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Titre : Algebres d’Iwasawa pour les groupes de Lie p-adiques
et les groupes de Galois.

Mots Clefs : Algébre d’Iwasawa, représentations p-adiques, représentations galoisiennes, corps
de nombres p-rationnels.

Résumé : Un outil clé dans la théorie des représentations p-adiques est 1’algébre d’Iwasawa,
construit par Iwasawa pour étudier les nombres de classes d’une tour de corps de nombres.
Pour un nombre premier p, l'algébre d’Iwasawa d'un groupe de Lie p-adique G, est 1’algébre
de groupe G complétée non-commutative. C’est aussi 'algébre des mesures p-adiques sur G.
Les objets provenant de groupes semi-simples, simplement connectés ont des présentations ex-
plicites comme la présentation par Serre des algébres semi-simples et la présentation de groupe de
Chevalley par Steinberg. Dans la partie I, nous donnons une description explicite des certaines
algeébres d’Iwasawa. Nous trouvons une présentation explicite (par générateurs et relations) de
I’algébre d’Iwasawa pour le sous-groupe de congruence principal de tout groupe de Chevalley semi-
simple, scindé et simplement connexe sur Z,. Nous étendons également la méthode pour I’algébre
d’Iwasawa du sous-groupe pro-p Iwahori de GL(n,Z,). Motivé par le changement de base entre les
algébres d’Iwasawa sur une extension de Q,, nous étudions les représentations p-adique globalement
analytiques au sens d’Emerton. Nous fournissons également des résultats concernant la représen-
tation de série principale globalement analytique sous l'action du sous-groupe pro-p Iwahori de
GL(n,Zy) et déterminons la condition d’irréductibilité. Dans la partie II, nous faisons des expéri-
ences numériques en utilisant SAGE pour confirmer heuristiquement la conjecture de Greenberg
sur la p-rationalité affirmant ’existence de corps de nombres "p-rationnels" ayant des groupes de
Galois (Z/27)¢. Les corps p-rationnels sont des corps de nombres algébriques dont la cohomologie
galoisienne est particuliérement simple. Ils sont utilisés pour construire des représentations galoisi-
ennes ayant des images ouvertes. En généralisant le travail de Greenberg, nous construisons de
nouvelles représentations galoisiennes du groupe de Galois absolu de Q ayant des images ouvertes
dans des groupes réductifs sur Z,, (ex GL(n,Z,), SL(n,Z,), SO(n,Z,), Sp(2n,Z,)). Nous prouvons
des résultats qui montrent ’existence d’extensions de Lie p-adiques de Q ou le groupe de Galois
correspond & une certaine algébre de Lie p-adique (par exemple sl(n),s0(n),sp(2n)). Cela répond
au probléme classique de Galois inverse pour I'algébre de Lie simple p-adique.




Title : Iwasawa algebras of p-adic Lie groups and Galois groups.
Keys words : Iwasawa algebras, p-adic representations, Galois representations, p-rational fields.

Abstract : A key tool in p-adic representation theory is the Iwasawa algebra, originally constructed
by Iwasawa in 1960’s to study the class groups of number fields. Since then, it appeared in varied
settings such as Lazard’s work on p-adic Lie groups and Fontaine’s work on local Galois representa-
tions. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed
group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that
objects coming from semi-simple, simply connected (split) groups have explicit presentations like
Serre’s presentation of semi-simple algebras and Steinberg’s presentation of Chevalley groups. In
Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first
find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal
congruence subgroup of any semi-simple, simply connected Chevalley group over Z,. Furthermore,
we extend the method to give a set of generators and relations for the Iwasawa algebra of the
pro-p Iwahori subgroup of GL(n,Z,). The base change map between the Iwasawa algebras over
an extension of Q, motivates us to study the globally analytic p-adic representations following
Emerton’s work. We also provide results concerning the globally analytic induced principal se-
ries representation under the action of the pro-p Iwahori subgroup of GL(n,Z,) and determine
its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra
system SAGE which give heuristic support to Greenberg’s p-rationality conjecture affirming the ex-
istence of "p-rational" number fields with Galois groups (Z/2Z). The p-rational fields are algebraic
number fields whose Galois cohomology is particularly simple and they offer ways of constructing
Galois representations with big open images. We go beyond Greenberg’s work and construct new
Galois representations of the absolute Galois group of Q with big open images in reductive groups
over Z, (ex. GL(n,Z,),SL(n,Zy,),S0(n,Z,), Sp(2n,Z,)). We are proving results which show the
existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific
p-adic Lie algebra (ex. sl(n),so(n),sp(2n)). This relates our work with a more general and classical
inverse Galois problem for p-adic Lie extensions.
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Introduction (in French)

Dans cette section, je présente les résultats de ma thése en géométrie arithmétique, théorie d’Iwasawa,
théorie des représentations galoisiennes, dans le cadre du programme de Langlands p-adique. La
partie I de ma thése contient des résultats du coté théorie des représentations du programme de
Langlands tandis que la partie II contient des résultats du coté Galois. Les résultats peuvent étre
divisés en cing sections (0.1 - 0.5).

0.1 Présentation explicite de ’algébre d’Iwasawa
pour le premier noyau de congruence

Soit p un nombre premier. La premiére branche de ma recherche se concentre sur la description
explicite de I’algébre d’Iwasawa d’un groupe de Lie p-adique G sur Z,,. La théorie d’Iwasawa trouve
son origine dans le travail révolutionaire d’Iwasawa dans les année 1960 concernant la croissance
des nombres de classes des corps de nombres. L’algébre d’ITwasawa d’un groupe G, notée A(G) ou
Z,[|G]], est définie par
AG) = lngp[G/H]
H

ot H décrit les sous-groupes ouverts de G. L’algébre de Iwasawa joue un role dans différentes
branches des mathématiques. Par exemple, a l'aide de 1’algébre d’Iwasawa Lazard a étudié les
groupes de Lie analytiques p-adiques ([Laz65]). Il y définit la notion de groupes p-saturés et
caractérise algébriquement la notion de groupes analytiques p -adiques comme groupes topologiques
contenant un groupe p-saturé admettant une filtration entiére.

Dans le cadre de la théorie des représentations locales, les algébres d’Iwasawa interviennent via
les modules de Fontaine. Fontaine ([Fon90]), décrit une équivalence de catégories entre la catégorie
des représentations Q,-linéaires du groupe de Galois absolu de Q et la catégorie des (¢, I') - modules
étales sur un anneau. Cette équivalence de catégories est utilisée en autre par Colmez et d’autres
pour prouver la correspondance de Langlands p-adique pour GLy(Q,) [CDP14].

Les algébres d’Iwasawa jouent également un roéle essentiel en théorie p -adique des représen-
tations de G(Q,), les Q,-points d’un groupe réductif G sur Q,, initialement étudiée par Schnei-
der/Teitelbaum et Emerton. Schneider et Teitelbaum ont traduit I’étude de la théorie des représen-
tations d’un espace de Banach p -adique (sur une extension finie K de Q,) en I’étude de modules
sur les algébres d’Iwasawa.

Enfin, du point de vue de la théorie d’Iwasawa, il est crucial d’en comprendre la structure. Il a
semblé que la description explicite, par générateurs et relations, de ces algébres était jusqu’a présent
inaccessible. Cependant, la présentation de Serre des algébres semi-simples et la présentation de
Steinberg des groupes de Chevalley [Ser87], [Ste67] nous font croire que les objets provenant de
groupes déployés semi-simples ont une présentation explicite.

Le résultat principal de la section 1 est de donner une présentation explicite, par générateurs
et relations, de l'algeébre d’Iwasawa pour le sous-groupe G(1) := ker(G(Z,) — G(F,)) de tout
groupe de Chevalley G semi-simple, scindé, simplement connexe sur Z, (Théoréme 0.1, 0.2). Cela
généralise un travail précédent de Clozel pour G = SLy(Zp) (cf. [Cloll]).

Soit p un nombre premier impair. Lazard définit, pour un groupe H localement Q,-analytique,
une fonction, appelée p-valuation, w : H — {1} — (p%l,oo) C R satisfaisant certaines propriétés
(cf. [Laz65] III. 2.1.2). Soit d la dimension de H (en tant que variété analytique locale). Lazard
définit également une base ordonnée de H par rapport a la p-valuation w. Il s’agit d’une séquence

ordonnée d’éléments hy,...,hqg € H — {1} tels que les conditions suivantes soient satisfaites :

1. ¢:Zy, = H, (x1,...,xq) — h{* - A2,

2. w(hi* -+ hY*) = mini<i<qa(w(hs) + valy(x;)),

ou l'application 1) est un homéomorphisme.



Soit G un groupe réductif déployé sur Z,, T' un tore maximal déployé en G, M = X*(T') son

groupe de caractéres,
9= 00D Pacaba

la décomposition en poids pour 'action de T sur g = Lie(G). Nous notons IT C ® une base
du systéme de racines ® C M, ®~ (®T) I’ensemble des racines négatives (resp. positives) et pour
chaque 6 € II, X5 une Zy-base de gs. Nous développons (Xs)sem en un systéme de Chevalley
(Xa)acas de G [GP11, XXIII 6.2]. La p-valuation w sur G(1) est w(z) = k si = est dans le k-éme
noyau de congruence mais pas dans le (k4 1) -éme.

Ainsi, nous trouvons une base ordonnée de G(1).

Théoréme 0.1 (voir Théoréme 1.9 de la section 1). Une base ordonnée pour le premier noyau de
congruence G(1) est donnée par

{zp(p), hs(1 + p),za(p); B € P, 6 € ,a € DT},
lordre étant compatible avec la fonction de hauteur croissante sur les racines.

Ici, pour a € @, nous notant par U, C G le groupe unipotent correspondant, et o, : Go 7, — Ua
I'isomorphisme donné par z,(t) = exp(tXy). Pour A € Qy,a € ®, nous définissons hq(A) =
Wa(N)wa(1)71 ot wa(A) := 2a(N)z_a(=A")za(N).

Le groupe (hs(u),6 € II,u € 1 4 pZ,) engendre le tore de G(1). Réciproquement tout élément
g du tore de G(1) peut étre écrit de fagon unique comme g = [[5cr hs(1 + vs) ot vs € pZ, (voir
Corollaire du lemme 28 p. 44 de [Ste67]).

Soit A(G(1)) I'algébre d’Iwasawa de G(1) sur Z,,

A(G(1)) = Im Z,[G(1)/H].
H

Cette algébre d’ITwasawa peut également étre vue comme le dual des fonctions continues de G(1) a
Zyp, ie A(G(1)) = Homgz, (C(G(1)),Zy) (voir le lemme 22.1 de [Sch1l]).

Considérons A = Z,{{Va, Ws,a € ®,§ € II}}, l’algébre des séries entiéres non-commutatives
sur Z, en plusieurs variables V,, et Ws, ot a décrit les racines et § décrit les racines simples. L’ordre
des variables est donné par la fonction hauteur sur les racines, comme dans le Théoréme 0.1. Soit
R lidéal bilatére (& gauche et & droite) fermé engendré dans A par les relations

Lo(L4+ W)L+ V) = (1+ V)7 (1 4 wy),
2 (14 Vi )(1 + V) = (14 Vi) (1 + V), (01 + 2 ¢ D),
3. (1 + Val)(l + Vaz) = (Hi,j>0(1 + ‘/ia1+j042)c”pi+j71) (1 + Vaz)(l + Voa)v (al + Qg € (I))y

4. (1 + Va3)<1 + V*Ot3> = (1 + V*O‘B)Q<Hli:1(1 + W5z‘)mp)(1 + Vas)Q7
Notre théoréme principal dans la section 1 est

Théoréme 0.2 (voir Théoréme 1.22 de la section 1). Pour p > 2, l’algébre d’Iwasawa A(G(1)) est
naturellement isomorphe, comme anneau topologique, 4 A/R.

Enfin, nous étendons nos méthodes pour donner une présentation explicite de ’algébre d’Iwasawa
du pro-p Iwahori sous-groupe de GL(n, Z,) sous I’hypothése supplémentaire p > n+1 qui généralise
le cas pour n = 2 par Clozel [Clo17].

10



0.2 Présentation explicite de I’algébre d’Iwasawa
pour le pro-p Iwahori

Soit G le pro-p Iwahori de SL,(Z,) i.e. le groupe de matrices dans SL,,(Z,) qui sont unipotentes
supérieures modulo I'idéal pZ,. Une base ordonnée de G est donnée par

Théoréme 0.3 (voir Théoréme 2.5 de la section 2). Les éléments
{zs(p), hs(1+p),za(1); € @, €ll,a € T}
forment une base ordonnée pour la p-valuation w (cf. 2.1) sur G, ou l'ordre est le suivant :

(i) prendre d’abord les matrices unipotentes inférieures dans l’ordre donné par la fonction de
hauteur (croissante) sur les racines,

(ii) ensuite prendre les éléments diagonauz hs(1 + p) pour 6 € II dans n’importe quel ordre et,
(iii) enfin, prendre les matrices unipotentes supérieures dans l’ordre lexicographique suivant : la
matrice (1 + E; ;) vient avant (1 + Ey ;) si et seulement sii >k eti=k = j> L.

Ici la matrice F; ; est la matrice élémentaire standard.

La présentation de I’algébre d’Iwasawa A(G) est donnée par

Théoréme 0.4 (voir Théoréme 2.4.3 de la section 2). Pour p > n + 1, l'algébre d’lwasawa A(G)
est isomorphe a A/R, ou A = Z,{{Va,Ws,Ug,a € ®T,3 € ®,6 € I1}} avec l'ordre donné dans
le théoréme 0.8 et R est l'idéal bilatére fermé de A engendré par les relations (2.50 — 2.64).

Nous obtenons le corollaire suivant :

Corollaire 0.1 (voir le corollaire 2.15 de la section 2). L’algébre d’[wasawa du sous-groupe pro-p
Iwahori de GL,(Z,) est un quotient A'/R, avec

A =72,{Z,Vo,,Us,Ws,a € T, 8 € @™, 6 € I1}},
R défini par les relations (2.50 — 2.64) et Z commute avec Ug, V,, W5 pour tous o, 3, 9.

Cette présentation explicite des algébres d’Iwasawa est utilisée par Clozel pour étudier les
propriétés du centre de ’algébre d’Iwasawa pour le premier noyau de congruence principal de
SL(2,Zy,). Avec L une extension finie non-ramifiée de Q,, la présentation explicite peut aussi étre
utilisée pour définir "changement de base formel" [Clo17] des algébres d’Iwasawa

AL — AQP

ot Az et Ag, sont les algebres d’Iwasawa des sous-groupes pro-p Iwahori sur L et Q, respective-
ment. Le changement de base formel est donné par des séries formelles qui convergent uniquement
vers des distributions analytiques globales qui sont les duaux continus des fonctions analytiques
rigides sur le pro-p Iwahori considéré comme un espace analytique rigide ([Clo17]). Cela motive
également 1’étude des vecteurs analytiques globaux des représentations p-adiques discutée dans la
section suivante.

En plus des implications de notre présentation explicite de ’algébre d’Iwasawa, Dong Han et
Feng Wei notent que nos résultats pourraient fournir des moyens de répondre & la question ouverte
d’existence d’éléments normaux non triviaux dans 2, réduction modulo p de 'algébre d’Iwasawa
de G (voir Introduction et section 5 de [HW18]). Un élément r € g est normal si rQg = Qgr.
La question sur les éléments normaux apparait dans [BW13], et a été reformulée dans [HW18] qui
ont traité les cas de SL(2,Z,) et SL(3,Zp). Comme noté dans [HW18], les éléments normaux
aident a construire des idéaux réflexifs dans I'algébre d’Iwasawa. La question principale de Han
et Wei est de trouver un mécanisme pour construire des idéaux d’algébres de groupes complets
sans utiliser d’éléments centraux ou de sous-groupes normaux fermés. Ainsi ils obtiendraient des
moyens naturels de construire des idéaux dans ’algeébre Iwasawa (loc.cit).

Questions futures. Le sous-groupe pro-p Iwahori de GL(n,Z,), pour p > n+1 est un groupe
p-saturé au sens de Lazard. Cela pose la question naturelle de savoir si ’on peut généraliser
le Corollaire 0.1 pour obtenir une présentation explicite de 'algébre Iwasawa pour tout groupe
p-saturé.
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0.3 Série principale globalement analytique

La deuxiéme branche de ma recherche concerne les vecteurs analytiquement globaux, au sens
d’Emerton [Emel7], de représentations p-adiques de GL, (Q,) sous laction du sous-groupe pro-
p Iwahori G de GL,(Q,). Ici, nous notons G (resp. B) le pro-p Iwahori (resp. le sous-groupe
d’Iwahori) égal au sous-groupe des matrices dans GL,,(Z,) qui sont inférieures unipotentes (respec-
tivement triangulaires inférieures) modulo pZ,. D’aprés les travaux d’Emerton [Emel7], il est clair
qu’il est possible de généraliser le travail effectué par Schneider et Teitelbaum aux représentations
localement analytiques [ST02b], et de construire une théorie des représentations de séries princi-
pales globalement analytiques sous l’action du pro-p Iwahori. Nous montrons que le sous-espace
de ’algébre de Tate des fonctions analytiques rigides de la série principale localement analytique
est une représentation globalement analytique de G (Théoréme 0.5). De plus, nous déterminons la
condition d’irréductibilité de telles séries principales globalement analytiques (Théoréme 0.6).

Soit K une extension finie de @,. Rappelons la définition d’une représentation globalement
analytique. Soit G le groupe rigide-analytique dont les Z,-points coincident avec le groupe G. On
note A(G, K) l’algébre de Tate des fonctions globalement analytiques sur G [Bosl4], c’est-a-dire
des fonctions qui peuvent étre écrites globalement sur G comme série entiére avec les coordonnées
de G ayant des coefficients (en K) qui tendent vers 0. Soit V un espace K-Banach de norme
[|-]]- Si g — m(g) est une représentation de G sur V, on dit que 7 (ou V) est une représentation
globalement analytique si 'application

O, :=gr——g-v=m(g)v

est une fonction globalement analytique de G & V. Ainsi, dans les coordonnées (z1, ...,z4) de G,

nous avons :
g-v= Z vam
meNd
ol vy, € Vet ||[vy|| = 0quand |m| = mi+---+mgq — 0. Ici, m = (my, ...,mq) et x™ = 27" - - -z,
m; € N. (Pour les propriétés des représentations globalement analytiques, voir [Emel7].) Cette
définition peut étre généralisée & n'importe quel groupe analytique rigide sur Q,, et pas seulement
au pro-p Iwahori.

Notons PP le sous-groupe de Borel des matrices triangulaires supérieures dans GL,(Q,), T le
tore maximal de GL,,(Q,), P" le sous-groupe de Borel des matrices triangulaires supérieures dans
GL,(Z,), W le groupe Weyl de GL,(Q,,) par rapport & T, Py = BNwPTw™!, ot B est le sous-
groupe de matrices dans GL,,(Z,) qui sont des triangles inférieures modulo pZ,.

Soit x un caractére localement analytique du tore Ty de B & K*, c’est-a-dire x : Tp — K* avec
X(t1y ey tn) = x1(t1) - Xn(tn), et xi(t) =t ot ¢; = %Xi(t)\tzl pour t suffisamment proche de 1,

c; € K, indg L’L(Qp)(x)loc I'induction localement analytique, c’est-a-dire :

indg“" ) (Voo := {f € Aoc(GLa(Qy), K) : f(gb) = x(b™")f(9). 9 € GL(Q,),b € P},

ou Ay, désigne I'ensemble des fonctions localement analytiques .

Localement analytique signifie que dans un voisinage d’un point, les fonctions peuvent étre
écrites comme des séries. Nous avons les décompositions B-equivariantes

GLn(Zyp)

. 1GL, ~ ~ :
lnd]P’ (Qp)(X)loc - 1ndp+ (X)loc = ®w€W1ndIB;:}r (Xw)loc

ot 'action de x“ est donnée par x*(h) = x(w~'hw). Le premier isomorphisme est di & la décom-
position d’Twasawa [0S10, sec. 3.2.2] et le second est di a la décomposition de Bruhat (loc.cit. et
[Car79, section 3.5]).

L’espace vectoriel sous-jacent a inngr (X")10c est isomorphe aux fonctions localement analy-
tiques Z;' — K pour une dimension appropriée m. Soit ind§+ (x%) lalgebre de Tate des fonctions

globalement analytiques de indg+ (X“)10c, C’est-a-dire des fonctions qui peuvent étre écrites comme
séries de puissances sur I'espace analytique rigide Z;' avec des coefficients dans K qui tendent vers
0.
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De méme, notons indgL"(Q")(X)
Ln(Qp)(

= @wewindﬁt (x") le sous-espace des vecteurs globalement

analytiques de indg X)ioc- Supposons que le caractére x est analytique c’est-a-dire v,(c;) >
pfl — 1 ou e est l'indice de ramification de K. Rappelons que G est le groupe de matrices dans
GL,(Z,) qui sont unipotentes inférieurs modulo pZ,, i.e. G est le sous-groupe pro-p Iwahori.

En généralisant le travail de Clozel pour n = 2 [Clo16], nous démontrons le théoréme suivant, :

Théoréme 0.5 (Théoréme 3.21 de section 3). Sip > mn+1 et x est analytique, alors la représen-
tation indﬁi (x") est une représentation globalement analytique admissible de G. Ceci implique
que indgL"(Qp)(x) est aussi une représentation globalement analytique de G.

L’admissibilité des représentations globalement analytiques a été définie par Emerton [Emel7].
Pour ’analyticité globale, nous calculons explicitement ’action de G sur ’algebre de Tate des
fonctions analytiques globales de inng (x™) et montrons que I’action est une fonction globalement
analytique sur G vu comme un espace rigide-analytique.

De plus, nous déterminons la condition d’irréductibilité de la série principale globalement

analytique ind%, (x) ou w = Id. Soit p la forme linéaire de I’algébre de Lie du tore Ty a K
donnée par

n
w=(=c1,...,—¢p) : Diag(ty, ..., tn) — Z —cit;
i=1

ot t = (t;) € Lie(Tp). Pour la racine négative o = (4, j) € ®7,i > j, soit H(; ;) = E;; — Ej; ol
E; ; est la matrice élémentaire standard.

Théoréme 0.6 (Théoréme 3.9 de section 3). Supposons p > n+1 et x analytique. La représenta-
tion globalement analytique indIB;Jr (x) de G est topologiquement irréductible si et seulement si pour
tout oo = (i,5) € 7, —pu(Ho—(ij)) +1— 37 ¢ {1,2,3,...}.

Notons que pour les représentations localement analytiques indg+ (X)10c ce résultat d’irréductibilité

a été prouvé par Orlik et Strauch [OS10] en généralisant les travaux originaux de Schneider et
Teitelbaum [ST02b] pour n = 2. Pour lirréductibilité des séries globalement analytiques, nous
utilisons d’abord l'action de l'algébre de Lie de G pour montrer que tout sous-espace G-invariant
fermé de ind 24 (x) contient la fonction constante 1. La partie restante de 1’argument de la preuve
de l’irréductibilité utilise la notion de modules de Verma et sa condition d’irréductibilité. Pour as-
surer I'irréductibilité de ce module Verma, nous avons besoin de la condition —pu(Ha—; jy) +i—j ¢
{1,2,3,...} d’aprés un résultat di & Bernstein-Gelfand. (Voir Théoréme 7.6.24 de [Dix77]).

Nous passons ensuite au changement de base local de Langlands des représentations irré-
ductibles de GL,(Q,) & GL,(L) ou L est une extension cyclique non-ramifiée de degré N. Il
y a 2 situations différentes ; d’abord, les représentations complexes et ensuite les représentations p-
adiques. Nous présentons briévement le cas connu du changement de base pour les représentations
complexes. Le cas complexe, étudié par Arthur et Clozel [AC89], associe & chaque représentation
irréductible admissible de GL,(Q,), une représentation admissible 7y de GL, (L), qui est stable
sous laction de Gal(L/Q,). De nombreuses propriétés de relévement local peuvent étre prouvées
par des moyens globaux, & savoir la formule des traces. Ce changement de base est naturellement
associé & un homomorphisme d’algébres de Hecke [AC89, Chapter 1, section 4],

bZ’HL—>,HQp

ot Hr, (resp. Hg,) sont les algebres de Hecke non-ramifiées de fonctions & support compact
invariant par GL,(OL), (resp. GL,(Zy)).

Un exemple important et bien connu de changement de base pour la représentation complexe
est donné par des séries principales non-ramifiées. Soit

GLn(Qp)

T = indP(Qp) (X1 s Xn)

l'induction unitaire du sous-groupe Borel P(Q,,) de GL,,(Q,), ot les x; sont des caractéres unitaires
non-ramifiés de Q. Alors 7 est irréductible et le changement de base de 7 est donné par

. 1GLn(L
T = 1ndP(L)( )(7]1, ey M)

13



o n; = XxioNr/q, (NL/QP est la norme). Par la conjecture locale de Langlands pour les représen-
tations complexes (JHT01], [Hen00]), on sait que 7 est associée & une représentation R de degré n
du groupe Weil-Deligne W Dq,. Ensuite, le changement de base de base mj, de 7 est associé a la
restriction de R & W Dy, notée Ry, c’est-a-dire

R e~ met Ry e~ mp,.

Une question naturelle est de construire un changement de base local, compatible avec la foncto-
rialité de Langlands, pour les représentations p-adiques. Clozel dans [Clol16] a proposé d’utiliser
le théoréme du produit tensoriel de Steinberg. Si 7 est une représentation p-adique de GL,(Q,),
alors un candidat possible pour le changement de base w;, de 7 est le produit tensoriel complété
de 77 pour tout o € Gal(L/Q,), c’est-a-dire

L = Qem°.

Ce travail est effectué dans la section 3 pour les séries principales. Plus précisément, aprés avoir
déterminé les vecteurs globalement analytiques de la série principale induite par le Borel, sous
laction du sous-groupe pro-p Iwahori G' sur @, nous utilisons le théoréme du produit tensoriel
de Steinberg et nous obtenons une représentation de G(L) invariante par I'action de Gal(L/Q,)
(comparer avec [Clol6, section 3.2]). Pour chaque w € W, nous considérons la représentation
globalement analytique admissible I,, g, (X) := indﬁt (x") de G(Q,). La représentation indﬁt (x™)
s’étend naturellement & une représentation admissible globalement analytique de G(L) appelée
"changement de base holomorphe" que nous notons I, r,(x)-

Le changement de base de Langlands de cette série principale globalement analytique donné
par le théoréme du produit tensoriel de Steinberg satisfait alors le théoréme suivant :

Théoréme 0.7 (Théoréme 3.22 de section 3). Par le changement de base de Langlands, la représen-
tation Gyew (Qolw.L(X™)7) est une représentation globalement analytique admissible de G(L) ou
o€eX=Gal(L/Q,).

L’analogue de I’homomorphisme de transfert du changement de base entre les algébres de Hecke
b:Hi — Hg,, dans le cas p-adique, peut étre vu a partir d’une application "formelle" entre les
algébres d’Iwasawa qui n’a de sens que pour des distributions globalement analytiques sur le groupe,
considérées comme espace analytique-rigide. Plus précisément, en utilisant la présentation explicite
de ’algébre Iwasawa du sous-groupe pro-p Iwahori, on peut définir un homomorphisme formel

b:AL*)AQp

similaire & la situation classique entre les algebres de Hecke non-ramifiées. Ici A et Ag, sont les
algebres d’Iwasawa du pro-p Iwahori de GL,, (L) et GL,(Q,) respectivement. Clozel I’a construit
pour GL(2) [Clol7] et nous croyons que sa construction s’étendra & GL(n), grace aux résultats de
la section 2.

Questions futures. Il semble intéressant de déterminer les vecteurs globalement analytiques
des représentations p-adiques plus générales de GL(2,Q,), par exemple la représentation "trian-
guline" de Colmez [Col08] (voir aussi [Col14]), qui correspond & un quotient de la série principale.
On peut aussi explorer le lien entre les vecteurs globalement analytiques des représentations p-
adiques (sous le pro-p Iwahori ou un sous-groupe rigide-analytique approprié de GL(2)) et les
(¢, I')-modules [Col10]. II s’agit d’obtenir un résultat similaire & la correspondance existante pour
les représentations localement analytiques [CD14, Sec VI.3].
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0.4 Construire des représentations galoisiennes ayant une image ouverte

Dans la deuxiéme partie de la thése, nous nous intéressons aux corps de nombres dits «p-rationnels».
Ces extensions de QQ qui jouent un role majeur dans la théorie classique d’Iwasawa et I’étude des
représentations galoisiennes. Afin de les motiver et de les relier a notre travail sur les algébres
Iwasawa dans la premiére partie, il est nécessaire d ’introduire un probléme bien connu en théorie
d’Iwasawa sur lequel K. Iwasawa travaillait dans les années 1950’s.

Soit maintenant K une extension finie de Q, K est la Z,- extension cyclotomique de K de
groupe Galois T' = Gal(K.,/K). Nous définissons K,,, = K. ou T'/T,, est cyclique d’ordre p™.
L’objet principal de la théorie d’Iwasawa est ’étude des nombres de classe de la tour de corps de
nombres,

K=K¢yCcKyC---CK,C---

ou K,,/K est Pextension cyclique de degré p™ et Ko, = Uy K. Iwasawa a remarqué que si p
est la plus grande puissance de p divisant le nombre de classes de K,,, alors il existe des entiers
A, 1, v tels que

em =Am~+ up™ +v

pour tous les m suffisamment grand. L’ingrédient principal de la preuve est basé sur I’étude
du groupe de Galois X = Gal(F/K), o Foo = U, Fp, et Fy, est la plus grande p-extension
abélienne de K, non ramifiée en dehors de p et voir X comme un module sur ’algébre d’Iwasawa
Z,([Gal(Koo /K]

Ceci nous ameéne a regarder les corps de nombres K tels que le groupe de Galois Gal(L/K) ou
L est lextension maximale non-ramifiée en dehors de p est un pro-p groupe libre. Autrement dit,
en notant M l’extension abélienne maximale non-ramifiée en dehors de p, nous avons

1. ranky, (Gal(M®/K)) =1y + 1 (c’est la conjecture de Leopoldt pour K et p),

2. Gal(M*/K) est un Z,-module sans torsion,

ou (r1,r2) est la signature de K. Les corps vérifiant (1) et (2) sont appelés "p-rationnels" et ont
plusieurs applications en théorie des représentations [JNQD93], [Mov88a], [Grel6]. L’exemple le
plus simple de corps p-rationnel est Q, oit M est ’extension cyclotomique Z,. D’autres exemples
de corps p-rationnels sont donné par Q(f,), out p, est une racine primitive p-iéme racine de l'unité
et p est un nombre premier régulier.

Une application théorique importante des représentations galoisiennes de ces corps a été réalisée
par R. Greenberg en 2016 (|Grel6]). Il a construit des représentations galoisiennes d’image ouverte
dans GL,(Zy,). Plus précisément, Greenberg a montré que si p > 4[] + 1 et p est régulier et
K = Q(up), alors il existe une représentation continue

p:Gal(M/Q) — GL,(Z,)

ayant une image ouverte. Le résultat de Greenberg est particuliérement remarquable puisque
la source standard de représentations galoisiennes est la géométrie algébrique (par exemple les
variétés abéliennes, les formes automorphes, etc.), alors que la construction de Greenberg n’est
pas géométrique. Cela pose une question naturelle de savoir si I’on peut construire une telle
représentation ayant une grande image ouverte pour tout groupe réductif.

En collaboration avec Christophe Cornut [CR18], nous construisons des représentations ga-
loisiennes du groupe galoisien absolu de Q avec de grandes images ouvertes dans G(Z,), ot G
est un groupe réductif adjoint simple sur Z,. Nous prouvons un résultat qui montre I’existence
d’extensions de Lie p-adique de Q ou le groupe de Galois correspond & une certaine algébre de Lie
spécifique p-adique. En généralisant la construction par Greenberg pour GL(n) [Grel6], on obtient
le résultat suivant.

Théoréme 0.8 (Corollaire 4.22 de section 4). Soit G un groupe réductif adjoint simple sur Z,, de
sous-groupe Twahori noté I et de sous-groupe pro-p Iwahori noté I(1). Soit K le corps cyclotomique
Q(pp) et M Uextension mazimale de K, non ramifiée en dehors des places de K au dessus de p.
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Alors, il existe une constante ¢ dépendant uniquement du type de G telle que sip > c est un nombre
premier régulier, nous avons un morphisme continu

p:Gal(M/Q) = I
avec p(Gal(M/K)) = I(1).

Le sous-groupe pro-p Iwahori I(1) est d’indice fini dans G(Z,). Le théoréme 0.8 construit
une représentation galoisienne dont image contient I(1). La fagon de prouver le théoréme 0.8 est
de trouver un ensemble minimal de générateurs topologiques de I(1). Pour un nombre premier
régulier p, K = Q(up), Gal(M/K) est un groupe pro-p libre. Ensuite, nous avons construit un
homomorphisme continu de Gal(M/K) a I(1), en envoyant des générateurs de Gal(M/K) sur les
générateurs topologiques de I(1) de fagon a ce que 'homomorphisme s’étende & Gal(M/Q). Dans le
théoréme suivant, nous trouvons un ensemble minimal de générateurs topologiques du sous-groupe
pro-p Iwahori de tout groupe réductif G (pas nécessairement adjoint) sur Z, de tore T.

Théoréme 0.9 (Théoréme 4.1 de section 4). Les éléments suivants forment un ensemble minimal
de générateurs topologiques du sous-groupe p-Iwahori I(1) de G = G(Z,):

1. les éléments semi-simples {s(1+p):s € S} de T(1),

2. pour chaque c € C, les éléments unipotents {x,(1) : a € 1.},
8. pour chaque c € C, I’élément unipotent x_, ... (p),

4. sip=3, pour chaque d € D, l’élément unipotent xs,(1).

Ici, T(1) est le tore maximal de I(1), C est le nombre de composantes irréductibles des racines
@ (ainsi @ = [[ ..o Pc et IT = [[.ccIe), Qcmaz est la racine positive de grande hauteur dans la
composante racine ®., D C C est 'ensemble des composants irréductibles de type G5. Pour d € D,
dq € ®g 4 (les racines positives de ®4) est la somme des deux racines simples dans Iz et nous
fixons un ensemble de représentants S C MY = X, (T) (co-caractéres de T) qui forment F,, - base
de (MY /Z®V)®F, = @sesF,-s®1. Pour t € Z,, x,(t) = exp(tX,) est le sous-groupe unipotent de
G(Z,) correspondant & la racine o € ®. La famille (X, )qca est un systéme Chevalley de I’algebre
de Lie de G. Par exemple, si G = GL(n,Zy) et a = (i,7), alors z4(t) = 1 +tE; ; pour la matrice
élémentaire E; ;.

Nos constructions donnent une extension galoisenne M sur Q telle que Gal(M***(?) /Q) est un
groupe de Lie p-adique qui contient le sous-groupe Iwahori d’un groupe adjoint, simple comme
sous-groupe d’indice fini. Cela répond au probléme classique de Galois inverse pour ’algébre de
Lie simple p-adique: si L est une algébre de Lie de dimension finie sur Q,, alors il existe une exten-
sion de Galois sur Q telle que le groupe de Galois est un groupe de Lie p-adique dont ’algébre de
Lie est isomorphe & L. Notez que notre construction impose ’hypothése de p-rationalité du corps K.

Les corps p-rationnels totalement réels satisfont la conjecture \ et p invariante de Greenberg:
pour un corps de nombres totalement réel k, les invariants d’Iwasawa A = A,(k) et p = pp(k)
associés a la classe idéaux de la Zy-extension cyclotomique ko /k sont nuls (cf. |Gral6al, |Gre76|,
voir aussi [Was97] pour le fait que p = 0 quand k est abélien). Ces corps sont également utiles pour
développer des approches p-adiques pour résoudre la conjecture A et p invariante de Greenberg (cf.
[Gral6a], [INQD93]).

Questions futures. Il y a une liste de questions ouvertes, initialement posées par Greenberg,
concernant la construction de représentations de Galois & image ouverte qui sont géométriques. On
peut trouver une discussion dans [Gre1l6, Remarque 6.4]. On pourra aussi comparer cette approche
aux résultats de [Kat17].
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0.5 Expériences numériques et heuristiques sur la conjecture de la
p-rationnalité de Greenberg

La construction de la section 0.4 impose ’hypothése de p-rationalité du corps de base. C’est
pourquoi, nous concentrons notre attention sur 1’étude des corps p-rationnels d’un point de vue
calculatoire dans la section 5.

La section 5 (en collaboration avec Razvan Barbulescu) a été initiée par une conjecture de
Greenberg [Grel6, Conjecture 4.8], d’existence d'un corps p-rationnel K tel que Gal(K/Q) =
(Z/27)" pour tout p et t. En d’autres termes, on peut construire des corps p-rationnels comme
composé d’extensions quadratiques. Greenberg donne quelques exemples (p = 3,5 et t = 5,6,
cf. [Grel6]) de corps p-rationnels satisfaisant sa conjecture. La conjecture permet notamment de
généraliser sa construction pour produire des représentations galoisiennes ayant une grande image
ouverte.

Nous cherchons donc & trouver de nouvelles techniques algorithmiques pour déterminer des
corps p-rationnels d’une maniére rapide et efficace et d’étudier la densité des corps p-rationnels.
Ceci nous conduit également généraliser la conjecture de Greenberg aux groupes de Galois (Z/qZ)*
ol ¢ est un premier différent de p. Pour fixer des idées, pour un groupe fini G, nous disons que
GCw (G, p) (c’est-a-dire la conjecture de Greenberg pour G et p) est vraie s’il existe un nombre infini
de corps p-rationnel K ayant G pour groupe de Galois. Il s’agit donc d’un raffinement du probléme
inverse de Galois pour les corps de nombres avec la condition de relions p-rationalité. Nous avons
obtenus des exemples des corps p-rationnels pour G = (Z/27)t,(Z/37), 7. /47, Vy, Dy, A4, Sy quand
5 <p < 100 (|[BR17b]).

Tout d’abord, dans la section 5, nous relions la notion de corps p-rationnels & celle de régu-
lateur p-adique et de nombre de classes, ce qui suffit & prouver GC(Z/27Z,p) et & donner des
exemples de corps satisfaisant la conjecture de Greenberg ayant pour le groupe de Galois (Z/27)*
pour ¢ € [7,11] et p € [5,97]. Nous rappelons ensuite les conjectures existantes ([CM90], [CL84b],
[CL84a], [CM8T], [HZ16]) sur la divisibilité par p du nombre de classes et du régulateur p-adique
normalisé. Ces conjectures sont dues & Cohen-Lenstra-Martinet (pour le nombre de classes) et
Hofmann-Zhang (pour le régulateur p-adique).

Cohen-Lenstra-Martinet en 1989 ont testé leur conjecture et ont écrit "nous croyons que le
mauvais accord [avec les tables] est dii au fait que les discriminants ne sont pas assez grands". Per-
plexes par cette affirmation, nous avons repris leurs calculs et fait des statistiques sur les corps de
conducteur inférieur & 8000, ¢’est-a-dire de discriminant inférieur & 64 x 105, (par exemple |Gra75|
a considéré les corps de conducteur inférieur & 4000). Depuis, les capacités des ordinateurs ont
augmenté de plus d’un facteur 1000. Ainsi nous avons pu calculer les statistiques pour les corps
de conducteur inférieur & 107, c’est-a-dire de discriminant inférieur & 10'. Il nous a fallu environ
un mois utilisant en paralléle 30 cores soit environ 2,5 années CPU.

En regardant les données du tableau 4 nous avons pu réinterprété les résultats préalablement
obtenus : la vitesse de convergence vers la densité moyenne est trés lente et les statistiques a 8000
ont une erreur relative entre 19% et 100%. Ce n’a donc pas permis & Cohen et Martinet de conclure.
Cependant les statistiques 4 107 ont seulement une erreur relative entre 0.2% et 15.5%, donc nous
pouvons conclure. Les données numériques confirment leur conjecture. Notez que les algorithmes
connus pour calculer explicitement le nombre de classes sont lents. L’astuce que nous avons utilisée
est un algorithme qui teste la divisibilité par p du nombre de classes de corps cycliques cubiques
de discriminant inférieur & 10'4 sans calculer leur nombre de classes. Il s’agit d’un algorithme di
a N.-M. Gras [Gra75], utilisant la notion d’unités cyclotomiques.

Nous donnons également un nouvel algorithme pour produire des unités dans des corps cy-
cliques cubiques qui est utilisé pour tester la valuation dans p du régulateur p-adique, qui est
plus rapide que le calcul d’un systéme d’unités fondamentales. Un algorithme [PV15] de Pitoun
et Varescon nous permet aussi de donner des exemples de corps p-rationnels avec des groupes de
Galois non-abéliens.

Ainsi, nous obtenons une famille de corps cycliques cubiques qui contient un nombre infini de
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corps 5-rationnels sous une liste d’hypothéses arithmétiques (section 5.11). Cela réduit le probléme
de fournir des exemples de corps 5-rationnels cycliques cubiques au probléme de tester juste une
liste d’hypothéses arithmétiques réduisant énormément le temps de calcul.

Sur la base des résultats conjecturaux existants et de nos calculs numériques vérifiant ces con-
jectures sur la divisibilité par p du nombre de classes et du régulateur p-adique normalisé, nous
montrons que pour ¢ = 2 ou 3 et p > 5¢* alors pour tout entier t, GCoo((Z/qZ)!, p) est vrai.

Théoréme 0.10 (Théoréme 5.6 de section 5). Soit p un premier impair. Alors
1. il existe un nombre infini de corps p-rationnels quadratiques.

2. Supposons qu’il existe une infinité d’entiers impairs a Z 21,23(mod 25) tels que m = i(a2 +
27) est premier et satisfait les conditions arithmétiques de Hypothesis 5.35. Alors GC(Z/3Z,5)
est vrai.

3. Sous des conjectures basées sur des heuristiques et des expériences numériques (Conjecture
5.41 et Conjecture 5.39), quand ¢ = 2 ou 3, pour tout premier p et tout entier t tels que
p > 5qt, il existe un nombre infini de corps p-rationnels de groupe Galois (Z/qZ)t.

La conjecture 5.39 donne la probabilité que le nombre de classe hx d’un corps K soit premier
apet Gal(K/Q) = (Z/2Z)" ou Gal(K/Q) = (Z/3Z)". Cette conjecture est une reformulation de
I'heuristique de Cohen-Martinet [CM90], [CL84b] et de la formule du nombre de classes de Kuroda
[Kur50], [Lem94]. Nous avons également vérifié numériquement cette conjecture pour les corps K
de groupe Galois Z/3Z x Z/3Z et de conducteur < 10°. (voir tableau 5). Nous avons aussi testé
conjecture 5.39 pour les corps de nombres cycliques cubiques de conducteur < 107 (voir le tableau
4).

Enfin la conjecture 5.41 est une reformulation de la conjecture de Hofmann et Zhang qui donne
la densité des corps de nombres totalement réels de groupe de Galois (Z/qZ)! (ot ¢ = 2 ou 3) dont
le régulateur p-adique normalisé est divisible par p pour au moins un de ses sous-corps cycliques.

Les algorithmes peuvent étre trouvés en ligne & ’adresse suivante:
https://webusers.imj-prg.fr/ razvan.barbaud/pRational/pRational.html

Questions futures. En résumé, la conjecture de Greenberg est résolue dans le cas particulier
de G = Z /27 et est comforme aux heuristiques et aux calculs numériques pour G = (Z/qZ)! quand
g = 2 ou 3. Dans le cas général des groupes de Galois non-abéliens, nos résultats sont positifs
mais se limitent & une liste d’exemples.

Le probléme souléve de nouvelles questions sur I'indépendance des nombres de classes et des
régulateurs p-adiques, qui pourraient étre abordées par des techniques de théorie analytique des
nombres développes pour obtenir des progrés recents sur ’heuristique de Cohen-Lenstra-Martinet.
1l est intéressant de créer de nouveaux algorithmes pour tester la divisibilité par p du regulateur et
du nombre de classes avec une meilleure complexité que les algorithmes qui calculent un systéme
d’unités fondamentales ou les nombre de classes.
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Summary of results

In this section I present a broad overview of the results of my thesis in the domain of Arithmetic
Geometry, Iwasawa theory, Galois representations and p-adic Langlands program. Part I of my
thesis contains results in the representation theoretic side of the Langlands program while Part
IT contains results pertaining to the Galois side. The results can be divided into five sections
(1-5) including a computational aspect discussed in section 5. The results appeared in the papers
[Ray16], [Ray17], [Ray18], [CR18] and [BR17b].

0.6 An explicit presentation of the Iwasawa algebra
for the first congruence kernel of Chevalley groups

Let p be a prime. The first branch of my research focuses on finding an explicit presentation of
the Iwasawa algebra of a compact p-adic Lie group G over Z,. Iwasawa theory had its origins
in Iwasawa’s ground breaking work in the 1950’s on the growth of class numbers in infinite Z,-
extension of number fields. For a prime p, the Iwasawa algebra of a p-adic Lie group G, denoted
by A(G) or Z,[[G]], is a non-commutative completed group algebra of G. It is defined by

A(G) := limZ,[G/N]

where N varies over all the open normal subgroups of G. This algebra has many applications
in different branches of mathematics. For example, Lazard provides an extensive study of p-adic
analytic Lie groups in Groupes analytiques p-adiques [Laz65]. He defines the notion of p-saturated
groups and characterized algebraically the notion of p-adic analytic groups as topological groups
containing a topologically finitely generated open p-saturated pro-p group with an integer valued
filtration.

In the theory of local Galois representations, Iwasawa algebras come in through Fontaine mod-
ules. Fontaine in [Fon90] describes an equivalence between the category of finite dimensional
Q,-linear representations of the absolute Galois group of Q and the category of the so called étale
(¢, T')-modules over a suitable ring. This equivalence of categories is used by Colmez and others
to prove the p-adic Langlands correspondence for GL2(Q,) [CDP14].

The Iwasawa algebras also play a vital role in the study of p-adic representation theory of
G(Qp), the Q,-points of a reductive group G over Q,, initially studied by Emerton and Schnei-
der/Teitelbaum. Schneider and Teitelbaum manage to translate the study of p-adic Banach space
representation theory (over a finite extension K of Q,) to the study of modules over the Iwasawa
algebra [ST02a].

From the view point of Iwasawa theory, it is crucial to understand structural results about these
Iwasawa algebras. By Serre’s presentation of semi-simple algebras and Steinberg’s presentation of
Chevalley groups [Ser87], [Ste67], we believe that objects coming from semi-simple split groups
have explicit presentations.

The main result in section 1 is to give an explicit presentation, by generators and relations,
of the Iwasawa algebra for the subgroup G(1) := ker(G(Z,) — G(F,)) of any semi-simple, simply
connected, split Chevalley group G over Z, (Theorem 0.2, 0.3). This generalizes a previous work
of my advisor Clozel for G = SLy(Z) (cf. [Cloll]).

Recall that Lazard defines, for any compact locally Qp-analytic group H, a function, said to be
a p-valuation, w : H — {1} — (p%l, 00) C R satisfying certain properties (cf. [Laz65] II1.2.1.2). Let
d be the dimension of H (as a locally analytic manifold). Lazard also defines an ordered basis of
H with respect to the p-valuation w. This is an ordered sequence of elements hy,...,hg € H — {1}
such that the following conditions hold:

1. 4 ZZ = H, (@1, oy xq) — hY' - hGY,

2. w(hi* -~ hY*) = mini<i<qa(w(hs) + valy(x;)),

where the map ) is a homeomorphism.
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Fix a pinning of G [GP11, XXIII 1] (T, M, ®,11, (Xs)scr) - Thus T is a split maximal torus in
G, M = X*(T) is its group of characters,

9=90D Pacofa

is the weight decomposition for the action of 7' on g = Lie(G), II C ® is a basis of the root system
® C M, ® and &+ be the set of negative and positive roots and for each ¢ € II, X; is a Z,-basis of
gs. We expand (Xs)sen to a Chevalley system (X, )aece of G [GP11, XXIII 6.2]. The p-valuation
won G(1)is w(z) = k if  is in the k-th congruence kernel but not in the (k + 1)-th congruence
kernel.

In the following, we find an ordered basis of G(1).

Theorem 0.2 (see Theorem 1.9 of section 1). An ordered basis for the first congruence kernel
G(1) is given by

{z5(p), hs(1 +p), za(p); 8 € 7,0 € T, € BT}

Here we can choose any order compatible with increasing height function on the roots and fix the
ordering once for all.

Here, for a € ®, we denote by U, C G the corresponding unipotent group, by z, : Gaz, — Ua
the isomorphism given by z(t) = exp(tXs). For A € Q%, o € ®, we define ho (X) 1= wa(N)wa (1)}
where wq () = 24 (N7 _o(=A"Hza(N).

The group (hs(u), 0 € II,u € 1+ pZ,) generates the torus of G(1) and conversely any element g
in the torus of G(1) can be written uniquely as g = [[5cr hs(1 +vs) where vs € pZ, (cf. Corollary
of lemma 28 p. 44 of [Ste67]).

Now, let A(G(1)) be the Iwasawa algebra of G(1) over Z,, i.e.

A(G(1)) = lim Z,[G(1) /N,
N

where the inverse limit is taken over all the open normal subgroup N of G(1). This Iwasawa
algebra can also be viewed as the dual of continuous functions from G(1) to Zj, i.e. A(G(1)) =
Homgz, (C(G(1)),Zy) (cf. Lemma 22.1 of [Sch1l]).

Consider A = Z,{{V,,Ws,a € ®,§ € II}}, the non-commutative power series over Z, in
several variables V,, and Wy, where « varies over the roots and ¢ varies over the simple roots and
the ordering of the variables is given by the height function on the roots, as in Theorem 0.2. The
topology of A is given by the powers of the maximal ideal M 4 = (p, Vo, W5, € ®,6 € II). Let R
be the closed two-sided ideal generated in A by the following relations:

1 (1+Ws)(1+ V) = (1+ Vo) (1 4wy,
2. (T4 Vo )T+ Va,) = (1+ Vo, )1 + V), (a1 + a2 ¢ @),
3. (1 + Val)(l + Vaz) = (Hi,j>0(1 + Vial-&-jaz)ciijj_l) (1 + VQQ)(l + Val), (011 +ag € ‘I)),

4 (L Vo (L4 Vo) = (L4 Voa) 2 Thoy (14 Wa )™ ) (14 Ve, )2,

_ log(14+p®) o _ 21 . :
where P Tog(Tp) ,Q = (1+p®)~ !¢, € Z and the Cartan integer [Ste67, p. 30] (o,0) € Z.

Then, our main theorem in section 1 is the following.

Theorem 0.3 (see Theorem 1.22 of section 1). For p > 2, the Iwasawa algebra A(G(1)) is naturally
isomorphic as a topological ring to A/R.

Applications of such an explicit presentation include results concerning the center of the Iwasawa
algebra [Cloll]. Furthermore, we extend our methods to give an explicit presentation of the
Iwasawa algebra of the pro-p Iwahori subgroup of GL,,(Z,) with an additional hypothesis p > n+1
which generalizes the case for n = 2 by Clozel [Clo17].
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0.7 An explicit presentation of the Iwasawa algebra
for the pro-p Iwahori subgroup of GL(n,Z,)

Let here G be the pro-p Iwahori subgroup of SL,(Z,), that is, the group of matrices in SL,(Z,)
which are upper unipotent modulo the ideal pZ,. Then the ordered basis is given by

Theorem 0.4 (see Theorem 2.5 of section 2). The elements
{z5(p),hs(1 +p),24(1);8€ @, €ll,a € P}
form an ordered basis for the p-valuation w (definition 2.1) on G, where the ordering is as follows:

(i) first take the lower unipotent matrices in the order given by the (increasing) height function
on the roots,

(ii) then take the diagonal elements hs(1 + p) for 6 € I starting from the top left extreme to the
low right extreme and,

(iii) finally, take the upper unipotent matrices in the following lexicographic order:

The matriz (1 + E; ;) comes before (14 Ey ;) if and only if i > k andi=k = j > [.

That is, for the upper unipotent matrices we start with the low and right extreme and then fill
the lines from the right, going up, the matrix E; ; being the standard elementary matrix at (i, j)""
place.

The presentation of the Iwasawa algebra A(G) is given by the following theorem.

Theorem 0.5 (see Theorem 2.4.3 of section 2). For p > n + 1, the Iwasawa algebra A(G) is
isomorphic to AR, where A = Z,{{V,, W5,Ug, . € ®*, 3 € ®~,§ € II}} with the ordering on the
variables Vo, W5, Ug according to the roots as in theorem 0.4 and R is the closed two-sided ideal of
A generated by the relations (2.50 — 2.64).

This gives us the following corollary.

Corollary 0.6 (see corollary 2.15 of section 2). The Iwasawa algebra of the pro-p Iwahori subgroup
of GL,(Zy) is a quotient A" /R, with A" = Z,{{Z,V,,Us, W5, € ®T,3 € .6 € II}} and R is
defined by the relations (2.50 — 2.64) and

(Comm) Z commutes with Ug, Vo, W5 for all o, 3,6.

With L a finite unramified extension of @, the explicit presentation can be used to define a
"formal base change map" [Clo17] of the Iwasawa algebras

AL — AQP

where Ay, and Ag, are the Iwasawa algebras of the pro-p Iwahori subgroups over L and Q, respec-
tively. Such a formal base change map is given by power series which only converge for globally
analytic distributions which are continuous dual of the rigid-analytic functions on the pro-p Iwahori
seen as a rigid-analytic space ([Clo17]). This leads us also to the study of the globally analytic
vectors of p-adic representations discussed in the next section.

Apart from the above implications of our explicit presentation of the Iwasawa algebra, Dong
Han and Feng Wei note that our results may provide possible ways to answer the open question on
the existence of non-trivial normal elements in Qg := A(G) ®z, F,, (cf. introduction and section 5
of [HW18]). An element r € Q¢ is normal if rQ¢ = Qgr. The question on the normal elements was
originally posed in [BW13], later reformulated in [HW18], having dealt with the case for SL(2,Z,)
and SL(3,Z,). As noted in [HW18], the normal elements help in constructing reflexive ideals in
the Iwasawa algebra. The main question of Han and Wei is to find a mechanism for construct-
ing ideals of completed group algebras without using central elements or closed normal subgroups
which provide natural ways to construct ideals in the Iwasawa algebra (loc.cit).

Future Questions. The pro-p Iwahori subgroup of GL(n,Z,) is a p-saturated group in the
sense of Lazard for p > n + 1. This raises the natural question of whether one can generalize
corollary 0.6 in order to obtain an explicit presentation of the Iwasawa algebra for any p-saturated

group.
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0.8 Globally analytic principal series representation and base change

The second branch of my research focuses on finding the globally analytic vectors, in the sense
of Emerton [Emel7], of p-adic representations of GL,,(Q,) under the action of the pro-p Iwahori
subgroup G of GL,(Q,). We also construct a p-adic base change of the globally analytic principal
series to a finite extension of Q, satisfying Langlands correspondence. Here we take the pro-p
Iwahori (resp. Iwahori) subgroup G (resp. B) to be the subgroup of matrices in GL,,(Z,) which
are lower unipotent (resp. lower triangular) modulo pZ,. After the works by Emerton [Emel7], it
became clear that generalizing the work done by Schneider and Teitelbaum for the locally analytic
representations [ST02b], it is possible to build a corresponding theory for the globally analytic
principal series representation under the action of the pro-p Iwahori. We show that the Tate al-
gebra of rigid-analytic functions within the locally analytic principal series is a globally analytic
representation of G (theorem 0.7). Furthermore, we determine the condition of irreducibility of
the globally analytic principal series (theorem 0.8).

Let K be a finite extension of Q,. Let us recall the definition of a globally analytic representa-
tion. Let G be the rigid-analytic group whose Z,-points is the pro-p Iwahori group G, A(G, K) be
the Tate algebra of globally analytic functions on G [Bos14], i.e. functions which can be written
globally on G as power series with coordinates of G having coefficients (in K) going to 0. Let V
be a K-Banach space with norm || - ||. If ¢ — 7(g) is a representation of G on V, we say that =
(or V) is a globally analytic representation if the map

O, =g+ g-v=m(g)v

is a globally analytic function from G to V. Thus, in coordinates (1, ...,x4) of G, we have:

g-v= Z X",

meNd
where vm eV and [lom|] = 0 as |m| = my + -+ + mg — 0. Here, m = (mq,...,mq) and
x™ =" -z, m; € N. For the basic propertles of the globally analytic representations, see

[Emel7]. ThlS definition can be generalized to any rigid-analytic group over Q,, not just the pro-p
Iwahori.

Denote by PP the Borel subgroup of the upper triangular matrices in GL,,(Q,), T the maximal
torus of GL,(Q,), P* the Borel subgroup of the upper triangular matrices in GL,(Z,), W the
ordinary Weyl group of GL,(Q,) with respect to T, P} = BNwPtw™!

Let x be a locally analytic character from the torus Ty of B to K, that is, x : Ty — K* with
X(t1, - tn) = X1(t1) - Xa(tn), and x;(t) = t% where ¢; = £x;(t)|s=1 for t sufficiently close to 1,

¢ €K, indgL"(Q”)(X)loc be the locally analytic induction, that is:

indg"" @) (\)ioc = {f € Aioc(GLn(Qy), K) : flgb) = x(b")f(9), 9 € GLn(Qp),b € P},

where Aj,. denotes the set of locally analytic functions.

A locally analytic function means that around a neighborhood of a point the function can be
written as a power series. We have the B-equivariant decompositions

indgLn(Qp)( GLn(Zp)(

X)loc ind X)loc = EB'LUEWindIB;;Ur (Xw)loc

where the action of x% is given by x“(h) = x(w~lhw). The first isomorphism is due to Iwasawa
decomposition [0S10, sec. 3.2.2] and the second one is due to Bruhat decomposition (loc. cit. and
[Car79, sec. 3.5]).

The vector space of indgﬂt (X" )10c is isomorphic to the locally analytic functions Z;' — K for
an appropriate dimension m. Let indB ( ) be the Tate algebra of globally analytic functions

inside 1nd +(X")10c, that is, any element of md +(X") can be written as a power series on the
rigid- analytlc space Zy' Wlth coeflicients in K gomg to 0.
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Similarly define indgL"(Qp)(X)

Ln(@p)(

= @wewindﬁ+ (x*) to be the subspace of globally analytic

vectors of indg X)1oc- Further, assume that x is analytic i.e. v,(c;) > 557 — 1 where e is the
ramification index of K (cf. [Clo16, eq. 3.4]). Recall that G is the group of matrices in GL,,(Z,)
which are lower unipotent modulo pZ,, that is, the pro-p Iwahori subgroup.

Generalizing the work of my advisor Clozel for n = 2 [Clo16], we prove the following theorem:

Theorem 0.7 (see theorem 3.21 of section 3). If p > n+1 and x is analytic, then the representation

indg+ (x™) is an admissible globally analytic representation of G. This implies that indgL"(Qp)(X)

is also a globally analytic representation of G.

(admissibility is in the sense of Emerton [Emel7]). We need to take p > n + 1, so that the
pro-p Twahori subgroup of GL(n) is p-saturated in the sense of Lazard [Laz65, III, 3.2.7.5] and is
isomorphic rigid-analytically to the product Z¢ [Laz65, I1I, 3.3.2] (for some d, here Z,, is seen as a
rigid-analytic closed ball of radius 1). For global analyticity, we compute explicitly the action of G
on the Tate algebra of globally analytic functions f of indﬁi (x*) and show that the action map
g — ¢ - [ is a globally analytic function on G.

Furthermore, we determine the condition of irreducibility of the globally analytic principal
series indp, () where Py = P} with w = Id. Let y be the linear form from the Lie algebra of the
torus Ty to K given by

n
w=(—c1,...,—¢p) : Diag(ty, ..., tn) — Z —cit;
i=1

where ¢ = (t;) € Lie(Tp). For any negative root o = (i,5) € ®7,i > j, let Hy; jy = E;; — Ej,
where E; ; is the standard elementary matrix.

Theorem 0.8 (see theorem 3.9 of section 3). Suppose p > n + 1 and x analytic. The globally
analytic representation indgo (x) of G is topologically irreducible if and only if for all o = (i,7) €
O, —pu(Ho—(ijy) +i—37 ¢ {1,2,3,...}.

Note that for the locally analytic representation indlBé.0 (X)10¢, this irreducibility result was proved
by Orlik and Strauch [0S10] generalizing the original works of Schneider and Teitelbaum [ST02b]
for n = 2. For the irreducibility of the globally analytic principal series, we first use the action of
the Lie algebra of G to show that any non-zero closed G-invariant subspace of indf;o(x) contains
the constant function 1. The remaining part of the argument for the proof of irreducibility uses
the notion of Verma modules and its condition of irreducibility. To ensure the irreducibility of this
Verma module we need the condition —pu(Hy—(; ;) +i—j ¢ {1,2,3,...} which is a result due to
Bernstein-Gelfand in Dixmier (cf. Theorem 7.6.24 of [Dix77]).

Next we proceed to Langlands local base change of irreducible representations of GL,(Q,) to
GL, (L) where L is an unramified cyclic extension of degree N. There are 2 branches; first, the
complex representations and second, the p-adic representations. We briefly present the known
case of base change for the complex representations. The complex case, studied extensively by
Arthur and Clozel [AC8Y], associates to each admissible irreducible representation of GL,,(Q,), an
admissible representation 7y, of GL, (L), which is stable under the action of Gal(L/Q,). Many of
the properties of the local lifting can be proved by global means, namely the trace formula. This
base change map is naturally associated to a homomorphism of the Hecke algebras [AC89, Chapter
1, section 4],

b:Hp — HQP

where H 1, Hq, are the unramified Hecke algebras of compactly supported functions invariant by
GL,(Or),GL,(Z,).

An important well known example of base change for the complex representations is given by
the unramified principal series. Let

GLn(Qp)

T = indP(QP) (X1y ey Xn)

be the unitary induction from the Borel subgroup P(Q,) of GL,(Q,), and x; are the complex
unramified unitary characters of Q7. Then 7 is irreducible and the base change of 7 is given by

. GL, (L
T, = lndP(L)( )(7717 ~~~a77n)
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where 7, = xi o Np/q,, (NF/Qp being the norm map). By the local Langlands conjecture for
complex representations ([HT01],[Hen00]), we know that 7 is associated to a representation R of
degree n of the Weil-Deligne group W Dg,. Then the base change 7 of 7 is associated to the
restriction of R to WDy, denoted by Ry, i.e.

R «~ mand Ry, «~ 7.

A natural question is to construct a local base change, compatible with Langlands functoriality,
for the p-adic representations. Very little is know in this p-adic case. Clozel in [Clo16] proposed to
use the Steinberg’s tensor product theorem. Namely, if 7 is a p-adic representation of GL,,(Q,),
then a possible candidate for the base change 7, of 7 is the completed tensor product of 77 for all
o € Gal(L/Q,), that is,
T = @,m.

This is carried out in section 3 for the globally analytic principal series representation. More
precisely, having found out the globally analytic vectors of the principal series induced from the
Borel, under the action of the pro-p Iwahori subgroup G over Q,, we apply the Steinberg tensor
product theorem and we obtain a representation of G(L) (compare also [Clo16, section 3.2]). For
each w € W, consider the globally analytic admissible representation I.,q,(x) := indIB;lJur (x*) of
G(Qp). The globally analytic representation indg;f (x") extends naturally to a globally analytic
admissible representation of G(L), called the "holomorphic base change" (3.2.2), which we denote
by L,z (x)-

The Langlands base change (3.2.2) of this globally analytic principal series, given by the Stein-
berg tensor product theorem, then satisfies the following theorem:

Theorem 0.9 (see theorem 3.22 of section 3). Assume p > n + 1 and x analytic. The Langlands
base change Guwew Ry L 1(X")?) is a globally analytic admissible representation of G(L) where
o€ =Gal(L/Q,).

The analogue of the base change transfer homomorphism between the unramified Hecke algebras
b:Hy — Hg,, in the p-adic case, can be seen from a "formal" map between the Iwasawa algebras
which makes sense (or is well-defined) only for the globally analytic distributions on the group,
seen as a rigid-analytic space. More precisely, as we already mentioned before, using the explicit
presentation of the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n), one can define a
formal homomorphism

b: AL — AQP

exactly similar as in the classical situation between unramified Hecke algebras, where A7, and Aq,
are the Iwasawa algebras of the pro-p Iwahori of GL, (L) and GL,(Q,) respectively. Clozel con-
structed it for GL(2) [Clo17] and we believe, by our results of section 2, that his construction easily
extends to GL(n).

Future Questions. 1t is an interesting future project to determine the globally analytic vectors
of more general p-adic representations of GL(2,Q,), for example, the "trianguline" representation
of Colmez [Col08] (see also [Coll4]), which corresponds to a quotient of the principal series. Also,
one can explore the connection with the globally analytic vectors of p-adic representations (under
the pro-p Iwahori or a suitable rigid-analytic subgroup of GL(2)) and (p,T")-modules [Col10],
similar to the existing correspondence for the locally analytic representations [CD14, Sec VI.3].

0.9 Constructing Galois representations with big open images

In the second part of the thesis we are concerned with number fields which are called "p-rational"
extensions of Q which play a major role in the classical Iwasawa theory and Galois representations.
In order to give a motivation for them and relate it with our work concerning Iwasawa algebras in
Part I, it is necessary to introduce a well known problem in Iwasawa theory on which K. Iwasawa
worked in the 1950’s.

Let now K be a finite extension of Q, K., is a Z,-extension of K with Galois group I' =
Gal(K+/K). Set K,, = KL where I'/T,,, is cyclic of order p™. Then the main object of Iwasawa
theory began by studying the class numbers of the following tower of number fields,

K=KycK,Cc---CK,, C---
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where K,,,/K is a cyclic extension of degree p™ and K, = U, K,,. Iwasawa noticed that if p¢™ is
the highest power of p dividing the class number of K,,, then there exists integers A, i, v such that

em =Am~+ up™ +v

for all sufficiently large m. The main ingredient in the proof is based on considering the Galois
group Gal(Fio/Ko) (here Foo = U, Fy, and F),, is the maximal abelian p-extension of K, which
is unramified at all primes of K,,,) and viewing this Galois group as a module over the Iwasawa
algebra Z,[[Gal(K s /K)]].

This motivates us to look at number fields K such that the Galois group of the maximal pro-p
extension M unramified outside p is a free pro-p group. That is, with M the maximal abelian
pro-p extension of K unramified outside p, we have

1. ranky, (Gal(M*/K)) =ry + 1 (Leopoldt’s conjecture for K and p),

2. Gal(M®/K) is torsion free as a Z,-module,

here (r1,r2) is the signature of K. Such fields verifying (1) and (2) above are called "p-rational"
and have several applications in representation theory [JNQD93], [Mov88b], [Grel6]. The simplest
example of p-rational field is QQ, where M is the cyclotomic Z,-extension. Other examples of p-
rational fields are Q(u,), where p, is a primitive p-th root of unity and p is a regular prime.

One important representation theoretic application of such fields was carried out by R. Green-
berg in 2016 [Grel6], where he constructed Galois representations with open image in GL,,(Z,).
More precisely, Greenberg has shown that if p > 4[%] 4 1 and p is regular and K = Q(u,), then
there exists a continuous representation

p: Gal(M/Q) = GL,(Z,)

with open image. Greenberg’s result is particularly noteworthy since the standard source of Galois
representation is algebraic geometry (e.g. abelian varieties, automorphic forms etc.), whereas the
construction by Greenberg is not geometric. This raises a natural question of whether one can
construct such representation with big open image for any reductive group.

In collaboration with Christophe Cornut [CR18], we construct Galois representations of the
absolute Galois group of Q with big open images in G(Z,), where G is an adjoint simple split
reductive group over Z,. We are proving a result which shows the existence of a p-adic Lie extension
of Q where the Galois group corresponds to a certain specific p-adic Lie algebra. Generalizing the
construction by Greenberg for GL(n) [Grel6], we obtain the following result.

Theorem 0.10 (Corollary 4.22 of section 4). Let G be an adjoint simple split reductive group over
Z,, with the Iwahori subgroup I and the pro-p Iwahori subgroup I(1). Let K be the cyclotomic field
Q(pp) and M be the mazimal pro-p extension of K, unramified outside the places of K above p.
Then, there is a constant ¢ depending only upon the type of G such that if p > c is a reqular prime,
there is a continuous morphism

p:Gal(M/Q) — I

with p(Gal(M/K)) = I(1).

The pro-p Iwahori subgroup I(1) is of finite index in G(Z,). Theorem 0.10 constructs Galois
representation with image containing I(1). Thus the representations of theorem 0.10 have large
open images. The way of proving theorem 0.10 is by finding a minimal set of topological generators
of I(1). For a regular prime p, K = Q(u,), a result of Shafarevich gives that Gal(M/K) is a free
pro-p group showing that Q(u,) is p-rational. Then we construct a continuous homomorphism
from Gal(M/K) to I(1), by sending generators of Gal(M/K) to the topological generators of I(1),
such that the homomorphism extends to Gal(M/Q). In the following theorem, we find a minimal
set of topological generators of the pro-p Iwahori subgroup of any split reductive group G (not
necessarily adjoint) over Z, with torus T.

Theorem 0.11 (Theorem 4.1 of section 4). The following elements form a minimal set of topo-
logical generators of the pro-p-Iwahori subgroup I(1) of G = G(Z,):

1. the semi-simple elements {s(1+p):s e S} of T(1),
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2. for each c € C, the unipotent elements {x, (1) : a € II.},
3. for each c € C, the unipotent element x_, ... (p),
4. if p=3, for each d € D, the unipotent element xs,(1).

Here, T'(1) is the maximal split torus of I(1), C is the number of irreducible components of
the roots @ (that is, ® = [[ .., ®. and the simple roots II = [] .. Ilc), @ max the highest pos-
itive root in the root component ®., D C C is the set of irreducible components of type Gs.
For d € D, 64 € Dy (the positive roots of @) is the sum of the two simple roots in IT; and
we fix a set of representatives S C MY = X,(T) (co-characters of T) which form a F,-basis of
(MY /)ZDY)®F, = ®sesFp-s®1. For t € Z,, recall that z,(t) = exp(tX,) is the one dimensional
unipotent subgroup of G(Z,,) corresponding to the root a € ®. Here (X,)qca is a Chevalley sys-
tem of the Lie algebra of G. For example, if G = GL(n,Z,) and a = (4, ), then z,(t) = 1 +tE; ;
for the standard elementary matrix E; ;.

Our constructions give the Galois extension M over Q such that Gal(M***(?) /Q) is a p-adic Lie
group which contains the pro-p Iwahori subgroup of an adjoint, split, simple group as a subgroup
of finite index. This proves the classical inverse Galois problem for simple p-adic Lie algebras: if
L is any finite dimensional simple Lie algebra over @, then there exists a Galois extension over Q
such that the Galois group is a p-adic Lie group whose Lie algebra is isomorphic to L. Note that
our construction works only under the assumption of p-rationality.

The p-rational totally real fields satisfy Greenberg’s A and p invariant conjecture which says
that, for a totally real number field k, the Iwasawa A = A\, (k) and p = p,(k) invariants associated
to the ideal class of the cyclotomic Z,-extension ko /k are 0 (cf. [Gral6a], [Gre76], see also [Was97]
for the fact that 4 = 0 when k is abelian). These fields are also useful for developing p-adic ap-
proaches to solve the above Greenberg’s A and y invariant conjecture (cf. [Gral6al,[JNQD93]).

Future Questions. There are a list of open questions, originally asked by Greenberg, con-
cerning the construction of Galois representations with open image which are geometric and have
nice arithmetic properties at p. In particular, one can wonder to construct the representation p so
that the restriction of p to a decomposition subgroup is crystalline or Hodge-Tate. Also, one may
ask the question of the existence of representations of the local absolute Galois group Gal(K,) with
open image having good arithmetic properties. Here K, is the completion of a p-rational field K
at a prime p above p. One can find more discussion on the open questions in [Grel6, Remark 6.4].
Compare also the recent results of [Kat17].

0.10 Numerical experiments and heuristics on Greenberg’s p-rationality
conjecture

Note that our construction in section 0.9 works only under the assumption of p-rationality. There-
fore, we focus our attention to the study of p-rational fields from a computational point of view in
section 5.

Section 5 (in collaboration with Razvan Barbulescu) grew out of a conjecture of Greenberg
[Grel6, Conjecture 4.8], namely, for any p and ¢, there exists a p-rational field K with Gal(K/Q) &
(Z/27)t. In other words, one can construct a p-rational field as a compositum of quadratic ex-
tensions. However, Greenberg gives examples (p = 3,5 and ¢t = 5,6, cf. [Grel6]) of p-rational
fields satisfying his conjecture. Greenberg was interested in this conjecture because it allowed him
to generalize his construction to produce more examples of Galois representations with big open
image assuming the existence of such p-rational fields.

This proposes us to find new algorithmic techniques to determine p-rationality of a number
field in a computationally fast and efficient way and to study the density of p-rational fields. One
can also generalize Greenberg’s conjecture for any field with Galois group (Z/qZ)! where q is a
prime different from p. To fix ideas, for a finite group G, we say that GC. (G, p) (i.e. Greenberg’s
conjecture for G and p) holds if there exists infinitely many number fields of Galois group G which
are p-rational. This can be thought of a refinement of the inverse Galois problem for number fields
with the condition that now we want p-rational fields. We have examples of p-rational fields for
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G = (z/)272)",(Z/3Z),7/]AZ,V,, Dy, Ay, Sy when p € [5,97] and t € [7,11] (section 5.11, example
5.34 and table 1 of section 5).

First, in section 5, we relate the notion of p-rationality to that of the class number and the
p-adic regulator, which is enough to prove GC.(Z/2Z,p) and to give examples of Greenberg’s
p-rationality conjecture with Galois group (Z/2Z) for t € [7,11] and p € [5,97]. We then recall
existing conjectures ([CM90], [CL84b], [CL84a], [CM87], [HZ16]) on the divisibility of the class
number and the normalized p-adic regulator by a prime p due to Cohen-Lenstra-Martinet (for the
class number) and Hofmann-Zhang (for the p-adic regulator).

Cohen-Lenstra-Martinet in 1989 tested their conjecture and wrote that "we believe that the
poor agreement [with the tables] is due to the fact that the discriminants are not sufficiently
large". Puzzled by this assertion we repeated their computations and made statistics on the fields
of conductor less than 8000, i.e. discriminant less than 64 x 10°, which was the bound for the
computations of that time (e.g. [Gra75] considered the fields of conductor less than 4000). Since
then computers’ capabilities have increased by more than a factor 1000 so that we could compute
the statistics for fields of conductor less than 107, i.e. discriminant less than 104, in roughly one
calendar month, in parallel on several 30 cores and summed up to roughly 2.5 CPU years.

Looking at the data in Table 4 we understand what happened: the convergence speed to
the mean density is very slow and the statistics to 8000 have a relative error between 19% and
100% which didn’t allow Cohen and Martinet to conclude. However, statistics to 107 have only
a relative error between 0.2% and 15.5%, so we can conclude that the numerical data confirms
their conjecture. Note that the best known algorithms to actually compute the class number of
a number field are slow and so the trick we used is an algorithm to test the divisibility by p of
the class number of cyclic cubic fields of discriminant less that 10'* without computing the class
number, due to N.-M. Gras [Gra75], using the notion of cyclotomic units (section 5.8).

Moreover, we give a new algorithm to produce units in cyclic cubic fields which is used to test
the valuation in p of the p-adic regulator, which is faster than computing a system of fundamental
units (section 5.9). An algorithm [PV15] of Pitoun and Varescon to test p-rationality for arbitrary
number fields, allows us to give examples of p-rational number fields of non-abelian Galois groups
(example 5.34 of section 5).

Furthermore, we find a family of cyclic cubic number fields which contains infinitely many 5-
rational fields under a list of arithmetic assumptions (section 5.11). The reduces the problem of
providing examples of 5-rational cubic cyclic fields to the problem of testing just a list of arithmetic
assumptions reducing vastly the computational time.

Based on existing conjectural results and our numerical computations verifying those conjec-
tures on the divisibility of the class number and the normalized p-adic regulator by a prime p we
show that for ¢ = 2 or 3 and p > 5¢' then for any integer ¢, GC ((Z/qZ)*, p) holds.

Let ®,, denote the cyclotomic polynomial associated to m and ¢(m) its degree. Joint with
Barbulescu Razvan, our main theorem is

Theorem 0.12 (Theorem 5.6 of section 5). Let p be an odd prime. Then

1. there exists infinitely many quadratic p-rational number fields.

2. Assume there exist infinitely many odd integers a such that m = %(a2 +27) is prime and such

that the arithmetic conditions in Hypothesis 5.35 are satisfied. Then GCy(Z/3Z,5) holds.

3. Under conjectures based on heuristics and numerical experiments (Conjecture 5.41 and Con-
jecture 5.39), when q¢ = 2 or 3, for any prime p and any integer t such that p > 5q',
GCo((Z/qZ)t, p) holds.

Here, conjecture 5.39 of section 5 gives the probability of the class number hx of a number
field K to be coprime to p with Gal(K/Q) = (Z/2Z) or Gal(K/Q) = (Z/3Z)*. This conjecture is
a reformulation of Cohen-Martinet heuristics [CM90], [CL84b] and Kuroda’s class number formula
[Kur50], [Lem94]. We have also verified this conjecture numerically for number fields K with
Galois group Z/3Z x Z/3Z with conductor < 105 and primes in [5 — 19] (see table 5). Moreover,
we have also tested for cyclic cubic number fields with conductor < 107 and primes in [5 — 19] (see
table 4). As we already mentioned, since we have computed cyclic cubic number fields with large
discriminants our computations, in particular, matches with Cohen-Lenstra-Martinet heuristics
with a relative error of 0.2% to 15.5%.

Also, conjecture 5.41 of section 5 is a reformulation of the Hofmann and Zhang’s conjecture
which gives the density of totally real number fields with Galois group (Z/qZ)" (where ¢ = 2 or 3)
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for which the normalized p-adic regulator is divisible by p for at least one of its cyclic subfields.
We have also supported conjecture 5.4 with numerical evidence where the sample consists of all
number fields Q(v/dy, v/da, /d3) with dy,ds € [2,300] squarefree and distinct, and p = 5,7, 11 (cf.
table 6).

The algorithms can be found in the online complement [BR17a].

Future Questions. To sum up, Greenberg’s conjecture is solved in the particular case of
G = 7,/27 and it is well supported by heuristics and numerical experiments for G = (Z/qZ)* when
q = 2 or 3. In the general case of non-abelian Galois groups however our results are limited to a
list of examples.

The problem raises new questions about the independence of class numbers and of p-adic
regulators, which could be tackled by techniques of analytic number theory, similar to the recent
progress on the Cohen-Lenstra-Martinet heuristic. It is interesting to create new algorithms to test
divisibility of p-regulator and of the class number by p with a better complexity than computing
a system of fundamental units and respectively the class number.
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Part I

Algebras of functions and distributions on
p-adic groups and p-adic representation
theory
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1 Iwasawa algebras for the first congruence kernel of Cheval-
ley groups

1.1 Introduction

Lazard, in his seminal work [Laz65], I1.2.2 studied non-commutative Iwasawa algebras for pro-p
groups. They are completed group algebras
A(P)= lim  Z,[P/N]
NeN(P)

where N(P) is the set of open normal subgroups of P. For any odd prime p, Clozel in his
paper [Clol11] gives an explicit presentation of the Iwasawa algebra of the subgroup of level 1 of
SLy(Zy), which is T'1(SLy(Zy)) = ker(SLy(Zy) — SLy(F,)). Notice that as T'1(SLy(Zy)) = Z3,
its (non-commutative) Iwasawa algebra is isomorphic (as a topological Z,-module) to the ring of
power series in three variables. The key ingredient in Clozel’s proof was to compute the relations
between those variables viewing them as elements of the Iwasawa algebra. The case p = 2 has to
be omitted because then I'i(SL2(Z,)) will have p-torsion and thus its Iwasawa algebra is not an
integral domain which prevents one from using deep results of Lazard.

Our main result is to give an explicit presentation, by generators and relations, of the Iwasawa
algebra for the subgroup of level 1 of a semi-simple, simply connected, split Chevalley group over
Z,-. Let G be a semi-simple, simply connected Chevalley group over Z, with a split maximal torus
T, ® be the root system of the Lie algebra of G with respect to the Lie algebra of T', Il be a set
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of simple roots of ®. Under a faithful representation of group schemes G <— GL,, over Z, consider
G(1)-the pullback of the congruence kernel at level 1 of GL,(Z,). The natural filtration of G(1)
by deeper congruence subgroups enables us to define a p-valuation w on G(1) (sec. 1.4).

Let us now present a brief overview of the results obtained in this section.

e The first result is to find an ordered basis of G(1), in the sense of Lazard, with respect to its
p-valuation (sec. 1.3). Such an ordered basis is constructed in theorem 1.9. For the proof
we have used the triangular decomposition of G(1) and the assumption that our group G is
simply connected.

e The second result concerns the presentation of the Iwasawa algebra of G(1) in terms of gen-
erators and relations. Let A be the universal non-commutative p-adic algebra over Z, in the
variables {V,, Ws; o € @, € II}; the ordering being given by the increasing height function
on the roots. The algebra 4 has a topology given by the filtration by the powers of its unique
maximal ideal. The algebra A is naturally sent to A(G(1)) (cf. 1.6). Computing in A(G(1)),
we obtain the relations between the variables in A precisely given by (1.15,1.16,1.17,1.18)
and let R be the closed two-sided ideal generated by the relations in 4. Then our main result
is (cf. Theorem 1.22)

Theorem. For p > 2, the Iwasawa algebra A(G(1)) is naturally isomorphic as a topological
ring to A/R.

To compute the relations between the variables in .4, we have used the Steinberg’s Chevalley
relations for simply connected groups ([Ste67]). The advantage of this description of the
Iwasawa algebra is not only its simplicity but also the fact that it allows one to do explicit
computations about its center. For example, for the group I'1(SL2(Z,)), Clozel used his
presentation to show that the center of the Iwasawa algebra of I'1(SL2(Zp)) is composed of
the multiple of the Dirac measure at 1, thus giving a different proof of Ardakov’s result (cf.
[Ard04]).

Hence, the objective is to solve two problems: firstly finding an ordered basis for the p-valuable
group G(1), secondly to use it to give an explicit presentation of the Iwasawa algebra of G(1).

Roadmap. In Section 1.2 we go for a quick tour through the notions of p-valuable groups and
Chevalley groups that we need. In section 1.3 we construct an ordered basis of G(1) in theorem 1.9,
an alternative proof of which is provided in section 1.4 using the theory of uniform pro-p groups
(cf. [DSMSO03]). Then, in section 1.5, we use Steinberg’s relations of Chevalley groups to compute
the relations in A(G(1)). Finally, in section 1.6, we first provide an explicit presentation of the
Iwasawa algebra of G(1) with coefficients in F,, (cf. theorem 1.21) and then we lift its coefficients
to Zjy to prove our main result, which is theorem 1.22.

1.2 Recall on p-valued groups and Chevalley groups
Let G be any abstract group. We recall that an application

w:G = RY U{+oo}
is called a filtration (cf. [Laz65], I1.1.1.1) if the following conditions hold for all z,y € G:
L w(zy™") > min(w(z),w(y)),
2. w(z™ly tay) 2 w(@) +w(y).

If w is such a filtration, then G is called a filtered group and w(x) is called the filtration of the
element .
For any v € R%, we define the subgroups

G, ={z € Glw(z) 2 v} and Gyy = {z € G|w(x) > v}.
Then the subgroups G, satisfy the following three relations:

1. G= UU>OG’U7
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2. [Gy,Gy] C G, forv,v €RY,
3. Gy =Ny ,G, forveRy,

where [G,, G,/] is the commutator subgroup of G, and G,/. Conversely, if there exists a family of
subgroups G, satisfying the above three relations then we can define a filtration w by the formula

w(z) =supw for z € G,.

(Cf. Lazard, [Laz65], II.1.1.2.4). Such a filtration w is called separated if w(z) = +oo implies
x = 1. For a prime number p and for all v € R, we define

©(v) = min(v + 1, pv).
The filtration w is called a p-filtration if it verifies the following axiom:
w(zP) = p(w(x)) for x € G,
that is,
w(z?) > min(w(z) + 1, pw(z)).
In that case, G is said to be a p-filtered group with the p-filtration w.

Definition 1.1. A filtered group G is p-valued if, for all x € G, w satisfies the following three
azioms:

w(z) < oo, x#1,

w(z) > (p-1)7"
w(zP) = w(z) + 1.

Such a group G is also called p-valuable, and w is called a p-valuation on G with the convention
w(1) = co. Henceforth, we assume that G is a profinite group and w is a p-valuation on G which
defines the topology of G.

The G,’s form a decreasing filtration of G, so there exists a unique topology on G (the topology
defined by the filtration) such that G,’s form a fundamental system of open neighborhoods of
identity. It is the topology defined by w. We put for each v > 0,

gr,G := G, /Gyt and gr(G) := @y gr.G.

The commutator induces a Lie bracket on gr(G) which gives gr(G) the structure of a Lie algebra
over [F,. The map P defined by

P:gr(G) — gr(G), P(gGuy) = ng(U+1)+

is an F,-linear map on gr(G), which gives gr(G) the structure of a graded Lie algebra over F,[P]
(cf. [Laz65], I11.2.1.1).

Definition 1.2. The pair (G,w) is called of finite rank if gr(GQ) is finitely generated over F,[P].

As gr(G) is a torsion free module over F,,[P] (cf. [Sch11], remark 25.2), being finitely generated
torsion free module over a principal ideal domain F,[P], it is free over F),[P]. We define

rank(G, w) :=rankp, p)grG.
For g1,...,94 € G, we consider the continuous map
Zz—>G, (1, a) = g1t gy (1.1)
The map above depends on the order of g1, ..., g4 and hence it is not a group homomorphism.

Definition 1.3. The sequence of elements (g1, ...,ga) in G is called an ordered basis of (G,w) if
the map in (1.1) is a bijection (and hence, by compactness, a homeomorphism) and

W(g',g3") = min (w(gi) + valy(x1)) for i € 7, (1.2)
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If (G, w) is of finite rank, then the rank of grG over F,[P] is finite. Following [Sch11] (proposition
26.5), we can relate the basis of G to the basis of gr(G) over F,[P]. In fact, the following lemma
holds.

Lemma 1.4. The sequence (g1, ...,g4) s an ordered basis of (G,w) if and only if o(g1), ..., 0(ga)
is a basis of the F,[P]-module gr(G) where for g # 1, 0(g) := gGug)+ € 9r(G).

In particular a p-valuation w of G is a p-filtration, separated for which gr,(G) = 0 for v <
(p—1)71, and gr(G) is torsion free (cf. the discussion after 2.1.2.3, chap III of [Laz65]).

Let G be a p-valued group, complete, with discrete filtration. Let g1, ..., g4 be an ordered
basis. Then G is defined to be p-saturated (cf. [Laz65], II1.2.2.7) if the valuations w(g;) satisfy the
following relation:

(p—1)7" <wlg) <plp—1)71 i€ 1,d. (1.3)

In the remaining part of this section, we introduce the basic notion of Chevalley groups over Z
(cf. [Che95],[Kos66]) following section 1 of [Abe69] . Steinberg gives the construction in [Ste67].

Let G¢ be a connected complex semi-simple Lie group, 7¢ a maximal torus of G¢, gc,tc be
the Lie algebras of G¢ and Tt respectively. Let ® be the root system of g¢ with respect to tg,
IT = {61, ..., d;} be a set of simple roots of ®, gz be a Chevalley lattice (cf. Theorem 1 of [Ste67])
of gc generated by the Chevalley basis (cf. p.6 of [Ste67|) {Hs,, ..., Hs,, X5,y € ®}. For each
v € @, the element H., = [X,, X_,] is contained in the submodule tz = gz N tc. We then have, by
definition of the Chevalley basis,

(a) ’Y(H‘Y) =2,7€9,

(b) if 41,2 are roots, then vo(H,, ) = v — u, where v, u are the non-negative integers such that
Yo + i1 is a root if and only if —v <7 < w, or

(¢) if 71,72 and 1 + y2 are roots, [X,,, X,] = Ny, 4 Xqy1++,, Where N, ., = £(v +1).

Let p be a faithful representation of G¢ in an n-dimensional vector space V over C, dp the dif-
ferential of p which is a representation of g¢ in V. Then, there exists (cf. p.17 of [Ste67]) a free
n-dimensional, Z-module V7 generated by {vi,...,v,} in V which is stable under the action of the
universal enveloping algebra 4lz. We also have

dp(Hy)v; = XNi(Hy);1<i<n,ye®

where \; are linear functions on t¢ with A\;(H,) € Z. The base {v1,...,v,} of V7 determines the
coordinates x;;(1 <14,j <n) on GL(V) and the restrictions of z;; to G¢ generate a subring Z[G]
of the affine algebra C[G] of G¢. The ring Z[G] has a structure of a Hopf algebra (cf. section 1 of
[Abe69]) and defines a group scheme G over Z. Namely,

R — G(R) = Hom(Z|G], R)

is a contravariant functor from the category of commutative unitary rings into the category of
groups. We call the group G the Chevalley group scheme associated with G¢.

Now, for any ¢t € C, z(t) = exp tdp(X,), (y € ®), is an element of G¢ and the coordinates of
x(t) are polynomial functions on ¢ with coefficients in Z. Let Z[(] be the algebra over Z generated
by one variable ¢. Then there exists a homomorphism of Z[G] onto Z[(] which assigns to each z;;
the (7, j)-coordinate of z(¢). The homomorphism induces an injective homorphism of groups

G(R) = Hom(Z[(], R) = G(R) = Hom(Z[G], R)

We denote also by x(t),t € R, the element of G(R) corresponding to an element of G, (R) such
that { — t.

Let P(resp. X, P,) the additive group generated by the weights of all the representations of
G (resp. the weights of p, the roots of g¢). Then these are all free abelian groups of rank [ such
that P O X D P,. The group G is said to be simply connected or universal if P = X. Henceforth
we fix the ring R to be Z,, p being an odd prime, and we always work with the simply connected
group denoted G, and G(Z,) will denote its Z,-points.

For A € Q;,v € @, we define

B (N) =, (A, (1)

where
wy(A) = 2y (N2 (A7) 25 (A).
Given our embedding p : G — GL,, let us define, for £ € N,
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['(k) := ker(GLy(Zy) — GLn(Z,/P"Z,))

(the Z-structure on GL,, being given by Vz) and G(k) := G(Z,) NT'(k). Then G(k) is called the
k" congruence kernel of G(Z,) which satisfies a descending filtration G(1) 2 G(2) 2 -

1.3 Ordered basis of G(1)

Let us define w, a function on the first congruence kernel G(1), by
w(z) =k for z € G(k)\G(k + 1). (1.4)

We then show in theorem 1.5 that w is a p-valuation on G(1). Furthermore, we show in theorem
1.9 that {zg(p), hs(1 + p),za(p); B € 7,6 € I,a € ®T} forms an ordered basis for (G(1),w),
where the order is given by the height function on the roots.

Theorem 1.5. The valuation w defined in (1.4) is a p-valuation on G(1).

Proof. First we recall that the function (denoted again by w) on I'(1), defined as
w(z) =k for z e T'(k)\I'(k + 1)

is a p-valuation on I'(1) (cf. p.171 of [Sch11]). Therefore, I'(k) satisfies the following three condi-
tions:

F(l) = Uk21r(/€),
[D(k),D(k)] C Ty for b,k €N,
I'(v) = N<,'(w) for v, w € N.

By definition of G(k) we have

G(1) = Up1 G(k),
G(v) = Nw<uG(w) for v,w € N.

Also,

[G(k), G(k )] € G(Zp) N [L(K), T ()],

C G(Z,) T+ K),

=Gk+k).
This shows that (by section 1.2) w is a filtration on G(1). Obviously, if © € G(1) then w(z) = +0
implies x € NG (k) C NET'(k) = 1 which in particular shows that w is separated. For « € G(1),x #
1 we have w(x) < oco. The valuation w(g) is strictly greater than (p — 1)~! for all g € G(1). To
prove that w(gP) = w(g) + 1, we use the fact that I'(1) is p-valuable.

Suppose w(z) = k ie. z € G(k)\G(k + 1) where G(k) = I'(k) N G(Z,). Since I'(1) is p-

valuable, 2P € T'(k + 1)\I'(k + 2). This implies that 2 € G(k + 1)\G(k + 2). Hence, we obtain
w(zP) = w(zx) + 1. This finishes the proof that w is a p-valuation on G(1). O

Let h be the height function on the roots v € ® which is given by h(y) = 22:1 m; for

Y = e mibs.
Theorem 1.6. Any element g € G(k) can be uniquely written as
9= Hﬁeqr xﬁ(“ﬁ) Haer{ hs(1 + vs) Hae@+ To(Wa),

where ug, wy, vs € p"”'Zp. The order of the above product is chosen and fixed once for all such that
the height function h on the roots increases.

Proof. Let us define

U(Zy, p"Zp) := (x0(t);t € p"Zp, a0 € BT,
V(Zpapkzp) = (zp(v);v € kapyﬂ € D7),
T(Zp’pkzp) = <h7(u);u el +kapa'7 S (I)>.
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From corollary 3.3 and section 3.21 of [Abe69] we have a unique triangular decomposition
G(k) = V(ZpakaP)T(Zp,kap)U(Zpakap)- (1.5)

Proposition 2.5 (and the discussion following it) of [Abe69] gives that each element of U(Z,, p*Z,)
can be written uniquely in the form [, g+ 7a(ti),t; € p*7Z,, where the product is taken over all
the positive roots with the order according to increasing height, the uniqueness criterion follows
from p.26-corollary 2 of [Ste67]. Because of symmetry the similar statement will also hold for
V(Zznpkzp)-

For h.(u) € T(Z,,p*Z,),y € ®, lemma 28 and the proof of corollary 5, p.44 of [Ste67] give
that there exist integers n; such that

l n; l n;
hoy(u) = [Tizy he, (W)™ = TTizy he, (u™),
where 41, -+, d; are the simple roots, | being the cardinality of the set of simple roots. The above

expression is unique because our G is simply connected (cf. Corollary of lemma 28 p.44 of [Ste67]).
Thus by 1.5, each element g € G(k) can be uniquely written as

9= H,Heb— zs(up) Héen hs(1 + vs) HaE<I>+ To(Wa),

where ug, wq,v5s € kap. The order of the above product is given by the height function on the
roots. L

Remark 1.7. The paper [Abe69] by Abe gives actually the decomposition
G(k) = U(Zpakap)T(vakap)V(Zpakap)-

Its proof uses proposition 1 of [Che95] and by just following the proof of corollary 3.3 of [Abe69], one
can easily show that there is no harm if we interchange the places of V(Z,, p*Z,) and U(Z,, p*Z,)
in the above decomposition.

Theorem 1.8. Let g € G(k). Then using the decomposition given by theorem 1.6, if
9= Hﬁe@* xﬁ(uﬁ) H&el‘[ h5(1 + 1)5) Hae<1>+ xa(wa);
then
w(g) = min{@e@—,aeqﬁ—,&en} {valp(uﬁ)v valp(US)a valp(wa)}'
Proof. Let g € G(k)\G(k + 1) so that w(g) = k. Then any one of the elements of
{ug,vs,we; 8 € P7,0 € Il,a € DT}

should belong to p*Z, and not all of them in p*+17Z,,, because if all the elements ug, vs, w, € pFT17Z,,
then g € G(k + 1) and this is a contradiction to our assumption. O

For mg,ns, zo € Z, we have

W( I =™ [ st +p)™ 1 %(p)z"“)

BeEDP— o€ll acdt

—w( IT @sma) [T hs(t +2)") T @alpza)
BEDP— 6€ll acdt
= min{1 + val,(mg), 1 + val,(ns),1 + valy(za)}-

a0

The first equality follows from p.30, and lemma 28 of [Ste67] and the second equality follows from
Theorem 1.8.

Since w(zs(p)) = w(za(p)) = w(hs(1 +p)) =1 and p > 2, G(1) is also p-saturated (cf. 1.3).
Hence, with theorem 1.6, it follows that:

Theorem 1.9. The first congruence kernel G(1) is p-saturated with an ordered basis
{zp(p), hs(1 + p),za(p); B € P, 6 €Il,a € DT},
the order being given by the height function on the roots.

The group G(1) has a decomposition
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G(1) = HBe@— N lsen Ts Ilaco+ Nas

where

Ng = (zp(u),u € pZy),
Ny = <xa(w),w Gpr>,
Ts = (hs(1 4 v),v € pZy);
the order of the products is taken according to the height function on the roots.
Let A(G(1)) be the Iwasawa algebra of Z,-valued measures on G(1). It can also be thought

as distributions on G(1) in the sense of [Was97]. The decomposition of G(1) given above yields a
decomposition of A(G(1)) as a topological Z,-module:

AMG(1)) = A(N_q,,,, )@ OMT5)® - OA(Na,,.,) (1.6)

where auq; i the highest root and the order of the product is taken according to the height
function on the roots. The factors of (1.6) are the spaces of distributions on the factors of G(1).
If fis a function on G(1) and Ug, V,,, W; distributions on Ng, T, N, then

<U-aman
=< U_

@ @Ws®: @ Vapor [ > (1.7)
@ @Ws®- @ Va,.., flu- Ry na,.) > (1.8)

Xmax Xmax

where ug € Ng,hs € Ts,no € N, and f is seen as a function on

I NI ] Ne-

BEDP— 6€ell acdt

For each factor, U = Ng,T5 or N, of G(1), A(U) is naturally sent to A(G(1)), by integrating a
function f € C(G(1),Z,) against p € A(U) on the U-factor. This map is compatible with the
convolution product as in [Clo11].

1.4 Alternative proof of Lazard’s ordered basis

In this section we briefly sketch another proof of theorem 1.9 using group theory. Dixon, Sautoy,
Mann and Segal in [DSMS03] describe a subclass of p-saturated groups called uniform pro-p groups.
Briefly, if H is a uniform pro-p group then it is p-saturated and conversely if H is p-saturated then
HP? is uniform. The Heisenberg group of uni-upper-triangular 3 x 3 matrices with entries in the
ring of p-adic integers, for p > 2, gives an example of a p-saturated but non-uniform pro-p group
of rank 3. J. Gonzales-Sanches gives a nice characterization of p-saturated groups in [GS07]. This
is pointed out to me by Konstantin Ardakov. In this section, without giving the proofs, we use the
results of [DSMS03] to provide another proof of theorem 1.9.

Let p > 2 be a prime. Let G be a pro-p group which is topologically finitely generated. Then
we say that G is powerful if G/GP is abelian. Moreover, if G is torsion-free, then we say that G is
uniform. Note that [DSMS03| has a different definition for uniform pro-p group, but Theorem 4.5
of [DSMS03] shows that it is equivalent to the definition given above. For uniform pro-p group G
we have the following proposition:

Proposition 1.10. Let G be a topologically finitely generated uniform pro-p group. Let G =
(a1, -aq) such that d is minimum. Then

G ={a1) - (aq)
and the mapping
(Ao Aa) = @y ---a)?
from ZZ to G is a homeomorphism.
Proof. See proposition 3.7 and theorem 4.9 of [DSMSO03]. O

Remark 1.11. With the hypothesis as in proposition 1.10, the discussion in section 4.2 of [DSMS03]
shows that G has an integrally valued p-valuation w and an Lazard’s ordered basis aq, ..., aq with
w(a;) =1,i € [1,d] (see also the remark after lemma 4.3 of [ST03]).
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In section 8.2 of [DSMSO03], the authors describe p-adic analytic groups. Without giving the
definition, we just like to point out that uniform pro-p groups are p-adic analytic groups (cf.
example 5, section 8.17 of [DSMS03]).

In the following we define the notion of standard groups (cf. definition 8.2.2 of [DSMS03]).

Definition 1.12. Let G be a p-adic analytic group. Then G is a standard group (of dimension d
over Q) if

(i) the analytic manifold structure on G is defined by a global atlas of the form {(G,,d)} where
1 is a homeomorphism of G onto (pZ,)* with (1) = 0,
(it) for j =1,...,d, there exists P;(X,Y) € Z,[[X,Y]] such that

Yi(xy™") = Pi(v(), 9 (y))

for all z,y € G, where v = (Y1, ...,9q).

Proposition 1.13. Let G be a standard group of dimension d over Q,. Then G is a uniform
pro-p group of dimension d.

Proof. See theorem 8.31 of [DSMS03]. O

Lemma 1.14. The first congruence kernel G(1) is a Z,- standard group (of level 1) with dimension
@[ + [TI].

Proof. By theorem 1.6 each element g € G(1) can be uniquely written as

[sea- za(up) [Isen s (1 + vs) [[oca+ Ta(wa) for some ug,vs,wo € pZ,. The proof then
follows from theorem 8 of [Ste67] and exercise 11 of chapter 13 of [DSMSO03]. O

Alternative proof of Theorem 1.9: Lemma 1.14 gives us that G(1) is a Z,-standard group
of dimension |®| + |II|. Then proposition 1.13 gives that G(1) is a uniform pro-p group. But
uniform pro-p groups are p-valuable and p-saturated (cf. remark after lemma 4.3 of [ST03].) Now,
Theorem 1.6 shows that

G(1) = Hﬁeqr 28(p) [Lsen hs(1 +p) [Lnca+ Ma

where the bars denotes the closure, that is,

2p(p) = {xp(p)™?,Vmp € Zp} = {x(mpp),Vms € Ly},
l’a(p) = {xoz(p)zavvza S Zp} = {xa(zap)vvzoz S Zp}7
hs(1+p) ={hs(1 4+ p)™,Vns € Zp} ={hs((1+p)™®),Vns € Zp}.

Then remark 1.11 finishes the proof of Theorem 1.9 [Q.E.D].

1.5 TIwasawa algebras and relations

In this section, for & € ® and ¢ € II, we identify (as a Z,-module) the Iwasawa algebra of G(1) with
the ring of power series in the variables V,, and W over Z, (cf. 1.9). This isomorphism is given by
sending 1+ V,, — x,(p) and 14+ Wjs — hs(1+p). As the Iwasawa algebra is non-commutative, this
identification is obviously not a ring isomorphism. Therefore, the goal of this section is to study
the product of the variables in wrong order, viewing them as elements of the Iwasawa algebra, and
then find the relations among the variables (1.15 — 1.18).

Theorem 1.9 gives us an ordered basis of G(1) with the p-valuation w. By definition we have a
homeomorphism

c: Z8— G(1)
(Y15 -y ya) = 97" - gy’

where d = |®| + |II| and (g1, ...,94) is the ordered basis of G(1). Let C(G(1)) be continuous
functions from G(1) to Z,. The map c induces, by pulling back functions, an isomorphism of
Zp-modules

¢ O(G(1)) = C(z9).
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We may recall that A(G(1)) is the Iwasawa algebra of G(1) over Z,, that is, A(G(1)) :=
@NGN(G(D)(G(D/N) where NV (G(1)) is the set of open normal subgroups in G(1). Lemma 22.1

of [Sch11] shows that
AG(1) = Homs, (C(G(1)), Z,).
So dualizing the map c*, we get an isomorphism of Z,-modules
Cy = A(Zg) >~ A(G(1)).

This gives us the following isomorphism of Z,-modules:

¢ Lp|[Vo, W5 € @,6 € II]] =2 A(G(1)) (1.9)
14 Vy = 24(p) (1.10)
1+ W;s > hs(1+p). (1.11)

This is because the Iwasawa algebra of Zg can be identified with the ring of power series in d
variables (cf. prop 20.1 of [Sch11]). From (1.6), any A € A(G(1)) can be written uniquely as

—Qmax Amazx

A=) NGV WV (1.12)

with \,, € Z,,m = (my,...,mgq) € N4 The product of the above variables

Yy ~'~W5m_-~~de =y ®...®W5m—®...®vmd

—Qmax Xmax —Qmax Amax

is taken according to the height function on the roots. We note that we can write unambiguously
the variables V', W§*;n > 0 because from the discussion after (1.7) in section 1.3, it follows that
the convolution of V,,’s (or Ws’s) taken n times equals their tensor product, i.e.

VP =Vo® - @V =Vyx- % Va.

It immediately follows from (1.7) that the convolution (taken on G(1)) of the distributions V,, Ws
equals their tensor product when they are taken in the order of the height function. We simply
write, consistent with our previous notation,

Vj;lmaz ...Wg"* ... VJ’},:LI — Vj”balmz ek W;L %ok Vo:?,fiawv
where
V3i=VasxVyx--xVy, (n>0), (1.13)
and
W§=W5*W5*~-~*W5,(n20). (1.14)

In the following we study the product of the variables in the wrong order.
Let b; := g; — 1, (91, ..., 94) being the Lazard ordered basis of G(1) and b™ := b7"* ---b"*, for
any multi-index m = (my,...,mq) € N, in A(G(1)). We define a function

@ A(G(1)\{0} — [0,00)
by

@(Zm cmbm) := inf,, (valp(cm) + |m|>

where ¢, € Zp, |m| :==my + --- + my, with the convention that ©(0) := oo.

By the isomorphism ¢, we can identify the variables V,,, Ws; (o € ®,6 € II) as elements of the
Iwasawa algebra of G(1). Our goal is to find the relations among the above variables. For this,
we use the Chevalley relations given by Steinberg in [Ste67]. With z,(p), hs(1 + p) as defined in
section 1.2, [Ste67] gives

hs(1+ p)za(Phs(1+p) 7! = za((1+p)“"p), (@ € ,6 € I1)

where («,0) = 2(«,0)/(6,0) € Z (cf. [Ste67], p.30). It follows that the corresponding relation in
the Iwasawa algebra of G(1) is

1+ W)L+ V) =1+ V)P 14 Wy), (e € @,6 € D). (1.15)
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Let a1, a0 € @, 1 # —ap and g + ao ¢ D then example (a), p.24 of [Ste67] gives

Loy (p)‘TOQ (p) = Tay (p)zOq (p)v (0[1’ Qg € (I))

Thus, the relation in the Iwasawa algebra is
I+ Vo, )1+ Vo) =14+ Ve,)(1+Vy,), (a1, as € D). (1.16)

If ap # —ag and a1 + g € ® then 24, (P)Za, (D) = [Tay, (D), Tan (P)]Tay, (P)Ta, (), where [,] is the
commutator function. So lemma 15, p.22 of [Ste67] gives

Zar ()2as(p) = ( T] iartian @0p'P)) ) Tas (p)aay (p): (a1, 02 € @),
4,7>0
where ¢;; € Z and the order of the product is as prescribed in lemma 15 of [Ste67]. This gives
(U Va) (14 Vi) = ((TT 0 Viassoa) 77 ) (14 V) (0 4 V), (01,02 € @) (117)

4,j>0
If a3 € T, corollary 6, p.46 of [Ste67| gives a homomorphism

Pag + SL2(Qp) = (Tag (1), T—a, (t);t € Qp)
such that

(pag(l + tEl?) = Tag (t)7

90013(1 + tEQl) =T—a3 (t)7
Pag (tEll + t71E22) == hag (t)a

where E;; is the 2 x 2 matrix with 1 in the (i, j)*" entry and zero elsewhere. We have

o) Ga)-Co)G )Gt

where t = 14+p%,u = p(1+p?)~ 1, v =p(1+p?)~t. As p,, is a homomorphism, we therefore obtain

Lag (p)x*as (p) =T—a3 (U)has (t)thB (u>7 (043 € (I)+)'

As before let 4y, ..., d; be the simple roots where [ = |TI|. Then, as in the proof of Theorem 1.6, we
can uniquely decompose

has (1) = [T., hs, (1) for n; € Z.

Now, let P = % €Zp,1+p?>=(1+p)F and let Q = (1 + p?)~! then

l
has () = hay (14 )" =] he, (1 + )™, (a5 € ©F,6; € I0).
=1

This gives that the corresponding relation in the Iwasawa algebra is

l
(14 Va) (14 Veay) = (14 Vea) T+ Wa)™F) (14 V)9, (a3 € 87,5, €T, (118)

i=1
Thus, we have shown

Lemma 1.15. With the notations as above, we have the following relations in A(G(1)):

LT+ W)L+ V) = (1+ V)P (14 wy),

2. (1 + Va1)<1 + Vaz) = (1 + Va2)<1 + Val)’ (al +as ¢ (b)?
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3. (1 + Vou)(l + Vaz) = (Hi,j>0(1 + ‘/ia1+ja2)6ijpi+j71) (1 + Vag)(l + Vou)v (041 +az € (I)),

4o (L4 Vi) (1 Vo) = (1 Vo) (Thy (1 Wa ™) (14 Vi ).

Consider A - the universal non-commutative p-adic algebra in variables V, and Wj, where
« varies over the roots and § varies over the simple roots and the ordering of the variables are
given by the height function on the roots to which they correspond. Thus, it is composed of all
non-commutative series

I= Zn>0 > aza’

where a; € Z,, 2" := Ti(1) - - - Ti(n) and for all n > 0, i runs over all maps {1,2,...,n} — {1,2,...,d};
the monomials z;, with i increasing, are assigned to the product of the variables among {V,,, Ws; o €
®,§ € II} corresponding to a fixed order compatible with the partial order given by the height
function on the roots. The algebra A, denoted by Z,{{z1,...,24}}, has a maximal ideal M 4
generated by (p,x1,...,24) and a prime ideal P4 generated by (z1,...,24). The topology on A is
given by the powers of M 4.

Let R be the closed two-sided ideal generated in A by the relations (1.15 — 1.18). Let A be
the image of the reduction modulo p map on A; i.e. we consider the non-commutative series with
coefficients in F), with its natural topology given by its maximal ideal M.

Lemma 1.16. Let R be the image of R in A. Then R is the closed two-sided ideal generated in
A by the images of the relations (1.15,1.16,1.17,1.18).

Proof. We follow the proof exactly as in lemma 1.3 of [Clol11]. For completeness we repeat the
proof. We denote by Z C A the ideal generated by the relations, let J C A be the similar ideal.
Then J is obviously the image of Z in A; we denote it by .

Let R be the reduction of R, and consider the closure cl(Z) of Z in A. If f € R, we have
[ =lim, f,(f. € Z) for the topology given by M. This implies that f = lim f,, for the topology
given by M% on A, thus f € cl(Z). Conversely, assume f € A can be written f = lim f,, with
fn € Z. Then, f, is the reduction of a series f, € T C R. Since R is closed and A is compact,
we may assume that f,, converges to g € R. Then, by definition of the topologies, f = lim f,, = 3.

Thus cl(Z) = R, which finishes the proof. O

1.6 Presentation of the Iwasawa algebra A(G(1)) for p > 2

Our goal in this section is to give an explicit presentation of A(G(1)) (theorem 1.22). The strategy
of the proof is to first show the corresponding statement with coefficients in F,, and then lift the
coefficients to Z,. Let
Q) = AMG(1)) @z, Fp

be the Iwasawa algebra with finite coefficients as in [Clo11]. We show in theorem 1.21 that for
p > 2, the Iwasawa algebra mod p, Q¢(1), is naturally isomorphic to A/R. We first construct a
map 7 : B=A/R — Qg (see corollary 1.19), then using the natural grading (see the discussion
before proposition 1.20) on B, we show that dim gr"B < dim S,, (see proposition 1.20), where S, is

the space of homogeneous commutative polynomials in the variables {V,, Ws;a € ®,§ € II} over
F,, of degree n.

Let us define
MY = {r e AG)a(N) > N}.

It follows from Lazard’s results [Laz65] (also Schneider, chapter 6 of [Sch11] ) that MY is indeed
the N** power of the maximal ideal M, of A(G(1)).

We consider the filtration of A given by the powers of its maximal ideal. Then we can define a
valuation w4 given by:

let f =3, a;x,
then wa(f) = inf;(val,(a;) + |i])
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where |i| = n is the degree of i.
The non-commutative polynomial algebra

A=Zp{z1,....,zq}
is a dense subalgebra of A.

Lemma 1.17. Let ¢ : A — A(G(1)) be the natural map which sends z; € A (1 <14 < d;i increasing)
to the variable {V,,Ws; oo € ®,6 € I} in the Iwasawa algebra A(G(1)), corresponding to the order
compatible with increasing height function on the roots. Then, this map extends continuously to a
surjective homomorphism A — A(G(1)). Moreover, for N > 0, we have

p(MI) c MY
Proof. For continuity we use the fact that the valuation @ is additive i.e.
SOV 1) = B(N) + () A € A(G(L)).
This is a nontrivial fact proved by Lazard (cf. [Laz65], I111.2.3.3).
The continuity of the map ¢ is implied by the stronger property

@(p(a")) =n =i (1.19)

where n is the degree of the monomial. By induction on n, this follows from the non-trivial fact
that @ is additive. If f € MY, we have wa(f) > N and the continuity follows from 1.19 by
Zy-linearity. The surjectivity follows from (1.12 — 1.14) and the fact that ¢ is already surjective if
A is replaced by the set of linear combinations of the well-ordered monomials (7 increasing). This
completes the proof. O

Therefore, we obtain the following two corollaries:
Corollary 1.18. There is a natural continuous surjection
B=A/R — A(G(1)).
Corollary 1.19. There is a continuous surjection
7 B=A/R - Q)

This follows from Lemma 1.16.

By Abelian distribution theory, Qg(1) is, as a space, isomorphic to the commutative power
series ring in the variables V, and Ws over F,, with the compact topology, where o varies over the
roots and § varies over the simple roots. By obvious computation one can show that

MG ={N € Qany s va(d) = N},

v being the usual valuation on power series, is the reduction of MY . It is also a (two-sided) ideal,
Mg being the maximal ideal.
Similarly, in A we have that the reduction mod p of MY is the ideal of series

=3, a;x" with (a; € Fp)

such that |i| > N. We obtain the maximal ideal of A by setting N = 1. Furthermore, we have
(Mz)™ = M.

In the following we study the algebra B using the relations (1.15,1.16,1.17, 1.18) which are used
to prove Proposition 1.20 below. Then, we will use it to give the proof of Theorem 1.21, which in
turn, after lifting coefficients to Z,, leads to the proof of Theorem 1.22.

Consider the natural filtration of A by the powers of M, which we denote by F"A as in
[Clol1]. We have F" A/F"*1 A = gr" A. The filtration F™ induces a filtration on B:

F"B=F"A+R
and hence a graduation
@B = FUA+ R/ A+R.

Hence, we have
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gr"B=F"A/F"H A+ (FPANR).

Let S, be the space of homogeneous commutative polynomials in the variables {V,,, Ws;a € &, €
I} over F, of degree n. Let X, be the corresponding space of homogeneous non-commutative
polynomials of degree n; hence ¥,, — F"A/F"T!1 A, and therefore ¥,, — gr"B, is surjective.

Proposition 1.20. We have dim ¢r"B < dim S,,.

Proof. The case n = 1 is obvious. We first prove the proposition for n = 2 by studying the relations
defining R (or rather R) and then we use an induction argument to complete the proof.
For a € ®, § €11, relation 1.15 is

(1+ Ws) (1 + Vo) = 1+ Vo) P (14 Wy), (0 € ®,6 € 1),
We set ¢ = (1 + p){®% so that ¢ = 1[p]. Expanding the above relation we obtain

Lk W+ Vo o+ WiV = (1 gV + L50V2 4 ) (14 W),

As % = 0[p] and p > 2,
L+ Ws+ Vo + WsVa = (1+qVa)(1+ Ws) + R(Va) (1 + Ws)
where R(V,) has degree > 3. Thus
WV = (g = 1)Va + q(VaWs) + R1(Va, Ws)

where Ry (V,, Ws) has degree > 3. Since ¢ = 1[p] we deduce

WsVy, = Vo, Ws in grzg.
Relation 1.16 obviously gives for aq,as € ®,aq # —ag, a1 + as ¢ D,

Vo Voo = Voo Vg, (a1, a2 € P).

Relation 1.17 is for oy, € &, 1 # —ag, a1 + ag € P,

(1+ Vo)A +Va,) = (Hi,j>o(1 + ViOc1+ja2)Cijpi+j_1)(1 + Va,) (1 + Va,),

where ¢;; € Z. Now,

itj—1

(1 + V:L'OélJrjaz)Cijp =1+ C‘/ia1+ja2 + C(C2_1) V;%él_kj()Q + -

where ¢ = ¢;;p"~1. Tt is easy to see that p|c if i > 0 and j > 0. As p > 2, and 2 is invertible in
Z,, we deduce

itj—1

(14 Viay i) = 1] mod FB)
This implies
Vi Ve, = Vi, Va, in gr?B.
Relation 1.18 for a3 € ®+ is the following:
(14 Vi) (1 Vo) = (14 Voo )2 (Thiy (14 Wa )™ ) (14 Vi )2, (0 € @65 € ).

The constant Q = (1+p?) " = 1[p?], 4L = 0[p]. As P = % = p[p?], p > 2, 2 is invertible
in Z,, we get that

(14 W;5,)" =1[ mod (p, W§)], (6; € II).
Hence, modulo F38, relation 1.18 reduces to

(14 Vay )1+ Vo) = 14 QV_gy + QVay + Q?V_o,Va,[ mod F3B], (a3 € &T).

Therefore, as Q = 1[p?] we obtain

Vs Veas = Veas Va, in gr?B for az € ®7.
This proves

dim gr2B < dim Ss.



Now, consider an arbitrary monomial of degree n,
T =TT

As in Lemma 3.2 of [Clo11], we can change 2% into a well-ordered monomial (b + i}, increasing)
by a sequence of transpositions. Consider a move (b,b+ 1) — (b+ 1,b) and assume i, > ip1. We
write

P nf o, . e
vt =l x,, @

where deg(f) = r, deg(e) = s and deg(i) = n. Then, from the proof of Proposition 1.20 we have
T, Ty, = Tiy,, i, [FPB]. Hence, we obtain o/ w;,  z;,2° = 2'[F""!],n = r 4+ s + 2. This reduces
the number of inversions in z".

This completes the proof of proposition 1.20. O

In the following we state our main theorems. After proposition 1.20 their proofs directly follow
from [Clo11]. But for convenience of the reader we include the proofs.

Theorem 1.21. For p > 2, the Iwasawa algebra mod p, Q¢ (1), is naturally isomorphic to A/R.

Proof. (Cf. [Clol1]). The natural map ¢ : A — A(G(1)) sends M’ to M7}. As F* on B is the
filtration inherited from the natural filtration on A, we see that @ sends F"B to M¢. As @ is
surjective, the natural map

grg : gr*B — gr*Qea)

is surjective. Moreover, it is an isomorphism because dim gr"B < dim S,, = dim gr"Qcy- (The
last equality follows from the discussion after corollary 1.19, see also Theorem 7.24 of [DSMS03]).
Since the filtration on B is complete, we deduce that % is an isomorphism (cf. Theorem 4 (5), p.31
of [LOY6]). We have B complete because B = A/R, where R is closed and therefore complete for
the filtration induced from that of A. O

Theorem 1.22. For p > 2, the Iwasawa algebra A(G(1))is naturally isomorphic to A/R.

Proof. The reduction of ¢ is . We recall that R is the image of R in A. Let f € A satisfies
©(f) = 0. We then have f € R since A/R = Qga1y. So f =r1 +pfi,r1 € R, f1 € A. Then
©(f1) = 0. Inductively, we obtain an expression f = r, + p™ f, of the same type. Since p"f, — 0
in A and R is closed, we deduce that f € R. O

In conclusion for p > 2 and G simply connected, we have found a Lazard basis of G(1) with
respect to its p-valuation w (see theorem 1.9). Furthermore, we have used it to construct explicit
generators and relations for the Iwasawa algebra (1)) with coefficients in ), (see theorem 1.21)
and then we have lifted the coeflicients to Z, to construct the generators and relations of A(G(1))
(see theorem 1.22).
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2 Iwasawa algebra for the pro-p Iwahori subgroup of GL(n,Z,)

2.1 Introduction

Let G be the pro-p Iwahori subgroup of SL,(Z,), that is, the group of matrices in SL,,(Z,) which
are upper unipotent modulo the ideal pZ,,.

Recall from section 1.1, the notion of the Iwasawa algebra of G which is a non-commutative
completed group algebra defined by

AG) == lm (G/N),
NeN(G)

where N(G) is the set of open normal subgroups in G. This algebra has many applications in
number theory and p-adic representation theory ([Emel7]). It is used by Iwasawa [Iwa59] to study
the growth of class numbers in towers of number fields. Schneider and Teitelbaum use the Iwasawa
algebra to study the category of Q,-Banach representations of compact p-adic Lie groups [ST02a).
In section 1, we found an explicit presentation of the Iwasawa algebra for the first principal con-
gruence kernel of a semi-simple, simply connected Chevalley group over Z,. In this section, our
goal is to extend the method to give an explicit presentation of the Iwasawa algebra for the pro-p
Iwahori subgroup of SL(n,Z,) generalizing the work of Clozel for n = 2 [Clo17]. Our main result
(see Theorem 2.15) is the following.

Theorem. For p > n+ 1, the Iwasawa algebra of the pro-p Twahori subgroup of SL(n,Z,) is
naturally isomorphic as a topological ring to A/R.

Here A is a non-commutative power series ring over Z,, in the variables V,,, W5, Ug where «, 6, 8
varies over the positive, simple and negative roots respectively. The ordering among the variables
is given by the ordering on the roots as in Theorem 2.5. The algebra R is a closed two-sided ideal
in A generated by a set of explicit relations between these variables (2.50-2.64).

We first deduce the explicit presentation for Qg := A(G) ®z, F,, the Iwasawa algebra modulo p
(theorem 2.4.2) and then we lift the coefficients to Z,. We also extend our proof to the case when
G is the pro-p Iwahori of GL(n,Z,) (corollary 2.15).

The explicit presentation can be used to define a "formal base change map" [Clo17] of Iwasawa
algebras
AL — AQP

where Ay, is the Iwasawa algebra over a finite unramified extension L of Q,. Such a formal base
change map is given by power series which only converge for the globally analytic distributions
(continuous dual of the rigid-analytic functions) on the pro-p Iwahori seen as a rigid-analytic space
(loc.cit). This leads us also to the study of the globally analytic vectors of p-adic representations
which will be our object in section 3.

Apart from the above implications of our explicit presentation of the Iwasawa algebra, Dong
Han and Feng Wei note that our results may provide possible ways to answer the open question on
the existence of non-trivial normal elements in Qg := A(G) ®z, F,, (cf. introduction and section 5
of [HW18]). An element r € Q¢ is normal if rQ¢ = Qgr. The question on the normal elements was
originally posed in [BW13], later reformulated in [HW18] having dealt with the case for SL(2,Z,)
and SL(3,Z,). As noted in [HW18|, the normal elements help in constructing reflexive ideals in
the Iwasawa algebra. The main question of Han and Wei is to find a mechanism for construct-
ing ideals of completed group algebras without using central elements or closed normal subgroups
which provide natural ways to construct ideals in the Iwasawa algebra (loc.cit).

Roadmap. Section 2.2.1 is devoted to preliminary notations. The theorem on ordered basis
of the pro-p Iwahori group G with respect to the p-valuation w (2.1) on G is given in section 2.2.2
(theorem 2.5). In section 2.3.1 we recall the notion of the Iwasawa algebra A(G) of G, the algebra of
p-adic measures on G. By a theorem of Lazard, this algebra is isomorphic as a Z,-module to a ring
of power series in several variables. The relations between the variables inside A(G) are given in
lemma 2.11 in section 2.3.2. The computations for the proof of lemma 2.11 are included in section
2.5. Sections 2.3.1 and 2.4.1 deal with the construction of a continuous surjection ¢ : A — A(G).
Let B := A/R be the reduction modulo p of A/R. The algebra B has a natural grading discussed
after Theorem 2.4.1. For integer m > 0, we provide an upper bound on the dimension of the m-th
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graded piece gr™B in section 2.4.2 (see lemma 2.14). The computations for the proof of lemma
2.14 is included in section 2.6. Finally, the proof of the explicit presentation of Q¢ and A(G) is in
section 2.4.3.

2.2 Lazard’s ordered Basis for the pro-p Iwahori subgroup G

Recall that G is the pro-p Iwahori subgroup of SL,,(Z,), i.e. G is the group of matrices in SL, (Z,)
which are upper unipotent modulo the maximal ideal pZ, of Z,. The goal of this section is to find
an ordered basis in the sense of Lazard [Laz65] for the pro-p Iwahori group G. This will later be
used in deducing an explicit presentation of the Iwasawa algebra of G (theorem 2.4.3).

In this section, we first define a function w1 on G which is a p-valuation (2.2) in the sense of
Lazard (cf. chapter III, 2.1.2 of [Laz65]). Then, in section 2.2.2, we give an ordered basis for the
p-valuation (Theorem 2.5). This means that we find an ordered set of elements g1, ..., g4 € G such
that

1. The map ZZ — G sending (z1, ..., 24) = ¢;' -+ g;* is a bijection and
2. wi(gy' -+ gq") = mimcica(wa (gi) + valp(2)).

(Cf. section 1.2).

2.2.1 p-valuation on G

Let p be a prime number. Fix a pinning [GP11, XXIII 1] of the split reductive group SL,, over Z,
(TS, M7 (pa H7 (X§)<EH)
where T is a split maximal torus in SL,, M = X*(Ts) is its group of characters,

9=200D Dcecabs

is the weight decomposition for the action of Ts on g = Lie(SL,,), II C ® is a basis of the root
system ® C M and for each ¢ € II, X, is a Z,-basis of g..

We denote the positive and negative roots by ® and ®~ respectively with respect to the stan-
dard Borel subgroup of SL,,(Z,). The height function on the roots h(s) € Z of ¢ € ® is the sum of
the coeflicients of ¢ in the basis IT of ®. We expand (X )cen to a Chevalley system (X¢)ceq of SL,
[GP11, XXIII 6.2]. For ¢ € ®, t € Z),, A € Z, we denote z(t) = exp(tX,), he(A) = we(Nwe (1),
where w.(\) = 2 (A)x_ (=2 Ha (N).

Henceforth, we assume
p>n+1. (2.1)

Thus, G is p-saturated (cf. Lazard, [Laz65], 3.2.7.5, chap. 3 ).
The following construction can be found in [Sch1l, p. 172].

Definition 2.1. For each real a with ﬁ <a< %, g € G,g = (a;;), a p-valuation w, on
G is given by

wa(g) : = min <1<r1171’$i§1<n((j —i)a + valy(a;j;)), 1r<nii£1” valy(ai; — 1))7 (2.2)
— min ((j — i)a + valy (i), 4. valy(ai; 1)). (2.3)

Setting a = %, we write simply w for w,. The function w makes G a p-valuable group in the
sense of [Laz65, I111.2.1.2]. In fact, for p > n + 1, (G,w) is p-saturated [Laz65, I111.3.2.7.5].

The pro-p Iwahori group G has a triangular decomposition

G=N"TNT"
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(cf p. 317, section 1.6 of [Gar97], also [BT72|), where N~ (resp. NT) is the subgroup of lower
(resp. upper) unipotent matrices of G and T is the subgroup of the diagonal matrices of G. Let
o, 8,8 be the roots in ®*, &~ II respectively. From 2.2 we deduce that

wlas@) =D 11 peam = Gi)i> (2.4
w(hs(1+p)) =1; 6 €11, (2.5)
wlra() = VD @t o= (i) i< 2.0

In the next section we are going to use this p-valuation w on G in order to find an ordered basis of
G in the sense of Lazard (cf. Lazard, [Laz65, III, 2.2]).

2.2.2 Ordered basis

In this section we find an ordered basis for the p-valuation on G (theorem 2.5). But before proving
theorem 2.5 we need a preparatory lemma 2.2 and a proposition 2.3. Let E;; be the standard
elementary matrix at (4, j)-th place.

Lemma 2.2. Any element g € G has a unique expression of the form

g=TI zs(up) IT s +vs5) J] wa(wa), (2.7)

BED— o€ell acedt

where ug, vs € pLp, W € Zy. The order of the products is taken as follows (compare also theorem
2.5):

(i) first take the lower unipotent matrices in the order given by the (increasing) height function
on the roots,

(ii) then take the diagonal elements hs(1 + p) for 6 € I starting from the top left extreme to the
low right extreme and,

(iii) finally, take the upper unipotent matrices in the following lexicographic order:

The matriz (1 + E; ;) comes before (1 + Ey ;) if and only if it > k andi=k = j > L

That is, for the upper unipotent matrices we start with the low and right extreme and then fill
the lines from the right, going up.

Proof. e Any element of T' can be uniquely written as [[;. hs(1 + vs) with vs € pZ,. (cf. last
paragraph of the proof of Theorem 3.2 of [Ray16].) If 6 = (i,i4 1), then hs(1+ vs) is the diagonal
matrix (14 p)»E;; + (1 4+ p) " Eiy1,i+1 + Z#i E; ;. So, each element Z of T can be uniquely
written as

Z =% (14p)™ermorth=1 [y g (2.8)

NE

E
I
-

for unique zy 1 € Z, and x99 = Tn,n = 0.

e For z; ; € Z,, we have

(1 +pxn,1En,1)(1 +p$n—1,1En—1,1)(1 +pzn,2En,2) ce (1 +p$n,n—1)En,n—1
=1 +pxn,1En,l +pxn—1,1En—l,1 +pxn,2En,2 + - +pxn,n—1En,n—1;

where the order of the product is taken according to the (increasing) height function on the roots.
This directly implies that every element X of N~ can be written as

X =1+pE, 1) (1 +pEp_11) " (1 + pEpo)™? - (1+pEpp_1)™" "t =1+ Z pxi i Ei g,

1€[2,n]
je[l,i—1]

(2.9)

with unique z; ; € Z,.
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Thus, each element of N~ can be uniquely written as a product Hﬂe@- x(p) with the ordering
given by the height function.

e Also, because of our dual lexicographic order on N*, we have

(1 + xnfl,nEnfl,n)(]- + xn72,nEn72,n)(]~ + mn72,n71En72,n71) T (]- + x1,2E1,2)
=1+ mnfl,nEnfl,n + $n72,nEn72,n + $n72,n71En72,n71 + -+ $1,2E1,2-

Indeed, for any b € N, if we take the product of the first b terms in the L.H.S of the above equation,
the set of column entries which appears in the subscript of the elementary matrices of the product,
is disjoint from the row entry which appears in the subscript of the elementary matrix occurring
in the (b + 1)"" term of the product in the L.H.S. We also use E;jEy, = E;; for j = k and
E;jE,,=0if j #k.

So, each element Y of N* can be uniquely written as

Y=(0+Eu1n)" """ (14 Eygp)™ (14 Epg )™ 2" (L + By p)™? =1 + Z zi i Ei j,

i€[l,n—1]
JEli+1,n]
(2.10)

with T € Zp.

Therefore, from the triangular decomposition G = N"TN™T, we get that each element g € G
has a unique expression of the form

9= H mB(UB)Hh(s(l-F’U(s) H To(Wa), (2.11)

peED— eIl aedt

where ug, vs € pZy,, wo € Zy,. The order of the products is taken according to Theorem 2.5. This
proves lemma 2.2. O

In order to find an ordered basis for the p-valuation on G, we need to compute the p-valuation
of the product XZY (the matrices X,Y, Z are defined in the proof of lemma 2.2).

Proposition 2.3. Let a; ; be the (i,§)" entry of the matriz XZY = (a; ;). Then,

ar; = (L+p)™ 'y, j€ [2,n] (2.12)
aig =prii(1+p)™", i € [2,n] (2.13)
ary = (1+p)™** (2.14)

iy = (3 ps s (1 p)™r 54100 opay (L4 p)™0 51971 2 < j<i<n (215)

k=1

@i = (D P (L 4+ p)™r ™ tbot) oy (L4 p) i "mtint 2 <i<j<n (2.16)
k=1
m

@ij = (Y prigay (L +p) ™o thet) 4 (14 p)"e=tint 2 <= j <. (2.17)
k=1

Proof. Multiplying the matrix X (see equation 2.9) with Z (see equation 2.8) we get

X7 — Z(l 4 p)TRk TR L By Z pxm'(l +p)iﬂj,j—wj—1,j71Ei’j. (2.18)
=t gl::12£1
So, if we write the (i,)!" coordinate of the matrix XZ by (XZ); ;, then we deduce (from 2.18)
that
(XZ)i,l = pxi,l(l _|_p):v1,17 (S [2an]a (219)
and
(XZ)11=14+p)*",(XZ)1, =0, j€[2,n] (2.20)
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Also, for i > 2, it is clear from equation 2.18 that the i*” row of the matrix X Z is

pzia(1+p)*rt, ., pr;i—1 (1 4 p)Pi-timt7%i2i=2 (] 4 p)Fii=%i-Li=1 ( (), .., 0] (2.21)

(XZ)ii-1 (XZ)i,i

In order to compute the (i, §)*" entry of the matrix X ZY = (a; ;) we have to multiply the i'* row
of the matrix X Z given above by the j*" column of the matrix Y (the matrix Y is given in 2.10).

Now, as the first row of the matrix Y is [1, 21 9,21 3, ..., 1,»), from equation 2.20 it is clear that
ar; = (L+p)™'ay;, j€[2,n]. (2.22)

As the first column of the matrix Y is [1,0, ..., 0]* (here ‘¢’ denotes the transpose of the row vector),
we deduce from equation 2.19 and 2.20 that

a1 =pxi(1+p)™, i€ [2,n], (2.23)
and
a1y = (1+p)™". (2.24)
For j > 2, the j** column of the matrix Y is

t
[‘Tl,j; T2,y Lj—1,5, ]., 0, ceey 0] .

Therefore, multiplying the i** row of the matrix X Z given by 2.21 with the j** column of the

matrix Y given above, for i,j > 2,m = min{i — 1,j — 1}, we get the following three subcases
(viz. i>ji<jandi=j):
m
Qi,j = (pri,kxk,j(l +p) RTINS opay (1 4 p) T T 2 < < i<,
k=1

m
@iy = (Y pwipap (14 p)"sr T h0) gy (14 p) "7t 2 < < j <,
k=1

m
a;j = (pri,klfk,j(l 4 p)TRETTR=Lk=1) (] p)TiiTTimLicl 2 <= < p.
k=1

This completes the proof of proposition 2.3. O
Proposition 2.3 gives us the following corollary.

Corollary 2.4. The valuations of the terms a; ; obtained in equations (2.12 — 2.17) are the fol-
lowing:

valp(a,;) = valy(z14), > 2, (2.25)
valp(a;,1) = valy(pri), i > 2, (2.26)
valp(ai1 — 1) =1+ valy(z1,1), (2.27)
valy(ai;) = valy (Y pesseey) +priy), 0,5 > 20> jym =j -1, (2.28)
k=1
valy(a; ;) = val, ((pri7ka:k,j) + x@j), i,j>2,i<jm=i—1 (2.29)
k=1
valy(a;,; — 1) = valy ((Z PTikTk,i) + P(Tii — xi—l,i—l)), iz2m=i-1 (2.30)
k=1

The following theorem gives an ordered basis for the p-valuation w on G.

Theorem 2.5. The elements
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{2s(p), hs(1 +p),2a(1); 8 € 7,6 €T, v € 7}
form an ordered basis for the p-valuation w on G, where the ordering is as follows:

(i) first take the lower unipotent matrices in the order given by the (increasing) height function
on the roots,

(i1) then take the diagonal elements hs(1 + p) for 6 € I starting from the top left extreme to the
low right extreme and,

(iii) finally, take the upper unipotent matrices in the following lexicographic order:

The matriz (1 + E; ;) comes before (14 Ey ;) if and only if i > k andi=k = j > [.

Point (iii) means that for the upper unipotent matrices we start with the low and right extreme
and then fill the lines from the right, going up.

Proof. Let g1, ...,94 (d = |®| + |II|) denote the ordered basis as in the statement of Theorem 2.5.
Then, by lemma 2.2, we have a bijective map

7 — G
(Tn1,..n T12) = gf"'l . ~g§1’2
In the following, our objective is to show
wlgr™" - g4"?) = w(XZY)
= min % +valy(a; j)izs, valp(a; ; — 1)),
min {w(xg(p))—&—valp(xil,jl),w(ma(l))—l—valp(ximz),w(h5(1—|—p))+valp(act7t)}.

(i1,51)=BEP ™, (iz,j2)=0€dT
(t,t+1)=6€ll,te[l,n—1]

Let us define, for 1 <4,j <n,

J—i L,

’Ui’j = T + valp(ai’j); (’L 75 _j), (2.31)

Vii = valp(ai,i — 1). (2.32)
Then we have to show that

wlgi™ g ) = w(XZY) = win (o) (2:33)

- min {w(@s(p)) + valy (@i, 41) 0(@a (1)) + valy (@i g2 ). (ks (1 + ) + valy (@)},
(i1,§1)=BEP ™, (i2,j2)=a€d™
(t,t+1)=b€11
(2.34)

for iy > j1,i2 < jo,t = 1,...,n — 1. The first two equalities of the above equation are obvious (by
definition). To prove the last equality we will rearrange the v; ;’s and then use induction. First we
order the v; ;’s, appearing in equation 2.33 in such a way that the indices are given by:

(forall 1 <i,j,i',j <mn)if min{i',j } <min{i,j} then vy ; comes before v; ;. (2.35)

Such an ordering of the v; ;’s can be achieved by first taking the v; ;’s in the first row and the first
column starting from the top left extreme (v11,..,v1,n,v2,1,-..;Un,1), then the second row and the
second column (va2, ..., V2,n, U3,2, ..., Un,2) and so on.

To compute w(g;™" -+ -g;"?) = min(v; ;) we use induction: As the basic step of the induction
process (the zero-th step) we compute Sy 1= min(vy 1, ..., V1,0, V2,1, ..., Un,1) = MiNo<; j<n(V1,1,01,,V4,1)
and then we proceed in stages, adding one v; ; at each stage of induction according to the pre-
scribed order of the v;;, i.e. in the first stage we compute S; := min{Sy,v22}, then in the
second stage we compute Sp := min(S7, v 3) and so on until we have completed computing
minimum of all the v;;’s. Note that in the last stage, i.e. at the stage n* — n — (n — 1),
Sp2—ont1 = miti<ij<p{vi } = wlgr™ - g5"?) (cf. (2.33)).

From the definition of v; ; (see equation 2.31) and equations (2.25 — 2.27) of Corollary 2.4 we
get, for 2 < 4,5 < n, that
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. . i1 —
2;2;1%71(@171,@1,]4,11@1) = QSI?%n {jT +valy(ar,;), % +valy(a;1),val,(a11 — 1)}

= 2<mig {% +valy(z15), =4 + 1+ valy (i), 1+ valp(xlyl)}
<ij<n

= Ijr)n[r}i(i N {w(ma(l)) +valy(x1,5), w(zs(p)) + valy(x; 1), w(hs(1+p)) + valp(xm)}.
5=(1,3),2<i,j<n

Then, at each stage of the induction, say ¢'* stage, ¢ € N, of computing the minimum, we
compute Sy = min(Sy_1,v; ;) for some (¢, 7) with ¢,j > 2, where S;_; is the minimum computed
in the (g — 1) stage [the subscript ¢ depends on (4, j)].

Henceforth, we fix the coordinate (i, ) appearing in the definition of S,. Note that S,_; is by
definition minimum of all the v,/ ;» appearing before v; ; in the ordering and by induction hypothesis
we can assume that

Sq—1= m}}n {w(xa(l)) + valp(xi;,j;),w(mﬁ(p)) + valp(xifl 1 )sw(hs(L+p)) + valp(:ct,t)}, (2.36)

’
1

where H = {a = (’L;,]é) €Pt,B= (le,ji) € ®,0 = (t,t +1) € II such that v gt < iy Uy i <
Vi g, Vet < Ui,j}- ( Here, the symbol < denotes the order function and not the ordinary less than

symbol, that is, when we write v,/

13

;< Ui We mean that v,/ j/ comes before v; ; in the order given
1

12J1

by equation 2.35). By proposition 2.6 below, we have

Sq :=min{Sy_1,v; ;} = min{S,_1,V; ;}, (2.37)

where

Vij = w(Tg,=(i,5)(p)) + valy(z; ;); (if i > 7)
Vig = w(Ta,=(i,5) (1)) +valy(z; ;); (if © < j)
Vij = wlhs—(iiv1)(1 + D)) +valp(xi — xi-1,-1); (if 0 = j).

Assume 2.37 for now (for the proof see proposition 2.6 below).
Therefore, in the last stage (i.e when ¢ = n?> —n — (n — 1)) of our induction process we will
obtain

w(gfﬂ,l . 951,2)

= min (% +valy(ai;)izj, valy(ai, — 1)),
= mini<; j<n(vi;) (with ordered v; ;),

= OPg=n2-2n+1>

{nin {W(fﬂﬁ (p)) +Uall)(xi1 ,J1 )7 W(I‘a(l)) +Ualp(zi27j2), W(h§(1 —|—p)) —|—’U0le(1‘t7t) } .
(i1,41)=BEDP™, (iz,j2)=a€d™
(t,t+1)=3€I1,te[1,n—1]

This complete our proof of Theorem 2.5. O

Proposition 2.6. With notations as in the proof of Theorem 2.5, we have
Sq = min{Sq_l, Ui,j} = min{Sq_l, V;,j}, (238)
where

Vij = w(@g,=(1,5)(P)) + valp(zi;); (if i > j)

Vij = w(@ay=(i,5) (1)) +valp(wi;); (if i < j)

Vij = w(hs=(iit1)(1 +p)) +valy(zii — zi—1,i-1); (if © = ).
Proof. To prove equation 2.38, we first note that for all k = 1,...,m = min{i — Lj— 1}, we have
k < i,k < j, hence (cf. equation 2.35) the terms w(zg,—(i ) (p)) + valy(zi k) = B4 + val,(pz; k)
and (T, (1 jy(1)) +valy(zx, ;) = L5 +val,(zy,;) belong to R.H.S of equation 2.36 (because since
k < iand k < j, equation 2.35 gives v; ;, < v;; and vk ; < v; ;). Thus, to prove equation 2.38, it
suffices to find

k—1 | —k
min {TZ +wval, (px;i k), ]T +valy(zr,j), ”i,j} (2.39)

k=1,....m
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and show that

gk j—k
ppin (= + valy (i), = + valy (), v |

= min {W(xa1=(k,y‘)(1))+mlp(ﬂck,j)vw($51=(i,k)(P))+mlp($z‘,k),‘/%,j}~
al:i’lﬂ)’ﬂﬁ(”k)

We divide this problem in three cases, first when 7 > j, second when ¢ < j and third when i = j.
These three cases are dealt in (I),(II),(III) below.

First we consider the case i,j > 2,i > j,m:=min{i — 1,5 — 1} =75 — 1. So m < j < 4. Then

min { i valy(pri k), 58+ valy(wg ), i = 5+ Wlp(ai,j)}

= min {% + 14 valp(zi ), 55 + valy (k. 5), 2 + valy (O jey prigs, ;) +pxz‘,j)}

oo min_ - w(as, (p) +valy(rie), wra, (1) Fvaly(re), T2 valy (S proses)+pas) |
1=(,,R),a1=(Rk,
=1,..m

= il () + vl ) e, (1) + vl ) 9) + vy ()} (D),
Ba=(i,7) k=1,...m
where the first equality follows from 2.28 and the second equality follows from (2.4 — 2.6). To
prove the last equality, we notice that if val,(px; ;) < val,(3"}-, px; Tk, ;) then it is obvious. On
the other hand, if

valy(pz; ;) > valp(pri,kxkyj) (2.40)
k=1
then both the terms (L.H.S and R.H.S of the last equality of I) equals

oo min_ (s, (p) 4 valy(ri), (e, (1) + valy (i)

k=1,...m
because
. Z m - /l m .
jT + valp((z DT KTk ;) + DT ) > jT + valp(z P KTk, ;) (using (2.40)) (2.41)
k=1 k=1
. .
2=+ k:r{?'r.l)m{valp(pxi’k)} (2.42)
L qimi |
= Ie:I{le.l,m{ - + valp(pajl7k)} (2.43)
b
> i r{lin {—Z +valp(pxi7k)} (assk<m=j—1<j)
=1,..., m n
(2.44)
:hgmm%d%F@@@»+w%@M%. (2.45)
and
j—i
W(Zgy=(i,5) (P)) + valp(zij) = —— +valy(pzi;)
J—1 - .
> l i j 2.40
2 vl (Yprisr) (wing (2:40)
> kzr{linm {w(mBl:(M) (p)) + valp(xi,k)} (using (2.41 — 2.45)).

The argument for the case 7,7 > 2,i < j,m =i —1 < i < j is similar to our previous computation
and so we omit it. The result that we obtain in that case is the following:
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i r{lin {k iy valy(pxig), SF 4 valy (), vij = % +valp(ai7j)}
=1,....,m
s in {w(wﬂl () +valy(@in), w(@a, (1) +valy(zr,g), 5 +valy ()L, priker,;) +$i,j)}
1=%,R),1=(R,
k=1,...m

= min Lo, () + valy (@ 1), @, (1) + valy (@ 5), (20, (1)) + valy (z1,) }—(I1).
51:((zl,l§))721:1(k,3)
as=(i,5),k=1,...m

Now,fori,jZ2,i:j,m::min{ifl,j—l}:i—lzj—l,

] qnn { - p(DTik), = E 4+ val p(Th.5), vis = valp(a; ; — 1)}
{k i valy(pz;, k) =k 4 yal p(zk,5), val ((Zzn:lpxi,kl'k,i) +p(zi; — xi_u_l))}
— kir{ﬁn {k i 4 pal »(PTs, k) k1 val p(Tr,5), 1 +valy(z;; — xi,u,l)}
5 (.kf)nin ) {w(xﬁl(p))+mlp($i,k),W(fﬂal(U)erlp(xk,j),W(h6(1+P))+”alp(fEi,i*wi—l,z‘—l)},
1=(v,R),x1=(~R,7),

5=(i,i+1),k=1,...m

—-(II1)

where the first equality follows from 2.30 and the third equality follows from 2.5. To prove the
second equality, we notice that if val,(p(x;; —zi—1,-1)) < valp(zzlzl PT; kTk,;) then it is obvious.
On the contrary, if

valy(p(x;; — ®i—1,i-1)) > valp(z DT kTh i) (2.46)
k=1
then both the terms (L.H.S and R.H.S of the second equality of III) equals

min {k L 4 val » (D4, k) E + val (mk,j)}

k=1,....m
as
valp((pri’kxkyi) +p(wis —xic1,i-1)) > valp(z P pTk,;) (using (2.46)) (2.47)
k=1 k=1
> kir{lin {valp(pxi,k)} (2.48)
. k—i .
> pnin {T + valp(pxi,k)} (as k < 1) (2.49)
and

1+ wvaly (x5 — i—1,i-1)) > Ualp(z PT; KTk ;) (using (2.46))
k=1

b
>  min {—Z + valp(pxi,k)} (using (2.47 — 2.49))

k=1,....m n

This completes the demonstration of equation 2.38.
O

Remark 2.7. Note that in theorem 2.5, we have ordered the lower unipotent matrices by the
increasing height function on the roots. Theorem 2.5 also holds true (with the same proof) if we
order the lower unipotent matrices by the following (lexicographic) order:

the matrix (1 + pE; ;) comes before (1+ pEy;) if and only if i < kand i =k = j </,

that is, we start with the top and left extreme and the fill the lines from the left, going down.

With Tg,1 € Zp,

(1+pr21E21)(1+ pr31Es1)(1+prsabsa) - (1+prpn-1Enn—1) =1+ Z pxi ;i Ei g,

1€[2,n]
jel,i—1]

(this is X in equation 2.9). Indeed, for any b € N, if we take the product of the first b terms in
the L.H.S of the above equation, the set of column entries which appears in the subscript of the
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elementary matrices of the product, is disjoint from the row entry which appears in the subscript
of the elementary matrix occurring in the (b+ 1)*" term of the product in the L.H.S. We also use
Ei,jEk,l = Ei,l for ] =k and Ei,jElc,l =0 lf] 75 k.

The rest of the proof of Theorem 2.5 goes without any change.

2.3 Relations in the Iwasawa algebra

In this section we first recall the notion of the Iwasawa algebra of G which is naturally isomorphic
as a Zp-module to a commutative ring of power series in several variable over Z,. Then we find
the relations between those variables in order to give a ring theoretic presentation of the Iwasawa
algebra (lemma 2.11).

This section is organized as follows. In section 2.3.1, we recall the notion of the Iwasawa
algebra of G, and for B € @, € ®T,6 € II, we identify (as a Z,-module) the Iwasawa algebra
of G with the ring of power series in the variables Ug, V,,, Ws over Z,. This isomorphism is given
by sending 1+ V, +— x4(1),1 4+ W5 — hs(1 +p) and 1 + Us — z3(p). As the Iwasawa algebra
is non-commutative, this isomorphism is obviously not a ring isomorphism. Therefore, in section
2.3.2, we study the products of the variables "in the wrong order", viewing them as elements of
the Iwasawa algebra and then we find the relations among them (2.50 —2.64). Finally, we consider
A to be the non-commutative power series over Z,, in the variables V,, W5, and Ug corresponding
to the order of roots as in Theorem 2.5 and construct a natural map ¢ : A — A(G) which factors
through the quotient of A modulo the relations (2.50 — 2.64).

2.3.1 Iwasawa algebra

After Theorem 2.5, we have a homeomorphism ¢ : Z¢ — G. Let C(G) be continuous functions
from G to Z,. The map c induces, by pulling back functions, an isomorphism of Z,-modules

¢ : C(G) ~ C(Z).
Definition 2.8. Let A(G) be the Iwasawa algebra of G over Z,, that is,

AG):= lim (G/N),
NeN(G)

where N'(G) is the set of open normal subgroups in G.
Now, lemma 22.1 of [Sch11] shows that
A(G) = Homgz, (C(G), Zy).
So, dualizing the map c*, we get an isomorphism of Z,-modules
Cyx = A(Zg) =~ A(G).
Lemma 2.9 (Prop. 20.1 of [Schll]). We have the following isomorphism of Z,-modules

¢: Zpl[Us, Vo, Ws; B €D, a0 € dF, 5 € IT]] & A(G)
14 Vo — 24(1)
14+ Ws — hs(1+p)
14+ Ug— z5(p).

We note that for obvious reasons the isomorphism above is not a ring isomorphism. Now, let
bi:=g; —1and b™ :=b]"* ---b"* for any multi-index m = (my, ..., mq) € N

Definition 2.10. We can define a valuation on A(G)
@:=a&1 : A(G)\{0} — [0,00)
by
&(Cer emb™) = it s (valy (em) + iy mido(g:))
where ¢y, € Z,,, with the convention that ©(0) := oco.

The valuation @ is the natural valuation on A(G) (cf. [Schll, Section 28]).
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2.3.2 Relations

The isomorphism ¢ of lemma 2.9, provides an identification of the variables V,, Ws,Up as the
elements of the Iwasawa algebra of G. Our objective is to find the relations among the above
variables. For this we use the Chevalley relations [Ste67] and sometimes also direct computation.

Lemma 2.11. In the Iwasawa algebra A(G), the variables V,,, W5, Upg satisfy the following rela-
tions.

(14 Ws)(1+Up) = (1+ Up)' (1 + Ws), (B € ®7),q= (1+p)»? (2.50)
(14 Ws)(1+ Vo) = (14 Va)? (14 Wp), (@ € d),q = (1 +p)? (2.51)
VoUp =UpVa, (@ € T, 3€ @™, a# —B,a+ ¢ D) (2.52)
(14 Vo)A +Up) = (14 Viie)P(L 4+ Up)(1 + V)i < k, (= (i,§) € T, 8= (j,k) € &~ )( |
2.53
1+ Vo)A +Up) = (L4 U)X+ Up)(1 + Va),i >k, (a = (i,§) € 7,8 = (j, k) € @) -
2.54
(1+Va)A+Up) = (14 Vi) PA+Up) (1 + Vo), k < j, (e = (i,j) € 2*, 8 = (ki) € c1>—)( |
2.55

(L4 Va)(14+Up) = 1+ Up ) "1+ Ug) (1 + Vo), k> j, (e = (i,§) € @T,8 = (k,i) € &™)
(2.56)

(1+va)(1+U,a):(1+U,a)<1+1’>’1(1+W(l,i+1)) 1+ W 1j>)(1+v><1+1’> o= (i,§) € )

(

Up,Us, = Us,Up,, (B1,B2 € 7,51+ B2 ¢ @) (

(1 +Up )1+ Us,) = (1 4+ Ugi))*(1 + Up, ) (1 + Up,), (b1 = (i, 5), B2 = (4, k) € ®7) (
(1+Up, ) (A +Up,) = (1 + Ug,j)) "(1+ Up, ) (1 + Up, ), (Br = (i,4), B2 = (ki) € ©7) (2.60

Wi, Ws, = W5, Ws,, (01,062 € I1,01 # J2) (

Vs Vay = Vo Vay, (1,00 € @1 g +an ¢ @) (

(14 Vo )L+ Vi) = (14 Vi) (14 Vo, )(1 4 Vi), (a1 = (i,4), a2 = (5,k) € 27) (

(14 Va )X+ Vo) = (1 + Vi) A+ Vo )1 + Vi, ), (a1 = (4,5), a2 = (k,i) € 7). (2.64

Proof. We use the Steinberg’s relations in the group G and then translate them in A in order to

deduce the relations in lemma 2.11. For example, recalling the notations hs(1 + p) and zg(p) in
section 2.2.2, Steinberg [Ste67] gives

hs(1+p)zp(p)hs(1+p)~" = 25((1+p)*Vp), (B € 7,0 €10),
where (8,6) € Z (cf. p. 30 of [Ste67]). So the corresponding relation in the Iwasawa algebra is
(1+Ws)(1+Us) = (1+Up)(1+ W;s), (8 € @), (2.65)
where ¢ = (1 4 p)‘?%). This is relation 2.50

By similar means we compute the other relations of lemma 2.11. One can find the computation
in section 2.5. O

We consider A - the universal p-adic algebra of non-commutative power series in the variables
Vo, Ws, and Ug where « varies over the positive roots, ¢ varies over the simple roots and g varies
over the negative roots. We denote A = Z,{{V,, W5,Up, € ®*,6 € I, 3 € &~ }}. Thus, it is
composed of all non-commutative series

= Zk>o > aixt
where a; € Z, and, for all k > 0, ¢ runs over all maps {1,2,....k} — {1,2,...,d}, (d = |®| +
|HD we set 1 = U(n,l) To = U(n 1,1); %3 = U(ng),...,x%_‘rl = W(1’2)7"'7$M =
W(n_lm),x# = Vin—1,n)s---»Ta = V(1,2), i.e. x;’s (with 4 increasing) are assigned 2to the
variables among {V,,, Ws,Ug} corresponding to the order as prescribed in Theorem 2.5. We set
Tt =Ty Tig2)  Tigk) - B
Let R C A be the closed (two-sided) ideal generated by the relations (2.50-2.64) and A be the
reduction modulo p of A. After lemma 1.16, we obtain
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Corollary 2.12. Let R be the image of R in A. Then R is the closed two-sided ideal in A
generated by the relations (2.50-2.64).

2.4 Presentation of the Iwasawa algebra A(G) for p >n +1

Our goal in this section is to give an explicit presentation of A(G). The strategy of the proof is to
show the corresponding statement for

Qg :=Ag Rz, Fy,

which is the Iwasawa algebra with finite coefficients. We show in Theorem 2.4.2 that for p > n+1,
the Iwasawa algebra ()¢ is naturally isomorphic to .A/R. In section 2.4.1, we construct a continuous
surjective map ¢ : A — A(G). Thus, we get a natural continuous surjection B := A/R — A(G).
Therefore, by lemma 2.12, we obtain a surjection % : B := A/R — Qg. In section 2.4.2, using the
natural grading on B, we show that dim gr™B < dimg, gr'"* Q¢ (cf. Proposition 2.14). Finally, in
section 2.4.3, we give the proof of an explicit presentation of A(G) and Q¢ (cf. Theorems 2.4.2
and 2.4.3). Later in corollary 2.15 we extend our result to obtain an explicit presentation of the
Iwasawa algebra for the pro-p Iwahori of GL(n,Z,).

2.4.1 Iwasawa algebra with finite coefficients

We first construct a natural surjective, continuous map ¢ : A — A(G).
The non-commutative polynomial algebra

A= Zp{l'l, ceey {L‘d}
is a dense subalgebra of A.

Lemma 2.13. Let us define a natural map ¢ : A — A(G) mapping x; € A (with i increasing) to
the corresponding variable among {V,, W5, Ug} in the Iwasawa algebra A(G), according to the order
as prescribed in Theorem 2.5. Then, this map extends continuously to a surjective homomorphism

A= AG).

Proof. Tt suffices to show that if a sequence in A converges to 0 in the topology of A, the image
converges to 0 in A(G).
The topology of A is given by the valuation v 4; we write
F=Y a
vA(F) = inf;(val,(a;) + |i]).
Lazard (cf. 2.3, chap.3 of [Laz65]) shows that w is an additive valuation, w(nv) = w(v) + w(n) for
v,n € A(G). For F € A, with image u € A(G), we have

wip) =w(}_ ai’)

d
> inf{val,(a;) + Zmiw(gi)} (for some m; € N)
’ i=1
> ua(F)
> —v .
n A

The third inequality follows because
w(W(i/,i/+1)) =1> %’ w(U(z,_])) — "—Ti‘f‘j >
1.on—1,G",5") €t

/

and w(V;» 1)) = =t > L. where (i,j) € ®7,i =

Hence, the map ¢ : A — A(G) is continuous.
The surjectivity follows from the fact that ¢ is already surjective if A is replaced by the set of
linear combinations of well-ordered monomials (i increasing).
O
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The Iwasawa algebra A(G) is filtered by LN. The filtration of A(G) defines a filtration on
Qg = Ag ®z, Fp given by F*Q¢ = FYAg ® Fy. Reduction modulo p gives is a natural map
A — Q¢ whose kernel contains R.

As an Fj-vector space, gr’Ag is generated by the independent elements

m.r .1

ij n—1 i .//
p? iy ca U(I; ) - Wz’ z’ﬁl [ 7 year V( " ,,) such that
d+ Z(i,j)e‘b— [Jn;l pij + Zz"=1 i 41T Z:(z” i’ €<I>+(j = g g = 0.
(Cf. p.199 of [Sch11]). Then grQ¢ is generated by the elements

1 i i’
H(l] cd— UP;JJ HZL*I W(,L/ Z/7+-*1—; H Z// ]//)€q>+ V i // such that
//

‘//

Z(i,j)e@* [Jinl + 1]])” + Zi':l i i1 -+ Z(z” 1 €<I>+(j — )ni”,j” =,

and these elements are linearly independent. We do not change the filtration replacing v € %N by
m = nv € N, the valuations of the variables (U(; ;), Weir it 41y Vi J,,)) being now (n—i+j, n,j”—i”)
where (i,j) € ®,i =1,..,n—1,(i ,j )€ ®T.

In particular we have for m € N :

Theorem 2.4.1. (Lazard) The dimension d,, of gr’"Q¢ over Fy is equal to the dimension of the
space of homogeneous symmetric polynomials of degree m in the variables {U(; jy, Wi i 41y V(Zu u)}

having degrees corresponding to their valuations (n — i + j,n,j“ — i”) where (i,j) € ®~,i €
M,n—1],( ,j )€ ®".

We must now consider on A, the filtration of A obtained by assigning the degrees (n—i+j, n, j” —

i”) to the formal variables (U j), W(i/,i/H), V(Z// ]u)) Then gr™ A is isomorphic to the space of

non-commutative polynomials of degree m. We endow B = A/R with the induced filtration, so
gr™mB = Fil™" A/(Fil™" " A+ Fil"ANTR).

By construction the map gr™B — gr’™{)q is surjective.

2.4.2 Bound on the dimension of the graded pieces of B

The following proposition gives an upper bound for dim gr™B generalizing the case for the pro-p
Iwahori of SL(2,Z,) by Clozel ([Clo17, lemma 2.11]).

Proposition 2.14. For m > 0, we have dim gr"B < d,,, = dimp, gr'"Qg.

Proof. The Lemma is true for m = 0. For m = 1, gr'B is a quotient of the space Fil' A/Fil*A
with basis U, 1) and V(;, ;,41) for iy = 1,2,...,n — 1. So, dim gr'B < n=d;.

To show the general case we will consider each relation and then apply induction argument to
show that we decrease the number of inversions.

First consider relation 2.50

(1+Ws)(1+ Ug) =(1+4+Ug)(1+ Ws), (6 €, B € D),
where ¢ = (1 4 p)‘?% = 1[p]. We have
(1+Ug)? =1+ qUs + 2451032 +
L4 = ([p]. By the Lazard condition p > n + 1, we can show that
(1+Ws)(14+Ug) = (14 Ug)(1 + Ws)( mod F’il"+s+1),

where s = degree of Ug. This is because, for any natural number m > 2, Ug' has degree ms. So,
we need to show that

ms < n+ s implies () =0 (mod p),
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ie. (m —1)s < n implies (7) =0 (mod p).

Now, (m — 1) < (m — 1)s. Therefore, it suffices to show that
m—1<n = (an) =0 (mod p). (2.66)

But by the Lazard condition we get m —1 <n < p—1. So, m < p and then trivially val,(m!) = 0.
Hence, (1) = 0 (mod p)which gives

W(;UB = U/;W(s in Filn+s+1, (5 ell,p e (b_).
Consider a non-commutative monomial
ot = @i, Ty T,

To avoid confusion we will write 2% as 2 because we will be using i, 7, k for the roots. Assume
the homogeneous degree of z* is equal to t. We can change z* into a well-ordered monomial
(b — ip increasing ) by a sequence of transpositions (Lemma 3.2 of [Clo11]). Consider a move
(b,b+1) = (b+ 1,b) and assume ip > ipr1. We write

i

Tt = xfxbxb+1xe

where deg(f) = r', deg(e) = s, deg(i*) = t. Henceforth, we fix the notations r',s ,¢ to be the
degrees of f,e, " respectively. If

(Iba ‘rb-i-l) = (W57 Uﬂ)a

then 2/ UgWsz® = ' (mod Fil't'), t = ' +n+s+s . This reduces the number of inversions in z* .

We do the same argument for the other relations (2.51-2.64), i.e. we consider each of the
relations and show that we reduce the number of inversions in each case. The computations can be
found in section 2.6. This completes the proof Proposition 2.14, because note that, inside gr™B,
we can arrange the variables in the wrong order by a sequence of transposition to put them in the
right order (the right order as in the algebra A). This shows that dim gr™B < dim gr™Qg since,
by theorem 2.4.1, gr" Q¢ contains homogeneous symmetric polynomials.

O

2.4.3 Explicit presentations of the Iwasawa algebras A(G) and Q¢

In this section we give our main theorem constructing an explicit presentation of the Iwasawa
algebras A(G) and Qg. In corollary 2.15, we extend our result to include the case of the pro-p
Iwahori of GL(n,Zp).

Theorem 2.4.2. The map A — Q¢ gives an isomorphism B := A/R = Q¢.

Proof. (Cf. [Clol1] and [Clo17]). The natural map ¢ : A — A(G) respects the filtration and
reduces modulo p to @ : B — Q¢g. As @ is surjective, the natural map of graded algebras

grp : gr*B — gr*Qq

is surjective. Moreover, it is an isomorphism because dim gr™B < dim gr'™ ¢ (proposition 2.14).
Since the filtration on B is complete, we deduce that $ is an isomorphism (cf. Theorem 4 (5), p.31
of [LO9Y6]). We have B complete because B = A/R, where R is closed and therefore complete for
the filtration induced from that of A. O

Theorem 2.4.3. The map A — A(G) gives, by passing to the quotient, an isomorphism B =
A/R =2 A(G).

Proof. We need the argument of [Clo11]. The reduction of ¢ is . We recall that R is the
image of R in A. Let f € A satisfies ¢(f) = 0. We then have f € R since A/R = Qg. So
f=ri+pfi,m1 € R, f1 € A Then ¢(f1) = 0. Inductively, we obtain an expression f =r, + p" f,
of the same type. Since p"f, — 0 in A and R is closed, we deduce that f € R. O

This gives us the following corollary:
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Corollary 2.15. The Iwasawa algebra of the pro-p Iwahori subgroup of GL,(Z,) is a quotient
AR, with A" = Z,{{Z,V,,Us, Ws,oo € &+, € &=, € II}} and R is defined by the relations
(2.50 — 2.64) and

(Comm) Z commutes with Ug, Ve, W5 for all o, 3,0.

Here the variable Z corresponds to the element (1 + p)I,, € GL,(Z,).

In conclusion, for p > n + 1, we have found a Lazard basis of G with respect to its p-valuation
w (see theorem 2.5). Furthermore, we have obtained the relations inside the Iwasawa algebra of G,
thus giving us an explicit presentation of A(G) (see theorem 2.4.3) by controlling the dimension of
gr™B (Proposition 2.14). This readily gives the presentation of the Iwasawa algebra of the pro-p
Iwahori subgroup of GL,,(Z,) (corollary 2.15).
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2.5 Computations for the proof of Lemma 2.11

In this section we complete the computations needed for Lemma 2.11. We quote lemma 2.11.

Lemma 2.11 In the Iwasawa algebra A(G), the variables Vo, Ws,Ug satisfy the following
relations.

(14+Ws)(1+Us) = (14 Ug)*(1+ Ws), (B € D), q=(1L+p)#?

(14 We)(L+ Vo) = (14 V)7 (1+ W), (@ € ), ¢ = (1+p)(@?
VoUg = UBVO“(O[ S (I>+,ﬂ eEd a#-F,a+p¢ D)

1+ Vo)X +Us) = L+ Vi) P+ Up) (1 + Vi), i < k, (= (3,5) € T, 8 = (j,k) € 27)
1+ Vo)A +Up) = (14 Uup)A+Upg)(1 + Va),i >k, (o= (i,§) € T, 8= (j, k) € 27)
1+ Vo)A +Ug) = (1 + Vigjy) A+ Up)(1 + Vo), k < j, (o = (i,7) € o+, 8= (ki) € ®7)
I+ Vo)A +Up) = 1+ Upj) (1L +Us)(1 + Va), k> j, (a = (4,5) € T, 8 = (ki) € @7)
(14 Va) (14 U—g) = (14 U—a) 7 (14 Waign) - (14 Wimr)(1+ Vo) TP (a = (i,5) € @)

Uﬂ1U52 = U52U61a (/61762 S (I)_aﬁl +B2 ¢ (I))
(1+Up, )1+ Up,) = (1 + Upiry)? (1 4+ Us, )1 + Ug,), (b1 = (i,4), B2 = (4, k) € 7)
(1 + U,Bl)(]‘ + Uﬁz) = (1 + U(k,j))_p(]- + UB2)(1 + Uﬁl)? (ﬁl = (%])762 = ( 72) Shu )
Wi, Ws, = W5, Ws,, (01,02 € I1, 01 # d2)
Vs Vao = Vo Vg s (a1, 00 € @ + iy ¢ @)
(14 Vo )(1 4 V) = (14 Vi) ) (1 + Vo, )1+ Vo), (01 = (i), 02 = (4, k) € @F)
(1 + Vaz)(l + VOfl) = (1 + V(k,j))(l + Val)(l + Vaz)? (0[1 = (i’j)’ Q2 = (k,Z) € (I>+)'
Proof. Recalling the notations hs(1 + p) and zg(p) in section 2.2.2, Steinberg [Ste67] gives
hs(1+p)as(p)hs(1+p) " = 25((1+p)PVp), (B € @7, € 1),
where (,0) € Z (cf. p. 30 of [Ste67]). So the corresponding relation in the Iwasawa algebra is
(1+Ws)(1+Us) = (14 Up)?(1 + W), (8 € 27), (2.67)

where g = (1 4 p) (59,

We also have
hs(1+p)za(1)hs(1+p) 7t = 24((1 4 p)*9),(a € &T).
So the corresponding relation in the Iwasawa algebra is
14+ Ws)(1+ Vo) = (1 + Vo) (1 + W), (a € @T), (2.68)

where ¢ = (1 + p){@9).

If o # —p and o + 8 ¢ ®, then by example (a), p.24 of [Ste67] we have

xa(l)xﬁ(p) = xﬂ(p)$a(1)7 (Ot € (I)+’ﬂ € (I)_)'

So in this case, we have the following relation in the Iwasawa algebra:

VoUg = UgVy, (a € 1,8 € @7). (2.69)

If on the contrary, a # —f and o + 3 € ®, then we have two subcases:

Subcase 1. a = (i, j), 8 = (j, k) then we have by direct computation (writing z(; ;) (1) = 1+ E; ;)

za(1)2s(p) = [2a(1), 25(p))ws(p)7a(l).
wa(l)wﬁ(p)= (i) (P)2s(P)7a(1), (6 k) = a + B).
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Now, in the Iwasawa algebra, x(; 1y(p) corresponds to (1+V(; xy) if i < k and to (1+U; 1)) if i > k.
Thus, we get the following two relations in the Iwasawa algebra:
1+ Va)A+Up) = (1 + Vig))P (1 + Up) (1 + Va),i < kb, (0 € @7, B € @7), (2.70)
1+ Vo)A +Up) = (L4 Uii)A+Upg)(1+ Va),i >k, (a € T, 8 € @), (2.71)
where (i,k) =a+ 8= (i,7) + (4, k).
Subcase 2. a = (i,5), = (k,i), then we have

za(1)zp(p) = [2a(l), 25(p)]ws(p)ra(1),
za(Dzs(p) = (k) (—P)2s(P ) a(1), (a+ 3 = (k, 7).

So, as before, we get the following two relations in the Iwasawa algebra:
1+ Va)(L+Up) = (1 + Vigy)) P+ Up)(1+ Va) b < j, (@ € 27,8 € D7), (2.72)

(14 Va) (14 Up) = (14 Ugp)) ™ (14 U (L4 Vo) k > (0 € 9%, 5 € 97, (2.73)
where (k, j) = 8+ a = (k.) + (i, ).

If we have a = =03, let a = (4, §)[¢ < j], then just by computation one can show that

za(Das(p) = xs(p(1+p) " HHza((1+p)7),

where H is the diagonal matrix with (14 p) in the (4,7)*" place and (1 +p)~! in the (4,5)*" place
and 1 in the other diagonal positions. The above relation, in SL3(Z,), can be realized by the
following matrix equation:

(é 1) (; (1)> - <p(1 +1p)*1 (1)> ((13;;) (1 +Op)1) ((1) (1+1p)1>'

So we obtain
zo(Dzs(p) = 25(p(1+p) " hisny(L+D) - hij—1 5L+ p)aa((L+p) 7).

Hence, the corresponding relation in the Iwasawa algebra is

(4+Va) AHU_0) = A4+U_a) P (14 Wiy ) - - (14 W _1.5) (14Va) 37 (@ € BF). (2.74)

In the following, we give relations among the variables corresponding to the lower unipotent
subgroup.

Let 81,82 € @7, 81 + B2 ¢ @, then g, (p)xs, (p) = x5,(p)xs, (p). So the corresponding relation
in the Iwasawa algebra is

Up,Us, = Up,Up,, (B1, B2 € @7). (2.75)

On the other hand, if 51 + 82 € ®, then we have the following two cases, computations of which
actually take place in GL(3):

Case 1. Let 1 = (i,7), B2 = (4, k)[¢ > j > k]. Then,

T, (p)‘rﬁz (p) = L(i,k) (pz)xﬁ’Q (p)xﬁ’l (p)a (51 + B2 = (i7 k))

The corresponding relation in the Iwasawa algebra is

(1 + Uﬂl)(l + Uﬂz) = (1 + U(’L,k?))p(l + U;@Z)(l + U51)7 (51762 € (I)_7 (17 k) = ﬁl + 62)7 (276)

since x(; )(p) corresponds to (1 + Ug k).
Case 2. Let 1 = (i,7), B2 = (k,1),[k > i > j]. We have

Lpy (p)mﬁz (p) = x(k,j)(_pQ)xﬂz (p)x& (p)7 (/81 + 62 = (kvj))
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The corresponding relation in the Iwasawa algebra is

(14 Up )1+ Up,) = (1 + Upr,j)) P (1 +Up, ) (1 +Us,), (B1, B2 € D7, (K, j) = br + Ba). (2.77)

As the diagonal elements commute, we have for 61,2 € I, §; # 62,

W, Ws, = W5, Ws,, (61,62 € II). (2.78)

Now, we give the relations among the variables corresponding to the upper unipotent subgroup

of G.

If ar, 0 € D1, + g & @, then z4,(1)24,(1) = 4, (1)xa, (1). So the corresponding relation
in the Iwasawa algebra is
Vs Vao = Vo Vay, (a1, 00 € @), (2.79)

On the other hand, if a3 + ag € @, then we have the following two subparts:
Subpart 1. Let oy = (i,7), a2 = (4, k)[¢ < j < k]. Then,
Tay (1)Tay (1) = 23, 1) (1) 2ay (1) e, (1), (a1 + a2 = (i, k)).
The corresponding relation in the Iwasawa algebra is
(T4 Vo ) A+ Vay) = A+ Vi) A+ Voo A + Vi ), (1,00 € 70 +ap = (i, k). (2.80)
Subpart 2. Let aq = (4,7), a2 = (k, 1), [k < i < j]. We have the relation
Tay (1)Tay (1) = (k) (—1)Tay (D)2, (1), (01 + a2 = (K, j))-
The corresponding relation in the Iwasawa algebra is
(1+ Vay )+ Vay) = (1 + Vig ) T L+ Vi ) (1 + Ve, )
which is the same as

(14 Voo ) (14 Vay) = (L4 Vi j)) (1 + Vo ) (1 + V), (a1, a2 € 7,0 + a2 = (, 5)). (2.81)
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2.6 Computations for the proof of Proposition 2.14

In this section we give the computations necessary to prove proposition 2.14. We quote proposition
2.14.

Proposition 2.14 For m >0, we have dim gr™B < d,, = dimg, gr'{g.

Proof We provide the remaining computations for the proof as indicated in the last paragraph
of section 2.4.2. There we have already explained the strategy of the proof and dealt with relation
2.50. Consider relation 2.51. The argument of this exactly follows the case of relation 2.50 already
treated, for which we have shown that we can reduce the number of inversions and so we omit it.
Relation 2.52 is also obvious to deal with, hence we consider 2.53. It reduces to

VoUg = UV, (mod Fil"™ 1) (o € &1, 8 € &),
where r = deg (V,,) and s =deg (Ug).

In this case, we have o = (4, j), 8= (j,k), r =j—1i, s=n—j+kand k—i = deg(V{; x)=a+3)-
So, we need to show that

(14 Vii)P = 1(mod Film=tTr+1),
That is, for any natural number m > 2, we have to show that
(k—iym<n—i+k = (?) =0 (mod p),
i.e. we have to show that
(k—i)(m—1)<n = (?) =0 (mod p).
But since k > i (see relation 2.53), we only have to show that
(m—1)<n = (?) =0 (mod p),
which we checked in 2.66.
So, if (zp, 2p11) = (Va, Ug), then 2 = 2/ UgVya (Fil' ™), t =7 +5 + 7+ s.
Consider relation 2.54. It is
(I+Va) A4+ Up) = (14 Uup) A+ Up) (14 Vy),i > k,(a € T, 8 € 7, (i,k) = a+ B)

where a = (4,4),8 = (4, k),j > i > k.

Now, deg(V(; j)) = j—1i, deg(Ug;r)) = n—j+k, deg(VoUg) = n+k—i = deg(U; xy). Therefore,
deg(U(i i Va) and deg(Ug; 1)Up) are greater than deg(V,Upg). This gives

VaUg = U(i,k) + UgVQ(FilrJrerl),
where r =deg(V,), s =deg(Ug). If
(xbvxb+1) = (VOH Uﬁ)a

then after replacing Vo,Ug by UgVa + Ug py, we have to show that we reduce the number of

inversions. For any set .S, let |S| denote its cardinality. In the following, the notation |f;<>‘l‘”\ will
denote > 1. Similarly, 2|f<<>’jﬂ\ := Y 2. The number of inversions in " was originally as
C<n C<p
1>t 1e>U
follows, where ¢, i1 denotes indices # b, b + 1 in the product z* :
mu =
<w, >b+1, >b+1, ¢<b, ¢<b,
Sl + |i“E[indez#(Uﬁ),inde:c(Va)[' + 2|7ﬁ“<};nd6x(Uﬁ)| + lic€lindea(@y) indea vl T 2licsindeaqviyl — +1-
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Here, the cardinality symbols have natural meanings as explained above in the case for |Z S ‘il For

example, the term 2; <’;7>l§;;1(U5)\ is by definition %1 2. The notation |index(Ug), index(V,)]
>b+1,
m <lzndeac(U5)

denotes the half open interval and by index(U_) we mean that if U_ corresponds to z. for some
¢ € 1,...,d (variable in A, cf. first paragraph of section 2.2), then index(U_-) = c¢. Thus,
index(Ug) < index(Vy,). Now, Vo,Ug — UgV, clearly decreases the number of inversions and
after changing V,Up into U(; 1y, we have

C<u,| +| pn>b+1, |+‘ (<D, |

. ’
mnv = |i<>iu iy <index(U(; 1)) i¢>index (U g))l°

As index (U 1)) < index(Vy), we have

u>b+1, | | p>b+1, | _ | p>b+1, |+| u>b+1, |

iy <index(Ug y)l = liy<index(Vy)l — lig€lindex(Ug),index(Va)| iy <index(Ug)
p>b+1, n>b+1,

< ‘zue[mdex(Ug) mdeac(V )[| + 2‘iu<index(Uﬁ)|'

Also, index(Ug) = index(U; ) < indexU; ) because j > i and our chosen order of the
Lazard’s basis for G. Therefore,

¢<b, ¢<b, |

< <b,
|z<>znd (U(l k))| = |7.<>indem(U5) |

_ ¢<b, ¢
- |i<€]indez(U5),indem(Va)]‘ + |i<>indez(V(,)

€<, ¢<b,
< |i<G]indez(UB),indez(Va)]| + 2|i<>indem(VQ)|‘

. ’ .
Hence, inv < inv.

Now, we consider the relation 2.55. With similar argument as in the case while dealing with
the relation 2.53, using the condition p > n + 1, it will reduce to

UsViy = VoUg(Fil"™5+1), (o € &, 8 € &),

where r = deg(Ug) and s = deg(V,). So, VoUg — UgV,, will obviously reduce the number of
inversions.

Let us consider relation 2.56 which is
1+ Ug) (A4 Va) = (1+ Uy (1 + Vo) (1 + Up), k > j, (k, ) = B+ o,
where « = (4,7), 8 = (k,4),i < j < k. Expanding, we obtain
VaUs = UpVa = Uth ) = Utk ) Ve = Ut ) U (Fil 1),

where r = deg(Upg) and s = deg(V,,). Now, deg(VoUp) =j—i+n—k+i=n+j—k =deg(Uy, ;)
So, deg(U,;)Va) and deg(U(; ;)Up) are greater than deg(V,Ug). Thus,

VaUg = *U(kJ) + UgVa(FilrJrerl).

Let (xp, zp+1) = (Va,Ug). The number of inversions in z'" was originally as follows, where ¢, u
denotes indices # b,b+ 1 in the product z*"

nv =
<y, p>b+1, u>b+1, ¢<b,
|ig>iu| + | €lindex(Ug),index(Va)| | + 2|z“<zndex (Ugp) | + Izce]zndem(UB),zndea:(Va | + 2|z<>zndew Va)| + 1.

As index(Up) < index(Vy), the transition V,Ug — UgV, clearly reduces the number of inversions
and by changing V,Ug into —U(;, ;) we get

L , Sb+1, ¢<b,
mv = |z<<<>/;u| + |z“<25dew (Utk,)) | + ‘z<>indew(U(k,j))|‘
Now, as index(Uy,jy) < index(V,) we have

pn>b+1, ‘ | n>b+1, )|

n>b+1, |
iy <index(Ugy,;)) i, <index(Va)

= by i s+
— lig€lindex(Ug),index(Vy) 1H<mdez(Ug)

pu>b+1,
< |1,M€[zndex(U5) aneac(V )[| + 2|7,M<zndea:(U5)|
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Also, index(Ug) = index (U ;)) < indexUyy, jy because i < j and our chosen order of the Lazard’s
basis for G. Therefore,

e indea(tn | < lic>inaenws) = | o) |+ licsindes v
i¢>index(Ueg,j))| = li¢>index(Ug)!l — li¢c€lindex(Ug),index(Vy)] i¢c>index(Vy)

€<, ¢<b,
< |igE]indew(Ug),indew(Va)]‘ + 2‘i<>indem(Va)|'

. ’ .
Hence, inv < itnwv.

Consider relation 2.57. It is
1+ Va) A+ U—g) = (1 4+ U_a) P (1 W) - (1+ Wio) (1 + Vo) 34 (a € @F),
where o = (i, 5)[i < j]. Let ¢ = (1 +p)~'. Expanding (1 + U_,)?, we get that
1+ U_a)?=1+qU_o + 2 Ny2

If r =deg(U_,), then for any positive integer m > 2 we have rm < n = (%) = 0 (mod p)
because m < rm < n < p — 1 trivially implies (T’i) =0 (mod p) for m > 2.

We have n = deg(V,U_,). Expanding the relation above and looking modulo Fil"*! we deduce

VaU—o = Weisn) + - + W15y + U—aVa(Fil"),

since all other product terms will be of the form W_D for some nontrivial variable D and hence

have degree strictly greater than n =deg(W_).

Let (zp,xp+1) = (Va, U—q), then if we replace V,,U_,, by U_,V,, then we reduce the inversions.
If we replace VoU_o by Wi 141y then we show that we reduce the number of inversions.

The number of inversions inv in * in the beginning was

p>b+1,

| S i”<index(U,a)‘+|z<€]1nder(U_a) index(Vy )]|+2|1<>znder(v )| +1.

n>b+1,
ieSinl i, clindea(U ) indea(va)l T2

After changing V,U_, into Wy, 41, for some k € [i,j — 1], we count the number of inversions:

<u, | + | u>b+1, ¢<b,

. ’
mv = ‘ig>i}t 1“<an€$(wk k+1) n(n 1)+k| + ‘Z§>Z’I’Ld€$(W;€ k+1)_n(n 1)+k|

As index (Wi, p41) < index(V,), we have

| pn>b4+1, | ‘ u>b+1, | | u>b+1, |_|_| u>b+1, |
iy <index(Wi ky1)l = liy,<index(Vy) iy € zndez(U o)sindex(Vy) iy <index(U_g)

n>b+1,
< |iME[index(U,a),index(Va)H + 2|iﬂ<index(U,a)|‘

Also, as index(U_,) < index(Wy k+1), we have
¢<b, ¢<b,
|z4>zndez Wi k+1) | = |zc>zndea:(U a)| ‘Qe]indea:(U a)sindex(Vy)) | + |z<>lndew Vo )|

¢<b,
< |z< E]lndew(U ) lndew(Va)]‘ + 2‘z<>zndex(Va)‘

. . ’ .
Hence, we obtain tnv < inwv.

Consider relation 2.58 which is

UﬁlUﬁz = U,BZUBU (ﬂhﬂZ € (I)_)

So Ug, ,Ug, commute and we can reduce the number of inversions. Similarly, the relations 2.59 and
2.60 will reduce to Ug,Ug, = Up,Upg, (Fil""*T1) where r = deg(Up, ) and s = deg(Ugs,). (For this
use the Lazard condition p > n+1 and the computation on degrees as we have already done in 2.66;
example: for 2.59 we have for all natural number m > 2, m—1 < deg(U; )(m—1) <n = (:;) =0
(mod p)). So, if we start with the wrong order, that is, suppose index(Ug,) > index(Ug,), then
Ug, U, — Up,Upg, reduces the number of inversions.

Relation 2.61 is
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W51W52 = W52W51 (Fil2n+1)7(§1752 € H)

So, if we start with the wrong order, that is, suppose index(Ws,) > index(Ws,), then W5, W5, —
W5,Ws, reduces the number of inversions. Relation 2.62 is similar and so we omit it. We need to
struggle with relation 2.63 and 2.64.

First we consider relation 2.63. We have
Q4+ Va )X+ Vo) = (1 4+ Vi) A+ Vo, )1 + Vi), (a1, a2 € @1, 0y + a0 = (i, k)),
where a1 = (4,7), a0 = (j,k),7 < j < k. So we have
Ver Vo = Vi) + Vi) Var + Vo Ve (Fil" 511,

where 7 := j — i = deg(V,,) and s := k — j = deg(Va,). So, the degree of V,,,V,,, is k — i which is
the same as the degree of V{; 1. Therefore, we have

Valvoéz = ‘/(i,k) + V0t2 Val (Filr+s+1)'

We note that V,,, = V{; ;) and V,,, = V() and i < j < k. So, the wrong order is V,,, Vi, and not
Vo Ve, e index(Va,) > index(Va,). I (x4, 2p41) = (Viy, Vay ), the number of inversions in "
was originally as follows, where ¢, i denotes indices # b, b+ 1 in the product z*°

. | C<H, p>b+1, p>b+1,
— lie>ip i, Elindex(Vy., ),index(Vy iy <tndex(Vy ic€lindex Va yindex (Ve
inv = ;S5 + i clindex (Vi ) indea(Va )| T 2li, <inder(Vay)| T lic lindea (Vi ) indea(va )l +

¢<b,
2|i4>indem(Val)| +1
The map V,, V,, — Va, Vo, obviously reduces the number of inversions and by changing
(wp, To41) — Vii k) we have

i b,
zi<>ﬁzbu,| + ‘Z‘L<’LlTl;,d€£E (Vis,ry) | + ‘2g>zndez(V<l k))l

inv = |
Now, index(V; xy) < index(V(; j)) = index(Va,) and index(Vy,) = index(Vi;py) < index(Vi; i)
as k > j > i, because of our lexicographic choice of the ordering of the Lazard’s basis for N*. So
we have

n>b+1, n>b+1,

u>b+1,
iy, <index(Vi; | = |z <index(Vy | ‘z €lindex Va mdex Vo | + |z <zndea: Va ‘
I (i, k) Iz 1 H 2 1 M 2
M>b+1 | + 2| M>b+1, |
= lig€lindex(Vay),index(Ve, )| i <index(Vay)D
and
i indea(Vis )l < licsindeatvay) = | S 2+ lig>imdeavi )|
1 >rndex ik — lie>wndex(Vy — lic€lindex(Vy wndex(Vy ic>index(Vy
i >index(V(i k) i¢ >index(Vay i €lindex(Vay, ) index(Va, )] ¢>ind 1
¢<b,

¢<b, ‘

< |i4€]indew( 5 )sindex(V, al)]' + ‘24>indea:(Va1) :

. . ’ .
Hence, we obtain tnv < inwv.

Consider relation 2.64. It is
(1 + Vaz)(l + Va1) = (1 + V(k,j))(1 + Val)(l + Va2)7 (aba? € (I)+,041 +az = (kaj))a

where ag = (k,i),0n1 = (i,5),k < i < j. Like the previous relation it is evident that the wrong
order is V,,,V,, i.e. index(Vy,) > index(V,,) and we have

VOéz VOé1 = V(k,j) + Val Vaz (Filr+s+1)’

where r = deg(V,,) and s = deg(Va,). Let (2p,2p41) = (Vay, Vay)- We count the number of
inversions like we did in our previous relation.

u>b+1, u>b+1,

iny — | <t <b,
mv = | | + i€ zndez(Val) 1ndefc(Va2) | + 2|1“<znde$ VQ1)| + |1<€]zndex(Va ), zndem(VQQ)]| +

G >

¢<b,
2|i<>index(Va2)| + 1

The map V,, Vs, — Vi, Vi, reduces the number of inversions as index(V,,) > index(V,,) and
after changing (x4, 2p41) — Vig,5), we have
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C<u, |+ u>b+1, |+ ¢<b, |
i > iu<index(V(k,j>) i<>index(V<k1j)) -

inv = |
Here, index(Viy ;) < index(Vix)) = index(V,,) and index(Vy,) = index(V; ;) < index(Vix ;))
because k < i < j and because of our lexicographic choice of the ordering of the Lazard’s basis of
NT. Therefore,

pu>b+1, | | u>b+1 | | ,u,>b+1 ‘ | n>b+1, |
ip<index(Vip ;) = liy<index(Va,) ip€lindex(Va, ) index(Va, )| i <index(Va,)
pn>b+1, | + 2| p>b+1, |
= li, €lindex(Va, ),index(Vay )| iy <index (Vo)
and
liesinden (Vi) < ligsindeavan) = ligelindea(viy |+§ |
i¢>index(Vig, j)) = li¢>index(Va, ) i¢€lindex( D11),277,de:v Vasy)] 'L<>zndez Vasg)

¢<b, ¢<b,
< |i<€]indem(Va1),indez(VCQ)]| + 2|i<>index(Va2)|'

Hence, we deduce inv” < inv. So we have completed the proof of our Proposition 2.14.
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3 Globally analytic principal series representation and base
change

3.1 Introduction

The paper [Clol6] deals with the construction of base change of globally analytic distributions
on the pro-p Iwahori groups (seen as rigid-analytic spaces) which is compatible with the p-adic
Langlands correspondence in the case of principal series of GL(2), and this is what we will extend
to GL(n) in this section. Of course, we need to take p > n+ 1, so that the pro-p Iwahori subgroup
of GL(n) is p-saturated in the sense of Lazard [Laz65, III, 3.2.7.5] and isomorphic analytically to
the product Zg [Laz65, III, 3.3.2] (for some d, here Z, is seen as a rigid-analytic closed ball of
radius 1).

In section 3.2.1, for a finite unramified extension L over Q,, we briefly recall the notion of
restriction of scalars functor in the context of rigid-analytic spaces. In section 3.2.2, we give the
basic definitions of holomorphic and Langlands base change maps following [Clo16]. Section 3.3.1
treats the case of principal series of GL(n). Specifically, denote by G the pro-p Iwahori subgroup
of GL,(Z,) (the group of matrices in GL,(Z,) that are lower unipotent modulo pZ,), B the
subgroup of matrices in GL,(Z,) which are lower triangular modulo pZ,, Py D T, the set of
upper triangular (resp. diagonal) matrices in B, Qo = Py N G, PT the Borel subgroup of upper
triangular matrices in GL,(Z,), W the Weyl group (isomorphic to S,,) of GL, (Q,) with respect
to its maximal torus, P} = BN wPtw™!,w € W, x : Ty — K* a locally analytic character with
X(t1, o tn) = x1(t1) -+ Xn(tn), and x;(t) = %, where ¢; = %x;(t)|s=1, for ¢ sufficiently close to 1,
Toc be the locally analytic functions

Iloc - {f S Aloc(GyK) : f(gb) = X(b_l)f(g)vb € QOag € G}7

where Ajo.(G, K) is the space of the locally analytic functions on G having values in an extension K
over Q. Note that the vector space of locally analytic principal series ind]B;O (X)10c is isomorphic to
the space I)oc, which are the locally analytic functions from Zg — K for an appropriate dimension
d (cf. section 3.3.1). "Locally analytic function" mean that locally around a neighborhood of a
point, the function can be written in the form of a power series with coefficients in K.

Then, we show in lemmas 3.2, 3.3, 3.7 that the action of G on the globally analytic vectors of
Lioe, given by h - f(g) — f(h™lg) (h € G), is a globally analytic action in the sense of Emerton
[Emel7]. Here the globally analytic vectors of I}, are the Tate algebra of functions from Zg — K
which can be written as power series on the affinoid rigid-analytic space ZZ with coefficients in
K going to 0 (section 3.3.1) . For a detailed discussion on globally analytic representation see
[Emel7].

The requisite condition of analyticity of x is treated in 3.16. Let u be the linear form from the
Lie algebra of the torus T to K given by

n
= (=c1,...,—Cp) : Diag(ty, ..., tn) — Z —c;t;
i=1

where t = (t;) € Lie(Tp). For negative root o = (i,j),1 > j, let H(; ;) = E;; — Ej; j where E;; is
the standard elementary matrix.
Then, we show that (see theorem 3.9 and theorem 3.8):

Theorem. Assume p > n+ 1 and x is analytic. Then the space of the globally analytic vec-
tors of indjjz0 (X)10c @8 an admissible and globally analytic representation of G. Furthermore, this
globally analytic representation is irreducible if and only if for all negative roots o = (i,5),4 > 7,
we have —pu(Hy) +i—7 ¢ {1,2,3,...}.

Here, the admissibility is in the sense of [Emel7] (see also [Clo16, sec. 2.3]). For the global
analyticity, we compute explicitly the action of G on the Tate algebra of globally analytic functions
of indg0 (X)10c and show that the action map is a globally analytic function on G seen as a rigid-
analytic space. For the irreducibility we first use the action of the Lie algebra of G to show that
any non-zero closed G-invariant subspace of the globally analytic vectors of indg0 (X)10c contains
the constant function 1. The remaining part of the argument for the proof of irreducibility uses
the notion of Verma modules and its condition of irreducibility, a result of Bernstein-Gelfand.
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Finally, in section 3.3.2, we extend these results to the pro-p Iwahori group of GL,,(L) where L
is an unramified finite extension of Q,. Then, in theorem 3.18, we use the Steinberg tensor product
[Ste63] in order to construct the base change in the context of Langlands functoriality.

In section 3.4 we deal with the globally analytic vectors induced from the Weyl orbit of the
upper triangular Borel subgroup of the Iwahori subgroup B, i.e. the globally analytic vectors of
indg;; (X" 1o, Where x(h) = x(w™ ' hw).

3.2 Base change maps for analytic functions

We introduce the basic notions of rigid-analytic geometry including a brief discussion on the re-
striction of scalars. Then we briefly recall (following [Clol16]) the notions of holomorphic and
Langlands base change functors producing from a globally analytic representation over Q, to a
representation over L. The Langlands base change is related to the "Steinberg tensor product"
described at the end of section 1.1 of [Clo17] for GL(2).

3.2.1 Restriction of scalars

Let L be a finite unramified extension of Q, of degree N, (B'/L) be the (rigid-analytic) closed
unit ball over L with its Tate algebra of analytic functions 7, = L(z), G, be a rigid-analytic
group isomorphic as a rigid analytic space to (B!/L)¢ which is a rigid-analytic space with affinoid
algebra A(Gp) = @dTL = L{(xy,...,x4), the Tate algebra of analytic functions in d variables with
coefficients in L. (With the notations of section 3.1, for L = Q,,, we can take Gy, to be the pro-p
Iwahori group G assuming p > n + 1). The restriction of scalars functor [Ber00] associates to G,
a rigid analytic space Resr g, G over Q. In general, this functor does not behave trivially, but
L being unramified, we obtain

Resy, g, (B'/L) = (B'/Q,)",

[Clo16, lemma 1.1] which is canonically obtained by the choice of a basis (e;) of O over Z,.
Precisely, for an affinoid Q,-algebra B and for f € Homp (L(z), B®q, L) with f(z) =3 bse; (b; €
B), we canonically define a function g € Homg, (Qp (1, ..., 2n), B) with g(x;) = b; which is given
by

g(z1, ..., zN) = f(z €;%;),

[Clo16, section 1.1]. As the restriction of scalars is compatible with direct products [Ber00, prop.
1.8], Respq,GrL = (B'/Q,)?". Henceforth, we write Res G, to denote Resy /g, GL.

3.2.2 Holomorphic base change

Assume now that G, = (B!/L)? is obtained by extension of scalars from Q,. Then, the Tate
algebra A(Gr) = A(Gg,) ® L. The co-multiplication map m*, defined by a morphism

m*: A(GL) — A(GL)®A(GL)
with image inside the completed tensor product, is obtained by extension of scalars from
mg + A(Gg,) = A(Gg,)®A(Gqg, ).

To an analytic function f € A(GL), we associate a function g € A(Res G1) ® L, Res G, defined
as in section 3.2.1. Then, by composing with the natural map A(Gq,) — A(GL), we obtain a
"holomorphic base change" map

b1 : A(Gg,) = A(Res GL) ® L.

The Galois group ¥ = Gal(L/Q,) of the unramified Galois extension L acts naturally on G (by
automorphisms on the Tate algebra) and acts on Res G, by Qp-automorphism. Define the map

b: .A(GQP) — A(Res G)® L
b(f) =] ba(£)°.

oEX
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Then, by [Clol16, prop. 1.5], the natural maps by,b commute with co-multiplications and under
the isomorphism Af(Res G1) = ®, A(GL), the map b = ®, b (the isomorphism Ay (Res Gp) =
Ro A(Gyp) follows from Res G ®q, L = [], G, see the discussion before proposition 1.5 of
[Clo16]).

Fix a finite extension K of Q, and an injection ¢ : L C K. If 0 € Gal(L/Q,), we then have
the injection i o o : L — K. Denote by V a (globally) analytic representation of Gg, on a K-
Banach space. Then V naturally extends to an analytic representation of G ; this is called the
holomorphic base change of V in [Clol6]. For o € Gal(L/Q,), write V7 the representation of
G, associated to i o o. Then, the full (Langlands) base change of V is defined to be the globally
analytic representation of Resz,q,(Gr) on ®s V7 (cf. [Clo16, def. 3.2]).

3.3 Globally analytic principal series for GL(n) and base change

We first recall the notion of locally analytic principal series representation induced from the Borel
to the Iwahori subgroup of GL(n,Z,). Then we treat the action of the pro-p Iwahori on the
subspace of rigid-analytic functions within the locally analytic principal series and show that this
action is a globally analytic action (theorem 3.8). This gives us the globally analytic induced
principal series representation under the pro-p Iwahori subgroup G. Furthermore, we treat the
condition of irreducibility of the globally analytic principal series by translating an irreducibility
condition of a suitable Verma module (theorem 3.9). Finally in section 3.3.2 we base change our
globally analytic representation to a finite unramified extension L of Q.

3.3.1 Global analyticity and irreducibility of the principal series representation

We consider the case of the principal series for GL,,(Z,). Denote by G the pro-p Iwahori subgroup
of GL,(Zy), i.e. the group of matrices in GL,(Z,) that are lower unipotent modulo pZ,, B the
subgroup of matrices in GL,,(Z,) which are lower triangular modulo pZ,, Py D Ty be the set of
upper triangular (resp. diagonal) matrices in B, x : To — K* be a locally analytic character with

X(th ---atn) = Xl(tl) T Xn(tn)a

and y;(t) = t° where ¢; = %Xi(t)h:l for t sufficiently close to 1. Hence, ¢; € K.
We first consider, as in [Clo16], the locally analytic induced representation of B,

Jloc = ind]B;O(X)loc = {f S Aloc(BaK) : f(gb) = X(bil)f(g)ab € Py, g€ B}z

where x is naturally extended to Py and Aj..(B, K) is the space of locally analytic functions on
B. With U the lower unipotent subgroup of B with entries in Z,, in the lower triangular part, 1 in
the diagonal entries and 0 elsewhere, we have the natural decomposition

B=UPR, (3.1)

Since x is fixed, the restriction of the functions of Jj,. to G C B is injective. With Q¢ = Py NG,
we deduce that the vector space of Jo. is

Toe = {f € Aioe(G,K) : f(gb) = x(b" 1) f(9),b € Qo,g € G}. (3.2)

n(n—1)
With the decomposition G = UQq, we see that lioc = Aioc(Zy 2, K) = Aioc(U, K). Here, Zj, is
seen as the rigid analytic (additive) group B'(Z,). The group G acts by left translation

h-f(g) — f(h™'g). (3.3)

Let E; ; be the elementary matrices with 1 in the (i,7)t" place and 0 elsewhere. From now on,
we assume
p>n+1, (3.4)

then G is p-saturated in the sense of Lazard [Laz65, II1, 3.2.7.5] and thus, it is the ordered product
(as a rigid analytic group) of the following one-parameter subgroups:

1. first, for y € Z,, take the one-parameter lower unipotent matrices by the following lexico-
graphic order: the 1-parameter group of matrices (1 + yE; ;) comes before the 1-parameter
group of matrices (1 + yFEy,;) if and only if i < k or i =k and j <,
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2. then, for ¢, = 1[p] and k € [1,n], take the one-parameter diagonal subgroups (t;Ej i, +
S iz B ) starting from the top left extreme to the low right extreme and,

3. finally, for y € pZ,, take the upper unipotent matrices in the following order: the 1-parameter
group of matrices (1 4+ yE; ;) comes before the 1-parameter group of matrices (1 + yEj ;) if
and only if i > kori=Fk and j > [.

That is, for the lower unipotent matrices, we start with the top and left extreme and then fill
the lines from the left, going down and for the upper unipotent matrices we start with the low
and right extreme and then fill the lines from the right, going up. (Cf. [Laz65, III, 3.3.2] for the
rigid-analyticity and see theorem 2.5 and remark 2.7 of section 2.2 for the order of the product
i.e. an ordered Lazard basis of G, although in section 2.2 we have taken G to be upper unipotent
matrices modulo p but this does not matter).

n(n—1)
Let now A = A(U,K) = A(Zp, * ,K) be the subspace of globally analytic functions of
Toe = Aloc(U, K). Thus f € Ais a globally analytic function in the variables a; ; on U, that is,

= g c,a”

veENd

such that ¢, € K and |c,| = 0 as |v| = co. Here d = w, a = (az1,03,1,a32, ., Gnn-1) € Zg

with the lexicographic ordering of a; j asin (1), v = (v2,1, V31, .+, Vn.n—1) € N%, a¥ = agzll . -a;’ﬂ‘{ff
and V| =v21+ -+ Vnno1-

We now seek conditions such that if f is a globally analytic function on G and the action of G
is defined as above then, the map h — h- f(g) = f(h~'g) is globally analytic.

Lemma 3.1. With the above notations, for p > n + 1, the action of G on f € A(U,K), i.e
the map h — h - f is a globally analytic function on G if and only if it is so for all 1-parameter
(rigid-analytic) subgroups and the diagonal subgroup of which G is the product.

Proof. Follows from the same argument as in the discussion after lemma 3.4 of [Clo16]. O

Thus, our goal is to verify the analyticity of the action of the diagonal subgroup, the 1-parameter
lower unipotent subgroups and the 1-parameter upper unipotent subgroups of G which are treated
in lemmas 3.2, 3.3 and 3.7 respectively.

Let A = (ai;)i,; be any matrix in U (i.e. a;; = 1 and a;; = 0 for ¢ < j) and T =
diag(ti,....,tn) = Y p_; te Bk, be any element in the diagonal Ty N G, where t;, € 1+ pZ,. Assume
f € Loe, then the action of T on f, given by 3.3, is

T-f(A)= f(Diag(tf’ -~-at51)14) = f((zn: ty Err)( zn: ai,jEi,j)),
k=1

4,j=1

= (>t an Bry),

j,k=1

S w5 5).

731 Jj=1

= f( Z tr tjar, i Erj)X(t1, s tp) (from 3.2),
kj=1

Interchanging indices k — i, we obtain

O tiEi) - f Z ai;Eij) Z t7 0 B )X (ty ooy ) (3.5)
=1

3,j=1 3,j=1

with a;; =1, a;; =0 for ¢ < j and t; = 1( mod p).
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Taking f = 1 we see that x(¢1, ..., t,) must be an analytic function. By 3.5, for fixed k € [1,n]
considering the action of the matrix (txEy x + Z?zl itk E; ;) on f we obtain,

n k1
(tBrr+ Y Eii) f(A) = F( Y auvPBuv+akiBrr+ >ty ar By + Z k@i K Eik)
i=1,i#k wk =1 i=k+1
(3.6)
X x(1, oy ty ey 1) (3.7)
= f(C)x(1, .y they ey 1) (3.8)

where C is the matrix (Zum#k au,UEu,U+ak7kEk,k+Z§;11 t,zlak,jEk,j +Z?=k+1 tra; kEi ). Assume
u>v
now that f is globally analytic in the variables a; ; on U, that is,
= Z cpat, (3.9)
veNd

such that ¢, € K and |¢,| — 0. Then, with t; =1+ p&, {k € Zp,

n

=D elagit ] et H (5 ar ) )T (twai) ™) (3.10)

u,v#k i=k+1
u>v
— n
=Y elagt T ate H L pge) a2 ([ (1 + p&r) o alih). (3.11)
v u,v#k 7j=1 i=k+1

u>v

Recall that for [v| < 1, m € N, we have (1 —v)™™ = 32, (m+g_1)vq. Now, inserting the
expressions

(L) ™" = 37 (”’”' T 1) (—p&) ™

qk,;=0 .

and (1+p&)vik = > 0ok (l’i,k)pui,kgg’“’“ in equation 3.11 we obtain, with |¢| := qx 1+ +qk k-1,

i k=0 \u; p
n
[ul = g1, + -+ + Unge and Vimag = [ psq Vi

k—1 oo
C) = Zc,, azkkk H alee) (H Z (Vk,j + q?,g - 1) (_pgk)Qk,jaZ’j}j))

w Ak j=1 qx.;=0 k.j

u>v
Vik
H § : Vik ulkgulk V1k:>
( (ui7k>

i=k+1 u;,x=0

= ZCV azkkk H ) (Z gk Z H <I/k,3 +Qk,j 1) (_p)Qk‘jaZ}jjj)>

u,v#k N2>0 lg|=N j=1

u>v

(@ I ().

M=0  ju=Mi=k41 \VBF

Let fn and gp; be defined by

fN _ Z H <ij + qk,5 — >( p)m”a:k]])’ (3.12)

=N j=1 kg

g = H (&) pUialit). (3.13)

lu|=M i=k+1
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Then,

Umax

ZCV (it T et Z & fn)( Z & gur) (3.14)

u,v#k N>0
u>v
oo
= Z fL"(Zc,, (a7 H ay”) Z ngM>. (3.15)
m>0 v u,v#k N+M:m

u>v

Any element f € A(U, K) is of the form f =  _yac,a” with lim), | |c,| = 0. The space
A(U, K) is a K-Banach space with the sup norm on f defined by

|[f| = sup e, |

(cf. [Bosl4, chapter 2|). Recall that for any K-Banach space V with norm |- |, a representation
of G on V is called a globally analytic representation if the map

gr—g-v=m(gv

is globally analytic on G for all v € V. Thus, in coordinates (x1,...,x;) with | = dim(G):
g v= Zxkvk
k

where v, € V and |vg| — 0. Here k = (ky,..., k) and 2% = 2% - .. 2 k; € N (cf. [Emel7], [Clo16,
section 2]).
Now, with ¢, = 1+p&, &k € Zy, in order to show that the action of the one-parameter diagonal

subgroup t(Exx) + > iy Eii on f € AU, K) is analytic we have to show that the map
itk

Z, — AU, K)

e — ((1 +06)Eek+ Y Ei,i)f = f(C)x(, ;1 + p&, -, 1)

i=1,i#k

is a globally analytic map on Z,. The norm of the coefficient of &;”*, in equation 3.15, is

(ch akk H ag'y’) Z ngM)|~

u,v#£k N+M=m

u>v

Notice that, since N, M <m and fn,gm € Z, from 3.12 and 3.13, the quantity

(0" Tl orn aZ“v” > N4 M—m fngar) has finite sum and product and hence lies in Z,. Hence,

u>v

(D eutas T ) D2 fugu)l =0

v u,v#£k N+M=m
u>v

as |¢,| = 0 with v — oco. This gives the analyticity of the action f — f(C). We now consider the
analyticity of the character x. Write x = (x1,.., Xn), Xi(1 + pu;) = e 1°804P%) for ¢; € K, u;
close to 0, i € [1,n]. The exponential is analytic (in K) in the domain v,(2) > <7 where e = ¢(K)
and v, is the normalized valuation, v,(p) = 1. Now,

vp(cilog(l + pu;)) = vp(e) + 1+ vp(wi).

So we must have vy(¢;) + 1> 245, ie.

vp(ci) > %1 ~1, (3.16)
= p%pl (if K is unramified). (3.17)
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We say that yx is "analytic" if and only if ¢;’s verify these conditions and in the rest of this
text we assume that our character y is analytic. It is easy to see that if y is analytic, then
x(1,...,1 4 pég, ..., 1) is an analytic function on &. The character

o0

X(1, .y 14+ pky oy 1) = xu(1 + p€i) = Z en(1 4+ p&p)” (since xy, is analytic)

n=0

= i Cn Zn: (Z)puf}i

n=0 u=0

_Z§k<p Z ())

n>u

The norm of the coefficient of & is [p* > <
Thus, we have shown

cn(?)| which goes to 0 as |¢,| — 0 with n — oo.

n>u

Lemma 3.2. Under the hypothesis 3.16, for each k € [1,n], the action of the one-parameter

n(n—1)
diagonal subgroup (tiEyr + E?:l’#k E;;) of G on A(Z, * ,K) given by 3.7 is an analytic
action.

For y € Z, and ¢ > j, 4, fixed between 1, ...,n, the action of the 1-parameter (rigid-analytic)
subgroup (1 + yE; ;) on f(A), given by 3.3 is

(1 + 9B f(4) = £+ Ei) 7 A) = 7= 9B A), (3.18)
:f(l_yE > alclEkl) (3.19)
k>1
k€[]
- f( > ariBri= ) yaj,lEz‘,l) = f(B), (3.20)
k>l I=1,....j
ke l€[1,n]

where Bis thematrix >~ agEk _Z{:1 ya; 1 F; ;. One can easily see that the matrix B = (b,,,)
k>l
k,l€[1,n]

is lower unipotent and differs from matrix A only in the first j entries of its i*" row. In particular,
bi,w = ain — yaj, for all v € [1,7], (a; ; = 1) and all other b, , are the same as a,, (recall that A
is lower unipotent).

Now, let f be a globally analytic function on U as in 3.9. That is, f(a) = >, cna cra” with
a’ = asz ---a, ) and [e,| — 0. Then, we have to show that (1 + yE;;)f = f(B) gives an
analytic map

Z, — AU, K)

= (L +yEi;)f = f(B).
The power series

J

f(B) = Zcu(( I e H (aik — yajr)" ’“)) =Y cva” [ (@ir — yaju)"*
k=1 v

k=1

where

Let us define

J Vik
b0y = [0 =g = S5 (74 Jumes ameralye ™
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Then, with N = 21:1 v and |m| =m; 1+ -- -+ m, ;, we obtain

B) = Zc,,a”/b(z/)
i / N J Vi k Vi —m
=Saa’ Y S T Jamane

=0 |m|=p k=1
mi kS<Vik
J Vi k
§ 1 § E 1, Mk, Visk T Mk
- Yy Gva H (m k) aJxk?) ‘ azk
p=0  vilv[>p Iml=p k=1 N
™y kS<Vik
> 1%
k v; mg,
Y it Y el Y1 () Capnmeraiyy =)
p=0 Vil >p Cml=p k=1 TR
i,k SVik

With m;,k =V, — Mk,

‘7 ’
Z c,a” Z H <Vlk> a],k)mi'kazi,;’k. (3.21)

vilv|>p Im|=p
mik<Vik

We have that |c,| — oo as |[v| — oo and v; j; —m; , = m} . < |v|. Then, the norm of the coefficient

’ ml .
of a*' TTi_, a; " a, k”“ in f, goes to 0 as (v/,mp,mj ;) — oo.

Therefore, |f,| — 0 as 4 — o0, because we have |v| > p for all the terms of f,, (cf. 3.21). This
yields a convergent expression of f(B) in A(U, K).

This gives the analyticity of the map y — (1 + E; ;) f = f(B).

Therefore, we have shown,

Lemma 3.3. Fory € Z, and i > j, the action of the lower unipotent (rigid-analytic) 1-parameter
n(n—1

)
subgroup (1+yE; ;) of G on f € A(Zy, > ,K), given by 3.18 is an analytic action.

It remains to check the analyticity of the action 3.3 by triangular superior matrices of the form
(14+yE; ;) for i < j,i,5 € [1,n],y € pZy,. Recall that the action of (1+yE; ;) on f € I, given by
3.3, 1s

(L+ ) f(A) = F((1+yEi) 7 A) = £((1 = yBi)A).

Recall the action of Qg given by 3.2, that is, f(gb) = x(b~!)f(g) with b € Qo. Hence, our objective
is to write the matrix (1 — yF; ;)A as the product of two matrices X and Z with X € U and
Z € o, that is:

(1 - yEZ"j)A = )(Z7

where X is a lower unipotent matrix with entries in Z, and Z is a upper triangular matrix with
diagonal elements in 1 + pZ, and such that the elements above the diagonal have entries in pZ,.

Lemma 3.4. Fori < j andy € pZ,, there exists a unique matriz decomposition (1—yE; j;)A = XZ
with X = (zx,1)k; €U and Z = (2r.5)r,s € Qo. Also,

. 1—yhrr(y,
1. all the diagonal elements z., of Z are of the form I_ZT%,
hr s (Y,
2. all the elements z, s, for r < s, of Z are of the form %,

3. all the elements xy,; with k > | of the lower triangular unipotent matriz X are of the form
hi,i(y,a)
1-ygk,1(y,a)’

where hy (y, a) and g, +(y, a) are polynomial functions with integral coefficients iny and az1,as3,1, a3 2, ...

(entries of the lower unipotent matriz A).
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Proof. We prove the lemma by an easy inductive argument. The base case n = 2 is clear from the
matrix equation

1 —y 1 0\ _ (1l-yax:1 -y \ _ 10 211 21,2
0 1 asp 1) a1 1 S\ 1 0 229

o 21,1 21,2
21,1%21 222+ Z1,2%21

with x5 = %,zm =1-yas1,212 = —Y,222 = 1_@}#21 Assume, by induction hypothesis

that our lemma is true for GL(n — 1). We show it for GL(n). Let us first suppose that ¢ > 1, that
is,

LB (with some elementary matrix E',1 — yE’' € GL(n — 1))
-y

@21

as,1
Setting a to be the column vector . ,

Qn,1

(]. — yEl’])A =

We want to decompose the above matrix in the form

1 ‘ 0 0 21,1 ‘ 21,2 Z1,n
1 0 . 21 0
(1-yE)a|(1—-yENA" ) | 1 | x : 7
Tn,1 0

with x21,...,2p1 € Zp, 211 € 1 + pZp and 219,...,21,n, € pZy. Denote z to be the row vector
x21

31
[#1,2, --.; 21,n], X t0 be the column vector . . Hence, we want to solve

So we must have

1. z11=1,

2.2z=0,

3. z11x=x= (1 —yE')a (using 211 = 1 from (1)),

4. x- 24+ X'7Z' =X'7'=(1—-yE"A (as z=0 from (2)).
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By the induction hypothesis, we can find X’ and Z’ satisfying (4) with entries in as lemma 3.4.
Also, (3) is of the form

1 a1 2,1
-y as 1 x3,1
1 an,1 LTn,1

)

Clearly, we can solve z3 1, .., Z,,1 from the above matrix equation satisfying lemma 3.4 and in
fact the solutions do not have any denominators.
So by induction we are reduced to the case ¢ = 1, that is, when

1 ‘ 0---—y---0
0

(1—yki;) =
0
Our goal is to solve, for X and Z, the following matrix equation:

Expanding right hand side of 3.22, we obtain

B = (bup)uw =XZ = (1 + Z lfk,lEk,z)( Z Zr,sEr,s)

ke[l,n] re(l,n]
le[1,k—1] s€[r,n]
— Z ZﬂsEr,s + Z xk,’r‘zr,sEk,s-
re(l,n] ke[l,n]
s€[r,n] re(l,k—1]
s€[r,n]
Therefore,
_ 22:1 Lay,r2rvs ifu>wv
bU)'U - u—1 . (3.23)
Zuw + D opg Tugirw, fu<Lw

Recall that our matrix A =Y, ., a1 E), is lower unipotent, that is, ay, = 1 for all k € [1,n]
and ay,; = 0 for k < [. Expanding the left hand side of 3.22, we obtain

J
(1—yE1)A=(1=yE1;)>_ ariEri) =Y ariEri— Y _yajiEr,
k>l k>l 1=

J
= Z ak,lEk,l + Z(—yajyl)Eu + (1 — yaj,l)Elyl.
ke(l,n] 1=2
le[1,k]
k#1
Note that the 1% row of the matrix (1 — yE; ;)A is
J
> (~yaj)Eri+ (1 yaj1) By
1=2

From 3.22, the matrices (1 — yE ;)A and B = (by,,)u,0 are equal. Thus, equating b, , from 3.23
with the above expression of the matrix (1 —yE; ;)A, we obtain the following equations (with the
convention that z; = 0 for k£ <[ and 2z, =0 for r > s):

1. foru#1and u > v, byy = Y0y TurZre = Qups
-1

2. foru#land u="v, byy = Zuu + Dorey TurZre = Quu = 1,
-1

3. foru#1and u <, byy = 2y + Z:f:l Tu,rZrp = Quw = 0,

4. foru=v = 1, b171 =2z21,1 = 1-— Yya;i,
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5. foru=1and u <wv, b1y = 21,0 = —Yaj .

Note that in (5), for v > j, b1,, = —ya;,, = 0 (as A is lower unipotent). Setting v = 1 in formula
(1), for u € [2,n], we obtain

Aoy, 1 Ay, 1

)

21,1 1- Yyaj1

Tyl = (as z11 = 1 —ya; 1 from (4)). (3.24)
Now, let C' = (¢r)ry = (1 —yE1;)A and B = (by,y)u,» as above. We proceed by equating, in
the 1% stage, the first row of the matrix B with the first row of the matrix C, starting from the
leftmost entry (i.e. given by equations (4) and (5) above) and solve for z, .. Then in the next
stage (say stage 1 + 1) we equate the first column of the matrix B with the first column of the
matrix C starting from the uppermost entry (ba1 = c2,1) and solve for z, , (i.e. those given by
3.24). In the second stage we do the same with the second row and in the stage 2 + % we equate
the second column of the matrix B with C' (given by (1), (2) and (3)) and proceed like this until
the last nt" stage. Our objective is to solve x, . and z, . while equating the matrix B with C' and
show (1), (2) and (3) of lemma 3.4. We prove this by induction.

Assume, by induction hypothesis, at the m** and the stage m + % (1 < m < n), that we have
found zy,; for k € [2,n],l € [1,m],k > | and z., for r € [1,m],s € [1,n],r < s having the form
(1), (2) and (3) of lemma 3.4. Then, at the (m + 1)'" stage we have to equate by, 11, = Cmt1. for
v € [m+ 1,n]. Equating by41,m+1 = Cmt1,m+1, we deduce, by formula (2) after 3.23, that

m
Zm4+1,m+1 = 1-—- Z Tm4+1,r2r,m+1,
r=1
h
_ % (by induction hypothesis),
_1- y(hi + g1)
1—yq

for some polynomial functions h; (y, a) and g1 (y, a) with integral coefficients in y and a2, 1, a3.1, 43,2, ..., Gnn—1.
Similarly, equating by, 41,0 = Cmy1,0 for v € [m + 2,n|, we obtain, by formula (3) after 3.23,
that

m
Zm+1o = — E Tm+41,7%rv,
r=1

—yha(y,a)

= —— ="~ (again by induction hypothesis),
1 —yg2(y,a)

At the stage (m+1) + % we have to equate by m11 = cym+1 for all u € [m +2,n]. So, by formula
(1) after 3.23, we get
m

Tu,m+12m+1,m+1 = Qum+1 — § Ly, r2r,m+1,
r=1

yh?)(y» a’)
1 —yg3(y,a)
_ h4(y’ a)
- 1-ygs(y,a)’

= Qumt1 — (again by induction hypothesis),

for some hy and g3 with integral coefficients. Therefore,

ha(ya) 1 ha(y,a) l-—yg  _ hs(y,a)
1—yg3(y,a) zmyimyr  1—ygs(y,a)l —ylhi+g1) 1—-ygs(y,a)’

Tum+1 =

with polynomials hs and g5 having integral coefficients. This completes our induction argument
and finishes the proof of lemma 3.4.

O
Now, let f € Iioc. Then, by lemma 3.4, the action of (1 + yE; ;) on f is given by
(14+yE;;)f(A) = f(X)X(zl_&, <oy 2y y,) (with X and z,, as in lemma 3.4). (3.25)
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Recall that for |v| < 1, we have

(1—9)—7”:50: (m”_l)zﬂ.

q=0 q

Assume now that f € A(Z 271)7 ) is a globally analytic function. Thus, f is an element in

the Tate algebra of U with @ variables. In order to show that the action of (1 + yE; ;) on
f € A(U, K), given by equation 3.25, is globally analytic we have to show that

feIheGhrx
r=1

is a globally analytic function in y with values in A(U, K).

Lemma 3.5. If the action f — g, g(A) = f(X) where A = XZ is globally analytic, then f —
I, Xr(z;rl)g is globally analytic.

Proof. With 3.16, our character x is analytic. Hence,

1) xr(l —ygr,r(y,a)>

Xr (2, ( from lemma 3.4)

_yhr r(ya )
Y9r,r (Y, ))
= - JIBPA T for |c,| — 0).
Z (T (for el - 0)

We are reduced to show that (y,a) — i:;’i’i% is analytic in y. Since y € pZ,, this is true
because '

1- Ygr r(yv a’) G

——L=(1 _ygrﬂ‘ Y,a ( yhr,r Y,a n)

T = (.0 (b .0
Hence, we have shown the lemma. O

Therefore, with lemma 3.5, to prove that the action of (1 + yE; ;) on f € A(U, K), given by
equation 3.25, is globally analytic, we only need to show that the action f — g, g(A) = f(X)
where A = X Z is globally analytic.

Lemma 3.6. The action f — g, g(A) = f(X) where A= XZ is globally analytic.

hi 1 (y,a)

Proof. Recall that the lower unipotent matrix X is ((zx)k,;) with z; = Tyor 1 (5.3)

lemma 3.4. Write

given by

o0
Tr = hy(y, a) Z Y gy, a)"
n=0

oo
= ¥"gnri(y,a)
n=0

Since f is analytic, f =, c,a”, a” =[], a;'- The norm |c,| — 0 as v — oo. Then,

F(X) = f((zr)r) ZCVHZZU Ink (Y, @

v k,0 n=0
k>l

o0
Qv ad™=>"9"" D o Gous
n=0

v>0 v+ UM =V

we obtain that

f(X H Z Z Guy k1" g”"k,l’k7l)'
k,l v>0

V1t F vy, =0
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Define ay ;(v) = ( > Gui kel Guy, ok k1) then,
Vit =V

PO pRE

(Vi) k,l v>0

Z cVZy Z Hak,l(vk,l)

(Vi) v>0 S Vki=o Kl

Z Cuzyv Z H Z okl Gou,, kL

v=(vg,1) v>0 > Uk =0 KL Vit =k

f(X)

The coefficient of 4 is

Z Cv Z H Z Gui kil * Gy, kel Z CyS,

v=(k1) D Uki=v Kl Vit FOL =0k v=(vk.1)

Z H Z Guy,k,l 'gvukyl,k,l.

S Vki=0 Kyl Vit tuy, =0k

where

So f(X) =302y f, with f, = > c,s,. Moreover, |y| < 1, the p-adic analytic variable is
Y =y/p,so

FX) =Y W)W f)
v=0
yields a convergent expression in A(U, K). This completes the proof. O

This shows the analyticity of the action given by 3.25. So we have shown

Lemma 3.7. Fory € pZ, and i < j, the action of the upper unipotent (rigid-analytic) 1-parameter

nnl

subgroup (1 4+ yE; ;) of G on f € A(Z,y ,K), given by 8.25 is an analytic action.

Note that, by section 3.3.1, the vector space of locally analytic functions of the principal series

ind8 (Vo = {f € Awoc(B, K) : f(gb) = x(b" 1) f(9),b € Po,g € B}

is isomorphic to the vector space of the locally analytic functions

n(n—1)

Loe = Aloe(Zy 2 K ). Denote by indp, () the space of globally analytic vectors of indf (x)ioc

—1
which is A := A( ) ,K).

Also, the representation on A is admissible: indeed, A is a subspace of A(G) defined by the
conditions f(gb) = x(b=1)f(g) (f is then analytic on G since x is so) and this is a closed subspace.
Thus by lemmas (3.1- 3.3) and lemma 3.7 we have shown the following theorem.

Theorem 3.8. Assume p > n + 1. Let x be an analytic character of Ty (c¢f. 3.16). The action
of G on the induced principal series indg0 (x) is a globally analytic action. Moreover, the globally

analytic representation of G on indf;o (x) is admissible in the sense of Emerton ([Emel7], [Clo16,
sec. 2.3]).

Recall that x = (x1,..,Xn) wWhere x;(1 + pu;) = e%1°80+P%) for ¢; € K, u; close to 0, i €
[1,n]. Also, recall from 3.9 that f € A implies that f(A4) = Y cyacoa” with |c,| — 0 as
|V‘ =V + V31 + -+ Vpn—1 —7 OQ.

In the following, we will have conditions on the character x such that the globally analytic
representation of G on A is irreducible.

Let p be the linear form from the Lie algebra of the torus Ty to K given by

= (=c1,..,—cp) : Diag(ty, ..., tn) — Z —cit;

where t = (t;) € Lie(Tp). For negative root o = (i,j),i > j, let H(; jy be the matrix F;; — E; ;
where E;; is the standard elementary matrix. Let ®,&~,®* II be the roots, negative roots,
positive roots and simple roots respectively associated to G.
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Theorem 3.9. Let ¢;’s satisfy 3.16, that is, x is analytic, and p > n+1, then the globally analytic
representation A = indgO (x) of G is topologically irreducible if and only if for all o = (i,5) €

Assume X C A is a closed G-invariant subspace. Consider f € A. Then, from 3.9,

f= Z c,a”

veNd

where d = %,cy €K, le,] = 0as [v|:=3 co- Va — 00.

Here, v = (vq,a0 € ®7) € N? and a, = [[,cp- a%>. In some arguments we will have to order the
exponents v,’s. We use the following lexicographic order. Let oo = (i,5) and o' = (k,1). Then v,
comes before v, if and only if i < kori =k and j <[, i.e. v = (v2,1,V31,V3.2, ..., Vn,n—1) (see also
the discussion before equation 3.9). For N > 0, let 7n be the natural truncation

A— K[G]N = @‘V|SNKCLV.

The later space is the space of polynomials in several variables with total degree < N. As 7y is
equivariant under the action of the diagonal subgroup of G given by formulas 3.5 and 3.6 and the
associated characters of the diagonal torus of G are linearly independent, 75 (X) is a direct sum of
monomials given by

(X)) =Xy ={ Y ca’}

veEMy

where My is the set of exponents of a of elements in X. If N < N’ and v € My, then by
surjectivity
K[a]N/ — K[G}N,

we obtain p € My+. Conversely, v € My, and |v| < N implies v € My. Therefore, the multi-sets
My and My are compatible and thus there exists M (the exponents of elements of X) such that

1. feX = ¢, =0forallv¢ M.
2. fveM,a” €rn(X) for all N > |v|, thus there exists
fi=ad"+ Z ca” e X
Ir|>N
(here r = (ro, a0 € ®7) € N4 |¢,| — 0) .

For a € &7, let Y, € g = Lie(G) be the infinitesimal generator associated to the unipotent
subgroup 1+ yE,,y € Z,, E, being the standard elementary matrix at o.

Lemma 3.10. The multi-index 0 € M.

Proof. M # null, because if so, then X = 0, which is not true by assumption. Now if v = (v,,a €
®~) € M, then by (2) above
f=a"+ Z cra” € X

[r|>N

(here N > |v|,r € N%). By 3.20, the action of Y3 = Y{; ;) on f (where 8 = (i,j) € ® is fixed) is
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given by

Ys(f) = diy’y:o(( I1 ﬁ (aik +yazK)"*)

a=(u,v) k=1

u=1i —> v>j

+ > el ]I f_[azk-Fyagk ”))

|r|>N a=(u,v)

u=i = v>j

— Vi k
= H E Vzl%lazl H ai,k)

a=(u,v) ke[1,j]
u=i = v>j kL
J 1

T Ti,l— Tik

E Cr H aaa(E Ti, 145,10, H ;)
[r|>N a=(u,v) =1 kell,5]
u=i = v>j kL
=A+ E ¢ B
|r|>N

The first term in the R.H.S of the above equation is

J

J
vi1—1 1/1 “+1 lll 1
A= H al>( g Vi@ 0,y H ) E Vi a; e - H ale

a=(u,v) =1 ke[l,j] =1 aZ(i,l)
u=i = v>j k£l (5,1

and

J
T rig—1 T7 k l+1 7‘71 1
=[] arQruauey ™ 1 o z I o

a=(u,v) =1 ke[l,5] a#(i,l)
=i = v>j kL (1)

Notice that the monomials in B has total degree |r| except the term (when [ = j) r; ja; s 5 i1 [ori ) oo
(note that a; ; = 1 by convention) which has total degree |r| — 1.

As Y(; ;) (f) € &, we see that (va,v;; — 1, € @7, a # (i,7)) € M; these are the exponents
when we take | = j in A. This shows that if M # null, then 0 € M because we can descend the
v;,;’s successively for every negative root (¢, j) and this completes the proof of lemma 3.10. O

Lemma 3.11. The constants a® € X.

Proof. Let Ty, € g be the infinitesimal generator associated to the diagonal subgroup Diag(1, ..., ¢, ..., 1),
ty € 1+ pZy, ty is at the (k, k)-th place. By lemma 3.10, 0 € M. This implies that

f:coJchrarEX

|7|>0

(co # 0). We will essentially follow the proof given by Clozel for GL(2). By equation 3.10, from
the action of Diag(1,...,t,...,1) on f, the function obtained from T} (f),

Z C"(Z rs — ng)ar ex (3.26)
|r|>0
where Y s is D0 5 ;) rsand Yorgis 305 ) T

i€[k+1,n] JE[1,k—1]

The function obtained from 7} L,
5 o Srs- Sear
|r|>0

This implies that

Eyf:=co+ Z er(1— (Zr(s — ng)p_l)ar eX.

|r|>0
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Iftp|>rs—> rg then (1 — (> rs — Zrﬁ)pfl)l — lasl — oco. Ifpf > rs —> rg, then
(1—=CCrs = rg)P~ Y = 0asl — co. Then

Ak71f = cCo + Z cra” € X.

|7|>0
PIS s> rg

Similar to 3.26, applying now, the transformation 7} on Ay 1 f, dividing by p, and iterating all the
above steps, we see that

Ak72(f) = cCo + Z Crar e X.

|r|>0
p2 X rs— rg

Iterating again and again s times, for s € N, we obtain

Aps(f)i==co+ Z cra” € X.

|r|>0
p¥Trs—Xrg
This implies, for s € N,
(T Acs)(f) = co+Qu(f) € X (3.27)
k=1

where Q4(f) =Y ¢,a” where the sum runs over all r = (ro,« € ) with |r| > 0 such that for all

kell,n]:
% | Z rs— Z rg.
0=(i,k) B=(k.j)
i€[k+1,n] JE[1,k—1]

We need to show that Q4(f) — 0 as s — o0, i.e., we have to show that

VN,,3S, such that Vs > S,val,(c,) > N, Vr € N such that |r| > 0, (3.28)
and p° | ( Z rs — Z rg) for all k € [1,n]. (3.29)

8=(i,) B=(k,j)

i€[k+1,n] jE€[1,k—1]

But as f is globally analytic, [c,| = 0 as |r| =) .4~ ra — 00, which means that

VN, 35S’ such that whenever |r| > S’ (3.30)
we have val,(c,) > N. (3.31)

Any S such that p¥ > S’ will work in 3.28. This is because, take any r, such that |r| > 0 and

ps‘( Z ry— Z 7“5) for all k € [1,n]

d=(i,k) B=(k.j)
i€[k+1,n] JE[1,k—1]

(i.e. satisfying equation 3.29) with s > S (cf. (3.28)).

Fork =1, (329) implies p* | ro1+7r31+ra1t+rn which means ro1+r31trait a1 2>

p® > 5" except when ro 1 =r31 =ry1 =--- =1,1 = 0. If this happens, then consider (3.29) with
k=2 1e p°|r3o+rso+- - +rp2—(re1 =0),ie rgo+rio+---+rp2>p° >S5 except
when 739 =742 = --- = rp2 = 0. Repeating this process, since we have started with an r such

that |r| > 0, we see that any r as in (3.29), with |r| > 0, satisfies |r| > S’ for all s > S and this by
(3.30) and (3.31) implies that val,(c,) > N, which was the desired condition in (3.28). (Here S is
chosen such that p¥ > S’). This shows that Q.(f) — 0 as s — co which gives ¢y € X' (cf. (3.27)).
This completes the proof of lemma 3.11. O

In the following, we complete the proof of Theorem 3.9 which was to find conditions such
that the globally analytic representation A of G is topologically irreducible. It uses an argument
concerning the Verma modules and the condition of irreducibility of A comes from a result of
Bernstein-Gelfand determining the condition of irreducibility of that Verma module.
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With notations as in section 3.3.1, let g = Lie(G), h = Lie(Tp), b (resp. b~) be the upper (resp.
lower) triangular Borel subalgebra containing . Let u~ = Lie(U). Recall that here ¢;’s € K are
such that x;(t) = t, for t — 1. Let

Vo, =U(g) ®up-) K

be the Verma module where U(b™) acts on K via the action of b~ = u™ @ h,u™ acting trivially
and h via
—u € h* = Hom(h, K) given by

—p=(c1, ., n) : Diag(ty, ..., tn) — ch i (3.32)

where t = (¢;) € h,U(g) is the universal enveloping algebra of g. (Note that Dixmier has a different
normalization for the Verma module [Dix77, section 7.1.14]).

Let Ag, be the set of polynomials within the rigid analytic functions A. For k € [1,n],
let T); € b be the infinitesimal generator associated to the one parameter diagonal subgroup
Diag(1, ..., tg, ..., 1), ty € 1 + pZy, ty is at the (k, k)-th place and f = a” € Ag,. The elements Ty,
form a basis of . By equations 3.8 and 3.10, the action of Diag(1,...,tx,...,1) on f is given by

Diag(L, ot () = (C IT az)C TT apn TT ag'ee™) (et

a=(u,v) 6=(i,k) B=(k,j5)
u,v#Ek i€lk4+1,n] jE[1,k—1]

As xi(tr) = t}¥, so the action of T}, on f is

T, f =cra” Z rs — Z rg)a” (3.33)

=(4,k) B=(k.5)

ie[k+1~n] JE,k—1]
G YT DT @31
§=(i,k) B=(k.j)
i€[k+1,n] JE[1,k—1]
d
- Z a;ira, ) (Tk)a" (3.35)
i=1
Here «;’s are the negative roots.
Thus if H € b, then
H-a" =(—p—Y oire,)(H)a" (3.36)

Decomposing Agn = BeepAnn(§) in the form of h- eigenspaces, we see from 3.36 that the monomi-
als a” are h-finite and and the dimensions of eigenspaces of Ag, under h are finite: The eigenvectors
are of the form £ € —pu — Z?:l Nea; € b* and the multiplicity mult(§) = dim A(€) of £ equals
d
dim A(€) = mult(¢) = {number of families (r,,) € N? | £ = —p — Zrmai}, (3.37)
i=1
which is finite.
With fo =1 € Aapn, H - fo = —p(H) fo and the action u™ - fo = 0 because the action of any
element of u~ on fj is given by derivation (cf. proof of Lemma 3.10). So, the map u — u - fo for
u € g induces a g-homomorphism

¢V, — A (3.38)

where V_,, := U(g) ®up-) K.

Moreover, v € V_,, implies v is h - finite (cf. [Dix77, Chapter 7]). This gives ¢(v) € Ais b
- finite which means that ¢(v) € Ag,. This is because equation 3.36 gives, by continuity, that
feA f= ZT:(T%) cra” implies

d
Hef= 3 (-p= raa)(H)ea", (3.39)

r=(ra;)
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Then H - f = Af implies A = (—p — 2?21 ro;0;)(H) if ¢, # 0. Therefore the cardinality of the set
{¢, # 0} is finite, the h-finite vectors of A are just Agy.

The map ¢ : V_,, — Ag, in 3.38 is clearly non-zero because the vector 1 € V_, goes to fo.

Lemma 3.12. If the Verma module V_,, is irreducible then the globally analytic G- representation
A is irreducible.

Proof. Suppose that the Verma module V_, is irreducible. Then the map ¢ : V_, — Ag, is
injective. Also, by 3.37, under the action of b, since the eigenvectors of V_, and Ag, and their
multiplicities match, that is, dim . A(§) = dim Ag,(§) = dim V_,(§), we deduce that ¢ is an isomor-
phism.

Indeed the dimension of dim.A(&) is given by 3.37, on the other hand, using that our Verma
module V_,, is defined by b~ and —pu (rather than A — p~ as in Dixmier’s parametrization [Dix77,
7.1.4]), Dixmier’s formula [Dix77, 7.1.6] yields

d
dim V_,,(¢) = mult(¢) = {number of families (ro,) € N* [ =X =p~ = > 7o a;}
=1

where p~ = %Zaedr « is half the sum of negative roots (because notice that we have used b~
to define the Verma module instead of Dixmier’s b*). We easily see that the above dimension
dim V_ (&) is equivalent to dim A(&) (3.37) with A —p~ = —p.

So V_,, = Ag,. Suppose X is a nonzero closed subspace of 4. Then by lemma 3.11, we have
1 € X. This gives Ag, = U(g) -1 C X. Since X is closed X = A. O

Now we prove the converse of Lemma 3.12.

Recall that a closed subspace of A is G-invariant if and only if it is invariant by g ([Clo16,
Proposition 2.4]). Moreover, it follows from the definition of globally analytic representations
(compare [Clo16, Section 2.2]) that the action of g on A is continuous. If V' C Ag, is invariant by
g, it follows that its closure V is G-invariant.

Recall that Ag, is the set of h-finite vectors in A. In particular, if X C A is closed, the space
Xy—_gin of h-finite vectors in X is X' N Agy.

Lemma 3.13. Assume V C Agy is invariant by g. Then V =V N Agn = Vi—_in.

Proof. By 3.37, A(€) is the subspace of the Tate algebra spanned by a finite number of monomials
a”. In particular, the obvious projection pe : A — A(£) is continuous. Assume v € V N Agy.
Thus v € B¢ A(€) (finite sum of finite-dimensional subspaces) and v = lim vy, v,, € V. If P is the
projection on ®¢A(£), v = Pv = lim Pv,,. But Pv' € VN&:A(€) for any v' € V. Thus, v € V, as

a limit in a finite-dimensional space. O
Lemma 3.13 obviously gives the following Corollary.

Corollary 3.14. Suppose V is a non-zero proper subspace of Agy, stable by g. ThenV is a non-zero
proper closed G-invariant subspace of A.

Lemma 3.15. If the globally analytic G- representation A is irreducible then the Verma module
V_,. s irreducible.

Proof. Let W C Agy, be the image of V_,, by ¢. Then W # 0. If A is an irreducible G-module,
W = Agn by corollary 3.14. Thus, we have a surjective map ¢ : V_,, — Ag,. But, as we noticed,
the dimensions of V_, (&) and of Agy,(§) coincide. This implies that ¢ is an isomorphism. On the
other hand (again by the corollary 3.14) W is irreducible. Thus, V_, is irreducible.

O

Now we determine the condition when the Verma module V_,, is irreducible. Recall that
n
w=(=c1,...,—¢p) : Diag(ty, ..., tn) — Z —cit;
i=1

where ¢ = (;) € h. For negative root o = (i, 7),7 > j, let Ho—; ;) be the matrix E; ; — E; ; where
E; ; is the standard elementary matrix.
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Lemma 3.16. The Verma module V_,, is irreducible if and only if for all o = (i,j) € @7,
(=) (Ha=(i,j)) +i—7j ¢ {1,2,3,..}.

Proof. Let p~ = 3> co- . Fora=(i,j) €97, Ho = Hiy1,+- -+ Hjj—1 and p~ (Hpq1,) = 1.
This gives that p~ (H,—(; j)) = i—j. By Theorem 7.6.24 of [Dix77], the condition of irreducibility of
our V_, is (—p+p7)(Ha) ¢ {1,2,3, ...} for all negative roots o € ®~ (This is because Dixmier’s b™
is our b~ and so we have to work with negative roots.) This gives the condition (—p)(H,)+i—7 ¢
{1,2,3,..} O

Lemma 3.16, Lemma 3.15, and Lemma 3.12 together proves Theorem 3.9. [Q.E.D]

3.3.2 Base change of the principal series representation
With L an unramified finite extension of Q@,. All the arguments of section 3.3.1 extend automati-
cally to the group G(L). As L is unramified, the conditions on the character x to be analytic, that

n(n—1)
is, those given by 3.16, remain unchanged. Moreover, note that the representation A(B;, * ,K)
closed rigid balls of radius 1 as an L-analytic

n(n—1) n(n—l)
(where now By 2

is seen as a product of
n(n—1

space) given by the lemmas 3.2, 3.3, 3.7 are L-analytic. The restriction of A(BlT) ,K) to G(Qp)
is simply the previous representation. Indeed, the representation of G(L) is obtained from the
representation of G(Q,) by holomorphic base change (cf. section 3.2.2 and [Clo16, prop. 3.1]).
Denote by Ig,(x) and IL(x), respectively, the two globally analytic representations (the character
X is defined by the parameters (ci, ..., ¢, ), we agree to identify the characters for the two fields).
Then we have:

Theorem 3.17. For a given embedding L — K, with pu as in 3.82, if —pu(Ha)+i—35 ¢ {1,2,3,...}
for all « = (i,j) € ®~, then I;(x) is an admissible, irreducible (under both G(L) and G(Qp))
globally analytic representation and it is the holomorphic base change of Ig,(x).

I1,(x) is admissible, as holomorphic base change respects admissibility [Clo16, prop. 3.1]. With
the notations of section 3.2.2, define the full (Langlands) base change of Ig, to be the representation
of Resy, /g, G(Qp) on ®o (IL(x))7 :=I(x 0 Np,q,), where N g, is the norm map from L to Q,
and & is the completed tensor product (see also [Clo16, def. 3.8]) and o € Gal(L/Q,). Note that,
for each factor, the embedding i : L — K must be replaced by i o . Finally, we then have

Theorem 3.18. Let i1 be as in 3.32, Assume —u(H,)+i—j ¢ {1,2,3,...} foralla = (i,j) € P~
Then the completed tensor product ®, (Ir(x))? is irreducible, and is the representation of G(L)
on the space of globally analytic vectors, induced from x o Npq,-

Proof. Notice that by assumption, each factor in the completed tensor product is irreducible and
admits the same description as in theorem 3.17. The space of the representation I(x o NL/QP) is
®s A(UK) = A(Resy, g, U, K) which is a space of globally analytic vectors (by theorem 3.17)
in the locally analytic representation Iioc(x © Nr/q,) of Resr g, (G). The proof of irreducibility
of ®¢ (I(x))? follows from Theorem 3.9 using a natural generalization of Clozel’s argument in
Theorem 3.11, part (i¢) of [Clo16], revised version. O

3.4 Induction from the Weyl orbits of the upper triangular Borel

In this section, we briefly sketch the arguments needed to extend the result of theorem 3.8 to the
principal series induced from Weyl orbits of the Borel subgroup (theorem 3.21). Then we base
change our globally analytic representation to L (section 3.5).

3.4.1 Global analyticity for the induction from different Weyl orbits

Denote by P the Borel subgroup of the upper triangular matrices in GL,,(Q,), T the maximal torus
of GL,(Q,), PT the Borel subgroup of the upper triangular matrices in GL,(Z,), W the ordinary
Weyl group of GL,,(Q,) with respect to T which is isomorphic to the group of n x n permutation

matrices, Pt = BNwPtw™!, where B is the Iwahori subgroup in section 3.3.1, indgL”(@”)(X)loc

the locally analytic induction, that is:

indg "% (Vige = {f € Aoc(GLa(Q,), K) : f(gb) = x(b"")f(9). 9 € GL(Q,),b € P}.
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The Iwasawa decomposition [0S10, sec. 3.2.2] gives

indS" @) (ioe = indZE ) (1) 00 (3.40)

as GL,,(Z,)-equivariant topological isomorphism. By the Bruhat-Tits decomposition (loc. cit. and
[Car79, sec. 3.5])
GL,(Z,) = Uwew BwP™,

we obtain the decomposition

indgin(zp)(X)loc = ®w€Wind]B;$ (Xw)loca (341)

a B-equivariant decomposition of topological vector spaces, where the action of x" is given by
x¥(h) = x(w™thw). Let indg+ (x™) be the space of globally analytic functions of indﬁ+ (X" 1oc-

Our goal is to show that for all w € W, indg+ (x*) is a globally analytic representation of G.

We have already showed, in section 3.3, that for w = Id, x analytic, the induction indgo(x)
is a globally analytic representation of G. (Note that B N PT = P,). Recall that U is the lower
triangular unipotent subgroup of GL,,(Z,). Consider the decomposition (cf. lemma 3.3.2 of [0S10])

B = (wUw™ ' N B)(wPtw ™' NB) = (wUw™' N B)(P}).

0 0 1
For GLzg,andw= | 1 0 0 | the above decomposition is like
010
Ly pLp DLy 1 pZ, pZ, Zy 0 0
B=\| 2, Z; pZ, |=] 0 1 0 Zy Z) ply
Zy Zp Z, 0 Zp 1 Zy, 0 7

For a character x of T N GL,(Z,), we extend it to a character of P, by acting trivially on the
non-diagonal elements of P,'. By definition,

indZs (Vtoc = {f € Awoe(B, K) = f(gb) = x(b™")f(9),b € P}, g € B}.

With the decomposition B = (wUw™! N B)(PJ), the vector space of locally analytic functions
imdg:r (X)1oc is the same as Ajo.(wUw ™' N B,K). Let A(wUw™' N B,K) be the subspace of
globally analytic functions of Aj,c(wUw ™' N B, K). With i # j fixed, y € Z, if i > j and y € pZ,
if i < j, recall that the action of the one-parameter subgroup on f € A(wUw~! N B, K) is given
by

(1+yE: ) f(C) = f(Q1+yE;;)~'C) (with C € wUw ™' N B) (3.42)
= f((1 —yE;;)C) (3.43)
= f(1 —yE; j)wAw™")  (with C = wAw™! for A € U). (3.44)

Our goal is to show that this action is globally analytic.
Since w™! € W, write w™! in the form of a permutation matrix, i.e. w™' =3""_, E,; with
jr # js for r # s. Then,

n

w1 =yEi;) = Erj )1 —yEij) = Evnj,) —yEx;
r=1

r=1
where k is such that j, = i¢. As the inverse of a permutation matrix is its transpose, we obtain

n

w1 —yBij)w = ((Z E, ;) — yEku‘) O B
r=1 s=1
=1-ykEk, (use j, # js for r # s)
where [ is such that j; = j. So we have deduced that

(1—yE; j)w=w(l—yEk) (k, 1 such that jix =1i,5; = j). (3.45)
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Inserting equation 3.45 in 3.44 we obtain
(1+yEi ) f(C) = fw(l - yErg) Aw™") (3.46)

Now, the globally analytic function f on w(1—yFE}) ;) Aw™! equals to some globally analytic function
gon (1—yEy;)A, because the conjugacy action of w on the matrix (1 — yEj ;) A is just permuting
the entries of (1 — yEj;)A. So, equation 3.46 is

Fw( —yBr)Aw™) = g((1 — yBy)A)
=1+ yEr1)9(A) (recall A€ U)

and we know from lemmas 3.3 and 3.7 that the action of (1 + yEy;) on g(A) is globally analytic.
Thus, we have shown that

Lemma 3.19. The action of the lower and the upper unipotent one-parameter subgroups of G of
the form (1+yE; ;) on f € A(wUw™' N B, K) is a globally analytic action.

Similar argument also shows that the action of the diagonal subgroup of G on A(wUw™'NB, K)
is globally analytic. More precisely, we write w~='Diag(t1, ..., t,)w = Diag(t}, ...,t!)) with (¢}, ...,t.)
a permutation of (t1,...,t,). Then, with C € wUw~' N B,

Diag(ty?,...t; 1) f(C) = f(Diag(tl, ...,tn)wAw_l) (C =wAw™)
= f(w[Diag(t'l,...,t;)]Aw_l)

= g(Diag(t’l, ey t'n)A> (for some analytic g)
= Diag(tl_lv sy tﬁl)g(A)

and by lemmas 3.2 and 3.1, the action of the diagonal subgroup of G on g(A) is a globally analytic
action. Therefore, we have shown

Lemma 3.20. The action of the diagonal subgroup of G on A(wUw~'NB, K) is globally analytic.

Recall that the vector space A(wUw~'N B, K) is isomorphic to ind}B;Jr (x*). Thus, lemmas 3.19
and 3.20 together gives

Theorem 3.21. Assume p > n+ 1 and x analytic. Then, for all w € W, the action of the pro-p
Twahori group G on indljir (x") is globally analytic.

3.5 Langlands base change for the full globally analytic principal series

Following the notations of section 3.3.2, we fix L a finite unramified extension of Q, inside K. For
each w € W, consider the globally analytic admissible representation I,, g, (x) := A(wUw™'NB, K)
of G(Qp). By section 3.2.2, A(wUw™' N B, K) extends naturally to a globally analytic admissible
representation of G(L) called the "holomorphic base change" which we denote by I, r(x). With
the notations of section 3.2.2, define the full Langland’s base change to be the representation of
Res g, G(Qp) on Dwew (Do Luw.r(x)?) (cf. [Clol6, sec. 3.5]). Finally, like theorem 3.18, we will
then have

Theorem 3.22. The Langlands base change @wew(®a Iy, .(xX")7) is a globally analytic admissible
representation of G(L).

In conclusion, for p > n + 1, we have shown that for all w € W, indgj7 (x™) is a globally
analytic representation of the pro-p Iwahori G under the analyticity assumption on the character
x- Furthermore, we have treated the case of irreducibility of the principal series when w = Id. We
hope that it is possible to adapt and generalize the argument of our irreducibility proof to treat the
case when w # Id. Also, it is an interesting future project to determine the globally analytic vectors
of more general p-adic representations of GL(2,Q,), for example the "trianguline" representation
of Colmez [Col08] (see also [Col14]), which corresponds to a quotient of principal series. Also one
can explore the connection with the globally analytic vectors of p-adic representations (under the
pro-p Iwahori or a suitable rigid-analytic subgroup of GL(2)) and (¢, I")-modules [Col10], similar
to the existing correspondence for locally analytic representations [CD14, Sec VI.3].
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4 Galois representation with open image

The results of this section are already published in International Journal of Number Theory [CR18].

Abstract
For an odd prime p, we determine a minimal set of topological generators of the pro-p
Iwahori subgroup of a split reductive group G over Z,. In the simple adjoint case and for any
sufficiently large regular prime p, we also construct Galois extensions of Q with Galois group
between the pro-p and the standard Iwahori subgroups of G.
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4.1 Introduction (work in collaboration with Christophe Cornut)

Let p be an odd prime, let G be a split reductive group over Z,, fix a Borel subgroup B=U x T
of G with unipotent radical U < B and maximal split torus T C B. The Iwahori subgroup I and
pro-p-Iwahori subgroup I(1) C I of G(Z,) are defined [Tit79, 3.7] by

I={g€G(Zy): red(g) € B(F,)},
I(1) = {g € G(Zp) : red(g) € U(F,)},

where ‘red’ is the reduction map red: G(Z,) — G(F,). The subgroups I and I(1) are both open
subgroups of G(Z,). Thus, I = I(1) % Tiors and T(Z ) = T(1) X Tyors where T'(1) and Tiors
are respectively the pro—p and torsion subgroups of T(Z,). Following [Grel6] (who works with
G = GL,), we construct in section 4.2 a minimal set of topological generators for I(1).

More precisely, let M = X*(T) be the group of characters of T, R C M the set of roots of T
in g = Lie(G), A C R the set of simple roots with respect to B, R = [[... R. the decomposition
of R into irreducible components, A, = AN R, the simple roots in R, &c mas the highest positive
root in R.. We let D C C be the set of irreducible components of type G2 and for d € D, we denote
by d4 € R4+ the sum of the two simple roots in A;. We denote by MY = X, (T) the group of
cocharacters of T, by ZRY the subgroup spanned by the coroots RV C MY and we fix a set of
representatives S C MV for an F,-basis of

(MYJZRY) @ F, = ®sesFp - s@ 1.

We show (see theorem 4.1):
Theorem. The following elements form a minimal set of topological generators of the pro-p-
Iwahori subgroup I1(1) of G = G(Q,):

1. The semi-simple elements {s(1 +p):s € S} of T(1),
2. For each c € C, the unipotent elements {z4(1) : @ € A},

3. For each c € C, the unipotent element x_, ... (p),

I

. (If p=3) For each d € D, the unipotent element xs,(1).

This result generalizes Greenberg [Grel6] proposition 5.3, see also Schneider and Ollivier ([OS16],
proposition 3.64, part i) for G = SLs.

Let T be the image of T in the adjoint group G* of G. The action of G on G induces
an action of T%4(Z,) on I and I(1) and the latter equips the Frattini quotient I(1) of I(1) with
a structure of F,[T2% ]-module, where T2 is the torsion subgroup of T%(Z,) (cf. section 4.2.8).

Any element 3 in ZR = M = X*(T%) induces a character 3 : Tiors — F) and we denote

by F,(3) the corresponding simple (1-dimensional) F,[T22 ]-module. With these notations, the
theorem implies that

Corollary. The F,[T%% ]-module I(1) is isomorphic to

tors

Fff ® (@QGA Fp(a)) ® (@cec Fp(—ac,maz)> ( ® (@deD Fp(56)> if p= 3)~

Here S is the cardinality of S. Suppose from now on in this introduction that G is simple and
of adjoint type. Then:

Corollary The F,[Tiors]-module I(1) is multiplicity free unless p = 3 and G is of type Aj,
By or Cy (£ > 2), Fy or Ga.

Let now K be a Galois extension of Q, ¥, the set of primes of K lying above p. Let M be
the compositum of all finite p-extensions of K which are unramified outside X, a Galois extension
over Q. Set

I'=Gal(M/K), Q=Gal(K/Q) and II = Gal(M/Q).

We say that K is p-rational if T' is a free pro—p group, see [MNQD90]. The simplest example is
K = Q, where I' = 1I is also abelian and M is the cyclotomic Z,-extension of Q. Other examples
of p-rational fields are Q(y,) where p is a regular prime.
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Assume K is a p-rational, totally complex, abelian extension of Q and such that (p—1)-Q = 0.
Then Greenberg in [Grel6] constructs a continuous homomorphism

po: Gal(M/Q) = GLu(Z,)

such that po(T") is the pro-p Iwahori subgroup of SL,(Z,), assuming that there exists n distinct
characters of €2, trivial or odd, whose product is the trivial character.

In section 4.3, we establish the existence of p-adic Lie extensions of Q whose Galois group cor-
responds to certain specified p-adic Lie algebras. More precisely, for p-rational fields, we construct
continuous morphisms with open image p : IT — I such that p(I') = I(1). We show in corollary
4.18 that

Corollary Suppose that K is a p-rational totally complex, abelian extension of Q and (p—1)-
Q = 0. Assume also that if p = 3, our split simple adjoint group G is not of type Ay, By or Cy
(£ >2), Fy or Ga. Then there is a morphism p : I1 — I such that p(I') = I(1) if and only if there
is morphism p : Q@ — Tyors such that the characters aop: Q — IF; for a € {AU —apqz} are all

distinct and belong to Qfdd.

Here Qfdd is a subset of the characters of 2 with values in F); (cf. section 4.3.2). Furthermore,
assuming K = Q(p,) we show the existence of such a morphism p : Q — T},,s provided that p is
a sufficiently large regular prime:

Corollary There is a constant ¢ depending only upon the type of G such that if p > c is
a reqular prime, then for K = Q(up), M, Il and T' as above, there is a continuous morphism
p: 0 — I with p(T') = I(1).

The constant ¢ can be determined from lemmas 4.19, 4.20 and remark 4.21.

In section 4.2, we find a minimal set of topological generators of I(1) and study the structure
of f(l) as an F,[T24 ]-module. In section 4.3, assuming our group G to be simple and adjoint, we
discuss the notion of p-rational fields and construct continuous morphisms p : II — I with open

image.

4.2 Topological generators of the pro-p Iwahori

This section is organized as follows. In section 4.2.1 we introduce the notations, then section 4.2.2
states our main result concerning the minimal set of topological generators of I(1) (see theorem
4.1) with a discussion of the Iwahori factorisation in section 4.2.3. Its proof for G simple and
simply connected is given in sections (4.2.4-4.2.7), where section 4.2.7 deals with the case of a
group of type G2. The proof for an arbitrary split reductive group over Z, is discussed in section
4.2.8 and in particular, we establish the minimality of our set of topological generators. Finally,
in section 4.2.9 we study the structure of the Frattini quotient I(1) of I(1) as an F, [T ]-module
and determine when it is multiplicity free.

4.2.1 Preliminary notations

Let p be an odd prime, G be a split reductive group over Z,. Fix a pinning of G [GP11, XXIII 1]
(Tv Ma Rv Av (Xa)aeA) .
Thus, T is a split maximal torus in G, M = X*(T) is its group of characters,

9= 00D DacrYa

is the weight decomposition for the adjoint action of T on g = Lie(G), A C R is a basis of the
root system R C M and for each o € A, X,, is a Zp-basis of g,.-

We denote by MY = X,(T) the group of cocharacters of T, by o the coroot associated to
a € R and by RV € MY the set of all such coroots. We expand (X, )aeca to a Chevalley system
(Xa)acr of G [GP11, XXIII 6.2]. For « € R, we denote by U, C G the corresponding unipotent
group, by z4 : Ga,z, — U, the isomorphism given by z,(t) = exp(tX,). The height h(a) € Z of
a € R is the sum of the coefficients of « in the basis A of R. Thus, R, = h™!(Z~¢) is the set of
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positive roots in R, corresponding to a Borel subgroup B = U x T of G with unipotent radical
U. We let C be the set of irreducible components of R, so that

R=]]R. A=]]Ac Ri=]]Res

ceC ceC ceC

with R, irreducible, A, = AN R, is a basis of R; and R, = R4 N R, is the corresponding set of
positive roots in R.. We denote by o maz € Re + the highest root of R.. We let D C C be the set
of irreducible components of type G2 and for d € D, we denote by dq € R4+ the sum of the two
simple roots in Ay.

Since G is smooth over Z,, the reduction map

red : G(Z,) — G(F,)

is surjective and its kernel G(1) is a normal pro-p-subgroup of G(Z,). The Iwahori subgroup I
and pro-p-Iwahori subgroup I(1) C I of G(Z,,) are defined [Tit79, 3.7] by

I = {g€G(Z,):red(g) € B(F,)},
I(1) = {g€G(Zp):red(g) € U(F,)}.

Thus, I(1) is a normal pro-p-Sylow subgroup of I which contains U(Z,) and
1/1(1) = B(F,)/U(F,) = T(F,).
Since T(Z,) — T(F,) is split by the torsion subgroup Tiors ~ T(F,) of T(Z,),
T(Zp) =T(1) X Tyors and I=1I(1) % Tiors

where
T(1) = T(Z,) N (1) = ker (T(Z,) - T(E,))

is the pro-p-Sylow subgroup of T(Z,). Note that
T(1) = Horn(M,l—!—pr)=]\4v®(1—|-pr)7
Tiors = Hom (M, Mpfl) =MV ®]F1>7<

4.2.2 Main theorem concerning the minimal set of topological generators of the pro-p
Iwahori

Let S C MY be a set of representatives for an [F,-basis of
(MY)ZRY) @ F) = BsesFp - s ® 1.

Theorem 4.1. The following elements form a minimal set of topological generators of the pro-p-
Twahori subgroup I(1) of G = G(Q)):

1. The semi-simple elements {s(1+p):s € S} of T(1).
2. For each c € C, the unipotent elements {x4(1) : € A.}.
8. For each c € C, the unipotent element x_, ... (D).

4. (If p=3) For each d € D, the unipotent element xs,(1).

4.2.3 Iwahori decomposition
By [GP11, XXII 5.9.5] and its proof, there is a canonical filtration
U=U;DU03D0---DU0,DUp1 =1

of U by normal subgroups such that for 1 <4 < h, the product map (in any order)

H Uu,—~U
h(a)=t
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factors through U; and yields an isomorphism of group schemes
I[ Uo =Ti U, =U,/Uips.
h(a)=1
By [GP11, XXII 5.9.6] and its proof,

U;(R) = Ui(R)/Ui11(R)
for every Zjy-algebra R. It follows that the product map
H Ua X Ui+1 — Ul
h(a)=t
is an isomorphism of Zy-schemes and by induction, the product map
HUxHUx x ][ Ua—U
h(a)=1 h(a)=2 h(a)=h
is an isomorphism of Z,-schemes. Similarly, the product map
II Yax J] Uax-x J[] Ua—U"
h(a)=—h h(a)=—h+1 h(a)=—1

is an isomorphism of Z,-schemes, where U~ is the unipotent radical of the Borel subgroup B~ =
U~ x T opposed to B with respect to T. Then by [GP11, XXII 4.1.2], there is an open subscheme
Q of G (the “big cell”) such that the product map

U xTxU—->G

is an open immersion with image 2. Plainly, B = U x T is a closed subscheme of 2. Thus by
definition of I, I C €(Z,) and therefore any element of I (resp. I(1)) can be written uniquely as
a product

H ZTalag) X -+ X H Zolag) Xt x H ZTalag) X -+ X H Zo(aq)

h(a)=—h h(a)=—1 h(a)=1 h(a)=h

where a, € Z, for & € Ry, aq € pZ, for « € R_ = —R, and t € T(Z,) (resp. T(1)). This is the
Iwahori decomposition of I (resp. I(1)). If I is the group spanned by {z4(Z,) : € Ry} and I~
is the group spanned by {z,(pZ,): « € R_}, then I = U(Z,), I~ € U (Z,) and every = € I
(resp. I(1)) has a unique decomposition r = u~tu® with u* € I* and t € T(Z,) (resp. t € T(1)).

4.2.4 The case for semi-simple, simply connected groups

Suppose first that G is semi-simple and simply connected. Then MY = ZRY, thus & = 0.
Moreover, everything splits according to the decomposition R =[] R.:

G=][G. T=][T.. B=][B., I=][L and 1(1)=]]ZL(1)

To establish the theorem in this case, we may thus furthermore assume that G is simple. From
now on until section 4.2.8, we therefore assume that

G is (split) simple and simply connected.
As a first step, we show that

Lemma 4.2. The group generated by I and I~ contains T(1).

Proof. Since G is simply connected,

Hav: HGm,ZP—>T

a€A aEA
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is an isomorphism, thus

T.1) = [ /(1 +pZy).

aEA
Now for any a € A, there is a unique morphism [GP11, XX 5.8]

fo : SL(2)z, — G

such that for every u,v € Z, and x € Z,;,

fa ( P ) — za(u), fa ( L ) — 2 () and f ( S ) — a¥(x).

Since for every z € 1+ pZ, [GP11, XX 2.7],

()G )G )G )=(6025)

in SL(2)(Z,), it follows that " (14 pZ,) is already contained in the subgroup of G(Z,) generated
by z4(Z; ) and z_(pZ;). This proves the lemma. O

4.2.5 Commutator relations

Recall from [GP11, XXI 2.3.5] that for any pair of non-proportional roots o # £f in R, the set of
integers k € Z such that f+ ka € R is an interval of length at most 3, i.e. there are integers r > 1
and s > 0 with » + s < 4 such that

RN{p+Za}={B—(r—1)a, -, 5+ sa}.

The above set is called the a-chain through § and any such set is called a root chain in R. Let
[I=|l : R — Ry be the length function on R.

Proposition 4.3. Suppose |« < ||5]|. Then for any u,v € G, the commutator

[25(0) : 2a(w)] = zp(v)Ta(uw)rs(—v)Tal—u)

is given by the following table, with (r,s) as above:

(ros)  [zp(v) : 2a(u)]

1

To+p(E

Tt p(FW) - Taatp(Eu’v)

$a+ﬁgiuv) T20+8(FUV) - T3a48(Fu’V) - T3ar2p(Fuv?)
(

)

(==}
N

uv)

)
)

ZTa+p(£2uv)
Tt (E2u0) - Tog4p(E£3U%0) - Taq2p(E3uv?)
ZTotp(E3uv)

)

)

NN N TN TN T
N = W N
NN ANEP NG NN

1
1
1
2
2
37

The signs are unspecified, but only depend upon o and (3.
Proof. This is [GP11, XXIII 6.4]. 0
Corollary 4.4. Ifr+s<3 and a+ 8 € R (i.e. s > 1), then for any a,b € Z, the subgroup of G
generated by x.,(p*Z,) and x5(p*Z,) contains xo15(p*T°7Z,).
Proof. This is obvious if (r,s) = (1,1) or (2,1) (using p # 2 in the latter case). For the only
remaining case where (r,s) = (1, 3), note that

[25(v) : za(W)][zp(w?0) : 2o (uw™)] " = zays(Fuv(l — w)).
Since p # 2, we may find w € Z)' with (1 —w) € Z;. Our claim easily follows. O

Lemma 4.5. If R contains any root chain of length 3, then G is of type Gs.

Proof. Suppose that the a-chain through S has length 3. By [GP11, XXI 3.5.4], there is a basis
A’ of R such that o € A’ and § = aa + ba’ with o’ € A’, a,b € N. The root system R’ spanned
by A’ = {a,a’} |GP11, XXI 3.4.6] then also contains an a-chain of length 3. By inspection of
the root systems of rank 2, for instance in |[GP11, XXIII 3|, we find that R’ is of type G3. In
particular, the Dynkin diagram of R contains a triple edge (linking the vertices corresponding to
a and '), which implies that actually R = R’ is of type Gbs. O
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4.2.6 The case for semi-simple, simply connected groups not of type Go

We now establish our theorem 4.1 for a group G which is simple and simply connected, but not of
type Gs.

Lemma 4.6. The group I is generated by {x,(Z,) : o € A}.

Proof. Let H C I'* be the group spanned by {z,(Z,) : « € A}. We show by induction on h(y) > 1
that z,(Z,) C H for every v € Ry. If h(y) = 1, v already belongs to A and there is nothing to
prove. If h(y) > 1, then by [Bou81, VI.1.6 Proposition 19], there is a simple root o € A such that
f =~ —a¢€ R;. Then h(5) = h(y) — 1, thus by induction z23(Z,) C H. Since also z,(Z,) C H,
z+(Z,) C H by Corollary 4.4. O

Lemma 4.7. The group generated by I'* and x_,,,,, (pZ,) contains I~.

Proof. Let H C I be the group spanned by It and z_,,, .. (pZ,). We show by descending induction
on h(y) > 1 that x_.(pZ,) C H for every v € Ry. Suppose h(y) = h(maz), then v = apqq and
there is nothing to prove. If h(y) < h(@maz), then by [Bou81, VI.1.6 Proposition 19], there is a
pair of positive roots a, 8 such that 8 = v+ . Then h(8) = h(y)+h(a) > h(v), thus by induction
x_g(pZ,) C H. Since also z4(Z,) C H, x_~(pZ,) C H by Corollary 4.4. O

Remark 4.8. From the Hasse diagrams in [Rinl13], it seems that in the previous proof, we may
always require « to be a simple root.

Proof. (Of theorem 4.1 for G simple, simply connected, not of type G2) By lemma 4.2, 4.6, 4.7
and the Iwahori decomposition of section 4.2.3, I(1) is generated by

{za(Zp) : a € Ay ULz 0. (PZp)}
thus topologically generated by
{za(1): e € Ay U{z_q,.. (D)}

None of these topological generators can be removed: the first ones are contained in IT C I(1),
and all of them are needed to span the image of

I(1) - U(F,) - Uy (Fp) ~ H Ua(Fp),
aEA

a surjective morphism that kills _,, .. (p)- O

4.2.7 Case for groups of type G,
Let now G be simple of type G, thus A = {«, 8} with ||a| < ||3]] and
Ry ={a, 3,8+ o, B+ 20,3 + 3,28 + 3a}.

The whole root system looks like this:

3a+ 28
ath 2a+63a+ﬁ
B
—« @
-3a—p -5
—2a—p —a—pf
—3a—208

Lemma 4.9. The group generated by I'" and x_sp_34(pZ,) contains I~ .
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Proof. Let H C I(1) be the group generated by It and x_s5_34(pZ,). Then, for every u,v € Z,,
H contains

[r—28-3a(pv) 1 2p(u)] = z_g_3a(Lpuwv)
[T-28-3a(pv) : Tp13a(v)] = w_pg(tpuv)
[t-25-3a(PV) s g120(w)] = z_p_a(Epuv) - za(£pu®v) - 2a43a(Epu’e) - a_g(£p u’v?)
It thus contains ©_g_34(pZ,), x_3(pZ,) and z_p_o(pZ,), along with
[t p-3a(pv) i za(w)] = z_p oa(tpuv)-z_p_o(tpu’v) z_g(£pu’v) -z o5 3a(Ep’u’v?)
[2_p_3a(PV) : Tpr20 ()] = T_a(Epuv) - xa4a(£puv)  zopiza(£puv) - z5(Ep?ude?)
It therefore also contains z_g_24(pZy) and x_q(pZ,). O

The filtration (U;);>1 of U in section 4.2.3 induces a filtration
I"=If>--->IFoIf=1

of IT = U(Z,) by normal subgroups I;” = U;(Z,) whose graded pieces

Tj = ﬁi(Zp) = Ij/lijil
are free Z,-modules, namely
—+ _ _ -+ _
. I :meaﬂizp'xg, Iy =2y -Tayp
Iy = Zp - Taa4p, Iy =2y T3a4p, Iy =Zp - T3at2p

where 7 is the image of x(1). The commutator defines Z,-linear pairings

e N
[— =i 1, ><Ij _>Ii+j
with [y, z];; = —[z,y]i;, [z, 2]i; = 0 and, by Proposition 4.3,

[Tg,Ta] = £Tat8s  [Tats:Ta) = £2T20+8, [T20+8: Ta) = £3T3a+4,
[Ta+p: T2a+8] = £3a+28 and  [Tp, Tzatp] = £2a+25

Let H be the subgroup of I generated by z,(Z,) and z3(Z,) and denote by H; its image in
I*/I{:_l = G,;. Then Hy = G1, Hy contains [Tg,Ts] = £Tayp thus Hy = G2, Hs contains
[Tatps Ta] = £2Toq4p thus Hy = G3 since p # 2, Hy contains [Toq+s, Ta] = £3Tza4p thus Hy =
Gy if p # 3, in which case actually H = Hy = G5 = It since H always contains (T3, T2a+8] =
+T30428-

If p = 3, let us also consider the exact sequence
O—>J4—>G4—>7Y—>O
The group Jy = I;/I;' is commutative, and in fact again a free Zs-module:

J1 = (U2/Us)(Zy) = Z3Zot8 ® ZsToa+8 ® LsTaatp

where Z is the image of x,(1). The action by conjugation of Tf on Jy is given by

1 1
To | £2 1 T 1
+3 £3 1 1

in the indicated basis of Jy. The Zs-submodule Hj = Hy N Jy of Jy satisfies
Hi + Z3T3015 =Js and 3Tsaip € Hy.

Naming signs ¢; € {£1} in formula (1, 3) of proposition 4.3, we find that H} contains
LUV - Toq8 + eau?v - Toa+8 + e3udv - T30+4

for every u,v € Z3. Adding these for v =1 and v = 41, we obtain

.i‘ga_,_ﬁ S Hi

94



It follows that Hj actually contains the following Zs-submodule of Jy:
Jy=4a Tatp+b Toa+p+ C Tsarp : a,b,c € L3, €1a = e3c mod 3} .
Now observe that Jj is a normal subgroup of G4, and the induced exact sequence
0= Ju/Js = Ga) T, - T, =0

is an abelian extension of Tf ~ 73 by Jy/J} ~ F3. Since Hy/J} is topologically generated by two
elements and surjects onto 7?, it actually defines a splitting;:

Ga/Jy=Ha/Jy® Ju/J}.
Thus, H) = J;, Hy is a normal subgroup of G4, H is a normal subgroup of I™ and
I"/H ~Gy/Hy ~ Jy)J; ~TF3
is generated by the class of x445(1) or z344+5(1). We have shown:

Lemma 4.10. The group I is spanned by xo(Z,) and xg(Z,) plus xqa45(1) if p = 3.

Proof. (Of theorem 4.1 for G simple of type G2) By lemma 4.2, 4.9, 4.10 and the Iwahori decom-
position of section 4.2.3, the pro-p-Iwahori I(1) is generated by z4(Z,), 25(Zy), —28—34(PZp),
along with z,45(1) if p = 3. It is therefore topologically generated by z.(1), z5(1), z_28—34(p),
along with x,,5(1) if p = 3. The surjective reduction morphism I(1) - U(F,) — U;(F,) shows
that the first two generators can not be removed. The third one also can not, since all the others
belong to the closed subgroup I, C I(1). Finally, suppose that p = 3 and consider the extension

1— UQ/U5 — U/U5 — U/U1 —1
With notations as above, the reduction of
Ji C Jy = Ua(Z3)/Us(Z3) = (U /Us)(Z3)

is a normal subgroup Y of X = (U/Us)(F3) with quotient X/Y ~ F3. The surjective reduction
morphism

then kills ©_s5_3,(p). The fourth topological generator z,4+5(1) of I(1) thus also can not be
removed, since the first two certainly do not span X/Y ~ F3. O

4.2.8 The case for arbitrary split reductive groups

We now return to an arbitrary split reductive group G over Z,. Let
Gs¢ Gder Y e N Gad

be the simply connected cover G*¢ of the derived group G of G, and the adjoint group 7 : G —
G of G. Then

(r:[\ad7 ]\4ad7 Rad7 Aad; (ng) ) = (’]T(T), ZR, R, A7 (W(Xa))aeA)

acAed

is a pinning of G®® and this construction yields a bijection between pinnings of G and pinnings of
G2, Applying this to G*¢ or G we obtain pinnings

(TSC,MSC,RSC, ASC, (X;C)QGASC) and (r:[\de7‘7]\4'der’_Rder,Ader7 (XgET)aeAsc)

for G*¢ and G?7: all the above constructions then apply to G®¢, G*¢ or G%", and we will denote
with a subscript ad, sc or der for the corresponding objects. For instance, we have a sequence of
Iwahori (resp. pro-p-Iwahori) subgroups

¢ 5 1% s [ 1% and  I°°(1) — I9°7(1) < I(1) — I°%(1).
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The action of G on itself by conjugation factors through a morphism
Ad: G — Aut(G).

For b € B*(F,), Ad(b)(Br,) = By, and Ad(b)(Ur,) = Ug,. We thus obtain an action of the
Iwahori subgroup 1% of G = G%(Q,) on I or I(1). Similar consideration of course apply to
G*¢ and G9%" and the sequence

I°¢(1) — I%7(1) < I(1) — I1%4(1)

is equivariant for these actions of 194 = 194(1) x T4 .

Let J be the image of I°¢(1) — I(1), so that J is a normal subgroup of I. From the compatible
Iwahori decompositions for (1) and 7°¢(1) in section 4.2.3, we see that T(1) — I(1) induces a
T*4_equivariant isomorphism

T(1)/T(1)NJ — I(1)/J.

Since the inverse image of T(Z,) in G**(Z,) equals T*°(Z,) and since also
(1) = T*(2,) N (1),

we see that T'(1) N J is the image of T°¢(1) — T(1). Also, the kernel of I*¢(1) — I(1) equals
Z N I°¢(1) where
Z =ker(G* — G)(Z,) = ker(T* — T)(Z,).

Therefore, Z N I1%¢(1) is the kernel of T%¢(1) — T'(1), which is trivial since Z is finite and 7°°(1) ~
Hom(M?®°, 1+ pZ,) has no torsion. We thus obtain exact sequences

1 — T5¢(1) —- T(1) - Q — 0
n n I
1 —» I’°(1) —- I(1) - @ — 0

where the cokernel @ is the finitely generated Z,-module
Q= (M"Y/ZR") ® (1 + pZy).

Remark 4.11. If G is simple, then M /ZR" is a finite group of order ¢, with ¢ | £+ 1 if G is of
type Ag, ¢ | 3 if G is of type Eg and ¢ | 4 in all other cases. Thus, @ = 0 and 7°¢(1) = I(1) unless
G is of type Ay with p| ¢ | £+ 1 or p=3 and G is adjoint of type Eg. In these exceptional cases,
MY JZRY is cyclic, thus Q ~ F,,.

It follows that I(1) is generated by I*¢(1) and s(1+pZ,) for s € S, thus topologically generated
by I*¢(1) and s(1+p) for s € S. In view of the results already established in the simply connected
case, this shows that the elements listed in (1 — 4) of Theorem 4.1 indeed form a set of topological
generators for I(1).

None of the semi-simple elements in (1) can be removed: they are all needed to generate the
above abelian quotient @ of I(1) which indeed kills the unipotent generators in (2 — 4). Likewise,
none of the unipotent elements in (2) can be removed: they are all needed to generate the abelian
quotient

I(1) —» U(F,) —» Uy(F,) ~ H Ua(Fp)
a€EA

which kills the other generators in (1), (3) and (4). One checks easily using the Iwahori decomposi-
tion of I(1) and the product decomposition U~ = [] ., U_ that none of the unipotent elements in
(3) can be removed. Finally if p = 3 and d € D, the central isogeny G*¢ — G2 induces an isomor-
phism GJ° — ng between the simple (simply connected and adjoint) components corresponding
to d, thus also an isomorphism between the corresponding pro-p-Iwahori’s I5°(1) — de(l). In
particular, the projection I(1) — I%¢(1) — I34(1) is surjective. Composing it with the projection
I34(1) — F3 constructed in section 4.2.7, we obtain an abelian quotient (1) — F3 that kills all of
our generators except (1), zg(1) and z,4+5(1) where Ay = {a, 8}. In particular, the generator
Za+5(1) from (4) is also necessary. This finishes the proof of Theorem 4.1.
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4.2.9 The structure of the Frattini quotient of the pro-p Iwahori

The action of 1% = I1%¢(1) x T2, on I(1) induces an F,-linear action of

Tit, = Hom (M®, 1,1 ) = Hom (ZR,F))
on the Frattini quotient I(1) of I(1). Our minimal set of topological generators of (1) reduces
to an eigenbasis of I(1), i.e. an F,-basis of I(1) made of eigenvectors for the action of T2Z,. We

denote by F,(a) the 1-dimensional representation of 724 on F, defined by a € ZR. We thus
obtain:

Corollary 4.12. The F,[T4 ]-module I1(1) is isomorphic to

tors

F25 & ( ®aca Fy(0)) © ((@cec Fyp~emar) ) (@ (@ae Fp(de)) if p = 3).

Here S denotes the cardinality of the set S. The map a — F,(«) yields a bijection between
ZR/(p—1)ZR and the isomorphism classes of simple F,[T2¢ ]-modules. In particular some of the
simple modules in the previous corollary may happen to be isomorphic. For instance if G is simple
of type By and p = 3, then —q;,4; = @ mod 2 where a € A is a long simple root. An inspection

of the tables in [Bou81]| yields the following:
Corollary 4.13. If G is simple, the F,[T2% ]-module I(1) is multiplicity free unless p =3 and G

tors

is of type A1, By or Cy (€ >2), Fy or Ga.

In the next section we use this result to construct Galois representations landing in 1%¢ with
image containing 7%4(1).

4.3 The construction of Galois representations

Let G be a split simple adjoint group over Z,, and let I(1) and I = I(1) XT};,s be the corresponding
Iwahori groups, as defined in the previous section. We want here to construct Galois representations
of a certain type with values in I with image containing I(1). After a short review of p-rational
fields in section 4.3.1, we establish a criterion for the existence of our representations in section
4.3.2 and finally give some examples in section 4.3.3.

4.3.1 Short review of p-rational fields

Let K be a number field, ro(K) the number of complex primes of K, ¥, the set of primes of K
lying above p, M the compositum of all finite p-extensions of K which are unramified outside X,
M? the maximal abelian extension of K contained in M, and L the compositum of all cyclic
extensions of K of degree p which are contained in M or M. If I' = Gal(M/K) then T is a pro-p
group, 1% = Gal(M®/K) is the maximal abelian quotient of I', and T = T® /pI'* =~ Gal(L/K)
is the Frattini quotient of T'.

Definition 4.14. We say that K is p-rational if the following equivalent conditions are satisfied:
1. rankg, (%) = ro(K) + 1 and T is torsion-free as a Z,-module,
2. T is a free pro-p group with ro(K) + 1 generators,
3. T is a free pro-p group.

The equivalence of (1), (2) and (3) follows from [MNQD90], see also proposition 3.1 and the
discussion before remark 3.2 of [Grel6]. There is a considerable literature concerning p-rational
fields, including [Mov90], [INQD93].

Example 4.15. Suppose that K is a quadratic field and that either p > 5 orp = 3 and is unramified
in K/Q. If K is real, then K is p-rational if and only if p does not divide the class number of
K and the fundamental unit of K is not a p-th power in the completions K, of K at the places v
above p. On the other hand, if K is complex and p does not divide the class number of K, then K
is a p-rational field (cf. proposition 4.1 of [Grel6]). However, there are p-rational complex K ’s for
which p divides the class number (cf. chapter 2, section 1, p. 25 of [Mov88b]). For similar results,
see also [Fuj08] and [Min86] if K is complex.
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Example 4.16. Let K = Q(u,). If p is a regular prime, then K is a p-rational field (cf. [Sha66],
see also [Grel6], proposition 4.9 for a shorter proof).

4.3.2 Construction of Galois representations with open image

Suppose that K is Galois over Q and p-rational with p 1 [K : Q].
Since K is Galois over Q, so is M and we have an exact sequence

1-T—-II—-Q—1

where Q@ = Gal(K/Q) and II = Gal(M/Q). Conjugation in II then induces an action of € on

the Frattini quotient I' = Gal(L/K) of I'. Any continuous morphism p : IT — I maps I' to I(1)
and induces a morphism 7 : Q — I/I(1) = Tiors and a p-equivariant morphism j : T' — I(1). If
p(I') = I(1), then p is also surjective.

Suppose conversely that we are given the finite data

0:Q—> Tors and ﬁf‘—»f(l)

Since Q has order prime to p, the Schur-Zassenhaus theorem ([Wil98], proposition 2.3.3) implies
that the above exact sequence splits. The choice of a splitting IT ~ T" x Q2 yields a non-canonical
action of Q on I' which lifts the canonical action of Q on the Frattini quotient I'. By [Grel6],
proposition 2.3, p lifts to a continuous Q-equivariant surjective morphism p’ : I' — I(1), which
plainly gives a continuous morphism

p=0,p): M=TxQ—T=1I(1)xTirs
inducing 5 : Q — Tiops and j: T — I~(1) Thus:

Proposition 4.17. Under the above assumptions on K, there is a continuous morphism p : 11 — I
such that p(T') = I(1) if and only if there is a morphism p: Q — Tyors such that the induced F,[Q]-
module p*I1(1) is a quotient of T'.

The Frattini quotient I (1) is an F,[Tiers]-module and by the map p, we can consider I (1) as an
F,[©]-module which we denote by p*I(1).
Suppose now that

A(K): K is a totally complex abelian (thus CM) Galois extension of @ which is p-rational of
degree [K : Q] | p— 1.

Let Q be the group of characters of ) with values in JF;;, Qodd C Q the subset of odd characters

(those taking the value —1 on complex conjugation), and xo € ) the trivial character. Then by
[Grel6] proposition 3.3,

F = @XEQOddU{Xo}Fp(X)

as an F,[Q]-module. In particular, I is multiplicity free. Suppose therefore also that the FpTiors)-
module 7(1) is multiplicity free, i.e. by corollary 4.13,

B(G): If p=3, then G is not of type Ay, By or C; (¢ > 2), Fy or Gs.

For S as in section 4.2.2, we define

as, — Qoaa Uxo, ifS=0
odd — .
Qodda if S 7& @

Note that S = () unless G if of type Ay with p | £+ 1 or G is of type Fg with p = 3, in which both
cases S is a singleton. We thus obtain:

Corollary 4.18. Under assumptions A(K) and B(G), there is a morphism p : I — I such that
p(I') = I(1) if and only if there is morphism p : Q@ — Tiops such that the characters cop: Q — F)

for o € AU{—aumaz} are all distinct and belong to QS,,.
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4.3.3 Some examples.

Write A = {aq, ..., } and qupae = n1aq +- - - +npay using the conventions of the tables in [Bou81].
In this part we suppose that p is a regular (odd) prime and take K = Q(u,), so that K is p-rational
and Q=27Z/(p—1)Z.

Lemma 4.19. Suppose G is of type Ay, By, Cy or Dy and p > 21+ 3 (resp. p > 20+ 5)ifp=1
mod 4 (resp. p =3 mod 4). Then we can find distinct characters ¢1, ..., 0041 € Qoga U Xo such
that ¢ ¢5* - ¢y b1 = xo. Furthermore, if G is of type Ay and { is odd, then one can even

choose the characters ¢1, ..., p¢4+1 to be inside Qyqq.

Proof. Since 2 is (canonically) isomorphic to Z/(p — 1)Z, #Q0qq = % and there are exactly

Lin Qodd. The condition on p is equivalent to

[”4;1] pairs of characters {x,x '} with x # x~
¢ <22 1.

If G is of type Ay, then aypae = a3 + -+ - + ay. If £ is even and g < [%], then we can pick g
distinct pairs of odd characters {x,x '} as above for {¢1,---,¢¢} and set ¢pi1 = xo. If £ is odd
and “Tl < [”4;1], then we can choose “?1 distinct such pairs for the whole set {¢1,- -, dri1}-

If G is of type Dy (with £ > 4), then e = @1 + 200 + ... + 202 + ap_1 + ap. Now if £ is
odd we can pick ”Tl such pairs {x, x "'}, one for {¢y_1, ¢¢}, another pair for {¢1, d¢+1} and 2’73
such pairs for {¢a,...,Pp—2}. If £ is even, we let ¢ be the trivial character, and we can choose %
such pairs of characters {x, x '}, one pair for {¢1, ¢y_1}, another pair for {¢¢, py11} and % such
pairs for {¢s, ..., ps_2}. So the inequality that we will need is 4 < £ < 2[1’4;1] —1.

If G is of type By (with ¢ > 2), then e = @1 + 209 + ... + 2ay. If £ is odd then we pick
HTl pairs of characters {x, x~'}; one pair for {¢1, ¢¢11} and Z_Tl such pairs for {¢a, ..., ¢ }. If £ is
even then we need % pairs of {x, x~'}; one pair for {¢1, 11} and K_T2 such pairs for {¢s, ..., ¢}
and we let ¢9 be the trivial character. So in this case we need 3 < ¢ < 2[”4;1] —1.

The remaining C; case is analogous. U

Lemma 4.20. Suppose G is of type Eg, E7, Eg, Fy or G2 and
P>t (20— )n; +20.
Then we can find distinct characters ¢q, ..., pp11 € Qoaq such that
11057 - 9 Pr1 = Xo-

Proof. The choice of a generator § of F) yields an isomorphism Z/(p — 1)Z ~ Q, mapping ¢

to Xi and 1 + 2Z/(p — I)Z to Qodd- We set qbl = X2i—-1 € Qodd for 1 = 1,"' ,é and ¢g+1 =

X—r where r = Zle n; - (2i —1). The tables in [Bou81] show that h = Zle n; is odd, thus
also ¢p41 € Qg and plainly ¢ - ¢ ¢pp1 = 1. If p > Zle(% — 1)n; + 2¢, the elements

{20 —-1,— Zle n; - (20 — 1);¢ € [1,£]} are all distinct modulo p — 1, which proves the lemma. O

Remark 4.21. For G of type Eg, E7, Eg, Fy or G, the tables in [Bou81] show that the constant
2521(21' — 1)n; + 20 of lemma 4.20 is 79,127,247, 53, 13 respectively.

Recall that II = Gal(M/Q) and T’ = Gal(M/K).

Corollary 4.22. There is a constant c depending only upon the type of G such that if p > ¢
is a regular prime, then for K = Q(up), M, Il and T' as above, there is a continuous morphism
p:II — I with p(T') = I(1).

In conclusion, we have determined a minimal set of topological generators of the pro-p Iwahori
subgroup of split reductive groups over Z, (theorem 4.1) and used it to study the structure of the
Frattini quotient I(1) as an F,[72% ]-module (corollary 4.12). Then we have used corollary 4.12 to
determine when I(1) is multiplicity free (see corollary 4.13). Furthermore, in proposition 4.17 and
corollary 4.18, assuming p-rationality, we have shown that we can construct Galois representations
if and only if we can find a suitable list of distinct characters in €2, the existence of which is
established in section 4.3.3 under the assumption K = Q(up), for any sufficiently large regular
prime p (see corollary 4.22).
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5 SAGE computations on p-rational fields and heuristics on
Greenberg’s p-rationality conjecture

5.1 Introduction (work in collaboration with Razvan Barbulescu)

The notion of p-rationality of number fields naturally appears in several branches of number the-
ory. In Iwasawa theory, the study of Galois groups of infinite towers of number fields, a cel-
ebrated conjecture of Greenberg concerns the A-invariant [Gre76] which has been connected to
p-rationality [Sau98, Th. 1.1]. In the study of the inverse Galois problem, Greenberg [Grel6]
proposed a method to prove that a p-adic Lie group appears as a Galois group over Q under
the assumption of existence of p-rational fields. In algorithmic number theory, the density of p-
rational number fields is related to the Cohen-Lenstra-Martinet heuristic [CL84b, CM90] and to
the valuation of the p-adic regulator [Gral6b, HZ16].

The context in which the notion of p-rationality was introduced includes the work of Shafare-
vich [Sha66] which, for any regular prime p, proved properties of the p-part of the Ray class group
of the p-th cyclotomic fields. Gras and Jaulent [GJ89] defined p-regular number fields, which
have similar properties to cyclotomic fields associated to regular primes. Movahhedi [Mov88b,
Chap II] and Thong Nguyen Quang Do defined the notion of p-rational fields. Nguyen Quang Do
and Jaulent [JNQD93] proved that there is a large intersection between the set of p-regular and
p-rational fields. Our object is to describe families of p-rational Galois fields over Q.

Let K be a Galois number field of signature (r1,72), p an odd prime, u(K), the roots of unity
in K whose order is a power of p, S, the set of prime ideals of K above p, M the compositum
of all finite p-extensions of K which are unramified outside S, and M? the maximal abelian
extension of K contained in M. Note that the group I" := Gal(M/K) is a pro-p group and
that T9® = Gal(M®*/K) is the maximal abelian quotient of T'. From section 4.3.1, we recall the
definition of p-rational fields.

Proposition-Definition 5.1 ([MNQD90]|). The number field K is said to be p-rational if the
following equivalent conditions are satisfied:

1. rankgz, (T9%) = ry + 1 and T is torsion-free as a Z,-module,
2. T is a free pro-p group with ro + 1 generators,
3. T is a free pro-p group.

If K satisfies Leopoldt’s conjecture [Was97, Sec 5.5] (e.g. K is abelian) then the above conditions
are also equivalent to

« | @Ok = aP for some fractional ideala | _ ..\,
4- (a) {OKEK | andae(K‘?)p fOT' allpes’p _(K ) )

b) and the ma K), — K, 18 an isomorphism.
( D A )p pes, M p)p p

If p > [K : Q]+ 1 then condition 4, (b) is ok. Indeed, the cyclotomic polynomial ®,(z) is
irreducible in Q[z] and Q,[x] so deg(Q(¢p)) > deg K and degQ,((,) > deg K, for any p | p, so
w(K)p = {1} and J[,cq n(Kp)p = {1}, which proves that the condition 4.(b) is met.

The equivalent conditions of (1), (2), (3) and (4) can be found in [Grel6, Sec. 3] and [Mov88b,
Chapter II]. One can directly prove that a field is p-rational using this definition, but more elabo-
rated results allow us to write shorter proofs. We illustrate the strength of each result by proving
p-rationality of some number fields.

Examples 5.2.

1. The imaginary quadratic fields of class number one, i.e. Q(i), Q(v/—2), Q(v/-3), Q(v/~17),
Q(v-11), Q(v/—19), Q(v/—43), Q(~/—67), Q(v/—163) are p-rational for any primes p > 5.
Indeed, in order to use point (4) of Definition 5.1, let K be any of the above fields and «
an element of K which is a p-th power in all the p-adic completions of K and such that
the principal ideal generated by « is a p-th power. Since the ring of integers of K is a
principal ideal domain, « is a p-th power in K, up to multiplication by a unit. Since the
unit rank of K is zero and since K has no p-th roots of unity we conclude that « is a p-th
power of K. Asp > 5, Q, and its quadratic extensions have no p-th roots of unity so that
w(K)p — Hpesp w(Kyp)p is an isomorphism.
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2. Q(i) is 2-rational. After (1), for p > 5, we are left with showing that if a unit of Q(i) is a
square in the 2-adic completion then it is a square in Q(i). Suppose that i is a square in the
completion of Z[i] with respect to p = (1+14). Then there exist two integers a and b such that

(a+ib)2 =i (mod p?).

But p? = 27Z[i], so 2ab = 1 (mod 2), which is a contradiction. Hence, the only elements of
Q(i) which are squares in the 2-adic completion of Q(i) are also squares in Q(7).

These examples are also treated in [Mov90, Example (c), page 24].

For many properties of p-rational fields we refer the reader to the corresponding chapter
of [Gral3, Ch IV.3].

In the following, we recall the use of p-rationality in constructing Galois representations with
open image. Greenberg’s result [Grel6, Prop 6.1] is as follows: if K is abelian over Q and p-rational
with the order of Gal(K/Q) dividing p — 1 then, for all n € N, there exists an explicit continuous
representation

p: Gal(M/Q) — GL(n,Z,)

such that p(I') is the pro-p Iwahori subgroup of SL(n,Z,), i.e. the subgroup of SL(n,Z,) whose
reduction mod p is the upper unipotent subgroup, under an assumption on the characters of
Gal(K/Q). We recall that M is the compositum of all finite p-extensions of K which are unramified
outside the places of K above p. We obtain hence the existence of the morphism p above as soon
as we can prove the existence of p-rational fields K with an additional property on the characters.

Greenberg also noted that the hypothesis on the characters are met if K is complex and
Gal(K/Q) = (Z/2Z)* for some t, which raises the question of existence of p-rational fields with
such Galois groups. The goal of this work is to investigate the following conjecture:

Conjecture 5.3 (Greenberg [Grel6]). For any odd prime p and for any t, there exist a p-rational
field K such that Gal(K/Q) = (Z/27Z)".

Let us generalize Greenberg’s conjecture to all finite groups.
Problem 5.4. Given a finite group G and a prime p, decide if the following statements hold:

1. there exists a number field of Galois group G which is p-rational, in this case we say Green-
berg’s conjecture holds for G and p or simply that GC(G, p) holds;

2. there exist infinitely many number fields of Galois group G which are p-rational, in this case
we say that the infinite version of Greenberg’s conjecture holds for G and p or simply that

GCuo (G, p) holds.

Note that this problem is a strengthening of the inverse Galois problem, which is itself open
in the non-abelian case (cf [MM13]). Also, note that we don’t discuss the related conjecture of
Gras [Gral6b, Conj. 8.11] which states that every number field is p-rational for all but finitely
many primes.

Remark 5.5. One should not confound this new conjecture to an older conjecture on Iwasawa
invariants (cf [Gre76]). Let K be the pairs of totally real fields K and primes p which splits totally
in K. Due to Remark 2.2 of [Gral6al, a particular case of the celebrated conjecture of Greenberg
concerning the Iwasawa invariants and a strengthening of the newer p-rationality conjecture of
Greenberg can be stated as follows :

invariants conjecture: V(K,p) € K, A
A

=0
p-rationality conjecture: V¢, Vp, 3K (K, p) € K, Gal(K) = (&)*, =v=

I
I

0,

where A = A\, (K), pp = pp(K),v = v,(K) are the Iwasawa invariants associated to the ideal class
group of the cyclotomic Zy-extension K /K (cf. [Gre76], see also [Was97] for the fact that =0
when K is abelian). The case of totally split p is a particular case of Greenberg’s invariants
conjecture, but it is an open case. Greenberg’s p-rationality conjecture doesn’t put conditions on
K being totally real but any compositum of quadratic fields has a maximal real subfield whose
degree is at least half of the total degree. The condition that p is totally split is not discussed in
the rest of the text but numerical experiments show that it is not hard to satisfy this additional
constraint.

101



The main result in this section is summarized by the following theorem. Let ®,, denote the
cyclotomic polynomial associated to m and p(m) its degree.

Theorem 5.6.

1. For all odd primes p, GCx(Z/2Z,p) holds.

2. Assume there exist infinitely many odd integers a such that m = i(a2 +27) is prime and such

that the arithmetic conditions in Hypothesis 5.35 are satisfied. Then GCoo(Z/3Z,5) holds.

3. Under conjectures based on heuristics and numerical experiments (Conjecture 5.41 and Con-
jecture 5.39), when q¢ = 2 or 3, for any prime p and any integer t such that p > 5q',
GCx((Z/qZ)t,p) holds.

Roadmap. In Section 5.2, we relate the notion of p-rationality to that of class number and
p-adic regulator, which is enough to prove GCy,(Z/2Z,3), which is point (1) of Theorem 5.6, and
to give an example of a p-rational field with Galois group (Z/2Z)7. We also recall the existing
conjectures on the class number due to Cohen, Lenstra and Martinet and on the p-adic regulator.

In Section 5.6, we start by recalling an algorithm to test the divisibility by p of the class number
of cyclic cubic fields without computing the class number, inspired by an article of M.-N. Gras.
Furthermore, we give a new algorithm to produce units in cyclic cubic fields which are used to test
the valuation in p of the p-adic regulator, which is faster than computing a system of fundamental
units. Then we recall the algorithm of Pitoun and Varescon to test p-rationality for arbitrary
number fields, which allows us to give examples of p-rational number fields of non-abelian Galois
groups.

In Section 5.11, we find a family of cyclic cubic number fields which contains infinitely many
5-rational fields under a list of arithmetic assumptions; this proves point (2) of Theorem 5.6.

In Section 5.12, we do a numerical experiment to test divisibility by p of the class number of
cyclic cubic fields with discriminant up to 1014, which extends the existing calculations [CM87|,
confirming the Cohen-Lenstra-Martinet conjecture. Then we do a numerical experiment for number
fields of Galois group (Z/3Z)? and discriminant up to 10'2. As our computations agree with the
Cohen-Lenstra-Martinet heuristic, we can write down Conjecture 5.39 on the divisibility by p
of the class number of such fields. Next we prove a Kuroda-like formula for p-adic regulators of
fields of Galois group (Z/27)?, which relates the p-adic regulator of the compositum to those of the
quadratic subfields. Based on a heuristic and numerical experiments we write down Conjecture 5.41
which applies to fields of Galois group (Z/qZ)" where ¢ = 2 or 3. We show that two conjectures from
the literature imply that GCy (Z/3Z,p) holds, and that Conjecture 5.41 and the Cohen-Lenstra-
Martinet conjecture imply Greenberg’s p-rationality conjecture (point (3) of Theorem 5.6).

5.2 Preliminaries

In the general case, p-rationality is hard to test so that it is important to have a simple criterion
in terms of classical invariants as the class number and the p-adic regulator (Sec 5.3). This raises
the question of the density of number fields whose class number is not divisible by p (Sec 5.4) and
of the valuation in p of the p-adic regulator (Sec 5.5).

In this sequel, p denotes an odd prime and K an abelian number field, Disc(K) the discriminant
of K, Ok the ring of integers, Fx the unit group, hx the class number of K, (r1,r2) the signature
of K, r =171 +ry—1 the rank of Ex, S, the set of primes of K lying above p, K, the completion
of K at a prime p € S,. For ¢ € N* we denote (. a primitive c-th root of unity.

5.3 A simple criterion to prove p-rationality

Let us call p-primary unit, any unit in K which is a p-th power in K, for any p | p but which is
not a p-th power in K.

Lemma 5.7 ([Mov88b] Chap II, [Grel6] Rem 3.2). Let K be a number field which satisfies
Leopoldt’s conjecture (e.g. Gal(K/Q) is abelian) and a prime p such that the map p(K), —
HPGSp w(Kyp)p is an isomorphism (e.g. p > [K : Q]+ 1) and p t hx. Then K is p-rational if and
only 1f K has no p-primary units.
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Proof. If K has a p-primary unit « then aOx = (Ok)P = Ok and, by point 4.(a) of Proposition-
Definition 5.1, K is not p-rational.

Conversely, assume that K has no p-primary units. Let a € K* be such that aOg = aP and
Vp | p, a € (K,)P. Then a is a p-torsion element in the class group, which has order relatively
prime to p so a is a principal ideal. If 8 be a generator of a then aOg = POk so € := af 7P is a
unit. For all p | p, a € (K,)? so € € (K,)P. Since K is assumed without p-primary units and K
has no p-th roots of unity, there exists n € K such that a8~7 = 9P, so a € KP. Hence point 4.(a)
of Proposition-Definition 5.1 holds and, since we assumed that 4.(b) holds, K is p-rational. O

Note that in the case of quadratic and cubic number fields K it suffices to take p > 5 in order
to ensure that point 4.(b) of Proposition-Definition 5.1 holds. In the sequel p > 5 so that we can
forget of point 4.(b).

Lemma 5.8. For any prime p > 5 not belonging to {%az + 1| a € N} the real quadratic number
field K = Q(+/p? — 1) is p-rational.

Proof. Let us note first that € = p + /p? — 1 is a fundamental unit of K. Indeed, let €9 be the
fundamental unit of K which is larger than 1 and let n be such that ¢ = ¢j. If n is even then
n = 58/2 is such that ¢ = 7?. Then Ng/g(¢) = Nk/g(n)? = 1. Furthermore, n* cancels the
minimal polynomial of ¢ so n cancels P(x) := z* — 2pz? + 1 = 0. Since 7 is a unit it’s minimal
polynomial is pi, := 2* — 2ax £ 1 = 0, where a = Tr(n). Since pu,(z) divides P(z) we obtain that
p = a? 4+ 1, which contradicts the assumption on p. Therefore, n is odd and we have

1 1
n Y = L
(eg + 58) w(eo + 50)7

where w = g) Ty €y 4. + == oot Since g - (g9 — Tr(eg)) = +1 we have w € Z[go).

We also have w = Tr(e )/Tr(so) 6 Q so w belongs to QM Z[eo] = Z. Since Tr(e) = 2p the only
possibilities for u., are 2% 4+ 2px + 1, 22> £ pr + 1, 2 £ 20 + 1 and 2% + 2 4+ 1. The discriminants of
these polynomials cannot divide p? — 1 except for 2?4+ 2pxr £+ 1, 50 g9 € {=¢, ié} If ¢ is chosen
such that it is larger than 1 then g5 = €.

By a result of Louboutin [Lou98, Theorem 1] we have the effective bound

h(K) < /Disc() ),

Since Disc(K) < p? — 1, we conclude that h(K) < p and hence p { h(K).
Let us show that ¢ is not a p-primary unit. We have

P2 P2
el = (p2—1)71—1+p( 2—1)73\/172—1 (mod p*Z[/p? — 1))
= 4pyp2—1 (mod p*Z[\/p? — 1]).

Since p?Z[\/p? — 1] C p*Ok this shows that the p-adic logarithm of ¢ is not a multiple of p?, so €
is not p-primary. By Lemma 5.7 we conclude that K is p-rational. O

In the sequel the number fields K have no p-th roots of unity.

Lemma 5.9 (|Grel6] Prop 4.1.1(i), [Mov88b]| Chapter II). Let p be an odd prime and K =
Q(V—d), with d > 0, d # 3 and squarefree, an imaginary quadratic field such that pt hg. If p > 5
then K is p-rational. If p =3 then Q(v/—d) is 3-rational if and only if d 3 mod 9.

Proof. Since the unit rank of imaginary fields is zero, we can conclude by Lemma 5.7 if we show
that the map 1(K)p = [ e, #(Kp)p is an isomorphism.

The case when p > 5 is direct because 5 > 3 = [K : Q] + 1.

Let us now consider the case when p = 3. Since ®3(x) has no roots in Q3 we have [Q3((3) :
Q] = 2, so the only 3-adic quadratic field which contains primitive 3rd roots of unity is Q3((3) =
Q3(v/—3). The 3-completion of K, Q3(v/—d) equals Q3(v/—3) if and only if 3 | d and d/3 is a
square in Q3 or equivalently if d =3 mod 9.

If 3 d, then we know that J[ ¢ p(Kp)p = {1}. We also know that 3 is not ramified in K so
K does not contain Q(v/—3) = Q(¢3) and p,(K) = {1}.

If3]d, d=3 mod9and d# 3 then p(K), = {1} whereas [[,cg n(Kp)p # {1}-

If 3] dand d# 3 mod 9, then pu(K), = {1} =[] cq, 1K)y O
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Hartung proved what it takes to conclude that GC.(Z/2Z,p) holds for p = 3 and he noted
that his method works for any larger prime p:

Lemma 5.10 ([Har74]). For all odd primes p there exist infinitely many square-free integers D < 0
such that ho /5y - D # 0 (mod p).

Corollary 5.11. For all odd prime p, GCoo(Z/27Z,p) holds.

Almost forty years after Hartung’s work on imaginary fields, Byeon proved the corresponding
result for the existence of real p-rational fields.

Lemma 5.12 ([Bye0Ola] Prop. 3.3, [ByeO1b] Thm. 1.1). For p > 5, there exists infinitely many
integers D > 0 such that h@(\/ﬁ) -D #0 (mod p) and Q(v/D) has no p-primary units.

Corollary 5.13. For all prime p > 5 there exist infinitely many real quadratic fields K which are
p-rational.

The study of p-rationality in the general case of G = (Z/27Z)" with ¢ > 1 reduces to the case of
quadratic fields as proven by a result of Greenberg.

Lemma 5.14. ([Grel6, Prop 3.6]) Let q and p be two distinct primes and K a number field such
that Gal(K/Q) = (Z/qZ)t. Then K is p-rational if and only if all the subfields of K of degree q
are p-rational.

We combine Lemmas 5.14 and 5.7 to obtain:

Proposition 5.15. Let K be a number field such that Gal(K/Q) ~ (Z/qZ)" for some prime q
and let p > 5 be a prime different from q. If for all cyclic subfields of K the class number is not
divisible by p and has no p-primary units then K s p-rational.

Remark 5.16. Henceforth, everywhere we assume that p { [K : Q] because the p-rational extensions
of Q of degree p are characterized in Example 3.5.1 of Section IV of [Gral3]. Assume L is a p-
extension of Q which satisfies Leopoldt’s conjecture at p. Then L is p-rational if and only if the
following two conditions are satisfied:

1. L/Q is unramified outside p,

2. L/Q is unramified outside of {p,(}, where [ # p is prime and satisfies p?> { (I?~1 — 1) if p > 3
or8f(1+1)ifp=2.

See loc. cit. for 2-rational abelian 2-extensions of Q and 3-rational abelian 3-extensions of Q.

Example 5.17. For each prime between 5 and 97, Table 1 gives examples of complex fields K of
the form Q(\/dy,...,\/d;) which are p-rational. The last column indicates the representations of
Gal(Q/Q) with open image, as constructed thanks to Proposition 6.7 in [Grel6].

For each of these fields we applied Proposition 5.15, for which we verified that the 2=1 —1 real
quadratic subfields have class number non divisible by p and no p-primary units, and that the 2¢~1
imaginary quadratic subfields have class number non divisible by p.

The examples were found using sage scripts available in the online complement [BR17a] by
testing the smallest possible value of di > 1, and recursively for i = 2,3,...,t — 1 we found the
smallest possible value of d; > d;_1 + 1 so that Q(\/dy,...,\/d;) is p-rational. Finally, we selected
d; as the negative integer of the smallest absolute value such that the class numbers of all the
imaginary quadratic subfields of K are not divisible by p.

Note that dy, ..., di—o are relatively small showing that it was easy to find evamples with small
t. However, there can be large gaps between d;_o and dy;_1 showing that the search becomes much
more difficult as t increases. We give an explanation for this observation in Remark 5.42. The
value of |d;| is not very large showing that it was relatively easy to go from a totally real field to
a totally complex one, as required by Greenberg’s method to construct Galois representations with
open image (cf. discussion before Conjecture 5.3, see also Prop 6.7 and Prop 6.1 of [Gre16]). The
search of the negative determinant d; is fast also due to the Hurwitz-Eichler theorem which allows
us to compute recursively the class numbers of imaginary quadratic fields [Coh13, Section 5.3.2].

Greenberg and Pollack [Grel6, Sec 4.2, page 99] gave the examples of the field

Q(v/13,1/145,/209, /269, /373, \/—1), which is 3-rational, and of the 5-rational field

Q(v6,v11,v/14,v/59,+/—1), for which t = 5 is smaller than that of the example on the first
row of Table 1.

In order to investigate the existence of p-rational fields it is necessary to discuss the density of
fields whose class number is divisible by p.

104



p t di,...,d; open image of Gal(Q/Q) in
5 7 23,11,47,97,4691 178290313 Vn € [4,61], GL(n, Zs)

7T 7 25,11,17,41,619,-816371, Vn € [4,61], GL(n,Z7)

1 8 2,35,7,37,101,5501,-1193167 Vn € [4,125], GL(n,Z11)
13 8  3,5,7,11,19,73,1097,-85279 Vn € [4,125], GL(n,Z13)
17 8  2,35,11,13,37,277,-203 Vn € [4,125], GL(n, Z17)
19 9 2,3,57,29,31,50,12461, 7663849  Vn € [4,253], GL(n, Z1o)
23 9  2,3,5,11,13,19,59,2803,-194377 Vn € [4,253], GL(n, Za3)
29 9  23,5,7,13,17,59,293,-11 Vn € [4,253], GL(n, Za9)
31 9 3,5,7,11,13,17,53,326,-8137 Vn € [4,253], GL(n,Z31)
37 9 23,5.19,23.31,43,569,-523 Vn € [4,253], GL(n, Zs7)
41 9  235,11,13,17,19,241,1 Vn € [4,253], GL(n, Z4;)
43 10 2,3,5,13,17,20,31,127,511,-2465249 Vn € [4,509], GL(n, Z43)
47 10 2,3,5,7,11,13,17,113,349,-1777 Vn € [4,509], GL(n, Z47)
53 10 2,3,5,7,11,13,17,73,181,-1213 Vn € [4,509], GL(n, Zs3)
50 10 2,3,5,11,13,17,31,257,1392,-185401  Vn € [4,509], GL(n, Zso)
61 10 2,3,5.7,13,17,29,83,137, -24383 Vn € [4,509], GL(n, Zg)
67 11 2,3,57,11,13,17,31,47,5011,-2131  Vn € [4,1023], GL(n, Ze7)
71 10 2,3,5,11,13,17,19,59, 79,-943 Vn € [4,509], GL(n,Zz)
73 10 2,3,5,7,13,17,23,37,61,-1 Vn € [4,509], GL(n,Zrz3)
79 10 2,3,5,7,11,23,29,103,107,-1 Vn € [4,509], GL(n, Z79)
83 10 2,3,5.7,11,13,17,43,97-1 Vn € [4,509], GL(n, Zs3)
89 11 2,3,5,7,11,23,31,41,97,401,425791  Vn € [4,1023], GL(n, Zso)
97 11 2,3,5,7,11,13,19,23,43,73,-1 Vn € [4,1023), GL(n, Zg7)

Table 1: Examples of p-rational complex number fields of the form Q(v/dy, ..., V/d;) and their
consequences on the existence of continuous representations of Gal(Q/Q) with open image.

5.4 Density of fields K where p | hx : the Cohen-Lenstra heuristic

Cohen and Lenstra [CL84b, CL84a| created a heuristic principle which can be used to derive
conjectures on the density of class numbers divisible by a given integer. We say that a set S of
number fields has a density ¢ and write Prob(S) = ¢ if

#{K € § | Dis¢(K) < X} _s

dm #{K | Disc(K) < X}
Here #{K | Disc(K) < X} denotes the number of fields with discriminant less than or equal to X
For simplicity we write Prob(property) to designate the density of the set of number fields satisfying
the property. Cohen and Lenstra studied the case of quadratic fields, Cohen and Martinet [CM90,
CM387] studied the case of fields K of degree 3 and 4, not necessarily cyclic, while more recently
Miller [Mil15, Sec 3] studied the case of cyclic extensions:

Conjecture 5.18 ([Mil15] Sec 3). Let K be a cyclic extension of Q of odd prime degree q and p a

prime not dividing q. Then Prob(p{ hk) = [[15o(1 —p~ %)= where w is the multiplicative order
of p modulo q. B

In the particular case of cubic cyclic fields this conjecture corroborates with the conjecture of
Cohen and Martinet:

Conjecture 5.19 ([CM87| Sec 2, Ex 2(b)). Let K be a cyclic cubic number fields and m an integer
non divisible by 3. Then we have

Prob(m [ hie) = [[ (1~ ((Pp%) o (- (p2)m>7

plm,p=1 mod 3

where (p)oo = [, (1 =p7%) and (p)1 = (1 —p~1).

plm,p=2 mod 3
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5.5 Density of fields with p-primary units : valuation of the p-adic reg-
ulator

The condition about p-primary units in Lemma 5.7 can be stated in a simpler manner when K is
totally real.

Definition 5.20. Let K be a totally real Galois number field and p a prime which is unramified
in K. Let g1, ..., be a system of fundamental units and o1, ..., 0,41 the automorphisms of K.
Let p be a prime ideal above p and log, the p-adic logarithm of K, log,(x + 1) = 2121(71)”71.
Call O, the ring of integers in K,. We set e =lem({N(p’) —1,p’ | p}) where N(p) is the norm of
p. By abuse of notations we also denote by log, the following map that we only apply to elements
Of EK.'
log, : {z e K*| Vp'|p,valy(z) =0} — pO,
T —  Llog,(z°).

We are only taking the logarithm of elements in Ex and our definition coincides with that in
Washington [Was97].

We call normalized p-adic regulator the quantity R} , = det(% log, (0(gj)1<i,j<r))- Note that
we use the notation R’ instead of R, which is reserved for the p-adic regulator, and that R/K,p =
R p/p"-

It is classical (see for example [Was97]) that R} , belongs to Z, and is independent of the
choice of p and of the labeling of fundamental units and of the automorphisms. For completion we
state a simple and classical property of R’K)p.

Lemma 5.21. For all v € K, if K has a p-primary unit then R’K,p is divisible by p.

Proof. Let ¢ = [[,_, ", ai,...,a, € Z be a p-primary unit. Then (ai,...,a,) is in the kernel

=1%%
of the matrix which defined R/K,p reduced modulo p. Hence, R’KJ, is divisible by p and, since it
belongs to Z,, it is also divisible by p. O

Very little is known on the probability that the normalized regulator is divisible by p. Schi-
rokauer [Sch93, p. 415] made the heuristic that the matrix which defines R} 5 modulo p is a
random matrix with coefficients in F,s for some f and therefore the probablhty that p divides

K p 18 O(p) Later Hofmann and Zhang studied the case of cyclic cubic fields and gave heuristic
arguments and numerical experiments in favor of the following conjecture.

Conjecture 5.22 ([HZ16] Conj 1). For primes p > 3 we have

pi, ifp=2 (mod 3)
Prob(p divides Rl ) =
22—, ifp=1 (mod3).
5.6 Algorithmic tools
complete class 1o Lt oo -
information group untg group y group
partial L o , ] .
information p divides hg | p divides RK,p K is p-rational

Table 2: List of invariants associated to a number field K and of partial information associated to
a prime p.

Gathering numerical data on the class group, unit group and respectively ray class group of
number fields is a hard task despite the important progress done in the design of algorithms. Indeed,
the best algorithms to compute class number are derived from Buchmann’s algorithm [BW89], with
its p-adic variant [Zhal3], and have a non-polynomial complexity. In the context of the Cohen-
Lenstra-Martinet heuristic it is not necessary to compute hx but only to test its divisibility by p.
In Section 5.8 we recall an algorithm of polynomial complexity which tests the divisibility of hg
by p without other information on hg. Similar questions can be studied for the unit and ray class
groups.
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In the context of the p-adic regulator valuation it is not necessary to compute the regulator to
infinite precision, but only to test the divisibility of the normalized p-adic regulator by p. When
using the best known algorithms there is no gain in complexity when the precision is reduced
because one needs to compute a system of fundamental units, which is done by a variant of
Buchmann’s class number algorithm [BW89]. This motivates us in Section 5.9 to propose a fast
method to compute units, which are not necessarily a basis of the unit group but which allow us
in general to test the divisibility by p of the normalized p-adic regulator.

Ray class group is related to the cartesian product of the class number and the unit group and
from an algorithmic view point, it is similar to these two groups, and it is not surprising that the
algorithm of Cohen et al. [CDO98] has a non-polynomial complexity. Pitoun and Varescon [PV15]
showed that it allows to test if K is p-rational by an algorithm that we recall in Section 5.10.

5.7 An algorithm to enumerate abelian number fields

Numerical computations of densities require us to make the list of all the number fields K of a
given degree and Galois group such that |Disc(K)| is less than a given bound X. The task is very
much simplified in the case of abelian extensions due the following classical result.

Lemma 5.23 ([Was97] Theorem 3.11,The Conductor-discriminant formula). Let K be an abelian
number field and let = be the group of characters Gal(K/Q) — C*. Then we have

Disc(K) = (—1)™ H Cys

XEE
where ¢, is the conductor of x.

In particular if Gal(K/Q) ~ (Z/qZ)!, where q is a prime number, we have a very simple relation
between the conductor and the discriminant. Although the result is classical (see for example
[Gra75]) we recall the proof because one deduces from it an algorithm to enumerate number fields
with Galois group equal to (Z/gZ)! and discriminant bounded by a given constant.

Lemma 5.24. Let K be a number field such that Gal(K/Q) ~ (Z/qZ)*. Then we have,

1. the conductor cx of K can be written as cx = p1---Ps OT Cxk = ¢°p1- - Ps—1 where p; =
mod q are distinct primes;

2. Disc(K) = c(Igfl)qS_l.

Proof. (1) For any abelian group G we call g-rank of G, denoted by rank,G, the dimension of
the F, vector space G/GY. Then one easily checks that for any prime p, # 1 mod ¢ different
than ¢, ranky(Z/p;'Z)* = 0; for any prime p; = 1 (mod ¢) and any e; > 1, ranky(Z/p;'Z)* =
rank,(Z/p;Z)*. Hence, rank,(Z/qZ)* = 0 and for any e > 2, rank,(Z/¢°Z)* = 1. If ¢ is an integer
of the form in point (1) and ¢’ is a multiple of ¢ then (Z/cZ)* and (Z/c'Z)* have the same g-rank.
By definition, the conductor of a number field of Galois group (Z/qZ)* is the smallest integer ¢ so
that the g-rank of (Z/cZ)* is t.

(2) For each prime power a dividing cx we have to count the number of characters defined
on (Z/ckZ)* which are not trivial on (Z/aZ)*. This is the number of subgroups of Gal(K/Q) ~
(Z/qZ)" whose quotient group is Z/qZ and further the number of linear forms from F, to F,
which are non-zero on the first component, hence the total number is (¢ — 1)¢*~!. Due to the
conductor-discriminant formula (Lemma 5.23) we obtain the result for Disc(K). O

In numerical experiments, we enumerate all fields K of Galois group (Z/qZ)" with |Disc(K)| <
X by enumerating all positive integers ¢ less than X TG D of the form given by point (1) of
Lemma 5.24. Next we compute all subgroups H of (Z/cZ)* such that (Z/cZ)*/H ~ (Z/qZ)t.
Finally, we compute the fixed field of H.

In the particular case of cubic cyclic fields one does not need any computations because there
exists a canonical polynomial to define every cyclic cubic number fields of conductor m.

Lemma 5.25 ([Coh13] Theorem 6.4.6). Let m be an integer of the form H§:1 pi or9 Hf;i p; where
pi =1 (mod 3). Then there are 2= cubic cyclic fields of conductor m. Each of them corresponds

to one solution of the equation m = M by the formula
- 3+a)—1 .
f (:C) _ $3+J?2—|— 13m33— m( 2;) , lf3’|'a (51)
“ 23— Bx— 42, otherwise.



The subfamily m = % has a pleasant property that deserves our attention.

5.7.1 A family with explicit units

For a particular classical family of cubic cyclic fields we have a closed formula of the minimal
polynomial of a unit of infinite order. We focus on the existence of the unit, which is not necessarily
well explained in the literature.

Lemma 5.26. Let a be an odd integer, m = %(QQ + 27) and let K be the number field defined by
Equation (5.1). Then K contains an integer w whose minimal polynomial is

go(2) = 2° — ma® 4+ 2mx —m

and n:=o(w)/w is a unit whose minimal polynomial is

2m — 3 — 2m —3
po(z) = 2% — mn 5 Tp2 0 5 +ax—1,

where Gal(K/Q) is generated by the automorphism o. Additionally, K contains a unit whose
minimal polynomial is

l/a(.’L‘) =23+ (m —3)2? + 3z — 1.
If u is a root of v4 () then A(a,u) = 14 (2% (4a*+12) +a(a*+18a*—8a+21)+(—2a*+6a*>—30a—6))
is also a root of va(x).

Proof. Let o be a root of f, in K. One can plug in g, the element

W= g@+%a+a +4; 1f3+a’
o+ 9% a2+ 24+ 2o+ 3L otherwise.

and note that g,(w) = 0, so g, has a root in K for any a. We set n = olw) and, for i € N,
w; = 0'(w). Let 3 — Ax?> + Bx — 1 be the minimal polynomial of 1 over Q. Then, equating

22— Az? + Br — 1= (z —n)(x — o(n))(z — 0(n)), we obtain
2

2

Wi+1 Wi 1

A+B = Y 4 — = () Wl wi twiw))
im0 Wi Witr M 5Tg

% ((Zwiwi+l)(z w;) — 3Hwi> =2m — 3.
i=0 i=0 i=0

Note that g,(z) is the minimal polynomial of w which links m with w;’s giving us the second
equality above. We also have

=m?—4m+09.

wz+1

2 2
z+1
-y
i=0 =0
Hence, A and B are such that the minimal polynomial of n = o(w)/w is uq.
Finally, we test by direct computations that v, has a root

a

o = a+ +§—6—18—|—3i if31a
2+ (@=3)a 3) + g— — 241 otherwise.
which is automatically a unit in K. O

The computations in the proof can be found in the online complement [BR17a].

5.8 An algorithm to test if p divides hg

Marie-Nicole Gras [Gra75], Van der Linden [VdL82] and Hakkarainen [Hak09, Eq (5.1)] designed
a fast criterion which allows to show that p { hx without computing the class number h.

Definition 5.27. Let m # 2 mod 4 be an integer. We call cyclotomic units of Sinnott in Q((,)
the intersection C,, of the unit group E,, with the multiplicative group gemerated by (,, and the
elements of the form 1 — (% with a € Z. We also set C;}, = E;} [ Cyp.
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Note that this definition coincides with one of Washington [Was97, Sec 8.1] in the case of
Q(¢m) and Q(&n) ™. One can extend the definition to arbitrary K C Q({,»)* but we don’t use this
extension, which is not the same for Washington and Sinnott.

Let h;, denote the class number of Q((,,)". The main ingredient of M.-N. Gras’ algorithm is
as follows:

Lemma 5.28 ([Sin78] main Theorem). Let m # 2 mod 4 be an integer. Let g be the number of
prime factors of m and put b=0 if g =1 and b =29"2 41 — g otherwise. Then we have
ht =

m

2(ES - CF).
We obtain a criterium to prove that p does not divide hx:

Lemma 5.29. (i) Let m be an odd prime coprime to p, p be inert in Q(CmT—l), e € Ct be any

cyclotomic unit. If € is not a p-th power, then p 1 hl. In particular, if p { mTfl then the class
number of the unique cubic cyclic subfield K of Q(¢)™ is not divisible by p.
(i) Let m and p be as before. Assume that there exists a prime ¢ such that { =1 mod pm and

D, (z) 1 (z+ 1)% — 1 4n Fylz]. Then h}, is not divisible by p.

Proof. (i) By Lemma 5.28, b}, = [E; : C/f] because g = 1. Let v € C,!, be a generator of the group
of cyclotomic units seen as a Z[G]-module where G = Gal(Q({,,)T/Q) (cf. the works of Leopoldt
reproduced in [Was97, Prop. 8.11]). Since G is cyclic of order (m — 1)/2, we identify the rings
Z|G] and Z[C‘MT—l]. Let us show that if v is not a p-th power in E;}, then, for all w € Z[CmT_l] such

that p{ w, the element v* is not a p-th power. Assume on the contrary, v* = u? for some u € E}.

Then vN©®@ = 25 where N(w) = Ng(c,ny)/o(w). Since p is inert the condition p { w ensures
2

N(w)

that ged(N(w),p) = 1 and we can define a := N(w)~' mod p. We obtain then v®N () = ¢~

But this implies that v € (u® Y E;})? which is a contradiction. This shows that p{ hf.

Since pt 2L = [Q((n) T 1 K], valy(hy) < valy () so pf hg.

12
ii) We apply point (i) to the cyclotomic unit € := (;,2 C’”—_l € Ct. Since m is coprime to p,
Cm—1 m

the roots of unity ¢, is always a p-th power, so it suffices to prove that gij = (m + 1is not a
£—1

p-th power. Since ®,,(x)t (x+1)® —1in Fy[z], ( + 1 is not a p-th power in Z[(,,]/¢Z[(n] and

therefore it isn’t a p-th power in Q((,). O

Algorithm 1 A criterion to show that p{ hx

Require: an integer N and a cyclic cubic number field K given by an odd prime conductor m
and a prime p 1 mT_l which is inert in Q(CmT—l) and coprime to m.

Ensure: The algorithm returns ’false’, if pthg
*  The algorithm returns 'non-certified true’, if p | hg.
140
repeat

{ < next prime = 1 mod mp,
we increment ¢ and continue .
until i>N or the cyclotomic polynomial ®,,(x) { (x +1)» — 1 in F,[z].

The implementation of SAGE code for Algorithm 1 is in Appendix B, and can be downloaded
from the online complement [BR17a].

5.9 An algorithm to test if p divides the normalized p-adic regulator

The relevant notion in this section is the p-adic logarithm but for computational issues we focus on
a truncation of it that deserves its own name. If U = {uy, ..., u,} is a set of units of a number field
of embeddings o1, . .., 0,, we call normalized p-adic regulator of U, and write R{Lp, the determinant
log,, (o (u:))
(%)

of the matrix 1<i,j<r-

Proposition-Definition 5.30 ([Sch93|, Sec 3.). Let f € Z[z] be a monic irreducible polynomial
and let p be a prime which does not divide the index of f, i.e. p{[Ok : Z[a]] where O is the ring
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of integers in the number field K of f and « is a root of f in its number field. The Schirokauer
map associated to f and p is

Mot {29 |y, € Zlal,pt Res(aran, f)} > Fylal/(f (@) ~ FiesS
(a:fc_lfl)f(agc_l 1

- = mod (p, f),

a1 /a2 € Q(z) —

where ¢ = lem({deg f; | f; divides f in Fy[z]} and Res denotes the resultant.
Also, note that we can identify Q[x]/(f(x)) and K so that every element of K is represented
by a polynomial. In this language the condition p t Res(aias, f) states that Vp | p, val,(5L) = 0.
Assume that p1 Disc(f) and let {uq,...,u.} be a set of units which are not necessarily funda-
mental. Let n be the degree of f and let co,c1,...,cn—1 be the maps so that, for any 5 € Q[z]/(f),
co(B) +ec1(B)x+ ...+ crn1(B)x" ! is the polynomial representative of B of degree less than n. If
the matriz

P 1 pt -1
W) e ()
M=l z
o1 o7 1
co( =~ ) 1) Cn—1(=5 ) 1)

has full rank then p { Rj .

Justification. If (€)1, , is a system of fundamental units and (2 is the matrix such that, for
each i, u; = H§=1 5?”, then Ry, , = (det Q) R} ,. Hence, it is sufficient to prove that p { Ry .
One can compute Rj;, mod p by replacing, for any S, log,(8) by (log,(3°) mod p?) for a fixed
constant ¢ € Z such that val,(c) = 0. Hence, we are brought to computing the determinant of N =
(%)ISMST for a constant ¢ such that for all i, u§ =1 mod p. We take ¢ = p™ — 1 so that,
for any prime ideal p above p and any v € K such that val,(y) =0,7°=1 mod p. If a1,...,ap,
are the n roots of f in C, then M = NVand(a,...,®,), where Vand is the Vandermonde matrix
associated to aq,...,a,. We conclude that it suffices to prove that M has rank »r = n — 1 to
conclude that p { R .

The remaining question is that of computing a system of generators for F /E%.. In the case
of the family of Section 5.7.1, this is easily done using an explicit formula. However, in the general
case of cyclic cubic fields we propose a new technique.

Lemma 5.31. Let K be a number field of odd prime degree q and of cyclic Galois group and call
m its conductor. Then we have:

1. for any prime factor ¢ of m other than q there exists an ideal | so that |9 = (O ;

7(@) s g
w

2. If Uis principal, for any generator w € Ok of | and any generator o of Gal(K/Q),
unit.

Proof. (i) Let £ be a prime factor of m other than ¢q. Then ¢ is ramified in K and, since deg K = ¢
is prime, there exists a prime ideal [ so that £ = [4,
(ii) The ideal generated by @ is o(I)[~1. Since o is an automorphism of K, o(I) is a prime

ideal above (. But ¢ is totally ramified in K so o(I) = . So 2 is a unit. O

w

Remark 5.32. The ideal [ is not necessarily principal and even if it is, the computation of a
generator w can be slow in the worst cases. Indeed, since ¢Z[¢/] = ((¢o — 1)Z[¢])Y™Y, 1Z[Cn] =
(& — D)Z[¢n])) Y so that in Z[(,,] we have

4= (¢ — 1"

By unique factorization we deduce that IZ[(,,] = (¢ — 1)2771 We consider the norms and obtain

that Noc,.)/x (Z[Cm]) = (Noe,.)/x (Ce — 1)%) is principal, but this is not necessarily equal to [.
Among the 630 cyclic cubic number fields in Table 1 of [Gra75], having conductor between 1
and 4000 we have:

property ‘ number ‘ percentage ‘ example
[ is principal and Algorithm 2 succeeds 272 43.1% 42t —2x—1
Algorithm 2 succeeds but [ is not principal 95 15.1% x> —21z% + 35
[ is principal but Algorithm 2 fails 146 23.2% x® — x? — 30z — 27.
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The script remark3-10.sage in the online complement [BR17a] allows us to reproduce these data.
Here we write that [ is principal when there exists a prime ¢ above the conductor m of the
number field of f such that [ is principal. The case in which [ is principal and Algorithm 2 fails
is due to the usage of the LLL algorithm [LLL82]. Indeed, given a lattice L of dimension n the
algorithm finds in polynomial time an element of the lattice whose euclidean norm is less than
cn|det(L)|7. If wy, ..., wy is an integer basis of Ok and LLL is applied to the lattice

L ={(ag,...,an_1) € Z" | Zaiwi el
i=0

LLL computes an element (7o, ...,7v,) € Z™ such that v = >_"_, v;w; is such that Ng o(v) < CN(I)
for some constant C' independent on [. Since C' > 1, it is not always true that LLL finds a generator.
Generic algorithms to replace LLL exist but they are much slower.

In the following we present Algorithm 2 which is used to compute rapidly a unit in cyclic cubic
fields. The implementation using SAGE is in Appendix C, and the program can be downloaded
from the online complement [BR17a].

Algorithm 2 Fast computation of a unit of cyclic cubic K.
Require: a cubic cyclic field K and a factorization of its conductor m
Ensure: a unit of K
1: for /=1 mod ¢ factor of m do
2 factor ¢ in Ok to obtain [ using [Coh13, Sec 4.8.2]
3: search a generator wy of the ideal [ using LLL [LLL82].
4
5

: end for
: return a product of the units 7, := o(wy)/wy

In order to do statistics about the p-adic regulator we proceed as in Algorithm 3. The imple-
mentation of SAGE code for the Algorithm is in Appendix D, and the program can be downloaded
from the online complement [BR17a]. Note that Schirokauer’s map Af, (Definition 5.30) has im-
age in the Fy-vector space Fy[z]/(f(x)) which has the basis (1,z, x?) when f is cubic. Hence, for
1=0,1,2, we put \; = ci(m‘p’l), where e = lem({N(p) — 1,p | p}) and, for i = 0,1,2, ¢; are the
coefficients of the elements of the number field of f in the basis (1, x, 2?).

Algorithm 3 Test if p | R, for a list of random cyclic cubic fields

Require: a list of cyclic cubic fields
Ensure: a certificate on the divisibility of R/K,p by p
for K in list of cyclic cubic fields do
Apply Algorithm 2 to compute a unit 7
Apply algorithms in [WR76] to factor a defining polynomial of K in K[z] and obtain a
non-trivial automorphism o of K
Compute the rank r of the matrix

<)\0(51) M(e1) )\2(51))
Ao(e2)  Ail(g2) Aa(e2))”’

where A\, A1, A2 are the Schirokauer maps of a polynomial defining K
if r=2 then
return p{ R
else
we compute a truncation of the normalized p-adic regulator using algorithms in [Pan95]
and return the result of the test whether this rank is 2
end if

end for

5.10 An algorithm to decide p-rationality

For any n let A,» denote the p-part of the ray class group ([Gral3] Ch I.4) of K with respect to
the ideal p™. For any finite abelian group G we denote by FI(G) the invariant factors of G i.e.
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the integers [dy, ..., dy] so that G ~ ®F_,Z/d;,Z and d; | da | - - - | di.. The following result reduces
the problem of testing p-rationality to that of computing the ray class group, which is studied for
example in [CDO98| and implemented in PARI [BBB198].

Lemma 5.33 ([PV15] Thm 3.7 and Cor 4.1, see also Prop. 1.13 of [HM16]). Let K be a number
field which satisfies Leopoldt’s conjecture. Let e be the ramification index of p in K. Then there
exists n > 2 + e so that the invariant factors of FI(Apn) can be divided into two sets FI(Ayn) =
[b1,...,bs,a1,...,ar,+1] sSuch that

1. min(valy(a;)) > max(val,(b;)) + 1;
2. FI(Apns1) = [b1,...,bg,pai,...,par,11].
Moreover, K is p-rational if and only if val,(by) = val,(bs) = - - - = val,(bs) = 0.

The algorithm of Pitoun and Varescon was implemented in PARI [BBB*98| by Bill Allombert
on a large number of imaginary quadratic fields. The algorithm applies to all number fields satis-
fying Leopoldt’s conjecture not only to abelian fields. Indeed, the problem is not the answer which
is always correct, but the fact that the algorithm doesn’t terminate when Leopoldt’s conjecture
doesn’t hold for K. To illustrate that the algorithm works also for non-abelian number fields we
construct examples of p-rational fields for all possible Galois groups of quartic polynomials.

Example 5.34. In Example 5.34 we list the set of primes less than 100 where the number fields
of the listed polynomials are not p-rational. The case for the polynomial x* + z3 + 22 + x + 1 4s
already discussed by Greenberg [Grel6, Sec. 4.4], thanks to the computations of Robert Pollack.
The SAGE code for the programme to verify p-rationality using Lemma 5.33 is in Appendiz A, and
the programme can be downloaded from the online complement [BR17a].

Galois

Vp < 100, p — rational non 7-rational
group
7/47 r+ad a2+ +1 |2 —2325 — 627 + 232 + 1
Vy -2 41 2r+ 1022+ 1
D4 {E4 -3 .’£4 —6
Ay 1+ 8x + 12 ot — 2% — 1622 — Tz + 27
S, 2 4r+1 2t + 35+ 1

Table 3: p-rationality of a list of number fields.

To sum up we have a fast criterion for p-rationality given by Proposition 5.15 and a slow
condition which works in the general case which is given by Lemma 5.33. For efficiency reasons
we implemented a combination of the two as given by Algorithm 4. An implementation of this
algorithm is available in the online complement [BR17a].

Algorithm 4 test p-rationality of a list of cyclic cubic fields
Require: a prime p and a list of cyclic cubic fields
Ensure: for each number field the information whether it is p-rationality
for K in list of cyclic cubic fields do
Apply Algorithm 1 to certify that p does divides hx when it is possible
Apply Algorithm 3 to certify that p does not divides RIK,p when it is possible
if we have certificates that p { h R} , then
return True and certificates
else
Apply the algorithm of Pitoun and Varescon in Appendix A, based on Lemma 5.33 to
decide if K is p-rational
Return answer and certificate
end if

end for

In an experiment, using Algorithm 4, we tested p-rationality the 158542 cyclic cubic fields of
conductor less than 10%. The proportion of fields where 5 | hf is expected to be 0,000016 (Con-
jecture 5.19) and the proportion of fields where 5 | Ri 5 is expected to be 0.04 (Conjecture 5.22),
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which is matched very well by the experiments: 5351 fields found for an expected number of
0.04 - 158542 =~ 6127. It turns out that in all the 5351 cases where we couldn’t apply the criterion
in Lemma 5.7 the field was actually non 5-rational. The data can be found in the online comple-
ment [BR17a]. The total time used by the 153191 number fields where the fast criterion could
be applied was negligible with respect to the total time used for the 5351 number fields where
the algorithm of Pitoun and Varescon was applied. Hence, we had a speed-up of approximatively
158542/5351 =~ 52. In the general case, for a prime p, we expect a speed-up of p/2 when p = 1
(mod 3) and of p? when p =2 (mod 3).

5.11 Some families of p-rational fields

Recall that, when given a cyclic cubic field K, in Algorithm 1 one searches for a prime £ where
Lemma 5.29 applies, and hence certifies that the class number is not divisible by p. The idea of
this section is to fix p = 5 and to search for cyclic cubic fields where Lemma 5.29 applies. Under
some arithmetic assumptions this allows us to construct an infinite family of fields of class number
non-divisible by 5. We can also find a family of number fields where the 5-adic regulators are not
divisible by 5, thanks to the explicit formula in Section 5.7.1. Under the assumption that the two
families intersect we obtain an infinite family of 5-rational cyclic cubic fields.

Hypothesis 5.35. There exists infinitely many positive integer a such that

2 . .
1. m= %27 is an odd prime;

2. ™=l 2£0 (mod 5), m # 0 (mod 5);
3. 5 in inert in Q(CmT—l);

4. there exits ¢ =1 (mod 5m) such that ®,,(x) 1 (z + 1)% — 1 in Fylz];
5. a# 21,23 (mod 25).

Lemma 5.36. For any m satisfying the conditions of Hypothesis 5.85, the polynomials f,(x) =
3 +a?+ 1*me, m(sgi;)A, where a is such that m = #, define a cubic cyclic field of conductor

m which is 5-rational. In particular, under Hypothesis 5.35, GCw(Z/3Z,5) holds.

Proof. We put p =5 and we write p when the argument depends only on the points (1) to (4) of
the Hypothesis 5.35 whereas we write 5 when the argument also requires the point (5).

By Lemma 5.25 the number field of f, is cyclic cubic and has conductor m. By Lemma 5.29
the conditions on m guarantee that p f hx where K is the cyclic cubic field defined by polynomials
fa, hence it suffices to show that p { Ry .

By condition (5), Disc(f,) is not divisible by 5 and hence Disc(Q(a))[Og(a) : Z[e]]* # 0 mod 5,
where « is a root of f, in its number field. By Lemma 5.26 the set U = {3, A(8,a)}, where S is
a root of ve(z) = 2® + (m — 3)a? 4+ 3z — 1 and A(z,a) = 15 (22(4a® + 12) + x(a* + 18a* — 8a +
21) + (—2a® + 6a® — 30a — 6)), is composed of two units. By Proposition-Definition 5.30 it suffices
to prove that the following matrix has rank 2:

61 6_1 6_
M, = o(*- P =) Cl(%) o P =)
e Alz,a)?’ 11 Alz.a)?’ ' -1 Alz,a)?* 114 |
Co(FHE—=) (T (T

where ¢y, ¢1, c2 are the coefficients of elements of Q[x]/(v,) seen as polynomials. In the following,
we are going to show that if a satisfies point (5) of Hypothesis 5.35, then R} 5 # 0 (mod 5).
Given the polynomial form of the minors of M,, if the rank of M, is two for a value of a then
it is the same for all o/ such that ' = ¢ mod 52. By a direct enumeration of the values of a in
[1,5%] we obtain that 51 R . O

Thus we obtain point (2) of Theorem 5.6.

Remark 5.37. In Appendix E, we provide an algorithm to find primes m, [ satisfying Hypothesis
5.35. For example, m = 7,1 = 16906 works.
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5.12 Numerical investigation of the density of p-rational fields

The Cohen-Lenstra-Martinet heuristic predicts very simple formula for the density of number
fields with class number prime to p and with Galois group (Z/qZ)* for every prime g and integer ¢.
However, the authors of the heuristic conjectured only those heuristic statements which corroborate
with numerical experiments. We bring new evidence in favor of the conjecture for cubic cyclic fields
in Section 5.13. Then in Section 5.14 we bring evidence in many cases (Z/2Z)" and (Z/37Z)" for
t = 2,3,4 and are able to state the corresponding conjectures. In Section 5.15, we extend the
results of Hofmann and Zhang to the case of Galois groups (Z/3Z)! and (Z/2Z)" with t = 2,3,4
and conclude by proving point (3) of the main theorem (Th 5.6) in Section 5.16.

5.13 Numerical verification of the Cohen-Lenstra heuristics

One of the most interesting facts about the Cohen-Lenstra heuristic is how well it is supported by
statistical data. Encouraged by the case of quadratic fields one would expect a similar situation
for the case of cyclic cubic fields, but in 1989 Cohen and Martinet wrote that “we believe that the
poor agreement [with the tables] is due to the fact that the discriminants are not sufficiently large”.

Puzzled by this assertion we repeated their computations and made statistics on the fields
of conductor less than 8000, i.e. discriminant less than 6410°, which was the bound for the
computations of that time (e.g. [Gra75] considered the fields of conductor less than 4000). Since
then computers’ capabilities have increased by more than a factor 1000 so that we could compute
the statistics for fields of conductor less than 107, i.e. discriminant less than 10'“, in roughly one
calendar month, in parallel on several 30 cores and summed up to roughly 2.5 CPU years.

Looking at the data in Table 4 we understand what happened: the convergence speed to
the mean density is very slow and the statistics to 8000 have a relative error between 19% and
100% which didn’t allow Cohen and Martinet to conclude. However, statistics to 107 have only a
relative error between 0.2% and 15.5%, so we can conclude that the numerical data confirms their
conjecture. More details are available in the online complement [BR17a].

D tgeorgtic stat. density relative stat. densit_y relative
ensity cond. < 8000 error cond. <10 error
5| 0.00167 5 ~ 0.0236 46% 230 ~ 0.00193 15.5%
7 0.0469 325 ~ 0.0355 24% L8003 ~ 0.0456 3%
11 | 0.0000689 0 100% | 7oz A~ 0.0000775  12.5%
13 | 0.00584 | L5 ~0.00472 19% a2 &~ 0.00584 2%
19 | 0.0128 L~ 0.0086 48% 21938 - ~ 0.0128 0.2%

Table 4: Statistics on the density of cyclic cubic fields whose class number is divisible by p =5, 7,
11, 13 and respectively 19.

5.14 Cohen-Lenstra-Martinet for Galois group (Z/3Z)" and (Z/27)"

Lemma 5.38 (Kuroda’s class number formula ([Lem94] Sec 3 and [Kur50] Sec 10)). Let ¢ be a

prime and K a totally real Galois extension such that Gal(K/Q) = (Z/qZ)'. Then K contains

% subfields of degree q and there exists an integer A such that

A
hK =dq H hki-
k; subfield of degree q

The Cohen-Lenstra-Martinet heuristic implies that the class groups of the intermediate cyclic
fields of prime k; behave independently, and they obtain the following heuristic statement.

Conjecture 5.39 (reformulation of statements in [CM87]).
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1. If K = Q(/dy,....,/d;), and p an odd prime, then

t_1

=, ifp=1 (mod 3);

((p)

3

w ~—
< (V)
w

Pl = rp=2 (mod 3).

The conjecture is supported by the numerical evidence in Table 5. The data is available in the
online complement [BR17a].

» theoretic stat. densitéf relative
density cond. <10 error
5 | 0.00334 o3 A~ 0.00458 37%
7 0.0916 23902 ~ 0.0354 28%
11| 0.000138 | 2o ~ 0.000128 7.5%
13 | 0.0116 Jo232;5 ~ 0.0316 72%
17 | 0.0000140 | 5om=s ~ 0.0000197  40.5%
19 | 0.0254 50030 ~ 0.0173 31.5%

Table 5: Statistics on the density of fields of Galois group Z/37Z x Z/3Z whose class number is
divisible by p =5, 7, 11, 13, 17 and respectively 19.

5.15 On the p-adic regulator for Galois groups (Z/27)" and (Z/37)"

We are interested in the probability that all the cyclic subfields of number field of Galois group
(Z/qZ)! are without p-primary unity, or equivalently we want to investigate the relations between
the normalized p-adic regulators of a compositum and of its subfields. We have here a similar
result to Kuroda’s formula.

Lemma 5.40. Let p be an odd prime and K = Q(y/a, /b)) with a, b and ab positive rational
numbers which are not squares. Let R denote the normalized p-adic requlator of K, then Ry, Ro

and Rs the p-adic regulators of Q(/a), Q(v/b) and Q(\/ab). Then there exists an integer o such
that

R =2%R1RyR3.
Proof. A simple regulator calculation (e.g. [BP79]) implies that there exists 8 such that

h
E:EE>sEs] =20 ———
[ 142 3] h1h2h37

where E and h are the unit group and the class number of Q(v/a, v/d), and E; and h; are the unit
groups and class numbers of the quadratic subfields.
By Kuroda’s formula (Lemma 5.38), h/(h1, hohs) is a power of 2 so

[E : E1E2E3] =27

for some integer v. Hence the p-adic regulator of E' is equal to the p-adic regulator of ;i FsF3 up
to multiplication by a power of 2.

Let {og = id, (01 : a — —va, Vb — Vb), (02 : Va — a,Vb — —/b) and (03 : a
—v/a, Vb — —/b)} be the automorphisms of K.

If &1 is a fundamental unit of Q(y/a) then e101(e1) = Ng(/a)/g(€1) = £1 so that

log,(01(e1)) = —log,(e1).
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Since o2(e1) = &1 we have
log,(02(e1)) = log, (03(e1)) = log,(e1).

Similar equations hold for the fundamental units €5 and €3 of Q(v/0) and Q(v/ab). Hence the p-adic
regulator of the subgroup generated by 1,2 and €3 is

log,, (e1) logp(al (€1)) log, (o2 (e1)) log,, (e1) — log,(e1) log, (e1)
log,(e2) log,(01(e2)) log,(oa(e2)) | = | log,(e2) log,(e2) —log,(e2)
log,(e3) log,(o1(e3)) log,(oa(esz)) log,(e3) —log,(e3) —log,(e3)
The latter determinant is equal to (—4)log, €1 log,, €2 log, €3, which completes the proof. O

Our heuristic is to assume that the factors R;, Ry and R3 in Lemma 5.40 are independent.

Conjecture 5.41. Let g =2 or 3, p > q a prime and t an integer. Then the density of totally real
number fields K such that Gal(K) = (Z/qZ)" for which the normalized p-adic regulator is divisible
by p for at least one of the cyclic subgroups is

1. Prob (3F C K, Ry, = 0[p||Gal(K) = (Z/22)" tot. real) =1— (1— 1)1
2. Prob (3F C K, R, =0[p] | Gal(K) = (Z/3Z)") =1— (1 — ’P)Lgl, where

2 _ 1
P: P p27
1

i

ifp=1 (mod 3)

otherwise.

bS]

In a numerical experiment, we considered all number fields to verify Conjecture 5.41 of the form
Q(V/dy,dz,/d3) with dy,ds € [2,300] squarefree and distinct, then the fields of Galois group
(Z/3Z)® and conductor less than 10°, i.e. discriminant less than 103°. In Table 6 we compare the
statistical density with 1 — (1 — )7. The numerical computations use Algorithm 3 with SAGE
code in Appendix D. The programme can be downloaded from the online complement [BR17a).

p | experimental | Conj 5.41 | relative
density density error

5 g?ggé ~ 0.775 0.790 2%

7 | 22838 ~0.517 | 0.660 22%

11 | 3822 ~0.473 | 0.487 3%

Table 6: Numerical verification of Conjecture 5.41 in the case where Gal(K) = (Z/27Z)3.
The sample consists of number fields which can be written as K = Q(v/di,/dz,/d3) with
2 < dj,ds,ds < 300 squarefree and distinct.

Remark 5.42. Conjecture 5.41 describes well the computations required to find Example 5.17.
With notations as in Example 5.17 we set d; = —1 and d = 2 and, for ¢ > 3 we define d; as the
smallest integer larger than d;_; such that, for all subfield F C Q(dy,...,d;), R’F’p is not divisible
by p. Then the conjecture predicts log, d; ~ c2! for some constant ¢ since the expectancy of d; is
the inverse of the probability of Q(v/dy, ..., /d;_1,V/d) has normalized p-regulator non divisible
by p when d is a random integer, which corroborates with experimental values:

i 3 4 5 6 7

d; 3 11 47 97 4691

27%log,(d;) 0.20 0.21 0.17 0.10 0.19

One can expect dg =~ 20-22° 9. 10'?, which is out of reach of nowadays computers. Moreover,
once the condition on p-adic regulators is satisfied, one has to also test the condition on class
numbers. It seems to indicate that one needs new theoretical results before finding examples of
the Greenberg’s conjecture for p = 5 and Galois groups (Z/2Z)" with ¢ larger than 10.
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5.16 Greenberg’s conjecture as a consequence of previous conjectures

Since the Conjectures 5.22 and 5.19 predated Greenberg’s conjecture and are supported by strong
numerical evidence it is interesting to note that they imply that GCo(Z/3Z, p) holds.

Theorem 5.43. Under Conjecture 5.19 and Congjecture 5.22, for all prime p > 3, GC(Z/37Z, p)
holds.

Proof. For any D let K (D) be the set of cubic cyclic number fields with conductor less than D.
Then we have

#{K € K(D) non p-rational} #{K € K(D), p| hx Rl ,}

lim su lim su
Doson #K (D) = o #K (D)
< Prob(p| hx) + Prob(p | Rk ,,)
2 ad R |
< Z41-Tla-p )<=
< S+ [Ta-»7 <5

i=1
Hence, there exist cyclic cubic fields K with arbitrarily large conductors such that p doesn’t divide

hKR’KJ), and which by Lemma 5.7 are p-rational. O

Thanks to Conjecture 5.41 we can prove a similar result in the case of composite of quadratic
and respectively cubic cyclic real fields.

Theorem 5.44. Let t be an integer, ¢ = 2 or 3 and p a prime such that p > 5qt. Under
Conjecture 5.41 and Conjecture 5.39, there exist infinitely many p-rational number fields of Galois
group (Z./qZ)¢, or equivalently GCoo ((Z/27)t,p) and GCoo((Z/37)t, p) hold.

Proof. Let K (D) denote the set of totally real number fields of Galois group (Z/gZ)! of conductor
less than D. Then we have

) #{K € K(D) non p-rational) ) #{K | K(D)3F C K p|hpRE,}
lim sup lim sup :

< Prob(p| hx)+ Prob(3F C K,p | Rf,,)
pAp L
< 2 (-0 (1= ph)
p =1
2" 2 1
< (Gt —o—
qfl(p p(pfl))
5qt 4 2
< 2 ) <1

+7
p 5 5(p-1)
0

Note that Theorem 5.44 has a conclusion which encompass the one of Theorem 5.43, but the
difference in assumptions justifies to separate the two results. Also note that the condition p > 5¢*
is artificial and it could be improved if one proved

Prob(p | hg R ,,) < Prob(p | hx) 4+ Prob(p | Rk ,).

If these two divisibility properties were orthogonal then Greenberg’s conjecture for groups (Z/qZ)*,
q = 2 or 3, would hold without any condition on p and ¢.

Conclusion and open questions

To sum up, Greenberg’s conjecture is solved in the particular case of G = Z/27 and it is well
supported by heuristics and numerical experiments for G = (Z/qZ)! when ¢ = 2 or 3. In the
general case of non-abelian Galois groups however our results are limited to a list of examples.

The problem raises new questions about the independence of class numbers and of p-adic
regulators, which could be tackled by techniques of analytic number theory, similar to the recent
progress on the Cohen-Lenstra-Martinet heuristic. It is interesting to create new algorithms to test
divisibility of p-regulator and of the class number by p with a better complexity than computing
a system of fundamental units and respectively the class number.
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Greenberg’s p-rationality conjecture corresponding to the case G = (Z/27Z)! offers a new tech-
nique to construct Galois representations with open image in GL,,(Z,) with 4 < n < 2!=1 — 3 (cf
[Grel6, Prop 6.7]), solving new cases of the inverse Galois problem. The previous results were
restricted to n = 2 and n = 3, so that the known examples with G = (Z/2Z)® are enough to
improve on previous results.
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Appendix

A The algorithm of Pitoun and Varescon
The following code computes the invariant factors as in lemma 5.33 and tests if a number field is p-rational.

def FI(K,p,n):
f=K.defining_polynomial ()
rl,r2=K.signature()
ab=pari(’ K = bnfinit(’> + str(f) + ’,1); Y+\
> bnfcertify(K); >\
> Kr = borinit(X, ’ + str(p~n)+ ’); ’+\
> Kr.clgp.cyc ’)
# Kr is the Ray class group.
return ab
# return val(ai) and val(bj)
# where A_{p~{n}}(X) = Z/al x ... x Z/a_r2+1 x Z/bl x ... x Z/bt
# and val_p(al) >= ... >=val_p(a_r2+1) >= val_p(bl) >= ...

Test is the number field of f is p-rational.
If this number field doesn’t verify Leopoldt’s conjecture
then the programme doesn’t terminate.

def is_p_rational(f,p):
Zx=f .parent ()
K.<a>=NumberField(f)
r1,r2=K.signature()
OK=K.ring_of_integers ()
factorization_p=factor(p*0K) # pairs (pi,vi)
e=max([pivi[1] for pivi in factorization_p]) # second component of (pi,vi)
s=valuation(e,p)
n=2+s
old_ab=FI(K,p,n)
old_a=FI(K,p,n) [:r2+1] # first r2+1 components returned by FI

# old_a=[val_p(al),val_p(a2),...,val_p(a_r2+1)]
01d_b=FI(K,p,n) [r2+1:] # old_b=[val_p(bl),val_p(b2),...,val_p(bt)]
n+=1

found=false
while not found:
new_ab=FI(X,p,n)
new_a=FI(K,p,n) [:r2+1] # similar to old_a, corresponds to n+l
new_b=list(FI(K,p,n) [r2+1:]) # similar to old_b, corresponds to n+l
if new_a == [p*ai for ai in old_al] and min(new_a) > p*max(new_b+[1]):
# if new_b is empty we replace max(new_b) by 1
found=true

if new_b == len(new_b)*[1]: # the elements of new_b are non-negative
answer=true # their sum is O if they are all zero
else:
answer=false
old_ab=new_ab # increase n by 1
old_a=new_a
n+=1

return answer

B Implementation of Algorithm 1

The following code implements algorithm 1.

def does_p_divide_class_number(p,K,N=100):
m=K.disc() .sqrt ()
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C

if ZZ((m-1)/3) % p==0orm% p == O:
return true # cannot apply criterion
if not cyclotomic_polynomial((m-1)//2).change_ring(GF(p)).is_irreducible():
return true # p is not inert in Q(zeta_{(m-1)/2})
i=0
for ell in range(1,N*m~2%p~2,m*p) :
if not ZZ(ell).is_prime():
continue
Fellx.<x>=GF (ell) []
if ((x+1)~((ell-1)//p) -1 ) % cyclotomic_polynomial(m) != O:
return false # could prove that p doesn’t divide h

i+=1
if i >= N:
break

return true # couldn’t prove that p doesn’t divide the class number

Implementation of Algorithm 2

This function takes as parameter a polynomial f whose number field K is cyclic cubic. The output is a
unit u, which is not necessarily of infinite order. If ord(u) is infinite and p is a prime which doesn’t divide
the p-adic regulator of K, then u is used to rapidly certify it.

def

The

def

fast_units(f):
K.<a>=NumberField(f)
OK=K.ring_of_integers()
m=K.disc() .sqrt () # m is the conductor of K because it is cyclic cubic
# the following 5 lines compute gm, an ideal such that gm~3=(m)
gm=0K
for p in m.prime_factors():
pfact=(p*0K) .factor ()
gp=prod([pe[0]~(pe[1]//3) for pe in pfact])
# # gp prime ideal such that gp~3=(p)
gm=gm*gp
if not gm.is_principal(): # is_principal uses LLL and \
# is not certified to find a generator\
# even if gm is principal
return K(1),K(1)
omega=gm.gens_reduced () [0] # (omega)=gm. Uses LLL.
sigma=K.automorphisms () [1] # sigma is a non-trivial automorphism of K
eps=sigma(omega) /omega # a unit of K, according to Remark 3.10
return eps,sigma(eps)

Implementation of Algorithm 3
following code computes Schirokauer map associated to z and p.
Schirokauer(z,p,E, gamma=None) :

v = exp_mod_pk(z,E,p,k=2)-1
unramified = not (z.parent().disc() % p == 0) # p divides Disc(K) ?

if unramified and gamma == None:
gamma=p # if NO we are done
elif gamma == None: # if YES and we have a
# uniformizer we are done
# otherwise compute a uniformizer
# next 6 lines compute a uniformizer gamma
K = z.parent () # deduce K from z
0K = K.ring_of_integers() # ring of integers
n=K.degree() # degree of K

rad=prod ([gp_[0]~(gp_[11//n) for gp_ in (p*0K).factor()] )
# rad = product of prime ideals above p
_,gamma=rad.gens_two ()

# gamma is such that <p,gamma> == rad
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Pcoeffs = (v/gamma).vector()
# Compute a polynomial P such that P(a) = v/gamma
# where a is such that K=Q(a).
# Call Pcoeffs the coefficients of P.
return [GF(p) (e) for e in Pcoeffs]
# Reduce the coefficients of P modulo p.

Given a polynomial f and a prime p, the following code tries to find a certificate that the p-adic regulator
is not divisible by p and implements algorithm 3.

def criterium_p_not_divides_pRegulator(f,p):
K.<a>=NumberField(f) # K=Q(a) is the number field of f

O0K=K.ring_of_integers () # ring of integers
m = K.disc() .sqrt() # since K is cyclic cubic, m=cond(K)
eps0,epsl=fast_units (f) # try to find unit using Algorithm 2.
if eps0O == # in case of failure
return "Maybe" # we do not have a basis of subgroup
# of finite index
if (£f.disc() // K.disc()) % p~2 == 0: # if p divides [0K:Z[all
return "Maybe" # we answer '"Maybe"

# Compute E denoted e in Definition 3.9
E=ZZ(1cm([ee[0] .norm()-1 for ee in (p*0K).factor()]1))
# The next 9 lines compute gamma, a uniformizer of p
if K.disc() % p == O:
OK=K.ring_of_integers ()
n=K.degree()
rad=prod ([gp_[0]1~(gp_[11//n) for gp_ in (p*0K).factor()] )
_,gamma=rad.gens_two ()
if gamma == p:
gamma=p
else:
gamma=p
# compute the rank of the matrix in Algorithm 3.
Srank=Matrix (GF(p),2,3, [Schirokauer (epsO,p,E,gamma) ,Schirokauer (epsl,p,E,gamma)]) .rank ()
if Srank ==
return True
# Main enumeration.

Qx.<x>=QQ[’x’]

line=fd.readline() # line = next line of file fd
cond=0 # cond = conductor of previous field
while line != "": # until end f file
if not line[0] == "x": # skip comment lines
cond=int (line)
else:

f=Qx(line.strip())

K.<a>=NumberField(f)

OK=K.ring_of_integers()

m = K.disc() .sqrt ()

if m < cond:
line=fd.readline()

continue

f = polynomial read in file

K=Q(a) is the number field of f
ring of integers

since K is cyclic cubic, m=cond(K)
skip f if its conductor is smaller
than previous conductor because

it has been already treated

H O ¥ O R B H

for p in ps:
bool = criterium_p_not_divides_pRegulator(f,p)
if bool == "True":
bools = bools + ",False"
else:
bools = bools + ",Maybe"
gd.write(str(f)+":"+bools+"\n")
gd.flush()
line=fd.readline()
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E SAGE code to determine a suitable set of primes satisfying
Hypothesis 5.35

In the following, we give the sage code to find primes m, [ satisfying Hypothesis 5.35.

a=1
while not ((a~2+27)//4).is_prime():
a += 2

m=(a"~2+27)//4

1=1

found = false

while not found:

while not 1l.is_prime():
1 += 5*m

Flx.<x>=GF (1) []

if ((x+1)~((1-1)//5)-1) % cyclotomic_polynomial(m) (x) == O:
found = true

1 += b*m

print m,1

This code gives that m = 7,1 = 16906 satisfies Hypothesis 5.35.
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