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Abstract 

In the presence thesis, the growth of fiber/matrix interface debond of a UD composite 

with hexagonal fiber packing under longitudinal and transverse tensile loading was 

investigated numerically, with the special focus on the influence of neighboring fibers 

on its growth. In the current study, energy release rate (ERR) is considered as the 

driving force for debond growth and was calculated based on J Integral and Virtual 

Crack Closure Technique (VCCT) using finite element software ANSYS. In the present 

thesis research, we started with investigating the influence of neighboring fibers on 

ERR of a debond emanating from a fiber break in longitudinal loading condition. In 

longitudinal loading case, debond growth is mode II dominated. As the starting point 

for the research, an axisymmetric model consisting 5 concentric cylinders that represent 

broken fiber with debond, surrounding matrix, neighboring fibers, surrounding matrix 

and effective composites was generated. It’s found that there are two stages of debond 

growth, the first stage is when debond length is short, the ERR decreases with 

increasing debond angle, and the presence of neighboring significantly increase the 

ERR of debond.  For relatively long debond, the debond is in a steady state growth 

region when ERR is almost constant regardless of debond length. In steady state of 

debond growth, the presence of neighboring fibers has little effect on the ERR. In the 

later research, a 3-D model was generated with broken fiber and its 6 nearest fibers in 

a hexagonal packed UD composite were modelled explicitly, surrounded by the 

homogenized composite. Based on the obtained results, it’s shown that ERR is varying 

along debond front, and has its maximum at the circumferential location where the 

distance between two fiber centers is the smallest. This indicates the debond front is not 

a circle. For steady state debond, the presence of fibers has little effect on ERR that 

averages along debond front. For short debond, the presence of fibers increases the 

averaged ERRS, and that the increase is more significant when inter-fiber distance are 

the smallest. When we conclude our investigation on fiber/matrix debonding under 

longitudinal loading, we began studying the growth of a fiber/matrix debond along fiber 

circumference under transverse loading. It’s found that debond growth is mixed-mode, 

and both mode I and mode II ERR components increase with increasing debond angle 

and then decreases. Debond growth is mode I dominated for small debond angle and 

then switch to mode II dominated. The presence of neighboring fibers have an 

enhancement effect on debond growth up to certain small debond angle and then 
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changes to a protective effect. Finally, the interaction between two arc-size debond 

under transverse loading is investigated. It’s found that when two debonds are close to 

each other, the interaction between two debond becomes much stronger, and that 

interaction leads to the increase of ERR of each debond significantly, which facilitates 

further debond growth for both debond.  
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Résumé 

Dans ces travaux, nous avons étudié numériquement la croissance du décollement de 

l'interface fibre / matrice d' un composite UD avec garnissage hexagonale de fibre sous 

charge longitudinal et transversal. Nous avons mis l'accent en particulier sur l'influence 

des fibres voisines sur sa croissance. Dans la présente étude, le taux de libération 

d'énergie (ERR) est considéré comme la force motrice de la croissance du décollement 

et a été calculé sur la base de Integral J et de la technique de fermeture virtuelle de 

fissures (VCCT) à l'aide du logiciel de calcul par éléments finis ANSYS.  

Dans la présente recherche de thèse, nous avons étudier d’abord l'influence des fibres 

voisines sur ERR d'une décohésion émanant d'une rupture de fibre en condition de 

chargement longitudinal. Dans le cas du chargement longitudinal, la croissance du 

décollement est gouvernée par le mode II. Comme point de départ l’étude, nous avons 

mis place un modèle axisymétrique composé de 5 cylindres concentriques représentant 

la fibre endommagée, la matrice environnante, les fibres voisines, la matrice 

environnante et le composite effectif généré. On constate qu'il y a deux stades de 

croissance, la première étape correspond à une longueur courte du décollement, l'ERR 

diminue à mesure que l'angle du décollement augmente, et la présence de voisins 

augmente significativement la décohésion de l'ERR. Pour une décohésion relativement 

longue, le décollement se situ dans une région de croissance en état stationnaire lorsque 

l'ERR est pratiquement constant quelle que soit la longueur du décollement. A l’état 

stationnaire de la croissance du défaut, la présence de fibres voisines n'a que peu d'effet 

sur l'ERR.  

Les travails ultérieurs, nous avons mis en place un modèle 3-D (explicite) avec la fibre 

endommagée et ses 6 fibres les plus proches dans un composite UD compacté 

hexagonal, entourées par le composite homogénéisé. Sur la base des résultats obtenus, 

nous avons montré que l'ERR varie le long de la face frontale et a son maximum à 

l'endroit circonférentiel où la distance entre deux centres de fibre est la plus petite. Cela 

indique que le front du décollement n’est pas circulaire. Pour l'état stable du 

décollement, la présence de fibres a peu d'effet sur l'ERR qui progresse le long du front 

du décollement. Pour un décollement court, la présence de fibres augmente l'ERRS 

moyenné, et cette augmentation est plus significative lorsque la distance entre fibre est 

la plus petite. Après l’étude du la décollement fibre / matrice en charge longitudinale, 

nous avons commencé à étudier la croissance du décollement fibre / matrice le long de 
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la circonférence de la fibre sous charge transversale. On constate que la croissance de 

la du décollement est en mode mixte, et les composants ERR du mode I et du mode II 

augmentent avec l'augmentation de l'angle de déformation puis diminuent. La 

croissance du décollement démarre principalement en mode I pour les petits angles de 

décollement et se poursuit en mode II. La présence de fibres voisines a un effet 

d’accroissement sur la croissance du décollement jusqu'à certains petits angles et 

change ensuite en effet protecteur.  

En fin, nous avons étudié l'interaction entre deux décollement sous chargement 

transversale. Nous avons constaté que lorsque deux décollements sont proches l'un de 

l'autre, l'interaction entre devient beaucoup plus forte et conduit à l'augmentation 

significative de l'ERR de chaque décollement, ce qui facilite la croissance du 

décollement. 
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1. Introduction 

Composites have been widely used in engineering industries especially in aerospace 

industry and wind energy industry due to their unique mechanical properties compared 

to traditional metal materials.  One of most attractive features of composites is their 

design flexibility, i.e. engineers could design composite structures with desired 

properties by selecting different lay-up of composite, reinforcement or matrix materials 

etc.  For a composite structure, depending on the design requirements, it usually 

contains substantial amount of unidirectional (UD) plies with fibers orienting along 

loading direction (called 0° or longitudinal plies) or perpendicular to the loading 

direction (called 90° or transverse plies). When subjected to tensile loading, 0° and 90° 

plies usually fail at different levels of applied load due to the difference in failure 

mechanisms. For 0° plies, fiber breakages, matrix cracking and fiber/matrix interface 

debonding are the common damage modes upon loading, due to the complicated nature 

of composites, those damages could occur at the same time or in a sequence. 0° plies 

are believed to fail when a critical fracture plane is formed by coalescing of fiber breaks 

through interface debonds and matrix cracks and propagates unstably. For 90° plies, the 

most common damages caused by tensile loading perpendicular to the fibers direction 

are fber/matrix interface debonding and matrix cracking. Transverse cracking is often 

considered as the first failure event in composite structures and the macro-scaled 

transverse crack is believed to form by the coalesce of debonds. The increasing 

structural applications of composites lay heavily on the models that could accurately 

predict the behaviors of composites under any given loading conditions while the 

accuracy of such models depends on the thorough understanding of underlying failure 

mechanisms, especially, the mechanism for damage initiation and final failure. For any 

given composites, based on the discussion above, the first failure event is usually occur 

at 90º plies and 0º plies control the strength of the composite. As a result, it is of great 

importance to investigate the failure mechanism of UD plies under longitudinal or 

transverse loading condition in order to gain a better understanding of failure of the 

composite structures.  
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1.1 Tensile failure of 0° plies 

In order to investigate the tensile failure mechanisms of 0° plies, UD composites 

where a composite contains only 0° plies are commonly adopted. When subjected to 

increasing or repeated tensile loading, failure of UD composite is governed by different 

mechanisms, which could be summarized in fatigue life diagram proposed by Talreja 

[1]. As shown in the Fig.1, fatigue life diagram could be divided into three region. In 

horizontal region I where applied load is larger than the strength of fiber, fiber 

breakages is the main failure mechanism. During first cycle of loading, individual fiber 

with lower strength than maximum stress breaks randomly, upon further application of 

loading, due to stress concentration causing by the broken fiber, more discrete fiber 

break occurs until a critical fracture plane is formed where crack propagate unstably 

and lead to final failure of UD composite. Because fiber is considered not to experience 

fatigue, that whole process is thus non-progressive and highly statistical. When the 

applied load is lower than the strength of fiber, during first application, due to the 

statistical nature of fiber strength, individual fiber break would still occur at their 

weakest position as well as subsequent fiber/matrix interface debonding and matrix 

cracking, upon further loading, more fiber break would occur near previous damage 

region, as well as further growth of previous debond and fiber-bridged matrix cracking, 

final failure would occur when a critical fracture plane is formed by connecting each 

individual fiber breaks through debonding and matrix cracking. Finally, if applied load 

is so low that although certain damage events occur during loading, they will be arrested 

upon further loading. Then it reached fatigue limit as shown in the Fig.1, where final 

failure would not occur during cyclic tensile loading. A systematic experimental work 

to demonstrate fatigue life diagram could be found in [2, 3]. 
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Fig.1. Fatigue life diagram for UD composite under cyclic tensile loading (Courtesy of Prof. 

Talreja) 

It should be noted that the progress failure region (Region II) discussed in fatigue 

life diagram, although is proposed based on repeated tensile loading condition, it also 

highlights some very important failure features of UD composite under statically tensile 

loading: the final failure of the UD composite is also caused by the coalesce of fiber 

breaks through fiber/matrix debonding and matrix cracking, which forms a critical 

fracture plane that grows unstably. In the following section we will discuss the exact 

mechanisms for some of the most important damage modes under tensile loading. 

1.11 Fiber breakages in UD composites  

When a UD composite is subjected to tensile loading along fiber direction, 

individual fiber breaks first at its weakest location due to the statistical distribution of 

fiber strength. The breakage of a fiber causes the axial stress redistribution along fiber 

axis. As shown in Fig. 2, at the fiber break, fiber no longer carries axial load, and the 

load carrying ability of broken fiber recovers gradually from fiber break through shear 

stress carried by matrix. The distance from fiber break to where the axial stress 

recovered to up to certain level (usually 90%) of the nominal load before fiber breakage 

is often referred as “effective length” which represents the load transferred ability 

between fiber and matrix. Since at fiber break, broken fiber does not carry axial loads, 

this part of load has to be shared by the intact fibers nearby, which leads to the 

enhancement of local axial stress (or stress concentration) in neighboring fibers. If the 
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enhanced local axial stress exceeds the fiber strength, a new fiber would break resulting 

in more significant enhancement of local axial stress in the intact fibers nearby, which 

leads to the successive breakage of nearby intact fibers simultaneously or with the 

further increase of applied load. It’s expected that a UD composite would eventually 

fails if substantial amount of fibers break within the composite. Based on this idea, the 

majority of the UD composites failure models have been developed based on the failure 

of fibers in order to predict the final failure of UD composites.  

In order to be able to predict the fiber breakages, the accurate calculation of stress 

enhancement in the intact fibers near broken fiber is the key. As a result, numerous 

research efforts have been devoted to investigating the stress enhancement mechanism 

in the nearby fibers.  

 

 

Fig.2 The distribution of axial stress, and of local fiber strength along the fiber length. (Figure 

adopted from [4] and is originally from [5]) 

 

The first attempt to study this stress enhancement in composites was made by 

Hedgepeth [6] where he investigated the stress concentration in a 2-D filamentary 

structures. The sheet of parallel filaments is assumed to carry the normal loads and is 

embedded in a matrix which carries only shear. A stress concentration factor (SCF: 
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ratio between local axial stress and nominal stress applied at the fiber) of 4/3 was found 

for an intact fiber near single broken fiber and he also found that the stress concentration 

factor is larger when dynamic effect was considered. This study was based on the 

assumption that all the filaments carry the same extra load resulting from fiber 

breakage, which is considered as so called “global load sharing” theory. This theory has 

some drawbacks: intuitively, we expect the influence of stress field caused by fiber 

breakage should be within a local region near broken fiber and the nearest neighborhood 

should be affected the most. Hedegpeth and Van Dyke [7] then improved the previous 

theory by assuming only the nearest fibers have to share the extra load caused by fiber 

breakage and obtained smaller stress concentrator factor based on the 3-D model. These 

two studies are commonly considered as the first investigations on the stress 

concentration in the nearby intact fibers cause by fiber breakages, after that, several 

analytical models were also developed by various researchers [8-11] and obtained 

similar SCF as that in Hedgepeth’s studies [6, 7]. With the help of development of 

computational abilities, many numerical models were later developed in order to 

calculate the SCF accurately. The work done by Nedele and Wisnom [12, 13] was 

considered as one of the first numerical models developed to investigate the SCF. They 

first developed a 3-D model to account for a UD composite with fibers uniformly 

distributed in a hexagonal pattern, and found a smaller SCF in the nearest 6 fibers 

around broken fibers compared to that obtained by Hegepeth and Van Dyke [7]. They 

then extended their work to an axisymmetric model with broken fiber placed as the 

central fiber ring, and neighboring fibers were also modeled as a concentric fiber ring 

near central broken fiber. From the calculation they found that SCF was varying across 

the cross-section of nearby fibers and has the highest value at the fiber/matrix interface 

near broken fiber. They then calculated the mean SCF using the axial stress value at the 

center of nearby fiber’s cross section and obtained a smaller SCF compared to that 

obtained by Hegepeth and Van Dyke [7]. After that, numerous research efforts [14-25] 

have been done on SCF and majority of those research have been focusing on the effect 

of matrix yielding and fiber/matrix debonding near fiber break on obtained SCF, and 

based on the results obtained from those research, it is generally accepted that the 

presence of matrix yielding or fiber/matrix debonding would reduce the maximum SCF 

in the nearby fibers.  
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With the better understanding of the stress enhancement mechanism in the 

composites, researchers are able to developed different analytical models to predict the 

final failure of a UD composite. Until now, the majority of models developed to predict 

the failure of a UD composites are based on the so-called “fiber bundles” model, which 

assumes only fibers carry the axial loads and a UD composite fails when certain amount 

of fibers are broken. Based on that argument, the major research focus was on predicting 

the successive breakages of fibers. Realizing that the strength of a single fiber is not 

constant along the fiber length, a certain statistical distribution (usually the Weibull 

distribution) of fiber strength is commonly adopted when developing the composite 

model. The first comprehensive analytical model to predict the tensile failure of a UD 

composite was developed by Rosen [26]. In his model, the axial loads are assumed to 

be carried by fibers only, and the extra load caused by the fiber breakage is shared by 

all the fibers in a cross-section. The strength of the fibers is assumed to follow Weibull 

distribution. Based on the “weakest link” theory that fiber fails when the local stress 

exceeds its lowest strength value, the composite failure occurs when a cross-section 

fails. Zweben [27], Zweben and Rosen [28] later proposed a statistical model based on 

the accumulative weaken of fibers that including the stress concentration. The basic of 

their model lays on the argument that the breakage of a single fiber will cause stress 

concentration in the nearest fibers in a 2-D fiber array, which will increase the 

probability of failure of nearest two fibers, the breakage of nearest fibers will cause a 

higher stress concentration in the surrounding fibers which will further increase the 

probability of failure of those fibers. The final failure of a composite occurs when a first 

multi-fractured group of fibers is formed. A few years later Harlow and Phoenix [29, 

30] also developed their own statistical model to predict the failure of UD composites. 

It should be noted that, until now, the analytical models we discussed so far are all 

considered as the “chain of bundles”, that is each fiber is considered as one chain within 

the bundles, and the weakest fiber fails the first, the composite fails when the fiber 

bundle fails. The “chain of bundles” model constitute majority of the early years’ 

models to predict the final failure of a UD composite until Batdorf [31] proposed his 

model concentrating on the formation and growth of multiple fiber fractures. In his 

work, he also adopted weakest link theory to predict the isolated single fiber breakage 

(singlet), double fractures (doublet) and multiplets with respect to applied load, a UD 

composite is considered failed when a Griffith-type instability occurs which 
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corresponding to a certain number of broken fibers at the same location. This 

approaches significantly simplify the procedures in previous “chain of bundles” models 

and he and his co-worker [32] as well as other research [33] found that the amount of 

broken fibers at the same location that could results in the beginning of instability most 

often varies from 6-14 fibers, this also supported by the fractography investigation 

conducted by Purslow [34], as he found the numbers of broken fibers within a bundle 

in the fracture surface of a UD composite fell within that range of numbers, as shown 

in Fig. 3. Besides those analytical models discussed, numerous numerical models were 

also develop to predict the failure of UD composite with the focus devoted on the fiber 

fractures, for example, in [35-40]. Those models, although can agree relatively well 

with the experimentally obtained failure strain of a UD composite, they are all focused 

only on the fiber breakages, which do not capture the exact failure mechanism of the 

UD composite, as we’ll shown later, which put its real accuracy in doubt.  

 

 

Fig.3 Fracture surface of a UD composite. Figure adopted from [34] 

In a synchrotron X-ray microtomography study conducted by Aroush et al [41], the 

whole process of growth of single fiber fracture (singlet) to multi-fiber fractures 
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(multiplets) and the final failure as a result of instability occurs was clearly 

demonstrated, as shown in Fig. 4. A more clear picture of cluster of broken fibers was 

captured by Garcea et al [42], as shown in Fig.5, a fracture plane containing clusters of 

broken fibers are displayed.  A closer look at these two figure reveals that the fracture 

plane is not strictly planar, i.e., fibers did not break at an exact same plane and was 

connected by the means of fiber/matrix debonding and matrix cracking. Although the 

effect of matrix cracking on the stress enhancement of neighboring fibers are relatively 

small, as discussed by Swolfs et al [43], it plays a very important role, together with 

fiber/matrix debonding, in connecting individual broken fiber and forming the fracture 

plane, as found by the current author [44]. As a result, a more accurate model to predict 

the failure of a UD composite through unstable growth of the fracture plane has to be 

able to account for the effects of matrix cracking and fiber /matrix debonding in order 

to capture the correct failure mechanism. In the following section, we will specially 

focus on fiber/matrix longitudinal debonding mechanism.  

 

Fig. 4 Sequence of damage evolution in a UD composite subjected to longitudinal tension. 

Figure adopted from [41] 
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Fig. 5 Illustration of clusters of fiber breaks. Figures adopted from [42] 

 

1.12 Fiber/matrix interfacial debonding in UD composites.  

It is clear that for a UD composite subjected to longitudinally tensile loading, 

fiber/matrix debonding is a very important sub-damage mode, although it will not 

directly lead to the final failure of the UD composite. 

It has been shown that interfacial debonding would deflect original propagating 

brittle crack and thus increase the overall fracture toughness of composites [45, 46]. 

Although the concept of fiber/matrix interface it is widely accepted nowadays [47-49], 

the exact properties of interface is still unknown. In order to characterize the interface 

properties, single fiber fragmentation test has been widely adopted due to its 

experimental simplicity [50-55]. At the same time, it could also be used to calculate 

statistical parameters for fiber strength [56-59]. The idea of fiber fragmentation was 

first described by Kelly and Tyson [60] where they studied the interface strength of 

fiber-reinforced metal by assuming a linear stress build up from fiber break end. Based 

on shear-lag typed analysis that tensile stress is transferred back to fiber through shear 

stress transforms along fiber/matrix interface from fiber break, they proposed that 

critical length of fiber lc is related to the yield strength of fiber/matrix interface by 

Eqn.1, where �௙ the fiber breaking strength, r is is the fiber radius and �௬ is the yielding 

strength of the interface, which could also be characterized as fiber/matrix interfacial 
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strength in literature published later on although the expression would be different 

based on the methods, for example, in [50, 51, 61]. In the single fiber fragmentation 

test, a continuous single fiber is usually embedded in a dog bone shape matrix subjected 

to tensile loading along fiber direction. Upon loading, fiber breaks at its weakest 

position, with increase of applied load, more fiber breaks occur until it reach saturation 

state where the distance between two fiber break is not long enough for the tensile stress 

to recover to induce further fiber break. During single fiber fragmentation, it is found 

that based on the fiber/matrix interfacial properties, fiber radius as well as other factors, 

both fiber/matrix debonding, matrix cracking and matrix shear yielding would occur 

after initial fiber break [62-64]. Optical method is commonly used to observe stress 

state near fiber break. Fig.6 shows the typical birefringence pattern at fiber break for 

carbon/epoxy composites, due to the high shear stress concentration near fiber break, 

fiber/matrix interface failure could be found (sheath region), as reported in [51, 53], and 

symmetric birefringence is usually found on both side of fiber beak. Based on the 

experimental finding from single fiber fragmentation test, several analytical work and 

numerical work have been carried out to study the stress transfer between fiber/matrix 

interface as well as fiber/matrix debond growth from fiber break [55, 62, 65-68] 

                                                                    �௖ = �೑ ��೤                                                             (1)                                                                           

 

 

 

Fig.6 Birefringence pattern at fiber break (Figure adopted from [51] ) 

As useful as it is, however, in single fiber composite model, it does not account for 

the effect of surrounding constituents, which would affect the obtained results as stress 

field near certain fiber is closely related to its surrounding medium. Previous research 

[12-21, 33, 69, 70] adopted multiple fibers in the specimen in order to investigate the 
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influence of neighboring fiber on Stress Intensity Factor (SCF) and subsequent fiber 

breakage process. However, the effects of neighboring fibers on longitudinal debond 

growth is less understood. As an improvement of single fiber composite model, several 

numerical and analytical investigations [71-75] on debond growth from single fiber 

break have been conduct recently. The whole model was constructed based on three-

phase concentric cylinders, with initial broken fiber and surrounding matrix to be the 

first two rings and neighboring substituents around them to be smeared into an effective 

composite phase with homogenized composite properties, as shown in Fig. 7. ERR is 

calculated as driving force to debond growth. It’s found that two distinct region existing 

during debond growth, first one is when debond length is relatively short and there will 

be interaction between debond tip and fiber break, which would affect obtained ERR; 

The other region is when debond length is long enough such that there is no interaction 

between debond tip and fiber break, debond would grow steadily with ERR being 

constant with increasing debond length. In this steady-state region, an analytical model 

is able to obtain and good agreements were reached between numerical results and 

analytical model.  

Fig.7  Illustration of three-phases concentric cylinder models (Figure adopted from [4] 

Despite the accuracy of previous models described above, they have analyzed an 

idealized geometry without taking into account the possible non-uniformity of the local 

fiber arrangement which is present in most of the real cases. It can be expected that the 

local microstructure would also affect the stress state around the broken fiber and hence 
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it can affect the debond growth rate. As a result, in the present thesis, we will 

specifically investigate the effects of local fiber arrangement on debond growth. Before 

we proceed to the numerical models, we will give a comprehensive overview of 

transverse failures of 90° plies.  

1.2 Transverse cracking of UD plies.  

1.2.1 Experimental findings 

Previously we have focused our discussion on the tensile failure of 0° plies, in 

majority of the composite structures, when subjected to longitudinally tensile loading, 

0° plies are the major load bearing plies, and failure of 0° plies often leads to the final 

failure of the composite. In real practice, it is also of great importance for researchers 

to understand the failure initiation of composites. For composites containing off-axial 

plies, especially 90° plies, when subjected to longitudinal tensile loading, the first 

failure event has been commonly found as transverse matrix crack propagating through 

the thickness in 90° plies, as shown in Fig. 8.  A closer look at these transverse matrix 

crack (Fig. 8(b)) reveal that the observed macro-scaled matrix crack actually results 

from the coalesce of individual fiber/matrix debond. After the first transverse matrix 

crack is formed, the number of transverse crack increases with increasing applied load, 

as shown in Fig. 9. 

Similar to fiber/matrix longitudinal debonding discussed above, the multiplication 

of transverse cracks does not directly lead to the final failure of composites. However, 

it has been proven [76-80] that multiple transverse cracking will lead to degradation of 

composite stiffness and strength. Due to its importance in determining the integrity of 

composites, the mechanism of multiple transverse cracking has been studied by 

numerous researchers. In the following paragraph let’s first focus on some experimental 

findings to have a better idea of the whole process.  
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Fig.8 Illustrations of (a). transverse matrix crack in 90° plies, (b) Zoom in on a matrix crack 

revealing debonding at fiber/matrix interface. (Figure adopted from [81]) 

 

Fig. 9 Development of transverse cracking with increasing applied load in glass-fiber cross 

ply laminate. (Figure adopted from [78] 

 

Early work done by Garrett and Bailey [82] found that for different lay-ups of cross-

ply laminates, transverse crack initiates at around 0.4% of the strain, however, the 

spacing between transverse cracks depends on the thickness of transverse plies. As 

shown in Fig. 10, the transverse crack spacing decreases with increasing thickness of 
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transverse plies. The so-call “constraint effects” by the longitudinal plies was later 

investigated by Parvizi et al [83, 84] where they found the transverse cracking process 

changed significantly in cross-ply laminates with different transverse and longitudinal 

plies ratio. For cross-ply laminates with high percentage of transverse plies, fully 

developed multiple transverse cracking is the main mechanism, with the decrease of 

transverse ply thickness, edge cracks are most commonly found and slowly propagate 

across the specimen width, and for a much smaller transverse ply thickness, the 

transverse cracking process was completely compressed. This “constraint effect” is 

demonstrated in Fig.11.  As it could be seen from Fig.11, the number of transverse crack 

decreases as the thickness of the transverse plies reduced.  The constraint effect of 

neighboring plies could be explained in terms of stress recovery within transverse plies. 

Once a fully propagated transverse crack is formed within transverse plies, the normal 

stress of the transverse plies at cracking plane is zero, and that normal stress has to be 

transferred back to transverse plies and fully recovered at certain distance from the 

cracking plane through shear stress within the interface between transverse plies and 

neighboring plies. Once the normal stress is fully recovered, another transverse crack 

is considered to form, and this same process results in the multiple transverse cracking 

process. Depending on the material properties and the lay-up of composite laminates, 

the ability of normal stress recovery through shearing varied, which result in the 

different spacing between transverse cracks. It is expected that as the transverse crack 

spacing reduced, the ability of normal stress recovery through shearing decreases and 

there will be a certain transverse cracking spacing below which normal stress will never 

be fully recovered, and thus no more transverse crack is formed after that. This is so-

called “Characteristics Damage State” (CDS) which is first discovered by Reisfnider 

and his co-workers [85-87].  The CDS was first found [85] to be a state where the 

number of transverse cracks saturated, i.e., transverse crack spacing remain constant 

with increasing cycles in fatigue loading or increasing applied load in quasi-static 

loading. Later the same author and his co-worker found [87] that the residual strength, 

stiffness of the composites also influenced significantly by CDS.  
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Fig.10 Transverse cracking in specimens with different transverse-ply thickness (a). 0.75mm, 

(b). 1.5mm, (c). 2.6mm. (Figure adopted from [82])  

 

 

Fig.11 Illustration of the “constraint effect” in cross-ply laminates. The transverse ply 

thickness is reduced from a to d as the thickness of the transverse plies reduced. Figure 

adopted from [84] 

1.2.2 Analytical and numerical findings 

The experimental findings on transverse cracking in UD plies have been briefly 

summarized in the previous section. Multiple transverse cracking is found to be the 

main mechanism for UD plies subjected to transverse tension. The presence of multiple 
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transverse cracks also reduce composite stiffness, as a result, researchers are interested 

in developing analytical and numerical models in order to predict the corresponding 

multiple transverse cracking and resulting stiffness degradation of composites. Some of 

the milestones in this area include the “ACK” method developed by Aveston et al [88] 

which was able to predict whether it is a single facture or multiple transverse cracking 

in composite based on a simple strength argument where stress analysis was carried out 

using shear-lag type analysis. In that study, normal stress originally carried by matrix 

was assumed to be transferred back to matrix at certain distance away from matrix crack 

plane through friction between matrix and fiber interface. The appearance of the next 

matrix crack was predicted based on an energy balance method. The crack spacing was 

able to be predicted then. However, one of the major limitations is that this approach 

assumes constant shear stress which due to friction in normal stress recovery process. 

This approach was later extended by some of the same authors [89] to account for fully 

bonded and partially bonded composites. In order to predict the stiffness degradation 

of composite due to multiple transverse cracking, Hashin [90] adopted variational 

approach to investigate the stress distribution and stiffness degradation in a cracked 

cross-ply laminate. In his work, the local tensile stress is assumed to be constant through 

thickness and the stress field in the cracked laminate was represented by the original 

uncracked stress field plus the stress perturbation caused by transverse cracks, and the 

solution of the stress field is later solved by minimized the complementary energy of 

the composite. Similar variational approach was later adopted by other researchers 

[e.g[80, 91] ] to investigate transverse cracking in the cross-ply laminates to account 

for the strain energy release rate of the matrix crack and variation of local tensile stress 

across thickness. Talreja [79] adopted a continuum damage theory to study the multiple 

cracking and stiffness degradation problem by using vector field to characterize the 

damage (matrix cracks) for various lay-up of laminated composites. The material 

constants in this work have to be determined experimentally. Recently Huang et al [92] 

was able to adopted a statistically analysis to investigate the multiple cracking process 

which also be able to account for the effect of manufacturing defects.  

The analytical models we discussed all investigated the crack initiation and multiple 

cracking based on the assumption that plies are homogenous solid. With the 

development of computational mechanics, more numerical models were developed that 
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could study the transverse cracking mechanism in a constituent level. For example, Asp 

et al [93-96] found the stress field within epoxy matrix near fiber/matrix interface to be 

almost equally tri-axial, which is a preferred condition for matrix cavitation process. 

They argued that as cavitation grows and reaches its criticality based on dilatational 

energy density, it bursts open and propagates towards fiber/matrix interface leading to 

the initiation of fiber/matrix debonding, which is also the initiation of transverse 

cracking as macro-size transverse crack would eventually occur by the coalesce of 

debonds. They also conducted the “poker chip” typed experiment [95] of commonly 

used epoxy materials and found out the critical dilatational energy densities are not very 

sensitive to difference of epoxy materials. Fiedler et al [97-99] conducted several FE 

analysis of composite transverse failure and found that hydrostatic tensile stress is 

responsible for relatively low transverse failure strain and thermal stress and fiber 

volume fraction is found to influence of transverse failure process.  

1.2.3 Fiber/matrix interface crack growth under transverse loading 

We have discussed multiple transverse cracking in UD plies, which is the main 

failure mechanism for composites subjected to transverse tension. However, in many 

applications of composite materials, design is based on the threshold for first crack 

formation, which is usually found to be transverse cracking in 90° plies. As shown in 

Fig.8, the macro-sized transverse crack is formed by the coalesce of debonds. As a 

result, understanding individual debond growth under transverse loading is the key to 

investigate the first macro-sized transverse crack growth.  

Similar to the case for the study on longitudinal fiber/matrix debonding, single fiber 

composite models were widely adopted at the beginning due to its simplicity. Fig 12 

shows the experimental set-up of a single fiber composite subjected to transverse tensile 

loading. In this composite, single fiber is placed at the center of matrix materials, and 

the whole specimen is subjected to transverse tension. During the test, fiber/matrix 

interface first debonds due to existing flaws, upon further loading, for relatively weak 

fiber/matrix interfacial bonding, it’s found by Zhang et al [100] that debond first grows 

along arc direction, and then propagates along fiber direction, however, for composites 

with good fiber/matrix interfacial bonding, it’s found that once initiated, debond growth 

along arc and fiber direction almost simultaneously and the debond angle decreases 
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with increasing distance from initial defect site.  The whole process of interfacial 

transversely debonding is sketched in Fig.13.  

 

Fig.12 Illustration of single fiber composite test. The specimen is subjected to transverse tensile 

loading. (Figure adopted from [100]) 

 

 

Fig.13 Interfacial debonding processes for a single fiber composite. Figure adopted from [100] 

When it comes to study fiber/matrix interface crack (debond) growth, energy release 

rate (ERR) is usually investigated as the driving force. The general trend for ERR 

(Fig.15) of a transverse debond in a single fiber composite could be found in a 
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numerical study conducted by Paris et al [101] for the model shown in Fig.14. As shown 

in Fig.15, for each material system, debond growth is mixed-mode. Both mode I ERR 

component (GI) and mode II ERR component (GII) increases first with increasing 

debond angle and then decreases. For relatively small debond angle, debond growth is 

mode I dominated and then switches to mode II dominated growth for larger debond 

anlge. With the further increasing of debond angle, the crack faces come into contact 

and debond growth is pure mode II. One of the first studies to investigate the ERR of 

debond under transverse tension was conducted by Toya [102] analytically where he 

considered single fiber was embedded in the infinite matrix material and derived the 

expression for the ERR of different debond angle. The similar fiber/matrix interfacial 

problem was later investigated by Paris et al [103] numerically using Boundary 

Elements Method (BEM). This is also one of the first numerical studies on fiber/matrix 

interface crack growth under transverse loading. This study, together with investigation 

performed by Varna et al [104] clearly demonstrate the a physical relevant crack face 

contact zone developed for relatively large debond angle and that contact zone increases 

with keep increasing of debond size. Paris and his co-workers later published a series 

of paper to clarify the unknown aspect of transverse debond growth for a single fiber 

composite. For example,  when dealing with potential debond crack kinking out of 

interface toward matrix in a single fiber composite, Paris et al [101] found that the 

debond is most likely to kink out of interface between 60º ~ 70º of semi-debond angle, 

that’s when the ERR of kinked crack is the largest. Regarding to the effect of thermal 

stress, Correa et al [105] found that thermal stress has a protective effect on debond 

growth due to the compression nature of thermal stress in single fiber composite. A 

common question when modeling the debond in a single fiber composite is whether it 

should be a symmetric debond from both side of the fiber or there is only one debond? 

García  et al [106] conduct the relevant study and conclude that based on the amount of 

energy required, single debond requires less energy and thus would be the most likely 

scenario. The discussions we have so far mainly focus on the debond growth in a single 

fiber composite under uniaxial tension along transverse direction. Some researchers 

also developed failure criterion to predict the onset of fiber/matrix interface debond 

under biaxial tension, for example work done by Carraro et al [107] and Mantič et al 

[108].  
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Fig.14 Illustration of the numerical model for single fiber composite. Figure adopted from [101] 

 

 

Fig.15 Illustration of the trend for ERR of the debond in a single fiber composite. Figure 

adopted from [101] 

Although single fiber composites are very useful in helping researchers understand 

some basic mechanisms of fiber/matrix interface debong growth under transverse 

tension. There are some major limitations regarding to this type of model. One of the 
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most important limitations one might expect is whether single fiber composite could simulate 

the actual stress field in composite. Asp et al [93-95] studied the local stress field around 

fibers in the cross-section of a unidirectional (UD) composite loaded in transverse 

tension and based on energy considerations proposed that the debonding results from 

unstable growth of a cavity in the matrix near the fiber surface. These studies clarified 

the role of the triaxiality of the local stress field in initiation of debonding. Therefore, a 

proper understanding of debond initiation and growth is expected to come from 

multiple-fiber composite studies. Recently, a few studies have gone in this direction 

[109-111]. In [109, 111] the approach taken was to use a cohesive zone model, which 

has the interface strength and fracture toughness as two material properties. As noted 

above, Asp et al [93, 95] showed that failure at the fiber-matrix interface depends on 

the triaxial stress state, not on the tensile stress alone. This casts doubt on the use of a 

cohesive zone model for studying the debonding process. In [24], the concurrent and 

growth debonds have been investigated by linear elastic-brittle fracture based on a 

numerical model containing ten fibers embedded in a matrix cell. However, no detailed 

information about the influence of local fiber bundles on debond growth could be 

obtained from that paper. While these studies have been useful in generating 

understanding of the local interactions in the debonding process, two aspects need 

further clarity. First, the influence of inter-fiber distance on debond growth in a fiber 

cluster needs to be understood, and second, the debonding process should be analyzed 

in terms of the energy release rate (ERR) of the arc-shaped interface crack. These two 

aspects have been studied by Sandino et al [112], using a two-fiber model (Fig.16). As 

shown in Fig.16, an undamaged fiber at different locations near a central fiber with 

debond and it’s found that the neighboring fiber has a protective effect on debond 

growth at all positions except when the fibers are aligned with the loading direction. As 

useful as their results are, however the two-fiber composite model is still not 

representative of a real composite where multiple neighboring fibers are distributed 

around the fiber with debond.  
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Fig.16 Illustration of two fibers numerical model. Figure adopted from [112] 

 

2. Objectives of current thesis  

Based on the previous discussions, it’s clear that fiber/matrix interface debonding 

plays a key role in leading the initiation of the first damage event (i.e. transverse 

cracking) or final failure in a composite. Although single fiber composite model has 

been widely adopted by researchers conducting investigation on the fiber/matrix 

interface debonding mechanism, it’s now commonly accepted that single fiber 

composite model has major limitations and thus could not be a good representative of 

real composite. Despite the efforts by various research groups, current state of 

understanding on the fiber/matrix debond process is still limited, especially when the 

local micro-structures are present. There are uncertainties regarding to the effects of 

local micro-structures on fiber/matrix interface debonding process. As a result, this 

thesis is aiming to clarify some of those mysteries by specifically investigating the 

effects of presence of neighboring fibers on debond growth under longitudinal tension 

or transverse tension. The objectives of current thesis could thus be summarized into 

following two parts: 

1. As the first part of the research, we will try to clarify the effects of neighboring 

fibers and their closeness on fiber/matrix debond growth under longitudinal 

tension. In this part of investigation, the debond growth from single fiber break 

will be studied using both axisymmetric and 3-D finite element (FE) model. 
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ERR is considered as the driving force for debond growth. Both energy method 

and fracture mechanics method will be adopted in order to calculate ERR; the 

distance between neighboring fibers and debonded fiber is varied in order to 

investigate the effect of fiber closeness on debond growth. Finally, we will also 

compare the results obtained from both axisymmetric and 3-D models to make 

an assessment of the ability of different FE model on this issue.   

2. As the second part of the research. We will investigate the influence of 

neighboring fibers on fiber/matrix debond growth under transverse tension. In 

this part of study, debond is assumed to grow along circumferential direction of 

the fiber. Two scenarios will be studied, in the first case, only one debond is 

assumed to initiated, and the distance between neighboring fibers and debonded 

fiber would vary in order to investigate the effect of fiber closeness on 

transverse debond growth; In second case, besides the original debonded fiber, 

we would assume another fiber/matrix debonding occur at a neighboring fiber 

and try to clarify the effect of this debond in the neighboring fiber on the growth 

of original debond.  

The current thesis research results in 5 scientific papers and we’ll describe some 

highlights of each paper in the following section.  

3. Summary of appended papers 

3.1. Paper A 

Paper A is the beginning of current thesis research. In this paper, an axisymmetric 

FE model was developed in order to investigate the ERR of debond emanating from a 

fiber break along fiber axis. For this case, it was found that there are two distinct 

regions, one is when debond length are relatively long, and thus there is no interaction 

between debond tip and fiber break, debond growth in self-similar way; another 

situation is when debond length is short, and there is strong interaction between debond 

tip and fiber break.  

For self-similar debond, the axisymmetric model is shown in Fig.17. The model 

consists of a fiber as a central phase (denoted as F), surrounded by a matrix phase (M), 

neighboring fiber phase (F), another matrix phase (M) and effective composite phase 

(C).  
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For self-similar debond growth the ERR can be calculated from the condition that at 

fixed applied load F  the bonded region with length ddl  (Fig.17a) becomes a debonded 

region with the same length ddl  (Fig.17b). Hence, the ERR for self-similar debond 

growth can be found using the potential energy change U  as:  

 

df
II dlr

UG
2


                                                                                                                (2) 

 
For short debond, the axisymmetric model generated is displayed in Fig.18. In 

principle it is very similar to the 5 cylinder model used for self-similar debond ERR 

calculation (see Fig.17) with the difference that the fiber break is included in the model, 

the fiber is partly debonded (with debond length denoted as dl  in Fig.18) and the length 

of the model fL  is significantly larger. The ERR is calculated using Virtual Crack 

Closure Technique (VCCT) and J integral methods. 

 

 

Fig.17 Schematic representation of a 5-phase FEM model: F – fiber, M – matrix, C – 
effective composite. a) bonded region; b) debonded region. 
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Fig.18 Schematic representation of a 5-phase concentric cylinder assembly FEM model for 
short debond energy release rate calculations: F –fiber, M – matrix, C – effective composite. 

 
The major results of this paper are displayed in Figs.19 and 20. As shown in Fig. 19, 

for self-similar debond, for two fiber volume faction (Vf) studied, ERR is almost 

constant for differnet inter-fiber distance (IDn), which indicated that presence of fibers 

have little effect on ERR for self-similar debond. For short debond, as shown in Fig. 

20, for each inter-fiber distance case, ERR decreases with increasing debond length and 

reaches a constant value when it approaches self-similar debond growth. The effect of 

neighboring fibers are more significant for shorter debond length.  

 
Fig. 19 Energy release rate as a function of inter-fiber distance for self-similar debond 
growth. 
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Fig. 20 Energy release rate as a function of normalized debond length. 

 
 
3.2 Paper B 
 

Paper B summarizes a countinous study following the work done in Paper A. In 

paper A, we investigated the longitudinal debond growth using an axisymmetric model. 

Although it’s very convinient to use the axisymmtric model, we have to assume ERR 

is constant along debond front, which should not be the case as expected. As a result, 

In Paper B and Paper C, 3-D FE models (Fig.21) are created to investigate the possible 

angular variance of ERR and the difference between results obtained from 3-D model 

and axisymmetric model.  

 

 
 
Fig. 21  a) UD composite with a broken and partially debonded fiber; b) Hexagonal 

distribution model; c) unit cell  =30° 
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In Paper B, a 3-D FE model was first created to inverstigate the ERR of self-smiliar 

debond.  Two different approaches are adopted to calculate the ERR. The first one is 

the enrgy method using the FE model shown in Fig. 22. It’s based on the same 

procedures as decribed in Paper A, we calculated the ERR based on the difference of 

potential energy between two unit cells.  The second approach was to using the short 

debond model (Fig.21), and calculate the ERR usnig VCCT and J integral for relatively 

long debond length when debond is in a self-similar growth. This approaches is based 

on the findings in Fig.20, as we found ERR reaches a plateau for long debond length.  

 
 
  
 

 
 
 
Fig.22. Representative volume element of bonded region (a) with length ddl , which due to 

debond growth changes to debonded region (b) with length ddl  

We now discuss some major results obtained from this study. First let’s look at the 

ERR result obtained using J integral based on short debond model. The angular 

variation of ERR along debond front is very clear for each inter-fiber distance case 

(represented by local volume fraction Vf
loc, as displayed in Fig.23. And ERR has the 

maximum at θ = 0º where distance between two fibers are the closest.  
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Fig.23 J-integral values for CF/EP 6.0fV  in purely mechanical loading %1z  obtained 

using the debond front model 

 

Table 1. Energy release rate values for CF/EP 6.0fV in purely mechanical loading 

%1z  

 

loc
fV  

0.66 0.72 0.78 0.60 (3-cyl) 

enG [J/m2] 50.22728 50.22197 50.21351 50.45131 

J [J/m2] 49.38511 49.35217 49.27961 50.17184 

IG [J/m2] -0.00238 -0.00241 -0.00210 0.01534 

IIG [J/m2] 50.16155 50.21543 50.28309 49.08337 

IIIG [J/m2] 0.00460 0.00585 0.00500 0.000000 
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Table 2. Energy release rate values for CF/EP 4.0fV in purely mechanical loading 

%1z  

 

loc
fV  

0.66 0.72 0.78 

enG [J/m2] 50.22189 50.21631 50.20757 

J [J/m2] 49.54135 49.54620 49.47209 

IG [J/m2] -0.00245 -0.00246 -0.00219 

IIG [J/m2] 50.31723 50.39105 50.47968 

IIIG [J/m2] 0.004496 0.00595 0.00453 

    

 
Tables 1 and 2 show the comparison of averaged obtained ERR results for each 

debond length for each inter-fiber distance case with ERR calculated using energy 

method. Based on the results shown in Tables 1 and 2, ERR value is in good agreement 

for both models. Which give us an indication that for self-similar debond growth, 

although ERR is varied along debond front, the averaged ERR is almost constant and 

the presence of fibers has little effect on the averaged ERR. 

The results discussed so far are for pure mechanical loading, the results for thermal 

loading could be found in Paper B attached in this thesis      

 
3.3 Paper C  
 

In Paper B, the ERR of self-similar debond emanating from a fiber break was 

calculated using 3-D models with the presence of neighboring fibers. In Paper C, we 

continued to look at the ERR of short debond using 3-D models displayed in Fig.21.  

Based on the discussion in Paper B, it’s clearly that the ERR is varied along debond 

front.  For short debond, under pure mechanical loading, the same feature is found, as 
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shown in Fig.24. As a result, it is suggested that debond front would not remain circular 

during growth in reality.  

  

 

 

(a) 

 

(b) 
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(c) 

Fig.24 a). Angular dependence of J-integral values for CF/EP in mechanical loading. %1z
, loc

fV =0.78, b). Angular dependence of J-integral values for CF/EP in mechanical loading 

%1z , loc
fV =0.72, c). Angular dependence of J-integral values for CF/EP in mechanical 

loading %1z , loc
fV =0.68. 

 
Another interesting finding is that when comparing the results between averaged 

ERR obtained through 3-D model and ERR calculated by axisymmetric model 

discussed in Paper A. As shown in Fig.25, the values obtained from axisymmetric 

model is slightly higher. This is due the fact the in axisymmetric model, the influence 

of neighboring fibers are highest and the same along debond front, as a result, the ERR 

calcuated by axisymmetric model could be viewed as the upper bond for this 

longitudinal debond growth case.  
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Fig. 25 Average ERR against normalized debond length obtained by the 3-D hexagonal model 

and axisymmetric model 

 
3.4 Paper D 
 

Previous 3 papers focus on investigating the growth of longitudinal debond with the 

presence of neighboring fibers. In Paper D, we switches out focus on the fiber/matrix 

interface debond growth under transverse tensile loading. In this case, the debond will 

grow along circumferential diretion along fiber/matrix interface. The FE model adopted 

in Paper D is shown in Fig.26, it follows the same concept as previous models 

developed for studying longitudinal debond growth: the debonded fiber is placed at the 

center of the model, surround by the nearest 6 fibers in a hexagonal array UD composite.  

The debond is assumed to initiated from the one side of fiber, as indicated in Fig.26. 

Due to symmetry, only one half of the composite is modelled.  
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Fig.26 Model description 

 
 

The general trend of ERR for transverse debond could be summarized in Figs. 27 – 

29, which present the result for CF/Epoxy composite with volume fraction Vf=0.6. 

Fig.27 shows the ERR of debond under pure mechanical loading. It’s shown that 

transverse debond growth is mixed-mode, for both mode I and mode II ERR 

components, they increases first with increasing debond angle and then decreases with 

further increasing of debond angle. For small debond angle, debond growth is mode I 

dominated and then switches to mode II dominated. At semi-debond angle at around 

70º, crack surface come into contact significantly and debond grows in pure mode II. 

This angle where debond growth changes to pure mode II is called the transition angle, 

and that transition angle depends on the material system. For very small debond angle, 

the ERR increases with decreasing inter-fiber distance (or increasing Vf
loc).  

For when theraml stress due to cooldown process is considered, the ERR is found to 

derease compared to the results obtained in pure mechanical loading (Fig.28). This is 

due to the compressive stress generated during thermal cooldown for UD composite. 

However, for a laminated composite, because of the constraint from neighboring plies, 

transverse plies developed tensile stress globally, which results in higher ERR for 

debond in a laminated composite , as shown in Fig.29. 
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Fig.27 Normalized ERR with respect to debond angle for CF/EP UD composites under 
mechanical loading. εx = 0.5%. Vf = 0.6  

 
 

 
Fig.28 Normalized ERR with respect to debond angle for CF/EP UD composites under 
thermo-mechanical loading. Vf = 0.6 , ΔT=-100°C, εx=0.5%  
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Fig. 29  Normalized ERR with respect to debond angle for CF/EP UD plies, equivalent to 90-
layers of CF/EP cross-ply laminate under thermo-mechanical loading. Vf = 0.6, ΔT=-100°C, 
εx=0.86% 
 
 
3.5 Paper E 
 

In paper D we investigate the ERR of single transverse debond with the presence of 

neighboring fibers. Once the case for single transverse debond has been understood, we 

continue our inverstigation on the next relevant topic: what if there are two fiber/matrix 

interface debonds exist?.  

In order to understand this problem, an FE model was created based on the previous 

mode discussed in Paper D. The difference is that in this model, another debond was 

assumed to be presence in neighboring fiber F1 or F2, as shown in Fig.30 (we only 

show debond in F1). Three cases of the composite with microdamage have been 

analyzed: 

Case 1μ The central fiber has a debond angle θ. Remaining fibers are perfectly 
bonded. 

Case 2μ The central fiber has a debond angle θ. Fiber F1 has Semi-angle of 60° 
debond on the left side. 

Case 3μ The central fiber has a debond angle θ. Fiber F2 has 60° debond on the right 
side. 

The main results for Case 1 and Case 2 are shown in Fig. 31. Based on the results 

displayed in Fig.31, it is clear that the presence of neighboring debonds increase the 
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ERR of central debond significantly, and that effect is more prominent when inter-

fiber distance (IDn) is smaller.  

 

 

 

 
 
 
Fig.30 Schematics of the model used for debond growth analysis around the central fiber 
showing explicitly the central fiber and the 6 closest fibers. One of them may have a Semi-
angle of 60° debond on one side. The fiber/matrix unit is embedded in a homogenized 
composite. 
 
 
 

 
 

(a) 
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(b) 

 
Fig.31 Energy release rate versus debond length and Case 1 and Case 2 for different values of 
interfiber distance: a) Mode I: b) Mode II. 
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Abstract 
In this paper fiber/matrix interface debond growth in unidirectional composites 
subjected to mechanical tensile loading is analyzed using fracture mechanics principles 
of energy release rate (ERR). The objective of the present study is to analyze the effect 
of neighboring fibers on the ERR. 5-cylinder axisymmetric FEM models with adjustable 
inter-fiber distance were used for ERR calculations. The results show that the ERR 
slightly increases with the inter-fiber distance in the case of long debonds. For short 
debonds, however, because the stress-state is more complex, it was found that the 
debond propagates in a mixed Mode I and Mode II and contribution of each mode to 
the ERR depends on the actual debond length. It was found that for very small debond 
lengths ERR significantly increases with the inter-fiber distance. 

 
 

1. Introduction 
 
When unidirectional (UD) composites are loaded in fiber direction in cyclic tension-

tension and the tensile load is sufficiently high, multiple fiber breaks occur during the 

first cycle due to statistical distribution of fiber strength. Once the fiber breaks form, 

yielding of matrix or fiber/matrix debonding can be expected near the fiber breaks as a 

result of large shear stresses in the interface region. In the present paper we are focusing 

on fiber/matrix debonding (interface cracks) initiated at the fiber break and growing 

along the fiber, which may be the case for relatively weak fiber/matrix interfaces. 

Interface debond growth leads to progressive degradation of composite properties 

before the final catastrophic failure of the composite. Hence, quantification of debond 

crack growth rate in cyclic loading is important. The debond growth in UD polymer 

composites has been previously analyzed in [1-3] using fracture mechanics principles 

of energy release rate (ERR). In polymeric composites, due to larger Poisson’s ratio 

and larger coefficient of thermal expansion of the matrix the debond growth was shown 
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to propagate purely in Mode II [1-4] when subjected to tensile loading and negative 

temperature changes. It was shown in [1-4] with analytical and numerical models that 

debond growth rate is higher for short debonds due to interaction with fiber break which 

results in magnification of the ERR. As the debond crack propagates and the debond 

crack tip advances far away from the fiber break the debond growth becomes self-

similar [2,4]. For such case (long debonds) exact analytical models for ERR calculation 

were developed in [1,3]. In [1-3] a cylindrical unit cell was used consisting of a broken 

and partially debonded fiber which is surrounded by a matrix cylinder. The effect of the 

surrounding composite in [1-3] was represented by an effective composite cylinder 

surrounding the fiber/matrix concentric cylinder unit cell, see Fig.1.  

 

 

 

Figure 1. 3-phase concentric cylinder assembly model of a broken and partially debonded 
fiber in UD composite: F – fiber, M – matrix, C – effective composite. 

 
Calculations in [3] showed that the presence of the effective composite phase in the 

model is important: ignoring it leads to significantly over-estimated ERR. Despite the 

accuracy of the analytical models, the previous studies [1-3] have analyzed an idealized 

geometry without taking into account the possible non-uniformity of the local fiber 

arrangement which is present in most of the real cases. Certainly, the local 

microstructure can affect the stress state around the broken fiber and hence it can affect 

the debond growth rate. The objective of the present paper is to study the effect of the 

neighboring fibers on debond growth in UD composites. A simple 5-phase concentric 

cylinder model with variable inter-fiber distance keeping the average volume fraction 

constant was used to calculate the ERR. FEM software ANSYS [5] was used to perform 

calculations. Only mechanical tensile loading was studied in the present paper. 
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2. Self-similar debond growth 
 
2.1. Analytical solution for 3-phase composite 

 
Prior to analyzing the influence of the neighboring fibers on the debond growth, 

previously obtained results and trends for a 3-phase composite will be briefly reviewed. 

As it will be shown they provide important information for establishing the geometry 

for a 5-phase concentric cylinder model used in the present study. 

 

Energy release rate for self-similar debond growth in UD composites with uniform fiber 

distribution was previously calculated in [1-3] using a 3-phase concentric cylinder 

model. It was shown in [3] that the ERR for self-similar debond growth can be 

expressed as a square of a linear combination of applied mechanical strain mech  and 

temperature change T as: 
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II                                                                                (1) 

 
In (1) fr is the fiber radius, fE1  is the fiber longitudinal modulus, c

1  and f
1 are 

thermal expansion coefficients of composite and fiber respectively, mk and 
thk  are 

parameters related to mechanical and thermal response respectively. In [3] it was found 

that their dependence on elastic properties of constituents and volume fraction fV  is 

weak and the values are very close to 1. On the other hand, parametric analysis 

performed in [3] showed significant dependency of the ERR on the size of the effective 

composite cylinder revealing that a smaller radius of the composite overestimates the 

ERR. It was found in [3] that the outer radius equal to 10 times the fiber/matrix cylinder 

assembly radius is sufficient to represent an infinite composite for ERR calculations 

with FEM. Based on this result the same proportion between the fiber/matrix assembly 

and the effective composite phase was used in 5 cylinder FEM model in the present 

study.  

 
2.2. 5-phase composite FEM model for self-similar debonds 
 
To study the effect of the neighboring fibers on the ERR related to debond growth a 5-

phase composite model was used in the present study, see Fig.2.  The model is 2-D 
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axisymmetric and it is similar to a 4 phase model used in [6] simplifying a hexagonal 

fiber alignment by a concentric cylinder assembly. The 5-phase axisymmetric model 

shown in Fig.2 consists of a fiber as a central phase (denoted as F), surrounded by a 

matrix phase (M), neighboring fiber phase (F), another matrix phase (M) and effective 

composite phase (C). For the models shown in Fig.2, z  is the symmetry axis showing 

the axial direction and r  is the radial direction. In Fig.2 fr denotes the radius of the 

central fiber, ID  is the arbitrary inter-fiber distance between the central and 

neighboring fiber cylinder, R  is the radius of fiber/matrix unit, ER  is the external 

radius of the concentric cylinder model including the effective composite phase, ddl  is 

the length of the model. In all calculations fiber radius was fixed to fr =4m, the model 

length was ddl =2m, ID  was arbitrarily chosen, the radius of the neighboring fiber 

phase was determined from the condition that it represents the area of 6 fibers 

surrounding the central fiber in a hexagonal fiber arrangement, radius R  of the 

fiber/matrix unit was determined from the given volume fraction fV  and the previously 

defined geometry entities. The outer radius of the concentric cylinder model was 

RRE 10  based on the analysis performed in [3]. 

 
As it was shown in [3], for self-similar debond growth the ERR can be calculated from 

the condition that at fixed applied load F  the bonded region with length ddl  (Fig.2a) 

becomes a debonded region with the same length ddl  (Fig.2b). Hence, the ERR for self-

similar debond growth can be found using the potential energy change U  as:  
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                                                                                                                (2) 

 
The potential energy difference U  due to debond growth by a unit length ddl  is equal 

to the difference between the additional work ( W ) performed due to the crack length 

increase  and the change in the strain energy ( sU ), i.e.,: 

 
sUWU                                                                                                            (3) 
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Figure 2. Schematic representation of a 5-phase FEM model: F – fiber, M – matrix, C – 
effective composite. a) bonded region; b) debonded region. 

 
Additional work due to debond growth by ddl  is equal to: 

 
uFW                                                                                                                      (4) 

 
where u is the difference between displacements du0  and bu0  in the debonded and 

bonded regions respectively (see Fig.2a and 2b). To find the displacement difference 

u  and the strain energy change sU  necessary for ERR calculation FEM software 

ANSYS version 13.0 [5] was used. A 2-D model with axisymmetric element behavior 

was generated. The bonded model (Fig.2a) was generated so that the neighboring areas 

share the interface line. In the debonded model (Fig.2b) exactly the same geometry as 

in the bonded model was used, however two coinciding lines were generated on the 

fiber/matrix interface one belonging to fiber and the other to matrix area. Contact 

elements were generated on the fiber/matrix interface in the debonded model (Fig.2b). 

The contact elements were set to comply with pure Lagrange multiplier method which 

enforces zero penetration when nodes are in contact [5]. Uniform axial displacement 

was applied on the bonded model as shown in Fig.2a. Reaction force F  for the bonded 

model was calculated and then applied to the 4 phases in the debonded model as shown 

in Fig.2b. Strain energy for each case was calculated using element table command 

(ETABLE) in ANSYS [5]. Displacement difference u  between bonded and debonded 

models was calculated using simple post-processing. According to the objective of the 

present study the ERR was calculated for various inter-fiber distances ID . 

 
3. Short debond growth 
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For short debonds the debond crack tip is close to the fiber break. It was clearly shown 

in [2] using a 3-phase composite model and in [4] for the single fiber fragmentation test 

analysis that due to interaction between debond and the fiber break, the ERR for short 

debond growth is magnified. In the present study the objective is to find the effect of 

the neighboring fibers on the ERR therefore a 5-phase cylinder assembly model was 

used. Axisymmetric FEM model schematically shown in Fig.3 was generated in 

ANSYS [5] to calculate ERR for short debonds. In principle it is very similar to the 5 

cylinder model used for self-similar debond ERR calculation (see Fig.2) with the 

difference that the fiber break is included in the model, the fiber is partly debonded 

(with debond length denoted as dl  in Fig.3) and the length of the model fL  is 

significantly larger. A uniform axial displacement 0u  was applied in the FEM model as 

shown in Fig.3. The ERR was calculated using the virtual crack closure technique 

(VCCT) routine in ANSYS [5]. VCCT is based on the principle that the energy released 

due to crack propagation is equal to the work required to close the same crack surface 

and that the stress-state near the crack tip is not changing when the increase of the crack 

length is small. Using VCCT routine in ANSYS allows to obtain the total ERR as well 

as components of Mode I and Mode II. 

 
The geometrical entities fr , ID , R  and ER  were the same as in the case of self-similar 

debonds described in Section 2. The length of the FEM model was in all cases 

ff rL  200 . The ERR was calculated for various debond lengths dl  and inter-fiber 

distances ID . 
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Figure 3. Schematic representation of a 5-phase concentric cylinder assembly FEM model for 
short debond energy release rate calculations: F –fiber, M – matrix, C – effective composite. 

 
 
 
4. Results and discussion 

 
4.1. Material properties 
 
In the present paper a carbon fiber/epoxy composite (denoted as CF/EP) was studied. 

The elastic properties of the constituents are presented in Table 1. Elastic properties of 

the effective composite phase were calculated using Hashin’s concentric cylinder 

assembly model [7] and Christensen’s self-consistent model [8] for out-of-plane shear 

modulus. Calculated properties for CF/EP with volume fractions fV =0.6 and fV =0.4 

are presented in Table 2.  

 
Material E1 [GPa] E2 [GPa] 12 [-] G12 [GPa] 23 [-] 1 [1/°C] 2 [1/°C] 

CF 500 30 0.20 20 0.45 -1∙10-6 7.8∙10-6 
EP 3.5 3.5 0.40 1.25 0.40 60∙10-6 60∙10-6 

Table 1. Elastic properties of constituents. CF – carbon fiber, EP – epoxy matrix. 
 

Vf  
[-] 

E1 
[GPa] 

E2 
[GPa] 

12  
[-] 

G12 
[GPa] 

23  
[-] 

G23 
[GPa] 

1  
[1/°C] 

2  
[1/°C] 

0.6 301.4422 11.0389 0.2734 4.0625 0.5432 3.5767 -0.6631∙10-6 35.8513∙10-6 
0.4 202.1433 7.5694 0.3133 2.6136 0.5899 2.3803 -0.2842∙10-6 50.9694∙10-6 

Table 2. Elastic properties of carbon fiber/epoxy composite with volume fractions Vf=0.6 and Vf=0.4. 
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For the elastic properties listed in tables index 1 corresponds to fiber direction, 2 

corresponds to transverse to fiber direction and 3 corresponds to out-of-plane direction. 

The isotropic epoxy matrix (EP) properties are presented in the same coordinate system 

in Table 1.  

 
4.2. Effect of the inter-fiber distance on self-similar debond growth 
 
Calculation results showing the effect of the inter-fiber distance on self-similar debond 

growth ERR are shown in Fig.4. The results correspond to mechanical loading with the 

strain level of 01.0mech . It was found that in mechanical loading the self-similar 

debonds grow in pure Mode II, hence notation IIG  in Fig.4. The horizontal axis in Fig.4 

shows the inter-fiber distance normalized with respect to the fiber radius, i.e., 

frIDIDn / , see Fig.2. In Fig.4 results for volume fractions fV =0.6 and fV =0.4 are 

shown. The solid vertical line in Fig.4 indicates the inter-fiber distance that corresponds 

to uniform hexagonal packing for fV =0.6. The dashed vertical line in Fig.4 indicates 

the same for fV =0.4. 

 
 

 
Figure 4. Energy release rate as a function of inter-fiber distance for self-similar debond 
growth. 

 
In general, results in Fig.4 show that for both studied volume fractions the ERR slightly 

increases with the inter-fiber distance IDn . The corresponding analytical result for a 3-
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phase composite obtained using Equation (1) for fV =0.6 and fV =0.4 is equal to 50.45 

J/m2 which is higher than the results obtained with a 5-phase composite model in Fig.4. 

 
4.3. Effect of the inter-fiber distance on short debond growth 
 
Calculation results showing the effect of the inter-fiber distance on short debond growth 

ERR are shown in Fig.5. The results only for volume fraction fV =0.6 are presented.  

The results correspond to mechanical loading with the strain level of 01.0mech . The 

solid vertical line in Fig.5 indicates the inter-fiber distance that corresponds to uniform 

hexagonal packing for fV =0.6.  Unlike for self-similar debonds which propagate in 

pure Mode II, for short debonds it was found that in some cases Mode I contribution is 

significant. The results in Fig.5 show the total ERR, denoted as G , containing both 

Mode I and Mode II components. ERR is plotted against the normalized inter-fiber 

distance frIDIDn / . Curves corresponding to different normalized debond lengths 

fddn rll /  are presented. The results in Fig.5 show that when the debond length is very 

small, for example, 1dnl , the ERR significantly increases with the inter-fiber distance 

IDn . It was also found that for very small debond lengths the contribution of Mode I is 

larger than for longer debond lengths. 

 

 
Figure 5. Energy release rate as a function of inter-fiber distance for short debonds. 

 
It was found that for debond lengths 504  dnl  the ERR decreases slightly with the 

increase of the inter-fiber distance IDn  (see Fig.5). However, when debond length 



60 

 

50dnl , the ERR was found to increase slightly with the inter-fiber distance IDn , 

which is well consistent with the trends found for self-similar debond growth (see Fig.4) 

 

Another way to analyze results for short debonds is to plot the magnification of ERR 

as a function of debond length dnl  at fixed inter-fiber distance IDn . Such plots are 

presented in Fig.6. The results plotted in Fig.6 consistently show larger magnification 

of ERR when the inter-fiber distance IDn  is larger. 

 

 

 
Figure 6. Energy release rate as a function of normalized debond length. 

 
 
5. Conclusions 
 
The effect of neighboring fibers on the energy release rate (ERR) for debond growth in 

unidirectional carbon fiber/epoxy composites was analyzed. 5-phase concentric 

cylinder FEM model was used for calculations. The model consists of a broken fiber 

embedded in matrix and surrounded by a cylinder of fiber material representing the 

neighboring fibers with variable distance to the broken fiber. It is followed by a matrix 

cylinder with outer radius ensuring that the fiber content in the unit is the same as for 

composite in average. This unit is embedded in the effective composite cylinder. Only 

mechanical tensile loading was considered. Different FEM models were used for self-

similar and for short debond growth analysis. It was found for self-similar debond 

growth that the ERR slightly increases with the inter-fiber distance and propagation is 

purely in Mode II. For short debonds, on the other hand, it was found that Mode I 
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contribution to ERR can be significant, especially when debonds are very small. It was 

found that the ERR can either increase or decrease with the inter-fiber distance 

depending on the debond length. For shorter debonds it was found that ERR 

significantly increases with the inter-fiber distance. When the normalized debond 

length dnl  is in the range of 504  dnl  the ERR slightly decreases with the inter-fiber 

distance. Finally, it was found that when the debond length 50dnl  the ERR slightly 

increases with the inter-fiber distance resembling the trend found for self-similar 

debond growth. 
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Paper B 

 
Effect of fiber clustering on debond growth energy release rate in UD 
composites with hexagonal packing 
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Abstract 

Steady-state energy release rate (ERR) for fiber/matrix interface debond growth 

originated from fiber break in unidirectional composite is calculated using 3-D FEM 

models with hexagonal fiber arrangement. In the model the debonded fiber is central in 

the hexagonal unit which is surrounded by effective composite. The effect of 

neighboring fibers focusing on  local fiber clustering on the ERR is analyzed by varying 

the distance between fibers in the unit. The steady-state ERR is calculated from 

potential energy difference between a unit in the bonded region far away from the 

debond front and a unit in the debonded region far behind the debond front. The ERR 

for different modes of crack propagation is obtained from a FEM model containing a 

long debond by analyzing the stress at the debond front.  

Results show that in mechanical axial tensile loading fracture Mode II is dominating, it 

has strong angular dependence (effect of closest fibers) but the average ERR is not 

sensitive to the local fiber clustering. In thermal loading the Mode III is dominating and 

the average ERR is highly dependent on the distance to neighboring fibers. However, 

for realistic loads the thermal ERR is much smaller than the mechanical. 

 

Keywords: A. UD composite, B. Debonding, C. Energy release rate, C. Finite element 

analysis  
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1. Introduction 

When unidirectional (UD) composites are loaded with high tensile load in fiber 

direction, multiple fiber breaks occur due to statistical distribution of fiber strength. 

Once the fiber breaks form, yielding of matrix or fiber/matrix debonding can be 

expected near the fiber breaks as a result of large shear stresses in the interface region. 

In the present paper we are focusing on fiber/matrix debonding (interface cracks) 

initiated at the fiber break and growing along the fiber in the subsequent quasi-static or 

cyclic loading (see Fig.1a), which may be the case for relatively weak fiber/matrix 

interfaces. Growth of multiple interface debonds cause progressive degradation of the 

composite properties eventually leading to the final catastrophic failure of the 

composite. Hence, investigation of parameters affecting the debond growth is important 

and in the present paper it is performed using fracture mechanics: considering the 

debond as an interface crack. Whereas numerous papers deal with debonds in single 

fiber composites [1-4], the debond growth in UD polymeric composites has been 

previously analyzed in few papers [5-7] using fracture mechanics concept of potential 

energy release rate (ERR). In polymeric composites, due to larger Poisson’s ratio and 

larger coefficient of thermal expansion of the matrix, the debond growth was shown to 

propagate purely in Mode II [4-7] when subjected to tensile loading and negative 

temperature changes. It was shown in [4-7] with analytical and numerical models that 

for short debonds, due to interaction with the fiber break stress-state, the ERR is 

magnified. As the debond crack propagates and the debond crack front advances far 

away from the fiber break, the debond growth becomes self-similar (steady-state 

growth) [4,6]. For such case (long debonds) exact analytical models for ERR 

calculation were developed in [5,7]. 

However, all the studies mentioned above used fiber distribution models with axial 

symmetry. For example, in [5-7] a cylindrical unit cell was used consisting of a broken 

and partially debonded fiber which is surrounded by a matrix cylinder. The effect of the 

surrounding heterogeneous composite in [5-7] was represented by an effective 

composite cylinder surrounding the concentric cylinder fiber/matrix unit cell.  

Calculation results in [7] showed that the presence of the effective composite phase in 

the model is important: ignoring it leads to significantly over-estimated ERR [8]. 

Despite the fact that analytical solution for steady-state debond growth in axisymmetric 
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case is exact, these studies [5-7] have analyzed an idealized geometry with a “smeared 

out” effect of neighboring fibers. These models: a) cannot describe the effect of closest 

fibers on the ERR; b) cannot be used to analyze the effect of local fiber clustering 

(locally higher fiber volume fraction). 

Authors are aware only about four papers [9-12] addressing the problem of the 

“heterogeneous neighborhood”. In [9] the adjacent fibers in the hexagonal array were 

replaced by a ring consisting of fiber material and the obtained axisymmetric problem 

was solved analytically to find stress concentrations in the neighboring fibers. In [12] a 

similar model with fiber ring representing the closest fibers and broken central fiber 

was solved numerically with an aim to analyze stress concentrations in closest fibers. 

A model with local hexagonal fiber with central broken fiber (zero debonding) 

embedded in an effective homogenized composites was used in [11]. The local fiber 

content was varied to find the effect of local clustering on axial stress concentration in 

the closest fiber. 

The effect of local fiber clustering (explicit effect of the closest fibers) was first 

investigated in [10] using axisymmetric model with five concentric cylinders: the 

partially debonded fiber was surrounded by matrix, which was surrounded by a fiber 

cylinder (representing the neighboring fibers) and matrix cylinder. This entire unit was 

embedded in the effective composite. The local fiber content was varied changing the 

distance between the debonded fiber and the fiber cylinder, showing very small effect 

on ERR in mechanical loading (the ERR decreased for the lowest inter-fiber distance 

by 0.1% comparing to the uniform fiber distribution case and the global fiber volume 

fraction change from 0.4 to 0.6 resulted in an increase of the ERR by 0.02%). Using the 

same 5-cylinder model it was also shown that the local fiber clustering has significantly 

larger effect for short debonds. Unfortunately, conclusions from these studies are based 

on cylindrical model and it is not clear at all if they hold when the local microstructure 

(explicit consideration of the neighboring fibers and the varying local volume fraction) 

is analyzed. The microstructure affects the stress state around the broken fiber (the axial 

symmetry is lost) and hence it can affect the ERR during the debond growth. The 

objective of the present paper is to study the effect of the neighboring fibers on the 

debond growth ERR in UD composites. In the model a unit with hexagonal arrangement 

of fibers with variable inter-fiber distance keeping the average volume fraction constant 

is embedded in the effective composite, see Fig.1b. This model is used to calculate the 
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ERR due to debond growth along the broken central fiber. The steady-state debond 

growth ERR is calculated using two FEM models. In the first model the potential energy 

change of the system is calculated comparing two units of the composite, both far away 

from the debond crack front (one in the bonded and one in the debonded zone). In the 

second model the ERR at the front of a very long debond representing the steady-state 

is calculated using J-integral and VCCT with the aim to gain more detailed 

understanding regarding the fracture modes: in some cases there is a gap in radial and 

hoop displacements in the debonded zone and angle dependent tensile radial and tearing 

shear stresses in the bonded part. FEM software ANSYS [13] with contact elements 

was used to perform the required 3-D calculations. Mechanical tensile loading and 

negative temperature loading were studied in the present paper. The calculation results 

are compared with results obtained from axisymmetric 3 cylinder assembly model [7], 

where the local fiber distribution and its variation (clustering) were not considered. 

The presented analysis of identifying parameters significantly affecting ERR in the 

steady-state is of direct practical importance for understanding microdamage 

mechanisms in composites with weak fiber/matrix interface. If the interface is strong, 

the steady-state conditions are never reached and clustering of fiber breaks with short 

debonds lead to final failure. Nevertheless, even in this case the much simpler steady-

state solution gives a useful insight on the importance of different parameters of non-

uniform fiber distribution and on expected trends. The steady-state solution is basically 

2-D and therefore computationally much easier. The obtained results will allow 

minimizing the number of parameters and the range of their variation in a complex 3-

D analysis of single or multiple short debonds originating from fiber breaks. 

  

2.  Modeling ERR due to debond growth 
 

2.1  Model for UD composite with hexagonal local fiber array 

We consider a UD composite with a broken and partially debonded fiber in the bulk of 

the composite far away from specimen surface, as shown schematically in Fig.1. The 

length of the composite is fL2 , z  axis denotes the axial (fiber) direction of the 

composite. In the present study we represent the composite shown in Fig.1a with a 

simplified cylindrical shape model with length fL (assuming symmetry with respect to 

the fiber break plane) and with hexagonal fiber arrangement as shown in Fig.1b. The 
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broken and partially debonded fiber is located at the center of the model, the 

neighboring fibers are situated in a hexagonal pattern surrounding the broken central 

fiber. The geometrical parameters are shown in detail in a cross-section of the model in 

Fig.2. In Fig.2, r  and   are the radial and angular coordinates respectively. The central 

and neighboring fibers are embedded in a matrix phase with the outer radius mr . The 

fiber volume fraction fV  in this region is equal to the fiber content in the effective 

composite which is surrounding the unit with seven fibers.  The effective 

(homogenized) composite phase with volume fraction fV  has the outer radius cr . 

The objective of the present paper is to study the effect of the clustering of the 

neighboring fibers on steady-state debond growth ERR, hence cases with different 

inter-fiber distance values, fa , are studied without changing the radius of the 

fiber/matrix unit mr . For each inter-fiber distance fa  we can define a local fiber volume 

fraction loc
fV , which represents the volume fraction of fibers inside the hexagon joining 

the centers of the surrounding fibers, see Fig.2. In the present paper we will use local 

volume fraction loc
fV  as a measure of the local fiber distribution, meaning that a lower 

local volume fraction represents larger inter-fiber distance fa  and vice versa: 
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Due to periodicity of the model shown in Fig.1b and Fig.2, a unit cell corresponding to 

 30  can be divided. A 3-D schematic representation of the  30 unit cell is 

shown in Fig.1c. In Fig.1c and further in the text dl  denotes the debond length 

measured from the fiber break plane. 
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Fig. 1. a) UD composite with a broken and partially debonded fiber; b) Hexagonal distribution model; 

c) unit cell  =30° 

 

 

Fig.2. Cross-section of the hexagonal model and division of unit cell  =30° 

 

Consideration of a  30 unit cell is particularly useful for Finite Element (FEM) 

modeling employed in the present study by significantly reducing the volume of the 

model and thus saving calculation time.   

2.2 ERR during steady-state debond growth 

We will analyze  a case, when the front of the fiber/matrix debond crack is far away 

from the fiber break, where it was initiated, and when it is also far from another debond, 

which may be approaching from the other end of the fiber. In such case the debond 

crack propagation can be considered as steady-state. It means that the crack front moves 

along the fiber without changing its shape. However, it does not mean that the crack 
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front’s shape is circular. More probable for hexagonal array is that the debond length 

depends on the angular coordinate, )(dd ll  . In models with axial symmetry the 

debond length does not depend on the angular coordinate and the crack front is circular. 

Generally speaking, the shape of the crack front is not known a priori, it can be obtained 

only in result of complex calculations.  

In terms of Fig.1c the geometrical condition for steady-state growth can be written 

mathematically as fd rl (min)  and (max)df lL  . Here (min)dl , (max)dl  are the smallest 

and the largest debond length values respectively measured from the fiber break plane.  

When the debond propagates by ddl  

a) The debond crack front (and the corresponding singular stress state in its 

vicinity) shifts in the z-direction by ddl  without changing its unknown shape;  

b) The complex stress state in the region close to the fiber break does not change; 

c) The perfectly bonded region volume far ahead from the debond front reduces 

by dc dlr 2 ;  

d) The debonded region volume far behind the crack front increases by the same 

amount.  

 

The bonded and debonded regions of length ddl  are shown in Fig.3a and 3b 

respectively. 

The advantage of the calculation method for steady-state debond growth ERR presented 

below is that we do not need to know the shape of the crack front and the stress state 

there. The disadvatage of the method is that we can calculate only the total ERR without 

any possibility for deeper analysis of the different modes of crack propagation.  

The ERR, denoted as enG , is calculated according to: 

  

df

cmf

df
en dlr

UUU
dlr

UG
 22





    (2) 
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Indexes f , m  and c  are used for fiber, matrix and the effective composite 

respectively, U  is the potential energy change due to debond growth by ddl . 

In the steady-state growth case the potential energy of the whole model consists of fiber 

break region, debond front region, bonded part far away from the debond front, 

debonded part far away from the fiber break and far behind the debond front. From the 

above discussion follows that the only change due to debond growth is that a region of  

length ddl  which had  perfectly bonded fiber is replaced be the region of the same size 

where the fiber is debonded.  

According to definition  the change of the potential energy in the system is equal to the 

difference between the additional work performed during the crack length increase and 

the change in strain energy 

 SUWU       (3) 

 In our case the change is that at fixed applied force P  the bonded region with length 

ddl  in Fig.3a becomes debonded as shown in Fig.3b. The strain energy is changed and 

an additional work is performed as the result of the additional displacement due to 

compliance reduction of the region.  The SU  is found as the strain energy difference 

in these two states, the additional work uPW  , where P  is the applied force and 
bd uuu 00   is the length change of the considered region in Fig. 3.  

In purely thermal loading the work 0W  therefore the potential energy change 

becomes equal to the change in strain energy SUU  . 

More details regarding the significance of different modes of crack propagation can be 

obtained performing accurate stress state analysis at the debond front and using J-

integral or virtual crack closure technique (VCCT). However, this type of analysis 

requires knowledge or assumptions regarding the shape of the debond crack front in the 

steady-state. In the present study a simplified approach was used by assuming a circular 

shape of the debond front and studying the ERR as a function of the angular coordinate 

 . 
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Another alternative not considered in the present study is the use of cohesive elements 

with critical ERR as a criterion for crack surface separation which would allow 

determination of the crack front shape. 

 

 

Fig.3. Representative volume element of bonded region (a) with length ddl , which due to debond growth 

changes to debonded region (b) with length ddl   

3. FEM models 

Two different FEM models were used in the present study for steady-state ERR 

calculation: 1) FEM model to calculate the potential energy difference and 2) FEM 

model with debond front, which in addition to ERR calculation also allows analyzing 

modes of crack propagation. FEM software ANSYS version 14.5 [13] was used in all 

cases. The boundary conditions and the calculation procedure is described in the 

following subsections. 

3.1. FEM model for potential energy difference calculation 

As described in Section 2.2 the steady-state ERR can be calculated without knowing 

the exact shape of the debond front by considering representative volumes from bonded 

and debonded regions far from the crack front. The ERR is calculated from potential 

energy change due to debond growth by ddl , Eqs (2), (3). 3-D FEM models of 

representative bonded and debonded regions are schematically shown in Fig.3a and 3b, 

respectively. The representative regions are circular sectors corresponding to  30  

following the division of a unit cell in Fig.2. In Fig.3 F, M and C denote the central 

fiber, matrix and effective composite phases respectively. In all calculations the fiber 

radius was equal to fr = 4 µm, the length of the FEM models was ddl  = 2 µm, the outer 
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radius of the effective composite phase (see Fig.2) was mc rr 5 . The size of the cr  was 

found from a parametric study, which showed that mc rr 5  is the minimum size that 

satisfactory represents an infinite effective composite and hence does not magnify the 

ERR values. 

In FEM model of the bonded region (Fig.3a) the interface areas between any two 

neighboring phases are shared. In FEM model of the debonded region (Fig.3b) a 

completely debonded interface was modeled between the central fiber and the matrix 

phase by generating two coinciding areas one belonging to the fiber and the other to the 

matrix volume. Contact elements with pure Lagrange multiplier on contact normal and 

tangent were generated on the debonded fiber/matrix interface. Such contact element 

type was chosen for the purpose of minimizing the inter-penetration due to radial 

compression on the contact surface. The friction on the interface was neglected. All 

geometrical parameters of the debonded model were exactly the same as for the bonded 

model. 

Purely mechanical and purely thermal loading cases were studied. 

In mechanical loading symmetry conditions were applied on nodes at ddlz   and on 

nodes corresponding to angular coordinates  0 and  30  for both bonded and 

debonded models. A uniform displacement bu0  leading to strain %1z   in z  axis 

direction was applied on the surface of the bonded model corresponding to 0z  as 

shown in Figure 3a. The resulting force P  corresponding to the applied displacement 
bu0  was found in the post-processing. Coupling for displacement in z  axis direction 

was applied on the surface 0z  of all phases in the debonded model except the central 

fiber. Force P  was applied on these coupled surfaces leading to uniform displacment 
du0  as shown in Fig.3b. Since the load is not applied on the debonded central fiber 

(Fig.3b) it will have a different axial displacement than the rest of the phases. To ensure 

independency of the solution on the z  coordinate and hence the validity of the steady-

state model, the nodes of the central fiber at 0z  were coupled for displacement in z  

axis direction. The strain energy difference SU  between the bonded and the debonded 

models was calculated using element table command (ETABLE) in ANSYS [13]. 
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Displacement difference between bonded and debonded models bd uuu 00   was 

found with simple post-processing. 

In purely thermal loading the symmetry conditions were applied on nodes at ddlz   

and on nodes corresponding to angular coordinates  0 and  30 . All nodes of 

the bonded model (Fig.3a) at 0z  were coupled for displacement in z  axis direction. 

In the debonded model (Fig.3b) the nodes of the central fiber  and the nodes of the 

remaining phases at 0z  were seperately coupled for displacement in z  axis 

direction. Thermal load was applied as a uniform temperature applied on all nodes of 

the model. 

3.2. FEM model for ERR analysis at debond front 

For a more detailed analysis of the steady-state debond propagation modes a 3-D FEM 

model with broken, partially debonded fiber and debond front far away from the fiber 

break was generated according to Fig.1c. The model is a circular sector corresponding 

to  30  following the division of a unit cell in Fig.2. Although it was discussed 

previously that due to the considered hexagonal arrangement of neighboring fibers the 

shape of the debond front in the steady-state region is most probably a function of the 

angular coordinate  , for simplicity the shape was assumed circular in the present 

study.  

To conform with conditions of steady-state debond growth (see description in Section 

2.2), the length of the model ff rL 80  and the debond length equal to fd rl 25  was 

used in calculations. These values of fL  and dl  were found from a parametric study as 

the ones where the ERR becomes independent of them. The geometric parameters of 

the cross-section of the model with debond front were identical to those of the steady-

state models described before in Section 3.1. 

The debonded fiber/matrix interface was modeled by generating coinciding areas with 

contact elements of the same type as described in Section 3.1.  

Symmetry conditions were applied on nodes corresponding to angular coordinates 

 0 and  30 . Symmetry conditions were also applied on nodes of the matrix, 
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neighboring fiber and the effective composite at 0z . The area of the central fiber at 

0z  was free of constraints representing the fiber break.  

Purely mechanical and purely thermal loading cases were studied. In addition to the 

boundary conditions described above, the following conditions were applied:  

In purely mechanical loading a uniform displacement leading to strain %1z  in z  

axis direction was applied on all nodes at fLz  ; 

In purely thermal loading, the nodes at fLz   were coupled for displacement in z  axis 

direction and the thermal load was applied as uniform temperature applied on all nodes 

of the model. 

The ERR was calculated using built-in calculation routines in ANSYS 14.5 [13], 

namely, the J-integral and the VCCT. The J-integral routine gives the total ERR while 

the VCCT calculation routine allows calculating the ERR components of Mode I, II and 

III. 

Appropriate mesh refinement was used in the vicinity of the debond front region to 

ensure the accuracy of J-integral and VCCT calculations. 

4. Results and discussion 

In the present study the ERR in carbon fiber/epoxy and glass fiber/epoxy UD 

composites was analyzed. Thermo-elastic properties of constituents are presented in 

Table 1. Carbon fibers, glass fibers and epoxy matrix are denoted as CF, GF and EP 

respectively.  

 

 

 

 

 

Table 1. Thermo-elastic properties of constituents 
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Material 
LE  TE  LTG  LT  23  L  T  

[GPa] [GPa] [GPa] [-] [-] [1/°C] [1/°C] 

CF 500 30 20.0 0.20 0.45 -1∙10-6 7.8∙10-6 

GF 70 70 29.2 0.20 0.20 4.7∙10-6 4.7∙10-6 

EP 3.5 3.5 1.3 0.40 0.40 60∙10-6 60∙10-6 

 

Table 2. Thermo-elastic properties of UD composites 

Material fV  LE  TE  LTG  23G  LT  23  L  T  

[-] [GPa] [GPa] [GPa] [GPa] [-] [-] [1/°C] [1/°C] 

CF/EP 0.6 301.44 11.04 4.06 3.58 0.27 0.54 -0.66∙10-6 35.85∙10-6 

CF/EP 0.4 202.14 7.57 2.61 2.38 0.31 0.59 -0.28∙10-6 50.97∙10-6 

GF/EP 0.6 43.44 13.71 4.31 4.68 0.27 0.47 6.86∙10-6 32.21∙10-6 

 

The high value of the transverse isotropic CF axial modulus was selected to have a case 

with high anisotropy in contrast to GF, which is isotropic. The elastic properties of the 

UD composties with a given volume fraction fV were calculated using Hashin’s 

concentric cylinder assembly model [14] and Christensen’s self-consistent scheme for 

out-of-plane shear modulus [15]. In the present paper CF/EP composites with volume 

fractions fV =0.6 and fV =0.4 and GF/EP composite with volume fraction fV =0.6 were 

analyzed. The calculated thermo-elastic properties of the studied UD composites are 

presented in Table 2.  

 

4.1. ERR in mechanical loading 

The ERR values obtained from FEM model  calculating potential energy difference 

(Section 3.1) in a purely mechanical loading equal to z =1%  are presented in Tables 3 
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to 5 (data in the first row denoted as enG ). The local volume fraction loc
fV  of fibers was 

varied by changing the inter-fiber distance fa . Composites with 3 different local 

volume fractions were studied loc
fV =0.66, 0.72 and 0.78 corresponding to ff ra 35.0

, fr25.0  and fr15.0  respectively (see Fig.2). 

Results in Tables 3 to 5 show that increasing the local fiber content leads to the decrease 

of the ERR but the effect is negligible. The ERR change is of the same magnitude and 

even smaller than the one calculated in [10] using the 5-cylinder model, by this 

supporting the conclusions of the 5-cylinder model in the mechanical loading case. The 

ERR values for uniform fiber distribution obtained using 3-cylinder assembly model 

[7], also presented in Tables 3, 5 (4th column), are slightly higher which is consistent 

with the above discussed ERR decrease due to clustering. It can be noted that for the 3 

cylinder model the size of the outer effective composite cylinder was 10 times the radius 

of the fiber matrix unit. For CF/EP composite the ERR values at fV = 0.6 (Table 3) are 

in average 0.01 % higher than for  fV = 0.4 (Table 4) which is a similar trend as found 

in [10]. However, the main conclusion is that the total ERR due to steady-state debond 

growth is very insensitive to the local variation (increase) of the fiber content. 

Analysis of stress distributions in the bonded and debonded steady-state models 

revealed some features that could indicate that several modes of the debond crack 

propagation are active. For example the presence of   - dependent hoop displacement 

gap u  at the debonded interface and relevant shear stresses  r  in the bonded model. 

The radial stresses at the interface in the bonded model, Fig. 4a, are tensile for 

78.0loc
fV  (potential for Mode I) but  the radial stresses in the debonded model, Fig. 

4b, are compressive for the same loc
fV , which kind of forbids Mode I. It has to be 

emphasized that these stress distributions are for regions far away from the debond front 

and, hence, they cannot be used to characterize fracture mode mixity at the debond 

front. 
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(a) 

 

(b) 

Fig.4. Radial stress r  distribution at the interface for CF/EP 6.0fV  in mechanical loading case 

%1z : a) bonded interface; b) debonded interface 

 

Table 3. Energy release rate values for CF/EP 6.0fV in purely mechanical loading 

%1z  
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loc
fV  

0.66 0.72 0.78 0.60 (3-cyl) 

enG [J/m2] 50.22728 50.22197 50.21351 50.45131 

J [J/m2] 49.38511 49.35217 49.27961 50.17184 

IG [J/m2] -0.00238 -0.00241 -0.00210 0.01534 

IIG [J/m2] 50.16155 50.21543 50.28309 49.08337 

IIIG [J/m2] 0.00460 0.00585 0.00500 0.000000 

 

 

Table 4. Energy release rate values for CF/EP 4.0fV in purely mechanical loading 

%1z  

 

loc
fV  

0.66 0.72 0.78 

enG [J/m2] 50.22189 50.21631 50.20757 

J [J/m2] 49.54135 49.54620 49.47209 

IG [J/m2] -0.00245 -0.00246 -0.00219 

IIG [J/m2] 50.31723 50.39105 50.47968 

IIIG [J/m2] 0.004496 0.00595 0.00453 

 

To obtain more clarity regarding the possible crack propagation modes in steady-state 

debond growth, calculations at the front of a long debond were performed as described 

in Section 3.2. It is noteworthy that the applied 1% strain to the model correspond to 
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slightly lower load than in the steady-state modeling where the load was selected to 

give 1% in the bonded zone and not in average as it is in the model with debond front.  

Therefore the ERR values are slightly lower using the debond front model.  Assuming 

that the debond front is circular (  fld  ) the J  -integral was calculated and the 

VCCT was used to determine IG (Mode I), IIG (Mode II) and IIIG  (Mode III). The 

calculated values strongly depend on the angular coordinate   as shown in Fig.5 for 

CF/EP with 6.0fV . The variation is large and the amplitude increases with 

increasing local fiber content loc
fV . If one would use the critical values of the J  -

integral as a propagation criterion the consequences are obvious: the debond 

propagation at � = Ͳ would start before the propagation starts at other angles. This 

leads to conclusion that the debond front in steady-state growth will not be circular. 

Therefore, all conclusions below obtained solving the case with circular debond front 

should be considered as indicative only. 

 

 

Fig.5. J-integral values for CF/EP 6.0fV  in purely mechanical loading %1z  obtained using the 

debond front model 

 

The average of the J  -integral over   was calculated and the average values are 

presented in Tables 3 to 5 (data in row 2). The J  -integral was calculated also for the 
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3-cylinder model where it is independent on the angle. The J  -integral values are 

slightly lower than the enG  but the difference is small. Since the value of the J  -

integral has to depend on the selected profile of the crack front and since the used 

circular shape is not the right one for the steady-state case, we can conclude that the 

shape of the crack front has a relatively small effect on the total ERR. The values of the 

J  -integral in Tables 3 to 5 have exactly the same trends with respect to the local fiber 

content change as the enG  but the magnitude of the change is slightly larger. 

 

Table 5. Energy release rate values for GF/EP 6.0fV in purely mechanical loading 

%1z  

 

loc
fV  

0.66 0.72 0.78 0.60 (3-cyl) 

enG [J/m2] 6.96651 6.95730 6.94100 7.00873 

J [J/m2] 6.86011 6.84045 6.80875 6.96138 

IG [J/m2] -0.00065 -0.00066 -0.00065 0.00096 

IIG [J/m2] 6.94240 6.93421 6.91895 6.80645 

IIIG [J/m2] 0.00009 0.00006 0.00001 0.00000 

 

The magnitude of the angular variation of the J  -integral is shown in Fig. 6 where the 

ratio between values at  0  ( 0J ) and at  30  ( 30J ) is presented as a function of 
loc
fV  for different materials and global fiber contents. The result is remarkable: the 

global fiber content and/or the fiber material has no effect on this ratio. One possible 

consequence of this result may be that the shape of the debond front in steady-state is 

insensitive to these parameters. On the other hand the local increase of the fiber content 

increases the considered ratio of  J  -integral values and the debond front is expected 

to deviate more from the circular shape. 
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Fig.6. Ratio between maximal and minimal J-integral values in purely mechanical loading %1z  

obtained using the debond front model 

 

Similar averaging as with the J - integral was performed also with IG , IIG  and IIIG  

(obtained with VCCT). The results are presented in Tables 3 to 5 (data in rows 3 to 5). 

One may notice two anomalies important for the estimation of the accuracy of these 

results:  

a)   the axisymmetric 3-cylinder model gives nonzero IG  even if it is absolutely 

clear that  due to compressive radial stresses in the debonded zone the Mode II 

is the only mode in this model. Nevertheless, combination of negative radial 

displacement gap due to small interpenetration with compressive radial stress 

lead to values 0.01534 J/m2 (Table 3 for CF/EP) and  0.00096 J/m2 (Table 5 for 

GF/EP) for a simple axisymmetric case using contact elements. These values 

indicate the error we have to expect in using the same elements in the more 

complex hexagonal model The IG  in the hexagonal model is even negative 

(values around 0.002) which, of course, is impossible and is an artifact of using 

contact elements. We conclude that Mode I  ERR is zero in the considered 

mechanical loading cases 
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b) Calculations show that there is Mode III ERR. The value is very small, in the 

order of magnitude  of  0.005 J/m2 for CF/EP. This value is several times lower 

than the accuracy of Mode I ERR determination discussed above. Therefore, it 

could be considered as a calculation error or just as being negligible comparing 

with IIG .  

 

However, the angular displacement gaps and the shear stresses found in the steady-state 

model force us to accept that the Mode III, even being small, is real. 

A simple estimate of the three fracture modes can be obtained using stresses and 

displacement gaps calculated using the steady-state models (Fig.3). The work to close 

the gaps for different displacement components is calculated to bring the debonded 

element to its bonded state. Hence, the displacement gaps are from the debonded model 

and the interface stresses and the axial stress in the fiber from the bonded model. 

Dividing the work by the new crack area  dfd dlrA
6


  we obtain expressions (indexes ܾ  and �  denote the bonded and debonded model respectively and ∆�  is used for 

displacement gap) 
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Using equations (4), (6) we calculate 0IG  and IIIG = 0.0013 J/m2 for CF/EP with 

6.0fV   and 78.0loc
fV , which is of the same order of magnitude as the value from 

the debond front solution (Table 3). Nevertheless in any crack growth criterion only 

IIG  because of its magnitude will be important. 
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4.2. ERR in thermal loading. 

For the ERR results corresponding to the purely thermal loading case with 

CT  100 presented in Table 6, the same notation as in mechanical loading case 

(Table 3 to 5) is used.  

Table 6. Energy release rate for thermal loading case CT  100 , CF/EP with 

6.0fV  

 

loc
fV  

0.66 0.72 0.78 0.60 (3-cyl) 
0.60 (3-cyl), 

CT  100  

enG [J/m2] 0.00409 0.00702 0.01358 0.00077 0.02052 

J [J/m2] 0.00387 0.00678 0.01342 0.00081 0.02052 

IG [J/m2] 0.00005 0.00006 0.00106 0.00002 0.01786 

IIG [J/m2] 0.00097 0.00106 0.00110 0.00077 0.00260 

IIIG [J/m2] 0.00304 0.00586 0.01137 0.00000 0.00000 

 

 

In addition to results for hexagonal fiber packing ( enG  obtained from the potential 

energy difference in the steady-state models and IIIIII GGGJ ,,,  from the debond front 

stress state models) the results from axisymmetric 3 cylinder assembly model [7] for 

composites with the same fV  are also presented in Table 6 (4th and 5th column). The 

results in the last column are for the nonrealistic case of CT  100 , when the 

debond is fully open and the IG  is dominating and responsible for the much larger ERR 

than in the negative temperature change case. For negative temperature change IG  does 

not exist and IIIG  is zero in models with axial symmetry. The nonzero value for IG  in 
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Table 6  for CT  100   can be used to estimate the accuracy obtained using contact 

elements. 

Generally speaking, the values of the ERR in the thermal case are much smaller than in 

the mechanical loading at %1z  strain, see Tables 3 to 5, and, hence, the thermal part 

in the ERR in many practical cases could be neglected. Nevertheless, an in-depth 

analysis of purely thermal case was performed to understand the underlying mechanics. 

The ERR values obtained from the potential energy change and from the J  -integral 

are in a very good agreement. The J  -integral  values in Table 6 are the average of the � −distribution shown in Fig. 7. The shape of the dependence is very different than in 

the mechanical loading case, but the increase of the local fiber content has a similar 

magnifying effect on the ERR. The most favorable debond propagation direction in 

thermal case is at approximately 14 . 

 

Fig.7. J-integral values for CF/EP 6.0fV  in thermal loading CT  100  obtained using 

debond front stress state model 
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(a) 

 

(b) 

Fig.8.  Radial stress distribution at the interface for CF/EP 6.0fV  in thermal loading 

CT  100 : a) bonded interface; b) debonded interface 

 

Models with hexagonal symmetry show all three modes of debond propagation. In the 

case with the highest local fiber content 78.0loc
fV , see Fig. 8a, the radial stresses in 

part of the interface in the bonded model (Fig.3a) are tensile and in approximately the 

same region of the debonded model (Fig.3b) the debond is partially open, (zero radial  
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(a) 

 

(b) 

Fig.9. Energy release rate values for CF/EP 6.0fV  in purely thermal loading CT  100  

obtained using debond front stress-state model: a) Mode II, b) Mode III 

 

stress on interface) see Fig.8b. The size of the contact zone depends on the local fiber 

volume fraction and, for example, for 66.0loc
fV  the debond is closed. Still, the values 

of IG  obtained from the debond front calculations are much lower than from other 

modes. Using expression (4) for 78.0loc
fV  we obtain IG =0.00090 J/m2 which is of 
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the same order of magnitude and confirms the result from the debond front solution 

(Table 6). 

The Mode II and Mode III ERR dependence on angle are shown in Fig. 9. According 

to the debond front analysis IIIG  is the largest and it dominates the J - integral (total 

ERR) behavior in Fig. 7.  

The shear stress b
r  distribution at the fiber surface in the bonded model (Fig.3a) and 

the gap in hoop displacements du  in the debonded model (Fig.3b) are shown in Fig. 

10. For 78.0loc
fV  calculations using expressions (5) and (6) give IIG = 0.00091 J/m2, 

IIIG = 0.012  J/m2 which are rather close to the corresponding values from the debond 

front analysis given in Table 6. 

In a real situation the loading contains both, the thermal and the mechanical component. 

The analysis performed in this paper proves that superposition of thermal and 

mechanical stresses obtained from two corresponding solutions cannot be used to 

calculate the thermo-mechanical ERR in an arbitrary combination of applied stress and 

temperature. The main reason is that the thermal and the mechanical solutions are 

obtained from two different boundary-value problems: in the mechanical case the 

debonded interface is closed or opened in a small region only whereas in the thermal 

loading case the opening zone is different. Obviously, in a general thermo-mechanical 

loading case the existence of opened zone depends on the ratio of these two loading 

components. 

5. Conclusions 

Energy release rate (ERR) due to steady-state propagation of a debond along the 

fiber/matrix interface in a unidirectional composite is analyzed assuming hexagonal 

fiber packing. The broken and partially debonded fiber is a central fiber in a hexagonal 

unit with locally larger fiber content than in average. This hexagonal unit is surrounded 

by large volume of effective composite and the model is subjected to mechanical and 

thermal loadings.  

The importance of the explicit inclusion of the neighboring fibers in the model and the 

effect of the local fiber clustering on the ERR is investigated using 3-D FEM models 
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with contact elements. Two types of solutions are obtained: a) steady-state solution, in 

which the ERR is calculated from the potential energy difference between a bonded and 

debonded unit far from the debond front; b) local stress state at the front of a long 

debond with circular front is used to find the total ERR as well as its three components. 

The results show that at high local fiber content the debond crack may be a) partially 

opened; b) local hoop displacement gap exists and that the contact/opening zones as 

well as the ERR has an angular distribution, which is very different in mechanical and 

in thermal loading. However, in mechanical loading the average value of the ERR rate 

is very similar as in models assuming axial symmetry. 

This means that the boundary conditions at interfaces are different in thermal and 

mechanical loading and, therefore, linear superposition of thermal and mechanical 

stress states to calculate the ERR in combined loading is not possible. 

However, for realistic loadings the thermal ERR according to the hexagonal model is 

much smaller than the mechanical and may be neglected when solving practical 

problems. 
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Abstract 

Energy release rate (ERR) for fiber/matrix debonding in composite with local fiber 

clustering, subjected to axial tension, has been investigated numerically by a 3-D  finite 

element (FE) model. In the model, broken fiber is central in a hexagonal unit which is 

embedded in an effective composite. Fiber/matrix debond with circular front is assumed 

to be originated from the fiber break. The effect of the local fiber clustering on ERR is 

studied by varying distance between the broken fiber and the neighboring fibers. For 

very short debonds as well as for long debonds (almost steady-state growth) the ERR 

was calculated by both the J integral and the Virtual crack closure technique (VCCT). 

Results show that the debond growth is Mode II dominated and that the ERR strongly 

depends on the angular coordinate. The local fiber clustering has larger effect on the 

angular variation for shorter debonds and the effect increases with larger local fiber 

volume fraction. The results obtained from the 3-D hexagonal model are compared with 

those obtained previously using 5-cylinder axisymmetric model developed by the same 

authors. The ERR values from 5-cylinder axisymmetric model could be considered as 

upper bound for the 3-D hexagonal model. 

Keywords: A. Polymer-matrix composites (PMCs), B. Debonding, C. Finite element 

analysis (FEA) 

1. Introduction 
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Tensile failure of unidirectional (UD) composites has been widely investigated [1-8] 

due to their broad applications in load bearing composite structures. When UD 

composites are loaded in fiber direction in quasi-static or cyclic tension-tension loading 

and the tensile load is sufficiently high, multiple fiber breaks occur first due to statistical 

distribution of fiber strength. Once the fiber breaks form, yielding of matrix [9] or 

fiber/matrix debonding [10] can be expected near the fiber breaks as a result of large 

stress concentrations. For the case of a relatively weak fiber/matrix interface, which is 

the case studied in the present paper, fiber/matrix debonding (interface cracks) would 

initiate at the fiber break and grow along the fiber, which leads to progressive 

degradation of composite properties [3, 10, 11]. Matrix cracking leads to coalescence 

of isolated fiber breaks with debonds to form a critical fracture plane which propagates 

unstably as a crack to cause the final catastrophic failure of the composite. Hence, it is 

of importance to quantify debond crack growth rate in quasi-static or in cyclic loading. 

Typically for polymeric composites with relatively weak interface loaded in fiber 

direction, the excess energy during the fiber break formation produces a short interface 

debond crack in vicinity of the fiber break. Thereafter under increased loading the 

debond crack grows along the fiber/matrix interface without deviation unless there is, 

for example, some interaction with fiber breaks or debonds in the neighboring fibers. 

Thus for an isolated debond studied in the present paper the fracture mechanics concept 

of energy release rate (ERR) is suitable for crack growth analysis in quasi-static or 

cyclic loading. 

 Single fiber composite due to its relative simplicity of conducting experiment and 

modeling [12-18] has been proven useful in understanding the fiber/matrix interface 

debonding mechanism and for interface characterization. However, when composites 
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are analyzed the negligence of surrounding constituents might affect the accuracy of 

the calculated potential ERR. Generalizing the single fiber composite model to UD 

composite case, a three cylindrical phase composite model was suggested in [6, 7, 19] 

where the fiber/matrix unit with the broken and partially debonded fiber was embedded 

in effective composite phase. Results in [19] showed that the presence of the effective 

composite phase in the model is important: ignoring it by using models with a unit cell 

consisting of fiber and matrix only leads to significantly over-estimated ERR.  

Despite the efficiency of axisymmetric numerical calculations for short debonds and 

the availability of analytical steady state solution [19], the three phase composite 

models analyze an idealized geometry without explicitly taking into account the 

neighboring fiber especially the possible non-uniformity of the local fiber arrangement 

which is present in most of the real cases. It can be expected that the local microstructure 

affects the stress state around the broken and partially debonded fiber and hence it can 

affect the ERR during debond growth. Several research efforts [20-26] have been made 

in order to account for the fiber non-uniformity on fiber breakage process (stress 

magnification in the neighboring fiber), however, the effect of local fiber non-

uniformity on debond growth is yet to be well understood. One of the first studies on 

the effect of local fiber clustering (explicit effect of the closest fibers) on debonding 

[27] was conducted using axisymmetric model with five concentric cylinders: the 

partially debonded fiber was surrounded by matrix, which was surrounded by a fiber 

cylinder (representing the six neighboring fibers) followed by a matrix cylinder. This 

entire unit was embedded in the effective composite cylinder. The local fiber content 

was varied changing the distance between the debonded fiber and the fiber cylinder. 

For relatively long debond (nearly steady-state growth), it shows a very small effect of 



98 

 

the clustering on the ERR in mechanical loading (the ERR decreased for the lowest 

inter-fiber distance by 0.1% comparing to the uniform fiber distribution case whereas 

the global fiber volume fraction change from 0.4 to 0.6 resulted in an increase of the 

ERR by 0.02%). Using the same 5-cylinder model it was also shown  in [27] that the 

local fiber clustering has significantly larger effect on ERR for short debonds. 

Unfortunately, conclusions from these studies are based on cylindrical model and it is 

not clear at all if they hold when the local microstructure (explicit consideration of the 

neighboring fibers and the varying local volume fraction) is analyzed. Recently a 3-D 

model [28] with hexagonal arrangement of fibers has been developed in order to 

investigate the fiber clustering effect on ERR of steady-state debond growth. Similar 

hexagonal arrangement models have been successfully used by several researchers [21, 

25] in order to investigate the stress magnifications in neighboring fibers caused by 

fiber breakage with or without fiber/matrix interfacial debonding.  

In the current study, the ERR is calculated using 3-D FEM model with a hexagonal 

array of fiber cluster embedded in the homogenized effective composite. The ERR is 

calculated using J-integral and the Virtual Crack Closure Technique (VCCT) originally 

proposed by Rice[29] and Rybicki [30], respectively. The results from [28] for steady-

state debond growth in the same model show that fiber clustering has significant effects 

on angular variation of ERR, however, the average ERR is not sensitive to fiber 

clustering, which is similar to conclusions obtained in [20] from axisymmetric model. 

For steady state conditions, the debond length is very long and the interaction between 

debond tip and fiber break is negligible. The present paper is a continuation of the 

studies in [28] focusing on cases when the debond length is relatively short and the 

interaction with fiber crack cannot be ignored. For short debonds, the interaction 
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between fiber break and debond front is not negligible and an analytical solution is 

impossible to obtain. Therefore FE software ANSYS [31]  was used to perform the FE 

calculations in the present paper.  

2. Debond in UD composite: Material model 

A UD composite with an isolated fiber break and an interface debond with a circular 

debond front (the debond length does not depend on the angular coordinate) close to 

the fiber break is investigated in the current study. Fibers within the UD composite are 

assumed to have hexagonal packing, as shown schematically in Fig.1. The length of the 

composite model is 2Lf, and Lf could also be viewed as the half-distance to next fiber 

break which is assumed to be large enough for stress perturbations not to overlap. As a 

result, the interaction between two fiber breaks is not significant and therefore it is not 

analyzed in this paper.  axis denotes the axial (fiber) direction of the composite. In 

the present study the UD composite shown in Fig.1a is represented by a cylindrical 

shape model with length Lf (assuming symmetry) as shown in Fig.1b.  The broken and 

partially debonded fiber is located at the center of the model, the neighboring fibers are 

situated in a hexagonal pattern surrounding the broken central fiber. The geometrical 

parameters are shown in detail in a cross-section of the model in Fig.2. In Fig.2, r and 

θ are the radial and angular coordinates, respectively. The central and neighboring 

fibers are surrounded by matrix with the outer radius of the matrix phase rm defining 

the global volume fraction of the fibers Vf . The fiber and the matrix unit is surrounded 

by the effective (homogenized) composite phase with volume fraction Vf . The outer 

radius of the effective composite is denoted as rc. In order to study the effect of the 

neighboring fibers on debond growth ERR, the inter-fiber distance value af is 

considered as variable while the radius of the fiber/matrix unit rm is fixed. For each 

z
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inter-fiber distance we can define a local fiber volume fraction which represents 

the fraction of fibers inside the hexagon joining the centers of the surrounding fibers, 

see Fig.2. In the present paper we will use the local volume fraction  as a measure 

of the local fiber distribution as displayed in Eqn (1). A lower local volume fraction 

represents larger inter fiber distance af and vice versa. Due to periodicity, only one 

twelfth of the composite is modeled, as shown in Fig.1c. In Fig.1c and further in the 

text  denotes the debond length measured from the fiber break and  �ௗ ≠ �ௗሺ�ሻ.  

 

Fig.1. a) UD composite with a broken and partially debonded fiber; b) Hexagonal arrangement model; 
c) One twelfth of model,  =0°-30° 

 

3. FE model and boundary conditions 

In order to study the debond growth from fiber break a 3-D FE model with  hexagonal 

fiber arrangement representing the material geometry described in Fig.1(c) was created. 

In the FE model, the fiber radius rf =4µm, the inter-fiber distance af  and the debond 

length ld are variables in order to study the effect on ERR of the debond growth. rm is 

chosen to ensure fiber volume fraction is 0.6 within fiber/matrix unit, the local fiber 

volume fraction  is varying with changing af . The length of the composite model 

Lf =80 rf and the radius rc=5 rm were chosen based on a previous parametric study 
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conducted as a part of investigation in [28] as a region where the ERR becomes 

independent of these parameters. 

 

 

 

Fig.2 Cross-section of the hexagonal model and extraction of the unit cell. 

 

 

                                                                                                                               (1) 

 

In the present study, ERR is investigated as driving force for debond growth and it is 

calculated by both, the J integral and the VCCT methods through ANSYS built-in 

routines [31] . The ANSYS J-integral and VCCT calculation routines [31] implemented 

in the present study were previously validated against analytical solution for a 3 

cylinder axisymmetric model used, for example, in [6]. Both routines showed an 

excellent agreement with analytical results at converged mesh size.  

8 node 3-D solid elements were adopted here and appropriate mesh refinement was 

used in the vicinity of the debond front region to ensure the accuracy of J-integral and 

VCCT calculations. 
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The detail of the used finite element mesh is shown in Fig.3. As shown in the figure, 

there are 12 elements along the debond front, which results in 2.5 degrees of angular 

resolution. In front of and behind the debond front along fiber axis a mesh refinement 

region with length t = 2 m was created with 10 elements along t. Further refinement 

of mesh yielded similar results, indicating the convergence of the used finite element 

mesh configuration. In VCCT the adopted value of the crack extension corresponds to 

the length of the element behind the crack tip, in this case 0.2 m, which is much smaller 

than the considered debond crack lengths. 

The mesh in the debond front region t was not varied with changing the debond length 

ld. 

 

Fig.3 Detail of the finite element mesh in vicinity of the crack front. Volume representing the fiber 

shown. 

Previous study has shown that thermal loading effect on ERR in composite (in contrast 

to the situation in a single fiber specimen) is negligible compared to that of mechanical 

loading [28]. As a result, only mechanical loading is considered in the present paper. In 

the FE model (see Fig.1c), nodes at r=0 and θ =0° are fixed. Nodes on θ=0 °and θ=30° 

planes are fixed in θ direction. At z=0 plane, symmetric boundary condition is applied 

except for fiber break surface which is traction free. At far end z=Lf plane, uniform 
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displacement which equals to 1% of average tensile strain εz along z direction is applied 

to all nodes belonging to that plane. 

The outer cylindrical surface of the model (r = rc) is traction free. 

 3-D 8-node contact elements with pure Lagrange multiplier on normal and tangential 

contact were generated on the debonded fiber/matrix interface in order to minimize the 

inter-penetration due to radial compression on the contact surface, which was proved 

to be efficient in the previous study [28].  

4. Results and discussion 

In the present study carbon fiber/epoxy (CF/EP) composite with global fiber volume 

fraction Vf =0.6 was analyzed. Limited investigation of Glass fiber/epoxy (GF/EP) 

composite with fiber volume fraction Vf =0.6 was also performed in order to 

demonstrate that the trends are similar as in CF/EP composite.  Elastic properties of 

phases in the model in Fig. 1 and Fig. 2 are presented in Table 1. The effective elastic 

constants of the homogenized composite were calculated using the Hashin’s Concentric 

Cylinder Assembly model [32] and the self-consistent scheme suggested by 

Christensen [33]  (for the out-of-plane shear modulus). All the following discussions 

are based on the pure mechanical loading which equals to εz =1%.  

Table 1. Elastic properties of constituents 
 

Material E1(GPa) E2(GPa) υ12 G12(GPa) υ23 

CF 500 30 0.2 20 0.45 

GF 70 70 0.2 29.2 0.20 

EP 3.5 3.5 0.4 1.25 0.4 

CF/EP 301.44 11.039 0.273 4.063 0.543 

GF/EP 43.443 13.715 0.273 4.314 0.465 
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Note: CF-Carbon fiber , GF-Glass fiber, EP-epoxy resin, Vf =0.6 for both composites. 

 

4.1 Carbon fiber/epoxy composites 

We start with the case of carbon fiber/epoxy composites. Table 2 gives an example of 

the obtained ERR values using both, the J-intergral and the VCCT methods for two 

extreme local clustering cases with debond length  ld=25rf.  It was found that the debond 

remains closed for all the cases studied, which means Mode I ERR GI=0 all the time. 

The obtained very small negative GI value is an artificial effect of the numerical 

procedure related to approximate nature of the achieved contact: small oscillations of 

the relative radial displacement. For long debonds, see [28], the formally calculated 

small GI value can be even positive. It should be noted that such findings in the contact 

analysis have been well documented in literature, for example, in [34]. Therefore the 

GI value in Table 2 can be considered as an indicator of the accuracy achievable with 

the used mesh. The same reasoning goes for the obtained GIII value at θ=0° and θ=30° 

in Table 2 which should be zero due to symmetry. Meanwhile, for other angles, mode 

III ERR GIII is found to be less than 0.01% of the mode II ERR GII. From Table 2 it is 

also seen that the ERR obtained from J-integral method is slightly lower than GII 

obtained by VCCT. In contrary, in work on debond growth based on 3-cylinder FE 

model [6], Pupurs el al found that using the 3-cylinder axisymmetric model the J-

integral values are slightly higher than GII . Since there are no systematic trends we 

cannot conclude which method is better. We choose to use J-integral value in the 

following discussion as it is less sensitive to mesh refinement compared to those 

obtained through VCCT method. 
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The ERR calculated by J-integral along the front of debonds of different length in three 

local fiber volume fraction cases under pure mechanical loading are displayed in Fig.4 

(a)-(c). Fig 10 in [18] shows that the fiber break (crack) in reality is not a geometrical 

plane, there is a small damage zone which is about the size of fiber radius. Meanwhile, 

matrix plasticity is also expected around the damage zone due to large stress 

concentration. As a result, in order to ensure numerical accuracy and the adequacy of 

the model, the ERR should be calculated for the debond length larger than the damage 

zone. In the present study, the shortest debond length investigated is  ld=2rf .  

Table 2. The highest and the lowest ERR values at the circular debond front for  ld =25rf , CF/EP 

 =0.68 =0.78 

θ 

(°) 

J (J/m2) GI 

(J/m2) 

GII 

(J/m2) 

GIII 

(J/m2) 

J (J/m2) GI (J/m2) GII (J/m2) GIII (J/m2) 

0 53.095
7 

-0.0033 54.1728 0.0000 62.5439 -0.0026 64.2726  0.0000 

30 45.661
7 

-0.0028 46.3251 0.0000 38.2090 -0.0027 38.7811 0.0002 

 

Fig.4 (a)-(c) show that ERR is not constant along the debond front, which indicates that 

the debond front might not be circular during propagation as it was assumed: the debond 

would grow sooner in the directions with the highest ERR. For each debond length, 

maximum ERR occurs at θ=0° where the distance between the debond front and the 

neighboring fiber surface is the smallest. ERR decreases with increasing angle until 

θ=30°. However, with decreasing local fiber volume fraction, the variation of the ERR 

along the debond front (θ direction) becomes less significant, as the perturbation from 

the neighboring fiber becomes smaller with neighboring fibers moving away from the 

broken fiber. It would be expected that the ERR would be constant along the debond 

loc
fV loc
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front when neighboring fibers are sufficiently far away where the effect of the 

neighboring fibers could not be felt. Meanwhile, for each local fiber volume fraction 

case, it is also found that the ERR decreases with increasing debond length at each 

angular location along the debond front. For each debond length, the maximum ERR is 

higher in larger local volume fraction case suggesting debonds tend to grow first in the 

fiber clustering regions.  

To better interpret the angular variation of results in Fig.4 (a)-(c), the ratio and the 

difference between ERR at θ=0° and θ=30° is also calculated for each local volume 

fraction case and it is displayed in Fig. 5(a) and Fig. 5(b), respectively. The larger ratio 

or difference means more variation of ERR along debond front, which also indicates 

more significant effect of the neighboring fibers. As shown in Fig.5 (a) and (b), both 

the ratio and the difference show the same trend: it is the highest in =0.78 case, and 

decreases with decreasing local fiber volume fraction. Meanwhile, for each local 

volume fraction case, both the ratio and the difference decrease slightly with increasing 

debond length and then they tend to become constant when steady state growth region 

is approached. The observed insensitivity to debond length indicates that the debond, 

even if its shape is not circular, would not change the shape during propagation.  

 

loc
fV
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Fig. 4 (a) 

 

Fig. 4 (b) 
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Fig. 4 (c) 

Fig.4 a). Angular dependence of J-integral values for CF/EP in mechanical loading. %1z , loc
fV

=0.78, 

         b). Angular dependence of J-integral values for CF/EP in mechanical loading %1z , loc
fV

=0.72, 

         c). Angular dependence of J-integral values for CF/EP in mechanical loading %1z , loc
fV

=0.68. 

 

From Fig.4 it is clear that the ERR depends on the local fiber volume fraction and for 

each debond length, the maximum ERR occurs at θ=0 °, where the circular debond is 

most likely to grow first. In order to demonstrate the effects of the local fiber clustering 

on the ERR, the ERR at θ=0° was calculated against debond length for three local fiber 

volume fraction cases and the results are displayed in Fig. 6. 
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Fig. 5 (a) 

 

Fig. 5 (b) 

Fig.5. a) The ratio of J-integral values obtained at θ=0 ° and at θ=30 °ν b) The difference between J-

integral value at θ=0 ° and that at θ=30 ° against normalized debond length for three local fiber volume 

fractions 
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Fig. 6 The ERR at θ=0° against normalized debond length 

Locally higher fiber volume fraction facilitates the debond growth: the ERR is 

significantly higher at =0.78 than at =0.68 and the effect is nonlinearly 

increasing. In all cases the ERR is decreasing with increasing debond length, 

monotonously approaching the corresponding steady state value. Direct comparison 

with the steady state solution presented for hexagonal model in [28] is not possible 

because that solution is based on potential energy change when a perfectly bonded 

element is replaced by element with debonded fiber and, therefore, the steady state 

model gives the average value and not the angular dependence of the ERR.  

It should be noted that the same trend for the ERR holds for all angles along the debond 

front.  

The ratio of the J-integral value at θ=0° obtained in =0.78 case and the one obtained 

for the same angle in =0.68 case is also calculated and plotted against the 

normalized debond length in Fig.7. The higher the ratio is, the more significant the fiber 
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clustering effect on the ERR is. From Fig.7 it can be seen that the ratio decreases 

gradually with the increase of the debond length and becomes constant for long 

debonds, when the steady stress state is approached. 

 

 

Fig. 7 Ratio of the J-integral values at θ=0° obtained in loc
fV =0.78 case and those obtained in loc

fV

=0.68 case against normalized debond length.  

 

So far we have discussed results based on angle dependent ERR values and it is obvious 

that the debond front would not be circular during loading. However, since in reality, 

the exact shape of debond front is difficult to define as it depends on many factors. 

Therefore, it is also of merit to calculate the average of the angle dependent ERR along 

the crack front.  

Fig.8 shows the average ERR obtained by the 3-D hexagonal model and the ERR 

calculated by the 5 cylinder axisymmetric model developed in [27] for three local fiber 

volume fractions. The ERR obtained from both models has similar trend against the 
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debond length, although the ERR obtained in the axisymmetric case, with introduced 

fiber cylinder surrounding the investigated debonded fiber, is higher than the average 

ERR obtained in 3-D model. It is expected, as using a ring of fiber material in an 

axisymmetric model to represent the fiber clustering could be considered as an extreme 

case for fiber clustering where neighboring fibers are touched by each other in the 3-D 

model.  In both models the effect of the local clustering diminishes with increasing 

debond length. 

 

Fig. 8 Average ERR against normalized debond length obtained by the 3-D hexagonal model and 

axisymmetric model 

 

Fig.9 shows the ratio of the average J-integral values obtained in =0.78 case and 

those obtained in the =0.68 case. Similar trend is found as that in Fig.7 for the same 

ratio at θ=0, however, the effect of neighboring fiber is much less significant and for 

long debonds the ratio is almost equal to one.  
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Fig. 9 Ratio of the average J-integral values for loc
fV =0.78 and those for loc

fV =0.68 against 

normalized debond length. 

4.2 Glass fiber/epoxy composites 

In order to account for the effect of the fiber properties on the debond growth, the local 

fiber clustering in glass fiber/epoxy (GF/EP) composite with local fiber volume fraction 

=0.78 under the same tensile strain as in the CF/EP case was studied. =0.78 

represents the most severe fiber clustering case among investigated in the CF/EP 

material system. It was found that for GF/EP composite, similarly as to CF/EP 

composite, the debond growth under tensile mechanical loading is in Mode II. In the 

following only results obtained through J-integral method are presented.  

Fig.10 shows the ERR for GF/EP obtained by the J-integral along debond front of 

debonds with different length. Due to the lower elastic modulus of the glass fiber, the 

ERR is much lower than that in the CF/EP case. However, similar trend as that in Fig.4 

for CF/EP is foundμ  for each debond length, the ERR has a maximum at θ=0° and 

decreases with increasing angle until θ=30°. The shape of the ERR variance along the 

debond front is very similar with the CF/EP case. The average ERR versus debond 

loc
fV loc

fV



114 

 

length is plotted in Fig.11. As shown in Fig.11, the average ERR is decreasing with 

increasing debond length and tend to become constant as debond reaches the steady 

state growth region, observation that is similar to what was found in  the CF/EP case.  

Finally, the ratio of the ERR at θ=0° and θ=30° is calculated for each debond length 

and compared with that in CF/EP case, see Fig.12. It is found that although the ratio 

(angle dependence) is slightly higher in the CF/EP cases, the same trend could be found 

for both cases: the ratio decreases slightly for debond length ld up to 4 rf  and then the 

ratio tends to become constant with increasing debond length.  Based on the discussion 

above, it could be concluded that the ERR obtained for the initial stage of debond 

growth in GF/EP composites has a similar trend as that in CF/EP composites, which 

also indicates that a similar debond growth behavior could be found for both material 

systems.  

 

Fig. 10 J-integral dependence on θ for GF/EP composite in mechanical loading %1z , 
loc
fV =0.78 
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Fig. 11 Average value of the J-integral for GF/EP composite versus normalized debond length. 

 

Fig. 12 Ratio of the J-integral value obtained at θ=0 ° and that at θ=30 ° for both CF/EP and GF/EP 

composites. 

 

 

 

5. Conclusions 
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The effect of local fiber clustering on potential energy release rate (ERR) during the 

initial stage of debond growth along a broken fiber in UD composite under tensile axial 

loading has been investigated using  a model with local hexagonal fiber array with 

central broken fiber, this unit being surrounded by homogenized effective composite. 

A 3-D hexagonal FE model with contact elements on the debond surfaces was used. 

The J-integral and the VCCT method were adopted in order to calculate the ERR 

assuming thet the debond front is circular. The ERR results collected from the 3-D 

model were then compared with those obtained using a 5-cylinder axisymmetric model 

developed earlier by the same authors. Carbon fiber/epoxy UD composite and glass 

fiber/epoxy composites with global fiber volume fraction Vf=0.6 were studied. Based 

on these investigations, following conclusions are drawn: 

1. For CF/EP composites, in the presence of local fiber clustering, the ERR of 

initial short debond shows significant dependence on angle θ along the debond 

front, with the maximum ERR always found at θ=0° , where the distance 

between the broken fiber and the neighboring fiber is the shortest. That angular 

dependence is magnified for more dense fiber clustering or  for shorter debond 

length cases.  

2. For CF/EP composites, for each local fiber clustering case, ERR decreases with 

increasing debond length. Although the ERR varies along the debond front, the 

shape of the ERR variance is similar for each debond length, which suggests 

that the shape of debond front, which in fact is not circular, would remain similar 

and independent on the debond length. 

3. For CF/EP composites, the avarage ERR is not senstitive to fiber clustering.. 

4. The ERR of GF/EP composite shows similar trends as found in the CF/EP 

composite. 
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5. The average ERR obtained from the 3-D hexagonal model is slightly lower than 

the ERR from 5-cylinder axisymmetric model, which indicates that the 

axisymmetric model could be used as an upper bound to the hexagonal 3-D 

model. 
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Abstract 
  
The energy release rate (ERR) of a fiber-matrix debond crack in a unidirectional 

composite subjected to transverse tension is studied numerically. The focus of the study 

is the effect of the proximity of the neighboring fibers on the ERR. For this, a hexagonal 

pattern of fibers in the composite cross-section is considered. Assuming one fiber to be 

debonded at different initial debond arc-lengths, the effect of the closeness of the 

surrounding six fibers on the ERR of the crack is studied with the inter-fiber distance 

as a parameter. Using an embedded cell consisting of discrete fibers in a matrix 

surrounded by the homogenized composite, a finite element model and the virtual crack 

closure technique are used to calculate the ERR. Results show that the presence of the 

local fiber cluster accelerates the crack growth up to a certain initial crack angle, beyond 

which the opposite effect occurs. It is also found that the residual stress due to thermal 

cooldown reduces the ERR. However, the thermal cooldown is found to enhance the 

debond growth in plies within a cross-ply laminate.  

 
Keywords: A. Polymer-matrix composites (PMCs), B. Debonding, C. Finite element analysis (FEA) 

 
1. Introduction  
 
In many applications of composite materials, design is based on the threshold for first 

crack formation. In multidirectional composite laminates loaded in tension along 00 

plies, transverse cracking in 90° plies has been found to be the first failure mechanism 

and has been studied extensively by numerous researchers. While some of the studies 

(e.g. [1-8]) have focused on multiple transverse cracking and its effect on laminate 

deformational response, others (e.g. [9, 10]) have studied the mechanisms underlying 

formation of a transverse crack. It is commonly accepted that a macroscale transverse 

crack forms by the coalescence of fiber/matrix debonds. Asp et al [11-13] studied the 

local stress field around fibers in the cross-section of a unidirectional (UD) composite 

loaded in transverse tension and based on energy considerations proposed that the 
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debonding results from unstable growth of a cavity in the matrix near the fiber surface. 

These studies clarified the role of the triaxiality of the local stress field in initiation of 

debonding. Therefore, while many studies of debonding have focused on single-fiber 

composites [14-22], a proper understanding of debond initiation and growth is expected 

to come from multiple-fiber composite studies. Recently, a few studies have gone in 

this direction [23-25]. In [23, 25] the approach taken was to use a cohesive zone model, 

which has the interface strength and fracture toughness as two material properties. As 

noted above, Asp et al [11, 13] showed that failure at the fiber-matrix interface depends 

on the triaxial stress state, not on the tensile stress alone. This casts doubt on the use of 

a cohesive zone model for studying the debonding process. In [24], the concurrent and 

growth debonds have been investigated by linear elastic-brittle fracture based on a 

numerical model containing ten fibers embedded in a matrix cell. However, no detailed 

information about the influence of local fiber bundles on debond growth could be 

obtained from that paper. While these studies have been useful in generating 

understanding of the local interactions in the debonding process, two aspects need 

further clarity. First, the influence of inter-fiber distance on debond growth in a fiber 

cluster needs to be understood, and second, the debonding process should be analyzed 

in terms of the energy release rate (ERR) of the arc-shaped interface crack. These two 

aspects have been studied by Sandino et al [26], but only for a two-fiber case. These 

authors placed an undamaged fiber at different locations near a central fiber with 

debond and investigated how that affected the ERR of the debond crack. In their work, 

they found that the neighboring fiber has a protective effect on debond growth at all 

positions except when the fibers are aligned with the loading direction. As useful as 

their results are, the two-fiber composite model is still not representative of a real 

composite where multiple neighboring fibers are distributed around the fiber with 

debond.  

 
The present paper specifically investigates the influence of neighboring fibers on the 

growth of a debond crack in a UD composite subjected to uniaxial transverse loading. 

Previous works by some of the current authors [27-29] for longitudinal debond growth 

along the fiber length of a fragmented fiber under axial loading indicated that the 

neighboring intact fibers influence this debonding at short debond lengths before the 

debond reaches the state-steady growth stage. Following [28, 29], we place an initially 
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debonded fiber at the center of a hexagonal fiber arrangement. Recognizing that the 

nearest fibers have the most significant effects on the stress field near the debond crack 

tip, six nearest surrounding fibers are modelled explicitly. The inter-fiber distance 

between the central fiber and the neighboring fibers is varied in order to capture the 

local fiber clustering effects. The rest of the hexagonally packed composite is 

represented by a homogenized effective composite material with its thermo-elastic 

properties calculated by micromechanics. The whole UD composite is subjected to 

transverse loading.  

 

Experimental observations in [17] indicated that a fiber in transverse tension debonds 

from the matrix over a much larger length in the axial direction than in the 

circumferential direction. Therefore, the analysis here is carried out under plane strain 

conditions. Assuming linear elastic matrix and fibers, the ERR, which is the driving 

force for debond growth, was calculated by the Virtual Crack Closure Technique 

(VCCT) using Finite Element (FE) software ANSYS [30].  

 
2. Finite element model and boundary conditions 

 
Details of the model are shown in Fig. 1. Due to the symmetry, only half of the 

composite is modelled. For the finite element (FE) computations, the initially debonded 

fiber is placed at the center of the model. The debond crack is placed on one side of the 

fiber surface with its mid-point normal aligned with the transverse loading direction. 

The debond have two tips and is assumed to propagate symmetrically with respect to 

the symmetric line, as shown in Fig.1. The debond crack size is quantified by the angle 

θ, as indicated in Fig. 1. The debonded fiber is surrounded by six intact fibers in 

hexagonal pattern and the seven-fiber assembly within a circular matrix region is 

embedded in the homogenized composite. The fiber radius rf = 4 ȝm and the radius of 

circular matrix region RMO is chosen such that the fiber volume fraction (denoted Vf ) 

within this region equals the global fiber volume fraction of the composite. The half-

height and width of the model are chosen as L=20RMO and  
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Fig.1 Model description 
 

W=40RMO, respectively, beyond which the calculated ERR of the debond crack is not 

affected by the size of the model. As a measure of the local fiber distribution, we will 

use here the local volume fraction  as defined in Eqn (1).  

 

                                                                                                  (1) 

 

As indicated in Fig. 1,  represents the fraction of the cross-sectional area of the 

fibers inside the hexagon joining the centers of the fibers surrounding the debonded 

fiber, as shown in Fig.1.  Thus, a lower local volume fraction represents larger inter 

fiber distance ID and vice versa.  

 

As shown in Fig.1, the x-displacement is applied uniformly to the right edge (x = W) 

of the model, while it is constrained on the left edge, to induce the strain ε= 0.5%. For 

relatively small debond angles, 2-D quadratic plane strain elements with pure Lagrange 

multipliers on normal and tangential contact were generated on the debond surface to 
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model contact behavior with minimal interpenetration. When the debond grows to a 

much larger angles (θ > 90°), penalty-based contact elements were generated to ensure 

quicker convergence. It is noted that a separate study (not presented here) of the effects 

of different contact algorithms on the calculated ERR was also conducted, finding that 

the difference between the two algorithms adopted here is small when debond surfaces 

are in contact.   

 

In the present paper, dimensionless ERR will be presented by normalizing the obtained 

ERR by G0 (Eqn. 2), as in previous studies [14, 26]. It is noted that although G0 in [14] 

was proposed for isotropic materials, we shall use it here with the justification that the 

UD composites considered here are transversely isotropic. For each fiber volume 

fraction of the composite, G0 will be calculated using the composite properties in the 

transverse plane (see Table 1). G0 is given by 

                                                   

                                 G0 = ((1+k) / 8μ) σ0
2 rf π                                                             (2) 

 
where k = 3 – 4Ȟ, and Ȟ is the Poisson’s ratio and ȝ is the shear modulus. These elastic 

properties here are for the isotropic transverse plane of the composite. The applied 

tensile stress σ0 is calculated using the imposed strain x and the transverse composite 

modulus.  

 
 

3. Results and discussions 
 

The material in the present study is carbon fiber/epoxy (CF/EP) composite with global 

fiber volume fraction Vf =0.6 and Vf =0.4. To confirm the observed trends a limited 

investigation of Glass fiber/epoxy (GF/EP) composite with fiber volume fraction Vf 

=0.6 was also conducted. Material thermo-elastic properties in the model are presented 

in Table 1. The effective elastic constants of the homogenized composite were 

calculated using Hashin’s Concentric Cylinder Assembly model [31] and the self-

consistent scheme suggested by Christensen [32]  (for the out-of-plane shear modulus).  
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Table 1. Thermal-elastic properties of constituents  
Material E1 

(GPa) 
E2 

(GPa) 
υ12 G12 

(GPa) 
υ23 α1  

(1/°c) 
α2  

(1/°c) 
G0 

(J/m2) 
CF 500 30 0.2 20 0.45 -1∙10-6 7.8∙10-6 N/A 
GF 70 70 0.2 29.2 0.2 4.7∙10-6 4.7∙10-6 N/A 

Epoxy 3.5 3.5 0.4 1.25 0.4 60∙10-6 60∙10-6 N/A 
CF/EP  

(Vf = 0.6) 
301.4 11.04 0.27 4.06 0.54 -0.66∙10-6 35.85∙10-6 2.44 

CF/EP  
(Vf = 0.4) 

202 7.56 0.31 2.61 0.59 -0.28∙10-6 50.97∙10-6 1.55 

GF/EP 
(Vf = 0.6) 

43.4 13.7 0.27 4.31 0.46 6.86∙10-6 32.2∙10-6 3.38 

  

To calculate the ERR of the debond crack, VCCT was adopted. It has been well 

documented that for an interface crack between two dissimilar materials (here: debond), 

Mode I and Mode II components of the ERR are not well defined [33-36]. As a result, 

the calculated ERR modes here depend on the size of the near tip element. In the current 

study, the size of the near tip element is �௙ ∙ ��, where �� = 0.5°, as shown in Fig.2. 

Due to the lack of available data, the validation of the current FE model was conducted 

by comparing the debond crack ERR obtained by using the current FE model with those 

obtained by Sandino et al [26] for a single-fiber glass/epoxy composite using the BEM 

model . In order to model the single-fiber composite using the current FE model, the 

material properties of neighboring fibers and the homogenized composite were replaced 

with matrix properties. The validation results are presented in Fig.3. As displayed in 

Fig.3, the ERR calculated by both numerical models are practically the same. 

 



131 

 

 

Fig.2 Details of mesh near debond tip 
 

 

 

Fig.3. Comparison of obtained ERR results for a single fiber composite with 
numerical model in reference [26]. 

 
 
3.1 Carbon fiber/epoxy composite, Vf = 0.6   
 
We first analyze the case of carbon fiber/epoxy composite with ௙ܸ = Ͳ.͸. Figure 4 

shows the obtained ERR normalized with respect to G0 (Table 1) for mechanical 
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loading only (x = 0.5%). The initial debond was varied from the smallest value of θ = 

2° and ௙ܸ௟�௖  was selected at three values 0.66, 0.72 and 0.78. As seen from the figure, 

debond growth is in mixed-mode for all ௙ܸ௟�௖ cases. For debond angles slightly greater 

than θ = 2° and until θ ≈ 70°, both ERR components GI and GII increases initially with 

the debond angle, attaining a maximum and then decreasing. Beyond θ ≈ 70° GI is 

practically zero and the debond growth is driven by GII.  The GI component attains a 

maximum at θ ≈ 20°, for all cases, while, the maximum value of GII occurs at θ ≈ 50°. 

The debond growth becomes Mode II dominated at θ ≈ 30° and at θ ≈ 70°, where GI = 

0, a physically relevant finite contact zone where corresponding contact element status 

changed from open to contact was detected. Therefore, θ =70° is considered as a 

transition angle (denoted θt) beyond which debond grows in pure Mode II.  

 

 

Fig.4. Normalized ERR with respect to debond angle for CF/EP UD composites under 
mechanical loading. εx = 0.5%. Vf = 0.6  

 

It can be seen from Fig. 4 that as ௙ܸ௟�௖ increases, i.e., as the fully bonded fibers get closer 

to the debonded fiber, the ERR of the debond crack decreases. However, exception is 

for GI at θ = 2° where the opposite trend is seen. Thus, between the computed GI values 

at θ = 2° and at θ = 10° there is a switchover in the effect of the surrounding fibers on 

the debond growth. To confirm this, the radial opening of the debond crack along its 

length (debond angle) is plotted for θ = 2° in Fig. 5 (a) and for θ = 10° in Fig. 5 (b). 
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The switchover effect is indicated by the crack opening, confirming the behavior seen 

in GI. In Fig. 6 (a) and 6 (b) the radial normal stress on the interface ahead of the debond 

crack is plotted for the two cases. Once again, the trend in GI is confirmed by these 

results.  

 

The ERR results in Fig. 4, and the switchover in the GI trend with inter-fiber distance 

at small debond angles described above, illustrate the interplay between the so-called 

“enhancement” and “shielding” effects on the debond crack tip stress field due to the 

proximity of the surrounding fibers. As other studies [23, 26] have found, the 

enhancement effect dominates when the line joining two adjacent fibers is aligned with 

the transverse loading direction, and the shielding effect depends on how much the line 

is rotated with respected to the loading direction.  

 

 

 
 

Fig. 5 (a) Debond opening near the debond tip. Debond angle θ = 2°, 
εx=0.5%. 
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Fig. 5 (b) Debond opening near the debond tip. Debond angle θ = 10°, 

εx=0.5%  
 

 

 
 
 
 

 
Fig. 6 (a) Radial stress distribution along the bonded interface ahead of 

the debond tip. Debond angle θ = 2°, εx=0.5%  
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Fig. 6 (b) Radial stress distribution along the bonded interface ahead of 

the debond tip. Debond angle θ = 10°, εx=0.5%  
 

 
 
3.1.1 Thermal cooldown effects   
 
Since processing of carbon/epoxy composites often involves cooldown from the curing 

temperature, we investigate the effect of the local thermal stresses generated by the 

cooldown temperature ΔT = -100°C. This temperature change was applied uniformly 

to the model (Fig. 1) and was followed by a uniform displacement at � = ܹ to result 

in the mechanical strain �௫ = Ͳ.ͷ%.  The residual stress field induced by chemical 

shrinkage due to curing was, however, not included directly. As shown in [37], the 

thermal cool-down is the main contributor to the development of residual stresses and 

in a linear thermo-elastic analysis the effect of chemical shrinkage can be formally 

included as a part of thermal stress by taking a higher stress free temperature [38]. Fig. 

7 displays the ERRs calculated for different ௙ܸ௟�௖ . As can be seen, for all ௙ܸ௟�௖ cases 

considered, the presence of thermal stress does not significantly alter the overall 

behavior of the ERR for debond growth compared to the mechanical loading case, 

except for small debond angle (θ < 5°) where now the trend seen in the mechanical 

loading case (Fig. 4) with respect to the influence of ௙ܸ௟�௖ is absent. This behavior can 

be attributed to the compressive radial stress on the fiber surface caused by thermal 

cooldown. To clarify this effect, in Fig. 8 we plot this stress on the central bonded fiber 
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in the hexagonal fiber configuration along the interface for the three case of ௙ܸ௟�௖.  In 

accordance with the observed effect in [39, 40], the magnitude of the compressive stress 

on the interface near the symmetry plane (θf = 0° in Fig. 8) increases with increasing 

௙ܸ௟�௖ . Comparing the ERR results in Fig. 4 and Fig. 7, we see that the presence of 

thermal stress reduces both ERR components, and that the reduction on Mode I 

component is more significant. That is due to the overall radial compressive stress field 

developed during thermal cool-down. This finding is similar to that  in the single fiber 

composite case [21] where the authors found that thermal residual stress has a protective 

effect on debond growth. A closer look at Fig. 7 shows that there are local perturbations 

in GII values in certain positions along the interface. These perturbations, although not 

significant (as GII has passed the maximum), display the effect of the local micro-

structure on the local stress field.  

 

 
Fig.7. Normalized ERR with respect to debond angle for CF/EP UD composites under 
thermo-mechanical loading. Vf = 0.6 , ΔT=-100°C, εx=0.5%  
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Fig. 8. Radial stress distribution along bonded fiber/matrix interface due to thermal 

cool-down, ΔT=-100°C. 
 

 
3.1.2 Laminate constraint effect 
 
The thermo-mechanical analysis described above was for a UD composite where on the 

macroscale the material is free to contract during the thermal cool-down. If the UD 

composite is within a multidirectional laminate, its contraction in a given direction will 

be different from its free contraction due to the mutual constraint induced by the 

differing thermal expansion coefficients of the layers in a laminate direction. The most 

extreme case of the constraint is for the 900 layer in a cross-ply laminate where the 

thermal expansion coefficient differs most from the adjacent 00 layer. In fact the value 

of the thermal expansion coefficient of the carbon/epoxy in the axial direction is very 

small (Table 1). Since the 0-layer in this direction is also very stiff, it will not allow the 

90-layer to contract in this direction during the cool-down. Thus, as an approximation,  �௫ = Ͳ  (x is the 900 direction) for the cross-ply laminate on thermal cooldown. For the 

90-layer in the laminate the strain induced by thermal cooldown is �௫ଵ = −��ℎ , the 

negative of the free thermal contraction, i.e. a tensile strain. In addition to this strain we 

apply, as before, �௠௘௖ℎ = Ͳ.ͷ% to the laminate. This is the same as applying �௫ =−��ℎ + Ͳ.ͷ% to the thermally contracted layer. For the considered composite at ΔT = -

100°C we thus have   �௫ = Ͳ.͵͸% + Ͳ.ͷ% =  Ͳ.ͺ͸%  and with this as the applied 

mechanical strain we calculate the ERR for a 90-layer within a cross-ply laminate. 
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Fig. 9 shows the obtained ERR for debond growth in 90° ply of a cross-ply laminate 

calculated with �௫ = Ͳ.ͺ͸% . The trends in both Mode I and Mode II components with 

respect to the debond angle are the same as those for the UD composite under 

thermomechanical loading (Fig. 7) but the ERR values are higher.  This suggests that 

the presence of mesoscale thermal stresses promotes the debond growth in transverse 

plies of a laminate. This effect might ultimately aid the formation of transverse cracks 

by coalescence of debonds and can be a likely explanation of transverse cracks seen on 

thermal cooldown, as reported e.g. in [41-44]. 

 

 
 
Fig. 9. Normalized ERR with respect to debond angle for CF/EP UD plies, equivalent 
to 90-layers of CF/EP cross-ply laminate under thermo-mechanical loading. Vf = 0.6, 
ΔT=-100°C, εx=0.86% 
 

 
3.2 Carbon fiber/epoxy composite, Vf = 0.4   
 
We now study the debond ERR for the same CF/EP composite as above, but with a 

lower fiber volume fraction, Vf = 0.4 in order to get some insight into the effect of the 

global fiber volume fraction. Figures 10 and 11 show the obtained ERR normalized 

with G0 calculated using composite properties for this case (Table 1), for mechanical 

loading only (Fig. 10) and for thermo-mechanical loading (Fig. 11). It can be seen that 



139 

 

the trends for Mode I and Mode II component in this case are very similar to those for 

Vf = 0.6 case (Figs. 4 and 7). Comparing Fig. 4 and Fig. 10 we see that the normalized 

ERR components are very similar, which indicates that the debond stress field is indeed 

affected mostly by the local geometry. However, the G0 is approximately 50% larger 

for Vf = 0.6, which means that the real values of ERR are also about 50% larger, which 

in turn means that the strain levels for debond growth in Vf = 0.6 are lower. When 

comparing the results in Figs. 10 and 11, it’s found that the presence of the thermal 

stresses reduces ERR, and the effect is larger for Vf = 0.4 than for Vf = 0.6, as the UD 

composite  contracts  transversely more due to higher transverse thermal expansion 

coefficient at Vf = 0.4 than at Vf = 0.6.  

 

 
 

Fig.10. Normalized ERR with respect to debond angle for CF/EP UD composites 
under mechanical loading. Vf = 0.4, εx=0.5%  
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Fig. 11.  Normalized ERR with respect to debond angle for CF/EP UD composites 
under thermo-mechanical loading for Vf = 0.4, ΔT=-100°C, εx=0.5% 
 

 

 
3.3 Glass fiber/epoxy composite, Vf = 0.6   
 
Finally, we study one case of UD glass fiber/epoxy composite (GF/EP) with Vf = 0.6 in 

order to understand the influence of the fiber stiffness. The results for the normalized 

ERR under pure mechanical loading are displayed in Fig. 12. Again, G0 in this case is 

based on glass fiber composite properties listed in Table. 1.  As shown in Fig. 12, the 

overall behavior of debond growth at each debond angle is similar to that in CF/EP 

discussed above. The transition angle θt ≈60° in this case and is lower than that in CF/EP 

composite with the same ௙ܸ  ( �� ≈ ͹Ͳ°ሻ  but very close to that in a single-fiber 

composite (Fig. 3). The presence of thermal stress reduces the ERR and results also in 

a smaller transition angle for pure Mode II debond growth (θt ≈ 50°), as shown in Fig. 

13.  

 

In general, for applied mechanical loading, in all composite cases considered here the 

normalized ERR in Mode I is much larger than in a single fiber composite: the 

maximum normalized values of Mode I and Mode II ERR are approximately of the 
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same magnitude in composites whereas in the single-fiber case the normalized Mode I 

value is less than 30% of the Mode II maximum value (Fig.3). 

 

 
Fig.12. Normalized ERR with respect to debond angle for GF/EP UD composites 
under mechanical loading. Vf = 0.6, εx=0.5% 
 

      

 
Fig.13. Normalized ERR with respect to debond angle for GF/EP UD composites 
under thermo-mechanical loading for Vf = 0.6, ΔT=-100°C, εx=0.5% 
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3.4 Transition angle θt for pure Mode II debond growth 
 
Based on the results described above, at debond angles � > �� , the crack faces in the 

crack tip region are in contact and Mode I ERR is zero. The debond growth then changes 

from mixed mode to pure Mode II. This transition angle is of interest in view of the 

finding in Paris et al [20] that in a single-fiber composite the debond crack is most likely 

to kink out of the interface into the matrix at an angle very close to this angle. As a 

result, for a single-fiber composite, smaller transition angle will likely result in an 

earlier kinking out of the debond crack. The kinking out process in a UD composite is 

likely more complex and will be fully investigated in a future study. Here we focus only 

on the transition angle and summarize our findings with respect to that in Table 2 and 

have the discussions below: 

 

Table 2. Summary of transition angle θt for different cases 
 Mechanical loading Thermo-mechanical loading 
Composites CF/EP 

(Vf=0.6) 
CF/EP 

(Vf=0.4) 
GF/EP 

(Vf=0.6) 
CF/EP 

(Vf=0.6) 
CF/EP 

(Vf=0.4) 
GF/EP 

(Vf=0.6) 
θt (°) 70 65 60 60 50 50 

 

 

Under mechanical loading, the transition angle ��for the composites analyzed here is 

found to have the following values. a) For CF/EP composite,  �� ≈ ͹Ͳ° at  ௙ܸ =0.6, and �� ≈ ͸ͷ° at   ௙ܸ =0.4. Thus, in both cases �� is not sensitive to the local fiber volume 

fraction. b)  For GF/EP composite,  �� ≈ ͸Ͳ° at ௙ܸ =0.6 , which is slightly lower than 

in CF/EP composite with the same ௙ܸ (≈ ͹Ͳ°), and is practically the same for a single-

fiber composite.  Therefore, we conclude that the transition angle is rather insensitive 

with respect to the constituent properties, the average fiber content ௙ܸ and the local fiber 

content ௙ܸ௟�௖. 

 

In thermo-mechanical loading the transition angle is found to be smaller: ≈ ͸Ͳ° for  ௙ܸ = Ͳ.͸ ; ≈ ͷͲ° for ௙ܸ = Ͳ.Ͷ for CF/EP composites and ≈ ͷͲ° for GF/EP composite 

with ௙ܸ = Ͳ.͸ .  
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3.5 Applicability of the principle of linear superposition 

In the previous sections we have shown that the presence of thermal stress leads to the 

reduction of ERR in a UD composite and the level of reduction depends on the applied 

temperature change (ΔT = -100°C in the current paper). Usually in linear elasticity the 

stress state in combined thermal and mechanical loading can be obtained as a 

superposition of the stress state in purely mechanical loading and the stress state from 

purely thermal loading.  Theoretically speaking this principle is not applicable in the 

debond growth analysis performed in this paper. The reason is that the zone where the 

matrix and the fiber are in contact is different in the thermal, the mechanical and the 

mixed thermo-mechanical cases. This means that the interface conditions in these three 

cases are different, so they are three different types of elasticity problems and 

superposition is not possible. The implication of this situation is that for each new 

combination of the mechanical and thermal load (different temperature) new FEM 

calculations are required. 

Since these calculations and data analysis are time consuming, a reasonable question 

arises: even if it is theoretically incorrect, how big is the error if we use the 

superposition? 

Linear superposition would mean that for any combination of mechanical and thermal 

loads the ERR can be written 

���బ = ሺܥଵሺ�ሻ�௫ +                                                ଵሺ�ሻ∆�ሻଶ                                         (3)ܦ

                                               

����బ = ሺܥଶሺ�ሻ�௫ +    ଶሺ�ሻ∆�ሻଶ                                                               (4)ܦ

     

The � − dependent ܥଵ and ܥଶ can be calculated from ERR data in purely mechanical 

loading 

ଵሺ�ሻܥ = ଵ�ೣ √���೐�ℎሺ�ሻ�బ ଶሺ�ሻܥ    = ଵ�ೣ √�మ�೐�ℎሺ�ሻ�బ                                                  (5)       
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To find ܦଵሺ�ሻ and ܦଶሺ�ሻ FEM calculations for one thermo-mechanical case are 

required (for example using the same �௫ as in the mechanical loading and selecting 

value ∆�ଵ ). From (3) and (4) follows 

ଵሺ�ሻܦ = ଵ∆�భ [√���ℎ−�೐�ℎሺ�ሻ�బ − ଶሺ�ሻܦ      [ଵሺ�ሻ�௫ܥ = ଵ∆�భ [√����ℎ−�೐�ℎሺ�ሻ�బ −        ଶሺ�ሻ�௫]    (6)ܥ

As an example we consider CF/EP composite with ௙ܸ = Ͳ.͸ and local fiber content 

௙ܸ௟�௖ = Ͳ.͹ʹ. The two loading cases used to determine ܥ�ሺ�ሻ and ܦ�ሺ�ሻ, � = ͳ,ʹ are: a) 

purely mechanical loading �௫ = Ͳ.ͷ% ; b) thermo-mechanical loading with �௫ = Ͳ.ͷ% 

after application of ∆�ଵ = −ͳͷͲ℃. The ERR values for these cases are given in Table 

3. 

 
Table 3.  ERR in thermo-mechanical loading at two different cool-down temperatures 
and in pure mechanical loading. (CF/EP composite with ௙ܸ = Ͳ.͸,  ௙ܸ௟�௖ = Ͳ.͹ʹ, �௫ =Ͳ.ͷ% ) 
 

 ΔT1=-150°C Mechanical 
θ (°) GI / G0 GII / G0 GI / G0 GII / G0 

2 0.098 0.003 0.217 0.009 
10 0.334 0.030 0.659 0.090 
20 0.471 0.128 0.735 0.277 
30 0.406 0.358 0.549 0.530 
40 0.179 0.612 0.281 0.685 
50 0.010 0.695 0.111 0.696 
60 0.00 0.555 0.035 0.676 
70 0.00 0.354 0.00 0.613 
80 0.00 0.195 0.00 0.487 
90 0.00 0.176 0.00 0.391 
100 0.00 0.220 0.00 0.346 
110 0.00 0.189 0.00 0.270 
120 0.00 0.062 0.00 0.103 
130 0.00 0.00 0.00 0.022 
140 0.00 0.085 0.00 0.010 
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The obtained parameters were used in (3) and (4) to predict ERR for thermo-mechanical 

loading with �௫ = Ͳ.ͷ% and ∆� = −ͳͲͲ℃.  The predictions and the FEM calculations 

for this case are shown in Fig 14. 

Fig. 14 shows that the agreement is excellent, showing that even being theoretically 

inapplicable the principle of superposition can be used. It is not too surprising because 

results presented in this paper show that the transition angle for pure Mode II (onset of 

large contact zone) depending on the loading case is between ͸Ͳ° and ͹Ͳ°. In this 

debond size region we should expect problems applying the superposition whereas for 

much smaller or much larger debond angles the calculated ERR should be acceptable. 

We can see in Fig. 14 that even in the transition angle region the predictions are good 

but it is only because the values of �� �଴⁄  are small (the error in % can be large). 

 

Fig. 14. Comparison of obtained ERR using linear supposition and FEM. Vf = 0.6, 
ΔT=-100°C, εx=0.5%, ௙ܸ௟�௖ = Ͳ.͹ʹ 

 

4. Conclusions  
 

This study has examined the fiber clustering effects on fiber-matrix debond growth in 

UD composites subjected to transverse tension. To systematically study these effects, a 

hexagonal packing arrangement of fibers with a centrally placed debonded fiber was 

taken. The ERR of the debond crack was studied by varying the interfiber spacing of 
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the fibers (quantified by the local fiber volume fraction). The Mode I and Mode II 

components of the ERR were calculated by the VCCT for CF/EP and GF/EP 

composites at different global fiber volume fractions. From the findings of the study, 

the following conclusions are drawn.   

 (1). Both Mode I and Mode II components increase first with increasing debond angle 

and then decreases after reaching maximum at different debond angles. Debond growth 

is Mode I dominated at the early stage and switches to Mode II dominated growth until 

debond surfaces come into contact, at which point the growth is in pure Mode II.  

(2). For all the cases considered in this paper, the presence of the neighboring fibers is 

found to increase the ERR when debond angle is small (θ < 5° in this paper), primarily 

due to the enhancement caused by the neighboring fiber aligned with the loading 

direction. However, at larger debond angles the ERR is lowered by the close presence 

of the neighboring fibers, indicating a protective effect with debond growth. This effect 

is similar to what was found in a two-fiber composite [26].  

(3). Residual stress due to thermal cooldown has a protective effect on debond growth 

due to the local compressive stress. However, if the UD composite is placed as 90° plies 

within a multi-directional composite laminate, the same thermal cool-down will 

enhance the debond growth. 

(4). Under transverse stress, the transition angle beyond which the debond growth 

becomes purely Mode II has been found to be relatively insensitive to the constituent 

properties (glass or carbon fibers, fiber volume fraction) and the local fiber volume 

fraction. The transition angle has been found to decrease by a few degrees when thermal 

cooldown of 1000C is taken into account.  

(5). The principle of linear superposition for thermal and mechanical loading, which 

theoretically does not apply to the debond problem, has been found to give accurate 

results for the ERR calculated here. 
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Paper E 
 

 

Growth and interaction of debonds in local clusters of fibers in unidirectional 
composites during transverse loading 
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Abstract. Fiber/matrix debonding in transverse tensile loading of a unidirectional 

composite is analyzed calculating  energy release rate (ERR) for interface crack 

propagation. Non-uniform fiber distribution (local hexagonal fiber clustering) is 

assumed in the model. The matrix region containing the central fiber with the debond  

and the 6 surrounding fibers is embedded in a large block of homogenized composite 

which has the same fiber content as the region analyzed explicitly. Some of the fibers 

surrounding the central fiber may also have a debond. The effect of the local clustering 

and of the presence of other debonds on magnification of the ERR is analyzed. 

Introduction 

A commonly accepted scenario analyzing initiation of transverse failure in 

unidirectional (UD) composites or in composite laminates containing 90° plies assumes 

that the macro crack is formed by coalescence of fiber/matrix debonds on the 

microscale, see [1, 2] as examples. Single fiber composite has been widely adopted to 

investigate the debond growth in the hoop direction using mostly numerical methods, 

see [3] for application of BEM. Recently, several studies have been performed to 

investigate the progressive debonding behavior of one fiber using numerical models 

containing multiple fibers [4,5]. However, limited progress has been made on 

understanding of the effects of the local micro-structure in composites on energy release 

rate (ERR), which is typically considered as the driving force for the debond growth. 

Sandino et al [5] investigated the influence of a nearby perfectly bonded fiber on debond 
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growth around the second fiber in a two fiber composite subjected to transverse loading. 

The bonded fiber was placed in different positions near the central fiber with debond 

and the effect of location parameters on the ERR was investigated. They found that the 

neighboring fiber has a protective effect on debond growth at all positions except at the 

location that is aligned to the loading direction. However, the two fiber composite 

model is still not an entirely adequate representation of a typical fiber clustering in 

unidirectional composite. The influence of neighboring perfectly bonded fibers on the 

debond growth around the central fiber in transverse loading of a UD composite was 

studied in [6]. A fiber with an initial debond, see Fig.1, was placed in the center of a 

UD composite with local hexagonal fiber packing. Only 6 fibers near to the central fiber 

with debond were modeled explicitly. The inter-fiber distance between the central fiber 

and the perfectly bonded neighbors was varied in order to account for local fiber 

clustering. The rest of the hexagonally packed UD composite was represented by a 

homogenized effective composite material with thermo-elastic properties calculated 

using micromechanics. It was found that the debond growth is Mode I dominated at 

early stage and then it switches to Mode II dominated growth until the debond surfaces 

come into contact and the further growth is in pure Mode II. It was shown tha the 

distance to the neighboring fibers does not affect the ERR significantly.  

Composite model with debonded fibers. 

The model shown in Fig. 1 was described in the Introduction. Due to symmetry, only 

the upper part of the composite is modeled. The debond arc length is represented by 

“debond  angle” �. In calculations the fiber radius rf = 4 ȝm. The fiber content in the 

matrix area is equal to the fiber volume fraction, Vf  in the effective composite. In the 

model  ܮ = ʹͲ ∙ �ܯ�  and  ܹ = ͶͲ ∙ �ܯ� . We will use the normalized inter-fiber 

distance �ܦ� = ܦ�  �௙⁄ = Ͳ.ͳͷ; Ͳ.ʹͷ ܽ�� Ͳ.͵ͷ  to represent the local volume fraction 

௙ܸ௟�௖  (0.66, 0.72, 0.78).  For the global  ௙ܸ =0.6 used in this paper, �ܦ �௙⁄ = Ͳ.Ͷ͸ . 

Symmetry conditions are applied on the left side of the model and uniform displacement 

(0.5% strain) is applied at x=W. For relatively small debond angles, 2-D quadratic plane 

strain elements with pure Lagrange multipliers on normal and tangential contact were 

generated on the debond surface to model the contact behavior with minimal 

interpenetration. Penalty based contact elements were generated to ensure quicker 
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convergence for debonds with θ > 90°. The ERR is considered as the driving force for 

debond growth and it was calculated by the Virtual Crack Closure Technique (VCCT) 

using Finite Element (FE) software ANSYS. The size of the near tip element was �௙ ∙��  where dθ = 0.4°. 

 

 
 

Figure 1. Schematics of the model used for debond growth analysis around the central 
fiber showing explicitly the central fiber and the 6 closest fibers. One of them may have 
a Semi-angle of 60° debond on one side. The fiber/matrix unit is embedded in a 
homogenized composite. 
 

Results and analysis 

Results are presented for carbon fiber/epoxy (CF/EP) composite with Vf =0.6. Thermo-

elastic properties of materials are: for fiber  E1f=500 GPa, E2f=30 GPa, υ12f  =0.2, G12f 

=20 GPa, υ23f =0.45; for matrix Em=3.5 GPa, υm  =0.4, Gm=1.25 GPa. Elastic constants 

of the homogenized composite are E1=301.4 GPa, E2=11.04 GPa, υ12 =0.27, G12 =4.06 

GPa, υ23 =0.54 The elastic constants of the homogenized composite were calculated 

using the Hashin’s Concentric Cylinder Assembly model [7] and the self-consistent 

scheme suggested by Christensen [8] (for the out-of-plane shear modulus).  

Three cases of the composite with microdamage have been analyzed: 

Case 1μ The central fiber has a debond angle θ. Remaining fibers are perfectly 

bonded. 

Case 2: The central fiber has a debond angle θ. Fiber F1 has Semi-angle of 60° 

debond on the left side. 
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Case 3μ The central fiber has a debond angle θ. Fiber F2 has 60° debond on the right 

side. 

The Case 1 is the same as analyzed in [6]. Results presented for Case 1 and Case 2 in 

Fig. 2 can be used to analyze the effect on ERR of the second 60° degrees debond on 

the left side of fiber F1. In Case 1, for small debond angles the GI is larger than GII , the 

GI reaching maximum at about 20°. After that, GI decreases and for large debonds 

(θ>60°) where the crack faces are in contact it turns to zero. The maximum value of 

GII, which is similar to the GI maximum value, is reached at about 60°. If thermal 

stresses are also included in the analysis (∆� ≈ −ͳͲͲ℃ due to cooling down to room 

temperature after manufacturing) the Mode I ERR is about 20% lower as an effect of 

compressive radial thermal stresses due to larger thermal expansion coefficient of the 

resin. The maximum value of GII and its position remains almost unaffected by the 

temperature change. The main conclusion from Fig. 2 is that the presence of the F1 

fiber debond significantly magnifies the ERR for debond propagation around the central 

fiber. For Mode I propagation in Case 2 there are even two local maxima: one has a 

similar location as for the Case1 when all the surrounding fibers are perfectly bonded. 

However, the GI ERR is magnified more than two times comparing with Case 1. The 

second peak in GI is for debond angle close 60°, where the line connecting the central 

fiber with F1 fiber goes directly through a) the debond crack tip of the central fiber and 

b) the middle of the F1 fiber debond (30°) which is open. The value of the second peak 

is lower than the value of the first peak but it becomes more significant with increase 

of IDn (higher local fiber content). It is expected that reducing the interfiber distance 

even more, this second local maximum would become the most important. It means that 

for a debond, created and growing in dominant Mode I, the growth which is unstable in 

the very beginning would slow down and an increasing load would be necessary for it 

to grow to 60° size when it becomes unstable again due to interaction with the F1 fiber 

which has 60° debond. The large value of GII in this debond angle region would 

contribute to accelerated growth of the debond.  The maximum value of GII in Case 2 

is almost five times higher than in Case 1and the maximum is shifted to larger debond 

angle (close to 70°). Looking in more details, one can notice an entirely different effect 

of the normalized interfiber distance, IDn on the ERR. In Case 1 the interfiber distance 

has a marginal effect with slightly lower ERR for cases with small IDn. More detailed 

analysis can be found in [6]. Due to the presence of the second debond in Case 2, the 
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trends are opposite: a) the ERR is much more sensitive to the IDn value; b) the ERR is 

significantly higher if the surrounding fibers (including the F1 fiber with Semi-angle of 

60° debond) are close to the central fiber. 

 
 

 
 

(a) 
 
 

 
(b) 

 
Figure 2. Energy release rate versus debond length and Case 1 and Case 2 for different 
values of interfiber distance: a) Mode I: b) Mode II. 
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(b) 
 
Figure 3. Energy release rate versus debond length and Case 2 and Case 3 for interfiber 
distance IDn=0.15: a) Mode I: b) Mode II. 
 

 
In Fig.3 results for an alternative scenario for the location of the second debond are 

presented as Case 3: Instead of being on the left side of the F1 fiber the 60° debond is 

now on the right side of the fiber F2. Results show that in this case the effect of the 

second debond on the ERR magnification is significantly smaller than in Case 2 and 

there is no second peak for GI. The maximum of GII is shifted closer to 120°, which is 

the angle connecting the central fiber with the second debonded  fiber F2 
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Summary 

Energy release rate (ERR) calculations for debond growth around a central fiber in a 

hexagonal fiber cluster surrounded by homogenized composite show that the distance 

to surrounding fibers has a relatively small effect on the ERR if the surrounding fibers 

are perfectly bonded to the matrix. If one of the surrounding fibers also has a relatively 

large debond, the ERR for the central debond growth can be magnified two or more 

times and the dependence on the interfiber distance is strong. The magnitude and the 

shape of the ERR magnification due to the presence of a second debond depends on the 

position of the second debonded fiber. 
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Summary 

Effects of nonuniform fiber distribution on fiber/matrix interface crack 
propagation in polymeric composites 
 
Keywords 
Non-uniform fiber distribution, Composite, Crack propagation 
 
 In the presence thesis, the growth of fiber/matrix interface debond of a UD composite 
with hexagonal fiber packing under longitudinal and transverse tensile loading was 
investigated numerically, with the special focus on the influence of neighboring fibers 
on its growth. In the current study, energy release rate (ERR) is considered as the 
driving force for debond growth and was calculated based on J Integral and Virtual 
Crack Closure Technique (VCCT) using finite element software ANSYS. In the present 
thesis research, we started with investigating the influence of neighboring fibers on 
ERR of a debond emanating from a fiber break in longitudinal loading condition. In 
longitudinal loading case, debond growth is mode II dominated. As the starting point 
for the research, an axisymmetric model consisting 5 concentric cylinders that represent 
broken fiber with debond, surrounding matrix, neighboring fibers, surrounding matrix 
and effective composites was generated. It’s found that there are two stages of debond 
growth, the first stage is when debond length is short, the ERR decreases with 
increasing debond angle, and the presence of neighboring significantly increase the 
ERR of debond.  For relatively long debond, the debond is in a steady state growth 
region when ERR is almost constant regardless of debond length. In steady state of 
debond growth, the presence of neighboring fibers have little effect on the ERR. In the 
later research, a 3-D model was generated with broken fiber and its 6 nearest fibers in 
a hexagonal packed UD composite were modelled explicitly, surrounded by the 
homogenized composite. Based on the obtained results, it’s shown that ERR is varying 
along debond front, and has its maximum at the circumferential location where the 
distance between two fiber center is the smallest. This indicates the debond front is not 
a circle. For steady state debond, the presence of fibers have little effect on ERR that 
averages along debond front. For short debond, the presence of fibers increases the 
averaged ERRS, and that the increase is more significant when inter-fiber distance are 
the smallest. When we conclude our investigation on fiber/matrix debonding under 
longitudinal loading, we began studying the growth of a fiber/matrix debond along fiber 
circumference under transverse loading. It’s found that debond growth is mixed-mode, 
and both mode I and mode II ERR components increase with increasing debond angle 
and then decreases. Debond growth is mode I dominated for small debond angle and 
then switch to mode II dominated. The presence of neighboring fibers have an 
enhancement effect on debond growth up to certain small debond angle and then 
changes to a protective effect. Finally, the interaction between two arc-size debond 
under transverse loading is investigated. It’s found that when two debonds are close to 
each other, the interaction between two debond becomes much stronger, and that 
interaction leads to the increase of ERR of each debond significantly, which facilitates 
further debond growth for both debond.  
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Les effets de la répartition nonuniforme des fibres sur la propagation des 
fissures á l’interface fibre/matrice dans les matériaux composites 
 
mots clés 
Distribution de fibres non uniforme, Composite, propagation d'une fissure 
 
Dans ces travaux, nous avons étudié numériquement la croissance du décollement de 
l'interface fibre / matrice d' un composite UD avec garnissage hexagonale de fibre sous 
charge longitudinal et transversal. Nous avons mis l'accent en particulier sur l'influence 
des fibres voisines sur sa croissance. Dans la présente étude, le taux de libération 
d'énergie (ERR) est considéré comme la force motrice de la croissance du décollement 
et a été calculé sur la base de Integral J et de la technique de fermeture virtuelle de 
fissures (VCCT) à l'aide du logiciel de calcul par éléments finis ANSYS. Dans la 
présente recherche de thèse, nous avons étudier d’abord l'influence des fibres voisines 
sur ERR d'une décohésion émanant d'une rupture de fibre en condition de chargement 
longitudinal. Dans le cas du chargement longitudinal, la croissance du décollement est 
gouvernée par le mode II. Comme point de départ l’étude, nous avons mis place un 
modèle axisymétrique composé de 5 cylindres concentriques représentant la fibre 
endommagée, la matrice environnante, les fibres voisines, la matrice environnante et le 
composite effectif généré. On constate qu'il y a deux stades de croissance, la première 
étape correspond à une longueur courte du décollement, l'ERR diminue à mesure que 
l'angle du décollement augmente, et la présence de voisins augmente significativement 
la décohésion de l'ERR. Pour une décohésion relativement longue, le décollement se 
situ dans une région de croissance en état stationnaire lorsque l'ERR est pratiquement 
constant quelle que soit la longueur du décollement. A l’état stationnaire de la 
croissance du défaut, la présence de fibres voisines n'a que peu d'effet sur l'ERR. Les 
travails ultérieurs, nous avons mis en place un modèle 3-D (explicite) avec la fibre 
endommagée et ses 6 fibres les plus proches dans un composite UD compacté 
hexagonal, entourées par le composite homogénéisé. Sur la base des résultats obtenus, 
nous avons montré que l'ERR varie le long de la face frontale et a son maximum à 
l'endroit circonférentiel où la distance entre deux centres de fibre est la plus petite. Cela 
indique que le front du décollement n’est pas circulaire. Pour l'état stable du 
décollement, la présence de fibres a peu d'effet sur l'ERR qui progresse le long du front 
du décollement. Pour un décollement court, la présence de fibres augmente l'ERRS 
moyenné, et cette augmentation est plus significative lorsque la distance entre fibre est 
la plus petite. Après l’étude du la décollement fibre / matrice en charge longitudinale, 
nous avons commencé à étudier la croissance du décollement fibre / matrice le long de 
la circonférence de la fibre sous charge transversale. On constate que la croissance de 
la du décollement est en mode mixte, et les composants ERR du mode I et du mode II 
augmentent avec l'augmentation de l'angle de déformation puis diminuent. La 
croissance du décollement démarre principalement en mode I pour les petits angles de 
décollement et se poursuit en mode II. La présence de fibres voisines a un effet 
d’accroissement sur la croissance du décollement jusqu'à certains petits angles et 
change ensuite en effet protecteur. En fin, nous avons étudié l'interaction entre deux 
décollement sous chargement transversale. Nous avons constaté que lorsque deux 
décollements sont proches l'un de l'autre, l'interaction entre devient beaucoup plus forte 
et conduit à l'augmentation significative de l'ERR de chaque décollement, ce qui facilite 
la croissance du décollement. 
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