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1 Objectif de ce travail

Dans cette these nous nous intéressons a des problemes liés a la dynamique de
fluides évoluant dans le domaine de communication extérieur d'un espace-temps de
Schwarzschild. Ce travail est directement motivé par le programme initié par LeFloch
sur les solutions faibles des équations d’Einstein-Euler [2] [3] [16], 26| 27, 28]. Cepen-
dant, nous nous concentrons ici sur les équations d’Euler posées sur un espace courbe
et nous étudions la dynamique de fluides compressibles relativistes, en introduisant
ici de nouvelles techniques mathématiques et numériques pour ce probleme.

Comme une sous-discipline de la mécanique des fluides qui traite des liquides et
des gaz, la dynamique des fluides offre une structure systématique et sa solution
implique généralement le calcul des diverses propriétés du fluide. Déterminer les
solutions aux équations classiques du mouvement d'un fluide reste un domaine de
recherche tres actif et ces équations deviennent encore plus complexes lorsque 1’on
considére le probleme posé dans un espace-temps courbe, qui est, dans notre cas,
I’espace-temps de Schwarzschild.

La métrique de Schwarzschild, une solution des équations d’Einstein de la rel-
ativité générale, permet de décrire la géométrie de I’espace-temps (sa courbure), et
donc le champ gravitationnel a I'extérieur d’une masse sphérique. Cette solution four-
nit une approximation tres pertinente pour décrire des objets astronomiques tournant
lentement, comme par exemple la Terre ou le Soleil.

Dans les coordonnées dite ”de Schwarzschild” (¢, 7,0, ¢), la métrique de Schwarzschild
a la forme :

oM oM\
g=— (1 — —>c2dt2 + (1 - —) dr?® + r*(d6* + sin® 0dp?), (1.1)

r r
ou:
e t est la coordonnée de temps du point et r est la coordonnée radiale du point,

o dH? + sin? Odp? est la métrique canonique , avec @ € [0,27), ¢ € [0, 7),

3



1. Objectif de ce travail

e la constante ¢ € [0, +00] est la vitesse de la lumiere et la constante M € (0, +00)
est la masse de l'objet.

Observons que le coefficient en dr? de la métrique tend vers I'infini lorsque r = 2M.
Néanmoins, ce point limite n’est pas une vraie singularité de l'espace-temps de
Schwarzschild car il s’agit d’'une pathologie des coordonnées choisies. Dans les co-
ordonnées de Lemaitre, par exemple, les coordonnées de Eddington-Finkelstein ou
les coordonnée de Kruskal-Szekeres, la métrique devient réguliere. L’intérieur de la
solution Schwarzschild avec 0 < r < 2M est completement séparé de l'extérieur par
r = 2M que nous nommons 1’horizon du trou noir de Schwarzschild. D’ici, il est
naturel d’étudier la dynamique des ondes nonlinéaires dans le domaine de communi-
cation extérieur d’un espace-temps de Schwarzschild » > 2M. Une remarque ici est
que le cas ou r = 0 est totalement différent. A ce point singulier » = 0, I'espace-
temps lui-méme n’est pas bien défini. Mais ce genre de singuralité est aussi une
caractéristique générique de la théorie de la relativité générale et son existence n’est
pas un cas spécifique.

L’équation d’Einstein est en conformité avec la conservation locale de ’énergie et
du moment, qui s’exprime

Vao(T§ (p,u)) =0, (1.2)

ou V est la connection Levi-Civita associée avec la métrique (dans notre cas, la
métrique de Schwarzschild ) et T est le tenseur d’énergie-impulsion qui représente
la répartition de masse et d’énergie dans l'espace-temps. Dans le cas d'un fluide
parfait, T a la forme:

75 (p,u) = pc*uug + p(p) (g5 + uus), (1.3)

dépendant de la densité de la masse-energie des fluides p € (0,+00) et son champ de
vitesse u = (u®), normalisé et orienté vers le futur:

uu, = —1, u’ > 0. (1.4)

La pression p est une fonction p = p(p) de la densité et, par souci de simplicité, on
suppose que le fluide est isotherme, c’est a dire, p(p) = k?p ot k € (0, c) repésente
la vitesse du son. On utilise une notation standard pour la métrique g = g,pr®2” et
son inverse (g®?) dans les coordonnées (z%) et on monte ou descend les indices selon
la convention u® = gaﬂug, Uq = gaguﬂ.

Les modeles que nous étudierons prennent la forme d’un systeme hyperbolique

non-linéaire de loi de bilan. Ce genre de systems ont été d’abord etudiés par Dafermos
et Hsiao [8], Liu [40] et, plus tard, [I4], 17, 9] (et dans un contexte plus général [3] 15]).

Ce chapitre introductif décrit des modeles déduits des équations ([1.1]), (1.2)) et
présente les contributions principales apportées par cette these. Le chapitre est or-
ganisé de la fagon suivante. Dans la Section [2, on traite le modele d’Euler dans
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I’espace-temps de Schwarzschild, en donnant la théorie d’existence dans la classe des
solutions a variation totale bornée contenant éventullement des ondes de choc. Les
résultats du modele de Burgers, le cas sans pression du modele d’Euler sont presentés
dans la Section [3] consacrée a I’étude de 'existence, 1'unicité de la solution dont une
version de variation totale modifiée par la géometrie reste bornée, ainsi que la stabilité
nonlinéaire de la solution stationnaire. La Section {4 porte sur un travail numérique,
motivé par des questions d’analyse des comportements asymptotiques des solutions
avec des données initiales générales. Pour conclure, nous donnons une discussion sur
les directions de recherche possibles.

2 Modeéle d’Euler a ’extérieur d’un trou noir de
Schwarzschild

2.1 Equation d’Euler

L’équation d’Euler pour un fluide isotherme a ’extérieur du trou noir de Schwarzschild

est obtenue a partir de (L.1]) et (1.2):

6,5 (7"21_—62@2p +a7~ 7’(7" — 2M)1_—62/U2P’U = 0,

1+ 2k2 o V2 + k2 2.1
" (T(“QMH_—W“’) M’”(”‘?M) T an’ =y
3M v? + k2 M 1+ e*k%0? 2 2.5
—T(T—QM)l_—Wp—E(T—QM)l—Wp—i‘;(T—QM) k P

pour tout r > 2M, ou % = c est la vitesse de la lumiere et nous rappelons que M
est la masse du trou noir et k € (0,1/¢) est la vitesse du son. Les inconnues sont la
densité de la masse-energie du fluide et la vitesse v donnée par le champ de vitesse:

1 ut

m@ € (—1/6,1/6).

V= (2.2)
Remarquons que nous avons introduit € au lieu d’utiliser ¢ directement en vue d’étudier
les régimes limites.

Le systeme est strictement hyperbolique et vraiment nonlinéaire dans tous les
champs de caractéristiques quand la vitesse du son k € (0,1/€). Ses invariants de
Riemann a la forme:

11 (1—ev)+ k | 11 (1—61})
w= —In n z=—In —
2¢ 1+ev 1+ e2k? Py 2¢ 1+ ev 1+ €2k2

Inp, (2.3)
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et les valeurs propres correspondantes sont données par

2M> v—k

Alp,v) = (1__ 1 —e2kv’

M k
: ity

_ 2.4
1+ e2kv (24)

n(p,v) = (1 -

2.2 Fluides a I’équilibre

Nous considérons maintenant la solution stationnaire du modele d’Euler dans
I'espace-temps de Schwarzschild, c’est a dire, une solution qui satisfait (2.1)) et ne
dépend pas du temps. Cette solution est donnée par:

dr 1—¢

d o V2 + k2

el _ 2.5
dr <(r 2M) 1 — €292 p) (2:5)

M (r—2M 2Kk?
:_u <3p?12 +3k%p — e 2p — erva2> + —(r —2M)?p,
— 2y r

pour r > 2M. Par le systeme (2.5)), on peut obtenir une relation algébrique entre le
rayon r et la vitesse v:

1 — 22 262 k?

Gl = Y T

In (r*|v]) = const., 1> 2M. (2.6)

Pour avoir une solution stationnaire v(r) sur (0,2M), on souhaite que pour tout
r > 2M fixé, admet une racine v. Mais malheureusement, ce n’est pas toujours
le cas. En effet, la constante a la droite de ’équation determine si une solution
stationnaire réguliere peut étre défine dans toute la région hors du trou noir de
Schwarzschild » > 2M. On trace la fonction G(r,v) en fixant r dans la Figure [2.1] et
on voit immédiatement que v ne peut pas étre définie si la constante a la droite de
I’équation ([2.6)) est plus petite que le minimum de G.

Plus précisément, on a

dr €& r(r—2M)

o LSO (2ot f k),

Dong, s’il existe un point r, ou la solution est sonique, c’est a dire, v(r,) = +k avec
k la vitesse du son, la definition de solution ne peut pas continuer. On nomme ce
point r, le point sonique. L’existence du point sonique distingue deux régimes des
solutions.

Théoréme 2.1. On se donne des valeurs de la vitesse de la lumieére 1/e > 0, de
la vitesse du son k € (0,1/€) et de la masse du trou noir M > 0, et on considere le
modele d’Euler statique dans 'espace-temps de Schwarzschild (2.5)). Pour rq > 2M
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0.8

0.6 |

0.4

0.2 F

-0.2

0 0.2 0.4 0.6 0.8 1

Figure 2.1: La fonction G.

arbitraire, et pout toute densité py > 0 et vitesse |vg| < 1/e, il existe une seule solution
réquliere:
p:p(r;r()?pOa,UU)? U:U(T;TOameO)a

satisfaisant (2.5)) et la condition initiale p(ro) = po, v(ro) = vo. De plus, le signe de
v et |v] — k ne change pas dans le domaine de définition. On a de plus deux régimes
différents:

1. Régime sans point sonique. Si pour toutr dans le domaine de dé finition,|v| #
k, la solution mazximale est définie sur (2M,+00).

2. Régime avec un point sonique . S’il existe un point r. ot v(rs;rg, po, Vo) =
+k, la solution maximale est définie seulement sur (2M,r,) ou sur (ry, +00) et
nous avons d%v(r*;ro,po,vo) = 00.
Pour construire une solution stationnaire globale en espace, nous avons recours
a un choc stationnaire. La solution stationnaire que nous construisons satisfait le
modele d’Euler statique au sens des distributions et est composée de deux so-
lutions stationnaires régulieres (pr,vr), (pr, vr) connectées par un choc stationnaire
au point unique rq tel que

k2 1 — €2k* /vy (r9)? vp,(ro)?
P e M A e s e S

vr(re) =

On annonce le théoreme et réfere le lecteur a la Section pour plus de détails.

Théoréme 2.2 (Solution stationnaire globale en espace). Pour tout rayon ro > 2M,
toute densité py > 0 et toute velocité |vy| < 1/€, le modéle d’Euler (2.5) avec p(ro) =
po, v(ro) = wvo admet une solution faible unique définie pour tout r € (2M,+00)
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Figure 2.2: Solutions stationnaires reguilieres du systeme d’Euler

contenant au plus un choc statique. De plus, la famille des solutions stationnaires
contenant éventuellement un choc dépendant de maniére Lipschitzienne de ses argu-
ments ro, po, Vo, lorsqu’ils varient dans le domaine admaissible.

2.3 Existence pour le probleme de Cauchy
Théoreme principal

La solution stationnaire est sans doute une solution du modele d’Euler & 'extérieur
du trou noir de Schwarzschild. Pour une donnée générale, nous avons le résultat dans
la classe des solutions a variation totale bornée:

Théoréme 2.3 (Existence des solutions du modele d’Euler). Nous considérons le
systéeme d’FEuler décrivant les fluides dans un espace-temps (2.1)) posé sur r > 2M.
Lorsque la donnée initiale po = po(r) > 0, |vo| = |vo(r)| < 1/€ satisfait

1—ev
TViors+6,+00) (10 po) + TVionr16+00) <1D 0) < +o0o,

pour tout 6 > 0, il existe une solution faible p = p(t,r), v = v(t,r) définie sur (0,T)
avec p(0,-) = po,v(0,-) = vy ou T est un instant firé arbitraire (éventuellement infini)
et pour un temps fini t € (0,T) et § > 0, nous avons

1 —ev(t,-)
TV o (1 t,- TV: o) [ In ——mM———= < .
tes(l(l)%) ( nrto400) (022 )) + TVoarss+ )< T e ))) e
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Nous ne donnons que 'idée de la preuve. Inspirée par Nishida [41], Smoller et
Temple [44] qui ont traité les fluides dans un espace plat sans effet de la géométrie,
la preuve du Théoreme [2.3| est réalisée par une version de méthode de Glimm fondée
sur le probleme de Riemann généralisé.

Probleme de Riemann généralisé

Le probleme de Riemann généralisé est un probléme de Cauchy avec une donnée
initiale comprenant deux solutions stationnaires Uy, Ui séparées par une discontinuité
de saut a un rayon fixé ro > 2M:

U Ur(r) 2M <r<mg
o Ur(r) r > ro,

et on écrit Uy (rg) = UYL, Ur(rg) = U}. On commence par étudier un systéme d’Euler

homogene:
1+ e*k%0? 1+ €2k?
0, <r2—1 —3 P + 0| r(r— 2]\/[)—1 V| = 0,

€

1 2/{32 2 /{32
O (7“(7“ — 2M)ﬁpv) + 0, ((r - 2M)2L2p> =0,

1 —€e2v

au point rg fixé. Nous considérons un probleme de Riemann standard, qui est un
probleme de Cauchy de ce systeme sans terme source avec une donnée initiale formée
par deux constantes Up,UY avec une discontinuité de saut au point fixé ro. Ce
probleme est résolu par trois états constants y compris les deux états donnés et
un autre état unique Uy, suité entre les deux précédents connectés par les ondes
élimentaires (les chocs ou les raréfactions) qui sont les lignes droites. La solution ne

r—TrQ

dépend que de ="0.

Le modele d’Euler dans I'espace-temps de Schwarzschild, par contre, a un terme
source donnée par la géométrie qui a courbé les caractéristiques et nous pouvons
avoir les formes approximatives des onde élémentaires généralisées du modele d’Euler
(dans le sens distributionnel pour ¢ — 0). Nous avons donc donné une solution ap-
proximative du probléme de Riemann généralisé U = U (t,r) construite a partir de
trois solutions stationnaires Uy, Uy, Ug parmi lesquelles Uy, est déterminée unique-
ment par Uy (rg) = UY; et les trois états stationnaires sont connectés par les ondes
élémentaires généralisées. Nous avons le lemme suivant pour estimer la difference
entre cette solution construite U et la solution exacte.

Lemme 2.4. Soit U = U(t,r) la solution approrimative du probleme de Riemann
généralisé du modéle d’Euler dans l’espace-temps de Schwarzschild (2.1). Pour At, Ar >
0 donnés tels que £ > max(|A|, |u|), et toutes les fonctions régulieres ¢ définies sur
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0, +00) x [rg — Ar,ro + Ar], nous avons

ro+Ar ro+Ar

Uty + At, ) o(to + At,-) dr — / Ulto,-)o(to, ) dr

ro—Ar

O(At, Ar: ) :/

ro—Ar

to+At .
N / Flro+ Ar, U (-, 1o+ Ar))é(-, 1o + Ar) dt

to

to+At _
—/ F(ro—Ar,U(-,rog — Ar))o(-, 70 — Ar) dt
+ O(1)|Ug(ro) — Up(ro)| At?||¢]|c1,

(2.7)

ou

to+At  pro+Ar - ~
O(AL, Ar; ¢) == / / (U 86+ F(r,U) 0,6 + S(r, U)¢) drdt,
to ro—Ar

0

qut s’annule si et seulement st U est une solution exacte.

Méthode de Glimm

Nous pouvons alors introduire une version de méthode de Glimm qui nous produit
une suite de solutions approchées dépendant d’un pas d’espace Ar — 0. Elles sont les
solutions du probleme de Riemann généralisé par morceaux a chaque pas de temps et
ses valeurs dans chaque cellule sont choisies par une valeur aléatoire. Une fois le pas
d’espace Ar et le pas de temps At satisfait la condition de CFL, on peut continuer
la construction. Plus précisement, on écrit

ti = ZAt, r; = 2M —f-jAT,

et
Ti,j =2M + (U}Z —f-j)AT‘,

ou (w;); est une suite equidistribuée dans (—1,1). Si la solution approximative Ua
a déja été construite pour tout 0 < ¢ < ¢;, nous voulons prolonger la solution sur
Uy <t <tigq:

1. Au temps t = t;, on définit Ux comme une solution stationnaire par morceaux
donnée par

d S
JF(ﬂ Ua(ti,m)) = S(r,Ua(ti,r)), t+j mod2=0, 7r;<r<Trjto,
Un(ti,rij1) = Ua(ti—,rijr1).
(2.8)
Remarquons que les solutions stationnaires peuvent contenir des chocs station-
naires.
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2. On construit maintenant Ua sur {t; < t < t41,7-1 < 1 < 141} (avec i + j
mod 2= 0):

Ua(t,r) := (7(15, rit;, rj,UL,UR)

avec UL(r) = Ua(ti,7), v € (rj_1,75), Up(r) = Ua(tisr), v € (rj,rj41) deux

morceaux des solutions stationnaires de Ua(t;,7) et U la solutions du probléeme
de Riemann avec les état U, Ug.

Ce schéma, tout d’abord, est capable de bien préserver une solution réguliere
ainsi qu’une solution stationnaire faible qui contient un choc stationnaire. Finale-
ment, comme nous pouvons avoir toujours une borne de la variation totale de In p sur
[2M + 6, +00) ot p est la densité des fluides, le Théoreme d’Helly nous permet d’avoir
une limite des solutions approximatives pour Ar — 0 et cette function limite est ex-
actement une solution faible du modele d’Euler dans I’espace-temps de Schwarzschild
pour r > 2M.

2.4 Etude des régimes limites

Enfin, on considere plusieurs cas limites, qui sont obtenus en faisant tendre les
parametres physiques vers leurs valeurs extrémes. Il est nécessaire de mettre a
I’échelle la masse M pour éviter I'explosion du terme source:

M
mi= . (2.9)

Le modele d’Euler a donc la forme M (e, k, m):

1+ e*k?v? 1+ e%k°
8t (T21_—62U2p +8r r(r—262m)1_—v2pv :0,

62
1—|—62/§2 02+k2
2 2 2
Oy (r(r — 2¢ m)—1 — 6202p0> + 0, ((r — 2¢°m) T a22”
3e*m s VR K2 m o \1+etk?? 2 5 2,9
= U 2em g = S (= 2em) e 2= 2em) i,

(2.10)
Nous nous intéressons aux régimes limites déterminés par les valeurs des parametres
physiques, i.e. la masse du trou noir m € (0,+o0), la vitesse de la lumiere % €
(0, +00), et la vitesse du son k € (0,1/€). La Figure 2.3 fournit une illustration de

tous les régimes.
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€
linéairement dégénéré
m=0
Minkowski

e=0

non-relativiste

k=0

sans pression

m m=+00 A
trou noir extreme

Figure 2.3: Régimes du modele .# (¢, k,m).

Fluide non-relativiste

En prenant € — 0, on arrive au modele Euler non-relativiste dans I'espace-temps
de Schwarzschild .# (0, k, m):

Oi(r*p) + 0, (r*pv) = 0,

2.11
Oi(r*pv) + 0, (TQp(U2 + k2)> —2k*rp+mp =0, t>0,7r>0. (2:11)

Un phénomene intéressant est que le modele est appliqué par le fluide non-relativiste
mais il a quand méme un terme de relaxation mp, qui est induit par la géometrie du
trou noir de Schwarzschild. Ce modele est étudié¢ en Chapitre

Fluide rigide

Le modele pour décrire le fluide rigide dans l'espace-temps de Schwarzschild
M (e, %, m) est obtenue quand on prend k — 1/e:

1+ 202 2pv
2 2 _
8t<7’ 1-— e%Qp) +8T(T(r -2 m)l — 62’[)2> =0,

2pv 2, \2
T ags) + (0= 26m)
r—2e*m 1+ e*v? (r — 2e*m)?

e2r 1 —e%? e2r

(2.12)

2,2
6t<7"(r—262m) L e )p>

€2(1 — e2v?

p-
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Ce modele a deux champs de caractéristiques linéairement dégénérés donc le probleme
de Riemann généralisé correspondant est résolu par trois états stationnaires liés par
des discontinuités de contact. Suivant des étapes similaires au modele .Z (e, k, m),
nous avons |’éxistence pour le probleme de Cauchy pour tout ¢ > 0 fixé si les données
initiales pg, vy satisfont que pour tout § > 0 donné,

1—ev
TWmu&mﬂUn%)+TWmHMmﬂ<ml 0><<+%.
+ €vg

Une observation ici est que toutes nos estimations lorsque la vitesse du son est stricte-
ment inférieure a la vitesse de la lumiere sont uniformes lorsque la vitesse du son
s’approche de la vitesse de la lumiere.

Fluide sans pression

Soit k — 0, on obtient le modele d’Euler sans pression . (e,0,m):

2 P 2 pPv _
8t (7" 1——62’1}2> + ar (T(T — 2¢ m)l_—e%2> = O,
2

Oy (r(r — 2€2m)L> + 0, ((r — 262m)21p—02> = T(3€2 —1)(r — 262m)L

1 — €22 — €292 r 1 — €22
(2.13)
La technique qu’on utilise n’est pas completement pareille que celle du modele d’Euler
parce que n’est pas strictement hyperbolique. Une analyse complete de ce cas
sans pression est donnée comme une partie principale de cette these.

Fluide non-relativiste sans pression

On peut aussi prendre la limite ¢ — 0 dans (2.13)) et définir le modele d’Euler

non-relativiste sans pression . (0,0, m):
01 (r?p) + 0,(r*pv) = 0, 01 (r*pv) + 0, (7“2,0112) +mp = 0. (2.14)

Mais 'effet du trou noir de Schwarzschild existe toujours, méme dans ce modele assez
simple, exprimé en mp.
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La masse de trou noir disparaissante

Quand la masse du trou noir s’annule, m — 0, la métrique de Schwarzschild tend
vers la métrique de Minkowski:

g=—cdt* +dr* +r° gg

et on a maintenant le modele d’Euler dans I'espace-temps de Minkowski .Z (¢, k, 0):
| ———— o | ———= =0,
t( 1— e’ * 1—e2?

1+ €k v? + K
o (1_—p> o <1_—f’ =0

Ce modele a été étudié par Smoller et Temple [44] qui ont donné le résultat suivant:
pour n’import quelles données py = po(r) > 0, |vg| = |vo(r)| < 1/€ telles que

(2.15)

1—6’00

TV(lnp0)+TV< )<+oo,

1+ evy

il existe une solution faible du modele (2.15) p = p(t,r) et v = v(¢,r), telle que pour
tout ¢ > 0, on a
1 —ev(t,)
TV (Inp(t, - TV | In ———= :
( V( n p(t, )) + V( nl—}—ev(t,-))) < 400

3 Modele de Burgers a I’extérieur d’un trou noir
de Schwarzschild

3.1 Théorie d’existence
Théoreme principal

Nous avons analysé le modele d’Euler lorsque la vitesse duson 0 < k < % Le
régime limite £ — 0, ou le cas sans pression, par contre, est une autre histoire parce
que le systeme n’est plus strictement hyperbolique. Nous considérons ici un modele
de Burgers qui peut étre directement déduit du systeme d’Euler sans pression:

2

Oy (r*v) + 0, (r(fr - 2M)%) =rv® — MQ, r>2M, (3.1)
€
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ou nous rappelons que M est la masse du trou noir de Schwarzschild et 1/¢ est la
vitesse de la lumiere. Un calcul formel donne ’équation de Burgers dans la forme
conservative:

v v —1/¢ B
(9t (m) + 87~ (m) = O, r>2M. (32)

Les solutions stationnaires de I’équation de Burgers sont données par

0, (25__—21]\/4%> —0, r>2M. (3.3)

Figure 3.1: Solutions stationnaire de Burgers

Pour I'existence de la solution du problem de Cauchy, nous introduisons une classe
de fonctions:

£ {

et nous travaillons maintenant sur les solutions dans la classe £. En effet, nous avons
le théoreme suivant:

+oo

ol < 21V = [

2M

vi—1/e2 1|12
aT(‘l—QM/T+e_2‘ Sgn(”))

< oo}, (3.4)

Théoreme 3.1 (L’existence pour le modele de Burgers). Nous considérons [’équation
de Burgers relativiste dans [’espace-temps de Schwarzschild a lextérieur du trou
noir v > 2M ou M est la masse du trou noir de Schwarzschild. Pour toute vitesse
[vo| = |vo(r)| < 1/€ ot 1/€ est la vitesse de la lumiere telle que TV (vg) < 00 ot TV
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est donné par (3.4), il existe une solution faible de l’équation de Burgers relativiste
dans lespace-temps de Schwarzschild v = v(t,r) définie sur (0,+00) x (2M,+0o0)
telle que pour tout t > 0, -

TV (v(t,-)) < +oc. (3.5)

De plus, TV est décroissante en fonction du temps t:

TV(U(S, )) < ﬁ(v(t, )), pour tout 0 <t < s.

Nous sommes obligés de répondre aux trois questions suivantes avant de donner
une preuve:

e Quels sont les comportements des solutions stationnaires satisfaisant (3.3))?

e Est-ce que le probleme de Riemann généralisé dont la donnée initiale est com-
posée par deux solutions stationnaires (différentes) admet une solution (globale
en temps)?

e Comment construire les solutions approximatives par une méthode de Glimm
raisonnable fondée sur les problemes de Riemann généralisé et quelle variation
totale utiliser?

Solutions stationnaires et probleme de Riemann généralisé

Les deux premieres questions sont traitées par les théoremes suivants:

Théoreme 3.2. Nous considérons le modele de Burgers statique décrivant
les fluides dans un [’espace-temps de Schwarzschild. Pour tout ro > 2M et toute
vitesse vy € [—1, 2], il existe une solution stationnaire v, = v,(r) avec v.(ry) = vy et
sgn(vs) = sgn(vg) dans le domaine de définition. De plus, nous avons:

1/e2—v2

* 510 <\ 155517
la région a Uexitérieur du trou noir (2M, +00).

< %, la solution stationnaire mazimale est définie sur toute

. 1/e2—v2
° 5 1-2M/ro

avec 1 le rayon ot la vitesse s’annule.

> %, la solution stationnaire mazimale est définie sur (2M,r%)

En fait, dans le domaine de défintion, une solution stationnaire a toujours la

forme:
v_izw_m(lﬂ), 5.
€ T

ou K > 0 est une constante.
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Notons que méme si la solution stationnaire est probablement indéfinie sur (2M, +00),
nous pouvons toujours avoir la solution du probleme de Riemann dont la donnée ini-
tiale est:

vp(r) 2M <r <y,
vo(z) = {

vg(r) >,

ou vy, vg sont deux solutions stationnaires.

Théoreme 3.3. [ existe une solution unique du probleme de Riemann généralisé
définie pour tout t > 0, réalisée soit par un choc, soit par une raréfaction et la
variation totale TV (v) est toujours constante. De plus, si la solution est un choc,
nous avons, lorsque t — 400:

e Le choc tend vers l’horizon du trou noir si et seulement si vy, +vg < 0;
e Le choc tend vers l'infini si et seulement si vy +vg > 0;

e Le choc ne bouge pas avec le temps, si et seulement st vy, +vr = 0.
S, par contre, la solution est une raréfaction, nous avons, lorsque t — 400:

e La borne inférieure (supérieure) de la raréfaction tend vers l’horizon du trou
noir si et seulement si vy, < 0 (vg <0);

e La borne inférieure (supérieure) de la raréfaction tend vers l'infini si et seule-
ment si vy, >0 (vg >0);

e La borne inférieure (supérieure) de la raréfaction tend vers r = r% (r=ry ) si
et seulement s’il existe un rayon 15 (r%) tel que vy (rh) =0 (vr(r%) =0).

Schéma de Glimm

Malheureusement, le Théoréme[3.3|n’est pas suffisant pour construire le schéma de
Glimm car la vitesse peut s’annuler et nous sommes obligés d’introduire un probleme
de Riemann multiple dont la donnée intiale est composée par trois états stationnaires
séparées par deux rayons fixés. Nous annongons qu’il existe une solution unique du
probléme de Riemann multiple dont la variation totale TV (v) est décroissante sans
donner de détail. La méthode de Glimm pour I'équation de Burgers est donc un
peu différente que celle pour le syseme d’Euler. En fait, remarquons que pour un
ro donné, une solution stationnaire peut étre toujours définie sur (2M,ry). Dans ce
sens la, si la solutions stationnaire n’est pas définie dans une cellule entiere, nous
utilisons la valeur de v dans la cellule a sa droite pour I"'approximer. Comme avant,
nous écrivons

t; = ZAt, r; = 2M +jAT,
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et
iy = 2M + (w; + j)Ar,

ou (w;); est une suite equidistribuée dans (—1,1). Si la solution approximative va
a été déja construite pour tout 0 < t < ¢;, nous voulons prolonger la solution pour
b <t <t

1. Au temps t = t;, on donne:

Jj+3

va(t ) = vifil(r) i+ 7 pair, r; <r< min(rﬁg,rfyﬂl),
K UA,i (T) 7’+ j pair, min(rj, T?,j+1) <r< Tj+27

avec
A 1 2M S
UJA?(@ = sgn(va(ti—, Ti,j+1))\/€_2 - K2j+1 <1 - T)’ ¢t + J pairr,
1 1
K. :—<__ ti—, T 2)7
4,541 1 — 2M/Ti,j+1 2 UA( r 1J+1)

r57j+1 = sup{r > 2M|v£;1(7’) # 0}.

2. On définie la solution approximative sur {t; <t < t;41,7j-1 <7 <7Tjs1} (i +J

pair) par
va(t,r) = {UR(t’T;ti’UA(ti’r>)’ Ty = TE,jfl’

UMR(tgr;th/UA(tiar))? T S 715,]’71’

ou vg est la solution du probleme de Riemann généralisé et var la solution du
probleme de Riemann multiple.

v2—1/€?

e 1
Comme la variation totale de | | ;=37 rta

1/2
sgn(v)) est décroissante en fonction

du temps, on peut prouver que la limite de la suite va pour Ar — 0 est une solution
du modele de Burgers dans l'espace-temps de Schwarzschild r > 2M.

3.2 Unicité de la solution

L’unicité de la solution de I’équation de Burgers est donné par le théoreme suivant.

Théoreme 3.4. Soit vg1 = v91(r),v02 = vo2(r) € &€ deux vitesses initiales, les
solutions correspondantes vy = vy (t,r),ve = vo(t,r) du modeéle de Burgers (3.2)) avec
v1(0,-) = wvo1 et v2(0,-) = vgo satisfont

/+0<> lvg(t, 1) — v1(t,27")\ < tf2eM /+Oo |Uo,2;’vo,1!2. (3.7)
- (1—2M/r) on (1 —=2M/r)
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La preuve du Théoreme [3.4|suit une méthode de viscosité. On introduit I’équation
suivante:

Ve v —1/¢
at(m) + 0, (W) = a0, (K (r)0,va), r>2M,

ol a > 0 est un parametre et K = K (r) > 0 une fonction réguliere dépendante d’une
seule variable r. Par une régularisation standard et une intégration sur r entre 2M
et +o00, nous avons l'estimation dans L*.

En effet, cette méthode de viscosité nous permet de prouver une fois de plus que

1/2
la variation totale de ( il VL

1
1—2M/r + =

Sgn(v)) sur (2M,+00) est décroissante en

temps.

3.3 Stablité des solutions stationnaires

Nous nous intéressons aussi a la stablité des solutions stationnaires par morceaux.
Nous voulons étudier le comportement d’une solution dont la donnée initiale est
formée de deux solutions stationnaire vy, v,, avec une perturbation.

Théoreme 3.5. Considérons une solution du modéle de Burgers (3.2) v = v(t,r)
dans l'espace-temps de Schwarzschild dont la donné initiale est composée de deux
solutions stationnaires vy, Vs perturbée par une fonction a support compacte. Nous
avons les résultats suivants:

® S0 Uy > Uyy, NOUS GVONS:

— St de plus, v, > 0, il existe un temps fini a partir duquel la solution est un
choc généré par vy, Vys.

— St de plus, v, <0, la solution tend vers un choc généré par vy, V.. quand
t — +4o00.

o Si vy > VUw, nous pouvons définir une "N-wave” N = N(t,r) telle que: (i)
lo(t,r) — N(t,r)] = O(t™") dans la région bornée par les bornes de N-wave; (i)
lv(t,r) — N(t,r)| = O(t~Y2) dans la région entre les bornes de N-wave et les
caractéristiques généralisées ; (iii) Sinon, v(t,r) = N(t,r) .

o Si v, = vy, alors |[v(t,r) — va(t,7)| |10 400) = OE2).
Dans le Théoreme (3.5, nous parlons des caractéristiques généralisées. En effet,

une caractéristique généralisée associée a la solution v = v(t,r) du modele de Burgers
(3.2) est une courbe intégrale de
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50

- T)U(taf),

au sens que

% e [(1 — %)U(t,f—l—), (1 - %)v(t,f—)}, a.e. ont .

Nous observons qu’une caractéristique généralisée se propage soit avec la vitesse du
choc, soit avec la vitesse caractéristique. Le comportement de la caractéristique
généralisée nous permet d’avoir une preuve du Théoreme [3.5. En effet, supposons
que la donné initiale est v, sur (2M,r,) et v sur (r.,o0) et nous pouvons tracer
deux caractéristiques généralisées depuis (0,7,), (0,7.). Ces deux courbes peuvent
s’approcher ou s’éloigner I'une de I'autre, en fonction des valeurs de v, et v,,. Nous
obtiendrons:

e un éventail de la raréfaction si les deux courbes sont plus en plus loins,

e un choc si les deux courbes sont plus en plus proches.

3.4 Comparaison avec le systéme avec pression

Nous terminons cette partie par une comparaison entre le modele d’Euler et
I’équation de Burgers dans I'espace-temps de Schwarzschild r > 2M. Comme ex-
pliqué avant, le modele de Burgers est un cas limite du systeme d’Euler. Nous avons
observé que les formes des solutions stationnaires sont plutot similaires, présentées

dans les Figures 3.1

Mais en méme temps, nous avons aussi observé les résultats différents de ces deux
cas, résumés dans le Tableau [1]

4 Etude numérique dans la géometrie de Schwarzschild

4.1 Schéma “équilibre”

Dans cette section, on présente les résultats numériques obetenus par plusieurs
schémas différents. Ce travail a été motivé par les questions ouvertes dans le Tableau(]
pour la dynamique des fluides isothermes évoluant dans le domaine de la communi-
cation hors d'un trou noir de Schwarzschild. L’objectif est de construire des schémas
7équilibres” qui sont formulés a partir de la géométrie de Schwarzschild pour bien
préserver 1’état stationnaire a ’extérieur du trou noir de Schwarzschild. Nous avons
vu que tous les schémas proposés dans ce travail sont capables de préserver exacte-
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Modéle

de Burgers

d’Euler

Solution stationnaire

L’existence et 'unicité
d’une solution avec
sa forme explicite obtenue

L’existence et 'unicité
d’une solution sans
forme explicite

Probléme de Riemann

L’existence et 'unicité
d’une solution avec

L’existence
d’une solution sans

généralisé sa forme explicite obtenue, forme exacte,
globale en temps locale en temps
L’existence et 'unicité .

. d’une solution, L ex1st(?nce
Probleme la variation totale de d’une solution sans
de Cauchy 12 la variation totale de

v2—1/¢2 1 : /
o T2 sgn(v) || decroissante In p bornée

Stablité des
solutions stationnaires

Les comportements exacts

Pas encore de conclusion

Table 1: Les résulats des modeles de Burgers et d’Euler

ment (y compris au voisinage du bord du trou noir) les équilibres numériques discrets,
et de servir éventuellement a des données initiales adaptées a notre probleme.

Schéma des volumes finis de I’équation de Burgers

Pour simplifier le probleme, la vitesse de la lumiere est normalisée a 1 dans toutes
les discussions numériques qui suivent. Soit At, Ar le pas de temps et de I'espace sat-
isfaisant la condition CFL, pour éviter les interactions des ondes de deux problemes
de Riemann pendant un pas du temps. Soit v} = [ 2 0(t,, 7)dr, et on intro-

Tj—1/2
duit le schéma des volumes finis pour I'équation de Burgers dans 1’espace-temps de

Schwarzschild (3.2)):

At oM
A—T(FjH/Q —Fj1p) — Atﬁ(vj‘ 2 -1),
J

Un+1

—
J =Y

o oo™ )

ol Fjpy/2 et Fj_1/5 sont les flux Fj ) = }"(rﬂm, v

2M> *(vp,vg) — 1. (41)

F(r,vp,vg) = (1— . 5

On donne ¢(-, -) comme la solution d’un probléme de Riemann standard, c’est & dire,
la solution de 1’équation de Burgers standard:

2
A + ax% —0,
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avec la donnée initiale:
v 1 <rg,
Vo =
VR T > Ty,
ou vy, et vg sont deux constantes. On a fait ce choix ¢ en démontrant que ¢ est
assez proche de la solution de probleme de Riemann généralisé quand le temps At
est suffisamment petit.

Nous pouvons déveloper le schéma a ’ordre deux en modifiant les valeurs utilisées
dans les flux F(r,vr,vg). L'idée est de considérer v} comme une fonction linéaire
et prendre en compte la condition d’entropie en méme temps. Pour plus de details,
nous renvoyons le lecteur a la Section [3.3]

Nous donnons ici un choc de I'équation de Burgers par le schéma des volumes
finis d’ordre un et d’ordre deux .

t=0tot=2 t=0tot=5 t=0tot=10

0.70 L L L 0.70 L L L 0.70 L L L

2.0 2.5 3.0 35 4.0 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 35

Figure 4.1: Un choc avec le schéma des volumes finis d’ordre un

t=0tot=2 t=0tot=5

t=0tot=10

0.70 5 L L 0.70 : L 5 0.70

2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 35

Figure 4.2: Un choc avec le schéma des volumes finis d’ordre deux

Schéma de Glimm pour I’équation de Burgers

L’une des contributions apportées par notre étude théorique de 1’équation de
Burgers est que la solution exacte du probleme de Riemann généralisé est calculée
explicitement. Cette forme nous permet de créer un schéma de Glimm qui considere
la solution de Burgers comme une solution du probleme de Riemann généralisé par
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morceaux. On donne d’abord une suite equidistribuée dans (—1,1) et on écrit r,, ; =
2M + (j + wy,)Ar. Notre schéma de Glimm a la forme:

it =g (tnt1sTn), (4.2)
ou vp" = vR"(t,r) est la solution du probléme de Riemann généralisé avec sa donnée
initiale

j’n
in __ VL (r), r< Tj+sgn(wn)/2>
Yo =19 jn
URr (T)7 T > Tj+sgn(wn)/2)

ol les deux états v)" = v}"(r) et v" = v}"(r) sont les solutions stationnaires de

I’équation de Burgers telles que

UJL:’n(rj) = v}, wy, >0, vf:%’n(rj) =7, wy, <0,
vp"(rjo1) = Vi, w, <0, VRN (ria) =0y, w, > 0.

Notons que nous avons choisi la valeur aléatoire une seule fois a chaque pas de temps
au lieu de tous les points. Ce schéma a une forme un peu différente que celle de la
partie théorique afin de afin de mieux programmer. Le schéma de Glimm a sans
doute bien preservé toutes les solutions stationnaires. Il n’y presque pas de diffusion
numérique parce qu’on la solution exacte du probleme de Riemann. Nous donnons
ici le méme choc que celui dans les Figures [4.1] tracé par le schéma de Glimm.

t=0tot=2 t=0tot=5 t=0tot=10

Figure 4.3: Un choc avec le schéma de Glimm

Schéma des volumes finis pour 1’équation d’Euler

Pour commencer le schéma pour le modele d’Euler, nous utilisons les notations

a,U + 8, ((1 - %)F(U)) = S(r,U),

r
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avec

1+ k202 1+ k2
v’ 11—z’ 12
(U1> 1+ k2 ’ (o) v+ k| (43)
v
1—v2p 1—U2p
et
2 1+ k2
——(1—2M/r) P
S(r,U) =
RO = 1 oy sare2 +k2 M1tka? or—2M,
r2 1—1)2p_7"2 1 —? p 72 p

Soit At, Ar le pas de temps et d’espace satisfaisant la condition CFL, nous donnons
le schéma numérique pour le modele d’Euler dans ’espace-temps de Schwarzschild:

At

Uit =U; - ~, Fiye = Filap) + ALST, (4.4)
ou le flux est oM
Fily ) = (1 - 703,_1/2>7:(U31—1/2—> Ui 1/24);

avec

F(UL)+F(UR> 1Ug — Uy

2 A 2
ou A = Ar/At. Ici, F est le flux exact donné par . Les états Ujy1/0+,Uj—1/2+ et
le terme source refletent la géometrie de Schwarzschild:

F(UL,Ug) =

2
2 ok2 4k

(1= o P (1 20y ) = (1 2o 5 - 201,
Ujt1/2— ) Vjsr/2- 1" +1/2 Tj+1/2 Ui )Y "

n

+1/2— n_ Y
riv1/2(Tivy2 — 2M)P;+1/2 1]—/2 =r;(rj — 2M)p] —]v’ﬂ’

Vit1/2— Tl =
n %2 1 k2 n 2 2 2 14k132
(1= 012 ) Vo g+1/2/( —2M /i) = (1= v}y )of Py /(1= 2M 1),
124 n Vi
7“]4_1/2(7’34_1/2 — 2]\4),0]+1/2+ 1_ ] =Ty + 1(Tj+1 - 2M)pj+11 _Jvn 2
J+1/2+ AR
et
S Y e 1 [T
S = ~ S(ty,r)dr =5 8,((1 —2M/r)F (Ul(t,, r)))dr

Tj—1/2 Tj—1/2
1

5 (- 2Mpri ) PO

— (]_ - 2M/7’j_1/2+)F(UJn1/2+)) .
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La construction a garanti que le schéma préserve la solution stationnaire d’Euler et
le schéma est d’ordre deux en r. On donne une solution du probléme de Riemann
généralisé résolu par notre schéma.

1.0 T T T t=‘0 T T T 1.0 T T T t=9'5 T T T 1.0 T T T t T

Il
[N)

0.9 1 0.9 B 0.9
08 1 0.8 B 0.8
0.7 — 0.7 — 0.7
0.6 1 0.6 4 0.6
0.5 4 0.5 B 0.5
0.4 1 0.4 4 0.4
03 1 03 . ] 03
0.2 1 0.2 s 1 0.2

0.1 0.1 0.1
2

Figure 4.4: Une solution du probleme de Riemann généralisé

4.2 Reésultats numériques principaux

En vérifiant toutes les conclusions théoriques, nous avons présenté les expériences
numériques pour obtenir les résultats sans preuve théorique rigoureuse, y compris
les comportements des solutions stationnaires faibles (avec un choc) de tous les
modeles introduits auparavant, la propagation des solutions du probléeme de Riemann
génénalisé du modele d’Euler, etc. Les conclusions principales sont les suivantes.

Conjecture 4.1. Pour une donnée initiale vo = vo(r) € [—1, 1] définie sur[2M, +0o0),

la solution v = v(t,r) de l’équation de Burgers (3.2)) satisfait:

o Sivg(2M) =1, il existe un temps fini ty > 0 tel que pour tout t > ty, la solution
v est un seul choc avec l'état a la gauche 1 et ’état a la droite —,/ %
o Sivy(2M) < 1 et liril vo(r) > 0, il existe un temps fini to > 0 tel que pour
T—400

tout t > to, la solution v(t,r) = —4 /22

o Sivg(2M) < 1 et li{rn vo(r) < 0, il existe un temps fini to > 0 tel que pour
T—100

tout t > 1y,
9 2M ) o
_ . (9,00 _ - = < 0.
v(t,r) \/1 (1—(v)")(1 . ), TETOOUO(T) vg° <0
Conjecture 4.2. Soit (p.,v.) = (p«,v:)(r), 7 > 2M wune solution stationnaire

(qui peut contenir un choc stationnaire) du modéle d’Euler dans l'espace-temps de
Schwarzschild et (po, vo) = (P, 00) (1) = (s, V) (1) + (8, 6,) (1) 08 (0,,0,) = (0, 0y) ()
est une fonction a support compact. La solution de l’équation d’Euler (p,v) =
(p,v)(t,r) avec la donnée initiale (po,vo) satisfait:



5. Conclusion et perspectives

o Si| [o,(r)dr]+| [ d,(r)dr| =0, il existe un temps fini to > 0 tel que pour tout
t > to, (p,v)(E,7) = (ps, v:)(1).

o Si| [8,(r)dr|+| [ d,(r)dr] #0, il existe un temps fini ty > 0 tel que pour tout
t > to, (P, 0)(t,7) = (Pass Vix ) (1) €t (Pass Vsx) €5t €ventuallement une autre une
solution stationnaire.

Nous invitons le lecteur & voir les illustrations de ces conjectures en Chapitre [3]

5 Conclusion et perspectives

En résumé, les questions suivantes ont été traitées dans cette these:

e L’existence pour le probleme de Cauchy du modele d’Euler relativiste/ non-
relativiste dans le domaine de communication extérieur d'un espace-temps de

Schwarzschild.

e [’existence, I'unicité pour le probleme de Cauchy du modele de Burgers rel-
ativiste dans le domaine de communication extérieur d’un espace-temps de
Schwarzschild.

e La stabilité des solutions stationnaires par morceaux du modele de Burgers dans
le domaine de communication extérieur d'un espace-temps de Schwarzschild.

e La stabilité des solutions stationnaires regulieres du modele d’Euler dans le
domaine de communication extérieur d’un espace-temps de Schwarzschild.

e Le comportement des solutions du modele de Burgers dans le domaine de com-
munication extérieur d'un espace-temps de Schwarzschild déterminé seulement
par des valeurs au bord du trou noir et a 'infini.

Le travail réalisé sur la dynamique des fluides dans un espace-temps courbe est
déja assez complet, méme si d’autres questions proches pourraient étre aussi abordées
avec les techniques mathématiques et numériques que nous avons proposées ici:

e Quel est le comportement d’une loi de conservation scalaire posée sur un autre
espace-temps courbe autre que I'espace-temps de Schwarzschild?

e Quel est le comportement complet d'un systeme de loi de conservation sur
Iespace-temps de Schwarzschild et les autres espace-temps courbes?

e Comment optimiser le schéma numérique pour étudier un systeme de flux des
fluides avec une géométrie courbée arbitraire?



Fondé sur les questions ci-dessus, le résultat attendu est de pouvoir décrire en détail
un modele de la dynamique des fluides (plus d’une dimension en générale) posés sur
I'espace-temps de Schwarzschild et sur 'autre espace-temps courbe qui devrait étre
plus compliqué, par exemple, la métrique de Kerr, dont la géométrie est influencée
par un effet de rotation du corps de la masse. Numériquement, on attend un schéma
d’ordre supérieur pour voir ce qui se passe exactement a I’horizon du trou noir et
pour tester le changement sensible causé par la singularité attendue. Ces résultats
donneront une meilleure compréhension de la mécanique des fluides dans des espace-
temps courbes.
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32 1.1. Introduction

1.1 Introduction

We are interested in compressible fluids evolving on a curved background and,
specifically, on the domain of outer communication of a Schwarzschild black hole
spacetime. The fluid flows under consideration may contain shock waves and we must
work within a class of weak solutions to the Euler equations. Our main result in this
paper is a global-in-time existence theory for the initial value problem, when the
fluid data are prescribed on a spacelike hypersurface. We also establish the nonlinear
stability of equilibrium fluid solutions and investigate various limiting regimes when
the light speed denoted by ¢ € (0,+00), the (constant) sound speed denoted by
k € ]0,+00), and the mass of the back hole denoted by M € [0, +00) reach extremal
values.

Recall that Schwarzschild spacetime is a spherically symmetrid? solution to the
vacuum Einstein equations of general relativity, and describes a massive body sur-
rounded by a vacuum region. It is one of the simplest non-flat solution to the Einstein
equations, but yet the analysis of (linear and) nonlinear waves propagating on this
spacetime is very challenging and has attracted a lot of attention by mathematicians
in recent years. The present paper is part of a program initiated by the first author on
the Cauchy problem for the Einstein-Euler equations: see [2] [3] (16, 26], 27) 28], as well
as the graduate course [22] on self-gravitating matter and weakly regular spacetimes.

In the so-called Schwarzschild coordinates ¢ > 0 and r € (2M, +00), the domain
of outer communication of Schwarzschild spacetime is described by the metric

1
2M 2M
g:—<1——>02dt2+ (1--) dr? 4+ 12 gge, r > 2M, (1.1.1)
r r
in which gg2 := db* + (sin#)?dyp? is the canonical metric on the two-sphere S,

with 6 € [0,27) and ¢ € [0,7]. Observe that the metric coefficients are singular as
r — 2M, but this boundary is not a genuine singularity of the spacetime and the
coefficients would become regular at » = 2M by suitably changing coordinates and
the metric could be extended beyond this boundary. The boundary » = 2M is the
horizon of the black hole, and it is natural to study the dynamics of nonlinear waves
outside the black hole region.

The Levi-Civita connection associated with (2.1.4) being denoted by V, the Euler
equations for a perfect compressible fluid on this spacetime read

Vao(T§ (p,u)) =0, (1.1.2)

2that is, invariant under the group of rotations SO(3)
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in which the energy-momentum tensor
T8 (p,u) = peucus + p(p) (g5 + u®us) (1.1.3)

(with ¢ > 0 denoting the speed of light) depends on the mass-energy density of the
fluid p : M — (0,400) and its velocity field u = (u®), normalized to be unit and
future oriented:

uu, = -1,  u’ >0, (1.1.4)

The pressure p is prescribed as a function p = p(p) of the mass energy density and, for
the sake of simplicity, we assume that the fluid flow is isothermal, that is, p(p) = k?p
where k € (0, ¢) represents the speed of sound. We use here standard notation for the
metric g = (gop) and its inverse g~' = (¢*?) in an arbitrary local coordinate system
x = (2%), where the Greek indices describe 0,1,2,3. We raise and lower indices by
using this metric and, for instance, we write u, = gagu” and we have g5 = 03 (the
Kronecker symbol).

The content of this paper is as follows. In Section [1.2] we formulate the Euler
equations in our context and establish hyperbolicity and genuine nonlinearity proper-
ties. In Section [1.3] we formally derive several simpler models, arising when the light
speed sound speed and/or black hole mass approach extremal values. Our model
takes the form of a nonlinear hyperbolic system of balance laws. such systems were
first investigated (for rather different applications) by Dafermos and Hsiao [§], Liu
[40] and, later, [14, 17, O]; see also Dafermos [9] the references cited therein. We
also refer to [3? | [I5] for the related problem of self-gravitating fluids in spherical
symmetry.

A systematic study of the class of steady state solutions to the Euler model under
consideration is one of the main contribution of the present paper. In Section [I.4] we
first study the non-relativistic model, by taking into account the effect of the mass of
the black hole. Next, in Section [1.5] we treat the full Euler model on a Schwarzschild
background and, in particular, we establish that (smooth) steady state solutions are
defined on intervals of the form (2M,r,) or (7., +00).

Our next task is to study the Riemann problem which is solved in Section [1.6]
while the generalized Riemann problem based on prescribing two steady state solu-
tions (rather than constant states) separated by a jump discontinuity is investigated

in Section

In Section|[1.8] we are then in a position to establish an existence theory for general
flows of isothermal fluids evolving in the domain of outer communication . The
technique developed earlier in Grubic and LeFloch [16] (in a different geometric setup)
applies and provides us with the desired global-in-time result. Recall that, according
to Nishida [4I] and Smoller and Temple [44] who treated fluid flows in flat space,
provided all curved geometrical effects are (formally) suppressed, a suitable notion of
total variation is available and, specifically, the total variation of the log of the matter
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density is non-increasing in time. For the fluids on a Schwarzschild background under
consideration in the preset paper, we also need to take geometrical terms into account
and the total variation may grow, but yet is uniformly controlled on any compact
interval of time. Furthermore, an analysis of the solutions near the horizon is also
necessary and we observe that no boundary condition is required at » = 2M and that
solutions need not have finite bounded variation near the horizon, as is the case for
some steady state solutions.

We also propose here a version of the random choice method which we design
from piecewise equilibrium solutions and, in turn, preserves equilibria exactly. We
then prove that equilibria are nonlinearly stable under small BV perturbations, and
the proposed technique provides a possible approach in order to investigate the time-
asymptotic behavior of weak solutions. Finally, in Section [I.9, we briefly consider
the models obtained when the physical parameters take extremal values. Our total
variation estimate is uniform with respect to these parameters, so that our main
theorem has counterparts for these limiting systems.

1.2 The Euler equations on a Schwarzschild back-
ground

Derivation of the Euler equations

By using the subscripts (0, 1,2,3) to denote the coordinates (t,7,0,¢), we can
write

(1 - 2M/r) 0 0 0
B 0 (1—2M/r) 0 0
(Gap) = 0 0 2 0 : (1.2.1)
0 0 0 r*(sinf)?
with inverse
—(1—=2M/r)"'c? 0 0 0
0 (1-2M/r) 0 0
afy _
(9*7) = 0 0 2 0 (1.2.2)
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and, by using I') ; := 297%(0ags0 + O89an — Degap), a tedious calculation shows that
the non-vanishing Christoffel symbols are

M M M
I —2M Ih=—FFr o, =
00 r2 (r ) 1 r(r—2M)’ 0 r(r —2M)’
1
I}, =-, Thy = —(r — 2M), %=,
6
I, = —(r — 2M)(sin 0)?, [, = —sinfcosb, s, = Z?I?Q

(1.2.3)
On the other hand, we can express the Euler equations (1.1.2)) in the form

0T + 0,17 + T T + T% T + T{, 19 + 19, T + T T + 2T { T7° + T}, T7% = 0
and, in view of ([1.2.3)), write the Euler equations on a Schwarzschild background as
o <T(T - 2M)TOO) + 01 <T(T - 2M)T01) =0,

9 (r(r - 2M)T01) + o, (m« - 2M)T“) —Q,
2
Q) = 3MT" — iw(r —2M)*T? + r(r — 2M)*T* 4 r(sin6)* (r — 2M)*T%.

,

(1.2.4)
Here, we have assumed that not only the background geometry but also the fluid
flows are spherically symmetric, so that the “transverse” components of the fluid

velocity vanish: 7% = T% = (. Next, recalling the expression ([2.2.2)) of the energy-
momentum tensor, we find (with = p(p))

o (r(r —2M)(pu'u' + (1 — 2M/7’)2c4pu0u0)) + 0y (r(r —2M)(p + c2p)u0u1> =0,
o (r(r —2M)(p + CQp)u0u1> + 01 (7‘(7“ —2M) <pu0u0 + (1 - 2M/r)_2pu1u1>> =Qy,

Q= 2r(r —2M)*p + 3M (pulul + (1 — 2M/r)204pu0u0>
M
2

(r —2M)? (puouo + (1 =2M/r) 2 pu’ 1).

(1.2.5)
Observe that the ‘first” Euler equation admits a ‘conservative form’, while the second
one is a general ‘balance law’.

By definition, the velocity vector satisfies (1—2M /r)c*uu’—(1—-2M /r)tulul =1
and u° > 0, and we find it convenient to introduce the rescaled velocity vector

1
v = —, Vo= u—, with € := —. (1.2.6)
€ € c
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Hence, the components of the energy-momentum tensor read

21
€2

T = (1—2M/r)
Tll — Ezp’UO'UO + (1 o 2M/T)_2€2pU1U1, T22 _ T33 =p.

pUOUO =+ €2p1}1’01, TDl — (p+ 62p)v01}17

and the system ((1.2.5]) takes the form:
o (r(r —2M)((1 —2M/r)?po°° + e4pvlvl)> + 0 <r(7’ —2M)é*(p + ezp)v0v1> =0,

o (r(r —2M) ((p + €2p)1}01}1>> + 0 (r(r —2M) (ez(pvovo + (1 - 2]\/[/7”)’2/)111@1))) =Q,

~ 3M
Q= 6—2<e4pvlvl +(1- 2M/r)2pvovo>
M _
— ﬁ(r — 2M)2<pvovo +(1—=2M/r) 2pvlv1) +2r(r — 2M)?p,
(1.2.7)
supplemented by the relation for the velocity vector
(1 —2M/r)v%° — (1 — 2M/r) tolo! =1, v’ > 0. (1.2.8)
It is convenient also to introduce the scalar velocity
1 vl
= 1.2.9
T oM ) (1.2.9)
leading us to
1 v?
(v")* = (v')* = (1—2M/r)

1 — €22’

(1 —e2?)(1—2M/r)’

In summary, we have shown that the Euler system on a Schwarzschild back-
ground takes the form:

o (7‘2L4p02> + 0 (T(T’ - 2M)Mv> =0,

1 — ev? 1 —e%?
p+ep o V7 +p
o0 (r(r —20)F=E0) + on ((r — 200 220 (1.2.10)
:3M(1—2M> p122+p_ r—2M p+ e'pv? (r—QM)Qp'
r /J1—e*? e2r 1 — e2v? r

Remark 1.2.1. 1. In the limit M — 0, the Schwarzschild metric converges to the
Minkowski metric in radial coordinates

g=—cdt* +dr* +r* g (1.2.11)
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and from (3.1.3)) we deduce the radially-symmetric Fuler equations in Minkowsks
space:

o <r2(pvovo + e4pv1v1)) + O (T2€2(p + p€2)1)01)1> =0,

(1.2.12)
o (rQ(p + ezp)vovl> + 0 <T2€2(p?]0"00 + pvlvl)> =2rp,

1

with v90" — vlv! =1 and v° > 0 and p = p(p).

2. In the singular limit v — +1/¢, the (unit) velocity vector v = (v¥,v!) converges
(after normalization!) to a null vector, namely:

(1 — )21 —2M/r) Y2 (0%, 0Y) = (1, (1 — 2M /r)v) — (1, (1 — 2M/7) /).

Hyperbolicity and genuine nonlinearity properties

Throughout the rest of this section, we regard (3.1.3)) as a system of nonlinear
balance laws, that is,
00U+81F(U,7“) :S(U,T’) (1213)

(with obvious notation) and we study the homogeneous part dyU + 01 F (U, rq) = 0,
where the expressions F' and S are evaluated at some fixed ry > 2M. We determine
necessary and sufficient conditions ensuring the hyperbolicity and genuine nonlinear-
ity properties for . We are going to rewrite the homogeneous part of in

the diagonal form (with the source-terms suppressed)
Oow + A(w, z,19)Oyw = 0, Doz + w(w, z,79)012 =0 (1.2.14)

,v) and z = z(p,v), refered to as the

for a suitable choice of functions w = w(
) and pu = p(p,v,70), refered to as the wave

Riemann invariants, and A = A\(p, v, 1o
speeds.

Lemma 1.2.2. For the Euler system on a Schwarzschild background (3.1.3), a choice
of Riemann invariants is

1 1 N 1 1 PN
w=—In il + VP (5) ds, z=—1In R VP (5) ds

2¢ 1—ev L s+ ep(s) 2¢ 1—ev 1 s+ €2p(s)
(1.2.15)

Y

while the corresponding eigenvalues read

A= (1—2M> o= VP ) [i= (1—%{”) vtV g4

ro ) 1—e\/plpp’ 1+ eV (p)v

Proof. 1. In order to determine the Riemann invariants, we may fix a time tq5 > 0
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and search for solutions depending on the self-similar variable y := ﬁ (further

studied in Sectiondm below), therefore satisfying —y% + )\(w,z,ro)‘fl—lé’ = 0 and

—yg—z + u(w,z,ro)@ = 0. Either w or z must thus be constant for such solutions.

Moreover, by parametrizing such solutions by one of the unknown variables, say with
the density p, we can regard the unknowns v° and v! as functions of p and, using a
prime to denote the derivative with respect to p, we find
!/ /
((1 — 2M /1) pv°0® + e4pvlvl> Oop + <€2(p + 62p)vovl) O1p =0,
, , (1.2.17)
((p + ezp)vovl) Oop + (62(pvovo +(1— 2M/r0)_2pvlvl> O1p =0,

where we have neglected low-order, algebraic terms. By differentiating (1.2.8)), we

also have
(1 —2M/ro)(0°)0° — (1 —2M /ro) ' (") v = 0. (1.2.18)

By combining the two equations in (|1.2.17)) together, we obtain
12 / /
<(62p + p)vovl) = (pvovo +(1-— 2M/r0)’2pv1v1) <e4pvlvl +(1- 2M/r0)2,0v0v0> ,

from which we deduce

2

P (1= 20M/ro)(0°)* = (1= 2M /o)~ (ev'?)
_ (€2p+p)2<((vo)/vl +UO(U1)/)2 _ 400(1}0)/1}1(1}1)/)‘
Using again ([1.2.8)), we find

(v ev! — cv(ev!) L eV _
(1 =2M/ro)(v°)? — (1 = 2M/ro)~'e*(v!)? — e€p+p

0. (1.2.19)

After integration, we see that

1111 ((1 — 2M [ro)v" + evl> N pe— /p/(s)ds (12.20)

(1 —=2M/rg)v° — ev? s+ ep(s)

is a constant for the solutions under consideration. This calculation provides us with
the Riemann invariants

_ 0 1 P /
= 1 In (1 —2M/ro)v” + ev N VP'(8) ds.
2¢ (1 —2M/rg)v° — ev! s+ €2p(s)
L 1 In (1=2M/ro)° +ev' ) [7 /P/(s) s
2 (1 —2M/ro)v° — ev? s+ ep(s)
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which take the form (1.2.15)) by replacing v° and v! by their expression in terms of
1 vl

U= T 53Mrg 00"

2. We determine the eigenvalue A from the first equation in the system 0,U +
0, F(U,ry) =0, that is,

(1 —2M/ry)? ((p62 + p)vov1>/

A= N
(€4pv1v1 +(1— 2M/r0)2pv%0)

(1.2.21)

In view of (1.2.18)) and (1.2.19) (where we take the minus sign), we have

Vi Vi
0V — _(1 = 2M /ry) ' <Y1 Y — _(1—2M 0 (1.2.22
W == =22 Y@ =~ - amm) R 2

Therefore, the ‘first’ eigenvalue reads

(ﬂ3+1m%1—¢ﬁ@1—zMﬂ@@%%+u—2Mﬁw4@wf)
etpvlol + (1 — 2M /rg)?0%00 — 2(1 — 2M /rg)€e?/p'vOv?
o (1 —=2M/ro)v® — /ot (1 — 2M /ro) ol — /p'v°)
(L= 2M/m)ed — o))’
(1 —2M/ro) 1ol — /p0°

A =(1—2M/ry)?

:(1 — 2M/’l“0)

=(1-2M .

( /TO)UO —e2(1 —2M/ro)~1/p'ot
Recalling that v = mz—;, we obtain the desired expression for A\. The arguments
for p are entirely similar. O

We arrive at the following result.

Proposition 1.2.3 (Necessary and sufficient conditions for hyperbolicity and genuine
nonlinearity).

1. The FEuler system on a Schwarzschild background (3.1.3)) (within the range
r > 2M ) is strictly hyperbolic, that is, admits two real and distinct wave
speeds, if and only if the pressure satisfies the condition

p'(p) >0 forallp>0. (1.2.23)

2. This system is genuinely nonlinear, that is, the derivatives 22 and % never

dw
vanish, if and only if the pressure satisfies the condition

pp" +2p" + ¢ (p"p —2(p')?) > 0 for all p >0 (1.2.24)
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and, therefore, is linearly degenerate, that is, the derivatives C% and 3—‘;

wdentically vanish, if and only if the pressure satisfies the condition

pp” +2p + € (p'p—2(p)°) =0 for all p > 0. (1.2.25)

When the sound speed is a constant k& (which is the case of main interest in the
present paper), that is, when p = k%p (with 0 < k < 1/e), the eigenvalues read

and the Riemann invariants take the form

11 <1+ev> k
=—In
v 1+ e2k2

14 ev k
In p.
2¢ ) p

14 e2k? o

(1.2.27)
The Fuler system, therefore, is strictly hyperbolic and genuinely nonlinear in this
case.

|
In p, — (
np z=-In

1—ev 1—ev

Proof. In view of Lemma [1.2.2] the condition p’ > 0 is the necessary and sufficient
condition for the eigenvalues to be real. Moreover, by definition, the first family A
(the second family pu, respectively) is genuinely nonlinear if and only if d,A # 0 (and
0.1 # 0, resp.). We compute

(O g, 0N, 0N 0N Op
O = (@w )+ ovl (v') ov° * 8p)

ow’
following with the calculations:

% _ _(1 _ QM/T) 1 - (€2p/(p))vl 5,
v (1= 201/m)00 — 2/ (pot)

% (- 2m)) A=)
! (= 20/rp0 = /(o)

N P"(p)

a_p =—(1—-2M/r)

2\/m<(1 —2M/r)v® — EQWM)T

Combining these formulas, we obtain

p” (1-¢’p)\/P'(p)
2/7(p) €ptp dp

((1—221/r)0 — /o) O

0w = —(1—2M/r)



Chapter 1: Weakly regular fluid flows with bounded variation on the domain of outer
communication of a Schwarzschild spacetime 41

A similar calculation gives the result associated with the second eigenvalue:

"’ + (1_5217) \/ P’ (p)
24/7(p) eptp dp

((1 —2M /)00 + €2 p’(p)vl)2§.

Therefore, the sufficient and necessary condition for genuine nonlinearity is (|1.2.24]).
On the contrary, the system is linearly degenerate if and only if ((1.2.25) holds. [

Linearly degenerate equations of state

The following special case is of particular interest.

Proposition 1.2.4 (Linearly degenerate equations of state). The Euler system ([3.1.3))
is linearly degenerate if and only if the pressure (which is defined up to a constant)
takes one of the forms (for all p > 0)

p A?
plp) =0 or  plp) =5, or P =g (1.2.28)

where A, B > 0 are arbitrary constants and only the latter two pressure-laws lead to
a strictly hyperbolic model.

We thus have only two strictly hyperbolic and linearly degenerate models:

e Case p = eizp. The system is well-defined within the full range p > 0 and
|v] < 1/e. The eigenvalues

“A=pu=(1—-2M/r)/e

are independent of the dependent variables, while the Riemann invariants read

11 1+ev +11 11 1+ev 1l
w= —In —In z=—1In — —Inp.
2¢ 1—ev 2¢ Py 2¢ 1—ev 2¢ p

e When p = —pf%, the system is well-defined in limited range of p, only. For
instance, when p = —p:‘%, the eigenvalues read
pv— A pv+ A
A=(1-2M/r)———— =(1-2M/r)————
( /T)p_AEQU, p=( /T)p+A€QU
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while the Riemann invariants are

1 1+ ev 1 p—€A 1 1+ ev 1 p— €A
w= —1In +—1In , z=—1In ——1n

2¢ 1—ev ] 2 p+eA 2¢ l—ev ] 2 p+eA
This model can be considered within the range |p| < €A and |v| < 1/e (even
with negative density values).

Proof. From Proposition [1.2.3] we recall the condition pp” + 2p’ + €*(p"p — 2p’?) = 0.
If we set q := €2p + p, we thus need to solve the ordinary differential equation

q"q—2(¢)* +6¢ —4=0. (1.2.29)

We treat ¢ as an independent variable and set dzl—(p) =: v(q), hence
ol

Py _dvia _ i
dp>  dgdp 1 dqg

We see that ((1.2.29) transforms into a separable equation for the function v = v(q),
that is, provided (v — 1)(v — 2) does not vanish

2
- dv._2 (1.2.30)

(v=1r-2)dg q

or else v = 1 or v = 2. Solutions satisfying Z—Z = 1 correspond a constant pressure

function, since % = e?p’ +1 = 1 implies that p is a constant. The condition —df’i(p ) —
P 0
generates the solutions of the form p(p) = 5 + C. Finally, by integrating (1.2.30)),

we find the third class of solutions. O]

1.3 Formal derivation of simplified models

Fluid flows with constant sound speed

In this section, we formally analyze the structure of the Euler equation in a
Schwarzschild background. We focus our attention on the Fuler system (3.1.3)) when
the sound speed is assumed to be a constant k € [0,1/€], that is, with the pressure
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law p(p) = k2p, (B-1:3) becomes

( 1—|—e4k;2p> i ( (7“—2M)i—?zzp’v) L
( (r—2M) 1+szzpv> + 0, ((T—2M)2%p> (1.3.1)
(B e, e,
It will be necessary to rescale the mass M and we thus set
m = EMQ (1.3.2)

and refer to the following system as the family of Euler models .Z (¢, k,m)
ﬁt (7’ mp —l—f)r 7"(7”-26 m)mpv = 0,

2.2 2 | 1.2
O (7"(7“ - 262m)1i——;l;pv> + 0, ((r - 2€2m)2lv_;€2]22p>
47.2, 2

%p + %(T — 262m)2k2p.

(1.3.3)
Here the main unknowns are the mass-energy density p > 0 and the scalar velocity
lv] < 1/e, and are defined for r > 2¢2m. We are interested in investigating limiting
regimes determined by extremal values of the physical parameters, i.e. the mass of
the black hole m € (0,400), the light speed £ € (0,400), and the sound speed
k € (0,1/€). Figure 77| provides an illustration of this family of models. Let us also
summarize, for this family of models, our conclusions in the previous section.

3e2m 5 U2+ K? m

" r—2€m)

Proposition 1.3.1. Consider the Fuler equation , take the pressure p as a
linear function of the density p > 0, that is, p(p) = k*p where the sound speed k is
a positive constant. When 0 < k < 1/e, 15 strictly hyperbolic and genuinely
nonlinear. When k = 0, it s non-strictly hyperbolic and linearly degenerate; when
k= %, it 1s strictly hyperbolic but linearly degenerate.
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€
linéairexpent dégénéré
m=0
e=0 Minkowski

non-relativiste

k=0

sans pression

m om=+00 R
trou noir extréme

Figure 1.3.1: Limit regimes of model .Z (¢, k,m).

Formal limits on the light speed and sound speed
Non-relativistic fluid flows

First of all, when € — 0, the light speed goes to infinity and in order to avoid a
blow-up of the source term, M T;TZTM % p in the ‘second’ Euler equations in (|1.3.1)),
we keep the ratio m = EMQ constant. Letting ¢ — 0, we arrive at the Euler model
for non-relativistic fluid flows on a Schwarzschild background, denoted by

A (0, k,m):

O1(r%p) + 0,(r*pv) = 0,

O (r?pv) + 0, <T2p(’02 + k:2)> —2k*rp +mp =0, t>0,r>0. (1.3.4)
Interestingly, this model applies to non-relativistic flows but yet contains a “relaxation
term”, that is mp, which is induced by the black hole geometry. Provided £ > 0,
this model is strictly hyperbolic (for p > 0 and v € R) and admits two genuinely
nonlinear characteristic fields. In Section [1.4] we will first study the family of steady
state solutions and, for the Cauchy problem in Section [I.9] we will establish a global-
in-time theory of weak solutions.

Stiff fluid flows

Returning to the regime of finite light speed, we now consider limiting regimes for
the sound speed k € (0,1/¢). By definition, a stiff fluid is governed by the equation
p = ¢ 2p for which the sound speed coincides with the light speed. Letting therefore
k — 1/¢, we define the Euler model for stiff fluid flows on a Schwarzschild
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background . (e, £, m) as

1+ 202 2pv
2 2 _
@(7‘ 1— €2U2p> ~|—6T<7‘(7“ -2 m)l — 62’1)2> =0,
2pv 1+ €%0?
2 2. \2
@t <T(7" — 2¢ m)l_—W> + 8T<(T — 2¢ m) mﬂ) (135)
r—2e2m 1+ e2? r — 2e2m)?
= 2¢’m 2 2,2 ( 2 ) p-
€’r 1—¢€%v €’r

According to Proposition this model has two linearly degenerate characteristic
fields. The Cauchy problem for this system will be studied in Section [I.9] below.

Pressureless fluid flows

Letting now the sound speed £ — 0, we obtain a regime where the pressure

vanishes identically and we can introduce the Euler model of pressureless fluid
flow . (e,0,m):

2_ P 2 pPv _
0, (r . _6%2) +3T<r('r—2€ m)1 _6202) =0,

O <r(r — 262m)L> + 0, ((r — 262m)2p—v2> = T(?)GQ —1)(r— 262m)p—vz.

1— €202 1— €202 r 1— €202
(1.3.6)
Observe that this system is not hyperbolic, since it admits only one eigenvalue: A =

= (1 — %)v Note also p = 0 obviously satisfies ((1.2.25)), so that (1.3.6) admits

one linearly degenerate characteristic field, while it can be checked that the other
field is genuinely nonlinear. This model can not be handled by the techniques in the
present paper, and we postpone its analysis to a follow-up work.

Non-relativistic pressureless regime

In addition to having & — 0, we can also take the limit ¢ — 0 in ((1.3.6)) and thus
define the Euler model for pressureless non-relativistic flows .#(0,0,m):

01(r?p) + 0,(r*pv) = 0, Oi(r*pv) + 0, <r2p02> +mp = 0. (1.3.7)
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Vanishing black hole mass
Relativistic regime

When the black hole mass is taken to vanish, that is, m — 0, the Schwarzschild
metric approaches the Minkowski metric ((1.2.1)), and we arrive at the Euler model
for radially symmetric fluid flows in Minkowski space denoted by .# (¢, k,0):

1+ e*k?0v? 1+ €%k?
| ———— | ——— =0,
t( 1—e2 P * 1— 22

(1.3.8)

Relativistic pressureless regime

If in addition we let the sound speed k — 0 in (|1.3.8)), we have the Euler model
for radially symmetric, pressureless flows in Minkowski space .Z (¢, 0,0):

2
p pu pv pv
() o) -0 altas) olitam) -0
N1 — 22 + 1 — e2v? N1 — 22 * 1 — e2v?
(1.3.9)
Observe that, for sufficiently regular solutions, these equations are equivalent to

o + 0, <%2> =0, at<1+;21)2> + 3r(1_p—16]2v2> =0,

from which we see that the velocity component satisfies Burgers’ equation.

Non-relativistic regime

Finally, letting both m — 0 and € — 0, we obtain the Euler model for radially
symmetric, non-relativistic fluid flows .Z (0, k, 0):

Ou(r?p) + 0.(r*pv) = 0, Oy (r?pv) + 0, (rzp(UQ + k2)> = 2k*pr, (1.3.10)
and its pressureless version

O1(r?p) + 0,(r*pv) = 0, 01 (r*pv) + 0, <T2p1}2> = 0. (1.3.11)
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Fluid flows in a black hole background with extreme mass

Another limit of interest is obtained when M — +o0o. In order to analyze this
regime, we fix e > 0 and k € (0,1/¢) and we define a rescaled variable 7 := 7%= €

(1,+00). We can rewrite (|1.3.3) in the form

1+ e*k20? 1 . 1+ e2k?
~ _
2 ( T’ | 0| T Vg | =0

LR 1 S vt AR 5 1.3.12
" <T<T - 1)1 — 20?2 pv> i W(%((T 1 1— ezl ) = - ( )
~ 3 Tr—-10v+k 17— 11+ e*k?*0? (r—1)?

C4M T 1—62’02p_4M e2r 1 — e2? Pt My

and we now formally investigate the singular limit M — +ooc.

Lemma 1.3.2. For solutions to (1.3.12)) expanded in the form (fort >0 and 7> 1)
X1 L
p(ta;:) = Zmp(j)(tj’% U(tm = ZMU(J)@’?%
=0 j=0
it follows that the functions p'®, v must be independent of the time variable t, while

o) wU) satisfy a coupled system of ordinary differential equations in the time variable:

j—1

atp(j) (t’ ) — Z <Aé,1p(l) (t, ) + Ai’ZU(Z) (t’ ))7

=0

o ” (1.3.13)
0w (t) = Y (BYoO(t ) + B2, ).

1=0

in which the coefficients are constants depending upon € and k only.

Proof. Keeping only the terms of zero-order in %, we easily find the ordinary differ-
ential system
1+ €4k2(1}(0))2 ) 14+ 62]€2 -
— LT ERT 0,0
8t< 1 —e2(v()2 p =0, O 1 — 62(2}(0))2p v 0. (1.3.14)

which is equivalent to saying that 9,p(?) = 9,0 = 0, so that p(® = pO(7) and
00 = ¢ () depend on the spatial variable only. Next, keeping the terms of the
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first-order in =+

17> we find the following system of equations:

14 e4k2(v(0))2 264]{2 2
72 ) 0@, (== 41.2,,(0)
20, (p RO + p*o v <1 IO + 2¢(1 + €'k*v )>

L, (o~ 1+ k2
- 0,0 —
+ 26;(7’(7“ 1) 1 _ 62'1)(0)2 p v > ’
i 1+ e2k?
(- 1)@(%@(1%(0) + p @MY 4 2¢2(1 + 62k2)p(0)v(0)2v(1)) (1.3.15)
— €7V

1./, v® g2

- 12— 0
+ 26?<(T 1 1— 20’ )
3F =10+ k2 ) 1T 11+ G 1)?
47 1- 207 1 r 1 —e2pr P 5

k2 pl0).

The functions p(¥, v being already fixed, we see that (1.3.15)) is a differential system
in the time variable ¢, which has the general form (higher-order terms p'¥), v\) (with
J > 2) being determined similarly):

-1

A{atp(j)(ta ) + Aéatv(j) (tv ) = (Ag’ip(i) <t7 ) + Ai’iv(i) (tv ))7

<.

Il
= O

BIopD(t, ) + Biow(t, ) = (Bz];ip(i)(t? ) + B¢, .))7

%

S o

Il
=)

in which the coefficients are constants depending upon ¢ and k£ only. This system
is non-degenerate in the sense that it can be expressed as an ordinary differential
system in ¢ for the functions 9,p")(t,-) and d,v¥)(t, ). Changing the notation, we

thus arrive at ((1.3.13)). O

In view of Lemma|l.3.2] in the extreme mass regime M — +o0, the leading-order
behavior of solutions only depends on the space variable 7, that is,

p(t.7) = pOF),  olt,F) = vO(F).

Proceeding at a formal level, the following result is now immediate. It would be
interesting to rigorously justify the expansion below, but this is outside the scope of
the present paper.

Proposition 1.3.3 (Asymptotic solutions for black holes with extreme mass). Con-
sider the Euler model (1.3.12)) with initial data prescribed at t = 0:

p(07?) = p(0)<ﬂ7 U(O,?A”I) = U(O)(F)7 7> 0.

1. If the data p©, v belong to C* for some l > 1, then there exists an approzimate
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solution, 1i.e.

l
~ 1 ~ 1 .
p<t7?’l) = p(O)(ﬁ + § MP(])(@?’% U(ta?) = U(O)(F/) + E Mv(j)(ta?)a
J=1

which satisfies (1.3.12)) up to an error O(1/M™1).

2. If p9 0O has C*® regularity, then exists a formal series defined at all order.
p

1.4 Non-relativistic equilibria on a Schwarzschild
background

We now turn our attention to the main model of interest in this section, that is, the
Euler model for non-relativistic flows on a Schwarzschild background (|1.3.4), which
we have denoted by . (0, k,m). We begin by considering general pressure-laws, that

is,
di(r?p) + 0,(r*pv) = 0,

1.4.1
0u(r*pv) + 0, (7"2(pv2 + p)) —2pr +mp =0, 4D

for solutions defined on r € (0,4+00). We search for steady state solutions p = p(r)
and v = v(r), which satisfy the differential system:

d
5(7’20“) =0,

d

o <7“2(pv2 + p)) — 2pr +mp =0

(1.4.2)

with initial condition pg, vy > 0 prescribed at some given radius r = ry > 0,

p(ro) = po > 0, v(re) = vo. (1.4.3)
It is straigthforward to check the following statement.
Lemma 1.4.1. All solutions — satisfy

2 p(r)v(r) = rjpovo, (1.4.4)

300+ R(p(r)) = m. = 508+ hip) — o (145

where h(p) := f”@ds.

In view of (1.4.4)), we see that the solution v has the sign of the initial condition



50 1.4. Non-relativistic equilibria on a Schwarzschild background

Vg, and without loss of generality, we now assume that vy > 0. We are especially
interested in a constant sound speed, that is, p = k*p with & > 0, hence

d

) =0,

G 2 (1.4.6)
%<r p(v° +k )> —2k"rp+mp = 0.

According to Lemma [1.4.1] we must solve the system

2 .2
rpv = TypPovo,

1 1.4.7
—v? + kK Inp—m=- = v} + k*Inpy — m—. ( )
2 r 2 To
After eliminating p, we find an algebraic equation for the velocity, i.e.
1, 5 riv I 1, 1
and we now focus on this equation.
Let us introduce the function
1 rive m  m
G(r,v;rg,v9) 1= 5(1)2 —vg) + K lnrDQ_v - + o (1.4.9)

By definition, if v = v(r) is a steady state solution, then G(r,v(r);rg,v9) = 0 and,
in addition, v(rg) = vy. Clearly, we have G(ro,vo; r0,v9) = 0. Differentiating G with
respect to v and r, we obtain

k2 1 9

0yG(r,v;70,00) =V — —, 0rG(r,v;10,00) = —2(m — 2k7r).

v r
Hence, the function G is decreasing with respect to v when v < k, and is increasing
when v > k (that is, a non-sonic velocity). Also, the derivative of a solution v = v(r)
is found to be

dv v 2k*r —m
dr — r?2 v2—k2

(1.4.10)

Since 0,G(rg, vo;T0,v0) # 0 when vy # k, it is immediate to apply the implicit
function theorem for the function v = v(r) and then recover the density p = p(r) by
(1.4.7). We thus have the following local existence statement.

Lemma 1.4.2 (Locally-defined steady state solutions). Given any values ro > 0,

po >0, vg > 0 with vy # k, the system (1.4.6|) with initial condition (1.4.3) at r = rg

admits a unique smooth solution p = p(r) and v = v(r) defined in a neighborhood %,
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Figure 1.4.1: Plot of the map v — G(v) = G(r,v;ro, vo).

of ro and denoted by
p = p(r;70, po, Vo), v = v(r; T, po, Vo)-

According to (4.3.6)), the derivative of a solution v = v(r) may blow up if at some
radius 7, the velocity v(r.) = k reaches the sonic value. We will use the following
notation.

Definition 1.4.3. A radius . > 0 is called a sonic point if it is a root of the

equation

2
(k% = 2) + 1n”—]f S P L) (1.4.11)

r
2
7o

N —

r To

If such a radius r, exists, then the derivative % tends to infinity when r — 7,
and the velocity loses its regularity.

Lemma 1.4.4. One can distinguish between two alternatives:

1. Either % +In % + #(v% — 2%:) > 0 and there exists no sonic point.

2. Or3+1n ﬁ + 5z (V¢ — 2T—"0"”) <0, there exist two (possibly coinciding) sonic

points, denoted by r, < T.. Moreover, in this case, one has:
o When ry > 575, the roots satisfy r, < T. < 7o.

o When ry < 575, the rots satisfy ro <1, < T

Proof. We introduce the functions f(z) := 1 —12?+Inz and g(r) ;== In D4mL oLy,
so that a sonic point 7, is characterized by the condition f(%) = g(r.). Since
fl(x) = —x + %, we see that f reaches its maximum at = = 1, with f(1) = 0.
Since we assume vy # k, we have —oo < f(%2) < 0. Turning our atention to the
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function g = ¢(r), we have ¢'(r) = %(2r — 7). Therefore, the minimum of g = g(r)
is obtained at r = 575, with g(575) = In ﬁ—ﬂ—k%. We now set g(x) :=In %2+2—:1:.

According to our definition, §(-%z) = g(55z). We have §'(z) = % — 1, so that

rok?
—o00 < g(x) < g(2) = 0. Theorefore, (1.4.11) admits no solution if and only if
2

F(%) < g(5%)- This yields us the condition 3 — %(%) +In % < ln% +2— s
as announced. If the opposite inequality holds, then, admits two solutions
(which may coincide). Furthermore, since g(r¢) = 0, we have either r, <7, < ry or
ro <r, <7, Ifr, <7, <7, we must have ¢'(ry) > 0, which gives ry > 7. O

We now define a function P which only depends upon the initial radius ry and
the initial velocity vy:

3 m? 1 2m
Plro, vg) i= > +1In —"" ——(%u—) 1.4.12
(o, vo) 5" n4k37"§vo 22 \"0 T Ty ( )

According to Lemma [1.4.4] the existence/non-existence of sonic points is determined
by the sign of P. We will now distinguish between several cases and introduce a

general notation:
2 : P(rg,v9) > 0, B : P(rg,v9) <0,

1:vg <k, 2: v >k, (1.4.13)
. m m
1.7’02@, 11.T0<@.

Hence, the symbol 21 refers to the case where both conditions %—Hn ﬁ + ﬁ (v —
0

27,—’:) > (0 and vy < k hold.

Lemma 1.4.5 (Extension of solutions without sonic point). Consider the local solu-

tion p = p(r;ro, po,vo) and v = v(r;ro, po,vo) given by Lemma(1.4.3

1. Case 1:. The solution can be extended tothe whole domain (0,400) and glob-
ally satisfies v < k, with

ll_fj%v(r; To, Po, Vo) = TETMU(T; To, Po, Vo) = 0.
One has the following monotonicity property: the velocity v is increasing with re-
spect tor on the interval (0, 575 ), while it is decreasing on the interval (577, +00).

2. Case 2. The solution can be extended to the whole domain (0,400) and
globally satisfies v > k, with

li : =1 : = )
Tgr(l)v(r,ro,po,vo) T_l}I_ElOO’U(T,TO,po,'UQ) +00
One has the following monotonicity property: the velocity v is decreasing with

respect to r on the interval (0, 535 ), while it is increasing on the interval (577, +00).
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Proof. The two cases are completely similar and we treat the case (1. Since we
have sonic point, the velocity v = v(r) never reaches the sound speed k and, by the
implicit function theorem, the solution can be continued and extended to the whole
interval (0,00). Its derivative, given by (4.3.6), remains finite. From the definition of
the function G in (4.3.4]), we obtain

1 2
S =) + Rl = s
2 v rh r 70

m

When r» — 0 or r — 400, the left-hand side of this identity goes to infinity. Such a
limit is reached if and only if v goes to 0 or infinity. Since v < k always holds in this
case, we obtain the asymptotic behavior limits, as stated in the lemma. Furthermore,
the expression (4.3.6]) of % determines the monotonicity properties: % has the sign
of % —r. O]

2k2

Lemma 1.4.6 (Extension of solutions with sonic points). Consider the local solutions
p = p(r;7o, po,vo) and v = v(r;ro, po,vo) given by Lemma -

1. Case B1i. The solution can be extended to the interval (T.,+00) and satisfies
v <k, with

lim U<T; 70, Po, UO) = OJ hl@ U(T;T(J?/)Oa UO) = k
r—400 T—Tx

Moreover, v is decreasing with respect to r on (F., +00).

2. Case B2i. The solution can be extended to the interval (T.,+00) and satisfies
v >k, with

lim v(r; 70, po, vo) = +00, lim v(r; 70, po, vo) = k.
00 T—T %

Moreover, v is increasing with respect to r on (F., 4+00).

3. Case B1ii. The solution can be extended to the interval (0,1,) and satisfies
v <k, with

lim v(7; ro, po, vo) = 0, lim v(7r; 7o, po, vo) = k.
r—0 =T,

Moreover, v is increasing with respect to r on (0,r,).

4. Case B2ii. The solution can be extended to the interval (0,r,) and satisfies
v >k, with

lim v(7; ro, po, Vo) = +00, lim v(r; 7o, po, vo) = k.
r—0 =T,

Moreover, v is decreasing with respect to r on (0,r,).
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Proof. Consider the case B1i (while the case $B2i is completely similar). According
to Lemma [1.4.4] there exist two sonic points r, < 7, < 1o, so that by continuation
the solution can be extended to the whole interval (7., +00) and the limits r — +oo
and r — r, are easily computed. Moreover, since in this case r > 7, > 2% and v < k,
the function v = v(r) is decreasing in 7.

In the case B1ii (while the case B2ii can be treated similarly), Lemma m
shows that there exist two sonic points ry < r, < 7,. In this case, the solution can
be extended to (0,r,) and the limits » — 0 and r — r, are easily computed. The
condition r < 7, < 575 gives the monotonicity property. O]

Observe also that no solution can be defined on the interval r € (r,,7.). Indeed,
since G reaches its minimum at v = k, we deduce that, for any radius r € (r,,7.),
the inequality

G(r,v,r9,v0) > G(r,k,ro,v9) > 0

holds, that is, G cannot admit roots between the two sonic points. Therefore, a
solution cannot be further extended when it reaches a sonic point. We summarize
our conclusions in this section in the following theorem.

Theorem 1.4.7 (Non-relativistic steady flows on a Schwarzschild background). For
any sound speed £ > 0 and black hole mass m > 0, consider the Euler model
A (0,k, m) given in , describing non-relativistic flows on a Schwarzschild back-
ground. Then, given any radius ro > 0, density pg > 0, and velocity vy > 0, there
exists a unique steady state solution denoted by

P:P<T§TO7PO7UO)7 UZU(T;TOJP()aUO)a

satisfying the system together with the initial condition p(ry) = po and v(rg) =
vo. Moreover, the velocity component satisfies sgn(v(r) — k) = sgn(vy — k) for all
relevant values r, and in order to specify the range of the independent variable r
where this solution is defined, we distinguish between two alternatives:

1. Regime without sonic point: P(r,vy) > 0 (with P defined in (1.4.12))).
Then, the solution is defined on the whole interval (0, 400).

2. Regime with sonic points: P(rg,v9) < 0. The solution is defined on the
interval = & (0, 400), defined by

== {(9’f*)’ oS % (1.4.14)
(Ts, +00), 10> 575

Moreover, the velocity v(r) — k when r approaches the sonic point.

These solutions will be used to design a method of approximation o general weak
solutions to the Cauchy problem. In fact (cf. Section , we will need to introduce
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discontinuous solutions in order to construct globally-defined steady state solution
(defined for all r). This will be achieved with solutions containing a jump disconti-
nuity connecting two smooth steady state solutions.

epsilon=0,m=0,k=0.3 ; epsilon=0,m=0.1,k=0.3 ; epsilon=0,m=0.2,k=0.3
08 0.8 0.8
06 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
% 0.5 1 1.5 2 % 05 1 15 2 % 05 1 15 2

Figure 1.4.2: Plots of v = v(r) with sound speed k = 0.3 and different masses.

, epsilon=0,m=0,k=0.15 . epsilon=0,m=0.1,k=0.15 , epsilon=0,m=0.12,k=0.15
0.8 08 0.8
0.6 06 0.6
0.4 0.4 0.4
0.2 0.2 0.2
00 2 4 6 8 10 00 2 4 6 8 10 0o 2 4 6 8 10

Figure 1.4.3: Plots of v = v(r) with sound speed k = 0.15 and different masses.

1.5 Fluid equilibria on a Schwarzschild background

Local existence result

This section is devoted to the analysis of (smooth) steady state solutions to the
Euler system on a Schwarzschild background, i.e. the general model . Such
solutions must satisfy the following two coupled ordinary differential equations with
unknowns p = p(r) and v = v(r) (defined over r > 2M)

dr 1—e20?

1(7”(7" _ QM)M) =0, (1.5.1a)

i ((7" - ZM)Z—lpijfz) = %—({tfz%) (3;0@2 +3p—e2p— 62p112> + 2(r — 2M{ip.1Db)
formulated here for a general pressure-law p = p(p). We are interested in solving the
associated initial value problem for a given radius rq > 2M with data pg, vy prescribed
at r =rq:

p(ro) = po > 0, v(re) = vo. (1.5.2)
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Lemma 1.5.1. If p = p(r) and v = v(r) is a solution to (1.5.1) —(1.5.2)), then one

" (0 + 0(0))
p+*p(p))v
r(r —2M) 1—e? oo (1.5.3)
1.5.3
1 1 2M
—?ln(l—e v )+l( )—i-ﬁln (1-7) :Co,
where the function | = I(p) is defined by l'(p) := p++p)(p) and the constants above are
determined by the initial conditions, that is,
, (Po + €*p(po))vo
DO = 7“0(’/“0—2M) 1—6208 )
1 1 2M
CO = —2—621n(1—€ )—l—l(po)—l—ﬁln (1—?)

Observe that by letting e — 0 in ((1.5.3]), we recover our earlier formulas (|1.4.4]),
(1.4.5)) for non-relativistic flows.

Proof. The equation ([1.5 é]) leads us immediately to the first equation in ((1.5.3).
Next, by multiplying (L.5.1b)) by —%=7, we find

(%4(7“(7“ —2M)

+ 2(r — 2M)p,

pv? 4+ p _Mp02+p_%p+e4pv2
1—e202] T 1—e2 21— 22

'”+€ 5 v%%—%—f- o M2M) (€ ’Qp—l—p) = 0. Multiplying this equation

by 62 , we thus find :%2 ill—:f 5 +162p Zf + = r(r 57 — = 0, which, by integration, yields

the second equation in 1) O

which is equivalent to

By now assuming the linear pressure law p(p) = k%p with (constant) sound speed
0 < k < 1/e, we thus consider the differential system

d (1 + €%k?)
$<7‘<T —2M) g pv) =0,
d o U2+ k?
g (=225 0) (1.5.4)
M (r—2M 2k
= (1 52212) <3pv2 + 3k — e 2p — K pv? ) + —(r —2M)%*p
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By elementary algebra, in view of (1.5.3]) and [(p) = 2 __log p, we obtain

14-€2k2

1— 252 l—eiki
2 2.2 2 1462k
ripEER o = ripe T v,

2M 1 262K2 2M 1 26221622
1] — — | ——— p1+2k2 = 1 — 1+ek )
( r )1—62U2p ( To )1—6208/)0

Consequently, by introducing the notation

1 — k2 262 k2
= 0,1 l—-h=—— 1.5.5
we find
12 0 = 12 g,
(1B A 2y (156)
r /)1 —e2? ro /1 — €23

Clearly, the component v has a constant sign and, for definiteness, we can now assume
that vy > 0. By eliminating the density variable p, we arrive at an algebraic equation
of the velocity v, i.e.

v 11—k, 72 r(ro — 2M)

1 — e*? 1—/{l | I
n— = n— +Iln——=.
1 — e%? K v K 3 ro(r —2M)

In

(1.5.7)

Let us define a function G, of the variables r,v (depending also upon the data
ro,vo) by
1—e*d 11—k, 18ug r(ro — 2M)

1 —In ———. 1.5.8
1 —e*? ko nro(r—QM) ( )

Ge(rv Vi To, UO) = In

(See Figure for an illustration.) Note that, in the limit ¢ — 0 we recover the
non-relativistic expression (4.3.4).) By definition, a function v = v(r) is a solution to

the problem (1.5.4) with initial data (1.5.2)) if and only if G¢(r,v(r);r0,v9) = 0 and

v(rg) = vg. We differentiate G, with respect to v and r and obtain

_ 1.2 _
.G = L=k aragz—i<1 £, M ><o.

1 — €202’ e2r K r—2M

Observe that 0,G. = 0 if and only if v = k. Moreover, G, is decreasing with respect
to v when v < k and increasing when v > k. The derivative of a steady state solution
is given by

d e —2M)— M
v _ v Fr-2M) (1.5.9)
dr  r(r—2M) ev: 1k

1—e202 2K

and changes sign once, at r = ?:—QM € (2M, +0o0).



58 1.5. Fluid equilibria on a Schwarzschild background

0.9

0.8

0.7

0.6

05

04

03

02

0.1

of

201 . . . .
0.2 0.4 0.6 0.8 1

Figure 1.5.1: Plot of the function v — G¢(v) = G(r,v; ¢, vy) with € = 0.01.

Since G(rg, vo;70,v0) = 0 and 9,Gc(ro, vo;70,v0) # 0 provided vy # k, we can
apply the implicit function theorem to a non-sonic velocity vy.

Lemma 1.5.2 (The family of locally-defined steady states). Given any radius ro >
2M and any initial data py > 0 and vy > 0 satisfying the non-sonic condition vy # k,
the initial value problem defined in (1.5.2)) and (1.5.4) admits a solution p = p(r) and
v =wv(r) denoted by

p = p(r;70, o, o), v = v(r; o, po, Vo),

and defined in some neighborhood %y of ro € R (at least).

Global existence theory

We now analyze the possible extension of the (smooth) solutions above to their
maximum domain of existence. Since 0,G (g, vo; 7o, vo) = 0 if and only if v = k, a
solution can always be continued, unless the velocity component v reaches the sonic
speed.

Definition 1.5.3. A radius v = r, > 2M s called a sonic point for the problem

(1.5.2) and (1.5.4)) if it is a root of the following algebraic equation:
1— e 11—k Vo 11—k r? r(ro — 2M)
1 0 n{—|=—h(+h—«+=|. 1.5.10
n<1—€2k}2>+ K n(k) K n<r8+nro(r—2M) ( )

From ([1.5.9)), it follows that the derivative % of a steady state solution blows-up
when one approaches a sonic value. In the following, it will be useful to observe that

9 2_1—/<;

2 1—}-362]62:2(2_/{6) 1+3ek*  2—k

14k 14k’ 22k2  1—r

(1.5.11)
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In order to simplify the notation, we introduce the following function P, of the radius
ro and velocity vy:

R@m%):dn(@_ﬁyﬂpk>+-f€1n<%2_“)0“_2M)>. (1.5.12)

(1 — k)2 rdug 1—k 14+ £k ro(l —€e*vd)

The importance of the sign of P.(rg,vp) is identified in the following lemma.

Lemma 1.5.4 (Existence/non-existence of sonic points). Consider a solution v =
v(r) associated with a positive and non-sonic velocity vy > 0 with vy # k:

1. If P.(rg,v9) > 0, there exists no sonic point.

2. If if P.(ro,v0) < 0, there exist two sonic points r, < F.. Moreover, one has:

o [frog> f:—,’zM, the roots satisfy 2M < r, <T, <rg.

o [fryg< ?:—ZM, the roots satisfy 2M < rq <r, <T,.

Proof. Introduce the following function of the velocity variable vy > 0:

K 1 — % Vo
L = In| ——29 In —
«(v0) y—mn<1—éw>*‘nk’

which satisfies L.(vy) = %( i ﬂ) Thus, L.(vg) = 0 if and only if vy = k.

T k21202
Hence, L. achieves its maximum at k, that is, L.(vg < L.(k) = 0. Therefore for all
non-sonic vy, we have —oo < L.(vg) < 0.

Now, consider the following function of the spatial variable

r? K r o
R.(r):=1In— 1 1 ,
(r) Iﬁg+1—n<nr—2M' Yo — 2M

which satisfies R.(r) = #((r —2M) — %ﬁM) Therefore, the function R,

r(r—2M) 1
reaches its minimum at r,,;, := f:—zM and

Re(Tmm)Zln<g::;]\f_§> i 15,.@1“ (2;/1<1_27]’\0/[>>'

Observe also that the mininum value R(r,:,) reaches its maximum value 0 when
ro = Tmin- Lherefore, if and only if Re(7min) — Le(vg) > 0, no sonic point can be
found; otherwise, we have two sonic points. The positions of ry and r,,;, determine
the location of the sonic points r, < 7,.. Furthermore, since R.(2M) = +o00, we have
the lower bound 2M < r,. O
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We need now to distinguish between several cases and the following notation will
be useful:

§[2P€(7’0,U0) >O7 %:Pg(TQ,UD) SO,

. 9 _ . 9 _

P> fiirg < —— "M
1—x 1—k

We are now ready to continue the local solutions in Lemma beyond the neigh-
borhood % . There are two main regimes, which we now discuss.

Lemma 1.5.5 (Extension of steady state solutions without sonic point). Given a
radius ro > 2M, a density py > 0, and a non-sonic velocity 0 < vy < 1/e (satis-
fying vo # k), the local solution p = p(r;ro, po,vo) and v = v(r;To, Po, Vo) given in
Lemma satisfies the following properties:

1. Case A1. The solution can be extended to (2M, +00) satisfying v < k with

li ; =1l ; = 0.
T_I}glMU(TaTOmefUO) r—1>I—‘PooU(T7TO7p07UO) 0

The solution satisfies the monotonicity that v is increasing with respect to r on
the interval (2M, 3= M) while it is decreasing on (3==M,+00).

Y 1—k

2. Case 2. The solution can be extended to (2M, +00) satisfying v > k with

. : 1
lim v(r;ro, po, vo) = Erlloov(r;rmpoﬂio) =

r—2M r
The following monotonicity property holds: v is decreasing with respect to r on
the interval (2M, 3= M) while it is increasing on (3=£M, +00).

Lemma 1.5.6 (Extension of steady state solutions with sonic points). Given a radius
ro > 2M, a density py > 0, and a non-sonic velocity 0 < vy < 1/e (satisfying vy # k),
the local solution p = p(r;ro, po,vo) and v = v(r;rg, po, Vo) given in Lemma
satisfies the following properties, in which 7. < r, denotes the sonic points given by
Lemmal1.5.4):

1. Case B1i. The solution v = v(r) can be extended to (F.,+00) and satisfies
v <k, with

lim v(r; 7o, po,vo) = 0, lim v(r; ro, po, vo) = k.
r—>+00 T

Moreover, v is decreasing with respect to r on (T, +00).

2. Case B2i. The solution v = v(r) can be extended to (T.,+00) and satisfies
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v >k, with
. 1 .
lim v (r; 7o, po, vo) = -, lim v(r; 70, po, vo) = k-
r——400 € T—>Tx

Moreover, v is increasing with respect to r on (F., +00).

3. Case B1ii. The solution v = v(r) can be extended to (0,r,) and satisfies v < k,
with

lim v(r; 70, po,vo) = 0, lim v(7; 79, po, vo) = k.
r—2M T,

Moreover, v is increasing with respect to r on (0,r,).

/. Case Bzii. The solution v = v(r) can be extended to (0,r,) and satisfies v > k,
with

1
lim v(r;rg, pg,vo) = — lim v(r;rg, po,vg) = k.
7"—)2M ( 7 7p 7 ) 67 T‘—}ﬁ* ( ? 7p ) )

Moreover, v is decreasing with respect to r on (0,r,).

The proof of Lemmas [1.5.5] and [1.5.6] follows the same lines as the ones of Lem-
mas and [.4.6] respectively. Note that since G, has its minimum at v = k,
we have G (r,v;rg,v0) > Ge(r, k;r9,v9) > 0 for all r € (r,,7.), and we see that no
solution can be defined on the interval (r,,7,) limited by the two roots.

Main conclusion for this section

We can now summarize the properties of steady state solutions. We refer to
Figures to for an illustration for several values of the physical parameters
€, k,m.

Theorem 1.5.7 (Steady flows on a Schwarzschild background). Given some values
of the light speed ¢ > 0, sound speed k € (0,1/¢), and black hole mass M > 0,
consider the Euler model . (¢, k,m = M/e?) in describing fluid flows on a
Schwarzschild background. Then, for any given any radius ro > 2M, density py > 0,
and velocity vy > 0 with vy # k, there exists a unique steady state solution denoted
by

p = p(r;70, po, Vo), v = v(r; 70, Po, Vo),

satisfying the steady state equations together with the initial condition p(r¢) =
po and v(rg) = vo. Moreover, the velocity component satisfies sgn(v(r)—k) = sgn(vg—
k) for all relevant values r, and in order to specify the range of the independent
variable r where this solution is defined, one distinguishes between two alternatives:

1. Regime without sonic point. If P.(rg,v9) > 0 (this function being intro-
duced in (1.5.12))), the solution is defined on the whole interval (20, +00).
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0.8

0.6

0.4
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0

2. Regime with sonic points. If P.(rg,v9) < 0, the solution is defined on the
interval IT & (2M, +00) defined by

MmO o <isM (1.5.14)
| (P, 400), o> 2EM. o

Moreover, the velocity v(r) tends to the sonic velocity & when r approaches the
sonic radius (r, or 7., introduced in Lemma [1.5.4)).
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Figure 1.5.2: Solution v = v(r) for € = 0.01, k = 0.3 and several values m = M /€%
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Figure 1.5.3: Solution v = v(r) for e = 0.1,k = 0.3 and several values m = M/¢>.
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Figure 1.5.4: Solution v = v(r) for e = 1,k = 0.3 and several values m = M /é>.
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1.6 The Riemann problem for the Euler equations

Preliminaries

In this section, we consider the solution of the Riemann problem for our general
Euler model in a Schwarzschild background (|1.3.3), which has the form of a nonlinear
hyperbolic system of balance laws:

oU+0,F(U,r)=S(U,r), (1.6.1)

where the “conservative variables” and “flux variables” are

Ul /]"2 1+€4]§252p
U — _ R 1.6.2
( Us ) ( r(r—2M) ?_fzf}zpv ’ ( )
B (U, r) r(r — 2M) Sk pv
F = ’ = 1=y 1.6.
(U7 7’) < FQ(U, 7”) ) ( (’I” N 2M)2 {;i;l:;p ) ( 6 3)

respectively, while the “source term” reads

. Sl (U, T‘) . 0
Sr) = ( S(U.7) ) - ( 3N (1 20) S ) M 2 | g2,
(1.6.4)
By definition, the Riemann problem for is the initial value problem asso-
ciated with an initial data Uy consisting of a left-hand constant state U, = (pr, vr)
and a right-hand constant state Ug = (pg, vr), separated by a jump discontinuity at
some point r = ro (with 79 > 2M). In other words, we set

Ug(r) = 4 V10 <70 (1.6.5)
UR T >Tg.

In Proposition , we have seen that both eigenvalues of are genuinely
nonlinear, when the sound speed k is a constant satisfying 0 < k < 1/e, which we
now assume throughout. We are going to solve the Riemann problem first for the
homogeneous system

U+ 0, F(U,rg) =0 (1.6.6)
for a given ro > 2M. in the class of self-similar functions (depending only on the
variable y := =) consisting of constant states, separated by either shock waves or

rarefaction waves. Furthermore, it is convenient to introduce the fluid constant y
and the scaled velocity defined by

2ek 11+ev
= ———¢c(0,1), = —
X 1+ €2k2 (0,1) v 2¢1l —ev

€ (—o0, +00). (1.6.7)
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Rarefaction curves

We begin by searching for smooth solutions to the Euler system depending only
upon the sef-similar variable. The partial differential system then reduces to
an ordinary differential system for functions p = p(y) and v = v(y) and, according
to the discussion in the proof of Lemma [I.2.2] we know that one of the Riemann
invariants w, z must remain constant throughout. Hence, we are led to the notion
of rarefaction curves: given any state Uy, the 1-rarefaction curve R (UL) is the
curve passing throught Uy along which the Riemann invariant w remains constant
and, in addition, the first eigenvalue A is increasing. The definition of the (backward)
curve RS (Ug) for a given right-hand state Ug is similar: the Riemann invariant z
remains constant and, in addition, the second eigenvalue p is decreasing. We thus
have

By (U1) = {w(p,v) = wlpr,v1), 2(p.v) < 2(pr,v1) },
R (Un) = {2(p.v) = 2(pr,vr),  w(p,v) > wlpr, vr)}.
By observing that
w = 1 In (2evpX), z = 1 In (2evp™X), (1.6.8)
2e 2e

the following statement is immediate.

Lemma 1.6.1. The two rarefaction curves associated with constant states Up and
Ug, respectively, are given by

R7<UL>:{%:(§L)"‘, p>pL}, R§<UR):{i=(£)X7 p<pR}.

Shock curves

We next search for solutions consisting of two constant states separating a single
jump discontinuity satisfying the Euler system . Along a shock curve we impose
the Rankine-Hugoniot relations (see below) as well as Lax entropy inequalities (see
, below), which can be stated as follows: the characteristic speed A must
be decreasing when moving away from the left-hand state U, on the 1-shock curve
S77(UL), while u is increasing as one moves away from the right-hand state Ui on
the backward 2-shock curve S5 (Ug).

Lemma 1.6.2. The 1-shock curve and the 2-shock curve issuing from given constant
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states, denoted by U, = (pr,vr) and Ug = (pr,vRr), respectively, are given by

o= E ) o
S5 (Ug) = {\/:—\/7 (\/sz—\/%), p<,0R}.

The speed s1(Ur, U) along the 1-shock curve and the speed so(U, Ug) along the 2-shock
curve are given by

1/2 ~1/2
2M ) ev? €2 k> p e2v? 1
esl(UL’U):_(l_ > _ EpCICI 212 _ — 22 2].2 ’
r p—prl—e®v 1+ €%k p—prl—e*v 1+ €%k

2M €202 e2k? i e20? 1 e
esa(U, Ug) = (1 - ) P + & + .
r p—prl—ew? 1+ e2k? p—prl—ev? 14 e2k?

(1.6.11)

(1.6.10)

Proof. 1. We use here the notation U; = (p;,v;) and U = (p,v) for the two states
on each side of a jump discontinuity, which must satisfy the Rankine-Hugoniot
relations associated with . To simplify the calculation, we use the tensor
components v°, v! rather than the scalar velocity v. Denoting the shock speed by s,
we see that the Rankine-Hugoniot jump conditions read

s [7’(7“ —2M) <(1 —2M /1) pv°0° + 'k?putu )] = [7’(7‘ — 2M)62((1 + k) pvv ﬂ

s |:7“(T —2M) ((1 + 62k2)pvov1>] = [r(r —2M)é? <k2pvovo +(1—=2M/r)” pvlvlﬂ

where, in our notation, the bracket [@} = ® — ®; denotes the jump a quantity .
Eliminating s, we find

1,,1

(£ + 00!} = (et + (1= 200/ o] [0+ L

On the other hand, a straighforward calculation gives
0=kp*((1 —2M/r)v°° — (1 — 2M/r)~'?ov'v)?

+ E*p2((1 — 2M /1) — (1 — 2M /r) " teotot)?
—2k%ppi(1 — 2M /r)0°0® — (1 — 2M /r) teotv)? + 2(k*e® 4 1) ppu vdvto]

k4e4ppmovovlvl 282k ppivtvlvtol — ppau®uiv}
— E*etppiv®v®viv} — 26K ppv® vl — ppadudutet.

Using the fact that the velocity vector is unit, that is, (1 — 2M/r)v%°% — (1 —
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2M /r)~te2vlvl =1, we find
0=Fk*(p* + p7) — 2k*pp; — (1 + €2k*)* pp; (v)v' — 00} ).

Thus, we have arrived at an equation for the density ratio pﬁ

A% (1 + k) (0 —v%})2\ p
0= (pi) <2+ o ! (1.6.12)

Furthermore, we obtam 1 é;’j = —€e(1—2M/r)" ”—0 in view of the definition of the

velocity variable v in and, therefore,
(1= 2M/r)72(% — %)?
ev! vl \9
(1- (1= 20/r)2(2)? )(1—(1—2M/r) 2(%) )

1—2ev 1—2ev;\2
_ <1+2€1/ B 1+26VZ‘) Vz
E2<1 _ (ﬂy) (1 _ (1—2euz 2 4e2 Vo

14+2ev 1—1—251/2

(v?vl . U0U1)2

(1.6.13)

Now, plugging ([1.6.13) into ((1.6.12)), we find
el B s
(Vi) -

We have v < vy, for 1-shock, so we take the minus sign to guarantee that v < vy.
The analysis of the 2-shock curve is similar.

or

2. With the Rankine-Hugoniot relations, we obtain

2MN2/ p v? k? p e2v? e2k?
= (=) ( et e/ * o)
r p—pil—e? 14k p—pil—e? 14 e2k?

Lax’s shock inequalities require that

)\(UL) > 81 > )\(U), IM(U) > 89 > [L(UR), (1614)

which provide us with the relevant signs for both characteristic families. O
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Wave curves and wave interaction estimates

Combining shock waves and rarefaction waves together, we are able to construct
the solution to the Riemann problem, as follows. Given a left-hand state U, and a
right-hand state Ug, by concatenating the two types of curves above, we define the
1-wave curve and the 2-wave curve, respectively, by

Wi (Up) = ST (UL) U R (UL), W5 (Ug) =55 (Ur) URy (Ug).  (1.6.15)

The following observation are in order:

e Observe that in the special case that the initial states satisfy Ur € Ry (Ur) or
U, € RS (Ug), then the Riemann problem can be solved by a single rarefaction
wave. In this case, each state U in the solution lie between Uy and Uy along the
corresponding rarefaction curve and the associated propagation speed is A\(U)
and p(U), respectively.

e Similarly, in the special case that Ug € S;7(U) or Ur € S5 (Ug), the Riemann
solution consists of a single shock propagating at the speed given by (|1.6.11]).

e Moreover, it can be checked that the curves S; and Sy are tangent up to second-

order derivatives with the corresponding integral curves. Consequently, the
wave curves W7 (Ur) and Wi (Ug) are of class C?.

Furthermore, according to (1.6.9)) and ((1.6.10)), the density component p is increasing
(from —oo to +00) along the wave curve W7 (U}), while it is decreasing (from +oo

to —oo) along the wave curve W5 (Ug). This implies that the velocity component v
is increasing along W;7(UL), and is decreasing along W5 (Ug).

To proceed, we need the following technical lemma.

Lemma 1.6.3. The 1-shock curve S;”(UyL) satisfies

dz 2B+ x*B*—\/26+ P

0< = = <1, 1.6.16
W SR 2 P 1010
while the 2-shock curve S5 (Ug) satisfies
d 2B+ 2P — /2B +
P V2N 24D > 1, (1.6.17)

dw BT F 2B+ P

B =BT :2%2(\@—@)

with the notation )
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Proof. The Riemann invariants read

1l 1+ev k 1
w=—In — n
2¢ 1 —ew 1+ €2k2 Py
_11 14+ ev n k l
Z—2€n 1 —ev 1+ €2k2 np

By introducing the functions g+(8) = 1+ (1 +,/1+ %), it is straightforward to
see that

(1.6.18)

L — g.(8). (1.6.19)

Moreover, we can check that g, (8)g_(8) = 1. By Lemma we have 23y? =

<\/VZ - \/?>2 and, therefore,

? 4
VVZ- 1+X2—5<1:|:,/1+%> = g+(x*5/2). (1.6.20)

For definiteness, we consider 1-shocks. The tangent to the shock curve S77(Ur) in
the (w, z)-plane satisfies

dz  d(z—=2) _dlz—2z) dB
dvo dw—wy)  dB  dw—wp)

Plugging (|1.6.19)) and (|1.6.20f) into the expression of the Riemann invariants (|1.6.18]),

we obtain (for 1-shocks)

w— wg, = %(lng#ﬁ) + Xlng+(x2ﬂ/2)),

‘ (1.6.21)
2= = =5 (Inge(8) — xIng. (*5/2) ).
and, thus,
dz _d(z—z) _ V28 + 2B — 28+ 32
dw  d(w— wp) —/28+ 282 — /2B + %
Sincexzﬁ—fw<1,weha\760§j—;<1. O

We have arrived at the main result of the present section.

Proposition 1.6.4 (The Riemann problem for fluid flows). The homogeneous Euler
system supplemented with Riemann initial data (|1.6.5) admits an entropy weak
solution for arbitrary initial data ro > 2M, Ur, = (pr,vr), and Ug = (pgr,vg). This
solution depends on the self-similarity variable v /t, only, and is picewise smooth: it
consists of two (shock or rarefaction) waves separated by constant states.
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Proof. Consider the intersection of the two curves state W7 (UL) (W5 (Ug). Thanks
to Lemma and our analysis above, the family of 1-curves and 2-curves covers
the whole region in such a way that, for any given data Uy, Ug, the curves W7 (Uyp)
and W5 (Ug) admit precisely one intersection point Uy;. The Riemann solution is
then solved by a 1-wave connecting from Uy to Uy, followed by a 2-wave connecting
from U M to U R- ]

Next, we define the total wave strength of the Riemann solution connecting
three states U, Uy, Ug by

EWUL,UR) = |Inpr, —Inpy| + [ Inpr — In pasl, (1.6.22)

where, by definition, Uy = (pas, var) is the intermediate state
{Un} =W (UL) (W5 (Un).

The following observation is the key in order to establish the global existence theory
for the Cauchy problem.

Proposition 1.6.5 (Diminishing total variation property). Given three constant
states Uy, Uy, and Ug, consider the associated Riemann problems (U, U.,), (U, Ug),
and (Ur,Ug). Then, the total wave strengths satisfy the inequality

5(UL,UR) Sg(UL,U*)—f—g(U*,UR) (1.6.23)

Proof. We consider the wave curves in the (w, z)-plane of the Riemann invariants.
Recall that, in this plane, rarefaction curves are straigthlines, while shock curves are
described by explicit formulas. Importantly, the shock curves have the same geometric
shape independently of the base point Uy or Ui and are described by the functions
g+(B). Moreover, by observing the remarkable algebraic property g, (5)g—(5) = 1, we
see that the 2-shock curve is the symmetric of the 1-shock curve with respect to the
straightline z = w (in the (w, z)-plane). Note that the strength £ does not change at
interactions involving two rarefaction waves of the same family, only. Since the wave
strengths, by definition, are measured in w — 2z ~ Inp, these symmetry properties
imply that the wave strengths are non-decreasing at interactions. O]

1.7 The generalized Riemann problem

Discontinuous steady states

Our strategy is now to solve the Riemann problem for the full Euler model, by
replacing the two initial constant states by two equilibrium solutions. We refer to
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this problem as the generalized Riemann problem. In order to proceed, we need first
to revisit our analysis in (cf. Section and to introduce first global equilibrium
solutions, defined for all radius r € (2M,4o00) and possibly containing a jump dis-
continuity. This is necessary since some (smooth) steady state solutions are defined
on a sub-interval of r > 2M only; this happens when the velocity component may
reach the sonic value £k.

Recall that, according to Theorem [I.5.7, two possible behavior may arise, which
are determined by the sign of the function P.(rg,vo) defined in ([1.5.12]), that is,

(z—ﬂ)aMzk> LR (2(2_@ (ro — 2M) )

(1 — k)2 r2ug 11—k 1+ r 1o(l —€2d)

P.(rg,7v9) =In (
L ((1 + 362/€2)2M2>) . R ((1 + 3€2k2) (1o — 2M)>.

47.3,.2 2,2
4etk3rivg —K ro(1 — €2vF)

The function P. beign regular, the existence of a sonic point depends also continu-
ously upon the data 7y, v9. Recall also that in the special case that the data satisfy
P.(rg,v9) = 0, then the associated two sonic points 7, and r, are both equal to (cf.

our notation (1.5.5) and (|1.5.11]))

_2—/<;

M, (1.7.1)

Ty =

1—k
which we refer to as the critical sonic point. We now consider this limiting case,
which was excluded in our earlier analysis.

Proposition 1.7.1 (The global construction for sonic initial data). When the initial
data rog > 2M, py > 0, and 0 < vy < 1/e€ satisfy the sonic condition

PE(T(),’U()) = 0, (172)

then the steady Euler system (1.5.4) admits a global steady state solution p = p(r)
and v = v(r) satisfying the initial conditions p(ro) = po and v(rg) = vy and such that
v(r) — k changes sign precisely once.

Proof. Without loss of generality, we assume that rq > r,. According to Theo-
rem there exists a smooth steady state solution defined on the interval (7., 4+00).
At any radius r € (2M,r,), we have

G(T’ U5 To, UO) < G(T7 k? To, UO) < G(T*u kv To, UO) = 0.

Therefore, for a given r € (2M,r,), the equation G(r,v;rg,v9) = 0 admits two roots:
v’(r) < k and v*(r) > k. Moreover, v”(r,—) = v*(r.—) = k, and these solutions are
continuous at the sonic point r = r,. We caould in principle define two continuous
steady state solutions, but we want to make a unique selection. At the sonic point, the
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derivative of the solution blows-up to infinity, and it is natural to keep the sign of the
derivative. Hence, for the initial data under consideration satisfying P.(r¢,v9) = 0,
we define a continuous global steady state solution by setting

. v(r;ro, po,vo), 1 ell,
v(T: 710, PO, Vo) = 1.7.3
( 0 ro 0) {UN(T;/rbvaaUO)’ r ¢ Ha ( )

in which we have selected v® = v” if vy > k while v® = 0¥ if vy < k. Hence, the
function v(r) — k changes sign when we reach the sonic point. O]

We now turn our attention to general data, when two sonic points r, < 7, are
available. We can no longer “cross” the sonic velocity value, while by remaining
within the class of continuous solutions. Instead, we must consider solutions with
one shock , as we now explain it.

Lemma 1.7.2 (Jump conditions for steady state solutions). A steady state disconti-
nuity associated with left/right-hand limits (p,v) and (p;,v;) must satisfy

p 11—k vl v}

_ 1.2
7 7

Proof. From the Rankine-Hugoniot relations [}fif}; pv} = 0 and [fi;’j; ,0] =0, we
deduce that

1 1 v? + k2 v+ k?
UV = %D = )
- 1= GQUin -2’ T 1= 621)1-2,0
which we solve for p and v. m

In view of Lemma [£.3.4] there exist infinitely many discontinuous steady state
solutions containing a shock discontinuity at some radius r; € II. At such a point,
we have

plrit) i= - k/<(5) M prit), vl - voii)'

(1.7.5)

Of course, by introducing a shock within a steady state solution, we must guarantee
that the new branch of solution allows us to make a global continuation in the sense
that we are not limited again by a sonic point. In fact, in order to have also a unique
construction, we propose to select the jump point so that the new branch of solution
has the “sonic property” discussed above. The following lemma provides us with the
key observation.
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Lemma 1.7.3 (Existence and uniqueness of the critical jump radius). Consider a
smooth steady state solution p = p(r;ro, po,vo) and v = v(r;1g, po, Vo), which is de-
fined on the interval 11 and satisfying the initial condition p(rg) = po and v(rg) = vg.
The, if this solution admits a sonic point (which is denoted by r, or T.), then then
there exists a unique radius, referred to as the critical jump radius and denoted by
ri € II, such that

k?
P. (rf, —> =0 with vi = v(r}; 7o, Po, Vo)- (1.7.6)
v

*

1

Moreover, ri lies in the interval limited by ro and the sonic point.

Proof. First of all, it is straightforward to check that P.(rq,v;) is increasing in r; on
2M, % %, +oo>. It is also decreasing in v,

on (0, k) and decreasing on (k, 1/¢).

and is decreasing on (

Let us first establish the existence of a radius satisfying the condition (|1.7.6)).
In the regime under consideration, we have two sonic points and P.(7., k) < 0 and
P.(r,,k) < 0. For definiteness in the discussion, we treat the following case

2—K
1—x

M <7, <rg, k < vg.

Thanks to the above monotonicity property of P. with respect to v, we can find a
neighborhood of 7, denoted by U,, such that the inequality P. (7“1, %) < 0 holds for

all r; € U,. For every (ry,v;) along the steady solution curve starting from (rg, vy),

the condition P.(r1,v;) < 0 holds. By introducing M(r) = % = 25 M e

11—k r?
can rewrite the condition P,(ry,v;) < 0 as

~ k 2(2 —
2In M(r) +1n (—) ~7 " (1—€*f) + " o ( (1 il
K

U1 — K 1-— + K

- 462k2MV(7‘1)> <0.

We need to show that there exists some point r; such that P,(r, %) > 0. Indeed, by
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setting M, = 2258 and M, = 2=2M "we have
K Tx — -k,

P, (7’1, k—2> > P, (7’1, k—2> + P.(ry,v1)

U1 U1

In ((1 — k) (1 - e%f)) + 12'%% In (2(2 —r) _20=r) M(rﬁ)

> 41nM(r1) -

+ max <4lnM*, 2K In (2(2 ) - 2(1 - K)M*>)

1—x 1+k 1+k

> — " ~ln ((1 — A o)1 - &ﬁ))

Since —%-1In ((1 — 2k v?)(1 — e%f)) € ( — - In(1—€'kY), —i—oo)7 we can find an
interval of v; where P,(ry, ’“—2) > (. By continuity, we conclude that there exists a

radius r] such that P (rl, ) = 0.

Now, we turn to the uniqueness of ;. We want to show that P, <r1, ) changes its
sign only once along the steady state curve. Recall that we assume (for deifniteness)

that ro > f £=E M, so that the smooth solution is defined on (7., +00). Let r; be a

point such that P. (rl, ) > (0. For r > ry, according to the monotonicity properties
of steady state solutions, we have |k — v(r)| > |k — vy], therefore, PE< o )> >0

always holds. Then let r, be a point such that P(rs, £ ) < 0 holds. For r € (F.,m2),
according to the monotonicity properties of P,, we have

P. (7’, %) =21n M(T) +In (v(;)) — 71 i - In (1 — e2k2/v(r)2)

— k;2
In (1 4 3e2k2 - 462k2M(r)) <P (7"2, —> <0.
(%

i K
1—

We have thus established that P, changes sign only once.

Moreover, let us emphasize that 7“1 lies in the interval limited by ry and the sonic
point. Again, we treat the case rg > =M. If the desired property would not hold,

then we would have P,(rg,v9) < 0 and P (ro, & ) < 0 simultaneously, but this would
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contradict

k? K 214/, 2 2,2

P.(ro,v9) + Pc(r9, —) > — In ((1—6 E*Jvi)(1 —e vl))
Vo 11—k
K 4(2 — k)2
1 > 0.
i 11—k n((l—l—/@)?)

Therefore, we have 7, < r] < rg in the case under consideration. 0

From the family of smooth steady states p = p(r; 79, po, vo) and v = v(r; g, po, Vo)
in the regime where they admit a sonic point, we are now in a position to define
solutions on the whole interval r € (2M, +00). We introduce the domains

N
x

Y

M
M.

N =
X X

o [, iz =M N T
° (2M,r3), 1< EEM, (ry,+00), ri<

—_

=

We arrive at our main conclusion in this section.

Theorem 1.7.4 (Globally-defined steady state solutions). Consider the family of
smooth steady state solutions to the Euler system posed on a Schwarzschild back-
ground with black hole mass M. Given any radius ry > 2M, initial density py > 0,
and initial velocity |vo| < 1/e, the initial value problem for the steady Euler system
(1.5.4) with initial condition p(r9) = po and v(ry) = vy admits a unique weak solution
which is globally defined for all r € (2M, +00) and contains at most one shock (sat-
isfying the Rankine-Hugoniot relations and Lax’s shock inequalities), and such that
the velocity component |v| — k changes sign at most once. Furthermore, the fam-
ily of steady state solutions with possibly one shock depends Lipschitz continuously
upon its arguments rg, pg, vo when they vary within the whole range of solutions, en-
compassing smooth solutions with no sonic point, continuous solutions with exactly
one sonic point, and discontinuous solutions containing exactly one continuous sonic
point and one shock crossing a sonic point.

A precise statement of the continuity property above is as follows: in the case of
a solution containing a shock, it is meant that the location of the shock and its left-
and right-hand limit vary continuously; moreover, in the transition from a solution
of one of three types to a solution of another type, the values taken by the solution
vary continuously.

We have derived all the ingredients in order to establish the theorem above. First
of all, for the case without sonic point, smooth solutions defined for all r € (2M, +00)
were already constructed in Section [1.5] so that to shock is required when a branch
of solution never reaches a sonic point.

Now consider the case with sonic points. The critical case where the two sonic
points coincide is already dealt with in Proposition [1.7.1} So, it remains to discuss
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the case r, < T.. Let pi = p(r5;70, po, v0), v} = v(1}; 70, po, Vo) be values achieved by
the smooth solution at the critical jump point r{ provided by Lemma [I.7.3] In view
of Lemmas 4.3.4{and [1.7.3] we can now introduce the (discontinuous) global steady
state solution as

v(r; 70, Po, Vo), re A,
v(r;ro, po, Vo) 1= 3 L -k /w2 g L g2 A (1.7.7)
v\ Tl’sz pl’ﬁ , T € N\g,

where v is the corresponding steady state solution containing a (unique) sonic point
(cf. (1.7.3). According to Lemma the Rankine-Hugoniot relations hold along

the discontinuity so that, for any smooth function with compact support ¢ = ¢(r),

+0o0
[ (FCU6)000) + 50,0600 i

(/ /+Oo> —F(r,U) + 5(,U))o(r)) dr
(P30 +)) - P, U(ri‘—))¢(r1‘) = 0.

Therefore, defines a weak solution to the Euler equations in the distributional
sense. Moreover, Lax’s shock inequalities are satisfied by construction. Indeed, with-
out loss of generality, suppose that ro > {=2M and let us use the notation U, Uk,
where Up is the smooth steady flow. We have either a 1-shock wave if vg > k or a
2-shock wave if vg < k. We treat, for instance, the case vg < k. The two eigenvalues

read (after using the jump relations (|1.7.4]))

IMN v+ k M\ k2 vn+ k
#(Ur) ( r )1—|—62]€ij (UL ( r >1+62k3/v3’

while the shock speed is

1/2
oM K2 K
={(1-
s(UL,Ur) ( . ) (UIZ%/]{;Q_EQI{;Q—]_—FGQU]Z{ * 1+62k2>

~1/2
e2k? n 1 /
vh/k? — k2 — 1+ v} 1+ e2k? '

In fact, there is no new calculation to do here since, by construction, we have chosen
vr, > vg for a 2 shock and, consequently as observed in our study of general 2-shock
curves, Lax’s shock inequalities p(Uy) > s(Ur, Ur) > p(Ug) hold. For 1-shock waves,
a similar argument gives A\(UL) > s(Ur, Ug) > A(Ug).

For the continuity property, we observe that the regularity is obvious for the
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family of smooth solutions and we only need to consider the continuous solutions and
the discontinuous solutions, as well as the transitions from one case to another. Let
us consider first continuous solutions that, by construction, cross the sonic value £ at
the critical radius. We claim that such solutions r — v(r) are Lipschitz continuous
everywhere (except at r = 2M where they may blow-up, but later on we will first
exclude a neighborhood of the horizon). Namely, we only need to check this property
at the critical sonic point: from ([1.5.9), we can compute the derivative at the point
Ty = f%’ZM and obtain

dv( ) k . La(r—2M)— M
ar' = re(re —2M) o oy, — Lon
k 1— k%1 —k dv k dv

12

D ——— k) —(r,
ro(re —2M) 2k & [ ) r(re —2M) /3T
and, consequently, the derivative is finite and is given by

dv k

%(r*) - (re(re — 2M))1/27 L7

the sign depending upon the choice of the branch. This shows that the continuous
branch is Lipschitz continuous. The same calculation is valid to deal with discontinu-
ous solutions and shows that, way from the jump discontinuity, the solution depends
Lipschitz continuously. In the transition from discontinuous to continuous solutions,
the strength of the jump discontinuity shrinks to zero, while the base point ry ap-
proaches the critical point r,. All derivatives remain finite in this limit. Finally the
transition from a continuous to a smooth solution is regular away from the sonic
point (located at r,), while at the critical point r, we have a jump of the deriva-
tive which is a non-vanishing constant (for continuous solutions) and which vanishes
for smooth solutions. Yet, the derivative remains bounded, and we still have the
Lipschitz continuity property. This completes the proof of Theorem [I.7.4]

A generalized Riemann solver

The Riemann solver defined in Section for the homogeneous system is now
extended to the full Euler model with source term S(U,r). The Riemann
solution no longer depends solely on :::g and is no longer given by a closed formula.
In particular, wave trajectories are no longer straigthlines. We are going to construct
an approximate solver, which will have sufficient accuracy in order to establish our
existence theory. Precisely, we consider the generalized Riemann problem which,
by definition, is based on two steady state solutions separated by a jump discontinuity,

that is,

U+ 0,F(U,r)=S(U,r), t >, (1.7.9)
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Ur(r), r<ry,

1.7.10
Ur(r), r>ro, ( )

Ulto,r) = Uy(r) := {
posed at the point ¢y > 0 and ro > 2M, in which the functions U, = Ur(r) and
Ur = Ug(r) are two (global) steady state solutions, that is, weak solutions to the
ordinary differential system

d

—F(U,r)=S(U,r), (1.7.11)
dr

constructed in Section 6. The exact solution to the generalized Riemann problem,
denoted here by U = U(t,r), cannot be determined explicitly, and we thus seck for
an approximate solution, which we will denote by U = U (¢, ).

First of all, we can follow the discussion in Section [1.6{and we solve the (classical)
Riemann problem posed at the point (to, 7o) for the homogeneous Euler system, that
is, by denoting this solution by U€(t, r; g, ro), we have

&Uc —+ @F(ro, UC> = O7 t Z to, (1712)
Ud:=U <
Us(r) =1 "% slro), 7 <m0, (1.7.13)
URZ:UR(T()), T >Tg.
We know that the solution U¢ depends upon & := ;:;?, only, and consists of three

constant states UY, UY,, U%, separated by shock waves or rarefaction waves. For all
sufficiently small times ¢ > ?j, the solution to the generalized Riemann problem is
expected to remain sufficiently close to the solution of the classical Riemann problem.

Next, let us introduce the (possibly discontinuous) steady state solution Uy, =
U (r) determined in Theorem from the initial condition Uys(rg) =: Uy, at rg.
For the following discussion, it is convenient to set

Up == Uy, U, == Uy, Us = Uy, (1.7.14)

We also set s; = AN(U;_1) and u(U;_1), and s} = X\(U;) or u(U;) (for j = 1,2) be the
lower and upper bounds of the speeds in the j-rarefactions. If the j-wave is a shock,
then s; = s) = s; denotes the j-shock speed (given by (1.6.11])).

We are now ready to define the approximate generalized Riemann solver by
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setting
(UL(T’>, r—1e < 8y (t—tp),
Vi(t,m(t,r)), sy(t—ty) <r—ro<si(t—to),
U(t,r) == < Un(r), sT(t—to) <1 —19 < 55 (t—to), (1.7.15)
Va(t,ma(t, 1)), s5(t—tg) <r—ro < sy (t—to),
| Ur(r), r—ro > sy (t—tg),

in which we have also introduced (in the case that the classical Riemann problem
admits rarefactions) the functions V; = Vj(¢,n;) and the change of variable (¢,7) —
(t,n;) given by the following integro-differential problem. Following Liu [40], we
take into account the time-evolutionof the generalized Riemann solution within a
rarefaction fan and define “approximate rarefaction fans”, as follows. We first seek
for V; = V;(t,n;) and r* = r¥(t,n;) as functions of the time variable ¢ together with a
new variable denoted by n;, satisfying

aanﬁGt‘/j + (aUF(VJ> - )‘J'(Vj)>a77jvj =5(Vj) a"jrﬁ’

(1.7.16)
atrTj = /\J(V;)7
with the following boundary and initial conditions (with 77? = Aj(Uj-1(r0)))
0 0
Vi(t:n)) = Ui (r(6,5)), - Vilto,my) = hy(ng), (1.7.17)

Oyt (t,m9) = N (Uj—1(rh)), i (to,m;) = 7o,

where the function h; is defined by inverting the eigenvalue functions along the rar-

efaction curves, i.e.
r—7To

Ah(€)) = € = T2,

(As usual, A\; = A and Ay = ). Next, we recover the “standard” radial variable r by
setting

(1.7.18)

r :rﬁ(t,nj),

and, therefore, expressing 7); as a function of (¢,7). We now check that the conditions
above define a unique function.

Lemma 1.7.5. For sufficiently small times At, there exists a unique smooth solution
of the problem ([1.7.16|) defined within the time interval to < t < to + At, such that

a,V; = 0(1)G, O, Vi = h(n;) + O(1)GAL,

where G is a constant independent of t and r.

Proof. Let us, for instance, treat the rarefaction waves of the first family j = 1 and
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derive first an integral formulation of the problem. Denoting by [y, [ two independent
left-eigenvectors of the Jacobian matrix of the Euler system, we have

O
ly- S +Dly - Vi,
=" 2 (1.7.19)

OVi =1y S+ 0y Vi,

DV, =

where we write \71 ={;-V; and 172 = [5-V1, and we have also introduced the differential

8
operator D := 8/:’32 0y +0,,, whose integral curves starting from (s, A(Uj)) are denoted

by L. By integrating (1.7.19)), we thus obtain

o #
( " l2-S+Dl2-v1> dn,
= A

9Wmﬁ=%@M%D+/
c (1.7.20)

t
itom) = Vilto, &) + [ (12 S+ Vi) d

to
Now we define an operator T to provide the right-hand side of and we take
an arbitrary function V) such that V2(¢,n?) = Vi(t,n?) and VP (to,n) = Vi(to, ).
We then study the iteration scheme V) := TOV?. For all sufficiently small At, the
operator T is contractive in the sup-norm of V¥ and their first-order derivatives, by
a standard fixed point argument we deduce that there exists a unique solution V; to

(4.4.10)). Moreover, by integration, we can estimate the first-order derivatives of V;,
as stated in the lemma. O]

We define the wave trajectories as

ri(t) = 87 (t —to) + 19 (1.7.21)

and, in particular, if the j-wave is a shock, we have r;(t) := 77 (t) = s;(t — to) + ro.

Lemma 1.7.6 (Control of the error associated with the generalized Riemann solver).

Let U be the approrimate generalized Riemann solver defined by (1.7.15)). Then, for
all to <t < tg+ At, one has:

1. When (U;_1,U;) is a j-shock wave, one has

s; (fj(t, ri(t)+) — ﬁ(t,m(t)—))
=F(r;(t), Ut,r;(t)+)) — F(r;(t), U(t,r;(t)-)) (1.7.22)
+O()|U; — Uj|At.
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2. When (U;_1,Uj;) is a j-rarefaction wave, one has
U(t,rf(t) = U(t,r; (t)) = O)|U; — Uj_i|At. (1.7.23)

Consequently, when there is no jump at r, that is, Ur(r) = Ug(r), then the term
U; — U;_1| vanishes, and the approximate solution is, in fact, exact.
j j

Proof. By our construction, if (U;_1,U;) is a shock wave, then we simply connect
U;_1(r), and U;(r)) by a jump discontinuity. A Taylor’s expansion yields us

U(t,rf(t) = U(t,ry (1) = U; — Uj_y + O(1)|U; — Uj | AL,
and, thanks to the Rankine-Hugoniot relations s;(U; —U;_1) = F(r,U;) — F(r,U;_1),
we arrive at
55 (Tt ri(0+) = Tlt,r5(0)-))
F(ry(8), U (t,r5(1)+)) = F(ry(t), Ut r5(t)=)) + O(L)|U; = Uy | At.
If, now, (U;_1,U;) is a rarefaction wave, it follows from our construction that

Uj(rf (1)) = Ui (rf (1)) = Uj = Uj—1 + O)|U; — U | At
Uj(r; () = Uj—a(r; (1)) = Uj = U1 + O(1)|U; — U1 |At.
Moreover, we have 7} (t) — r;_(t) = O(1)|U; — U;_1|At and a Taylor’s expansion

yields us
Ui (rf (1) = Ui (r; (1) = O(1)|U; — Ujq|At.

Hence, we can compute
Ut,rf (1) = Ult,ry (1) = Us(r (£) = Us-a(r (1))

Uj(r () = Uj-a(r} (8)) — (Us(ry (8)) = Uja (5 (1)) + Uja (75 (1) = Ujea (v (1))
OW|U; — U;_1|At. O

In order to estimate whether the function U is an “accurate” approximate solution,
we consider any smooth function ¢ = ¢(¢,r) and study the integral expression

to+AtL T0+AT - - ~
O(AL, Ar: ¢ / / (T 00+ P(r-0) 0,6 + S(r. D)) drdt (1.7.24)

0—Ar
for any At, Ar > 0 with ro — Ar > 2M. Observe that © would vanish if we would
take the exact Riemann solution U = U(¢,7) in (1.7.24)) and we would assume that

the function is compactly supported in the slab under consideration. The expression
(1.7.24) provides a measure of the discrepancy between the exact and the approximate
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solutions, and can be expressed from integrals on the boundary of the slab, modulo
an error term, as we now show it.

Proposition 1.7.7. For given At, Ar > 0 with ro — Ar > 2M satisfying the stability
condition

Ar
N max(—A\, i), (1.7.25)

and for every smoth function ¢ defined on [ty, +00) X [rog — Ar,ro + Ar], the integral

expression in (|1.7.24)) satisfies

ro+Ar ro+Ar
U(to +At,)¢(f0 +At, ) dT — / U(to,')gb(to, ) d?"

ro—Ar

O(At, Ar; ¢) = /

ro—Ar

to+At _
+/ F<T0+AT7 U('7TO+AT))¢(',TQ+AT> dt

to

to+At .
—/ F(ro—Ar,U(-,rg — A1) o(-, 10 — Ar) dt

+O(1)|Ur(r0) — Uw(ro) |AE[|¢]lc1-
(1.7.26)

Proof. We decompose the sum under consideration as

to+At to+At
O(AL, Ar;¢) = / / O(t,r)drdt + / / o(t,r) drdt,
j o Dj j

where
Dy := (ro=Ar,17(t)),  Di = (rf(t),r5 (1)), Dg=(ry(t),ro+Ar), D= (ry(t),r](t)),

for j = 1,2 which is used to denote the rarefaction regions. We first consider the
interval Djl- where the approximate solution U is a steady state solution. Therefore,
we have O,U + 0,F(r,U) — S(r,U) = 0 in Djl-. Multiplying the equation by the
test-function ¢ and integrating by parts, we obtain

to+At ri () ro
/ O(t,r) drdt —/ Uty + At,r)o(to + At,r) dr — / Ulto,r)p(to,r)dr
to Dyg T T

0—Ar 0—Ar

to+AL _ _
s [ (P00 (0-) = 5Oty (- oy (0) e

to

to+At _
- / F(TO — Ar, U(ta To — AT’))gb(t, ro — Ar) dt

to
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and
to+At ro+Ar ro+Ar
/ / O(t,r)drdt :/ Ul(to + At,m)o(tg + At,r) dr — / Ul(to,m)0(to,r)dr
to D% T;(t) 0

to+At _
+/ F(ro+ Ar,U(t,ro — Ar))o(t, o + Ar) dt

to

[ (P 0,00, 00) - s O ot 0)

to

A similar calculation for the integration in D} gives us:

to+At ry (1) _
/ / O(t,r)drdt :/ Uty + At,r)p(to + At,r)dr
to D% r

(@)

JF/O+ (F(T’E(t)ﬁ(tari(t)—))—55(7(75,7“5(15)—)>¢(t,7“5(t))dt

to

- /to+At (F(Tif'(t)7 U(t, Ti’—(t)"')) _ Si‘rﬁ(t; rii_(t)—*‘)) qb(t, T’T(t)) dt.

Next, consider the rarefaction region Dj?. According to the construction in (|1.7.15))
and (1.7.16), we have U(t,r) = V;(t,n;) in D}. Performing the change the variable
(t,r) — (t,n;), we have (with the notation Ay = X and Ay = p)

U +0,F(U.7) = S(U.7) = 0,V; = A (V) Vi, + 0y, Fo; — S(V;)
= 0n;(0iV;0n,m + (Ou F = X;)0,,Vj — SOy;r) = 0.

Multiply the equation by the test function ¢, then for the rarefaction region, we have

to+At .
/ / O(t,r) drdt :/ Uty + At,r)p(to + At,r)dr
to D]2 D]2

to+At N
+ / (FOF 0, Tt rF (0)-)) = s; UL rf (6)=) ) olt,r (1) dt

to

B / " (Pl (0.0(.r5 () — 55 00,75 (04) ) o2, 75 (1) .

to

According our construction of the generalized Riemann problem, if (U;_1,U;) is a

shock, (|1.7.22)) gives

5;(T(tr3(0)4+) = T(t,r5(1)-))

= F(r;(t), U(t,r;(t)+)) — F(r;(@), U(t,r;(t)=)) + O)|U; — Uja| AL
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Hence, we have

to+At "
[ (P00 00) - 0 ry0)4))ott.ry(0) e

to

—/°+ (P2, Tt 75(0)=) = 5,01, 75(0)=) ) 6(8,75(0)) dt = O(1)| U — U] A2 o

to

According to (1.7.23)), if (U;_1,U;) is a rarefaction wave, we have

Ut,r] (t)+) = Ut rf (t)=) = O(1)|U; — U;_4|At,

from which we obtain

/t " (F(rj(t), U(t,rf(t)+)) — s;U(t, 1] (t>+))¢<t,m<t)> dt

to+ At "
—[ (Fs0), U7t (0)=) = 50t r5 (8)=) ) ol 5 (1))
= O(W)(Ut,rf ()+) = Ult.r}3(0)=) Atl@lleo = OW)|Ur — UL|AL |l |co.

Adding all the terms together, we thus estimate the discrepancy as

O(At, Ar; ¢)
ro+Ar ro+Ar
= / Ul(to + At, - )p(to + At, ) dr — / Ulto, ) o(to, ) dr
ro—Ar ro—Ar

0

to+At .
+/ T0+AT,U(',T0+AT>)¢(',T0+AT)dt

F(
tto+At .
/ F(ro = Ar,U(, 10 — Ar)¢(-,ro — Ar) dt + O(1)|Ur(ro) — Ur(ro) | A6 lc:
t

0

1.8 The initial value problem

The global existence theory

We now consider the initial value problem for the Euler system on a Schwarzschild
background, that is, (1.6.1))—(1.6.4)), with some initial condition at t; > 0

(p, u)(to, ) = (po, vo) (1.8.1)

for some prescribed data pg : (2M, +00) — (0, +00) and vy : (2M, +00) — (—1/¢,+1/¢).
Before we introduce our method based on steady states, we first observe that the tech-
nique already developed by Grubic and LeFloch [16] (in a different geometric setup)
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applies, which is based on a piecewise constant approximation and an ODE solver.
This method applies to general initial data and solutions.

Theorem 1.8.1 (Global existence theory for fluid flows on a Schwarzschild back-
ground). Consider the Euler system describing fluid flows on a Schwarzschild back-
ground (1.3.3) posed in r > 2M. Given any initial density py = po(r) > 0 and
velocity |vg| = |uo(r)| < 1/€ satistying, for any § > 0,

1—ev
TV[2M+6,+oo)(ln Po) + TVioM46,400) (hl 0) < 400,

then there exists a weak solution p = p(¢,r) and v = v(t, r) defined on [tg, +00) and
satisfying the prescribed initial data at the time ¢y, and such that, for all finite time
T >ty and 6 > 0,

1 —ev(t,-
Sup (T‘/[2M+6,+oo)(1n p(t, )) + TVianr46,4+00) (111 #)> < Fo0.

te(to, T

For the proof, we only need to observe that no boundary condition is required at
r = 2M, since the wave speeds vanish on the horizon and that we can always “cut” an
arbitrarily small neighborhood of the horizon and estimate the total variation outside
this neighborhood, as explained in the following subsection. We omit the details.

Behavior near the horizon

In view of Lemma [1.2.2] the eigenvalues

N 1_2M v—£k B 1_2M v+ k
- r |1 —ekv’ H= r |1+ e2kv

are distinct for all » > 2M but both of them vanish on the horizon r = 2M. This
indicates that no boundary condition should be required on the horizon. On the other
hand, the Euler system is not strictly hyperbolic at the horizon » = 2M. Yet,
for any given ¢ > 0, the system is strictly hyperbolic in the region r > 2M + 6.

Furthermore, recall from Section 5 that steady state solutions may “blow-up” near
the horizon, in the sense that the velocity component v may approach +1/e, which
does correspond to an algebraic singularity for the Euler system.

It follows that it is natural to study the Cauchy problem, first, away from the hori-
zon within a domain of dependence where the solution is uniquely determined from
the prescribed initial data. Observe that, according to Lemma [1.2.2] the eigenvalues
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are uniformly bounded:

1 1 2M 1 2M 1
——<——<1——)<>\<u<—<1——)<— when r > 2M,
€ € T € r €
A=u=0 when r = 2M.

This provides us with a uniform a priori control on the wave speed, so that the
stability condition required in the random choice method is automatically satisfied
(without having to derive first a uniform sup-norm estimate).

We thus fix § > 0 and consider the curve r = 74(t) characterized by

dr 1 2M _
(= (1 - %> 7(0) = 2M + 4, (1.8.2)

which, in the limit of vanishing J, converges to the line r = 2M, in the sense that

clsin(l) 7(t) =2M  uniformly for ¢ in a compact subset of (2M, +o00]. (1.8.3)
%

In the following, we study the initial value problem with data prescribed at some
time tg > 0, and we state first our BV estimate within the region Qs(7") = {to <t<
T, r> F(t)}. In turn, by letting 6 — 0, we are able to control the total variation in
every compact subset in (¢,7).

A random choice method based on equilibria

We are now ready to develop a theory based on steady state solutions as a
building blocks, which has the advantage of preserving equilibria and allows to
establish the nonlinear stability of equilibria. Our approach is based on the ap-
proximate solver of the generalized Riemann problem provided in Section [L.7. Use
U(t,r;to,r0,Ur(r), Ur(r)) to denote the approximate solver of the generalized Rie-
mann problem at (¢, 7o) with initial steady states UL (r) and Ugr(r) at t = t, separated
at r = 1o provided in Section [I.6] Denote the mesh lengths in 7 and ¢ by Ar and At
respectively, and (¢;,7;) the mesh point of the grid:

tlzto—f-ZAt, TJ:2M+]AT

Since —\, u < 1/e, we assume % > % to guarantee the stability condition ([1.7.7]).

Interactions can thus be avoided within one step. First of all, we approximate the
initial data Uy by a piecewise steady state profile determined from the initial condition
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at r=rjq:

d
%F(r, Ua(to,r)) = S(r,Ua(to, 7)), jeven, r; <71 <Tjto,

Ua(to;7j41) = Uo(7j41).

(1.8.4)

We set
Tij; = 2M + (U)l +j)AT7

where (w;); is a given random sequence in (—1,1). If the approximate solution Un
has been defined for all ¢; 1 <t < t;, we define Ua(¢,7) for all r and ¢; <t < t;41, as
follows:

1. At the time level t = t;, we define Ua to be the piecewise smooth steady solution
given by solving
d o
d—F(r, Ua(ti,r)) = S(r,Ua(ti,r)), i+jeven, 1; <1 <7j49,
r
Ua(ti,rije1) = Ua(ti—, riga1).

(1.8.5)

2. Now define Up on t; <t < t;4q:

For j > 1, define the solution on {t; < ¢t < t;41,rj-1 <17 < rj;1} (with
i+ j even) by

Ua(t,r) = U (t73ti,m3, Ur(r;), Un(r))

with U (1) = Ua(t;,7), v € (rj_1,7;) and Ug(r) = Ua(t;,7), 7 € (r;,7j11)
the steady state components of Ua(t;, 7).

This completes the definition of the approximate solution Ux on [ty,+00) X
(2M, +00).

Wave interactions of the generalized Riemann problem

In Proposition [1.6.5, we studied wave interactions in the context of the classi-
cal Riemann problem and established a monotonicity property. For the generalized
Riemann problem under consideration now, the initial data is no longer piecewise
constant and we need to revisit this issue. Given a pattern consisting of three (possi-
bly discontinuous) steady state solutions Uy, = Up(r), Ups = Up(r), and Ug = Ug(r),
we are interested in the solution to the Euler system ([1.7.9) with Cauchy data (with
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r1 <19 < ro given)
Ur(r), r<m,
Uo(r) = S Un(r), m <r<ry, (1.8.6)
Ur(r), r >y,

and we want to compare it with the solution with Cauchy data ([1.7.10]), that is,

) UL(r), <o,
Uo(r) = {UR(T)a - (1.8.7)

The following statement in a generalization of Proposition [1.6.5 which corresponds
to the special case r;1 = r9 = r9. We restrict attention to continuous steady states.
(A generalization to discontinuous steady states could possibly be established too, by
including the strength of the steady shock.)

Proposition 1.8.2 (Diminishing total variation property for the generalized Rie-
mann problem). Suppose that all steady state under consideration are continuous.
The wave strengths associated with radii r1 < ro < ro and three steady state solutions

Up, =Up(r), Uy = Un(r), and Ug = Ug(r) to the Euler system (1.6.1). Then, one

has

EWUL(r0=), Un(ro+) < (EWL(r1=), Ui (ri+))+E(Unr(r3=), Un(ra+)) ) (1+0(1)(r3=r1)).
(1.8.8)

Proof. Consider first smooth steady state solutions (which do not contain shocks).
Since solutions to an ordinary differential system depend continuously upon their
data, it is immediate that

Ur(r1) = Us(r1) = Ur(ro) — Us(ro) + O(1)(ro — r1)|UL(r1) — Us(r1)]

and, since |Ug — Ur| = O(1)E(UL, Ug), we obtain

E(UL(ry), Uu(r) = EUs(ro), Uuro)) ((1+ O(1) (o = 11)).

With the same argument, we have

E(U.(r2), U(r2)) = E(U-(ro), Un(ro)) (14 O(1)(r2 = 10))

and the conclusion follows for smooth equilibrium solutions. For steady state solutions
which are only continuous, we recall the conclusion in Theorem [1.7.4] where we
established a Lipschitz continuity property satisfied by global steady state solutions.

m
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The existence theory based on equilibria

The existence property below is established under the restriction that only con-
tinuous steady states are involved in the scheme. Dealing with discontinuous steady
states require a further investigation of the interaction between steady shocks and
Riemann solutions (which is outside the scope of the present paper).

Theorem 1.8.3 (The generalized random method based on equilibria). Consider the
Euler system describing fluid flows on a Schwarzschild background (|1.3.3]) posed in
r > 2M. The generalized random choice scheme above has the following properties:

1. Convergence to a weak solution. Given any initial density py = po(r) > 0
and velocity |vg| = |vo(r)| < 1/e satisfying, for any § > 0,

TViort+6400) (10 p0) + TVianr+6400) <1ﬂ ! EUO) < 400,
1+ evg
and provided on some (possibly infinite) interval [ty, T") C [to, +00), the generalized
Riemann solver involves continuous steady states, only, then there exists a weak
solution p = p(t,r) and v = v(t,r) defined on [tg,T) and satisfying the prescribed
initial data at the time t, and such that, for all finite 7" € [to,T) and § > 0,

1 —ev(t,-)
TV (1 t,- TV o) [ In ———= < )
tes[;i,%’] ( [2M+5,+ )( np( )) T Vearesireo < 1 + ev(t, )>) e

2. The well-balanced property for smooth steady states. When the initial
density po = po(r) > 0 and the initial velocity |vg| = |vo(r)| < 1/€ consist of a smooth
steady state solution to , the corresponding approximate solution to the Euler
system constructed by the proposed generalized random choice method (in
Section coincides with the given solution, so that our method provides the exact
solution in this special case.

3. The well-balanced property for discontinuous steady states. Consider
an initial data Uy = (po(r), vo(r)) with po(r) > 0 and |vg(r)| < 1/e of the following

form
B Ur(r), re (2M7r“),
Uo(r) = {UR(T% r e (1 +o0). (1.8.9)

where r% > 2M is a given radius, U, = Up(r) and Uz = Ug(r) are global smooth
steady solutions such that the states Uy (r%) and Ug(r") satisfy the equilibrium Rankine-
Hugoniot relations . Then, the solution constructed by the generalized random
choice method has, at each time, the same form , that is, a discontinuous steady
state solution with possibly “shifted” location 7.
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Proof. Step la. Consistency of the method. With the proposed generalized
random method, we obtain a sequence {Ua(t,r)}. Once the uniform BV bound
(established below) is known, it follows from Helly’s theorem that there exists a
subsequence of {Ua(t,7)} (still denoted by {Ua(t,r)}) depending on the mesh length
Ar — 0 and a limit function U = U(t, r) such that Un — U pointwise for all times
t. To check that the limit function is a weak solution to the Euler system (|1.3.3)), we
consider a compactly supported and smooth function ¢ : [tg, +00) X (2M, +00) — R,
and from the approximate solution Ux with mesh length At, Ar, we define

“+o00

+oo
A(Ua, ) / / (Undurt F(r, Un)0y6-S(r, Us)) drdt-+ / Un(r)(to, ) dr.
2M+Ar 2M+Ar
(1.8.10)
By definition, U is a weak solution to the Euler system (|1.3.3) with initial data
Ulto,") = Up if and only if A(U,¢) = 0. We write A(Ua,¢) = >, A;(Un, @) +
A3 (Us, ¢) with

+oo
BUs0) = [ (Ustebr) = Usltimn)) () dr
2M+Ar
i+1 “+00
AU, 6 / [ (Us00+F U000, ) drie [ Utr)olto )
2M+Ar 2M+Ar

According to Proposition _ > A2(Ua, ¢) — 0 when At — 0. Furthermore, it a
standard matter that, since the sequence (wj;) is equidistributed and thanks to the
approximation result in Lemma , we have Y, A} (Ua, ¢) — 0 when At — 0, and
therefore A(Ua, ¢) — 0 when At, Ar — 0.

Step 1b. Uniform total variation bound. Next, in order to study globally the
total variation of the solution, we introduce the notion of mesh curves J, that is,
polygonal curves connecting the points (¢;,7; j11) (with i + j even). Observe that J
separates [to, +00) X [2M,400) into two parts: the part including the initial time
t = ty denoted by J— and the other part J+. We call J, an immediate successor of
Jp if the every point of J, is either on J; or in the part J;+.

For the mesh point, set
Ua(ti,mj41) = Ui g

Denote by Ui,jﬂ as the solution of classical Riemann problem at the mesh point
(ti,7j41). We define the total variation L(J) of J as

- ZS(Ui—Lj? ULj—l) —|— g(Ui—Lj? Ui,j—i—l)- (1811)

Observe that we can divide the (¢,7) plane as a set of diamonds <;; centered at
(tiy7;), i + j even with vertices (t;_1,7i-1;), (ti;7ij-1), (ti;75j41). In particular, for
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7 = 1,1 odd, we only have a half diamond cut by the straightline » = ry.

Now, consider a diamond <; ;, with i 4+ j even, and define
E1(Ciy) = E(Ui-1: Uijor) + EUin15, Usi)

and

A~ A

E(Ciy) = EWUij-1,Uitrj) + E(Ui i1, Uigr)

which represent the total strength of waves entering and leaving the diamond <, ;,
respectively. We write ©; 1, with ¢ odd, for the right-hand part of the diamond <, ;
cut by the straightline r = 2M. We define similarly

A~

51(%,1) = 5(U171,1, Ui,2)7 52(>i,1) = E<Ui,27 ﬁi+1,1)

which represent the total wave strength entering and leaving ©; 1, respectively. We
now consider the total variation contribution“between” the mesh curve J; and its
immediate successor Js.

We now claim that: Let J; and J; be two mesh curves such that J; is an immediate
successor of J;. Then there exists a constant C; > 0 such that the total variation on
the mesh curves satisfies

L(Jy) — L(Jy) < CL(At + Ar)L(Jy).

Namely, suppose the mesh curve J; is sandwiched between the time levels ¢;,_; and

t;. In view of (|1.8.11]), we have

L(JQ) — L(Jl) = 52(l>i’1) — 81(l>i71) + Z 82(<>i,j> — 81(<>i,j).

7+ j even

Now consider the difference £(<; ;) — £1(<5):

Ex(Cig) — E1(Ciy) =EWUij1,Uisr ) + EWUisinr, Uipry) — EWUij1, Ui ji1)

+ EWUij-1,Uijs1) — EUiz1,5,Uij—1) — EUiz1,5, Ui j41).

According to Proposition [1.8.2] we have the inequality of the wave strength:

A

EUi1,4, Ui j-1) — EUi-1 5, Ui,j+1) - E(Ui,j—la ﬁi,j—i—l) < C1AT5(ﬁi,j—1, ﬁi,j+1)~
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Using Lemma [1.7.5, we have

EUsj1,Uis1j) + EUigsr, Uirryg) — EUij-1, Ui jin)
<CE (U1, Ui (Ui = Ui gl + [Uicr g = Uica )

+ C1(JUi—1j — Uit 4 + |Ui71,j - ﬁiJrl,j)
SclAt<5(Ui—1,j> Uijr) + EUij-1, Ui,jJrl))

for some constants C; which need not be the same at each occurence. Therefore, we
find

E(Oij) —E1(Oi ;) < Ci(At+ Ar) (5(U¢71,j, Ui,jJrl) +E(Ui1, 0i+1,j)>a

and a similar analysis gives Ea(>1) — E1(>i1) < C1 (At + Ar)g(lj,-,g, Ui—11).

Step 1c. Convergence property. Let T' > t; be given, and let Jy, J; be the mesh
curves lying below and above any other mesh curves between ty <t < T', respectively.
Thanks to Step 2, there exist uniform constants Csy, C'5 > 0 such that

L(Jp) < Cse@ T L( ).

We now claim that for small Ar, the total variation of the approximate solver In pa
on the mesh curve J can be regarded equivalent as the total wave strength L(.J). In
fact, according to construction, for the mesh curve between (¢;,t;41),

TV (Inpa(J)) = L(J)| = Z TV 40— (I pa (1))
=0(1) > Ar|lnpa(ti,rjee—) — Inpa(ti,rj+)] < O(1)ArL(J).

©+ j even

Letting At, Ar — 0, we see that TVians4s,1] ( In p(T, )) < C3TVianrts,1) <ln p0> eC2(T~to)
for any given 0 > 0 and L > 0. We have arrived at our main result stated in Theo-

rem .61 O

Step 2. The well-balanced property for smooth steady states. 2. We proceed
by induction and assume that the numerical solution coincides with the steady state
solution within the time interval ¢,_; < t < t;, and we consider the next interval
t; <t < tir1. In our method, the approximate solution is determined in two steps:
(i) First of all, we must solve the steady state problem at the time ¢ = ¢;; (ii) Second,
we must solve the generalized Riemann problem on the interval ¢; <t < ¢;,;. Since
the initial data is a smooth steady state solution, it is clear that Step (i) is exact. On
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the other hand, Lemma provides us a control of the error associated with the
generalized Riemann problem and implies that Step (ii) is also exact. This completes
our argument.

Step 3. The well-balanced property for discontinuous steady states. We
start from the initial data Ua(to,:) = Up at some time to. Writing Uy (") =: U?
and Ug(rf) =: U%, we have either U% € S7*(U?) (if 9] > k) or UY € S5 (UY) (if
|v%| > k). For definiteness, we assume that UY € S5 (UR). Consider the solution
for the time interval ¢y < ¢t < t;, and consider the unique even number j, such that
7% € (1j,_1,7jy11]- We distinguish between two cases:

Case 1 # r;,. The solution is a steady state solution with a shock at r = r".

Case 1! = Tj,- Wee solve the generalized Riemann problem at r = r?. According to
our construction, for all ty < t < t;, the solution is defined by

Ur(r), r € (2M,s3(t—to) +17),
Ur(r), re (s9(t —to) + 1% +00),

UA(t,T) = {

where

0 32(U2> UI%)? rt = Tjo>

Sy 1=
2 0, 4T,

To extend the construction, we solve the differential equation (|1.5.4]) iand obtain the

steady state solution at the time level ¢t = t;. We write 7% := sJAt + rf. Thanks

to the stability condition (1.7.25), we have 1 € 759, Tjo+1]. The definition of the
approximate solution depends on the position of 7y j, = rj, +w;. We have

UL(T>7 re <2M7Tj1)7
UR<T)a e (Tj1,+00),

UA(tl,T) = {

where r;, = TjO*Sgn(Tl,jO _rf)

By induction, we find the solution defined on the time interval [t;,t;11):

. We then solve the generalized Riemann problem at 7.

Ur(r), re (2M,si(t —to) +rf+1),

) 1.8.12
Ugr(r), re (S’Q(t—to)+rf+1,+oo), ( )

UA(t,T) = {

where s} is (randomly) determined by the sequence (w;). This completes the proof.
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1.9 Remarks on special models

Stiff fluids on a Schwarzschild background

Consider now the model corresponding to the pressure-law p = E%p, so that the
sound speed coincides with the light speed % That is, consider the Euler model
for stiff fluid flows on a Schwarzschild background .# (e, ,m) presented in (1.3.5)
Recall that it admits two real and distinct eigenvalues A = —(1 — 2M/r)/e and
w=(1—2M/r) e. They satisfy —% <A <0< pu<1/e and, in the limit r — +o0,
we have A,y — i%. According to Proposition @, the two characteristics fields
are both linearly degenerate. Denote by D;?(U.) and D§ (Ug) the 1- and 2-contact
discontinuities (that is, the notions of shock and rarefaction coincide in this case)
corresponding to any given constant states Uy and Upg respectively.

Lemma 1.9.1 (Riemann problem for stiff fluids). Consider the Euler model 4 (e, *,m)
m . Given any constant states Up,Upg, there exists a unique intermediate
Upr, such that Up, can be connected to Uy; by a contact discontinuity with the speed
—(1 —=2M/r)/e, while Uy is connected to Ur by a contact discontinuity with speed
(1 —2M/r)/e.

Unlike the case when the sound speed is strictly less than the light speed, in this

linearly degenerate regime, steady state solutions are always defined globally. The
system for steady state solutions reads

d pu
dr (T(T )1 — 621)2) 0

1+ e%v? r—2M1+ e*? (r—2M)?
2

r 1— ez’ r
Lemma 1.9.2. By imposing an initial condition p(ro) = po and v(rg) = vg, the
system (1.9.1)) has a unique global smooth solution given explicitly by

o(r) = (1 B rée%%) (ro —2M)r oo o(r) = ﬁvo. (1.92)

(1.9.1)

ri ro(r —2M)(1 — €2v?)

Proof. By taking k = 1/e in ((1.5.3)), we obtain

pv Povo
r(r— 2M)—1 i ro(ro — 2M)—1 —
2M P ro—2M  po
(1 — ) = )
r /1—¢e*? ro 11— €2}

which we can solve explicitly for the density and velocity functions. O
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In view of the classical Riemann solver and the explicit form of the steady state
solutions, it is now straighforward to follow all the steps of the general proof and check
the following result. Our main observation here is that all of our earlier estimates
when the sound speed is strictly less than the light speed are uniform when the sound
speed approaches the light speed.

Theorem 1.9.3 (Stiff fluid flows on a Schwarzschild background). Consider the Euler
model . (e, %, m) for stiff fluids evolving on a Schwarzschild background, as presented
in (1.3.5). Given any initial density py = po(r) > 0 and velocity v = vy(r) defined for
r > 2M and satisfying (for all § > L > 0)

1—ev
TViort+6400) (10 p0) + TVi2rs+6400) (1ﬂ 1 0) < +o00,
+ €vg

there exists a weak solution p = p(t,r) and v = v(t, r) satisfying the prescribed initial
data at some given time t,, together with the following bound on every time interval
[to, T] and for all 6, L > 0

te(to,T)

1 —ev(t,-
sSup <TV[2M+5,+oo) ( In p(t, )) + TVi2rr+6,400) (hl #>> < +00.

Non-relativistic Euler equations on a Schwarzschild background

In this section, we state the existence theory for the non-relativistic Euler system
(11.3.4):
ou(r?p) + 0,(r*pv) = 0,

Oi(r*pv) + 0, (7“2(1;2 + k2)p> —2k*pr +mp = 0.

For (|1.3.4]), we have the eigenvalues A = v — k and u = v + k and a pair of Riemann
invariants: w = —v — klnp and 2 = —v + klnp. We can also give the form of the
1-shock and the 2-shock associated with the constant states Uy and Ug respectively:

7 = — VL = — £_ L
T 193
Sy (Ug) = {v—szk(\/sz— @), p<pR}.

A direct calculation gives the the rarefaction curves issuing from the constant states
Uy, and Upg respectively:

R?(Umz{%z(p%)k, p>pr. R;<U3>={é=(p%)k, p<pr},
(1.9.4)
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In view of Proposition[I.6.4] we can solve the Riemann problem of the non-relativistic
Euler equations with the help of ((1.9.3) and ((1.9.4). Similarly as the case, the gen-
eralized Riemann problem requires a global steady state solution.

Let p = p(r;7r0, po, vo) and v = v(r; 19, po, vo) be a smooth steady state solution
with sonic point of Euler equation (1.4.6) on =. Recall the function P in ((1.4.12))
which determines the regime of the solutions:

m? 1, 5, 2m

3
P S T R O B0
(o, vo) p T 4k3rdvg + 2k2 (v To )
Let ri be the unique point such that P(rj, ﬁ—f) = 0 where v = v(r};r9,vg), and
1

introduce the regions

For this non-relativistic model, we can repeat our construction above.

Theorem 1.9.4. Consider the family of non-relativistic steady flows on Schwarzschild
spacetime with the constant sound speed k& > 0. Given arbitrary density p, > 0, ve-
locity vy > 0, and radius 7o > 0, the boundary value problem of the steady Euler
system ([1.4.6) with p(r¢) = po and v(rg) = vy, admits a global weak solution of

(1.4.6) defined all r € (0, 400).

Observe the the solutions are now defined in the whole half-line and that the
eigenvalue A, o are not vanishing at » = 0. By considering a domain r > r;, for a
given boundary radius r, > 0 and imposing the boundary condition v = 0 at r = ry, it
is conceivable that the following statement could be established with our generalized
random choice method.

Theorem 1.9.5 (Non-relativistic fluid flows on a Schwarzschild background). For
the non-relativistic Euler system on a Schwarzschild background posed on
r > 1, and given any initial data py = po(r) > 0 and vy = vg(r) and any boundary
data p, = pp(t) at r = 1y, satisfying for any 7' > ¢

T‘/[rb,Jroo) ( In pO) + T‘/[rb,Jroo) (UO) + T‘/[to,T) (hl Pb) < +00,

then there exists a weak solution p = p(t,r) and v = v(¢,r) defined for all ¢ > ¢, and
r > 1, such that for all T' >

sup (TWrb,+m)] ( In p<t7 )) + T‘/[rb,Jroo) (U(ta ))) < +00.

te(to,T)
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Fluid flows in Minkowski spacetime

When the black hole mass M — 0 vanishes, the Schwarzschild metric approaches
Minkowski metric and we find the Euler system (1.3.8)):, that is,

1+ e*k?0? 14 €k
o <1_—P) o <1_—f’ =0
(1.9.5)

1+ 22 v? + k2
O (—1 2 pv) + O, (—1 — 6%2/) =0.

We recover also the standard existence theory [44] for this model.

Theorem 1.9.6 (Fluid flows in Minkowski spacetime). Given any initial data py =
po(r) > 0 and |vg| = |vg(r)| < 1/€ defined for r > 0 and satisfying

1 —evy
TV (1 T
V(Inpo) + V<1+€UO) < 400,

then there exists a corresponding weak solution p = p(t,r) and v = v(¢,r) to (1.9.5)),
which is defined for all ¢t > ty and all r > 0 with

1 —ev(t,-)
su TV (Inp(t,-) +TV| In ———= < +o00.
te[tol?T] ( ( p( )) ( 1+ ev(t’ )))
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08 2.1. Introduction

2.1 Introduction

This is the second part of a series of papers [31, B3] devoted to fluid flows
with bounded total variation, evolving the domain of outer communication of a
Schwarzschild spacetime. This work is motivated by a broader set of relativistic
fluid problems involving shock wave phenomena; see LeFloch [24]. In the present
paper, we investigate a simplified, Burgers-type model defined as follows.

Recall that the inviscid Burgers equation is the hyperbolic conservation law

2
O + ax(%> —0, t>0z€R, (2.1.1)

and has played a central role in the development of mathematical techniques suit-
able to handle shock wave solutions to nonlinear hyperbolic problems. Moreover, the
existence of weak solutions to the initial value problem can be established via the ran-
dom choice method, which provides an (essentially) piecewise constant approximation
based on (explicit) solutions to the Riemann problem

<0
volx) = {”L o N (2.1.2)
Vr X > U.

in which vp,vgr are arbitrary constants. Furthermore, recall also that the Burg-
ers equation can be formally derived from the Euler system for compressible fluids
(without pressure term):

Op + 0:(pv) =0, di(pv) + 05 (pv*) = 0, (2.1.3)

in which p > 0 denotes the fluid density and v € (—o0,+00) its velocity. (See the
textbooks [9] I8, 21] for background material.)

Our main objective here is to investigate relativistic fluid flows on the domain
of outer communication of a Schwarzschild black hole spacetime. This curved back-
ground is one of the simplest solutions to the Einstein equations and correspond to
the geometry determined by a massive body of mass M > 0 surrounded by a vac-
uum region. In Schwarzschild coordinates, denoted (2°, 21, 2% 23) = (ct,r, 0, ) (the
parameter ¢ € [0, +o0] being the speed), the metric of interest reads

2M 2MN -1
g = —(1 - —>02 dt* + (1 - —> dr® + r*(d6” + sin® 0 dp?) (2.1.4)
r r

with ¢ € [0, +00) and 7 € (2M, +00), where (df? + sin® Odp?) is the canonical metric
on the two-sphere S? (with 6 € [0,27) and ¢ € [0,27)). Note that there is an
(apparent) singularity at r = 2M, which could be removed by changing to other
(much more involved) coordinates. As we explain below, from the Euler system on
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this curved background, we are able to formally derive a Burgers-type equation which

reads
v v -1/ |
o =z 2 (2(1 - 2M/r>> S0 A )

v=uo(t,r) € [-1/€,1/€,

which we refer to as the relativistic Burgers equation on a Schwarzschild
black hole. Obviously, when the mass vanishes, we recover the standard Burgers
equation. Observe that the equation ([2.1.5)) is singular when r approaches the black
hole horizon 2M. The constant values 41/e are trivial steady states of the model.
Our purpose in the present paper is to provide a full treatment of the initial value
problem associated with this equation. We introduce suitable notions of weighted
total variation functional and weighted L' norm for this equation, and establish
a well-posed theory in a class of entropy weak solutions and, next, analyze their
time-asymptotic behavior. Our proof are inspired from a large body of works and
techniques pioneered by Dafermos and Hsiao [§], Dafermos [9], Glimm [I3], and
Liu [38, 39, 40]. Our main motivation comes from the work by Glimm, Marshall,
and Plohr [14] who analyzed quasi-one-dimensional gas flows in nozzle with variable
cross-section, solved the generalized Riemann problem, and proposed a random choice
method.

Our main results are as follows. First of all, we solve the generalized Riemann
problem when the initial data, by definition, consists of two steady state solutions
separated by a jump discontinuity (cf. Section [2.3| below). The generalized Riemann
problem were treated first by Li and co-authors [25] 35] 36 37]; see also [26].

Theorem 2.1.1 (Well-posedness theory for the generalized Riemann problem). Given
any two steady state solutions (which might not be defined on the whole interval
(2M, +00)) initially separated by a jump discontinuity, there exists a unique solu-
tion to the generalized Riemann problem associated with the Burgers equation on
a Schwarzschild background (2.1.5)). Either this solution contains a shock wave and
when ¢t — +o0:

e The shock location asymptotically approaches the black hole horizon r = 2M
if and only if the shock speed is initially negative.

e The shock location asymptotically approaches spacelike infinity » = +o0 if and
only if the shock speed is initially positive.

e Alternatively, the shock location remains fixed for all times if and only if the
shock speed vanishes initially.

Or else this solution contains a rarefaction wave and ¢t — +o0:

e The rarefaction fan asymptotically approaches the black hole horizon r = 2M
if and only if it moves toward the black hole initially.
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e The rarefaction fan asymptotically approaches spacelike infinity r» = +oc if and
only if it moves away from the black hole initially.

e The left-hand location of the rarefaction fan asymptotically approaches the
black hole horizon r = 2M, while the right-hand location of the rarefaction fan
approaches spacelike infinity » = +oc if and only if the left-hand speed of the
fan is initially negative while its right-hand speed is initially positive.

We then construct weak solutions whose weighted bounded variation (denoted by
TV and defined in (2.5.1)) below) is finite.

Theorem 2.1.2 (Existence theory for the initial value problem). Given any initial
data whose weighted bounded total variation is finite, the Burgers equation on a
Schwarzschild background admits an entropy weak solution defined for all
t > 0 and r > 2M. This solution is obtained as the limit of a sequence of approximate
solutions constructed via a generalized version of the random choice method based
on the generalized Riemann solver provided by Theorem and the weighted total
variation of these (approximate) solutions on (2M, 4+00) is uniformly bounded for all
times.

Finally, we are also able to determine the global evolution of arbitrary perturba-
tions of two steady state solutions separated by a jump discontinuity. The proof of
the theorem below extends a method poroposed by Liu [39] in 1978 for the standard
Burgers equation.

Theorem 2.1.3 (Time-asymptotics of perturbed steady state solutions). Let v =
v(t,r) be a solution to the Burgers equation on a Schwarzschild background (2.1.5))
whose initial data vy = vo(r) has finite weighted total variation and satisfies

solr) = {v*(r), 2M <r <, (2.1.6)

Vi (1), 7 > T

where 2M < r, < 1. and vy, v, are steady state solutions defined on (2M,r,) and
(2M, +00), respectively.

o Ifv.(r) > v, (r) for all r in their domains of definition, then the following holds:

— If, moreover, v, > v,, > 0, then there exists a time t, € (0,4+00) from
which the solution is exactly a shock wave connecting the left-hand solution
v, and the right-hand solution v,,, while the shock curve asymptotically
to spatial infinity r = +o0.

— If, moreover, v, > 0 > v,,, then there exists a time ¢, € (0,400) from
which the solution is exactly a shock wave connecting the left-hand solution
v, and the right-hand solution v,,:
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(7) If vy + v > 0, then the shock location asymptotically approaches
spatial infinity.

(13) If vy + v < 0, then the shock location asymptotically approaches the
black hole horizon.

(1ii) If v, = —v,4, then the shock location is fixed for all times t > .

— If, moreover, v,, < v, < 0, then the solution v asymptotically (that is,
in the limit ¢ — -+o0o0 but not in a finite time) approaches the solution
consisting of a static shock connecting the solutions v, and v,, and, in
particular, and the shock location asymptotically approaches the black
hole horizon r = 2M.

o If v,(r) < vy(r) for all 7 in their domains of definition, then one can introduce
a generalized N-wave N = N(t,r) consisting of a rarefaction wave connecting
v, and v,, such that:

— In the rarefaction fan region bounded by its two edges within the N-wave
solution, one has |v(t,r) — N(¢,r)] = O(t™1).

(i) If v, > 0, the rarefaction fan tend to spatial infinity.

(ii) If v. < 0 < v, then the left-hand edge of the rarefaction fan ap-
proaches the black hole horizon while the right-hand edge of the rar-
efaction fan converges to space infinity.

(iii) If v.. < 0, the rarefaction fan tend to the black hole horizon.

— In the region supporting of the evolution of the initial data (between the
edge of the N-wave and suitably defined generalized characteristics), one

has |[v(t,r) — N(t,r)| = O@t~1/?).

— In the remaining spacetime region, one has v(t,r) = N(t¢,r).

o If v.(r) = vw(r) for all r € (2M,+00), then one has |v(t,r) — v.(t,r)| =
O(t=1/2).

An outline of this paper is as follows. In Section we derive the Burgers model
of interest from the relativistic Euler equations for a fluid evolving on the domain of
outer communication of a Schwarzschild black hole. In in Section [2.3 we study the
class of (smooth) steady state solutions: we identify two regimes of interest for the
amplitude of the solutions (large velocities and small velocities). Next, in Section
we solve the generalized Riemann problem and are able to provide fully explicit
formulas, based on curved shock waves and rarefaction waves taking into account
the curved Schwarzschild geometry. Of course, in our construction, we also must
incorporate suitable versions of the Rankine-Hugoniot condition at shocks and Lax’s
shock admissibility inequalities. This analysis leads us to a proof of Theorem [2.1.1]



102 2.2. The relativistic Burgers model on a Schwarzschild background

The total variation of solutions to may increase in time, in constrast with
solutions to the standard Burgers model . In Section , we find it convenient
to introduce a weighted total variation functional. Before we can proceed and tackle
the general existence theory, it turns out that a multiple version of the generalized
Riemann problem must also be solved and this is done in Section when the initial
problem with three steady states separated with two discontinuities is analyzed.

Based on the results of previous sections and by suitably defining a random choice
method adapted to ([2.1.5]), we are then in position to establish the existence theory in
Theorem [2.1.2] We construct a sequence of approximate solutions and we prove that
the weighted total variation of these solutions is non-increasing in time. This leads
us to the conclusion that this sequence approaches a weak solution of our Burgers
model.

We finally provide two additional results: in Section the convergence of the
vanishing viscosity method is proven, while in section we determine the time-
asymptotics of weak solutions and thus establish Theorem [2.1.3]

2.2 The relativistic Burgers model on a Schwarzschild
background

Derivation from the Euler equations

We start from the Euler equations expressed on the spacetime of interest
Vao(T§ (p,u)) =0, (2.2.1)

where V represents the Levi-Civita connection associated with the Schwarzschild
metric (2.1.4) while the energy-momentum tensor reads, for perfect fluid flows without
pressure term,

T§ (p,u) = pc*uug. (2.2.2)

The main unknowns are the fluid density p : M +— (0,400) and the velocity field
u = (u®), normalized to be unit and future-oriented, that is, u®u, = —1 with u® > 0.
The parameter ¢ € [0,+00) represents the speed of light and we also set € := 1/c.
We assume that the fluid flow is radially symmetric with v> = u* = 0, and the

normalization condition on the velocity is equivalent to —1 = (1 — m) (cu®)? + (1 —

T

T

such that

-1
w) (u')%. We find it convenient to introduce the scalar velocity v € (—1/¢,1/¢)

1 ul
(1—2M/r)ud’

(2.2.3)
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Under the above assumption, we can express the Euler system on a Schwarzschild

background as
2 P pu _
O (7’ 1 op 6202) + 0, (r(r — 2]\4)—1 — 6202> =0,

8t(r(r—2M) P >+0T((r—2M)2p—1)2)

1 — €22 1 — €202
3M pv? M p
o) o) —
, (T ) 1— 202 e2r (T ) 1 — 22

Then, by writing

2 2
pv r°p 2M r°p 2M
@(T(“W)m) :at<1_62vz)(1— )t T (1o

o, ((r - 2M)2p—vz)

1 — €292

B pv 2M r(r—2M)pv 2M
= T(T(T_QM)1—62U2><1_T>U+—1—E2’U2 ar (1—T>'U 5

we can formally combine the two equations in the Euler system above and we obtain

2 _ — 2 —
r°p (1_Qi\4>8tv+r(r 2M)pvaT<(1_ﬂ>U> _3M (r—2M)pv® M (r—2M)p

1 — €292 1 — €292 r r 1 — €292 e2r 1 —e2?

or

O + vaT<<1 — %>U) = 3MU2 M

r 2 e
which we refer to here as the Burgers model on a Schwarzschild background. An
equivalent formulation is

ow+ (1- 20, (9) = M2 L) oo (2.2.4)
as well as )
oy (r*v) + 0, <r(7“ — 2M)%> =rv® — eM?’ r > 2M. (2.2.5)

For convenience in the presentation, the unknown will be sought in the range |v| < 1/e
(rather than in the corresponding open interval).

The conservation form

The model above is not naturally expressed as a conservation law. Yet, by direct
calculations, one can check that (3.1.2)) admits the conservation form (2.1.5)) stated
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in the introduction. Let us also repeat that by formally letting the black hole mass
M to vanish, we recover the standard Burgers equation (3.3.1]). It is also clear that
v = +1/e are two trivial solutions to (2.1.5)). Note finally the the speed of propagation

associated with (2.1.5)) is
2M

Ao, r) = <1 — —)v, (2.2.6)
r
which vanishes on the horizon. In the coordinates under consideration for our descrip-
tion of the Schwarzschild geometry, the fluid appears to be at rest on the horizon.
The propagation speed approaches zero as one approaches r = 2M. This shows
that no boundary condition is necessary at » = 2M when posing the initial (and

boundary) value problem.

2.3 Existence and properties of steady state solu-
tions

Critical steady state solutions

Steady state solutions to the relativistic Burgers model ({2.1.5)) are given by

v?—1/¢
o, (W) —0. (2.3.1)

While the two constants v = £1/¢ are solutions, no other constant value provides us
with a solution.

Given a radius r = ry and a velocity vy € (—1/¢,1/€), we denote by v, = v.(r)
the corresponding steady state solution satisfying the (initial) condition v, (rg) = vo.
The ordinary differential equation (2.3.1]) shows us that

v:—-1/  vj—1/é (2.3.2)
1—2M/r 1—2M/rg o
or, equivalently,
1 2MN 1/€* — v}
2 0
-5 -(1-=2) . 2.3.3
T < r )1 —2M/rg ( )

From the initial condition, we can introduce the positive constant

[ 1/e2 — 3
K*(TO,U()) = 112—]\4/7(20 (234)

In view of (2.3.3)), we see that whether or not a solution can be defined globally within
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the interval (20, +00) depends on the sign of the constant (K, — 1/¢). Indeed, if
K. > 1/e holds, it is possible that the term 1/¢* — (1 — 2M /r)K? becomes negative
at some sufficiently large radius. A steady state solution might therefore stop to be
defined when r is too large.

A critical case of interest is obtained when K, (7o, vg) equals % or, equivalently,
when the condition e?v? = 2M/ry holds. Consequently, let us introduce a pair of
critical steady state solutions denoted by v = vE (1) and defined as

el (r) = £/ —. (2.3.5)

The graph of the critical steady state solutions separate the range of velocities [—% 1]

into three disjoint regions: [ — L, v (r)], (v (r),vf(r)), [vf(r),1]. We define the
domain of large velocities as

L= {(r,v)/ 1 <v<uv,(r) or vi(r)<v< 1}, (2.3.6)

€ €

and the domain of small velocities as

S = {(T,v) /v*_*(r) <wv< v:’*(r))} (2.3.7)

o |

Domain of large velocites

1 [am
€ T

Domain of small velocites

2M r

_1 j2M
€ T

Domain of large velocites

Figure 2.3.1: Critical steady state solutions and domains of large/small velocities.
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Properties of the steady state solutions

We have vZ > vE (rg)? if and only if the condition K, (ry,ve) > 1/€ holds. Hence,
the position of a given point (r9,v) (in £ or &) determines whether a steady state
solution can be globally defined in the full domain (2M, 400).

Lemma 2.3.1 (Regime of large velocities) For a given velocity vy at r = rog > 2M
such that v, (ro) < |vo < 2 where v/, is the critical curve given in (2.3.5)), the static
relativistic Burgers model admzts a unique smooth solution v, = v.(r) € L
where L is the domain of large velocz’ties , given as

oM
—) r > 2MM. (2.3.8)

€v.(r) = sgn(vo)\/l — K2 <1 -

r
Furthermore, in the domain of definition (2M,+00), the following monotonicity and
the convexity properties hold:

o Ifvy > 0, the steady state solution v, = v.(r) is decreasing and conver.

o [fvy <0, the steady state solution v, = v.(r) is increasing and concave.

The behavior near the horizon or near space infinity is given by

1 1
. — —_— 1 = ™ 2
i v.(r) = sgn(un) ~ Jim v, () = sgn(vy) 5~ K%

Proof. Since K, < 1/¢ always holds, v > 0 for all » > 2M, the steady state solution
can be defined globally and it remains in the domain £ given by ([2.3.8). Furthermore,
by the formula of the steady state solution, its derivative reads d”* = 2%5(3 Hence,
the steady state solution is decreasing with respect to r on (2M +00) when vy > 0
while is increasing when vy < 0. The values at the two limits r = 2M and r = +o00

can be directly obtained by ([2.3.8)) as well. Moreover, we have

Pv,  2MEK?
Ve - 2R 91 - R 1 3MER?). (2.3.9)

dr? riv3

Since 7 > 2M and 1 — K2 > 0, d;;;* has the same sign as the velocity v,, which

gives the convexity of the steady state solutions in the domain (2M, 400). O

We now turn to the case where the given point (rg, vg) lies in S.

Lemma 2.3.2 (Regime of small velocities). Let [vo| < % be a velocity and 1o be

a given radius such that vy € (v,,(ro), v}, (r0)) where vy =* v,.(r) are the critical

) Tk

steady state curves (2.3.5)). Then the steady state solution v, = v.(r) of the relativistic
Burgers equation (2.3.1]) belongs to S with S the domain of small velocities ([2.3.7))
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and this solution is defined on the interval (2M, %) where r® is the vanishing velocity
radius:

o 2Me* K2
K21

Moreover, in the domain of definition, the following monotonicity properties hold:

(2.3.10)

o [fvy > 0, the steady state solution v, is decreasing.

o [fvy <0, the steady state solution v, is increasing.

The behavior near the horizon or near the vanishing velocity radius is given by

: 1 : . .
7"1—1>r2nM v.(r) = sgn(’uo)g, 7nh_)r?h v.(r) =0, Thjﬁ = = —sgn(vp)oo.

Moreover, the following convexity properties hold:

o When ! < K, <2, the solution v, is convex on (2M,1%) and concave on (r?,r)
if vo > 0, while it is concave on (2M, %) and conver on (r*, %) if vg < 0. Here,
the radius r = r* < % is given by

M K?

.
TRz 1)

(2.3.11)

e When K, > %, the solution v, is concave on (2M,r%) if vg > 0, while it is
convez on (2M,r%) if vy < 0.

Proof. Since K, > 1/¢, we have 1 — ¢2K2(1 — 2M/r) < 0 when 7 > r%. In particular,
it vanishes at r = rf. Therefore, the definition of the steady state solution can not
be extended out of the space interval (2M,7%) and v,(r) stays in the domain S for
all 2M < r < r%. On the other hand, the monotonicity of the steady state solution is
similar as the result given in Lemma on the corresponding domain of definition.
To consider the convexity, we use to consider the second-order derivative of
the velocity, that is,

We see that if K, > 2, the inequality 2(1 — K?)r 4+ 3Me*K? < 0 holds for all

r > 2M. Otherwise, the function 2(1 — e2K?)r + 3Me*K? will change signs at the

radius 2M < rf = 2:()’61\24;—2521) < 7. This provides us with the convexity properties. [
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Main conclusions for this section

We summarize our results as follows.

Theorem 2.3.3 (The family of smooth steady states). Consider the family of static
solutions to the Burgers model on a Schwarzschild background . Then, for
any given radius rqg > 2M and velocity vy € [—%, %], there exists a unique smooth
steady state solution v, = v,(r) satisfying together with the initial condition
v«(r9) = vp such that the velocity satisfies sgn(v,) = sgn(vg) on the corresponding

domains of definition. Furthermore, one can distinguish between two cases:

e Regime of large velocities. If 0 < K,(ro,v9) < + in which the parameter K, =
K. (ro,v9) was introduced in (3.5.8) then the steady state solution is defined on
the whole space interval (2M, +00).

e Regime of small velocities. If K, (rg,vg) > %, then the solution is defined on
(2M,7%) with » = 7% given by (2.3.10) which is refered to as the vanishing
velocity radius.

Remark 2.3.4. For a steady state solution v, = v.(r) to the relativistic Burgers
model with v,(rg) = vo, the space interval (2M,ry) is always contained in the
domain of definition, regardless of the value of the velocity. In other words, we can
at least guarantee the definition of a steady state solution at the left-hand side of a
given point r = rq. This is an tmportant property which will be central in order to be
able to define our generalized Glimm scheme.

steady state solutions

2 4 6 8 10

Figure 2.3.2: Plot of steady states with €2 = 0.1, M = 1 and different values of K,.

To end this section, we provide a property involving two steady state solutions.
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Proposition 2.3.5 (Comparing two steady state solutions). Let vy, vy be two smooth
steady state solutions solvig the equation (2.3.1)).

o The sign of v1 — vy does not change for r in the relevant domain of definition
and the difference |v1 — vo| is decreasing with respect to r when vivy < 0, and
increasing with respect to r when vivy > 0.

e The sign of the sum vy 4+ vy does not change for r in the relevant domain of
definition and the absolute value of the sum |vy + vo| is decreasing with respect
to r when vivy > 0, and increasing with respect to r when vivy < 0.

Proof. In view of the explicit formula ([2.3.8)), we write the two steady state solutions
explicitly as

2M

2M>
T b

r

vi(r) = sgn(vl)\/l — 2K <1 ), vo(r) = sgn(vg)\/l — 2K2? (1
where K}, K? are two constants. Without loss of generality, suppose that there exists
a radius 19 > 2M such that vi(rg) > wva(rg). Then, it is direct that v; > v in the
domain of definition following from the explicit formula of the two solutions. From
the ordinary differential equation ([2.3.1]), we obtain

d 1 M 1,1 1 1 M 1
dr (v1=2) 1—2M/r r? <(Ul v2) €2 <vl v2>> 1—2M/r r? (01 UQ)( +€2U1’02)

Then, d%(vl — vg) > 0 if vy, vy have the same sign while d%(vl — v9) < 0 if v1, vy have
different signs. We thus have the monotonity of the difference between two steady
state solutions. On the other hand, in order to establish the result about the sum of
two solutions, we replace vy by —wvs in the previous argument. O

2.4 The generalized Riemann problem

Preliminaries

Before we address the general initial value problem for the relativistic Burgers
equation on the Schwarzschild background with a given initial condition, we start by
analyzing the generalized Riemann problem corresponding to the initial condition

solr) = vp(r) T <r<r, (2.41)
0 vr(r) ro<r<r, o

consisting of two steady state solutions vy, vr separated by a discontinuity at some
radius r = 19 > 2M: We will use the notation vy, () = v?, vg(re) = v% and v (7) =
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Uz, () = Ug. Our main objective in the present section is to prove Theorem [2.1.1]

Note that for a standard Riemann problem , associated with two
constant states, the solution only depends on & = (r — r()/t. The shock wave curves
and particle trajectories are all straight lines. However, under the influence of the
Schwarzschild metric geometry, these lines will be bended when time passes. In this
section, we would like to give an exact solution of the Burgers equation, taking into
account the curvature effect.

In view of ([2.3.8), we have

uL(r) = sgn<v2>\/ G- kP(1-20) ) = sgn(v%>\/ 5 - Kr(1-20),

r r

where the constants KX, KF > 0 are given as in (3.5.8). To classify the types of
waves, we introduce

o (1) = {U(t), vy > vp, o (1) = {a(t), V) > vp, (2.42)

or(t), v% >y, or(t), v% >l
By definition, the function o, = o, (t) satisfies the equation
Rp(or(t);vr) — Rr(ro;vr) =,
where Rr = Rp(r;v,) is

1 1
Rr(r;v,) := <2Me(— - K2)3/2 In(r —2M)

sgn(v*) (1/62 _ K2)3/2 €2

_QM(l_KﬂW% €T¢1—J@<L—§%>+QMﬁwﬂﬁ>

(V——WV WQLE%)

R e e (R P )
(2.4.3)

with K2 = i/_ S ;jﬁ The function o = o(t) is given similarly with now

Rs(o(t);vr,vr) — Rs(ro;ve, vr) = t,
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where Rg = Rg(r;vs, U.) s given as

Rs(7; vy, V4s) =sgn(vy + U**)—KQ

(H(VE w03 el )
_M(i_gw (m \/——KQ\/ ~ K2, 1—¥)+(M—T)Kf*+§2)
+1n((r_2—gM) l—w(l_%) K2>)

4 2M
M@ e R

- r—2M \/__K2 1_¥>_K3)>>

: 2 _ 1/e—vi 2 _ 1/e—v,
with K7 = =30/ and K7, = yyyr

(2.4.4)

We call (cr_ (1), a+(t)) the rarefaction region, which of course is empty if o_(t) =
o (t) =o(t).

Lemma 2.4.1 (The rarefaction region). The curves o, = o4(t),0_ = o_(t) are
uniquely defined and their derivatives o', (t), o’ (t) are bounded for all t > 0. More-
over, we have the inequality o_(t) < o, (t) where the equality holds if and only if
0 < 0

Proof. By the definition of Rg in (2.4.3),

o = senlon) (1= 25) (5 - 622 (1= 2)).

r €2 r

which does not change signs in the domain of the definition of left steady state vy.
Hence, the monotonicity of Rp admits a unique function o, = o (t) for all ¢ > 0.
Recall the characteristic A = (1—2M/r)v vanishes at the horizon r = 2M, hence both
04 (t),o_(t) > 2M for all ¢ > 0. Similar calculations lead to the unique definition of
o = o(t) and og = og(t). Hence, 0, = 0, (t) and 0_ = o_(t) are well-defined for
t>0.

Moreover, oy, 0, 0 are integrate curves of the following ordinary differential equa-
tions, respectively:

dr (1_%
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which gives that |0, |, |0’ |, o’ | < 1. Following from the definition of the wave curves,
o_ =0 =oif and if v} < v) holds On the other hand, if v}, > vY, we would like
to prove that o, (t) > o_(t) holds for all t > 0. If not, we suppose that there exits a
time ¢, > 0 such that o, (t.) = 0_(t.) and o4 (t) > o_(t) for all 0 < t < t,. Then it
is necessary that o’ (t.) < o’ (t.). However, we have

2M 2M
( - m)vR(ﬁ(t*)) > <1 - m)m(m(t*)),
which provides a contradiction. O]

The solution to the Riemann problem

We now give the solution v = v(t,r) to the generalized Riemann problem of the

relativistic Burgers model (2.1.5)), (4.4.1)):

vp(r)  F<r<o_(t),
vt r) = qu(t,r) o-(t) <r <oi(t), (2.4.5)
vr(r)  oi(t)<r<r,

with w = w(t, r) defined as

1 2M
w(t,r) = sgn(r — 7“0)\/—2 — K2(t,r) (1 — T)’ (2.4.6)
€
where K = K(t,r) > 0 satisfies
K)— K
sen(r TO)R(T, ) tR(ro, ) _ 3 (2.47)
with the function R = R(r, K') given by
R(r K): = ! 2Me(l — K22 1n(r — 2M)
’ (1/e2 — K2)3/2 2
2 1 2M
—2M(1/e - K2 ( T\/ 2—K2<1—T>+(2M—r)K2)

+—( \/——K2\/——K2 1—%)

M2 — 3K2)ln<\/__Kz\/__K2(1_ﬂ)+(M—r)K2 Z)))

(2.4.8)
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In addition, we regulate that K (t,ro) = 14/1 — 2L if rq € (0_(r), 04 (¢)).

In the sense of Section definitions of steady state solution of the Burgers
equation stops at the vanishing velocity radius . Remark gives that the
right-hand steady state solution vg will never vanishes in the domain of definition.
We will then see in the following lemma that the left steady state solution v;, cannot
vanish for all » < o_(t).

Lemma 2.4.2 (Well-defined steady states). Let o_ = o_(t) be the lower bound of
the rarefaction region given in (2.4.2)), then the value of vy, = vr(r) is nonzero for all
r <o_(t) for allt > 0.

Proof. The result always holds if o_(t) < rg, following from Remark . On
the other hand, we now suppose that o_(t) > rg, or equivalently, the speed of the
propagation ¢’ (t) > 0. Denote by 7’5: the vanishing velocity radius for vy, defined by
(2.3.10). Two main cases are to be taken into consideration:

e For the case where v9 + 0% > 0, it is necessary that K < K[ with KI', Kt
the constants given in (3.5.8). Hence, 7 > o(t).

e For the case where 0 < v < %, if the result does not hold at some time

0 < t; < 400, we should have v(o_(t;)) = 0. At the same time, since
o' (t1) = (1 —2M/o_(t))vr(o_(t)) = 0, the curve o_ cannot reach the point
o_(t1), which provides a contradiction.

In summary, the left steady state solution v, = vy (r) will never go to zero on the
interval (2M,0_(t)). O

Rarefaction waves

We now turn to the analysis of the generalized rarefaction curve defined by (3.5.7]).

Proposition 2.4.3 (The generalized rarefaction curve). The rarefaction curve w =
w(t,r) given by 1s well-defined, satisfying the relativistic Burgers equation
in the rarefaction region and it is continuous with respect to t for all t > 0
and to r for all r € (a, (1), (o (t)) Moreover, the following properties hold:

o The wave w = w(t,r) is increasing with respect to the space variable r > 2M
in the rarefaction region (o_(t), 0. (t)).

e For a small enough time, the generalized rarefaction curve has the similar struc-

BRT _ 1 r—=r
ture as the standard one: g% w(t,r) = T=2M/rg ¢ .

o When the black hole mass M wvanishes, w = w(t,r) tends to a standard rarefac-

tion, that is, lim w(t,r) = =°.
M—0



114 2.4. The generalized Riemann problem

Proof. To prove that w is well-defined, we first have to show that the value K =
K(t,r) > 0 is uniquely determined by (2.4.7)). Consider the function G = G(r,t, K):

G(r,t,K) :=sgu(r — ro)(R(r, K) — R(ro, K)) — t,
and we see immediately that G(o_(t),t, KF) = G(o,(t),t, KE) = 0. Moreover, we

have
0LG = Sgn(T - TO) (G(T, K) - G(To, K))’

where we have set L := K? > 0 and the function G is given as

SO R i CLS

(3~ K22(@M — K? + Lr)

6M K2 In(2ry/ = —K2\/}2 —K2<1 - w) +2(r — 2M)K? + 2r)
_ — |

2(% — K2)3

€

(2.4.9)

We then have
1 1 2M N\ —3/2
0-(0LG) = —sgn(r —r (——K2<1——)> ,

( L ) 9 g ( 0) €2 r

and we thus have 0,G > 0 for all r # ro, L > 0. Therefore, we can always have
the unique value of L and thus its unique positive root K. It is obvious that K is
continuous with respect to ¢ for all ¢ > 0. We now show that it is continuous with
respect to r in the rarefaction region. Indeed, if the sign of » — ry does not change,
the solutions is always smooth with respect to r. Therefore, we only have to look at
the value at 7y when 9 € (0_(t),04(¢)). Indeed, by the definition of the function

K (2.4.7), (3.5.9), for all fixed ¢ > 0, it is necessary that 1/e* — K?(1 — 2M/r) =
O((r —r0)?) and we then have

1 2M
K(t,?“()—l—):K(t,’f’o—): g 1_T:K(t,’l“0)-

Consider the definition of w, we still have to show that the value under the symbol
for the square root stays positive. Indeed, since we already have K (t,0_(t)) =
KL K(t,ou(t) = KE K(t,r)) = 1/e(1 — 2M/rg)~*/? and K? is monotone with
respect to r at both side of 7y, then the result is direct.

Now we prove that w = w(t,r) satisfies the Burgers equation (2.1.5)) in the rar-
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efaction region (o_(t), 0. (t)). We have
w w? — 1/
% ((1 - 2M/r)2) O <(1 . 2M/r)2>
1 oM My, 1
:m (&w + (1 - T)w@ w — T—2<w — e_2>)

(- (- - (-5 ).

Furthermore, the definition of G gives

0,G = —1, 9,G = sgn(r — 7o)
(1-2) fa-w(1-2)

from which we get 3 afL = —<1 — >w Hence, w satisfies . Furthermore, by
taking ¢t — 0, we have 11[% 0, G(r, K)(r —19) —t =0, which gives
—

b

2M
lim w(t, r) —hmsgn r—70) \/——K2 1——)
t—0

. T —7To
8TG(’/‘,K)(1 —QM/’I“()) 1 —QM/T’() t

Letting the black hole mass M — 0in (3.5.9), we have == = sgn(r—rq)y/ 5 — K (t,7)2.
Therefore, together with the definition given by (3.5.7)), we have w(t,r) = =".

t

Now we consider the monotonicity of w(¢,-). Derive (3.5.7]) with respect to r and
we have

2M\\Y2 1 K*M "1
&nw:sgn’(r—ro)(G——K2(1——>) +—2(— = w—i—/ Fdr) > 0,
o

T w

where we have referred to the calculation given by (2.4.9)). Hence, w(t,-) is increasing
in the rarefaction region. This completes the proof of the proposition. O

Our main result for rarefaction waves is as follows.

Proposition 2.4.4 (The global-in-time construction for rarefaction waves). For two
given steady state solutions vy, = vr(r) and vg = vg(r) (which might not be defined on
the whole interval (2M,+00)) separated by a discontinuity at ro satisfying v9 < v%
where v? = vr(rg),v% = vgr(re), the generalized Riemann problem of the Burgers

model (2.1.5) is realized by a rarefaction wave for all t > 0. Moreover,
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e The lower and upper bounds of the rarefaction curve tend to the horizon of the
black hole r = 2M if and only if the v$ < 0;

e The lower and upper bounds of the rarefaction curve tend to infinity r = +o00
if and only v§ > 0;

e The lower bound of the rarefaction curve tends to the horizon of the black hole
r = 2M while its upper bound of tends to the horizon of the black hole r = +o0
if and only if v% >0 > 09,

e The lower/upper bound of the rarefaction curve stays at the vanishing velocity
radius %, /r’ if only if v) = 0/0% = 0.

Shock waves

To begin with the analysis of the shock waves, we recall that the Rankine-Hugoniot
condition of the relativistic Burgers equation on the Schwarzschild spacetime (3.1.2)

requires
2

s[v] = (1 — 2M/7) [%] (2.4.10)

where s = s(t,r) stands for the speed of the discontinuity and the bracket [-] denotes
the value of the jump. We hence give the equation

2MN vy, + vp
52(1——>
r 2

. (2.4.11)

To select solutions which do have a physical sense, we shall now recall the Laz entropy
condition. In particular, for the relativistic Burgers equation with two steady
state solutions v, = v (r), vg = vg(r), we only allow for a curve of discontinuity in
our solution v = v(t,r) if the wave to the left is moving faster than the wave to the
right. That is, we only allow for a curve of discontinuity between vy and vg if the
following inequality holds

(1—=2M/o(t))vr(o(t)) > o'(t) > (1 —2M/o(t))vr(o(t)). (2.4.12)

Proposition 2.4.5 ( Shock waves). Consider the Riemann problem of the relativis-

tic Burgers model (2.1.5), (4.4.1)). If (vy,vr) is shock wave, it satisfies the Rankine-
Hugoniot condition (4.2.8)) and the entropy condition (2.4.12)) with the following prop-

erties:

e For allt >0, the wave speed o'(t) does not change signs.

e When and only when v = —v% > 0, (vg,vg) is a steady state shock wave who
has a zero speed of propagation.
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Proof. According to the definition, we have o/(t) = (1 — %)w, which
satisfies the Rankine-Hugoniot condition of the Burgers equation . On the
other hand, since vy + vr does not change signs according to Proposition the
shock speed keeps the same sign as well. Now consider the steady state shock. In the

case where g;v = 0 the Rankine-Hugoniot condition of the Burgers model (2.4.10)

reduces to 017 )
v
- =) 5] =0 2.4.13
( r 2 ( )
Together with the entropy condition (2.4.12)), it is necessary and sufficient that v, =
—vg > 0 holds. O

We summarize our main result for shock waves.

Proposition 2.4.6 (The global-in-time construction for shock waves). For two given
steady state solutions vy, = vr(r) and vg = vg(r) (which might not be defined on
the whole interval (2M,+00)) separated by a discontinuity at ro. If v9 > v% with
V9 = vr(rg),v% = vgr(re), the generalized Riemann problem is realized by a shock

wave for allt > 0. Moreover,

e The shock curve tends to the horizon of the black hole v = 2M if and only if
0 4 .0 .
vy, +vg <0;

e The shock curve tends to infinity r = +oo if and only if v9 + v% > 0;

e The position of the shock curve is at v = rq for allt > 0 if and only if v +0% =
0.

By combining Propositions |2.4.4] and [2.4.6| we thus have proven Theorem [2.1.1]

2.5 Total variation functionals

Evolution of the total variation

We now consider the evolution of the total variation TV (v) of a solution v to
the generalized Riemann problem on an interval (7,7) and, in particular, we seek to
control TV (v) := TV,12°(v). Since the initial condition may lead to different types
of solutions, we have to analyze each possible cases (shock and rarefaction waves
with different speeds of propagation). We first consider all the cases where the total
variation is conserved.

Lemma 2.5.1 (Solutions with constant total variation). Let vy = vo(r) be the initial
condition (4.4.1) and let v = v(t,r) be the corresponding solution to the relativistic
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Burgers model (2.1.5)). Then the total variation satisfies
TV (u(t,) =TV (vo),  ¢>0

if and only if one of the following conditions hold:

o 0 <ol <,
o v <% <0,

o V) =—0v} >0.

Proof. For the first two cases listed in the lemma, solutions are realized by a shock
wave with a positive shock speed and a rarefaction wave with a negative speed,
respectively. The monotony of such solutions on (7,7) will never change. For the
third case in the lemma, we have got a steady state shock. It is direct to check that
the total variation stays a constant for all these three cases. O

There are also several possibilities of initial data leading to the decreasing total
variation.

Lemma 2.5.2 (Solutions with decreasing total variation). Let vy = vo(r) be a given

wnitial condition with two steady states vp,vgr satisfying one of the following condi-
tions:

o 0 <vf <f,
o v} <l <0,
o V) <0<y,
o v} <0<} and v) +% >0,
then the total variation of the solution v = v(t,r) of the relativistic Burgers equation

(2.1.5) satisfies ) )
TV (v(t,-)) < TVI(vp), t>0.

Proof. If 0 < v < %, the solution is realized by a generalized rarefaction with a
positive wave speed. By the construction in (4.4.6), we have

TV (u(t,)) =

7

va (’UD)

7

<

L+ 2<UR(U+(75)) — v, (U_(t))) — Vg,
+

2(”% - 'U%) - @\R7

I
<

L
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hence
TV (0(t,)) = TV (v0) =2((vr(0+(8)) = 1 (0 (8)) = vlro) + vp(ro))
:2((UR (00 (1)) = 0% + v (04 (£)) = vi (04 (8)) + 02 — vp (o (t))) <0.

Therefore, TV (v(t,-)) is decreasing in this case.

Next, if v% < v? < 0, the solution is realized by a shock wave with a negative
speed ¢’(t) < 0. From to Proposition [2.3.5] we obtain

TV (u(t, ) =07 + Q(UL (o(t)) = vr (a(t))) _ g
1

<=+ 20 — %) — g = TV (vg).
€

If ) < 0 < oY%, the solution is given by a rarefaction wave with the two rarefaction
bounds o_(t) < 19 < o4 (t). Hence,

: 1 ~ A
TVi(v(t,-)) = vz 4 2vg (04 (t) — g < - + 2vr(ro) — v = TV; (vo).

Finally, if v% < 0 < v? and v9 + 0% > 0, then the two steady states will be

separated by a shock curve with a positive shock speed, or equivalently, o(t) > 7.
Therefore, we have

) N 1 . ;
TV (v(t,-)) = v — 2vg(c(t)) — Og < i 20R(ro) — Vg = TV, (vy). O
The following lemma discusses the remaining case, in which the total variation

increases.

Lemma 2.5.3 (Solutions with increasing total variation). If the initial data vy =
vo(r) given in (4.4.1)) satisfies v% < 0 < vl and v + 0% < 0, the total variation of
the solution v = v(t,r) satisfies

TV (vy) < TVZ (u(t,-)) < min (%,TV(UO)(l + 4;46)), t>0.

Proof. We have a shock wave with a negative speed and the total variation is
T‘/?(U(t, )) = E — 2UR<O'(t)) + i)\R-

Recalling the expression of steady state solutions, we write

\/——KL2 1_%» \/——KR21—%>,
r r
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where K > KI'. Therefore, we have

d T
STV (u(t, ) = = 20(0(6)0' (1) = — (1 - )vR v+ v)
2M KEMUL—FUR 1 9 M vp +vg
-2ty
o(t)/ o(t)?2 g €2 o(t)?  wg
<Ml/€2—1)12% _ (1/e —vg)(1/e + vg) < TV (o)
- o(t)? o(t)? ~  4Me
and it remains to integrate in time. [

We summarize our results so far.

Theorem 2.5.4 (Existence theory for the generalized Riemann problem). Con-
sider the generalized Riemann problem of the relativistic Burgers equation on the

Schwarzschild spacetime (2.1.5) with initial data (4.4.1)) of the form
<
Vg = ’Uo(’f‘> = {UL(T) " "o,

vr(r) r >,

where vy, = v (r),vg = vg(r) are steady state solutions to and ro € (2M, 400).
Then there exists a solution v = v(¢,r) of the generalized Riemann problem, defined
for all ¢ > 0 and satisfying the entropy condition. More precisely, there are three
different regimes:

o Solutions with constant total variation. If one of the following conditions holds:

o 0 <) <ol
o v <% <0,

o V) = —uv} >0,

then the total variation of the solution v = v(¢,r) stays constant, that is,

TV (v(t,)) =TV (v),  t>0.

e Solutions with decreasing total variation. If one of the following conditions
holds:
o 0 <l <l
o V) < <0,
o ) <0<

o v% <0 <) and v? + 0% >0,
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then the total variation of the solution v = v(¢,r) is decreasing, that is
TV (v(t,-)) < TV (v), t>0.
e Solutions with increasing total variation. If the piecewise steady state initial
data vy = vg(r) satisfies
vl <0< v), v} + % <0,

then the total variation of the solution v = wv(t,r) is increasing and grows at
most linearly in time, that is,

TV (vy) < TV/ (u(t,-)) < min <§,TV(UO)<1 + 4]&6)), t>0.

Weighed total variation functional

In view of Theorem [2.5.4] the total variation of solutions to the relativistic Burgers
equation may increase. This motivate us to introduce the following weighted total
variation of a function v over an interval (#,7) C (2M, +00) by

— r vi—1/e¢ 1
TV (v) :/ @"(’m ta

1/2
: (2.5.1)

sgn(v))

where the integral is regarded as a measure. In particular, we set /T\‘?;j (v) =TV (v).
Obviously, when the black hole mass vanishes, that is, M — 0, we recover the
standard definition, as TV (v) reduces to TV (v). We now show that the weighted
total variation remains constant for generalized Riemann solutions.

Theorem 2.5.5 (Weighed total variation for the general Riemann problem). Con-
sider the generalized Riemann problem of the relativistic Burgers equation ([2.1.5))

with the initial velocity (4.4.1)) given as

<
Vg = ’l}o(?“) = {UL(T) " "o,
vr(r) >,
where vy, vg are two steady state solutions of the static Burgers model (2.3.1). Then
the weighted total variation of the solution TV ;(U) defined by ([2.5.1]) is constant:
ﬁ;(v(t, D) = ﬁ;(vo).
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Proof. 1f (vg,vg) is a shock wave, the discontinuity gives

7 vp(o(t))* —1/e%  1\1/2 vp(o(t)? —1/e2  1y\1/2
TV’”(““")):M 1 —2M/at) +z) st 1 —2M/alt) +3) sn(on)

Since both vy, v are steady state solution determined by the static Burgers model
(2.3.1), we recall that

1/ —wp(r)®> o 1/ —vgp(r)> g2
1—-2M/r %7 1—-2M/r — *

where KL, K are constants. Therefore, we see at once that ﬁ(v(t, )) is a constant.

If (v, vg) is a rarefaction wave, denote by w = w(t,r) the rarefaction wave and
o+ = 04(t) the bounds of the rarefaction regions. We have

7 o+(®) w?—1/e¢  1\1/2
TV.(v(t,")) :/ . 8’"(<ﬁ+e_2> sgn(w)) dr

o+(1) w? — 1/ 1\1/2
[ (Gl + ) st o

:' <w1(0_+<272}2/0—jt/>52 + 612) 1/2sgn (w(a+(t)))

_ (wl(o__(;])v)[?/a—tt/)e? + é)lﬂsgn(w(a(t)))‘

vi(o_ 2 €2 1/2
{5 =iy + ) "ot

vp(oL(t))? — 1/ 1/2
(N ) enlonten )

Y

which is a constant since vy, vgr are both steady state solutions. O]

2.6 The multiple generalized Riemann problem

Formulation of the problem

From to the results given by Section [2.3] a steady state solution may not be defined
globally if its value can reach zero in the domain of definition. In this sense, the result
of a generalized Riemann problem with only two initial steady states may not be
sufficient to introduce the generalized Glimm method which captures the behaviors
of all kinds of steady state solutions. We are therefore motivated to consider the
multiple Riemann problem of the relativistic Burgers equation whose initial
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velocity vy = vp(r) is given as three steady state solutions:

va(r) T <71 <y,
wlr) = valr) ro<r<m, (2.6.1)
vy(r) rm<r<r,
where 7 < rg < ry < 7 are given in the interval (2M, 400) and v,, v, v, are steady
states satisfying on corresponding domains. We denote the values at the point
70,71 by va(re) = v3,v5(ro) = v3,v5(r1) = vg,vy(r1) = vJ. For the later use of the
Glimm method, we suppose that the steady state solution vg is a non-global steady
state solution with a zero value at r = rq, that is, Ué = 0.

The main result of this section is as follows.

Theorem 2.6.1 (Global existence of multiple Riemann problem). Consider the mul-
tiple Riemann problem of the relativistic Burgers equation on a Schwarzschild back-

ground ([2.1.5)), (2.6.1]) where the initial velocity vy = vo(r) is a piecewise steady state
solution with three steady states v, = v4(7), vg = v3(r), vy, = v,(r) separated by two
jumps of discontinuity at fixed radius r = rg, 7 = r1, then there exists solution to the
Burgers equation ([2.1.5)), say v = v(t,7) defined for all ¢ > 0 on (7, ) and satisfying
the initial condition v(t,-) = vg. Moreover, for every fixed ¢t > 0, the total variation
of the solution satisfies TV/ (v(¢,-)) < min (%, TV (vg) (1 + ﬁ)) and the weighted
total variation given by (2.5.1]) is non-increasing for all ¢ > 0.

We will see later that a multiple Riemann problem with three initial steady states
suffices to construct the Glimm method to be introduced in the coming section.

Local existence

Since the Burgers model is hyperbolic outside the Schwarzschild black hole, we can

get the solution of (2.1.5)), (2.6.1)) for a small time before any interaction happened.
In view of ([2.3.8)), we now write the explicit formula of the steady state solutions as

; 2M
ev;(r) :sgn(vj)\/l—EZKZz(l——), j=a,p,".
r
By definition, the left-hand half-Riemann problem defined on (7,71) is the Riemann
problem with initial data

voL(r) = va(r) T <71 <o, (2.6.2)
’ vp(r) 1o <1 <711,
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and the right-hand half-Riemann problem defined on (rg,7) with initial data

vg(r) o <1r <Trg,
vo.p(r) = 2.6.3
0,R< ) {UV(T) r<r< 7. ( )

We first treat the left-hand problem.

Lemma 2.6.2 (Solution of left-hand half-Riemann problem). There exists a solution
to the left-hand half-Riemann problem of the Burgers equation denoted by vy, = vr(t,r)

with initial data (2.6.2) on (7,71):

va(r) F<r<ol(t),
vp(t,r) = w(t,r) okt) <r<ak(t), (2.6.4)
vg(r) ok (t) <r<r,

where ot = oL (t), 0t = ok (t) are lower and upper bounds of the rarefaction region

given by (2.4.1) and wy, = wi(t,r) the rarefaction wave given by the form of (3.5.7)).

Proof. We claim that there exists no point in the interval (7,7) where the steady
state solution vanishes. Hence, the solution can be defined in the sense of . In
other words, we should discuss the possible position of 7 = % which is the vanishing
velocity radius for the steady state v, given as . Observe that if 7 = 400,
then v, = v,(r) is a globally defined solution on (2M, +00).

Two principle cases are to be taken into consideration:

0

)

1. The case where (v), v3) is a shock wave (with a positive, negative or zero speed).

2. The case where (v2, vg) is a rarefaction wave (whose left state has a positive,

negative or zero speed).

We have, in the first case, o (t) = o (t) = o ().

If v + vg < 0, we have a shock wave with non-positive speed. Then the result is
obvious following from the fact that o(t) < rq.

If v°2 + vg > (0, we have a shock wave with a positive shock speed. we would like
to prove that r% stays at the left-hand side of r;. If not, we suppose r% > r;. This
requires the inequality:

IMK2e2  2MKP*e
2 17a2 < 2
€ K* —1 €2K*ﬁ —1

9

which gives K& < KP. Hence, we have v, — sgn(vg)vs < 0 which contradicts our
assumption vg & v, > 0. Therefore, the steady state solution does not vanish on

(7,71).
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0

)

We now turn to the second case where (v
the sign of the left steady state solution v,.

vg) is a rarefaction wave. We analyze

If 0 < 0, then o¥'(t) < 0 and the lower bound of the rarefaction stays at the
left-hand side of the point of discontinuity g, that is, o2 (t) < ry < 77,

If 2 > 0, we first see that oZ(0) = ry < 7%,. Now suppose that there exists a time
t =t, > 0 such that o%(t;) = r and we thus have o=’ (t;) = (1 — 2M/r%)v(r4) = 0.
This provides a contradiction.

Following (4.4.6)), we arrive at the solution to the left-hand half-Riemann problem.
O

Now we turn to the right-hand half-Riemann problem with the right-side initial
data ([2.6.3)). The assumption vé = 0 actually excludes several cases.

Lemma 2.6.3 (Solution of the right-hand half-Riemann problem). There exists a so-
lution of the right-hand half-Riemann problem of relativistic Burgers equation (2.1.5))
denoted by vg = vg(t,r) with initial data (2.6.2) on the interval (7,ry):

vp(r) T <r<olt),

vR(t,r) = wg(t,r) of(t) <r < ofi(t), (2.6.5)
vy (1) cfi(t)y <r <7,
where o = o(t), 0t = oli(t) denote the lower and upper bounds of the rarefaction

region and wr = wg(t,r) the generalized rarefaction curve defined by (3.5.7)).

Proof. We consider the following two cases:

1

) is a shock wave.

1. The wave (v, v

2. The wave (vj,v.) is a rarefaction wave.

For the first case, since v = 0, (vj, v}) is a shock wave when and only when v! < 0.
Denote by o = ofi(t) the shock wave and we have o(t) < ry for all ¢ > 0. Since
both steady state solutions vg, v, are defined on r < 71, we have the result.

We now take into consideration the second case. To have a rarefaction wave, it is
necessary and sufficient that vi > 0. It is obvious to see that o2 (t) = rq since v}, =0.
Then we can use to give the solution on (rg, 7). This completes the proof of
the lemma. N

Since the relativistic Burgers equation is hyperbolic for » > 2M | no interaction
will happen for a small enough time ¢ > 0, we can therefore give the local existence
of the multiple Riemann problem.
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Theorem 2.6.4 (Local existence for the multiple Riemann problem). Consider the
initial data vy = vo(r) given as consisting of three solutions v, = v,(r),vs =
vg(r), v, = v,(r) of the static relativistic Burgers model (2.3.1) separated by two
fixed radius r = ro,r = 1. Then there exists a solution v; = v1(¢,r) to the multiple
Riemann problem of the relativistic Burgers equation on the Schwarzschild
background to 0 < ¢t < €(ry — r9). Moreover, the total variation of the solution
satisfies

TV (#(t,-)) < min (g TV (vp) (1 + em))

T

while the weighted total variation given by (2.5.1)) satisfies ﬁ;(ﬁl(t, ) =TV (vp).

Proof. Since the eigenvalue of the Burgers equation (3.1.1]) reads |A] = (1 — 2M)[y| <
1/e, wave interactions cannot happen before the time ¢t = ¢(r; — ro). Hence, we are
able to give the solution v; = v1(¢,r) of the multiple Riemann problem for a small

time as
_ tr) F<r<rg,
Bty = 4ot T << (2.6.6)
vr(t,r) 1o <T < T,

since vy, = vg in (1o, 71).

The total variation of the Riemann problem increases when and only when the
it contains a shock wave generated by two steady state solutions with opposite signs
propagating with a negative wave speed. In this sense, at most one of the left-hand
and right-hand half-Riemann problems can have an increasing total variation. We
have thus got the bound of the total variation.

For the weighted total variation ({2.5.1)), since it stays constant for both left-hand
and right-hand half-Riemann problems, the weighted total variation will be conserved
before any wave interactions. O

Wave interactions

To solve the multiple Riemann problem for all times ¢ > 0, we now take into
consideration possible wave interactions. Referring to (2.6.1), the initial velocity is
given as three steady state solutions:

va(r) T <1 <o,
vo(r) = Qwa(r) ro<r <,

vy(r) T <r<T.

We denote by v, = v(t,r) and vg = vg(t,r) solutions of the left-hand and right-

hand half-Riemann problems, respectively. Denote by the lower and upper bounds

of the rarefaction region associated with these two problems ol = o (¢), o = ok(t)
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and of = of(t), o = of(t) referring to (2.4.3).

Define the interaction time T > 0
T := sup{t > 0ot (t) < of(1)}. (2.6.7)

By the definition, T is the first time when waves of the left-hand and right-hand
half-Riemann problems ever interacted.

If7T = +00, then for all ¢ > 0, the left-hand and right-hand half-Riemann prob-
lems never have wave interactions. Then the local solution of the multiple Riemann
problem given by 7 = v;(t,r) defined in (2.6.6) can be extended globally in time
t>0.

Generally speaking, whether an interaction can happen will depend on the values
of the steady state solutions and the corresponding wave speeds, but never will wave
interactions happen in cases listed in the following lemma.

Lemma 2.6.5 (No wave interaction ). Let o} = o (t) and off = o%(t) be the upper
and lower bounds of the rarefaction regions associated with the left-hand half-Riemann

problem (2.6.2)) and the right-hand half-Riemann problem (2.6.3)), respectively. Then
the interaction time T' = 400 holds for all t > 0, if one of the following cases holds:

1
Y

0

o ) is a rarefaction

e The wave (v
wave.

vy) is a shock wave with v +vj < 0 and (vg,v

e Both (vy,v}) and (vs,v}) are rarefaction waves.

Proof. When (vj, v}) is a rarefaction wave, we have, by Lemma|2.6.3| that o (t) = ry.
Then if at the same time, (vg,v%) is a shock wave with non-positive shock speed, it is
obvious that o/ (t) < o (t) for all ¢ > 0. If both waves are rarefactions, vy = 0 gives

the fact that o (¢) will not reach r1. Then we have T = +o0 if one of the conditions
in the lemma holds. [

Now we consider the case where interactions did happen at some finite time, that
is, T < 400 with T the interaction time given by (2.6.7). According to Lemma [2.6.5]
there are three principle problems:

1. Problem (SS) : both (v3,v3) and (vj, v}) are shock waves.

(e

and the right-hand half-Riemann problem (vj,v.) is a rarefaction wave.

2. Problem (SR) : the left-hand half-Riemann problem (v9,v3) is a shock wave

3. Problem (RS) : the left-hand half-Riemann problem (v),vj}) is a rarefaction

wave and the right-hand half-Riemann problem (vé, vi) is a shock wave.
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Interaction of two shocks

We first treat Problem (S5), that is, the interaction of two shocks.

Lemma 2.6.6 (Problem (SS5)). Let the initial velocity v = vo(r) composes of three
steady state solutions va,vg,vy. If both (v3,v}) and (vg,v)) are shock waves and

the interaction time T < +00, then there exists solution to the relativistic Burg-
ers equation (2.1.5), say v = wv(t,r) defined for all t > 0 on (7,7). Moreover,
for every fized t > 0, the total variation of the solution satisfies TV! (v(t,-)) <

min (%, TV (vg) (1 + 4t7€>> and the weighted total variation given by (2.5.1) satisfies
TV, (u(t,)) < TV (vo).

Proof. We first note that at the interaction time i the inequality of velocities v, (7) >
vg(7) > v,(7) holds where we have written 7 = o*(T') = ¢%(T). We write the shock
wave 0°° = °9(t) such that

t — T = Rs(ass(t), UOMU’V) - RS(;’\:) Va, U'Y)’

where the function Rg is given by (2.4.4). Now we can prove 5°°(t) < rf where 7, is
the vanishing point of the steady state Velomty Uo. Indeed, if v, (7) + v, (7) <0, we
have o (t) < ro, then the result is obvious. If v, (7) +v,(7) > 0 and there exists a time

t = t3 such that (t}) = %, we have the wave speed as &' (t) = (1 — 2M>vv(r” )>0
which contradicts the fact that v, < 0.

Since we now have no worry that the definition of steady state solutions will fail
at some point, the solution after the interaction time: v5° = v55(¢,r) for all t > T
can be given as

va(r), T <1<,
~55(t r) = {UWET))’ 55<S(t)<<r<(t7z. (26.8)

Therefore, there exists a solution to the relativistic Burgers equation associated with
initial data vy = vo(7):

wr), 0<t<T,
v(t,r) = {~ss<t 0 s T (2.6.9)

where 0; and ©5° are given by (2.6.6) and (2.6.8)), respectively.

We now consider the weighted total variation after the interaction time T. For
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t>f,wehave

~SS
TV t,-

( U_QM/al/6 + 52)1/25%11(%) - (vwl(&_(l;)])\;/;(lt/)g + 6—12>1/2Sgn(vﬁ/)
( 1 — QM/UL 1/)6 + €2>1/28gn(va)

vs(o™(t))® —1/€ 1/2
N i_QM/UL<1<t) +€_2) sgn(vg)‘

vg(ofi(t))?2 =1/ 1\1/2

+H( ﬁl—QM/aR(t) t3) el
(@) —1/& 112

- ( 1— 2MJoR(t) e_2> sgn(vy)

TV (5a(t,)) = TV (w0).

which completes the proof. n

Interaction of a left-hand shock and a right-hand rarefaction

We now consider the existence of the Burgers solution and the evolution of total
variations of Problem (SR), that is, the interaction of a left-hand shock wave and a
right-hand shock wave.

Lemma 2.6.7 (Problem (SR)). Let the initial data vg = vo(r) compose of three

steady state solutions va,vg, vy such that (v, v3) is a shock wave and (vg,v)) is a

rarefaction wave with a finite interaction time T < +o00, then there exists solution
of (2.1.5) for allt > 0. Moreover, for every fized t > 0, the total variation of the

solution satisfies TV (v(t,+)) < min <§,TV;(U())(1 + 4At/k>> and the weighted total

variation given by (2.5.1)) satisfies ﬁ;(v(t, D) < ﬁ;(vo).

Proof. Denote by 7 = o“(T) = (T T') where T is the interaction time. Define the
shock curve as ]

o B (t) = 5(5SRvA(t) +57B(t)).
Here, 09%4(t) satisfies

t —T = Rp(r;5°™A(t)) — Ra(7;va),

where Ry was defined by (2.4.3). On the other hand, we define a°%5(t) such that

t—T = R(c°™5(t), K*(t,5°%P (1)) — R(F, K" (t,°% (1)),



130 2.6. The multiple generalized Riemann problem

where the function R is given by (3.5.9) and K% = K%(t r) satisfying w? =
1 - KR (1 - M) with wg the rarefaction curve of the right-hand half-Riemann
1-

T

problem ([2.6.4]). We can at once check that

doR(t) v, (a°R(t)) + wr(t, a°F(t))

dt 2 ’

which satisfies the Rankie-Hugoniot condition (4.2.§]).
Now let t = TSR and t = TSR be two times such that

Tsg = sup{t > T|va(3°(t)) > wg(t, (1))},

Tsp == sup{t > T (t) < o ()},
where we recall that off = o%}(¢) is the upper bound of the rarefaction region of the
right-hand half-Riemann problem.

From the deﬁnition, we see that TSR is the first time when the discontinuity
disappears and Tp is the first time when the shock wave meets the upper bound of
the rarefaction wave of the right-hand half-Riemann problem.

We define the solution to the relativistic Burgers equation for T<t< min(TS r Ts R)

R () = 4 Pelr) T < <FH), (2.6.10)
2 vr(t,r), F5B() <r <7,

where vg(t,7) is the solution to the right-hand half-Riemann problem.

Now we would like to define the solution for all ¢ > min(TSR, TRS). Two possi-
bilities (whether the left-hand shock is stronger than the right-hand rarefaction) are
to be taken into consideration referring whether one time is bigger/smaller than one
another:

If Tsr > Tor, we will have v, (55%(t)) > v, (55%(t)) for all t > T, then we define
the solution as

~SR
~ va(r), T<r<o (t),
Uss(t,r) = SR ' (2.6.11)
vy (r), o (t) <r<r,
~SR ~SR . . :
where ¢ = o (t) is the shock curve with two steady states v, and v, given by
(2.4.4]).
If Tsp < TSR, curves of left-hand and right-hand half-Riemann problems are
y ~SR  ~SR
connected by a rarefaction wave for all ¢ > Tgz. Denote by o, = o, (t) and

~SR ~SR . . .
o_ = o_ (t) the upper and lower bounds of the rarefaction regions, respectively.
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~SR
The lower bound of the rarefaction region o_ (t) are

v ~SR ~ >
t—Tsg = Rr(G_ (t),va) — Rr(c°F(Tsr), va),

where Rp is the function given in (2.4.3]). The upper bound of the rarefaction region
SR
o, s given by

~SR o ~
:SR(t) O’Jra(t), Tsp <t< TSR7
o = 4 =SR .
" Gop(t), t>Tsp,

~SR ~SR
Here, we set o, , = 0, ,(t) such that

t—T = R(gii(t), KR(t,gii(t))) - R<5SR(TSR)7 KR(tagii(t)D,

where R = R(r,K) is given by (3.5.9) and K® = K(t,r) such that €w% = 1 —
2K (1—%) with wg the rarefaction curve of the right-hand half-Riemann problem
s

~SR  ~SR
(2.6.5) and 7, , = 7, ,(t) satisfies
~ ::SR ~SR A
t —Tsp = Rr(0, 4(t);vy) — Rr(0”"(Tsr); vy),

where Rpg is the function given in (2.4.3)).
In this case, we define

~SR
va(r), T<r<o_ (t),
~ ~SR ~SR
Gty =S w(t,r), & () <r<o, (t), (2.6.12)
~SR
vr(t,r), o (1) <r <7,

where w(t,r) is the generalized rarefaction curve given by and vgp = vg(t,r)
the solution to the right-hand half-Riemann problem. As is done in Lemma [2.6.6| we
can check that the solution is well-defined, that is, every steady state will not vanish
in corresponding domains.

We are then able to give the global solution of Problem (SR) denoted by v =
v(t,r):
nt,r), 0<t<T,
o(t,r) = L 05R(t,r), T <t<min(Tsg, Tsr), (2.6.13)
@IgR(t,T), t > min(TSR,TSR),
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where v, (t,r) is given by (2.6.6)), v5%(¢,7) by (2.6.10)) and

Rt r) = U (ts7) jjSR = T:SR’
3 ’ 6gg(t,T) TSR < TSR-

where by 5% is given by (2.6.11)) and 55§ by (2.6.12).

The result for the total variation TV (v) is obvious. For the weighted total
variation (2.5.1),we only have to treat the time after the interaction time since the
behavior of the solution before T is already provided by Theorem ([2.6.4)). Indeed, for
T<t< min(TSR,TSR), we have

v (F9E())2 —1/e2  1\1/2
< 1 2M/55R(1) ?) 560 (va)
vr(t,d%R(1))> — 1/ 1|1/2
a ‘ 1 — 2M/G5R(t) 6_2‘
v (F9E ()2 —1/e2  1\1/2
- ( 1 — 2M/55R(t) ?) sgn(va)
B ’wR(t, FIE())2 -1/t 112

T —onjesrm) Tl senlen)

<TV (vp(t.r)) + TV (vp(t,r)) = TV -(vy).

TV(@"(t,) =

T

+ TV (vg(t,r))

sgn(vg)

+ TV (vp(t,r))

We now consider the weighted total variation for ¢ > min(TS R, T sr). Notice that
if Tsr < Tsg, the result holds, following from a similar calculation. We now consider
the weighted total variation when Tsr > Tsr holds. Indeed, we have

L (1) - 1/¢
1—2M/5 (1)

) (w<t,§iR<t>>>2 —1/¢
1 2M/G. (1)

=TV (@a(t, ) < TV (vo),

) sentwn. 52 0)

TVL@h(r, ) :' (“

) sentuw(t. 70" (0)] + TV (wn(t, )

which completes the analysis of Problem (SR). O

Interaction of a left-hand rarefaction and a right-hand shock

We now turn to the consideration of Problem (RS).

Lemma 2.6.8 (Problem (RS)). Given the initial data vy = vo(r) consisting of three
steady state solutions va,vg,v,. If the left-hand half-Riemann problem (vg,vg) is
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1
Y

with a finite interaction time T < +00, then the relativistic Burgers equation ([2.1.5))
admits a solution v = v(t,r) for all t > 0. Moreover, for every fized t > 0, the total
variation of the solution satisfies

a rarefaction wave and the right-hand half-Riemann problem (Ué,v ) a shock wave

TV; (v(t,-)) < min (?TW@O) (1 7))

and the weighted total variation given by (2.5.1) satisfies ?‘7; (v(t, ") < ﬁ;(vo).

We observe that by combining Lemmas [2.6.6], [2.6.7, and [2.6.8| together, the proof
of Theorem [2.6.1]is now completed and we have thus established the existence of the
solution to the multiple Riemann problem.

Proof. We write r = O'_li’_(j:) — o”(T) as the point where two waves meet for the
first time. We then denote by 6% = 579(¢) and %% = 54%(¢) the lower and upper

bounds of the rarefaction region after the interaction time T. Recall the formula of
the function R given by (3.5.9) and we define 57%5(¢) by

t—T = R(%ffs(t), KL(t,5§S(t))> — R(’r“, KL(t,'&fS(t)))

where K- = KL(t,r) satisfies 2w? = 1 — KL (1 — %) with wy, the rarefaction

curve of the left-hand half-Riemann problem (2.6.4). Now we set 6% = 575(t) such

that B

t—=T = RR(ng(t)v U’Y) - RR(K 'U’Y)
with the function Rp given by (2.4.4). We can immediately verify the following
equations:

d5Bs IM R doBis 2M ~R
;lt(t) = (1 - —555@))%(75,0_5(75)), ngt(t) = ( - m)%( °(1)).

Then we define the solution v3* = D85 (¢, r):
vBS(tr), F<r<alS(t),

WSt r) = {w(t,r),  FR5(t) <r < TR, (2.6.14)
vy (1), alS(t) <r <.

for all t < min(Tgrs, Trs). Here, w = w(t, r) is the generalized rarefaction curve given
by (3.5.7) and the two times Trg, Trs are given as

Tps = sup{t > Tu(t,575()) > v, (7 (1)},

. ~ 2.6.15
Trs = sup{t > T|5%5(t) < of(t)}. ( )
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From the deﬁnition,A we see that TRS is the first time when a discontinuity of the
shock appears and Tgg is the first time when the lower bound of the shock wave of
the left-hand half-Riemann problem meets the wave of the right-hand half-Riemann
problem.

The solution to the multiple Riemann problem after t = min(TRS, TRS) has two
possibilities (whether the right-hand shock is stronger than the left-hand rarefac-
tion) depending on which time of the two happened earlier. If Trg > Ths.
V(51 (Trs)) < vy(74 (Trs)) holds. In this case, we define the solution to the Burgers

N

equation for t > Tgrs as

~RS
vo(r), T<r<o_ (t), )
R

~ ~RS ~
TRt ) = Qw(t,r), 7. (1) <r<o, (b), (2.6.16)
~RS R
vy(r), o, (t)<r<r,
. . ~RS ~RS ~RS
where the lower and upper bounds of the rarefaction region o_ = o_ (t),0, =

RS
o, (t) are determined by (2.4.3) and ([2.4.4), respectively.

On the other hand, if TRS < TRS, the solution for ¢ > TRS will be realized by a
shock wave. We then give the shock curve as follows:

~RS

~RS o ~
:Rs(t) _Jo, (t), Ths <t < TRS»
gy (t), t> TRS;

~RS )
where 7, () satisfies
A~ ~RS ~RS 1
t —Trs = Rs(0, (1);va,vy) — Rs (" (Trs); va, vy),

~RS
with Rg is the function in (2.4.4). To get o, (t), we set

~RS 1 ~RS,A ~RS,B

5(1 (t) - 2 (Ua (t) + Ua (t)) .

where o, () satisfies

~ ~RS,A . ~
t— TRS = RR(’&Q (t); Ua) - RR(O'RS(TRs); Ua>

~RS,B ~RS,B ,
with Rg given in (2.4.3) and o, =0, () satisfies

~RS,B ~RS,B ~RS,B

t— Ty = R<ga (1), K (t,3, (t))) - R(&“RS(TRS),K(t,oa (t))>
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where e2w? =1 — €2K2(1 — %) and R given by (3.5.9). We now define

_ ~RS
Ua(t,r) = {Z"‘E:; g;&;: fi (2.6.17)

A similar argument as Lemma gives that all the steady state solutions are
well-defined in corresponding domains.

We thus give the solution of problem (RS):

nt,r) 0<t<T,
o(t,r) = 0BS(t,r) T <t < min(Trs, Trs), (2.6.18)
RS (¢, 1)t > min(Trs, Trs),

where 0y (¢, 1), 055 (t,7) are given by (2.6.6)), (2.6.14) and

TR (¢, ) = Ut ) Trs = Tks,
053(t, 1) Trs < Tgs.

with ’ﬁ?f}%,@'gg given by (2.6.16)) and (2.6.17)), respectively. The result concerning the
(weighted) total variation follows from the similar analysis in Lemma [2.6.7] O

2.7 The well-posedness theory of weak solutions

The well-balanced random choice method

To construct the solution to the initial value problem of (2.1.5)), we introduce
a generalized Glimm method based on the generalized (multiple) Riemann problem

introduced in Sections and [2.6] First of all, recall that the eigenvalue of the

relativistic Burgers equation reads A = (1 — %)v with |v] < % Hence, A vanishes

at the horizon r = 2M. This indicates that we need not require any boundary
conditions.

Our generalized random choice method is based on the generalized Riemann solver
Denote by At, Ar the mesh lengths in time and in space, respectively. Here, we require
the stability condition, or the CFL condition that

Ar 2

—_— > - 2.7.1
At = € ( )
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We denote by (t;,7;) as the mesh point of the grid:
t; = ZAt, ry = 2M + ]AT’

Now we construct the solution to the relativistic Burgers equation (2.1.5) on the
Schwarzschild spacetime. As a first step, we approximate the given initial data by a
piecewise steady state solution va g = va o(r):

For all even integer j > 1, we solve the ordinary differential equation (2.3.1)) in

the interval (r;,r;42) with the value centered at r = rj4;. In view of Section ?EL

there exists a unique smooth solution of (2.3.1)) denoted by v”l = vjiol (r) in a

neighborhood of 7;4;. However, it is possible that ’UAO vanlshes at some point in
the interval (r;,7;42) if it is in the regime of small velocity (2.3.7)). In order to finish
the initial approximation step, we extend the steady state solution by the values of
the right-hand neighbor interval (r;42,7;14). In this sense, we approximate he initial
data as follows

(r) = UJA‘*‘Ol’ jeven, r; <r< min(rj+2,7“2+1), (2.72)
va0 - ,U]—HS . . ok ‘ .
Aos Jeven, min(r, i) <71 < 7)o,
where
1 M ,
UJA+()1 (r) = Sgn(vo(rj+1))\/€ K]O_H (1 T), J even,
I L (2.7.3)
KO, =— - <_ — wo(rs 2) 7.
Tz 2M [rji1 \€2 vo(rj+1)” ),

le+1 = sup{r > 2M|vj+1( ) # 0}.

We then suppose that the approximate solution va = va(t,7) has already been
defined for all 0 < ¢t < ¢;. For a given random sequence (w;); in (—1,1), we set

Our scheme includes two main steps:

1. The steady state step. At the time level t = t;, we define va to be a piecewise
smooth steady state solution as was done in the definition of the approximate
initial data:

o (2.7.5)

vt r) = vk’ril(r), 1+ g even, ;<1< min(rj+2,rf7j+l)7
79 — . . .
Ua K (T)7 v+ J evel, mln(/rjy TE7j+1) <r< Tjt+2,
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where
UJA+11 (1) = sgn(va(ti—, Ti,j—&-l))\/é — KO,]H (1 — g), 1+ 7 even,
Kjji = m (612 — va(ti—, Tz',j+1)2>a

¥ = sup{r > 2M okt (r) £ 0}.
(2.7.6)

2. The generalized Riemann problem step. We define the solution on {t; < t <
tiy1,7j—1 <7 <7jp1} (with i+ j even, 7 > 1) by
UR<t m tl>TJ7UAwUJA+zl>> if r; <7“EJ 1
va(t,r) ==
2,j—17
(2.7.7)

where vr denotes the solution to the Riemann problem with the initial condition

b b Jj=3 J—-1 g+l b
UMR<t Pyt Min(ry 0, 1 3) T VN VN VA, ), T 2>

vl <
PR S Ty NS B W /N i
UR<t7T7ti7TjavA7i 7UA1) - j+1
VNG, T >

and vy the solution to the multiple Riemann problem with the initial condi-

tion
. . b ] -3 -1 541

UMR (tiaT>ti7mln(rj—27ri,j73)7rlj 17UAZ 7UAZ 7UA2
7—3 : ﬂ
Up;r T < min(r;_z,” ij— 3),
Jj—1 h i

= VA min(rj_g, 7 i 3)<r<r” 1

j+1 f

NGy T

We still have to explain that the result of solutions of (multiple) Riemann problems
is sufficient for the construction of the generalized Glimm scheme. We have the
following lemma.

Lemma 2.7.1. Consider the construction of approximate solutions of the generalized
Glimm method, at the time level t = t;, for all integer j > 1 with © + j even, there is
at most one point of discontinuity in the interval (rj_1,7;+1).

Proof. Without loss of generality, we suppose w; € (0,1) and thus vj:ﬂ.l is at least
well-defined on (7;,7;4+1). Then there are two possibilities:

o If rfyj_l = r;, then only r = r; can be a point of discontinuity;

o Ifr; 1 < rh _, <1, then we have to use the value of v”l to define the steady

state on (rf j—1>73)- Then r = r; becomes a point of continuity while 7’ _, turns
to the unique possible point of discontinuity on (r;_1,7j11).
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]

According to Lemma , together with the CFL condition , interactions
other than those of the multiple generalized Riemann problems cannot happen within
one time step. Therefore, our Glimm method is well-defined. The next proposition
shows that it is actually well-balanced as well.

Proposition 2.7.2 (Well-balanced property). Let the initial velocity v, = v.(r) be a
smooth steady state solution given by the static Burgers model on the Schwarzschild
spacetime background . Then the approximate solution constructed by the gen-
eralized Glimm method is accurate.

Proof. Since the initial velocity is a steady state solution, we see that va o = v, where
va is the initial approximation given by (2.7.5), (2.7.6). Since the solution to the

Riemann problem is accurate, we have thus the result. O

For any initial velocity with a bounded weighted total variation , the ran-
dom choice method actually constructs a sequence of approximate solutions which
will converge to an exact weak solution to the relativistic Burgers model for
vanishing space length Ar — 0. We would like to prove in this section the result
concerning the existence theory given by Theorem [2.1.2] or more concretely, the fol-

lowing existence theory of the Cauchy problem of the relativistic Burgers equation
(2.1.5) on the Schwarzschild background.

Theorem 2.7.3 (Existence theory of the relativistic Burgers equation on the Schwarzschild
background). Let M > 0 be the mass of a Schwarzschild black hole and we con-
sider the relativistic Burgers equation on a Schwarzschild background posed

in the domain r > 2M. For any given initial velocity |vg| = |vo(r)| < 1/e where

1/e is the light speed such that f\?(vo) < +0o where TV is the weighted total
variation defined by , there exists a weak solution to the relaitvistic Burgers
model on a Schwarzschild spacetime background , say v = v(t,r) defined on
(0,400) x (2M, +00) such that for all £ > 0,

ﬁ(v(tg, )) S TV(U(tl, )), 0 S tl S tQ.

Convergence analysis

Recall that for the existence theory of the standard Burgers model without
geometry effect, we require the initial data to have a total variation 7'V (v) on the
whole space interval. However, Theorem 4.6.1] provides a result of weighted total
variation TV (v) instead of TV (v). Indeed, according to Theorem the total
variation of the Riemann problem will increase if and only if we have a shock wave
generated by two steady states with different monotony properties with a negative
shock speed. We first give the estimate of the total variation of approximate solutions.
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Lemma 2.7.4 (Total variation of approximate solutions). Let |vo| = [vo(r)| < % be
an initial velocity with bounded variation on (2M,+00). Denote by va = va(t,r) the
approximate solution to the relativistic Burgers equation constructed by the
generalized Glimm method satisfies

TV (vt ) < TV(uag)(1+ et ), 120,

where va g = vao(r) is the approximation of the initial data vy = vo(r).

Proof. We consider the total variation of the approximate solution at the time level
t = tiy1 and focus on a particular space interval I; = (141 -1, 7i41,j+1) With @ + j
even. Recall that 7,41 j11 = 741 + w1 Ar where (w;); is an equidistributed sequence.
By construction, there exists at most one point of discontinuity in the interval I; and
we denote this point by r = r;; < r;. Since every steady state solution is monotone,
we have

TV (va(tis, ) = Z lva(tist, rst) — vativr, =) < TV (va(tivi—, ).
48

In view of Lemma [2.6.1, TVj, (va(tiy1—,-) < TV, (va(ts, ))(1 + fﬁ). Since r =
Ti+1,,41 With @ + j even are points of continuity, we have

TV (va(tig1—,-)) = ZTV[j (va(tivi— "))

< ZTVIJ' <UA(ti’ )) (1 + 4JA\;€> B TV(UA(Q’ )) (1 + 4JA\4tE>'

Now for a fixed time ¢ > 0, there exists an integer ¢ > 0 such that ¢ € (¢;,%;,41] and
we thus have

At
4Me

i+1 ,
TV (valt,)) < TV(UA70)<1 + ) < TV (va0)etr.

]

As a result of Lemma [2.7.4) the total variation of the solution will probably
increase. In this sense, we would rather use the weighted total variation 7'V (v) on
the whole space interval (2M, +00) as is defined by (12.5.1)):

- [

where the integral is interpreted as the mass of a measure.

v:—1/é N 11/2
1—2M/r €

)

sgn(v)>
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Lemma 2.7.5 (Weighed total variation of approximate solutions). Consider an ini-
tial velocity vo = vo(r) € [—1, 1] such that TV (vo) < +00. Denote by va = va(t,r)
the approzimate solution to the Burgers equation constructed by the generalized Glimm
method. Then the total variation of va satisfies

TV (valt,)) <TV(va(s,”), 0<s<t. (2.7.8)

Proof. We see first that within one time step, t; < t < s < t;41, the weighted
total variation is non-increasing, that is, TV (v(t,-)) < TV (v(s,-)) according to
Theorems|2.5.5land [2.6.1] It remains to show that the result holds fort; <t < s =1t;14
as well.

We consider now the time level ¢ = t;,; and once again focus on the particular
space interval I; = (7411, 7i41,j+1) Where i+ j is an even integer. The construction
of the Glimm scheme gives 7,41 j41 = rj11 +w;x1 Ar where (w;); is an equidistributed
sequence. There are at most one point of discontinuity in I;, say r = r;; < r;.

Following from the construction of the steady state solutions, there are at most
portions of three possible waves lying in the interval I; for ¢; <t < t;;1. Denote by
a, 3,7 these three waves who are either elementary waves or waves of the multiple
Riemann problem.

Then « is either a zero strength wave in I; (if the random choice point 7,41 ;1
lies closer to r;; than the wave o) or a wave with left steady state vy such that
UL (Ti41,5-1) = va(tiy1—, rig1,;—1) and right steady states v§; such that v§; = va(t;i—, 71 j11)-
Similarly, «y is either a zero strength wave in I; or a problem with left states vf/[ such
that U]BV[ = va(ti—,Trit1,,41) and right states vp such that vg = va(tip1—, 741 j+1)-
Concerning the wave f3, it is associated with the left-hand state vy or v§; and the
right-hand state v]@ or vr. Use these notations, we should solve a Riemann problem

centered at r = r;; with (vz,vg) or a multiple Riemann problem with (v, vg) one of
its half problem. Then we have TV, (UA(ti_H, ) <7TVy (UA(ti_H—, )
Adding all the intervals I; together for i+ j even, we reach the desired result. [

We are now in a position to complete the proof of Theorem Define

1/2

2 _1/é 1
v /e sgn(v), ZA =

vi—1/e2 1 |1/2
zi=|—+ =
1—2M/r €

—oMjr &

sgn(va).  (2.7.9)

We see that z is a constant if and only if v is a steady state solution to the static
relativistic Burgers equation ([2.3.1)) and the definition gives TV (v) = TV (z).

We apply Helly’s theorem to the approximate solution zx = z(t, ), that is, there
exists a subsequence of the mesh length (denoted by Ar as well), such that zn — 2
in L}, at each time ¢t > 0 and z = z(t,7) is a weak solution of the relativistic Burgers

equation (2.1.5)) satisfying the given initial data z(t,) = z.
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2.8 The vanishing viscosity method

The method for general data
We now analyze the vanishing viscosity method for the Burgers equation on a

Schwarzschild background (2.1.5). As we will sho it, it is natural to introduce the
following weighted function space

£ = {v L (2M, +00) = (=1/e,1/€) /ﬁ(v) < +oo}, (2.8.1)

where we recall that the weighted total variation was defined, for smooth functions,
+oo

N —~ vi—1/e2 1 1/2
TV (v) = /W ar(‘—+ sgn(v))

1—2M/r &
and then extended by density. Recall also that all steady state solutions to the
Burgers equation belong to £.

We introduce a regularization of the solutions of (2.1.5) and now solve the equation

)

Vay ve—1/e '\
@(m) + 8, (W) = a0, (K (r)0,va), r>2M, (2.8.2)

where o > 0 is a parameter (which will tend to zero) and the given function K =
K(r) > 0 is smooth and depends on the space variable r only. We tacitly assume
that the kernel K is chosen so that the solutions exist for all times and are smooth
(from regularized initial data).

Theorem 2.8.1 (Well-posedness theory for the Burgers equation on a Schwarzschild
background). The initial value problem for the Burgers equation on a Schwarzschild
background ([2.1.5)) is well-posed in the functional space £.

e (Control of the weighted total variation. Given any initial data vg € &, the cor-
responding solution belongs to £ at each time and the weighted total variation
t+— TV (v(t,)) is a non-increasing function of time.

o Weighted L' stability property. For any two initial data vo; and vgo in &, the
corresponding weak solutions v; = vy (t,7) and vy = ve(t,7) satisfy

" oaltr) — ()] [T falr) — v (1)
/2M (1= 2M/r)? dr < ezem /2M (1= 200/1)? dr. (2.8.3)

Proof. 1. Observe that it is precisely the L! stability property which provides us
with the uniqueness of the entropy solution to the initial value problem. Let v; =



142 2.8. The vanishing viscosity method

vi(t,7),v9 = va(t,r) be two solutions of the Burgers equation (2.1.5) with initial
conditions v (0, -) = vp 1 and v2(0,-) = vgo. We start from the equation

at(u ai22;\47}1)2) + o <W> = a0, (K(r)0,(Vap — Vo). (2.8:4)

Consider a regularization ¢s — ¢ of the function ¢ = |- |. Multiplying (2.8.4)) by
O5(Va2 — Va,1), we find

¢ (UQ,Q B UO&J) qb (Ua,Q - Uoz,l)(voaﬁ + Ua,l)
at( TEET7nE +) “97"( RN V7 )

M Va2 + Va,1
ST—Q%(Ua,z - 'Ua,l)m + a0, (K(T)ar%(va,z — Ua,1))

— &K(T)(ﬁg('va,z — Ua,l) (ar(va,2 - Ua,l))2

« + «
§¢6(Uoz,2 - Ua,l)ﬁ + aar (K(T>ar¢6(va,2 - Ua,l)) .

Taking 6 — 0 and integrating with respect to the space variable from 2M, we have
d Foo ’UOC72 - Ua,l| d < /+OO ‘fUa 2 — VUq ll
dt Jopr (1 —2M/r)? o AM(1 —2M/r)?

+oo ‘Ua2 Ual'
2€M (1 —2M/r)?

('Uoz 2 + Ve l)dT

- dr.

The Gronwall’s inequality gives

/+oo [Va2(t, 1) — vaa(t,T)] contn /Jroo [Va.2(0,7) — v4.1(0,7)]
oM (1—2M/r)? - oM (1—2M/r)?

o t/ > |U0,2 - Uo,1|
—e2eM S .
o (1 —2M/r)?

By taking oo — 0, we have the L' stability result.



Chapter 2: Weakly regular fluid flows on the domain of outer communication of a
Schwarzschild spacetime. The relativistic Burgers equation 143

2. We rely again on (12.8.2) and write

—-1/2

d — d [t vi-1/e¢ 1 o
—TV(v,) =— S e e A T ) ——
ai’ V) = /W t—ar T Ty
vi—1/e¢ 1 12
1oy ta| Olentn)
</+°° va =1/ 172 Oowa|  1jwd =1/ 1173/2 9,(v2)|0va]
Ton 11=2M/r el (1 —opyr)? 211 =2M/r el (1 —omyr)

By deriving ([2.8.2)) once with respect to ¢, we have

XN Vo OpUq,
o, (W) + 0, (W) = a0, (K(T)aratva). (2.8.5)

Introduce a sequence of smooth functions ¢s : R — R such that (lsiné ¢s — ¢ in
—

the distributional sense where ¢ = ¢(z) = |z| = sgn(z)x. Now multiply (2.8.5) by
95(Orva):

o5(0vq) Vo ®s(01v4) , Vg,
O (W) + 0, (W) + (¢6(atva) - Qbé(atva)atva)arm

=a0, (K (r)0:¢5(0rva)) — (K () (0}.0a)* 05 (Orva).

Letting 6 — 0, we have

0100 Va|O10a]
0wl valhval  _
at<(1—2M/'r)2 o\ T o) < a0, (K (r)0:[0hval),

which gives

— “+o00 2 2 _1/9
iTV(UQ) S/ — M‘Fl / 'r( Uoz|at'Uo¢| >
& o iomgr el
Lz -1/ 1 )3/2 3 (v2)[0,v4]
2T —anfr @l (o)
Too 2 /€2 1 (-3/2 ) ]
= /QM e 21\;/r 5| 1= 2M/r) 7 (vadhvaldrval = 5002 |0wal) = 0.

Taking @« — 0, we have thus the result that the weighted total variation is non-
increasing with respect to the time variable. O
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Negative velocity

For the negative velocity, we can actually have some more results derived by the
vanishing viscosity method. In the concern of such behaviors, we use the Burgers
equation in the form of (3.1.2)) and introduce the L' norm M = M(t;v):

= [70-2)0.(5) -5 (- 3)

M
Note that lim M(t;v) = TV(%) It is also obvious that for a steady state

r—2M

solution v, = v,(r), M(t;v,) = 0 holds for all ¢t > 0.

dr, (2.8.6)

Lemma 2.8.2 (Bound of norm M). Let v =v(t,r) be solution to the Burgers equa-

tion on a Schwarzschild background (3.1.2)), then M(t;v) given by (2.8.6)) is uniformly
bounded fort > 0.

Proof. We consider the following viscous Burgers equation associated with (3.1.2)):

2

Oyva + O, <<1 - ¥) %a) _M <2v§ - l) +ad, ((1 - %)2[((7“)&%). (2.8.7)

r? €2 r

Here, a > 0 is a parameter and K = K(r) a smooth positive function. Multiply
(2.8.7) by ¢%(vs) whose limit of vanishing ¢ is the absolute value function ¢ = | - |:

0r5(va) + ar((1 - %)@s(va))

_ _¢;(UQ)%U3 + 274—]\24@)5(%) + oz&((l - %)21((7’)@%(%))
(1= 2 K ()0 00

< %@a(va) +ad, ((1 - ¥)2K <r>ar¢a<va)),

where the smooth function satisfies ®%(z) = x¢j(z). Integrating from 2M to infinity
and taking 6 — 0, we have

+oo T oM 1 [T*2M 1
M(t;v,) = / |0pvg|dr < / “vidr < = —dr < =
2

2 2 2 2"
M om T € Jomr T €

We have thus get the lemma by taking a — 0. O]

A solution to the relativistic Burgers model stays negative if it starts from a
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negative velocity at ¢ = 0.

Lemma 2.8.3 (The negative velocity). Fiz some —1 < vy = wvy(r) < 0 defined

n (2M,400). Then the solution to the relativistic Burgers equation on a
Schwarzschild background v = v(t,r) with the initial condition v(0,-) = vy satisfies
—L <w(t,-) <0 forallt > 0.

Proof. We consider the following viscous Burgers equation

oo+ ((1-20) %) = X (22 - 1) +aan((1- 2) ko, ),

where o > 0 is a parameter and K = K(r) > 0 a smooth function. Now we consider
a sequence of smooth functions (¢s)s such that (lsirr(l) ws = @ where
—>

0, z<0
=<7 - 2.8.8
o) { T (283)

Define then a function 5 := 15(z) such that ¢j5(z) = z¢§(x) holds for all x € R.
Multiply (2.8.7) by ¢%(vs), we have

0 (ps(0) + 0. ((1 = 20 )wn)) — ehln) oy (202 )

= 2 0s(ea) + (1= 20 ha)rve — ¢ (00)0) ((1 - ﬂb)
+aggun) (1 ¥>2ﬁr([((r)8rva)

= )52+ ) + 0, (1= 2 ) Ko
—a(1- Z0) K () 0 @rv)”

<~ (va) 203 + g () + 0, ((1 - ?)21((7«)3,,%(%)).

Letting 6 — 0, we reach the following inequality

atv;+ar((1—ﬂ)@) SH(Ui)%(vi—i>+2ﬂj( 2> +ad, (( ﬂ)zz{(r)mg),

r 72 €2 r r

where v = max(0,v,) and H = ¢’ > 0 in the distributional sense. By the definition,
H'(vl) <0. Integrating with respect to the space variable r from 2M to infinity, we
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obtain
d [T

£2M

ot (¢ r)dr</+oon+(t r)Zdr</+°° Lt rydr
ary - r2 e = Joyr 2Me ¢ '

2M

Gronwall’s inequality gives

+o0 . +o0
/ vt (t,r)dr < ez / v} (0,7)dr = 0.
2

M 2M

Taking o — 0T, we obtain the result. O]

Observe that Lemma does not hold for a positive initial velocity vy > 0.
Indeed, by setting w = —v, we have

2M w? M 1
o (1= 2o, (M) = M (e Ly 259

1 r 2 rz\Y T e ( )
from which we see that the relativistic Burgers equation (3.1.1]) and ([2.8.9) are not
symmetric with respect to the signs. We now give a result for negative velocities
obtained by the vanishing viscosity method.

Theorem 2.8.4 (The vanishing viscosity method for negative velocities). Let % <
vo = vo(r) < 0 be a given velocity and we denote by v = v(t,r) the solution of
the relativistic Burgers equation on a Schwarzschild background with initial
condition v(t,-) = vg. Then the solution v = v(¢,r) satisfies M(t;v) given by
is non-increasing with respect to the time variable ¢ > 0.

Proof. Lemma [2.8.3|gives the fact that the solution v < 0 holds for all the time ¢ > 0.
Derive the viscous Burgers equation ([2.8.7)) once with respect to ¢, we have

2M 4M 2M N2
3t(6tva) + 67« ((1 — —)vaﬁtva> = T—zvaaﬂ)a + Oéar ((1 — T) K(T)@T(?tva)) .
r
(2.8.10)
Multiply (2.8.10) by ¢5(0;v,) where we have introduced a sequence of smooth func-
tions ¢ such that ¢s — | - | when § — 0 in the sense of distribution and

r

onts(0ua) + 0, (1= 2 ) us(@r)) + (0) ~ S50ae)o, (1= 20

M IMN 2
:4ﬁ¢g(atva)vaatva + a0, ((1 — 7) K(T)ar¢5(atva)).
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Taking 6 — 0, we have

2M
8t|8tva] —+ & ((1 — T)Ua|atva‘>
2M N2

< 2%(va]8tva| + sgn’(va) (0pva)?) + @O, ((1 - T) K(r)a,«gzﬁg(atva)).

Since sgn’(v,) > 0 and v, < 0 according to Lemma [2.8.3] we have, by integration

d [T

° ldr < 0.
7 ). |0yvq|dr < 0

Taking o — 0, we have the fact that M(¢;v) is non-increasing with respect to
t>0. O

2.9 Time-asymptotic behavior of weak solutions

The generalized characteristics

In this section, we consider the weak solution to the relativistic Burgers model
(2.1.5) with initial data vy = vo(r) having bounded weighted total variation (2.5.1))
and such that

(2.9.1)

) ve(r),  2M <1 <7y,
vo(r) =
0 Vi (1), 7> T

where 2M < r, < 1., are two given radius and v, = v,(r) and v, = v.(r) are two
smooth steady state solutions given by the static Burgers model defined on
(2M,r,) and (2M,+00). Observe that we do not require v, to be globally defined
and it is possible that its velocity will vanish at some point r = rf. By the property
of finite speed of propagation, the solution v = v(¢,r) is a steady state solution out
of a bounded domain. Our main goal of this section is to prove Theorem [2.1.3] We
would first introduce the generalized characteristic for the relativistic Burgers model.

Definition 2.9.1. A generalized characteristic for the relativistic Burgers model on a
Schwarzschild spacetime (2.1.5) associated with the solution v = v(t,r) is an integral

curve satisfying
d§ 2M

== (1 - T)v(t,g), (2.9.2)

in the sense that

% c [(1 _ %)v(t,gﬂ, (1- %)v(t,g—)} ae. int. (2.9.3)
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Since the Burgers model is hyperbolic, we see that the generalized characteristic
is well-defined. Moreover, from the definition, a generalized characteristic propagates
either with a shock speed or with a characteristic speed. Now through the points
(0,7,) and (0, 7..), we draw two generalized characteristics associated with the Burg-
ers solution v = v(t,7), denoted by &, = &.(t) and &, = &, (). In order to study the
asymptotic behavior of the Burgers solutions on the Schwarzschild background, we
introduce the two following quantities:

P#) = ain / (U((l’— )ZM/r() /))d ,

o= e [ (G )

We claim that P, () are actually constants.

(2.9.4)

Proposition 2.9.2. The functions P = P(t) and Q = Q(t) introduced in ([2.9.4))
satisfy that P(t) = P(0) and Q(t) = Q(0) for all t > 0.

Proof. We have

a(@%) +0, (W) =0 (2.9.5)

and we introduce the function

_ O~ [P r)? =),
O(t,r) = /2M (1= 20y dr —/0 21— 201 dt’. (2.9.6)

In view of the conservative form (2.9.5)), we find

o(t',r") —wv(r) ot ) — ()
/5 (1 —2M/r")? dr _/S 2(1 — 2M /1) dt’ = 0e(t,r), (2.9.7)

where S is any path from (0,2M) to (¢,7).

Now we have

_ ot r)? - v*(v")2
%0 = 2(1—2M/r

_ v, — (1)’
00 = (1—2M/7")2 /Oa“< 1—2M/r >dt

)
P =) o vltr) —u()
3t'< (1~ 200/ )dt—m-

v(0,7) = vu(r)

(1 —2M/r>2 +/0
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Hence, we deduce the equation

0,0 + (1_ﬂ>vzv*

- 0,6 = 0. (2.9.8)

From (2.9.7), we see that P(t) = min, O(¢,r). To get the result, we only need to
prove that < min, O(t,r) = 0.

Suppose that at a given time ¢t = ¢; > 0, the minimum is taken at the radius
r =rg > 2M. Now through this point (¢, 7), we draw a curve x characterized by

dr _ (1 2MN v + v,

dt ( ) 2
and we see by that © is a constant along the curve x. We now claim that
there exists a constant 6 > 0 such that y is well-defined on the neighborhood of
denoted by (to — 0, tp+9). Indeed, it is obvious if the Burgers solution v is continuous
at the point (to,79). Otherwise, for (to,79) as a point of discontinuity of v = v(t,r),
the entropy condition (2.4.12)) guarantees that £ is defined on a neighborhood of .
A similar analysis leads to the result of Q. O

(2.9.9)

r

Generalized N-waves
We now consider the case that v,(r) < v, (r) for all r in the domain of definition.

Lemma 2.9.3 (Comparison with the generalized rarefaction). Suppose that the two
steady state solutions satisfy v.(r) < v (r) for all v in the domain of definition. Let
Ee = &u(t), Euw = Eui(t) De the two generalized characteristics staring from (0,7,), (0, 7)),
respectively, in the sense of (2.9.3)), then for any radius r € (f*(t),f**(t)), we have

Tyx — Tx _
|'U(t,’l") - ’lU(t,T)l < !

_ 2.9.1
<t (2.9.10)

where w = w(t,r) is the generalized rarefaction given by (3.5.7).

Proof. We now draw a characteristic ¥ = 7(¢) backward from any point (¢,r) with
re (5*(15), é’**(t)) where &, = &.(t), £ = & (t) are generalized characteristics drawing
from (0, r,) and (0, 7..) respectively. Then the following ordinary differential equation
holds:

dr 2M ~ d

di ; (w? —1/¢%), w(t,r)=v(t,r), F(t)=r

Recall the formula of the generalized rarefaction wave given in (3.5.7), w = w({, ) is
exactly the generalized rarefaction curve.
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Now by the entropy condition (2.4.12), we know that the curve 7 will intersect
neither &, nor &,,. In particular, the point ry will stay between r, and r,,, which
gives

LUBLUIPENTY
t - t

where £ = £(t) is the generalized characteristic passing through (¢,7) in the sense of

Definition 2.9.1] We first note that £(t) = 7(t) = (1 — 2M/r)v(t,r). Using Taylor

expansion at the point ¢ and recall that the Burgers solution is a steady state (either

a smooth solution or a weak solution with a steady state shock) along both ¢ and 7,

we have

1 -
(1 =2M/ro)ot,r) —w(t,r)] < < |&(8) = 7() — (£'(H) = V(t))’ < (P — )t
which completes the proof. O

We now consider the distances between the two generalized characteristics &,, &..
and the bounds of the rarefaction regions. This requires an analysis of those two
quantities P, () introduced in (2.9.4)).

Lemma 2.9.4 (The distance from the rarefaction region). Denote by o, = o.(t) and
Oux = O4x(t) the lower and upper bounds of the rarefaction region associated with the
left steady state v, and right steady state v... We have

Ect) = 0u(t) + V=2Pt + |€(t) — 0u(t) — V2Qt| = O(r — 7). (2.9.11)

Proof. By the definition of P, we should have

r AN / £ (1) N _— /
P = min / U(t7 r ) U*(T ) d?“/ _ / U(t7 r ) /U*<7n ) d’r‘,,
re@M,to0) Jorr \ (1 —2M /1")? £.(1) (1 —2M/r")?
where £* = £*(t) satisfies v (¢, £*(t)) = v, (£*(¢)). Following from a similar calculation
with that in Lemma [2.9.3] we have

£(t) — &)+ Ot —r )t~

E(t) = 0.(t) + O(ryy — 1)t 1, V— Uy = (1— 20 /)

We thus have

P- / 7 OF0 (W, Y) = v.(r') ) ar’
£

" (1 —2M/r')?
_ /o*<t>+o<mm>t—1 <r’/t — &) +0(r - n)tl)
» (1 —2M/r)?

Use again the fact that v is a steady state solution along the generalized characteristic
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& and v, is a smooth steady state solution along the wave o,, we have

(6(t) — 0u(1))

2

£.(t) — 2M

P=- — 6M (E.(t) — 0u(t)) — 24M* In
2 6M(&.(1) = ou(1)) Mot — 2M
1 1 1 1
st ( - ) + 8200 ( - )
" (&(t) —2M)2  (o.(t) — 2M)? * () —2M o, (t) —2M
+ O(r — 1) (&(t) — 0u(8)) "+ O(r — r )t
(2.9.12)
which gives the result for &,. A similar analysis leads to the result of &,,. n

We now introduce the generalized N-wave associated with the two steady state
solutions v,, v, of the relativistic Burgers model ({2.1.5)):

v.(r), 7 —o(t) < max <2M—O'*(t),—m>,
N(t, 750, 00i) == S w(t,r), max <2M, o.(t) — \/—2Pt> <1 < ow(t) + /208,

Vae(1), 7 — 0u(t) > 120,
(2.9.13)
where o,, 0., are upper and lower bounds of the rarefaction region given in
and w = w(t,r) is the generalized rarefaction curve (3.5.7). It follows immediately

from (2.9.12)) that
[0(t, 1) — N(t, 7505, 0se)| = O(rss — 1)t 2,

for r either between &,(t) and 0,(t) — v/ —2Pt or between &,.(t) and 0,.(t) + /2Q1t.
We now consider the bounds of the rarefaction wave w = w(¢,r) containing in the
N-wave.

Lemma 2.9.5 (The bounds of the rarefaction in N-wave). Let w = w(t,r) be the
rarefaction wave containing in the generalized N-wave (2.9.13). Then the lower and
upper bounds of w satisfies

o [fv, >0, the lower and upper bounds of w tend to infinity r = +o00;

o [fu, <0, the lower bound of w tends to the horizon of the black hole r = 2M,
while its the upper bound tends to infinity r = +oo.

o Ifv, < 0 < vy, the lower bound of w tends to r = 2M, while its the upper
bound tends to infinity r = +o00.

Proof. If v, > 0, then o, = O(t) when t is big enough. If v, < 0, then o, — 2M when
the time is big enough. A similar analysis leads to the result concerning v,.,. O

Proposition 2.9.6 (The generalized N-wave). Let v = wv(t,r) be the solution of
the relativistic Burgers equation on the Schwarzschild background (2.1.5) with given
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initial data vo = vo(r) satisfying with v4(r) < v (r) for all v in the domain of
definition. Let N = N(t,r;v,,v.) be the generalized N-wave associated with v., v
given by and &, = & (t), Eux = Euk(t) be the generalized characteristics starting
from 1y, r.., respectively, in the sense of .

e For any radius r € (max (&(1), 0.(t) — V=2Pt), min (&, o4 (t) + \/2Qt>, the

following estimate holds

[o(t, 1) — N(t,7; 04, V4)| = O(1ryy — 1)t

o For any radius r either between &,(t) and o.(t) — v/ —2Pt or between &, (t) and
0. () +1/2Qt, the following estimate holds

[u(t,7) — N(t, 75 0,, V)| = O(rys — 1)t V2,

o The solution v(t,r) = N(t,7; Vs, Vi) for any radius r in other regions.

Asymptotic shock waves

We now consider the asymptotic behavior of Burgers solutions with initial data
vo given in ([2.9.1)) with the two given steady state solutions such that v, (r) > v..(r)
holds for all 7 in the domain of communication.

Lemma 2.9.7 (The shock wave at finite time). Suppose that the two steady state
solutions satisfy that v.(r) > v..(r) for all r in the domain of communication. If
moreover, v, > 0 holds, then there exists a finite time to > 0, such that for all t > tg,
the solution to the relativistic Burgers’ equation s a shock wave

vs(t, ) = {”*(T)’ r<ol) (2.9.14)

Vi (1), T > 0(t),
where o = o(t) is the shock wave curve starting from t = to defined by (2.4.3).

Proof. Denote by &, = &.(t), & = &u(t) the two generalized characteristicsdrawing
from points (0,7,), (0,7..), respectively, in the sense of Definition 2.9.1] Denote by
D(t) := &u(t) — & (1) the distance between the two generalized characteristics. To
prove the lemma, we need only to show that D(t) vanishes at a finite time ¢3. Now
write
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By (2:93), we have

D/(t) _ A**(t) ‘2i‘ )\7<t> N )\*(t) ‘; )\+(t) _ %()\+(t) o )\_<If)) + %(/\**(t) o )\*(t))
(2.9.15)
From the two points (t, f*(t)), (t, 5**(15)), we draw two characteristics backwards of
time, respectively. Thanks to to the entropy condition, they will always stay between
&.(s) and &,.(s) at every fixed time 0 < s < t. Since the velocity is a steady state
along these two characteristics, we have

D(t) < t(A (1) — A_(1)).

Now recall the formula of the steady state solutions given by (2.3.1) and we have

V(1) = sgn(v*)\/l — e2K?2 <1 — %), Ve (T) = sgn(v**)\/l —e2K2, (1 — g),
(2.9.16)

where K., K., are two constants. Indeed, for the case that v, > v,, and v, > 0, there
are two possibilities as follows.

o If v, > v,, >0, it is necessary that K, < K,,. We thus have

( 2M

Ty

Alt) — M) < — )¢1—62K2 VI eK2) <0,

hence

2M

T

D(t) < D(0) — (1 -

J(VT=@R? = T=@RZ) (t 117,

Moreover, notice that v, > v., > 0 requires that v, is defined for r € (2M, +00),
then v, cannot vanish for all ¢ > 0.

e If v, >0 > v,,, we have

which gives

D(t) < D(0) — (1 - 2M) V1= EK2 (t — /7).

T
Suppose now that there exists a time such ¢, < ty such that &,(t;) = rf where 4
is the vanishing velocity radius for v,. We will show that &,(t) < 7%. Indeed, if

there exists a time t9 > t; such that &, (t2) > 77 and &.(t) < riforallt; <t < to,
then it is necessary that %= > 0 where the derivative is given in the sense




154 2.9. Time-asymptotic behavior of weak solutions

of (2.9.3).We thus have v, (&.(t2)), providing a contradiction.

Hence, for both cases, D(t) vanishes for big enough ¢ > 0. We have thus get the
result. O

If the left-hand steady state solution v, < 0, we may not have a shock wave at
the finite time. However, we have the following lemma.

Lemma 2.9.8 (The shock wave at infinity). Suppose that the two steady state solu-
tions contained in the initial data vy satisfy 0 > v.(r) > v (r) for all r in the domain
of definition and the solution to the relativistic Burgers model , say v =v(t,r),
satisfies lim v = vs where v, is the shock wave given by (2.9.14)).

t——+o0

Proof. We will use the same notations as Lemma in order to consider the case
0 > v, > V. We have

2M 2M
M) = Auft) =(1 - m)v** (&(t)+ D(B) — (1- g*—(t)>v* (&.(t)

<(1- ;i‘f)) (2 (E10) — v (&(0))) + ii” Dty (£..(8)).

Hence, we have D(t) < D(1)t'/2exp <v**(r**)3TM(t - 1)) Since vy (r4) 235 < 0, the
distance between the two generalized characteristics D(¢) — 0 when t — 4o0. [

We have thus established the desired result for initial data v, (r) > v..(r).

Proposition 2.9.9 (The asymptotic shock wave). Consider the solution v = v(t,r)
to the relativistic Burgers equation on the Schwarzschild background with the
given initial velocity vo = vo(r) satisfying where v,(r) > vy (r) for all v in the
domain of definition. Let vy be a shock wave of the Burgers model given by .
Then the following asymptotic behavior holds:

o [fv, >0, then there exists a finite time ty such that v = vy for allt > t,.

o Ifv, <0, then v — vy, when t — +00.

From Propositions [2.9.6| and [2.9.9] we obtain the following corollary.

Corollary 2.9.10. For a given initial velocity vy = vo(r) with bounded weighted total
variation such that

v = vi(7), T & (Fa, Tas)

where v, = v4(r) 1is the steady state solution to the static Burgers equation ({2.3.1))
and 1y < T are given in the interval (2M,+00), then the solution to the relativistic
Burgers model satisfies

[o(t,r) = vi(r)] = O(t2).
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3.1 Introduction

In this paper and the companion papers [31], [32] 34], we study numerically com-
pressible fluid flows on a Schwarzschild blackhole background. The present investiga-
tion is part of a research project by LeFloch and co-authors on designing numerical
methods for relativistic fluid problems posed on curved spacetimes; see [1} [0}, 23 29
30]. Building upon the numerical analysis in the later papers and on the analytical
work performed by the authors in [31], 32, B34], we are able here to design several
numerical schemes for the approximation of shock wave solutions to, both, the rel-
ativistic Burgers equation and the compressible Euler system under the assumption
that the flow is spherically symmetric. Our schemes are asymptotic preserving and
therefore allow us to investigate the late-time asymptotic of solutions. One impor-
tant challenge addressed here is taking the curved geometry into account at the level

of the discretization and handling the behavior of solutions near the horizon of the
blackhole.

The relativistic Burgers equation on a Schwarzschild background reads as follows
(see [31] for further details):

v v —1
8t (m) + 0, (m) =0, r > 2M, (311)

where we have normalized the light speed to unit and the unknown is the function
v =w(t,r) € [—1,1]. This equation can also be put in the following non-conservative
form:

2MN v? — 1 2M ,
8tv—|—8r<<1— - ) > > =502 -1),  r>2M (3.1.2)
Here M > 0 denotes the mass of the blackhole and, clearly, we recover the standard
Burgers equations when the mass vanishes.

Our main contribution for the relativistic Burgers model above is as follows. First
of all, we are going to construct a well-balanced finite volume method as well as a
random choice method which, both, are capable to preserve the steady state solutions.
We will use these schemes to investigate the following issues and validate and extend
our theoretical results (briefly reviewed below in Theorems to [3.2.3):

e The global-in-time existence theory for the generalized Riemann problem gen-
erated by an arbitrary initial discontinuity.

e The late-time behavior of an initially perturbed steady state solution, possibly
containing a stationary shock wave.

Furthermore, our study here have led us to the following two conjectures for general
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initial data.

Conjecture 3.1.1. Given any compactly perturbed steady shock as an initially data,

the solution to the relativistic Burgers model on a Schwarzschild background (3.1.1)
converges to a steady state shock asymptotically in time.

Conjecture 3.1.2. Given an initial data vy = vo(r) € [—1,1] defined on [2M, +00),

the corresponding solution v = v(t,r) to the relativistic Burgers model (3.1.1)) is as
follows:

o [fvg(2M) =1, then there exists a finite time ty > 0 such that, for allt > ty, the

solution v is a single shock with left-hand state 1 and right-hand state — %

o I[fug(2M) <1 and lim wvy(r) > 0, then there exists a finite time to > 0 such

r—-+00

that, for all t > to, the solution is v(t,r) = — % for all t > .

o [fvy(2M) <1 and liin vo(r) < 0, then there exists a finite time ty > 0 such
T—+00

that, for allt > ty, the solution to the relativistic Burgers model satisfies for all
t >t

v(t,r) = —\/1 —(1- (1180)2)(1 - %), lim vy(r) =: v3° < 0.

T r—-+o00

We also investigate solutions to the Euler system on a Schwarzschild background,
which takes the form:

p) +0, (r(r —20) 1 + &

9 (7"21 + k?0v?
(r2

1 — 2 pv) =0,

— 2

1+ k? o U2 + k2

8t(r(r - 2M)1 — Uzpv> + 0, ((r —2M) 02 p) (3.1.3)
2M N\ v? 2 —2M1 22 — 2M)?

=3M(1——)” LIyl TR g 2M)
r /1—v? r 1 —v?

kp,

where the light speed is normalized to unit and k € (0, 1] denotes the sound speed.
By formally letting £ — 0, we can recover the pressureless Euler system, from which
in turn we can derive the relativistic Burgers equation above. On the other hand,
by letting the blackhole mass M — 0, we recover the relativistic Euler system in the
Minkowski spacetime. Furthermore, we can also write the relativistic Euler equations
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in the Schwarzschild spacetime in the following form:

1+ k*0? 1+ k2 2 1+ k2
a(———yw) a(u—zMﬁg 2m>:—;u—2Mﬁhi3§m,

1+ k2 v? + k2
t(1 2pv>+8r((1—2M/7‘) 2,0) (3.1.4)
—27‘+5MU + kK M1+ k*0? 2M2

r2 1—2’ 212 p+2 Wp.

Our study of the relativistic Euler equations on a Schwarzschild background
is based on the construction of a finite volume method with second-order accuracy,
which preserves the family of steady state solutions. Our numerical study suggests a
global-in-time existence theory for the generalized Riemann problem, whose explicit
form is not yet known theoretically. In particular, we exhibit here solutions containing
up to three steady state components, connected by a 1-wave and a 2-wave.

Conjecture 3.1.3. Let (pi,v.) = (ps,v)(r), 7 > 2M be a smooth steady state
solution to the Euler model above and let (po, vo) = (po, v0) (1) = (px, V) (1) +(0,, 6,) (1)
where (8,,0,) = (3,,0,)(r) has compact support. Then, the corresponding solution
to the relativistic Euler equation on a Schwarzschild background (p,v) = (p,v)(t,r)
satisfies:

o If | [0,(r)dr| + | [0,
(o, 0)(t,7) = (pay ) (r

o If | [5,(r)dr| + | [ 6,
(P, 0)(E,7) = (pss, Vi)

steady state solution.

rydr| = 0, then there exists a time to > 0 such that
for all t > 1.

/\ \//\

rydr| # 0, then there exists a time to > 0 such that
) for all t > to, where (pPu, Vsx) 18 a possibly different

—~

Using steady shocks (to be defined in Section , we also have the following.

Conjecture 3.1.4. Let (p.,vi) = (ps,vi)(r), 7 > 2M be a steady shock and let
(po, v0) = (px, v:) (1) + (9,5, 6) (1) where (,,6,) = (9,,6,)(r) is a compactly supported
perturbation. Then there exists a finite time t > to such that the solution (p,v) =
(p,v)(t,7) is a (possibly different) steady shock.

Our numerical approach on the Glimm scheme is motivated by the approach
proposed by Glimm, Marshall, and Plohr [14] for quasi-one-dimensional gas flows. We
rely on static solutions and on the generalized Riemann problem, which we studied
extensively in [31) B2, B34] for the relativistic models under consideration here. The
numerical analysis of hyperbolic problems posed on curved spacetimes was initiated
in I, 6, 23, 29, B0] using the finite volume methodology, and we also recall that
hyperbolic conservation laws on curved spaces are also studied by Dziuk and co-
authors [11, [12].
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This paper is organized as follows. In Section we briefly overview our theo-
retical results for the relativistic Burgers model. We include a full description of the
family of steady state solutions, as well as some outline of the existence theory for
the initial data problem and the nonlinear stability of piecewise steady solutions. In
Section we introduce a finite volume method for the relativistic Burgers model
(3.1.1f), which is well-balanced and second-order accurate. In Section , we apply
our scheme in order to study the generalized Riemann problem and to elucidate the
late-time behavior of perturbations of steady solutions.

Building on our theoretical results, in Section [3.5] we implement a generalized
Glimm scheme for the relativistic Burgers model . Our numerical method is
based on an explicit and accurate solver of the generalized Riemann problem and,
therefore, our method preserves all steady state solutions. Numerical experiments
are presented in Section [3.6] in which we are able to validate and expand the the-
oretical results in Section 3.2l Our method avoids to introduce numerical diffusion
and provide an efficient approach for computing shock wave solutions. Furthermore,
in Section we apply both methods to the study of the initial problem for the rela-
tivistic Burgers equation when the initial velocity is rather arbitrary and we validate
our Conjectures [3.1.1] and [3.1.2] and, along the way, clarify the behavior of the fluid
flow near the blackhole horizon.

Next, in Section [3.8] we turn our attention to the relativistic Euler model on a
Schwarzschild background. We begin by reviewing some theoretical results, including
the existence theory for steady state solutions, the construction of a solver for the
generalized Riemann problem, and the existence theory for the initial value problem.
We are then in a position, in Section [3.9] to construct a finite volume method for
the relativistic Euler model. Our method is second-order accuracy and is proven be
well-balanced. With the proposed algorithm, in Section [3.10, we are able to tackle
the generalized Riemann problem (which has not yet been solved in a closed form)
and we study the nonlinear stability of steady state solutions when the perturba-
tion has compact support. This leads us to numerically demonstrate the validity of
Conjectures [3.1.3| and |3.1.4] above.

3.2 Overview of the theory for the relativistic Burg-
ers model

An important class of solutions to the relativistic Burgers model (3.1.1)) is provided
by the steady state solutions, that is, solutions depending on the space variable r only:

v —1
, (W) 0. (3.2.1)
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Clearly, (ﬁ) is then a constant, and we see that steady state solutions for the

Burgers equation are

v(r) = ++/1 — K2(1 — 2M/r), (3.2.2)

where K > 0 is a constant and, clearly, the sign of a steady state cannot change. The
following remarks are in order:

e v =v(r) is a uniformly bounded and smooth in r and it admits the finite limit

lim v(r) = %1 at the blackhole horizon.
r—2M

e When 0 < K < 1, one has lim o(r) =+v1— K2

r—+400

*

e When K = 1 or equivalently, vF = £,/ %, the steady state solution vanishes at

infinity. These two solutions are referred to as the critical steady state solutions.

e When K > 1, the steady state solution vanishes at a finite radius 7% = %Afgj ,

which we may refer to as the vanishing point.

\\
05| ]
of | >
-
-0.5 | rd ]
G
—
-1 ‘
2 4 6 8 10
r

Figure 3.2.1: Steady state solutions for the relativistic Burgers model

In addition to the smooth steady state solutions, we can also define the class of
steady shocks for the relativistic Burgers equation, which are given by

(3.2.3)

V1—K21-2M/r), 2M <r <,
v =
—V/1-K(1-2M/r), 7>,

where K is a constant and 7 is any given radius. The solution (3.2.3) is time-
independent and the discontinuity point r = ry does not move when time increases.
The relevant solutions to the relativistic Burgers equation v = wv(t,r) have a range
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bounded by the light speed, that is, v € [—1,1] for all ¢ > 0 and r > 2M. An initial
problem of particular importance is given by the generalized Riemann problem, asso-
ciated with initial data made of two steady states separated by a jump discontinuity
located at some given radius.

Theorem 3.2.1 (The generalized Riemann problem for the relativistic Burgers
model). There exists a unique solution to the generalized Riemann problem defined
for all t > 0 realized by either by a shock wave or a rarefaction wave. Moreover, the
following asymptotic behaviors hold:

e The wave location tends to the blackhole horizon if it initially converges towards
the blackhole.

e The wave location tends to the space infinity if it initially converges away from
the blackhole.

e The wave location does not change if it is initially steady.

In connection with the general existence theory for (3.1.1)), we introduce the aux-

vl
1-2M/r

steady state solution. With this notation, we have the following result from [31].

iliary variable z := sgn(v) + 1. It is obvious that z is a constant if v is a

Theorem 3.2.2 (Existence theory for the relativistic Burgers model). Consider the
relativistic Burgers equation posed on the outer domain of a Schwarzschild
blackhole with mass M. Then, for any initial velocity zg = zo(r) € (—1, 1) such that
20 = 2o(r) has bounded total variation, there exists a corresponding weak solution to
(3.1.1) z = z(t,r) whose total variation is non-increasing with respect to time:

TV (2(s,)) <TV(z(t,-)), 0<t<s.

We are going to design several numerical methods for study these solutions. In par-
ticular, we are interested in the behavior of solutions when the initial data vy = vy(r)
is a piecewise smooth and steady state solution, to which we will add a compactly
supported perturbation, i.e.

vo(r) = {ZZ((:)) i]\;[ :Rr = (3.2.4)

where v, = vr(r), vg = vg(r) are two steady state solutions given by (3.2.2)) and
rp,Tr are two fixed points.

Theorem 3.2.3 (Time-asymptotic properties for the relativistic Burgers model).
Consider the asymptotic behavior of a relativistic Burgers solution v = v(¢,r) on
a Schwarzschild background whose initial data is composed by steady state
solutions vy, vg with a compactly supported perturbation.
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e If v;, > wg, then the solution v = v(t,r) converges asymptotically to a shock
curve generated by a left-hand state v and a right-hand state vg.

o If v, < vg, then a generalized N-wave N = N(t,r) can be defined such that
inside a rarefaction fan, one has |v(¢t,r) — N(¢,r)| = O(t™') while in a region
supporting of the evolution of the initial data, one has |v(t,r) — N(t,r)| =
O(t~'/2). Otherwise, one has v(t,r) = N(t,r).

o If vy, = vg, then ||[v(t,7) — vr(t,7)||L @M 400) = O(t~1/2).

3.3 A finite volume scheme for the relativistic Burg-
ers model

The first-order formulation In this section, we propose a finite volume method
for the relativistic Burgers equation which takes the Schwarzschild geometry
into consideration. In order to construct our approximations, we will rely on the
solution to the Riemann problem for the standard Burgers equation :

2

v
that is, an initial data problem with v(¢,7) = vo(r) where vy = wvo(r) is given as a
v, 1 <To,
piecewise constant function vy = L % for some fixed ro and two constants
VR T > Ty,

vr, vr. The solution to the standard Riemann problem is given as

v, r<spt+ro,

v(t,r) = ¢ =0 spt+1g <7 < sgt+ 7o,
Ur T > Sgt+To, (3.3.2)
s vy, v, < VR, s VR v, < VR,
L= R= 4
—UL—;)R U, > VR, —UL2UR V1, > UR.

Denote by At, Ar the mesh lengths in time and in space respectively with the
CFL condition £ = A, where A is such that Alv| < 1/2 in order to avoid wave
interaction between two Riemann problems. We set ¢, = nAt and r; = 2M + jAr.

Introduce also the mesh point (¢,,t;), n > 0, j > 0 and the rectangle R,; = {t, <
t <tpp1, Tj_12 <71 <7Tjt1/2}. Integrate (3.1.2) from rj_1/5 to 711/ in space and
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from ¢, to t,.1:

Ti+1/2 tnt1 02 s -1
/ (v(tn+1, r) = vt T)>dr + / <(1 - 2M/7’j+1/2)( ( JEW) )
Ti—1/2 tn

t Tit1/2  [tn4l 2M
(1= 2M/ri 1 L CSFRYD) dt — (v? — 1)dtdr = 0.
J / 2
ri—172 Jin

Denote by V* = [" o
i
interval (rj_1/2,741/2), and introduce the finite volume scheme for the relativistic

Burgers equation on a Schwarzschild background:

29 (t,, r)dr, the average value of the solution in the space

At 2M
Vit =y - A_r(Fj+1/2 —Fj1p) — At—(vnQ 1), (3:3.3)
"
where Fjy1/0 and F_y9 are Fjyip = F(r,,, ., V], V]",), and
2MN ¢*(Vy,, Vg) — 1
Fir Vi Vi) = (1 - 20 VY0 (33.4)

with ¢(+,-) the standard solution to the Riemann problem centered at r given by
(4.4.6). Observe that the CFL condition guarantees that the solution to the Riemann
problem does not to leave the rectangle 2, ; within one time step.

We now consider the boundary condition of our finite volume scheme. Let J
be the number of the space mesh points and we introduce ghost cells at the space
boundaries: R, = {t, <t < tpp1, 712 <7 < 1ripppand Ry = {t, <t <
bng1, Ty—12 ST <Tjp /2}. We solve the Riemann problem at the two boundaries
with initial condition

1 < Vi <
‘/O(T) _ r To, %(7‘) _ J r Ty,
Vot r >, -1 r>ry.

A consistency property

Lemma 3.3.1. The finite volume method for the relativistic Burgers model introduced

in (3.3.3) satisfies the following properties:

o The scheme is well-balanced, that is, it preserves the steady state solution to the
Euler equation (13.8.1]).

e The scheme is consistent, that is, if v = v(t,r) is an ezxact solution to the
relativistic Burgers model given by the ordinary differential equation (3.2.1)),
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then for every fized point r > 2M,
2M

F(rg, Ve, Vg) — F(re, Vi, V) = 7(02 —1)(rg —7L) + O(rg —r)* (3.3.5)

holds as Vi, Vg — v and rp,rg — r.

Proof. To establish the well-balanced property, we write

Q(‘/]n7 ‘/ﬂrl) -1 Q(V}nfl’ ‘/Jn> -1

Fivip— Fjo1p=(1—=2M/rj1)0) — (1 =2M/rj1/2)

2 2
2 901 oM

:/ (W = Ddr = —(V** - 1),
j-1/2 T Ty

and, therefore, V" = an+1 holds. Next, recall that F(r,Vy, Vi) = (1—%) q(T’VL’—ZVRH

is the numerical flux of the scheme determined by the standard the Riemann solution.
A Taylor expansion gives

oM oM 2M )
1- - 21—T+T—2(T—r')+0(r—r’),
P’ Ve, Ve)—1 v —1

L N2
5 5 +vou(r—1r")+O0(r —1r')~.

Hence, we have

2Mv? — 102 -1 2M
5 Y 5 Y 5 + (1 - —)v@rv(rR — 1)+ O(rg —r1)?
”

=0,.(((1 = 2M1/7)

2M
:7(’02 —~V)(rg—7r) +O(rg —rp)*. O

‘F(TR7 VL; VR) - *F(TLy VL? VR) =

v?—1

) +O(rg —rp)?

A second-order formulation We now extend the method to second-order. The
solution is now discretized as a piecewise linear function, and we define

Anv _ min(QIAj,l/QV”], 2’AJ’+1/2V”|, ‘A]Vn’) if sgnAj,l/QV” = sgnAj+1/2V" = SgnAjV",
J 0 otherwise,
(3.3.6)

where

1
AV = §(Avjﬁ1_Aan—1)v AjappV" = (AV

AV, AVt = (AVE-AVE).
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Then, our second-order scheme is stated as

‘rn—&- v At ya n+1/2,R n+1/2,L
J = J ﬁr< (rj+1/27lj / 7Lj+1/ ) ( )
‘ﬂz—l— R n-+ 2M
f<rj—1/27 ]’—11/27 ) ij 1/2’L)> At 7,2 ([jz 1)7

J

where F is the numerical flux (3.3.4). Here, the two values V;fll/ > Vj"H/ > are
given by

n+1/2,L . nL At (1 —=2M/r;))VIA?V  2M n2
‘/} _‘/] _7< Ar ——- T]Z (‘/] _1)>7
0 AR (3.3.8)
YRR R §<(1 —2M /r;)VIALYV - QM(Vnz - 1))
j =V 5 Ay = f ’
where, with A7V defined by (3.3.6)) and Vj”»L =V - A;;v and an,R — Ve #-

3.4 Numerical experiments with the finite volume
scheme

Asymptotic-preserving property We now present some numerical tests with the
proposed finite volume method applied to the relativistic Burgers equation (3.1.2)).
As mentioned earlier, we work within the domain r > 2M, and the mass parameter
M is taken to be M =1 in all our tests. We work in the space interval (7min , Tmax)
with i = 2M = 2 and rp. = 4 and we take 256 points to discreize the space
interval.

We begin by showing that the method at, both, first-order and second-order
accuracy preserves the steady state solutions. For positive/negative steady state

Burgers solutions v = 4, /% + %, we see that the initial steady states are exactly

conserved by the scheme. We also show that the following steady state shock is
preserved by the scheme:

3 1
341 20<r<30,

|
e

+5 1 >3.0.

We obtain that our finite volume scheme preserves three typical forms for the static
solutions, as is illustrated in Figures and FIG-52.



168 3.4. Numerical experiments with the finite volume scheme

t=20 t=20 t=20

Figure 3.4.2: Solution at time ¢t = 20 of a steady state, using the second-order finite
volume scheme

A moving shock separating two static solutions In view of Theorem [3.2.1]
whether the solution to the Riemann problem will move towards the blackhole horizon
depends only on the behavior of the initial velocity. We take again the space interval
to be (2.0,4.0) with 256 space mesh points. We take then two kinds of initial data
to be

3++ 20<r<25, — 2.0 <r <25,

e
I
c
|
T %

2 r> 2.5, —\/3+4 r>25.

The behavior of the two shock solutions obtained with the first-order and second-
order accurate versions are shown in Figures |3.4.3] [3.4.4} |3.4.5] and |3.4.6]

Late-time behavior of solutions We now study the late-time behavior of solu-
tions whose initial data is given as , that is, a piecewise steady state solution
with a compactly supported perturbation. We treat the following two kinds of piece-
wise steady state solutions:

vV = 9 r, v =

+
=3 =

2.0 <r < 2.5,

%‘ NI

r > 2.9,
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t=0tot=2

t=0tot=5

t=0tot=10

3.0 35 4.0
’

Figure 3.4.3: Static solution with a right-moving shock computed with the first-order
finite volume scheme

t=0tot=2

Figure 3.4.4: Static solution with a right-moving shock computed with the second-
order finite volume scheme

-0.85

= —0.90 -

-0.95

-1.00

2.0

t=0tot=2

t=0tot=5

t=0tot=10

3.0 35 4.0

Figure 3.4.5: Static solution with a left-moving shock computed with the first-order
finite volume scheme

with compactly supported perturbations.

3.5 A generalized random choice scheme for the

relativistic Burgers model

Explicit solution to the generalized Riemann problem In order to construct
a Glimm method for the relativistic Burgers model, we need first introduce the ex-
plicit form of the generalized Riemann problem of the relativistic Burgers equation
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t=0tot=2 t=0tot=5 t=0tot=10
-0.80 T —0.80 T —0.80 T
I
-0.85} I {1 -osst | {1 -ossp
\ \ |
= —0.90 ‘ 1 = -0.90f “ { = -0.90f ‘
-0.95 | 1 -09sf | {1 -09sf (
\ \
-1.00 . . . -1.00 . . . -1.00 . . .
2.0 25 3.0 35 a4 2.0 25 3.0 35 a4 2.0 25 3.0 35 4.0

Figure 3.4.6: Static solution with a left-moving shock computed with the second-order
finite volume scheme
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—-0.96 4 —0.96 4 —0.96 -
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, , .
Figure 3.4.7: Numerical solution from initially perturbed steady state
1.00 =02 1.00 =2 1.00 1
0.95 0.95 095
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- 085 - 085 = 085
0.80 0.80 080
0.75 0.75 0.75F
°7%% 25 30 35 4. °7%% 25 30 35 4.0 °7%% 25 30 35 4.0

Figure 3.4.8: Numerical solution from an initially perturbed shock

(3.1.1),which is an initial problem whose initial data vy = vy(r) is given as

vo(r) = vp(r) 2M <r <, (3.5.1)
0 vr(r) r >, o

where 7q is a fixed point in space and v, = vy (r), vg = vg(r) are two steady state
solutions of the Burgers’ equation with explicit forms

vr(r) = sgn(v%)\/l — K%(l — ﬂ), vgr(r) = sgn(v%)\/l — Ké(l — %),

r T

(3.5.2)
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where K, K > 0 are two constants and we denote by v? = vy (rg),vr(ro) = v%. The
existence of the generalized Riemann problem is concluded in Theorem [3.2.1] More
precisely, the solution to the Riemann problem v = v(t,7) can be realized by either
a shock wave or a rarefaction wave which is given explicitly by the following form:

vp(r)  r<rp(t),
v(t,r) = u(t,r) ro(t) <r < rg(t), (3.5.3)
vr(r) r>rg(t).

Here, r1(t) and rg(t) are bounds of rarefaction regions satisfying

R;(r;(t)) — Rj(ro) =t, (3.5.4)
where R; = R;(r) is given by
RYi R (r R (r
By = 0 ) D 0 D (355)

with j = L, R,k = R, L,

v (r) = 1 if o) = o),
o2\ 0 otherwise,

and the function RY = RY(r) is

1
(1/e —

o (T ) )

€2 e V e r

1 1 1 2M
- ——WV——K<L~—>
* € (T\/ez TV e r

+ M(2/e = 3K2)In (r %—KQ\/——KQ(“%) +<M_T>K?+L)>)

RY (r) :=sgn(v;) K22 (2M6(l - K2)3/2 In(r — 2M)

€2

r €2
(3.5.6)
The function v = v(t, ) denotes the generalized rarefaction wave
~ 1 2M
v(t,r) = sgn(r — 7“0)\/—2 — K2(t,r) <1 - T), (3.5.7)
€
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where K = K(t,r) is characterized by the condition

fi(r, K)— E(TO,K)

sgn(r —rg) = ; , (3.5.8)
where
R(r,K): = ! <2Me(l — K2)*In(r — 2M)
T 1 — K2)32 2
— oM (1/¢ — K?)**1n (27"\/12 —K2<1—¥> +(2M—r)K2)

S S
+ M (2/é — 3K)In \/——K2\/——K2(1—¥)+(M—r)f(2 ;)))

(3.5.9)

Indeed, referring to [32], the solution constructed by is proven to be unique,
satisfying the Rankine-Hugoniot jump condition and the entropy inequality at the
same time. Besides, the solution to the generalized Riemann problem is globally
defined both in time and in space.

A generalized random choice method The random choice method is a scheme
based on the result of generalized Riemann problem. We use again the time-space grid
where the mesh lengths in time and in space are At, Ar with ¢,, = nAt, r; = 2M +jAr
where we recall 2M is the blackhole horizon. Denote by V" the numerical solution

V(nAt,2M + jAr). Let (w,) be a sequence equidistributed in (-1, 1) and write

Tnj = 2M + (j + w,)Ar. We define our Glimm-type appromations as follows:
VIt = V™ (tug1, ), (3.5.10)

where V™ = V™ (t, r) is the solution to the Riemann problem with the initial data

j Vj?n < Tjisen(w )
vin = Ljn(r)’ TS Titsgn(wn)/2 (3.5.11)
‘/R7 (T’), r> Tj+sgn(wn)/2)

where the left-hand state Vj ™ = V7™(r) and the right-hand state V™ = V3" (r) are
steady state solutions to with initial conditions:

Vit =VE, o w, >0, ViT(r) =V w, <0,
Vit (rjo) = Vi, w, <0, Ve (rjm) = Vi, wy, >0.
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We choose a random number only once at each time level ¢ = ¢,, rather than at every
each mesh point (t,,r;).

In order to have an equidistributed sequence, the random values (w,) are defined
by following Chorin [7]: we give two large prime numbers p; < po and define a
sequence of integers (¢, ):

Qo, given qo <p2;  n:=(p1+qn-1) modpy, n=1 (3.5.12)
Then we define the sequence w!, = %J”’;—’;H/z — %, which is to be used in our Glimm
method instead of instead of (w,). It is direct to see that w], € (—3,3).

3.6 Numerical experiments with the random choice
scheme for the relativistic Burgers model

Consistency property We now presents numerical experiment with the proposed
Glimm method for the Burgers equation on a Schwarzschild background . Re-
call that » > 2M and we choose again M = 1 for the blackhole mass. The space
interval in consideration is (Fmin , Tmax) With 7min = 2M = 2 and 7. = 4. To intro-
duce the random sequence, we fix two prime integers, specifically p; = 937, p, = 997
and gg = 800. Since the solution to every local generalized Riemann problem ,
is exact, the following observation is immediate.

Lemma 3.6.1. Consider a given initial velocity vy = vo(r) as a steady state solution
such that the static Burgers model (3.2.1) holds. Then the approximate solution to
the relativistic Burgers equation (3.1.1) constructed by the Glimm method (3.5.10)) s
accurate.

We will still observe the evolution of those three types of solutions shown in

Figure [3.4.1} that is, the two steady state solutions v = =+, /% + % and the steady

shock:
/3 1
v Z_‘_%’ 20<7’<30,
3 1
_”Z—i_ﬁ’ r > 3.0.

Different types of shocks We consider two different shocks whose initial speed
are positive and negative. As was observed by the finite volume method, whether the
position of the shock will go toward the blackhole horizon is determined uniquely by
their initial behavior. We can recover the same conclusion with the Glimm method.
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t=20 t=20 t=20

-0.93 T T T 1.00 T T T 1.0
-0.94 1 0.991
-0.95 1 0.98 o3
-0.96 |- 1 097

N - = oof
-0.97 1 0.96
-0.98 4 095 -0.5F
-0.99 - 4 0.94
-1.00 . . . 0.93 . . . -1.0 . .

2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 35 4.0

Figure 3.6.1: Solution at time ¢ = 20 from a steady state initial data, using the
Glimm scheme

Again, we take two kinds of initial data:

2

v = v =
ﬁ, r > 2.5, 3+ L, r>25.

Since our Riemann solver is exact, the numerical solutions contain no numerical
diffusion.

L1 20<r<25, ~J3 20<r<25

o

100 . tfot‘ot72 . 100 . tfot‘otfs . 1.00 . tfot?tflo .
095 1 095 1 0.95 1
0.90 0.90 0.90
= 085 = 085 = 085}
0.80 0.80 0.80 1
075 0.75 0751
070! - - - 079! - - - 079!

Figure 3.6.2: Static solution with a right-moving shock computed by the Glimm
scheme

t=0tot=2 t=0tot=>5 t=0tot=10
080 : -0.80 : -0.80 :
—0.85} 1 -osst 1 -osst
= =090} 4 = -0.90} 4 = —0.90
—095[ 4 -oosf / —0.95}
-1.00 . . . -1.00 . . . -1.00 . . .
2.0 25 3.0 35 4. 2.0 25 3.0 35 a4 2.0 25 3.0 35 4.0

Figure 3.6.3: Static solution with a left-moving shock computed by the Glimm scheme



Chapter 3: Fluid flows on the domain of outer communication of a Schwarzschild
spacetime. A numerical study 175

Asymptotic behavior of Burgers solutions We are now interested in the evolu-
tion of solutions whose initial data is given as piecewise steady state solution satisfying
(3.2.1)). As was done earlier, we take into account two kinds of initial data:

/1 1 141 20<r<25,
V=1/=+ -, v = ,
2. \/g r > 2.5,

perturbed by compactly supported functions.

-0.86 T — T -0.86 T T T -0.86

-0.88 1 4 -0.88 1 4 -0.88

-0.90 4 -o090f 4 -0.90

0941 1 -o0o9af 1 -o0o9af

-0.96 - 4 -0.96f 4 -0.96}

-1.00 . . . -1.00 . . . -1.00 . . .
2.0 25 3.0 35 4 2.0 25 3.0 35 4 2.0 25 3.0 35 4.0

Figure 3.6.4: Numerical solution from an initially perturbed steady state, using the
Glimm method

2.0 25 3.0 35 4.0

Figure 3.6.5: Numerical solution from an initially perturbed shock, using the Glimm
method

3.7 (General initial data for the relativistic Burgers
equation

Steady shock with perturbation The behavior of a smooth steady state solution
to the relativistic Burgers model perturbed by a function on a compactly
supported function is understood both numerically and theoretically: the solution
converge to the same initial steady state solution. The steady shock is a
solution to the static equation in the distribution sense. We are interested in
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the asymptotic behavior and our numerical results in Figures [3.7.1 and [3.7.2] lead us
to the following.

Conclusion 3.7.1. Consider a perturbed steady shock given as (3.2.3):

\/1—K2(1—2M/T) 2M < r <rg,
v g
’ —/1—K2(1—=2M/r) r>ro,

where K is a given constant and ro > 2M 1is fized radius out of the Schwarzschild
blackhole region. The solution to the relativistic Burgers model (3.1.1)) converges at
some finite time to a solution of the form (with possibly r1 # 1¢):

V31— K2(1—=2M/r) 2M <r <,
v =
—/1—K2(1—=2M/r) r>ry,

t=20

t=0.2 t:

IOW‘ ) ] 10 ) ) ) ] 1of——

Il
N]

t=20

|y

2.0 2.5 3.0 35 4.0 2.0 25 3.0 35 4.0 2.0 25 3.0 35 4.0

Figure 3.7.2: Evolution of a perturbed steady shock, using the Glimm method

Late-time behavior of general solutions It is obvious that the steady state
solution satisfying serves as a solution to the relativistic Burgers equation on
a Schwarzschild background. Notice that on the blackhole horizon » = 2M, the steady
state solution values the light speed, that is, either 1 or —1, which equals exactly the
light speed and obviously their boundary values will not change as time evolves. The
value of a steady state solution at infinity is also given explicitly. Observations on
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the numerical method shows that the asymptotic behavior of Burgers model
is mainly determined by the values of the initial data at the blackhole horizon r =
2M and the space infinity » = +o0o0. More precisely, suppose that a given velocity
vo = vo(r) does not satisfy the static Burgers equation , we have the following
conclusion.

Conclusion 3.7.2. 1. If the initial velocity lil;nM vo(r) = 1, then the solution to
r—

the Burgers equation (3.1.1)) satisfies that there exists a time t > to such that for
all t >ty the solution v = v(t,r) is a shock with left-hand state 1 and right-hand

state v, with v, (r) = —4/ ¥ the negative critical steady solution.

2. If the initial velocity lim wvo(r) < 1 and lim wvo(r) > 0, there exists a time
r—2M r—+00

to > 0 such that the solution to the Burgers equation v(t,r) = v, (r) for all

t >ty where v, (r) = — % is the negative critical steady state solution to the

relativistic Burgers model.

3. If the initial velocity lim vo(r) < 1 and lim vo(r) < 0, then the solution to

r—2M r—-+00

the relativistic Burgers model satisfies that v(t,r) = —\/1 — (1 —vge?)(1 — 2M)

T
fort >ty for a time to > 0 where 0 > vg°® = lim wy(r).
r—-+00

t=0.1 t=2 t=10
T T T T T . T T

-0.2

t=50

0.5

0.0

-0.5

2.0 X 2.0 25 3.0 35 4.0

Figure 3.7.3: Numerical solution with velocity 1 at » = 2M and r = 400, using the
finite volume scheme
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t=0.1 t=2 t=10

10
08 ] 08 1
| 0.6 1

t=50

Figure 3.7.4: Numerical solution with velocity 1 at » = 2M and at r = 400, using
the Glimm scheme

3.8 Overview of the theory for the relativistic Eu-
ler model

Continuous and discontinuous steady state solutions The steady solution
to the relativistic Euler model on a Schwarzschild background background (3.1.3)) is
given by the following ordinary differential system:

1
8r<r(r—2M)1_v2pv):O,
2 | 1.2 2
o R N M= 2M) oo e a2 2 2 oy
5r<(7“ 2M) 1_v2p>— T <3pv +3k“p—0p kpv>~|— . (r (QM))p,
3.8.1

Smooth steady state solutions to the relativistic Euler equation with given radius
ro > 2M, density py > 0 and velocity |vg| < 1 are given by

ok2 a2 2 4k22
sgn(v)(1 — U2)|U|1*’“27‘1*’“2 /(1 —2M/r) = sgn(vg)(1 — v§)|v0| L=k (1 = 2M ),
v v,
r(r— 2M)p1 2= ro(ro — 2M)p01 —ng'

(3.8.2)
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t=0.1 t

°
N
0

3.0 35 4.0

t=20

I
°
~
0

3.0 35 4.0

Figure 3.7.5: Numerical solutions with velocity less than 1 at r = 2M and r = +o0,
using the finite volume scheme

t=20

Figure 3.7.6: Numerical solution less that 1 velocity at » = 2M and r = 400, using
the Glimm scheme

We have

dp  2(r—M) (1+v?)(1 — k?) 2k? 2 12
ar e —2M)’ T T r(r—2M) ”(1—/{2(7"_2M>_M)/<” - )

dv _ (1-v)(1 k) <12_k2k2<r —2M) — M)/@Q — k%),

ar ' r(r—2M)

(3.8.3)
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Figure 3.7.7: Numerical solution with velocity less that 1
velocity at r = +oon using the finite volume scheme
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at r = 2M and negative
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Figure 3.7.8: Numerical solution with velocity less than 1
velocity at r = 400, using the Glimm scheme

2.0 25 3.0 35 4.0

at r = 2M and negative

We denote by the critical steady state solution to the relativistic Euler model (3.1.3))

(p,v) with its velocity v = v(r) satisfying
1—e*?
1—2M/r

21, 1\ Py 272\ 24
(rfo|) 1=k = (1 + 3e“k*)k1-2x TS

(1 + 3e%k? M) )

(3.8.4)
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Figure 3.7.9: Steady state solutions for the relativistic Euler model

Unlike the static Burgers model (3.2.1)), steady state solution to the relativistic Euler
model does not have an explicit form. We recall the following from [31].

Theorem 3.8.1 (Smooth steady flows on a Schwarzschild background). Let k& €
[0,1] be the sound speed and M > 0 be mass of the blackhole and we consider the
relativistic Euler model describing fluid flows on a Schwarzschild background .
For any given any radius ro > 2M, density pg > 0, and velocity |vg| < 1, there exists
a smooth unique steady state solution p = p(r),v = v(r), satisfying (3.8.2)) such
that the initial condition p(r¢) = po and v(rg) = vo holds. Moreover, the velocity
component satisfies that the signes of v(r) and |v(r)| — & do not change on the domain
of definition. We have two different families of solutions:

e If there exists no point at which the fluid flow is sonic (referred to the sonic
point), the smooth steady state solution is defined globally on the whole space
interval outside of the blackhole (2M, +00).

e Otherwise, the smooth steady state solution cannot be extended once it reaches
the sonic point.

We now turn to steady shock of the relativistic Euler model (3.1.3)), that is, two

steady state solutions connected by a standing shock:

v) = (pr,vp)(r), 2M <1 < rg,
(p7 ) {(pR,UR)(T‘), r>ro, (3.8.5)

where 1o > 2M is a given radius and (pr,vr), (pr, vr) two steady state solutions two
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steady state solutions satisfying (3.8.2) such that

k2 ~wg(re)* — K
UL(T’O)’ pR(TO) - ]{2(1 _ 'UL(TO)Q

vr(ro) = >pL(ro), vr(ro) € (—k, —k*)U(k, 1).

(3.8.6)
We denote by the steady shock of the relativistic Euler model the function given by
, is a solution to the static Euler equation in the distributional
sense, satisfying both the Lax entropy inequality and the Rankine-Hugoniot jump
condition. Observe that for a fixed radius r; # ¢ and (pr,vL), (pr,vgr) satisfying

(3.8.5)), the following function is not a steady shock of the Euler model ({3.1.3)):

(p,v) =

(pr,vL)(r), 2M <1 <,
(PR, vR)(T), T >T11.

Generalized Riemann problem and Cauchy problem A generalized Riemann
problem for the relativistic Euler system (13.1.3) is a Cauchy problem with initial data
given as

(,007710)(7") _ {(IOL;UL>(7’) 2M < r < 7o, (387)

(pr,vR)(r) 1 >0,

where r = rq is a fixed radius and p;, = pp(r), v, = vr(r), pr = pr(r),vR = VR(r)
are two smooth steady state solutions satisfying the static Euler equation (3.8.1]).

Referring to [31], we can construct an approximate solver U = (p,v) = (p,v)(t,7) of
the generalized Riemann problem of the relativistic Euler model (3.1.3)) whose initial

date is (3.8.7) such that:

o |[U(t,-)=U(t, )|z = O(A#?) for any fixed t > 0 where U = (p,v) = (p, v)(t,7)
satisfying (3.1.3)), (3.8.7) and At is the time step in the construction.

e U = (p,v) is accurate out of rarefaction fan regions.

o U = (p,v) (so does the accurate solution U) contains at most three steady
states: the two states given in the initial data (pr, v), (pr, pr) and the uniquely
defined intermediate (pps, var) connected by a 1-family wave (either 1-shock or
l-rarefaction) and a 2-family wave (either 2-shock or 2-rarefaction).

Theorem 3.8.2 (The existence theory of the relativistic Euler model). Consider the
Euler system describing fluid flows on a Schwarzschild geometry (3.1.3). For any
initial density po = po(r) > 0 and velocity |vg| = |vo(r)| < 1 satisfying

1—w
T'Viar+6,400) ( In PO) + TVions 16,400) (hl 1 0) < +00,
+ Vg
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where § > 0 is a constant, there exists a weak solution (p,v) = (p,v)(t,r)defined on
(0,T) for any given 7' > 0 and satisfying the prescribed initial data at the initial time
and, with a constant C' independent of time,

te[0,7]

1 —o(t, -
sSup (T‘/[QM-F&-{-OO) ( In P(t, )) + TVY[QM—&-&—i-oo) (hl #> >

1—w
< TVion16,+00) ( In Po) + TViars46,4-00) (hl 1 0 ) T,
-+ g

3.9 A finite volume method for the relativistic Eu-
ler model

A semi-discretizenumerical scheme We consider the relativistic equation on a

Schwarzschild background (4.1.1)) and we write

oM
a,U + ar(<1 - T)F(U)) — S(r,U), (3.9.1)
1+ k%02 1+ k2
U — U° _ 12’ F(U) — 12
\Ut) | 142 ’ () = v+ k2|
1_U2pv 1—1}2p

and the source term

2 1+ k2

——(1—=2M/r) i pv
S("", U) _ T 1—U2

—2r + 5M v +k* M1+ k*? r—2M ,

r? 11—’ 12 12 P2 r? W
We can compute
DyF(U) = 0 ! (3.9.2)
v (=R /(= B 2(1 - K)o/ — kR e

2
o ) 1+k2 =) (1+k2)2—4k2 ( L
which gives the two eigenvalues pi+ = ( 1—w) 2Tk We also have v = \/ (UO) €

2 Ul
r 1Fk2v kam

(—=1,1) and p = ({}1(51;];2)) Again, we take At, Ar as the mesh lengths in time and in

space respectively with the CFL condition

At

A—xmaX(W—L ) < 5, (3.9.3)

DN | —
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where i+ are eigenvalues. As is done earlier we write ¢, = nAt and r; = 2M + jAr,
and we denote the mesh points by (¢,,7;), n > 0, j > 0. We set alsoy p(t,,r;) =
pr0(tn, ;) = v and Ul(ty, ;) = U] where U = U(t,r) is given by (£.2.1).

We search for the approximations U}' = <~ fT]“/Q U(ty, r)dr theand ST = <= [177V2 S(t , r)dr

Jj—1/2 Tji—1/2
and introduce the following finite volume method:

where the numerical flux is
Fiyp = Fi(rj-12, Uis1, Uj) - (1 T 1/2>~7:(Uj—1/2—a Uj—1/2+)a (3.9.5)
-

and Uji1/24, Uj_1/2+ are determined in the forthcoming subsection and
F(UpL) + F(Ug) B lUR - Uy,
2 A 2 ’

where A = Ar/At. Here, F is the exact flux and S7 is the discretized source
to be determined later.

F(Ur,Ur) = (3.9.6)

Taking the curved geometry into account We now give the states U; /o4, Uj_1/2+
and the discretized source term ST which take into account the geometry of the

Schwarzschild spacetime. For a steady state solution U = U(r), the equation 0, ((1 —

2M/7“)F(U)> = S(r,U) holds, where U, F' and the source term S are given by (4.2.1),

or equivalently, the solution (p,v) satisfies the static Euler equation (3 . First of
all, we would like to approximate the solution in each cell (r;_1/2,7;41 /2) by steady
state solutions. Hence we expect the following algebraic relations following from the
calculations:

2
2 2k2 4k

(1= 0} o) ia o +1/z/( = 2M/rjp0) = (1= 0f?)op =0} (1 = 2M /ry),

jr1/2- n Uj
Tj+1/2(7“j+1/2 — 2M),0]+1/2 #/2 = ’I"j(?"j — 2]\4)[}J —1 _]Un_27
+1/2 J

2
2k2 4k

2k? 2 . 2
(1 B U?+1/2+2)”?+1/2+17k2 Tj1+52/( - 2M/7"J‘+1/2) = (1 B Uj+12) Vi ts y1+lf2 /( 2M/Tj+1)>

j1/2+ j+1
riv1/2(risne — 2M)P;+1/2+# =1+ 1(rjp1 — QM)P]Hﬁ-
j+1/2+ Ujt1 : )
3.9.7

However, since a steady state solution might not be defined globally on (2M, +00), it
is possible that (3.9.7) does not permits a solution. We simply define (p}, 5 , v}, ) =
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(P}, v7) if the first two equations in (3.9.7) do not have a solution and (pf o Uji /2_) =
(P1, v} y) if the last two equations in (3.9.7) do not have a solution. Integrating
(3.9.4) by parts, we obtain the approximate source term:

"“J+1/2 1 Tit1/2
- _/ ) = 0, (1 =2 /) F (Ut 7)) ) dr

Tj—1/2 Ti—1/2

:ALT ((1 — M ry1 ) F(UR ) (3.9.8)
- (= 2M 1y ) U ) ).

where UZy, 5 U, 5, are two states determined by (3.9.7) and F(-) the accurate

flux of the Euler model given by (4.2.1)). We then have the following result.

Theorem 3.9.1. The finite volume scheme proposed for the relativistic Euler equa-
tion on a Schwarzschild background (4.1.1)) satisfies:

e The scheme preserves the steady state solution to the Euler equation (3.8.1]).

e The scheme is consistent, that is, for an exact solution U = U(t,r) and the
states Uy, Ur — U, r,rgr — 1, we have

]:T(T’R,UL,UR) —.FZ(TL,UL,UR) = S(T, U)(TR—TL> +O((TR—TL)2), (399)

where F;, F,. are numerical fluxes given by (3.9.5) and S(r, U) is the source term

given by (L.2.1).

e The scheme has second-order accuracy in space and first-order accuracy in time.

Proof. For a steady state given by (3.8.1)), we have Uj+1/24+ = Ujp1/2—. Hence, the flux
of the finite volume method ([3.9.5)) satisfies Fiji0 = (1 =2M/1j31/2)F (Ujt1/24) =
(1 =2M/rjs1/2)F(Ujs1/2-), which gives:

1
= Filyp) = (1=2M/1500)2) F(Ujaje-) = (1=2M/1j1/2) F(Uj-r/24) = 55

Therefore, the scheme preserves the steady state solutions. Next, according to (3.9.7))
and (3.9.8)), there exist four states UL, UL Ur Ur such that

Frlrr,Up,Ug) — Fi(rp, U, Ur) = (1 — 2M /rg) F(Ur,Up) — (1 — 2M /rp) F (UL, Uk)
=(1—=2M/r+2M/r*(rp — )+ O(rg — r)) (F(U,U) + "F(U,U)(Ur — U) + o(Ur — U))
—(1—ZM/T—I—ZM/’I"Q(’I"L—T’)—I—O(T‘L—T‘))(f(U,U)—f—azf—"(U,U)(UL—U)—I—O(UL—U)).

By (3.9.7), Ur — Uy = O(rg — r1)S(r,U). Moreover, since U = U(t,r) is accurate,
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we have F(U,U) = F(U) and 01.F(U,U) = 0, F (U,U) = Oy F(U). Therefore,

fr(TR, UL7 UR) - JT"Z(TL, UL, UR)
A PP + (L 2M )Ry F(U) Uk — Us) + O((rr — r1)%)

r2

:8,,((1 — 2M/r)F(U))(TR —rp)+o(rr—ry) =S(r,U)(rr —rL) + O((TR - TL)2).

Next, a Taylor expansion with respect to time yields us U}LH = U+ 0, U At +
U At* 4 o(At?). Recall that our scheme gives

At

Urtt = U — A_r(<1 = 2M/rjp1p2) Fly o — (L= 2M /11 p2) F]y p — ATST).
1 F(U; — F(U;y1/9- 1U; —Uiy1/9-
—Ur - = (1—2M/rj+1/2)< (Ujs1/2+) (Uj+1/2 )__ j+1/2+ J+1/2 )
2 A 2
F(U;_ —F(U;_1/9_ 1U,_ —U;_1/9_
+(1—2M/7”j—1/2)( i 1/2+)2 Uiy )+X ’ 1/2+2 o2 ))

According our construction, we have

(1 _ 2 > <F(Uj+1/2+) - F(Uj+1/2—)>

Tj+1/2
oM 2M n KA

~(1- 2D g - (1- 20y rwep - [ s Ul
j+1 T T

A Taylor expansion to Ar gives us Uji1/24 — Uji1/2— = O(Ar?) and

oM oM oM . 2M
(1 - —) 1 - L A - AR O(A),
Tj:i:l ’I“j Tj Tj
1
F(UL) =F(U") + 0y F(U?) ( +0,UrAr + §8frU]’7Ar2)

1
+ 5(8TUJ’?)T8?]UF(U;L)6TU;‘AT2 + O(Ar?),
Tj+1
/ S(r,Utn, r))dr =S(r;, UM Ar + 8,5(r;, , U Ar? + O(Ar?).
Hence we conclude that

O} + 0, (1= 2M/r)) F(U})) = S(r;.Uf) + O(At + Ar?) = 0.

J

]

Numerical steady state solution Recall that the steady state solution to the
relativistic Euler model is given by a static Euler system (3.8.1]). Hence, if U = U(t,r)
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is a steady state solution, it trivially satisfies [ |0, F ((1—2M/r)U) —S(r,U)|dr = 0,
where F' = (F°, F1)T is the flux and S = (5%, S1)T the source term given by (#.2.1)).
In order to describe the steady state solution numerically, we define the total variation
in time:

E" = E(ty) = > Y (1= 2M/rj1 o) (FH(USs1joy) = FH(USy )
~ 5 (3.9.10)
= (L =2M/rj1p2) (F(U} 1 joy) = F' (U5 ) ’

From our former construction, we have the following result.

Lemma 3.9.2. If U = (t,r) is a numerical solution to the relativistic Euler model
constructed by - , then U is a steady state solution for t > T where
T > 0 is a finite time if and only if there exists a N < 400 such that for alln > N,
the total variation E™ = 0.

3.10 Numerical experiments for the relativistic Eu-
ler model

Nonlinear stability of steady state solutions Before studying the stability
of steady state solutions, we check that our scheme preserves smooth steady state
solutions to the relativistic Euler model . Recall that r > 2M with M = 1 being
the blackhole mass. We work on the space interval (rmin , T"max) With rpm = 2M = 2
and ryn.x = 10 and we take 500 points to discretize this interval. We consider the
evolution of two steady state solutions satisfying the algebraic relation ([3.8.2) of the
Euler model with the density p(10) = 1.0, the velocity v(10) = 0.6 and the density
p(10) = 1.0, the velocity v(10) = —0.8 respectively. We also provides the evolution
of a steady state shock.

Propagation of discontinuities Refering to [31], we recall that there exists a so-
lution to the generalized Riemann problem (3.1.3]), consisting of at most three
steady state solutions. Figures [3.10.3] show the evolution of two generalized
Riemann problem with an initial discontinuity. Furthermore, we are now interested
in the late-time behavior of solutions whose initial data is steady state solution per-
turbed by a compactly supported solution. Numerical tests lead us to the following
result.

Conclusion 3.10.1 (Stability of smooth steady state solutions to the Euler model).
Let (pi,ve) = (pse,vi)(1r), 7 > 2M be a smooth steady state solution satisfying the

static Euler equation (3.8.1]) and (po,vo) = (po,v0)(1) = (ps, v:) (1) + (0,, 8,) (1) where
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-0.75 t=§0

-0.80 -

-0.85

—0.90 -

=095

Figure 3.10.2: Evolution of a steady shock plotted at time ¢ = 50

(0p,0y) = (9,,6,)(r) is a function with compact support, then the solution to the
relativistic Euler equation on a Schwarzschild background denoted by (p,v) =
(p,v)(t,r) satisfies that (p,v)(t,-) = (ps,vs) for all t > to where ty > 0 is a finite
time. Numerical experiments show that there exists a finite time to > 0 such that:

o If [0,(r)dr + [6,(r)dr =0, (p,v)(t,7) = (ps,vs)(r) for all t > to.

o If [6,(r)dr+ [ 6,(r)dr # 0, then there exists a time to > 0 such that (p,v)(t,r) =
(Pass Vi) (1) for all t > tg where (pas, Vix) 1S a steady state solution to the Euler
model and (P, Vis) 7 (Puy Vi)

We observe the phenomena described in Conjecture [3.1.3] in Figures [3.10.5| and
3.10.6, To check that the numerical solutions in Figures [3.10.5 [3.10.6| converge to
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a steady state solution, we refer to Lemma [3.9.2) and calculate the total variation at
each time step. Figure shows that these solutions are eventually steady state
solutions. The steady shock given by and is a weak solution satisfying
the static Euler equation . We are also interested in the behavior of steady
shocks with perturbations. We summarize our results as follows; see Figure [3.10.8|

Conclusion 3.10.2. Consider a steady shock (ps«,vs) = (p«, v )(r), > 2M given by
(13.8.5)), whose point of discontinuity is at r = r, and we give the initial data
(90, 10) = (0, v0)(r) = (poy0)(r) + (851 0,)(r) with (8,:8,) = (8,,8,)(r) @ compactly
supported function, then there exists a finite time t > ty such that for all t > tg, the
solution (p,v)(t,) = (s, Vss) Where (pus, Vix) 15 a steady state shock whose point of
discontinuity is at r = Ty, With 7w # Ty.

1.0 T T T t=‘0 T T T 1.0 r r T t=9'5 T T r 1.0 T T T L=

Il
[N)

0.9 1 0.9 1 0.9
0.8 4 0.8 4 0.8
0.7 B 0.7 B 0.7
0.6 4 0.6 — 0.6
0.5 4 0.5 — 0.5
0.4 1 0.4 4 0.4
03 1 03 . 1 03
0.2 1 0.2 1 0.2

0.1 0.1 0.1
2

-0.4 R 0.4 R -0.4
-0.6 1 -0.6 1 -0.6

-0.8 4 -0.8 4 -0.8

Figure 3.10.4: Solution to a Riemann problem (1-rarefaction and 2-rarefaction)
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2 3 3 5 6 2 6 1 3 4 B 6 7 8 9 10

1.00 t=2 1.00 t=10 0.00015 w-v.)/v. AtE=10

0.98 0.98 0.00010

0.96 0.96 0.00005

0.94 0.94 0.00000

0.92 0.92 ~0.00005

0.90 0.90 ~0.00010

ose) - - - o st osel - S, -o.005)

Figure 3.10.5: Evolution of a steady state with perturbation, converging to the same

asymptotic state

1.00 . . =0 . . 1.00 t=1 1.00 t=4

0.95 0.95 0.95

0.90 0.90 0.90

0.85 0.85 0.85

0.80 0.80 0.80

073, 3 ) 5 6 8 g 1C 073 6 1C o7 3 4 5 6 7 8 9 10
1.00 . . . t='8 . 1.00 t:KIG 0.06 “T r.)/x-l. ati:llli
0.95 0.95
0.90 0.90
0.85 0.85
0.80 0.80
073, 3 4 5 6 9 1C 0735 6 10

Figure 3.10.6: Evolution of a steady state with perturbation, converging to a different

asymptotic state
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Figure 3.10.7: Total variation in time corresponding to Figures [3.10.5 and [3.10.6]
respectively
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Figure 3.10.8: Evolution of an initially perturbed steady shock and its total variation
in time
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4.1 Introduction

Our model of interest is derived directly from LeFloch and Xiang [31], which is a
non-conservative Euler system with a source term:

2
p + ar(pv) + —pv =0,
" 5 ] (4.1.1)
2 | 12 o9 Lo
¢ (pv) + O, (p(v +k )) +oput+ mp 0,

defined for all » > 0 where the main unknowns are the density p > 0 and the velocity
v of the fluid flow. Here, the parameters are given as the Schwarzschild black hole
mass m € (0, +00) and the constant sound speed k € (0, 4+00). Remark that even if
the Euler model is non-relativistic in the sense that the velocity v is far from
light speed, the effect of the black hole is still reflected by the source term.
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The organization of this paper is as follows. In Section we give some basic
properties of the homogenous Euler model without source term, including the hyper-
bolicity and the nonlinear properties which leads us to give the result of the standard
Riemann problem whose wave interactions are analyzed as well.

We take into consideration the steady state solutions in Section [4.3] where we first
study different families of smooth steady state solutions to the Euler model, serving as
one of the main results of the present paper. The study coming after is the generalized
Riemann problem of the Euler model with the initial data consisting of two steady
state solutions separated by a discontinuity of jump. An exact solution is constructed
global-in-time in Section[4.4] with three steady states connected by 2 different families
of generalized elementary waves and we have verified that the Rankie-Hugoniot jump
condition and the Lax entropy condition are satisfied according to our construction
of the solutions. We also give the evolution of the total variation of solution of the
Riemann problem when time passes.

Referring to Section smooth steady states may not be extended on the whole
space region (0,+00). To give a complete construction of an initial value problem, it
is necessary to consider the triple Riemann problem, which is an initial problem with
its initial data given as three steady state solutions separated by two given radius.
We provide a global-in-time solution of such problem in Section [£.5]

In Section [4.6] we are then able to give an existence theory of our Euler model.
The technique we used is that we construct a sequence of approximate solutions by
the generalized Glimm scheme based on the (triple) generalized Riemann problem.
Together with the estimation of total variation, the random choice method provides
a global-in-time solution of the non-conservative Euler model.

4.2 Homogenous system

4.2.1 Elementary waves
According to (4.1.1)), we write the Euler system as
U+ 0,F(U) = S(r,U), (4.2.1)

where

- ( ’ > ) = ( e ) S(r,U) = ( _%pj_pv%mp )

We derive the pair of eigenvalues reading

Ap,v) =v—k, w(p,v) =v+k. (4.2.2)



198 4.2. Homogenous system

We give also the pair of corresponding Riemann invariants:

w(p,v) =v+klnp, z(p,v) =v —klnp. (4.2.3)
Following directly from (4.2.2]), we have the following proposition:

Proposition 4.2.1. Let k > 0 be the sound speed and m > 0 the black hole mass and
the non-conservative Euler model (4.1.1)) is strictly hyperbolic and both characteristic
fields are genuinely nonlinear.

Proposition enables us to consider first the elementary waves of the homoge-
nous Euler system:

o,U +0,F(U) =0, (4.2.4)

where we recall that U = (p, pv)” and F(U) = (pv, p(v* + kQ))T referring to (4.2.1)).
Notice that (p,v) — (p, pv) is a one-to-one map and we thus don’t distinguish U and
(p,v) in the coming section for the sake of simplicity.

We consider first the rarefaction curves along which the corresponding Riemann
invariants remain constant.

Lemma 4.2.2. Consider the homogenous Euler model given by (4.2.4]). The 1-
rarefaction curve issuing from constant Uy, = (pr,vr) and the 2-rarefaction wave
from the constant Ug = (pgr,vr) are given by

—k k
R (Uyp) : {v—vL =In (p%) , v< ’UL}, RS (Ug) : {v—vR =In <£) , < UR}.

Proof. The 1-family Riemann invariant is a constant along the 1l-rarefaction curve
passing the point Uy, and we have

Ry (Ur) s w(p,v) = w(pr,vr), z(p,v) < z(pr,vr),

which gives the form of the 1-rarefaction wave. Similarly, we have the 2-rarefaction
wave. [

We can also give the form of 1-shock and 2-shock associated with the constant
states Uy and Ug respectively.

Lemma 4.2.3. The 1-shock wave and 2-shock wave of the Fuler model without source
term (4.2.4) associated with the constant states Uy and Ug respectively have the fol-
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lowing forms:

SP(UL) - {U oy = —k(\/sz— \/”;L) v > UL}, o
S (Ug) - {v g = k(\/sz— \/%), v > UR}.

And the 1-shock speed o1 and the 2-speed oo are:

o1((pr,ve), (p,v)) =v — k\/§7 o2((p,v), (pr,vR)) = v+ k:\/%. (4.2.7)

Proof. The Rankine-Hugoniot jump condition gives

olp] = [pv],
olov] = [p(v? + k7).

where o denotes the speed of the discontinuity. Consider first the 1-shock which
should satisfy the Lax entropy inequality in the sense that

(4.2.8)

Apr,vr) >0 > Ap,v),

for the 1-shock wave. Eliminating the speed o, we obtain:

U—UL:—k(,/pﬁ—M%), v > .
L

The form of the 2-shock wave follows from a similar calculation. The shock speeds

can be obtained directly from (4.2.6)), (4.2.8). O

4.2.2 Standard Riemann problem

We now consider the solution of the standard Riemann problem of the homogenous
Euler system (|4.2.4]) associated with given initial data:

Uo(r) = 4 Ve 0= <70, (4.2.9)
Ur 1 >0,

where ry > 0 is a fixed radius and Uy, = (pr,vr), Ur = (pr, pr) are constant states.
To give the solution of the standard Riemann problem, we define now the 1-family-
wave and the 2-family wave:

WP (Ur) = 57 (UL) U R (Ur), Wy (Ur) =55 (Ur)U Ry (Ur),  (4.2.10)
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where S77, S5 are 1 and 2-shocks while R;”, RS are 1 and 2- rarefaction waves. It is
obvious that if U, € W5 (Ug) or Ug € W7 (UL), then the Riemann problem is solved
by the left state Uy, and the right state Ur connected by either a 1-family wave or a
2-family wave. Otherwise, more analysis are required.

Lemma 4.2.4. On the w — z plane where w,z are the Riemann invariants of the
Euler model given by (4.2.3)), S_> (UL) defines a curve such that 0 < 4* < 1, S35 (U)
defines a curve satisfying 0 < 9= < 1 where Sy”, S5~ are the 1 and 2- shocks given by
(4.2.6)).

Proof. Introduce functions ®.:

o () ::1+7<li m> (4.2.11)
(v—v

(o—vp)” along the 1-shock, we have

Taking v = v(v,vL) = “5;

w — wL—v—vL+kln—: —V/27k% 4+ kln ®(y
Z—ZL:v—vL—kln—— —/27k? — Eln ®(y

The tangent of the shock wave curve S;7(Uy) in the w — z plane is given by

dv dw—wp) dw—wy) dy

dz  d(z—z1) dy  d(z—z)

Hence, we have 0 < < 1. A similar calculation gives the result of the 2-shock. [

Together with Lemma and the form of elementary waves given in Lem-
mas (4.2.5] [4.2.6, some direct observations are given in order, concerning the standard
Riemann problem of the homogenous Euler model (4.2.4)):

e For different given states Ur,U;, the two l-family wave curves W;7(Ur) N
Wi (Uy) = 0. Similarly, for Ug # Uy, the 2-family wave curve W5 (Ug) has
no intersection point with Wy (Uy).

e The two families of wave curves cover the whole upper half p — v plane as a
result of Lemma [4.2.41

e For given constant states Uy, Ug, the waves W7 (Uy) and W5 (Ug) intersect
one and only once at a point Uy,.

We thus have the proposition:
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Proposition 4.2.5 (Solution of the standard Riemann problem). Given two constant
states U, = (pr,vr) and Ug = (pgr,vr), the standard Riemann problem (4.2.4),
admits a unique entropic solution which only depends on *=". More precisely,
the solut@on 1s realized by the left state Uy, the right state Ug and a uniquely defined
intermediate state Uy where Up and Uy are connected by a 1-wave while Uy and
Ugr are connected by a 2-wave.

4.2.3 Wave interactions

For the standard Riemann problem of the Euler model without source term (4.2.4))
with left constant state U and right constant state Ug, define the wave strength of
the Riemann problem § = S(Uy, Ug) :

S(Ur,Ugr) == [Inpr —Inpy| + |Inpr — In pu|,

where Uy, is the unique intermediate state Uy, € W7 (Ur) N W5 (Ug). We have the
following lemma concerning S:

Lemma 4.2.6. Let Up, Up, Ugr be three given constant states. The wave strengths
associated with the Riemann problem (Ur,Up), (Up,Ug) and (U, Ug) satisfy the fol-
lowing inequality

S(UL,UR) SS(UL,UP)—l-S(UP,UR). (4.2.12)

To prove Lemma 4.2.6, we first need the following calculation.

Lemma 4.2.7. Given an arbitrary state Uy, the 1 and 2-shock wave curves S7”(Up)
and S5 (Uy) are reflectional symmetric with respect to the straight line parallel to
w = z passing the point Uy on the w — z plane where w, z are the Riemann invariants
of the Euler model introduced by .

Proof. Denote by (wq, z9) the point Uy on the w — z plane. For a given point (w, 2)
along the 1-shock, we have

Awy :=w —wy = —\/27k> + kIn P, (y), Az :=2z—20=—\/27k2—klnd (v

while for a point (w, z) along the 2-shock :

Awg :=w —wy = —/27k> + kIn®_(vy), Azp:=2—20=—/27k2—klnd_

where the function ®. is defined by (4.2.11)), which gives &, (7)®_(y) = 1. We have
got the result by noticing that Aw; = Azy, Az = Aw,. H

We can thus continue the proof of Lemma |4.2.6]



202 4.3. Fluid equilibria

Proof of Lemma[{.2.6, Again, we stay on w — z plane. From Lemmas [4.2.4] [4.2.7]

we can see that the shock waves S77, S5~ passing the same point U, are symmetric
with respect to the straight line parallel to w = z passing the point U,. According
to the definition of the wave strength which is actually measured along the
line w = z, the symmetry of waves gives immediately the result. O]

4.3 Fluid equilibria

4.3.1 Critical smooth steady state solutions

We now turn our attention to steady state solutions p = p(r),v = v(r), which
satisfies the ordinary differential system:

d

L v2p) =0, "
d (59 12 2 (431)
%(r (v —|—k)p>—2k:pr+mp:0,

with the initial condition py > 0, vy posed at a given radius r = ry > 0,
p(ro) = po > 0, v(rp) = wo. (4.3.2)

We refer to (4.3.1) the static Euler model. For a steady state solution p = p(r),v =
v(r), it is straightforward to find a pair of algebraic relations:

2 2
T°pU = 150000,

1 1 1
—v* +k*Inp—m- = =v5 +k*Inpy — m—,
2 r 2 To

from which we recover the equation for v by eliminating p:

1 1 1 1
—v® — k*In (r®sgn(vo)v) — m— = =vj — k* In(rg|vo|) — m—. (4.3.3)
2 T 2 To

Notice that once we get the value of v, we can have the value p directly from the
first equation of (4.3.1)) and we can therefore focus on the analysis of the steady state
velocity v.

Introduce the function G = G(r,v):

1 1
G(r,v) == 5112 — E* In(r*sgn(vg)v) — m—, (4.3.4)
r
and we see if v = v(r) is a solution of (4.3.1) with the condition v(rg) = vg, then

G(r,v(r)) = G(ro,vo) always holds. Differentiating G with respect to v and r, we
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obtain 2 )
0,G =v — e 0,G =—(m— 2]{:2r). (4.3.5)

r2

We can immediately deduce the first-order derivative of the steady state velocity
v=u(r):
dv v 2K —m

dr 1?2 02 —k2°

It is obvious to see that 0,G=0 if and only if v = £k while 9,G = 0 if and

only if r = 575 from (4.3.5). This observation motivates us to find the steady state
curves passing the points (375, £k) on the r» — v plane (0, +00) x (—o00,+00). We
call the solution v = v(r) on the subset of r — v plane (0,400) x (—o0,+00) the
critical steady state solution of the static Euler model if and only if satisfies

S(r,v(r)) =0 where S = S(r,v) is given by

(4.3.6)

m2

s (4.3.7)

1 1 3
S(r,v) = 5212 — kK In (r*|v]) = m-+ 51{72 + k% In
r

It is direct to check that S(g%, &k) = 0. We now have the following lemma concerning

the critical steady state curve.

Proposition 4.3.1. The static Euler model (4.3.1)) admits four smooth critical steady
state curves on the subset of r—uv plane (0, +00) x (—o0, +-00) denoted by v vP# N N4
Moreover, we have the following properties:

The sign of each solution does not change on the space domain (0, +00).

On the interval (0, 575), we have

P?ﬁ

* )

vV < k<o <0< <k <w
while on the interval (577, +00), we have
vV < —k < oM <0 < olF < k<ol

P o\Pp

*x ) Ux

intersect once

The solutions v, v} intersect once at (4%, —k) while v

at (5pz, k).

The derivatives of each solution at (555, %k) are give by

dvPt m dv¥? m 2k3  dob?

(et m (ot m 2
dr ‘“2k27 dr ‘2k2 m’ dr ‘2k27  dr ‘2k2

= (438)

Proof. We would like to show that for every fixed radius 7 > 0 and r # 55, there
exists four different values v satisfying (4.3.7]). Observing S(r,v) = S(r, —v), we first
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consider the case where v > 0. According to (4.3.5)), for every fixed r > 0, S(r,-)

reaches its minimum at v = k and the value is given as

m2

k(o) o 012 _ 1274 222 _ T 2
S¥(r) =2k — k*Inr°k . +k 11141{:3'

Since 9,5% = % (m — 2k*r), we have S*(r) < S*¥(3%) = 0 . Moreover, we have

lim S(r,v) = 400 and lim S(r,v) = +oc. Therefore, for every fixed r # 57z, S(r,v)
v—0 v—+00

admits two different positive roots v < k < vP* on (0, +00) where the equality
holds only once at the point 7 = 575. The symmetry of S(r,-) with respect to v =0
gives two other negative roots U,{V’ﬁ < -k < Uf’b.

Since S, # 0 when v # +k, there exist four smooth different solutions on the
interval (0, 577) and (575, +00) respectively. To extend the steady solution on the
whole domain (0, +00), we have to treat the very points (575, +k). Indeed, we have,

by the L’Hopital’s rule, %(%) = sz/(kfl—:(%)» which gives
dv( m ) B 2k3

—|— 4.3.
dr \2k? ’ (4.3.9)

m
whose sign depends on the choice of the branch of curves. According to (4.3.9)), we
are able to to keep the solution smooth on the whole domain (0, +00) by keeping the
sign of the derivative of v at r = 5j5. We thus define the four different solutions on
(0, 4-00):

UN7b(T) == v)){V’ (r) re (0’ %)’ 'UN’ﬁ<7") — Uiv’ﬁ(r re ( 7%)7
* o) re (o) W) 1 e (3 +o0)

The derivative of the velocity in (4.3.8)) follows directly from (4.3.9) and (4.3.10). O

4.3.2 Families of steady state solutions

The former construction gives that the relation S(r,v) = 0 admits four different
solutions on the whole domain (0,+00). We would like now to give all families of
solutions according to the sign of S(r,v) defined in (£.3.7). We now study general
cases of the steady state solutions.

We then have the following lemma.
Lemma 4.3.2. Let S = S(r,v) be the function defined by (4.3.9), then:

o [fS = const. >0, then there exists four solutions v = v(r) satisfying the alge-
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braic equation (4.3.3)) on the whole space interval out of the black hole (0, +00).

o If S = const. <0, then there exist two radius 0 < rg < 57z < Ts such that then
there exist four solutions v = v(r) satisfying the algebraic equation (4.3.3)) on the
interval (0,1g) and four solutions satisfying (4.3.1) on the interval (Ts, +00).

Proof. We now focus on the case where S = const. > 0. Again, S(r,v) = S(r, —v)
allows us to consider the case where v > 0. Now we notice that G(r,v) — G(57z, k) =
S(r,v) where G is defined by (4.3.4). By the formula of (4.3.5)), for all the fixed
r € (0,400), the equation G(r,v) — G(5z, k) = const. > 0 admits two positive roots
vo? > k > v when and only when G(r, k) < G(37z, k). Moreover, (4.3.5) gives
the fact that G/(r, k) reaches its maximum at the point r = 375 and we thus have
G(r, k) < G(5z, k). We have another two negative roots vév’ﬁ < —k< vév’b following
from the same analysis.

Now if S = const. < 0, there exist two points 0 < rg < 55 < 75 such that

S(rg, k) = S(rs,k) = 0 and S(r,k) < 0 for all r € (rg,7s). We have four roots
satisfying (4.3.3)) only on (0,rg) and (7s, +00) respetively. O

We can now give the existence result of the steady state solution of the Euler

model (4.1.1]).

Theorem 4.3.3 (Families of steady state solutions). Consider the family of steady
state solutions of the Euler model . Then, for any given radius 7o > 0 ,
the density py > 0 and the velocity vy, we have: there exists a unique smooth
steady state solution p = p(r),v = (r) satisfying together with the initial
condition pg = p(rg),v(re) = vo such that the velocity satisfies sgn(v) = sgn(vg) and
sgn(|v| — k) = sgn(|vg| — k) on the corresponding domains of definition. Furthermore,
we have different families of solutions:

o If G(ro,v0) > —3k* — k*In % in which the parameter G = G(r,v) was intro-

duced in (4.3.4]), then the steady state solution is defined on the whole space
interval (0, +00).

o If G(ro,v0) = —3k* — k*In %, then we have the critical steady state solution

on the whole interval (0, +00) whose formula is given by (4.3.10]).

o If G(ro,v0) < —3k*—k*In %, then the solution is defined on (0, rg) if ro < 3%

or (T, +00) if 1o > 575 where rg, 75 satisfies G(rg, k) = G(7's, k) = G(ro, vo).

4.3.3 Steady shock

We now consider the families of steady shocks which is also a solution of the
static Euler system (4.3.1) in the distributional sense.Such solution contains one
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0 5 10 15 20
Figure 4.3.1: Plot of steady state solutions.

discontinuity satisfying also the entropy condition. In order that the position of
discontinuity does not move when time passes, we give the following lemma.

Lemma 4.3.4 (Jump conditions for steady state solutions). A steady state discon-
tinuity of the Euler model (4.1.1) associated with left/right-hand limits (pr,vr) and
(pr,VR) must satisfy
2
PR _ U—é vy vg = K2, v € (—k,0) U (k, +00).

pr k

Proof. From the steady Rankine-Hugoniot relations
[pv] =0, [p(k* +v%)] =0,
where the bracket [-] denoted the value of the jump and we deduce that

PRUR = PLVL, pr(vh + K*) = pr(v + k?),

which gives the relation of the left and the right limit of the jump. Then the Lax
entropy condition requires that A(pr,vr) > 0> Xpg, vr), p(pr,vr) > 0> u(pr, vr)
for 1 and 2-waves. O

Lemma permits us to construct a steady shock wave of the Euler model
(4.1.1) with a zero speed, that is, a function composed of a pair of steady state
solutions (pr,vr) = (pr,vr)(r), (pr,vr) = (pr,vr)(r) separated by a discontinuity
at a fixed point ry with the relation

ULk(ro)’ pr(ro) = ”Lﬁj;(” pL(ro), (4.3.11)

vr(re) =
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with
vr(rg) € vg € (—k,0) U (k, +00). (4.3.12)

4.4 The generalized Riemann problem

4.4.1 The rarefaction regions

The generalized Riemann problem of the Euler model is a Cauchy problem
of (4.1.1) with given initial data given as

) UL(r) <7 <my,
Uolr) = {UR(T) ro <1 <T, (4.4.1)

for a fixed radius 7y > 0 and two steady state solutions U, = (pr,vr) and Ugr =
(pr,vR), both satisfying the static Euler system (4.3.1]).

For simplicity, we write (pr,, vz )(ro) = (p%,v) = U} and (pg, vr)(ro) = (p%, v%) =
UY,. To solve the generalized Riemann problem, we need first to fix the point r = rg
and solve the standard Riemann problem (4.2.4) with initial data

UL0 r<r<rg,
U()(T) = 0 _
Up rmo<r<r.

The standard Riemann problem at a fixed radius is solved by three constant states
UY = (p,0Y), UY = (0%,v%) and U% = (p%,v%) connected to each other with
1-wave and 2-wave respectively where the intermediate constant state is given by

{UN} e W (UD) (W5 (UR). (4.4.2)

Coming back to the Euler system with a source term (4.1.1)), we would like to
construct a solution of the generalized Riemann problem (4.1.1)), (4.4.1)), realized by
three steady state solutions connected by generalized elementary curves. We give the
intermediate steady state solution denoted by (par,var) = (par, var)(r) by the static
Euler system (4.3.1]) with initial data (p9;,v9,) at the point r = rq, that is

(pa, v0)(r0) = (s> Vp)- (4.4.3)

Note that UY; may belong to any family of the steady state solutions, referring to
Theorem [4.3.3l To work on different types of elementary waves, we consider the
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following differential equations:

drift Ao (r)), UM(T%L))a vy < vy,
dt— Loa((on ), o)), (o ) on (1)), o > 08y,
i [ Mpn(r e ), <oy, (444)
dt o (e ) on ), (onr ) o)), ol > oy,

r0) = 7o,

as well as
dri " (o ("), UM(rﬁ+))7 00, < v,
dt <(pL(TM UL 7nM )7 (PM TM 'UM(T’]I\Z—"_)))’ U?M > /U%,
drfy”  [ulon(ri on(ri ), W, <o, (4.4.5)
dt 02((%(7’1@_)7%(7“@_)), (pae (rfi ), vM(rﬁ_))), 09, > 0%,

+
rﬁ (0) = 1o,

where o1, 09 are speeds of 1 and 2-shocks respectively and A, i are eigenvalues.

Lemma 4.4.1. Let (pr,vr) = (pr,vr)(r), (pr,vr) = (pr,vR)(r) be two steady state
solutions given by (4.3.1). The curves r%i,rﬁi are uniquely defined by (4.4.4)),
(4.4.5) for allt > 0 respectively, with bounded derivatives.

Proof. We first consider the l-wave. If (p%,v?) and (p9;,v9,) are connected by a
1-rarefaction, then we have

M+ -

o :/\(pM(Té/[Jr))UM(TL ))7 dt :/\(pL<T?,4 cor(ry ))

Following from the existence theory of ordinary differential equations, there exists
a time T" > 0 such that the curves are well-defined on 0 < t < T. To prove that
these curves are indeed defined globally in time, we have to show that steady state
solutions can not be sonic along the wave curves, referring to Theorem [£.3.3] We
take into account two cases:

e When ry < 55, v = vr(r) cannot be sonic for all ¥ < r < ry. Then we

_ 7.]\4_
only have to consider the case where ¥~ (t) > rq, which gives % >0,
providing vy, > k. If there exists a finite time ¢; such that vy (r}’” (¢)) = k ,
M~ _
then £ ity = vp( r}'" (t1)) — k, which provides a contradiction.
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e When rq > 375, r; < r < 1 holds where 7} is the sonic point of (pz,vr), then
we have at once the result.

Now if (p9,0?) and (p;,v%,) is connected by a 1-shock, the result will hold if

(pr,vr) will not reach to the sonic point on (7, r}’ " (¢)) for 0 < t < T. We consider
two cases as follows:

e When ry < 57z, we suppose that o7 > 0. The entropy condition gives A(pr,vz) >
o1 > Mpa,var), leading to vy, > k. Then we have the result for this case.

e When ro > 55, we have r; <r <7y and the result holds.
A similar calculation gives all the curves listed in the lemma. O]

It follows directly from the definition that 3~ (¢) < rM™ () < rB7(¢) < r27 (1),
which permits us to define five disjoint regions below for all fixed ¢ > 0: (f, r _(t)),
(r (1), rﬁ/ﬁ(t)), (WLVH(t)7 ri (1), (ri (1), rﬁJr(t)), (rﬁJr(t), 7) and we denote by
(rM™ (), rﬁ/ﬁ(t)) and (rf (1), rﬁJr(t)) the I-rarefaction region and the 2-rarefaction
region.

4.4.2 Explicit form of Riemann solution

We now give the solution U = (p,v) = (p,v)(t,r) for the generalized Riemann
problem. Write

U(r) r<r<r¥ (),

Ui(t,r) ¥ (t) <r<rﬁ4+(t),

Ut,r) =S Uy(r) M7 <r<r7(1), (4.4.6)
Us(t,r) ri~ <r< rﬁ+(t),

(Ur(r) ol @) <r<r,

where r* | rB™ are boundaries of the rarefaction regions defined by (4.4, (2.4.5).
Here, UL, = (pr,vr), Un = (parsvm), Ur = (pr,vr) are three steady state solutions
and U, and U, are generalized rarefaction waves to be given by the integro-differential
problem following from Liu [40]. Indeed, we give the function U;(t, 6;) = (p;,9,)(t, 6;),
j = 1,2 and the new variable 7 = 7(¢, 0;). To seek for the form of Uj and 7, we consider
the following problem:

89].7:@(7]- + <(9UF(UJ') - A((j}))@(;j 01' - S<Uj)a€j7z’

O = A(Uj(ta ej))a

(4.4.7)
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with boundary and initial conditions reading

Uj(t7 6;)) = Ulg(f(ta 0]0))’ Uj(()? 6]) = hl(ej)y

0 NG (4.4.8)
8tr(t> 6]) = )‘(Uk (T))a 7’(0, 9]) =To,
where we give 6] = A(U})), j = 1,2, k = L, R and the function h; defined by
r—r
€= () = =2, (4.49

where \; = A\, Ay = p are the eigenvalues of the 1 and 2 families.

Lemma 4.4.2. The integro-differential problem [{4.7), (&4.8) admits a unique U;
smooth for all fixed time t > 0.

Proof. To prove the lemma, we use a standard fixed point argument. Without loss
of generality, we consider the 1-rarefaction wave. Denote by [i,ls two linearly in-
dependent vectors corresponding to A, u respectively. Multiplying (4.4.7) by [y, we

have 9. 7
Wyy8+wam

DV, =

OVi=1y- S+ 0y Vi,

where we have defined V| = ll-f]l, Vo = ZQ-ﬁl, and the operator reads D = fﬁiaﬁa@g

whose integral curves starting from (7, A(Uy)) is denoted by ¢. We thus have

o
%@%ﬁﬂMﬂM%»+/< ?y,s+mym)wb
¢ \H (4.4.10)

t
0

Now let F be the operator of the right-hand side of and we study the iteration
method 01(1) =F (l)U{) , [ > 1 where UP is an arbitrary smooth function satisfying the
initial-boundary condition U{(¢,69) = Us(t,6;) ,U2(0,0;) = U1(0,6;). It is easily
checked that for sufficiently small ¢;, F is contractive in the max norm of U ]Q . By
iterating the operator F, we prove that there exists a unique solution U, for all
0 <t < Aty. Then taking Ul(tl, -) as initial condition, we have a time At, such that
U, is defined by all Aty <t < Aty + Aty and it is directly to see that At; < At
by the definition of the operator F. We can thus have the existence of for all
fixed t > 0. O

According to the construction above, we conclude the following theorem.

Theorem 4.4.3 (The solution of the generalized Riemann problem). Consider the
generalized Riemann problem for the Euler model (4.1.1)),(4.4.1)). There exists a weak



Chapter 4: An existence theory for an Euler model with dissipation 211

solution defined for all time ¢ > 0 given by (4.4.6)), satisfying the Rankie-Hugoniot
jump condition and the Lax entropy condition.

4.4.3 Evolution of total variation

It is obvious that the total variation of In p of the solution of the standard Riemann
problem (4.2.4)), (4.2.9)) stays as a constant when time passes. However, it is a different
story for the generalized Riemann problem (4.1.1)), (4.4.1). We have the following

lemma.

Lemma 4.4.4. Let U = (p,v) = (p,v)(t,r) be the solution of the generalized Riemann
problem of the Euler model (4.1.1)) whose initial data Uy = (po,vo) = (po,vo)(r) has
the form (4.4.1) . Then we have

TV (Inp(t, ) < TVin (Inp(0+,-)) (1 + O(t)), (4.4.11)
for allt > 0.
Proof. Let Uy = Up(r) be the intermediate steady state solution associated with

the left state Upand the right state Ug given in the initial data. According to (4.4.4)),

we have

Up(ry' ™ (8)) = Un(ry' (£)) =Uw(ro) — Unr(ro) + [Uw(ro) — Unr(ro)|O(ry" ™ (£) — ro)
=Ur(ro) — Un(ro) + [U(ro) — Unr(r0)|O(2).

Moreover, according to the construction of the generalized Riemann problem, we give

TVies(Inp(t+,)) = TV (In p(04, )
<(Inpr(ro) — par(ro)| + 1 pr(ro) — par(ro)|)O(t) = TVips (In p(04, ) O(2),

where we have used the continuous dependence property |Up(ro)—Up ()| = O(1)|(In pr (1) —
pum(ro)|. This ends the proof of the lemma. O

4.5 Triple Riemann problem

4.5.1 Preliminary

Considering the fact that a steady state solution of the steady Euler model
may not be defined globally as is the result of Theorem and we are obliged to
introduce the triple Riemann problem in order to complete the Glimm method in
the coming section, that is, a Cauchy problem associated with initial data composed
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of three steady state solutions:

Un(r) r<r<r,
Uo(r) = S Us(r) rs<r <, (4.5.1)
Uyr) m<r<T,

for fixed radius 0 < r < 7 < ro < 7 and steady states U, = (pa, Va), Us = (ps, v3),
Uy = (py,0). We denote by Ua(ry) = U3 = (p3,u3), Us(ra) = U3 = (p3v3).
Us(rs) = US = (o). Us () = U2 = (b, 0.

We first give the main conclusion of this section:

Theorem 4.5.1. Consider a given initial data composed of three steady state solution

Ua,Ug, U,. Then for all t > 0, the triple Riemann problem of the Euler model ,
(4.5.1) admits a weak solution U = (p,v) = (p,v)(t,r) such that for all ¢ > 0, we
have:

TV (Inp(t,)) < TVir(Inp(0+,-)) (1 + O(F —r)). (4.5.2)

We define the left-hand problem as a generalized Riemann problem with initial

data
Ua ;
Do(r) = { (r) r<mr
Us(r) r >,

and the right-hand problem as a generalized Riemann problem with initial data

) Us(r) 1<y,
Golr) = {UW(T) > T,

Since the Euler model is strictly hyperbolic following from Proposition [£.2.1]
for a small enough time ¢t > 0, both the left-hand and the right-hand problem admit
a solution denoted by U, = UL(t,r) and Ur = Ug(t,r) respectively and the wave
curves of the solutions do not interact. We denote by r¥ = rf Li the wave curves

of the left-hand problem and r%{ rﬁRi the rarefaction regions boundaries of the

right-hand problem as is defined in (4.4.4), (4.4.5). We then define the moment of
the first interaction denoted by T%:

T; := sup{t > 0|r, " (t) < rit"(1)}. (4.5.3)

Clearly, if Ty = 400, the triple Riemann problem (4.1.1), (4.5.1)) exists a solution
reading

Ul (4 1) = Up(t,r) r<r<rs, (4.5.4)
’ UR(t,T) ro <1 <T. o
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4.5.2 Possible interactions

If the moment of the first interaction 7y < +o00, then the waves of the left-
hand and the right-hand Riemann problem did have interactions at 7%. Possible
interactions are given in order:

e 2-shock of the left-hand problem and 1-shock of the right-hand problem,
e 2-shock of the left-hand problem and 1-rarefaction of the right-hand problem,

e 2-rarefaction of the left-hand problem and 1-shock of the right-hand problem,

which are denoted by Problems P — ss, P — sr, P — rs respectively. For later use,
we denote by U]‘\}’ﬂ , U f/f’ the intermediate states of the left and right-hand problems
respectively. We consider different kinds of interactions separately.

Lemma 4.5.2. If Ty < +oo where T} is defined by and we have the 2-shock
of the left-hand problem and the 1-shock of the right-hand problem of the Euler model
(4.1.1)), then there exists a time Ty such that Problem P — ss admits a solution on
0<t<Ty.

Proof. We only have to consider the solution after ¢ > T¢. We denote by Uj; =
Ugs(t,r) the solution of the generalized problem with initial states U, UP sepa-
rated by r = rM(Ty) = rB,.7(T)) at t = Ty. Then for Tf < t < T, we give

Ur(t,r) T<T<TIA//[L+(t),
US(t,r) = Us(t,r) M7 (t) <r < rB .7 (1), (4.5.5)
Ur(t,r) 'r’MR () <r<rT,

where

Ty = min (sup{t > Tylrlh, (1) > i (O hsup{t > Tylrfie (6) > rffn " (0}).
(4.5.6)
Where r%Mi are boundaries of the rarefaction regions of the state U}; given by (4.4.4] m
. Thus Problem P-ss admits a solution for all ¢t < Ti,.

We now consider Problem P — rs.

Lemma 4.5.3. Let Ty be the first moment of interaction and we suppose
Ty < +o0 and the Euler model has 2-rarefaction of the left-hand problem and
the 1-shock of the right-hand problem. Then there exists a time T, such that we have
a solution of Problem P —rs for all 0 <t < T,,.
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Proof. Again, we only have to construct a solution after ¢ > T. Let us first write

[7; = (7; P(t,r) the 2-rarefaction wave of the left-hand problem which evolves in
the region (r}} ™ (t),72, " (t)). We give

Ur(t,r) £<?”<7”]I\'4L+(t),
Ups(t,r) = L U (t,r) rk, T () <r < rB L7 (1), (4.5.7)
Ugr(r) TﬁR_(t) <r<r,

where the function Ujj(¢,r) is given by

( —~—

UsP(t,r) vkt @) <r<rk (1),
UP(tr) vl (6) < r < vk (0,
Ut r) = Um0 () r};;(t) <r<rlf (1), (4.5.8)
Ogi(tr) vl (6) < v <l (),
U)o < < B (1)

Here, Ui, = Uiy (1) is a steady state satisfying

Uit (b (@) € Wi (05 (T (1) ) Wi (U, (el (1)) ).

and we recall that W7 and W5~ are elementary waves of the Euler model -
~+ ~+
with the formula given by (4.2.10). The wave curves rf, .r¥  (t) satisfy the ordi-

nary differential systems introduced by (4.4.4)), (4.4.5)) associated with three states
Us"? Uz, U, The functions Urs(t,r) are given by (4.4.7), (4.4.8), (4.4.9). Denote
by

7O = sup{t > Tylrk () <l (D), (4.5.9)

and we see immediately that (4.5.7) provides an exact solution for Problem P — rs
for all 0 <t < TP Nowfort>T0 we give

78?7

Up(t,r) r<r< 7‘]%4L+(t),
Ut LY <r<rB (¢

Ui(t,r) =4 M f%{% () <r ZM’%( ) (4.5.10)
Uy (1) i (8) <r <ryp (1),

U,(r) rit s (t) <r <,

with U3 given by ([£.5.8) and U;s" the solution of the Riemann problem generated

by initial data U, UTS]& at the radius r = TMTS(TO) = 1§ (TY) from the very
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moment ¢t = TP.. Now we denote by

T, = min(sup{t > T0[7FE, (1) > i ()}, supt > Tl (1) > 1 (1)),
(4.5.11)
where 7 (t) is the lower bound of the 1-wave of the solution Uy’ = Uy (¢, 7).
Together with (4.5.4)), (4.5.7), (4.5.10]), we have a solution of Problem P — rs for all
0<t<Ts. [l

A similar analysis gives the result of Problem P — rs.

Lemma 4.5.4. If the first moment of interaction Ty < +oo and the Euler model
admits 1-rarefaction of the left-hand problem and the 2-shock of the right-
hand problem. That we have a solution of Problem P — sr for all 0 < t < T,, where
T s a given moment.

We now consider interactions after these moments T, T},, Ts,.. Indeed, following
from the constructions in Lemmas [£.5.2] [£.5.3] [£.5.4], it is clear that possible inter-
actions after these moments are also pairwise interplays of generalized shock waves
and rarefaction waves as is listed at the beginning of this section. Thus, for any fixed
moment ¢ > 0, we have the solution of the triple Riemann problem. The estimation

of the total variation given by (4.5.2) follows directly from Lemmas [4.2.6} {4.4.4, We

thus obtain the main conclusion of this section, that is, Theorem {4.5.1

4.6 The initial value problem

4.6.1 The Glimm method

We give first the existence theory of the Euler model:

Theorem 4.6.1 (Global existence theory). Consider the Euler model with source
term describing fluid flows ({.1.1]). For any given initial density py = po(r) > 0 and
velocity vy such that

TV (Inpy) + TV (Inwvy) < +o0,

and any given time interval (possibly infinite) (0,7) C (0,+0c0), there exists a weak
solution p = p(t,r),v = v(t,r) defined on (0,T") such that the initial condition holds
in the sense that p(0,-) = po,v(0,-) = vy) and for any fixed moment 7" € (0,7")

sup (TV(lnp(t, D) + TV (v)) < 4o0.

t€[0,77]

As a prove, we first construct an approximate solution of the Euler model (4.1.1))
with initial data
U(t,r) = Up(r) = (po,vo)(r), 1 >0, (4.6.1)
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by using a random choice method based on the generalized problem. Let Ar and At
denote the mesh lengths in space and in time respectively, and let (r;,t,) denotes the
mesh point of the grid, where r; = jAr, ¢, = 0+ nAt. We assume the so-called CFL
condition:

A
< > max((]Al, |u). (4.6.2)

insuring that elementary waves other than those in the triple Riemann problem do
not interact within one time interval.

To construct the approximate solution Ua, = Ua,(t,7), we would first like to
approximate the initial data by a piecewise steady state solution of the Euler model
given by . However, note that some steady state solutions cannot be defined
globally on r > 0, we need more constructions. Recall first that there exists four
critical steady state solutions which pass the point (g7, £k) denoted by Ub» urbt,
UN» UN#¥ according to . Another important remark is given in Theorem m,
that is, for given rq, Uy, there exists always a steady solution U = U(r) with U(rg) =

Uy defined on (0,70) if ro < 575 or (ro, +00) if 1o > 575. Now we denote by UE}B =

UK;}D(T) = (pﬁt}o,vﬁtfo)(r) the steady state solution of the Euler model satisfying

(4.3.1)) such that Uit})(rjﬂ) = Up(rj+1) and we define:

s j+1 : j+1
Tj-i—l = sup{r > O‘UJA—:,O(T) 7& ik}X{Tj+1<%}(r>+lnf{r > OIU]A—:*,O(T) 7& :l:k}X{Tj+1>ﬁ}(r)'
(4.6.3)
the that if 77, # 0 or T;_,’_l # +00, T?-Fl is the sonic point of the steady state
U ]At}). We now denote by Ug:[l = (p{)fkl, véj;l) the unique critical steady state solution
satisfying

Jj+1

o Ao, sen(lon | = k) = sgu(juihyl - k). (4.6.4)

sgn(vp . ) = sgn(vag
On the interval (r;,7;42), we have the following possible constructions.
o If U, E}B is well-defined on (r;,7,42), we approximate the initial data Uy by U. E}B

on the interval.

o If UK;}) vanishes at 7, ; and 7;11 < 575, then we approximate the initial data
on (ri i, rjt+2) by
+3 .
- UJAT,O if T3 ¢ (7"3?+1; Tjy2);
— g:l if 75,5 € (15,4, 7j42) for Ug:l given by (4.6.4). Note that this case

m S
happens at most once when ;1 < 575 <743 and 77,5 > 7j42.

o If UE}) vanishes at 77, ; and 7;11 > 575, then we approximate the initial data
on (Tj7/rj+1) by

.
- Uir,o if riq ¢ (rjvr]5'+1>;
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— UJJrl if r] 1€ (rj,73,). Also, this case happens at most one time if
ric1 < opz < Ty andr 1 <y

Following the ideas above, we can now approximate the initial data on (r;,r;12) for
7 even:

~J+1=2sgn(rj41—7)

Uaro (r) ry<r<Mlry, Tjﬂ),

Uaro(r) = § UXLo(r) M(rj,r8,) <r < M(r3, i),  (4.6.5)
4 1—2sgn(r; 41— "
U]At,o s %2)(7’) M5, mi2) <7 < T,

where we give the operator M by

min(z,y) < 5%, (4.6.6)
max(z,y) 1> 5,

./\/l(x,y) = {

and

— j+1—2sgn(rjy1— 2k2 ( )

Ar,0

j+1=2sgn(ry 1 —22)
UArﬂ ’ i (T) T;JrleSgn(rHlf%) g_ﬁ (Tja 7“;+1) U (T]S‘-f—lv 7"]'+2),
U]H( ) else,

with the sonic pomt 7341 given by (4.6.3 - and the critical steady state solution Ug +
satisfying (4.6.4} Assume now that the approximate solution has been defined for
th—1 <t < t

To complete the definition of Uy, it suffices to define the solutionont,, <t < t,.1.
Let (6,,), be a given equidstributed sequence on the interval (—1,1) and introduce
the point related to the randomly choose values:

Tnj+l = (Hn +j)A7", g > 0. (467)

Following the idea before, we denote by Uﬂz Uiﬂl( ) the steady state solutions
passing the point (ry, j11, Uar(nt—, 7, ;4+1)) and the sonic point
s j+1
rn,j—‘rl I:SU.p{T > 0|U]At7n(r) 7& ik}X{Tn,j+1<%}(r)
+ inf{r > O|v£t}n(r) 7 TR} X (1> 253 (1),

together the very critical steady state solution U]t = (p/ v/ %") such that

sen(v}s) = sen(uhth),  sgn(joit| — k) = sen(loil,| - k). (4.6.8)

Our construction contains two main steps:
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e The steady state solution step. The construction of the approximate

solution on the time interval ¢,, is quite similar to the approximation of the
initial data. We define, at t = t,,, on the interval (r;, 7,42) with n + j even:
~J+1=2sgn(rp,j+1— )
UArn ’ 2 (T) Ty S r< M(Tj7 ;S@j—&-l)
— j+1
UATvn(T) - U]Ar n( ) M(Tj77“’fl,j+1) <r< M( nj+17/r]+2)

_ 2 . __m_
LB () M ) <7 < e,
(4.6.9)

where M(-,-) is the operator given by (4.6.6) and

~J+1=2sgn(rn j11—57)
Armn (T)

Uit; enlre 2k2)(r) T;+172Sgn(rn7j+17&) ¢ (Tjﬂ"i;,m), U(sz,j+1>7"j+2)a
UtH(r) else,
with U} +1 given by (4.6.8). It is direct to observe that if a steady state solution
reaches 1ts sonic point in a cell, then the nearest discontinuity is replaced by
this sonic point, then this construction guarantees that there exists at most one
point of discontinuity in (r;_1,rj11), j + n even.

The generalized Riemann problem step. Denote by r}j the point of dis-
continuity in r;_y < r < r;;1 and we then define the approximate solution Ua,
on the rectangle {t, <t < t,41,7j-1 <7 <711}, n+j even:
Ugfl’jﬂ)(zﬁ, ), rf — 7";-1_2 = 2Ar and r;-i+2 — r}i = 2Ar ,
Unr(t, ) = L Ut r), re—ry : < 2Ar,
U] 1J+3)(t,7‘), rfﬂ —7" < 2Ar,

(4.6.10)
where Ug ~HT ig the solution of the generalized Riemann problem at the time
level t =t, on (rj_1,rj11) with two steady states separated by a discontinuity
at ¢ and Uy, ] 3371 the solution of the triple Riemann problem at the time
level t=tn on the interval (r;_3,7;+1) with the three steady states separated

. . oy d d
by discontinuities at r§_,, rj.

This completes the construction of the approximate solution Up, = Ua,(t,7) on
[0, +00) x (0,400) by the Glimm scheme.

4.6.2 Convergence of approximate solutions

To prove Theorem [4.6.1] we first need an estimation of the total variation. See

the following lemma.
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Lemma 4.6.2. Let Ua, = (par, var) be the approzimate solution of the Euler model
(4.1.1) constructed by the Glimm method, then for any two neighboring time interval
tn, < tni1, we have a constant C' > 0 such that

TV(ln par(tnii+, )) — TV(lnpAr(tn—{—, )) < CAt.

From Lemma [4.6.2] we have, for any given 0 < t < +o0,
TV (Inpar(t,-)) < TV (Inpa,(0, -))ecl(t_s), (4.6.11)
where (] is a constant.

Proof. On the time level t = tn+1, we consider the interval (r,11,-1,7n41,41) With
n—+j even. According to , Tnt1,j+1 1s the point determined by a chosen random
value. Following from the constructlon of the Glimm method (Tnt1,j—15 Tnt1,5+1) only
contains one point of discontinuity which we write as r .- According to Lemma (4.4.4}
we have

TV(lnp n+1+ Z | hlp n+1+7 ]+1 n) lnp( n+1+7 ]n)| (1 + O(At))

Now we notice that there are portions of three possible waves generated by either

the generalized Riemann problem or the triple Riemann problem lying in the inter-

val (Tp41,j-1,Tnt1,5+1). We write these waves as wy, » from left to right, staring from
d d

points of discontinuity (reading r{,, rf, . re, respectively) in (rj_s, r;], (75, 7j42], (712, 7j44]

at the time level ¢t = t,, respectively.

We observe that, depending on if the position of the the randomly chosen point
Tnt1,j—1 is closer to r,‘ij or closer to wy) , the wave w; is either a zero strength
wave in (rp41,j-1,7n41,41) Or the wave generated by a steady state Uy such that
Ur(rns1,j-1) = Uar(tns1—,7ns1,-1) and another steady state Uy such that Uy =
Unr(tns1—, Tni1,j41)- Similarly, ws is either a zero strength wave in (75,41,j-1, Tnt1,j+1)
or a problem with a state Uy, such that Up(r41,j41) = Uar(tnt1—, Tnt1,5+1) and an-
other state Ug such that Up = U, (tn+1—, "nt1,543). Turning to the wave wy, it is
generated by Uy and Uy, or Uy or Ug. According to to Lemma 4.2.6, we have the
result by adding j on the time level ¢ = ¢,,.

]

Now since the uniform BV bound on a given time interval (0,7") (established
below) is known, Helly’s theorem gives immediately the fact that there exists a sub-
sequence of Ar — 0 such that we have a limit function U = U(t,r) and Ua,(¢,r) —
U(t,r) pointwise a.e. and in L}, at each fixed time ¢. Moreover, the limit function
U = U(t,r) is a weak solution of the Euler model (4.1.1)), (4.6.1]). This ends the proof
of Theorem [£.6.1]
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Abstract :

This thesis is devoted to fluid dynamics evolving in the domain of outer communication of a Schwarzschild black hole. In
the first chapter, we formulate the initial value problem of the relativistic Euler model within a class of weak solutions with
bounded variation, possibly containing shock waves. We then introduce a version of the random choice method founded
on the global steady state solutions and the generalized Riemann problem and we establish a global-in-time existence
theory for the initial value problem within the proposed class of weakly regular fluid flows. In the second chapter, we
consider the relativistic Burgers model. We have introduced a version of the total variation which is decreasing with
respect to time in the Cauchy problem. We also use the generalized characteristics to prove the nonlinear stability of a
piecewise steady state solution. In the third chapter, we present some numerical methods based on the Schwarzschild
geometry and study numerically the nonlinear stability of steady state solutions and the asymptotic behavior of a general
solutions. The proposed schemes provide a numerical tool capable to preserve exactly the equilibria and allow us to
analyse the evolution of fluids with the geometry effects.

Keywords : Fluid dynamics; Schwarzschild spacetime; Schwarzschild blackhole; relativistic model; Shock wave; Glimm

method; total variation; well-balanced scheme; nonlinear stability, steady state solution

Résumé :

Cette these est consacrée a la dynamique globale d’un fluide évoluant dans le domaine de communication extérieur d’un
espace-temps de Schwarzschild. Dans le premier chapitre, on formule le probléeme de Cauchy pour le modele d’Euler
relativiste dans la classe des solutions a la variation bornée contenant des ondes de choc. On propose ensuite une
version de la méthode de Glimm fondée sur les solutions stationnaires globales hors du trou noir et le probleme de
Riemann généralisé et on démontre un théoréme d’existence globale en temps pour les écoulements de fluides faiblement
réguliers. Dans le deuxiéme chapitre, on considere le modele de Burgers relativiste. Nous introduisons une version de
la variation totale qui est décroissante en temps pour les solutions générales du probleme de Cauchy. Nous avons aussi
utilisé les caractéristiques généralisées pour démontrer la stabilité nonlinéaire d’une solution stationnaire par morceaux.
Dans le troisieme chapitre, nous présentons plusieurs méthodes numériques basées sur la géométrie de Schwarzschild et
nous étudions numériquement la stabilité nonlinéaire des solutions stationnaires et le comportement asymptotique des
solutions générales. Les schémas proposés fournissent un outils numérique capable de préserver exactement les équilibres
et nous permettent d’analyser I’evolution de fluides en présence d’effets géométriques. Dans le quatrieme chapitre, nous
présentons un modele non-relativiste préservant certains effets du trou noir de Schwarzschild.

Mot clés : Dynamique des fluides; espace-temps de Schwarzschild; trou noir de Schwarzschild; modele relativiste; onde

de choc; méthode de Glimm; variation totale; schéma équilibre; stabilité nonlinéaire; solutions stationnaire




