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Abstract 

Noise engineering methods (e.g. ISO 9613-2 or CNOSSOS-EU) efficiently approximate 

sound levels from roads, railways, and industrial sources in cities. They model outdoor 

sound propagation by first finding the propagation paths between the source and receiver, 

then applying attenuations (e.g. geometrical divergence and atmospheric absorption) to 

each path, and finally summing all of the path contributions. 

However, engineering methods are limited to only simple box-shaped geometries; for 

example, they cannot model a T-barrier. This dissertation develops and validates a hybrid 

method to extend the engineering methods to more complicated geometries by 

introducing an extra attenuation term that represents the influence of a real object 

compared to a simplified object that the engineering methods can model. 

Calculating the extra attenuation term requires reference calculations to quantify the 

difference between the complex and simplified objects. Since performing a reference 

computation for each path is too computationally expensive, the extra attenuation term is 

linearly interpolated from a data table containing the corrections for many source and 

receiver positions and frequencies. The 2.5D boundary element method produces the 

levels for the real complex geometry and a simplified geometry, and subtracting these 

levels yields the corrections in the table. 

Forming the table of corrections has a natural tradeoff between accuracy and 

computational cost; increasing the number of data points in the table decreases the 

interpolation error but increases the time and memory requirements. The computational 

restrictions of a standard desktop computer only allow the table to have about one million 

points, which is far below the number required to densely cover the large six-dimensional 

space. Nevertheless, minimizing the variance of a Gaussian process optimizes the source 

and receiver positions in the data table and reduces the interpolation error to an 

acceptable level. 
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This dissertation validates this hybrid method for a T-barrier with hard ground, soft 

ground, and buildings. All three cases demonstrate that the hybrid method is more 

accurate than standard engineering methods for complex cases; it reduces the mean error 

by approximately 2 dBA. In a final case, the hybrid method produces the results for a T-

barrier in a much larger scene (i.e. 180 m x 80 m and frequencies up to 5 kHz) with 

buildings and mixed hard and soft ground. This case is too complex for ordinary noise 

engineering methods because of the T-shaped barrier and is cost prohibitive for reference 

methods because of the large domain size compared to a wavelength. Thus, the hybrid 

method provides a novel tradeoff between accuracy and cost. 

Key words: urban outdoor sound propagation, noise engineering methods, boundary 

element method, hybrid method, Gaussian process regression, numerical acoustics, 

optimization 
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Résumé 

Les méthodes d’ingénierie acoustique (e.g. ISO 9613-2 ou CNOSSOS-EU) approchent 

efficacement les niveaux de bruit générés par les routes, les voies ferrées et les sources 

industrielles en milieu urbain. Ces méthodes modélisent la propagation du son en milieu 

extérieur en recherchant les chemins de propagation entre source(s) et récepteur(s), puis 

en appliquant des atténuations (e.g. divergence géométrique et absorption atmosphérique) 

à chaque chemin, et enfin en sommant les contributions de tous les chemins. 

Cependant, ces approches d’ingénierie sont limitées à des géométries de forme simple, le 

plus souvent de section rectangulaire ; elles ne peuvent pas, par exemple, modéliser des 

écrans acoustiques de forme en T. Ce mémoire développe donc, et valide, une approche 

hybride permettant l’extension des méthodes d’ingénierie à des formes plus complexes, 

en introduisant un terme d’atténuation supplémentaire qui représente l’effet d’un objet 

réel comparé à un objet simple de référence pouvant être appréhendé par les modèles 

d’Ingénierie. 

Le calcul de cette atténuation supplémentaire nécessite des calculs de référence, 

permettant de quantifier la différence entre objets simple et complexe. Dans la mesure, où 

il est trop onéreux, numériquement, d’effectuer ce calcul pour tous les chemins de 

propagation, l’atténuation supplémentaire est obtenue par interpolation de données 

stockées dans un tableau et évaluées pour un large jeu de positions de sources, de 

récepteurs et de fréquences. Dans notre approche, les calculs de référence utilisent la 

méthode BEM en 2.5D, et permet ainsi de produire les niveaux de référence pour les 

géométries simple et complexe, tout en tabulant leur écart. Sur le principe, d’autres 

approches de référence pourraient être utilisées. 
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La construction de cette table corrective doit être un compromis entre précision et coût de 

calcul ; si l’on accroit le nombre de valeurs stockées, l’erreur d’interpolation sera réduite 

mais le prix à payer en termes de temps de calcul et de capacité mémoire peut devenir 

excessif. Les limites données pour un PC standard ne permettent guère de dépasser un 

million de valeurs, ce qui est bien insuffisant pour assurer une interpolation précise dans 

un espace à 6 dimensions. Néanmoins, en minimisant la variance d’un processus 

Gaussien on parvient à optimiser les positions des sources et des récepteurs, et par là-

même, à réduire l’erreur d’interpolation à un niveau acceptable. 

Ce travail valide cette approche hybride pour un écran en forme de T avec un sol rigide, 

un sol absorbant et un cas avec bâtiments. Ces trois cas démontrent que l’approche 

hybride est plus précise que l’approche d’ingénierie standard dans des cas complexes ; 

elle réduit l’erreur moyenne d’approximativement 2 dB(A). A l’aide d’un exemple plus 

complexe, nous montrons que l’approche hybride permet par exemple d’étudier un écran 

en forme de T placé dans une scène urbaine étendue (i.e. 180 m x 80 m) et pour des 

fréquences atteignant 5000 Hz. Ce cas serait trop complexe à mettre en œuvre, d’une 

part, avec les approches standards du fait du type d’écran considéré, et d’autre part, avec 

les approches de référence, de par ses dimensions relatives aux nombres d’ondes 

considérés. De cette façon, l’approche hybride propose un compromis entre précision et 

coût. 

Mots-clés : Propagation sonore en milieu urbain, méthodes d’ingénierie acoustique, 

BEM, méthode hybride, processus Gaussien de régression, acoustique numérique, 

optimisation 
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Chapter 1 Introduction 

§1.1 Objectives 

To aid the reader, each chapter begins with a set of chapter objectives and ends with a 

synthesis of the most important ideas in the chapter. In this chapter, 

§1.2 explains the problem context; 

§1.3 reviews current approaches; 

§1.4 defines what is required to solve the problem; 

§1.5 states and justifies the method that this dissertation develops; 

§1.6 lays out the organization of this dissertation. 

§1.2 Context 

Many people are exposed to high noise levels from cars, trains, planes, or industrial 

sources. For example, 120 million Europeans are exposed to Lden above 55 dB1, which 

the World Health Organization (WHO) says produces “serious annoyance”2. Moreover, 

these high noise levels contribute to increased disease and lower quality of life; 

specifically, high noise levels may negatively affect annoyance, cardiovascular disease, 

sleep, and cognitive performance3. WHO and the Joint Research Centre (JRC)4 estimate 

that environmental noise 

 Annoys one in three Europeans during the day; 

 Disturbs the sleep of one in five Europeans; 

 Robs Europeans of over 1 million healthy years of life annually. 

Accurately and efficiently modeling transportation noise in urban areas is crucial to 

evaluate and to reduce overall levels. However, this situation is difficult to model because 
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cities are both large and complex. Some methods (e.g. finite element or finite-difference 

methods, which this document calls reference methods) can model complicated shapes 

but are too expensive to use for several cities blocks while other methods (e.g. 

engineering or geometrical methods, which this document calls efficient methods) can 

model large scenes but cannot accurately model complicated geometries. This 

dissertation develops an approach to model outdoor sound propagation that is less 

expensive than the current reference methods and is more accurate than the current 

efficient methods. 

To be more specific, this dissertation seeks to improve the accuracy of the engineering 

methods (EMs) at a reasonable cost. EMs are the standard methods that governments 

recommend to model urban outdoor noise propagation (e.g. CNOSSOS-EU5) because in 

many cases they efficiently estimate the long term noise levels. However, EMs assume 

that all of the objects in the scene have a very simple (box-like) shape, which can produce 

large errors for more complex shapes6. The method developed here augments the 

capabilities of EMs to include long objects with a constant, arbitrary cross-section (e.g. a 

noise barrier). 

The literature provides many cases where this kind of extension would be useful. The 

principal case is a complex noise barrier6,7, which could be rectangular (i.e. a thick 

straight barrier), T-shaped, Y-shaped, cylindrical, angled, curved, or absorbent. The 

barrier shape and surfaces could even come from an optimization algorithm8,9. EMs can 

only model straight, thin barriers (hereafter called I-barriers), so anything more 

complicated would be an extension. In addition, even I-barriers should not be modeled 

next to a train or tram using EMs because this case would require too many reflections 

between the barrier and the train to be cost effective, so it is modeled with the boundary 

element method10. 

Modeling roof shapes is also beyond the scope of EMs because they assume that all 

buildings are box-shaped. However, the shape of the roof can have a large impact on the 

sound attenuation of the building11. In addition to shape, greening measures where 

surfaces are covered with plants can also lead to improved noise reduction12. 

These cases provide examples where the extra attenuation of the complex object 

compared to a reference object that is currently used in EMs is large compared to the 

uncertainty of EMs, which is 1-3 dB for a wide variety of cases13,14. These applications 

are the kinds of cases where another approach has the potential to greatly improve the 

accuracy of EMs for a reasonable cost. 

Therefore, the primary objective of this dissertation is to enable EMs to model more 

complicated geometries while minimizing the increased computational costs. This goal 

has been suggested at least twice before. First, Nord200015,16, a Nordic EM, discusses 
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“Special Screens” in §4.8 but does not give enough details to implement the method and 

does not verify the outlined approach. Second, the Hosanna project, in Work Package 

6.217 in §3.5 called “Coupling with Numerical Models”, describes their method in more 

detail but does not justify most of the decisions and does not discuss multiple diffraction 

points. The document validates the method for a lone barrier but does not validate it when 

the barrier is in a complex surrounding. In contrast, this dissertation both develops and 

validates a hybrid method to extend EMs to more complex geometries. 

§1.3 Literature review 

To decide what approach is most appropriate, the first step is to review the current 

literature on outdoor noise propagation. Researchers have developed many methods to 

help governments estimate current noise levels and to evaluate potential noise mitigation 

solutions. The major categories of methods are geometrical, engineering, statistical, 

frequency-domain, time-domain, and hybrid approaches. This section introduces a few 

methods for each approach and discusses the advantages and disadvantages of each 

model. The proposed approach is in §1.5. 

§1.3.1 Geometrical approaches 

For efficiency, geometrical approaches assume that the objects are large compared to a 

wavelength. This assumption makes the computation time independent of frequency and 

instead depends on the number of reflections, diffractions, and polygons to define the 

geometry. When these variables are small in number, geometrical approaches can 

perform very well, but when they are large the computation time can be prohibitive. 

However, the main objection is that they do not allow for the geometric complexity that 

this application requires. Geometrical approaches may or may not include the phase 

information of each path. The image source, ray tracing, beam tracing, and geometrical 

theory of diffraction methods are all common geometrical approaches. 

The image source method18 models specular reflections by inserting image sources and 

has been used to model outdoor street canyons19–21. Unfortunately, it does not usually 

model diffraction or atmospheric effects, and for complicated scenes the cost is 

unaffordable due to the number of image sources and the visibility/validity checks22. 

The ray tracing method23,24 sends out many rays from the source and detects if any of 

them hit a small sphere centered at the receiver. Ray tracing has been used for urban 

scenes25–27, can model atmospheric effects28,29, and can model diffraction over simple 

barriers including a Y-barrier30. However, barriers could have an arbitrarily shaped cross-
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section where the computational cost would be unreasonable because of the large number 

of diffractions required to accurately model such a complex barrier. 

Similar to ray tracing, the beam tracing method31 sends out many beams from the source 

and detects if any of them hit a point receiver. Beams have a finite cross-sectional area 

whereas rays have an infinitesimal one. Beam tracing has been used to model outdoor 

sound propagation32,33, but cannot model complex shapes just like ray tracing. 

The geometrical theory of diffraction34–37 extends pure geometrical methods to include 

diffraction. If a ray from the source hits an edge or corner, then a source is added at that 

location. The geometrical theory of diffraction can model moderately complex 

barriers38,39 (e.g. T, Y, and inclined barriers), but the cost increases rapidly with the 

number of diffraction edges, so much more complicated barriers are cost prohibitive. 

§1.3.2 Engineering approaches 

EMs are standardized geometrical approaches, but they are given their own section here 

because of their importance for modeling outdoor noise propagation and because they 

make some additional simplifying assumptions. EMs find all of the propagation paths 

between the source and the receiver in a horizontal plane. The paths with reflections are 

then unfolded using image sources or receivers. The sound power is known for each 

source and attenuations are calculated for each path. The attenuations correspond to 

physical phenomena (e.g. geometrical divergence, atmospheric absorption, etc.), which 

are assumed to be mostly independent of each other. Then, the contribution of each path 

is summed incoherently to find the total sound pressure level. There are several EMs40, 

including the international standard ISO 9613-241, the French standard NMPB-Routes-

200842,43, the Nordic standard Nord200015,16, and the European Union standard 

CNOSSOS-EU5. In addition, CSTB helped develop the Harmonoise EM44,45. 

The main advantage of EMs is their efficiency. The calculation times of EMs is 

independent of frequency and domain size and instead depend on the number of 

reflections and diffractions, which makes EMs feasible even when the domain size is 

much larger than a wavelength. The primary disadvantage of EMs is the limited 

geometric complexity. For example, EMs can only model I-barriers and cannot model 

more complicated shapes. 

EMs are fundamentally different from reference methods because EMs incoherently sum 

the path contributions while reference methods coherently sum them. The difference is 

that EMs exclude the phase information of the complex acoustic pressure because they 

sum the squared pressures and the reference methods include the phase information 

because they sum the pressures. EMs coherently sum the rays within a propagation path 

(i.e. all the rays in the same vertical plane including the direct ray and ground 
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reflections), but the propagation paths are summed incoherently (i.e. rays that are not in 

the same vertical plane including the direct ray and a ray reflected from a vertical 

surface). 

§1.3.3 Statistical approaches 

Statistical approaches are methods that use statistics to make the computations more 

efficient or to gain physical insight. This section discusses the radiosity, diffusion, and 

statistical learning methods. The primary objection to the statistical approaches is that 

they cannot model complicated geometries. Moreover, most do not model atmospheric 

effects like refraction and turbulence. 

The radiosity method21 assumes that boundaries reflect sound diffusively instead of 

specularly, which is in contrast to the geometrical approaches. The boundaries are broken 

up into patches where the accuracy and cost increase with the number of patches. The 

method calculates the energy exchange between all of the patches using ideas from heat 

transfer. The radiosity method has modeled urban outdoor sound propagation a few 

times21,46–49, but unfortunately complicated geometries require many patches. In addition, 

specular reflection and diffraction must be treated separately50. 

The diffusion method51 uses the diffusion equation by imagining many sound particles 

emanating from the source. The particles can be absorbed by or reflected from the 

boundaries. Instead of tracing each particle, the diffusion method considers the 

probability density function of all of the particles. The diffusion method can model urban 

sound propagation analytically in simple cases52–54 and numerically using finite-

differences in complex cases55,56. However, in complicated cases the cost increases and 

estimating the diffusion coefficient is difficult. 

Statistical learning methods57,58 are a very powerful and diverse set of tools to understand 

large and complex data sets. These methods are decades old, but they have recently seen 

renewed interest because computers have become more powerful and because big data 

has become increasingly available and important. Unfortunately, not many articles apply 

these methods to outdoor sound propagation. One exception59 compares the parabolic 

equation method, three EMs, and four statistical learning methods for sound propagation 

over flat ground. In this case, they found that the statistical learning methods are more 

accurate than EMs; however, transitioning from this simple case to the much more 

complicated case in a city is unclear. The amount of data required might be prohibitive. 



Chapter 1 Introduction 

6 

 

§1.3.4 Frequency-domain approaches 

Frequency-domain methods assume a time-harmonic source, which simplifies the time 

derivatives of the differential equations. Frequency-domain methods perform single 

frequency computations and work well with boundary conditions that are defined in the 

frequency-domain. However, as the frequency and domain size increase the cost also 

increases, which quickly becomes prohibitive and is the main limitation of these methods. 

This section discusses the finite element, boundary element, parabolic equation, and 

equivalent sources methods. For completeness, many frequency-domain approaches also 

have time-domain implementations and vice versa, but the methods are categorized here 

based on the most common approach taken in the literature on outdoor noise propagation. 

The finite element method60–64 solves differential equations (e.g. the Helmholtz equation 

in acoustics) by dividing the problem’s domain into many pieces called elements. Within 

each element, the field variable (e.g. pressure in acoustics) is usually assumed to be 

constant or vary linearly (or quadratically). Minimizing the error between this piece-wise 

approximation and the true solution yields a system of linear equations, which is solved 

for the pressure throughout the domain. The finite element method uses perfectly 

matched layers65 or infinite elements66 to model outdoor (i.e. infinite domain) problems. 

The finite element method is a very powerful method because it is very flexible and can 

model arbitrary geometries, but as the number of elements increases, the cost also 

increases. The finite element method is much too expensive for this application. 

The boundary element method (BEM)67–69 is an approximation of the Kirchhoff-

Helmholtz integral equation, which relates the pressure in a domain to the pressure and 

its normal derivative on the domain’s boundary. The boundary is discretized and the 

boundary conditions are specified everywhere on the boundary. Then, the approximate 

integral and the boundary conditions together produce a system of linear equations that 

yields the unknown boundary values. Lastly, the pressure anywhere in the domain is 

calculated from the boundary values. BEM is often used to calculate the attenuation of 

noise barriers6,70,71 and outdoor sound propagation more generally72. The fast multipole 

BEM73–77 provides a substantial improvement to BEM in terms of computation time 

because it 1) makes the matrix sparse by putting the boundary contributions into a 

hierarchy, 2) uses an iterative solver, and 3) does not store the entire matrix equation. 

However, like the finite element method, BEM is too expensive for this case. 

The parabolic equation method78–80 is based on the parabolic approximation of the 

Helmholtz equation that models one-way propagation from a monopole within a limited 

vertical angle. This method has at least two important implementations that approximate 

the spatial derivative in different ways. The Crank-Nicholson parabolic equation method 

approximates it by a truncated Taylor series and the Green’s function parabolic equation 

method approximates it with a Fourier transform. The parabolic equation method has 
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been used for many long range outdoor propagation problems where refraction81–83 and 

turbulence84,85 are important. However, this method cannot model complicated shapes 

and usually does not model reflections from vertical objects86. 

The equivalent source method87,88 divides the problem’s domain into subdomains that 

have known Green’s functions. The Green’s function gives the pressure everywhere 

inside a subdomain due to a source inside a subdomain. The interfaces between the 

subdomains are meshed, and each element is represented by an acoustic source with 

unknown source strength. Enforcing continuity on pressure and velocity produces a 

system of equations, which give the source strengths. Inserting these source strengths into 

a sum of corresponding Green’s functions yields the pressure in the subdomain. The 

equivalent source method has been used for predicting noise propagation around and over 

buildings89–91. However, finding the appropriate Green’s function may be difficult for 

complicated geometries and surfaces, and the matrices can rapidly become ill-

conditioned. 

§1.3.5 Time-domain approaches 

Time-domain methods take the pressure information from the current and previous time 

steps and the boundary conditions to predict future pressure fields. Time-domain methods 

are well-suited to model transient phenomena (e.g. pulses, turbulence, and 

wind/temperature changes) and moving sources. This section discusses the finite-

difference time-domain method and the transmission line matrix method. 

The finite-difference time-domain method92 marches forward in time using the pressure 

information at the current and previous time steps to determine future pressure values. 

Approximating the derivatives of the wave equation by truncated Taylor series yields the 

future pressure values. The finite-difference time-domain method discretizes both time 

and space. This powerful method has been used to model urban acoustics with real 

geometries and atmospheric effects11,12,93–96, but because of the computational cost the 

simulations have been restricted to 2D models or to below 500 Hz. 

The transmission line matrix method97 models a problem’s domain as a Cartesian grid of 

pipes called transmission lines. Pressure pulses travel through the transmission lines, and 

conserving the pressure and energy at each intersection determines the behavior of the 

pressure pulse. Since these interactions are determined a priori, this method does not 

require matrix inversions. The transmission line matrix method has been used to model 

outdoor sound propagation98–101 but is too expensive for this application because the 

domain size is so large compared to a wavelength. 
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§1.3.6 Hybrid approaches 

Hybrid methods combine more than one method to achieve a goal (e.g. to reduce cost 

while maintaining similar accuracy). Many hybrid methods try to optimize cost and 

accuracy by applying a reference method to the complex geometries and an efficient 

method to the simple geometries, which is a spatial decomposition. One approach uses 

the finite-difference time-domain method as the reference method and the parabolic 

equation method as the efficient method102–104. Others use BEM as the reference method 

with the parabolic equation method105,106 or ray tracing107–110 as the efficient method. 

Another approach uses both spatial and frequency decomposition using the equivalent 

source method for locations close to objects and at low frequencies and ray tracing 

otherwise111. However, these methods are still very expensive because the vast majority 

of the computation time is still dedicated to the reference method. 

In order to reduce the computation time, others have suggested that the attenuation of a 

complex geometry should be computed beforehand and often in a smaller number of 

dimensions. There are two main approaches in the literature. The simplest method15,17 

tabulates the attenuation based on a large number of reference calculations, and 

interpolating the data yields a specific attenuation. The other method7,112 goes one step 

further and fits a curve to the tabulated results so that the function and its coefficients are 

stored instead of the raw data, and evaluating the function gives the desired attenuation. 

The main limitation of these methods is that they have only been used in the simple case 

of a barrier with hard, flat ground. None of the methods explain how to use these 

corrections in a complex scene with other objects or ground types. Specifically, the 

methods need to specify what to do when a path includes reflections and diffractions. The 

method developed in this dissertation seeks to determine how to incorporate simple 

corrections into complicated urban scenes. 
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§1.4 Model requirements 

After reviewing the main approaches for modeling outdoor noise propagation, the next 

step is to establish criteria to evaluate if a method is appropriate for the proposed 

application, namely making road noise maps in large, complicated urban areas. Since 

EMs are the current standard, some of these requirements use EMs as a reference point. 

The requirements include physical phenomena, frequency range, geometric extent, 

geometric complexity, and computational restrictions. Table 1.1 summarizes the 

requirements. 

First, the approach must reasonably approximate all of the most important physical 

phenomena for outdoor sound propagation including geometrical divergence, 

atmospheric absorption, ground effects, reflections, diffraction, refraction, and 

turbulence. 

Second, the approach must be able to calculate noise levels over a broad range of 

frequencies. Specifically, the minimum requirement is the 125 Hz to 4 kHz octave bands, 

which corresponds to the range in CNOSSOS-EU. This range contains the majority of A-

weighted sound power from cars, trucks, and trains and is where human hearing is most 

sensitive. Aircraft noise would require a lower minimum frequency. Preferably, the 

method could also calculate third-octaves and would have an even larger range. 

Third, the approach must be able to handle 3D problems with propagation distances of at 

least 100 m and potentially up to 1 km. Urban problems commonly have propagation 

distances over 100 m but over 1 km is rare except for aircraft noise propagation. Methods 

capable of longer propagation distances are preferable to ones with shorter maximum 

distances. 

Forth, the approach must be able to model objects with an arbitrary 2D cross-section. 

This requirement balances flexibility and cost. For this application, objects are usually 

considered long in the dimension that is perpendicular to the propagation, so allowing 

object to change shape along that dimension is not nearly as important as the vertical 

cross-section of the object. Currently, the cross-section has to be shaped like a wedge or a 

rectangle. An arbitrary cross-section gives much greater flexibility. 

Fifth, the computation time must be less than 24 hours on a standard desktop, which 

currently has a quad-core 3.4 GHz processer with 16 GB RAM and 512 GB SSD113 if it is 

new and slightly lower performance if it is older. Computations that require more than 

one day to complete are impractical for many users who may have clients waiting for 

their conclusions. Preferably, the computation time should be as short as possible. 
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Table 1.1: Method requirements 

This table summarizes the requirements and their justifications that are presented in this section. 

Name Requirement Justification 

Physical phenomena All of them from EMs 
The new approach should not lose 

capabilities 

Frequency range 125 Hz to 4 kHz octave bands This range is from CNOSSOS-EU 

Geometric extent 
Propagation distances of at least 

100 m and potentially up to 1 km 

Most applications are between  

10 m and 1 km 

Geometric 

complexity 

Objects with an arbitrary cross-

section 

This requirement is the main 

improvement 

Computational 

restrictions 

Computation time < 24 hours on a 

standard desktop 

Longer computation times are 

unreasonable; many users cannot 

access more powerful computers 
 

§1.5 Choosing a method 

After discussing the main methods to model urban outdoor sound propagation and 

establishing a way to evaluate them, the next step is to determine the best method for this 

application. Most of the methods do not meet the requirements (Table 1.2); all of the non-

hybrid approaches fall short because they cannot model complex geometries or are too 

computationally expensive. For example, combining the frequency range and geometric 

extent requirements means that the domain is much larger than a wavelength. Also 

including the computational restrictions requirement eliminates all methods that model 

the entire domain and increase in cost with frequency. Specifically, these requirements 

exclude the frequency-domain and time-domain approaches. In addition, the geometric 

complexity requirement excludes the geometrical, engineering, and statistical methods. 

Thus, the hybrid approaches are the only ones that remain. 

However, currently there are no developed, validated, and published methods that fit 

these requirements, which is the motivation for this dissertation. Most approaches either 

do not model complex geometries or are computationally prohibitive for this application. 

The HOSANNA project17 documents the most promising approach, but it is not fully 

developed or verified. The closely related ray tracing/BEM hybrid methods108,110 first 

model the source near complex geometries to find the equivalent sources on a fictitious 

interface and then use ray tracing to determine the level at the receiver. However, for 3D 

problems and high frequencies the number of sources would be very large. Therefore, 

this dissertation seeks to develop and validate a hybrid method to model urban outdoor 

sound propagation. 
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Table 1.2: Comparing potential approaches 

This table considers if any of the main categories of approaches satisfy the requirements from §1.4. 

Approach 
Physical 

phenomena 

Geometric 

complexity 

Geometric 

extent 

Geometric 

complexity 

Computational 

restrictions 

Geometrical  Yes Yes Yes No Yes 

Engineering Yes Yes Yes No Yes 

Statistical No Yes Yes No Yes 

Frequency-domain Yes Yes Yes Yes No 

Time-domain Yes Yes Yes Yes No 

Hybrid Yes Yes Yes Yes Yes 

 

The first major decision is to determine which methods should be combined. Generally, 

there is an efficient method that can model a simplified version of the entire scene, and a 

reference method that can model complicated objects but is too expensive to apply to the 

entire domain. The engineering, geometrical, and statistical approaches provide the 

options for the efficient method, and the frequency-domain and time-domain approaches 

are possibilities for the reference method. Following the example in the HOSANNA 

project, the hybrid method developed in this dissertation combines EMs and 2.5D BEM. 

The rest of this section justifies these choices. 

§1.5.1 Justifying using EMs 

The hybrid method uses EMs because they are 

1. Able to model important physical phenomena; 

2. Very efficient; 

3. Easily extendable; 

4. Widely utilized. 

First, EMs estimate the effects of many critical physical phenomena5 including 

geometrical divergence, atmospheric absorption, ground effects, reflections, diffraction, 

refraction, and turbulence. While many of these effects are only approximated, EMs have 

been validated with both reference methods and measurements13,17,59,114. 

Second, EMs estimate noise levels very efficiently. In particular, EMs make a high 

frequency approximation so that the calculation time is independent of frequency. While 

the geometrical methods also make this assumption, EMs are still theoretically less 

expensive because they make additional simplifications (e.g. combining paths within a 

vertical slice and summing the propagation paths incoherently) that should make EMs 

less expensive. 
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Third, EMs are easily extendable. Their assumption that sources of attenuation can be 

calculated independently makes including another attenuation term trivial, although 

calculating its value may be very complicated. Augmenting a statistical method would be 

much more complicated. 

Fourth, EMs are widely used in governmental and legal contexts where their results have 

monetary implications and can affect the health and well-being of millions of people. 

Governments use them to estimate and mitigate the noise exposure of their constituents. 

For example, the directive 2002/49/EC115 requires European Union member countries to 

create noise maps using the EM called the Common Noise Assessment Methods for 

Europe5 (CNOSSOS-EU). These noise maps enable European citizens to know their 

noise exposure and help appropriate authorities create action plans to mitigate the 

negative effects of noise. Moreover, urban planners use them to predict how changing a 

city’s infrastructure would change the noise exposure of the residents; consultants use 

them to evaluate if someone can sue their neighbor for breaking a noise ordinance; and 

researchers use them to estimate noise levels. 

§1.5.2 Justifying using 2.5D BEM 

The hybrid method uses the 2.5D BEM because it models: 

 Arbitrary cross-sectional geometries; 

 Infinite domains and infinite, hard ground efficiently; 

 Point sources. 

The most important requirement of the reference method is that it can model geometries 

with an arbitrary cross-section because this aspect is the improvement that the reference 

method provides for EMs. This requirement reduces all of the options discussed in §1.3 

to three main options: BEM, the finite element method, and the time-domain finite-

difference method. This requirement does not include arbitrary 3D geometries because 

the cost would be even greater and it would not separate the paths that diffract over and 

around the complex object. Thus, since they are more efficient, this requirement also 

prefers 2D or 2.5D approaches, which assume a constant cross-section in the third 

dimension, to truly 3D approaches. 

The next most important requirement is that the reference method models infinite 

domains and infinite hard ground efficiently because many outdoor propagation problems 

include these features. While all three methods can model infinite domains, only BEM 

does so without substantial extra expense. BEM simply changes the Green’s function and 

does not require a larger mesh. 

The last requirement is that the reference method models point sources because EMs use 

point sources. This requirement excludes 2D BEM because it only models coherent line 
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sources and does not model point sources, which does affect the predicted attenuation116. 

Thus, 2.5D BEM fits the requirements the best. 

Specifically, this dissertation uses MICADO117 as the reference method. MICADO is a 

variational 2.5D BEM approach. Variational BEM reformulates the integral equation to 

reduce the influence of the irregular frequencies that correspond to internal resonances 

such that fewer points are required per wavelength compared to direct approaches117. 

2.5D methods assume a constant cross-sectional area in one dimension so that a 3D 

problem can be transformed into a set of 2D problems that can be much less expensive to 

compute118. Since the 2.5D approach reduces the problem dimension by one and BEM 

reduces the dimension by one (i.e. only the boundary of the domain must be meshed), 

MICADO reformulates the 3D problem as a set of 1D problems. All of these 

improvements in efficiency combine to produce a reference method that can be used up 

to at least 5 kHz. 

§1.6 Thesis organization 

Again, the main purpose of this work is to find a method that can model urban noise 

propagation in large, complicated scenes for a reasonable cost. To that end, the 

dissertation is divided into five chapters: 1) introduction, 2) explanation, 3) validation, 4) 

optimization, and 5) summary of the hybrid method. 

Chapter 1 (i.e. the current chapter) introduces the problem of urban outdoor noise 

propagation and proposes an approach to address the problem. First, the chapter explains 

why modeling long-term, urban noise levels is important but difficult, which provides the 

motivation for the dissertation. Then, the chapter presents the state of the art for outdoor 

noise propagation to hopefully find a method that is better than standard EMs and defines 

what is required to be better (i.e. more accuracy for a reasonably extra cost). The chapter 

concludes that none of the current methods meet the criteria and proceeds to suggest a 

hybrid method that combines EMs and 2.5D BEM. The chapter closes by outlining the 

entire dissertation. 

Chapter 2 explains and justifies the hybrid method. It starts with an outline of the entire 

method and then goes into detail on each of the parts. The chapter describes the relevant 

aspects of the two main parts of the hybrid method, namely EMs and the precomputations 

using 2.5D BEM. After understanding these two big parts, then the chapter details how to 

connect them by first converting the source and receiver positions from global 

coordinates (where the origin could be anywhere) to local coordinates (where the origin 

is at the base of the complex object). Finally, the chapter explains how to interpolate (or 
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extrapolate) the precomputed BEM data at the local coordinates of the source and 

receiver to obtain the influence of the complex object for the given path. 

Chapter 3 validates the hybrid method for a wide variety of cases. It starts with the 

simplest case and works its way up to a real situation. The first case is a T-barrier with 

hard flat ground, which evaluates the error that is introduced by interpolating a finite set 

of points that are far apart compared to a wavelength. The next case is the same T-barrier 

on soft ground, which demonstrates how invariant the T-top correction is to the ground 

type. Afterward, the chapter considers a T-barrier with buildings. This case evaluates the 

conversion from global to local coordinates for the source and receiver positions. Finally, 

the chapter considers a real case to demonstrate that the hybrid method is capable of 

handling larger cases. 

Chapter 4 proposes a method to optimize the locations of the data points that are 

calculated with 2.5D BEM. First, the chapter explains why it is more appropriate to 

minimize the uncertainty of a predicted value rather than directly minimizing the error of 

a predicted value, which is far more common. Then, it explains why a Gaussian process 

is an appropriate approach to model the uncertainty. Next, it specifies how to implement 

a Gaussian process and determine its hyperparameters using the Newton method. Then, 

the chapter states how to minimize the uncertainty and choose the number of points for 

each dimension. The chapter closes with a comparison of the interpolation error using 

three different data distributions. 

Chapter 5 concludes the dissertation by looking back at what has been accomplished and 

by looking forward to the work that is still to be done. It synthesizes the principle results 

while highlighting the novelty and importance of the work and identifies ways to further 

improve and extend this work. 
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§1.7 Summary 

Millions of people are being exposed to high noise levels that are associated with 

negative health outcomes like annoyance and sleep disturbance. In response, 

governments have taken action to estimate and mitigate the noise levels using noise EMs. 

However, these methods cannot model complicated geometries or surfaces, which may 

offer significant noise reduction. 

Other outdoor noise propagation models do not meet the requirements of an improved 

EM. The geometrical, engineering, and statistical methods cannot model the desired 

geometric complexity, and frequency-domain and time-domain methods are prohibitively 

expensive. Many hybrid methods are too expensive as well. 

However, combining EMs with 2.5D BEM to create a hybrid method satisfies the criteria 

because this approach reduces the computation time compared to reference methods and 

improves the accuracy compared to efficient methods. This dissertation develops 

(Chapter 2), validates (Chapter 3), and optimizes (Chapter 4) this hybrid method. 
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Chapter 2 Hybrid Method 

§2.1 Objectives 

The primary objective of this chapter is to articulate and justify the hybrid method. To 

that end, 

§2.2 outlines the entire hybrid method; 

§2.3 describes EMs; 

§2.4 specifies how to create the data table of corrections; 

§2.5 explicates how to find the local source and receiver positions; 

§2.6 elucidates how to interpolate the data to obtain the extra attenuation; 

§2.7 details how to extrapolate the data for points that are outside the data. 

In detail, §2.2 overviews the entire hybrid method. The primary purpose of the outline is 

to become acquainted with all of the major pieces of the hybrid method and to see how 

they fit together. Justification of each part occurs in the sections that follow. Since the 

core of the hybrid method is EM, the first detailed section (§2.3) describes the most 

relevant parts of EMs. Then, §2.4 describes how to make the table of correction factors 

using 2.5D BEM. The correction factors quantify the influence of the complex object. 

After describing EMs and BEM separately, the remaining sections illustrate how they 

interact. Specifically, §2.5 details how to convert the source and receiver positions that 

EM uses (i.e. global coordinates) to the source and receiver positions that are necessary to 

use with the BEM data (i.e. local coordinates). Finally, §2.6 states how to interpolate the 

data table at the local source and receiver positions to yield the extra attenuation, and 

§2.7 describes how to extrapolate the data if the local coordinates lie outside of the data 

table. 
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§2.2 Method outline 

This section gives a big picture view of the hybrid method, but it does not give all of the 

details and certainly does not justify the method. The rest of this chapter is dedicated to 

clearly explaining the method and justifying the details of its implementation. 

Conceptually, the hybrid method trusts that EMs estimate long-term noise levels with 

sufficient accuracy unless the scene includes something beyond their capabilities. For 

example, EMs only model very simple geometries. When a scene has a complex object, 

EMs need some way to quantify the attenuation of the complex object for each 

propagation path on the surrounding sound levels. 

This situation is where 2.5D BEM can step in. It can model geometries that are far more 

complex than EMs can, but it is also much more expensive. To minimize this cost, BEM 

models the complex object and separately a reference object in very simple surroundings. 

The difference of these calculations is the influence of the complex object compared the 

reference object that can be included in EMs. These BEM computations yield the extra 

attenuation of the complex object for each propagation path, which can then be included 

into EMs. 

However, even in very simple surroundings, BEM is too expensive to run for every 

propagation path. Thus, a large but finite set of data points is precomputed and then 

interpolated whenever EMs need it. Since the data points are far apart compared to a 

wavelength, this approach does introduce some interpolation error, but optimizing the 

locations of the data points reduces the error. Since the origin of the coordinate system is 

likely different between the real problem and the simplified problem that BEM uses, 

interpolating the BEM data requires that the source and receiver positions are converted 

to the corresponding local coordinate system. In addition, when the source or receiver 

coordinates fall outside of the precomputed data, the extra attenuation must be 

extrapolated instead of interpolated. 

Concretely, the hybrid method has two major steps: 

1. Calculate and tabulate the attenuation of each complex object compared to a 

reference object at a large number of source/receiver positions and frequencies; 

2. Run EM with an extra attenuation term for the complex objects. 

The first step also has two parts: the BEM computations and the post processing of the 

data. In the first part, 2.5D BEM produces the noise levels for a complex case and a 

simplified case. Both cases usually use a homogeneous atmosphere; flat, hard ground; 

and the same sources, receivers, and frequencies. However, the complex case has a 

special object that EMs cannot model accurately, and the reference case has an object that 

is similar to the special object but can be modeled with EMs. The source/receiver 
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positions and frequency are on a non-uniform grid over the entire range of interest. In the 

post processing part, numerically integrating the BEM results over frequency yields third-

octave bands instead of individual frequency calculations. Finally, subtracting the 

reference case from the complex case produces a 6D table of corrections (over the 

source/receiver positions and frequencies) that is stored in a .txt file so that EM can use it 

later. This step only has to be performed once per complex object, and the results are 

stored in a database. This procedure saves significant computation time when the 

corrections are used multiple times. 

In the second step, EM runs normally except it also calculates an extra attenuation term. 

EMs first create the scene based on the user inputs, and each complex object is added to 

the scene as its reference object with an associated table of corrections, which is loaded 

into memory. Next, a path finding algorithm searches for the important paths between the 

source and receiver, which is unchanged by the hybrid method. For each path, the hybrid 

method calculates all the attenuations including the extra attenuation term to find the path 

contribution. 

For paths that do not diffract over a complex object or that only diffract over complex 

objects that do not have the largest path length difference of all of the objects in the path, 

the extra attenuation is zero. For paths that diffract over a complex object that has the 

largest path length difference, the extra attenuation is obtained by: 

1. Calculating the local source and receiver positions based on the geometry of the 

path 

2. Linearly interpolating the table of corrections at the local source and receiver 

position 

Finally, summing the path contributions yields the level at the receiver. Figure 2.1 

summarizes these step in the hybrid method and Figure 2.2 describes how to calculate the 

extra attenuation. 

 
Figure 2.1: Hybrid method outline 

The hybrid method has the following steps: 1) calculate the levels for the complex and reference cases for a large 

number of sources, receivers, and frequencies; 2) integrate over frequency to produce frequency bands and subtract the 

cases; 3) setup the scene including complex objects; 4) find the relevant propagation paths between the source and the 

receiver; 5) calculate the attenuations including an extra attenuation term for the complex objects; and 6) sum all of the 

path contributions to find the level and the receiver. The first two steps are unnecessary when the corrections are 

already accessible in a database. 
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Figure 2.2: Calculating the extra attenuation 

To find the extra attenuation, 1) determine if a path has a complex object that has the largest path length difference of 

any object in the path, 2) compute the local source and receiver positions for the large complex objects, 3) interpolate 

the table of corrections that comes from BEM at the local coordinates to produce the extra attenuation. 

§2.3 Engineering methods 

The core of the hybrid method is an EM, so this chapter first explains the most relevant 

parts of EMs before detailing how to improve them. For simplicity, this section only 

focuses on CNOSSOS-EU5 because it is the most recent standard, but the hybrid method 

is flexible enough to work with any EM. 

CNOSSOS-EU5 accomplishes five main tasks: 

1. States its objectives and requirements; 

2. Describes the frequency spectrum and directivity of common urban noise sources; 

3. Formulates how to calculate sound propagation; 

4. Specifies how to position receivers on façades and to assign people to those 

receivers; 

5. Provides guidelines for its use. 

This dissertation focuses almost entirely on improving the sound propagation calculation 

but sometimes looks to the other chapters for guidance. For example, CNOSSOS-EU 

states: 
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CNOSSOS-EU should be designed to produce plausible noise maps showing 

plausible results... A parameter is considered essential if the range of values the 

parameter can take yields variations in 𝐿den or 𝐿night of more than ±2.0 dB(A) 

95% C.I. (all other parameters remaining unchanged).5 

These requirements guide the decisions of the hybrid method and are indeed part of the 

impetus for developing the hybrid method. 

Modeling outdoor sound propagation in CNOSSOS-EU5 has the following steps: 

1. Input the scene (i.e. the source/receiver locations and the geometry); 

2. Find 2D propagation paths between the source and receiver in a horizontal plane; 

3. Calculate the attenuations for each propagation path; 

4. Sum the path contributions to find the total sound level at the receiver. 

The rest of this section details how to implement each of these steps. 

§2.3.1 Scene setup 

The first step is to input all of the data that the method needs. In CNOSSOS-EU5, the user 

specifies 

 The ground’s shape and type; 

 The (box-shaped) objects’ locations, dimensions, and surfaces types; 

 The sources’ locations and directional sound power for each frequency band; 

 The receivers’ locations; 

 The probability of favorable wind speed and temperature gradients. 

For example, consider a fictional case with a road, a barrier next to the road, and a 

building further away from the road (Figure 2.3). The scene setup describes the geometry 

including surface types, the source, the receiver, and the atmosphere. 

CNOSSOS-EU also specifies where the sources and receivers should and should not be 

put, which is useful for designing the hybrid method. For example, in CNOSSOS-EU the 

source and receiver should be within 800 m of each other; although, the total propagation 

distance with reflections may be up to 2 km. In addition, sources are 5 cm high for roads 

and should be defined on a curve, which is then approximated by incoherent point 

sources. Receivers are typically spaced up to 5 m apart in the horizontal plane but the 

height should be known to the nearest 10 cm. The receivers should be at least 2 m from 

the ground or any building and are 4 m high for noise maps. Receivers must be at least 2 

m from a building façade because EMs incoherently sum the direct path and the path 

reflected from the building, which causes a 3 dB error for a receiver on the façade. This 

difference must be added to points close to vertical surfaces. All of these CNOSSOS-EU 

recommendations are useful when deciding where to put the sources and receivers. 
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Figure 2.3: Example scene 

This simple, fictitious scene illustrates the kinds of input data that EMs require. Specifically, they need the source and 

receiver positions, the ground type, and the locations and geometries of the barrier and the building. 

§2.3.2 Finding propagation paths 

After the scene has been established, the next step is to find the propagation paths 

between the source and the receiver. For simplicity and efficiency, EMs only search for 

paths in a 2D horizontal plane. From this view (Figure 2.4), paths appear to go through 

objects when they diffract over objects. EMs are 2.5D approaches because they first look 

for paths in a 2D horizontal plane and then calculate attenuations based on the geometry 

of the 2D vertical plane. This approach is not truly 3D because it would not find paths 

through a tunnel or under a bridge. 

There are three main types of propagation paths: direct, reflected, and diffracted (Figure 

2.4). Direct paths go straight between the source and the receiver as seen from above but 

may diffract over objects like a barrier. Reflected paths are reflected from vertical 

surfaces like a building. Diffracted paths contain lateral diffractions where the sound is 

diffracted around a vertical edge like the end of a barrier. Paths can also contain both 

reflections and lateral diffractions. EMs incoherently sum the contributions of multiple 

propagation paths. 

Within each propagation path, there is a coherent set of ray paths to account for the 

ground affect. A propagation path and a ray path are distinct because a propagation path 

is the coherent set of ray paths in a vertical plane through the source and the receiver. 

Thus, the direct ray and the rays that are reflected from the ground are summed 

coherently and do not need to be found separately. For example, the red direct 

propagation path in Figure 2.4 actually contains four paths when viewed in the vertical 

plane. All four paths diffract over the barrier, but the paths have different numbers of 

ground reflections: 1) zero, 2) one on the source side of the barrier, 3) one on the receiver 
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side, and 4) two (i.e. one on each side). The fourth ray with two ground reflections is 

typically ignored in EMs. Thus, EMs coherently sum the first three ray paths but 

incoherently sum the direct, reflected, and diffracted propagation paths. 

The algorithm stops searching for paths when it has found all of the propagation paths up 

to a given order of reflection and lateral diffraction or has traveled more than a preset 

distance (e.g. 2 km). Usually, the direct path is the most important followed by the 

reflected and then the diffracted paths. Thus, only a small number of reflections and 

lateral diffractions are required in many cases. Commonly, only two or three reflections 

are included and lateral diffraction can be ignored for extended sources (e.g. an 

incoherent line source). 

 
Figure 2.4: Types of propagation paths 

The three main types of propagation paths are direct, reflected, and diffracted. A propagation path may also be a 

combination of these basic path types. 

§2.3.3 Calculating the attenuations 

After finding the propagation paths, EMs can calculate the path contributions. EMs differ 

on how to calculate some of the attenuations, so for simplicity the method detailed here is 

taken from CNOSSOS-EU, the current EU standard. For more details or clarification, see 

the CNOSSOS-EU standard5. 

CNOSSOS-EU calculates the path contributions for multiple atmospheric conditions and 

frequencies, but to explain only the essentials and to not recreate the standard here, this 

section assumes homogeneous conditions and only one frequency. Thus, the path 

contribution is 
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 𝐿 = 𝐿W,dir − 𝐴 (2.1) 

   

where 𝐿W,dir is the directional sound power for the given frequency band, which is given 

by the user. In this equation and the following equations, 𝐿, 𝐿W,dir, and all of the 

attenuation terms are in dB. 𝐴 is the attenuation along the path: 

 𝐴 = 𝐴div + 𝐴atm + 𝐴bounday (2.2) 

   

where 

 𝐴div = 20 log10(𝑑) + 11 is the attenuation from geometrical divergence; 

 𝐴atm = 𝛼atm 𝑑 1000⁄  is the attenuation from atmospheric absorption; 

 𝐴boundary = 𝐴ground + 𝐴dif is the attenuation from the ground and diffracting 

objects. 

In the above equations, 𝑑 is the direct distance between the source and the receiver and 

𝛼atm is found in a table in ISO 9613-1119. Since this dissertation is concerned with 

including complicated diffracting objects, let there be a diffraction object. In this case, 

𝐴ground = 0 because the ground effects are included in 𝐴dif. Then, the attenuation from 

diffraction is 

 𝐴dif = ∆dif(S,R) + ∆ground(S,O) + ∆ground(O,R) (2.3) 

   

where 

 ∆dif(S,R) is the attenuation from diffraction between the source (S) and receiver 

(R); 

 ∆ground(S,O) is the attenuation from the ground effect on the source side; 

 ∆ground(O,R) is the attenuation from the ground effect on the receiver side. 

Equation (2.3) is only an approximation and does not include a term for the ray path that 

reflects off of the ground on both sides of the barrier because it is considered negligible. 

For simplicity, this dissertation does not describe the ground effect terms in more detail, 

but the diffraction term is important. The attenuation from pure diffraction (i.e. without 

ground effects) must be in the range [0,25] dB and is 

 ∆dif= {
10𝐶ℎ log10(3 + 40𝐶′′𝛿 𝜆⁄ ) if 40𝐶′′𝛿 𝜆⁄ ≥ −2

0 otherwise
} (2.4) 

   

where 
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 𝐶ℎ = min(1, 𝑓ℎ/250), (2.5) 

   

 𝐶′′ = {
3 + 𝑟

1 + 𝑟
 where 𝑟 = 75 (

𝜆

𝑒
)

2

𝑒 > 0.3 m

1 𝑒 ≤ 0.3 m

}, (2.6) 

   

and 

 𝛿 is the path length difference between the direct path and the diffracted path in 

meters; 

 𝑓 is the frequency at the center of the frequency band in hertz; 

 𝜆 is the wavelength at the frequency 𝑓 in meters; 

 ℎ is the height of the highest diffraction edge in meters; 

𝑒 is the distance between the diffraction point that is closest to the source and the 

diffraction point that is closest to the receiver in meters. 

To better understand Equation (2.4), Figure 2.5 plots the pure diffraction (∆dif) versus the 

path length difference (𝛿), the primary variable for estimating the attenuation of objects, 

for multiple distances between the diffraction points (𝑒) and for 𝐶ℎ = 1. The plot 

illustrates that the attenuation increases as the path length difference increases or as the 

distance between the diffraction points increases. 

 
Figure 2.5: Pure diffraction 

The pure diffraction term in CNOSSOS-EU increases with path length difference and distance between diffraction 

points. 
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In CNOSSOS-EU, 𝐶′′ (from Equation (2.6)) is described as “a coefficient used to take 

into account multiple diffractions”5. When 𝑒 → 0 (i.e. there is only one thin barrier) 𝐶′′ →

1, and when 𝑒 → ∞ (i.e. the diffraction points are far apart) 𝐶′′ → 3. This correction is 

very simple for such a complex phenomenon, which suggests that paths with multiple 

diffractions are not very important to the overall level in most cases. Getting the 

attenuation right in these cases might not be very important because more direct paths are 

the dominate contribution. Thus, making large improvements for paths with multiple 

diffractions is not a priority for the hybrid method. 

§2.3.4 Summing the path contributions 

After the path contributions have been calculated, the last step is to incoherently sum all 

of the contributions. When calculating a noise metric like 𝐿den, the contributions are 

weighted according to their frequency (e.g. A-weighting), time of day (e.g. day, evening, 

or night), and atmospheric condition (e.g. homogenous or downward refracting). 

§2.3.5 The hybrid method’s adjustment 

With some background into EMs, the hybrid method can now be more clearly defined. 

For the hybrid method, Equation (2.2) becomes 

 𝐴 = 𝐴div + 𝐴atm + 𝐴bounday − 𝐴extra (2.7) 

   

where 𝐴extra represents the attenuation of the complex objects or surfaces compared to a 

simplified object and comes from interpolating the BEM results, and computing these 

results is the subject of §2.4. 

The minus sign is necessary because of how 𝐴extra is defined and the minus in Equation 

(2.1). Conceptually, 𝐴extra is the difference of two terms: 

 𝐴extra = 𝐿complex − 𝐿simplified (2.8) 

   

where 𝐿complex is the level for the complex object and 𝐿simplified is the level for the 

simplified object. The definition of 𝐴extra was chosen considering 𝐿simplified as a 

reference just like 20 µPa is the reference pressure in air (i.e. the reference level is 

subtracted from the real level). However, this definition is arbitrary and setting 𝐴extra to 

its negation would remove the minus sign from Equation (2.8) and make 𝐴extra act like 

an insertion loss. Physically, the different sign indicates that when 𝐴div (or 𝐴atm or 

𝐴bounday) increases the total level [i.e. 𝐿 in Equation (2.1)] decreases whereas when 

𝐴extra increases the total level increases. 
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§2.4 Precomputations 

Understanding EMs make stating the objective for the rest of this chapter clear: to 

efficiently and accurately calculate the extra attenuation, 𝐴extra. This section specifies 

and justifies how to create the data table using 2.5D BEM. However, before calculating 

the data points, the number of variables and the coordinate system must be determined 

and substantiated (§2.4.1). Then, calculating the table of corrections has three parts: 

1. Deciding the source/receiver positions and the frequencies; 

2. Calculating the levels for the complex and reference cases; 

3. Post-processing the data to obtain the table of corrections. 

§2.4.1 Variables 

The choice of variables is important because choosing an inappropriate coordinate system 

could make the problem more difficult and choosing an inappropriate number of 

variables could lead to unnecessary inaccuracy. This section justifies the choice of the 

coordinate system (§2.4.1.1) and of the number of variables (§2.4.1.2). Finally, §2.4.1.3 

defines the variables used in the hybrid method. 

§2.4.1.1 Coordinate system 

Coordinate systems are chosen mostly out of convenience, which depends on the 

application. Spherical, cylindrical, and Cartesian coordinates are all common coordinate 

systems. On the one hand, researchers studying the attenuation of wedges using 

diffraction theory commonly use spherical coordinates because the attenuation of the 

wedges is a simple function of the angles to the source and to the receiver with the origin 

at the point where the ray path intersects the top of the wedge. However, in the current 

application the attenuation is not a simple function of the angles because the noise 

barriers are much more complicated than simple wedges. Thus, for more complex shapes 

defining the source and receiver positions in terms of angles does not have a large 

benefit. 

On the other hand, Cartesian coordinates are convenient for a few reasons. First, noise 

maps are usually calculated at a constant height, so having data points in horizontal 

sheets is helpful. Second, since most cases use a flat, horizontal ground, extra care would 

need to be taken with cylindrical or spherical coordinates to ensure that points are not in 

the ground for certain angles to the source and the receiver because the origin is above 

the ground. Third, the steps that use the input variables are easier and less costly to 

perform with Cartesian coordinates. Specifically, the Cartesian coordinates simplifies the 

interpolation process and the 2.5D BEM computations. Thus, the hybrid method uses 

Cartesian coordinates because they are the most convenient. 
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§2.4.1.2 Number of parameters 

The number of parameters is important because too few or too many would result in an 

inaccurate model because the total amount of data is limited by the computer memory. 

For each additional variable, the number of data points per variable decreases rapidly. For 

example, assuming the data points are on a grid, the total size of the data file in bytes (𝑠) 

is approximately 

 𝑠 ≈ 𝑝𝑛𝑣 (2.9) 

   

where 𝑝 is the precision in bytes, 𝑛 is the average number of points per dimension, and 𝑣 

is the number of dimensions or variables. The equation is only approximate because 1) it 

does not include the data required to specify the variables corresponding to the data 

points and 2) it is not exactly correct when the variables do not all have the same number 

of values. Solving this equation for 𝑛 yields 

 
𝑛 ≈ 𝑒

log(
𝑠
𝑝

)

𝑣 . 
(2.10) 

   

The maximum designed file size is 0.5 GB so that all of the data can easily be loaded into 

memory, which commonly has an upper limit of 16 GB in new computers. Even if there 

are several complex objects, which potentially would each have a 0.5 GB data, they could 

all fit in memory. Assuming double precision numbers (i.e. 8 bytes per number), Table 

2.1 gives the number of points per variable rounded to the nearest integer for one to ten 

variables. According to the table, minimizing the number of variables is important so that 

the number of points per variable can be as high as possible, which leads to greater 

accuracy if the number of variables is constant. However, if the number of variables is 

too small, then the model will not accurately predict the levels either. 

Table 2.1: Number of variables vs number of points per variable 

This table demonstrates the trade-off between the number of variables (𝑣) and the number of points per variable (𝑛) in 

Equation (2.10) with 𝑠 = 0.5 GB and 𝑝 = 8 B. 

𝑣 1 2 3 4 5 6 7 8 9 10 

𝑛 67M 8192 406 91 37 20 13 10 7 6 

 

At the very least, the attenuation of the complex object compared to a reference object 

depends on the source frequency and the source and receiver positions. Since both the 

source and receiver are in a 3D space, their positions alone seem to require six variables, 

and including frequency makes seven variables. However, since the object has a constant 

cross-section and is infinitely long in the 𝑦-direction, the model only needs the difference 

of the 𝑦-positions (i.e. ∆𝑦) instead of each 𝑦-position (Figure 2.6). In contrast, the Nord 

2000 EM15 does not include ∆𝑦, but this choice is unjustifiable because the changes in the 

𝑦-direction are just as large as the changes in the 𝑥-direction or the 𝑧-direction. Excluding 
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any of these variables would likely lead to large errors in the predicted attenuation. Thus, 

the hybrid method requires six variables (i.e. the height and perpendicular distance of the 

source and receiver to the complex object, the distance parallel to the complex object 

between the source and receiver, and the frequency). 

There are several possible additional variables including the ground impedance before or 

after the complex object, the vertical sound speed gradient, and the location and 

geometries of additional objects. There are multiple reasons to not include any more 

variables. First, while these variable affect the attenuation of a barrier compared to no 

barrier, it is less clear that they significantly affect a smaller change between a complex 

barrier and a reference barrier. Second, since there are many options, choosing which one 

to include seems arbitrary. Third, EMs already have a method to incorporate these 

interactions, so doing so here would be like modeling something twice. Finally, and most 

importantly, including more variables reduces the resolution of all of the other variables 

because the total number of data points is limited. Thus, increasing the number of 

variables would likely decrease the accuracy instead of increase it. 

§2.4.1.3 Variable definitions 

The hybrid method uses the following variables, which are also illustrated in Figure 2.6: 

 𝑥𝑠 is the displacement of the source from the object that is perpendicular to the 

object. This variable is always negative; 

 𝑥𝑟 is the displacement of the receiver from the object that is perpendicular to the 

object. This variable is always positive; 

 𝑧𝑠 is the height of the source above the bottom of the object; 

 𝑧𝑟 is the height of the receiver above the bottom of the object; 

 ∆𝑦 is the distance between the source and the receiver that is parallel to the object 

 𝑓 is the frequency of the source. 
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Figure 2.6: Input variables 

These six input variables are calculated from the propagation path to interpolate the 2.5D BEM data. 

§2.4.2 Deciding the source and receiver positions 

Deciding the source and receiver positions is important because they directly affect the 

accuracy of the hybrid method. This task requires choosing three aspects for each 

variable: 1) the range, 2) the number of points, and 3) the distribution of those points. The 

source and receiver positions also depend on the data structure, but this discussion is 

postponed until §2.6.1 because the data structure directly impacts the choice of 

interpolation method. 

First, the range of each variable depends on the application and balances two extremes. 

On the one hand, if the variable range is too small, then many paths will have to be 

extrapolated instead of interpolated, which reduces the accuracy. On the other hand, if the 

variable range is too large, then the limited number of available points will be 

unnecessarily spread out, which also reduces the accuracy. The exact range for each 

variable does not matter too much, but certainly it should be within a factor of two of the 

optimal value (i.e. 100 m versus 110 m is not very important but 100 m versus 200 m is 

important). 

The lower limits for all of the variables (upper limit for 𝑥𝑠) are fairly set. Specifically, all 

of the variables are bounded by zero, and 𝑥𝑠 and 𝑥𝑟 have a slightly tighter boundary to 

make room for the complex object (e.g. 𝑥𝑠 ≤ −1 m and 𝑥𝑟 ≥ 1 m). 

However, the other boundary is much more case dependent. One must judge what 

distance is best for the specific application from practical experience, but here are some 

guidelines for road and rail noise: 
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 𝑥𝑠: The sources are usually less than eight lanes away for road noise and less than 

four tracks away for rail noise. 

 𝑧𝑠: The sources are usually less than 1 m high for road noise and less than 4 m 

high for rail noise. CNOSSOS-EU uses a height of 5 cm for road noise. 

 𝑥𝑟: This variable is the hardest one to choose. CNOSSOS-EU states that the 

source and receiver should not be more than 800 m apart, so that is the largest 

possible range, and the minimum is about 100 m. A range of 100-200 m is still 

likely to contain most receivers while not being unnecessarily large. One must 

decide considering where most receivers will be located and the area where the 

correction factor is significant. 

 𝑧𝑟: Multiple receiver heights are important. When people are outside, usually their 

ears are less than 2 m high, but they can also be inside buildings, which are 

usually less than ten stories tall. CNOSSOS-EU compromises by modeling noise 

maps at 4 m high. 

 Δ𝑦: It does not have to be as big as 𝑥𝑟 because complex objects are usually 

parallel to the noise source, so the noise from the source with the smallest Δ𝑦 is 

likely to be the largest contribution. 50 m is likely a good starting point, but this 

variable could also be decided by taking one-half to one-fourth of 𝑥𝑟. 

Second, choosing the number of points depends on the range of each variable. All else 

being equal, a variable with a larger range would require more points than a smaller 

range. In addition, the number of points depends on how the value changes with respect 

to each variable. Assuming linear interpolation for concreteness, a variable may need 

more points if the absolute value of the second derivative of the correction with respect to 

that variable is large compare to the same quantity for the other variables. For example, if 

the correction does not change with respect to a variable, then the table only needs one 

value for that variable. If the correction changes linearly (i.e. has a constant slope), then 

only two values are necessary. However, if the slope is not constant (i.e. the second 

derivative is non-zero), then more points are required to accurately represent the 

underlining function. Unfortunately, the second derivative is usually unavailable. This 

analysis assumes linear interpolation for concreteness, but using a different interpolation 

method would produce a similar conclusion. The difference is that using a lower order 

interpolation method like nearest neighbor would require lower order derivatives and 

using a higher order interpolation method like cubic would require higher order 

derivatives. However, all of these derivatives are generally unknown. However, practical 

experience suggests that the sound level is more sensitive to the source and receiver 

heights than their distance to or along the barrier, especially in the region where the path 

length difference is near zero (recall Figure 2.5). Furthermore, CNOSSOS-EU also 

suggests putting up to 5 m between receivers horizontally, but the height must be known 
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to the nearest 10 cm. This recommendation suggests a higher concentration of points for 

the heights of the sources and receivers compared to the other variables. 

Third, the distribution of the points also depends on the derivatives of the correction, but 

again this information is generally unknown. Assuming the points are on a grid so that 

each dimension can be treated separately, the following are potential spacing options: 

 Linear; 

 Exponential; 

 Optimized. 

The linear spacing is characterized by the function 𝒙𝑛 = 𝑐1𝑛 + 𝑐0 where 𝒙 is the location 

of the point, 𝑛 is the index of the point, and the coefficients are constants. The linear 

spacing works well when the second derivative is about the same size for the whole range 

and the number of points is fairly large. However, neither of those conditions is met for 

this application. 

The exponential spacing is characterized by the function 𝒙𝑛 =  𝑒𝑐1𝑛 + 𝑐0. This spacing 

allows the points to be concentrated close to the complex object, but they are likely too 

close together near the complex object and too far apart far from the complex object (e.g. 

ten points between 0.1 m and 1 m, between 1 m and 10 m, and between 10 m and 100 m). 

The optimized spacing is the most rigorous way to find the best spacing. Ideally, the 

point locations would be optimized by minimizing the overall interpolation error. 

However, this option is too computationally expensive. Calculating the approximately 

one million points at twenty frequencies for the table of corrections is already quite 

expensive but manageable. Reference data would require many more points because 

otherwise the optimization would just move the data points close to the reference points, 

which might give a low error compared to the reference data but potentially high error for 

a different reference dataset. Chapter 4 goes into great detail on how to optimize the 

number of points and their locations by minimizing the uncertainty of a predicted value 

using a Gaussian process. For the rest of this chapter, just assume that source and receiver 

positions have been optimized or chosen by hand as well as the user can. 

§2.4.3 Choosing the frequencies and geometries 

After the source and receiver positions have been determined, a few more variables must 

be established. Specifically, the exact frequencies and the geometries. EMs define the 

frequency bands (e.g. 50 Hz-5 kHz in third-octave bands). However, since BEM makes 

single frequency computations and not third-octave band calculations, the frequency 

bands must be approximated by numerically integrating each frequency band. The 

number of frequencies per frequency band should be sufficient to converge and the 

spacing of the frequencies should be taken into account when performing the integral. For 
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example, one could use ten or more uniformly spaced frequencies within each third-

octave band. 

The geometry is usually hard, flat ground with either the complex object or the simplified 

object. The complex object is well-defined and is provided by the user. Its main 

restriction is that the object must have a constant cross-section. However, the simplified 

object needs a little explanation. The reference object should be an object that EMs can 

model and that is as similar to the complex object as possible. For example, if the 

complex object is a T-barrier, then the reference object is an I-barrier with the same 

height as the T-barrier. “Similar” is intuitively meaningful but is slightly ambiguous. 

Making a technical definition such as “having the same path length difference” is not 

useful because the path length difference depends on the source and receiver positions 

and because it is unlikely to produce more accurate results. The main point is that the 

smaller the difference between the complex and reference objects, the greater the 

accuracy of the hybrid method. 

A further complication is that the reference object in EM might be slightly different than 

the reference object in 2.5D BEM. For example, thin barriers have a width in 2.5D BEM 

but not in EM. Having two definitions of the reference object does not cause any 

problems as long as they are similar. Furthermore, the two definitions provide a small 

opportunity to mitigate the error between EM and 2.5D BEM for the simplified object. 

To reduce the error, minimize the error between the levels predicted by EM and 2.5D 

BEM with respect to the shape of the simplified object in 2.5D BEM. To reduce the 

number of BEM computations, the shape variables could be reduced to just the width of 

the object. However, this optimization would likely produce a negligible improvement 

for a substantial cost, so it is not implemented in this dissertation. 

Now, given the source and receiver positions, the frequencies, and the geometries, one 

could produce the results for the two main cases: the complex case and the reference 

case. This dissertation does not explain the BEM computations any further because there 

are entire books dedicated to BEM67–69. Next, §2.4.4 details why the complex and 

reference geometries are modeled on hard, flat ground and illustrates an example where 

this approach does not work. 

§2.4.4 Using flat, hard ground 

For the BEM computations, the complex and reference objects are on an infinite, hard 

ground, which must be justified. First and most importantly, this surrounding is efficient. 

Using BEM with this type of ground means that none of the ground has to be meshed, 

which dramatically reduces the cost. In addition, if each ground type and the locations of 

those ground types required a different table of corrections, then the number of data 
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tables would grow very rapidly. Second, a flat, hard ground accurately represents many 

urban grounds (e.g. concrete and asphalt). Moreover, Figure 2.7 illustrates that the 

attenuation due to a complex object compared to a reference object is mostly invariant for 

extremely different ground impedances. In particular, the changes between the different 

source positions are much larger than the changes between the different ground 

conditions. 

 
Figure 2.7: Comparison of T-top correction for hard and soft ground 

There are four different source positions, which are shown by the black circles, and two ground types (hard and grass 

with 𝜎 = 80 kPa.s.m-2), which is shown by a black or green ground, respectively. The results are 2D results for 50 Hz – 

5 kHz using the spectrum from a car (engine and tire noise) at 50 km/h from the Hosanna Project120 (Task 2.3, p 43-

44). The individual third-octaves have larger differences, but these plots demonstrate that the differences are not 

systematic. 

However, flat, hard ground does not work in all cases. Specifically, it does not work 

when the ground is not approximately flat (Figure 2.8). These cases must be treated as 

special cases and will be more costly to compute, but there is no theoretical reason why 

the hybrid method could not also be applied to these cases given an appropriate reference 

geometry. 
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Figure 2.8: Problems when the ground is not flat 

Using a flat ground is problematic for this situation where the ground is not approximately flat. The pink area would 

not have a valid correction term unless this situation is treated as a special case. The green area would also be incorrect 

because the ground effect would be very different. 

§2.4.5 Post-processing 

The post-processing of the BEM data has four main steps: 

1. Convert single frequency calculations into frequency band calculations; 

2. Subtract the levels for the reference case from the complex case; 

3. Order the points; 

4. Calculate the decay function, which §2.7 defines. 

First, numerically integrating the single frequency calculations yields the frequency band 

levels. Using equally spaced frequencies within each frequency band, the integral is 

approximately 

 𝐿𝑓 = 10 log10 (
𝑓max − 𝑓min

𝑁
∑

|𝑝
𝑖
|

2

𝑝
ref
2

𝑁

𝑖=1

) (2.11) 

   

where 𝑓max and 𝑓min are the maximum and minimum frequencies of the frequency band 

centered at 𝑓, 𝑁 is the number of single frequency calculations in the frequency band, 𝑝𝑖 

is the complex pressure calculated with 2.5D BEM, and 𝑝ref = 20 𝜇Pa. 

Second, after the numerical integration is complete, subtracting the levels for the 

reference case from the levels for the complex case produces the corrections, 𝚫𝑳. This 

definition is the negation of insertion loss. For notational consistency, the attenuations in 

the data table are called the table of corrections (𝚫𝑳) versus the extra attenuation (𝐴extra), 

which is interpolated from the table of corrections. 

Third, ordering the table of corrections allows them to be searched very efficiently for a 

certain value. Specifically, there are five position columns – i.e. one for each position 

variables 𝒙 = (𝑥𝑠, 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , Δ𝑦) – followed by one column for each frequency band from 
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least to greatest where each row contains a unique position and all of the frequencies 

(Table 2.2). The positions are ordered from least to greatest where 𝒙 > 𝒙′ if 𝑥𝑠 > 𝑥𝑠′. If 

𝑥𝑠 = 𝑥𝑠′, then 𝒙 > 𝒙′ if 𝑧𝑠 > 𝑧𝑠′. If 𝑥𝑠 = 𝑥𝑠′ and 𝑧𝑠 = 𝑧𝑠′, then 𝒙 > 𝒙′ if 𝑥𝑟 > 𝑥𝑟′. This 

pattern continues for 𝑧𝑟 and finally Δ𝑦. 

In general, the row position (𝑛) starting from zero is given in terms of the number of 

values for each variable (𝑴), the index starting from zero of the value of each variable 

(𝒎 where 𝒎𝑖 ∈ [0, 𝑴𝑖 − 1]), and the number of dimensions (𝑘) as 

 𝑛 = ∑ (𝒎𝑖 ∏ 𝑴𝑗

𝑘

𝑗=𝑖+1

)

𝑘

𝑖=1

 (2.12) 

   

where any product over an invalid range is one (e.g. from 𝑘 + 1 to 𝑘 because the values 

are decreasing and 𝑴𝑘+1 does not exist). For example, for 𝑘 = 5 

 𝑛 = 𝒎1𝑴2𝑴3𝑴4𝑴5 + 𝒎2𝑴3𝑴4𝑴5 + 𝒎3𝑴4𝑴5 + 𝒎4𝑴5 + 𝒎5. (2.13) 

   

Figure 2.9 gives a 2D example where 𝑘 = 2 and 𝑴 = [5 4]. The plot gives 𝒎 and 𝑛 as 

(𝒎1, 𝒎2) → 𝑛. In practice, BEM can output the values in this order so that the values do 

not need to be sorted later. 

 
Figure 2.9: Order grid example for 2D data 

This plot shows how to order the points in Table 2.2 with only two position variables. Each point has the following 

information: (𝒎1, 𝒎2) → 𝑛. In this case, Equation (2.12) simplifies to 𝑛 = 𝒎1𝑴2 + 𝒎2. 

Fourth, the decay function needs to be calculated and put in the header information of the 

data file, but the details of computing the decay function are postponed until §2.7 because 

the process requires multiple steps. 
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Table 2.2: Fictional example of table of corrections 

This table demonstrates how to order all of the rows of the table based on the five position variables. First, iterate 

through all of Δ𝑦, then 𝑧𝑟 through 𝑥𝑠. All of the frequencies are stored in the same row. The table shows that each row 

(i.e. source/receiver pair) requires 26 numbers (i.e. 5 position variables and 21 frequencies). 

𝒙𝒔 (m) 𝒛𝒔 (m) 𝒙𝒓 (m) 𝒛𝒓 (m) ∆𝒚 (m) 
𝚫𝑳 (dB) 

50 Hz ⋯ 5 kHz 

-2 0 1 0 0 -1 ⋯ -5 

-2 0 1 0 1 -1 ⋯ -5 

-2 0 1 1 0 -1 ⋯ -5 

-2 0 1 1 1 -1 ⋯ -5 

-2 0 2 0 0 -1 ⋯ -5 

-2 0 2 0 1 -1 ⋯ -5 

-2 0 2 1 0 -1 ⋯ -5 

-2 0 2 1 1 -1 ⋯ -5 

-2 1 1 0 0 -1 ⋯ -5 

-2 1 1 0 1 -1 ⋯ -5 

-2 1 1 1 0 -1 ⋯ -5 

-2 1 1 1 1 -1 ⋯ -5 

-2 1 2 0 0 -1 ⋯ -5 

-2 1 2 0 1 -1 ⋯ -5 

-2 1 2 1 0 -1 ⋯ -5 

-2 1 2 1 1 -1 ⋯ -5 

-1 0 1 0 0 -1 ⋯ -5 

-1 0 1 0 1 -1 ⋯ -5 

-1 0 1 1 0 -1 ⋯ -5 

-1 0 1 1 1 -1 ⋯ -5 

-1 0 2 0 0 -1 ⋯ -5 

-1 0 2 0 1 -1 ⋯ -5 

-1 0 2 1 0 -1 ⋯ -5 

-1 0 2 1 1 -1 ⋯ -5 

-1 1 1 0 0 -1 ⋯ -5 

-1 1 1 0 1 -1 ⋯ -5 

-1 1 1 1 0 -1 ⋯ -5 

-1 1 1 1 1 -1 ⋯ -5 

-1 1 2 0 0 -1 ⋯ -5 

-1 1 2 0 1 -1 ⋯ -5 

-1 1 2 1 0 -1 ⋯ -5 

-1 1 2 1 1 -1 ⋯ -5 
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§2.5 Local source and receiver positions 

The previous section details how to precompute the table of corrections using 2.5D BEM, 

and the next section explains how to interpolate the data. However, to interpolate the 

data, first the source and receiver locations must be converted from their values in the full 

problem (i.e. the global coordinates) to their values in the BEM problem (i.e. the local 

coordinates). These coordinates are likely not the same because the location of the origin 

and the orientation of the coordinates is likely different. Thus, the conversion requires a 

translational and rotational transformation. Moreover, the BEM scene does not contain 

any other objects (e.g. buildings), so before applying the transformations, the source or 

receiver positions might change to incorporate reflections or diffractions. This section 

details how to transform the source and receiver positions for four cases: 

1. Single diffraction; 

2. Multiple diffraction; 

3. Reflection; 

4. Lateral diffraction. 

In practice, paths that are combinations of these cases can be broken down into these four 

cases. 

§2.5.1 Single diffraction 

Consider a path that diffracts over one object. If the object is not complex, then 𝐴extra =

0 dB and the local variables are not calculated. If the object is complex, then the global 

coordinates of the source and receiver must be converted to the local coordinates. 

Since EMs search for paths in a 2D horizontal plane and then calculate attenuations in the 

2D vertical plane, EMs have two sets of coordinates for each point. The global 

coordinates [𝒓𝐠𝐥𝐨𝐛𝐚𝐥 = (𝑥global, 𝑦global)] are the coordinates for the whole scene and 

therefore do not necessarily have a special relationship to any of the objects in the scene. 

The path coordinates [𝒓𝐩𝐚𝐭𝐡 = (𝑑path, 𝑧path)] are different for each path where 𝑑path is 

the distance along the path and 𝑧path is the height of the path above the ground. The 

source, diffraction point, receiver, and the complex object’s ends are respectively denoted 

by S, D, R, 𝐵1, and 𝐵2 in Figure 2.10. 
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Figure 2.10: Single diffraction 

Single diffraction includes cases that diffract over only one horizontal edge without reflections or lateral diffractions. 

This case is the simplest case and all of the more complicated cases are converted to this setup. 

Before finding the local coordinates, the angle 𝜃 must be found first (Figure 2.10). The 

angle 𝜃 < 90° is the smallest angle between the propagation path and the complex 

object. A slight modification of the dot product yields 

 𝜃 = cos−1|�̂�global,D→S ∙ �̂�global,𝐵1→B2
| (2.14) 

   

where �̂�global,D→S is the 2D unit vector (the 𝑧-dimension is not included) parallel to the 

vector from 𝐷 to 𝑆, and �̂�global,𝐵1→B2
 is analogous from 𝐵1 to 𝐵2. The absolute value 

guarantees that 𝜃 is less than 90°. To avoid dividing by zero, the vectors must have finite 

length, which physically means that the source, diffraction point, and receiver cannot all 

be collocated and the barrier must have a finite length. Then, from geometry the local 

coordinates are 

 𝑥𝑠 = [𝑑path(𝑆) − 𝑑path(𝐷)] sin 𝜃; (2.15) 

 

 
𝑧𝑠 = 𝑧path(𝑆); (2.16) 

 

 
𝑥𝑟 = [𝑑path(𝑅) − 𝑑path(𝐷)] sin 𝜃; (2.17) 

 

 
𝑧𝑟 = 𝑧path(𝑅); (2.18) 

 

 
∆𝑦 = [𝑑path(𝑅) − 𝑑path(𝑆)] cos 𝜃. (2.19) 

   

These equations assume that 𝑑path is increasing from the source to the receiver and 0° <

𝜃 < 90° so that 𝑥𝑠 ≤ 0 m and 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦 ≥ 0 m. 
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§2.5.2 Multiple diffraction 

When there are multiple diffracting objects in a propagation path, then the objects are 

ranked based on their path length differences (𝛿). The path length difference is the 

distance from the source to the diffraction point plus the distance from the diffraction 

point to the receiver minus the direct distance between the source and the receiver (Figure 

2.11). 

 
Figure 2.11: Path length difference 

The path length difference is the distance SD plus DR minus SR and is the standard way to rank the importance of 

objects in outdoor sound propagation. 

 
Figure 2.12: Multiple diffraction 

Multiple diffraction includes paths that diffract over more than one horizontal edge. This figure illustrates the local 

variables when the left-hand barrier has the largest path length difference and is complex. Essentially, the multiple 

diffraction case is converted to the single diffraction case by ignoring barriers that do not have the largest path length 

difference when calculating the extra attenuation. 
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If a complex diffracting object has the largest path length difference, then the local 

variables are calculated the same way as in the single diffraction case (§2.5.1) ignoring 

the other diffracting objects (Figure 2.12). Otherwise, 𝐴extra = 0 dB, so the local 

variables are unnecessary. 

This approximation is very simple in that it is either on or off and only affects complex 

objects with the largest path length difference. The simplicity matches the simplicity of 

the multiple diffraction approximation in CNOSSOS-EU (§2.3.3). Other methods like 

Harmonoise44 make more complicated approximations for the barriers, but most EMs do 

not. The primary reason for not using the Harmonoise diffraction approximation is that it 

would increase the required ranges of the sources and receivers in the data table, which 

would increase the distance between data points and would likely lead to a less precise 

value for 𝐴extra. 

The on/off nature of this approximation means that the pressure level is discontinuous at 

where the path length differences are equal (Figure 2.13). Specifically, the correction is 

applied where the complex object has the largest path length difference but is not applied 

where it does not have the largest path length difference, and these points could be 

adjacent near where two objects have equal path length differences. While undesirable, 

this discontinuity is unlikely to be significant in practice when there are many distributed 

sources that will wash out the discontinuities. Furthermore, the discontinuity would only 

be noticeable when the multiple diffraction path is the dominant contribution at the 

receiver. If one still desired to smooth this discontinuity, 𝐴extra could be scaled by 

𝛿complex 𝛿largest⁄  where 𝛿complex is the path length difference of the complex object and 

𝛿largest is the largest path length difference of the entire path, which could be the path 

length difference of the complex object. However, this more complicated approximation 

is usually unnecessary. 

 
Figure 2.13: Correction discontinuity 

There is a discontinuity where the path length differences of the two barriers are equal (i.e. where the extra attenuation 

is being turned on or off). 
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§2.5.3 Reflection 

EMs model propagation paths with reflections from vertical surfaces using image sources 

and receivers and an additional attenuation for the loss due to the reflection. The hybrid 

method also uses image sources and receivers. The calculations are identical to those in 

§2.5.1 except that the actual source or receiver may be replaced by the image source or 

receiver. The image of a 2D point (𝑥 and 𝑦) is that point reflected across a line (e.g. the 

intersection of the vertical plane that reflects the path and the 𝑥𝑦-plane). 

Specifically, if there is a reflection in the propagation path between the source and the 

complex object then the source becomes the corresponding image source, and if there is a 

reflection in the propagation path between the complex object and the receiver then the 

receiver becomes the corresponding image receiver. Figure 2.14 gives an example with 

an image receiver. 

 
Figure 2.14: Reflection 

Reflected paths use image sources and receivers to unfold the path so that it is straight as seen from above. The figure 

shows the local variables when the left-hand barrier is large and complex. Letting 𝑆 → 𝑆′ and 𝑅 → 𝑅′ converts this case 

to the single diffraction case. 

Since 𝒓𝐩𝐚𝐭𝐡 is the same for a point and its image, Equations (2.15)-(2.19) are unchanged. 

The only difference is in Equation (2.14) for 𝜃 where �̂�global,D→S potentially becomes 

�̂�global,D→S′. However, an easier solution, which works for modeling lateral diffractions 

as well, is to let 𝑆 become the closest propagation point on the source side. The 

propagation point could be the source, a reflection point, or a lateral diffraction point. For 

example, if the propagation path is 𝑆 → 𝐷1 → 𝐷2 → 𝑅 and the complex object is at 𝐷2, 

then �̂�global,D→S in Equation (2.14) would be �̂�global,𝐷2→𝐷1
. This approach simplifies the 
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calculations because the location of the image source does not need to be calculated. The 

vector is a unit vector, so only the direction is important. 

Paths can reflect off of the complex object, but unless the path diffracts over the complex 

object 𝐴extra = 0 dB. 

§2.5.4 Lateral diffraction 

For calculating the local source and receiver positions, lateral diffractions (i.e. 

diffractions around vertical edges) are treated exactly the same as reflections (§2.5.3). 

Paths can diffract around the complex object, but unless the path diffracts over the 

complex object 𝐴extra = 0 dB. However, the cases look slightly different because 

reflections use an image source or receiver whereas lateral diffractions extend the path 

from the diffraction point on the complex object in a straight line through the lateral 

diffraction point the same distance as the rest of the path beyond the diffraction point 

(Figure 2.15). 

 
Figure 2.15: Lateral diffraction 

Laterally diffracted paths diffract around one or more vertical edges. This case is converted to the single diffraction 

case by straightening the propagation path as seen from above while keeping the length of the propagation path 

constant. 

The justification for this approach to lateral diffractions is relatively tenuous compared to 

the approach to reflections. For reflections, using image sources is well established across 

many different models but there is more than one common way to model diffraction. 

There are approaches that model diffraction by putting additional sources on the 

diffraction edge so that in Figure 2.15 𝑅 would become 𝐷2. However, the hybrid method 

extends the path past the lateral diffraction point to be consistent with EMs, which use the 
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same idea when calculating the attenuation from diffraction around a thin noise screen. 

Thus, the primary reason for this approach is model consistency. 

§2.6 Interpolating the table of corrections 

Interpolation methods estimate the value of a function based on data at any given point 

inside the dataset. The hybrid method uses an interpolation method to estimate 𝐴extra 

based on the data provided by BEM. This section discusses two major decisions: the most 

appropriate data structure (§2.6.1) and interpolation method (§2.6.2). Then, (§2.6.3) 

details how to implement the chosen interpolation method using data with the specified 

structure. 

§2.6.1 Choosing a data structure 

The data structure is important because it affects the efficiency of searching and 

interpolating the data. There are several possible data structures that all have their 

positives and negatives. Four widely used examples (Figure 2.16) are 

 Scattered or unstructured; 

 2𝑘-trees (e.g. quadtrees in 2D); 

 Uniform rectangular grid; 

 Non-uniform rectangular grid. 

 
Figure 2.16: Comparison of data structures 

Scattered data has no predefined structure. Quadtree is formed by bisecting rectangles (i.e. four points become nine 

points) as necessary. Uniform grid data must be on a rectangular grid and have the same distance between each data 

point along each axis. Non-uniform grid data must also be on a rectangular grid but can vary the distance between the 

data points along each axis. All of the plots have about the same number of points. 

A data structure is distinct from but closely related to the distribution of the points from 

§2.4.2. The data structure refers to how the data is organized and the distribution refers to 

how the points are (or are not) concentrated. Using randomly generated points and a 

scattered data structure, the point distribution could be, for example, uniform or Gaussian 
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about the origin. In addition, points on a grid could be linearly, exponentially, or 

randomly distributed. Figure 2.17 illustrates scattered and gridded data that use random 

points from uniform and Gaussian distributions. Changing the data structure affects the 

efficiency of searching and interpolating the data, but changing the data distribution does 

not affect it. 

 
Figure 2.17: Data distribution vs structures 

Data structures and distributions are distinct but related. To highlight the difference, this plot gives two data structures 

and two data distributions. The left-hand plots use a scattered structure, and the right-hand plots use a gridded structure. 

The top plots use random data from a uniform distribution, and the bottom plots use random data from a Gaussian 

distribution. 

For this application, the efficiency of searching and interpolation are especially important 

because there are so many points. Evaluating each data structure for feasibility requires 

an approximate number of data points, which is limited by the maximum file size. 

Ignoring any header information and considering the file as a large 2D matrix, the file 

size (𝑠) is 

 𝑠 = 𝑝𝑛rows𝑛cols (2.20) 

   

where 𝑝 is the precision, which is 8 bytes (B) for standard double precision numbers; 

𝑛rows is the number of rows in the data file, which is the number of unique 

source/receiver pairs; and 𝑛cols is the number of columns in the data file, which is 26 (i.e. 

5 position variables and 21 frequencies) according to Table 2.2. Solving Equation (2.20) 

for 𝑛rows yields 
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 𝑛rows =
𝑠

𝑝𝑛cols
. (2.21) 

   

Assuming that the maximum file size is 0.5 GB as in §2.4.1.2 and noting that 1 GB =

 10243B instead of 109 B produces 2.6 × 106 source/receiver pairs. Assuming points on 

a grid and an equal number of points in each of the five dimensions gives approximately 

√2.6 × 1065
≈ 19 points per dimension. 

Data without a set structure (i.e. scattered data) certainly gives complete freedom but 

requires the computational overhead to organize the data. For example, a Delaunay 

triangulation is a common way to organize scattered data. In 2D, a Delaunay 

triangulation groups points into non-overlapping triangles where the smallest angle in 

each triangle has been maximized. A geometrical way to find these triangles is to draw a 

circle through all of the points of a proposed triangle (Figure 2.18). If and only if no other 

point is inside the circle, then proposed triangle is a Delaunay triangle. Applying this 

procedure to the entire data set creates the Delaunay triangulation. 

 
Figure 2.18: Delaunay triangulation 

There are four points that can be connected to create two Delaunay triangles. The two triangles on the left are Delaunay 

because the last data point is not inside the circle through the points of the triangle. The two triangles on the right are 

not Delaunay because the last data point is inside the circle. 

This process can be applied in any number of dimensions but the cost is larger for higher 

dimensions. Figure 2.19 demonstrates that calculating the Delaunay triangulation with 

Qhull121,122, a free C library for calculating convex hulls, for 5D data points on a uniform 

grid requires 𝑂(𝑁4/3) computation time and 𝑂(𝑁) memory. Recall that this application 

uses about 205 source/receiver pairs, which would require about 109 minutes and 97 GB 

to calculate. Searching for points and interpolating would be an additional cost. 

Therefore, scattered data is too computational expensive. 
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Figure 2.19: Qhull performance versus number of data points 

The computation time increases super linearly 𝑂(𝑁4/3), and the memory increases approximately linearly 𝑂(𝑁) for 5D 

data points on a uniform grid. Randomly spaced points may require even more time. 

2𝑘-trees are better known as quad-trees because this approach is often applied to 2D 

images. In 2D, the entire rectangular domain is defined by just its four corners. If the 

interpolation error is too large at a few sample points, then the rectangle is broken up into 

four pieces, which is why they are called quad-trees. The same process is repeatedly 

applied to each sub-rectangle until the interpolation error is small enough everywhere or 

a certain tree height is reached. The structure is a tree because each rectangle is attached 

to a parent rectangle and four children rectangles such that the number of children grows 

with each generation just like a family tree. 

2𝑘-trees introduce some structure into the data while allowing points to be concentrated 

where necessary. However, since this application is 5D, it requires 32-trees instead of 

quad-trees. While there are many C/C++ libraries for 2D and even 3D, unfortunately the 

author was unable to find a C/C++ library for 5D. In addition, developing such a library 

is well beyond the scope of this dissertation, so this option could not be pursued further. 

Although, assuming a C/C++ library did exist, there would still be several issues to 

consider. First, there would be some overhead cost of setting up the 2𝑘-tree, which would 

need to be evaluated against its benefits. Since this application is 5D, the height of the 

tree would be fairly short. Memory restrictions limit the total number of points to about 1 

million, which means for a full tree the height could only be four (324 ≈ 1 million). 

Moreover, the memory restrictions also make deciding where to concentrate the points 

more difficult. With only 20 points per dimension that are far apart compared to a 

wavelength, it is also likely that there are not enough points to effectively concentrate the 

points, which means that the points would be mostly uniformly spaced. Lastly, 

interpolation in a 2𝑘-tree would require special attention to guarantee that there are not 

any discontinuities traveling from one subregion to the next. 

Next, a uniform rectangular grid can search and interpolate in constant time, so it is very 

fast, and has very little overhead costs when the data is sorted. The main disadvantage of 
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a uniform rectangular grid is that the structure is very limiting. This data structure does 

not allow any concentration of points. 

Finally, consider a non-uniform rectangular grid. This option requires almost no overhead 

cost; instead, the data just need to be in a specified order, and searching for a point is very 

fast, 𝑂(log2 𝑁). The biggest downside is that this structure drastically limits where one 

can put the points. However, it provides more flexibility than a uniform grid, and even 

more flexible structures are too expensive (i.e. scattered data) or unavailable (i.e. 2𝑘-

trees), so a non-uniform rectangular grid is the best option. 

§2.6.2 Choosing an interpolation method 

No interpolation method is best for all applications, so the details of this application are 

important. Specifically, this application has a large number of data points (𝑁 ≈ 106). 

Thus, the interpolation method must be able to be efficient even with a large number of 

data points. In addition, this interpolation problem is 5D. Spatial interpolation problems 

usually are only 2D or 3D, and the methods developed for a 2D problem may not be 

applicable to a 5D problem. Lastly, for this application the data points have a well-

defined structure instead of scattered data, so the interpolation method should be able to 

take advantage of this structure. 

There are many types of interpolations methods123; a few examples are: 

 Inverse distance weighted; 

 Natural neighbor; 

 Regression; 

 Spline. 

Inverse distance weighting124 calculates a weighted sum of the data points. The weights 

are based on the inverse distance between the interpolation point and the data points 

where the distance function is 

 𝑑(𝒙, 𝒙′, 𝑝) = [∑(𝒙𝑖 − 𝒙′𝑖)
𝑝

𝑖

]

1 𝑝⁄

 (2.22) 

   

where the normal Euclidian distance function uses 𝑝 = 2. The model can be adjusted by 

altering the weights (e.g. setting 𝑝 = 4 instead of 𝑝 = 2) or including more or fewer 

surrounding points. The main reason against using inverse distance weighting is that it 

does not take advantage of the data being on a rectangular grid like the spline methods do 

and is therefore slightly more expensive for this case. 
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Natural neighbor125 also calculates a weighted sum of the data points, but the weights are 

based on an area instead of a distance. A Voronoi diagram is a way to break up a region 

into cells that each contain only one data point and the subregion that is closest to that 

data point. The weights in natural neighbor are related to the cell areas of the Voronoi 

diagrams with and without the interpolation point. The main objection to using natural 

neighbor is that the Voronoi diagrams are expensive to compute in 5D with so many data 

points. 

Regression is fitting a function to the entire (continuous) dataset. Regression often uses a 

simple polynomial as the function but also includes non-parametric functions like 

Gaussian process regression126. Regression is different from all of the other methods 

because the function usually does not go through all of the points. The main problem with 

regression is that it requires a matrix inversion that is very costly for a large number of 

parameters or large datasets. 

Splines127 are piecewise approximations. Nearest-neighbor, linear, and cubic 

interpolation are all examples of splines. Splines are efficient even for a large dataset 

because they only use a very small subset of the data, can be used for any number of 

dimensions when an appropriate function is selected, and take advantage of the structure 

of the data. However, splines are really a family of interpolation methods, so the next 

choice is which one to use. 

Nearest-neighbor is very fast but is not continuous. Linear interpolation is almost as fast 

(i.e. requires a 32x32 matrix to be multiplied by a vector) and is continuous, but its 

derivatives are discontinuous. Cubic interpolation allows the function and its first 

derivative to be continuous, but the author could not find or easily derive a 5D version. 

Even if such a formulation exists, cubic interpolation would be more expensive because it 

would require inverting a 1024x1024 matrix. Thus, linear interpolation provides the best 

compromise between efficiency and accuracy for this application. 

§2.6.3 Linear interpolation on a non-uniform grid 

Linear interpolation has two parts: 1) finding the closest data points that contain the 

interpolation point and 2) linearly interpolating based on those data points. 
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§2.6.3.1 Finding the local data points 

Given a large 𝑘-dimensional dataset on a non-uniform rectangular grid, the goal is to find 

the data points that define the smallest hyperrectangle that contains a given interpolation 

point. The most efficient algorithm for this task is a 𝑘d-tree, which can find the points in 

O(log2 𝑁) time. This section explains how this algorithm is applied to this case. The 

whole process has the following steps: 

1. For each axis, obtain an ordered (i.e. least to greatest) list of the distinct values; 

2. For each axis, use a binary search to find the index of the largest value that is less 

than or equal to the interpolation point for that axis; 

3. Permute the indices and the indices plus one to obtain all 2𝑘 points. 

The first step is to obtain all of the distinct values in order from least to greatest for each 

axis. This step is straightforward because of how the data is stored. Since the data is on a 

rectangular grid, let 𝑿 be a 𝑘-dimensional matrix where each entry is a vector 𝒙 of the 

independent variables of the corresponding data point, e.g. 𝒙 = (𝑥𝑠, 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦). 

Moreover, 𝑿 is defined such that 𝒙1 (i.e. the first value in 𝒙) increases along the first 

dimension of 𝑿, 𝒙2 increases along the second dimension, and so forth. Then, to obtain 

an ordered list of the distinct values for each independent variable, simply traverse the 

matrix along each dimension. Since the matrix was already ordered, the time for this step 

is proportional to the number of distinct values. 

Second, for each of the 𝑘 dimensions use a binary search to find the index of the largest 

value that is less than or equal to the interpolation point and not the last index along that 

dimension. Essentially, the binary search algorithm evaluates a point in the middle of the 

dataset and determines if the value is too small, just right, or too big. If the value is not 

right, then since the data are ordered half of the data points are eliminated. The algorithm 

keeps cutting the number of points in half until it finds the right point. 

For example, let 𝑎 be the value of the interpolation point for a dimension and let 𝒃 be a 

vector of the 𝑛 distinct values in that dimension ordered from least to greatest with 

indices 0 to 𝑛 − 1. In addition, let there be three integers 𝑖min = 0, 𝑖mid = floor(
n−1

2
), 

and 𝑖max = 𝑛 − 1, which are minimum, middle, and maximum possible indices for the 

desired index. 
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For this application, the binary search algorithm has the following steps:  

1. If 𝑏𝑖min
≤ 𝑎 ≤ 𝑏𝑖max

, continue but otherwise return an error; 

2. If 𝑏𝑖mid
≤ 𝑎, then calculate 𝑏𝑖mid+1; 

a. If 𝑏𝑖mid+1 ≥ 𝑎, then terminate and return 𝑖mid; 

b. If 𝑏𝑖mid+1 < 𝑎, then set 𝑖min =  𝑖mid and 𝑖mid = floor(
𝑖min+𝑖max

2
) and go to 

step 2; 

3. If 𝑏𝑖mid
> 𝑎, then set 𝑖min =  𝑖mid and 𝑖mid = floor(

𝑖min+𝑖max

2
) and go to step 2. 

This algorithm does not allow 𝑖mid to be equal to 𝑛 − 1 so that there is always at least 

one index greater than 𝑖mid, which is important for the next step. This step runs in 

𝑂(log2 𝑁) time 

Now, the algorithm has identified the largest index that is less than or equal to the 

interpolation point, which means that incrementing any combination of the indices by one 

would provide a new point of the box that contains the interpolation point. There are 2𝑘 

combinations including the original point. The time of this step is independent of the total 

number of data points. 

§2.6.3.2 Interpolating the data 

The difficult part of interpolating the data is that it is 5D. Previous literature128 used 𝑘-

linear interpolation without giving the equations explicitly. A 𝑘-linear interpolation 

equation is 

 𝑦(𝒙) = ∑ 𝑐𝑚1,𝑚2,…𝑚𝑘
𝑥1

𝑚1

1

𝑚1,𝑚2,…𝑚𝑘=0

𝑥2
𝑚2 … 𝑥𝑘

𝑚𝑘 . (2.23) 

   

The sum is over all combinations of the 𝑚’s being zero and one, and 𝑐𝑚1,𝑚2,…𝑚𝑘
 

represents 2𝑘 coefficients. For example, the bilinear interpolation equation is 𝑦(𝒙) =

𝑐0,0 + 𝑐1,0𝑥1 + 𝑐0,1𝑥2 + 𝑐1,1𝑥1𝑥2. The coefficients come from evaluating the equation at 

the corners of the hyperrectangle that contains the interpolation point. By converting to 

local coordinates between zero and one, the matrix equation for the coefficients can be 

solved analytically for any number of dimensions, so finding the coefficients does not 

require a matrix inversion. Specifically, 

 𝒄 = 𝑻𝑘𝒚 where 𝒄 = [

𝑐0,0,…0

𝑐0,0,…1

⋮
𝑐1,1,…1

] and 𝒚 = [

𝑦(0,0, … 0)
𝑦(0,0, … 1)

⋮
𝑦(1,1, … 1)

] (2.24) 

   

and 𝑻𝑘 is given by the following recursive relationship: 
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 𝑻0 = 1 and 𝑻𝑛+1 = [
   𝑻𝑛 0
−𝑻𝑛 𝑻𝑛

]. (2.25) 

   

The order of 𝒄 and 𝒚 is important, so to clarify the subscripts make a binary number that 

gives 𝒄 and 𝒚 a unique order. After converting the interpolation point to local 

coordinates, it can be plugged into Equation (2.23) to yield the interpolated value. 

Except for in this section, this dissertation omits the prefixes (e.g. using linear instead of 

bilinear in 2D or pentalinear in 5D) because they usually do more to obscure the meaning 

than to clarify it. Although, linear interpolation in 2D technically uses 𝑦(𝒙) = 𝑐0,0 +

𝑐1,0𝑥1 + 𝑐0,1𝑥2 and bilinear uses 𝑦(𝒙) = 𝑐0,0 + 𝑐1,0𝑥1 + 𝑐0,1𝑥2 + 𝑐1,1𝑥1𝑥2. From the 

context (i.e. interpolation on a rectangular grid), the meaning should be clear. 

§2.7 Extrapolating the table of corrections 

Since the data table that is calculated with BEM has a finite range, an interpolation point 

might be outside of this range. There are two cases when this problem may occur. First, 

𝑥𝑠 or 𝑥𝑟 cannot have a range that includes zero because the object must have a finite 

width in the BEM computations, so 𝑥𝑠 or 𝑥𝑟 could have values that are too small to be 

within the data. Generally, the level where the source or the receiver is within 1 m of the 

barrier is not of interest. Second, the interpolation point could be far from the barrier in 

any direction. In this case, this long path is unlikely to be the main contribution to the 

sound level at that location unless it is the direct path, so again the extrapolated value is 

likely unimportant. In addition, extrapolation is notoriously difficult because the data 

may not accurately represent the unexplored region. For this reason, the ranges of the 

variables should be sufficiently large to handle most cases. However, since an 

interpolation point could be outside of the data table, which would make it an 

extrapolation point, this section details an extrapolation method. 

The simplest approach would be to set the extra attenuation to zero anywhere outside of 

the data. This approach is very fast but is discontinuous. For most applications, this 

discontinuity is insignificant, but there is a more rigorous approach that does not cost 

much extra. 

The suggested approach is to find the closest data point and multiply the value at that data 

point by a decay function that ranges from one at the data point to zero far from the data 

point. This approach removes the largest discontinuity and is still fairly efficient, 

𝑂(log2 𝑁). There could still be a discontinuity at the points that are equidistant from two 

data points that have different values, but this discontinuity is even less important than 

the previous discontinuity, and removing it would be more expensive. 
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Finding the decay function, which would occur during the post-processing of the BEM 

data, requires the following steps: 

1. Take a sample of the BEM data; 

2. Calculate the distance between each of the points and the absolute value of the 

difference of the corrections for each frequency; 

3. Sort the points by their distance; 

4. Smooth the data using a moving average for each frequency; 

5. Calculate one minus the value of the smoothed data normalized by the maximum 

value for each frequency; 

6. Fit all the data to a curve. 

The first step is to take a sample of the data because using all of the data is too memory 

intensive for the steps that follow (i.e. the process is 𝑂(𝑁2)). Choosing what points to 

include in the sample is important because the end result varies depending of what points 

are selected. Without any other information, the best option might appear to select the 

points at random, but this approach usually produces points that are far from each other, 

which is not useful for modeling a relationship that varies rapidly with distance. All of 

the points are dissimilar, so the similarity between the points as function of distance 

cannot be accurately represented. The next logical option is to choose the points that are 

closest together, but this choice solves one problem by creating another. The points that 

are most densely packed are also next to the complex object and the ground. Since this 

relationship between points varies throughout space, the points next to the complex 

object or even the ground to some extent are not very representative of the majority of 

dataset. Thus, the sample should balance between points that are close together and 

points that are far from objects. For example, the source and receiver could be the closest 

points that are at least 5 m from the complex object and at least 1 m high with six points 

in each direction for a total sample size of 65 = 7776. These numbers are a general 

guideline and may change depending on the complex object. Finite computer memory 

limits the sample size. 
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Figure 2.20: Choosing samples to model extrapolation 

Here are four different sampling options to estimate how similar points are as a function of distance. The random 

samples and samples far from the object/ground are so far apart that most of the points are dissimilar. The samples next 

to the object/ground are unrepresentative of the extrapolation regions far from the complex object/ground because the 

correction factors change more rapidly in this region. The samples near but not right next to the object/ground provide 

the best compromise between samples being close to each other and samples being representative of the exterior region. 

The second step calculates two relationships between each of the points and joins them as 

an (𝑑, ∆𝑨) pair. The first quantity is distance between each of the points. This distance is 

the standard Euclidian distance extended to 5D: 

 𝑑(𝒙1, 𝒙2) = √∑(𝒙1,𝑖 − 𝒙2,𝑖)
2

5

𝑖=1

 where 𝒙 = (𝑥𝑠, 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦). (2.26) 

   

The second quantity is the absolute value of the difference in the correction factors: 

 ∆𝐴(𝐴1, 𝐴2) = |𝐴1 − 𝐴2| (2.27) 

   

where this calculation is performed for each frequency to create a vector of attenuation 

differences (𝚫𝑨). 

The third step sorts all of the points according to their distance. Sorting is a standard 

function in most computer languages, so no further details are given here. The sorting is 

required to group the points into similar distances in order to track how closely related 

the points are. 

The fourth step smooths the data using moving average. For example, the width could be 

105 points without overlap. The best width depends on the number of data points in the 

sample, and overlap is unnecessary with so many points. This step takes the data from 

looking like a cloud to a wiggly curve, which makes the normalization factor in the next 

step (i.e. ∆𝐴max) much less sensitive to extreme data values. If ∆𝐴max is much larger than 

most values, then the function will never decay close to zero, which would indicate that 

points are similar when they really are dissimilar. 
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The fifth step converts the attenuation differences into the decay factor. The decay factor 

must be one when the distance is zero and decay to zero as the distance is increased. The 

range of the attenuation differences could be [0, ∞). To convert this range to the range 

from zero to one, the value is divided by the maximum value for that frequency and then 

subtracted from one. Specifically, 

 𝑓(𝑑) = 1 −
∆𝐴(𝑑)

∆𝐴max
 (2.28) 

   

where again this calculation is performed for each frequency. 

The sixth and final step is to fit all of the data to a curve. Originally, there was a curve for 

each frequency. However, since the variability within each frequency was greater than 

the variability between frequencies, the many curves were simplified to one curve for all 

frequencies. The curve has the following form: 

 𝑓(𝑑) =
1

𝑐1𝑑 + 1
. (2.29) 

   

In general, there may be higher order terms in the denominator, but all of the coefficients 

must be greater than or equal to zero so that the function never increases with distance. In 

some cases, an exponential function could work as well. 

Figure 2.21 gives an example with real data from a T-barrier (3 m high and 1 m wide), 

which is described in detail in Chapter 3. The variability is quite high for different 

samples, frequencies, and distances, so the optimized value is not very precise. This 

process is just to obtain an approximate shape for the decay function and might not even 

have to be repeated for every data set as a rule of thumb could be used instead (e.g. the 

values of 𝑐1 tend to be between 0.5 and 1.5). As stated at the beginning of this section, 

the extrapolation function should not affect the level at most relevant receivers. If it does, 

then the range of the variables should be increased. 
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Figure 2.21: Decay function 

The decay function is a rough approximation of how similar two points are as a function of distance and is given by 

fitting a curve to the data. Each of the curves represents a different third-octave frequency band and the thick black 

curve is the optimized curve.  

After determining the decay function, then hybrid method can use it to extrapolate the 

data by multiplying the value of the closest data point by the decay function evaluated at 

the appropriate distance. The closest data point is found using a 𝑘d-tree that is similar to 

the one described in §2.6.3.1. The main difference is that the description of the point that 

needs to be found is slightly different. The previous algorithm searched for the point with 

the largest dimensions that were all less than or equal to the interpolation point whereas 

the current algorithm searches for the point that is closest to an extrapolation point. Thus, 

instead of checking if a data point is less than the interpolation point, it checks if the data 

point is closer than its neighbors one dimension at a time. In addition, since the point is 

known to be outside of the dataset, the searches can be optimized by checking the 

extreme data points first. 
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§2.8 Summary 

This chapter describes the whole hybrid method in detail and justifies the most important 

decisions. The hybrid method provides a general framework for extending EMs to 

complex geometries and surfaces that are currently not allowed in EMs by interpolating 

the 2.5D BEM results. 

Broadly speaking, the hybrid method has two parts: a reference method and an efficient 

method. The reference method is 2.5D BEM, which tabulates the effects of complex 

geometries in a very simplified surrounding (i.e. hard, flat ground) for a large number of 

source/receiver locations and frequencies. Compared to full 3D BEM, the hybrid method 

drastically reduces the computation time from prohibitive to manageable for slightly less 

accuracy. 

The efficient method is EM, which approximates all the attenuations in the full scene 

except for the extra attenuations associated with the complex objects. Compared to EMs, 

the hybrid method trades slightly longer computation time for greater accuracy in the 

complicated cases. The link between these parts is a table of corrections, which comes 

from BEM and is interpolated based on variables from EM. 

More specifically, the hybrid method has the following major steps: 

1. Determine the source and receiver locations on a non-uniform grid; 

2. Compute the levels for the complex and reference cases; 

3. Integrate, subtract, and sort the results to obtain the table of corrections; 

4. Calculate the decay function; 

5. Input the scene into EM including the tables of corrections associated with any 

complex objects; 

6. Find the most important propagation paths between the source and receiver; 

7. For each path with a large complex object: 

a. Determine the local source and receiver locations; 

b. Linearly interpolate (or extrapolate as necessary) the table of corrections; 

c. Add 𝐴extra to the path contribution; 

8. Finish EM by incoherently summing all of the path contributions. 

Steps 1-4 only need to be performed when a table of corrections does not exist for a 

required complex object. 



Chapter 2 Hybrid Method 

58 

 

EMs strive to very efficiently provide a reasonable approximation of the overall level. 

Thus, efficiency is also very important in the development of the hybrid method. 

Efficiency is an important justification for the following: 

 Using EMs; 

 Utilizing 2.5D BEM on a hard, flat, and infinite ground; 

 Having only six input variables (𝑥𝑠, 𝑧𝑠, 𝑥𝑟, 𝑧𝑟, Δ𝑦, and 𝑓) in Cartesian 

coordinates; 

 Modeling multiple diffraction very simply; 

 Linearly interpolating on a non-uniform grid; 

 Precomputing, sorting, and tabulating the BEM results. 

While this chapter explains and justifies the hybrid method, it does not present the results 

of the hybrid method. This chapter argues that the hybrid method works in theory, and 

Chapter 3 demonstrates that the hybrid method works in practice by considering four 

cases. 
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Chapter 3 Validation 

§3.1 Objectives 

After detailing the hybrid method in the last chapter, this chapter provides examples 

using the hybrid method compared to EMs and reference methods. This chapter’s 

primary objectives are to demonstrate that the hybrid method 

 Is significantly more accurate than EMs for complex cases; 

 Has a reasonable computational cost for even large scenes. 

To these ends, this chapter presents the following four cases: 

1. T-barrier with hard ground (§3.3); 

2. T-barrier with soft ground (§3.4); 

3. T-barrier with buildings (§3.5); 

4. T-barrier in a real situation (§3.6). 

The T-barrier with hard ground case demonstrates that the interpolation process is 

sufficiently accurate despite the data points being very far apart compared to a 

wavelength. The T-barrier with soft ground case illustrates that the correction for the T-

top is fairly invariant with respect to the ground type. The T-barrier with buildings case 

verifies the process of finding local coordinates with multiple diffractions, reflections, 

and lateral diffractions. Finally, the T-barrier in a real situation demonstrates that the 

hybrid method can be used in larger and more complicated situations. This chapter uses 

the same T-barrier and associated table of correction factors for all of the cases, which is 

a strong advantage of the hybrid method. Thus, before detailing the cases, the next 

section describes the table of corrections including the I-barrier and T-barrier, the source 

and receiver locations, and the frequencies. 
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§3.2 Table of corrections 

This section describes the table of correction factors for the cases developed in this 

chapter. All of these cases use the same simplified and complex barriers. The simplified 

barrier is an I-barrier that is infinitely long, 3 m tall, and 20 cm wide. The complex 

barrier is a T-barrier that has the same dimensions as the I-barrier except it also has a 1 m 

wide and 20 cm thick T-top. Figure 3.1 gives the cross-section of each barrier. The 

barrier surfaces are all hard and the ground is infinite, flat, and hard. 

 
Figure 3.1: Barrier cross-sections 

The left plot shows the cross-section of the I-barrier, which is the simplified object and is 3 m tall and 20 cm wide. The 

right plot illustrates the T-barrier, which is the complex object and is 3 m tall, 20 cm thick, and 1 m wide at the top. 

The sources are 1-35 m from the barrier and 0-4 m high. The receivers are 1-200 m from 

the barrier and 0-35 m high. The distance parallel to the barrier between the source and 

receiver is 0-60 m. The frequencies are the 50-5000 Hz third octave bands. Table 3.1 

gives all the positions of the sources and receivers and the frequencies. An optimization 

procedure that is similar to the one described in Chapter 4 produces the positions by 

minimizing the variance of a Gaussian process. 

Since the points are on a grid, there are 18 × 14 × 22 × 21 × 26 ≈ 3 million 

source/receiver points and a total of 3 million × 21 ≈ 60 million data points. Each data 

point requires about 20 BEM computations (a factor of about 10 for the number of 

frequencies/third octave band and a factor of 2 for the simplified and complex shapes). 

Thus, calculating the dataset requires about 1 billion boundary element computations. 

Nevertheless, since these computations are independent, they can be parallelized and 

completed in less than 24 hours using Micado117. The computation time may be longer 

using other BEM approaches because Micado is highly optimized and uses a variational 

approach that requires fewer points per wavelength than direct BEM approaches. While 
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this computation time is substantial, the table of corrections can be used for a large 

number of applications that all use the same complex object. Indeed, all four cases 

presented in this chapter use the same table of corrections to demonstrate this point. 

Table 3.1: Source/receiver locations and frequencies 

This table gives all of the source/receiver positions and frequencies for the table of corrections. 

𝒏 𝒙𝒔 (m) 𝒛𝒔 (m) 𝒙𝒓 (m) 𝒛𝒓 (m) ∆𝒚 (m) 𝒇 (Hz) 

1 -35.00 0.00 1.00 0.00 0.00 50 

2 -31.79 0.13 1.30 1.00 1.00 63 

3 -28.69 0.28 1.60 1.24 1.24 80 

4 -23.69 0.58 2.30 1.49 1.50 100 

5 -19.19 0.91 3.19 2.05 2.03 125 

6 -15.62 1.26 4.28 2.68 2.68 160 

7 -12.66 1.44 5.68 3.43 3.04 200 

8 -10.23 1.64 7.47 4.32 3.45 250 

9 -8.19 2.04 9.76 5.35 4.33 315 

10 -6.56 2.48 12.54 5.95 5.37 400 

11 -5.44 2.72 16.03 6.58 5.96 500 

12 -4.50 2.96 20.50 8.00 6.61 630 

13 -3.69 3.47 26.17 9.67 8.02 800 

14 -2.97 4.00 33.24 11.63 9.70 1000 

15 -2.36  42.09 13.94 11.68 1250 

16 -1.83  53.34 16.67 13.98 1600 

17 -1.37  67.37 19.80 16.69 2000 

18 -1.00  85.08 22.83 19.88 2500 

19   105.28 26.40 23.60 3150 

20   130.55 30.41 27.99 4000 

21   161.59 35 33.10 5000 

22   200.00  39.14  

23     43.30  

24     48.50  

25     53.98  

26     60.00  
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§3.3 T-barrier with hard ground 

The first test case is a T-barrier with hard, flat ground. This case is geometrically 

identical to the case for calculating the table of corrections. Furthermore, 2.5D BEM 

produces both the table of corrections and the reference results for this situation. Thus, 

this case helps to quantify two sources of error. First, EMs and BEM have different 

modeling assumptions that inherently result in slightly different values for even the 

simplified object (i.e. the I-barrier). This error between the methods establishes a baseline 

that the hybrid method does not seek to improve but rather to maintain for more 

complicated geometries. Without fundamentally changing either method, the only way to 

reduce this error is to optimize the width of the simplified object with respect to this 

error, which §2.4.3 outlines. Second, interpolating the table of corrections where the 

points are far apart compared to a wavelength produces interpolation error. This error can 

be reduced by optimizing the locations of the points in the table of corrections, which 

Chapter 4 describes in detail. This simple case quantifies these two sources of error. 

§3.3.1 Description 

The first test case has the following parameters (Figure 3.2): 

 The ground is hard and is the plane 𝑧 = 0 m; 

 The barrier is an infinitely long T-barrier along the 𝑦-axis with the same cross-

section as shown in the right-hand plot of Figure 3.1; 

 The source is a monopole at (𝑥, 𝑦, 𝑧) = (−3, 17.5, 0.3) m; 

 The receivers are on a uniform grid at 𝑥 = [−5, −4.75, … 25] m, 𝑦 =

[0,0.25, … 35] m, and 𝑧 = 1.5 m; 

 The frequencies are 50-5000 Hz. During the analysis, the spectrum is A-weighted 

and weighted to look like a car (i.e. engine noise plus rolling noise) traveling at 80 

km/h according to the spectra provided in the Hosanna Project120 (Task 2.3, p 43-

44); 

 The medium is homogeneous air where the speed of sound is 𝑐 = 340 m/s, the 

density is 𝜌 = 1.3 kg/m3, and the reference pressure is 𝑝ref = 20 µPa; 

 The engineering method is Harmonoise with up to 6 reflections, 2 lateral 

diffractions, and 1 km path length. However, lateral diffraction around the barrier 

is turned off, so in this case the lateral diffraction order is essentially zero. In §3.5 

and §3.6, when the scene has other objects, the lateral diffractions are important. 
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Figure 3.2: Barrier with hard ground 

There is a T-barrier with hard ground. The source is 3 m from the barrier and 30 cm high. The receivers are 1.5 m high 

and cover the entire area with a uniform grid with 25 cm spacing in both the 𝑥 and 𝑦 directions. 

This case is analyzed with two methods: the hybrid method and 2.5D BEM. The hybrid 

method uses the Harmonoise EM44,45 with up to six reflections, two lateral diffractions, 

and a maximum path length of 1 km. To model an infinite barrier using the EM, lateral 

diffractions around the barrier have been turned off. CNOSSOS-EU was not used simply 

because it was not yet included in the development code that was used to implement the 

hybrid method. The sound propagation models in Harmonoise and CNOSSOS-EU are 

very similar, so they produce very similar results. Moreover, the hybrid method is 

designed to work with any EM, and the conclusion that EMs benefit from the hybrid 

method should be true regardless of the particular EM that is used. 

In this case, 2.5D BEM is being used in two distinct ways. 2.5D BEM provides 1) the 

table of corrections and 2) reference results to evaluate the hybrid method. The first case 

has about 3 million source/receiver pairs over a wide range of all of the variables (i.e. 𝑥𝑠, 

𝑧𝑠, 𝑥𝑟, 𝑧𝑟, ∆𝑦). The second case has about 17 thousand source/receiver pairs with only 

one source position (𝑥𝑠 and 𝑧𝑠) and one receiver height (𝑧) but a small range for 𝑥 and 𝑦 

that are densely sampled. 

§3.3.2 Results 

To evaluate the hybrid method, Figure 3.3 illustrates the total sound pressure levels with 

the I-barrier and T-barrier using 2.5D BEM and the hybrid method. The top plots give the 

total levels calculated with 2.5D BEM, and the bottom plots give the same plots 

calculated with the hybrid method. In other words, the top plots show what the hybrid 
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method should ideally predict, and the bottom plots show what the hybrid method 

actually predicts. The left-hand plots illustrate the total levels for the I-barrier, and the 

right-hand plots do the same for the T-barrier. The hybrid method for the I-barrier gives 

the results of the underlining EM, which is the Harmonoise method. 

Comparing the top-left plot with the bottom-left plot demonstrates how well the 

Harmonoise method approximates the 2.5D BEM results for the I-barrier. For this case, 

these two left-hand plots quantify the error between the two methods, which is usually 

less than 1 dB, and illustrate the best agreement that the hybrid method could reasonably 

be expected to provide in more complicated cases. 

There are two notable differences between the I-barrier plots. First, the decay in level 

going away from the source is more circular for EM and more oval for 2.5D BEM. Thus, 

the source appears to be a line segment along the 𝑦-direction in the 2.5D BEM 

calculations and a point in the EM calculations. This difference results from a simplifying 

assumption of EM that the barrier is always perpendicular to the propagation path. 

Second, the area around the line 𝑥 = 20 m has higher levels in the 2.5D BEM 

computation than the EM computation. This dissimilar area results from a large 

difference between the methods in the 1.6 kHz third-octave band in that area. This area 

demonstrates that the approximation of the ground effect for single diffraction in the EMs 

is sometimes insufficient to model the ground effect accurately. 

The T-barrier (right-hand) plots show a similar level of agreement as the I-barrier (left-

hand) plots. Like for the I-barrier, the hybrid method and 2.5D BEM predict slightly 

different shapes for the greater than 55 dBA area in the T-barrier plots. These differences 

have two causes. First, the differences between 2.5D BEM and EM for the I-barrier, 

which the previous paragraph describes, still apply to the T-barrier case because the 

hybrid method does not make any attempt to reduce the differences between the methods 

for an I-barrier. Second, the hybrid method also has some interpolation error because the 

points in the table of corrections are far apart compared to a wavelength. 
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Figure 3.3: I-barrier and T-barrier with hard ground 

All of the plots show the total pressure level for 50 Hz – 5 kHz where the spectrum is A-weighted and weighted to look 

like a car spectrum. The top plots are calculated with 2.5D BEM and give what the hybrid method would ideally 

predict, and the bottom plots are calculated with the hybrid method and give what the hybrid method actually predicts. 

The left-hand plots give the I-barrier results, and the right-hand plots give the T-barrier results. Overall, the hybrid 

method produces results that are very similar to the 2.5D BEM results. 

To quantify the interpolation error without the error between 2.5D BEM and EM for an I-

barrier, Figure 3.4 shows the influence of the T-top (i.e. the total pressure of the T-barrier 

minus the total pressure of the I-barrier, which is the negative of the insertion loss of the 

top). Thus, the left-hand plot in Figure 3.4 is the top-right plot in Figure 3.3 minus the 

top-left plot in Figure 3.3, and the center plot in Figure 3.4 is the bottom-right plot in 

Figure 3.3 minus the bottom-left plot in Figure 3.3. These two plots overall look fairly 

similar with the differences mostly coming from interpolation error in the hybrid method. 

Some differences exist on the source side of the barrier where the extra attenuation is 

assumed to be zero, but these differences are ignored in the hybrid method because they 

are usually small. 

The right-hand plot in Figure 3.4 is the error of the hybrid method compared to 2.5D 

BEM, which is the center plot minus the left-hand plot. The error of the hybrid method is 

fairly small and usually less than 1 dB. The main point of Figure 3.4 is that the error of 
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the hybrid method (right-hand plot) is small compared to the largest correction (left-hand 

plot). 

 
Figure 3.4: T-top effect with hard ground 

The T-top effect (i.e. the total field with the T-barrier minus the total field with the I-barrier) is calculated with 2.5D 

BEM in the left plot and with the hybrid method in the center plot. The right plot gives the hybrid plot minus the 2.5D 

BEM plot. The main differences are due to interpolation error. 

§3.3.3 Analysis 

After visually inspecting the results in the last section, this section statistically analyzes 

the total error between the engineering or hybrid method and 2.5D BEM for the I-barrier 

and T-barrier. In the analysis sections, the error is  

 𝐸 = 𝐿HYD − 𝐿BEM (3.1) 

   

where 𝐿 is a vector of the total level (A-weighted and weighted to look like a car 

traveling at 80 km/h) for receivers where 𝑥 ≥ 2 m, and the subscript designates the 

hybrid or BEM method. 

To better understand the error, Figure 3.5 provides several statistical metrics for three 

different cases. For each case, the red line indicates the median (i.e. the second quartile); 

the blue box shows the center 50% of the data (i.e. the first and third quartiles); the 

whiskers represent the full range of the data; 𝜇 is the mean; 𝜎 is the standard deviation; 

and RMS is the root mean squared error.  

The left box calculates the error of EM for the I-barrier compared to 2.5D BEM (i.e. in 

Figure 3.3 the bottom-left plot minus the top-left plot). This case establishes the baseline 

performance of EM for the I-barrier, which the hybrid method ideally would preserve for 

more complicated geometries. The center box calculates the error of EM for the T-barrier 

compared to 2.5D BEM (i.e. in Figure 3.3 the bottom-left plot minus the top-right plot). 

This case results from naïvely using the I-barrier in EM in place of the T-barrier; in other 

words, this case assumes that the effect of the T-top is negligible. The large increase in 
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error indicates that this assumption is a poor one. The right box calculates the error of the 

hybrid method for the T-barrier compared to 2.5D BEM (i.e. in Figure 3.3 the bottom-

right plot minus the top-right plot). This case demonstrates how well the hybrid method 

does for the T-barrier. 

Figure 3.5 demonstrates that on the one hand EM approximates the 2.5D BEM results 

well for the I-barrier, especially considering the computational savings. In this case, the 

RMS error is approximately 0.6 dBA. On the other hand, EMs model complex 

geometries poorly; for the T-barrier, the RMS error is about 2 dBA on average and up to 

5 dBA. However, the hybrid method substantially improves the results for complex cases; 

for the T-barrier, the RMS error is brought back to the level of EM for the I-barrier. 

 
Figure 3.5: Error comparison with hard ground 

The horizontal lines for each box and whisker plot from bottom to top are the smallest value, first quartile, second 

quartile, third quartile, and largest value, and the values below each box are the mean (𝜇), standard deviation (𝜎), and 

root mean squared error (RMS). The left box represents the error between EM and 2.5D BEM for the I-barrier. The 

center box represents the error between EM and 2.5D BEM for the T-barrier where EM is modeling the I-barrier. The 

right box represents the error between the hybrid method and 2.5D BEM for the T-barrier. 

§3.4 T-barrier with soft ground 

The next case is the same T-barrier as the last case with soft ground instead of hard 

ground. The primary purpose of this case is to determine if the same correction factors, 

which are calculated with hard ground, can be used regardless of the ground type. The 

motivation for wanting the correction factors to be independent of the ground type is 

twofold: model simplicity and reducing the number of 2.5D BEM computations. 
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§3.4.1 Description 

All of the parameters are the same as the last case except the entire ground has a flow 

resistance of 200 kPa ∙ s/m2, which is similar to grass-covered ground. 2.5D BEM 

approximated the impedance of the ground using the Delany-Bazley model129. Figure 3.6 

shows the geometry where the green area represents soft (grassy) ground. 

 
Figure 3.6: Barrier with soft ground 

There is a T-barrier with soft ground. The source is 3 m from the barrier and 30 cm high. The receivers are 1.5 m high 

and cover the entire area with a uniform grid with 25 cm spacing in both the 𝑥 and 𝑦 directions. 

§3.4.2 Results 

The results for the soft ground case are very similar to those in the hard ground case. 

Figure 3.7 shows many of the same patterns as the previous case. For example, the spatial 

spreading of the source in the 𝑦-direction for the 2.5D BEM plot remains. The largest 

difference between the hard ground case and the soft ground case is a 2-3 dB drop in 

overall level associated with mostly losing the ground reflection. In addition, the ground 

affect at 𝑥 = 20 m in Figure 3.3 is mostly absent from Figure 3.7 because the ground 

affect is much weaker for soft ground than for hard ground. 
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Figure 3.7: I-barrier and T-barrier with soft ground 

All of the plots show the total pressure level for 50 Hz – 5 kHz where the spectrum is A-weighted and weighted to look 

like a car spectrum. The top plots are calculated with 2.5D BEM and give what the hybrid method would ideally 

predict, and the bottom plots are calculated with the hybrid method and give what the hybrid method actually predicts. 

The left-hand plots give the I-barrier results, and the right-hand plots give the T-barrier results. Overall, the hybrid 

method produces results that are very similar to the 2.5D BEM results. 

Again, to evaluate the interpolation error and the error from using a table of correction 

calculated with hard ground in a soft ground case, Figure 3.8 plots the T-top correction 

(i.e. the total field with the T-barrier minus the total field with the I-barrier) calculated 

with 2.5D BEM (left plot) and the hybrid method (center plot) and the difference (i.e. 

hybrid results minus 2.5D BEM results) in the right plot. Similar to the hard ground case, 

for soft ground the average error in the T-top correction is small compared to the average 

T-top correction. This result suggests that the table of corrections, which is only 

calculated with hard ground results, can be applied even when the ground is soft. 

There are two main reasons why the T-top correction appears mostly independent of the 

ground type. First, the ground effect is already disrupted by the I-barrier, and the path 

length differences for the T-barrier are not very different from the I-barrier. If instead of 

using an I-barrier the reference case was flat ground, then the correction would be quite 

different for hard and soft grounds. Second, since the source is fairly broadband, the 
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errors in individual third-octaves, which can be significant, are averaged away when 

summed over the whole frequency range because the direction of the error is random. If a 

narrowband source is modeled instead of the typical broadband transportation noise, then 

there might be larger errors depending on the case. 

Finally, the hybrid method predicts slightly different values for the hard ground case 

(center plot of Figure 3.4) and the soft ground case (center plot of Figure 3.8) because 

these results are summed across frequencies. For each third-octave, the results would be 

identical, but these results are affected by the relative level of each third-octave. The soft 

ground does not affect all frequencies the same amount. 

 
Figure 3.8: T-top effect with soft ground 

The T-top effect (i.e. the total field with the T-barrier minus the total field with the I-barrier) is calculated with 2.5D 

BEM in the left plot and with the hybrid method in the center plot. The right plot gives the hybrid plot minus the 2.5D 

BEM plot. The main differences are due to interpolation error and using a table of corrections calculated with hard 

ground instead of soft ground. 

§3.4.3 Analysis 

As with the hard ground case, the next step is to statistically analyze the results. The 

process is the same as before with different data. Figure 3.9 shows that error between EM 

and 2.5D BEM for the I-barrier is small on average with a small spread (RMS = 0.4 

dBA). Then, the error greatly increases when the EM is applied to the T-barrier (RMS = 

1.7 dBA), but is substantially reduced by the hybrid method (RMS = 0.6 dBA). Thus, 

much improvement is still achieved in soft ground cases when using the table of 

corrections that was calculated using hard ground. 

Comparing the hard ground (Figure 3.5) and soft ground (Figure 3.9) results reveals that 

the hybrid method has similar RMS error for both the hard and soft ground cases. One 

would expect that the soft ground case has slightly larger error because the correction 

factors are calculated using a hard ground. This expectation should hold true in general 

when EM performs equally well for both hard and soft ground with the I-barrier. 
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However, in this case EM has lower RMS error for soft ground (0.4 dBA) than for hard 

ground (0.63 dBA) because of the error near 𝑥 = 20 m between the left-hand plots in 

Figure 3.3 that is mitigated in the left-hand plots in Figure 3.7. 

 
Figure 3.9: Error comparison with soft ground 

The horizontal lines for each box and whisker plot from bottom to top are the smallest value, first quartile, second 

quartile, third quartile, and largest value, and the values below each box are the mean (𝜇), standard deviation (𝜎), and 

root mean squared error (RMS). The left box represents the error between EM and 2.5D BEM for the I-barrier. The 

center box represents the error between EM and 2.5D BEM for the T-barrier where EM is modeling the I-barrier. The 

right box represents the error between the hybrid method and 2.5D BEM for the T-barrier. 

§3.5 T-barrier with buildings 

The next case is a T-barrier with buildings. This case is a big step up in the level of 

complexity of the test case. Both of the previous cases were 2.5D problems. This case is 

the first truly 3D problem. This aspect makes the case much more realistic and 

interesting. In addition, in this case the propagation paths could interact with something 

besides just the complex object. The primary purpose of this case is to test how well the 

reflection, lateral diffraction, and multiple diffraction approximations work. 

§3.5.1 Description 

This problem is an augmentation of the first test case, so many of the parameters are the 

same. Specifically, the ground, barrier, source, receivers, medium, and EM are all the 

same. The main difference is the addition of the buildings, which are shown in Figure 

3.10. Table 3.2 also gives the coordinates of the building corners. All of the building 

surfaces are hard, and lateral diffractions are allowed around the buildings.  
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Figure 3.10: Barrier with buildings 

There is a 35 m long T-barrier with two buildings 10 m from the barrier. The source is 3 m from the barrier and 30 cm 

high. The receivers are 1.5 m high and cover the entire area with a uniform grid with 25 cm spacing in both the 𝑥 and 𝑦 

directions. 

Table 3.2: Building geometries for test case 

The two buildings are box-shaped and have the coordinates given below. 

 Building 1 Building 2 
Corner x (m) y (m) x (m) y (m) 

1 10 5 15 20 

2 20 5 20 25 

3 20 15 15 30 

4 10 15 20 25 

z (m) 6 8 

 

Another major change is that the reference method is switching from 2.5D BEM to fast-

multiple BEM (FM-BEM), but the correction factors are still the ones from §3.2 and are 

still calculated with 2.5D BEM. Since the buildings have finite length, the 2.5D BEM, 

which provides the reference calculations for the last two examples, is not appropriate for 

this case. Instead, FM-BEM is used, and Christophe Langrenne from LMSSC/CNAM130 

performed the computations. FM-BEM efficiently approximates 3D BEM by reducing 

the number of interactions between the elements by grouping nearby elements and 

solving the matrix equation iteratively so that only part of the matrix must be stored. This 

implementation of FM-BEM was verified using 3D Micado up to 400 Hz for the same 

geometry. FM-BEM provides the results for this case because it 1) is a reference method, 

2) can model this case at most of the important frequencies, and 3) is readily available. 
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Lastly, since this case is much more computationally intensive than the last two cases, the 

frequency range is only 50-1600 Hz. The upper frequency limit is bounded by the 

computational ability of the FM-BEM method. For comparison, regular 3D BEM is 

limited to less than about 400 Hz, so using FM-BEM instead of ordinary BEM increased 

the maximum frequency by a factor of four. 

§3.5.2 Results 

Again, this case is evaluated using the same plots as the last two cases, but the data is 

different. Comparing the I-barrier plots in Figure 3.11 shows good overall agreement 

between Harmonoise and FM-BEM, but Harmonoise tends to predict slightly lower 

levels. The differences are largest in the shadow regions of the buildings where EMs are 

known to be less accurate. The T-barrier plots illustrate a similar level of agreement as 

the I-barriers. 

 
Figure 3.11: I-barrier and T-barrier with buildings 

All of the plots show the total pressure level for 50 Hz – 1.6 kHz where the spectrum is A-weighted and weighted to 

look like a car spectrum. The top plots are calculated with FM-BEM and give what the hybrid method would ideally 

predict, and the bottom plots are calculated with the hybrid method and give what the hybrid method actually predicts. 

The left-hand plots give the I-barrier results, and the right-hand plots give the T-barrier results. Overall, the hybrid 

method produces results that are very similar to the FM-BEM results. 
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As in the previous cases, Figure 3.12 plots the T-top correction to attempt to remove the 

inherent disagreement between Harmonoise and FM-BEM. In the previous two cases, the 

error was mostly due to interpolation error, but in this case the error is a combination of 

the error from 1) interpolation, 2) the reflection approximation, 3) the lateral diffraction 

approximation, and 4) multiple diffraction approximation. Since the agreement is fairly 

good in between the barrier and the buildings, the interpolation error and reflection error 

appear small. The lateral and multiple diffraction errors affect the same regions, so 

evaluating them independently in this case is difficult. The largest error being behind the 

shorter building tentatively suggests that the multiple diffraction approximation is the 

largest source of error of the four options. However, this largest error is in the same 

location as where EMs are the least accurate, so decreasing this error is not a priority. 

 
Figure 3.12: T-top effect with buildings 

The T-top effect (i.e. the total field with the T-barrier minus the total field with the I-barrier) is calculated with FM-

BEM in the left plot and with the hybrid method in the center plot. The right plot gives the hybrid plot minus the FM-

BEM plot. The main differences are due to interpolation error and the approximations for reflections and diffractions. 

§3.5.3 Analysis 

Once more, Figure 3.13 gives the error for modeling the I-barrier with EM, the T-barrier 

with EM, and the T-barrier hybrid method compared to FM-BEM. However, the 

receivers are restricted to only in between the barrier and the buildings (i.e. 2 m ≤ 𝑥 ≤

8 m and 2 m ≤ y ≤ 33 m) where EM should be the most accurate. Behind the buildings, 

the mean error of EM for the I-barrier is -3.2 dB, so correction in this area is not as 

important. In front of the buildings, EM does a reasonable job approximating the FM-

BEM results, but has noticeably more error this time; for the first time the zero error line 

is not within the center 50% of the data (i.e. the left blue box in Figure 3.13 does not 

overlap with zero error line). 

As expected, modeling the T-barrier as an I-barrier in EM produces fairly poor results 

(center box of Figure 3.13); the RMS error is 2.8 dBA, the mean error is 2.5 dBA, and the 

range is also very large at almost 7 dBA. However, the hybrid method reduces the RMS 
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error to 0.7 dBA and the mean error to 0.0 dBA; the range is also reduced to 5 dBA with 

over 50% of the data within 0.5 dBA. 

While having a mean error of 0.0 dBA appears good, since EM has a mean error of -0.7 

dBA for the I-barrier, it actually indicates that the correction does not quite restore the 

baseline established by EM. In other words, if EM had been more accurate for the 

simplified case, the mean error would be larger for the hybrid method (i.e. if the mean 

error of EM was 0.0 dBA for the I-barrier, then the mean error of the hybrid method 

would be 0.7 dBA for the T-barrier). Still, the hybrid method performs much better than 

the plain EM for the T-barrier. 

 
Figure 3.13: Error comparison with buildings 

The horizontal lines for each box and whisker plot from bottom to top are the smallest value, first quartile, second 

quartile, third quartile, and largest value, and the values below each box are the mean (𝜇), standard deviation (𝜎), and 

root mean squared error (RMS). The left box represents the error between EM and FM-BEM for the I-barrier. The 

center box represents the error between EM and FM-BEM for the T-barrier where EM is modeling the I-barrier. The 

right box represents the error between the hybrid method and FM-BEM for the T-barrier. 

§3.6 Real Scene 

The final case is a real scene near Grenoble, France. It has two line sources, a T-barrier, a 

few buildings, and a partially soft ground. The primary purpose of this example is to 

demonstrate that the hybrid method can be applied to cases that are larger and more 

complex than the simple test cases. However, because of the size and complexity, a 

reference method is unavailable for this case to check the accuracy. This kind of problem 

is one where the hybrid method provides a new choice in the trade-off between accuracy 

and computation time. The hybrid method is more accurate than EMs alone and 

computationally possible in contrast to the reference methods. 
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§3.6.1 Description 

The scene is a real tramway next to a few buildings. Figure 3.14 is a screenshot from 

Google Maps of the area, and the GPS coordinates (i.e. the latitude and longitude in 

decimal notation) are (45.194798, 5.755008). The geometry was simplified and 

approximated to the nearest meter using the measure distance feature in Google Maps. 

The simplified geometry is the top-left plot of Figure 3.15. 

 
Figure 3.14: Barrier with buildings and soft ground 

This picture is from Google Maps and represents the real scene that this section models. There are four buildings with 

grassy areas in between, a parking lot, and a tramway. The GPS coordinates are (45.194798, 5.755008). 

Here are the important parameters: 

 The ground is soft with a flow resistance of 200 kPa ∙ s/m2 in the grassy areas 

around the buildings [i.e. the rectangle from (32,13) m to (180,80) m] and is hard 

otherwise for the parking lot and tramway areas; 

 There are four buildings, which have hard surfaces and are three stories (~12 m) 

tall. Table 3.3 gives the corner positions; 

 The source is a tram that runs in both directions, so there are two line sources 

going from (0,7) m to (180,7) m and from (0,10) m to (180,10) m. Both line 

sources are 30 cm high. While the real scene has a tramway, the source is actually 

modeled as a car traveling at 80 km/h with the spectrum (50-5000 Hz) from 

Hosanna that was used previously. Using a car instead of a tram allows the same 

table of corrections to be used in this case as all of the previous cases because 

modeling a tram would require the tram’s geometry to be included in the 2.5D 

BEM model to properly account for multiple reflections between barrier and the 

tram body; 

 The receivers are on a uniform grid where 𝑥 = [0,2, … 180] m, 𝑦 = [0,2, … 80] 

m, and 𝑧 = 1.5 m; 
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 The same T-barrier as in the previous cases (Figure 3.1) is added to the real 

scene and is parallel to the tramway going from (0,11) m to (180,11). The T-

barrier is 3 m tall and 1 m from the closest tram; 

 The medium is homogeneous air where the sound speed is 340 m/s, the density is 

1.3 kg/m3, and the reference pressure is 𝑝ref = 20 µPa; 

 The engineering method is Harmonoise with up to 3 reflections, 2 lateral 

diffractions, and 1 km path length. Lateral diffraction around the barrier is turned 

off. 

Table 3.3: Building geometries for real case 

Each of the building corners are given below. A diagram of the building layout is also in Figure 3.15. 

 Building 1 Building 2 Building 3 Building 4 
Corner x (m) y (m) x (m) y (m) x (m) y (m) x (m) y (m) 

1 17 21 87 21 135 21 6 47 

2 69 21 97 21 145 21 32 47 

3 63 37 104 29 152 29 32 70 

4 17 37 86 65 134 65 15 70 

5   75 63 123 63 15 72 

6   69 56 117 56 6 72 

z (m) 12 12 12 12 

 

§3.6.2 Results 

The results for this case are slightly different because there is no reference solution. 

Figure 3.15 gives the geometry (top-left), the total level for the I-barrier (top-right), the 

total level for the T-barrier (bottom-left), and the T-top correction (bottom-right). The 

hybrid method produced all of these levels. The main point here is that the hybrid method 

produces plausible results for the I-barrier and the T-barrier and that the absolute value of 

the T-top effect is significant (i.e. sometimes greater than 2 dBA) and should be included. 

To give some idea of the computation times, there are 3731 receivers, which took 79 min 

9 s for the I-barrier and 79 min 35 s for the T-barrier on a standard desktop computer (i.e. 

3.2 GHz quad-core processor with 16 GB of RAM) or 1.3 s per receiver on average. 

Running a shorter computation multiple times reveals that there is about 0.2% uncertainty 

in the computation time or about 10 seconds for this computation. The additional 

computation time is almost entirely dedicated to loading the table of corrections, which 

took 29 s. Thus, the additional time for the hybrid method not including the time to load 

the file is −3 ± 20 s, which is negligible compared to the total computation time of EM 

(i.e. 4749 s) and even negligible compared to the uncertainty in the computation time. 



Chapter 3 Validation 

78 

 

 
Figure 3.15: I-barrier and T-barrier with buildings and soft ground 

All of the plots show the total pressure level for 50 Hz – 5 kHz where the spectrum is A-weighted and weighted to look 

like a car spectrum. The top-left plot gives the simplified geometry that was input into the hybrid method. The top-right 

plot shows the total level with the I-barrier, and the bottom-left plot displays the total level with the T-barrier. The 

bottom-right plot illustrates the T-top correction, which is the T-barrier plot minus the I-barrier plot. In this case, the T-

top effect demonstrates a substantial difference between the barriers that would be important to include in a model. 
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§3.7 Summary 

This chapter considers four cases that each try to quantify different sources of potential 

error. First, the T-barrier with hard ground case demonstrates that EM adequately models 

the simple I-barrier but not the more complicated T-barrier and that the interpolation 

error is small compared to the typical values of the extra attenuation. Second, the T-

barrier with soft ground case indicates that for broadband sources the table of corrections 

does not need to be recalculated for each ground type but rather that a table of corrections 

calculated with hard ground reasonably approximates even soft grounds when summed 

over all the frequencies. Third, the T-barrier with buildings case shows that the reflection, 

lateral diffraction, and multiple diffraction approximations all produce plausible results, 

especially considering relatively large error between EM and FM-BEM for this case. 

Fourth, the real case demonstrates that the hybrid method is computationally feasible 

even for larger and more complicated scenes and produces plausible result that should be 

included. 

Finally, all of the cases confirm that the hybrid method performs about 2 dBA better on 

average than the plain EM for the T-barrier, and at select source receiver pairs the 

improvement is as much as 5 dBA. The actual improvement depends on the case (i.e. the 

complex object, the source/receiver positions, and the surrounding geometry), but these 

results demonstrate that the hybrid approach is substantially more accurate than the 

regular EM by the criterion set forth in CNOSSOS-EU. The CNOSSOS-EU standard 

states, “A parameter is considered essential if the range of values the parameter can take 

yields variations in 𝐿den or 𝐿night of more than ±2.0 dB(A) 95% C.I. (all other parameters 

remaining unchanged).”5 Thus, using this criterion the hybrid method is an essential 

addition to EMs. 

The next chapter discusses how to maximize the improvement that the hybrid method 

offers EMs by minimizing the interpolation error. The optimization turns out to be more 

complicated than it at first appears because the locations of the values, not the values 

themselves, must be optimized. 
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Chapter 4 Optimization 

§4.1 Objectives 

The previous chapter validates the hybrid method with four examples, but the results 

depend on the data points in the table of corrections. If the data point locations are 

selected poorly, then the interpolation error will be larger than necessary. This chapter’s 

primary objective is to determine optimized source and receiver locations for the table of 

corrections to reduce the interpolation error. To accomplish this task, 

§4.2 introduces data location optimization; 

§4.3 discusses potential point distribution options; 

§4.4 presents Gaussian processes; 

§4.5 optimizes the hyper-parameters of a Gaussian process; 

§4.6 minimizes the maximum variance of the interpolated values; 

§4.7 selects the number of data points for each dimension; 

§4.8 evaluates the benefit of the optimization procedure. 

§4.2 Introduction 

Optimization131 is a diverse and developed field with applications in many disciplines 

including acoustics59. Before discussing the specific optimization problem of minimizing 

interpolation error, this section 

 introduces optimization more generally; 

 explores objective functions 

 discusses numerical optimization methods; 

 explains convexity. 
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§4.2.1 General optimization 

Optimization problems generally have 

 Variables, 𝒙; 

 Objective function, 𝑓(𝒙); 

 Equality constraints, 𝒈(𝒙); 

 Inequality constraints, 𝒉(𝒙). 

The variables are values that can be changed to improve the objective function. The 

objective function yields a value that must be minimized or maximized and depends on 

the variables. Often, the variables cannot take on any value and are constrained by certain 

relationships. These relationships are called constraints, and there are two kinds of 

constraints: Equality and inequality. Equality constraints are functions that equal a 

constant and inequality constraints are functions that are bounded by a constant. An 

optimization problem is usually written as follows: 

 minimize 𝑓(𝒙) such that
𝒈(𝒙) = 0
𝒉(𝒙) ≤ 0

   (4.1) 

   

An optimization problem may not come in this form, but all of them can be converted to 

this form. For example, if the problem was originally a maximization problem, then 

multiply the objective function by negative one; if the constraints are not less than or 

equal to zero, then subtract a constant and/or multiply by negative one to reach the 

desired form. 

§4.2.2 Objective functions 

In real world applications, defining the objective function is often difficult. Ideally, the 

objective function should be computationally fast and accurately represent the quantity 

that should be optimized. Consider a simple example of fitting a curve to a dataset. The 

true optimization problem is to minimize the error between the curve and unknown future 

data point. Since the actual objective function cannot be evaluated, then the objective 

function is approximated by the total squared error between the curve and the data. This 

definition reduces computation time but decreases the accuracy. 

The difference between these two problems emerges when the number of parameters is 

increased until it equals the number of data points. Now, the curve goes through every 

data point so that the objective function is as small as possible, but this curve probably 

does not predict a new data point very well, which is called overfitting. The objective 

function needs another term that quantifies how complex the model is. All else being 

equal, the model complexity should be as small as possible. 



§4.2 Introduction 

83 

 

Another issue with fitting a curve to a dataset involves the definition of error. Commonly, 

the error is the total squared error, but there are many other options that may be better in 

certain situations. Instead, the objective function could be the sum of the absolute value 

of the error, the maximum error, or the median error. The total squared error is commonly 

used because it has an analytical solution, but all of the others are valid options that may 

produce different results. 

An example that is closely related to the real application of this dissertation is weather 

forecasters deciding where to put new weather stations. The objective is to predict the 

weather as accurately as possible for the largest number of people for the smallest 

number of weather stations. Since the forecasters cannot build many weather stations 

before deciding where to put them, the objective function again cannot be measured 

directly. Instead, the forecasters choose locations where many people live and the 

uncertainty in their predictions is high. The uncertainty depends on the distance to the 

nearest weather station (i.e. a larger distance creates larger uncertainty) and the terrain 

because the weather in the mountains may change more rapidly than in the plains. Thus, 

the objective function could be the maximum of some combination of the uncertainty in 

an area and its population. 

§4.2.3 Numerical optimization methods 

Once the optimization problem is setup, then one of many established numerical 

optimization algorithms can be applied to find a solution. These algorithms often use the 

first and/or second derivatives of the objective function to improve the convergence rate. 

When there is more than one variable, then the first derivatives are stored in a vector 

called the gradient and the second derivatives are stored in a matrix called the Hessian. 

They have the following forms: 

 𝛁𝑖(𝑓) =
𝜕𝑓

𝜕𝑥𝑖
 ; 𝑯𝑖,𝑗(𝑓) = 

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
  (4.2) 

   

Entire books have been written about numerical optimization algorithms131, but some 

common optimization approaches include: 

 Steepest decent 

 Newton 

 Quasi-Newton 

The steepest (or gradient) decent method starts at an initial guess and takes small steps in 

the direction of the negative gradient until it converges to a solution. The benefit of this 

method is that it only requires the first derivatives, which can be calculated analytically 
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or numerically using finite differences, but it converges slowly compared to the other 

methods. 

The Newton method is similar to the steepest decent method except it uses both the 

gradient and Hessian (i.e. the second order derivatives) to obtain a much faster 

convergence rate. The main drawback is that the Hessian grows quadratically with the 

number of variables, so it can be expensive to compute when there are many variables. 

The quasi-Newton methods use the gradient and an approximation of the Hessian to 

choose a direction. Since the actual Hessian is not computed, the quasi-Newton methods 

take slightly more and slightly quicker steps than the Newton method, especially as the 

number of variables increases. 

Since all of these methods are well-established in the literature, the details of their 

implementations are not discussed in detail. Indeed, these methods do not usually need to 

be implemented because many computer programming languages with an advanced 

mathematics library already have implementations of these methods. For this project, the 

optimization is performed using the Matlab function fminunc()132, which is in the 

optimization toolbox. 

§4.2.4 Convexity 

Convexity is an important concept in optimization. Informally, a function is convex if 

any two points in the function’s domain can be connected by a straight line. Formally, a 

function 𝑓(𝒙) is convex if for any two points in the function’s domain (𝒙 and 𝒙′) and for 

all 𝑝 ∈ [0,1] 

 𝑓[𝑝𝒙 + (1 − 𝑝)𝒙′] ≤ 𝑝𝑓(𝒙) + (1 − 𝑝)𝑓(𝒙′)   (4.3) 

   

For example, 𝑓(𝑥) =  𝑥2 is convex, but 𝑓(𝑥) = sin 𝑥 is not convex. Convexity is 

important because if an optimization problem is convex, then a local minimum is also a 

global minimum. If an optimization problem is not convex, then a local minimum does 

not have to be a global minimum. In other words, for non-convex problems, an 

optimization algorithm may find a local minimum that is much larger than the global 

minimum (i.e. a poor local minimum). For non-convex problems, optimization 

algorithms are often run multiple times from random initial positions to improve the 

probability of finding the global minimum. 
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§4.3 Point distribution options 

There are many different ways to distribute points, and this section discusses only a small 

fraction of the ways. Specifically, it highlights linear and exponential distributions, and 

then discusses how to optimize more complicated models. 

§4.3.1 Linear distribution 

A very common option is to linearly distribute the points. For example, in a 1D problem 

the 𝑥-positions could be 

 𝒙𝑛 = 𝑐1𝑛 + 𝑐0 (4.4) 

   

where 𝑐1 and 𝑐0 are constants, 𝑛 ∈ {0,1,2, … 𝑁 − 1}, and 𝑁 is the total number of points. 

Given 𝒙0 and 𝒙𝑁−1 (i.e. the position of the first and last points), then all the points are 

given by the following equation: 

 𝒙𝑛 =
𝒙𝑁−1 − 𝒙0

𝑁 − 1
𝑛 + 𝒙0. (4.5) 

   

The linear model is very easy to compute and works well when the function of 𝑥 is 

equally important or complicated in the entire range. However, for the current application 

the complexity of the function is expected to be highest near the complex object or 

ground and decrease moving away from the complex object. These points are also 

expected to be used more frequently, so are more important than the points far away.  

§4.3.2 Exponential distribution 

To concentrate the points while keeping the simplicity of the linear model, one can use 

the following exponential model: 

 𝒙𝑛 = 𝑒𝑐1𝑛 + 𝑐0. (4.6) 

   

Since there are only two variables, the constants are also determined by the range and 

number of points to be 

 𝒙𝑛 = 𝑒ln(𝒙𝑁−1−𝒙0+1)
𝑛

𝑁−1 + 𝒙0 − 1. (4.7) 

   

These two distributions give a sample of very common distributions with only two 

constants. Increasing the number of constants makes the distribution much more 

customizable and potentially difficult to use. There are again many options, but one 
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option that allows the concentration of points near the barrier to be customized is to add a 

coefficient to the exponential term: 

 𝒙𝑛 = 𝑐2
2𝑒𝑐1𝑛 + 𝑐0. (4.8) 

   

The constant 𝑐2 is squared to show that it must be a non-negative real number. Similar to 

the last two models, two of the constants can be eliminated using the range and number 

of points to give: 

 
𝒙𝑛 = 𝑐2

2𝑒
ln(1+

𝒙𝑁−1−𝒙0

𝑐2
2 )

𝑛
𝑁−1 + 𝒙0 − 𝑐2

2. 
(4.9) 

   

However, since the equation is underdetermined, 𝑐2 could be any real number. If 𝑐2
2 = 1, 

then this case reduces to the exponential model. If 𝑐2
2 is sufficiently large, then this case 

reduces to the linear model using the Taylor series approximations ln(1 + 𝑧) ≈ 𝑧 and 

𝑒𝑧 ≈ 1 + 𝑧, which are valid when |𝑧| ≪ 1. Finally, if 0 < 𝑐2
2 < 1, then the points are 

even more concentrated towards 𝑥0 than for the exponential model with 𝑐2 = 1. Figure 

4.1 illustrates all these options. Thus, 𝑐2
2 allows the points to go from super concentrated 

near 𝑥0 to being uniformly spaced between 𝑥0 and 𝑥𝑁−1. 

 
Figure 4.1: Point distribution options 

This figure illustrates several different options that can all be created using the optimized exponential model in 

Equation (4.9). 

§4.3.3 Optimizing the distribution 

The next step is to optimize 𝑐2, but doing this task requires a definition of the objective 

function and probably some data to help evaluate the objective function. This particular 

example using Equation (4.9) only has one variable, but in general a different function 

could have been selected or even the position of each point could be a variable. However, 
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the next step is an optimization problem regardless of the specific form; only the number 

of variables would change. 

Since the end goal is to interpolate these data points, the most natural definition of the 

objective function is the sum of the squared interpolation error. However, this definition 

makes optimizing the set of variables very expensive. To understand why, consider what 

would have to be done in order to do the optimization. First, a sample dataset would have 

to be calculated using a reference method (e.g. 2.5D BEM) or measured. Depending on 

the size of the sample dataset, the computation time would be significant, and more 

flexible models with more variables often require even more data. Furthermore, each 

evaluation of the objective function would require a full table of corrections to be 

calculated, which requires on the order of one day to complete. An optimization problem 

usually requires many objective function evaluations, so this optimization could easily 

require months of computation time. There must be a better way. 

The primary problem is the large number of BEM computations that must be performed 

for each evaluation of the objective function. To avoid this computational expense, the 

objective function is the maximum variance of an interpolated value. Variance is the 

standard deviation squared and represents the level of uncertainty in an interpolated 

value. This objective function is reasonable because as the variance approaches zero, the 

interpolation error should also approach zero. However, the current interpolation method 

(i.e. linear splines) does not estimate the uncertainty, so another interpolation method that 

does this must be found. 

To search for an interpolation method that estimates the uncertainty of the values, here is 

the list given in §2.6.2 of common interpolation methods: 

 Inverse distance weighted; 

 Natural neighbor; 

 Regression; 

 Spline. 

Inverse distance weighted, natural neighbor, and spline methods do not model the 

uncertainty of a predicted value, so consider the regression methods (e.g. linear, 

polynomial, and Gaussian process). However, most of them would still require too many 

BEM calculations to estimate the variance because they require the values at the locations 

instead of just the locations to predict the variance. The exception is Gaussian process 

regression, which assumes the uncertainty is Gaussian so that it does not require the 

values at the locations to predict the variance. The rest of this chapter explains how to 

minimize the variance using a Gaussian process. 
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§4.4 Gaussian processes 

Gaussian processes126 are statistical models for modeling continuous variables. Given a 

set of input variables and an output variable, a Gaussian process estimates the output by 

assuming that points that are close together in the input space will have a high covariance 

in the output space (i.e. points that have similar inputs have similar outputs). As the 

points get further apart, the covariance deteriorates, which leads to greater uncertainty 

about an estimated output value. Thus, the covariance allows a Gaussian process to also 

estimate the uncertainty of an output value. To understand Gaussian processes better, this 

section 

 Introduces Gaussian processes with an example 

 Describes some possible covariance functions 

 Provides the equations to calculate a Gaussian process 

§4.4.1 Introduction 

Before getting into the details, Figure 4.2 illustrates a Gaussian process for a small 

dataset (blue dots) that is taken from a sine wave (red curve). The blue curve shows what 

a Gaussian process predicts for this data and the shaded region illustrates the standard 

deviation. Most interpolation methods only give the blue curve, but a Gaussian process 

also gives the shaded region. Furthermore the width of the shaded region is independent 

of the values of the data. Figure 4.2 demonstrates the following important characteristics 

of Gaussian processes: 

 Gaussian processes can be used for both interpolation and extrapolation; 

 The standard deviation increases as the distance to the closest data point 

increases; 

 There is a maximum standard deviation, which is an input parameter; 

 Far from any data point, this Gaussian process predicts 0 dB, which is also an 

input parameter. 
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Figure 4.2: An example Gaussian process 

This figure gives an example Gaussian process. The red curve is a sine wave and represents the reference solution. The 

blue dots are points sampled from the sine wave. The blue curve is what the Gaussian process predicts, and the shaded 

area shows the standard deviation that the Gaussian process predicts. 

§4.4.2 Covariance function 

The covariance function quantifies the similarity between two points. In the literature, the 

most common covariance function is the squared exponential covariance function: 

 𝑘(𝒙, 𝒙′) = 𝜎𝑦
2exp [

−‖𝒙 − 𝒙′‖2
2

𝑙2
] (4.10) 

   

where ‖𝒙‖2 is the Euclidean norm (i.e. the 2-norm or the 𝑘-dimensional length of 𝒙). In 

addition, 𝜎𝑦
2 and 𝑙 are the amplitude and characteristic length scale of the covariance 

function. They are considered hyper-parameters, which are usually found by maximizing 

the log marginal likelihood. The amplitude is written as 𝜎𝑦
2 to indicate that it is a variance 

term (i.e. a squared standard deviation) and represents a maximum variance. 

This covariance function works well because it is largest when the two input points are 

the same and smallest when they are far apart. In addition, this function is infinitely 

differentiable and has some flexibility due to the hyper-parameters. However, for this 

application the covariance function actually needs to be modified. Two points far from 

the complex object are likely to be more similar to each other than two points that are the 

same distance apart but closer to the complex object, so the characteristic length 𝑙 must 

be a function of 𝒙 and 𝒙′. Furthermore, the characteristic length is likely different for 

each direction. Keeping 𝑘(𝒙, 𝒙′) = 𝑘(𝒙′, 𝒙) and incorporating these changes produces the 

following covariance function: 
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 𝑘(𝒙, 𝒙′) = 𝜎𝑦
2exp [∑

−(𝒙𝑖 − 𝒙′𝑖)
2

(𝒎𝑖
2𝒙𝑖 + 𝒃𝑖

2)(𝒎𝑖
2𝒙′𝑖 + 𝒃𝑖

2)
𝑖

] (4.11) 

   

where 𝒎 and 𝒃 are hyper-parameters and every component of 𝒙 and 𝒙′ are assumed to be 

non-negative so that the denominator is always positive. In the equation, 𝒎 and 𝒃 are 

squared to show that they are always non-negative and to make the optimization more 

efficient (i.e. fewer constraints). The exponent is a weighted distance function where the 

characteristic length can now vary linearly and in each direction rather than only be a 

constant. Depending on the situation, one might choose a different function for the 

characteristic length, but the linear approximation is the simplest expression that will 

allow the distribution of points to be non-uniform. In the 1D case, the equation simplifies 

slightly because there are not any vectors: 

 𝑘(𝑥, 𝑥′) = 𝜎𝑦
2exp [

−(𝑥 − 𝑥′)2

(𝑚2𝑥 + 𝑏2)(𝑚2𝑥′ + 𝑏2)
]. (4.12) 

   

To better understand this equation, Figure 4.3 illustrates this equation using four different 

combinations of 𝑚 and 𝑏. When 𝑚 = 0 as in the left-hand plots, Equation (4.12) reduces 

to Equation (4.10) by substituting 𝑙 = 𝑏2. The left-hand plots demonstrate that the 

characteristic length 𝑙 affects the width of the diagonal of high covariance but that its 

width is independent of 𝑥 or 𝑥′. If 𝑚 ≠ 0 as in the right-hand plots, then the width of the 

high covariance diagonal is a function of 𝑥 and 𝑥′. Thus, the covariance function in 

Equation (4.12) is more flexible than in Equation (4.10). 

A small width of the main diagonal means that the data points must be close together to 

provide a good interpolation, but a large width indicates that the data points can still 

produce a good interpolation even when the data points are further apart. In practice, 

Equation (4.10) would produce equally spaced points whereas Equation (4.12) allows 

data points to concentrate close to the complex object where the correction factor is likely 

to be most sensitive to the source/receiver positions. 
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Figure 4.3: The covariance function for various characteristic lengths 

These plots show the covariance in Equation (4.12) for 𝜎𝑦 = 1 and various values of 𝑚 and 𝑏. The top plots use 𝑏2 =

0.3 m, and the bottom plots use 𝑏2 = 3 m. The left-hand plots use 𝑚2 = 0 (dimensionless), and the right-hand plots 

use 𝑚2 = 0.3. 

§4.4.3 Calculations 

Since Gaussian processes are established in the literature126, this section presents the 

results without derivation. Calculating a Gaussian process requires the following input 

parameters: 

 𝑿data, a column vector where each row contains the location of a data point; 

 𝒚data, a column of the values at the locations 𝑿data; 

 𝜎𝑛
2, the variance of the noise in the 𝒚data 

 𝑘(𝒙, 𝒙′), a covariance function; 

 𝑿interp, a column vector where each row contains the location of an interpolation 

point. 

Given all of the inputs, the first step is to calculate the following covariance matrices: 
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 𝑲data,𝑖,𝑗 = 𝑘(𝑿data,𝑖, 𝑿data,𝑗) + 𝜎𝑛
2𝛿𝑖,𝑗; (4.13) 

   

 𝑲mixed,𝑖,𝑗 = 𝑘(𝑿data,𝑖, 𝑿interp,𝑗); (4.14) 

   

 𝑲interp,𝑖,𝑗 = 𝑘(𝑿interp,𝑖, 𝑿interp,𝑗); (4.15) 

   

where 𝛿𝑖,𝑗 is the Kronecker delta function, which equals one when 𝑖 = 𝑗 and zero 

otherwise, and 𝑿𝑖 refers to the 𝑖th row of 𝑿. Then, the values 𝒚interp at the locations 

𝑿interp, the variance 𝒗interp at the locations 𝑿interp, and the log marginal likelihood [i.e. 

log p(𝒚data|𝑿data)] are 

 𝒚interp = 𝑲mixed
𝑇 𝑲data

−1 𝒚data; (4.16) 

   

 𝒗interp = diag(𝑲interp − 𝑲mixed
𝑇 𝑲data

−1 𝑲mixed); (4.17) 

   

 log p(𝒚data|𝑿data) = −
1

2
𝒚data

𝑇 𝑲data
−1 𝒚data −

1

2
log|𝑲data| −

𝑁

2
log 2𝜋 ; (4.18) 

   

where 𝑁 is the length of the vector 𝒚data and diag means to take only the elements from 

the main diagonal (i.e. where 𝑖 = 𝑗). 

To connect each of these symbols with something concrete, in Figure 4.2 

 𝑿data is the 𝑥-positions of the blue dots; 

 𝒚data is the 𝑦-values of the blue dots; 

 𝑿interp is the 𝑥-positions of the blue curve; 

 𝒚interp is the 𝑦-values of the blue curve; 

 𝒗interp is related to the width of the shaded region; 

 𝜎𝑛
2 is the minimum variance, which is at the data point locations; 

 𝜎𝑦
2 + 𝜎𝑛

2 is related to the maximum width of the shaded region, which is far from 

any data points. 

The log marginal likelihood is not as easy to picture. The notation log p(𝒚data|𝑿data) 

indicates that the log marginal probability is the log of the probability of the values 𝒚data 

given 𝑿data. Since the predicted values 𝒚interp do not have to go through the data values 

𝒚data, the greater the difference between the model and the data, the lower the probability 

and the worse the model, which is why maximizing the log marginal likelihood is a 

reasonable way to improve the model. Conceptually, in Equation (4.18) the first term 

represents how well the data fits the model where a better fit increases the log marginal 

likelihood. The second term represents the model’s complexity where the log marginal 

likelihood decreases with greater complexity. Lastly, the third term normalizes the 
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probability. Thus, maximizing the log marginal likelihood balances model fit and 

complexity. 

For this application, the most important aspect of these equations is that the variance 

𝒗interp is independent of 𝒚data, which means that it can be evaluated without BEM 

calculations. Some BEM computations are needed to determine the hyper-parameters the 

first time that 𝒗interp is evaluated, but any other time does not require BEM calculations. 

Moreover, changing 𝑿data does not require new BEM computations. 

§4.5 Determining the hyper-parameters 

The last step before estimating the variance is to find the hyper-parameters. Since the 

hyper-parameters are generally unknown, usually one optimizes them using data. This 

optimization problem requires the following: 

 Acquire data; 

 Define the objective function; 

 Specify any constraints (if any); 

 Choose an optimization approach; 

 Avoid small local maximum. 

§4.5.1 Sample data 

Optimizing the hyper-parameters requires some data, so 2.5D BEM provides the sample 

data. Again, the question is where to put the points. One option is to randomly sample the 

entire 5D domain with up to 10,000 points. The number of sample points is limited 

because calculating the log marginal likelihood requires inverting 𝑲data, which is an 

𝑂(𝑁3) operation. 
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To reduce the computational cost, the 5D problem can be broken down into five 1D 

problems, which assumes the covariance is only weakly affected by quadratic terms. This 

option is less expensive because fewer points are necessary to adequately sample five 

lines than to all of sample 5D space. Each line would hold four of the variables constant 

while changing the fifth variable. For example, the common point in all of the plots in 

Figure 4.4 is (𝑥𝑠, 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦) = (−2, 0, 2, 0, 0) m, and one at a time the variables have 

the following values: 

 𝑥𝑠 = [−35.00, −34.75, −34.50, … − 1.00] (137 points); 

 𝑧𝑠 = [0.00, 0.05, 0.10, … 4] (81 points); 

 𝑥𝑟 = [1.0, 1.5, 2.0, … 200] (399 points); 

 𝑧𝑟 = [0.0, 0.1, 0.2, … 35] (351 points); 

 ∆𝑦 = [0.00, 0.25, 0.50, … 60] (241 points); 

which makes a total of about 1200 points. The additional cost of computing these extra 

points is negligible compared to the total cost of computing over 1 million points. 

An additional benefit of breaking the problem into five 1D problems is that the 1D data 

can easily be interpreted and checked. Figure 4.4 verifies that points far from the complex 

object and the ground are fairly similar (i.e. have high covariance) and that points close to 

the complex object and ground are less similar. Long horizontal stripes indicate that the 

values along that direction are very similar. Checking the data is also very important 

because excess numerical noise causes the optimization to converge to an 

unrepresentative solution. Increasing the accuracy of the numerical integrals and ensuring 

convergence in the 2.5D BEM calculations mitigates the numerical noise. 
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Figure 4.4: Sample data in each direction 

Each of the plots illustrates the correction factors as a function of frequency (50 Hz – 5 kHz in third-octaves) and 

position. Each plot gives the correction along a line parallel to a different axis, which is given along the plot’s 𝑥-axis. 

All of the lines intersect at (𝑥𝑠 , 𝑧𝑠 , 𝑥𝑟 , 𝑧𝑟 , ∆𝑦) = (−2, 0, 2, 0, 0) m. 

§4.5.2 The objective function 

Typically, the objective function is the log marginal likelihood, and the goal is to 

maximize it. This setup assumes that there is only one output variable with one associated 

log marginal likelihood, but the current application has 21 output variables (i.e. one for 

each third-octave band from 50 Hz to 5 kHz) that each has a corresponding log marginal 

likelihood. Instead, the objective function is the mean log marginal likelihood across all 

of the frequency bands. 

The derivatives of the objective function with respect to the hyper-parameters are the 

mean derivatives across the frequency bands. For each frequency, the gradient (i.e. 𝛁𝑖𝑓 =
𝜕𝑓

𝜕𝜽𝑖
) and Hessian (i.e. 𝐇𝒊,𝒋(𝑓) =

𝜕2𝑓

𝜕𝜽𝑖𝜕𝜽𝑗
) of the log marginal likelihood with respect to the 

hyper-parameters 𝜽 = [𝜎𝑦 𝒎𝑇 𝒃𝑇] 𝑇 are 

 𝛁[log p(𝒚|𝑿)] =
1

2
𝒚𝑇𝑲−1𝛁(𝐊)𝑲−1𝒚 −

1

2
tr[𝑲−1𝛁(𝐊)] ; (4.19) 

   

 𝐇 [log p(𝒚|𝑿)] =
1

2
𝒚𝑇𝑲−1[𝐇(𝑲) − 2𝛁(𝐊)𝑲−1𝛁𝑇(𝐊)]𝑲−1𝒚  

 +
1

2
tr[𝑲−1𝛁(𝐊)𝑲−1𝛁𝑇(𝐊) − 𝑲−1𝐇(𝑲)]. (4.20) 
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Since the derivatives only contain the data matrices and vectors, the data subscript has 

been dropped from these equations for brevity (i.e. 𝒚 = 𝒚data, 𝑿 = 𝑿data, and 𝑲 =

𝑲data). To derive these derivatives, notice that 𝑲 is a symmetric matrix (i.e. 𝑲 = 𝑲𝑇) 

and (log|𝑩|)′ = tr(𝑩−1𝐁′) where 𝑩 is an invertible matrix, tr is short for trace and 

means to sum the elements along the diagonal, and the prime denotes a derivative. Also, 

be careful about the high level of abstraction; 𝛁(𝑲) is a vector of matrices and 𝐇(𝑲) is a 

matrix of matrices. The term 𝛁𝑇(𝐊) transposes the gradient vector but all of the matrices 

within the gradient are not transposed. 

The remaining derivatives (i.e. 𝛁(𝐊) and 𝐇(𝑲)) depend on the covariance function and 

involve the chain, product, and quotient rules for derivatives. For the 1D case and only 

one element of 𝑲, let Equation (4.12) be expressed as four functions 

 𝑘 = 𝑓1𝑒𝑓2; 𝑓1 = 𝜎𝑦
2; 𝑓2 =

𝑓3

𝑓4
; 𝑓3 = −(𝑥 − 𝑥′)2;  (4.21) 

   

 𝑓4 = 𝑚4𝑥𝑥′ + 𝑚2𝑏2(𝑥 + 𝑥′)+𝑏4. (4.22) 

   

The gradients of these functions with respect to [𝜎𝑦 𝑚 𝑏]𝑇 are 

 𝛁(𝑘) = 𝑘 [
𝛁(𝑓1)

𝑓1
+ 𝛁(𝑓2)] ; 𝛁(𝑓1) = [

2𝜎𝑦

0
0

] ; 𝛁(𝑓2) = −𝑓2

𝛁(𝑓4)

𝑓4
;    (4.23) 

   

 𝛁(𝑓4) = [

0
4𝑚3𝑥𝑥′ + 2𝑚𝑏2(𝑥 + 𝑥′)

2𝑚2𝑏(𝑥 + 𝑥′) + 4𝑏3
]. (4.24) 

   

The gradient of 𝑓3 is not included because it (and the Hessian) is all zeroes. The Hessians 

of the functions are 

 𝐇(𝑘) =
𝛁(𝑘)𝛁𝑇(𝑘)

𝑘
+ 𝑘 [

𝐇(𝑓1)

𝑓1
−

𝛁(𝑓1)𝛁𝑇(𝑓1)

𝑓1
2 + 𝑯(𝑓2)] ;  (4.25) 

   

 𝐇(𝑓1) = [
2 0 0
0 0 0
0 0 0

] ; 𝐇(𝑓2) =
𝛁(𝑓2)𝛁𝑇(𝑓2)

𝑓2
+ 𝑓2 [

𝛁(𝑓4)𝛁𝑇(𝑓4)

𝑓4
2 −

𝐇(𝑓4)

𝑓4
] ; (4.26) 

   

 𝐇(𝑓4) = [

0 0 0
0 12𝑚2𝑥𝑥′ + 2𝑏2(𝑥 + 𝑥′) 4𝑚𝑏(𝑥 + 𝑥′)

0 4𝑚𝑏(𝑥 + 𝑥′) 2𝑚2(𝑥 + 𝑥′) + 12𝑏2
]. (4.27) 
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§4.5.3 Constraints 

The form of Equation (4.12) was chosen specifically to avoid constraints. This 

optimization problem does not have any equality or inequality constraints. Although the 

denominator of the exponent must be positive, the hyper-parameters 𝑚 and 𝑏 are squared 

so that those hyper-parameters do not need any inequality constraints. Thus, this 

optimization problem does not have any equality or inequality constraints. 

§4.5.4 Optimization method 

§4.2.3 gives three common optimization methods: steepest decent, Newton, and quasi-

Newton approaches. Since the objective function (i.e. the log marginal likelihood) and its 

first and second derivatives are known and there are only a few hyper-parameters, the 

most appropriate method is Newton’s method without any constraints. In Matlab, the 

appropriate function is fminunc()132, which uses a trust region approach133. 

§4.5.5 Improving the local results 

Since the problem is not convex, any optimized solution might only be a local maximum. 

Thus, it is quite possible that the optimization would result in a very small (i.e. poor) 

local maximum. To mitigate this problem, the algorithm described above uses multiple 

randomly generated start locations. These calculations are independent so that they can 

be run in parallel. Any future steps use the hyper-parameters that correspond to the best 

objective function. 

§4.6 Minimizing the variance 

After determining the hyper-parameters, the next optimization problem is to minimize the 

variance with respect to the data point locations 𝑿data. Similar to the last section, this 

section 

 Defines the objective function; 

 Specifies any constraints; 

 Determines appropriate optimization methods. 

§4.6.1 Objective function 

Since the variance is also a function of position (i.e. it has multiple values), there is not a 

clear best objective function because there is more than one way to combine the points. 

Minimizing the mean value with respect to 𝑿data seems to be the most natural choice, but 
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it requires calculating the variance, which involves a matrix inversion, at a large number 

of locations and does not actually produce the desired effect. Minimizing the mean 

produces small variance between the point that are furthest apart, which are the points 

that are far from the complex object and are arguably the least important points. 

Instead, the objective function is the global maximum variance, which means that this 

optimization problem requires a global optimization problem with respect to 𝑿interp to 

evaluate the objective function. Thus, before moving forward with minimizing the 

maximum variance, it is necessary to have a method to find the global maximum. 

In general, the problem of finding a global maximum for a non-convex function (the 

variance is not a convex function) is very difficult. However, knowledge about the 

specific function can make the problem much more manageable. First, the range is set 

and finite, so a brute force approach would finely sample the entire range for each 

dimension (i.e. 𝑥𝑠, 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦) and pick the largest value to be the value of the objective 

function. Second, the variance is smallest at the data points and largest about halfway 

between the data points. Thus, sampling the function at the halfway points between each 

of the data points and choosing the largest value is a good, inexpensive first 

approximation. In practice, the error is typically about 5-10%, and this level of accuracy 

may be sufficient for some applications. The maximum is not exactly at the midpoint 

between the data points because the characteristic length of the covariance function is not 

constant and increases with the dimension, so the maximum is actually slightly less than 

the midpoint. This information suggest finely sampling the regions just less than halfway 

between each of the data points and letting the objective function value be the maximum 

of these values. Finally, if accuracy is very important, then another optimization could be 

performed for each midpoint where the midpoint is the initial guess. Thus, the objective 

function would be the largest maximum across all midpoints and dimensions. This is 

probably the most expensive option. 

§4.6.2 Constraints 

To be clear, the goal is to minimize with respect to 𝑿data the maximum of the variance 

with respect to 𝑿interp. The number of variables and the constraints both depend on the 

model for 𝑿data. For example, the points could be specified with a simple exponential 

function like Equation (4.9), which would have only one variable per dimension and no 

constraints, or by letting each data point position be a variable, which would have many 

variables with the constraints that the positions are all inside the range and no data points 

are at the same location. The first option is far less expensive because there is only one 

variable and works well with the current covariance function but provides less flexibility. 

The second option gives great freedom but is much more expensive. There are also many 
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options in between and the best model depends on the application. If more than one 

model is plausible, then try as many as practicable. 

§4.6.3 Optimization method 

§4.2.3 discusses three common optimization methods: steepest decent, Newton, and 

quasi-Newton approaches. In this case, the analytic derivatives are even more involved 

than for the log marginal likelihood case and are different for each covariance function 

and model for 𝑿data. To indicate the complexity, the first step to calculate the analytical 

gradient and Hessian would be differentiating Equation (4.17) with respect to 𝑿data [or 

potentially 𝑐2 from Equation (4.9)]. Using only one interpolation point, the general forms 

are 

 𝛁(𝒗interp) = 𝑲m
𝑇 𝑲d

−1𝛁(𝑲d)𝑲d
−1𝑲m − 2𝑲m

𝑇 𝑲d
−1𝛁(𝑲m); (4.28) 

   

 𝐇(𝒗interp) = 𝛁(𝑲m
𝑇 )𝑲d

−1𝛁𝑇(𝑲d)𝑲d
−1𝑲m + 𝑲m

𝑇 𝑲d
−1𝛁(𝑲d)𝑲d

−1𝛁𝑇(𝑲m)  

 −2𝑲m
𝑇 𝑲d

−1𝛁(𝑲d)𝑲d
−1𝛁𝑇(𝑲d)𝑲d

−1𝑲m + 𝑲m
𝑇 𝑲d

−1𝐇(𝑲d)𝑲d
−1𝑲m  

 +𝑲m
𝑇 𝑲d

−1𝛁(𝑲d)𝑲d
−1𝛁𝑇(𝑲m) + 𝛁(𝑲m

𝑇 )𝑲d
−1𝛁𝑇(𝑲d)𝑲d

−1𝑲m  

 −2𝛁(𝑲m
𝑇 )𝑲d

−1𝛁𝑇(𝑲m) − 2𝑲m
𝑇 𝑲d

−1𝐇(𝑲m); (4.29) 

   

where again for brevity the subscripts have been shortened so that 𝑲d = 𝑲data and 𝑲m =

𝑲mixed. The majority of the work still remains to calculate 𝛁(𝑲data), 𝛁(𝑲mixed), 

𝐇(𝑲data), and 𝐇(𝑲mixed). 

Thus, instead of calculating the gradient and Hessian analytically, the gradient is 

approximated using finite differences and the Hessian is approximated using the 

BFGS134–137 quasi-Newton approach. Since there are no constraints, the appropriate 

Matlab function is again fminunc(). If there are constraints then use fmincon(). 

§4.7 Choosing N 

The final unknown that must be optimized is the number of points for each dimension 

(i.e. 𝑥𝑠 , 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦). The algorithm has the following steps: 

1. Guess 𝑁 for every dimension 

2. Minimize the maximum variance for every dimension 

3. Add one to the 𝑁 associated with dimension that has the largest maximum 

variance 

4. Repeat steps 2-3 until the product of all the 𝑁s is over some specified limit 
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For step 1, the optimization process requires an initial guess for the number of points 𝑁 

for each dimension (i.e. 𝑥𝑠, 𝑧𝑠, 𝑥𝑟 , 𝑧𝑟 , ∆𝑦). Since the points are on a grid, the total number 

of points is the product of all of the 𝑁s. The initial value for each 𝑁 is not very important 

because the optimization process updates this number on each iteration. However, all of 

the values should be less than the expected optimal values because the optimization 

procedure can only increase 𝑁 for each dimension. For example, since the product of all 

of the optimized 𝑁s should be about 1 million in the current application, then 𝑁 for each 

dimension could start at five because each dimension probably needs more than five 

points to minimize the maximum variance. 

For step 2, §4.6 discusses minimizing the maximum variance in detail, but there are a 

couple ways to decrease the computation time for multiple similar evaluations. For 

instance, the first time through the steps, every dimension’s variance must be optimized 

and the maximum must be found. However, since only one dimension is modified on 

each iteration, this information should be stored so that the same work does not have to 

be repeated. In addition, in some cases the optimal values are not changed dramatically 

by adding one additional point; thus, the previous optimal values should also be stored to 

use as initial guesses in the next iteration. 

For step 3, find the dimension with the largest maximum variance and add one to the 

associated 𝑁 value. This step compares the final objective function values from the 

previous step and updates the appropriate 𝑁. 

For step 4, the algorithm is terminated when the total number of points (i.e. the product of 

all of the 𝑁s) reaches a certain threshold based on available memory. It’s also wise to 

look at how the objective function (i.e. the maximum variance) is changing as the 

threshold is being reached. On the one hand, if the objective function only modestly 

improves for each additional point, then perhaps the additional points are not worth the 

extra storage costs. On the other hand, if the objective function is improving rapidly with 

each additional point, then perhaps the limit should be slightly increased to take 

advantage of the reduced maximum variance. In addition, there are other reasonable 

stopping criteria; for example, the algorithm could terminate when the maximum 

variance falls below a preset threshold. 

§4.8 Comparison 

Finally, this section implements a simplified version of the whole optimization process to 

demonstrate how the optimization process works and the expected level of improvement. 

Instead of doing the whole 5D problem, this section goes through a 2D problem, which 

makes 1) visualizing the results easier and 2) calculating densely spaced reference results 



§4.8 Comparison 

101 

 

feasible. In addition, two other non-optimized solutions (linear and exponential spacing) 

are used for comparison purposes. This section takes the same format as the sections in 

the previous validation chapter with description, results, and analysis subsections. 

§4.8.1 Description 

For the current problem, the complex and simplified objects are the same T-barrier and I-

barrier from §3.2, and the parameters are the same as the hard ground case in §3.3 except 

for the source and receiver positions. Since this example only evaluates the table of 

corrections and does not even use EM, the source and receiver positions are not 

expressed in the global coordinates where the source and receiver each have three 

coordinates but rather in the local coordinates of the T-barrier. To simplify the problem, 

three of the five local variables are fixed: 𝑥𝑠 = −3.0 m, 𝑧𝑠 = 0.3 m, and 𝑧𝑟 = 1.5 m; and 

the other two variables have the following ranges: 𝑥𝑟 = [1, 200] m and ∆𝑦 = [0, 60] m. 

For these two dimensions, the data locations are determined using linear, exponential, 

and optimized distributions. The linear distribution uses Equation (4.5) with the range 

and number of points along each dimension to choose the point locations. The only 

unknown is the number of points for each dimension. According to §2.6.1, each 

dimension can contain about 19 points. However, using 19 points for both dimensions 

means that the points will be much closer together along ∆𝑦 than along 𝑥𝑟 because ∆𝑦 

has a much smaller range. At this point, there is no reason to expect the correction factors 

to change more rapidly in the ∆𝑦-direction than the 𝑥𝑟-direction, so the number of points 

for each dimension should be proportional to the range. Thus, keeping the total number of 

points less than 192 = 361 and making the number of points for each dimension 

proportional to the range yields 9 points for ∆𝑦 and is 30 points for 𝑥𝑟 (i.e. 30/9 ≈

199/60 and 9 × 30 = 270 < 361). The number of points could be increased slightly, 

but these numbers are sufficient for a simple comparison. Using (4.5) yields the linear 

distribution of points in Table 4.1. 

Next, the exponential distribution uses Equation (4.7) with the range and number of 

points per dimension. To keep the comparison as fair as possible, all of the methods use 

the same number of points per dimension, so the points follow from Equation (4.7) and 

are in Table 4.1. 
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Table 4.1: Data positions for comparison 

These are the data locations for the linear, exponential, and optimized distributions. Figure 4.5 illustrates the data 

locations. 

𝒏 
Linear Exponential Optimized 

𝒙𝒓 (m) ∆𝒚 (m) 𝒙𝒓 (m) ∆𝒚 (m) 𝒙𝒓 (m) ∆𝒚 (m) 

1 1.00 0.00 1.00 0.00 1.00 0.00 

2 7.86 7.50 1.20 0.67 1.34 2.50 

3 14.72 15.00 1.44 1.79 1.73 5.75 

4 21.59 22.50 1.73 3.67 2.19 9.98 

5 28.45 30.00 2.08 6.81 2.74 15.49 

6 35.31 37.50 2.49 12.06 3.37 22.67 

7 42.17 45.00 2.99 20.83 4.12 32.01 

8 49.03 52.50 3.59 35.49 5.00 44.17 

9 55.90 60.00 4.31 60.00 6.03 60.00 

10 62.76  5.18  7.24  

11 69.62  6.22  8.66  

12 76.48  7.46  10.32  

13 83.34  8.96  12.28  

14 90.21  10.75  14.57  

15 97.07  12.91  17.26  

16 103.93  15.49  20.42  

17 110.79  18.60  24.13  

18 117.66  22.33  28.49  

19 124.52  26.81  33.59  

20 131.38  32.18  39.59  

21 138.24  38.63  46.63  

22 145.10  46.37  54.89  

23 151.97  55.67  64.58  

24 158.83  66.83  75.95  

25 165.69  80.22  89.30  

26 172.55  96.30  104.97  

27 179.41  115.61  123.36  

28 186.28  138.78  144.94  

29 193.14  166.60  170.27  

30 200.00  200.00  200.00  
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Using the optimization procedure discussed in this chapter produces the optimized 

locations. For simplicity, the 2D problem is broken down into two 1D problems. The 

distribution function is Equation (4.9) where the coefficient 𝑐2 must be found for each 

dimension (i.e. 𝑥𝑟 and Δ𝑦). For each 1D problem, the covariance function is given by 

Equation (4.12). Then, 2.5D BEM calculates the 𝑥𝑟 and ∆𝑦 data in Figure 4.4. Using the 

optimization procedure in §4.5 with 𝜎𝑛 = 0.05 dB produces the hyper-parameters for 

each dimension. Specifically, minimizing the log marginal likelihood yields the hyper-

parameters. For this case, Table 4.2 gives the hyper-parameters (𝜎𝑦, 𝑚, and 𝑏) and the 

optimized objective function [i.e. ln p(𝒚|𝑿)]. 

Table 4.2: Optimization values 

These are the intermediate values for calculating the optimized values. The first step of the optimization finds the 

hyper-parameters by maximizing the log marginal likelihood, and the second step determines the coefficient 𝑐2 by 

minimizing the maximum variance. 

 𝒙𝒓 ∆𝒚 

𝝈𝒚 4.71 2.92 

𝒎 0.654 0.247 

𝒃 0.623 0.709 

𝐥𝐧 𝐩(𝒚|𝑿) 664 -519 

   

𝒄𝟐 1.38 2.87 

𝐦𝐚𝐱 (𝒗𝐢𝐧𝐭𝐞𝐫𝐩) 0.004 8.52 

 

Recall that 𝑚2 is the slope and 𝑏2 is the intercept of the characteristic length, and 

remember that a shorter characteristic length indicates more rapid fluctuations in the data. 

The values of 𝑚 and 𝑏 suggest that close to the origin the characteristic length is similar 

along both dimensions, but moving away from the origin the characteristic length grows 

faster in the 𝑥𝑟-direction. Looking at Figure 4.4 confirms this result because the 

correction factors do not vary much for 𝑥𝑟 > 30 m but they do throughout the entire 

range of ∆𝑦. 

When the goal is to minimize the objective function, the much smaller value of the 

objective function [i.e. ln p(𝒚|𝑿)] for ∆𝑦 than for 𝑥𝑟 indicates that the Gaussian process 

does not fit the ∆𝑦 data as well as the 𝑥𝑟 data. Looking closely at the data in Figure 4.4 

reveals that there is more numerical noise in the data along Δ𝑦 than along 𝑥𝑟, especially 

above 1 kHz. This noise comes from numerically approximating integrals in 2.5D BEM. 

The best approach would be to recalculate the data using a high precision to mitigate the 

noise. Another option would be to apply a smoothing filter like a moving average to 

reduce the noise. If the noise cannot be reduced, then the standard deviation of the noise 

(𝜎𝑛) could be made larger or even made a hyper-parameter. Right now, the model sets 
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𝜎𝑛 = 0.05 dB because that is the estimated level of uncertainty that is expected from the 

2.5D BEM calculations. 

Finally, minimizing the maximum variance (§4.6) determines the coefficient 𝑐2 from 

Equation (4.9), and Table 4.2 gives the results. Recall from Figure 4.1, that 𝑐2 is an 

inverse measure of the concentration of the point. The points are approximately linearly 

spaced for large values of 𝑐2 and exponentially spaced when 𝑐2 = 1. Since both of the 

values of 𝑐2 are slightly larger than one, both dimensions have point distributions 

between linear and exponential but much closer to exponential. Since 𝑐2 is larger for ∆𝑦 

than for 𝑥𝑟, the point distribution for ∆𝑦 is slightly more linear than for 𝑥𝑟. 

Since the number of points in each direction are already set (i.e. 9 for Δ𝑦 and 30 for 𝑥𝑟), 

the optimization procedure does not have to choose how many point should be used. 

However, the much smaller maximum variance [i.e. max (𝒗interp)] for 𝑥𝑟 than for Δ𝑦 

indicates that the number of points along Δ𝑦 should be increased and the number of 

points along 𝑥𝑟 should be decreased. When the number of points in each direction is 

optimized the maximum variance in each direction tends to be approximately equal 

instead of being multiple orders of magnitude different. The algorithm wants more points 

along Δ𝑦 to be able to model the numerical noise in that direction, but recalculating the 

data with less noise would reduce the need for points in the Δ𝑦-direction. Using a 

smoothing filter is another option if the noise cannot be eliminated at a reasonable cost. 

Finally, plugging the values of 𝑐2 into Equation (4.9) produces the optimized locations, 

which are given in Table 4.1. Overall, the values in Table 4.1 are very similar for 

exponential and optimized distributions, so the optimized results are not expected to be 

much better than the exponential results. However, this conclusion could not have been 

known before performing the optimization. In addition, the optimization method provides 

a numerical way to choose the number of points for each dimension, which was not used 

here. 

§4.8.2 Results 

After determining the locations of the data points, the next step is to calculate the values 

at the locations. 2.5D BEM provides the data for the tables of corrections. Then, to 

evaluate the interpolation error, 2.5D BEM calculated the levels on a fine grid of 

receivers over the entire domain of 𝑥𝑟 and Δ𝑦 with 25 cm between each point in both 

dimensions. Now, the actual values calculated directly with 2.5D BEM on a fine grid can 

be compared with the values calculated by interpolating the 2.5D BEM results for the 

linear, exponential, and optimized distributions. Figure 4.5 gives these results. All three 

distributions perform fairly well with the linear distribution doing the worst and the 

optimized distribution only doing slightly better than the exponential distribution. 
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Figure 4.5: T-top correction using different methods 

The T-top correction is calculated four different ways: 1) directly with 2.5D BEM called the reference result, 2) 

interpolating the linearly distributed data, 3) interpolating the exponentially distributed data, and 4) interpolating the 

optimized data distribution. The black dots show where the data points are for the interpolated data. The levels shown 

are a weighted average over 50-5000 Hz (A-weighted and weighted to look like a car spectrum). 

In addition, Figure 4.6 gives the error between each of the interpolated distributions and 

2.5D BEM. The error is the interpolated value minus the reference value. This plot 

demonstrates more clearly that the exponential and optimized distributions have lower 

error than the linear distribution, especially for 𝑥𝑟 < 30 m. Although, the optimized 

results are only slightly better than the exponential results. For all of the methods, the 

interpolation error in Figure 4.6 is significantly smaller than the actual correction factor 

in Figure 4.5 (notice the different scale). 
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Figure 4.6: Error levels for the three distributions 

These plots give the error of the linear, exponential, and optimized distributions compared to the reference 2.5D BEM 

computations. Notice the much smaller scale in this figure than in Figure 4.5. 

§4.8.3 Analysis 

Finally, taking the data from Figure 4.6 and calculating some important statistical 

measures produces Figure 4.7. Linear, exponential, and optimized distributions all 

produce a mean error that is close to zero. Comparing the spread of the data demonstrates 

that the linear distribution has the largest range, standard deviation, and RMS error, and 

the optimized distribution has the smallest. 

While the optimized distribution does perform the best, the small improvement makes 

justifying using the optimized method over the exponential distribution difficult because 

the optimized method is significantly more complicated and expensive. In addition, the 

optimized method has shown to be sensitive to numerical noise in the 2.5D BEM data. 

However, what has been demonstrated here is a very restricted optimization. Allowing 

the points to be arbitrarily placed along each dimension would improve the result, and 

using a different covariance function may also help. 

The optimization method also chooses the number of points for each dimension in a 

numerical way, which is a benefit that is not demonstrated in this example. For example, 
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instead of using 9 points for Δ𝑦 and 30 points for 𝑥𝑟, the example could have used 11 

points for Δ𝑦 and 25 points for 𝑥𝑟, which keeps the total number of points about the 

same. Calculating both grids and evaluating the interpolation error in the full 5D setting 

would require too many BEM computations, so the optimization procedure provides an 

efficient way to choose the number of points along each dimension. 

 
Figure 4.7: Error comparison for the three distributions 

The horizontal lines for each box and whisker plot from bottom to top are the smallest value, first quartile, second 

quartile, third quartile, and largest value, and the values below each box are the mean (𝜇), standard deviation (𝜎), and 

root mean squared error (RMS). The left box represents the interpolation error using the linear distribution. The center 

box represents the interpolation using the exponential distribution. The right box represents the interpolation using the 

optimized distribution. 
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§4.9 Summary 

This chapter discusses the issue of where to put the data points so that the interpolation 

error is minimized. This problem occurs frequently across many disciplines. For example, 

where should weather stations be located to obtain the greatest accuracy from a limited 

number of stations? Where should a finite set of noise monitors be put to best 

approximate the noise around an airport? Since actually calculating the mean error for 

many different point distributions is infeasible, this chapter chooses the locations that 

minimize the variance of the interpolated points, which is estimated using a Gaussian 

process. The variance is a measure of the possible spread or uncertainty, so as the 

variance decreases the errors should also decrease. This change probably introduces some 

error (i.e. the optimized locations may not be the exact locations that minimize the error 

the best), but it also makes the problem feasible. 

The optimization procedure has the following major steps: 

1. Choose a distribution function 

2. Select a covariance function 

3. Obtain sample data using 2.5D BEM 

4. Optimize the hyper-parameters (i.e. the covariance function parameters) by 

maximizing the log marginal likelihood 

5. Optimize the distribution function parameters by minimizing the maximum 

variance 
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Chapter 5 Conclusion 

§5.1 Objectives 

The primary objectives of this chapter are to  

 synthesize the major results from the previous chapters 

 highlight the novelty and importance of the work 

 present a perspective on future work in this area 

§5.2 Principal results 

The most important result of this dissertation is the hybrid method that extends EMs to 

more complicated geometries while being far less expensive than 3D reference methods. 

The increased complexity compared to EMs results from incorporating 2.5D BEM 

calculations so that objects can have an arbitrary cross-section. The improved speed 

compared to 3D BEM stems from assuming that the attenuation of a complex object 

compared to a reference object is mostly independent of its surrounding so that the extra 

attenuation can be approximated using 2.5D BEM. This assumption is similar to the EM 

assumption that attenuation from geometrical divergence is independent of the 

attenuation from atmospheric absorption. Furthermore, computational efficiency is also 

improved by storing a large number of 2.5D BEM results in a table that can easily be 

searched and interpolated whenever EM needs the information instead of performing a 

2.5D BEM computation for every propagation path. Several additional aspects of the 

hybrid method are important for its efficiency and accuracy. 

First, the hybrid method uses EMs as the efficient method. Certainly, other methods 

could be used instead, but EMs are particularly fitting because of their efficiency and 
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modeling procedure. Specifically, the correction factors are easy to apply because EMs 

combine the ray paths in a vertical plane through the source and receiver and separate the 

paths that travel over and around the complex object. Both of these aspects are important 

for approximating a 3D object using a 2.5D approach. 

Second, the hybrid method uses 2.5D BEM as the reference method. As a 2.5D method, it 

efficiently models arbitrary cross-sections and point sources, and as a boundary element 

approach, it efficiently models hard flat ground and infinite domains. All four of these 

aspects are critical for the reference method. Other methods could be used, but 2.5D 

BEM is very appropriate. 

Third, the hybrid method uses six Cartesian coordinates. Using fewer than six variables 

would dramatically decrease the accuracy of the hybrid method because ∆𝑦 would have 

to be excluded and the extra attenuation varies just as much with ∆𝑦 as the other 

variables. Using more than six variables would also decrease the accuracy of the hybrid 

method because there would not be enough data points to accurately represent how the 

extra attenuation changes with respect to each variable. The hybrid method uses 

Cartesian coordinates because the extra attenuation of complex objects does not have any 

nice symmetry for all complex objects. 

Fourth, the hybrid method usually models the complex object on hard, flat ground to 

calculate the correction factors even if the ground is not hard. This approach sacrifices a 

little accuracy for huge reductions in computation time and memory. Specifically, 2.5D 

BEM is faster using hard ground than impedant ground, and more importantly the 

number of tables of corrections is dramatically reduced. Instead of a new table for every 

ground type, the hybrid method only needs one. 

Fifth, the hybrid method models the effect of other objects in the propagation path on the 

extra attenuation by changing the apparent source and/or receiver positions for the 

complex object. Specifically, multiple diffractions, reflections, and lateral diffractions 

change the apparent source and/or receiver positions for the complex object. This choice 

is why the extra attenuation is not completely independent of the surrounding geometry 

and greatly improves the accuracy of the method for negligible cost. 

Sixth, the hybrid method linearly interpolates data on a non-uniform grid to obtain the 

extra attenuation from the table of corrections. Using higher order interpolation methods 

like cubic interpolation is much more complicated and expensive because the 

interpolation is 5D. Using more flexible data structures (e.g. scattered or quad-tree) are 

also too computationally expensive to implement because of the large number of data 

points. 

Seventh, the hybrid method can also extrapolate the correction factors. However, 

extrapolation is inherently less accurate than interpolation, so interpolation should be 
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used whenever possible. If many points must be extrapolated and they are affecting the 

accuracy of the results, then the range of the source and receiver positions should be 

increased. 

Eighth, the hybrid method can benefit from optimizing the source and receiver positions 

to reduce the interpolation error. The optimization procedure minimizes the maximum 

variance, which is modeled with a Gaussian process. Effectively, the source and receiver 

positions are concentrated close to the complex object and the ground where the extra 

attenuation fluctuates the most rapidly. 

Finally, this dissertation also models four cases using the hybrid method. The hard 

ground case verifies that the interpolation error is small regardless of the data points 

being far apart compared to a wavelength. The soft ground case demonstrates that extra 

attenuation term is fairly invariant with respect to the ground type so that only 2.5D BEM 

results using hard ground are necessary. The buildings case indicates that the reflection, 

multiple diffraction, and lateral diffraction approximations are sufficiently accurate. The 

fourth case establishes that the hybrid method can be applied to situations that are far too 

expensive for any 3D reference method. All of the cases indicate that the hybrid method 

makes a substantial contribution to EMs. 

§5.3 Novelty and importance 

This dissertation contains two major novelties:  

 Hybrid method; 

 Location optimization applied in acoustics. 

The idea of combining EMs and BEM using a table of corrections is not new, but to the 

best of the author’s knowledge, no one has fully specified a way to combine them. 

Conceptually, the biggest gap in the method was how to do anything more complicated 

than a simple diffraction over a complex object. No one had specified how the rest of the 

geometry (e.g. other buildings) would impact the extra attenuation term. This omission 

makes the method unusable in urban settings. In addition, the development of the hybrid 

method revealed many choices that have never been justified. From small decisions like 

choosing the number of variables to big ones like choosing the interpolation method and 

data structure, previous literature did not justify or even specify in many cases the 

approach. Chapter 2 seeks to give the reader this information. 

Furthermore, to the best of the author’s knowledge, no one has fully verified an approach 

combining EMs and BEM. In contrast, Chapter 3 gives multiple 3D validations against 

2.5D BEM and FM-BEM. Certainly, the hybrid method can be further validated using 
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different geometries and measurements, but the current level of validation is absent from 

the literature for an equivalent hybrid method. 

Finally, optimizing data locations by minimizing the variance is not new to those in the 

optimization field. However, this type of technique is new to those in acoustics and more 

specifically to urban outdoor sound propagation. In applying this technique to this 

application, two difficulties arose. First, the number of spatial dimensions is considerably 

higher. Typically, there are at most three spatial dimensions, but this application has five. 

Chapter 4 discusses how to keep the problem manageable by breaking the problem into 

five 1D problems. Second, other applications usually have only one output variable 

whereas in acoustics the output is a spectrum across frequency. Chapter 4 also explains 

how to handle that subtlety. 

§5.4 Future work 

As with any large project, there are still some ways that the hybrid method can be 

improved. This section discusses potential opportunities starting with the most important. 

First, the hybrid method has been developed mostly only considering flat ground. While 

the current method can handle non-flat ground, the 2.5D BEM computations will be 

significantly more expensive. The hybrid method would be improved by finding the most 

efficient way to model non-flat ground in 2.5D BEM. 

Second, the method can be further validated using different geometries and 

measurements. The hardest part of the validation is finding a reference method that can 

yield results for the whole frequency range. Moreover, measurements can be costly and 

time consuming but would further validate the method. 

Third, the interpolation method and method to predict the variance are different, but 

finding a method that could do both would be better for two reasons. First, the 

optimization depends on the values predicted by the Gaussian process and not the linear 

spline. This difference likely causes a slightly suboptimal solution, which could be 

slightly improved if the methods were the same. Second, the current method does not 

provide any indication of the uncertainty of the extra attenuation. If the interpolation 

method could also provide the variance, then the user would have a better idea of the 

uncertainty of the value. The difficulty is that linear interpolation does not predict the 

variance and Gaussian processes are too expensive to use on the entire dataset because 

they require a dense matrix inversion. 
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Forth, the current implementation of the hybrid method uses an I-barrier that is 20 cm 

thick as the simplified barrier because that thickness corresponds to the T-barrier. 

However, since EM and 2.5D BEM do not predict the same levels for the I-barrier, an 

improvement might be possible if the width of the I-barrier in 2.5D BEM was optimized 

to predict the levels closer to EM. This suggestion has not been implemented because it 

would probably not provide a meaningful improvement. 

Finally, the extrapolation function might be improved by calculating about 5,000 random 

samples that are close together but far from the ground and the complex object. This 

option would require additional 2.5D BEM computations, but might give better results. 

This idea was not implemented because the small potential improvement did not seem 

worth the cost. 

§5.5 Summary 

The hybrid method enables EMs to model complex geometries. To develop the hybrid 

method, this dissertation 

 Elucidates and justifies the important decision required to implement the hybrid 

method 

 Validates the hybrid method against reference computations 

 Optimizes data locations to minimize the interpolation error 

  



Chapter 5 Conclusion 

114 

 

 



Extended summary 

115 

 

Extended summary 

Environmental noise (i.e. road, rail, aircraft, and industrial noise) is ubiquitous in urban 

society and is associated with negative health outcomes. According to the World Health 

Organization, high noise exposure can lead to increased annoyance, sleep disturbance, 

cardiovascular disease, and cognitive impairment in children. Thus, noise is a public 

health concern, and its negative effects should be mitigated. 

Noise can be reduced by decreasing the level of the source or by changing the 

propagation path. Depending on the situation, the source level could be decreased by 

advancing technology (e.g. quieter engine, tire, or muffler design in cars), changing the 

source (e.g. traveling by bike instead of by car), or eliminating the source (e.g. car-free 

pedestrian zones). The propagation path could be altered by changing the distance (e.g. 

changing flight paths to avoid flying over cities), geometry (e.g. a noise barrier between a 

highway and neighboring residents), or surface materials (e.g. using grass instead of 

cement) between the source and the receiver. Outdoor sound propagation models are 

important because they quantify the impact of each of these changes. 

However, efficiently and accurately modeling urban sound propagation is difficult 

because cities are both large and complex. Because of the size of cities, reference 

approaches like the boundary element, finite element, and time-domain finite-difference 

methods are prohibitively expensive, and because of the complexity of cities, geometrical 

approaches like the engineering methods, ray tracing, and beam tracing would require too 

many orders of diffraction to obtain accurate results. 

A hybrid approach is potentially more accurate than the geometrical methods alone and 

more computationally efficient than reference methods alone, but current hybrid 

approaches are still too expensive because they still need too many reference calculations 

for high frequencies in three dimensional space. In particular, most hybrid methods use a 

fictitious boundary to separate the domain into a complex region and a simple region. A 
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reference method accurately approximates the pressure/velocity on the fictitious surface, 

and then an efficient method propagates those values into the simple region for little cost. 

This approach becomes too expensive because the number of points on the surface is 

proportional to the frequency squared because it requires multiple points per wavelength 

in two dimensions. 

This dissertation develops and validates a more efficient hybrid method that combines an 

engineering method (e.g. CNOSSOS-EU or Harmonoise) and the 2.5D boundary element 

method. The hybrid method uses an engineering method a few reasons. First, engineering 

methods can approximate the most important sources of attenuation (e.g. geometrical 

divergence, atmospheric absorption, the ground effect, reflections, and diffractions 

over/around simple objects). Second, engineering methods can model large domains 

because their cost is independent of frequency. Instead, the cost depends on the number 

of faces/edges and the maximum order of reflection/diffraction. Third, government 

agencies, consultants, and city planners all widely use engineering methods as the 

standard way to model outdoor sound propagation. 

The hybrid method also uses the 2.5D boundary element method for a few different 

reasons. First, the 2.5D boundary element method accurately models arbitrarily-shaped 

objects with a constant cross-section, which is the principal improvement that the 

reference method offers the hybrid method. In addition, the boundary element method 

accomplishes this task very efficiently for this application. Outdoor sound propagation 

commonly has infinite domains with hard flat ground, which the boundary element 

method can model without increasing the size of the mesh. Finally, the hybrid method 

uses a 2.5D method instead of a 2D method because 2D methods can only model infinite 

coherent line sources when the engineering method uses point sources. The hybrid 

method also does not use a 3D method because a 3D method is much more expensive. 

The mesh of the 2.5D boundary element method is only 1D versus the 2D mesh of the 3D 

boundary element method, which substantially reduces the mesh’s size and complexity. 

Furthermore, the 3D boundary element method cannot model the attenuation of a 

propagation path that only diffracts over a complex object because it does not separate 

the propagation paths that go over versus around the complex object. 

To model outdoor sound propagation, the engineering methods start by setting up the 

scene. This step includes specifying the location of the sources, receivers, and any other 

objects in the scene, the impedances of all the surfaces, and the properties of the medium. 

The hybrid method modifies this step by also loading additional information about each 

complex object, which the next paragraph discusses in greater detail. Next, the 

engineering method finds the most important propagation paths between the source and 

the receiver. The hybrid method does not change this step. Then, the engineering method 

calculates all of the attenuations (e.g. geometrical divergence and atmospheric 

absorption). The hybrid method modifies this step by adding an extra attenuation term for 
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complex objects along the propagation path. The extra attenuation is the attenuation of 

the complex object minus the attenuation of the simplified object. Conceptually, this 

modification is a simple, but in practice approximating this extra attenuation is 

complicated and requires reference calculations. Finally, the engineering method sums all 

of the propagation path contributions to get the total field at the receiver. 

Since performing a boundary element computation for every propagation path would be 

prohibitively expensive, before the engineering method begins, the hybrid method instead 

performs a large number of reference calculations over a wide range of source/receiver 

positions and frequencies. The hybrid method describes the source and receiver positions 

using five Cartesian coordinates that are defined relative to the complex object (i.e. the 

perpendicular distance of the source/receiver from the object, the height of the 

source/receiver above the base of the object, and the parallel distance between the source 

and receiver). For efficiency, the source/receiver positions are constrained to a non-

uniform grid, which allows a point to be found using 𝑂(log 𝑛) operations. The boundary 

element method usually puts the complex object on hard flat ground because it efficiently 

approximates a large number of real situations. The hybrid method converts multiple 

single frequency boundary element method calculations to octave or third-octave results 

and then subtracts the simplified object level from the complex object level. Finally, the 

hybrid method sorts and tabulates the results for quick access when the engineering 

method needs them. This table is the additional information that is loaded when the scene 

is setup in the engineering method. 

When the engineering method calculates the attenuations for each path, the hybrid 

method first checks the path to determine if the path diffracts over the complex object. If 

the complex object is not in the propagation path, then the extra attenuation is zero. If the 

complex object is in the propagation path, the hybrid method calculates the path length 

differences of each diffracting object in the propagation path. If the complex object does 

not have the largest path length difference, then the extra attenuation is zero. If the 

complex object has the largest path length difference, then the hybrid method calculates 

the local source/receiver positions. The table of corrections does not use the same 

coordinates as the engineering method because the engineering method does not have a 

fixed origin. Instead, in the engineering method the user is free to choose the origin that 

best suits the current application. Thus, these global coordinates in the engineering 

method must be converted to the local coordinates in the table of corrections. In addition, 

the location of the source/receiver for the table of correction is the apparent position of 

the source/receiver. In particular, reflections from vertical surfaces use the image 

source/receiver, and lateral diffractions use a source/receiver that appears to be coming 

from the diffraction edge but keeps the original path length. 

After converting the source/receiver coordinates, the exact position is probably not in the 

table of corrections. If the point is inside the data’s convex hull, then the data is linearly 
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interpolated using the points of the smallest hyper-rectangle that contains the 

interpolation point. Thus, the interpolation has two distinct steps: 1) find the smallest 

containing hyper-rectangle and 2) use the local data to approximate the value. Using 

points on a grid makes searching for the appropriate hyper-rectangle much more efficient. 

If the point is outside the data’s convex hull, then the data is extrapolated so that 

extrapolation points close to the dataset are similar in value to the closest data point and 

extrapolation points far from the dataset decay to zero. If many points are outside of the 

table of corrections, then range of the input variables might need to be expanded. 

As an initial validation, the hybrid method models a T-barrier with hard ground. The 

complex barrier is a T-barrier that is 3 m tall and 0.2 m thick and has a 1 m wide top, and 

the simplified barrier is an I-barrier that is the same as the T-barrier without the top. For 

comparison, the 2.5D boundary element method independently models the same scene 

for a source that is 0.3 m high and 3 m from the barrier and a dense horizontal grid of 

receivers that are 1.5 m high. 

Overall, the two methods produce very similar results. For the T-barrier, the hybrid 

method reduces the RMS error by 1.5 dBA compared to the engineering method using 

the I-barrier. The largest source of error is the difference between the engineering method 

and the 2.5D boundary element method for the simplified I-barrier. This difference stems 

from fundamentally different assumptions in the two models. Specifically, the boundary 

element method sums pressures using the phase information, and the engineering method 

ignores the phase information because in real-world situations turbulence and surface 

imperfections alter the phase. In addition, the hybrid method has some interpolation error 

for the T-barrier, which could be decreased by using more points or by choosing better 

locations for the points.  

Next, the hybrid method uses the same table of corrections for a T-barrier with soft 

ground similar to grass. For the T-barrier, the hybrid method reduces the RMS error by 

1.1 dBA compared to the engineering method using the I-barrier. This case demonstrates 

that a table of corrections that is calculated using hard ground can be reasonably applied 

to other types of grounds. Using a different ground type does slightly increase the error, 

but the large reduction in computation time and computer memory is likely sufficient 

compensation. Ultimately, the user can decide based on the required accuracy. 

As a final test case, the hybrid method models a T-barrier with two buildings. This case 

still uses that same table of the correction as the previous two cases, but the reference 

method must be changed to the fast-multipole boundary element method because this 

situation is fully three-dimensional and the regular boundary element method can only 

model up to 400 Hz for this scene. In contrast, the fast-multipole boundary element 

method can reach up to 1.6 kHz. This case demonstrates that the hybrid method still 

performs well even when the scene contains other objects. For the T-barrier, the hybrid 
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method reduces the RMS error by 2.0 dBA compared to the engineering method using 

the I-barrier. 

As a proof of concept, the hybrid method finally models a T-barrier in a realistic, large 

scene (i.e. 180 m x 80 m) with several buildings and partially soft ground. This case 

showcases the hybrid method because the hybrid method produces reasonable results 

when the engineering method would be inaccurate and the reference methods can only 

model low frequencies. In contrast, the hybrid method can easily model outdoor sound 

propagation for the full range of frequencies for this scene and even larger scenes with 

more buildings. 

In the hybrid method, an optimization problem naturally arises to minimize the 

interpolation error given a maximum number of points in the table of corrections. The 

distribution of the data points affects the interpolation error, so changing the distribution 

could decrease the interpolation error. Without optimizing, the hybrid method could use a 

linear or exponential distribution. Along each dimension, a linear distribution evenly 

spreads out the points and an exponential distribution concentrates the points in one area. 

Since the correction changes most rapidly close to the complex object and close to the 

ground, an exponential distribution is better than the linear distribution, but there are 

many other options that have not even been considered. If the distribution has more 

degrees of freedom, then the interpolation error would decrease, and the problem 

becomes how to determine the optimization parameters. 

The most straightforward approach is to choose the values that minimize the interpolation 

error; however, this option is prohibitively expensive because of the required data in 

order to make a reference dataset. Instead of minimizing the interpolation error directly, 

the hybrid method minimizes the variance of the interpolated value using a Gaussian 

process, which indirectly minimizes the interpolation error. The hybrid method uses a 

Gaussian process because it is a standard way to interpolate data that also gives the 

variance of the interpolated value. The interpolation error should decrease as the variance 

of the interpolated values decreases. Again, the hybrid method uses this indirect approach 

to minimize the interpolation error because the direct approach requires too many 

boundary element method computations. 

Using a Gaussian process reduces the data requirements, but it does not eliminate them. 

Even though calculating the variance does not directly depend on any data values, the 

variance does depend on some hyper-parameters, which are best approximated using 

data. After finding the hyper-parameters by optimizing the log marginal likelihood, a 

Gaussian process yields the variance as a function of the data locations and not the value 

at those locations, so repeatedly evaluating the objective function does not require any 

more boundary element computations. This reduction in boundary element computations 
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is the primary reason to introduce the substantial extra complexity associated with a 

Gaussian process rather than minimize the interpolation error directly.  

This optimization procedure produced a small improvement when there was only one 

parameter per dimension (i.e. five parameters in total), but it would likely produce even 

better results with a more flexible model. In addition, optimizing the distribution gives a 

more rigorous way to choose the number of points along each dimension and the 

distribution of the points within each dimension. Knowing that a distribution is better 

than other nearby distributions is also a benefit even if the interpolation error does not 

drastically decrease. However, the optimized distribution is not necessarily optimal 

because the optimization problem is not convex. 

In conclusion, the hybrid method provides a novel and useful tradeoff between efficiency 

and accuracy for modeling urban outdoor sound propagation with complex geometries. 

The hybrid method is more accurate than an engineering method for complicated 

geometries and more efficient than the reference methods. After creating a database of 

tables of corrections for the most common complex objects, the hybrid method only 

increases the computation time because the appropriate tables of corrections must be 

loaded into memory, which only has to be done once per scene and currently requires less 

than one minute per table to complete. All of the other computations are negligible 

compared to the rest of the computations in the engineering method. 
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Résumé étendu 

Le bruit environnemental (i.e. routier, ferroviaire, aérien et industriel)  est omniprésent en 

milieu urbain et est à l’origine de conséquences sanitaires néfastes. Selon l’Agence 

Mondiale pour la Santé (OMS), une exposition à des niveaux de bruit élevés accroit, par 

exemple, la gêne, les perturbations du sommeil, les maladies cardiovasculaires et les 

troubles cognitifs chez l’enfant. Le bruit est donc un sujet de santé publique très 

important, et sa réduction constitue un enjeu sociétal majeur. 

Les nuisances sonores peuvent être limitées en réduisant les niveaux sonores à la source 

ou en agissant sur les chemins de propagation. Selon la situation, le niveau sonore émis 

peut être réduit au moyen de solutions techniques avancées (e.g. des moteurs plus 

silencieux, des pneus ou des pots d’échappement optimisés), en changeant la source (e.g. 

en utilisant la bicyclette plutôt que la voiture), ou en éliminant la source (e.g. zones 

pédestres sans automobiles). Les chemins de propagation peuvent être, quant à eux, 

altérés pour réduire l’exposition au bruit, en modifiant les distances (e.g. en modifiant les 

trajectoires de vol afin d’éviter le survol des zones urbaines), les géométries (e.g. écrans 

acoustiques entre une autoroute et les habitations voisines), ou au moyen de matériaux 

absorbants disposés sur les surfaces de propagation (e.g. utilisation d’herbe au lieu de 

ciment) entre sources et récepteurs. Dans cette démarche de réduction des nuisances, les 

modèles de propagation sonore en milieu extérieur ont donc un rôle important, puisqu’ils 

permettent de quantifier l’impact des actions mises en œuvre. 

Cependant, il est difficile de modéliser de façon efficace et précise la propagation sonore 

en zones urbaines. Les approches dites de référence (éléments de frontière, éléments finis 

et approche temporelle par différences finies) ne sont pas adaptées à la taille des villes 

considérées, du fait des temps de calcul prohibitifs. Les approches géométriques, tout 

comme les approches d’ingénierie, moins couteuses en temps de calcul, sont de leur côté, 

inaptes à rendre compte de la complexité des villes. Ces approches, comme celles par 

exemple basées sur les techniques de rayon et de faisceaux sonores, demanderaient des 
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ordres de réflexion et diffraction trop élevés pour obtenir des résultats avec une précision 

suffisante. 

Une approche hybride, basée sur le couplage entre une méthode de référence et une 

méthode d’ingénierie, est potentiellement plus précise que les approches d’ingénierie et 

plus efficace (en temps de calcul) que les méthodes de référence. Toutefois, celles 

développées à ce jour demeurent encore trop coûteuses, notamment parce qu’elles 

demandent un nombre de calculs 3D en hautes fréquences trop important. En effet, la 

plupart des approches hybrides existantes nécessite l’utilisation de frontières fictives 

séparant le domaine d’étude en une zone « complexe » et une zone « simple ». Dans ce 

cas, la méthode de référence approxime précisément la pression et la vitesse sur la 

frontière fictive tandis que la méthode d’ingénierie effectue la propagation de ces 

quantités dans la région « simple » à moindre coût. Cette approche devient 

malheureusement rapidement onéreuse car le nombre de points sur cette surface fictive 

est fonction de la longueur d’onde, et croit avec la fréquence au carré. 

Cette thèse développe et valide une approche hybride alternative plus efficace, en 

combinant une méthode d’ingénierie (e.g. CNOSSOS-EU or Harmonoise) et un calcul 

BEM 2.5D. La méthode d’ingénierie utilisée permet ainsi de modéliser les principales 

sources d’atténuation lors de la propagation acoustique (e.g. divergence géométrique, 

absorption atmosphérique, effets de sol, réflexions et diffractions sur ou autour d’objets 

simples) sur de larges domaines, et à moindre coût, puisque le calcul est indépendant de 

la fréquence. Le calcul BEM 2.5D permet quant à lui de modéliser précisément les objets 

de forme quelconque, invariants selon une dimension, ce qui est le principal atout de 

l’approche hybride comparée à l’approche d’ingénierie. De plus le modèle 2.5D 

correspond à une géométrie invariante selon un axe ce qui correspond à de nombreux 

objets tels un écran ou un tramway. Le choix d’un calcul 2.5D au lieu d’un calcul 2D est 

cohérent avec le modèle d’ingénierie utilisé, puisque cela permet de modéliser de 

manière effective des sources ponctuelles, alors qu’une approche 2D ne permettrait de 

considérer que des sources linéiques cohérentes. Le choix d’une approche 3D aurait été, 

quant à lui, beaucoup trop onéreux et n’aurait pas permis de maîtriser les effets de 

diffraction latérale aux extrémités des objets. 

Afin de modéliser la propagation extérieure, les approches d’ingénierie commencent par 

une saisie de la scène, en spécifiant la position des sources, des récepteurs, de tous les 

objets du problème, des impédances de surface et des propriétés du milieu de 

propagation. L’étape suivante consiste ensuite à déterminer les chemins de propagation 

principaux entre les sources et les récepteurs, puis à calculer toutes les atténuations 

associées (e.g. la divergence géométrique et l’absorption atmosphérique). L’approche 

hybride vient modifier l’approche classique, d’une part, en ajoutant une information 

additionnelle au moment de la spécification de la scène, pour signaler l’existence d’un ou 

plusieurs objets complexes, et d’autre part, en ajoutant un terme d’atténuation 
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supplémentaire (ou correction) associé à chacun de ces objets. Cette atténuation 

supplémentaire, calculée avec la méthode BEM, correspond à l’atténuation d’un objet 

complexe (i.e. qui ne peut pas être modélisé par l’approche d’ingénierie) moins 

l’atténuation apportée par un objet simplifié (i.e. qui peut être modélisé par l’approche 

d’ingénierie). Finalement, la méthode hybride, comme la méthode d’ingénierie, somme 

toutes les contributions associées aux différents chemins de propagation afin d’obtenir le 

champ total aux récepteurs. 

Les calculs BEM étant trop onéreux pour être réalisés pour chaque chemin de 

propagation, ils sont effectués durant une étape préliminaire et permettent de constituer 

une table de correction. De nombreux calculs BEM de référence sont ainsi effectués pour 

plusieurs positions de sources/récepteurs et pour différentes fréquences, à la fois pour 

l’objet complexe et son équivalent simplifié. Dans la méthode hybride, les positions sont 

décrites au moyen d’un repère cartésien à cinq coordonnées relatives à l’objet complexe 

(i.e. les distances source et récepteur à l’objet, l’élévation des sources et des récepteurs et 

la distance relative entre sources et récepteur parallèlement à l’objet). Par soucis 

d’efficacité, les positions sources/récepteurs sont contraintes à une grille non uniforme, 

ce qui permet de retrouver facilement un point dans la grille. Les calculs BEM en bandes 

fines sont ensuite convertis par bande d’octave ou de tiers d’octave, afin de calculer la 

correction, en soustrayant les valeurs obtenues avec l’objet simple à celles obtenues avec 

l’objet complexe. Finalement, les facteurs de corrections sont triés et tabulés afin d’offrir 

un accès rapide à ses valeurs en fonction des besoins. Cette table est ensuite chargée en 

mémoire quand la scène est mise en place. 

Lors des calculs d’atténuation pour chaque chemin de propagation, la méthode hybride 

commence par vérifier si ce chemin est diffracté au-dessus de l’objet complexe. Si cela 

n’est pas le cas, l’atténuation excédentaire est considérée comme nulle. Si cette 

diffraction existe, la méthode calcule la différence de chemin entre chaque objet 

diffractant rencontré. Si l’objet complexe ne possède pas la plus grande différence de 

chemins, alors l’atténuation excédentaire est nulle. Si, par contre, cette différence est la 

plus grande, alors l’approche hybride détermine les positions sources/récepteurs associés 

au chemin de propagation. En pratique, ses coordonnées ont toutefois peu de chance de 

correspondre exactement aux valeurs disponibles dans la table. Par conséquent, si un 

point est à l’intérieur de l’enveloppe convexe du jeu de données, alors les données sont 

linéairement interpolées en se servant des points de l’hyper-rectangle le plus petit qui 

contient le point d’interpolation.  On notera que l’emploi de points placés sur une grille 

facilite grandement la recherche des hyper-rectangles. Si le point est en dehors de 

l’enveloppe convexe, alors les données sont extrapolées. Si de nombreux points sont en 

dehors des valeurs disponibles, il est toutefois plus pertinent d’étendre l’amplitude des 

variables d’entrée utilisées pour la construction de la table de correction. 
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Afin d’effectuer un premier test de validation, l’approche hybride a été appliquée au cas 

« complexe » d’un écran en T de hauteur de 3 m, d’épaisseur 20 cm et de sommet plat de 

1 m, reposant sur un sol rigide. La forme simplifiée associée (i.e. qui peut être modélisée 

par l’approche d’ingénierie) est un écran droit de même hauteur et même épaisseur. Dans 

un premier temps, le calcul BEM 2.5D été employé pour modéliser la scène pour une 

source localisée à 30 cm du sol et 3 m en amont de l’écran, et pour des récepteurs placés 

sur une grille horizontale à 1.5 m du sol. L’approche hybride, appliquée à l‘écran en T, 

réduit l’erreur de 1.5 dB(A) comparé à l’approche d’ingénierie, la source d’erreur 

principale étant liée à la différence de modélisation entre l’approche d’ingénierie et le 

calcul BEM 2.5D, déjà visible dans le cas de l’écran droit. Dans un second temps, la 

méthode hybride a été appliquée sur la même scène, mais cette fois en présence d’un sol 

herbeux, tout en utilisant la même table de correction (i.e. celle obtenue avec un sol 

rigide). Pour l’écran en T, l’approche hybride réduit l’erreur RMS de 1.1 dB(A) 

comparativement à l’approche d’ingénierie utilisée pour un écran droit. Ce cas montre 

qu’une table obtenue pour un sol rigide peut raisonnablement être employée pour d’autres 

types de sol. 

Par la suite, l’approche hybride a été utilisée sur une nouvelle scène, incluant l’écran en T 

précédant, mais en présence de deux bâtiments. La table de correction est identique à 

celle utilisée précédemment (sur la base de la BEM 2.5D), mais cette fois, la méthode de 

référence pour la validation de l’approche hybride est basée sur une approche 3D. 

L’emploi d’un code BEM 3D standard étant trop couteux au-delà de 400 Hz, nous avons 

utilisé la méthode FMBEM (fast-multipole boundary element method), ce qui permet 

d’atteindre des fréquences de validation plus élevées (1600 Hz). Pour l’écran en T, 

l’approche hybride réduit l’erreur RMS de 2.0 dB(A) comparativement à l’approche 

d’ingénierie utilisée pour un écran droit. Ce cas montre l’avantage de l’approche hybride 

lorsque la scène comporte également d’autres objets que l’objet complexe.  

Afin d’illustrer ce concept, l’approche hybride est finalement appliquée avec le même 

écran en T dans une scène plus large (i.e. 180 m x 80 m), comportant plusieurs bâtiments 

et un sol non rigide. Cet exemple illustre une application pratique où l’approche hybride 

fournit des résultats réalistes, alors que l’approche d’ingénierie donnerait des résultats 

peu précis et que la méthode de référence (FMBEM) serait limitée en fréquence. 

L’approche hybride peut ainsi facilement modéliser la propagation extérieure pour une 

large plage de fréquences, pour des scènes plus grandes et avec de nombreux bâtiments. 

L’utilisation de l’approche hybride soulève un problème d’optimisation lorsque l’on 

cherche à minimiser l’erreur d’interpolation pour un nombre donné de points dans la 

table des corrections. La distribution de points affecte l’erreur d’interpolation et il est 

permis de penser qu’une optimisation de ces positions permettrait de réduire l’erreur 

d’interpolation. Sans optimisation, l’approche hybride peut employer une distribution 

linéaire ou bien exponentielle des positions. Selon chaque dimension, une distribution 
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linéaire repartit les points régulièrement et une distribution exponentielle concentre les 

points dans une zone. Puisque la correction varie plus rapidement au voisinage de l’objet 

complexe et à proximité du sol, une distribution exponentielle est meilleure qu’une 

distribution linéaire, mais il reste de nombreuses alternatives non explorées. En présence 

de plusieurs degrés de liberté, l’erreur d’interpolation doit diminuer et le problème posé 

est alors de déterminer les paramètres à optimiser.  

L’approche la plus directe est de choisir les valeurs qui minimisent l’erreur 

d’interpolation. Cependant, cette option est beaucoup trop onéreuse du fait du nombre de 

données nécessaires à l’évaluation du jeu de données de référence. Plutôt que de 

minimiser directement l’erreur d’interpolation, la méthode hybride minimise la variance 

de la valeur interpolée en employant un processus Gaussien. Ceci est une façon standard 

d’interpoler des données en minimisant directement l’erreur d’interpolation. L’erreur 

d’interpolation devrait décroitre lorsque la variance des valeurs interpolées décroit. Là 

encore l’approche hybride utilise l’approche indirecte pour minimiser l’erreur car 

l’approche directe demanderait trop de calcul BEM. 

L’emploi d’un processus Gaussien réduit la quantité de données nécessaires, mais cette 

quantité n’est pas nulle. Même si le calcul de la variance ne dépend pas directement de 

données de référence, la variance dépend d’hyper-paramètres qui sont, dans le meilleur 

des cas, approchés à partir de données de calcul BEM. Après avoir déterminé ces hyper-

paramètres par optimisation de la vraisemblance log-marginale, l’utilisation d’un 

processus Gaussien permet d’obtenir la variance en fonction des positions des données et 

non des valeurs en ces positions. Ainsi, une répétition de l’évaluation de la fonction 

« objectif » ne demande pas d’avantage de calculs BEM. 

Ce processus d’optimisation entraine déjà une légère amélioration des résultats s‘il n’y a 

qu’un paramètre par dimension (i.e. cinq paramètres en tout), mais cela pourrait 

probablement donner de meilleurs résultats avec un modèle plus flexible. De plus, 

l’optimisation de la distribution aboutit à une façon plus rigoureuse de choisir le nombre 

de points pour chaque dimension ainsi que la distribution de ces points. Il est préférable 

de connaître cette distribution plutôt qu’une distribution voisine même si l’erreur 

d’interpolation ne diminue pas de façon drastique. Cependant, cette distribution n’est pas 

forcement optimale puisque le problème d’optimisation n’est pas convexe. 

En conclusion, l’approche hybride proposée s’avère être un bon compromis entre 

précision et efficacité, pour modéliser la propagation sonore en milieu extérieur et en 

présence de géométries complexes. Cette approche est plus précise que la méthode 

d’ingénierie dans des situations complexes et plus efficace, en termes de coût numérique, 

que les méthodes de référence. Une fois la table de correction créée, l’augmentation des 

temps de calcul en utilisant la méthode hybride est uniquement liée au chargement de la 
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table en mémoire, ce qui demande moins d’une minute dans le cadre de nos cas tests. 

Tous les calculs supplémentaires sont négligeables comparativement au reste des calculs. 
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Extending standard outdoor noise propagation models to complex geometries 

Résumé 

Les méthodes d’ingénierie acoustique (e.g. ISO 9613-2 ou 
CNOSSOS-EU) approchent efficacement les niveaux de bruit 
générés par les routes, les voies ferrées et les sources 
industrielles en milieu urbain. Cependant, ces approches 
d’ingénierie sont limitées à des géométries de forme simple, 
le plus souvent de section rectangulaire. Ce mémoire 
développe donc, et valide, une approche hybride permettant 
l’extension des méthodes d’ingénierie à des formes plus 
complexes, en introduisant un terme d’atténuation 
supplémentaire qui représente l’effet d’un objet réel comparé 
à un objet simple. 

Le calcul de cette atténuation supplémentaire nécessite des 
calculs de référence, permettant de quantifier la différence 
entre objets simple et complexe. Dans la mesure, où il est 
trop onéreux, numériquement, d’effectuer ce calcul pour tous 
les chemins de propagation, l’atténuation supplémentaire est 
obtenue par interpolation de données stockées dans un 
tableau et évaluées pour un large jeu de positions de 
sources, de récepteurs et de fréquences. Dans notre 
approche, les calculs de référence utilisent la méthode BEM 
en 2.5D, et permet ainsi de produire les niveaux de référence 
pour les géométries simple et complexe, tout en tabulant leur 
écart. Sur le principe, d’autres approches de référence 
pourraient être utilisées. 

Ce travail valide cette approche hybride pour un écran en 
forme de T avec un sol rigide, un sol absorbant et un cas 
avec bâtiments. Ces trois cas démontrent que l’approche 
hybride est plus précise que l’approche d’ingénierie standard 
dans des cas complexes. 

Mots clés 
Propagation sonore en milieu urbain, méthodes d’ingénierie 
acoustique, BEM, méthode hybride, processus Gaussien de 
régression, acoustique numérique, optimisation 

Abstract 

Noise engineering methods (e.g. ISO 9613-2 or CNOSSOS-
EU) efficiently approximate sound levels from roads, railways, 
and industrial sources in cities. However, engineering 
methods are limited to only simple box-shaped geometries. 
This dissertation develops and validates a hybrid method to 
extend the engineering methods to more complicated 
geometries by introducing an extra attenuation term that 
represents the influence of a real object compared to a 
simplified object. 

Calculating the extra attenuation term requires reference 
calculations to quantify the difference between the complex 
and simplified objects. Since performing a reference 
computation for each path is too computationally expensive, 
the extra attenuation term is linearly interpolated from a data 
table containing the corrections for many source and receiver 
positions and frequencies. The 2.5D boundary element 
method produces the levels for the real complex geometry and 
a simplified geometry, and subtracting these levels yields the 
corrections in the table. 

This dissertation validates this hybrid method for a T-barrier 
with hard ground, soft ground, and buildings. All three cases 
demonstrate that the hybrid method is more accurate than 
standard engineering methods for complex cases. 

Key Words 
Urban outdoor sound propagation, noise engineering 
methods, boundary element method, hybrid method, Gaussian 
process regression, numerical acoustics, optimization 
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