheme 1.9: General and efficient Negishi cross coupling methodology developed by Frech relying on 

an aminophosphine nickel catalyst. [41] 
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More recently, the Negishi cross coupling between aryl fluorides and zinc reagents has also 

been achieved by Nakamura by combining [Ni(acac)2] with a diphosphine bearing an alkoxide 

moiety (POP) [42] as well as by Love [43] and Wang [44] using respectively [Ni(PEt3)2Cl2] and 

[Ni(PCy3)2Cl2]. 

The systems presented above count to date to the most general and efficient ones for the nickel 

catalyzed Negishi cross-couplings. Yet, the reaction mechanisms underlying these processes 

remain largely unknown.  

 

1.2.3 Mechanisms of nickel catalyzed Negishi cross-couplings 

Several mechanistic studies on nickel catalyzed Negishi cross couplings have been undertaken. 

However, they still remain scarce partially due to the tendency of nickel to undergo SET and to 

generate paramagnetic species, which complicates the investigations. As previously described 

(1.2.2) a large variety of ligands, nickel precursors and complexes are able to promote 

efficiently Negishi couplings and provide a great multiplicity of possible mechanisms to 

achieve the transformation. Nevertheless, the general mechanism for nickel catalyzed Negishi 

processes should always involve as for palladium at least three elementary steps, which are 

oxidative addition, transmetallation and reductive elimination. 

The mechanism of the nickel catalyzed Csp2-Csp2 coupling between the mono-phosphine 

substituted oxidative addition product [(PEt3)2Ni(Ar)(Br)] and aryl bromides was examined as 

early as 1979 by Kochi. [21] The reaction is initiated by a SET from the trans-arylnickel(II) 

halide complex to a free aryl bromide and proceeds then through Ni(I) and Ni(III) intermediates 

as shown in Scheme 1.10. [21] 
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Scheme 1.10: Radical chain mechanism for the coupling of aryl halides in the presence of mono-

phosphines. [21] 

 

During the first step of the mechanism, the active catalyst [(PEt3)3NiIBr] undergoes oxidative 

addition of an aryl bromide, producing the Ni(III) intermediate [(PEt3)2NiIII(Ar)(Br)2]. 

Subsequently, a ligand transmetallation between the arylnickel(III) complex and 

[(PEt3)2NiII(Ar)(Br)] leads to a new bis-arylNi(III) intermediate [(PEt3)2NiIII(Ar)2(Br)]. Finally, 

reductive elimination releases the biaryl and regenerates the catalyst [(PEt3)3NiIBr]. [21] 

Additionally, Colon and Kelsey investigated in 1986 the nickel catalyzed coupling of aryl 

chlorides to symmetric biaryls in the presence of a reducing metal such as zinc. [22] Monodentate 

triarylphosphines and especially PPh3 turned out to be the best ligands for this reaction, where 

zinc plays a major role as quantitative coupling cannot proceed in its absence. [22] 
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Scheme 1.11: Nickel catalyzed coupling of aryl chlorides in the presence of zinc. [22] 

 

The mechanism of the reaction slightly differs from the previous one but still predominantly 

involves Ni(I) and Ni(III) intermediates. The key step of this reaction is the reduction of an 

arylnickel(II)halide by zinc to prepare the catalytically active arylnickel(I) species 

[(PPh3)3NiI(Ar)]. The reaction does not seem to involve any transmetallation between nickel 

complexes but instead zinc mediated reduction processes. [22] A simplified catalytic cycle is 

depicted in Scheme 1.12. 
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Scheme 1.12: Ni(I)/Ni(III) based mechanism for the coupling of aryl chlorides to biaryls in the 

presence of zinc. [22] 

 

Furthermore, Wang [35] and Frech [41] also postulated radical chain processes and Ni(I)/Ni(III) 

based mechanisms for Negishi cross couplings relying respectively on nickel amido pincer [35] 

and [NiCl2]/1,1’,1’’-(phosphanetriyl)tripiperidine [41] catalysts.  

 



State of the art 

 

17 
 

As mechanistic investigations on nickel catalyzed Negishi cross coupling processes are still 

relatively rare, [10, 45] the studies on closely related Csp3-Csp3 couplings are also presented here. 

Two systems involving different types of pyridine containing ligands have been thoroughly 

investigated. 

First of all, Vicic promoted alkyl-alkyl Negishi couplings between alkyl iodides and alkyl zinc 

bromides via the terpyridine nickel complex [(terpy)Ni(Me)]. [46]  

 

 

Scheme 1.13: Vicic conditions for the Csp3-Csp3 Negishi cross coupling catalyzed by 

[(terpy)Ni(Me)]. [46, 47] 

The analysis of the side products of the reaction evidences a dimerization process of the 

employed alkyl halides. Radical clock experiments converting iodomethylcyclopropane into 

olefinic products, additionally point towards a radical based mechanism. [46] The isolation and 

characterization of several [(terpy)Ni] complexes lead to the proposed catalytic cycle in 

Scheme 1.14. [26, 46, 47]  
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Scheme 1.14: Catalytic cycle proposed on the basis of experimental investigations for the coupling of 

alkyl iodides with alkyl zinc bromides using [(terpy)Ni(Me)] as catalyst. [26, 46, 47] 

 

EPR measurements and DFT calculations evidence that catalytically active paramagnetic 

[(terpy)Ni(Me)] is a ligand based radical best described as a Ni(II)-methyl cation with a reduced 

anionic ligand rather than a Ni(I) complex. [26] In the presence of an alkyl halide, SET generates 

[(terpy)NiII(Me)]+X- together with a free alkyl radical. The transmetallation of 

[(terpy)NiII(Me)]+I- with alkyl zinc reagents leading to dialkyl Ni(II)  [(terpy)NiII(Me)(R)] 

intermediates could be ruled out. [26, 47] Recombination of the radical with the nickel complex 

leads to Ni(III) intermediate [(terpy)NiIII(Me)(R)], from which the cross coupled product can 

be reductively eliminated.  [(terpy)NiI(X)] [46] which is generated alongside in the process reacts 

then with the transmetallating alkyl zinc derivative to regenerate [(terpy)Ni(Me)]. [26] Overall, 

the oxidative addition occurs after the transmetallation. Ni(I), Ni(II) and Ni(III) intermediates 

are all involved in this catalysis. DFT calculations performed by Phillips support the feasibility 

of this catalytic cycle with relatively low activation barriers. [48] 
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Besides, Fu developed a powerful procedure for the coupling of alkyl electrophiles with zinc 

derivatives relying on a nickel/pybox catalyst. [27, 49, 50, 51] Based on these results, Cárdenas 

studied in 2007 the [Ni(Py)4Cl2]/(S)-(sBu)-pybox catalyzed cascade cyclization-cross coupling 

of secondary iodoalkanes with alkyl zinc halides and provided strong experimental and 

computational evidence for a radical based mechanism. [52] Proofs include among others 

stereoselectivity studies, radical scavenging and radical clock experiments. [52] In addition, the 

mechanism of the [Ni]/pybox catalyzed stereoconvergent Negishi arylation of racemic 

propargylic bromides, experimentally investigated by Fu in 2014, [27] displays strong 

similarities with the mechanism earlier reported by Vicic. [26]  

 

Overall this literature survey shows that most nickel catalyzed Csp2-Csp2 and Csp3-Csp3 Negishi 

cross couplings tend to favor SET and radical processes which mainly generate Ni(I) and Ni(III) 

intermediates over polar Ni(0)/Ni(II) mechanisms. 

 

1.3 Research objectives 

The following chapter will be dedicated to the investigation of the Negishi cross coupling 

between aryl chlorides and phenyl zinc chloride derivatives catalyzed by [(dcpp)Ni] based 

complexes (dcpp = 1,3-bis(dicyclohexylphosphino)propane). 

 

 

Scheme 1.15: [(dcpp)Ni] based Negishi catalysis between aryl halides and phenyl zinc chloride 

derivatives. 

  

The chelating bis-phosphine dcpp is the ligand of choice for this study. Indeed, strongly 

donating bis-dialkylphosphines are well known to stabilize unsaturated Ni(0) complexes unlike 

bis-diarylphosphines like dppe (dppe = 1,2-bis(diphenylphosphino)ethane) and dppp 

(dppp = 1,3-bis(diphenylphosphino)propane). Moreover, the propyl bridge enforces a large bite 

angle and provides an enhanced flexibility of the ligand around the nickel center, which further 

helps stabilizing Ni(0) complexes and intermediates.  
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Scheme 1.16: Properties of the [(dcpp)Ni] system. 

 

The major motivation behind this study is to develop a new, mild and efficient nickel catalysis 

for the synthesis of asymmetric biaryls and to understand the underlying mechanism. It is of 

great interest to determine whether the use of a bidentate ligand favors a Ni(0)/Ni(II) 

mechanism analogous to palladium systems or a Ni(I)/Ni(III) mechanism as previously reported 

for mono-phosphine based cross couplings with aryl halides. [21, 22] Scheme 1.17 represents both 

possible catalytic cycles. This mechanistic investigation would help to shed light into complex 

and unpredictable nickel chemistry and to improve the design of potentially new catalysts for 

even more efficient processes. This is achieved by performing stoichiometric reactions and 

catalytic tests with nickel precursors in different oxidation states. The experimental results are 

supported by DFT calculations carried out by Dr. Nicolas Mézailles at the LHFA (Toulouse). 

 

Ni(0)/Ni(II) catalytic cycle Ni(I)/Ni(III) catalytic cycle 

   

Scheme1.17: General Ni(0)/Ni(II) and Ni(I)/Ni(III) cross-coupling mechanisms. 
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2. (Bis-phosphine)nickel-catalyzed Negishi cross coupling 

2.1 Synthesis of precatalyst [(dcpp)nickel(toluene)] II-4 

2.1.1 Synthesis of Ni(II) precursor [(dcpp)NiCl2] II-3 

The [(dcpp)NiCl2] complex II-3 is readily synthesized at RT by the stoichiometric reaction 

between [(DME)NiCl2] II-2 and the bis(dicyclohexylphosphino)propane ligand II-1 (dcpp), 

following the procedure developed by Matthieu Demange in his thesis. [1] 31P{1H} NMR shows 

the fast disappearance of the free dcpp ligand II-1 at δ = -6,7 ppm. The product is gathered as 

an orange powder in 94 % yield.  

 

Cy2P PCy2
Cy2P PCy2Ni

Cl Cl
Ni

Cl Cl

OO
THF, RT, overnight

Cy2P PCy2Ni
Cl Cl

THF

CH2Cl2

II-2 II-3 II-3

II-1

 

Scheme 2.1: Synthesis of [(dcpp)NiCl2] II-3.  

 

 

Figure 2.1: Molecular structure of [(dcpp)NiCl2] II-3 determined by single crystal X-ray diffraction. 

Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-P1 2.196(3), Ni1-

P2 2.187(3), Ni1-Cl1 2.240(4), Ni1-Cl2 2.239(3), P1-Ni1-P2 99.40(11), Cl1-Ni1-Cl2 88.55(13), P1-Ni1-Cl1 

85.97(12), P2-Ni1-Cl2 86.29(13). 
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As Matthieu Demange reported, no NMR signal is observed in THF for the poorly soluble 

[(dcpp)NiCl2] complex II-3, suggesting that it has a predominant tetrahedral geometry. [1] 

However, NMR data could be recorded in CH2Cl2, in which the complex is fully soluble, 

showing that in this solvent the nickel center is in a square planar environment. The two 

geometries thus possess quite similar energies and the equilibrium between both can be shifted 

by changing the solvent.  Single crystals for X-ray diffraction analysis were grown by diffusing 

petroleum ether in a CH2Cl2 solution of [(dcpp)NiCl2] II-3. The square planar geometry is 

favored in the solid state, as evidenced by the sum of the angles around the nickel center being 

equal to 360.21 °. The resolved structure presented above in Figure 2.1 is comparable to 

Matthieu Demanges one. [1] 

 

2.1.2 Synthesis of Ni(0) complex [(dcpp)Ni(toluene)] II-4 

Chelating [(bis-phosphine)Ni(arene)] complexes are known since Jonas [2] and Pörschke [3] 

reported their synthesis. The Ni(0) complexes are obtained either from Ni(II) or Ni(I) precursors 

which are reduced by alkali or alkali earth metals in the presence of aromatic compounds, as 

shown in Scheme 2.2. By following this procedure, Jonas managed to prepare among others 

monometallic [(dcpe)Ni(C6H6)] and [(dcpp)Ni(C6H6)], [2] which are characterized only by 

elemental analysis and Pörschke obtained bimetallic trigonal planar [[(dtbpe)Ni]2(C6H6)] [3] 

with the more sterically hindered tert-butyl substituted phosphines. 

 

 

Scheme 2.2: a) Jonas’ synthesis of [(dcpe)-] and [(dcpp)Ni(C6H6)], [2] b) Pörschke’s synthesis of 

[[(dtbpe)Ni2](C6H6)]. [3] 



(Bis-phosphine)nickel-catalyzed Negishi cross coupling 

 

27 
 

In a similar way, the two electron reduction of [(dcpp)NiCl2] II-3 by KC8 in toluene, reported 

by Matthieu Demange, affords the targeted Ni(0) complex [(dcpp)Ni(toluene)] II-4 together 

with small amounts of [(dcpp)NiH]2 II-5. The yield of the 16 electron complex 

[(dcpp)Ni(toluene)] II-4 could be optimized up to 70 % by working with concentrated 

solutions, which favor the precipitation of the product. [1] As [(dcpp)NiH]2 II-5 is much more 

soluble than [(dcpp)Ni(toluene)] II-4, it can be easily filtered away. [(dcpp)Ni(toluene)] II-4 is 

then extracted several times in toluene from precipitated KCl and graphite. 

 

 

Scheme 2.3: Synthesis of precatalyst [(dcpp)Ni(toluene)] II-4. [1] 

 

Interestingly, Nobile already reported the reduction of [(dcpp)NiCl2] II-3 by stoichiometric 

amounts of sodium sand in toluene in 1992 and suggested the formation of the divalent 14 

electron complex [(dcpp)Ni] on the basis of elemental analysis. [4] However, the experimental 

data and especially the 31P{1H} NMR rather indicate the formation of [(dcpp)NiH]2 II-5 as the 

main compound.  Indeed, [(dcpp)NiH]2 II-5 is characterized by a singlet at δ = 25.0 ppm in 
31P{1H} NMR and a quintet at δ = -10.8 ppm in 1H NMR. [5] The small amounts of nickel 

dihydride II-5 most likely originate from Csp2 or Csp3 activation of toluene in 

[(dcpp)Ni(toluene)] II-4. GC-MS analysis of the reaction mixture shows a peak at m/z = 182.26 

corresponding to a C14H14 compound, which can be either 4,4’-dimethyl-biphenyl or 1,2-

diphenylethane. Upon formation of one of these organic compounds, H2 is released and trapped 

by the [(dcpp)Ni]-fragment. 

[(dcpp)Ni(toluene)] II-4 is characterized in 31P{1H} NMR by a singlet at δ = 15.4 ppm. Despite 

the coordination of the asymmetric toluene molecule, the two phosphorus atoms are in an 

apparent equivalent chemical environment. Low temperature NMR experiments were carried 

out down to -80 °C but the fast equilibration process could not be slowed down. In addition, the 

integrations in 1H NMR suggests the coordination of only one toluene ligand per [(dcpp)Ni]- 

fragment, ruling out a bridged structure, as the one observed by Pörschke for 

[[(dtbpe)Ni]2(C6H6)]. [3] 
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Single crystals for X-ray diffraction analysis were grown from a concentrated 

[(dcpp)Ni(toluene)] II-4 solution at -25 °C. The structure confirms the monomeric nature of the 

complex as well as the η2 coordination of the toluene ligand. The methyl group of toluene is 

found to occupy preferentially a meta position. The C1-C2 coordinating bond of toluene 

measures 1.442(2) Å and is only slightly elongated compared to free toluene (1.39 Å). This 

indicates a weak donation of the [(dcpp)Ni]-fragment in the C-C bond and a poor coordination 

of the ligand in good agreement with its high sensitivity and reactivity. The bite angle P1-Ni1-

P2 measures 104.10(4) ° and is larger by 4.7 ° compared to the bite angle of Ni(II) complex 

[(dcpp)NiCl2] II-3, proving the flexibility of the dcpp ligand.    

 

 

Figure 2.2: Molecular structure of [(dcpp)Ni(toluene)] II-4 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-P1 

2.1465(11), Ni1-P2 2.1558(12), Ni1-C1 2.001(4), Ni1-C2 1.993(4), C1-C2 1.425(6), C2-C3 1.413(6), C3-

C4 1.347(6), C4-C5 1.422(6), C5-C6 1.353(6), C5-C7 1.519(6), P1-Ni1-P2 104.10(4), C1-Ni1-C2 

41.80(16). 

 

[(dcpp)Ni(toluene)] II-4 is particularly suitable for catalysis and mechanistic investigations due 

to its good solubility and high reactivity. Applications in Negishi cross coupling reactions will 

therefore be discussed in the rest of the chapter. Nevertheless, the difficulties encountered 

during its synthesis and its high temperature and air sensitivity, prompted the research group to 

develop alternative complexes. [(dcpp)Ni(naphthalene)] II-6, synthesized by Florian 

D’Accriscio during his PhD thesis, results from the two electron reduction of [(dcpp)NiCl2] II-

3 by 2 eq. of sodium naphthalenide, as shown in Scheme 2.4. [2] [(dcpp)Ni(naphthalene)] II-6 
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is easier to handle than [(dcpp)Ni(toluene)] II-4 and can be kept as a solid at RT over long 

period of time. [6] 

 

 

Scheme 2.4: Synthesis of [(dcpp)Ni(naphthalene)] II-6. [6] 

 

2.2. Negishi cross coupling 

2.2.1 Testing [(dcpp)Ni(toluene)] II-4 in Negishi cross coupling 

The catalytic activity of the highly reactive [(dcpp)Ni(toluene)] complex II-4 was tested in 

Negishi cross coupling reactions. Cheap and commercially available aryl chlorides were chosen 

as electrophiles. The coupling of aryl chlorides still remains challenging because of the larger 

bond dissociation energy (BDE) of C-Cl bonds (95 kcal.mol-1) [7] compared to C-Br 

(79 kcal.mol-1) [7] or C-I bonds (64 kcal.mol-1), [7] which makes the oxidative addition to a 

metal(0) complex more difficult. 

In a first test 4-chlorotoluene II-7 is reacted with phenylzinc chloride II-8 in the presence of 

1 mol% of [(dcpp)Ni(toluene)] II-4, as shown in Scheme 2.5. Most satisfyingly the expected 

biphenyl II-9 is obtained in 97 % GC-yield together with 3 % of homocoupled product II-10 

after 6 h. at 60 °C. After work-up, 4-methylbiphenyl II-9 could be isolated in 93 % yield.  

 

 

Scheme 2.5: [(dcpp)Ni(toluene)] II-4 catalyzed Negishi cross coupling between 4-chlorotoluene II-7 

and phenylzinc chloride II-8. 
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When the amount of nickel complex is reduced to 0.2 mol%, this model reaction performs 

slower: 19 h. are required to complete the reaction. At 0.01 % catalyst loading, the yield reaches 

21 % after 58 h. and 47 % after 138 h., while the turnover frequency (TOF) keeps constant at 

35 h-1. This proves that the catalyst remains active over long periods of time and does not 

undergo any decomposition. The results are summarized in Table 2.1. 

 

Table 2.1: Optimization of the reaction conditions: varying the catalyst loading. 

Entry Catalyst loading (mol%) Reaction time (h) Conversion (%) TOF (h-1) 

1 1 6 97 17 

2 0.2 19 98 26 

3 0.01 58 21 36 

4 0.01 138 47 34 
 

2.2.2 Reaction scope 

With these efficient conditions in hand, the scope of the reaction was explored. The following 

experiments were performed using 0.2 mol% of [(dcpp)Ni(toluene)] II-4. 

First of all, the electronic nature of the para substituent of the aryl chloride is modulated. As 

expected, electron donating groups on the electrophile, such as methyl or methoxy moieties, 

slow down the reaction. At 0.2 mol% of [(dcpp)Ni(toluene)] II-4, the reaction is complete 

within 16 h. for chlorobenzene II-11, 19 h. for 4-chlorotoluene II-7 and 32 h. for 4-

chloroanisole (Entry 3 - 5). On the other hand, electron withdrawing groups like, a methyl ester 

or a CF3 unit, considerably increase the reaction rate. Full conversion is reached within only 

1 h. for 4-chlorotrifluorotoluene II-12 and 6 h. for methyl 4-chlorobenzoate (Entry 1 - 2). All 

the results are collected in Table 2.2. 

 

Table 2.2: Influence of the para substituent of the aryl chloride on the reaction time. 

Entry para substituent Reaction time (h) Isolated yield (%) 

1 CF3 1 94 

2 CO2Me 6 92 

3 H 16 98 

4 CH3 19 93 

5 OMe 32 90 
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Afterwards, the electronic properties of the zinc derivative are varied. As commonly observed, 

adding an electron rich methoxy substituent on the para position of the nucleophilic reagent 

results in faster coupling. Table 2.3 compares the reaction times between cross couplings 

carried out with PhZnCl II-8 and 4-OMePhZnCl II-13. For example, 4-chlorotoluene II-7 is 

coupled within 19 h. with PhZnCl II-8 whereas only 8 h. are required with 4-OMePhZnCl II-

13 (Entry 4). Similarly, the reaction time decreases from 6 h. to 1 h. 30 min. for methyl 4-

chlorobenzoate by switching from the electron neutral to the electron rich phenyl chloride 

(Entry 2).   

 

Table 2.3: Comparison between the reaction times of [(dcpp)Ni(toluene)] II-4 catalyzed Negishi cross 

coupling using either PhZnCl II-8 or OMe-PhZnCl II-13. 

Entry para 

substituent 

         Reaction time (h) Yield (%)  

  PhZnCl 4-OMe-PhZnCl PhZnCl 4-OMe-PhZnCl 

1 CF3 1 0.5 94 91 

2 CO2Me 6 1.5 92 89 

3 H 16 4 98 90 

4 CH3 19 8 93 88 

 

By increasing the catalyst loading to 1 mol% more challenging substrates could also be 

efficiently coupled within short reaction times. The reaction between the ortho disubstituted 

2,6-dimethylphenyl chloride and PhZnCl II-8 affords the corresponding biphenyl in 75 % yield 

after 7 h.  

Moreover, several chloropyridines also proved to be good coupling partners. For example, 2-

chloropyridine is coupled with PhZnCl II-8 in 96 % isolated yield in only 2 h. The reaction 

does even tolerate functional amino groups. When 2-chloro-3-amino-pyridine undergoes 

Negishi cross coupling, 90 % of 2-phenyl-3-aminopyridine are isolated after 4 h. The results 

are summarized in Table 2.4. 
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Table 2.4: [(dcpp)Ni(toluene)] 4 catalyzed Negishi cross coupling of challenging substrates. 

Entry R-PhCl Product Reaction time (h) Isolated yield (%) 

1 2,6-(Me)2PhCl 

 

7 75 

2 2-ClPy 

 

2 96 

 

3 

 

2,6-Cl2Py 

 

 

6 

 

 

58 

4 2-Cl-3-NH2Py 

 

4 90 

 

In summary, the [(dcpp)Ni(toluene)] II-4 catalyzed Negishi cross couplings between aryl 

chlorides and phenyl zinc chloride derivatives allow the formation of biaryl compounds in good 

yields, under mild conditions and with low catalyst loading. While [(dcpp)Ni(toluene)] II-4 

cannot compete with Wang’s nickel amido pincer complexes, [8] it still gets close to the 

performance of Frech’s [NiCl2]/1,1’,1’’-(phosphanetriyl)tripiperidine system [9] and figures 

among highly efficient catalysts for the Negishi cross coupling of aryl chlorides.  

 

2.3 Mechanistic investigations 

2.3.1 Stoichiometric reactions 

Mechanistic investigations are undertaken in order to determine whether the reaction with the 

strongly donating bidentate dcpp ligand is going through a Ni(0)/Ni(II) or a Ni(I)/Ni(III) 

catalytic cycle. Stoichiometric reactions are carried out to study the feasibility and the outcome 

of each elementary step of the reaction, namely oxidative addition, transmetallation and 

reductive elimination. 
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2.3.1.1 Oxidative addition 

The oxidative addition was examined first. [(dcpp)Ni(toluene)] II-4 has been reacted with 

chlorobenzene II-11 at 40 °C, resulting in the oxidative addition of the C-Cl bond to the nickel 

center and quantitative formation of the Ni(II) complex [(dcpp)Ni(Ph)(Cl)] II-14, as 

represented in Scheme 2.6. 

 

 

Scheme 2.6: Oxidative addition of aryl chlorides to [(dcpp)Ni(toluene)] II-4. 

 

[(dcpp)Ni(Ph)(Cl)] II-14 is characterized by two sets of doublets in 31P{1H} NMR at 

δ = 5.8 ppm and δ = 19.0 ppm with a coupling constant of 2JP, P = 48.4 Hz. Single crystals for 

X-ray diffraction analysis have been grown from a THF solution layered with pentane at -25 °C. 

[(dcpp)Ni(Ph)(Cl)] II-14 crystallizes is the P-1 centrosymmetric space group and has a square 

planar geometry in agreement with its diamagnetism as shown in Figure 2.3. The analogous 

[(dcpp)Ni(tolyl)(Cl)] II-15 complex can be similarly obtained from the oxidative addition of 4-

CH3PhCl II-7 to the [(dcpp)Ni(0)]-fragment. These two experiments prove that the oxidative 

addition of aryl chlorides to [(dcpp)Ni(toluene)] II-4 is a low energy process.  
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Figure 2.3: Molecular structure of [(dcpp)Ni(Ph)(Cl)] II-14 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-P1 

2.1565(4), Ni1-P2 2.2528(4), Ni1-C28 1.9292(15), Ni1-Cl1 2.2170(4), P1-Ni1-P2 98.086(16), C28-Ni1-Cl1 

86.42(4). 

 

At this point it is important to verify that the oxidative addition product [(dcpp)Ni(Ph)(Cl)] II-

14 is not involved in side reactions leading to homocoupling. Furthermore, it is essential to 

determine whether a transmetallation or a single electron transfer (SET) is more favorable at 

this stage of the reaction. 

Kochi reported in the late 1970s the biaryl formation from the coupling between the 

monophosphine substituted oxidative addition product [(PEt3)2Ni(Ar)(Br)] and aryl bromides. 

The reaction is initiated by a single electron transfer (SET) from the trans-arylnickel(II) halide 

complex to the aryl bromide and proceeds then through Ni(I) and Ni(III) intermediates. This 

SET process is kinetically more favorable than the transmetallation/reductive elimination 

sequence. [10, 11] Colon and Kelsey analogously showed in 1986 that the nickel catalyzed 

coupling between two arylchlorides in the presence of a reducing metal such as zinc involves 

the reduction of the arylnickel(II) halide by the metal into an arylnickel(I) active species. [12] 

Therefore, the possibility of a redox reaction between the Ni(II) complex [(dcpp)Ni(Ph)(Cl)] II-

14 and an aryl chloride was investigated. However, when [(dcpp)Ni(Ph)(Cl)] II-14 is heated 

for days at 80 °C with an excess of chlorobenzene II-11, no reaction is observed. The strong 

coordination of the bidentate phosphine prevents the reduction to a Ni(I) species and subsequent 

formation of homocoupled product II-10 and shuts down a Ni(I)/Ni(III) catalytic cycle.  
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Scheme 2.7: Absence of redox reaction between the oxidative addition product [(dcpp)Ni(Ph)(Cl)] II-

14 and chlorobenzene II-11. 

 

2.3.1.2 Transmetallation and reductive elimination 

The focus is then laid on transmetallation and reductive elimination. The addition of 1 eq. of 

transmetallating reagent PhZnCl II-8 to [(dcpp)Ni(tolyl)(Cl)] II-15 leads to quantitative 

formation of the expected cross coupled product, 4-methylbiphenyl II-9, at RT within 20 min. 

During the reaction no homocoupled product (biphenyl II-10) is produced, confirming the lack 

of Ni(I) intermediates. This reaction therefore demonstrates that both the transmetallation and 

the reductive elimination are easily achievable and have low activation barriers. 

 

 

Scheme 2.8: Reaction between [(dcpp)Ni(tolyl)(Cl)] II-15 and PhZnCl II-8 at RT. 

 

2.3.1.3 Synthesis and reactivity of Ni(I) complex [(dcpp)NiCl]2 II-16 

When [(dcpp)NiCl2] II-3 is reacted with stoichiometric amounts of PhZnCl II-8, the Ni(I) 

dimer [(dcpp)NiCl]2 II-16 is formed together with biphenyl II-10 and crystallizes out of the 

solution at RT. This Ni(I) complex (II-16) is the product of the comproportionation between 

Ni(0) and Ni(II) species, that occurs faster than the transmetallation with PhZnCl II-8. Similar 

Ni(I) dimers are already known and have also been previously synthesized through the 

comproportionation of various Ni(0) and [(bis-phosphine)NiCl2] complexes. [2, 13] 
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Scheme 2.9: Reactivity between [(dcpp)NiCl2] II-3 and a stoichiometric amount of PhZnCl II-8: 

generation of the Ni(I) dimer [(dcpp)NiCl]2 II-16. 

 

Alternatively to the comproportionation, Ni(I) complexes can be obtained from the reaction 

between Ni(II) precursors and reducing agents such as sodium and potassium naphthalenide [13] 

or KC8. [14] The one electron reduction of [(dcpp)NiCl2] II-3 by 1 eq. of KC8, reported by 

Matthieu Demange, produces the desired [(dcpp)NiCl]2 dimer II-14 in 65 % yield. [1]  

 

 

Scheme 2.10: Synthesis of [(dcpp)NiCl]2 II-16. [1] 

 

The X-band EPR spectrum of paramagnetic [(dcpp)NiCl]2 II-16 was recorded at RT.  A g-factor 

of 2.154 and a hyperfine coupling constant Aiso(31P, n = 2) = 72.2 G were determined. These 

parameters are in good agreement with the data previously measured by Hillhouse for the 

related [(dtbpe)NiCl]2 complex. [15]  

In addition, the crystal structure of the dimer II-16 could be resolved by X-ray diffraction 

analysis. [1] Two [(dcpp)nickel]-fragments are linked together by two bridging chlorides. Both 

Ni(I) centers are in a tetrahedral environment and no interaction is observed between both 

metallic atoms. The distance between both nickel centers (3.3134 Å) is greater than the sum of 

their van der Waals radii (3.26 Å).  
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Figure 2.4: Room Temperature X-Band EPR Spectrum of Ni(I) complex [(dcpp)NiCl]2 II-16. 

 

 

 

Figure 2.5: Molecular structure of [(dcpp)NiCl]2 II-16 determined by single crystal X-ray diffraction. 

Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-P1 2.1856(4), 

Ni1-P2 2.1918(4), Ni1-Cl1 2.3779(4), Ni1-Cl1A 2.3361(4), Ni1A-Cl1 2.3361(4) P1-Ni1-P2 101.721(17), 

Cl1-Ni1-Cl1A 90.688(15). 
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The reactivity of the dimeric Ni(I) complex [(dcpp)NiCl]2 II-16 has been investigated to further 

rule out the involvement of a Ni(I)/Ni(III) catalytic cycle. 

[(dcpp)NiCl]2 II-16 does not react with an excess of chlorobenzene II-11 in toluene even after 

days at RT. However, when [(dcpp)NiCl]2 II-16 is reacted with a stoichiometric amount of 

PhZnCl II-8, [(dcpp)Ni(Ph)(Cl)] II-14 and a new compound characterized by a singlet at 

δ = 56.0 ppm in 31P{1H} NMR (II-17) are formed at RT within minutes. This mixture rapidly 

evolves as [(dcpp)Ni(Ph)(Cl)] II-14 further reacts with PhZnCl II-8 to give the homocoupled 

product Ph-Ph II-10, which is identified by GC-MS spectrometry. Unfortunately, the second 

compound at δ = 56.0 ppm II-17 could not be separated from the other products or crystallized 

and remains therefore unidentified. 

 

 

Scheme 2.11: Reaction between Ni(I) complex [(dcpp)NiCl]2 II-16 and PhZnCl II-8. 

 

This experiment shows that the [(dcpp)nickel]-system, readily evolves from Ni(I) compounds 

to mixtures of diamagnetic Ni(II) and/or Ni(0) complexes in the presence of PhZnCl II-8. It 

also provides an explanation for the formation of minor amounts of homocoupled product II-

10 during the catalysis, which thus involves the intermediacy of Ni(I) complexes.  

 

Hence, these stoichiometric reactions show that all elementary steps of the catalytic cycle: 

oxidative addition, transmetallation and reductive elimination are facile at RT and in agreement 

with the mild catalysis conditions. Ni(0) and Ni(II) intermediates could be observed and/or 

isolated from the independent reaction steps and are favored over Ni(I) complexes. 

 

2.3.2 Catalytic activity of Ni(0), Ni(I) and Ni(II) precursors 

All catalytic reactions presented above in 2.2 are carried out using the highly sensitive Ni(0) 

precatalyst [(dcpp)Ni(toluene)] II-4. The catalytic activity of various nickel complexes in 
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different oxidation states is then tested to confirm the involvement of a Ni(0)/Ni(II) catalytic 

cycle. The Negishi coupling between 4-chlorotoluene II-7 and PhZnCl II-8 at 1 mol% of 

catalyst in THF at 60 °C is chosen as standard reaction for the comparison of the catalysts. The 

results can be found in Table 2.5. 

 

 

Scheme 2.12: Standard reaction conditions chosen for the nickel catalyzed Negishi cross coupling to 

compare various catalysts. 

 

It is first verified that more easily manipulated Ni(II) complexes give similar results to 

[(dcpp)Ni(toluene)] II-4. The precatalyst [(dcpp)NiCl2] II-3 and the isolated oxidative addition 

intermediate [(dcpp)Ni(Ph)(Cl)] II-14 produce respectively 97 % and 95 % GC yield of cross 

coupled product II-9 together with 3 % and 5 % homocoupled product II-10 within 6 h., 

supporting a Ni(0)/Ni(II) active catalytic cycle.  

However, when the isolated Ni(I) complex [(dcpp)NiCl]2 II-16 is used instead, the reaction 

performs sluggishly, reaching 40 % conversion after 72 h. The coupling is also less selective 

affording only 7 % of the desired 4-methylbiphenyl II-9 and 33 % of biphenyl II-10, the 

homocoupled product. This specific Ni(I) complex II-16 is not an active species of the catalysis 

and demonstrates that a Ni(I)/Ni(III) cycle is much less efficient for this transformation. 

 

Table 2.5: Comparison of the conversion of the Negishi cross coupling reactions performed with 

nickel precursors at different oxidation states. 

Entry Oxidation state Catalyst Time (h.) % Conv. 

4-CH3Ph-Ph  

% Conv. 

Ph-Ph 

1 Ni(0) [(dcpp)Ni(toluene)] II-4 6        97        3 

2 Ni(II) [(dcpp)NiCl2] II-3 5        97        3 

3 Ni(II) [(dcpp)Ni(Ph)(Cl)] II-14 6        95        5 

4 Ni(I) [(dcppNiCl]2 II-16 72     7         33 

 



(Bis-phosphine)nickel-catalyzed Negishi cross coupling 

 

40 
 

These results are in contrast to previously reported nickel catalyzed Negishi cross couplings, 

which are shown to involve Ni(I)/Ni(III) cycles with different ligand systems. [11, 16 - 18] 

Nevertheless, in parallel to these investigations, Hartwig demonstrated in 2014 that the use of 

[(BINAP)Ni(η2-NC-Ph)] (BINAP = 2,2’-bis(diphenylphosphino)-1,1’-binaphthyl) in the 

catalytic coupling of aryl chlorides with amines and ammonia also enforces a Ni(0)/Ni(II) 

reaction pathway. [19, 20] 

  

2.3.3 Proposed catalytic cycle 

In light of the performed stoichiometric and catalytic reactions, a catalytic cycle is proposed in 

Scheme 2.13 for the [(dcpp)Ni(toluene)] II-4 catalyzed Negishi cross coupling between aryl 

halides and phenyl zinc chloride derivatives. The reaction consists of three elementary steps: 

oxidative addition of the aryl chloride to [(dcpp)Ni(0)], transmetallation at [(dcpp)Ni(Ar)(Cl)] 

with Ar’ZnCl and reductive elimination from [(dcpp)Ni(Ar)(Ar’)]. All these elementary steps 

are achievable under mild conditions and involve either Ni(0) or Ni(II) intermediates. 

In order to identify the resting state of the catalyst, the reaction of 4-chlorotrifluorotoluene II-

12 with PhZnCl II-8 catalyzed by 1 mol% of [(dcpp)Ni(toluene)] II-4 is monitored at 60 °C by 
31P{1H} NMR spectroscopy. The only species observed throughout the reaction, at 30 %, 70 % 

and at ca. full conversion, is characterized by two doublets at δ = 5.9 ppm and δ = 19.7 ppm, 

with 2JP, P = 56.0 Hz. This complex displays almost identical spectroscopic features to 

[(dcpp)Ni(4-CF3Ph)(Cl)] II-18, that is, two doublets at δ = 5.9 ppm and δ = 19.3 ppm, with 
2JP, P = 53,0 Hz in C6D6. It might either correspond to the oxidative addition product 

[(dcpp)Ni(4-CF3Ph)(Cl)] II-18 or to the heterobimetallic adduct with PhZnCl II-8 [(dcpp)Ni(4-

CF3Ph)(µ-Cl)Zn(Cl)(Ph)(THF)], making the transmetallation the rate determining step of the 

reaction. In contrast to Hartwig’s [(BINAP)Ni(η2-NC-Ph)] complex that evolves to 

[(BINAP)2Ni] during the course of the catalysis, [19] the dcpp ligand prevents the decomposition 

of the catalyst. 
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Scheme 2.13: Proposed mechanism for the [(dcpp)Ni(toluene)] II-4 catalyzed Negishi cross coupling, 

suggested by the stoichiometric and catalytic investigations. 

 

2.4 DFT calculations 

The mechanism of the reaction was additionally investigated by DFT calculations. This study 

further supports the feasibility of the Ni(0)/Ni(II) catalytic cycle presented above in 2.3.3. The 

calculations were performed with the Gaussian09 suite of software, [21] using the B3PW91 

functional, [22, 23] the 6-31G* basis set for all non-metallic atoms [24] and the all-electron Def2-

TZVP basis set for nickel and zinc. [25] Single point calculations allowed to take into account 

the solvent’s effects and the dispersion interactions. In this paragraph the numbering of the 

molecules will be replaced by the letters A - H used for the calculations. 
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2.4.1 Coordination of chlorobenzene 

The entry into the catalytic cycle was computed first as shown in Scheme 2.14. During this step 

the toluene ligand of the Ni(0) precatalyst [(dcpp)Ni(toluene)] A is displaced by the aryl 

chloride. Two possible mechanisms have been considered: a dissociative and an associative 

one, which lie close in energy.  

 

 

Scheme 2.14: Reaction pathways for the coordination of chlorobenzene II-11. 

 

The dissociation of the labile η2 coordinated toluene from the 16 electron complex 

[(dcpp)Ni(toluene)] A generates a highly reactive 14 electron nickel fragment B. The activation 

barrier for this process reaches 18.9 kcal.mol-1, which means that the energy required to enter 

the catalytic cycle is low. Upon addition of an aryl chloride, η2 coordinated 16 electron complex 

[(dcpp)Ni(PhCl)] C is obtained. The Ni(0) complex C lies 5.8 kcal.mol-1 lower in energy 

compared to A. 

The associative mechanism involves an 18 electron transition state TSAB2, which features both 

the departing toluene and the incoming aryl chloride as η1 ligands. Evolution to complex C 

[(dcpp)Ni(PhCl)] occurs through the η1 coordinated intermediate B2. The overall activation 

barrier for this pathway reaches 22.8 kcal.mol-1 and makes it therefore less favorable by 

3.9 kcal.mol-1 than the previously described dissociative mechanism. 
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However, the entropy is inaccurately taken into account by DFT calculations. As the entropy 

increases in the dissociative mechanism but decreases in the associative mechanism through 

the transition state TSAB2, it is overall difficult to draw any conclusion on the most favorable 

pathway. 

 

2.4.2 Catalytic process 

In the next step, the catalytic process itself was computed as depicted in Scheme 2.15. The 

η2 coordinated [(dcpp)Ni(PhCl)] complex C undergoes oxidative addition in the C-Cl bond, 

leading to Ni(II) complex [(dcpp)Ni(Ph)(Cl)] D, which has been experimentally isolated. The 

transition state TSCD has been calculated to be 12.9 kcal.mol-1 higher in energy than C, which 

is very low considering the difficulty usually encountered to perform the oxidative addition in 

C-Cl bonds. This demonstrates the electron rich nature of the [(dcpp)Ni]-fragment. The reaction 

is extremely exergonic, liberating 30.8 kcal.mol-1.  

 

 

Scheme 2.15: Reaction pathway for one catalytic cycle starting from the aryl chloride complex C. 

 

Afterwards, the organozinc reagent PhZnCl(THF)2 coordinates to D and forms the 

heterobimetallic complex E, which lies 9.0 kcal.mol-1 lower in energy. Explicit THF molecules 

have been taken into account in order to maintain the zinc atom in a tetrahedral geometry. In 

complex E, the zinc is surrounded by a phenyl, a chloride, a THF molecule and a bridging 

chlorine atom from D. It is the strength of this bridging Zn-Cl bond that renders the coordination 

process exergonic.  



(Bis-phosphine)nickel-catalyzed Negishi cross coupling 

 

44 
 

The transition state TSEF for the transmetallation itself could then be found 21.8 kcal.mol-1 

above E. In TSEF the Ni-Cl and Zn-Cl bonds are respectively 0.10 Å longer and 0.16 Å shorter 

than in E, showing the chloride transfer from the nickel to the zinc atom. Though the Zn-Ph 

bond is only slightly elongated by 0.07 Å and the Ni-Ph bond is still rather long measuring 

2.58 Å. Furthermore, a very short Ni-Zn intermetallic distance of 2.59 Å is calculated. The 

distance is clearly shorter than the sum of the van der Waals radii (3.02 Å) and just a bit longer 

than the sum of the covalent radii (2.52 Å), suggesting a metallophilic interaction. Transition 

states with analogous short interactions have already been calculated for Pd-Zn [26, 27, 28] and Pd-

Au/Sn-Au [29] species and were linked to lower activation energies. They are however absent in 

Pd-Sn transition states. [29] 

The transition state leads to F which lies 14.6 kcal.mol-1 higher than E. F is another 

heterobimetallic complex with a phenyl ring bridging the nickel and the zinc atoms. The Ni-C 

(2.04 Å) and the Zn-C (2.20 Å) bond lengths indicate that the phenyl is almost fully transferred 

to the nickel. The elimination of ZnCl2(THF)2 from F releases G, which lies 12.6 kcal.mol-1 

lower in energy. The whole transmetallation process is exergonic with an energy gain from D 

to G of 9.0 kcal.mol-1. 

 

Figure 2.6: Computed structures of E (left), TSEF (top) and F (right).  
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The reductive elimination of biphenyl from G is facile as the transition state TSGH lies only 

13.2 kcal.mol-1 higher than G. In the Ni(0) complex H, the biphenyl remains coordinated to the 

nickel center in a η2 fashion similar to the coordination observed for toluene in complex A. 

Overall, each catalytic cycle is exergonic by 52.5 kcal.mol-1. The rate determining step is the 

transmetallation with a moderate activation barrier of 21.8 kcal.mol-1 in good agreement with 

the mild reaction conditions. 

 

2.4.3 Product to reagent exchange 

Finally, the product to reagent exchange that closes the catalytic cycle and regenerates 

[(dcpp)Ni(PhCl)] C from the biphenyl complex H was investigated. The dissociative and the 

associative mechanisms were here again both computed. For clarity the energy of H is set to 0 

in Scheme 2.16. 

 

 

Scheme 2.16: Reaction pathways for the product to reagent exchange: regeneration of η2 aryl chloride 

complex C. 
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The dissociation of the η2 coordinated biphenyl from H requires 22.9 kcal.mol-1. Similarly to 

the ligand to substrate exchange, the reaction proceeds through the highly electron deficient 

intermediate B, that takes in an aryl chloride moiety to produce η2 coordinated 

[(dcpp)Ni(PhCl)] C. The product to substrate exchange is exergonic by 1.8 kcal.mol-1. 

The associative mechanism proceeds through an 18 electron transition state TSHB2 that bears 

two η1 coordinated ligands. Dissociation of the biphenyl leads to intermediate B2, which 

features an η1 coordinated PhCl, that rearranges itself into η2 coordinated [(dcpp)Ni(PhCl)] C. 

The transition state TSHB2 is located 29.7 kcal.mol-1 above H, which makes it 6.8 kcal.mol-1 

higher in energy than the 14 electron intermediate B found for the dissociative pathway. 

Therefore, an associative ligand exchange seems out of reach. 

Overall, the low activation barrier (22.9 kcal.mol-1) evidences that the liberation of the biphenyl 

product and the regeneration of [(dcpp)Ni(PhCl)] C is a favorable and facile process in 

agreement with the mild reaction conditions, that allows to engage into further catalytic cycles.  

 

Hence, the DFT calculations support the experimental observations and corroborate the 

presence of an active Ni(0)/Ni(II) catalytic cycle. The activation energies for all elementary 

steps are reasonably low, in excellent agreement with the mild catalytic conditions. The highest 

barriers that need to be overcome reach respectively 21.8 kcal.mol-1 and 22.9 kcal.mol-1 for the 

transmetallation and the product to reagent exchange, which makes them the rate determining 

steps. 
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2.5 Conclusion and perspectives 

The synthesis of the Ni(0) arene complex [(dcpp)Ni(toluene)] II-4, achieved by the two electron 

reduction of the Ni(II) precursor [(dcpp)NiCl2] II-3 with KC8 in toluene, provides a highly 

reactive catalyst for the Negishi cross coupling. [(dcpp)Ni(toluene)] II-4 catalyzes efficiently 

the reaction between aryl chlorides and an equimolar amount of phenyl zinc chloride derivatives 

at low catalyst loadings down to 0.2 mol%, under mild conditions. The catalyst remains active 

over long periods of time and does not show any sign of deactivation. Electron poor and electron 

rich substrates could be coupled in excellent yields and even challenging ortho disubstituted 

aryl chlorides or chloropyridines afforded the cross coupled products in good yields. 

Remarkably, the reaction also tolerates the amino functional group. This is the first time that a 

strongly electron donating bis-phosphine supported catalyst proves to be excellent for this type 

of nickel catalyzed process.  

Stoichiometric experiments supported by DFT calculations demonstrate the involvement of a 

Ni(0)/Ni(II) catalytic cycle upon use of chelating bis-phosphine ligands. All three elementary 

steps, i.e. oxidative addition, transmetallation and reductive elimination, are facile processes at 

RT and generate exclusively Ni(0) and Ni(II) intermediates among which 

[(dcpp)Ni(Ph)(Cl)] II-14 could be isolated and characterized. The DFT calculations further 

confirm that the oxidative addition and reductive elimination have particularly low activation 

barriers whereas the transmetallation and product to reagent exchange constitutes the rate 

determining steps. The catalyst’s resting state is found to be either the oxidative addition 

product [(dcpp)Ni(Ph)(Cl)] II-14 or its adduct with PhZnCl II-8 [(dcpp)Ni(Ph)[µ-

Cl]Zn(Cl)(Ph)(THF)]. 

No redox processes leading to Ni(I) intermediates could be identified in the reaction and 

isolated Ni(I) complex [(dcpp)NiCl]2 II-16 preferentially generates diamagnetic Ni(II) and/or 

Ni(0) species in the presence of PhZnCl II-8.  When Ni(I) compounds are involved in the 

Negishi cross coupling, they lead to poor conversions and selectivities, favoring the 

homocoupled product over the cross coupled product. The use of a strongly donating bidentate 

bis-phosphine ligand is therefore key to shut down a Ni(I)/Ni(III) catalytic cycle. 

It would be interesting to study the impact of the strongly donating bis-phosphine ligand dcpp 

on other nickel catalyzed reactions such as the Suzuki-Miyaura cross coupling. Efforts will be 

especially directed towards the investigation of the mechanism in order to determine whether 

the reaction performs similarly to the Ni(0)/Ni(II) Negishi cross coupling. Florian D’Accriscio 
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extensively studied the Suzuki-Miyaura cross coupling during his PhD and showed that the 

Ni(0)/Ni(II) mechanism is highly substrate dependent. [6] 

Furthermore, the [(dcpp)Ni]-platform could be tested towards other challenging coupling 

reactions such as borylations or cyanations.  
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2.6 Experimental part 

2.6.1 General remarks 
All reactions were carried out under an atmosphere of dry argon using standard Schlenk 

techniques or in a nitrogen-filled MBraun LabStar glovebox. Dichloromethane, Et2O, pentane, 

THF and toluene were taken from an MBraun SPS-800 solvent purification system, freeze-

pump-thaw degassed and stored over 4 Å molecular sieves. C6D6 and CD2Cl2 were degassed 

and stored over 4 Å molecular sieves.  

All the chemicals were purchased in reagent grade purity from Acros, Cytech and Sigma-

Aldrich and were used without further purification. 

 

2.6.2 Synthesis of the dcpp ligand II-1 [1]  

The synthesis of the dcpp ligand II-1 was upscaled following a procedure described in Mathieu 

Demange’s thesis. [1] n-BuLi (1.6 M in hexanes, 37.9 mL, 6.05×10-2 mol, 1 eq.) is added at -

78 °C to a 90 mL THF solution of dicyclohexylphosphine (12.0 g, 6.05×10-2 mol, 1 eq.). The 

reaction mixture is allowed to come back to RT over 2 h. The solution turns yellow and a white 

precipitate falls out. 31P{1H} NMR spectroscopy shows a single resonance at δ = -13.0 ppm 

which corresponds to the lithiated phosphine. At - 78 °C, 1,3-dichloropropane (2.59 mL, 

2.72×10-2 mol, 0.45 eq.)  is added to LiPCy2. The solution is kept for 15 min at - 78 °C before 

it is stirred overnight at RT. The solvent is removed under reduced pressure and the residue is 

taken up in pentane in order to precipitate all the salt. The solution is filtered off and the product 

is dried under vacuum. The dcpp ligand II-1 is isolated as a pale yellow gel in 97 % yield 

(11.52 g). 

1H NMR (300 MHz, C6D6): δ 0.65 - 2.38 (m, 50H, Cy + CH2) ppm. 

13C{1H} NMR (75 MHz, C6D6): δ 25.6 – 30.1 (Cy + CH2) ppm. 

31P{1H} NMR (121,5 MHz, C6D6): δ - 6.7 (s) ppm. 
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2.6.3 Synthesis of (dcpp)nickel complexes 

2.6.3.1. Synthesis of [(dcpp)NiCl2] II-3 [1]  

 

The dcpp ligand II-1 (1.09 g, 2.50×10-3 mol, 1 eq.) is added at RT to a THF suspension (30 mL) 

of [(DME)NiCl2] II-2 (0.78 g, 2.50×10-3 mol, 1 eq.). The reaction mixture is stirred overnight 

at RT and an orange solid fall out of the solution. The supernatant is filtered away, the product 

is washed 2 × with Et2O, 2 × with pentane and dried under vacuum. [(dcpp)NiCl2] II-3 is 

gathered as an orange powder in 94 % yield (1.33 g). Single crystals for X-ray diffraction 

analysis are obtained by diffusion of petroleum ether in a dichloromethane solution of the 

complex. 

1H NMR (500 MHz, CD2Cl2): δ 1.21 - 1.31 (m, 8H, CH2 Cy), 1.36 (sextt, JH, H = 12.5 Hz, 

JH, H = 3.5 Hz, 8H, CH2 Cy), 1.54 (sextd, JH, H = 12.5 Hz, JH, H = 3.5 Hz, 8H, CH2 Cy), 1.70 - 

1.91 (m, 16H, CH2 + CH2 Cy), 2.34 (d, JH, H = 12.5 Hz, 4H, CH or CH2 αP), 3.00 (t, 

JH, H = 12.5 Hz, 4H, CH or CH2 αP) ppm. 

13C{1H}{31P} NMR (125 MHz, CD2Cl2): δ 16.8, 21.0, 26.5, 27.4, 28.0, 29.7, 32.0 (CH2 Cy + 

CH2), 38.0 (CH Cy αP) ppm. 

31P{1H} NMR (208 K, 202.4 MHz, CD2Cl2): δ 19.6 (s) ppm. 

Elt. Anal. Calcd for C27H50Cl2NiP2 (564.21): C, 57.27; H, 8.90. Found: C, 57.31; H, 8.79. 

 

2.6.3.2 Synthesis of [(dcpp)Ni(toluene)] II-4   

 

 

[(dcpp)NiCl2] II-3 (200 mg, 3.53×10-4 mol, 1 eq.) and KC8 (100 mg, 7.42×10-4 mol, 2.1 eq.) 

are suspended in 10 mL of toluene and the reaction mixture is stirred overnight at RT. 

[(dcpp)Ni(η2- toluene)] II-4 and [(dcpp)NiH]2 II-5 are extracted from precipitated KCl and 

graphite through successive centrifugations. The first fraction contains most of the 

[(dcpp)NiH]2 II-5 and is therefore put aside. At best only 7 % of [(dcpp)NiH]2 II-5 were 

produced. Yellow fractions 2 - 5 containing [(dcpp)Ni(toluene)] II-4 are collected and titrated 
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by 31P{1H} NMR with PPh3 as internal standard. The complex is kept as a toluene solution at -

25 °C. Single crystals for X-ray diffraction analysis could be grown from this solution. 

Matthieu Demange reported a different workup: KCl and graphite are eliminated by filtration. 

The solution is taken to dryness affording exclusively [(dcpp)Ni(toluene)] II-4 as a yellow 

powder in 83 % yield (170 mg). [1] 

1H NMR (300 MHz, C6D6): 0.86 - 2.21 (m, 53H, Cy + CH2 + CH3), 7.01 - 7.57 (m, 5H, Ph) 

ppm. 

13C{1H} NMR (75 MHz, C6D6): δ 20.9 - 39.2 (Cy + CH2 + CH3), 128.5 - 136.2 (Ph) ppm.  

31P{1H} NMR (121.5 MHz, C6D6): δ 15.4 (s) ppm. 

 

2.6.3.3 Synthesis of [(dcpp)Ni(Ph)(Cl)] II-14 

 

 

Chlorobenzene II-11 (10.2 µL, 1.0×10-4 mol, 1 eq.) is added at RT to a 5 mL toluene solution 

of [(dcpp)Ni(toluene)] II-4 (58.7 mg, 1.0×10-4 mol, 1 eq.). After 4 min. at 40 °C the solution 

becomes light yellow. All volatiles are removed under reduced pressure and the remaining solid 

is washed with 2 × 5 mL of pentane. The oxidative addition product [(dcpp)Ni(Ph)(Cl)] II-14 

is finally gathered as a yellow solid in 89 % yield (54.1 mg). Single crystals for X-ray diffraction 

analysis were grown from a THF solution layered with pentane at -25 °C. 

1H NMR (300 MHz, C6D6): 0.95 - 2.81 (m, 50 H, Cy + CH2), 7.08 - 7.94 (m, 5H, Ph) ppm. 

13C{1H} NMR (75 MHz, C6D6): δ 18.1 - 35.4 (Cy + CH2), 122.0 - 136.9 (Ph) ppm. 

31P{1H} NMR (121.5 MHz, C6D6): δ 5.8 (d, 2JP, P = 48.4 Hz, 1P), 19.0 (d, 2JP, P = 48.4 Hz, 1P) 

ppm. 

Elt. Anal. Calcd for C33H55ClNiP2 (606.28): C, 65.20; H, 9.12. Found: C, 65.23; H, 9.17. 

 

 

 

Cy2P PCy2Ni
Cl
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2.6.3.4 Synthesis of [(dcpp)NiCl]2 II-16 
[1]

  

 

 

[(dcpp)NiCl2] II-3 (283 mg, 5.00×10-4 mol, 1 eq.) and KC8 (78 mg, 5.00×10-4 mol, 1 eq.) are 

suspended in 5 mL of toluene. The reaction mixture is stirred overnight at RT, KCl and graphite 

fall out of the solution. The toluene is filtered away, [(dcpp)NiCl]2 II-16 is further extracted 

with THF and taken to dryness. The paramagnetic Ni(I) complex II-16 is gathered as a light 

red product in 65 % yield (172.5 mg). 

X-Band EPR at RT: g = 2.154, Aiso(31P, n = 2) = 72.2 G. 

Elt. Anal. Calcd for C54H100Cl2Ni2P4 (1058.49): C, 61.10; H, 9.49. Found: C, 61.01; H, 9.64. 

 

2.6.4 Negishi cross coupling 

2.6.4.1 Synthesis of PhZnCl.LiCl II-8 

Small pieces of lithium previously crushed with a hammer (307 mg, 4.42×10-2 mol, 3 eq.) are 

added to a 15 mL THF solution of chlorobenzene II-11 (1.632 g, 1.45×10-2 mol, 1 eq.) at -

20 °C. The reaction mixture is stirred for 5 h. between 0 °C and -20 °C. The solution turns 

yellow to brown and a green precipitate is formed. In a second Schlenk ZnCl2 (1.98 g, 1.45×10-

2 mol, 1 eq.) is solubilized in 8 mL of THF and cooled down to -20 °C. The phenyllithium is 

then cannulated to the ZnCl2 solution while staying at -20 °C. The reaction is further stirred 

overnight at RT and the solution turns light yellow. The volatiles are removed under reduced 

pressure and PhZnCl.LiCl II-8 is redissolved in 10 mL of THF. The concentration of the 

PhZnCl.LiCl solution II-8 is determined by titration with iodine, following the procedure 

developed by Knochel. [30] 

 

2.6.4.2 General procedure for Negishi cross coupling 

In a typical experiment, the precatalyst [(dcpp)Ni(toluene)] II-4 is weighted in the glovebox 

and introduced in a Schlenk. THF is then added, followed by the appropriate amounts of aryl 

chloride and organozinc reagent. The reaction mixture is heated to 60 °C and its progression 

followed by GC-MS spectrometry. The volatiles are evaporated upon completion of the reaction 
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and the product is extracted with dichloromethane. The organic phase is washed twice with 

water. The collected organic phases are dried over magnesium sulfate, filtered and concentrated 

on the rotary evaporator to afford the crude product. In the last step the product is purified by 

column chromatography. 

 

A representative example is given below:  

 

4-methylbiphenyl II-9 - Following the general protocol 1 mol% of [(dcpp)Ni(toluene)] II-4 

(5.88 mg, 1.0×10-5 mol) is dissolved in 2 mL of THF. 4-chlorotoluene II-7 (119 µL, 1.00×10-3 

mol, 1 eq.) and PhZnCl II-8 (1.1×10-3 mol, 1,1 eq.) are added to the solution, which is reacted 

at 60 °C. After work up 4-methylbiphenyl II-9 is collected as a white solid in 93 % yield 

(156.5 mg). (eluent: ethylacetate/pentane = 10/90). 

1H NMR (300 MHz, CDCl3): 2.50 (s, 3H, CH3), 7.35 (d, 3JH, H = 7.8 Hz, 2H, CH 2’/6’ (ortho)), 

7.43 (t, 3JH, H = 7.8 Hz, 1H, CH 4 (para)), 7.53 (t, 3JH, H = 7.8 Hz, 2H, CH 3/5 (meta)), 7.61 (d, 
3JH, H = 8.4 Hz, 2H, CH 3’/5’ (meta)), 7.70 (d, 3JH, H = 7.8 Hz, 2H, CH 2/6 (ortho)) ppm.  

13C{1H} NMR (75 MHz, CDCl3): δ 21.2 (CH3), 127.1, 127.2, 128.8, 129.6, 130.9, 137.1, 138.5, 

141.3 ppm.  
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3 Functionalization of CO2 towards acrylates 

3.1 The economic challenges of CO2 

3.1.1 CO2 from waste to resource 

The concentration of CO2 in the atmosphere has been growing exponentially since the 

beginning of the industrial area in middle of the 19th century and has recently reached 400 ppm, 

which represents 2750 billion tons. [1, 2] In percentage, CO2 is the fourth gas in the atmosphere 

after dinitrogen, dioxygen and argon and is especially known as the main greenhouse gas, which 

is responsible for global warming and climate changes. 
Nowadays, the global industry is still primarily based on fossil fuels such as petroleum, coal 

and natural gas and releases 30 Gton.year-1 of CO2. Most organic products are also still 

synthesized through successive oxidations of hydrocarbons. [1, 2] The conversion of CO2 into 

valuable chemicals could help reducing greenhouse gas emissions and developing sustainable 

alternatives to the fossil fuel based energy and chemical productions. First efforts were made 

in the late 1970s to functionalize CO2 into value added chemicals, but this research field 

especially attracted a lot of attention in the last 15 years. 

 

3.1.2 Thermodynamic and kinetic stability of CO2 

CO2 is an abundant, cheap and non-toxic renewable resource, which costs only 15 - 20 €/ton. [1] 

It has a linear structure with double bonds between the carbon and the oxygen atoms. Though 

the thermodynamic and kinetic stability of CO2 limits its reactivity. Indeed, most targeted 

chemicals lie higher in energy than CO2, which makes the reactions endergonic and activation 

barriers are commonly very high. [3] Therefore, catalytic processes, which generate highly 

energetic intermediates, are developed in order to overcome these difficulties. A lot of efforts 

are currently directed towards the reduction of CO2 into formic acid, [4, 5] methanol [4, 5, 6] or 

methane [4, 7] and the reductive functionalization of CO2 into value added chemicals such as 

amides or aminals. [8, 9] Numerous homogeneous transition metal and organocatalyzed reactions 

have been described in the literature. [10, 11] 
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 3.1.3 Industrial production of chemicals from CO2 

CO2 already finds three main applications in large scale industrial processes for the synthesis 

of urea, carbonates and salicylic acid. [1, 2] 

First of all, the Bosch-Meiser reaction provides 120 Mton.year-1 of urea, [12] which is used for 

the synthesis of fertilizers and polymers.  During this process, ammonia and CO2 are first 

quickly converted to an intermediate carbamate, which slowly generates urea and water at high 

temperatures and high pressures, as shown in Scheme 3.1. [13] 

 

 

Scheme 3.1: Production of urea by the Bosch-Meiser process. [13] 

 

Furthermore, carbonates can be generated by the reaction between epoxides and CO2 (Scheme 

3.2). Polycarbonates are essential in the polymer industry, whereas cyclic carbonates make 

good solvents for lithium-ion batteries. [14, 15] 

 

Scheme 3.2: Production of linear and cyclic carbonates from the reaction between epoxides and 

CO2. [14, 15] 

 

Finally, salicylic acid is synthesized from phenol and CO2 in the Kolbe-Schmitt reaction by 

successive basic and acid treatments. The esterification of salicylic acid by acetic anhydride 

further affords aspirin®. [16] 

 

 

Scheme 3.3: Synthesis of salicylic acid from phenol and CO2. [16] 
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3.1.4 Design of new reactions involving CO2 

Nowadays, 180 Mton.year-1 of CO2 are used for the production of chemicals, which represents 

only 0.6 % of the total amount of CO2 released in a year. From an academic and industrial point 

of view, an equally interesting challenge is the catalytic production of α,β-unsaturated acrylic 

acid from ethylene and CO2. Acrylic acid is currently produced in a two stage process by the 

catalytic oxidation of propylene over a mixture of metal oxides, as presented in Scheme 3.4. 

Propylene is first reacted with molecular oxygen to acrolein, which is further oxidized to acrylic 

acid. [17, 18, 19] The global market for acrylic acid reaches 5.4 Mton.year-1 and is particularly 

relevant for the polymer industry. Sodium acrylate can be functionalized into water absorbent 

polymers commonly used in diapers. Yet, most acrylic acid is converted into related esters, 

which after polymerization with various monomers affords textiles, adhesives and coating 

materials. [19]  

 

 

Scheme 3.4: Two step synthesis of acrylic acid through the oxidation of propylene by dioxygen. [19] 

 

Nevertheless, it would be desirable to develop an economically attractive and more sustainable 

synthesis of acrylates. This chapter describes the advances on the synthesis of acrylate 

derivatives from ethylene and CO2. Several transition metals have been considered to perform 

this reaction, [20] however only nickel based chemistry [21] will be discussed here. 

 

 

Scheme 3.5: Dream reaction: metal catalyzed synthesis of acrylic acid from ethylene and CO2. 
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3.2. Towards the formation of acrylates from ethylene and CO2 

3.2.1 Synthesis of nickelalactones 

3.2.1.1 Oxidative coupling between ethylene and CO2 

A sustainable production of acrylates can be initiated by the oxidative coupling of ethylene and 

CO2 at a transition metal. Hoberg was the first to achieve this reaction in 1983 on a Ni(0) 

complex. [22] Under a pressure of ethylene and CO2, and in the presence of a bidentate ligand, 

either dcpe or bipyridine, [Ni(cdt)] is converted to oxanickelacyclopentanes, as shown in 

Scheme 3.6. [(dcpe)nickelalactone] and [(bipy)nickelalactone] are obtained in 50 % and 85 % 

yield and display a characteristic carboxylic absorption band in IR spectroscopy at 1620 cm-1 

and 1635 cm-1 respectively. [22] Addition of different alkenes to the nickelalactones produces a 

mixture of metallacycles and demonstrates that the oxidative coupling is reversible. 

Furthermore, hydrolysis of the nickelalactones provides propanoic acid and addition of CO 

generates succinic anhydride. [22] 

 

Ni(cdt) CO2+
-78 °C - RT, 7 d.

toluene = 50 %

Ni
N

N

O O

xs.

1 eq.
NN

1 eq. +

P P
Cy
Cy

Cy

Cy1 eq. Ni
P O O

P
Cy Cy

CyCy

= 85 %  

Scheme 3.6: First oxidative couplings between ethylene and CO2 at Ni(0) complexes. [22] 

 

Following this methodology, several nickelalactones with different amine, phosphine [23] or 

mixed P,N ligands [24] and various alkenes [24, 25, 26] and dienes [27 – 30] were synthesized by 

Hoberg and Walther. [31 - 35] Noticeably, in 1987 the square planar, 16 electron amine substituted 

nickelalactone [(DBU)2Ni(κO,κC-OC(O)CH2CH2)] could be crystallized. [36] 

 A DFT study from 2004 by Papai using the B3LYP/SDDP methodology shows that the 

oxidative coupling between ethylene and CO2 at bipyridine and bis-phosphine Ni(0) complexes 
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proceeds through a single step C-C bond formation from [(L2)Ni(C2H4)] and CO2. [37] In the 

case of [(bipy)nickelalactone] the oxidative coupling has a low activation barrier and is an 

exergonic process by 16.6 kcal.mol-1. [37] Yet, a later DFT study at the M06L level of theory on 

a broad set of bis-phosphine nickelalactones reveals that the stability of the nickelalactones is 

correlated to the ligand’s bite angle. [38] If the bite angle of the chelating ligand is smaller than 

92 °, the nickelalactone is stable. However, when the bite angle becomes larger, the 

nickelalactones are increasingly difficult to synthesize through oxidative coupling and are more 

prone to decomposition. [38] 

 

3.2.1.1 Alternative synthesis of nickelalactones 

More convenient strategies have been developed to synthesize hardly accessible 

nickelalactones by oxidative coupling in order to investigate their reactivity. 

The first nickelalactones were obtained by Uhlig in good yields through the decarbonylation of 

nickel anhydride complexes, as shown in Scheme 3.7. [39] Cyclic anhydrides can easily undergo 

oxidative addition on Ni(0) complexes affording oxanickelacycles, which decompose upon 

heating and loss of CO to more stable nickelalactones. Addition of phthalic, [39] succinic [39] and 

glutaric anhydrides [40] to [(bipy)Ni(COD)] or [(bipy)Ni(Et)2] [41] has successfully generated the 

corresponding [(bipy)nickelalactones]. Widely used [(tmeda)nickelalactone] is also commonly 

synthesized through this reaction. [42] 

 

 

Scheme 3.7: Synthesis of [(bipy)nickelalactone] from [(bipy)Ni(COD)] and succinic anhydride. [39] 

 

Numerous nickelalactones have further been synthesized by simple ligand substitution, 

especially from [(tmeda)nickelalactone] and [(py)2nickelalactone]. [43, 44, 45] Stronger σ donating 
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chelating bis-phosphines easily displace the diamine and the labile pyridines under mild 

conditions. By using this strategy, Walther largely contributed to broaden the scope of available 

nickelalactones. [43, 44, 45] A few substitution reactions can be found in Scheme 3.8. 

 

 

Scheme 3.8: Synthesis of [(bis-phosphine)nickelalactones] through ligand substitutions. [43, 44, 45] 

 

3.2.2 Stoichiometric production of acrylates  

The procedure to synthesize nickelalactones is well established. However, the conversion of 

nickelalactones to acrylate derivatives still remains difficult. The most straight forward pathway 

consists in β hydride elimination, followed by reductive elimination liberating the acrylate. Yet, 

large Ni-Hβ distances and strong Ni-O bonds make the process inefficient. 

 

3.2.2.1 Theoretical investigations and first reports of β hydride eliminations  

A DFT study at the B3LYP/LANL2DZ level of theory, realized by Buntine in 2007 on 

[(DBU)2Ni] complexes, explores the feasibility of such a reaction process. [46] The oxidative 

coupling of ethylene and CO2 to acrylates is divided in three elementary steps, namely oxidative 

coupling, β hydride elimination and reductive elimination (see Scheme 3.9).  
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O

O

DBU

DBU
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Scheme 3.9: Catalytic cycle computed by Buntine for the production of acrylic acid from ethylene and 

CO2 at [(DBU)2Ni] complexes. [46] 

 

First of all, the formation of the nickelalactone is exergonic by 4.1 kcal.mol-1 with respect to 

the starting materials. The thermodynamic stability of the nickelalactone drives the reaction 

despite a high activation barrier reaching ΔG≠ = 29.0 kcal.mol-1, as similarly reported by 

Papai. [37] Afterwards, the direct β hydride elimination from the five membered cycle proves to 

be impossible. [37, 46] Geometry constrains keep the β hydrogen atoms away from the nickel 

center. However, partial elongation of the Ni-O bond releases sufficient ring tension to allow β 

agostic interactions and the formation of a [(hydrido)(acrylate)Ni]-complex, which lies 

9.2 kcal.mol-1 above the nickelalactone. The kinetic barrier of ΔG≠ = 35.2 kcal.mol-1 is the 

highest to overcome during the cycle, [46] which was also later confirmed by calculations at the 

M06L level of theory carried out on bis-phosphine nickel complexes. [38] Finally, the liberation 

of acrylic acid through reductive elimination and the regeneration of the catalyst 

[(DBU)2Ni(C2H4)] can proceed through several pathways but is always endergonic by at least 

12.9 kcal.mol-1 with a minimal activation barrier of ΔG≠ = 24.9 kcal.mol-1. Therefore, all three 

calculated kinetic barriers for each elementary step are high but not unbridgeable. [38, 46] The 
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main hurdle to the production of acrylic acid is the overall unfavorable thermodynamics of the 

system with a positive ΔG = 10.2 kcal.mol-1. [46] 

Despite all the reported obstacles, β hydride eliminations on nickelalactones were already 

observed by Hoberg in the late 1980s while heating DBU complexes and recovering unsaturated 

carboxylic acids upon hydrolysis. [26, 36] Furthermore, in 2006 Walther et al. managed to convert 

for the first time a nickelalactone into a nickel acrylate complex, as depicted in Scheme 3.10. [44] 

The dppm ligand induces β hydride elimination under mild conditions and affords after 

rearrangement a dimeric Ni(I) complex, displaying a Ni-Ni single bond and bearing a bridging 

acrylate in 65 % yield. [44]  

 

 

Scheme 3.10: First conversion of a nickelalactone into a nickel acrylate complex by means of a dppm 

ligand. [44] 

 

Even though isolated cases of β hydride elimination from nickelalactones had been 

described, [26, 36, 44] there were no general procedures to generate free acrylates before 2010. 

Strategies were especially directed towards weakening the Ni-O bond to cause β hydride 

elimination. 

 

3.2.2.2 Cleavage of nickelalactones by strong electrophiles  

The first approach relies on the cleavage of nickelalactones by electrophiles.                                                                                                                             

In 2010, Rieger showed that the reaction between [(dppp)nickelalactone] and electrophilic 

methyl iodide (MeI) in CH2Cl2 at RT leads to the formation of methyl acrylate, which was 

observed after hydrolysis by NMR spectroscopy and ESI mass spectrometry. [47] The yield of 

the reaction could be improved up to 33 % in neat MeI, although the solubility of 

[(dppp)nickelalactone] is limited in this solvent. In situ IR measurements confirm the 

disappearance of the C=O absorption bands of the nickelalactone at 1627 cm-1 and 1322 cm-1 

and the formation of a C=O absorption band at 1732 cm-1, originating from the new acrylate. [47]  
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Scheme 3.11: Reaction between [(dppp)nickelalactone] and methyl iodide in CH2Cl2 at RT leading to 

the formation of methyl acrylate. [47] 

 

The reaction consists in the methylation of the nickelalactone, which opens the cycle and 

potentially generates a flexible methyl propanoate nickel complex. The β hydrogens become 

available for agostic interactions. Subsequent β hydride elimination releases methyl acrylate 

and forms a Ni(II) hydrido iodo complex. [47] A simplified hypothetical catalytic cycle is 

presented in Scheme 3.12. 

 

 

Scheme 3.12: Simplified hypothetic catalytic cycle for the production of methyl acrylate from 

ethylene, CO2 and methyl iodide. [47] 

  

In the following years, the reaction conditions have been optimized by varying either the ligand 

on the nickelalactone and the related palladalactone [48, 49] (chelating P- and N-donor ligands) 

or the methylating reagent (MeOTf, CH3CH2I, CF3CH2I). [49, 50] In addition, reaction 

intermediates have been identified. Methyl propanoate nickel complexes 

[(L)Ni(CH2CH2C(O)OMe)(X)] (X = I, OTf) could be detected by IR spectroscopy [48] and were 

further isolated. [49] The presence of nickel hydride complexes [(L)Ni(H)(X)] has also been 

confirmed by 1H NMR spectroscopy. [49] 
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However, the reaction still faces several problems such as the competition between reductive 

and β hydride elimination producing iodopropanoates, [48] the formation of acidic side products 

(HI), that can degrade reaction intermediates and the use of methyl iodide that easily undergoes 

oxidative addition on Ni(0) complexes like [(dppp)Ni(C2H4)]. [47]  

 

In 2014, Xu and Sautet proposed a more detailed mechanism for this reaction on the basis of 

DFT calculations using a XYG3/XO3 approach. [51] The cleavage of the nickelalactone through 

methyl iodide proceeds through a SN2 reaction, which requires less than ΔG≠ = 20.3 kcal.mol-1 

for various bidentate N- and P- type donor ligands. The oxygen atom of the carbonyl moiety 

attacks MeI, prior the insertion of iodide to the nickel center. The generated five coordinated 

nickel complex bear the weakly coordinated iodide in an apical position and can easily undergo 

isomerization at energy barriers lower than ΔG≠ = 14.3 kcal.mol-1. Iodide-oxygen 

interconversion facilitates β hydride elimination and the formation of a [(hydrido)(acrylate)Ni]-

complex [(L)2Ni(η2-CH2=CHC(O)OMe)(H)(I)]. After further isomerization, methyl acrylate is 

decoordinated and [(L)2Ni(H)(I)] formed alongside. However, the regeneration of the catalyst 

and the overall Gibb’s free energy of the reaction ΔG = 19.1 kcal.mol-1 are unfavorable, 

preventing catalytic applications. [51] This DFT study clearly shows that the activation barriers 

for the production of acrylates in the presence of methyl iodide are lower and within 

experimental reach compared to the one previously calculated in the absence of any kind of 

additives. [46] Ligands have minimal influence on the energetic situation of the main reaction 

pathway. Nevertheless, by tuning the ligand side reactions such as ligand decoordination, 

dissociation or lactone rearrangements can be inhibited. Interestingly, the polarity of the solvent 

also plays a key role in destabilizing side reaction intermediates. [51] The potential catalytic 

cycle can be found in Scheme 3.13. 
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Scheme 3.13: Hypothetic catalytic cycle for the production of methyl acrylate through the cleavage of 

nickelalactones by methyl iodide computed by Xu and Sautet. [51] 

 

In 2013, Limbach and Hofmann also investigated the nickel mediated formation of acrylates 

from ethylene, CO2 and methyl iodide by DFT calculations at the BP86/def2-SV(P) level of 

theory and supported their work by experimental results. [52] The study is carried out on the 

dtbpe chelating bis-phopshine and the discovered mechanism differs from the one previously 

suggested by the experimental investigations [47, 48, 49] and Xu and Sautet’s calculations. [51] The 

formation of acrylates would be rather promoted by the assistance of an external base instead 

of the electrophilic methyl iodide. [52] The classically assumed pathway would merely be a side 

reaction leading to the same product. [52] The full catalytic cycle with possible side processes is 

depicted in Scheme 3.14. [52] 
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Scheme 3.14: Hypothetic catalytic cycle for the base assisted production of methyl acrylate 

computed by Limbach and Hofmann. [52] 

 

The reaction between (dtbpe)nickelalactone and MeI most likely proceeds through an SN2 

reaction pathway, with a low activation barrier of ΔG≠ = 17.4 kcal.mol-1 in agreement with the 

mild reaction conditions reported earlier. [47, 48, 49] The methylation occurs at the carbonyl 

oxygen of the nickelalactone, providing the cationic nickel compound 

[(dtbpe)Ni(CH2CH2C(OMe)=O)]+I-. This reaction intermediate could be independently 

synthesized by adding acidic H(Et2O)2BArF to the methyl acrylate complex 

[(dtbpe)Ni(CH2=CHC(O)OMe)]. The nickel complex is in equilibrium with the analogous four 

membered cationic nickelalactone. The isomerization occurs through β agostic intermediates 

with an overall barrier of ΔG≠ = 22.0 kcal.mol-1, which is comparable to the experimentally 

measured ΔG≠ = 21.5 kcal.mol-1 during kinetic investigations. In order to generate the π methyl 

acrylate nickel complex [(dtbpe)Ni(CH2=CHC(O)OMe)], the β agostic intermediate must be 

deprotonated, releasing HI. [53] Even a neutral nickelalactone is basic enough to carry out the 

deprotonation with an activation barrier of ΔG≠ = 15.8 kcal.mol-1, which was also verified 

empirically. The problematic step is still the release of the acrylate and the regeneration of the 

catalyst, which would require ΔG≠ = 24.0 kcal.mol-1, but has not been achieved so far. [52] 
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In an energetically less favorable side process, the cationic nickelalactone might be converted 

to the open chain nickel propanoate complex [(dtbpe)Ni(CH2CH2C(O)OMe)]+, which further 

undergoes β hydride elimination. Methyl acrylate is then released along the formation of 

[(dtbpe)Ni(H)(I)]. This decomposition mechanism as well as the loss of hydroiodic acid, lead 

to side products such as propanoates, Ni(I) and Ni(II) iodo complexes, which have been 

observed experimentally. [52]  

 

3.2.2.3 Cleavage of nickelalactones by bases 

The second approach for the production of acrylates is based on the activation of 

nickelalactones by Lewis acids, followed by base induced β hydride elimination, as suggested 

by Limbach and Hofmann’s [52] and Pidko’s [38] DFT calculations. This concept was 

experimentally established by Bernskoetter in 2013, through the use of strongly Lewis acidic 

B(C6F5)3 in combination with a mild neutral base to promote the formation of acrylate 

derivatives. [54] When [(dppf)nickelalactone] is reacted with B(C6F5)3 at RT, the formation of a 

5 membered Lewis activated γ nickelalactone is observed, which is converted over time to the 

thermodynamically more stable 4 membered Lewis activated β nickelalactone, as shown in 

Scheme 3.15. Additionally, the reaction between [(dppf)Ni(η2-acrylic acid)] and B(C6F5)3 also 

leads spontaneously to a mixture of both activated lactones. The generation of the four 

membered β nickelalactone most likely originates from β hydride elimination on the γ-

nickelalactone-B(C6F5)3 adduct, that forms a non-detected nickel hydride acrylate complex, and 

is followed by a 2,1 insertion of the acryl borate moiety. [54] 

 

 

Scheme 3.15: Isomerization of the [(dppf)-γ-nickelalactone]-B(C6F5)3 adduct into the [(dppf)-β-

nickelalactone]-B(C6F5)3 adduct through a transient nickel hydride acrylate intermediate. [54] 

 

Afterwards, the nickel acrylate complex could be afforded in the presence of neutral organic 

bases like the phosphazene BTPP or DBU. Deprotonation might occur in the α position of the 

four membered β nickelalactone through the transient nickel hydride acrylate complex. [54]  
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Scheme 3.16: Generation of the [(dppf)Ni(η2-acrylate)] complex through deprotonation of the [(dppf)-

β-nickelalactone] by phosphazene BTPP. [54] 

 

The η2 coordinated acrylate is further expelled upon addition of ethylene. However, subsequent 

exposure to CO2 did not provide the corresponding [(dppf)nickelalactone] and close the 

cycle. [54] 

In a later contribution from 2014, Bernskoetter similarly evidenced the role of the weaker Lewis 

acidic sodium cation, that assists the isomerization of 5 membered activated γ-nickelalactone 

into 4 membered β-nickelalactone and might help β hydride elimination processes. [55] The 

sodium cation acts thermodynamically by stabilizing and releasing ring strain on the β-lactone 

and kinetically by lowering the activation barrier of the isomerization compared to a system 

without any Lewis acid. [55] 

 

Hence, two strategies have been successfully established to convert nickelalactones into 

acrylate derivatives in stoichiometric reactions using either strong electrophiles [47 – 50] or a 

combination of a Lewis acid and a base. [54, 55] 

 

3.2.3 Catalytic production of acrylates 

The first catalytic formation of acrylates starting from ethylene and CO2 was achieved only in 

2012 by Limbach et al. [56] The endergonic carboxylation of ethylene (ΔGR0 = 10.2 kcal.mol-

1) [46] can be made exergonic by the addition of a base (ΔGR0 = -13.4 kcal.mol-1 for NaOH), 

generating an acrylate salt instead of acrylic acid. [57] Indeed, the use of strong bases such as 

alkoxides (NaOtBu) or amides (NaHMDS) enabled for the first time efficient conversion from 
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[(dtbpe)nickelalactone] to sodium [(dtbpe)Ni(acrylate)]. It turns out that instead of having 

directly a β-hydride elimination on the nickelalactone, the base abstracts an acidic proton in α 

of the carbonyl group and the ligand rearranges itself to an acrylate. The sodium cation is of 

major importance as in its absence no reaction takes place and the regeneration of 

[(dtbpe)Ni(C2H4)] performs sluggishly. The setup of the catalytic process was intricate as it 

required for each cycle a CO2 rich regime to generate the nickelalactone followed by a CO2 

poor regime to release the sodium acrylate and avoid side reactions between alkoxides and CO2. 
[58] Nevertheless, TON of 10 could be achieved. [56] 

 

 

Scheme 3.17: First stepwise catalytic production of sodium acrylate from ethylene and CO2. [56] 

 

In 2014 Vogt improved the TON of this reaction up to 21 in a one pot catalysis using a 

combination of LiI, Et3N and Zn dust. [59] The mechanism is slightly different as LiI promotes 

the β-hydride elimination under release of HI. Here again the use of an alkali metal cation 

proved to be of primary importance as it activates the nickelalactone and significantly lowers 

the activation barrier for β-hydride elimination. Et3N is used to trap the liberated acid and 

prevent the formation of lithium propanoate. The zinc powder reduces Ni(II) complexes back 

to catalytically active Ni(0) intermediates. [59] 

Finally, in 2014 Limbach [60] managed to reach TON of 107, the highest reported to date, by 

tuning the base and replacing sodium tert-butoxide by sodium 2-fluorophenolate. Phenolates 

are basic enough to carry out the deprotonation but poorly nucleophilic as not to react with CO2. 

The methodology was also successfully tested on ten membered macrocyclic diphosphine 

nickelalactones [61] and could be expended to various alkenes and dienes. [60] 
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Scheme 3.18: Reaction systems and TON recently described for the nickel catalyzed formation of 

acrylates from ethylene and CO2. [56, 59, 60] 

 

Related palladium catalysis was also achieved in 2015 by Limbach following a similar 

methodology. However, maximum TON only reached 29 [62] and was further optimized by 

Schaub to 106 by the end of 2015. [57] 

 

3.3 Research objectives 

The stoichiometric and especially catalytic synthesis of acrylates from nickelalactones still 

necessitates major improvements to render the process viable for industrial application. The 

aim of this research project is therefore to synthesize new nickelalactones and to explore 

innovative pathways for the generation of acrylate derivatives. Transmetallation can be a 

promising alternative for the synthesis of valuable chemicals under mild conditions from 

ethylene and CO2. 

In the early 2000s, Mori already treated nickelalactones, synthesized from the oxidative 

coupling between alkynes [63, 64] or 1,3-dienes [65, 66, 67] and CO2, with zinc derivatives such as 

Me2Zn, Et2Zn or PhZnCl, as illustrated in Scheme 3.19. In a first step the nickelalactone is 
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opened to an acrylate or propanoate complex and in a second step the product is reductively 

eliminated from the nickel. When the zinc reagent possesses β hydrogens, β hydride elimination 

on the transferred alkyl moiety can precede reductive elimination. [63, 66] In all cases carboxylic 

acids were obtained in high yields and good regio and stereoselectivities. Some reactions could 

even be performed catalytically. [64, 66, 67]  

 

 

Scheme 3.19: Alkylative carboxylation of alkynes using CO2 and Me2Zn. [63] 

 

Rovis also investigated in two contributions [68, 69] the reactivity of nickelalactones towards zinc 

derivatives and achieved decarbonylative cross coupling of cyclic anhydrides [68] and reductive 

carboxylation of styrenes [69] (Scheme 3.20) producing in both cases carboxylic acid 

derivatives. Though preliminary mechanistic investigations suggest that the later reaction, 

presented in Scheme 3.20, does actually not proceed through nickelalactones but rather through 

nickel hydride intermediates. [69] 

 

R

10 mol% Ni(COD)2
20 mol% Cs2CO3

150 mol% Et2Zn
1 atm. CO2

THF, RT
R

CO2H

+

= 56 - 92 %  

Scheme 3.20: Reductive carboxylation of styrene using CO2 and Et2Zn. [69] 

 

These reports all demonstrate that CO2 can be successfully reduced and integrated into valuable 

chemicals through the use of a transmetallating reagent. However, acrylates have never been 

generated through this synthetic approach.  
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Hence, in this work, nickelalactones obtained from the oxidative coupling between ethylene 

and CO2, will be directly subjected to various oxophilic transmetallating reagents, to attempt 

the synthesis of acrylates. Zinc derivatives do not seem suitable as they favor reductive 

elimination over β hydride elimination after cleaving the nickelalactones. [63 - 69] Nevertheless, 

by changing the nature and the properties of the transmetallating reagents, it might be possible 

to tune the reactivity in favor of β hydride elimination and trigger the formation of acrylates, as 

shown in Scheme 3.21. 

 

 

 

Scheme 3.21: Potential reactivity of nickelalactones with transmetallating reagents. 

 

The main part of this work is committed to large bite angle chelating bis-phosphine 

nickelalactones. After successful synthesis of the nickelalactones, these will be subjected to 

various oxophilic transmetallating reagents such as boranes, silanes or aluminium derivatives 

to induce ring cleavage at the nickel center.  

Moreover, the chemistry of related chelating bis-NHC complexes has been targeted. New 

procedures will be described for the synthesis of yet unknown [(bis-NHC)nickelalactones]. 

Changing the electronic and steric properties of the ligands might help to bypass the high CO2 

pressures sometimes required for the generation of nickelalactones through oxidative coupling 

and ease β hydride elimination processes. The reactivity of the new [(bis-NHC)nickelalactones] 
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can then be tested either under reported catalytic conditions [59, 60] or towards transmetallating 

reagents to generate acrylates. 
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4 Functionalization of CO2 with boranes 

The oxidative coupling between ethylene and CO2 at chelating bis-phosphine nickel complexes 

and subsequent reactivity with boranes will be discussed in this chapter. Chelating bis-

phosphines with large bite angles, already selected for this type of chemistry and previously 

investigated in our group (Chapter 2) [1], constitute the ligands of choice for this study. 

  

4.1 Synthesis of [(dcpp)Ni(C2H4)] IV-3 and [(dcpp)nickela- 

lactone] IV-4 

In order to investigate the reductive functionalization of CO2 at [(dcpp)nickel]-complexes, the 

metal-organic intermediates [(dcpp)Ni(C2H4)] IV-3 and [(dcpp)nickelalactone] IV- have been 

independently synthesized. 

 

4.1.1 Synthesis of [(dcpp)Ni(C2H4)] IV-3 

Starting from commercially available [Ni(COD)2] IV-2, [(dcpp)Ni(C2H4)] IV-3 is obtained 

through successive ligand substitutions, as shown in Scheme 4.1. The first 1,5-cyclooctadiene 

moiety is displaced by one equivalent of dcpp ligand IV-1, while the second is displaced by 

applying a pressure of ethylene. The complex is gathered as a yellow powder in 64 % yield. 
31P{1H} NMR shows a single resonance at δ = 25.5 ppm. The ethylenic protons are found at 

δ = 1.52 ppm in 1H NMR and the corresponding carbon atoms appear at δ = 31.87 ppm in 13C 

NMR. The peaks are strongly shifted upfield, due to the electron richness of the [(dcpp)Ni]-

fragment and the strong π back donation from the nickel center to the coordinated olefin. This 

symmetric complex could therefore also be described as a metallacyclopropane. Single crystals 

were grown by heating a THF solution to reflux and allowing it to slowly cool down back to 

RT. 

 

 

Scheme 4.1: Synthesis of [(dcpp)Ni(C2H4)] IV-3 from [Ni(COD)2] IV-2 through successive ligand 

substitutions. 
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X-ray diffraction analysis shows that [(dcpp)Ni(C2H4)] IV-3 crystallizes in the P21/n space 

group in an approximately square planar environment. The bite angle P1-Ni1-P2 measures 

104.50(10) ° which is comparable to the already reported [(dtbpp)Ni(C2H4)] [2] (P-Ni-

P = 104.700(15) °). The C4-C5 ethylene bond length of 1.407(15) Å ([(dtbpp)Ni(C2H4)] C-C = 

1.392(39) Å [2]) lies between a carbon-carbon single (1.54 Å) and double bond (1.34 Å), further 

evidencing the strong π-back donation from the nickel center to the ethylene. 

 

 

Figure 4.1: Molecular structure of [(dcpp)Ni(C2H4)] IV-3 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: C4-C5 

1.407(15), P1-Ni1-P2 104.50(10). 

 

4.1.2 Synthesis of [(dcpp)nickelalactone] IV-4 

[(dcpp)nickelalactone] IV-4 is expected to be formed through the oxidative coupling between 

[(dcpp)Ni(C2H4)] IV-3 and CO2. No reaction is observed after applying 1 bar of CO2 to a J. 

Young tube containing a [(dcpp)Ni(C2H4)] IV-3 solution. However, at 6 bar of CO2, small 

amounts of a new product are observed by 31P{1H} NMR. The two sets of doublets at δ = 

10.4 ppm (2JP, P = 32.8 Hz) and δ = 32.1 ppm (2JP, P = 32.8 Hz) are attributed to 

[(dcpp)nickelalactone] IV-4. Better conversions are expected by reaching higher pressures. An 

equilibrium between [(dcpp)Ni(C2H4)] IV-3 and [(dcpp)nickelalactone] IV-4 is thus apparent. 

Therefore, an alternative, reaction pathway starting from [(tmeda)nickelalactone] [3] IV-5 has 

been designed to generate [(dcpp)nickelalactone] IV-4. The diamine is easily displaced at RT 

by the chelating bis-phosphine IV-1, affording [(dcpp)nickelalactone] IV-4 as a yellow to light 

orange powder in 68 % yield. 31P{1H} NMR confirms that the complex obtained through ligand 
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substitution and the one observed after applying a CO2 pressure to [(dcpp)Ni(C2H4)] IV-3 are 

identical.  

 

 

Scheme 4.2: Synthesis of [(dcpp)nickelalactone] IV-4 through a) oxidative coupling at 6 bar of CO2 

and b) ligand substitution from [(tmeda)nickelalactone] IV-5. 

 

Single crystals of [(dcpp)nickelalactone] IV-4 were grown at RT from a THF solution layered 

with pentane. The first structure of a propyl bridged nickelalactone is shown in Figure 4.2. The 

geometry around the Ni(II) center is square planar. The bite angle P1-Ni1-P2 measuring 

99.66(2) ° is smaller as expected than the [(dcpp)Ni(C2H4)] IV-3 bite angle (104.50(10) °). The 

Ni1-O1 bond length (1.9074(18) Å) is about 0.05 Å longer than in [(diamine)nickelalactones] 

(1.8655(13) Å for [(dipyridine)nickelalactone], [4] 1.868(3) Å for [(DBU)2nickelalactone], [5] 

1.854(2) Å for [(tmeda)nickelalactone] IV-5, [6] 1.8448(1) Å for [(2,2’-bipyridine)nickela-

lactone] [7]) and in the range of the other crystalized [(bis-phosphine)nickelalactones] [2, 8, 9] 

(1.890(2) Å for [(dcpe)nickelalactone], [8] 1.889(2) Å for [(dtbpe)nickelalactone] [2]). The 

elongation of the Ni-O bond is expected to facilitate β-hydride elimination processes.  

[(dcpp)nickelalactone] IV-4 is stable in air for 2 h. and can be kept in the glovebox over months 

at RT. In comparison bulkier [(dtbpp)nickelalactone] IV-6 (31P{1H} NMR: δ = 22.9 ppm (d, 
2JP, P = 15.8 Hz); δ = 42.8 ppm (d, 2JP, P = 15.8 Hz)) synthesized from [(tmeda)nickelalactone] 

IV-5, readily decomposes within 1 d. to [(dtbpp)Ni(C2H4)] IV-7 and CO2 in THF at RT. 

[(dtbpf)nickelalactone], which also has a large bite angle (104.33 °) and bulky substituents 

shows similar instability at RT. [10] 

However, at 60 °C [(dcpp)nickelalactone] IV-4 gives quantitative formation of 

[(dcpp)Ni(C2H4)] IV-3 within 3 d. At higher temperatures the equilibrium between both 

complexes is largely shifted towards [(dcpp)Ni(C2H4)] IV-3 [(dippf)nickelalactone] [10] also 



Functionalization of CO2 with boranes 
 

86 
 

undergoes reductive decoupling upon heating. However, no formation of [(dcpp)2Ni] is 

observed unlike for aryl substituted [(dppe)], [2] [(dppp)] [2, 9]   and [(dppf)nickelalactones]. [10] 

 

 

Figure 4.2: Molecular structure of [(dcpp)nickelalactone] IV-4 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-O1 

1.9074(18), Ni1-C3 1.968(3), C1-O2 1.214(3), P1-Ni1-P2 99.66(2). 

 

4.2 Kinetic Study 

The equilibrium between [(dcpp)Ni(C2H4)] IV-3 and [(dcpp)nickelalactone] IV-4 has been 

investigated through kinetic studies. On one hand, high CO2 pressures enable the oxidative 

coupling on [(dcpp)Ni(C2H4)] IV-3 and generate [(dcpp)nickelalactone] IV-4. On the other 

hand, moderate temperatures draw the reaction backwards and reductively decouple 

[(dcpp)nickelalactone] IV-4 to [(dcpp)Ni(C2H4)] IV-3 and CO2 as depicted in Scheme 4.3. 

 

 

Scheme 4.3: Equilibrium between [(dcpp)Ni(C2H4)] IV-3 and [(dcpp)nickelalactone] IV-4. 
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As the solubility of [(dcpp)Ni(C2H4)] IV-3 is limited in all common organic solvents, the 

concentration of [(dcpp)nickelalactone] IV-4 is monitored instead in all kinetic experiments. 

First of all, a known amount of [(dcpp)nickelalactone] IV-4 is heated at 55 °C in THF with 

PPh3 as internal standard. The decay of [(dcpp)nickelalactone] IV-4 is followed by 
31P{1H} NMR spectroscopy. (see Experimental part 4.8.4.1 for more details) 

 

 

Scheme 4.4: Reductive decoupling of [(dcpp)nickelalactone] IV-4 in THF at 55 °C, followed by 
31P{1H} NMR over 65 h. PPh3 is used as internal standard. 

 

 

Figure 4.3: Kinetic profile of the reaction in   

THF at 55 °C.                                             

Figure 4.4: ln([Nilactone]0/[Nilactone]) as a 

function of time for the reaction in THF at 

55 °C.

 

A zero-order reaction is excluded since plotting the concentration of [(dcpp)nickelalactone] IV-

4 ([Nilactone]) as a function of time does not result in a linear slope. However, plotting 

ln([Nilactone]0/[Nilactone]) as a function of time does results in a linear slope. The reaction 

hence follows a first order kinetics. Interestingly, Limbach et. al. reported partial first order 
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kinetics with respect to [(dtbpe)Ni(C2H4)] for the generation of [(dtbpe)nickelalactone] from 

[(dtbpe)Ni(C2H4)] under 40 bar of CO2 in chlorobenzene at 60 °C. [2]   

The ΔG≠ of the transition state can be obtained by inserting the determined rate constant kobs in 

the Eyring equation (Equation 4.1).  

Equation 4.1                              

ஷܩ∆ = Rܶ(ln ൬
kܶ
h ൰ − ln(݇௦) 

 

At 55 °C in THF ΔG≠ = 27.21 kcal.mol-1. This value seems coherent, since harsher conditions 

are required to push the reaction forward on either side.  

Afterwards, the experiment has been repeated at different temperatures ranging from 60 °C to 

90 °C. The solvent has been switched from THF to toluene. The plots 

ln([Nilactone]0/[Nilactone]) = f(t) are represented in Figure 4.5 to 4.8. The calculated rate 

constants kobs and the corresponding ΔG≠ values can be found in Table 4.1. The average ΔG≠ 

value is of 27.39 kcal.mol-1. 

 

Table 4.1: Rate constants and calculated ΔG≠ values for different temperatures. 

Temperature (°C) Solvent kobs (s-1) ΔG≠ (kcal.mol-1) 

55 THF 5.005×10-6 27.21 

60 toluene 7.365×10-6 27.38 

70 toluene 2.691×10-5 27.34 

80 toluene 7.735×10-5 27.42 

90 toluene 1.861×10-4 27.58 

mean value - - 27.39 

 

This temperature variation allows to further get access to the activation parameters ΔH≠ and 

ΔS≠ of the reaction. These can be directly read from an Eyring plot (Equation 4.2). 

Equation 4.2 

ln ൬
݇௦
ܶ ൰ = −

ஷܪ∆

R
×
1
ܶ
+ ln ൬

k
h ൰

+
∆ܵஷ

R
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Figure 4.5: ln([Nilactone]0/[Nilactone]) over 

time for the reaction in toluene at 60° C. 

Figure 4.6: ln([Nilactone]0/[Nilactone]) over 

time for the reaction in toluene at 70 °C. 

 

 

  

Figure 4.7: ln([Nilactone]0/[Nilactone]) over 

time for the reaction in toluene at 80° C. 
Figure 4.8: ln([Nilactone]0/[Nilactone]) over 

time for the reaction in toluene at 90 °C.
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Table 4.2 gives the activation parameters determined by the Eyring plot. The reaction is mainly 

enthalpy driven. The entropy contribution ΔS≠ is small. 

  

Table 4.2: Activation parameters for the conversion of [(dcpp)nickelalactone] IV-4 into 

[(dcpp)Ni(C2H4)] IV-3 and CO2 obtained by the Eyring plot. 

ΔH≠ [kcal.mol-1] 25.17 
 

ΔS≠ [cal.mol-1.K-1] 
 

-6.50 
 

ΔG≠ [kcal.mol-1] 
 

27.33 (for 333 K) 

27.46 (for 353 K) 

  

 

 

Figure 4.9: Eyring plot for the conversion of [(dcpp)nickelalactone] IV-4 into [(dcpp)Ni(C2H4)] IV-3 

and CO2 between 60 °C and 90 °C. Slope: -12673.609 K; intercept: 20.489.   

 

Overall, [(dcpp)nickelalactone] IV-4 can be synthesized by oxidative coupling with ethylene 

under harsher pressure conditions. However, [(dcpp)nickelalactone] IV-4 stands in equilibrium 

with [(dcpp)Ni(C2H4)] IV-3. The reactivity of [(dcpp)nickelalactone] IV-4 towards boranes 

will be discussed in the rest of the chapter. 
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4.3 Reactivity between [(dcpp)nickel]-complexes and boranes 

As an alternative to strong electrophiles [6, 11 - 14] and bases, [2, 15 - 17] the use of boranes as 

transmetallating reagents will be tested in order to cleave [(dcpp)nickelalactone] IV-4 and to 

generate acrylate derivatives. 

 

4.3.1 Choosing an appropriate borane 

The oxidative coupling between ethylene and CO2 at the [(dcpp)Ni]-fragment should not be 

hindered by the presence of a borane, required to further convert [(dcpp)nickelalactone] IV-4 

into value added chemicals. Hydroboration can be considered as a competitive side reaction 

during the oxidative coupling. In order to smoothly fulfill the oxidative coupling and the 

following transmetallation with a borane, the overall reaction pathway always needs to lie lower 

in energy than the activation barriers required for hydroboration processes. Therefore, it was 

first of all made sure that boranes did not directly hydroborate ethylene or [(dcpp)Ni(C2H4)] IV-

3. Three boranes were tested: 9-BBN, catecholborane and pinacolborane. 

9-BBN easily hydroborates ethylene in THF at RT without the assistance of any metal. 
11B{1H} NMR in [d8]-THF displays a sharp peak at δ = 71.7 ppm, which is shifted to 

δ = 88.3 ppm when the product is taken back to CDCl3. This matches the value given for ethyl-

9-BBN in the literature. [18]  

Catecholborane on the other hand does not hydroborate ethylene efficiently without any 

additives. Nevertheless, catecholborane reacts immediately with [(dcpp)Ni(C2H4)] IV-3 in THF 

at RT. Ethylcatecholborane is detected quantitatively by 1H and 11B{1H} NMR as well as GC-

MS spectrometry. These stoichiometric investigations suggest that 9-BBN and catecholborane 

are not suited for the reductive functionalization of ethylene and CO2. 

 

 

Scheme 4.5: Reaction between [(dcpp)Ni(C2H4)] IV-3 and catecholborane in [d8]-THF at RT. 
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However, pinacolborane IV-8 does react neither with ethylene nor with [(dcpp)Ni(C2H4)] IV-

3 in THF.  When [(dcpp)Ni(C2H4)] IV-3 is mixed with 2.5 eq. of pinacolborane IV-8 in [d8]-

THF, no hydroboration is observed even after 3 d. at 60 °C. Therefore, pinacolborane IV-8 will 

be the reagent of choice for the transmetallation of [(dcpp)nickelalactone] IV-4. 

 

 

Scheme 4.6: Absence of reaction between [(dcpp)Ni(C2H4)] IV-3 and pinacolborane IV-8 in [d8]-

THF at 60 °C.  

 

4.3.2 Reactivity between [(dcpp)nickelalactone] IV-4 and pinacol-

borane IV-8 

The reactivity between [(dcpp)nickelalactone] IV-4 and pinacolborane IV-8 has been 

investigated. Therefore, [(dcpp)nickelalactone] IV-4 has been reacted with pinacolborane IV-

8 in THF at RT. Within 10 min. the solution turns deep red and 31P{1H} NMR shows a singlet 

at δ = 25.0 ppm, corresponding to the known nickel dihydride complex [(dcpp)NiH]2 IV-9. A 

quintet at δ = -10.1 ppm in 1H NMR [19] and single crystal analysis [20] give additional proof. An 

organic product must be simultaneously released in the course of the reaction but could not be 

properly identified at this point. This is also supported by 1H DOSY NMR separating a complex 

with a diffusion coefficient of D = 7.6×10-10 m2.s-1 from lighter organic products with a D = 

1.6×10-9 m2.s-1. 

 

 

Scheme 4.7: Reaction between [(dcpp)nickelalactone] IV-4 and pinacolborane IV-8 in [d8]-THF at 

RT. After 10 min. formation of [(dcpp)NiH]2 IV-9 is observed. 
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In order to follow the formation of the organic product and to gain mechanistic insights on the 

reaction, 13C labelled [(dcpp)nickelalactone] IV-4(13C) has been synthesized. Scheme 4.8 

describes the two step synthesis of the labelled complex. 13C labelled succinic anhydride IV-

10(13C) is reacted with [Ni(COD)2] IV-2 in tmeda according to Fischer’s procedure. [3] Ligand 

substitution and decarbonylation afford 13C[(tmeda)nickelalactone] IV-5(13C) in 80 % yield. 

Afterwards, by following the procedure developed in 4.1.2, 13C[(dcpp)nickelalactone] IV-

4(13C) is isolated in 87 % yield. 

 

 

Scheme 4.8: Two step synthesis of 13C[(dcpp)nickelalactone] IV-4(13C). 

 

The reaction has then been repeated with 13C[(dcpp)nickelalactone] IV-4(13C). The reaction 

conditions could be optimized. It turns out that 3 eq. of pinacolborane IV-8 are required to 

complete the reaction. In addition, three set of signals are observed by 13C NMR at the end of 

the reaction. The spectrum is depicted in Figure 4.10. A doublet at δ = 10.3 ppm 

(1JC, C = 137.7 Hz), a doublet of doublet at δ = 25.2 ppm (1JC, C = 137.7 Hz, 1JC, C = 151.5 Hz) 

and a doublet at δ = 66.7 ppm (1JC, C = 151.5 Hz), each integrating for one carbon atom are 

assigned to the propyl chain of the organic product. Surprisingly, no signals are observed 

between 180 and 220 ppm indicating that the carbonyl function has been reduced. A small 

doublet at δ = 24.7 ppm could arise from 13C natural abundance in the methyl groups of 

pinacolborane IV-8.  

 

 

Scheme 4.9: Reaction between 13C[(dcpp)nickelalactone] IV-4(13C) and 3 eq. of pinacolborane IV-8. 
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Figure 4.10: 13C{1H} NMR spectrum at 75 MHz of the reaction between 13C[(dcpp)nickelalactone] 

IV-4(13C) and 3 eq. of pinacolborane IV-8 at RT. For more clarity solvent has been switched from 

[d8]-THF to C6D6. 

 

 

Figure 4.11: 1H{13C} 1D HSQC NMR spectrum at 500 MHz of the reaction between 
13C[(dcpp)nickelalactone] IV-4(13C) and 3 eq. of pinacolborane IV-8 at RT in [d8]-THF. 
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1H 1D-HSQC experiments give access to the protons directly bound to 13C carbons. Together 

with classical 2D-HSQC analysis, the protons of the organic product could be unambiguously 

identified. Terminal 13CH3 appears as a triplet at δ = 0.92 ppm (3JH, H = 7.5 Hz); 13CH2 as a 

pseudo sextet at δ = 1.56 ppm (3JH, H = 7.5 Hz, 3JH, H = 7.0 Hz) and 13CH2O as a triplet at 

δ = 3.76 ppm (3JH, H = 7.0 Hz). An additional signal at δ = 1.25 ppm belongs to the methyl 

groups of the pinacolborane IV-8 moieties, the 13C natural abundance not being negligible 

anymore over all the identical carbon atoms. 11B{1H} and 11B NMR highlight the presence of 

two borate moieties with two peaks at 21.6 and 22.5 ppm. 

The NMR experiments hence suggest the formation of 13C-propoxypinacolborane IV-11(13C) 

as well as diboroxane pinBOBpin IV-12. 

 

A spiking experiment has been conducted in order to provide further structure confirmation of 

the organic product. Propoxypinacolborane IV-11 can be independently synthesized from 

propanol IV-13 and pinacolborane IV-8 either in C6D6 or in [d8]-THF.    

 

 

Scheme 4.10: Alternative synthesis of propoxypinacolborane IV-11. 

 

Thus, in an independent experiment, the reaction between [(dcpp)nickelalactone] IV-4 and 

pinacolborane IV-8 is followed by 1H NMR using mesitylene as internal standard. The reaction 

is quantitative and the conversion reaches 98 % after 1 h. at RT. Upon addition of 5 eq. of 

propoxypinacolborane IV-11 the corresponding peaks and integrations increase consequently, 

proving that the organic product of the reaction is indeed propoxypinacolborane IV-11. The 
1H NMR spectra of the spiking experiment can be found in Figure 4.12. 
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Figure 4.12: 1H NMR spectra of the spiking experiment. a) Reaction between 

[(dcpp)nickelalactone] IV-4 and 3 eq. of pinacolborane IV-8 after 2 h. at RT. b) After addition of 5 eq. 

of propoxypinacolborane IV-11. 

 

These experiments show that pinacolborane IV-8 readily reacts with [(dcpp)nickelalactone] 

IV-4 at RT. The reaction disfavors β hydride elimination processes and does not afford the 

expected acrylate derivative. Nevertheless, [(dcpp)nickelalactone] IV-4 is cleaved by 

transmetallation and remarkably the resulting ester is also reduced during the course of the 

reaction. In this way a propanol derivative IV-11 is formed along with diboroxane IV-12. 

Despite earlier reports by Mori [21 - 24] and Rovis [25] on the cleavage of nickelalactones by zinc 

reagents leading to carboxylic acid derivatives, there are no precedents in the literature for this 

reaction. This is the first homogeneous nickel mediated synthesis of propanol derivatives from 

ethylene and CO2.   
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4.4 Mechanistic investigations 

It is of great interest to elucidate the mechanism of this reaction. The reduction of 

[(dcpp)nickelalactone] IV-4 to propoxypinacolborane IV-11 requires overall 3 eq. of 

pinacolborane IV-8. The driving force of the reaction is the formation of strong B-O bonds 

evidenced by the release of diboroxane pinBOBpin IV-12. The borane plays both the role of 

the reductant and of an oxygen scavenger. 

 

4.4.1 Cleavage of [(dcpp)nickelalactone] IV-4 through pinacolborane 

IV-8 

The first equivalent of pinacolborane IV-8 is used for the transmetallation and cleavage of the 

Ni-O bond, leading to a transient open chain propanoate nickel complex. Facile reductive 

elimination generates Ni(0) together with propanoic acid pinacolborane ester IV-14, as shown 

in Scheme 4.11. 

 

 

Scheme 4.11: First step of the mechanism of the reaction between [(dcpp)nickelalactone] IV-4 and 

pinacolborane IV-8. 

 

Propanoic acid pinacolborane ester IV-14 can be independently synthesized from propanoic 

acid IV-15 and an excess of pinacolborane IV-8 in C6D6. It is to be noted, that propanoic acid 

pinacolborane ester IV-11 is not reduced by pinacolborane IV-8 under the reaction conditions.  

However, the reaction between [(dcpp)Ni(naphthalene)] IV-16 and propanoic acid 

pinacolborane ester IV-14 in the presence of pinacolborane IV-8 leads after 14 h at 60 °C to 

propoxypinacolborane IV-11 and diboroxane IV-12. The reaction is slower compared to the 

direct reduction of [(dcpp)nickelalactone] IV-4 with pinacolborane IV-8 due to the stabilization 

of the Ni(0) by the naphthalene moiety. This reaction proves that propanoic acid pinacolborane 

ester IV-14 is a reaction intermediate.  



Functionalization of CO2 with boranes 
 

98 
 

O B
O

O
O

+
[d8]-THF, 60 °C, 14 h.

O B
O

O

BOB
O

O O

O

+
2 eq. pinBH

+
Cy2P PCy2Ni

P

P
Ni

P

P
Ni

Cy

CyCy

Cy Cy

CyCy

Cy

H
H

IV-16 IV-14

IV-8

IV-9

IV-11

IV-12

1/2

 

Scheme 4.12: Reaction between [(dcpp)Ni(naphthalene)] IV-16 and propanoic acid pinacolborane 

ester IV-14 in the presence of pinacolborane IV-8. 

 

Until here, the reaction fits nicely with the expected results. The further reduction to propanol 

derivatives remains unknown. Three different mechanisms could be considered for the 

reduction of propanoic acid pinacolborane ester IV-14 to propoxypinacolborane IV-11.  

 

4.4.2 Reduction of propanoic acid pinacolborane ester IV-14 through a 

metal hydride   

The first pathway is inspired by the reduction of CO2 and carbonyls with boranes using metal 

hydride complexes. [26, 27] Guan first reported in 2010 the catalytic hydroboration of CO2 to 

methoxide derivatives using a PCP pincer nickel hydride complex and catecholborane. With a 

500:1 borane to nickel-hydride ratio, TOF of 495 h-1 could be achieved. [28]  

 

 

Scheme 4.13: Guan’s catalytic reduction of CO2 with catecholborane using a PCP pincer nickel 

hydride complex. [28] 

 

Later other research groups discovered similar reactivity driven by different metal hydride 

complexes. In 2012 Sabo-Etienne [29] and Stephan [30] describe the catalytic reduction of CO2 

into methoxy-pinacolborane by ruthenium hydrides. Alkaline earth hydride complexes as the 



Functionalization of CO2 with boranes 
 

99 
 

β-diketiminate magnesium and calcium hydrido-tris(pentafluorophenyl)borates [31] and an 

ambiphilic β-diketiminate gallium hydride [32] also exhibit analogous reactivity even though 

they perform less efficiently compared to the transition metals (TOF for Mg = 0.07 h-1, Ca = 

0.1 h-1 and Ga = 2.5 h-1). 
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Scheme 4.14: Metal hydride catalysts used for the reduction of CO2 by pinacolborane to methanol 

derivatives.  

 

Guan thoroughly investigated the mechanism of these reductions both experimentally [28, 33, 34] 

and by DFT calculations. [35] The reaction consists of three interlinked catalytic cycles to reach 

the methanol derivatives. Each cycle requires one equivalent of borane and reduces CO2 by one 

step. In this way formatoborane, formaldehyde and methoxyborane are successively generated. 

Formates and methoxyboranes have been observed by NMR spectroscopy and could be 

crystallized [28, 29, 33], whereas formaldehyde remained an elusive compound for a long time. 

Sabo-Etienne and Bontemps finally managed to trap formaldehyde with methanol [36] and 2,6-

bis(diisopropyl)aniline. [37]  

 

 

Scheme 4.15: Mechanism of CO2 reduction by boranes catalyzed by metal hydride complexes. The 

cycle is drawn relying on Guan’s experimental and computational investigations. [34, 35] 
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The reaction proceeds through successive C=O insertions in the metal-hydride bond, followed 

by borane mediated B-H / O-M σ-bond metathesis. Altogether a first hydride is transferred from 

the metal center to the C=O bond and then a second hydride is transferred from the borane to 

the metal center to regenerate the catalyst and release the product. [28, 35] 

The metal- or main group-hydride catalyzed reductions of CO2 into formate derivatives [38, 39] 

and of carbonyls into alcohol derivatives [40 - 47] corresponds either to the first or the last step of 

the previously proposed catalytic cycle. The various literature reports support the same C=O 

insertion, σ-bond metathesis mechanism described above.  

 

The only requirement for such a mechanism is the presence of a nickel hydride complex. 

Isolated [(dcpp)NiH]2 IV-9 has been tested as a potential catalyst. However, the dihydride does 

not reduce propanoic acid pinacolbrane ester IV-14 in the presence of pinacolborane IV-8 even 

after extensive heating at 60 °C. Therefore, [(dcpp)NiH]2 IV-9 is considered as a resting state. 

However, that doesn’t rule out the presence of other catalytically active nickel hydride species.  

Additional experiments will be undertaken in order to quantify [(dcpp)NiH]2 IV-9 at the end of 

the reaction with an internal standard. The amount of [(dcpp)NiH]2 IV-9 should help 

discriminating between the proposed mechanisms. The reduction of propanoic acid 

pinacolborane ester IV-14 through a metal hydride would appear plausible if the yield of 

[(dcpp)NiH]2 IV-9 almost reaches 100 %. [(dcpp)NiH]2 IV-9 could arise from the 

recombination of less stable hydridic intermediates. Though, if the yield does not exceed 50 %, 

other mechanisms, especially involving Ni(I) intermediates (4.4.4), would seem more likely.  

 

4.4.3 Reduction of propanoic acid pinacolborane ester through 

oxidative addition   

An alternative pathway for the reduction of propanoic acid pinacol ester IV-14 could be 

initiated by η2 coordination of the C=O double bond to the naked Ni(0) fragment, followed by 

oxidative addition of nickel into the C=O bond. Reaction of the nickel-acyl complex with 

pinacolborane IV-8 would generate diboroxane pinBOBpin IV-12 and formaldehyde. The 

possible reaction scheme is depicted below. 
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Scheme 4.16: Reduction of the carbonyl through an oxidative addition mechanism. 

 

In the 1970s, Yamamoto already described the oxidative addition of esters [48, 49] and ethers [50] 

to Ni(0) complexes. There are two possible ways to cleave an ester as represented in Scheme 

4.17. The cleavage depends on the nature of the ester and of the ligands and was determined by 

analyzing the outcome of the reaction. The oxidative addition in the acyl group is observed 

when [Ni(COD)2] is reacted with aryl carboxylates in the presence of phosphine ligands such 

as PPh3 or PCy3. The aromatic substituent is essential to achieve the cleavage in this 

position. [48, 49] On the other hand, allyl or vinyl carboxylates preferentially undergo oxidative 

addition in the C(O)O-R bond. [48] This topic is still actively investigated as Love systematically 

studied in 2016 the behavior of esters and thioesters towards stoichiometric amounts of 

[(dtbpe)2Ni(C6H6)]. [51] 

 

 

Scheme 4.17: Oxidative addition of a) phenyl propanoate and b) allyl acetate to [Ni(COD)2] in the 

presence of PPh3. [48, 49]   
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In the last ten years, several research groups have taken advantage of this reactivity to perform 

nickel catalyzed cross coupling reactions using phenol derivatives as electrophiles. Aryl esters 

are relatively cheap, stable and in part readily available and therefore good candidates to 

complement or replace aryl halides. In 2008, Garg [52] and Shi [53] reported the first 

[(PCy3)2NiCl2] catalyzed Suzuki-Miyaura cross couplings between aryl carboxylates and 

boronic acids or aryl boroxins, involving a Caryl-O bond activation. Subsequently, Itami 

developed the coupling between 1,3-azoles and aryl pivalates [54] depicted in Scheme 4.18 and 

could isolate in 2013 the first oxidative addition product of naphthalene-2-yl pivalate to a 

[(dcpe)Ni(0)]-complex closely related to our [(dcpp)Ni]-system. [55] Martin extended the 

concept of Caryl-O bond activation to enantioselective processes [56] and silylations. [57] Similarly 

to aryl halides, a mechanism involving successive oxidative addition, transmetallation and 

reductive elimination is proposed for most systems. Stoichiometric [55] and computational 

investigations [58] support the feasibility of the oxidative addition of a Caryl-O bond to a nickel 

complex. 

 

 

Scheme 4.18: Itami’s nickel catalyzed coupling between benzoaxoles and a) naphthyl pivalate [54, 55] or 

b) naphthalene-2-yl thiophene-2-carboxylate. [59] 

 

Interestingly, Itami managed to switch the reactivity in favor of the Cacyl-O bond activation by 

replacing the tert-butyl group of the aryl carboxylates by thienyl [59] or pyridine [60] substituents, 

leading to decarbonylative cross coupling reactions. Houk [61] and Fu [62] investigated Itami’s 

results in depth by DFT calculations, trying to disclose the different mechanisms and to 

understand the origin of the various reactivities. It turns out that in any case the presence of an 

aromatic system is of utmost importance to achieve the oxidative addition of the Caryl-O and 
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Cacyl-O bonds of an ester to the nickel center. The π electrons of the naphthyl moiety 

systematically assist the cleavage of C-O bonds.  

More recently, Houk and Garg finally disclosed the nickel catalyzed activation of Cacyl-O bonds 

of methyl esters in the presence of Al(OtBu)3. An extensive aromatic system must still be 

present in all the methyl esters to achieve the coupling with anilines in good yields. [63] 
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Scheme 4.19: Houk and Garg’s nickel catalyzed activation of Cacyl-O bonds of methyl esters. [63] 

 

Therefore, in order to test the reaction pathway suggested above, the highly reactive Ni(0) 

complex [(dcpp)Ni(toluene)] IV-17 will be reacted with propanoic acid pinacolborane ester IV-

14. The ester is expected to form a new η2 coordinated [(dcpp)Ni]-complex, as shown in 

Scheme 4.20. Then, considering the strong B-O bond, oxidative addition can be performed only 

in the Cacyl-O bond CH3CH2C(O)-OBpin of the ester. However, the lack of π electrons in the 

molecule, which proved to be essential in all the processes presented above, probably disfavors 

the reaction. 

 

 

Scheme 4.20: Additional planned experiment: reaction between the Ni(0) complex 

[(dcpp)Ni(toluene)] IV-17 and propanoic acid pinacolborane ester IV-14. 
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4.4.4 Reduction of propanoic acid pinacolborane ester IV-14 through 

Ni(I) intermediates  

The last pathway is based on the reactivity of Ni(I) boryl intermediates. The oxidative addition 

of nickel in the C-O bond of propanoic acid pinacolborane ester IV-14 can be in competition 

with the oxidative addition of nickel in the B-H bond of pinacolborane IV-8. The reaction would 

be initiated by the formation of a σ-borane adduct between pinacolborane IV-8 and the 

[(dcpp)Ni(0)]-fragment, eventually ending in the oxidative addition of nickel in the B-H bond. 

Sigma-alkylborane nickel complexes have already been isolated, starting from nickel dihydride 

complexes [(R2P-(CH2)2-PR2)NiH]2 (R = Cy, iPr, tBu). [64] Moreover, the analogous oxidative 

addition of hydrosilanes to {[(dtbpe)Ni]2(C6H6)} is also known. [65] In addition, a recent study 

on the hydroboration of ketones mediated by [(bipy)Ni(COD)] also discusses the possibility of 

an alternative to the nickel hydride based mechanism relying on the oxidative addition of 

pinacolborane IV-8. [66] 

The Ni(II) complex [(dcpp)Ni(H)(Bpin)], resulting from the oxidative addition of 

pinacolborane IV-8 to the [(dcpp)Ni(0)]-fragment, can then comproportionate in the presence 

of remaining Ni(0), leading to Ni(I) intermediates. This would explain the formation of 

[(dcpp)NiH]2 IV-9 and rationalize the presence of a Ni(I) boryl active catalyst 

[(dcpp)Ni(Bpin)], as shown in Scheme 4.21. A related mechanism supported by stoichiometric, 

kinetic and computational investigations has been suggested for the first time by Martin et. al. 

for the nickel catalyzed reductive cleavage of aryl ethers with silanes. [67] A paramagnetic three 

coordinate Ni(I) silyl complex {(dtbpe)Ni[Si(Mes)2H]}, which is related to Martin’s proposed 

active Ni(I) silyl catalyst [(PCy3)2NiSiEt3], could be independently isolated by Hillhouse. [68] 

 

 

Scheme 4.21: Generation of a Ni(I) boryl complex for the reduction of propanoic acid pinacol ester 

IV-14. 
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In order to elucidate this mechanism, a preliminary experiment has been performed. The 

reaction between [(dcpp)Ni(naphthalene)] IV-16 and pinacolborane IV-8 indeed leads to the 

formation of [(dcpp)NiH]2 IV-9, which is observed by 31P{1H} NMR spectroscopy. Further 

experiments involving EPR spectroscopy as well as the independent synthesis of the to date 

unknown [(dcpp)Ni(I)boryl] complex are now needed to prove this approach. Scheme 4.21 

proposes a reaction pathway to the targeted compound. Dimeric Ni(I) complex [(dcpp)NiCl]2 

IV-20 is obtained after one electron reduction of [(dcpp)NiCl2] IV-19 through KC8. In the next 

step, the dimer is broken down through the addition of bis(pinacolato)diborane B2pin2 IV-21, 

affording the Ni(I) boryl complex [(dcpp)Ni(Bpin)] IV-18 and B-chloropinacolborane 

pinBCl IV-22. The reaction will be driven by the formation of the strong B-Cl bond. 

 

 

Scheme 4.22: Proposed reaction pathway for the synthesis of Ni(I) boryl complex [(dcpp)Ni(Bpin)] 

IV-18. 

 

However, it remains unclear how [(dcpp)Ni(Bpin)] IV-18 promotes the reduction of propanoic 

acid pinacolborane ester IV-14 into propoxypinacolborane IV-11. 

 

Hence, the stoichiometric mechanistic investigations confirm that [(dcpp)nickelalactone] IV-4 

is cleaved by 1 eq. of pinacolborane IV-8 and subsequent reductive elimination generates 

propanoic acid pinacolborane ester IV-14 as a reaction intermediate. Theoretical considerations 

supported by preliminary experimental results could not fully disclose the mechanism of the 

reduction of propanoic acid pinacolborane IV-14 into propoxypinacolborane IV-11. Even 

though the reduction of propanoic acid pinacolborane ester IV-14 through oxidative addition 

of the C=O bond into intermediate Ni(0) species seems less likely than nickel hydride or Ni(I) 

boryl assisted mechanisms, there is to date not enough evidence to rule out one of these reaction 

pathways. The additional experiments mentioned before will hopefully provide deeper 

mechanistic insights.  
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Nevertheless, considering the promising stoichiometric results on the nickel mediated synthesis 

of propanol derivatives from ethylene and CO2, the research was then oriented towards the 

development of a catalytic application. 

  

4.5 Stepwise catalytic cycle 

Next, the feasibility of a catalytic cycle has been investigated step by step. 
At 6 bar of CO2 and 60 °C, [(dcpp)Ni(C2H4)] IV-3 can be oxidatively coupled in small amounts 

to [(dcpp)nickelalactone] IV-4, as discussed in paragraph 4.1.2. Catalysis would require higher 

CO2 pressures and moderate heating in an autoclave to achieve this reaction efficiently. 

During the next step [(dcpp)nickelalactone] IV-4 reacts quickly at RT with 3 eq. of 

pinacolborane IV-8 to generate the nickel dihydride complex [(dcpp)NiH]2 IV-9 together with 

propoxypinacolborane IV-11 and pinBOBpin IV-12. One equivalent of borane does the 

transmetallation and opens the nickelalactone, the other ones participate in the reduction of the 

ester to an alcohol derivative. 

Finally, the catalyst [(dcpp)Ni(C2H4)] IV-3 must be regenerated during the last step through 

ligand exchange. Diamagnetic [(dcpp)NiH]2 IV-9 is formally made of two paramagnetic Ni(I) 

units. X ray diffraction analysis reveals that the nickel centers are bridged by two hydrogen 

atoms, forming 3 center 2 electron bonds. [20] [(dcpp)NiH]2 IV-9 presents overall the reactivity 

of Ni(0) complexes and is rather considered as a  non-classical hydride, with a hydrogen 

molecule interacting with two Ni(0) units. [19, 69] Indeed, Jonas and Wilke previously 

reported, that [(dcpp)NiH]2 IV-9 can be converted to [(dcpp)Ni(C2H4)] IV-3 within 20 min. at 

RT under 1 bar of ethylene, thereby providing a pathway to close the catalytic cycle. [19] 

Therefore, all elementary steps required for the reaction: oxidative coupling, transmetallation 

with subsequent reduction of the carbonyl and ligand exchange appear to be achievable under 

relatively mild conditions. Oxidative coupling needing harsher pressure conditions is 

presumably the rate determining step. The proposed catalytic cycle is represented in Scheme 

4.23. 
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Scheme 4.23: Proposed catalytic cycle for the reaction between ethylene, CO2 and pinacolborane IV-8 

at the [(dcpp)Ni]-center. 

 

4.6 Catalysis 

The first catalytic attempt was run using 5 bar of ethylene, 30 bar of CO2 and 10 mol% of 

[(dcpp)nickelalactone] IV-4. After 22 h. at 60 °C the main product was surprisingly the 

symmetric nickel biscarbonyl complex [(dcpp)Ni(CO)2] IV-23. Under these catalytic 

conditions, the reduction of CO2 into CO is favored over the conversion of ethylene and CO2 

into propoxypinacolborane IV-11. The thermodynamic stability of [(dcpp)Ni(CO)2] IV-23 

poisons the whole reaction. Stoichiometric reactions were carried out in order to understand the 

origin of carbon monoxide and to get better control of the catalysis. 

First of all, the reactions between [(dcpp)Ni(C2H4)] IV-3 and various amounts of pinacolborane 

IV-8 (2.5 and 20 eq.) under 1 bar of CO2 give selectively [(dcpp)Ni(CO)2] IV-23 at 60 °C.  

 

 

Scheme 4.24: Reaction between [(dcpp)Ni(C2H4)] IV-3 and pinacolborane IV-8 under 1 bar of CO2. 
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The complex is characterized by a singlet at δ = 27.0 ppm in 31P{1H} NMR as well as two 

stretching bands at 1918 cm-1 and 1980 cm-1 in FTIR spectroscopy. The decreased frequencies 

of the CO bands compared to free carbon monoxide (2143 cm-1) evidence the π-back donation 

from the nickel center to the CO ligands. Single crystals for X-ray diffraction analysis were 

grown directly from the THF solution at -25 °C. The structure is depicted below in Figure 4.13. 

The nickel center is in a distorted tetrahedral environment. The C1O1 (1.151(5) Å) and C2O2 

(1.144(4) Å) bonds are slightly elongated through the π-back donation and therefore weakened 

compared to free carbon monoxide (1.128 Å). Similar chelating bis-phosphine nickel 

biscarbonyls have also been crystallized. [59, 70 - 74] Among them diphenylphosphino-2-

hydroxypropane nickel bis-carbonyl [71] presents very close structural parameters whereas 

phenylphosphinopropane nickel bis-carbonyl [70] has shorter Ni-C and C-O bonds due to weaker 

donation. Among the 1,2-(dialkylphosphino)ethane series, except for the smaller bite angles, 

[(dcpe)Ni(CO)2] [59] and [(dippe)Ni(CO)2] [72] also display comparable bond lengths and angles. 

 

 

Figure 4.13: Molecular structure of [(dcpp)Ni(CO)2] IV-23 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-P1 

2.2189(10), Ni1-P2 2.2202(10), Ni1-C1 1.768(4), Ni1-C2 1.768(4), C1-O1 1.151(5), C2O2 1.144(4), P1-

Ni1-P2 101.83(4), C1-Ni1-C2 111.62(17). 

 

The reaction between [(dcpp)Ni(C2H4)] IV-3 and pinacolborane IV-8 under a CO2 atmosphere 

clearly shows that the reduction of CO2 into CO occurs under mild conditions and is favored 

over the formation of propoxypinacolborane IV-11. This was unexpected regarding all the 

previously performed stoichiometric reactions. 
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Furthermore, the production of [(dcpp)Ni(CO)2] IV-23 from other catalytic steps has then been 

considered. The nickel bis-carbonyl complex IV-23 could be generated during the reduction of 

propanoic acid pinacolborane ester IV-14 into propoxypinacolborane IV-11. Decarbonylation 

pathways may prevail under catalytic conditions that require heating and elevated ethylene and 

CO2 pressures. Sabo-Etienne reported that the catalytic reduction of CO2 with pinacolborane 

IV-8 by a ruthenium hydride complex generates among others a ruthenium bis-carbonyl species 

that drops the catalytic activity. The decarbonylation, that likely originates from transient 

formaldehyde, highly depends on the catalytic loading and the reaction time. [29] 

Moreover, [(dcpp)Ni(CO)2] IV-23 could arise from the reaction between [(dcpp)NiH]2 IV-9 

and CO2 during the regeneration of [(dcpp)Ni(C2H4)] IV-3. Therefore, [(dcpp)NiH]2 IV-9 has 

been reacted with 1 bar of CO2. The reaction is much cleaner in toluene compared to THF. At 

RT the main product observed by 31P{1H} NMR is the known [(dcpp)Ni(CO2)] IV-24 complex, 

characterized by two doublets at δ = 7.55 ppm (2JP, P = 28.2 Hz) and δ = 43.42 ppm 

(2JP, P = 28.2 Hz). [75] Upon heating at 60 °C [(dcpp)Ni(CO2)] IV-24 is slowly transformed into 

[(dcpp)Ni(CO)2] IV-23. Similar reactivity under identical conditions had already been 

previously reported by Garcia [76] and Hillhouse [77] for the [(dtbpe)NiH]2 complex. 

[(dippe)NiH]2, though, forms in the presence of CO2 a more complex mixture of various 

carbonyl complexes, among which [(dippe)Ni(CO)2], along with phosphine oxides. [76] 

 

 

Scheme 4.25: Reaction between [(dcpp)NiH]2 IV-9 and CO2 in toluene. 

 

The generation of [(dcpp)Ni(CO)2] IV-23 is unlikely to happen at this stage of the catalysis, as 

the reaction performs slowly compared to hydrogen-ethylene exchange and requires more time 

than the experimental catalytic conditions (1 d.). 
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In light of all these stoichiometric reactions, the formation of [(dcpp)Ni(CO)2] IV-23 is likely 

to occur during the first step of the catalysis, i.e. the oxidative coupling, which is also the most 

challenging one. Minor amounts of [(dcpp)Ni(CO)2] IV-23 could potentially also be formed 

from side reactions at later stages of the catalysis. In order to favor the oxidative coupling 

between ethylene and CO2 over the reduction of CO2 into CO, the catalytic conditions have 

been varied. Unfortunately, the experiments yet remained unsuccessful. The results are 

summarized in Table 4.3. 

 

Table 4.3: Various catalytic conditions tested for the synthesis of propoxypinacolborane IV-11. 

 

Entry Catalyst P(C2H4) 

(bar) 

P(CO2)  

(bar) 

Solvent Products 

1 [(dcpp)nickelalactone] 5 30 THF [(dcpp)Ni(CO)2] 

2 [(dcpp)nickelalactone] 9 20 THF [(dcpp)Ni(CO)2] 

3 [Ni(COD)2] + dcpe 9 20 THF [(dcpe)Ni(CO)2] 

4 [Ni(COD)2] + dcpm 9 20 THF mixture 

 

First of all, the ethylene/CO2 ratio has been modified. However, by decreasing the CO2 pressure 

from 30 bar to 20 bar while increasing the ethylene pressure from 5 bar to 9 bar, no 

improvement could be observed. It would be interesting to completely switch the pressure ratio 

and saturate the autoclave with ethylene. Vogt for example observes the best TON for the 

synthesis of acrylates promoted by LiI/Et3N with 5 bar of CO2 and 25 bar of ethylene. [14]   

Afterwards, the influence of the catalyst was investigated. It was noticed empirically that 

nickelalactones with smaller bite angles were easier to generate. [2] Therefore, by choosing 

chelating bis-phosphines with shorter spacers such as dcpe or dcpm, the oxidative coupling 

between ethylene and CO2 at the nickel will be facilitated. In the ideal case it would even 

become more favorable than the reduction of CO2 into CO. Though, under the chosen 

conditions, the mixture of [Ni(COD)2] IV-2 and dcpe IV-25 also affords preferentially 

[(dcpe)Ni(CO)2] IV-26, which is characterized by a singlet at δ = 63.4 ppm in 
31P{1H} NMR. [78] On the other side the catalysis with [Ni(COD)2] IV-2 and dcpm IV-27 leads 

to a mixture of unidentified products in 31P{1H} NMR. Propoxypinacolborane IV-11 could not 
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be identified in 1H NMR. The catalytic activity of further complexes such as 

[(tmeda)nickelalactone] might as well be tested. 

A last approach would consist in changing the solvent to dioxane or toluene for example. 

Especially the use of apolar solvents would dramatically limit the solubility CO2 in solution and 

might prevent the reduction of CO2 into CO.    

To date, the nickel mediated synthesis of propanol derivatives from ethylene and CO2 cannot 

be performed catalytically. However, several tracks presented above can still be explored to 

finally achieve the catalysis.   

 

 

 

 

 

 

 

 

 

 

 

  



Functionalization of CO2 with boranes 
 

112 
 

4.7 Conclusion 

The chemistry of electron rich chelating bis-phosphine [(dcpp)nickel]-complexes was explored 

especially towards ethylene and CO2. The [(dcpp)Ni(C2H4)] IV-3 complex was synthesized 

from [Ni(COD)2] IV-2 in 64 % yield and [(dcpp)nickelalactone] IV-4 could be obtained from 

[(tmeda)nickelalactone] IV-5 in 68 % yield. These two complexes stand in equilibrium: the 

oxidative coupling between [(dcpp)Ni(C2H4)] IV-3 and CO2 is observed above 6 bar of CO2, 

while moderate temperatures reductively decouple [(dcpp)nickelalactone] IV-4. The activation 

parameters of the equilibrium were determined through a kinetic study. ΔG≠ measures in 

average 27.4 kcal.mol-1 and the reaction is mainly enthalpy driven. 

In a second step, the cleavage of [(dcpp)nickelalactone] IV-4 by pinacolborane IV-8 was 

investigated. In the presence of 3 eq. of pinacolborane IV-8, the reaction generates 

[(dcpp)NiH]2 IV-9 and forms quantitatively propoxypinacolborane IV-11 along with 

diboroxane pinBOBpin IV-12. The first equivalent of pinacolborane IV-11 is involved in the 

transmetallation and opens [(dcpp)nickelalactone] IV-11 to afford a highly reactive 

[(dcpp)Ni(0)]-fragment and propanoic acid pinacolborane ester IV-14. The rest of the 

mechanism is not clear yet. The reduction of the ester into a propanol derivative could be 

achieved through three different pathways: through a nickel hydride catalyst, through oxidative 

addition of nickel in the C=O bond or through nickel(I) boryl intermediates. To date, none of 

them could be ruled out. Further experiments are planned to test each of these hypotheses and 

to get better insight into the mechanism. 

The catalytic production of propanote derivatives from ethylene and CO2 was considered at 

last. A catalytic cycle consisting in oxidative coupling between [(dcpp)Ni(C2H4)] IV-3 and 

CO2, transmetallation with pinacolborane IV-8, followed by the reduction of the intermediate 

ester into propoxypinacolborane IV-11 and ligand substitution from [(dcpp)NiH]2 IV-9 to 

regenerate [(dcpp)Ni(C2H4)] IV-3 could be built up stoichiometrically and run step by step. 

Oxidative addition requiring high CO2 pressures is presumably the rate determining step. 

However, the reaction performs poorly under catalytic conditions favoring the production of 

[(dcpp)Ni(CO)2] IV-23 over propoxypinacolborane IV-11. Even by varying the ethylene/CO2 

pressure ratio or changing the catalyst’s precursor, the reduction of CO2 into CO could not be 

avoided. More reaction conditions such as different solvents, different temperatures, new 

pressure ratios or new catalysts will be screened in order to try to overcome this problem.   
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Overall, this is the first report of the reductive functionalization of a nickelalactone into a 

propanoate derivative with a borane.   
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4.8 Experimental part 

4.8.1 General Remarks 

All reactions were carried out under an atmosphere of dry argon using standard Schlenk 

techniques or in a nitrogen-filled MBraun LabStar glovebox. Diethyl ether, pentane, THF and 

toluene were taken from an MBraun SPS-800 solvent purification system, freeze-pump-thaw 

degassed and stored over 4 Å molecular sieves. C6D6 and [d8]-THF were degassed and stored 

over 4 Å molecular sieves.  

[(tmeda)nickelalactone] [3] IV-5 and [(dcpp)NiH]2 [19] IV-9 were synthesized according to 

published procedures. All the other chemicals were purchased in reagent grade purity from 

Acros, Cytech and Sigma-Aldrich and were used without further purification. Ethylene, CO 

and CO2 were purchased from Air Liquide. 

 

4.8.2 Synthesis of organic products 

4.8.2.1 Synthesis of the dcpp ligand IV-1 [75]  

The synthesis of the dcpp ligand IV-1 was upscaled following a procedure described in Mathieu 

Demange’s thesis. [75] n-BuLi (1.6 M in hexanes, 37.9 mL, 6.05×10-2 mol, 1 eq.) is added at -

78 °C to a 90 mL THF solution of dicyclohexylphosphine (12.0 g, 6.05×10-2 mol, 1 eq.). The 

reaction mixture is allowed to come back to RT over 2 h. The solution turns yellow and a white 

precipitate falls out. 31P{1H} NMR spectroscopy shows a single resonance at δ = -13.0 ppm 

which corresponds to the lithiated phosphine. At - 78 °C, 1,3-dichloropropane (2.59 mL, 

2.72×10-2 mol, 0.45 eq.)  is added to LiPCy2. The solution is kept for 15 min at - 78 °C before 

it is stirred overnight at RT. The solvent is removed under reduced pressure and the residue is 

taken up in pentane in order to precipitate all the salt. The solution is filtered off and the product 

is dried under vacuum. The dcpp ligand IV-1 is isolated as a pale yellow gel in 97 % yield 

(11.52 mg). 

1H NMR (300 MHz, C6D6): δ 0.65 - 2.38 (m, 50H, Cy + CH2) ppm. 

13C{1H} NMR (75 MHz, C6D6): δ 25.62 - 30.14 (Cy + CH2) ppm. 

31P{1H} NMR (121,5 MHz, C6D6): δ - 6.7 (s) ppm. 
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4.8.2.2 Synthesis of propoxypinacolborane IV-11  

 

A C6D6 or [d8]-THF solution (0.7 mL) of pinacolborane IV-8 (72.6 µL, 5.00×10-4 mol, 1 eq.) 

is prepared in a J. Young tube. Propanol IV-13 (37.6 µL, 5.00×10-4 mol, 1 eq.) is added and the 

reaction mixture is thoroughly shaken. Hydrogen gas evolution is observed and the reaction is 

finished after 15 min at RT. Propoxypinacolborane IV-11 is used in situ and has not been 

isolated. 

1H NMR (300 MHz, [d8]-THF): δ 0.87 (t, 3JH, H = 7.2 Hz, 3H, CH3), 1.19 (s, 12H, C(CH3)2 

pinB), 1.51 (m, 2H, CH2), 3.71 (t, 3JH, H = 6.6 Hz, 2H, OCH2) ppm. 

13C{1H} NMR (75 MHz, [d8]-THF): δ 10.4 (CH3), 24.8 (C(CH3)2 pinB), 25.5 (CH2), 66.7 

(OCH2), 82.7 (C(CH3)2 pinB) ppm.  

11B NMR (96 MHz, [d8]-THF): δ 21.3 (s) ppm. 

 

4.8.2.3 Synthesis of propanoic acid pinacolborane ester IV-14  

 

Propanoic acid (37.4 µL, 5.00×10-4 mol, 1 eq.) is added to an excess of pinacolborane IV-8 

(108.9 µL, 7.50×10-4 mol, 1.5 eq.) in C6D6 (0.7 mL). The solution in the J. Young tube is 

thoroughly shaken and hydrogen gas evolution is observed. The reaction is finished after 

45 min. at RT. Propanoic acid pinacolborane ester IV-14 is the main product of the reaction. It 

has not been isolated as it is degraded under vacuum. [36] 

1H NMR (300 MHz, C6D6): δ 0.84 (t, 3JH, H = 7.5 Hz, 3H, CH3), 1.05 (s, 12H, C(CH3)2 pinB), 

2.01 (q, 3JH, H = 7.5 Hz, 2H, CH2) ppm. 

13C{1H} NMR (75 MHz, C6D6): δ 8.9 (CH3), 24.6 (C(CH3)2 pinB), 28.6 (CH2), 83.2 (C(CH3)2 

pinB), 171.1 (C=O) ppm. 

11B-NMR (96 MHz, C6D6): δ 22.8 (s) ppm. 
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4.8.3 Synthesis of [(dcpp)-nickel]-complexes 

4.8.3.1 Synthesis of [(tmeda)nickelalactone] IV-5 [3]   

 

 

[(tmeda)nickelalactone] IV-5 is synthesized according to a published procedure. [3] [Ni(COD)2] 

IV-2 (1.653 g, 6.00×10-3 mol, 1 eq.) is suspended with succinic anhydride IV-10 (413.2 mg, 

4.13×10-3 mol, 0.69 eq.) in tmeda (8 mL). The reaction mixture is stirred overnight at RT. The 

solution turns first yellow then brownish and a precipitate is formed. The supernatant is filtered 

away, the product is washed 3 × with Et2O and dried under vacuum. If the product is not green 

but brown at this stage of the reaction, the Schlenk is opened to air for a few minutes until the 

product turns green. This process is slightly exothermic. The product is then stored back under 

inert atmosphere. [(tmeda)nickelalactone] IV-5 is finally collected as a green powder in 90.5 % 

yield (923.0 mg).  

1H NMR (300 MHz, CD2Cl2): δ 0.39 (t, 3JH, H = 7.5 Hz, 2H, Ni-CH2), 1.78 (t, 3JH, H = 7.5 Hz, 

2H, C(O)-CH2), 2.27 (s, 4H, N-CH2 αA + αB), 2.32 (s, 2H, N(CH3)2 B), 2.54 (s, 2H, N(CH3)2 

A) ppm.  

13C{1H} NMR (75 MHz, CD2Cl2): δ -0.8 (Ni-CH2), 37.5 (C(O)-CH2), 47.1 (N(CH3)2 A), 49.2 

(N(CH3)2 B), 56.6 (CH2 αA), 61.5 (CH2 αB), 180.4 (C=O) ppm. 

 

13C[(tmeda)nickelalactone)] IV-5(13C) is synthesized by following the same procedure. 

Starting from [Ni(COD)2] IV-2 (1.00 g, 3.62×10-3 mol, 1 eq.) and 13C labelled succinic 

anhydride IV-10(13C) (251.4 mg, 2.42×10-3 mol, 0.67 eq.) in 7 mL of tmeda, 
13C[(tmeda)nickelalactone] IV-5(13C) is gathered as a green powder in 80 % yield (480.9 mg).  

1H NMR (300 MHz, CD2Cl2): δ 0.49 (d, 1JC, H = 130.2 Hz, 2H, Ni-CH2), 1.79 (t, 
1JC, H = 125.1 Hz, 2H, C(O)-CH2), 2.27 (s, 4H, N-CH2 αA + αB), 2.32 (s, 2H, N(CH3)2 B), 2.54 

(s, 2H, N(CH3)2 A) ppm.  

13C{1H} NMR (75 MHz, CD2Cl2): δ -0.8 (d, 1JC, C = 33.8 Hz, Ni-CH2), 38.0 (m, C(O)-CH2), 

47.0 (N(CH3)2 A), 49.2 (N(CH3)2 B), 56.5 (CH2 αA), 61.4 (CH2 αB), 189.5 (dd, 1JC, C = 45.2 Hz, 

C=O) ppm. 
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4.8.3.2 Synthesis of [(dcpp)Ni(C2H4)] IV-3  

 

[Ni(COD)2] IV-2 (250 mg, 9.06×10-4 mol, 1 eq.) is suspended in 10 mL of THF and reacted 

with the dcpp ligand IV-1 (C = 0.759 mol.L-1 in THF, 1.19 mL, 9.06×10-4 mol, 1 eq.). The 

yellow reaction mixture, containing the [[(dcpp)Ni]2(COD)] dimer, is freeze-pump-thaw 

degassed and 1 bar of ethylene is applied to the Schlenk. The solution is stirred for 15 min. at 

RT and a new slightly brighter yellow complex falls out. The solvent is removed under reduced 

pressure, the product is taken up with pentane in the glovebox and transferred to a centrifugation 

vial. [(dcpp)Ni(C2H4)] IV-3 is washed 3 × with pentane and then transferred back to a Schlenk 

to dry the product under vaccum. [(dcpp)Ni(C2H4)] IV-3 is collected as a yellow powder in 

64 % yield (301.6 mg). The complex has a very poor solubility in all common organic solvents. 

Single crystals for X-ray diffraction analysis were grown by heating a THF solution of 

[(dcpp)Ni(C2H4)] IV-3 to reflux and letting it slowly cool down to RT.  

1H NMR (500 MHz, [d8]-THF): δ 1.14 - 1.38 (m, Cy + CH2), 1.48 (br s, Cy + CH2), 1.52 (s, 

4H, CH2 ethylene)* , 1.60 - 1.86 (m, Cy + CH2), 2.14 (s, Cy + CH2), 2.30 (s, Cy + CH2) ppm.  

13C{1H}{31P} NMR (125, [d8]-THF): δ 22.5, 27.3, 28.1, 29.6, 30.0 (Cy + CH2), 31.7 (CH2 

ethylene)*, 37.7 ppm. 

31P{1H} NMR (121.5 MHz, [d8]-THF): δ 25.2 (s) ppm. 

* The chemical shifts of the ethylenic protons and carbons were determined on 
13C[(dcpp)Ni(C2H4)] IV-3(13C). For the protons 1H 1D-HSQC and 2D-HSQC experiments 

were performed and for the carbons a 13C{1H}{31P} NMR was recorded. 

 

4.8.3.3 Synthesis of (dcpp)nickelalactone IV-4  

 

 

[(tmeda)nickelalactone] IV-5 (350 mg, 1.42×10-3 mol, 1eq.) is reacted with the dcpp ligand IV-

1 (C = 0.917 mol.L-1 in THF, 1.70 mL, 1.56×10-3 mol, 1,1 eq.) in THF (15 mL). The reaction 

mixture is stirred for 3 h. at RT. Pentane is added (≈ 70 mL) and the solution is stirred to 

precipitate [(dcpp)nickelalactone] IV-4. The supernatant is filtered away. The product is 
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washed 2 × with Et2O and 2 × with pentane and then dried overnight under vaccum. 

[(dcpp)nickelalactone] IV-4 is gathered as a yellow to light orange powder in 68 % yield 

(546,3 mg). Crystals for X-ray diffraction analysis are grown at RT by diffusing pentane in a 

THF solution of [(dcpp)nickelalactone] IV-4.  

1H NMR (500 MHz, [d8]-THF): δ 0.68 (m, 2H, Ni-CH2)*, 1.16 - 2.00 (m, Cy + CH2), 2.02 (m, 

2H, C(O)-CH2) *, 2.26 (m, Cy + CH2), 2.50 (m, Cy + CH2) ppm.   

13C{1H} NMR (125 MHz, [d8]-THF): δ 13.1 (Ni-CH2) *, 18.5, 22.7, 27.0, 27.1, 27.8, 28.1, 28.4, 

29.2, 29.9, 30.2, 32.1 (Cy + CH2), 34.6 (CH αP), 37.2 (CH αP), 37.4 (C(O)-CH2) *, 186.6 (C=O)* 

ppm.  

31P{1H} NMR (121,5 MHz, [d8-THF]): δ 10.4 (d, 2JP, P = 32.8 Hz), 32.1 (d, 2JP, P = 32.8 Hz) 

ppm. 

IR (ATR, cm-1): ν = 1650 (m). 

* The chemical shifts of the protons and carbons from the lactone were determined on 
13C[(dcpp)nickelalactone] IV-4(13C). For the protons 1H 1D-HSQC and 2D-HSQC 

experiments were performed and for the carbons a 13C{1H}{31P} NMR was recorded. 

 

13C[(dcpp)nickelalactone] IV-4(13C) is synthesized by following the same procedure. Starting 

from 13C[(tmeda)nickelalactone] IV-5(13C) (250.0 mg, 1.00×10-3 mol, 1 eq.) and dcpp IV-1 

(C = 0.829 mol.L-1 in THF, 1.33 mL, 1.10×10-3 mol, 1.1 eq), 13C[(dcpp)nickelalactone] IV-

4(13C) is isolated as a yellow powder in 87 % yield (494.1 mg). 

1H NMR (500 MHz, [d8]-THF): δ 0.68 (d, 1JC, H = 130.5 Hz, 2H, Ni-CH2), 1.16 - 2.00 (m, Cy 

+ CH2), 2.02 (d, 1JC, H = 125.0 Hz, 2H, C(O)-CH2), 2.26 (br s, Cy + CH2), 2.50 (br s, Cy + CH2) 

ppm.   

13C{1H}{31P} NMR (125 MHz, [d8]-THF): δ 13.1 (d, 1JC, C = 32.88 Hz, Ni-CH2), 18.5, 22.7, 

27.0, 27.1, 27.8, 28.1, 28.4, 29.2, 29.9, 30.2, 31.7, 32.1 (Cy + CH2), 34.6 (CH αP), 37.2 (CH 

αP), 37.4 (dd, 1JC, C = 32.88 Hz, 1JC, C = 52.13 Hz, C(O)-CH2), 186.6 (d, 1JC, C = 52.13 Hz, C=O) 

ppm.  

31P{1H} NMR (121.5 MHz, [d8-THF]): δ 9.5 - 10.4 (m), 31.4 - 31.9 (m) ppm. 
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4.8.4 Description of typical reaction set-ups 

4.8.4.1 Kinetic experiments 

[(dcpp)nickelalactone] IV-4 (10.0 mg, 1.76×10-5 mol) is dissolved in 0.8 mL of [d8]-THF or 

[d8]-toluene in a J. Young tube. PPh3 (4.5 - 6 mg) is added as an internal standard. The tube is 

heated to the desired temperature (55 - 90 °C) and the decay of [(dcpp)nickelalactone] IV-4 is 

followed by 31P{1H} NMR. 

 

4.8.4.2 Reaction between [(dcpp)nickelalactone] IV-4 and pinacolborane IV-8 

[(dcpp)nickelalactone] IV-4 (15.0 mg, 2.64×10-5 mol, 1 eq.) is dissolved in 0.8 mL of [d8]-THF 

in a J. Young tube. Pinacolborane IV-8 (11.5 µL, 7.93×10-5 mol, 3 eq.) is added and the reaction 

is thoroughly shaken. The solution turns red within minutes. The reaction is followed by NMR 

spectroscopy and is almost finished after 1 h. at RT. Trimethoxybenzene (6.7 mg, 3.98×10-

5 mol) can be added as internal standard.  

For the spiking experiment, propoxypinacolborane IV-11 (C = 0.714 mol.L-1 in [d8]-THF, 

185.1 µL, 1.32×10-4  mol, 5 eq.) has been added to the reaction mixture after 4 h. at RT. The 

evolution of the peaks and integrations was followed by 1H NMR. 

 

4.8.4.3 Catalysis 

The catalytic experiments are performed in 4 mL vials from Supelco, closed by polypropylene 

hole caps with PTFE/silicone septa. Three of these vials can fit at the same time in the glass 

holder of the autoclave. 

A catalytic amount of [(dcpp)nickelalactone] IV-4 (28.5 mg, 5.00×10-5 mol, 5 mol%) is 

weighted into a vial equipped with a small magnetic stirring bar and dissolved in 2 mL of THF. 

Pinacolborane IV-8 (580.4 µL, 4.0×10-3 mol, 400 mol%) is added and the vial is closed. A 

small piece of cannula is inserted in the septum to equilibrate the pressures in the tube and in 

the autoclave during the reaction. The autoclave is then pressurized with the gas at the lowest 

pressure, followed by the gas at the highest pressure. Typically, ethylene is introduced first (5 

- 9 bar), followed by CO2 (20 - 30 bar). The autoclave is heated for 24 h. at 60 °C. At the end 



Functionalization of CO2 with boranes 
 

120 
 

of the reaction, the autoclave is cooled down to RT and depressurized. The reaction mixture is 

recovered in the glovebox and analyzed by NMR spectroscopy. 
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5 Functionalization of CO2 with aluminium derivatives 

After the successful synthesis of propanol derivatives from nickelalactones and boranes, the 

research turned towards softer aluminium compounds. The reactivity between [(dcpp)nickel]- 

complexes and trialkyl aluminium derivatives has been explored. AlR3 transmetallating 

reagents are expected, as pinacolborane, to cleave the Ni-O bond of [(dcpp)nickelalactone] V-

1 and induce lactone ring opening providing the possibility of a β-hydride elimination. 

 

5.1 Stoichiometric synthesis of propanoic acid derivatives 

5.1.1 Blank reactions 

A good candidate for transmetallation should be inert towards CO2 and [(dcpp)Ni(C2H4)] V-2. 

Accordingly, the reactivity of AlEt3 V-3 has been tested. The literature reports facile reduction 

of CO2 into diethylaluminium propanoate V-4 in aromatic solvents as benzene or xylene. [1, 2] 

Nevertheless, the reaction does not take place in THF even under 6 bar of CO2 and heating to 

60 °C for 1 d. Even though CO2 has a greater solubility in THF compared to benzene, the 

coordinating ability of THF hampers the reaction.  

 

 

Scheme 5.1: Different reactivity between AlEt3 V-3 and CO2 in aromatic solvents compared to THF. 

 

Besides [(dcpp)Ni(C2H4)] V-2 does not display either any reactivity with AlEt3 V-3 even after 

1 d. at 60 °C.  
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5.1.2 Reactivity of triethylaluminium V-3 and tri(n-butyl)aluminium V-

5 

First of all, [(dcpp)nickelalactone] V-1 has been reacted with commercially available AlEt3 V-

3 in THF at RT as shown in Scheme 5.2. 31P{1H} NMR shows the formation of 

[(dcpp)Ni(C2H4)] V-2, which is also confirmed by single crystal X ray diffraction. With 1.5 eq. 

of AlEt3 V-3 the reaction performs sluggishly, yielding 6 % of [(dcpp)Ni(C2H4)] V-2 after 21 h. 

By using a large excess of AlEt3 V-3 (25 wt% in toluene, 56.5 eq.) full conversion is reached 

within 30 min. Additionally, 1H, 13C and 2D HSQC and HMBC NMR reveal the formation of 

diethylaluminium propanoate V-4.  

 

 

Scheme 5.2: Reaction between 13C[(dcpp)nickelalactone] V-1(13C) and AlEt3 V-3 at RT. 

 

However, [(dcpp)nickelalactone] V-1 is easily decomposed into [(dcpp)Ni(C2H4)] V-2 and CO2 

(see 4.1.2 and 4.2 for detailed information). Therefore, additional experiments were performed 

in order to prove that [(dcpp)Ni(C2H4)] V-2 directly arises from the reaction between 

[(dcpp)nickelalactone] V-1 and AlEt3 V-3 and not from reductive decoupling. 

When the reaction is repeated with 13C[(dcpp)nickelalactone] V-1(13C), the 31P{1H} NMR 

spectrum is identical to the one obtained from the reaction without 13C labelling. This proves 

that the ethylene moiety of [(dcpp)Ni(C2H4)] V-2 comes from the transmetallation with 

AlEt3 V-3 and not from the decomposition of [(dcpp)nickelalactone] V-1 itself.  

Further evidence is given by the analogous reaction between [(dcpp)nickelalactone] V-1 and 

Al(nBu)3 V-5, for which [(dcpp)Ni(1-butene)] V-6 and di(n-butyl)aluminium propanoate V-7 

are identified as products.  
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Scheme 5.3: Reaction between 13C[(dcpp)nickelalactone V-1(13C) and Al(nBu)3 V-5 in [d8]-THF 

generating [(dcpp)Ni(1-butene)] V-6 and 13C labelled di(n-butyl)aluminium propanoate V-7(13C). 

 

The reaction is slower compared to AlEt3 V-3. Nevertheless, by using an excess of Al(nBu)3 V-

5 (19 eq.) and heating to 60 °C, all starting [(dcpp)nickelalactone] V-1 can be converted within 

1 d. Remarkably no [(dcpp)Ni(C2H4)] V-2 is observed under these conditions, while usually 

[(dcpp)nickelalactone] V-1 starts to be reductively decoupled at 60 °C in THF. [(dcpp)Ni(1-

butene)] V-6 had been previously isolated during the investigations on Negishi cross couplings 

and could therefore be easily identified. The complex V-6 appears as an AB system between 

δ = 22.7 ppm and δ = 23.6 ppm in 31P{1H} NMR (2JP, P = 31.0 Hz), as shown in Figure 5.1.  

 

 

Figure 5.1: 31P{1H} NMR spectrum of [(dcpp)Ni(1-butene)] V-6 in THF at RT. 
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[dcpp)Ni(1-butene)] V-6 crystallizes in the unusual space group P1. The geometry around the 

nickel center is square planar as evidenced in Figure 5.2. The bite angle P1Ni1P2 is comparable 

to the one of [(dcpp)Ni(C2H4)] V-2 (104.01(5) ° vs. 104.50(1) °). The C1C2 bond distance is 

clearly in the range of a double bond (C1C2 = 1.375(8) Å).  

 

 

Figure 5.2: Molecular structure of [(dcpp)Ni(1-butene)] V-6 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond length [Å] and angles [°]: Ni1-C1 

1.956(5), Ni1-C2 1.975(5), C1-C2 1.375(8), C2-C3 1.529(7), C3-C4 1.524(7), P1-Ni1-P2 104.01(5), C1-Ni1-

C2 40.9(2). 

 

Scheme 5.4 proposes a mechanism for the synthesis of dialkylaluminium propanoates from 

[(dcpp)nickelalactone] V-1 and AlR3 derivatives. The trialkylaluminium derivatives 

presumably form Lewis adducts with [(dcpp)nickelalactone] V-1. The activated metallacycle 

are then more prone to the cleavage of the Ni-O bond and resulting ring opening. The reaction 

further proceeds through β-hydride elimination on the transferred alkyl moiety of AlR3, 

followed by reductive elimination leading invariably to dialkylaluminium propanoate together 

with the corresponding [(dcpp)Ni(alkene)] complex. 
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Scheme 5.4: Proposed mechanism for the reaction between [(dcpp)nickelalactone] V-1 and AlR3 

derivatives leading to the formation of dialkylaluminium propanoates. 

 

5.1.3 Preliminary DFT calculations 

DFT calculations were undertaken in order to gain deeper mechanistic insights on the reaction 

between [(dcpp)nickelalactone] V-1 and AlEt3 V-3. The calculations were performed using the 

B3PW91 functional and the 6-31G* basis set for C, H, O, P and Al atoms and the RECP 

Stuttgart basis set for nickel. The cyclohexyl groups of the ligand and the ethyl groups of AlEt3 

were modelled by the 3-21G basis set. 

The reaction is initiated by the coordination of the Lewis acid to the acyl moiety of 

[(dcpp)nickelalactone] V-1. However, the transition state for the direct cleavage of 

[(dcpp)nickelalactone] V-1 and the generation of a nickel propanoate intermediate lies very 

high in energy and would not be achievable under the mild reaction conditions reported before.  

 

 

Scheme 5.5: Coordination of AlEt3 V-3 to [(dcpp)nickelalactone] V-1, further transmetallation is 

highly unfavorable. 
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Upon coordination of an additional AlEt3 V-3 molecule on the second oxygen atom of 

[(dcpp)nickelalactone] V-1, the transition state for lactone ring opening lies significantly lower 

in energy, in good agreement with the reaction conditions. This also rationalize the large excess 

of trialkylaluminium derivatives required to perform the reactions efficiently. 

 

 

Scheme 5.6: Coordination of a second AlEt3 molecule V-3 to the [(dcpp)nickelalactone-AlEt3] adduct 

induces transmetallation and formation of a nickel propanoate complex. 

 

5.1.4 Reactivity of tri(tert-butyl)aluminium V-8 

It would be even more interesting to induce β-hydride elimination on the propanoate fragment 

to generate acrylate derivatives as shown in Scheme 5.7. In this sense, the use of bulky 

substituents could prevent the coplanar configuration between the nickel center, the α and the 

β carbons of the transferred alkyl chain required for β-hydride elimination. Therefore, the 

reactivity of tri(tert-butyl)aluminium V-8 was investigated.  

 

 

Scheme 5.7: Possible synthesis of acrylate derivatives using AlR3 compounds with substituents that do 

not fulfill the conditions for β-H elimination. 

 

 

 



Functionalization of CO2 with aluminium derivatives 

 

133 
 

When 13C[(dcpp)nickelalactone] V-1(13C) is reacted with only 1.5 eq. of Al(tBu)3 V-8 in [d8]-

THF at 60 °C, a new compound is observed, giving rise to two multiplets in 31P{1H} NMR 

between δ = 12.9 ppm and δ = 13.6 ppm and between δ = 35.0 ppm and δ = 35.5 ppm. The 
31P{1H} NMR spectrum of the reaction is presented in Figure 5.3. By increasing the amount of 

Al(tBu)3 V-8 to 5 eq., 28 % yield of product are measured after 8 h. at 60 °C. It seems that an 

equilibrium is reached since the yield does not further increase upon time. Fortunately, the 

complex could be crystallized in THF at -30 °C. X-ray diffraction analysis reveals a 

[(dcpp)nickelalactone-Al(t-Bu)3] adduct V-9 in agreement with a 31P{1H} NMR chemical shift 

close to the one reported for free 13C[(dcpp)nickelalactone] V-1(13C). Curiously, switching the 

solvent from THF to non-coordinating toluene does not produce more 
13C[(dcpp)nickelalactone-AlR3] adduct V-9(13C). On the other hand, adding stronger 

coordinating agents such as pyridine or the Dipp carbene, does not break down the adduct 

either.  

No adduct had been previously observed by NMR spectroscopy for the reactions with AlEt3 V-

3 and Al(nBu)3 V-5. The bulkier the alkyl substituents get, the slower the reaction proceeds 

disclosing intermediates.  

 

 

Scheme 5.8: Reaction between 13C[(dcpp)nickelalactone] V-1(13C) and eq. of Al(tBu)3 V-8 in [d8]-

THF. 
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Figure 5.3: 31P{1H} NMR spectrum of the reaction between 13C[(dcpp)nickelalactone] V-1(13C) and 

1.5 eq. of Al(tBu)3 V-8 after 4 d. at 60 °C in [d8]-THF. 

 

 

Figure 5.4: Molecular structure of the 13C[(dcpp)nickelalactone-Al(t-Bu)3] adduct V-9(13C) 

determined by single crystal X-ray diffraction. Hydrogen atoms are omitted for clarity. Selected bond 

length [Å] and angles [°]: Ni1-C1 1.966(3), Ni1-O1 1.966(3), C3-O2 1.246(4), O2-Al1 1.831(2), P1-Ni1-P2 

98.97(3), C1-Ni1-O1 83.95(12), C3-O2-Al1 150.3(3). 
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Figure 5.4 shows the crystal structure of 13C[(dcpp)nickelalactone-Al(t-Bu)3] V-9(13C). The 

adduct crystallizes in the space group C2/c. The aluminium is coordinated to the metallalactone 

through the oxygen of the carbonyl. The geometry around the oxygen atom is slightly bent as 

evidenced by the C3-O2-Al1 angle that measures 150.3(3) °. The Al1-O2 bond is particularly 

elongated with 1.831(2) Å. In comparison the Al-O bond in Ogoshi’s oxanickelacycle-

AlMe2OTf complex obtained through the oxidative coupling between diphenylacetylene and 

tert-butanal at a PCy3 substituted nickel center measures 1.799(3) Å. In the opened intermediate 

[(PCy3)2Ni(benzaldehyde)-AlMe2OTf] adduct, the length of the Al-O bond reaches 

1.780(8) Å. [3] Otherwise, the adduct presents structural parameters close to the ones determined 

for free [(dcpp)nickelalactone] V-1. The P1-Ni1-P2 bite angles of both complexes (V-1 and V-

9) are comparable. Though, the Ni1-O1 and C3-O1 bonds are slightly elongated by 0.06 Å and 

0.03 Å respectively. As expected the aluminium derivative withdraws electron density from the 

nickelalactone and weakens the bonds of the cycle.  

 

Ph Ph +
O

R H
Ni(COD)2, PCy3, Me2AlOTf

C6D6, RT

Me2AlOTf

C6D6, RT, 5 min.
> 99 %
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Ni
Cy3P PCy3

O
Ph

H Ni
Cy3P PCy3

O
Ph

H

AlMe2OTf

Ni
O

RPh

Ph
Cy3P

Al
O O

S
O CF3

Ph Ph

R = Ph, 5 min. = 70 %
R = tBu, 1 h. = 92 %

 

Scheme 5.9: Ogoshi’s oxidative coupling between diphenylacetylene and aldehydes in the presence of 

Ni(0)/PCy3 and AlMe2OTf. [3] 

 

The reaction in neat Al(tBu)3 V-8 (60.8 eq.) at 60 °C does not show any Lewis adduct but a 

new AB system in 31P{1H} NMR between δ = 20.6 ppm and δ = 21.3 ppm (2JP, P = 32.78 Hz) 

attributed to [(dcpp)Ni(2-methylpropene)] V-10, as shown in Figure 5.5. The NMR yield of 

the nickel-alkene complex reaches 27 % after 1 d. and 6 h. and increases up to 36 % after 3 d. 

[(dcpp)Ni(2-metylpropene)] V-10 has been independently prepared starting from 

[(dcpp)NiCl2] V-12 via two consecutive transmetallations through tBuMgCl V-13, as depicted 

in Scheme 5.10. Comparison of the NMR spectra unambiguously confirms the synthesis of the 
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alkene complex. Hence the tBu group considerably slows down the reaction but it does not 

prevent β-hydride elimination from the alkyl moiety.  

 

60 °C, 3 d.
Al(tBu)3.Et2O V-8

+

O

O Al

+ tBuMgCl2,2 eq.
- 2 MgCl2

THF, -78 °C - RT, 2 h.

V-1

Cy2P PCy2Ni
O

O
V-11 V-10

V-12 V-13

Cy2P PCy2Ni

Cy2P PCy2Ni
Cl Cl

-

a)

b)

 

Scheme 5.10: a) Reaction between [(dcpp)nickelalactone] V-1 and Al(tBu)3 V-8 generating 

[(dcpp)Ni(2-methylpropene)] V-10. b) Reaction scheme of the independent synthesis of [(dcpp)Ni(2-

methylpropene)] V-10. 

 

 

Figure 5.5: 31P{1H} NMR spectrum of [(dcpp)Ni(2-methylpropene)] V-10 in THF at RT. 
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5.2 Preliminary catalytic investigations 

In light of the stoichiometric investigations presented above, the catalytic production of 

propanoic acid derivatives from the oxidative coupling between ethylene and CO2 has been 

considered. Commercially available AlEt3 V-3 has been chosen as transmetallating reagent. 

Scheme 5.11 shows the presumed mechanism of this reaction. During the first step 

[(dcpp)nickelalactone] V-1 is generated from the oxidative coupling between 

[(dcpp)Ni(C2H4)] V-2 and CO2. Afterwards, the reaction between [(dcpp)nickelalactone] V-1 

and AlEt3 V-3 releases diethylaluminium propanoate V-4 and regenerates directly the catalytic 

intermediate [(dcpp)Ni(C2H4)] V-2, without any need of additional ethylene. THF will be the 

solvent of choice. Aromatic solvents must be avoided because they promote the direct reaction 

between AlEt3 V-3 and CO2. Besides CO2 has a greater solubility in THF compared to benzene 

or toluene, which facilitates the formation of [(dcpp)nickelalactone] V-1. 

 

 

Scheme 5.11: Proposed catalytic cycle for the nickel mediated production of propanoic acid from 

ethylene, CO2 and AlEt3 V-3. 

 

Unfortunately, a catalytic test under 8 bar of CO2 with 10 mol% of [(dcpp)nickelalactone] V-1 

did not produce the expected diethylaluminium propanoate V-4. Instead, like for pinacolborane, 
31P{1H} NMR revealed the formation of [(dcpp)Ni(CO)2] V-14, which poisons the catalysis. 

Until the right conditions are found to shut down the reduction of CO2 into CO and to 

preferentially regenerate the metallalactone under mild conditions, the catalytic production of 

propanoic acid derivatives from ethylene and CO2 cannot be achieved. 
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5.3 Conclusion and perspectives 

This is the first report of the activation of a nickelalactone through an aluminium derivative. 

The reactions between [(dcpp)nickelalactone] V-1 and trialkylaluminium derivatives with β-

hydrogens (V-3, V-5, V-8) lead to the formation of propanoic acid derivatives.   

 

 

Scheme 5.12: Synthesis of propanoates from [(dcpp)nickelalactone] V-1 and trialkylaluminium 

derivatives (V-3, V-5, V-8). 

 

AlR3 compounds are good transmetallating reagents for the nickelalactone and favor β-hydride 

elimination over reductive elimination. Unfortunately, the β-hydride elimination on the 

transferred alkyl group is more favored than the elimination on the propanoate moiety that 

would generate acrylates. The steric properties of the aluminium derivatives could not be tuned 

in order to reverse the reactivity. Overall, these results stand in contrast to the reactivity of 

pinacolborane, which preferentially leads to reductive elimination on the nickel center and 

generates propanol derivatives after further reductions.   

More extensive investigations will be required in order to cleanly switch the reactivity towards 

the synthesis of acrylates. A first empirical approach would consist in varying not only the steric 

but also the electronic properties of the trialkylaluminium reagents. Derivatives without 

accessible β-hydrogens, such as AlMe3, Al(neopentyl)3, Al(CF3)3 or Al(Ph)3, could be tested in 

this sense. Aluminium halides or mixed aluminium alkyl halides could also come into 

consideration. The second approach, based on the DFT calculations discussed above, would 

moreover substitute dcpp for ligands with smaller bite angles and less bulky substituents in 

order to favor a double coordination of the trialkylaluminium derivative, which induces the 

lactone ring opening and its subsequent reactivity. 
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5.4 Experimental part 

5.4.1 General Remarks 

All reactions were carried out under an atmosphere of dry argon using standard Schlenk 

techniques or in a nitrogen-filled MBraun LabStar glovebox. THF and toluene were taken from 

an MBraun SPS-800 solvent purification system, freeze-pump-thaw degassed and stored over 

4 Å molecular sieves. [d8]-THF and C6D6 were degassed and stored over 4 Å molecular sieves.  

[(tmeda)nickelalactone] [4] was synthesized according to a published procedure. All the other 

chemicals were purchased in reagent grade purity from Acros, Cytech and Sigma-Aldrich and 

were used without further purification. CO2 was purchased from Air Liquide. 

 

5.4.2 Synthesis of trialkylaluminium derivatives 

5.4.2.1 Synthesis of Al(nBu)3.Et2O V-5  

                                                                                                          

 

 

AlCl3 (1.333 mg, 1.00×10-2 mol, 1 eq.) is solubilized in 25 mL of Et2O and nBuMgCl 

(C = 2.0 mol.L-1 in Et2O, V = 15.0 mL, 3.00×10-2 mol, 3 eq.) is slowly added at -78 °C. The 

solution is stirred for 1 h. at -78 °C and allowed to come back to RT over 3 h. MgCl2 precipitates 

out of the solution. The volatiles are removed under vacuum and the salts are washed two times 

with pentane to extract the product. If the collected solution is not clear at this point, additional 

filtration is necessary. The volatiles are then removed under reduced pressure and 

Al(nBu)3.Et2O V-5 is gathered as a colorless liquid in 82 % yield (2.245 g).   

1H NMR (300 MHz, C6D6): δ 0.19 (t, 3JH, H = 7.2 Hz, 6H, CH2 A), 0.68 (t, 3JH, H = 7.2 Hz, 6H, 

CH3 (Et2O)), 1.12 (t, 3JH, H = 7.2 Hz, 9H, CH3 D), 1.65 (m, 12H, CH2 B + C), 3.30 (q, 3JH, H = 

7.2 Hz, 4H, CH2 (Et2O)) ppm. 

13C NMR (75 MHz, C6D6): δ 10.0 (CH2 A), 13.1 (CH3 (Et2O)), 14.11 (CH3 D), 29.0 (CH2 B or 

C), 29.5 (CH2 B or C), 65.9 (CH2 (Et2O)) ppm.  
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5.4.2.2 Synthesis of Al(tBu)3.Et2O V-8 [5] 

 

AlCl3 (1.333 mg, 1.00×10-2 mol, 1 eq.) is solubilized in 25 mL of Et2O and tBuMgCl 

(C = 2.0 mol.L-1 in Et2O, V = 15.0 mL, 3.00×10-2 mol, 3 eq.) is slowly added at -78 °C. The 

solution is stirred for 1 h. at -78 °C and allowed to come back to RT over 2 h. 30 min. MgCl2 

precipitates out of the solution. The volatiles are removed under vacuum and the salts are 

washed two times with pentane to extract the product. If the collected solution is not clear at 

this point, additional filtration is necessary. The volatiles are then removed under reduced 

pressure and Al(tBu)3.Et2O V-8 is gathered as a colorless oily liquid in 80 % yield (2.168 g).   

1H NMR (300 MHz, C6D6): δ 1.20 (s, 27H, C(CH3)3), 0.62 (t, 3JH, H = 7.2 Hz, 6H, CH3 (Et2O)), 

3.47 (q, 3JH, H = 7.2 Hz, 4H, CH2 (Et2O)) ppm. 

13C NMR (75 MHz, C6D6): δ 15.6 (CH3 (Et2O)), 32.9 (C(CH3)3), 65.9 (CH2 (Et2O)), 74.1 

(C(CH3)3) ppm.   

 

5.4.3 Synthesis of diethylaluminium propanoate V-4 [1, 2] 

AlEt3 V-3 25 wt% in toluene (21.3 µl, 3.97×10-5 mol, 1 eq.) is dissolved in 0,6 ml of C6D6 in a 

J. Young tube. The tube is freeze-pump-thaw degassed and 1 bar of CO2 is applied to it for 

5 min at RT. The tube is then heated for 1 h. at 50 °C, the solution remains colorless. 

1H NMR (300 MHz, C6D6): δ 0.27 (q, 3JH, H = 8.1 Hz, 4H, CH2 ethyl), 0.71 (t, 3JH, H = 7.5 Hz, 

3H, CH3), 1.33 (t, 3JH, H = 8.1 Hz, 6H, CH3 ethyl), 1.91 (q, 3JH, H = 7.5 Hz, 2H, CH2) ppm. 

13C NMR (75 MHz, C6D6): δ -1.0 (CH2 ethyl), 9.0 (CH3), 9.1 (CH3 ethyl), 30.5 (CH2), 184.4 

(C=O) ppm. 

1H NMR (300 MHz, [d8]-THF): δ -0.16 (q, 3JH, H = 8.1 Hz, 4H, CH2 ethyl), 0.96 (t, 3JH, H = 8.1 

Hz, 6H, CH3 ethyl), 1.14 (t, 3JH, H = 7.5 Hz, 3H, CH3), 2.55 (q, 3JH, H = 7.5 Hz, 2H, CH2) ppm. 

13C NMR (75 MHz, [d8]-THF): δ -0.9 (CH2 ethyl), 8.7 (CH3), 8.8 (CH3 ethyl), 30.0 (CH2), 

184.8 (C=O) ppm. 
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5.4.4 Blank tests 

5.4.4.1 Reacting AlEt3 V-3 with CO2 in [d8]-THF 

AlEt3 V-3 25 wt% in toluene (21.3 µl, 3.97×10-5 mol, 1 eq.) is dissolved in 0.6 ml of [d8]-THF 

in a J. Young tube. The tube is freeze-pump-thaw degassed and 1 bar of CO2 is applied to it for 

2 min. at RT. After 1 d. at RT no reaction is observed and the solution remains colorless. The 

Young tube is re-degassed and 6 bar of CO2 are applied to it for 2 min. After 1 d. at RT no 

reaction is observed as well as after 1 d. at 60 °C.   

 

5.4.4.2 Reacting AlEt3 V-3 with [(dcpp)Ni(C2H4)] V-2 in [d8]-THF 

[(dcpp)Ni(C2H4)] V-2 (15.0 mg, 2.87×10-5 mol, 1 eq.) is suspended in 0.6 ml of [d8]-THF in a 

J. Young tube and AlEt3 V-3 25 wt% in toluene (23.2 µl, 4.30×10-5 mol, 1.5 eq.) is added. After 

1 d. at RT or 1 d. at 60 °C, besides the almost insoluble [(dcpp)Ni(C2H4)] V-2, traces of another 

compound are detected by 31P{1H}-NMR spectroscopy at δ = 63.3 ppm. 1H-NMR just shows 

AlEt3 V-3. 

 

5.4.4 Stoichiometric Reactions 

5.4.4.1 Reacting [(dcpp)nickelalactone] V-1 with AlEt3 V-3 in [d8]-THF 

[(dcpp)nickelalactone] V-1 (15.0 mg, 2.64×10-5 mol, 1 eq.) is dissolved in 0,6 mL of [d8]-THF 

in a J. Young tube and reacted with AlEt3 V-3 25 wt% in toluene (21.3 µL, 3.97×10-5 mol, 

1.5 eq.). After 1 d. at RT, formation of diethylaluminium propanoate CH3CH2C(O)OAlEt2 V-4 

and 6 % of [(dcpp)Ni(C2H4)] V-2 is observed respectively through 1H- and 31P{1H}-NMR 

spectroscopy. 

 

5.4.4.2 Reacting 13C[(dcpp)nickelalactone] V-1(13C) in neat AlEt3 V-3 

13C[(dcpp)nickelalactone] V-1(13C) (15.0 mg, 2.63×10-5 mol, 1 eq.) is reacted with 0.8 mL of 

AlEt3 V-3 (25 wt% in toluene, 56.5 eq.) in a J. Young tube. After 30 min. at RT, full conversion 

exclusively to diethylaluminium propanoate CH3CH2C(O)OAlEt2 V-4 and [(dcpp)Ni(C2H4)] 

V-2 is observed respectively through 1H- and 31P{1H}-NMR spectroscopy. 
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5.4.4.3 Reacting 13C[(dcpp)nickelalactone] V-1(13C) with Al(nBu)3.Et2O V-5 in 

[d8]-THF 

13C[(dcpp)nickelalactone] V-1 (15.0 mg, 2.63×10-5 mol, 1 eq.) is reacted with Al(nBu)3 V-5 

(139.3 mg, 5.11×10-4 mol, 19 eq.) in a J. Young tube. 0.25 mL of [d8]-THF are added to have 

enough solvent in the NMR tube. Full conversion of 13C[(dcpp)nickelalactone] V-1(13C) is 

achieved after 1 d. at 60 °C. Di(n-butyl)aluminium propanoate CH3CH2C(O)OAl(nBu)2 V-7 

and [(dcpp)Ni(1-butene)] V-6 are the main products observed respectively through 1H- and 
31P{1H}-NMR spectroscopy.  

For [(dcpp)Ni(1-butene)] V-6:  

 

31P{1H} NMR (121 MHz, [d8]-THF): δ 22.7 - 23.6 (AB system, 2JP, P = 31.0 Hz, 2P) ppm.  

Crystals for X-ray diffraction analysis had been previously grown from the reaction between 

[(dcpp)NiCl2] V-11 and 10 eq. of PhZnCl in the presence of butyl bromide in THF at RT. 

 

5.4.4.4 Reacting 13C[(dcpp)nickelalactone] V-1(13C) with Al(tBu)3.Et2O V-8 in 

[d8]-THF 

13C[(dcpp)nickelalactone] V-1(13C) (15.0 mg, 2.64×10-5 mol, 1 eq.) is dissolved in 0.8 mL of 

[d8]-THF in a J. Young tube and reacted with Al(tBu)3 V-8 (C = 2.0 mol.L-1 in THF, 66.1 µL, 

1.32×10-4 mol, 5 eq.) at 60 °C. After 8 h. 31P{1H} NMR shows the formation of the 
13C[(dcpp)nickelalactone-Al(tBu)3] adduct V-9(13C) in 28 % yield. Longer reaction times do 

not increase the yield significantly (29 % after 23 h.). 

For 13C[(dcpp)nickelalactone-Al(tBu)3] V-9(13C):  

 

 

 

31P{1H} NMR (121 MHz, [d8]-THF): δ 12.9 - 13.6 (m, 1P), 35.06 - 35.50 (m, 1P) ppm. 
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5.4.4.5 Reacting [(dcpp)nickelalactone] V-1 in neat Al(tBu)3.Et2O V-8 

[(dcpp)nickelalactone] V-1 (15.0 mg, 2.64×10-5 mol, 1 eq.) is reacted with Al(tBu)3 V-8 

(C = 2.0 mol.L-1 in THF, 0.8 mL, 60.8 eq.) in a J. Young tube. After 1 d. at 60 °C, 27 % of 

[(dcpp)Ni(2-methylpropene)] V-10 are detected by 31P{1H} NMR. The yield increases to 36 % 

after 3 d. at 60 °C.  

For [(dcpp)Ni(2-methylpropene)] V-10:  

 

31P{1H} NMR (121 MHz, [d8]-THF): δ 20.6 - 21.3 (AB system, 2JP, P = 32.8 Hz, 2P) ppm.  
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6 Synthesis and reactivity of (bis-NHC)nickel complexes 

6.1 State of the art 

6.1.1 N-heterocyclic carbenes 

The isolation of the first crystalline N-heterocyclic carbene (NHC) by Arduengo in 1991 [1] 

opened this research field. Since then, a large variety of NHC compounds has been developed 

and their application are ever growing. 

A classic free NHC consist in an imidazole moiety, in which the central carbon atom bears a 

lone pair and an empty orbital. NHCs have a singlet ground state. The HOMO is an sp2 

hybridized lone pair in the plane of the heterocycle whereas the LUMO is an unoccupied out of 

plane p-orbital. The two electronegative nitrogen atoms on both sides of the carbene center 

stabilize the molecule electronically in creating a push-pull environment. The nitrogen atoms 

give electron density from their lone pair into the empty p-orbital, while they inductively 

withdraw electron density from the filled sp2 hybridized orbital, as depicted in Scheme 6.1. The 

cyclic structure of a NHC further enforces a bent geometry which favors the singlet ground 

state.  Bulky substituents can be attached to the nitrogen atoms to kinetically stabilize the free 

carbene and especially avoid dimerization reactions generating olefins. [2, 3, 4] 

 

 

 

Scheme 6.1: Structure of a NHC and orbital 

interactions. 

Molecular orbital diagram of a NHC.

 



Synthesis and reactivity of (bis-NHC)nickel complexes 

 

148 
 

NHCs are nucleophiles, which have been commonly employed as ligands for transition metal 

complexes. They are stronger two electron σ-donors than tertiary phosphines and weak π-

donors and -acceptors. As a consequence, the metal-ligand bonds are particularly stable. 

Therefore, NHC-metal complexes usually have a good thermal stability, are often resistant to 

oxidation and do not tend to ligand dissociation. [5] Furthermore, they are highly active in 

numerous homogeneous catalytic reactions. [2, 5, 6, 7] Grubbs’ second generation ruthenium 

catalysts for olefin metathesis are probably the most famous NHC-based complexes. [8] C-C 

and C-heteroatoms cross-coupling reactions have also been widely promoted by palladium-

NHC complexes designed by Herrmann, [9, 10, 11] Nolan [12, 13] and Organ [14] among others. In 

addition, very efficient hydrosilylations as well as hydrogenation reactions catalyzed by NHC 

complexes have been reported. [6, 7]  

 

6.1.2 Chelating (bis-NHC)nickel complexes 

Chelating bis-phosphine ligands are commonly used for efficient homogeneous catalysis. It is 

therefore of interest to investigate the reactivity of stronger σ donating analogous chelating bis-

NHC ligands. Chelating bis-NHC ligands are composed of two carbene moieties linked together 

through a spacer. The chemistry of their corresponding complexes has been far less explored. 

In particular, (bis-NHC) nickel complexes are still relatively rare.  

 

6.1.2.1 Chelating [(bis-NHC)nickel(II)] complexes 

The investigations on (bis-NHC) nickel complexes started with the ambition of synthesizing 

analogues of cis chelated [(bis-NHC)Pd(II)dihalides]. The reactions between bis-imidazolium 

salts or free carbenes and appropriate nickel precursors led surprisingly to two different types 

of (bis-NHC)Ni(II) complexes. The length of the bridge and the size of the substituents on the 

nitrogen atoms had a great influence on the outcome of the reaction, as shown in Scheme 

6.2. [15] 

When small spacers or small substituents were used, cationic [(bis-NHC)2Ni]2+ 2[X]- (X = 

halide) complexes were obtained. Hermann and Green independently described the first 

synthesis of these homoleptic complexes bearing two chelating bis-NHC ligands in 1999. [16, 17] 

They favored methyl linkers and alkyl groups such as methyl, isopropyl, cyclohexyl or tert-

butyl moieties. Later, Huynh [15] and Foley [18] respectively reported related benzimidazole 
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derived and N-benzyl substituted cationic complexes, which successfully catalyzed either 

Kumada or Heck and Suzuki-Miyaura cross-coupling reactions. 

 

Scheme 6.2: Synthesis of [(bis-NHC)Ni(II)] complexes. The outcome of the reaction is controlled by 

the size of the R substituents and the length of the spacer. 

 

On the other hand, long spacers or bulky substituents preferentially gave the expected neutral 

[(bis-NHC)NiX2] complexes. The first example was provided by RajanBabu in 2000 who used 

the chiral binaphtyl backbone as a linker between both NHC units. The large size of the chelate 

ring enforced an unusual trans coordination on the nickel center. [19] Subsequently in 2001 

Baker reported an ortho-cyclophane linked [(bis-NHC)NiCl2] complex with cis geometry. [20] 

Interestingly, by using longer classic spacers, as propyl or butyl bridges, Bouwman [21, 22] and 

Huynh [15] also managed to access cis chelated [(bis-NHC)NiX2] (X = Cl, Br) complexes, which 

turned out to catalyze Kumada cross-couplings as well as the vinyl polymerization of 

norbornene. Switching the N-substituent from small alkyl groups to bulkier Dipp moieties, as 

shown by Danopoulos, also led preferentially to neutral cis chelated bis-NHC dihalide nickel(II) 

complexes. [23] Scheme 6.3 presents some of the aforementioned [(bis-NHC)NiX2] complexes. 
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Scheme 6.3: Examples of [(bis-NHC)NiX2] complexes. 

 

Besides, these two families of nickel(II) complexes, there are scarce examples of other [(bis-

NHC)Ni(II)] compounds. Green described the synthesis of an ethyl bridged [(bis-

NHC)nickel(II)-dimethyl] complex. The ligand substitution between [Ni(bipy)Me2] and the 

free carbene gave the targeted compound in 73 % yield. [24] In addition, Cao and Shi reported 

[(LDipp)Ni(carbonate)] complexes with varying linkers, which were active in the Kumada 

cross-coupling reaction. [25] 

 

6.1.2.2 Chelating [(bis-NHC)Ni(0)] complexes 

More recently, chelating [(bis-NHC)Ni(0)]-complexes have been reported. They were first 

obtained through ligand substitution reactions between [Ni(COD)2] and free bis-carbenes. 

During his investigations on bent nickel(imido) complexes in 2013, Hillhouse isolated the 

square planar [3,3’-methylenebis(1-tert-butyl-4,5-dimethylimidazoliylidene)Ni(η2-COD)] 

complex in excellent yield. [26] Afterwards Hofmann managed to obtain analogous 

[(LtBu)Ni(COD)] and [(LDipp)Ni(COD)} complexes although in moderate yields. [27]   

 

 

Scheme 6.4:  Synthesis of [(bis-NHC)Ni(COD)] complexes through ligand substitution from 

[Ni(COD)2]. 
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We can note that the reduction of [(bis-NHC)Ni(II)] complexes with two equivalents of 

reducing agents such as KC8 or K(BEt3H) also generates Ni(0) carbene complexes. Kubiak 

synthesized in 2014 the first Ni(0) tetracarbene from [(bis-NHC)2Ni]2+ 2[Br]- by using this 

procedure. [28] Subsequently, Driess managed to isolate mixed chelating [silylene-

carbeneNi(0)] complexes. [29] 

 

6.1.3 Research objectives 

This literature survey shows that it is still difficult to control the synthesis of desired [(bis-

NHC)Ni(0)]-fragments and to a lesser extend of [(bis-NHC)Ni(II)] complexes. As a result, the 

oxidative coupling between ethylene and CO2 has never been investigated for chelating bis-

carbene transition metal complexes. This reaction requires the synthesis of to date unknown 

[(bis-NHC)Ni(alkenes)] or [bis-NHC)Ni(alkynes)] and [(bis-NHC)nickelalactones]. 

Taking into account the knowledge about bis-NHC nickel complexes, two strategies were 

developed to get access to targeted [(bis-NHC)nickelalactones]. These were also strongly 

inspired by the related diamine and bis-phosphine chemistry presented in Chapter 3, 4 and 5, 

which is well understood and has already been more extensively studied.  

The first approach consists in oxidatively coupling unsaturated chelating [(bis-NHC)Ni(0)] 

complexes with CO2 to afford chelating [(bis-NHC)nickelalactones]. The synthesis of (bis-

NHC)nickel dihalide complexes with small spacers is still out of reach (6.1.2.1). Therefore 

[(bis-NHC)Ni(alkenes)] will be preferentially generated directly from Ni(0) precursors rather 

than from two electron reduction of nickel(II) complexes. Following Hillhouse’s [26] and 

Hofmann’s [27] procedures, unsaturated [(bis-NHC)Ni]-complexes can be obtained starting 

from [Ni(COD)2] VI-8 through a double ligand substitution. The first COD moiety will be 

displaced by the free carbene and the second one by the chosen alkenes or alkynes. In a second 

step, the unsaturated Ni(0) complexes can be reacted under a CO2 atmosphere to finally produce 

the  chelating [(bis-NHC)nickelalactones]. 
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Scheme 6.5: Synthesis of [(bis-NHC)nickelalactones] through oxidative coupling with ethylene and 

CO2. 

 

The second more straightforward approach uses preformed [(tmeda)nickelalactone] VI-17 and 

relies on the ligand substitution of the diamine by stronger coordinating bis-NHCs, as depicted 

in Scheme 6.6. A study released by Walther in 2006 showed that a pyridine ligand of 

[(dipyridine)nickelalactone] could be easily displaced by a NHC to give the corresponding 

[(pyridine)(NHC)nickelalactone]. However, these complexes dimerize easily in DMF upon loss 

of the labile pyridine ligand. [30] Nevertheless, this result seemed encouraging enough to extend 

this methodology to chelating bis-carbenes. 

 

 

Scheme 6.6: Synthesis of [(bis-NHC)nickelalactones] through ligand substitution. 

 

6.2 Synthesis of [(bis-NHC)Ni(alkene)] and [(bis-NHC)Ni 

(alkyne)] complexes 

According to the first strategy presented in 6.1.3, the starting point of this research project was 

the synthesis of new unsaturated chelating [(bis-NHC)Ni]-complexes. For this study 1,1’-di-

tert-butyl-3,3’-methylenedimidazoline-2,2’-diylidene (LtBu), 1,1’-di-(2,6-diisopropylphenyl) 

butyl-3,3’-methylenedimidazoline-2,2’-diylidene (LDipp) and 1,1’-di-tert-butyl-3,3’-

propylenedimidazoline-2,2’-diylidene (LtBu)prop were chosen as ligands. 
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Scheme 6.7: Ligands selected for the following investigations. 

  

6.2.1 Synthesis of bis-NHC precursors  

Prior to the coordination chemistry, substituted imidazoles and their corresponding 

imidazolium salts were generated. N-tert-butylimidazole VI-1  [31] and N-(2,6-

diisopropylphenyl)imidazole VI-2 [32] were synthesized according to published procedures. 

Glyoxal, formaldehyde, ammonia and primary amines are reacted in polar solvents to afford 

the substituted imidazoles VI-1 and VI-2. Scheme 6.8 presents the reaction conditions. 

 

 

Scheme 6.8: a) Streubel’s procedure for the synthesis of N-tert-butylimidazole VI-1. [31] b) Zhang’s 

procedure for the synthesis of N-(2,6-diisopropylphenyl) imidazole VI-2. [32] 

 

Afterwards, the bis-imidazolium salts LtBuH2Br2 VI-5, LDippH2Br2 VI-6 and LtBu(prop)H2Br2 

VI-7 were synthesized through SN2 reactions performed under pressure between the imidazoles 

and either dibromomethane VI-3 or dibromopropane VI-4. [33] Table 6.1 gives the optimized 

conditions for each carbene precursor.  
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Scheme 6.9: General procedure for the synthesis of bis-imidazolium salts. 

 

Table 6.1: Optimized reaction conditions for the synthesis of the LtBuH2Br2 VI-5, LDippH2Br2 VI-6 

and LtBu(prop)H2Br2 VI-7 imidazolium salts. 

Product Reaction time (h.) Temperature (°C) Yield (%) 

LtBuH2Br2 VI-5 120 130 94 

LDippH2Br2 VI-6 72 150 60 

LtBu(prop)H2Br2 VI-7 72 130 73 

 

6.2.2 Synthesis of [(bis-NHC)Ni(alkene)] complexes  

The ethylene substituted complexes [(LtBu)Ni(C2H4)] VI-9 and (LDipp)Ni(C2H4) VI-10 were 

synthesized. The imidazolium salts LtBuH2Br2 VI-5 and LDippH2Br2 VI-6 are deprotonated by 

2 eq. of KOtBu in Et2O to generate the free bis-carbenes, which are stable in solution at RT for 

several hours. After removal of the insoluble potassium salts through filtration, the free 

carbenes are directly reacted with [Ni(COD)2] VI-8 and 1 bar of ethylene. Successive ligand 

substitutions afford the corresponding [(LtBu)Ni(C2H4)] VI-9 and [(LDipp)Ni(C2H4)] VI-10 

complexes in good yields. The compounds are surprisingly stable towards water but highly 

sensitive towards oxygen. 

 

 

Scheme 6.10: Synthesis of [(LtBu)Ni(C2H4)] VI-9 and [(LDipp)Ni(C2H4)] VI-10. 
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The procedure reported by Hofmann et al. [27] for the [(LtBu)Ni(COD)] and [(LDipp)Ni(COD)] 

complexes was used as a guideline for the development of the new ethylene complexes. 

However, their synthesis’ require a long and complicated work-up involving water and provide 

the products in low to moderate yields (34 % and 50% respectively). Indeed, the limited 

solubility of the nickel alkene complexes in common organic solvents renders the salts’ 

separation difficult at the end of the reaction. Therefore, it proved to be essential to carry out 

the deprotonation in Et2O to precipitate and to remove KBr before adding the nickel precursor. 

In this way, the products’ purification is restricted to the removal of the volatiles under vacuum 

and the extraction of free COD with pentane without important losses.  

[(LtBu)Ni(C2H4)] VI-9 is isolated as a brown product in 75 % yield. The ethylenic protons are 

strongly shifted upfield in 1H NMR, resonating as an AA’XX’ system between δ = 0.99 ppm 

and δ = 1.18 ppm. The methylene protons are diastereotopic, probably due to conformational 

rigidity, and give rise to two doublets. The ethylenic carbons appear at δ = 27.7 ppm in 
13C NMR, which rather corresponds to the chemical shift of an alkane. The carbenic center is 

located downfield at δ = 203.7 ppm as expected. Single crystals for X-ray diffraction analysis 

were grown from a THF solution at -25 °C. The solid state structure has a distorted square 

planar geometry with a bite angle of 91.45(14) °. The six-membered chelate ring adopts a boat 

shape conformation. The distance between the ethylenic C1 and C2 carbons of 1.419(5) Å lies 

between a single and a double C-C bond. This evidences a very strong π-back donation from 

the nickel center to the coordinated olefin in this complex. 

 

Figure 6.1: Molecular structure of [(LtBu)Ni(C2H4)] VI-9 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ni1-C1 

1.953(4), Ni1-C2 1.947(3), Ni1-C3 1.923(3), Ni1-C4 1.903(3), C1-C2 1.419(5), C1-Ni1-C2 42.66(15), C3-

Ni1-C4 91.45(14). 
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By switching the substituents on the nitrogen atoms to the bulkier Dipp units, 

[(LDipp)Ni(C2H4)] VI-10 could be obtained as a red powder in 71 % yield. The 1H and 
13C NMR chemical shifts of the ethylene moiety are here again extremely shifted upfield. The 

olefinic protons resonate at δ = 0.14 ppm as a singlet and the corresponding carbons at 

δ = 25.2 ppm. In this complex both methylene protons are also equivalent owing to fast 

geometry fluctuations in solution. The quaternary carbene atoms appear at δ = 200.1 ppm.  

 

6.2.3 Synthesis of [(bis-NHC)Ni(alkyne)] complexes  

The methodology has also been extended to alkyne complexes. In this way symmetric 

[(LtBu)Ni(diphenylacetylene)] VI-13 and asymmetric [(LtBu)Ni(phenylacetylene)] VI-14 

have been synthesized in 76 % and 73 % yield respectively. 

 

 

Scheme 6.11: Synthesis of [(LtBu)Ni(diphenylacetylene)] VI-13 and [(LtBu)Ni(phenylacetylene)] VI-

14. 

 

NMR spectroscopy shows that the acetylene moiety in these complexes is strongly shifted 

downfield towards the olefinic area. The 13C shift of the triple bond in 

[(LtBu)Ni(diphenylacetylene)] VI-13 is located at δ = 138.7 ppm. The acetylenic carbons in 

[(LtBu)Ni(phenylacetylene)] VI-14 are found at δ = 124.1 ppm and δ = 138.49 ppm and the 

corresponding proton appears at δ = 6.49 ppm. This points towards a strong π-back donation 

that highly weakens the triple bond of the alkyne. In addition, both complexes could be 

crystallized from THF solutions either at RT or at -30 °C. The geometric parameters determined 

by X-ray diffraction back up the NMR results. The Ni-Cacetylene bonds are about 4 Å shorter than 
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the Ni-CNHC bonds due to the back bonding. The acetylenic C1-C2 bonds measure 1.280(8) Å 

and 1.292(6) Å respectively and are closer to a C-C double bond than to a triple bond. The C18-

C1-C2 (147.0(7) °) and C24-C2-C1 (145.1(7) °) angles in [(LtBu)Ni(diphenylacetylene)] VI-13 

and H1-C1-C2 (144.8 °) and C18-C2-C1 (140.9(4) °) in [(LtBu)Ni(phenylacetylene)] VI-14 show 

that the alkynes are bent. The complexes can therefore also be described as 

metallacyclopropenes. 

 

 

Figure 6.2: Molecular structure of 

[(LtBu)Ni(diphenylacetylene)] VI-13 

determined by single crystal X-ray diffraction. 

Hydrogen atoms are omitted for clarity. 

Selected bond lengths [Å] and angles [°]: Ni1-

C1 1.859(6), Ni1-C2 1.866(7), Ni1-C3 1.896(7), 

Ni1-C4 1.901(7), C1-C2 1.280(8), C1-Ni1-C2 

40.2(3), C3-Ni1-C4 90.1(3), C18-C1-C2 147.0(7), 

C24-C2-C1 145.1(7).                                                                                                                                                                                                                       

Figure 6.3: Molecular structure of 

[(LtBu)Ni(phenylacetylene)] VI-14 determined 

by single crystal X-ray diffraction. Hydrogen 

atoms are omitted for clarity. Selected bond 

lengths [Å] and angles [°]: Ni1-C1 1.868(5), 

Ni1-C2 1.880(4), Ni1-C3 1.917(4), Ni1-C4 

1.923(4), C1-C2 1.292(6), C1-H1 0.9500, C1-

Ni1-C2 40.32(19), C3-Ni1-C4 90.54(18), H1-C1-

C2 144.8, C18-C2-C1 140.9(4).
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6.3 Ligand substitution reactions 

6.3.1 Relative stability of unsaturated [(bis-NHC)Ni]-complexes 

The relative stability of the various nickel alkene and alkyne complexes has been probed and 

the experimental results are summarized in Scheme 6.12. 

First of all, the synthesis of [(LtBu)Ni(C2H4)] VI-9 and [(LDipp)Ni(C2H4)] VI-10 from 

[Ni(COD)2] VI-8 shows that these complexes are more stable than Hofmann’s 

[(LtBu)Ni(COD)] [27] and [(LDipp)Ni(COD)] [27] complexes. The electron donating alkyl chain 

of 1,5-cyclooctadiene as well as the cis-disubstituted geometry of the olefin, enhancing the 

electronic density at the Ni(0) center, are responsible for the weaker interaction between the 

metal and the ligand in the later complexes.  

Furthermore, [(LtBu)Ni(C2H4)] VI-9 is instantaneously converted to the corresponding 

[(LtBu)Ni(alkyne)] VI-13 and VI-14 complexes upon addition of diphenylacetylene VI-11 or 

phenylacetylene VI-12. In general, alkynes are more electron rich than alkenes and tend to bind 

more tightly to transition metals. Therefore, harsher conditions can be expected to carry out the 

oxidative coupling with CO2 on more stable [(bis-NHC)Ni(alkyne)] complexes. 

Moreover, diphenylacetylene VI-11 can slowly be displaced by phenylacetylene VI-12 at 

60 °C. [(LtBu)Ni(phenylacetylene)] VI-14 might be more stable because less sterically 

hindered. 

 

 

Scheme 6.12: Relative stability of unsaturated [(LtBu)Ni]-complexes. 
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6.3.2 Synthesis of [(bis-NHC)Ni(CO)2] complexes 

To date a single [(bis-NHC)Ni(CO)2] complex has been reported by Danopoulos. [23] 

[(LDipp)Ni(CO)2] VI-16 was synthesized through the reduction of [(LDipp)NiBr2] with an 

excess of Na/Hg under 100 psi (6.9 bar) of carbon monoxide. However, the product was 

obtained in low yield and could be characterized only crystallographically. The [(bis-

NHC)Ni(C2H4)] complexes VI-9 and VI-10 have therefore been reacted with carbon monoxide 

to develop a milder, cleaner and more efficient route to the [(bis-NHC)Ni(CO)2] complexes and 

to typically gain information about the strength of the π-back donation in these new compounds. 

When 1 bar of carbon monoxide is applied to [(LtBu)Ni(C2H4)] VI-9 and [(LDipp)Ni(C2H4)] 

VI-10, new carbonyl complexes are formed within 5 min. at RT in good yields. 

 

 

Scheme 6.13: Synthesis of [(LtBu)Ni(CO)2] VI-15 and [(LDipp)Ni(CO)2] VI-16. 

 

[(LtBu)Ni(CO)2] VI-15 could be isolated as an orange powder in 88 % yield. A new resonance 

in 13C NMR next to the carbenic center, at δ = 204.2 ppm, proves the coordination of the CO 

ligand. In addition, two strong absorption bands at 1874 cm-1 and 1952 cm-1 attributed to the 

CO stretches are observed by FTIR spectroscopy. [(LtBu)Ni(CO)2] VI-15 could be crystalized 

at -30 °C in Et2O. The nickel is in a tetrahedral environment with a bite angle of 95.39(14) °. 

The Ni-CCO bonds are shorter than the Ni-CNHC bonds due to the π-back bonding. The effect of 

the π-back donation is further observable in the C1-O1 (1.167(5) °) and C2-O2 (1.159(4) °) 

carbonyl bonds lengths lying in between C-O double and triple bonds. The bonding parameters 

are overall comparable to Danopoulos’ [(LDipp)Ni(CO)2] VI-16 structure. [23] 
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Figure 6.4: Molecular structure of [(LtBu)Ni(CO)2] VI-15 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ni1-C1 

1.755(4), Ni1-C2 1.755(4), Ni1-C3 2.009(3), Ni1-C5 1.996(3), C1-O1 1.167(5), C2-O2 1.159(4), C1-Ni1-C2 

110.89(17), C3-Ni1-C5 95.39(14). 

 

[(LDipp)Ni(CO)2] VI-16 could also be easily obtained by ligand substitution as a brown powder 

in 77 % yield. The compound has been characterized spectroscopically and shows very close 

features to [(LtBu)Ni(CO)2] VI-16. The carbonyls appear at δ = 204.3 ppm by 13C NMR. Two 

strong C-O absorption bands are found at 1892 cm-1 and 1960 cm-1 in the IR spectrum. 

Comparison between the C-O stretching frequencies of [(dcpp)Ni(CO)2] IV-26, 

[(LtBu)Ni(CO)2] VI-15 and [(LDipp)Ni(CO)2] VI-16 confirms that NHCs are stronger σ-donor 

ligands than phosphines. The absorption bands are shifted by 20 cm-1 to 40 cm-1 to lower 

frequencies in the bis-carbene complexes. 

  

6.4 Synthesis and reactivity of [(bis-NHC)nickelalactones]  

6.4.1 Synthesis of [(bis-NHC)nickelalactones] through ligand 

substitution 

Chelating diamine and bis-phosphine nickelalactones are well known and have been thoroughly 

studied for a long time. Nevertheless, carbene nickelalactones remain nearly unexplored. A 

single example bearing a mono-carbene and a pyridine ligand was reported by Walther in 2006 

as shown in Scheme 6.14. [30] 
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Scheme 6.14: [(pyridine)(NHC)nickelalactones] reported by Walther. The nickelalactones dimerize 

readily in DMF. 

 

[(Bis-NHC)nickelalactones] can be efficiently synthesized through ligand substitution from 

[(tmeda)nickelalactone] VI-17. The methodology is similar to the one described in 6.2.2 for the 

synthesis of [(bis-NHC)Ni(0)-alkene] and [(bis-NHC)Ni(0)-alkynes] complexes. 

Deprotonation of the (bis-NHC)H2Br2 imidazolium salts VI-5, VI-6 and VI-7 with 2.2 eq. of 

KOtBu affords the free carbenes, which then easily displace the diamine in presence of 

[(tmeda)nickelalactone] VI-17. It is important to carry out the first step of the reaction in Et2O 

to directly precipitate and remove KBr. THF is added for the second step to help solubilizing 

[(tmeda)nickelalactone] VI-17. Simple successive washings with THF, Et2O and pentane afford 

clean [(bis-NHC)nickelalactones] in good yields. In this way, [(LtBu)nickelalactone] VI-18, 

[(LDipp)nickelalactone] VI-19 and [(LtBu)propnickelalactone] VI-20 could be obtained. The 

lactones have poor solubility in most common organic solvents like Walther’s derivatives [30] 

and turned out to be very stable compounds insensitive towards water and oxygen. 

 

 

Scheme 6.15: Synthesis of [(LtBu)nickelalactone] VI-18, [(LDipp)nickelalactone] VI-19 and 

[(LtBu)propnickelalactone] VI-20. 
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[(LtBu)nickelalactone] VI-18 is obtained as a beige product in 83 % yield. Despite its limited 

solubility, NMR data could be recorded in CD3CN. The 1H NMR reveals two inequivalent Ni-

CH2 protons at δ = 0.47 ppm and δ = 0.74 ppm and two protons in α of the ester at δ = 2.03 ppm. 
13C NMR confirms the coordination of the bis-carbene to the nickel center with two quaternary 

carbons at δ = 180.6 ppm and δ = 186.1 ppm as well as the presence of a C=O bond at 

δ = 189.6 ppm. The presence of the lactone is further evidenced by FTIR spectroscopy 

displaying an absorption band at 1619 cm-1. Single crystals for X-ray diffraction analysis have 

been grown from an acetonitrile solution at RT. [(LtBu)nickelalactone] VI-18 crystalizes in the 

space group P21/n and the geometry around the nickel center is square planar. The bite angle 

C4Ni1C5 (86.89(17) °) is significantly smaller compared to [(dcpp)nickelalactone] IV-4 

(99.66(2) °). The chelate ring adopts a boat shape conformation. The Ni1C1 (1.942(4) Å) and 

Ni1O1 (1.909(3) Å) bond lengths are otherwise comparable to [(dcpp)nickelalactone] IV-4 (Ni1-

C3 1.968(3) Å and Ni1-O1 1.9074(18) Å). The particularly elongated Ni1O1 bond should ease 

the cleavage of the lactone. 

 

  

Figure 6.5: Molecular structure of [(LtBu)nickelalactone] VI-18 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ni1-O1 

1.909(3), Ni1-C1 1.942(4), C3-O2 1.228(5), Ni1-C4 1.860(4), Ni1-C5 1.957(4), C4-Ni1-C5 86.89(17), C1-

Ni1-O1. 84.73(16).  

 

Afterwards, different parameters of the [(bis-NHC)nickelalactone] have been successively 

varied. First of all, the substituents on the nitrogen atoms have been replaced by bulkier Dipp 

moieties. By following the same methodology, [(LDipp)nickelalactone] VI-19 can be isolated 
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as a beige product in 86 % yield. 1H NMR in MeOD reveals Ni-CH2 protons as a triplet at 

δ = 0.17 ppm and CH2 protons in α of the ester as a second triplet at δ = 1.52 ppm. 13C NMR 

displays the quaternary carbene carbon atoms at δ = 176.7 ppm and δ = 186.0 ppm and the C=O 

at δ = 194.3 ppm. FTIR spectroscopy shows an absorption band at 1562 cm-1.  

Next, the spacer between both NHC units has been modulated. The methyl chain has been 

switch for a longer propyl chain. [(LtBu)propnickelalactone] VI-20 is gathered as beige product 

in 62 % yield. The spectroscopic features resemble the ones previously reported for the other 

nickelalactones. Among others the acyl resonates at δ = 189.2 ppm in 13C NMR and vibrates at 

1615 cm-1 in IR spectroscopy. Single crystals for X-ray diffraction have been grown from a 

THF solution layered with Et2O and pentane at RT. The octagon formed by the propyl spacer 

between both NHC units is largely distorted. The C4-Ni1-C5 bite angle, which measures 

98.46(8) °, is over 10 ° larger than the one of [(LtBu)nickelalactone] VI-18 and very close to 

the one of [(dcpp)nickelalactone] IV-4. The Ni1-O1 bond (1.9237(15) Å) is comparable to the 

analogous methyl bridged complex.  

 

 

Figure 6.6: Molecular structure of [(LtBu)propnickelalactone] VI-20 determined by single crystal X-ray 

diffraction. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ni1-O1 

1.9237(15), Ni1-C1 1.961(2), C3-O2 1.239(3), Ni1-C4 1.853(2), Ni1-C5 1.966(2), C4-Ni1-C5 98.46(8), C1-

Ni1-O1 84.19(8).  

 

Finally, an unsaturated nickelalactone has been synthesized. Starting material, [(tmeda)nickela-

2-oxacyclopenten-4,5-diphenyl-3-one] VI-21, was obtained by reacting [Ni(COD)2] VI-8, 

diphenylacetylene VI-11 and tmeda under 5 bar of CO2 according to Hoberg’s procedure. [34] 

The diamine in this Ni(II) complex is also easily displaced by the free LtBu carbene yielding 



Synthesis and reactivity of (bis-NHC)nickel complexes 

 

164 
 

86 % of the nearly insoluble yellow diphenyl substituted [(LtBu)oxanickelacyclopentenone] 

VI-22. 

 

5 bar CO2[Ni(COD)2] + Ph Ph +
N
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Scheme 6.16: Two step synthesis of [LtBu)nickela-2-oxacyclopenten-4,5-diphenyl-3-one] VI-22.  

 

13C NMR could be recorded in CD3CN but the quaternary carbon centers are very weak. The 

olefinic carbons are found in their typical area at δ = 141.6 ppm and δ = 142.0 ppm. Due to the 

lack of nearby protons, it is difficult to unambiguously assign the carbon in α of the nickel and 

the one in α of the ester by means of HSQC and HMBC experiments. The carbene centers 

appear classically at δ = 176.0 ppm and δ = 176.5 ppm alongside the ester at δ = 179.4 ppm. 

Vibrational spectroscopy confirms the presence of the C=O bond with an absorption band at 

1604 cm-1. The substituted oxanickelacyclopentenone VI-22 could be crystallized from an 

acetonitrile solution at RT. The C2-C3 bond measures 1.357(3) Å and clearly lies in the range 

of a double bond. The bite angle C4-Ni1-C5 (86.31(8) °) is comparable to the one determined 

for [(LtBu)nickelalactone] VI-9 (86.9(2) °) and the Ni1-O1 bond is shorter by 0.025(2) Å.  

 



Synthesis and reactivity of (bis-NHC)nickel complexes 

 

165 
 

 

Figure 6.7: Molecular structure of [(LtBu)nickela-2-oxacyclopenten-4,5-diphenyl-3-one] VI-27 

determined by single crystal X-ray diffraction. Hydrogen atoms are omitted for clarity. Selected bond 

lengths [Å] and angles [°]: Ni1-O1 1.8837(14), Ni1-C3 1.9520(19), C2-C3 1.357(3), C1-O2 1.236(2), Ni1-

C4 1.8658(19), Ni1-C5 1.954(2), C4-Ni1-C5 86.31(8), C3-Ni1-O1 84.87(7).  

 

6.4.2 Synthesis of [(bis-NHC)nickelalactones] through oxidative                                                                                                            

coupling 

The [(bis-NHC)nickelalactones] can alternatively be synthesized through the oxidative 

coupling between [(bis-NHC)Ni-(alkene)] or [(bis-NHC)Ni-(alkyne)] complexes and CO2. 

Upon addition of 1 bar of CO2 to [(LtBu)Ni(C2H4)] VI-9 in THF, a beige insoluble product is 

formed. THF is essential to efficiently solubilize CO2. By comparison with the previously 

isolated complexes, [(LtBu)nickelalactone] VI-9 was undoubtedly identified.  

 

 

Scheme 6.17: Oxidative coupling between [(LtBu)Ni(C2H4)] VI-9 and CO2. 
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Unfortunately, a symmetric side product characterized in 1H NMR by a singlet at δ = 1.88 ppm 

presumably for its tBu group is also produced during the reaction. The formation of the [LtBu-

CO2]-adduct, [(LtBu)Ni(carbonate)] or [(LtBu)Ni(oxalate)] complexes has been envisaged. Shi 

recently reported the synthesis of various alkane bridged [(LDipp)Ni(carbonate)] complexes in 

moderate yields by the reactions between bis-NHC imidazolium salts, NiCl2 and K2CO3 in 

acetonitrile. [25] However, [(LtBu)Ni(carbonate)] VI-24 could not be synthesized by following 

this procedure. Nevertheless, [(LtBu)Ni(carbonate)] VI-24 was alternatively obtained through 

deprotonation of the imidazolium salt LtBuH2Br2 VI-5 followed by addition to [Ni(CO3)] VI-

23. The 1H NMR does not match the one of the unknown symmetric product. So far the other 

two potential side products were not independently synthesized yet. 

Additionally, [(LDipp)nickelalactone] VI-19 is also obtained from [(LDipp)Ni(C2H4)] VI-10 

under 1 bar of CO2. Furthermore, by applying 1 bar of CO2 to [(LtBu)Ni(diphenylacetylene)] 

VI-13 in THF, no reaction is observed. Though by increasing the pressure to 5 bar of CO2, 

[(LtBu)nickela-2-oxacyclopenten-4,5-diphenyl-3-one] VI-22 is formed. The nickelalactone as 

well as the side product with the tBu group at δ = 1.88 ppm were identified by 1H NMR in 

CD3CN. The need of harsher conditions is in good agreement with the fact that [(bis-

NHC)Ni(alkyne)] complexes are more stable than alkene complexes and require a higher 

activation energy to perform the same transformation. 

 

 

Scheme 6.18: Oxidative coupling between [(LtBu)Ni(diphenylacetylene)] VI-13 and CO2. Higher 

pressures are required to achieve the reaction. 

 

Unlike for chelating bis-phosphines, very mild conditions (1 - 5 bar of CO2, RT) efficiently 

promote the oxidative coupling between [(bis-NHC)Ni(alkene)] or [(bis-NHC)Ni(alkyne)] 

complexes and CO2. However, a still unidentified side product is simultaneously generated. 

Preliminary DFT calculations at the wB97XD(THF)/TZVP level of theory have been 

performed for the LMe ligand and support the experimental findings. The ΔG≠ of the transition 

state measures 20.83 kcal.mol-1 and is in good agreement with the mild reaction conditions. 

Moreover, the coupling is exergonic by 10.98 kcal.mol-1. Indeed [(LtBu)nickelalactone] VI-18 
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is more stable than [(LtBu)Ni(C2H4)] VI-9 and cannot be reverted into the latter upon heating. 

Figure 6.8 shows comparatively the energy profiles of the oxidative coupling for the dcpp and 

the LMe ligands. 

 

         

Figure 6.8: Comparison between the energy profiles of the oxidative coupling for the dcpp and LMe 

ligands at the wB97XD(THF)/TZVP level of theory. 

 

6.4.3 Reactivity of [(bis-NHC)nickelalactones] 

A new family of [(bis-NHC)nickelalactones] VI-18, VI-19, VI-20 and VI-22, that can either 

be accessed by ligand substitution or by oxidative coupling between unsaturated nickel 

complexes and CO2, has been developed. The next step was thus to explore their reactivity, 

especially towards the synthesis of acrylates and alcoholates.  

Limbach’s [35, 36] and Vogt’s [37] procedures to generate acrylates, employing either sodium 

phenoxide or a combination of LiI and Et3N, have been tested on [(LtBu)nickelalactone] VI-18 

without any success. The approach described in Chapter 4 and 5 using various transmetallating 

reagents also proved to be inconclusive so far. Rapidly limitations were encountered, first of all 
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because of the poor solubility of [(bis-NHC)nickelalactones] in the organic solvents commonly 

used for these reactions. Moreover, the thermodynamic stability of these complexes could be 

deleterious. Indeed, calculations show that [(bis-NHC)nickelalactones] may be more readily 

accessible than [(bis-phosphine)nickelalactones], but that does not means that further steps 

would be more favorable as well. Finally, the loss of the phosphorus probe made the monitoring 

of the reactions very difficult. 

In order to better understand that chemistry, 13C[(LtBu)nickelalactone] VI-18(13C) was 

synthesized in a two-step procedure described in Scheme 6.22. Starting from 13C labelled 

succinic anhydride VI-25(13C), 13C[(tmeda)nickelalactone] VI-17(13C) could be obtained in 

80 % yield following Fischer’s procedure. [48] Deprotonation of the LtBuH2Br2 imidazolium salt 

VI-5 and subsequent reaction with 13C[(tmeda)nickelalactone] VI-17(13C) afforded 
13C[(LtBu)nickelalactone] VI-18(13C) in 79 % yield.  
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Scheme 6.19: Two step synthesis of 13C[(LtBu)nickelalactone] VI-18(13C). 

 

With the 13C NMR probe in hand and by optimizing the reaction conditions, new advances in 

the synthesis of acrylates or alcoholates from (bis-NHC)nickelalactones can be expected. 
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6.5 Conclusion and perspectives 

The development of robust procedures led to the efficient synthesis of new [(bis-NHC)Ni(0)] 

and [(bis-NHC)Ni(II)]-complexes in good yields. 

In this way, starting from [Ni(COD)2] VI-8 through successive ligand substitutions, the family 

of [(bis-NHC)Ni-(alkene)] complexes could be extended to so far unreported ethylene 

compounds [(LtBu)Ni(C2H4)] VI-9 and [(LDipp)Ni(C2H4)] VI-10. Furthermore, the first [(bis-

NHC)Ni-(alkyne)] complexes [(LtBu)Ni(diphenylacetylene)] VI-13 and [(LtBu)Ni 

(phenylacetylene)]  VI-14 were described. The unsaturated [(bis-NHC)Ni(0)]-complexes were 

then successfully converted into the [(LtBu)Ni(CO)2] VI-15 and [(LDipp)Ni(CO)2] VI-16 

compounds upon addition of carbon monoxide. Despite their high sensitivity, [(bis-

NHC)Ni(0)]-complexes could constitute a good entry point in catalytic cycles. It would be 

interesting to extend the scope of available [(bis-NHC)Ni(0)]-complexes and to explore their 

reactivity for example towards the catalytic formation of benzonitriles [39 - 44]  or the 

arylcyanation of alkynes. [45 - 48 ]  

In addition, the first [(bis-NHC)nickelalactones], [(LtBu)nickelalactone] VI-18, 

[(LDipp)nickelalactone]  VI-19, [(LtBu)propnickelalactone] VI-20 and [(LtBu)nickela-2-

oxacyclopenten-4,5-diphenyl-3-one] VI-22 have been synthesized in good yields through 

ligand substitution from [(tmeda)nickelalactone] VI-17. They are also easily accessible through 

oxidative coupling between unsaturated [(bis-NHC)Ni(0)]-complexes, [(LtBu)Ni(C2H4)] VI-9, 

[(Dipp)Ni(C2H4)] V-10 and [(LtBu)Ni(diphenylacetylene)] VI-13, and CO2 under mild 

conditions. However, more efforts are still required to convert them efficiently into valuable 

chemicals such as acrylates or alcoholates. 
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6.6 Experimental part 

6.6.1 General Remarks 
All reactions were carried out under an atmosphere of dry argon using standard Schlenk 

techniques or in a nitrogen-filled MBraun LabStar glovebox. Acetonitrile, diethyl ether, THF 

and pentane were taken from a MBraun SPS-800 solvent purification system. Acetonitrile, 

methanol and water were degassed by bubbling argon and all the other solvents were degassed 

by using the freeze-pump-thaw procedure. [d8]-THF, CD3CN and MeOD were degassed and 

stored over 4 Å molecular sieves.  

N-(2,6-diisopropylphenyl)imidazole [32] VI-2, and [(tmeda)nickelalactone] [38] VI-22 were 

synthesized according to published procedures. All the other chemicals were purchased in 

reagent grade purity from Acros and Sigma-Aldrich and were used without further purification. 

CO, CO2 and ethylene were purchased from Air Liquide. 

 

6.6.2 Synthesis of imidazoles and corresponding imidazolium salts 

6.6.2.1 N-tert-butylimidazole VI-1 

 

N-tert-butylimidazole VI-1 was prepared according to a modified published procedure. [31] 

Distilled water (200 mL) was placed in a 500 mL three necked flask connected to two dropping 

funnels and a water condenser. One dropping funnel was filled with 37 % formaldehyde 

(29.8 mL, 0.4 mol, 1 eq.) and 40 % glyoxal (46 mL, 0.4 mol, 1 eq.), the other with tert-

butylamine (42.4 mL, 0.4 mol, 1 eq.) and 30 % aqueous ammonia (25.6 mL, 0.4 mol, 1 eq.). 

The water was heated until boiling and then both solutions were added simultaneously drop by 

drop. After complete addition, the brown reaction mixture was stirred for further 30 min. at 

100 °C. The organic products were extracted with 2 × 200 mL of CH2Cl2. The organic fractions 

were dried over Na2SO4 and CH2Cl2 was removed by rotary evaporator. The remaining mixture 

was purified by vacuum transfer. N-tert-butylimidazole VI-1 is obtained as a pale yellow liquid 

in 40 % yield (19.90 g) by heating up to 85 - 100 °C.  

1H NMR (300 MHz, CDCl3): δ 1.47 (s, 9H, CH3), 6.97 (s, 2H, HC=CH), 7.53 (s, 1H, N-CH-

N) ppm. 
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13C{1H} NMR (75 MHz, CDCl3): δ 30.5 (CCH3), 54.6 (CCH3), 116.2 (C2), 128.9 (C3), 134.2 

(C1) ppm. 

 

6.6.2.2 (LtBu)H2Br2 VI-5    

 

N-tert-butylimidazole VI-1 (4 g, 3.22×10-2 mol, 1 eq.) is diluted in 13 mL of THF in a Fischer-

Porter and dibromomethane VI-3 (1.10 mL, 1.61×10-2 mol, 0.5 eq.) is added to the colorless 

solution. The reaction mixture is heated for 5 d. at 130 °C; a white to brownish precipitate 

appears. The solution is filtered away, the product is washed with THF until it becomes white 

and dried overnight at 100 °C under vacuum. (LtBu)H2Br2 VI-5 is gathered as a white powder 

in 94 % yield (6.42 g). 

1H NMR (300 MHz, [d6]-DMSO): δ 1.54 (s, 18H, CH3), 6.58 (s, 2H, N-CH2-N), 8.11 (d, 
3JH, H = 1.9 Hz, 4H, HC=CH), 9.73 (s, 2H, N=CH-N) ppm.  

13C{1H} NMR (75 MHz, [d6]-DMSO): δ 28.8 (CCH3), 57.6 (CCH3), 60.3 (N-CH2-N), 120.9 

(CH imi), 122.5 (CH imi), 136.4 (N=CH-N) ppm.   

 

6.2.2.3 (LDipp)H2Br2 VI-6  

 

 

N-(2,6-diisopropylphenyl)imidazole VI-2 (4 g, 1.75×10-2 mol, 1 eq.) is diluted in 8 mL of THF 

in a Fischer-Porter and dibromomethane VI-3 (0.6 mL, 8.75×10-3 mol, 0.5 eq.) is added to the 

colorless solution. The reaction mixture is heated for 3 d. at 150 °C; a white to brownish 

precipitate appears. The solution is filtered away, the product is carefully washed with acetone 

and then THF until it becomes white and dried overnight at 100 °C under vacuum. 

(LDipp)H2Br2 VI-6 is gathered as a white powder in 60 % yield (3.33 g). 

1H NMR (300 MHz, [d6]-DMSO): δ 1.05 (d, 3JH, H = 6.6 Hz, 24H, CH(CH3)2), 2.19 (sept, 
3JH, H = 6.6 Hz, 4H, CH(CH3)2), 6.94 (s, 2H, N-CH2-N), 7.41 (d, 3JH, H = 7.8 Hz, 4H, CH meta), 

7.58 (t, 3JH, H = 7.8 Hz, 2H, CH para), 8.22 (s, 2H, HC=CH), 8.44 (s, 2H, HC=CH), 10.07 (s, 

2H, N=CH-N) ppm.  
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13C{1H} NMR (75 MHz, [d6]-DMSO): δ 23.6 (CH3), 27.8 (CH(CH3)2), 58.5 (N-CH2-N), 123.0 

(CH imi), 124.4 (CH meta), 125.5 (CH imi), 129.9 (C ipso), 131.5 (CH para), 138.9 (N=CH-

N), 144.6 (C ortho) ppm. 

 

6.6.2.4 (LtBu)propH2Br2 VI-7 

 

N-tert-butylimidazole VI-1 (4.0 g, 3.22×10-2 mol, 1 eq.) is diluted in 15 mL of THF in a 

Fischer-Porter and 1,3-dibromopropane VI-4 (1.64 mL, 1.61×10-2 mol, 0,5 eq.) is added to the 

colorless solution. The reaction mixture is heated for 3 d. at 130 °C; a white to brownish 

precipitate appears. The solution is filtered away, the product is washed with acetone until it 

becomes white and dried overnight at 100 °C under vacuum. (LtBu)propH2Br2 VI-7 is gathered 

as a white powder in 73 % yield (5.317 g). 

1H NMR (300 MHz, [d6]-DMSO): δ 1.51 (s, 18H, CH3), 3.50 (quint, 3JH, H = 6.6 Hz, 2H, CH2-

CH2-CH2), 4.20 (t, 3JH, H = 6.6 Hz, 4H, N-CH2), 7.83 (s, 2H, HC=CH), 7.98 (s, 2H, HC=CH), 

9.37 (s, 2H, N=CH-N) ppm.  

13C{1H} NMR (75 MHz, [d6]-DMSO): δ 29.0 (CCH3), 29.2 (N-CH2-CH2-CH2-N), 46.1 (N-

CH2), 59.6 (CCH3), 120.3 (CH imi), 122.6 (CH imi), 134.9 (N=CH-N) ppm. 

 

6.6.3 Synthesis of [(bis-NHC)Ni(0)-alkene] and [-alkyne] complexes  

6.6.3.1 [(LtBu)Ni(C2H4)] VI-9    

 

Di-tert-butyl-methylene-imidazolium dibromide LtBuH2Br2 VI-5 (400.0 mg, 9.47×10-4 mol, 

1 eq.) and KOtBu (233.9 mg, 2.08×10-3 mol, 2.2 eq.) are mixed together in a Schlenk flask and 

suspended in 40 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is filtered 

in the glovebox to remove precipitated KBr. [Ni(COD)2] VI-8 (261.5 mg, 9.47×10-4 mol, 1 eq.) 

is added to the yellow solution and 10 mL of THF are used to rinse the walls of the Schlenk and 

to help solubilizing [Ni(COD)2] VI-8. The solution is freeze-pump-thaw degassed without any 

previous stirring and 1 bar of ethylene is applied to the Schlenk. The reaction turns bright 

orange and is stirred overnight at RT. The gas and the solvent are removed under reduced 
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pressure. The residue is washed with 3 × 15 mL of pentane and dried overnight at 70 °C under 

vacuum. [(LtBu)Ni(C2H4)] VI-9 is gathered as a brown product in 75% yield (247.6 mg). 

Crystals for X-Ray diffraction analysis were grown from a THF solution at -25 °C. 

1H NMR (300 MHz, [d8]-THF): δ 1.06 + 1.20 (AA’BB’, 3JA, A’ = 3JB, B’ = 10.4 Hz, 3JA, B’ = 

12.3 Hz, 2JA, B = -2.9 Hz, 4H, H2C=CH2)*, 1.68 (s, 18H, CCH3), 5.63 (d, 2JH, H = 12.3 Hz, 1H, 

N-CH2-N), 5.97 (d, 2JH, H = 12.3 Hz, 1H, N-CH2-N), 6.94 (d, 3JH, H = 2.1 Hz, 2H, CH imi B), 

7.00 (d, 3JH, H = 2.1 Hz, 2H, CH imi A) ppm. 

13C{1H} NMR (75 MHz, [d8]-THF): δ 27.7 (H2C=CH2), 31.0 (CCH3), 57.2 (CCH3), 62.9 (N-

CH2-N), 115.8 (CH imi B), 118.0 (CH imi A), 203.7 (N=C-N) ppm. 

* The coupling constants of the AA’BB’ system were determined through simulations 

performed with TOPSPIN (“module daisy”) at 300 MHz and 500 MHz. The simulated spectra 

can be found in the appendices (7.2). 

 

6.6.3.2 [(LDipp)Ni(C2H4)] VI-10 

 

Di-isopropylphenyl-methylene-imidazolium dibromide LDippH2Br2 VI-6 (400 mg, 6.34×10-

4 mol, 1 eq.) and KOtBu (156.6 mg, 1.40×10-3 mol, 2.2 eq) are mixed together in a Schlenk 

flask and suspended in 40 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is 

filtered in the glovebox to remove precipitated KBr. [Ni(COD)2] VI-8 (175.1 mg, 6.34×10-

4 mol, 1 eq.) is added to the brown solution and 10 mL of THF are used to rinse the walls of the 

Schlenk and to help solubilizing [Ni(COD)2] VI-8. The solution is freeze-pump-thaw degassed 

without any previous stirring and 1 bar of ethylene is applied to the Schlenk. The solution turns 

red and is stirred overnight at RT. The gas and the solvent are removed under reduced pressure. 

The residue is washed with 3 × 15 mL of pentane and dried overnight at 70 °C under vacuum. 

[(LDipp)Ni(C2H4)] VI-10 is gathered as a red product in 71 % (250.7 mg) yield. 

1H NMR (300 MHz, [d8]-THF): δ 0.14 (s, 4H, H2C=CH2), 1.02 (d, 3JH, H = 6.9 Hz, 12H, CH3), 

1.08 (d, 3JH, H = 6.9 Hz, 12H, CH3), 2.78 (sept, 3JH, H = 6.9 Hz, 4H, CH(CH3)2), 5.90 (s, 2H, N-

CH2-N), 6.89 (d, 3JH, H = 1.8 Hz, 2H, CH imi B), 7.09 - 7.11 (m, 4H, CH meta), 7.22 (d, 3JH, H 

= 1.8 Hz, 2H, CH imi A), 7.21 - 7.26 (m, 2H, CH para) ppm.  
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13C{1H} NMR (75 MHz, [d8]-THF): δ 23.8 (CH3), 24.9 (CH3), 25.2 (H2C=CH2), 28.8 

(CH(CH3)2), 63.1 (N-CH2-N), 118.9 (CH imi A), 121.8 (CH imi B), 123.3 (CH meta), 128.8 

(CH para), 139.7 (C ipso), 146.3 (C ortho), 200.1 (N=C-N) ppm. 

 

6.6.3.3 [(LtBu)Ni(Ph-C≡C-Ph)] VI-13   

 

Di-tert-butyl-methylene-imidazolium dibromide LtBuH2Br2 VI-5 (200.0 mg, 4.74×10-4 mol, 

1 eq.) and KOtBu (117.0 mg, 1.04×10-3 mol, 2.2 eq.) are mixed together in a Schlenk flask and 

suspended in 20 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is filtered 

in the glovebox to remove precipitated KBr. [Ni(COD)2] VI-8 (130.7 mg, 4.74×10-4 mol, 1 eq.) 

and diphenylacetylene VI-11 (84.4 mg, 4.74×10-4 mol, 1 eq.) are added to the yellow solution 

and 5 mL of THF are used to rinse the walls of the Schlenk and to help solubilizing [Ni(COD)2] 

VI-8. The reaction turns red and is stirred overnight at RT. The solvent is removed under 

reduced pressure and the remaining red residue is washed with 3 × 8 mL of pentane and dried 

overnight at 70 °C under vacuum. [(LtBu)Ni(Ph-C≡C-Ph)] VI-13 is gathered as a red product 

in 76 % yield (179.7 mg). Crystals for X-ray diffraction analysis were grown from a saturated 

THF solution at RT. 

1H NMR (300 MHz, [d8]-THF): δ 1.60 (s, 18H, CCH3), 5.79 (d, 2JH, H = 12.3 Hz, 1H, N-CH2-

N), 6.39 (d, 2JH, H = 12.3 Hz, 1H, N-CH2-N), 6.78 - 6.84 (m, 2H, CH para), 6.96 - 7.01 (m, 4H, 

CH meta), 7.01 (d, 3JH, H = 1.8 Hz, 2H, CH imi B), 7.13 (d, 3JH, H = 1.8 Hz, 2H, CH imi A), 

7.17 - 7.21 (m, 4H, CH ortho) ppm. 

13C{1H} NMR (75 MHz, [d8]-THF): δ 31.1 (CCH3), 57.6 (CCH3), 62.9 (N-CH2-N), 117.0 (CH 

imi B), 118.9 (CH imi A), 122.9 (CH para), 127.5 (CH meta), 128.5 (CH ortho), 138.7 (C≡C), 

140.7 (C-Ph), 200.9 (N=C-N) ppm. 

 

6.6.3.4 [(LtBu)Ni(Ph-C≡C-H)] VI-14   

 

Di-tert-butyl-methylene-imidazolium dibromide LtBuH2Br2 VI-5 (200.0 mg, 4.74×10-4 mol, 

1 eq.) and KOtBu (117.0 mg, 1.04×10-3 mol, 2.2 eq.) are mixed together in a Schlenk flask and 

suspended in 20 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is filtered 



Synthesis and reactivity of (bis-NHC)nickel complexes 

 

175 
 

in the glovebox to remove precipitated KBr. [Ni(COD)2] VI-8 (130.7 mg, 4.74×10-4 mol, 1 eq.) 

and phenylacetylene VI-12 (52.0 µL, 4.74×10-4 mol, 1 eq.) are added to the yellow solution and 

5 mL of THF are used to rinse the walls of the Schlenk and to help solubilizing [Ni(COD)2] VI-

8. The reaction turns brown and is stirred overnight at RT. The solvent is removed under 

reduced pressure and the remaining brown residue is washed with 3 × 8 mL of pentane and 

dried overnight at 70 °C under vacuum. [(LtBu)Ni(Ph-C≡C-H)] VI-14 is gathered as a brown 

product in 73 % yield (146.6 mg). Crystals for X-Ray diffraction analysis were grown from a 

THF solution at - 30 °C. 

1H NMR (300 MHz, [d8]-THF): δ 1.57 (s, 9H, CCH3), 1.83 (s, 9H, CCH3), 5.70 (d, 2JH, H = 

12.3 Hz, 1H, N-CH2-N), 6.14 (d, 2JH, H = 12.3 Hz, 1H, N-CH2-N), 6.49 (s, 1H, C≡C-H), 

6.78 - 6.84 (m, 1H, CH para), 6.94 - 7.01(m, 2H, CH meta), 6.98 (d, 3JH, H = 2.1 Hz, 1H, CH 

imi), 7.00 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.05 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.10 (d, 3JH, H 

= 2.1 Hz, 1H, CH imi), 7.10 - 7.14 (m, 2H, CH ortho) ppm.  

13C{1H} NMR (75 MHz, [d8]-THF): δ 31.0 (CCH3), 31.1 (CCH3), 57.6 (CCH3), 57.8 (CCH3), 

62.8 (N-CH2-N), 116.3 (CH imi), 117.0 (CH imi), 118.1 (CH imi), 118.7 (CH imi), 122.9 (CH 

para), 124.1 (≡C-H), 127.5 (CH meta), 128.8 (CH ortho), 138.5 (Ph-C), 140.3 (C ipso), 200.9 

(N=C-N), 201.9 (N=C-N) ppm. 

 

6.6.4 Synthesis of [(bis-NHC)Ni(0)-carbonyl] complexes 

6.6.4.1 [(LtBu)Ni(CO)2] VI-15   

 

[(LtBu)Ni(C2H4)] VI-9 (100 mg, 3.04×10-4 mol, 1 eq.) is dissolved in 4 mL of THF. The brown 

solution is freeze-pump-thaw degassed and 1 bar of CO is applied to the Schlenk. The reaction 

is stirred for 15 min. at RT. The solution turns yellow and a yellow to orange precipitate falls 

out. The gas and the solvent are removed under reduced pressure. [(LtBu)Ni(CO)2] VI-15 is 

gathered as an orange powder in 88 % yield (92.3 mg). Crystals for X-Ray diffraction analysis 

were grown from an Et2O solution at -30 °C.  

1H NMR (300 MHz, [d8]-THF): δ 1.79 (s, 18H, CCH3), 5.64 (s, 2H, N-CH2-N), 7.12 (d, 3JH, H 

= 1.8 Hz, 2H, CH imi), 7.14 (d, 3JH, H = 1.8 Hz, 2H, CH imi) ppm. 
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13C{1H} NMR (75 MHz, [d8]-THF): δ 30.2 (CCH3), 58.2 (CCH3), 63.1 (N-CH2-N), 117.4 (CH 

imi), 118.4 (CH imi), 199.3 (N=C-N), 204.2 (C=O) ppm. 

IR (cm-1): ν (C=O) = 1952 (s); 1874 (s). 

 

6.6.4.2 [(LDipp)Ni(CO)2] VI-16  

 

[(LDipp)Ni(C2H4)] VI-10 (100 mg, 1.80×10-4 mol, 1 eq.) is dissolved in 4 mL of THF. The red 

solution is freeze-pump-thaw degassed and 1 bar of CO is applied to the Schlenk. The reaction 

mixture rapidly turns yellow-brownish. The gas and the solvent are removed under reduced 

pressure. [(LDipp)Ni(CO)2] VI-16 is gathered as a brown powder in 77 % yield (81.0 mg). 

1H NMR (300 MHz, [d8]-THF): δ 1.01 (d, 3JH, H = 6.9 Hz, 12H, CH3), 1.15 (d, 3JH, H = 6.9 Hz, 

12H, CH3), 2.67 (sept, 3JH, H = 6.9 Hz, 4H, CH(CH3)2), 5.85 (s, 2H, N-CH2-N), 7.05 (d, 3JH, H = 

1.8 Hz, 2H, CH imi), 7.15 - 7.18 (m, 4H, CH meta), 7.26 - 7.31 (m, 2H, CH para), 7.37 (d, 3JH, H 

= 1.8 Hz, 2H, CH imi) ppm. 

13C{1H} NMR (75 MHz, [d8]-THF): δ 23.3 (CH3), 25.3 (CH3), 28.6 (CH(CH3)2), 63.4 (N-CH2-

N), 119.7 (CH imi), 123.1 (CH imi), 123.8 (CH meta), 129.3 (CH para), 138.4 (C ipso), 146.6 

(C ortho), 204.3 (C=O), 205.0 (N=C-N) ppm. 

IR (cm-1): ν (C=O) = 1960 (s); 1891 (s). 

 

6.6.5 Synthesis of [(bis-NHC)nickelalactones] 

6.6.5.1 [(LtBu)Ni(CH2CH2COO-κC,κO)] VI-18   

 

 

Di-tert-butyl-methylene-imidazolium dibromide LtBuH2Br2 VI-5 (400 mg, 9.47×10-4 mol, 

1 eq.) and KOtBu (233.9 mg, 2.08×10-3 mol, 2.2 eq.) are mixed together in a Schlenk flask and 

suspended in 40 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is filtered 

in the glovebox to remove precipitated KBr. [(tmeda)nickelalactone] VI-17 (234.0 mg, 

9.47×10-4 mol, 1 eq.) is added to the yellow solution and 10 mL of THF are used to rinse the 
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walls of the Schlenk and to help solubilizing the reagent. The reaction is stirred overnight at 

RT, a beige product falls out of the solution. The supernatant is removed through a cannula and 

the residue is washed with 1 × 15 mL of THF, 1 × 15 mL of Et2O and 3 × 15 mL of pentane. 

The product is dried overnight at 60 °C under vacuum. [(LtBu)Ni(CH2CH2COO-κC,κO)] VI-

23 is gathered as a beige product in 83 % yield (307.5 mg). It is nearly insoluble in THF, Et2O 

and hydrocarbons and has a limited solubility in CH2Cl2 and CH3CN. Crystals for X-Ray 

diffraction analysis were grown from an acetonitrile solution at RT. 

Note: In DMF, formation of [(LtBu)Ni(carbonate)] VI-24 and of the product giving rise to a 

singlet at δ = 1.88 ppm in 1H NMR is observed. [(LtBu)Ni(carbonate)] VI-24 crystals were 

grown from the DMF solution at -30 °C. The crystallographic data are available in the 

appendices. 

1H NMR (300 MHz, CD3CN): δ 0.47 (m, 1H, Ni-CH2), 0.74 (m, 1H, Ni-CH2), 1.75 (s, 9H, 

CCH3), 1.85 (s, 9H, CCH3), 2.03 (m, 2H, O-C(O)-CH2), 5.96 (d, 2JH, H = 12.9 Hz, 1H, N-CH2-

N), 6.99 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.04 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.12 (d, 2JH, H 

= 12.9 Hz, 1H, N-CH2-N), 7.20 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.23 (d, 3JH, H = 2.1 Hz, 1H, 

CH imi) ppm. 

13C{1H} NMR (75 MHz, CD3CN): δ 9.6 (Ni-CH2), 31.2 (CCH3), 31.8 (CCH3), 37.8 (O-C(O)-

CH2), 58.7 (CCH3), 58.75 (CCH3), 64.1 (N-CH2-N), 118.6 (CH imi), 119.6 (CH imi), 120.6 

(CH imi), 121.3 (CH imi), 180.6 (N=C-N), 186.1 (N=C-N), 189.6 (C=O) ppm. 

IR (cm-1): ν (C=O) = 1619 (m). 

 

6.6.5.2 13C[(LtBu)Ni(CH2CH2COO-κC,κO)] VI-18(13C)   

 

 

13C[(LtBu)Ni(CH2CH2COO-κC,κO)] VI-18(13C) was synthesized following the same 

procedure by using 13C[(tmeda)nickelalactone] VI-18(13C). Starting from 371.6 mg (8.80×10-

4 mol, 1 eq.) of di-tert-butyl-methylene-imidazolium dibromide LtBuH2Br2 VI-5, 
13C[(LtBu)Ni(CH2CH2COO-κC,κO)] VI-18(13C) was isolated as a beige product in 79 % yield 

(274 mg). 
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1H NMR (300 MHz, CD3CN): δ 0.20 - 0.30 + 0.63 - 0.73 (m, 1H, Ni-13CH2), 0.47 - 0.58 + 0.86 

- 1.00 (m, 1H, Ni-13CH2), 1.75 (s, 9H, CCH3), 1.85 (s, 9H, CCH3), 1.94 (m, 2H, O-C(O)-13CH2), 

5.96 (d, 2JH, H = 12.9 Hz, 1H, N-CH2-N), 6.99 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.04 (d, 3JH, H = 

2.1 Hz, 1H, CH imi), 7.13 (d, 2JH, H = 12.9 Hz, 1H, N-CH2-N), 7.20 (d, 3JH, H = 2.1 Hz, 1H, CH 

imi), 7.23 (d, 3JH, H = 2.1 Hz, 1H, CH imi) ppm. 

13C{1H} NMR (75 MHz, CD3CN): δ 9.6 (dd, 1JC, C = 32.2 Hz, 2JC, C = 1.4 Hz, Ni-13CH2), 31.3 

(CCH3), 31.8 (CCH3), 37.8 (dd, 1JC, C = 51.6 Hz, 1JC, C = 32.2 Hz, O-C(O)-13CH2), 58.7 (CCH3), 

58.8 (CCH3), 64.1 (N-CH2-N), 118.6 (CH imi), 119.6 (CH imi), 120.6 (CH imi), 121.3 (CH 

imi), 187.2 (N=C-N), 187.9 (N=C-N), 189.6 (dd, 1JC, C = 51.6 Hz, 2JC, C = 1.4 Hz, C=O) ppm. 

 

6.6.5.3 [(LDipp)Ni(CH2CH2COO-κC,κO)] VI-19 

 

 

Di-isopropylphenyl-methylene-imidazolium dibromide LDippH2Br2 VI-6 (400 mg, 6.34×10-4 

mol, 1 eq.) and KOtBu (156.6 mg, 1.40×10-3 mol, 2.2 eq.) are mixed together in a Schlenk flask 

and suspended in 40 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is 

filtered in the glovebox to remove precipitated KBr. [(tmeda)nickelalactone] VI-17 (156.7 mg, 

6.34×10-4 mol, 1 eq.) is added to the brown solution and 10 mL of THF are used to rinse the 

walls of the Schlenk and to help solubilizing the reagent. The reaction is stirred overnight at 

RT; a beige product falls out of the solution. The supernatant is removed through a cannula and 

the residue is washed with 1 × 15 mL of THF, 1 × 15 mL of Et2O and 3 × 15 mL of pentane. 

The product is dried overnight at 60 °C under vacuum. [(LDipp)Ni(CH2CH2COO-κC,κO)] VI-

19 is gathered as a beige product in 86 % yield (325.0 mg). It has poor solubility in common 

organic solvents. 

1H NMR (300 MHz, MeOD): δ 0.17 (t, 3JH, H = 7.2 Hz, 2H, Ni-CH2), 1.04 (d, 3JH, H = 6.9 Hz, 

6H, CH3), 1.10 (d, 3JH, H = 6.9 Hz, 6H, CH3), 1.34 (d, 3JH, H = 6.9 Hz, 6H, CH3), 1.37 (d, 3JH, H 

= 6.9 Hz, 6H, CH3), 1.52 (t, 3JH, H = 7.2 Hz, 2H, O-C(O)-CH2), 2.61 (sept, 3JH, H = 6.9 Hz, 2H, 

CH(CH3)2), 2.95 (sept, 3JH, H = 6.9 Hz, 2H, CH(CH3)2), 6.35 (s, 2H, N-CH2-N), 7.02 (d, 3JH, H 

= 1.8 Hz, 1H, CH imi), 7.05 (d, 3JH,H = 2.1 Hz, 1H, CH imi), 7.18 - 7.28 (m, 4H, CH meta), 

7.31 - 7.44 (m, 2H, CH para), 7.50 (d, 3JH, H = 2.1 Hz, 1H, CH imi), 7.52 (d, 3JH, H = 1.8 Hz, 1H, 

CH imi) ppm.  
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13C-NMR (75 MHz, MeOD): δ 7.7 (Ni-CH2), 23.7 (CH3), 23.8 (CH3), 25.6 (CH3), 25.9 (CH3), 

29.6 (CH(CH3)2), 29.7 (CH(CH3)2), 38.5 (O-C(O)-CH2), 63.0 (N-CH2-N), 120.0 (CH imi), 

121.4 (CH imi), 124.1 (CH meta), 124.9 (CH meta), 126.8 (CH imi), 127.2 (CH imi), 130.3 

(CH para), 130.6 (CH para), 137.8 (C ipso), 138.2 (C ipso), 146.4 (C ortho), 146.5 (C ortho), 

176.7 (N=C-N), 186.0 (N=C-N), 194.3 (C=O) ppm. 

IR (cm-1): ν (C=O) = 1562 (m). 

 

6.6.5.4 [(LtBu)propNi(CH2CH2COO-κC,κO)] VI-20    

 

 

Di-tert-butyl-propylene-imidazolium dibromide LtBupropH2Br2 VI-7 (200 mg, 4.44×10-

4 mol, 1 eq.) and KOtBu (109.6 mg, 9.77×10-4 mol, 2.2 eq.) are mixed together in a Schlenk 

flask and suspended in 20 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is 

filtered in the glovebox to remove precipitated KBr. [(tmeda)nickelalactone] VI-17 

(109.6 mg, 9.77×10-4 mol ,1 eq.) is added to the colorless solution and 6 mL of THF are used 

to rinse the walls of the Schlenk and to help solubilizing the reagent. The reaction is stirred 

overnight at RT; a beige product falls out of the solution. The supernatant is removed through 

a cannula and the residue is washed with 1 × 7 mL of THF, 1 × 7 mL of Et2O and 3 × 7 mL of 

pentane. The product is dried overnight at 60 °C under vacuum. [(LtBu)propNi(CH2CH2COO-

κC,κO)] VI-20 is gathered as a beige product in 62 % yield (116.0 mg). It has poor solubility 

in common organic solvents. Crystals for X-Ray diffraction analysis were grown at RT from a 

THF solution first layered with Et2O, then with pentane. 

1H NMR (500 MHz, CD3CN): δ 0.19 (m, 2H, Ni-CH2), 1.94 (s, 18H, CCH3), 1.96 (m, 2H, O-

C(O)-CH2), 4.28 (m, 3H, N-CH2-CH2-CH2-N), 5.76 (m, 3H, N-CH2-CH2-CH2-N), 6.90 (br s, 

2H, CH imi), 6.96 (d, 3JH, H = 2,0 Hz, 2H, CH imi), 7.00 (d, 3JH, H = 2.0 Hz, 2H, CH imi), 7.07 

(br s, 2H, CHimi) ppm. 

13C{1H}NMR (125 MHz, CD3CN): δ 8.2 (Ni-CH2), 31.9 (CCH3), 38.5 (O-C(O)-CH2), 49.2 (N-

CH2-CH2-CH2-N), 58.5 (CCH3), 119.2 (CH imi), 119.4 (CH imi), 122.2 (CH imi), 123.3 (CH 

imi), 179.3 (N=C-N), 189.2 (C=O) ppm. 

IR (cm-1): ν (C=O) = 1615 (m) 
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6.6.5.5 [(tmeda)Ni(C(Ph)=C(Ph)COO-κC,κO)] VI-21       

 

 

[(tmeda)Ni(C(Ph)=C(Ph)COO-κC,κO)] VI-21 was prepared according to a modified published 

procedure. [34] [Ni(COD)2] VI-8 (500 mg, 1.81×10-3 mol, 1 eq.) is mixed with 

diphenylacetylene VI-11 (322.8 mg, 1.81×10-3 mol, 1 eq.) in a Fischer-Porter and suspended in 

10 mL of THF. Tmeda (1.36 mL, 9.06×10-3 mol, 5 eq.) is added to the reaction mixture which 

is then freeze-pump-thaw degassed. The vessel is pressurized with 5 bar of CO2 and reacted 

over the weekend at RT. The solution turns red and an orange precipitate falls out. The 

supernatant is filtered away and the remaining product is washed with 3 × 8 mL of Et2O and 

dried overnight under vacuum at RT. [(tmeda)Ni(C(Ph)=C(Ph)COO-κC,κO)] VI-21 is gathered 

as an orange product in 61 % yield (435.5 mg). Crystals for X-Ray diffraction analysis were 

grown at -30 °C from a CD2Cl2 solution. 

1H NMR (300 MHz, CD2Cl2): δ 1.96 (s, 6H, N(CH3)2 A), 2.24 (br s, 2H, N-CH2 αB), 2.26 (br 

s, 2H, N-CH2 αA), 2.64 (s, 6H, N(CH3)2 B), 6.86 - 6.90 (m, 2H, CH ortho), 6.93 - 7.05 (m, 4H, 

CH meta), 7.06 - 7.09 (m, 4H, CH ortho + para) ppm. 

13C{1H} NMR (75 MHz, CD2Cl2): δ 47.4 (N(CH3)2 B), 48.7 (N(CH3)2 A), 56.8 (N-CH2 αB), 

63.5 (N-CH2 αA), 124.7 (CH para), 125.3 (CH para), 126.9 (CH meta), 127.6 (CH meta), 127.9 

(CH ortho), 130.2 (CH ortho), 139.7 (C ipso), 147.2 (Ni-C(Ph)=C), 157.5 (O-C(O)-

C(Ph)), 180.0 (C=O) ppm. 

IR (cm-1): ν (C=O) = 1633 (m). 

 

6.6.5.6 [(LtBu)Ni(C(Ph)=C(Ph)COO-κC,κO)] VI-22  

 

 

Di-tert-butyl-methylene-imidazolium dibromide LtBuH2Br2 VI-5 (200 mg, 4.74×10-4 mol, 

1 eq.) and KOtBu (117.0 mg, 1.04×10-3 mol, 2.2 eq.) are mixed together in a Schlenk flask and 

suspended in 20 mL of Et2O. The reaction mixture is stirred for 2 h. at RT before it is filtered 

in the glovebox to remove precipitated KBr. [(tmeda)nickela-4,5-diphenyl-lactone] VI-21 
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(188.1 mg, 4.74×10-4 mol, 1 eq.) is added to the yellow solution and 6 mL of THF are used to 

rinse the walls of the Schlenk and to help solubilizing the reagent. The reaction is stirred 

overnight at RT; a yellow product falls out of the solution. The supernatant is removed through 

a cannula and the residue is washed with 2 × 8 mL of Et2O and 3 × 8 mL of pentane. The 

product is dried overnight at 60 °C under vacuum. [(LtBu)Ni(C(Ph)=C(Ph)COO-κC,κO)] VI-

22 is gathered as a yellow product in 86 % yield (221.2 mg). It has poor solubility in common 

organic solvents. Crystals for X-ray diffraction analysis were grown from a saturated 

acetonitrile solution at RT. 

1H NMR (300 MHz, CD3CN): δ 1.41 (s, 9H, CCH3), 1.84 (s, 9H, CCH3), 6.10 (d, 
2JH, H = 12.6 Hz, 1H, N-CH2-N), 6.48 – 6.51 (m, 2H, CH ortho), 6.73 (d, 3JH, H = 2.1 Hz, 1H, 

CH imi B), 6.72 - 6.78 (m, 1H, CH para), 6.82 - 6.91 (m, 2H, CH ortho), 6.88 - 6.97 (m, 1H, 

CH para), 6.93 - 7.02 (m, 4H, CH meta), 7.12 (d, 3JH, H = 1.8 Hz, 1H, CH imi A), 7.25 (d, 3JH, H 

= 2.1 Hz, 1H, CH imi A), 7.35 (d, 3JH, H = 1.8 Hz, 1H, CH imi B), 7.45 (d, 2JH, H = 12.6 Hz, 1H, 

N-CH2-N) ppm. 

13C{1H} NMR (75 MHz, CD3CN): δ 30.6 (CCH3), 31.3 (CCH3), 58.5 (CCH3), 59.2 (CCH3), 

64.3 (N-CH2-N), 119.3 (CH imi A), 120.5 (CH imi B), 121.2 (CH imi B), 122.3 (CH imi A), 

123.9 (CH para), 125.2 (CH para), 127.3 (CH meta), 127.6 (CH meta), 127.7 (CH ortho), 131.6 

(CH ortho), 141.0 (Ni-C(Ph)), 141.6 (O-C(O)-C(Ph)), 142.0 (C ipso), 176.0 (N-C-N), 176.5 

(C=O), 179.5 (N=C-N) ppm. 

IR (cm-1): ν (C=O) = 1604 (m). 
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7 Appendices 

7.1 Crystallographic data 

 

Selected crystallographic data are summarized in the following tables. 

 

The residual factors are defined as follows: 

Rଵ =  
 ∑ห|F|  −  |Fେ|ห 

∑|F|  

wRଶ =  ඨ
∑[w(F

ଶ − Fେ
ଶ)ଶ]

∑[w(F
ଶ )ଶ] ⋅  
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7.1.1 [(dcpp)NiCl2] II-3  
 

ID 
 

Florian4 

Formula 
 

C27H49Cl2NiP2 

Molecular weight (g.mol-1) 
 

565.21 

Crystal system 
 

monoclinic 

Space group 
 

P n 

a (Å) 
 

9.455(4)  

b (Å) 
 

8.841(4) 

c (Å) 
 

16.771(9) 

α (°) 
 

90 

β (°) 
 

91.255(14) 

γ (°) 
 

90 

Volume (Å³) 
 

1401.6(12) 

Z 
 

2 

Calculated density (g.cm-3) 
 

1.339 

Absorption coefficient (mm-1) 
 

1.011 

F(000) 
 

606 

Crystal size (mm³) 
 

0.251 x 0.121 x 0.060 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

4941 

Independent reflections (Rint) 
 

2350 (0.0943) 

Reflections used for refinement 
 

2350 

Refined parameters 
 

299 

GOF on F2 
 

1.179 

R1 [I>2σ(I)] 
 

0.0497 

wR2 [all data] 0.1721 
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7.1.2 [(dcpp)Ni(toluene)] II-4 

 

ID 
 

Florian26_a 

Formula 
 

C34H58NiP2 

Molecular weight (g.mol-1) 
 

587.45 

Crystal system 
 

triclinic 

Space group 
 

P -1 

a (Å) 
 

8.9535(15)  

b (Å) 
 

11.0168(16) 

c (Å) 
 

17.829(3) 

α (°) 
 

76.369(6) 

β (°) 
 

85.353(6) 

γ (°) 
 

70.631(6) 

Volume (Å³) 
 

1612.4(5) 

Z 
 

2 

Calculated density (g.cm-3) 
 

1.210 

Absorption coefficient (mm-1) 
 

0.722 

F(000) 
 

640 

Crystal size (mm³) 
 

0.200 x 0.060 x 0.040 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

21935 

Independent reflections (Rint) 
 

6060 (0.1175) 

Reflections used for refinement 
 

6060 

Refined parameters 
 

341 

GOF on F2 
 

0.976 

R1 [I>2σ(I)] 
 

0.0577 

wR2 [all data] 0.1170 
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7.1.3 [(dcpp)Ni(Ph)(Cl)] II-14 
 

ID 
 

Florian9m 

Formula 
 

C45H67ClNiP2 

Molecular weight (g.mol-1) 
 

764.08 

Crystal system 
 

triclinic 

Space group 
 

P -1 

a (Å) 
 

8.9005(4)  

b (Å) 
 

10.6035(4) 

c (Å) 
 

23.4174(10) 

α (°) 
 

77.5586(15) 

β (°) 
 

87.0367(16) 

γ (°) 
 

77.3667(15) 

Volume (Å³) 
 

2105.88(15) 

Z 
 

2 

Calculated density (g.cm-3) 
 

1.205 

Absorption coefficient (mm-1) 
 

0.629 

F(000) 
 

824 

Crystal size (mm³) 
 

0.399 x 0.281 x 0.136 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

62114 

Independent reflections (Rint) 
 

12855 (0.0345) 

Reflections used for 

refinement 
 

12855 

Refined parameters 
 

552 

GOF on F2 
 

1.067 

R1 [I>2σ(I)] 
 

0.0389 

wR2 [all data] 0.0893 
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7.1.4 [(dcpp)NiCl]2 II-16 
 

ID 
 

alexia1m 

Formula 
 

C54H100Cl2Ni2P4 

Molecular weight (g.mol-1) 
 

1061.54 

Crystal system 
 

triclinic 

Space group 
 

P -1 

a (Å) 
 

10.5873(8)  

b (Å) 
 

12.1027(9) 

c (Å) 
 

12.1731(9) 

α (°) 
 

108.590(4) 

β (°) 
 

101.906(4) 

γ (°) 
 

100.654(4) 

Volume (Å³) 
 

1392.78(18) 

Z 
 

1 

Calculated density (g.cm-3) 
 

1.266 

Absorption coefficient (mm-1) 
 

0.920 

F(000) 
 

574 

Crystal size (mm³) 
 

0.20 x 0.14 x 0.10 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

41637 

Independent reflections (Rint) 
 

10582 (0.0441) 

Reflections used for refinement 
 

10582 

Refined parameters 
 

290 

GOF on F2 
 

1.035 

R1 [I>2σ(I)] 
 

0.0389 

wR2 [all data] 0.0951 
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7.1.5 [(dcpp)Ni(C2H4)] IV-3 
 

ID 
 

mo_Alexia9_0m_a 

Formula 
 

C29H54NiP2 

Molecular weight (g.mol-1) 
 

523.37 

Crystal system 
 

monoclinic 

Space group 
 

P 21/n 

a (Å) 
 

9.4676(8)  

b (Å) 
 

9.0227(8) 

c (Å) 
 

16.3342(15) 

α (°) 
 

90 

β (°) 
 

91.063(3) 

γ (°) 
 

90 

Volume (Å³) 
 

1395.1(2) 

Z 
 

2 

Calculated density (g.cm-3) 
 

1.246 

Absorption coefficient (mm-1) 
 

0.825 

F(000) 
 

572 

Crystal size (mm³) 
 

0.200 x 0.100 x 0.050 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

35460 

Independent reflections (Rint) 
 

2849 (0.1601) 

Reflections used for refinement 
 

2849 

Refined parameters 
 

299 

GOF on F2 
 

1.276 

R1 [I>2σ(I)] 
 

0.0788 

wR2 [all data] 0.1562 
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7.1.6 [(dcpp)nickelalactone] IV-4 
 

ID 
 

Alexia16 

Formula 
 

C30H54NiO2P2, 0,5(C5H12)  

Molecular weight (g.mol-1) 
 

603.46 

Crystal system 
 

orthorhombic 

Space group 
 

P c a 21 

a (Å) 
 

19.7359(5)  

b (Å) 
 

10.6777(3) 

c (Å) 
 

16.6426(4) 

α (°) 
 

90 

β (°) 
 

90 

γ (°) 
 

90 

Volume (Å³) 
 

3507.16(16) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.143 

Absorption coefficient (mm-1) 
 

0.669 

F(000) 
 

1316 

Crystal size (mm³) 
 

0.18 x 0.18 x 0.02 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

101184 

Independent reflections (Rint) 
 

14014 (0.0417) 

Reflections used for refinement 
 

14014 

Refined parameters 
 

412 

GOF on F2 
 

1.170 

R1 [I>2σ(I)] 
 

0.0444 

wR2 [all data] 0.1565 
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7.1.7 [(dcpp)Ni(CO)2] IV-23 
 

ID 
 

alexia14m_a 

Formula 
 

C33H58NiO3P2 

Molecular weight (g.mol-1) 
 

623.44 

Crystal system 
 

monoclinic 

Space group 
 

P 2/c 

a (Å) 
 

19.9301(9)  

b (Å) 
 

9.3949(4) 

c (Å) 
 

18.7119(6) 

α (°) 
 

90 

β (°) 
 

106.937(2) 

γ (°) 
 

90 

Volume (Å³) 
 

3351.7(2) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.236 

Absorption coefficient (mm-1) 
 

0.705 

F(000) 
 

1352 

Crystal size (mm³) 
 

0.200 x 0.180 x 0.060 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

6769 

Independent reflections (Rint) 
 

6769 (?) 

Reflections used for refinement 
 

6769 

Refined parameters 
 

376 

GOF on F2 
 

1.180 

R1 [I>2σ(I)] 
 

0.0609 

wR2 [all data] 0.1199 
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7.1.8 [(dcpp)Ni(1-butene)] V-6 
 

ID 
 

alexia3m 

Formula 
 

C31H58NiP2 

Molecular weight (g.mol-1) 
 

551.42 

Crystal system 
 

triclinic 

Space group 
 

P 1 

a (Å) 
 

8.7517(8)  

b (Å) 
 

10.3122(8) 

c (Å) 
 

10.5977(14) 

α (°) 
 

115.549(7) 

β (°) 
 

97.376(7) 

γ (°) 
 

110.062(5) 

Volume (Å³) 
 

766.25(14) 

Z 
 

1 

Calculated density (g.cm-3) 
 

1.195 

Absorption coefficient (mm-1) 
 

0.755 

F(000) 
 

302 

Crystal size (mm³) 
 

0.25 x 0.11 x 0.06 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

10678 

Independent reflections (Rint) 
 

5726 (0.0461) 

Reflections used for refinement 
 

5726 

Refined parameters 
 

309 

GOF on F2 
 

1.020 

R1 [I>2σ(I)] 
 

0.0500 

wR2 [all data] 0.1205 
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7.1.9 [(dcpp)nickelalactone-Al(tBu)3] V-9 
 

ID 
 

Alexia43Bis_a 

Formula 
 

C44H85AlNiO2.50P2 

Molecular weight (g.mol-1) 
 

801.74 

Crystal system 
 

monoclinic 

Space group 
 

C 2/c 

a (Å) 
 

18.1565(15)  

b (Å) 
 

21.8169(16) 

c (Å) 
 

25.187(2) 

α (°) 
 

90 

β (°) 
 

110.893(4) 

γ (°) 
 

90 

Volume (Å³) 
 

9321.1(13) 

Z 
 

8 

Calculated density (g.cm-3) 
 

1.143 

Absorption coefficient (mm-1) 
 

0.537 

F(000) 
 

3520 

Crystal size (mm³) 
 

0.180 x 0.140 x 0.080 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

69673 

Independent reflections (Rint) 
 

9470 (0.0535) 

Reflections used for refinement 
 

9470 

Refined parameters 
 

597 

GOF on F2 
 

1.021 

R1 [I>2σ(I)] 
 

0.0528 

wR2 [all data] 0.1387 
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7.1.10 [(LtBu)Ni(C2H4)] VI-9 
 

ID 
 

Alexia29_b 

Formula 
 

C17H28N4Ni 

Molecular weight (g.mol-1) 
 

347.14 

Crystal system 
 

orthorhombic 

Space group 
 

P n a 21 

a (Å) 
 

14.3232(6)  

b (Å) 
 

10.9530(4) 

c (Å) 
 

11.4879(6) 

α (°) 
 

90 

β (°) 
 

90 

γ (°) 
 

90 

Volume (Å³) 
 

1802.24(14) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.279 

Absorption coefficient (mm-1) 
 

1.079 

F(000) 
 

744 

Crystal size (mm³) 
 

0.060 x 0.030 x 0.010 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

30631 

Independent reflections (Rint) 
 

3650 (0.0528) 

Reflections used for refinement 
 

3650 

Refined parameters 
 

205 

GOF on F2 
 

1.022 

R1 [I>2σ(I)] 
 

0.0279 

wR2 [all data] 0.0608 
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7.1.11 [(LtBu]Ni(PhC≡CPh)] VI-13 
 

ID 
 

Alexia35_a 

Formula 
 

C31H38N4NiO0.50 

Molecular weight (g.mol-1) 
 

533.36 

Crystal system 
 

monoclinic 

Space group 
 

P 21/n 

a (Å) 
 

11.833(3)  

b (Å) 
 

10.566(3) 

c (Å) 
 

22.554(6) 

α (°) 
 

90 

β (°) 
 

99.464(12) 

γ (°) 
 

90 

Volume (Å³) 
 

2781.5(14) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.274 

Absorption coefficient (mm-1) 
 

0.725 

F(000) 
 

1136 

Crystal size (mm³) 
 

0.340 x 0.040 x 0.020 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

21431 

Independent reflections (Rint) 
 

4529 (0.2699) 

Reflections used for 

refinement 
 

4529 

Refined parameters 
 

408 

GOF on F2 
 

0.976 

R1 [I>2σ(I)] 
 

0.0740 

wR2 [all data] 0.1661 
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7.1.12 [(LtBu)Ni(PhC≡CH)] VI-14 
 

ID 
 

Alexia38_a 

Formula 
 

C27H38N4NiO 

Molecular weight (g.mol-1) 
 

493.32 

Crystal system 
 

monoclinic 

Space group 
 

C c 

a (Å) 
 

15.6787(19)  

b (Å) 
 

15.2754(17) 

c (Å) 
 

22.621(3) 

α (°) 
 

90 

β (°) 
 

103.238(5) 

γ (°) 
 

90 

Volume (Å³) 
 

5273.8(11) 

Z 
 

8 

Calculated density (g.cm-3) 
 

1.243 

Absorption coefficient (mm-1) 
 

0.761 

F(000) 
 

2112 

Crystal size (mm³) 
 

0.180 x 0.160 x 0.030 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

40271 

Independent reflections (Rint) 
 

12173 (0.0477) 

Reflections used for 

refinement 
 

12173 

Refined parameters 
 

700 

GOF on F2 
 

0.984 

R1 [I>2σ(I)] 
 

0.0424 

wR2 [all data] 0.0934 
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7.1.13 [(LtBu)Ni(CO)2] VI-15 
 

ID 
 

AO446 

Formula 
 

C17H24N4NiO2 

Molecular weight (g.mol-1) 
 

375.09 

Crystal system 
 

orthorhombic 

Space group 
 

P 21 21 21 

a (Å) 
 

9.5206(8)  

b (Å) 
 

12.9925(12) 

c (Å) 
 

14.7824(13) 

α (°) 
 

90 

β (°) 
 

90 

γ (°) 
 

90 

Volume (Å³) 
 

1828.5(3) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.363 

Absorption coefficient (mm-1) 
 

1.077 

F(000) 
 

792 

Crystal size (mm³) 
 

0.10 x 0.08 x 0.01 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

22860 

Independent reflections (Rint) 
 

3883 (0.0655) 

Reflections used for refinement 
 

3883 

Refined parameters 
 

224 

GOF on F2 
 

1.081 

R1 [I>2σ(I)] 
 

0.0391 

wR2 [all data] 0.0897 
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7.1.14 [(LtBu)nickelalactone] VI-18 
 

ID 
 

Alexia26 

Formula 
 

C18H28N4NiO2 

Molecular weight (g.mol-1) 
 

391.15 

Crystal system 
 

monoclinic 

Space group 
 

P 21/n 

a (Å) 
 

12.016(2)  

b (Å) 
 

11.0221(19) 

c (Å) 
 

14.146(3) 

α (°) 
 

90 

β (°) 
 

95.469(8) 

γ (°) 
 

90 

Volume (Å³) 
 

1865.0(6) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.393 

Absorption coefficient (mm-1) 
 

1.059 

F(000) 
 

832 

Crystal size (mm³) 
 

0.150 x 0.040 x 0.030 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

30635 

Independent reflections (Rint) 
 

3280 (0.1930) 

Reflections used for refinement 
 

3280 

Refined parameters 
 

232 

GOF on F2 
 

1.011 

R1 [I>2σ(I)] 
 

0.0523 

wR2 [all data] 0.0997 
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7.1.15 [(LtBu)propnickelalactone] VI-20 
 

ID 
 

Alexia30_a 

Formula 
 

C20H32N4NiO2 

Molecular weight (g.mol-1) 
 

419.20 

Crystal system 
 

monoclinic 

Space group 
 

P 21/c 

a (Å) 
 

13.8222(6)  

b (Å) 
 

10.3392(4) 

c (Å) 
 

15.0732(6) 

α (°) 
 

90 

β (°) 
 

104.136(2) 

γ (°) 
 

90 

Volume (Å³) 
 

2088.89(15) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.333 

Absorption coefficient (mm-1) 
 

1.950 

F(000) 
 

896 

Crystal size (mm³) 
 

0.140 x 0.060 x 0.050 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

30730 

Independent reflections (Rint) 
 

4761 (0.0551) 

Reflections used for refinement 
 

4761 

Refined parameters 
 

250 

GOF on F2 
 

1.021 

R1 [I>2σ(I)] 
 

0.0374 

wR2 [all data] 0.0948 
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7.1.16 [(LtBu)Ni(C(Ph)=C(Ph)C(O)O)- κC,κO] VI-22 
 

ID 
 

Alexia37_a 

Formula 
 

C32H37N5NiO2 

Molecular weight (g.mol-1) 
 

582.37 

Crystal system 
 

monoclinic 

Space group 
 

P 21 

a (Å) 
 

7.857(3)  

b (Å) 
 

22.6159(9) 

c (Å) 
 

8.4121(3) 

α (°) 
 

90 

β (°) 
 

97.2912(13) 

γ (°) 
 

90 

Volume (Å³) 
 

1482.70(10) 

Z 
 

2 

Calculated density (g.cm-3) 
 

1.304 

Absorption coefficient (mm-1) 
 

0.691 

F(000) 
 

616 

Crystal size (mm³) 
 

0.360 x 0.220 x 0.180 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

69849 

Independent reflections (Rint) 
 

9058 (0.0411) 

Reflections used for 

refinement 
 

9058 

Refined parameters 
 

395 

GOF on F2 
 

1.041 

R1 [I>2σ(I)] 
 

0.0276 

wR2 [all data] 0.0583 
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7.1.17 [(LtBu)Ni(CO3)] VI-28 
 

ID 
 

Alexia25_a 

Formula 
 

C19H31N5NiO4 

Molecular weight (g.mol-1) 
 

452.20 

Crystal system 
 

monoclinic 

Space group 
 

P 21/n 

a (Å) 
 

10.1966(4)  

b (Å) 
 

15.8385(6) 

c (Å) 
 

13.8130(5) 

α (°) 
 

90 

β (°) 
 

91.163(3) 

γ (°) 
 

90 

Volume (Å³) 
 

2230.32(15) 

Z 
 

4 

Calculated density (g.cm-3) 
 

1.347 

Absorption coefficient (mm-1) 
 

1.537 

F(000) 
 

960 

Crystal size (mm³) 
 

0.120 x 0.080 x 0.060 

Temperature (K) 
 

193(2) 

Wavelength (Å) 
 

0.71073 

Reflections collected 
 

11429 

Independent reflections (Rint) 
 

3751 (0.0875) 

Reflections used for refinement 
 

3751 

Refined parameters 
 

270 

GOF on F2 
 

1.008 

R1 [I>2σ(I)] 
 

0.0568 

wR2 [all data] 0.1352 
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7.2 NMR simulations 

The AA’BB’ system of the ethylenic protons of [(LtBu)Ni(C2H4)] VI-9 has been simulated at 

300 MHz and 500 MHz with TOPSPIN, using the “module daisy”. The work was realized by 

Stéphane Massou and Marc Vedrenne of the NMR service (Toulouse). The simulated spectra 

were superimposed to the recorded 1H NMR spectra of [(LtBu)Ni(C2H4)] VI-9 and can be 

found below.  

 

 

Scheme 7.1: 1H NMR spectrum of the ethylenic protons of [(LtBu)Ni(C2H4)] IV-9 at 300 MHz. 
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Scheme 7.2: 1H NMR spectrum of the ethylenic protons of [(LtBu)Ni(C2H4)] IV-9 at 500 MHz. 
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7.3 Résumé de la thèse 

La thèse intitulée “Couplages de Negishi et Couplages Oxydants à Base de Complexes de 

Nickel” a été réalisée au Laboratoire Hétérochimie Fondamentale et Appliquée à Toulouse entre 

janvier 2014 et février 2017 sous la direction du Dr. Nicolas Mézailles et du Dr. Noël Nebra-

Muñiz. Cette thèse est divisée en deux parties distinctes. La première partie décrit un couplage 

croisé de Negishi catalysé par des complexes de nickel substitués par des ligand bis-phosphines 

chelatants, suivie de l’étude mécanistique complète de ce système. La deuxième partie est 

dédiée à l’activation et la fonctionnalisation du CO2 en produits chimiques à haute valeur 

ajoutée par des complexes de nickel coordinés par des ligands phosphines ou NHC bidentes.  

 

7.3.1 Couplage croisé de Negishi catalysé par des complexes bis-

phosphines de nickel  

7.3.1.1 Introduction 

Les couplages croisés constituent un outil majeur en chimie organique de synthèse pour la 

formation de nouvelles liaisons C-C et C-hétéroatomes [1] et trouvent de nombreuses 

applications dans des domaines aussi variés que l’industrie pharmaceutique [1, 2] et 

agrochimique, les polymères [3] ou les cristaux liquides. [4] En 2010, Richard Heck, Ei-ichi 

Negishi et Akira Suzuki ont été recompensé par le prix Nobel de Chimie pour leurs travaux 

novateurs dans ce domaine, qui reste toujours très actif en terme de recherche. 

Un couplage croisé est une reaction entre un électrophile, généralement un halogénure d’aryle, 

et une espèce organométallique nucléophile, catalysée par un metal de transition, qui génère 

une nouvelle liaison C-C. Parmi les réactions de couplages croisés, la réaction de Negishi 

emploie des dérivés zinciques comme nucléophiles, qui présentent de multiples avantages. 

Ceux-ci sont en effet peu toxiques, tolèrent de nombreux groupements fonctionnels et 

permettent de mettre en oeuvre les réactions dans des conditions douces. Alors que la plupart 

des couplages sont catalysés par des complexes de palladium extrêmement efficaces, [5] dont 

on connaît bien le mode de fonctionnement, beaucoup moins de complexes de nickel ont été 

décrits pour cette même application. Les chercheurs sont actuellement confrontés à deux défis 

majeurs, qui sont d’une part la réduction de la charge catalytique [6] et d’autre part le couplage 

de dérivés peu chers mais plus difficiles à activer, tels que les chlorure d’aryles. [7, 8]  
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Ainsi, dans cette optique, de nouveaux complexes bis-phosphines de nickel ont été développés 

au cours de cette thèse et utilisés comme catalyseurs pour le couplage croisé de Negishi entre 

des chlorure d’aryles, abondants et peu chers, mais difficiles à activer, et des dérivés zinciques. 

Le ligand de choix est le 1,3-bis(dicyclohexyl)phosphino-propane (dcpp) II-1. En effet, les 

groupements alkyls fortement électro-donneurs ainsi que l’espaceur propane, conférant un 

grand angle de morsure et de la flexibilié aux complexes métalliques, stabilisent efficacement 

des espèces de Ni(0) (Schéma 1).  

 

P
Ni

P
electron donating 

alkyl groups

flexible propyl bridge
large bite angle 

+ i

 

Schéma 1: Propriétés du système [(dcpp)Ni]. 

 

La principale motivation de ce travail est le développement d’une nouvelle catalyse de couplage 

croisé efficace dans des conditions douces. De plus, beaucoup d’intérêt a été apporté à la 

compréhension du mécanisme de la réaction, afin de déterminer si la reaction suit un cycle 

Ni(0)/Ni(II) ou un cycle Ni(I)/Ni(III). La détermination du mécanisme permet de mieux 

appréhender la chimie du nickel et de pouvoir par la suite développer de nouveaux systèmes 

plus performants.  
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                       Ni(0)/Ni(II) catalytic cycle                                      Ni(I)/Ni(III) catalytic cycle 

 

Schéma 2: Mécanismes généraux Ni(0)/Ni(II) et Ni(I)/Ni(III) de couplage croisés. 

 

7.3.1.2 Synthèse du catalyseur [(dcpp)Ni(toluene)] II-4 

Le catalyseur sélectionné pour le couplage croisé de Negishi est le complexe de Ni(0), 

[(dcpp)Ni(toluene)] II-4. Celui-ci est obtenu par réduction du complexe de Ni(II) 

[(dcpp)NiCl2] II-3 au moyen de 2 eq. de KC8 dans du toluène. [(dcpp)Ni(toluene)] II-4 a pu 

être charactérisé par RMN et diffraction des rayons X (DRX) par Matthieu Demange. [9] La 

grande réactivité et l’importante solubilité de ce complexe, le qualifient comme réactif de choix 

pour les études catalytiques et mécanistiques menées par la suite. 

 

 

Schéma 3: Synthèse de [(dcpp)Ni(toluène)] II-4. 

 

7.3.1.3 Couplage croisé de Negishi catalysé par [(dcpp)Ni(toluene)] II-4  

L’activité de [(dcpp)Ni(toluène)] II-4 a tout d’abord été testée dans la reaction modèle entre 

entre le 4-chlorotoluène II-7 et le chlorure de phenyl zinc II-8 dans le THF à 60 °C, présentée 

dans le Schéma 4.  
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Schéma 4: Réaction modèle du couplage croisé de Negishi entre le 4-chlorotoluène II-7 et PhZnCl II-

8  catalysée par 1 mol% de [(dcpp)Ni(toluène)] II-4 à 60 °C dans le THF. 

 

En utilisant 1 mol% de catalyseur, le produit de couplage croisé II-9 a été obtenu avec 97 % de 

rendement GC après seulement 6 h. 3 % de produit d’homocouplage II-10 ont également été 

détctés par GC-MS. Après work-up 93 % de produit de couplage croisé II-9 ont été isolé. La 

charge catalytique peut être abaissée à 0,2 mol%, et même jusqu’à 0,01 mol% sans observer de 

dégradation du catalyseur II-4 après de longs temps réactionnels. 

Ainsi, en suivant cette méthodologie de nombreux substrats aussi bien riches que pauvres en 

électrons ont pu être couplés avec succès à 0,2 mol% de [(dcpp)Ni(toluène)] II-4 avec 

d’excellents rendements. De plus, des chloropyridines et des électrophiles fortement encombrés 

en ortho du chlorure ou portant des fonctions amines particulièrement sensibles, et reconnus 

difficiles à coupler, ont tous fourni les produits de couplage croisés avec de bons rendements et 

des temps de reactions courts à 1 mol% de catalyseur II-4. 

 

7.3.1.4 Etudes mécanistiques 

Par la suite, des études stoechiométriques et catalytiques ainsi que des calculs DFT ont été 

effectués, afin d’élucider le mécanisme de ce couplage croisé. Tous les résultats pointent vers 

un cycle catalytique Ni(0)/Ni(II) induit par la présence du ligand bidente dcpp II-1 fortement 

donneur. Les trois étapes élémentaires d’un couplage croisé, qui sont l’addition oxydante, la 

transmétallation et l’élimination réductrice, peuvent toutes être réalisées à température 

ambiante à partir de complexes dcpp de nickel et génèrent exclusivement des espèces de Ni(0) 

et de Ni(II), parmi lesquelles [(dcpp)Ni(Ph)(Cl)] II-14 a pu être isolée et charactérisée. De plus, 

les calculs DFT au niveau B3PW91 confirment que l’addition oxydante (ΔG≠ = 12,9 kcal.mol-

1) et l’élimination réductrice (ΔG≠ = 13,2 kcal.mol-1) ont des énergies d’activation 

particulièrement basses alors que la transmétallation (ΔG≠ = 21,8 kcal.mol-1) et l’échange de 

ligands produit/substrat (ΔG≠ = 22,9 kcal.mol-1) constituent les étapes cinétiquement 
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déterminantes de la réaction. L’état de repos du catalyseur est le produit d’addition oxydante 

[(dcpp)Ni(Ph)(Cl)] II-14. Le cycle catalytique de la réaction proposé à partir des études 

stoechiométriques et des calculs DFT est illustré dans le Schéma 5. 

 

 

Schéma 5: Cycle catalytique proposé à partir des études stoechiométriques et des calculs DFT pour la 

réaction de couplage croisé catalysée par le complexe [(dcpp)Ni(toluène)] II-4 entre des chlorures 

d’aryles et des dérivés zinciques. 

 

Afin d’apporter des preuves supplémentaires au mécanisme Ni(0)/Ni(II) et de pouvoir infirmer 

la participation d’espèces de Ni(I) au cycle catalytique, le complexe paramagnétique de Ni(I) 

[(dcpp)NiCl]2 II-16 a été synthetisé indépendamment par réduction de [(dcpp)NiCl2] II-3 avec 

1 eq. de KC8 (Schéma 6), et charactérisé par RPE et DRX.  
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Schéma 6: Synthèse du complexe de Ni(I) [(dcpp)NiCl]2 II-16. 

 

Le complexe de Ni(I) [(dcpp)NiCl]2 II-16 ne réagit pas avec des chlorures d’aryles et génère 

préférentiellement des espèces diamagnétiques de Ni(II) et/ou de Ni(0) en présence de 

PhZnCl II-8. Par ailleurs, aucun processus redox, conduisant à la formation d’espèces de Ni(I) 

n’a pu être identifié lors des études stoechiométriques. De plus, lorsque la réaction modèle de 

Negishi entre le 4-chlorotluene II-7 et PhZnCl II-8 est réalisée en présence d’1 mol% de 

[(dcpp)NiCl]2 II-16, de mauvaises conversions et sélectivités ont été observées. En effet, après 

72 h., seulement 7 % de produit de couplage II-9 ont été obtenu à la faveur de 33 % de produit 

d’homocouplage II-10.  

Ainsi la présence du ligand dcpp chélatant II-1 inhibe un mécanisme de type Ni(I)/Ni(III), en 

faveur d’un mécanisme Ni(0)/Ni(II). Ce résultat est en contraste avec les autres études 

mécanistiques menées sur des catalyses de Negishi au nickel avec des ligand phosphines 

monodentes qui fonctionnent sur le modèle Ni(I)/Ni(III). [10, 11] 

 

7.3.2 Activation et fonctionnalisation du CO2 avec des complexes de 

nickel coordinés par des ligands bis-phosphines 

7.3.2.1 Introduction 

Le CO2 est le principal gaz à effet de serre émis par les activités humaines et contribue au 

réchauffement et aux changements climatiques. Il devient donc important de pouvoir valoriser 

le CO2, notamment en l’incorporant dans de nouvelles réactions. Le CO2 présente l’avantage 

d’être une ressource renouvellable non toxique et peu coûteuse. A ce jour seulement trois 

procédés industriels utilisent le CO2 en tant que réactif pour la production d’urée, de carbonates 

et d’aspirine®. Il serait très intéressant et avantageux de pouvoir produire de l’acide acrylique 
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directement à partir d’éthylène et de CO2. En effet les dérivés d’acide acrylique repésentent un 

marché de l’ordre de 5,4 Mtonnes.an-1 essentiellement pour la production de polymères. [12] 

Le couplage oxydant entre l’éthylène et le CO2, assisté par des métaux de transitions, et 

notamment le nickel, [13, 14] est connu depuis les années 1980. Ce couplage conduit à la 

formation de nickelalactones, qui restent cependant très difficiles à cliver. Une elimination β-

H permettrait de produire directement de l’acide acrylique. Ce processus n’est néanmoins pas 

favorable cinétiquement et thermodynamiquement. [15] De nouvelles stratégies, impliquant 

l’utilisation d’électrophiles forts [16, 17, 18] ou de bases, [19] ont donc été mises place afin d’induire 

l’élimination β-H et de produire des acrylates. De premiers processus catalytiques ont pu être 

mis en place récemment. [20, 21, 22]  

La transmétallation pourrait être une alternative intéressante afin de cliver la liaison Ni-O des 

nickelalactones et d’induire la formation de dérivés acryliques. Des travaux de Mori [23, 24] et 

Rovis [25] sur des composés zinciques, ont montrés que ceux-ci peuvent en effet ouvrir les 

nickelalactones, mais conduisent après élimination réductrice invariablement à des dérivés 

d’acides carboxyliques. Nous nous sommes donc tournés vers les boranes, afin de pouvoir 

favoriser l’élimination β-H par rapport à une elimination réductrice, dans le but de trouver une 

alternative pour la synthèse de dérivés d’acide acrylique. 

 

7.3.2.2 Synthèse de [(dcpp)Ni(C2H4)] IV-3 

[(dcpp)Ni(C2H4)] IV-3 est obtenu par réactions de substitutions de ligands à partir de 

[Ni(COD)2] IV-2. Le premier ligand COD est déplacé rapidement à température ambiante par 

la bis-phosphine dcpp IV-1, puis le second COD est substitué sous pression d’éthylène, 

générant le complexe [(dcpp)Ni(C2H4)] IV-3 avec un rendement isolé de 64 % (Schéma 7). 

[(dcpp)Ni(C2H4)] IV-3 est très sensible à l’oxygène et possède une mauvaise solubilité à tous 

les solvent organiques usuels. 

 

 

Schéma 7: Synthèse de [(dcpp)Ni(C2H4)] IV-3 par réactions de substitutions de ligands à partir de 

[Ni(COD)2] IV-2. 
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Le complexe est charactérisé en RMN 31P{1H} par un singulet à δ = 25,5 ppm. Les protons et 

les carbones éthyléniques sont très blindés et sortent à δ = 1,52 ppm en RMN 1H et à 

δ = 31,9 ppm en RMN 13C{1H}, démontrant la richesse électronique du fragment [(dcpp)Ni] et 

la forte rétro-donation du centre métallique vers l’oléfine coordinée. La structure RX de 

[(dcpp)Ni(C2H4)] IV-3 montre que le complexe adopte une géométrie plan carrée distordue. 

L’angle de morsure mesure 104,50(10) ° et la liaison éthylénique C4-C5 = 1,407(15) Å, ce qui 

se situe à mi-chemin entre une liaison C-C simple et une liaison C-C double. La Figure 1 

représente la structure RX résolue de [(dcpp)Ni(C2H4)] IV-3. 

 

 

Figure 1: Structure moléculaire de [(dcpp)Ni(C2H4)] IV-3 determinée par diffraction de rayons X sur 

monocristal. Les atomes d’hydrogènes sont omis par souci de clarté. Longueurs de liaisons [Å] et 

angles [°] sélectionnés: C4-C5 1,407(15), P1-Ni1-P2 104,50(10). 

 

7.3.2.3 Synthèse de [(dcpp)nickelalactone] IV-4 

Tout d’abord [(dcpp)nickelalactone] IV-4 a essayé d’être obtenue par le couplage oxydant entre 

[(dcpp)Ni(C2H4)] IV-3 et CO2. Lorsque [(dcpp)Ni(C2H4)] IV-3 est placé sous 1 bar de CO2, 

aucune réaction n’est observée. En montant la pression à 6 bar de CO2, de petites quantités d’un 

nouveau produit sont observées par RMN 31P{1H} sous forme de doublets à δ = 10,4 ppm 

(2JP, P = 32,8 Hz) et à δ = 32,1 ppm (2JP, P = 32,8 Hz). Ces signaux sont attribués au produit de 

couplage oxydant [(dcpp)nickelalactone] IV-4.  

[(dcpp)nickelalactone)] IV-4 a donc été synthetisée alternativement par substitution de ligands 

à partir de [(tmeda)nickelalactone] IV-5 et a pu être isolée avec 68 % de rendement. La 

comparaison des spectres RMN 31P{1H} permet de confirmer, que le produit obtenu par la 

première voie de synthèse correspond bien également à [(dcpp)nickelalactone] IV-4.  
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Schéma 8: Synthèse de [(dcpp)nickelalactone] IV-4 par a) couplage oxidant à 6 bar de CO2 and b) 

substitution de ligand à partir de [(tmeda)nickelalactone] IV-5. 

 

Le complexe [(dcpp)nickelalactone] IV-4 a été cristallisé par diffusion de pentane dans une 

solution de THF à température ambiante et la structure est présentée dans la Figure 2. 

[(dcpp)nickelalactone] IV-4 adopte une géométrie plan carrée autour de l’atome central de 

nickel. L’angle de morsure P2-Ni1-P1 mesure 99,66(2) °et est inférieur à celui de 

[(dcpp)Ni(C2H4)] IV-3, comme attendu. Les autres paramètres cristallographiques sont 

comparables en tous points aux nickelalactones connues dans la littérature. [13, 20, 26] 

 

 

Figure 2: Structure moléculaire de [(dcpp)nickelalactone] IV-4 determinée par diffraction des rayons 

X sur monocristal. Les atomes d’hydrogène sont omis par souci de clarté. Longueurs de liaisons [Å] et 

angles [°] sélectionnés: Ni1-O1 1,9074(18), Ni1-C3 1,968(3), C1-O2 1,214(3), P1-Ni1-P2 99,66(2). 
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[(dcpp)nickelalactone] IV-4 est stable à temperature ambiante sous atmosphère inerte pendant 

des mois, mais se dégrade complètement à 60 °C en l’espace de 3 j. en [(dcpp)Ni(C2H4)] IV-3 

et CO2. 

 

7.3.2.4 Etude cinétique de l’équilibre entre [(dcpp)Ni(C2H4)] IV-3 et [(dcpp)-

nickelalactone] IV-4 

La synthèse et l’étude de la stabilité de [(dcpp)nickelalactone] IV-4 ont mis en évidence 

l’équilibre entre [(dcpp)Ni(C2H4)] IV-3 et [(dcpp)nickelalactone] IV-4. Des études cinétiques 

ont été menées afin de déterminer l’ordre de la réaction et les paramètres d’activation. Pour cela 

une quantité connue de [(dcpp)nickelalactone] IV-4 est chauffée à différentes températures 

comprises entre 55 °C et 90 °C avec PPh3 comme standard interne. La décroissance de la 

concentration de [(dcpp)nickelalactone] IV-4 est suivie par RMN 31P{1H} (Figure 3). 

 

 

Figure 3: Profil cinétique de la réaction à 

55 °C. 

Figure 4: ln([Nilactone]0/[Nilactone]) en 

fonction du temps pour la réaction dans le THF 

à 55 °C.

 

La réaction est d’ordre 1, comme le prouve le graphe ln([Nilactone]0/[Nilactone]) = f(t) (Figure 4) qui 

donne une droite. L’enthalpie libre de l’état de transition ΔG≠ peut être obtenue à partir des constantes 

de vitesse déterminées graphiquement et insérées dans l’équation de Eyring. Ainsi, un 

ΔG≠ = 27,39 kcal.mol-1 moyen a été calculé.  La variation de température donne de plus accès par 

l’intermédiaire d’un graphe de Eyring aux paramètres ΔH≠ et ΔS≠, qui ont été évalués à 
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ΔH≠ = 25,17 kcal.mol-1 et ΔS≠ = -6,50 kcal.mol-1.  Les paramètres d’activation de la décomposition de 

[(dcpp)nickelalactone] IV-4 en [(dcpp)Ni(C2H4)] IV-3 et CO2 sont bien en accord avec les conditions 

expérimentales reportées précédemment. 

 

7.3.2.5 Réactivité de [(dcpp)nickelalactone] IV-4 avec du pinacolborane IV-8 

Afin de cliver [(dcpp)nickelalactone] IV-4 et de la convertir en dérivés acryliques, celle-ci a été 

mise en présence de boranes, agissant en tant qu’agents de transmétallation, comme alternative 

aux électrophiles [16, 17, 18] et bases fortes [19] couramment utilisés. Le pinacolborane IV-8 est le 

réactif le plus approprié pour cette transformation de part son absence de réactivité avec 

l’éthylène et [(dcpp)Ni(C2H4)] IV-3.  

Lorsque [(dcpp)nickelalactone] IV-4 réagit avec du pinacolborane IV-8, il se forme un nouveau 

composé organométallique [(dcpp)NiH]2 IV-9 en l’espace de 10 min. à température ambiante. 

Ce composé, connu de la littérature, se laisse facilement reconnaître par son déplacement 

chimique à δ = 25,0 ppm en RMN 31P{1H} et par la présence d’un hydrure sous forme d’un 

quintet à δ = -10,1 ppm en RMN 1H. De plus, ce composé a pu être cristallisé. Cependant, il n’a 

pas été possible à ce stade de la réaction de déterminer la ou les produits organiques formés 

simultanément et mis en évidence par RMN DOSY 1H.  

 

 

Schéma 9: Réaction entre 13C[(dcpp)nickelalactone] IV-4(13C) et 3 eq. de pinacolborane IV-8. 

 

Pour cela, [(dcpp)nickelalactone] IV-4 a été marquee au 13C. Ainsi, en optimisant les conditions 

réactionnelles, il s’avère qu’il faut au minimum 3 eq. de pinacolbrane IV-8 pour convertir toute 

la [(dcpp)nickelalactone] IV-4. La RMN 13C, présentée dans la Figure 5, possède trois signaux 

attribués à la chaîne linéaire propyl du produit organique formé. De façon surprenante, aucun 

carbone associé à une fonction carbonyle n’a pu être repéré, ce qui signifie que l’ester a été 

réduit au cours de la réaction. Des expériences HSQC 1D 1H donnent accès aux protons 

directement liés à des centres 13C (Figure 6). En combinaison avec des expériences classiques 
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de RMN 2D, il est possible de les attribuer aux carbones correspondants de la chaîne propyle. 

Le spectre HSQC 1D 1H présente un signal supplémentaire, appartenant aux protons des 

groupements méthyls du pinacolborane IV-8, l’abondance naturelle de 13C n’étant plus 

négligeable au vu des huit carbones équivalents présents dans la molécule. Enfin, la RMN 11B, 

suggère la présence de deux unités borates par deux pics à δ = 21,6 ppm et δ = 22,5 ppm. 

Ainsi l’analyse de la réaction par spectroscopie RMN, permet de conclure à la formation de 

propoxypinacolborane IV-11 et de diboroxane pinBOBpin IV-12 à l’issu de la réaction de 

[(dcpp)nickelalactone] IV-4 avec 3 eq. de pinacolborane IV-8. 

 

 

 

Figure 5: Spectre RMN 13C{1H} à 75 MHz de la réaction entre 13C[(dcpp)nickelalactone] IV-4(13C) et 

3 eq. de pinacolborane IV-8 à température ambiante. Par souci de clarté, le [d8]-THF a été remplacé 

par du C6D6.
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Figure 6: Specre RMN 1H{13C} 1D HSQC à 500 MHz de la réaction entre 
13C[(dcpp)nickelalactone] IV-4(13C) et 3 eq. de pinacolborane IV-8 à température ambiante dans du 

[d8]-THF. 

 

Afin de bien confirmer la formation de propoxypinacolborane IV-11, une expérience de spiking 

a été réalisée. Le propoxypinacolborane IV-11 peut être synthétisé indépendamment en 15 min. 

à partir de propanol et de pinacolborane IV-8 à température ambiante. Ainsi, la réaction entre 

[(dcpp)nickelalactone] IV-4 et pinacolborane IV-8 est suivie par RMN 1H en utilisant le 

mésitylène comme standard interne. Une fois la réaction terminée, 5 eq. de 

propoxypinacolborane IV-11 sont rajoutés au milieu réactionnel, qui est toujours suivi par 

RMN 1H. Les pics et les intégrations correspondants au propoxypinacolborane IV-11 

augmentent de manière conséquente, apportant une preuve supplémentaire à la formation de 

propoxypinacolborane IV-11 au cours de la réaction. Les spectres RMN 1H associés à 

l’expérience de spiking peuvent être consultés dans la Figure 7 ci-dessous. 
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Figure 7: Spectre RMN 1H NMR de l’expérience de spiking. a) Réaction entre 

[(dcpp)nickelalactone] IV-4 et 3 eq. de pinacolborane IV-8 après 2 h. à température ambiante. b) 

Après ajout de 5 eq. de propoxypinacolborane IV-11. 

 

7.3.2.6 Etude mécanistique de la réaction 

La réduction de [(dcpp)nickelalactone] IV-4 en propoxypinacolborane IV-11 requiert au moins 

3eq. de pinacolborane IV-8. La force motrice de la réaction est la formation de liaisons B-O 

fortes, comme le montre la formation du produit secondaire pinBOBpin IV-12. Le borane joue 

donc à la fois le rôle de réducteur et de piège à oxygène. 

Le premier équivalent de pinacolborane IV-8 est employé comme agent de transmétallation, 

qui permet de cliver la liaison Ni-O de [(dcpp)nickelalactone] IV-4. Cela conduit à un complexe 

[(dcpp)Ni(propanoate)(H)] intermédiaire, à partir duquel le dérivé d’acide propanoique 

correspondant IV-14 est libéré très facilement par élimination réductrice avec formation 

conconmittante d’un complexe de Ni(0) hautement réactif, comme l’indique le Schéma 10. 
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Cette première étape a pu être vérifée expérimentalement à partir du complexe de Ni(0) 

[(dcpp)Ni(naphthalène)], qui en présence du dérivé d’acide propanoique IV-14 et de 

pinacolborane IV-8, génère après 14 h. at 60 °C du propoxypinacolborane IV-11 et du 

diboroxane IV-12 . La réaction est plus lente que dans les conditions originales de la réaction, 

car le complexe de Ni(0) utilisé est stabilisé par la coordination du naphthalène.  

 

 

Scheme 10: Première étape du mécanisme de la réaction entre [(dcpp)nickelalactone] IV-4 et du 

pinacolborane IV-8. 

 

Ensuite, le reste du mécanisme et notamment la réduction du dérivé d’acide propanoique IV-

14 en présence de pinacolborane IV-8 reste encore à élucider. Trois mécanismes sont cependant 

suggérés. Le premier, fortement inspiré de la réduction de CO2 par des boranes en présence de 

complexes organométalliques, prévoit l’intervention de complexes de nickel hydrures. [27] Le 

second, envisage l’addition oxydante du dérivé d’acide propanoique à l’espèce de Ni(0) libre 

générée, mais semble moins probable de part l’absence d’électrons π, qui facilitent ce processus. 

Enfin, le troisième, le plus probable, fait intervenir l’addition oxadante du pinacolborane sur le 

Ni(0), qui génèrerait des espèces [Ni(I)-boryles] promouvant la réduction du dérivé d’acide 

propanoique  IV-14 en propoxypinacolborane IV-11. Des expériences supplémentaires vont 

être menées afin de départager ces trois mécanismes.  

 

7.3.2.7 Vers un procédé catalytique 

Un cycle catalytique, conduisant à la formation de propoxypinacolborane IV-11 à partir du 

couplage oxydant entre de l’éthylène et du CO2 en présence d’un complexe de nickel et de 

pinacolborane IV-8, a été construit étape par étape. Le cycle est représenté dans le Schéma 11.  

A forte pression de CO2, il est possible de réaliser le couplage oxydant sur le complexe 

[(dcpp)Ni(C2H4)] IV-3, conduisant à la formation de [(dcpp)nickelalactone] IV-4. Ensuite, en 

présence d’au moins 3 eq. de pinacolborane IV-8, il est possible de convertir à température 
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ambiante [(dcpp)nickelalactone] IV-4 en propoxypinacolborane IV-11 et en diboroxane 

pinBOBpin IV-12, en passant par un intermédiaire de dérivé d’acide propanoique IV-14. Au 

cours de cette étape, le complexe diamagnétique de Ni(0) [(dcpp)NiH]2 IV-9 est égalment 

produit. Celui-ci se laisse très facilement reconvertir en [(dcpp)Ni(C2H4)] IV-3, sous 1 bar 

d’éthylène à temperature ambiante en 20 min, fermant ainsi le cycle catalytique. L’étape 

cinétiquement déterminante de ce cycle est donc le couplage oxydant entre [(dcpp)Ni(C2H4)] 

IV-3 et CO2. 

 

 

Schéma 11: Cycle catalytique proposé pour la réaction entre l’éthylène, le CO2 et le pinacolborane 

IV-8 en présence de complexes de nickel dcpp. 

 

De premières réaction catalytiques ont été menées en autoclave à différentes pressions de CO2 

et d’éthylène avec divers catalyseurs, sans grand succès. Le produit principal de la réaction est 

le complexe [(dcpp)Ni(CO)2] IV-23, qui une fois généré, empoisonne toute la catalyse de part 

sa très grande stabilité thermodynamique. De nouvelles conditions expérimentales vont être 

testées, notamment en faisant varier le ratio de pression éthylène/CO2, le solvant de la réaction 

ou le catalyseur employé, afin de pouvoir rendre cette réaction catalytique.   
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7.3.3 Activation du CO2 avec des complexes de nickel coordinés par 

des ligands bis-NHC 

7.3.3.1 Introduction 

De nombreuses recherches ont été menées sur le couplage oxydant entre l’ethylène et le CO2 

avec des complexes de nickel substitués par des ligands diamines et bis-phosphines. Cependant, 

il existe à ce jour une seule nickelalactone, coordinée par un ligand carbène monodente de type 

NHC, reportée par Walther en 2006. [28] Le développment d’une chimie des bis-NHCs analogue 

à celle des bis-phosphines et à ce jour encore inexplorée revêt un grand intérêt. 

Les ligands NHCs ont des propriétés analogues à celles des phosphines mais possèdent 

cependant un caractère σ donneur beaucoup plus important. Le remplacement des phosphines 

par des NHCs a permi des avancées majeures en catalyse et notamment le développement de 

réactions très efficaces telle que la métathèse des oléfines. [29] Cette substitution de ligand 

pourrait également permettre de résoudre certaines limitations cinétiques et thermodynamiques 

rencontrées lors de la fonctionnalisation du CO2 en acrylates. En effet, il est tout d’abord 

primordial de trouver des conditions de couplage plus douces à faibles pressions de CO2 et 

d’éthylène et ensuite de favoriser l’élimination des protons en β de la nickelalactone pour la 

production de dérivés acryliques.   

Trois sels de bis-imidazoliums ont été sélectionnés pour cette étude: LtBuH2Br2 VI-5, 

LDippH2Br2 VI-6 et LtBupropH2Br2 VI-7. Dans un premier temps les complexes [(bis-

NHC)Ni(C2H4)], encore inconnus à ce jour, ont été synthetisés et charactérisés. Ensuite, les 

nickelalactones correspondantes [(bis-NHC)nickelalactones] ont été obtenues par réactions de 

substitution de ligands ainsi que par couplage oxidant entre les complexes [(bis-

NHC)Ni(C2H4)] et du CO2. Quelques expériences préliminaires ont testé la réactivité des [(bis-

NHC)]nickelalactones] synthétisées en vue de générer des acrylates. 

 

7.3.3.2 Synthèse de complexes [(bis-NHC)Ni(ethylène)] et [(bis-NHC)Ni-

(alcynes)] 

Tout d’abord, les premiers complexes [(bis-NHC)Ni(C2H4)] ont été synthétisés par 

substitutions de ligands. Pour cela les sels de bis-imidazolium ont été déprotonés par 2 eq. de 

KOtBu dans de l’éther sous atmosphère inerte afin de générer les bis-carbènes libres 
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correspondants, qui sont stables en solution pour plusieurs heures. Après avoir éliminé par 

filtration les sels de potassium (KBr) insolubles dans l’éther, les carbènes libres sont mis en 

présence de [Ni(COD)2] VI-8 et d’éthylène. Le premier ligand COD est déplacé par le carbène 

libre alors que le second ligand COD est facilement substitué par l’éthylène. Ainsi les 

complexes [LtBu)Ni(C2H4)] VI-9 et [(LDipp)Ni(C2H4)] VI-10 ont pu être obtenu avec 75 % et 

71 % de rendement respectivement.  Les conditions opératoires sont détaillées dans le Schéma 

12. 

 

 

Schéma 12: Synthèse des complexes [(LtBu)Ni(C2H4)] VI-9 et [(LDipp)Ni(C2H4)] VI-10. 

 

[LtBu)Ni(C2H4)] VI-9 et [(LDipp)Ni(C2H4)] VI-10 ont été charactérisés par spectroscopie 

RMN. La résonance des centres carbéniques à bas champ, à δ = 203,7 ppm et à δ = 200,1 ppm 

respectivement, prouve bien la coordination du ligand bis-NHC. Les déplacements chimiques 

des protons éthyléniques sont remarquablement déplacés vers la région des hauts champs. Les 

protons éthyléniques de [LtBu)Ni(C2H4)] VI-9 résonnent comme un système AA’BB’ à 

δ = 1,06 ppm et δ = 1,20 ppm (3JA, A’ = 3JB, B’ = 10,4 Hz, 3JA, B’ = 12,3 Hz, 2JA, B = -2,9 Hz) alors 

que les protons de [(LDipp)Ni(C2H4)] VI-10 sortent sous forme d’un singulet à δ = 0,14 ppm 

dans le [d8]-THF. Les déplacements chimiques des carbones associés sont également fortement 

décalés dans la region des alcanes (δ = 27,7 ppm et δ = 25,2 ppm respectivement). Ces 

déplacement chimiques inusuels pour des protons et carbones oléfiniques, démontrent la forte 

rétro-donation du fragment [(bis-NHC)Ni] vers l’éthylène. Ces résultats sont corroborés par la 

structure du complexe [(LtBu)Ni(C2H4)] VI-9 obtenue par DRX et présentée dans la Figure 8. 

[(LtBu)Ni(C2H4)] VI-9 possède une géométrie plan carrée légèrement déformée et le cycle 

chélatant à six chainons formé par l’atome de nickel et le ligand bis-NHC adopte une 

conformation bateau. L’angle de morsure C3-Ni1-C4 est de 91,45(14) ° alors que la liaison 
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éthylénique C1-C2 mesure 1,419(5) Å et se situe bien à mi- chemin entre une liaison C-C simple 

(1,54 Å) et une liaison C-C double (1,34 Å).  

 

 

Figure 8: Structure moléculaire de [(LtBu)Ni(C2H4)] VI-9 determinée par diffraction de rayons X sur 

monocristal. Les atomes d’hydrogène sont omis par souci de clarté. Longueurs de liaisons [Å] et 

angles [°] sélectionnés: Ni1-C1 1,953(4), Ni1-C2 1,947(3), Ni1-C3 1,923(3), Ni1-C4 1,903(3), C1-C2 

1,419(5), C1-Ni1-C2 42,66(15), C3-Ni1-C4 91,45(14). 

 

Par la suite, les complexes [(LtBu)Ni(diphenylacétylène)] VI-13 et 

[(LtBu)Ni(phenylacétylène)] VI-14 ont été obtenus de la même manière en remplaçant 

l’éthylène par du diphénylacétylène VI-11 ou du phénylacétylène VI-12 et ont été isolés avec 

76 % et 73 % de rendement respectivement (Schéma 13). Ces complexes ont également été 

charactérisés par RMN et DRX.  

 

 

Schéma 13: Synthèse de [(LtBu)Ni(diphenylacétylène)] VI-13 et [(LtBu)Ni(phenylacétylène)] VI-14. 
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7.3.3.3 Réactions de substitutions de ligands 

La stabilité relative des nouveaux complexes bis-NHC insaturés de nickel a été examinée à 

l’aide de réactions de d’échanges de ligands. Ainsi les complexes [(bis-NHC)Ni(alcynes)] sont 

nettement plus stables que les complexes [(bis-NHC)Ni(C2H4)]. En effet [(LtBu)Ni(C2H4)] VI-

9 est instantanément converti en [(LtBu)Ni(diphenylacétylène)] VI-13 ou en 

[(LtBu)Ni(phénylacétylène)] VI-14 en présence de l’alcyne correspondant. 

De plus les complexes [(LtBu)Ni(CO)2] VI-15 et [(LDipp)Ni(CO)2] VI-16 ont également pu 

être synthétisés à température ambiante en plaçant les complexes [(LtBu)Ni(C2H4)] VI-9 et 

[(LDipp)Ni(C2H4)] VI-10 sous une atmosphère de CO. Après 5 min. [(LtBu)Ni(CO)2] VI-15 

et [(LDipp)Ni(CO)2] VI-16 sont isolés avec 88 % et 77 % de rendement respectivement, 

comme le montre le Schéma 14. Ces complexes ont été charactérisés par spectroscopie RMN 

et IR, qui mettent en évidence la coordination des groupements carbonyles. En effet un nouveau 

pic est détecté en RMN 13C{1H} à proximité des centres carbéniques et deux fortes bandes 

d’absorption sont observées en IR aux alentours de 1900 cm-1. De plus, une structure RX 

présentant une géométrie tétrahédrique a pu être obtenue pour [(LtBu)Ni(CO)2] VI-15. 

La comparaison des fréquences de vibrations des liaisons C-O des complexes bis-carbonyles 

de nickel en IR confirme que les ligands NHC sont bien plus σ donneurs que le ligand bis-

phosphine dcpp, ce qui se traduit par un décalage des bandes d’absorption vers des fréquences 

plus basses de 20 cm-1 à 40 cm-1.  

 

 

Schéma 14: Synthèse des complexes [(LtBu)Ni(CO)2] VI-15 et [(LDipp)Ni(CO)2] VI-16. 

 

7.3.3.4 Synthèse de [(bis-NHC)nickelalactones] par substitution de ligands  

Les complexes [(bis-NHC)nickelalactones] peuvent être synthétisés efficacement à partir de 

[(tmeda)nickelalactone] VI-17 par réactions de substitution de ligands, analogues à celles 

décrites précédemment dans la partie 7.3.3.2 pour la synthèse des complexes [(bis-
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NHC)Ni(alcènes)] et  [(bis-NHC)Ni(alcynes)]. La déprotonation des sels de bis-imidazolium 

(bis-NHC)H2Br2 par 2,2 eq. de KOtBu, génère des bis-NHC libres, qui déplacent ensuite 

facilement la diamine dans le complexe préformé [(tmeda)nickelalactone] VI-17. Il est 

indispensable de réaliser la déprotonation dans de l’éther afin de pouvoir facilement éliminer 

par filtration le KBr formé. En effet comme les [(bis-NHC)nickelalactones] obtenues ont une 

solubilité très limitée dans presque tous les solvants organiques communs, il devient 

extrêmement difficiles de les séparer de KBr en fin de réaction. En suivant cette méthodologie 

de synthèse, [(LtBu)nickelalactone] VI-18, [(LDipp)nickelalactone] VI-19 et 

[(LtBu)propnickelalactone] VI-20 ont pu être isolées avec de bons rendements, comme l’indique 

le Schéma 15, puis charactérisées. Ces complexes sont particulièrement stables et ne craignent 

ni l’eau ni l’air. 

 

 

Schéma 15: Synthèse de [(LtBu)nickelalactone] VI-18, [(LDipp)nickelalactone] VI-19 et 

[(LtBu)propnickelalactone] VI-20 par substitution de ligands à partir de [(tmeda)nickelalactone] VI-17. 

 

En particulier, [(LtBu)nickelalactone] VI-18 a été charactérisée par spectroscopie RMN, qui 

révèle deux protons Ni-CH2 inéquivalents à δ = 0,47 ppm et à δ = 0,74 ppm et deux protons en 

α de la fonction ester à δ = 2,03 ppm. La spectroscopie 13C{1H} confirme la coordination du 

bis-carbène par l’apparition de deux pics associés à des carbones quaternaires à δ = 180,6 ppm 

et δ = 186,1 ppm ainsi que la présence d’un groupement acyl à δ = 189,6 ppm. En IR une bande 

d’absorption à 1619 cm-1 donne une preuve supplémentaire pour la formation de la lactone. De 

plus, la structure RX de [(LtBu)nickelalactone] VI-18 a été résolue et présente une géométrie 

plan carrée, avec un chélate à six chainons en conformation bateau. L’angle de morsure de 

[(LtBu)nickelalactone] VI-18 C4-Ni1-C5 (86,89(17) °) est significativement plus petit de celui 

de [(dcpp)nickelalactone] IV-4 (99,66(2) °). Les autres paramètres cristallographiques sont par 
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ailleurs comparables entre les deux nickelalactones. La structure de [(LtBu)nickelalactone] VI-

18 est présentée dans la Figure 9.  

 

 

Figure 9: Structure moléculaire de [(LtBu)nickelalactone] VI-18 determinée par diffraction de rayons 

X sur monocristal. Les atomes d’hydrogènes sont omis par souci de clarté. Longueurs de liaisons [Å] 

et angles [°] sélectionnés: Ni1-O1 1,909(3), Ni1-C1 1,942(4), C3-O2 1,228(5), Ni1-C4 1,860(4), Ni1-C5 

1,957(4), C4-Ni1-C5 86,89(17), C1-Ni1-O1. 84,73(16).  

 

7.3.3.5 Synthèse de [(bis-NHC)nickelalactones] par couplage oxydant avec des 

complexes [(bis-NHC)Ni(C2H4)]  

Alternativement, les complexes [(bis-NHC)nickelalactones] peuvent aussi être obtenus 

directement par le couplage oxydant entre du CO2 et des complexes [(bis-NHC)Ni(C2H4)]. De 

façon remarquable, il suffit d’1 bar de CO2 pour réaliser le couplage oxydant à température 

ambiante, tel que le montre le Schéma 16. Ainsi, le couplage oxydant se fait dans des conditions 

beaucoup plus douces en présence des ligands bis-NHC, que pour les ligands analogues bis-

phosphines étudiés précédemment. Par comparaison des données spectroscopiques avec celles 

des complexes synthétisés indépendammant auparavant, les [(bis-NHC)nickelalactones] ont pu 

être identifiées sans aucune ambiguïté. Cependant un produit secondaire encore non-identifié 

est également généré lors de la réaction de couplage.  
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Schéma 16: Synthèse de [(LtBu)nickelalactone] VI-18 par couplage oxydant entre 1 bar de CO2 et 

[(LtBu)Ni(C2H4)] VI-9 à température ambiante. 

 

7.3.3.6 Reactivité des [(bis-NHC)nickelalactones] 

La réactivité des [(bis-NHC)nickelalactones] synthétisées a ensuite été étudiée vis-à.vis de 

bases et d’agents de transmétallation afin de générer des dérivés d’acide acrylique. Cependant, 

dans les conditions catalytiques reportées par Limbach [22] et par Vogt, [21] 

[(LtBu)nickelalactone] VI-18 n’a pas pu être convertie avec succès en produits chimiques 

valorisables et [(LDipp)nickelalactone] VI-19 fournit des acrylates seulement en quantité 

stoechiometrique. De même la réactivité de [(LtBu)nickelalactone] VI-18 avec divers boranes 

et zinciques n’est pas concluante pour l’instant. Les réactions sont limitées par le manque de 

solubilité des [(bis-NHC)nickelalactones] dans de nombreux solvants organiques ainsi que par 

leur stabilité thermodynamique. De plus l’absence de sonde phosphore rend le suivi des 

réactions beaucoup plus difficile. Pour pallier à ces difficultés [(LtBu)nickelalactone] VI-18 a 

été marquée au 13C, ce qui permet d’une part de mieux identifier les produits issus des réactions 

testées et d’autre part de comprendre les processus mis en jeux lors de ces différentes réactions. 
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Nickel Mediated Negishi and Oxidative Couplings 

          The aim of this research project is to promote the formation of new C-C bonds and the 
production of valuable chemicals by using chelated nickel complexes. 

          The first part of this thesis is dedicated to [nickel(bis-phosphine)] complexes employed 
as catalysts for Negishi cross coupling reactions. Designed Ni(0) precatalyst [(dcpp)Ni(η2-
toluene)] (dcpp = 1,3-bis(dicyclohexylphosphino)propane) promotes efficiently the Negishi 
cross coupling between aryl chlorides and phenylzinc chloride derivatives at low catalyst 
loadings (down to 0.2 mol% - 1 mol%) under mild conditions (THF, 60°C). Mechanistic 
investigations relying on stoichiometric reactions and DFT calculations prove the involvement 
of Ni(0)/Ni(II) intermediates rather than Ni(I)/Ni(III) species during the catalysis. 

          The second part of this work deals with the oxidative coupling between ethylene and CO2 
at bis-phosphine and bis-NHC chelated nickel complexes for the production of value-added 
chemicals. The equilibrium between [(dcpp)Ni(C2H4)] and [(dcpp)nickelalactone] has been 
investigated by kinetic studies. The subsequent cleavage of [(dcpp)nickelalactone] by 
pinacolborane leads to its reductive functionalization into a propanol derivative. Preliminary 
mechanistic and catalytic investigations have been undertaken. Moreover, new methodologies 
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catalytiques (0,2 mol% - 0,1 mol%) et des conditions douces (THF, 60 °C). Une étude 
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