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Abstract

In this thesis, we study two problems of machine learning: (I) community detection
and (II) adaptive matching.

I) It is well-known that many networks exhibit a community structure. Find-
ing those communities helps us understand and exploit general networks. In this
thesis we focus on community detection using so-called spectral methods based on
the eigenvectors of carefully chosen matrices. We analyse their performance on
artificially generated benchmark graphs. Instead of the classical Stochastic Block
Model (which does not allow for much degree-heterogeneity), we consider a Degree-
Corrected Stochastic Block Model (DC-SBM) with weighted vertices, that is able to
generate a wide class of degree sequences. We consider this model in both a dense
and sparse regime. In the dense regime, we show that an algorithm based on a
suitably normalized adjacency matrix correctly classifies all but a vanishing fraction
of the nodes. In the sparse regime, we show that the availability of only a small
amount of information entails the existence of an information-theoretic threshold
below which no algorithm performs better than random guess. On the positive side,
we show that an algorithm based on the non-backtracking matrix works all the way
down to the detectability threshold in the sparse regime, showing the robustness of
the algorithm. This follows after a precise characterization of the non-backtracking
spectrum of sparse DC-SBM’s. We further perform tests on well-known real net-
works.

II) Online two-sided matching markets such as Q&A forums and online labour
platforms critically rely on the ability to propose adequate matches based on imper-
fect knowledge of the two parties to be matched. We develop a model of a task /
server matching system describing platform operation in the presence of such uncer-
tainty. For this model, we give a necessary and sufficient condition for an incoming
stream of tasks to be manageable by the system. We further identify a so-called
back-pressure policy under which the throughput that the system can handle is
maximal. We show that this policy achieves strictly larger throughput than a natu-
ral greedy policy. Finally, we validate our model and confirm our theoretical findings
with experiments based on user-contributed content on an online platform.

Keywords: Machine learning, community detection, social networks, degree-
corrected stochastic block models, spectral methods, random matrices, non-backtracking
matrix, random graphs, recommendation systems, reinforcement learning, queueing
theory.



Résumé

Dans cette thèse, nous étudions deux problèmes d’apprentissage automatique: (I)
la détection des communautés et (II) l’appariement adaptatif.

I) Il est bien connu que beaucoup de réseaux ont une structure en communautés.
La détection de ces communautés nous aide à comprendre et exploiter des réseaux de
tout genre. Cette thèse considère principalement la détection des communautés par
des méthodes spectrales utilisant des vecteurs propres associés à des matrices choisies
avec soin. Nous faisons une analyse de leur performance sur des graphes artificiels.
Au lieu du modèle classique connu sous le nom de� Stochastic Block Model� (dans
lequel les degrés sont homogènes) nous considérons un modèle où les degrés sont plus
variables: le � Degree-Corrected Stochastic Block Model � (DC-SBM). Dans ce
modèle les degrés de tous les noeuds sont pondérés - ce qui permet de générer des
suites des degrés hétérogènes. Nous étudions ce modèle dans deux régimes: le régime
dense et le régime � épars �, ou � dilué �. Dans le régime dense, nous prouvons
qu’un algorithme basé sur une matrice d’adjacence normalisée réussit à classifier
correctement tous les noeuds sauf une fraction négligeable. Dans le régime épars il
existe un seuil en termes de paramètres du modèle en-dessous lequel n’importe quel
algorithme échoue par manque d’information. En revanche, nous prouvons qu’un
algorithme utilisant la matrice � non-backtracking � réussit jusqu’au seuil - cette
méthode est donc très robuste. Pour montrer cela nous caractérisons le spectre des
graphes qui sont générés selon un DC-SBM dans son régime épars. Nous concluons
cette partie par des tests sur des réseaux sociaux.

II) Les marchés d’intermédiation en ligne tels que des plateformes de Question-
Réponse et des plateformes de recrutement nécessitent un appariement basé sur une
information incomplète des deux parties. Nous développons un modèle de système
d’appariement entre tâches et serveurs représentant le comportement de telles plate-
formes. Pour ce modèle nous donnons une condition nécessaire et suffisante pour
que le système puisse gérer un certain flux de tâches. Nous introduisons également
une politique de � back-pressure � sous lequel le débit gérable par le système
est maximal. Nous prouvons que cette politique atteint un débit strictement plus
grand qu’une politique naturelle � gloutonne �. Nous concluons en validant nos
résultats théoriques avec des simulations entranées par des données de la plateforme
Stack-Overflow.

Mots clés: Apprentissage automatique, détection des communautés, réseaux
sociaux, degree-corrected stochastic block models, méthodes spectrales, matrices
aléatoires, matrice non-backtracking, graphes aléatoires, appariement adaptatif, ap-
prentissage par renforcement, théorie des files d’attente.
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pour leur accord de participer au jury de cette thèse. J’exprime ma vive gratitude
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Chapter 1

Introduction

1.1 Motivation and preview of results

We live in a time of unprecedented volumes of data and computing power. Many such
datasets can be described as graphs of interacting items, and finding communities of
”likewise” items is a first step in analysing them, either as a means by itself or as a
preprocessing phase for other learning problems (e.g., as dimensionality reduction).

Community detection has many important applications. For example, it leads
to a better understanding of social behaviour on networks as Facebook, Google+,
Twitter and Flickr [121]. It is also useful to cluster web clients or discovering topical
similarities on the web [74]. Other applications lay in shopping networks: targeted
advertising, logistics and future recommendation [77]. Clustering is even used in
natural language processing, see for instance the appendix in [9].

Finding communities is a central problem in unsupervised machine learning. It
is challenging because the ground truth is often unknown, making it difficult to
evaluate the result of community detection algorithms. Further, often one has access
only to the topological configuration of graphs without any side information, so that
even the number and size of communities is a priori unknown and algorithms thus
necessarily need to learn those.

Many proposed community detection algorithms rely on heuristics and come
without formal guarantees, except for their reported behaviour on specific networks.
It is however important to understand if the outputted community structure of an
algorithm is meaningful or just an artefact. In particular, what are the limitations
of an algorithm: can we always (partly) recover the community-structure from an
observed graph?

A principled way to evaluate the performance of algorithms is to analyse their
behaviour on benchmark graphs. The most commonly used model for this purpose is
the Stochastic Block Model (SBM): arguably the simplest extension of Erdős-Rényi
graphs to a network with a community structure, see below for definitions. The
SBM has as advantages that it comes with a known community structure (i.e., the
ground truth) and that it is analytically tractable. However, it is seldom a good
fit to observed real data, as the SBM does not allow for heterogeneity in its degree
sequence (i.e., all vertices in a community have on average the same number of
edges). Indeed, many real networks display a strong heterogeneity in their degree
sequences, often following a power-law [4].

In this thesis, we consider the Degree-Corrected Stochastic Block Model (DC-
SBM), an extension of the SBM which allows for strong degree-heterogeneity. We
study this model in two regimes: a dense regime where the number of edges per node
grows with the size of the network and a sparse regime where the number of edges
per node stays constant when the network grows. We evaluate the performance of
certain, so-called spectral algorithms on this model. In particular, we show that
an algorithm based on a suitably normalized adjacency matrix recovers all but a
vanishing fraction of vertices in the dense regime of the DC-SBM. Further, in the

6



sparse (and challenging, because there is not much information) regime, we show
that on the one hand there exists an information-theoretic threshold (in terms of the
model’s parameters) below which no algorithm does better than random guess. On
the other hand, we prove that an algorithm based on the non-backtracking matrix
does significantly better than random guess all the way down to this threshold. This
is an important result as traditional methods are known to break down long before
the information-theoretic limits are reached, see [125] and the figures therein. We
conclude by implementing various community detection algorithms to demonstrate
their performance on real networks.

1.2 What is a community?

It is an important task to define formally the notion of a community. According to
[44], no definition is universally accepted. We summarize the observations in the lat-
ter article here: What we define to be a community depends on both the underlying
network and the envisaged final application. Usually, however we we expect a com-
munity to be a set of vertices having more internal edges than edges connecting it to
its complement in the graph. Formally we could consider the intra-cluster density
δi(C) and the inter-cluster density δe(C) of a subgraph C and compare those with
the average edge density δ of the graph. Intuitively, the subgraph C would then
be a community, if δi(C) � δ � δe(C). Maximizing

∑
C∈C(δi(C) − δe(C)) over all

partitions C is however too expensive in practice if the graph is large, so that many
community-detection algorithms find an approximative solution to this problem.

We give here the main definitions that can be found in the exposition of [44]:
local definitions, global definitions and definitions based on vertex similarities.

We start with the main local definitions. A very stringent such definition is
requiring that the subgraph forms a clique (i.e., there is an edge from any vertex in
the subgraph to any other vertex in the subgraph). In social networks this would
mean that every group member is friends with any other group member. Note that
this definition does not allow for heterogeneous relationships between the vertices
(or people). Further, finding cliques in a graph is known to be an NP-complete
problem [16].

An LS-set or strong community [80, 107] is a subgraph such that the internal
degree of a vertex is larger than its external degree. Weakening this definition leads
to weak communities [107]: subgraphs with total internal degree exceeding its total
external degree. The assortative SBM with two equal-sized communities for instance
can be partitioned into two weak communities.

In general we expect communities to have a small cut size, i.e., few edges con-
necting a subset to its complement in the graph.

We now turn to the most popular global definition, based on modularity [101].
The latter measures the deviation of a graph with communities from a null model. In
particular, the null model is the original graph with all its edges rewired at random
so as to conserve the original degree sequence. A subgraph is then a community if
its number of internal edges is larger than its expectation in the null model. Note
that according to this definition a community is a more densely-connected subgraph
than would have been expected from change.

Communities can also be defined with respect to some kind of similarity measure
on the vertices: a community is then a group of vertices that are similar to each other
with respect to this measure. For instance, documents could be clustered according
to their similarity (e.g., discussing the same topics). Or, if the vertices could be
embedded into an Euclidean space, the inverse of the distance between them defines
a similarity measure.

We further note that communities can also be overlapping rather than partition-
ing a graph: the number of possibilities is then much higher and therefore mathe-
matically even more challenging. We shall not consider this direction in this thesis.
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1.3 Methods of community detection

In this thesis we focus primarily on spectral algorithms, as their reliability can
be formally verified. For completeness we also state some well-known alternative
(heuristic) methods.

1.3.1 Spectral algorithms

The general idea of spectral methods is to associate a matrix to a set of objects
and use only a few of its top eigenvectors to cluster the objects. The original
objects might be embedded in a high-dimensional space and projecting them on
the low-dimensional space spanned by the top eigenvectors is thus a dimensional
reduction. It is of-course important that the top eigenvectors contain enough
information regarding the community-structure. Commonly used matrices are the
adjacency matrix and Laplacian. Both have their shortcomings and we focus in this
thesis instead on a normalized version of the adjacency matrix (different from the
Laplacian) and on the non-backtracking matrix. See Sections 3.1.1, 3.1.2 and 4.4
for a discussion of (traditional) spectral methods.

The spectrum of suitably chosen matrices often gives information about the un-
derlying community structure. Indeed, the spectrum often consists of a bulk of
eigenvalues confined to a bounded set plus a few outliers that correspond to the
communities.

A good introduction to spectral clustering is given in [117], where the following
is explained in more detail: Consider a graph on n vertices, with adjacency matrix
A. Denote by D the diagonal matrix with Duu =

∑
v Auv. Then, the unnormalized

Laplacian matrix is defined as L = D − A, the symmetric normalized Laplacian as
Lsym = D−1/2LD−1/2 and the random walk Laplacian as Lrw = D−1L.

Propositions 1 and 2 in [117] state that L has n non-negative real-valued eigenval-
ues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. The multiplicity K of eigenvalue 0 equals the number
of connected components C1, . . . , CK in the graph and eigenvectors corresponding
to eigenvalue 0 are indicator functions on C1, . . . , CK . Similar statements hold for
the normalized Laplacians, according to Proposition 4 in [117].

Thus, for a graph that has K communities with few in-between edges we expect
the first K eigenvalues to be close to 0 and the corresponding eigenvectors to be close
to the respective indicator functions. This leads to the following spectral algorithm:
Compute the first K eigenvectors u1, . . . , uK of the Laplacian and form the matrix
U containing u1, . . . , uK as its columns. Let yu ∈ Rn×K be the vector containing
the u-th row of U . Apply k-means (see below) to partition the set {y1, . . . , yn} into
clusters A1, . . . , AK . Approximate the community-membership of vertex u by i if
yu ∈ Ai. Note that {yu}u are thus low-dimensional representatives of the vertices.

Formal guarantees for this type of algorithms follow usually from perturbation
arguments. A key ingredient is often the Davis-Kahan theorem, informally stated as

follows: Consider Â = A+ δA, for symmetric matrices A and δA. Let S ⊂ R be an
interval. Denote λS(A) for the set of all eigenvalues of A contained in S and denote

the corresponding set of eigenvectors by V . Denote by λS(Â) and V̂ the analogous

quantities for Â. Define ∆(A) = min{|λ− s| : λ eigenvalue of A, λ /∈ S, s ∈ S} Then

the distance between V and V̂ , expressed in terms of the canonical angles between
them, is bounded by ‖δA‖/∆(A), where ‖ · ‖ is either the Frobenius norm or two-
norm. For the precise definition of canonical angle between two subspaces, we refer
to [117], it is a measure for the alignment of orthonormal bases for the respective
subspaces.

To see this theorem in work, consider a graph with K communities C1, . . . , CK
and let L̂ be its associated Laplacian and L the Laplacian of the idealized graph
were the edges in-between communities have been removed. Let λ1, . . . , λn be the
eigenvalues of L. Put for small γ > 0, S = [0, γ]. Then [0, λK ] ⊂ S. Hence,

∆(A) ' |λK+1−λK | and we deduce that the eigenvectors of L and L̂ are close when
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‖δA‖ is small and |λK+1 − λK | large. The latter quantity thus plays an import role
and is often called eigen gap or spectral gap.

Computation of the eigenvectors is usually done with the power method or Krylov
subspace methods (such as the Lanczos algorithm). The convergence is faster for
larger spectral gaps, when calculating only the first K eigenvectors.

Historically, spectral clustering was initiated in 1973 with the work [38] on a
spectral algorithm using the adjacency matrix. In the same year the connection
between bi-partitions of graphs and the second eigenvector of the Laplacian was
discovered [43].

1.3.2 Modularity optimization

In a graph where the edges are drawn completely at random, one does not expect
a cluster-structure to be present. It therefore makes sense to compare the number
of edges in a given subgraph with the number of edges expected to be present in
a null-model, where the edges are drawn regardless of community structure. A
commonly used null-model is the configuration model that matches the observed
degree sequence, denoted by {ku}u, in the following way: Every vertex u is given ku
half-edges, and every half-edge is merged with another half-edge chosen uniformly
at random. The probability for an edge to be present between vertices u and v is
thus approximately kukv

2m , where m is the number of edges in the graph. With this
null-model, the modularity [101] of the graph where a vertex u belongs to community
σu is given by

Q =
1

2m

∑
u,v

(
Auv −

kukv
2m

)
δ(σu, σv),

where δ(x, y) is one if x = y and zero otherwise.

Note that Q can we rewritten in terms of `i
m , the fraction of edges within com-

munity i, and
(
di
2m

)2
, the expected fraction of edges in that community in the

null-model:

Q =
∑
i

(
`i
m
−
(
di
2m

)2
)
.

Hence, we expect that a large Q corresponds to good partitions. By definition,
Q ≤ 1, and Q = 0 when all vertices are put in a single community. If Q ≤ 0 for all
partitions, then no community structure is present.

In general it is very costly to calculate Q for all possible partitions, and algorithms
have been developed to find an approximate solution to this maximization problem.

One such algorithm is proposed in [102]: Starting with the partition where every
vertex constitutes a community, we repeatedly obtain partitions by joining com-
munities together by choosing the merge that results in the greatest increase (or
smallest decrease) of the modularity. In this way we obtain a collection of partitions
of different dimensions, and the partition with largest modularity is the output of
the algorithm.

Using the sparsity of the adjacency matrix, this algorithm has been extended in
[26] to handle graphs in the order of 106 vertices, and to mega-scale graphs with 107

vertices in [118].
In [103] a spectral algorithm is proposed based on the modularity for a partition

with two communities C1 and C2. Let σ be the vector of community-memberships,
σu = 1 if u belongs to C1 and σu = −1 otherwise. Then,

Q =
1

2m

∑
u,v

(
Auv −

kukv
2m

)
σuσv + 1

2
=

1

4m
σ∗Cσ,
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where C =
(
Auv − kukv

2m

)
u,v

is the modularity matrix. If we write σ =
∑

u αuvu,

with {vu}u the orthonormal eigenvectors with corresponding eigenvalues {γu}u of
the symmetric matrix C (ordered such that γ1 ≥ γ2 ≥ · · · ), then

Q =
1

4m

∑
u

(v∗uσ)2γu.

As a first step in maximizing Q as a function of σ, we note that (v∗1σ)2γ1 should be
one of the dominant factors in the sum, since γ1 is the largest eigenvalue. Ideally,
we would like to choose σ parallel with v1, however this violates the restriction that
σu ∈ {1, . . . , q}. Instead we put σu equal to the sign of the corresponding element
in v1. This thus leads to a simple spectral algorithm: for a given network, calculate
the leading eigenvector of its corresponding modularity matrix and label vertices
according to the sign of elements in this vector.

We refer the reader to Section 2 for an asymptotic characterization of the spec-
trum of C.

Another method aiming to maximize the modularity is the Louvain Method [14].
The algorithm consists of two phases that are repeated iteratively. The first phase
is initialized by putting every vertex in a unique community. Then, iteratively and
subsequently, for every node i, and each of its neighbours j, we calculate the change
in modularity ∆ij when i would be put in the same community as j. If ∆ij ≤ 0 for
all neighbours j, we do not change the label of vertex i, otherwise we put i in the
community of vertex j that maximizes ∆ij (ties broken uniformly at random). We
then move to a new vertex, and so on (possibly treating the same vertex multiple
times), until no further improvement can be achieved. In the second phase of the
algorithm, we form a graph where the nodes are the communities formed in the
previous step, and the weights of edges between nodes are equal to the sum of the
weight of the edges in the two corresponding communities. After completion of this
phase, we apply the procedure of the first phase to the just constructed network. We
continue until there are no more changes and a maximum of modularity is attained.
In this way we obtain a hierarchical collection of partitions. The height of the
hierarchy depends on the number of passes and is in practice small.

1.3.3 k-means

When data consists of points that can be embedded in a vector space V equipped
with a norm ‖ · ‖, we can use partitional clustering methods to cluster them. The
number of clusters K needs to be preassigned. The objective is to minimize a certain
cost-function based on the distance function. A very popular technique is k−means,
where the cost-function is given by

K∑
i=1

∑
x∈Ci

‖x− ci‖2,

where Ci ⊂ V is the subset of points in the i−th cluster and ci ∈ Ci is its centroid.
An approximative solution can be found with Lloyd’s algorithm [78], an iterative

method for which the initial centroids need to be specified. The algorithm has as
a drawback that it usually converges to a local minimum, depending on the initial
centroids. A possibly remedy is to repeat the algorithm starting at many different
initial centroids, which is feasible since the algorithm converges rather fast.

1.3.4 Divisive algorithms

A very popular algorithm for community detection is a divisive algorithm proposed
in [101]. We give here a short summary of the latter article.
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The idea is to divide iteratively the network into smaller and smaller communities
by removing at each step an edge with high betweenness. Here, betweenness is some
measure expressing how much an edge is in between different communities. An edge
with high betweenness should be responsible for connecting many pairs of nodes.
Further, if two communities are joint by just a few edges, those edges are expected
to have a high betweenness, as many paths between the communities pass through
them.

Three measures for betweenness are proposed in [101], but we repeat here only
the shortest-path betweenness. For an edge it is defined as the number of shortest
paths (over all pairs of vertices) running through it.

The proposed algorithm is then as follows: Calculate the betweenness for all
edges. Remove the edge with highest betweenness-score. Repeat the previous two
steps. This gives a whole collection of partitions and the partition with highest
modularity (see above) is chosen as the output of the algorithm.

We remark that calculating the edge betweenness might be costly. Further, the
recalculation step seems to add a lot of extra complexity to the algorithm, but turns
out to be crucial for accuracy. Indeed, removing an edge might significantly change
the betweenness of edges in the obtained graph. The above algorithm works well
with graphs upto 104 nodes, and faster extensions exist.

1.3.5 Belief propagation

Consider the ordinary SBM (see below for a precise definition) on K communities
where an edge is present between vertices from communities i and j with probability
pij (edges are drawn independently). Denote the community-membership of the
vertices by σ = {σu}u. Given a realization G of this SBM, we could estimate the
community-membership as

arg max
σ̂

P (σ = σ̂|G) .

Unfortunately, apart from computational complexity, it is not guaranteed that the
obtained maximizer agrees with the true partition. Indeed P (σ = ·|G) possibly has
many local maxima and the highest might just be the best fit to the noise1. Note
however, that obtaining the distribution P (σ = ·|G) is the most we can learn about
σ, since the observation G is the only information we have about σ (G can be
considered as a noisy channel between σ and the observer).

Another estimator for σ follows if we know the marginal distribution {ψui }i for
every vertex u, defined as

ψui = P (σu = i|G) =
∑
σ̂:σ̂u=i

P (σ = σ̂|G) , (1.1)

where we need to fix the community-membership of a few vertices beforehand (oth-
erwise the marginals are uniform). Indeed, we can then estimate σ∗u = arg maxi ψ

u
i ,

and it turns out that this maximizes the fraction of correctly classified vertices
[37, 61]. Note that with this approach we take an average over many configurations,
rather than the single, best fit as above.

The cavity-method [97] or belief propagation can be used to approximate the
marginals (1.1) if we make the assumption that for any vertex u the community-
membership of any of its neighbours are conditionally independent given the
community-membership of u. A vertex adjusts its belief of its own community-
membership based on messages received from its neighbours: A vertex u sends
its neighbour v a message ψu→v = {ψu→vi }Ki=1, which is an estimate of its own

1If the labels {σu} are drawn independently and uniformly from {1, . . . ,K}, then P (σ|G) ∼ P (G|σ). It
could be that for two almost uncorrelated configurations σ and σ̂, P (G|σ) ' P (G|σ̂) are both large. But
why would we prefer one configuration over the other?
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community-membership in case the edge between u and v were not present2. Vertex
v then uses this message to update its own belief. The messages (if we ignore the
weak-interactions due to the absence of edges) are given by

ψu→vi =
1

Z

∏
w∼u,w 6=v

K∑
j=1

ψw→uj pij , (1.2)

where Z is a normalization constant such that
∑

i ψ
u→v
i = 1.

The belief propagation algorithm consists of randomly initializing the messages
and updating them according to (1.2) until a fixed point is reached, from which we
simply calculate the marginals by summing over all incoming messages to a vertex.

We note that belief propagation is exact on trees. Further, the message sent
from u to v does not depend on the message from v to u, preventing resonance to
occur. Compare this to spectral methods based on the adjacency matrix A, where
a leading eigenvector x with eigenvalue λ concentrates on high-degreed vertices due
to the resonance in the equation

∑
v Auvxv = λxu.

In case all vertices have the same expected degree in the SBM, that is
∑

j pij = ρ,
for some constant ρ, belief propagation has at least one fixed point, namely ψu→vi =
1
K . Reconstruction better than random guess is then impossible if this is the only
fixed point.

In general, whether we can do better than random guess, depends on the amount
of fixed points, their stability and region of attraction. The work [34, 35] uses a
fixed point analysis to conjecture phase-transition phenomena in the SBM, see for
instance Conjecture 3.2.1 below.

A very readable introduction on some methods from statistical physics (including
belief propagation) applied to community detection is [91]. We used the latter article
as inspiration for this section. The first work in which belief propagation was applied
to community-detection is [53].

1.4 Real datasets and benchmark graphs

We start by listing some common networks, used often to test algorithms.
The first network is known as Zachary’s karate club, consisting of 34 club mem-

bers who split into two separate groups when the instructor left the club after a
conflict with the president, see [124].

A similar phenomena is observed in a network of 62 dolphins living in Doubtful
Sound (New Zealand). The dolphins are represented as vertices and edges between
two of them are present when they met each other more often than expected by
change. The group split into clusters after one of the dolphins left, see [81].

The political blogosphere is a dataset of over 1000 political blogs relating to one
another, captured during a period of two months preceding the 2004 US presidential
elections. The blogs fall naturally into two categories: democrats and republicans.
Detecting their political orientation based solely on the links between blogs is an
interesting task for community detection algorithms. See [3].

Many more data has been collected, for instance a co-authorship graph in network
science, a graph of astrophysics collaborations, a neural network and even a graph
linking the mean characters in Les Miserables by Victor Hugo. See for a non-
exhaustive overview the Stanford Large Network Dataset Collection at
https://snap.stanford.edu/data/.

In addition to testing algorithms on real networks, we can also artificially generate
them. The study of random graphs was initiated by Erdős and Rényi in [40]. The so-
called Erdős-Rényi graph with parameters n and p is a random graph on n vertices
where edges are independently present between pairs of vertices with probability p.
In this graph, the degrees of vertices are asymptotically Poisson random variables

2more precisely, if the presence of an edge between u and v were unknown.
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with parameter np, and hence the degree-sequence is homogeneous. An extension
that allows for inhomogeneous degree-sequence is the inhomogeneous Erdős-Rényi
graph [15], with parameters n and {puv}uv: an edge is independently present between
vertices u and v with probability puv.

A particular case of [15], where the graph includes K communities is obtained by
giving each vertex u a label σu ∈ {1, . . . ,K}, and each probability puv is a function
of the labels σu and σv. In this way, the ground truth is known, so that we can test
algorithms by running them on these benchmark graphs to see if the hidden labels
can be retrieved.

The Stochastic Block Model (SBM) [57], for instance, is defined as the random
graph where vertices u and v connect with a probability depending only on σu and σv,
i.e., puv = Bσuσv , for some K×K positive symmetric matrix B. This model is able to
generate a diverse collection of random graphs, while it stays analytically tractable.
In practice however, the SBM fails to accurately describe observed data: due to
the stochastic inidentifiability of nodes in the same community, it does not allow
for degree heterogeneity within blocks. We therefore look at a more general model,
the Degree-Corrected Stochastic Block Model (DC-SBM) [69], where the vertices
additionally have weights. Edges are drawn between vertices with a probability
depending on both the weights and the community-membership of the vertices.

We distinguish between exact-, quasi- and weak (or partial) reconstruction: Exact
recovery means that an algorithm correctly reconstructs σu for all u. Quasi recovery
means that only a vanishing fraction of the vertices are misclassified. Weak recovery
means that an algorithm does strictly better than random guess, and is also called
detection. In particular, for a graph with two equal-sized communities, we speak
about weak recovery if an algorithm correctly classifies a fraction of 1/2 + ε of the
vertices, with ε > 0.
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Chapter 2

Random matrices

We begin this section with the most celebrated result in random matrix theory:
Wigner’s semicircle law, motivated by problems from nuclear physics. We state
the theorem here for sequences of Hermitian random matrices (XN )N∈N, where for
N ∈ N,

XN =
1√
N

(Xuv)
N
u,v=1,

with the following conditions on its entries: The entries (Xuv)1≤u<v≤N are i.i.d.
complex (or real) random variables with finite variance σ2 with their law independent
of N . The diagonal entries (Xuu)1≤u≤N are also i.i.d. random variables with finite
variance, but are in addition real-valued and have zero mean. We then have the
following spectral statistics, expressed in terms of the empirical spectral distribution

µN =
1

N

N∑
u=1

δλNu ,

where λN1 ≥ λN2 ≥ . . . ≥ λNN are the ordered eigenvalues of XN and δλNu : x 7→ 1λNu ≤x.

Theorem 2.0.1 (Wigner [119, 120]). Almost surely,

lim
N→∞

µN = σsc,

with σsc the semi-circle distribution, with respect to the Lebesque measure defined as

dσsc
dx

=
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x).

Note that this result is universal, in the sense that the convergence to the same
semicircle-law takes place independently of the underlying distribution of the ele-
ments. In Wigner’s original paper [119], he proved the theorem for Bernoulli ran-
dom variables and extended these results later for general Hermitian matrices in
[120]. There are more universality results known in random-matrix theory where
the asymptotic behaviour of random matrices is independent of the exact distri-
bution of its entries. We also note that the semi-circle law puts no mass outside
the interval [−2σ, 2σ], i.e., it has sharp edges. This implies that with probability
1 − o(1) all eigenvalues of XN , except o(n) lie inside this interval. The behaviour
of possible outliers is characterized in [46]: Consider for any c > 2σ, the interval
I = [−c, c]. If µ := E [X12] = 0, then all eigenvalues lie inside I with probability
1 − o(1). Otherwise, if µ > 0, then only the largest eigenvalue lies outside I and it
asymptotically has normal distribution with mean

√
nµ + σ2/(

√
nµ) and variance

14



2σ2/n. This is an extremely important observation having far-reaching implications
for practical applications. Indeed, the presence of one or more eigenvalues
clearly separated from the bulk of eigenvalues of a random matrix could
indicate non-random behaviour, for instance an underlying community
structure.

Two methods used to prove Theorem 2.0.1 are the moment method and the
Stieltjes transform method. Wigner used the former method, which consists in
showing that the moments of the empirical distribution, E

[∫
xkdµN (x)

]
, converge

to the moments of the semicircle-law,
∫
xkdσsc, for large dimension N . Now, since

Tr{Xk
N} = λk1 + · · ·+ λkN ,

E
[∫

xkdµN (x)

]
=

1

N
E
[
Tr{Xk

N}
]

=
1

N1+k/2

N∑
i1,...,ik=1

E
[
Xi1i2 · · ·Xik−1ikXiki1

]
.

This gives rise to a combinatorial analysis of the right-hand side. This so-called trace
method is often attributed to Füredi and Komlós, after their extension of Wigner’s
results for non-centred diagonal entries in [46].

The Stieltjes transform method consists of showing that the Stieltjes transform
of µN ,

sN : z 7→
∫
R

1

x− z
dµN (x) =

1

N
Tr{(XN − zI)−1},

converges almost surely to the Stieltjes transform of the semicircle-law, ssc : z 7→∫
R

1
x−zdσsc. Analogous to the scalar case, where moment generating functions are

used to ”group together” the moments of the scalar variable, the Stieltjes transform
method considers all moments of the matrix simultaneously, rather than one at a
time as above.

The Stieltjes transform method is used in [98] to heuristically characterize the
spectrum of both the adjacency A and modularity matrix C (see Section 1.3.2) for
random instances of the SBM. The paper thus investigates the limits of spectral
methods based on those two matrices. We summarize their result and approach. In
particular, the authors of [98] consider the sparse case of the SBM in its most simple
form: the vertices are grouped in two clusters of size n/2 and edges are present
independently with probability a/n within and probability b/n between clusters.
See Section 3 for a more complete definition of the SBM.

Write
A = E [A] +A− E [A] ,

and

E [A] =
a+ b

2
11T +

a− b
2

uuT ,

with 1 = 1√
n

(1, . . . , 1) and u = 1√
n

(1, 1, . . . ,−1,−1, . . .), where the sign indicates

community-membership.
The authors of [98] calculate first the density of A− E [A] to be

ρA−E[A] : x 7→ n

π

√
2(a+ b)− x2

a+ b
,

i.e., a modified semicircle-law. Now, C = a−b
2 uuT +A− E [A], i.e., a rank 1 matrix

plus a centred perturbation. It turns out that the spectrum of C is asymptotically
equal to the spectrum of A − E [A], except for the eigenvalue λC = a−b

2 + a+b
a−b .

Similarly, recognizing A as a rank 1 matrix plus C, it spectrum is seen to consists
of a semicircular band (possibly plus outliers) plus two eigenvalues, namely λC and
a+b

2 + 1. Caution is needed here, as these results (on the density) do not exclude
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outliers to be present. In any case, the informative eigenvalue of C is not separated
from the bulk when (a− b)2 ≤ 2(a+ b).

Note the consequences: If a = b, then no community structure is present. How-
ever, if a > b, but (a− b)2 < 2(a+ b), then the graph contains two communities, but
we are unable, using A or C, to detect those. As we will shortly see, no method is
able to detect those communities from observations of the graph as (a−b)2 > 2(a+b)
is in fact an information-theoretic threshold with respect to community detection
[92].
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Chapter 3

The Degree-Corrected
Stochastic Block Model

We describe here a suitably normalised version of the Degree-Corrected Stochastic
Block Model (DC-SBM) as given in [69]. The DC-SBM is a generalization of the
Erdös-Rényi classical model of random graphs. We will consider this model in two
regimes, namely a dense regime where the degrees grow sufficiently fast with the size
of the network and a sparse regime where the expected degrees remain constant in
the limit of large networks. We assume the number of communities to be arbitrary
(i.e., ≥ 2), but constant. Note that the setting with two communities is also called
the Extended Planted-Partition Model (EPPM) in [21].

We start with the dense regime. Consider a random graph on the set of vertices
V := {1, . . . , n}, partitioned intoK communities of αknmembers each: each vertex u
is given a label σu ∈ S := {1, . . . ,K}. A weightDu is given to each vertex u to encode
its expected degree. Without loss of generality we assume that D1 ≤ D2 ≤ · · · ≤ Dn.
All weights and labels will depend on n, but this is suppressed in the notation here.
For each pair (u, v), we include the edge (u, v) with probability

P (u ∼ v) =

{
DuDv
nD

Bσuσv if u 6= v
0 if u = v,

(3.1)

where B ∈ (R+)K×K is a symmetric matrix, independent of n and D = 1/n
∑n

l=1Dl,
the average weight. B may be chosen completely independent of the weights {Du}nu=1:
all information about the community-structure is then captured by B alone.

We make some further assumptions on the parameters of the model: For (3.1) to
define a probability, we assume

DuDv

nD
Bσuσv ≤ 1, (3.2)

for all u, v.
The vector α = (α1, . . . , αK) is assumed to be constant. Hence, the clusters are

well balanced, as the size of each community grows linearly with n. Further, the
average weight in a cluster,

Di =
1

αin

n∑
u=1

Du1σu=i,

is assumed to be asymptotically a fraction of the average weight D. That is, we
assume that there exists non-zero constants d1, . . . , dK , such that,

lim
n→∞

Di

D
= di, (3.3)
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for all i. In the dense regime, we assume that D →∞ when n→∞. We denote the
DC-SBM in this regime by G(B,K, {σu}nu=1, {Du}nu=1).

As an example, we let {σu}nu=1 be any sequence such that n/2 of its elements are
1 and the other n/2 elements are 2. Then, there are two equally-sized communities:
K = 2 and α1 = α2 = 1/2. Let {Du}nu=1 be any non-decreasing sequence with
D1 > 0. Put

B =

(
a b
b a

)
,

for some constants a and b. Then

P (u ∼ v) =
DuDv

nD

{
a if σu = σv,
b otherwise . (3.4)

This is exactly the EPPM in [21], as mentioned above.
We now turn to the sparse regime of the DC-SBM defined in terms of two positive

constant parameters a and b: We consider again a random graph on n vertices
partitioned into q ≥ 2 asymptotically equal-sized clusters by giving each vertex v a
spin σv drawn uniformly from {1, . . . , q}. The vertices have i.i.d. weights {φu}nu=1
governed by some law ν with support in W ⊂ [φmin,∞), where 0 < φmin < ∞ is a

constant independent of n. We denote the k-th moment of the weights by Φ(k), i.e.,
Φ(k) =

∫
W xkdν(x). Below we state more precise tail-conditions on the weights. An

edge is drawn between nodes u and v with probability

P (u ∼ v) =
φuφv
n

{
a if σu = σv,
b otherwise . (3.5)

Note that by the law of large numbers the size of the communities are indeed
n
q +O(

√
n).

We are interested in answering the following question: can we recover
the underlying community structure from a single observation of the DC-
SBM? We restrict ourselves to the case where we only have topological information,
in particular we do not have acces to the weights, and other parameters.

A particularly important role for answering this question in the sparse regime will
be played by the non-backtracking matrix B. For a given graph G = (V,E), the non-

backtracking matrix is indexed by the set of oriented edges ~E = {(u, v) : {u, v} ∈ E}.
For e = (e1, e2), f = (f1, f2) ∈ ~E, B is defined as

Bef = 1e2=f11e1 6=f2 .

This matrix was introduced by Hashimoto [60] in 1989. Note that B is non-
symmetric and even non-normal, which makes it harder to analyse.

In the dense regime we analyse the normalized adjacency matrix Ĥ = D̂−1AD̂−1,

where A is the empirical adjacency matrix and D̂ the diagonal matrix containing
the degrees.

3.1 Dense regime

3.1.1 Literature on the ordinary PPM

The SBM is a special case of the DC-SBM in which all vertices have the same unit
weight: Du = 1 for all u. The SBM on two equal-sized communities is known in the
computer science community as the Planted Partition Model (PPM). In this model,
vertices in the same community connect with probability pin := a/n and between
communities with probability pout := b/n, where we allow a, b to vary (increase)
with n.
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Standard spectral methods to recovery communities in this model are based on
the Adjacency and Laplacian matrices, see the introduction.

Recovering the planted partition (without degree-corrections) often coincides
with finding the minimum bisection in the same graph. That is, finding a parti-
tion of the graph such that the number of edges between separated components (the
bisection width) is small. This problem is NP-hard [39].

Graph bisection on random graphs has been studied intensively. For instance,
[20] studies the collection of labelled simple random graphs that have 2n nodes,

node-degree d ≥ 3 and bisection width o(n1−1/b(d+1)/2c)). For these graphs the
minimum bisection is much smaller than the average bisection, which makes it easier
to find. The main result is a polynomial-time algorithm based on the maxflow-
mincut theorem, that finds exactly the minimum bisection for almost all graphs.

The work [39] shows that, if in the planted partition model pin > pout are fixed
(for n→∞), then the underlying community structure coincides with the minimum
bisection and it can be retrieved in polynomial time. This result is improved in [63].

In [86] the case of non-constant pin and pout is analysed: using a spectral al-
gorithm, one can recover the communities with probability 1 − δ if pin−pout√

pin
=

Ω

(√
log(n/δ)

n

)
.

We refer the reader for a detailed historical overview to the table on page 3 in
[1]. The latter work gives precise conditions for exact recovery in the dense PPM
(pin = a log(n)/n and pout = b log(n)/n, with a, b constants): exact recovery is

possible precisely when a+b
2 −

√
ab > 1. Compare this to the phase-transition in

dense Erdős-Rényi graphs with edge probability c log(n)/n (c a constant), which are
connected if and only if c > 1.

3.1.2 Literature on the DC-SBM

Positive results of spectral clustering in the DC-SBM have been obtained by various
authors. The work [32] introduces a reconstruction algorithm based on the matrix
that is obtained by dividing each element of the adjacency matrix by the geometric
mean of its row and column degrees.

The main result in [28] is a polynomial time algorithm that outputs a partitioning
that differs from the planted clusters on no more that nlog(D̄)/D̄0.98 nodes. This
recovery succeeds only under certain conditions: the minimum weight should be a
fraction of the average weight and the degree of each vertex is o(n).

The article [76] gives an algorithm based on the adjacency matrix of a graph
together with performance guarantees. The average degree should be at least of
order log(n). However, since the spectrum of the adjacency matrix is dominated by
the top eigenvalues [25], the algorithm does a poor job when the degree-sequence is
very irregular.

In Section 4.4, we give a more detailed literature review on spectral methods using
the Adjacency and Laplacian matrix, but also on methods as Spectral Clustering on
Ratios of Eigenvectors (SCORE) and Regularized Spectral Clustering.

3.1.3 Results in this thesis

We propose in Chapter 4 a spectral clustering algorithm based on a suitably normal-

ized adjacency matrix Ĥ (defined above). We show that this algorithm consistently
recovers the block-membership of all but a vanishing fraction of nodes, in the regime
where the lowest degree is of order log(n) or higher. Recovery succeeds even for very
heterogeneous degree-distributions. The used algorithm does not rely on parameters
as input. In particular, it does not need to know the number of communities.

An important ingredient in our proof is Lemma A.0.5, which serves as an alter-
native to the commonly used Davis-Kahan theorem.
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We note that Ĥ is a natural choice in the degree-corrected setting. Indeed, due

to (3.1), we expect that E
[
Ĥuv

]
∼ Bσuσv up to some scaling. This is in contrast

with the normalized Laplacian L and the Adjacency matrix, because E [Luv] ∼√
Du

√
DvBσuσv and E [Auv] ∼ DuDvBσuσv . We elaborate on this in Section 4.4,

where we also compare Ĥ with other spectral methods.

3.2 Sparse regime

The sparse regime is by far the most realistic regime as the expected degree of a
node does not grow with the network size. At Facebook for instance, your number
of friends is unlikely to increase significantly when new members join. At the same
time, this regime is more challenging. Indeed, traditional methods based on the
Adjacency or Laplacian matrix working well in the dense case break down when
employed in the sparse case. Intuitively, the hardness can be understood as follows:
When a = b, the graph has no communities. Therefore, if |a − b| is non-zero but
very small, we expect that a graph where each vertex has only a small, constant
number of neighbours, does not contain enough information to distinguish between
the clusters.

3.2.1 Literature on the ordinary SBM

We turn first to the ordinary SBM, where all vertices have unit weight (i.e., φu = 1
for all u). The authors of [36] were the first to conjecture a phase-transition for this
setting based on ideas from statistical physics:

Conjecture 3.2.1 ([36]). Consider a SBM on q balanced communities where edges
inside a cluster are present with probability a/n and between clusters with probability
b/n. Let M be the matrix with a/q on the diagonal and b/q on all off-diagonal
elements. Let λ1 and λ2 be its first, respectively, second eigenvalue and let SNR =
λ2
2

λ1
= (a−b)2

q(a+(q−1)b) , the signal-to-noise-ratio.

For any q ≥ 2, if SNR > 1 (which is generally called the Kesten-Stigum condi-
tion), communities can be detected in polynomial time.

For q ≥ 4, it is theoretically possible to detect communities for some SNR < 1.

It is believed that for q ≥ 4, a double phase-transition occurs: Detection should
be easy (i.e., polynomial time) when SNR > 1, much harder (i.e., exponential time)
for SNR ∈ (τ, 1], for some 0 < τ < 1, and information-theoretically impossible when
SNR < τ .

The conjecture has been settled in the case of two communities: First in [85]
by using a matrix counting the number of self-avoiding paths in the graph, and
later, independently, in [94]. Further, [92] shows that for q = 2, it is information-
theoretically impossible to detect communities for SNR below 1.

In [72] the ’spectral redemption conjecture’ was made: detection using the second
eigenvalue of the non-backtracking matrix (defined above) would also establish the
positive part. This has recently been proved1 in [17], for any q ≥ 2 such that λq is
a simple eigenvalue of M .

More recently, [2] gave an algorithm that detects communities when SNR > 1.
In particular, for the SBM with two asymptotically equal-sized communities we

have the following phase-transition result: When (a − b)2 ≤ 2(a + b), commu-
nity detection is information-theoretically impossible. Conversely, when
(a − b)2 > 2(a + b), a positively-correlated clustering can be obtain by
thresholding the second eigenvalue of the non-backtracking matrix.

1Theorems 4 and 5 in [17] are actually a bit more general.
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3.2.2 Results in this thesis

Consider the DC-SBM with q asymptotically equal-sized communities. Does this
model exhibit a similar behaviour? In particular, does there exists a threshold (in
terms of a, b and statistics on φu) below which community detection is information-
theoretically impossible? And above this threshold, can we use again the non-
backtracking matrix or do we need to modify it? A priori especially the latter is
unclear, because an algorithm solely based on the non-backtracking matrix cannot
use any information on the weights as input.

Our main results show the following: Firstly, in the setting of q ≥ 2 communities
where the weights are possibly heavy-tailed (with large enough exponent), detection

is impossible when (a − b)2Φ(2) ≤ q(a + b). To derive this result, we establish
a coupling between local neighbourhoods in the graph and multi-type branching
processes where the offspring distribution follows a Poisson-mixture (due to the
weights). It is crucial that the weights in the graph and the branching process
exactly coincide. Further, we show that long-range interactions are weak in this
model, even if the degrees follow a power-law.

Secondly, we characterize the spectrum of the non-backtracking matrix for DC-
SBM’s with bounded weights on two communities in the regime where the number
of vertices is large. In particular, the leading eigenvalue is asymptotically equal to
ρ := a+b

2 Φ(2). For the second eigenvalue, we distinguish two regimes: the second

eigenvalue is asymptotically equal to µ2 := a−b
2 Φ(2) when µ2

2 > ρ, whereas the

second eigenvalue is asymptotically bounded by
√
ρ when µ2

2 ≤ ρ. All the remaining
eigenvalues are asymptotically bounded by

√
ρ. As a consequence, the spectral

method based on the non-backtracking matrix successfully detects communities in
the regime (a − b)2Φ(2) > 2(a + b). As a corollary we obtain that degree-corrected
Degree-Corrected Erdős-Rényi graphs are asymptotically Ramanujan in that they
asymptotically satisfy the graph Riemann hypothesis. To derive these results, we
carefully analyse multi-type weighted branching processes, leading to an extension
of results by Kesten and Stigum [70, 71]. We further derive a weak-law of large
numbers for local functionals on DC-SBM’s using the coupling-result mentioned
above. To derive the bound on the bulk of the spectrum, we decompose powers of
the non-backtracking matrix as a sum of products and then bound the individual
terms with the trace method.

Surprisingly, no modification of the matrix, nor information about the weights
is thus needed, which shows the robustness of the method. We conclude that, as in
the standard SBM, the algorithm is optimal in the sense that it works all the way
down to the detectability-threshold.

Note that the only relevant statistic of the random weight is its second moment.
The detectability threshold can be expressed as µ2

2 > ρ. Both ρ and µ2 are asymp-
totically eigenvalues of the expected adjacency matrix conditioned on the weights.
Indeed, if A denotes the adjacency matrix, and if ψ1 and ψ2 are the vectors defined
for u ∈ V by ψ1(u) = 1√

2
φu and ψ2(u) = 1√

2
σuφu, then

E [A|φ1, . . . , φn] =
a+ b

n
ψ1ψ

∗
1 +

a− b
n

ψ2ψ
∗
2 − a

1

n
diag{φ2

u}.

Put ψ̂i = ψi
‖ψi‖2 . Then, by the law of large numbers, for i = 1, 2,∥∥∥E [A|φi, . . . , φn] ψ̂i − µiψ̂i

∥∥∥
2
→ 0,

in probability, as n tends to ∞.
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Chapter 4

A spectral algorithm for the
dense DC-SBM

We have published parts of this chapter in Advances in Applied Probability [52].

4.1 Introduction

Here we deal with the DC-SBM in its dense regime, where the weights grow loga-
rithmically with the size of the network. This ensures that the node-degrees con-
centrate around their expectations. Consequently, instances of the DC-SBM ”look
as expected”. This facilitates considerably the reconstruction of the community-
structure, as the top eigenvectors of carefully chosen matrices associated to the graph
should reveal the structure in the expected graph. Indeed, in the ordinary SBM, the
Adjacency matrix successfully recovers the communities (see Section 3.1.1). How-
ever, as we detail below, spectral methods using the Adjacency matrix break down
once the degree-sequence becomes too irregular - which is the case in the DC-SBM.
We therefore propose here an alternative method where the Adjacency matrix is
suitably normalized.

The contribution in this chapter is as follows: We demonstrate with a clean
analysis that community detection in a moderately sparse DC-SBM is feasible under
rather general conditions on the degree-sequence.

The algorithm we propose below uses as input the normalized adjacency matrix

Ĥ with entry (u, v) given by

Ĥuv =

{
1

D̂uD̂v
Auv if Auv = 1

0 otherwise.
(4.1)

Here A is the adjacency matrix of the graph and D̂u is the observed degree of vertex
u. Note that this matrix is a natural choice in the DC-SBM: Indeed, in the model
specified in Section 3, vertices u and v (in communities σu and σv respectively) are
connected by an edge with a probability ∼ DuDvBσuσv , where B is a symmetric
connectivity matrix. After division by the observed degrees we are left with Bσuσv
times a constant (asymptotically depending only on σu and σv).

We show that Ĥ concentrates around a deterministic matrix P of rank L not
larger than the number of communities K, when the minimum expected degree is as
small as log(n). To establish this concentration-result, we use Lemma A.0.5 given
in the appendix, which could be of independent interest, as a simple alternative to
the commonly used Davis-Kahan theorem.

Due to the underlying community structure, the matrix that has the first L
eigenvectors of P as its columns has the nice property that it has only K different
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rows. Hence, due to this fact and the concentration of Ĥ around P , the rows of

the corresponding eigenvector matrix of Ĥ considered as points in an L-dimensional

euclidean space, must cluster around K centres. This property indicates that Ĥ
is the right matrix to analyse when dealing with the DC-SBM. Indeed, associating
each vertex with its corresponding row, we show in this chapter that we retrieve the
correct community of all but a vanishing fraction of nodes.

Along the way, we point out a natural connection between Ĥ and a random walk
on the observed graph.

The organization of this chapter is as follows: First we state the necessary condi-
tions on the model. Next we state our main result for community detection in this
model, followed by a comparison to other methods (Section 4.4) and a discussion

(Section 4.5): the conditions in the main theorem and a connection between Ĥ and
random walks. Section 4.6 outlines the approach we take to prove the main theorem,
which is accompanied by a statement of all auxiliary lemmas. All proofs are deferred
to Section 4.7. In the last section we give a suggestion for future research.

4.2 Conditions on the model

Recall the definition of the DC-SBM in its dense regime from Section 3. From
assumptions (3.2) and (3.3) on the (average) weight (in a cluster), the following
limit exists for all i,

M i = lim
n→∞

Mi∑n
l=1Dl

=

K∑
k=1

Bikαkdk, (4.2)

where Mi =
∑

lDlBiσl .
If the connection probabilities for two communities are approximately the same,

then recovery might still fail. For the ordinary SBM with two communities those
conditions are precisely characterized in [1]. In the DC-SBM such conditions nec-
essarily depend on statistics of the degree-sequence. We shall see in Section 4.5.2
that we need the following identifiability conditions: We assume that for all i, l there
exists j such that

Bij

M i

6=
Blj

M l

. (4.3)

In the analysis that follows, we will consider the random graph in a dense regime,
that is we assume: either

lim
n→∞

D1

log(n)
=∞, (4.4)

or, for some constant c < 1/2,

D1 ≥ CB,M · log(n) and lim
n→∞

D2
n

nc
→ 0, (4.5)

where CB,M is some constant depending on B, M = (M1, . . .MK) and the conver-
gence rate in (4.2). Further, we assume the following condition on the weights:

D2
1

D
= Ω(log(n)). (4.6)

Note that under those assumptions, Du represents the expected degree of vertex
u upto a multiplicative factor that depends only on the community σu. Indeed, if

D̂u denotes the observed degree of vertex u, then

E
[
D̂u

]
=
Du

nD

∑
l 6=u

DlBσuσl =
Du

nD
(Mσu −DuBσuσu) = DuMσu(1 + εn), (4.7)
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where εn ≤ 2
MσuDu

= on(1).

4.3 Main results

As is the case for ordinary SBM’s, one can hope for (quasi-) exact recovery1. Note
that [1] shows how one could obtain exact recovery from partial recovery. We there-
fore focus here on quasi-exact recovery.

Our aim is to retrieve the underlying community structure from a
single observation of the random graph. We do this by analysing the spectral

properties of Ĥ ∈ Rn×n. We shall demonstrate that this matrix is close (in a sense
to be specified below) to the matrix P defined for (u, v) as

Puv =
1

nD

Bσuσv
MσuMσv

. (4.8)

Denote the rank of P by L. Due to the community structure, L ≤ K (see below for
details).

In the regime where (4.4) holds, let f be any function tending to zero, such that

f(n)� 1

D̂1

+
1√

log(n)
+

√
log(n)

D̂1

.

For the regime where (4.5) holds, let f be tending to zero in such a way that

f(n)� 1

D̂1

+
1√

log(n)
+

1

log1/3(n)
.

Further, let τ(n) = 1/f(n)1/3. Algorithm 1 uses Ĥ to reconstruct the communities.

Algorithm 1

1. Calculate the average degree in the graph, call it D̂average. Let L̂ be the number of

eigenvalues of Ĥ that are in absolute value larger than f(n)/D̂average.

2. Compute the first L̂ orthonormal eigenvectors of Ĥ ordered according to their abso-
lute eigenvalues. Denote these eigenvectors and their corresponding eigenvalues by
x̂1, . . . , x̂L̂ and λ̂1, . . . , λ̂L̂ respectively.

3. Associate to each node u ∈ V the vector

ẑu = (x̂1(u), . . . , x̂L̂(u)). (4.9)

Cluster the vectors (ẑu)nu=1 as follows: Pick τ(n) pairs of vertices, label them
(u(1), u′(1)), . . . , (u(τ(n)), u′(τ(n))). Calculate δ(t) =

√
n||ẑu(t) − ẑu′(t)||, and ε =

mint:δ(t)>f2/3(n) δ(t). Find a vertex m so that {u′ :
√
n||ẑm − ẑu′ || ≤ ε/8} has

cardinality larger than f1/3(n) n. Form a community consisting of all nodes in
{u′ :

√
n||ẑm − ẑu′ || ≤ ε/4}. Remove those nodes and iterate this procedure.

We have:

Theorem 4.3.1. Consider a DC-SBM G(B,α, {σu}nu=1, {Du}nu=1). Assume as-
sumptions (3.2), (3.3), (4.3), (4.6) and either (4.4) or (4.5) to hold. Then, Al-
gorithm 1 retrieves the community of all but a vanishing fraction of nodes.

1Recall that exact means correctly reconstructing the group-membership of all vertices, whereas with
quasi-exact recovery only a negligible fraction of the vertices are misclassified.
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The first step estimates L. Indeed, by definition there are only L non-zero eigen-

values of P . Those are all of order 1/D and the corresponding first eigenvalues of Ĥ

are of the same order. The remaining eigenvalues of Ĥ are negligible with respect
to f(n)/D, due to the choice of f (see below for details).

Under the assumptions in Theorem 4.3.1, all but a negligible number of rows of

the matrix having the first L eigenvectors of Ĥ as it columns, cluster for large n
to within negligible distance of block-specific representatives that are separated by
some non-vanishing gap (call the corresponding vertices typical). This is exploited
in the third step. There, with high probability, all picked vertices are typical. Thus,
for a pair t, δ(t) vanishes in front of f2/3(n) if the vertices in the pair belong to the
same community. Hence, by calculating the distance between the other vertices, we
obtain ε as an estimator for the gap mentioned above. At most f(n)2/3 n vertices are
not typical. Hence, the chosen ball around m with radius ε/8 contains a negligible
number of non-typical vertices, the remaining vertices should necessarily be in the
same community. By enlarging the radius of the ball around m, we include all
vertices of a single community. See the proof of Theorem 4.3.1 below for more
details.

Remark 4.3.2. Note that the only input to the algorithm is the regime (i.e., either
D1(n) = Θ(log(n)) or D1(n) � log(n)). This information is used to pick the right
form of the function f . Alternatively, we could adapt the algorithm so that it requires
L = Rank(B) and αmin instead of the regime: Step 1 can then be skipped, in Step

2 we replace L̂ by L and in Step 3 we chose a vertex m that contains in its ε/8
neighbourhood at least αminn/2 vertices.

4.4 Relation to other spectral algorithms in the litera-
ture

Before we prove the main theorem, we make some observations and remarks.

4.4.1 Adjacency matrix

In [76] and [87], the authors use the adjacency matrix A of a graph to recover
the underlying community-structure. They consider the matrix having the first K
eigenvectors of A as its columns and show that, under appropriate conditions, its
rows cluster now in K different directions. However, results in [23] and [90] suggest
that the algorithms in [76] and [87] fail when the expected degree sequence is too
irregular. Intuitively, if the prescribed degree sequence follows a power-law, then
so does the spectrum of the adjacency matrix. Further, as we shall demonstrate
below, the first K eigenvectors correspond only to the K top-degree nodes, and
should therefore not be expected to capture more global features of a graph, such as
its underlying block-structure. The following theorem makes this observation more
rigorous:

Theorem 4.4.1. Consider a DC-SBM G(B,K, {σu}nu=1, {Du}nu=1) such that

Du =

{
D1 if 1 ≤ u < n− k
D1n

γ(u+ 1− (n− k)) if u ≥ n− k, (4.10)

where k = nβ and the constants β and γ obey:

D2
1(n)n2γ+4β−1 → 0 (4.11)

and
γ > 4β. (4.12)
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Further, assume that

σu =

{
2 if u ≤ n

2
1 if u > n

2 .
(4.13)

Under these conditions, the first k eigenvectors become for large n indistinguishable
from the eigenvectors of a graph that is the disjoint-union of k stars having degrees
Dn + o(1), . . . , Dn−k + o(1).

For instance, D1(n) = n1/20, β = 1/20 and γ = 1/5, meets the assumptions in
Theorem 4.4.1. Further, it verifies the conditions in the main theorem (Theorem
4.3.1): Algorithm 1 will successfully return the community membership of all but a
vanishing fraction of nodes.

We remark that the above theorem is inspired by the main result in [90]. There,
random graphs without community structure are considered and the power-law be-
haviour of the corresponding spectrum is obtained. To say something about the
eigenvectors, we additionally introduce a gap between the top k degreed-nodes and
the remaining n − k nodes. This allows us to use Lemma A.0.5, see the proof of
Theorem 4.4.1 below.

4.4.2 Spectral clustering on ratios of eigenvectors

Interestingly, the first eigenvectors of A do contain information about the underlying
community structure, but in a hidden way. Indeed, the SCORE method proposed
in [65] shows that, under some conditions, using the coordinate-wise ratios of the
leading eigenvectors leads to consistent clustering.

Note that we obtain the same random graph model as in [65] by putting θ(u) :=

Du/
√
nDα and P (i, j) = αBij , where α−1 = maxi,j Bij . We further note that the

conditions are more stringent: (2.7) demands that P (or B) is non-singular which
is unnecessary here, see Remark 4.5.2 below.

4.4.3 Laplacian

As we pointed out, the adjacency matrix does not capture accurately global prop-
erties of a graph. The normalized Laplacian is a more suitable candidate. It is
defined by L = I−D−1/2AD−1/2, where I is the identity matrix, A is the adjacency
graph and D the diagonal matrix with the row sums of A on its diagonal (i.e., the
degrees). Object of study in [23] is the Laplacian spectra of random graphs with a
given degree sequence (d1, . . . , dn) where edges are independently present between

each pair of vertices (u, v) with probability dudv∑n
l=1 dl

. In the regime d2
1 � D, with

D = 1/n
∑n

l=1 dl, the eigenvalues satisfy the semicircle law with respect to the circle

of radius 2/
√
D centred at 1.

Denote the eigenvalues of the normalized laplacian by 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤
2. It is a well-known fact that all eigenvalues are located in the interval [0, 2] and
that the algebraic multiplicity of 0 equals the number of components in the graph.
The authors of [23] further study the spectral gap λ = min{λ2, 2−λn}, which reflects
global properties of the random graph. According to [23], when d1 � log2(n),

λ ≥ 1− 1 + o(1)

4/
√
w
− log2(n)

d1
,

thus in this dense regime, all non-zero eigenvalues are close to 1 and thus the spec-
trum of the Laplacian contains no outliers, in contrast with the adjacency matrix.
This bound is improved in [24], to

λ ≥ 1− 2

√
6log(2n)

d1
,
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for d1 � log(n).
The stochastic block model is a special case of the latent space model [56]. In

this model an unknown vector zu is associated to each node u (in a social network,
this vector would represent the unknown social position of person u) and an edge
between u and v is present with probability depending only on zu and zv. If A is
the adjacency matrix of the graph, D the diagonal matrix containing the degrees
and L = D−1/2AD−1/2, then the population version of these matrices are defined as
A = E [A|z1, . . . , zn] , D = diag (

∑n
v=1A1v, . . . ,

∑n
v=1Anv) , and, L = D−1/2AD−1/2.

In [109] convergence of the empirical eigenvectors of L to the population eigenvectors
of L is shown. This follows from their novel result establishing the convergence of
L2 to L2 in Frobenius norm. This forms the basis of an algorithm that uses the first
k eigenvectors (according to the eigenvalues ordered decreasingly with respect to
their absolute value). To recover the hidden communities in the SBM (thus, without
degree-corrections). The algorithm is shown to succeed if those first k eigenvalues are
sufficiently separated from the rest of the eigenvalues and if the minimum expected

degree exceeds
√

2n√
logn

, which is more restrictive than the lower bound of logn.

In [33] the matrix E [D]−1/2AE [D]−1/2 (reminiscent of the normalized Laplacian)
is used to retrieve the underlying community structure in the DC-SBM. Note that
this method requires the expected degrees to be known. It succeeds if the minimum
degree is of order log6n.

To deal with low-degree nodes, the authors in [21] use the degree-corrected ran-
dom walk laplacian: I − (D+ τI)−1A, where τ > 0 is a constant, to find clusters in
the extended planted partition mode (EPPM) where the expected minimum degree
is Ω(logn). In the EPPM, B is a matrix where an element equals p if it is on the
diagonal, and q otherwise; it is thus a special case of the DC-SBM. The algorithm
based on the random walk laplacian requires τ as input and the optimal value of τ
depends in a complex way on the degree-distribution of the graph. The main theo-
rem in [21] comes with lengthy conditions that are not easy to compare with other
results. This theorem restricted to the setting where all du’s equal d, assumes q to
be a constant, which is more restrictive than our assumptions. It is unclear whether
the results for the EPPM can be neatly generalized using the same operator to the
DC-SBM, given the complexity of the present conditions.

Although the Laplacian captures global properties of a graph much better than
the adjacency matrix, its spectrum is still influenced by the underlying degree-
structure. Indeed, consider a DC-SBM with 3000 vertices divided in K = 3 equally-
sized communities, with

B =

(
1 2 3
2 0 2
3 2 5

)
,

degree-sequence

Du =

 u1/3 if u = 1, . . . , 1000
(u− 1000)1/3 if u = 1001, . . . , 2000
(u− 2000)1/3 if u = 2001, . . . , 3000,

(4.14)

and community-membership

σu =

{
1 if u = 1, . . . , 1000
2 if u = 1001, . . . , 2000
3 if u = 2001, . . . , 3000.

(4.15)

In Figure 4.1, we have plot the eigenvectors corresponding to the first and second

largest absolute eigenvalue of I−E [D]−1/2 E [A]E [D]−1/2, where A is the adjacency
matrix and D is the diagonal matrix containing the row sums of A. The Laplacian

concentrates around I − E [D]−1/2 E [A]E [D]−1/2 if the minimum degree is large

27



enough (see Section 8). The community structure is clearly perturbed by the degree-
sequence. In general, an additional step is needed to determine the community-
membership of all nodes when using the Laplacian.

Compare this figure to Figure 4.2, containing the first two eigenvectors of
E [D]−1 E [A]E [D]−1. The vertices are seen to be clearly divided into three commu-
nities.
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Figure 4.1: Plot of the eigenvectors
corresponding to the first and sec-
ond largest absolute eigenvalue of I −
E [D]

−1/2 E [A]E [D]
−1/2

, where A is the
adjacency matrix of a random graph
drawn according to the DC-SBM defined
at the end of Section 4.2, and D is
the diagonal matrix containing the row
sums of A. For those eigenvectors, say
(x1, . . . , xn)′ and (y1, . . . , yn)′, we draw a
dot (xu, yu) for each element u.
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Figure 4.2: Plot of the eigenvec-
tors corresponding to the first and
second largest absolute eigenvalue of
E [D]

−1 E [A]E [D]
−1

, where A is the ad-
jacency matrix of a random graph drawn
according to the DC-SBM defined at the
end of Section 4.2, and D is the diagonal
matrix containing the row sums of A. For
those eigenvectors, say (x1, . . . , xn)′ and
(y1, . . . , yn)′, we draw a dot (xu, yu) for
each element u. Note that many elements
are represented by the same dot, clearly
reflecting the community structure.

Now consider another two-community DC-SBM on n vertices with

B =

(
1 1
1 1

)
,

degree-sequence

Du =

{
log2(n) if u ≤ n/2
100 log2(n) if u > n/2.

(4.16)

and community-membership

σu =

{
1 if u ≤ n/2
2 if u > n/2. (4.17)

Then, according to Lemma A.0.5, the eigenvectors of H become eventually in-
distinguishable from the eigenvectors of the n×n matrix with zero-diagonal and all
other elements equal to 1

nD
. Clearly the communities can not be recovered from the

latter matrix.
The off-diagonal elements of E [D]−1/2 E [A]E [D]−1/2 are given by 1

nD

√
Du

√
Dv =

2
101nZσuσv , with Z =

(
1 10
10 100

)
. Now, Z has eigenvector

(
1
10

)
, corresponding to

eigenvalue 101. The other eigenvalue is zero. So that the minimal gap between
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different eigenvalues of

E [D]−1/2 E [A]E [D]−1/2 is 2−O(1/n). According to [24],

ρ
(
D−1/2AD−1/2 − E [D]−1/2 E [A]E [D]−1/2

)
= o(1) w.h.p., where ρ(X) denotes

the spectral radius of a matrix X. Consequently, Lemma A.0.5 entails that for large
n, clustering according to the eigenvector of D−1/2AD−1/2, corresponding to its
largest eigenvalue, reveals the community-membership of all but a vanishing frac-
tion of nodes.

Those two examples hint that whether the Laplacian L or the degree-normalized
adjacency matrix H should be used depends on the correlation between the degrees
and the communities, and the ’signal-strength’ of B. The first example shows that
if the degrees are uncorrelated, L seems to add some extra noise, whereas H ’filters’
the degrees and reflects immediately the underlying communities. In the second
example, B gives no information about the communities, but the vertices can be
clustered according to their degrees. H ignores this degree-structure and thus fails
to detect the communities. L on its turn still reflects the degree-sequence and
therefore the communities.

4.4.4 Regularized spectral clustering

The paper [106] deals with the shortcomings of the Laplacian by inflating the degrees:
Given a number τ > 0, the regularized graph Laplacian [106, 21] is defined as

Lτ = D−1/2
τ AD−1/2

τ , (4.18)

where Dτ = D + τI.
The regularized spectral clustering algorithm in [106] starts with computing the

matrix X = [X1, X2, · · · , XK ], where X1, X2, . . . , XK are the eigenvectors corre-
sponding to the K largest eigenvalues. A matrix X∗ is then formed by projecting
each row of X on the unit sphere. Considering each row of X∗ as a point in RK ,
and applying k-means with K centres on these points gives an almost-exact clus-
tering provided some conditions on δ + τ (δ is the smallest expected degree) and
the smallest strictly positive eigenvalue of Lτ hold. In particular, condition (a) in
Theorem 4.2 demands that δ + τ � log(n). Since simulation results suggest that τ
should be taken as the average degree, it is unclear if this method outperforms the
algorithm proposed in the underlying chapter.

We note that [106] is the first work that relates the leverage scores (the euclidean
norm of the rows of X) to the quality of the outputted clustering.

4.4.5 Degree-normalized adjacency matrix

The same matrix H is used in [27] to perform community detection on the DC-SBM
in the sparse regime (the minimum degree is bounded from below by a constant).
The main restriction in their setting is that the minimum degree must be of the same
order as the average degree, more precisely there exists ε > 0 such that Di > εD for
all i. Hence too much irregularity in the degree sequence is not captured. In this
sense our work complements their results.

Spectral clustering is performed in [27] on a minor of Ĥ where the rows and
columns of vertices with a degree smaller than Daverage/log(n) (where Daverage is
the observed average degree in the graph) are put to zero, which is not the same
as leaving out completely the nodes with a too low degree. Due to the assumption
that all expected degrees are of the same order, most observed degree will exceed
the lower bound Daverage/log(n).

There are alternative ways to deal with low degree nodes, see for instance Section
4.8 on future research.
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4.5 Discussion

4.5.1 When does the degree-normalized adjacency matrix fail?

Consider a DC-SBM with K ≥ 2 communities, such that for two different commu-

nities i 6= j, for all l, Bil
M i

= Bjl
Mj
. Then, it can be verified that, for large n, in a dense

enough regime, the eigenvectors of H corresponding to non-zero eigenvalues, do not
distinguish between communities i and j.

Further, the method breaks down in a too sparse regime. For instance, two low-
degreed vertices connected by an edge cause the top eigenvectors to concentrate

around them. We observed this when applying Ĥ on the sparse Political Blogs
network [3], see Section 7.

4.5.2 Interpretation of the conditions

Note that, since ED̂u is related to Du according to (4.7), Ĥ normalizes the tendency
of communities to connect by the average degree of their nodes and loses therefore
some information about the graph. See the observations and remarks below:

Observation 4.5.1. If, for some i, j, l ∈ S,

Bij
Mi

=
Blj
Ml

,

then

E [#edges between community i and j]

E [total degree of vertices in community i]
=

E [#edges between community l and j]

E [total degree of vertices in community l]
.

Remark 4.5.2. The identifiability condition is violated if there are distinct i and l
and there exists some constant c > 0 such that

Bij = cBlj

for all j. Indeed, in that case, Mi = cMl and thus

Bij
Mi

=
cBlj
cMl

=
Blj
Ml

.

However, unlike the setting considered in [76, 65], it is not necessary for B to be
full rank. Indeed, consider

B =

(
1 2 3
2 0 2
3 2 5

)
,

which has rank 2. Let α1 = α2 = α3 = 1
3 and

∑
σu=iDu = iαinlog2(n) for all

i = 1, 2, 3. Then it is easily verified that the identifiability condition is met.

Note that G(B,K, {σu}nu=1, {Du}nu=1) and G(B∗,K, {σu}nu=1, {D∗u}nu=1) generate
the same ensemble of random graphs whenever

DuBσuσvDv

D
=
D∗uB

∗
σuσvD

∗
v

D∗
.

Hence, the underlying block-matrix B cannot be estimated from a single observation
of the graph. Rather, we may estimate

nD ≈
∑
u

D̂u, (4.19)
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and, denoting the assigned community-membership (after applying our reconstruc-
tion algorithm) of l by τl,(∑

u

D̂u

) ∑
u:τu=i

∑
v:τv=j Ĥuv(∑

u:τu=i 1
) (∑

v:τv=j 1
) ≈ Bij

M i M j

. (4.20)

Hence, for a DC-SBM G(B,K, {σu}nu=1, {Du}nu=1), the matrix(
Bij

M i M j

)K
i,j=1

is identifiable, not B. It is due to this degeneracy of the DC-SBM and the structure

of Ĥ that condition (4.3) in Theorem 4.3.1 is the best possible:

Lemma 4.5.3. Consider a DC-SBM G(B,K, {σu}nu=1, {Du}nu=1). Fix i and l, then
the following are equivalent:

1. for all j we have
Bij
Mi

=
Blj
Ml

;

2. there exist a DC-SBM G(B∗,K, {σu}nu=1, {D∗u}nu=1), with the same community-
structure {σu}u, such that for all j,

B∗ij = B∗lj

and, for all u, v,
DuBσuσvDv

D
=
D∗uB

∗
σuσvD

∗
v

D∗
.

4.5.3 Random Walk point of view

The matrix Ĥ is related to a random walk on an instance of the random graph.
Indeed,

Ĥuv =

{
1

D̂u

1

D̂v
Auv = Auv

D̂u

Avu
D̂v

if Auv = 1,

0 if Auv = 0,

since Auv = Avu is either 1 (in case edge uv is present) or 0 (when u and v are not

connected). Now, D̂u =
∑n

l=1Alu, as it is the observed degree, which we denoted

here in increasing order: D̂1 ≤ D̂2 ≤ · · · ≤ D̂n. Thus, Auv
D̂u

is exactly the probability

that a random walk (in an undirected graph without weights) jumps from vertex
u to v, given that it is currently at vertex u. Denoting the latter probability by
Pu(u→ v), we see that

Ĥuv = Pu(u→ v)Pv(v → u) = Pu(u→ v → u),

due to the Markov property of the random walk. In other words, Ĥuv is the proba-
bility that a random walk currently at vertex u will consecutively traverse edge uv
and back.

Extending this observation to powers of Ĥ leads to:

(Ĥk)uv =

n∑
l1=1,...,lk−1=1

Pu(u→ l1 → . . .→ lk−1 → v)Pv(v → lk−1 → . . .→ l1 → u),
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the probability that a random walk, after traversing a path of length k starting at
u and ending at v, subsequently traverses that path in the exact opposite direction.

Further, note that

(D̂1, . . . , D̂n)Ĥ = (1D̂1 6=0, . . . ,1D̂n 6=0),

hence if v is an eigenvector of Ĥ with eigenvalue λ, then

n∑
u=1

1D̂u 6=0vu = λ

n∑
u=1

D̂uvu.

Since it can be easily verified that Ĥ is primitive on connected components, the
Perron-Frobenius theorem implies that the eigenvector vmax corresponding to the
largest eigenvalue λmax (which is positive) has only positive elements. Hence,

λmax =

∑n
u=1 1D̂u 6=0vu∑n
u=1 D̂uvu

≥
∑n

u=1 1D̂u 6=0vu

D̂n
∑n

u=1 1D̂u 6=0vu
=

1

D̂n

.

We may derive an upper bound by noting that the spectral radius is bounded
from above by the maximal absolute row sum:

λmax ≤
n

max
u=1

(
n∑
v=1

Pu(u→ v → u)

)
.

4.6 Outline of proof of main theorem

In this section we consider the setting of Theorem 4.3.1. All lemmas here, except
Lemma 4.6.4, assume either (4.4) or (4.5) to hold. Lemma 4.6.4 assumes condition
(4.4): the minimum degree should grow faster than log(n). Lemma 4.6.5 assumes
(4.5): the minimum degree is of order log(n).

Our first objective is to show that Ĥ is close to some matrix P , in the sense that

their difference W := Ĥ − P has negligible spectral radius relatively to that of P .
Here, an entry (u, v) of P is defined as

Puv =
1

nD

Bσuσv
MσuMσv

. (4.21)

We relate P in turn to Z defined by

Zij =
αjBij

M iM j

, i, j ∈ S. (4.22)

Indeed, we show that if y = (y(1), . . . , y(K))T is an eigenvector of Z with eigen-
value λ, then (y(σ1), . . . , y(σn))T fulfils that role for P with eigenvalue 1

D
λ. As a

consequence, the eigenvectors of P associated to non-zero eigenvalues are constant
on blocks.

Finally, we consider the matrix that has the first L eigenvectors of P as its
columns. We show that the rows of this matrix cluster to within vanishing distance
of block-specific representatives. We start by inspection of the difference

W = Ĥ − P = (Ĥ −H) + (H − E [H]) + (E [H]− P ), (4.23)
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where H is defined as

Huv =

{
1

ED̂uED̂v
Auv if Auv = 1,

0 otherwise .
(4.24)

Define
∆(P ) = min{|λ− µ| : λ 6= µ, λ, µ eigenvalue of P},

i.e., the smallest gap between consecutive eigenvalues. A crucial role will be played

by Lemma A.0.5 below, which says that to any eigenvector x̂ of Ĥ there exists an
eigenvector x of P such that ||x− x̂|| → 0 as n→∞, whenever

ρ(W )

∆(P )
→ 0,

as n → ∞, where we recall that ρ(X) denotes the spectral radius of a matrix X.
Hence, we need to calculate ∆(P ):

Lemma 4.6.1. The smallest gap between subsequent eigenvalues of P is given by

∆(P ) = Ω

(
1

D

)
.

All terms in the right hand side of (4.23) have negligible spectral radius with
respect to ∆(P ):

Lemma 4.6.2. The matrix E [H] is close to P in the following sense:

ρ (E [H]− P ) = O
(

1

D1

)
1

D
= on(1)

1

D
.

Lemma 4.6.3. The matrix H concentrates with high probability around its expec-
tation, as follows:

ρ (H − E [H]) = O

(
1√

log(n)

)
1

D
= on(1)

1

D
.

Lemma 4.6.4. Consider the DC-SBM in the dense regime, where (4.4) holds. Then,

for the spectral radius of the difference Ĥ −H it holds with high probability that

ρ(Ĥ −H) = O

(√
log(n)

D1(n)

)
1

D(n)
= on(1)

1

D
.

Lemma 4.6.5. Consider the DC-SBM in the regime where (4.5) holds. Then, for

the spectral radius of the difference Ĥ −H it holds with high probability that

ρ(Ĥ −H) = O

(
1

log1/3(n)

)
1

D(n)
= on(1)

1

D
.
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We use these Lemmas in conjunction with Lemma A.0.5 below to prove:

Lemma 4.6.6. To each normed eigenvector x̂ of Ĥ corresponds a normed eigenvec-
tor x of P such that

x̂ · x = 1−O

((
ρ(W )

∆(P )

)2
)

= 1− on(1),

where
ρ(W ) ≤ ρ(Ĥ −H) + ρ(H − E [H]) + ρ(E [H]− P ).

Having proved this lemma, we show that Algorithm 1 indeed correctly recon-
structs the community of all but a vanishing fraction of vertices.

Recall the definition of Ĥ and observe that Ĥ is symmetric. Consequently, there

exist n eigenvectors of Ĥ that form an orthonormal basis: thus, we are indeed able

to find L orthonormal eigenvectors of Ĥ corresponding to its first eigenvectors.
Next we show that the (ẑu)u∈V , defined in (4.9), tend to block-representatives:

Lemma 4.6.7. There exist K vectors {tk}k∈S, i.e., block-representatives, such that

||
√
nẑu − tσu || = O

((
ρ(W )

∆(P )

)2/3
)

= on(1)

for all but O
(
n
(
ρ(W )
∆(P )

)2/3
)

nodes.

The remaining and crucial step is to demonstrate that those block-representatives
are indeed distinct:

Lemma 4.6.8. Assume that for all i, j there exists i′ such that

Bii′

M iM i′
6= Bji′

M jM i′
, (4.25)

then |tk − tl| = Ω(1) for all k 6= l.

Proof of Theorem 4.3.1. After proving the above lemmas, it remains to show that L̂
in step (1) of Algorithm 1 with high probability equals L. Further, we should verify
that the procedure in step 3 forms the right clusters. For the first step notice the
following: In the regime where (4.4) holds,

ρ(W ) = O

 1

D1
+

1√
log(n)

+

√
log(n)

D1

 1

D
,

and in the other regime, where (4.5) holds,

ρ(W ) = O

(
1

D1
+

1√
log(n)

+
1

log1/3(n)

)
1

D
.

Compare this to f as in Algorithm 1: depending on the regime, the term in paren-

theses goes to zero upon division by f(n)

D
. To see this, note that due to Bernstein’s

inequality (A.0.7), equation (4.35), D̂u ∈ (1/2Mσu , 3/2Mσu)Du for u = 1 and u = n
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with high probability. Hence D̂1 ( D̂n ) is of the same order of magnitude as D1

(respective Dn). Now, due to Lemma A.0.5 below, the first L eigenvalues of Ĥ are of

order 1
D
−O(ρ(W ))� f(n)

D
. The remaining eigenvalues are of orderO(ρ(W ))� f(n)

D
.

Further Daverage may be written as twice the sum of Ω(n2) independent Bernoulli

random variables. It is thus with high probability a constant away from D. Hence

L̂ = L with high probability.
In step 3, the probability that all picked pairs contain only typical vertices (i.e.,

whose corresponding rows cluster around K centres) is larger than (1−f2/3(n))2τ(n)

which tends to one, since f2/3(n)τ(n)→ 0 as n→∞. Thus, with high probability,

for a pair t, δ(t) vanishes in front of f2/3(n) if the vertices in the pair belong to the
same community. δ(t) is of order Ω(1) otherwise. Hence, ε, as defined in step 3 of
Algorithm 1, is of order Ω(1), it thus estimates the separation-distance in Lemma
4.6.8.

Further, at most f(n)2/3 n vertices are not typical. Hence, the chosen ball around

m with radius ε/8 contains at least (f(n)1/3−f(n)2/3)n� f(n)2/3 n typical vertices.
Those must necessarily belong to the same community. Since all typical vertices
belonging to the same community are at most a distance smaller than f(n)2/3 apart,
all of them are located in the ball of radius ε/4 around m.

We see that the algorithm puts, with high probability, all but a vanishing fraction
of nodes in K clusters.

4.7 Proofs

4.7.1 Main theorem

In the proofs below, we shall often write

Du = φuω(n), (4.26)

where 1 = φ1 ≤ φ2 ≤ · · · ≤ φn, and

ω(n) = D1. (4.27)

Further, we introduce

g(n) =

n∑
l=1

φl, (4.28)

φ(n) =
g(n)

n
, (4.29)

Proof of Lemma 4.6.1. Write

Puv =
1

nD

Bσuσv
Mσu Mσv

=
1

nD

Zσuσv
ασv

.

Let y = (y(1), . . . , y(K))T be an eigenvector of Z with eigenvalue λ, we show that
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w = (y(σ1), . . . , y(σn))T is an eigenvector of P with eigenvalue 1
D
λ. Indeed,

Pw =


∑n

l=1 P1l · y(σl)
...∑n

l=1 Pnl · y(σl)


=

1

nD


∑n

l=1 Zσ1σl/ασl · y(σl)
...∑n

l=1 Zσnσl/ασl · y(σl)


=

1

nD


∑K

k=1 n αk Zσ1k/αk · y(k)
...∑K

k=1 n αk Zσnk/αk · y(k)


=

1

D

 λy(σ1)
...

λy(σn)


=

1

D
λw.

Thus 1
D
λ is an eigenvalue of P .

For the other direction, note that if σu = σv, then row u and row v in P are
identical. Hence, if w = (w(1), . . . , w(n))T is an eigenvector of P corresponding
to a non-zero eigenvalue, then w(u) = w(v). Let w = (w(σ1), . . . , w(σn))T be an
eigenvector of P with eigenvalue λ 6= 0. By carrying out a similar calculation as
above, we see that (w(1), . . . , w(K))T is an eigenvector of Z with eigenvalue Dλ.

The statement follows from this one-to-one correspondence between the eigen-
vectors of both matrices corresponding to non-zero eigenvalues.

Proof of Lemma 4.6.2. Note that

E [H]− P = E [H]− (P − diag(P11, . . . , Pnn)) + diag(P11, . . . , Pnn).

Now,

ρ(diag(P11, . . . , Pnn)) = O
(

1

nD

)
,

as diag(P11, . . . , Pnn) contains only K different elements, each of order 1
nD

. Further,

for u 6= v,

E [Huv] =
Du

E
[
D̂u

] Dv

E
[
D̂v

]Bσuσv 1

nD
= (1 + δ(n))

Bσuσv
Mσu Mσv

1

nD
= Puv + δ(n)Puv,

where δ(n) = O(εn), with, due to (4.7), εn ≤ maxi
2
M i

1
ω(n) tending to zero uniformly

for all u, v. Hence, due to Lemma A.0.4,

ρ (E [H]− (P − diag(P11, . . . , Pnn)) + diag(P11, . . . , Pnn)) = O
(

1

D1

)
1

D
.

Proof of Lemma 4.6.3. We start by introducing the constants Cij = Bij
M iMj

, and

α = maxij
1

M iMj
. Put for u < v,

Xuv = Xvu = α−1ω2(n) (Huv − E [Huv]) ,
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where ω(n) is defined in (4.27). That is,

Xuv =
1 + o(1)

α

(
1

MσuMσv

1

φuφv
Ber

(
DuDv

nD
Bσuσv

)
− Cσuσv

ω(n)

φ

1

n

)
,

with φu and φ defined in (4.26), respectively, (4.29) (the o(1) term is uniform due
to (4.7)). Due to our choice of α and the assumption that φu ≥ 1 for all u,

Xuv ∈ (1 + o(1)) [−puv, 1− puv] ,

where

puv =
Cσuσv
α

ω(n)

φ

1

n
.

Let X̂uv = Xuv
2 , i.e., X̂uv ∈ [−puv, 1− puv]. We shall compare the symmetric

zero-diagonal matrix X̂ to the deviation from its expectation of another symmetric
zero-diagonal matrix, where elements uv are given by Ber (puv), for u 6= v. Since by
assumption (4.6),

ω(n)

φ(n)
=
D2

1(n)

D(n)
= Ω(log(n)), (4.30)

Lemma A.0.6 applies. Following an argument given in [115], we construct a function

Yuv such that Yuv has values only in {−puv, 1− puv} and E
[
Yuv

∣∣∣X̂uv

]
= X̂uv. First,

let {Uuv}u<v be independent uniformly distributed random variables. Fix u < v.
Define, for x ∈ [−puv, 1− puv] and w ∈ [0, 1],

Fuv(x,w) = 1− puv − 1x≤w−puv ,

and,

Yuv = Yvu = Fuv(X̂uv, Uuv).

Then,

P
(
Fuv(X̂uv, Uuv) = 1− puv

∣∣∣X̂uv

)
= X̂uv + puv,

and,

P
(
Fuv(X̂uv, Uuv) = −puv

∣∣∣X̂uv

)
= 1− puv − X̂uv,

thus,

E
[
Yuv

∣∣∣X̂uv

]
= X̂uv,

and,

P (Yuv = 1− puv) = E
[
X̂uv

]
+ puv = puv.

Hence, indeed, Yuv = Ber (puv)− puv.
Let Y be the symmetric zero-diagonal matrix with each element uv given by Yuv,

for u 6= v. Then, according to Lemma A.0.6,

P

(
ρ(Y ) ≤ O

(√
ω(n)

φ

))
≥ 1−O

(
1/n2

)
. (4.31)

We shall use this observation in the following comparison,

ρ
(
X̂
)

= ρ
(
E
[
Y
∣∣∣X̂ ]) ≤ E

[
ρ(Y )

∣∣∣X̂ ] ,
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by Jensen’s inequality. Put S = E
[
ρ(Y )

∣∣∣X̂ ], we shall show that it is also upper

bounded by O
(√

ω(n)/φ

)
.

Firstly, note that |Y | is element-wise dominated by the all-one matrix, hence
ρ(Y ) ≤ n. Secondly, the sigma-algebra generated by S is contained in the sigma-

algebra generated by X̂. Hence,

E [ρ(Y )|S] = E
[
E
[
ρ(Y )

∣∣∣X̂ ]∣∣∣S] = E [S|S] = S.

Further, both Y and X̂ take only finitely many different values, and thus ρ(Y )
and S take values in a finite space. It therefore makes sense to consider, for t > 0,
the function

β(·) = P (ρ(Y ) > t|S = ·) .
We have,

S = E [ρ(Y )|S] ≤ β(S)n+ (1− β(S))t,

i.e.,

β(S) ≥ S − t
n− t

.

Denote γ = P (S > t+ 1), then

P (ρ(Y ) > t) = E [β(S)] ≥ E [β(S)1S>t+1] ≥ γ

n− t
.

As a consequence, for t = O
(√

ω(n)/φ

)
, by (4.31) one has

P (S > t+ 1) = γ ≤ (n− t)P (ρ(Y ) > t) = (n− t)O
(
1/n2

)
= O (1/n) .

Therefore,

ρ(H − E [H]) =
α

ω2(n)
ρ(X) = 2

α

ω2(n)
ρ(X̂) ≤ O

(√
1

φω3(n)

)
, .

Finally, due to (4.30),

ρ(H − E [H]) = O

√ φ

ω(n)

1

φω(n)

 = O

(
1√

log(n)

)
1

D
.

Proof of Lemma 4.6.4. To prove this theorem we claim that in the present setting,
it suffices to show that with high probability,

(Ĥ −H)uv = εuvHuv,

where, for some constant Ĉ and all large enough n,

|εuv| ≤ Ĉε(n), (4.32)

with

ε(n) :=

√
6

miniMi

2log(n)

ω(n)
= O

(√
log(n)

D1(n)

)
→ 0, (4.33)
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by assumption. Consequently, after an appeal to Lemma A.0.4,

ρ(Ĥ −H) ≤ ρ(|Ĥ −H|) ≤ Ĉε(n)ρ(H). (4.34)

Since, H = E [H] +H − E [H], it follows from Lemmas 4.6.2 and 4.6.3 that

ρ(H) = O
(

1

D

)
.

Consider the difference

1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

=
1

ED̂u

1

ED̂v

1

1 + D̂u−ED̂u
ED̂u

1

1 + D̂v−ED̂v
ED̂u

− 1

ED̂u

1

ED̂v

=
1

ED̂uED̂v

εuv,

thus

εuv =
ED̂u − D̂u

ED̂u

+
ED̂v − D̂v

ED̂v

+O

(ED̂u − D̂u

ED̂u

)2
+O

(ED̂v − D̂v

ED̂v

)2
 .

We quantify ED̂u−D̂u
ED̂u

. Since D̂u is a sum of Bernoulli random variables with mean

E
[
D̂u

]
= DuMσu(1− o(1)),

where the o(1) term follows from (4.7), we have for ε(n) as in (4.33), the Bernstein’s
inequality (see (A.0.7)),

P

(∣∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣∣ > ε(n)

)
≤ 2exp

(
− ε2(n)

2 + ε(n)/3
E
[
D̂u

])
= 2exp

(
− ε2(n)

2 + ε(n)/3
DuMσu(1− o(1))

)
≤ 2exp

(
−ε

2(n)

3
ω(n)

Mσu

2

)
≤ 2

n2
.

(4.35)

Invoking this we establish the union bound

P

(∣∣∣∣∣ED̂1 − D̂1

ED̂1

∣∣∣∣∣ ≤ ε(n), . . . ,

∣∣∣∣∣ED̂n − D̂n

ED̂n

∣∣∣∣∣ ≤ ε(n)

)
≥ 1−

n∑
u=1

P

(∣∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣∣ > ε(n)

)

≥ 1− 2

n
→ 1,

as n→∞. Hence,

E =

{∣∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣∣ ≤ ε(n) for all u ∈ V

}
holds with high probability. Thus we establish (4.32): |εuv| ≤ 2ε(n) + O(ε2(n)) ≤
Ĉε(n), with Ĉ a large enough constant.

Henceforth, we condition on E. Then, for u 6= v,

Ĥuv −Huv =

(
1

D̂u

1

D̂v

− 1

ED̂uED̂v

)
Auv = εuv

1

ED̂uED̂v

Auv = εuvHuv.
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Proof of Lemma 4.6.5. We define

ε(n) =
1

log1/3(n)
(4.36)

and we shall call a vertex u good if |ED̂u − D̂u| ≤ ε(n)ED̂u. We use this definition
to split ∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv = Muv +M c
uv +M r

uv −M cr
uv, (4.37)

where

Muv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv1{u and v good},

M c
uv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv1{v bad},

M r
uv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv1{u bad},

M cr
uv =

∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣Auv1{u and v bad}.

We shall show that all terms in (4.37) have a negligible spectral radius compared
to ∆(P ). First note that the difference

1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

,

may be written as
1

ED̂uED̂v

εuv,

where

εuv =
ED̂u − D̂u

ED̂u

+
ED̂v − D̂v

ED̂v

+O

(ED̂u − D̂u

ED̂u

)2
+O

(ED̂v − D̂v

ED̂v

)2
 .

Now, similarly as in the proof of Lemma 4.6.4, there exists a constant Ĉ, such that

εuv ≤ Ĉε(n) if both u and v are good. Consequently, ρ(M) ≤ Ĉε(n)ρ(Ĥ).
Next we analyse the other terms in (4.37). We start with M c. The idea is that,

although now ∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣ = O
(

1

ED̂u

1

ED̂v

)
,

the total number of non-zero elements in a column of M c is very small, so that its
spectral radius indeed vanishes upon division by ∆(P ). We note that(

Auv1{v bad}
)
u,v

=
(
Auv1{u bad}

)T
u,v
,

so that a similar statement holds for the maximal row sum of M r. Obviously,
M cr ≤M c, and so do their spectral radii.

As a consequence of these observations, it thus suffices to prove our claim for
M c. To do so, we proceed in three steps: First we show that

P (E1) = P

({
∀u :

∣∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣∣ ≤ 1/2

})
≥ 1− 2/n. (4.38)
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From which it follows after a short computation that, with probability larger than
1− 2/n, for all u, v, ∣∣∣∣ 1

D̂u

1

D̂v

− 1

ED̂u

1

ED̂v

∣∣∣∣ ≤ 3
1

ED̂u

1

ED̂v

.

Keeping this in mind, it thus suffices to demonstrate that (Auv1{v bad})uv has a
spectral radius much smaller than the spectral radius of A. The column sum in
the former equals the number of bad neighbours a vertex has. That is, the spectral
radius is bounded by maxuXu, where for u ∈ V ,

Xu =
∑

v∈N (u)

Zv, (4.39)

with,
Zv = 1{v is bad}.

Caution is needed here as the indicator functions in (4.39) are not independent.
In the second step we shall show that with high probability the number of edges

between vertices in the neighbourhood of u is negligible compared to the expected
degree of vertex u. That is,

P (E2(u)) = P

 ∑
x,y∈N (u)

Axy ≤
1

2
ε(n)ω(n)


 ≥ 1− 2/n2, (4.40)

where ω(n) is defined in (4.27). Hence, except for possibly 1
4ε(n)ω(n) of them,

the variables in (4.39) form an independent set (conditional on not having any
neighbours among N (u)).

The last step consists in showing that this leads to

P
(
Xu > ε(n)O

(
ED̂u

)∣∣∣ E1, E2(u)
)

= o(1/n). (4.41)

The assertion follows now straightforwardly: with high probability, we have∑
v

M c
uv ≤ 3

1

ED̂u

max
v

1

ED̂v

Xu

≤ 3
1

ED̂u

max
v

1

ED̂v

ε(n)O
(
ED̂u

)
≤ O

(
ε(n)

minv ED̂v

)
= O

(
ε(n)

ω(n)

)
.

Now D = O(ω(n)), since D2
1(n)

D(n)
= Ω(log(n)). Consequently, due to the choice of ε(n)

in (4.36),

ρ(M c) = O
(
ε(n)

ω(n)

)
= O

(
1

log1/3(n)

)
1

D(n)
= on(1)

1

D(n)
.

The first step, i.e. demonstrating equation (4.38), is easily carried out: Fix u ∈ V
and use Bernstein’s inequality (A.0.7) to verify the bound

P

(∣∣∣∣∣ED̂u − D̂u

ED̂u

∣∣∣∣∣ > 1/2

)
≤ 2exp

(
− 3

26
E
[
D̂u

])
.
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Now, for n large enough, ED̂u ≥MCB,Mlogn, and by assumption, CB,M from (4.5)

is so large that 3
26E

[
D̂u

]
> 2log(n). Hence,

P
(

1/2ED̂u ≤ D̂u ≤ 3/2ED̂u

)
≥ 1− 2/n2.

We proceed with the second step, i.e., (4.40). Put M = maxiMi, B = maxi,j Bij .

Set C = max{1/2M, 5M
2
, B}. Consider, conditional on D̂u ≤ 2ED̂u,∑

x,y∈N (u)

Axy =
∑

x,y∈N (u)

Ber

(
Bσxσy

φxφyω(n)

g(n)

)

≤ Bin

(
4(ED̂u)2, B

φxφyω(n)

g(n)

)
≤ Bin

(
5M

2
φ2
uω

2(n), B
φxφyω(n)

g(n)

)
≤ Bin

(
5M

2
φ2
nω

2(n), B
φ2
nω(n)

g(n)

)
≤ Bin

(
Cφ2

nω
2(n), C

φ2
nω(n)

g(n)

)
,

where φu and g(n) are defined in (4.26), respectively (4.28). We now show that

P
(

Bin

(
Cφ2

nω
2(n), C

φ2
nω(n)

g(n)

)
≥ 1

2
ε(n)ω(n)

)
= o(1/n).

First, note that

P
(

Bin

(
Cφ2

nω
2(n), C

φ2
nω(n)

g(n)

)
≥ 1

2
ε(n)ω(n)

)
≤
(
Cφ2

nω
2(n)

1
2ε(n)ω(n)

)(
C
φ2
nω(n)

g(n)

) 1

2
ε(n)ω(n)

.

(4.42)
Using that

(
n
k

)
≤ (nek )k, we have(

Cφ2
nω

2(n)
1
2ε(n)ω(n)

)
≤
(

2Ce
φ2
nω(n)

ε(n)

) 1

2
ε(n)ω(n)

= exp

(
1

2
ε(n)ω(n)log

(
2Ce

φ2
nω(n)

ε(n)

))
≤ exp

(
c

2
ε(n)ω(n)log (g(n)) +

1

2
ε(n)ω(n)log (2Ce)

)
,

where c < 1
2 from (4.5) is such that φ2

nω
2(n)

log2/3(n)nc
→ 0 (and thus φ2

nω(n)
gc(n) = on(1)

log1/3(n)
≤

ε(n), since g(n) = Θ(n) in the particular setting of this lemma). Write(
C
φ2
nω(n)

g(n)

) 1

2
ε(n)ω(n)

= exp

(
−1

2
ε(n)ω(n)log

(
(g(n))1−c (g(n))c

Cφ2
nω(n)

))
≤ exp

(
−1

2
ε(n)ω(n)log

(
(g(n))1−c))

= exp

(
−1− c

2
ε(n)ω(n)log (g(n))

)
,
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if n large enough. Combining these estimates, we see that (4.42) may be bounded
from above by

exp

(
−1− 2c

2
ε(n)ω(n)log (g(n)) +

1

2
ε(n)ω(n)log (2Ce)

)
≤
(
−1− 2c

4
ε(n)ω(n)log (g(n))

)
,

since g(n) ≥ n� 2Ce. Finally, since 1−2c
4 ε(n)ω(n) ≥ 2, for large n,

P (E2) = 1− P

 ∑
x,y∈N (u)

Axy ≥
1

2
ε(n)ω(n)

 ≥ 1− e−log(g2(n)) ≥ 1− 1/n2, (4.43)

that is (4.40).
We proceed with the last step, i.e., establishing (4.41). Write,

Xu =
∑

v∈N (u):N (v)∩N (u)6=∅

Zv +
∑

v∈N (u):N (v)∩N (u)=∅

Zv.

We already know from (4.40) that the first sum is smaller than 1
2ε(n)ω(n), with

high probability. The variables in the second sum, {Zv}v∈N (u):N (v)∩N (u)=∅, are
independent. For such a vertex v ∈ N (u) that has no neighbour with u in common,

we have D̂v = d′v + 1, where

d′v =
∑

x/∈N (u),x 6=u

Ber

(
Bσvσx

DvDx

nD

)
,

the degree of v outside N (u) ∪ {u}. We show that v is a good vertex with high
probability, by proving that d′v concentrates on its mean which on its turn is close

to E
[
D̂v

]
. Firstly, define

E∗[·] := E
[
·
∣∣∣N (u), E2, D̂u ≤ 2E

[
D̂u

]]
,

then

E∗[d′v] =
∑

x/∈N (u),x 6=u

Bσvσx
DvDx

nD

=
∑
x 6=v

Bσvσx
DvDx

nD
−

∑
x∈N (u)∪{u},x 6=v

Bσvσx
DvDx

nD

≥ E
[
D̂v

]
−O

(
φ2
nω(n)

g(n)

)
E
[
D̂u

]
= E

[
D̂v

]
−O

(
φ3
nω

2(n)

g(n)

)
= E

[
D̂v

]
− on(1).

Secondly, we use Bernstein’s inequality (A.0.7) to prove that d′v concentrates around
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E
[
D̂v

]
upto a factor ε(n) as in (4.36):

P
(
d′v ≥ (1 + ε(n))ED̂v

∣∣∣N (u), E2, D̂u ≤ 2E
[
D̂u

])
≤ exp

(
− (ε(n)E∗d′v + (1 + ε(n))on(1))2

2 (E∗d′v + 1/3 (ε(n)E∗d′v + (1 + ε(n))on(1)))

)

≤ exp

−(ε(n)E∗d′v)2
(

1 + on(1)
ε(n)E∗d′v

)
4E∗d′v


≤ exp

(
−Cε2(n)log(n)

)
,

where we redefined C = 1
8 . Similarly,

P
(
d′v ≤ (1− ε(n))ED̂v

∣∣∣N (u), E2, D̂u ≤ 2E
[
D̂u

])
≤ exp

(
−Cε2(n)log(n)

)
.

Hence each vertex v ∈ N (u) that has no neighbour with u in common is thus a
good vertex with probability 2exp

(
−Cε2(n)log(n)

)
. Consequently, conditional on

N (u), E2, D̂u ≤ 2E
[
D̂u

]
,∑

v∈N (u):N (v)∩N (u)=∅

Zv ≤ Bin
(

2ED̂u, 2exp
(
−Cε2(n)logn

))
.

We have,

P
(

Bin
(

2ED̂u, 2exp
(
−Cε2(n)logn

))
≥ 1

2
ε(n)ED̂u

)
≤
(

2ED̂u
1
2ε(n)ED̂u

)(
2exp

(
−Cε2(n)logn

)) 1

2
ε(n)ED̂u

≤
(

4e

ε(n)

) 1

2
ε(n)ED̂u (

2exp
(
−Cε2(n)logn

)) 1

2
ε(n)ED̂u

= exp

(
1

2
ε(n)ED̂u

(
log

8e

ε(n)
− Cε2(n)logn

))
= o(1/n),

since ε(n) = 1/log1/3(n). Hence,

P
(
Xu >

1

2
ε(n)

(
ω(n) + ED̂u

)∣∣∣∣ E1, E2

)
= o(1/n).

The last step ((4.41)) is completed by noting that ω(n) = O
(
ED̂u

)
.

Proof of Lemma 4.6.6. All matrices in

W = (Ĥ −H) + (H − E [H]) + (E [H]− P ),

are real and symmetric, hence, combining Lemmas 4.6.1 - 4.6.5,

ρ(W ) ≤ ρ(Ĥ −H) + ρ(H − E [H]) + ρ(E [H]− P ) = on(1)
1

D(n)
.
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Employing Lemma A.0.5 gives that to each eigenvector x̂ of Ĥ = P+W corresponds
an eigenvector x of P such that

x̂ · x ≥

√
1−

(
ρ(W )

∆(P )

)2

= 1−O

((
ρ(W )

∆(P )

)2
)

= 1− on(1),

since ∆(P ) = Ω
(
1/D(n)

)
.

Proof of Lemma 4.6.7. Invoking Lemma 4.6.6, to each x̂i (with eigenvalue λ̂i) there
exists a normed eigenvector xi (with eigenvalue λi) of P such that

x̂i · xi = 1− fi(n), (4.44)

with fi(n) = on(1). We claim that all λi are larger than zero (note that we refer here

to a set of L̂ eigenvalues). This can be seen as follows: From Lemma 4.6.1 we know
that the first L eigenvalues of P are of order 1/D and all other eigenvalues are zero.

By Lemma A.0.5, |λi−λ̂i| ≤ ρ(W )� 1/D, hence the first L eigenvalues of Ĥ are also
of order Ω

(
1/D

)
−O(ρ(W )) = Ω

(
1/D

)
, and the other n−L are of order O(ρ(W )).

Now, the L̂ eigenvalues of Ĥ that are picked in Step 1 of Algorithm 1 are precisely

those whose absolute eigenvalue exceeds f(n)/D̂average = Ω
(
f(n)/D

)
� ρ(W ), by

construction of f in Section 3. Hence those eigenvalues must necessarily be of order

Ω
(
1/D

)
(i.e., they are indeed non-zero) and L = L̂ with high probability.

Since xi corresponds to a non-zero eigenvalue, it follows from the proof of Lemma

4.6.1 that xi is constant on each block, i.e., xi(u) = xi(v) if σu = σv. Let x
(k)
i be

the value of xi on block k ∈ S. Put

tk =
√
n(x

(k)
1 , . . . , x

(k)
L ). (4.45)

Then,

1/n
∣∣{u ∈ V : ||

√
nẑu − tσu ||2 ≥ T 2}

∣∣ ≤ 1

nT 2

n∑
m=1

||
√
nẑu − tσu ||2

= 1/T 2
n∑
u=1

||(x̂(u)
1 , . . . , x̂

(u)
L )− (x

(σu)
1 , . . . , x

(σu)
L )||2

= 1/T 2
L∑
k=1

||x̂k − xk||2

= 1/T 2
L∑
k=1

fk(n),

to finish the proof, let T =
(∑L

k=1 fk(n)
)1/3

= O
((

ρ(W )
∆(P )

)2/3
)

= on(1).

Proof of Lemma 4.6.8. Below we shall make a spectral decomposition in terms of L
orthonormal eigenvectors of Z that span the union of all eigenspaces corresponding
to non-zero eigenvalues. Recall from the proof of Lemma 4.6.1 how we can obtain
the eigenvectors of Z from the eigenvectors of P .

Recall that by construction {x̂i}Li=1 are orthonormal eigenvectors of Ĥ corre-
sponding to non-zero eigenvalues spanning an L dimensional space. Recall further
from the proof of Lemma 4.6.7 that the corresponding eigenvectors {xi}Li=1 of P
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are associated with non-zero eigenvalues. Lemma A.0.5 (ii) entails that the space
spanned by those {xi}Li=1 has also dimension L. And Lemma 4.6.6 implies that
{xi}Li=1 become an orthonormal set for n tending to infinity (because they become
more and more aligned with the orthonormal set {x̂i}Li=1).

Let, as in the proof of Lemma 4.6.7, x
(k)
i be the value of xi on block k ∈ S. Note

that
∑

k nαk(x
(k)
i )2 = 1 for i ∈ {1, . . . , L}. Putting yi =

√
n(x

(1)
i , . . . , x

(K)
i )T , we see

that each yi is a normalized eigenvector of Z in the sense that
∑

k αk(yi(k))2 = 1.
Now, assume for a contradiction that |tk − tl| → 0 as n→∞:

L∑
i=1

|
√
nx

(k)
i −

√
nx

(l)
i |

2 =

L∑
i=1

|yi(l)− yi(k)|2 → 0. (4.46)

We conclude that there exist orthonormal eigenvectors of Z, {y1, . . . , yL} (with
eigenvalues {λi}Li=1 after a possible relabelling of indices), that span the range of Z,
such that

yu(k) = yu(l)

for all u. The other K − L eigenvectors have zero as an eigenvalue.
To proceed, consider matrix

N =

(
√
αu

Buv

MuMv

√
αv

)
u,v

.

If (x(1), . . . , (x(K))T is an eigenvector of Z then (
√
α1x(1), . . . ,

√
αKx(K))T is an

eigenvector ofN , as is easily verified. HenceN has {(√α1yi(1), . . . ,
√
αKyi(K))T }Li=1

as eigenvectors corresponding to non-zero eigenvalues and K−L eigenvectors with 0
as eigenvalue (which do not contribute to the spectral decomposition of N). Hence

N =

(
L∑
l=1

√
αuyl(u)λl

√
αvyl(v)

)
u,v

.

Thus, for all u,

Bku

MkMu

=
∑
m

ym(k)λmym(u) =
∑
m

ym(l)λmym(u) =
Blu

M lMu

,

violating assumption 4.25.

4.7.2 Comparison to spectral analysis on the adjacency matrix

Proof of Theorem 4.4.1. This proof leans strongly on ideas borrowed from [90], where
graphs without a community-structure are considered. Parts of their proof carry
through for the DC-SBM considered here. Note that limn→∞ g(n)/n = 1.

By definition, we require without lose of generality D1 ≤ D2 ≤ · · · ≤ Dn. How-
ever, we obtain the same graph (with now a decreasing degree-sequence) by a rear-
rangement of indices, if we put

φu =

{
φ1

u if u ≤ 1 ≤ k = nβ

1 if u > nβ,
(4.47)

where φ1 = nγ+β, and Du = φuω(n) (with ω as in (4.27)).

σu =

{
1 if u ≤ n

2
2 if u > n

2 .
(4.48)
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Denote a sample of the random graph by G. We decompose G into the following
graphs (exactly as in [90]) :

• G1, which is a union of vertex disjoint stars S1, . . . , Sk. Star Su has as its center
node u and as leaves those vertices from among {k + 1, . . . , n} adjacent to u,
but not adjacent to {1, . . . , u− 1};

• G′1 is the graph consisting of all edges of G with one endpoint in {1, . . . , k} and
the other endpoint in {k + 1, . . . , n}, except for those edges in G1;

• G2 is the subgraph of G, which is induced by {1, . . . , k};
• G3 is the subgraph of G, which is induced by {k + 1, . . . , n}.

Further, let Fu be the subset of vertices in {k + 1, . . . , n} that are adjacent to
{1, . . . , u− 1} and let C be a constant, independent of n, whose value might change
along the course of the proof.

We claim that d̂u, the degree of vertex u in G1, concentrates around its mean.
Indeed, consider

d̂u =

n∑
l=k+1

Ber

(
DuDl

g(n)ω(n)
Bσuσl

)
−
∑
l∈Fu

Ber

(
DuDl

g(n)ω(n)
Bσuσl

)
,

where g is defined in (4.28). Then,

du = E
[
d̂u

]
≥ ω(n)φu

g(n)

(
n∑

l=k+1

Bσuσl − CE [|Fu|]

)
,

which we bound from below by estimating E [|Fu|], for u ≤ k = nβ: For large enough
n,

E [|Fu|] =

n∑
l=k+1

u−1∑
v=1

DlDv

ω(n)g(n)
Bσuσl

≤ Cω(n)φ1

g(n)

n∑
l=k+1

u−1∑
v=1

1

v

≤ Cω(n)φ1
n− nβ

g(n)
nβ

≤ Cω(n)nγ+2β,

after recalling the special choice for the degree sequence.
Consequently, we have

n

g(n)

B11 +B12

2
Du ≥ du ≥

B11 +B12

2
Du

(
n

g(n)
− Cω(n)nγ+2β

g(n)

)
.

Invoking large deviation theory on d̂u (which is a sum of Bernoulli random variables),
we deduce that

P
(
|d̂u − du| >

√
c′dulogn

)
≤ 2/nc

′/4, (4.49)

For c′ > 0 a constant. We take c′ = 8 to establish (4.49) uniformly over all vertices.
We next investigate ∆(G1), the smallest gap between different eigenvalues of G1.

This graph is the union of vertex disjoint stars with degree d̂u so that its spectrum
is given by

{±
√
d̂1 − 1, . . . ,±

√
d̂k − 1}.
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We claim that
∆(G1) ≥ C

√
ω(n)n

γ−3β

2 →∞ (4.50)

with high probability. Indeed, define

x±u = du ±
√
c′dulogn,

and note that with high probability d̂u ≥ x−u and d̂u+1 ≤ x+
u+1. To investigate the

difference x−u − x+
u+1, we first bound du − du+1 from below:

du − du+1 ≥
B11 +B12

2
ω(n)φ1

(
n/g(n)

u(u+ 1)
− Cω(n)nγ+2β

n

1

u

)
=
B11 +B12

2
ω(n)φ1

1

u

(
n/g(n)

u+ 1
− Cω(n)nγ+2β

n

)
≥ B11 +B12

2
ω(n)φ1

1

u

(
n/g(n)

nβ + 1
− Cω(n)nγ+2β

n

)
≥ B11 +B12

4
ω(n)φ1

1

nβ
1

nβ

=
B11 +B12

4

ω(n)nγ+β

n2β

=
B11 +B12

4
ω(n)nγ−β.

Next we show that the
√
dulogn terms are negligible:

√
dulogn ≤

√
B11 +B12

2
n/g(n)Dulogn

≤ C
√
ω(n)log(n)nγ+β

≤ Cω(n)n
γ+β

2

� ω(n)nγ−β,

due to (4.12). Hence,

x−u − x+
u+1 ≥ Cω(n)nγ−β.

As a consequence,

∆(G1) ≥ min
u∈{1,...,k}

(√
d̂u − 1−

√
d̂u+1 − 1

)
≥ min

u∈{1,...,k}

(√
x−u − 1−

√
x+
u+1 − 1

)

= min
u∈{1,...,k}

 x−u − x+
u+1√

x−u − 1 +
√
x+
u+1 − 1


≥ C ω(n)nγ−β√

ω(n)n
γ+β

2

= C
√
ω(n)n

γ−3β

2 ,

that is (4.50).
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We continue with an inspection of G′1, that is, we focus on m̂u = D̂u|G′1, the
degree of vertex u in G′1, and show that

m̂u ≤ 2c′logn, (4.51)

with high probability (here, mu is the expectation of m̂u). We shall use this in
combination with the fact that the spectral radius of a graph is bounded by its
largest degree.
Write

m̂u =
∑
l∈Fu

Ber

(
φuω(n)

g(n)
B1σl

)
.

This expression allows us to deduce an upperbound for mu,

mu = E [m̂u] ≤ CE [Fu]
φuω(n)

g(n)
≤ Cω(n)nγ+2βnγ+β 1

u

ω(n)

g(n)
≤ Cω2(n)

n2γ+3β

n
,

which tends to zero due to (4.11). Standard bounds for Bernoulli random variables
give

P
(
|mu − m̂u| ≤ c′logn

)
≤ 2 exp

(
− (c′logn)2

2(mu + c′log(n)/3)

)
≤ 2 exp

(
−1

4
c′logn

)
=

2

nc′/4
.

We conclude that, with probability at least 1− 2
n2 ,

m̂u ≤ mu + c′logn ≤ 2c′logn,

i.e., (4.51) holds. An identical estimate holds when u > k.
We next bound the number of edges in G2, denoted by E(G2). The square root

of E(G2) is an upper bound for the spectral radius of G2.

E [|E(G2)|] = C

k∑
u=1

k∑
v=1

φuφvω(n)

g(n)
≤ Cn

γ+βnγ+βω(n)nβnβ

g(n)
≤ Cn

2γ+4β

n
,

vanishing for large n. Again, upon invoking standard large deviation theory, we
have, with probability at least 1− 2

n2 ,

E [|E(G2)|] ≤ 2c′logn. (4.52)

Consider the degree of a vertex u > k in G3,

E
[
D̂u|G3

]
=

n∑
v=k

φuφvω(n)

g(n)
Bσvσu ≤ C

ω(n)

g(n)
n ≤ Cω(n).

Hence,

P
(
D̂u|G3

> Cω(n) +
√
c′log(n)Cω(n)

)
≤ 2

nc′/4
. (4.53)

Combining these observations leads to our assertion that the first k eigenvectors
of A become undistinguishable of those of the k stars, when n tends to infinity.
Indeed, split A according to the described graph-composition:

A = A|G1
+A|G′1 +A|G2

+A|G3
,

and note that the spectral radii of A|G′1 , A|G2
and A|G3

vanish in the presence of
∆(G1). This follows because (as mentioned above) for any graph its spectral radius
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is bounded by the minimum of its largest degree and the square root of its number
of edges. Hence, due to (4.51) - (4.53),

ρ(A|G′1) ≤ 2c′logn,

ρ(A|G2
) ≤

√
2c′logn,

and
ρ(A|G3

) ≤ Cω(n) +
√
c′log(n)Cω(n),

with high probability. All those three bounds vanish indeed upon division by

∆(G1) ≥ Cω(n)n
γ−3β

2 . Lemma A.0.5 finishes the proof.

4.7.3 Interpretation of the conditions

Proof of Remark 4.5.1. Assume,

Bij
Mi

=
Blj
Ml

then,
Bij
MiMj

=
Blj
MlMj

. (4.54)

Now, put φi = 1
αin

∑
σu=i φu, then

Bij
MiMj

=
αiφiBijαjφj

αiφiMiMjαjφj
.

We give a probabilistic interpretation to the terms appearing in the denominator:

nαiφiMi = nαiφi

K∑
k=1

∑
u:σu=k

φuBiσu

= nαiφi

K∑
k=1

nαkφkBik

=

K∑
k=1

(nαi)(nαk)φiBikφk

=

K∑
k=1

∑
u:σu=i

φu
∑

v:σv=k

φvBik

=
n

ω(n)

K∑
k=1

∑
u:σu=i

∑
v:σv=k

P (l↔ m)

=
n

ω(n)

∑
u:σu=i

n∑
m=1

P (l↔ m)

=
n

ω(n)
{expected total degree of vertices in community i}.

(4.55)
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An inspection of the numerator reveals

nαiφiBijφjαjn =
∑
u:σu=i

φu
∑
v:σv=j

φvBij

=
n

ω(n)

∑
u:σu=i

∑
v:σv=j

P (u↔ v)

=
n

ω(n)
{expected #edges between community i and j}

(4.56)

Proof of Lemma 4.5.3. Assume first that for some i and l we have for all j

B̂ij = B̂lj

and, for all u, v,

φuBσuσvφv
g(n)

=
φ̂uB̂σuσv φ̂v

ĝ(n)
,

with φu defined in (4.26) and g in (4.28) (φ̂u and ĝ are defined analogously). Fix j.
Let α, β and γ be any indices such that σα = i, σβ = j and σγ = l. Then,

φ̂αB̂ijφ̂β
ĝ(n)

=
φαBijφβ
g(n)

⇒ Bij =
φ̂α
φα

φ̂β
φβ

g(n)

ĝ(n)
B̂ij

and
φ̂γB̂ljφ̂β
ĝ(n)

=
φγBljφβ
g(n)

⇒ Blj =
φ̂γ
φγ

φ̂β
φβ

g(n)

ĝ(n)
B̂lj ,

implying that (since B̂ij = B̂lj)

Bij =
φ̂α
φα

φ̂β
φβ

g(n)

ĝ(n)
B̂lj =

φ̂α
φα

φγ

φ̂γ
Blj .

Since j was arbitrary, there exist c such that for all j

Bij = cBlj ,

hereby violating the identifiability condition, as pointed out in Remark 4.5.2, i.e.,

Bij
Mi

=
Blj
Ml

,

for all j.
Now assume that (a) holds, that is

Bij
Mi

=
Blj
Ml

,

for all j. Define for k, l ∈ S and u ∈ V

B̂kl =
1

Mk

1

Ml
Bkl

and
φ̂u = f(n)φuMσu ,
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where

f(n) =

∑
v φvMσv∑
w φw

.

Then,

B̂ij =
1

Mi

1

Mj
Bij =

1

Mi

1

Mj

Mi

Ml
Blj =

1

Mj

1

Ml
Blj = B̂lj ,

and (as above, we define ĝ analogously to g),

φ̂uB̂σuσv φ̂v
ĝ(n)

=
1∑

w f(n)φwMσw

φuMσuf(n)
Bσuσv
MσuMσv

f(n)Mσvφv

=
φuBσuσvφv∑

w φw

=
φuBσuσvφv

g(n)
.

4.8 Directions for future research

4.8.1 Exact recovery

The obtained clustering here is almost-exact: only a vanishing fraction of nodes is
miss-classified. It is plausible that an exact clustering could be obtained from this
clustering, by using it as input to the ”clean-up” algorithm presented in Section 7.2
of [1] or alternatively, Algorithm 2 in [93].

4.8.2 Non-constant B

In the underlying paper we assumed B to be a constant matrix. The current analysis
could be extended to a setting where B is allowed to change with n. We need however

the existence of a constant δ > 0 such that for all n, ∆(Z) ≥ δ for Ĥ to concentrate.
For identifiability we need the existence of some ε > 0 such that for all i, j and n,

maxi′
∣∣∣ Bii′
M iM i′

6= Bji′

MjM i′

∣∣∣ ≥ ε.
4.8.3 Sparser graphs

The main issue with both the normalized adjacency matrix and the Laplacian is
proving when those matrices concentrate around a deterministic matrix. For the
Laplacian, if the degrees are of order Ω(log(n)), matrices concentrate according
to [24]. But, if the minimum degree is of order o(log(n)), the graph is seen to
have some isolated vertices. Those contribute to multiple zeros in the spectrum:
hence the matrix does not concentrate. There are multiple ways to overcome this
issue, for instance removing the low-degree vertices or raising all the degrees. The
latter strategy is proposed in [75] for the inhomogeneous Erdos-Renyi random graph
(where edges are independently present with probabilities (puv)

n
u,v=1) and also in

[106, 21] (see Section 4.4.4) for the DC-SBM. According to [75], for τ ∼ d, with
d = nmaxuv puv, with high probability,

ρ
(
Lτ −

(
E [Dτ ]−1/2 E [A]E [Dτ ]−1/2

))
= O

(
1√
d

)
,

where Lτ is defined in (4.18).

Based on these observations, it might be fruitful to use Ĥ on a graph where the
degrees have been artificially inflated.
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Chapter 5

Information-theoretical limits
for the sparse DC-SBM

5.1 Introduction

As we alluded to in the last chapter, spectral methods break down when the graph
becomes too sparse. In the sparse ordinary SBM (with parameters a and b) it is
known [92] that reconstructing the communities from a single observation of the
random graph is information-theoretically impossible when (a− b)2 ≤ 2(a+ b).

In this chapter we extend results in [92] to the DC-SBM (with parameters a, b

and Φ(2)): We prove (using some ideas from [92]) that when (a− b)2Φ(2) ≤ 2(a+ b),
it is information-theoretically impossible to estimate the spins in a way positively
correlated with the true community structure based only on a single observation of
the graph without knowing the weights. Note the universality of this result: the
threshold depends only on the weight distribution through its second moment.

5.2 Main results

Recall the definition of the DC-SBM (with parameters a, b and weight distribution
ν) from Section 3, and denote its i.i.d. spins by {σu}u, its i.i.d. weights by {φu}u ∼ ν
and the k-th moment of ν by Φ(k). We assume that the weights are possibly heavy-
tailed with exponent β > 8: for all large enough k,

P (φ1 ≥ k) = ν([k,∞)) ≤ 1

kβ
.

Before we precisely state our results, we define the notion of a positively correlated
reconstruction, which is less stringent than quasi-exact recovery. The latter is not
feasible since a positive fraction of the nodes are isolated, for which random guess
is the only way to reconstruct them.

Definition 5.2.1. Let G be an observation of the DC-SBM, with true communities
{σu}nu=1. Further, let {σ̂u}nu=1 be a reconstruction of the communities, based on the
observation G. Then, we say that {σ̂u}nu=1 is positively correlated with the true
partition {σu}nu=1 if there exists δ > 0 such that

P

(
1

n

n∑
u=1

1{σu=σ̂u} ≥
1

q
+ δ

)
→ 1,

as n→∞.
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The main result in this chapter is:

Theorem 5.2.2. Assume that (a − b)2Φ(2) ≤ q(a + b). Let G be an instance of
the DC-SBM. Let u and v be uniformly chosen vertices in G. Then, for any s ∈
{1, . . . , q},

P (σu = s|σv, G)
P→ 1

q
, (5.1)

as n→∞.

Thus, it is already impossible to estimate the spin of a random vertex given the
spin of another vertex, which is an easier problem than reconstructing the group
membership of strictly more than a fraction 1/q of the vertices (as explained in
Lemma 5.8.2):

Theorem 5.2.3. Let G be an observation of the DC-SBM with (a − b)2Φ(2) ≤
q(a + b). Then, no reconstruction {σ̂u}nu=1 based on G is positively correlated with
{σu}nu=1.

We further introduce the following shorthand notation: σ = (σ1, . . . , σn) and φ =
(φ1, . . . , φn). For a subset U ⊂ {1, . . . , n} of the vertices, we define σU = {σu}u∈U
and φU = {φu}u∈U . For a vertex ρ ∈ V , and integer r ≥ 0, we denote by Gr(ρ) the
r-neighbourhood of ρ.

5.3 Proof heuristics

We argue now heuristically how one could obtain Theorem 5.2.2, its formal proof is
deferred to the upcoming sections. For simplicity we restrict to the setting of two
communities. The idea is to consider an even simpler problem: if we know the spins
of all vertices at distance R away from u can we than deduce the sign of u? By
noting that local neighbourhoods are w.h.p. tree-like, we can relate the DC-SBM
to a reconstruction problem on trees. In a simplified form (see also [91]) this tree-
reconstruction problem is given as follows: Consider a tree, where every node has
d = a+b

2 Φ(2) descendants and either a blue or a red color. With probability p = a−b
a+b

a descendent inherits its parent’s color, and with probability 1−p its color is chosen
uniformly at random. Given the colors of vertices at distance R away from the root,
can we deduce the root’s color? We could use majority vote among the far-away
vertices, but when is this informative? On average, (dp)R vertices have a color that
has been copied along the chain from the root, the other vertices have a random
(non-informative) color. Among the latter set, roughly half of them are red and half

of them are blue, upto some fluctuations of size
√
dR (law of large numbers). Hence

the fluctuations become so dominant that the information is lost when
√
dR & (dp)R,

that is, (a− b)2Φ(2) ≤ 2(a+ b).
We need however to make the following precise: We should show that long-range

interactions are weak, so that the spin of v is indeed ”shielded” away from u by
the boundary spins at distance R. Further, we need a careful analysis to couple
local neighbourhoods to q-type branching processes where the offspring distribution
follows a Poisson-mixture (i.e., local neighbourhoods are irregular). We finally need
to study broadcasting on these general processes, which can be understood in terms
of their branching number [41].

5.4 Description of q-type Poisson-mixture branching pro-
cess

The branching process that we describe here plays a central role both in this chapter
and in the chapter on the non-backtracking matrix. Before introducing it, we start
with some heuristics.
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Consider two vertices u and v connected by an edge (which we denote as u ∼ v).
What can we say about their spins and weights? Assume for simplicity that we
consider the setting of only two types and that the weights are discrete random
variables and let ψu, ψv ∈W , then

P (σu = σv, φu = ψu, φv = ψv|u ∼ v)

=
P (u ∼ v|σu = σv, φu = ψu, φv = ψv)P (σu = σv, φu = ψu, φv = ψv)

P (u ∼ v)

=
aψuψv
n · 1

2 · dν(ψu) · dν(ψv)∑
ψ̂u,ψ̂v

ψ̂uψ̂v
a+b

2 dν(ψ̂u)dν(ψ̂v)

=
a

a+ b
· ψudν(ψu)

Φ(1)
· ψvdν(ψv)

Φ(1)
.

(5.2)

In other words, the conditional distribution of 1{σu=σv}, φu and φv factorizes into
three independent parts. Note the size-bias in the weights: knowing that a vertex is
not isolated makes it more likely to have a larger weight.

We thus expect the neighbours of a vertex to have their weights distributed

according to the biased law ydν(y)
Φ(1) . We also expect this to hold approximatively

through the first so many generations. Indeed if n is large then the vertices not
included in a neighbourhood have their weights only slightly biased with respect
to ν (because w.h.p. a vertex is not included in the neighbourhood anyway, as

edge-probabilities scale with n−3/4), so that we can apply the above inductively.
This leads us to the introduction of a branching process denoted by TPoi and

defined as follows. We begin with a single particle, the root o, having spin σo ∈
{1, . . . , q} and weight φo ∈ W ⊂ [φmin,∞) (which we take random). The root is

replaced in generation 1 by Poi
(
a
qΦ(1)φo

)
particles of spin σo and by Poi

(
b
qΦ(1)φo

)
particles of spin s for each s ∈ {1, . . . , q}\σo. Further, the weights of those particles
are i.i.d. distributed following law ν∗, the size-biased version of ν, defined for x ∈
[φmin,∞) by

ν∗([0, x]) =
1

Φ(1)

∫ x

φmin

ydν(y). (5.3)

For generation t ≥ 1, a particle with spin σ and weight φ∗ is replaced in the next

generation by Poi
(
a
2Φ(1)φ∗

)
particles with the same spin and Poi

(
b
qΦ(1)φo

)
particles

of each of the remaining q−1 spins. Again, the weights of the particles in generation
t+ 1 follow in an i.i.d. fashion the law ν∗. The offspring-size of an individual is thus

a Poisson-mixture with mean a+(q−1)b
q Φ(2).

5.5 General proof idea and outline

We first note that reconstruction is impossible when a+(q−1)b
q Φ(2) ≤ 1, because in

this regime there is no giant component1. Note further that a+(q−1)b
q Φ(2) ≤ 1 already

implies (a− b)2Φ(2) ≤ q(a+ b).

To establish (5.1) when a+(q−1)b
q Φ(2) > 1 and (a−b)2Φ(2) ≤ q(a+b), we note that

Var(E [σu|σ∂GR , σv, G]) is asymptotically an upper bound for Var(E [σu|σv, G]), as

1Indeed, the main result in [15] concerns the existence, size and uniqueness of the giant component. In

particular, in the setting considered here, a giant component emerges if and only if
a+(q−1)b

q
Φ(2) > 1. We

shall henceforth assume a giant component to emerge.
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conditioning on the boundary spins σ∂GR of anR-neighbourhood around u is more in-
formative. Now, we can approximate Var(E [σu|σv, σ∂GR , G]) ' Var(E [σu|σ∂GR , G]),
because long-range correlations in this model are weak (Lemma 5.8.1). Further,
local neighbourhoods are w.h.p. tree-like, so that calculating the latter variance is
equivalent to a certain tree-reconstruction problem discussed in Section 5.6. More
specifically, we shall prove (Theorem 5.6.6) that reconstruction of the spin of the
root in a q-type tree (with offspring following a Poisson-mixture) based on the spins

at depth R (where R → ∞), is impossible when (a − b)2Φ(2) ≤ q(a + b). Hence,
Var(E [σu|σ∂GR , G])→ 0 as R→∞.

Section 5.6 deals with branching processes where the offspring is governed by a
Poisson-mixture. The main theorem (i.e., Theorem 5.6.6) deals with a reconstruction
problem on these branching processes.

In Section 5.7 we establish a coupling between the local neighbourhood and TPoi.
This result does not follow directly from the coupling in [15], because we need the
weights in the graph and their counterparts in the branching process to be exactly
the same.

Finally, in Section 5.8 we show that long-range interactions are weak. The proof
of Lemma 5.8.1 is based on an idea in the proof of Lemma 4.7 in [92]. Note however
that (besides the presence of weights) the statement of our Lemma 5.8.1 is slightly
stronger than Lemma 4.7 in [92], see below for details.

5.6 Broadcasting on the branching process

Here we repeat without changes the definition of a Markov broadcasting process
on trees given in [41, 92]. Let T be an infinite tree with root ρ. Given a number
0 ≤ ε < 1/(q−1), define a random labelling τ ∈ {1, . . . , q}T as follows: First, draw τρ
uniformly in {1, . . . , q}. Then, conditionally independently given τρ, take every child
u of ρ and, then with probability 1−(q−1)ε set τu = τρ, and with probability (q−1)ε
choose τu uniformly from {1, . . . , q} \ τρ. Continue this construction recursively to
obtain a labelling τ for which every vertex, independently, has probability 1−(q−1)ε
of having the same label as its parent and probability ε for each of the remaining
spins.

Suppose that the labels τ∂Tm at depth m in the tree are known (here, τU = {τi :
i ∈ U} and ∂Tm are all vertices at distance m from the root). The paper [41] gives
precise conditions in the case of two spins as to when reconstruction of the root
label is feasible using the optimal reconstruction strategy (maximum likelihood),
i.e., deciding according to the sign of E [τρ|τ∂Tm ]. Interestingly, this is completely
decided by the branching number of T and the flip-probability ε. The paper [95]
extends the results in [41] to the case of a general number of spins. For completeness
we state both theorems here.

Definition 5.6.1. The branching number of a tree T , denoted by Br(T ), is defined
as follows:

• If T is finite, then Br(T ) = 0;

• If T is infinite, then we define the branching number in terms of percolation.
Suppose that we retain each edge in the tree independently with probability p.
Then Br(T ) is the unique number such that: If p < 1

Br(T ) , then all components

of the graph are finite a.s., while if p > 1
Br(T ) , then the graph has infinite

components a.s.

Remark that [41] does not deal with the trivial case of finite trees. On such trees,
Br(T ) = 0 by convention. This makes sense because, for large m, ∂Tm = ∅, and
consequently P (τρ = +|τ∂Tm) = 1/q.
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Theorem 1.1 in [41] and Proposition 1.3 in [95] read, tailored to our needs:

Theorem 5.6.2. (Theorem 1.1 in [41]) For q = 2, consider the problem of recon-
structing τρ from the spins τ∂Tm at the mth level of T . Define ∆m as the difference
between the probability of correct and incorrect reconstruction given the information
at level m:

∆m := |P (τρ = +|τ∂Tm)− P (τρ = −|τ∂Tm)| .
If Br(T )(1− 2ε)2 > 1 then limm→∞ E [∆m] > 0.
If, however, Br(T )(1− 2ε)2 < 1 then limm→∞ E [∆m] = 0.

Theorem 5.6.3 (Proposition 4.2 in [95]). For general q ≥ 2, consider the problem
of reconstructing τρ from the spins τ∂Tm at the m−th level of T . Define Ps

m as the

conditional distribution of τ∂Tm given that σρ = s. Then, limm→∞ ‖Pi
m−Pj

m‖TV = 0

if Br(T ) (1−qε)2
1−(q−2)ε < 1.

Remark 5.6.4. Note that if Br(T ) (1−qε)2
1−(q−2)ε < 1, then

E [|P (τρ = i|τ∂Tm)− P (τρ = j|τ∂Tm)|]

=
∑
A

P (τ∂Tm = A) |P (τρ = i|τ∂Tm = A)− P (τρ = j|τ∂Tm = A)|

=
1

q

∑
A

∣∣Pi
m(A)−Pj

m(A)
∣∣→ 0,

(5.4)

as m→∞. Thus Theorem 5.6.3 implies Theorem 5.6.2.

Note that in these theorems the tree is fixed, compared to the setting in this
paper where the multi-type branching process of Section 5.4 is considered. But,
it can be easily seen that the spins on a fixed instance T of TPoi are distributed
according to the above broadcasting process.

We thus need to calculate the branching number of a typical instance T :

Proposition 5.6.5. Consider the multi-type branching process TPoi, where the root
has spin drawn uniformly from {1, . . . , q} and weight governed by ν. Then, given

the event that the branching process does not go extinct, Br
(
TPoi

)
≤ a+(q−1)b

q Φ(2)

almost surely.

Note that it can in fact be easily proved that Br
(
TPoi

)
= a+(q−1)b

q Φ(2) almost

surely, given that the process survives.
We conclude with the main theorem of this section.

Theorem 5.6.6. Consider the multi-type branching process TPoi, where the root
has spin drawn uniformly from {1, . . . , q} and weight governed by ν. Denote the
branching process by T and its spins by τn. Further, let R be an unbounded non-
decreasing function. Assume that (a−b)2Φ(2) < q(a+b), then, for any s ∈ {1, . . . , q},

P
(
τρ = s

∣∣TR(n), τ∂TR(n)

) P→ 1

q
,

as n→∞.

Proof. Since ε = b
a+(q−1)b , Proposition 5.6.5 gives that Br(T ) (1−qε)2

1−(q−2)ε < 1 almost

surely. Theorem 5.6.3 (and Remark 5.6.4) then completes the proof.

Remark 5.6.7. In (5.15) we use a coupling between the Poisson tree and the local
neighbourhood around a fixed vertex u, while we condition on the spins of all vertices
exactly distance R(n) away from u. If there are no such vertices, i.e., when the
neighbourhood ’dies out’, then this does not entail extra information. Hence the
convention that Br(T ) = 0 for a finite tree T .
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5.7 Coupling of local neighbourhood

This section has as its objective to establish a coupling between the local neighbour-
hood of an arbitrary fixed vertex in the DC-SBM and TPoi. The main result is the
following theorem, where we let T , τ , and ψ be random instances of TPoi, its spins
and its weights, respectively.

Theorem 5.7.1. Let ρ be a uniformly picked vertex in V (G), where for each n,
G = G(n) is an instance of the DC-SBM. There exists an unbounded non-decreasing
function R : N→ N such that

‖
(
GR(n)(ρ), σGR(n)

, φGR(n)

)
−
(
TR(n), τTR(n)

, ψTR(n)

)
‖TV = on(1),

and,

P
(
|GR(n)| ≤ n1/9

)
= 1− on(1).

Further, in case ν has support in [φmin, φmax], with φmax <∞, we have explicitly

for R(n) = C log(n), with C < 1−log(4/e)
3 log(2·φ2

max·(a∨b))
,

‖ (GR(ρ), σGR , φGR)− (TR, τTR , ψTR) ‖TV ≤ n−
1

2
log(4/e).

We defer its proof to the end of this section. It uses an alternative description of
the branching process in Section 5.6.

5.7.1 Alternative description of branching process

For notational convenience, we restrict ourselves here to the case of two communities
only. The proof for a general number of communities follows then analogously.

We obtain an alternative description of the graph by considering a particle u with
spin σu and weight φu to be of type xu = φuσu ∈ S = −W ∪W . We denote the law
of xu by µ, i.e., for A ⊂ S, µ(A) =

∫
A

1
2dν(|x|). Two distinct vertices u and v are

then joined by an edge with probability κ(xu,xv)
n , where κ : S × S → R is defined for

(x, y) ∈ S × S by
κ(x, y) = |xy|

(
1{xy>0}a+ 1{xy<0}b

)
. (5.5)

Analogously, we obtain the following equivalent description of the branching pro-
cess: We begin with a single particle o of type xo governed by µ, giving birth to
Poi(λxo(S)) children, where for x ∈ S, and A ⊂ S,

λx(A) =

∫
A
κ(x, y)dµ(y). (5.6)

conditioned on xo the children have i.i.d. types governed by µ∗xo
2, where for x ∈ S,

and A ⊂ S,

µ∗x(A) =
λx(A)

λx(S)
=

∫
A

(
a

a+ b
1xy>0 +

b

a+ b
1xy<0

)
|y|dν(|y|)

Φ(1)
. (5.7)

For generation t ≥ 1, all particles give birth independently in the following way:
A particle with type x∗ is replaced in the next generation by Poi(λx∗(S)) children,
again with i.i.d. types governed by µ∗x∗ .

2Note that if y has law µ∗x, then for any A ⊂ W , P (sign(y) = sign(x), |y| ∈ A) = a
a+b

∫
A z

dν(z)

Φ(1) =

P (sign(y) = sign(x))P (|y| ∈ A). Hence, we can identify sign(y) with the particle’s spin and |y| with its
independent weight.
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In case of a general number of communities, we let µ be the product measure of
the uniform measure on {1, . . . , q} with the measure ν. I.e., for s ∈ {1, . . . , q} and
A ⊂ [φmin,∞), we have µ({s} ×A) = 1

q · ν(A).

In [15] it is shown that local neighbourhoods of the graph are described by the
above branching process, if we ignore the types. (To be precise: the equivalent
description used in [15] is that a particle of type x gives birth to Poi(λx(A)) children
with type in A, for any A ⊂ S. Those numbers are independent for different sets A
and different particles.)

The coupling-technique in [15] uses a discretization of κ as an intermediate step,
thereby losing some information: types in the tree deviate slightly from their coun-
terparts in the graph. We shall therefore use another coupling method, presented
below, so that the types in graph and branching process coincide exactly.

5.7.2 Coupling

We use the following exploration process: At timem = 0, choose a vertex ρ uniformly
in V (G), where G is an instance of the DC-SBM. Initially, it is the only active vertex:
A(0) = {ρ}. All other vertices are neutral at start: U(0) = V (G) \ {ρ}. No vertex
has been explored yet: E(0) = ∅. At each time m ≥ 0 we arbitrarily pick an active
vertex u in A(m) that has shortest distance to ρ, and explore all its neighbours in
U(m), the set of unexplored vertices. If uv ∈ E(G) for v ∈ U(m), then we set v
active in step m+1, otherwise it remains neutral. At the end of step m, we designate
u to be explored. Thus,

E(m+ 1) = E(m) ∪ {u},
A(m+ 1) = (A(m) \ {u}) ∪ (N (u) ∩ U(m)) ,

and,
U(m+ 1) = U(m) \ N (u).

Our aim in this section is to show that the exploration process and the branch-
ing process are equal upto depth R(n) (defined in Theorem 5.7.1) with probability
tending to one for large n. We do this in two steps:

Firstly, we establish that the types of the vertices in U(m) are i.i.d. with law

µ(m) (defined in (5.8) below) such that∣∣∣∣∣∣µ(m) − µ
∣∣∣∣∣∣

TV
= O

(
n−β/8 +mn−3/4

)
.

This is the content of the following:

Lemma 5.7.2. The following holds conditioned that all the weights are smaller
than nα, with α = 1/8: Let 1, . . . ,m be the vertices in E(m), with types X1 =

x1, . . . , Xm = xm. Then, the vertices in U(m) have i.i.d. types with law µ(m) =

µ
(m)
x1,...,xm , where

dµ(m)(·) =
g(·)dµα(·)∫
S g(z)dµα(z)

, (5.8)

with µα denoting the measure of the types conditioned that all weights are bounded
by nα, and where,

g(·) =

m∏
i=1

(
1− κ(xi, ·)

n

)
. (5.9)

Further, for all (x1, . . . , xm):∣∣∣∣∣∣µ(m)
x1,...,xm − µ

∣∣∣∣∣∣
TV

= O
(
n−αβ +mn2α−1

)
.
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Secondly, if u has type X = x ∈ S, then its D neighbours in U(m) (i.e., those ver-

tices that will be added to A(m+1)) have i.i.d. types with a law µ
∗(m+1)
x (defined in

(5.10) below), which is O
(
n−3/8

)
away from µ∗x in total variation distance. Further,

the total variation distance between the number of neighbours D and Poi (λx(S)) is

O
(
n−1/4

)
:

Lemma 5.7.3. The following holds conditioned that all the weights are smaller than
nα, with α = 1/8: Assume u has type X = x. Let D be the number of neighbours u

has in U(m). Then, the types of those neighbours are i.i.d. with law µ
∗(m)
x , where

dµ∗(m)
x (·) =

κ(x, ·)dµ(m)(·)∫
S κ(x, y)dµ(m)(y)

. (5.10)

For large n and m = o(n1/4),∣∣∣∣∣∣µ∗(m)
x − µ∗x

∣∣∣∣∣∣
TV

= O
(
nα(1−β) +mn3α−1 + n−αβ/2

)
= O

(
n−3/8

)
. (5.11)

Further,

||D − Poi (λx(S))||TV = O
(
n(1−β/2)·1/8 + n−1/4

)
= O

(
n−1/4

)
. (5.12)

To establish the desired coupling, we need to show that certain events happen
with high probability. To define those events, we need some notation: For u ∈ ∂Gr
(we identify ∂Gr = {1, . . . , |∂Gr|}), put

Du = |N (u) ∩ U(|Gr−1|+ u− 1)|.

Conditioned that u has type Xu = xu, let

D̂u = Poi (λxu(S)) .

Further, for v ∈ {1, . . . , Du}, let Uuv denote the type of child v of vertex u and let

Ûuv be a random variable with law µ∗xu . We assume that {Ûuv}v are independent
conditioned on Xu = xu.

We put the function g : s 7→ 2s − 1 and define the events

Ar+1 = {∀u ∈ ∂Gr : Du = D̂u},

Br+1 = {∀u ∈ ∂Gr, v ∈ {1, . . . , Du} : Uuv = Ûuv},

Cr = {|∂Gs| ≤ logg(s)(n) ∀s ≤ r},
and their intersection

Er =

r⋂
s=1

{As ∩Bs ∩ Cs}.

Further, we let Kr be the event that no vertex outside Gr has more than one neigh-
bour in Gr and that there are no edges in ∂Gr (this implies that the neighbourhood
is indeed a tree).

The events Er and Kr happen with high probability:

Lemma 5.7.4. The following holds conditioned that all the weights are smaller than
nα, with α = 1/8: Fix R ≥ 0. Then, for r ≤ R,

P (Er+1|Er) = 1− on(1).
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Lemma 5.7.5. The following holds conditioned that all the weights are smaller than
nα, with α = 1/8: Fix R ≥ 0. Then, for r ≤ R,

P (Kr|CR) = 1− on(1).

The proofs of Lemma’s 5.7.2 - 5.7.5 can be found in Section 5.9.2. The main
theorem then follows:

Proof of Theorem 5.7.1. We start with the general case, where we can assume that
all weights are bounded by nα. Indeed, by a union bound over all vertices, this
happens with probability 1−O

(
n1−αβ) = 1− on(1). For a fixed integer R > 0, we

have
P
(
∩Rs=1Ks, ER

)
= 1− on(1).

We construct a sequence {Nk}∞k=0 inductively as follows: Put N0 = 0 and for each
k, Nk > Nk−1 as the smallest number such that

P
(
∩ks=1Ks, Ek

)
≥ 1− 1

k
, and log2k−1(n)k ≤ n1/9,

for all n ≥ Nk. Put for Nk ≤ n < Nk+1, R(n) = k. Then, for n ≥ Nk,

P
(
∩R(n)
s=1 Ks, ER(n), |GR(n)| ≤ n1/9

)
≥ 1− 1

k
.

In case all weights are bounded by a constant φmax < ∞, we can replace the
errors in Lemma’s 5.7.2 and 5.7.3 by c1

m
n , respectively c2

m
n , where c1 and c2 are

constants depending on φmax. Further, the growth-condition can now be replaced
by g(s) ≤ cs3 log(n), for some constant c3 > 1 depending on φmax. This implies in
particular that the neighbourhood size is smaller than nβ for a small constant β > 0.
We have made this calculations explicit in the version of September 2016 of [50] on
Arxiv.

5.8 No long-range correlation in DC-SBM

In this section we establish the main Theorem 5.2.2, from which Theorem 5.2.3 then
follows. To this end, we first condition on both the spins of ∂GR(n) and all weights
in G. Lemma 5.8.1 below shows that we then can remove the conditioning on σv
and the graph structure outside the R-neighbourhood (including the weights):

P (σu = +|σ∂GR , σv, G, φ) = P (σu = +|σ∂GR , GR, φGR) + on(1). (5.13)

We established in the previous section that a neighbourhood in G looks like a TPoi

tree with a Markov broadcasting process on it. Hence, the right-hand side of (5.13)
converges to 1/q in probability, establishing (5.1). We show in Lemma 5.8.2 below
that this contradicts the existence of a reconstruction that is positively correlated
with the true type-assignment.

We begin by preparing an auxiliary lemma to prove (5.1), it establishes that
long-range interactions are sufficiently weak. Its proof is inspired by Lemma 4.7
in [92]. However (besides the additional complication of weights) the result stated
here is stronger in the sense that the on(1) terms converge uniformly to 0 and that
”conditioning on G” may now be replaced with ”conditioning on GA∪B”.

Lemma 5.8.1. The following holds conditioned that all the weights are smaller than
nα, with α = 1/8: Let G be an instance of the DC-SBM. Let s ∈ {1, . . . , q}. Let u
be an uniformly picked vertex in V (G). Let A = A(G), B = B(G), C = C(G) ⊂ V
be a (random) partition of V (G), with u ∈ A, such that B separates A and C in G.
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Assume that |A ∪B| ≤ n1/9 for asymptotically almost every realization of G. Then
there exists a sequence of events (Ωn)n and a sequence of non-negative real numbers
(εn)n, such that P (Ωn) = 1− on(1), and ε(n) = on(1), and further, for each n,

|P (σu = s|σB∪C , G, φ)− P (σu = s|σB, GA∪B, φA∪B) | ≤ ε(n), (5.14)

on Ωn.

The proof of Lemma 5.8.1 can be found in Section 5.9.3. The mean Theorem
5.2.2 then follows:

Proof of Theorem 5.2.2. Put A = GR−1, B = ∂GR and C = G \ GR. We use the
monotonicity property of conditional variance 3 to obtain that, for any s ∈ {1, . . . , q},

0 ≤ Var(E
[
1{σu=s}|σv, G

]
) ≤ Var(E

[
1{σu=s}|σB∪C , G, φ

]
) + on(1)

since v ∈ B∪C w.h.p. It suffices to show that the right-hand side tends to 0, because

this implies that P (σu = s|σv, G)
P→ 1/q.

To show that the right-hand side tends indeed to 0, it suffices that

P (σu = s|σB∪C , G, φ)
P→ 1/q.

Now, by using the partition A ∪ B ∪ C of V (G) in Lemma 5.8.1, we have, since

GR ≤ n1/9 w.h.p., and all weights are bounded by nα w.h.p. (this follows from a
union bounded over all vertices),

P (σu = s|σB∪C , G, φ)
w.h.p.

= P (σu = s|σ∂GR , GR, φGR) + on(1).

Theorem 5.7.1 entails that the local neighbourhood is w.h.p. equal to TPoi. Let Tn

be an independent copy of TPoi with root ρ, spins τn and weights ψn. Note that we
stress the dependence on n, because the Poisson-tree is sampled again for each n.

P (σu = s|σ∂GR , GR, φGR) + on(1)
w.h.p.

= P
(
τnρ = s|τn∂TnR , T

n
R, ψTnR

)
+ on(1)

= P
(
τnρ = s|τn∂TnR , T

n
R

)
+ on(1),

(5.15)

due to the coupling from Theorem 5.7.1. By Theorem 5.6.6, the right-hand side of
(5.15) tends to 1/q in probability.

Using the following auxiliary lemma (whose proof can be found in Section 5.9.3),
Theorem 5.2.3 follows from Theorem 5.2.2:

Lemma 5.8.2. Assume that (a − b)2Φ(2) ≤ q(a + b). Let G be an observation of
the DC-SBM, with true communities {σi}ni=1. Let u and v be two uniformly picked
vertices. Let {σ̂i}ni=1 be a reconstruction of the communities, based on the observation
G. Assume that there exists δ > 0 such that

f(n) :=
1

n

n∑
i=1

1{σi=σ̂i} ≥
1

q
+ δ,

with high probability. Then, there exists s ∈ {1, . . . , q}, such that P (σu = s|σv, G)
does not converge in probability to 1/q.

We summarize these results in Theorem 5.2.3:

Proof of Theorem 5.2.3. Combine Theorem 5.2.2 and Lemma 5.8.2.

3For random variables X,Y, Z, we have Var(E [X|Y ]) ≤ Var(E [X|Y, Z]). Indeed, put z = E [X|Y, Z], then

by Jensen’s inequality E [z|Y ]2 ≤ E
[
z2|Y

]
. So that, after taking expectations on both sides, E

[
E [X|Y ]2

]
≤

E
[
E [X|Y, Z]2

]
. Writing out the definition of the variance then establishes the claim.
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5.9 Proofs

5.9.1 Broadcasting on the branching process

Proof of Proposition 5.6.5. Denote the multi-type branching process by T . Assume
w.l.o.g. that the root has D ≥ 1 children denoted as 1, . . . , D. Denote by T ∗u the
subtree of all particles with common ancestor u. We observe that if Br (T ∗u ) < c for
all u, then Br (T ) < c.

Now, conditioned on the spin of the root, (T ∗u )Du=1 are i.i.d. copies of TPoi with
weight governed by the biased law ν∗. The latter is a Galton-Watson process with

offspring mean a+(q−1)b
q Φ(2). If it dies out, then Br (T ∗u ) = 0 by definition. Hence,

given that the process survives (and thus necessarily a+(q−1)b
q Φ(2) > 1), Proposition

6.4 in [82] entails that Br (T ∗u ) = a+(q−1)b
q Φ(2) a.s.

5.9.2 Coupling of local neighbourhood

Proof of Lemma 5.7.2. Recall that we assume that all weights are bounded by nα.
Consider vertex v ∈ U(m) with type Y . We show first that, conditioned on v /∈
N (1, . . . ,m) and X1 = x1, . . . , Xm = xm, Y has law µ

(m)
x1,...,xm . From Bayes theorem

we have, for y ∈ S,

P (Y ≤ y|v /∈ N (1, . . . ,m), X1 = x1, . . . , Xm = xm)

=
P (Y ≤ y)P (v /∈ N (1, . . . ,m)|Y ≤ y,X1 = x1, . . . , Xm = xm)

P (v /∈ N (1, . . . ,m)|X1 = x1, . . . , Xm = xm)
,

(5.16)

since P (Y ≤ y|X1 = x1, . . . , Xm = xm) = P (Y ≤ y). Recall (5.9) and observe that

g(·) = P (v /∈ N (1, . . . ,m)|Y = ·, X1 = x1, . . . , Xm = xm) .

Hence, the denominator in (5.16) is just
∫
S g(z)dµ(z) and evaluating the numerator

yields
∫ y
−∞ g(z)dµ(z). We thus obtain (5.8).

Since for |y| ≤ O (nα), dµα(y) = dµ(y)
P(φ≤nα) , it follows that ‖µα−µ‖TV = O

(
n−αβ

)
.

To bound ‖µα − µ(m)‖TV, note that (in view of (5.5)) g(y) = 1 − O
(
mn2α−1

)
,

for |y| ≤ O (nα). Thus, I :=
∫
S g(z)dµα(z) = 1−O

(
mn2α−1

)
. Therefore,∣∣∣∣∣∣µ(m) − µα

∣∣∣∣∣∣
TV
≤
∫
S

∣∣∣∣g(y)

I
− 1

∣∣∣∣ dµα(y) = O
(
mn2α−1

)
.

We finish by invoking the triangle inequality.

Proof of Lemma 5.7.3. Put nm = |U(m)| and let Y1, . . . , YD denote the types of the
neighbours of u.

Let f1, . . . , fn be arbitrary measurable functions. The first claim follows if we
prove that

E
[

e−
∑D
j=1 fj(Yj)

∣∣∣D = d
]

=

d∏
j=1

(∫
S

e−fj(y)dµ∗(m)
x (y)

)
. (5.17)
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Now, abbreviating conditioning on N (u) ∩ U(m) = F by F , we have,

E
[
e−
∑D
j=1 fj(Yj)1D=d

]
=

∑
F⊂[nm],|F |=d

E
[

e−
∑
j∈F fj(Yj)

∣∣∣F] · (1− 1

n

∫
S
κ(x, y)dµ(m)(y)

)nm−d

·
(

1

n

∫
S
κ(x, y)dµ(m)(y)

)d
.

We have,

P (D = d) =

(
nm
d

)(
1− 1

n

∫
S
κ(x, y)dµ(m)(y)

)nm−d
·
(

1

n

∫
S
κ(x, y)dµ(m)(y)

)d
.

Hence,

E
[

e−
∑D
j=1 fj(Yj)

∣∣∣D = d
]

=
1(
nm
d

) ∑
F⊂[nm],|F |=d

E
[

e−
∑
j∈F fj(Yj)

∣∣∣F] .
Conditioned on F ⊂ [nm], the types (Yj)j∈F are i.i.d., thus

E
[

e−
∑
j∈F fj(Yj)

∣∣∣F] =

d∏
j=1

(∫
S e−fj(y) κ(x,y)

n dµ(m)(y)∫
S
κ(x,y)
n dµ(m)(y)

)
,

which combined with (5.10) gives (5.17), our first claim.
Further,

‖µ∗(m)
x − µ∗x‖TV ≤

∫
S
fx(y)

∣∣∣∣∣dµ(m)(y)

I
(m)
x

− dµ(y)

Ix

∣∣∣∣∣
=

1

Ix

∫
S
fx(y)

∣∣∣dµ(m)(y)
(

1 +O
(
I(m)
x − Ix

))
− dµ(y)

∣∣∣ , (5.18)

where fx(y) =
(
1{xy>0}a+ 1{xy<0}b

)
|y|, I(m)

x =
∫
S fx(z)dµ(m)(z) and

Ix =
∫
S fx(z)dµ(z). Now,

|I(m)
x − Ix| ≤ O (nα)

∫
|z|≤nα

|dµ(m)(z)− dµ(z)|+
∫
|z|>nα

|z|dµ(z)

= O
(
nα−αβ +mn3α−1 + n−αβ/2

)
,

(5.19)

where we used the proof of the previous lemma to bound the first term and Cauchy-
Schwartz inequality for the second term. Now, the right-hand side in (5.18) is thus
of the same order (since the weights have bounded expectation).

For the last claim, observe that D = Bin(nm, p), where

p = 1
n

∫
S κ(x, y)dµ(m)(y). Hence, since the weights have bounded first moment,

||Bin(nm, p)− Poi (nmp)||TV ≤
nm∑
i=1

p2 = O
(
n−3/4

)
.
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Standard bounds for Poisson random variables entail the existence of a constant
CPoi ≥ 1 such that ||Poi(µ)− Poi(λ)||TV ≤ CPoi|µ− λ|. Consequently,

1

CPoi
||Poi(nmp)− Poi (λx(S))||TV ≤ |nm − n|p+ |x||I(m)

x − Ix|

≤ |nm − n|
n

nα

+O
(
n2α−αβ +mn4α−1 + nα−αβ/2

)
.

Thus, by the triangle inequality,

||Bin(nm, p)− Poi (λx(S))||TV = O
(
n(1−β/2)·1/8 + n−1/4

)
.

Proof of Lemma 5.7.4. Write nr = |∂Gr|. We have

P (Er+1|Er) ≥ P (Br+1|Er)− P (¬Ar+1|Er)− P (¬Cr+1|Er) .

Now,

P (Br+1|Er, nr) ≥ 1−
nr∑
u=1

P

(
¬B(u)

r+1

∣∣∣ u−1⋂
v=1

B
(v)
r+1, Er

)
, (5.20)

where B
(u)
r+1 = {∀w ∈ {1, . . . , Du} : Uuw = Ûuw}. Denote the already explored

vertices by 1, . . . ,m (where m = |Gr−1| + u − 1) and their types as X1, . . . , Xm.

Conditioned on those types, the vertices in U(m) are i.i.d. with distribution µ(m).
Hence:

P

(
B

(u)
r+1

∣∣∣ u−1⋂
v=1

B
(v)
r+1, Er, nr, X1, . . . , Xm

)
= P

(
B

(u)
r+1

∣∣∣X1, . . . , Xm

)
≥ P

(
B

(u)
r+1

∣∣∣Du ≤ log(n) logg(r)(n), X1, . . . , Xm

)
· P
(
Du ≤ log(n) logg(r)(n)

∣∣∣X1, . . . , Xm

)
.

(5.21)

Now, Du

d
≤
∑n

i=1 Ber
(

(a+ b)φ
∗φi
n

)
, where φ∗ is governed by the size-biased law

ν∗ and {φi}i are i.i.d. and bounded by nα. Hoeffding’s inequality gives that
1
n

∑n
i=1 φi ≤ 2Φ(1) w.p. at least 1− exp(−n1−2α), and φ∗ ≤ logg(r)(n) w.p. at least

1 − O
((

logg(r)(n)
)1−β

)
(note the exponent β − 1 of the size-biased power-law).

Conditioned on those events, we use a multiplicative Chernoff bound to obtain,

P
(
Du ≤ log(n) logg(r)(n)

∣∣∣X1, . . . , Xm

)
≥ 1−O

((
logg(r)(n)

)1−β
)
. (5.22)

Lemma 5.7.3 entails, since m = o(n1/4),

P
(
B

(u)
r+1

∣∣∣Du ≤ logg(r)+1(n), X1, . . . , Xm

)
≥ 1−O

(
logg(r)+1(n)

n3/8

)
. (5.23)
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Then, (5.21) - (5.23) together give

P

(
B

(u)
r+1

∣∣∣∣∣
u−1⋂
v=1

B
(v)
r+1, Er, X1, . . . , Xm

)
≥ 1−O

((
logg(r)(n)

)1−β
)
.

Now, since conditioned on Er, nr ≤ logg(r)(n), (5.20) gives

P (Br+1|Er) ≥ 1−O
((

logg(r)(n)
)2−β

)
.

The growth condition (Cr)follows also from (5.22).
We take a similar approach to quantify

P (Ar+1|Er, nr) ≥ 1−
nr∑
u=1

P

(
¬A(u)

r+1

∣∣∣ u−1⋂
v=1

A
(v)
r+1, Er, nr

)
, (5.24)

where, A
(u)
r+1 = {Du = D̂u, Du ≤ logg(r)+1(n)}. Now,

P

(
A

(u)
r+1

∣∣∣ u−1⋂
v=1

A
(v)
r+1, Er

)
≥ 1−O

(
n(1−β/2)1/8 + n−1/4 + logg(r)(1−β)(n)

)
, (5.25)

due to Lemma 5.7.3, since n− |U(m)| = o(n1/4) when r is fixed. Thus, (5.24) gives

P (Ar+1|Er) ≥ 1−O
(

logg(r)(n)n(1−β/2)1/8 + n−1/4 + logg(r)(2−β)(n)
)
.

Proof of Lemma 5.7.5. Fix u, v ∈ ∂Gr. The probability of having an edge between
u and v is smaller than O

(
n2α−1

)
. For any w ∈ V (G \ Gr), the probability that

(u,w) and (v, w) both appear is smaller than O
(
n4α−2

)
. Now, Lemma 5.7.4 implies

that
|Gr| ≤ log(n)g(R)R = log2R−1(n)R.

Hence, the result follows from a union bound over all triples u, v, w.

5.9.3 No long-range correlation in DC-SBM

Proof of Lemma 5.8.1. For a fixed graph g, spin-configuration τ and
degree-configuration ψ, we make a factorization of P (G = g, σ = τ |φ = ψ) into parts
depending on A,B and C. We claim that the part that measures the interaction
between A and C is asymptotically independent of τ . Put

Ψuv(g, τ, ψ) =


aψuψvn if (u, v) ∈ E(g) and τu = τv
bψuψvn if (u, v) ∈ E(g) and τu 6= τv
1− aψuψvn if (u, v) /∈ E(g) and τu = τv
1− bψuψvn if (u, v) /∈ E(g) and τu 6= τv.

We define for arbitrary sets U1, U2 ⊂ V ,

QU1,U2
= QU1,U2

(g, τ, ψ) = QU1,U2
(gU1∪U2

, τU1∪U2
, ψU1∪U2

)

=
∏

u∈U1,v∈U2

Ψuv(g, τ, ψ),
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where the subscript indicates restriction of the corresponding quantities to U1 ∪U2.
Then, we have,

P (G = g|σ = τ, φ = ψ) = QA∪B,A∪BQB∪C,CQA,C . (5.26)

We begin by demonstrating that QA,C is asymptotically independent of τ : Write,

QA,C(g, τ, ψ) =
∏

u∈A,v∈C:τu=τv

(
1− aψuψv

n

) ∏
u∈A,v∈C:τu 6=τv

(
1− bψuψv

n

)
,

since A and C are separated by B (there are thus no edges between A and C). The
first product may be rewritten as,

∏
u∈A,v∈C:τu=τv

(
1− aψuψv

n

)
= exp

 ∑
u∈A,v∈C:τu=τv

log

(
1− aψuψv

n

)
= exp

 ∑
u∈A,v∈C:τu=τv

(
−aψuψv

n
+O

(
n4α−2

))
= exp

−a
n

∑
u∈A,v∈C:τu=τv

ψuψv +O
(
nAn

4α−1
) .

Now, the sum 1
n

∑
u∈A,v∈C:τu=τv

ψuψv tends to ‖A‖Φ
(1)

q , if (τ, ψ) ∈ Ω(n), where

‖A‖ =
∑
u∈A

ψu,

and where,

Ω(n) =

(τ ′, ψ′) :

∣∣∣∣∣∣ 1n
∑

τu=k,u∈V
ψu −

Φ(1)

q

∣∣∣∣∣∣ ≤ n− 1

4 ,∀k ∈ {1, . . . , q}

 . (5.27)

Indeed,

1

n

∑
u∈A,v∈C:τu=τv

ψuψv =

q∑
k=1

∑
u∈A

1{τu=k}ψu
1

n

∑
v∈C

1{τv=k}ψv

=
‖A‖Φ(1)

q
+O

(
n−

1

72

)
,

(5.28)

since |V | − |C| ≤ n1/9 and ψu ≤ n1/8.
As a consequence,∏

u∈A,v∈C:τu=τv

(
1− aψuψv

n

)
= exp

(
O
(
n−

1

72

))
· exp

(
−a‖A‖Φ

(1)

q

)

= (1 + on(1)) exp

(
−a‖A‖Φ

(1)

q

)
,

where the on term is uniform for all (τ, ψ) ∈ Ω(n). We carry out a similar calculation
for the other product. Together we obtain

QA,C(g, τ, ψ) = (1 + on(1)) exp

(
−a+ (q − 1)b

q
‖A‖Φ(1)

)
, (5.29)
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uniformly for all (τ, ψ) ∈ Ω(n). This proves that QA,C(g, τ, ψ) is indeed essentially
independent of τ for most pairs (τ, ψ).

We use the above to prove that, for u ∈ V ,

P (σu = τu|σB∪C = τB∪C , G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))P (σu = τu|σB = τB, GA∪B = gA∪B, φA∪B = ψA∪B, (φ, σ) ∈ Ω(n))

+ on(1).
(5.30)

Fix (τ, ψ) ∈ Ω(n). Then,

P (G = g, σ = τ |φ = ψ, (φ, σ) ∈ Ω(n)) = P (G = g|σ = τ, φ = ψ) f(ψ, n), (5.31)

where f(ψ, n) = P (σ = τ |φ = ψ, (φ, σ) ∈ Ω(n)) = q−n

P((φ,σ)∈Ω(n)|φ=ψ) . Hence, plugging

(5.26) and (5.29) in (5.31),

P (G = g, σ = τ |φ = ψ, (φ, σ) ∈ Ω(n))

= QA∪B,A∪B(g, τ, ψ)QB∪C,C(g, τ, ψ)

· (1 + on(1)) exp

(
−a+ (q − 1)b

q
‖A‖Φ(1)

)
f(ψ, n).

(5.32)

Put, for U ⊂ V ,

ΩU (n) = ΩU (ψ, τU , n) = {τ ′ : τ ′U = τU , (τ
′, ψ) ∈ Ω(n)},

then, invoking (5.32),

P (G = g, σU = τU |φ = ψ, (φ, σ) ∈ Ω(n))

=
∑

τ ′∈ΩU (n)

P
(
G = g, σ = τ ′|φ = ψ, (φ, σ) ∈ Ω(n)

)
=

∑
τ ′∈ΩU (n)

QA∪B,A∪B(g, τ ′, ψ)QB∪C,C(g, τ ′, ψ)

· (1 + on(1)) exp

(
−a+ (q − 1)b

q
‖A‖Φ(1)

)
f(ψ, n)

= (1 + on(1)) exp

(
−a+ (q − 1)b

q
‖A‖Φ(1)

)
f(ψ, n)

·
∑

τ ′∈ΩU (n)

QA∪B,A∪B(g, τ ′, ψ)QB∪C,C(g, τ ′, ψ),

(5.33)

where we could interchange the order on(1) term and the sum because the former
holds uniformly for all (φ, σ) ∈ Ω(n).

We apply (5.33) with U = A and U = A ∪B, to rewrite the right hand side of

P (σA = τA|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n))

=
P (G = g, σA∪B = τA∪B|φ = ψ, (φ, σ) ∈ Ω(n))

P (G = g, σB = τB|φ = ψ, (φ, σ) ∈ Ω(n))

(5.34)

as

(1 + on(1))

∑
τ ′∈ΩA∪B(n)QA∪B,A∪B(g, τ ′, ψ)QB∪C,C(g, τ ′, ψ)∑
τ ′∈ΩB(n)QA∪B,A∪B(g, τ ′, ψ)QB∪C,C(g, τ ′, ψ)

= (1 + on(1))
QA∪B,A∪B(g, τ, ψ)

∑
τ ′∈ΩA∪B(n)QB∪C,C(g, τ ′, ψ)∑

τ ′′′∈ΩB∪C(n)QA∪B,A∪B(g, τ ′′′, ψ)
∑

τ ′′∈ΩA∪B(n)QB∪C,C(g, τ ′′, ψ)
,
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where we used that QU1,U2
(τ ′) depends on τ ′ only through τ ′U1∪U2

to rewrite the
numerator. Factorization of the denominator is justified as follows: For an arbitrary
τ ′ ∈ ΩB(n), put τ ′′ = (τA∪B, τ

′
C) ∈ ΩA∪B(n) and τ ′′′ = (τ ′A, τB∪C) ∈ ΩB∪C(n).

Then,

QA∪B,A∪B(g, τ ′, ψ)QB∪C,C(g, τ ′, ψ) = QA∪B,A∪B(g, τ ′′′, ψ)QB∪C,C(g, τ ′′, ψ). (5.35)

This proves that the double summation is at least as large as the single sum.
Equality follows upon putting τ ′ = (τ ′′′A , τB, τ

′′
C) for arbitrary τ ′′ ∈ ΩA∪B(n) and

τ ′′′ ∈ ΩB∪C(n): (5.35) is then again satisfied. Hence, (5.34) is equivalent to

P (σA = τA|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))
QA∪B,A∪B(g, τ, ψ)∑

τ ′′′∈ΩB∪C(n)QA∪B,A∪B(g, τ ′′′, ψ)
.

(5.36)

We shall rewrite the right hand side of (5.36) to obtain on the one hand:

P (σu = τu|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))F̂ (gA∪B, τu∪B, ψA∪B) ,
(5.37)

for some function F̂ (·) ≤ 1. And, on the other hand:

P (σu = τu|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))P (σu = τu|σB∪C = τB∪C , G = g, φ = ψ, (φ, σ) ∈ Ω(n)) .
(5.38)

To do so, note that∑
τ ′′′∈ΩB∪C(n)

QA∪B,A∪B(g, τ ′′′, ψ) =
∑

τ ′′′A ∈{1,...,q}A
QA∪B,A∪B(gA∪B, (τ

′′′
A , τB), ψA∪B),

Therefore, (5.36) is equivalent to

P (σA = τA|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n)) = (1 + on(1))F (gA∪B, τA∪B, ψA∪B) ,

for some function F (·) ≤ 1. If we fix u ∈ A and integrate over all possible values of
τA\u while keeping τB∪C and ψ constant, we obtain (5.37).

To establish (5.38), we multiply both denominator and enumerator of (5.36) by
QB∪C,C(g, τ, ψ):

P (σA = τA|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))
QA∪B,A∪B(g, τ, ψ)QB∪C,C(g, τ, ψ)∑

τ ′∈ΩB∪C(n)QA∪B,A∪B(g, τ ′, ψ)QB∪C,C(g, τ ′, ψ)

= (1 + on(1))
P (G = g, σ = τ |φ = ψ, (φ, σ) ∈ Ω(n))

P (G = g, σB∪C = τB∪C |φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))P (σA = τA|σB∪C = τB∪C , G = g, φ = ψ, (φ, σ) ∈ Ω(n)) .

Integrating again over τA\u gives (5.38).
We use (5.37) to obtain

P (σu = τu|σB = τB, GA∪B = gA∪B, φA∪B = ψA∪B, (φ, σ) ∈ Ω(n))

=
∑
ĝ,ψC

P (σu = τu|σB = τB, G = ĝ, φ = (ψA∪B, ψC), (φ, σ) ∈ Ω(n))

· P (G = ĝ, φC = ψC |σB = τB, GA∪B = gA∪B, φA∪B = ψA∪B, (φ, σ) ∈ Ω(n))

= (1 + on(1))F̂ (gA∪B, τu∪B, ψA∪B) + on(1)

= (1 + on(1))P (σu = τu|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n)) + on(1).
(5.39)
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Combining (5.38) and (5.39) gives

P (σu = τu|σB∪C = τB∪C , G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))P (σu = τu|σB = τB, G = g, φ = ψ, (φ, σ) ∈ Ω(n))

= (1 + on(1))P (σu = τu|σB = τB, GA∪B = gA∪B, φA∪B = ψA∪B, (φ, σ) ∈ Ω(n)) ,

i.e., the claim (5.30).
Our last step consists in removing the condition (σ, φ) ∈ Ω(n): Put ε(n) =

1− P ((σ, φ) ∈ Ω(n)), then limn→∞ ε(n) = 0. Indeed,∑
u∈C 1{σu=k}φu =

∑
u∈V 1{σu=k}φu + O

(
n17/72

)
, where the sum over V has nΦ(1)

q

as a mean. The claim thus follows upon applying Hoeffding’s inequality (the weights
are assumed to be bounded by nα).

Consider the random variable
P ((φ, σ) ∈ Ω(n)|σB, GA∪B, φA∪B) = E

[
1(φ,σ)∈Ω(n)|σB, GA∪B, φA∪B

]
. It has expec-

tation 1− ε(n), so that

P
(
E
[
1(φ,σ)∈Ω(n)|σB, GA∪B, φA∪B

]
≥ 1−

√
ε(n)

)
≥ 1− 2

√
ε(n). (5.40)

Indeed, if contrary to our claim f := E
[
1(φ,σ)∈Ω(n)|σB, GA∪B, φA∪B

]
≥ 1 −

√
ε(n)

with probability at most 1− 2
√
ε(n), then

E [f ] ≤ 1 · (1− 2
√
ε(n)) + (1−

√
ε(n)) · 2

√
ε(n) < 1− ε(n).

Similarly, for B ∪ C,

P
(
E
[
1(φ,σ)∈Ω(n)|σB∪C , G, φ

]
≥ 1−

√
ε(n)

)
≥ 1− 2

√
ε(n). (5.41)

It follows that, with probability at least 1−O
(√

ε(n)
)

,

P (σu = +|σB, GA∪B, φA∪B)

=
(

1−O
(√

ε(n)
))

P (σu = +|σB, GA∪B, φA∪B, (φ, σ) ∈ Ω(n))

+O
(√

ε(n)
)
P (σu = +|σB, GA∪B, φA∪B, (φ, σ) /∈ Ω(n))

= (1 + on(1))P (σu = +|σB∪C , G, φ, (φ, σ) ∈ Ω(n)) + on(1)

= (1 + on(1))P (σu = +|σB∪C , G, φ) + on(1),

where we used (5.40), (5.30) and (5.41) in the first, second, respectively last equality.

Proof of Lemma 5.8.2. Assume for a contradiction that for every s, P (σu = s|σv, G)
tends to 1/q in probability. Since σ̂u depends on σu only through G, we have for
any s ∈ {1, . . . , q},

Var
(
E
[
1{σu=s}|σv, G

])
= Var

(
E
[
1{σu=s}|σ̂u, σv, G

])
≥ Var

(
E
[
1{σu=s}|σ̂u

])
,

(5.42)

where the term on the left tends to zero by assumption. By definition of f(n),

1/q + δ + o(1) ≤
∑
s

P (σu = σ̂u|σ̂u = s)P (σ̂u = s) .

Hence, for large enough n, there must be an s such that P (σu = σ̂u|σ̂u = s) ≥
1/q + δ/2 and P (σ̂u = s) ≥ δ

3q . As a consequence, the term on the right of (5.42)

does not tend to zero.
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Chapter 6

Non-backtracking spectrum of
the sparse DC-SBM

We have published parts of this chapter in the conference proceedings of ITCS 2017
[51].

6.1 Introduction

In the previous chapter we established that in the sparse DC-SBM there is a
detectability-threshold below which detecting the communities is impossible. Tra-
ditional methods based on the Adjacency and Laplacian matrix break down long
before this threshold is reached. This is due to localization of the eigenvectors; the
phenomena where the ”mass” in eigenvectors concentrates around just a few nodes.
Taking the Adjacency matrix A as an example, we can understand this as follows:
Since A is symmetric, its eigenvectors can be obtained iteratively by applying powers
of A on some initial vector, i.e., xk+1 = Axk. Let us start with the all-one vector
and assume for simplicity that our network is a star where the central node has high
degree d. Then x2 = (d, 1, . . . , 1)T , x3 = (d, d, . . . , d)T , x4 = (d2, d, . . . , d)T , etcetera.
This hints that high-degreed vertices accumulate an ”unfair” large part of the mass
in eigenvectors. In Section 4.4.1 we made this more precise by showing that the first
eigenvectors of a power-law graph become indistinguishable from eigenvectors cor-
responding to high-degreed stars (this is a modest extension of the results in [90] for
graphs without communities). Note that the degree-heterogeneity is caused here by
the sparsity, as outliers of order log(n)/ log log(n) now occur. Further, in Chapter 2
we explained that in a sufficiently dense regime the bulk of eigenvalues of A should
be confined to a finite interval (semi-circle law) and the few outliers should corre-
spond to the community-structure. The presence of relatively high-degreed nodes in
the sparse regime ”smears” those sharp edges so that the informative eigenvectors
get lost in the bulk, this is clearly illustrated in Figure 1 of [72]. Similar observations
can be made for the Laplacian matrix [54].

We thus need a method that does not suffer from resonance. Belief-propagation
is conjectured to work all the way down to the detectability-threshold, see Section
1.3.5 and references there, in particular [34, 35]. In the belief-propagation algorithm
a vertex informs its neighbours about its own belief concerning its spin without
taking into account its neighbours presence. The non-backtracking matrix appears
naturally when we linearise the belief-propagation algorithm, see below.

The non-backtracking matrix B of a graph G = (V,E) is indexed by the set of

its oriented edges ~E = {(u, v) : {u, v} ∈ E}. For e = (e1, e2), f = (f1, f2) ∈ ~E, B is
defined as

Bef = 1e2=f11e1 6=f2 .
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This matrix was introduced by Hashimoto [60] in 1989.
We study here the spectrum of B when G is a random graph generated according

to the sparse DC-SBM (with parameters a, b and weight distribution with 2-nd mo-

ment Φ(2)), see Section 3. We characterise its leading eigenvalues and corresponding
eigenvectors when the number of vertices in G tends to infinity.

Results in [72] show that the spectral method based on the non-backtracking
matrix performs well in community detection on real datasets. A first step in testing
the robustness of this method has been done in [17]: In the ordinary SBM, positively-
correlated reconstruction can be obtained by thresholding the second-eigenvector of
B when (a− b)2 > 2(a+ b).

We extend this robustness result to the degree-corrected setting. Informally,
we have the following results: With high probability, the leading eigenvalue of the
non-backtracking matrix B is asymptotic to ρ = a+b

2 Φ(2). The second eigenvalue is

asymptotic to µ2 = a−b
2 Φ(2) when µ2

2 > ρ, but asymptotically bounded by
√
ρ when

µ2
2 ≤ ρ. All the remaining eigenvalues are asymptotically bounded by

√
ρ. Further,

a clustering positively-correlated with the true communities can be obtained based
on the second eigenvector of B in the regime where µ2

2 > ρ (i.e., precisely when

(a− b)2Φ(2) > 2(a+ b)).
A side-result is that Degree-Corrected Erdős-Rényi graphs asymptotically satisfy

the graph Riemann hypothesis, a quasi-Ramanujan property.
In our proof we derive and use a weak law of large numbers for local-functionals on

Degree-Corrected Stochastic Block Models, which could be of independent interest.

6.1.1 Linearisation of belief propagation

Following [91], we explain here how the non-backtracking matrix is naturally ob-
tained by linearising belief propagation (Section 1.3.5). We restrict here to the
ordinary SBM (with parameters a and b) on two equal-sized communities.

Consider (1.2), with initial messages

ψu→vi =
1

2
+ εu→vi , (6.1)

where εu→vi are small random perturbation, forming vector εεε. Linearising (1.2) gives
the substitution scheme

εεε 7→Mεεε, (6.2)

with M((u,v),i),((w,x),j) = ∂ψu→vi

∂ψw→xj
.

It turns out that M can be written as M = B ⊗ T, where ⊗ denotes the tensor
product, B the non-backtracking matrix, and T the stochastic transition matrix
given element-wise by

Tij =
pij∑
k pik

.

The matrix T takes into account the contribution of a single edge coming in to u, say
(w, u), to the message transmitted from u to v. If (w, u) were the only incoming edge
(we consider (u, v) here as the outgoing edge), the message u transmitted to v would
be the belief based on ψw→u and the presence of edge (u, v), i.e., ψu→v = Tψw→u.
We note that we can rewrite T = λI + (1 − λ)J2 in terms of the identity matrix I,

the all-one matrix J , and its second eigenvalue λ = a−b
a+b .

In general, there are multiple edges coming in, which explains the role of B in
M = B ⊗ T .

The updates (6.2) make sure that belief propagation drifts away from the trivial
fixed point when the latter is unstable, i.e., when the eigenvalues of M exceed 1.

But, the eigenvalues of M are products of eigenvalues of B and T . As we shall
later see, the leading eigenvalues of B are given by ρ = a+b

2 , and µ = a−b
2 when
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µ2 > ρ. As reasoned in [91], we can disregard its first eigenvalue/eigenvector pair
(since the messages should be normalized). The matrix T has leading eigenvalues
1 and λ, and again we can ignore 1. For the fixed-point to be unstable it is thus
necessary that µλ > 1, that is µ2 > ρ.

6.1.2 Proof heuristics

We now give a heuristic proof for the above informal result (inspired also by [72]). Let

ψ1 and ψ2 be the vectors on ~E defined element-wise as ψ1(e) = 1 and ψ2(e) = σ(e2)
and let ` ∼ log n. We claim that asymptotically when n → ∞, B`ψ1 and B`ψ2 are
eigenvectors of B with corresponding eigenvalues ρ, respectively µ2.

We give an heuristic derivation. Firstly, for oriented edges e and f , B`
ef counts

the number of non-backtracking paths of length ` from e to f . Now, the ` - neigh-
bourhood of vertex e2 looks like a tree with forward degree on average equal to ρ,
see Section 5.7. Hence there are roughly ρ` vertices at distance ` from e2. Therefore,

(B`ψ1)(e) =
∑
f

B`
ef · 1 ' ρ`ψ1(e), (6.3)

since ψ1(e) = 1. Consequently,

B(B`ψ1) ' ρ(B`ψ1).

Similarly,

(B`ψ2)(e) =
∑
f

B`
ef · σ(f2) ' Z+

` − Z
−
` , (6.4)

where Z±` denotes the number of vertices with spin ± at distance ` from e2. From
Section 5.7, we know that a particle has on average ρ children, each of them inheriting
its spin with probability a

a+b . Hence,

E
[
Z+
` − Z

−
` |Z

+
`−1, Z

−
`−1

]
= ρ

((
a

a+ b
− b

a+ b

)
Z+
`−1 −

(
a

a+ b
− b

a+ b

)
Z−`−1

)
= µ2

(
Z+
`−1 − Z

−
`−1

)
.

(6.5)
Iteration gives,

E
[
Z+
` − Z

−
` |σ(e2)

]
= µ`2 · σ(e2).

Plugging this into (6.4), we obtain

(B`ψ2)(e) ' µ`2σ(e2) +O
(
ρ`/2

)
= µ`2

(
σ(e2) +O

((
ρ

µ2
2

)`/2))
,

since fluctuations are of order
√
Z+
` + Z−` . Since we assume µ2

2 > ρ,

(B`ψ2)(e) ' µ`2 (σ(e2) + o(1)) .

That is,
B(B`ψ2) ' µ2(B`ψ2).

Consequently, if ξ2 denotes the empirical normalised second eigenvector of B, then∑
v∈N (u)

ξ2(v → u) ' |N (u)|σ(u).
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Thus we can indeed reconstruct vertices by simply labelling vertex u according to
the sign of

∑
v∈N (u) ξ2(v → u).

We also find, for the eigenvalues µ1, µ2 . . . , µm (with m equal to the number of
edges), for arbitrary integer l ≥ 0,

m∑
i=1

|µi|l ≤ Tr
(
Bl(Bl)∗

)
' mρl.

We conclude that the bulk of eigenvalues should be confined to the disk with radius√
ρ in the complex plane.
Our work consists in making the above precise, in particular bounding the norm

of the third eigenvalue.

6.2 Main Results

We consider random graphs on n nodes V = {1, . . . , n} drawn according to the
sparse DC-SBM as in Section 3. Out of technical convenience we partition the
vertices into two clusters of sizes n+ and n−, such that for some constant γ ∈ (0, 1],

n± =
n

2
+O(n1−γ). (6.6)

Note that this is more general than labelling vertices uniformly at random.
The community-membership of a vertex v is again denoted by its spin σ(v) from

{+,−} and its weight by φv. We assume in this chapter that the weights of vertices
are bounded, i.e., there exists 0 < φmin ≤ φmax < ∞ such that ν has support in
[φmin, φmax]. An edge is drawn between nodes u and v with probability φuφv

n a when

u and v have the same spin and with probability φuφv
n b otherwise.

Local neighbourhoods in the sparse graphs under consideration are tree-like with
high probability. In Section 5.7 we showed that these trees are distributed according
to a Poisson-mixture two-type branching process. We denote the mean progeny
matrix of the branching process by

M =
Φ(2)

2

(
a b
b a

)
. (6.7)

We introduce the orthonormal vectors

g1 =
1√
2

(
1
1

)
, and g2 =

1√
2

(
1
−1

)
, (6.8)

together with the scalars

ρ = µ1 =
a+ b

2
Φ(2), and µ2 =

a− b
2

Φ(2). (6.9)

Then, gk (k = 1, 2) are the left-eigenvectors of M associated to eigenvalues µk:

g∗kM = µkg
∗
k, k = 1, 2. (6.10)

Finally, we define for k ∈ {1, 2},

χk(e) = gk(σ(e2))φe2 , for e ∈ ~E. (6.11)

We show that the candidate eigenvectors

ζk =
B`B∗`χ̌k
‖B`B∗`χ̌k‖

(6.12)
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are then, for ` ∼ log(n), asymptotically aligned with the first two eigenvectors of B.
Note the weight in (6.11), which is not present in the ordinary SBM.

Theorem 6.2.1 (Degree-Corrected Extension of Theorem 4 in [17]). Let G be
drawn according to the DC-SBM such that assumption (6.6) holds. Assume that
` = Cmin log(n), with Cmin > 0 a small constant defined in (6.14).

If µ2
2 > ρ, then, with high probability, the eigenvalues λi of B satisfy

|λ1 − ρ| = o(1), |λ2 − µ2| = o(1), and, for i ≥ 3, |λi| ≤
√
ρ+ o(1).

Further, if, for k ∈ {1, 2}, ξk is a normalized eigenvector associated to λk, then ξk is
asymptotically aligned with ζk. The vectors ξ1 and ξ2 are asymptotically orthogonal.

If ρ > 1, and µ2
2 ≤ ρ, then, with high probability, the eigenvalues λi of B satisfy

|λ1 − ρ| = o(1), and, for i ≥ 2, |λi| ≤
√
ρ+ o(1).

Further, ξ1 is asymptotically aligned with ζ1.

Note that µ2
2 > ρ implies ρ > 1, so that we consider the DC-SBM precisely in

the regime where a giant component emerges, see [15].
In Theorem 6.2.2 we show that positively correlated clustering is possible based

on the second eigenvector of B when above the feasibility threshold. More precisely,
let σ̂ = {σ̂(v)}v∈V be estimators for the spins of the vertices. Following [34], we say
that σ̂ has positive overlap with the true spin configuration σ = {σ(v)}v∈V if for
some δ > 0, with high probability,

max
p

1

n

n∑
v=1

1σ̂(v)=p◦σ(v) >
1

2
+ δ,

where p runs over the identity mapping on {+,−} and the permutation that swaps
+ and −.

Theorem 6.2.2 (Degree-Corrected Extension of Theorem 5 in [17]). Let G be drawn
according to the DC-SBM such that assumption (6.6) holds and such that µ2

2 > ρ.
Let ξ2 be the second normalized eigenvector of B.

Then, there exists a deterministic threshold τ ∈ R, such that the following pro-
cedure yields asymptotically positive overlap: Put for vertex v ∈ V its estimator
σ̂(v) = + if

∑
e:e2=v ξ2(e) > τ√

n
and put σ̂(v) = − otherwise.

6.2.1 Quasi Ramanujan property

Following the definition introduced in [79], a k-regular graph is Ramanujan if its
second largest absolute eigenvalue is no larger than 2

√
k − 1. In [59], a graph is

said to satisfy the graph Riemann hypothesis if B has no eigenvalues λ such that
|λ| ∈ (

√
ρB, ρB), where ρB is the Perron-Frobenius eigenvalue of B. The graph

Riemann hypothesis can be seen as a generalization of the Ramanujan property,
because a regular graph satisfies the graph Riemann hypothesis if and only if it has
the Ramanujan property [59, 96].

Now, put a = b = 1 to obtain a Degree-Corrected Erdős-Rényi graph where
vertices u and v are connected by an edge with probability φuφv

n . Our results imply

that, with high probability, ρB = Φ(2) + o(1), while all other eigenvalues are in

absolute value smaller than
√

Φ(2) + o(1). Consequently, these Degree-Corrected
Erdős-Rényi graphs asymptotically satisfy the graph Riemann hypothesis.
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6.2.2 Notation

We say that a sequence (En)n of events happens with high probability (w.h.p.) if
limn→∞ P (En) = 1.

We denote by ‖ · ‖ both the euclidean norm for vectors and the operator norm of

matrices. I.e., for vectors x = (x1, . . . , xm), and a matrix A, ‖x‖ =
√∑m

u=1 x
2
u, and

‖A‖ = supx,‖x‖=1 ‖Ax‖.
Below we use that the neighbourhoods with a radius no larger than Ccoupling logρ(n)

can be coupled w.h.p. to certain branching processes, where

Ccoupling :=

(
1
3 −

1
9 log(4/e)

)
∧
(

1
80 ∧

γ
4

)
logρ(2(a+ b)φ2

max)
. (6.13)

We put,

Cmin =
1

10
Ccoupling (6.14)

and consider often neighbourhoods of radius Cmin logρ(n).

We denote the k-th moment of the weight distribution ν by Φ(k). I.e., E
[
φk1
]

=

Φ(k).
The non-backtracking property for oriented edges e, f ∈ ~E is denoted by e→ f ,

i.e., e2 = f1 and f2 6= e1.
In proofs, we often use the symbols c1, c2, . . . for suitably chosen constants.

6.3 Outline and proof strategy

We follow the same general approach as in [17]. We focus primarily on the differences
and complications here: we often omit or shorten the proof of a statement if it may
be proven in a very similar way.

We detail first our proof-strategy. Since B is neither symmetric nor a-priori
normal, we cannot use standard tools such as the Bauer-Fike theorem.

Denote the top right eigenvectors of B by v1 and v2, and the corresponding
eigenvalues by λ1, respectively λ2. Assume that we can write

B = λ1v1w
∗
1 + λ2v2w

∗
2 +R,

with R a matrix with norm bounded by
√
λ1, w∗i vi = 1, for all i, w∗i vj = w∗iwj =

v∗i vj = 0 for i 6= j and w∗iR = 0 for all i. Then,

B` = λ`1v1w
∗
1 + λ`2v2w

∗
2 +R`. (6.15)

Now, if λ2
2 > λ1, then ‖R`‖ = O

(
λ
`/2
1

)
, and hence R` is a small perturbation in

(6.15). This intuition leads to an extension of the Bauer-Fike theorem, given in
Proposition 6.4.1: If

B` = ρ`x1y
∗
1 + µ`2x2y

∗
2 +R`, (6.16)

with xi = xi(`), yi = yi(`), R` as in the conditions of Proposition 6.4.1, then

λ1 − ρ = o(1), λ2 − µ2 = o(1), and,

∥∥∥∥ xi
‖xi‖

− vi
∥∥∥∥ = o(1).

How should we choose xi and yi so that (6.16) is true? Firstly, to meet the bound
on R` we have to control ‖B`x‖ when x⊥yi. We do this by decomposing powers of
B as a sum of products, using a technique that first appeared in [85] and [17]. In
particular, we obtain Proposition 6.10.1, from which it follows that we have to bound
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〈χ̌j , B`−t−1x〉 for x⊥yi and t ≤ `. Now we show that this term is small if 〈ϕ̌i, x〉 = 0,

where ϕi = B`χi
‖B`χi‖ . It is therefore natural to choose yi = ϕ̌i. But then, if ci := yiy

∗
i

is bounded away from zero and y∗1y2 → 0,

B`ϕ̌1 = ρ`c1x1 +O
(
ρ`/2

)
,

and,

B`ϕ̌2 = µ`2c2x2 +O
(
ρ`/2

)
,

where the big ”O” term denotes a vector of norm O
(
ρ`/2

)
. This implies that xi

should be parallel with B`ϕ̌i.
We therefore need a careful analysis of ϕ1, ϕ2, B

`ϕ̌1, and B`ϕ̌2. We analyse
them first on branching processes, as most neighbourhoods are locally tree-like. We
should be careful here, because with non-zero probability certain neighbourhoods
cannot be accurately described with a branching process. However, to calculate, for
instance, ϕ∗1ϕ2 =

∑
e∈ ~E ϕ1(e)ϕ2(e), we could circumvent this issue by establishing a

law of large numbers for local functionals in order to replace 1
n

∑
e∈ ~E ϕ1(e)ϕ2(e) by

E
[
B`χ1(o)
‖B`χ1‖ ·

B`χ2(o)
‖B`χ2‖

]
on a branching process with root o having spin uniformly picked

from ±. From the heuristics above, we expect E
[
B`χ1(o)
‖B`χ1‖ ·

B`χ2(o)
‖B`χ2‖

]
' E [σo] = 0.

We detail now the outline of the rest of this chapter.
In Section 6.4, we give the necessary background on non-backtracking matrices.

Further, we give an extension of the Bauer-Fike Theorem, that first appeared in
[17].

In Section 6.5 we give the proof of Theorem 6.2.1. It builds on Propositions 6.5.1
and 6.5.2. Their proofs are deferred to later sections.

In Section 6.6 we consider two-type branching process where the offspring distri-
bution is governed by a Poisson mixture to capture the weights of the vertices. We
associate two martingales to this process and extend limiting results by Kesten and
Stigum [70, 71]. Hoeffding’s inequality plays an important role here to prove concen-
trations results for the weights. Further, we define a cross-generational functional
on these branching processes that is correlated with the spin of the root.

In Section 5.7 we state a coupling between local neighbourhoods and the branch-
ing process with weights in Section 6.6. This coupling is slightly different from Sec-
tion 5.7. It is technically more involved than the ordinary coupling on graphs with
unit weight. It is crucial that the weights in the graph and the branching process ex-
actly coincide. We further establish a growth condition on the local neighbourhoods,
using a stochastic domination argument that is more involved than its analogue in
unweighed graphs.

In Section 6.8 we define local functionals that map graphs, together with their
spins and weights to the real numbers. We establish, using Efron-Stein’s inequality,
a weak law of large numbers for those functionals, which could be of independent
interest. Part of the work here is again hidden in the coupling from Section 5.7.

In Section 6.9 we apply those local functionals to establish Proposition 6.5.1.
In Section 6.10 we decompose powers of the matrix B as a sum of products. This

technique appeared first in [85] for matrices counting self-avoiding paths and was
elaborated in [17]. To bound the norm of the individual matrices occurring in the
decomposition, we use the trace method initiated in [46]. In doing so, we need to
bound the expectation of products of higher moments of the weights over certain
paths. This is a significant complication with respect to the ordinary SBM, see
Section 6.10.2 for a comparison.

In Section 6.11 we prove that positively correlated clustering is possible based on
the second eigenvector of B, i.e., Theorem 6.2.2. We use the symmetry present in
the two-communities setting here, which gets in general broken in models with more
than two communities.
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Detailed proofs of the statements in Sections 6.6, 5.7, 6.8, 6.10 and 6.11 can be
found in Sections 6.12 - 6.16.

In each section we give a detailed comparison with the ordinary SBM.

6.4 Preliminaries

6.4.1 Background on non-backtracking matrix

We repeat here the most important observations made in [17].
Firstly, for any k ≥ 1, Bk

ef counts the number of non-backtracking paths between
oriented edges e and f . A non-backtracking path is defined as an oriented path
between two oriented edges such that no edge is the inverse of its preceding edge,
i.e., the path makes no backtrack.

Another import observation is that (B∗)ef = Bfe = Be−1f−1 , where for oriented
edge e = (e1, e2), we set e−1 = (e2, e1). If we introduce the swap notation, for

x ∈ R ~E ,

x̌e = xe−1 , e ∈ ~E,

then for any x, y ∈ R ~E , and integer k ≥ 0,

〈y,Bkx〉 = 〈Bky̌, x̌〉.

Denote by P the matrix on R ~E× ~E , defined on oriented edges e, f as

Pef = 1f=e−1 .

Then, Px = x̌, P ∗ = P and P−1 = P . Further,

(BkP )∗ = P (B∗)k = BkP,

so that we can write the symmetric matrix BkP in diagonal form: Let (σk,j)j be

eigenvalues of BkP ordered in decreasing order of absolute value, and let (xk,j)j be
the corresponding orthonormal eigenvectors. Then,

Bk = (BkP )P =
∑
j

σk,jxk,jx
∗
k,jP =

∑
j

σk,jxk,j x̌
∗
k,j =

∑
j

sk,jxk,jy
∗
k,j , (6.17)

where sk,j = |σk,j | and yk,j = sign(σk,j)x̌k,j . Since P is an orthogonal matrix,

(x̌k,j)j form an orthonormal base for R ~E and the term furthest on the right of (6.17)

is thus the spectral value decomposition of Bk. Now, if B is irreducible and if ξ
denotes the normalized Perron eigenvector of B with eigenvalue λ1(B) > 0, we have

λ1(B) = limk→∞(σk,1)1/k, and limk→∞ ‖xk,1 − ξ‖ = 0.
In [17], the Bauer-Fike Theorem is extended to prove the spectral claims we make

here.

6.4.2 Extension of Bauer-Fike Theorem

Tailored to our needs, we use the following proposition from [17]:

Proposition 6.4.1 (Special case of Proposition 8 in [17]). Let ` = C logρ n, with
C > 0. Let A ∈ Mn(R), such that for some vectors x1 = x`,1, y1 = y`,1, x2 =
x`,2, y2 = y`,2 ∈ R, some matrix R` ∈ Mn(R), and some non-zero constants ρ > µ2

with µ2
2 > ρ,

A` = ρ`x1y
∗
1 + µ`2x2y

∗
2 +R`. (6.18)
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Assume there exist c0, c1 > 0 such that for all i ∈ {1, 2}, 〈yi, xi〉 ≥ c0, ‖xi‖‖yi‖ ≤ c1.
Assume further that 〈x1, y2〉 = 〈x2, y1〉 = 〈x1, x2〉 = 〈y1, y2〉 = 0 and for some c > 0

‖R`‖ < ρ`/2 logc(n).

Let (λi)1≤i≤n, be the eigenvalues of A with |λn| ≤ . . . ≤ |λ1|. Then,

|λ1 − ρ| = o(1), |λ2 − µ2| = o(1), and, for i ≥ 3, |λi| ≤
√
ρ+ o(1).

Further, there exist unit eigenvectors ψ1, ψ2 of A with eigenvalues λ1, respectively
λ2 such that

||ψi −
xi
‖xi‖
|| = o(1).

Proof. This is a special case of Proposition 8 in [17]. In the notation of the latter,

we have `′ = ` − 2, θ1 = ρ, θ2 = µ2, θ = µ2, γ ≥ a+b
|a−b| > 1. Further c0(c0γk−c1)+

4c1
∧

c20
2(`∨`′)c1 ∼

1
logρ n

, and thus

‖R`‖ ≤ logc(n)

(√
ρ

|µ2|

)`
|µ2|` = o(1)

1

logρ n
|θ|`.

To prove the case µ2
2 > ρ of Theorem 6.2.1, we thus need to find candidate

vectors x1, x2, y1 and y2 that meet the conditions in Proposition 6.4.1 and further
verify that the remainder R` has small norm. Note that the last condition is true
whenever ‖B`x‖ ≤ ρ`/2 logc(n) for all normalized x in span{y1, y2}⊥.

To address the case µ2
2 ≤ ρ of Theorem 6.2.1, we appeal to Proposition 7 in [17],

which is very similar in spirit to Proposition 6.4.1.

6.5 Proof of Theorem 6.2.1

6.5.1 The case µ2
2 > ρ.

We start with the case µ2
2 > ρ. We decompose, for some vectors x1, y1, x2 and y2

and matrix R`,
B` = ρ`x1y

∗
1 + µ`2x2y

∗
2 +R`,

and we show that the assumptions of Proposition 6.4.1 are met.
Let ` be as in Theorem 6.2.1 and recall χk and ζk from (6.11) and (6.12). For

ease of notation, we introduce for k ∈ {1, 2},

ϕk =
B`χk
‖B`χk‖

, and θk = ‖B`ϕ̌k‖. (6.19)

Then, ζk = B`ϕ̌k
θk

.
To prove the main theorem, we need the following two propositions. The proofs

are deferred to Section 6.9 and 6.10.1. The material in Section 6.9 builds on ingredi-
ents from Sections 5.7 - 6.8, where we assume that µ2

2 > ρ, unless stated otherwise.

Proposition 6.5.1 (Degree-Corrected Extension of Proposition 19 in [17]). Assume
that µ2

2 > ρ. Let ` = C logρ n with 0 < C < Cmin. For some b, c > 0, with high
probability,

(i) b|µ`k| ≤ θk ≤ c|µ`k| if k ∈ {1, 2},

79



(ii) sign(µ`k)〈ζk, ϕ̌k〉 ≥ b if k ∈ {1, 2},

(iii) |〈ϕ1, ϕ2〉| ≤ (log n)3nC−( γ2∧
1

40),

(iv) |〈ζj , ϕ̌k〉| ≤ (log n)3n
3

2
C−( γ2∧

1

40) if k 6= j ∈ {1, 2}.

(v) |〈ζ1, ζ2〉| ≤ (log n)8n2C−( γ2∧
1

40).

Put H = span{ϕ̌1, ϕ̌2}, then

Proposition 6.5.2 (Degree-Corrected Extension of Proposition 20 in [17]). Let
` = C logρ n with 0 < C < Cmin. For some c > 0, with high probability,

sup
x∈H⊥,‖x‖=1

‖B`x‖ ≤ (log n)cρ`/2. (6.20)

Put ϕ̄1 = ϕ̌1, and ϕ̄2 = ϕ̌2−〈ϕ̌1,ϕ̌2〉ϕ̌1

||ϕ̌2−〈ϕ̌1,ϕ̌2〉ϕ̌1|| , then ϕ̄1 and ϕ̄2 are orthonormal and

||ϕ̄2 − ϕ̌2|| = o(ρ−`/2), due to Proposition 6.5.1 (iii).
Let ζ̄1 be the normalized orthogonal projection of ζ1 on span{ϕ̄2}⊥. Similarly,

let ζ̄2 be the normalized orthogonal projection of ζ2 on span{ζ̄1, ϕ̄1}⊥.

Then 〈ζ̄1, ζ̄2〉 = 0 and for i = 1, 2, ||ζ̄i−ζi|| = o(ρ−`/2), as follows from Proposition
6.5.1 (iv) and (v).

We set

D = θ1ζ̄1ϕ̄
∗
1 + θ2ζ̄2ϕ̄

∗
2 = ρ`

(
θ1

ρ`
ζ̄1

)
ϕ̄∗1 + µ`2

(
θ2

µ`2
ζ̄2

)
ϕ̄∗2.

Note that,
‖B`ϕ̄1‖ = θ1 = O(ρ`),

and
‖B`ϕ̄2‖ = ‖B` ((1 + o(1))ϕ̌2 + o(1)ϕ̄1) ‖ = O(ρ`).

As a consequence, from Proposition 6.5.2,

‖B`‖ = O(ρ`).

Since Dϕ̄i = B`ϕ̌i + θi(ζ̄i − ζi),

‖B`ϕ̄i −Dϕ̄i‖ ≤ ‖B`‖‖ϕ̄i − ϕ̌i‖+ θi‖ζ̄i − ζi‖ = O
(
ρ`/2

)
.

Let P be the orthogonal projection on H = span{ϕ̄1, ϕ̄2} = span{ϕ̌1, ϕ̌2}, then

‖B`P −D‖ = O
(
ρ`/2

)
.

Put R` = B` −D. Write for y ∈ R ~E with unit norm, y = h + h⊥, with h ∈ H
and h⊥ ∈ H⊥, then

‖R`y‖ = ‖B`h⊥ + (B` −D)h‖
≤ sup

x∈H⊥,‖x‖=1
‖B`x‖+ ‖B`P −D‖

= O
(

logc(n)ρ`/2
)
,

(6.21)

as follows from Proposition 6.5.2.
We finish by applying Proposition 6.4.1 with x1 = θ1

ρ` ζ̄1, y1 = ϕ̄1, x2 = θ2
µ`2
ζ̄2, and,

y2 = ϕ̄2.
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6.5.2 The case µ2
2 ≤ ρ.

In case µ2
2 ≤ ρ, Proposition 6.5.1 (i) and (ii) continue to hold for k = 1. Further,

Proposition 6.5.1 (iii) as well as Proposition 6.5.2 continue to hold. We need however
the following bound for k = 2:

Proposition 6.5.3. Assume that µ2
2 ≤ ρ. Let ` = C logρ n with 0 < C < Cmin. For

some c > 0, with high probability,

θ2 ≤ (log n)cρ`/2.

Using this proposition and ||ϕ̄2 − ϕ̌2|| = o(ρ−`/2), we get

‖B`ϕ̄2‖ ≤ (log n)c+1ρ`/2.

It remains to apply Proposition 7 from [17].

6.6 Poisson-mixture two-type branching processes

The proofs of the statements in this section are deferred to Section 6.12.

6.6.1 A theorem of Kesten and Stigum

We consider the two-type Poisson-mixture branching process defined in Section 5.4.

We use the notation Zt =

(
Zt(+)
Zt(−)

)
for the population at generation t ≥ 1, where

Zt(±) is the number of type ± particles in generation t. We let (Ft)t≥1 denote the
natural filtration associated to (Zt)t≥1.

We associate two matrices to the branching process, namely M defined in (6.7),
and, for a root with weight φo,

Mφo =
Φ(1)φo

Φ(2)
M. (6.22)

Then, M is the transition matrix for generations t ≥ 1 and later:

E [Zt+1|Zt] = MZt, for all t ≥ 1, (6.23)

and Mφo describes the transition from the root to the first generation:

E [Z1|Z0, φo] = MφoZ0, (6.24)

where, by assumption Z0 =

(
1σo=+
1σo=−

)
. Note that the difference between the root

and later generations stems from the fact that the root’s weight is deterministic in
the conditional expectation, whereas the weight of a particle in any later generation

has expectation Φ(2)

Φ(1) .
Recall from (6.10) that gk (k = 1, 2) are the left-eigenvectors of M associated to

eigenvalues µk:
g∗kM = µkg

∗
k, k = 1, 2. (6.25)

Note that Mφo has the same left-eigenvectors as M , while the corresponding eigen-
values are given by

µk,φo =
Φ(1)φo

Φ(2)
µk, k = 1, 2. (6.26)
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Theorem 6.6.1 shows that a Kesten-Stigum theorem applies to the ”classical”
branching process obtained after restricting the above process to generations 1 and
later: We expect

〈gk, Zt〉
µt−1
k

=
E [〈gk, Zt〉] +O

(√
Zt
)

µt−1
k

= 〈gk, Z1〉+ o(1),

since µ2
2 > µ1 = ρ > 1. Corollary 6.6.2, then, joins this classical branching process

to the transition from the root to generation 1.
We further consider the vector Ψt = (Ψt(+),Ψt(−)), containing sums of the

weights,

Ψt(±) =
∑
u∈Yt

1σu=±φu, (6.27)

where Yt is the set of particles at distance t from the root, and where φu and σu
denote the weight respectively spin of a particle u. Note that Ψt = Zt in case of
unit weights.

The martingale Theorem 6.6.3 is not present in [17]. We need it to bound the
variance of the cross-generational functional defined in Section 6.6.3.

Theorem 6.6.1 (Degree-Corrected Extension of Theorem 21 in [17]). Assume that
µ2

2 > ρ. Put Ft = {Zs}s≤t. For any k = 1, 2,(
Xk(t) :=

〈gk, Zt〉
µt−1
k

− 〈gk, Z1〉

)
t≥1

,

is an Ft-martingale converging a.s. and in L2 such that for some C > 0 and all
t ≥ 1, E [Xk(t)] = 0 and E

[
X2
k(t)|Z1

]
≤ C‖Z1‖1.

Corollary 6.6.2. Assume that µ2
2 > ρ. For k = 1, 2, with the weight φo = ψo of

the root fixed, the sequence of random variables (Yk,ψo(t))t≥1 =
(
〈gk,Zt〉

µt−1
k µk,ψo

)
t≥1

con-

verges almost surely and in L2 to a random variable Yk,ψo(∞) with E [Yk,ψo(∞)|σo] =
gk(σo). Further, the L2-convergence takes place uniformly over all ψo.

Theorem 6.6.3. Assume that µ2
2 > ρ. Put Gt = {Ψs}s≤t. For any k = 1, 2,(

Xk(t) :=
〈gk,Ψt〉
µt−1
k

− 〈gk,Ψ1〉

)
t≥1

,

is an Gt-martingale converging a.s. and in L2 such that for some C > 0 and all
t ≥ 1, E [Xk(t)] = 0 and E

[
X2
k(t)|Z1

]
≤ C‖Z1‖1.

6.6.2 Quantitative version of the Kesten-Stigum theorem

We now quantify the growth of the population size. The latter is defined as

St = ‖Zt‖1, t ≥ 0,

i.e., the number of individuals in generation t ≥ 0. Given St, for t ≥ 1 we have

St+1 = Poi

(
St∑
l=1

X
(l)
t

)
, (6.28)

82



where
(
X

(l)
t

)
l

are i.i.d. copies of a+b
2 Φ(1)φ∗, where φ∗ follows law ν∗.

Note that in the ordinary Stochastic Block Model (i.e., when all vertices have
unit weight), the argument of the Poisson random variables in (6.28) is deterministic,
contrary to the general case under consideration here. Using (6.23) recursively in
conjunction with (6.24), it follows that

E [St|φo] =
Φ(1)φo

Φ(2)
ρt, ∀t ≥ 1.

In the following lemma we show that deviations from this average are small.
In fact, there exists a constant C such that for each t ≥ 0, St is asymptotically
stochastically dominated by an Exponential random variable with mean Cρt. An
important ingredient in the proof below is Hoeffding’s inequality, which we use to
derive a concentration result for the parameter of the Poisson variable in (6.28).

Heuristically,
∑St

l=1X
(l)
t = ρSt+O

(√
St
)
, so that in conjunction with large devi-

ation bounds for Poisson random variables (for large λ > 0, with large probability,

Poi(λ) ≤ λ+O(
√
λ)), we expect Poi

(∑St
l=1X

(l)
t

)
≤ ρSt(1 + o(1)).

Lemma 6.6.4 (Degree-Corrected Extension of Lemma 23 in [17]). Assume S0 = 1.
There exist c, c′ > 0 such that for all s ≥ 0,

P
(
∀k ≥ 1, Sk ≤ sρk

)
≥ 1− c′e−cs.

From Theorem 6.6.1 and Corollary 6.6.2, we know that the different components
(expressed in the basis of eigenvectors of M) grow exponentially with rate ρ, respec-
tively µ2. We now quantify the error. Recall Ψt from (6.27).

In case µ2
2 > ρ, we have

Theorem 6.6.5 (Degree-Corrected Extension of Theorem 24 in [17]). Assume that
µ2

2 > ρ. Let β > 0, Z0 = δx and φo = ψo be fixed. There exists C = C(x, β) > 0 such
that with probability at least 1− n−β, for all k ∈ {1, 2}, all 0 ≤ s < t ≤ Cmin log(n),
with 0 ≤ s < t,

|〈gk, Zs〉 − µs−tk 〈gk, Zt〉| ≤ C(s+ 1)ρs/2(log n)3/2,

and,
|〈gk,Ψs〉 − µs−tk 〈gk,Ψt〉| ≤ Cρs/2(log n)5/2.

In case µ2
2 ≤ ρ, we have

Theorem 6.6.6. Assume that µ2
2 ≤ ρ. Let β > 0, Z0 = δx and φo = ψo be fixed.

There exists C = C(x, β) > 0 such that with probability at least 1 − n−β, for all
t ≥ 1,

|〈g2,Ψt〉| ≤ Ct2ρt/2(log n)2,

and,
E
[
|〈g2,Ψt〉|2

]
≤ Ct3ρt.

6.6.3 B`B∗`χ̌k on trees: a cross generation functional

Recall our claim that B`B∗`χ̌k are asymptotically aligned with the eigenvectors of
B. In the DC-SBM, the local-neighbourhood of a vertex has with high probability
a tree-like structure described by the branching process above. In this section we
analyse B`B∗`χ̌k on trees.
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To this end we define a cross-generational functional slightly different from its
analogue in [17] due to the presence of weights:

Qk,` =
∑

(u0,...,u2`+1)∈P2`+1

gk(σ(u2`+1))φu2`+1
, (6.29)

where P2`+1 is the set of paths (u0, . . . , u2`+1) (of length 2`+ 1) in the tree starting
from u0 = o with both (u0, . . . , u`) and (u`, . . . , u2`+1) non-backtracking and u`−1 =
u`+1. Note that these paths thus make a back-track exactly once at step `+ 1.

Explicitly, we have

Q1,` =
∑

(u0,...,u2`+1)∈P2`+1

1√
2
φu2`+1

, (6.30)

and,

Q2,` =
∑

(u0,...,u2`+1)∈P2`+1

1√
2
σ(u2`+1)φu2`+1

. (6.31)

Consider a tree T ′ and a leaf e1 on it that has unique neighbour, say, o. Then, if
e is the oriented edges from e1 to o and if BT ′ denotes the non-backtracking matrix
defined on T ′, (

B`
T ′B

∗`
T ′χ̌k

)
(e) = Qk,` + gk(σ(e1))φe1‖Z`‖1, (6.32)

where Qk,` and Z` are defined on the tree T with root o obtained after removing
vertex e1 from T ′.

In the sequel we analyse Qk,` on the branching process defined above, starting
with a single particle, the root o. Let V indicate the particles of the random tree.
Denote the spin of a particle v ∈ V by σv ∈ {+,−} and its weight by φv ∈ S.

For t ≥ 0, let Y v
t denote the set of particles, including their spins and weights,

of generation t from v in the subtree of particles with common ancestor v ∈ V . Let
Zvt = (Zv,+t , Zv,−t ) denote the number of ± vertices in generation t; i.e., Zv,±t =∑

u∈Y vt 1σ(u)=±. Finally, let Ψv
t = (Ψv,+

t ,Ψv,−
t ), with Ψv,±

t =
∑

u∈Y vt 1σ(u)=±φu.
We rewrite Qk,` into a more manageable form: First observe that every path in

P2`+1, after reaching u`+1, climbs back to a depth t from which it then again moves
down the tree (that is, in the direction away from the root). Let us call the vertex at
level t (to which the path climbs back before descending again) u. Then, (if t 6= 0)
there are two children of u, say v and w such that w lies on the path between u
and u`+1 and v is in between u and u2`+1. For such fixed v and w in Y u

1 , only the
children u2`+1 ∈ Y v

t determine the contribution of a path to (6.29), regardless of the
choice of u`+1 ∈ Y w

`−t−1. Hence, for such fixed u and v, w ∈ Y u
1 and u2`+1, there are

|Y w
`−t−1| = Sw`−t−1 paths giving the same contribution to (6.29):

Qk,` =

`−1∑
t=0

∑
u∈Y ot

Luk,`, (6.33)

where, for |u| = t ≥ 0,

Luk,` =
∑
w∈Y u1

Sw`−t−1

 ∑
v∈Y u1 \{w}

〈gk,Ψv
t 〉

 . (6.34)

The following theorem is an extension of Theorem 25 in [17]. The important
observation is that, again, for Z0 = δτ fixed,

(
Q2,`/µ

2`
2

)
`

converges to a random
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variable with mean a constant times τ , that is, the spin of the root. Its proof uses
both martingale theorems stated above. We use the second martingale statement,
which is not present in the ordinary SBM, to bound the variance of Qk,` in case
µ2

2 > ρ:

Theorem 6.6.7 (Degree-Corrected Extension of Theorem 25 in [17]). Assume that
µ2

2 > ρ. Let Z0 = δx and φo = ψo be fixed. For k ∈ {1, 2},
(
Qk,`/µ

2`
k

)
`

converges

in L2 as ` tends to infinity to a random variable with mean Φ(3)

Φ(2)

ρ
µ2
k−ρ

µk,ψogk(x).

Further, the L2-convergence takes place uniformly for all ψo.

In case µ2
2 ≤ ρ, we have:

Theorem 6.6.8. Assume that µ2
2 ≤ ρ. Let Z0 = δx and φo = ψo be fixed. There

exists a constant C such that E
[
Q2

2,`

]
≤ Cρ2``5.

6.6.4 Orthogonality: Decorrelation in branching process

Again, as in [17], Q1,` and Q2,` are uncorrelated when defined on the branching
process above. The proof presented here is simpler than the corresponding one in
[17] and uses that for the two communities-case, Q1,` and Q2,` are explicitly known.

The orthogonality of the candidate eigenvectors (i.e., (iii) − (v) in Proposition
6.5.1) follows from this fact, see Proposition 6.8.3 (ii), (iii) and Proposition 6.8.4
(ii) below.

Theorem 6.6.9 (Degree-Corrected Extension of 28 in [17]). Assume that the spin
σo of the root is drawn uniformly from {+,−}. Then for any ` ≥ 0,

E [Q1,`Q2,`|T ] = 0.

6.7 Coupling of local neighbourhood

The proofs of the statements in this section are deferred to Section 6.13.

6.7.1 Coupling

We distinguish between two different concepts of neighbourhood: the classical neigh-
bourhood (see Section 5.7) that is rooted at a vertex and another neighbourhood
that starts with an edge. For the latter, we need the following concept of oriented

distance ~d, which for e, f ∈ ~E(V ) is defined as

~d(e, f) = min
γ
`(γ)

where the minimum is taken over all self-avoiding paths γ = (γ0, γ1, · · · , γ`+1) in G
such that (γ0, γ1) = e, (γ`, γ`+1) = f and for all 1 ≤ k ≤ `+ 1, {γk, γk+1} ∈ E. and

where for such a path γ, `(γ) = `. Note that ~d(e, f) = ~d(f−1, e−1), i.e., ~d is not
symmetric.

We introduce the vector Yt(e) = (Yt(e)(i))i∈{+,−} where, for i ∈ {+,−},

Yt(e)(i) =
∣∣∣{f ∈ ~E : ~d(e, f) = t, σ(f2) = i

}∣∣∣ , (6.35)

we denote the number of vertices at oriented distance t from e by

St(e) = ‖Yt(e)‖1 =
∣∣∣{f ∈ ~E : ~d(e, f) = t

}∣∣∣ ,
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and we define vector Ψt(e) = (Ψt(e)(i))i∈{+,−} where, for i ∈ {+,−},

Ψt(e)(i) =
∑

f∈ ~E:~d(e,f)=t

1σ(f2)=iφf2 . (6.36)

We denote the classical neighbourhood of radius r rooted at vertex v by (G, v)r and
the neighbourhood around oriented edge e = (e1, e2) by (G, e)r. With the definitions
above, we then have, (G, e)r = (G′, e2)r, where G′ is the graph G with edge {e1, e2}
removed. In particular,

St(e) = S′t(e2),

where S′t is St defined on G′.
The two branching processes that describe the neighbourhoods are almost iden-

tical, the only difference lies in the weight of the root: In the classical branching
processes, the weight is drawn according to distribution ν. In the branching process
starting at an edge oriented towards, say, o, the root o has weight governed by ν∗.
See Proposition 6.7.1 below, which differs slightly from Theorem 5.7.1, because here
the spins are deterministic according to (6.6).

As a corollary we obtain an analogue of Theorem 6.6.5 for local neighbourhoods:
the components of Ψt(e) grow exponentially, see Corollary 6.7.3.

We bound the growth of St in Lemma 6.7.4. We use a coupling argument to show
that the weights of the unexplored vertices and selected vertices are stochastically
dominated by variables following law ν, respectively ν∗. This argument is not needed
in the ordinary SBM.

Following [94], we need to verify that certain problematic structures, namely
tangles, are excluded with high probability. We say that a graph H is tangle-free
if all its `− neighbourhoods contain at most one cycle. If there is at least one `−
neighbourhood in H that contains more than one cycle, we call H tangled. Note
that in the sequel we shall often suppress the dependence on ` and simply call a
graph tangle-free or tangled; the ` dependence is then tacitly assumed.

Following standard arguments we establish in Lemma 6.7.5 that the graph is with
high probability log(n)-tangle free.

Proposition 6.7.1 (Degree-Corrected Extension of Proposition 31 in [17]). Let

` = C logρ(n), with C < Ccoupling. Let ρ ∈ V and e = (e1, e2) ∈ ~E. Let (T, o) be the
branching process with root o defined in Section 6.6, where the root has spin σ(v)
and weight governed by ν. Similarly, Let (T ′, o) be that same branching process,
when the root has spin σ(e2) and weight governed by ν∗. Then, the total variation

distance between the law of (G, v)` and (T, o)` goes to zero as 1 − n−( γ2∧
1

40). The
same is true for the difference between the law of (G, e)` and (T ′, o).

Remark 6.7.2. Note that with the event (G, v)` = (T, o)`, we mean that the graph
and tree are equal, including their spins and weights. See Theorem 5.7.1 for
more details.

Corollary 6.7.3 (Degree-Corrected Extension of Corollary 32 in [17]). Assume

µ2
2 > ρ. Let ` = C logρ n with 0 < C < Ccoupling. For e ∈ ~E(V ), we define the

event E(e) that for all 0 ≤ t < ` and k ∈ {1, 2}: |〈gk,Ψt(e)〉 − µt−`k 〈gk,Ψ`(e)〉| ≤
(log n)3ρt/2. Then, with high probability, the number of edges e ∈ ~E such that E(e)

does not hold is at most log(n) n1−( γ
2
∧ 1

40
).

Lemma 6.7.4 (Degree-Corrected Extension of Lemma 29 in [17]). There exist c, c′ >

0 such that for all s ≥ 0 and for any w ∈ [n] ∪ ~E(V ),

P
(
∀t ≥ 0 : St(w) ≤ sρ̄tn

)
≥ 1− ce−c′s.
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Consequently, for any p ≥ 1, there exists c′′ > 0 such that

E
[

max
v∈[n],t≥0

(
St(v)

ρ̄tn

)p]
≤ c′′(log n)p.

Lemma 6.7.5 (Degree-Corrected Extension of Lemma 30 in [17]). Let ` = C logρ(n),

with 0 < C < Ccoupling. Then, w.h.p., at most ρ2` log(n) vertices have a cycle in their
` - neighbourhood. Further, w.h.p., the graph is ` - tangle-free.

6.7.2 Geometric growth

Here we show that for k ∈ {1, 2}, 〈B`χk, δe〉 grows nearly geometrically in t with rate
µk. Corollary 6.7.7 then establishes a bound for r ≤ ` on sup〈B`χk,x〉=0,‖x‖=1 ‖〈Brχk, x〉‖
crucial for the norm bounds in Section 6.10.

Proposition 6.7.6 (Degree-Corrected Extension of Proposition 33 in [17]). Assume
µ2

2 > ρ. Let ` = C logρ(n), with 0 < C < Ccoupling ∧
(

1
2 −

(γ
4 ∧

1
80

))
= Ccoupling. For

e ∈ ~E(V ), let ~E` be the set of oriented edges such that either (G, e2)` is not a
tree or the event E(e) (defined in Corollary 6.7.3) does not hold. Then, w.h.p. for
k ∈ {1, 2}:

(i) | ~E`| � (log n)2n1− γ
2
∧ 1

40 ,

(ii) for all e ∈ ~E\ ~E`, 0 ≤ r ≤ `,

|〈Brχk, δe〉 − µr−`k 〈B
`χk, δe〉| ≤ (log n)4ρr/2,

(iii) for all e ∈ ~E`, 0 ≤ r ≤ `,

|〈Brχk, δe〉| ≤ (log n)2ρr.

Corollary 6.7.7 (Degree-Corrected Extension of Corollary 34 in [17]). Let ` =
C logρ(n), with 0 < C < Ccoupling ∧

(
1− γ

2 ∧
1
40

)
∧
(γ

4 ∧
1
80

)
= Ccoupling. W.h.p. for

any 0 ≤ r ≤ `− 1 and k ∈ {1, 2}:

sup
〈B`χk,x〉=0,‖x‖=1

‖〈Brχk, x〉‖ ≤ (log n)5n1/2ρr/2.

6.8 A weak law of large numbers for local functionals
on the DC-SBM

The proofs of the statements in this section are deferred to Section 6.14.
Here we show that a weak law of large numbers applies for local functionals

defined on weighted coloured random graphs generated according to the DC-SBM.
By a weighted coloured graph we mean a graph G = (V,E) together with maps

σ : V → {+,−} and φ : V → [φmin, φmax]. For v ∈ V , we identify σ(v) as the spin of
v and φ(v) as its weight. We denote by G∗ the set of rooted weighted coloured graphs.
We denote an element of G∗ by (G, o): G = (V,E) is then a weighted coloured graph
and o ∈ V is some distinguished vertex. A function τ : G∗ → R is said to be `−
local if τ(G, o) depends only on (G, o)`.

To derive the claimed weak law when G is drawn according to the DC-SBM, we
prepare with a variance bound for

∑n
v=1 τ(G, v), see Proposition 6.8.1. The bound
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follows from the law of total variance,

Var

(
n∑
v=1

τ(G, v)

)
= E

[
Var

(
n∑
v=1

τ(G, v)

∣∣∣∣∣φ1, . . . , φn

)]

+ Var

(
E

[
n∑
v=1

τ(G, v)

∣∣∣∣∣φ1, . . . , φn

])
,

together with an application of Efron-Stein’s inequality to both terms on the right.
For instance, Efron-Stein’s inequality says that the variance of
E [
∑n

v=1 τ(G, v)|φ1, . . . , φn] can be bounded by considering the variance caused by
one weight, while keeping all other weights fixed. If τ is `-local, and all weights except
at vertex u are fixed, then the only random part of

∑n
v=1 τ(G, v) is

∑
v∈N (u) τ(G, v) ≤

|N (u)|maxv τ(G, v), whereN (u) is the ` neighbourhood of u. For bounded functions
τ we thus expect the variance to be O(nβ), with β < 2.

The sample average 1
n

∑n
v=1 τ(G, v) concentrates then around E [τ(T, o)], where

(T, o) is the branching process from Section 6.6, with root o having spin drawn uni-
formly from {+,−} and weight governed by ν, see Proposition 6.8.2. The coupling,
and in particular the matching of the weights, plays an important role in its proof.

In the next section we apply the latter proposition to some specific functionals.

Proposition 6.8.1 (Degree-Corrected Extension of Proposition 35 in [17]). Let G
be drawn according to the DC-SBM. There exists c > 0 such that if τ, ϕ : G∗ → R are
`-local, |τ(G, o)| ≤ ϕ(G, o) and ϕ is non-decreasing by the addition of edges, then

Var

(
n∑
v=1

τ(G, v)

)
≤ cnρ2`

(
E
[
max
v∈[n]

ϕ4(G, v)

])1/2

.

Proposition 6.8.2 (Degree-Corrected Extension of Proposition 36 in [17]). Let G
be drawn according to the DC-SBM. Let (T, o) be the branching process from Section
6.6, with root o having spin drawn uniformly from {+,−} and weight governed by ν.
Let ` = C logρ(n), with C < Ccoupling. There exists c > 0 such that if τ, ϕ : G∗ → R
are `-local, |τ(G, o)| ≤ ϕ(G, o) and ϕ is non-decreasing by the addition of edges, then

E

[∣∣∣∣∣ 1n
n∑
v=1

τ(G, v)− E [τ(T, o)]

∣∣∣∣∣
]

≤ c2n
−( γ2∧

1

40)

(
E
[
max
v∈[n]

ϕ4(G, v)

]1/4

∨ E
[
ϕ2(T, o)

]1/2)
+O(n−γ)

(6.37)

6.8.1 Application with some specific local functionals

Here we consider 〈B`χ1, B
`χ2〉, 〈B2`χk, B

`χj〉, and 〈B`B∗`χ1, B
`B∗`χ2〉, quantities

occurring in Proposition 6.5.1.
Explicitly, B`χk(e) =

∑
f B

`
efgk(σ(f2))φf2 , where we recall that B`

ef is the num-
ber of non-backtracking walks from e to f . Now, if the oriented `− neighbourhood
of e is a tree, then B`χk(e) = 〈gk,Ψ`(e)〉. With this intuition in mind, we analyse
likewise expressions in Proposition 6.8.3 below.

Inspired by (6.32), which expresses B`B∗`χk on trees in terms of the operator
Qk,`, we extend the latter to an operator defined on general graphs. First, for

e ∈ ~E(V ) and t ≥ 0, set Yt(e) = {f ∈ ~E : ~d(e, f) = t}. Then, for k ∈ {1, 2}, we set

Pk,`(e) =

`−1∑
t=0

∑
f∈Yt(e)

Lk(f), (6.38)
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with
Lk(f) =

∑
(g,h)∈Y1(f)\Yt(e);g 6=h

〈gk, Ψ̃t(g)〉S̃`−t−1(h),

where Ψ̃t(g), S̃`−t−1(h) = ‖Ỹ`−t−1(h)‖1 are the variables Ψt(g), respectively S`−t−1(h),
defined on the graph G where all edges in (G, e2)t have been removed. Note that, if

(G, e)2` is a tree, then Ψ̃s(g) = Ψs(g) for s ≤ 2`− t. Compare Pk,` to Qk,` in (6.29)
and Lk(f) to Lk,` in (6.34).

Finally, define
Sk,`(e) = S`(e)gk(σ(e1))φe1 . (6.39)

We then have an extension of (6.32), when (G, e2)2` is a tree:

B`B∗`χ̌k(e) = Pk,`(e) + Sk,`(e). (6.40)

We analyse (6.40) in Proposition 6.8.4 below.
We start with he case µ2

2 > ρ:

Proposition 6.8.3 (Degree-Corrected Extension of Proposition 37 in [17]). Assume
that µ2

2 > ρ. Let ` = C logρ n with 0 < C < Ccoupling.

(i) For any k ∈ {1, 2}, there exists c′k > 0 such that, in probability,

1

n

∑
e∈ ~E

〈gk,Ψ`(e)〉2

µ2`
k

→ c′k.

(ii) For any k ∈ {1, 2}, there exists c′′k > 0 such that, in probability,

1

n

∑
e∈ ~E

〈gk, Y`(e)〉2

µ2`
k

→ c′′k.

(iii)

E

∣∣∣∣∣∣ 1n
∑
e∈ ~E

〈g1,Ψ`(e)〉〈g2,Ψ`(e)〉

∣∣∣∣∣∣
 ≤ (log n)3n2C−( γ2∧

1

40) + n−γ .

(iv) For any k 6= j ∈ {1, 2},

E

∣∣∣∣∣∣ 1n
∑
e∈ ~E

〈gk,Ψ2`(e)〉〈gj ,Ψ`(e)〉

∣∣∣∣∣∣
 ≤ (log n)3n3C−( γ2∧

1

40) + n−γ .

(v) For any k ∈ {1, 2}, in probability

1

n

∑
e∈ ~E

〈gk,Ψ2`(e)〉〈gk,Ψ`(e)〉
µ3`
k

→ c′′′k .

Proposition 6.8.4 (Degree-Corrected Extension of Proposition 38 in [17]). Assume
that µ2

2 > ρ. Let ` = C logρ n with C < Ccoupling.

(i) For any k ∈ {1, 2}, there exists c′′′′k > 0 such that in probability

1

n

∑
e∈ ~E

P 2
k,`(e)

µ4`
k

→ c′′′′k .
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(ii)

E

∣∣∣∣∣∣ 1n
∑
e∈ ~E

(P1,`(e) + S1,`(e))(P2,`(e) + S2,`(e))

∣∣∣∣∣∣
 ≤ (log n)8n4C−( γ2∧

1

40)

In case µ2
2 ≤ ρ, most of the above claims continue to hold. We treat the exceptions

here:

Proposition 6.8.5. Assume that µ2
2 ≤ ρ. Let ` = C logρ n with 0 < C < Ccoupling.

There exists some c > 0, such that w.h.p.,

1

n

∑
e∈ ~E

〈g2,Ψ`(e)〉2

ρ`
≥ c.

Proposition 6.8.6. Assume that µ2
2 ≤ ρ. Let ` = C logρ n with C < Ccoupling.

There exists c > 0 such that w.h.p.,

1

n

∑
e∈ ~E

P 2
2,`(e)

ρ2` log5(n)
≤ c.

6.9 Proof op Propositions 6.5.1 and 6.5.3

We introduce for k ∈ {1, 2} the vector Nk,`, defined on e ∈ ~E as

Nk,`(e) = 〈gk,Ψ`(e)〉.

If (G, e2)` is a tree, then

Nk,`(e) = 〈B`χk, δe〉,

and we have a similar expression for B`B∗`χ̌k in (6.40). Now, at most ρ2` log(n)
vertices have a cycle in their `-neighbourhood (see Lemma 6.7.5). Therefore:

Lemma 6.9.1 (Degree-Corrected Extension of Lemma 39 in [17]). Let ` = C logρ n

with 0 < C < Cmin. Then, w.h.p. ‖B`χk −Nk,`‖ = O
(
(log n)5/2ρ2`

)
= o

(
ρ`/2
√
n
)
,

‖B`B∗`χ̌k − Pk,` − Sk,`‖ = O((log n)4ρ4`) and ‖B`B∗`χ̌k − Pk,`‖ = O(ρ`
√
n).

Proof. The proof of Lemma 39 in [17] can be easily adapted to the current setting.
The key idea is pointed out above. It thus remains to bound |(B`χk − Nk,`)(e)|
and |(B`B∗`χ̌k − Pk,`)(e)| on edges e for which (G, e2)` is not a tree. For this, use
that with high probability the graph is 2`-tangle free so that there are at most two
non-backtracking paths between e and any edge at distance `.

We can thus in our calculations replace B`χk by Nk,` and B`B∗`χ̌k by Pk,`. From
Propositions 6.8.3 and 6.8.4, Proposition 6.5.1 then follows:

Proof of Proposition 6.5.1. This proof follows the corresponding proof in [17]. We
give the key observations: (i) From Proposition 6.8.3 (i), ‖Nk,`‖ ∼

√
nµ`k and from

Proposition 6.8.4 (i), ‖Pk,`‖ ∼
√
nµ2`

k .

(ii) From Proposition 6.8.3 (v), |〈Nk,`, Nk,2`〉| ∼ nµ3`
k .

(iii) From Proposition 6.8.3 (iii), |〈N1,`, N2,`〉| ∼ (log n)3n3C−( γ2∧
1

40).

(iv) From Proposition 6.8.3 (iv), |〈Nk,2`, Nj,`〉| ∼ (log n)3n4C−( γ2∧
1

40).

(v) From Proposition 6.8.4 (ii), |〈P1,`+S1,`, P2,`+S2,`〉| ∼ (log n)8n5C−( γ2∧
1

40).
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Proposition 6.5.3 follows similarly from the case µ2
2 ≤ ρ treated in Section 6.8.1:

Proof of Proposition 6.5.3. This follows from Propositions 6.8.5 and 6.8.6 in con-
junction with Lemma 6.9.1.

6.10 Norm of non-backtracking matrices

The proofs of the statements in this section are deferred to Section 6.15.
In this section the product over an empty set is defined to be one.
It is convenient to extend matrix B and vector χk to the set of directed edges on

the complete graph, ~EK(V ) = {(u, v) : u 6= v ∈ V }: For e, f ∈ ~EK(V ), Bef is then
extended to

Bef = AeAf1e2=f11e1 6=f2 , (6.41)

where A is the adjacency matrix. For each e ∈ ~EK(V ) we set χk(e) = gk(σ(e2))φe2 .

For integer k ≥ 1, e, f ∈ ~EK(V ), we let Γkef be the set of non-backtracking walks

γ = (γ0, . . . , γk) of length k from (γ0, γ1) = e to (γk−1, γk) = f on the complete
graph with vertex set V .

By induction it follows that

(Bk)ef =
∑

γ∈Γk+1
ef

k∏
s=0

Aγsγs+1
. (6.42)

Indeed, note that
∏k
s=0Aγsγs+1

is one when γ is a path in G and zero otherwise.
To each walk γ = (γ0, . . . , γk), we associate the graph G(γ) = (V (γ), E(γ)), with

the set of vertices V (γ) = {γi, 0 ≤ i ≤ k} and the set of edges E(γ) = {{γi, γi+1}, 0 ≤
i ≤ k − 1}.

From Lemma 6.7.5, the graphs following the DC-SBM are tangle-free with high
probability. Hence, it makes sense to consider the subset F k+1

ef ⊂ Γk+1
ef of tangle-free

non-backtracking walks on the complete graph. Indeed, if G is tangle-free, we need
only consider the tangle-free paths in the summation (6.42):

(B(k))ef =
∑

γ∈F k+1
ef

k∏
s=0

Aγsγs+1
, (6.43)

and Bk = B(k) for 1 ≤ k ≤ `.
Define for u 6= v the centred random variable

Auv = Auv −
φuφv
n

Wσuσv , (6.44)

where

W =

(
a b
b a

)
.

Compare this to the SBM without degree-corrections in Section 10.1 of
[17]: φu = 1 for all u in the latter model.

Using A we shall attempt to center Bk when the underlying graph G is tangle-free
through considering

∆
(k)
ef =

∑
γ∈F k+1

ef

k∏
s=0

Aγsγs+1
. (6.45)
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Further, we set

∆
(0)
ef = 1e=fAe and B

(0)
ef = 1e=fAe. (6.46)

To decompose (6.43), following a decomposition that appeared first in [85], we use

∏̀
s=0

xs =
∏̀
s=0

ys +
∑̀
t=0

t−1∏
s=0

ys(xt − yt)
∏̀
s=t+1

xs,

with xs = Aγsγs+1
and ys = Aγsγs+1

on a path γ ∈ F k+1
ef :

∏̀
s=0

Aγsγs+1
=
∏̀
s=0

Aγsγs+1
+
∑̀
t=0

t−1∏
s=0

Aγsγs+1

(
φγtφγt+1

n
Wσγtσγt+1

) ∏̀
s=t+1

Aγsγs+1
.

Summing over all γ ∈ F `+1
ef then gives

B
(`)
ef =

∑
γ∈F `+1

ef

∏̀
s=0

Aγsγs+1

+
∑̀
t=0

∑
γ∈F `+1

ef

t−1∏
s=0

Aγsγs+1

(
φγtφγt+1

n
Wσγtσγt+1

) ∏̀
s=t+1

Aγsγs+1

= ∆
(`)
ef +

∑̀
t=0

∑
γ∈F `+1

ef

t−1∏
s=0

Aγsγs+1

(
φγtφγt+1

n
Wσγtσγt+1

) ∏̀
s=t+1

Aγsγs+1
.

(6.47)

Consider the two products in the summation over F `+1
ef on the right of (6.47): We

can, for 1 ≤ t ≤ `− 1, replace the summation over F `+1
ef by summing over all pairs

γ′ = (γ0, . . . , γt) ∈ F teg and γ′′ = (γt+1, . . . , γ`+1) ∈ F `−tg′f for some g, g′ ∈ ~E(V )

such that there exists a non-backtracking path with one intermediate edge, on the

complete graph, between oriented edges g and g′ (we denote this property by g
2→ g′).

However caution is needed, as this summation also includes tangled paths, namely
those in the sets {F `+1

t,ef }
`
t=0. Where, for 1 ≤ t ≤ `−1, F `+1

t,ef is defined as the collection

of all tangled paths γ = (γ0, . . . , γ`+1) = (γ′, γ′′) ∈ Γ`+1
ef with γ′ and γ′′ as above. For

t = 0, F `+1
0,ef consists of all non-backtracking tangled paths (γ′, γ′′) with γ′ = (e1) and

γ′′ ∈ F `g′f for any g′ such that g′1 = e2. For t = `, F `+1
`,ef is the set of non-backtracking

tangled paths (γ′, γ′′) such that γ′′ = (f2) and γ′ ∈ F `eg for some g ∈ ~E(V ) with
g2 = f1. We rewrite (6.47) as

B(`) = ∆(`)+
1

n
KB(`−1)+

1

n

`−1∑
t=1

∆(t−1)K(2)B(`−t−1)+
1

n
∆(`−1)K̂− 1

n

∑̀
t=0

R
(`)
t , (6.48)

where for e, f ∈ EK ,
Kef = 1e→fφe1φe2Wσ(e1)σ(e2), (6.49)

the weighted non-backtracking matrix on the complete graph (recall that e → f
represents the non-backtracking property),

K̂ef = 1e→fφf1φf2Wσ(f1)σ(f2), (6.50)
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K
(2)
ef = 1

e
2→fφe2φf1Wσ(e2)σ(f1), (6.51)

and where

(R
(`)
t )ef =

∑
γ∈F `+1

t,ef

t−1∏
s=0

Aγsγs+1
φγtφγt+1

Wσ(γt)σ(γt+1)

∏̀
s=t+1

Aγsγs+1
. (6.52)

Indeed,(
`−1∑
t=1

∆(t−1)K(2)B(`−t−1)

)
ef

=

`−1∑
t=1

∑
g,g′

∆(t−1)
eg K

(2)
gg′B

(`−t−1)
g′f

=

`−1∑
t=1

∑
g,g′

∑
γ′∈F teg

∑
γ′′∈F `−t

g′f

t−1∏
s=0

Aγ′sγ′s+1
1
g

2→g′φγ
′
t
φγ′′0

·Wσ(γ′t)σ(γ′′0 )

`−t−1∏
s=0

Aγ′′s γ′′s+1
,

(6.53)

(
KB(`−1)

)
ef

=
∑
g

∑
γ′′∈F `gf

1e→gφe1φe2Wσ(e1)σ(e2)Ae2,g2

`−2∏
s=1

Aγ′′s γ′′s+1
Af1f2 , (6.54)

and,(
∆(`−1)K̂

)
ef

=
∑
g

∑
γ′∈F `eg

Ae1e2

`−2∏
s=1

Aγ′sγ′s+1
Ag1f11g→fφf1φf2Wσ(f1)σ(f2) (6.55)

that is exactly the splitting described just below (6.47), where we also pointed out
the need to compensate for tangled paths occuring in (6.53), which is precisely the

role of R
(`)
t in (6.48).

To bound (6.48), we introduce

W =
2

Φ(2)
(ρχ1χ̌

∗
1 + µ2χ2χ̌

∗
2) =

(
φe2φf1Wσ(e2)σ(f1)

)
ef
, (6.56)

and,
L = K(2) −W. (6.57)

Note the presence of weights in (6.56), hence our choice for the candidate eigenvec-
tors.

Further, we set for 1 ≤ t ≤ `− 1,

S
(`)
t = ∆(t−1)LB(`−t−1). (6.58)

We then have:

Proposition 6.10.1 (Degree-Corrected Extension of Proposition 13 in [17]). If G

is tangle-free and x ∈ C ~E(V ) with norm smaller than one, we have

‖B`x‖ ≤ ‖∆(`)‖+
1

n
‖KB(`−1)‖+

1

n

∑
j=1,2

2µj

Φ(2)

`−1∑
t=1

‖∆(t−1)χj‖||〈χ̌j , B`−t−1x〉||

+
1

n

`−1∑
t=1

‖S(`)
t ‖+ φ2

max(a ∨ b)‖∆(`−1)‖+
1

n

∑̀
t=0

‖R(`)
t ‖.
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Proof. Due to the tangle-freeness, B` = B(`). Further K(2) = L + W and ||K|| ≤
φ2

max(a ∨ b)n.

In Section 6.15 we prove the following bounds on the matrices in Proposition
6.10.1:

Proposition 6.10.2 (Degree-Corrected Extension of Proposition 14 in [17]). Let
` = C logρ n with C < 1. With high probability, the following norm bounds hold for
all k, 0 ≤ k ≤ `, and i = 1, 2:

‖∆(k)‖ ≤ (log n)10ρk/2, (6.59)

‖∆(k)χi‖ ≤ (log n)5ρk/2
√
n, (6.60)

‖R(`)
k ‖ ≤ (log n)25ρ`−k/2, (6.61)

‖KB(k)‖ ≤
√
n(log n)10ρk, (6.62)

and the following bound holds for all k, 1 ≤ k ≤ `− 1:

‖S(`)
k ‖ ≤

√
n(log n)20ρ`−k/2. (6.63)

6.10.1 Proof of Proposition 6.5.2

From Propositions 6.10.1 and 6.10.2, the geometric growth in Corollary 6.7.7 to-
gether with the tangle-freeness due to Lemma 6.7.5, the proof of Proposition 6.5.2
follows:

Let j ∈ {1, 2}. If, for some vector x, 〈ϕ̌j , x〉 = 0, then 〈B`χj , x̌〉 = 0. Therefore,
using Corollary 6.7.7,

sup
‖x‖=1,〈ϕ̌j ,x〉=0

〈χ̌j , B`−t−1x〉 = sup
‖x‖=1,〈B`χj ,x̌〉=0

〈B`−t−1χj , x̌〉

= sup
‖x̌‖=1,〈B`χj ,x̌〉=0

〈B`−t−1χj , x̌〉

≤ log2(n)n1/2ρ
`−t−1

2 .

(6.64)

With high probability, the graph is `− tangle free (Lemma 6.7.5). Thus, invoking
Propositions 6.10.1 and 6.10.2, with high probability,

sup
x∈H⊥,‖x‖=1

‖B`x‖ ≤ log10(n)ρ
`

2 + n−1/2 log10(n)ρ`−1

+ c1 log8(n)ρ
`

2 + n−1/2 log21(n)ρ`

+ c2 log10(n)ρ
`

2 + n−1 log26(n)ρ`

≤ logc(n)ρ
`

2 ,

(6.65)

since C < 1.

6.10.2 Comparison with the Stochastic Block Model in [17]

Putting φu = 1 for all u, we retrieve exactly the same bounds as in the Stochas-
tic Block Model, that is equations (30)− (34) in [17].

Below we use the trace method and therefore path counting combinatorial argu-
ments to establish Proposition 6.10.2. In particular, we bound the expectation of
expressions of the form

E

[
2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

]
, (6.66)
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for certain paths γ = (γ1, . . . , γ2m) with γi = (γi,0, · · · , γi,k) ∈ V k+1, where A is
defined in (6.44).

In bounding (6.66) the following term occurs:∏
u∈V (γ)

Φ(du),

where (du)u are the degrees of the vertices in a specific tree (or forest) spanning the
path γ. See, for instance, (6.130) and (6.143) below. Here lies a major complication
with respect to the Stochastic Block Model: those terms are not present in the latter
model. In (6.134) and (6.145) we find

|V (γ)|∏
u=1

Φ(du) ≤ C
∑
u:du>2(du−2)

2

(
Φ(2)

)|V (γ)|−nC
,

where C2 > 1 is some constant and where nC ≥ 1 is the number of components on
the path γ. To compare this term with powers of Φ(2) (which are present in powers

of ρ = a+b
2 Φ(2)), we bound

∑
u:du>2(du − 2), see in particular Lemma 6.15.2 and

Lemma 6.15.5 below.

6.11 Detection: Proof of Theorem 6.2.2

The proofs of the statements in this section are deferred to Section 6.16.
We need the following special case of a lemma in [17]:

Lemma 6.11.1 (Special case of Lemma 40 in [17]). Assume that there exists a
function F : V → {0, 1} such that in probability, for any i ∈ {+,−},

lim
n→∞

1

n

n∑
v=1

1σ(v)=iF (v) =
f(i)

2
,

where f : {+,−} → [0, 1] is such that f(+) > f(−). Then, assigning to each vertex
a label σ̂(v) = + if F (v) = 1 and σ̂(v) = − if F (v) = 0, yields asymptotically positive
overlap with the true spins.

Recall the eigenvector ξ2 from Theorem 6.2.1. Below we use the function F :
v 7→ 1∑

e:e2=v ξ2(e)> τ√
n

or F : v 7→ 1∑
e:e2=v ξ2(e)≤ τ√

n
for some fixed parameter τ . We

verify also that ξ2 is aligned with P2,`. It is therefore useful to introduce the vector
I`, defined element-wise by

I`(v) =
∑

e∈ ~E:e2=v

P2,`(e), (6.67)

for v ∈ V .
Further, put

ĉ =
a+ b

2

(Φ(1))2Φ(3)

Φ(2)

ρ

µ2
2 − ρ

µ2

The following lemma shows that I` is correlated with the spins:

Lemma 6.11.2 (Degree-Corrected Extension of Lemma 41 in [17]). Let ` = C logρ n
with C < Ccoupling and i ∈ {+,−}. There exists a random variable Yi such that
E [Yi] = 0, E [|Yi|] < ∞ and for any continuity point t of the distribution of Yi, in
L2,

1

n

n∑
v=1

1σ(v)=i1I`(v)µ−2`
2 −ĉg2(i)≥t →

1

2
P (Yi ≥ t) .
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Recall from Theorem 6.2.1 that the eigenvector ξ2 is asymptotically aligned with

B`B∗`χ̌2

‖B`B∗`χ̌2‖
, (6.68)

where ` ∼ logρ(n). Hence, for some unknown sign ω, the vector ξ′2 = ωξ2 is asymp-

totically close to (6.68). From Lemma 6.9.1 we know that B`B∗`χ̌2 and P2,` are
asymptotically close. Consequently, properly renormalizing ξ′2 will make it asymp-
totically close to P2,`, so that we can replace P2,` in (6.67) by ξ′2. That is, we set for
v ∈ V ,

I(v) =
∑
e:e2=v

s
√
nξ′2(e),

with s =
√
c′′′′2 the limit in Proposition 6.8.4. Then, I and I`/µ

2`
2 are close, which

leads to the following lemma:

Lemma 6.11.3 (Degree-Corrected Extension of Lemma 42 in [17]). Let i ∈ {+,−}
and Ŷi be as in Lemma 6.11.2. For any continuity point t of the distribution of Ŷi,
in L2,

1

n

n∑
v=1

1σ(v)=i1I(v)−ĉg2(i)≥t →
1

2
P
(
Ŷi ≥ t

)
.

Put for i ∈ {+,−}, Xi = Ŷi + ĉg2(i) = Ŷi + 1√
2
ĉi. Then, for all t ∈ R that

are continuity points of the distribution of Xi, the following convergence holds in
probability

1

n

n∑
v=1

1σ(v)=i1I(v)>t →
1

2
P (Xi > t) .

Since E [X+] > 0, the argument below (90) in [17] establishes the existence of a
continuity point t0 ∈ R such that P (X+ > t0) > P (X− > t0).

Further, we note that X+ is in distribution equal to −X−, a fact that we use
below.

We are now in a position to apply Lemma 6.11.1 and thereby finishing the proof
of Theorem 6.2.2:

If ω = 1, then we define F , for v ∈ V , by

F (v) = 1∑
e:e2=v ξ2(e)>

t0
s
√
n

= 1I(v)>t0 .

Then,

lim
n→∞

1

n

n∑
v=1

1σ(v)=+F (v) =
1

2
P (X+ > t0) =:

f(+)

2
,

and,

lim
n→∞

1

n

n∑
v=1

1σ(v)=−F (v) =
1

2
P (X− > t0) =:

f(−)

2
,

so that f(+) > f(−) and Lemma 6.11.1 applies.
If, however, ω = −1, then we define F , for v ∈ V , by

F (v) = 1∑
e:e2=v ξ2(e)≤ t0

s
√
n

= 1−I(v)≤t0 .

Then, this time,

lim
n→∞

1

n

n∑
v=1

1σ(v)=+F (v) = lim
n→∞

1

n

n∑
v=1

1σ(v)=+1I(v)>−t0 =
1

2
P (X+ > −t0) =:

f(+)

2
,
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since −t0 is a continuity point of X+, which follows from the fact that X+ is in
distribution equal to −X− and t0 is a continuity point of X−.

Similarly,

lim
n→∞

1

n

n∑
v=1

1σ(v)=−F (v) =
1

2
P (X− > −t0) =:

f(−)

2
.

Now,

f(+) = P (X+ > −t0) = 1−P (X− > t0) > 1−P (X+ > t0) = P (X− > −t0) = f(−),

exactly the setting of Lemma 6.11.1.

6.12 Proofs of Section 6.6

Proof of Theorem 6.6.1. For 1 ≤ q < t, we have

Zt −M t−sZs =

t−1∑
u=s

M t−u−1(Zu+1 −MZu),

consequently, as g∗kM = µkg
∗
k,

〈gk, Zt〉
µt−1
k

=
〈gk, Zq〉
µq−1
k

+

t−1∑
u=q

〈gk, Zu+1 −MZu〉
µuk

, (6.69)

compare to (55) in [17]. Hence, (Xk(t))t≥1 is an Ft-martingale with mean 0. We
shall invoke Doob’s martingale convergence theorem to prove the assertion. That
is, we shall show that for some C > 0 and all t ≥ 1,

E
[
X2
k(t)|Z1

]
≤ C‖Z1‖1.

Let, for i, j ∈ {+,−}, Zs+1(i, j) denote the number of type i individuals in
generation s + 1 which descend from from a type j particle in the s-th generation.
Then,

E
[
‖Zs+1 −MZs‖22|Zs

]
=

∑
i,j∈{+,−}

E
[
(Zs+1(i, j)−MijZs(j))

2 |Zs(j)
]
. (6.70)

We calculate first, for some integer z ≥ 0,

E
[
(Zs+1(i, j)−MijZs(j))

2 |Zs(j) = z
]

= E

( z∑
l=1

(Yl(i, j)−Mij)

)2
∣∣∣∣∣∣Zs(j) = z


=

z∑
l=1

E
[
(Yl(i, j)−Mij)

2
]
,

(6.71)

where (Yl(i, j))
z
l=1 are i.i.d. copies of Poi

(
1i=ja+1i6=jb

2 Φ(1)φ∗
)

, where φ∗ follows the

biased law ν∗.
Put c1 = maxi,j∈{+,−} E

[
(Yl(i, j)−Mij)

2
]
< ∞. Then, plugging (6.71) into

(6.70), we obtain
E
[
‖Zs+1 −MZs‖22|Zs

]
≤ 2c1‖Zs‖1.
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Consequently,

E
[
‖Zs+1 −MZs‖22|Z1

]
= E

[
E
[
‖Zs+1 −MZs‖22|Zs

]
|Z1

]
≤ 2c1E [‖Zs‖1|Z1]

= 2c1ρ
s−1‖Z1‖1.

(6.72)

Combining the above with (6.69) for q = 1, we obtain

E
[
X2
k(t)|Z1

]
=

t−1∑
s=1

E
[
〈gk, (Zs+1 −MZs)〉2|Z1

]
µ2s
k

≤ ‖gk‖22
t−1∑
s=1

E
[
‖Zs+1 −MZs‖22|Z1

]
µ2s
k

≤ 2c1‖gk‖22
∞∑
s=1

ρs−1

µ2s
k

‖Z1‖1.

(6.73)

The assertion now follows upon noting that

C := 2c1 max
k∈{+,−}

‖gk‖22
∞∑
s=1

ρs−1

µ2s
k

<∞,

since ρ < µ2
k.

Proof of Corollary 6.6.2. From Theorem 6.6.1 we know that there exists a random
variable Xk(∞) such that

Xk(t) :=
〈gk, Zt〉
µt−1
k

− 〈gk, Z1〉
a.s.→ Xk(∞),

as t→∞. Now,

〈gk, Z1〉 = µk,ψo〈gk, Z0〉+ 〈gk, Z1 −MψoZ0〉.

We combine this with the definition of Xk(t) to obtain

〈gk, Zt〉
µk,ψoµ

t−1
k

= 〈gk, Z0〉+
〈gk, Z1 −MψoZ0〉

µk,ψo
+
Xk(t)

µk,ψo
,

where the right hand side is seen to converge in both senses to the random variable

Yk,ψo(∞) = 〈gk, Z0〉+
〈gk, Z1 −MψoZ0〉

µk,ψo
+
Xk(∞)

µk,ψo
.

Indeed, ∣∣∣∣∣ 〈gk, Zt〉µk,ψoµ
t−1
k

− Yk,ψo(∞)

∣∣∣∣∣ ≤ 1

µk,φmin

|Xk(t)−Xk(∞)| ,

for all ψo. The uniform convergence follows, since

E
[
|Xk(t)−Xk(∞)|2

∣∣φ0 = ψo
]

=

∞∑
z=0

E
[
|Xk(t)−Xk(∞)|2

∣∣∣ ‖Z1‖ = z
]
P (‖Z1‖ = z|φ0 = ψo)

≤ e
a+b

2
Φ(1)(φmax−φmin)E

[
|Xk(t)−Xk(∞)|2 |φ0 = φmax

] (6.74)
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Proof of Theorem 6.6.3. For 1 ≤ q < t, we have again

〈gk,Ψt〉
µt−1
k

=
〈gk,Ψq〉
µq−1
k

+

t−1∑
u=q

〈gk,Ψu+1 −MΨu〉
µuk

. (6.75)

Since E [Ψu+1|Ψu] = MΨu, (Xk(t))t≥1 is an Gt-martingale with mean 0. We show
again that for some C > 0 and all t ≥ 1,

E
[
X2
k(t)|Z1

]
≤ C‖Z1‖1.

Let, for i, j ∈ {+,−}, Ψs+1(i, j) denote the sum over the weights of type i
individuals in generation s + 1 which descend from a type j particle in the s-th
generation. Then,

E
[
‖Ψs+1 −MΨs‖22|Zs

]
=

∑
i,j∈{+,−}

E
[
(Ψs+1(i, j)−MijΨs(j))

2 |Zs(j)
]
. (6.76)

We calculate first, for some integer z ≥ 0,

E
[
(Ψs+1(i, j)−MijΨs(j))

2 |Zs(j) = z
]

= E

 z∑
l=1

Yl(i,j)∑
l′=1

φill′ −Mijφ
j
l

2∣∣∣∣∣∣Zs(j) = z


(6.77)

where φill′ and φjl are all independent and governed by the biased law ν∗, and where

(Yl(i, j))
z
l=1 are i.i.d. copies of Poi

(
1i=ja+1i6=jb

2 Φ(1)φ∗
)

, with φ∗ governed by ν∗. Thus

the summands indexed by l are independent. We have

E

Yl(i,j)∑
l′=1

φill′ −Mijφ
j
l

∣∣∣∣∣∣Zs(j)
 =

1i=ja+ 1i 6=jb

2
Φ(1) Φ(2)

Φ(1)

Φ(2)

Φ(1)
−Mij

Φ(2)

Φ(1)
= 0

Therefore,

E
[
(Ψs+1(i, j)−MijΨs(j))

2 |Zs(j) = z
]

=

z∑
l=1

E

Yl(i,j)∑
l′=1

φill′ −Mijφ
j
l

2 .
(6.78)

Put c1 = maxi,j∈{+,−} E
[(∑Yl(i,j)

l′=1 φill′ −Mijφ
j
l

)2
]
<∞. Then, plugging (6.78) into

(6.76), we obtain
E
[
‖Ψs+1 −MΨs‖22|Zs

]
≤ 2c1‖Zs‖1.

Proof of Lemma 6.6.4. For k ≥ 1, put

εk = ρ−k/2
√
k and fk =

k∏
`=1

(1 + ε`).

Due to convergence of (fk)k, there exist constants c0, c1 > 0 such that for all k ≥ 1,

c0 ≤ fk ≤ c1 and εk ≤ c1, (6.79)

99



exactly as (57) in [17].
Recall the law of Sk+1 from (6.28). We shall firstly derive a concentration re-

sult for
∑Sk

l=1X
(l)
k , by using Hoeffding’s inequality. Note that by definition X

(l)
k ∈

a+b
2 Φ(1)[φmin, φmax]. Put γ = (a+b

2 Φ(1))2(φmax − φmin)2, then Hoeffding’s equality
reads

P

(∣∣∣∣∣
n∑
l=1

X
(l)
k − nρ

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−2t2

nγ

)
.

Hence, in particular,

P

∣∣∣∣∣∣
sfkρk∑
l=1

X
(l)
k − sfkρ

kρ

∣∣∣∣∣∣ ≥ sfkρkρεk+1

2

 ≤ 2 exp

(
−fkρ(k + 1)

2γ
s

)
≤ 2 exp (−c2s) ,

(6.80)
for some c2 > 0, due to (6.79). We use the last result to obtain

P
(
Sk+1 > sfk+1ρ

k+1|Sk ≤ sfkρk
)

≤ P

Poi

sfkρk∑
l=1

X
(l)
k

 > sfk+1ρ
k+1


≤ P

(
Poi

(
sfkρ

k+1
(

1 +
εk+1

2

))
> sfk+1ρ

k+1
) (

1− 2e−c2s
)

+ 2e−c2s.

(6.81)

We bound

sfk+1ρ
k+1 = sfkρ

k+1
(

1 +
εk+1

2

) 1 + εk+1

1 + εk+1

2

≥ sfkρk+1
(

1 +
εk+1

2

)
(1 + c3εk+1),

where c3 = 1
2

1
1+maxl εl/2

> 0. Combining the last estimate with (6.81) and the

inequality
P (Poi (λ) ≥ λs) ≤ e−λI(s),

where

I : x 7→
{
xlogx− x+ 1 if x > 0;
∞ if x ≤ 0, (6.82)

entails that

P
(
Sk+1 > sfk+1ρ

k+1|Sk ≤ sfkρk
)
≤ exp

(
−sfkρk+1

(
1 +

εk+1

2

)
I(1 + c3εk+1)

)
+2e−c2s.

It remains to bound I(1 + c3εk) from below. But, due to the form of I, there exists
a θ > 0 such that for x ∈ [0, c3 maxk εk], I(1 + x) ≥ θx2. Consequently

P
(
Sk+1 > sfk+1ρ

k+1|Sk ≤ sfkρk
)
≤ 3e−c4sk,

for some constant c4 > 0. Hence,

P
(
∃k : Sk > sc1ρ

k
)
≤
∞∑
k=1

3e−c4sk =
3

1− e−c4s
e−c4s,

from which the statement follows.
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Proof of Theorem 6.6.5. We claim that there exist constants c, c′ > 0 such that for
any s ≥ 0

P
(
‖Zt+1 −MZt‖2 > s‖Zt‖1/21

∣∣ Ft) ≤ c′e−c(s∧s2). (6.83)

To prove (6.83), we shall employ Hoeffding’s inequality to establish a concentration
result for

λ+ =
Φ(1)

2

a Z+
t∑

i=1

Φ+
i + b

Z−t∑
i=1

Φ−i

 , (6.84)

and,

λ− =
Φ(1)

2

b Z+
t∑

i=1

Φ+
i + a

Z−t∑
i=1

Φ−i

 (6.85)

around their respective means y+ = E∗ [λ+] and y− = E∗ [λ−], where (Φ±i )i are i.i.d.
random variables with law ν∗, and where E∗ [·] = E [·|Zt] . This in conjunction with

the classical tail bound for Y
d
= Poi(λ):

P (|Y − λ| > λs) ≤ 2e−λδ(s), (6.86)

where δ : x 7→ I(1 − x) ∧ I(1 + x), with I defined in (6.82), shall allow us to prove

concentration of

(
Z+
t+1

Z−t+1

)
=

(
Poi (λ+)
Poi (λ−)

)
around E∗

[(
Z+
t+1

Z−t+1

)]
=

(
y+
y−

)
=

MZt.
Let t+, t− > 0. Then, Hoeffding’s inequality gives

P∗

∣∣∣∣∣∣
Z±t∑
i=1

Φ±i − Z
±
t

Φ(2)

Φ(1)

∣∣∣∣∣∣ ≥ t±
 ≤ 2 exp

(
−2(t±)2

Z±t γ

)
, (6.87)

where γ = (φmin − φmax)2, and where P∗ (·) = P (·|Zt) .
Hence,

P∗
(
|λ+ − y+| ≤ Φ(1)

2

(
at+ + bt−

))

≥ P∗

∣∣∣∣∣∣
Z+
t∑

i=1

Φ+
i − Z

+
t

Φ(2)

Φ(1)

∣∣∣∣∣∣ ≤ t+,
∣∣∣∣∣∣
Z−t∑
i=1

Φ−i − Z
−
t

Φ(2)

Φ(1)

∣∣∣∣∣∣ ≤ t−


≥
(

1− 2 exp

(
−2(t+)2

Z+
t γ

))(
1− 2 exp

(
−2(t−)2

Z−t γ

))
.

(6.88)

Plugging t+ = s
√
y+√

3Φ(1)a
and t− = s

√
y−√

3Φ(1)b
into the last equation leads to

P∗
(
|λ+ − y+| ≤ s

2
‖y‖1/21

)
≥
(

1− 2 exp

(
− 4/3

(Φ(1))2a2γ

y+

Z+
t

s2

))(
1− 2 exp

(
− 4/3

(Φ(1))2a2γ

y−

Z−t
s2

))
≥
(

1− 2e−c0s
2
)2

≥ 1− 4e−c0s
2

,

(6.89)

for some constant c0 > 0, since y±

Z±t
is bounded away from zero by some constant.
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We use the last inequality to obtain

P∗
(
Z+
t+1 − y

+ > s‖y‖1/21

)
≤ P∗

(
Poi

(
y+ +

s

2
‖y‖1/21

)
−
(
y+ +

s

2
‖y‖1/21

)
>
s

2
‖y‖1/21

)
+ 4e−c0s

2

.
(6.90)

We continue by invoking (6.86),

P∗
(

Poi
(
y+ +

s

2
‖y‖1/21

)
−
(
y+ +

s

2
‖y‖1/21

)
>
s

2
‖y‖1/21

)
≤ 2 exp

(
−(y+ +

s

2
‖y‖1/21 )δ

(
s
2‖y‖

1/2
1

y+ + s
2‖y‖

1/2
1

))
.

We note the existence of a θ > 0 such that for all x ∈ [0, 1], δ(x) ≥ θx2, so that

(y+ +
s

2
‖y‖1/21 )δ

(
s
2‖y‖

1/2
1

y+ + s
2‖y‖

1/2
1

)
≥

θ s
2

4 ‖y‖1
y+ + s

2‖y‖
1/2
1

≥ c2(s2 ∧ s),

for some constant c2 > 0, because y+ + s
2‖y‖

1/2
1 ≤ max{2y+, s‖y‖1/21 }.

Similarly, to bound P∗
(
Z+
t+1 − y+ ≤ −s‖y‖1/21

)
from above, we need to estimate

P∗
(

Poi
(
y+ − s

2
‖y‖1/21

)
−
(
y+ − s

2
‖y‖1/21

)
≤ −s

2
‖y‖1/21

)
≤ 2 exp

(
−(y+ − s

2
‖y‖1/21 )δ

(
s
2‖y‖

1/2
1

y+ − s
2‖y‖

1/2
1

))
,

(6.91)

when y+ > s
2‖y‖

1/2
1 (if y+ < s

2‖y‖
1/2
1 , then Z+

t+1 − y+ > − s
2‖y‖

1/2
1 , so that

P∗
(
Z+
t+1 − y+ ≤ −s‖y‖1/21

)
= 0).

We distinguish between two cases: Firstly, when y+ − s
2‖y‖

1/2
1 > s

2‖y‖
1/2
1 , we

have

(y+ − s

2
‖y‖1/21 )δ

(
s
2‖y‖

1/2
1

y+ − s
2‖y‖

1/2
1

)
≥

θ s
2

4 ‖y‖1
y+ − s

2‖y‖
1/2
1

≥ θ‖y‖1
y+

s2

4
≥ c3s

2, (6.92)

for some constant c3, due to our observation above.

Secondly, in case y+− s
2‖y‖

1/2
1 < s

2‖y‖
1/2
1 , we use the existence of a θ′ > 0 such that

for all x ≥ 1, δ(x) ≥ θ′x:

(y+ − s

2
‖y‖1/21 )δ

(
s
2‖y‖

1/2
1

y+ − s
2‖y‖

1/2
1

)
≥ θ′ ‖y‖

1/2
1

2
s ≥ c4s, (6.93)

for some constant c4 > 0.
Combining (6.90) - (6.93), leads to

P
(
|Z+
t+1 − y

+| > s‖y‖1/21

)
≤ 2

(
e−c2(s2∧s) + e−c4s + e−c3s

2
)

+ 8e−c0s
2

≤ c5e
−c6(s2∧s).

(6.94)

An identical bound holds (after possibly redefining the values of c5 and c6) for
|Z−t+1 − y−|.
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Finally, noting that ‖y‖1 = ρ‖Zt‖2, we have

P
(
‖Zt+1 −MZt‖2 > s‖Zt‖1/21

∣∣ Ft) ≤ P
(
|Z+
t+1 − y

+| ≥ s√
2
‖Zt‖1/21

∣∣ Ft)
+ P

(
|Z−t+1 − y

−| ≥ s√
2
‖Zt‖1/21

∣∣ Ft)
≤ c′e−c(s2∧s),

(6.95)
that is exactly claim (6.83).

We are now in a position to derive a similar bound as (59) in [17]:

P
(
∀t ≥ 1 : ‖Zt+1 −MZt‖2 ≤ u(t+ 1) log n‖Zt‖1/21

)
≥ 1−c′

∑
t≥1

e−cut logn ≥ 1−C ′n−Cu.

(6.96)
Recalling (6.69), we have, for s ≥ 1,

|〈gk, Zs〉 − µs−tk 〈gk, Zt〉| ≤ µ
s−1
k ‖gk‖2

t−1∑
u=s

‖Zu+1 −MZu‖2
µuk

·

From Equation (6.96) we know that, for all u ≥ 1,

‖Zu+1 −MZu‖2 ≤ c9(log n)(u+ 1)‖Zu‖1/21 , (6.97)

where c9 is so large that 6.97 holds with probability 1− n−β. Further, ‖Zh‖1 itself
is bounded by Lemma 6.6.4:

‖Zh‖1 ≤ c10(log n)ρh, (6.98)

also with probability at least 1− n−β.
With the same probability, for k ∈ {1, 2},

|〈gk, Zs〉 − µs−tk 〈gk, Zt〉| ≤ c11(log n)3/2µs−1
k

t−1∑
u=s

(u+ 1)

√
ρ

µk

u

≤ c12(log n)3/2(s+ 1)ρs/2.

(6.99)

The proof the last claim, write

〈gk,Ψs〉 − µs−tk 〈gk,Ψt〉 =
Φ(2)

Φ(1)

(
〈gk, Zs〉 − µs−tk 〈gk, Zt〉

)
+ εs − µs−tk εt, (6.100)

where, for s ≥ 1,

εs = gk(+)

(
Ψs(+)− Z+

s

Φ(2)

Φ(1)

)
+ gk(−)

(
Ψs(−)− Z−s

Φ(2)

Φ(1)

)
.

We bound εt using (6.87),

P
(
∀t ≥ 1 : εt ≤ t log n‖Zt‖1/21

)
≥ 1− c13

∑
t≥1

e−c14t
2 log2 n ≥ 1− C ′n−Cu. (6.101)

So that, with probability 1− n−β,

|εs − µs−tk εt| ≤ c15 log5/2(n)
(
ρs/2 + |µk|s−tρt/2

)
≤ c16 log5/2(n)ρs/2,

since |µk| > ρ1/2.
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Proof of Theorem 6.6.6. We have,

‖Ψu+1−MΨu‖2 ≤
Φ(2)

Φ(1)
‖Zu+1−MZu‖2+‖Ψu+1−

Φ(2)

Φ(1)
Zu+1‖2+‖M

(
Ψu −

Φ(2)

Φ(1)
Zu

)
‖2.

(6.102)
We use (6.87), to obtain that for any β > 0 (similar to (6.96))

P
(
∀t ≥ 1 : ‖Ψt −

Φ(2)

Φ(1)
Zt‖2 ≤ t log n‖Zt‖1/21

)
≥ 1− n−β. (6.103)

Combing (6.102), (6.103) and (6.96), gives that with probability 1 − n−β, for all
u ≥ 1,

‖Ψu+1 −MΨu‖2 ≤ c2u log n‖Zu‖1/21 . (6.104)

We can now apply the argument at the end of Theorem 24 in [17]. The second claim
follows by using the last part of the proof of Theorem 24 in [17], where the variable
U needs to be replaced by

U = sup
t≥1

‖Ψt+1 −MΨt‖2
t‖Zt‖1/21

.

It is important here that E
[
U4
]

= O(1), which is ensured by (6.104).

Proof of Theorem 6.6.7. We start by calculating the expectation and variance of∑
u∈Y ot L

u
k,` conditional on Ft (defined in Theorem 6.6.1). We use this to show that,

as `→∞, uniformly for all ψo,

Q̄k,`

µ2`
k

→ Φ(3)

Φ(2)

ρ

µ2
k − ρ

µk,ψoYk,ψo(∞), (6.105)

almost surely and in L2, where Yk,ψo(∞) is defined in Corollary 6.6.2, and where

Q̄k,` =

`−1∑
t=0

EFt
∑
u∈Y ot

Luk,`.

The latter is reminiscent of

Qk,` =

`−1∑
t=0

∑
u∈Y ot

Luk,`,

and we show that Q̄k,` and Qk,` are in fact close in L2-distance:

‖Q̄k,` −Qk,`‖ = o(µ2`
k ).

Consider for t ≥ 0 and ` ≥ t+ 2,

EFt,Y ot ,Y u1 L
u
k,` =

∑
(v,w)∈Y u1 ,v 6=w

EFt,Y ot ,Y u1 S
w
`−t−1EFt,Y ot ,Y u1 〈gk,Ψ

v
t 〉

=
∑

(v,w)∈Y u1 ,v 6=w

ρwρ
`−t−2φvµ

t
k〈gk, Zv0 〉

(6.106)

where ρw = a+b
2 Φ(1)φw, with φw a random variable that follows law ν∗. The second

equality in (6.106) follows after calculating

E [Ψv
t |Y v

0 ] =
Φ(2)

Φ(1)
E [Zvt |Y v

0 ] =
Φ(2)

Φ(1)

Φ(1)φv

Φ(2)
M tZv0 = φvM

tZv0 ,
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where the factor Φ(1)φv
Φ(2) accounts for the fact that the ”parental” vertex v has de-

terministic type φv (and transitions are thus given by Mφv = Φ(1)φv
Φ(2) M), whereas

vertices in the later generations have i.i.d. weights (for which M is the transition
matrix). Now,

EFt,Y ot L
u
k,` = EFt,Y ot EFt,Y ot ,Y u1 L

u
k,`

= EFt,Y ot
∑

(v,w)∈Y u1 ,v 6=w

ρwρ
`−t−2φvµ

t
k〈gk, Zv0 〉

= ρ`−t−2µtkEFt,Y ot |Y
u

1 |(|Y u
1 | − 1)EFt,Y ot ρ

∗EFt,Y ot φ
∗〈gk,

(
1σ∗=+
1σ∗=−

)
〉,

(6.107)

where φ∗ has law ν∗, ρ∗ is an i.i.d. copy of a+b
2 Φ(1)φ∗ and σ∗ = σu with probability

a
a+b , and σ∗ = −σu with probability b

a+b (further, ρ∗, φ∗ and σ∗ are independent).
We thus have

EFt,Y ot L
u
k,` = ρ`−t−2µtk · ρ2

u · ρ ·
Φ(2)

Φ(1)
· (gk(1)c(σu,+) + gk(2)c(σu,−)), (6.108)

where ρu = a+b
2 Φ(1)φu (with φu the weight of u) and for (x, y) ∈ {+,−} × {+,−},

c(x, y) = a
a+b if x = y and c(x, y) = b

a+b otherwise.
Now, as gk is an eigenvector of M with eigenvalue µk, we have

(gk(1)c(σu,+) + gk(2)c(σu,−)) =
2

a+ b

µk
Φ(2)
〈gk, Zu0 〉 =

µk
ρ
〈gk, Zu0 〉.

Together with (6.107) this gives

EFt,Y 0
t
Luk,` = ρ`−t−2µt+1

k ρ2
u

Φ(2)

Φ(1)
〈gk, Zu0 〉. (6.109)

Summing over u ∈ Y o
t using the last equation yields

EFt
∑
u∈Y ot

Luk,` = EFt
∑
u∈Y ot

EFt,Y 0
t
Luk,`

= ρ`−t−2µt+1
k

Φ(2)

Φ(1)
EFt

∑
u∈Y ot

ρ2
u〈gk, Zu0 〉

= ρ`−t−2µt+1
k 〈gk, Zt〉

(
a+ b

2

)2

Φ(2) ·
{
ψoΦ

(2) if t = 0;
Φ(3) if t > 0.

(6.110)

We leave it to the reader to verify that the same inequality holds for l = t+ 1.
We continue by bounding the variance of Luk,`:

VarFtL
u
k,` ≤ EFt(Luk,`)2

= EFt
∑

(v,w)∈Y u1 ,v 6=w

∑
(v′,w′)∈Y u1 ,v′ 6=w′

Sw`−t−1S
w′

`−t−1〈gk,Ψv
t 〉〈gk,Ψv′

t 〉

≤ EFt |Y u
1 |2E∞S2

`−t−1E∞〈gk,Ψv
t 〉2,

(6.111)

where E∞[·] = maxτ ′∈{+,−} E[·|φo = φmax, σo = τ ′]. Now, EFt |Y u
1 |2 ≤ c0. From

Lemma 6.6.4, we know that Sk
d
≤ Exp

(
c1ρ

k
)
, hence E∞S2

`−t−1 ≤ 2c2
1

(
ρ`−t−1

)2
. To
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bound E∞〈gk,Ψv
t 〉2, recall from Theorem 6.6.3 that

E

(〈φk,Ψt〉
µt−1
k

− 〈gk,Ψ1〉

)2
∣∣∣∣∣∣Z1

 ≤ C2‖Z1‖1.

Consequently, as E [‖Z1‖1] is bounded,

E∞〈gk,Ψv
t 〉2 ≤ c3µ

2t
k .

Returning to (6.111), we have

VarFt
∑
u∈Y ot

Luk,` ≤ c4µ
2t
k ρ

2(`−t)St. (6.112)

We have

Q̄k,` =

`−1∑
t=0

EFt
∑
u∈Y ot

Luk,`

= ρ`µk〈gk, Z0〉ψo +

`−1∑
t=1

ρ`−tµt+1
k 〈gk, Zt〉

Φ(3)

Φ(2)

= ρ`µk〈gk, Z0〉ψo +
Φ(3)

Φ(2)

`−1∑
t=1

ρ`−tµ2t
k µk,ψoYk,ψo(t),

(6.113)

where Yk,ψo(t) is defined in Corollary 6.6.2.
We consider

Q̄k,`

µ2`
k

= o(1) +
Φ(3)

Φ(2)

`−1∑
t=1

(
µ2
k

ρ

)t−`
µk,ψoYk,ψo(t), (6.114)

and verify our claim (6.105). To do so, split for arbitrary fixed ε > 0,

`−1∑
t=1

rt−`Yk(t) =

Tε−1∑
t=1

rt−`Yk(t) +

`−1∑
t=Tε

rt−`Yk(t),

where r = µ2
k

ρ , Yk is shorthand notation for Yk,ψo , and where

Tε = min{t : ∀s ≥ t, |Yk(∞)− Yk(s)| ≤ ε}.

Then,
Tε−1∑
t=1

rt−`Yk(t) ≤ | sup
t
Yk(t)|r−`rTεTε

a.s.→ 0,

as `→∞, since (Yk(t))t is convergent (uniformly in ψo) and hence bounded. Further,

`−1∑
t=Tε

rt−`Yk(t) =

`−Tε∑
u=1

(Yk(∞) +O(ε))

a.s.→
∞∑
u=1

r−u(Yk(∞) +O(ε))

=
1

r − 1
(Yk(∞) +O(ε)),

(6.115)
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where the limit is taken for `→∞. Since ε > 0 was arbitrary, (6.105) follows.
L2-convergence follows from [17] (this convergence takes place uniformly for all

ψo due to Theorem 6.6.1).
Further, that ‖Q̄k,`−Qk,`‖ = o(µ2`

k ) can be established by following the proof in
[17]. Indeed, from the latter proof we know that, for some constant c6 independent
of ψo,

‖Qk,` − Q̄k,`‖2 ≤
`−1∑
t=0

∥∥∥∥∥∥∥
VarFt

∑
u∈Y ot

Luk,`

1/2
∥∥∥∥∥∥∥

2

≤ c5

∑̀
t=0

µtkρ
`−t‖

√
St‖2

≤ c6µ
`
kρ
`/2,

(6.116)

due to the variance bound in (6.112) and Lemma 6.6.4.
Finally, combining the uniform bounds (6.105) and (6.116), entails that∥∥∥∥Qk,`µ2`

k

− Φ(3)

Φ(2)

ρ

µ2
k − ρ

µk,ψoYk,ψo(∞)

∥∥∥∥
2

→ 0,

uniformly for all ψo.

Proof of Theorem 6.6.8. Using (6.111) and Theorem 6.6.6, we have

VarFtL
u
k,` ≤ c1ρ

2(`−t)t3ρt.

Plugging this bound, together with (6.110) here, into (66) in [17] establishes the
claim.

Proof of Theorem 6.6.9. Recall the explicit expressions for Q1,` and Q2,` from (6.30),
respectively (6.31). Now, conditional on T and the weights (denoted by Tφ), P2`+1
is deterministic, hence

E [Q1,`Q2,`|T , Tφ] = Q1,`

∑
(u0,...,u2`+1)∈P2`+1

φu2`+1
E [σ(u2`+1)|T ] = 0,

because, E [σ(u)|T , σo] =
(
a−b
a+b

)|u|
σo, for a vertex u at distance |u| from the root,

by construction of the branching process.

6.13 Proofs of Section 6.7

Proof of Proposition 6.7.1. The second statement follows from the first after recall-
ing that (G, e)` = (G′, e2)`, where G′ is the graph G with edge {e1, e2} removed.

Since e ∈ ~E, e2 then has a biased weight governed by ν∗.
In Section 5.7, we established a coupling between the branching process and the

DC-SBM where the spins are drawn uniformly from {+,−}, with error probability

n−
1

2
log(4/e).

Thus, we are done if we couple the neighbourhoods in the latter graph to the
DC-SBM with deterministic spins under consideration here.

Now, with probability at least 1− e−Ω(n−1/2) we can couple the graphs such that

at most c1n
3

4
∨(1−γ) have unequal spins (call the corresponding set of vertices S) and
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all weights are equal. Further, we may assume that the subgraphs obtained after
removing S are identical.

The `-neighbourhoods in both graphs are exactly the same if they are both dis-
joint with S. Conditional on |S| and |G`|, this happens with probability at least

1− c2
|G`||S|
n .

From Section 5.7, we know that with probability 1− n− log(4/e), |G`| < n
1

8
∧ γ

2 .
Thus, conditional on the bounds for |S| and |G`|, the neighbourhoods are the

same with probability at least 1− c3n
−( 1

8
∨ γ

2
).

All together, P ((G, v)` = (T, o)`) ≥ 1− c4n
−( 1

8
∧ γ

2 )∧( 1

2
log(4/e)).

Proof of Corollary 6.7.3. This proof follows the proof of Corollary 32 in [17]. Indeed
(although with a slightly different probability) the graph neighbourhood (Yt(e))0≤t≤`
and branching process (Zt)0≤t≤` coincide again, and moreover, the weights are equal
in both processes.

Proof of Lemma 6.7.4. As observed in [17], the second statement follows from the
first.

Adapting Section 5.7, at step m in the exploration process, the weights of the
vertices in U(m) are independent, and those with spin τ have weight governed by

ν
(m)
τ , where

dν(m)
τ (ψ) =

gτ (ψ)∫ φmax

φmin
gτ (ψ′)dν(ψ′)

dν(ψ),

where gτ (·) =
∏m
i=1

(
1− κ(xi,τ ·)

n

)
, with xu = σuφu the types of the already explored

vertices and κ(x, y) = |xy|(1{xy>0}a+ 1{xy<0}b).

We claim that variables following ν
(m)
τ are stochastically dominated by variables

governed by ν. Indeed, use that for any non-decreasing f, h : R → R and any
random variable X we have E [f(X)h(X)] ≥ E [f(X)]E [h(X)]. Then, for ψ ≥ 0,

ν(m)
τ ([0, ψ]) =

E [−gτ (φ) · −1φ≤ψ]

E [gτ (φ)]
≥

E [gτ (φ)]E [1φ≤ψ]

E [gτ (φ)]
= ν([0, ψ]),

with φ ∼ ν.
Secondly, we claim that the weight of a vertex when it is just discovered is

stochastically dominated by variables governed by ν∗. To prove this, let m ≥ 0 and
assume the claim to hold for all l ≤ m. Consider vertex v explored in step m + 1

(itself discovered in step, say, l ≤ m) with weight φ
∗(l)
v . Its children are selected from

the set U (m) in which they have independent weights (φ
(m)
u )u∈U(m) all stochastically

dominated by ν. We compare this to a setting S where a particle with weight φ∗ ∼ ν∗
has its children selected following the same rules from a reservoir of |U (m)| particles

with spins as in U (m) and i.i.d. weights (φu)u∈U(m) ∼ ν. Due to the assumed
stochastic domination, there exists a coupling of the exploration process and the

setting S, such that pointwise φ
∗(l)
v ≤ φ∗ and φ

(m)
u ≤ φu for all u. To decide whether

u ∈ U (m) is selected as a child, we can draw uniformly from [0, 1] a number Uu and

include u in the exploration process exactly when (1σu=σva+1σu=−σv b)φ
∗(l)
v φ(m)

u

n ≥ Uu

and in the setting S exactly when (1σu=σva+1σu=−σv b)φ
∗φu

n ≥ Uu. Since by assumption

φ∗φu ≥ φ
∗(l)
v φ

(m)
u , for each u, we conclude that the newly selected particles are also

stochastically dominated.
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Denote the vertices in St by 1, . . . , St and their weights by (φ̂∗v)v∈St . We shall use
the same strategy as in Lemma 6.6.4 to bound

St+1 =

St∑
v=1

D̂∗v ,

where D̂∗v is the offspring-size of v. In particular, to use large deviation theory as

in (6.80), we shall calculate for θ ≥ 0, E
[
eθ
∑St
v=1 D̂

∗
v

∣∣∣St] . Caution is needed here as

the variables (D̂∗v)v∈St are not independent. Let Fm be the sigma-algebra generated
by the exploration process upto step m (included). If vertex v is explored in step
m+ 1, then,

D̂∗v =
∑

u∈U(m)

Ber

(
(1σu=σva+ 1σu=−σvb)

φ̂∗vφ
(m)
u

n

)
,

where we recall that conditioned on Fm, φ
(m)
u is stochastically dominated by ν and

φ̂∗v by ν∗. Hence, using that 1 + y ≤ ey for all y ∈ R,

E
[
eθD̂

∗
v

∣∣∣Fm, φ̂∗v] ≤ E

[∏
u

(
1 +

φ̂∗vφ
(m)
u

n
(1σu=σva+ 1σu=−σvb)(e

θ − 1)

)∣∣∣∣∣Fm, φ̂∗v
]

≤

(
1 + a

φ̂∗vΦ
(1)

n
(eθ − 1)

)nσv (
1 + b

φ̂∗vΦ
(1)

n
(eθ − 1)

)n−σv
≤ ernφ̂∗vΦ(1)(eθ−1),

(6.117)

where rn = max{n+a+n−b
n , n−a+n+b

n }. Thus, if φ∗ has law ν∗,

E
[
eθD̂

∗
v

∣∣∣Fm] ≤ E
[
ernφ

∗Φ(1)(eθ−1)
]
, (6.118)

since for t ≥ 0, E
[
etX
]
≤ E

[
etY
]

if X
d
≤ Y. Iterating (6.118), we obtain

E
[
eθ
∑St
v=1 D̂

∗
v

∣∣∣St] ≤ (E [ernφ∗Φ(1)(eθ−1)
])St

= E
[
ern

∑St
v=1 φ

∗
vΦ(1)(eθ−1)

∣∣∣St] ,
where {φ∗v}v are i.i.d. with law ν∗. Thus, we have

E
[
eθ
∑St
v=1 D̂

∗
v

]
≤ E

[
eθPoi(

∑St
v=1 rnφ

∗
vΦ(1))

]
,

compare this to (6.28): the characteristic function of
∑St

v=1 D̂
∗
v is dominated by the

characteristic function of the Poisson-mixture in (6.28) if we replace a+b
2 with rn.

Hence we can repeat the proof of Lemma 6.6.4, with ρn := rnΦ(2) instead of ρ.

Proof of Lemma 6.7.5. Fix a vertex v. Let m ≥ 0 be the smallest integer such that
all vertices within distance R of v have been revealed at step m of the exploration
process. Now, the exploration process constructs a spanning tree Tm for GR(v).
However, edges between vertices in ∂Gr (r ≤ `) are not inspected, and neither is it
verified whether two vertices in ∂Gr share a common neighbour in ∂Gr+1 (r ≤ R−1).
The number of those uninspected edges is bounded by |Gr|2. Hence, among them at
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most Bin(|Gr|2, c1n ) are actually present in Gr. Thus, using twice Markov’s inequality
in conjunction with Lemma 6.7.4, for some c2 > 0,

P (Gr(v) is not a tree) ≤ E
[
|Gr|2

] c1

n
≤ c3ρ

2`

n
,

and,

P

(∑
v

1Gr(v) is not a tree ≥ ρ2` log(n)

)
≤ c4

log(n)
.

For the other claim, if the graph is tangled, then there is a vertex such that
among its uninspected edges in the exploration process at step m, at least two are
in fact present. Now,

P
(

Bin
(
|Gr|2,

c1

n

)
≥ 2
)
≤
(c1

n

)4
E
[
|Gr|4

]
≤ c5ρ

4`

n4
.

A union bound over all vertices then gives

P (G tangled) ≤ c6ρ
4`

n3
= o(1).

Proof of Proposition 6.7.6. (i) follows from Lemma 6.7.4 and Corollary 6.7.3.
To prove (ii), recall that Br

~e~g is the number of non-backtracking paths of length

r (i.e., containing r + 1 edges) between ~e and ~g. Further, if Gr(e2) is a tree, then
there is exactly one path between e and any edge g on the tree. Hence

〈Brχk, δe〉 = 〈gk,Ψr(e)〉.

An appeal to Corollary 6.7.3 then establishes (ii).
Further, (iii) follows from the fact that G is `-tangle-free with high probability,

so that there are at most two non-backtracking walks of length r between any edges

~e and ~f . Thus,

|〈Brχk, δe〉| ≤ 2‖gk‖∞φmaxSt(e) ≤ log2(n)ρr,

with probability at least 1− e−Ω(n), due to Lemma 6.7.4.

Proof of Corollary 6.7.7. We start with the case µ2
2 > ρ. Using that 〈B`χk, x〉 = 0

and Proposition 6.7.6 (iii), we write,

|〈Brχk, x〉| = |
∑
e∈ ~E`

xe〈Brχk, δe〉+
∑
e/∈ ~E`

xe〈Brχk, δe〉

− µr−`k

∑
e∈ ~E`

xe〈B`χk, δe〉+
∑
e/∈ ~E`

xe〈B`χk, δe〉

 |
≤ (log n)2ρr

√
| ~E`|+

∑
e/∈ ~E`

|xe|‖〈Brχk, δe〉 − µr−`k 〈B
`χk, δe〉‖

+ µr−`k log(n)2ρ`
√
| ~E`|.

(6.119)
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Now, |µk| > 1 and for e /∈ ~E`, bound (ii) in Proposition 6.7.6 applies, so that w.h.p.

|〈Brχk, x〉| ≤ 2ρ`(log n)2
√
| ~E`|+ ρr/2(log n)4

√
|E|

≤ ρ`(log n)3n
1

2
− γ

4
∧ 1

80 + ρr/2(log n)
9

2n
1

2

≤ ρr/2(log n)5n1/2,

(6.120)

since ρ` = nC � n
γ

4
∧ 1

80 .

In case µ2
2 ≤ ρ, redefine ~E` as the set of oriented edges such that (G, e2)` is not

a tree or |〈g1,Ψt(e)〉 − ρt−`〈g1,Ψ`(e)〉| > (log n)4ρt/2 or |〈g2,Ψt(e)〉| > (log n)4ρt/2.

Note that | ~E`| can now by bounded with the same arguments as in the proof of
Corollary 6.7.3.

Write 〈Brχk, x〉 =
∑

e∈ ~E` xe〈B
rχk, δe〉+

∑
e/∈ ~E` xe〈B

rχk, δe〉, To bound the sum

over E`, use Cauchy-Schwartz inequality and Proposition 6.7.6 (iii), which also holds

if µ2
2 ≤ ρ. For the second sum, use that, if e /∈ ~E`, then |〈Brχk, δe〉| ≤ (log n)4ρr/2,

as follows from Theorem 6.6.6 and the coupling result for local neighbourhoods.

6.14 Proofs of Section 6.8

Proof of Proposition 6.8.1. We start by using the law of total variance for Y =∑n
v=1 τ(G, v):

Var (Y ) = E [Var (Y |φ1, . . . , φn)] + Var (E [Y |φ1, . . . , φn]) ,

and shall apply Efron-Stein’s inequality on both terms.
Define the function h for (ψ1, . . . , ψn) ∈ [φmin, φmax]n as

h(ψ1, . . . , ψn) = E [Y |φ1 = ψ1, . . . , φn = ψn] . We need to bound
|h(ψ1, . . . ψk−1, ψk, ψk+1, . . . , ψn) − h(ψ1, . . . ψk−1, ψ

′
k, ψk+1, . . . , ψn)|2 for arbitrary

ψ′k ∈ [φmin, φmax]. Denote by Gψ1,...,ψk,...,ψn the random graph G, conditional on
φ1 = ψ1, . . . , φn = ψn. Assume without loss of generality that ψk ≥ ψ′k. Then, there
exists a coupling of Gψ1,...,ψk,...,ψn and Gψ1,...,ψ′k,...,ψn such that Gψ1,...,ψ′k,...,ψn is a sub-
graph of Gψ1,...,ψk,...,ψn obtained after removing some edges between k and its neigh-
bours in the latter graph. For this coupling, |τ(Gψ1,...,ψk,...,ψn , u)−τ(Gψ1,...,ψ′k,...,ψn , u)|
is nonzero only if u ∈ V (Gψ1,...,ψk,...,ψn , k)`, and it is bounded by
maxv ϕ(Gψ1,...,ψk,...,ψn , v) + maxv ϕ(Gψ1,...,ψ′k,...,ψn , v). Consequently,

|h(ψ1, . . . ψk−1, ψk, ψk+1, . . . , ψn)− h(ψ1, . . . ψk−1, ψ
′
k, ψk+1, . . . , ψn)|2

≤ E
[
|V (Gψ1,...,ψk,...,ψn , k)`|

(
max
v
ϕ(Gψ1,...,ψk,...,ψn , v) + max

v
ϕ(Gψ1,...,ψ′k,...,ψn , v

)]2

≤ E
[
|V (Gk,∞, k)|2|φ1 = ψ1, . . . , φk−1 = ψk−1, φk+1 = ψk+1, . . . , φn = ψn

]
· 3E

[
max
v
ϕ2(G, v)

∣∣∣φ1 = ψ1, . . . , φk = ψk, . . . , φn = ψn

]
+ E

[
|V (Gk,∞, k)|2|φ1 = ψ1, . . . , φk−1 = ψk−1, φk+1 = ψk+1, . . . , φn = ψn

]
· 3E

[
max
v
ϕ2(G, v)

∣∣∣φ1 = ψ1, . . . , φk = ψ′k, . . . , φn = ψn

]
(6.121)

where Gk,∞ is the random graph G conditioned on φk = φmax, and where we used
Hölder’s inequality and the fact that (x+ y)2 ≤ 3(x2 + y2) for any x, y ∈ R. Hence,
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using again Hölder’s inequality, Efron-Stein’s inequality becomes

Var (E [Y |φ1, . . . , φn]) ≤ 1

2

n∑
k=1

E
[
|h(φ1, . . . , φk, . . . , φn)− h(φ1, . . . φ

′
k, . . . , φn)|2

]
≤ 3

n∑
k=1

√
E
[
|V (Gk,∞, k)|4`

]√
E
[
max
v
ϕ4(G, v)

]
,

(6.122)
where (φ′k)k is an i.i.d. copy of (φk)k. Now, due to 6.7.4, E

[
|V (Gk,∞, k)|4`

]
≤ c1

2 ρ
4`.

Thus,

Var (E [Y |φ1, . . . , φn]) ≤ c2nρ
2`

√
E
[
max
v
ϕ4(G, v)

]
.

To bound Var (Y |φ1 = ψ1, . . . , φn = ψn) we use again Efron-Stein’s inequality.
Define for 1 ≤ k ≤ n, Xk = {1 ≤ v ≤ k : {v, k} ∈ E}, where E is the edge set of G.
Then, conditioned on the weights (φu = ψu), {Xk}k are independent. Let {X ′k}k
be an independent copy of {Xk}k and define Gk as the graph on vertex set V with
edge set ∪v 6=kXv ∪ X ′k. Thus, conditional on the weights, Gk equals G except for
the edges in {1 ≤ v ≤ k} which are redrawn independently.

Now, for some function Fψ1,...,ψu ,

n∑
v=1

τ(G, v) = Fψ1,...,ψn(X1, . . . , Xk, . . . , Xn),

and hence,
n∑
v=1

τ(Gk, v) = Fψ1,...,ψn(X1, . . . , X
′
k, . . . , Xn).

Proceeding as above, we obtain

Var (Y |φ1 = ψ1, . . . , φn = ψn)

≤ 1

2

n∑
k=1

E
[
|Fψ1,...,ψn(X1, . . . , Xk, . . . , Xn)− Fψ1,...,ψn(X1, . . . X

′
k, . . . , Xn)|2

]
≤ 1

2

n∑
k=1

√
E
[
|V (G, k)|4` ∩ |V (Gk, k)|4`

]√
E
[(

max
v
ϕ(G, v) + max

v
ϕ(Gk, v)

)4
]

≤ c3nρ
2`

√
E
[
max
v
ϕ4(G, v)

]
.

(6.123)

Proof of Proposition 6.8.2. We recall that the coupling between neighbourhoods and
branching processes is such that, in case of success, the weights are equal in both
processes. Therefore, as in the proof of Proposition 36 in [17], we obtain

E

[
1

n

n∑
v=1

τ(G, v)

]
= E [τ(T, o)] + ε(n),

where

ε(n) = O(n−γ) + c1n
−( γ2∧

1

40)

√
E
[
max
v∈[n]

ϕ2(G, v)

]
∨ E [ϕ2(T, o)].
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This error stems from the probability for the coupling to fail.
Hence,

E

[∣∣∣∣∣ 1n
n∑
v=1

τ(G, v)− E [τ(T, o)]

∣∣∣∣∣
]
≤

√√√√Var

(
1

n

n∑
v=1

τ(G, v)

)
+ ε(n).

An appeal to Proposition 6.8.1 then finishes the proof.

Proof of Proposition 6.8.3. We give the key steps used to prove Proposition 37 in
[17] together with the main differences in the current setting. For (i), consider the
branching process defined in Section 6.6, which we denote again by Zt(±). We
denote the associated random rooted tree by (T, o).

Put τ(G, v) =
∑

e∈ ~E,e1=v
〈gk,Ψ`(e)〉2

µ2`
k

. Then, 1
n

∑
v τ(G, v) = 1

n

∑
e∈ ~E

〈gk,Ψ`(e)〉2
µ2`
k

and

τ(G, v) ≤ ϕ(G, v) := φ2
max

S2
` (v)
ρ` . It follows from Lemma 6.7.4 that

E
[
maxv∈[n] ϕ

4(G, v)
]

= O
(
(log n)8ρ4`

)
.

We have τ(T, o) =
∑

v∈Zo1
〈gk,Ψv

` 〉2
µ2`
k

. Theorem 6.6.3 says that
(
〈gk,Ψt〉
µt−1
k

)
t≥1

con-

verges in L2 and so does it conditional on ||Zo1 || = 1. Hence, E [τ(T, o)] converges.
An appeal to Proposition 6.8.2 in conjunction with the triangle inequality then

establishes that 1
n

∑
v τ(G, v) converges to a constant, say c′k.

Statement (ii) follows similarly.
The statements (iii)−(v) follow after properly choosing local functionals. We fur-

ther use that E [φuφvg1(σu)g2(σv)|T ] = E
[
φuφv

1
2σv|T

]
= 0, for any two nodes u, v.

Further, on the branching process, E [〈gk,Ψ2`〉〈gj ,Ψ`〉|Ψ`] = 〈gj ,Ψ`〉〈gk,M `Ψ`〉 =

µ`k〈gk,Ψ`〉〈gj ,Ψ`〉.

Proof of Proposition 6.8.4. Starting with (i), we define the local function τ as

τ(G, v) =
∑

e∈ ~E,e1=v P
2
k,`(e)µ

−4`
k , for a rooted graph (G, v). Let

M(v) = max
0≤t≤`

max
u∈(G,v)t

max
s≤2`−t

(Ss(u)/ρs).

By monotonicity, the statement of Lemma 6.7.4 holds also for S̃`−t−1(h) and S̃t(g).
We use this fact to bound powers of M(v) in the following calculation:

τ(G, v) ≤ ρ−2`
∑

e∈ ~E,e1=v

`−1∑
t=0

∑
f∈Yt(e)

‖gk‖∞φmaxS̃t+1(f)S̃`−t(f)

2

≤ c1ρ
−2`

∑
e∈ ~E,e1=v

`−1∑
t=0

∑
f∈Yt(e)

M2(v)ρt+1ρ`−t

2

= c1

(
M2(v)ρ

)2 ∑
e∈ ~E,e1=v

(
`−1∑
t=0

St(e)

)2

= c2

(
M2(v)ρ

)2 ∑
e∈ ~E,e1=v

(
M(v)ρ`

)2

≤ c2M
7(v)ρ2`.
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We put ϕ(G, v) = c2M
7(v)ρ2`. Then, E

[
maxv ϕ(G, v)4

]
= O((log n)28ρ8`), and the

same bound holds for ϕ(T, o). From Proposition 6.8.2, we then know that

E

∣∣∣∣∣∣ 1n
∑
e∈ ~E

P 2
k,`(e)

µ4`
k

− E [τ(T, o)]

∣∣∣∣∣∣
 ≤ c3n

−( γ
2
∧ 1

40
)(log n)7ρ2`, (6.124)

where

τ(T, o) =
1

µ4`
k

∑
v∈Y o1

P 2
k,`(o→ v)

=
1

µ4`
k

∑
v∈Y o1

(
Qvk,`

)2
,

(6.125)

where Qvk,` is equal to Qk,` defined on the subtree of all vertices with common
ancestor v.

We need to show that the expectation of τ(T, o) converges for `→∞. Conditional
on σo, and |Y o

1 |, {Qvk,`}v∈Y o1 are independent copies of Qk,` defined on the branching
process in Section 6.6 where the root has spin σo with probability a

a+b and random

weight governed by the biased law ν∗. The uniform L2 convergence in Theorem
6.6.7 establishes the claim.

We now prove (ii). Put τ(G, v) =
∑

e∈ ~E,e1=v(P1,`(e) + S1,`(e))(P2,`(e) + S2,`(e)).

We claim that E [τ(T, o)] = 0. Consider τ(T, o) =
∑

v∈Zo1 (P1,`(o → v) + S1,`(o →
v))(P2,`(o → v) + S2,`(o → v)). Firstly, for k ∈ {1, 2}, Pk,`(o → v) = Qvk,`. Now, it

follows from Theorem 6.6.9, that E
[
Qv1,`Q

v
2,`

]
= 0, since σv is drawn uniformly from

{+,−}.
Secondly, S1,`(o→ v)S2,`(o→ v) = 1

2φ
2
oσoS

2
` (o→ v) has also zero expectation.

Thirdly,

Qv1,`S2,`(o→ v) =
1

2

∑
(u0,...,u2`+1)∈Pv2`+1

φu2`+1
φoσoS`(o→ v), (6.126)

where Pv2`+1 is P2`+1 (from (6.29)) defined on the subtree of all vertices with common
ancestor v. The expectation of Qv1,`S2,`(o→ v) is thus zero since σo is independent

of all other terms in (6.126).
Lastly, Qv2,` =

∑
(u1,...,u2`+1)∈Pv2`+1

σu2`+1
, is seen to have zero expectation.

Those four statements combined establish E [τ(T, o)] = 0. As above, we calculate
E
[
maxv ϕ(G, v)4

]
= O((log n)28ρ16`).

Proof of Proposition 6.8.5. Put τ as in Proposition 6.8.3 (i), then

τ(T, o) =
∑

v∈Zo1
〈g2,Ψv

` 〉2
ρ` . Now,

E
[
〈g2,Ψ

v
` 〉2
]

= E
[
〈g2,

Φ(2)

Φ(1)
Zv` 〉2

]
+E

[
〈g2,Ψ

v
` −

Φ(2)

Φ(1)
Zv` 〉2

]
≥
(

Φ(2)

Φ(1)

)2

E
[
〈g2, Z

v
` 〉2
]
.

Now, Theorem 2.4 in [70] says that for some random variable X with strictly positive

variance, weakly, 〈g2,Z
v
` 〉

ρ`/2 → X, as `→∞. Because of the weak convergence, we have

for any θ > 0, E
[(
〈g2,Zv` 〉
ρ`/2

)2
∧ θ
]
→ E

[
X2 ∧ θ

]
, as ` → ∞. Now by Lebesque’s

dominated convergence theorem, E
[
X2 ∧ θ

]
→ E

[
X2
]
> 0, as θ →∞.
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Proof of Proposition 6.8.6. Use τ from Proposition 6.8.4 (i), together with the bound

E
[
Q2

2,`

]
≤ Cρ2``5 from Theorem 6.6.8.

6.15 Proofs of Section 6.10

6.15.1 Bound on ‖∆(k)‖
We set

m =

⌊
log n

13 log(log n)

⌋
.

We bound the norm of ‖∆(k)‖ by using the trace method. Following (36) in [17]
(which remains true for the DC-SBM), we obtain

‖∆(k−1)‖2m ≤
∑

γ∈Wk,m

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s , (6.127)

where Wk,m is the collection containing all sequences of paths γ = (γ1, . . . , γ2m) such
that for all i:

• γi = (γi,0, · · · , γi,k) ∈ V k+1 is a non-backtracking tangle-free path of length k,
and,

• (γi,k−1, γi,k) = (γi+1,1, γi+1,0),

where we put γ0 = γ2m.
Recall the notation G(γ) = (V (γ), E(γ)). Further introduce the notation Eφ (·) =

E [·|φ1, . . . , φn]. We bound, for a given γ ∈Wk,m,

Eφ

(
2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

)
=

∏
e∈E(γ)

Eφ
(
A
p(γ)e1e2
e1e2

)
, (6.128)

where for e ∈ E(γ), p
(γ)
e1e2 denotes the number of times the edge e is traversed on

the walk γ. In (6.128) we used that A is symmetric and that, conditional on the
weights, edges are independently present. Note that for any edge uw, and integer p,

EφApuw ≤ φuφw
Wσ(u)σ(w)

n
.

Below in Lemma 6.15.2, we construct a spanning tree T (γ) = (V (γ), ET (γ)) of γ.

In particular, for the e− (v−1) edges not present in T , we have φuφw
Wσ(u)σ(w)

n ≤ c1
n ,

with c1 = φ2
max(a ∨ b). Putting this into (6.128), we get∏

e∈E(γ)

Eφ
(
A
p(γ)e1e2
e1e2

)
≤ (c1/n)e−v+1

∏
e∈ET (γ)

φe1φe2
Wσ(e1)σ(e2)

n

= (c1/n)e−v+1
∏

u∈V (γ)

φduu
∏

e∈ET (γ)

Wσ(e1)σ(e2)

n
,

(6.129)

where du is the degree of u in the spanning tree. Consequently,

E

 ∏
e∈E(γ)

A
p(γ)e1e2
e1e2

 ≤ (c/n)e−v+1
∏

u∈V (γ)

Φ(du)
∏

e∈ET (γ)

Wσ(e1)σ(e2)

n
. (6.130)
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Let τ : [v(γ)] 7→ V (γ) be the bijection describing the order the vertices are visited
for the first time. I.e., for 1 ≤ u ≤ v(γ) − 1, τ(u) is seen for the first time, before
τ(u+ 1).

We shall say that a path γc is canonical if V (γc) = [v(γc)] and the vertices are
first visited in the order 1, . . . , v(γc). With every path γ there corresponds (through
the bijection τ) a canonical path γc. Consequently, if W̧k,m(v, e) denotes the set of
canonical paths in Wk,m with v vertices and e edges, and Iγc the set of all injections
from [v(γc)] to [n],

E

 ∑
γ∈Wk,m

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

 ≤ km+1∑
v=3

km∑
e=v−1

∑
γc∈Wk,m(v,e)

∑
τ∈Iγc

E

 ∏
e∈E(γc)

A
p(γc)e1e2

τ(e1)τ(e2)

 ,
(6.131)

because any non-backtracking path has at least 3 vertices, and v − 1 ≤ e ≤ km,
since (6.128) is non-zero only if each edge is traversed at least twice.

We now bound the term
∑

τ∈Iγc E
[∏

e∈E(γc)
A
p(γc)e1e2

τ(e1)τ(e2)

]
in (6.131). Using (6.130),

we have,

∑
τ∈Iγc

E

 ∏
e∈E(γc)

A
p(γc)e1e2

τ(e1)τ(e2)

 ≤ (c1/n)e−v+1

v(γc)∏
u=1

Φ(du)
∑
τ∈Iγc

∏
e∈ET (γc)

Wσ(τ(e1))σ(τ(e2))

n
.

(6.132)

Our objective is to compare
∏v(γc)
u=1 Φ(du)

∑
τ∈Iγc

∏
e∈ET (γc)

Wσ(τ(e1))σ(τ(e2))

n with nρ(v−1).

We start by analysing the term containing the spins:

Lemma 6.15.1. For any canonical path γc ∈ Wk,m,∑
τ∈Iγc

∏
e∈ET (γc)

Wσ(τ(e1))σ(τ(e2))

n
≤ (1 + o(1))n

(
a+ b

2

)v−1

. (6.133)

Proof. Let l be any leaf on the tree with unique neighbour g. Then, writing τu = τ(u)
for u ∈ {1, . . . , v},∑

τ∈Iγc

∏
e∈ET (γc)

Wσ(τ(e1))σ(τ(e2))

n
≤

n∑
τ1=1

· · ·
n∑

τv=1

∏
e∈ET (γc)

Wσ(τe1 )σ(τe2 )

n
.

Keeping τg fixed,

n∑
τl=1

∏
e∈ET (γc)

Wσ(τe1 )σ(τe2 )

n
=

∏
e∈ET (γc)\{g,l}

Wσ(τe1 )σ(τe2 )

n

n∑
τl=1

Wσ(τg)σ(τl)

n

=
∏

e∈ET (γc)\{g,l}

Wσ(τe1 )σ(τe2 )

n

(
a+ b

2
+O(n−γ)

)
,

due to assumption (6.6).
Repeating inductively this procedure (by removing leaves from the tree) proves the
assertion.

It remains to bound
∏v(γc)
u=1 Φ(du). To do so, we note that, since the weights are

assumed to be bounded,

Φ(du) ≤ Cdu−2
2 Φ(2)

(
Φ(1)

)du−2
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if du ≥ 2, with C2 = φmax

Φ(1) > 1. Consequently,

v(γc)∏
u=1

Φ(du) ≤ C
∑
u:du>2(du−2)

2

∏
u:du>2

Φ(2)
(

Φ(1)
)du−2 ∏

u:du≤2

Φ(du)

≤ C
∑
u:du>2(du−2)

2

(
Φ(2)

) 1

2

∑v
u=1 du

= C
∑
u:du>2(du−2)

2

(
Φ(2)

)v−1
,

(6.134)

where we used that by Jensen’s inequality
(
Φ(1)

)2 ≤ Φ(2).
Now, the sum

∑
u:du>2(du − 2) is small for a tree spanning a path in Wk,m:

Lemma 6.15.2. For any γ ∈Wk,m, with v vertices and e edges, there exists a tree
spanning γ with degrees (du)vu=1 such that:∑

u:du>2

(du − 2) ≤ e− (v − 1) + 2m. (6.135)

Proof. We construct a spanning tree, while traversing γ. We denote by p(t) the
graph constructed at step t ≥ 0. Put p(0) = {γ1,0, ∅} and r = s = 0 (the meaning of
these two counters becomes clear in the algorithm below). Consider edge f traversed
in step t + 1 of the walk: If f or f̌ has already been traversed, then continue with
step t + 2. Otherwise, if both f and f̌ have not yet been traversed, distinguish
between the following cases:

1. f1 is a leaf of p(t) and

a) p(t) contains a cycle, then if f2 /∈ p(t), put p(t + 1) = p(t) ∪ f , otherwise, if
f2 ∈ p(t), put p(t+ 1) = p(t);

b) p(t) does not contain a cycle, then put p(t + 1) = p(t) ∪ f . If f2 ∈ p(t), then
put ec = f ;

2. f1 is not a leaf of p(t) and

a) p(t) contains a cycle, then put p(t + 1) = (p(t) \ ec) ∪ f . If f2 ∈ p(t), put
ec = f . Increase the value of r with one.

b) p(t) does not contain a cycle, then put p(t + 1) = p(t) ∪ f . If f2 ∈ p(t), put
ec = f . Otherwise, if f2 /∈ p(t), increase the value of s with one.

Once the path is completely traversed, remove ec to obtain a spanning tree.
Note that at each stage of the construction, the graph contains at most one cycle

and in this case, removing ec will make the graph into a tree.
Further, cases 1.a and 1.b do not contribute to

∑
u:du>2(du − 2), since the leave

in p(t) becomes a vertex with degree at most 2 in p(t + 1). A cycle formed in step
t + 1 will temporarily increase the degree of the vertex that is merged by the leaf,
however this edge ec will later be removed.

In case 2.a, the degree of vertex f1 increases with one, however, at the same time
an edge is removed. The number of times 2.a happens, r, is thus bounded by the
number of times an edge is removed: r ≤ e− (v − 1).

In case 2.b, we need only to consider the case where no cycle is formed. But, before
arriving at such a vertex considered in 2.b, the path must have made a backtrack.
Hence s ≤ 2m.

(In fact, between two subsequent occurrences of event 2, the walk should at least
either make a backtrack or ’get back to the tree’ by forming a cycle: giving the same
bound for s+ r).

117



All together, ∑
u:du>2

(du − 2) ≤ r + s ≤ e− (v − 1) + 2m.

Finally, we recall the bound on the cardinality of Wk,m from [17]:

Lemma 6.15.3 (Lemma 17 in [17]). Let Wk,m(v, e) be the set of canonical paths
with v(γ) = v and e(γ) = e. We have

|Wk,m(v, e)| ≤ k2m(2km)6m(e−v+1). (6.136)

Hence, combining (6.127), (6.131) - (6.136),

E
[
‖∆(k−1)‖2m

]
≤

km+1∑
v=3

km∑
e=v−1

|Wk,m(v, e)|
( c
n

)e−(v−1)
nCe−(v−1)+2mρv−1

≤ ncm5 ρkm
km+1∑
v=3

km∑
e=v−1

`2m
(
c7(2`m)6m

n

)e−(v−1)

≤ ncm5 ρkm`2m`m
∞∑
s=0

(
c7(2`m)6m

n

)s
≤ n(c8 log n)m log2 nρkm

≤ (c9 log n)16mρkm,

(6.137)

where we used the bound on m, in particular to derive convergence of the series,
and the fact that n1/m = o(log n)14.

We finish by using Markov’s inequality.

6.15.2 Bound on ‖∆(k)χi‖
We point out the differences with bound (31) in [17]: Here, we have

E
[
‖∆(k−1)χi‖2

]
= E

∑
e,f,g

∆
(k−1)
ef ∆(k−1)

eg ξi(f)ξi(g)


≤ φ2

maxE

∑
e,f,g

∆
(k−1)
ef ∆(k−1)

eg


≤ φ2

max

∑
γ∈W ′′k,1

E

[
2∏
i=1

k∏
s=1

Aγi,s−1,γi,s

]
,

(6.138)

whereW ′′k,1 is defined in [17]. In the latter paper it is also shown that the same bound,

Lemma 6.15.3 holds for the cardinality of W ′′k,1). Hence, using the penultimate line

of (6.137) with m = 1, gives

E
[
‖∆(k−1)χi‖2

]
≤ c1n log3(n)ρk.
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6.15.3 Bound on ‖R(`)
k ‖

Put

m =

⌊
log n

25 log(log n)

⌋
.

We apply the same strategy as above: for 0 ≤ k ≤ `− 1, we have the bound

‖R(`−1)
k ‖2m ≤ tr

{(
R

(`−1)
k R

(`−1)
k

∗)m}
=

∑
γ∈T ′`,m,k

2m∏
i=1

k∏
s=1

Aγi,s−1γi,sφγi,kφγi,k+1
Wσ(γi,k)σ(γi,k+1)

∏̀
s=k+2

Aγi,s−1γi,s

≤ cm1
∑

γ∈T ′`,m,k

2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

∏̀
s=k+2

Aγi,s−1γi,s ,

(6.139)
where c1 = φ4

max(a ∨ b)2, and where T ′`,m,k is the collection containing all sequences

of paths γ = (γ1, . . . , γ2m) such that

• for all i: γi = (γ1
i , γ

2
i ), where γ1

i = (γi,0, · · · , γi,k) and γ2
i = (γi,k+1, · · · , γi,`)

are non-backtracking tangle-free;

• for all odd i: (γi,0, γi,1) = (γi−1,0, γi−1,1) and (γi,`−1, γi,`) = (γi+1,`−1, γi+1,`),

with the convention that γ0 = γ2m.

To calculate the expectation of ‖R(`−1)
k ‖2m, we note that

E

[
2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

∏̀
s=k+2

Aγi,s−1γi,s

]
is non-zero only if (for i fixed) each edge {γi,s−1, γi,s} for 1 ≤ s ≤ k appears more

than once in the 2(`− 1)m pairs {{γj,s−1, γj,s}}j=2m
j=1,s 6=k+1. Hence,

E
[
‖R(`−1)

k ‖2m
]
≤ cm1

∑
γ∈T`,m,k

E

[
2m∏
i=1

k∏
s=1

Aγi,s−1γi,s

∏̀
s=k+2

Aγi,s−1γi,s

]
, (6.140)

where

T`,m,k = {γ ∈ T ′`,m,k | v(γ) ≤ e(γ) ≤ km+ 2m(`− 1− k)}. (6.141)

Similarly as in establishing the bound on ‖∆(k)‖, we say that a path γc is canonical
if V (γc) = [v(γc)] and the vertices are first visited in order. We denote by T`,m,k(v, e)
the set of canonical paths in T`,m,k with v vertices and e edges. Then:

E
[
‖R(`−1)

k ‖2m
]

≤ cm1
m(2`−2−k)∑

v=1

m(2`−2−k)∑
e=v

∑
γc∈T`,m,k(v,e)

∑
τ∈Iγc

E

 ∏
e∈E(γc)

A
p(γc)
e1e2

τ(e1)τ(e2)A
p(γc)e1e2

τ(e1)τ(e2)

 ,
(6.142)

where Iγc is defined as above, p(γc)
e1e2

is the number of times edge {e1, e2} occurs in

{{γj,s−1, γj,s}}s=k,j=2m
s=1,j=1 and p

(γc)
e1e2 denotes the number of times edge {e1, e2} occurs

in the remainder of the collection of edges, {{γj,s−1, γj,s}}s=`,j=2m
s=k+2,j=1.
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Now, again,

E
[
A
p(γc)
e1e2

τ(e1)τ(e2)A
p(γc)e1e2

τ(e1)τ(e2)

]
≤ φτ(e1)φτ(e2)

Wσ(τ(e1))σ(τ(e2))

n
.

Below we construct a spanning forest F = (V (γ), EF (γ)) of γ (i.e., F is the
disjoint union of trees, each spanning another component of G(γ)).

Let nC ≤ m denote the number of components of G(γ). Then,

E

 ∏
e∈E(γ)

A
p(γ)
e1e2
e1e2 A

p(γ)e1e2
e1e2

 ≤ (c/n)e−(v−nC)
∏

u∈V (γ)

Φ(du)
∏

e∈EF (γ)

Wσ(e1)σ(e2)

n
, (6.143)

with du the degree of vertex u in the forest F , compare to (6.130).
Now, this time,

Lemma 6.15.4. For any canonical path γc ∈ T`,m,k(v, e),∑
τ∈Iγc

∏
e∈EF (γc)

Wσ(τ(e1))σ(τ(e2))

n
≤ (1 + o(1))nnC

(
a+ b

2

)v−nC
. (6.144)

Proof. Apply Lemma 6.15.1 subsequently to the different components of F .

Further, applying (6.134) to different components in F gives

v(γ)∏
u=1

Φ(du) ≤ C
∑
u:du>2(du−2)

2

(
Φ(2)

)v−nC
. (6.145)

Together,

∑
τ∈Iγc

E

 ∏
e∈E(γc)

A
p(γc)
e1e2

τ(e1)τ(e2)A
p(γc)e1e2

τ(e1)τ(e2)

 ≤ (c/n)e−vC
∑
u:du>2(du−2)

2 ρv−nC . (6.146)

Again, we bound
∑

u:du>2(du − 2):

Lemma 6.15.5. For any γ ∈ T`,m,k, with v vertices and e edges, there exists a forest
spanning γ with degrees (du)vu=1 such that:∑

u:du>2

(du − 2) ≤ 18m+ e− (v − nC). (6.147)

Proof. As in Lemma 6.15.2, we construct the spanning forest, while traversing γ.
Again p(t) denotes the graph constructed at step t ≥ 0, with p(0) = {γ1,0, ∅}.
Further, we introduce three counters: r = s = q = 0, together with ec = ∅ (below,
ec is either equal to ∅ or it is an edge such that p(t) contains one cycle, but p(t) \ eC
is a forest). At any step t, we let C1, . . . , C#components be the components of p(t).

Consider step t + 1 of the walk: if the step consists in jumping to a vertex w,
then put p(t+ 1) = (p(t) \ eC) ∪ {w}.

Else, if the step consists in traversing an edge f = f1f2, then: If f or f̌ has
already been traversed, continue with step t + 2. Otherwise, if both f and f̌ have
not yet been traversed, distinguish between the following cases:

1. f1 is a leave or an isolated vertex of component Ci of p(t) and

a. Ci does not contain a cycle, then put p(t+ 1) = p(t) ∪ f . Further, distinguish
between the following cases:

i) f2 /∈ p(t);

120



ii) f2 ∈ Ci, then put ec = f ;
iii) f2 ∈ Cj 6=i, then increase the value of s with one.

b. Ci contains a cycle, then distinguish between the following cases:

i) f2 /∈ p(t), then put p(t+ 1) = p(t) ∪ f ;
ii) f2 ∈ Ci, then put p(t+ 1) = p(t);

iii) f2 ∈ Cj 6=i, then put p(t + 1) = p(t) ∪ f and increase the value of s with
one.

2. f1 in component Ci has degree at least 2 in p(t), then distinguish between the
following cases:

a. Ci does not contain a cycle, then put p(t+ 1) = p(t) ∪ f . Further, distinguish
between the following cases:

i) f2 /∈ p(t), then increase the value of q with one;
ii) f2 ∈ Ci, then put ec = f ;

iii) f2 ∈ Cj 6=i, then increase the value of s with two.

b. Ci contains a cycle, then put p(t + 1) = (p(t) \ ec) ∪ f . Further, distinguish
between the following cases:

i) f2 /∈ p(t), then increase the value of r with one;
ii) f2 ∈ Ci, then put ec = f ;

iii) f2 ∈ Cj 6=i, then increase the value of s with two.

Once the path is completely traversed, remove ec to obtain a spanning tree.
The only cases that contribute to

∑
u:du>2(du−2) are 1.a.iii, 1.b.iii, 2.a.i, 2.a.iii, 2.b.i

and 2.b.iii.
Now, s counts the contribution of 1.a.iii, 1.b.iii, 2.a.iii and 2.b.iii. But, in all

those 4 cases, two components are merged, hence s ≤ 6 #merges ≤ 12m.
By definition of the event 2.b.i, r is an upper bound for the number of edges that

are removed: r ≤ e− (v − nC).
To bound q (which counts the occurrence of 2.a.i), note that between two subse-

quent occurrences of the event 2.a.i, the walk makes at least one of the following: a
backtrack, a jump or a merge. Hence q ≤ 2m+ 2m+ 2m = 6m.

Adding the bounds for r, q and s establishes (6.147).

Returning to (6.146), we get, since nC ≤ 2m:

∑
τ∈Iγc

E

 ∏
e∈E(γc)

A
p(γc)
e1e2

τ(e1)τ(e2)A
p(γc)e1e2

τ(e1)τ(e2)

 ≤ (c1/n)e−vC18m+e−v+nC
2 ρv−nC

≤
(c3

n

)e−v
cm4 ρ

v−nC .

(6.148)

Putting this into (6.142), we obtain

E
[
‖R(`−1)

k ‖2m
]
≤ cm5

m(2`−2−k)∑
v=1

m(2`−2−k)∑
e=v

∑
γc∈T`,m,k(v,e)

(c3

n

)e−v
ρm(2`−k). (6.149)

Now the cardinality of T`,m,k(v, e) is bounded in the following lemma:

Lemma 6.15.6 (Lemma 18 in [17]). Let T`,m,k(v, e) be the set of canonical paths in
T`,m,k with v(γ) = v and e(γ) = e. We have

|T`,m,k(v, e)| ≤ (4`m)12m(e−v+1)+8m.
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Hence,

E
[
‖R(`−1)

k ‖2m
]
≤ cm5 ρm(2`−k)

m(2`−2−k)∑
v=1

m(2`−2−k)∑
e=v

(4`m)12m(e−v+1)+8m
(c3

n

)e−v
≤ ρm(2`−k)cm5 (4`m)20m

m(2`−2−k)∑
v=1

∞∑
s=0

(
c3(4`m)12m

n

)s
≤ ρm(2`−k)cm5 (4`m)20m2`m · O(1)

≤ ρm(2`−k)(c5log(n))42m.
(6.150)

We used that, due to our choice of m, (4`m)12m ≤ n24/25.
We use (6.150) together with Markov’s inequality:

P
(
‖R(`)

k ‖ > (log(n))25ρ`−k/2
)
≤

E
[
‖R(`)

k ‖
2m
]

(log(n))50mρm(2`−k)

≤ (c6log(n))−8m → 0.

(6.151)

6.15.4 Bound ‖KB(k)‖
Put

m =

⌊
log n

13 log(log n)

⌋
. (6.152)

We have, with the convention that e2m+1 = e1,

‖KB(k−2)‖2m ≤ Tr{
(
KB(k−2)KB(k−2)∗

)m
}

=
∑

e1,...,e2m

m∏
i=1

(KB(k−2))e2i−1,e2i(KB
(k−2))e2i+1,e2i .

(6.153)

Now, (
KB(k−2)

)
ef

=
∑
g

KegB
(k−2)
gf

=
∑
g

1e→gφe1φe2Wσ(e1)σ(e2)

∑
γ∈F k−1

gf

k−2∏
s=0

Aγsγs+1

≤ c1

∑
g

1e→g
∑

γ∈F k−1
gf

k−2∏
s=0

Aγsγs+1
.

(6.154)

Hence,

‖KB(k−2)‖2m

≤ cm2
∑

e1,...,e2m

m∏
i=1

∑
g

1e2i−1→g
∑

γ∈F k−1
ge2i

k−2∏
s=0

Aγsγs+1

∑
g

1e2i+1→g
∑

γ∈F k−1
ge2i

k−2∏
s=0

Aγsγs+1


= cm2

∑
γ∈W k,m

m∏
i=1

k∏
s=2

Aγ2i−1,s−1γ2i−1,s

k−1∏
s=1

Aγ2i,s−1γ2i,s,

(6.155)
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where W k,m is the collection containing all sequences of paths γ = (γ1, . . . , γ2m)

with γi = (γi,0, · · · , γi,k) ∈ V k+1 is non-backtracking such that

• for all i: (γi,k−1, γi,k) = (γi+1,1, γi+1,0),

• for all odd i: (γi,1, · · · , γi,k) is tangle-free,

• for all even i: (γi,0, · · · , γi,k−1) is tangle-free,

with the convention that γ2m+1 = γ1.
Recall the definition of Wk,m and note that Wk,m ⊂W k,m. Fix γ ∈W k,m \Wk,m

and let Sγ be the set of all γ̂ ∈W k,m\Wk,m such that for all odd i : (γ̂i,1, · · · , γ̂i,k) =
(γi,1, · · · , γi,k) and for all even i : (γ̂i,0, · · · , γ̂i,k−1) = (γi,0, · · · , γi,k−1). Then |Sγ | ≤
km. Indeed, if for odd i, γ̂i is not tangle-free then necessarily γ̂i,0 ∈ {γ̂i,1, . . . , γ̂i,k},
i.e., γ̂i,0 can be chosen in at most k different ways. A similar argument works in case
i is even.

Now, there always exists γ ∈ Wk,m such that for all odd i : (γi,1, · · · , γi,k) =
(γi,1, · · · , γi,k) and for all even i : (γi,0, · · · , γi,k−1) = (γi,0, · · · , γi,k−1).

As a consequence of these two observations, we have

‖KB(k−2)‖2m ≤ cm2 (1 + km)
∑

γ∈Wk,m

m∏
i=1

k∏
s=2

Aγ2i−1,s−1γ2i−1,s

k−1∏
s=1

Aγ2i,s−1γ2i,s. (6.156)

To proceed following the method used to bound ∆(k), note that the product in
(6.156) is taken over a path, consisting of 2m non-backtracking tangle-free subpaths
of length k−1, that makes at most 2m backtracks. Hence Lemma’s 6.15.1 and 6.15.2
may be adapted to the current setting (for instance the right hand side of (6.135)
becomes e− (v −m− 1) + 2m), entailing

E
[
‖KB(k−2)‖2m

]
≤ cm2 (1 + km)

2km+1∑
v=3

2km∑
e=v−1

|Wk,m|
(c3

n

)e−(v−1)−m
c
e−(v−m−1)+2m
4 nρv−1

≤ cm5 (1 + km)nm+1
2km+1∑
v=3

2km∑
e=v−1

|Wk,m|
(c6

n

)e−(v−1)
ρv−1

≤ cm7 (1 + km)nm+1ρ2km`2m`m

∞∑
s=0

(
c6(2`m)6m

n

)s
≤ cm8 (`m)2`3mnm+1ρ2km

≤ (c9 log n)19mnmρ2km,

(6.157)

where we used our choice for m several times. An appeal to Markov’s inequality
finishes the proof.

6.15.5 Bound on ‖S(l)
k ‖

This proof follows almost line-to-line the proof used in [17] to establish bound (34)
there. We restrict ourselves here to the differences:

Observe that Lef = 0 unless e
2→ f does not hold, that is e = f , e → f ,

f−1 → e or e→ f−1, in which cases Lef = −φe2φf1Wσ(e2)σ(f1). Hence, we have the
decomposition

L = −I∗ −K∗,
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where (I∗)ef = 1e=fφe1φe2Wσ(e1)σ(e2), and where (K∗)ef = φe2φf1Wσ(e2)σ(f1) if e →
f , f−1 → e or e→ f−1 and (K∗)ef = 0 otherwise.

Thus

‖S(`)
k ‖ ≤ φ

2
max(a ∨ b)

(
‖∆(k−1)‖‖B(`−k−1)‖+ ‖∆(`−1)K ′‖‖B(`−k−1)‖

)
,

where K ′ is defined in [17]. The rest of the proof follows after applying the arguments

used in [17] and following the procedure set out above to obtain the bound on KB(k).

6.16 Proofs of Section 6.11

Proof of Lemma 6.11.1. Since σ̂(v) = + if and only if F (v) = 1, it follows that

1

n

n∑
v=1

1σ(v)=+1σ̂(v)=σ(v) =
1

n

n∑
v=1

1σ(v)=+F (v)→ f(+)

2
,

and
1

n

n∑
v=1

1σ(v)=−1σ̂(v)=σ(v) =
1

n

n∑
v=1

1σ(v)=−(1− F (v))→ 1− f(−)

2
.

Consequently,

1

n

n∑
v=1

1σ̂(v)=σ(v) →
1 + f(+)− f(−)

2
>

1

2
,

because f(+) > f(−) by assumption.

Proof of Lemma 6.11.2. We use Proposition 6.8.2 with

τ(G, v) = 1σ(v)=i1I`(v)µ−2`
2 −ĉg2(i)≥t.

Denote by (T, o) the branching process defined in Section 6.6 where the root has
spin σo uniformly drawn from {+,−}. Denote the number of offspring of the root
by D and let Q`(v) be equal to Q2,` defined on the tree T v obtained after removing
the subtree attached to v from T . Then,

τ(T, o) = 1σo=i1J`µ−2`
2 −ĉg2(i)≥t,

where

J` =

D∑
v=1

Q`(v) = (D − 1)Q2,` − Lo2,`, (6.158)

with Lo2,` defined in (6.34).

We need to calculate lim`→∞ E [τ(T, o)]. To this end, we first show that, con-
ditional on σo = i, J`

µ2`
2
− ĉg2(i) converges in probability to some centered random

variable Ŷi.
We first calculate Ei [J`|φo], where Ei [·] = E [·|σo = i]. Put ro = a+b

2 Φ(1)φo, then

Ei [J`|φo] =

∞∑
n=0

Ei [J`|D = n, φo]P (D = n|φo)

=

∞∑
n=0

nEi [Q2,`|D = n− 1, φo]
rno e
−ro

n!

= ro

∞∑
n=1

Ei [Q2,`|D = n− 1, φo]
rn−1
o e−ro

(n− 1)!

= roEi [Q2,`|φo] .

(6.159)
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Recall from Theorem 6.6.7 that, uniformly for all ψo,

Ei
[
Q2,`

µ2`
2

∣∣∣∣φo = ψo

]
→ Φ(3)

Φ(2)

ρ

µ2
2 − ρ

µ2,ψog2(i)

as n→∞. Hence, supn,ψo Ei
[
Q2,`

µ2`
2

∣∣∣φo = ψo

]
<∞, so that we can apply Lebesque’s

dominated convergence theorem:

Ei [J2,`]

µ2`
2

= Ei
[
roEi

[
Q2,`

µ2`
2

∣∣∣∣φo]]→ ĉg2(i), (6.160)

as n→∞.
We now combine the right hand side of (6.158), (6.160), and Theorem 6.6.7 (and

in particular (6.111) which implies that Lo2,`/µ
2`
2 → 0 as n → ∞) to establish the

claim that, conditional on σo = i, J`
µ2`

2
− ĉgk(i) converges in probability to some

centered random variable Ŷi.
In particular, conditional on σo = i, J`

µ2`
2
− ĉg2(i) converges in distribution to Ŷi.

So that, for t as in the statement,

E [τ(T, o)] =
1

2
P
(
J`

µ2`
2

− ĉg2(i) ≥ t
∣∣∣∣σo = i

)
→ 1

2
P
(
Ŷi ≥ t

)
,

as n→∞.
Finally, noting that the error term in Proposition 6.8.2 is O

(
n−( γ2∧

1

40)
)

= o(1)

finishes the proof.

Proof of Lemma 6.11.3. This follows after repeating the proof in [17] in conjunction
with Lemma 6.11.2 established here.
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Chapter 7

Tests on real networks

7.1 Normalized Adjacency Matrix

We have tested our method from Chapter 4 on three real networks, namely, Zachary’s
karate club [124], the dolphin social network [81] and the political blogs dataset [3],
see Section 1.4. The error rate for Zachary’s karate club is 2/34 and for the dolphin
social network 0/62.

The error rate for the political blogs dataset is 230/1221 when thresholding the
Frobenius eigenvector. We restricted to the giant component of 1221 nodes, as is
common in most other works (the original data contained 1490 blogs). Our clustering
is worse than obtained by SCORE (where the error rate is 58/1221), but similar to
the non-backtracking matrix (where around 15 percent of the nodes are misclassified
[72]).

We observed that the leading eigenvectors are concentrated on a few nodes, due
to the presence of certain problematic structures (such as two low-degreed vertices
connected by an edge). However, the value of the Frobenius eigenvector on the
remaining vertices is still correlated with their community-membership as can be
observed in Figures 7.1 and 7.2.

Figure 7.1 is a histogram of the Frobenius eigenvector restricted to the roughly
600 nodes that have corresponding value in the interval [0, 10−9]. The nodes seem
to concentrate around two centres according to their community. However, this
phenomenon is only weakly visible (note that our theory does not apply for sparse
graphs).

In Figure 7.2 we have sorted the 1221 indices of the Frobenius eigenvector accord-
ing to an increasing corresponding value: the community structure becomes then
clear.

We further observed that thresholding the eight-est eigenvector leads to only 160
misclassified vertices. Interestingly, if we inflate the degrees by replacing H = Auv

D̂uD̂v

by Hinflated = Auv
max{D̂uD̂v,200}

, we obtain an error rate of 74/1221 by thresholding its

second eigenvector. This suggests that initial misclassifications are indeed due to
low degree nodes (the average degree is 27, but there are also many leafs present).

7.2 Non-backtracking Matrix

In Figure 7.3, the non-backtracking spectrum of the political blogs graph is shown.
There are two eigenvalues that are clearly separated from the bulk of eigenvalues.
However some other outliers are also present, indicating that the political blogs
graph has in fact more than two communities - corresponding to the intuition that
the orientation of a political blog is in reality often in between the two extremes.
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Figure 7.1: Histogram of the Frobenius
eigenvector restricted to the roughly 600
nodes that have corresponding value in
the interval [0, 10−9]. The colors repre-
sent the communities.
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Figure 7.2: Ranking of the 1221 indices
of the Frobenius eigenvector according to
an increasing corresponding value. Rank
1 is the node with smallest value in the
eigenvector and rank 1221 the node with
largest value. Colors indicate community-
membership.

We have fitted (in a crude way) a DC-SBM to the political blogs graph as follows:
We estimated ρ and µ to be the two largest eigenvalues in the spectrum in Figure
7.3 and put a = 1 and b = ρ−µ

ρ+µ . Further, for every vertex u, we put σu to be the

hand-labelled political orientation (i.e., the estimated ground-truth) and put φu =

D̂u/
√

ρ
ρ+µD̄, with D̂u the observed degree of vertex u and D̄ the average observed

degree in the graph. We plotted in Figure 7.4 the non-backtracking spectrum of a
typical realisation of this DC-SBM.

For comparison, we plotted in Figure 7.5 the spectrum of a DC-SBM where
a = 1, b = 0.1098 and where the weights are drawn uniformly from the interval
[5, 30]. The spectrum behaves as expected (see the theory in the previous chapter).

Figure 7.3: Non-backtracking spectrum of the
political blogs graph.

Figure 7.4: Non-backtracking spectrum of a
DC-SBM fit to the political blogs graph. Pa-
rameter estimation: a = 1, b = ρ−µ

ρ+µ . Du '

φu
√

ρ
ρ+µD̄.
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Figure 7.5: Non-backtracking spectrum of a
DC-SBM with 1500 nodes and parameters a =
1, b = 0.1098, where the weights are drawn
uniformly from the interval [5, 30].
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Chapter 8

Adaptive Matching for Expert
Systems with Uncertain Task
Types

Acknowledgement: This part contains joint work with Laurent Massoulié, Milan
Vojnović, Nidhi Hegde and, most notably, Virag Shah. Further, Section 8.8.1 is
inspired by a discussion of [104] with Anastasia Podosinnikova.

Parts of this chapter will appear in the conference proceedings of Allerton 2017
[112].

8.1 Introduction

Online platforms that enable matches between trading partners in two-sided markets
have recently blossomed in many areas: LinkedIn and Upwork facilitate matches
between employers and employees; Uber allows matches between passengers and car
drivers; Airbnb and Booking.com connect travelers and housing facilities; Quora and
Stack Exchange facilitate matches between questions and either answers, or experts
able to provide them.

All these systems crucially rely on the ability to propose adequate matches based
on imperfect knowledge of the characteristics of the two parties to be matched. For
example, in the context of online labour platforms, there is uncertainty about both
the skill sets of candidate employees and the job requirements. Similarly, in the
context of online Q&A platforms, there is uncertainty about both question types
and users’ ability to provide answers.

This naturally leads to the following question: which matching recommendation
algorithms can, in the presence of such uncertainty, lead to efficient platform opera-
tion? A natural measure of efficiency is the throughput that the platform achieves,
i.e. the rate of successful matches it allows. To address this question, one thus needs
first to characterize fundamental limits on the achievable throughput.

In this chapter, we progress towards answering these questions as follows.
First, we propose a simple model of such platforms, which features a static col-

lection of servers, or experts on the one hand, and a continuous stream of arrivals of
tasks, or jobs, on the other hand. In our model, the platform’s operation consists of
servers iteratively attempting to solve tasks. After being processed by some server,
a task leaves the system if solved; otherwise it remains till successfully treated by
some server. To model uncertainty about task types, we assume that for each in-
coming task we are given the prior distribution of this task’s “true type”. Servers’
abilities are then represented via the probability that each server has to solve a task
of given type after one attempt at it.
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In a Q&A platform scenario, tasks are questions, and servers are experts; a server
processing a task corresponds to an expert providing an answer to a question. A task
being solved corresponds to an answer being accepted. In an online labour platform,
tasks could be job offers, and a server may be a pool of workers with similar abilities.
A server processing a task then corresponds to a worker being interviewed for a job,
and the task is solved if the interview leads to a hire. We could also consider the
dual interpretation when the labour market is constrained by workers rather than
job offers. Then a task is a worker seeking work, while a server is a pool of employers
looking for hires.

An important feature of our model consists in the fact that when a task’s pro-
cessing does not succeed, it does however affect uncertainty about the task’s type.
Indeed, the a posteriori distribution of the task’s type after a failed attempt on it
by some server differs from its prior distribution. For instance in a Q&A scenario, a
question which an expert in Calculus failed to answer either is not about Calculus,
or is very hard.

For our model, we then determine necessary and sufficient conditions for an in-
coming stream of task arrivals to be manageable by the servers, or in other words,
determine achievable throughputs of the system. In the process we introduce can-
didate policies, in particular the greedy policy according to which a server choses
to serve tasks for which its chance of success is highest. This scheduling strategy
is both easy to implement and is based on a natural motivation. Surprisingly per-
haps, we show that it is not optimal in the throughput it can handle. In contrast,
we introduce a so-called backpressure policy inspired from the wireless networking
literature [114], which we prove to be throughput-optimal.

We summarize contributions of this chapter as follows:

• We propose a new model of a generic task-expert system that allows for uncer-
tainty of task types, heterogeneity of skills, and recurring attempts of experts
in solving tasks.

• We provide a full characterization of the stability region, or sustainable through-
puts, of the task-expert system under consideration. We establish that a par-
ticular backpressure policy is throughput-optimal, in the sense that it supports
maximum task arrival rate under which the system is stable.

• We show that there exist instances of task-expert systems under which simple
matching policies such as a natural greedy policy and a random policy can
only support a much smaller maximum task arrival rate, than the backpressure
policy.

• We report the results of empirical analysis of the popular Math.StackExchange
Q&A platform which establish heterogeneity of skills of experts, with experts
knowledgeable across different types of tasks and others specialized in partic-
ular types of tasks. We also show numerical evaluation results that confirm
the benefits of the backpressure policy on greedy and random matchmaking
policies.

The remainder of the chapter is structured as follows. Section 8.2 presents our
system model. In Section 8.3, we present results for two baseline matchmaking
policies, namely Greedy and Random. Section 8.4 presents the characterization of
task arrival rates that can be supported under which the system is stable and prove
the superiority of backpressure policy over Random and Greedy. In Section 8.5,
we present our experimental results. Related work is discussed in Section 8.6. We
conclude in Section 8.7. Further, in Section 8.8, we give some directions to obtain
the prior distribution of a task’s true type and the server’s abilities. Proofs of the
results are provided in Section 8.9.
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8.2 Problem Setting

Let C = {c1, . . . , ck} be the set of task types. Each task in the system is of a
particular type in C. Let S = {s1, . . . , sm} be the set of servers (or experts) present
in the system. When a server s ∈ S attempts to resolve a task of type c ∈ C, the
outcome is 1 (a success) with probability ps,c and it is 0 (a failure) with probability
1 − ps,c. Upon success we say that the task is resolved. In the context of online
hiring platform, this is equivalent to successful hiring of an employee for a job. In
the context of Q&A platform, this is equivalent to an answer by an expert being
accepted by the asker of the question.

We consider a Bayesian setting where we have a prior distribution z = {zc}c∈C ∈
C for a task’s type, where C is the set of all distributions. Note, different tasks may
have different prior distributions. Clearly, if server s processes a task with prior
distribution z then the probability that it fails is given by

ψs(z) =
∑
c∈C

zc(1− ps,c). (8.1)

Further, upon failure, the posterior distribution of task’s type is given by

φs(z) =

{
zc(1− ps,c)
ψs(z)

}
c∈C

. (8.2)

Note that the posterior distribution of a task’s type upon failure by a subset of
servers does not depend on the sequence in which these servers resolve the task, i.e.,
for each s, s′ ∈ S we have φs◦φs′ = φs′ ◦φs. At any point in time a task is associated
with a ‘mixed-type’ which is defined as the posterior distribution of its type given
the past attempts.

We allow a task to be attempted sequentially by multiple servers until it is re-
solved. We would like to resolve the tasks as quickly as possible.

8.2.1 Single Task Scenario

Before considering the setting of online task arrivals, for ease of exposition we first
consider a toy scenario with single task. Suppose that time t ∈ Z+ is discrete. A task
arrives at time t = 0. Let the prior distribution of its type upon arrival (equivalently,
its mixed-type at time t = 0) be z. At a time, only one server attempts to resolve a
task. Consider the problem of designing a sequence of servers (s(t) : 0 ≤ t ≤ τ) such
that the probability that the task is resolved within a fixed time τ is maximized. Let
z(0) = z, and for each t ≥ 1 let z(t) = φs(t−1)(z(t−1)), i.e., z(t) is the mixed-type of
the task at time t given that it was not resolved upon previous attempts. Then the
probability that the task is resolved by time τ is given as f(τ) = 1−

∏τ
t=0 ψs(t)(z(t))

Contrast this with the Bayesian active learning setting in [49, 62] where the goal
is to reduce uncertainty in true hypothesis via outcome from several experiments.
Using a diminishing returns property called adaptive submodularity the authors in
[49] obtain a policy which is competitive with the optimal. In our setting, f(τ) is
a submodular function. Thus a greedy policy where s(t) for each t is chosen to be
from arg mins ψs(z(t)) is 1− 1/e-competitive [100].

The feedback assumed in [49] is more general than the binary feedback assumed in
our case. However we keep the binary feedback assumption since for hiring platforms
the outcome of a job-employee match is binary and is notified to the platform by
the agents involved. Further feedback on the performance of the agents may also be
reported, but such a feedback is not reliable as it is often biased towards the larger
values [31]. Even for a Q&A setting the model is relevant since only one answer from
the available responses may be accepted by the asker, such as in StackOverflow.

Further, in this paper we add an extra dimension to the problem which was not
considered in the [49, 62], namely, we consider the setting of online task arrivals
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where tasks of different mixed-types may compete for the servers resources before
they leave upon being resolved. We design throughput optimal policies under such
a setting.

8.2.2 Online Task Arrivals

We consider a continuous time setting, i.e., t ∈ R+. Tasks arrive at a rate of λ per
time unit on average. The subsequent mixed types Zi of incoming tasks are assumed
i.i.d., taking values in a countable subset Z of C, and we let πz = P (Zi = z) for all
z ∈ Z. Finally, the time for server s ∈ S to complete an attempt on a job takes on
average 1/µs time units, and such attempt durations are i.i.d.. All involved sources
of randomness are independent.

We assume that Z is closed under φs(·), i.e., for each z ∈ Z, φs(z) ∈ Z. This
loses no generality, as the closure of a countable set with respect to a finite number
of maps φs remains countable.

We assume that a given task may be inspected several times by a given server
and assume that the outcomes success / failure are independent at each inspection.
This can be justified if a label s in fact represents a collection of experts with similar
abilities, in which case multiple processings by s correspond to processing by distinct
individual experts.

For such a setting we would like to minimize the expected sojourn time of a typical
task, i.e., the expected time between the arrival and the resolving of a typical task.
Recall that the success probabilities ps,c are assumed to be arbitrary. Under such a
heterogeneous setting minimizing expected sojourn time is a hard problem. In fact,
this is true even when there is no uncertainty in task types. As a proxy to sojourn
time optimal policies, we will strive for throughput optimal policies. In particular,
we will characterize the arrival rates λ for which the system can be stabilized, i.e.
for which there exists a scheduling policy which induces a time-stationary regime of
the system’s behavior. Indeed for a stable system the long term task resolution rate
coincides with the task arrival rate λ, and thus throughput-optimal policies must
make the system stable whenever this is possible. Note that for an unstable system
the number of outstanding tasks accumulate over time and the expected sojourn
time tends to infinity.

Finally, for simplicity we assume more specifically that the tasks arrive at the
instants of a Poisson process with intensity λ, and that the time for server s to
complete an attempt at a task follows an Exponential distribution with parameter
µs. These are continuous time analog of i.i.d. arrivals and independent departures
per time slot in discreet time setting. These assumptions will imply that the system
state at any given time t can be represented as a Markov process, which simplifies
throughput analysis. The system throughput is often insensitive to such statistical
assumptions on arrival and service times [122].

We close the section with some additional assumptions and notations which will
aid our analysis.

At any time t let Nz(t) represent the number of tasks of mixed-type z present
in the system and N(t) = {Nz(t)}z∈Z . We also let z(s, t) denote the mixed type of
the task that server s works on at time t. For strategies such that the servers select
which task to handle based uniquely on the vector N(t), the process {N(t)}t≥0 forms
a continuous-time Markov chain (CTMC) [18, 73]. The policies considered in this
paper are studied by analyzing the associated CTMC.

We allow a task to be assigned to multiple experts at a given time. Further, we
allow pre-emptive service, i.e., an expert may drop service of a task should a new
task arrive into a system or an existing task receive a response.

8.3 Baseline Policies

Following the discussion in Section 8.2.1, could it be that a greedy approach may
work well even under the online setting? From throughput perspective, a natural
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Greedy policy is one where each expert is assigned a task which best suits its skills,
i.e., among the outstanding tasks, an expert s is assigned a task of a mixed-type z
which minimizes ψs(z). We now show a surprising result that for a class of asym-
metric systems the Greedy policy is as suboptimal as a Random policy where each
server chooses a task uniformly at random. Let us first formally define these policies.

Definition 8.3.1 (Greedy Policy). A policy is Greedy if given the system state each
expert is assigned an outstanding task which maximizes its success probability, i.e.,
for each N such that |N | > 0 we have

z(s) ∈ As(N) = arg min
z:Nz>0

ψs(z),

where ties could be broken uniformly at random among this set.

Definition 8.3.2 (Random Policy). A policy is Random if each expert s is assigned
a task chosen uniformly at random from the pool of outstanding tasks.

We will consider the following class of task-expert system.

Definition 8.3.3 (Asymmetric(a) System). Suppose that there are two task types
C = {c1, c2} and two experts S = {s1, s2}. Each arrival is equally likely to be of both
types, i.e., πz′ = 1 where z′ satisfies z′c = 1/2 for each c ∈ C, and πz = 0 if z 6= z′.
Both experts provide responses at unite rate, i.e., µs = 1 for each s. Further, for
class c1 we have ps,c1 = 1 for each s ∈ S, and for class c2 we have ps1,c2 = a < 1,
and ps2,c2 = 0. We refer to such a task-expert system as a Asymmetric(a) system
with parameter a.

For this class of systems, if a task of mixed-type z′ receives a failure from either
of the experts, then its mixed type becomes z′′ where z′′c1 = 0 and z′′c2 = 1. Thus, it is

sufficient to assume that Z = {z′, z′′} where z′c = 1
2 for each c ∈ C, and z′′c = 1{c=c2}.

Further, it is easy to check that ψs1(z
′) = (1− a)/2, ψs1(z

′′) = 1− a, ψs2(z
′) = 1/2,

and ψs2(z
′′) = 1. We then have the following result (its proof, as that of the other

stability results in the article, is established through the identification of suitable
Lyapunov functions, and given in the Section 8.9).

Theorem 8.3.4. For a given 0 < a < 1, consider the Asymmetric(a) system as
defined in Definition 8.3.3. The following statements hold:

1. The Greedy stabilizes the system if and only if λ < 4a/(2 + a).

2. The Random stabilizes the system if and only if λ < 4a/(2 + a).

3. There exists a policy which stabilizes the system if λ < min {3a/(a+ 1), 2a}.

4. If λ > min {3a/(a+ 1), 2a} then no policy can stabilize the system.

In particular, the stability threshold for task arrival rates under optimal policy
can be up 25% higher (namely, when a = 1/2) than that under either Greedy or
Random.

While it is intuitive that Random may perform poorly as compared to an optimal
policy, it is counterintuitive that Greedy may perform as sub-optimally as Random.
The reason for the poor performance of Greedy can be explained as follows. In the
Asymmetric(a) system, we have a flexible expert, i.e. an expert for tasks of all pure-
types, and a specialized expert, i.e. an expert only for pure-type c1. Under Greedy
policy, all experts prioritize the newly arriving tasks as it optimizes the probability
of achieving success in the short term. However, a larger long-term throughput
could be achieved if the flexible expert could focus more on the lagging tasks, i.e.,
the tasks of pure-type c2.
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8.4 Optimal Stability

Main goal of this section is to provide necessary and sufficient conditions for stability
of the system. We provide a policy, called backpressure policy, which stabilizes the
system when the sufficient conditions are satisfied.

We obtain stability conditions via capacity constraints and flow conservation
constraints which capture the flow of tasks from one type to another upon service
by an expert. For instance, if νs,z represents the flow of tasks of mixed-type z served
by expert s, a fraction 1 − ψs(z) of it leaves the system due to success while the
rest gets converted into a flow of type φs(z). The total arrival rate of flow of mixed-
type z, i.e., λπz +

∑
s∈S,z′∈φ−1

s (z) νs,z′ψs(z
′), must match the total service rate, i.e.,∑

s∈S νs,z. Further, the total flow service rate at expert s, i.e.,
∑

z∈Z νs,z, must be
less than its service capacity µs. The following is the main result of this section.
For a proof see Section 8.9.3

Theorem 8.4.1. Suppose there exists s such that minc ps,c > 0. If there exist non-
negative real numbers νs,z, for s ∈ S, and z ∈ Z and positive real numbers δs, for
s ∈ S such that the following hold:

∀z ∈ Z, λπz +
∑

s∈S,z′∈φ−1
s (z)

νs,z′ψs(z
′) =

∑
s∈S

νs,z, (8.3)

∀s ∈ S,
∑
z∈Z

νs,z + δs ≤ µs, (8.4)

then there exists a policy under which the system is stable. If there does not exist
non-negative real numbers νs,z, for s ∈ S, z ∈ Z and non-negative real numbers δs
for s ∈ S such that the above constraints hold, then the system cannot be stable.

We use the condition of existence of an expert s such that minc ps,c > 0 only for
a technical reason to simplify our proof. We believe that the result holds even when
this is not true.

We need some more notation to describe the policy. Consider a set Y ⊂ Z.
Let X(t) be the number of tasks in the system at time t which have been of type

z ∈ Z\Y. For z ∈ Y, let X̃z(t) and Ñz(t) be the tasks of mixed-type z which have
and have not had mixed-type in Z\Y. Also, for convenience, for each z ∈ Z\Y, let

X̃z be the tasks of mixed-type z, i.e., Nz = X̃z for each z ∈ Z\Y. Thus, we have

X =
∑

z X̃z. Consider the following policy.

Definition 8.4.2 (Backpressure(Y) policy). For a given Y, let X, and {Ñz}z∈Y be
as defined above. For each s ∈ S, z ∈ Y let

ws,z(Ñ ,X) =

{
Ñz − ψs(z)Ñφs(z), if φs(z) ∈ Y
Ñz − ψs(z)X, if φs(z) ∈ Z\Y

.

Define
Bs(Ñ ,X) = arg max

z′∈Y:Ñz′>0
ws,z(Ñ ,X).

If ∑
s

µs max
z∈Y:Ñz>0

ws,z(Ñ ,X) ≥ X min
c∈C

∑
s

µsps,c

then each expert chooses a task in Ñz where z ∈ Bs(Ñ ,X) ⊂ Y with ties broken
arbitrarily. Else, each expert serves a task in X chosen uniformly at random.

The following theorem follows from the proof of Theorem 8.4.1.

Theorem 8.4.3. Suppose there exists s such that minc ps,c > 0. If the sufficient
conditions for stability as given by Theorem 8.4.1 are satisfied, then there exists a
finite subset Y of Z such that the policy Backpressure(Y) stabilizes the system.
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Table 8.1: Skills of experts estimated by using data from the Math.Stack-Exchange Q&A
platform.

Clusters
Tag 1 2 3 4 5 6 7 8 9 10

calculus .32 .39 .30 .35 .37 .47 .28 .16 .26 .41
real-analysis .17 .41 .25 .32 .23 .49 .40 .10 .10 .44

linear-algebra .46 .29 .05 .36 .14 .48 .26 .31 .07 .43
probability .07 .49 .02 .33 .02 .50 .06 .02 .46 .04

abstract-algebra .02 .05 .03 .32 .02 .38 .23 .50 .01 .27
integration .09 .43 .05 .19 .44 .45 .03 .01 .06 .37

sequences-and-series .05 .32 .16 .31 .20 .45 .09 .04 .06 .33
general-topology .02 .10 .03 .16 .02 .43 .50 .07 .02 .31

combinatorics .03 .14 .06 .43 .04 .37 .02 .06 .19 .05
matrices .27 .15 .02 .31 .02 .44 .06 .11 .02 .34

complex-analysis .02 .19 .08 .16 .14 .50 .09 .05 .01 .44

Size 165 188 313 200 179 183 231 187 178 176

In particular, the Backpressure(Z) policy is optimally stable for Asymmetric(a)
system as defined in Definition 8.3.3.

Unlike backpressure policy proposed in [114] under a different setting, which was
agnostic to system arrival rates, a set Y such that Backpressure(Y) policy stabilizes
the system may depend on the value of λ. While the policy as stated may be complex
to implement, it allows us to develop implementable heuristics which significantly
outperform greedy policy. We demonstrate this in the next section.

8.5 Experimental Results

In this section, we present our empirical results obtained by using data
from Math.Stack-Exchange Q&A platform. In this platform, users post tagged ques-
tions that are answered by other users. The asker may select one of the submitted
answers as the best answer for the given question, which is made public informa-
tion in the platform. We will use this data to estimate the success probabilities of
experts in answering questions, and use these parameters in simulations to compare
the throughputs that can be achieved by greedy, random, and backpressure policies.
As we will see, a substantially larger throughput can be achieved by backpressure
policy than greedy and random.

Dataset The dataset consists of around 702, 286 questions and 994, 138 answers.
It was retrieved on February 2nd, 2017. The top 11 most common tags are given in
Table 8.1 in decreasing order of popularity. Among these tags, the most common is
calculus which covers 61, 184 questions, and the least common is complex analysis
which covers 22, 813 questions. In our analysis, we used only questions that are
tagged with at least one of the 11 most popular tags, which amounts to a total of
381, 239 questions and 544, 267 answers.

Estimated skill sets The success probabilities of answering questions are estimated
as follows. For a given user-tag pair, the success probability is estimated by the
empirical frequency of the accepted answers by this user for questions of given tag,
conditional on that the user had at least 5 accepted answers for questions of the
given tag, and otherwise we estimate the success probability is set to be equal
to zero. These success probabilities are estimated for 2, 000 users with the most
accepted answers. Among these users, the user with the most accepted answers had
4, 665 accepted answers, and the user with the least number of accepted answers
had 13 accepted answers. 712 users had more than 50 answers accepted. In order
to form clusters of users with similar success probabilities for different tags, we ran
the k-means clustering algorithm.
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Figure 8.1: Total number of tasks in the system over time for the greedy and backpressure
policy. The task arrival rates are as indicated in the figures.

The estimated success probabilities are shown in Table 8.1. The columns corre-
spond to different centroids of the clusters and give average success probabilities for
different tags. In the bottom row, we give the sizes of the corresponding clusters.
For instance, the 165 persons in cluster 1 have on average 32% of their calculus, and
46% of their linear algebra answers accepted.

There is a pronounced heterogeneity in user expertise. We highlighted the success
probabilities of value at least 35%. A subset of users, namely cluster 6, are got at
all topics whereas other clusters are good at a different subsets of topics.

There is also a prevalence of questions with different combinations of tags, that
is, mixed types. When a question of mixed type arrives with multiple tags, we
associated with it a mixed-type which is the uniform distribution of the associated
tags. We kept only those combinations of tags that occur for at least 1% of the
total number of questions. This results in 16 tag combinations among which 11
are singletons and 5 are combinations of 2 tags. These are the mixed types z with
postive πz. We observed that roughly 19% of the questions are tagged with multiple
tags, showing the relevance of our model.

Simulation setup We assumed the experts to have unit service rates. We make
this approximation as we do not have the information about times at which experts
begin to respond a question. We examined the system for increasing values of task
arrival rates. We simulate our CTMC via a custom discrete event simulator.

For the backpressure policy we define the set Y to consist of all 11 pure types,
the 5 most frequently seen mixed types upon arrival as described above, and the
mixed types that result from an attempt by an expert exactly once. Note that
pure types can be attempted multiple times without changing its type. We thus
have |Y| = 16 + 5 · 10 = 66. Our choice of Y is a result of a compromise between
performance and complexity. Choosing a larger set of Y may increase the stability
region by a small fraction, but may significantly increase the complexity of the
Backpressure policy.

Performance comparison of different policies We examined the evolution of the
number of tasks in the system waiting to be served over time for greedy and back-
pressure policy for respective task arrival rates, 3.78 and 3.83 (Figure 8.1 left) and
respective task arrival rates 3.83 and 4.08 (Figure 8.1 right). Even under stability,
backpressure may outperform greedy. Further, while greedy is unstable at λ = 3.83,
the backpressure is stable even at λ = 4.08.

We evaluated the time-averaged number of tasks in the system for different task
arrival rates for the three policies under our consideration. By Little’s law, the
time-averaged number of tasks is a good proxy for the expected sojourn time of a
typical task. These results are shown in Figure 8.2. We observe that the task arrival
rates at which random, greedy, and backpressure become unstable are, 2.2, 3.80 and
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Figure 8.2: Comparison of Random, Greedy, and Backpressure policies.

4.10, respectively. Thus, the backpressure policy achieves throughput improvement
of about 8% over the greedy policy. While greedy may perform better than back-
pressure at lower arrival rates, the backpressure significantly outperforms greedy at
higher arrival rates.

8.6 Related Work

Bayesian Active Learning [49, 62, 22, 45] aims at learning true hypothesis by adap-
tively selecting sequence of experiments. In [22] labels are obtained for a batch of
items at a time. In [45] a stream based budgeted setting is considered where a finite
number of items arrive in a random order. In contrast we allow infinite stream of
tasks and interested in the task resolution throughput. The crowdsourcing works
such as [68, 111, 127, 47] consider task assignment problems for classification with
unknown ground truths, however they consider a static model.

A related line of work is that on stochastic online matching, e.g., [88, 89, 55].
The stochastic online matching can be interpreted as a task-expert system where
each expert is associated with a budget constraint that allows to solve at most
one task. Unlike our work where the task types are uncertain, uncertainty in these
models come from the arbitrariness of the future task arrivals and the monotonically
decreasing available resource budgets.

Another related literature is that of constrained queueing systems, where arriving
tasks are to be served by heterogeneous servers subject to resource constraints, e.g.,
[114, 99, 48, 123, 19, 5, 64, 29, 83, 113]. In particular, our backpressure matching
policy is of a flavor similar to the policy proposed in [114]. The main difference from
our work is that all these works assume that the task types are known.

In [12], the authors considered a constrained queueing system where the hardness
of a task could be unknown and the task upon service can only become progressively
harder. In [66], authors consider a setting where each task can be divided into a
large number of subtasks of the same type, a small amount of which could be used
to accurately learn the task’s type.

8.7 Conclusion

We studied matching of tasks and experts in a system with uncertain task types.
We established a complete characterization of the stability region of the system, i.e.
the set of task arrival rates that can be supported by a matching policy such that
the expected number of tasks waiting to be served is finite. We showed that any
task arrival rate in the stability region can be supported by a back-pressure match-
ing policy. We also compared with two baseline matching polices, and identified
instances under which there is a substantial gap between the maximum task arrival
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rates that can be supported by these policies and that of the optimum back-pressure
matching policy.

8.8 Preprocessing phase

Above we assumed that all parameters are known: the success-probabilities {psc}c
for each server s, the distribution {zc}c and corresponding arrival rate πzλ for each
mixed-type z ∈ Z. In practice we need to estimate those.

We detail here some directions in case the tasks are of textual form, e.g., questions
on a forum or curricula vitae of job applicants. In this setting, {zc}c could be
obtained as the output of a text-classifier. We discuss two common approaches and
assume that the text underwent standard preprocessing:

• All letters are converted to lower-case.

• All symbols except {a, b, . . . , z}, spaces and ”.” are removed.

• All words are stemmed (for instance using Porter’s algorithm [105]).

The topic model or Latent Dirichlet Allocation (LDA) [13] is an unsupervised
classification method that outputs a topic distribution for every document in a
collection with vocabulary V . A document of length N in this model is represented
as a bag of words, that is, a vector w ∈ N|V | such that w(v) counts the number of
times word v ∈ V occurs in the document. Note that with this representation, all
structural information (such as word order) of the document is lost.

The core assumption in this model is that every document is generated in the
following way, given parameters ξ > 0, number of topics k, vector a = (a1, . . . , ak)
(all elements > 0), and right stochastic matrix β of dimensions k × |V |:

• Draw the document length N from Poi(ξ);

• Draw the topic distribution θ = (θ1, . . . , θk) of this document from Dir(a);

• For each word wn (n ∈ N), choose a topic zn ∼ Multinomial(θ) and, given
this topic, choose the actual word with respective probabilities {βi1, . . . , βi|V |},
where i = zn.

In this way we obtain a document of (random) length N that consists for a fraction
θi of topic i ∈ {1, . . . , k} and the frequency of words for that topic are on average
{βi1, . . . , βi|V |}.

Given a (large) collection of M documents {w1, . . . ,wM} (e.g., questions or cur-
ricula vitae), we need to estimate the parameters a and β. A standard approach is
maximizing the log-likelihood of the data:

`(a, β) =

N∑
u=1

log(P (wu|a, β)).

In practice, this is too computationally expensive and we resort to the approach of
variational inference described in Section 5.3 of [13]. Then, after estimating a and β,
we estimate for a given document the posterior distribution of its hidden variables
(i.e., θ and z1, . . . , zn) using the method described in Section 5.1 of [13].

Artificial neural networks are supervised classifiers, that could be used if part of
the documents have been labelled [10, 67, 126].
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8.8.1 Estimation of success-probabilities

Here we explain how one could estimate the success-probabilities and the distribution
{π̂c}c of the pure types. Note that for c ∈ C, we have π̂c =

∑
z∈Z zcπz. We assume

that m := |C| <∞.
Given a question of type c, let Xs = Ber(pcs) be the indicator function of server

s answering this question successfully.
We shall use tensor decompositions to learn the parameters {π̂c}mc=1 and {pcs}c,s.

To this end, we start with some standard tensor-terminology. For given vectors
v1, v2, v3 ∈ Rm we define the tensor-products v1 ⊗ v2 and v1 ⊗ v2 ⊗ v3 as

v1 ⊗ v2 = v1v
T
2 ,

and, for i, j, k ∈ [m],

(v1 ⊗ v2 ⊗ v3)i,j,k = v1(i)v2(j)v3(k).

Thus v1⊗ v2 is a matrix and v1⊗ v2⊗ v3 is a cube. Put y = (X1, X2, . . . , Xm−1, 1)T ,
i.e., the outcome vector of the first m−1 servers on a single question. Conditioned on
c, let y1, y2 and y3 be i.i.d. copies of y. The latter vectors represent i.i.d. attempts
of simultaneously solving the same question (recall that we assumed a server to
represent a homogeneous collection of experts). We then have the tensors

T = E [y1 ⊗ y2 ⊗ y3] =

m∑
c=1

π̂c E [y|c]⊗ E [y|c]⊗ E [y|c] =

m∑
c=1

π̂c µc ⊗ µc ⊗ µc,

and

M = E [y1 ⊗ y2] =

m∑
c=1

π̂c µc ⊗ µc =

m∑
c=1

π̂c µcµ
T
c ,

where
µc = E [y|c] =

(
pc1, p

c
2, . . . , p

c
m−1, 1

)T
.

For the sequel, we shall assume that we have sufficiently accurate estimations of
both T and M . In practice this is a strong assumption, because it asks that m− 1
servers often attempt simultaneously the same questions. We shall also make the
technical assumption that {µc}mc=1 is a linearly independent set.

Let us first study the case where T is known, and see if we can retrieve {π̂c}c and
{µc}c. In [7] a generalization of the matrix-diagonalization method is developed for
tensors. It follows that the tensor T admits a unique orthogonal decomposition, that
is, a collection of orthonormal vectors {v1, v2, . . . , vm} together with corresponding
positive scalers λj > 0 such that

T =

m∑
j=1

λj vj ⊗ vj ⊗ vj . (8.5)

Our objective is thus to decompose the tensor

T =
∑
i,j,k

Ti,j,k ei ⊗ ej ⊗ ek

as in (8.5). To this end, we need the notion of an eigenvector/eigenvalue pair of T ,
which is defined in terms of the vector-valued map

u 7→ T (I, u, u),
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where T (I, u, u) is in standard tensor-terminology defined as

T (I, u, u) =
∑
i,j,k

Ti,j,k (eTj u)(eTk u)ei.

An eigenvector u of T with corresponding eigenvalue λ is then a vector such that
T (I, u, u) = λu. Now, since the mapping u 7→ T (I, u, u) is non-linear, there are
differences with the eigenvalue/eigenvector notion for matrices. However, as pointed
out in Theorem 4.1 in [7], considering robust eigenvectors of T resolves the issues.
A unit vector u is called a robust eigenvector of T if there exists ε > 0 such that for
all θ ∈ {u′ ∈ Rm : ‖u′ − u‖ ≤ ε}, repeatedly iterating the map

θ̄ 7→ T (I, θ̄, θ̄)

‖T (I, θ̄, θ̄)‖
(8.6)

starting from θ converges to u. It is very interesting to note that the robust eigen-
vectors of T are precisely the vectors {v1, v2, . . . , vm}, implying that the orthogonal-
decomposition is unique:

Theorem 8.8.1 (Theorem 4.1 in [7]). Let T have an orthogonal decomposition as
in (8.5), then

• The set of θ ∈ Rm which do not converge to some vi under repeated iteration
of (8.6) has measure zero.

• The set of robust eigenvectors of T is equal to {v1, v2, . . . , vm}.

We explain now how the robust eigenvectors of T (W,W,W ), for a special matrix
W (defined shortly), can be related to {π̂c}c and {µc}c.

In Section 4.3.1 of [7] and also in [104] the following reduction method is de-
scribed: Let U be the matrix of orthonormal eigenvectors of M (note that M is a
full-rank matrix due to the assumption that the span of {µc}mc=1 has rank m) and

D be its corresponding diagonal matrix of positive eigenvalues. Put W = UD−1/2.
Then,

W TMW = I.

Note that there are standard diagonalization methods available to obtain U and D
for the symmetric positive-definite matrix M .

Let µ̄i =
√
π̂iW

Tµi. Then, {µ̄i} are orthonormal vectors. Indeed,

I = W TMW =

m∑
c=1

W T (
√
π̂cµc)(

√
π̂cµ

T
c )W =

m∑
c=1

µ̄cµ̄
T
c .

Note that we have access to T (W,W,W ) :=
∑

i,j,k Ti,j,k (W T ei)⊗(W T ej)⊗(W T ek).
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But, ∑
i,j,k

Ti,j,k (W T ei)⊗ (W T ej)⊗ (W T ek)

=
∑
i,j,k

Ti,j,k (W T ei)⊗ (W T ej)⊗ (W T ek)

=
∑
i,j,k

(∑
c

π̂cµc(i)µc(j)µc(k)

)
(W T ei)⊗ (W T ej)⊗ (W T ek)

=
∑
c

π̂c
∑
i,j,k

(µc(i)W
T ei)⊗ (µc(j)W

T ej)⊗ (µc(k)W T ek)

=
∑
c

π̂c

(∑
i

µc(i)W
T ei

)
⊗

∑
j

µc(j)W
T ej

⊗(∑
k

µc(k)W T ek

)

=
∑
c

π̂c (W Tµc)⊗ (W Tµc)⊗ (W Tµc)

=
∑
c

1√
π̂c

(µ̄c)⊗ (µ̄c)⊗ (µ̄c).

Hence, applying the above theorem to the tensor T (W,W,W ) gives that {µ̄c}c are
its robust eigenvectors with corresponding eigenvalues { 1√

π̂c
}c.

Given T , a simple algorithm would then be to compute W and then for many
random starting vectors u, iterate the map u 7→ S(I, u, u)/‖S(I, u, u)‖ until conver-
gence, where S := T (W,W,W ).

Alternatively, there are other methods available (for instance the Tensor Power
Method see [7]) to obtain from T (W,W,W ) its orthogonal decomposition. However,

in practice we observe a tensor T̂ = T + E, , where E =
∑

i,j,k εi,j,k ei ⊗ ej ⊗ ek,
with |εi,j,k| ≤ ε and ei(l) = δil (coordinate vectors). The symmetric tensor E
represents noise due to the fact that neither our model nor moment estimates are
perfect. Theorem 5.1 in [7] tells us that we can in this case use an algorithm that

gives us approximations {v̂c}c and {λ̂c}c such that for all c, ‖v̂c − vc‖ = O(ε) and

‖λ̂c − λc‖ = O(ε). See also [104] for a method that in practice outperforms existing
methods.

How many observations do we need? To apply the above approach, we need all
first-, second- and third order cross moments for servers 1, . . . ,m− 1. In particular,
we need approximations for

∑
c πc(p

c
s)

3. Meaning that we need to be able to pose
the same question three times to a server, and obtain three independent responses.
If this is too restrictive, one could employ the method in [6]: one needs then all
second order cross-moments between 3(m− 1) different servers.

Note that when |C| = m, we need at least m − 1 servers. In particular, for
|C| = 2, we need only a single server. This makes intuitively sense as we then have
three estimations, namely for πp1 + (1− π)p2, πp2

1 + (1− π)p2
2 and πp3

1 + (1− π)p3
2,

while we have only three unknowns.
Estimating the parameters of the remaining servers (outside the set {1, . . . ,m})

is easier, since π̂1, . . . , π̂m are now known. Indeed, let A be the matrix containing
the vectors µ1, . . . ,µm as its columns. Then, we can observe

A


π1p

1
s

...
πm−1p

m−1
s

πmp
m
s

 =


∑

c πcp
c
1p
c
s

...∑
c πcp

c
m−1p

c
s∑

c πcp
c
s

 .
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We carry out an heuristic error analysis, under the assumption that we obtained
estimates for { 1√

π̂c
}c and µ̄1, . . . , µ̄m containing errors of order O(ε). Then, the

error in π̂c is of order O(ε), but the error in µ̄m is of order O
(

1√
π̂c
‖UD1/2‖ε

)
=

O
(√

dmax

πmin
ε
)

, where dmax is the largest eigenvalue of M (note that U is orthonormal).

Therefore, instead of A, we observe A + δA, where ‖δA‖ = O
(√

dmax

πmin
ε
)
. Now,

consider the perturbation-equation

(A+ ∆A)(x+ δx) = b+ δb,

where Ax = b. Then, heuristically,

x+ δx = (A+ ∆A)−1(b+ δb)

= (I +A−1∆A)−1A−1(b+ δb)

= (I +O(‖A−1∆A‖))(x +A−1δb)

.

Since ‖A‖ ≥ 1, we have,

‖δx‖ ≤ O

(√
dmax

πmin
ε

)
(‖∆b‖+ ‖x‖) + ‖∆b‖.

8.9 Proofs

8.9.1 Proof of Theorem 8.3.4

Proof of Part (i): Let us first describe the the transition rates for the CTMC under
greedy policy. Let q(n, n′) be the transition rate from state n to state n′. Let ez
denote the vector with all coordinates equal to 0 except for the z-coordinate which
equals 1. Fix a state n. For each z ∈ Z we have

q(n, n+ ez) = λπz,

q(n, n− ez) =
∑

s:z∈As(N)

µs(1− ψs(z))
1

|As(N)|
,

q(n, n− ez + eφs(z)) =
∑

s:z∈As(N)

µsψs(z)
1

|As(N)|
.

Transition rate q(n, n′) for each (n, n′) which is not as given above is equal to 0.
We first show that if λ < 4a/(2 + a) then the system is stable. For each t let

t + τ(t) be the time at which the first event (arrival or completion of a response)
occurs after time t. Let τn = E[τ(t)|N(t) = n], i.e., given that N(t) = n at time t,
τn is the expected time at which the first event occurs after time t. For example, for
n = 0 we have τn = 1/λ.

A common approach to show system stability is to use Lyapunov-Foster theorem,
see e.g., Proposition I.5.3 on page 21 in [8]. The idea is to construct a function L(·)
such that L(n) tends to infinity as |n| → ∞ and that has a strictly negative ‘drift’
for all but finite values of n, i.e., there exists a constant ε > 0 such that

E
[
L(N(t+ τ(t)))− L(N(t))

∣∣N(t) = n
]
≤ −ετn,

for all but finite values of n. Intuitively, negative drift condition implies that as
L(N(t)) becomes large (i.e., as N(t) becomes large) the system dynamics is such that
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L(N(t)) tends to decrease in expectation. This prevents the L(t) from blowing up
to∞ as t increases and thus keeps the system stable. Roughly, the Lyapunov-Foster
theorem states that the negative drift condition is indeed sufficient to ensure that
that system is positive recurrent and thus stable. We will use a variant of Lyapunov-
Foster theorem, provided below, which follows from Theorem 8.13 in [108].

Theorem 8.9.1. Consider an irreducible CTMC N(t) that takes values in a count-
able state-space. Let τ(t) and τn be as defined above. If there exists a function L(·),
and constants K > 0 and ε > 0 such that for L(n) > K we have

E
[
L(N(t+ τ(t)))− L(N(t))

∣∣N(t) = n
]
≤ −ετn,

and if {n : L(n) ≤ K} is finite, then N(t) is positive recurrent.

Now suppose that λ < 4a/(2 + a). Then, it can be checked that 2−a
2(2−λ)λ < a.

Thus, there exists δ > 0 such 2−a
2(2−λ)λ = (1 + δ)a. Now, consider the following

Lyapunov function: for each n, we have

1

τn
L(n) = (1 + δ)

2− a
2(2− λ)

nz′ + nz′′ ,

where δ is a constant obtained as above.
Consider states n such that nz′ > 0. For these states, we obtain

1

τn
L(n) = (1 + δ)

2− a
2(2− λ)

(λ− µs1 − µs2) +
(
µs1ψs1(z

′) + µs2ψs2(z
′)
)

= (1 + δ)
2− a

2(2− λ)
(λ− 2) +

1− a
2

+
1

2
= −δ2− a

2
< 0.

Now, consider states n such that nz′ = 0 and nz′′ > 0. For these states

1

τn
L(n) = δ

2− a
2(2− λ)

λ− µss1a = −δa < 0.

Thus, the conditions of Theorem 8.9.1 are satisfied with K = L((1, 1))/τ(1,1) and
ε = min(δa, δ(2−a)/2). Hence, N(t) is positive recurrent if λ < 4a/(2+a). We now
show the only if part. Suppose that λ ≥ 4a/(2 + a). Then, the δ used in the above
argument is greater than or equal to 0. Thus, drift is non-negative for all but finite
values of n. Further, since L(·) is bounded, the maximum change in L(·) upon an
arrival or a departure is also bounded, using Proposition I.5.4 on page 22 in [8], we
establish the only if part.

Proof of Part (ii): Part (ii) is a special case of Theorem 8.9.2 stated and proven
below.

Proof of Part(iii) and (iv): We use Theorem 8.4.1 from Section 8.4 in this chapter.
For Asymmetric(a) system we have Z = {z′, z′′} where z′c = 1

2 for each c ∈ C, and
z′′c = 1{c=c2}. The flow conservation constraints in Theorem 8.4.1 can be given as
follows:

λ =
∑
s

νs,z′ , and
∑
s

νs,z′ψs(z
′) +

∑
s

νs,z′′ψs(z
′′) =

∑
s

νs,z′′

Suppose a ≥ 1
2 . There exists an ε > 0 such that λ = 3a(1−ε)

a+1 . It can be checked

that {νsz}s,z where

νs2,z′ = 1− ε, νs2,z′′ = 0, νs1,z′ =
2a− 1

a+ 1
(1− ε), νs1,z′′ =

2− a
a+ 1

(1− ε)
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and {δs}s∈S where δs = ε for each s satisfies sufficient conditions of Theorem 8.4.1.
Now suppose a < 1

2 . There exists an ε > 0 such that λ = 2a(1 − ε). It can be
checked that {νs,z}s,z where

νs2,z′ = 2a(1− ε), νs2,z′′ = 0, νs1,z′ = 0, νs1,z′′ = (1− ε)

and {δs}s∈S where δs = ε for each s satisfies sufficient conditions of Theorem 8.4.1.
The result then follows from the proof of Theorem 8.4.1 by taking Y as Z

8.9.2 Stability Threshold under Random Policy for an Arbitrary
System

Theorem 8.9.2. Under Random policy, a system is stable if and only if it satisfies
the following:

λ <

(∑
c∈C

∑
z∈Z zcπz∑
s∈S µsps,c

)−1

,

Proof:
Note that the system under random policy is equivalent to the one where pure-

type of a task is revealed upon arrival, i.e., there is no uncertainty in task types.
This is true since the random policy does not use the information of type (pure or
mixed). We thus assume that the pure-type is indeed revealed upon arrival. Let
Xc(t) be the number of tasks in the system of pure-type c. Let X(t) = {Xc(t)}c.
For each c ∈ C, the arrival rate into queue Xc(t) is equal to

λc :=
∑
z∈Z

λzcπz.

We first show the if part of the result. Suppose that we have
∑
c∈C λc∑

s∈S µsps,c
< 1.

We use the fluid limit approach developed in [110, 30, 84]. Roughly, given initial
condition X(0) = x, the fluid trajectories of the state process X(t) can be obtained
by scaling initial conditions, speeding time, and then studying the rescaled process;
i.e., letting limk→∞

1
kX(0) = x, and studying limk→∞

1
kX(kt).

Using arguments similar to those used in [84], the fluid limits for the number of
tasks in each class can be shown to satisfy the following at almost all times t: for
each c ∈ C and Xc > 0 we have

d

dt
Xc = λc −

∑
s∈S

µsps,c
Xc∑
c′ Xc′

. (8.7)

Define a function L on RC as

L(X) =
∑
c

Xc log

(
Xc

γc
∑

c′ Xc′

)
, (8.8)

where γc := λc∑
s∈S µsps,c

.

Further, by following the arguments similar to [84], if we have that L(X) → ∞
and for some α > 0, d

dtL(X) ≤ −α as |X| → ∞ under fluid limits then the stability
of the original system follows. We show below that both these limits hold.
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Using (8.7) and (8.8), we obtain

d

dt
L(X) =

∑
c

(
d

dt
Xc

)
log

(
Xc

γc
∑

c′ Xc′

)
, (8.9)

=
∑
c

(
λc −

∑
s∈S

µsps,c
Xc∑
c′ Xc′

)(
log

Xc∑
c′ Xc′

− log γc

)
, (8.10)

=
∑
c

(∑
s

µsps,c

)
(γc − Yc) log(Yc/γc), (8.11)

where Yc := Xc∑
c′ Xc′

. Now, (8.11) is negative and strictly bounded away from zero.

This can be seen as follows. Firstly, all terms in the sum are non-positive. Therefore,
it suffices to show that there exists a δ > 0 such that there always exists a c for which
(γc − Yc) log(Yc/γc) ≤ −δ. Since,

∑
c Yc = 1 and, for some fixed ε > 0,

∑
c γc = 1−ε,

it follows that there exists c such that γc − Yc ≤ −ε. For this c, we thus also have
Yc/γc ≥ 1 + ε. Consequently, (γc − Yc) log(Yc/γc) ≤ −ε log(1 + ε).

Let θ = 1/
∑

c γc and γ̂c = γcθ for each c ∈ C. Since
∑

c γc < 1, we have
θ > 1. Let D(p||q) be the Kullback-Leibler divergence between two discrete random
variables with probability distributions p and q. Now, we can write

L(X) =
∑
c

Xc log

(
θXc

γ̂c
∑

c′ Xc′

)
(8.12)

=
∑
c

Xc log θ +
∑
c

Xc log

(
Xc∑
c′ Xc′

.
1

γ̂c

)
(8.13)

=
∑
c

Xc log θ +

(∑
c

Xc

)
D

({
Xc∑
c′ Xc′

}
c∈C

∣∣∣∣∣
∣∣∣∣∣{γ̂c}c∈C

)
(8.14)

which converges to ∞ as |X| grows large.
Hence, the if part of the result follows. The same line of argument can also be

used to show that if
∑
c∈C λc∑

s∈S µsps,c
≥ 1 the drift is non-negative for all but finite number

of states. Further, since L(X) is bounded, the maximum change in L(X) upon an
arrival or a departure is also bounded, using Proposition I.5.4 on page 22 in [8], we
get the only if part.

8.9.3 Proof of Theorem 8.4.1

We first show stability under sufficient conditions. In networked systems, e.g. see
[114, 48], a standard approach towards proving stability of a backpressure type
policy is to design a ‘static’ policy using flow variables {νsz}s,z and the slacks {δs}s
which provides a fixed service rate to each queue Nz such that its drift is sufficiently
negative for each. However, in our setup the total number of queues {Nz}z∈Z could
be countable, while the total available slack is finite. Thus, it is not possible to design
a static policy such that the drift in each individual queue is bounded from above
by a negative constant. This is unlike any finite-server queueing system considered
in the previous literature.

We thus take a different approach, which can be explained roughly as follows.
Since the total exogenous arrival rate λ, and the total endogenous arrival rate, i.e.
arrival into a queue due to failure at another queue, are both finite (they are bounded
from above by

∑
s µs), there exists a finite set Y ⊂ Z such that the total arrival

rate into Z\Y is less than minc∈C
∑

s∈S
δs
4 ps,c. Each task which enters a queue Nz
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where z ∈ Z\Y is instead sent to a virtual queue X, and stays there until there is
a success. If X is ‘large’ compared to the other queues then all the servers focus on
X. The finite number of remaining queues are operated via a backpressure policy
which accounts for the ‘expected backlog’ seen in these queues.

More formally, consider {νs,z}s,z and positive constants {δs}s as postulated in the
theorem. Without loss of generality, assume that there exists a constant 0 < ε < 1
such that δs = εµs for each s ∈ S. Let Y be a finite subset of Z such that

∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

νs,z′ψs(z
′)

 ≤ min
c∈C

∑
s∈S

δs
4
ps,c.

Since λ+
∑

s∈S,z∈Z νs,z ≤ 2
∑

s µs, such a Y exists.
Let X be the number of tasks in the system which are or have been in past of

type z ∈ Z\Y. Once a task enters queue X it does not leave it until success. There
may be tasks in it with mixed-type in Y. Note, our policy will depend on X and thus
{z(s, t)}s will not be N(t) measurable. In turn, N(t) will not be a CTMC. For z ∈ Y,

let X̃z and Ñz be the tasks of mixed-type z which have and have not had mixed-type
in Z\Y. Also, for convenience for each z ∈ Z\Y, let X̃z be the tasks of mixed-type

z, i.e., Nz = X̃z for each z ∈ Z\Y. We now formally define σ
(
{X̃z}z∈Z , {Ñz}z∈Y

)
-

measurable backpressure policy. Thus,
(
{Ñz}z∈Y , {X̃z}z∈Z

)
is a CTMC.

We now show stability of the system under this policy for Backpressure(Y) as
given in Definition 8.4.2. Below we will assume that the ties in selecting z from
Bs(Ñ ,X) are broken uniformly at random for simplicity of exposition. The proof
can be easily extend to any other tie breaking approach. Consider the following
Lyapunov function.

L(Ñ , X̃) =
∑
z∈Y

Ñ2
z +

(∑
z∈Z

Xz

)2

=
∑
z∈Y

Ñ2
z +X2.

For each t, let t+ τ(t) be the time at which the first event (arrival or completion
of a response) occurs after time t. Clearly, τ(t) is a stopping time. Further, let

τñ,x̃(t) = E
[
τ(t)|(Ñ , X̃) = (ñ, x̃)

]
.

Let

D(ñ, x̃) :=
1

τñ,x̃
E
[
L(Ñ(t+ τ), X̃(t+ τ))− L(Ñ(t), X̃(t))

∣∣Ñ(t) = ñ, X̃(t) = x̃
]
.

D(ñ, x̃) is called drift in state n. We would like to show that there exists a positive
integer K and positive constant ε such that

D(ñ, x̃) ≤ −ε ∀(ñ, x̃)s.t.max(|ñ|∞, x) ≥ K.
Let for each s ∈ S and z ∈ Y let

ν∗s,z = 1{xminc∈C
∑
s µsps,c>

∑
s µs maxz∈Y:ñz>0 ws,z(ñ,x)}1{z∈Bs(n)}

1

|Bs(n)|
.
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Then, one can check that

1

τñ,x̃
E
[
Ñz(t+ τ)2 − Ñz(t)

2
∣∣Ñ(t) = ñ, X̃(t) = x̃

]
= (2ñz + 1)

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗sz′ψs(z
′)


+ (−2ñz + 1)

∑
s

ν∗s,z.

(8.15)

Further, let

ν∗ = 1{xminc∈C
∑
s µsps,c>

∑
s µs maxz∈Y:ñz>0 ws,z(ñ,x)}.

Then, we have that

1

τñ,x̃
E
[
X(t+ τ)2 −X(t)2

∣∣Ñ(t) = ñ, X̃(t) = x̃
]

≤ (2x+ 1)
∑

z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′)

+ (−2x+ 1)ν∗min
c

∑
s

µsps,c

Thus, we get

D(ñ, x̃) ≤
∑
z∈Y

(2ñz + 1)

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′)

+ (−2ñz + 1)
∑
s

µsν
∗
s,z

+ (2x+ 1)
∑

z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′)

+ (−2x+ 1)ν∗min
c

∑
s

µsps,c.

Upon arranging terms, we obtain

D(ñ, x̃) ≤
∑
z∈Y

2ñz

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗sz′ψs(z
′)−

∑
s

ν∗s,z


+ 2x

 ∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗sz′ψs(z
′)

− ν∗min
c

∑
s

µsps,c


+

λ+
∑
zZ

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν∗s,z′ψs(z
′) +

∑
z∈Y

∑
s

ν∗s,z + ν∗min
c

∑
s

µsps,c


The last of the above three terms can be bounded by a constant, say α1 = 10

∑
s µs.

For each s ∈ S and z ∈ Y let ν̂∗s,z = (µs − 3δs/4)ν∗s,z and ν̃∗sz = (δs/4)ν∗s,z. Further,
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let ν̂∗ = minc
∑

s(µs − 3δs/4)ps,cν
∗ and ν̃∗ = minc

∑
s(δs/4)pscν

∗. Then,

D(ñ, x̃) ≤
∑
z∈Y

2ñz

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̂∗sz′ψs(z
′)−

∑
s

ν̂∗s,z


+ 2x

 ∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̂∗s,z′ψs(z
′)

− ν̂∗
+ α1

+
∑
z∈Y

2ñz

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,zψs(z
′)−

∑
s

ν̃∗sz

+2x

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,z′ψs(z
′)− ν̃∗


Consider the following lemma. Its proof is given in Section 8.9.4.

Lemma 8.9.3. Recall the {νs,z}s,z as postulated by the theorem.
For Θ = {θs,z}s∈S,z∈Y ∪ θ, where θ and θs,z for each s, z are reals, let

f(Θ) =
∑
z∈Y

2ñz

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

θsz′ψs(z
′)−

∑
s

θs,z


+ 2x

 ∑
z∈Z\Y

λπz +
∑
s∈S

∑
z′∈φ−1

s (z)∩Y

θsz′ψs(z
′)

− θ
 .

(8.16)

Then,

f
(
{ν̂∗s,z}s∈S,z∈Y ∪ ν̂∗

)
≤ f

(
{νs,z}s∈S,z∈Y ∪ {min

s
δs/4}

)
.

From definition of νs,z, we get that the first term in f({νs,z}s∈S,z∈Y∪{mins δs/4})
is equal to 0 and that the second term is less than or equal to 0.

Thus, we obtain

D(ñ, x̃) ≤ α1 +
∑
z∈Y

2ñz

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,zψs(z
′)−

∑
s

ν̃∗s,z


+ 2x

∑
s∈S

∑
z′∈φ−1

s (z)∩Y

ν̃∗s,z′ψs(z
′)− ν̃∗

 .

(8.17)

Rearranging, we get

D(ñ, x̃) ≤ α1 − 2
∑
s∈S

∑
z∈Y:φs(z)∈Y

ν̃∗sz(ñz − ψs(z)ñφs(z))

− 2
∑
s∈S

∑
z∈Y:φs(z)∈Z\Y

ν̃∗s,z(ñz − ψs(z)X)− 2xν̃∗.
(8.18)

Fix ε > 0. We now show that there exist a positive integer K such that if x > K
or if |ñ|∞ > K then D(ñ, x̃) ≤ −ε. Upon rearranging terms, we obtain
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D(ñ, x̃) ≤ α1 − 2
∑
s∈S

∑
z∈Y:φs(z)∈Y

ν̃∗s,z(ñz − ψs(z)ñφs(z))

− 2
∑
s∈S

∑
z∈Y:φs(z)∈Z\Y

ν̃∗s,z(ñz − ψs(z)X)− 2xν̃∗

= α1 − 2
∑
s∈S

∑
z∈Y

ν̃∗s,zws,z(ñ, x)− 2ν̃∗x,

≤ α1 −max

(
2
∑
s∈S

∑
z∈Y

ν̃∗s,zws,z(ñ, x), 2ν̃∗x

)
(8.19)

Thus we get,

D(ñ, x̃) ≤ α1 − xmin
c∈C

∑
s∈S

δs
4
ps,c.

Hence, for any (ñ, x) such that x > (α1 + ε) minc∈C
∑

s∈S
δs
4 ps,c, we have D(ñ, x̃) ≤

−ε.
We also have that

D(ñ, x̃) ≤ α1 − 2
∑
s∈S

δs
4

max
z∈Y

ws,z(ñ, x).

Thus,

D(ñ, x̃) ≤ α1−2

(
min
s∈S

δs
4

)∑
s∈S

max
z∈Y

ws,z(ñ, x) ≤ α1−2

(
min
s∈S

δs
4

)
max
z∈Y

∑
s∈S

ws,z(ñ, x).

Now suppose that x ≤ α2 := (α1 + ε) minc∈C
∑

s∈S
δs
4 ps,c. Then, if we show that

maxz∈Y
∑

s∈S ws,z(ñ, x)→∞ as |ñ|∞ →∞, then we have that D(ñ, x̃) ≤ −ε a pos-
itive integer K ′ such that |ñ|∞ > K ′. We now show that

∑
s∈S maxz∈Y ws,z(ñ, x)→

∞ as |ñ|∞ →∞.
Let z∗ = arg maxz∈Y nz. Then we have∑

s∈S
ws,z∗(ñ, x) ≤

∑
s

(nz∗ − ψs(z) min(α2, nz∗)

= |S|nz∗ −min(α2, nz∗)
∑
s

ψs(z)

which tends to infinity because∑
s

ψs(z) =
∑
s

∑
c

z∗c (1− ps,c) = |S| −
∑
s

∑
c

z∗cps,c

≤ |S| −max
c

∑
s

z∗cps,c ≤ |S| −max
c
z∗c min

c

∑
s

ps,c

≤ |S| − 1

|C|
min
c

∑
s

ps,c < |S|.

Thus, there exist positive constants K and ε such that if x > K or if |ñ|∞ > K
then D(ñ, x̃) ≤ −ε.

Let A := {(ñ, x̃) : max(|ñ|∞, x) ≤ K}. Then, using a version of Lyapunav-Foster
Theorem from [116], we have that, from any state (ñ, x̃) such that |ñ|+ x <∞, the
expected time to return to A, i.e., τA(ñ, x̃) is finite. Further,

T := sup
(ñ,x̃)∈A

τA(ñ, x̃) <∞.
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Thus, starting with any state in A, we return to it in a finite expected time. We
will be done if we show that expected time to return to state (0, 0) is also finite. We
do this as follows. Fix a constant β > 0. Since there exists s such that minc ps,c > 0,
we have that for any interval of time of size β the probability that no arrival happens
in the this interval and that a task leaves the system is finite.

Suppose that system is in a state (ñ, x̃) ∈ A at time t = 0. Now consider renewal
times Ti, i = 0, 1, 2, . . . ,, where T0 = 0 and for each i > 0, Ti is defined as follows:
Ti is equal to Ti−1 + β if indeed no arrival happens and a task leaves the system
in the interval [Ti−1, Ti), else Ti is the first time of return to A after Ti−1. Clearly
E[Ti] < ∞ since T as defined above is finite. Further the probability that a task
leaves the system in time Ti−Ti−1 is non-zero, say α. Thus, the time for the system
emptying after first reaching A can be upper-bounded by a sum of K geometric
random variables with rate α. Thus expected time to return to state (0, 0) is finite.
Hence, the system is stable.

Now suppose that the system is stable. Then, the necessary conditions can be
shown to hold by the ergodicity of the system, and letting νs,z for each s, z to be
the long-term fraction of times a server s attempts a task in Nz.

8.9.4 Proof of Lemma 8.9.3

Upon rearrangement of terms in the expression of f(Θ) we obtain

f(Θ)/2 = −
∑
s

∑
z∈Y:φs(z)∈Y

θs,z(nz−ψs(z′)nφs(z))−
∑
s

∑
z∈Y:φs(z)∈Z\Y

θs,z(nz−ψs(z′)x)−xθ.

By using the definition of weights ws,z, we obtain

f(Θ)/2 = −
∑
s

∑
z∈Y

θs,zws,z(ñ, x)− xθ ≥ −
∑
s

(
max
z∈Y

ws,z(ñ, x)

)∑
z∈Y

θs,z − xθ.

Thus,

f({νsz}s∈S,z∈Y ∪ {min
s
δs/4})/2

≥ −
∑
s

(
max
z∈Y

ws,z(ñ, x)

)∑
z∈Y

νs,z − xmin
c

∑
s∈S

(δs/4)psc

≥ −
∑
s

(µs − δs/2) max
z∈Y

wsz(ñ, x)− xmin
c

∑
s∈S

(δs/4)ps,c

≥ −1{
∑
s maxz∈Y ws,z(ñ,x)(µs−3δs/4)≥x(minc

∑
s(µs−3δs/4)ps,c)}

∑
s

max
z∈Y

ws,z(ñ, x)(µs − 3δs/4)

− 1{
∑
s maxz∈Y ws,z(ñ,x)(µs−3δs/4)<x(minc

∑
s(µs−3δs/4)ps,c)}xmin

c

∑
s

(µs − 3δs/4)ps,c

= f ({ν̂∗sz}s∈S,z∈Y ∪ ν̂∗) /2.

Hence, the lemma holds.
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[115] D. Tomozei and L. Massoulié. Stochastic Systems, 4(1):1–43, 2014.

[116] R. L. Tweedie. Criteria for classifying general markov chains. Advances in
Applied Probability, 8(4):737–771, 1976.

[117] U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–
416, 2007.

[118] K. Wakita and T. Tsurumi. Finding community structure in mega-scale social
networks. In Proceedings of the 16th International Conference on World Wide
Web, pages 1275–1276. ACM, 2007.

[119] E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimen-
sions. The Annals of Mathematics, pages 548–564, 1955.

[120] Eugene P. Wigner. On the Distribution of the Roots of Certain Symmetric
Matrices. The Annals of Mathematics, 67:325–327, 1958.

[121] J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with
node attributes. pages 1151–1156, Dec 2013.

[122] Heng-Qing Ye, Jihong Ou, and Xue-Ming Yuan. Stability of data networks:
Stationary and bursty models. Operations Research, 53(1):107–125, 2005.

[123] Lei Ying, Sanjay Shakkottai, Aneesh Reddy, and Shihuan Liu. On combin-
ing shortest-path and back-pressure routing over multihop wireless networks.
IEEE/ACM Transactions on Networking, 19(3):841–854, June 2011.

[124] W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977.

[125] P. Zhang, F. Krzakala, J. Reichardt, and L. Zdeborova. Comparative study
for inference of hidden classes in stochastic block models. Journal of Statistical
Mechanics: Theory and Experiment, Dec 2012.

[126] X. Zhang, J. Zhao, and Y. Lecun. Character-level convolutional networks
for text classification. Advances in Neural Information Processing Systems,
2015-January:649–657, 2015.

[127] Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spectral
methods meet em: A provably optimal algorithm for crowdsourcing. J. Mach.
Learn. Res., 17(1):3537–3580, January 2016.

158



Appendices

159



Appendix A

Algebraic Preliminaries

We shall make use of the following fact about the spectral radius:

Lemma A.0.4. If |X| ≤ Y holds entry-wise for two real symmetric matrices X and
Y , then

ρ(X) ≤ ρ(Y ).

Proof. Due to the Rayleigh-Ritz theorem, we have

ρ(X) = max
||z||=1

‖Xz‖.

Hence,

ρ(X) = max
||z||=1

||Xz|| ≤ max
||z||=1

|| Y |z| || = max
||z||=1

||Y z|| = ρ(Y ).

The following lemma could be of independent interest as a simple alternative to
the commonly used David-Kahan theorem:

Lemma A.0.5. Let A, δA be two n × n symmetric matrices. Let λ1 ≥ . . . ≥ λn
be the eigenvalues of A + δA and µ1 ≥ . . . ≥ µn be the eigenvalues of A. Let
∆ = min{|µi − µj | : µi 6= µj , µi, µj eigenvalue of A}. Assume that ρ (δA) < ∆

2 .
Let vi be a normed eigenvector of A + δA corresponding to eigenvalue λi, for any
i = 1, . . . , n. Then,

1. |λi − µi| ≤ ρ(δA),

2. the dimension of the eigenspace Ei of A+ δA corresponding to the eigenvalue
λi is no larger than the dimension of the eigenspace of A corresponding to the
eigenvalue µi,

3. there exists a normed eigenvector v̂i of A corresponding to eigenvalue µi such
that

vi · v̂i ≥

√
1−

(
ρ(δA)

∆/2

)2

.

Proof. (i) is due to Weyl’s inequality (see for instance [58]).
To prove (ii), let d be the dimension of Ei and write λi = λi+1 = · · · = λi+d−1.
Since |λi − µi| ≤ ρ(δA), we have |µi − µi+1| ≤ 2ρ(δA) < ∆. Thus µi = µi+1, and
similarly for the other eigenvalues.
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To prove (iii), we start with some notation: Let m be the number of distinct
eigenvalues of A, denote those distinct numbers as γ1 > · · · > γm. Define Si = {u ∈
{1, . . . , n} : µu = γi}, the set of indices of eigenvalues that are all equal to γi. For
u ∈ {1, . . . , n}, define τu ∈ {1, . . . ,m} as the unique index such that u ∈ Sτu . Write

vi =
∑
j

αjwj ,

where {wj}j are orthonormal eigenvectors of A with associated eigenvalues {µj}j .
Then,

(A+ δA)vi =
∑
j

αjµjwj + (δA)vi.

Hence,

(δA)vi =
∑
j /∈Sτi

αj(λi − µj)wj +
∑
j∈Sτi

αj(λi − µj)wi.

Taking norms on both sides,

(ρ(δA))2 ≥
∑
j /∈Sτi

α2
j (λi − µj)2 ≥

∑
j /∈Sτi

α2
j (∆−∆/2)2 =

1−
∑
j∈Sτi

α2
j

 (∆/2)2,

because, by definition |µi − µj | ≥ ∆ if τi 6= τj , and our observation |λi − µi| ≤
ρ(δA) < ∆/2. Put

v̂i =
1√∑
j∈Sτi

α2
j

∑
j∈Sτi

αjwj ,

then

vi · v̂i =

√√√√∑
j∈Sτi

α2
j ≥

√
1−

(
ρ(δA)

∆/2

)2

.

Lemma A.0.6. Consider a square n×n symmetric zero-diagonal random matrix A
such that its elements Auv = Avu are independent Bernoulli random variables with
parameters

E [Auv] = auv
ω̂(n)

n
,

where the auv are constants independent of n and ω̂(n) = Ω(log(n)). Then, with
probability larger than 1−O

(
1
n2

)
, the spectral radius of A− E [A] satisfies

ρ(A− E [A]) ≤ O
(√

ω̂(n)
)
.

Proof. This is precisely Lemma 2 in [115], where we quantified the term with high
probability. We did this by choosing c1 > 3 in its proof. Note that the latter proof
builds further on results by Feige and Ofek [42].

Lemma A.0.7 (Bernstein’s inequality). Let X1, . . . , Xn be zero-mean independent
random variables all bounded from above by one. Put σ2 = 1

n

∑n
u=1 var(Xu). Then,

P

(
1

n

n∑
u=1

Xu > ε

)
≤ exp

(
− nε2

2(σ2 + ε/3)

)
.
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Proof. See [11].

Note that Bernstein’s lemma can easily be extended to the case of non-centred
random variables.
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Résumé

Dans cette thèse, nous étudions deux
problèmes d’apprentissage automatique:
(I) la détection des communautés et (II)
l’appariement adaptatif.
I) Il est bien connu que beaucoup de réseaux
ont une structure en communautés. La
détection de ces communautés nous aide
à comprendre et exploiter des réseaux de
tout genre. Cette thèse considère prin-
cipalement la détection des communautés
par des méthodes spectrales utilisant des
vecteurs propres associés à des matrices
choisies avec soin. Nous faisons une anal-
yse de leur performance sur des graphes ar-
tificiels. Au lieu du modèle classique connu
sous le nom de � Stochastic Block Model
� (dans lequel les degrés sont homogènes)
nous considérons un modèle où les degrés
sont plus variables: le � Degree-Corrected
Stochastic Block Model � (DC-SBM). Dans
ce modèle les degrés de tous les noeuds
sont pondérés - ce qui permet de générer
des suites des degrés hétérogènes. Nous
étudions ce modèle dans deux régimes: le
régime dense et le régime � épars �, ou
� dilué �. Dans le régime dense, nous
prouvons qu’un algorithme basé sur une ma-
trice d’adjacence normalisée réussit à clas-
sifier correctement tous les noeuds sauf une
fraction négligeable. Dans le régime épars il
existe un seuil en termes de paramètres du
modèle en-dessous lequel n’importe quel al-
gorithme échoue par manque d’information.
En revanche, nous prouvons qu’un algo-
rithme utilisant la matrice � non-backtracking
� réussit jusqu’au seuil - cette méthode est
donc très robuste. Pour montrer cela nous
caractérisons le spectre des graphes qui sont
générés selon un DC-SBM dans son régime
épars. Nous concluons cette partie par des
tests sur des réseaux sociaux.
II) Les marchés d’intermédiation en ligne
tels que des plateformes de Question-
Réponse et des plateformes de recrute-
ment nécessitent un appariement basé sur
une information incomplète des deux parties.
Nous développons un modèle de système
d’appariement entre tâches et serveurs
représentant le comportement de telles plate-
formes. Pour ce modèle nous donnons une
condition nécessaire et suffisante pour que
le système puisse gérer un certain flux de
tâches. Nous introduisons également une
politique de � back-pressure � sous lequel
le débit gérable par le système est maximal.
Nous prouvons que cette politique atteint un
débit strictement plus grand qu’une politique
naturelle � gloutonne �. Nous concluons
en validant nos résultats théoriques avec des
simulations entranées par des données de la
plateforme Stack-Overflow.

Mots Clés

Apprentissage automatique, détection des com-
munautés, réseaux sociaux, degree-corrected
stochastic block models, méthodes spectrales,
matrices aléatoires, matrice non-backtracking,
graphes aléatoires, appariement adaptatif, ap-
prentissage par renforcement, théorie des files
d’attente.

Abstract

In this thesis, we study two problems of ma-
chine learning: (I) community detection and
(II) adaptive matching.
I) It is well-known that many networks ex-
hibit a community structure. Finding those
communities helps us understand and ex-
ploit general networks. In this thesis we fo-
cus on community detection using so-called
spectral methods based on the eigenvectors
of carefully chosen matrices. We analyse
their performance on artificially generated
benchmark graphs. Instead of the classical
Stochastic Block Model (which does not al-
low for much degree-heterogeneity), we con-
sider a Degree-Corrected Stochastic Block
Model (DC-SBM) with weighted vertices, that
is able to generate a wide class of degree
sequences. We consider this model in both
a dense and sparse regime. In the dense
regime, we show that an algorithm based on
a suitably normalized adjacency matrix cor-
rectly classifies all but a vanishing fraction of
the nodes. In the sparse regime, we show
that the availability of only a small amount
of information entails the existence of an
information-theoretic threshold below which
no algorithm performs better than random
guess. On the positive side, we show that an
algorithm based on the non-backtracking ma-
trix works all the way down to the detectabil-
ity threshold in the sparse regime, showing
the robustness of the algorithm. This follows
after a precise characterization of the non-
backtracking spectrum of sparse DC-SBM’s.
We further perform tests on well-known real
networks.
II) Online two-sided matching markets such
as Q&A forums and online labour platforms
critically rely on the ability to propose ad-
equate matches based on imperfect knowl-
edge of the two parties to be matched. We
develop a model of a task / server match-
ing system describing platform operation in
the presence of such uncertainty. For this
model, we give a necessary and sufficient
condition for an incoming stream of tasks to
be manageable by the system. We further
identify a so-called back-pressure policy un-
der which the throughput that the system can
handle is maximal. We show that this pol-
icy achieves strictly larger throughput than
a natural greedy policy. Finally, we validate
our model and confirm our theoretical findings
with experiments based on user-contributed
content on an online platform.

Keywords

Machine learning, community detection, social net-
works, degree-corrected stochastic block mod-
els, spectral methods, random matrices, non-
backtracking matrix, random graphs, recommen-
dation systems, reinforcement learning, queueing
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