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Abstract

Cluster analysis or clustering, which aims to group together similar objects, is undoubtedly a

very powerful unsupervised learning technique. With the growing amount of available data,

clustering is increasingly gaining in importance in various areas of data science for several

reasons such as automatic summarization, dimensionality reduction, visualization, outlier

detection, speed up research engines, organization of huge data sets, etc. Existing clustering

approaches are, however, severely challenged by the high dimensionality and extreme sparsity

of the data sets arising in some current areas of interest, such as Collaborative Filtering (CF)

and text mining. Such data often consists of thousands of features and more than 95% of

zero entries. In addition to being high dimensional and sparse, the data sets encountered in

the aforementioned domains are also directional in nature. In fact, several previous studies

have empirically demonstrated that directional measures—that measure the distance between

objects relative to the angle between them—, such as the cosine similarity, are substantially

superior to other measures such as Euclidean distortions, for clustering text documents or

assessing the similarities between users/items in CF. This suggests that in such context only

the direction of a data vector (e.g., text document) is relevant, not its magnitude. It is worth

noting that the cosine similarity is exactly the scalar product between unit length data vectors,

i.e., L2 normalized vectors. Thus, from a probabilistic perspective using the cosine similarity

is equivalent to assuming that the data are directional data distributed on the surface of a

unit-hypersphere.

Despite the substantial empirical evidence that certain high dimensional sparse data sets,

such as those encountered in the above domains, are better modeled as directional data, most

existing models in text mining and CF are based on popular assumptions such as Gaussian,

Multinomial or Bernoulli which are inadequate for L2 normalized data. In this thesis, we

focus on the two challenging tasks of text document clustering and item recommendation,

which are still attracting a lot of attention in the domains of text mining and CF, respectively.

In order to address the above limitations, we propose a suite of new models and algorithms

which rely on the von Mises-Fisher (vMF) assumption that arises naturally for directional

data lying on a unit-hypersphere. The object of this thesis is fourfold.
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First, we propose a novel efficient incremental variant of the spherical k-means algorithm

tailored for collaborative filtering, and which is able to handle effectively the frequent changes

in the CF data: occurrence of new users, items, ratings and update of existing ratings. Two

situations are considered: static situation where data are kept unchanged, and dynamic

situation where new data are being added as they become available.

Second, with the advent of social networks, social CF approaches have proven to be

very effective in alleviating the sparsity related issues and, thereby, improving the recom-

mendations. Such approaches are motivated by the fact that, in real life people often turn

to their friends to ask for a nice movie to watch, book to read, etc. A major shortcoming of

existing models to social collaborative filtering is that they are inadequate for directional

data. On one hand we have the benefits of modeling CF data as directional, and on the

other hand we have the benefits of incorporating information from social network into CF.

It is therefore reasonable to expect that we can alleviate the sparsity problem and improve

recommendations even better if we leverage simultaneously the directional characteristics of

CF data and the social interactions among users. This is precisely what we do in this thesis;

we develop a new directional model-based CF approach that accounts for social interactions

among users. Empirical results on various real-world data sets suggest that not only the

directional nature of CF data, but also the social interactions among users should be taken

into account to reach a high quality of recommendation.

Third, in the context of high dimensionality and sparsity, co-clustering, or simultaneous

clustering of rows and columns of data matrices, turns out to be more beneficial than

traditional one-sided clustering even if we are interested in clustering along one dimension,

only. In this thesis, we develop a general co-clustering model that is based on the vMF

assumption. Unlike existing co-clustering models, the proposed one successfully accounts

for the intrinsic directional characteristics of some data sets such as text. We study the

theoretical connections of the proposed model with existing ones, and we derive a suite of

new vMF-based co-clustering algorithms that turn out to be very scalable and effective for

analyzing high dimensional sparse document-term matrices, as illustrated in our experiments.

Fourth, due to high dimensionality and sparsity, co-clustering approaches, like one-

sided clustering methods, tend to generate highly skewed solutions with very unbalanced

or even empty clusters when the number of required clusters is large. In order to overcome

this difficulty, we develop a novel directional co-clustering approach which successfully

integrates a “conscience” mechanism that penalizes the clusters according to their sizes. The

proposed algorithm is scalable and monotonically increases a spherical k-means like criterion

by intertwining row and column clusterings at each step. Moreover, empirical results provide

strong support for the effectiveness of the proposed approach.



Résumé

La classification automatique, qui consiste à regrouper des objets similaires au sein de

groupes, également appelés classes ou clusters, est sans aucun doute l’une des méthodes

d’apprentissage non-supervisé les plus utiles dans le contexte du Big Data. En effet, avec

l’expansion des volumes de données disponibles, notamment sur le web, la classification ne

cesse de gagner en importance dans le domaine de la science des données pour la réalisation

de différentes tâches, telles que le résumé automatique, la réduction de dimension, la visu-

alisation, la détection d’anomalies, l’accélération des moteurs de recherche, l’organisation

d’énormes ensembles de données, etc. De nombreuses méthodes de classification ont été

développées à ce jour, ces dernières sont cependant fortement mises en difficulté par les

caractéristiques complexes des ensembles de données que l’on rencontre dans certains do-

maines d’actualité tel que le Filtrage Collaboratif (FC) et de la fouille de textes. Ces données,

souvent représentées sous forme de matrices, sont de très grande dimension (des milliers de

variables) et extrêmement creuses (ou sparses, avec plus de 95% de zéros).

En plus d’être de grande dimension et sparse, les données rencontrées dans les domaines

mentionnés ci-dessus sont également de nature directionnelles. En effet, plusieurs études

antérieures ont démontré empiriquement que les mesures directionnelles, telle que la simi-

larité cosinus, sont supérieurs à d’autres mesures, telle que la distance Euclidiennes, pour

la classification des documents textuels ou pour mesurer les similitudes entre les utilisa-

teurs/items dans le FC. Cela suggère que, dans un tel contexte, c’est la direction d’un vecteur

de données (e.g., représentant un document texte) qui est pertinente, et non pas sa longueur.

Il est intéressant de noter que la similarité cosinus est exactement le produit scalaire entre

des vecteurs unitaires (de norme 1). Ainsi, d’un point de vue probabiliste l’utilisation de la

similarité cosinus revient à supposer que les données sont directionnelles et réparties sur la

surface d’une hypersphère unité.

En dépit des nombreuses preuves empiriques suggérant que certains ensembles de don-

nées sparses et de grande dimension sont mieux modélisés sur une hypersphère unité, la

plupart des modèles existants dans le contexte de la fouille de textes et du FC s’appuient

sur des hypothèses populaires : distributions Gaussiennes ou Multinomiales, qui sont mal-

heureusement inadéquates pour des données directionnelles.
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Dans cette thèse, nous nous focalisons sur deux challenges d’actualité, à savoir la classifi-

cation des documents textuels et la recommandation d’items, qui ne cesse d’attirer l’attention

dans les domaines de la fouille de textes et celui du filtrage collaborative, respectivement.

Afin de répondre aux limitations ci-dessus, nous proposons une série de nouveaux modèles et

algorithmes qui s’appuient sur la distribution de von Mises-Fisher (vMF) qui est plus appro-

priée aux données directionnelles distribuées sur une hypersphère unité. Les contributions

majeures de cette thèse s’articulent autour de quatre axes principaux.

Dans un premier temps nous proposons une nouvelle variante incrémentale de l’algorithme

k-means sphérique, qui s’appuyant sur la similarité cosinus permet de gérer efficacement

les changements fréquents dans les données du filtrage collaboratif, à savoir l’apparition

de nouveaux utilisateurs, items, notes et mise à jour de notes existantes. Les résultats ex-

périmentaux confirment l’efficacité et la rapidité de notre approche dans les deux situations

suivantes: statique où les données restent inchangées, et dynamique où de nouvelles données

sont intégrées au fur et à mesure de leurs disponibilités.

Dans un second temps nous nous intéressons à l’exploitation des réseaux sociaux dans les

systèmes de filtrage collaboratif. Avec l’avènement des réseaux sociaux les approches de FC

sociale se sont avérées très efficaces pour atténuer les problèmes liés à la sparsité des données,

ce qui permet d’améliorer la qualité des recommandations de manière notable dans la plus

part des cas. D’une part, nous avons les avantages de la modélisation des données sur une

hypersphère unité, et d’autre part, nous avons les avantages de l’intégration des informations

des réseaux sociaux dans le FC. L’exploitation simultanée des caractéristiques directionnelles

des données du FC et les informations provenant des réseaux sociaux permettra d’améliorer

les recommandations de façon significative. Pour ce faire, nous développons une nouvelle

approche basée sur un mélange de distributions de vMF tout en tenant compte des interactions

sociales entre les utilisateurs. Les résultats empiriques sur divers ensembles de données réels

suggèrent que, pour formuler des recommandations de bonne qualité, il est non seulement

nécessaire de prendre en compte la nature directionnelle des données du FC mais aussi les

interactions sociales entre les utilisateurs.

Dans un troisièmes temps, nous nous intéressons à la classification croisée qui consiste,

cette fois-ci, à partitionner simultanément les deux dimensions d’une matrice de données

afin de faire ressortir une structure en blocs latents dans les données initiales. Cette dernière

s’avère être plus bénéfique que la classification simple pour le traitement de matrices creuses à

grande dimension, et cela même si l’utilisateur est intéressé uniquement par le partitionnement

sur une seule dimension. Les approches de classification croisées existantes s’appuient,

cependant, sur des hypothèses qui sont inappropriées pour des données projetées sur une

hypersphère unité. Afin de surmonter cette limite, nous proposons un nouveau modèle
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de mélange pour la classification croisée qui s’appuie sur un mélange de distributions

vMF. Ce modèle qui est parcimonieux a l’avantage d’exploiter simultanément les bénéfices

de la classification croisée et de la modélisation des données sur une hypersphère unité.

Nous étudions les connexions théoriques du modèle proposé avec d’autres modèles, et

nous dérivons une série de nouveaux algorithmes qui s’avèrent évolutifs et efficaces pour

la classification croisée des matrices documents-termes qui ont la particularité d’être très

creuses et de grande dimension.

La dernière contribution de cette thèse consiste à contrer les problèmes liés à l’obtention

de classes vides ou très déséquilibrées. En effet, du fait de la grande dimensionnalité et de la

sparsité caractérisant les données, les méthodes de classification croisée, comme les méthodes

de classification simple, ont tendance à générer des classes vides ou très déséquilibrées, en

particulier lorsque le nombre de classes souhaité est grand. Afin de surmonter cette difficulté,

nous développons une nouvelle approche de classification croisée directionnelle qui intègre

avec succès un mécanisme de conscience. Ce dernier permet de pénaliser les clusters en

fonction de leurs tailles. L’algorithme proposé est évolutif et garantit de faire croître, à

chaque itération, de façon monotone un critère de type k-means sphérique en alternant la

classification des lignes et des colonnes. En outre, sur des données réelles, les résultats

empiriques obtenus appuient fortement l’efficacité de l’approche proposée.
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Introduction

Clustering aims to organize a set of objects into homogeneous groups, such that objects in the

same cluster (or group) are more “similar” to each other than to objects in different clusters

(Xu et al., 2005; Everitt et al., 2011; Aggarwal and Reddy, 2013). In machine learning, where

data is often represented by a matrix where the rows denote objects (instances, individuals),

and the columns denote features (attributes, variables), clustering is a powerful unsupervised

learning technique that aims to “summarize” data—seeks to find a reduced representation

of data by grouping together either similar objects or variables—to ease their exploration

and interpretation. More precisely, clustering seeks to discover a hidden structure of the data

that can be exploited to represent the data in a compressed fashion, that reflects faithfully

the original data. Due to its practical importance, clustering has received a lot of attention

in various communities such as machine learning, data mining and information retrieval.

This led to the development of a wide variety of clustering methods, regarding the context

and types of data, i.e., binary, categorical, continuous or count data (Aggarwal and Reddy,

2013). Despite the extensive efforts of many research communities, clustering approaches

are still seriously challenged by the characteristics—high dimensionality and sparsity—of

certain data sets arising in some current areas of interest such as text mining and collaborative

filtering. In fact, when dealing with such data, most of traditional clustering algorithms suffer

from poor performances in terms of both scalability and quality of clustering. In this thesis,

we propose a suite of novel algorithms that are based on rigorous probabilistic assumptions,

and which are able to handle effectively and efficiently high dimensional sparse data sets. In

particular, we focus on the two areas of text mining and collaborative filtering, with the aim

to solve the challenging tasks of document clustering and item recommendation, using high

dimensional sparse document-term and user-item matrices, respectively.



2 Introduction

I.1. Motivation and Contribution

I.1.1. Why von Mises-Fisher based models?

Several data sets arising in some current areas of interest, such as text mining, collaborative

filtering and bioinformatics, are high dimensional and extremely sparse; usually theses data

sets consist of more than 1000 features and 95% of zero entries. Analysing such data is a

major challenge. Indeed, most of existing clustering methods suffer from poor performances

in this context. Apart from being high dimensional and sparse, the data sets arising in the

above domains are also directional in nature (Mardia and Jupp, 2000; Banerjee et al., 2005b).

In text mining, where data arises in the form of high dimensional sparse document-term

matrices, clustering text documents is of great interest for several practical reasons: automatic

summarization and organization of documents, efficient browsing and navigation of huge text

corpora, dimensionality reduction, visualization, speed up search engines, etc. In this domain,

it is well known that normalizing the data vectors so that they lie on a unit-hypersphere—L2

normalization—allows us to remove the biases induced by the lengths of documents and

reach better clustering performances. Furthermore, it has been found that von Mises-Fisher

(vMF) based clustering algorithms, including the spherical k-means algorithm (Dhillon and

Modha, 2001), are superior to several other clustering methods which are based on popular

assumptions such as Gaussian, Multinomial or Bernoulli, see for instance (Zhong and Ghosh,

2005; Gopal and Yang, 2014). Recall that the vMF distribution is a continuous probability

distribution, from directional statistics (Mardia and Jupp, 2000), that arises naturally for

directional data lying on the surface of a unit-hypersphere. In particular, the vMF distribution

focuses on the directions of objects—data vectors—and measures the distance between them

using the cosine similarity, which turns out to be a more effective measure for clustering

text documents (Strehl et al., 2000). From a probabilistic perspective, the success of the L2

normalization and vMF-based models, for clustering text documents, constitutes a strong

empirical evidence that text data has intrinsic directional characteristics that match well with

the modeling assumption of the vMF distribution.

Collaborative filtering (CF) is a widely used recommendation approach, it consists in

making recommendations for users according to the preferences of other similar users. Over

the last decade, CF systems have become central in modern web applications such as Amazon,

Netflix, Youtube, Flixster, etc. In fact, CF makes it possible to filter the huge amount of

information generated in the above applications so as to guide the users towards items that

might interest them. Collaborative Filtering is another domain where it is better to model

data as directional. In fact, let us consider the cosine similarity and Pearson Correlation

Coefficient (PCC), two widely used measures in this domain. The above two, or their
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variants, have been found to be more effective and efficient than Euclidean distortions to

assess similarities between users or items (Sarwar et al., 2001; Liu et al., 2014). Observe

that both measures focus on the directions of data vectors, i.e., the similarity between two

objects—users or items—is measured relative to the angle between them. The success of

such measures in CF suggests that the direction of a user (resp., item) preference-vector is

relevant, not its magnitude.

It is worth noting that both the above measures are exactly the scalar product between

objects lying on the surface of a unit-hypersphere, i.e., objects of unit length (L2 norm). This

is straightforward for the cosine similarity, now let us look at the PCC between two users,

represented by vectors x and y in R
d , given by:

PCC(x,y) =
(x− x̄)⊤(y− ȳ)

∥x− x̄∥∥y− ȳ∥ ,

where x̄ and ȳ are two vectors of the appropriate dimensions, such that x̄1 = · · ·= x̄d =∑ j x j/d

and ȳ1 = · · ·= ȳd = ∑ j y j/d. Let x′ = x−x̄
∥x−x̄∥ and y′ = y−ȳ

∥y−ȳ∥ , then the PCC between x and y

is exactly the scalar product (cosine similarity) between the two unit-length vectors x′ and y′.

Hence, using the cosine and PCC measures is equivalent to assume that CF data is directional

and distributed on the surface of a unit-hypersphere. The success of such measures constitutes

empirical evidence that CF data sets possess intrinsic directional properties (Mardia and Jupp,

2000) that should be taken into account when modeling such data.

Despite the substantial empirical evidence that some high dimensional sparse data sets

are better modeled as directional1 data, most existing models in the context of text document

clustering and CF are based on popular assumptions such as Gaussian or Multinomial, which

are inadequate for directional data destributed on the surface of a unit-hypersphere.

I.1.2. Contributions

This thesis deals with a suite of new models and algorithms tailored for directional data

distributed on the surface of a unit-hypersphere. The proposed models are scalable and able

to handle effectively certain high dimensional sparse data sets such as text and CF data. The

major contributions of this thesis are structured around four main topics:

A directional clustering-based incremental collaborative filtering

Collaborative filtering systems seek to filter huge amount of information so as to provide users

with useful items. While some CF approaches, such as memory and Matrix Factorization,

1In the rest of this thesis we treat “direction data” and “L2 normalized data” as synonyms
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may offer a good recommendation accuracy, they are computationally prohibitive. Scalable

approaches are, therefore, needed if CF techniques are to be usable in realistic scenarios

where data evolves rapidly. This thesis presents a scalable incremental variant of the spherical

k-means algorithm, that is able to handle effectively the frequent changes in CF data such as

submission of new ratings, update of existing ratings, appearance of new users and items.

Directional Clustering with Social-Network information

Recently, several works have demonstrated that incorporating information from social net-

works, such as friendships and trust relationships, into tradition traditional CF enables to

alleviate significantly the sparsity related issues such as the problem of cold start users, i.e.,

who expressed very few ratings. Social-based CF builds on the assumption that, for making

good recommendations, not only the user’s expressed preferences are important but also the

user’s social interactions. This is natural as people often turn to their friends for advice before

choosing a movie, a book, a restaurant, etc. By capturing this real-life behaviour, social CF

approaches make more realistic recommendations and, thereby, improve the performances of

traditional methods noticeably in most cases. This thesis propose a novel social CF model in

order to address the sparsity issue. By contrast to existing social CF models, which are based

on popular assumptions such as Gaussian, the proposed one builds on the von Mises-Fisher

assumption that turns out to be more adequate to model CF data. Extensive experiments, on

several real-wold data sets, illustrate the advantages of our modeling assumption and suggest

that not only the users’ social interactions, but also the intrinsic directional characteristics of

CF data should be taken into account so as to improve recommendations.

Co-clustering via a mixture of von Mises-Fisher distributions

In the context of high dimensionality and sparsity, co-clustering, or simultaneous clustering

of rows and columns of data matrices, turns out to be more beneficial than traditional

one-sided clustering even if we are interested in clustering along one dimension, only.

Popular co-clustering assumptions such as Gaussian, Multinomial or Bernoulli are, however,

inadequate for L2 normalized data. In this thesis, we propose novel rigorous probabilistic

model for co-clustering, which is suitable for directional data lying on the surface of a unit

hypersphere. The proposed model successfully integrates a directional measure, namely the

cosine similarity, into a co-clustering framework. Based on the proposed model we derived

several new co-clustering algorithms that are very scalable and effective. Empirical results,

on numerous simulated and real-world data sets, demonstrate the effectiveness of our model

and algorithms for handling high dimensional sparse document-term matrices.
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Frequency sensitive co-clustering

It is well known that, because of high dimensionality and sparsity, co-clustering approaches,

like one-sided clustering methods, tend to generate highly skewed solutions with very

unbalanced or empty clusters (Dhillon et al., 2002; Cho et al., 2004; Banerjee et al., 2004;

Zhang et al., 1999), especially when the number of required clusters is large. In some

situations, however, it may be more beneficial to obtain balanced clusters or at least avoid

bad solutions with very unbalanced or empty clusters. In order to tackle the aforementioned

issue and avoid extremely skewed solutions, we develop a novel directional co-clustering

method which integrates a “conscience” mechanism—inspired from Frequency Sensitive

Competitive Learning—that prevents from such bad local solutions.

I.2. Overview

The rest of this thesis is organized as follows:

- Chapter 1 reviews the major existing approaches to clustering and discusses their main

strengthens and weakness.

- Chapter 2 is devoted to clustering on a unit-hypersphere for item recommendation, it first

reviews the spherical k-means algorithm, using the cosine similarity instead of Euclidean

distortions, then it presents a novel efficient incremental variant of the spherical k-means

algorithm that is designed for collaborative filtering, and which takes into account the

frequent changes in the CF data, namely occurrence of new users, items, ratings and update

of existing ratings.

- Chapter 3 is about social collaborative filtering which consists in leveraging information

from social networks so as to alleviate the sparsity problem and enhance recommendations.

In this chapter, a new social CF model is described, the latter relies on the vMF mixture

model, and it aims to partition the set of users into homogeneous groups as well as bring

the distributions over clusters of socially connected users closer to each other. In doing

so, the proposed model is able to capture social interactions among users and, thereby,

formulate more realistic recommendations.

- Chapter 4 reviews the main existing approaches to co-clustering or simultaneous clustering

of rows and columns of data matrices.
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- Chapters 5 and 6 are devoted to new co-clustering approaches tailored for directional

data distributed on the surface of a unit-hypersphere. More precisely, Chapter 5 presents a

novel co-clustering model that builds on the von Mises-Fisher distribution and a suite of

algorithms arising from this model, including soft, hard, stochastic and simulated annealing

variants. While Chapter 6 presents a novel vMF-based co-clustering approach with some

balancing constraints on the row and column cluster sizes. A property that could be of

great interest in some situations as illustrated in Chapter 6.

I.3. Notations

Through this thesis, we will use the following notations (unless stated otherwise):

- Matrices are denoted with boldface uppercase letters, vectors with boldface lowercase

letters and sets by script style uppercase letters. The L2 norm is denoted by ∥.∥. The

(d−1) dimensional unit sphere embedded in R
d is denoted by S

d−1.

- Data is represented by a matrix X = (xi j) of size n× d, xi j ∈ R, the ith row of this

matrix is represented by a vector xi = (xi1, . . . ,xid)
⊤, where ⊤ denotes the transpose.

- The partition of the set of rows I into g clusters can be represented by a classi-

fication matrix Z of elements zih in {0,1} satisfying ∑
g
h=1 zih = 1. The notation

z = (z1, . . . ,zn)
⊤, where zi ∈ {1, . . . ,g} represents the cluster label of i, will be also

used. These notations are illustrated in Table 1.

- Similarly the notations W = (w jh), w jh ∈ {0,1} satisfying ∑
g
h=1 w jh = 1, and w =

(w1, . . . ,wd)
⊤, where w j ∈ {1, . . . ,g} represents the cluster label of j, will be used to

represent the partition of the set of columns J , see Table 1.

- In the same way, the fuzzy classification matrix of I will be denoted by Z̃ = (z̃ih)

where z̃ih ∈ [0,1], satisfying ∑
g
h=1 z̃ih = 1, for all i in I.

- The sums and the products relating to rows, columns, row clusters and column clusters

will be subscripted respectively by the letters i, j and h, without indicating the limits

of variation which will be implicit. So, the sums ∑i, ∑ j and ∑h stands respectively for

∑
n
i=1, ∑

d
j=1 and ∑

g
h=1.
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Table 1 Data matrix X and associated row and column partitions indicated respectively by
the representations z and Z, w and W, with g = 3.

columns (J )
z(n×1) Z = (zih)(n×g)1 · · · j · · · d

ro
w

s
(I

)

x1 x11 · · · x1 j · · · x1d 1 1 0 0
...

...
...

...
xi xi1 · · · xi j · · · xid 3 0 0 1
...

...
...

...
xn xn1 · · · xn j · · · xnd 2 0 1 0

w(1×d) 3 · · · 1 · · · 2

WT = (wh j)
0 · · · 1 · · · 0
0 · · · 0 · · · 1

(g×d) 1 · · · 0 · · · 0





Chapter 1

Clustering approaches

This chapter provides a brief survey of existing approaches to clustering. The objective here

is not to provide a detailed description of all existing clustering methods, but rather to give

an outline of the major approaches to clustering.

1.1 Hierarchical clustering

Given a set of objects to be clustered, hierarchical methods consist in constructing a sequence

of partitions of the set varying from singletons to the whole set. A hierarchical clustering

algorithm aims to transform a measure of dissimilarity between objects into a sequence of

nested partitions, or an indexed hierarchy, such as the closest objects are grouped in the

clusters with the smallest indexes. The obtained clustering hierarchy can be represented by a

dendrogram as illustrated in Figure 1.1. The way in which the clustering hierarchy is built

gives rise to two major hierarchical clustering categories.

Agglomerative hierarchical clustering. These approaches , also known as bottom up,

first put each object in its own cluster, then start merging closest clusters until there is only

a single cluster left. These methods require to choose a metric (e.g. euclidean distance),

to compute dissimilarities between objects, and a linkage function (or criteria) to compute

the dissimilarity between clusters based on the pairwise distances between objects. Several

linkage criteria exist; the most popular are: single-linkage (Sibson, 1973), complete-linkage

(Sorensen, 1948), average-linkage (Sokal, 1958) and Ward’s criterion (Ward Jr, 1963). For

instance, the single-linkage defines the distance between two clusters as the pairwise distance

between the two closest objects—one in each cluster. In addition to the above traditional

methods several agglomerative clustering approaches have been proposed, they differ in

their dissimilarity metric and linkage strategy, for more details the reader can refer to survey

papers (Xu et al., 2005; Murtagh and Contreras, 2012) or the book of Everitt et al. (2011).
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Fig. 1.1 An indexed hierarchy represented as a dendrogram

Divisive hierarchical clustering. As opposed to agglomerative methods, divisive, also

denoted as top down, approaches assume that all objects belong to a big single cluster

at the beginning, then split it repeatedly into smaller clusters, according to some chosen

criterion, until each object form its own cluster or some stopping condition is reached.

Example of divisive clustering approaches are MONA and DIANA described in (Kaufman

and Rousseeuw, 2009), some other methods can be found in (Everitt et al., 2011). Divisive

approaches are less common in practice, as opposed to agglomerative ones, due to their high

computational cost.

The main advantages of hierarchical-based clustering approaches is that they do not

require the number of clusters as an input, some methods, such as single-linkage, are

able to discover clusters with non-convex shapes, and they can offer different clustering

levels according to the position where the dendrogram is cut. These approaches exhibit,

however, two major weaknesses: the first one is that they do not scale well to large datasets,

the computational time complexity of most existing hierarchical methods is usually given

respectively in O(n3) and O(2n) for agglomerative and divisive approaches, where n is the

number of objects. The complexity of some efficient agglomerative approaches is O(n2).

Hierarchical methods are therefore not suitable for large high dimensional datasets, such

those encountered in text mining and collaborative filtering domains. The second, is that

most existing methods perform the splitting or merging operations irreversibly and never

undo what was done.
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1.2 Density-based clustering

Density-based clustering methods assume that clusters are dense regions—of objects—in

the feature space, and that clusters are separated by low dense regions. Objects in the latter

regions are considered as noise. One of the most known density-based clustering approach

is DBSCAN proposed in (Ester et al., 1996). In this approach, the density around a given

object oi is defined as the number of objects within a distance ε around object oi. If the

number of such objects if greater than a certain threshold minPts, called the density threshold,

then oi is considered a core point, and oi is considered a border point otherwise. Based on

the above notions, DBSCAN starts by randomly selecting an object oi, if it is a core point

then a cluster is formed by connecting all density-reachable objects from oi, otherwise—oi

is a border point—another object is selected. This process is repeated until all objects are

processed, for more details the reader can refer to (Ester et al., 1996). The DBSCAN method

has the advantage of being able to discover clusters of arbitrary shapes. It is, however, highly

sensitive to the settings of the density threshold minPts and radius ε parameters. In order

to overcome the latter drawback, the same authors proposed OPTICS (Ankerst et al., 1999)

a generalization of DBSCAN that do not require the parameters minPts and ε . In general

density-based clustering methods are not very efficient for high dimensional data. Some

approaches, such as grid-based methods (Wang et al., 1997; Hinneburg and Keim, 1998),

that can handle more efficiently high dimensional data have been proposed. Nevertheless,

the latter may be less effective in some situations. For further details and more recent

developments in density based-clustering, please refer to (Kriegel et al., 2011).

1.3 Graph-based clustering

This category of clustering methods works on data represented as a graph—from a graph

theory point of view—that consists of a set of vertices (or nodes) and a set of edges between

them—usually undirected; each edge connects a pair of nodes. Given such a graph structure,

the aim of graph-based clustering is to find clusters of nodes, in such way that nodes within

a cluster are more connected to each other than to those in other clusters, an illustration

is given in figure 1.2. In other words, graph clustering seeks a partition of a graph into k

clusters in such way that there will be many edges within each cluster and only few edges

between clusters. A large class of graph clustering methods consists in solving graph cut

problems; may be the simplest and one of the most popular is the minimum cut problem. It

seeks to find a partition of the nodes in a graph by minimizing the sum of weights of the

edges between clusters. Several variants of minimum cut have been proposed, among which
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1.4 Partitional clustering

The aim of partitional clustering is to discover a hidden partition of a set of objects into g

disjoint clusters, i.e., with non-hierarchical structure, in such a way that objects within a

cluster are more “similar” to each other than to those in other clusters. Partitional approaches

are widely used in practice due to their simplicity and scalability.

1.4.1 Centroid-based approaches

Centroid-based clustering represents a large class of partitional clustering methods. In

this approach each cluster is represented by a centroid (or prototype) vector—which is not

necessarily in the set of objects—and the aim is to find a partition of the objects, into g clusters,

that optimizes some criterion, usually the deviation of each object from its cluster centroid.

A trivial way to find such an optimal partition is to enumerate all possible partitions. As the

latter is infeasible in practice, centroid-based approaches rely on optimization procedures

which guarantee only a locally optimal solution. The choice of the cluster representatives—

centroids—and the criterion to optimize gives rise to a large number of centroid-based

clustering methods. Among which we can mention the well known k-means algorithm.

The k-means algorithm (MacQueen et al., 1967; Bock, 2007) is the most popular parti-

tional clustering method, it seeks to find a partition of the objects into g clusters in such a

way that the sum of squared euclidean distances, between each object and its cluster centroid,

is minimized. Formally, k-means aims to minimize the following objective function

C(µ,z) =
n

∑
i=1

g

∑
h=1

zih∥xi−µh∥2. (1.1)

where xi ∈ R
d denote the ith object, µh ∈ R

d is the centroid of cluster h, zih = 1 if the ith

object belongs to cluster h and zih = 0, otherwise. In order to minimize (1.1) the k-means

algorithm involves the following steps:

1. Initialization: sample at random g initial centroids from the set of objects.

2. Optimization: alternate the following two steps until convergence.

(a) Assignement: assign each object to the closest centroid cluster, according to the

euclidean distance.

(b) Update: compute the new centroids minimizing (1.1).

Several variants of the k-means algorithm have been developed, we can cite the k-medoids

algorithm (Kaufman and Rousseeuw, 1987) that constraints the centroids to be members
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of the set of objects. Both k-means and k-medoids are special cases of a more general

centroid-based clustering approach known as méthode des nuées dynamiques (Diday, 1971).

The latter makes it possible to have centroids of various forms, not necessarily vectors in

R
d as in k-means. A more recent generalization of the k-means principle to any Bregman

divergence—from which the euclidean distance arises as a special case—has been proposed

in (Banerjee et al., 2005b).

1.4.2 Model-based approaches

Mixture model is undoubtedly a very powerful approach to clustering. It offers considerable

flexibility, it is able to model different types of data—continuous, contingency, binary, etc.—

and uncover various specific cluster structures. Furthermore, it allows us to make precise

assumptions and understand the theoretical foundation behind some clustering methods. In

fact, several partitioning clustering approaches arise as special cases from mixture model-

based approaches. For instance, the k-means algorithm presented in the previous section

can be derived from a mixture of Gaussian distributions, under some restrictive constraints.

Intuitively, model-based clustering assumes that data is generated according to an underlying

mixture of g probability distributions, usually from the same family. Objects within a cluster

are assumed to be generated from the same distribution, that is each cluster is characterised

by a probability distribution—called a component—with some specific parameters. The

probability density function of such a mixture takes the following form:

f (X|Θ) =
n

∏
i=1

g

∑
h=1

αhϕ(xi|θh). (1.2)

where X is a n×d data matrix, its ith row (object) is denoted by xi. The parameters of the

mixture are Θ = {α1, . . . ,αg,θ}, parameter αh denotes the proportion of objects generated

from component h such that ∑
g
h=1 αh = 1, and ϕ(xi|θh) denotes a density/mass function of

component h with some specific parameters θh. For instance, in the case of a mixture of

Gaussian distributions the set of parameters for each component is θh = {µh,Σh}, where

µh ∈ R
d , and Σ ∈ R

d×d denote respectively the mean and covariance matrix parameters.

Figure 1.3 uses the density obtained from a mixture of three Gaussian components in R
2 to

illustrate this concept of a probability mixture.

The generative process assumed by the above mixture model is as follows

1. Choose a component h ∼ Multinomial(α1, . . . ,αg).

2. Choose a data point xi ∼ ϕ(xi|θh).
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Fig. 1.3 Gaussian Mixture in R
2

The clustering in this context consists in reversing the above generative process and

estimating the model parameters Θ, given the observed data X. To perform the latter task

two main approaches are widely used in practice, namely the Maximum Likelihood (ML)

and the Classification ML (CML) (Scott and Symons, 1971; Symons, 1981) approaches.

The principle of the above two is to find the parameters Θ maximizing the likelihood of

the observed data X. To this end, both techniques rely on the complete data log-likelihood,

because it is difficult to work directly with the likelihood function, given as follows

Lc(Θ;X,Z) = ∑
i

∑
h

zih logαh +∑
i

∑
h

zih logϕ(xi|θh). (1.3)

As the latent variable Z is unknown in practice, the Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) is usually used to find the ML estimates of the model

parameters, while the Classification variant of EM (CEM) (Celeux and Govaert, 1992) is used

under the CML approach. Regarding the clustering context, the main difference between

the above two, is that the EM algorithm yields a soft clustering, i.e., each object has a

probability of being generated from all clusters, and the clustering partition is obtained at

the end—when the convergence is reached—by allocating each object to the most likely

cluster that might have generated it, while the CEM algorithm simultaneously estimates

the model parameters and the clustering partition, in an iterative scheme. Several model-

based clustering approaches exist we can mention, for instance, the Gaussian (Banfield and

Raftery, 1993; Celeux and Govaert, 1995), Multinomial (Jollois and Nadif, 2002; Govaert
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and Nadif, 2007), Bernoulli (Govaert, 1990; Govaert and Nadif, 1996; Nadif and Govaert,

1998; McCallum et al., 1998) and von Mises-Fisher (Banerjee et al., 2005a; Gopal and

Yang, 2014) mixture models for clustering respectively continuous, categorical, binary and

directional data. For more details about model-based approaches to clustering the reader

can refer to the books (McLachlan and Basford, 1988; McLachlan and Peel, 2004; Govaert,

2009).

1.5 Conclusion

In this chapter, we outlined the major approaches to clustering and discussed their main

strengths and weaknesses. The above list is not exhaustive and other clustering approaches

exist. For instance, some methods consist in combining two or more of aforementioned

approaches so as to reap the benefits of each of them. We can also mention non-negative

matrix factorization based-approaches that have emerged recently (Xu et al., 2003). In the

rest of this thesis we focus on partitional clustering under the centroid- and model-based

approaches that are closely related to each other. Our choice for these methods it largely

motivated by their scalability, their strong theoretical foundations and their flexibility.

In the next chapter, we propose to tackle the problem of item recommendation by means

of partitional clustering. While clustering has received very few attention in this context,

as opposed to some other approaches such as matrix factorization and k nearest neighbors,

we illustrate how clustering can benefit collaborative filtering systems, in terms of both

scalability and effectiveness, when making proper modeling assumptions.



Chapter 2

Incremental directional clustering for a

dynamic collaborative filtering system

This chapter describes a novel efficient incremental CF system based on a clustering approach.

More precisely, we propose to model the user-item preferences as directional data distributed

on the surface of a unit-hypersphere and develop a generalized sequential variant of the

spherical k-means algorithm, which arises from a mixture of von Mises-Fihser distributions,

so as to handle the frequent changes in CF filtering, i.e., submission of new ratings, update

of existing ratings, appearance of new users and items. This gives rise to a very effective

and scalable CF system, as illustrated through extensive experiments on several popular

benchmark data sets.

2.1 Motivation

A collaborative filtering system (CF) aims at filtering huge amount of information, in order

to guide users of web applications towards items that might interest them. Such a system,

consists in recommending a set of personalized items for an active user, according to the

preferences of other similar users. Existing methods, such as memory and Matrix Factoriza-

tion (MF) approaches can achieve very good recommendation accuracy, unfortunately they

are computationally very expensive. Applying such approaches to real-world applications in

which users, items and ratings are frequently updated remains therefore a challenge.

In this work we aim to overcome the above limitation and develop a novel efficient

incremental CF system. The proposed approach builds on the spherical k-means algorithm

(Skmeans) (Dhillon and Modha, 2001), thereby in addition to handling frequent changes in

CF data, our approach leverages the benefits of the cosine similarity which has been found to
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be superior to several other measures, such as Euclidean distortions, in collaborative filtering

(Liu et al., 2014). The Skmeans algorithm has strong theoretical basis and can be derived from

a mixture of von Mises-Fisher distribution (Banerjee et al., 2005b). Furthermore, Skmeans

has been successfully applied to text and gene-expression data whose characteristics are

similar to those of CF.

2.2 Introduction

Nowadays the Web provides a very large amount of information, unfortunately users are

unable to manage all this information correctly to reach the relevant information in a short

time. The common solution to this problem is the use of recommender systems (RSs)

(Bobadilla et al., 2013; Tang et al., 2013) which automatically predict the preferences of

users for some given items, in order to provide them with the useful recommendations.

Many RSs have been proposed and adopted by real applications such as Amazon (books

recommendation) (Linden et al., 2003), YouTube (videos recommendation) (Davidson et al.,

2010), Netflix (movies recommendation) (Koren, 2009), Facebook (recommendation of:

users, advertising, etc.). These RSs can be divided into three overall groups:

Content-based approaches. They attempt to predict how users will rate a set of items

based on their personal information (country, interests, gender, occupation, etc.) and/or the

features of the items (author, type, description, field, title, tag, etc.) that they liked in the past

(Pazzani and Billsus, 2007). For instance, if some users enjoyed science-fiction movies in the

past, the system will suggest them other movies of the same genre. The major shortcoming

of content-based approaches is that they suggest only the same kinds of items, and the sort of

information mentioned above (user information and item features) is hard to collect.

Collaborative filtering (CF). It is the most often used approach in RSs. It consists in

predicting items that an active user will enjoy, based on items that the people who are most

similar to this user have enjoyed. Among CF systems two distinct types of approach are to

be found:

- Memory-based CF: these approaches are based on computing similarities. User-based

collaborative filtering (Bobadilla et al., 2013) looks for similarities between the active

user ua and all other users and tries to predict the preference of ua for a set of new items,

according to the preferences of the K most similar users to ua. Item-based collaborative

filtering (Sarwar et al., 2001) consists in finding the K nearest neighbors of each item

and making recommendations according to the neighborhood of items enjoyed by the
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user ua. The most commonly used similarity measures in these approaches are Cosine

Similarity (COS), Pearson Correlation Coefficient (PCC) and Jaccard. In addition to these

traditional measures, a number of other similarity measures have been proposed in this

context: Adjusted COS, Adjusted PCC, Constrained COS, Constrained PCC, Jaccard

Mean Square Difference, PIP similarity (Ahn, 2008), NHSM similarity (Liu et al., 2014),

etc.

- Model based CF: these approaches begin by suggesting a model that will learn from the

user/item rating matrix U in order to capture the hidden features of the users and items.

Then, they predict the missing ratings according to this model. Many model-based CF

techniques have been proposed, the most popular being those based on clustering (Ungar

and Foster, 1998), co-clustering (George and Merugu, 2005; Khoshneshin and Street,

2010), matrix factorization (MF) (Sarwar et al., 2000; Koren, 2009; Koren et al., 2009;

Mazumder et al., 2010; Hastie et al., 2014), non-negative matrix factorization (Zhang et al.,

2006; Sindhwani et al., 2009; Gu et al., 2010), mixtures models (Marlin et al., 2007; Kim

and Choi, 2014) and transfer learning approach (Li et al., 2009; Wang and Ke, 2014).

There is also an important category of CF models, often referred as social model-based

CF (Ma et al., 2011; Tang et al., 2013; Bobadilla et al., 2013; Delporte et al., 2013; Gao

et al., 2015), which exploit additional information from social networks (i.e, trusted users,

friendship graph, followers, followed, etc) to improve the quality of recommendations. All

these methods can provide reasonable prediction time, since the model is learned offline.

Hybrid approaches This category of recommender systems (Burke, 2002) consists in

combining several RS methods , in order to reap the benefits of several approaches simulta-

neously. Most of hybrid RSs combine collaborative filtering with content-based approaches

(Barragáns-Martínez et al., 2010).

2.3 Related work and contribution

Collaborative filtering is the most often used approach in real-world recommender systems.

Nevertheless, CF systems do have some drawbacks of their own.

Traditional CF approaches, such as matrix factorization (MF) and memory-based methods,

can achieve good prediction accuracy, but their computation time rises steeply as the number

of users and items increases. Furthermore, these methods need to be performed periodically

(offline) in order to take into account new ratings, users and items. However, with this

strategy, new information which appear between two offline computations are not considered.
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As a result, applying traditional CF techniques to real-world applications such as Netflix in

which the sets of users, items and ratings are frequently updated, is a non-trivial task.

To overcome the problem of computation time, incremental CF systems have been pro-

posed. The most popular are incremental CF based on MF approaches (Sarwar et al., 2002;

Han et al., 2011), incremental CF based on co-clustering (George and Merugu, 2005; Khosh-

neshin and Street, 2010), and incremental memory-based CF, including user (Papagelis et al.,

2005) and item (Yang et al., 2012) based approaches. All these efforts have demonstrated the

effectiveness of developing incremental models to provide scalable collaborative filtering sys-

tems. But often, these approaches will significantly reduce the quality of recommendations.

Further, most of these approaches (except memory-based CF) do not handle all possible dy-

namic scenarios (i.e, submission of new ratings, update of existing ratings, appearance of new

users and new items). For instance incremental CF based on singular value decomposition

(Sarwar et al., 2002), do not treat the two first scenarios (mentioned above).

In this chapter we focus on the problem of computation time in CF systems. In order to

overcome this drawback we propose a novel incremental CF approach, which is based on a

weighted version of the online spherical k-means algorithm OSkmeans (Zhong, 2005). Our

method is able to handle in a very short time the frequent changes in CF data, including the

submission of new ratings, the update of existing ratings, the occurrence of new users and

items. Below, we summarize the key contributions we make in this chapter.

- We derive a novel effective CF system, based on a weighted version of OSkmeans which

is more suitable for CF data.

- In order to handle frequent changes in CF data, we design incremental updates, which

allow to efficiently treat submissions of new ratings, updates of existing ratings, and

appearance of new users and items.

- We provide extensive experiments on real-world datasets, under two scenarios: 1) static

situation, where available data are kept unchanged, and 2) dynamic situation, where new

information are incorporated incrementally.

Numerical experiments validate our approach. The results on several real datasets show

that our method outperforms significantly state-of-the-art incremental methods in terms of

both scalability and recommendation quality.

2.4 Online spherical k-means

Throughout this chapter matrices are denoted with boldface uppercase letters and vectors

with boldface lowercase letters. The user-item preference matrix is denoted by U = (ui j)

of size n×d, the ith row (user) of this matrix is represented by a vector ui = (ui1, . . . ,uip)
⊤,
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where ⊤ denotes the transpose. The column j corresponds to the jth item. The partition of

the set of rows into g clusters can be represented by a classification matrix Z of elements

zik in {0,1}g satisfying ∑
g
h=1 zih = 1. The notation z = (z1, . . . ,zn)

⊤, where zi ∈ {1, . . . ,g}
represents the cluster of i, will be also used.

Many clustering algorithms have been proposed depending on the type of data and

patterns to be found. In this chapter we focus on the spherical k-means (Skmeans) algorithm

(Dhillon and Modha, 2001), and in particular on its online spherical version (OSkmeans).

Our focus on this algorithm is motivated by the effectiveness of the cosine similarity in the

context of high dimensional sparse data, such as CF data (Liu et al., 2014), document-term

matrices and gene-expression data (Banerjee et al., 2005b). Before describing OSkmeans, we

will first introduce the Skmeans algorithm.

The Skmeans algorithm proposed by Dhillon and Modha (2001), and available in R

software (Hornik et al., 2012) is a k-means algorithm in which the objects (users) u1, . . . ,un

are assumed to lie on a unit-hypersphere. The Skmeans algorithm originally maximizes the

sum of the dot product between the elements of the data points and the g means directions

characterizing the clusters. This is equivalent to maximizing the sum of the cosine similarity

of the normalized data, and the aim at each iteration is to measure the similarity between ui

and center µh by ⟨ui,µh⟩ = u⊤i µh = ∥ui∥∥µh∥cos(ui,µh) = cos(ui,µh). Maximizing the

sum of the dot products is equivalent to maximizing the sum of the cosine similarity on the

unit hypersphere. The algorithm then maximizes the following objective function:

L =
n

∑
i=1

g

∑
h=1

zih cos(ui,µh) =
n

∑
i=1

g

∑
h=1

zihu⊤i µh, (2.1)

where zih ∈ {0,1}; zih = 1 if ui ∈ hth cluster, zih = 0 otherwise. Skmeans repeats the

following two steps until convergence:

- For i = 1, . . . ,n, assign ui to the hth cluster, where zi = argmaxh

(
u⊤i µh

)
,h = 1, . . . ,g.

- Calculate µh =
∑i,h zihui

||∑i,h zihui|| .

Note that, the objective function 2.1 is associated to a restricted von Mises-Fisher mixture

model (Banerjee et al., 2005b). The latter will be studied in details in the next chapters.

Furthermore, the online Skmeans developed by Zhong (2005) uses competitive learning

(Winner-Takes-All strategy) to minimize the objective function (2.1), which leads to

µnew
h =

µh +η ∂Li

∂ µh

||µh +η ∂Li

∂ µh
||
=

µh +ηui

||µh +ηui||
,
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Algorithm 1: OSkmeans.

Input: n normalized objects ui (∥ui∥= 1) in R
p, g is the number of clusters, B is the

number of batch iterations.
Output: g centroids µh in R

p, the partition of the objects represented by
z = (z1, . . . ,zn)

⊤ where zi ∈ {1, . . . ,g}.
Steps:

1. Initialization: t = 0, random normalized cluster centroids {µ1, . . . ,µg};
for b = 1 to B do

for i = 1 to n do

2. Assignment step: for each object ui, compute zi = argmaxh(u
⊤
i µh);

3. Update of Centroids step: compute the winner centroid µnew
zi

=
µzi

+ηui

∥µzi
+ηui∥ ;

t = t +1
end for

end for

where η is the learning rate, µh is the closest centroid to the object ui, and Li = ∑
g
h=1 zihu⊤i µh.

From the OSkmeans method (described in Algorithm 1), we can see that each centroid is

updated incrementally with a learning rate η . Zhong (2005) proposed an exponentially

decreasing learning rate η⊤ = η0(
η f

η0
)

t
n×B , where η0 = 1.0, η f = 0.01, B is the number of

batch iterations and t,(0≤ t ≤ n×B) is the current iteration. The author showed that this

decreasing learning rate is better than a flat rate (η = 0.05).

2.5 Efficient Incremental Collaborative Filtering system

In this section, we describe our collaborative filtering system EICF, designed to provide a

high quality of recommendations with a very low computation cost. This system can be

divided into three main steps: training, prediction, and incremental training. The different

steps are as follows:

2.5.1 Training step

This step, consists in clustering the users into g groups. Unfortunately the traditional

OSkmeans algorithm which has been proposed in the context of text document clustering, is

not adapted for CF data. Unlike text data, the sparsity in CF is caused by unknown ratings,

which requires a different handling than if the sparsity is caused by entries of "zero". To

address this problem, we propose a novel variant of OSkmeans which is more suitable for

CF. It consists in introducing user weights, in order to tackle the sparsity problem; by giving
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more importance to users who provided many ratings. The resulting clusters will be highly

influenced by the most useful users (i.e. users with high weights). Below we give more

details about this weighted version of OSkmeans. Let wi denotes the weight of the ith user,

the weighted objective function of the Skmeans is given by:

Lw =
n

∑
i=1

Lw
i , where Lw

i = ∑
g
h=1 wizihu⊤i µh, (2.2)

Thus, the corresponding update centroid for the weighted OSkmeans is given by:

µnew
h =

µh +η
∂Lw

i

∂ µh

||µh +η
∂Lw

i

∂ µh
||
=

µh +ηwiui

||µh +ηwiui||
, (2.3)

We now give an intuitive formulation of user weights. Let M = (mi j) be an (n× p) binary

matrix, such that mi j = 1 if the rating ui j is available, and mi j = 0 otherwise. Its ith row

corresponds to a vector mi = (mi1, . . . ,mip)
⊤ indicating which items have been rated by the

ith user. Thus, we define the weight of the ith user to be proportional to the number of his

available ratings as follows:

wi = (mT
i ✶)×σ(ui) (2.4)

where ✶ is the vector of the appropriate dimension which all its values are 1, and σ(ui)

denotes the standard deviation of ratings provided by ui. We consider the standard deviation

in order to give less importance to users who provide only low ratings or similarly, only high

ratings (i.e. users who expressed the same preference for all items they have rated).

In the following, we focus on the initialization of the clustering process which is a crucial

step. In fact, initializing the weighted OSkmeans by sampling g random centroids is not

effective. Most of users will have rated only a few items, so there is a high probability of

selecting as an initial centroid a user with only few observed ratings. Furthermore, selecting

the initial centroids only from the set of users who have rated a lot of items is not a good

solution, because not all structures would be detected. In order to avoid this problem we

suggest the following initialization routine:

1. Generate a random partition of the users into g clusters, which can be represented by

z = (z1, . . . ,zn), where zi ∈ {1, . . . ,g} represents the cluster to which the ith user belongs.

2. Estimate initial centroids as follows: let µh j denotes the jth component of the kth centroid,

then we have

µh j =
∑i mi jwizihui j

∥∑i wizihui∥
(2.5)
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Algorithm 2: EICF training.

Input: n normalized users ui (∥ui∥= 1) in R
p, K is the number of clusters and B is

the number of batch iterations;
Output: K centers µk in R

p, and z = (z1, . . . ,zn);
Steps:

1. Compute user weights: wi = (mT
i 1)×σ(ui);

2. Initialization: random initialization of the partition z, t = 1;
3. Estimation of the initial centroids: µk j =

∑i mi jwizikui j

∥∑i wizikui∥
for b = 1 to B do

for each ui in U do

4. User assignment: compute zi = argmaxk(wiu
⊤
i µk);

5. Centroid update: compute the winner centroid by µ̂zi
=

µzi
+ηwiui

∥µzi
+ηwiui∥ ;

t = t +1
end for

end for

According to formula (2.5), a component µh j of an initial centroid is estimated by taking

the sum over all observed ratings for the jth item, within the corresponding cluster h. Thereby,

items which are rarely evaluated will be automatically penalized. Algorithm 2 describes in

more details our training step.

2.5.2 Prediction step

In this step, unknown ratings are predicted according to the clustering results. However, it is

difficult to make consistent predictions, even when the best clustering results are achieved,

because there are so many unknown ratings in U. To overcome this difficulty we propose to

estimate unknown ratings by a weighted average of observed ratings, as follows:

ua j =
∑

n
i=1 wizihu⊤i µh×ui j

∑
n
i=1 wizihu⊤i µh

, (2.6)

Let ua denotes the active user, h = za. The key idea behind this strategy is to weight the

available ratings ui j according to the similarity between each user ui and its corresponding

centroid µh, and to weight by wi, in order to give greater importance for users closest to their

centroid, and respectively to give more importance for ratings provided by most important

users.

The prediction equation (2.6) is attractive because it only depends on the clustering

results, which means that it can be performed offline and stored in a (g×d) matrix P, which

leads to very short prediction times.
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2.5.3 Incremental training step

In the sequel, we design incremental updates, in order to handle the frequent changes in CF

data. We can distinguish four main situations: 1) submission of new ratings, 2) update of

existing ratings, 3) appearance of new users, 4) appearance of new items. In the following,

we give the update formulas for each situation.

Submission of a new rating Let ua denotes an active user who submits a new rating for

an item j. The equations below, give the different incremental updates to perform in this

case.

- Update the norm of ua: ∥u+
a ∥=

√

∥ua∥2 +u2
a j

- For each h, update the similarity between ua and µh:

cos(u+
a ,µh) =

1

∥u+
a ∥

[∥ua∥×u⊤a µh +ua jµh j],

- Update the weight of the active user:

ŵa = (
wa

σ(ua)
+1)×σ(u+

a )

- Update the assignment of ua: ẑa = argmaxhcos(u+
a ,µh).

- Update the corresponding centroid µ ẑa
, by using formula (2.3)

where σ(u+
a )

2 =
Na×(σ(ua)

2+ū2
a)+u2

a j

Na+1 − (
Naūa+ua j

Na+1 )2, thanks to König–Huygens formula, i.e.,

σ(ua) =
√

1
Na

∑ j u2
a j− ū2

a. The notation u+
a denotes the active user ua after submitting the

new rating ui j, Na and ūa denote respectively, the number of ratings and the average rating of

ua before evaluating item j. Note that, as the centroids are stable at the end of training, the

two latter incremental updates concerning the assignment of ua, do not need to be performed

after each new rating.

Update an existing rating In this case, the active user updates an existing rating for an

item j. As for the submission of a new rating, the main updates are summarized below.

- Update the norm of ua: ∥u+
a ∥=

√

∥ua∥2−u2
a j + û2

a j
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- For each h, update the similarity between ua and µh:

cos(u+
a ,µh) =

1

∥u+
a ∥

[∥ua∥×u⊤a µh−ua jµh j + ûa jµh j]

- Update the weight of the active user: ŵa =
wa

σ(ua)
×σ(u+

a )

- Update the assignment of ua: ẑa = argmaxhcos(u+
a ,µh).

- Update the corresponding centroid ẑa, by using equation (2.3)

where σ(u+
a )

2 = (σ(ua)
2+ ū2

a+
û2

a j−u2
a j

Na
)− (ūa+

ûa j−ua j

Na
)2, ûa j denotes the new value substi-

tuted for the existing rating ua j, and the notation u+
a represents the active user after updating

the known rating ua j.

Appearance of new user In this situation, a new user is incorporated into the model in

real time. Let ûa denotes a new user. The model is incremented as follows:

- Compute the weight of ûa, by using equation (2.4).

- Assign ûa to cluster h where h = argmax1≤h′≤g(
û⊤a µh′
∥ûa∥ ).

- Update the corresponding centroid: µ̂h =
µh+ηwa

ûa
∥ûa∥

∥µh+ηwa
ûa
∥ûa∥∥

.

Appearance of new item When a new item appears, it has no ratings, so there is nothing

to change in the model. When a new item starts receiving ratings, handling new item, reduces

to handling the submission of new ratings.

2.6 Experimental results

Hereafter, we compare our collaborative filtering system with other popular incremental CF

systems, over different real-world datasets.

2.6.1 Datasets

We use three popular datasets in the field of recommender systems. The first is MovieLens1

(ML-1M), consisting of 1,000,209 ratings provided by 6040 users for 3952 movies (only

4.2% of ratings are observed). The second is MovieLens (ML-100k), containing 100,000

1http://grouplens.org/datasets/movielens/
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ratings given by 943 users for 1664 movies. The proportion of observed ratings in this dataset

is 6.4%. The last dataset is Epinions, with 664,824 ratings from 49,290 users on 139,738

items (movies, musics, electronic products, books, . . . ), it is collected from the epinions web

site2. The Epinions dataset is more than 99% sparse.

In all the above datasets the user ratings (ui j) belong to the following set: {1,2,3,4,5,NA},
such that ui j = NA, for the non observed ratings.

2.6.2 Methods and environment

We compare our Efficient Incremental CF (EICF) with several popular methods, namely:

incremental user-based CF IUCF (Papagelis et al., 2005), incremental item-based CF IICF

(Yang et al., 2012), and incremental CF based on co-clustering COCLUST (George and Merugu,

2005). The comparisons are made with the R package recommenderlab (Hahsler, 2011). All

the evaluations are made under the same machine (OS: ubuntu 14.04 LTS 64-bit, Memory: 8

GiB, Processor: Intel® Core™ i7-3770 CPU @ 3.40GHz × 8). Except for comparisons on

Epinions data (OS: ubuntu 14.04 LTS 64-bit, Memory: 32 GiB, Processor: Intel(R) Xeon(R)

CPU E5-2620 0 @ 2.00GHz).

2.6.3 Evaluation metrics

Prediction metrics such as Mean Absolute Error (MAE) or Root of Mean Square Error

(RMSE) are widely used in order to evaluate recommender systems. As mentioned by the

authors in (Liu et al., 2014), these metrics are not the most relevant in the context of RS,

because they do not measure the quality of the set of recommendations. In many cases, low

MAE and RMSE do not necessarily equate to best user satisfaction. As illustrated in Table

2.1, whether the ratings are in the set {1,2,3,4,5} let ua be an active user who rated two

items as follows: ua1 = 2 and ua2 = 4 and the three recommender systems RS1, RS2 and

RS3. As reported in this table,

- RS1 predicts 1 instead of 2 for ua1 and 5 instead of 4 for ua2,

- RS2 predicts 2 for ua1 and 3 for ua2,

- and RS3 predicts 3, for both ua1 and ua2.

In terms of MAE and RMSE, RS2 appears to be the best. However RS1 will make better

recommendations; indeed, it does not recommend the first item since it predicts 1 and unlike

RS2, it clearly recommend the second item; it is a good recommendation since the real rating

2http://www.epinions.com
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Table 2.1 Comparison of MAE and RMSE achieved by three recommender systems, on a
small example (numbers in bold correspond to best performances).

item1 item2
True ratings active user (ua) ua1 = 2 ua2 = 4 MAE RMSE

RS1 1 5 1.0 1.0
Predicted ratings RS2 2 3 0.5 0.71

RS3 3 3 1.0 1.0

is 4. Furthermore, in terms of MAE and RMSE, RS1 and RS3 are equivalent, nevertheless

RS1 is clearly better than RS3, in terms of recommendation quality.

Another category of evaluation metrics used in RS are those known in the field of CF

as recommendation metrics, and they include: Receiver Operating Characteristic (ROC),

Precisions, Recall and F-measure. These metrics measure the quality of the set of recom-

mendations (Bobadilla et al., 2013), which makes them more appropriate for evaluating RS.

Below we give a brief description of the aforementioned metrics:

Precision: is the proportion of good recommendations Rg from the total number of recom-

mendations RT : precision =
Rg

RT
.

Recall: is the proportion of good recommendations from the number of relevant items in the

testing set RIt : recall =
Rg

RIt
.

F-measure(F1): combines precision and recall as follows:

F1 = 2× precision× recall

precision+ recall
.

The ROC curve is the plot of recall (true positive rate TPR) by the proportion of bad

recommendations out of the total number of recommendations (false positive rate FPR).

To evaluate our CF system we focus on the quality of the recommendations and the

computation time (prediction and training time).

2.6.4 Performance comparison

To measure the quality of recommendations we adopt the following split strategy: 1) We

generate ten random training-test (80-20%) sets from each database. 2) In each test set only

x ratings per user are given to the recommender systems and the others are retained for the

evaluation. This method is known as the Given x protocol (Given x) (Breese et al., 1998;

Hahsler, 2011). In the following evaluations we set x = 10 in the static situation and x = 5 in

the dynamic situation. 3) Averaged results (ROC-curves, F-measure F1, MAE, RMSE) are

presented for each RS over all the splits. Before starting the comparisons we experimentally

define the best parameters for each algorithm on each dataset using the following strategy:
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Fig. 2.1 Assessing the number of clusters for EICF on different datasets, using F1 metric.

each RS is performed several times with different parameters on the corresponding dataset,

and the parameters that correspond to the best performance are retained. Figure 2.1 illustrates

the above process for assessing the number of clusters for EICF on different datasets. At the

end we obtain the following parameters.

- For the ML-100k: the number of clusters g = 7 for our approach EICF; the number of

k-nearest neighbours is set to 25 and 40 for IUCF and IICF, respectively. For COCLUST we

select the same parameters as those used by George and Merugu (George and Merugu,

2005), the number of row and column clusters are both set to 3.

- For the ML-1M: the number of clusters g = 20 for EICF; the number of k-nearest neigh-

bours is set to 50 for both IUCF and IICF; and for COCLUST the number of row and column

clusters are both set to 3.

- For the Epinions dataset: we retain 10 clusters for EICF, the number of k-nearest neighbours

is set to 120 and 135 for IUCF and IICF, respectively. The number of row clusters and

column clusters for COCLUST are set to 6 and 7 respectively.

Below, we report the performances of each method on each dataset, under two situations: 1)

static situation, where available data are kept unchanged, and 2) dynamic situation, where

new information are incorporated incrementally.

Static situation

Figure 2.2 shows the ROC-curves and F1 comparisons of the different CF methods on the

ML-100k dataset. The ROC-curves in Figure 2.2a are built by varying the size of the top-N

recommendation list and representing the TPR and FPR of each CF for the different lists. The

longest list contains 40 elements. In Figure 2.2b the F-measure of each method is represented

over the different lists. All other ROC-curves and F1 comparisons are built in the same way.

From figures 2.2a and 2.2b we note that on the ML-100k dataset our method EICF pro-

vides a high quality of recommendations, thanks to our approach for alleviating the sparsity
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Fig. 2.2 Evaluation of several recommender systems on ML-100k dataset (static situation).
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Fig. 2.3 Evaluation of several recommender systems on the ML-1M dataset (static situation).

problem; by introducing user weights. Moreover, both figures show that, EICF outperforms

all other incremental approaches. We also note a low recommendation quality from COCLUST,

which can be explained by the fact that COCLUST ignores the sparsity problem, and operates

only on data that have actually been observed. In other words, COCLUST combines different

summary statistics in order to compute the predictions (user, item averages, row-cluster,

column-cluster and co-cluster averages) which are highly biased since they are often es-

timated from rare observed values. All of this lead to a low quality of recommendations.

Figure 2.3 shows that with the ML-1M dataset our method achieves a high quality of

recommendations, and still outperforms all other methods, just like with the ML-100k dataset,

which confirms the stability of our approach.

Figure 2.4 shows the evaluation of the different collaborative filtering systems, on the

Epinon dataset in the static situation. In Figures 2.4a and 2.4b EICF provides the best

performances. Also, both figures show an important decline in the performances of the other

incremental CF systems, especially COCLUST and IICF. The low recommendation quality of
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Fig. 2.4 Evaluation of several recommender systems on Epinions dataset (static situation).
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Fig. 2.5 Comparison of training + prediction time on ML-1M subsets.

the two latter approaches is due to the high rate of unknown ratings (the Epinions dataset is

more than 99% sparse). For COCLUST we provided an explanation above, for IICF, the reason

is that, most items have received only few ratings, thereby the estimation of item-to-item

similarities is not reliable.

Computation time comparison

To compare computation time we generate four subsets from the MovieLens (ML-1M)

database: Movie40, Movie60, Movie80 and Movie100. Each MovieX is obtained by

randomly sampling X% of users and X% of items from ML-1M. For each subset and each

approach, to estimate the average computation time (training + prediction time), we use the

split strategy described above. To make coherent comparisons, we retain for each method the

same parameters that were used for the ROC and F1 comparisons.

Figure 2.5 shows that EICF is the best in terms of computation time. As reported in

Table 2.2, the complexity of EICF is just O(gBW ∗) for the training step and O(1) for the

prediction step, where B is the number of batch iterations, W ∗ is the total number of observed
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Table 2.2 Comparison of computational times (in the worst case) in various situations. W ∗

denotes the number of observed ratings in U. g and m are the number of row and column
clusters, k denotes the number of neighbours for memory CF (IUCF, IICF). d∗ is the number
of observed ratings for a new user, n∗ denotes the number of available ratings for a new item.
Finally, B denotes the number of iterations

Algorithm Static training Prediction Inc. train

IUCF O(nW ∗) O(k) O(nd∗)
EICF O(gBW ∗) O(1) O(gd∗)

COCLUST O(BW ∗+ngmB+dgmB) O(1) O(d∗)
IICF O(dW ∗) O(d∗) O(dn∗)

ratings in U, and g is the number of clusters (i.e, g≪ n and g≪ d). Moreover, Figure 2.5

shows that the computation time required by memory-based methods (IUCF and IICF) is

high and increases more rapidly. This is due to the intensive training step of these approaches,

which consists in computing user-to-user and item-to-item similarities for IUCF and IICF,

respectively.

From Figure 2.5, we also note that the computation time of COCLUST is high, even if its

complexity (training: O(W ∗+ngm+dgm); prediction: O(1)) might appear attractive. The

reason is that COCLUST fails to converge rapidly, because the estimates used in this method’s

optimization step are biased. Furthermore, the strategy proposed by the authors in (George

and Merugu, 2005), which consists in replacing the average of empty blocks (i.e, which do

not contain observed ratings) by the global rating average, disturbs the convergence of the

co-clustering.

Dynamic situation

In this case new information (i.e, ratings, users and items) are incorporated incrementally,

after the training step of each method. From Figures 2.6 and 2.7, we observe that on both

MovieLens datasets, EICF continues to exhibit a high quality of recommendation; thanks

to its efficient incremental updates for handling new data. As in the static case, EICF

outperforms all other incremental methods. We also observe that COCLUST continues to

provide poor performances in the dynamic situation, because it uses only partial updates

for handling new changes in CF data, thereby new information are not really incorporated

into the model in a dynamic way. In fact, for new users the predictions are based on item

averages computed from available ratings. Thus, the recommendations for new users, are

made without involving the co-clustering model.
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Fig. 2.6 Evaluation of several RS on ML-100k dataset (Dynamic situation).
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Fig. 2.7 Evaluation of several recommender systems on ML-1M dataset (Dynamic situation).
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Fig. 2.8 Evaluation of several CF systems on the Epinions dataset (Dynamic situation ).

Figure 2.8 gives the ROC-curves and F1 comparison on Epinions dataset, in the dynamic

situation. From Figures 2.8a and 2.8b we can note that EICF outperforms the other methods.

We can also note a significant decrease in the performances of IICF and COCLUST; a poor

recommendation for both methods in all the recommendation lists (TPR ≃ 0, for all the lists).
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Table 2.3 Computation time comparison in the dynamic scenario (in sec).

datasets CF methods. Computation time (sec)

ML-100k

EICF 0.51

IUCF 1.78
IICF 0.88

COCLUST 0.97

ML-1M

EICF 2.86

IUCF 138.1
IICF 7.96

COCLUST 11.85

Epinions

EICF 149.20

IUCF 4041.01
IICF 927.22

COCLUST 212.71

This is due to sparsity problem as mentioned above; more than 99% of ratings are unknown

in the Epinions dataset.

Computation time in the dynamic situation

In Table 2.2 we reported the complexity of the incremental updates (i.e, incremental training)

in the worst case, for each method. Incorporating a new user, represents the most expensive

computation for EICF and IUCF, similarly incorporating a new item denotes the worst case

for IICF. From Table 2.2, we observed that EICF have the best complexity in the dynamic

scenario. In fact, in order for EICF to incorporate a new user ûa with d∗ observed ratings,

it performs an assignment and update steps. The cost of the assignment is O(gd∗), as g

similarities need to be computed and at most d∗ dimensions (items) will be involved. The

cost of updating the winner centroid is O(d∗), at most d∗ items will be considered. Thus, the

total cost of EICF for handling a new user is O(gd∗) (i.e, based on O(gd∗)+O(d∗)).

In order to measure the computation time in the dynamic situation, 20% of users (i.e,

randomly selected) in each dataset are considered as new ones. We then report in Table

2.3, the computation time required by each method, for incorporating and generating recom-

mendations for these users. Note that IICF is favoured in this comparison, unlike the other

methods; incorporating new users is not the most expensive computation for this approach.

From Table 2.3 we observe that EICF requires much less time for handling new informa-

tion, than the other incremental methods, including IICF although it is advantaged. This

performance rises significantly as the volume of data increases. In fact, contrary to the other

methods, the complexity of EICF does not depend on the number of users and items. There-

fore, EICF is more suitable than the other incremental methods, for real world applications

involving large databases in which users, items and ratings are frequently updated. Note that,

the computation time of COCLUST reported in Table2.3 is high, even if its complexity in the
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dynamic situation (i.e, inc. train: O(d∗)) might appear attractive. The reason is that, this

approach provides only partial updates, and the co-clustering is performed periodically to

completely incorporate new information.

2.7 Conclusion and perspectives

In this chapter we presented a novel efficient and effective incremental CF system, which

is based on a weighted clustering approach. To achieve high quality of recommendations,

we introduced user weights into the clustering process, to lessen the effect of users who

provided only few ratings. In order to address the computational time problem, we designed

incremental updates, which allows our system to handle in a very short time, the frequent

changes in CF data; such as submissions of new ratings, appearance of new users and

items. Numerical experiments on real-world datasets demonstrate the efficiency and the

effectiveness of our method which provides a better quality of recommendations than existing

incremental CF systems, while requiring less computation time. In fact, unlike the other

methods, the complexity of our approach does not depend on the number of users and

items. Thus, EICF is more suitable than existing incremental approaches, for real-world

applications involving huge databases, in which available information (i.e, users, items and

ratings) frequently changes.

The good results of EICF suggest practical possible studies. A possible future work

can be to improve the efficiency of EICF, by developing a parallel version, that can support

distributed computations. On the other hand, more advanced strategies for handling the

sparsity problem in CF can be considered. To this goal, two main tracks deserve to be

investigated. The first consists in developing a social version of EICF, that can exploit

information from social networks (Tang et al., 2013). The second consists in using statistical

approaches for handling missing data because the sparsity in CF is due to missing ratings

(Little and Rubin, 2002; Marlin et al., 2007). As earlier works shown that the Skmeans

algorithm can be derived from mixture of von Mises-Fisher distributions (Banerjee et al.,

2005b), it will be possible to handle the missing ratings statistically (Little and Rubin, 2002).

Furthermore, in order to treat both users and items simultaneously, we can embed the EICF

in a probabilistic co-clustering framework. In this way, we can use the latent block models

(Govaert and Nadif, 2003, 2013) and derive a variant of the Block EM algorithm (Govaert

and Nadif, 2005).

Finally, our approach could imply the extension of NMF approaches (widely used in

CF) to the context of dynamic CF. Indeed, it has been shown that under some restrictions

NMF can be interpreted as a clustering approach (Xu et al., 2003). Hence, in the case of
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two factors NMF, the first factor indicates the degree in which a user belongs to a cluster

and the second one contains cluster centroids. Thus, based on the incremental updates of

EICF (mainly related to users assignments and centroids updates), one can similarly design

incremental updates for the latent factors in the NMF context.



Chapter 3

Directional Clustering with

Social-Network information for

Recommendation

Collaborative Filtering models are severely challenged by the high dimensionality and sparsity

of user-item preference matrices. Recently, several works have shown that incorporating

information from social networks, such as friendship and trust relationships, into traditional

CF alleviates the sparsity related issues and yields a better recommendation quality in most

cases. More interestingly, even with comparable performances, social-based CF is more

beneficial than traditional CF; the former makes it possible to provide recommendations for

cold start users. This chapter presents a novel CF model that leverages information from

social networks in order to improve recommendations. While existing social CF approaches

are based on popular modelling assumptions such as Gaussian or Multinomial, our model

is based on the von Mises-Fisher assumption that turns out to be more adequate than the

aforementioned assumptions, for high dimensional sparse data. Setting the model parameters

under the maximum likelihood approach, we derive an effective social-based CF system.

Empirical results on several real-world datasets provide strong support for the advantages of

the proposed model.

3.1 Introduction

Although memory- and model-based CF approaches introduced in the previous chapter, often

denoted as traditional CF methods, constitute an important contribution to CF and can offer

a good recommendation accuracy, these techniques are still seriously challenged by the
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characteristics of collaborative filtering data, i.e. high dimensionality and sparsity. Over

the last few years, with the advent of social networks, social-based collaborative filtering

has emerged as a new promising technique to alleviate the sparsity related issues. Such

an approach consists in using information from online social networks—usually friendship

and/or trust information—to improve recommendations. More intuitively, social-based CF

approaches are based on the assumption that, for making a good recommendation, not only

the user’s expressed preferences are important but also the user’s social interactions. This is

natural, since in real life people often turn to their friends, to ask for a nice movie to watch,

an interesting book to read, a good restaurant, etc. By taking into account this real-life be-

haviour, social-based CF approaches make more realistic recommendations and are therefore

expected to offer better performances than traditional CF methods. More interestingly, even

with comparable recommendation accuracy, social-based methods are more beneficial than

traditional approaches, in that they can make recommendations for cold start users—with

very few expressed preferences or none at all. In fact, Social CF models exploit the social

interactions of cold-start users to provide them with useful recommendations.

As mentioned in the beginning of this thesis and the previous chapter, apart from being

high dimensional and sparse , CF data are also directional in nature. In fact, it seems better

to model CF data as directional data distributed on the surface of a unit-hypersphere (Mardia

and Jupp, 2000; Banerjee et al., 2005b), and to use directional measures, such as the cosine

similarity, instead of euclidean distortions to assess the similarities between users/items.

Existing social CF models, however, are based on popular modelling assumptions, such

as Gaussian or Multinomial, which are inadequate for directional data lying on the surface of

a unit-hypersphere. Hence, it seems natural to question whether it is possible to leverage both

the users’ social interactions and the directional properties of CF data, simultaneously. In this

chapter, we provide an answer to this question: we develop a novel social CF model which is

based on the von Mises-Fisher (vMF) assumption, that arises naturally for directional data

lying on the surface of a unit-hypersphere. The proposed model successfully integrates a

directional measure, namely the cosine similarity, into a social CF model. This makes it

possible to achieve a high recommendation accuracy, as illustrated in our experiments. To

the best of our knowledge the work we present is the first social-based CF approach that

accounts for the directional characteristics of collaborative filtering data.

The remainder of the chapter is organized as follows. Section 2 is devoted to present

related work. In Section 3, we review the vMF mixture model, then we propose to generalize

the above model to account for social interactions among users and derive a scalable Gener-

alized Expectation-Maximization (GEM) algorithm for inference and parameter estimation

(Section 4). Finally, we evaluate our contribution on real data sets.
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3.2 Related work

The work we present here is related to two main topics, namely CF approaches accounting

for social-network information, and vMF mixture models from directional statistics (Mardia

and Jupp, 2000; Banerjee et al., 2005b).

Over the last few years, several social-based collaborative filtering approaches have been

proposed, most of which are based on Probabilistic Matrix Factorization (PMF) (Ma et al.,

2008, 2009; Jamali and Ester, 2010; Ma et al., 2011). The key idea behind these approaches

is to make the latent preference factor of each user close to that of his/her direct neighbors

in the user-user social graph, so as to capture the influence between friends. In (Ma et al.,

2008) the authors built a MF model that connects the user-item preference matrix with the

user-user social graph through a shared user latent factor. The same authors in (Ma et al.,

2009) proposed an approach that fuses a MF model on the user-item matrix with a MF on the

user-user graph, then predicts unknown preferences by combining the ratings resulting from

both models. Based on the above works, in (Jamali and Ester, 2010) the authors proposed

SocialMF another matrix factorization-based method that accounts for trust propagation. Ref.

(Ma et al., 2011) proposed to add a regularization, into the traditional PMF (Salakhutdinov

and Mnih, 2008), so as to bring the latent factors of socially connected users closer to each

other. In (Yang et al., 2013) the authors proposed three trust MF-based models that consider

different aspects of trust information. The first variant reflects that the preference of a user

for an item is influenced by the preferences of his/her trustees on that item, the second

reflects that the behaviour of a user will influence that of his/her trusters and the third is a

combination of the above two during the prediction phase. More recently, in (Guo et al.,

2015) the authors proposed TrustSVD an extension of the well known SVD++ (Koren, 2008)

method that accounts for social trust information. Ref. (Chaney et al., 2015) proposed Social

Poisson Factorization. In addition to learn the user and item latent factors, as in traditional

MF, this method introduces a third latent factor that reflects how much each user is influenced

by his/her direct neighbors in the social network. Then, the preference of a user for an item

is explained by combining the three factors above.

All these efforts demonstrated that, considering information from social networks in

CF makes it possible to alleviate the sparsity related issues and generate more realistic

and accurate recommendations. Nevertheless, existing approaches to social CF are based

on popular assumptions such as Gaussian, Multinomial or Poisson, and therefore do not

account for the aforementioned directional characteristics of CF data. In this chapter, we

aim to address this limitation by building a novel model-based social CF approach, that

leverages the social interactions among users as well as the directional properties of CF data.

More precisely, the proposed model is based on a mixture of von Mises-Fisher distributions,
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and successfully integrates a directional measure, the cosine similarity, into a social CF

framework.

The vMF distribution is a continuous probability distribution, on a unit-hypersphere,

from directional statistics (Mardia and Jupp, 2000). It focuses on the directions of objects

and measures the distance between them using the cosine similarity. Most of the earlier

works using vMF distributions focused on low dimensional data, i.e., 2- or 3- dimensional

data (McLachlan and Peel, 2004), due to the difficulties related to the estimation of the

concentration parameter kappa, which involves the inversion of a ratio of Bessel functions. A

notable contribution is the mixture of vMF distributions movMFs (Banerjee et al., 2005b)

for clustering high dimensional sparse data. Banerjee et al. (2005b) derived an EM-based

solution for inference and parameter estimation, and they proposed an accurate approximation

to estimate the concentration parameter κ for a high dimensional vMF distribution. Since

this contribution, different vMF-based models for high dimensional sparse data have been

proposed. For instance (Reisinger et al., 2010) proposed a topic model based on a mixture of

vMF distributions. More recently, for text data clustering, (Gopal and Yang, 2014) proposed

a full Bayesian formulation of movMFs and developed two novel variants of movMFs,

namely hierarchical and temporal. Le and Lauw (2014) proposed a vMF-based model for the

semantic visualization of high dimensional sparse text data.

3.3 Preliminaries

In this section, we shall describe the mixture of von Mises-Fisher distributions proposed by

Banerjee et al. (2005b), but first we review the von Mises-Fisher (vMF) distribution, which

is well known in directional statistics (Mardia and Jupp, 2000).

3.3.1 The Multivariate von Mises-Fisher (vMF) Distribution

A d dimensional vMF (d-vMF) distribution, i.e, d ≥ 2 is a continuous probability distribution

on a unit hypersphere S
d−1. Thus, if a d dimensional data point xi on S

d−1, i.e, xi ∈ R
d and

∥xi∥= 1 follows a d-vMF distribution, its probability density function is given by:

f (xi|µ,κ) = cd(κ)expκµT xi , (3.1)
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Fig. 3.1 Three sample of 100 points according to three 2-vMF distributions, with different
concentration parameters, and the same mean direction µ = (1/

√
2,1/
√

2). The segment
starting from the circle centre denotes the mean direction of each vMF distribution.

where µ is the mean direction (centroid) parameter and κ denotes the concentration parameter,

such that ∥µ∥= 1 and κ ≥ 0. The normalization term cd(κ) is equal to:

cd(κ) =
κ

d
2−1

(2π)
d
2 Id

2−1(κ)
(3.2)

where Ir(κ) represents the modified Bessel function of the first kind and order r. In the vMF

distribution the parameter κ controls the concentration of data points xi ∈ S
d−1 following

(3.1), around the mean direction µ . Thus, f (xi|µ,κ) reduces to the uniform density on S
d−1

for κ = 0, and it is uni-modal if κ > 0. In particular, when κ → ∞, f (xi|µ,κ) tends to a

point density. Figure 3.1 illustrates the impact of κ , by presenting three sample of 100 points

on the unit circle (i.e d = 2) according to three 2-vMF distributions with the same centroid

µ , but with different values of κ . For more details on the vMF distribution, the reader can

refer to (Mardia and Jupp, 2000; Dhillon and Sra, 2003).

3.3.2 The mixture of von Mises-Fisher Distributions (movMFs)

Now, we review the mixture model of von Mises-Fisher distributions for clustering directional

data distributed on a unit hypersphere (Banerjee et al., 2005b). In this model, the data points

x1, . . . ,xn are assumed to be generated from a mixture of g vMF distributions with a set of

unknown parameters Θ. The density function of this mixture takes the following form:

f (xi|Θ) = ∑
h

αh fh(xi|µh,κh), (3.3)
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Fig. 3.2 movMFs as a graphical model.

where Θ = {µ1, . . . ,µg,α1, . . . ,αg,κ1, . . . ,κg}, µh and κh represent the centroid and the

concentration parameters of the hth component, respectively. Each parameter αh denotes the

proportion of points xi generated from the hth component, such that ∑h αh = 1 and αh > 0,

∀h ∈ {1, . . . ,g}. The generative process of this model is summarized below:

1. Choose a component h ∼ Multinomial(α1, . . . ,αg).

2. Choose a data point xi on S
d−1 ∼ fh(xi|µh,κh).

The graphical model of the vMF mixture model (movMFs) is depicted in figure 3.2, and

the corresponding log-likelihood function takes the following form

L(Θ;X) = ∑
i

log

(

∑
h

αh fh(xi|µh,κh)

)

, (3.4)

As the optimization of the above function is intractable, we rely on the “complete” data

likelihood given by

L(µ,α,κ;X,z) = ∏
i

αzi
(cd(κzi

)expκzi
µ⊤zi

xi), (3.5)

where z is the latent variable which is assumed to be known, i.e, zi = h if xi is generated

from the hth component. Using the classification matrix Z, the corresponding complete data

log-likelihood takes the following form:

Lc(Θ;X,Z) = ∑
h

z.h logαh +∑
h

z.h logcd(κh)+∑
i,h

zihκhµ⊤h xi (3.6)

where z.h denotes the cardinality of cluster h.

As the latent variable z is unknown in practice, the authors in (Banerjee et al., 2005b)

proposed to use the EM algorithm to obtain the maximum likelihood estimates for the

parameters Θ. The E-step finds the conditional expectation of the missing variable z given

the current estimated parameters Θ(t) and the observed data, i.e. z̃ih = E(zih = 1|xi,Θ
(t)).
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The M-step finds the new parameters Θ(t+1) maximizing the expectation of the complete

data log-likelihood (3.6) subject to the constraints ∑h αh = 1, ∥µh∥ = 1 and κh > 0. This

procedure leads to the soft vMF clustering algorithm (Banerjee et al., 2005b), denoted in this

chapter as movMF.

Note that if we impose the following constraints on the parameters: equality of proportions

α1 = . . .= αh and concentration κ1 = . . .= κh parameters, the maximization of Lc(Θ;X,Z)

reduces to the maximization of the spherical k-means criterion (Dhillon and Modha, 2001;

Banerjee et al., 2005b)

∑
i,h

zihκhµ⊤h xi = ∑
i,h

zih < µh,xi >= ∑
i,h

zih cos(δih)

where <,> denotes the scalar product and δih is the angle between both vectors xi and µh. So

when relying on a vMF mixture model, the cosine similarity is underlying. In fact, the well

known spherical k-means algorithm, using cosine similarity instead of euclidean distortions,

arises as special case from the movMF algorithm considered in this chapter, when we enforce

some restrictive constraints (Banerjee et al., 2005b).

3.4 Social von Mises-Fisher Mixture Model

We now propose Social-movMFs a novel model that leverages simultaneously the benefits of

the vMF-based modeling and social information. Specifically, we propose to generalize the

mixture of vMF distribution movMFs, presented above, to account for the social interactions

among users. The intuition behind our model is to bring the distributions over clusters of

socially connected users closer to each other. To this end, inspired from previous works on

learning using manifold regularization (Zhu and Lafferty, 2005; Belkin et al., 2006; Cai et al.,

2008; Mei et al., 2008; He et al., 2011), we propose to smooth the posterior probabilities z̃ih

based on the user-user graph. Posterior smoothness can be achieved by using any adequate

function, here we adopt the quadratic energy function—also denoted as the graph harmonic

function—(Zhu and Lafferty, 2005) defined as follows in our case

R(T ) = 1
2 ∑

h

∑
i

∑
j

τi j(z̃ih− z̃ jh)
2 (3.7)

where τi j = 1 if users i and j are socially connected and τi j = 0, otherwise, T = (τi j) is

the adjacency matrix of the user-user social graph. The above function is minimized if all

socially connected users exhibit similar posterior distributions over clusters. Recall that our

purpose is to force socially connected users to exhibit similar distributions over clusters. This
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objective can be achieved by regularizing the log-likelihood (3.4) by function (3.7). By doing

so in an adequate manner, we obtain the following regularized log-likelihood:

Lr(Θ;X,T ) = L(Θ;X)−λR(T ) (3.8)

where R(T ) plays the role of the regularization term that enforces smoothness of the posterior

probabilities on the social network, and λ is the regularization parameter that controls the

degree of smoothness. Observe that the complete data log-likelihood (3.6) of movMFs arises

from (3.8) as a special case when λ = 0. The corresponding regularized complete data

log-likelihood can be obtained by substituting Lc(Θ,X,Z) for L(Θ,X) in (3.8).

It is worth noting that the regularized log-likelihood (3.8) is penalized by users who are

socially connected and who exhibit substantially different distributions over clusters. Thus,

as opposed to the movMFs model, Social-movMFs accounts for interactions among users.

3.4.1 Maximum Likelihood estimates

In order to obtain the maximum likelihood estimates of the model parameters we rely on the

Generalized EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007). The

E-step is to estimate the posterior probabilities z̃ih, given the current estimated parameters

Θ(t) and the observed data X, as follows (Neal and Hinton, 1998):

z̃ih = E(zih = 1|xi,Θ
(t)) ∝ α

(t)
h fh(xi|µ(t)

h ,κ
(t)
h ). (3.9)

The M-step finds the new parameters Θ(t+1) maximizing or increasing the expectation of the

complete data log-likelihood which is given by

Q(Θ,Θ(t)) = E

(

Lc(Θ;X,Z)|X,Θ(t)
)

= ∑
i,h

z̃.h logαh +∑
h

z̃.h logcd(κh)+∑
i,h

z̃ihκhµ⊤h xi (3.10)

where z̃.h = ∑i z̃ih. The above optimization scheme yields the movMF algorithm providing

parameter estimation for the classical movMFs model (Banerjee et al., 2005b). In our

case, the purpose is to take into account social interactions among users. Thus, instead of

maximizing expression (3.10), we maximize the following regularized expected complete

data log-likelihood (or equivalently the expectation of the regularized complete data log-
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likelihood):

Qr(Θ,Θ(t)) = Q(Θ,Θ(t))−λR(T )
= ∑

i,h

z̃.h logαh +∑
h

z̃.h logcd(κh)+∑
i,h

z̃ihκhµ⊤h xi

− λ

2 ∑
h

∑
i

∑
j

τi j(z̃ih− z̃ jh)
2 (3.11)

Note that the direct maximization of expression (3.11) is intractable due to the introduction of

the regularization term—the M-step of EM does not have a closed-form solution. Fortunately,

in the GEM algorithm it is sufficient to find a better Θ at each iteration, i.e. we choose Θ(t+1)

so that Qr(Θ
(t+1),Θ(t)) ≥ Qr(Θ

(t),Θ(t)). Hence, following the strategy described in (Cai

et al., 2008; He et al., 2011), which is closely related to the optimization scheme proposed in

(Zhu and Lafferty, 2005) in the context of semi-supervised learning, we derive an efficient

M-step that is guaranteed to increase (3.11) at each iteration. The key idea is to optimize the

different parts of (3.11) separately so as to increase Qr(Θ
(t),Θ(t)). More precisely, we first

minimize the regularization term, as it depends only on the posterior probabilities z̃ih. This

step yields the smoothed posteriors on the user-user graph. It is obvious that the smoothed

posterior z̃ih minimizing R(T ) is given by z̃ih =
∑ j τi j z̃ jh

∑ j τi j
. This minimization scheme, however,

can lead to a strong smoothing, where the new posteriors are substantially far from the

original ones. Hence, for a better control of the smoothing process one should decrease

R(T ) gradually, instead of its direct minimization. This can be done by the Newton-Raphson

method as follows:

z̃ih := z̃ih− γ
R′(T )
R′′(T ) = (1− γ)z̃ih + γ

∑ j τi j z̃ jh

∑ j τi j
(3.12)

where R′, R′′ denote the first and second derivative of the regularization term relative to z̃ih,

and γ ∈ [0,1] is the Newton-Raphson’s step parameter. In our context, we can think of γ

being the level of smoothing. If γ = 0 then no smoothing is performed, and if γ = 1 then

the smoothed posterior distribution of each user is completely specified by the posterior

distributions of his neighbors in the social graph.

Once the smoothing step is done, the next step consists in maximizing the expectation of

the complete data log-likelihood Q relative to the parameters Θ, which yields the following
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update formulas (Banerjee et al., 2005b):

α̂h =
∑i z̃ih

n
, (3.13a)

µ̂h =
rh

∥rh∥
where rh = ∑

i

z̃ihxi, (3.13b)

κ̂h ≈
r̄hd− r̄3

h

1− r̄2
h

where r̄h =
Id/2(κ̂h)

Id/2−1(κ̂h)
=
∥rh∥
∑i z̃ih

. (3.13c)

Notice that, an exact estimation of the concentration parameter κ̂h implies to inverse a ratio

of Bessel functions, which has not a close form expression. To overcome this difficulty

Banerjee et al. (2005b) proposed the efficient approximation (3.13c), which is suitable for

high dimensional datasets. Furthermore, Tanabe et al. (2007) showed theoretically that the

above approximation lies in the interval in which the exact ML estimates of κh exists. More

accurate approximation of κh can be reached by using iterative methods (Tanabe et al., 2007;

Sra, 2012), the latter, however, are less suitable in high dimensions, since they involve an

extensive computation of a ratio of Bessel functions.

It is worth nothing that the M-step just described does not necessarily increase the

regularized log-likelihood function (3.8), due to the smoothing step. In order to address this

issue, we adopt the same strategy as in (Cai et al., 2008; He et al., 2011). After each M-step

we check if the regularized log-likelihood function has been decreased, then we decrease

the smoothing parameter γ and perform again the M-step. Alternating the above E-step and

optimization scheme (M-step) constitutes our soft social movMF algorithm—denoted as

Soc-movMF in the rest of the chapter—, which is described in more details by Algorithm 3.

It can be shown that the computational complexity of Soc-movMF is

O(g · nr + g · ns) per iteration, which scales linearly with the number of observed rela-

tions ns in the social network and observed ratings nr in the user-item matrix. In practice, we

have nr≪ n×d and ns≪ n×n, thereby Soc-movMF is very efficient and suitable for large

datasets.

Fitting the parameters of the proposed model Social-movMFs, to the user-item matrix,

using Soc-movMF constitutes the training component of our CF system. Once this step is

done, the missing ratings of the ith user can be easily predicted as follows

x̂i =
∑h z̃ihµh

∥∑h z̃ihµh∥
. (3.14)
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Algorithm 3: Soc-movMF.

Input: X (xi ∈ S
d−1) the rating matrix of size (n×d),

T the adjacency matrix of the social network, g the number of clusters, λ the
regularization parameter.
Output: Z̃, Θ;
1. Random initialization: Θ←Θ(0); t← 0;
repeat

2. Expectation step of GEM:
for i = 1 to n do

for h = 1 to g do

z̃
(t)
ih ←

αh fh(xi|µh,κh)

∑ℓ αℓ fℓ(xi|µℓ,κℓ)

end for

end for

3. Maximization step of GEM:
smooth← TRUE; γ ← 0.9;
while smooth do

3.1 Smooth the posterior probabilities

z̃
(t+1)
ih ← z̃

(t)
ih ; ∀i,h

z̃
(t+1)
ih ← (1− γ)z̃

(t+1)
ih + γ

∑ j τi j z̃
(t+1)
jh

∑ j τi j
; ∀i,h

3.2. Compute the new parameters Θ(t+1)

for h = 1 to g do

α̂h← ∑i z̃
(t+1)
ih

n

µ̂h← rh

∥rh∥ with rh = ∑i z̃
(t+1)
ih xi

κ̂h← r̄hd−r̄3
h

1−r̄2
h

with r̄h =
Id/2(κ̂h)

Id/2−1(κ̂h)
= ∥rh∥

∑i z̃
(t+1)
ih

.

end for

3.3. Compute the regularized log-likelihood

Lr(Θ
(t+1);X)← L(Θ(t+1);X)−λR(T )

if Lr(Θ
(t+1);X)< Lr(Θ

(t);X) then

3.4 Decrease the smoothing parameter γ
γ ← γ× γ

else

smooth← FALSE; t← t +1;
end if

end while

until convergence
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Observation It is worth noting that the proposed model Social-movMFs allows the

propagation of social information, between users, through the smoothing process (see step

3.1 in Algorithm 3). A property which is desirable since it may help to alleviate the sparsity

related issues in both the rating matrix and social network, as it has already been emphasized

in previous works (Ma et al., 2008, 2009; Jamali and Ester, 2010).

3.5 Experimental study

To show the benefits of our approach, we conduct extensive experiments on several real-

world datasets, in which we benchmark Soc-movMF against several strong competing social-

CF methods, namely SoRec (Ma et al., 2008), RSTE (Ma et al., 2009), SocialMF (Jamali

and Ester, 2010), SoReg (Ma et al., 2011), TrustMF (Yang et al., 2013) and TrustSVD

(Guo et al., 2015). In order to illustrate the advantage of leveraging information from

social networks, we also compare Soc-movMF with the traditional movMFs-based clustering

algorithm movMF (Banerjee et al., 2005b). Notice that movMF arises as a special case from

Soc-movMF when λ = 0. For all competing methods we used LibRec1, except for movMF we

used our implementation.

Note that previous works, in the context of social CF, established empirically that the

aforementioned competing methods perform better than several traditional CF approaches,

such as SVD++ (Koren, 2008), Matrix Factorization- and probabilistic MF-based methods,

therefore we do not consider these approaches in our experiments.

3.5.1 Datasets

We selected five popular benchmark real-world datasets, including both the user-item pref-

erences and social relationships between users, namely FilmTrust, CiaoDVD, Ciao-280k,

Flixster and Epinions.

• Flixster2: is a social rating dataset crawled by Jamali and Ester (Jamali and Ester, 2010)

from the flixster.com website. The latter is a social movie website, where users can watch,

buy, share, rate and review movies. Each user can create his/her own social network by

adding users into his/her friend list.

1http://www.librec.net/
2http://www.cs.ubc.ca/ jamalim/datasets/
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• FilmTrust3: is a dataset crawled by Guo et al (Guo et al., 2013) from the FilmTrust

website. FilmTrust, as Flixster, is a movie rating and sharing community. Unlike the

Flixster datasets, the social interactions between users are directed in FilmTrust.

• Ciao-280k4: this dataset is crawled by Tang et al (Tang et al., 2012) from the product

review website Ciao (ciao.co.uk). In the above site users can rate and review products as

well as add users to their trust network.

• CiaoDVD3: is crawled by Guo et al (Guo et al., 2014) from the Ciao site from the category

of DVDs.

• Epinions4: is crawled from the Epinions website (epinions.com). As Ciao, Epinions is a

consumer review site where users can rate and review products, and add members to their

trust list.

The characteristics of the above datasets are reported in Table 3.1. The trust links, in the

social network, are directed, while friendship are undirected.

Table 3.1 Description of Datasets

Characteristics
Datasets

FilmTrust CiaoDVD Ciao-280k Flixster Epinions
#Users 1,508 17,615 7,375 147,612 40,163
#Items 2,071 16,121 106,797 48,794 139,738
#Ratings 35,497 72,665 284,052 8,196,077 664,824
Density 1.14% 0.026% 0.04 0.114% 0.01%
ratings-scale [0.5,4] [1,5] [1,5] [0.5,5] [1,5]
#links 1,853 22,484 111,781 2,538,746 442,979
links-type trust trust trust friendship trust
Network-density 0.08% 0.01% 0.2% 0.011% 0.029%

3.5.2 Evaluation Metrics

Evaluating CF approaches still remains a challenging task. In our experiments we adopt a

commonly used approach to evaluate such systems, that consists in assessing the recommen-

dation accuracy on a set of held-out items—the test set. To this end, we retain four widely

used measures, from information retrieval, namely the Normalized Discount Cumulative Gain

(nDCG), Mean Reciprocal Rank (MRR), Precision@k (Prec@k) and Recall@k (Rec@k),

where k is the number of items in the recommendation list.

• MRR: The Reciprocal Rank (RR) for a recommendation list is the multiplicative inverse

of the rank of the first “good” item. The mean reciprocal rank is the average of the RR’s of

3http://www.librec.net/datasets.html
4http://www.jiliang.xyz/trust.html
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all the recommendation lists.

MRR =
1
n
∑

i

1
ranki

where n is the number of users who receive recommendations, i.e. the number of recom-

mendation lists, and ranki is the rank of the first correct item in the recommendation list of

user i. Intuitively, the RR measures how far a user should go in the recommendation list to

find a good item.

• nDCG5: the DCG is used to measure the gain of each item relative to its position in a

ranked list of items. Formally the DCG for a user i is given by

DCGi = ∑
j∈Di

1
log(rank j +1)

where Di denotes the set of held-out items for user i, and rank j is the rank of item j. The

normalized DCGi is given by

nDCGi =
DCGi

idealDCGi

where the idealDCGi is the best achievable DCGi, i.e. the value of the measure if the

ranking was perfect. The nDCG is high if the most relevant items appear early in the

ranked list. To evaluate an entire model we compute the average nDCG over all users:

nDCG = 1
n ∑i nDCGi.

• Precision@k: for each user the Precision@k denotes the proportion of good items in

his/her top-k recommendation list. To evaluate an entire CF system we compute the

average Precision@k over all users.

• Recall@k the Recall@k for a user is the proportion of good items, in the user’s top-k

recommendation list, from the number of relevant held-out items for that user. As for the

above measures, we can compute the average Recall@k over all users, to evaluate an entire

model.

The nDCG measures the raking quality of a model, while Precision@k and Recall@k

assess the quality of a user’s top-k recommendation list. All the above measures vary from

0.0 to 1.0, the higher these measures, the better is the recommendation quality.

Notice that we do not consider prediction metrics, such as MAE and RMSE, in our

experiments. As it has been already established by previous works (Cremonesi et al., 2010;

Amatriain et al., 2012; Loiacono et al., 2014; Chaney et al., 2015), low MAE and RMSE do

not necessarily equate to best user satisfaction. As emphasized in (Cremonesi et al., 2010;

5Several variants of nDCG exist, here we adopt the same as in LibRec for fairness purpose.
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Amatriain et al., 2012), the purpose of a CF system is to provide users with a set of relevant

items, as a ranked list. In most commercial systems, users do not receive the predicted rating

values, but rather lists of few selected items and ordered according to these values. Thus, the

task of item recommendation is by nature a ranking problem. It is therefore more adequate to

evaluate CF systems according to the quality of lists of items they recommend. Furthermore,

in our case each approach makes predictions in its own range. For instance our method

normalizes data so that it lies on a unit hypersphere, some retained competing methods map

the original ratings to the interval [0,1]. So, it is not consistent to compare theses approaches

in terms of prediction accuracy, by using measures such as MAE and RMSE which are

strongly sensitive to the range in which the predicted ratings lie.

3.5.3 Experimental Settings

In our experiments we adopt the 5-fold cross validation strategy. Each dataset was randomly

split into five folds. At each run four folds—80% of data—are used for training and the

remaining fold is used for testing. On each dataset we perform five runs in order to test all

folds. The average performance over the five runs is reported as the final result.

In order for comparisons to be fair and assess the impact of the social network information,

we use the same random parameters Θ0 to initialize both Soc-movMF and movMF, in all our

experiments.

Our approach Soc-movMF and the traditional movMF, require as an input the number of

clusters g which is analogous the number of latent factors k in matrix factorization-based

approaches. The number of latent factors k, in the retained baselines, is usually set to 5

or 10 in previous works. In our experiments we found that the different baselines achieve

better performances with k = 5 in all most all situations, we choose therefore k = 5 for all

MF-based approaches. Concerning the number of clusters, we empirically found that both

our approach and movMF provide high performances with a small number of clusters—usually

g≤ 10. Thus, for fairness purpose, and due to the analogy between g and k, we set g = 5 in

all our experiments. Nevertheless, we illustrates the impact of g in our experiments.

Another input required by all approaches including the proposed one and competing

methods, is the regularization parameter λ . In our case we set this parameter to 1 so as

to give equal importance to both the preference and social information. The impact of λ

is, however, illustrated in our experiments. The MF-based methods considered here often

require several regularization parameters that are usually set to λ = 0.001. The other settings

for the regularization parameters, determined either by our experiments or by previous works

(Guo et al., 2015), are as follows: TrustMF and socialMF λT = 1.0, SoRec λc = 0.001

for Flixster and 1.0 for the others, SoReg β = 1.0 for Flixster and 0.1 for the others, RSTE
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α = 0.4, TrustSVD λt = 0.9, 1.0, 1.0, 0.5, 0.5 and λ = 1.2, 0.5, 0.5, 0.9, 0.8 for FilmTrust,

CiaoDVD, Ciao-280k, Epinions and Flixster, respectively.

3.5.4 Empirical results and discussion

The average performances of each approach over the different datasets are reported in Table

3.2. In order to ease interpretation, Figures 3.3 to 3.6 provide another representation of

the results reported in Table 3.2. As these results show clearly, the proposed Soc-movMF

performs substantially better than all competing methods, over all datasets. Note that even a

small improvement in nDCG may result in an important improvement in terms of the other

recommendation quality measures, this is due to the log factor in nDCG.

Beyond the fact that the proposed approach outperforms competing methods, several

questions still deserve to be asked.

Is it beneficial to model CF data as directional data distributed on the surface of a

unit-hypersphere?

We observe that even if the traditional vMF-based model movMF does not exploit the

social interactions among users, it is superior to the other competing methods in almost all

situations, except on Flixster where SoReg offer the best performance among the competing

methods. This provides strong empirical support for the advantage of leveraging the intrinsic

directional properties of CF data.

Table 3.2 Comparison of Average recommendation accuracy over different datasets. "Im-
prove" indicates the improvement reached by the proposed social model Soc-movMF relative
to performance of the traditional movMF model.

Dataset Measure TrustSVD TrustMF SocialMF RSTE SoRec SoReg movMF Soc-movMF Improve

FilmTrust

nDCG 0.1764 0.1679 0.2040 0.4612 0.1833 0.4658 0.6291 0.6626 5.05%
MRR 0.0142 0.0142 0.0799 0.3926 0.0829 0.3664 0.5843 0.6311 7.41%

Prec@10 0.0029 0.0090 0.0117 0.1807 0.0087 0.2069 0.3218 0.3385 4.93%
Rec@10 0.0048 0.0219 0.0242 0.3215 0.0194 0.3391 0.5785 0.6215 6.92%

CiaoDVD

nDCG 0.1085 0.1023 0.1149 0.1236 0.1149 0.1283 0.1451 0.1527 4.98%
MRR 0.0062 0.0062 0.0124 0.0214 0.0122 0.0139 0.0252 0.0335 24.8%

Prec@10 0.0012 0.0014 0.0024 0.0059 0.0025 0.0024 0.0059 0.0077 23.4%
Rec@10 0.0059 0.0090 0.0141 0.0384 0.0143 0.0172 0.0351 0.0455 22.9%

Ciao-280k

nDCG 0.1206 0.1117 0.1158 0.1094 0.1172 0.1157 0.1690 0.1820 7.14%
MRR 0.0079 0.0009 0.0053 0.0005 0.0068 0.0065 0.0653 0.0907 28.0%

Prec@10 0.0012 0.0001 0.0009 0.0001 0.0012 0.0006 0.0199 0.0256 22.3%
Rec@10 0.0016 0.0002 0.0013 0.0002 0.0019 0.0016 0.0243 0.0380 36.1%

Epinions

nDCG 0.1071 0.1004 0.1021 0.0953 0.0944 0.1113 0.1438 0.1508 4.64%
MRR 0.0037 0.0094 0.0045 0.0016 0.0021 0.0047 0.0263 0.0409 35.7%

Prec@10 0.0006 0.0021 0.0009 0.0002 0.0004 0.0005 0.0069 0.0097 28.9%
Rec@10 0.0013 0.0053 0.0022 0.0006 0.0010 0.0017 0.0169 0.0229 26.2%

Flixster

nDCG 0.1800 0.1277 0.1399 0.1289 0.1397 0.2768 0.2072 0.3547 41.6%
MRR 0.0376 0.0005 0.0157 0.0004 0.0157 0.1237 0.0497 0.2382 79.1%

Prec@10 0.0137 0.0002 0.0016 0.0001 0.0016 0.0313 0.0113 0.0948 88.1%
Rec@10 0.0116 0.0000 0.0104 0.0000 0.0105 0.0924 0.0045 0.1635 97.2%
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Fig. 3.3 Comparison of average nDCG over different datasets.
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Fig. 3.4 Comparison of average MRR over different datasets.
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Fig. 3.5 Comparison of average Precision@10 over different datasets.
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Fig. 3.6 Comparison of average Recall@10 over different datasets.

What is the impact of the social component of Soc-movMF?

Recall that movMF arises as a special case from Soc-movMF when λ = 0, i.e. movMF is

exactly the Soc-movMF without the social component. Column “Improve”, in Table 3.2,

shows that the proposed Soc-movMF noticeably improves the performances of movMF. This

constitutes empirical evidence that accounting for social interactions among users helps to

improve the recommendation quality.
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Fig. 3.7 % of cold start users in the user-item matrix (Preference) and social-network (Social).

Why does the improvement rate, in the recommendation quality, differ substantially from

one dataset to another?

The improvement rate on Flixster is significantly more important than on the other

datasets, while the improvement on FilmTrust is quite low. We believe that this behaviour is

due to the characteristics of the different datasets in terms of the number of observed ratings

and social relations per user. In Figure 3.7 we report the proportion of cold start users6, who

have very few ratings (resp., social-relations), five or fewer, in the user-item matrix (resp.,

social network). From Figure 3.7 we note that Flixster exhibits different characteristics in

comparison to the other datasets. In fact, in Flixster, while most users—more than 50%—are

cold start users in the user-item matrix, only few are cold start in the social network as

opposed to the other datasets. This suggests that the social interactions in Flixster play a key

role in handling the cold start users in the preference matrix, which allowed the Soc-movMF to

improve the performances of movMF by a noticeable amount. In FilmTrust, we note only few

cold start users in the preference matrix, against a lot of cold start users— more than 90%—

in the social network. Hence, most information in FilmTrust is contained in the user-item

matrix, which may explain the low improvement in the performances of Soc-movMF relative

to movMF. In the Epinions and CiaoDVD datasets we observe a high rate of cold start users

in both the user-item matrix and the social network. Although most users expressed only

few social interactions in the above two, the social information seems to play an important

role, in that it allowed Soc-movMF to reach better performances than movMF. We believe that

this behaviour may be due to the propagation of social interactions in Soc-movMF. Finally,

the high performances of Soc-movMF, relative to its traditional variant movMF, on Ciao-280k

suggest that even when only few users are cold start users, in the preference matrix, the social

information is still of great interest to improve the recommendations.

6Cold start users are those with only few observed rating/social-interactions. Following previous works
(Jamali and Ester, 2010; Guo et al., 2015) we assume that a user is cold start in the user-item matrix if he/she
expressed five or fewer ratings. Similarly a user is cold start in the social network if he/she has five or fewer
social interactions.
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To sum up, the results from Table 3.2, Figures 3.3 to 3.6 and Figure 3.7 suggest that not

only the social information but also the directional properties of CF data should be taken into

account to improve the recommendations. It seems better to model collaborative filtering

data as directional data. Moreover, accounting for social interactions among users seems to

be of particular interest when most users expressed very few ratings, i.e. the cold start users.

To investigate the latter result further, in the next section we conduct experiments in which

we benchmark the social Soc-movMF against the traditional movMF on cold start users.

3.5.5 movMFs vs Social-movMFs on cold start users

Cold start is a major challenge in CF, because in many real-world applications most users

express very few ratings. In order to complete the results from the previous section, we

shall investigate in greater depth the impact of the social information on cold start users,

who expressed very few ratings. We conduct, therefore, another series of experiments in

which we benchmark our social model Soc-movMF against the traditional movMF model,

on cold start users. From Table 3.3 we can clearly observe that Soc-movMF still provides

a high recommendation accuracy and substantially improves the performances of movMF.

More interestingly, on the FilmTrust, Ciao-280k and Flixster data sets we observe a greater

improvement, in the performance of Soc-movMF relative to movMF, compared with Table

3.2 (see column “Improve”). In order to understand why the improvement rate may differ

substantially from one dataset to another, we report in Figure 3.8 the distribution of out degree

Table 3.3 Comparison of Average recommendation accuracy on cold start users—with 5 or
fewer ratings—over different datasets. "Improve" indicates the improvement reached by the
proposed social model Soc-movMF relative to the performance of movMF.

Datasets Measures movMF Soc-movMF Improve

FilmTrust

nDCG 0.4534 0.4663 2.75%
MRR 0.3457 0.3572 3.21%
Prec@10 0.0731 0.0843 13.3%
Rec@10 0.4760 0.5471 13.0%

CiaoDVD

nDCG 0.1409 0.1459 3.40%
MRR 0.0271 0.0317 14.5%
Prec@10 0.0058 0.0062 6.62%
Rec@10 0.0487 0.0519 6.09%

Ciao-280k

nDCG 0.1203 0.1344 10.5%
MRR 0.0201 0.0431 53.3%
Prec@10 0.0041 0.0073 42.9%
Rec@10 0.0185 0.0375 50.6%

Epinions

nDCG 0.1102 0.1127 2.17%
MRR 0.0125 0.0161 22.0%
Prec@10 0.0022 0.0032 31.1%
Rec@10 0.0152 0.0218 30.1%

Flixster

nDCG 0.1142 0.3106 63.2%
MRR 0.0047 0.1848 97.5%
Prec@10 0.0003 0.0394 99.2%
Rec@10 0.0023 0.3209 99.3%
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Fig. 3.8 Cold start users : distribution of out degree, i.e., the number of social interactions
per cold start user, over the different datasets

per cold start user, i.e. the number of social relations expressed by a cold start user, over the

different datasets. From Table 3.3 and Figure 3.8, we observe that the improvement rate in the

performances of Soc-movMF, relative to movMF, goes from high to low as the distribution of

the number of social interactions, per cold start user, decreases. For instance on Flixster, we

observe that most cold start users expressed more than five social relationships, which may

explain the strong superiority of social Soc-movMF in comparison to movMF. These results,

constitute empirical evidence, that accounting for social interactions among users is of great

interest and helps to alleviate the cold start issue.

3.5.6 Impact of the number of clusters and the regularization

In the sequel we investigate the impact of the two parameters g and λ on the performances of

Soc-movMF. We illustrate their behavior on the FilmTrust, CiaoDVD, Ciao-280k and Epinions

datasets in terms of nDCG. In Figure 3.9 the values of nDCG are depicted as a function of

the number of clusters g, over the different datasets. We observe that a small number of

clusters (< 10) seems to be enough, in order for Soc-movMF to reach high recommendation

performances.
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Fig. 3.9 Impact of the number of clusters g.
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Fig. 3.10 Impact of the regularization parameter λ .

Figure 3.10 illustrates the impact of the regularization parameter λ . As it is clear from this

figure, Soc-movMF is highly stable relative to the variations of the regularization parameter λ ,

and seems to provide slightly better performances with a small value of λ , which facilitates

the setting of this parameter.

3.6 Conclusion and perspectives

We proposed Social-movMFs, a novel model that accounts for social network information

to improve item recommendations. Social-movMFs simultaneously seeks groups of users

who tend to express similar preferences and brings the distributions, over clusters, of socially

connected users closer to each other so as to capture the influences between friends. While

existing approaches to social CF are based on popular modelling assumptions, such as

Gaussian, our approach builds on the vMF distribution which arises naturally for directional

data distributed on the surface of a unit-hypersphere. From our experiments, it seems that

CF datasets possess intrinsic directional characteristics that are consistent with the vMF

modeling assumption. Moreover, incorporating social information into a vMF mixture model

turns out to be very beneficial and makes it possible to alleviate the sparsity related issues,

such as the cold start problem.

In terms of performance the proposed model improves noticeably the recommendation

accuracy of several strong competing methods, including the traditional movMF and several

social CF models, as illustrated in our experiments. Our empirical results suggest that, for

making good recommendations, not only the social interactions among users should be taken

into account, but also the intrinsic “directional” properties of CF data.

The good performances of Social-movMFs motivates future investigations, that may

include incorporating time into Social-movMFs, and building online variants so as to handle

the frequent changes in social CF: new ratings, social relations, items and users.

Another possible future work is to extend Social-movMFs to the context of co-clustering,

by relying on the block vMF mixture model, described in Chapter 5, so as to partition the

sets of users and items simultaneously. Such an extension would allow us to alleviate the
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sparsity problem even better since the co-clustering has proven to be very effective in the

context of high dimensional sparse data.



Chapter 4

Co-clustering

This chapter provides a brief overview of existing approaches to co-clustering. The objective

here is to give some intuitions about the concept of co-clustering, its advantages over

traditional one-sided clustering and an outline of the major approaches to co-clustering.

4.1 Introduction

In general terms co-clustering (Govaert and Nadif, 2013)—also denoted as block clustering

(Govaert and Nadif, 2003), bi-clustering (Madeira and Oliveira, 2004), direct clustering

(Hartigan, 1972), two-way clustering (Bock, 2003), two-mode clustering (Van Mechelen

et al., 2004) or simultaneous clustering (Govaert, 1995)—is an important extension of

traditional one-sided clustering, that addresses the problem of simultaneous clustering of

both dimensions of a data matrix. More precisely, co-clustering seeks “homogeneous” sub-

matrices, namely co-clusters (or blocks)—see Definition 1—where rows and columns follow

some consistent patterns.

Definition 1 Let X be a data matrix of size n×d where I is the set of n rows, and J the set

of d columns. A co-cluster (or a block) hℓ is a couple (Ih,Jℓ) (Ih ⊆ I,Jℓ ⊆ J ), i.e., each

co-cluster corresponds to a sub-matrix Ih×Jℓ.

Co-clustering exhibits several practical advantages making it possible to meet the grow-

ing needs in several current areas of interest, in terms of effectiveness, scalability and

visualization. Below, we summarize some key properties of co-clustering:

- By intertwining row clustering and column clustering at each stage, co-clustering

performs an implicitly adaptive dimensionality reduction, which is imperative to deal

with high dimensional sparse data. This makes it possible (i) to develop efficient
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algorithms with a dramatically smaller number of parameters (ii) to reduce the original

data matrix into a much simpler and condensed data matrix with the same structure.

- Co-clustering exploits the inherent duality between rows and columns of data matrices

making it possible to enhance the clustering along both dimensions, by exploiting the

latent column structure during row assignments and vice versa.

- Far from adding complexity, co-clustering is more informative than one-sided clus-

tering, and produces meaningful clusters. In the case of document-term matrices, for

example, co-clustering annotates sets of documents automatically by clusters of words.
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Reorganized and averaged data Summary

Fig. 4.1 Binary table reorganized according to the row and column partitions

One of the earliest explicit formulation of co-clustering dates back to Hartigan (1972,

1975) under the name of “direct clustering”. In the former work, various cluster models and

structures were introduced, and a stepwise divisive strategy was proposed that simultaneously

seeks hierarchical row and column clustering. The proposed algorithm, initially treats the

whole matrix as a block, then at each step a selected block is splited into two sub-blocks,

i.e, either by rows or columns, so that the reduction of the within co-cluster variance is

maximized. This divisive process is repeated until no significant reduction of the within

co-cluster variance is observed. Since this seminal work, co-clustering has received extensive

attention in various application domains, such as text mining (Hofmann et al., 1999; Dhillon,

2001; Dhillon et al., 2003; Long et al., 2005; Ding et al., 2006; Ailem et al., 2015) to group
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words and documents simultaneously, bioinformatics (Cheng and Church, 2000; Madeira

and Oliveira, 2004; Cho et al., 2004; Gupta and Aggarwal, 2010; Hanczar and Nadif, 2012)

to cluster genes and experimental conditions simultaneously, web mining (Xu et al., 2010;

Charrad et al., 2009), collaborative filtering (Hofmann and Puzicha, 1999; George and

Merugu, 2005; Deodhar and Ghosh, 2010; Khoshneshin and Street, 2010) to group users

and items simultaneously, affiliation networks (Zanghi et al., 2008, 2010) or evolving graphs

(Guigourès et al., 2015), giving rise to a large variety of co-clustering methods.

4.2 Metric-based co-clustering

Metric approaches to co-clustering are based on the intuition that there is an underlying block

structure in the original data, that can be exploited to summarize it by a smaller data matrix

with the same structure. To this end, metric co-clustering methods consist in optimizing a

criterion that measures the difference between the original data matrix and its compressed

representation—summary—due to co-clustering. One of the most popular co-clustering

criterion is the least-squares, that is suitable for continuous data (Govaert, 1995), given as

follows:

W (C,z,w) = ∑
i, j,h,ℓ

zihw jℓ(xi j− chℓ)
2 (4.1)

where z and w denote respectively the row and column partitions, C= (chℓ) is the compressed

representation of the original data matrix X due to co-clustering, i.e, C is a matrix of size

g×m and chℓ ∈ R is the representative of each block or co-cluster. The co-clustering in this

context is to find z, w and C minimizing criterion (4.1). The above optimization problem

is intractable, however, a locally optimal solution can be obtained, for instance, by using

the double k-means procedure—so called because of its relation to the k-means algorithm—

described below. Starting from a random initial position, the double k-means algorithm

alternates the following optimization steps until convergence:

1. Row assignment. Compute z given w and C: zi = argminh′∑ jℓw jℓ(xi j− xhℓ)
2, ∀i.

2. Column assignment. Compute w given z and C: w j = argminℓ′∑ih zih(xi j−xhℓ)
2, ∀ j.

3. Update co-clusters. Compute C given z and w: chℓ =
∑i j zihw jℓxi j

z.hw.ℓ
, ∀h, ℓ.

where z.h and w.ℓ denote respectively the cardinality of row cluster h and column cluster ℓ.

A large class of co-clustering algorithms are based on the above least-squares criterion, or

its variants, and use the principle of double k-means to solve the corresponding optimization
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problem. Among such algorithms we can cite, for instance, the CROEUC algorithm (Gov-

aert, 1995), the minimum sum-squared residue co-clustering algorithms, tailored for gene

expression data, proposed in (Cho et al., 2004) and the co-clustering algorithms, based on

non-negative matrix tri-factorization, proposed by Labiod and Nadif (2011a).

Another important class of co-clustering methods are those based on information mea-

sures such the chi-squared statistic and mutual information. This category of co-clustering

algorithms is, in particular, appropriate for dyadic data—contingency tables—such as

document-term matrices. In this context we can mention two notable approaches, namely

the CROKI2 (Govaert, 1995) and the information theoretic co-clustering (ITCC) (Dhillon

et al., 2003) algorithms, based respectively on the chi-squared statistic and mutual informa-

tion. Both the above approaches aim to minimize the loss in information, relative to the

corresponding information measure, due to co-clustering. For more details and theoretical

connections between the above two, please refer to the book of Govaert and Nadif (2013).

Motivated by metric approaches to co-clustering, Banerjee et al. (2007) posed the co-

clustering as a matrix approximation problem, and they developed a general framework that

allows the use of any Bregman divergence to measure the approximation error and, thereby,

the quality of co-clustering. For instance, under some constraints and when the the Bregman

divergence is the Kullback-Leibler divergence this corresponds to the information theoretic

co-clustering (Dhillon et al., 2003), similarly, when the Bregman divergence is the squared

euclidean distance this corresponds to the double k-means co-clustering algorithm presented

above.

4.3 Graph-based co-clustering

In the graph-based approach data are modeled by a bipartite graph, from graph theory, with

two sets of vertices I and J denoting respectively rows and columns. Each row/column is

represented by a vertex, the two sets of vertices are connected by a set of undirected edges,

as illustrated in Figure 4.2.

Let X denote the original data matrix, the adjacency matrix of the corresponding bipartite

graph takes the following form:

A =

(

0 X

XT 0

)

(4.2)

Based on such a graph modelling, the co-clustering is to seek g clusters of densely connected

nodes, by minimizing the sum of the weights of the edges between clusters and maximizing

the sum of the weights of the edges within clusters.
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B1 B2 B3 B4 B5 B6 B7
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A2 1 1 0 0 0 1 1
A3 0 0 0 1 1 1 1
A4 0 0 0 1 0 1 1
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Fig. 4.2 Binary data and its associated bipartite graph

In this context Dhillon (2001) proposed the spectral co-clustering algorithm, he presented

a bipartite graph modelling for a document-word collection, then he proposed to find an

optimal partitioning of the document-word bipartite graph, into g row and column clusters,

by using a spectral relaxation for the minimum cut graph partitioning problem. Labiod

and Nadif (2011b) proposed a normalized generalized version of the modularity measure

(Newman and Girvan, 2004) which is popular in network analysis. Then, they developed

a spectral co-clustering algorithm maximizing the proposed criterion, for simultaneous

clustering of binary and categorical data. The authors, shown that the proposed algorithm

performs well in the context of text document clustering, and they studied the problem of

assessing the number of co-clusters by using the proposed criterion. More recently, Ailem

et al. (2015) proposed a novel co-clustering algorithm maximizing the graph modularity.

More precisely, they proposed an efficient k-means like alternating optimization scheme as

a direct way to maximize the graph modularity, without eigenvector computation—a step

which is computationally prohibitive. As in (Labiod and Nadif, 2011b), Ailem et al. (2015)

illustrated how the modularity measure can be exploited to assess the number of clusters.

4.4 Model-based co-clustering

The generative mixture model approach (Govaert and Nadif, 2013) is a very powerful

technique to design co-clustering algorithms. It offers more flexibility, can incorporate

different domain knowledge, allow us to model different types of data and uncover various

specific cluster structures. Furthermore, the generative model-based approach provides

theoretical justifications behind a large class of metric-based co-clustering algorithms.

In this context, most of co-clustering methods are based on the Latent Block Model (LBM)

(Govaert and Nadif, 2003). Intuitively, the LBM assumes that a data matrix is composed

of co-clusters, each of which is characterized by an underlying probability distribution

called a component. Each co-cluster is a set of real values xi j ∈ R drawn from some
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Fig. 4.3 LBM’s graphical model

specific univariate probability distribution. Putting the co-clustering problem under the

LBM framework involves the choice of (i) the number of row and column clusters, (ii) an

adequate probability distribution according to the type of data, (iii) a method to fit the model

parameters. Formally, the probability density function of the LBM takes the following form:

f (X|Θ) = ∑
z,w

(
n

∏
i=1

αzi

)(
d

∏
j=1

ρw j

)(

∏
i, j

ϕ(xi j|θziw j
)

)

. (4.3)

where the notation ∑z,w stands for the sum over all possible row and column partitions,

X = (xi j) denotes a data matrix of size n×d, zi ∈ {1, . . . ,g} and w j ∈ {1, . . . ,m} denote the

row and column cluster labels, Θ = {α,ρ,θ11, . . . ,θgm} is the set of parameters, such that

α = {α1, . . . ,αg} and ρ = {ρ1, . . . ,ρm} represent respectively the row and column mixing

proportions, θhℓ is the parameter of the probability distribution ϕ characterizing co-cluster

hℓ. The LBM assumes that (i) the univariate random variable xi j are independent given z

and w, (ii) the row and column partitions—treated as latent variables—are independent, i.e.

p(z,w) = p(z)p(w). Its graphical model is depicted in Figure 4.3, and the corresponding

generative process is as follows:

1. For each row i: choose a cluster label zi = h ∼ Multinomial(α1, . . . ,αg).

2. For each column j: choose a cluster label w j = ℓ ∼ Multinomial(ρ1, . . . ,ρm).

3. For each entry (i, j) Choose a value xi j ∼ ϕ(xi j|θziw j
).

Co-clustering under the LBM is to reverse the above generative process and fit the model

parameters Θ to the observed data X. To this end, two main approaches can be considered,

namely the Maximum Likelihood (ML) approach—involving the Expectation-Maximization
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(EM) algorithm (Dempster et al., 1977)—and the Classification ML (CML) approach (Scott

and Symons, 1971; Symons, 1981)—using the Classification EM (CEM) algorithm (Celeux

and Govaert, 1992)—, yielding respectively to soft and hard co-clustering. Regarding the

type of data several LBM-based co-clustering algorithms have been proposed. We can cite

the co-clustering of binary data based on the Bernoulli LBM (Govaert and Nadif, 2003, 2008),

the Poisson LBM-based co-clustering (Govaert and Nadif, 2010) dealing with contingency

tables. In the above works, the authors considered both the ML and CML approaches to

estimate the model parameters. Under the ML approach, the authors emphasized the difficulty

due to the coupling of the missing variables z and w, and derived an efficient variational EM

algorithm for inference and parameter estimation.

Under a Bayesian formulation, the latent block model, or its variants, have been also

investigated to address specific problems in graph clustering (Latouche et al., 2009; Daudin

et al., 2008; Corneli et al., 2015) or to raised challenges such as the model selection or empty

classes (van Dijk et al., 2009; Lomet et al., 2014; Keribin et al., 2015). Recently, Wyse and

Friel (2012) considered a collapsed Bayesian extension of the Bernoulli LBM (Govaert and

Nadif, 2008), which is able to learn the number of row and column clusters. We can also

mention the Bayesian co-clustering model (Shan and Banerjee, 2008), which can be viewed

as an extension of the latent block model where each row/column may belong to multiple

cluster. For more details on the LBM and generative model-based co-clustering approaches

the reader can refer to the book of Govaert and Nadif (2013).

One notable advantage of model-based co-clustering approaches is that they provide the

theoretical justifications behind a large class of metric-based co-clustering algorithms. For

instance, Govaert and Nadif (2013) demonstrated that under some restrictive constraints and

when the contingency table is converted to a joint probability distribution, the hard Poisson

LBM co-clustering algorithm is equivalent to the well known information theoretic co-

clustering (ITCC) (Dhillon et al., 2003). In the same spirit, the double k-means co-clustering

can be derived as a special case from the Gaussian block model (Nadif and Govaert, 2010;

Govaert and Nadif, 2013).

4.5 Non-Negative Matrix Factorization-based approaches

An other variety of co-clustering algorithms are those based on non-negative matrix factor-

ization (NMF). Even if co-clustering is not the purpose of NMF, this approach has recently

received a lot of interest for co-clustering positive matrices, such as document-term data

arising in text mining. Given a positive data matrix X, NMF-based co-clustering algorithms
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seek a three factor decomposition ZSWT of X, by optimizing the following criterion

min
Z>0, S>0, W>0

∥X−ZSWT∥2 (4.4)

where ∥.∥ is the Frobenius norm, Z and W are two positive matrices containing row and

column cluster memberships, respectively, and S is a positive reduced form—a summary—of

X due to co-clustering. Among NMF based co-clustering methods we can cite the non-

negative block value decomposition NBVD by Long et al. (2005), who derived an alternating

algorithm based on a set of multiplicative update rules to optimize criterion (4.4). In the

same spirit Ding et al. (2006); Yoo and Choi (2010) addressed the problem of simultaneous

clustering, by developing two variant of orthogonal three factors NMF, namely ONM3F

(Ding et al., 2006) and ONMTF (Yoo and Choi, 2010). The difference with (Long et al.,

2005) is that in (Ding et al., 2006; Yoo and Choi, 2010) the authors imposed orthogonality

constraints on row and column cluster indicator factors, i.e. Z and W, and they emphasized

the importance of such constraints in the clustering context. We can also cite the work of

Labiod and Nadif (2011a) in which two NMF-based co-clustering algorithms have been

proposed. Contrary to the previous works, Labiod and Nadif (2011a) placed the co-clustering

aim under the NMF formulation at the beginning.

4.6 Conclusion

In this chapter, we introduced the concept of co-clustering, outlined the main approaches to

co-clustering and presented some advantages of co-clustering over traditional one-sided clus-

tering when dealing with high dimensional sparse data. Although co-clustering approaches

have been proven to be very effective in the context of high dimensionality and sparsity,

they still exhibit some limitations. For instance, existing co-clustering methods are based on

popular assumptions such as Gaussian, Multinomial, Poisson or Bernoulli, which are inade-

quate for directional data distributed on the surface of a unit hypersphere (or equivalently L2

normalized data). However, as it has been emphasized in this thesis and some previous works,

some high dimensional sparse data sets, such as text, posses intrinsic directional properties

and are, therefore, better modeled as directional data. So far, we highlighted the benefits of

both the co-clustering and L2 normalization in the context of high dimensional sparse data, so

it seems natural to question whether it is possible to reap the advantages of both co-clustering

and L2 normalization, simultaneously. In the next chapters, we provide an answer for the

above question; we design a general co-clustering model that is well suited for directional

data lying on a unit-hypersphere. Our choice for the model-based approach is motivated by



4.6 Conclusion 67

its flexibility and strong theoretical foundations. The proposed model is parsimonious and

gives rise to several scalable and effective co-clustering algorithms.





Chapter 5

Von Mises-Fisher based Co-clustering

In the context of high dimensional sparse data, co-clustering turns out to be more beneficial

than one-sided clustering even if one is interested in clustering along one dimension, only.

As highlighted in the previous chapters and the beginning of this thesis, some datasets, such

as document-term matrices, exhibit directional characteristics and the L2 normalization of

such data so that it lies on the surface of a unit hypersphere is necessary.

Popular co-clustering assumptions such as Gaussian or Multinomial are not adequate

for directional data. This chapter presents a novel co-clustering model based on a mixture

of von Mises-Fisher distributions, which is well-suited for modelling directional data lying

on a unit hypersphere. The proposed model successfully integrates a directional measure—

cosine similarity—into a co-clustering framework. It is parsimonious and able to reveal a

block diagonal structure as well as a good partitioning of rows and columns. By setting the

estimate of the model parameters under the maximum likelihood (ML) and the classification

ML (CML) approaches, we derive six novel co-clustering algorithms, namely soft, hard,

stochastic and simulated annealing variants. Extensive experiments on several simulated and

real-world datasets confirm the advantage of our approach and demonstrate the effectiveness

of our algorithms.

5.1 Introduction

The mixture of von Mises-Fisher (vMF) distributions (Banerjee et al., 2005b), introduced in

chapter 3, turn out to be a wise choice when dealing with high dimensional sparse data. In

fact, this model, noted movMFs, is one of the most appropriate model for clustering high

dimensional sparse data, such as document-term matrices arising in text mining. In this

domain, it has been empirically demonstrated that vMF-based clustering methods perform

better than several existing approaches, see for instance (Zhong and Ghosh, 2005; Gopal
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and Yang, 2014). From a statistical point of view this means that document-term matrices

possess directional characteristics (Mardia and Jupp, 2000). Existing vMF-based clustering

models, however, focus only on clustering along one dimension, i.e, either row or column

clustering. Hence, they do not exploit the inherent duality between rows and columns of data

matrices. In the clustering context, it turns out that the exploitation of this duality during

the clustering process, presents a real advantage to improve the quality of clustering and

alleviate the aforementioned difficulties related to high dimensionality and sparsity. This,

can be achieved by using a new form of clustering that simultaneously partitions rows and

columns of a data matrix, namely the co-clustering introduced in the previous chapter.

In this chapter, we concentrate on the practical problem of co-clustering document-term

matrices arising in text mining. Despite the importance of modelling text data as directional

data, existing co-clustering approaches are based on popular modelling assumptions such as

Gaussian or Multinomial, which are inadequate to model L2 normalized data distributed on

the surface of a unit hypersphere. Thus, it seems natural to question whether it is possible to

get the best of both directional modelling and co-clustering, within the same model. In this

chapter, we provide an answer for the above question. We present a general co-clustering

framework based on a mixture of von Mises-Fisher distributions. Our model inherits the

advantages of both the co-clustering and the modelling assumption of the vMF distribution.

Contrary to existing co-clustering methods, it exploits the directional characteristics exhibited

by some datasets, such as document-term matrices.

To our knowledge, the work that we present, is the first that addresses the problem of

co-clustering with a mixture of vMF distributions. The key contributions of this chapter are

the following:

- We present a novel model for co-clustering high dimensional sparse matrices. This

model is based the vMF distribution and successfully integrates a directional measure—

cosine similarity—into a co-clustering framework. It is therefore more suitable, than

existing co-clustering models, for data exhibiting directional characteristics such as

document-term matrices.

- We provide theoretical connections between our model and existing ones, namely

the mixture of von Mises-Fisher distributions (Banerjee et al., 2005b), the Gaussian

(Banfield and Raftery, 1993) and the block Gaussian mixture models (Nadif and

Govaert, 2010).

- Setting the estimate of the model parameters under the maximum likelihood (ML)

approach, we formulate various co-clustering algorithms a soft, hard, stochastic and

two simulated annealing variants. Furthermore, by enforcing some constraints on
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the concentration parameters and cluster proportions we derive a novel efficient non-

parametric co-clustering algorithm. The latter can be viewed as an extension of the

well known spherical k-means algorithm (Dhillon and Modha, 2001) to the context of

co-clustering.

- In order to show the benefits of our approach for the analysis of high dimensional

sparse data, we conducted extensive experiments on numerous synthetic and real-world

datasets, on which we benchmark our algorithms against several strong baselines.

- The dimensionality reduction property of the proposed model alleviates the problem of

high concentration parameters κ involved in Bessel functions, which induces over and

under flows, a well known difficulty in classical vMF based models (Banerjee et al.,

2005b). We validate this important result (i) theoretically by a theorem guaranteeing

that our model leads to a concentration parameter that is less or equal to that of

movMFs, for each cluster, (ii) empirically by demonstrating that our algorithms yield

substantially lower concentration parameters than movMFs-based algorithms, on real-

world datasets.

5.2 Related work

Most of the earlier works using the vMF distribution focused on low dimensional data, i.e,

using 2- or 3-dimensional vMF distributions (McLachlan and Peel, 2004), due to difficulties

related to the estimation of the concentration parameter κ , that involves the inversion of

ratios of Bessel functions. In the context of clustering and high dimensionality, Banerjee

et al. (2005b) proposed algorithms derived from a mixture of vMF distributions movMFs.

They used an EM-based solution to estimate the parameters of their model and proposed an

accurate approximation to estimate the concentration parameter κ for a high dimensional

vMF distribution. Since this contribution, different vMF based models for clustering high

dimensional sparse data have been proposed. For instance Reisinger et al. (2010) proposed

a spherical topic model based on a mixture of vMF distributions, which is highly inspired

from the Latent Dirichlet Allocation (LDA) (Blei et al., 2003). More recently, for text data

clustering, Gopal and Yang (2014) proposed a full Bayesian formulation of movMFs and

developed two novel variants of movMFs, namely hierarchical and temporal. Le and Lauw

(2014) proposed a vMF-based model for the semantic visualization of spherical data. In the

previous chapter we proposed a vMF model that accounts for the social interactions between

users to alleviate the sparsity related issues in CF and improve recommendations. All these

works, however, focused only on one-sided clustering.
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Fig. 5.1 A co-clustering obtained by using EMb (soft-dbmovMF): (left) original data, (middle)
data reorganized according to z, (right) data reorganized data according (z,w)

Hence, unlike existing vMF-based models, the model proposed in this chapter acts

simultaneously on both dimensions of data matrices, and thereby exhibits the advantages of

co-clustering, such as the exploitation of the inherent duality between the rows and columns

of data matrices, that makes it possible to improve clustering performances. Specifically, our

model seeks a diagonal structure by co-clustering, meaning that rows and columns have the

same number of clusters, and after a proper reorganisation of rows and columns we obtain a

block diagonal structure, as illustrated in Figure 5.1.

In text mining, the domain on which we concentrate our experiments, a diagonal structure

arises naturally in document-term matrices, as it has been demonstrated by several earlier

works. For example, Dhillon and Modha (2001) proposed the efficient spherical k-means

algorithm which can be derived as a special case from a mixture of vMF distributions

(Banerjee et al., 2005b), and they empirically demonstrated that documents are grouped

together because they use similar words yielding a block diagonal structure. In (Dhillon et al.,

2003) the well known information theoretic co-clustering algorithm was proposed, that seeks

a more general block structure, i.e, not necessarily diagonal. However during the experiments

on real world document-term matrices, the authors observed that some word clusters are

highly indicative of individual document clusters inducing a block diagonal sub-structure,

that captures the most useful information.

Among popular diagonal co-clustering, we can mention spectral approaches (Dhillon,

2001; Labiod and Nadif, 2011b) and the block diagonal model for co-clustering binary data

(Li, 2005) or count data (Ailem et al., 2015).

The diagonal assumption may seem restrictive, however, when dealing with high di-

mensional sparse data, such as document-term matrices, this assumption exhibits several

advantages as opposed to a non-binding model:

- It makes it possible to develop more parsimonious models thereby more efficient

algorithms, since we only focus on the most important co-clusters (diagonal ones).
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- Unlike a general partionning by co-clustering, that treats similarly useful (relevant)

and noisy (irrelevant) co-clusters, a diagonal co-clustering algorithm concentrates on

the most relevant co-clusters therefore it is expected to achieve better results, since it

implicitly ignores noisy co-clusters.

- Due to sparsity, a general co-clustering algorithm may result in a poor locally optimal

solution. More precisely, a general co-clustering algorithm seeks “homogeneous”

co-clusters and as all co-clusters are treated equally, the quality of co-clustering may

be biased by co-clusters containing a majority of zero entries, that are homogeneous

but not useful (or irrelevant). This difficulty increases with the number of co-clusters.

- In the context of document-term matrices, diagonal co-clustering has the advantage of

producing directly interpretable document clusters. Let us assume a co-clustering of a

document-term matrix into 20 document- and 20 word- clusters. A naive partitioning

by co-clustering will produce 400 co-clusters, and it is left to the user to identify the

most useful co-clusters so as to determine which document clusters should go with

which term clusters, while a diagonal co-clustering will produce only 20 co-clusters

that capture the most useful information.

5.3 A Mixture of von Mises-Fisher Distributions for Co-

clustering

Recall that the mixture of vMF distributions (movMFs) (Banerjee et al., 2005b), presented in

chapter 3 (section 3.3.2), focuses solely on clustering along one dimension of a data matrix.

Now, we propose a novel mixture of vMF distribution for co-clustering or simultaneous

clustering of both dimensions of a data matrix. Following the results of (Dhillon and Modha,

2001), which state that the unit centroids produced by the spherical k-means algorithm—a

restricted version of the soft- and hard-movMF clustering algorithms (Banerjee et al., 2005b)—

are localized in the feature space and tend towards orthonormality, we propose to capture

and exploit this structure during the clustering process. More precisely, we assume some

natural assumptions on the structure of centroids, i.e, orthonormality and homogeneity, at the

beginning. To this end, we introduce a new parameter w (see Figure 5.2) that simultaneously

guarantees the above assumptions and plays the role of a column partition. From a co-

clustering point of view, this is equivalent to assume that rows and columns have the same

number of clusters and that each column cluster is associated or describes a single row cluster.

Thus, inducing a block diagonal structure, see Figure 5.1. The generative process of this

model is as follows:
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1. Choose a component h ∼ Multinomial(α1, . . . ,αg).

2. Given µh,κh and w, generate data point xi on S
d−1 ∼ fh(xi|µh,κh,w).

α zi

κzi

xi

µzi

n

α zi

κzi

xi

µzi w

n

Fig. 5.2 Graphical models: left movMFs (Banerjee et al., 2005b), right dbmovMFs (proposed
model).

Our model called dbmovMFs (diagonal block mixture of vMF distributions) seeks to

partition simultaneously the set of rows I and columns J . Thereby it has the advantage of

exploiting the duality between rows and columns of data matrices. The density function of

dbmovMFs is given by:

f (xi|Θ) = ∑
h

αh fh(xi|µw
h ,κ

w
h ,w), (5.1)

where the set of parameters Θ is now formed by µw
1 ,. . ., µw

g , α1, . . . ,αg, κw
1 , . . . ,κ

w
g and

the column partition w, i.e, w j = h if the jth column belongs to the hth column cluster,

that is associated with the hth row cluster. Notice that, the centroid and the concentration

parameters µw
h , κw

h , respectively, depend on the column partition w. It follows from the or-

thonormality and homogeneity assumptions, respectively, that for each centroid µw
h : µh j = 0

if w jh = 0, and µh j = µhh for all j such as w jh = 1. For instance, assuming a mixture of

3 vMF distributions, i.e, g = 3 and h,k = 1,2,3, each centroid µw
h ∈ S

d−1 takes this form:

µw
h = (µh1, . . . ,µh1,µh2, . . . ,µh2,µh3, . . . ,µh3)

⊤ (5.2)

where µhk is repeated w.h times; w.h denotes the cardinality of the hth column cluster. In

addition, we have µhk = 0 ∀k ̸= h, leading implicitly to the orthonormality of centroids.

Let X denotes a set of n randomly sampled data points xi on S
d−1 according to (5.1).

Using the row and column classification matrices Z and W, respectively, the complete data

likelihood of X takes the following form:

L(W,µ,α,κ|X ,Z) = ∏
i

∏
h

(

αhcd(κh)×∏
j

(expκhµhhxi j)w jh

)zih

.
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The corresponding complete data log-likelihood of X is given by:

Lc(Θ|X ,Z) = ∑
i,h

zih logαh +∑
i,h

zih log(cd(κh))+ ∑
i,h, j

zihw jhκhµhhxi j

= ∑
h

z.h logαh +∑
h

z.h log(cd(κh))+∑
i,h

zihκhµhh ∑
j

w jhxi j

= ∑
h

z.h logαh +∑
h

z.h log(cd(κh))+∑
i,h

zihκhµhhuih (5.3)

where uih = ∑ j w jhxi j. This leads to

Lc(Θ|X ,Z) = ∑
h

z.h logαh +∑
h

z.h log(cd(κh))+∑
i,h

zihyih (5.4)

where yih = κhµhhuih, and in the same manner, we can give another expression of Lc(Θ|X ,Z)
in terms of column assignments as follows

∑
h

z.h logαh +∑
h

z.h log(cd(κh))+∑
j,h

w jht jh (5.5)

where t jh = κhµhhvh j, with vh j = ∑i zihxi j.

5.3.1 Connection to existing models

Assuming that the column partition w is fixed, the dbmovMFs model can be viewed as a

classical movMFs (Banerjee et al., 2005b) where the mean directions vectors µh, h = 1, . . . ,g,

take the form (5.2) described above.

Moreover, we can establish connections with the Gaussian mixture model (Banfield and

Raftery, 1993) and the block Gaussian mixture model (Govaert and Nadif, 2013). More

precisely, using the equivalence between the vMF and the Gaussian distribution (Mardia

and Jupp, 2000) and assuming that w is fixed, it can be shown that dbmovMFs is equivalent

to a mixture of Gaussian distributions of spherical form, i.e, the variance of the hth cluster

is given by σ2
h = ∥mw

h ∥/κh, mw
h is the centroid of the corresponding Gaussian component

and µw
h = mw

h /∥mw
h ∥. The latter model, is also equivalent to a diagonal version of the

block Gaussian mixture model (Govaert and Nadif, 2013), i.e, each Gaussian component is

parameterized by the variance σ2
h and mean vector mw

h , described above.
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5.3.2 Maximum Likelihood estimates and the EMb algorithm

To obtain the maximum likelihood estimates for the parameters Θ, we use the Generalized EM

algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007). The E-step is reduced to

compute the posterior probabilities defined by z̃ih ∝ α
(t)
h fh(xi|µ(t)

h ,κ
(t)
h ). The M-step consists

in estimating all parameters maximizing or increasing the expectation of the complete data

log-likelihood (5.3), subject to the constraints ∑h αh = 1, ∥µw
h ∥2 = ∑ j w jhµ2

hh = 1 and κh > 0.

We obtain the following update formulas (see Appendix A.1).

ŵ jh←







1, if h = argmaxh′ t̃ jh′

0, otherwise.

(5.6a)

α̂h =
∑i z̃ih

n
, (5.6b)

µ̂hh =
rw

h

∥rw
h ∥

=± 1√
ŵ.h

where rw
h = ∑

i, j

z̃ihŵ jhxi j and ŵ.h = ∑
j

ŵ jh (5.6c)

κ̂h ≈
r̄w

h d−
(
r̄w

h

)3

1−
(
r̄w

h

)2 where r̄w
h =

Id/2(κ̂h)

Id/2−1(κ̂h)
=
∥rw

h ∥
z̃.hŵ.h

(5.6d)

where t̃ jh = κhµhhṽh j, with ṽh j = ∑i z̃ihxi j, rw
h is a d dimensional vector such that rw

h j = rw
h

if w jh = 1 and rw
h j = 0, otherwise. Alternating the above E and M steps leads to our soft-

dbmovMF algorithm described in Algorithm 4.

Observe that, unlike the classical movMFs where it is easy to verify that r̄h ≤ 1 (see

equation 3.13c) given the definition of r, it is not straightforward to verify that r̄w
h ≤ 1,

without careful analysis. Such a result is imperative, to guarantee that the concentration

parameters are positive, i.e, κh > 0 , ∀h, especially when using the approximation of equation

(5.6d). Proposition 1 provides theoretical guarantee about the fact that 0≤ r̄w
h ≤ 1, thereby it

ensures that concentration parameter κh estimated from equation (5.6d) is always positive.

Proposition 1 Let r be a non-zero vector in R
d (i.e., r = (r1, . . . ,rd)

T , such as d ≥ 1) which

results from a weighted sum of n d-dimensional unit vector, i.e, r = ∑i pixi, xi ∈ R
d and

∥xi∥= 1 , ∀i ∈ {1, . . . ,n} , n≥ 2, the weights pi ≥ 0, ∀i. Let rd be a vector in R
d , such as

all its components are equal to the sum of elements of r (i.e, rd
1 = · · ·= rd

d = ∑
d
j=1 r j). Then

0 ≤ ∥rd∥ ≤ d×∑i pi with equality only if all unit vectors xi are equal/collinear.

The proof is available in Appendix (A.2). By replacing rd , d and pi in Proposition 1 with

rw
h , ŵ.h and z̃ih respectively, it is easy to verify 0≤ r̄w

h ≤ 1.
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Algorithm 4: soft-dbmovMF (EMb).

Input: X (xi ∈ S
d−1), g the number of co-clusters.

Output: Z̃ and W,
Steps:

Initialization: Θ←Θ(0);
repeat

1. Expectation step of EM:

for i = 1 to n do

for h = 1 to g do

z̃ih← αh fh(xi|µh,κh)

∑l αl fl(xi|µ l ,κl)

end for

end for

2. Maximization step of EM:

for j = 1 to d do

for h = 1 to g do

ṽh j← ∑i z̃ihxi j; t̃ jh← κhµhhṽh j

end for

for h = 1 to g do

ŵ jh←
{

1, if h = argmaxh′ t̃ jh′

0, otherwise.
end for

end for

for h = 1 to g do

α̂h← ∑i z̃ih

n

µ̂hh←± 1√
ŵ.h

; rw
h ← ∑i, j z̃ihŵ jhxi j

κ̂h← r̄w
h d−(r̄w

h )
3

1−(r̄w
h
)2 ; r̄w

h ←
∥rw

h ∥
z̃.hŵ.h

end for

until convergence

More interestingly, notice that the concentration parameters depend on the column

partition w, hence, the dimensionality reduction of dbmovMFs alleviates the problem of

high concentration parameters. The following theorem guarantee that dbmovMFs leads to a

concentration parameter that is less or equal to that of movMFs, for each cluster. The proof is

provided in Appendix (A.2). In practice and when dealing with high dimensional datasets,

we empirically observe that dbmovMFs-based co-clustering algorithms yield substantially

lower concentration parameters than movMFs-based algorithms, see section (5.7.2).
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Theorem 1 Let X be a n×d matrix, its ith row (object) xi is a d-dimensional unit vector in

S
d−1 (i.e, xi ∈ R

d and ∥xi∥= 1 , ∀i ∈ {1, . . . ,n} , n≥ 2, d ≥ 3). Let z = (z1, . . . ,zn) denote

a partition of the set of objects of X into g disjoint clusters. Then, whatever the partition

w of attributes of X into g disjoints clusters, the concentration parameter of each dbvMF

component estimated via approximation (5.6d) is always less or equal to the concentration

parameter of the corresponding vMF component estimated via approximation (3.13c). That

is,

κ̂w
h ≈

r̄w
h d−

(
r̄w

h

)3

1−
(
r̄w

h

)2 ≤ κ̂h ≈
r̄hd− (r̄h)

3

1− (r̄h)
2

with equality only if r̄w
h = r̄h.

5.3.3 Classification Maximum Likelihood estimates and the CEMb al-

gorithm

Setting our model dbmovMFs under the CML approach, that consists in maximizing the

classification likelihood instead of its expectation (Scott and Symons, 1971; Symons, 1981;

Celeux and Govaert, 1992), we derive a hard version of dbmovMFs called CEMb. This is

done by incorporating a classification step (C-step) between the E and M steps as follows,

zih←







1, if h = argmaxh′ z̃ih′

0, otherwise.

The C-step of CEMb, generates a completed sample (xi,zi) by allocating each object xi to

cluster zi with the highest posterior probability z̃ih, ∀h. Then, unlike the EMb algorithm

where the M-step is based on the expectation of the complete data likelihood, the M-step of

CEMb consists in maximizing the complete data likelihood instead of its expectation, thereby

the update of the parameters Θt are based on the completed sample (xi,zi). The corresponding

M-step can be deduced from the M-Step of EMb by replacing z̃ih by zih and thereby t̃ jh by

t jh. Algorithm 5 gives a full description of CEMb.

Regarding the clustering context, the main difference between ML and CML approaches

is that, under the ML approach, the partition z of the set of objects into g clusters is deduced at

convergence of EMb, by assigning each object xi to the cluster that maximizes the a posteriori

probability z̃ih, while under the CML approach the clustering process is taken into account

during parameters estimation. In this way, CEMb simultaneously estimates the parameters

and the partition z. It is well known that the ML approach yields more consistent estimate

of the parameters thus often provides better clustering than the classification approach,
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Algorithm 5: hard-dbmovMF (CEMb).

Input: X (xi ∈ S
d−1), g the number of co-clusters.

Output: Z and W,
Steps:

Initialization: Θ←Θ(0);
repeat

2. Expectation step of CEM:
for i = 1 to n do

for h = 1 to g do

fh(xi|Θ(t))← cd(κh)∏ j (e
κhµhhxi j)w jh

end for

3. Classification step of CEM:
for h = 1 to g do

zih←
{

1, if h = argmaxh′ αh′ fh′(xi|Θ(t))
0, otherwise.

end for

end for

4. Maximization step of CEM:
for j = 1 to d do

for h = 1 to g do

vh j← ∑i zihxi j; t jh← κhµhhvh j

end for

for h = 1 to g do

ŵ jh←
{

1, if h = argmaxh′ t jh′

0, otherwise.
end for

end for

for h = 1 to g do

αh← z.h
n

µ̂hh←± 1√
ŵ.h

; rw
h ← ∑i, j zihŵ jhxi j

κ̂h← r̄w
h d−(r̄w

h )
3

1−(r̄w
h
)2 ; r̄w

h ←
∥rw

h ∥
z.hŵ.h

end for

until convergence

especially when the clusters are not well separated. However, the CML approach exhibits

some nice properties generated by CEMb,

- CEMb is considerably more faster and scalable than EMb, for instance, consider the

update of the parameter ŵ jh, under the ML approach (see, equation 5.6a) we iterate

through all objects xi to compute t̃ jh, while with CEMb we only iterate through objects

within the hth cluster to compute t jh.
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- CEMb allows us to avoid numerical difficulties, i.e, over and under flows, related to

the computation of the conditional probabilities z̃ih, especially in the case of vMF

distribution where the normalization terms cd(κh) involve Bessel functions and the

concentration parameters act as multipliers in the exponent. More precisely, with

CEMb there is no need for computing the conditional probabilities z̃ih, the C-step can

be done equivalently by assigning each object xi to the cluster maximising logαh +

log fh(xi|Θ(t)). Furthermore, this contributes to the efficiency, scalability and memory-

space saving of CEMb.

- It eases the derivation of a large number of standard clustering algorithms as special

cases from a mixture framework, which allows to give them a probabilistic interpreta-

tion. For example, in our case, starting from CEMb we derive a novel co-clustering

algorithm, which can be viewed as an extension of the well known spherical kmeans

algorithm (Dhillon and Modha, 2001) to the context of co-clustering.

5.4 Diagonal Block Spherical Kmeans (dbSkmeans)

In this section, we derive a novel diagonal co-clustering algorithm from hard-dbmovMF,

by enforcing some restrictive constrains on the concentration parameters κh and the mixing

proportions αh. We name this novel algorithm diagonal block spherical kmeans (dbSKmeans),

due to its theoretical connection to the spherical k-means algorithm (Dhillon and Modha,

2001).

5.4.1 Definition

Let’s assume that all the mixing proportions are equal and all the concentration parameters are

equal to a finite constant, i.e, αh =
1
g
, κh = κ , for all h ∈ {1, . . . ,g}. Under these restrictions,

the complete data log-likelihood (A.2) becomes:

Lc(Θ|X ,Z) = ∑
h

zh log(1/g)+∑
h

zh log(cd(κ))+κ ∑
i,h, j

zihw jhµhhxi j

= n[log(1/g)+ log(cd(κ))]
︸ ︷︷ ︸

constant

+κ ∑
i,h

zih(µ
w
h )

T xi. (5.7)

Hence, maximizing the complete data log-likelihood (5.7) is equivalent to maximizing the

following criterion:

∑
i,h

zih(µ
w
h )

T xi. (5.8)
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Observe that, criterion (5.8) is given in terms of row clustering, we can similarly express it in

terms of column clustering as follows

∑
j,h

w jht jh where t jh = κµhhvh j with vh j = ∑
i

zihxi j. (5.9)

Intertwining the maximization of criterion (5.8) and (5.9) for fixed row and column clustering,

respectively, constitutes our block spherical kmeans (dbSkmeans) algorithm, for co-clustering

directional data. The centroid µh is estimated in the same way as in the M-step of hard-

dbmovMF (i.e, µ̂hh =± 1√
ŵ.h

, for all h ∈ {1, . . . ,g}). The dbSkmeans algorithm is a restricted

version of hard-dbmovMF, hence at each iteration it never decreases criterion (5.8) and it is

guaranteed to terminate in a finite number of iterations at a local maximum of the restricted

likelihood function (5.8). Algorithm 6 describes dbSkmeans in detail.

Algorithm 6: dbSkmeans.

Input: X (xi ∈ S
d−1), g the number of co-clusters.

Output: Z and W,
Steps:

Initialization: Θ←Θ(0);
repeat

1. Rows assignment:

for i = 1 to n do

zi← h where h = argmaxh′ cos(µw
h′ ,xi)

end for

2. Columns assignment:

for j = 1 to d do

w j← h where h = argmaxh′
√

z.h′√
w.h′

cos(µz
h′ ,x

j)

end for

3. Centroids update:

for h = 1 to g do

µhh←± 1√
w.h

end for

until convergence
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5.4.2 Connection to other algorithms

Note that, maximizing criterion (5.8) is equivalent to maximizing the sum of cosine similarity

between each object xi and its corresponding centroid, thereby if we further assume that

the column partition w is fixed, criterion (5.8) is exactly the criterion maximized by the

spherical k-means algorithm (Dhillon and Modha, 2001), where the centroids take the form

(5.2) introduced in the previous section.

Moreover, connections with the two-sided (or double) k-means algorithm, i.e, using

euclidean distance, can be established. It is well known that the double kmeans algorithm

minimizes the following objective function

W (z,w) = ∑
i, j,h,ℓ

zihw jℓ(xi j− chℓ)
2

= ∑
i, j,h,ℓ

zihw jℓx
2
i j + ∑

i, j,h,ℓ

zihw jℓc
2
hℓ−2 ∑

i, j,h,ℓ

zihw jℓchℓxi j

= ∑
i,h

zih∥xi∥2 +∑
i,h

zih∥cw
h ∥2−2∑

i,h

zih(c
w
h )
⊤xi (5.10)

where cw
h denotes the hth row centroid, i.e, cw

h = (ch1, . . . ,ch1,ch2, . . . ,ch2, . . . ,chm, . . . ,chm)
⊤

assuming that the data points xi and the row centroids cw
h are normalized in order to lie on the

surface of a unit hypersphere, i.e, xi,c
w
h ∈R

d and ∥xi∥= ∥cw
h ∥= 1, then optimizing criterion

W (z,w) (5.10) is equivalent to maximizing the following criterion

W (z,w) = ∑
i,h

zih(c
w
h )
⊤xi. (5.11)

Furthermore, if we constrain the number of row clusters to be equal to that of column clusters

and the centroids cw
h to take the form (5.2) introduced earlier, then criterion (5.11) becomes

exactly the same as criterion (5.8) optimized by our dbSkmeans algorithm. Hence, under

the aforementioned constrains dbSkmeans is equivalent to a large number of co-clustering

algorithms using the principle of double k-means, among which we can cite the well known

Minimum Sum-Squared Residue Co-Clustering of Gene Expression Data by Cho et al. (2004),

the CROEUC algorithm due to Govaert (1995) and the co-clustering based on non-negative

matrix tri-factorization proposed by Labiod and Nadif (2011a).
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5.4.3 Analysis of column assignment

Hereafter, we shall give some intuitions and interpretations about the column affectation step

of dbSkmeans.

w j = argmax
h

t jh = argmax
h

κµhhvh j

= argmax
h

κµhh ∑
i

zihxi j = argmax
h

κ(µz
h)

T x j

= argmax
h

κ∥µz
h∥∥x j∥cos(µz

h,x
j)≡ argmax

h
∥µz

h∥cos(µz
h,x

j)

= argmax
h

√
z.h√
w.h

cos(µz
h,x

j) (5.12)

where x j denotes the jth column, µz
h denotes the hth “column centroid”, i.e, µhi = 1/

√
w.h if

zih = 1 and µhi = 0, otherwise. The superscript z is used to denote the fact that the column

centroid µz
h depends on the row clustering.

Hence, the column affectation step of dbSkmeans is equivalent to maximizing a “weighted”

cosine similarity between each column x j and the corresponding column centroid µz
h. The

weight
√

z.h√
w.h

has a nice semantic interpretation, for instance let x j be a column such that

cos(µz
1,x

j) = cos(µz
2,x

j), w.1 = w.2 and z.1 > z.2, then the column x j will be assigned to

the first column cluster. The role of the weight in this situation is to assign more elements

to column clusters describing row clusters containing more objects than the others. This is

natural, since row clusters with a lot of objects are expected to be described by more features

than those with few objects. Furthermore, as the above weight is inversely proportional to the

root square of the size of the corresponding column cluster, it has an interesting regularizing

effect that makes it possible to avoid the formation of empty and/or very large column

clusters. Thereby, this implicitly prevents dbSkmeans from generating empty (very large)

row clusters induced by empty (very large) column clusters.

In summary, the weight involved in the column affectation step of dbSkmeans, has a nice

regularizing effect, that prevents dbSkmeans from generating highly skewed solution with

empty and/or very large co-clusters. Moreover, it makes it possible to find a trade-off between

row and column clusters sizes, by trying to deal with the natural intuition that row clusters

with more objects are expected to be described by column clusters with more features, than

the other row clusters.
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5.5 Stochastic Variants

It is well known that the EM algorithm is strongly dependent on its starting position. The

stochastic variant of EM (SEM) (Celeux and Diebolt, 1985) however makes it possible to

overcome this limitation. It consists in incorporating a stochastic step (S-step) between the E

and M steps, which generates a completed sample (xi,zi) by drawing a cluster zi ∈ {1, . . . ,g}
for each data point xi according to the multinomial distributionM(z̃i1, . . . , z̃ig).

Hence, as with the CEM algorithm (Celeux and Govaert, 1992) the update of the param-

eters Θt are based on the completed sample (xi,zi) i.e, complete data likelihood instead of

its expectation. It follows from the above description that SEM does not share the conver-

gence properties of EM and CEM. In fact, SEM can allow an update estimate Θt+1 even

if L(Θt+1)< L(Θt). Thereby, SEM does not necessarily converge to the first encountered

stationary point of the log-likelihood, which allows SEM to ignore saddle points and in-

significant local optima. This is the main reason why SEM can be expected to achieve better

solutions than EM. It has been shown that the sequence of parameters {Θt} generated by

SEM is an ergodic Markov chain, thereby, it converges to the unique stationary distribution

of this Markov chain. For further details about SEM, the reader can refer to (Celeux and

Diebolt, 1985).

5.5.1 Stochastic dbmovMFs and the SEMb algorithm

Based on SEM we formulate a stochastic version of soft-dbmovMF called SEMb. In our

case, we further propose a stochastic column assignment, by converting t̃ jh to probabilities

w̃ jh, i.e, w̃ jh ∝ t̃ jh and drawing a cluster w j for each column j according to multinomial

distributionM(w̃ j1, . . . , w̃ jg). This makes it possible to avoid a quick convergence to a bad

local optimum of the likelihood function, due to hard column assignments. More intuitively,

in the case of document-term matrices, during the first iterations document clusters are mixed,

hence each word is involved to describe several document clusters thereby imposing hard

word assignments at the beginning, by using equation (5.6a), can lead to a poor local optimum

of the likelihood function, especially when the clusters are poorly separated. Algorithm 7

describes in more details SEMb.

5.5.2 Simulated annealing dbmovMFs-based algorithms

One of the main drawback of the SEM algorithm is that it does not share the convergence

properties of EM; SEM converges in distribution and does not converge point-wise. Further-

more, when the sample size of the observed data is small, SEM may converge to a stationary
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Algorithm 7: Stochastic-dbmovMF (SEMb).

Input: X (xi ∈ S
d−1), g the number of co-clusters.

Output: Z, W and Θ.
Steps:

Initialization: Θ←Θ(0);
repeat

1. Expectation step:

for i = 1 to n do

for h = 1 to g do

z̃ih← αh fh(xi|µh,κh)

∑l αl fl(xi|µ l ,κl)

end for

2. Stochastic step:

Select zi ∈ {1, . . . ,g} ∼M(z̃i1, . . . , z̃ig)

end for

3. Maximization step:

for h = 1 to g do

αh← ∑i zih

n

for j = 1 to d do

vh j← ∑i zihxi j; t jh← κhµhhvh j

end for

end for

for j = 1 to d do

Select w j ∈ {1, . . . ,g} ∼M(w̃ j1, . . . , w̃ jg)

end for

for h = 1 to g do

µ̂hh← 1√
w.h

; rw
h ← ∑i, j zihw jhxi j

κ̂h← r̄w
h d−(r̄w

h )
3

1−(r̄w
h
)2 ; r̄w

h ←
∥rw

h ∥
z.hw.h

end for

until convergence

distribution with a high variance, which leads to poor estimation of the parameters. In order

to overcome the aforementioned limitations, the Simulated Annealing version of EM (SAEM)

has been proposed (Celeux and Diebolt, 1992), that reaps the benefit of both EM and SEM

simultaneously. To do so, let γt be a sequence of positive real numbers starting from 1 and
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decreasing to zero, at each iteration the parameters are updated as follows

Θt+1
SAEM = (1− γt+1)Θ

t+1
EM + γt+1Θt+1

SEM

where Θt+1
EM and Θt+1

SEM denote the parameters estimated using EM and SEM, respectively.

Thus, SAEM goes from pure SEM at the beginning towards pure EM at the end. If we further

impose the following constraint limt→∞
γt

γt+1
= 1, we can ensure the asymptotic convergence

of SAEM to a local maximum of the log-likelihood function.

Based on SAEM, we derive the SAEMb algorithm, which is a simulated annealing version

of EMb. In our case, however, it is difficult to use the above update formula of SAEM due to

parameter w. In order to overcome this difficulty, we propose to use the following simplified

form to update the parameters, which turns out to be effective and less costly.

Θt+1
SAEMb

←







Θt+1
SEMb

, if γt+1 ≥ (1− γt+1)

Θt+1
EMb

, otherwise.

We propose to use the following exponentially decreasing form for γt = 1−exp
itt−itmax

β where

itt , itmax denote respectively, the current iteration and the maximum number of iterations,

β is a positive real parameter that controls the number of SEMb and EMb iterations to be

performed. More precisely when β → ∞, SAEMb tends to pure EMb, similarly when β → 0,

SAEMb tend to pure SEMb. In our experiments, we set β = 20 and itmax = 100, in such a

way that most iterations at the beginning are done using SEMb, in order to reach a steady

state and avoid poor local optima, and the last few iterations are performed using EMb, to

ensure the convergence of SAEMb to a local optimum of the log-likelihood function.

This simplified version consists in initializing EMb with SEMb. Note that, seeing the

initialization of EMb via SEMb as a kind of a Simulated Annealing variant, justifies why

EMb is expected to provide better performances with such an initialization.

In the same manner, we derived a hard simulated annealing variant, denoted in this

chapter as CAEMb. The difference with the SAEMb algorithm is that the iterations at the end

are performed using CEMb instead of EMb. In Figure 5.3 we report the different algorithms

discussed in this chapter.
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One Side movMFs Block movMFs

EM CEMb SEMb SAEMb CAEMbCEM EMb

(Banerjee et al., 2005)

(soft-movMF) (hard-movMF)

Skmeans dbSkmeans

ĸh = ĸ, ⩝	h

αh = α, ⩝	h

ĸh = ĸ, ⩝	h

αh = α, ⩝	h

Fig. 5.3 Von Mises-Fisher mixture models-based clustering (left) and co-clustering (right)
algorithms.

5.6 Computational Complexity in the Worst Case

In this section, we shall analyse the computational complexity of dbSkmeans, hard-dbmovMF

and soft-dbmovMF.

Proposition 2 Let X be a n× d matrix, let nz denote the number of non-zeros entries in

X, "it" is the number of iterations and g is the number of co-clusters to be found. Then (i)

the computational complexity of dbSkmeans described in Algorithm 6 is given in O(it ·nz),

(ii) the computational complexity of hard-dbmovMF described in Algorithm 5 is given in

O(it ·nz) (iii) the computational complexity of soft-dbmovMF described in Algorithm 4 is

given in O(it ·g ·nz).

Proof (i). The computational bottleneck for dbSkmeans is with the row and column assign-

ments. We prove that the complexity of both row and column assignments is O(nz). Let

xi denote the ith row of X (i.e, xi is a d dimensional vector in S
d−1). Assume that we look

for a co-clustering of X into g co-clusters, and let µw
h be the hth centroid, characterising the

hth co-cluster. The computational cost of the scalar product (µw
h )

T xi is O(xh
i ), where xh

i is

number of non-zeros entries of xi within the hth column cluster, this complexity holds thanks

to the form of µw
h , see equation (5.2). Thereby, the complexity of the assignment of xi is

given in O(x∗i ) (based on O(x1
i + · · ·+x

g
i )), where x∗i denotes the number of non-zeros entries

of xi. Therefore, the total cost of one row assignments step is O(nz). Similarly, we can show

that the cost of one column assignments step is O(nz). Thus the computational complexity

of dbSkmeans is given in O(it ·nz), based on O(it · (nz+nz)).
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Table 5.1 Computational complexity of different algorithms (in the worst case). nz denotes
the number of non-zero entries in the matrix X, g is the number of clusters (co-cluster) and it

denotes the number of iterations.

movMFs (Banerjee et al., 2005b) dbmovMFs (this chapter)

soft-movMF hard-movMF Skmeans soft-dbmovMF hard-dbmovMF dbSkmeans

O(it ·g ·nz) O(it ·g ·nz) O(it ·g ·nz) O(it ·g ·nz) O(it ·nz) O(it ·nz)

In the same manner we can prove (ii) and (iii), see Appendix (A.3) for further details.

Proposition 2, states that theoretically, the computational time of our algorithms is linear

with respect to the number of non-zero entries in X. Hence, the proposed algorithms are

very efficient (in particular the hard variants) and therefore suitable for large sparse datasets.

Table 5.1 summarizes the computational complexity of the different algorithms.

5.7 Experimental results

In this section, we shall provide extensive empirical results to validate and illustrate the

benefits of our model dbmovMFs and the corresponding co-clustering algorithms. We first

propose to validate the correctness of our model on simulated datasets. Then, in order to

show the benefits of our approach, we conduct extensive experiments on numerous real world

text datasets, in which we benchmark our algorithms, i.e, EMb, CEMb, SEMb, SAEMb,

CAEMb and dbSkmeans against several strong baselines denoted in this chapter as follows

- EM denotes the soft-movMF algorithm proposed in (Banerjee et al., 2005b).

- CEM denotes the hard-movMF algorithm proposed in (Banerjee et al., 2005b).

- DAEM is the deterministic annealing version of soft-movMF proposed in (Zhong and

Ghosh, 2005).

- Skmeans denotes the spherical k-means algorithm (Dhillon and Modha, 2001), which

is also a simplified version of soft-movMF, where κh = κ → ∞, αh = α , for all h. It is

also a restricted version of hard-movMF where κh = κ , αh = α , for all h.

Notice that, in the context of text document clustering, it has been empirically shown

on numerous real-world datasets, that the aforementioned baselines perform better than

several existing clustering and co-clustering algorithms, namely: k-means using the euclidean

distance, generative mixture models using Bernoulli, Gaussian, and Multinomial distributions,
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spectral co-clustering, and Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Therefore,

we do not include these approaches in our comparisons. For further details see (Zhong and

Ghosh, 2005; Gopal and Yang, 2014).

5.7.1 Simulated data sets

In the following, we validate the correctness of our model and implementations, on several

simulated datasets corresponding to various particular situations, illustrated in Figure 5.4,

namely balanced co-clusters, unbalanced co-clusters, clusters with equal concentration

and with different concentrations and last overlapping clusters. We consider five different

simulated datasets, each of them consists of a sample of 5000 unit vectors from a Diagonal

Block Mixture of three 1000-dimensional vMF distributions. The different simulated datasets,

i.e, sdata1, . . . , sdata5 are described in Table 5.2. In this table, α , κ and µ denote the true

parameters, while α̂ , κ̂ and µ̂ denote the estimated ones.

(a) (b) (c) (d) (e)

Fig. 5.4 Simulated datasets reorganized according to row and column partitions: (a) sdata1,
(b) sdata2, (c) sdata3, (d) sdata4 (e) sdata5.

As this table shows clearly, when co-clusters are reasonably separated, both EMb and

CEMb provide excellent performances, even in situations where data exhibit unbalanced

cluster sizes and concentration parameters. However, in the case of poorly separated co-

clusters, i.e, sdata5, EMb and CEMb suffer from a convergence to a poor local maximum

of the likelihood function, due to hard column assignments at the beginning, i.e, during the

first iterations the row clusters are mixed, hence each column is involved to describe several

row clusters. The simulated annealing variant SAEMb, however, overcomes this difficulty

thanks to stochastic assignments in the beginning and thereby, yields excellent performance

on sdata5 although the co-clusters are poorly separated.
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Table 5.2 Comparison of true and estimated parameters by our algorithms on different
simulated dataset, (α ,κ ,µ) denote the true parameters while (α̂ ,κ̂ ,µ̂) denote the estimated
parameters.

Data Components
True Parameters

Algorithms
Parameter Estimation

α κ µhh α̂ |α− α̂| κ̂ |κ− κ̂| µT µ̂

sdata1

cluster1 0.34 500.00 1/
√

340
CEMb 0.339 0.001 501.38 1.38 1.00
EMb 0.339 0.001 499.87 0.13 1.00

cluster2 0.33 500.00 1/
√

330
CEMb 0.328 0.002 500.90 0.90 1.00
EMb 0.329 0.001 499.33 0.67 1.00

cluster3 0.33 500.00 1/
√

330
CEMb 0.333 0.003 500.56 0.56 1.00
EMb 0.332 0.002 500.42 0.42 1.00

sdata2

cluster1 0.70 320.00 1/
√

340
CEMb 0.691 0.009 320.72 0.72 1.00
EMb 0.700 0.00 319.62 0.38 1.00

cluster2 0.25 400.00 1/
√

330
CEMb 0.261 0.011 398.23 1.77 1.00
EMb 0.250 0.00 401.51 1.51 1.00

cluster3 0.05 500.00 1/
√

330
CEMb 0.048 0.002 497.75 2.25 1.00
EMb 0.050 0.00 499.28 0.72 1.00

sdata3

cluster1 0.34 320.00 1/
√

700
CEMb 0.345 0.005 319.82 0.18 0.998
EMb 0.345 0.005 319.83 0.17 1.00

cluster2 0.33 400.00 1/
√

250
CEMb 0.330 0.00 399.11 0.89 1.00
EMb 0.330 0.00 399.30 0.70 1.00

cluster3 0.33 500.00 1/
√

50
CEMb 0.325 0.005 487.82 12.18 0.980
EMb 0.325 0.005 500.40 0.40 1.00

sdata4

cluster1 0.70 320.00 1/
√

700
CEMb 0.697 0.003 320.20 0.20 1.00
EMb 0.702 0.002 320.10 0.10 1.00

cluster2 0.250 400.00 1/
√

250
CEMb 0.254 0.004 400.37 0.37 1.00
EMb 0.248 0.002 399.77 0.23 1.00

cluster3 0.05 500.00 1/
√

50
CEMb 0.049 0.001 498.10 1.90 1.00
EMb 0.05 0.00 501.12 1.12 1.00

sdata5

cluster1 0.34 70.00 1/
√

340

CEMb 0.34 0.00 59.22 10.78 0.334
EMb 0.34 0.00 45.43 24.57 0.387

SEMb 0.33 0.01 53.68 16.32 0.793
SAEMb 0.33 0.01 69.96 0.04 0.991

cluster2 0.33 70.00 1/
√

330

CEMb 0.330 0.00 55.66 14.34 0.430
EMb 0.340 0.01 43.41 26.59 0.339

SEMb 0.33 0.00 58.69 11.31 0.850
SAEMb 0.33 0.00 70.38 0.38 0.995

cluster3 0.33 70.00 1/
√

330

CEMb 0.330 0.00 53.39 16.61 0.487
EMb 0.320 0.01 43.00 27.00 0.388

SEMb 0.34 0.01 55.12 14.88 0.805
SAEMb 0.34 0.01 70.13 0.13 0.989

5.7.2 Real-world datasets

As a practical example we select the domain of text mining and we concentrate on the

challenging task of document clustering using high dimensional sparse document-term matri-

ces. We retain six popular benchmark text datasets: CSTR used in (Li, 2005), CLASSIC41,

WEBACE, the 20-newsgroups data NG20, SPORTS used in (Zhong and Ghosh, 2005), and

TDT22. All these datasets are carefully selected to represent various particular challenging

situations in clustering: balanced clusters, unbalanced clusters, different number of clusters,

1 http://www.dataminingresearch.com/
2 http://www.cad.zju.edu.cn/home/dengcai/
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different sizes, different degrees of cluster overlap (i.e, well separated clusters and poorly

separated clusters). The characteristics of these different datasets are summarized in Table

5.3.

Note that, in contrast to document clusters, the true word cluster labels are not known

in the above datasets, this is the reason why we mainly concentrate our experiments on

document clustering. However, under our formulation row clusters induce column clusters

and vice versa, hence the quality of row clustering is informative about the quality of column

clustering. It is reasonable to expect that a good row partitioning induces a good column

partitioning and vice versa.

Table 5.3 Description of Datasets

Datasets
Characteristics

#Documents #Words #Clusters Sparsity (%) Balance3

CSTR 475 1000 4 96.60 0.399
WEBACE 2340 1000 20 91.83 0.169
CLASSIC4 7094 5896 4 99.41 0.323
NG20 19949 43586 20 99.82 0.991
SPORTS 8580 14870 7 99.14 0.036
TDT2 9394 36771 30 99.64 0.028

Evaluation measures

Evaluating clustering results is not a trivial task, however, when the true category labels are

known, a commonly used approach to validate clustering results consists to compare the

estimated partition with the true one. To this end, several measures have been proposed,

in our experiments we retain two widely used measures to assess the quality of clustering,

namely the Normalized Mutual Information NMI (Strehl and Ghosh, 2003) and the Adjusted

Rand Index ARI (Milligan and Cooper, 1986; Hubert and Arabie, 1985).

Intuitively, NMI quantifies how much the estimated clustering is informative about the

true clustering, while the ARI measures the degree of agreement between an estimated

clustering and a reference clustering. Both NMI and ARI are equal to 1 if the resulting

clustering is identical to the true one, and close to zero for a random clustering.

Experimental setting

In all our experiments we use the TF-IDF normalized data representation, more precisely

we use the TF-IDF weighting scheme proposed in Scikit-learn (Pedregosa et al., 2011). For

each dataset we set g to the real number of clusters, and in order to make fair comparisons,

3 The balance coefficient is the ratio of the minimum cluster size to the maximum cluster size.
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all non-stochastic algorithms are initialized using the same row partition resulting from

Skmeans4 started using a random initial point, unless stated otherwise. For our algorithms,

we further initialize the concentration parameters to 10 and the centroids to random initial

vectors, in order to be able to estimate the initial column partition. Concerning our stochastic

variants, i.e, SEMb, CAEMb and SAEMb they are initialized using the same random row

and column partitions.

Evaluation of row clustering

Tables 5.4 and 5.5, summarize the results of the different methods in terms of NMI and

ARI, over all datasets. All results are averaged over thirty different starting points, obtained

using the initialization strategy described above. Between brackets, we report the results

corresponding to the trial with the highest criterion. As it is evident from these tables, our

dbmovMFs-based algorithms, i.e, EMb, CEMb and dbSkmeans exhibit high performances

as opposed to movMFs-based method. In fact, EMb, CEMb and dbSkmeans achieve better

performances than EM, CEM and Skmeans, in almost all situations, except in terms of ARI

on CLASSIC4 and NMI on SPORTS, however, the difference is not significant. We note that

both EMb and CEMb perform somewhat better than dbSkmeans, in fact the former generalize

dbSkmeans. Once again we observe only a slight difference between EMb and CEMb, which

is statistically not significant.

Advantages of SAEMb and CAEMb

We observe that our simulated annealing variants, SAEMb and CAEMb, provide the best

performances in almost all situations (although they are initialized randomly), except on

SPORTS, where SEMb achieves substantially better results than the other methods. As

opposed to EMb, CEMb and dbSkmeans which depend strongly on their starting positions,

the stochastic variants, i.e, SAEMb and CAEMb are not sensitive to their initial positions.

For instance, in the case of high overlapping clusters as in CLASSIC4, NG20 and SPORTS,

we observe that EMb, CEMb and dbSKmeans suffer from a convergence to a poor local

maximum of the likelihood function, when they are initialized randomly. The SAEMb and

CAEMb algorithms, however, avoid this difficulty and converge to a better local optimum of

the likelihood function, see Table 5.6; this is due to the advantage of SEMb in the begining.

Figure 5.5 illustrates the behaviour of SAEMb and its advantage compared to SEMb, the

same behaviour is observed for CAEMb.

4 We found that all algorithms, except stochastic variants, provide substantially better results when they are
initialized using Skmeans (in almost all situations)
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Table 5.4 Comparison of average NMI and ARI, on CSTR, CLASSIC4 and WEBACE
datatsets.

CSTR CLASSIC4 WEBACE
NMI ARI NMI ARI NMI ARI

Skmeans
0.732±0.026 0.772±0.025 0.591±0.020 0.468±0.011 0.613±0.008 0.423±0.026

(0.759) (0.807) (0.595) (0.476) (0.620) (0.394)

CEM
0.734±0.025 0.774±0.024 0.413±0.011 0.199±0.018 0.619±0.011 0.398±0.021

(0.759) (0.807) (0.410) (0.194) (0.623) (0.412)

EM
0.741±0.026 0.777±0.026 0.406±0.013 0.190±0.015 0.614±0.014 0.385±0.034

(0.768) (0.808) (0.403) (0.184) (0.623) (0.397)

DAEM
0.779±0.013 0.813±0.014 0.591±0.002 0.471±0.002 0.620±0.008 0.427±0.022

(0.783) (0.817) (0.592) (0.472) (0.628) (0.468)

dbSkmeans
0.753±0.016 0.803±0.014 0.647±0.002 0.460±0.002 0.616±0.008 0.469±0.033

(0.771) (0.816) (0.653) (0.464) (0.620) (0.507)

CEMb
0.754±0.024 0.804±0.022 0.660±0.003 0.467±0.003 0.623±0.011 0.479±0.038

(0.789) (0.830) (0.665) (0.473) (0.637) (0.519)

EMb
0.754±0.022 0.803±0.022 0.660±0.002 0.466±0.002 0.624±0.008 0.481±0.025

(0.792) (0.837) (0.668) (0.473) (0.639) (0.523)

SEMb
0.776±0.022 0.820±0.024 0.691±0.031 0.705±0.053 0.567±0.044 0.582±0.035

(0.807) (0.846) (0.721) (0.735) (0.597) (0.588)

CAEMb
0.794±0.014 0.833±0.013 0.735±0.033 0.751±0.048 0.640±0.007 0.666±0.019

(0.817) (0.851) (0.746) (0.772) (0.658) (0.688)

SAEMb
0.795±0.011 0.830±0.010 0.746±0.023 0.756±0.039 0.644±0.015 0.656±0.021

(0.821) (0.851) (0.773) (0.798) (0.661) (0.689)

Table 5.5 Comparison of average NMI and ARI, on NG20, SPORTS and TDT2 datasets.

NG20 SPORTS TDT2
NMI ARI NMI ARI NMI ARI

Skmeans
0.542±0.013 0.375±0.016 0.614±0.044 0.405±0.053 0.790±0.012 0.492±0.031

(0.555) (0.379) (0.627) (0.442) (0.801) (0.514)

CEM
0.467±0.013 0.149±0.021 0.446±0.048 0.151±0.067 0.750±0.021 0.436±0.048

(0.484) (0.150) (0.455) (0.177) (0.769) (0.466)

EM
0.465±0.013 0.143±0.020 0.444±0.049 0.149±0.067 0.751±0.019 0.438±0.041

(0.481) (0.141) (0.453) (0.174) (0.771) (0.489)

DAEM
0.556±0.018 0.369±0.022 0.618±0.005 0.398±0.016 0.795±0.007 0.462±0.011

(0.576) (0.393) (0.620) (0.416) (0.806) (0.456)

dbSkmeans
0.579±0.013 0.417±0.020 0.572±0.032 0.451±0.084 0.794±0.012 0.636±0.028

(0.591) (0.440) (0.615) (0.601) (0.808) (0.682)

CEMb
0.582±0.011 0.388±0.024 0.558±0.039 0.508±0.080 0.799 ±0.014 0.657±0.032

(0.594) (0.403) (0.608) (0.602) (0.817) (0.719)

EMb
0.585±0.010 0.390±0.025 0.564±0.037 0.517±0.072 0.799±0.015 0.658±0.034

(0.601) (0.425) (0.617) (0.605) (0.821) (0.699)

SEMb
0.534±0.013 0.347±0.022 0.670±0.018 0.713±0.033 0.718±0.020 0.619±0.022

(0.553) (0.367) (0.700) (0.767) (0.748) (0.656)

CAEMb
0.605±0.010 0.381±0.019 0.601±0.013 0.602±0.021 0.794±0.011 0.723±0.020

(0.608) (0.385) (0.612) (0.613) (0.806) (0.749)

SAEMb
0.610±0.011 0.393±0.012 0.613±0.015 0.620±0.016 0.791±0.010 0.709±0.021

(0.615) (0.390) (0.621) (0.625) (0.821) (0.752)

Table 5.6 Comparison of classification log-likelihood.

CSTR CLASSIC4 WEBACE NG20 SPORTS TDT2

EMb 976,533.3 122,329,895 4,866,978 3,411,592,328 432,277,941 1,299,234,559
CEMb 976,520.4 122,329,033 4,866,769 3,411,588,346 432,276,368 1,299,232,734

CAEMb 976,540 122,341,547 4,867,537 3,411,836,825 432,282,583 1,299,303,290
SAEMb 976,547 122,341,562 4,868,739 3,411,838,557 432,286,341 1,299,304,500
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Fig. 5.5 Behaviour of log-likelihood over iterations, on the different datasets.

NMI vs ARI

Tables 5.4 and 5.5 show that our algorithms provide high performances in terms of both

NMI and ARI, while the other movMFs-based methods sometimes provide good NMI but

low ARI as this is the case with almost all datasets, except CSTR. Figure 5.6 confirms this

remark; we observe that the behavior of NMI and that of ARI are more often in keeping

with our algorithms rather than with movMFs-based algorithms5, i.e, DAEM, EM, CEM and

Skmeans.

The explanation is that movMFs-based clustering methods tend to merge small clusters

and try to split larger ones into comparably sized clusters, as it has been already emphasized

in (Banerjee et al., 2005b). In fact, unlike ARI, the NMI measure is less sensitive to clusters

merging and/or splitting. Our dbmovMFs-based algorithms, however, thanks to the centroids

orthonormality assumption, avoid the above difficulty, and are able to discover large as well

as small clusters (see Figure 5.7 and confusion matrices of Table 5.7). Furthermore, as we

can see from Figure 5.7, EMb reveals a more interesting structure (i.e, block diagonal) than

Skmeans.
5 For presentation purpose we omit CEM in Figure 5.6, but from tables 5.4 and 5.5 it is straightforward to

verify that the behaviour of CEM is too close to that of EM
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(b) CAEMb
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(c) SEMb
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(d) EMb
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(e) CEMb
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(f) dbSkmeans
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(h) DAEM
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(i) Skmeans

Fig. 5.6 Best NMI and ARI over all datasets for each method. Our algorithms provide good
performances in terms both NMI and ARI while movMFs-based approach sometimes provide
good NMI but low ARI. For instance, on SPORTS EMb provides NMI = 0.62 and ARI = 0.61
while SKmeans provides NMI = 0.63 and ARI = 0.44. (see confusion matrices of Table 5.7)

(a) (b) (c)

Fig. 5.7 Visualization of SPORTS dataset: (a) original, (b) reorganized according to
Skmeans’s row partition, (c) reorganized according to EMb’s row and column partitions.

Impact of concentration parameters

We observe that the Skmeans algorithm which is a restricted version of movMFs where

all clusters share the same proportion and the same concentration parameter, yields better
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Table 5.7 SPORTS dataset: confusion matrices crossing the row clusters obtained by both
algorithms (rows) and the true row clusters (columns). The column z.h indicates the sizes of
clusters.

EMb (NMI = 0.617, ARI = 0.605) Skmeans (NMI = 0.627 , ARI = 0.442)
1 2 3 4 5 6 7 z.h 1 2 3 4 5 6 7 z.h

1 3338 219 41 27 487 48 82 4242 1705 1 0 1 1 0 0 1708
2 8 1008 0 0 16 0 0 1032 0 904 0 0 1 0 1 906
3 24 22 5 0 39 5 7 102 1 1 0 0 798 1 0 801
4 36 138 0 0 449 2 2 627 1326 0 0 0 6 0 0 1332
5 3 14 0 1 1345 1 10 1374 81 30 24 6 1171 5 4 1321
6 3 8 99 94 10 280 0 494 298 473 121 115 369 330 23 1729
7 0 1 0 0 0 0 708 709 1 1 0 0 0 0 781 783
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Fig. 5.8 Distribution of concentration parameters

results than the other movMFs-based algorithms, as it has been already emphasized by Gopal

and Yang (2014). The low performance of EM and CEM as opposed to Skmeans, is due

to high concentration parameters κh in the normalization terms cd(κh) that involve Bessel

functions. As it has been highlighted by Banerjee et al. (2005b), in the case of large positive

matrices, all the data lie on the first orthant of a d-dimentional hypersphere, thereby the

concentration of such data is implicitly high. As a result, the concentration parameters κh

of the vMF distributions are high and increase exponentially with the dimensionality of

the data. Our model dbmovMFs, however, alleviates this problem of high concentration

parameters, thanks to its implicitly adaptive dimensionality reduction property. In Figure 5.8

are reported the distribution of the concentration parameters estimated by our dbmovMFs-

based algorithms and movMFs-based algorithms. We clearly observe that our algorithms,
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CEMb, EMb, CAEMb and SAEMb, yield substantially lower concentration parameters than

EM and CEM.

Interpretation of column clusters

Although we focused on document clustering, notice that our algorithms offer word clusters.

Each of them describes a single document cluster and thereby, allows to understand the

semantic meaning of document clusters. Tables 5.8, 5.9 and 5.10 provide typical examples,

where the four, seven and top six word clusters resulting from SAEMb on CLASSIC4 and

TDT2 respectively, are represented by their top 15 terms.

The top terms of each co-cluster were obtained by keeping only the terms that appear in

most documents in the considered cluster. The obtained word clusters are meaningful and

help to make sense of the corresponding document clusters; they are semantically coherent.

More interestingly, and as illustrated in Table 5.9 on the CLASSIC4 datatset, when the

requested number of clusters (7) is greater than the natural number of clusters (4), our

algorithm try to split the natural clusters into semantically coherent sub-clusters. Hence,

when the true number of clusters is not known, one can request a relatively high number of

clusters and then merge them adequately, based on the obtained word clusters.

Table 5.8 Word clusters resulting from SAEMb on the CLASSIC4 dataset. Each cluster is
represented by its top 15 terms, sorted according to their popularity. Clusters C1, C2, C3 and
C4 correspond respectively to CACM, CISI, CRANFIELD and MEDLINE.

C1 C2 C3 C4
algorithm librari flow cell
program inform boundari patient
system scienc layer rat
comput research pressur growth
languag book heat blood
method servic wing acid
function scientif number hormon

gener index bodi tissu
problem journal solut diseas

data retriev shock cancer
time studi theori treatment

structur develop equat tumor
integr literatur mach renal

process public effect kidnei
matrix univers plate dai
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Table 5.9 Clustering of CLASSIC4 into 7 co-clusters by SAEMb: the obtained word clusters
represented by their top 15 terms, sorted according to their popularity.

CACM CISI CRANFIELD MEDLINE
C1 C2 C3 C4 C5 C6 C7

algorithm program librari flow cell children patient
function system inform boundari rat child cancer

integr comput scienc layer growth speech ventricular
matrix languag research pressur acid autist diseas

polynomi data book heat hormon anxieti arteri
permut problem servic wing tissu disord therapi
squar structur index number activ joint treatment
invers process scientif bodi dna visual pulmonari

fit time retriev solut protein syndrome defect
random gener journal shock kidnei autism breast
complex techniqu studi equat antigen mother aortic

root code develop theori dai earli cardiac
exponenti algol literatur mach human childhood renal

error oper docum effect len symptom hydrocephalu
gamma set public plate cultur infantil hypothermia

Table 5.10 The top 6 word clusters resulting from SAEMb on dataset TDT2. Each cluster is
represented by its top 15 terms, sorted according to their popularity.

C10 C24 C28 C12 C25 C3
iraq percent lewinsky suharto nuclear tobacco
un asian starr indonesia pakistan smoking

weapons economic clinton jakarta india industry
iraqi financial president indonesian test bill

inspectors economy white habibie treaty senate
baghdad market house imf kashmir legislation
united stock monica suhartos sharif companies

saddam crisis grand political islamabad settlement
annan yen jury student conducted congress

council dollar counsel reform five cigarette
military currency independent protests ban republicans
secretary billion investigation rupiah device documents

sites banks intern riots intelligence tax
security stocks sexual step explosions lawsuits

inspections growth lawyers demonstration powers democrats

5.7.3 Assessing the number of clusters

Often in practice the number of clusters is not known in advance and should be determined by

the user. Assessing the number of clusters is, however, not straightforward and still remains

one of the biggest challenges in machine learning. Fortunately, in our case we can rely to
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well-established statistical theory of model selection since our algorithms are based on the

maximization of the likelihood. More precisely, we can use information criteria, such the

Akaike information criterion (AIC) (Akaike, 1974, 1992), AIC3 (Bozdogan, 1994), Bayesian

information criterion (BIC) (Schwarz et al., 1978) or integrated classification likelihood

(ICL) (Biernacki et al., 2000). The aforementioned information criteria (IC) measure the

quality of a model given some observed data, and they are formally given by

IC(k) =−2ln L̂+2γ× k (5.13)

where k denotes the number of parameters to be estimated, γ a penalty coefficient and L̂ is

the maximized value of the log-likelihood function. With γ = 1 we have the AIC criterion,

γ = 3/2 we obtain AIC3 and γ = (logn)/2 leads to the BIC criterion where n is the simple

size—the number of rows/documents in our case. And last, ICL can be obtained from (5.13)

by replacing L̂ with the complete data log-likelihood L̂c and setting γ to (logn)/2.

Intuitively the above information criteria penalize the log-likelihood according to the

complexity of the model in terms of the number of parameters to be estimated; the lower the

information criterion, the better is the model quality. Hence, information criteria can be used

to select the best model, which yields the lowest value in terms of the selected information

criterion, among a set of models. In our case we are interested in selecting the number of

clusters, we therefore study the behaviour of AIC, AIC3 and BIC when varying the number

of clusters, on each dataset.

Note that this problem has been investigated by many authors for different mixture models

including the vMF mixture model (Bouberima et al., 2010) where the authors have performed

Monte Carlo simulations taking into account the overlap degree of clusters and the size of

data. Although their experiments were performed on moderate size and non sparse data, the

authors emphasized the good behavior of AIC and AIC3 compared to BIC and ICL.

For our experiments, we use the value of L̂ resulting from the simulated annealing

dbmovMFs (SAEMb) algorithm as it seems to provide the best performances in almost all

cases. Determining the number of free parameters in dbmovMFs is not straightforward due

to the mixing of continuous and discrete parameters. The parameters α and κ contain g−1

and g parameters, respectively. The column partition w—that is treated as a parameter in

our case—contains the same number of parameters whatever the number of column clusters.

Nevertheless, as pointed by van Dijk et al. (2009), the number of possible values for each

parameter increases with the number of clusters, it is therefore more convenient to consider

w under its matrix form W of size (d× g), where each row indicates to which cluster the

corresponding column belongs. The effective number of free parameters in dbmovMFs is
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therefore k = g×(d+2)−1 due to g concentration parameters κh’s, g−1 mixing proportions

αh’s and d×g column cluster parameters w jh’s.

In figures 5.9 to 5.14 are depicted the values of the log-likelihood, AIC, AIC3 and BIC as

a function of the number of clusters, over different data sets (we found that the ICL criterion,

not reported here for presentation purpose, behaves like BIC). First of all, we observe that

the log-likelihood can clearly not be used to assess the right number of clusters as it varies,

as expected, monotonically when the number of clusters increases. The penalty term of the

BIC criterion seems to be too strong due to the high number of parameters to be estimated,

as a result BIC, increases monotonically and, thereby, does not allows us to identify the

number of clusters, except on CLASSIC4 and WEBACE where BIC and ICL identify 3 and 6

clusters, respectively, instead of 4 and 20. From figures 5.9 to 5.14 we observe that AIC and

AIC3 are able to identify a number of clusters that is close or even equal to the right number

of clusters on almost all data sets, except on TDT2 where both criteria under estimate the

number of clusters. This suggests that, in our case, a convenient penalty term γ lies between

1 and 3/2.

Furthermore, the AIC criterion seems to be slightly better than AIC3 since the latter

tends to underestimate the right number of clusters on some data sets such as NG20 and

CSTR. Another notable result is that, on the CLASSIC4 data set, that contains 4 classes,
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Fig. 5.9 Behaviour of the log-likelihood, AIC, AIC3 and BIC when varying the number of
clusters on the CSTR dataset (True number of classes: 4).
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Fig. 5.10 Behaviour of the log-likelihood, AIC, AIC3 and BIC when varying the number of
clusters on the CLASSIC4 dataset (True number of classes: 4).
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Fig. 5.11 Behaviour of the log-likelihood, AIC, AIC3 and BIC when varying the number of
clusters on the WEBACE dataset (True number of classes: 20).
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Fig. 5.12 Behaviour of the log-likelihood, AIC, AIC3 and BIC when varying the number of
clusters on the NG20 dataset (True number of classes: 20).
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Fig. 5.13 Behaviour of the log-likelihood, AIC, AIC3 and BIC when varying the number of
clusters on the SPORTS dataset (True number of classes: 7).
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Fig. 5.14 Behaviour of the log-likelihood, AIC, AIC3 and BIC when varying the number of
clusters on the TDT2 dataset (True number of classes: 30).
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AIC3 suggests 6 clusters while AIC suggests a number of clusters between 6 and 8, this

is, however, not an issue. In fact, as illustrated in table 5.9 some classes in CLASSIC4 are

composed of several semantically coherent sub-clusters. Thereby, an interesting approach

would be to consider the number of clusters determined by AIC/AIC3 as a starting point,

which can then be tuned by exploring the top terms of the obtained word clusters so as to

decide whether the number of clusters should be increased, decreased or kept unchanged.

5.8 Conclusion and perspectives

In this chapter we proposed a novel generative model based on a mixture of vMF distributions,

called dbmovMFs, that successfully integrates a directional measure, namely the cosine

similarity, into a co-clustering framework. The high performances of dbmovMFs-based

algorithms confirm again the benefits of the vMF modelling assumption when we are dealing

with some high dimensional sparse datasets, as it has been already emphasized in (Banerjee

et al., 2005b; Zhong and Ghosh, 2005; Gopal and Yang, 2014).

The introduction of column clustering into a mixture of vMF distribution seems to

be beneficial from several perspectives: (i) in terms of inference this allows us to reduce

substantially the complexity of the model regarding the number of free parameters to be

estimated and thereby yielding a parsimonious model, (ii) it makes it possible to exploit the

inherent duality between rows and columns which improves the performance, in terms of

document clustering, of vMF-based mixture models by a noticeable amount, as demonstrated

in our experiments, (iii) it alleviates the high concentration parameter κ issue, by performing

an implicitly adaptive dimensionality reduction at each stage, and finally, (iiii) it has the

advantage of producing directly interpretable clusters and co-clusters, which may also help

to assess the number of clusters when the latter is not known, as emphasized in section 5.7.2.

By setting the estimate of the model parameters under the ML and CML approaches, we

proposed six novel co-clustering algorithms corresponding to different variants of the EM

algorithm. We derived soft, hard, stochastic and simulated annealing variants. Extensive

experiments, conducted on numerous simulated and real-world datasets, provide empirical

evidence about the advantages and effectiveness of the proposed algorithms for simultaneous

clustering of documents and words, using high dimensional sparse document-term matrices.

In particular, we recommend the simulated annealing variants that seem to reach the best

performances in almost all situations, especially when clusters are poorly separated. However,

if scalability is a requirement, the hard variants CEMb and dbSkmeans may turn out to be a

wise choice.
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The good performances of our algorithms motivate further investigations. For instance, it

would be interesting to propose a way to simultaneously use estimates obtained by SEMb

and EMb/CEMb in an iterative process to overcome therefore the difficulty of managing

parameter w. We could also improve dbmovMFs by considering a Bayesian formulation that

would enable sharing of information between co-clusters (Gopal and Yang, 2014). Future

improvements could also involve the development of temporal, incremental and on-line

variants of our algorithms. Such variants would be of great interest for applications such as

collaborative filtering where available information evolves frequently. Finally, it would be

opportune to tackle the problem of the number of co-clusters which remains one of the most

important challenge in co-clustering. For instance, an interesting strategy would be to treat

the problem of parameter estimation and assessing the number of co-clusters simultaneously

(Wyse and Friel, 2012).





Chapter 6

Frequency Sensitive Co-clustering

It is well known that, because of the high dimensionality and sparsity of the data, co-clustering

approaches, like one-sided clustering methods, tend to generate highly unbalanced clusters,

i.e., clusters of widely varying sizes, in particular when the number of required clusters

is large (Dhillon et al., 2002; Cho et al., 2004; Banerjee et al., 2004; Zhang et al., 1999).

However, in some situations it may be more beneficial to avoid such very skewed solutions.

This chapter describes a novel directional co-clustering approach that addresses the above

issue, that is a co-clustering method that makes it possible to take into account the directional

properties of some data sets as well as avoid bad solutions with very unbalanced clusters.

More precisely, the approach presented here builds on the block mixture of von Mises-Fisher

distributions, which is described in the previous chapter, and uses a conscience mechanism

that helps to avoid extremely skewed solutions with very small/large or empty clusters.

Experimental results on numerous real-world datasets provide empirical evidence about the

benefits of the proposed approach.

6.1 Introduction

Although vMF-based clustering approaches alleviate the problem of high dimensionality and

sparsity, they tend to produce very unbalanced clusters, i.e., clusters of widely varying sizes,

due to high dimensionality and sparsity, especially when the number of required clusters is

large (Banerjee et al., 2004).

Obviously, when dealing with real-world datasets, it seems more reasonable to expect

unbalanced clusters. However, in many situations it is more beneficial to have balanced clus-

ters, i.e., clusters of comparable sizes. For instance, in text document clustering, balancing,

as pointed in (Banerjee et al., 2004), is of great interest when generating topic hierarchies

as it prevents the generation of heavily skewed hierarchies, which eases navigation. In
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collaborative filtering (CF), partitioning users into comparably sized groups makes it possible

to make fair recommendations for all users. In fact, a clustering-based CF system (Salah

et al., 2015) makes recommendations to users according to the shared preferences within

their groups. Thus, no relevant recommendation can be made for users from small clusters,

similarly it is difficult to make personalized recommendations for users from large clusters.

For more examples of real-life applications where balanced clustering is useful, the reader

can refer to (Banerjee et al., 2004).

Motivated by balanced clustering and directional based clustering, the authors in (Baner-

jee et al., 2004) proposed a variant of Skmeans called Frequency Sensitive Skmeans

(FS-Skmeans) for balanced clustering on high dimensional hyperspheres. The FS-Skmeans

algorithm is inspired from the Frequency Sensitive Competitive Learning (FSCL) approach

(Ahalt et al., 1990) that uses the “conscience” mechanism (DeSieno, 1988). The latter was

first used in competitive learning in order to address the problem of highly unbalanced

clusters. It consists in penalizing frequently winning “centroids” by making them less likely

to win in the future. Based on the conscience mechanism, FSCL was proposed in the context

of Vector Quantization to address the problem of under utilisation of parts of codebook.

More precisely, FSCL penalizes the representative units by introducing multiplicative terms

proportional to some function of the number of their winning. Notice that it only focuses

on clustering along one dimension of data matrices, i.e., either rows or columns clustering.

However, as pointed in the previous chapter, in the case of high dimensional sparse data, it

turns out to be more useful to treat simultaneously both dimensions of data matrices even if

one is primarily interested in clustering along one dimension.

However, co-clustering methods, like traditional one-sided clustering, tend to produce

highly unbalanced/empty row and column clusters when dealing high dimensional sparse

data (Cho et al., 2004), particularly if the number of desired clusters is large. In this chapter,

we relay on the block mixture of vMF distributions dbmovMFs, presented in the previous

chapter, that constitutes a general framework for co-clustering directional data. Then, in order

to avoid obtaining clusters of widely varying sizes, we modify dbmovMFs in a principled

way by introducing a “conscience” mechanism that penalizes the clusters relative to the

number of object that have been assigned to them. This yields a very scalable co-clustering

algorithm that is guaranteed to increase a spherical k-means like criterion by alternating row

and column clusterings at each stage.

To the best of our knowledge, the work that we present, is the first that introduces a

conscience mechanism into a co-clustering model in order to avoid highly skewed solution

with very small or empty clusters. Experimental results on various real-world datasets provide

empirical evidence about the advantages of our approach.
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6.2 Frequency Sensitive Co-clustering

Inspired by Frequency Sensitive Competitive Learning and FS-Skmeans, we propose here-

after to modify dbmovMFs, described in the previous chapter, in an adequate manner by

introducing a conscience mechanism, in order to address the problem of obtaining strongly

unbalanced clusters and thereby avoiding poor solutions. More precisely, we aim to penalize

each row and column cluster by a function of its cardinality, i.e, the number of its elements.

To this end, we assume that the concentration parameters are inversely proportional to a

function of the number of objects (rows) that has been assigned to their corresponding cluster,

i.e, κh = ℓ/ f (z.h), ∀h, where z.h represents the cardinality of row cluster h, ℓ is a constant

and f denotes any increasing function. The choice of ℓ and f are discussed in more details

below. The complete data log-likelihood of X is given by:

Lc(Θ|X,Z) = ∑
h

z.h logαh +∑
h

z.h log(cd(κh))+∑
i,h

zihκhµhh ∑
j

w jhxi j

= ∑
h

z.h logαh +∑
h

z.h log(cd(κh))+∑
i,h

zihκh(µ
w
h )
⊤xi. (6.1)

The logarithm of the normalization constant is equal to

logcd(κh) =

(
d

2
−1

)

logκh−
d

2
log2π− log Id

2−1(κh). (6.2)

We have, Ir(κh) = ∑
∞
m=0

1
m!Γ(m+r+1)

(κh

2

)2m+r
where Γ(x) is the Gamma function. Now, let

us suppose that each concentration parameter κh is sufficiently small (i.e, we assume that

clusters are not well separated), it is sufficient to choose ℓ = 1 and f (x) ≥ 1 leading to

κh ∈ [0,1], so that we can ignore terms of the above series with higher power of κh. Thus,

we can approximate Ir(κh) with the first two terms of this series as follows

Ir(κh) ≈
κr

h

2rr!
+

κr+2
h

2r+2(r+1)!

= κr
h

(
1

2rr!
+

κ2
h

2r+2(r+1)!

)

= κr
h

(
4(r+1)+κ2

h

2r+2(r+1)!

)

(6.3)

for high dimensionality, i.e, large order r = d/2−1, and for small κh, we have 4(r+1)+κ2
h ≈

4(r+ 1) and Ir(κh) ≈ κr
h

(
4(r+1)

2r+2(r+1)!

)

thereby, log Id
2−1(κh) ≈

(
d
2 −1

)
logκh + logc where
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c = 4(r+1)
2r+2(r+1)!

. Substituting this approximation in (6.2) gives us,

logcd(κh) =

(
d

2
−1

)

logκh−
d

2
log2π−

(
d

2
−1

)

logκh− logc

= −d

2
log2π− logc (6.4)

Substituting (6.4) in (6.1) and assuming that all the mixing proportions are equal, i.e, αh =
1
g
∀h leads to

Lc(Θ|X,Z) = ∑
h

z.h log(1/g)+∑
h

z.h

(

−d

2
log2π− logc

)

+∑
i,h

zihκh(µ
w
h )
⊤xi

= n

[

log(1/g)− d

2
log2π− logc

]

︸ ︷︷ ︸
constant

+∑
i,h

zihκh(µ
w
h )
⊤xi. (6.5)

Making concentration parameter κh inversely proportional to a function of the size of cluster

h, i.e, κh ∝ 1/ f (z.h), where f is an increasing function greater than 1, we choose the root

square function f (x) =
√

x and obtain

Lc(Θ|X,Z) ≡ ∑
i,h

1√
z.h

zih(µ
w
h )
⊤xi (6.6)

From (6.6) it is obvious that object assignments are done by maximizing a weighted Skmeans

like criterion, and we observe that the weights penalize larger clusters. Similarly, we can

express (6.6) in terms of column assignment as

Lc(Θ|X,Z) ≡ ∑
j,h

1√
w.h

w jh(µ
z
h)
⊤x j (6.7)

where w.h, µz
h, i.e, ∥µz

h∥= 1 denote the cardinality and the centroid of hth column cluster,

respectively, and x j denotes the jth column. Hence, as for objects clustering, feature

clustering consists in maximizing a weighted Skmeans like criterion that penalizes larger

column clusters by a multiplicative term. It can easily be deduced as follows

Lc(Θ|X,Z) ≡ ∑
i,h

1√
z.h

zih(µ
w
h )
⊤xi = ∑

j,h

1√
z.h

w jhµhh ∑
i

zihxi j

= ∑
j,h

1√
z.h

w jh

1√
w.h

∑
i

zihxi j = ∑
j,h

1√
w.h

w jh(µ
z
h)

T x j

≡ ∑
j,h

1√
w.h

w jhcos(µz
h,x

j) (6.8)
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Thanks to our co-clustering formulation, penalizing larger row clusters using an adequate

choice of concentration parameters, i.e, κh = 1/ f (z.h), ∀h, with f (x) =
√

x, naturally yields

a penalization of larger column clusters with an appropriate multiplicative term, equal

to 1/
√

w.h. Another choice of function f will give a different criterion. Our Frequency

Sensitive co-clustering algorithm, called Frequency Sensitive Diagonal Block Spherical

k-means (FSdbSkm) is described in more details by Algorithm 8. It can be shown that

the computational complexity of FSdbSkm is given in O(it · nz), where it and nz denote

respectively the number of iterations and non-zero entries. Thereby FSdbSkm is very efficient,

therefore suitable for high dimensional sparse data.

Algorithm 8: FSdbSkm.

Input: X (xi ∈ S
d−1), g the number of co-clusters.

Output: Z and W,
Steps:

Initialization: Θ←Θ(0);
repeat

1. Assignment of objects:
for i = 1 to n do

zi← h where h = argmaxh′(z.h′)
−0.5cos(µw

h′ ,xi)
end for

2. Assignement of Features:
for j = 1 to d do

w j← h where h = argmaxh′(w.h′)
−0.5cos(µz

h′ ,x
j)

end for

3. Computation of µhh’s maximizing (6.6):
for h = 1 to g do

µhh← 1√
w.h

end for

until convergence

Herein, we prove that FSdbSkm monotonically increases criterion (6.6), and terminates in a

finite number of iterations at a local optimal solution.
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At iteration (t), Lc(Θ|X,Z) noted Lc, we have

L
(t)
c = ∑

i,h

(z
(t)
.h )
−0.5z

(t)
ih ((µ

w
h )

(t))⊤xi

= ∑
i,h

(z
(t)
.h )
−0.5z

(t)
ih (µhh)

(t)∑
j

w
(t)
jh xi j

= ∑
i,h

(z
(t)
.h )
−0.5z

(t)
ih (w

(t)
.h )
−0.5 ∑

j

w
(t)
jh xi j

= ∑
i,h

(w
(t)
.h )
−0.5z

(t)
ih (z

(t)
.h )
−0.5 ∑

j

w
(t)
jh xi j

= ∑
i,h

(w
(t)
.h )
−0.5z

(t)
ih (µ

z
hh)

(t)∑
j

w
(t)
jh xi j

≤ ∑
i,h

(w
(t)
.h )
−0.5z

(t+1)
ih (µz

hh)
(t)∑

j

w
(t+1)
jh xi j (6.9)

the latter inequality follows from Steps (1) and (2) of FSdbSkm. Further, as we have

(µz
hh)

(t+1)= argmaxµz
hh

L
(t)
c , subject to the constraint ∥µz

h∥= 1 therefore (µz
hh)

(t+1)=(z
(t+1)
.h )−0.5,

thereby we obtain,

L
(t)
c ≤ ∑

i,h

(z
(t)
.h )
−0.5z

(t+1)
ih (µz

hh)
(t+1)∑

j

w
(t)
jh xi j
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i,h

(w
(t)
.h )
−0.5z

(t+1)
ih (z

(t+1)
.h )−0.5 ∑

j

w
(t)
jh xi j
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i,h

(z
(t+1)
.h )−0.5z

(t+1)
ih (µhh)

(t+1)∑
j

w
(t+1)
jh xi j

≤ ∑
i,h

(z
(t+1)
.h )−0.5z

(t+1)
ih ((µw

h )
(t+1))⊤xi = L

(t+1)
c

the latter inequality follows from step (3) of FSdbSkm. The convergence of FSdbSkm to

a local optimum of criterion (6.6) follows, since the number of distinct row and column

partitions is finite.

6.3 Experimental results

To show the benefits of our approach, we conduct extensive experiments on numerous

real-world text datasets, in which we benchmark our algorithm FSdbSkm against several

strong baselines: the soft-movMF proposed in (Banerjee et al., 2005b), da-movMF is the

deterministic annealing version of movMF proposed in (Zhong and Ghosh, 2005) and
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Skmeans (Dhillon and Modha, 2001) which is also a simplified version of soft-movMF,

where κh = κ → ∞, αh = α , for all h.

For text documents clustering, it has been empirically shown on numerous real-world

datasets, that the aforementioned baselines perform better than several existing clustering

and co-clustering algorithms including: K-means with the euclidean distance, generative

model using Gaussian, Bernoulli and Multinomial distributions, spectral co-clustering, and

Latent Dirichlet Allocation (LDA) (see (Zhong and Ghosh, 2005; Gopal and Yang, 2014)).

Therefore, we do not include these approaches in our comparisons.

6.3.1 Datasets

As a practical example we select the domain of text mining and we concentrate on the

challenging task of text document clustering using high dimensional sparse document-term

matrices. Hence, we retain six popular benchmark text datasets, CLASSIC41, LA12, the

20-newsgroups data NG20, SPORTS used in (Zhong and Ghosh, 2005), NG2 and NG17-19

consisting respectively of two and three overlapping classes2 of NG20. All these datasets

are carefully selected to represent various particular challenging situations in clustering:

different degrees of cluster balance, different numbers of clusters, different sizes, different

degrees of cluster overlap. The characteristics of these datasets are summarized in Table

6.1. Note that, in the above datasets, the true document cluster labels are available. The

Table 6.1 Description of Datasets.

Datasets
Characteristics

n d g Sparsity (%) Balance RME SDCS
NG2 500 2000 2 96.85 1.00 1.00 0.00
CLASSIC4 7094 5896 4 99.41 0.323 0.582 972.18
NG20 19949 43586 20 99.82 0.991 0.993 2.28
SPORTS 8580 14870 7 99.14 0.036 0.099 1253.01
LA12 6279 31472 6 99.52 0.281 0.498 526.49
NG17-19 2998 23233 3 99.51 0.998 0.999 1.15

word cluster labels, however, are not known, this is the reason why we mainly concentrate

our experiments on document clustering. Nevertheless, under our formulation row clusters

induce column clusters and vice versa thereby the quality of row clustering is informative

about the quality of column clustering.

1 http://www.dataminingresearch.com/
2 talk.politics.misc, talk.politics.guns and talk.politics.mideast
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6.3.2 Evaluation measures

Evaluating clustering results is not a trivial task, however, when the true category labels

are known, a commonly used approach to validate clustering results consists in comparing

the estimated partition with the true one. To this end, several measures have been proposed

to assess the “similarity” between the estimated clustering and the true clustering. In our

experiments we retain two widely used measures to assess the quality of clustering, namely

the Normalized Mutual Information NMI (Strehl and Ghosh, 2003) and the Adjusted Rand

Index ARI (Hubert and Arabie, 1985).

To assess cluster balancing we use three measures: the Standard Deviation in Cluster

Sizes (SDCS) (Banerjee et al., 2004), the ratio of minimum cluster size to the expected

cluster size RME (Banerjee et al., 2004) and the Balance coefficient, i.e, the ratio of the

minimum cluster size to the maximum cluster size. The latter makes it possible to know

whether very small/large clusters are obtained.

6.3.3 Empirical results and discussion

In all our experiments we use the TF-IDF normalized data representation, in particular we

use the TF-IDF weighting scheme proposed in Scikit-learn (Pedregosa et al., 2011). For each

dataset we set g to the real number of clusters, and in order to make consistent comparisons,

all algorithms are initialized using the same random row partition. For our algorithm we

further randomly initialize the column partition. Each algorithm is run until there is no

significant increase of the optimized criterion.

Notice that, in the case of document-term matrices, during the first iterations, document

clusters are mixed. Hence each word is involved to describe several document clusters, thus

imposing hard word assignments at the beginning, as in Algorithm 8, could lead to a poor

local solution. To avoid this difficulty, we perform a stochastic column assignment during the

first 70% iterations of FSdbSkm as follows: for each column j select a cluster w j according

to a Multinomial distributionM(w̃ j1, . . . , w̃ jg) where w̃ jh ∝ 1√
w.h

cos(µz
h,x

j).

Figure 6.1 illustrates the structure revealed by Skmeans and our algorithm FSdbSkeamns

on the NG2 dataset. As we can see from this Figure, FSdbSkeamns not only reaches better

performances in terms of NMI, ARI and Balance but also reveals a more interesting structure,

i.e, block diagonal. Tables 6.2 and 6.3, summarize the results of the different methods in

terms of NMI and ARI, over all datasets. All results are averaged over thirty different starting

points, obtained using the initialization strategy described above. Between brackets, we

report the result corresponding to the trial with the highest criterion. As these tables show

clearly, our algorithm FSdbSkm provides substantially better results than the other vMF-based
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Fig. 6.1 NG2 dataset (Balance = 1). Left: original, middle: reorganized according to Skmeans
result(NMI = 0.57, ARI = 0.67, Balance = 0.73), right: Reorganized according to FSdbSkm

results(NMI = 0.74, ARI = 0.83, Balance = 0.98).

Table 6.2 Comparison of Average NMI, ARI on the NG20, SPORTS, LA12 datasets.

NG20 SPORTS LA12
NMI ARI NMI ARI NMI ARI

soft-movMF
0.44±0.01 0.12±0.01 0.43±0.03 0.12±0.05 0.40±0.04 0.21 ±0.07

(0.46) (0.13) (0.43) (0.10) (0.46) (0.29)

da-movMF
0.57±0.01 0.40±0.02 0.62±0.02 0.40±0.03 0.53±0.01 0.49±0.01

(0.58) (0.40) (0.63) (0.41) (0.55) (0.52)

Skmeans
0.54±0.01 0.37±0.02 0.61±0.04 0.40±0.05 0.53±0.05 0.48±0.05

(0.55) (0.38) (0.63) (0.44) (0.56) (0.50)

FSdbSkm
0.61±0.01 0.50±0.01 0.62±0.03 0.52±0.05 0.56±0.02 0.53±0.02

(0.62) (0.51) (0.67) (0.62) (0.58) (0.55)

Table 6.3 Comparison of Average NMI, ARI on the NG17-19, CLASSIC4 and NG2 datasets.

NG17-19 CLASSIC4 NG2
NMI ARI NMI ARI NMI ARI

soft-movMF
0.27±0.02 0.14 ±0.01 0.48±0.01 0.29±0.02 0.14±0.06 0.06±0.06

(0.29) (0.14) (0.49) (0.30) (0.26) (0.16)

da-movMF
0.37±0.01 0.31±0.01 0.59±0.003 0.47±0.002 0.55±0.06 0.64±0.08

(0.37) (0.30) (0.59) (0.47) (0.57) (0.66)

Skmeans
0.42±0.04 0.36±0.06 0.59±0.02 0.47±0.01 0.51 ±0.06 0.58 ±0.08

(0.41) (0.35) (0.59) (0.48) (0.57) (0.67)

FSdbSkm
0.53±0.04 0.56±0.04 0.70±0.01 0.67±0.01 0.71±0.02 0.81±0.01

(0.57) (0.59) (0.72) (0.70) (0.74) (0.83)

clustering algorithms. In particular when the data exhibits overlapping clusters as this is

the case for NG2, CLASSIC4, NG20 and NG17-19. In fact, FSdbSkm is derived from a

vMF-based model by assuming that clusters are not well separated, i.e., by assuming small

concentration parameters. More interestingly, even when clusters are extremely unbalanced

in nature, as in the SPORTS dataset, FSdbSkm provides high performances in terms of

NMI and ARI. In fact, FSdbSkm tries to discover balanced clusters (see Table 6.4) without

destroying the overall structure of data. Hence in such situation, the conscience mechanism

of FSdbSkm has a regularizing effect that makes it possible to avoid poor solutions with

empty or very large clusters.
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Table 6.4 Comparison BALANCE, RME and SDCS on the NG20, SPORTS, LA12 datasets.

NG20 SPORTS LA12
BALANCE RME SDCS BALANCE RME SDCS BALANCE RME SDCS

soft-movMF 0.018 0.125 1534.42 0.074 0.293 1618.73 0.069 0.159 751.63
da-movMF 0.120 0.256 465.26 0.252 0.517 644.86 0.603 0.782 232.82
Skmeans 0.175 0.332 401.42 0.271 0.476 545.37 0.372 0.594 361.74
FSdbSkm 0.482 0.627 147.79 0.446 0.715 383.80 0.534 0.679 223.07

Table 6.5 Comparison BALANCE, RME and SDCS on NG17-19, CLASSIC4, NG2.

NG17-19 CLASSIC4 NG2
BALANCE RME SDCS BALANCE RME SDCS BALANCE RME SDCS

soft-movMF 0.079 0.188 1204.23 0.251 0.547 1398.46 0.275 0.432 200.82
da-movMF 0.272 0.508 752.79 0.457 0.635 591.90 0.825 0.904 33.94
Skmeans 0.171 0.347 902.26 0.467 0.635 582.49 0.735 0.834 48.08
FSdbSkm 0.710 0.838 172.40 0.407 0.581 615.34 0.976 0.988 4.24

Moreover, as Tables 6.2, 6.3, 6.4 and 6.5 show, when clusters are naturally balanced

as in NG2, NG17-19 and NG20 FSdbSkm yields substantially better performances in terms

of all measures. Finally, Figure 6.2 shows that FSdbSkm offers a good trade off between

cluster-balancing and quality of clustering.
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Fig. 6.2 Left Balance vs NMI, Righ Balance vs ARI. The circles denote the scores recorded
by FSdbSkm.

So far, we focused on document clustering but FSdbSkm offers word clusters as well.

Each word cluster describes a single document cluster thereby easing semantic interpretations.

Table 6.6 provides a typical example, where the four word clusters, discovered by FSdbSkm on

CLASSIC4, are represented by their top 15 terms. The obtained word clusters are meaningful

and help to make sense of the corresponding document clusters.
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Table 6.6 CLASSIC4 dataset: the term clusters discovered by FSdbSkm represented by
their top 15 terms sorted according to cosine similarity. The clusters C1, C2, C3 and C4
corresponds respectively to CACM, CRANFIELD, CISI and MEDLINE.

C1 C2 C3 C4
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6.4 Conclusion and perspectives

In this chapter we proposed FSdbSkm, a novel co-clustering algorithm tailored for high

dimensional sparse data. Unlike existing co-clustering algorithms, FSdbSkm is derived from

a mixture of vMF distributions. It is more suitable than existing co-clustering methods for

directional data distributed on a unit hypersphere, a typical situation in text mining where

data are often normalized in order to remove the bias induced by the length of documents.

Moreover, FSdbSkm, like Frequency Sensitive Competitive Learning, uses a conscience

mechanism that penalizes larger clusters in order to avoid highly skewed solutions with very

large/small clusters. Empirical results obtained on numerous real-world datasets show that

FSdbSkm performs better than other strong baselines, which confirms the advantages of our

approach. Moreover, even if balancing is not a requirement, the conscience mechanism of

FSdbSkm has an interesting regularizing effect that makes it possible to avoid poor solutions.

Although the FSdbSkm algorithm is inspired by FSCL, it does not have the incremental

behaviour of FSCL. Hence, possible future work could include further research to develop

incremental and on-line variants of FSdbSkm that would be of great interest for applications,

such as Collaborative Filtering (see chapter 2), where available data change frequently.





Conclusion and Perspectives

Through this thesis, we proposed and studied a novel class of clustering algorithms tailored

for directional data distributed on the surface of a unit-hypersphere—L2 normalized data.

The algorithms studied in this thesis are derived from rigorous probabilistic models that build

on the von Mises-Fisher (vMF) distribution from directional statistics (Mardia and Jupp,

2000). Our focus on the above modeling assumption is largely motivated by the substantial

empirical evidence that some high dimensional sparse data sets, such as text and collaborative

filtering (CF) data, posses intrinsic directional properties that match well with the modeling

assumption of the vMF distribution. In fact, several previous studies in information retrieval

have empirically demonstrated that directional measures such as the cosine similarity are

superior to several other measures, such Euclidean distortions, for clustering text documents

or assessing similarities between users (resp. items) in CF.

The main contributions and key results of this thesis can be summarized as follows:

- Chapter 2 exposes a scalable incremental variant of the spherical k-means algorithm

suitable for CF, and which is able to handle effectively the frequent changes in the

data such as submission of new ratings, update of existing ratings, appearance of

new users and items. Extensive experiments conducted on popular benchmark data

sets demonstrate the effectiveness and scalability of our method denoted as EICF. It

offers a better quality of recommendations than other incremental CF systems while

requiring less computation time, in both the static situation, where available data

are kept unchanged, and dynamic situation, where new information are incorporated

incrementally. In addition, to evaluate the performances of our approach under different

circumstances, we also emphasized and illustrated why prediction metrics such as

mean average error (MAE) and root mean square error (RMSE), widely used in the

context of recommender systems, are inadequate to evaluate CF models. In fact, in

many situation low MAE and RMSE do not necessarily equate to best user satisfaction.

- Chapter 3 presents a novel social collaborative filtering model which is based on the

vMF assumption. The proposed model (Social-movMFs) is motivated by the benefits
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of both modeling CF data as directional data distributed on a unit-hypersphere and

incorporating information from online social-networks so as to alleviate the sparsity

related issues in CF. The Social-movMFs model is based on the natural assumption

that socially connected users tend to share similar tastes. Indeed, in the physical

world people usually turn to their friends, as they are familiar with their tastes, to

ask for suggestions before choosing a movie, restaurant, book, etc. In this spirit,

Social-movMFs simultaneously seeks for groups of users who tend to express similar

preferences and brings the distributions over clusters (groups of users) of socially

connected users closer to each other so as to capture the relations between users. An

experimental study on various real-wold data sets, that include both the user-item

preference matrix and the user-user social network, demonstrates the advantages of

both the vMF modeling assumption and using social network information in order to

alleviate the sparsity problem and improve CF performances, especially when there

are many cold start users, i.e., who expressed very few ratings or even none at all.

- Chapter 5 describes a novel co-clustering model that is well suited for co-clustering

L2 normalized data. While existing co-clustering approaches are based on popular

assumption such Gaussian, Multinomial or Bernoulli that are inadequate for L2 normal-

ized data, the proposed model dbmovMFs builds on the vMF assumption, that arises

naturally for data lying on the surface of a unit-hypersphere, and successfully integrates

a directional measure, namely the cosine similarity into a co-clustering framework.

Hence, dbmovMFs leverages the advantages of both the co-clustering and the modeling

assumption of the vMF distribution when dealing with high dimensional sparse data

sets. Co-clustering by using the vMF distribution is not straightforward. Most existing

co-clustering approaches are based on the principle of the latent block model (LBM)

(Govaert and Nadif, 2003, 2013) which uses univariate probability distributions; the

vMF distribution, however, is a probability distributions of L2 normalized vectors. In

order to overcome the aforementioned difficulty, we moved the co-clustering into the

centroid parameter of the vMF distribution by making some appropriate assumptions

on its structure. In other words, by contrast to LBM-based co-clustering where an entire

model is designed for co-clustering, in our case we are using a one-sided clustering

model and put the co-clustering aim in the model parameters. The dbmovMFs can give

rise to several new co-clustering algorithms, in this thesis we derived and studied six

algorithms, including hard, soft and stochastic variants. Empirical results on numerous

simulated and real-world data sets provide strong support for the effectiveness of

our approach and the benefits of the vMF modelling assumption in the case of high
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dimensional sparse text data. The introduction of column clustering into a mixture of

vMF distribution turns out to be very useful from several perspectives:

– In terms of inference it reduces substantially the complexity of the model regard-

ing the number of free parameters to be estimated, which yields a parsimonious

model and very scalable algorithms.

– It makes it possible to exploit the inherent duality between rows and columns

which improves the performance, in terms of document clustering, of vMF-based

mixture models noticeably, as illustrated in our experiments.

– It performs an implicitly adaptive dimensionality reduction at each stage, which

makes possible to alleviate the high concentration parameter κ issue because of

high dimensionality.

– It provides us with semantically coherent and directly interpretable results where

each document cluster is described by a term cluster, which may also help to

assess the number of clusters when the latter is not known, as emphasized in

section 5.7.2.

– More interestingly, when assessing the number of clusters, the word cluster may

be exploited so as to tune the number of cluster returned by well-established

information criteria, AIC and AIC3, for model selection.

- Chapter 6 presents a novel co-clustering approach that uses a conscience mechanism

in order to escape extremely skewed solutions, with very unbalanced or empty clusters,

because of high dimensionality and sparsity, in particular when the number of desired

clusters is large. The proposed algorithm FSdbSkm is derived from the dbmovMFs

model, it is therefore well suited for L2 normalized data. Empirical results obtained on

several real-world data sets show that FSdbSkm succeeds in avoiding bad local solutions

with very unbalanced clusters sizes and performs substantially better than other strong

baselines. More interestingly, even when the balancing is not a requirement, and the

clusters are by nature very unbalanced, the conscience mechanism of FSdbSkm is still

of great interest. In such situation, instead of destroying the natural cluster structure

of the data so as to provide balanced clusters, the conscience mechanism acts as a

regularizer that prevents from poor locally optimal solutions. This behaviours suggests

that FSdbSkm seeks for balanced clusters but not to the detriment of the inherent

structure of data.

Overall, the results from our thesis highlight the importance of accounting for the intrinsic

directional properties of some high dimensional sparse data sets such as those encountered in
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text mining and collaborative filtering. Relying on the directional assumption allows us to

develop not only very effective but also very scalable algorithms, which are well suited for

handling high dimensionality and sparsity.

The studies presented in this thesis motivate further investigations that may include

- Incorporating context-aware information (Tang et al., 2013; Bobadilla et al., 2013)

such as time into EICF and Social-movMF so as to handle the sparsity problem even

more effectively and thereby improve recommendations. Because the sparsity in CF

is caused by missing (or unobserved) ratings, and both EICF and Social-movMF are

based on mixture models, another possibility to better address the sparsity problem is

to rely to well-established statistical theory of missing data analysis (Little and Rubin,

2002).

- Extend dbmovMFs to collaborative filtering in order to treat the sets of users and items

simultaneously. This would be useful for several reasons: the dimensionality reduction

property of dbmovMFs will help to alleviate the sparsity and develop very scalable CF

systems, it will provide us with more interpretable results by grouping users and items

into meaningful clusters, i.e., each group of users may be described by a cluster of

items they prefer, and vice versa. Moreover the social component of Social-movMFs

can be easily incorporated into dbmovMFs in order to account for social interactions

among users in the latter.

- It is interesting to consider a Bayesian formulation of dbmovMFs (Gopal and Yang,

2014) that would enable sharing of information between co-clusters, consider a soft

column partition w and, more interestingly, allow the number of co-clusters to be

determined automatically as part of the learning process.

- The von Mises-Fisher distribution is one of the simplest distributions for directional

data lying on the surface of a unit-hypersphere, and other distributions from directional

statistics deserve to be considered. For instance the Kent distribution (Mardia and

Jupp, 2000), which is the analogous on a unit-hypersphere of the multivariate Gaussian

distribution with an unconstrained covariance matrix, is more sophisticated than the

vMF distribution and can model clusters of more flexible shapes. Nevertheless, it is

substantially more difficult to work with a high dimensional Kent distribution regarding

parameter estimation.
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Appendix A

Parameters Estimation

In this appendix, we provide the derivation details of maximum likelihood estimates for

parameters of the diagonal block mixture of von Mises-Fisher distributions (dbmovMFs).

A.1 Maximum Likelihood Estimate

The expectation of the complete data log-likelihood of dbmovMFs is given by

E[Lc(Θ|X ,Z)] = ∑
h,i

z̃ih logαh +∑
h,i

z̃ih log(cd(κh))+ ∑
h,i, j

z̃ihw jhκhµhhxi j

= ∑
h

z̃.h logαh +∑
h

z̃.h log(cd(κh))+ ∑
h,i, j

z̃ihw jhκhµhhxi j (A.1)

where z̃.h = ∑i z̃ih. We first maximize the expectation of the complete log-likelihood (A.1)

with respect to αh, subject to the constraint ∑h αh = 1. The corresponding Lagrangian, up to

terms which are not function of αh, is given by

L(α,λ ) = ∑
h

z̃.h logαh +λh(1−∑
h

αh) (A.2)

Taking derivatives with respect to αh, we obtain ∂L(α,λ )
∂αh

= z̃.h
αh
−λ . Setting this derivative to

zero leads to z̃.h = λαh. Summing both sides over all h yields λ = n, thereby the maximizing

value of the parameter αh is given by:

α̂h =
z̃.h

n
. (A.3)
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In the same manner, to maximize expectation (A.1) with respect to µw
h , subject to the

constraint (µw
h )

T µw
h = 1, we form the corresponding Lagrangian by isolating the terms

which depends on µw
h , this leads to

L(µ,λ ) = ∑
h,i, j

z̃ihw jhκhµhhxi j +λh(1−∑
j

w jhµ2
hh)

Taking the derivative with respect to µhh, we obtain:

∂L(µ,λ )

∂ µh

= ∑
i, j

z̃ihw jhκhxi j−2λw.hµhh

where w.h = ∑ j w jh. Setting this derivative to zero, we obtain λ µhh =
∑i, j z̃ihw jhκhxi j

2w.h
. Thus,

λ 2µ2
hh =

(∑i, j z̃ihw jhκhxi j)
2

4w2
.h

.

Multiplying both sides by w.h, yields:

λ 2w.hµ2
hh =

(∑i, j z̃ihw jhκhxi j)
2

4w.h
. (A.4)

Hence, we obtain λ = κh

√
w.h(∑i, j z̃ihw jhxi j)2

2w.h
= κh

∥rw
h ∥

2w.h
where rw

h is a d dimensional vector, i.e,

let j′ = 1, . . . ,d, rw
h j′ = rw

h = ∑i, j z̃ihw jhxi j if w jh = 1 and rw
h j′ = 0, otherwise. Hence, the

maximizing value of the parameter µhh is given by:

µ̂hh =
∑i, j z̃ihw jhxi j

∥rw
h ∥

=
∑i, j z̃ihw jhxi j

√

w.h(∑i, j z̃ihw jhxi j)2

= ± 1√
w.h

(A.5)

according to whether rw
h = ∑i, j z̃ihw jhxi j is positive or negative. It follows from equation

(A.5) that given the column partition w and the sign of rw
h , the centroid parameter µw

h can be

deduced directly.

Next we concentrate on maximizing equation (A.1), with respect to the concentration

parameters κh, subject to the constraint κh > 0, ∀h. The Lagrangian up to terms which do
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not contains κh is given by

L(κ) = ∑
h

z̃.h log(cd(κh))+ ∑
h,i, j

z̃ihw jhκhµ̂hhxi j

note that, by KKT conditions, the Lagrangian multiplier for the constraint κh > 0 has to be

equal to zero. Taking the partial derivative of equation (A.6) with respect to κh, we obtain

∂L(κ)

∂κh

= z̃.h
c′d(κh)

cd(κh)
+∑

i, j

z̃ihw jhµ̂hhxi j

Setting this derivative equal to zero, leads to:

c′d(κh)

cd(κh)
=−

µ̂hh×∑i, j z̃ihw jhxi j

z̃.h
.

Replacing µ̂hh by ∑i, j z̃ihw jhxi j

∥rw
h
∥ (see, equation A.5), we obtain

c′d(κh)

cd(κh)
=− ∥r

w
h ∥

z̃.hŵ.h
. Let s = d/2−1,

then:

c′d(κh) =
sκs−1

h (2π)s+1Is(κh)−κs
h(2π)s+1I′s(κh)

(2π)2s+2I2
s (κh)

=
sκs−1

h

(2π)s+1Is(κh)
− κs

hI′s(κh)

(2π)s+1I2
s (κh)

= cd(κh)

(
s

κh

− I′s(κh)

Is(κh)

)

. (A.6)

Hence, we obtain
−c′d(κh)

cd(κh)
=

Is+1(κh)

Is(κh)
=

Id/2(κh)

Id/2−1(κh)
. (A.7)

The latter equation (A.7), arises from the use of the following recurrence formula (Abramowitz

and Stegun (1964), page 376):

κhIs+1(κh) = κhI′s(κh)− sIs(κh). (A.8)

Note that computing the maximizing value κ̂h from equation (A.6) implies to inverse a ratio

of Bessel function, a problem for which no a closed-form solution can be obtained. Thus,

following (Banerjee et al., 2005b), we propose to derive an accurate approximation of the

concentration parameter, by using the following continued fraction formula:

Id/2(κh)

Id/2−1(κh)
=

1
d
κh
+ 1

d+2
κh

+...

. (A.9)
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Letting r̄w
h =

∥rw
h ∥

z̃.hŵ.h
=

Id/2(κh)

Id/2−1(κh)
and using equation (A.9), we obtain: 1

r̄w
h
≈ d

κh
+ r̄w

h which

yields the following approximation:

κ̂h =
dr̄w

h

1− (r̄w
h )

2 .

Finally, Banerjee et al. (2005b) have empirically shown that adding the following correction

term
−(r̄w

h )
3

1−(r̄w
h
)2 results in a better approximation of κ̂h, which leads to:

κ̂h =
dr̄w

h − (r̄w
h )

3

1− (r̄w
h )

2 . (A.10)

A.2 Concentration parameters: dbmovMFs vs movMFs

Hereafter, we provide the proofs for Proposition 1 and Theorem 1. Recall that as opposed to

the classical movMFs where it is easy to verify that r̄h ≤ 1 (see equation 6c) given the defini-

tion of r, it is not straightforward to verify that r̄w
h ≤ 1, without careful analysis. Proposition

1 provides theoretical guarantee about the fact that 0≤ r̄w
h ≤ 1, which is imperative, to guar-

antee that the concentration parameters are positive, i.e, κh > 0 , ∀h, specially when using

the approximation of equation (A.10). The following Proposition is useful and necessary to

prove both Proposition 1 and Theorem 1.

Proposition 3 Let r be a non-zero vector in R
d (i.e., r = (r1, . . . ,rd)

T , such as d ≥ 1). Let

rd be a vector in R
d , such as all its component are equal to the sum of elements of r (i.e,

rd = ∑
d
j=1 r j✶ where ✶ denotes the constant one vector). Then

∥rd∥
d
≤ ∥r∥ with equality

only if all components of r are equal (i.e, r1 = · · ·= rd).

Proof. Let d and r+ be two vectors in R
d defined as follows: d = 1√

d
✶ and r+ with

r+j = |r j|, ∀ j ∈ {1, . . . ,d}. We have

∥rd∥
d

=

√
d×

∣
∣∑ j r j

∣
∣

d
≤ 1√

d
×∑

j

∣
∣r j

∣
∣ = dT .r+ = ∥d∥∥r+∥cos(d,r+).

By definition of r+ and d, we have ∥r+∥= ∥r∥ and ∥d∥= 1, hence ∥r
d∥

d
≤ ∥r∥cos(d,r+).

Since both d and r+ are non-zero vectors and lie on the first orthant of a d-dimensional unit

hypersphere, by dividing both sides of the above inequality by ∥r∥, we get

0 ≤ ∥r
d∥

d∥r∥ ≤ cos(d,r+) ≤ 1
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The right hand side equality holds only if d and r+ are collinear, thereby all components of r

are equal (i.e,r1 = · · ·= rd). Hereafter we provide the proof of Proposition 1.

Proposition 1 Let r be a non-zero vector in R
d (i.e., r = (r1, . . . ,rd)

T , such as d ≥ 1) which

results from a weighted sum of n d-dimensional unit vector, i.e, r = ∑i pixi, xi ∈ R
d and

∥xi∥ = 1 , ∀i ∈ {1, . . . ,n} , n ≥ 2, the weights pi ≥ 0, ∀i. Let rd be a vector in R
d , such

as all its components are equal to the sum of elements of r (i.e, rd = ∑
d
j=1 r j✶). Then

∥rd∥ ≤ d×∑i pi with equality only if all unit vectors xi are equal/collinear.

Proof. Based on Proposition 3 and the following inequality: ∥r∥= ∥p1x1 + · · ·+ pnxn∥ ≤
∥p1x1∥+ · · ·+∥pnxn∥= ∑i pi, it is straightforward to verify that

0 ≤ ∥rd∥ ≤ d×∑
i

pi

In the following, we prove Theorem 1, which states that for a given row clustering z,

dbmovMFs-based algorithms lead to a concentration parameter that is less or equal to that

of movMFs-based algorithms, for each cluster, and whatever the column partition w. The

following Lemma will be useful in the proof of Theorem 1.

Lemma 1 Let a and b be two real numbers in the interval [0,1] (i.e, 0≤ a≤ 1 and 0≤ b≤ 1).

Then for all natural number n≥ 2

|an−bn| ≤ n |a−b|

with equality only if a = b.

Proof. For all natural number n ≥ 2, we can use the following well known remarkable

identity:

an−bn = (a−b)
n−1

∑
k=0

an−1−kbk

since both a and b are positive, we have

|an−bn| = |a−b|
n−1

∑
k=0

an−1−kbk
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as both a and b are in [0,1], we have

an−1−0b0 ≤ 1

an−1−1b1 ≤ 1
...

an−1−(n−1)bn−1 ≤ 1

Taking the sum of the above n inequalities we obtain,

n−1

∑
k=0

an−1−kbk ≤ n

Thereby,

|an−bn| = |a−b|
n−1

∑
k=0

an−1−kbk ≤ n |a−b|

Theorem 1 Let X be a n× d matrix, its ith row (object) xi is a d-dimensional unit vec-

tor in S
d−1 (i.e, xi ∈ R

d and ∥xi∥= 1 , ∀i ∈ {1, . . . ,n} , n≥ 2, d ≥ 3). Let z = (z1, . . . ,zn)

denote a partition of the set of objects of X into g disjoint clusters. Then, whatever the parti-

tion w of attributes of X into g disjoints clusters, the concentration parameter of each dbvMF

component estimated via approximation (5.6d) is always less or equal to the concentration

parameter of the corresponding vMF component estimated via approximation (3.13c). That

is,

κ̂w
h ≈

r̄w
h d−

(
r̄w

h

)3

1−
(
r̄w

h

)2 ≤ κ̂h ≈
r̄hd− (r̄h)

3

1− (r̄h)
2

with equality only if r̄w
h = r̄h.

Proof. We first prove that
r̄w

h d

1−
(
r̄w

h

)2 ≤
r̄hd

1− (r̄h)
2

which corresponds to the approximation of the concentration parameters under dbmovMFs

and movMFs without the correction term. Since both r̄w
h and r̄h are in ]0,1[, it is straightfor-

ward to verify that if r̄w
h ≤ r̄h then the above inequality is always verified. Thus, in what

follows we aim to demonsrate that r̄w
h ≤ r̄h. By definition, we have

r̄h =
∥rh∥
∑i z̃ih

where rh = ∑
i

z̃ihxi
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Now, let’s define r̄′h as follows

r̄′h =
∥r′h∥
∑i z̃ih

where r′h j =







rh j, if w jh = 1

0, otherwise.

r′h is a w.h dimensional sub vector of rh, it follows from the above definition that

r̄′h ≤ r̄h. On the other hand,

r̄w
h =

∥rw
h ∥

∑i z̃ih∑ j ŵ jh

where rw
h denotes a w.h dimensional vector, each its elements are equal to sum of elements

of the hth co-cluster (i.e, rw
h1 = · · ·= rw

hw.h
= rw

h = ∑i, j z̃ihŵ jhxi j), similarly we can show that

each elements of rw
h are equal to sum of elements of r′h (i.e, rw

h = ∑ j r′h j). Hence using

Proposition 3, where the dimensionality d = w.h, we have

∥rw
h ∥

∑ j ŵ jh

≤ ∥r′h∥

thus,

r̄w
h =

∥rw
h ∥

∑i z̃ih∑ j ŵ jh

≤ r̄′h =
∥r′h∥
∑i z̃ih

≤ r̄h

Thereby,
r̄w

h d

1−
(
r̄w

h

)2 ≤
r̄hd

1− (r̄h)
2 .

We now show that,
r̄w

h d− (r̄w
h )

3

1−
(
r̄w

h

)2 ≤ r̄hd− r̄3
h

1− (r̄h)
2 .

As r̄w
h ≤ r̄h we have

r̄w
h d−(r̄w

h )
3

1−(r̄w
h )

2 ≤
r̄w

h d−(r̄w
h )

3

1−(r̄h)
2 , then it is sufficient to demonstrate that,

r̄w
h d− (r̄w

h )
3

1− (r̄h)
2 ≤ r̄hd− r̄3

h

1− (r̄h)
2 .

We have
r̄w

h d− (r̄w
h )

3

1− (r̄h)
2 −

r̄hd− r̄3
h

1− (r̄h)
2 =

d(r̄w
h − r̄h)+(r̄3

h− (r̄w
h )

3)

1− (r̄h)
2 .
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Based on Lemma 1, for all d ≥ 3 we have
∣
∣r̄3

h− (r̄w
h )

3
∣
∣ ≤ d

∣
∣r̄w

h − r̄h

∣
∣ . As r̄w

h ≤ r̄h it is easy

to verify that

d(r̄w
h − r̄h)+(r̄3

h− (r̄w
h )

3) ≤ 0.

Based on the fact that 1− (r̄h)
2 > 0 we have

r̄w
h d−(r̄w

h )
3

1−(r̄h)
2 ≤ r̄hd−r̄3

h

1−(r̄h)
2 . Hence, using the above

inequalities we get (for all d ≥ 3)

r̄w
h d− (r̄w

h )
3

1−
(
r̄w

h

)2 ≤ r̄hd− r̄3
h

1− (r̄h)
2 .

A.3 Computational Complexity in the Worst Case

Hereafter, we provide the proofs for the computational complexity of (ii) soft-dbmovMF

(EMb) and (iii) hard-dbmovMF (CEMb) given in Proposition 2 (section 5.6).

Proof (ii). The computational bottleneck for hard-dbmovMF is with row, column assign-

ments and concentration parameters updates. From Proposition 2 (i), the total cost of row

and column assignments is O(it ·nz). We show that the computational cost for updating con-

centration parameters is O(it ·nz). The main computation for updating the hth concentration

parameter is with the computation of rw
h . The computational cost of the latter term is given in

O(x∗h), where x∗h the number of non-zeros entries in the hth co-cluster. Thus, the complexity

for updating all concentrations parameters is O(nz), based on O(x∗1 + · · ·+ x∗g) and the fact

that at most all non-zeros entries in the matrix X are contained in the g diagonal co-clusters.

Hence, the cost for updating the concentration parameters in hard-dbmovMF is O(it ·nz),

thereby the total cost of hard-dbmovMF is O(it ·nz).

Proof (iii). As for hard-dbmovMF it is easy to verify that the total cost of row assignments

and concentration parameters updates is given in O(it · nz) for soft-dbmovMF. Now we

prove that in contrast to hard-dbmovMF the computational cost of column assignments for

soft-dbmovMF is O(it ·g ·nz). The computational bottleneck for column assignment step of

soft-dbmovMF is with the terms vh j← ∑i z̃ihxi j, h ∈ {1, . . . ,g}, j ∈ {1, . . . ,d}. The cost of

vh j is given in O(x∗j), where x∗j is the number of non-zeros entries in the jth column. During

the column assignment step for each cluster h and column j we compute vh j, hence the

computational cost of this step is given in O(g ·nz). Therefore, the total computational cost

of soft-dbmovMF is O(it ·g ·nz), based on O(it ·nz · (g+1)).
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