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Résumé:

Dans cette thèse, nous nous proposons d’étudier et de traiter conjointement plusieurs
problèmes phares en traitement d’images incluant le recalage d’images qui vise à apparier
deux images via une transformation, la segmentation d’images dont le but est de délimiter
les contours des objets présents au sein d’une image, et la décomposition d’images intime-
ment liée au débruitage, partitionnant une image en une version plus régulière de celle-ci et
sa partie complémentaire oscillante appelée texture, par des approches variationnelles lo-
cales et non locales. Les relations étroites existant entre ces différents problèmes motivent
l’introduction de modèles conjoints dans lesquels chaque tâche aide les autres, surmon-
tant ainsi certaines difficultés inhérentes au problème isolé. Le premier modèle proposé
aborde la problématique de recalage d’images guidé par des résultats intermédiaires de
segmentation préservant la topologie, dans un cadre variationnel. Un second modèle de
segmentation et de recalage conjoint est introduit, étudié théoriquement et numériquement
puis mis à l’épreuve à travers plusieurs simulations numériques. Le dernier modèle présenté
tente de répondre à un besoin précis du CEREMA (Centre d’Études et d’Expertise sur les
Risques, l’Environnement, la Mobilité et l’Aménagement) à savoir la détection automa-
tique de fissures sur des images d’enrobés bitumineux. De part la complexité des images
à traiter, une méthode conjointe de décomposition et de segmentation de structures fines
est mise en place, puis justifiée théoriquement et numériquement, et enfin validée sur les
images fournies.

Abstract:

In this thesis, we study and jointly address several important image processing prob-
lems including registration that aims at aligning images through a deformation, image
segmentation whose goal consists in finding the edges delineating the objects inside an
image, and image decomposition closely related to image denoising, and attempting to
partition an image into a smoother version of it named cartoon and its complementary
oscillatory part called texture, with both local and nonlocal variational approaches. The
first proposed model addresses the topology-preserving segmentation-guided registration
problem in a variational framework. A second joint segmentation and registration model
is introduced, theoretically and numerically studied, then tested on various numerical
simulations. The last model presented in this work tries to answer a more specific need
expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mo-
bility and planning), namely automatic crack recovery detection on bituminous surface
images. Due to the image complexity, a joint fine structure decomposition and segmenta-
tion model is proposed to deal with this problem. It is then theoretically and numerically
justified and validated on the provided images.
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les déjeuners, et à Samia dont l’enthousiasme et le dynamisme sont admirables.

De plus, j’exprime un merci tout particulier aux membres du centre Becquerel, à Ca-
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leureux, sa bienveillance, ses précieux et judicieux conseils. J’espère que nous aurons
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dans les méandres de l’administration française et pour cela je les remercie sincèrement.

D’autre part, je suis particulièrement reconnaissante à l’équipe pédagogique du premier
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Chapter 1

Introduction

1 Digital image processing introduction

Since the first photograph taken by Joseph Nicéphore Niépce in 1826, imaging has kept
developing itself, and the invention of modern computers in the 1940’s followed by the
apparition of digital images in the 1990’s have reached a milestone. We refer the reader to
[82] for an insight of the philosophy change it represented and the close connection between
mathematics and image processing. Imaging and image processing have thus become an
essential field in a growing number of applications including medical imaging, astronomy,
astrophysics, surveillance, and video to name a few.
Images are now processed by computer as two-dimensional tables and mathematical mod-
ellings have turned out to be requisite (see [7, Introduction], [105, Introduction]). Indeed
an image is seen as a discrete function u : {1, . . . ,M}× {1, . . . , N} 7→ {0, . . . , 255}k repre-
senting the intensity of the image at the pixel location (i, j) with k = 1 for a grayscale image
(see Figure 1.1 coming from http://images.math.cnrs.fr/Le-traitement-numerique

-des-images.html, Peyré) and k = 3 for a color image (Red Green Blue) (see Figure 1.2
coming from http://images.math.cnrs.fr/Le-traitement-numerique-des-images.html,
Peyré).

Figure 1.1: Grayscale image representation.

Since the images are usually digital representations of visual perception, they can be
as complicated as the scenes they depict and may exhibit several geometrical structures
including a wide range of shapes, patterns, scales and even randomness as stressed by

1



Introduction

Figure 1.2: Color image representation.

Schaeffer in [91, Introduction]. Following [105], modern image handling can be divided
into four categories:

1. image acquisition or sensing (output: digital image): it requires physical sensors to
catch the energy radiated by the object we want to image, and a digitizer to convert
that information into digital form. It often happens that the acquisition produces
raw data in a transformed domain such as Fourier domain for Magnetic Resonance
Images (MRI) or Radon domain for Computed Tomography (CT) images leading to
a reconstruction step (see [82]).

2. image processing or low-level vision (input: image, output: image): it includes image
enhancing (see [41]), denoising and deblurring (see [89] and [13]), inpainting to fill in
the missing data (see [92]), compression and super-resolution (see [33]). The main
goal is to improve the quality of the observed data to facilitate further analysis and
understanding of the scene.

3. image analysis or mid-level vision (input: image, output: image components): it en-
compasses morphological processing (extracting useful constituents describing shapes)
and image segmentation. We will get a closer look at segmentation models in the
following.

4. image understanding or high level vision (input: boundaries, regions, output: image
attributes): it generally follows the previous step and consists in assigning a mean-
ingful label to an object, based on the features and descriptors previously extracted.
It is also known as pattern recognition and this field is booming thanks to machine
learning algorithms among others.

We now concentrate upon the imaging tasks that constitute the core of this work and high-
light the guiding principle of this thesis, namely the combination of two or more processes
into a single framework in order to reinforce each of them, using nonlocal methods.

2 Image registration

Image registration, also called image fusion, image matching or image warping accord-
ing to the applications, aims to align two or more images. In this work, we will focus
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2. Image registration

on the registration of a pair of images. So given two images called Template (moving
image or source; T ) and Reference (fixed image or target; R), it consists in determining
an optimal transformation/deformation ϕ in a way to be determined and clarified later,
that maps the Template into the Reference. It is an essential tool in image processing
when complementary information is encountered in several images, such as images ac-
quired at different times, from different viewpoints, or by different sensors to name a few.
Therefore, it has a strong potential clinical impact with a wide range of applications as
stressed in [98] and [76]: shape tracking; fusion of anatomical images from Computer-
ized Tomography (CT) or Magnetic Resonance Imaging (MRI) images, with functional
images from Positron Emission Tomography (PET), Single-Photon Emission Computed
Tomography (SPECT) or Functional Magnetic Resonance Imaging (fMRI), also called
multi-modality fusion to facilitate intervention and treatment planning; computer-aided
diagnosis and disease follow-up; surgery simulation; atlas generation to integrate anatomic,
genetic and physiological observations from multiple patients into a common space and
conduct statistical analysis; radiation therapy; assisted/guided surgery; anatomy segmen-
tation; computational model building and image subtraction for contrast enhanced images.

According to the applications, we can distinguish several criteria influencing the mod-
elling such as the modality of the involved images, and the nature of the transformation.
Indeed, if the Template and the Reference share the same modality, then the registration
process aims at aligning both geometrical features and intensity level distribution, whereas
for images acquired through different mechanisms, the goal is to match salient components
or shapes while keeping the information contained in both images, impacting then the “op-
timal” definition. Besides, if the deformation involves only translations and/or rotations,
we can proceed to rigid registration, simplifying both the problem and the accuracy quan-
tification by sharply reducing the deformation degrees of freedom (see [76] for an overview
of these methods); otherwise we deal with deformable/nonrigid registration and the accu-
racy evaluation becomes very challenging (see [88]) yielding a drawback for deep-learning
inspired methods (see [108]). In the following we will focus on the deformable registration
processes.

Many researches have been carried out to address this issue and in a recent survey
[98], Sotiras et al. provide an extensive overview of existing non-rigid medical image reg-
istration models in a systematic manner, by identifying what they believe to be the main
components of such models and by thoroughly and independently analyzing them.

In a variational formulation, the aim of registration is to find the best deformation
that optimizes a specifically designed cost function encompassing a measure of alignment
between the deformed Template and the Reference, and a regularization of the sought de-
formation. The latter is required since the problem is ill-posed according to Hadamard’s
definition since the number of unknowns is greater than the number of constraints, lead-
ing to an under-constrained problem from a mathematical point of view (see [98]). The
mathematical challenges of registration models come also from the non-linearity and the
non-convexity of the cost functions and their high dependency to the considered applica-
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Introduction

tion. For instance, different organs do not have the same ability to deform. Also we have
already discussed the dependence of the problem definition on the modality of the images
involved and finally, the clinical setting greatly influences the modelling since for computer
assisted surgery, the registration is to be done between the patient and the image, which
is different in nature to the matching of two images. Thus according to Sotiras et al. [98],
an image registration algorithm consists of three main components:

1. a deformation model delimiting the desirable and acceptable/admissible deforma-
tions by describing the setting in which they are viewed and interpreted;

2. an objective function whose description has already been given and in which the
regularization is intimately related to the deformation model;

3. an optimization strategy playing an important role in the accuracy of the final results
obtained by the algorithm.

Following their strategy, we will now present some registration models.

The deformation model actually motivates the way the transformation ϕ is built and
entails a crucial compromise between computational efficiency and richness of the descrip-
tion. Three main strategies are identified in [98]:

(a) analogy with physical models and following [70], 5 subcategories can be identified:

i. the elastic body models in which the shapes to be wrapped are considered as ob-
servations of the same elastic body before and after being under the influence of
forces. For linear models, the Navier-Cauchy partial differential equation (PDE)
describes the displacements u (µ∇2u + (λ + µ)∇(∇.u) + F = 0), where F is the
force field driving the alignment process, λ is the first Lamé’s coefficient, and
µ is the second one also known as shear modulus measuring the rigidity or the
ratio of the shear stress to the shear strain. It is also subject to the validity of
Hooke’s law imposing proportionality between forces and displacements. In [12],
Broit is the first to propose this analogy and the image grid is seen as an elastic
membrane constrained by an external force ensuring the matching of shapes, and
an internal one enforcing the elastic properties until an equilibrium is reached.
Then many alternatives have been proposed including the work of Davatzikos in
[26] where the salient features to be matched are considered as an inhomogeneous
elastic object allowing some regions to deform more than others thanks to spa-
tially varying elasticity parameters. However, the main drawback of these linear
models resides in their assumption of small strains and so small displacements
according to Hooke’s law. It is thus not suitable when dealing with large de-
formations and to circumvent this limitation, the linear elasticity framework is
changed into the non-linear elasticity one. Especially, hyperelasticity has been
widely used as highlighted by Sotiras et al. in [98] since rubber, filled elastomers,
and biological tissues are often modelled by hyperelastic materials. In [84], the
analogy is made with an isotropic (uniformity in all orientations), homogeneous
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2. Image registration

(same properties at every point), and hyperelastic (ability of undergoing large
deformations while keeping elastic behavior ([23])) Saint Venant-Kirchhoff ma-
terial. The inverse consistency ensuring that when swapping the Template and
the Reference the algorithm does actually estimate the inverse transformation,
is guaranteed by the use of log-Euclidean metrics leading to Riemannian elas-
ticity. Yanikovsky et al. in [115] also use the stored energy function of a Saint
Venant-Kirchhoff material and the symmetry is forced by assuming the Jacobian
determinant of the deformation follows a log-normal distribution with zero mean
after log-transformation. In [34], the authors propose complementing the stored
energy function of a Saint Venant-Kirchhoff material by a term controlling the Ja-
cobian determinant of the deformation in order to prevent the deformation map
from exhibiting growths or shrinkages that are too large.
In [86], the authors devise a registration model handling large deformations using
local linearization and the finite element method to solve the nonlinear equation.
In [37], and [90], the authors consider hyperelastic Ogden materials with a poly-
convex stored energy function, constraining the length (through ‖∇ϕ‖), the area
(thanks to ‖Cof∇ϕ‖), and the volume (using det∇ϕ) of the deformation. A
similar regularization is adopted in [14], where Burger et al. focus on the numer-
ical implementation employing a discretize-then-optimize approach involving the
partitioning of voxels to 24 tetrahedra.

ii. the viscous fluid flow models. The deformation is then built as a viscous fluid ruled
by the Navier-Stokes equation in its simplified version with a very low Reynold’s
number (named viscous fluid flow models): µf∇2v + (µf + λf )∇(∇.v) + F = 0,
where v is the velocity field related to the displacement field as v(x, t) = ∂tu(x, t)+
〈∇u(x, t), v(x, t)〉 and F the chosen similarity measure. The time is explicitly
introduced and an equilibrium is reached. Theoretically, these models can cope
with large deformations by integrating v over time. The model developed by
Christensen et al. in [20] falls within this framework. For each time interval
a successive over-relaxation scheme is used and the preservation of topology is
achieved by a regridding step. However it is computationally inefficient and the
authors propose a highly parallel implementation to overcome this difficulty.

iii. the diffusion models. Inspired by optical flow models and especially Maxwell’s
demons, some algorithms have been proposed in which the regularization of the
deformation is provided by convolutions with the Gaussian kernel corresponding
to the Green’s function of the diffusion equation ∆u+F = 0. Demons are actually
effectors that locally push the image towards its final destination. The standard
scheme described in [98] consists in selecting all image elements as demons, com-
puting demon forces using the optical flow constraint, assuming a nonparametric
deformation model regularized by applying a Gaussian filter after each iteration
and a trilinear interpolation scheme. In [102], Thirion develops an iterative ap-
proach encompassing the estimation of the demons forces and the update of the
deformation based on the calculated forces. Then a huge amount of variants but
still using this iterative scheme has been developed ([43] combination of demons
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algorithms with a fully convolutional neural network giving a tight upper bound
of the sum of squared differences) despite a lack of theoretical understanding. In
[39], Fischer and Modersitzki explain it and give an insight into its working by
providing a fast algorithm based on the linearization of the diffusion PDE and
connecting it to Thirion’s algorithm.

iv. the curvature models in which the deformation satisfies the equilibrium equation
∆2u + F = 0. In [40], Fischer et al. try to minimize the deformation curvature
using this constraint ensuring its smoothness. The biharmonic Euler-Lagrange
equation is solved using a semi-implicit iterative finite difference scheme.

v. the flows of diffeomorphisms. The velocity of the deformation over time is as-
sumed to follow the Lagrange transport equation and the regularization term
becomes

∫ 1
0 ‖v(t)‖2V dt where ‖v‖V = ‖Dv‖L2 associated with Gaussian kernels.

This framework known as Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) originally developed in [10] allows large deformations and a distance def-
inition and we refer the reader to [118] for an overview of its evolution. Also
Haker et al. [48] apply the Monge-Kantorovich theory of optimal mass transport
to image registration based on a partial differential equation approach to the min-
imization of the L2 Kantorovich-Wasserstein functional under a mass preservation
constraint. Recently in [65], Maas et al. propose a model for image morphing in
an optimal transport framework and with a relaxation on the mass preservation
constraint.

(b) interpolation or approximation driven strategy. The deformation is restricted to a pa-
rameterizable set. It is considered to be known on a reduced set and then interpolated
on the image pixel grid or smoothly approximated by assuming errors can be made in
the estimated displacements on the whole domain. The family of interpolation strat-
egy includes: radial basis functions ([119]) but due to their global support a sufficient
amount of landmarks is needed; elastic body splines inspired by both interpolation
theory and by physical models, introduced by Davis et al. in [27] and that appear as
solutions to the Navier-Cauchy equilibrium equation for homogeneous isotropic elastic
body subject to forces; free-form deformations in which a rectangular grid is super-
imposed on the image pixel grid and is deformed while the deformation on the finer
image pixel grid is recovered using a summation of tensor of univariate splines in [93]
and B-splines for their local support and smoothness in [29] and [121]; basis functions
from signal image processing inspired by Fourier, Wavelet and Cosine transforms (in
[6] a linear combination of Discrete Cosine Transform is used); and piecewise affine
model combined with a multiscale approach in [50]. These models are rich enough to
describe the transformation while having low degrees of freedom.

(c) inclusion of a-priori knowledge through statistical constraints or through biomechan-
ical/biophysical models. For instance, in [24] a biomechanical model of breast tissue
is added to constrain the deformation field.

Further constraints can be added to the model to ensure inverse consistency as in [116],
symmetry, topology preservation ([52], [81], [20], [73], [74]), volume preservation ([47]),
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2. Image registration

lower and upper bounds on the Jacobian determinant ([56]),...

The second fundamental component of a registration algorithm is a matching criterion
which can be divided into three groups depending on the way the data are exploited to
drive the registration process. Ideally, it should be derived in order to comply with the
nature of the observations and the emphasis should be put on the alignment of geometrical
structures. It should also be convex for accurate inference and so an important balance
should be found between these conditions, as underlined in [98]. Sotiras et al. highlighted
the three following categories of matching criteria:

(a) geometric methods: they aim to register images based on the alignment of some land-
marks which can be reliable anatomical locations for instance (see [22] for a segregation
of methods according to their inferences: correspondences, spatial transformations,
both). These methods have led to lots of works on the detection of points of interest.

(b) iconic methods: they include intensity-based methods ([34] based on the sum of
squared differences between the deformed Template intensity values and the ones
of the Reference), attribute-based methods ([94] using a set of moment invariants
reflecting the underlying anatomy at different scales), and information-theoretic ap-
proaches ([111] aiming at maximizing the mutual information between the deformed
Template and the Reference). We refer the reader to [54] for an overview of these
matching criteria. Both mono and multi-modal registration frameworks are addressed
but monomodal registration is clearly easier to handle. Thus recent works focus on
the reduction to monomodal registration. In [19], the authors use image synthesis
to create proxy images and then apply a mono-modal registration method. In [2],
the authors propose to generate an implicit atlas to which each of the images will be
registered in the native image space.

(c) hybrid methods: they summarize both types of approaches as in [56] in which the
authors propose a dissimilarity measure based on intensity comparison and landmark
alignment via a quasi-conformal map.

Finally, the optimization method plays an important role in the registration accuracy and
we can distinguish the following types:

(a) continuous methods in which the variables are assumed to take real values and the
objective function to be differentiable including gradient descent ([10]), conjugate
gradient ([69]), Newton-type methods ([109]), Levenberg-Marquardt methods ([35])
and stochastic gradient descent methods ([111]).

(b) discrete methods. They perform a global search and exhibit better convergence rates
than continuous ones but reduce to problems where the variables take discrete values.
They comprise graph-based methods ([101]) and belief propagation approaches([49]).

(c) miscellaneous methods: greedy approaches and evolutionary algorithms.
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Figure 1.3: Classification of deformable registration processes inspired by [98].

In Figure 1.3, we summarize the classification of deformable registration methods depicted
above.
In [54], the authors draw up an inventory of all the open-source registration software avail-
able and compare them. However as stressed by Rohlfing in [88], the question of measuring
the accuracy of a registration process remains a hard one and image similarity and tissue
overlap should be used carefully as such.

Besides, more and more efficient machine learning algorithms addressing the issue of
image registration have appeared in the last few years such as the RegNet convolutional
neural network architecture developed by Sokooti et al. in [97] to directly estimate the
displacement vector field of a pair of input images. The training is done using a large set
of artificially generated displacement vector fields and does not explicitly define a dissim-
ilarity metric. However, these methods do not constitute the core of this thesis since the
emphasis is put on variational methods.
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3. Image segmentation

Let us now introduce a closely related fundamental image processing task: image segmen-
tation, that we will propose to connect to the registration step.

3 Image segmentation

Humans have the ability to quickly track down many patterns, and automatically gather
them into meaningful and identified structures. Image segmentation aims to imitate this
capacity. Indeed, the goal of image segmentation is to partition a given image into signif-
icant constituents or to detect the edges of the “objects” it comprises for further analysis
and understanding of the image. It represents a critical preliminary step in many applica-
tions. However, as emphasized by Zhu et al. in [122], image segmentation is a challenging
and ill-posed task since the definition of an “object” or a “meaningful constituent” can
be ambiguous. Depending on the nature of the image and the application, an “object”
can turn out to be a “thing” like a flower, a tree, ..., or a kind of texture like wood,
rock, ... or even a stuff like forest, ... and can also be part of other “objects” such as a
tumor in a brain MRI image. Moreover, since interpretation is subjective, different human
beings may have different visions of what should be an object in an image as illustrated
in [122, Fig 1.]. This makes the evaluation of segmentation techniques a very complex
issue and remains an open question as highlighted by Zhang et al. in [120]. Due to its
countless applications such as object detection, reduction complexity, scene parsing, image
montage, colorization, organ reconstruction, tumor detection to name a few (see [122] for
references), a lot of research has been conducted during the last three decades. We propose
overviewing some of them according to Zhu et al.’s classification with a more specific focus
on unsupervised models.

It includes three main categories:

1. fully supervised methods: they consist in training a segmentation algorithm thanks
to fully annotated data —all pixels are labelled as either boundary or no boundary
—and then segmenting an unknown image. They reach high performance but the
labelling is very expensive. However, more and more datasets are now available (see
[122] for a list of them) with the explosion of machine learning based algorithms and
computer abilities in the past few years. To cite just one example among a long list
(partly described in [122]), in [68], the authors train a multilayer perceptron neural
network to give a binary classification for each pixel assigning a label boundary or
no boundary. This then serves as an energy function for a snake (in reference to the
active contour model developed by Kass et al. in [53] and described later in this
chapter) in order to connect the points and get a continuous closed contour.

2. semi/weakly supervised methods: they usually are interactive methods and require
human expertise and intervention. The user labels a few pixels as initial constraints
to the segmentation model so that the accuracy of the segmentation is increased in a
specific region of interest for instance. In [59], the authors propose a geodesic-active-
contour-based model (a description of the geodesic active contour model follows)
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under geometrical constraints imposed by the expert, in an approximation frame-
work. In [122], the authors distinguish three subcategories namely contour tracking
approaches, label propagation approaches, and local optimization approaches and
provide a thorough analysis of referenced models.

3. unsupervised methods: unlike previous methods, unsupervised methods aim to par-
tition the image, based only on low-level features that is to say intensity levels,
texture, or curvature for instance, without any training data, nor explicit object
models. They can be subdivided into two groups:

(i) discrete methods: the image is considered as a fixed discrete grid. We can
identify three main approaches in this setting:

(a) filtering approaches: The most famous filters used as edge detector and
available in Matlab are the Robert, the Prewitt, the Sobel and the Canny

filters to name a few. As a reminder, the Robert masks (Gx =

(
1 0
0 −1

)
,

Gy =

(
0 1
−1 0

)
), the Prewitt masks (Gx =

−1 0 1
−1 0 1
−1 0 1

 and Gy =−1 −1 −1
0 0 0
1 1 1

) and the Sobel masks (Gx =

−1 0 1
−2 0 2
−1 0 1

 and Gy =−1 −2 −1
0 0 0
1 2 1

) are convolved with the image to estimate the gradient

norm and its orientation. The edges lie where the gradient norm is high.
The process of Canny edge detection algorithm consists in removing some
noise by first applying a smoothing Gaussian filter and then finding the
intensity gradient using one of the previous filters and finally thresholding
the result to keep only the potential edges. These methods are simple and
fast but tend to be sensitive to noise and are inclined to over-segmentation.

(b) clustering-based approaches: they are mainly inspired and borrowed from
the unsupervised classification analysis and map a pixel to a feature vector.
They can be either parametric or non-parametric:

– parametric clustering methods require a prior knowledge of the regions
number and the cluster shape. Then the problem amounts to estimat-
ing these few parameters. The K-means algorithm is one of the oldest
and simplest parametric clustering methods and an effective implemen-
tation is available in Matlab. Given k initial centers, it consists in
iteratively assigning each pixel to the closest cluster (defined by its
center) using the feature space distance, and then updating the centers
until convergence. Clustering based on Gaussian Mixture Models is
similar to K-means except that the centers are now replaced by covari-
ance matrices. A version of this model is also available in Matlab.
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3. Image segmentation

The Fuzzy C-Means (FCM) algorithm is implemented in Matlab and

consists in minimizing the following functional Jm =
∑
i

N∑
j=1

µmij ‖xi−cj‖2,

where N is the number of cluster, m is the fuzzy partition matrix ex-
ponent controlling the degree of fuzzy overlap between regions, cj are
the cluster centers and µij is the degree of membership of xi in the j-th
cluster. It is done by a random initialization of the values of µij and
by iteratively computing the cluster centers and updating the degree
of membership until convergence. In [87], the authors model the tex-
tured regions by a Gaussian distribution and encode the boundaries by
an adaptive chain code. In [21], Chuang et al. propose improving the
conventional fuzzy C-means algorithm (FCM) by incorporating infor-
mation into the fuzzy membership function for clustering, leading to
a less sensitive to noise model. These methods are quite efficient but
often too simplistic for natural images. Besides the region number is a
strong a-priori and is usually hard to get.

– non-parametric clustering approaches estimating the number of clusters
and their modes have been designed to overcome this difficulty. In [75],
a region splitting by thresholding is applied on the image histogram.
The underlying assumption is that a region is made of pixels with
similar intensities whereas two pixels from two distinct regions have
different intensities. Region merging methods also exist as mentioned
in [122]. In [25], the mean shift algorithm is proposed. The feature
space is seen as a probability density function and the modes of it
correspond to the clusters. The modes are located at the zeros of the
probability density function and the mean shift procedure is able to
find them without explicitly estimating the density function. To do
so, an iterative scheme is used in which the modes are updated using
a weighted mean. A convergence result is given and the clusters are
then formed by grouping the pixels in the basin of attraction of the
corresponding convergence points.

(c) graph-based approaches: the image is seen as a graph where the clusters
are mapped to the nodes and the edges reflect the similarities between
them. The optimization of a cost function over the graph is then carried
out and leads to the segmentation of the image. In [38], the authors propose
grouping pixels using an internal difference (Int(C)) defined by the largest
weight, that is to say, the largest intensity level difference in the minimum
spanning tree of the group. Then regions (C1 and C2) are merged if the in-
between edge weight is less than min{Int(C1) + k

|C1| , Int(C2) + k
|C2|}, with

k a constant controlling the component size so that a larger k causes a pref-
erence for larger components. Normalized cut is a well-known algorithm
for segmentation [96]. The segmentation is obtained by minimizing the
disassociation between groups {Si}ki=1, and maximizing the association be-
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tween groups using the following dissimilarity measure Ncut(S1, . . . , Sk) =

1
2

k∑
i=1

W (Si,S̄i)
vol(Si)

, where W (Si, S̄i) is the sum of the boundary edge weights

of Si and vol(Si), the sum of weights of all edges attached to vertices in
Si. It thus favors clusters with similar volume and so “balanced” clus-
tering. Many works have been done exploiting these ideas and proposing
algorithms to solve the related NP-hard problems.

(ii) continuous methods: the image is seen as a continuous surface and tends to
present visually more pleasing results. They can be partitioned into two cate-
gories:

i. edge-based models: a curve is evolved to match the object edges. There
are two ways of representing the curve:

– explicitly using a parametrized spline curve. The original snake model
developed by Kass in [53] detects edges by deforming an initial pa-
rametrized spline curve subject to internal regularization forces and
external data-driven forces attracting the contour to the edges using
image gradient. However, it is not invariant to a change of parametriza-
tion, re-parameterization may be needed during the evolution process,
topological changes are not automatically handled and it is sensitive to
initialization as stressed by Vese and Le Guyader in [105, Introduction].
A lot of research has been conducted to overcome these difficulties (see
[105, Chapter 9] for an overview).

– implicitly as the zero level-line of a Lipschitz continuous level-set func-
tion. In [15], Caselles et al. introduce the geodesic active contour
model. They prove that under some assumptions, the classical active
contour model amounts to finding a geodesic curve, i.e. a path of min-
imal length, in a Riemann space. The associated metric depends on
the image content and the evolving contour is considered to be the zero
level line of a level-set function ([77]). Topological changes are auto-
matically handled. A lot of variants have been proposed, including [60]
in which the authors introduce a topology-preserving model handling
concavities in the edges. They introduce an additional nonlocal topol-
ogy constraint preventing the contour from splitting or merging. This
can be required in medical imaging.

However, they both suffer from boundary leakage problem when weak
boundaries with low contrast are present as mentioned by Wang et al.
in [110].

ii. region-based models: they are essentially based on the extensively studied
Mumford-Shah model. In [72], Mumford and Shah introduce the following
segmentation problem: inf

u,K
µ
∫

Ω(u− f)2 dx+
∫

Ω\K |∇u|
2 +H(K) where H

is the Hausdorff measure, u is a piecewise smooth approximation of the
initial image f and K the set of discontinuities, based on the idea that f
can be partitioned into regions within which f varies smoothly, whereas
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it varies discontinuously or quickly across the boundaries represented by
K. Theoretical studies and results can be found in [28]. However, due its
nonconvexity and the nature of the unknown K, solving this problem is
challenging. In order to circumvent this difficulty, Ambrosio and Tortorelli
introduce an elliptic approximation within the phase field theory in [4].
They prove that their approximated functional Γ-converges to the initial
weak formulation of the Mumford-Shah functional. The boundaries are
recovered thanks to an auxiliary variable v acting like an edge-detector
being equal to 1 in homogeneous regions and dropping to 0 around edges.
Blake and Zisserman ([11]) extend the Mumford-Shah functional to the
second-order case in order to detect both the edge set and the crease set,
enabling the segmentation of fine structures as discussed in Chapter 5 of
this thesis. Coming back to the first order Mumford-Shah functional, an
important specific case called problem of minimal partition is obtained
when u is restricted to the space of piecewise constant functions. Many
works have been addressing this issue using a convexification process as in
[16], using ADMM and linear programming in [99], and considering the set
K as the zero level line of a Lipschitz continuous level-set function in [17]
to name a few. However, region-based methods tend to rely on intensity
homogeneity inside regions and are not applicable to images not fulfilling
this assumption. Vese and Chan ([106]) propose a piecewise model in
which the regions are no longer assumed to have constant intensities but
homogeneous textures to overcome the previous drawback. However, the
computational cost is expensive and the complex parameter setting limits
its use. In [91, Chapter 3], an extension of the level-set segmentation
techniques is proposed by defining a more general edge set able to capture
free curves. Li et al. in [62] propose the Local Binary Fitting (LBF)
model where the constant mean values of each region is replaced by a
local mean value spatially varying using a Gaussian kernel in the level-
set framework. But this locality is responsible for the apparition of local
minima and the method is therefore dependent on the initialization. In
[71], the authors propose a convexification of this problem leaving the
level-set framework and using fuzzy membership functions. It is no longer
subject to initialization dependency. In [110], Wang et al. propose a
model combining both local and global image information using a level-set
formulation to allow for more initialization flexibility. Indeed, the local
intensity fitting term based on the LBF model becomes dominant around
edges and attracts the contour to the object boundaries improving thus
accuracy, while the global intensity fitting term inspired by the Chan-Vese
model improves robustness since it is dominant far from the edges.

Figure 1.4 summarizes the classification of segmentation methods we have just discussed.

This concludes the overview of a large variety of existing segmentation methods. We
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Figure 1.4: Classification of segmentation methods inspired by [122].

now turn to hybrid methods combining multiple tasks into a single framework to increase
the accuracy of each of them, while erasing the brakes that may stem when considered
individually.

4 Joint image segmentation and image registration

Segmentation and registration are fundamental requirements in many image processing
chains. Images need to be registered and then segmented to analyze them jointly and
accurately. It is often done linearly, that is to say one after another without correlating
them. Yet, as structure matching and intensity distribution comparison drives the reg-
istration process, it sounds relevant to treat both segmentation and registration jointly.
Indeed, the registration task can be seen as prior information to guide the segmentation
process to overcome the difficulty of weak boundary definition, and accurate segmented
salient components can drive the registration method correctly. In the following, we give
a brief overview of existing joint models.

In [45], the authors propose a simultaneous segmentation and registration with missing
data of a probabilistic atlas of healthy population model to brain MRI images exhibiting
glioma. It is based on the Expectation-Maximization (EM) algorithm that integrates a
glioma growth model for atlas seeding, modifying then the atlas into one with tumor
adapted to best match a given set of patient images. This new atlas is then registered
into the patient scale and used for estimating the posterior probabilities of various tissue
labels. This allows for the segmentation of the tumor.

In [85], Pohl et al. present a statistical model combining segmentation and registra-
tion. They use an Expectation-Maximization based algorithm to estimate image artifacts,
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anatomical label maps and a structure-dependent hierarchical mapping from the atlas to
the image space. The deformation is then recovered using an interpolation function.

In [113] and in [36], the authors highlight the increased difficulty of infant image reg-
istration and segmentation compared with adults, due to the dynamic appearance change
with rapid brain development. To overcome these difficulties, they propose to jointly pro-
ceed segmentation and registration and to incorporate the growth trajectories learnt from
a large set of training subjects with complete longitudinal data in order to accurately char-
acterize structure changes in infant brain evolution. Assuming a one-year old child’s brain
image with ground truth tissue segmentation is available and set as the Reference domain,
they want to register the infant brain image of a new subject at earlier age. The tissue
probability maps are then estimated with a sparse patch-based multi-atlas label-fusion
technique where only the training data at the respective age are considered as atlases.
These maps are then fused as a good initialization to guide the level-set segmentation
along with the learnt growth trajectories whereas the registration process is based on the
HAMMER algorithm.

In [114], Wyatt et al. apply Markov Random Fields (MRF) in the solution of a Maxi-
mum A Posteriori (MAP) model for image segmentation and rigid registration to embed
local spatial information. They assess that a joint solution to segmentation and registra-
tion is more accurate and robust than a sequential solution. They also demonstrate that
the extension to non-rigid registration gives poor results despite its success for rigid ones.

In [83], Parisot et al. present a graph-based concurrent brain tumor segmentation
and healthy atlas to diseased patient registration model. Both tasks are coupled into a
single MRF framework on a sparse grid superimposed on the image domain and then
the unknowns are recovered on the pixel image grid thanks to an interpolation function.
Segmentation is addressed based on pattern classification techniques, while registration
is performed by maximizing the similarity between volumes. The registration process in-
troduces global information on the brain structure helping the segmentation, while the
segmentation of the tumor and thus the acknowledgement of its presence improves the
quality of the registration by treating this region differently.

A joint segmentation and registration model for time series of cardiac perfusion images
is proposed by Mahapatra in [66]. They first decompose the time series into a low rank
and a sparse component using a Robust Principle Component Analysis (RPCA). Regis-
tration is then achieved by maximizing the smoothness of the intensity in the low rank
component, whereas segmentation is obtained by minimizing the sparse component pixel
intensity difference with other pixels having the same label as in the K-means algorithm.
The Dynamic Contrast Enhanced (DCE) Magnetic Resonance (MR) sequence of images
is affinely aligned with the first one. The displacements are computed on control points,
then calculated on each pixel using cubic B-splines.

Yezzi et al. [117] propose a variational approach for joint segmentation and registra-

15



Introduction

tion so that they both take advantage of each other. The segmentation of the Reference
is obtained by evolving a closed curve C, while the curve Ĉ represents the edges of the
Template. They are related by the equality Ĉ = ϕ(C), where ϕ is the deformation inspired
by physical models. In their original paper, they restricted ϕ to a parameterizable set
of transformations. The unknowns are then C and ϕ. The evolution of C is based on
the active contour without edges model and the regularization of ϕ relies on the mean
curvature flow to ensure the smoothness of C. A generalization of this model can be found
in [103].

In [104], Vemuri et al. suggest a coupled PDE model to jointly perform segmentation
and registration using a level-set formulation. In the first PDE, the level-set functions
associated with the Template are evolved along their normal with a speed defined as the
intensity difference between the deformed Template and the Reference. The second one
allows the explicit recovery of the displacement field.

In [64], Lord et al. handle the issue of quantifying the difference between two shapes.
Their work falls within the analysis of the hippocampus shape and is motivated by the
fact that asymmetry comparison facilitates disease classification. To perform this analy-
sis, the authors propose a joint segmentation and registration model with two unknowns
namely the deformation field and the curve modelling the contour. The segmentation is
guided by the deformation whose regularity is ensured by minimizing its deviation from
an isometry. The fidelity term is based on shape comparison and more precisely on the
first fundamental force (derived from the spatial derivatives of the deformation map) and
on a homogeneity constraint based on the Chan-Vese model for segmentation.

In [61], Le Guyader and Vese develop a model based on the active contour without
edges model and on nonlinear elasticity principles. The shapes to be matched are viewed
as an isotropic, homogeneous, hyperelastic Ciarlet-Geymonat material. The Reference
segmentation is reached through the zero level line of the composition of a level-set func-
tion with the deformation field. The zero level line of the level-set function is assumed to
represent the edges of the Template image.

In [5], a variational PDE method for simultaneous image segmentation and deformable
registration using prior shape implicitly modelled by level-set functions and intensity infor-
mation is introduced. The segmentation of the Reference is obtained by finding a non-rigid
deformation composed of a global rigid deformation and a local non-rigid transformation
and then by taking the zero level-line of the level-set function composed with this defor-
mation. The level-set function gives a segmentation of the Template by extracting its zero
level-line which is seen as prior shape.

In [46], Gorthi et al. propose a new framework for atlas-based segmentation. They
propose a new label function representation of the level sets that are able to model any
number of regions and represent various types of registration forces using a single function.
The contours do not correspond to the zero level line anymore but to the discontinuities
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of a piecewise constant level-set function. A mean curvature regularization is used on
the deformation field and a region-based fidelity term inspired by the Chan-Vese model
drives the registration process assuming that a manual segmentation of the atlas is avail-
able. The atlas is mapped into the target image and a segmentation of it is then produced.

In [100], Swierczynski et al. devise a new mathematical formulation to jointly segment
and register three-dimensional lung CT volumes based on a level-set formulation. They
combine Vemuri et al.’s approach with Gorthi et al.’s one with a weighting parameter and
the smoothness of the deformation field is ensured by the minimization of its curvature.
They show that their algorithm improves the accuracy of the results compared to the
ones obtained by a sequential application of registration and segmentation on a publicly
available lung CT data set.

In [37], Droske and Rumpf introduce a variational model combining the detection of
edges, an edge-preserving denoising procedure and a deformable registration of a multi-
modal pair of images. The morphology of an image is split into 2 components: an edge
set and a field of normals on the ensemble of level sets. A phase-field approximation of
the Mumford-Shah functional to segment and to match the singular morphology as well
as a measure of alignment between deformed normals and normals at deformed positions
to match the regular morphology are used as a fidelity term. The regularization of the
deformation field is ensured by a nonlinear stored energy function of an Ogden material
controlling the change of length, the change of area and the change of volume. For an
efficient implementation, they propose a multiscale approach.

More recently, Ozeré et al. [80] design a joint segmentation/registration model in a
variational framework. A dissimilarity measure based on the weighted total variation to
align the edges of the deformed Template with the ones of the Reference and a classical
sum of square intensity differences is complemented by a regularizer inspired by the stored
energy function of a Saint Venant-Kirchhoff material.

In [112], the author examines the behavior of phase field approximations of the Mumford-
Shah model in a joint segmentation and registration framework. Phase fields and deforma-
tion fields are coupled and the regularization on the transformation field is based on the
stored energy function of Ogden materials, ensuring the deformation map is a bi-Hölder
continuous homeomorphism. Both Ambrosio-Tortorelli and Modica-Mortola phase field
approximations are considered and many theoretical results are provided regarding their
behavior and especially their Γ-convergence.

A new variational method for joint segmentation and registration model extending the
ones presented in [80] by adding a region-based dissimilarity measure inspired by the Chan
Vese model for segmentation is presented in Chapter 4.

Other methods suggest to use the segmentation result to guide the registration process
as in Chapter 3 of this thesis, where we introduce a nonlinear-elasticity-based registration
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method guided by topology-preserving segmentation results and in [1], in which they use
the error of segmentation as a fidelity term in the registration process of multimodal im-
ages.

Let us now introduce another essential image processing task, namely texture modelling
and image decomposition inherently related to image restoration.

5 Texture modelling and image decomposition

Following ideas of Meyer [67], image decomposition aims to separate a given image f into
a cartoon or geometric component u that is piecewise smooth, and a texture component
v that catches the oscillatory patterns and the noise of f . Texture modelling consists in
finding the best functional space to represent the oscillatory patterns. We will focus on
two dimensional variational minimization models of the form: inf

u∈X1, v∈X2,u+v=f
F (u, v) =

F1(u) + λF2(v), assuming that f ∈ X1 + X2, and present a non-extensive overview of
existing decomposition models (see also [105, Chapter 5]). As stressed by Vese and Le
Guyader in [105, Chapter 5], a good model is given by a choice of X1 and X2 so that
F1(u) >> F1(v) and F2(v) >> F2(u), where F1 and F2 are non-negative and finite for
any (u, v) ∈ X1 ×X2. A classical and appropriate choice for X1 is the space of functions
of bounded variations (BV whose definition and properties will be given in Chapter 2)
sometimes restricted to the space of special functions of bounded variations (SBV pre-
sented in Chapter 2) and for F1, the semi-norm of this space called the total variation
|u|BV =

∫
|Du|. Indeed it favors constant regions and preserves sharp edges which are

good properties for the cartoon component. On the other hand, X2 should be a rougher
space with a small norm for oscillatory functions and its choice has been widely discussed.
We can distinguish exact decomposition models in which v = f − u and approximated
decomposition model, where v appears explicitly and a residual possibly seen as noise is
introduced as f − u− v.

The Mumford Shah functional and its weak formulation ([28]) as well as the models
approximating it (such as the Ambrosio and Tortorelli’s one ([4]) introduced previously)
can also be seen as exact decomposition models. Indeed the image f ∈ L2(Ω) where
Ω ⊂ R2 is the image domain, is decomposed into u ∈ SBV (Ω) a piecewise smooth func-
tion with its discontinuity set included in a union of curves whose overall length is finite,
and v = f − u ∈ L2(Ω) representing the noise. One of the most famous exact decomposi-
tion models addressing deblurring and denoising problems is the one introduced by Rudin,
Osher and Fatemi ([89], ROF). They aim at minimizing inf

u∈BV (Ω)
|u|BV + ‖f − u‖2L2(Ω) and

so here, X2 = L2(Ω) and F2 = ‖.‖2L2(Ω) with v modelling only additive Gaussian noise
with zero mean. However it may not be able to recover a function of bounded variations
without any noise in u as illustrated in [105, Example 3, Chapter 5]. To overcome this
difficulty, Chan and Esedoḡlu in [18] analyze a model in which the L2(Ω) norm is replaced
by the L1(Ω) norm. We refer the reader to [58] for an overview of numerical algorithms
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5. Texture modelling and image decomposition

designed to solve this problem and the introduction of a new effective primal-dual one.

Based on the idea that to denoise a pixel it is better to average the nearby pixels
with similar structures rather than just similar intensities, Buades et al. ([13]) propose
a nonlocal filtering algorithm named NL-means to address denoising, thus generalizing
the idea of using patch-based methods. Then Osher and Gilboa [44] introduce a varia-
tional framework of it by defining nonlocal operators: ∇wu(x, y) = (u(y)−u(x))

√
w(x, y),

|∇wu|(x) =
√∫

Ω(u(y)− u(x))2w(x, y) dy, divwv(x) =
∫

Ω(v(x, y) − v(y, x))
√
w(x, y) dy,

∆wu(x) =
∫

Ω(u(y)−u(x))w(x, y) dy, with w a weight function assumed to be nonnegative

and symmetric and often taken as w(x, y) = exp
(
−
∫
Ω Ga(t)|f(x+t)−f(y+t)|2 dt

h2

)
, Ga being the

Gaussian kernel with standard deviation a determining the patch size, and h the filtering
parameter which corresponds to the noise level. Then nonlocal variants of the previous
models are suggested in which |u|BV is replaced by

∫
Ω |∇wu|(x) dx (nonlocal ROF and

nonlocal TV-L1 models in [44], and nonlocal Mumford-Shah regularizers in [51]). An ex-
tension of the nonlocal Mumford-Shah regularizer to the Blake Zisserman model with a
texture model based on the G-norm (defined in the following) is proposed in Chapter 5
for denoising and segmentation of fine structures.

In [67], Meyer analyzes further the texture modelling and proposes to refine the ROF
model using one of these functional spaces for X2:

G = {div~g, ~g = (g1, g2) ∈ (L∞(Ω))2} = W−1,1 being a good approximation of the dual of BV

and associated with the norm ‖v‖G = inf{‖
√
g2

1 + g2
2‖L∞(Ω)|v = div~g},

F = {div~g, ~g ∈ BMO2} = BMO−1

with BMO =

{
g ∈ L1

loc(Ω)|∃c ≥ 0, ∀Q ⊂ R2 square ,
1

|Q|

∫
Q

∣∣∣∣g − ∫
Q
g dx

∣∣∣∣ dx ≤ c} ,
‖v‖BMO = sup

Q square

1

|Q|

∫
Q

∣∣∣∣v − ∫
Q
v dx

∣∣∣∣ dx,
and endowed with the norm ‖v‖F = inf

v=div~g,~g∈BMO2
‖g1‖BMO + ‖g2‖BMO,

E = {∆g, g Zygmund function , i.e., ∃c ≥ 0, ∀(x, y) ∈ R4, |g(x+ y) + g(x− y)− 2g(x)| ≤ c|y|},

also called generalized homogeneous Besov space B−1
∞,∞ = ∆B1

∞,∞ where Bα
p,∞ =

{
g ∈

L1
loc(Ω)|∃c ≥ 0,∀y ∈ R2, ‖g(. + y) − 2g(.) + g(. − y)‖Lp(Ω) ≤ c|y|α

}
. In two dimen-

sions we have BV ⊂ L2 ⊂ G ⊂ F ⊂ E. These weak spaces encourage oscillatory be-
havior as their norm decreases while the amount of oscillations increases as illustrated
in [105, Chapter 5]. The larger the space X2 is, the finer the details and the texture
caught by v are. However the analysis and discretization of these spaces is not obvi-
ous due to their complexity and a rich literature can be found on this subject. Vese
and Osher [107] propose to approach the (BV,G) model by minimizing the following
approximated decomposition model differentiating the texture from the noise/residual
inf
u,~g
{|u|BV +µ‖f−u−div~g‖2L2(Ω) +λ‖

√
g2

1 + g2
2‖Lp(Ω)} with p going to infinity. This model
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is numerically more tractable. It appears in practice that good results are obtained with
p = 1. In [8], Aujol et al. propose to solve the (BV,G) problem using projections on spaces
BG(µ) = {v ∈ G, ‖v‖G ≤ µ}. They prove the convergence of their algorithm. Similarly,
Aujol et al. ([9]) propose an algorithm using projections and including dual formulations
to solve the (BV,E) problem. Then Garnett et al. [42] reformulate and generalize this
(BV,E) problem by considering inf

u,g
{|u|BV + µ‖f − u−∆g‖2L2(Ω) + λ‖g‖Bαp,∞} with p ≥ 1,

0 < α < 2. Theoretical results including existence of minimizers are given along with a nu-
merical algorithm to solve it. Also in [57], Le and Vese address the decomposition issue by
solving the following model: inf

u,~g
{|u|BV + µ‖f − u− div~g‖2L2(Ω) + λ(‖g1‖BMO + ‖g2‖BMO)

approaching the (BV,F ) model. They propose several methods to compute the BMO
norm including one exact algorithm using the Fast Fourier Transform (FFT).

Osher et al. [78] develop another model based on the Helmotz-Hodge decomposi-
tion of ~g ∈ (L2(Ω))2 into ~g = ∇P + ~Q with P ∈ H1(Ω) and ~Q a divergence free
vector field yielding to v = f − u = div~g = ∆P . As in [107], the L∞(Ω) norm in
(TV,G) model is replaced by an L2(Ω) norm and the ~Q component is neglected lead-
ing to the following minimization problem: inf

u
{|u|BV + λ‖

√
g2

1 + g2
2‖2L2(Ω) = |u|BV +

λ‖|∇P |‖2L2(Ω) = |u|BV + λ‖|∇(∆−1)(f − u)|‖2L2(Ω) = |u|BV + λ‖f − u‖2H−1(Ω)}. H
−1(Ω)

is the dual space of the Sobolev space H1(Ω). Then Lieu and Vese [63] generalize this
model by using negative fractional Hilbert-Sobolev spaces H−s(R2) whose dual spaces
are the fractional Hilbert-Sobolev spaces Hs(R2) with s > 0. The embedded norm is :
‖v‖H−s =

∫
R2(1 + |ξ|2)−s|v̂|2(ξ) dξ, where v̂ is the Fourier transform of v. The smaller s

is, the larger the space H−s is and so the finer are the details captured by v. In [55], Kim
and Vese extend even more this idea by modelling the textures with the dual of homoge-
neous Sobolev spaces with pseudo-derivatives Wα,p(R2) = {v|(2π|.|)αv̂(.) ∈ Lp(R2)} with
−2 ≤ α < 0 and ‖v‖Wα,p(R2) = ‖(2π|.|)αv̂(.)‖Lp(R2). Further details on these spaces will be
given in the next chapter. In [91], the author proposes a decomposition model in which the
texture lies in an approximation of the dual space to W 1,∞(Ω). To approach the L∞(Ω)
norm, he uses an L1(Ω) norm with respect to a measure which concentrates near the max-
imum. Finally, in [95], the authors propose to couple the decomposition model based on
the H−1 norm with the Mumford-Shah functional called Mumford-Shah-Sobolev model
for segmented decomposition. The alternating scheme can be carried out using level-set
functions or the phase-field approximation based Ambrosio-Tortorelli’s framework. It re-
lates then image decomposition, texture modelling and image segmentation.

In Table 1.1, we summarize the presented models using a classification based on the
one proposed in [58] where f − u is replaced by v if necessary and Ju is the jump set of u.
We now present the contributions and the organization of this thesis.
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6. Contributions and thesis organization

Class Minimized energy Name Texture space Reference

BV+noise/
∫

Ω |Du|
2 dx+H1(Ju) +

∫
Ω |v|

2 dx SBV − L2 L2 [72], [4]
SBV+noise

∫
Ω |Du|+

∫
Ω |v|

2 dx ROF L2 [89]
models

∫
Ω |Du|+

∫
Ω |v| dx TV-L1 L1 [18], [58]

β
∫

Ω g
2Φ(|∇wu|2) dx+ ‖v‖2L2(Ω)

NL/BV +α
∫

Ω

(
ε|∇g|2 + (g−1)2

4ε

)
dx NL/MS-L2 L2 [51]

-NL/H1 β
∫

Ω g
2Φ(|∇wu|2) dx+ ‖v‖L1(Ω)

+ noise +α
∫

Ω

(
ε|∇g|2 + (g−1)2

4ε

)
dx NL/MS-L1 L1 [51]

models
∫

Ω |∇wu| dx+
∫

Ω |v|
2 dx NL/ROF L2 [44]∫

Ω |∇wu| dx+
∫

Ω |v| dx NL/TV-L1 L1 [44]∫
Ω |Du|+ ‖v‖G TV-G G [67], [107], [8]

Meyer’s
∫

Ω |Du|+ ‖v‖F TV-F F [67], [57]
models

∫
Ω |Du|+ ‖v‖E TV-E E [67], [42], [9]∫

Ω |Du|+ ‖v‖H−1(R2) TV-H−1 H−1 [78], [95]

Negative
∫

Ω |Du|+ ‖v‖H−s(R2), s > 0 TV-H−s H−s [63]

Sobolev
∫

Ω |Du|+ ‖v‖Wα,p(R2),

spaces −2 ≤ α < 0, 1 ≤ p ≤ ∞ TV-NSobolev Wα,p [55]

Table 1.1: Summary of variational decomposition models.

6 Contributions and thesis organization

Chapter 2 introduces some useful mathematical tools that will be referred to throughout
the manuscript. It encompasses, among others, properties of some functional spaces, no-
tions on viscosity solution theory, on the theory of calculus of variations, and on nonlinear
elasticity.

In Chapter 3, we propose a registration model guided by topology-preserving segmen-
tation that falls within the continuation of [79, Chapter 5]. The shapes to be matched
are viewed as Saint Venant-Kirchhoff materials and are implicitly modelled by level-set
functions. The alignment of the evolving shape with intermediate topology-preserving
segmentation results drives the registration process. The main contributions rely on the
study of two numerical methods of resolution, one based on penalization methods, and
the other one based on augmented Lagrangian method in a discrete setting. This work
brought forth publication [32] and Chapter 3 constitutes an extension of it.

Chapter 4 is dedicated to the study of a new joint segmentation/registration model
based on weighted total variation and its nonlocal characterization, on region-based shape
descriptors inspired by the Chan-Vese model for segmentation and on nonlinear elasticity
principles. It extends a model presented by Ozeré et al. in [79, Chapter 4] and [80] by
adding a nonlocal shape descriptor. A theoretical analysis has been done and yields the
existence of minimizers for both the local and nonlocal problems, a connection with the

21



Introduction

segmentation process, a nonlocal characterization of weighted semi-norms and their Γ-
convergence to the local ones, and asymptotic results after introducing splitting variables
to facilitate the numerical resolution of our problem for the local and nonlocal versions.
Chapter 4 is a more detailed version of a paper that has been accepted for publication in
SIAM Journal on Imaging Sciences in February 2018 [30].

In Chapter 5, we address the issue of crack detection recovery on bituminous surface
images. Cyrille Fauchard and Denis Join from the CEREMA (Centre of analysis and
expertise on risks, environment, mobility and planning) provided us with bituminous sur-
face images and set out their desire of designing a model capable of automatically recover
cracks for road maintenance. This work is the result of a collaboration with Professor
Luminita Vese from the University of California, Los Angeles and a part of it has been
accepted for publication in Annals of Mathematical Sciences and Applications [31] and
the first part of Chapter 5 is a longer version of this paper. We introduce a second order
variational model based on the elliptic approximation of the Blake-Zisserman functional
[3] involving an unknown simulating the discontinuity set of the image gradients encoding
the geometrical structures. We propose complementing it with a decomposition model in
which the texture is assumed to belong to the G space [67]. Existence of minimizers, exis-
tence of a unique viscosity solution to the derived evolution problem and a Γ-convergence
result relating the elliptic problems to the initial one are given. We then provide a non-
local version of this model and prove the existence of minimizers, and the Γ-convergence
of these nonlocal approximations to the local problem. We derive numerical algorithms
for both the local and nonlocal models. A parallelization of the code using MPI has been
done with the help of Patrick Bousquet-Melou from the CRIANN (Regional Centre for
Computer Sciences and Numerical Simulations of Normandy), and three master students
of the Mathematical and Software Engineering Department of the INSA (National Insti-
tute of Applied Sciences) of Rouen Normandy: Nathan Rouxelin, Timothée Schmoderer
and Emeric Quesnel as part of our participation to the hackathon.

Chapter 6 acts as a conclusion by summarizing our work and giving some perspectives
for future works.

7 Scientific outreach

1. Publications in peer-reviewed international journals:

[1] Debroux N. And Le Guyader, C., A Joint Segmentation/Registration
Model Based on a Nonlocal Characterization of Weighted Total Variation and
Non-local Shape Descriptors, SIAM Journal on Imaging Sciences (SIIMS), in
revision (2017).

[2] Debroux N., Le Guyader, C. And Vese, L., A., A Second Order Free
Discontinuity Model for Bituminous Surfacing Crack Recovery and Analysis of
a Non-local Version of it, accepted for publication in Annals of Mathematical
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Sciences and Applications, special issue in honor of Professor David Mumford
(2017).

[3] Debroux, N., Ozeré, S. And Le Guyader, C., A Non-local Topology-
Preserving Segmentation-Guided Registration Model, in Journal of Mathemati-
cal Imaging and Vision, 1-24, online in January (2017).

[4] Carre, C., Debroux, N., Deneufchâtel, M., Dubernard, J.-P., Hil-
lairet, C., Luque, J.-G., And Mallet, O., Dirichlet Convolution and Enu-
meration of Pyramid Polycubes, in Journal of Integer Sequences, vol. 18 (2015).

2. Papers in refereed conference proceedings:

[5] Debroux, N., And Le Guyader, C., A Unified Hyperelastic Joint Segmen-
tation/Registration Model Based on Weighted Total Variation and Non-local
Shape Descriptors, in Lauze, F., Dong, Y., Dahl, A. B. (eds) Scale Space and
Variational Methods in Computer Vision: 6th International Conference, SSVM
2017, Kolding, Denmark, June 4-8, 2017, Proceedings, pp. 614625 (2017).

[6] Fortun, D., Debroux, N., And Kervrann, C., Spatially-variant kernel
for optical flow under low signal-to-noise ratios: application to microscopy, in
IEEE ICCV Workshop - BioImage Computing (BIC), Venice, Italy, October
2017, pp. 9 (2017).

3. Oral communications:

– Debroux*, N., And Le Guyader, C., Joint Segmentation/Registration Model,
in Minisymposium Hybrid Models for Inverse Imaging Problems in Applied In-
verse Problems Conference, Hangzhou, China, May 29 - June 2, (2017).

– A Unified Hyperelastic Joint Segmentation/Registration Model Based on Weighted
Total Variation and Nonlocal Shape Descriptors. Seminar, School of Mathemat-
ical Sciences, Monash University, Melbourne, Australia, April 28, (2017).

– A Unified Hyperelastic Joint Segmentation/Registration Model Based on Weighted
Total Variation and Nonlocal Shape Descriptors. Journe Normastic Mthodes
Variationnelles et Statistiques Appliques au Traitement dImages, INSA of Rouen,
France, January 27, (2017).

– Methods for Joint Registration and Segmentation. Communication at the Level
Set collective, Department of Applied Mathematics, UC Los Angeles, U.S.A.,
July 12, (2016).

4. Participation to a hackathon within the CRIANN (Centre Régional In-
formatique et d’Applications Numériques de Normandie / Regional Com-
puter Center and Digital Applications of Normandy).
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[32] N. Debroux, S. Ozeré, and C. Le Guyader, A non-local topology-preserving
segmentation-guided registration model, Journal of Mathematical Imaging and Vi-
sion, 59 (2016), pp. 432–455.

[33] Q. Denoyelle, V. Duval, and G. Peyré, Support recovery for sparse super-
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Chapter 2

Mathematical background

In this chapter, we recall some mathematical tools, notions, definitions and properties that
are used in the remaining of the manuscript. We will first proceed to a review of some
functional spaces and then summarize some relevant facts in the theory of viscosity solu-
tions and in the theory of calculus of variations. Finally, we will give a brief presentation
of elasticity and hyperelasticity theory.

1 Functional spaces

1.1 Lp spaces

Let us first recall some basic results in measure theory based on [1].

Definition 1.1 (σ-algebra and measure spaces). Let X be a non-empty set and let ε be
a collection of subsets of X.

– We say that ε is an algebra if ∅ ∈ε, E1∪E2 ∈ε and X \E1 ∈ε whenever E1, E2 ∈ε.

– We say that an algebra ε is a σ-algebra if for any sequence (Eh) ⊂ε, its union ∪
h
Eh

belongs to ε.

– For any collection G of subsets of X, the σ-algebra generated by G is the smallest
σ-algebra containing G. If (X, τ) is a topological space, we denote by B(X) the σ-
algebra of Borel subsets of X, that is to say, the σ-algebra generated by the open
subsets of X.

– If ε is a σ-algebra in X, we call the pair (X,ε) a measure space.

Definition 1.2 (measure). Let (X,ε) be a measure space. Let n ∈ N∗.

1. µ : X → Rn is a measure if µ(∅) = 0 and if for any sequence (Ek)k∈N of pairwise

disjoint elements of ε, µ

(
∪
k∈N

Ek

)
=
∑
k∈N

µ(Ek). If n = 1, µ is said to be a real

measure, otherwise µ is a vector measure.
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2. If µ is a measure, we define its total variation |µ| for every E ∈ε as follows

|µ|(E) := sup

{ ∞∑
h=0

|µ(Eh)| |Eh ∈ ε pairwise disjoint, E =
∞
∪
h=0

Eh

}

Theorem 1.1. If µ is a measure on (X,ε), then |µ| is a positive finite measure (µ(X) <∞
and µ :ε→ [0,∞]).

Definition 1.3 (µ-negligible sets). Let µ be a positive measure on the measure space
(X,ε).

– We say that N ⊂ X is µ-negligible if there exists E ∈ε such that N ⊂ E and
µ(E) = 0.

– We say that the property P (x) depending on the point x ∈ X holds µ almost every-
where (µ-a.e.) in X if the set where P fails is a µ-negligible set.

– Let εµ be the collection of all the subsets of X of the form F = E∪N with E ∈ε and
N µ-negligible; then εµ is a σ-algebra which is called the µ-completion of ε, and we
say that E ∈ X is µ-measurable if E ∈εµ. The measure µ extends to εµ by setting,
for F as above, µ(F ) = µ(E).

Definition 1.4 (Measurable functions). Let (X,ε) be a measure space and (Y, d) a metric
space.

– A function f : X → Y is said to be ε-measurable if f−1(A) ∈ε for every open set
A ⊂ Y .

– If µ is a positive measure on (X,ε), the function f is said to be µ-measurable if it is
εµ-measurable.

Let us now recall the definition of an integral and some notions on summable functions.
They are then extended to vector-valued functions as well as to vector measures.

Definition 1.5. Let (X,ε) be a measure space.

– For E ⊂ X, we define the characteristic function of E, denoted by χE, by χE :=∣∣∣∣ 1 if x ∈ E
0 if x /∈ E . We say that f : X → R is a simple function if it belongs to the

vector space generated by the characteristic functions.

– Let µ be a positive measure on (X,ε); the integral of a µ-measurable function u :
X → R is defined by:

∫
X
u dµ := sup


∫
X
v dµ =

∑
z∈v(X)

zµ(v−1(z)), v µ-measurable, simple, v ≤ u

 .

u : X → R̄ is said to be µ-summable if
∫
X |u| dµ <∞.
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– Let µ be a measure on (X,ε) and u : X → R̄ be a |µ|-measurable function. We say
that u is µ-summable if u is |µ|-summable. If µ is a Rn-vector measure, we define∫
X u dµ :=

(∫
X u dµ1, . . . ,

∫
X u dµn

)
.

– If µ is a real measure and u = (u1, . . . , uk) : X → Rk is |µ|-measurable, we say that
u is |µ|-summable if all its components are |µ|-summable and we denote

∫
X u dµ :=(∫

X u1 dµ, . . . ,
∫
X uk dµ

)
.

Let us now introduce Radon measures. Let Ω be an open subset of Rn.

Definition 1.6 (Radon measure). A positive measure on (Ω,B(Ω)) is called a Borel mea-
sure. Moreover, if it is finite on every compact subset of Ω, then it is called a positive
Radon measure.
A measure µ : B(Ω)→ Rm, m ∈ N∗ is called a finite Radon measure (the Lebesgue measure
on (Ω,B(Ω)) is a positive Radon measure).

Proposition 1.7. Let µ be a Rm-valued Radon measure on (Ω,B(Ω)). Then for every

open set A ⊂ Ω, we have |µ|(A) = sup

{
m∑
i=1

∫
X ui dµi |u ∈ C

0
c (A), u(x) ≤ 1, ∀x ∈ A

}
.

Theorem 1.2 (Riesz). Let L be a continuous linear form on C0(Ω,Rm), m ∈ N. There ex-

ists a unique finite Rm-valued Radon measure on (Ω,B(Ω)) such that L(u) =
m∑
i=1

∫
Ω ui dµi, ∀u ∈

C0(Ω,Rm). Furthermore, ‖L‖ = |µ|(Ω).

Theorem 1.3 (Weak convergence for Radon measures). Let (µk) be a sequence of Radon
measures on Rn and µ be a Radon measure on Rn. The following statements are equivalent:

– µk weakly converges to µ, µk ⇀ µ.

– lim
k→+∞

∫
Rn f dµk =

∫
Rn f dµ for all f ∈ C0

c (Rn).

– lim sup
k→+∞

µk(K) ≤ µ(K) for each compact set K ⊂ Rn and µ(U) ≤ lim inf
k→+∞

µk(U) for

each open set U ⊂ Rn.

– lim
k→+∞

µk(B) = µ(B) for each bounded Borel set B ⊂ Rn with µ(∂B) = 0.

We introduce Lp spaces whose definitions and properties are extracted from [5] and
[1].

Definition 1.8. Let (X, ε) be a measure space, µ be a positive measure on it and u :
X → Rl a µ-measurable function, l ∈ N∗. We set

‖u‖Lp(X,Rl;µ) :=

(∫
X
|u|p dµ

) 1
p

,

if 1 ≤ p <∞ and

‖u‖L∞(X,Rl;µ) := inf{C ∈ [0,∞] : |u(x)| ≤ C, for µ− a.e. x ∈ X}
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We say that u ∈ Lp(X,Rl;µ) if ‖u‖Lp(X,Rl;µ) < ∞. The sets Lp(X,Rl;µ) (in which two
functions that agree a.e. as identical are identified) are Banach vector spaces with the
norms ‖u‖Lp(X,Rl;µ) defined previously for 1 ≤ p ≤ ∞. The space L2(X,Rl;µ) is a Hilbert
space endowed with the inner product (u, v)L2(X,Rl;µ) =

∫
X < u(x), v(x) >Rl dµ.

We can extend this definition to Banach-space valued functions.

Definition 1.9. Let B be a Banach space and T > 0. Then Lp(0, T ;B) = {f : [0, T ] →
B|
∫ T

0 ‖f(t)‖pB dt < +∞} for 1 ≤ p < +∞ and L∞(0, T ;B) = {f : [0, T ]→ B| sup
t∈[0,T ]

‖f(t)‖B <

+∞}.

Let us now state some important integration results considering l = 1, µ = dx the
Lebesgue measure of X, an open set of RN , and using the simplified notation Lp(X).

Theorem 1.4 (Monotone convergence theorem of Beppo-Levi). Let uh : X → R be an
increasing sequence of functions in L1(X) and assume that sup

h

∫
Ω uh dx < +∞. Then

uh(x) converges almost everywhere on X to a finite limit denoted by f(x). Moreover,
f ∈ L1(X) and ‖uh − f‖L1(X) −→

h→+∞
0.

Lemma 1.10 (Fatou’s lemma). Let uh : X → R be a sequence of functions in L1(X) such
that:

1. for every h ∈ N, uh(x) ≥ 0 almost everywhere on X,

2. sup
h∈N

∫
X uh dx <∞.

For every x ∈ X, we set u(x) = lim inf
h→+∞

uh(x). Then u ∈ L1(X) and
∫
X u dx ≤ lim inf

h→+∞

∫
X uh dx.

Theorem 1.5 (Lebesgue dominated convergence theorem). Let uh : X → R be a sequence
of functions in L1(X). We assume that

1. uh(x) −→
h→+∞

u(x) almost everywhere on X,

2. there exists a function g ∈ L1(X) such that for every h ∈ N, |uh(x)| ≤ g(x) almost
everywhere on X.

Then u ∈ L1(X) and ‖uh − u‖L1(X) −→
h→+∞

0.

Theorem 1.6 (Hölder’s inequality). Let f ∈ Lp(X) and g ∈ Lq(X) with 1 ≤ p ≤ ∞ and
1
p + 1

q = 1. Then fg ∈ L1(X) and
∫
X |fg| dx ≤ ‖f‖Lp(X)‖g‖Lq(X).

Theorem 1.7 (Fubini-Tonelli’s theorem). Let (X,A, µ) and (Y,B, ν) be two measure
spaces such that µ and ν are σ-finite that is to say, X is the countable union of mea-
surable sets with finite measure µ, and Y is the countable union of measurable sets with
finite measure ν. Let (X × Y,A × B, µ × ν) be the product measure space endowed with
the product measure. If f : X × Y → [0,+∞] is a A× B-measurable function, then x 7→∫
Y f(x, y) dν(y) and y 7→

∫
X f(x, y) dµ(x) are respectively A/B-measurable functions and∫

X×Y f(x, y) d(µ× ν)(x, y) =
∫
X

[∫
Y f(x, y) dν(y)

]
dµ(x) =

∫
Y

[∫
X f(x, y) dµ(x)

]
dν(y).
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We continue by presenting some properties of these sets.

Theorem 1.8. Let uh : X → R be a sequence of functions in Lp(X) and u ∈ Lp(X) such
that ‖uh − u‖Lp(X) −→

h→+∞
0. Then there exists a subsequence (uhk) of (uh) such that:

1. uhk(x) −→
k→+∞

u(x) for almost every x ∈ X,

2. there exists h ∈ Lp(X) such that |uhk |(x) ≤ h(x) for almost every x ∈ X and for all
k ∈ N.

Theorem 1.9. Lp(X) is a reflexive space for 1 < p < +∞ and is a separable space for
1 ≤ p < +∞. The dual space of L1(X) can be identified with L∞(X).

Theorem 1.10. The dual space of Lp(X) with 1 < p < +∞ is identified with L
p
p−1 (X).

Theorem 1.11 (General compactness properties).

1. Let Y be a reflexive Banach space and let C > 0 be a positive real constant. Let also
(uh) be a sequence of Y such that ‖uh‖Y ≤ C for all h ∈ N. Then there exist u ∈ Y
and a subsequence (uhk) of (uh) such that uhk

Y
⇀

k→+∞
u.

2. Let Y be a separable Banach space and let C > 0 be a positive real constant. Let also
(ln) be a sequence of Y ′, the dual space of Y , such that ‖ln‖Y ′ ≤ C for all n ∈ N.

Then there exist l ∈ Y ′ and a subsequence (lnk) of (ln) such that lnk
Y ∗
⇀

k→+∞
l.

1.2 Sobolev spaces

Definitions and theorems are extracted from [5] and [14]. Let Ω ⊂ RN be an open set
associated with the Lebesgue measure dx.

Definition 1.11. Assume that u ∈ L1
loc(Ω). We say that vi ∈ L1

loc(Ω) is the weak partial
derivative of u with respect to xi in Ω (or the partial derivative in the sense of distributions)
if ∫

Ω
u
∂φ

∂xi
dx = −

∫
Ω
viφdx,

for all φ ∈ C∞c (Ω).

Definition 1.12. Let 1 ≤ p ≤ +∞. The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) =

{
u ∈ Lp(Ω)

∣∣∣∣ ∃g1, . . . , gN ∈ Lp(Ω) such that∫
Ω u

∂φ
∂xi

dx = −
∫

Ω giφdx, ∀φ ∈ C
∞
c (Ω), ∀i = 1, . . . , N.

}
=

{
u ∈ Lp(Ω)

∣∣∣∣∀i = 1, . . . , N,
∂u

∂xi
, the weak derivative of u with respect to xi, exists

and
∂u

∂xi
∈ Lp(Ω)

}
.
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The space W 1,2(Ω) is often denoted by H1(Ω). Let m ≥ 2 be an integer. The Sobolev
space Wm,p(Ω) is defined by

Wm,p(Ω) =

{
u ∈ Lp(Ω

∣∣∣∣ ∀α ∈ NN with |α| ≤ m, ∃gα ∈ Lp(Ω) such that∫
Ω uD

αφdx = (−1)|α|
∫

Ω gαφdx, ∀φ ∈ C
∞
c (Ω).

}
=

{
u ∈ Lp(Ω)

∣∣∣∣∀α ∈ NN with |α| ≤ m, Dαu =
∂α1+α2+···+αNu

∂α1x1∂α2x2 . . . ∂αNxN
, the weak derivative

of u, exists and Dαu ∈ Lp(Ω)} .

The space Wm,2(Ω) is often denoted by Hm(Ω).

Proposition 1.13. The spaces Wm,p(Ω) with m ∈ N∗ and 1 ≤ p ≤ ∞ are Banach spaces
endowed with the respective norms ‖u‖Wm,p(Ω) =

∑
0≤|α|≤m

‖Dαu‖Lp(Ω).

The spaces Wm,p(Ω) with m ∈ N∗ and 1 < p <∞, are reflexive.
The spaces Wm,p(Ω) with m ∈ N∗ and 1 ≤ p <∞, are separable.
The spaces Hm(Ω), m ∈ N∗, are separable and reflexive Hilbert spaces equipped with the
inner product (u, v)Hm(Ω) =

∑
0≤|α|≤m

(Dαu,Dαv)L2(Ω).

Let us now define some other classical functional spaces before giving more properties
of Sobolev spaces.

Definition 1.14.

1. C0(Ω) = C(Ω) is the set of continuous functions u : Ω→ R with the norm ‖u‖C0(Ω) =
sup
x∈Ω
|u(x)|.

2. C0(Ω̄) is the set of continuous functions u : Ω → R which can be extended continu-
ously to Ω̄. The associated norm is defined by ‖u‖C0(Ω̄) = sup

x∈Ω̄

|u(x)|.

3. The support of a function u : Ω→ R is defined as supp u := {x ∈ Ω : u(x) 6= 0}.

4. Cc(Ω) = {u ∈ C(Ω) | supp u ⊂ Ω is compact}.

5. For all k ∈ N, we denote by Ck(Ω) the space of continuous functions with all their
partial derivatives up to order k being also continuous. The associated norm is
defined by ‖u‖Ck(Ω) = sup

|α|≤k
sup
x∈Ω
|Dαu(x)|.

6. Let X be a Banach space and T > 0. For all k ∈ N, we denote by Ck(0, T ;X) the
space of continuous functions u : [0, T ] → X with all their partial derivatives up to
order k with respect to t being also continuous. The associated norm is defined by
‖u‖Ck(0,T ;X) = sup

|α|≤k
sup
t∈[0,T ]

‖ ∂k
∂tk
u(t)‖X .
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7. For all k ∈ N and 1 ≥ γ ≥ 0, we define Hölder spaces by:

Ck,γ(Ω) =
{
u ∈ Ck(Ω)|‖u‖Ck,γ(Ω) = ‖u‖Ck(Ω)+ sup

(x,y)∈Ω2, x 6=y

{
|u(y)− u(x)|
|x− y|γ

}
< +∞

}
.

We continue with some interesting properties of Sobolev spaces with m = 1.

Theorem 1.12. Assume that 1 ≤ p < +∞.

1. (Product rule) If (u, v) ∈ (W 1,p(Ω) ∩ L∞(Ω))2, then uv ∈ W 1,p(Ω) ∩ L∞(Ω) and
∂uv
∂xi

= ∂u
∂xi
v + ∂v

∂xi
u, for all i = 1, . . . , N .

2. (Chain rule) Let G ∈ C1(R) such that G(0) = 0 and |G′(s)| ≤ M , ∀s ∈ R. Let
u ∈W 1,p(Ω), then G ◦ u ∈W 1,p(Ω) and ∂

∂xi
G ◦ u = (G′ ◦ u) ∂u∂xi , for all i = 1, . . . , N .

Theorem 1.13 (Trace theorem). Assume that Ω is a bounded open subset of RN of class
C1, and 1 ≤ p < ∞. There exists a bounded linear operator T : W 1,p(Ω) → Lp(∂Ω) such
that Tu = u on ∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω̄). Furthermore, for all φ ∈ C∞c (RN ,R) and
u ∈W 1,p(Ω), ∫

Ω
udivφdx = −

∫
Ω
∇u.φ dx+

∫
∂Ω

(φ.ν)Tu dHN−1,

ν denoting the unit outer normal to ∂Ω and HN−1 the N − 1-dimensional Hausdorff
measure whose definition follows.

Definition 1.15 (Hausdorff measure [10]). For K ⊂ RN , and n > 0, we set

Hn(K) = sup
ε>0
Hnε (K),

called the n-dimensional Hausdorff measure of the set K, where

Hnε (K) = cn inf

{ ∞∑
i=1

(diamAi)
n

}
,

and the infimum is taken over all countable families {Ai}∞i=1 of closed sets Ai such that

K ⊂
∞
∪
i=1

Ai and diamAi ≤ ε for all i. The constant cn is chosen so that Hn coincides

with the Lebesgue measure on n-planes.

Theorem 1.14 (Generalized Poincaré inequality, [9]). Let Ω be a Lipschitz bounded do-
main in RN . Let p ∈ [1,∞) and let N be a continuous semi-norm on W 1,p(Ω), that is,
a norm on the constant functions. Let u ∈ W 1,p(Ω). Then there exists a constant C > 0
that depends only on Ω, N , and p, such that

‖u‖W 1,p(Ω) ≤ C

((∫
Ω
|∇u|p dx

) 1
p

+N (u)

)
.

We apply this result to N (u) =
∫
∂Ω |u(x)| dx.
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Theorem 1.15 (Density). We assume that Ω is of class C1. Let u ∈ W 1,p(Ω) with
1 ≤ p < ∞. Then there exists a sequence (un) ∈ C∞c (RN ) such that un|Ω −→

n→+∞
u

in W 1,p(Ω). In other words, the restrictions to Ω of functions of C∞c (RN ) are dense in
W 1,p(Ω).

Theorem 1.16 (Extension operators, [9]). Let m ∈ N∗. We assume that Ω is an open
set of class Cm, with ∂Ω bounded (or Ω = RN+ ). Then it has an (m, p)-extension property
for every p ∈ [1,∞[ that is to say, there exists a linear extension operator E : Wm,p(Ω)→
Wm,p(RN ) such that ∀u ∈Wm,p(Ω):

1. Eu|Ω = u,

2. ‖Eu‖Lp(RN ) ≤ C‖u‖Lp(Ω),

3. ‖Eu‖Wm,p(RN ) ≤ C‖u‖W 1,p(Ω),

where C depends only on Ω. For m = 1, this property is also true for p =∞.

We will now give Sobolev inequalities and embedding theorems.

Theorem 1.17 (Sobolev, Gagliardo, Nirenberg). Let 1 ≤ p < N , then W 1,p(RN ) ⊂
Lp
∗
(RN ) where 1

p∗ = 1
p−

1
N , and there exists a constant C = C(p,N) such that ‖u‖Lp∗ (RN ) ≤

C‖∇u‖Lp(RN ), ∀u ∈W 1,p(RN ).

Corollary 1.16. Let 1 ≤ p < N . Then W 1,p(RN ) ⊂ Lq(RN ), ∀q ∈ [p, p∗] with continuous
embeddings.

Corollary 1.17. In the case where p = N , we have W 1,N (RN ) ⊂ Lq(RN ), ∀q ∈ [N,+∞[
with continuous embeddings.

Theorem 1.18 (Morrey). Let p > N , then W 1,p(RN ) ⊂ L∞(RN ) with continuous embed-
ding.
Moreover, for all u ∈W 1,p(RN ), we have |u(x)− u(y)| ≤ C|x− y|α‖∇u‖Lp(RN ) for almost

every (x, y) ∈ R2N , with α = 1− N
p and C = C(p,N) a non-negative constant.

Corollary 1.18. Let m ≥ 1 be an integer and 1 ≤ p <∞. We have

– if 1
p −

m
N > 0, then Wm,p(RN ) ⊂ Lq(RN ) for all q ∈ [p, Np

N−mp ],

– if 1
p −

m
N = 0, then Wm,p(RN ) ⊂ Lq(RN ), ∀q ∈ [p,∞[,

– if 1
p −

m
N > 0, then Wm,p(RN ) ⊂ L∞(RN ),

with continuous embeddings.

Moreover, if m − N
p > 0 is not an integer, we set k =

[
m− N

p

]
where [.] denotes the

bracket function and θ = m − N
p − k (0 < θ < 1). We have for all u ∈ W 1,p(RN ),

‖Dαu‖L∞(RN ) ≤ C‖u‖Wm,p(RN ), ∀α ∈ NN such that |α| ≤ k and |Dαu(x) − Dαu(y)| ≤
C‖u‖Wm,p(RN )|x − y|θ for almost every (x, y) ∈ R2N , and ∀α ∈ NN such that |α| = k. In

particular Wm,p(RN ) ⊂ Ck,α(RN ) with continuous embeddings for all α ∈ [0, θ].
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Corollary 1.19. Let Ω be an open set of class C1 with bounded boundary or Ω = RN . The
conclusions of the previous Corollary remain true if we replace RN by Ω.

Theorem 1.19 (Rellich-Kondrachov theorem). Let Ω be an open bounded Lipschitz subset
of RN . Let p ≥ 1.

– If N > mp and N > 1, the embedding Wm,p(Ω) ⊂ Lq(Ω) is compact for all q ∈
[p, Np

N−mp [.

– If p < N , then W 1,p(Ω) ⊂ Lq(Ω) with compact embeddings for all q ∈ [1, p∗[, 1
p∗ =

1
p −

1
N .

– If p = N , then W 1,p(Ω) ⊂ Lq(Ω) with compact embeddings for all q ∈ [1,∞[.

– If p > N , then W 1,p(Ω) ⊂ C0,α(Ω̄) with compact embeddings for all α ∈ [0, 1− N
p [.

– If mp > N and with j =
[
N
p

]
+ 1, Wm,p(Ω) ⊂ Cm−j,α(Ω̄) with compact embeddings

for all α ∈ [0, j − N
p [.

Lemma 1.20 (Aubin-Lions lemma, extension to Sobolev spaces of Banach space-valued
functions). Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose that
X0 is compactly embedded in X and that X is continuously embedded in X1. For 1 ≤ p,
q ≤ +∞, let

W =

{
u ∈ Lp(0, T ;X0) | ∂u

∂t
∈ Lq(0, T ;X1)

}
be a generalized Sobolev space of Banach space-valued functions.

1. If p < +∞, then the embedding of W into Lp(0, T ;X) is compact.

2. If p = +∞ and q > 1, then the embedding of W into C0(0, T ;X) is compact.

1.3 Fractional Sobolev spaces

Before introducing fractional Sobolev spaces, we will briefly review tempered distributions
and Fourier transform coming from [9] and [14].

Definition 1.21 (Rapidly decreasing functions). A function φ is said to be rapidly de-
creasing in RN if φ ∈ C∞(RN ) and if, when Dj denotes the differentiation operator with
respect to the multi-index j = (j1, j2, . . . , jN ), we have:

∀j ∈ NN , ∀k ∈ N, |x|kDjφ ∈ L∞(RN ).

⇔ ∀(j, k) ∈ NN × N, |x|kDjφ ∈ L1(RN ).

⇔ ∀(j, k) ∈ NN × N, lim
|x|→+∞

|x|kDjφ(x) = 0.

The set of these functions is a vector space denoted by S(RN ) having a natural topology
generated by the following countable family of semi-norms: nk,j(φ) = ‖|x|kDjφ‖L∞(RN ).

42



1. Functional spaces

Proposition 1.22. The space D(RN ) = C∞c (RN ) is dense in S(RN ).

Definition 1.23 (Tempered distributions). Let S ′(RN ) be the topological dual of S(RN ).
S ′(RN ) is the space of tempered distributions included in D′(RN ), space of all distributions,
dual space of D(RN ).

The Fourier transform is a classical tool in image processing and expresses a function in
the spatial domain as a function of frequencies. In the following, we define it and present
some of its useful properties.

Definition 1.24. The Fourier transform F defined by

∀ξ ∈ RN , ∀φ ∈ S(RN ), F(φ)(ξ) =

∫
RN

e−2iπξ.xφ(x) dx,

is an automorphism of S(RN ). The inverse operator of F , which we denote by F̄ , is
defined by ∀ξ ∈ RN , F̄(φ)(ξ) = F(φ)(−ξ). The Fourier transform of T ∈ S ′(RN ) , defined
by ∀φ ∈ S(RN ), < F(T ), φ >=< T,F(φ) > is a tempered distribution.
We can easily see that if f ∈ Lp(RN ) with p ∈ [1,∞], then the associated distribution [f ] is
tempered. In particular, if f ∈ L1(RN ), then the function F(f) : ξ 7→

∫
RN e

−2iπξ.xf(x) dx,
which belongs to L∞(RN ), coincides with the transform F([f ]).

Proposition 1.25. The distributions with bounded support which belong to (C∞(RN ))′,
the topological dual space of C∞(RN ) are tempered. The Fourier transform of such a
distribution T can be identified with the function defined by ξ 7→< T(x), e

(−2iπξ.x) >.

Theorem 1.20 (Plancherel theorem). F|L1(RN )∩L2(RN ) extends uniquely to a unitary iso-

morphism on L2(RN ). In particular, if u ∈ L2(RN ), then F(u) ∈ L2(RN ) and ‖u‖L2(RN ) =
‖F(u)‖L2(RN ).

Theorem 1.21 (Convolution theorem). Let u, v ∈ L1(RN ). Then u ∗ v ∈ L1(RN ) and
F(u ∗ v) = F(u)×F(v) where ∗ denotes the convolution operator.

We continue with the definitions and some properties of fractional Hilbert-Sobolev
spaces.

Definition 1.26. Let s be a real number.
If s > 0, then we define Hs(RN ) = {u ∈ L2(RN ) | {ξ 7→ (1 + |ξ|2)

s
2F(u)(ξ)} ∈ L2(RN ).

If s < 0, then we define Hs(RN ) = {u ∈ S ′(RN ) | {ξ 7→ (1 + |ξ|2)
s
2F(u)(ξ)} ∈ L2(RN ).

Proposition 1.27. The space Hs(RN ) endowed with the norm defined by ‖u‖Hs(RN ) =

‖(1 + |ξ|2)
s
2F(u)‖L2(RN ) is a Banach space.

Proposition 1.28. If s = m ∈ N∗, then the space Hs(RN ) coincides with the classical
Sobolev space Wm,2(RN ).

Proposition 1.29. For s > 0, the space H−s(RN ) coincides with the topological dual
Hs(RN )′.
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Proposition 1.30. The space S(RN ) is dense in Hs(RN ).

The following proposition will allow us to show that the spaces Hs(RN ) coincide with
the spaces W s,2(RN ) whose definitions are given later.

Proposition 1.31. Let s ∈]0, 1[. Then u ∈ Hs(RN ) if and only if u ∈ L2(RN ) and∫
RN
∫

RN
|u(x)−u(y)|2
|x−y|N+2s dx dy < +∞.

Proposition 1.32 (Embedding results). Let s > 0. We have the following continuous
embeddings:

1. If 1
2 < s < N

2 , then Hs(RN ) ⊂ Lq(RN ) for every q < 2N
N−2s .

2. If s = N
2 , then Hs(RN ) ⊂ Lq(RN ) for every q <∞.

3. If s > N
2 , then Hs(RN ) ⊂ C0(RN ).

We now provide the definition and some properties of fractional Sobolev spaces.

Definition 1.33. Let s ∈]0, 1[ and let p ∈]1,∞[. Let Ω be an open subset of RN . We
define the fractional Sobolev space W s,p(Ω) as follows:

W s,p(Ω) =

{
u ∈ Lp(Ω) |

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dx dy <∞

}
.

Let s ∈ R \ N with s ≥ 1, p ∈ [1,∞[, and Ω be an open subset of RN . The space W s,p(Ω)
is defined to be

W s,p(Ω) =
{
u ∈W [s],p(Ω) |Dju ∈W s−[s],p(Ω), ∀j, |j| = [s]

}
.

Proposition 1.34. Let s ∈]0, 1[, p ∈]1,∞[ and Ω be an open subset of RN . The space

W s,p(Ω) endowed with the norm ‖u‖W s,p(Ω) =
(
‖u‖pLp(Ω) +

∫
Ω

∫
Ω
|u(x)−u(y)|p
|x−y|N+sp dx dy

) 1
p

is a

Banach space.
Let s ∈ R \ N, s ≥ 1, p ∈]1,∞[ and Ω be an open subset of RN . It is clear that W s,p(Ω)

endowed with the norm ‖u‖W s,p(Ω) =

(
‖u‖p

W [s],p(Ω)
+

∑
j,|j|=[s]

∫
Ω

∫
Ω
|Dju(x)−Dju(y)|p
|x−y|N+(s−[s])p dx dy

) 1
p

is a Banach space.

Proposition 1.35. The space W s2,p(Ω) is continuously embedded in W s1,p(Ω), when 0 <
s1 ≤ s2 < 1 and with p ∈]1,∞[ and Ω an open subset of RN .
Let p ∈]1,∞[ and s ∈ (0, 1). Let Ω be a Lipschitz open set in RN with bounded boundary
and u : Ω → R be a measurable function. Then W 1,p(Ω) ⊂ W s,p(Ω) with continuous
embedding.
Let p ∈]1,∞[ and s1 > s2 > 1. Let Ω be a Lipschitz open set in RN with bounded boundary
and u : Ω → R be a measurable function. Then W s1,p(Ω) ⊂ W s2,p(Ω) with continuous
embedding.
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Proposition 1.36 (Continuous embedding results). Let Ω be a Lipschitz open subset of
RN . Let p ∈]1,∞[. Let s ∈ R \ N. We then have:

– If sp < N , then W s,p(Ω) ⊂ Lq(Ω) for every q ≤ Np
N−sp with continuous embeddings.

– If sp = N , then W s,p(Ω) ⊂ Lq(Ω) for every q <∞ with continuous embeddings.

– If sp > N , then we have:

– If s− N
p /∈ N, then W s,p(Ω) ⊂ C

[
s−N

p

]
,λ

b (Ω) =
{
f ∈ C

[
s−N

p

]
,λ

(Ω), f bounded
}

for all λ ≤ s− N
p −

[
s− N

p

]
, with continuous embeddings.

– If s− N
p ∈ N, then W s,p(Ω) ⊂ C

s−N
p
−1,λ

b (Ω) with continuous embeddings for all
λ < 1.

Proposition 1.37 (Compact embedding results). Let Ω be a bounded Lipschitz open
subset of RN . Let p ∈]1,∞[. Let s ∈ R \ N. We then have:

– If sp < N , then W s,p(Ω) ⊂ Lq(Ω) for every q < Np
N−sp with compact embeddings.

– If sp = N , then W s,p(Ω) ⊂ Lq(Ω) for every q <∞ with compact embeddings.

– If sp > N , then we have:

– If s− N
p /∈ N, then W s,p(Ω) ⊂ C

[
s−N

p

]
,λ

b (Ω) for all λ < s− N
p −

[
s− N

p

]
, with

compact embeddings.

– If s − N
p ∈ N, then W s,p(Ω) ⊂ C

s−N
p
−1,λ

b (Ω) with compact embeddings for all
λ < 1.

1.4 BV space and its subsets

In this section, we remind the reader of the definition of functions of bounded variation
functional space allowing to capture discontinuities along edges in images, as well as basic
results. Precise studies of this space of functions are available in [10], [9] and [1]. This
section is extracted from these books and we refer the reader to them for proofs of the
results.
In the following, Ω is an open set of RN .

Definition 1.38 (BV (Ω) space). Let u ∈ L1(Ω). u is a function of bounded variation on
Ω if and only if

∫
Ω u

∂φ
∂xi

dx = −
∫

Ω φdDiu, ∀φ ∈ C1
c (Ω) with Du = (D1u,D2u, . . . ,DNu) a

finite RN -valued Radon measure. The vector space of all functions of bounded variation is
called BV (Ω).

Definition 1.39 (Total variation). If u ∈ L1(Ω), its total variation is defined by |u|BV (Ω) :=

sup{
∫

Ω u divφdx |φ ∈ C1
c (Ω,RN ), ‖φ‖L∞(Ω) ≤ 1}. u ∈ BV (Ω) if and only if |u|BV (Ω) <∞

and then |u|BV (Ω) = |Du|(Ω).
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Proposition 1.40. BV (Ω) is a Banach space endowed with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω)+
|u|BV (Ω).

Definition 1.41 (weak-∗ convergence in BV (Ω)). Let u ∈ BV (Ω), (un)n∈N be a sequence
of functions of bounded variation on Ω. We say that the sequence (un) converges weakly-∗
to u ∈ BV (Ω) in BV (Ω) if (un)n∈N converges to u strongly in L1(Ω) and (Dun) weakly
converges to Du in the space of RN -valued Radon measures, that is to say, lim

n→+∞
‖un −

u‖L1(Ω) = 0 and lim
n→+∞

∫
Ω vDun =

∫
Ω vDu, ∀v ∈ Cc(Ω,RN ).

Theorem 1.22 (Lower semi-continuity of total variation). Assume that un ∈ BV (Ω)
(n = 1, 2, . . . ) and un → u strongly in L1(Ω). Then |u|BV (Ω) ≤ lim inf

n→+∞
|un|BV (Ω).

Theorem 1.23 (Compactness). Let Ω ⊂ RN be a bounded open set with Lipschitz bound-
ary ∂Ω. Assume that {un}∞n=1 is a sequence in BV (Ω) satisfying sup

n∈N
‖un‖BV (Ω) < ∞.

Then there exists a subsequence {unj}∞j=1 and a function u ∈ BV (Ω) such that unj −→
j→+∞

u

strongly in L1(Ω).

Theorem 1.24 (Regular approximation). Let Ω be a bounded open subset of RN . Let
u ∈ BV (Ω), then there exists a sequence (uk)k∈N of BV (Ω) ∩ C∞(Ω) functions such that:

1. uk −→
k→+∞

u strongly in L1(Ω), and

2. |uk|BV (Ω) −→
k→+∞

|u|BV (Ω).

Theorem 1.25 (Embedding theorem). Let Ω ⊂ RN be an open and bounded set with a

Lipschitz boundary ∂Ω. Then the embedding BV (Ω) ⊂ L
N
N−1 (Ω) is continuous and the

embeddings BV (Ω) ⊂ Lp(Ω) for all p ∈ [1, N
N−1 [ are compact.

Theorem 1.26 (Poincaré-Wirtinger inequality). Let Ω ⊂ RN be an open, bounded and
connected set with Lipschitz boundary ∂Ω. Then there exists a constant C > 0 depending
only on N and Ω such that ‖u − 1

|Ω|
∫

Ω u(x) dx‖Lp(Ω) ≤ C|u|BV (Ω), ∀u ∈ BV (Ω) and

1 ≤ p ≤ N
N−1 .

Theorem 1.27 (Coarea formula). Let u ∈ BV (Ω) with Ω an open subset of RN . Then

– Et = {x ∈ Ω |u(x) > t} has finite perimeter that is to say χEt ∈ BV (Ω) and
|χEt |BV (Ω) is the perimeter PΩ(Et) of Et in Ω, for almost every t ∈ R.

– |u|BV (Ω) =
∫ +∞
−∞ |χEt |BV (Ω) dt

– Conversely, if u ∈ L1(Ω) and
∫ +∞
−∞ |χEt |BV (Ω) dt <∞, then u ∈ BV (Ω).

We briefly introduce the characterization of functions of bounded variations. Indeed,
the measure Du of a function u of bounded variation can be decomposed into three terms
namely Du = Dau+Dcu+Dju where Dau is the absolutely continuous part of Du and
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Dsu = Dju+Dcu is the singular part with Dju being the jump part and Dcu being the
Cantor part. Moreover, we can express Du = ∇u dx+(u+−u−)~nuHN−1|Su +Dcu, where
∇u ∈ L1(Ω), Su is of finite (N − 1)-dimensional Hausdorff measure, (u+ − u−)~nuχSu ∈
L1(Ω,RN ;HN−1|Su) with u+ and u− on each side of the jump part Su, and ~nu the unit
normal to Su; finally, Dcu satisfies Dcu(B) = 0 for all B such that HN−1(B) < +∞.

Definition 1.42 (SBV space). We say that u ∈ BV (Ω) is a special function of bounded
variation and we write u ∈ SBV (Ω) if the Cantor part Dcu of its derivative Du is zero.

Theorem 1.28 (Compactness of SBV ). Let (un) be a sequence of special functions of
bounded variation such that there exists a constant C > 0 with |un(x)| ≤ C for almost
every x ∈ Ω open subset of RN and

∫
Ω |∇un|

2 dx +HN−1(Sun) ≤ C. Then there exists a
subsequence (unk) converging almost everywhere to a function u ∈ SBV (Ω). Moreover,
(∇unk) weakly converges to ∇u in L2(Ω) and HN−1(Su) ≤ lim inf

k→+∞
HN−1(Sunk ).

Theorem 1.29. Let Ω be an open subset of RN . We have W 1,1(Ω) ⊂ SBV (Ω) ⊂ BV (Ω).

Definition 1.43 (GSBV space). The space of generalized special functions of bounded
variation is defined by

GSBV (Ω) = {u : Ω→ R : u Borel function, max(−k,min(u, k)) ∈ SBV (Ω), ∀k ∈ N}.

2 Viscosity solution theory

The theory of viscosity solutions applies to certain partial differential equations and allows
merely continuous functions to be solutions of fully nonlinear equations of first and second
order. We refer the reader to [2] and [6] for a general introduction. In a first part, we
will focus on the theory of viscosity solutions applied to second order degenerate parabolic
equations and then to nonlocal and nonlinear parabolic equations.

2.1 Framework for second order degenerate parabolic equations

This section is based on [11] and [12]. Given T > 0, we consider the following problem:{
ut +G(x, t,Du,D2u) = 0 in (0, T )× Rn

u(x, 0) = u0(x) in Rn
, (2.1)

with G : Rn × (0, T ) × Rn × Sn, Sn being the set of symmetric n × n matrices equipped
with its natural partial order satisfying the following properties:

(F1) G is continuous on Rn × (0, T )× Rn \ {0Rn} × Sn. This allows equation (2.1) to be
singular at ∇u = 0.

(F2) G is degenerate elliptic that is to say, G(x, t, p,X + Y ) ≤ G(x, t, p,X) for all
(x, t, p,X) ∈ Rn × (0, T )× Rn × Sn and any Y ∈ Sn, Y ≥ 0.

(F3) −∞ < G∗(x, t, 0Rn , 0Sn) = G∗(x, t, 0Rn , 0Sn) < +∞ for all (x, t) ∈ Rn × (0, T ) where
G∗ is the lower semicontinuous envelope of G and G∗, the upper semicontinuous one.
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Definition 2.1.

USC(Rn × [0, T )) = {u : Rn × [0, T )→ R locally bounded, upper semicontinuous }.

LSC(Rn × [0, T )) = {u : Rn × [0, T )→ R locally bounded, lower semicontinuous }.

We then define viscosity solutions.

Definition 2.2 (Viscosity subsolution, supersolution and solution). A function u ∈ USC(RN×
[0, T )) is a viscosity subsolution of (2.1) if it satisfies:

1. u(x, 0) ≤ u0(x) in Rn,

2. for every (x0, t0) ∈ Rn × (0, T ) and for every test function Φ : Rn × (0, T ) → R, C1

in time, C2 in space, that is tangent from above to u at (x0, t0), the following holds:

∂Φ

∂t
(x0, t0) +G∗(x0, t0, DΦ, D2Φ) ≤ 0.

A function v ∈ LSC(Rn × [0, T )) is a viscosity supersolution of (2.1) if it satisfies:

1. v(x, 0) ≥ u0(x) in Rn,

2. for every (x0, t0) ∈ Rn × (0, T ) and for every test function Φ : Rn × (0, T ) → R, C1

in time, C2 in space, that is tangent from below to v at (x0, t0), the following holds:

∂Φ

∂t
(x0, t0) +G∗(x0, t0, DΦ, D2Φ) ≥ 0.

A function v ∈ C0(Rn×[0, T )) is a viscosity solution of (2.1) if and only if it is a subsolution
and a supersolution of (2.1).

Before giving another definition, we define parabolic sub and superdifferentials of semi-
continuous functions.

Definition 2.3 (Parabolic sub/superdifferentials of semicontinuous functions). Let u :
Rn × (0, T )→ R.
The parabolic superdifferential of u, P+u, is defined as follows: (a, p,X) ∈ R × Rn × Sn
belongs to P+u(x, t) if (x, t) ∈ Rn × (0, T ) and u(y, s) ≤ u(x, t) + a(s − t) + 〈p, y − x〉 +
1
2〈X(y − x), y − x〉 + o(|s − t| + |x − y|2), as (y, s) ∈ Rn × (0, T ) → (x, t). Similarly
P−u = −P+(−u). We also define two sets:

P̄+u(x, t) =


(a, p,X) ∈ R× Rn × Sn,
∃(xn, tn, an, pn, Xn) ∈ Rn × R× R× Rn × Sn
such that (an, pn, Xn) ∈ P+u(xn, tn)
and (xn, tn, u(xn, tn), an, pn, Xn)→ (x, t, u(x, t), a, p,X)


The set P̄−u(x, t) is defined in a similar way.
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Definition 2.4 (Equivalent definition for viscosity solutions). A function u ∈ USC(Rn×
[0, T )) is a viscosity subsolution of (2.1) if it satisfies:

1. u(x, 0) ≤ u0(x) in Rn,

2. for every (x, t) ∈ Rn × (0, T ) and for every (a, p,X) ∈ P+u(x, t), we have a +
G∗(x, t, p,X) ≤ 0.

A function v ∈ LSC(Rn × [0, T )) is a viscosity supersolution of (2.1) if it satisfies:

1. v(x, 0) ≥ u0(x) in Rn,

2. for every (x, t) ∈ Rn × (0, T ) and for every (a, p,X) ∈ P−v(x, t), we have a +
G∗(x, t, p,X) ≥ 0.

A function v ∈ C0(Rn × [0, T )) is a viscosity solution of (2.1) if, and only if, it is a
subsolution and a supersolution of (2.1).

We recall the parabolic version of Ishii’s lemma.

Lemma 2.5 (Parabolic Ishii’s lemma). Let U and V be open sets of Rn, u ∈ USC(U×R+)
and v ∈ LSC(V × R+). Let φ : U × V × R+ → R of class C2. Assume that (x, y, t) 7→
u(x, t) − v(y, t) − φ(x, y, t) reaches a local maximum at (x̄, ȳ, t̄) ∈ U × V × R+

∗ . We
set τ = ∂tφ(x̄, ȳ, t̄), p1 = Dxφ(x̄, ȳ, t̄), p2 = −Dyφ(x̄, ȳ, t̄). Assume also that u and −v
satisfy the compactness assumption, that is to say for every (z, s) ∈ Rn × R+

∗ , there exists
ru, r−v > 0 such that for every M > 0, there exists Cu, C−v such that

|(x, t)− (z, s)| ≤ ru
(τ, p,X) ∈ P̄+u(x, t)

|u(x, t)|+ |p|+ |X| ≤M

⇒ τ ≤ Cu,

|(x, t)− (z, s)| ≤ r−v
(τ, p,X) ∈ P̄+(−v)(x, t)

| − v(x, t)|+ |p|+ |X| ≤M

⇒ τ ≤ C−v.

Then for every α > 0 such that αA < I, there exists τ1, τ2 ∈ R and X,Y ∈ Sn such that

τ = τ1 − τ2,

(τ1, p1, X) ∈ P̄+u(x̄, t̄), (τ2, p2, Y ) ∈ P̄−v(x̄, t̄),

−1

α

(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ (I − αA)−1A.

The strategy is then to get a comparison principle, construct barriers, prove the ex-
istence and uniqueness of a viscosity solution based on Perron’s method and study the
regularity of this solution using additional specific properties of G.
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2.2 General framework for nonlocal and nonlinear parabolic equations

We take this general framework from [3] and we follow the same notations. Let us consider
the class of nonlocal and nonlinear parabolic equations which can be rewritten as{

ut = H[1{u≥0}]
(
x, t, u,Du,D2u

)
in RN × (0, T ) ,

u(·, 0) = u0 in RN ,
(2.2)

where ut, Du and D2u stand respectively for the time derivative, gradient and Hessian
matrix with respect to the space variable x of u : RN×[0, T ]→ R and where 1A denotes the
indicator function of a set A. The initial datum u0 is a bounded and Lipschitz continuous
function on RN .
For any indicator function χ : RN × [0, T ] → R, or more generally for any χ ∈ L∞(RN ×
[0, T ]; [0, 1]), H[χ] denotes a function of (x, t, r, p, A) ∈ RN×[0, T ]×R×RN \{0}×SN where
SN is the set of real N ×N symmetric matrices. For almost any t ∈ [0, T ], (x, r, p, A) 7→
H[χ](x, t, r, p, A) is a continuous function on RN × R × RN \ {0} × SN with a possible
singularity at p = 0, while t 7→ H[χ](x, t, r, p, A) is a bounded measurable function for all
(x, r, p, A) ∈ RN × R × RN \ {0} × SN . The equation is said to be degenerate elliptic if,
for any χ ∈ L∞(RN × [0, T ]; [0, 1]), for any (x, r, p) ∈ RN × R× RN \ {0}, for almost every
t ∈ [0, T ] and for all A,B ∈ SN , one has:

H[χ](x, t, r, p, A) ≤ H[χ](x, t, r, p, B) if A ≤ B ,

with ≤ the usual partial ordering for symmetric matrices.
Such equations arise typically when one aims at describing, through the level-set approach,
the motion of a family {K(t)}t∈[0,T ] of closed subsets of RN evolving with a nonlocal ve-
locity. Indeed, following the main idea of the level-set approach, it is natural to introduce
a function u such that K(t) = {x ∈ RN ; u(x, t) ≥ 0}, and this equation can be seen as the
level-set equation for u. In this framework, the nonlinearity H corresponds to the velocity
and it depends not only on the time, the position of the front, the normal direction and
the curvature tensor but also on nonlocal properties of K(t) which are carried by the
dependence in 1{u≥0}. The equation would appear as a well-posed equation if we consider
the nonlocal dependence (i.e. 1{u≥0}) as being fixed.
The notion of viscosity solutions for equations with a measurable dependence in time
(called L1-viscosity solution) is needed to define weak solutions. For a complete presenta-
tion of the theory, the reader may refer to [4]. The following definition of weak solutions
is introduced in [3].

Definition 2.6 (extracted from [3]).
Let u : RN × [0, T ]→ R be a continuous function. u is said to be a weak solution of (2.2)
if there exists χ ∈ L∞(RN × [0, T ]; [0, 1]) such that:

i) u is a L1-viscosity solution of{
ut(x, t) = H[χ](x, t, u,Du,D2u) in RN × (0, T ) ,
u(·, 0) = u0 in RN .

(2.3)
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ii) For almost all t ∈ [0, T ],

1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0} a.e. in RN .

Moreover, we say that u is a classical solution of (2.2) if in addition, for almost
every t ∈ [0, T ],

1{u(·,t)>0} = 1{u(·,t)≥0} a.e in RN .

We now state some assumptions (still following [3]) that are needed to establish the
result of existence of at least one weak solution to general problem (2.2).

[A1 ]

i) For any χ ∈ X ⊂ L∞(RN×[0, T ]; [0, 1]), equation (2.3) has a bounded uniformly
continuous L1-viscosity solution u. Moreover, there exists a constant L > 0
independent of χ ∈ X such that ‖u‖L∞(RN×[0,T ]) ≤ L.

ii) For any fixed χ ∈ X, a comparison principle holds for equation (2.3): if u is a
bounded, upper semicontinuous L1-viscosity subsolution of (2.3) in RN × (0, T )
and v is a bounded, lower semicontinuous L1-viscosity supersolution of (2.3) in
RN × (0, T ) with u(·, 0) ≤ v(·, 0) in RN , then u ≤ v in RN × (0, T ).

[A2 ]

i) For any compact subset K ⊂ RN × R × RN \ {0} × SN , there exists a (locally
bounded) modulus of continuity mK : [0, T ]×R+ → R+ such that mK(·, ε)→ 0
in L1(0, T ) as ε→ 0, and

|H[χ](x1, t, r1, p1, A1)−H[χ](x2, t, r2, p2, A2)| ≤
mK(t, |x1 − x2|+ |r1 − r2|+ |p1 − p2|+ |A1 −A2|) ,

for any χ ∈ X, for almost all t ∈ [0, T ] and all (x1, r1, p1, A1), (x2, r2, p2, A2) ∈
K.

ii) There exists a bounded function h(x, t, r), which is continuous in x and r for
almost every t and measurable in t, such that: for any neighborhood V of (0, 0)
in RN \ {0}×SN and any compact subset K ⊂ RN ×R, there exists a modulus
of continuity mK,V : [0, T ]× R+ → R+ such that mK,V (·, ε)→ 0 in L1(0, T ) as
ε→ 0, and

|H[χ](x, t, r, p, A)− h(x, t, r)| ≤ mK,V (t, |p|+ |A|) ,

for any χ ∈ X, for almost all t ∈ [0, T ], all (x, r) ∈ K and (p,A) ∈ V .

iii) If χn ⇀ χ weakly-∗ in L∞(RN × [0, T ]; [0, 1]) with χn, χ ∈ X for all n, then for
all (x, t, r, p, A) ∈ RN × [0, T ]× R× RN \ {0} × SN ,∫ 1

0
H[χn](x, s, r, p, A) ds −→

n→+∞

∫ 1

0
H[χ](x, s, r, p, A) ds ,

locally uniformly for t ∈ [0, T ].
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[A3 ] For any χ ∈ X, for almost every t ∈ [0, T ], for all (x, p,A) ∈ RN × RN \ {0} × SN ,
and for any r1 ≥ r2,

H[χ](x, t, r1, p, A) ≤ H[χ](x, t, r2, p, A) .

The general existence theorem proposed by Barles et al. ([3]) is then:

Theorem 2.1 (General existence theorem ([3])). Assume that [A1], [A2] and [A3] hold.
Then there exists at least a weak solution to (2.2).

3 Calculus of variations

The scope of this section extracted from [7] is to investigate the existence and uniqueness
of the following minimization problem:

inf
u∈X

I(u) =

∫
Ω
f(x, u(x),∇u(x)) dx, (2.4)

where

– Ω ⊂ RN , N ≥ 1, is an open bounded set and a point in Ω is denoted by x =
(x1, . . . , xN );

– u : Ω→ RM , M ≥ 1 is the unknown function with ∇u =
(
∂uj

∂xi

)1≤j≤M

1≤i≤N
∈ RM×N ;

– X is the space of admissible functions;

– f : Ω× RM × RM×N → R is a given function.

Before giving the main results, we define some specific functions.

3.1 Carathéodory, convex, polyconvex, quasiconvex and rank one con-
vex functions

Definition 3.1 (Carathéodory function). Let Ω ⊂ RN be an open set and let f : Ω×RL →
R ∪ {+∞}. Then f is said to be a Carathéodory function if

1. ξ 7→ f(x, ξ) is continuous for almost every x ∈ Ω,

2. x 7→ f(x, ξ) is measurable for every ξ ∈ RL.

Remark 3.2. In the following, we consider functions f : Ω× RM × RM×N → R∪ {+∞},
(x, u, ξ) 7→ f(x, u, ξ), When we speak of Carathéodory function in this case, we consider
the variable ξ as playing the role of (u, ξ) and RL = RM × RM×N .

Definition 3.3 (Convex function).
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– A function f : RN → R ∪ {+∞} is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

for every x ∈ RN , every y ∈ RN , and every t ∈ [0, 1].

– A function f : E ⊂ RN → R ∪ {+∞} is said to be strictly convex on a convex set E
if

f(tx+ (1− t)y) < tf(x) + (1− t)f(y)

for every (x, y) ∈ E2, x 6= y, and every t ∈ (0, 1).

In the scalar case M = 1 or N = 1, convexity plays an important role in the existence
and uniqueness of minimizers for problem (2.4). However in the vectorial case (when M >
1 and N > 1), we need to introduce a weaker definition of convexity called quasiconvexity.

Definition 3.4 (Weaker convex functions).

1. (Rank one convex) A function f : RM×N → R ∪ {+∞} is said to be rank one
convex if

f(λξ + (1− λ)η) ≤ λf(ξ) + (1− λ)f(η),

for every λ ∈ [0, 1], ξ ∈ RM×N , η ∈ RM×N with rank (ξ − η) ≤ 1.

2. (Quasiconvex) A Borel measurable and locally bounded function f : RM×N →
R ∪ {+∞} is said to be quasiconvex if

f(ξ) ≤ 1

meas(D)

∫
D
f(ξ +∇φ(x)) dx,

for every open bounded set D ⊂ RN , for every ξ ∈ RM×N and for every φ ∈
W 1,∞(D,RM ).

3. (Polyconvex) A function f : RM×N → R ∪ {+∞} is said to be polyconvex if there
exists F : Rτ(N,M) → R∪{+∞} convex such that f(ξ) = F (T (ξ)) where T : RM×N →
Rτ(N,M) is such that T (ξ) := (ξ, adj2ξ, . . . , adjmin(N,M)ξ). We recall that adjsξ stands

for the matrix of all s× s minors of ξ ∈ RM×N , 2 ≤ s ≤ min(N,M) and τ(N,M) =
min(N,M)∑

i=1
σ(s) where σ(s) :=

(
M
s

)(
N
s

)
= N !M !

(s!)2(M−s)!(N−s)! . For M = N = 2,

T (ξ) = (ξ,det ξ) and for M = N = 3, T (ξ) = (ξ,Cof ξ,det ξ).

4. (Separately convex) A function f : Rm → R∪{+∞} is said to be separately convex,
or convex in each variable, if the function xi 7→ f(x1, . . . , xi−1, xi, xi+1, . . . , xm) is
convex for every i = 1, . . . ,m for every fixed (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Rm−1.

5. (Affine) A function f is called polyaffine, quasiaffine or rank one affine if f and
−f are respectively polyconvex, quasiconvex, rank one convex.
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Definition 3.5 (Quasiconvex envelope). The quasiconvex envelope of a function f :
RM×N → R ∪ {+∞} denoted by Qf is the quasiconvex function defined by

Qf = sup
g
{g ≤ f, g quasiconvex }.

Remark 3.6. In a similar way, we can define the convex envelope, the polyconvex envelope
and the rank-one convex envelope of a function f .

Proposition 3.7. Let f : RM×N → R. Then

f convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank one convex.

If f is convex, polyconvex, quasiconvex or rank one convex, then f is locally Lipschitz.
If M = 1 or N = 1 then all these notions are equivalent.
If f : RM×N → R ∪ {+∞}, then

f convex ⇒ f polyconvex ⇒ f rank one convex.

We now focus on the direct method in the calculus of variations.

3.2 Direct method in the calculus of variations

The direct method of the calculus of variations aims to prove the existence of a solution
to the problem (2.4) and relies on the three following steps:

1. One first constructs a minimizing sequence (un) of X (which always exists by the
sequential definition of the infimum) satisfying lim

n→+∞
I(un) = inf

u∈X
I(u) after verifying

that inf
u∈X

I(u) is finite.

2. One obtains a uniform bound on ‖un‖X by deriving a coercivity inequality. Indeed,
if I is coercive meaning that lim

‖u‖X→+∞
I(u) = +∞, this uniform bound is straight-

forwardly extracted. (Arguing by contradiction, let us assume that ∀C > 0, ∃n ∈
N, ‖un‖X > C. We prove, by construction, that there exists a subsequence (unk) of
(un) such that lim

k→+∞
I(unk) = +∞ owing to the coercivity of I, which contradicts

the fact that lim
n→+∞

I(un) = inf
u∈X

I(u)).

If X is reflexive, then by Theorem 1.11, one can thus find ū ∈ X and a subsequence

(unk) of (un) such that unk
X
⇀

k→+∞
ū.

3. To prove that x̄ is a minimizer of I, it suffices to have the inequality

I(ū) ≤ lim inf
k→+∞

I(unk).

The latter property is called weak lower semicontinuity.
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Definition 3.8 (Weak lower semicontinuity). Let p ≥ 1 and Ω, u, f be as above. We say

that I is sequentially weakly lower semicontinuous in X if for every sequence un
X
⇀

n→+∞
ū,

then

I(ū) ≤ lim inf
n→+∞

I(un).

I is sequentially weak-∗ lower semicontinuous in X if for every sequence un
X ∗
⇀

n→+∞
ū, then

I(ū) ≤ lim inf
n→+∞

I(un).

In the scalar case (M = 1 or N = 1), the convexity of ξ 7→ f(x, u, ξ) plays an impor-
tant role especially in the derivation of a necessary and sufficient condition ensuring the
weak lower semicontinuity property (see [14]). In the vectorial case, it is still a sufficient
condition but not a necessary one anymore. However, one can prove (see [7])

f quasiconvex ⇔ I weakly lower semicontinuous.

We now give an existence theorem for quasiconvex functions in the vectorial case.

Theorem 3.1 (Existence of minimizers). Let p > 1, Ω ⊂ RN be a bounded open set with
a Lipschitz boundary. Let f : Ω×RM ×RM×N → R be a Carathéodory function satisfying
for almost every x ∈ Ω, for every (u, ξ) ∈ RM × RM×N ,

ξ → f(x, u, ξ) is quasiconvex,
α1|ξ|p + β1|u|q + γ1(x) ≤ f(x, u, ξ) ≤ α2|ξ|p + β2|u|r + γ2(x),

where α2 ≥ α1 > 0, β1 ∈ R, β2 ≥ 0, γ1, γ2 ∈ L1(Ω), p > q ≥ 1 and 1 ≤ r ≤ Np
N−p if p < N

and 1 ≤ r <∞ if p ≥ N . Let

inf

{
I(u) =

∫
Ω
f(x, u(x),∇u(x)) dx

∣∣∣∣u ∈ u0 +W 1,p
0 (Ω,RM )

}
, (2.5)

then (2.5) admits at least one solution.

Now we state an important relaxation theorem after defining a growth condition.

Definition 3.9 (Growth condition). Let 1 ≤ p ≤ ∞ and f : Ω × RM × RM×N → R, f =
f(x, u, ξ), be a Carathéodory function. We say that f satisfies growth condition (Gp) if
there exists a Carathéodory function g : Ω× RM × RM×N → R, g = g(x, u, ξ) quasiconvex
in the last variable and g(x, u, ξ) ≤ f(x, u, ξ) for almost every x ∈ Ω and for every (u, ξ) ∈
RM × RM×N .
Moreover, the following inequalities hold for almost every x ∈ Ω and for every (u, ξ) ∈
RM × RM×N :

1. when 1 ≤ p <∞,

|g(x, u, ξ)|, |f(x, u, ξ)| ≤ α(1 + |u|p + |ξ|p), (Gp)

where α ≥ 0 is a constant;
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2. if p =∞,

|g(x, u, ξ)|, |f(x, u, ξ)| ≤ β(x) + α(|u|, |ξ|), (Ginfinity)

where α, β ≥ 0, β ∈ L1(Ω) and α is a continuous and increasing in each argument
function.

Theorem 3.2 (Relaxation theorem). Let 1 ≤ p ≤ ∞, Ω ⊂ RN be a bounded open
set and f : Ω × RM × RM×N → R, f = f(x, u, ξ), be a Carathéodory function satisfy-
ing the growth condition (Gp). For almost every x ∈ Ω and for every (u, ξ) ∈ RM ×
RM×N , let Qf be the quasiconvex envelope with respect to the last variable of f : Qf =

inf
{

1
meas(D)

∫
D f(x, u, ξ +∇φ(y)) dy |φ ∈W 1,∞

0 (D,RM )
}

, D ⊂ RN being a bounded open

set. Assume that Qf : Ω× RM × RM×N → R is a Carathéodory function.

1. (Part 1.) Let p ≤ q ≤ ∞ and u ∈ W 1,q(Ω,RM ), then there exists a sequence
{uν}∞ν=1 ⊂ u+W 1,q

0 (Ω,RM ) such that

uν −→
ν→+∞

u strongly in Lq(Ω,RM ),∫
Ω
f(x, uν(x),∇uν(x)) dx −→

ν→+∞

∫
Ω
Qf(x, u(x),∇u(x)) dx.

2. (Part 2.) Assume in addition to the hypothesis of Part 1, that 1 ≤ p < ∞ and
there exist α2 > 0 and α3 ∈ R such that, for almost every x ∈ Ω, for every (u, ξ) ∈
RM × RM×N , f(x, u, ξ) ≥ α2|ξ|p + α3.
Then in addition to the conclusions of Part 1, the following holds:

uν ⇀
ν→+∞

u weakly in W 1,p(Ω,RM ).

3.3 Γ-convergence

The notion of Γ-convergence is fundamental in variational image processing and we refer
the reader to [8] (from which this section is taken) for a comprehensive introduction to it.

Definition 3.10 (Γ-convergence). Let (X,D) be a metric space. We say that a sequence
Fj : X → [−∞,+∞] Γ-converges to F : X → [−∞,+∞] (as j → +∞) if for all u ∈ X
we have

1. (lim inf inequality) for every sequence (uj) ⊂ X converging to u, F (u) ≤ lim inf
j→+∞

Fj(uj);

2. (recovery sequence) there exists a sequence (uj) ⊂ X converging to u such that
F (u) ≥ lim sup

j→+∞
Fj(uj).

The function F is called the Γ-limit of (Fj) with respect to D and we write F = Γ −
limj Fj = F .

The following theorem is requisite in the convergence of some approximations.
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Theorem 3.3 (Fundamental theorem of Γ-convergence). Let us assume that F = Γ −
limj Fj, and let a compact set C ⊂ X exist such that inf

X
Fj = inf

C
Fj for all j. Then there

is a minimum of F over X such that min
X

F = lim
j

inf
X
Fj, and if (uj) ⊂ X is a converging

sequence such that lim
j
Fj(uj) = lim

j
inf
X
Fj, then its limit is a minimum point of F .

4 Tridimensional elasticity

In this section, we recall some definitions of the theory of tridimensional elasticity taken
from [13].

Let Ω be an open bounded connected space of R3. We consider that the points x ∈ Ω̄
represent the points of a material. Ω is said to be the reference configuration of the
material. The map ϕ : Ω̄ → R3 is a deformation. We also introduce the displacements
u = ϕ− Id. The matrix (∇ϕ)ij = ∂jϕi is called the gradient of the deformation.

Remark 4.1. The preservation of the orientation corresponds to the condition det∇ϕ(x) >
0, x ∈ Ω.

We first introduce and define some basic notions.

Definition 4.2.

1. The deformation tensor or right Cauchy-Green tensor associated with the deforma-
tion ϕ is defined by

C = ∇ϕT∇ϕ.

It can be interpreted as a quantifier of the square of local change in distances due to
the deformation.

2. The Green-Saint Venant tensor is defined by

E =
1

2
(C − I) =

1

2
(∇u+∇uT ) +

1

2
∇uT∇u.

It measures the deviation between the deformation ϕ and a rigid deformation.

Definition 4.3 (Rigid deformation). A deformation ϕ is said to be rigid if it can be
written as ϕ(x) = a + Qx, where a ∈ R3 and Q ∈ SO(3) are respectively a given vector
and a rotation matrix in the group of orthogonal matrices of size 3×3 satisfying detQ = 1.

Definition 4.4 (Behavior law). The behavior law of a material is defined by

T̂ : Ω̄× {deformations} → S3,

where S3 is the space of 3× 3 symmetric matrices, such that for every deformation ϕ and
every point x ∈ Ω, we have Tϕ(y) = T̂ (x, ϕ) for y = ϕ(x) and where Tϕ is the Cauchy
stress tensor.
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Definition 4.5 (Material).

1. (Elastic) A material is said to be elastic if its behavior law can be written by T̂ :
Ω̄×M+

3 → S3 with Tϕ(y) = T̂ (x,∇ϕ(x)) where M+
3 is the set of 3×3 matrices with

a positive determinant. In other words, a material is said to be elastic if its behavior
law depends only on the gradient of the deformation.

2. (Hyperelastic) An elastic material is said to be hyperelastic if there exists a func-
tion Ŵ : Ω̄×M+

3 → R differentiable with respect to its second variable such that

T̂R(x, F ) = T̂ (x, F )Cof∇F (x) =
∂Ŵ

∂F
(x, F ),

⇔ (T̂R(x, F ))ij = (T̂ (x, F )Cof∇F (x))ij =
∂Ŵ

∂Fij
(x, F ), ∀(i, j) ∈ {1, 2, 3}2

The function Ŵ is named elastic energy density of the material.

3. (Isotropic) A material is said to be isotropic if it has the same mechanical properties
in every direction.

4. (Homogeneous) A material is said to be homogeneous if its behavior law does not
depend on x.

Theorem 4.1. The energy density of an isotropic, homogeneous and hyperelastic material
is of the form

∀x ∈ Ω, ∀F ∈M+
3 , Ŵ (x, F ) =W(Tr(C), T r(CofC), detC),

where W : R3
+ → R is a function.

Exemple 4.6 (Homogeneous, isotropic, hyperelastic materials).

– Saint Venant-Kirchhoff materials: Ŵ (F ) = −3λ+2µ
4 Tr(C)+λ+2µ

8 Tr(C2)+λ
4Tr(CofC)+

6µ+9λ
8 , with λ and µ being the Lamé coefficients and C = F TF . It is the simplest

homogeneous isotropic and hyperelastic material.

– Ogden materials: Ŵ (F ) =
M∑
i=1

ai‖F‖γi +
N∑
j=1

tr(Cof(F TF ))
δj
2 + Γ(detF ), with ai >

0, bj > 0, γi ≥ 1, δj ≥ 1 and Γ : ]0,+∞[→ R being convex and satisfying lim
δ→0+

Γ(δ) =

+∞.

– Mooney-Rivlin materials: Ŵ (F ) = a‖F‖2 + b‖CofF‖2 + Γ(detF ), with a > 0, b > 0
and Γ : ]0,+∞[→ R being convex and satisfying lim

δ→0+
Γ(δ) = +∞.
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2004.

[14] L. Vese and C. Guyader, Variational Methods in Image Processing, Chapman &
Hall/CRC Mathematical and Computational Imaging Sciences Series, CRC Press,
2015.

60



Chapter 3

A nonlocal topology-preserving
segmentation guided registration
model

In this chapter, we address the issue of designing a theoretically well-motivated segmenta-
tion guided registration method capable of handling large and smooth deformations. The
shapes to be matched are viewed as hyperelastic materials and more precisely as Saint
Venant-Kirchhoff ones, and are implicitly modelled by level set functions. These are
driven in order to minimize a functional containing both a nonlinear-elasticity-based reg-
ularizer prescribing the nature of the deformation, and a criterion that forces the evolving
shape to match intermediate topology-preserving segmentation results. Theoretical results
encompassing existence of minimizers, existence of a weak viscosity solution of the related
evolution problem and asymptotic results are given. The study is then complemented by
the derivation of the discrete counterparts of the asymptotic results provided in the conti-
nuous domain. Both a pure quadratic penalization method and an augmented Lagrangian
technique (involving a related dual problem) are investigated with convergence results.

1 Introduction

While image segmentation aims to partition a given image into meaningful constituents or
to find boundaries delineating such objects with the goal to quantify information (see [4,
Chapter 4] for instance or [56, Part II], for a relevant analysis of this problem), registration,
given two images called Template and Reference (both defined on the open and bounded
domain Ω in the plane - a rectangle in practice), consists of determining an optimal dif-
feomorphic transformation (or deformation) ϕ mapping the Template into the Reference.
This latter technique is encountered in the domain of shape tracking, multi-modality fusion
to facilitate diagnosis and treatment planning (see [54]), disease progression evaluation,
when comparing an image to its counterpart in a database in order to facilitate the inte-
gration of anatomic, genetic and physiological observations from multiple subjects into a
common space, or shape averaging as in [52].
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A nonlocal topology-preserving segmentation guided registration model

According to the modalities of the involved images and on the nature of the study
(the registration problem encompassing different aspects), the optimality criterion might
differ: for images of same modality, a well-registered Template has geometric features and
intensity distribution matched with those of the Reference. When the images have been
acquired through different mechanisms and have different modalities, registration aims
to match both images in terms of shapes and salient components, while preserving the
modality of the Template.

We refer the reader to [54] for an extensive overview of registration techniques in a
systematic manner. The sought transformation (or deformation) ϕ is seen as the optimal
solution of a specifically designed cost function, the problem being mathematically hard to
solve (see again [54]) due to its ill-posedness (it is underconstrained from a mathematical
point of view), to the involved non-linearity, to its non-convexity and to its versatile
formulation according to the desired application. Once a deformation model describing
the setting in which the objects to be matched are interpreted and viewed (physical models
— [7], [18], [12], [25], [26], [5], [9], [21], [23], [38], [52], [47] — , purely geometric models
— [62], [19], [53], [3] —, models including a priori knowledge [15]) is selected, the objective
function is designed. It generally comprises a term quantifying the degree of alignment
between the deformed Template and the Reference, and a term of regularization.

Additional constraints can be prescribed in order that the deformation exhibits suit-
able properties such as topology or orientation preservation (one-to-one property of the
deformation) ([35], [49], [11], [43], [45]), symmetry, inverse consistency (which means that
interchanging the Template and the Reference should not impact on the produced result)
([60]), volume preservation ([32]), lower and upper bounds on the Jacobian determinant
([33]), etc.

As structure/salient component/shape/geometrical feature matching and intensity dis-
tribution comparison rule registration, it sounds relevant to intertwine the segmentation
and registration tasks into a single framework: accurate segmentation results will drive
the registration process correctly, providing then a reliable deformation field between en-
coded structures. This work thus focuses primarily on a registration model guided by
segmentation (segmentation results will serve as target to reach and as such are inputs
in our model). A joint framework in which segmentation and registration are performed
simultaneously has also been investigated (see Remark 4.8). Prior related works suggest
to jointly treat these two tasks : [61], [55] (in a level set framework), [38] (registration is
achieved using the transfer of edges based on the active contour model without edges),
[40] (model based on metric structure comparison), [29] (based on Expectation Maximiza-
tion algorithm that incorporates a glioma growth model for atlas seeding), [2], [30] (active
contour framework combined with dense deformation fields of optical flow), [24] (edges
and the normals of the two images are matched by applying a Mumford-Shah type free
discontinuity problem), or [47] (based on weighted total variation). We emphasize again
that this work focuses on a registration model guided by segmentation.

To summarize, in addition to devising a theoretically well-motivated registration model,
we propose defining a geometric dissimilarity measure based on shape comparisons thanks
to successive segmentation results that will serve as inputs in our registration model. Seg-
mentation thus influences registration. Let us emphasize that the focus of this chapter is
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on the mathematical presentation and well-posedness of a nonlinear elasticity-based regis-
tration model in the two dimensional case. Later work may go to higher dimensions.
In [59], the authors propose a similar model in which the shapes are implicitly described
as boundary contours of objects, and thus implicitly modelled by level-set functions and
the deformation is obtained by finding a geodesic path based on the continuum mechanical
notion of viscous dissipation. A time discretization as a sequence of pairwise matching
problems ensures invariance with respect to rigid body motions and inverse consistency,
and a finite element scheme is used to numerically solve the problems.
Finally, we would like to mention that this work is the continuation of a very preliminary
conference proceedings version [48] and [46, Chapter 5]. In particular, the model has been
slightly reshaped and a thorough numerical analysis of the proposed algorithm is provided
with convergence results, which was not the case in [48] and in [46, Chapter 5].
For additional mathematical material, we refer the reader to Chapter 2, Sections 1.1, 1.2,
2.2, 3.2, and 4.

2 Mathematical modelling

2.1 General mathematical background

There are forward and backward transformations: the former is done in the Lagrangian
framework where a forward transformation ψ is sought and grid points x with inten-
sity values T (x) are moved and arrive at non-grid points y = ψ(x) with intensity val-
ues T (x) = T (ψ−1(y)). In the Eulerian framework (considered here), we find a back-
ward transformation ϕ = ψ−1 such that grid points y in the deformed image originate
from non-grid points x = ϕ(y) = ψ−1(y) and are assigned intensity values T (ϕ(y)) =
T (ψ−1(y)) = T (x). We thus compare a point (y,R(y)) (R denoting the Reference image)
with

(
y, T (ψ−1(y)) = T (ϕ(y))

)
.

More precisely, when the forward mapping is computed, every pixel of the Template
image is pushed forward to its assessed position in the deformed image (entailing in practice
a problem of scattered data interpolation), while in the backward setting, the pixel value in
the deformed configuration is pulled from the Template image, meaning that the intensities
can be easily calculated by interpolating the values of the neighboring pixels. We refer
the reader to [31] and [54] in which both frameworks are clearly stated.

Let Ω be a connected bounded open subset of R2 of class C1. Let us denote by R : Ω̄→
R the Reference image assumed to be sufficiently smooth (the expression ‘smooth enough’
is a convenient way of saying that in a given definition, the smoothness of the involved
variables or data is such that all arguments make sense), and by T : Ω̄→ R the Template
image. The shape contained in the Template image is assumed to be modelled by a
Lipschitz continuous function Φ0 (input of the problem obtained by applying the topology-
preserving segmentation model [37]) whose zero level line is the shape boundary. Denoting
by C the zero level set of Φ0 and by w ⊂ Ω the open set it delineates, Φ0 is chosen such
that C = {x ∈ Ω |Φ0(x) = 0}, w = {x ∈ Ω |Φ0(x) > 0} and Ω \ w̄ = {x ∈ Ω |Φ0(x) < 0}.
For theoretical and numerical purposes, we may consider a linear extension operator (see
[6, p. 158]) P : W 1,∞(Ω)→ W 1,∞(R2) such that for all Φ ∈ W 1,∞(Ω), (i) PΦ|Ω = Φ, (ii)
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‖PΦ‖L∞(R2) ≤ C ‖Φ‖L∞(Ω) and (iii) ‖PΦ‖W 1,∞(R2) ≤ C ‖Φ‖W 1,∞(Ω), with C depending
only on Ω. By this extension process, we consider then that Φ0 ∈ W 1,∞(R2) to ensure
that Φ0 ◦ ϕ – with ϕ introduced later – is always defined.
Let ϕ : Ω̄ → R2 be the sought deformation (or transformation). (Of course, in practice,
the sought transformation ϕ should be with values in Ω̄ but from a mathematical point
of view, if we work with such spaces of functions we lose the structure of vector space).
A deformation is a smooth mapping that is orientation-preserving and injective, except
possibly on ∂Ω. As stressed by Ciarlet ([14, p. 26]), the reason a deformation may lose its
injectivity on the boundary of Ω is that self-contact must be allowed. We also denote by
u the associated displacement such that ϕ = Id + u, Id denoting the identity mapping.
The deformation gradient is ∇ϕ = I + ∇u, Ω̄ → M2(R), the set M2(R) being the set of
all real square matrices of order 2 identified to R4. This sought deformation is seen as the
optimal solution of a specifically designed cost function, comprising a regularization on ϕ
prescribing the nature of the deformation, and a term measuring alignment or how the
available data are exploited to drive the registration process. These are depicted hereafter.

2.2 Regularization on the deformation

Nonlinear elasticity principles dictate the design of the smoother on ϕ. The shapes to
be matched are viewed as isotropic (uniformity in all orientations), homogeneous (same
properties at every point) and hyperelastic materials (materials capable of undergoing
large deformations while keeping their elastic behavior), hyperelasticity being a suitable
framework when dealing with large and nonlinear deformations: rubber, filled elastomers,
and biological tissues are often modelled within this setting. More precisely, the shapes
are considered to be Saint Venant-Kirchhoff materials (—see [13] for further details and
[9] for an alternative hyperelastic model. For the sake of completeness, we also refer the
reader to [50] for a nonlinear elasticity based regularization implemented with the finite
element method, [23], [22], [24] in which the general Mumford and Shah functional is used
in the minimization, combined with registration of the unknown edge sets, [21] in which
basic similarity measures are incorporated and a Saint Venant-Kirchhoff like stored energy
function is considered —). A motivation for this choice is that the stored energy func-
tion of such materials is the simplest one that agrees with the generic expression of the
stored energy of an isotropic, homogeneous, hyperelastic material. Also, to ensure that
the distribution of the deformation Jacobian determinants does not exhibit shrinkages or
growths, we propose complementing the model by a term controlling that the Jacobian
determinant remains close to 1. (The weighting of the determinant component by param-
eter µ is justified in the proof of Proposition 3.2 in [46, Chapter 5]). At this stage, the
considered regularizer would be, setting F = ∇ϕ,

W (F ) = WSV K(F ) + µ (detF − 1)2 ,

with WSV K(F ) =
λ

2
(trE)2 + µ trE2, the stored energy function of a Saint Venant-

Kirchhoff material, λ and µ the Lamé coefficients, E =
(
F TF − I

)
/2 the Green-Saint

Venant stress tensor measuring the deviation between ϕ and a rigid deformation, and
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with the following notation A : B = trATB, the matrix inner product, and ‖A‖ =
√
A : A

the related matrix norm (Frobenius norm). Note that this regularizer has been investigated
in prior related works by Derfoul and Le Guyader [21] and Ozeré, Gout and Le Guyader
[47]. Nevertheless, it does not constitute the core of the present work, the emphasis being
put on the numerical analysis of the proposed algorithm. We refer the reader to Remark
3.3 for the motivation of this choice for regularization.

2.3 Alignment measure

Accurate segmentation results drive the registration process. Recall that the shape con-
tained in the Template image is assumed to be modelled by a Lipschitz continuous function
Φ0 whose zero level line is the shape boundary. We thus aim to find a smooth deformation
field ϕ such that the zero level line of Φ0 ◦ ϕ gives a relevant partition of the Reference
image R. A criterion measuring the distance between Φ0 ◦ϕ and an input (a priori knowl-
edge in the model) resulting from the topology-preserving segmentation process of Le
Guyader and Vese ([37]) is introduced, with the goal to maximize the overlapping between
the shape delineated by the zero level line of Φ0 ◦ ϕ - shape contained in the deformed
Template - and the shape included in the Reference image and defined through the zero
level line of an auxiliary level set function.

This measure constitutes an alternative to classical intensity-based/information-theo-
retic-based matching measures, mutual information – suitable when dealing with images
that have been acquired through different sensors –, measures based on the comparison
of gradient vector fields of both images, metric structure comparisons, mass-preserving
measures, etc. It is defined by

Wal(ϕ) =

∫
Ω

(
Hε(Φ0 ◦ ϕ)−Hε(Φ̃(·, T̄ ))

)2
dx,

Hε denoting a C∞ - regularization of the one - dimensional Heaviside function, Φ̃ being the
solution of the evolution equation stemming from the topology-preserving segmentation
model by Le Guyader and Vese ([37]) and allowing for a partition of the Reference image:



∂Φ̃

∂t
= |∇Φ̃|

[
div

(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)
+kg̃(|∇R|)

]
+ 4

µ′

d2
H̄(Φ̃(x) + l)

H̄(l − Φ̃(x))

∫
Ω

[
〈x− y,∇Φ̃(y)〉 e−‖x−y‖22/d2

H̄(Φ̃(y) + l)H̄(l − Φ̃(y))
]
dy ,

Φ̃(x, 0) = Φ0(x) ,

∂Φ̃

∂~n
= 0, on ∂Ω .

(3.1)

Φ0 is naturally taken to be the initial condition of this segmentation process. Function g̃
is an edge-detector function satisfying g̃(0) = 1, g̃ strictly decreasing and lim

r→+∞
g̃(r) = 0.

This evolution equation results from the minimization of functional J(Φ̃)+µ′L(Φ̃) (µ′ > 0,
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-

-

(a) (b)

Figure 3.1: Geometrical characterization of points where the curve is to merge (a) or split
(b).

tuning parameter), combination of J(Φ̃) =
∫

Ω g̃(|∇R|)|∇H̄(Φ̃)| coming from the classical
geodesic active contour model ([10]) (H̄ being the one - dimensional Heaviside function)
and L, related to the topological constraint:

L(Φ̃) = −
∫

Ω

∫
Ω

[
exp

(
−‖x− y‖

2
2

d2

)
〈∇Φ̃(x),∇Φ̃(y)〉 H̄(Φ̃(x) + l)H̄(l − Φ̃(x))H̄(Φ̃(y) + l)

H̄(l − Φ̃(y))
]
dx dy . (3.2)

The Euclidean scalar product in R2 is denoted by 〈·, ·〉 and ‖ · ‖2 is the associated norm.
A geometrical observation motivates the introduction of L. Indeed, in the case when Φ
is a signed-distance function, |∇Φ| = 1 and the unit outward normal vector to the zero
level line at point x is −∇Φ(x). Let us now consider two points (x, y) ∈ Ω× Ω belonging
to the zero level line of Φ, close enough to each other, and let −∇Φ(x) and −∇Φ(y) be
the two unit outward normal vectors to the contour at these points. When the contour is
about to merge or split, that is, when the topology of the evolving contour is to change,
then 〈∇Φ(x),∇Φ(y)〉 ' −1 (see Figure 3.1). This remark justifies the construction of
L. In many applications, such as medical imaging, topology preservation is a desirable
property: when the shape to be detected has a known topology (e.g. spherical topology
for the brain), or when the resulting shape must be homeomorphic to the initial one. In
other words, an initial contour should be deformed without change of topology as merging
or breaking. Also, as shown in [37], this topology-preserving constraint enables us to
delineate properly the thin concavities of the objects. The registration process is then fed
by the knowledge of the segmentation of the Reference image at time T̄ .

2.4 Overall functional

In the end, gathering the smoothing component and the alignment measure yields the
following global minimization problem (P) with T̄ , given fixed artificial time:

inf

{
I(ϕ) =

∫
Ω
f(x, ϕ(x),∇ϕ(x)) dx, (P)

=

∫
Ω

[
W (∇ϕ(x)) +

ν

2

(
Hε(Φ0 ◦ ϕ)−Hε(Φ̃(·, T̄ ))

)2
]
dx

}
,
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with ϕ ∈ Id + W 1,4
0 (Ω,R2) meaning that ϕ = Id —the identity mapping— on ∂Ω and

ϕ ∈ W 1,4(Ω,R2). With this choice, the boundary is mapped onto the boundary. Note
that boundary conditions are of relative importance, provided the images are embedded
into a uniform backdrop. Nevertheless, alternative boundary conditions could have been
investigated (Dirichlet, Neumann, periodic, sliding, bending boundary conditions —[42])
but in practice, for disease progression evaluation for instance (Figure 3.7), it sounds
relevant to assume such boundary conditions. Also, it emphasizes the ability of our model
to handle large deformations. Note that from generalized Hölder’s inequality, if ϕ ∈
W 1,4(Ω,R2), then det∇ϕ ∈ L2(Ω). Also, in [1], Ambrosio and Dal Maso prove a general
chain rule for the distribution derivatives of the composite function v(x) = f(u(x)), where
u : Rn → Rm has bounded variation and f : Rm → Rk is Lipschitz continuous. A simpler
result is given when u ∈ W 1,p(Ω,Rm) for some p, 1 ≤ p ≤ +∞ and states that v = f(u)
belongs to W 1,p(Ω,Rk). With these elements in hand (in particular, the data fidelity term
is well-defined thanks to the previous result), we have the following remark:

Remark 2.1. A judicious rewriting of W (ξ) into W (ξ) = β
(
‖ξ‖2 − α

)2
+ Ψ(det ξ) with

α = 2 λ+µ
λ+2µ and β = λ+2µ

8 , and Ψ : s 7→ −µ
2 s

2 + µ (s − 1)2 +
µ(λ+ µ)

2(λ+ 2µ)︸ ︷︷ ︸
:=γ

enables us to see

that W 1,4(Ω,R2) is a suitable functional space for ϕ. Indeed, it can easily be proved that β
(
‖ξ‖2 − α

)2 ≤ β ‖ξ‖4 + β α2,

Ψ(det ξ) ≤ µ (det ξ)2 + 3µ+
µ (λ+ µ)

2(λ+ 2µ)
,

so that if ϕ ∈W 1,4(Ω,R2),

∫
Ω
f(x, ϕ(x),∇ϕ(x)) dx <∞.

3 Theoretical results

3.1 Mathematical obstacle and derivation of the associated relaxed pro-
blem

We start by expressing the main technical difficulty related to this problem that led us to
introduce the associated relaxed problem.

Proposition 3.1. Function f is not quasi-convex (see [17, Chapter 9] for a complete
review of this notion).

Proof. See proof of [47, Proposition 1.] and [46, Chapter 5] for similar standard arguments.

Proposition 3.1 raises a drawback of a theoretical nature since we cannot obtain the
weak lower semicontinuity of the introduced functional. The idea is thus to replace the
original problem (P) by a relaxed one denoted by (QP) formulated in terms of the quasi-
convex envelope Qf of f . In what follows, we establish the explicit expression of the
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quasi-convex envelope of f and derive the related relaxed problem (the proof is available
in [46, Chapter 5]).

Proposition 3.2. The quasi-convex envelope Qf of f is defined by

Qf(x, ϕ, ξ) =
ν

2

∫
Ω

(
Hε(Φ0 ◦ ϕ)−Hε(Φ̃(·, T̄ ))

)2
dx+QW (ξ),

with QW (ξ) =

{
W (ξ) if ‖ξ‖2 ≥ α,
Ψ(det ξ) if ‖ξ‖2 < α,

and Ψ, the convex mapping defined in Remark 2.1.

The relaxed problem (QP) is thus defined by:

inf

{
Ī(ϕ) =

∫
Ω
Qf(x, ϕ(x),∇ϕ(x)) dx

}
, (QP)

with ϕ ∈ Id +W 1,4
0 (Ω,R2).

Remark 3.3. Note that the stored energy function WSV K alone lacks a term penalizing
the determinant: it thus does not preclude deformations with negative Jacobian. Also, it
exhibits the same property of non rank-1 convexity (and thus non quasiconvexity), which
raises the same theoretical issues as for the existence of minimizers. From our experience,
in practice, the Saint Venant-Kirchhoff model alone requires more regridding steps when
large deformations are involved compared with the proposed stored energy (see [38] for com-
parisons). It is also possible to compute the quasiconvex envelope of WSV K . Its expression
is more complex than in our case, since including explicitly the singular values of ξ and
making its numerical implementation more involved with finite element approximations.
This computation was achieved by Le Dret and Raoult in [36]. It is noticeable that, in this
case, when the singular values of ξ are lower than 1, the quasiconvex envelope equals 0,
which shows bad behavior under compression. In comparison, we see in the expression of
QW that when ‖ξ‖2 < α, that is, when the sum of the singular values of ξ to the square
is lower than α, a penalization on the determinant still remains, function Ψ reaching its
minimum for a positive value of its argument.

Remark 3.4. We emphasize that the extension of the model to the 3D case is not straight-
forward. Indeed, in three dimensions, the expression of WSV K(ξ) involves the cofactor
matrix denoted by Cof ξ as follows:

WSV K(ξ) =
λ

8

(
‖ξ‖2 −

(
3 +

2µ

λ

))2

+
µ

4

(
‖ξ‖4 − 2 ‖Cof ξ‖2

)
− µ

4λ
(2µ+ 3λ) ,

and it is not clear that one can derive the explicit expression of the quasiconvex envelope
QW of W with W (ξ) = WSV K(ξ) + µ(det ξ − 1)2.

In the next subsection, we prove that the infimum of problem (QP) is attained and
that if ϕ̄ is a solution of problem (P), then there exists a minimizing sequence {ϕν} of
problem (P) such that {ϕν} weakly converges to ϕ̄ and I(ϕν) → Ī(ϕ̄). The solutions of
(QP) are considered as generalized solutions of (P), in the sense of weak convergence. We
also ensure that Φ̃(·, T̄ ) is well-defined, using the viscosity solution theoretical framework.
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3.2 Existence of minimizers and relaxation theorem

We state the main theoretical result related to the existence of minimizers, following
arguments similar to those used in [21] and in [46, Chapter 5].

Theorem 3.1. The infimum of (QP) is attained. Let then ϕ̄ ∈W 1,4(Ω,R2) be a minimizer
of the relaxed problem (QP). Then there exists a sequence {ϕν}∞ν=1 ⊂ ϕ̄+W 1,4

0 (Ω,R2) such
that ϕν → ϕ̄ in L4(Ω,R2) as ν →∞ and I(ϕν)→ Ī(ϕ̄) as ν →∞. Moreover, the following
holds: ϕν ⇀ ϕ̄ in W 1,4(Ω,R2) as ν →∞.
It means in particular that inf

ϕ∈Id+W 1,4
0 (Ω,R2)

I(ϕ) = min
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ), as QW ≤W . The

solutions of (QP) are considered as generalized solutions of problem (P).

We now investigate the well-definedness of Φ̃(·, T̄ ) and ensure that it exhibits sufficient
regularity properties.

3.3 Well-definedness of Φ̃

Problem (3.1) is hard to handle from a theoretical point of view. A suitable setting would
be the one of the viscosity solution theory ([16]) (owing to the nonlinearity induced by the
modified mean curvature term), but the dependency of the nonlocal term on the gradient
∇Φ̃(y) and the failure to fulfill the monotony property in Φ̃ make it difficult. For this
reason, for the theoretical part, we consider a slightly modified problem: we assume that
the topological constraint is only applied to the zero level line. Assuming that Φ̃ is a
signed-distance function, the topological constraint L is then rephrased as

L(Φ̃) = −
∫

Ω

∫
Ω

[
exp

(
−‖x− y‖

2
2

d2

)
〈∇Φ̃(x),∇Φ̃(y)〉δ(Φ̃(x))δ(Φ̃(y))

]
dx dy ,

with δ the Dirac measure. Computing the Euler - Lagrange equation, then applying an L2

gradient flow method and doing an integration by parts and a rescaling by replacing δ(Φ̃)
by |∇Φ̃|, yields the following evolution problem (defined on R2 for the space coordinates
for the sake of simplicity)

∂Φ̃

∂t
= |∇Φ̃|

{
div

(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)
+ c0 ∗

[
Φ̃(·, t)

]
+kg̃(|∇R|)

}
, (3.3)

with
[
Φ̃(·, t)

]
the characteristic function of the set

{
Φ̃(·, t) ≥ 0} and

c0 :


R2 → R

x 7→ 4µ

d2

(
2− 2

d2
‖x‖22

)
exp

(
−‖x‖

2
2

d2

)
. (3.4)

Remark 3.5. A sample of experiments shows that this simplified model qualitatively per-
forms in a similar way to [37] (see [27] in particular).
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A nonlocal topology-preserving segmentation guided registration model

We now derive an existence theorem in the viscosity solutions framework. Note that
the proposed result, which is a result of existence of weak solutions to problem (3.3)– with
no restriction on time T̄ – is different from the one obtained in [27], which is a short-
time existence/uniqueness result in the classical sense. Equipped with the theoretical
elements introduced in Section 2.2 from Chapter 2, we now state the main theoretical
result regarding the existence of at least one weak solution to problem (3.3).

Theorem 3.2. Assuming that g := g̃(|∇R|), g
1
2 and ∇g are bounded and Lipschitz con-

tinuous on R2, problem (3.3) admits at least one weak solution.

Proof. First, one can easily check that setting C(p) := (I − p
⊗
p

|p|2
),

H[χ](x, t, p, A) = g(x)tr (C(p)A) + 〈∇g(x), p〉+ |p|
∫

R2

c0(x− y)χ(y, t) dy+kg(x)|p| .

We give the sketch of the proof by mainly checking that the assumptions of Theorem
2.1 from Chapter 2 are fulfilled. Assumption [A1] is rather classical and for the sake of
conciseness, we do not go into details. Assumption [A3] is obviously fulfilled, H[χ] being
independent of r in the considered problem. Let us now focus on assumption [A2] i).
M > 0 denotes a positive constant that may change line to line and that may depend on
K, g, ∇g, ‖c0‖L1(R2) or ‖∇c0‖L1(R2). Recall that (xi, pi, Ai) belongs to the compact subset
K. One then has

|〈∇g(x1), p1〉 − 〈∇g(x2), p2〉| =|〈∇g(x1)−∇g(x2), p1〉+ 〈∇g(x2), p1 − p2〉|
≤M (|x1 − x2|+ |p1 − p2|) ,

due to the properties of ∇g. Also,∣∣∣k|p1|g(x1)− k|p2|g(x2)
∣∣∣ ≤ |k| |p1 − p2||g(x1)|+ |k| |p2||g(x1)− g(x2)|,

≤M(|p1 − p2|+ |x1 − x2|),

due to the properties of g. Furthermore,∣∣∣∣|p1|
∫

R2

c0(x1 − y)χ(y, t) dy − |p2|
∫

R2

c0(x2 − y)χ(y, t) dy

∣∣∣∣
≤ ||p1| − |p2||

∣∣∣∣∫
R2

c0(x1 − y)χ(y, t) dy

∣∣∣∣+ |p2|
∣∣∣∣∫

R2

(c0(x1 − y)− c0(x2 − y))χ(y, t) dy

∣∣∣∣ ,
≤ |p1 − p2| ‖c0‖L1(R2)‖χ‖L∞(R2×[0,T ]) + |p2|∣∣∣∣∫

R2

(∫ 1

0
〈∇c0((x2 − y) + s(x1 − x2)), x1 − x2〉 ds

)
χ(y, t) dy

∣∣∣∣ .
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A change of variable in the integral allows to conclude that∣∣∣∣|p1|
∫

R2

c0(x1 − y)χ(y, t) dy − |p2|
∫

R2

c0(x2 − y)χ(y, t) dy

∣∣∣∣
≤ |p1 − p2| ‖c0‖L1(R2)‖χ‖L∞(R2×[0,T ]) + |p2| |x1 − x2| ‖χ‖L∞(R2×[0,T ]) ‖∇c0‖L1(R2) ,

≤M (|p1 − p2|+ |x1 − x2|) .

It remains to estimate |g(x1)tr (C(p1)A1)− g(x2)tr (C(p2)A2)|. One has

|g(x1)tr (C(p1)A1)− g(x2)tr (C(p2)A2)| ≤ |g(x1)− g(x2)| |tr (C(p1)A1)|
+ g(x2) |tr (C(p1)A1)− tr (C(p2)A2)| ,
≤M |x1 − x2| ‖C(p1)‖F ‖A1‖F + g(x2)

|tr ((C(p1)− C(p2))A1) + tr (C(p2) (A1 −A2))| ,

‖ · ‖F denoting the Frobenius norm. Remarking that ‖C(p1)‖F = 1 and that one has
‖A1‖F ≤

√
2‖A1‖2 =

√
2|A1|, it yields

|g(x1)tr (C(p1)A1)− g(x2)tr (C(p2)A2)| ≤M (|x1 − x2|+ |A1 −A2|)
+ g(x2) |tr ((C(p1)− C(p2))A1)| . (3.5)

One can notice that C(p) = σ(p)σ(p)T with σ(p) =

(
p02

|p| 0

−p01

|p| 0

)
given p = (p01, p02)T 6= 0.

Consequently,

g(x2) |tr ((C(p1)− C(p2))A1)| ≤M
∣∣tr ((σ(p1)− σ(p2))σ(p1)TA1

)
+tr

(
σ(p2)

(
σ(p1)T − σ(p2)T

)
A1

)∣∣ .
Focusing on the first term of the right part of the inequality, the result being similar for
the second component, one obtains

∣∣tr ((σ(p1)− σ(p2))σ(p1)TA1

)∣∣ ≤ ‖A1‖F ‖σ(p1)− σ(p2)‖F ‖σ(p1)T ‖F ,

≤M
∣∣∣∣ p1

|p1|
− p2

|p2|

∣∣∣∣ ≤ |p1 − p2|
min (|p1|, |p2|)

,

so ∣∣tr ((σ(p1)− σ(p2))σ(p1)TA1

)∣∣ ≤M |p1 − p2| .

Including this result in equation (3.5) yields the desired estimation.
The two remaining assumptions are checked using the same arguments as above and taking
h the null function for assumption [A2] ii), and by definition of the L∞-weak ∗ convergence
for assumption [A2] iii).
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4 Numerical Method of Resolution

4.1 Asymptotic behavior of a penalization method in the continuous
domain

In [44], Negrón Marrero describes and analyzes a numerical method that detects singular
minimizers and avoids the Lavrentiev phenomenon for three dimensional problems in non-
linear elasticity. This method consists in decoupling the function ϕ from its gradient and
in formulating a related decoupled problem under inequality constraint. In the same spirit,
we introduce an auxiliary variable V simulating the Jacobian deformation field ∇ϕ (–the
underlying idea being to remove the nonlinearity in the derivatives of the deformation–)
and derive a functional minimization problem phrased in terms of the two variables ϕ and
V . This problem corresponds in fact to the conversion of the original problem formulated
in terms of ϕ and V under the equality constraint V = ∇ϕ a.e., into an unconstrained
minimization problem via quadratic penalty method.
The decoupled problem is thus defined by means of the following functional:

Īγ(ϕ, V ) =
ν

2
‖Hε(Φ0 ◦ ϕ)−Hε(Φ̃(·, T̄ ))‖2L2(Ω) +

∫
Ω
QW (V ) dx+

γ

2
‖V −∇ϕ‖2L2(Ω,M2(R)) .

(3.6)

Let us now denote by Ŵ the functional space defined by Ŵ = Id + W 1,2
0 (Ω,R2) and by

χ̂, the functional space χ̂ =
{
V ∈ L4(Ω,M2(R))

}
. The decoupled problem consists in

minimizing (3.6) on Ŵ × χ̂. Then the following asymptotic theorem holds.

Theorem 4.1. Let (γj) be an increasing sequence of positive real numbers such that
lim

j→+∞
γj = +∞. Let also (ϕk(γj), Vk(γj)) be a minimizing sequence of the decoupled pro-

blem with γ = γj. Then there exists a subsequence denoted by
(
ϕN(γΨ◦ζ(j))(γΨ◦ζ(j)), VN(γΨ◦ζ(j))

(γΨ◦ζ(j))
)

of (ϕk(γj), Vk(γj)) and a minimizer ϕ̄ of Ī (ϕ̄ ∈ Id +W 1,4
0 (Ω,R2)) such that:

lim
j→+∞

ĪγΨ◦ζ(j)

(
ϕN(γΨ◦ζ(j))(γΨ◦ζ(j)), VN(γΨ◦ζ(j))(γΨ◦ζ(j))

)
= Ī(ϕ̄).

Proof. See [21, Theorem 10] and [46, Theorem 5.3.1] for similar arguments.

Remark 4.1. When applying the direct method of the calculus of variations to pro-
blem (3.6) for fixed γ, we obtain the boundednesss of the minimizing component Vj in
L4(Ω,M2(R)), which allows to extract a weakly converging subsequence still denoted Vj.
Unfortunately, we cannot say anything about the behaviour of detVj, preventing us from
obtaining any minimizer existence result. That is the reason why the previous asymptotic
result involves for each γj a minimizing sequence associated with the decoupled problem.

We now concentrate upon the discrete counterparts of the previous study. Two strate-
gies have been investigated: a purely quadratic penalty method and an augmented La-
grangian technique.
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4.2 Discrete counterpart of the quadratic penalty method

Let us introduce some notations first. We now denote by Ω̃ = {1, . . . , N} × {1, . . . ,M},
N being the number of pixels in the horizontal axis and M the number of pixels in the
vertical axis, a fixed rectangular lattice of integral points. We define the counterparts of

the previous variables on the discrete domain, ϕ̃1 =
(
ϕ̃1

1,1, . . . , ϕ̃
1
i,j , . . . , ϕ̃

1
N,M

)T
∈ RN×M

where ϕ̃1
i,j = ϕ̃1(i, j), ϕ̃2 =

(
ϕ̃2

1,1, . . . , ϕ̃
2
i,j , . . . , ϕ̃

2
N,M

)T
∈ RN×M , where ϕ̃2

i,j = ϕ̃2(i, j),

ϕ̃ = (ϕ̃1, ϕ̃2) ∈ F1(Ω̃) = {set of all functions defined on Ω̃ which are equal to identity on the
boundary ∂Ω̃}. The discrete gradient ∇ : RN×M × RN×M → (M2(R))N×M with periodic
boundary conditions is defined as ∇ϕ̃ = (∇ϕ̃1,1, . . . ,∇ϕ̃i,j , . . . ,∇ϕ̃N,M )T with ∇ϕ̃i,j =(
∂xϕ̃

1
i,j ∂yϕ̃

1
i,j

∂xϕ̃
2
i,j ∂yϕ̃

2
i,j

)
, ∂xϕ̃

k
i,j =

{
ϕ̃ki,j − ϕ̃ki−1,j if i > 1

ϕ̃k1,j − ϕ̃kN,j if i = 1
, ∂yϕ̃

k
i,j =

{
ϕ̃ki,j − ϕ̃ki,j−1 if j > 1

ϕ̃ki,1 − ϕ̃ki,M if j = 1
,

k = 1, 2. This choice of periodic boundary conditions is purely technical to prove the dis-
crete counterpart of the generalized Poincaré inequality. In practice, as ϕ = Id on ∂Ω, the
discrete approximations ϕ̃i,j are only updated on internal nodes and the computations do
not involve the particular cases i = 1 and j = 1.

Similarly, Ṽ =
(
Ṽ1,1, . . . , Ṽi,j , . . . , ṼN,M

)T
∈ (M2(R))N×M , with Ṽi,j =

(
Ṽ 1,1
i,j Ṽ 1,2

i,j

Ṽ 2,1
i,j Ṽ 2,2

i,j

)
and Ṽ k,l

i,j = Ṽ k,l(i, j), k, l = 1, 2. The discrete norms are defined as ‖q‖lp(Ω̃,M2(R)) =(
N∑
i=1

M∑
j=1

√
(q1,1
i,j )2 + (q1,2

i,j )2 + (q2,1
i,j )2 + (q2,2

i,j )2
p
) 1

p

=

(
N∑
i=1

M∑
j=1
‖qi,j‖p

) 1
p

with q ∈ (M2(R))N×M

and ‖q‖lp(Ω̃,R2) =

(
N∑
i=1

M∑
j=1

√
(q1
i,j)

2 + (q2
i,j)

2
p
) 1

p

for p ∈ N, p < +∞ with q a R2-valued

function defined on Ω̃. Finally, ‖q‖lp(Ω̃) =

(
N∑
i=1

M∑
j=1

qpi,j

) 1
p

for p ∈ N, p < +∞ with q a

real-valued function defined on Ω̃. ‖.‖ still denotes the Frobenius norm for matrices of size
2× 2.
Before studying the discrete counterpart of our model, let us introduce the discrete gener-
alized Poincaré inequality. We first recall the continuous generalized Poincaré inequality.

Theorem 4.2 (extracted from [20, p.106]). Let Ω be a bounded Lipschitz domain in RN .
Let p ∈ [1,+∞[ and let N be a continuous seminorm on W 1,p(Ω), that is a norm on
the constant functions. Suppose that u ∈ W 1,p(Ω), then there exists a constant C > 0
depending only on N, p,Ω such that:

‖u‖W 1,p(Ω) ≤ C
((∫

Ω
| ∇u |p dx

) 1
p +N (u)

)
,

with N (u) =
∫

Γ0
| u(x) | dx when Ω is a C1 open set and Γ0 is a subset of ∂Ω with positive

(N-1)-dimensional Lebesgue measure.
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Now, we will provide a similar discrete inequality. The following result is an adaption
of the one from [58] given for real-valued functions which vanish on the boundary whereas
the results presented here stand for R2-valued functions which are equal to the identity on
the boundary.

Lemma 4.2 (adapted from [58, Lemma 3.9]). Let f = (f1, f2) ∈ F(Ω̃) = {f : Ω̃ → R2}.
For any t = (t1, t2) ∈ Ω̃, we have:

(|f1(t)|2 + |f2(t)|2)
1
2 ≤ |f1(t)|+ |f2(t)|

≤ 1

4

(
N∑
u=1

(|∂xf1(u, t2)|+ |∂xf2(u, t2)|) +
∣∣2f1(N, t2)

∣∣+
∣∣2f2(N, t2)

∣∣
+

M∑
u=1

(|∂yf1(t1, u)|+ |∂yf2(t1, u)|) +
∣∣2f1(t1,M)

∣∣+
∣∣2f2(t1,M)

∣∣) .
Proof. It can be checked easily for i = 1, 2 that:

f i(t)− f i(N, t2) =

t1∑
u=1

∂xf
i(u, t2) as ∂xf

i(u, t2) = f i(u, t2)− f i(u− 1, t2), u ≥ 2,

and ∂xf
i(1, t2) = f i(1, t2)− f i(N, t2),

f i(t)− f i(t1,M) =

t2∑
u=1

∂yf
i(t1, u) as ∂yf

i(t1, u) = f i(t1, u)− f i(t1, u− 1), u ≥ 2,

and ∂yf
i(t1, 1) = f i(t1, 1)− f i(t1,M),

f i(t)− f i(N, t2) = −
N∑

u=t1+1

∂xf
i(u, t2) as ∂xf

i(u, t2) = f i(u, t2)− f i(u− 1, t2), u ≥ 2,

f i(t)− f i(t1,M) = −
M∑

u=t2+1

∂yf
i(t1, u) as ∂yf

i
2(t1, u) = f i(t1, u)− f i(t1, u− 1), u ≥ 2.

Summing the previous inequalities leads to :

2f i(t) =

t1∑
u=1

∂xf
i(u, t2) +

t2∑
u=1

∂yf
i(t1, u) + f i(N, t2) + f i(t1,M),

2f i(t) = −
N∑

u=t1+1

∂xf
i(u, t2)−

M∑
u=t2+1

∂yf
i(t1, u) + f i(N, t2) + f i(t1,M).

Consequently,

2|f i(t)| ≤
t1∑
u=1

|∂xf i(u, t2)|+
t2∑
u=1

|∂yf i(t1, u)|+ |f i(N, t2)|+ |f i(t1,M)|,
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2|f i(t)| ≤
N∑

u=t1+1

|∂xf i(u, t2)|+
M∑

u=t2+1

|∂yf i(t1, u)|+ |f i(N, t2)|+ |f i(t1,M)|,

yielding(
|f1(t)|2 + |f2(t)|2

) 1
2 ≤ |f1(t)|+ |f2(t)|

≤ 1

4

N∑
u=1

(
|∂xf1(u, t2)|+ |∂xf2(u, t2)|

)
+

M∑
u=1

(
|∂yf1(t1, u)|+ |∂yf2(t1, u)|

)
+ 2

∣∣f1(N, t2)
∣∣+ 2

∣∣f2(N, t2)
∣∣+ 2

∣∣f1(t1,M)
∣∣+ 2

∣∣f2(t1,M)
∣∣ .

Lemma 4.3 (extracted from [58, Lemme 3.7]). For any pα, cα, qα > 0 with α = 1, ...,m,

m ≥ 2 and
m∑
α=1

qα
pα

= 1,

m∏
α=1

cqαα ≤
m∑
α=1

qα
pα
cpαα ,

where the equality holds if and only if c1 = c2 = ... = cm.

Lemma 4.4 (extracted from [58, Lemma 3.8]). For any ri ≥ 0 and s > 0,( 2∑
i=1

ri

)s
≤ c(s, 2)

2∑
i=1

rsi ,

with c(s, 2) =

{
2s−1 if s > 1
1 if 0 < s ≤ 1

Lemmas 4.3 and 4.4 are fundamental inequalities easily derivable from the arithmetic-
geometric mean inequality. For their proofs, one is referred to, for example, [34] or [41].

Theorem 4.3 (adapted from [58, Theorem 3.1]). For any fα ∈ F(Ω̃), any real number

pα ≥ 2, qα ≥ 0, α = 1, · · · ,m, m ≥ 2 with
m∑
α=1

qα
pα

= 1 and any cα > 0,

‖
m∏
α=1

(‖fα‖2(.))qα‖1 ≤
∑
t∈Ω̃

m∏
α=1

∣∣|fα,1(t)|+ |fα,2(t)|
∣∣qα ,

≤ C
m∑
α=1

qα
pα
cpαα B

pα2
3pα−4

2

(
‖∇fα‖pαpα +

[
N

(
2

N

)2 M∑
t2=0

∣∣fα,1(N, t2)
∣∣2

+
∣∣fα,2(N, t2)

∣∣2 +M

(
2

M

)2 N∑
t1=0

∣∣fα,1(t1,M)
∣∣2 +

∣∣fα,2(t1,M)
∣∣2] pα2  ,
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where C =
m∏
β=1

c
−qβ
β and B = max(M,N).

Proof. By lemmas 4.2, 4.3 and 4.4 , we have:

m∏
α=1

∣∣|fα,1(t)|+ |fα,2(t)|
∣∣qα =

 m∏
β=1

c
−qβ
β

 m∏
α=1

∣∣cα(|fα,1(t)|+ |fα,2(t)|)
∣∣qα ,

≤ C
m∑
α=1

qα
pα
cpαα
∣∣|fα,1(t)|+ |fα,2(t)|

∣∣pα ,
≤ C

m∑
α=1

qα
pα
cpαα

[
1

4

( N∑
u=1

∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+
M∑
u=1

∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣
+ 2

∣∣fα,1(N, t2)
∣∣+ 2

∣∣fα,2(N, t2)
∣∣+ 2

∣∣fα,1(t1,M)
∣∣+ 2

∣∣fα,2(t1,M)
∣∣ )]pα ,

≤ C
m∑
α=1

qα
pα
cpαα

1

4pα
c(pα, 2)

[(
N∑
u=1

∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+ 2
∣∣fα,1(N, t2)

∣∣+ 2
∣∣fα,2(N, t2)

∣∣)pα

+

(
M∑
u=1

∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣+ 2
∣∣fα,1(t1,M)

∣∣+ 2
∣∣fα,2(t1,M)

∣∣)pα] .
According to lemma 4.4, ∀t ∈ Ω, ∀α ∈ {1, ...,m}, c(pα, 2) = 2pα−1 so that :

m∏
α=1

∣∣|fα,1(t)|+ |fα,2(t)|
∣∣qα

≤ C
m∑
α=1

qα
pα
cpαα

1

2pα+1

[(
N∑
u=1

∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+ 2
∣∣fα,1(N, t2)

∣∣+ 2
∣∣fα,2(N, t2)

∣∣)pα

+

(
M∑
u=1

∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣+ 2
∣∣fα,1(t1,M)

∣∣+ 2
∣∣fα,2(t1,M)

∣∣)pα] ,
≤ C

m∑
α=1

qα
pα
cpαα

1

2pα+1


( N∑

u=1

1

) pα−1
pα

(
N∑
u=1

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+
2

N

∣∣fα,1(N, t2)
∣∣+

2

N

∣∣fα,2(N, t2)
∣∣)pα) 1

pα

pα
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+

( M∑
u=1

1

) pα−1
pα

(
M∑
u=1

( ∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣
+

2

M

∣∣fα,1(t1,M)
∣∣+

2

M

∣∣fα,2(t1,M)
∣∣ )pα) 1

pα

]pα]
(Hölder’s inequality),

≤ C
m∑
α=1

qα
pα
cpαα

1

2pα+1

[
(N)pα−1

(
N∑
u=1

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+
2

N

∣∣fα,1(N, t2)
∣∣

+
2

N

∣∣fα,2(N, t2)
∣∣)pα)+ (M)pα−1

( M∑
u=1

(∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣
+

2

M

∣∣fα,1(t1,M)
∣∣+

2

M

∣∣fα,2(t1,M)
∣∣ )pα)] ,

≤ C
m∑
α=1

qα
pα
cpαα

1

2pα+1
Bpα−1

[(
N∑
u=1

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+
2

N

∣∣fα,1(N, t2)
∣∣

+
2

N

∣∣fα,2(N, t2)
∣∣)pα)+

(
M∑
u=1

( ∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣
+

2

M

∣∣fα,1(t1,M)
∣∣+

2

M

∣∣fα,2(t1,M)
∣∣ )pα)] .

Let us now sum on t:

∑
t∈Ω̃

[
N∑
u=1

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+

∣∣∣∣ 2

N
fα,1(N, t2)

∣∣∣∣+

∣∣∣∣ 2

N
fα,2(N, t2)

∣∣∣∣)pα

+

M∑
u=1

(∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣+

∣∣∣∣ 2

M
fα,1(t1,M)

∣∣∣∣+

∣∣∣∣ 2

M
fα,2(t1,M)

∣∣∣∣)pα
]
,

=

N∑
u=1

∑
t∈Ω̃

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+

∣∣∣∣ 2

N
fα,1(N, t2)

∣∣∣∣+

∣∣∣∣ 2

N
fα,2(N, t2)

∣∣∣∣)pα

+
M∑
u=1

∑
t∈Ω̃

(∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣+

∣∣∣∣ 2

M
fα,1(t1,M)

∣∣∣∣+

∣∣∣∣ 2

M
fα,2(t1,M)

∣∣∣∣)pα ,
=N

∑
t∈Ω̃

(∣∣∂xfα,1(t1, t2)
∣∣+
∣∣∂xfα,2(t1, t2)

∣∣+

∣∣∣∣ 2

N
fα,1(N, t2)

∣∣∣∣+

∣∣∣∣ 2

N
fα,2(N, t2)

∣∣∣∣)pα
+M

∑
t∈Ω̃

(∣∣∂yfα,1(t1, t2)
∣∣+
∣∣∂yfα,2(t1, t2)

∣∣+

∣∣∣∣ 2

M
fα,1(t1,M)

∣∣∣∣+

∣∣∣∣ 2

M
fα,2(t1,M)

∣∣∣∣)pα ,
77



A nonlocal topology-preserving segmentation guided registration model

≤B

∑
t∈Ω̃

(∣∣∂xfα,1(t1, t2)
∣∣+
∣∣∂xfα,2(t1, t2)

∣∣+

∣∣∣∣ 2

N
fα,1(N, t2)

∣∣∣∣+

∣∣∣∣ 2

N
fα,2(N, t2)

∣∣∣∣)pα

+
∑
t∈Ω̃

(∣∣∂yfα,1(t1, t2)
∣∣+
∣∣∂yfα,2(t1, t2)

∣∣+

∣∣∣∣ 2

M
fα,1(t1,M)

∣∣∣∣+

∣∣∣∣ 2

M
fα,2(t1,M)

∣∣∣∣)pα
 .

So we have:

∑
t∈Ω̃

m∏
α=1

∣∣|fα,1(t)|+ |fα,2(t)|
∣∣qα

≤
∑
t∈Ω̃

C
m∑
α=1

qα
pα
cpαα

1

2pα+1
Bpα−1

[(
N∑
u=1

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+
2

N

∣∣fα,1(N, t2)
∣∣

+
2

N

∣∣fα,2(N, t2)
∣∣)pα)+

(
M∑
u=1

(∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣+
2

M

∣∣fα,1(t1,M)
∣∣

+
2

M

∣∣fα,2(t1,M)
∣∣)pα)] ,

≤ C
m∑
α=1

qα
pα
cpαα

1

2pα+1
Bpα−1

∑
t∈Ω̃

(
N∑
u=1

(∣∣∂xfα,1(u, t2)
∣∣+
∣∣∂xfα,2(u, t2)

∣∣+
2

N

∣∣fα,1(N, t2)
∣∣

+
2

N

∣∣fα,2(N, t2)
∣∣)pα)+

∑
t∈Ω̃

(
M∑
u=1

(∣∣∂yfα,1(t1, u)
∣∣+
∣∣∂yfα,2(t1, u)

∣∣+
2

M

∣∣fα,1(t1,M)
∣∣

+
2

M

∣∣fα,2(t1,M)
∣∣)pα)] ,

≤ C
m∑
α=1

qα
pα
cpαα

1

2pα+1
Bpα

∑
t∈Ω̃

4pα
(∣∣∂xfα,1(t1, t2)

∣∣pα +
∣∣∂xfα,2(t1, t2)

∣∣pα +

(
2

N

)pα ∣∣fα,1(N, t2)
∣∣pα

+

(
2

N

)pα ∣∣fα,2(N, t2)
∣∣pα)+

∑
t∈Ω̃

4pα
(∣∣∂yfα,1(t1, t2)

∣∣pα +
∣∣∂yfα,2(t1, t2)

∣∣pα
+

(
2

M

)pα ∣∣fα,1(t1,M)
∣∣pα +

(
2

M

)pα ∣∣fα,2(t1,M)
∣∣pα)] ,

≤ C
m∑
α=1

qα
pα
cpαα 2pα−1Bpα

∑
t∈Ω̃

(∣∣∂xfα,1(t1, t2)
∣∣pα +

∣∣∂xfα,2(t1, t2)
∣∣pα +

(
2

N

)pα ∣∣fα,1(N, t2)
∣∣pα

+

(
2

N

)pα ∣∣fα,2(N, t2)
∣∣pα)+

∑
t∈Ω̃

(∣∣∂yfα,1(t1, t2)
∣∣pα +

∣∣∂yfα,2(t1, t2)
∣∣pα

+

(
2

M

)pα ∣∣fα,1(t1,M)
∣∣pα +

(
2

M

)pα ∣∣fα,2(t1,M)
∣∣pα)] ,
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≤ C
m∑
α=1

qα
pα
cpαα 2pα−1Bpα

∑
t∈Ω̃

[
c

(
2

pα
, 2

)( ∣∣∂xfα,1(t1, t2)
∣∣pα +

∣∣∂xfα,2(t1, t2)
∣∣pα

+

(
2

N

)pα ∣∣fα,1(N, t2)
∣∣pα +

(
2

N

)pα ∣∣fα,2(N, t2)
∣∣pα ) 2

pα

+ c

(
2

pα
, 2

)( ∣∣∂yfα,1(t1, t2)
∣∣pα

+
∣∣∂yfα,2(t1, t2)

∣∣pα +

(
2

M

)pα ∣∣fα,1(t1,M)
∣∣pα +

(
2

M

)pα ∣∣fα,2(t1,M)
∣∣pα) 2

pα

] pα
2

.

As pα ≥ 2, we have c
(

2
pα
, 2
)

= 1. Then

∑
t∈Ω̃

m∏
α=1

∣∣|fα,1(t)|+ |fα,2(t)|
∣∣qα

≤ C
m∑
α=1

qα
pα
cpαα 2pα−1Bpα

∑
t∈Ω̃

[(∣∣∂xfα,1(t1, t2)
∣∣2 +

∣∣∂xfα,2(t1, t2)
∣∣2 +

(
2

N

)2 ∣∣fα,1(N, t2)
∣∣2

+

(
2

N

)2 ∣∣fα,2(N, t2)
∣∣2)+

(∣∣∂yfα,1(t1, t2)
∣∣2 +

∣∣∂yfα,2(t1, t2)
∣∣2

+

(
2

M

)2 ∣∣fα,1(t1,M)
∣∣2 +

(
2

M

)2 ∣∣fα,2(t1,M)
∣∣2)] pα2 ,

≤ C
m∑
α=1

qα
pα
cpαα 2pα−1Bpα

∑
t∈Ω̃

[∣∣∂xfα,1(t1, t2)
∣∣2 +

∣∣∂xfα,2(t1, t2)
∣∣2 +

(
2

N

)2 ∣∣fα,1(N, t2)
∣∣2

+

(
2

N

)2 ∣∣fα,1(N, t2)
∣∣2 +

∣∣∂yfα,1(t1, t2)
∣∣2 +

∣∣∂yfα,2(t1, t2)
∣∣2 +

(
2

M

)2 ∣∣fα,1(t1,M)
∣∣2

+

(
2

M

)2 ∣∣fα,2(t1,M)
∣∣2] pα2 ,

≤ C
m∑
α=1

qα
pα
cpαα B

pα2
3pα−4

2

∑
t∈Ω̃

([ ∣∣∂xfα,1(t1, t2)
∣∣2 +

∣∣∂xfα,2(t1, t2)
∣∣2 +

∣∣∂yfα,1(t1, t2)
∣∣2

+
∣∣∂yfα,2(t1, t2)

∣∣2 ] pα2 +

[(
2

N

)2 ∣∣fα,1(N, t2)
∣∣2 +

(
2

N

)2 ∣∣fα,2(N, t2)
∣∣2

+

(
2

M

)2 ∣∣fα,1(t1,M)
∣∣2 +

(
2

M

)2 ∣∣fα,2(t1,M)
∣∣2] pα2 ),

≤ C
m∑
α=1

qα
pα
cpαα B

pα2
3pα−4

2

(
‖∇fα‖pαpα +N

(
2

N

)2

2
pα
2
−1

M∑
t2=1

(∣∣fα,1(N, t2)
∣∣2 +

∣∣fα,2(N, t2)
∣∣2) pα2
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+M

(
2

M

)2

2
pα
2
−1

N∑
t1=1

(∣∣fα,1(t1,M)
∣∣2 +

∣∣fα,2(t1,M)
∣∣2) pα2 ) .

And ‖
m∏
α=1

(‖fα‖2(.))qα‖1 ≤
∑
t∈Ω̃

m∏
α=1

∣∣|fα,1(t)|+ |fα,2(t)|
∣∣qα .

Remark 4.5. For any fα ∈ F1(Ω̃), any real number pα ≥ 2, qα ≥ 0, α = 1, · · · ,m, m ≥ 2

with
m∑
α=1

qα
pα

= 1 and any cα > 0,

‖
m∏
α=1

(‖fα‖2(.))qα‖1 ≤ C
m∑
α=1

qα
pα
cpαα B

pα2
3pα−4

2

‖∇fα‖pαpα + 2
pα
2
−1


(
MN2 + M(M+1)(2M+1)

6N

) pα
2

N

+

(
NM2 + N(N+1)(2N+1)

6

) pα
2

M


 ,

‖
m∏
α=1

(‖fα‖2(.))qα‖1 ≤ C
m∑
α=1

qα
pα
cpαα B

pα2
3pα−4

2 ‖∇fα‖pαpα + c2,

where C =
m∏
β=1

c
−qβ
β , B = max(M,N) and

c2 = C
m∑
α=1

qα
pα
cpαα B

pα22pα−1


(
MN2 + M(M+1)(2M+1)

6N

) pα
2

N
+

(
NM2 + N(N+1)(2N+1)

6

) pα
2

M

 .
Corollary 4.6. (from [58, Corollary 3.2]): For any fα ∈ F1(Ω) and any real numbers

pα ≥ 2, qα ≥ 0, α = 1, ...,m, m ≥ 2, with
m∑
α=1

qα
pα

= 1,

‖
m∏
α=1

(‖fα‖2(.))qα‖1 ≤
m∑
α=1

qα
pα
Bpα2

3pα−4
2 ‖∇fα‖pαpα + c3,

with c3 =
m∑
α=1

qα
pα
Bpα22pα−1

(MN2+
M(M+1)(2M+1)

6N

) pα
2

N +

(
NM2+

N(N+1)(2N+1)
6

) pα
2

M

 = c2 set-

ting cα = 1,∀α.

Proof. This follows immediately from Theorem 4.3 by letting cα = 1, α = 1, ...,m.

Corollary 4.7. (from [58, Corollary 3.5]) For any fα ∈ F1(Ω) and any real numbers

qα ≥ 0, α = 1, ...,m, m ≥ 2, with q =
m∑
α=1

qα ≥ 2,

‖
m∏
α=1

(‖fα‖2(.))qα‖1 ≤ Bq2
3q−4

2

m∑
α=1

qα
q
‖∇fα‖qq + c4,
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with c4 = Bq22q−1

(MN2+
M(M+1)(2M+1)

6N

) q
2

N +

(
NM2+

N(N+1)(2N+1)
6

) q
2

M

 = c3 setting pα =

q, α = 1, ...,m.

Proof. This follows immediately from Corollary 4.6 by letting pα = q,∀α = 1, ...,m.

Theorem 4.4 (adapted from [58, Corollary 3.10], discrete generalized Poincaré inequal-
ity). For any f ∈ F1(Ω), and any real number q ≥ 2, we have:

‖f q‖1 = ‖f‖qq ≤ Bq2
7q+2

2 ‖∇f‖qq + c4,

with c4 = Bq2
7q+2

2

[
8NM + 4

N
M(M+1)(2M+1)

6 + 4
M

N(N+1)(2N+1)
6

] q
2
, with B = max{M,N}.

Proof. This follows imediately from Corollary 4.7 by letting fα = f , ∀α ∈ {1, ...m}.

We now introduce the discrete version of the initial problem (QP)

inf
ϕ̃∈F1(Ω̃)

{
J(ϕ̃) =

N∑
i=1

M∑
j=1

[ν
2

(
Hε(Φ0 ◦ ϕ̃i,j)−Hε(Φ̃(·, T̄ ))

)2
+QW (∇ϕ̃i,j)

]}
. (3.7)

Theorem 4.5. Functional J is continuous and admits a finite minimum.

Proof. Let us devise a coercivity inequality. One successively has:

β(‖∇ϕ̃i,j‖2 − α)2 ≥ β

2
‖∇ϕ̃i,j‖4 − βα2, ψ(det∇ϕ̃i,j) ≥

−µ(λ+ 3µ)

2(λ+ 2µ)
,

QW (∇ϕ̃i,j) ≥
β

2
‖∇ϕ̃i,j‖4 − βα2 − µ(λ+ 3µ)

2(λ+ 2µ)
,

J(ϕ̃) ≥ β

2
‖∇ϕ̃‖4

l4(Ω̃,M2(R))
+

N∑
i=1

M∑
j=1

(
−βα2 − µ(λ+ 3µ)

2(λ+ 2µ)

)
.

Then from the discrete generalized Poincaré inequality, using the same notations for the
constants B and c4 yields:

J(ϕ̃) ≥ β

24B4
(‖ϕ̃‖4

l4(Ω̃,M2(R))
− c4) +

N∑
i=1

M∑
j=1

(
−βα2 − µ(λ+ 3µ)

2(λ+ 2µ)

)
,

and J(Id) < +∞ so the infimum is finite. Thus J is coercive and continuous, so there
exists at least one minimum of J over F1(Ω̃).

The discrete counterpart of (3.6) (pure quadratic penalization) is given by:

inf
ϕ̃,Ṽ

{
Jγ(ϕ̃, Ṽ ) =

N∑
i=1

M∑
j=1

ν

2

(
Hε(Φ0(ϕ̃i,j))−Hε(Φ̃(·, T̄ ))

)2
+QW (Ṽi,j) +

γ

2
‖Ṽi,j −∇ϕ̃i,j‖2

}
.

The discrete analogue of Theorem 4.1 is thus stated as:
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Theorem 4.6. Let (γj) be an increasing sequence of positive real numbers such that

lim
j→+∞

γj = +∞. Let also ( ¯̃ϕ(γj),
¯̃V (γj)) be a minimum of the decoupled problem with γ =

γj. Then there exists a subsequence of
(

¯̃ϕ(γj),
¯̃V (γj)

)
denoted by

(
¯̃ϕ(γψ◦ζ(j)),

¯̃V (γψ◦ζ(j))
)

and a minimum ¯̃ϕ of J ( ¯̃ϕ ∈ F1(Ω̃)) such that

lim
j→+∞

Jγψ◦ζ(j)

(
¯̃ϕ(γψ◦ζ(j)),

¯̃V (γψ◦ζ(j))
)

= J( ¯̃ϕ).

Proof. The proof is divided into two steps: the first one is dedicated to the existence of a
minimum for the decoupled problem, while the second shows the convergence result.

– Existence of a minimum of the decoupled problem for any γ > 0:
Let γ > γ0 (γ0 > 0 fixed) be a positive real number. Functional Jγ is con-

tinuous and bounded below by −µ(λ+3µ)
2(λ+2µ) . Furthermore, by taking ϕ̃ = Id and

Ṽ = ∇ϕ̃ = (I2)N×M , I2 denoting the identity matrix of size 2 × 2, we have
Jγ(ϕ̃, Ṽ ) < +∞, then the infimum is finite. Let (ϕ̃n(γ), Ṽn(γ)) be a minimiz-

ing sequence of Jγ . We have Jγ(ϕ̃n(γ), Ṽn(γ)) ≥ β
2 ‖Ṽn(γ)‖4

l4(Ω̃,M2(R))
− βα2NM

−µ(λ+3µ)NM
2(λ+2µ) . As Jγ is proper and (ϕ̃n(γ), Ṽn(γ)) is a minimizing sequence, then for

n sufficiently large, Jγ(Id, (I2)N×M ) + 1 ≥ Jγ(ϕ̃n(γ), Ṽn(γ)) ≥ β
2 ‖Ṽn(γ)‖4

l4(Ω̃,M2(R))
−

βα2NM− µ(λ+3µ)NM
2(λ+2µ) . So, (Ṽn(γ)) is uniformly bounded in ‖.‖l4(Ω̃,M2(R)). According

to Bolzano-Weierstrass theorem, we can extract a subsequence denoted by (Ṽψ(n)(γ))

such that Ṽψ(n)(γ) −−−−−→
n→+∞

¯̃V (γ) ∈ (M2(R))N×M . Moreover, for n sufficiently large

Jγ(Id, (I2)N×M ) + 1 ≥ Jγ(ϕ̃ψ(n)(γ), Ṽψ(n)(γ)),

≥ −µ(λ+ 3µ)NM

2(λ+ 2µ)
+
γ

2
‖∇ϕ̃ψ(n)(γ)− Ṽψ(n)(γ)‖2

l2(Ω̃,M2(R))
,

≥ −µ(λ+ 3µ)NM

2(λ+ 2µ)
+
γ

2

∣∣∣‖∇ϕ̃ψ(n)‖l2(Ω̃,M2(R)) − ‖Ṽψ(n)‖l2(Ω̃,M2(R))

∣∣∣2 ,
≥ −µ(λ+ 3µ)NM

2(λ+ 2µ)
+
γ

4
‖∇ϕ̃ψ(n)‖2l2(Ω̃,M2(R))

− γ

2
‖Ṽψ(n)‖2l2(Ω̃,M2(R))

.

Consequently,

Jγ(Id, (I2)N×M ) + 1 +
γ

2
‖Ṽψ(n)(γ)‖2

l2(Ω̃,M2(R))
+
µ(λ+ 3µ)NM

2(λ+ 2µ)

≥ γ

4
‖∇ϕ̃ψ(n)(γ)‖2

l2(Ω̃,M2(R))
≥ γ

23B2
(‖ϕ̃ψ(n)(γ)‖2

l2(Ω̃,R2)
− c4),

from the discrete generalized Poincaré inequality. The sequence (ϕ̃ψ(n)(γ)) is uni-
formly bounded in ‖.‖l2(Ω̃,R2) and according to Bolzano-Weierstrass theorem, we

can extract a subsequence denoted by (ϕ̃ψ◦ζ(n)(γ)) such that ϕ̃ψ◦ζ(n)(γ) −−−−−→
n→+∞

¯̃ϕ(γ) ∈ F1(Ω̃). By continuity of Jγ , Jγ(ϕ̃ψ◦ζ(n)(γ), Ṽψ◦ζ(n)(γ))−−−−−→
n→+∞

Jγ( ¯̃ϕ(γ), ¯̃V (γ))

82



4. Numerical Method of Resolution

and by uniqueness of the limit Jγ( ¯̃ϕ(γ), ¯̃V (γ)) = inf Jγ(ϕ̃, Ṽ ) with ϕ̃ ∈ F1(Ω̃),
Ṽ ∈ (M2(R))N×M .

– Convergence of the sequence of minima:
Let (γj) be an increasing sequence of positive real numbers such that lim

j→+∞
γj = +∞.

Let
(

¯̃ϕ(γj),
¯̃V (γj)

)
be the sequence of minima associated with (Jγj ). Let ε > 0 be

given, ε ∈]0; ε0], ε0 > 0 fixed. There exists ϕ̂ε ∈ F1(Ω̃) such that Jγ( ¯̃ϕ(γ), ¯̃V (γ)) =
min

(ϕ̃,Ṽ )∈F1(Ω̃)×(M2(R))N×M
Jγ(ϕ̃, Ṽ ) ≤ Jγ(ϕ̂ε,∇ϕ̂ε) = J(ϕ̂ε) < inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) + ε ≤ inf

ϕ̃∈F1(Ω̃)

J(ϕ̃) +ε0. So, Jγ

(
¯̃ϕ(γ), ¯̃V (γ)

)
= min

(ϕ̃,Ṽ )∈F1(Ω̃)×(M2(R))N×M
Jγ(ϕ̃, Ṽ ) ≤ inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) +

ε, ∀γ > 0. Let us take ε = 1
γj

, we have Jγj ( ¯̃ϕ(γj),
¯̃V (γj)) ≤ inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) + 1

γj
≤

inf
ϕ̃∈F1(Ω̃)

J(ϕ̃) + 1
γ0

< +∞. Consequently, inf
ϕ̃∈F1(Ω̃)

J(ϕ̃) + 1
γ0
≥ Jγj ( ¯̃ϕ(γj),

¯̃V (γj)) ≥

β
2 ‖

¯̃V (γj)‖4l4(Ω̃,M2(R))
− βα2NM −µ(λ+3µ)

2(λ+2µ)NM . Thus
(

¯̃V (γj)
)

is uniformly bounded

in ‖.‖l4(Ω̃,M2(R)) and according to Bolzano-Weierstrass theorem, we can extract a sub-

sequence
(

¯̃V (γψ(j))
)

from
(

¯̃V (γj)
)

such that ¯̃V
(
γψ(j)

)
−−−−→
j→+∞

V̄ ∈ (M2(R))N×M .

Also we have
γψ(j)

2 ‖
¯̃V (γψ(j))−∇ ¯̃ϕ(γψ(j))‖2l2(Ω̃,M2(R))

≤ inf
ϕ̃∈F1(Ω̃)

J(ϕ̃)+ 1
γ0

+ µ(λ+3µ)
2(λ+2µ)NM

and thus successively:

‖ ¯̃V (γψ(j))−∇ ¯̃ϕ(γψ(j))‖2l2(Ω̃,M2(R))
≤ 2

γ0

(
inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) +

1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM

)
,

∣∣∣‖∇ ¯̃ϕ(γψ(j))‖l2(Ω̃,M2(R)) − ‖
¯̃V (γψ(j))‖l2(Ω̃,M2(R))

∣∣∣2 ≤ 2

γ0

(
inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) +

1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM

)
,

‖∇ ¯̃ϕ(γψ(j))‖2l2(Ω̃,M2(R))

2
− ‖ ¯̃V (γψ(j))‖2l2(Ω̃,M2(R))

≤ 2

γ0

(
inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) +

1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM

)
,

‖ ¯̃ϕ(γψ(j))‖2l2(Ω̃,R2)
− c4

29B2
≤ 2

γ0

(
inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) +

1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM

)
+ ‖ ¯̃V (γψ(j))‖2l2(Ω̃,M2(R))

,

this last inequality stemming again from the discrete generalized Poincaré inequal-

ity. As ¯̃V (γψ(j)) is uniformly bounded and all the norms are equivalent in finite
dimension, we can deduce that ( ¯̃ϕ(γψ(j))) is also uniformly bounded in ‖.‖l2(Ω̃,R2).

Then, from Bolzano-Weierstrass theorem, we can extract a subsequence ( ¯̃ϕ(γψ◦ζ(j)))

from ( ¯̃ϕ(γψ(j))) such that ¯̃ϕ(γψ◦ζ(j)) −−−−→
j→+∞

ϕ̄. Furthermore, we have ‖ ¯̃V (γψ◦ζ(j))−

∇ ¯̃ϕ(γψ◦ζ(j))‖2l2(Ω̃,M2(R))
≤ 2

γψ◦ζ(j)

(
inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) + 1

γ0
+ µ(λ+3µ)

2(λ+2µ)NM

)
. As γψ◦ζ(j)

−−−−→
j→+∞

+∞, we deduce that ‖ ¯̃V (γψ◦ζ(j)) − ∇ ¯̃ϕ(γψ◦ζ(j))‖2l2(Ω̃,M2(R))
−−−−→
j→+∞

0. By
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continuity of the norm, we get ‖∇ϕ̄ − V̄ ‖2
l2(Ω̃,M2(R))

= 0 and so V̄ = ∇ϕ̄. Since

ν
2‖Hε(Φ0( ¯̃ϕ(γψ◦ζ(j)))) − Hε(Φ̃(·, T̄ ))‖2

l2(Ω̃)
+

N∑
i=1

M∑
l=1

QW ( ¯̃Vi,l(γψ◦ζ(j))) ≤ Jγψ◦ζ(j) ( ¯̃ϕ

(γψ◦ζ(j)),
¯̃V (γψ◦ζ(j))), by continuity, we have inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) ≤ J(ϕ̄) ≤ lim inf

j→+∞
Jγψ◦ζ(j)

( ¯̃ϕ(γψ◦ζ(j)),
¯̃V (γψ◦ζ(j))) and Jγψ◦ζ(j)(

¯̃ϕ(γψ◦ζ(j)),
¯̃V (γψ◦ζ(j))) ≤ inf

ϕ̃∈F1(Ω̃)
J(ϕ̃) + 1

γψ◦ζ(j)
.

Consequently, lim sup
j→+∞

Jγψ◦ζ(j)(
¯̃ϕ(γψ◦ζ(j)),

¯̃V (γψ◦ζ(j))) ≤ inf
ϕ̃∈F1(Ω̃)

J(ϕ̃) which yields

lim
j→+∞

Jγψ◦ζ(j)(
¯̃ϕ(γψ◦ζ(j)),

¯̃V (γψ◦ζ(j))) = J(ϕ̄) = inf
ϕ̃∈F1(Ω̃)

J(ϕ̃).

The previous results justify the use of the following algorithm.

4.3 Actual algorithm associated with the quadratic penalty method

In this section, we introduce the quadratic penalty algorithm. Its main step is divided
into 2 important parts: the segmentation step which will guide the registration process
and the registration step. The latter one is done thanks to an alternating scheme solving
successively the Euler-Lagrange equations in ϕ̃ and Ṽ .

Remark 4.8. In practice, it may be relevant to use a couple of intermediate segmentation
steps, in particular, when the shapes to be registered exhibit thin concavities. A control on
the local curvature of the zero level line of Φ̃ to detect extrema can be made to identify
such regions. In order to comply with the mechanical interpretation of our model, rather
than considering a continuum in time, we assume that the problem is sampled in time,
and solve sequentially the subproblems :

inf
ϕi∈Id+W 1,4

0 (Ω,R2)

∫
Ω
QW (∇ϕi) dx+

ν

2

∫
Ω

(
Hε(Φ0 ◦ ϕ1 ◦ · · · ◦ ϕi)−Hε(Φ̃(·, ti))

)2
dx,

for i ∈ {1, · · · ζ}, ζ small in practice. In the end, the overall deformation is given by
ϕ1 ◦ · · · ◦ ϕζ .
From a purely mathematical point of view, the existence of minimizers for each subproblem
is guaranteed: Rellich-Kondrachov’s embedding theorem states that weak convergence in
W 1,4(Ω,R2) leads to uniform convergence in Ω̄, an extension process as before can be
applied on all ϕk, k = 1, · · · , i− 1 to ensure the well-definedness of the composition, and
the continuous injection W 1,4(R2,R2) 	 C0(R2,R2) holds, these three elements combined
allowing to handle the fidelity term.
A first alternative would consist in introducing explicitly the time variable t ∈ [0, T̄ ] in the
modelling and in minimizing with respect to now ϕ = ϕ(x, t):

J(ϕ) =

∫ ∫
V
‖∂ϕ
∂t

(x, t)‖22 dx dt+

∫ ∫
V

[
QW (∇ϕ(x, t)) +

ν

2

(
Hε(Φ0 ◦ ϕ(x, t))−Hε(Φ̃(x, t))

)2
]
dx dt,
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with V = Ω × [0, T̄ ]. A suitable functional space is
{
ϕ ∈ L4(0, T̄ ;W 1,4(Ω,R2)) | ∂ϕ

∂t
∈

L2(0, T̄ ;L2(Ω,R2))
}

endowed with the norm ‖ϕ‖W = ‖ϕ‖L4(0,T̄ ;Id+W 1,4(Ω,R2))+

‖∂ϕ
∂t
‖L2(0,T̄ ;L2(Ω,R2)) and a result of existence of minimizers holds in this space thanks to

Aubin-Lions lemma in particular. Indeed, the proof is divided into the following three
steps:

– Coercivity inequality: By taking ϕ(t) = Id ∀t ∈ [0; T̄ ], we get J(ϕ) < +∞ and
the functional is proper. We first derive a coercivity inequality. From what was
previously done, we know that:

QW (∇ϕ(x, t)) ≥ β

2
‖∇ϕ(t, x)‖4 − βα2 − µ(λ+ 3µ)

2(λ+ 2µ)
+ γ,∫

Ω
QW (∇ϕ(x, t)) dx ≥ β

2
‖∇ϕ(t, .)‖4L4(Ω,M2(R)) +meas(Ω)

(
− βα2 − µ(λ+ 3µ)

2(λ+ 2µ)
+ γ
)
,∫

Ω
QW (∇ϕ(x, t)) dx ≥ β

2(c4 + 1)
‖ϕ(t, .)‖4W 1,4(Ω,R2) +meas(Ω)

(
− βα2 − µ(λ+ 3µ)

2(λ+ 2µ)

+ γ
)

+ k (from generalized Poincaré inequality),

J(ϕ) ≥ ‖∂ϕ
∂t
‖2L2(]0,T̄ [×Ω,R2) +

β

2(c4 + 1)

∫ T̄

0
‖ϕ(t, .)‖4W 1,4(Ω,R2) dt

− βα2meas(Ω)T̄ − µ(λ+ 3µ)

2(λ+ 2µ)
meas(Ω)T̄ + γmeas(Ω)T̄ + kT̄ ,

J(ϕ) ≥ ‖∂ϕ
∂t
‖2L2(]0,T̄ [×Ω,R2) +

β

2(c4 + 1)
‖ϕ‖4L4(0,T̄ ;W 1,4(Ω,R2))

− βα2meas(Ω)T̄ − µ(λ+ 3µ)

2(λ+ 2µ)
meas(Ω)T̄ + γmeas(Ω)T̄ + kT̄ .

So, the infimum is finite.

– Convergence of a minimizing sequence: Let {ϕk}k∈N be a minimizing se-
quence. As the functional is proper, there exists ϕ̂ such that for all k large enough,
J(ϕk) ≤ J(ϕ̂) + 1 < +∞. Then from the coercivity inequality, we can deduce
that {ϕk}k∈N is uniformly bounded in L4(0, T̄ ;W 1,4(Ω,R2)) so we can extract a sub-
sequence still denoted {ϕk} such that ϕk ⇀ ϕ̄ in L4(0, T̄ ;W 1,4(Ω,R2)). Besides,

{∂ϕ
k

∂t }k∈N is uniformly bounded in L2(0, T̄ ;L2(Ω,R2)) so we can extract a subse-

quence still denoted {∂ϕ
k

∂t } such that ∂ϕk

∂t ⇀ δ̄ in L2(0, T̄ ;L2(Ω,R2)). By taking

a common subsequence still denoted {ϕk}, we know that ∀k ∈ N, ∂ϕ
k

∂t is the weak
derivative of ϕk according to the time variable, ϕk ⇀ ϕ̄ in L4(0, T̄ ;W 1,4(Ω,R2)),
∂ϕk

∂t ⇀ δ̄ in L2(0, T̄ ;L2(Ω,R2)) and we can deduce that δ̄ = ∂ϕ̄
∂t .

We also notice that {ϕk}k∈N is uniformly bounded in W so we can extract a sub-
sequence still denoted {ϕk} such that ϕk ⇀ ϕ̄1 in W . By extracting a common
subsequence and thanks to the uniqueness of the weak limit, it yields ϕ̄1 = ϕ̄.

85



A nonlocal topology-preserving segmentation guided registration model

As W 1,4(Ω,R2) ⊂ L2(Ω,R2) with compact injection, the Aubin-Lions lemma states
that the embedding of W in L4(0, T̄ ;L2(Ω,R2) is compact. As L4(0, T̄ ;L2(Ω,R2)) ⊂
L2(]0, T̄ [×Ω,R2) is continuous then the embedding of W into L2(]0, T̄ [×Ω,R2) is also
compact. We can therefore extract a subsequence of {ϕk} still denoted {ϕk} such that
ϕk → ϕ̄ in L2(]0, T̄ [×Ω,R2).

– Weak lower semi-continuity: ‖.‖L2(]0,T̄ [×Ω,R2) is convex and strongly continuous

and so it is weakly lower semi-continuous in L2(]0, T̄ [×Ω,R2) so ‖∂ϕ̄∂t ‖L2(]0,T̄ [×Ω,R2) ≤
lim inf
k→+∞

‖∂ϕ
k

∂t ‖L2(]0,T̄ [×Ω,R2).

As, ϕk → ϕ̄ in L2(]0, T̄ [×Ω,R2), up to a subsequence, one has pointwise convergence
of {ϕk} to ϕ̄ and the dominated convergence theorem enables us to obtain the weak
lower semi-continuity of the data fidelity term.
Let {ψk}k∈N be a sequence that strongly converges to ψ̄ in L4(0, T̄ ;W 1,4(Ω,R2)).

Then

∫ T̄

0
‖ψ̄(t)− ψk(t)‖4W 1,4(Ω,R2) dt −→

k→+∞
0. By seeing ‖ψ̄(t)− ψk(t)‖4W 1,4(Ω,R2) as

a real-valued function depending on t defined on ]0, T̄ [ and by applying the recip-
rocal of dominated convergence theorem, we get that ‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) con-

verges to 0 for almost every t ∈]0, T̄ [ up to a subsequence. So for almost every
t ∈]0, T̄ [, ψk(t) strongly converges to ψ̄(t) in W 1,4(Ω,R2) and det∇ψk(t) →

k→+∞
det∇ψ̄(t) in L2(Ω). From what was done in the stationary case, we know that

(Ψ, δ) 7→
∫

Ω
K(∇Ψ, δ) dx, defined on W 1,4(Ω,R2) × L2(Ω), is convex, weakly lower

semi-continuous, with K(Ψ, δ) =

∣∣∣∣ β(‖∇Ψ‖2 − α)2 + ψ(δ), if ‖∇Ψ‖2 > α
ψ(δ), otherwise.

. So for

almost every t ∈ [0, T̄ ],∫
Ω
QW (∇ψ̄(t)) dx =

∫
Ω
K(∇ψ̄(t),det∇ψ̄(t)) dx

≤ lim inf
k→+∞

∫
Ω
QW (∇ψk(t)) dx = lim inf

k→+∞

∫
Ω
K(∇ψk(t), det∇ψk(t)) dx,

and 0 ≤
∫

Ω
QW (∇ψ̄(t)) dx+meas(Ω)

(
βα2 +

µ(λ+ 3µ

2(λ+ 2µ)
− γ
)

≤ lim inf
k→+∞

∫
Ω
QW (∇ψk(t)) dx+meas(Ω)

(
βα2 +

µ(λ+ 3µ

2(λ+ 2µ)
− γ
)
.

So by Fatou’s lemma, we get:∫ T̄

0

∫
Ω
QW (∇ψ̄(x, t)) dx dt+meas(Ω)

(
βα2T̄ +

µ(λ+ 3µ)

2(λ+ 2µ)
T̄ − γT̄

)
≤
∫ T̄

0
lim inf
k→+∞

∫
Ω
QW (∇ψk(x, t)) dx dt+meas(Ω)

(
βα2T̄ +

µ(λ+ 3µ)

2(λ+ 2µ)
T̄ − γT̄

)
,

≤ lim inf
k→+∞

∫ T̄

0

∫
Ω
QW (∇ψk(x, t)) dx dt+meas(Ω)

(
βα2T̄ +

µ(λ+ 3µ)

2(λ+ 2µ)
T̄ − γT̄

)
.
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Thus∫ T̄

0

∫
Ω
QW (∇ψ̄(x, t)) dx dt =

∫ T̄

0

∫
Ω
K(∇ψ̄(x, t),det∇ψ̄(x, t)) dx dt

≤ lim inf
k→+∞

∫ T̄

0

∫
Ω
QW (∇ψk(x, t)) dx dt = lim inf

k→+∞

∫ T̄

0

∫
Ω
K(∇ψk(x, t), det∇ψk(x, t)) dx dt.

Then it is convex and strongly sequentially lower semi-continuous and so it is weakly
lower semi-continuous. We finally have∫ T̄

0

∫
Ω
QW (∇ϕ̄(x, t)) dx dt =

∫ T̄

0

∫
Ω
K(∇ϕ̄(x, t),det∇ϕ̄(x, t)) dx dt

≤ lim inf
k→+∞

∫ T̄

0

∫
Ω
QW (∇ϕk(x, t)) dx dt = lim inf

k→+∞

∫ T̄

0

∫
Ω
K(∇ϕk(x, t),det∇ϕk(x, t)) dx dt,

which concludes the proof.

The numerical analysis of this model is still a work in progress.
Another alternative (yielding results comparable to the ones displayed) that we have inves-
tigated consists in treating jointly the segmentation and registration tasks by minimizing

inf
Φ̄,ϕ

J(Φ̄) + µ′ L(Φ̄) +

∫
Ω
QW (∇ϕ) dx+

γ

2
‖Φ̄− Φ0 ◦ ϕ‖2L2(Ω).

A substitute for Φ0 ◦ ϕ denoted by Φ̄ is thus incorporated in the topology-preserving seg-
mentation model and the coupling is made through the L2-penalization, entailing mutual
influence of both tasks. Note that the question of existence of minimizers is still an open
question for this problem. Proceeding as in subsection 3.3 and setting Φ̂ = eγt Φ̄, it is
noticeable that the evolution equation satisfied by Φ̂ is then defined by:

∂Φ̂

∂t
= |∇Φ̂|

{
div

(
g̃(|∇R|) ∇Φ̂

|∇Φ̂|

)
+ c0 ∗

[
Φ̂(·, t)

]
+kg̃(|∇R|)

}
+ γ exp (γt) Φ0 ◦ ϕ ,

which exhibits the same property of geometrical type, namely the map χ defined in Defini-
tion 2.6 from Chapter 2 only depends on the zero level set of the initial condition Φ0 and
not on the initial condition itself. Function Φ0 being Lipschitz continuous with Lipschitz
constant LΦ0 and considering ϕ as a function of time t with values in W 1,4(R2,R2), i.e.,

ϕ :
]0, T̄ [ → W 1,4(R2,R2)
t 7→ ϕ(t)

, thanks to the continuous Sobolev embedding W 1,4(R2,R2) 	

C0(R2,R2), we deduce that ϕ(t) is uniformly continuous on any compact subset of R2 yield-
ing:

γ exp (γt) |Φ0(ϕ(x1, t))− Φ0(ϕ(x2, t))| ≤ γ exp (γt)LΦ0 |ϕ(x1, t)− ϕ(x2, t)|,
≤ γ exp (γt)LΦ0 wK(t, |x1 − x2|),
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A nonlocal topology-preserving segmentation guided registration model

wK modulus of continuity of ϕ depending on the compact subset considered. If, for in-
stance, we assume that this modulus of continuity is uniform in time, assumption A2 i. is
satisfied as well as assumption A2 ii., by taking h(x, t, r) = γ exp (γt) Φ0(ϕ(x, t)).

1: [Initialization step]: Ṽ 0 = (I2)N×M , ϕ̃0 = Id and regrid count = 0 for the registration
part;
Φ̃(., 0) = Φ0 (input segmentation of the Template) for the topology preserving
segmentation part.
Select λ, µ, γ large enough, and ν.

2: [Main Step]:

(i) Compute Φ̃, solution of the evolution equation problem (3.1): the discretization
of (3.1) is made using an Additive Operator scheme (see [57]), requiring a linear
computational cost at each step. A detailed numerical algorithm can be found in
[37, Appendix B, pp. 777-778], both to derive the AOS scheme and to reinitialize
Φ̃ since it is assumed to be a signed-distance function in the modelling.

(ii) For k = 1, 2, · · · , ζ, compute (ϕ̃k, Ṽ k) = arg min
(ϕ̃,Ṽ )

Jγ(ϕ̃, Ṽ ) with Φ̃(., T̄ ) = Φ̃(., tk),

tζ = T̄ , Φ̃(., tζ) representing the object inside the Reference and Φ0,k = Φ0 ◦ ϕ̃1 ◦
· · · ◦ ϕ̃k−1, using an alternative scheme:

(a) Solve the Euler-Lagrange equation in ϕ̃i,j for each (i, j) ∈ {2, . . . , N − 1}×
{2, . . . ,M − 1}: νδε(Φ0,k ◦ ϕ̃i,j)

(
Hε(Φ0,k ◦ ϕ̃i,j)−Hε(Φ̃(., tk))

)
∇Φ0,k(ϕ̃i,j)

+γ

(
divṼ1i,j

divṼ2i,j

)
− γ∆ϕ̃i,j = 0. To do so, we use an L2 gradient flow algo-

rithm and an implicit Euler time stepping scheme.

(b) Solve the system of Euler-Lagrange equations in Ṽi,j
for each (i, j) ∈ {2, . . . , N − 1} × {2, . . . ,M − 1}:

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ11i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
+ µṼ22i,j (det Ṽi,j − 2) + γ(Ṽ11i,j − ∂xϕ̃1

i,j)

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ12i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
− µṼ21i,j (det Ṽi,j − 2) + γ(Ṽ12i,j − ∂yϕ̃1

i,j)

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ21i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
− µṼ12i,j (det Ṽi,j − 2) + γ(Ṽ21i,j − ∂xϕ̃2

i,j)
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2: (following)

(ii) (following)

(b) (following)
0 = 2β

(
‖Ṽi,j‖2 − α

)
Ṽ22i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
+ µṼ11i,j (det Ṽi,j − 2) + γ(Ṽ22i,j − ∂yϕ̃2

i,j)
.

To do so, we use an L2 gradient flow algorithm and a semi-implicit Euler
time stepping scheme.

(c) Control of the Jacobian determinant, see Algorithm 4. Go back to (a) until
convergence.

Algorithm 1: A topology preserving segmentation guided registration model -
Quadratic Penalization

Remark 4.9. As the matrices involved in the subproblems of the AOS scheme are mono-
tone and the sum of the coefficients of each row of the inverse matrices is equal to one,
then the numerical schemes are unconditionally stable in the L∞-norm.

The quadratic penalty method involves the minimization of functional Jγ for ever-
larger values of γ, which may create some numerical instabilities. As an alternative, we
propose introducing an augmented Lagrangian method (the underlying idea still being to
convert the decoupled minimization problem denoted by (DP ) under equality constraint
Ṽ = ∇ϕ̃ into an unconstrained minimization problem). min

ϕ̃∈F1(Ω̃),Ṽ ∈(M2(R))N×M

ν
2‖Hε(Φ0(ϕ̃))−Hε(Φ̃(·, T̄ ))‖2

l2(Ω̃)
+

N∑
i=1

M∑
j=1

QW (Ṽi,j)

with ∇ϕ̃ = Ṽ

(DP)

Indeed, it has the advantage of solving the problem without having γ → +∞ as shown
in the following, and thus the augmented Lagrangian method is numerically more stable.

4.4 Augmented Lagrangian method

In that purpose, we introduce the augmented Lagrangian function:

L(ϕ̃, Ṽ , λ, γ) =
ν

2
‖Hε(Φ0(ϕ̃))−Hε(Φ̃(·, T̄ ))‖2

l2(Ω̃)
+

N∑
i=1

M∑
j=1

QW (Ṽi,j) + (λ, Ṽ −∇ϕ̃)l2(Ω̃,M2(R))

+
γ

2
‖Ṽ −∇ϕ̃‖2

l2(Ω̃,M2(R))
, (3.8)

λ denoting the Lagrange multiplier. (We think that there is no confusion with the Lamé
coeffficient). Now, we will follow the same arguments as in [51]. For the sake of clar-
ity, we introduce the following set notations, X = {(ϕ̃, Ṽ ) ∈ F1(Ω̃) × (M2(R))N×M},
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A nonlocal topology-preserving segmentation guided registration model

C = {(ϕ̃, Ṽ ) ∈ X,∇ϕ̃ = Ṽ }, Ỹ = (M2(R))N×M × (0,+∞) ∼ R4×N×M × (0,+∞);
variable notations, x = (ϕ̃, Ṽ ), ỹ = (λ, γ); function notations, f0(x) = ν

2‖Hε(Φ0(ϕ̃))−

Hε(Φ̃(·, T̄ ))‖2
l2(Ω̃)

+
N∑
i=1

M∑
j=1

QW (Ṽi,j), and f1(x) = Ṽ −∇ϕ̃.

Thus for fixed x ∈ X, we have L(x, λ, γ) = f0(x)+(λ, f1(x))l2(Ω̃,M2(R))+
γ
2‖f1(x)‖2l2(Ω,M2(R))

and sup
(λ,γ)∈Ỹ

L(x, λ, γ) =

{
f0(x) when x ∈ C
+∞ when x /∈ C since for fixed x ∈ X and λ ∈ (M2(R))N×M ,

the limit of L(x, λ, γ) as γ → +∞ already gives f0(x) when ‖f1(x)‖l2(Ω̃,M2(R)) = 0 ⇔
f1(x) = 0 ⇔ x ∈ C but +∞ when ‖f1(x)‖l2(Ω̃,M2(R)) 6= 0 ⇔ f1(x) 6= 0 ⇔ x /∈ C. In [51],

Rockafellar proved that finding a minimizer of (DP ) amounts to finding a saddle point of
the augmented Lagrangian function.

Theorem 4.7 (extracted from [51, Theorem 6.3]). A pair of vectors x̄ ∈ X and (λ̄, γ̄) ∈ Ỹ
furnishes a saddle point of the augmented Lagrangian L on X × Ỹ if and only if{

x̄ is a (globally) optimal solution to (DP )
p(u) ≥ p(0) + (λ̄, u)l2(Ω̃,M2(R)) −

γ̄
2‖u‖

2
l2(Ω̃,M2(R))

, (3.9)

with (P (u)) : inf
x∈X

f0(x) such that f1(x)+u = 0, u ∈ (M2(R))N×M ∼ R4×N×M and p(u) =

inf(P (u)) = [ the optimal value corresponding to u]. When this holds, any γ̄′ > γ̄ will
have the property that

[x̄ solves (DP )]⇔
[
x̄ minimizes L(x, λ̄, γ̄′) over x ∈ X

]
. (3.10)

The following proposition gives another definition of the saddle point.

Proposition 4.10 (extracted from [51, Proposition 5.2]). (x̄, λ̄, γ̄) furnishes a saddle point
of L(x, λ, γ) on X × Ỹ if and only if

x̄ is an optimal solution to (DP ),
(λ̄, γ̄) is an optimal solution to (D),
inf(DP ) = sup(D).

(3.11)

Lastly, we introduce the augmented dual problem (D): maximize g(λ, γ) = inf
x∈X

L(x, λ, γ)

over all (λ, γ) ∈ Ỹ , and prove that the primal and the dual problems are equivalent.

Theorem 4.8. We have inf(DP ) = sup(D) and (x̄, λ̄, γ̄) gives a saddle point of L on
X × Ỹ if and only if x̄ solves (DP ) and (λ̄, γ̄) solves (D). The pairs (λ̄, γ̄′) with the exact
penalty property (3.10) are then the ones such that, for some γ̄ < γ̄′, (λ̄, γ̄) is an optimal
solution to (D). Furthermore in this case, the function g in (D) is finite everywhere on
Ỹ , so this maximization problem is effectively unconstrained.
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Proof. We concentrate upon the equality inf(DP ) = sup(D). We know that sup
(λ,γ)∈Ỹ

L(x, λ, γ) ={
f0(x) when x ∈ C
+∞ when x /∈ C . So inf(DP ) = inf

x∈X
sup

(λ,γ)∈Ỹ
L(x, λ, γ) and inf(DP ) ≥ sup(D)

holds. We must now demonstrate that the inequality cannot be strict and then the saddle
point assertion will likewise be a consequence of Proposition 4.10. Let (λ, γ) ∈ Ỹ be fixed.
Let xn = (ϕ̃n, Ṽn) be a minimizing sequence of L(x, λ, γ).

L(xn, λ, γ) ≥ −βα2NM − µ(λ+ 3µ)

2(λ+ 2µ)
NM +

β

2
‖Ṽn‖4l4(Ω̃,M2(R))

+
γ

2
‖f1(xn)‖2

l2(Ω̃,M2(R))

− ‖λ‖l2(Ω̃,M2(R))‖f1(xn)‖l2(Ω̃,M2(R)),

≥ −βα2NM − µ(λ+ 3µ)

2(λ+ 2µ)
NM +

β

2
‖Ṽn‖4l4(Ω̃,M2(R))

+
γ

2
‖f1(xn)‖2

l2(Ω̃,M2(R))

− cε‖λ‖2l2(Ω̃,M2(R))
− ε‖f1(xn)‖2

l2(Ω̃,M2(R))
,

≥ −βα2NM − µ(λ+ 3µ)

2(λ+ 2µ)
NM +

β

2
‖Ṽn‖4l4(Ω̃,M2(R))

+
(γ

2
− ε
)
‖f1(xn)‖2

l2(Ω̃,M2(R))

− cε‖λ‖2l2(Ω̃,M2(R))
.

For ε sufficiently small such that γ
2 −ε > 0, (Ṽn) is uniformly bounded in ‖.‖l4(Ω̃,M2(R)) and

according to Bolzano-Weiertrass theorem, there exist a subsequence (Ṽρ(n)) and ¯̃V such

that Ṽρ(n) −−−−−→
n→+∞

¯̃V . Also,

L(xρ(n), λ, γ) ≥ −µ(λ+ 3µ)

2(λ+ 2µ)
NM +

(γ
2
− ε
)
‖f1(xρ(n))‖2l2(Ω̃,M2(R))

− cε‖λ‖2l2(Ω̃,M2(R))
,

≥ −µ(λ+ 3µ)

2(λ+ 2µ)
NM − cε‖λ‖2l2(Ω̃,M2(R))

+
(γ

2
− ε
)(
‖∇ϕ̃ρ(n)‖l2(Ω̃,M2(R))

−‖Ṽρ(n)‖l2(Ω̃,M2(R))

)2
,

≥ −µ(λ+ 3µ)

2(λ+ 2µ)
NM − cε‖λ‖2l2(Ω̃,M2(R))

+
(γ

2
− ε
)(1

2
‖∇ϕ̃ρ(n)‖2l2(Ω̃,M2(R))

−‖Ṽρ(n)‖2l2(Ω̃,M2(R))

)
,

≥ −µ(λ+ 3µ)

2(λ+ 2µ)
NM − cε‖λ‖2l2(Ω̃,M2(R))

+
(γ

2
− ε
)( 1

22B2

(
‖ϕ̃ρ(n)‖2l2(Ω̃,R2)

− c4

)
−‖Ṽρ(n)‖2l2(Ω̃,M2(R))

)
.

The last step comes again from the discrete generalized Poincaré inequality. As (Ṽρ(n))
is uniformly bounded, (ϕ̃ρ(n)) is also uniformly bounded in ‖.‖l2(Ω̃,R2). Then, accord-

ing to Bolzano-Weierstrass theorem, there exist a subsequence (ϕ̃ρ◦ζ(n)) and ¯̃ϕ such that
ϕ̃ρ◦ζ(n) −−−−−→

n→+∞
¯̃ϕ and so xρ◦ζ(n) −−−−−→

n→+∞
x̄. Then, by continuity of L, L(xρ◦ζ(n), λ, γ) −−−−−→

n→+∞
L(x̄, λ, γ) and L(x̄, λ, γ) = inf

x∈X
L(x, λ, γ). Consequently, the infimum is finite and attained.
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Let ε′ > 0. By definition of the infimum, there exists x̂ ∈ C such that f0(x̂) < inf
x̃∈C

f0(x̃)+ε′.

Also, inf
x∈X

L(x, λ, γ) ≤ L(x̂, λ, γ) = f0(x̂), yielding inf
x∈X

L(x, λ, γ) ≤ f0(x̂) < inf
x̃∈C

f0(x̃) + ε′.

Let (γj) be an increasing sequence of positive real numbers such that lim
j→+∞

γj = +∞. Let

(xγj ) be the sequence of minimizers of L(x, λ, γj) with λ still being fixed. In the previous
inequality, we take ε′ = 1

γj
, so that L(xγj , λ, γj) ≤ inf

x̃∈C
f0(x̃) + 1

γj
≤ inf

x̃∈C
f0(x̃) + 1

γ0
< +∞.

Then we have, setting xγj =
(
ϕ̃γj , Ṽγj

)
:

inf
x̃∈C

f0(x̃) +
1

γ0
≥ β

2
‖Ṽγj‖4l4(Ω̃,M2(R))

− βα2NM − µ(λ+ 3µ)

2(λ+ 2µ)
NM − cε‖λ‖2l2(Ω̃,M2(R))

+
(γj

2
− ε
)
‖f1(xγj )‖2l2(Ω̃,M2(R))

.

We take ε such that
γj
2 − ε > 0, ∀j ∈ N then (Ṽγj ) is uniformly bounded in ‖.‖l4(Ω̃,M2(R))

and according to Bolzano - Weierstrass theorem, there exist a subsequence (Ṽγρ(j)) and
¯̃V such that Ṽγρ(j) −−−−→j→+∞

¯̃V . Also,

inf
x̃∈C

f0(x̃) +
1

γ0
≥ −µ(λ+ 3µ)

2(λ+ 2µ)
NM − cε‖λ‖2l2(Ω̃,M2(R))

+
(γρ(j)

2
− ε
)
‖Ṽγρ(j) −∇ϕ̃γρ(j)‖

2
l2(Ω̃,M2(R))

.

Consequently,

‖Ṽγρ(j) −∇ϕ̃γρ(j)‖
2
l2(Ω̃,M2(R))

≤
(

inf
x̃∈C

f0(x̃) +
1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM + cε‖λ‖2l2(Ω̃,M2(R))

)
2

γρ(j) − 2ε
.

Thus ‖f1(xγρ(j))‖2l2(Ω̃,M2(R))
−−−−→
j→+∞

0, implying f1(xγρ(j)) −−−−→j→+∞
0. Furthermore, from

the previous inequality we get:

−‖Ṽγρ(j)‖
2
l2(Ω̃,M2(R))

+
1

2
‖∇ϕ̃γρ(j)‖

2
l2(Ω̃,M2(R))

≤
(

inf
x̃∈C

f0(x̃) +
1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM

+cε‖λ‖2l2(Ω̃,M2(R))

) 2

γρ(j) − 2ε
.

So,

−‖Ṽγρ(j)‖
2
l2(Ω̃,M2(R))

+
1

22B2

(
‖ϕ̃γρ(j)‖

2
l2(Ω̃,R2)

− c4

)
≤
(

inf
x̃∈C

f0(x̃) +
1

γ0
+
µ(λ+ 3µ)

2(λ+ 2µ)
NM

+cε‖λ‖2l2(Ω̃,M2(R))

) 2

γρ(j) − 2ε
,

still from the discrete generalized Poincaré inequality. As (Ṽγρ(j)) is uniformly bounded,
we deduce that (ϕ̃γρ(j)) is uniformly bounded in ‖.‖l2(Ω̃,R2). So, according to Bolzano-

Weierstrass theorem, there exist a subsequence (ϕ̃γρ◦ζ(j)) of (ϕ̃γρ(n)
) and ¯̃ϕ such that

ϕ̃γρ◦ζ(j) −−−−→j→+∞
¯̃ϕ. Finally, xγρ◦ζ(j) −−−−→j→+∞

x̄ and ∇ ¯̃ϕ = ¯̃V with x̄ = ( ¯̃ϕ, ¯̃V ). Moreover
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we have f0(xγρ◦ζ(j)) +
(
λ, f1(xγρ◦ζ(j))

)
l2(Ω̃,M2(R))

≤ L(xγρ◦ζ(j) , λ, γρ◦ζ(j)), and by continu-

ity, inf
x̃∈C

f0(x̃) ≤ f0(x̄) ≤ lim inf
j→+∞

L(xγρ◦ζ(j) , λ, γρ◦ζ(j)). Also, lim sup
j→+∞

L(xγρ◦ζ(j) , λ, γρ◦ζ(j)) ≤

inf
x̃∈C

f0(x̃) and then lim
j→+∞

L(xγρ◦ζ(j) , λ, γρ◦ζ(j)) = f0(x̄) = inf(DP ). We thus have sup(D) =

inf(DP ). The assertion about the exact penalty property is now immediate from Theorem
4.7. The finiteness of g(λ, γ) results from the previous arguments.

The function g is concave and upper semicontinuous as it is the minimum of affine
functions of (λ, γ). Furthermore, as it is finite everywhere, we can deduce that g is
continuous over Ỹ .
As we have proved that the extremal values of the augmented primal and dual problems
are equal, we propose focusing on the augmented dual problem for which we provide a
convergent algorithm of resolution.
We prove the following theorems by adapting the proofs in [28] and in [8] dedicated to the
case of a sharp Lagrangian algorithm, so different from our proposed approach. The first
one gives a stopping criterion in the proposed algorithm for the augmented dual problem.

Theorem 4.9 (adapted from [28, Theorem 5]). Suppose that for some (λ̄, γ̄) ∈ Ỹ and
x̄ ∈ X,

min
x∈X

L(x, λ̄, γ̄) = f0(x̄) +
(
λ̄, f1(x̄)

)
l2(Ω̃,M2(R))

+
γ̄

2
‖f1(x̄)‖2

l2(Ω̃,M2(R))
. (3.12)

Then x̄ is a solution to (DP ) and (λ̄, γ̄) is a solution to (D) if and only if f1(x̄) = 0.

Proof. Necessity. If (3.12) is satisfied and x̄ is a solution to (DP ) then x̄ is feasible and
f1(x̄) = 0.

Sufficiency. We argue by contradiction. In that purpose, suppose that (3.12) holds
and f1(x̄) = 0 is satisfied but x̄ or (λ̄, γ̄) are not solutions. If x̄ is not a solution to (DP )
then there exists x̃ ∈ C such that f0(x̃) < f0(x̄). Hence :

f0(x̃) < f0(x̄) = f0(x̄) +
(
λ̄, f1(x̄)

)
l2(Ω̃,M2(R))

+
γ̄

2
‖f1(x̄)‖2

l2(Ω̃,M2(R))
= g(λ̄, γ̄),

= min
x∈X

L(x, λ̄, γ̄) ≤ max
(λ,γ)∈Ỹ

min
x∈X

L(x, λ, γ) = sup(D) = inf(DP ) ≤ f0(x̃),

which raises a contradiction. If x̄ is a solution to (DP ) but (λ̄, γ̄) is not a solution to
(D), then there exists (λ̃, γ̃) ∈ Ỹ such that g(λ̄, γ̄) ≤ g(λ̃, γ̃). As x̄ is a solution to (DP ),
we have f0(x̄) = inf(DP ) = sup(D) ≥ g(λ̃, γ̃) > g(λ̄, γ̄) = f0(x̄), which raises again a
contradiction.

We now consider the augmented dual problem and introduce

S(λ, γ) = arg min
x∈X

[
f0(x) + (λ, f1(x))l2(Ω̃,M2(R)) +

γ

2
‖f1(x)‖2

l2(Ω̃,M2(R))

]
.

The following result is a technical one which will serve in the next proofs.
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Theorem 4.10 (adapted from [28, Theorem 6]). For any (λ̄, γ̄) ∈ Ỹ , if x̄ ∈ S(λ̄, γ̄),

then (f1(x̄),
‖f1(x̄)‖2

l2(Ω̃,M2(R))

2

)
is a supergradient (the equivalent notion of subgradient for

concave functions) of g at (λ̄, γ̄).

Proof. We know from the proof of Theorem 4.8 that for any (λ̄, γ̄) ∈ Ỹ , S(λ̄, γ̄) is
nonempty. Let x̄ ∈ S(λ̄, γ̄). Then g(λ̄, γ̄) = f0(x̄)+

(
λ̄, f1(x̄)

)
l2(Ω̃,M2(R))

+ γ̄
2‖f1(x̄)‖2

l2(Ω̃,M2(R))
.

For any (λ, γ) ∈ Ỹ , we have:

g(λ̄, γ̄) +
(
f1(x̄), λ− λ̄

)
l2(Ω̃,M2(R))

+
‖f1(x̄)‖2

l2(Ω̃,M2(R))

2
(γ − γ̄)

= f0(x̄) + (λ, f1(x̄))l2(Ω̃,M2(R)) +
γ

2
‖f1(x̄)‖2

l2(Ω̃,M2(R))

≥ min
x∈X

{
f0(x) + (λ, f1(x))l2(Ω̃,M2(R)) +

γ

2
‖f1(x)‖2

l2(Ω̃,M2(R))

}
= g(λ, γ).

So

(
f1(x̄),

‖f1(x̄)‖2
l2(Ω̃,M2(R))

2

)
is a supergradient of g at (λ̄, γ̄).

Let us now introduce the proposed supergradient algorithm.

1: [Initialization Step] Choose a vector (λ1, γ1) with γ1 > 0, let k = 1, and go to the
main step.

2: [Main Step]

1. Given (λk, γk), solve the following subproblem:

Minimize f0(x) + (λk, f1(x))l2(Ω̃,M2(R)) +
γk
2
‖f1(x)‖2

l2(Ω̃,M2(R))
subject to x ∈ X.

Let xk be any solution (xk exists from Theorem 4.8). If f1(xk) = 0 then stop;
by Theorem 4.9, (λk, γk) is a solution to (D) and xk is a solution to (DP ).
Otherwise go to step 2.

2. Let λk+1 = λk + skf1(xk), γk+1 = γk + (sk+εk)
2 ‖f1(xk)‖2l2(Ω̃,M2(R))

, where sk and

εk are positive scalar stepsizes, replace k by k + 1 and repeat step 1.

Algorithm 2: Supergradient algorithm.

The following theorem demonstrates that the distance between the points generated by
Algorithm 2 and the solution to the dual problem (if it exists) decreases at each iteration.

Theorem 4.11 (adapted from [28, Theorem 8]). Assume there exists a dual solution
(λ̄, γ̄). Let (λ1, γ1) ∈ Ỹ . We define λk+1 = λk+skf1(xk) and γk+1 = γk+

sk+εk
2 ‖f1(xk)‖2l2(Ω̃,M2(R))

,

where xk is an exact solution of min
x∈X

f0(x) + (λk, f1(x))l2(Ω̃,M2(R)) + γk
2 ‖f1(x)‖2

l2(Ω̃,M2(R))
,

and sk, εk are positive scalar stepsizes. Let (λk, γk) be any iteration which is not a so-
lution to the dual problem, so f1(xk) 6= 0. Then, for any dual solution (λ̄, γ̄), we have
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‖(λ̄, γ̄)− (λk+1, γk+1)‖Ỹ < ‖(λ̄, γ̄)− (λk, γk)‖Ỹ for all stepsize sk such that:

0 < sk <
2
(
g(λ̄, γ̄)− g(λk, γk)

)
‖f1(xk)‖2l2(Ω̃,M2(R))

+ ‖f1(xk)‖4l2(Ω̃,M2(R))

,

and 0 < εk < sk.

Proof. We have:

‖(λ̄, γ̄)− (λk+1, γk+1)‖2
Ỹ

= ‖λ̄− λk+1‖2l2(Ω̃,M2(R))
+ |γ̄ − γk+1|2,

= ‖λ̄− λk − skf1(xk)‖2l2(Ω̃,M2(R))
+

∣∣∣∣γ̄ − γk − (sk + εk)

2
‖f1(xk)‖2l2(Ω̃,M2(R))

∣∣∣∣2 ,
= ‖λ̄− λk‖2l2(Ω̃,M2(R))

− 2sk
(
λ̄− λk, f1(xk)

)
l2(Ω̃,M2(R))

+ s2
k‖f1(xk)‖2l2(Ω̃,M2(R))

+ |γ̄ − γk|2 − (γ̄ − γk)(sk + εk)‖f1(xk)‖2l2(Ω̃,M2(R))
+

(sk + εk)
2

4
‖f1(xk)‖4l2(Ω̃,M2(R))

,

< ‖λ̄− λk‖2l2(Ω̃,M2(R))
− 2sk

(
λ̄− λk, f1(xk)

)
l2(Ω̃,M2(R))

+ s2
k‖f1(xk)‖2l2(Ω̃,M2(R))

+ |γ̄ − γk|2 − (γ̄ − γk)sk‖f1(xk)‖2l2(Ω̃,M2(R))
+

(2sk)
2

4
‖f1(xk)‖4l2(Ω̃,M2(R))

,

because ‖f1(xk)‖l2(Ω̃,M2(R)) > 0 and 0 < εk < sk. We use the supergradient inequality:

g(λ̄, γ̄)− g(λk, γk) ≤
(
λ̄− λk, f1(xk)

)
l2(Ω̃,M2(R))

+
γ̄ − γk

2
‖f1(xk)‖2l2(Ω̃,M2(R))

,

in what precedes and get:

‖λ̄− λk+1‖2l2(Ω̃,M2(R))
+ |γ̄ − γk+1|2 ≤ ‖λ̄− λk‖2l2(Ω̃,M2(R))

+ |γ̄ − γk|2 − 2sk(g(λ̄, γ̄)

− g(λk, γk)) + s2
k(‖f1(xk)‖2l2(Ω̃,M2(R))

+ ‖f1(xk)‖4l2(Ω̃,M2(R))
). (3.13)

Then for 0 < sk <
2(g(λ̄,γ̄)−g(λk,γk))

‖f1(xk)‖2
l2(Ω̃,M2(R))

+‖f1(xk)‖4
l2(Ω̃,M2(R))

and 0 < εk < sk, we clearly have

‖λ̄− λk+1‖2l2(Ω̃,M2(R))
+ |γ̄ − γk+1|2 < ‖λ̄− λk‖2l2(Ω̃,M2(R))

+ |γ̄ − γk|2.

The following theorem proves the convergence for a specific stepsize.

Theorem 4.12 (adapted from [28, Theorem 9]). Assume there exists a dual solution
(λ̄, γ̄). Let (λk, γk) be any iteration as defined in the previous theorem. Suppose that each

new iteration (λk+1, γk+1) is calculated for the stepwise sk = g(λ̄,γ̄)−g(λk,γk)
‖f1(xk)‖2

l2(Ω̃,M2(R))
+‖f1(xk)‖4

l2(Ω̃,M2(R))

and 0 < εk < sk, where ḡ = g(λ̄, γ̄) denotes the optimal dual value. Then g(λk, γk)→ ḡ.

Proof. By taking sk = ḡ−g(λk,γk)
‖f1(xk)‖2

l2(Ω̃,M2(R))
+‖f1(xk)‖4

l2(Ω̃,M2(R))

in the previous recurrence for-

mulae, we have

‖λ̄− λk+1‖2l2(Ω̃,M2(R))
+ |γ̄ − γk|2 < ‖λ̄− λk‖2l2(Ω̃,M2(R))

+ |γ̄ − γk|2

− (ḡ − g(λk, γk))
2

‖f1(xk)‖2l2(Ω̃,M2(R))
+ ‖f1(xk)‖4l2(Ω̃,M2(R))

,
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which can be rewritten as

(ḡ − g(λk, γk))
2 <

(
‖f1(xk)‖2l2(Ω̃,M2(R))

+ ‖f1(xk)‖4l2(Ω̃,M2(R))

)(
‖λ̄− λk‖2l2(Ω̃,M2(R))

+|γ̄ − γk|2 − ‖λ̄− λk+1‖2l2(Ω̃,M2(R))
− |γ̄ − γk+1|2

)
.

It is obvious that the sequence

{
‖λ̄ − λk‖2l2(Ω̃,M2(R))

+ |γ̄ − γk|2
}

is bounded below

(by 0 for example) and according to the previous theorem, it is decreasing. So,

{
‖λ̄ −

λk‖2l2(Ω̃,M2(R))
+ |γ̄ − γk|2

}
is a convergent sequence. Thus lim

k→+∞

[
‖λ̄ − λk‖2l2(Ω̃,M2(R))

+

|γ̄− γk|2−‖λ̄−λk+1‖2l2(Ω̃,M2(R))
− |γ̄− γk+1|2

]
= 0. Furthermore, we can deduce from the

previous result that (λk) is uniformly bounded.
On the other hand, (‖f1(xk)‖2l2(Ω̃,M2(R))

+ ‖f1(xk)‖4l2(Ω̃,M2(R))
) is bounded. Indeed, as xk

minimizes L(x, λk, γk), from the proof of Theorem 4.8 (coercivity inequality),

‖f1(xk)‖2l2(Ω̃,M2(R))
≤
(
L(xk, λk, γk) +

µ(λ+ 3µ)

2(λ+ 2µ)
NM + cε‖λk‖2l2(Ω̃,M2(R))

)
2

γ1 + 2ε
.

and L(xk, λk, γk) = min
x∈X

L(x, λk, γk) ≤ sup
(λ,γ)∈Ỹ

inf
x∈X

L(x, λ, γ) = sup(D) = inf(DP ) <

+∞. Finally, ‖f1(xk)‖2l2(Ω̃,M2(R))
is bounded and so is ‖f1(xk)‖4l2(Ω̃,M2(R))

. In conclusion

g(λk, γk) −−−−→
k→+∞

ḡ.

We can provide even more accurate results, namely convergence of the sequences of dual
values based on prior related works by Burachik et al. dedicated to modified subgradient
algorithm for dual problems via sharp augmented Lagrangian.

Lemma 4.11 (adapted from [8, Lemma 1]). Considering the notations and definitions of
Algorithm 2, the following statements are equivalent.

1.
+∞∑
k=1

sk‖f1(xk)‖l2(Ω̃,M2(R)) < +∞ and
+∞∑
k=1

sk+εk
2 ‖f1(xk)‖2l2(Ω̃,M2(R))

< +∞.

2. (λk, γk) is bounded.

Proof. From Algorithm 2, we have γm+1− γ1 =
m∑
k=1

sk+εk
2 ‖f1(xk)‖2l2(Ω̃,M2(R))

and ‖λm+1−

λ1‖l2(Ω̃,M2(R)) ≤
m∑
k=1

sk ‖f1(xk)‖l2(Ω̃,M2(R)). Then it is obvious that the two assertions are

equivalent.

Theorem 4.13 (adapted from [8, Theorem 6]). Let ḡ be the optimal dual value (i.e.
ḡ = sup(D)). Assume that (λk, γk) defined in Theorem 4.11 is bounded and that the
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step size sk satisfies sk ≥ η ḡ−g(λk,γk)
‖f1(xk)‖2

l2(Ω̃,M2(R))
+‖f1(xk)‖4

l2(Ω̃,M2(R))

for a fixed η > 0. Then

every accumulation point of (λk, γk) is a dual solution. In particular, S(D) 6= ∅ with

S(D) =

{
(λ, γ) ∈ Ỹ , g(λ, γ) = sup

(λ̃,γ̃)∈Ỹ
g(λ̃, γ̃)

}
.

Proof. According to the previous result, as (λk, γk) is bounded,
+∞∑
k=1

sk‖f1(xk)‖l2(Ω̃,M2(R)) <

+∞ and
+∞∑
k=1

sk+εk
2 ‖f1(xk)‖2l2(Ω̃,M2(R))

< +∞. Let (λ̄, γ̄) be an accumulation point of the se-

quence (λk, γk) and let us denote byK the infinite set of indices such that lim
k ∈ K
k → +∞

(λk, γk)

= (λ̄, γ̄). According to the proof of Theorem 4.8, and (λk, γk) being bounded, the sequence
(xk) generated by the algorithm is bounded. We can assume that the whole sequence
(xk)k∈K converges to some x̄ otherwise we can extract a common subsequence. Let us first
assume that f1(x̄) = 0. By definition of xk, we have that f0(xk) + (λk, f1(xk))l2(Ω̃,M2(R)) +
γk
2 ‖f1(xk)‖2l2(Ω̃,M2(R))

≤ f0(x) + (λk, f1(x))l2(Ω̃,M2(R)) + γk
2 ‖f1(x)‖2

l2(Ω̃,M2(R))
for all x ∈ X

and for all k ∈ K. Passing to the limit for k ∈ K, k → +∞ in the previous expression
yields f0(x̄) + (λ̄, f1(x̄))l2(Ω̃,M2(R)) + γ̄

2‖f1(x̄)‖2
l2(Ω̃,M2(R))

≤ f0(x) + (λ̄, f1(x))l2(Ω̃,M2(R)) +
γ̄
2‖f1(x)‖2

l2(Ω̃,M2(R))
for all x ∈ X. Hence x̄ ∈ S(λ̄, γ̄) and thus (λ̄, γ̄) ∈ S(D) accord-

ing to Theorem 4.9. Now, let us assume that f1(x̄) 6= 0. This fact together with
+∞∑
k=1

sk‖f1(xk)‖l2(Ω̃,M2(R)) < +∞ implies that the sequence (sk)k∈K converges to 0. Using

also sk ≥ η ḡ−g(λk,γk)
‖f1(xk)‖2

l2(Ω̃,M2(R))
+‖f1(xk)‖4

l2(Ω̃,M2(R))

for k ∈ K, we conclude that the subsequence

of dual values (g(λk, γk))k∈K converges to ḡ. By upper semi-continuity of g, we have that
g(λ̄, γ̄) ≥ lim sup

k ∈ K
k → +∞

g(λk, γk) = ḡ. This shows that g(λ̄, γ̄) has optimal functional value

ḡ and hence (λ̄, γ̄) ∈ S(D).

We are now providing a pseudo-code for the algorithm whose legimity has been proved
through the previous theorems.

4.5 Actual Augmented Lagrangian algorithm

In this section, we present the algorithm used to solve the discrete augmented Lagragian
problem. It consists of an initialization step and a main step. The latter is divided into
two parts: the segmentation step guiding the registration process and the registration
step. It is done thanks to an alternating scheme solving successively the Euler-Lagrange
equations in ϕ̃ and Ṽ .
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1: [Initialization step]: same as the one for the quadratic penalty method except that
we initialize here (λ0, γ0) ∈ Ỹ and do not select γ large enough.

2: [Main step]:

(i) Compute Φ̃ as in the quadratic penalty algorithm.

(ii) For k = 1, 2, · · · , ζ, compute (ϕ̃k, Ṽ k, λk, γk) the saddle point of the augmented
Lagrangian function with Φ̃(., T̄ ) = Φ̃(., tk), tζ = T̄ , Φ̃(., tζ) representing the
object contained inside the Reference and Φ0,k = Φ0 ◦ ϕ̃1 ◦ · · · ◦ ϕ̃k−1, using a
supergradient algorithm.

(a) Solve the Euler-Lagrange equation in ϕ̃i,j for each (i, j) ∈ {2, . . . , N −1}×
{2, . . . ,M−1}: νδε(Φ0,k◦ϕ̃i,j)

(
Hε(Φ0,k ◦ ϕ̃i,j)−Hε(Φ̃(., tk))

)
∇Φ0,k (ϕ̃i,j)

+γ

(
divṼ1i,j

divṼ2i,j

)
− γl∆ϕ̃i,j +

(
divλl1
divλl2

)
= 0. To do so, we use an implicit

Euler time stepping and an L2 gradient flow algorithm.

(b) Solve the system of Euler-Lagrange equations in Ṽi,j
for each (i, j) ∈ {2, . . . , N − 1}× {2, . . . ,M − 1}:

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ11i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
+ µṼ22i,j (det Ṽi,j − 2) + γl(Ṽ11i,j − ∂xϕ̃1

i,j) + λl11

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ12i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
− µṼ21i,j (det Ṽi,j − 2) + γl(Ṽ12i,j − ∂yϕ̃1

i,j) + λl12

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ21i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
− µṼ12i,j (det Ṽi,j − 2) + γl(Ṽ21i,j − ∂xϕ̃2

i,j) + λl21

0 = 2β
(
‖Ṽi,j‖2 − α

)
Ṽ22i,j

(
2Hε(‖Ṽi,j‖2 − α) + (‖Ṽi,j‖2 − α)

δε(‖Ṽi,j‖2 − α)

)
+ µṼ11i,j (det Ṽi,j − 2) + γl(Ṽ22i,j − ∂yϕ̃2

i,j) + λl22

To do so, we use an L2 gradient flow algorithm and a semi-implicit Euler
time stepping scheme.
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(c) Control of the Jacobian determinant, see Algorithm 4. Go back to (a) until
convergence and set xl = (ϕ̃l, Ṽ l) after convergence.

(d) if: ‖f1(xl)‖2l2(Ω̃,M2(R))
≤ threshold then: stop and set

(ϕ̃k, Ṽ k, λk, γk) = (ϕ̃l, Ṽ l, λl, γl).
else: go on to the next step.

(e) Update λl = λl + slf1(xl) and γl = γl + sl+εl
2 ‖f1(xl)‖2l2(Ω̃,M2(R))

, with

sl = ḡ−g(λl,γl)
‖f1(xl)‖2l2(Ω̃,M2(R))

+‖f1(xl)‖4l2(Ω̃,M2(R))

and εl = 0.95sl. ḡ is approximated by

assessing functional in (DP ) with ϕ̃ = Id and Ṽ = (I2)N×M since
sup(D) = inf(DP ).

(f) Go back to (a).

Algorithm 3: A topology preserving segmentation guided registration model- Aug-
mented Lagrangian Method.

We now provide some numerical experiments.

5 Numerical Experiments

We first make the parameters we use in practice more explicit. Function Hε is taken to be
Hε : z 7→ 1

2

(
1 + 2

π arctan
(
z
ε

))
(ε = 1 in practice) and g̃ : z 7→ 1

1+cz2 . For the sake of
reproducibility, we provide the values of the tuning parameters in the discretization of the
evolution equation. The time step is set to 0.5, parameter c of the edge detector function
is between 1 and 5, parameter k is between −0.15 and 0.2, —negative value for inflating
and positive value for deflating —, l is set to 1, µ′ to 0.2, d to 4.0 and the size of the
window to compute the topological constraint is 5× 5.
As for the functional minimization problem, both methods - straight quadratic penali-
zation and augmented Lagrangian method - have been investigated and produce similar
results. In the proposed supergradient algorithm (augmented Lagrangian method), γ1 is
set to 80000, while in the purely quadratic penalty method, parameter γ is set to this same
value and is not increased in practice during the algorithm. As we searched for a suitable
trade-off between quality of the obtained results and readability/smaller computational
cost, which, we believe, is what prevails in the numerical simulation setting, we did not
investigate further, in the numerical simulations, the augmented Lagrangian method. The
results presented below are the ones obtained by the purely quadratic penalty method.

5.1 Regridding technique and choice of the parameters

The deformation must remain physically and mechanically meaningful, and reflect mate-
rial properties: self-penetration of the matter (indicating that the transformation is not
injective) should be prohibited. The penalty term (det∇ϕ− 1)2 does not guarantee that
the Jacobian determinant remains positive. That is the reason why we have implemented
the regridding algorithm proposed by Christensen and his collaborators in [11] to ensure
the positivity of the Jacobian. For the sake of completeness, we summarize the outlines
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of the regridding algorithm.

1. If at stage k ∈ {1, · · · , ζ} and at discrete time tq+1 in the L2 gradient flow method,

min
i,j

det∇ϕ̃q+1
i,j < tol :

• regrid count=regrid count+1

• Φ0,k = Φ0,k ◦ ϕ̃qi,j
• save tab ϕ(regrid count) = ϕ̃q, ϕ̃q+1 = Id, Ṽ q+1 = I

• continue loop in q

2. At the end of stage k, if regrid count>0
ϕ̃k = tab ϕ(1) ◦ · · · ◦ tab ϕ(regrid count)

Algorithm 4: Regridding step.

For each pair, we provide the Reference image together with the zero level line of Φ̃ at
time T̄ , the Template image, the intermediate segmentation steps that serve as inputs —if
any —, the obtained deformed Template, that is to say T ◦ ϕ, the deformed grid associ-
ated with ϕ (Reference to Template, straightforwardly given by ϕ) and the deformed grid
associated with ϕ−1 (Template to Reference, computed using interpolation techniques).
For all applications, the ranges of the parameters are the same. Parameter ν balancing
the L2-fidelity term is around 100000, while the Lamé coefficient λ is set to 10. The Lamé
coefficient µ is between 1500 and 8000. It is the shear modulus, that is to say that µ
measures the resistance of the material.
From our experience, the parameter that proves to be the most sensitive is the Lamé
parameter µ. It can be seen as a measure of rigidity. The greater parameter µ is, the
more rigid the deformation is (which can be relevant if we aim to obtain a smooth and
topology-preserving deformation map). The issue is thus to find a proper trade-off between
accurate image alignment (which means authorizing large deformations) and topology or
orientation preservation (which means monitoring the Jacobian determinant by limiting
shrinkage and growth).

5.2 Letter C

First, the method is applied on an academic example (Figure 3.2) taken from [12] for
mapping a disk to the letter C, demonstrating the ability of the algorithm to handle large
deformations. Note that with linear elasticity model, diffusion model or curvature-based
model, registration cannot be successfully accomplished (see [42]). As in [12], the right part
of the disk is stretched into the shape of the interior edge of the letter C, and then moves
outward to align the interior boundary of the letter C. Nevertheless, our deformation field
is smoother (see in particular [12, p. 88]). In [9], the authors also apply their method on a
similar example. We can notice that the deformed Template cannot reach the end of the
hollow of the C, while our method handles very well deep concavities. At last, compared
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5. Numerical Experiments

(a) Template (b) Reference together
with the zero level line
of Φ̃ at time T̄

(c) Deformed Tem-
plate T ◦ ϕ with the
zero level line of Φ0◦ϕ

(d) Deformed
grid: Template to
Reference

(e) Deformed
grid: Reference to
Template

Figure 3.2: Mapping of a disk to letter C. min det∇ϕ = 4.7 10−4,max det∇ϕ = 4.04.
λ = 10, µ = 8000, ν = 150000.

to [38], the algorithm requires fewer regridding corrections (3 versus 4 in [38]) and the
range of the Jacobian determinant is smaller.

5.3 Mouse brain gene expression data

Then the method was applied on medical images (Figure 3.3) with the goal to map a 2D
slice of mouse brain gene expression data (Template T) to its corresponding 2D slice of the
mouse brain atlas, in order to facilitate the integration of anatomic, genetic and physiologic
observations from multiple subjects in a common space. Since genetic mutations and
knock-out strains of mice provide critical models for a variety of human diseases, such
linkage between genetic information and anatomical structure is important. The data
are provided by the Center for Computational Biology, UCLA. The mouse atlas acquired
from the LONI database was pre-segmented. The gene expression data were segmented
manually to facilitate data processing in other applications. Some algorithms have been
developed to automatically segment the brain area of gene expression data. The non-
brain regions have been removed to produce better matching. Our method qualitatively
performs as the one in [39] and produces a smooth deformation field. Compared to the
results obtained in [38], [39] or [21], the deformation grid is more regular and does not
exhibit shrinkage or growth. For instance, for Figure 3.3, the Jacobian determinants mass
more around the value 1 (range [0.54,2.24]) versus [0.28,2.09] in [38], [0.15,2.40] in [39] or
[0.09,2.47] in [21].
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(a) Template (b) Reference together
with the zero level line
of Φ̃ at time T̄

(c) Input: intermediate segmentation results; left: zero
level line of Φ0 = Φ̃(·, 0); middle: zero level line of Φ̃(·, t1);
right: zero level line of Φ̃(·, t2 = T̄ ).

(d) Deformed Template
T ◦ϕ with the zero level
line of Φ0 ◦ ϕ

(e) Deformed grid:
Template to Reference

(f) Deformed grid: Re-
ference to Template

Figure 3.3: Mapping of a 2D slice of mouse brain gene expression data to its
counterpart in an atlas. min det∇ϕ = 0.54,max det∇ϕ = 2.24. λ = 10, µ = 5000,
ν = 100000.
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(a) Template (b) Reference together
with the zero level line
of Φ̃ at time T̄

(c) Input: intermediate segmentation results; from left
to right: zero level line of Φ0 = Φ̃(·, 0), Φ̃(·, t1), Φ̃(·, t2),
Φ̃(·, t3) and Φ̃(·, t4 = T̄ ).

(d) Deformed Template
T ◦ϕ with the zero level
line of Φ0 ◦ ϕ

(e) Deformed grid:
Template to Reference

(f) Deformed grid: Re-
ference to Template

(g) Obtained deformed
Template when no
intermediate segmenta-
tion step is included,
same parameters

Figure 3.4: Mapping of a disk to a slice of a brain. min det∇ϕ = 0.079,max det∇ϕ =
3.07. λ = 10, µ = 5000, ν = 120000.

5.4 Slices of the brain

The method has also been applied to complex slices of brain data (Figure 3.4) (courtesy
of Laboratory Of Neuro-Imaging, UCLA). We aim to register a disk to the slice of brain
with topology preservation to demonstrate the ability of the algorithm to handle complex
topologies. The results are very satisfactory on these examples since the deformed Tem-
plate matches very well the convolutions of the brain. Remark that including intermediate
segmentation steps improves the accuracy of the result. At last, the additional topology
constraint in the active contour model allows for the delineation of the thin concavities on
the Reference image.

5.5 MRI images of cardiac cycle

Numerical simulations on MRI images of a patient cardiac cycle have been carried out
(Figs. 3.5,3.6). We were supplied with a whole cardiac MRI examination of a patient
(courtesy of the LITIS, University of Rouen, France). It is made of 280 images divided
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(a) Template (b) Reference to-
gether with the
zero level line of
Φ̃ at time T̄

(c) Deformed
Template T ◦ ϕ
with the zero
level line of
Φ0 ◦ ϕ

(d) Deformed
grid: Template
to Reference

(e) Deformed
grid: Reference
to Template

Figure 3.5: Mapping of MRI images. Reference corresponding to end diastole
(ED) and Template corresponding to end systole (ES) of a same sequence.
min det∇ϕ = 0.05,max det∇ϕ = 2.8. λ = 10, µ = 1500, ν = 100000.

into 14 levels of slice and 20 images per cardiac cycle. The numbering of the images goes
from 0 to 279, and includes both the slice number and the time index. The image 0 is
set at the upper part of the heart and the sequence from image 0 to image 19 contains
the whole cardiac cycle for this slice. The sequence from images 20 to 39 contains the
whole cardiac cycle for the slice underneath the previous one and so on. A cardiac cycle
is composed of a contraction phase (40% of the cycle duration), followed by a dilation
phase (60% of the cycle duration). The first image of the sequence (frames 0, 20, 40, etc.)
is when the heart is most dilated (end diastole - ED) and the 8th of the sequence (end
systole - ES) is when the heart is most contracted. It thus seemed relevant, in order to
assess the accuracy of the proposed algorithm in handling large deformations, to register
a pair of the type: Reference corresponding to end diastole (ED), that is the first image of
a sequence, and Template corresponding to end systole (ES), that is the 8th frame of the
same sequence. One interest of the proposed algorithm (due to the intrinsic modelling) is
that we can focus on the desired target, here the heart, without taking into account the
surrounding region. At last, to assess the inverse consistency, we switched the role of the
Template and the Reference.

5.6 Tumor

Finally, the algorithm has been tested on brain tumor images (Figure 3.7) taken at different
times in order to highlight the ability of the model to handle complex topologies with thin
tubes and concavities.

6 Conclusion

This work intended to intertwine segmentation and registration in a single framework
including geometrical and topological considerations, and motivated by the fact that shape
matching contributes to increase the reliability of the registration process. To overcome the
usual limitation of registration models, namely the inability to generate large deformations,

104



6. Conclusion

(a) Template (b) Reference to-
gether with the
zero level line of
Φ̃ at time T̄

(c) Deformed
Template T ◦ ϕ
with the zero
level line of
Φ0 ◦ ϕ

(d) Deformed
grid: Template
to Reference

(e) Deformed
grid: Reference
to Template

Figure 3.6: Mapping of MRI images. Reference corresponding to end systole
(ES) and Template corresponding to end diastole (ED) of a same sequence.
min det∇ϕ = 0.016,max det∇ϕ = 2.83. λ = 10, µ = 1500, ν = 100000.

the nonlinear-elasticity-based framework has been adopted by viewing the shapes to be
matched as Saint Venant-Kirchhoff materials. New perspectives have been enlarged, in
particular, the explicit introduction of the dynamics in the modelling (instead of a sampled-
in-time problem) yielding to a minimization problem defined on a Sobolev space of Banach-
space-valued functions, as well as a joint model with mutual influence of segmentation
and registration (instead of a segmentation-guided registration problem) that inherits fine
theoretical properties in the context of the viscosity solution theory.
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(a) Template (b) Reference to-
gether with the zero
level line of Φ̃ at
time T̄

(c) Input: intermediate segmentation results; from left
to right: zero level line of Φ0 = Φ̃(·, 0), Φ̃(·, t1), Φ̃(·, t2)
and Φ̃(·, t3 = T̄ ).

(d) Deformed Tem-
plate T ◦ ϕ with the
zero level line of Φ0 ◦
ϕ

(e) Deformed grid:
Template to Refe-
rence

(f) Deformed grid:
Reference to Tem-
plate

Figure 3.7: Mapping of brain tumor images. min det∇ϕ = 0.09,max det∇ϕ = 4.2.
λ = 10, µ = 5000, ν = 150000.
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Elliptic Partial Differential Equations, Universitext, Springer London, 2012.

[21] R. Derfoul and C. Le Guyader, A relaxed problem of registration based on the
Saint Venant-Kirchhoff material stored energy for the mapping of mouse brain gene
expression data to a neuroanatomical mouse atlas, SIAM Journal on Imaging Sciences,
7 (2014), pp. 2175–2195.

[22] M. Droske, W. Ring, and M. Rumpf, Mumford–Shah based registration: a com-
parison of a level set and a phase field approach, Computing and Visualization in
Science, 12 (2008), pp. 101–114.

[23] M. Droske and M. Rumpf, A Variational Approach to Non-Rigid Morphological
Registration, SIAM J. Appl. Math., 64 (2004), pp. 668–687.

108



BIBLIOGRAPHY

[24] M. Droske and M. Rumpf, Multiscale Joint Segmentation and Registration of
Image Morphology, Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 29 (2007), pp. 2181–2194.

[25] B. Fischer and J. Modersitzki, Fast diffusion registration, AMS Contemporary
Mathematics, Inverse Problems, Image Analysis, and Medical Imaging, 313 (2002),
pp. 11–129.

[26] B. Fischer and J. Modersitzki, Curvature based image registration, J. Math.
Imaging Vis., 18 (2003), pp. 81–85.

[27] N. Forcadel and C. Le Guyader, A short time existence/uniqueness result for
a nonlocal topology-preserving segmentation model, Journal of Differential Equations,
253 (2012), pp. 977–995.

[28] R. N. Gasimov, Augmented Lagrangian duality and nondifferentiable optimization
methods in nonconvex programming, Journal of Global Optimization, 24 (2002),
pp. 187–203, http://dx.doi.org/10.1023/A:1020261001771.

[29] A. Gooya, K. Pohl, M. Bilello, L. Cirillo, G. Biros, E. Melhem, and
C. Davatzikos, GLISTR: Glioma Image Segmentation and Registration, Medical
Imaging, IEEE Transactions on, 31 (2012), pp. 1941–1954.

[30] S. Gorthi, V. Duay, X. Bresson, M. B. Cuadra, F. J. S. Castro, C. Pollo,
A. S. Allal, and J.-P. Thiran, Active deformation fields: Dense deformation field
estimation for atlas-based segmentation using the active contour framework, Medical
Image Analysis, 15 (2011), pp. 787–800.

[31] E. Haber, S. Heldmann, and J. Modersitzki, A computational framework for
image-based constrained registration, Linear Algebra and its Applications, 431 (2009),
pp. 459–470. Special Issue in honor of Henk van der Vorst.

[32] E. Haber and J. Modersitzki, Numerical methods for volume preserving image
registration, Inverse Probl., 20 (2004), pp. 1621–1638.

[33] E. Haber and J. Modersitzki, Image registration method with guaranteed dis-
placement regularity, Int. J. Comput. Vision, 71 (2007), pp. 361–372.

[34] H. Hardy, G., E. Littlewood, J., and G. Pólya, Inequalities, University Press
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[48] S. Ozeré and C. Le Guyader, Scale Space and Variational Methods in Computer
Vision: 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31
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Chapter 4

A nonlocal joint
segmentation/registration model

Segmentation and registration are cornerstone steps of many imaging situations: while
segmentation aims to identify relevant constituents of an image for visualization or quan-
titative analysis, registration consists of mapping salient features of an image onto the
corresponding ones in another. Instead of treating these tasks linearly one after another,
so without correlating them, we propose a unified variational model, in a hyperelasticity
setting, processing these two operations simultaneously. The dissimilarity measure relates
local and global (or region-based) information, since relying on weighted total variation
and nonlocal shape descriptors inspired by the piecewise constant Mumford-Shah model.
Theoretical results emphasizing the mathematical and practical soundness of the model are
provided, among which existence of minimizers, connection with the segmentation step,
nonlocal characterization of weighted semi-norms, asymptotic results and Γ-convergence
properties.

1 Introduction

Segmentation and registration are preprocessing steps that prove to be fundamental re-
quirements in many image processing chains: images need to be registered to one another,
which means determining an optimal diffeomorphic transformation (or deformation) ϕ that
aligns the structures visible in an image into the corresponding ones in the other, then
segmented, that is, partitioned into meaningful constituents in order to identify structures
such as homogeneous regions or edges, yielding an accurate quantitative and joint analysis
of them. Each step encompasses a large variety of methodologies (see [7, Chapter 4] for
instance or [60, Part II], for a relevant analysis of the segmentation problem, and [45], [46],
[57] for the registration counterpart) and one might think as a first attempt to address
these issues to proceed linearly, one stage after another, without correlating both tasks,
which in practice may propagate errors from step to step. Yet, as structure/salient com-
ponent/shape/geometrical feature matching and intensity distribution comparison rule
registration, combining the segmentation and registration tasks into a single framework
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sounds relevant. First, the registration operation can be seen as the incorporation of prior
information to guide the segmentation process. This allows to overcome the difficulty of
weak boundary definition resulting from the amalgamation of several factors such as noise
sources in the acquisition device, degradation of the image content during the reconstruc-
tion process, or artifacts ([4, Subsection 2.3]). Second, accurate segmented structures allow
to drive the registration process correctly, providing then a reliable deformation between
the encoded structures, not only based on intensity distribution comparison but also on
geometrical and topological features. The primary scope of this chapter is thus to define
a suitable joint segmentation/registration model addressed with variational techniques. A
difficulty relies in the complexity of the formulation that is generally underconstrained
and that involves nonlinearity and non-convexity. If we focus on the registration problem
alone for instance, the deformation we aim to reconstruct is usually viewed as a minimal
argument (uniqueness defaults in general) of a specifically designed cost function that
takes on a versatile appearance according to the desired application and to the nature of
the observations ([57]). When the images have been acquired by different modalities, the
quality of registration is no longer measured by intensity distribution alignment, but by
the assessment of shape, salient component and geometric feature matching, while pre-
serving the modality of each image of the pair. Also, several stances can be adopted to
describe the setting in which the objects to be matched are interpreted and viewed (phys-
ical models —[11], [17], [18], [21], [26], [30], [32], [35], [42], [49], [54] —, purely geometric
ones —[5], [28], [55], [63] —, models including a priori knowledge ([24]), depending on the
assumption regarding the properties of the deformation to be recovered) and to devise the
measure of alignement (that is, how the available data are exploited to drive the registra-
tion process), increasing thus the complexity of the problem. In order to make our model
flexible, capable of handling large deformations and reliable in terms of matching quality
of the structures encoded in the pair of images, we propose, within the hyperelastic frame-
work, meeting these goals by devising an original dissimilarity measure. It is grounded in
weighted total variation (ensuring edge mapping) and in a region-based criterion (inspired
by the piecewise constant Mumford-Shah model [47]), so combining local and nonlocal
structure comparison. More precisely, the novelty of this work rests upon: (i) an origi-
nal modelling involving the stored energy function of a Saint Venant-Kirchhoff material,
weighted total variation and a region-based criterion; (ii) the introduction of a relaxed pro-
blem for which theoretical results are provided; (iii) the derivation of a numerical method
of resolution based on the approximation of the weighted total variation by a sequence of
integral operators involving a differential quotient, a suitable sequence of radial mollifiers
and on a splitting approach leading to Γ-convergence results. This work falls within the
continuation of [49] but includes novel aspects both in the modelling (with the integration
of a region-based criterion entailing substantial modifications in the mathematical proofs)
and more importantly (this is the core of this chapter), in the design of the algorithm
(introduction of a nonlocal operator). This latter part required non straightforward ex-
tensions of prior related results by Bourgain et al. [14], Dávila [27], Ponce [52], and Spector
[58] dedicated to new characterizations of semi-norms on Sobolev spaces W 1,p(Ω) or on
the space of functions of bounded variation BV (Ω) to weighted such semi-norms, which
takes on various connotations, from theoretical considerations to computational aspects.
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The loss of symmetry implies in particular, a substantial mathematical development in
the proofs. In addition to its theoretical justification, this modelling yields more accurate
segmentation and registration results in comparison to [49] (exemplified in Table 4.1 and
Figure 4.2 for instance, empirically/visually, and by computing comparison criteria such
as the Dice coefficient ([31]) to assess segmentation and registration accuracy), and also a
decomposition of the Reference into a simplified version and an oscillatory part (so achiev-
ing decomposition of the Reference image in addition to registration and segmentation in
a single framework). Nonlocality thus appears at two levels: in the region-based fidelity
term and in the treatment of the weighted total variation. Before depicting in depth our
model, we would like to point out that prior related works suggest to jointly perform
segmentation and registration: [62], [59] (in a level set framework), [42] (registration is
achieved using the transfer of edges based on the active contour model without edges),
[44] (model based on metric structure comparison), [37] (based on Expectation Maximiza-
tion algorithm that incorporates a glioma growth model for atlas seeding), [3], [38] (active
contour framework combined with dense deformation fields of optical flow), [33] (edges
and the normals of the two images are matched by applying a Mumford-Shah type free
discontinuity problem), or [49] (based on weighted total variation). More recently, in [29],
a nonlocal topology-preserving segmentation guided registration model is introduced. The
shapes to be matched are viewed as hyperelastic materials and are implicitly modelled by
level set functions. These are driven in order to minimize a functional containing both
a nonlinear-elasticity-based regularizer prescribing the nature of the deformation, and a
criterion that forces the evolving shape to match intermediate topology-preserving seg-
mentation results. In [12], a joint segmentation/optimal transport model is analyzed to
determine the velocity of blood flow in vascular structures. A convex variational method is
used and primal-dual proximal splitting algorithms are implemented. At last, in [61], the
author wonders about the behavior of phase field approximations of the Mumford-Shah
model when used for joint segmentation and registration.
We now turn to the analysis of the proposed model.
For additional mathematical material, we refer the reader to Chapter 2, Sections 1.1, 1.2,
1.4, 3.2, 3.3, and 4.

2 Mathematical modelling

2.1 Depiction of the model

Let Ω be a connected bounded open subset of R2 of class C1. Let us denote by R : Ω̄→ R
the Reference image assumed to be sufficiently smooth (convenient way of saying that in
a given definition, the smoothness of the involved variables or data is such that all argu-
ments make sense) and by T : Ω̄→ R the Template image. For theoretical and numerical
purposes, we assume that T is compactly supported on Ω to ensure that T ◦ ϕ is always
defined and we assume that T is Lipschitz continuous. It can thus be considered as an
element of the Sobolev space W 1,∞(R2). Let ϕ : Ω̄ → R2 be the sought deformation. Of
course, in practice, the sought transformation ϕ should be with values in Ω̄ but from a
mathematical point of view, if we work with such spaces of functions, we lose the structure
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of vector space. A deformation is a smooth mapping that is orientation-preserving and
injective, except possibly on ∂Ω. The deformation gradient is ∇ϕ : Ω̄ → M2(R), the set
M2(R) being the set of real square matrices of order 2. The sought deformation ϕ is seen as
the optimal solution of a specifically designed cost function comprising a regularization on
ϕ prescribing the nature of the deformation, and a term measuring alignment or how the
available data are exploited to drive the registration process. To allow large deformations,
the shapes to be matched are viewed as hyperelastic materials, and more precisely as Saint
Venant-Kirchhoff ones ([23, 22]). This outlook dictates the design of the regularization on
ϕ which is thus based on the stored energy function of a Saint Venant-Kirchhoff material.

We recall that the right Cauchy-Green strain tensor (interpreted as a quantifier of the
square of local change in distances due to deformation) is defined by C = ∇ϕT∇ϕ = F TF .
The Green-Saint Venant strain tensor is defined by E = 1

2 (C − I). Associated with a
given deformation ϕ, it is a measure of the deviation between ϕ and a rigid deformation.
We also need the following notations: A : B = trATB, the matrix inner product and
||A|| =

√
A : A, the related matrix norm (Frobenius norm). The stored energy function of

a Saint Venant-Kirchhoff material is defined by WSV K(F ) = Ŵ (E) = λ
2 (trE)2 + µ trE2,

λ and µ being the Lamé coefficients. To ensure that the distribution of the deforma-
tion Jacobian determinants does not exhibit contractions or expansions that are too large
and to avoid singularity as much as possible, we complement the stored energy function
WSV K by the term µ (detF − 1)2 controlling that the Jacobian determinant remains close
to 1. The weighting of the determinant component by parameter µ allows to recover a
property of convexity for the function Ψ introduced later. (Note that the stored energy
function WSV K alone lacks a term penalizing the determinant: it does not preclude de-
formations with negative Jacobian. The expression of its quasiconvex envelope is more
complex since involving explicitly the singular values of F . Also, when they are all lower
than 1, the quasiconvex envelope equals 0, which shows bad behavior under compres-
sion). Therefore, the regularization can be written, after intermediate computations, as

W (F ) = β(‖F‖2−α)2−µ
2 (detF )2+µ(detF−1)2+ µ(λ+µ)

2(λ+2µ) , where α = 2 λ+µ
λ+2µ and β = λ+2µ

8 .

Although meaningful, function W takes on a drawback since it is not quasiconvex (see [25,
Chapter 9] for a complete review of this notion), which raises an issue of a theoretical na-
ture since we cannot obtain the weak lower semi-continuity property. The idea is thus to re-

placeW by its quasiconvex envelope defined byQW (ξ) =


W (ξ) if ||ξ||2 ≥ 2

λ+ µ

λ+ 2µ
,

Ψ(det ξ) if ||ξ||2 < 2
λ+ µ

λ+ 2µ
,

and Ψ, the convex mapping such that Ψ : t 7→ −µ
2
t2 + µ (t− 1)2 +

µ(λ+ µ)

2(λ+ 2µ)
(see [49]

for the derivation), for which the minimal argument is t = 2. This regularizer has been
investigated in prior related works by Derfoul and Le Guyader ([30]) and Ozeré, Gout and
Le Guyader ([49]). Nevertheless, it does not constitute the core of the present work, the
emphasis being put on the nonlocal rephrasing of the model and on its numerical analysis.

The regularizer is now complemented by a dissimilarity measure inspired by the uni-
fied model of image segmentation (geodesic active contours [19] and piecewise-constant
Mumford-Shah model (PCMSM) [47]) and image denoising (Rudin-Osher-Fatemi model
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[53]) into a global minimization framework introduced by Bresson et al. ([15]), designed
to overcome the limitation of local minima and to deal with global minimum. In that
purpose, let g : R+ → R+ be an edge detector function satisfying g(0) = 1, g strictly
decreasing and lim

r→+∞
g(r) = 0. From now on, we set g := g(|∇R|) and for theoretical

purposes, we assume that ∃c > 0 such that 0 < c ≤ g ≤ 1 and that g is Lipschitz con-
tinuous. We then use the generalization of the notion of function of bounded variation
to the setting of BV -spaces associated with a Muckenhoupt’s weight function depicted in
[10]. We follow Baldi’s arguments and notations to define the weighted BV -space related
to weight g.

For a general weight w, some hypotheses are required (fulfilled here by g). More pre-
cisely, Ω0 being a neighborhood of Ω̄, the positive weight w ∈ L1

loc(Ω0) is assumed to
belong to the global Muckenhoupt’s A1 = A1(Ω) class of weight functions, i.e., w satisfies
the condition:

C w(x) ≥ 1

|B(x, r)|

∫
B(x,r)

w(y) dy a.e. (4.1)

in any ball B(x, r) ⊂ Ω0. Now, denoting by A∗1 the class of weights w ∈ A1, w lower semi-
continuous (lsc) and that satisfy condition (4.1) pointwise, the definition of the weighted
BV -space related to weight w is given by:

Definition 2.1 ([10, Definition 2]). Let w be a weight function in the class A∗1. We denote
by BV (Ω, w) the set of functions u ∈ L1(Ω, w) (set of functions that are integrable with
respect to the measure w(x) dx) such that:

sup

{∫
Ω
u div(ϕ) dx : |ϕ| ≤ w everywhere, ϕ ∈ Lip0(Ω,R2)

}
<∞, (4.2)

with Lip0(Ω,R2) the space of Lipschitz continuous functions with compact support. We
denote by varw u the quantity (4.2).

Remark 2.2. In [10], Baldi defines the BV -space taking as test functions elements of
Lip0(Ω,R2). Classically in the literature, the test functions are chosen in C1

c (Ω,R2). It can
be proved that these two definitions coincide thanks to mollifications and density results.

Proof. Firstly, we clearly have that sup

{∫
Ω
udivϕdx : |ϕ| ≤ 1 everywhere, ϕ ∈ C1

c (Ω,R2)

}
≤ sup

{∫
Ω udivϕdx : |ϕ| ≤ 1 everywhere, ϕ ∈ Lip0(Ω,R2)

}
since C1

c (Ω,R2) ⊂ Lip0(Ω,R2).

Then we prove the second inequality. We assume that sup

{∫
Ω
udivϕdx : |ϕ| ≤ 1 everywhere,

ϕ ∈ C1
c (Ω,R2)

}
< ∞, otherwise it is done. To do so, we start off with showing that

∀u ∈ BV (Ω) = BV (Ω,R), ∀f ∈ Lip0(Ω) = Lip0(Ω,R),
∫

Ω u
∂f

∂xi
dx = −

∫
Ω f dDiu.

Let u ∈ BV (Ω) and f ∈ Lip0(Ω). Let (ρε) be a sequence of mollifiers as in [34]. For
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ε > 0 small enough, we have that f ∗ ρε ∈ C∞c (Ω). Indeed, the support of f ∗ ρε is
included in supp (f) + B(0, ε), so by choosing ε ∈]0, ε0], ε0 > 0 fixed sufficiently small,

supp (f) + B(0, ε) ⊂ supp (f) + B(0, ε0) ⊂ Ω. Then

∫
Ω
u
∂(f ∗ ρε)
∂xi

dx = −
∫

Ω
f ∗ ρε dDiu.

Furthermore, f ∗ ρε uniformly converges to f ([34, Theorem 1 p.123]) and up to a subse-

quence,
∂(f ∗ ρε)
∂xi

=
∂f

∂xi
∗ρε −→

ε→0

∂f

∂xi
almost everywhere ([34, Theorem 1 p.123]). Thus the

dominated convergence theorem applies and lets us conclude that lim
ε→0

∫
Ω
u
∂(f ∗ ρε)
∂xi

dx =∫
Ω
u
∂f

∂xi
dx = lim

ε→0
−
∫

Ω
f ∗ ρεdDiu = −

∫
Ω
fdDiu.

Moreover, it has been proved that for any f ∈ Lip0(Ω,R2), there exists a sequence
(fk) ∈ C1

c (Ω,R2) that uniformly converges to f in Ω. Let {ψk} ∈ Lip0(Ω,R2) be a maxi-
mizing sequence with ∀k ∈ N, |ψk| ≤ 1 everywhere. Then for each k ∈ N, there exists a se-
quence {ψk,j}j∈N ∈ C1

c (Ω,R2) such that ∀j ∈ N, |ψk,j | ≤ 1 everywhere, and such that (ψk,j)
uniformly converges to ψk in Ω when j tends to infinity, that is to say ∀ε > 0, ∃Nε,k, ∀j ∈
N, ∀x ∈ Ω, (j ≥ Nε,k ⇒ |ψk,j(x)−ψk(x)| ≤ ε). Let us take in particular ε = 1

k , then there
exists Nk such that ∀j ∈ N,∀x ∈ Ω,

(
j ≥ Nk ⇒ |ψk,j(x)−ψk(x)| ≤ 1

k

)
. Let us now take j =

Nk. Then ∀x ∈ Ω, |ψk,Nk(x) − ψk(x)| ≤ 1
k . Besides,

∫
Ω
udivψk dx −→

k→+∞
sup

{
udivψ dx :

|ψ| ≤ 1, ψ ∈ Lip0(Ω,R2)
}

. Since

∫
Ω
udivψk dx = −

∫
Ω
ψkdDu and

∫
Ω
udivψk,Nk dx =

−
∫

Ω
ψk,Nk dDu, we get

∣∣∣∣ ∫
Ω
udivψk,Nk dx−

∫
Ω
udivψk dx

∣∣∣∣ ≤ ‖ψk −ψk,Nk‖L∞(Ω)

∫
Ω
d|Du|.

We then derive the following inequality

∣∣∣∣ ∫
Ω
udivψk,Nk dx − sup

{∫
Ω
udiv(ψ) dx : |ψ| ≤

1, ψ ∈ Lip0(Ω,R2)

}∣∣∣∣ ≤ ∣∣∣∣ ∫
Ω
udivψk,Nk dx−

∫
Ω
udivψk dx

∣∣∣∣+∣∣∣∣ ∫
Ω
udivψk dx−sup

{∫
Ω
udiv(ψ)

dx : |ψ| ≤ 1, ψ ∈ Lip0(Ω,R2)

}∣∣∣∣ with

∣∣∣∣ ∫
Ω
udivψk,Nk dx −

∫
Ω
udivψk dx

∣∣∣∣ −→k→+∞
0 and∣∣∣∣ ∫

Ω
udivψk dx− sup

{∫
Ω
udiv(ψ) dx : |ψ| ≤ 1, ψ ∈ Lip0(Ω,R2)

}∣∣∣∣ −→k→+∞
0. We eventually

end up with sup

{∫
Ω
udiv(ψ) dx : |ψ| ≤ 1, ψ ∈ Lip0(Ω,R2)

}
≤ sup

{∫
Ω
u div(ψ) dx :

|ψ| ≤ 1, ψ ∈ C1
c (Ω,R2)

}
, which concludes the proof.

To get a clearer picture of the meaning of (4.2), we give the following result:

Remark 2.3 (Taken from [10, Remark 10]). Given a weight w sufficiently smooth, if E is
a regular bounded open set in R2, with boundary of class C2, then |∂E|(Ω, w) = varw χE =∫

Ω∩∂E w dH1, which can be interpreted in the case where w = g as a new definition of the
curve length with a metric that depends on the Reference image content.

Equipped with this material (—and due to the properties of function g: it is obviously
L1, continuous and it suffices to take C = 1

c to satisfy (4.1) pointwise—), we propose
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2. Mathematical modelling

introducing as dissimilarity measure the following functional:

Wfid(ϕ) = varg T ◦ ϕ+
ν

2

∫
Ω

(T ◦ ϕ(x)−R(x))2 dx

+ a

∫
Ω

[
(c1 −R(x))2 − (c2 −R(x))2

]
T ◦ ϕ(x) dx, (4.3)

with c1 =
∫
Ω R(x)Hε(T◦ϕ(x)−ρ) dx∫

Ω Hε(T◦ϕ(x)−ρ) dx
and c2 =

∫
Ω R(x) (1−Hε(T◦ϕ(x)−ρ)) dx∫

Ω (1−Hε(T◦ϕ(x)−ρ)) dx
—we dropped the

dependency on ϕ to lighten the expressions —, Hε denoting a regularization of the Heav-
iside function and ρ ∈ [0, 1] being a fixed parameter allowing to partition T ◦ ϕ into
two phases and yielding a binary version of the Reference. ρ can be estimated by an-
alyzing the Reference histogram to discriminate two relevant regions or phases. For
instance, through histogram shape-based methods, clustering-based methods, entropy-
based methods, object attribute-based methods, spatial methods, or local methods ([56]).
This proposed functional emphasizes the link between the geodesic active contour model
([19]) and the PCMSM: if T̃ is the characteristic function of the set ΩC , bounded sub-
set of Ω with regular boundary C, varg T̃ is a new definition of the length of C with
a metric depending on the Reference content (so minimizing this quantity is equivalent
to locating the curve on the boundary of the shape contained in the Reference), while∫

Ω

[
(c1 −R(x))2 − (c2 −R(x))2

]
T̃ (x) dx approximates R in the L2 sense by two regions

ΩC and Ω\ΩC with two values c1 and c2. Indeed, varg T̃ =
∫

Ω∩C g dH
1, and if c1 and c2 are

fixed (which is in practice the case in the alternating algorithm),
∫

Ω

[
(c1 −R(x))2 − (c2−

R(x))2
]

1ΩC dx is equivalent to minimizing
∫

Ω (c1 −R(x))2 1ΩC dx+
∫

Ω (c2 −R(x))2 1Ω\ΩC
dx.

In the end, the global minimization problem denoted by (QP) —that stands for Qua-
siconvex Problem— is stated by:

inf
ϕ∈W=Id+W 1,4

0 (Ω,R2)
Ī(ϕ) = Wfid(ϕ) +

∫
Ω
QW (∇ϕ) dx. (QP)

It is a relaxed problem related to problem

(P ) : inf
ϕ∈W=Id+W 1,4

0 (Ω,R2)
I(ϕ) = Wfid(ϕ) +

∫
Ω W (∇ϕ) dx, and we will see the connec-

tion between them later on. ϕ ∈ Id + W 1,4
0 (Ω,R2) means that ϕ = Id on ∂Ω and

ϕ ∈ W 1,4(Ω,R2). W 1,4(Ω,R2) denotes the Sobolev space of functions ϕ ∈ L4(Ω,R2)
with distributional derivatives up to order 1 which also belong to L4(Ω). W is a suit-
able space due, in particular, to the ‖F‖4 component in W (F ). Note that from gen-
eralized Hölder’s inequality, if ϕ ∈ W 1,4(Ω,R2), then det∇ϕ ∈ L2(Ω). Now we justify
that varg T ◦ ϕ is well-defined. In [1], Ambrosio and Dal Maso prove a general chain
rule for the distribution derivatives of the composite function v(x) = f(u(x)), where
u : Rn → Rm has bounded variation and f : Rm → Rk is Lipschitz continuous. A
simpler result is given when u ∈ W 1,p(Ω,Rm) for some p, 1 ≤ p ≤ +∞, resulting
in our case in T ◦ ϕ ∈ W 1,4(Ω) := W 1,4(Ω,R) ⊂ BV (Ω) ⊂ BV (Ω, g), since g ≤ 1.
A key difference with the model in [49] is the introduction of the nonlocal component
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∫
Ω

[
(c1 −R(x))2 − (c2 −R(x))2

]
T ◦ϕ(x) dx and the treatment of the weighted BV semi-

norm, for which a nonlocal counterpart is provided, entailing substantial mathematical
development. It results in more accurate segmentation results compared to [49], with in
particular, the detection of small features.

Remark 2.4. We point out that the extension of the model to the 3D case is not straight-
forward. Indeed, the expression of the stored energy function of a 3D Saint Venant-
Kirchhoff material involves the cofactor matrix denoted by Cof as follows:

WSV K(F ) =
λ

8

(
‖F‖2 −

(
3 +

2µ

λ

))2

+
µ

4

(
‖F‖4 − 2‖CofF‖2

)
− µ

4λ
(2µ+3λ) and it is not

clear that one can derive the explicit expression of the quasiconvex envelope QW of W in
three dimensions as done for the two dimensional case. In particular, it is not sufficient to
simply add the quasiconvex envelopes of each of the components. Nevertheless, two lines
of research are considered:

(i) The first one consists in working with the Saint Venant-Kirchhoff stored energy func-
tion alone for which it is possible to compute the related quasiconvex envelope. Its
expression is complex since including explicitly the singular values of ξ, making its
numerical implementation more involved with finite element approximations. Such
a kind of implementation was provided in [40] in the case of non-linear elastic mem-
branes. More precisely, the authors consider the nonlinear membrane model obtained
by Le Dret and Raoult using Γ-convergence in the case of a Saint Venant-Kirchhoff
bulk material, and use conforming P1 and Q1 finite element approximations of the
membrane problem.
The cons: As already observed, the stored energy function WSV K alone lacks a term
penalizing the determinant: it thus does not preclude deformations with negative Ja-
cobian. It is noticeable here that when the singular values of ξ are lower than 1,
the quasiconvex envelope equals 0, which shows bad behavior under compression and
may yield violation of topology preservation characterization.
The pros: (a) the numerical implementation of the problem in ϕ no longer requires
the introduction of an auxiliary variable V to simulate ∇ϕ since now based on con-
forming finite element approximation. —We emphasize that the introduction of the
auxiliary variable V makes it possible to move the nonlinearity on V and thus to
constrain the L4 norm of V instead of the L4 norm of ∇ϕ (which requires very
low values for the time step to obtain stability when using classical L2 gradient flow
method)—In the P1 case for instance, deformations are approximated by piecewise
affine globally continuous functions on a triangulation of the domain. As the problem
is highly nonlinear and the stored energy function is only of class C1, the nonlinear
conjugate gradient method would be well-adapted to the problem; (b) the subproblem
in T̃ is unchanged.

(ii) A second line of research aim to introduce a polyconvex stored energy function in-
cluding an explicit control on the Jacobian determinant, e.g., the Ciarlet-Geymonat
stored energy. From a numerical viewpoint, a splitting method is still implemented
involving the auxiliary variable V simulating ∇ϕ and the function now involves an
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additional quadratic penalization of the form ‖Cof∇ϕ−CofV ‖2L2(Ω,M3(R)). We need
to investigate more on this side, in particular, whether the asymptotic results hold
in this case.

2.2 Theoretical results

In this subsection, we theoretically analyze the relaxed problem (QP) by showing its well-
definedness. We prove that the infimum of (QP) is attained and relate the minimum
of (QP) to the infimum of (P ) involving W rather than QW in the following theorem.
The introduction of (P ) is just for theoretical analysis purpose: it will not be considered
afterwards.

Theorem 2.1 (Existence of minimizers.). The infimum of (QP) is attained. Let ϕ̄ be a
minimizer of (QP). Then there exists a sequence {ϕn}∞n=1 ⊂ Id + W 1,4

0 (Ω,R2) such that
ϕn ⇀ ϕ̄ in W 1,4(Ω,R2) as n→ +∞ and

∫
Ω
ν
2 (T ◦ϕn−R)2 +a

[
(cn1 −R)2 − (cn2 −R)2

]
T ◦

ϕn+W (∇ϕn) dx→
∫

Ω
ν
2 (T ◦ϕ̄−R)2+a

[
(c̄1 −R)2 − (c̄2 −R)2

]
T ◦ϕ̄+QW (∇ϕ̄) dx. Let us

assume that T ∈W 2,∞(R2), if moreover (∇ϕn) strongly converges to ∇ϕ̄ in L1(Ω,M2(R)),
then one has I(ϕn)→ Ī(ϕ̄), yielding minQP = infQP = inf(P ).

Proof. Note that one always has inf QP ≤ inf (P ). We use the notations cn1 , c
n
2 , c̄1, c̄2 to

highlight their dependance on ϕn and ϕ̄ respectively.
Let us first prove that the infimum of (QP) is attained.
For the sake of simplicity but without loss of generality, we assume meas(Ω) = 1. Let us
take ϕ̂ = Id ∈ Id +W 1,4

0 (Ω,R2) then ∇ϕ̂ = I, and since QW (I) = 0, we have Ī(ϕ̂) < +∞.
The first step rests upon the derivation of a coercivity inequality to ensure the infimum is
finite. To do so, we first consider these inequalities:

c1 =

∫
Ω
R(x)Hε(T ◦ ϕ(x)− ρ) dx∫

Ω
Hε(T ◦ ϕ(x)− ρ) dx

≤ ‖R‖L∞(Ω),

c2 =

∫
Ω
R(x)(1−Hε(T ◦ ϕ(x)− ρ)) dx∫

Ω
(1−Hε(T ◦ ϕ(x)− ρ)) dx

≤ ‖R‖L∞(Ω).

For almost every x ∈ Ω, 0 ≤ (c1 −R(x))2 ≤ 4‖R‖2L∞(Ω)

0 ≤ (c2 −R(x))2 ≤ 4‖R‖2L∞(Ω)

0 ≥ −(c2 −R(x))2 ≥ −4‖R‖2L∞(Ω)[
(c1 −R(x))2 − (c2 −R(x))2

]
≥ −4‖R‖2L∞(Ω) > −∞.
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Furthermore, T ∈W 1,∞(R2,R) so ‖T‖L∞(Ω) <∞. Thus we get according to [49]:

Ī(ϕ) ≥ µ

4
‖ det(∇ϕ)‖2L2(Ω)+

β

2
‖∇ϕ‖4L4(Ω,M2(R))−βα

2−3µ+
µ(λ+ µ)

2(λ+ 2µ)
−4a‖R‖2L∞(Ω)‖T‖L∞(Ω),

and the infimum of (QP) is finite.
Then we introduce a minimizing sequence {ϕk}k∈N ∈ Id + W 1,4

0 (Ω,R2). We can always
assume that for k large enough Ī(ϕk) ≤ 1 + Ī(ϕ̂). From the previous coercivity inequal-
ity and the generalized Poincaré inequality ∀p ∈ [1,+∞[, ∀u ∈ W 1,p(Ω), ‖u‖W 1,p(Ω) ≤
C(‖∇u‖Lp(Ω) +

∫
∂Ω |u(x)|dσ), it comes that {ϕk} is uniformly bounded in W 1,4(Ω,R2)

and {det(∇ϕk)} is uniformly bounded in L2(Ω). We can thus extract a subsequence still
denoted by {ϕk} such that: {

ϕk ⇀ ϕ̄ ∈W 1,4(Ω,R2)
det(∇ϕk) ⇀ δ̄ ∈ L2(Ω)

.

From [25, Theorem 1.14 p.16], if ϕk ⇀ ϕ̄ in W 1,4(Ω,R2), then det(∇ϕk) ⇀ det(∇ϕ̄) in
L2(Ω) yielding δ̄ = det(∇ϕ̄) by uniqueness of the weak limit in L2(Ω).
The last step consists in showing that the functional Ī is weakly lower semi-continuous.

Let us now introduce J :
W 1,4(Ω,R2)× L2(Ω) → R

(φ, δ) 7→
∫

Ω
W ∗(φ, δ) dx

with W ∗(φ, δ) =∣∣∣∣ β(‖∇φ‖2 − α)2 + ψ(δ) if ‖∇φ‖2 > α
ψ(δ) otherwise

. W ∗ is convex thanks to the polyconvexity of

QW (c.f. [49]) and continuous. By classical arguments (see [41]), one can prove that J is
convex with respect to (φ, δ), strongly sequentially lower semi-continuous and thus weakly
lower semi-continuous so that J(ϕ̄,det(∇ϕ̄)) ≤ lim inf

k→+∞
J(ϕk, det(∇ϕk)).

The Rellich-Kondrachov embedding theorem gives that W 1,4(Ω,R2) 	
c
C0(Ω,R2) with com-

pact injection. Thus {ϕk} uniformly converges to ϕ̄ and so in L1(Ω,R2) as Ω is bounded.
Since T is assumed to be Lipschitz continuous, {T ◦ ϕk} strongly converges to T ◦ ϕ̄ in
L1(Ω) and so in L1(Ω, g) as g is assumed to be bounded by 1. The semicontinuity theorem
from [10, Theorem 3.2] enables us to conclude that varg T ◦ ϕ̄ ≤ lim inf

k→+∞
varg T ◦ ϕk.

Now we will successively use the dominated convergence theorem to show that lim
k→+∞

∫
Ω

[
(ck1−

R)2− (ck2 −R)2
]
T ◦ϕk dx =

∫
Ω

[
(c̄1 −R)2 − (c̄2 −R)2

]
T ◦ ϕ̄ dx. As {ϕk} uniformly con-

verges to ϕ̄ and T and Hε are continuous, RHε(T ◦ ϕk − ρ) converges to RHε(T ◦ ϕ̄− ρ)
almost everywhere and ∀k ∈ N, RHε(T ◦ϕk−ρ) ≤ ‖R‖L∞(Ω) ∈ L1(Ω) since Ω is bounded.

Therefore,

∫
Ω
RHε(T ◦ϕk−ρ) dx −→

k→+∞

∫
Ω
RHε(T ◦ϕ̄−ρ) dx. In a similar way and by notic-

ing that ∀z ∈ R, 0 < Hε(z) < 1 and T ∈ L∞(Ω), we get that

∫
Ω
Hε(T ◦ ϕk − ρ) dx −→

k→+∞∫
Ω
Hε(T ◦ ϕ̄ − ρ) dx,

∫
Ω
R (1 −Hε(T ◦ ϕk − ρ)) dx −→

k→+∞

∫
Ω
R (1 −Hε(T ◦ ϕ̄ − ρ)) dx and
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∫
Ω

(1−Hε(T ◦ϕk−ρ)) dx −→
k→+∞

∫
Ω

(1−Hε(T ◦ϕ̄−ρ)) dx. Hence ck1 −→
k→+∞

c̄1 and ck2 −→
k→+∞

c̄2.

Then we can deduce that
[
(ck1 −R)2 − (ck2 −R)2

]
T ◦ϕk −→

k→+∞
[(c̄1−R)2− (c̄2−R)2]T ◦ ϕ̄

almost everywhere and for almost every x ∈ Ω, ∀k ∈ N, |[(ck1 − R)2 − (ck2 − R)2]T ◦

ϕk| ≤ 4‖R‖2L∞(Ω)‖T‖L∞(Ω) ∈ L1(Ω). So,

∫
Ω

[
(ck1 −R)2 − (ck2 −R)2

]
T ◦ ϕk dx −→

k→+∞∫
Ω

[
(c̄1 −R)2 − (c̄2 −R)2

]
T ◦ ϕ̄ dx.

We use a last time the dominated convergence theorem to show that ‖T◦ϕk−R‖2L2(Ω) −→k→+∞
‖T ◦ ϕ̄ − R‖2L2(Ω). Indeed, we have (T ◦ ϕk − R)2 −→

k→+∞
(T ◦ ϕ̄ − R)2 almost everywhere

and the result follows from the dominated convergence theorem.
Eventually, Ī(ϕ̄) ≤ lim inf

k→+∞
Ī(ϕk) = inf

ϕ∈Id+W 1,4
0 (Ω,R2)

Ī(ϕ). Besides, by continuity of the trace

map we get that ϕ̄ ∈ Id + W 1,4
0 (Ω,R2) and so the infimum exists and is attained, which

concludes the first part of the proof.
We now recall some results of Dacorogna to prove the second part of the theorem.

Proposition 2.5 (taken from [25]). The relaxed problem in the sense of Dacrorogna as-
sociated to

inf

{
F(ϕ) =

∫
Ω
f(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ u0 +W 1,p

0 (Ω,RN )

}
where f : Ω× RN × RN×n → R is a given non-convex function, is defined by:

inf

{
F̄(ϕ) =

∫
Ω
Qf(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ u0 +W 1,p

0 (Ω,R2)

}
,

where Qf(x, ϕ,∇ϕ) is the quasiconvex envelope of f .

Let us introduce the following supplementary problem:

inf

{
F(ϕ) =

∫
Ω
f(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ Id +W 1,4

0 (Ω,R2)

}
, (PG)

where f(x, ϕ(x),∇ϕ(x)) = a
[
(c1 −R(x))2 − (c2 −R(x))2

]
T ◦ϕ(x)+ ν

2 (T ◦ϕ(x)−R(x))2+
W (∇ϕ(x)) and a relaxed problem associated to it:

inf

{
F̄(ϕ) =

∫
Ω
Qf(x, ϕ(x),∇ϕ(x)) dx : ϕ ∈ Id +W 1,4

0 (Ω,R2)

}
, (QPG)

where Qf(x, ϕ,∇ϕ) = a
[
(c1 −R(x))2 − (c2 −R(x))2

]
T ◦ ϕ(x) + ν

2 (T ◦ ϕ(x) − R(x))2 +
QW (∇ϕ(x)), QW being the quasiconvex envelope of W as defined previously. It has to
be noticed that because of the nonlocal terms c1 and c2, this is not exactly the relaxed
problem in the sense of Dacorogna. We then have the following results.
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Theorem 2.2 (adapted from [25]). The infimum of (QPG) is attained. Let then ϕ∗ ∈
W 1,4(Ω,R2) be a minimizer of the relaxed problem (QPG). Then there exists a sequence
{ϕν}∞ν=1 ⊂ ϕ∗ + W 1,4

0 (Ω,R2) such that ϕν → ϕ∗ in L4(Ω,R2) as ν → +∞ and F(ϕν) →
F̄(ϕ∗) as ν → +∞, yielding min(QPG) = inf(PG). Moreover, the following holds: ϕν ⇀
ϕ∗ in W 1,4(Ω,R2) as ν → +∞.

Proof. The first part of the proposition is proved using exactly the same arguments as
those previously used. Let us now consider the following subproblem:

inf
ϕ∈Id+W 1,4

0 (Ω,R2)

{
F1(ϕ) =

∫
Ω

ν

2
(T ◦ ϕ−R)2 +W (∇ϕ)dx

}
. (SP)

The associated relaxed problem in the sense of Dacorogna is:

inf
ϕ∈Id+W 1,4

0 (Ω,R2)

{
F̄1(ϕ) =

∫
Ω

ν

2
(T ◦ ϕ−R)2 +QW (∇ϕ)dx

}
(QSP)

as ν
2 (T ◦ϕ−R)2 +QW (∇ϕ) is the quasiconvex envelope of ν

2 (T ◦ϕ−R)2 +W (∇ϕ). Since
both of the previous functions are Carathéodory functions, and (det ζ)2 = det ζT ζ =
1
2 ‖ζ‖

4 − 1
2 tr(ζT ζ)2 leading to

C1 ‖ξ‖4 − C2 ≤
ν

2
(T ◦ ϕ−R(x))2 +QW (ξ) ≤ ν

2
(T ◦ ϕ−R(x))2 +W (ξ)

≤
(
β +

µ

2

)
‖ξ‖4 + C3 ‖ϕ‖2 + C4,

with C1, C2, C3 and C4 positive constants, according to [25, Theorem 8.29, p. 404
and Theorem 9.8, p. 432], the infimum of (QSP) is attained and let 4 ≤ q ≤ ∞ and
u ∈W 1,q(Ω,R2), there exists a sequence {ϕν}∞ν=1 ⊂ u+W 1,q

0 (Ω,R2) such that (uν) strongly
converges to u in Lq(Ω,R2) as ν tends to infinity and F1(uν) converges to F̄1(u) as ν tends
to infinity. In addition, uν weakly converges to u in W 1,4(Ω,R2) as ν tends to infinity.
Let us take u = ϕ∗ ∈ W 1,4(Ω,R2), minimizer of (QPG) in what precedes. Thus there
exists a sequence {ϕν}∞ν=1 ⊂ ϕ∗ +W 1,4

0 (Ω,R2) = Id +W 1,4
0 (Ω,R2) such that:

ϕν −→
ν→+∞

ϕ∗ in L4(Ω,R2),

ϕν ⇀
ν→+∞

ϕ∗ in W 1,4(Ω,R2),

F1(ϕν) −→
ν→+∞

F̄1(ϕ∗).

So, it remains to prove that a

∫
Ω

[
(cν1 −R)2 − (cν2 −R)2

]
T ◦ϕν dx converges to a

∫
Ω

[
(c∗1−

R)2− (c∗2−R)2
]
T ◦ϕ∗ dx. This was proved by applying several times the dominated con-

vergence theorem in the previous proof as ϕν ⇀
ν→+∞

ϕ∗ in W 1,4(Ω,R2). We can conclude
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that:

ϕν −→
ν→+∞

ϕ∗ in L4(Ω,R2),

ϕν ⇀
ν→+∞

ϕ∗ in W 1,4(Ω,R2),

F(ϕν) = a

∫
Ω

[
(cν1 −R)2 − (cν2 −R)2

]
T ◦ ϕν dx+ F1(ϕν)

−→
ν→+∞

F̄(ϕ∗) = a

∫
Ω

[
(c∗1 −R)2 − (c∗2 −R)2

]
T ◦ ϕ∗ dx+ F̄1(ϕ∗),

yielding min
ϕ∈Id+W 1,4

0 (Ω,R2)
(QPG) = inf

ϕ∈Id+W 1,4
0 (Ω,R2)

(PG).

Theorem 2.3 (in [50, Proposition 4.1.10]). Let us assume that T ∈ W 2,∞(R2,R), ∇T
being Lipschitz continuous with Lipschitz constant κ′. Let ϕ̄ ∈ Id + W 1,4

0 (Ω,R2) be a
minimizer of the relaxed problem (QP). Due to the previous theorem there exists a se-
quence {ϕν}∞ν=1 ⊂ ϕ̄ + W 1,4

0 (Ω,R2) such that ϕν ⇀ ϕ̄ in W 1,4(Ω,R2) as ν → +∞ and∫
Ω
f(x, ϕν(x),∇ϕν(x)) dx →

∫
Ω
Qf(x, ϕ̄(x),∇ϕ̄(x)) dx. If moreover {∇ϕν} strongly con-

verges to ∇ϕ̄ in L1(Ω,M2(R)), then one has I(ϕν) → Ī(ϕ̄) as ν → +∞ and therefore
inf(QP ) = min(QP ) = inf(P ).

This concludes the proof.

We now investigate an original numerical method for the resolution of (QP).

3 Numerical method of resolution

Inspired by prior works by Dávila [27] and Ponce [52] dedicated to the design of non-
local counterparts of Sobolev and BV semi-norms, we introduce the sequence {ρn}n∈N

of radial mollifiers satisfying: ∀n ∈ N, ∀x ∈ R2, ρn(x) = ρn(|x|); ∀n ∈ N, ρn ≥ 0;
∀n ∈ N,

∫
R2 ρn(x) dx = 1; ∀δ > 0, lim

n→+∞

∫ +∞
δ ρn(r)rdr = 0. We would like to point

that the qualifying term “nonlocal” might sound inadequate in the sense that the “nonlo-
cal counterpart” includes a parameter n, via the mollifier ρn, that is destined to tend to
+∞ concentrating the measure around the point of interest and removing in some way the
nonlocal nature of the component. Nevertheless, it takes on mathematical interests since,
to the best of our knowledge, this kind of approximation for the weighted total variation
has not been investigated. It also represents a good compromise between our local model
and the actual numerical model we implement which is introduced and motivated later,
and falls within the “true nonlocal algorithms”. In practice, for “true nonlocal methods”,
the computations are restricted to a small area around the point of interest (like the NL-
means algorithm) and it makes these methods quite similar to our model from our point
of view. Then the following approximation of the weighted total variation by a sequence
of integral operators involving a differential quotient and the radial mollifiers sequence
holds:
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Theorem 3.1 (Nonlocal approximation of the weighted total variation). Let Ω ⊂ R2 be an
open bounded set with Lipschitz boundary and let f ∈ BV (Ω, g) ⊂ BV (Ω) as 0 < c ≤ g ≤ 1
everywhere. Consider {ρn} defined previously. Then

lim
n→+∞

∫
Ω
g(x)

[∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy

]
dx

=

[
1

|S1|

∫ 2π

0

∣∣∣∣e.(cos(θ)
sin(θ)

)∣∣∣∣ dθ] varg f = K1,2 varg f,

with e being any unit vector of R2 and S1 being the unit sphere in R2.

Proof. In the following, the associated total variation measure of a function f ∈ BV (Ω) is
denoted by |Df |, that is to say var f =

∫
Ω d|Df |. The first step is inspired by Dávila’s work

[27] and consists in proving that the sequence of Radon measures
{
µn = g(x)

[ ∫
Ω
|f(y)−f(x)|
|x−y|

ρn(|x− y|) dy
]
dx
}

weakly converges to K1,2 g |Df | in the sense of Radon measures in Ω

when n tends to infinity. The second part of the proof is an adaptation of the one of [27,
Theorem 1] and is devoted to prove that lim

n→+∞
µn(Ω) = K1,2 varg f using a sequence of

auxiliary sets Vδ = {x ∈ Ω : dist(x, ∂Ω) > δ}.
We first introduce the following lemma.

Lemma 3.1 (adapted from [27, Lemma 2]). Assume ρn satisfies the previous conditions
and let f ∈ BV (Ω, g) ⊂ BV (Ω). Then µn ⇀

n→+∞
µ = K1,2 g |Df | weakly in the sense of

Radon measures in Ω with
∫

Ω g d|Df | = |f |BV (Ω,g) = varg f and
∫

Ω d|Df | = |f |BV (Ω) =
var f .

Proof. According to [27, Lemma 2], we get that µ̃n =

[∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy

]
dx

weakly converges in the sense of Radon measures to µ̃ = K1,2 |Df |. According to [34,
Theorem 1 p.54], this means that for every φ ∈ C0(Ω) with C0(Ω) being the set of all

continuous compactly supported functions on Ω,

∫
Ω
φdµ̃n converges to

∫
Ω
φdµ̃.

Besides, according to [10, Theorem 4.1], as f ∈ BV (Ω, g) then f ∈ BV (Ω), g ∈ L1(|Df |)
and varg f = |f |BV (Ω,g) =

∫
Ω
g d|Df |, g |Df | being a Radon measure.

Thus we get that for any φ ∈ C0(Ω),∣∣∣∣∫
Ω
φdµn −

∫
Ω
φdµ

∣∣∣∣ =

∣∣∣∣∫
Ω
φ(x)g(x)

[∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy

]
dx−

∫
Ω
φK1,2 g d|Df |

∣∣∣∣ ,
=

∣∣∣∣∫
Ω
φg

(∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy dx−K1,2 d|Df |
)∣∣∣∣ ,

≤
∣∣∣∣∫

Ω
φ

(∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy dx−K1,2 d|Df |
)∣∣∣∣ .
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As

∣∣∣∣∫
Ω
φ

(∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy dx−K1,2 d|Df |
)∣∣∣∣ =

∣∣∣∣∫
Ω
φ (dµ̃n − dµ̃)

∣∣∣∣ tends to 0

for every φ ∈ C0(Ω) then

∫
Ω
φdµn converges to

∫
Ω
φdµ for every φ ∈ C0(Ω). We can deduce

that µn ⇀
n→+∞

µ in the sense of Radon measure.

Lemma 3.2 (adapted from [27, Lemma 3]). Let E be a Borel set and R > 0. Let ER =
E + BR(0) = {x+ y |x ∈ E, y ∈ BR(0)}, BR(0) being the ball centered at 0 of radius R,

and suppose that ER ⊂ Ω. Then

∫
E
dµn ≤

K1,2

c
|f |BV (ER,g)+

2

R
‖f‖L1(Ω)

∫
R2\BR(0)

ρn(x) dx.

Proof. From [27, Lemma 3] we get that

∫
E
dµ̃n ≤ K1,2

∫
ER

d|Df | + 2

R
‖f‖L1(Ω)

∫
R2\BR(0)

ρn(x) dx. Thus

∫
E
dµn ≤

∫
E
dµ̃n ≤ K1,2

∫
ER

d|Df |+ 2

R
‖f‖L1(Ω)

∫
R2\BR(0)

ρn(x) dx ≤ K1,2

c

|f |BV (ER,g) + 2
R‖f‖L1(Ω)

∫
R2\BR(0)

ρn(x) dx as 0 < c ≤ g ≤ 1.

Now let us complete the proof of Theorem 3.1. For δ > 0 and small, let Vδ = {x ∈
Ω | dist(x, ∂Ω) > δ}. Then ∂Vδ = {x ∈ Ω | dist(x, ∂Ω) = δ}, and so

∫
∂Vδ

g d|Df | = 0

≤
∫
∂Vδ

d|Df | = 0 for all but perhaps countably many δ’s in an interval (0, δ0). Indeed, Jf
being the set of jumps of f , is countably H1-rectifiable according to [2, p. 184]. It can thus
be covered with countable many C1 hypersurfaces. Finally from [2, Lemma 3.76, p.170],
we get the result. For any such δ, µn(Vδ) −→

n→+∞
K1,2 |f |BV (Vδ,g), due to [34, Theorem 1,

p.54].
To conclude, note that to prove |f |BV (Ω\Vδ,g) −→δ→0

0, we only need to control µn(Ω \ Vδ)
uniformly as n→ +∞.
Consider f̃ = Ef , where E : BV (Ω, g) ⊂ BV (Ω) → BV (R2) ⊂ BV (R2, g) is an ex-
tension operator with this additional property: let Uδ = {x ∈ R2|dist(x, ∂Ω) < δ},
|Ef |BV (Uδ,g) ≤

∫
Uδ
d|D(Ef)| ≤ C1

∫
UC2δ

∩Ω d|Df | ≤ C1
c |f |BV (UC2δ

∩Ω,g), with C1, C2 > 0

depending only on Ω. This can be achieved by a standard reflexion across the boundary,
so that

∫
∂Ω d|D(Ef)| = 0, that is, E does not create any jump across the boundary of Ω.

For more details, please refer to [27, Proof of Theorem 1].
Now, by applying the previous lemma to the function f̃ with E = Ω \ Vδ we have

µn(Ω \ Vδ) ≤
K1,2

c
|f̃ |BV (Ω\Vδ+BR(0),g) +

2

R
‖f̃‖L1(R2)

∫
R2\BR(0)

ρn(x) dx.

Letting n→ +∞, we see that lim sup
n→+∞

µn(Ω \ Vδ) ≤ K1,2

c |f̃ |BV (Ω\Vδ+BR(0),g) and this holds

for any R > 0. We take R = δ and use the property of the extension mapping:

lim sup
n→+∞

µn(Ω \ Vδ) ≤
K1,2

c
C1|f |BV ({x∈Ω | dist(x,∂Ω)<2C2δ},g),

and the right hand side of this inequality has limit 0 as δ tends to 0.
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Motivated by the asymptotic properties of this nonlocal quantity, we propose using
this characterization to approximate the weighted total variation of the composite function
T ◦ ϕ (with n large enough). We replace varg T ◦ ϕ by its nonlocal counterpart that now
contains a differential quotient in T ◦ ϕ. We thus propose minimizing the following
nonlocal functional denoted by (NLP) that stands for NonLocal Problem:

inf
ϕ∈Id+W 1,4

0 (Ω,R2)

{
En(ϕ) =

1

K1,2

∫
Ω
g(x)

[∫
Ω

|T ◦ ϕ(y)− T ◦ ϕ(x)|
|x− y|

ρn(x− y) dy

]
dx

+ a

∫
Ω

[
(c1 −R)2 − (c2 −R)2

]
T ◦ ϕdx+

ν

2
‖T ◦ ϕ−R‖2L2(Ω) +

∫
Ω
QW (∇ϕ) dx

}
.

(NLP)

We first state the existence of minimizers for this functional En for every n ∈ N∗.

Theorem 3.2 (Existence of minimizers for En). The problem (NLP) admits at least one
solution for any n ∈ N∗.

Proof. This proof is divided into three parts. The first one consists of deriving a coercivity
inequality. The second one shows the convergence of a minimizing sequence and the last
one is dedicated to the lower semi-continuity of the functional.

For the sake of conciseness, we use this notation: Fn(f) =

∫
Ω
g(x)

[ ∫
Ω

|f(x)− f(y)|
|x− y|

ρn(x− y) dy

]
dx.

1. Coercivity inequality:
Let n ∈ N∗, we get the following inequality using the same computations as in
Theorem 2.1:

En(ϕ) ≥ a
∫

Ω

[
(c1(ϕ)−R)2 − (c2(ϕ)−R)2

]
T ◦ ϕdx

+
ν

2
‖T ◦ ϕ−R‖2L2(Ω) +

∫
Ω
QW (∇ϕ) dx,

≥ µ

4
‖det(∇ϕ)‖2L2(Ω) +

β

2
‖∇ϕ‖4L4(Ω,M2) − βα

2 − 3µ+
µ(λ+ µ)

2(λ+ 2µ)

− 4a‖R‖2L∞(Ω)‖T‖L∞(Ω).

Using the generalized Poincaré inequality, we get En(ϕ) ≥ c‖ϕ‖W 1,4(Ω,R2) +κ, κ ∈ R.
As En is proper by taking ϕ = Id, the infimum of the functional En is finite.

2. Convergence of a minimizing sequence:
Let {ϕkn}∞k=1 ∈ Id + W 1,4

0 (Ω,R2) be a minimizing sequence of En for any n ∈ N∗.
As En is proper by taking ϕ̂n = Id ∈ Id + W 1,4

0 (Ω,R2), that is to say, En(ϕ̂n) <
∞, then for k large enough, we get En(ϕkn) ≤ En(ϕ̂n) + 1. From the previous

128



3. Numerical method of resolution

coercivity inequality, we deduce that {ϕkn}k is uniformly bounded in W 1,4(Ω,R2)
and {det∇ϕkn}k is uniformly bounded in L2(Ω). We can thus extract subsequences
still denoted by {ϕkn}k and {det∇ϕkn}k such that there exist ϕ̄n and δ̄n satisfying:

ϕkn ⇀
k→+∞

ϕ̄n ∈W 1,4(Ω,R2),

det∇ϕkn ⇀
k→+∞

δ̄n ∈ L2(Ω).

From [25, Theorem 1.14 p.16], if ϕkn ⇀
k→+∞

ϕ̄n in W 1,4(Ω,R2) then det(∇ϕkn) ⇀
k→+∞

det(∇ϕ̄n) in L2(Ω) and so δ̄n = det∇ϕ̄n. Also by continuity of the trace operator,
we get ϕ̄n = Id on ∂Ω.

3. Lower semicontinuity:
Now, we prove the lower semi-continuity of the functional En. Let us now in-

troduce the mapping J :
W 1,4(Ω,R2)× L2(Ω) → R

(φ, δ) 7→
∫

Ω
W ∗(φ, δ) dx

with W ∗(φ, δ)

=

∣∣∣∣ β(‖∇φ‖2 − α)2 + ψ(δ) if ‖∇φ‖2 > α
ψ(δ) otherwise

. W ∗(φ, δ) is convex thanks to the poly-

convexity of QW and continuous. By using classical arguments (see [41]), we can
show that J(φ, δ) is convex strongly lower semi-continuous and so weakly lower semi-
continuous. Eventually, we get that J(ϕ̄n,det∇ϕ̄n) ≤ lim inf

k→+∞
J(ϕkn,det∇ϕkn).

Besides, according to Rellich-Kondrachov theorem, we have that {ϕkn} converges
uniformly to ϕ̄n. As T is assumed to be Lipschitz continuous, we get that (T ◦
ϕkn) converges to T ◦ ϕ̄n pointwise. Therefore g(x) |T◦ϕ

k
n(y)−T◦ϕkn(x)|
|x−y| ρn(x − y) con-

verges to g(x) |T◦ϕ̄n(y)−T◦ϕ̄n(x)|
|x−y| ρn(x−y) almost everywhere and according to Fatou’s

lemma,

∫
Ω
g(x)

[ ∫
Ω

|T ◦ ϕ̄n(x)− T ◦ ϕ̄n(y)|
|x− y|

ρn(x − y) dy

]
dx ≤ lim inf

k→+∞

∫
Ω
g(x)

[ ∫
Ω

|T ◦ ϕkn(x)− T ◦ ϕkn(y)|
|x− y|

ρn(x − y) dy

]
dx. We have also proved in what precedes

that when {ϕkn}k weakly converges to ϕ̄n in W 1,4(Ω,R2), then

∫
Ω

[
(c1(ϕkn) − R)2 −

(c2(ϕkn) − R)2
]
T ◦ ϕkn dx =

∫
Ω

[
(ck1n − R)2 − (ck2n − R)2

]
T ◦ ϕkn dx converges to∫

Ω

[
( ¯c1n −R)2− ( ¯c2n −R)2

]
T ◦ ϕ̄n dx =

∫
Ω

[
(c1(ϕ̄n)−R)2− (c2(ϕ̄n)−R)2

]
T ◦ ϕ̄n dx

and ‖T ◦ϕkn−R‖2L2(Ω) converges to ‖T ◦ ϕ̄n−R‖2L2(Ω). To conclude, functional En is

weakly lower semi-continuous and En(ϕ̄n) ≤ lim inf
k→+∞

En(ϕkn) = inf
ϕ∈Id+W 1,4

0 (Ω,R2)
En(ϕ).

So, there exists at least one minimizer for En for any n ∈ N∗ on Id +W 1,4
0 (Ω,R2).
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An important Γ-convergence result relating the approximated problem to the original
one (and highlighting thus its interest) is given next.

Theorem 3.3 (Γ-convergence). Let {ϕ̄n}n ∈ Id+W 1,4
0 (Ω,R2) be a sequence of minimizers

of En. Then there exist a subsequence still denoted by {ϕ̄n}n and ϕ̄ ∈ Id +W 1,4
0 (Ω,R2) a

minimizer of Ī such that ϕ̄n ⇀
n→+∞

ϕ̄ in W 1,4(Ω,R2). If we assume that g ∈ C1(Ω̄) with

‖∇g‖C0(Ω̄) = k < +∞, then one has lim
n→+∞

En(ϕ̄n) = Ī(ϕ̄).

Proof. The loss of symmetry in the expression of the nonlocal component (due to the g
component) raises a technical difficulty. To overcome this issue, an additional assumption
is set on g in order to use Taylor’s expansion and to recover then some symmetry.
For n ∈ N∗ fixed, we have proved the existence of a solution ϕ̄n in Id + W 1,4

0 (Ω,R2) to
problem (NLP). So for any n ∈ N∗,

∀v ∈ Id +W 1,4
0 (Ω,R2), En(ϕ̄n) ≤ En(v),

and according to the following Proposition :

Proposition 3.3 (taken from [8, Proposition 2.1]). Assume 1 ≤ p ≤ +∞ and u ∈W 1,p(Ω)
and ρ ∈ L1(R2), ρ > 0. Then

∫
Ω
g(x)

[ ∫
Ω

|u(y)− u(x)|p

|x− y|p
ρ(x− y) dy

]
dx ≤

∫
Ω

[ ∫
Ω

|u(y)− u(x)|p

|x− y|p
ρ(x− y) dy

]
dx,

≤ C|u|p
W 1,p(Ω)

‖ρ‖L1(R2) ≤
C

c
|u|p

W 1,p(Ω,g)
‖ρ‖L1(R2),

where C depends only on p and Ω, and |u|W 1,p(Ω) denotes the semi-norm in W 1,p(Ω) that
is to say |u|W 1,p(Ω) = ‖∇u‖Lp(Ω).

En(v) ≤ C
c |T ◦ v|W 1,1(Ω,g) + ν

2‖T ◦ v − R‖2L2(Ω,R2) + a

∫
Ω

[
(c1(v) − R)2 − (c2(v) −

R)2
]
T ◦ v dx +

∫
Ω
QW (∇v) dx which is independant of n —take for instance v = Id

and since T ∈ W 1,∞(Ω,R), the right-hand side will involve |T |W 1,1(Ω)—. Note that as
T ◦ v ∈ W 1,4(Ω,R) ⊂ W 1,1(Ω,R), |T ◦ v|W 1,1(Ω,g) = varg T ◦ v, see [10, Remark 5]. There-
fore, according to the coercivity inequality, the sequence {ϕ̄n}n is uniformly bounded in
W 1,4(Ω,R2) and so there exists ϕ̄ ∈ Id +W 1,4

0 (Ω,R2) by continuity of the trace operator,
such that up to a subsequence, {ϕ̄n}n weakly converges to ϕ̄ in W 1,4(Ω,R2).
We would like to prove that En(ϕ̄n) converges to Ī(ϕ̄) when n tends to +∞.
By definition of {ϕ̄n}, one has En(ϕ̄n) ≤ En(ϕ̄), for all n ∈ N∗. Thus by taking the upper
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limit when n tends to +∞,

lim sup
n→+∞

En(ϕ̄n) ≤ lim sup
n→+∞

En(ϕ̄),

≤ lim sup
n→+∞

1

K1,2

∫
Ω
g(x)

[ ∫
Ω

|T ◦ ϕ̄(x)− T ◦ ϕ̄(y)|
|x− y|

ρn(x− y) dy

]
dx

+
ν

2
‖R− T ◦ ϕ̄‖2L2(Ω) + a

∫
Ω

[
(c1(ϕ̄)−R)2 − (c2(ϕ̄)−R)2

]
T ◦ ϕ̄ dx

+

∫
Ω
QW (∇ϕ̄) dx,

≤ varg(T ◦ ϕ̄) +
ν

2
‖T ◦ ϕ̄−R‖2L2(Ω)

+ a

∫
Ω

[
(c1(ϕ̄)−R)2 − (c2(ϕ̄)−R)2

]
T ◦ ϕ̄ dx+

∫
Ω
QW (∇ϕ̄) dx,

≤ Ī(ϕ̄).

So, lim sup
n→+∞

En(ϕ̄n) ≤ Ī(ϕ̄).

It remains to prove that

Ī(ϕ̄) ≤ lim inf
n→+∞

En(ϕ̄n).

Due to what was done previously and to compactness properties, it suffices to prove that
varg(T ◦ ϕ̄) ≤ lim inf

n→+∞
Fn(T ◦ ϕ̄n).

In that purpose, let us introduce some notations. For r > 0, we define the two following
sets:

Ωr = {x ∈ Ω : dist(x, ∂Ω) > r},
Ωr = {x ∈ R2 : dist(x,Ω) < r}.

Let η ∈ C∞0 (R2) be a nonnegative radial function such that
∫

Ω η = 1, Supp η ⊂ B1(0)
where the notation Br(c) refers to the ball of radius r and centered at c, and let us define

fδ(x) =
1

δ2

∫
Ω
f(y)η(

x− y
δ

) dy =
1

δ2

∫
B(x,δ)

f(y)η(
x− y
δ

) dy ∀x ∈ Ωδ,

a regularization of f .
For the sake of clarity, we set f = T ◦ ϕ̄, and due to the properties of T , fn = T ◦ ϕ̄n
strongly converges to f = T ◦ ϕ̄ in L1(Ω) since T is Lipschitz continuous.
From an adaptation of [52, Lemma 4], for each r > 0, δ ∈ (0, r):

Fn(fn)+kδC ≥
∫

Ω2r

g(x)

[∫
Ω2r

|fn,δ(y)− fn,δ(x)|
|x− y|

ρn(x− y) dy

]
dx, ∀δ ∈ (0, r).
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Indeed,∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx

=

∫
Ω2r

g(x)

∫
Ω2r

|
∫
Bδ(0)

fn(x−z)
δ2 η( zδ ) dz −

∫
Bδ(0)

fn(y−z)
δ2 η( zδ ) dz|

|x− y|
ρn(x− y) dy

 dx,
≤
∫

Ω2r

∫
Ω2r

∫
Bδ(0)

g(x)
|fn(x− z)− fn(y − z)|

δ2|x− y|
η(
z

δ
)ρn(x− y) dz dy dx.

Now, we use the following change of variables: w = x− z and v = y − z keeping in mind
δ < r:

≤
∫

Ωr

∫
Ωr

∫
Bδ(0)

g(w + z)
|fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) dz dv dw.

Since we have assumed that g ∈ C1(Ω̄) with ‖∇g‖L∞(Ω̄) = k <∞, we get that g(w+ z) =

g(w) +

∫ 1

0
〈∇g(w + sz), z〉 ds. We now integrate this to the previous inequality:

∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx

≤
∫

Ωr

∫
Ωr

∫
Bδ(0)

[
g(w) +

∫ 1

0
〈∇g(w + sz), z〉 ds

]
|fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) dz dv dw,

≤
∫

Ωr

∫
Ωr

∫
Bδ(0)

g(w)
|fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) dz dv dw

+

∫
Ωr

∫
Ωr

∫
Bδ(0)

∫ 1

0
〈∇g(w + sz), z〉 |fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) ds dz dv dw,

By noticing that Ωr ⊂ Ω and that g(w)
|fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) is non-negative,

and by using Cauchy-Schwarz inequality:∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx

≤
∫

Ω

∫
Ω

∫
Bδ(0)

g(w)
|fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) dz dv dw

+

∫
Ωr

∫
Ωr

∫
Bδ(0)

∫ 1

0
|∇g(w + sz)||z| |fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) ds dz dv dw.

As w ∈ Ωr, z ∈ Bδ(0), s ∈ [0; 1] and δ ∈ (0, r), then w + sz ∈ Ω,

and by integrating the first part with respect to z, we get:
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∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx

≤
∫

Ω
g(w)

[∫
Ω

|fn(w)− fn(v)|
|w − v|

ρn(w − v) dv

]
dw

+ ‖∇g‖L∞(Ω)

∫
Ωr

∫
Ωr

∫
Bδ(0)

∫ 1

0
|z| |fn(w)− fn(v)|

δ2|w − v|
η(
z

δ
)ρn(w − v) ds dz dv dw,

We use the change of variable: u =
z

δ
in the second part. So,∫

Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx

≤ Fn(fn) + ‖∇g‖L∞(Ω̄)

∫
Ωr

∫
Ωr

∫
B1(0)

δ|u| |fn(w)− fn(v)|
|w − v|

η(u)ρn(w − v) du dv dw.

Besides,

∫
B1(0)

|u|η(u) du ≤
∫
B1(0)

η(u) du = 1 and as fn ∈ W 1,4(Ω) ⊂ BV (Ω), from [27,

Lemma 3], we get

∫
Ωr

∫
Ωr

|fn(x)− fn(y)|
|x− y|

ρn(x−y) dx dy ≤ K1,2var fn+
2

r
‖fn‖L1(Ω) ≤ C <

+∞ with C independant of n. Then∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx ≤ Fn(fn) + kδC. (4.4)

We first aim to prove that lim
n→+∞

∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx =

K1,2

∫
Ω2r

gd|Dfδ|.
We start by proving that

lim
n→+∞

∣∣∣∣∫
Ω2r

∫
Ω2r

g(x)

(
|fn,δ(x)− fn,δ(y)|

|x− y|
− ∇fδ(x).

x− y
|x− y|

)
ρn(x− y) dy dx

∣∣∣∣ = 0.

It is easily seen that

lim
n→+∞

∣∣∣∣∫
Ω2r

g(x)

[∫
Ω2r

(
|fn,δ(x)− fn,δ(y)|

|x− y|
−
∣∣∣∣∇fδ(x).

x− y
|x− y|

∣∣∣∣) ρn(x− y) dy

]
dx

∣∣∣∣
≤ lim

n→+∞

∫
Ω2r

[∫
Ω2r

∣∣∣∣ |fn,δ(x)− fn,δ(y)|
|x− y|

−
∣∣∣∣∇fδ(x).

x− y
|x− y|

∣∣∣∣∣∣∣∣ ρn(x− y) dy

]
dx,

≤ lim
n→+∞

∫
Ω2r

[∫
Ω2r

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy

]
dx,

≤ lim
n→+∞

∫
Ωr

[∫
Ωr

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy

]
dx,

since Ω2r ⊂ Ωr and the function is non-negative. Let us take s such that s ∈ (0, r − δ).
Then if x ∈ Ωr and y ∈ (Ωr)

s and if |x − y| < s, the segment of endpoints x and y is
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contained in (Ωr)
s so that, fn,δ being sufficiently smooth, from Taylor’s expansion:

fn,δ(y)− fn,δ(x) =

∫ 1

0
(y − x).∇fn,δ(x+ s(y − x)) ds.

Then

fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y) =

∫ 1

0
(x− y).(∇fn,δ(x+ s(y − x))−∇fδ(x)) ds,

and keeping in mind that |x− y| < s,

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)| ≤ |x− y|
∫ 1

0
|∇fn,δ(x+ s(y − x))−∇fδ(x)| ds,

≤ |x− y|
∫ 1

0
|∇fn,δ(x+ s(y − x))−∇fδ(x+ s(y − x))

+∇fδ(x+ s(y − x))−∇fδ(x)| ds,
≤ |x− y|‖∇fn,δ −∇fδ‖L∞((Ωr)s)

+ |x− y|
∫ 1

0
|∇fδ(x+ s(y − x))−∇fδ(x)| ds,

≤ |x− y|‖∇fn,δ −∇fδ‖L∞((Ωr)s)

+
1

2
|x− y|2‖∇2fδ‖L∞(Ωδ).

Thus

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

≤ ‖∇fn,δ −∇fδ‖L∞((Ωr)s) +
1

2
|x− y|‖∇2fδ‖L∞(Ωδ).

Now,

∫
Ωr

∫
Ωr

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy dx

≤
∫

Ωr

∫
(Ωr)s

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy dx, since Ωr ⊂ (Ωr)
s,

≤
∫

Ωr

∫
(Ωr)s∩|x−y|<s

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy dx

+

∫
Ωr

∫
(Ωr)s∩|x−y|≥s

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy dx,
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We consider each component of the right hand side of the inequality.∫
Ωr

∫
(Ωr)s∩|x−y|<s

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy dx

≤
∫

Ωr

∫
(Ωr)s∩|x−y|<s

(
‖∇fn,δ −∇fδ‖L∞((Ωr)s) +

1

2
|x− y|‖∇2fδ‖L∞(Ωδ)

)
ρn(x− y) dy dx,

≤ |Ωr|‖∇fn,δ −∇fδ‖L∞((Ωr)s) +

(
|Ωr|

2
‖∇2fδ‖L∞(Ωδ)

)∫
|h|<s

|h|ρn(h) dh,

∀x ∈ (Ωr)
s,

|fn,δ(x)− fδ(x)| ≤ 1

δ2

∫
B(x,δ)

η(
x− y
δ

) |fn(y)− f(y)| dy,

≤
∫
B(0,1)

η(z) |fn(x− δz)− f(x− δz)| dy,

≤ ‖η‖L∞(B0(1)) ‖fn − f‖L1(Ω).

Also,
∂fn,δ
∂xi

(x) =

∫
Ω

∂ηδ
∂xi

(x − y) fn(y) dy =
1

δ3

∫
Ω

∂η

∂xi
(
x− y
δ

) fn(y) dy and
∂fδ
∂xi

(x) =∫
Ω

∂ηδ
∂xi

(x− y) f(y) dy =
1

δ3

∫
Ω

∂η

∂xi
(
x− y
δ

) fn(y) dy resulting in, ∀x ∈ (Ωr)
s ⊂ Ωδ,

|
∂fn,δ
∂xi

(x)− ∂fδ
∂xi

(x)| ≤ 1

δ3

∫
Ω
| ∂η
∂xi

(
x− y
δ

)| |fn(y)− f(y)| dy, ≤ 1

δ3
‖ ∂η
∂xi
‖L∞(B0(1)) ‖fn − f‖L1(Ω).

As a consequence, |Ωr|‖∇fn,δ − ∇fδ‖L∞((Ωr)s) −→n→+∞
0, since fn converges strongly in

L1(Ω) to f and |Ωr|2 ‖∇
2fδ‖L∞(Ωδ) <∞, independent of n since fδ ∈ C∞(Ωδ).

Besides, due to the result by D. Spector [58], lim
n→+∞

∫
|h|<s |h|ρn(h) dh = 0. So,∫

Ωr

∫
(Ωr)s∩|x−y|<s

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x − y) dy dx −→
n→+∞

0. Further-

more,∫
Ωr

∫
(Ωr)s∩|x−y|≥s

|fn,δ(x)− fn,δ(y)−∇fδ(x).(x− y)|
|x− y|

ρn(x− y) dy dx

≤ 1

s

∫
Ωr

∫
(Ωr)s∩|x−y|≥s

|fn,δ(x)− fn,δ(y)|ρn(x− y) dy dx

+

∫
Ωr

∫
(Ωr)s∩|x−y|≥s

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy dx,

≤ 1

s

∫
Ωr

∫
(Ωr)s∩|x−y|≥s

(|fn,δ(x)− fδ(x)|+ |fδ(x)− fδ(y)|+ |fδ(y)− fn,δ(y)|) ρn(x− y) dy dx

+ ‖∇fδ‖L∞(Ωδ)

∫
Ωr

∫
(Ωr)s∩|x−y|≥s

ρn(x− y) dy dx,
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≤ 2

s
‖fn,δ − fδ‖L∞((Ωr)s)|Ωr|

∫
|h|≥s

ρn(h) dh+
2

s
‖fδ‖L∞(Ωδ)|Ωr|

∫
|h|≥s

ρn(h) dh

+ ‖∇fδ‖L∞(Ωδ)|Ωr|
∫
|h|≥s

ρn(h) dh.

We thus have proved that

lim
n→+∞

∣∣∣ ∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx

−
∫

Ω2r

g(x)

[∫
Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx
∣∣∣ = 0.

Now it suffices to prove that the limit of

∫
Ω2r

g(x)

[∫
Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx

when n tends to infinity exists and to compute it.∫
Ω2r

g(x)

[∫
R2

∣∣∣∣∇fδ(x)
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx =

∫
Ω2r

g(x)

[∫
Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx

+

∫
Ω2r

g(x)

[∫
R2\Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx.

Fixing λ > 0,∫
Ω2r

g(x)

[∫
R2\Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx

≤
∫

Ω2r

∫
R2\Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy dx

≤ |Ω2r|‖∇fδ‖L∞(Ωδ)

∫
|h|>λ

ρn(h) dh+ ‖∇fδ‖L∞(Ωr)

∫
Ω2r\Ω2r+λ

∫
|x−y|≤λ

ρn(x− y) dy dx,

≤ |Ω2r|‖∇fδ‖L∞(Ωδ)

∫
|h|>λ

ρn(h) dh+ ‖∇fδ‖L∞(Ωδ)|Ω2r \ Ω2r+λ|
∫
|h|≤λ

ρn(h) dh.

By letting n tend to +∞, and then λ tend to 0, it follows that:

lim
n→+∞

∫
Ω2r

g(x)

[∫
R2\Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx = 0,

(using again the properties of ρn).
Now,∫

Ω2r

g(x)

[∫
R2

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx =

∫
Ω2r

g(x)

[ ∫ 2π

0

∫ +∞

0

∣∣∣∣∇fδ(x).

(
cos(θ)
sin(θ)

)∣∣∣∣
ρn(r)r dr dθ

]
dx
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with the change of variables

{
y1 = x1 + r cos(θ)
y2 = x2 + r sin(θ)

, θ ∈ [0; 2π] and r ∈ [0; +∞[. That is,∫
Ω2r

g(x)

[∫
R2

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx

=

∫
Ω2r

g(x)|∇fδ(x)|
[∫ +∞

0

[∫ 2π

0

∣∣∣∣e.(cos(θ)
sin(θ)

)∣∣∣∣ dθ] rρn(r) dr

]
dx,

with e any unit vector in R2.
In the end,

lim
n→+∞

∫
Ω2r

g(x)

[∫
R2

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx

= lim
n→+∞

∫
Ω2r

g(x)

[∫
Ω2r

∣∣∣∣∇fδ(x).
x− y
|x− y|

∣∣∣∣ ρn(x− y) dy

]
dx,

=
1

|S1|

∫ 2π

0

∣∣∣∣e.(cos(θ)
sin(θ)

)∣∣∣∣ dθ ∫
Ω2r

g(x) |∇fδ(x)| dx,

= K1,2

∫
Ω2r

g(x)|∇fδ(x)| dx,

= K1,2|fδ|BV (Ω2r,g).

By gathering the previous results including (4.4), we prove that:

K1,2

∫
Ω2r

g(x)|∇fδ(x)| dx = lim inf
n→+∞

∫
Ω2r

g(x)

[∫
Ω2r

|fn,δ(x)− fn,δ(y)|
|x− y|

ρn(x− y) dy

]
dx,

≤ lim inf
n→+∞

Fn(fn) + C ′′δ

with C ′′ = kC a constant independant of n and of δ. Using the fact that fδ strongly
converges to f in L1(Ωr) and so in L1(Ω2r), when δ → 0+, we get:

K1,2 |T ◦ ϕ̄|BV (Ω2r,g) ≤ K1,2 lim inf
δ→0+

∫
Ω2r

g(x)|∇fδ(x)| dx,

≤ lim inf
δ→0+

(
lim inf
n→+∞

Fn(fn) + C ′′δ

)
= lim inf

n→+∞
Fn(fn).

Following Ponce [52] based on Beppo-Levi, we obtain that sup
A⊂⊂Ω

|f |BV (A,g) = |f |BV (Ω,g),

then
lim inf
n→+∞

Fn(fn) ≥ K1,2 |T ◦ ϕ̄|BV (Ω,g).

Combining the two previous results allows us to conclude that lim
n→+∞

En(ϕ̄n) = Ī(ϕ̄).

Besides, for any v ∈ Id +W 1,4
0 (Ω,R2), we get:

En(ϕ̄n) ≤ En(v),

and by taking the limit when n tends to infinity, we get: Ī(ϕ̄) ≤ Ī(v), ∀v ∈ Id +
W 1,4

0 (Ω,R2). Therefore ϕ̄ is a minimizer of Ī.
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A first limitation of this theoretical model (NLP) emerges, due to the nonlinearity in
the nonlocal component and in the nonlocal shape descriptor. The proposed treatment
of the nonlocal operator is dictated by an asymptotic result obtained when introducing
splitting variables: T̃ simulating T ◦ϕ to deal with the approximation of the weighted total
variation and V simulating ∇ϕ, the underlying idea being to transfer the nonlinearity on
V as in [48]. We then turn the related optimization problem under equality constraints
into an unconstrained one by means of L2/L1 penalizations. We finally come up with the
minimization with respect to ϕ ∈ Id+W 1,2

0 (Ω,R2), T̃ ∈ BV (Ω, g) and V ∈ L4(Ω,M2(R)) of
the following nonlocal decoupled functional denoted by (NLDP) that stands for NonLocal
Decoupled Problem:

En,γ(ϕ, T̃ , V ) =
1

K1,2

∫
Ω
g(x)

[∫
Ω

|T̃ (y)− T̃ (x)|
|x− y|

ρn(|x− y|) dy

]
dx

+ a

∫
Ω

[
(c1 −R)2 − (c2 −R)2

]
T̃ dx+ γ‖T̃ − T ◦ ϕ‖L1(Ω)

+
ν

2
‖T ◦ ϕ−R‖2L2(Ω) +

∫
Ω
QW (V ) dx+

γ

2
‖V −∇ϕ‖2L2(Ω,M2(R)). (NLDP)

We observe that we moved some nonlinearity on V : instead of minimizing the L4-norm
of ∇ϕ —it is known that treating problems involving W 1,p norms with high p′s is still a
challenging issue requiring low time steps if one works in the finite difference setting —,
we minimize the L4-norm of V .

Theorem 3.4 (Asymptotic result). Assume g ∈ C1(Ω̄) with ‖∇g‖C0(Ω̄) = k < +∞.

Let us also suppose that the functions t 7→ ρn(t) and t 7→ tq+1ρn(t) are non-increasing
for t ≥ 0 and any q ∈ (0.5, 1). Let (γj) be an increasing sequence of positive real
numbers such that lim

j→+∞
γj = +∞ with γ0 > 4a‖R‖2L∞(Ω). Let (nl) be a sequence of

natural integers such that lim
l→+∞

nl = +∞ and such that for all l ∈ N∗, there exists

ϕl ∈ Id + W 1,4
0 (Ω,R2) such that Ī(ϕl) ≤ inf

ϕ∈Id+W 1,4
0 (Ω,R2)

Ī(ϕ) + 1
l and ∀n ∈ N, n ≥ nl ⇒∣∣∣∣ 1

K1,2

∫
Ω
g(x)

[∫
Ω

|T ◦ ϕl(y)− T ◦ ϕl(x)|
|y − x|

ρn(x− y) dy

]
dx− varg(T ◦ ϕl)

∣∣∣∣ ≤ 1
l since T ◦

ϕl ∈ BV (Ω, g) (it is always possible to build). Let also (ϕk(nl, γj), Vk(nl, γj), T̃k(nl, γj)) be
a minimizing sequence of (NLDP) with γ = γj and n = nl. Then there exists a subsequence
denoted by

(
ϕN(nψ(l),γζ(j))(nψ(l), γζ(j)), VN(nψ(l),γζ(j))(nψ(l), γζ(j)), T̃N(nψ(l),γζ(j))(nψ(l), γζ(j))

)
of (ϕk(nl, γj), Vk(nl, γj), T̃k(nl, γj)) and a minimizer ϕ̄ of Ī such that:
lim
l→+∞

lim
j→+∞

Enψ(l),γζ(j)(ϕN(nψ(l),γζ(j))(nψ(l), γζ(j)), VN(nψ(l),γζ(j)) (nψ(l), γζ(j)), T̃N(nψ(l),γζ(j))

(nψ(l), γζ(j))) = Ī(ϕ̄).

Remark 3.4. The previous asymptotic result involves a minimizing sequence associ-
ated with (NLDP) for each nl and γj because we can only obtain weak convergence in
L4(Ω,M2(R)) of a subsequence of (Vnl,γj ), preventing us from knowing anything about
the behavior of the determinant of this subsequence and from obtaining any minimizer
existence result.
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Proof. For any n ∈ N∗ and for any γ > 0, we have the following inequality:

En,γ(ϕ, V, T̃ ) ≥ a
∫

Ω
[(c1(T̃ )−R)2 − (c2(T̃ )−R)2]T̃ dx+

ν

2
‖T ◦ ϕ−R‖2L2(Ω)

+

∫
Ω
QW (V ) dx+ γ‖T̃ − T ◦ ϕ‖L1(Ω) +

γ

2
‖∇ϕ− V ‖2L2(Ω,M2(R)),

≥ −4a‖R‖2L∞(Ω)‖T̃‖L1(Ω) +
µ

4
‖detV ‖2L2(Ω) +

β

2
‖V ‖4L4(Ω,M2(R)) − βα

2

− 3µ+
µ(λ+ µ)

2(λ+ 2µ)
+ γ‖T̃‖L1(Ω) − γ‖T‖L∞(Ω) +

γ

4
‖∇ϕ‖2L2(Ω,M2(R))

− γ

2
‖V ‖2L2(Ω,M2(R)),

≥ (γ − 4a‖R‖2L∞(Ω))‖T̃‖L1(Ω,g) +
µ

4
‖ detV ‖2L2(Ω) +

β

2
‖V ‖4L4(Ω,M2(R))

− βα2 − 3µ+
µ(λ+ µ)

2(λ+ 2µ)
− γ‖T‖L∞(Ω) +

γ

4(1 + 2c′2)
‖ϕ‖2W 1,2(Ω,R2)

−
γ
√

meas(Ω)

2
‖V ‖2L4(Ω,M2(R)) −

γc′′2

2(1 + c′2)
.

We assume γ > 4a‖R‖2L∞(Ω), then

En,γ(ϕ, V, T̃ ) ≥ (γ − 4a‖R‖2L∞(Ω))‖T̃‖L1(Ω) +
µ

4
‖detV ‖2L2(Ω) +

β

4
‖V ‖4L4(Ω,M2(R))

− βα2 − 3µ+
µ(λ+ µ)

2(λ+ 2µ)
− γ‖T‖L∞(Ω) +

γ

4(1 + 2c′2)
‖ϕ‖2W 1,2(Ω,R2)

− γ2 meas(Ω)

4β
− γc′′2

2(1 + c′2)
,

since β
2 ‖V ‖

4
L4(Ω,M2(R)) −

γ
√

meas(Ω)

2 ‖V ‖2L4(Ω,M2(R)) ≥
β
4 ‖V ‖

4
L4(Ω,M2(R)) −

γ2meas(Ω)
4β and

with c′ and c′′ some constants depending only on Ω, p = 2 and N = 2. So, En,γ is coercive
for n ∈ N∗and for any γ > 4a‖R‖2L∞(Ω). Besides, by taking ϕ = Id, V = I2 and T̃ = T

then En,γ(ϕ, V, T̃ ) is finite and for any n ∈ N∗ and any γ > 4a‖R‖2L∞(Ω) the functional is
proper. We can deduce that the infimum is finite.
Let (γj) be an increasing sequence of positive real numbers such that lim

j→+∞
γj = +∞ and

γ0 > 4a‖R‖2L∞(Ω). Let (nl) be a sequence of natural integers such that lim
l→+∞

nl = +∞

and such that for all l ∈ N∗, there exists ϕl ∈ Id + W 1,4
0 (Ω,R2) such that Ī(ϕl) ≤

inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ) + 1

l and ∀n ∈ N, n ≥ nl ⇒
∣∣∣∣ 1

K1,2

∫
Ω
g(x)

[ ∫
Ω

|T ◦ ϕl(y)− T ◦ ϕl(x)|
|y − x|

ρn(x − y) dy

]
dx − varg(T ◦ ϕl)

∣∣∣∣ ≤ 1
l since T ◦ ϕl ∈ BV (Ω, g). Then we consider a

minimizing sequence denoted by
(
ϕk(nl, γj), Vk(nl, γj), T̃k(nl, γj)

)
of the decoupled pro-
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blem (NLDP) with γ = γj and n = nl: lim
k→+∞

Enl,γj (ϕk(nl, γj), Vk(nl, γj), T̃k(nl, γj)) =

inf
ϕ∈Id+W 1,2(Ω,R2),V ∈L4(Ω,M2(R)),T̃∈BV (Ω,g)

Enl,γj (ϕ, V, T̃ ). Besides, from what precedes there

exists ϕl ∈ Id +W 1,4(Ω,R2) such that:
inf

ϕ∈Id+W 1,2
0 (Ω,R2), V ∈L4(Ω,M2(R)), T̃∈BV (Ω,g)

Enl,γj (ϕ, V, T̃ ) ≤ Enl,γj (ϕl, ∇ϕl, T ◦ϕl) ≤ Ī(ϕl)

+1
l ≤ inf

ϕ∈Id+W 1,4
0 (Ω,R2)

Ī(ϕ)+ 2
l . Then there exists N(nl, γj) > 0 such that for all k ∈ N,

k ≥ N(nl, γj)⇒
(
Enl,γj (ϕk(nl, γj), Vk(nl, γj), T̃k(nl, γj)) ≤ inf

ϕ∈Id+W 1,4
0 (Ω,R2)

Ī(ϕ)+ 2
l + 1

γj
≤

inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ)+2+ 1

γ0
< +∞ and ∀ϕ ∈ Id+W 1,4

0 (Ω,R2), Enl,γj (ϕk(nl, γj), Vk(nl, γj),

T̃k(nl, γj)) ≤ Enl,γj (ϕ,∇ϕ, T ◦ ϕ) + 1
γj

= Enl(ϕ) + 1
γj

)
. Now, we take k = N(nl, γj).

So according to the previous coercivity inequality, we have that for each nl, (ϕN(nl,γj)(nl, γj))

is uniformly bounded according to j inW 1,2(Ω,R2), (VN(nl,γj)(nl, γj)) is uniformly bounded

according to j in L4(Ω,M2(R)) and (det(VN(nl,γj)(nl, γj)) is uniformly bounded according

to j in L2(Ω). Let ψ be a common extractor, then we get
ϕN(nl,γψ(j))(nl, γψ(j)) ⇀

j→+∞
ϕ̄N(nl)(nl) in W 1,2(Ω,R2)

VN(nl,γψ(j))(nl, γψ(j)) ⇀
j→+∞

V̄N(nl)(nl) in L4(Ω,M2(R))

detVN(nl,γψ(j))(nl, γψ(j)) ⇀
j→+∞

δ̄(nl) in L2(Ω)

.

Besides, one can prove that (T̃N(nl,γψ(j))(nl, γψ(j))) is uniformly bounded with respect to

j in the fractional Sobolev space W q,1(Ω) with q ∈ (0.5, 1) thanks to the hypotheses
on the functions ρn and to [9, Section 4.]. Using the 2D Rellich-Kondrachov theorem

W 1,q(Ω) ⊂ Lr(Ω) with compact embedding for 1 ≤ r <
2

2− q
with

4

3
<

2

2− q
< 2, we

can extract a subsequence of (T̃N(nl,γψ(j))(nl, γψ(j))) still denoted (T̃N(nl,γψ(j))(nl, γψ(j)))

strongly converging to ¯̃TN(nl)(nl) in L1(Ω) and so almost everywhere in Ω up to a subse-

quence. Let us set xj = T̃N(nl,γψ(j))(nl, γψ(j)) − T ◦ ϕN(nl,γψ(j))(nl, γψ(j)). We have the
following inequality

‖xj‖L1(Ω) ≤
1

γψ(j)

∣∣∣∣βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)

+ inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ) + 2 +

1

γ0
+

4a‖R‖2L∞(Ω)

γ0 + 4a‖R‖2L∞(Ω)(
βα2 + 3µ− µ(λ+ µ)

2(λ+ 2µ)
+ inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ) + 2 + γ0‖T‖L∞(Ω) +

1

γ0

)∣∣∣∣
−→
j→+∞

0,
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and ‖T̃N(nl,γψ(j))(nl, γψ(j))− T ◦ ϕ̄N(nl)(nl)‖L1(Ω)

≤ ‖xj‖L1(Ω) + ‖T ◦ ϕN(nl,γψ(j))(nl, γψ(j))− T ◦ ϕ̄Nl(nl)‖L1(Ω),

≤ ‖xj‖L1(Ω) + κT ‖ϕN(nl,γψ(j))(nl, γψ(j))− ϕ̄N(l)(nl)‖L1(Ω),

since T is Lipschitz continuous.

Eventually, thanks to the Sobolev embedding theorem stating that (ϕN(nl,γψ(j))(nl, γψ(j)))

strongly converges to ϕ̄N(nl)(nl) in L1(Ω), we obtain T̃N(nl,γψ(j))(nl, γψ(j)) −→
j→+∞

T ◦

ϕ̄N(nl)(nl) in L1(Ω). By uniqueness of the limit, ¯̃TN(nl)(nl) = T ◦ ϕ̄N(nl)(nl). Then

(T̃N(nl,γψ(j)) (nl, γψ(j))) converges almost everywhere up to a subsequence to T ◦ ϕ̄N(nl)(nl)

when j tends to infinity and so g(x)
|T̃N(nl,γψ(j))(nl,γψ(j))(y)−T̃N(nl,γψ(j))(nl,γψ(j))(x)|

|x−y| ρnl(x − y)

converges almost everywhere to g(x)
|T◦ϕ̄N(nl)

(nl)(y)−T◦ϕ̄N(nl)
(nl)(x)|

|x−y| ρnl(x− y) as j tends to
infinity. By Fatou’s lemma, we get

lim inf
j→+∞

∫
Ω
g(x)

[ ∫
Ω

|T̃N(nl,γψ(j))(nl, γψ(j))(y)− T̃N(nl,γψ(j))(nl, γψ(j))(x)|
|x− y|

ρnl(x− y) dy

]
dx

≥
∫

Ω
g(x)

[ ∫
Ω

|T ◦ ϕ̄N(nl)(nl)(y)− T ◦ ϕ̄N(nl)(nl)(x)|
|x− y|

ρnl(x− y) dy

]
dx.

Let us now set zj = ∇ϕN(nl,γψ(j))(nl, γψ(j)) − VN(nl,γψ(j))(nl, γψ(j)). We have zj −→
j→+∞

0 in L2(Ω) since ‖zj‖2L2(Ω,M2(R)) ≤
2

γψ(j)

(
βα2 + 3µ − µ(λ+µ)

2(λ+2µ) + inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ) +

2 + 1
γ0

+ γ0‖T‖L∞(Ω)

)
and so ∇ϕN(nl,γψ(j))(nl, γψ(j)) ⇀

j→+∞
V̄N(l)(nl) in L2(Ω,M2(R)).

Indeed, ∀Φ ∈ L2(Ω,M2(R)),

∫
Ω
zj : Φ dx −→

j→+∞
0. So,

∫
Ω

(∇ϕN(nl,γψ(j))(nl, γψ(j)) −

VN(nl,γψ(j))(nl, γψ(j))) : Φ dx −→
j→+∞

0. But VN(nl,γψ(j)) (nl, γψ(j)) ⇀
j→+∞

V̄N(nl)(nl) in

L4(Ω,M2(R)) and so in L2(Ω,M2(R)) and ∀Φ ∈ L2(Ω,M2(R)),

∫
Ω
∇ϕN(nl,γψ(j)) (nl, γψ(j)) :

Φ dx −→
j→+∞

∫
Ω V̄N(nl)(nl) : Φ dx. Besides, ∇ϕN(nl,γψ(j))(nl, γψ(j)) ⇀

j→+∞
∇ϕ̄N(nl)(nl) in

L2(Ω,M2(R)) and by uniqueness of the weak limit,∇ϕ̄N(nl)(nl) = V̄N(nl)(nl) ∈ L
4(Ω,M2(R)).

Thus ϕ̄N(nl)(nl) ∈ W
1,4(Ω,R2) and by continuity of the trace operator, ϕ̄N(nl)(nl) = Id

on ∂Ω.
Furthermore, since ϕN(nl,γψ(j))(nl, γψ(j)) ⇀

j→+∞
ϕ̄N(nl)(nl) inW 1,2(Ω,R2), det(ϕN(nl,γψ(j))(nl,

γψ(j))) ⇀
j→+∞

det(ϕ̄N(nl)(nl)) in the sense of distributions. As det(VN(nl,γψ(j))(nl, γψ(j))) ⇀
j→+∞

δ̄(nl) in L2(Ω), ∀Φ ∈ D(Ω),

∫
Ω

det(VN(nl,γψ(j))(nl, γψ(j)))Φ dx −→
j→+∞

∫
Ω
δ̄(nl)Φ dx. Let us

set det(VN(nl,γψ(j)) (nl, γψ(j))) = det(∇ϕN(nl,γψ(j)) (nl, γψ(j))) + dj with dj = (zj)11(zj)22−

(zj)12(zj)21 −(zj)22

∂ϕ1
N(nl,γψ(j))

(nl,γψ(j))

∂x1
−(zj)11

∂ϕ2
N(nl,γψ(j))

(nl,γψ(j))

∂x2
+(zj)21

∂ϕ1
N(nl,γψ(j))

(nl,γψ(j))

∂x2

+(zj)12

∂ϕ2
N(nl,γψ(j))

(nl,γψ(j))

∂x1
. Then ∀Φ ∈ D(Ω),

∫
Ω

det(VN(nl,γψ(j))(nl, γψ(j)))Φ dx =

∫
Ω

det(∇ϕN(nl,γψ(j))
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(nl, γψ(j)))Φ dx+

∫
Ω
dj Φ dx, with

∫
Ω

det(∇ϕN(nl,γψ(j)) (nl, γψ(j)))Φ dx −→
j→+∞

∫
Ω

det(∇ϕ̄N(nl)

(nl))Φ dx and

∫
Ω
djΦ dx ≤ ‖dj‖L1(Ω)‖Φ‖C0(Ω̄) from Hölder’s inequality. From what pre-

cedes, we get ‖dj‖L1(Ω) ≤ 1
2‖zj‖

2
L2(Ω,M2(R))+‖zj‖L2(Ω,M2(R)) ‖∇ϕN(nl,γψ(j)) (nl, γψ(j))‖L2(Ω,M2(R))

with (∇ϕN(nl,γψ(j))(nl, γψ(j))) uniformly bounded according to j (by taking γ = γ0 in the

first coercivity inequality used in this proof) in L2(Ω,M2(R)) and lim
j→+∞

‖zj‖L2(Ω,M2(R)) =

0. So, lim
j→+∞

‖dj‖L1(Ω)‖Φ‖C0(Ω̄) = 0 and lim
j→+∞

∫
Ω

det(VN(nl,γψ(j)) (nl, γψ(j)))Φ dx =∫
Ω δ̄(nl)Φ dx =

∫
Ω det(∇ϕ̄N(nl)(nl))Φ dx. Thus δ̄(nl) = det(∇ϕ̄N(nl)(nl)) in the sense of

distributions and since det(∇ϕ̄N(nl)(nl)) ∈ L
2(Ω) and δ̄(nl) ∈ L2(Ω), it comes det(∇ϕ̄N(nl)(nl))

= δ̄(nl) almost everywhere.
The mapping J(V, δ) =

∫
ΩW

∗(V, δ) dx is convex and strongly lower semi-continuous
on L4(Ω,M2(R)) × L2(Ω) since W ∗ is continuous and convex. It is thus weakly lower

semi-continuous and

∫
Ω
QW (∇ϕ̄N(nl)(nl)) dx =

∫
Ω
W ∗(∇ϕ̄N(nl)(nl), det(∇ϕ̄N(nl)(nl))) dx

≤ lim inf
j→+∞

∫
Ω
W ∗(VN(nl,γψ(j)) (nl, γψ(j)), detVN(nl,γψ(j))(nl, γψ(j))) dx.

From Rellich-Kondrachov’s embedding theorem, we get that W 1,2(Ω,R2) 	
c
Lq(Ω,R2),

∀q ∈ [1; +∞[. In particular, (ϕN(nl,γψ(j))(nl, γψ(j))) strongly converges to ϕ̄N(nl)(nl) in

L2(Ω,R2). As T is assumed to be Lipschitz continuous with κT the Lipschitz constant, we

have lim
j→+∞

∫
Ω

(T ◦ ϕN(nl,γψ(j))(nl, γψ(j))−R)2 dx =

∫
Ω

(T ◦ ϕ̄N(nl)(nl)−R)2 dx.

As (T̃N(nl,γψ(j))(nl, γψ(j))) strongly converges to T ◦ ϕ̄N(nl)(nl) in L1(Ω), we can extract a

subsequence of
(
T̃N(nl,γψ(j))(nl, γψ(j))

)
denoted by

(
T̃N(nl,γζ(j))(nl, γζ(j))

)
such that T̃N(nl,γζ(j))

(nl, γζ(j))(x) −→
j→+∞

T ◦ ϕ̄N(nl)(nl)(x) almost everywhere.

By continuity of Hε, we have:

R(x)Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ) −→
j→+∞

R(x)Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ) a.e.,

Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ) −→
j→+∞

Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ) a.e.,

R(x)(1−Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ)) −→
j→+∞

R(x)(1−Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ)) a.e.,

1−Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ) −→
j→+∞

1−Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ) a.e.,

and

R(x)Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ)<‖R‖L∞(Ω) ∈ L1(Ω), ∀j ∈ N, as Ω is bounded,

Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ)<1 ∈ L1(Ω), ∀j ∈ N,

R(x)(1−Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ))<‖R‖L∞(Ω) ∈ L1(Ω), ∀j ∈ N,

1−Hε(T̃N(nl,γζ(j))(γnl,ζ(j))(x)− ρ)<1 ∈ L1(Ω), ∀j ∈ N.
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Thus, according to the dominated convergence theorem, we get that:∫
Ω
R(x)Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ) dx −→

j→+∞

∫
Ω
R(x)Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ) dx,∫

Ω
Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ) dx −→

j→+∞

∫
Ω
Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ) dx,∫

Ω
R(x)(1−Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ)) dx −→

j→+∞

∫
Ω
R(x)(1−Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ)) dx,∫

Ω
1−Hε(T̃N(nl,γζ(j))(nl, γζ(j))(x)− ρ) dx −→

j→+∞

∫
Ω

1−Hε(T ◦ ϕ̄N(nl)(nl)(x)− ρ) dx,

⇒ c1

(
T̃N(nl,γζ(j))(nl, γζ(j))

)
−→
j→+∞

c1

(
ϕ̄N(nl)(nl)

)
,

c2

(
T̃N(nl,γζ(j))(nl, γζ(j))

)
−→
j→+∞

c2

(
ϕ̄N(nl)(nl)

)
.

We can derive

[(
c1

(
T̃N(nl,γζ(j))(nl, γζ(j))

)
−R

)2
−
(
c2

(
T̃N(nl,γζ(j))(nl, γζ(j))

)
−R

)2
]
T̃N(nl,γζ(j))

(nl, γζ(j)) −→
j→+∞

[(
c1

(
ϕ̄N(nl)(nl)

)
−R

)2 − (c2

(
ϕ̄N(nl)(nl)

)
−R

)2]
T ◦ ϕ̄N(nl)(nl) almost

everywhere and from [16, Theorem IV.9], there exists hnl ∈ L1(Ω) such that ∀j ∈ N,[(
c1

(
T̃N(nl,γζ(j)) (nl, γζ(j))

)
−R
)2
−
(
c2

(
T̃N(nl,γζ(j))(nl, γζ(j))

)
−R
)2]

T̃N(nl,γζ(j))(nl, γζ(j)) ≤

4‖R‖L∞(Ω)hnl ∈ L1(Ω). So, according to the dominated convergence theorem we get∫
Ω

[(
c1

(
ϕN(nl,γζ(j))(nl, γζ(j))

)
−R
)2
−
(
c2

(
ϕN(nl,γζ(j))(nl, γζ(j))

)
−R
)2
]
T◦ϕN(nl,γζ(j)) (nl, γζ(j)) dx

−→
j→+∞

∫
Ω

[(
c1

(
ϕ̄N(nl)(nl)

)
−R

)2
−
(
c2

(
ϕ̄N(nl)(nl)

)
−R

)2
]
T ◦ ϕ̄N(nl)(nl) dx.

By combining all the results, we have that Enl(ϕ̄N(nl)(nl)) ≤ lim inf
j→+∞

Enl,γζ(j) (ϕN(nl,γζ(j))

(nl, γζ(j)), VN(nl,γζ(j)) (nl, γζ(j)), T̃N(nl,γζ(j)) (nl, γζ(j)))≤ lim sup
j→+∞

Enl,γζ(j) (ϕN(nl,γζ(j)) (nl, γζ(j)),

VN(nl,γζ(j)) (nl, γζ(j)), T̃N(nl,γζ(j)) (nl, γζ(j)))≤ lim sup
j→+∞

inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ)+2

l+
1
γj

= inf
ϕ∈Id+W 1,4

0 (Ω,R2)

Ī(ϕ) + 2
l .

However ∀ϕ ∈ Id + W 1,4
0 (Ω,R2), we have Enl(ϕ̄N(nl)(nl)) ≤ lim inf

j→+∞
Enl,γζ(j) (ϕN(nl,γζ(j))

(nl, γζ(j)), VN(nl,γζ(j)) (nl, γζ(j)), T̃N(nl,γζ(j)) (nl, γζ(j))) ≤ lim inf
j→+∞

Enl(ϕ) + 1
γj

= Enl(ϕ).

Therefore, ϕ̄N(nl)(nl) ∈ Id + W 1,4
0 (Ω,R2), is a minimizer of Enl and from the previ-

ous theorem we can deduce that there exists a subsequence of (ϕ̄N(nl)(nl)) denoted by

(ϕ̄N(nψ(l))(nψ(l))) and ϕ̄ ∈ Id+W 1,4
0 (Ω,R2) a minimizer of Ī such that ϕ̄N(nψ(l))(nψ(l)) ⇀ ϕ̄

in W 1,4(Ω,R2) and lim
l→+∞

Enψ(l)
(ϕ̄N(nψ(l))(nψ(l))) = Ī(ϕ̄) as the assumptions on g are ful-

filled here. By taking the limit when l tends to infinity in the previous inequality, we
have: inf

ϕ∈Id+W 1,4
0 (Ω,R2)

Ī(ϕ) = Ī(ϕ̄) = lim
l→+∞

Enψ(l)
(ϕ̄N(nψ(l))(nψ(l)) ≤ lim

l→+∞
lim inf
j→+∞

Enψ(l),γζ(j)

(ϕN(nψ(l),γζ(j)) (nψ(l), γζ(j)), VN(nψ(l),γζ(j)) (nψ(l), γζ(j)), T̃N(nψ(l),γζ(j)) (nψ(l), γζ(j))) ≤ lim
l→+∞
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lim sup
j→+∞

Enψ(l),γζ(j) (ϕN(nψ(l),γζ(j)) (nψ(l), γζ(j)), VN(nψ(l),γζ(j)) (nψ(l), γζ(j)), T̃N(nψ(l),γζ(j)) (nψ(l),

γζ(j))) ≤ lim
l→+∞

inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ) + 2

l = inf
ϕ∈Id+W 1,4

0 (Ω,R2)
Ī(ϕ).

We now solve (NLDP) using an alternating framework. Indeed, we split the problem
into three subproblems of one unknown by fixing the others. We thus consider the sub-
problem according to T̃ :

inf
T̃

{
En(T̃ ) =

∫
Ω
g(x)

[∫
Ω

|T̃ (y)− T̃ (x)|
|x− y|

ρn(|x− y|) dy

]
dx

+ a

∫
Ω

[
(c1 −R)2 − (c2 −R)2

]
T̃ dx+ γ ‖T ◦ ϕ− T̃‖L1(Ω)

}
, (PT)

for large enough γ and n and fixed ϕ and V , so that it approximates well

inf
T̃
E(T̃ ) = varg T̃ + a

∫
Ω

[
(c1 −R)2 − (c2 −R)2

]
T̃ dx+ γ ‖T ◦ ϕ− T̃‖L1(Ω). (PT1)

We separately solve for fixed T̃ the subproblem in (ϕ, V ) using implicit and semi-implicit
Euler time stepping schemes. A remarkable result relating again registration and segmen-
tation is stated next.

Theorem 3.5 (Segmentation of the Reference). Suppose that g ∈ [0, 1], R ∈ [0, 1] and
that T ◦ ϕ is a characteristic function of a bounded open subset Ω̃ ⊂ Ω with boundary of
class C2 —with the assumptions on T , it is not theoretically the case —. Then for any c1,
c2, a, γ, if 0 ≤ u ≤ 1 is a minimizer of E, for almost every κ ∈ [0, 1], the characteristic
function χ

Ω̂(κ)={x |u(x)>κ} is a global minimizer of E.

Proof. The proof is based on the coarea formula and on the work of Chan et al. in [20].
We first prove the existence of minimizers for the problem (PT1) for any c1, c2 ∈ R and
any a ∈ R+, γ ∈ R+.
Let c1, c2 ∈ R and γ, a ∈ R+. By taking T̃ = 1Ω̃ in E(T̃ ), we get E(T̃ ) = varg1Ω̃ +∫

Ω

[
(c1 −R)2 − (c2 −R)2

]
1Ω̃ dx < +∞ as g ∈ [0, 1], Ω̃ ⊂ Ω, c1, c2 ∈ R and ‖R‖L∞(Ω) <

+∞.
Furthermore, as 0 ≤ T̃ ≤ 1 almost everywhere, we have that E(T̃ ) ≥ varg T̃ + min{0,
meas(Ω) minx∈Ω{(c1 − R(x))2 − (c2 − R(x))2}} ≥ varg T̃ + ‖T̃‖L1(Ω,g) − meas(Ω) +

min{0,meas(Ω) min
x∈Ω
{(c1−R(x))2− (c2−R(x))2}} as 0 ≤ ‖T̃‖L1(Ω,g) ≤ meas(Ω) and thus

the functional is coercive as min
x∈Ω
{(c1 − R(x))2 − (c2 − R(x))2} is finite and Ω bounded.

Thus the infimum is finite.
Let {T̃n} ∈ BV (Ω, g)∩L∞(Ω) be a minimizing sequence. It is uniformly bounded in L∞(Ω)
so in L1(Ω) and according to the previous inequalities, varg T̃n is uniformly bounded. From
[10, Theorem 3.4], for each n ∈ N, there exists {gn} such that gn ∈ C∞(Ω) ∩ BV (Ω, g)
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and 
∫

Ω
g|T̃n − gn| dx ≤

1

n
, for each n ∈ N

sup
n∈N

∫
Ω
g|∇gn| dx <∞

.

As g satisfies 0 < c ≤ g and 0 ≤ T̃n ≤ 1 ⇒ ‖T̃n‖L1(Ω) ≤ meas(Ω) < +∞ since Ω is

bounded, it follows that


∫

Ω
|T̃n − gn| dx ≤

1

cn
, for each n ∈ N

sup
n∈N

∫
Ω
|∇gn| dx <∞

. Therefore, there ex-

ist ¯̃T ∈ BV (Ω) ⊂ BV (Ω, g) and a subsequence of {gn} still denoted by {gn} such that

gn → ¯̃T in L1(Ω) and so in L1(Ω, g).

However, ‖T̃n − ¯̃T‖L1(Ω,g) ≤ ‖T̃n − gn‖L1(Ω,g) + ‖gn − ¯̃T‖L1(Ω,g). So, T̃n → ¯̃T in L1(Ω, g)
and so in L1(Ω).

Furthermore, T̃n ∈ BV (Ω, g), ¯̃T ∈ BV (Ω, g) and T̃n → ¯̃T in L1(Ω, g) then varg
¯̃T ≤

lim inf
n→+∞

varg T̃n.

As T̃n → ¯̃T in L1(Ω), there exists a subsequence of {T̃n} still denoted by {T̃n} such that

T̃n → ¯̃T almost everywhere. Thus
[
(c1 −R)2 − (c2 −R)2

]
T̃n −→

n→+∞

[
(c1 −R)2 − (c2 −R)2

] ¯̃T

almost everywhere and for every n ∈ N, |[(c1−R)2−(c2−R)2]T̃n| ≤ |
[
(c1 −R)2 − (c2 −R)2

]
|

≤
[
(|c1|+ ‖R‖L∞(Ω))

2 + (|c2|+ ‖R‖L∞(Ω))
2
]
∈ L1(Ω) since T̃n ∈ [0, 1] and Ω is bounded.

Then according to the dominated convergence theorem, we get lim
n→+∞

∫
Ω

[
(c1 −R)2 − (c2 −R)2

]
T̃n dx =

∫
Ω

[
(c1 −R)2 − (c2 −R)2

] ¯̃T dx.

Moreover, T̃n − 1Ω̃ →
¯̃T − 1Ω̃ almost everywhere and |T̃n − 1Ω̃| ≤ 1 + 1Ω̃ ∈ L1(Ω) as

Ω̃ ⊂ Ω. Therefore, according to the dominated convergence theorem, we get lim
n→+∞

‖T̃n −

1Ω̃‖L1(Ω) = ‖ ¯̃T − 1Ω̃‖L1(Ω).

Thus by combining the previous results, we get lim inf
n→+∞

E(T̃n) ≥ E( ¯̃T ) and so inf
0≤T̃≤1

E(T̃ ) ≥

E( ¯̃T ) for any c1, c2 ∈ R. But, for every n ∈ N, T̃n ∈ [0, 1] almost everywhere and there

exists a subsequence of {T̃n} still denoted by {T̃n} such that T̃n → ¯̃T almost everywhere

which implies ¯̃T ∈ [0, 1] almost everywhere. So E( ¯̃T ) = inf
0≤T̃≤1

E(T̃ ). We thus have proved

the existence of minimizers for the problem (PT1) and the infimum is attained for any
c1, c2 ∈ R and any γ, a ∈ R+.
Let us now introduce the geometric functional MS(Σ) = Perg(Σ; Ω) + a

∫
Σ(c1−R)2 dx+

a
∫

Ω\Σ(c2−R)2 dx+γ|Σ∆Ω̃| with Perg(Σ; Ω) =
∫

Ω∩∂Σ g ds = |∂Σ|(Ω; g) with the notation

of [10, Remark 10] and ∆ denoting the symmetric difference. We aim to find a relation
between E(.) and MS(.). Let c1, c2 ∈ R and γ, a ∈ R+. To do so, we express each term
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of E(u) in a geometrical way keeping in mind that 0 ≤ u ≤ 1 :

varg u =

∫
Ω
g d|Du|,

=

∫ 1

0

(∫
Ω
g d|D 1Σκ:={x :u(x)>κ}|

)
dκ,

since g is continuous so is a Borel function and u ∈ BV (Ω, g) ⊂ BV (Ω) ,

=

∫ 1

0
varg 1Σκ:={x :u(x)>κ} dκ,

=

∫ 1

0
|∂Σκ|(Ω; g) dκ,

=

∫ 1

0

(∫
Ω∩∂Σκ

g ds

)
dκ,

=

∫ 1

0
Perg(Σκ := {x : u(x) > κ}; Ω) dκ,

according to Baldi’s work in [10] and [10, Remark 10] and using the coarea formula from
[6, Theorem 10.3.3]. Considering 0 ≤ u(x) ≤ 1, for almost every x ∈ Ω, we get:

∫
Ω

(c1 −R(x))2u(x)dx =

∫
Ω

(c1 −R(x))2

∫ 1

0
1[0;u(x))(κ) dκ dx,

=

∫ 1

0

∫
Ω

(c1 −R(x))21[0;u(x))(κ) dx dκ by Fubini-Tonelli theorem,

=

∫ 1

0

∫
Ω∩{x :u(x)>κ}

(c1 −R(x))2 dx dκ.∫
Ω

(c2 −R(x))2u(x) dx =

∫
Ω

(c2 −R(x))2

∫ 1

0
1[0;u(x))(κ) dκ dx,

=

∫ 1

0

∫
Ω∩{x :u(x)>κ}

(c2 −R(x))2 dx dκ by Fubini-Tonelli theorem,

= c−
∫ 1

0

∫
Ω∩{x :u(x)>κ}c

(c2 −R(x))2 dx dκ,

with c =

∫
Ω

(c2 −R(x))2 dx independent of u.

With s = 1Ω̃,

∫
Ω
|u(x)− s(x)| dx =

∫
Ω∩{x :u(x)>s(x)}

|u(x)− s(x)| dx,

+

∫
Ω∩{x :u(x)<s(x)}

|u(x)− s(x)| dx,
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=

∫
Ω∩{x :u(x)>s(x)}

∫ u(x)

s(x)
dκ dx+

∫
Ω∩{x:u(x)<s(x)}

∫ s(x)

u(x)
dκ dx,

=

∫ 1

0

∫
Ω
1{x :u(x)>s(x)}(x)1[s(x),u(x))(κ)

+1{x :u(x)<s(x)}(x)1[u(x),s(x))(κ) dx dκ by Fubini-Tonelli theorem.

Furthermore, the following equalities hold:

1{x :u(x)>s(x)}(x)1[s(x);u(x))(κ) =


1, if and only if x ∈ {x : u(x) > s(x)}

∩{x : s(x) > κ}c
∩{x : u(x) > κ}

0, otherwise

,

and 1{x :u(x)<s(x)}(x)1[u(x);s(x))(κ) =


1, if and only if x ∈ {x : u(x) < s(x)}

∩{x : s(x) > κ}
∩{x : u(x) > κ}c

0, otherwise

.

It means that 1{x :u(x)>s(x)}(x)1[s(x);u(x))(κ)+1{x :u(x)<s(x)}(x)1[u(x);s(x))(κ) = 1{x :u(x)>κ}∆{x : s(x)>κ}
(x) = 1({x :u(x)>κ}\{x : s(x)>κ})∪({x : s(x)>κ}\{x :u(x)>κ})(x). Then it follows that:∫

Ω
|u(x)−s(x)| dx =

∫ 1

0
|{x : u(x) > κ}∆ {x : s(x) > κ}| dκ =

∫ 1

0
|{x : u(x) > κ}∆ Ω̃| dκ.

By gathering the previous equations and setting Σκ = {x : u(x) > κ}, we get that

∀u ∈ BV (Ω) such that 0 ≤ u(x) ≤ 1 a.e., E(u) = varg u + a

∫
Ω

[
(c1 − R(x))2 − (c2 −

R(x))2
]
u(x) dx+ γ‖u− s‖L1(Ω) =

∫ 1

0

[
Perg(Σκ; Ω) + a

∫
Σκ

(c1−R(x))2 dx+ a

∫
Ω\Σκ

(c2−

R(x))2 dx+ γ|Σκ∆Ω̃|
]
dκ− c =

∫ 1

0
MS(Σκ) dκ− c.

Let us now consider the following geometric problem for any c1, c2 ∈ R and γ, a ∈ R+.

min
Σ
MS(Σ) (PG)

Let uc1,c2 be a minimizer of E(.) and Σκ = {x : uc1,c2(x) > κ} for almost every κ ∈ [0, 1].

According to this equality E(u) =
∫ 1

0 MS(Σκ) dκ− c, if uc1,c2 is a minimizer of E(.) then
necessarily for almost every κ ∈ [0, 1], the set Σκ is a minimizer of (PG). As for any
c1, c2 ∈ R and γ, a ∈ R+ there exists at least one minimizer for (PT1) then necessarily,
there exists at least one minimizer for (PG). Let Σ∗ be one of them. Then, for almost
every κ ∈ [0, 1], we have MS(Σκ) ≥MS(Σ∗). It yields E(uc1,c2) ≥ E(1Σ∗). As uc1,c2 is a
minimizer of E(.) then 1Σ∗ is also a minimizer of E(.) and E(1Σ∗) = E(uc1,c2).
Eventually, 1Σκ is a minimizer of E(.) for almost every κ ∈ [0, 1].

In practice, it means that once T̃ is computed, for almost every κ ∈ [0, 1], the char-
acteristic function χ{x | T̃ (x)>κ} provides a segmentation of the Reference image. It also
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A nonlocal joint segmentation/registration model

justifies the use of an L1-penalization term to ensure that T̃ remains close to T ◦ ϕ. We
now concentrate upon the minimization problem in T̃ for fixed ϕ.

Following the same strategy as Bresson et al. in [15], we introduce another auxiliary
variable f such that the problem in T̃ amounts to minimizing

inf
T̃ ,f

∫
Ω
g(x)

[∫
Ω

|T̃ (y)− T̃ (x)|
|x− y|

ρn(|x− y|) dy

]
dx+a

∫
Ω

[
(c1−R(x))2−(c2−R(x))2

]
T̃ (x) dx+

γ‖f‖L1(Ω) +
1

2θ
‖T̃ − T ◦ ϕ+ f‖2L2(Ω).

As for the minimization in T̃ , two lines of research have been investigated. First, a
standard subgradient descent approach has been considered as in [9], based on a finite
element type scheme inspired by estimations appearing in electromagnetism. (The func-
tion t 7→ |t| being not differentiable but subdifferentiable with subdifferential [−1, 1], a
differential inclusion must be solved for fixed n). Because of the singularity of the kernel,
classical finite difference schemes would fail to provide a suitable approximation. The
image domain is thus discretized using a triangulation. Interpolation schemes allow to
derive explicit expressions of the contribution on each triangle for given x, and then, sum-
ming these contributions over each triangle for given x yields an estimation of the integral
(see [9, Section 5] for additional comments). However, this kind of implementation raises
some issues :

(i) first, it is computationally expensive as stressed in [9];

(ii) second, while the last three properties of the kernel ρn are consistent with the discrete
setting —the weights are non-negative in practice, normalized and concentrated near
the current window center, the radial symmetry of the kernel ρn is not relevant for
imaging problems (see [51, Subsection 5.7]): we would like to define a nonlocal
version of the weighted BV semi-norm at given point x that grants more weight to
points that belong to the same region as x (not only based on the difference between
intensities, but for instance on the difference between patches around those points
and not favouring spatial proximity). This is the second limitation of the theoretical
model we identified that pushed us to reconsider the definition of the weights and
to find a numerical compromise.

We stress that an implementation of the above algorithm based on a finite element type
scheme as in [9] has been made, but it does not provide satisfactory results, which again
strenghtened the necessity of redefining the weights. We also would like to point out that
to the best of our knowledge, this assumption of radiality cannot be removed (see in par-
ticular [27], [52] or [58]). The computation code can be made available if required. At last
and for the sake of completeness, we would like to point that in [13], Boulanger et al. have
generated numerical schemes for the computation of the nonlocal BV semi-norm in an im-
plementation of a standard steepest gradient algorithm for one-dimensional total variation
minimization. It is based on the derivation of a particular sequence of kernel functions,
and for the transition to the discrete setting, on the approximation of any L1-function
by piecewise constant functions. No extension and applications to higher dimensions are
investigated.
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3. Numerical method of resolution

Equipped with these observations and arguments, and remarking that our nonlocal
term has strong similarities with the contribution by Jung et al. ([39]) dedicated to the
derivation of a nonlocal version of Mumford-Shah regularizers (the scalar-valued edge map
v stemming from the Ambrosio-Tortorelli elliptic approximation can be related to our func-
tion g), we propose an implementation that encompasses this requirement of putting more
weight to points that have similar geometrical configurations. Motivated by the definition
of the nonlocal gradient by Gilboa and Osher [36] and by the contribution [39], we suggest
considering the following nonlocal regularizer (which satisfies the properties of a semi-

norm)
∫

Ω g(x)
√∫

Ω (T̃ (y)− T̃ (x))2w(x, y) dy dx, with w : Ω×Ω→ R a nonnegative, sym-

metric weight function chosen to depend on R : Ω̄→ R by w(x, y) = exp−
(
da(R(x),R(y))

h2

)
,

with da(R(x), R(y)) =
∫

R2 Ga(t)|R(x+ t)−R(y+ t)|2 dt, Ga being a Gaussian kernel with
standard deviation a determinining the patch size, and h the filtering parameter. For a
fixed pixel x ∈ Ω, the search window S(x) = {y ∈ Ω | |x− y| ≤ r} is considered rather
than the whole domain Ω to compute w(x, y).

This leads to the introduction of Algorithm 5 provided on the next page.
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A nonlocal joint segmentation/registration model

1. Define k := 1, T := Template image, R := Reference image, T̃ := T ,

V =

(
V11 V12

V21 V22

)
:= I, g := 1

1+c|∇R|2 , a, ν, λ, µ, ρ, γ, nbIter, θ, w := window size, p :=

patch size, h := 0.25, ϕ = (ϕ1, ϕ2) := Id.
2. Compute the nonlocal weights:
ρn(|x−y|)
|x−y| ≈ w(x, y) = exp

{
−
∫
ΩGh(z)|R(x+z)−R(y+z)|2 dz

h2

}
, with Gh, Gaussian kernel of

mean 0 and standard deviation h (see 9 for the computation of theses weights).
while k < nbIter do

3.1. For each pixel (i, j), update V using the following equations:

V11(i, j) = ( 1
1+dtγ )

(
V11(i, j) + dt

(
− µ(detV (i, j)− 2)V22(i, j)

−2β c0 V11(i, j) (c0 δε(c0) + 2Hε(c0)) + γ ∂ϕ1

∂x (i, j)
))

V12(i, j) = ( 1
1+dtγ )

(
V12(i, j) + dt

(
µ(detV (i, j)− 2)V21(i, j)

−2β c0 V12(i, j) (c0 δε(c0) + 2Hε(c0)) + γ ∂ϕ1

∂y (i, j)
))

V21(i, j) = ( 1
1+dtγ )

(
V21(i, j) + dt

(
µ(detV (i, j)− 2)V12(i, j)

−2β c0 V21(i, j) (c0 δε(c0) + 2Hε(c0)) + γ ∂ϕ2

∂x (i, j)
))

V22(i, j) = ( 1
1+dtγ )

(
V22(i, j) + dt

(
− µ(detV (i, j)− 2)V11(i, j)

−2β c0 V22(i, j) (c0 δε(c0) + 2Hε(c0)) + γ ∂ϕ2

∂y (i, j)
))

,

with c0 := c0(i, j) = ‖V ‖2(i, j)− α.

3.2. Update c1 :=

∑
i,j
R(i,j)Hε(T̃ (i,j)−ρ)∑
i,j
Hε(T̃ (i,j)−ρ)

and c2 :=

∑
i,j
R(i,j)(1−Hε(T̃ (i,j)−ρ))∑
i,j

(1−Hε(T̃ (i,j)−ρ))
.

3.3. Solve the Euler-Lagrange equation in ϕ using an L2 gradient flow scheme with
an implicit Euler time stepping:

0 = ν(T ◦ ϕ−R)∇T (ϕ)− γ∆ϕ+ γ

(
divV1

divV2

)
− 1

θ (f − T ◦ ϕ+ T̃ )∇T (ϕ), where Vi

stands for the ith row of V .

3.4. Compute the norm N(x) :=

√∫
Ω
|T̃ (y)− T̃ (x)|2w(x, y) dy.

3.5. Update T̃ with the following equation:

T̃ (x) = T̃ (x) + dt

∫
Ω

(T̃ (y)− T̃ (x))

(
g(y)

N(y)
+

g(x)

N(x)

)
w(x, y) dy − dt

θ
(T̃ (x)− T ◦

ϕ(x) + f(x))− adt
[
(c1 −R(x))2 − (c2 −R(x))2

]
.

3.6. Update f :=


T ◦ ϕ− T̃ − θγ if T ◦ ϕ− T̃ ≥ θγ,
T ◦ ϕ− T̃ + θγ if T ◦ ϕ− T̃ ≤ −θγ,

0 otherwise.
if min

i,j
det∇ϕ(i, j) < tol then

3.7.1. Apply a regridding step (see Algorithm 7).
end if
3.8. k := k + 1.

end while
return T ◦ ϕ, V , T̃ , c1, c2, f .

Algorithm 5: Alternating scheme of resolution.
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3. Numerical method of resolution

In Algorithm 6, we illustrate the computation of the nonlocal weights inspired by the
NL-means algorithm.

1. Define w := window size, p := patch size, h := 0.25, NbNeigh := number of actual
required neighbors including the four closest ones, Nx := number of horizontal pixels,
Ny := number of vertical pixels.
2. Compute the extended image by symmetry.
for all pixels x do

3.1. Compute the distance dh(R(x), R(y)) between all patches centered at y of size p
inside the window with size w centered at the current x and the patch centered at
the current x.

end for
for all pixels x do

4.1. Sort the previous distances in ascending order and keep only the lowest
NbNeigh− 4 values with the corresponding coordinates.
4.2. Add the four closest neighbors in a geographical sense to make the weights

w(x, y) more similar to the theoretical ones
ρ(|x− y|)
|x− y|

.

end for
for all pixels x do

5.1. Compute w by the following formula: w(x, y) = 0 if y does not belong to the

previous list of neighbors, w(x, y) = exp
{
−dh(R(x),R(y))

h2

}
otherwise.

end for
return w.

Algorithm 6: Computation of the nonlocal weights following Bresson et al. [39].

Besides, even if we added a term penalizing the determinant of the Jacobian of the deforma-
tion, there is no guaranty that it remains positive. That is why we introduce a regridding
step to ensure the preservation of the topology whose algorithm follows (Algorithm 7).

if at stage k, det∇ϕ < tol then
1. regrid count = regrid count+ 1.
2. T = T ◦ ϕk−1.
3. Save tab ϕ(regrid count) = ϕk−1, ϕk = Id, V k = I.
4. Continue the loop on k.

end if
if at the end of the loop on k, regrid count > 0 then

5. ϕfinal = tab ϕ(1) ◦ · · · ◦ tab ϕ(regrid count)
end if

Algorithm 7: Regridding step.
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A nonlocal joint segmentation/registration model

The next section is devoted to the analysis of numerical experiments on a toy example
and then on medical images. The computations have been made on a quad-core com-
puter with 2.0 GHz Intel(R) Xeon(X) CPU E5-2620 processor and 32 GB memory, using
OpenMP and the package MUMPS (MUltifrontal Massively Parallel Solver). The ques-
tion of assessing the proposed model encompasses several levels of discussion and angles of
inquiry : the evaluation of the method accuracy according to some qualitative criteria and
with respect to comparable joint segmentation/registration models, and the evaluation of
each novel component of the introduced functional in comparison to classical ones. These
two main levels of discussion dictate the structure of the section.

The first subsection is dedicated to the evaluation of the method accuracy and to the
quantification of the gain related to the inclusion of the nonlocal shape descriptor com-
pared with the prior work [49]. Two implementations of the weighted total variation are
analyzed: first, in terms of segmentation accuracy and second, in terms of computational
cost and convergence speed.

The second subsection allows to highlight the relevance of the nonlinear elasticity
based regularizer compared to classical regularizers leading to linear terms with respect to
derivatives in the Euler-Lagrange equation and the relevance of the dissimilarity measure
combining the weighted total variation and a nonlocal shape descriptor (both in terms of
accuracy and in terms of convergence speed).

4 Experimental results

4.1 Qualitative assessment of the proposed model

The proposed method has been evaluated on a toy (geometrical) example and on medical
images. In order to fairly compare our method with the one in [49], in addition to the
implementation of the nonlocal version of the weighted total variation, a local implemen-
tation based on the dual formulation of the weighted total variation and on a decoupling
principle (yielding asymptotic results) has been investigated. In the remainder of the
manuscript, ‘our method L’ will refer to the local implementation, while ‘our method NL’
will stand for the nonlocal numerical scheme depicted above. To assess the intrinsic perfor-
mance of our algorithms (i.e. registration and segmentation accuracy), two measurements
have been performed. First, we computed the Dice coefficient ([31]) which measures set
agreement (after binarizing R, T ◦ ϕ and T̃ by thresholding) between R and T ◦ ϕ to
estimate the quality of registration, and then between R and T̃ to appraise the accuracy
of segmentation. This coefficient is a quantification of spatial overlap widely used for com-
paring segmentation results. The closest it is to 1, the better the matching is between two
sets, emphasizing thus in our case segmentation and registration accuracy. Second, the
mutual information was computed to measure image alignment. The mutual information
between two random variables quantifies their dependence: larger mutual information in-
dicates better matching (see Table 4.2). As this work primarily focuses on a combined
registration/segmentation model, which means in particular that accurate segmentation
results drive the registration process, providing a reliable deformation field between en-
coded structures based on shape pairing, it sounded relevant for us to assess the accuracy
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4. Experimental results

of the method with a tool measuring the degree of overlap of the shapes. We thus fa-
vored in the study the Dice coefficient that encompasses both this notion of set agreement
(rather than pointwise intensity comparison) and nonlocality, to the detriment of mutual
information, which to our point of view is more based on local intensity comparison (since
it uses the pixel intensities themselves) and does not take into account the geometry of
the structures.

Both implementations of our method give similar numerical results and outperform
those in [49] (the best obtained result is always used for comparison) in terms of segmen-
tation and registration accuracy with in particular the capture of small details and thin
structures (as exemplified in Figure 4.2 (g) (m) (s), where method [49] fails to delineate
small details, or in Figure 4.9 (s) where method [49] fails to correctly capture the fine ex-
crescence), and the restitution of a more faithful simplified version of the Reference image
(yielding a more relevant decomposition of the Reference image with an oscillating part
containing suitable features as in Figure 4.2 (f), (l)). These elements are corroborated
visually first, and by the computation of the Dice coefficient demonstrating that the in-
clusion of the nonlocal information provides better results. An exhaustive analysis and a
systematic comparison with the prior work [49] has been carried out and are summarized
in Table 4.1. In order to obtain the segmentation of the Reference image, the contour

corresponding to the level line
{
T̃ = 0.3

}
of T̃ is displayed. Note also that if the intro-

duced model is highly non convex (yielding potentially many local minima), in practice
nevertheless, the algorithm has the tendency to compute a global minimizer.

For the sake of reproducibility, we provide in Table 4.3 the values of the tuning param-
eters involved. The ranges of these parameters are rather stable for all the experiments.
Parameter ν balancing the L2-fidelity term is between 0.5 and 10, while parameter a
weighting the nonlocal shape descriptor is between 1 and 100. They should be optimized
according to each image content, taking into account the complexity of the image and
the similarity to binary images. When a binary criterion emerges naturally, we value
the nonlocal shape descriptor by assigning a larger value to a over ν, whereas ν is set
to bigger values when complex topologies are involved. The Lamé coefficient λ is set for
general images to 10 (it has no physical meaning but is related to Poisson’s ratio, measure
of Poisson’s effect which can be regarded as the ability of a material compressed in one
direction to expand in the other —this choice of λ is not physically inconsistent —) so
as ρ and c set to 0.5 and 10 to discriminate two regions in images with intensity values
between 0 and 1 and to stabilize the computation of the weight g. Coefficients θ, γ1 and
γ2 ensuring the proximity between auxiliary variables and the original ones vary in small
ranges, namely 0.1/1, 80000/90000 and 0.05/0.25 respectively and can be set for each class
of images. Parameter θ is small so that we almost have T ◦ϕ = T̃ + f , T̃ representing the
geometric information of T ◦ ϕ, while f captures the texture information. Coefficients p
between 3 and 7 and w between 9 and 15 are related to the nonlocal algorithm and should
be optimized according to the level of noise and the scale of fine details in images. From
our experience, one of the parameters that proves to be the most sensitive is the Lamé
coefficient µ between 750 and 5000. It can be viewed as a measure of rigidity. The greater
parameter µ is, the more rigid the deformation is, which is relevant if we aim to obtain
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a smooth and topology-preserving deformation map. This observation also encompasses
intrinsically the main difficulty related to parameter tuning, namely, how to find a proper
trade-off between accurate image alignment (which means authorizing large deformations)
and topology or orientation preservation (which means monitoring the Jacobian determi-
nant by limiting shrinkage and growth). Indeed, if µ is chosen too small, the deformation
may lose its injectivity property, which manifests through overlaps/folds on the deforma-
tion grid, while if chosen too big, the registration accuracy may be impaired. In addition
to the parameter setting, we have reported in the last column of 4.3 the minimum of the
Jacobian determinant to ensure mechanic soundness of the obtained deformation. As for
the layout of the figures, we choose a row-wise representation of the results for each me-
thod, with a column-wise alignment of the corresponding results for each method, except
in Figure 4.3 where we compare the results component by component. We now go through
each numerical simulation in depth.

As a preamble and to validate the algorithm, the model has been applied on a toy
geometrical example (Figure 4.1) to emphasize the ability of the model to generate large
deformations and to handle data corrupted by noise. In addition to a smooth deformation
field, the algorithm (the nonlocal implementation here) produces a restored version of
the Reference, restitutes the angles as well as the straight lines more accurately than
with [49]. The method has then been applied on MRI images of a patient cardiac cycle
(4.2, Figure 4.3, Figure 4.4 and Figure 4.5). We were supplied with a whole cardiac
MRI examination of a patient (courtesy of the LITIS, University of Rouen, France). It is
made of 280 images divided into 14 levels of slice and 20 images per cardiac cycle. The
numbering of the images goes from 0 to 279, and includes both the slice number and the
time index. The image 0 is set at the upper part of the heart and the sequence from image
0 to image 19 contains the whole cardiac cycle for this slice. The sequence from images 20
to 39 contains the whole cardiac cycle for the slice underneath the previous one and so on.
A cardiac cycle is composed of a contraction phase (40% of the cycle duration), followed
by a dilation phase (60% of the cycle duration). The first image of the sequence (frames
0, 20, 40, etc.) is when the heart is most dilated (end diastole - ED) and the 8th of the
sequence (end systole - ES) is when the heart is most contracted. It thus seemed relevant,
in order to assess the accuracy of the proposed algorithm in handling large deformations,
to register a pair of the type: Reference corresponding to end diastole (ED), that is the
first image of a sequence, and Template corresponding to end systole (ES), that is the
8th frame of the same sequence. This corresponds to the results depicted in Figure 4.2,
Figure 4.4 and Figure 4.5. For each example and for each model (our algorithm with
the nonlocal implementation of the weighted total variation, our algorithm with the local
implementation and the algorithm in [49]), we provide the Reference R, the Template T ,
the binary Reference obtained thanks to c1 and c2 which is rescaled to 0 − 1 from the
nonlocal numerical method, the deformed template, the deformation grid which does not
exhibit any overlap (yielding thus the physical well-definedness of the deformation), T̃ the
simplified version of the deformed Template, the segmentation of the Reference obtained
thanks to T̃ and the oscillatory part resulting from R− T̃ . As previously mentioned, the
obtained results outperform those in [49], both in terms of segmentation and registration
accuracy. Visually first, with the capture of small details and thin/long structures, in
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Toy example Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.76517 0.9783 0.98016

Heart ED(108)-ES(100) Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.54366 0.95304 0.99131

Our method L 0.54366 0.93833 0.99137

Method in [49] 0.54366 0.93322 0.95372

Method L2 −QW 0.54366 0.94844 x

Method L2 −H2 0.54366 0.9161 x

Heart ES(100)-ED(108) (inverse consistency) Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.4915 0.95032 0.9749

Our method L 0.4915 0.93361 0.97643

Heart ED(128)-ES(120) Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.48222 0.9566 0.98107

Our method L 0.48222 0.95744 0.97563

Method in [49] 0.48222 0.95608 0.95806

Method L2 −QW 0.48222 0.95408 x

Method L2 −H2 0.48222 0.94417 x

Heart ED(148)-ES(140) Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.46821 0.96274 0.99206

Our method L 0.46821 0.96372 0.99557

Method in [49] 0.46821 0.95563 0.94701

Method L2 −QW 0.546821 0.96005 x

Method L2 −H2 0.46821 0.93735 x

Slice of brain 1 Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.68524 0.96778 0.99642

Our method L 0.68524 0.96273 0.9888

Method in [49] 0.68524 0.96499 0.96637

Method L2 −QW 0.68524 0.96451 x

Method L2 −H2 0.68524 0.82455 x

Slice of brain 1 (inverse consistency) Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.71571 0.97161 1

Our method L 0.71571 0.97536 1

Method in [49] 0.71571 0.97284 0.99036

Slice of brain 2 Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.93595 0.98357 0.98509

Our method L 0.93595 0.98341 0.98087

Method in [49] 0.93595 0.9818 0.78033

Brain tumor Dice(R,T) Dice(R, T◦ϕ) Dice(R, T̃)

Our method NL 0.59918 0.94309 0.98262

Our method L 0.59918 0.94302 0.98432

Method in [49] 0.59918 0.94213 0.9548

Method L2 −QW 0.59918 0.93708 x

Method L2 −H2 0.59918 0.84553 x

Table 4.1: Dice coefficients.
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Toy example MI(R, T) MI(R, T◦ϕ)

Our method NL 0.5140 0.7433

Heart ED(108)-ES(100) MI(R, T) MI(R, T◦ϕ)

Our method NL 0.9313 1.1930

Our method L 0.9313 1.1857

Heart ES(100)-ED(108) (inverse consistency) MI(R, T) MI(R, T◦ϕ)

Our method NL 0.9313 1.2067

Our method L 0.9313 1.2021

Heart ED(128)-ES(120) MI(R, T) MI(R, T◦ϕ)

Our method NL 0.9871 1.2960

Our method L 0.9871 1.2920

Heart ED(148)-ES(140) MI(R, T) MI(R, T◦ϕ)

Our method NL 1.0479 1.3034

Our method L 1.0479 1.3020

Slice of brain 1 MI(R, T) MI(R, T◦ϕ)

Our method NL 0.6282 0.9689

Our method L 0.6282 0.9668

Slice of brain 1 (inverse consistency) MI(R, T) MI(R, T◦ϕ)

Our method NL 0.6282 0.8332

Our method L 0.6282 0.8364

Slice of brain 2 MI(R, T) MI(R, T◦ϕ)

Our method NL 1.4617 1.5076

Our method L 1.4617 1.5062

Brain tumor MI(R, T) MI(R, T◦ϕ)

Our method NL 0.3336 0.3953

Our method L 0.3336 0.3984

Table 4.2: Mutual information.
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Toy example ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 1 1 0.1 80000 1000 10 10 1 0.5 11 5 0.0686

Heart ED(108)-ES(100) ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 2 1 0.25 90000 1000 10 10 40 0.5 11 5 0.0430

Our method L 9 0.1 0.25 90000 3500 10 10 40 0.5 x x 0.0264

Method in [49] 2 0.25 0.1 90000 3500 10 10 x x x x 0.0024

Heart ES(100)-ED(108) ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 2 1 0.25 90000 2000 10 10 20 0.5 11 5 0.0517

Our method L 10 0.1 0.1 90000 1000 10 10 20 0.5 x x 0.0678

Heart ED(128)-ES(120) ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 4 1 0.08 90000 1000 10 10 10 0.5 11 5 0.0372

Our method L 4 1 0.1 90000 1000 10 10 10 0.5 x x 0.0359

Method in [49] 10 0.1 0.1 90000 1000 10 10 x x x x 0.0233

Heart ED(148)-ES(140) ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 2 1 0.25 90000 1000 10 10 50 0.5 11 5 0.0380

Our method L 2 1 0.25 90000 1000 10 10 50 0.5 x x 0.0445

Method in [49] 5 0.1 0.1 90000 1000 10 10 x x x x 0.0554

Slice of brain 1 ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 1.2 1 0.1 80000 750 10 10 100 0.5 9 7 0.0290

Our method L 1.5 1 0.05 80000 1000 10 10 1 0.5 x x 0.0388

Method in [49] 1 0.1 0.1 80000 1000 10 10 x x x x 0.0635

Slice of brain 1 ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

(inverse consistency)

Our method NL 3 1 0.1 80000 5000 10 10 100 0.5 11 5 0.0012

Our method L 2.5 1 0.1 80000 5000 10 10 10 0.5 x x 0.0039

Method in [49] 2 1 0.1 80000 4000 10 10 x x x x 0.0058

Slice of brain 2 ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 0.5 1 0.1 80000 1000 10 10 1.5 0.5 11 5 0.6152

Our method L 0.5 1 0.1 80000 1000 10 10 1.5 0.5 x x 0.6142

Method in [49] 0.5 1 0.1 80000 1000 10 10 x x x x 0.6733

Brain tumor ν θ γ1 γ2 µ λ c a ρ w p min{det∇ϕ}

Our method NL 2.5 1 0.1 80000 820 10 10 2.7 0.5 15 3 0.0124

Our method L 2 1 0.1 80000 900.05 10 10 3 0.5 x x 0.0953

Method in [49] 2.3 1 0.1 80000 802.9 10 10 x x x x 0.0488

Table 4.3: Parameters.
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the restitution of a more faithful simplified version of the Reference image yielding a
more relevant oscillatory part in the decomposition phase, and at last, in a more regular
distribution of the Jacobian determinants particularly with the nonlocal algorithm. These
observations are then corroborated by the computation of the Dice coefficient leading
systematically to better results (see again Table 4.1). To assess the inverse consistency,
we switched the role of the Template and the Reference in Figure 4.3. The deformed
grid associated with ϕ (Reference to Template, straightforwardly given by ϕ) is naturally
depicted. To fairly assess inverse consistency, we also depicted the deformed grid associated
with ϕ−1 (Template to Reference, computed using interpolation techniques) and displayed
R ◦ ϕ−1, to be compared with T .

(a) R (b) T (c) Binary Refe-
rence (rescaled)
NL

(d) T ◦ ϕ NL (e) Deformation
grid NL

(f) T̃ NL (g) Segmented
Reference NL

Figure 4.1: Toy example (size : 200 × 200), NL execution time : 137s.

The method has also been applied to complex slices of brain data (Figure 4.6) (courtesy
of Laboratory Of NeuroImaging, UCLA). We aim to register a tore to the slice of brain
with topology preservation to demonstrate the ability of the algorithm to handle complex
topologies. This illustration constitutes a preamble to the extension of the model to
3D. Due to the spherical topology of the human cortex, a relevant application would
consist in applying the method to a human cortex and a sphere, in making the desired
computations and numerical analysis on the sphere (rather than on the cortex), and in
recovering the desired quantifiers for the cortex thanks to the inverse mapping. The
results are very satisfactory on these examples since the deformed Template matches very
well the convolutions of the brain and the thin concavities. The model also allows for
the delineation of small holes and thin structures as the larger hole inside the slice more
accurately than with [49], for which the inside hole exhibits a bump and is not as thin as
it should be in the right extremity.

To assess again inverse consistency, we switched the role of the Template and the
Reference in Figure 4.7, resulting in a more accurate alignment of R and T ◦ ϕ with the
proposed method and fewer artifacts on T ◦ ϕ in the central hole, unlike method [49].

In Figure 4.8, we aim to map a slice of a brain to another one (courtesy of Laboratory
Of NeuroImaging, UCLA). The obtained simplified version T̃ of R is more faithful to
reality with the proposed model including the nonlocal shape descriptor and restitutes
better the fine details of the complex topology: the segmentation delineates well the long
and thin concavities.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Defor-
mation grid
NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i) T ◦ ϕ L (j) Deformation
grid L

(k) T̃ L (l) R− T̃ L (m) Segmented
Reference L

(n) Binary Refe-
rence (rescaled) L

(o) T◦ϕ from [49] (p) Deforma-
tion grid from
[49]

(q) T̃ from [49] (r) R − T̃ from
[49]

(s) Segmented
Reference from
[49]

(t) T ◦ ϕ with

L2 −QW

(u) T ◦ ϕ with

L2 −H2

(v) R and the
deformation grid
with L2 −H2

Figure 4.2: Mapping of cardiac MRI images (ED(108)-ES(100)) (size : 150 × 150), NL
execution time : 123s, L execution time : 891s.
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(a) R (b) T (c) T ◦ ϕ NL (d) T ◦ ϕ L (e) Deformation
grid NL

(f) Deformation
grid L

(g) Inverse defor-
mation grid NL

(h) Inverse defor-
mation grid L

(i) T̃ NL (j) T̃ L (k) R− T̃ NL (l) R− T̃ L

(m) Segmented
Reference NL

(n) Segmented
Reference L

(o) Binary Re-
ference (rescaled)
NL

(p) Binary Refe-
rence (rescaled) L

(q) R ◦ ϕ−1 NL (r) R ◦ ϕ−1 L

(s) R ◦ ϕ−1 NL
from Figure 4.2

(t) R ◦ ϕ−1 L
from Figure 4.2

Figure 4.3: Mapping of cardiac MRI images (ES(100)-ED(108)) (size : 150 × 150), NL
execution time : 123s, L execution time : 891s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Defor-
mation grid
NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i) T ◦ ϕ L (j) Deformation
grid L

(k) T̃ L (l) R− T̃ L (m) Segmented
Reference L

(n) Binary Refe-
rence (rescaled) L

(o) T◦ϕ from [49] (p) Deforma-
tion grid from
[49]

(q) T̃ from [49] (r) R − T̃ from
[49]

(s) Segmented
Reference from
[49]

(t) T ◦ ϕ with

L2 −QW
(u) Deforma-
tion grid with
L2 −QW

(v) T ◦ ϕ with

L2 −H2

(w) R and the
deformation grid
with L2 −H2

Figure 4.4: Mapping of cardiac MRI images (ED(128)-ES(120)) (size : 150 × 150), NL
execution time : 123s, L execution time : 891s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Defor-
mation grid
NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i) T ◦ ϕ L (j) Deformation
grid L

(k) T̃ L (l) R− T̃ L (m) Segmented
Reference L

(n) Binary Refe-
rence (rescaled) L

(o) T◦ϕ from [49] (p) Deforma-
tion grid from
[49]

(q) T̃ from [49] (r) R − T̃ from
[49]

(s) Segmented
Reference from
[49]

(t) T ◦ ϕ with

L2 −QW
(u) Deforma-
tion grid with
L2 −QW

(v) T ◦ ϕ with

L2 −H2

(w) R and the
deformation grid
with L2 −H2

Figure 4.5: Mapping of cardiac MRI images (ED(148)-ES(140)) (size : 150 × 150), NL
execution time : 123s, L execution time : 891s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Deformation
grid NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i) T ◦ ϕ L (j) Deformation
grid L

(k) T̃ L (l) R− T̃ L (m) Segmented
Reference L

(n) Binary Refe-
rence (rescaled) L

(o) T ◦ϕ from [49] (p) Deformation
grid from [49]

(q) T̃ from [49] (r) R − T̃ from
[49]

(s) Segmented
Reference from
[49]

(t) T ◦ ϕ with

L2 −QW
(u) Deformation

grid with L2 −
QW

(v) T ◦ ϕ with

L2 −H2

(w) R and the
deformation grid
with L2 −H2

Figure 4.6: Mapping of a tore to a slice of a human brain (1) (size : 128 × 192), NL
execution time : 55s, L execution time : 361s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Deformation
grid NL

(e) Inverse defor-
mation grid NL

(f) T̃ NL (g) R− T̃ NL (h) Segmented
Reference NL

(i) Binary Re-
ference (rescaled)
NL

(j) T ◦ ϕ L (k) Deformation
grid L

(l) Inverse defor-
mation grid L

(m) T̃ L (n) R− T̃ L (o) Segmented
Reference L

(p) Binary Refe-
rence (rescaled) L

(q) T ◦ϕ from [49] (r) Deformation
grid from [49]

(s) Inverse defor-
mation grid from
[49]

(t) T̃ from [49] (u) R − T̃ from
[49]

(v) Segmented
Reference from
[49]

Figure 4.7: Mapping of a slice of a human brain to a tore (1 inverse consistency) (size :
128 × 192), NL execution time : 83s, L execution time : 328s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Defor-
mation grid
NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Refe-
rence (rescaled)
NL

(i) T ◦ ϕ L (j) Deformation
grid L

(k) T̃ L (l) R− T̃ L (m) Segmented
Reference L

(n) Binary Refe-
rence (rescaled)
L

(o) T ◦ ϕ from
[49]

(p) Deforma-
tion grid from
[49]

(q) T̃ from [49] (r) R − T̃ from
[49]

(s) Segmented
Reference from
[49]

Figure 4.8: Mapping of a slice of a human brain to another one (2) (size : 180 × 150), NL
execution time : 304s, L execution time : 378s.

The last numerical experiment is made of brain tumor images (Figure 4.9) taken at
different times in order to highlight the ability of the model to handle complex topologies
with thin tubes and concavities. The registration and segmentation accuracy are visually
better with the proposed model, in particular, in the restitution of the right excrescence
that is more faithful to reality and in the accuracy of the delineation of the left tube at
the bottom of the image (that is not divided into several pieces, contrary to the result
produced by method [49]).
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(a) R (b) T

(c) T ◦ ϕ NL (d) Deformation
grid NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i) T ◦ ϕ L (j) Deformation
grid L

(k) T̃ L (l) R− T̃ L (m) Segmented
Reference L

(n) Binary Refe-
rence (rescaled) L

(o) T◦ϕ from [49] (p) Deformation
grid from [49]

(q) T̃ from [49] (r) R − T̃ from
[49]

(s) Segmented
Reference from
[49]

(t) T ◦ ϕ with

L2 −QW
(u) Deformation

grid with L2 −
QW

(v) T ◦ϕ with L2−
H2

(w) R and the
deformations grid
with L2 −H2

Figure 4.9: Mapping of tumor brain images (size : 71 × 61), NL execution time : 18s, L
execution time : 167s.
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4.2 Quantitative and qualitative assessment of the functional compo-
nents

The question of assessing the relevance of the novel components constituting the consi-
dered functional is legitimate and takes on two main aspects: the relevance of the nonlinear
elasticity based regularizer compared to classical ones (such as diffusion, biharmonic, lin-
ear elasticity) that lead to linear terms with respect to the derivatives in ϕi, i ∈ {1, 2}
in the Euler-Lagrange equations, and the relevance of the dissimilarity measure based on
a combination of weighted total variation and nonlocal shape descriptors. For the study
of the relevance of the regularizer, we proceeded like in [49]. Due to the large amount
of literature in the field of registration, we had to make a choice as for the alternating
methods to be compared with our model. First, we decided to focus on non parametric
registration methods, category of methods we are familiar with (keeping in mind that we
implement the computer codes ex-nihilo by ourselves). In [43], Lin et al. first review
the most common and simplest regularization terms (diffusion, biharmonic, linear elas-
ticity models) that lead to linear terms with respect to derivatives in the Euler-Lagrange
equations. Then they introduce a nonlinear elasticity regularization based on the basic
Saint Venant-Kirchhoff stored energy function in order to allow for larger and smoother
deformations. The first conclusion is that, by comparison with image registration models
involving linear regularization, the nonlinear-elasticity-based model renders better ground
truth, produces larger mutual information and requires fewer numerical corrections such
as regridding steps. The second conclusion is that the biharmonic model is more compara-
ble to the nonlinear elasticity model, which motivated us to further examine its behaviour
compared with our model.

The first kind of experiment consisted of tuning off the dissimilarity measure, that is,
the combination of the weighted total variation and the nonlocal shape descriptor, model
denoted by L2 − QW in each case. In terms of quantitative accuracy, the proposed me-
thod gives better results with higher Dice coefficients (see Table 4.1). Visually, this is
particularly remarkable in Figure 4.5 (t), where the thin details inside the left ventricu-
lar cavity are not as accurately recovered as with the proposed method (in particular in
terms of thickness and sharpness), in Figure 4.6 (t) in which inside the larger hole the
right extremity becomes finer than it should be, in Figure 4.9 (t), where the excrescences
on the right-hand side, on the bottom left hand corner (particularly the upper part of the
tube that is not faithfully restored as in Figure 4.9 (i)) and on the top (particularly the
round shape and the sharp concavity not as faithfully restored as in 4.9 (c)) are not as
well recovered as with the proposed model. Besides, considering Figure 4.10–Figure 4.12,
we see that including the dissimilarity measure increases the speed of convergence: for the
same number of iterations (300), the L2-fidelity term alone cannot achieve registration
accurately. We observe that the L2-fidelity term decreases fastest with the nonlocal ver-
sion of the proposed algorithm. After a bigger number of iterations, the L2-fidelity term
is always slightly greater than the quantity obtained with the proposed model or with
[49]. We conducted a second kind of experiment, consisting both in replacing the nonlin-
ear elasticity-based regularizer by the biharmonic one and in removing the dissimilarity
measure (so keeping only the L2-fidelity term), model denoted by L2−H2. In the case of
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MRI images of a cardiac cycle(Figure 4.2, 4.4, 4.5), our algorithm produces larger defor-
mations and the obtained deformed Template aligns more accurately with the Reference
particularly in the left hand side and restitutes better the fine details. In Figure 4.6 (v),
for a comparable number of iterations, registration cannot be achieved successfully. In the
case of the brain tumor Figure 4.9, the obtained deformed Template (Figure 4.9 (v)) does
not capture the details of the tumor boundary, resulting in a significantly smaller Dice
coefficient. The right excrescence is not satisfactorily reproduced.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Deformation
grid NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i)
‖R − T ◦ ϕ‖2

L2(Ω)

NL

(j) T ◦ ϕ L (k) Deformation
grid L

(l) T̃ L (m) R− T̃ L (n) Segmented
Reference L

(o) Binary Refe-
rence (rescaled) L

(p) ‖R − T ◦
ϕ‖2
L2(Ω)

L

(q) T ◦ ϕ from
[49]

(r) Deformation
grid from [49]

(s) T̃ from [49] (t) R − T̃ from
[49]

(u) Segmented
Reference from
[49]

(v) ‖R − T ◦
ϕ‖2
L2(Ω)

from [49]

(w) T ◦ ϕ with

L2 −QW
(x) Deformation

grid with L2 −
QW

(y)
‖R − T ◦ ϕ‖2

L2(Ω)

with L2 −QW

Figure 4.10: Mapping of tumor brain images with 50 iterations (size : 71 × 61), NL
execution time : 1s, L execution time : 16s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Deformation
grid NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i)
‖R − T ◦ ϕ‖2

L2(Ω)

NL

(j) T ◦ ϕ L (k) Deformation
grid L

(l) T̃ L (m) R− T̃ L (n) Segmented
Reference L

(o) Binary Refe-
rence (rescaled) L

(p) ‖R − T ◦
ϕ‖2
L2(Ω)

L

(q) T ◦ ϕ from
[49]

(r) Deformation
grid from [49]

(s) T̃ from [49] (t) R − T̃ from
[49]

(u) Segmented
Reference from
[49]

(v) ‖R − T ◦
ϕ‖2
L2(Ω)

from [49]

(w) T ◦ ϕ with

L2 −QW
(x) Deformation

grid with L2 −
QW

(y)
‖R − T ◦ ϕ‖2

L2(Ω)

with L2 −QW

Figure 4.11: Mapping of tumor brain images with 100 iterations (size : 71 × 61), NL
execution time : 2s, L execution time : 32s.
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(a) R (b) T

(c) T ◦ ϕ NL (d) Deformation
grid NL

(e) T̃ NL (f) R− T̃ NL (g) Segmented
Reference NL

(h) Binary Re-
ference (rescaled)
NL

(i)
‖R − T ◦ ϕ‖2

L2(Ω)

NL

(j) T ◦ ϕ L (k) Deformation
grid L

(l) T̃ L (m) R− T̃ L (n) Segmented
Reference L

(o) Binary Refe-
rence (rescaled) L

(p) ‖R − T ◦
ϕ‖2
L2(Ω)

L

(q) T ◦ ϕ from
[49]

(r) Deformation
grid from [49]

(s) T̃ from [49] (t) R − T̃ from
[49]

(u) Segmented
Reference from
[49]

(v) ‖R − T ◦
ϕ‖2
L2(Ω)

from [49]

(w) T ◦ ϕ with

L2 −QW
(x) Deformation

grid with L2 −
QW

(y)
‖R − T ◦ ϕ‖2

L2(Ω)

with L2 −QW

Figure 4.12: Mapping of tumor brain images with 300 iterations (size : 71 × 61), NL
execution time : 11s, L execution time : 98s.
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Chapter 5

A second order free discontinuity
model for bituminous surfacing
crack recovery

We consider a second order variational model dedicated to crack detection on bituminous
surfacing. It is based on a variant of the weak formulation of the Blake-Zisserman func-
tional that involves the discontinuity set of the gradient of the unknown, set that encodes
the geometrical thin structures we aim to recover, as suggested by Drogoul et al. ([30],
[8]). Following Ambrosio, Faina and March ([2]), an approximation of this cost function by
elliptic functionals is provided. Theoretical results including existence of minimizers, exis-
tence of a unique viscosity solution to the derived evolution problem, and a Γ-convergence
result relating the elliptic functionals to the initial weak formulation are given. Extending
then the ideas developed in the case of first order nonlocal regularization to higher order
derivatives, we provide and analyze a nonlocal version of the model.

1 Introduction

The scope of this work is to propose a novel variational method to detect thin structures,
namely cracks on bituminous surfacing. If classically, singularities related to edges are
associated with a discontinuity of gray level intensities across edges (and are thus detected
using spatial gradient information carried by the image), this characterization proves to
be unsuitable when dealing with points, cracks or filaments. Indeed, while for an edge the
singularity is associated with a jump of the intensity across this edge, for filaments, such
a jump does not occur (see [30, p. 2]). As an illustration, on the crossplot of Figure 5.1,
the crack is represented by a very thin peak and so the spatial gradient is unable to seize
this singularity. In [30], Drogoul provides a heuristic illustration of this fact by consid-
ering an approximation of the 1D function defined by f(x) = 0 if x 6= 0 and f(0) = 1
as follows: fη(x) = 0 if |x| ≥ η and fη(x) = 2

η3 |x|3 − 3
η2 |x|2 + 1 if |x| ≤ η. It is not

difficult to see that f ′η(0) = 0, showing that the differential operator of order 1 does not

capture the singularity at 0. On the other hand, as f
′′
η (0) = − 6

η2 , f
′′
η clearly exhibits a
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Figure 5.1: A bituminous surfacing image and a crossplot going through the crack.

singularity at 0 when η becomes small. This exemplifies the fact that in order to detect
fine structures or filaments, higher order differential operators should be considered. This
intuitive illustration is then mathematically formalized in 2D in [30] through Lemma 2.1,
and states in substance the following: assuming that a crack can be modelled by an in-
dicator function supported by a smooth curve Γ, it can be approximated by a sequence
of smooth functions whose Hessian matrices blow up in the perpendicular direction to
Γ, while their gradient is null. Motivated by these observations showing that a suitable
model should involve higher order derivatives, the crack recovery model we propose falls
within second order variational models. It is based on the Blake-Zisserman functional
(see [14]) (recalled in (5.1)) for computer vision problems that depends on free discon-
tinuities, free gradient discontinuities and second order derivatives, and more precisely,
on its approximation by elliptic functionals defined on Sobolev spaces ([2]) —(note that
the Blake-Zisserman functional was successfully applied to segmentation as in [44] for the
segmentation of a digital model of a mixed urban-agricultural area, or image inpainting
as in [22])—. This approximation appears as the counterpart for the second order case of
the elliptic approximations designed by Ambrosio and Tortorelli ([3, 4]) to approximate
Mumford-Shah functional ([36]), and takes place in a variational sense, namely, the De
Giorgi Γ-convergence. The qualifying terms “free discontinuities”, “free gradient discon-
tinuities” mean that the functional is minimized over three variables: two unknown sets
K0, K1 with K0 ∪K1 closed, and u, a smooth function on Ω\ (K0 ∪K1) as follows

F (u,K0,K1) =

∫
Ω\(K0∪K1)

(
|∇2u|2 + Φ(x, u)

)
dx

+αHn−1(K0 ∩ Ω) + βHn−1((K1\K0) ∩ Ω), (5.1)

α and β being two positive parameters. The set K0 represents the set of jump points for u,
and K1\K0 is the set of crease points of u, those points where u is continuous but∇u is not.
Under certain conditions, the existence of minimizers for Blake-Zisserman functional is en-
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sured over the space
{
u : Ω ⊂ Rn → R |u ∈ L2(Ω), u ∈ GSBV (Ω), ∇u ∈ (GSBV (Ω))n

}
,

based on a weak formulation of the problem (GSBV (Ω) being the space of generalized
special functions of bounded variation), see [21]. Ambrosio, Faina and March ([2]) in-
troduce a family of elliptic functionals defined on Sobolev spaces, with in particular, a
variable encoding the discontinuity set of ∇u which is exactly the structure we aim to
recover. This family of functionals is defined by

Fε(u, s, σ) =

∫
Ω

(
σ2 + κε

)
|∇2u|2 dx+

∫
Ω

Φ(x, u) dx+ (α− β)Gε(s)

+β Gε(σ) + ξε

∫
Ω

(
s2 + ζε

)
|∇u|2 dx, (5.2)

for suitable infinitesimals κε, ξε and ζε, and with Gε(l) =

∫
Ω

[
ε |∇l|2 + (l−1)2

4ε

]
dx.

Before depicting in depth the proposed model and its relation to (5.2), we review some
prior related works dedicated to thin pattern recovery. In [8, 30], Aubert and Drogoul
introduce a topological-gradient-based method for the detection of fine structures in 2D.
Given a PDE depending on a domain Ω, and uΩ the solution of this PDE, topological
asymptotic methods aim to study the variations of a cost function j(Ω) = j(Ω, uΩ) when
a topological modification such as the creation of a small hole or a crack measured by
a parameter ε is applied to the domain Ω, resulting in Ωε. The expansion of j(Ωε) with
respect to ε shows that if one intends to minimize j(Ωε), it is relevant to create holes
or cracks at points x0 where the topological gradient is the most negative. Aubert and
Drogoul motivate the construction of their cost function involving second order derivatives
by showing that a filament can be approximated by a sequence of smooth functions whose
Hessian matrices blow up in the perpendicular direction to the filament, while their gradi-
ent is null as already mentioned. The proposed cost function is inspired by the Kirchhoff
thin static plate model subject to pure bending with a Poisson ratio ν = 0. A major
difference with our model lies in the introduction of a variable that encodes the crack-type
singularities. In [12], Bergounioux and Vicente propose a variational model to perform
the segmentation of tube-like structures with small diameter in MRI images. It is derived
from the Mumford-Shah functional (more precisely, on its approximation by elliptic func-
tionals) and includes geometrical priors prescribing the topology of the solution (tube-like
structures defined by thickening a parameterized curve to get a symmetric object of di-
ameter α > 0). The keypoint is that the 2D/3D problems involved are equivalent to 1D
ones formulated in a weighted Sobolev space where the weight is related to the geometry
of the tube. A limitation of this model is that it does not handle junctions of tubes. For
another method dedicated to the detection and completion of fine structures in an image
and relying on tubular structures, we refer to [37].
Other variational models have been investigated, dedicated to particular applications. In
[39], Rochery et al. aim to track thin long objects, with applications to the automatic
extraction of road networks in remote sensing images. They propose interesting nonlocal
regularizers that enforce straightness on the sought parameterized curve. In [10], Baudour
et al. propose a new algorithm for the detection and completion of thin filaments (defined
as structures of codimension n−1 in an ambient space of dimension n) in noisy blurred 2D
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or 3D images. To detect such structures, the authors build a 3D vector field lying in the
orthogonal plane to the filament, while the completion phase relies on the minimization
of a Ginzburg-Landau energy. In [7], Aubert et al. propose detecting image singularities
of codimension greater or equal to 2, inspired again by Ginzburg-Landau models.
The spectrum of the methods that address the issue of fine structure recovery is of course
not limited to variational ones. Morphological approaches can be found in [43] for au-
tomatic detection of vessel-like patterns, but prove to be sensitive to the noise type and
time-consuming, as well as wavelet methods. In [41], stochastic methods are developed
in which a thin network is simulated by a point process penalizing disconnected segments
and favoring aligned pieces.
The next section is dedicated to the depiction of our modelling and its numerical analysis,
encompassing existence of minimizers, existence of a unique viscosity solution to the re-
sulting evolution equation, Γ-convergence results and convergence analysis, as well as the
derivation of a nonlocal version of it (section 3). In section 4, we show some numerical
simulations.
For additional mathematical material, we refer the reader to Chapter 2, Sections 1.2, 1.3,
1.4, 2.1, and 3.3.

2 Local mathematical modelling and analysis

2.1 Model

Let Ω be a connected bounded open subset of R2 of class C1. Let us denote by f : Ω̄→ R
the 2D image representing bituminous surfacing assumed to be in L∞(Ω). Such an image
naturally exhibits dense and highly oscillatory texture, reflecting its intrinsic nonlocal na-
ture. This oscillatory component, although relevant in many applications since providing
details and making the image more realistic, proves to be unnecessary for the task to
accomplish. This observation motivates the introduction of a mixed decomposition/thin-
structure-recognition model in which the crack recovery process operates only on that
component of the image denoted by u that does not contain these small features captured
in v. A geometrical justification relies on the notion of scale (for an individual constant-
valued image feature E ⊂ Ω, scale(~x) = |E|/|∂E| for ~x ∈ E; a rectangle of k1 × k2 pixels
on a n × n discretized grid of the unit square would have a scale of k1×k2

2n(k1+k2)). Cracks
on bituminous surfacing can be compared to long and thin filaments displaying junctions.
The scale of such structures (the geometric scale of an object being basically the ratio of
an area divided by a perimeter) differs from the scale of small oscillatory patterns present
in the image : if the image domain is the n×n discretized unit square and if, for the sake
of simplicity and as an illustration, the crack is modelled as a rectangle of 1 × k pixels
with k � 1, its scale behaves like 1

2n , while a small feature of a pixel size will have a scale
of 1

4n , so twice as less. By choosing accurately the parameters involved in the modelling,
these two features can be properly discriminated : small-scale features related to texture
will be removed and captured by component v, while larger-scale features such as cracks
will be kept in u. In [35], Meyer introduces the space G(R2) (he works on R2 to remove
the problem of boundary conditions) of distributions v that can be written as v = div~g,
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where ~g = (g1, g2) ∈
(
L∞(R2)

)2
, and equipped with the norm defined by

‖v‖G(R2) = inf

{
‖
√
g2

1 + g2
2‖L∞(R2) | v = div~g

}
(5.3)

to capture the oscillatory nature of texture (highly oscillatory patterns have a small G-
norm). A further justification of the use of this space is the link between the G-norm

and the notion of scale provided by Strang ([42]): if v ∈ G, then ‖v‖G = sup
E⊂Ω

∫
E v

P (E,Ω) ,

with Ω the image domain and P (E,Ω) denoting the perimeter of E in Ω, showing that
the stronger the penalization of ‖v‖G is, the smaller the scale of the details kept in v is.
Although mathematically relevant (as it resembles the dual space of BV ), the G-space is
hard to handle from a numerical point of view. To approximate the G-norm, we introduce
an auxiliary variable that naturally stems from the Helmholtz-Hodge decomposition as
follows: ~g = ∇Q + ~P , with ~P a divergence-free vector that we disregard afterwards.
The coupling between ~g and ∇Q is achieved through a quadratic penalization and the
minimization of the L∞-norm is now applied to ∇Q, yielding a problem related to the
absolutely minimizing Lipschitz extensions and to the infinity Laplacian.
Equipped with this material, we propose, in a single variational framework, a mixed
decomposition/free discontinuity and free gradient discontinuity model, first in its weak
formulation, H1 denoting the Hausdorff 1-dimensional measure

inf F̄ (u,~g,Q) = ‖f − u− div~g‖2L2(Ω) + µ ‖|∇Q|‖L∞(Ω) +
γ

2
‖|~g −∇Q|‖2L2(Ω)

+ ρ

∫
Ω
|∇2u|2 dx+ (α− β)H1(Su) + βH1(S∇u ∪ Su), (5.4)

∇2u being the Hessian matrix, and with ∇u denoting the approximate differential, Su,
the discontinuity set of u, and S∇u, the discontinuity set of ∇u. The three first penalizing
terms are related to the decomposition of f into u + v with v belonging to G, while the
last components are devoted to the crack detection process. The component

∫
Ω |∇

2u|2 dx
enables us to control the smoothness of u, while the remaining components monitor the
size of the jump/crease sets. Second, phrased in terms of elliptic functionals inspired by
[2], with two new auxiliary variables v1 and v2 encoding respectively the set of jumps of u
and the set of jumps of ∇u, with Gε defined above, and with suitable infinitesimals κε, ξε
and ζε

inf Fε(u,~g,Q, v1, v2) = ‖f − u− div~g‖2L2(Ω) + µ ‖|∇Q|‖L∞(Ω)

+
γ

2
‖|~g −∇Q|‖2L2(Ω) + ρ

∫
Ω

(v2
2 + κε) |∇2u|2 dx

+ ξε

∫
Ω

(v2
1 + ζε) |∇u|2 dx+ (α− β)Gε(v1) + β Gε(v2). (5.5)

The different parameters are introduced in order to properly discriminate small features
(related to the intrinsic oscillatory nature of the image) from larger scale features such as
cracks, and to properly fit the characteristics of the minimizers. The component ‖f − u−
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div~g‖2L2(Ω) forces the original image to be close to u+ div~g with appropriate smoothness

on u, and v = div~g lives in a suitable functional space. Indeed, if γ → +∞, we formally
get f ' u+div~g with ~g ∈ (L∞(Ω))2. The variable v1 (resp. v2) with range [0, 1] is related
to the set of jumps (resp. creases). A minimizing v1,ε (resp. v2,ε) is in particular close to
0 in a neighborhood of the jump (resp. crease) set, and far from it, is close to 1. Function
u is thus a smooth approximation of the observed image f , this smoothing effect being
localized only on homogeneous parts. The representation of each auxiliary variable forms
a partition of the data. Now looking closer at the components

∫
Ω (v2

2 + κε) |∇2u|2 dx and
Gε(v2), letting ε become small induces that v2 should be 1 almost everywhere on Ω, except
where |∇2u|2 blows up. This observation supports the crack characterization we gave, and
ensures that v2 encodes the structures we aim to recover.
We now provide several theoretical results.

2.2 Existence of minimizers

Theorem 2.1. With κε, ξε, ζε > 0, α > β > 0, problem (5.5) admits minimizers (u =
uε, ~g = ~gε, Q = Qε, v1 = v1,ε, v2 = v2,ε) on D(Ω) =

{
u ∈ W 2,2(Ω) |

∫
Ω u dx =

∫
Ω f dx

}
×H(div)×

{
Q ∈W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×W 1,2(Ω, [0, 1])×W 1,2(Ω, [0, 1]), with H(div),

the Hilbert space defined by H(div) =
{
σ ∈ (L2(Ω))2 | divσ ∈ L2(Ω)

}
endowed with the

inner product

〈 ~σ1, ~σ2〉H(div) := 〈 ~σ1, ~σ2〉(L2(Ω))2 + 〈div ~σ1, div ~σ2〉L2(Ω),

∀( ~σ1, ~σ2) ∈ (H(div))2.

Remark 2.1. Condition
∫

Ω Qdx = 0 is not restrictive. An argument to include the
constraint

∫
Ω u dx =

∫
Ω f dx is that the space G(Ω) defined by G(Ω) =

{
v ∈ L2(Ω) | v =

div~g, ~g ∈ L∞(Ω,R2), ~g · ~n = 0 on ∂Ω
}

coincides with the space
{
v ∈ L2(Ω) |

∫
Ω v dx = 0

}
(see [6, Proposition 2.1]).

Proof. By taking u ≡ 1
meas(Ω)

∫
Ω f dx, v1 ≡ 1, v2 ≡ 1, ~g ≡ ~0, Q ≡ 0, then Fε(u,~g,Q, v1, v2) =

‖f− 1
meas(Ω)

∫
Ω f dx‖

2
L2(Ω) < +∞ with f assumed to be sufficiently smooth. Thus the func-

tional is proper and positive and the infimum is finite. Let us now extract a converging
subsequence of a minimizing sequence.

1. Extraction of convergent subsequences: Let (un, ~gn, Qn, v1,n, v2,n) be a mini-
mizing sequence of Fε. For n large enough, we thus have Fε(un, ~gn, Qn, v1,n, v2,n) ≤
inf Fε(u,~g,Q, v1, v2) + 1 < +∞.

– Fε(un, ~gn, Qn, v1,n, v2,n) ≥ µ‖|∇Qn|‖L∞(Ω). As
∫

ΩQn dx = 0 for all n ∈ N, we
can use Poincaré-Wirtinger inequality and get a uniform bound on ‖Qn‖W 1,∞(Ω).
[18, Remark (ii) p. 65] gives us the existence of a subsequence of (Qn) still
denoted by (Qn) converging weakly-∗ to Q̄ in W 1,∞(Ω). As the weak-∗ conver-
gence in W 1,∞(Ω) implies uniform convergence, then

∫
Ω Q̄ dx = 0.

– Fε(un, ~gn, Qn, v1,n, v2,n) ≥ (α − β)ε‖|∇v1,n|‖2L2(Ω). By noticing that v1,n ∈
L∞(Ω) with 0 ≤ v1,n ≤ 1 almost everywhere, we have

∫
Ω v1,n dx ≤ meas(Ω) <
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+∞ for all n ∈ N. The Poincaré-Wirtinger inequality gives us the existence
of a subsequence of (v1,n) still denoted by (v1,n) weakly converging to v1 in
W 1,2(Ω). Since W 1,2(Ω) 	

c
L2(Ω), (v1,n) strongly converges to v1 in L2(Ω)

and so pointwise almost everywhere up to a subsequence. We conclude that
v1 ∈W 1,2(Ω, [0, 1]).

– Fε(un, ~gn, Qn, v1,n, v2,n) ≥ βε‖|∇v2,n|‖2L2(Ω). By noticing that v2,n ∈ L∞(Ω)

with 0 ≤ v2,n ≤ 1 almost everywhere, we get
∫

Ω v2,n dx ≤ meas(Ω) < +∞ for
all n ∈ N. The Poincaré-Wirtinger inequality gives us the existence of a subse-
quence of (v2,n) still denoted by (v2,n) weakly converging to v2 inW 1,2(Ω). Since
W 1,2(Ω) 	

c
L2(Ω), (v2,n) strongly converges to v2 in L2(Ω) and so pointwise al-

most everywhere up to a subsequence. We conclude that v2 ∈W 1,2(Ω, [0, 1]).

– Fε(un, ~gn, Qn, v1,n, v2,n) ≥ ρκε‖∇2un‖2L2(Ω) + ξεζε‖|∇un|‖2L2(Ω). As
∫

Ω un dx =∫
Ω f dx for all n ∈ N, the Poincaré-Wirtinger inequality gives us the existence of

a subsequence of (un) still denoted by (un) weakly converging to u in W 2,2(Ω).
Since W 2,2(Ω) 	

c
L2(Ω), (un) strongly converges to u in L2(Ω) and so pointwise

almost everywhere up to a subsequence with
∫

Ω un dx =
∫

Ω f dx < +∞. We
conclude with the dominated convergence theorem that

∫
Ω ū dx =

∫
Ω f dx.

– Fε(un, ~gn, Qn, v1,n, v2,n) ≥ 1
4‖div~gn‖2L2(Ω)−‖f‖

2
L2(Ω)−

1
2‖un‖

2
L2(Ω)+

γ
4‖|~gn|‖

2
L2(Ω)−

γ
2‖∇Qn‖

2
L2(Ω). Since (Qn) is uniformly bounded in W 1,∞(Ω) and (un) uniformly

bounded in W 2,2(Ω) then (~gn) is uniformly bounded in H(div) and we extract
a subsequence still denoted by (~gn) such that (~gn) weakly converges to ~g in
H(div).

2. Lower semi-continuity of the functional:

– Since ∇Qn
∗
⇀ ∇Q̄ in L∞(Ω) then lim inf

n→+∞
‖|∇Qn|‖L∞(Ω) ≥ ‖|∇Q̄|‖L∞(Ω) ([18,

Proposition III.12]).

– Weak-∗ convergence in L∞(Ω) implying weak convergence in L2(Ω), then ‖|∇Q−
~g|‖2L2(Ω) ≤ lim inf

n→+∞
‖|∇Qn − ~gn|‖2L2(Ω).

– Gε is convex and strongly lower semi-continuous in H1(Ω) and so weakly lower
semi-continuous in H1(Ω).

– Since un ⇀
n→+∞

ū in W 2,2(Ω) 	
c
L2(Ω) and div~gn ⇀

n→+∞
div~g in L2(Ω) then

‖f − ū− div~g‖2L2(Ω) ≤ lim inf
n→+∞

‖f − un − ~gn‖2L2(Ω).

– Let us consider h : Ω × R × R2 → R, (x, v, w) 7→ (v(x)2 + ζε)|w(x)|2. Since
v1,n ⇀

n→+∞
v1 in W 1,2(Ω) 	

c
L2(Ω) then v1,n −→

n→+∞
v1 in L2(Ω). Besides, since

un ⇀
n→+∞

ū in W 2,2(Ω) then ∇un ⇀
n→+∞

∇ū in L2(Ω,R2). h is continuous in

(v, w) for almost every x ∈ Ω, h is measurable on Ω for almost every (v, w) ∈ R×
R2, for any (x, v) ∈ Ω×R, h is convex with respect to w, and for all (v, w) ∈ R×

183



A second order free discontinuity model for bituminous surfacing crack
recovery

R2 and for almost every x ∈ Ω, h(x, v, w) ≥ 0 ∈ L1(Ω). Thanks to [13, Theorem
1], we can conclude that lim inf

n→+∞

∫
Ω h(x, v1,n,∇un) dx ≥

∫
Ω h(x, v1,∇ū).

– Let us consider h : Ω× R×M2(R)→ R, (x, v, w) 7→ (v(x)2 + κε)|w(x)|2. Since
v2,n ⇀

n→+∞
v2 in W 1,2(Ω) 	

c
L2(Ω) then v2,n −→

n→+∞
v2 in L2(Ω). Besides, since

un ⇀
n→+∞

ū in W 2,2(Ω) then ∇2un ⇀
n→+∞

∇2ū in L2(Ω,M2(R)). h is continuous

in (v, w) for almost every x ∈ Ω, h is measurable on Ω for almost every (v, w) ∈
R × M2(R), for any (x, v) ∈ Ω × R, h is convex with respect to w, and for
all (v, w) ∈ R ×M2(R) and for almost every x ∈ Ω, h(x, v, w) ≥ 0 ∈ L1(Ω).
Thanks to [13, Theorem 1], we can conclude that lim inf

n→+∞

∫
Ω h(x, v2,n,∇2un) dx ≥∫

Ω h(x, v2,∇2ū).

As the lim inf of the sum of functions is greater than the sum of the lim inf of these
functions, then Fε(ū,~g, Q̄, v1, v2) ≤ lim inf

n→+∞
Fε(un, ~gn, Qn, v1,n, v2,n) which concludes

the proof.

Remark 2.2. It is possible to set ξε = 0 in (5.5) (the existence theorem still holds),
but a suitable functional space for u becomes W 2,2

loc
(Ω) ∩ L∞(Ω). For instance, with the

condition ‖u‖L∞(Ω) ≤ ‖f‖L∞(Ω), which is reasonable in virtue of the smoothing properties
of the functional. Indeed, [2, Proposition 4.6] provides a uniform bound on ‖∇u‖L2(A)

once a uniform bound is extracted for ‖u‖L2(B) and ‖∇2u‖L2(B) with A,B ⊂ R2 open sets
and (A2r) ( B.

Remark 2.3. The case κε = 0 can also be considered (an existence theorem still holds) but
requires more care and applies to a problem no longer phrased in terms of a L2-penalization
for ∇u, but with a Lγ-penalization, γ > 2. The unknown u should be searched in the
subspace of W 1,2(Ω) defined by

{
u ∈W 1,2(Ω) | v2∇u ∈W 1,p(Ω,R2)

}
, with p = 2γ

γ+2 ∈]1, 2[.

The boundedness of v2 in W 1,2(Ω) as well as the boundedness of |∇u| in Lγ(Ω), and the
fact that ∇(v2∇u) = v2∇2u+∇v2

⊗
∇u show that v2∇u is bounded in W 1,p(Ω,R2) using

Hölder’s inequality.

Remark 2.4. Functional Fε is convex in each variable (which yields a natural alternating
framework for the numerical resolution) but not in the joint variable (u,~g,Q, v1, v2). Nev-
ertheless, for v1, v2 fixed, if (u1, ~g1, Q1) and (u2, ~g2, Q2) denote two minimizing elements,
it can be proved that u1 = u2 a.e., div ~g1 = div ~g2 a.e., and ~g1− ~g2 = ∇Q1−∇Q2 a.e.. Con-
sequently, div (∇Q1 −∇Q2) = ∆(Q1 −Q2) ∈ L2(Ω) = 0 a.e.. By the generalized Green’s
formula [29, Proposition 3.58],

∫
Ω |∇(Q1 −Q2)|2 dx = 〈∇(Q1 −Q2) · ~n, γ0(Q1 −Q2)〉, the

linear functional ∇(Q1 − Q2) · ~n belonging to the dual H−1/2(∂Ω) of the space of traces
H1/2(∂Ω). If we assume that ∇(Q1 −Q2) · ~n = 0 on ∂Ω, then Q1 = Q2 a.e..

2.3 Existence of solutions for the Euler-Lagrange equations

We now focus on the elliptic functional which is the one we solve in practice. Note
that, in the numerical simulations, we have dropped the constants κε and ζε. We first
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derive the Euler-Lagrange equations according to each unknown, with x = (x1, x2) and
~n = (nx1 , nx2), the unit outward normal to the boundary. Making use of the absolutely
minimizing Lipschitz extensions ([5]) for the equation in Q, we get:

v1 =
α−β
2ε + 2(α− β)ε∆v1

2ξε|∇u|2 + α−β
2ε

, v2 =
β
2ε + 2βε∆v2

2ρ|∇2u|2 + β
2ε

,

g1 = ∂x1Q− 2
γ ∂x1 (f − u− div~g) , g2 = ∂x2Q− 2

γ ∂x2 (f − u− div~g) ,

u = (f − div~g)− ρ ∂2

∂x2
1

(
v2

2
∂2u
∂x2

1

)
− ρ ∂2

∂x2
2

(
v2

2
∂2u
∂x2

2

)
−2ρ ∂2

∂x1∂x2

(
v2

2
∂2u

∂x1∂x2

)
+ ξε div (v2

1∇u),

−µ∆∞Q− γ∆Q+ γdiv~g = 0,

combined with the boundary conditions ∇v1 · ~n = 0, ∇v2 · ~n = 0, (f − u − div~g)nx1 =
0, (f − u − div~g)nx2 = 0, v2

1∇u · ~n = 0, v2
2∂

2
x1x1

unx1 = 0, ∂x1

(
v2

2∂
2
x1x1

u
)
nx1 = 0,

v2
2∂

2
x2x2

u nx2 = 0, ∂x2

(
v2

2∂
2
x2x2

u
)
nx2 = 0, v2

2∂
2
x1x2

u nx1 = 0, ∂x1

(
v2

2∂
2
x1x2

u
)
nx2 = 0 and

(~g−∇Q) · ~n = 0 on ∂Ω. Let us now embed the last equation in a time-dependent setting.
Let T > 0 be given. The evolution equation in the unknown Q is thus given by{

∂Q

∂t
= µ∆∞Q+ γ∆Q− γdiv~g on R2 × (0, T ),

Q(x, 0) = Q0(x) on R2,
(EE)

with Q0 ∈W 1,∞(R2) and B0 its Lipschitz constant. (To remove the problem of boundary
conditions, we work on R2 for the spatial domain). We now give an existence/uniqueness
result for the PDE in Q in the viscosity solution theory framework. To do so, we first
need the additional following assumption

div~g is bounded and is Lipschitz continuous uniformly in time

with κ~g its Lipschitz constant independent of time. (H)

For the sake of conciseness and using the normalized version of the infinity Laplacian, the
evolution equation is now written in the form

∂Q

∂t
+G(x, t,∇Q,∇2Q) = 0,

with G : R2× [0, T )×R2×S2 (S2 being the set of symmetric 2×2 matrices equipped with
its natural partial order) defined by

G(x, t, ~p,X) = −γtrace(X)− µ
〈 ~p
|~p|
, X

~p

|~p|

〉
+ γdiv~g

= −γtrace(X)− µtrace
(~p⊗ ~p
|~p|2

X
)

+ γdiv~g,

= E(X) + F (~p,X) + γdiv~g,

and with the following properties
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1. The operators G, E : X 7→ −γtrace(X) and F : (~p,X) 7→ −µ trace
(
~p⊗~p
|~p|2 X

)
are

independent of Q and are elliptic, i.e. ∀X,Y ∈ S2, ∀~p ∈ R2 \ {~0R2}, if X ≤ Y then

F (~p,X) ≥ F (~p, Y ) since F (~p,X) − F (~p, Y ) = −µtrace
(
~p⊗~p
|~p|2 X

)
+ µtrace

(
~p⊗~p
|~p|2 Y

)
=

−µtrace
(
~p⊗~p
|~p|2 (X − Y )

)
= −µ

〈
~p
|~p| , (X − Y ) ~p

|~p|

〉
≥ 0 as X ≤ Y .

2. F is locally bounded on R2 × S2, continuous on R2 \ {~0R2} × S2, and F ∗(0, 0) =
F∗(0, 0) = 0, where F ∗ (resp. F∗) is the upper semicontinuous (usc) envelope
(resp. lower semicontinuous (lsc) envelope) of F . Indeed, using Rayleigh quotient
and its properties, it is not difficult to see that for nonzero vector ~p, λmin(X) ≤
trace

(
~p⊗~p
|~p|2 X

)
= 〈~p,X~p〉

〈~p, ~p〉 = R(X, ~p) ≤ λmax(X), λmin (resp. λmax) denoting the

smallest (resp. biggest) eigenvalue of X.

The first important result is a comparison principle which states that if a sub-solution and
a super-solution are ordered at initial time then they are ordered at any time.

Theorem 2.2 (Comparison principle, adapted from [32]). Assume (H) and let u : R2 ×
[0, T ) → R be a bounded upper semicontinuous sub-solution and v : R2 × [0, T ) → R be
a bounded lower semicontinuous super-solution of (EE). Assume that u(x, 0) ≤ Q0(x) ≤
v(x, 0) in R2, then u ≤ v in R2 × [0, T ).

Proof. This proof is rather classical and we follow the arguments of [27] for parabolic
equations and of [32]. We first remark that for any λ > 0, ũ = u − λ

T−t is also a sub-
solution of (EE) and satisfies:

ũt +G∗(x, t,Dũ,D
2ũ) ≤ −λ

(T − t)2
≤ −λ
T 2

,

since ũt = ut − λ
(T−t)2 , Dũ = Du and D2ũ = D2u. As u ≤ v comes from ũ ≤ v in

the limit when λ tends to 0, it is sufficient to prove the comparison under the additional
assumption: {

(i) ut +G∗(x, t,Du,D
2u) ≤ −λ

T 2

(ii) lim
t→T

u(x, t) = −∞ .

Let us set M = sup
(x,t)∈R2×[0,T )

u(x, t) − v(x, t). We want to prove that M ≤ 0. To do so,

we will use a reductio ad absurdum reasoning and we assume that M > 0 so there exists
(x∗, t∗) ∈ R2 × [0, T ) such that u(x∗, t∗)− v(x∗, t∗) > 0.
We introduce M0 defined by M0 = sup

(x,y,t)∈R2×R2×[0,T )

{
f(x, y, t) = u(x, t)− v(y, t)− 1

4ε |x−

y|4 − α
2 (|x|2 + |y|2)

}
, ε > 0. We notice that M0 ≥ u(x∗, t∗)− v(x∗, t∗)− α|x∗|2 > 0 and so

M0 > 0 for α small enough. This supremum is reached owing to the term α
2 (|x|2 + |y|2),

Mu the bound above of u and −mv the bound above of −v, the upper semicontinuity
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of f , the fact that f is proper and lim
t→T,|x|→+∞,|y|→+∞

f(x, y, t) = −∞ since f(x, y, t) ≤

Mu − mv − α
2 (|x|2 + |y|2). We denote by (x0, y0, t0) ∈ R2 × R2 × [0, T ) a maximum.

Consequently, we get the following lemma:

Lemma 2.5 (adapted from [32]). Let M ′ = lim
h→0

sup
|x−y|≤h,t∈[0,T )

(u(x, t)− u(y, t)). Then

1. lim
α→0

αx0 = lim
α→0

αy0 = 0.

2. lim
ε→0
|x0 − y0|4 = 0.

3. lim
ε→0

lim
α→0

M0 = M ′.

4. lim
ε→0

lim
α→0

1
ε |x0 − y0|4 = 0.

5. lim
ε→0

lim
α→0

α(|x0|2 + |y0|2) = 0.

Proof. By boundedness of u and v, then the function (x, y) 7→ u(x, t)−v(y, t) is bounded for

any t ∈ [0, T ). Besides, we assume that M0 > 0. We also have |x0−y0|4
4ε + α

2 (|x0|2 + |y0|2) ≤
C. We deduce that α

2 (|x0|2 + |y0|2) ≤ C and |x0 − y0|4 ≤ 4Cε leading to lim
ε→0
|x0 − y0| = 0

and lim
α→0

αx0 = lim
α→0

αy0 = 0.

Let us now set Mh = sup
|x−y|≤h,t∈[0,T )

(u(x, t)− u(y, t)). Let (xhn, y
h
n, t

h
n) ∈ R2×R2× [0, T ) be

a sequence such that ∀n ∈ N∗, u(xhn, t
h
n) − v(yhn, t

h
n) ≥ Mh − 1

n with |xhn − yhn| ≤ h. This

sequence is independent of α. We then get Mh − 1
n −

h4

4ε −
α
2 (|xhn|2 + |yhn|2) ≤ u(xhn, t

h
n)−

v(yhn, t
h
n)− |x

h
n−yhn|4

4ε − α
2 (|xhn|2 + |yhn|2) ≤M0 ≤ u(x0, t0)− v(y0, t0). Let α tend to 0 in what

precedes, then Mh− 1
n −

h4

4ε ≤ lim inf
α→0

(u(x0, t0)− v(y0, t0)) ≤ lim sup
α→0

(u(x0, t0)− v(y0, t0)).

Now let h tend to 0, we get M ′ − 1
n ≤ lim inf

α→0
(u(x0, t0) − v(y0, t0)) ≤ lim sup

α→0
(u(x0, t0) −

v(y0, t0)). Finally, we let ε tend to 0 and obtain M ′ − 1
n ≤ lim inf

ε→0
lim inf
α→0

(u(x0, t0) −
v(y0, t0)) ≤ lim inf

ε→0
lim sup
α→0

(u(x0, t0) − v(y0, t0)) ≤ lim sup
ε→0

lim sup
α→0

(u(x0, t0) − v(y0, t0)) ≤

lim sup
ε→0

lim sup
α→0

sup

|x−y|≤Cε
1
4 ,t∈[0,T )

(u(x, t)−v(y, t)) ≤ lim sup
h→0

sup
|x−y|≤h,t∈[0,T )

(u(x, t)−v(y, t)) =

M ′. So, lim
ε→0

lim
α→0

(u(x0, t0) − v(y0, t0)) = M ′. In the same way, we get lim
ε→0

lim
α→0

M0 = M ′.

Thus lim
ε→0

lim
α→0

( |x0−y0|4
4ε + α

2 (|x0|2 + |y0|2)
)

= lim
ε→0

lim
α→0

(u(x0, t0) − v(x0, y0) −M0) = 0. So lim
ε→0

lim
α→0

|x0−y0|4
4ε = 0

lim
ε→0

lim
α→0

α
2 (|x0|2 + |y0|2) = 0

.

We then distinguish two cases.

1. ∀ε > 0, ∃α ∈ (0, ε) such that t0 = 0. Then there exists εn −→
n→+∞

0 and αn −→
n→+∞

0

with tn = 0 and 0 < M0 ≤ u(x0,n, 0)− v(y0,n, 0) ≤ Q0(x0,n)−Q0(y0,n) ≤ B0|x0,n −
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y0,n| where B0 is the Lipschitz constant of Q0. We obtain a contradiction since
lim

n→+∞
|x0,n − y0,n| = 0.

2. ∃ε > 0 such that ∀α ∈ (0, ε), t0 > 0. We can choose ε big enough otherwise we use the

first argument, i.e., such that |x0−y0|4
4ε ≤ λ

2T 2γκ~g
. We consider ũ(x, t) = u(x, t)− α

2 |x|
2

and ṽ(x, t) = v(x, t)+ α
2 |x|

2 and so M0 = sup
(x,y,t)∈R2×R2×[0,T )

{
ũ(x, t)− ṽ(y, t)− |x−y|

4

4ε

}
.

Let us take the test function ψ(x, y, t) = |x−y|4
4ε and set p0 = x0 − y0. By using the

parabolic version of Ishii’s lemma with the same notations, it comes that τ = 0,

p1 = |p0|2p0

ε = p2, A = 2
ε |p0|2

(
Z −Z
−Z Z

)
with Z = I

2 + p0⊗p0

|p0|2 and for each β > 0

such that βA < I, there exist (X,Y ) ∈ (S2)2 and two reals τ1 and τ2 such that

τ1 − τ2 = 0,

(τ1,
|p0|2p0

ε
,X) ∈ P̄+ũ(x0, t0),

(τ2,
|p0|2p0

ε
, Y ) ∈ P̄−ṽ(y0, t0),

−1

β

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ (I − βA)−1A.

The last inequality implies that X ≤ Y . We then use the following lemma.

Lemma 2.6 (adapted from [32]). We have the following estimations on the matrix
A:

1

‖A‖
A < I,

‖A‖ ≤ 6|p0|2

ε
,

If δ =
1

2‖A‖
, then (I − δA)−1A ≤ 2‖A‖I ≤ 12

ε
|p0|2I,

with ‖A‖ = sup
ξ∈R4

|Aξ.ξ|
ξ.ξ .

Proof. By definition of ‖A‖, we have Aξ.ξ
ξ.ξ ≤ ‖A‖ for any ξ ∈ R4 and so Aξ.ξ

‖A‖ ≤ Iξ.ξ
which gives the fist result of the lemma.

Let ξ =

(
ξ1

ξ2

)
∈ R4. we have:

Aξ.ξ =
2

ε
|p0|2Z(ξ1 − ξ2).(ξ1 − ξ2),

≤ 4

ε
|p0|2Z(ξ1.ξ1 + ξ2.ξ2),

≤ 4

ε
|p0|2‖Z‖|ξ|2.
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So it suffices to show that ‖Z‖ ≤ 3
2 .

Zξ1.ξ1 =
ξ2

1

2
+
p0 ⊗ p0

|p0|2
ξ1.ξ1

≤ ξ2
1

2
+ ξ2

1 ,

≤ 3

2
ξ2

1 .

For the last point, it suffices to notice that if B ≥ 0 and C ≥ 0 with B, C ∈ S2

such that BC = CB then CB ≥ 0. Indeed, CBξ.ξ = CB
1
2 ξ.B

1
2 ξ ≥ 0 since C

is non-negative and B is symmetric non-negative. So, if B ≥ C and D ≥ 0 with
D(B−C) = (B−C)D then DB ≥ DC. It thus suffices to prove that A ≤ 2‖A‖(I−
δA) = 2‖A‖I −A, i.e. A ≤ ‖A‖I which is true by definition of the norm.

By using this lemma with β = 1
2‖A‖ , the inequality becomes −12|p0|2

ε

(
I 0
0 I

)
≤(

X 0
0 −Y

)
≤ 12|p0|2

ε

(
I 0
0 I

)
. Thus X and Y are bounded independently of α

which is also the case for p0 according to |x0−y0|4
4ε ≤ λ

2T 2γκ~g
. In particular, we

have −12|p0|2
ε I ≤ X ≤ 12|p0|2

ε I. So there exists a sequence (αn) such that αn −→
n→+∞

0,

t0 −→
n→+∞

t∞, p0 −→
n→+∞

p∞, X −→
n→+∞

X∞ and Y −→
n→+∞

Y∞. Furthermore, since u is

a sub-solution, v is a super-solution and using the additional assumption, we get:

τ1 +G∗(x0, t0,
|p0|2p0

ε
+ αnx0, X + αnI) ≤ −λ

T 2
,

τ2 +G∗(y0, t0,
|p0|2p0

ε
− αny0, Y − αnI) ≥ 0.

Then using the matrix inequality X ≤ Y and the ellipticity of the equation, we

obtain τ2 +G∗(y0, t0,
|p0|2p0

ε −αny0, X−αnI) ≥ 0. Subtracting these two inequalities
gives us

λ

T 2
+G∗

(
x0, t0,

|p0|2p0

ε
+ αnx0, X + αnI

)
≤ G∗

(
y0, t0,

|p0|2p0

ε
− αnyn, X − αnI

)
,

− γdiv~g(x0, t0) + γdiv~g(y0, t0)− E(X + αnI)− F∗
( |p0|2p0

ε
+ αnx0, X + αnI

)
+ E(X − αnI) + F ∗

( |p0|2p0

ε
− αny0, X − αnI

)
≥ λ

T 2
.

Let n tend to infinity. As div~g is Lipschitz continuous uniformly in time with κ~g the
Lipschitz constant, we get:

γκ~g|p∞| − E(X∞)− F∗
( |p∞|2p∞

ε
,X∞

)
+ E(X∞) + F ∗

( |p∞|2p∞
ε

,X∞

)
≥ λ

T 2
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Since |p0| ≤ λ
2T 2γκ~g

and so |p∞| ≤ λ
2T 2γκ~g

, hence

λ

2T 2
− F∗

( |p∞|2p∞
ε

,X∞

)
+ F ∗

( |p∞|2p∞
ε

,X∞

)
≥ λ

T 2
.

We distinguish here two cases:

– First case: p∞ = 0. From the matrix inequality −12|p0|2
ε

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤

12|p0|2
ε

(
I 0
0 I

)
, it yields X∞ = Y∞ = 0. Having F ∗(0, 0) = F∗(0, 0) = 0 leads

to 0 ≥ λ
2T 2 which is absurd.

– Second case: p∞ 6= 0. Since F is continuous on R2\{~0}×S2, then F∗

(
|p∞|2p∞

ε , X∞

)
=

F ∗
(
|p∞|2p∞

ε , X∞

)
= F

(
|p∞|2p∞

ε , X∞

)
, yielding 0 ≥ λ

2T 2 which is absurd.

We now turn to the existence of a solution. To do so, we use the classical Perron’s
method and need to construct barriers.

Theorem 2.3 (Construction of barriers, adapted from [32]). Assume (H) and let Q0 ∈
W 1,∞(R2). Then u+ = sup

x∈R2

Q0(x) + γ‖div~g‖L∞(R2×[0,T ))t and u− = inf
x∈R2

Q0(x)− γ

‖div~g‖L∞(R2×[0,T ))t are respectively super- and sub-solution of (EE).

Proof. The proof of this theorem is straightforward. Indeed since Q0 ∈W 1,∞(R2) then u−

and u+ are twice differentiable in space and once differentiable in time and are bounded.
Besides u−(x, 0) = inf

x∈R2
Q0(x) ≤ Q0(x), u+(x, 0) = sup

x∈R2

Q0(x) ≥ Q0(x), ∀x ∈ R2. Fur-

thermore, ∀(x, t) ∈ R2 × [0, T ), u−t (x, t) = −γ‖div~g‖L∞(R2×[0,T )), Du
−(x, t) = ~0 and

D2u−(x, t) = 0; u+
t (x, t) = γ‖div~g‖L∞(R2×[0,T )), Du

+(x, t) = ~0 and D2u+(x, t) = 0.

It follows then ∀(x, t) ∈ R2 × [0, T ), u−t (x, t) + G∗(t, x, u
−(x, t), Du−(x, t), D2u−(x, t)) =

−γ‖div~g‖L∞(R2×[0,T ))+γdiv~g(x, t) ≤ 0 and u+
t (x, t)+G∗(t, x, u+(x, t), Du+(x, t), D2u+(x, t))

= γ‖div~g‖L∞(R2×[0,T )) + γdiv~g(x, t) ≥ 0. Hence u− is a sub-solution and u+ a super-
solution of (EE).

A direct consequence of the two previous results is the following existence theorem.

Theorem 2.4 (Existence and uniqueness of a solution). Assume (H) and Q0 ∈W 1,∞(R2).
Then there exists a unique bounded continuous solution of (EE) in R2 × [0, T ).

Proof. We follow Perron’s method here ([27, Theorem 4.1]). Indeed, we have constructed
a bounded sub-solution and a bounded super-solution which fall within the comparison
principle. Then Q = sup{w, w sub-solution of (EE) and ∀(x, t) ∈ R2 × [0, T ), u−(x, t) ≤
w(x, t) ≤ u+(x, t)} is a solution of (EE) potentially discontinuous. Clearly, Q is bounded
since u+ and u− are bounded and since Q is a solution of (EE) then Q∗ is a super-solution
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and Q∗ is a sub-solution and so applying the comparison principle gives us Q∗ ≤ Q∗. But
by definition, Q∗ ≤ Q∗ and we finally get Q = Q∗ = Q∗ meaning that Q is continuous on
R2 × [0, T ).

Let us now focus on the regularity of the solution. Let us first consider the regularity
in space.

Theorem 2.5 (Lipschitz regularity in space, adapted from [32]). Assume (H) and that
‖∇Q0‖L∞(R2) ≤ B0 with B0 > 0. Then the solution of (EE) is Lipschitz continuous in
space and satisfies

‖∇Q(., t)‖L∞(R2) ≤ B(t),

with B(t) = γκ~gt+B0.

Proof. We will follow arguments of [32, Lemma 4.15]. We have proved that Q is bounded

and continuous on R2 × [0, T ). Let us set Φε(x, y, t) = B(t)(|x− y|2 + ε2)
1
2 and we aim to

show that Q(x, t)−Q(y, t) ≤ Φε(x, y, t) for any (x, y, t) ∈ R2 × R2 × [0, T ). We introduce
M = sup

(x,y)∈R2×R2,t∈[0,T )

(Q(x, t)−Q(y, t)− Φε(x, y, t)).

We assume that M > 0. We denote by M̄ = sup
(x,y)∈R2×R2,t∈[0,T )

{Q(x, t)−Q(y, t)− α
2 (|x|2 +

|y|2)− λ
T−t−Φε(x, y, t)}. For λ small enough and α small enough, we have M̄ > 0. As Q is

bounded and continuous with lim
|x|→+∞,|y|→+∞,t→T

Q(x, t)−Q(y, t)− α
2 (|x|2 + |y|2)− λ

T−t −

Φε(x, y, t) = −∞, the maximum is attained at (x̄, ȳ, t̄) with x̄ 6= ȳ and α
2 (|x̄|2 + |ȳ|2) ≤ C

owing to M̄ > 0 and Q bounded. Therefore, lim
α→0

α|x̄| = lim
α→0

α|ȳ| = 0.

We now prove that t̄ > 0 by contradiction. We assume that t̄ = 0, then Q(x̄, 0)−Q(ȳ, 0)−
Φε(x̄, ȳ, 0) > 0 that is to say Q0(x̄)−Q0(ȳ) > B(0)(|x̄− ȳ|2 + ε2)

1
2 ) > B0|x̄− ȳ| which is

absurd since ‖∇Q0‖L∞(R2) ≤ B0.

We set p̄ = DxΦε(x̄, ȳ, t̄) = −DyΦ
ε(x̄, ȳ, t̄) = B(t̄)(x̄ − ȳ)(|x̄ − ȳ|2 + ε2)−

1
2 6= 0, Z =

D2
xΦε(x̄, ȳ, t̄) = D2

yΦ
ε(x̄, ȳ, t̄) = B(t̄)

(
(|x̄− ȳ|2 +ε2)−

1
2 I−(|x̄− ȳ|2 +ε2)−

3
2 (x̄− ȳ)⊗(x̄− ȳ)

)
and A =

(
Z −Z
−Z Z

)
. Then by the parabolic version of Ishii’s lemma applied to ũ(x, t) =

Q(x, t) − α
2 |x|

2, ṽ(x, t) = Q(x, t) + α
2 |x|

2, and Φ(x, y, t) = Φε(x, y, t) + λ
T−t , for every β

such that βA < I, there exist τ1 ∈ R, τ2 ∈ R and X ∈ S2, Y ∈ S2 such that

τ1 − τ2 =
λ

(T − t̄)2
+B′(t̄)(|x̄− ȳ|2 + ε2)

1
2 =

λ

(T − t̄)2
+ γκ~g(|x̄− ȳ|2 + ε2)

1
2 ,

(τ1, p̄+ αx̄,X + αI) ∈ P̄+Q(x̄, t̄),

(τ2, p̄− αȳ, Y − αI) ∈ P̄−Q(ȳ, t̄),

−1

β

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ (I − βA)−1A.
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Thus we have

τ1 + div~g(x̄, t̄) + E(X + αI) + F∗(p̄+ αx̄,X + αI) ≤ 0,

τ2 + div~g(ȳ, t̄) + E(Y − αI) + F ∗(p̄− αȳ, Y − αI) ≥ 0.

As the matrix inequality implies X ≤ Y and using the ellipticity of the equation, we
deduce that

τ2 + div~g(ȳ, t̄) + E(X − αI) + F ∗(p̄− αȳ,X − αI) ≥ 0.

Subtracting both inequalities, we get

λ

(T − t̄)2
+ γκ~g(|x̄− ȳ|2 + ε2)

1
2 + γdiv~g(x̄)− γdiv~g(ȳ) + E(X + αI)− E(X − αI)

+ F∗(p̄+ αx̄,X + αI)− F ∗(p̄− αȳ,X − αI) ≤ 0.

Let α tend to 0 (p̄ and X are bounded independently of α so we can extract convergent
subsequences whose limits are still denoted by p̄ and X), then:

λ

(T − t̄)2
+ lim
α→0

(
γκ~g(|x̄− ȳ|2 + ε2)

1
2 + γdiv~g(x̄)− γdiv~g(ȳ)

)
+ F∗(p̄, X)− F ∗(p̄, X) ≤ 0.

Since p̄ 6= ~0 then F ∗(p̄, X) = F∗(p̄, X) = F (p̄, X). Besides

γκ~g(|x̄− ȳ|2 + ε2)
1
2 + γdiv~g(x̄)− γdiv~g(ȳ) ≥ γκ~g(|x̄− ȳ|2 + ε2)

1
2 − γκ~g|x̄− ȳ| ≥ 0.

Therefore λ
(T−t̄)2 ≤ 0 which is absurd.

Then Q(x, t)−Q(y, t) ≤ Φε(x, y, t). Let ε tend to 0, we get Q(x, t)−Q(y, t) ≤ B(t)|x− y|.
By exchanging x and y in what precedes, we get |Q(x, t) − Q(y, t)| ≤ B(t)|x − y| which
concludes the proof.

Besides, we can show that this solution is also uniformly continuous in time.

Theorem 2.6 (adapted from [32]). Assume (H), and that div~g is uniformly continuous
in time with ωdiv~g its modulus of continuity. Then the solution of (EE) is uniformly
continuous in time.

Proof. We follow again the arguments of [32, Lemma 4.15]. Let us set δ > 0. For any
(x, t) ∈ R2 × (0, T ) such that t + δ ≤ T , we set v(x, t) = Q(x, t + δ). Then v is a sub-
solution of wt − ωdiv~g(δ) + div(~g)(x, t) + E(D2w) + F (Dw,D2w) = 0 on R2 × (0, T − δ)
with w(x, 0) = Q(x, δ) on R2 in the sense of viscosity solutions theory. Indeed, we have
vt = Qt, vt + div~g(x, t+ δ) +E(D2v) + F (Dv,D2v) = 0 and div~g(x, t+ δ) ≥ −ωdiv~g(δ) +

div~g(x, t) leading to vt − ωdiv~g(δ) + div~g(x, t) + E(D2v) + F (Dv,D2v) ≤ 0. Besides,

ũ = Q + sup
x∈R2

((Q(x, δ) − Q0(x))+) + ωdiv~g(δ)t ((α)+ = max{0, α}) is a super-solution

with v(x, 0) ≤ ũ(x, 0) for any x ∈ R2. Using the comparison principle, we get ∀(x, t) ∈
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R2 × (0, T − δ), Q(x, t+ δ)−Q(x, t) ≤ sup
x∈R2

((Q(x, δ)−Q0(x))+) + ωdiv~g(δ)t.

We will now focus on an auxiliary problem. Let us first assume that Q0 ∈ C2
b (R2). We

set u+/− = Q0(x) + / − C1t with C1 = inf
x∈R2
{−E(D2Q0) − F ∗(DQ0, D

2Q0), E(D2Q0) +

F∗(DQ0, D
2Q0)}. We easily check that u+ is a super-solution and u− a sub-solution of

(SP ): ut+E(D2u)+F (Du,D2u) = 0, u(x, 0) = Q0(x). Then there exists a unique solution
u of this problem and by the comparison principle, the following holds: ∀t ∈ [0, T ), ∀x ∈
R2, |u(x, t) − Q0(x)| ≤ C1t. We then set v(x, t) = u(x, t + h). So v is also a solution
to the problem (SP ) with v(x, 0) = u(x, h), ∀x ∈ R2 and by the comparison principle,
we get u(x, t + h) − u(x, t) ≤ sup

x∈R2

{u(x, h) − Q0(x)} ≤ C1h. Similarly, we have u(x, t) −

u(x, t + h) ≤ sup
x∈R2

{u(x, h) −Q0(x)} ≤ C1h and so |u(x, t + h) − u(x, t)| ≤ sup
x∈R2

{u(x, h) −

Q0(x)} ≤ C1h. We now assume that Q0 ∈ W 1,∞(R2). We set Q0
ε = Q0 ∗ ρε, where ρε is

a regularizing sequence satisfying ρε = 1
ε2
ρ(1

ε ), ρ ∈ C
∞
c (R2,R), ρ ≥ 0, supp(ρ) ⊂ B̄(0, 1),

and
∫

R2 ρ(x) dx = 1. Then Q0
ε ∈ C2

c (R2) and ‖DQ0
ε‖L∞(R2) ≤ B0, ‖D2Q0

ε‖L∞(R2) ≤ B0C2
ε .

Indeed using properties stated in [31, Theorem 1, p.123], we have

|DQ0
ε (x)| = |DQ0 ∗ ρε(x)|,

= |
∫

R2

DQ0(x− y)ρε(y) dy|,

≤
∫

R2

|DQ0(x− y)ρε(y)| dy,

≤ B0

∫
R2

ρε(y) dy,

≤ B0,

and

|D2Q0
ε (x)| = |DQ0 ∗Dρε(x)|,

= |
∫

R2

DQ0(x− y)Dρε(y) dy|,

≤
∫

R2

|DQ0(x− y)Dρε(y)| dy,

≤ B0

ε

∫
R2

1

ε2

∣∣∣Dρ(y
ε

)∣∣∣ dy,
≤ B0

ε
‖Dρ‖L1(R2).

Moreover, ‖Q0 −Q0
ε‖L∞(R2) ≤ B0ε since

|Q0(x)−Q0
ε (x)| ≤

∫
R2

|Q0(x)−Q0(x− y)|ρε(y) dy,

≤ B0

∫
B̄(0,ε)

|y|ρε(y) dy,
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≤ B0ε

∫
B̄(0,ε)

ρε(y) dy = B0ε.

We denote by uε the solution with initial condition Q0
ε . Then, by the comparison principle,

‖uε′(., t) − uε(., t)‖L∞(R2) ≤ ‖Q0
ε′ − Q0

ε‖L∞(R2), and so (uε) converges uniformly to u the
solution of (SP ) with initial condition Q0 since (Q0

ε ) converges uniformly to Q0. We then
have by the comparison principle that ‖uε(., t) − u(., t)‖L∞(R2) ≤ ‖Q0

ε − Q0‖L∞(R2) and
deduce that

‖u(., t+ h)− u(., t)‖L∞(R2) ≤ 2‖Q0
ε −Q0‖L∞(R2) + ‖uε(., t+ h)− u(., t)‖L∞(R2),

≤ 2B0ε+ C1

(
B0,

B0C2

ε

)
h.

By taking the minimum on ε, we obtain the modulus of continuity of u, called ωF which
depends only on B0. And so u satisfies Q0(x) − ωF (t) ≤ u(x, t) ≤ Q0(x) + ωF (t). We
now prove that ‖Du‖L∞(R2×(0,T )) ≤ ‖DQ0‖L∞(R2). Indeed, let us consider the function

uh(x, t) = u(x+h, t)+‖DQ0‖L∞(R2)|h|. Then uh is still a solution of (SP ) with initial con-

dition uh(x, 0) = Q0(x+h)+‖DQ0‖L∞(R2)|h| ≥ Q0(x). So, by the comparison principle, we

have uh ≥ u. We deduce that for every h ∈ R2, u(x, t)−u(x+h, t) ≤ ‖DQ0‖L∞(R2)|h|, and
so ‖Du‖L∞(R2×(0,T )) ≤ ‖DQ0‖L∞(R2). We then set U+(x, t) = u(x, t)+‖div~g‖L∞(R2×[0,T ))t
and come back to the initial problem. Then ‖DU+‖L∞(R2×(0,T )) ≤ ‖Du‖L∞(R2×(0,T )) ≤ B0

and U+ is a super-solution of (EE) since U+(x, 0) = u(x, 0) = Q0(x) and U+
t (x, t) +

G∗(x, t, U+, DU+, D2U+) = ut(x, t) + ‖div~g‖L∞(R2×[0,T )) + div~g(x, t) + E(D2u(x, t)) +
F ∗(Du(x, t), D2u(x, t)) = ‖div~g‖L∞(R2×[0,T )) + div~g(x, t) ≥ 0 and satisfies U+(x, t) ≤
Q0(x) + ωF (t) + ‖div~g‖L∞(R2×[0,T ))t. Similarly, we construct a sub-solution U− such
that U−(x, t) ≥ Q0(x) − ωF (t) − ‖div~g‖L∞(R2×[0,T ))t by setting U−(x, t) = u(x, t) −
‖div~g‖L∞(R2×[0,T ))t. By applying the comparison principle, we get that

Q0(x)− ωF (t)− ‖div~g‖L∞(R2×[0,T ))t ≤ U−(x, t) ≤ Q(x, t) ≤ U+(x, t)

≤ Q0(x) + ωF (t) + ‖div~g‖L∞(R2×[0,T ))t.

Thus sup
x∈R2

((Q(x, δ)−Q0(x))+) ≤ ωF (δ)+‖div~g‖L∞(R2×[0,T ))δ and so Q(x, t+δ)−Q(x, t) ≤

ωF (δ)+‖div~g‖L∞(R2×[0,T ))δ+ωdiv~g(δ)T . Similarly, v is a super-solution of wt+ωdiv~g(δ)+

div~g(x, t) + E(D2w) + F (Dw,D2w) = 0 blackwith w(x, 0) = Q(x, δ) on R2 and ũ =
Q(x, t) − sup

x∈R2

((Q(x, δ) − Q0(x))−) − ωdiv~g(δ)t ((α)− = min{0, α}) is a sub-solution. So,

by the comparison principle, we have

Q(x, t)−Q(x, t+ δ) ≤ sup
x∈R2

((Q(x, δ)−Q0(x))−) + ωdiv~g(δ)t,

≤ ωF (δ) + ‖div~g‖L∞(R2×[0,T ))δ + ωdiv~g(δ)T.

And so

|Q(x, t)−Q(x, t+ δ)| ≤ ωF (δ) + ‖div~g‖L∞(R2×[0,T ))δ + ωdiv~g(δ)T.

which achieves the proof.
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This concludes this section on the existence of a well-defined and smooth solution of
the evolution equation derived for Q. Let us now turn to a Γ-convergence result.

2.4 Asymptotic results

In that purpose, an additional condition is set on u to get a uniform bound on ‖u‖L2(Ω).
We assume that u ∈ L∞(Ω), which is rather a non-restrictive and natural requirement in
image processing since at every pixel the light intensity has finite energy. For instance,
we introduce the condition ‖u‖L∞(Ω) ≤ ‖f‖L∞(Ω), which is reasonable in the context of
image decomposition and in virtue of the smoothing properties of the functional.
We first give a result of existence of minimizers for the non-elliptic problem (5.4).

Theorem 2.7 (Existence of minimizers, adapted from [21]). Let us set X(Ω) =
{
u ∈

GSBV 2(Ω) ∩ L∞(Ω) with ‖u‖L∞(Ω) ≤ C2

}
× H(div) ×

{
Q ∈W 1,∞(Ω) |

∫
Ω Qdx = 0

}
,

with C2 a positive constant that depends only on ‖f‖L∞(Ω). Assuming β ≤ α ≤ 2β, γ > 0,
µ > 0 and β > 0, there exists a minimizer (ū, ~̄g, Q̄) ∈ X(Ω) of F̄ .

Proof. The proof is based on an adaptation of arguments provided in [21].
By choosing u ≡ 0, ~g ≡ ~0, Q ≡ 0, then F (u,~g,Q) =

∫
Ω f

2 dx < +∞. And since
∀(u,~g,Q) ∈ X(Ω), F̄ (u,~g,Q) ≥ 0, then the infimum is finite. Let (uh, ~gh, Qh) ⊂ X(Ω)
be a minimizing sequence for F̄ . Then there exists N ∈ N such that sup

h≥N
F̄ (uh, ~gh, Qh) ≤

inf
(u,~g,Q)∈X(Ω)

F̄ (u,~g,Q) + 1 < +∞.

Then (∇Qh) is uniformly bounded in L∞(Ω). Besides,
∫

ΩQh dx = 0 for all h ∈ N
and so using the Poincaré-Wirtinger inequality, we get a uniform bound for (Qh) in
W 1,∞(Ω). We can thus extract a subsequence denoted by (Qhm) converging weakly-
∗ to Q0 ∈ W 1,∞(Ω). As the weak-∗ convergence implies uniform convergence then∫

ΩQ0 dx = 0. Let us now show that (~gh) is uniformly bounded in H(div) using the
fact that ‖uh‖L∞(Ω) ≤ C2 for all h ∈ N. Indeed, we have

+∞ > sup
h≥N

F̄ (uh, ~gh, Qh) ≥ ‖f − uh − div~gh‖2L2(Ω) +
γ

2
‖|~gh −∇Qh|‖2L2(Ω),

≥ 1

2
‖div~gh‖2L2(Ω) − ‖f − uh‖

2
L2(Ω) +

γ

4
‖|~gh|‖2L2(Ω) −

γ

2
‖|∇Qh|‖2L2(Ω),

+∞ >
1

2
‖div~gh‖2L2(Ω) +

γ

4
‖|~gh|‖2L2(Ω)

for any h ≥ N since ‖|∇Qh|‖L∞(Ω) is uniformly bounded and so is ‖|∇Qh|‖2L2(Ω) and

‖f − uh‖2L2(Ω) ≤ (‖f‖L∞(Ω) + C2)2meas(Ω) < +∞ for any h ∈ N. Therefore there exist a

subsequence (~ghm) of (~gh) and ~g0 such that ~ghm ⇀
m→+∞

~g0 in H(div).

We also note that

+∞ > sup
h≥N

F̄ (uh, ~gh, Qh) ≥ sup
h≥N

ρ‖∇2uh‖2L2(Ω) + ‖f − uh − div~gh‖2L2(Ω) + αH1(Suh)

+ βH1(S∇uh \ Suh),
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≥ sup
h≥N

ρ‖∇2uh‖2L2(Ω) +
1

2
‖f − uh‖2L2(Ω) − ‖div~gh‖2L2(Ω) + αH1(Suh)

+ βH1(S∇uh \ Suh),

+∞ > sup
h≥N

ρ‖∇2uh‖2L2(Ω) +
1

2
‖f − uh‖2L2(Ω) + αH1(Suh) + βH1(S∇uh \ Suh),

from what precedes. We can now apply [21, Theorem 8].

Theorem 2.8 (taken from [21, Theorem 8]). Let Ω ⊂ R2 be a bounded open set, α, β, µ > 0
and let (uh) ⊂ GSBV 2(Ω) be such that sup

h
‖∇2uh‖2L2(Ω) + µ‖f − uh‖2L2(Ω) + αH1(Suh) +

βH1(S∇uh \Suh) < +∞. Then there are a subsequence (uhm) and u0 ∈ GSBV 2(Ω)∩L2(Ω)
such that, as m→ +∞,

uhm → u0 almost everywhere in Ω and weakly in L2(Ω),

uhm → u0 strongly in Lq(Ω), 1 ≤ q < 2,

∇uhm → ∇u0 almost everywhere in Ω,

∇2uhm ⇀ ∇2u0 weakly in [L2(Ω)]2×2.

Since uhm → u0 almost everywhere in Ω, we deduce that ‖u0‖L∞(Ω) ≤ C2 and so
(u0, ~g0, Q0) ∈ X(Ω).
It remains to prove the lower semicontinuity of the functional. Since sup

h≥N
‖∇2uh‖2L2(Ω) +

µ‖f−uh‖2L2(Ω)+αH1(Suh)+βH1(S∇uh\Suh) < +∞ and uhm −→
m→+∞

u0 almost everywhere

in Ω, we can apply [21, Theorem 10].

Theorem 2.9 (taken from [21, Theorem 10]). Let Ω ⊂ R2 be a bounded open set,
0 < β ≤ α ≤ 2β and f ∈ L2(Ω). Let u0, uh ∈ GSBV 2(Ω) (h ∈ N), such that
sup
h
‖∇2uh‖2L2(Ω)+µ‖f−uh‖

2
L2(Ω)+αH

1(Suh)+βH1(S∇uh\Suh) < +∞ and uh → u0 almost

everywhere in Ω. Then ‖∇2u0‖2L2(Ω) + µ‖f − u0‖2L2(Ω) + αH1(Su0) + βH1(S∇u0 \ Su0) ≤
lim inf
h→+∞

‖∇2uh‖2L2(Ω) + µ‖f − uh‖2L2(Ω) + αH1(Suh) + βH1(S∇uh \ Suh) and αH1(Su0) +

βH1(S∇u0 \ Su0) ≤ lim inf
h→+∞

αH1(Suh) + βH1(S∇uh \ Suh).

Besides, from the proof of Theorem 2.1, and the weak lower semicontinuity of the
L2-norm, we have ρ‖∇2u0‖2L2(Ω) + ‖f − u0 − div~g0‖2L2(Ω) + µ‖|∇Q0|‖L∞(Ω) + γ

2‖|~g0 −
∇Q0|‖2L2(Ω) ≤ lim inf

m→+∞
ρ‖∇2uhm‖2L2(Ω) + ‖f − uhm − div~ghm‖2L2(Ω) + µ‖|∇Qhm |‖L∞(Ω) +

γ
2‖|~ghm −∇Qhm |‖

2
L2(Ω). Since “lim inf

∑
≥
∑

lim inf”, then F̄ (u0, ~g0, Q0) ≤ lim inf
m→+∞

F̄ (uhm , ~ghm , Qhm). This concludes the proof by taking (ū, ~̄g, Q̄) = (u0, ~g0, Q0).

We now give a Γ-convergence result.

Theorem 2.10 (Γ-convergence, adapted from [2, Theorem 3.1, 3.2, 3.3]). Assume that
α = β, κε > 0 with κε = o(ε4), ξε = ζε = 0 and Ω is strictly star-shaped. Then the family
(Fε) Γ-converges to F̄ in the L1(Ω)×H(div)×W 1,∞(Ω)×L1(Ω)×L1(Ω) topology (strong
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topology for L1(Ω) and weak/weak-∗ topology for H(div) and W 1,∞(Ω)) as ε → 0+. Be-
sides, the limit point of (ūε, ~̄gε, Q̄ε, v̄1,ε, v̄2,ε), a pair of minimizers of Fε, when ε tends to
0+ is of the form (ū, ~̄g, Q̄, 1, 1) with (ū, ~̄g, Q̄) ∈ X(Ω) assuming ∀ε > 0, ‖ūε‖L∞(Ω) ≤ C2.
It means in particular that lim

ε→0+

(
Fε(ūε, ~̄gε, Q̄ε, v̄1,ε, v̄2,ε)− F̄ (ū, ~̄g, Q̄)

)
= 0.

Remark 2.7. Under the assumptions of this theorem, then D(Ω) = {u ∈ W 2,2
loc (Ω) ∩

L∞(Ω)|‖u‖L∞(Ω) ≤ C2} × H(div) × {Q ∈ W 1,∞(Ω)|
∫

ΩQdx = 0} × W 1,2(Ω; [0, 1]) ×
W 1,2(Ω; [0, 1]) is the set of admissible solutions.

Proof. [2, Theorem 3.1, 3.2 and 3.3] will structure our proof. Let us first recall [2, Theorem
3.1].

Theorem 2.11 (taken from [2, Theorem 3.1]). Assume that γ ≥ 2, that lim
ε→0+

ξε
εγ−1 =

+∞, and that κε > 0 for ε small enough, ζε ≥ 0 for ε small enough. Then for every
triple (u, s, σ) ∈ L2(Ω) × L∞(Ω; [0, 1]) × L∞(Ω; [0, 1]) and for every family (uε, sε, σε) ∈
W 2,2
loc (Ω) ×W 1,2(Ω; [0, 1]) ×W 1,2(Ω; [0, 1]) converging to (u, s, σ) strongly in [L1(Ω)]3 as

ε→ 0+, we have lim inf
ε→0+

∫
Ω(σ2

ε+κε)|∇2uε|2 dx+µ
∫

Ω |uε−g|
2 dx+(α−β)Gε(sε)+βGε(σε)+

ξε
∫

Ω(s2
ε + ζε)|∇uε|γ dx ≥ F1(u, s, σ) with

F1(u, s, σ) =


∫

Ω(|∇2u|2 + µ|u− g|2) dx+ (α− β)H1(Su) + βH1(Su ∪ S∇u)
if u ∈ GSBV 2(Ω), s ≡ 1, σ ≡ 1,

+∞ otherwise
;

and lim inf
ε→0+

∫
Ω(σ2

ε + κε)|∇2uε|2 dx ≥
∫

Ω(|∇2u|2) dx if u ∈ GSBV 2(Ω), s ≡ 1, σ ≡ 1; and

lim inf
ε→0+

(α− β)Gε(sε) + βGε(σε) ≥ (α− β)H1(Su) + βH1(Su ∪ S∇u) if u ∈ GSBV 2(Ω), s ≡
1, σ ≡ 1. Moreover the condition on ξε can be replaced by ξε ≥ 0 in the case α = β.

It thus remain to prove the lower semicontinuity of the other terms that is to say
lim inf
ε→0+

‖f − uε − div~gε‖L2(Ω) ≥ ‖f − u − div~g‖2L2(Ω), lim inf
ε→0+

‖|∇Qε|‖L∞(Ω) ≥ ‖|∇Q|‖L∞(Ω)

and lim inf
ε→0+

‖~gε − ∇Qε|‖2L2(Ω) ≥ ‖|~g − ∇Q|‖
2
L2(Ω) for any (uε, ~gε, Qε) ∈ D(Ω) converging

to (u,~g,Q) ∈ GSBV 2(Ω) ×H(div) ×W 1,∞(Ω) strongly in L1(Ω), weakly in H(div) and
weakly-∗ in W 1,∞(Ω). Since ∀ε > 0, ‖uε‖L∞(Ω) ≥ C2, then ‖uε‖L2(Ω) ≤ C2meas(Ω) < +∞
and so (uε) converges weakly to u in L2(Ω) by uniqueness of the weak limit up to a
subsequence. Since (~gε) weakly converges to ~g in H(div) then (div~gε) converges weakly to
div~g in L2(Ω). Therefore lim inf

ε→0+
‖f − uε − div~gε‖L2(Ω) ≥ ‖f − u− div~g‖2L2(Ω). Since (Qε)

converges weakly-∗ to Q in W 1,∞(Ω) then (∇Qε) converges weakly-∗ to ∇Q in L∞(Ω)
and so lim inf

ε→0+
‖|∇Qε|‖L∞(Ω) ≥ ‖|∇Q|‖L∞(Ω). Also as the weak-∗ convergence in W 1,∞(Ω)

implies uniform convergence then
∫

ΩQdx = 0. Finally, weak-∗ convergence in L∞(Ω)
implying weak convergence in L2(Ω) and weak convergence in H(div) implying weak
convergence in L2(Ω) yields lim inf

ε→0+
‖~gε − ∇Qε|‖2L2(Ω) ≥ ‖|~g − ∇Q|‖

2
L2(Ω). This concludes

the first part of the proof which gives us:
for any sequence (uε, ~gε, Qε, sε, σε) ∈ D(Ω) converging to (u,~g,Q, s, σ) ∈ L2(Ω)×H(div)×
W 1,∞(Ω) × L∞(Ω; [0, 1]) × L∞(Ω; [0, 1]) in L1(Ω) ×H(div) ×W 1,∞(Ω) × L1(Ω) × L1(Ω)
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(strong convergence in L1(Ω), weak convergence in H(div) and weak-∗ convergence in
W 1,∞(Ω)) as ε→ 0+, we have

lim inf
ε→0+

Fε(uε, ~gε, Qε, sε, σε) ≥ F̄ (u,~g,Q, s, σ),

with F̄ (u,~g,Q, s, σ) = F̄ (u,~g,Q, s, σ) if (u,~g,Q) ∈ GSBV 2(Ω)×H(div)×{Q ∈W 1,∞(Ω)|
∫

ΩQ
dx = 0}, s ≡ 1, σ ≡ 1, and +∞ otherwise.
The second part of the proof is based on the following theorem.

Theorem 2.12 (taken from [2, Theorem 3.2]). Let (uε, sε, σε) ∈W 2,2
loc (Ω)×W 1,2(Ω; [0, 1])×

W 1,2(Ω; [0, 1]) be such that sup
ε>0

∫
Ω(σ2

ε + κε)|∇2uε|2 dx+µ
∫

Ω |uε− g|
2 dx+ (α− β)Gε(sε) +

βGε(σε) + ξε
∫

Ω(s2
ε + ζε)|∇uε|γ dx < +∞. Then the family (uε, sε, σε) is relatively compact

in the [L1(Ω)]3 topology as ε → 0+ and any limit point is of the form (u, 1, 1) with u ∈
GSBV 2(Ω) ∩ L2(Ω).

We will now adapt this result to our problem. So let (uε, ~gε, Qε, sε, σε) ∈ D(Ω) be
such that sup

ε>0
Fε(uε, ~gε, Qε, sε, σε) < +∞. Then we can extract a subsequence from

(uε, ~gε, Qε, sε, σε) converging to (u,~g,Q, 1, 1) in L1(Ω)×H(div)×W 1,∞(Ω)×L1(Ω)×L1(Ω)
(strong convergence in L1(Ω), weak convergence in H(div) and weak-∗ convergence in
W 1,∞(Ω)), with (u,~g,Q) ∈ X(Ω) assuming that ‖uε‖L∞(Ω) ≤ C2 for any ε > 0.
Indeed, the following holds

+∞ > sup
ε>0
Fε(uε, ~gε, Qε, sε, σε),

∀ε > 0, +∞ > C ≥ ‖|∇Qε|‖L∞(Ω).

Since ∀ε > 0,
∫

ΩQε dx = 0, then by the Poincaré-Wirtinger inequality we deduce that

there exist a subsequence still denoted by (Qε) and Q ∈ W 1,∞(Ω) such that Qε
∗
⇀
ε→0

Q in

W 1,∞(Ω). As weak-∗ convergence in W 1,∞(Ω) implies uniform convergence we get that∫
ΩQdx = 0. Furthermore,

+∞ > sup
ε>0
Fε(uε, ~gε, Qε, sε, σε),

∀ε > 0,

+∞ > C ≥ 1

2
‖div~gε‖2L2(Ω) − 2‖f‖2L∞(Ω)meas(Ω)− 2C2

2meas(Ω) +
γ

4
‖|~gε|‖2L2(Ω) −

γ

2
C2meas(Ω),

since ∀ε > 0, ‖uε‖L∞(Ω) ≤ C2 < +∞ and ‖|∇Qε|‖2L2(Ω) ≤ ‖|∇Qε|‖
2
L∞(Ω)meas(Ω) ≤

C2meas(Ω). Thus there exist a subsequence still denoted by (~gε) and ~g ∈ H(div) such
that ~gε ⇀

ε→0+
~g in H(div). Moreover, we get

+∞ > sup
ε>0
Fε(uε, ~gε, Qε, sε, σε),

≥ sup
ε>0

ρ

∫
Ω

(σ2
ε + κε)|∇2uε|2 dx+ ‖f − uε − div~gε‖2L2(Ω) + (α− β)Gε(sε) + βGε(σε),
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≥ sup
ε>0

ρ

∫
Ω

(σ2
ε + κε)|∇2uε|2 dx+

1

2
‖f − uε‖2L2(Ω) − ‖div~gε‖2L2(Ω) + (α− β)Gε(sε) + βGε(σε),

≥ sup
ε>0

ρ

∫
Ω

(σ2
ε + κε)|∇2uε|2 dx+

1

2
‖f − uε‖2L2(Ω) − 2C − 4‖f‖2L∞(Ω)meas(Ω)− 4C2

2meas(Ω)

− γC2meas(Ω) + (α− β)Gε(sε) + βGε(σε).

Therefore according to [2, Theorem 3.2], there exist a subsequence of (uε, sε, σε) still
denoted by (uε, sε, σε) and u ∈ GSBV 2(Ω) ∩ L2(Ω) such that (uε, sε, σε) −→

ε→0
(u, 1, 1)

strongly in [L1(Ω)]3. Since the strong convergence in L1(Ω) implies the convergence almost
everywhere and that ‖uε‖L∞(Ω) ≤ C2 for any ε > 0, we can deduce that ‖u‖L∞(Ω) ≤ C2

and so (u,~g,Q) ∈ X(Ω).
The last part of the proof comes from the following theorem.

Theorem 2.13 (taken from [2, Theorem 3.3]). Assume n = γ = 2, α = β and Ω is
strictly star-shaped. Assume that κε > 0 and κε = o(ε4), while ξε = ζε = 0. Then the
family (F̃ε) Γ-converges to F̃ in the [L1(Ω)]3 topology for ε → 0+, where F̃ε(uε, sε, σε) =∫

Ω(σ2
ε +κε)|∇uε|2 dx+µ

∫
Ω |uε− g|

2 dx+ (α−β)Gε(sε) +βGε(σε) + ξε
∫

Ω(s2
ε + ζε)|∇uε|2 dx

and F̃(u) =
∫

Ω(|∇2u|2 + µ|u− g|2) dx+ (α− β)H1(Su) + βH1(Su ∪ S∇u).

The proof consists in showing the existence of a sequence (uε, sε, σε) ∈ D(Ω) and
u ∈ GSBV 2(Ω) ∩ L2(Ω) such that (uε, sε, σε) −→

ε→0+
(u, 1, 1) strongly in [L1(Ω)]3 and

lim sup
ε→0+

F̃ε(uε, sε, σε) ≤ F̃(u). We are now going to adapt this result to our functional and

show that there exist a sequence (uε, ~gε, Qε, sε, σε) ∈ D(Ω) and (u,~g,Q) ∈ X(Ω) such that
(uε, ~gε, Qε, sε, σε) −→

ε→0+
(u,~g,Q, 1, 1) in L1(Ω)×H(div)×W 1,∞(Ω)×L1(Ω)×L1(Ω) (strong

convergence in L1(Ω), weak convergence in H(div) and weak-∗ convergence in W 1,∞(Ω))
and lim sup

ε→0+

Fε(uε, ~gε, Qε, sε, σε) ≤ F̄ (u,~g,Q).

Let (u,~g,Q) ∈ X(Ω). Actually, we take ~gε = ~g for all ε > 0, and Qε = Q for all ε > 0 so
that we neglect the terms ‖|∇Q|‖L∞(Ω) and ‖|∇Q − ~g|‖2L2(Ω) and the remaining problem

falls exactly in the framework of [2, Theorem 3.3]. Then the construction of (uε, sε, σε) is
exactly the same as the one in [2, Theorem 3.3] which concludes the proof since it ensures
that ∀ε > 0, ‖uε‖L∞(Ω) ≤ C2, ‖u‖L∞(Ω) ≤ C2 so that (uε, ~gε, Qε, sε, σε) ∈ D(Ω).

Let us now introduce a nonlocal version of our model.

3 A nonlocal version of the modelling and its theoretical
analysis

3.1 Motivations

Inspired by prior related works by Bourgain, Brezis and Mironescu [16] (—first concerned
with the study of the limiting behavior of the norms of fractional Sobolev spaces W s,p,
0 < s < 1, 1 < p <∞ as s→ 1 and to a new characterization of the Sobolev spaces W 1,p,
1 < p <∞—), Aubert and Kornprobst [9] (—they question whether this characterization
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can be useful to solve variational problems —), Boulanger and co-authors [15] (—in which
the authors address the question of the calculus of variations for nonlocal functionals —),
Dávila [28], and Ponce [38] (—dedicated to expressing the semi-norms of first order Sobolev
spaces and the BV space thanks to a nonlocal operator —), we introduce a sequence of
radial mollifiers {ρn}n∈N satisfying: ∀n ∈ N, ∀x ∈ R, ρn(x) = ρn(|x|); ∀n ∈ N, ρn ≥ 0;
∀n ∈ N,

∫
R ρn(x) dx = 1; ∀δ > 0, lim

n→+∞

∫ +∞
δ ρn(r) dr = 0, and an associated sequence

of functionals Fε,n depending on n and such that the component
∫

Ω(v2
2 + κε) |∇2u|2 dx is

approximated by an integral operator involving a differential quotient and the radial mol-
lifier depicted above. It is shown that the approximated formulation admits minimizers
for which regularity results are provided in a fractional Sobolev space. This theoretical
study will lead to the derivation of a numerically tractable implementation described in
the following section.
This part is thus motivated by the idea of extending the concept of nonlocal gradients ([33])
to higher derivatives, of analyzing its theoretical properties and in particular, its conver-
gence to classical second-order regularizers, and of deriving a nonlocal counterpart of the
local model (5.5), with the underlying intention of devising a model numerically tractable
and improving the overall quality of the local algorithm (by explaining second-order deriva-
tives of u in terms of nonlocal quantities). Our model is also deeply inspired by [34] dedi-
cated to a formulation of a nonlocal Hessian that combines the ideas of higher-order and
nonlocal regularization for image restoration, and more largely to a novel characteriza-
tion of higher Sobolev and BV -spaces. In this paper, the authors connect in particular

the finiteness of lim inf
n→∞

∫
RN
|Hn u(x)|p dx (—Hn u(x) := N(N+2)

2

∫
RN

u(x+h)−2u(x)+u(x−h)
|h|2

h
⊗
h− |h|

2

N+2
IN

|h|2 ρn(h) dh—) with the inclusion of u ∈ Lp(RN ), 1 < p < ∞, in W 2,p(RN ).

They thus introduce a nonlocal Hessian that is derivative free, only requiring the con-
sidered function u to belong to an Lp-space. As in [34], our model is derivative free,
involving a built-in symmetry that associates triples of points; the main difference lies in
the independent treatment of the directional derivatives, yielding a nonlocal version not

of
∫

R2 |∇2u|2 dx, but of
∫

R2

(
∂2u
∂x2

1

)2
+
(
∂2u
∂x2

2

)2
dx (x = (x1, x2) ∈ R2), thus removing the

control of the L2-norm of ∂2u
∂x1∂x2

. We will show nevertheless with the theory of tempered

distributions that if u, ∂
2u
∂x2

1
, ∂

2u
∂x2

2
∈ L2(R2), then u ∈W 2,2(R2). This modelling inherits fine

analytical properties, has the advantage of being numerically more tractable compared to
[34], particularly in the derivation of the Euler-Lagrange equation satisfied by u, and is
straightforwardly connected to our imaging problem, which is not the case in [34].
At last, for the sake of completeness, we refer the interested reader to other papers deal-
ing with higher-order regularizations: [24] (—in which the authors propose higher-order
models by means of an infimal convolution of two convex regularizers —), [26] (—in which
a weighted version of the Laplacian is provided —), [25] (—introducing the Euler-elastica
functional), [17] (—proposing the total generalized variation —), or [11] (—bounded Hes-
sian regularization —).
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3.2 Notations and preliminary results

Let (e1, e2) be the canonical basis of R2. We use dx (x = (x1, x2)) for integration with
respect to the Lebesgue measure on R2 and dt, ds, dh for various integrations with respect
to the Lebesgue measure on R. The differentiation indices will be a pair α = (α1, α2),
where αi is the order of the partial derivative in the variable xi, and the total order of
the derivative is denoted by |α| = α1 + α2. We will use the shortened notation Dα u =

∂|α| u
∂x1

α1∂x2
α2 .

Given an integer j ≥ 0, we define the family of spaces Cjb (R
2) ([29, Definition 2.2.1, p.

69]) by setting

Cjb (R
2) =

{
u ∈ Cj(R2) | ∀α ∈ N2, |α| ≤ j, ∃Kα, ‖Dαu‖L∞(R2) ≤ Kα

}
.

For a positive real number λ, the subspace Cj,λb (R2) consists of the functions in Cjb (R
2)

such that if |α| ≤ j, then

∃Cα,λ, ∀x, y ∈ R2, |Dαu(x)−Dαu(y)| ≤ Cα,λ |x− y|λ.

At last, the properties of the considered kernel ρn are those depicted above, and we will
use several times the following generalized result of Spector ([40, p. 58]):

Lemma 3.1. If E ⊂ R is bounded and measurable, then ∀p ∈ N∗,

lim
n→+∞

∫
E
|x|p ρn(x) dx = 0. (5.6)

Proof. Fixing δ > 0,

lim sup
n→+∞

∫
E
|x|p ρn(x) dx ≤lim sup

n→+∞

∫
{|x|>δ}∩E

|x|p ρn(x) dx

+ lim sup
n→+∞

∫
{|x|≤δ}

|x|p ρn(x) dx,

≤Cδ,E,p lim
n→+∞

∫
|x|>δ

ρn(x) dx+ δp.

The result follows from the properties of ρn and by sending δ to 0.

Equipped with this material, we now propose a derivative free nonlocal formulation
of the L2-norms

∫
R2 |D(2,0)u|2 dx and

∫
R2 |D(0,2)u|2 dx respectively. We start off with the

definition of such a nonlocal version for smooth functions.

Theorem 3.1. Let u ∈ C4
c (R2). Then∫

R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2

|h|4
ρn(h) dh dx

−→
n→+∞

{ ∫
R2 |D(2,0)u|2 dx if i = 1∫
R2 |D(0,2)u|2 dx if i = 2

.

201



A second order free discontinuity model for bituminous surfacing crack
recovery

Proof. We deal with the case i = 1.

Let us define H1u(x) :=

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh. Let R > 0 be

fixed.

H1u(x) =

∫
{|h|≤R}

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

+

∫
{|h|>R}

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh.

But u(x+he1)− 2u(x) +u(x−he1) = h2
∫ 1

0

∫ 1
0 D(2,0)u(x+h(s+ t− 1)e1) dt ds and from

Taylor’s expansion u(x+he1)−2u(x)+u(x−he1)
h2 = D(2,0)u(x) + h2

12 D
(4,0) u(ζx1,h, x2), so that∫

{|h|>R}

[∫ 1

0

∫ 1

0
D(2,0)u(x+ h(s+ t− 1)e1) dt ds

]2

ρn(h) dh

≤ ‖D(2,0)u‖2L∞(R2)

∫
{|h|>R}

ρn(h) dh −→
n→+∞

0.

Using the previous Taylor’s expansion, the properties of ρn and lemma 3.1 yields∫
{|h|≤R}

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh −→

n→+∞
|D(2,0)u(x)|2

and therefore H1u(x) converges to |D(2,0)u(x)|2 everywhere. We now aim to prove that∫
R2 |H1u(x) − |D(2,0)u(x)|2| dx −→

n→+∞
0. We assume without loss of generality that

suppu ⊂ B(0, R). We first show that ∀ε > 0, ∃L = L(ε) > 1 such that

sup
n∈N

∫
B(0,LR)c

|H1u(x)| dx ≤ ε.

One has, making a change of variable,∫
B(0,LR)c

|H1u(x)| dx

=

∫
B(0,LR)c

∫
R

|u(x+ he1) + u(x− he1)|2

|h|4
ρn(h) dh dx,

≤ 2

∫
B(0,LR)c

∫
R

|u(x+ he1)|2 + |u(x− he1)|2

|h|4
ρn(h) dh dx,

≤ 4

∫
B(0,LR)c

∫
{h |x+he1∈B(0,R)}

|u(x+ he1)|2

|h|4
ρn(h) dh dx,

≤ 4

(L− 1)4R4

∫
B(0,LR)c

∫
{h |x+he1∈B(0,R)}

|u(x+ he1)|2 ρn(h) dh dx,

≤ 4

(L− 1)4R4
‖u‖2L2(R2) ‖ρn‖L1(R) =

4

(L− 1)4R4
‖u‖2L2(R2).
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Thus ∀ε > 0, ∃L = L(ε) > 1, ∀n ∈ N,
∫
B(0,LR)c |H1u(x)| dx ≤ ε, which means

sup
n∈N

∫
B(0,LR)c

|H1u(x)| dx ≤ ε.

As ∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx =

∫
B(0,LR)

|H1u(x)− |D(2,0)u(x)|2| dx

+

∫
B(0,LR)c

|H1u(x)| dx,

lim sup
n→+∞

∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx ≤ lim sup
n→+∞

∫
B(0,LR)

|H1u(x)− |D(2,0)u(x)|2| dx+ ε.

Now, H1u converges pointwise to |D(2,0)u(x)|2 and onB(0, LR), H1u(x) ≤ ‖D(2,0)u‖2L∞(R2),

which is integrable on B(0, LR). It follows from the dominated convergence theorem that∫
B(0,LR)

|H1u(x)− |D(2,0)u(x)|2| dx −→
n→+∞

0,

yielding

lim sup
n→+∞

∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx ≤ ε,

and in the end,

lim
n→+∞

∫
R2

|H1u(x)− |D(2,0)u(x)|2| dx = 0.

In fact, we have an analogous convergence result for u ∈ W 2,2(R2) that we establish
with the following lemma.

Lemma 3.2. Suppose that u ∈W 2,2(R2). Then

∫
R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2

|h|4
ρn(h) dh dx is well-defined and∫

R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2

|h|4
ρn(h) dh dx ≤

{
‖D(2,0)u‖2L2(R2) if i = 1

‖D(0,2)u‖2L2(R2) if i = 2
.

Proof. We focus on the case i = 1.
Let us begin by estimates for a function u ∈ C∞(R2) ∩W 2,2(R2). Using Fubini-Tonelli’s
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theorem and Jensen’s inequality,∫
R2

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh dx

≤
∫

R2

∫
R

[∫ 1

0

∫ 1

0
|D(2,0)u(x+ (t+ s− 1)he1)|2 ds dt

]
ρn(h) dh dx,

≤ ‖D(2,0)u‖2L2(R2).

Consider now a sequence (uk)k∈N in C∞(R2)∩W 2,2(R2) approximating u in W 2,2(R2) (see
[29, Proposition 2.12, p. 60] for a density result). From the above,∫

R2

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2

|h|4
ρn(h) dh dx ≤ ‖D(2,0)uk‖2L2(R2).

As (uk)k∈N converges to u in W 2,2(R2) 	 C0,λ
b (R2) for every λ < 1 ([29, Theorem 2.31, p.

69]), (uk)k∈N uniformly converges to u, so pointwise everywhere. Fatou’s lemma allows us
to conclude that∫

R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

≤ lim inf
k→+∞

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2

|h|4
ρn(h) dh,

and ∫
R2

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh dx

≤
∫

R2

lim inf
k→+∞

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2

|h|4
ρn(h) dh dx.

Setting Fk(x) :=

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2

|h|4
ρn(h) dh, (Fk)k∈N is a sequence

of functions of L1(R2) such that supk
∫

R2 Fk < ∞, so applying Fatou’s lemma a second
time yields∫

R2

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh dx

≤ lim inf
k→+∞

∫
R2

∫
R

|uk(x+ he1)− 2uk(x) + uk(x− he1)|2

|h|4
ρn(h) dh dx,

≤ lim inf
k→+∞

‖D(2,0)uk‖2L2(R2) = ‖D(2,0)u‖2L2(R2).

With this preliminary lemma, we now state the main result.

204



3. A nonlocal version of the modelling and its theoretical analysis

Theorem 3.2. Let u ∈W 2,2(R2). Then∫
R2

∫
R

|u(x+ hei)− 2u(x) + u(x− hei)|2

|h|4
ρn(h) dh dx −→

n→+∞

{
‖D(2,0)u‖2L2(R2) if i = 1,

‖D(0,2)u‖2L2(R2) if i = 2
.

Proof. We restrict ourselves to the case i = 1.
Let ε > 0. By density, there exists vε ∈ C∞c (R2) such that

‖D(2,0)u−D(2,0)vε‖L2(R2) ≤ ε.

Let us set un(x, h) = u(x+he1)−2u(x)+u(x−he1)
h2 ρ

1
2
n (h). un ∈ L2(R2 × R) and ‖un‖L2(R2×R) ≤

‖D(2,0)u‖L2(R2). Denoting by vn,ε := vε(x+he1)−2vε(x)+vε(x−he1)
h2 ρ

1
2
n (h), we thus have

‖un − vn,ε‖L2(R2×R) ≤ ‖D(2,0)u−D(2,0)vε‖L2(R2) ≤ ε,

and from the second triangle inequality,

|‖un‖L2(R2×R) − ‖vn,ε‖L2(R2×R)| ≤ ε.

To conclude,∣∣∣‖un‖L2(R2×R) − ‖D(2,0)u‖L2(R2)

∣∣∣ ≤ ∣∣‖un‖L2(R2×R) − ‖vn,ε‖L2(R2×R)

∣∣
+
∣∣∣‖vn,ε‖L2(R2×R) − ‖D(2,0)vε‖L2(R2)

∣∣∣
+
∣∣∣‖D(2,0)vε‖L2(R2) − ‖D(2,0)u‖L2(R2)

∣∣∣ ,
≤ 2ε+

∣∣∣‖vn,ε‖L2(R2×R) − ‖D(2,0)vε‖L2(R2)

∣∣∣ .
It leads to lim sup

n→+∞

∣∣‖un‖L2(R2×R) − ‖D(2,0)u‖L2(R2)

∣∣ ≤ 2ε and then ‖un‖L2(R2×R) −→
n→+∞

‖D(2,0)u‖L2(R2).

Equipped with these theoretical results and characterization, we reformulate our local
problem into a nonlocal form.

3.3 Connection to the local imaging problem

Owing to the independent treatment of the directional derivatives in the previous nonlocal
formulations, we slightly modify the local problem into

inf Fε(u,~g,Q, v1, v2) = ‖f − u− div~g‖2L2(Ω) + µ ‖|∇Q|‖L∞(Ω)

+
γ

2
‖|~g −∇Q|‖2L2(Ω)

+ ρ

∫
Ω

(v2
2 + κε)

(
|D(2,0)u|2 + |D(0,2)u|2

)
dx

+ ξε

∫
Ω

(v2
1 + ζε) |∇u|2 dx+ (α− β)Gε(v1) + β Gε(v2). (5.7)
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While the functional spaces for Q, ~g, and v1 are unchanged, the unknowns u and v2 are now
searched in the functional spaces W 1,2

0 (Ω)∩W 2,2(Ω) and
{
v2 ∈W 1,2(Ω, [0, 1]) | γ0 v2 = 1

}
respectively, γ0 denoting the trace operator. The reasons for such requirements will be
made clearer in the following. Nevertheless, these assumptions are reasonable and not
restrictive if we assume for instance that the observed image f is with compact support.
Existence of minimizers is still guaranteed as stated below.

Theorem 3.3. Let Ω be a regular bounded open subset of R2. With κε, ξε, ζε > 0, pro-
blem (5.7) admits minimizers (u = uε,~g = ~gε, Q = Qε, v1 = v1,ε, v2 = v2,ε) on W 1,2

0 (Ω) ∩
W 2,2(Ω)×H(div) ×

{
Q ∈W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×W 1,2(Ω, [0, 1])×

{
v2 ∈W 1,2(Ω, [0, 1]) | γ0

v2 = 1
}

.

Proof. The proof rests upon two major facts: (i) the space W 1,2
0 (Ω) is a strongly closed

convex subspace of W 1,2(Ω) by continuity of the trace map, so according to [18, Theo-

rem III.7, p. 38], it is a weakly closed convex subspace. (ii) the mapping ‖̂ · ‖ : u 7→(
‖D(2,0)u‖2L2(Ω) + ‖D(0,2)u‖2L2(Ω)

) 1
2

is a norm on W 1,2
0 (Ω) ∩ W 2,2(Ω) equivalent to the

usual norm on W 2,2(Ω) that we denote by ‖ · ‖2,Ω. The homogeneity axiom as well as the

triangle inequality are straightforwardly obtained. Let u ∈ W 1,2
0 (Ω) ∩W 2,2(Ω) be such

that ‖̂u‖ = 0. Then from Green’s formula,
∫

Ω |∇u|
2 dx = 0 and from Poincaré’s inequality,

u = 0 almost everywhere on Ω.
Now let us denote by A the mapping A : W 1,2

0 (Ω) ∩W 2,2(Ω) → L2(Ω) such that ∀u ∈
W 1,2

0 (Ω)∩W 2,2(Ω), A(u) = ∆u. For every f ∈ L2(Ω), let us introduce the unique solution

(Lax-Milgram theorem) u ∈W 1,2
0 (Ω) of the variational problem: ∀v ∈W 1,2

0 (Ω),∫
Ω
〈∇u,∇v〉R2 dx = −

∫
Ω
f v dx.

As the boundary of Ω is sufficiently smooth, a regularity result (see [18, Section IX.6,
p. 181] for instance) gives that u ∈ W 2,2(Ω). As ∆u = f , it follows that A (which is a
continuous mapping since ‖∆u‖L2(Ω) ≤

√
2 ‖u‖2,Ω) is a bijection from W 1,2

0 (Ω) ∩W 2,2(Ω)
to L2(Ω). The bounded inverse theorem enables us to conclude that the inverse mapping
is continuous as well, implying the existence of a constant C > 0 such that ∀u ∈W 1,2

0 (Ω)∩
W 2,2(Ω), ‖u‖2,Ω ≤ C ‖∆u‖L2(Ω) ≤

√
2C ‖̂u‖.

Our mathematical material being formulated on R2 rather than Ω, in our nonlocal
model, we propose searching for u in a subspace of W 1,2

0 (Ω) and for v2 in W 1,2(Ω, [0, 1])
such that γ0 v2 = 1.

Theorem 3.4. Let Ω be a regular bounded open subset of R2 with boundary of class C2.
Let us assume that the functions t 7→ ρn(t), t 7→ tqρn(t) are non-increasing for t ≥ 0

and q ∈]0, 1[. (Such a function ρn exists : for instance, with q ∈]0, 1[, ρ(t) = e−|t|

|t|q and
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ρn(t) = C nρ(nt) with C = 1∫
R ρ(t) dt

). With κε, ξε, ζε > 0, for any n ∈ N∗, problem

inf Fε,n(u,~g,Q, v1, v2) = ‖f − u− div~g‖2L2(Ω) + µ ‖|∇Q|‖L∞(Ω)

+ ρ

∫
R2

(v2
2,e(x) + κε)

2∑
i=1

∫
R

|ue(x+ hei)− 2ue(x) + ue(x− hei)|2

|h|4
ρn(h) dh

+
γ

2
‖|~g −∇Q|‖2L2(Ω) + ξε

∫
Ω

(v2
1 + ζε) |∇u|2 dx+ (α− β)Gε(v1) + β Gε(v2), (5.8)

where v2,e and ue are respectively the extensions of v2 according to [18, Theorem IX.7,
p. 158] —by construction, 0 ≤ v2,e ≤ 1 a.e. — and of u on R2 by 0 (—with the
regularity assumed on Ω, v2,e and ue are in W 1,2(R2) —), admits minimizers (un =

uε,n, ~gn = ~gε,n, Qn = Qε,n, v1,n = v1,ε,n, v2,n = v2,ε,n) on W 1,2
0 (Ω) ∩ W s,2(Ω) × H(div)

×
{
Q ∈W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×W 1,2(Ω, [0, 1])×

{
v2 ∈W 1,2(Ω, [0, 1]) | γ0 v2 = 1

}
, with

s ∈
[

3

2
, 2

[
.

Proof. The functional is proper, take v1 ≡ 1, v2 ≡ 1, ~g ≡ ~0, Q ≡ 0, and u ≡ 0, since
f is assumed to be sufficiently smooth (i.e. at least L2(Ω)) on Ω which is bounded.
Let us now consider a minimizing sequence (uln, ~gn

l, Qln, v
l
1,n, v

l
2,n) on W 1,2

0 (Ω) × H(div)

×
{
Q ∈W 1,∞(Ω) |

∫
Ω Qdx = 0

}
×W 1,2(Ω, [0, 1]) ×

{
v2 ∈W 1,2(Ω, [0, 1]) | γ0 v2 = 1

}
(the

dependency on ε is not explicitly mentioned here for compactness). We will show that in
fact, uln ∈W

1,2
0 (Ω) ∩W s,2(Ω).

1. Extraction of convergent subsequences:

– Fε,n(uln, ~gn
l, Qln, v

l
1,n, v

l
2,n) ≥ µ ‖|∇Qln|‖L∞(Ω). As

∫
ΩQ

l
n dx = 0 for all l ∈ N,

we can use Poincaré-Wirtinger inequality, which leads us to the existence of
a subsequence of (Qln) still denoted by (Qln) weakly-∗ converging to Qn in
W 1,∞(Ω). As the weak-∗ convergence in W 1,∞(Ω) implies uniform convergence,∫

ΩQn(x) dx = 0.

– Fε,n(uln, ~gn
l, Qln, v

l
1,n, v

l
2,n) ≥ (α − β)ε‖∇vl1,n‖2L2(Ω). By noticing that vl1,n ∈

L∞(Ω) with 0 ≤ vl1,n ≤ 1 a.e.,
∫

Ω v
l
1,n dx ≤ 1 and Poincaré-Wirtinger inequality

gives us the existence of a subsequence of (vl1,n) still denoted by (vl1,n) weakly

converging to v1,n inW 1,2(Ω). SinceW 1,2(Ω) 	
c
L2(Ω), (vl1,n) strongly converges

to v1,n in L2(Ω) and so pointwise almost everywhere up to a subsequence. We
deduce that v1,n ∈W 1,2(Ω, [0, 1]).

– In the same way, we have (vl2,n) weakly converging to v2,n in W 1,2(Ω) with

v2,n ∈W 1,2(Ω, [0, 1]) and γ0 v2,n = 1 by continuity of the trace operator.

– Fε,n(uln, ~gn
l, Qln, v

l
1,n, v

l
2,n) ≥ ξεζε‖∇uln‖2L2(Ω). By Poincaré inequality and the

continuity of the trace operator, we get the existence of a subsequence of (uln)
still denoted by (uln) weakly converging to un ∈W 1,2

0 (Ω) in W 1,2(Ω).
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Let us set Eln(h) =
∫

R2 |uln,e(x+ he1)− 2uln,e(x) + uln,e(x− he1)|2 dx where uln,e
denotes the extension by 0 of uln on R2. Here again, due to the assumption on
Ω, uln,e belongs to W 1,2(R2). One can prove that Eln(2h) ≤ 16Eln(h). By using

Fubini-Tonelli theorem, we have

∫
R2

∫
R

|uln,e(x+ he1)− 2uln,e(x) + uln,e(x− he1)|2

|h|4

ρn(h) dh dx=

∫
R

Eln(h)

|h|4
ρn(h) dh = 2

∫ ∞
0

Eln(h)

|h|4
ρn(h) dh≤ Fε,n(uln, ~g

l
n, Q

l
n, v

l
1,n,

vl2,n). We then apply [9, Lemma 3.2] by taking M = δ = 1, g(t) =
Eln(t)

tq+1
,

k(t) = tq−3ρn(t) and we get:

∫ 1

0

Eln(h)

|h|4
ρn(h) dh ≥ C(1)

∫ 1

0

Eln(t)

|t|q+1
dt

∫ 1

0
tq−3ρn(t) dt.

(We will see further that the condition of monotonicity on k is fulfilled). We
now need g to verify the assumption of this lemma, that is to say, g( t2) ≥ g(t).

We know that g( t2) =
Eln( t2)2q+1

tq+1
≥ 2q−3g(t). Thus if q ≥ 3, this condition is

fulfilled. By using the properties of ρn, we deduce first that

∫ 1

0

Eln(t)

|t|q+1
dt ≤ C

with C independent of l. Then

∫ ∞
1

Eln(t)

|t|q+1
dt ≤ C ′ ‖uln,e‖2L2(R2)

∫ ∞
1

dt

|t|q+1
,

C ′ being a constant and the last integral being convergent since q ≥ 3, re-

sulting in the uniform boundedness of

∫ ∞
0

Eln(t)

|t|q+1
dt. Besides,

∫
R

Eln(t)

|t|q+1
dt =∫

R

1

|h|q+1

∫
R2

|uln,e(x+he1)−2uln,e(x)+uln,e(x−he1)|2 dx dh =

∫
R

1

|h|q+1
‖τhe1uln,e−

2uln,e+τ−he1u
l
n,e‖2L2(R2) dh =

∫
R

1

|h|q+1

∫
R2

|e2iπhξ1−2+e−2iπhξ1 |2|F(uln,e)(ξ)|2 dξ dh

by Plancherel theorem (τ· denoting the usual translation operator). Then one

can prove that

∫
R

Eln(t)

|t|q+1
dt = C

′′
∫

R2

|F(uln,e)(ξ)|2|ξ1|q
∫

R

sin4(u)

|u|q+1
du dξ ≤ C,

(the constant C may change line to line). The generalized integral in u con-
verges if and only if q ∈ [3, 4[. By using the same arguments in the other
direction (e2), we get that |ξ|

q
2F(uln,e) ∈ L2(R2) and so uln,e ∈ H

q
2 (R2) (being a

Hilbert space) and is uniformly bounded for the associated norm with q ∈ [3, 4[.
There exists a subsequence still denoted by (uln,e) weakly converging to ũn in

Hs(R2) with s = q
2 . Besides, we know that uln,e = uln on Ω and D(1,0)uln,e =

(D(1,0)uln)e = D(1,0)uln on Ω, and D(0,1)uln,e = (D(0,1)uln)e = D(0,1)uln on

Ω. Thus, ‖uln‖2W s,2(Ω) = ‖uln‖2W 1,2(Ω) +

∫
Ω

∫
Ω

|∇uln(x)−∇uln(y)|2

|x− y|2s
dx dy ≤ C

+

∫
R2

∫
R2

|∇uln,e(x)−∇uln,e(y)|2

|x− y|2s
dx dy with C independent of l. From [29,
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Lemma 4.33, p. 200], we know that

∫
R2

∫
R2

|∇uln,e(x)−∇uln,e(y)|2

|x− y|2s
dx dy <

∞⇔
∫

R

∫
R2

|∇uln,e(x)−∇uln,e(x+ he1)|2

|h|2s−1
dx dh <∞ and∫

R

∫
R2

|∇uln,e(x)−∇uln,e(x+ he2)|2

|h|2s−1
dx dh <∞. Let us now prove that∫

R

∫
R2

|∇uln,e(x)−∇uln,e(x+ he1)|2

|h|2s−1
dx dh <∞ and∫

R

∫
R2

|∇uln,e(x)−∇uln,e(x+ he2)|2

|h|2s−1
dx dh <∞ independently of l.

We have
∫

R
1

|h|2s−1 ‖τhe1∇uln,e−∇uln,e‖2L2(R2) dh = C̄
∫

R
sin2(u)
|u|2s−1

∫
R2 |ξ1|2s−2 (|ξ1|2+

|ξ2|2)|F(uln,e)(ξ)|2 dξ du ≤ C‖uln,e‖2Hs(R2) by using Plancherel theorem and with
C independent of l. By doing the same computations in the other direction,
we prove that ‖uln‖W s,2(Ω) is uniformly bounded and so up to a subsequence,

uln ⇀
l→+∞

un in W s,2(Ω) ⊂W 1,2(Ω). As W s,2(Ω) 	
c
C0,λ
b (Ω) with λ < s−1, then

(uln) strongly converges to un in C0,λ
b (Ω) and so pointwise everywhere on Ω.

Then ũn = un on Ω and un = 0 on ∂Ω, by uniqueness of the weak limit.
Now, Hs(R2) 	 L2(R2) 	 S ′(R2) 	 D′(R2) with continuous imbeddings. ∀ϕ ∈
D(R2),

∫
R2

(uln,e − ũn)ϕdx︸ ︷︷ ︸
−→0
l→+∞

=

∫
Ω

(uln − un)ϕdx︸ ︷︷ ︸
−→0
l→+∞

+
∫

R2\Ω (uln,e−ũn)ϕdx. Conse-

quently, ∀ϕ ∈ D(R2),
∫

R2\Ω ũn ϕdx =
∫

R2\Ω̄ ũn ϕdx = 0, since ũn ∈ Hs(R2) 	

C0(R2). In particular, ∀ϕ ∈ D(R2 \ Ω̄),
∫

R2\Ω̄ ũn ϕdx = 0, meaning that ũn = 0

on R2 \ Ω̄ in the sense of distributions. Due to the continuity of ũn, we deduce
that ũn = 0 everywhere on R2 \Ω and so ũn = (un)e. By combining the previ-
ous results, we can say that (uln,e) converges pointwise everywhere to (un)e on
R2.

– Classical arguments enable us to conclude that there exists a subsequence still
denoted by ~gn

l weakly converging to ~gn in H(div).

2. Lower semicontinuity of the functional:

– Since ∇Qln
∗
⇀ ∇Qn in L∞(Ω) then ‖∇Qn‖L∞(Ω) ≤ lim inf

l→+∞
‖∇Qln‖L∞(Ω).

– Weak-∗ convergence in L∞(Ω) implying weak convergence in L2(Ω), ‖∇Qn −
~gn‖2L2(Ω) ≤ lim inf

l→+∞
‖∇Qln − ~gn

l‖2L2(Ω).

– Gε is convex and strongly lower semi-continuous in H1(Ω) and so weakly lower
semicontinuous in H1(Ω).

– ‖f − un − div ~gn‖2L2(Ω) ≤ lim inf
l→+∞

‖f − uln − div ~gn
l‖2L2(Ω).

– Let us consider h : Ω × R × R2 → R, (x, v, w) 7→ (v(x)2 + λε)|w(x)|2. Since
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vl1,n −→
l→+∞

v1,n in L2(Ω), ∇uln ⇀
l→+∞

∇un in L2(Ω,R2), since h is continuous

with respect to (v, w) and measurable on Ω for almost every (v, w) ∈ R × R2,
for each (x, v), h is convex with respect to w, ∀(v, w) ∈ R × R2, ∀x ∈ Ω a.e.,
h(x, v, w) ≥ 0 ∈ L1(Ω) and lim inf

l→+∞

∫
Ω((vl1,n(x))2 + λε)|∇uln|2 dx < +∞, then∫

Ω(v1,n
2 + λε)|∇un|2 dx ≤ lim inf

l→+∞

∫
Ω((vl1,n)2 + λε)|∇uln|2 dx (see [13]).

– vl2,n −→
l→+∞

v2,n in L2(Ω), therefore vl2,n,e −→
l→+∞

(v2,n)e in L2(R2) (since from [18,

Theorem IX.7, (ii), p. 158], ‖vl2,n,e − (v2,n)e‖L2(R2) ≤ C̃ ‖vl2,n − v2,n‖L2(Ω), C̃

depending only on Ω) and so pointwise almost everywhere in R2 (up to a subse-

quence). We deduce that ((vl2,n,e(x))2+κε)
|uln,e(x+hei)−2uln,e(x)+uln,e(x−hei)|2

|h|4 ρn(h)

−→
l→+∞

((v2,n)e(x)2 + κε)
|(un)e(x+hei)−2(un)e(x)+(un)e(x−hei)|2

|h|4 ρn(h), i ∈ {1, 2}, for

all h ∈ R and almost all x ∈ R2.

Using Fatou’s lemma twice, we deduce that

∫
R2

∫
R
((v2,n)e(x)2 + κε)

|(un)e(x+ hei)− 2(un)e(x) + (un)e(x− hei)|2

|h|4
ρn(h) dh dx ≤ lim inf

l→+∞

∫
R2

∫
R

((vl2,n,e(x))2 + κε)
|uln,e(x+he1)−2uln,e(x)+uln,e(x−he1)|2

|h|4 ρn(h) dh dx, i ∈ {1, 2}.

This concludes the proof.

Theorem 3.5 (Γ-convergence). Let (un, ~gn, Qn, v1,n, v2,n) ∈ H1
0 (Ω)∩W s,2(Ω)×H(div)×

{Q ∈ W 1,∞(Ω)|
∫

ΩQdx = 0} × W 1,2(Ω, [0, 1]) × {v2 ∈ W 1,2(Ω, [0, 1])|γ0v2 = 1} with
s ∈ [3

2 , 2[ be a sequence of minimizers of (5.8) for each n ∈ N∗. Let us assume ad-
ditionally for technical purposes, that v2 ∈ {v2 ∈ W 1,2(Ω, [0, 1])|γ0v2 = 1} ∩ W 1,∞(Ω)
with sup

n∈N∗
‖∇v2,n‖L∞(Ω) ≤ C1 < ∞. Then there exist a subsequence still denoted by

(un, ~gn, Qn, v1,n, v2,n) and a minimizer (ū, ~̄g, Q̄, v̄1, v̄2) ∈ H2(Ω) ∩H1
0 (Ω)×H(div)× {Q ∈

W 1,∞(Ω)|
∫

ΩQdx = 0}×W 1,2(Ω, [0, 1])×{v2 ∈W 1,2(Ω, [0, 1])|γ0v2 = 1} of (5.7) such that

un ⇀
n→+∞

ū in W
3
2
,2(Ω), ~gn ⇀

n→+∞
~̄g in H(div), Qn

∗
⇀

n→+∞
Q̄ in W 1,∞(Ω), v1,n ⇀

n→+∞
v̄1 in

W 1,2(Ω), v2,n ⇀
n→+∞

v̄2 in W 1,2(Ω) and F̄n,ε(un, ~gn, Qn, v1,n, v2,n) −→
n→+∞

F̄ε(ū, ~̄g, Q̄, v̄1, v̄2).

Proof. We have proved in what precedes that for any n ∈ N∗, there exists a solution
to (5.8). Let us consider a sequence of such minimizers (un, ~gn, Qn, v1,n, v2,n) ∈ Hs(Ω) ∩
H1

0 (Ω)×H(div)×{Q ∈W 1,∞(Ω)|
∫

ΩQdx = 0}×W 1,2(Ω, [0, 1])×{v2 ∈W 1,2(Ω, [0, 1])|γ0v2 =

1}, with s ∈ [3
2 , 2[. Let u ∈W 2,2(Ω)∩W 1,2

0 (Ω), ~g ∈ H(div), Q ∈ {Q ∈W 1,∞(Ω)|
∫

ΩQdx =
0}, v1 ∈W 1,2(Ω, [0, 1]), v2 ∈W 1,2(Ω, [0, 1])|γ0v2 = 1}, then ∀n ∈ N∗, Fn(un, ~gn, Qn, v1,n, v2,n) ≤
F̄n,ε(u,~g,Q, v1, v2) ≤ ρ(1+κε)‖u‖2W 2,2(Ω)+ξε

∫
Ω(v2

1(x)+ζε)|∇u(x)|2 dx+‖f−u−div~g‖2L2(Ω)+

µ‖∇Q‖L∞(Ω) + γ
2‖~g −∇Q‖

2
L2(Ω) + (α− β)

∫
Ω

(v1(x)−1)2

4ε + ε|∇v1(x)|2 dx+ β
∫

Ω
(v2(x)−1)2

4ε +

ε|∇v2(x)|2 dx = C < +∞ using Lemma 3.2.
We deduce that:

210



3. A nonlocal version of the modelling and its theoretical analysis

– ‖∇Qn‖L∞(Ω) is uniformly bounded with respect to n and since
∫

ΩQn dx = 0 for
any n ∈ N∗, then using Poincaré-Wirtinger inequality, we get that (Qn) is uniformly
bounded in W 1,∞(Ω). Thus we can extract a subsequence still denoted by (Qn)
weakly-∗ converging to Q̄ in W 1,∞(Ω). Besides, the compact embedding W 1,∞(Ω) 	

c

C0(Ω̄) leads to
∫

Ω Q̄ dx = 0.

– ‖∇v1,n‖L2(Ω) is uniformly bounded with respect to n and since v1,n ∈W 1,2(Ω, [0, 1])
for any n ∈ N∗ and Ω being bounded, then by using Poincaré-Wirtinger inequality,
we get that (v1,n) is uniformly bounded in W 1,2(Ω). We can therefore extract a
subsequence still denoted by (v1,n) weakly converging to v̄1 in W 1,2(Ω) and thanks
to the compact embedding W 1,2(Ω) 	

c
L2(Ω), the convergence is also pointwise

almost everywhere up to a subsequence, leading to v̄1 ∈W 1,2(Ω, [0, 1]).

– Using the same arguments, we get that v2,n ⇀
n→+∞

v̄2 inW 1,2(Ω) with v̄2 ∈W 1,2(Ω, [0, 1])

and by continuity of the trace operator, γ0v̄2 = 1.

– ‖∇un‖L2(Ω) is uniformly bounded with respect to n and since un ∈W 1,2
0 (Ω) for any

n ∈ N∗, then using Poincaré inequality, we can extract a subsequence still denoted
by (un) weakly converging in W 1,2(Ω) to ū. By continuity of the trace operator, we
have ū ∈W 1,2

0 (Ω).

– C ≥ 1
4‖div~gn‖

2
L2(Ω) −

1
2‖un‖

2
L2(Ω) − ‖f‖

2
L2(Ω) + γ

4‖~gn‖
2
L2(Ω) −

γ
2‖∇Qn‖

2
L2(Ω). So, (~gn)

is uniformly bounded in H(div) and we can extract a subsequence still denoted by
(~gn) weakly converging to ~̄g in H(div).

Now, let us show that (un,e) weakly converges in H
3
2 (R2) to ūe.

We set En(h) =
∫

R2 |un,e(x + he1) − 2un,e(x) + un,e(x − he1)|2 dx. It satisfies En(2h) ≤
16En(h), ∀h ∈ R. By using Fubini-Tonelli theorem, we have∫

R2

∫
R

|un,e(x+ he1)− 2un,e(x) + un,e(x− he1)|2

|h|4
ρn(h) dh dx =

∫
R

En(h)

|h|4
ρn(h) dh =

2

∫ ∞
0

En(h)

|h|4
ρn(h) dh ≤ C. We then apply [9, Lemma 3.1] with M = δ = 1, g(t) =

En(t)
tq+1 , k(t) = tq−3ρn(t) and we get C(1)

∫ 1
0 t

q−3ρn(t) dt
∫ 1

0
En(t)
tq+1 dt ≤

∫ 1
0
En(t)
t4

ρn(t) dt. (We
will see further that the condition of monotonicity on k is fulfilled). We now need g
to verify the assumption of this lemma, that is to say, g( t2) ≥ g(t). We know that

g( t2) =
En( t

2
)

tq+1 2q+1 ≥ 2q−3g(t). Thus if q ≥ 3, this condition is fulfilled. By using the prop-

erties of ρn, we deduce first that
∫ 1

0
En(t)
tq+1 dt ≤ C with C independent of n for q = 3 and

n large enough since then
∫ 1

0 t
q−3ρn(t) dt =

∫ 1
0 ρn(t) dt = 1 −

∫∞
1 ρn(t) dt, ∀n ∈ N∗ with

lim
n→+∞

∫∞
1 ρn(t) dt = 0 and so for n large enough,

∫ 1
0 ρn(t) dt ∈

[
1
2 , 1
]
. Then

∫∞
1

En(t)
tq+1 dt ≤

C ′‖un,e‖2L2(R2)

∫∞
1

1
tq+1 dt, C

′ being a constant and the last integral being convergent since

q = 3, resulting in the uniform boundedness of
∫∞

0
En(t)
tq+1 dt. Besides,

∫
R
En(t)
|t|q+1 dt =∫

R
1

|h|q+1

∫
R2 |un,e(x + he1) − 2un,e(x) + un,e(x − he1)|2ρn(h) dx dh =

∫
R

1
|h|q+1 ‖τhe1un,e −
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2un,e + τ−he1un,e‖2L2(R2) dh =
∫

R
1

|h|q+1

∫
R2 |e2iπhξ1 − 2 + e−2iπhξ1 |2|F(un,e)|2(ξ) dξ dh by

Plancherel theorem (τ denoting the usual translation operator and ξ = (ξ1, ξ2)). Then

one can prove that
∫

R
En(t)
|t|q+1 dt = C ′′

∫
R2 |F(un,e)(ξ)|2|ξ1|q

∫
R

sin4(u)
|u|q+1 du dξ ≤ C ′′, (the cons-

tant C ′′ may change line to line). The generalized integral in u converges if and only if
q ∈ [3, 4[ so for q = 3. By using the same arguments in the other direction (e2), we get that

| · |
q
2F(un,e)(·) ∈ L2(R2) and so un,e ∈ H

3
2 (R2) (being a Hilbert space) and is uniformly

bounded for the associated norm for n large enough. There exists a subsequence still
denoted by (un,e) weakly converging to ũ in H

3
2 (R2). Besides, we know that un,e = un

on Ω and D(1,0)un,e = (D(1,0)un)e = D(1,0)un on Ω, and D(0,1)un,e = (D(0,1)un)e =

D(0,1)un on Ω. Thus, ‖un‖2
W

3
2 ,2(Ω)

= ‖un‖2W 1,2(Ω) +

∫
Ω

∫
Ω

|∇un(y)−∇un(x)|2

|x− y|3
dx dy ≤

C +

∫
R2

∫
R2

|∇un,e(y)−∇un,e(x)|2

|x− y|3
dx dy, with C independent of n. From [29, Lemma

4.33, p. 200], we know that

∫
R2

∫
R2

|∇un,e(x)−∇un,e(y)|2

|x− y|3
dx dy <∞

⇔
∫

R

∫
R2

|∇un,e(x)−∇un,e(x+ he1)|2

|h|2
dx dh <∞ and∫

R

∫
R2

|∇un,e(x)−∇un,e(x+ he2)|2

|h|2
dx dh <∞. Let us now prove that∫

R

∫
R2

|∇un,e(x)−∇un,e(x+ he1)|2

|h|2
dx dh <∞ and

∫
R

∫
R2

|∇un,e(x)−∇un,e(x+ he2)|2

|h|2
dx dh

<∞ independently of n. We have

∫
R

1

|h|2
‖τhe1(∇un,e)−∇un,e‖2L2(R2) dh = C̄

∫
R

sin2(u)

|u|2

∫
R2

|ξ1|

(|ξ1|2 + |ξ2|2)|F(un,e)(ξ)|2 dξ du ≤ C‖un,e‖2
H

3
2 (R2)

by using Plancherel theorem and with C

independent of n. By doing the same computations in the other direction, we prove that
‖un‖

W
3
2 ,2(Ω)

is uniformly bounded and so up to a subsequence, un ⇀
n→+∞

ū in W
3
2
,2(Ω),

since W
3
2
,2(Ω) ⊂ W 1,2(Ω) and the mapping T : W

3
2
,2(Ω) → W 1,2(Ω), u 7→ Tu = u is

linear and continuous for the strong topology, so for the weak topology ( [29, Theorem

III.9, p. 39]). As W
3
2
,2(Ω) 	

c
C0,λ
b (Ω), with λ < 1

2 , then (un) strongly converges to ū

in C0,λ
b (Ω) and so pointwise everywhere on Ω. Then ũ = ū on Ω and ū = 0 on ∂Ω, by

uniqueness of the weak limit. Now, H
3
2 (R2) 	 L2(R2) 	 S ′(R2) 	 D′(R2) with continuous

embeddings. ∀ϕ ∈ D(R2),

∫
R2

(un,e − ũ)ϕdx︸ ︷︷ ︸
−→

n→+∞
0

=

∫
Ω

(un − ū)ϕdx︸ ︷︷ ︸
−→

n→+∞
0

+

∫
R2\Ω

(un,e − ũ)ϕdx.

Consequently, ∀ϕ ∈ D(R2),
∫

R2\Ω ũdx =
∫

R2\Ω̄ ũdx = 0 since ũ ∈ H
3
2 (R2) 	 C(R2). In

particular, ∀ϕ ∈ D(R2 \ Ω̄),
∫

R2\Ω̄ ũϕ dx = 0, meaning that ũ = 0 on R2 \ Ω̄ in the sense of

distributions. Due to the continuity of ũ, we deduce that ũ = 0 everywhere on R2 \Ω and

so ũ = ūe ∈ H
3
2 (R2).

Now, let us prove that ū ∈ H2(Ω) ∩H1
0 (Ω) and ūe ∈ H2(R2). Since un −→

n→+∞
ū in L2(Ω)
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then un,e −→
n→+∞

ūe in L2(R2).

Let ϕ ∈ C∞0 (R2). We denote by ūe and by un,e the extensions by 0 of ū and un for any
n ∈ N∗ on R2. Since Ω is of class C2 then ūe, un,e ∈W 1,2(R2), for any n ∈ N∗. We have∣∣∣ ∫

R2

∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh(un,e(x) + (ūe(x)− un,e(x))) dx

∣∣∣,
≤
∣∣∣ ∫

R2

∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh(un,e(x)) dx

∣∣∣
+
∣∣∣ ∫

R2

∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh(ūe(x)− un,e(x)) dx

∣∣∣,
≤
(∫

R2

∫
R

(ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1))2

h4
ρn(h) dh dx

) 1
2
.(∫

R2

∫
R
|un,e(x)− ūe(x)|2ρn(h) dh dx

) 1
2

+
∣∣∣ ∫

R2

∫
R

un,e(x+ he1)− 2un,e(x) + un,e(x− he1)

h2
ρn(h) dh(ϕ(x)) dx

∣∣∣,
Hölder’s inequality with respect to the measure ρn(h) dh dx. Since ϕ ∈ C∞0 (R2) (justifica-
tion of the integrability and the possibility to change the order of integration is postponed),

≤ ‖D(2,0)ϕ‖L2(R2)‖un,e − ūe‖2L2(R2)

+
(∫

R2

∫
R

(un,e(x+ he1)− 2un,e(x) + un,e(x− he1))2

h4
ρn(h) dh dx

) 1
2
(∫

R2

∫
R
ϕ2(x)ρn(h) dh dx

) 1
2
,

≤ ‖D(2,0)ϕ‖L2(R2)‖un,e − ūe‖2L2(R2)

+
(∫

R2

∫
R

(un,e(x+ he1)− 2un,e(x) + un,e(x− he1))2

h4
ρn(h) dh dx

) 1
2 ‖ϕ‖L2(R2)

≤ ‖D(2,0)ϕ‖L2(R2)‖un,e − ūe‖2L2(R2) +
√
C‖ϕ‖L2(R2).

Since ϕ ∈ C∞0 (R2), then for almost every x ∈ R2,

∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh ūe(x)

−→
n→+∞

D(2,0)ϕ(x)ūe(x) thanks to Theorem 3.1. Besides, ∀n ∈ N∗ and almost every x ∈ R2,∣∣∣∣ ∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dhūe(x)

∣∣∣∣ ≤ |ūe(x)|∫
R

|ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)|
|h|2

ρn(h) dh by applying Jensen’s inequality with re-

spect to the measure ρn(h) dh (see [40, Theorem 139, p. 56]). But ūe ∈ L2(R2) with
‖ūe‖L2(R2) = ‖ū‖L2(Ω) ≥ c‖ū‖L1(Ω) = c‖ūe‖L1(R2), since ū is extended by 0 outside Ω. As
ϕ ∈ C∞0 (R2), then∫

R

|ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)|
|h|2

ρn(h) dh ∈ L1(R2) and∫
R

|ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)|
|h|2

ρn(h) dh ≤
∫

R

∫ 1

0

∫ 1

0
|D(2,0)ϕ(x+(t+s−1)he1)|ρn(h) ds dt dh
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≤ ‖D(2,0)ϕ‖L∞(R2). We also have

∫
R2

(∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh

)2

dx

≤
∫

R2

∫
R

(ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1))2

h4
ρn(h) dh dx ≤ ‖D(2,0)ϕ‖2L2(R2) < +∞. Thus∫

R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh ∈ L2(R2), and ūe being L2(R2), it leads to∫

R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh ūe(x) ∈ L1(R2) with∣∣∣∣ ∫

R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh ūe(x)

∣∣∣∣ ≤ |ūe(x)|‖D(2,0)ϕ‖L∞(R2) ∈ L1(R2).

From the dominated convergence theorem, we can conclude that

lim
n→+∞

∫
R2

ūe(x)

∫
R

ϕ(x+ he1)− 2ϕ(x) + ϕ(x− he1)

h2
ρn(h) dh dx =

∫
R2

ūe(x)D(2,0)ϕ(x) dx.

By letting n tend to infinity in the previous inequality, we get:∫
R2

ūe(x)D(2,0)ϕ(x) dx ≤
√
C‖ϕ‖L2(R2).

Eventually, D(2,0)ūe ∈ L2(R2) using [18, Proposition VIII.3]. By applying the same rea-
soning we also get D(0,2)ūe ∈ L2(R2). Since ūe ∈ L2(R2) then it is a tempered distribution
so are its successive derivatives. We can now take the Fourier transform:

D̂(1,1)ue(ξ) = −ξ1ξ24π2ûe(ξ),

D̂(0,2)ue(ξ) = −ξ2ξ24π2ûe(ξ),

D̂(2,0)ue(ξ) = −ξ1ξ14π2ûe(ξ).

SinceD(0,2)ue ∈ L2(R2) andD(2,0)ue ∈ L2(R2), then−ξ2ξ2ûe(ξ) ∈ L2(R2) and−ξ1ξ1ûe(ξ) ∈
L2(R2). But∫

R2

4π2ξ2
1ξ

2
2 ûe

2
(ξ) dξ ≤ 2π2

∫
R2

ξ4
1 ûe

2
(ξ) dξ + 2π2

∫
R2

ξ4
2 ûe

2
(ξ) dξ < +∞,

which means that D̂(1,1)ue(ξ) ∈ L2(R2) and by Plancherel’s theorem we can conclude that
D(1,1)ue ∈ L2(R2). This proves that ūe ∈ W 2,2(R2) since ūe ∈ W 1,2(R2) by construction.
As Ω ∈ C2 and ūe is the extension of ū by 0 outside Ω, then ū ∈W 2,2(Ω) ∩W 1,2

0 (Ω).

By definition of the sequence (un, ~gn, Qn, v1,n, v2,n), we have ∀n ∈ N∗, F̄n,ε(un, ~gn, Qn, v1,n, v2,n)
≤ F̄n,ε(ū, ~̄g, Q̄, v̄1, v̄2) and by taking the lim sup when n tends to infinity, lim sup

n→+∞
F̄n,ε(un, ~gn,

Qn, v1,n, v2,n) ≤ F(ū, ~̄g, Q̄, v̄1, v̄2). Indeed, thanks to Theorem 3.1., we know that

(v̄2
2,e(x)+κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh −→

n→+∞
(v̄2

2,e(x)+κε)|D(2,0)u|2(x)

everywhere in R2 and for all u ∈ C4
c (R2). Without loss of generality, we assume that

supp(u) ⊂ B(0, R) with R > 0. We now aim to prove that ∀ε > 0, ∃L = L(ε) > 1 (we
believe that the confusion with the ε from the elliptic approximation is not possible) such
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that sup
n

∫
B(0,LR)c

∣∣∣∣(v̄2
2,e(x) + κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

∣∣∣∣ dx ≤ ε.

We have that

∫
B(0,LR)c

∣∣∣∣(v̄2
2,e(x)+κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

∣∣∣∣ dx ≤
(1+κε)

∫
B(0,LR)c

∣∣∣∣ ∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

∣∣∣∣ dx ≤ (1 + κε)4

(L− 1)4R4
‖u‖2L2(R2)

and the conclusion follows. As∫
R2

∣∣∣∣(v̄2
2,e(x) + κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

− (v̄2
2,e(x) + κε)|D(2,0)u(x)|2

∣∣∣∣ dx
=

∫
B(0,LR)

∣∣∣∣(v̄2
2,e(x) + κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

− (v̄2
2,e(x) + κε)|D(2,0)u(x)|2

∣∣∣∣ dx
+

∫
B(0,LR)c

∣∣∣∣(v̄2
2,e(x) + κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

− (v̄2
2,e(x) + κε)|D(2,0)u(x)|2

∣∣∣∣ dx,
≤
∫
B(0,LR)

∣∣∣∣(v̄2
2,e(x) + κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh

− (v̄2
2,e(x) + κε)|D(2,0)u(x)|2

∣∣∣∣ dx+ ε.

We know that (v̄2
2,e(x)+κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh −→

n→+∞
(v̄2

2,e(x)+

κε)|D(2,0)u|2(x) everywhere inB(0, LR) and

∣∣∣∣(v̄2
2,e(x)+κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4

ρn(h) dh− (v̄2
2,e(x) + κε)|D(2,0)u|2(x)

∣∣∣∣ ≤ 2(1 + κε)‖D(2,0)u‖2L∞(R2) ∈ L
1(B(0, LR)). Using

the dominated convergence theorem, we get that∫
B(0,LR)

∣∣∣∣(v̄2
2,e(x)+κε)

∫
R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh−(v̄2

2,e(x)+κε)|D(2,0)u(x)|2
∣∣∣∣

dx −→
n→+∞

0 and by letting ε tend to 0, we conclude that

∫
R2

∣∣∣∣(v̄2
2,e(x) + κε)∫

R

|u(x+ he1)− 2u(x) + u(x− he1)|2

|h|4
ρn(h) dh − (v̄2

2,e(x) + κε)|D(2,0)u(x)|2
∣∣∣∣ dx −→

n→+∞
0.

We now extend this result to u ∈ H2(R2). Let ε > 0. By density, there exists vε ∈ C∞0 (R2)

such that ‖D(2,0)u−D(2,0)vε‖L2(R2) ≤ ε. We set un(x, h) = u(x+he1)−2u(x)+u(x−he1)
h2 ρ

1
2
n (h) ∈

L2(R2 × R) and vn,ε(x, h) = vε(x+he1)−2vε(x)+vε(x+he1)
h2 ρ

1
2
n (h) ∈ L2(R2 × R). We then
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have the following inequalities
∫

R2

∫
R(v̄2

2,e(x) + κε)|un(x, h)|2 dh dx ≤ ‖un‖2L2(R2×R)(1 +

κε) ≤ (1 +κε)‖D(2,0)u‖2L2(R2) and
∫

R2

∫
R(v̄2

2,e(x) +κε)|vn,ε(x, h)−un(x, h)|2 dh dx ≤ ‖un−
vn,ε‖2L2(R2×R)(1 + κε) ≤ (1 + κε)‖D(2,0)u − D(2,0)vε‖2L2(R2) ≤ (1 + κε)ε

2 using Lemma

3.2. Then |
∫

R2

∫
R(v̄2

2,e(x) + κε)|un(x, h)|2 dh dx−
∫

R2(v̄2
2,e(x) + κε)|D(2,0)u(x)|2 dx| ≤ (1 +

κε)|
∫

R2

∫
R |un(x, h)|2 dh dx −

∫
R2 |D(2,0)u(x)|2 dx| ≤ (1 + κε)|

∫
R2

∫
R |un(x, h)|2 dh dx−∫

R2 |D(2,0)u(x)|2 dx−
∫

R2 |D(2,0)vε(x)|2 dx| ≤ (1+κε)|2
∫

R2

∫
R |vn,ε(x, h)−un(x, h)|2 dh dx|+

(1 + κε)|2
∫

R2

∫
R |vn,ε(x, h)|2 dh dx− 2

∫
R2 |D(2,0)vε(x)|2 dx|+ (1 + κε)|

∫
R2(|D(2,0)vε(x)|2 −

|D(2,0)u(x)|2) dx| and so lim sup
n→+∞

|
∫

R2

∫
R(v̄2

2,e(x) + κε)|un(x, h)|2 dh dx−
∫

R2(v̄2
2,e(x) + κε)

|D(2,0)u(x)|2 dx| ≤ 2(1+κε)ε
2. Let ε tend to 0 and we get

∫
R2

∫
R(v̄2

2,e(x)+κε)|un(x, h)|2 dh dx
−→

n→+∞

∫
R2(v̄2

2,e(x) + κε)|D(2,0)u(x)|2 dx and since Ω ∈ C2, then ūe is the extension by

0 of ū from W 2,2(Ω) to W 2,2(R2). So, D(2,0)ūe = (D(2,0)ū)e and D(2,0)ūe(x) = 0 al-
most everywhere on R2 \ Ω̄. We finally have

∫
R2

∫
R(v̄2,e(x)2 + κε)|ūe,n(x, h)|2 dh dx −→

n→+∞∫
R2(v̄2,e(x)2 + κε)|D(2,0)ūe(x)|2 dx ≤

∫
Ω(v̄2,e(x)2 + κε)|D(2,0)ū(x)|2 dx.

It remains to prove that F̄ε(ū, ~̄g, Q̄, v̄1, v̄2) ≤ lim inf
n→+∞

F̄n,ε(un, ~gn, Qn, v1,n, v2,n). From

what precedes, it suffices to prove that

∫
Ω

(v̄2(x)2+κε)|D(2,0)ū(x)|2 dx ≤ lim inf
n→+∞

∫
R2

(v2
2,n,e(x)+

κε)

∫
R

|un,e(x+ he1)− 2un,e(x) + un,e(x− he1)|2

h4
ρn(h) dh dx and

∫
Ω

(v̄2
2(x)+κε)|D(0,2)ū(x)|2 dx

≤ lim inf
n→+∞

∫
R2

(v2
2,n,e(x)+κε)

∫
R

|un,e(x+ he2)− 2un,e(x) + un,e(x− he2)|2

h4
ρn(h) dh dx. Let

η ∈ C∞0 (R2) be a non-negative radial function satisfying
∫

R2 η dx = 1, supp(η) ⊂ B(0, 1).

We then define a regularized function associated with f by fδ(x) = 1
δ2

∫
R2 f(y)η(x−yδ ) dy,

∀x ∈ R2. We focus on the direction e1 and compute with δ > 0 and δ′ > 0:

∫
R2

(v2
2,n,e,δ′(x) + κε)

∫
R

|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
ρn(h) dh dx

=

∫
R2

(v2
2,n,e,δ′(x) + κε)

∫
R

|
∫
B(0,δ)

un,e(x+he1−z)−2un,e(x−z)+un,e(x−he1−z)
δ2 η( zδ ) dz|2

|h|4
ρn(h) dh dx.

We apply Jensen’s inequality with respect to the measure
η( z
δ

)

δ2 dz, yielding

≤
∫

R2

(v2
2,n,e,δ′(x) + κε)

∫
R

∫
B(0,δ)

|un,e(x+ he1 − z)− 2un,e(x− z) + un,e(x− he1 − z)|2

δ2|h|4

η(
z

δ
)ρn(h) dz dh dx.
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We make the following change of variable: v = x− z,

≤
∫

R2

∫
R

∫
B(0,δ)

(v2
2,n,e,δ′(v + z) + κε)

|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

δ2|h|4

η(
z

δ
)ρn(h) dz dh dv.

Since v2,n,e,δ′ ∈ C∞0 (R2), then v2
2,n,e,δ′(v+ z) = v2

2,n,e,δ′(v) +
∫ 1

0 〈∇v
2
2,n,e,δ′(v+ sz), z〉 ds and

by introducing it in the previous inequality, we get:

≤
∫

R2

∫
R

∫
B(0,δ)

(v2
2,n,e,δ′(v) + κε)

|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

δ2|h|4
η(
z

δ
)ρn(h) dz dh dv

+

∫
R2

∫
R

∫
B(0,δ)

∫ 1

0
(〈∇v2

2,n,e,δ′(v + sz), z〉) ds |un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

δ2|h|4

η(
z

δ
)ρn(h) dz dh dv.

We now integrate with respect to z in the first integral and use Cauchy-Schwarz inequality,
and the change of variable u = z

δ in the second one, after bounding the component above
by ‖∇v2

2,n,e,δ′‖L∞(R2):

≤
∫

R2

∫
R
(v2

2,n,e,δ′(v) + κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv

+

∫
R2

∫
R

∫
B(0,1)

(‖∇v2
2,n,e,δ′‖L∞(R2)δ|u|)

|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4

η(u)ρn(h) du dh dv,

≤
∫

R2

∫
R
(v2

2,n,e,δ′(v) + κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv

+ ‖∇v2
2,n,e,δ′‖L∞(R2)δ

∫
R2

∫
R

|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv,

≤
∫

R2

∫
R
(v2

2,n,e,δ′(v) + κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv

+ ‖∇v2
2,n,e,δ′‖L∞(R2)δC, from the coercivity inequality.

Since we assumed that v2,n ∈ W 1,∞(Ω, [0, 1]) such that γ0v2,n = 1 for all n ∈ N∗ with
sup
n∈N∗
‖v2,n,e‖W 1,∞(R2) ≤ sup

n∈N∗
‖v2,n‖W 1,∞(Ω) ≤ C1 <∞ and so sup

n∈N∗
‖∇v2,n,e‖L∞(R2) ≤ C1 + 1

where v2,n,e is the extension of v2,n from W 1,2(Ω, [0, 1]) ∩W 1,∞(Ω) to W 1,2(R2, [0, 1]) ∩
W 1,∞(R2) and v̄2,e is the extension of v̄2 from W 1,2(Ω, [0, 1]) to W 1,2(R2, [0, 1]), then we
have thanks to [31, Theorem 1 p.123] that ∀x ∈ R2, D(1,0)v2,n,e,δ′(x) = ηδ′∗D(1,0)v2,n,e(x) =∫

R2
1
δ′2D

(1,0)v2,n,e(y)η(x−yδ′ ) dy ≤ ‖D(1,0)v2,n,e‖L∞(R2), D
(0,1)v2,n,e,δ′(x) = ηδ′∗D(0,1)v2,n,e(x) =
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R2
1
δ′2D

(0,1)v2,n,e(y)η(x−yδ′ ) dy ≤ ‖D(0,1)v2,n,e‖L∞(R2) and so ‖∇v2,n,e,δ′‖L∞(R2) ≤ ‖∇v2,n,e‖L∞(R2)

≤ C1 + 1. Eventually, we get:∫
R2

(v2,n,e,δ′(x)2 + κε)

∫
R

|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
ρn(h) dh dx

≤
∫

R2

∫
R
(v2

2,n,e,δ′(v) + κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv

+ 2(C1 + 1)δC

As W 1,∞(R2) 	 C(R2), then v2,n,e ∈ C(R2) and [31, Theorem 1 p.123] gives us that
v2,n,e,δ′ −→

δ′→0
v2,n,e uniformly on compact subsets of R2 and so pointwise almost everywhere

on R2 as R2 is locally compact. We thus have (v2
2,n,e,δ′(v)+κε)

|un,e(v+he1)−2un,e(v)+un,e(v−he1)|2
|h|4 ρn(h) −→

δ′→0

(v2
2,n,e(v) + κε)

|un,e(v+he1)−2un,e(v)+un,e(v−he1)|2
|h|4 ρn(h) and

(v2
2,n,e,δ′(v) + κε)

|un,e,δ(v+he1)−2un,e,δ(v)+un,e,δ(v−he1)|2
|h|4 ρn(h) −→

δ′→0

(v2
2,n,e(v) + κε)

|un,e,δ(v+he1)−2un,e,δ(v)+un,e,δ(v−he1)|2
|h|4 ρn(h) almost everywhere on R2 and ev-

erywhere on R. Besides,

∫
R
(v2

2,n,e,δ′(v)+κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh ≤

(1+κε)

∫
R

|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh ∈ L1(R2) from the coerciv-

ity inequality, and∫
R
(v2

2,n,e,δ′(v) + κε)
|un,e,δ(v + he1)− 2un,e,δ(v) + un,e,δ(v − he1)|2

|h|4
ρn(h) dh ≤

(1 + κε)

∫
R

|un,e,δ(v + he1)− 2un,e,δ(v) + un,e,δ(v − he1)|2

|h|4
ρn(h) dh ∈ L1(R2) from Theo-

rem 3.1. We can thus apply the dominated convergence theorem and get

lim
δ′→0

∫
R2

(v2,n,e,δ′(x)2 + κε)

∫
R

|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
ρn(h) dh dx

≤ lim
δ′→0

(∫
R2

∫
R
(v2

2,n,e,δ′(v) + κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv

+ 2(C1 + 1)δC

)
,∫

R2

(v2,n,e(x)2 + κε)

∫
R

|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
ρn(h) dh dx,

≤
∫

R2

∫
R
(v2

2,n,e(v) + κε)
|un,e(v + he1)− 2un,e(v) + un,e(v − he1)|2

|h|4
ρn(h) dh dv

+ 2(C1 + 1)δC.

Let us first show that lim
n→+∞

∫
R2

∫
R
(v2

2,n,e(x)+κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4

ρn(h) dh dx =

∫
R2

(v̄2
2,e(x)+κε)|D(2,0)ūe,δ(x)|2 dx. To do so, we consider lim

n→+∞

∣∣∣∣ ∫
R2

∫
R

(
(v2

2,n,e(x)+
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κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
−(v̄2

2,e(x)+κε)|D(2,0)ūe,δ(x)|2
)
ρn(h) dh dx

∣∣∣∣ =

lim
n→+∞

∣∣∣∣ ∫
R2

∫
R
(v2

2,n,e(x)+κε)
( |un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
−|D(2,0)ūe,δ(x)|2

)
ρn(h) dh dx+

∫
R2

(v̄2
2,e(x)− v2

2,n,e,δ(x))|D(2,0)ūe,δ(x)|2 dx
∣∣∣∣. We have

∫
R2

∫
R
(v2

2,n,e(x) + κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)− h2D(2,0)ūe,δ(x)|2

|h|4
ρn(h) dh dx

≤ 2

∫
R2

∫ R

0

∣∣∣∣ ∫ 1

0

∫ 1

0
D(2,0)un,e,δ(x+ (t+ s− 1)he1)−D(2,0)ūe,δ(x) ds dt

∣∣∣∣2ρn(h) dh dx

+ 2

∫
R2

∫ +∞

R
(v2

2,n,e(x) + κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)− h2D(2,0)ūe,δ(x)|2

|h|4

ρn(h) dh dx.

Using Jensen’s inequality, we get∫
R2

∫ R

0

∣∣∣∣ ∫ 1

0

∫ 1

0
D(2,0)un,e,δ(x+ (t+ s− 1)he1)−D(2,0)ūe,δ(x) ds dt

∣∣∣∣2ρn(h) dh dx

≤
∫

R2

∫ R

0

∫ 1

0

∫ 1

0
|D(2,0)un,e,δ(x+ (t+ s− 1)he1)−D(2,0)ūe,δ(x)|2 ds dtρn(h) dh dx,

≤ 2

∫
R2

∫ R

0

∫ 1

0

∫ 1

0
|D(2,0)un,e,δ(x+ (t+ s− 1)he1)−D(2,0)ūe,δ(x+ (t+ s− 1)he1)|2 ds dt

ρn(h) dh dx+ 2

∫
R2

∫ R

0

∫ 1

0

∫ 1

0
|D(2,0)ūe,δ(x+ (t+ s− 1)he1)−D(2,0)ūe,δ(x)|2 ds dt

ρn(h) dh dx.

We then use Fubini’s theorem, Jensen’s inequality, and a Taylor’s development, and get

≤ 2

∫ R

0

∫ 1

0

∫ 1

0

∫
R2

|D(2,0)un,e,δ(x+ (t+ s− 1)he1)−D(2,0)ūe,δ(x+ (t+ s− 1)he1)|2 ds dt

ρn(h) dh dx+ 2

∫
R2

∫ R

0

∫ 1

0

∫ 1

0

∫ 1

0
|D(3,0)ūe,δ(x+ k(t+ s− 1)he1)|2|h|2|t+ s− 1|2 dk ds dt

ρn(h) dh dx,

≤ 2‖D(2,0)
n,e,δ −D

(2,0)ūe,δ‖2L2(R2) +
1

3
‖D(3,0)ūe,δ‖2L2(R2)

∫ R

0
h2ρn(h) dh,

≤ 2‖D(2,0)
n,e,δ −D

(2,0)ūe,δ‖2L2(R2) +
R2

3
‖D(3,0)ūe,δ‖2L2(R2).

As un,e −→
n→+∞

ūe in L2(R2) and D(2,0)un,e,δ = D(2,0)ηδ∗un,e, then ‖D(2,0)
n,e,δ−D

(2,0)ūe,δ‖L2(R2)
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−→
n→+∞

0. Also by letting R tend to 0, lim
n→+∞

∫
R2

∫ R

0

∣∣∣∣ ∫ 1

0

∫ 1

0
D(2,0)un,e,δ(x+(t+s−1)he1)−

D(2,0)ūe,δ(x) ds dt

∣∣∣∣2ρn(h) dh dx = 0. Furthermore,

∫
R2

∫ +∞

R
(v2

2,n,e(x) + κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)− h2D(2,0)ūe,δ(x)|2

|h|4

ρn(h) dh dx

≤ 2

∫
R2

∫ +∞

R
(1 + κε)

|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
ρn(h) dh dx

+ 2

∫
R2

∫ +∞

R
(1 + κε)|D(2,0)ūe,δ(x)|2ρn(h) dh dx,

≤ 2

∫
R2

∫ +∞

R
(1 + κε)

1

|h|4

(
|un,e,δ(x+ he1)− ūe,δ(x+ he1)− 2un,e,δ(x) + 2ūe,δ(x)

+ un,e,δ(x− he1)− ūe,δ(x− he1) + ūe,δ(x+ he1)− 2ūe,δ(x) + ūe,δ(x− he1)|2
)
ρn(h) dh dx

+ 2(1 + κε)‖D(2,0)ūe,δ(x)‖2L2(R2)

∫ +∞

R
ρn(h) dh,

≤ 4

∫
R2

∫ +∞

R
(1 + κε)

1

|h|4

(
|un,e,δ(x+ he1)− ūe,δ(x+ he1)|2 + 4|un,e,δ(x)− ūe,δ(x)|2

+ 4|un,e,δ(x− he1)− ūe,δ(x− he1)|2 + 4|ūe,δ(x+ he1)− 2ūe,δ(x) + ūe,δ(x− he1)|2
)

ρn(h) dh dx+ 2(1 + κε)‖D(2,0)ūe,δ(x)‖2L2(R2)

∫ +∞

R
ρn(h) dh,

≤
(

36(1 + κε)

R4
‖un,e,δ − ūe,δ‖2L∞(R2) + 16(1 + κε)‖D(2,0)ūe,δ‖2L2(R2)

+ 2(1 + κε)‖D(2,0)ūe,δ(x)‖2L2(R2)

)∫ +∞

R
ρn(h) dh.

Since
∫ +∞
R ρn(h) dh −→

n→+∞
0, then

∫
R2

∫ +∞

R
(v2

2,n,e(x) + κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)− h2D(2,0)ūe,δ(x)|2

|h|4

ρn(h) dh dx −→
n→+∞

0.

We also have that
∣∣ ∫

R2

∫
R(v2

2,n,e(x)−v̄2
2,e(x))|D(2,0)ūe,δ(x)|2ρn(h) dh dx

∣∣ ≤ ‖D(2,0)ūe,δ‖2L∞(R2)

2‖v2,n,e− v̄2,e‖L1(R2) ≤ 2‖v2,n,e− v̄2,e‖L2(R2) with ‖v2,n,e− v̄2,e‖L2(R2) ≤ ‖v2,n,e− v̄2,e‖L2(Ω)

by construction of the extension and (v2,n) strongly converges to v̄2 in L2(Ω).

We thus have proved that lim
n→+∞

∣∣∣∣ ∫
R2

∫
R

(
(v2,n,e(x)2 + κε)
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|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
−(v̄2,e(x)2+κε)|D(2,0)ūe,δ(x)|2

)
ρn(h) dh dx

∣∣∣∣ =

0 using the second triangle inequality.
Eventually, we have∫

R2

∫
R
(v̄2

2,e(x) + κε)|D(2,0)ūe,δ(x)|2ρn(h) dh dx

= lim inf
n→+∞

∫
R2

∫
R

(
(v2

2,n,e(x) + κε)
|un,e,δ(x+ he1)− 2un,e,δ(x) + un,e,δ(x− he1)|2

|h|4
ρn(h) dh dx,

≤ lim inf
n→+∞

∫
R2

∫
R

(
(v2

2,n,e(x) + κε)
|un,e(x+ he1)− 2un,e(x) + un,e(x− he1)|2

|h|4
ρn(h) dh dx

+ 2C(1 + C1)δ.

Since ūe ∈ W 2,2(R2) then D(2,0)ūe,δ −→
δ→0

D(2,0)ūe in L2(R2) and we deduce by letting δ

tend to 0 that∫
R2

(v̄2
2,e(x) + κε)|D(2,0)ūe(x)|2 dx

≤ lim inf
n→+∞

∫
R2

∫
R

(
(v2

2,n,e(x) + κε)
|un,e(x+ he1)− 2un,e(x) + un,e(x− he1)|2

|h|4
ρn(h) dh dx.

We finally get lim
n→+∞

F̄n,ε(un, ~gn, Qn, v1,n, v2,n) = F(ū, ~̄g, Q̄, v̄1, v̄2) and ∀(u,~g,Q, v1, v2) ∈

W 2,2(Ω)∩W 1,2
0 (Ω)×H(div)×{Q ∈W 1,∞(Ω)|

∫
ΩQdx = 0}×W 1,2(Ω)×{v2 ∈W 1,2(Ω)|γ0v2 =

1}, F̄n,ε(un, ~gn, Qn, v1,n, v2,n) ≤ F̄n,ε(u,~g,Q, v1, v2), and by letting n tend to infinity
F(ū, ~̄g, Q̄, v̄1, v̄2) ≤ F(u,~g,Q, v1, v2) thanks to Theorem 3.2. This concludes the proof.

We now turn to the part dedicated to numerical experiments.

4 Numerical Experiments

4.1 Sketch of the local algorithm

In this section, we briefly describe the main steps of our algorithm for the sake of repro-
ducibility, and make qualitative comments. We recall that

v1 =
α−β
2ε + 2(α− β)ε∆v1

2ξε|∇u|2 + α−β
2ε

, v2 =
β
2ε + 2βε∆v2

2ρ|∇2u|2 + β
2ε

,

u = (f − div~g)− ρ ∂2

∂x2
1

(
v2

2
∂2u
∂x2

1

)
− ρ ∂2

∂x2
2

(
v2

2
∂2u
∂x2

2

)
−2ρ ∂2

∂x1∂x2

(
v2

2
∂2u

∂x1∂x2

)
+ ξε div (v2

1∇u).

These equations can be interpreted as follows: when v1 (respectively v2) is close to 0

at some point, the role of the diffusion term div (v2
1∇u) (resp. ∂2

∂xi∂xj

(
v2

2
∂2u

∂xi∂xj

)
, i, j ∈

{1, 2}) is cut, yielding not oversmoothed regions along edges or fine structures. If on the
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contrary v1 or v2 is close to 1 at some point, there is diffusion in u at that point to obtain
a smooth approximation. If |∇u| is close to 0 at some point (resp. |∇2u|2), then v1 (resp.
v2) is close to 1, enhancing the regularization process. If on the contrary |∇2u| is large,
v2 is close to 0 with a very small diffusion coefficient (' β ε

ρ |∇2u|2 ).

The Algorithm 8 consists in alternatively solving the Euler-Lagrange equations related
to each unknown and presented in Section 2. We use a time-dependent scheme in u =
u(x1, x2, t) and Q = Q(x1, x2, t) (nonlinear over-relaxation method, see [23, Section 4]),
and a stationary semi-implicit fixed-point scheme in v1 = v1(x1, x2), v2 = v2(x1, x2) and
~g = ~g(x1, x2). At the boundary, we extend u by reflection outside the domain, and a simple
boundary condition for ~g, v1− 1, and v2− 1 would be Dirichlet boundary conditions (and
so Neumann boundary condition for Q), which appears to work well in practice.
Let ∆x1 = ∆x2 = h = 1 be the space step , let ∆t be the time step, and let fi,j , u

n
i,j ,

Qni,j , v
n
1,i,j , v

n
2,i,j , ~g

n
i,j = (gn1,i,j , g

n
2,i,j)

t be the discrete versions of f , u, Q, v1, v2 and ~g at
iteration n ≥ 0, for 1 ≤ i ≤M , 1 ≤ j ≤ N .

1. [Initialization step]:

u0 = f , ~g0 = ~0, Q0 = 0, v0
1 = 1 and v0

2 = 1.
2. [Main step]:

For n ≥ 1, compute and repeat to steady state for all pixels (i, j):

|∇un|2i,j = (uni+1,j − uni,j)2 + (uni,j+1 − uni,j)2,

vn+1
1,i,j =

(α−β)
2ε + 2(α− β)ε (vn1,i+1,j + vn1,i−1,j + vn1,i,j+1 + vn1,i,j−1 − 4vn+1

1,i,j )

2ξε |∇un|2i,j + (α−β)
2ε

,

|∇2un|2i,j = (uni+1,j − 2uni,j + uni−1,j)
2 + 2 (uni+1,j+1 − uni+1,j − uni,j+1 + uni,j)

2

+ (uni,j+1 − 2uni,j + uni,j−1)2,

vn+1
2,i,j =

β
2ε + 2βε (vn2,i+1,j + vn2,i−1,j + vn2,i,j+1 + vn2,i,j−1 − 4vn+1

2,i,j )

2ρ |∇2un|2i,j + β
2ε

,

un+1
i,j − uni,j

∆t
= (fi,j − uni,j −

gn1,i,j+1 − gn1,i,j−1

2
−
gn2,i+1,j − gn2,i−1,j

2
)

+ ξε

[
(vn+1

1,i,j )
2 (uni,j+1 − uni,j)− (vn+1

1,i,j−1)2 (uni,j − uni,j−1)
]

+ ξε

[
(vn+1

1,i,j )
2 (uni+1,j − uni,j)− (vn+1

1,i−1,j)
2 (uni,j − uni−1,j)

]
− ρ

[
(vn+1

2,i,j+1)2 (uni,j+2 − 2uni,j+1 + uni,j)− 2 (vn+1
2,i,j )

2 (uni,j+1 − 2uni,j + uni,j−1)

+ (vn+1
2,i,j−1)2 (uni,j − 2uni,j−1 + uni,j−2)

]
− ρ

[
(vn+1

2,i+1,j)
2 (uni+2,j − 2uni+1,j + uni,j)
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−2 (vn+1
2,i,j )

2 (uni+1,j − 2uni,j + uni−1,j) + (vn+1
2,i−1,j)

2 (uni,j − 2uni−1,j + uni−2,j)
]

− 2 ρ
[
(vn+1

2,i+1,j+1)2 (uni+2,j+2 − uni+1,j+2 − uni+2,j+1 + uni+1,j+1)

− (vn+1
2,i,j+1)2 (uni+1,j+2 − uni,j+2 − uni+1,j+1 + uni,j+1)

− (vn+1
2,i+1,j)

2 (uni+2,j+1 − uni+1,j+1 − uni+2,j + uni+1,j)

+(vn+1
2,i,j )

2 (uni+1,j+1 − uni,j+1 − uni+1,j + uni,j)
]
,

and equations derived in the same way for gn1 , gn2 and Qn.

Algorithm 8: Local alternating algorithm for crack recovery.

An alternating minimization procedure is thus performed as stressed in Algorithm 8,
yielding convergence properties (see [20]). More precisely, starting with initial guess v0

1 ∈
S ⊂ RM×N , v0

2 ∈ S ⊂ RM×N , u0 ∈ X ⊂ RM×N , ~g0 ∈ Z ⊂ (RM×N )2 and Q0 ∈ Y ⊂ RM×N ,
we successively obtain the sequence of conditional minimizers by solving

v
(k+1)
1 ∈ arg min

v1∈S
Fε(u(k), ~g(k), Q(k), v1, v

(k)
2 ),

v
(k+1)
2 ∈ arg min

v2∈S
Fε(u(k), ~g(k), Q(k), v

(k+1)
1 , v2),

u(k+1) ∈ arg min
u∈X

Fε(u,~g(k), Q(k), v
(k+1)
1 , v

(k+1)
2 ),

~g(k+1) ∈ arg min
~g∈Z

Fε(u(k+1), ~g,Q(k), v
(k+1)
1 , v

(k+1)
2 ),

Q(k+1) ∈ arg min
Q∈Y

Fε(u(k+1), ~g(k+1), Q, v
(k+1)
1 , v

(k+1)
2 ),

for k ≥ 0. We consecutively prove :

(i) The monotonicity property

Fε(u(k+1), ~g(k+1), Q(k+1), v
(k+1)
1 , v

(k+1)
2 ) ≤ Fε(u(k), ~g(k), Q(k), v

(k)
1 , v

(k)
2 ),

∀k ∈ N, ensuring that the sequence
{
Fε(u(k), ~g(k), Q(k), v

(k)
1 , v

(k)
2 )
}

converges.

(ii) For any converging subsequence (u(Ψ(k)), ~g(Ψ(k)), Q(Ψ(k)), v
(Ψ(k))
1 , v

(Ψ(k))
2 ) of (u(k), ~g(k),

Q(k), v
(k)
1 , v

(k)
2 ) generated by the algorithm with

(u(Ψ(k)), ~g(Ψ(k)), Q(Ψ(k)), v
(Ψ(k))
1 , v

(Ψ(k))
2 ) −→

k→+∞
(u∗, ~g∗, Q∗, v∗1, v

∗
2),

the following holds :

∀u ∈ X, Fε(u∗, ~g∗, Q∗, v∗1, v∗2) ≤ Fε(u,~g∗, Q∗, v∗1, v∗2),

∀Q ∈ Y, Fε(u∗, ~g∗, Q∗, v∗1, v∗2) ≤ Fε(u∗, ~g∗, Q, v∗1, v∗2),

∀~g ∈ Z, Fε(u∗, ~g∗, Q∗, v∗1, v∗2) ≤ Fε(u∗, ~g,Q∗, v∗1, v∗2),
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∀v1 ∈ S, Fε(u∗, ~g∗, Q∗, v∗1, v∗2) ≤ Fε(u∗, ~g∗, Q∗, v1, v
∗
2),

∀v2 ∈ S, Fε(u∗, ~g∗, Q∗, v∗1, v∗2) ≤ Fε(u∗, ~g∗, Q∗, v∗1, v2),

making (u∗, ~g∗, Q∗, v∗1, v
∗
2) a partial minimizer.

(iii) If (u(k), ~g(k), Q(k), v
(k)
1 , v

k)
2 ) −→

k→+∞
(u∗, ~g∗, Q∗, v∗1, v

∗
2), then (u∗, ~g∗, Q∗, v∗1, v

∗
2) belongs

to the set of all partial minimizers of the problem.

If (u(k), ~g(k), Q(k), v
(k)
1 , v

k)
2 ) does not converge, there exists a subsequence that con-

verges to a partial minimizer of the problem.

4.2 Sketch of the nonlocal algorithm

Let us first derive the nonlocal Euler-Lagrange equation with respect to the variable u.
Let η be a test function and ε ∈ R. We set

J(ε) = ‖f − u− εη − div~g‖2L2(Ω) + ρ

∫
R2

(v2
2,e(x) + κε)

2∑
i=1

∫
R

|ue(x+ hei) + εη(x+ hei)− 2ue(x)− 2εη(x) + ue(x− hei) + εη(x− hei)|2

|h|4
ρn(h) dh dx

+ ξε

∫
Ω

(v2
1 + ζε) |∇u+ ε∇η|2 dx,

J ′(ε) = −2

∫
Ω

(f − u− εη − div~g)η dx+ ρ

∫
R2

(v2
2,e(x) + κε)

2∑
i=1

∫
R

2(ue(x+ hei) + εη(x+ hei)− 2ue(x)− 2εη(x) + ue(x− hei) + εη(x− hei))
|h|4

(η(x+ hei)− 2η(x) + η(x− hei))ρn(h) dh dx

+ ξε

∫
Ω

(v2
1 + ζε)2(∇u+ ε∇η)∇η dx,

J ′(0) = −
∫

Ω
2(f − u− div~g)η dx+ ρ

∫
R2

(v2
2,e(x) + κε)

2∑
i=1

∫
R

2(ue(x+ hei)− 2ue(x) + ue(x− hei))(η(x+ hei)− 2η(x) + η(x− hei))
|h|4

ρn(h) dh dx

+ ξε

∫
Ω

(v2
1 + ζε)2(∇u)∇η dx = 0,

J ′(0) = −
∫

Ω
(f − u− div~g)η dx

+ ρ

∫
R2

2∑
i=1

∫
R

(−2(v2
2,e(x) + κε)(ue(x+ hei)− 2ue(x) + ue(x− hei))

|h|4

+
(v2

2,e(x− hei)) + κε)(u(x)− 2u(x− hei) + u(x− 2hei))

|h|4
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+
(v2

2,e(x+ hei) + κε)(u(x+ 2hei)− 2u(x+ hei) + u(x))

|h|4

)
ηρn(h) dh dx

− ξε
∫

Ω
div((v2

1 + ζε)∇u)η dx = 0.

Besides, the equation for v2 becomes v2 =
β
2ε + 2βε∆v2

2ρ
2∑
i=1

∫
R
|ue(x+hei)−2ue(x)+ue(x−hei)|2

|h|4 ρn(h) dh+ β
2ε

.

The equations related to the other variables remain unchanged.
We now introduce the nonlocal weights inspired by the NL-means algorithm ([19]). In-
deed, we believe that integrating additional information related to the content of the
image I is pertinent here. We thus want to put more weights to neighbors that have
similar edges/creases and to geographically close neighbors. We consider the following

nonlocal weights ρn(h)
|h|4 ≈ wI,i,x(h) = exp

(
−dI,x,i(h)

α2

)
where dI,x,i(h) =

∫
R2 Ga(t)‖∇I(x +

t)−∇I(x+ t+ hei)‖2 dt or dI,x,i(h) =
∫

R2 Ga(t)‖∇2I(x+ t)−∇2I(x+ t+ hei)‖2 dt where
Ga is a Gaussian kernel with standard deviation a controlling the patch size and α is
the filtering parameter. Below is the pseudo-code associated with the computation of the
nonlocal weights (Algorithm 9).

Input :
Initial image I
Output:

Weights in the first direction wI,x,1, the shifts of the selected neighbors in the first
direction indice1, weights in the second direction wI,x,2, the shifts of the selected
neighbors in the second direction indice2.

1. Define w := window size, p := patch size, h := 0.25, NbNeigh := number of actual
required neighbors including the closest one, Nx := number of horizontal pixels,
Ny := number of vertical pixels.
2. Compute the extended image by symmetry.
for all pixels x = (x1, x2) do

3. Compute the distance

dI,x,1(y) =

p−1
2∑

i=− p−1
2

p−1
2∑

j=− p−1
2

(
‖∇I(x1 + i, x2 + j)−∇I(x1 + y + i, x2 + j)‖2

2

+
‖∇I(x1 + i, x2 + j)−∇I(x1 + (i− y), x2 + j)‖2

2

)
between all patches centered at x+ ye1 of size p with 0 ≤ y ≤ iw−1

2 and the patch
centered at the current x.

end for
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for all pixels x = (x1, x2) do
3.(following) or

dI,x,1(y) =

p−1
2∑

i=− p−1
2

p−1
2∑

j=− p−1
2

(
‖∇2I(x1 + i, x2 + j)−∇2I(x1 + y + i, x2 + j)‖2

2

+
‖∇2I(x1 + i, x2 + j)−∇2I(x1 + (i− y), x2 + j)‖2

2

)
between all patches centered at x+ ye1 of size p with 0 ≤ y ≤ iw−1

2 and the patch
centered at the current x. Compute the distance

dI,x,2(y) =

p−1
2∑

i=− p−1
2

p−1
2∑

j=− p−1
2

(
‖∇I(x1 + i, x2 + j)−∇I(x1 + i, x2 + (y + j))‖2

2

+
‖∇I(x1 + i, x2 + j)−∇I(x1 + i, x2 + (j − y))‖2

2

)
.

or

dI,x,2(y) =

p−1
2∑

i=− p−1
2

p−1
2∑

j=− p−1
2

(
‖∇2I(x1 + i, x2 + j)−∇2I(x1 + i, x2 + (y + j))‖2

2

+
‖∇2I(x1 + i, x2 + j)−∇2I(x1 + i, x2 + (j − y))‖2

2

)
.

between all patches centered at x+ ye2 of size p with 0 ≤ y ≤ iw−1
2 and the patch

centered at the current x.
end for
for all pixels x do

4.1. Sort the previous distances in ascending order for each direction and keep only
the lowest NbNeigh− 1 values with the corresponding shift (y) for the first
direction in indice1 and for the second direction in indice2.
4.2. Add the closest neighbor in geographical sense and in each direction to make
the weights more similar to the theoretical ones.

end for
for all pixels x do

5.1. Compute wI,x,1 by the following formula: wI,x,1(y) = 0 if y does not belong to

the previous list of neighbors, wI,x,1(y) = exp
{
−dI,x,1(y)

h2

}
otherwise. Compute

wI,x,2 by the following formula: wI,x,2(y) = 0 if x+ ye2 does not belong to the

previous list of neighbors, wI,x,2(y) = exp
{
−dI,x,2(y)

h2

}
otherwise.

end for
return wI,x,1, wI,x,2, indice1, indice2.

Algorithm 9: Computation of the nonlocal weights inspired by the NL-means algorithm.

226



4. Numerical Experiments

The nonlocal algorithm also relies on an alternating strategy in which we solve the
Euler-Lagrange equations related to each unknown using the same schemes as in the local
one. Neumann boundary conditions for u and Q and Dirichlet boundary conditions for
v1 − 1, v2 − 1 and ~g are applied. We use the same notations as previously done and get
the following Algorithm 10.

1. [Initialization step]:

u0 = f , ~g0 = ~0, Q0 = 0, v0
1 = 1 and v0

2 = 1.
2. [Main step]:
for n=1 to n=500 do

if n%100==0 then
2.1 Compute the nonlocal weights associated to un:
[wI,x,1, wI,x,2, indice1, indice2] = compute weights(un).

end if
2.2 Compute for all pixels (i, j):

|∇un|2i,j = (uni+1,j − uni,j)2 + (uni,j+1 − uni,j)2,

vn+1
1,i,j =

(α−β)
2ε + 2(α− β)ε (vn1,i+1,j + vn1,i−1,j + vn1,i,j+1 + vn1,i,j−1 − 4vn1,i,j)

2ξε |∇un|2i,j + (α−β)
2ε

,

nlnormu2
i,j =

∑
h∈indice1

(un(i+ h, j)− 2un(i, j) + un(i− h, j))2wI,i,j,1(h))

+
∑

h∈indice2

(un(i, j + h)− 2un(i, j) + un(i, j − h))2wI,i,j,2(h),

vn+1
2,i,j =

β
2ε + 2βε (vn2,i+1,j + vn2,i−1,j + vn2,i,j+1 + vn2,i,j−1 − 4vn2,i,j)

2ρnlnormu2
i,j + β

2ε

,

un+1
i,j − uni,j

∆t
= (fi,j − uni,j −

gn1,i,j+1 − gn1,i,j−1

2
−
gn2,i+1,j − gn2,i−1,j

2
)

+ ξε
[
(vn1,i,j)

2 (uni,j+1 − uni,j)− (vn1,i,j−1)2 (uni,j − uni,j−1)
]

+ ξε
[
(vn1,i,j)

2 (uni+1,j − uni,j)− (vn1,i−1,j)
2 (uni,j − uni−1,j)

]
− ρ

[ ∑
h∈indice1

(vn2,i+h,j)
2 (uni+2h,j − 2uni+h,j + uni,j)− 2 (vn2,i,j)

2 (uni,j+h − 2uni,j + uni,j−h)

+ (vn2,i−h,j)
2 (uni,j − 2uni−h,j + uni−2h,j)

]
wI,i,j,1(h)− ρwI,i,j,2(h)

[
(vn2,i,j−h)2 (uni,j − 2uni,j−h

+ uni,j−2h) +
∑

h∈indice2

(vn2,i,j+h)2 (uni,j+2h − 2uni,j+h + uni,j)− 2 (vn2,i,j)
2 (uni,j+h − 2uni,j + uni,j−h)

]
,

using symmetry if it does not belong to the image domain, and equations derived in
the same way for gn1 , gn2 and Qn.

end for
Algorithm 10: Nonlocal alternating algorithm for crack recovery.
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In order to improve the computation efficiency, we propose an MPI parallelization of
our code, which motivates our choice of a rather simple alternating minimization method
for which a decomposition domain approach is well-suited.

4.3 MPI parallelization

The parallelization of the C code is motivated by the natural geometry of the problem
—an image is defined on a rectangle domain Ω —making the partition of the image domain
into subdomains supporting simultaneous local computations relevant. Note also that the
computational complexity increases with the image size (in practice we have worked with
some images of size 2248 × 4000), requiring more memory to store the data and the results,
this fact being particularly marked in the nonlocal model that involves the resolution of a
nonlocal partial differential equation.

The meshing is made of ntx interior points in the row direction (we removed the first
and last two layers of points for the local case and the first and last layers of points for
the nonlocal case) and nty interior points in the column direction (we removed the two
leftmost and rightmost columns of points for the local case and the leftmost and rightmost
column of points for the nonlocal case). The implementation revolves around the following
steps:

(i) we generate a Cartesian topology (see Figure 5.2 for an example), each subdomain
comprising two/w−1 (local/nonlocal, where w is the window size) rows of ghost cells
above, two/w − 1 rows of ghost cells below, and similarly for the columns, in order
to store the data exchanged with neighboring subdomains. Either the developer
selects the number of nodes in each direction, or it is left to the MPI library. Some
latitude is also given to the user in terms of periodicity (—a periodicity can be
applied on the grid in each direction if required thanks to the array periods —)
and reorganization (—if the user wants the processes to keep the same rank as in
the original communicator —).

(ii) For each subdomain, we recover the bounds with respect to the original image re-
ference frame of the indices i and j that are then stored in the 1d array tab bounds:
tab bounds[0]=sx, tab bounds[1]=ex, tab bounds[2]=sy and tab bounds[3]=ey). The
numbering of the original image reference frame starts at 0 and the origin is the top
left corner. The indices (sx − 2, sx − 1, ex + 1, ex + 2, sy − 2, sy − 1, ey + 1,
ey + 2)/(sx − w + 1, . . . , sx − 1, ex + 1, . . . ,ex + w − 1, sy − w + 1, . . . , sy − 1,
ey+1, . . . , ey+w−1) are used to store the data sent by the 8-connected neighboring
subdomains.
Created function : void domaine(MPI Comm comm2d,int rang,int * co-
ords,int ntx,int nty,int * dims,int * tab bounds,int * periods,int reorga-
nization,int nb procs)

(iii) For each subdomain, the neighboring subdomain ranks are returned. This is achieved
thanks to the routine voisinage and these ranks are stored respectively in the 1d
array voisin (for the 4-connected blocks) and voisin diagonale (for the diagonally
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0 1

2 3

Figure 5.2: Cartesian topology in the local case with 4 processes on a (10× 10) image:
Process 0 : (sx = 2, ex = 4, sy = 5, ey = 7);
Process 1 : (sx = 5, ex = 7, sy = 5, ey = 7);
Process 2 : (sx = 2, ex = 4, sy = 2, ey = 4);
Process 3 : (sx = 5, ex = 7, sy = 5, ey = 7).

connected blocks). The necessity of storing the ranks of diagonally connected blocks
arises from the numerical schemes used to discretize the partial differential equations
satisfied by u, Q, g1 and g2 that involve for instance components like ui+2,j+2,
Qi−1,j+1, v2,i−1,j−1 or g2,i+1,j−1.
Created function: void voisinage(MPI Comm comm2d,int * voisin, int *
voisin diagonale,int * coords, int * dims)

(iv) Once the Cartesian topology is created, one needs to distribute the data file (image
data) to each subdomain in parallel (more precisely, the portion of the data file
that must be visible for the related process). The general file manipulation function
MPI File open is called. We then create a datatype MPI Datatype mysub-
array describing a two-dimensional subarray (the portion of the image related to
the current subdomain) of a bigger two-dimensional array (the image here) (routine
MPI Type create subarray). The MPI File set view routine allows to change
the process view of the data in the file: the beginning of the data accessible in the
file through that view is set to 0, the type of data is set to MPI DOUBLE, and the
distribution of data to processes is set to mysubarray. Then the MPI File read
routine enables us to read the file starting at the specified location.

(v) Derived datatypes are created, describing the rows, columns and 2×2 diagonal arrays
involved in the MPI communications : MPI Datatype type 2colonnes/type (w-
1)colonnes, type ligne, type colonne mono, type 2lignes/type (w-1)lignes,
type ligne, type colonne mono, type (w-1)lignes among others. In that pur-
pose, the routines MPI Type contiguous —creating a contiguous datatype, here
a single row of data —and MPI Type vector —general constructor that allows
replication of a datatype into locations that consist of equally spaced blocks, here
a single column, a group of two/(w-1) adjacent columns and a group of two/(w-1)
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adjacent rows —are used. For the communications with diagonally connected sub-
domains, a datatype describing a two-dimensional subarray of size 2×2 of a bigger
two-dimensional array is created for each spatial configuration: top left corner, top
right corner, bottom left corner and bottom right corner.

(vi) The communications are then handled with the routine MPI Sendrecv. This send-
receive operation combines in one call the sending of a message to one destination
and the receiving of another message from another process. As an illustration (see
also Figure 5.3), u local mat denoting the local array describing u :

(a) u local mat(sx : sx+1, :)/u local mat(sx : sx+w−2, :) is sent to the northern
neighbor that receives data in u local mat(ex+1 : ex+2, :)/u local mat(ex+1 :
ex+ w − 1, :);

(b) u local mat(ex−1 : ex, :)/u local mat(ex−w+2 : ex, :) is sent to the southern
neighbor that receives data in u local mat(sx− 2 : sx− 1, :)/u local mat(sx−
w + 1 : sx− 1, :);

(c) u local mat(:, sy : sy+ 1)/u local mat(:, sy : sy+w− 2) is sent to the western
neighbor that receives data in u local mat(:, ey + 1 : ey + 2)/u local mat(:
, ey + 1 : ey + w − 1);

(d) u local mat(:, ey − 1 : ey)/u local mat(:, ey − w + 2 : ey) is sent to the eastern
neighbor that receives data in u local mat(:, sy − 2 : sy − 1)/u local mat(:
, sy − w + 1 : sy − 1);

(e) u local mat(sx : sx + 1, ey − 1 : ey) is sent to the northeast neighbor that
receives data in u local mat(ex+ 1 : ex+ 2, sy − 2 : sy − 1);

(f) u local mat(ex − 1 : ex, ey − 1 : ey) is sent to the southeast neighbor that
receives data in u local mat(sx− 2 : sx− 1, sy − 2 : sy − 1);

(g) u local mat(ex − 1 : ex, sy : sy + 1) is sent to the southwest neighbor that
receives data in u local mat(sx− 2 : sx− 1, ey + 1 : ey + 2);

(h) u local mat(sx : sx + 1, sy : sy + 1) is sent to the northwest neighbor that
receives data in u local mat(ex+ 1 : ex+ 2 :, ey + 1 : ey + 2).

For subdomains with at least one edge included in the image domain boundary, di-
agonal communications do not occur and are replaced by communications with the
ghost cells of the involved contiguous subdomain.
Created function : void communication(double ** u,double ** v1 local mat,
double ** v2 local mat,double ** g1 local mat,double ** g2 local mat,double
** Q local mat,int * tab bounds,MPI Comm comm2d,int * voisin, int *
voisin diagonale)

(vii) The values of un+1, Qn+1, vn+1
1 , vn+1

2 , gn+1
1 and gn+1

2 are computed using the above
mentioned finite difference schemes (v1 and v2 have been initialized to 1, g1, g2 and
Q to 0, while u has been set to the values of the original image) and the question
of boundary conditions is addressed. For the sake of simplicity, we have assumed
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Figure 5.3: Phantom cells and communications, example on process 0 for the local case.

homogeneous Neumann boundary conditions for u, simulating reflection of the array
through its boundaries and Dirichlet boundary conditions for v1−1, v2−1, ~g and Q.
We thus identify subdomains with at least one edge included in the image domain
boundary. We then replicate the third row of the local matrix in the second one, the
fourth row in the first one, similarly for the last two rows and first/last two columns
for u. The diagonal components are processed using point symmetry. The newly
computed values are then transmitted to neighboring subdomains and a new time
step is achieved.

(viii) We finally write the result (component v2 encoding the fine structure we aim to
recover) in a file using again MPI I/O. The general file manipulation function
MPI File open is called. We then create a new datatype describing the two-
dimensional subarray extracted from the original local array v2 local mat when re-
moving the ghost cells. The routine MPI File set view changes the process view
of the data in the file, while the routine MPI File write all writes the file, starting
at the locations specified by individual file pointers.
Created function : void ecrire mpi(double *v2 local vect,int ntx,int nty,int
* tab bounds,MPI Comm comm2d)

(ix) In the nonlocal case, the computation of the nonlocal weights is done by every process
on their associated subdomain.

The computations have been made with the supercomputer Myria operated by the CRI-
ANN (Centre Régional Informatique et d’Applications Numériques de Normandie, http:
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//www.criann.fr/). Myria is an ATOS BULL solution with 11144 computing cores, with
a power of 403 TFlops Xeon, 170 TFlops GPU and 27 TFlops Xeon Phi KNL. Myria also
has a fast storage space of about 2.5 Po. Submission of the work is done through the
SLURM software.
The local algorithm has been applied to a bituminous surfacing image of size 2248 × 4000,
requiring 500 time step iterations both in the case of the sequential algorithm , execution
time : 289.576683 seconds, and parallelized algorithm with 224 tasks, execution time :
1.752749 seconds. The efficiency is of 74% from 1 to 224 tasks and of 100% from 28 to
224 tasks. Below (Figure 5.4) are the statistics obtained for 1 task and 224 tasks. The

(a) 1 task

(b) 224 tasks

Figure 5.4: Computational statistics for the local algorithm.

nonlocal algorithm has been applied to a bituminous surfacing image of size 2248 × 4000,
requiring 360 time step iterations both in the case of the sequential algorithm , execution
time : 596.582511 seconds, and parallelized algorithm with 224 tasks, execution time :
4.409619 seconds. Below (Figure 5.5) are the statistics obtained for 1 task and 224 tasks.
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(a) 1 task

(b) 224 tasks

Figure 5.5: Computational statistics for the nonlocal algorithm.

4.4 Numerical simulations

Experimental results on real datasets are now provided, resulting from the application
of the above algorithms (local/nonlocal). The values of the parameters in the functional
are chosen on the basis of the results of a number of experiments. We can nevertheless
infer the behavior of some of them: less regularization (smaller α, β, ρ and ξε) induces
more edges/creases in v1 and v2 respectively. Also, a higher parameter µ balancing the
L∞-norm of |∇Q| will lead to smaller scale features in the v = div~g component. The fine
structures appear as contours along which the auxiliary variable v2 is close to zero, while
jumps appear as contours with larger thickness.
We start off with an application dedicated to road network detection on urban scenes.
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An aerial urban scene is depicted in Figure 5.6 (A. Drogoul’s courtesy, size of the image
652× 892), together with its smooth approximation u obtained with our local implemen-
tation (u local), with our nonlocal implementation in which we consider only the four
closest neighbors (u nonlocal (only 4 closest neighbors)), with our nonlocal implementa-
tion in which the weights are computed using the distance based on the comparison of the
image gradients (u nonlocal (weights based on gradient) and with our nonlocal implemen-
tation in which the weights are computed using the distance comparing the Hessian of the
image (u nonlocal (weights based on Hessian)) in which small scale features have been re-
moved (more precisely, u should be piecewise linear since the model involves second order
penalization) and the auxiliary function v2 that maps the fine structures of u. Function
v2 discriminates properly edges (i.e. discontinuities in the image function) that appear in
light gray, from creases and filaments (i.e. road network here) that appear in dark gray.
Small scale features are assimilated to oscillatory patterns having small G-norm and are
thus well-captured in the v = div~g component (e.g., the rows in the fields are clearly
extracted). The road network is clearly detected, while noise and texture are left in the
v = div~g component. The most sensitive parameters are those related to regularization,
namely ρ, α and β. The smaller parameters α and β are, the more edges/creases are
present in the auxiliary function v2. Parameter ρ acts on the thickness of the contours
and on the range of function v2: the higher ρ is, the closer to the value one contours
representing fine structures are. Parameter ε also plays on the thickness and intensity of
the contours, and is always set between 0.5 and 1. These elements are exemplified in Fig-
ure 5.7 where various sets of parameters have been tested with our local implementation.
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(a) Original image (b) u local (c) v = div~g local (d) v2 local

(e) u nonlocal (weights
based on gradient)

(f) v2 nonlocal (weights
based on gradient)

(g) u nonlocal (weights
based on Hessian)

(h) v2 nonlocal (weights
based on Hessian)

(i) u nonlocal (only 4 clos-
est neighbors)

(j) v2 nonlocal (only 4 clos-
est neighbors)

Figure 5.6: Road network extraction on an aerial scene: local: µ = 8, ξε = 0, α = β = 0.5,
ρ = 5, ε = 0.5, γ = 0.5, 10 iterations; nonlocal (weights based on Hessian): µ = 0.0001, ξε = 3.5,
α = 0.14, β = 0.07, ρ = 3.5, ε = 1.0, γ = 1.0, w = 15, m = 7, 450 iterations; nonlocal (only
4 closest neighbors): µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1.0, γ = 1.0, 450
iterations; nonlocal (weights based on gradient): µ = 0.0001, ξε = 3.5, α = 0.06, β = 0.03, ρ = 3.5,
ε = 1.0, γ = 1.0, w = 15, m = 7, 1250 iterations.

(a) Original cropped
image

(b) v2, µ = 10, ρ = 3.5,
α = β = 0.5, ε = 1

(c) v2, µ = 10, ρ = 3.5,
α = β = 0.5, ε = 0.5

(d) v2, µ = 10, ρ = 3.5,
α = β = 2, ε = 1

(e) v2, µ = 10, ρ = 3.5,
α = β = 5, ε = 1

(f) v2, µ = 10, ρ = 5, α =
β = 0.5, ε = 1

(g) v2, µ = 10, ρ = 8, α =
β = 0.5, ε = 1

(h) v2, µ = 10, ρ = 8, α =
β = 0.5, ε = 0.5

Figure 5.7: Road network extraction on an aerial scene: effect of the parameters on the component
v2 with the local algorithm.
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We compare our results with those obtained by Aubert and Drogoul [8, 30] with the
topological gradient (Figure 5.8). We first observe that the topological gradient has the
tendency to oversmooth the contours. Second, it does not properly discriminate the edges
from the filaments and creases in terms of intensity for instance. At last, even if we tuned
the algorithm adequately (in particular, a weighting parameter in their model influences
the size of the detected structures), our algorithm detects more accurately the center of the
road network. Another illustration devoted to filament/vessel-like structure detection is

(a) Original image (b) Structures detected by the
topological indicator

Figure 5.8: Road network extraction on an aerial scene with Aubert and Drogoul’s topological
gradient method.

provided on Figure 5.9 (size 338 × 436) and focuses on dendrite and axon detection (cour-
tesy of A. Drogoul, https://sites.google.com/site/drogoulaudric/recherche). The
skeleton of the dendrite network is well recovered, with in particular strong intensity in
the middle of the dendrites. Also, to emphasize the role of the decomposition, we display
the v2 component when ~g and Q are removed from the local model: we observe that
spurious details (not related to filament structures) spoil this constituent. We now apply
the proposed algorithm to crack detection, both on Figure 5.10 (size 501 × 501) and 5.11
(size 285 × 429), courtesy of A. Drogoul. We depict the three main components of the de-
composition/segmentation, i.e., u, v = div~g, v2, for the local model and u and v2, for the
three versions of our nonlocal algorithm, as well as the results obtained with Aubert and
Drogoul’s topological gradient method. The cracks are correctly enhanced, the oscillatory
patterns are well captured by the v = div~g component. Again, the role of the decom-
position part of the algorithm is highlighted (Figure 5.10) by depicting the obtained v2

component when decomposition is turned off in our local implementation (spurious details
are visible on the top of the image). Also, the linear piecewise nature of the component u
in Figure 5.11 is properly returned.
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(a) Original image (b) u local (c) u nonlocal (weights based on gra-
dient)

(d) u nonlocal (weights based on Hes-
sian)

(e) u nonlocal (only 4 closest neigh-
bors)

(f) v = div~g local

(g) v2 local (h) v2 local, zoom on a region of
the image

(i) v2 local, when no decomposition
is applied

(j) v2 nonlocal (weights based on gra-
dient)

(k) v2 nonlocal (weights based on Hes-
sian)

(l) v2 nonlocal (only 4 closest neigh-
bors)

Figure 5.9: Dendrite and axon extraction: µ = 1, ξε = 0, α = β = 0.1, ρ = 3.5, ε = 0.5, γ = 5,
20 iterations; nonlocal (weights based on Hessian): µ = 0.0001, ξε = 3.5, α = 0.016, β = 0.008,
ρ = 3.5, ε = 1.5, γ = 1.0, w = 15, m = 7, 330 iterations; nonlocal (only 4 closest neighbors):
µ = 0.0001, ξε = 3.5, α = 0.016, β = 0.008, ρ = 3.5, ε = 1.5, γ = 1.0, 330 iterations; nonlocal
(weights based on gradient): µ = 0.0001, ξε = 3.5, α = 0.016, β = 0.08, ρ = 3.5, ε = 1.0, γ = 1.0,
w = 15, m = 7, 500 iterations.
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(a) Original image (b) u local (c) v = div~g local

(d) v2 local (e) u nonlocal (weights based
on gradient)

(f) v2 nonlocal (weights based
on gradient)

(g) u nonlocal (weights based
on Hessian)

(h) v2 nonlocal (weights based
on Hessian)

(i) u nonlocal (only 4 closest
neighbors)

(j) v2 nonlocal (only 4 closest
neighbors)

(k) Structures detected by the
topological indicator

(l) v2 local, when no decomposition
is applied

Figure 5.10: Crack detection: µ = 0.001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1, γ = 0.5, 50
iterations; nonlocal (weights based on Hessian): µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5,
ε = 1.5, γ = 1.0, w = 15, m = 7, 550 iterations; nonlocal (only 4 closest neigbors): µ = 0.0001,
ξε = 3.5, α = 0.06, β = 0.03, ρ = 3.5, ε = 1.5, γ = 1.0, 550 iterations; nonlocal (weights based on
gradient): µ = 0.0001, ξε = 3.5, α = 0.06, β = 0.03, ρ = 3.5, ε = 1.0, γ = 1.0, w = 9, m = 5, 1000
iterations.
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(a) Original image (b) u local (c) v = div~g local

(d) v2 local (e) u nonlocal (weights based on
gradient)

(f) v2 nonlocal (weights based on
gradient)

(g) u nonlocal (weights based on
Hessian)

(h) v2 nonlocal (weights based
on Hessian)

(i) u nonlocal (only 4 closest
neighbors)

(j) v2 nonlocal (only 4 closest
neighbors)

(k) Structures detected by the
topological indicator

Figure 5.11: Crack detection: µ = 0.001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1, γ = 0.5, 50
iterations; nonlocal (weights based on Hessian): µ = 0.0001, ξε = 1.0, α = 0.06, β = 0.03, ρ = 1.0,
ε = 1.5, γ = 1.0, w = 15, m = 7, 750 iterations; nonlocal (only 4 closest neighbors): µ = 0.0001,
ξε = 1.0, α = 0.06, β = 0.03, ρ = 1.0, ε = 1.5, γ = 1.0, 330 iterations; nonlocal (weights based on
gradient): µ = 0.0001, ξε = 3.5, α = 0.06, β = 0.03, ρ = 3.5, ε = 1.0, γ = 1.0, w = 9, m = 5, 1000
iterations.
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We conclude the paper with two applications dedicated to crack detection on bi-
tuminous surfacing Figure 5.13 (size 231 × 650) and 5.14 (size 201 × 640), courtesy
of CEREMA, France. The two considered slices of bitumen, in addition to long and
thin cracks, exhibit high oscillatory patterns and white spots of varying sizes, which
makes the straight application of our algorithm difficult. Indeed, in terms of scale, the
crack and some of these spots could be comparable and could not be properly discrim-
inated, resulting in superfluous information in the v2 component. Think for instance
of a white spot assimilated to a ball of radius 2 pixels (—if the image domain is the
n × n discretized unit square, then the scale behaves like 1

n—), and of a long thin crack
of width 2 pixels and length k pixels (k � 1) leading to a similar scale. To circum-
vent this issue, a pre-processing step is applied. It consists in apprehending the problem
first as an inpainting one ([1]), and by considering these white spots as missing parts
of the image that need to be filled. This is achieved with the MATLAB R© function
imfill (https://fr.mathworks.com/help/images/ref/imfill.html —to fill holes in a
grayscale image) applied to the inverse image, yielding an image that serves as input of
our algorithm. In both cases, the cracks are well recovered in the v2 component which
does not include superfluous information. The edge detector v1 also recovers parts of the
crack but contains spurious information regarding the problem we address, such as asphalt
defect boundaries. It thus justifies the use of a second order method.
Besides, Figure 5.13-(g)-(h)-(i) and 5.14-(g)-(h)-(i) are the results obtained by minimiz-
ing the elliptic approximation of the Blake-Zisserman functional that is to say without
considering the decomposition part. Thanks to Figure 5.13-(j)-(k)-(l) and 5.14-(j)-(k)-(l)
showing the absolute difference between both results, we observe that u is less noisy with
our method, v1 and v2 also exhibit better contrast with less superfluous information. The
results obtained with the three versions of our nonlocal algorithm are comparable with
the ones obtained with our local implementation.
We also compare our results with the ones obtained by thresholding the image. It appears
that the crack is even more spotty than with our method and there is more superfluous
information or the crack is not entirely recovered. Furthermore, the contrast is lower. The
value of the threshold t has been chosen to get a compromise between recovering the whole
crack and having the least residual noise.

(a) Original image (b) Filtered image: input of
our algorithm I

(c) Thresholded image : t =
max(I)−min(I)

10
+ min(I) =

0.1247

(d) Thresholded image : t =
3(max(I)−min(I))

20
+ min(I) =

0.1734

(e) Thresholded image : t =
2(max(I)−min(I))

10
+ min(I) =

0.2221

Figure 5.12: Crack detection by thresholding the original image.
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(a) Original image (b) Filtered image: input of
our algorithm

(c) u local

(d) v = div~g (e) v2 local (f) v1 local

(g) uwd local without de-
composition

(h) v2,wd local without de-
composition

(i) v1,wd local without de-
composition

(j) |u− uwd| local (k) |v1 − v1,wd| local (l) |v2 − v2,wd| local

(m) u nonlocal (weights
based on gradient)

(n) v2 nonlocal (weights
based on gradient)

(o) v1 nonlocal (weights
based on gradient)

(p) u nonlocal (weights
based on Hessian)

(q) v2 nonlocal (weights
based on Hessian)

(r) v1 nonlocal (weights
based on Hessian)

(s) u nonlocal (only 4 clos-
est neighbors)

(t) v2 nonlocal (only 4 clos-
est neighbors)

(u) v1 nonlocal (only 4
closest neighbors)

Figure 5.13: Crack detection: µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1, γ = 0.9,
270 iterations; nonlocal (weights based on Hessian): µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07,
ρ = 3.5, ε = 1.0, γ = 1.0, w = 15, m = 7, 500 iterations; nonlocal (only 4 closest neighbors):
µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1.0, γ = 1.0, 500 iterations; nonlocal
(weights based on gradient): µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1.0, γ = 1.0,
w = 9, m = 3, 500 iterations.
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A second order free discontinuity model for bituminous surfacing crack
recovery

(a) Original image (b) Filtered image: input of our al-
gorithm

(c) u

(d) v = div~g (e) v2 (f) v1

(g) uwd without decomposition (h) v2,wd without decomposition (i) v1,wd without decomposition

(j) |u− uwd| (k) |v1 − v1,wd| (l) |v2 − v2,wd|

(m) u nonlocal (weights based on
gradient)

(n) v2 nonlocal (weights based on
gradient)

(o) v1 nonlocal (weights based on
gradient)

(p) u nonlocal (weights based on
Hessian)

(q) v2 nonlocal (weights based on
Hessian)

(r) v1 nonlocal (weights based on
Hessian)

(s) u nonlocal (only 4 closest neigh-
bors)

(t) v2 nonlocal (only 4 closest neigh-
bors)

(u) v1 nonlocal (only 4 closest neigh-
bors)

Figure 5.14: Crack detection: µ = 0.001, ξε = 2.5, α = 0.1, β = 0.05, ρ = 2.5, ε = 1, γ = 0.9, 270
iterations; nonlocal (weights based on Hessian): µ = 0.0001, ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5,
ε = 1.0, γ = 1.0, w = 9, m = 3, 500 iterations; nonlocal (only 4 closest neighbors): µ = 0.0001,
ξε = 3.5, α = 0.14, β = 0.07, ρ = 3.5, ε = 1.0, γ = 1.0, 500 iterations; nonlocal (weights based on
gradient): µ = 0.0001, ξε = 4.5, α = 0.14, β = 0.07, ρ = 4.5, ε = 1.0, γ = 1.0, w = 15, m = 7,
2000 iterations.
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Chapter 6

Conclusion and perspectives

In this thesis, we have introduced the problems of image registration, image segmentation,
and image decomposition/denoising and have proposed to address them jointly into a sin-
gle framework. As they are closely related, we believe that they can take advantage of each
other leading to their reinforcement and to fewer drawbacks than when taken separately.

We have first proposed a registration model guided by topology-preserving segmenta-
tion results in a nonlinear elasticity setting. The alignment of the evolving shape implicitly
modelled by a level-set function with intermediate topology-preserving segmentation re-
sults ([5]) drives the registration process as a fidelity term. Both theoretical results and
numerical experiments have been provided. New perspectives have also been suggested
to enlarge this work. One is to introduce dynamics into the model and so to consider it
as continuous in time instead of taking samples in time. The existence of minimizers for
this problem has been proved on a Sobolev space of Banach-space-valued functions but
the implementation remains a work in progress. The other one is to couple the segmenta-
tion and the registration tasks rather than to consider a segmentation-guided registration
model. A substitute for Φ0 ◦ ϕ is incorporated in the topology-preserving model and
the interaction is made through an L2-penalization involving the mutual influence of both
tasks. It inherits good theoretical properties in the context of the viscosity solution theory.

Then, we have developed a joint segmentation/registration model giving additionally
a decomposition of the Reference image into a cartoon-like image and an oscillatory part.
The fidelity term is composed of three expressions, namely the weighted total variation
aiming to align the edges of the deformed Template to the ones of the Reference, a nonlocal
shape descriptor inspired by the Chan-Vese model for segmentation matching the homoge-
neous regions of the deformed Template with the ones of the Reference, and a classical sum
of square distances locally comparing the intensity levels of the deformed Template with
the ones of the Reference. As for the regularization of the transformation, it relies on the
stored energy function of a Saint-Venant Kirchhoff material and a term penalizing large
volume changes. Many theoretical results legitimate our model and a thorough compari-
son of our results with the ones obtained by previous models has been made. However, one
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Conclusion and perspectives

of its main drawback is that it has been designed for 2D images and cannot be extended
to 3D images straightforwardly. A perspective of work in this direction would be to re-
place our regularizer by another one derived from an isotropic, homogeneous, hyperelastic
material, such as Cialet-Geymonat or Ogden materials, stored energy function. Indeed,
for such materials, the energy appears to be polyconvex and therefore lifts the theoretical
limitation of our model. However, the numerical implementation becomes more challeng-
ing due to the apparition of Cof∇ϕ matrix. Based on Negrón Marrero’s work [7], one way
of dealing with this highly nonlinear term would be to introduce an auxiliary variable V
simulating the Jacobian of the deformation and to solve the problem under the equality
constraint CofV = Cof∇ϕ.

In the last chapter, we have addressed a slightly different issue but still combining sev-
eral image processing tasks in a single framework. In order to recover very thin structures,
namely cracks on bituminous surface images, we have studied a second order variational
model based on the elliptic approximation of the Blake-Zisserman functional ([1]) and on
a decomposition model using Meyer’s G norm ([6]). We then have looked into a nonlocal
version of this model leading to both theoretical and numerical results. We have carried
out a comparison of our results with the ones of Drogoul’s model [3] designed to detect
fine structures in images and showed that including the decomposition part actually gives
better results. Then an MPI parallelization of the code has been done to improve the com-
putational efficiency. A perspective of work would be to further investigate the weights to
be applied in the nonlocal code. We could consider some weights enabling us to regularize
the image far from the crack but not close to it based on the response obtained by the
vessel-detection filter developed by Frangi et al. [4] for example. We could also think of
a slightly different model in which we replace the L2 norm by an L1 norm applied to the
nonlocal Laplacian. Besides, the CEREMA is interested in a measure of the crack length
and so a lead of work in this direction is to connect the fragments of cracks we recover.
Indeed, for the time being, our segmentation of the crack is very discontinuous and we
would like to do a post-processing step to connect these different pieces. One way of doing
that would be to apply a diffusion term along the direction of the crack depicted by the
eigen vector associated with the highest eigen value of the Hessian matrix. We would also
like to remove the residual noise appearing in v2. To address this issue, one can think of
using a blob-detection like filter and then considering these blobs as missing data in an
inpainting algorithm.

Another perspective of work related to the registration problem is to introduce some
landmark information given by an expert as hard constraints in order to improve the
quality of the registration in the regions of interest. Using Lagrangian multipliers in a
finite element setting enables us to exactly interpolate the landmark constraints. We have
started some preliminary theoretical investigations, based on [8] and [10], on the existence
of Lagrange multipliers, the existence and uniqueness of solutions and the invertibility of
the rigidity matrix for both a solely registration-based model and a joint segmentation and
registration model. A numerical implementation of these models is still a work in progress.
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The last perspective of work I am going to mention here is a theoretically 3D friendly
joint segmentation and registration model based on the Potts model for segmentation
and the stored energy function of an Ogden material inspired by [9], [12], and [2]. It
is meant to be applied on a whole database of medical images. Every single image is
registered to the mean image of the database. This Reference is then refined by taking
the mean image of the deformed database we have obtained. The last step consists in
polishing the segmentation and the registration results by using a model inspired by [13]
to register the deformed database to this new Reference. We could also consider a joint
segmentation/registration/shape averaging model based on [11, Chapter 4].
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