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Extended abstract

In computer science, it may be important to analyze a program behavior, for

integration, for testing, and nowadays often for security purposes (detection

of vulnerabilities in legitimate programs, detection of malicious programs, etc.).

Analyzing programs is (often) easier to do from source code than at binary level,

as more information is directly available to the analyst, but sometimes the only

thing we have is a binary file. This can be the case with commercial products as

well as with malwares for instance. In addition, binary files include another kind

of information not embedded at source-level (e.g., concrete addresses, compilator

choices, etc.). Finally, in some contexts, one favors the binary level as it embeds

the code that is actually executed by the machine. Because of the What You

See Is Not What You eXecute phenomenon, it can be different from what was

expressed at source code (in particular if the compiler performs optimizations).

For these three reasons, methods have been developed to work from a binary file

without relying on source code.

This work introduces a new dynamic approach to analyze binary programs. We

propose analyses in a reverse-engineering context with motivations related to secu-

rity: finding vulnerabilities in programs, understanding their memory management

and use, etc. We focus on retrieving high-level information of two kinds: structural

information and behavioral information at the grain of functions. For structural

information, we target function prototypes including arity and type of parameters.

For behavioral information, we analyze data-flows of parameters between functions,

and especially relatively to addresses. The main novelty of our approach is to

propose analyses in a single execution, lightly instrumented, and based on heuristics.

Our approach is designed according to three main criteria. First, it relies on weak

assumptions: it neither relies on the source code nor on the symbol table of the

program, thus it can be applied to closed-source stripped binaries. Furthermore, it

5



6

is not specific to a given type of machine code. We call this criterion universality.

Second, we propose a lightweight approach to be scalable: our approach can be

applied to common programs such as PDF viewers and text editors with a limited

overhead. Third, we aim to propose an accurate approach, and, when possible,

favor soundness over completeness: heuristics we make can lead to errors, but they

aim to avoid false positives.

Our first contribution is to propose an approach in order to retrieve structural

information from binaries, and in particular function prototypes as they may exist at

source-level. Because we do not assume that the binary under analysis was produced

by compilation, it requires to define the notions of function, call and return, input

and output parameter at assembly level. We propose such definitions in this work

that are, in addition, consistent with the corresponding notion at source-level in the

case of compiled programs, but that include other binaries (for instance, binaries

from hand-written assembly code and even binaries with no static representation).

The second contribution of our work is to provide methods to retrieve behavioral

information related to memory. We introduce a new notion we name coupling, which

emphasizes the interactions between functions. More precisely, coupling describes

address data-flows between two functions. From one execution, we retrieve couples

of functions according to a coupling rate. We also address the problem of retrieving

allocators from a binary, especially when it embeds a custom allocator instead of

using a standard one (e.g., malloc and free from libc). We propose a general

definition of resource allocators (e.g. time allocators, multi-process schedulers,

etc.), and a heuristic-based approach to retrieve memory allocators in binaries.

Finally, we propose an open-source implementation of our approach, named scat,

available on GitHub (see https://github.com/Frky/scat). Scat implements

each analysis mentioned in this work, plus additional features for test purposes:

each of the experimental results we present in this work can be replayed using scat

(our benchmarks are provided, as well as the commands used to obtain the results

and the charts).

Our experimental results show that our approach is accurate: in average, the

arity detection presents a success rate of 93%, the type detection (although we

retrieve a restricted subset of types) has a success rate of 96% on parameters and

91% on return values, and we do retrieve allocators in programs using the standard

libc allocator as well as in several programs embedding their own allocators. Last,

it is scalable, as we can perform analyses on common programs within a few

seconds in most cases.

https://github.com/Frky/scat
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The thesis is divided in three parts. In a first part, we present the context of

reverse-engineering we work in. In Chapter 1, we introduce the reverse-engineering

in general. In Chapter 2, we focus on reversing binaries: its specificities, the kind of

information to be retrieved and some existing works in this field. Chapter 3 presents

two major approaches to analyze binaries: static and dynamic analysis. Chapter 4

states the problem we address. In a second part, we present our approach. In

Chapter 5, we define the elements we target (functions, parameters, coupling,

allocators). Chapter 6 presents our analysis relative to structural inference (i.e., to

recover arity and types of functions). In Chapter 7, we propose analyses relative

to address data flow (i.e., coupling and allocator retrieving). Each of these four

analyses is based on one execution, and is a two-steps analysis: an online step

during which we perform an instrumented execution to collect data, and an offline

step to retrieve the targeted information from the collected data. For each analysis,

we detail, in particular, the heuristics we use and the dedicated algorithms. In

a third part, we present an implementation of our approach, including technical

details about how we perform instrumentation and what actual data we collect.

This implementation is presented in Chapter 8. In addition, we propose in Chapter 9

detailed experiments, including a description of our benchmark, and numerical as

well as graphical results, to evaluate the accuracy, the accuracy and the scalability

of our approach, plus the influence of some parameters and the variability of the

results depending on the input of the program under analysis.
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Chapter 1

Introduction

In 260 B.C., the Roman Empire was at war with Carthage. Whereas Rome was

notably stronger than Carthage on land, they were completely dominated over

the sea, as they had no idea how to construct robust galleys. One day, though,

they managed to capture one of their opponents boat (see Figure 1.1a), during

an apparently insignificant battle in Messina. What this battle changed, is that it

gave Rome a model to learn how to construct competitive galleys. They studied

the way the Carthage’s was constructed, and from it they designed a new version,

keeping the strong points of the model and improving the weak points. They also

added innovation, such as the famous corvus (Figure 1.1b). Within a few weeks,

Rome constructed a fleet of such quality that they defeated several times the sea

force of Carthage, in particular during the battle of Mylae [Pol70].

(a) Carthage’s famous cataphracte

(b) Rome’s quadrireme with corvus, largely

inspired from the cataphracte

Figure 1.1: The oldest known example of reverse-engineering in history

17
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This is one old example of reverse-engineering that one can find in the literature.

1.1 Instantiation process and reverse-engineering

Reverse-engineering things, as it is illustrated by Polybius’ story, consists in inverting

what we call the instantiation process. The instantiation process is to go, for

example, from a technical plan or a recipe to a product, a yellow submarine or a great

gratin dauphinois. In other words, it is a concretization of a construction process.

The product of this instantiation process can either be physical or immaterial: the

production of music from a score is also an example of instantiation. This process

can be seen as a conversion from ideas and/or information into products, adding

some construction information. From an abstract point of view, there is a loss of

general information doing this, as we specify it into concrete instances; but on the

other hand this concretization leads to the addition of contextual information and

construction-relative information that are not described in the instantiation process.

For instance, from a blueprint to a building, there is a significant loss of information

needed to reproduce the process: the construction of another similar building

would be easier from the blueprint than from the final product. However, other

information has been added, and in particular methods and process to construct the

building from the blueprint. Figure 1.2 illustrates this: the more specific the product

goes, the less information it contains in itself, but the more construction-relative

information have been added.

Figure 1.2: The process of instantiation leads to a loss of general information, but

adds contextual information



1.2. MOTIVATIONS 19

The principle of the reverse-engineering is to retrieve, from the product, part

of the information that has been lost during the instantiation process, i.e., a part

of the black circle in Figure 1.2 at an earlier stage (often specifications). It is a

difficult task, in general, for two main reasons. First, the instantiation process is

not reversible: multiple choices can lead to a similar product. Second, this process

as well as the construction process can be obfuscated to make the task deliberately

harder. Sometimes, however, the instantiation process corresponding to a product

one tries to revert is imaginary or has never existed. For instance, in art, the final

products (writings, paintings) are hard to express as a product of an instantiation

process, and even with good will, authors and painters would probably not be able

to describe a method detailed enough to produce new products of similar quality.

1.2 Motivations

1.2.1 Use cases

In the majority of cases, reverse-engineering is needed when the earlier steps of

the instantiation process are not available. This can be due to several reasons

that we detail in the next section. Indeed, the advantages of reversing when the

instantiation process is fully known and when one can access any step of it is

limited. As we defined reverse-engineering, it is trying to get back information

lost during the instantiation process. If all the information needed through the

chain of this process is accessible, then reversing it has a doubtful benefit. To

summarize, reverse-engineering makes sense when the only thing which is available

is the product. The next question we address is in what kind of situation is there

a lack of information relative to this instantiation process? We distinguish three

scenarios.

1.2.1.1 Information is not available anymore.

Plans of a product instantiates ages ago have been lost ; the designer/engineer/cre-

ator has left or is dead : etc. In these cases, reversing has, as a goal, to retrieve

information that has been definitively lost.
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1.2.1.2 Information is not available.

One is not qualified to have access to it: a consumer, a concurrent corporation,

etc. Here, information exists but is not available to the one studying the product.

The goal, in this case, is to retrieve information one is not allowed to access by

another way.

1.2.1.3 Information has never existed.

The example of the author writing poetry, mentioned earlier, is one of the cases

when, by reversing, one is trying to retrieve information that may have never

existed as it. Another, more practical, example would be to reverse-engineer a

product to understand an unpredicted, an unwanted or an unpurposed behavior

and its causes.

These three cases show that situations when doing reverse-engineering makes

sense exist and even are common in many fields.

1.2.2 Goals

The main motivation, that can be declined into several sub-motivations, is to

understand how the product works and/or behaves internally. This corresponds

to gain technical specifications from an instance of one product. Sub-motivations

are multiple, we try here to present the most usual ones ; though, this list is not

exhaustive.

• Find out/retrieve functionalities: from a product for which no documen-

tation is available, find how to use it and what it is capable of.

• Duplicate/reproduce: be able to produce another instance of a given prod-

uct that one have.

• Modification: be able to add internal modifications that require a (deep)

knowledge of the inside of the product. It can also be to add missing

functionalities.

• Maintenance: typically repair a dysfunction, a deprecation or a bug.

• Integration: be able to interface the product with another system.
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• Testing for safety: what kind of entries are acceptable by the system, and

what are its specifications. In other words, what is the correct domain for

testing the product.

• Testing for security: also testing, but with a different motivation. The

aim here is to study the product from an attacker point of view, and try to

compromise it. In this case, reversing is particularly interesting, as it is very

close to what a real attacker would do: without information, one does not

know a priori anything more than an attacker.

1.3 Reverse-engineering computer programs

In computer science, reverse-engineering techniques have been studied in mul-

tiple contexts: retrieving protocols from observable exchanges (see [CBP+11],

[HGR11]), inferring grammars from queries to an automaton (see [Moo56], [Ang87],

[HSJC12]), etc. The context we focus on, in this work, is reverse-engineering

computer programs. We present here the specificities of this process when the

products are computer programs.

1.3.1 Motivations in computer science

There are two major motivations for reverse-engineering in the context of computer

programs: reverse-engineering for maintenance and reverse-engineering for security.

1.3.1.1 Maintenance

For maintenance, there are two main reasons to reverse a program. These

motivations have already been presented in Section 1.2, but they are even more

important in computer sciences.

• integration: in particular, component reuse in another context is difficult if

there is no documentation specific to this component: one needs to retrieve

format of the inputs, specifications and format of the outputs for instance.

This is addressed in [Sha08] and [KSZ+14] for example.

• testing: testing a component or a program can be done in black box (see

[Gut] and [HGOR13] for instance), but one can use more knowledge on the

design of the system under test to produce more efficient tests.
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1.3.1.2 Security

From a security point of view, we consider the three main applications to reverse-

engineering:

• consistency: check anomalies between what we could infer a program should

do and what it actually does. For instance, finding that an offline text editor

opens a socket and sends files to an IP address located in Russia could be a

consistency warning.

• vulnerability: analyzing a program can be useful to find vulnerabilities, i.e.,

bugs that could be exploited to produce a behavior that jeopardize the security

of the system. For instance, if the length of a user input is not checked in

a program compiled from C, it could allow an attacker to execute arbitrary

code. For instance, [RM12] and [CGMN12] present analyses of binary codes

to detect respectively buffer overflow and use-after-free vulnerabilities.

• malware analysis: a reverse-engineering analysis can be performed to decide

if a given program is legitimate or is a malware; and in the later case to

find countermeasures in order to prevent the execution/propagation of the

malicious code (see [BMKK06], [AT15] and [CJS+05] for example).

1.3.2 Instantiation process overview

Figure 1.3: Instantiation process of a computer program - main steps

Figure 1.3 presents an overview of the instantiation process in the case of

computer programs. This is the instantiation process we target in this work.
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1.3.3 Reversing the instantiation process

Reversing a program, in general, aims to recover specifications or behavioral

information. We distinguish two possible starting points for analysis, leading to

two different points of view. The distinction depends on what one considers as

the product he is trying to reverse. In the instantiation process of a program,

there are two main steps: implementation of specifications and compilation of the

implementation. Thus, either one can consider the source code as the product of

the implementation process, or the binary program as the product of the complete

chain. These two approaches are very different. Usually, we consider that the

amount of information available from the source code is greater than from the

binary, which makes sense as it comes earlier in the instantiation process (which

leads to a loss of information). Indeed, from the source code, one can recompile

the program (and thus rebuild a binary). However, the compilation process may

include arbitrary decisions made by compilers, due to some unspecified behaviors

according to the specifications of the programming language. This is particularly

true in C (see [BR10]). Consequently, the same source code, compiled twice with

two different compilers, even with the same compilation flags and for the same

target architecture, may behave differently at runtime. This point illustrates the

fact that these two approaches are to distinguish. The product under analysis is

different, and one (the source code) should not be seen as an overlap of the other

(the binary) in terms of information. In some cases, a binary will be preferred over

source code for analysis. This is the case, for instance, in domains where the safety

of the final product cannot be doubted (civil aviation, etc.). It is essential to test

the binary program produced by the compiler, as well as the source code and the

compiler itself. However, in general, if both source code and binary program are

available, one will rather work with source code. This is because, despite the What

You See Is Not What You eXecute [BR10] phenomenon mentioned earlier, source

code contains much more human-readable information than its compiled version,

even if some context information (such as concrete addresses, offsets, etc.) are

only available at binary level. This means that the main difference between the two

approaches is the amount of information available for the analyst, but neither the

aims nor the motivations differ significantly. This point being detailed, we present

in the next two sections some works relatively to reverse-engineering over source

code and binaries.



24 CHAPTER 1. INTRODUCTION

A few words about obfuscation In addition to the complexity of reverse-

engineering due to the lack of information about the construction process, some-

times effort is made by the creators of a given product to make the task even

harder. It is called obfuscation and can be performed either at source level or at

binary level. The principle is to deliberately hide relevant information, either with

noise (e.g., opaque predicates - see [XMW16]) or with additional complexity (e.g.,

packers - see [GMS+15]). Several works address this issue and propose techniques

to defeat obfuscation (see [EGV16] and [BRTV16] for instance). However, we do

not focus, in this work, on obfuscation and deobfuscation, and most of the time

we assume that no active effort was made to make the reverse-engineering process

particularity harder.

1.3.3.1 From source code or specifications

From source code, one doing reverse-engineering typically targets to reconstruct

a design-level abstraction for several applications. For instance, in [RILR14], the

authors present a method to analyze the design of an application with some

security meta-data, and prove that the system design is compliant with some

security specifications. In particular, they aim to show that it is impossible by

design (but this does not mean that an implementation vulnerability cannot occur)

to reach a given state without authentication. This work and many others (for

instance, [NYH+15]) apply to a design-level representation. That is why [KSRP99],

[SO06] and more recently [WPV17] propose methods to reconstruct higher-level

information from source code. Another common reason to perform source-code

reversing is to test, component by component.

1.3.3.2 From binary

To perform a reverse-engineering analysis of a binary, there are two main approaches,

described in the following paragraphs: a linear approach, where one tries to revert

the instantiation process step by step, and a direct approach where one tries to get

relevant information directly (with no intermediate step). The difference between

the two, in the context of binaries, is that the first requires to revert the compilation

process: it is called decompilation.

Decompilation Decompilation consists in retrieving, from the binary under anal-

ysis, a source code from a higher-level language that corresponds to the program,
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and then perform the analysis on the result as if it was the original source code.

This process is called decompilation. The first step of decompilation is usually to

translate the binary to assembly code (e.g., x86-64 or ST20). This is called to dis-

assemble. In general, it is commonly accepted that this step is easy. Indeed, going

from assembly to binary is almost a literal translation in most cases. Therefore the

process can be reversed with a good accuracy. This step is discussed more precisely

in Section 2.3. Several open-source tools are able to disassemble almost any binary

(objdump [Fouc], miasm [Des], etc.). In some particular cases, however, it can be

a difficult problem. In the scope of this work, we consider that this step is possible

(and this is true for any legitimate binary produced by a compiler). Then, from

the assembly code, comes the decompilation step: try to retrieve a source-level

code (for instance in C) which would lead to a similar assembly code if re-compiled.

This step is much harder than to disassemble, as the loss of information during the

instantiation process at this step is considerable. Some work has been conducted

in this area ([CG95], [PW97]) but the source code produced is often unnatural,

hard to understand and over-complicated. Thus it is of little help, and in facts

it is often less readable than the assembly code. Within the last ten years, very

few papers have been written on decompilation (for instance, [DG11] is about

decompilation of Android applications ), which let one suppose that this is not the

dominant approach nowadays.

Direct approach The direct approach consists in reversing the two steps of the

instantiation at once (compilation and implementation), and do not consider the

source code as a step in the reversing process. The aim is to retrieve behavioral

and/or specification-level information directly from the binary. When doing a

semantic analysis from the binary directly, we can once again distinguish two types

of analyses:

• a static analysis, which consists usually in disassembling and then analyzing

the semantics of the assembly language (see Section 3.1),

• a dynamic analysis, which consists in executing the binary program, either

with or without some instrumentation, and observe its responses. Responses

can be outputs as well as any kind of observable data (time of execution,

memory use, register values, etc.). See Section 3.2.

In most cases, analyzing a binary program is a mix of these two approaches: to

disassemble to get assembly code is a very frequent step in both static and dynamic
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analyses. In this work, we perform dynamic analysis, but our instrumentation

requires a step of disassembling as well. In the next chapter, we present more

specifically the different techniques for semantic analysis of programs at binary

level (with no source code).



Chapter 2

Reverse-engineering binaries

In this chapter, we focus on binary analysis, with the aim to retrieve high-level

information. We describe in Section 2.1 the specificities of working on binaries

rather than at source-level, and Section 2.2 gives an overview of the existing

analyses on binaries. Examples we provide in each section of this chapter are given

in x86(-64). In addition, note that in this section and in the rest of this work, we

use equally the 32bit or the 64bit notation of registers (e.g., we use %eax as well

as %rax).

2.1 Specificities of working on binaries

Working at assembly/binary level presents some particularities that make the

analysis (very) different from what we can do at source level. Other problems

appear, and difficulties inherent to the lack of high-level information require specific

attention. These particularities are well described in [BR10]. The main ones are:

• no notion of type - Hardware-stored values are not typed, they only consist

in a sequence of bits, whereas variables in high-level languages are usually

typed, which allows to perform type-checking and other consistency analyses.

Types also provide information about the way data may be handled.

• registers - A part of the computation at assembly level is handled in registers,

which makes the data flow analysis more complicated to handle than it is at

source level with decorators (variable names).

27
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• indirect addressing and indirect branching - This mechanism consists in

using a dynamic value (e.g., the content of a register) as an address value

to perform either a branching or a memory access. It makes the control flow

and the data flow hard to analyze, because of the dynamic computation of

addresses. For instance, %ebp + 4 could target the same memory location

as esp, whereas it is not explicit at binary level.

2.2 Learning from a binary

In this section, we present an overview of what information that can be seen as

to be retrieved from binaries, and why they could be interesting. We distinguish

three categories of information targeted by binary analyses:

• structure: information relative to the design of a program. Most of the

time, works suppose the binary is produced by a compilation process, and try

to recover source-level information lost during this process.

• control-flow: information relative to the execution of the program. Influence

of inputs, sequences of execution, etc.

• data-flow: information relative to data propagation.

The next section will present common techniques used to perform these analy-

ses. We can distinguish four levels of analysis of a program: black-box, binary,

assembly and source. In some cases, working on a binary itself is legitimate,

but generally, the first step of binary analysis is to disassemble it. The following

subsection presents the aims, approaches and difficulties relative to disassembling

a binary. We consider then that binaries can be disassembled correctly, and we

use equally both binary (to execute code) and assembly (to instrument, etc.)

representations, assuming they are equivalent.

2.3 From binary to assembly

Almost any static analysis and many dynamic instrumentation techniques on a

binary start by disassembling it.
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2.3.1 Disassembling

We denote here, by disassembling, the process consisting in going from a sequence

of bytes (i.e., the part of the binary program which is executable) to assembly-

level instructions. In some other contexts, disassembling a binary could mean

more than that (for instance, it could include basic blocks reconstruction - see

relative section below), but we exclude this from the scope of our work.

2.3.2 Issues

One of main issues when disassembling instructions from a binary is to differentiate

code from data. Indeed, given a sequence of bytes corresponding to instructions,

it is straight-forward to recover the corresponding assembly code. For instance,

0x06 corresponds to the instruction PUSH in x86. However, knowing what bytes

are to be disassembled and what bytes correspond to data is a difficult task. With

x86 assembly, another difficulty is to be handled: instructions have a variable size.

Some instructions are of one-byte length, and others can be of up-to fifteen bytes.

In other assembly languages, for instance MIPS or ARM, instructions have a fixed

size. This means that the result of decoding strongly depends on the offset it starts.

In ARM, instructions are four-bytes long. Given a sequence of bytes, there are only

four possible ways to decode it, depending on the offset modulus 4 at which one

starts to disassemble. Because of variable-size instructions, this assumption is not

true in x86: there are much more ways to decode a sequence of bytes, depending

on the starting offset.

2.3.3 Approaches

We present here the two main categories of approaches to disassemble a binary

program. These approaches have been improved by several works ; however

limitations we detail here still stand.

2.3.3.1 Linear sweep

The most simple strategy to disassemble a program is to start from the beginning

of the code section (often given in the section header table, see Listing 2.1 for

example), and assuming that this section only contains code. Disassembling is

performed sequentially, byte by byte.



30 CHAPTER 2. REVERSE-ENGINEERING BINARIES

• First, the opcode is read (it codes the instruction to be executed) – note

that in some cases, the opcode can by encoded with more than one byte (in

this case, the first byte is always 0x0F in x86 for instance).

• Depending on the opcode, zero, one or several bytes are read, corresponding

to the operands of the instruction being decoded. For instance, the instruction

encoded by 0xFF takes one operand of one byte.

• This is performed until some opcode decoding fails or the end of the code

section is reached.

Section Headers:
[Nr] Name Type Address O f f s e t

S i z e EntSize Flags Link Info Align
[ 0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0
[ 1] .interp PROGBITS 0000000000400200 00000200

000000000000001c 0000000000000000 A 0 0 1

[...]

[13] .text PROGBITS 00000000004003 c0 000003 c0
00000000000001 a2 0000000000000000 AX 0 0 16

[...]

[29] .strtab STRTAB 0000000000000000 00001780
0000000000000226 0000000000000000 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S ( s t r i n g s), l (large)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

Listing 2.1: Example of a ELF section header table - obtained using the command-

line tool readelf

This algorithm (or an improved form of it) is used by famous open-source tools

(objdump [Fouc], WinDBG [Cor]). However, when there are bytes of data in the

middle of some code, this technique is often unable to output correct assembly

code. Consider the example, inspired from [Luk], given in Listing 2.2.
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i n t main( v o i d ) –
asm (
”A:“n”

”movq $A , % r a x “n”
”addq $15 , % r a x “n”
” jmpq *% r a x “n”

);
asm v o l a t i l e (”.byte 0xab”);
asm v o l a t i l e (”.byte 0xcd”);
asm (

”movl $17 , %eax“n”
);
r e t u r n ;

˝

Listing 2.2: Example of source code that defects a linear sweep strategy for

disassembling

This C code use the asm keyword to include x86 instructions, and asm volatile

to include data bytes. In this code, we intentionally include some data bytes in

the middle of assembly code. The first three lines of assembly aim to jump to the

instruction movl $17, %eax. During the execution, the data bytes are thus not

executed. However, a linear sweep disassembling will output an inconsistent, for

the following reasons:

• the data bytes 0xAB and 0xCD will be considered as code and will be disas-

sembled ;

• instruction 0xAB (stos %eax,%es:(%rdi)) has no operand, and 0xCD has

one operand of one byte. This means that the next byte, corresponding

to the instruction movl, will be considered as an operand of 0xCD. From

there, all disassembled instructions that follow are incorrect, because data to

disassemble is no longer aligned with opcodes.

Listing 2.3 presents the result of disassembling for this program, obtained with

objdump -d.
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00000000004004 ad ¡main ¿:
4004ad: 55 push % rbp
4004ae: 48 89 e5 mov % r s p ,% rbp

00000000004004 b1 ¡A¿:
4004b1: 48 c7 c0 b1 04 40 00 mov $0x4004b1 ,% r a x
4004b8: 48 83 c0 0f add $0xf ,% r a x
4004bc: ff e0 jmpq *% r a x
4004be: ab s t o s %eax ,% es :(% r d i )
4004bf: cd b8 i n t $0xb8
4004c1: 11 00 adc %eax ,(% r a x )
4004c3: 00 00 add % a l ,(% r a x )
4004c5: 90 nop
4004c6: 5d pop % rbp
4004c7: c3 r e t q
4004c8: 0f 1f 84 00 00 00 00 n o p l 0x0(% r a x ,% r a x ,1)
4004cf: 00

Listing 2.3: Result of disassembling obtained with a linear sweep algorithm on the

code presented in Listing 2.2

Although this example was manually constructed to illustrate the issue of

disassembling, it does happen in practice with common programs (see [MM16]).

2.3.3.2 Recursive traversal

A second approach, implemented in particular by IDA Pro [HR] and OllyDBG [Yus],

consists in following statically, and as exhaustively as possible, the control flow,

to disassemble every reachable code, and to avoid disassembling data bytes. The

principle, taken from [SDA02], is given in Algorithm 1. The example given in

Listing 2.2 is correctly disassembled by this method, with the assumption that

a disassembler is able to evaluate statically the target of the JMPQ instruction.

However, with more complicated indirect JMP or CALL, it becomes difficult to

follow the control flow with a static approach (for instance when functions are

called through a pointer dynamically computed), and this method is not able

to disassemble blocks of instructions no JMP (or equivalent) instruction targets

explicitly. .

2.3.4 Assumption

Despite the limitations of the two classical approaches for disassembling (linear

sweep and recursive traversal), in most cases, disassembling will give accurate
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Procedure RecDisassemble(addr, instrList)
Input: addr : address of the instruction to disassemble, instrList: a list

of instructions already disassembled

begin

if addr has already been visited then
return

end

repeat

instr ← DecodeInstr(addr);

addr.visited ← true;

instrList ← instrList
⋃
{instr};

if instr is a branch or a function call then

T ← set of possible control flow successors of instr;

foreach target in T do

RecDisassemble(target, instrList);

end

else

addr ← addr + instr.length;

end

until addr is not a valid instruction address;

end
Algorithm 1: Recursive Traversal Disassembling Algorithm
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results (i.e., assembly code close to the original one). In the scope of this work,

we do not consider problems due to disassembling, and consider that working on a

binary and working on its assembly code is equivalent. In other terms, we consider

that the assembly step is reversible.

2.4 Structure information

Although we mentioned in Section 1.3.3.2 that decompilation is not the way usually

chosen, because of its hardness and the quality of the source code produced, one

can still want to retrieve some kind of information available at source level but

that has been lost during compilation. Note that in this scenario, the aim is not

to reproduce a complete source code from which it would be possible to apply

source level analysis techniques ; instead we target global information for general

knowledge. What we call structure in this section, is between syntactical-level

and semantic-level. It is not syntactical, because we do not aim to retrieve, for

instance, function prototype the exact way they were expressed at source-level. On

the other hand, it is not either strictly semantic, because we do consider sizes and

types of variables for instance.

2.4.1 Functions

Functions1 are a powerful tool to describe objects, processes, schemes, etc. In

programming, it is the key element to structure algorithms, just as data structures;

and almost every language is based on functions, from C to Python. For these

two reasons (powerful to describe and basis of programming), retrieving functions

from a binary is the topic of many research works (see [BBW+14] and [ASB17] for

instance). Most of the work on this topic, that we present in the next paragraph,

suppose that the binary program is obtained by compilation from source code (often

from C2). In these examples, what is meant by function is therefore a source-level

equivalent of a compiled function embedded in a binary. In fact, it is almost exactly

the process of decompilation which is (partially) targeted. In Part II, we propose a

general definition of functions at binary-level, but for now we keep the meaning of

function that we have at source-level.

1In the meaning of subpart of a program/subroutine
2Although other languages would produce different types of binaries, for instance object-

oriented languages
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2.4.1.1 Location

At source level, functions are usually well delimited. This delimitation is lost during

compilation, and optimizations make it even harder to retrieve. In assembly code,

the main clues one can use to retrieve functions are:

• CALL instructions to find entry points ; e.g. call 0xCAFE,

• RET instructions to delimit the end of functions.

However, multiple points induce complexity, and make the problem of location

of functions in a binary hard to solve:

• multiple RET - see Listing 2.4: one function can return from different RET

instructions, for example if there are RET instructions in different branches;

• no RET - see Listing 2.5: a function can either never return or return with

another instruction than RET;

• multiple entry points: a function execution can start from different instruc-

tions;

• dynamic CALL - see Listing 2.6: the target of a CALL is computed dynamically,

and thus cannot be inferred statically;

• inlining of functions: each call is replaced by the actual code of the function.
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0000000000400550 ¡f¿:
400550: 53 push % r b x
400551: 89 fb mov % e d i ,% ebx
400553: e8 b8 fe ff ff callq 400410 ¡rand@plt ¿
400558: ba 56 55 55 55 mov $0x55555556 ,% edx
40055d: 89 c1 mov %eax ,% ecx
40055f: f7 ea i m u l %edx
400561: 89 c8 mov %ecx ,% eax
400563: c1 f8 1f s a r $0x1f ,% eax
400566: 29 c2 sub %eax ,% edx
400568: 8d 04 52 l e a (% r d x ,% r d x ,2) ,% eax
40056b: 29 c1 sub %eax ,% ecx
40056d: 83 f9 01 cmp $0x1 ,% ecx
400570: 74 26 j e 400598 ¡f+0x48 ¿
400572: 83 f9 02 cmp $0x2 ,% ecx
400575: 89 d8 mov %ebx ,% eax
400577: 74 09 j e 400582 ¡f+0x32 ¿
400579: 85 c9 t e s t %ecx ,% ecx
40057b: 74 0b j e 400588 ¡f+0x38 ¿
40057d: b8 ff ff ff ff mov $0xffffffff ,% eax
400582: 5b pop % r b x
400583: ---- c3 -------------------- r e t q
400584: 0f 1f 40 00 n o p l 0x0(% r a x )
400588: 89 d f mov %ebx ,% e d i
40058a: c1 ef 1f s h r $0x1f ,% e d i
40058d: 01 f8 add % e d i ,% eax
40058f: d1 f8 s a r % eax
400591: 5b pop % r b x
400592: ----- c3 -------------------- r e t q
400593: 0f 1f 44 00 00 n o p l 0x0(% r a x ,% r a x ,1)
400598: 8d 44 5b 01 l e a 0x1(% r b x ,% r b x ,2) ,% eax
40059c: 5b pop % r b x
40059d: ----- c3 -------------------- r e t q
40059e: 66 90 xchg %ax ,%ax

Listing 2.4: Example of a function with multiple RET instructions

00000000004005 a0 ¡g¿:
4005a0: 48 83 ec 08 sub $0x8 ,% r s p
4005a4: e8 67 fe ff ff callq 400410 ¡rand@plt ¿
4005a9: 48 83 c4 08 add $0x8 ,% r s p
4005ad: 89 c7 mov %eax ,% e d i
4005af: eb 9f jmp 400550 ¡f¿
4005b1: 66 2e 0f 1f 84 00 00 nopw % cs :0x0(% r a x ,% r a x ,1)
4005b8: 00 00 00
4005bb: 0f 1f 44 00 00 n o p l 0x0(% r a x ,% r a x ,1)

Listing 2.5: Example of a function with no RET instruction



2.4. STRUCTURE INFORMATION 37

400609: 41 ff 14 dc callq *(%r12 ,% r b x ,8)

Listing 2.6: Example of an indirect CALL instruction

This problem of retrieving functions is addressed in [CJMS10] for example,

and several tools propose solutions (IDA [HR], etc.) based on heuristics. More

recently, [ASB17] addresses specifically this problem, and present a static analysis

that shows very accurate results, when comparing the functions retrieved from the

binary with the functions declared at source level.

2.4.1.2 Interface

For code reuse, fuzzing, testing, integration, understanding, etc., it is important to

get the interface of functions, and in particular information about its inputs/outputs

(i/o). Listing i/o is a complex task, and it begins with defining what should be

considered as input and what should not. For instance (see Listing 2.7), should a

global variable (here NB ITER) read by a function f but not given as a parameter

through registers or through the stack should be considered as a parameter of f?

c o n s t i n t NB˙ITER = 7;

i n t f( i n t a) –
i n t i, res = a;
f o r (i = 0; i ¡ NB˙ITER; i++)

res = g(res);
r e t u r n res;

˝

Listing 2.7: Function using a global variable NB ITER as an in parameter

If one aims to get a source-level description of the program as accurate as

possible, the answer should be no. On the other hand, in [CJMS10], the goal

pursued by retrieving function interfaces is to extract from the binary every byte

needed to be able to execute it in another context. In this case, f depends on a

global variable, so it should be seen as an input to extract. We propose in Chapter

II our own definition of inputs and outputs at binary level. In [FZPZ08], Wen Fu

et al. specifically target the particular case of variable-argument functions: how

to distinguish them and how to recover the variable arguments. In addition to

the number of i/o, the nature of their value is a valuable information. Types are
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usually described at source level with an explicit declaration, in the case of compiled

languages (C, Ada). This is useful, in particular, to proceed to type checking at

compilation time. However, this meta-data regarding variables is removed then

and is not present at assembly/binary level. Several works aim to recover the type

of parameters of a function. In [BBW+14], the authors present a static analysis

to recover function prototypes from binary, including types of parameters. Usually,

the set of types being considered is a restriction of the C types. For instance, size

of integers is not always targeted as an important information.

2.4.2 Variables

Functions are relative to control-flow. Regarding data-flow, a program manipulates

data to handle function inputs, outputs, intermediate computations, etc. Data is

used to represent information needed during the execution (either to produce a

result or to drive the control-flow). These data are characterized by the nature

of the information they represent ; this nature defines the operations that are

computable on it, and vice-versa. It also defines the nature of new information

produced from one or several ones (by computation for example). Usually, this

nature is expressed by a type at source-level. Data are stored in memory, at

a specific location (file, memory address, etc.). At source-level, the notion of

variable is used to link this location to an identifier, and thus abstract the notion

of address. To our knowledge, except for very specific functional languages such

as Unlambda, variables exist in every high-level language. For these two same

reasons we already presented for function inference, many works have focused on

variable recovery from binary (see [BR07], [EAK+13] for instance). As for function

recovery, works usually assume that the binary under analysis is produced by a

compiler, and thus try to retrieve variables in the meaning given at source-level. In

Chapter 5, we also give a general definition of a variable (i.e., of memory locations,

types and sizes) at binary level.

We encounter issues with variable that are very similar to the ones we described

relatively to functions in the previous section.

2.4.2.1 Location

A variable name at source-level corresponds to a memory location in assembly (or

at binary level). This memory location can be in the stack, in the heap, in the

data section, etc. of the binary. One of the problems at this level is to identify
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them. Local variables of functions, for instance, are usually in the stack, and

accessed relatively to the base (or the top) pointer of the stack (according to

some compilation conventions - in the case they are not respected, this is even

harder). However, the number of local variables is not known a priori. Let us take

an example: if eight bytes on the stack are allocated for local variables, it could

be for eight one-byte integers (8 variables), four two-bytes integers (4 variables),

or four-bytes integers (2 variables). One thus needs to analyze instructions of

the function to find how this range of bytes in the stack is handled. Figure 2.1

illustrates this.

Figure 2.1: Stack frame for local variables

2.4.2.2 Type

A main difference between assembly/binary code and other languages, as mentioned

in Section 2.1, is the total absence of meta-data relative to the type of variables.

In an assembly code obtained from source code by compilation, variables are

semantically typed (they were [almost always] typed at source level, and a compiler
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usually performs type checking to ensure that operations are compatible with the

nature of variables). However, their types are not explicit anymore and need to be

retrieved in order to have a better understanding of the role of each one. To retrieve

types, one possibility is to do it from the operations performed over variables. In

other words, at source-level the type of a variable determines the operations that

can be performed with it, whereas at assembly level we use the operations to

determine the type. Multiplication, for example, would not be performed between

arrays and floats. Another approach would be to base the type recovery on concrete

values of variables: small values (between 0 and 216 for instance) are likely to be

integers whereas values between 248 and 264 are likely to be addresses (on a 64-bit

architecture).

2.4.2.3 Size

Another meta-data that we sometimes have at source level, but that is most often

a compiler’s choice, and that is lost during compilation is the size of variables in

bytes. Usually, variables are stored in four or eight bytes memory locations (to

maintain memory alignment) and operations are also performed on four (on 32 bit

architectures) or eight (on 64 bit architectures) bytes in registers for optimization.

Thus, by opposition to the problem of types where operations determine the type

of the variable, it often leads to no information on the size. However, this size is

meaningful although most of operations are performed on all the bits of a register,

only some of those bits have a significance and are useful semantically.

2.4.3 Data structures

”Forensics and reverse-engineering without data structures is exceed-

ingly hard. [. . . ] Since real programs tend to revolve around their data

structures, ignorance of these structures makes the already complex

task of reverse engineering even slower and more painful.” [SSB11]

Data structures (in the meaning of C-like structures with several fields) can be

seen as a particular type of variable, which consists in an aggregation of several

variables of various sizes and types. Recovering data structures from a binary is a

subject of research works, and presents several difficulties (see [SSB11]):

• To distinguish structures from single variables. Addressing reg + 4 can be

an access to a variable on the stack for instance (if reg is %ebp or %esp), or

it can be an access, from a base pointer, to a field of a structure.
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• To distinguish structures from arrays. reg + 4 can also be an access to a

particular cell of an array. This distinction is harder to make, according to

[SSB11]. More details are given in Section 3.2.

• To distinguish high-level data structures (in the algorithm meaning). Usually,

C-like structures are used to implement data structures such as binary trees,

linked lists, etc. To retrieve them presents an additional level of complexity:

it requires to retrieve, in addition to the fields of a structure, their semantics.

2.4.4 Object-Oriented Programs (OOP)

Object-oriented programming (OOP) comes with particular schemes that can be

useful to recover as well to better understand a program. In OOP, an object

has attributes and methods, and it is those fields that we are usually interested

in retrieving. Both can be either specific to the object’s class or inherited from

a parent class. This is an additional difficulty in recovery. Others may occur as

well: for instance, for each attribute, a distinction has to be made between a class

attribute (shared by every instance of this class) and an object attribute (specific

to one instance). In [JCG+14], authors propose a technique to retrieve C++ object

attributes from the compiled program, by tracking accesses performed from the

this pointer.

2.5 Control-flow

In addition to source-level information, which is mostly static, reversing also aims

to retrieve dynamic patterns, and especially on the way and the order instructions

are executed. This is called Control Flow. Note that the Control Flow analysis

is not specific to binaries, but can also be relevant at source-level. This section

presents several levels of analysis relatively to Control Flow.

2.5.1 Basic blocks

2.5.1.1 Presentation

A basic block is a sequence of instructions that will be executed sequentially, from

the program point of view. Basic blocks are ended by an instruction that will

interfere with the control flow, such as a function call or a (conditional) jump.
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Such blocks are useful for the understanding of a program, as it divides it in small

bricks that can be analyzed (almost) independently from the rest of the program.

2.5.1.2 Main difficulties

Retrieving the end of basic blocks from assembly code is, in most cases (i.e., from

most compiled binaries), straight-forward: instructions that change the control

flow are well-identified (e.g., CALL, JMP, RET, etc.), and mark a discontinuity in

the execution. The beginning of blocks is harder to retrieve: a basic block begins

at the first instruction that will be executed at runtime after the end of a previous

basic block. This means that the beginning of a basic block is the target of the end

of another basic block. An instruction JMP 0xCAFE at the end of the basic block

A means that another basic block begins at 0xCAFE. But the target of branching

instructions can be hard to determine statically, and some basic blocks can be hard

to activate (i.e. find a trace that will lead to execute it) dynamically. The second

difficulty is when basic blocks are obfuscated, for instance using opaque predicates.

2.5.2 Control Flow Graph (CFG)

From the basic blocks, retrieving a CFG consists in linking basic blocks from one

to another. In other words, it requires to retrieve which basic block is reachable

from which basic block. The CFG is useful to better understand the possible paths

an execution can take.

2.5.3 Call Graph

At function level, it is valuable to understand how the blocks (i.e., functions in this

case) interact with each other; A part of this work is called Call Graph retrieving.

A Call Graph describes interprocedure calls. A typical representation is an oriented

graph, where an edge from f to g means that a call to g can occur during the

execution of f.

Remarks.

1. Call Graph is a function-level notion, therefore it only makes sense for

programs compiled or written according to the function paradigm. 1. An

edge from f to g means a call from f to g can occur, but it does not mean
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it will necessarily occur. Indeed, the call can depend on some condition

evaluated regarding inputs of f or global variables.

2. The Call Graph gives a good picture of the possible interactions at function

level, but it is a static picture, and thus some information describing the

execution are missing. For instance, consider the simple example given in

Figure 2.2.

Figure 2.2: Simple example of a call graph where f calls g and h

From this graph, we cannot tell if a call to f leads to a call to g and a call

to h (and if yes, in which order), or if it is g or h, etc.

2.6 Data-flow

In addition to the control flow, the data flow can give interesting information about

how the program handles inputs for instance.

2.6.1 Data tracking

User inputs of a program usually have an influence on the control flow, and also

on output values. More generally, data impact control flow, and data impact data.
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From a functional perspective, parameters often influence the output value, and

the output value of f can have an impact on the output value and/or the control

flow of g, h, etc. For a given data d, forward analyses aim to determine what data

e, f, g is influenced by its value, and backward analyses try to retrieve all the data

a, b, c that influenced d. Figure 2.3 illustrates this example.

Figure 2.3: Simple example of a data tracking - backward and forward analyses

Forward data tracking is often performed using a taint analysis (see [NS05],

[SAB10], [ARF+14]): each data is associated with a color, and each operation

using this data propagates the color. The final color (which is a mix of colors)

tells which data influenced the result. A typical use case of these analyses is to

propagate the user inputs, and confirm that none of the critical functions take

in parameter a tainted value (see [NS05]). Data tracking can be performed at

several levels of granularity. Some works focus on memory locations, and others

study the propagation at bit level. An example is given in Listing 2.8. In this case,

the parameter given in register %edi influences the return value (%eax): %edi

-¿ %ebx -¿ %eax. However, an analysis at bit-level shows that only the least

significant bit of %edi has an influence on the output.
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mov % e d i ,% ebx
x o r 0x1 , %ebx
mov %ebx , % eax
add % e s i , % eax
r e t

Listing 2.8: Simple example for taint propagation at bit level

2.6.2 Memory access

There are many applications where memory accesses are studied. The main one we

will focus on is for safety and security reasons. An example of situation where the

memory analysis is required is memory leaks detection (e.g., Valgrind [NS07]): a

long-term running program with memory leaks will crash eventually by a lack of

memory space left. Regarding security, many well-known vulnerabilities on binary

are relative to memory accesses (see next section). The specificity of a memory

analysis is to know if an access to a given memory location, either to read or to

write, is legitimate. And because, among the addressable space, some memory

locations are allocated and some are not, the access rules can be complicated. For

instance, a memory location that is not allocated should not be accessed, neither

to read nor to write, except by an allocator. Knowing what location is allocated

and what is not is one of the issues to be solved. Another one is to find if a given

content can be overwritten or not.

2.6.3 Vulnerability detection

As mentioned in a previous section, data flow on addresses can be used for security

purposes. In particular, many techniques have been studied to detect, from a binary,

vulnerabilities. For instance:

• stack buffer overflow - see Listing 2.9. Buffer overflows correspond to a

write that occurs after the end of an allocated buffer.
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#i n c l u d e ¡stdio.h¿

i n t main() –
char buf [8];
i n t admin = 0;
gets(buf);
printf(”%s“n”, buf);
printf(”%i“n”, admin);
r e t u r n 0;

˝

Listing 2.9: Example of a simple buffer overflow vulnerability

In Listing 2.9 for example, the function gets writes in buffer every character

given in the standard input by the user, even if there are more than eight.

Giving too many characters in the standard input leads to a re-write of the

variable admin. For instance, in the following command, we give as an input

8 legitimate characters (’01234567’) and then 5 characters to overflow the

array buf:

¿ python -c ”print ’01234567 ’ + chr (7) * 5” — ./bof
buf: 01234567
admin: 7

We see in the output of the program that the value of the variable admin

has been overwritten by the input. It can be even more critical if a return

address (stored in the stack) can be written by the user: it allows an attacker

to modify the control flow of the program, and possibly to execute arbitrary

code. Canaries [Cow98] and other works [BST00] focus on their detection,

because they could lead to major security issues (see Morris Worm [mor] and

Slammer Worm [sla] for instance). The idea of canaries is to add random

values just before critical information in the stack. These values are then

checked before accessing the critical information. A modification of these

critical values through a buffer-overflow vulnerability implies to re-write the

canary, and because its value is random, it is hard for an attacker to re-write

the correct value.

• heap overflow - see Listing 2.10 taken from OWASP.

https://www.owasp.org/index.php/Buffer_Overflows#Heap_Overflow
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Heap overflow is an overflow similar to what we presented in the previous

section, except that it occurs on the heap instead of the stack. In this

example, two blocks are allocated, and a large write from the first one (buf0)

ends up overriding the content of the block pointed by buf1. Detecting

heap overflows on binaries have been studied in [RKMV03] and [AF11] for

instance. From a binary, [Ber06] proposes to add a canary in meta-data

relative to each memory block (these meta-data are stored by malloc just

before the beginning of blocks). When a block is released, free will check the

consistency of this canary: a mismatch means that this block was corrupted.

Note that this is a runtime detection that requires to re-implement malloc

and free routines, but it can be applied to binaries without re-compilation, for

instance using the LD PRELOAD trick or by replacing the library file libc.so

(which is dynamically loaded).

• use-after-free - see Listing 2.11 taken from [FMP14]. Use-after-frees occur

when a memory location is accessed after it has been freed by the allocator.

If this later access is a read, then it can lead to data leak, especially if this

location has been reallocated to store sensitive data. In the example given in

Listing 2.11, there is a path of the execution where the pointer p global is

freed and then accessed (if line 20 is executed, then p global is not restored

and freed at line 36).

[CGMN12], [You15] and [Hee09] for instances propose techniques to detect

use-after-free vulnerabilities from the binary code. [FMP14] rely on a static

analysis in three steps:

– track heap operations (including aliases)

– statically detect vulnerable accesses (on free blocks)

– extract subgraphes (for each vulnerability), from the allocation, through

the free, and to the later access.
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#include ¡stdio.h¿
#include ¡stdlib.h¿
#include ¡unistd.h¿
#include ¡ s t r i n g .h¿

#define BSIZE 16
#define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */

v o i d main( v o i d ) –
u˙long b˙diff;
char *buf0 = ( char *) malloc(BSIZE); // create two buffers
char *buf1 = ( char *) malloc(BSIZE);

b˙diff = (u˙long)buf1 - (u˙long)buf0; // difference between locations
printf(”Initial values: ”);
printf(”buf0=%p, buf1=%p, b˙diff =0x%x bytes“n”, buf0 , buf1 , b˙diff);

memset(buf1 , ’A’, BUFSIZE -1), buf1[BUFSIZE -1] = ’“0’;
printf(”Before overflow: buf1=%s“n”, buf1);

memset(buf0 , ’B’, (u˙int)(diff + OVERSIZE));
printf(”After overflow: buf1=%s“n”, buf1);

˝

[root /tmp]# ./ heaptest

Initial values: buf0=0x9322008 , buf1=0x9322020 , diff=0xff0 bytes
Before overflow: buf1=AAAAAAAAAAAAAAA
After overflow: buf1=BBBBBBBBAAAAAAA

Listing 2.10: Example of a heap overflow vulnerability
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#i n c l u d e ¡stdio.h¿
#i n c l u d e ¡stdlib.h¿

#d e f i n e SECRET˙PASS 2784621
#d e f i n e MIN 0
#d e f i n e MAX 100

i n t *p˙global;

i n t cmp() –
r e t u r n *p˙global ¿= MIN && *p˙global ¡= MAX;

˝

v o i d index˙user( i n t *p) –
i n t *p˙global˙save;
p˙global˙save = p˙global;

p˙global = p;
i f (cmp() ¡= 0) –

printf(”The secret is greater than 50“n”);
r e t u r n ;

˝
printf(”The secret is less than 50“n”);
p˙global = p˙global˙save;
r e t u r n ;

˝

i n t main( v o i d ) –
i n t *p˙index , *p˙pass;
p˙global = ( i n t *) malloc( s i z e o f ( i n t ));
*p˙global = SECRET˙PASS;

p˙index = ( i n t *) malloc( s i z e o f ( i n t ));
printf(”Give a number between 1 and 100 “n”);
scanf(”%d”, p˙index);
index˙user(p˙index);
free(p˙index);

p˙pass = ( i n t *) malloc( s i z e o f ( i n t ));
printf(”%p — %p“n”, p˙pass , p˙global);
printf(”Give the secret“n”);
scanf(”%d”, p˙pass);

i f (* p˙pass == *p˙global)
printf(”Congrats !“n”);

e l s e
printf(”Sorry ...“n”);

r e t u r n 0;
˝

Listing 2.11: Example of a use-after-free vulnerability
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2.7 Stack Management

2.7.1 Calling Convention

The vast majority of programs uses functions, and therefore, function calls. It

can be internal calls or calls to functions embedded in libraries, either statically or

dynamically loaded. When a function f calls a function g, or a function glib from

a library, both the caller (f) and the callee (g or glib) must agree on the way they

communicate. In particular, they must agree on the way parameters are passed

from the caller to the callee and on the way the stack is cleaned up after the call.

2.7.1.1 Passing parameters

There are two classical ways, at assembly level, to pass parameters:

1. Through the stack: the parameter value will be pushed on the stack by the

caller and accessed by the callee. Listing 2.12 shows an example of f calling

g passing a parameter through the stack.

2. Through registers: the parameter value will be written in a given register

by the caller and read by the callee. Listing 2.13 shows an example of a

parameter being passed through a register.

080483 cb ¡g¿:
80483 cb: 55 push %ebp
80483 cc: 89 e5 mov %esp ,%ebp
80483 ce: 83 ec 10 sub $0x10 ,% esp
80483 d1: 8b 45 08 mov 0x8(%ebp),% eax
...: ... ...

080483 e5 ¡f¿:
...: ... ...

80483 fa: ff 75 fc pushl -0x4(%ebp)
80483 fd: e8 c9 ff ff ff c a l l 80483cb ¡g¿

Listing 2.12: Example of parameter passed through the stack
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00000000004004 ad ¡g¿:
4004ad: 55 push % rbp
4004ae: 48 89 e5 mov % r s p ,% rbp
4004b1: 89 7d ec mov % e d i ,-0x14(% rbp )
...: ... ...

00000000004004 c8 ¡f¿:
...: ... ...
4004e2: 89 c7 mov %eax ,% e d i
4004e4: e8 c4 ff ff ff callq 4004ad ¡g¿

Listing 2.13: Example of parameter passed through registers

Functions f and g (or glib) must use the same convention to be able to

communicate: if f uses the first convention and g the second, it will lead to

unwanted behaviors.

2.7.1.2 Cleaning stack

A call requires to push some values on the stack, and especially the base pointer

corresponding to the state of the stack before the call (see Listing 2.12: push

%ebp). The stack must be cleaned up (i.e., pop these values that were pushed for

the call and that become deprecated after the call sequence) when the function

being called returns, otherwise the call would modify the stack frame and thus

disturb the rest of the execution. Either the caller or the callee can do it, but they

should not do it both. This has to be stipulate by a convention as well. These

two questions in particular are solved by the specification of calling conventions.

For example, the x86 IA-32 cdecl calling convention states that parameters are

passed through the stack and the stack is cleaned up by the caller ; whereas the

x86-64 System V amd64 ABI [MHJM13] stipulates that parameters are passed

through registers. In a compiled program, every function should be using the

same calling convention: at compilation time, the compiler uses either the default

(OS and architecture dependent) or the specified calling convention to generate

assembly code that follows the same rules. Therefore, it seems logic that multiple

functions in a given binary use the same calling convention. However, for calls

to library, we must ensure that both the binary and the library it uses share

the same convention. In ELF binaries, the convention used is specified in the

program header - see Listing 2.14. However, for hand-written binaries, we may

want to test if this convention (specified by the header) is indeed respected.

For compiled programs, tests may also be useful to verify the correctness of
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compilers. For instance, in [Lin05], the author propose a method to generate

test suits for several calling conventions. This method has lead, according to the

paper, to the discovery of 13 new bugs in compilers relatively to function calls.

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2’s complement , little endian
Ve r s i on: 1 (current)

* OS/ABI: ************************** UNIX - System V *************
ABI Ve r s i on: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86 -64
Ve r s i on: 0x1
Entry point address: 0x4003c0
Start of program headers: 64 (bytes into file)
Start of section headers: 2624 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 8
Size of section headers: 64 (bytes)
Number of section headers: 30
Section header s t r i n g table index: 27

Listing 2.14: Header of a ELF binary program (obtained with readelf -h

Recovering calling conventions being used in custom binaries could also be useful

to apply some specific analyses techniques relying on the function parameters for

instance. This (retrieving automatically the convention) seems to be a work to

address, as very few papers on the subject are available. Some binaries may even

use custom calling conventions (except when calling library functions, in which case

they must comply with the library’s convention). This could also be interesting

to detect and retrieve. In summary, works on calling convention (test, retrieving,

etc.) must be conducted at binary level, as this problem is invisible at source-level.

2.7.2 Stack Frames

Stack frames have also been studied and can lead to knowledge on the binary

being analyzed, either on its dynamic behavior or on its design. On the stack

are pushed parameters and return values (if the calling convention specifies so),

intermediate values for computation, saved values of registers (especially %ebp),

return addresses, etc. Detecting calling patterns on the stack can be helpful

to retrieve information about the call stack (see Section 2.5). For instance, a
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Figure 2.4: Example of stack frame patterns that allow to get an idea about the

call stack

classical pattern corresponding to a call on the stack is given in Figure 2.4. By

detecting this pattern in a given state of the stack, we can segment it into regions

corresponding to address spaces of different functions. An application to that

would be to perform verification on the stack accesses: a function should not

access an address corresponding to the stack that is not in the range J %epb ,
%esp K, except to access a stack parameter. We could also detect overriding of

return addresses, which is a major issue for security (see Section 2.6). This has

been addressed for instance in [KW09] and [OVB+06] at hardware level and in

[CCT+15] at software level.

2.8 Miscellaneous

Section 2.2 aimed to give an overview of the many situations where working at

assembly and/or binary level makes sense. This overview is not exhaustive, and
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several other works focus on binaries with different purposes. Among them, we

could mention profiling and code coverage.

2.8.1 Profiling

Code-profiling aims to detect the portions of code that are the most executed

according to various criteria (amount of time, number of times, number of in-

structions, etc.). The goal is to highlight the parts that worth optimization. For

instance, GNU gprof [Foub] is a tool to dynamically analyze the amount of time

the execution spends in each function.

2.8.2 Code coverage

Code-coverage aims to detect portions of code that are actually executed, and

more important the ones that are not. This can be useful in two situations:

• test suit coverage: used while testing a program, code-coverage highlights

the parts of the code that are never executed when running the test suit. It

is a convenient tool to improve the coverage of a test suit.

• dead-code detection: code-coverage can also be useful to detect portions

of code that are never executed and therefore can be removed.

The GNU gcov [Foua] is one example of tools that work at binary level to output

code-coverage information.



Chapter 3

Static and dynamic analysis

In the previous chapter, we have presented the main motivations and goals to

analyze computer programs at binary level. This chapter focuses on why, presenting

two main categories of analyses: static analysis and dynamic analysis. For each one,

we discuss the approach, the advantages and the drawbacks, and finally several

examples of research works in this domain. For a few years, techniques using

a combination of both static and dynamic analyses, named concolic analysis - a

mix of concrete and symbolic analysis, has been introduced and developed (see

[SMA05] for the introduction of the concept, and [CZW14] as an example of more

recent work in this direction), but we will not present this in details here.

3.1 Static analysis

Static analysis of a program is exploring possible paths of the execution without

actually running it. The main aspect of this approach is exhaustivity. Indeed, a

key element is to consider every possible value (within a specified range) for each

input. Therefore, it covers every possible behavior of the program, and does not

rely on coverage techniques. It also captures particular cases that are unlikely: if a

given path of execution is possible, it is by the nature of the approach covered by

a static analysis. However, this type of analyses cannot be performed at the scale

of a program, systematically and automatically: it encounters undecidability issues.

In particular, the problem of loops (how many iterations should be considered)

and the termination of a program are two undecidable problems. In order to be

55
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practical, static analyses must then use approximations to restrain the exploration

to a subset where these problems become decidable. This approximation can either

be an over-approximation: this allows to ensure the completeness of the results,

but leads to false positives. Typically, an over-approximation can either ensure

that a program is free of bugs or output some possible bugs. In the last case, it is

not guaranteed that these bugs actually exist. Or the approximation can be an

under-approximation: in this case, the soundness of the results is ensured, but not

the completeness. It means that a bug output by the analysis will be correct, but

that some bugs can be missed (false negative).

In the rest of this section, we present some basics relative to static analysis

techniques, and the limitations of this kind of approach. Then we present two

examples of static analysis approaches over binaries: WYSINWYX1 [BR10], and

TIE - Principled Reverse Engineering of Types in Binary Programs [LAB11], but

many other works on binaries use a static approach (see [GGTZ07] and [BK12]

for instance).

3.1.1 Abstract domains

As mentioned in the introduction of this section, static analysis focuses on the

range of all possible values of variables, usually starting from the inputs. The range

of values for input is assumed. Depending on the context and the requirements

of the approach, a large set of values can be used (e.g., J−231, 231 − 1K for a

32bit signed integer) or a more relevant subset (e.g., J0, 10K). The propagation of

these ranges becomes a problem when two or more variables get mixed. Two main

techniques have been used to answer this problem: non-relational domains, which

are easy to compute but over-approximate consequently, and relational domains

which present a better precision. A classical example of non-relational domains is

intervals, and of relational domains is polyhedrons.

// variables a (-0x8(% rbp )) and b (-0x12(% rbp )) are assumed to be i n [-5;
5]

400583: 8b 45 f8 mov -0x8(% rbp ) ,% eax
400586: 85 c0 t e s t %eax ,% eax
// i f a ¡= 0, jump to 400599

400588: 7e 0f j l e 400599
40058a: 8b 45 f4 mov -0xc(% rbp ) ,% e d i
40058f: e8 69 ff ff ff callq 4004fd ¡abso ¿
// b ¡- abs(b)

1What You See Is Not What You eXecute
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400594: 89 45 f4 mov %eax ,-0xc(% rbp )
// jump to 4005a8 (after ”else” bloc)

400597: eb 0f jmp 4005a8 ¡main+0x89 ¿
400599: 8b 45 f4 mov -0xc(% rbp ) ,% e d i
40059e: e8 5a ff ff ff callq 4004fd ¡abso ¿
4005a3: f7 d8 neg % eax
// b ¡- -abs(b)

4005a5: 89 45 f4 mov %eax ,-0xc(% rbp )
4005a8: 8b 55 f8 mov -0x8(% rbp ) ,%edx
4005ab: 8b 45 f4 mov -0xc(% rbp ) ,% eax
// computation of a * b

4005ae: 0f af c2 i m u l %edx ,% eax

Listing 3.1: Range analysis on a assembly instructions

3.1.1.1 Intervals

Let us consider the example given in Listing 3.1. This code takes two parameters,

namely a (located at %rbp - 8) and b (located at %rbp - 12) presumably in

the range S = J−5, 5K, and outputs a multiplication of the two. In between, a

conditional branching makes sure a and b are of the same sign (a ¡= 0 ⇒ b ←
-abs(b) and a ¿ 0 ⇒ b ← abs(b)). An analysis of ranges with intervals will not

take into account the relation between a and b. In the first branch (a ¿= 0), the

interval for b will be restricted to S1 = J0, 5K, and in the second branch (a ¡ 0)

to S2 = J−5, 0K. However, when the two branching merge (at address 4005a8),

then the interval of possible values for b will be the union of S1 and S2, which

is S. Thus, the range of possible values for the multiplication of a and b will be

S′ = J−25, 25K, which is a significant over-approximation: in reality, the result

cannot be negative.

3.1.1.2 Polyhedrons

The same example can be treated with more accuracy using polyhedrons. The idea

is to keep in mind the relationship that exists between values of a and values of

b. In the first branching (i.e., the case where a ¿ 0), a and b have values in the

set S∗1 × S1 = J1, 5K × J0, 5K. In the second branching (i.e. a ¡= 0), the set of

values is S2 × S2 = J−5, 0K× J−5, 0K. When the two paths merge, the possible

values for a and b are the union S∗1 × S1

⋃
S2 × S2, and thus a*b is in the set

J1∗0, 5∗5K
⋃

J0∗0,−5∗−5K = J0, 25K. This is still an over-approximation (primes

values, e.g., 17, cannot occur), but the size of the set of possible values is twice

less than with an interval approach.
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3.1.2 Forward and backward analyses

There are two main categories of static analysis of program: the forward and the

backward approaches.

3.1.2.1 Forward analysis

The forward approach is probably the most intuitive. The analysis starts from the

inputs (of a function or of the entire program), and usually map them with a set of

considered values. Typically, this set is represented by an abstract domain, which

could either cover all the possible values for a given type (e.g., [0; 232 − 1] for a

32bits unsigned integer), or a more relevant subset according to some circumstantial

arguments. Then, it explores (simultaneously) all the possible paths of execution,

refining the set of values at each conditional branching. A simple example is given

in Listing 3.2.

// (1) At t h i s point , register %ax is i n [-128, 127]
cmpb %ax , $0
j b e $0 , e l s e

i f :
// (2) Here , %ax is i n [1, 127]
...

e l s e :
// (2’) Here , %ax is in [-128, 0]
...

Listing 3.2: Example of forward analysis to infer the range of possible values

3.1.2.2 Backward analysis

The backward approach is the opposite: from a given point of the program, we

perform an analysis in the opposite way relatively to the normal execution, to

recover paths and/or input subset of values that lead to this point.

3.1.3 Applications

3.1.3.1 Proof of programs

The exhaustivity of the static approach is often used to prove some properties on

programs. Typical proofs that are targeted are the non-occurrence of some types

of runtime errors, and pre-post condition guarantees.
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No runtime error A static analysis can lead to the formal proof that a given

type of error can never occur, or by opposition that a particular input triggers an

unwanted behavior. For example, one could try to ensure that arrays are never

addressed outside the bounds. Another classical application is to ensure that the

second operand of a division cannot be null. An instance of the latter example is

given in Listing 3.3.

cmpb %bx , $0
j b e $0 , e l s e

i f :
// (2) Here , %bx is different from 0
// ( I n x86 , the divisor is assumed to be i n %ax)
divb %bx
...

e l s e :
...

Listing 3.3: Example of a division in assembly with non-zero divisor

A static analysis on this piece of code proves that the division between %ax and

%bx cannot lead to a runtime error (division by 0).

Pre-condition and post-condition Another application of static analysis is to

prove the post-condition (Q) of a function (usually), if the pre-conditions (P) are

respected. For example, in Listing 3.4, consider an implementation of the absolute

function.

00000000004004dd ¡abs ¿:
4004dd: 55 push % rbp
4004de: 48 89 e5 mov % r s p ,% rbp
4004e1: 89 7d ec mov % e d i ,-0x14(% rbp )
4004e4: 83 7d ec 00 cmpl $0x0 ,-0x14(% rbp )
4004e8: 79 0a j n s 4004f4 ¡abs+0x17 ¿
4004ea: 8b 45 ec mov -0x14(% rbp ) ,% eax
4004ed: f7 d8 neg % eax
4004ef: 89 45 fc mov %eax ,-0x4(% rbp )
4004f2: eb 06 jmp 4004fa ¡abs+0x1d ¿
4004f4: 8b 45 ec mov -0x14(% rbp ) ,% eax
4004f7: 89 45 fc mov %eax ,-0x4(% rbp )
4004fa: 8b 45 fc mov -0x4(% rbp ) ,% eax
4004fd: 5d pop % rbp
4004fe: c3 r e t q

Listing 3.4: Implementation of the absolute value function
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The input parameter, given through register %edi, is first stored on the stack (

mov %edi,-0x14(%rbp)). Then, it is compared to the numeric constant 0, and

two cases are to be differentiated:

• if it is lesser than or equal to zero: the instruction jns 4004f4 ¡abs+0x17¿

will not be executed. Then, the value corresponding to -%edi is returned;

• if it is strictly greater than zero: the instruction jns 4004f4 ¡abs+0x17¿

will be executed, and the value %edi is returned.

These two cases are exhaustive, and so we can conclude that this function

always returns abs(x) where x is the given parameter.

3.1.3.2 Exploration

Static analysis is also used to explore the possible behaviors of the program, and in

particular the possible values a variable can have at a given point of the program

; or the possible paths that can be activated, and with which concrete values in

input.

Value range This has been partially covered in a previous section. The value-set

analysis aims to provide information about the possible values of a given variable at

a given point of a program. Typically, it will be used to get the range of possible

values for the output of a function, regarding a range for inputs. This sort of

analysis can be done either with intervals or polyhedrons, by propagating the range

from inputs through the execution of the function until every possible path reaches

a return statement.

Path activation The path activation problem can be summarized with the fol-

lowing question: what value for each input leads to reach this particular state of

the program?, where a state is often the entry of a basic block. From an attacker

point of view for example, an instance of this problem would be to get the proper

input (password) to reach the basic block ”authenticated”.

3.1.4 Limitations

The main limitations of a static approach are the following:
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• The problem it aims to solve is undecidable ; therefore the practical use of

this technique requires approximations that lead either to false positive (loss

of soundness) or false negative (loss of completeness).

• Because it aims to be exhaustive, multiple branching can lead to an explosion

of the number of paths to cover, and so be a limitation of the exploration in

practice.

• Static analysis is vulnerable to obfuscation. In particular, if the core of the

program is packed (for instance using UPX [OMR04]), it cannot be analyzed

statically without complications. Another typical obfuscation that limit static

analysis is opaque predicates (see [CTL98] for instance).

3.1.5 WYSINWYX [BR10]

In [BR10], the authors propose a static analysis of binaries to ensure security

properties on the program being analyzed.

3.1.5.1 Binary code rather than source code

They emphasis the importance of working on binaries, as the compiler, through

optimizations, can induce behavioral differences between what is intended at source-

level and what is actually executed by the CPU (”What You See Is Not What You

eXecute”). The given example is the following:

memset(password, ’“0’, len);

free(password);

This code is used in Microsoft Windows ([How02]) to override sensitive data

(here, the password stored in clear in memory) before freeing the memory. A

compiler, for optimization purposes, could consider this call to memset useless, as

the memory location being written is never read after this point, and thus remove

this call.

3.1.5.2 Value-set Analysis

The first step of the proposed approach is to track both numeric and address

values, using an over-approximation of the set of possible values and constant
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values declared statically. Then, using the address values are used to reconstruct a

call graph and a control-flow graph (with the limitations due to the indirect calls

that are hard to evaluate statically). It also reconstruct an abstract-syntax tree

and a system dependence graph.

3.1.5.3 Model-checking

From the results of the Value-set analysis, they propose a weighted pushdown

system to model possible program behaviors, with an abstraction of the runtime

states. From this, the authors address the problem of reachability of control states,

and especially undesired ones. They also use an automated generator of queries to

provide witnesses that activate execution path driving to an error configuration.

3.1.5.4 Limitations

As mentioned by the authors, this work suffers from the limitations of static

approaches. In particular:

• the approach is not really scalable, and is not conveniently applicable on large

binaries,

• the lake of concrete values lead to approximations, especially relatively to

the call graph and the control-flow graph.

3.1.6 TIE: Principled Reverse Engineering of Types in Binary

Programs [LAB11]

[LAB11] presents a ”type reconstruction system based on upon binary code analy-

sis”. The approach can be performed either statically or dynamically, only the first

step differ. However, we focus here on the static approach.

3.1.6.1 Intermediate Representation

In this approach, first the authors translate the binary code into an intermediate

representation, in this case BIL (Binary Intermediate Language). In the case of a

dynamic analysis, they translate the sequence of instructions that were executed

during a particular trace.
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3.1.6.2 Variable recovery

From the intermediate language instructions, authors retrieve variable locations

using a SSA/DVSA algorithm. The SSA (Static Single Assignment) algorithm

aims to denote with incremented names the memory locations that store successive

values. For instance, a first assignment of the register %eax (e.g., mov $0, %eax)

will be rewritten into an assignment of register %eax0 (mov $0, %eax0) ; and a

second assignment of the same register later in the execution (e.g., mov $0xcafe,

%eax) will translate into an assignment of %eax1. This allows to deconflict multiple

variables handled by the same register. Then, they use a custom Value-Set Analysis

(VSA) algorithm to output variable locations plus alias information, and sets of

possible values.

3.1.6.3 Variable typing

From the location of variables, and considering the operations performed on them,

the authors deduce an upper and a lower bound of the type of each. To do

so, they propose a hierarchy of types where a ¡ b if b is less restrictive than

b (for instance, num32 t ¡ int32 t and int32 t ¡ int16 t). The hierarchy

they use has a depth of 5, including the ”any type” level (the lower one) and

the ”inconsistent type” level (the higher one). The latter one corresponds to an

over-constrained type (e.g. signed and unsigned in the same time). This can

occur for instance when union are used in C programs. As an example, a signed

division leads to the restriction to signed types for each of its operands.

3.1.6.4 Evaluation

Regarding accuracy, the approach shows good results: in over 90% of the cases, the

inferred type bounds include the source-level type of the variable, with an average

length of interval of 2. However, the authors do not provide any information about

the cost (in time and in memory) of their approach.

3.2 Dynamic analysis

In opposition to static analysis, a dynamic analysis focuses on a restricted number

of behaviors of the program under analysis: the ones that can actually be observed

during an execution. The main advantage of this technique over static analysis is
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that it excludes by design the possibility of false positive (although exceptions can

be forced - see Section 3.2.2). Indeed, as it works on concrete executions, what

is observed can necessarily occur. The main downside effect is that it faces the

problem of coverage: where static analysis aims to be exhaustive, dynamic analysis

is limited by the traces it deals with. Because dynamic analysis works directly on

the execution of a program, it opens the possibility to prevent an undesirable state

to be reached with limited effort (for instance by stopping the execution when the

undesirable state is about to be reached). The same kind of enforcement with

static analysis will require to explore the possible paths of execution, and to filter

the inputs in order to make this state unreachable by implementation, which can

be much more expansive. The cost of dynamic instrumentation can be chosen:

it is possible to instrument only small parts (e.g. a given function) of a program

instead of every instruction. Some parts of the program (for instance library calls)

can be considered as black-box elements ; which is not possible to do with a static

approach. Finally, a dynamic approach works with the concrete environment of

the program. In particular, system calls, available memory, etc. are not to be

assumed or modeled as they should be in static analysis. The downside is that

the results obtained are highly context-dependent, whereas static analysis provides

more general results.

In the next sections, we present some specificities of the dynamic approach,

and then we discuss into more details the limitations of it. Finally, we present

two major works in this domain: Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software [NS05] and

Howard: A Dynamic Excavator for Reverse Engineering Data Structures [SSB11].

3.2.1 Instrumentation

Instrumentation techniques are the keystone of a dynamic analysis. The way

instrumentation is handled defines the possibilities given to the analysis (both in

terms of inspection and in term of control), and impact directly the overhead at

runtime. Nowadays, the main dynamic instrumentation frameworks use just-in-

time (JIT) compilation to provide high capabilities with a reasonable overhead.

This is the case for Pin [LCM+05], Valgrind [NS03] and DynamoRIO [BDB00] in

particular. JIT consists in re-writing, at runtime, parts of the binary that are about

to be executed, enhanced with instrumentation instructions. The main advantage

of this technique, despite the fact that ”compilation” occurs in the name, is that

it does not require recompilation of the program to analyze, and thus no source
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code is needed. It also allows to instrument dynamically loaded libraries.

Another class of tools to perform dynamic analysis are debuggers. On Linux

systems, the most famous is gdb [GSS90]. A debugger’s approach is very different

from a framework such as Pin using JIT: it usually attaches itself to the program

to analyze (e.g., using ptrace), allows the user to put some software breakpoints

(replacing an instruction with INT 3) or hardware breakpoints (provided [or not]

by the CPU), and then start the execution. The debugger will be able to get the

focus back only when the program stops or a breakpoint is reached. At this time, it

is possible to get concrete values stored in registers, explore the stack and possibly

alter these values. The use of breakpoints, however, makes the automation of

dynamic analysis hard to perform: it requires to anticipate the execution, enough

to be able to stop the program when needed. In addition, a breakpoint leads to a

context switch (from the program under analysis to the debugger), which is costly

in time.

3.2.2 Observation vs. Modification

The instrumentation of an execution can either be passive or active. Choosing

either one or the other has consequences on the soundness, the coverage, etc. of

the results.

3.2.2.1 Passive instrumentation: observation

Passive instrumentation consists in observing, at runtime, what is observable, with-

out interfering with the execution. Typical observations focus on (not exclusive):

• register values: return value of functions (%eax), program counter (%pc),

stack frame (%ebp, %esp), etc.

• stack inspection: local variables, input parameters (according to some

calling conventions), return address, etc.

• heap inspection: the number of allocated blocks, their content, etc.

In most cases, a passive instrumentation does not modify the behavior of the

program under analysis. This is the main advantage of this approach. However,

in some cases, anti-debugging and anti-instrumentation techniques can lead a

program to change its control flow if it is being instrumented (see [CAM+08]

and [BD06] for instance). This is a limitation of the dynamic approach that will
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be discussed into more details in Section 3.2.4. The drawback of this passive

instrumentation is that the observation is confined where the normal execution

actually goes, and suffers from the problem of coverage (also discussed in Section

3.2.4).

3.2.2.2 Active instrumentation: modification

Another approach is to perform instrumentation that voluntarily influence the

execution. For example, one can force the program to execute a conditional

branching even if the conditions are not met. The main interest of this is to easily

explore paths without finding inputs that actually activate them. This reduces

significantly the problem of coverage relative to dynamic analysis (although it does

not eliminate it completely), but also introduces the risk of false positives, that are

in theory not an issue with a dynamic approach. Indeed, by forcing some conditions

despite the concrete values at runtime, one could drive the program to a state

that is in fact impossible to reach without active instrumentation (i.e., only with

legitimate inputs).

3.2.3 Strategies

3.2.3.1 Runtime enforcement

As mentioned in the beginning of Section 3.2, dynamic analysis allows to perform

some runtime verification, and even prevent some misbehaviors of a given program

to actually occur. For instance, in [Cow98], the canary-based protection against

buffer overflows detects at runtime an overriding of the return value, and prevent

the program to continue its execution. In [Ber06], the authors do similar prevention

regarding heap overflow. In [You15], use-after-free vulnerabilities are also detected

at runtime, by dynamically perform additional checks before accessing a memory

location.

3.2.3.2 Online and Offline analyses

Another approach of dynamic analysis consists in two steps. The first step, called

online step, consists in collecting data (flow of execution, values of registers, call

stack, etc.) during the execution of the program. During a second step, called

offline step, this collected data is analyzed and from that some deductions are

made about the execution.
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This two-steps approach usually allows to execute the program under analysis

with a reasonable overhead, however it cannot be used to prevent misbehaviors of

programs for instance (e.g. crashes, vulnerability activation, etc.).

3.2.4 Limitations

As presented in the introduction of this Section 3.2, dynamic analysis by design

presents some limitations.

• The main limitation of a dynamic approach is coverage. Every path that

is not covered by the instrumented executions cannot be analyzed. As

mentioned in a previous paragraph, this limitation can be slightly reduced by

performing active instrumentation, and in particular by forcing conditional

branching. However, doing this may lead to explore paths that are impossible

to go all over in practice.

• Results of dynamic analysis are dependent on the context of the execution.

This leads to two sub-limitations. First, it is hard to generalize the results

that are obtained, because they may depend on some context-dependent

parameters that one is not aware of (for instance, the state of some unini-

tialized memory). Second, and for the same reasons, replay may not always

be possible. For instance, a program reading a non-initialized variable may or

may not crash, depending on the value of the uninitialized memory location.

• Dynamic analysis requires to be able to actually execute the program under

analysis. This means 1) that we can provide a context in which the program

can indeed be executed (i.e. the relevant architecture, needed libraries, etc.),

and 2) that either the program is trusted or we can confine its execution to

a restricted area in which it cannot make damage.

• Because the program under analysis is executed, it can detect and try to

defend actively against analysis. For instance, it can hide a part of its

behavior if it detects that it is being analyzed. This anti-debugging and

anti-instrumentation techniques are used by many malwares, and even by

legitimate programs such as [BD06].
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3.2.5 Dynamic taint analysis for automatic detection, analy-

sis, and signature generation of exploits on commodity

software [NS05]

In [NS05] (2005), the authors propose to adapt the taint analysis technique to

a dynamic approach to detect vulnerabilities on binaries. Their approach was a

significant improvement of the state of the art, as it is applicable to binaries with

no source needed (neither specific compilation options) and presented qualitative

results. This work has been reused a lot since ([CW08], [ARF+14] for example).

Their main objective is to detect at runtime when an untrusted input (e.g. network

packets, user input, etc.) are used in a dangerous way. They propose three steps:

TaintSeed, TaintTracker and TaintAssert. The taint mechanism relies on a

shadow memory.

3.2.5.1 Shadow Memory

A shadow memory maps every byte of the virtual memory used by a program to

one or several bytes of an ”abstract” memory that only stores meta-data. In the

case of [NS05], they map every single byte of the program under analysis to four

bytes in the shadow memory. These four bytes are used to store a pointer to a

data structure which stores information about the source of the content of the

data (trusted or not, provenance, etc. - see next paragraph).

3.2.5.2 TaintSeed

The first step is to taint untrusted data. Every data coming from network sockets,

files or stdin are marked as untrusted, and a Taint data structure is allocated in

the shadow memory to record meta-data (snapshot of the current stack, copy of

the concrete value of the data, etc.).

3.2.5.3 TaintTracker

The second step is to propagate the tainting from the untrusted sources when

they are used in computation or memory accesses. They differentiate two types of

instruction:

• arithmetic instructions (e.g. ADD, XOR, etc.): the result of an arithmetic

instruction will be tainted if and only if any byte of any of its operands is
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tainted.

• data movement instructions (e.g. LOAD, STORE, etc.): the data at the

destination will be tainted if and only if any byte of the source is tainted.

3.2.5.4 TaintAssert

Finally, TaintAssert instruments every operation that could lead to an illegitimate

behavior. In particular, for each instruction that modify the control flow, it checks if

the instruction’s operand is tainted. For instance, it checks that the data specifying

a JMP target is tainted. If so, then an anomaly is detected and the execution

stops. An ExploitAnalyzer step outputs details about the execution that led to

this anomaly (for instance, the provenance of the tainted data that activated the

detection).

3.2.5.5 Evaluation

The authors monitored the execution of several programs, as apache, ATPhttpd,

ssh, gcc, vim, etc. They claim that no false positive was detected during the

execution, and that functionalities of these programs where not victims of the

instrumentation. On ATPhttpd, they were able to detect a buffer-overflow attack

that targets the return value, and on synthetic programs they were able to detect

buffer overflows on function pointers and format strings. Regarding performances,

the announced overhead is between x1.5 and x40.

3.2.6 Howard: A Dynamic Excavator for Reverse Engineering

Data Structures [SSB11]

In [SSB11], Asia Slowinska et al. present a dynamic approach to retrieve data

structures from the execution of binaries. In particular, they target variables, arrays

and structures, and aim to use behavioral patterns to differentiate the three cases.

The problem can be illustrated by one simple example: let us consider an instruction

that accesses *(A + 4), i.e. where A is a memory location. (A + 4) can either

point to:

• a variable - e.g. (%ebp + 4) is typically the location of a local variable ;

• a cell - e.g. if A points to an array of integers ;



70 CHAPTER 3. STATIC AND DYNAMIC ANALYSIS

• a structure field - e.g. the second filed of a structure whose first field is

an integer.

The first part of the problem addressed in this work is to distinguish these three

cases.

3.2.6.1 Function call stack

First, they instrument CALL and RET functions to keep a consistent call stack. This

is important to contextualize accesses, in particular to the stack (an access to

*(%ebp + 4) highly depend on the value of %ebp, which changes at each call).

As we discuss in Chapter II, the problem of keeping a call stack consistent is not

trivial, and deserves to be addressed.

3.2.6.2 Pointer tracking

The next step is to keep track of pointers used to access data. The main idea is to

store, for each memory location B used at runtime, how it was computed: if it is

derived from another pointer, then the tag MBase(B) is set to A ; if it was derived

from no other address, then B is considered as a root pointer, and then MBase(B)

is set to root.

3.2.6.3 Multiple base pointers

A given memory location B may be addressed using different base pointers. For

instance, memset, often used to initialize dynamically allocated blocks, accesses

the data with no understanding of the structure. It will typically iterates, from the

base pointer B, by incrementing a pointer several times (and then each memory

access is computed using the previous address as a base pointer). Later accesses

will use the base pointer to access fields, according to the structure definition.

To deal with these cases, the authors propose heuristics to keep the less regular

structure (i.e., for instance, structures with fields of different sizes over arrays).

3.2.6.4 Detecting arrays

To detect arrays, they distinguish two main scenarios.

• Access relative to previous element - typically a loop that increments a

pointer at each iteration.
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• Access from the base pointer - typically an offset incremented at each

iteration.

3.2.6.5 Evaluation

Howard presents encouraging results, as it recovers over 90% of the structures and

arrays in wget and lighttpd for instance.
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Chapter 4

Problems addressed

In this section, we present our own choices for the approach we propose in Part II.

In Section 4.1, we present our objectives, and in Section 4.2 the main choices we

made regarding the approach to consider.

4.1 Objectives

4.1.1 Short-term: find points of interest in a program

Manual analysis of a binary is fastidious, mainly because it requires efforts to

understand machine code for a human being. We aim to provide an approach

that would help a reverse-engineer focus rapidly on the main points of interest of

the program. In this way, we aim to provide structure information to get a quick

understanding of the program structure ; and behavior-level information (e.g.,

information about the control flow and the data flow, the way memory is managed,

etc.) to emphasis interesting points (e.g., points where a suspicious behavior is

detected).

4.1.2 Long-term: automatically detect vulnerabilities

A long-term objective is to provide a fully automated vulnerability detection frame-

work. This is not in the scope of this work, but the remaining steps to climb seem

accessible. An interesting work, for example, would be to merge our approach with

73



74 CHAPTER 4. PROBLEMS ADDRESSED

approaches that specifically focus on vulnerability detection but which require more

information that the ones that are accessible from a binary at first look.

4.1.3 Criteria

Our objectives, explained in a general way in the two previous sections, can be

illustrated with three main criteria, that we detail in the following sections:

1. accuracy - we want to present accurate results

2. universality - we aim to target as many binaries as possible

3. scalability - the approach needs to be usable in practice, even on large

programs

4.1.4 Accuracy

In this approach, we aim to produce accurate results in practice. This criterion will

be validated through experiments. In addition, we try to limit false positives: when

possible, we favor under-approximations rather than over-approximations.

4.1.5 Universality

The approach we propose aims to be applicable to the largest set of programs.

This leads to several choices. First, we target binaries, and do not rely on the

knowledge of any other information, from the source code or from anywhere else.

The input of our approach is a binary, and only a binary. This allows to deal with

proprietary or malicious applications, for which the source code is not available,

and not only on open-source programs. Second, we do not rely on any particular

compilation option, nor on debugging information that may be embedded in a

binary, although we need to know the calling convention. Third, we do not rely on

the symbol table, thus this approach can deal with stripped binaries as well.

Discussion This universality is, in fact, relative to a given category of programs

(that one can call the class of kindly programs). On the other hand, programs can

be designed to be hard to analyze (on purpose), through obfuscation, self-modifying

code, packing, etc.
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4.1.6 Scalability

We want to propose a scalable approach. In order to be practical, and as this is a

first step in a larger analysis process (either manually - Section 4.1.1, or automatic

- Section 4.1.2), it is important to provide data in a reasonable amount of time,

even on large programs such as PDF viewers or text editors.

Discussion The scalability we target is at the scale of a common program.

However, we do not aim to be able to perform analysis at the scale of an operating

system for instance. By ”reasonable amount of time”, we mean that the execution

can still be performed within a few seconds (and not more than minutes)1..

4.2 Design choices

4.2.1 Dynamic analysis

Among the two main categories of analysis that can be performed on binaries (see

Sections 3.1 and 3.2), we choose to favor the dynamic approach, with its pros and

cons as mentioned in Section 3.2.4. In particular, we believe this approach is more

scalable than a static one. Regarding the objective of universality, this has two

consequences.

• + We can analyze programs that are statically obfuscated (up to a certain

point) with small effort. For instance, packed binaries and opaque predicates

are less limitative than with a static approach.

• - We cannot analyze programs that we cannot (because of compatibility

issues, lack of libraries, etc.) or do not want to (because we suspect it to be

malicious) execute.

4.2.2 Function-grained approach

A classical way to perform dynamic analysis is to work at the scale of instructions. In

this work, we propose to focus on a higher-level element of structuration: functions.

Although we do perform instrumentation on instructions, every analysis we propose

1i.e., one should not be afraid of replaying an instrumented execution to test a new input for

instance
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will be based on functions. For instance, we define a data-flow at function-level,

and we propose to analyze the memory management of a program by observing

function calls and returns only.

4.2.3 Passive instrumentation

Another choice we make is to keep the instrumentation passive. Indeed, we do not

want, as much as possible, to interfere with the execution of the program under

analysis, in order to catch a behavior that is as close as possible to its behavior

when it executes without analysis. This is justified by the fact we attempt to limit

false positives. As mentioned in Section 3.2.3, interfering with the execution can

lead to an over-approximation, because we may explore paths that cannot exist in

practice.

4.2.4 Online and Offline steps

The scalability criterion induces an effort to minimize the total time of analysis of

a program. However, the time of execution overhead and the memory overhead

are the main criteria for scalability. Therefore, these are the first measures we aim

to reduce as much as possible. We propose to adopt a two-steps approach: a first

online step which consists in collecting data, and a second offline step to deduce

information from these data. The online step has to be as lightweight as possible,

to keep a reasonable overhead. Of course, the offline step must also be efficient in

time, but this is not as critical. Indeed, the offline step can be replayed (for instance

with different parameters or heuristics) and can be subject to optimizations such

as parallelism.

4.2.5 A single execution

A major particularity of our approach, which also pursue the objective of scalability,

is that we rely on a single execution for each analysis. Many dynamic approaches

use multiple traces, whereas we aim to work with one. We claim that it is possible

to recover, with high accuracy and a low overhead, a lot of information in a single

execution. This highly exposes our approach to the coverage problem (as in one

execution, it is very likely that all branching have not been taken), but the main

advantage is that we keep it lightweight. In a future work, we could include fuzzing

techniques to cover more path of execution and therefore improve the coverage of
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our results, but we should emphasis the fact that multiple executions of the same

control flow (even with concrete values that differ) are not required to retrieve

accurate information. Coupled with a low overhead of the instrumentation, the

single execution makes the proposed approach indeed scalable by design.
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Part II

Dynamic analysis of binaries
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Chapter 5

Definitions

In this chapter, we introduce definitions and notations that we will use in the rest

of this work to describe the problems we address. We aim to define at binary level

notions that only exist explicitly at source level, such as functions. Our challenge is

to propose definitions that are general enough to cover the largest set of binaries

we can encounter, independently from an architecture or the way it was produced

(compilation, hand-written), but that are still consistent with their equivalents at

source-level in the case of compiled programs.

5.1 Generalities

In this section, we present some general notations and notions that we will use in

the following chapters. We propose our own definitions of execution and binary in

order to be as much universal as possible: they seem to be applicable to a large

variety of cases, with no assumption on the form a program takes. Our approach is

based on the dynamic behavior: we consider a program through the executions we

observe. From these executions, sometimes we can retrieve a static form we call

binary, but not always. Our definitions allow to consider, for example, a program

that would never be stored in its whole in any local memory (e.g., a program that

gets a part of the instructions to be executed from a remote host).

81
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5.1.1 Instruction

We call opcode a basic operation in a considered machine language (e.g., ADD,

LOAD, etc.). An opcode can have zero, one or several operands. We denote by

|opcode| the number of operands an opcode takes. It can be zero (e.g., |RET| = 0),

one (e.g., |JMP| = 1) or several (e.g. |ADD| = 2) operands. From opcodes and

operands, we define the notion of instruction.

Definition 1. An instruction is a couple (opcode, operands), where operands is a

list of |opcode| operands.

For example, (ADD, [$2,%eax ]) is an instruction corresponding to the addition of

the constant value $2 with the value of the register %eax . We denote by size(ins)

the size of an instruction ins (i.e., the size of the opcode plus its operands)

computed statically.

5.1.2 Execution

We define a sequence of instructions as several instructions dynamically executed,

and indexed by an address.

Definition 2. A sequence of instructions is a list of couples (addr, ins), where ins

is an executed instruction and addr is the address where ins is loaded in memory.

Addresses are totally ordered and pairwise disjoint.

Instructions are loaded from a base address we denote by base. This base

address is dynamic. From base, we can compute the offset of each instruction in

the sequence: offset = addr - base. Finally, we define an execution as a sequence

of concrete instructions plus a base address.

Definition 3. We call execution a tuple (base, sci), where base is the base address

where instructions are loaded and sci is a sequence of concrete instructions, i.e.,

instructions plus the (dynamic) concrete value of their operands at the time they

are executed. The address of the first instruction of sci is called entry point of the

execution.

For example, (ADD, [$2,%eax]) is an instruction and (ADD, [$2,%eax], [$2, $1])

is a concrete instruction (where %eax has the value $1).

By abuse of notation, we say that an instruction (addr, ins) is in an execution

e ((addr , ins) ∈ e) if there is a concrete instruction in e that corresponds to
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(addr, ins), i.e., the address and the static instructions are the same, and without

considering the concrete values of the operands.

5.1.3 Binary

From several executions e1, e2, ...en of a given program, we try to get a consistent

static description we call binary. The intuition here is that if for every observed

execution, a given offset always corresponds to the same instruction, then we can

construct a static representation of all these executions where an offset corresponds

to an instruction. Note that this static representation may depend on the number

and the nature of the considered executions.

Definition 4. If, for n executions ei = (bi , si), i ∈ J1, nK of a program with the

same entry point ep, we have

∀offset,∀ei = (bi , si),∀ej = (bj , sj),

[(bi + offset, ins i , vals i) ∈ si ∧ (bj + offset, ins j , vals j) ∈ sj ] =⇒ [ins i = insj ]

then we denote by B and call binary the set of couples (offset, ins):

B =
⋃
ei

{(addr − bi , ins),∀(addr , ins, vals) ∈ si}

We denote by E(B) the set of possible executions of B starting at entry point

ep.

In other words, we check that for every address addri , there is at most one

corresponding instruction, if we consider every execution ei ∈ e1, e2, ...en; and if so,

we construct a static representation by the union of every tuple (addr , ins) seen

during one of these executions. From this point, we only consider programs for

which a static representation can be computed, and unless if explicitly stated, we

make no further distinction between a program and its binary representation.

Remarks A self-modifying code, for instance, will not correspond to our definition,

as we can have different instructions executed corresponding to the same offset. In

these cases, it seems logic not to consider one static representation of the binary.

We can also imagine a program that reads its instructions through a network

socket.
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5.1.4 Memory location

During an execution, data can be accessed, either in memory through addressing,

or in registers. We define the set of memory locations, i.e. every location accessible

by the program that can hold data during an execution e.

Definition 5. The set of memory locations relatively to a given execution e of a

binary B, denoted by M∗(e), is the set of locations where the program B can

read and/or write.

This definition includes the whole addressable memory, plus registers.

We also need to define the content of a memory location. When the size of

the data is known, then the content of a memory location is explicit. However, it

can be hard to know the size of the data, and in this case we still need to express

properties of the memory location content. To do so, we define a minimum size.

Definition 6. The minimum size of a memory location is one byte.

From this, the minimum content of a memory location corresponds to its

content if the size is known, and to the first byte if not.

Discussion For registers, the ”first” byte is the eight least-significant bits, and

for memory locations pointed by an address a, it corresponds to the byte pointed

directly by a. Note that there can be more than one byte of actual data being

passed, but if we ignore the exact size we assume that it is at least one byte.

5.1.5 Program counter

We denote by %pc the program counter, i.e. a memory location that contains the

address of the next instruction to be executed. The value of this program counter

changes after each instruction executed, and there are two scenarios to distinguish:

• either it is incremented by ”one instruction”: %pc = %pc + size(ins), meaning

that the next instruction to be executed will be the next instruction in order

of addresses - we call this scenario sequential execution,

• or its value is modified by the instruction being executed, either relatively to

its current value or in absolute, but in a way that is not equivalent to the

sequential execution - we call this scenario discontinuous execution.



5.2. STRUCTURE 85

Remark - If, for instance, the %pc value is set by a JMP instruction that happens

to point to the next instruction sequentially, we still consider the execution as

sequential.

5.2 Structure

We define here elements relative to the structure of a binary. The definitions

we give are general, and can be applied to any binary with no assumption on its

provenance. We show, for each of them, that it captures in particular structures

that make sense in a binary obtained by compilation, regarding the structures that

can exist at source-level, but our approach is not limited to compiled binaries.

Other definitions of functions, parameters and type exist, but are always related to

source-level information. For instance, in [ASB17], they define entry and return

points in a binary relatively to the source code. Here, we propose definitions that

are applicable to binaries that were not obtained by compilation. They are also

applicable to executions that do not correspond to a static binary file.

5.2.1 Function

There is no proper notion of functions at binary level, although they are key elements

of the structuration of programs at source level. We propose to define functions

at binary level, and to use it as an element of structuration as well, which would be

consistent with functions at source level in the case of compiled programs. This

consistency is specifically discussed in Section 5.2.1.4.

5.2.1.1 Definitions

As we use a dynamic approach, our definition of function is relative to a given

execution.

Call First, we need to define a call.

Definition 7. A call c during an execution e is either:

• a block of instructions executed sequentially such that: the first instruction

saves the address of the instruction following the block, denoted by ret(c),

and the last instruction induces a discontinuity in the evolution of %pc, from

its current value to a new address we call the target of the call;
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• or an assignment of %pc to the target of a previous call.

Stack of calls We represent calls by the construction of a stack of calls, that we

denote by S(e) for a given execution e. Each time a call is detected during e, we

push ret(c) in S(e). The following events can lead to pop values from S(e):

1. if the execution e terminates, then every value of S(e) is popped,

2. if %pc takes a value v corresponding to a ret(c) ∈ S(e), then values are

popped from the top of S(e) until the first occurrence of this value is found

(this value is also popped),

3. if a given ret(c) is overwritten, then values are popped from S(e) until

ret(c) is reached (this value is also popped).

Event 1 corresponds to a (possibly unexpected) termination of e at a point

where S(e) is not empty. Event 2 means that when a call c restores the value

of %pc, i.e. the sequential execution (before the call) resumes, every call that

occurred after c is also popped from S(e). Finally, event 3 means that when there

is no more way a given call c can restore %pc to the value it had before c, then

ret(c) and ret(c ′) for every c ′ that occurred after c are popped from S(e).

Return From these definitions of call, we can define a return corresponding to

each call.

Definition 8. A return during the execution e, corresponding to a call c , is when

ret(c) is popped from S(e).

Now that we defined a call and its corresponding return, we can define a

function in a binary, relatively to an execution e.

Definition 9. We call function a target to at least one call during e. A function is

identified by the index (address) of its first instruction, i.e. the target of the call.

We denote by F(e) the set of functions, according to Definition 9, and relatively

to the execution e of the binary under analysis. Finally, for every function f ∈ F(e),

we define executions of f .

Definition 10. We define an execution of f , denoted by ε, the sequence of in-

structions executed from a call of f to the corresponding return.
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Note that this definition includes instructions corresponding to another function

that would be called during the execution of f .

Definition 11. For a given execution e, and a function f ∈ F(e), we denote by

ebf the set of executions ε of f that occur during e. By extension, we denote by

F(E(B)) the set of executions of f occurring in any execution e of the binary B.

5.2.1.2 Discussion

Call The two-steps call we define in Definition 7 allows to distinguish a simple

transfer of the control flow (e.g. a jump in a loop) from a more complex structure

we call function. The particularity of functions we choose to emphasis is the

capability to return, after the transfer of the control flow, to where the execution

was. This capability requires a save of the program counter (or the next sequential

instruction) before transferring the control flow, and that is what characterizes

calls. Without this notion, functions and basic blocks would be indistinguishable.

Return Our definition of return raises several points that deserve to be discussed.

First, we consider that every function being called returns at the end of the

execution e of the program under analysis. Second, we consider that if f calls g

and g calls h, then when f returns, both g and h return. Finally, we consider that

a function returns when the saved value of %pc is not available anymore. It can be

because it has been consumed to return to the point of the execution where the

call occurred, or because it has been lost. In any case, the function cannot return

anymore to the initial point of the execution, and therefore we consider that its

own execution is over.

Function identifier According to Definition 9, we identify functions with the

index of their first instructions. This has several consequences. First, it means

that a function has a unique entry point (which is its identifier), and that this

definition excludes to consider functions with multiple entry points as the same

structure. Second, as the sequence of instructions being executed from the call

to its corresponding return is not a part of the function identifier, this definition

covers functions that are made of multiple basic blocks and conditional branching:

several sets of executed instructions starting from the same index will be identified

as the same function. Finally, our definition of return corresponding to a call does

not imply uniqueness. Therefore, it deals with functions that have multiple return
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points, This means, in particular, that the functions we capture can be made of

multiple return points in different basic blocks.

5.2.1.3 Examples

We propose several examples and counterexamples of calls and returns to illustrate

our definitions. We use, as much as possible, x86 to give code examples, but in

some cases we take liberties, and especially we assume that the program counter

can be modified by classic instructions (mov, add, etc.) whereas this is not possible

in x86.

Call According to our definition, a call is a save of a value of %pc to be able to

return and a discontinuity in the execution. We give here two examples which do

that at assembly level.

Instruction CALL The more intuitive example of call, in x86 for example,

is the instruction CALL. Indeed, this instruction performs a push of the program

counter on the stack, and a jump to the targeted address.

call 80484cd ¡f¿

Explicit save of the program counter Assuming that it is possible to ma-

nipulate directly the program counter %pc in a given architecture, a sequence of

instructions starting by pushing %pc + ... (depending on the number of instruc-

tions) and ending with an absolute jump would also correspond to a call according

to Definition 7:

mov %pc, %eax

add 3, %eax

push %eax

jmp @... // target of the call

Note that this save of %pc could be done through registers instead of the stack

(but in this case, there can only be one depth of call).
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Return We recall that a return occur when either the program counter takes

back the value it had before the call, or when this value is not accessible anymore

(if we exclude the case where the execution stops before functions have returned).

Instruction RET The instruction RET in x86 is also a good candidate for

returns, as it pops the address where to return from the stack and set the program

counter to this value. It is generally preceded by a restoration of the stack base

pointer (%ebp), but this is not a requirement.

pop %ebp

ret

Explicit return Once again, assuming that the program counter can be read

and written through classic instructions, a return can be implemented by several

other ways. For instance, a simple move from the location of the save to %pc

implements a return. Another one would be an override of this location.

pop %eax // we assume that the return addr

jmp %eax // was saved on the stack

5.2.1.4 Consistency with C compiled binaries

This definition of functions is compatible with C compiled binaries, and is consistent

with the notion of function at source level in C. We discuss in this section some

particular points.

CALL and RET The most frequent way a function call is compiled by gcc (and

other compilers) from C to assembly is using the instruction CALL. In x86, for

instance, this instruction pushes the current value of %pc (plus an offset to return

to the instruction that follows CALL and not CALL itself), and changes the value

of %pc (with the address of the targeted function). It corresponds exactly to the

two-steps event we defined. In the same way, the RET instruction pops the return

address from the stack (and therefore consumes it) into %pc.
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Compiler optimizations In addition, our definition also includes compiler opti-

mizations in the way it compiles calls and returns. For instance, some calls are

performed using a JMP instruction, but this instruction is always preceded by a

save of the %pc to be able to return. Nevertheless, our definition does not handle

properly the tail call optimization, because calls do not include a push of a return

address in this kind of scenario. We argue that, at binary level, it is reasonable to

consider this kind of pattern is not a function call. The only reason we may want

to include them is to comply with the source code it comes from. We propose

heuristics in Section 8.2 in order to include tail calls to our definition and thus to

retrieve function calls as they were written at source level.

5.2.2 Memory location and parameters

In this section, we propose a definition for parameters and return values of functions.

First, we define the memory locations where parameters can hold, and second we

propose a definition of parameters and return values.

5.2.2.1 Memory location of parameters and return values

We propose here two sets of memory locations that we use then to define parameters

and return values of functions. In Definition 5, we defined the memory locations

of an execution e. From this, we define two subsets of M∗(e), where functions

are susceptible of getting parameters/passing return values.

Definition 12. We define the parameter memory locations, relatively to an exe-

cution e, denoted as Mp(e), as the subset of M∗(e) where any function f can

read a value set before f was called.

Definition 13. We define the return value memory locations, relatively to an ex-

ecution e, denoted as Mr (e), as the subset of M∗(e) where any function f can

write a value that will be read after t returns.

Note that one can arbitrary setMp(e) andMr (e), according to a given calling

convention for example. In the general case, one can set Mp(e) = Mr (e) =

M∗(e).
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5.2.3 Parameter and return value

As a part of our dynamic approach, we define in the first place a notion of parameter

(and return value) that is relative to a given execution ε of a function f . In Section

5.2.4, we propose a definition of arity that generalizes it and that is independent

from a given execution of f .

5.2.3.1 Definition

We define a parameter of f as a location of M that is accessed in a particular way

by f . Note that, according to what memory location is included or not into M,

this definition will include or not different entities as parameters.

Definition 14. A parameter of f , relatively to an execution ε ∈ ebf , is a memory

location m ∈Mp(e) such that:

1. the content of m is read before written by f during ε,

2. the value of m (i.e., the address of the memory location) is not computed

from a m′ ∈Mp(e) read before written by f during ε.

In the same way, we define the notion of return values, in the frame of an

execution ε of f , according to Mr .

Definition 15. A return value of f , relatively to an execution ε ∈ ebf , is a memory

location of Mr (e) such that:

1. the content of m is written by f during ε,

2. the content of m is read (before written) after ε, i.e., after f has returned,

3. the value of m (i.e., the address of the memory location) is not computed

from a m′ ∈Mr (e) written by f during ε and read after ε.

5.2.3.2 Discussion

We propose to discuss in this section several points of our definitions.
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Parameter We consider in this definition that a parameter is a location that is

read before being written by a function f . This location can either be a register

or a memory address. For instance in x86 architectures, if f performs a save of

the register %ebp1: the value of %ebp will thus be read before being written and

so will be considered as a parameter of f , as long as %ebp is in Mp(e). However,

we introduce a limitation with the second criterion (”not computed from...”).

Locations corresponding to registers are addressed directly and never require a

computation ; but other memory locations may need a computation from a base

address, plus an offset (for instance). What we are saying with this criterion is that

a memory location obtained from a parameter should not be considered as another

(new) parameter. If f takes an address a as a parameter, and if it accesses a + 4,

the memory location a + 4 should not be considered as another parameter of f ,

even if its content is read before written.

In other words, parameters are memory locations, directly addressable2 by f ,

that are read before written.

Return value According to the definition we propose, a return value is a location

that is written by f and that is reused after f has returned. Functions usually

use registers to perform computation, to store for example intermediate results.

They also push parameters on the stack and may access other memory location.

However, these are not return values of f as long as they are not used further in

the execution. In addition, we use the same argument as for parameters to exclude

memory locations computed from a return value (”not computed from...”).

In other words, return values are memory locations, directly addressable by the

caller, that are written by f and read by one of its callers.

5.2.3.3 Examples

Parameter We propose several examples to illustrate, in different common cases,

what would be considered as a parameter according to Definition 14 and what

would not.

Register parameter In Listing 5.1, the value of registers %rbp, %rsp and

%edi are read before being written. Therefore, ifMp(e) contains all registers, then

1This register, in x86 architectures, stores the address of the base of the stack for the current

function
2i.e., using a direct addressing mode
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this function takes at least these three parameters. On the other hand, one can

choose to exclude %rbp and %rsp from Mp(e), in which case the only remaining

parameter is %edi. Note that the location %rbp - 0x14 is written before being

read, thus it is not a parameter of f .

00000000004004 ad ¡f¿:
4004ad: 55 push % rbp
4004ae: 48 89 e5 mov % r s p ,% rbp
4004b1: 89 7d ec mov % e d i ,-0x14(% rbp )
4004b4: 8b 45 ec mov -0x14(% rbp ),% eax
4004b7: 83 c0 01 add $0x1 ,% eax
4004ba: 89 45 fc mov %eax ,-0x4(% rbp )
4004bd: 8b 4d fc mov -0x4(% rbp ) ,% ecx
...: ... ... ...

Listing 5.1: Example of register parameter

Stack parameter In Listing 5.2, we have %ebp, %esp and %ebp + 0x8 that

are read before written. Depending on the set Mp(e), we end up with different

results. If %esp and %ebp are in Mp(e), then they both are considered as parame-

ters. However, the location %ebp + 8 is computed from %ebp in Mp(e) which is

read before written, so it would not be considered as a parameter of f . If %ebp is

not in Mp(e), then it will not be considered as a parameter, but %ebp + 8 will be.

This later case is more compliant with the notion of parameters at source level -

this will be discussed in Section 8.2.

080483 cb ¡f¿:
80483 cb: 55 push %ebp
80483 cc: 89 e5 mov %esp ,%ebp
80483 ce: 83 ec 10 sub $0x10 ,% esp
80483 d1: 8b 45 08 mov 0x8(%ebp) ,% eax
80483 d4: 83 c0 01 add $0x1 ,% eax
80483 d7: 89 45 fc mov %eax ,-0x4(%ebp)
80483 da: 8b 4d fc mov -0x4(%ebp) ,% ecx
...: ... ... ...

Listing 5.2: Example of stack parameter

Global variable Listing 5.3 present an example of a function that access a

global variable: the location 0x80497a0 is read before being written, and is not
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computed from another memory location read before written. Therefore, this

location will be considered, according to Definition 14, as holding a parameter of f .

08048422 ¡f¿:
8048422: 55 push %ebp
8048423: 89 e5 mov %esp ,%ebp
8048425: 83 ec 10 sub $0x10 ,% esp
8048428: a1 a0 97 04 08 mov 0x80497a0 ,% eax
804842d: 89 45 fc mov %eax ,-0x4(%ebp)
...: ... ... ...

Listing 5.3: Example of global variable

Address In Listing 5.4, %ebp, %esp, %ebp + 8, *(%ebp + 8) and *(%ebp +

8) + 4 are memory locations that are read before being written. If we exclude

%ebp and %esp from Mp(e), we have %ebp + 8 which is a parameter, that we

denote by a. Then, the function f accesses the memory location pointed by a (i.e.,

*a), and then the memory location pointed by a + 4. Because a is read before

written, any memory location computed from a is not considered as a parameter,

and thus ∗a and ∗(a + 4) are not parameters of f .

0804843d ¡f¿:
804843d: 55 push %ebp
804843e: 89 e5 mov %esp ,%ebp
8048440: 83 ec 10 sub $0x10 ,% esp
8048443: 8b 45 08 mov 0x8(%ebp),% eax
8048446: 8b 00 mov (% eax) ,% eax
8048448: 89 45 fc mov %eax ,-0x4(%ebp)
804844b: 8b 45 08 mov 0x8(%ebp) ,% eax
804844e: 8b 40 04 mov 0x4(% eax) ,% eax
8048451: 89 45 f8 mov %eax ,-0x8(%ebp)
...: ... ... ...

Listing 5.4: Example of a parameter used to access memory locations

Return value We propose here three concrete examples of return value to

illustrate our definition.

Through register We give in Listing 5.5 an example of a return value passed

through a register (in this case, %eax). At address 0x80484e1, the content of
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the register %eax is set by f . At address 0x80484f0, f is called, and at address

0x80484f8, i.e. after f has returned, the content of %eax is read by main. This

corresponds to a return value of f , in the case where %eax is in Mr (e).

080484 cd ¡f¿:
...: ... ... ...

80484 e1: b8 00 00 00 00 mov $0x0 ,% eax
80484 e6: c9 l e a v e
80484 e7: c3 r e t

080484 e8 ¡main ¿:
...: ... ... ...

80484 f0: e8 d8 ff ff ff c a l l 80484 cd ¡f¿
80484 f5: 83 c4 04 add $0x4 ,% esp
80484 f8: 89 45 fc mov %eax ,-0x4(%ebp)

...: ... ... ...

Listing 5.5: Example of a return value passed through register

Out parameter In Listing 5.6, we propose an example of what is commonly

called an out parameter, i.e. a parameter that is a location where to write a result.

In this example, f takes an address, that we will denote as a, as a parameter.

It corresponds to the location %ebp + 8. At address 0x80484fa, it writes the

content of %edx to this location a. Then, although is is not explicit statically, the

function main reads this value at address 0x804851e3. Consequently, this location

a is, according to Definition 15, a return value of f (if it is included in Mr (e)).

080484 e8 ¡f¿:
80484 e8: 55 push %ebp
80484 e9: 89 e5 mov %esp ,%ebp

...: ... ... ...
80484 f7: 8b 45 08 mov 0x8(%ebp),% eax
80484 fa: 89 10 mov %edx ,(% eax)
80484 fc: 90 nop
80484 fd: c9 l e a v e
80484 fe: c3 r e t

080484 ff ¡main ¿:
80484 ff: 55 push %ebp
8048500: 89 e5 mov %esp ,%ebp
8048502: 83 ec 10 sub $0x10 ,% esp
8048505: 6a 00 push $0x0
804850c: 83 c4 04 add $0x4 ,% esp

3In fact, we can deduce statically that %ebp + 8 in f corresponds to the same location as

%ebp - 4 in main ; however this is explicit in a dynamic analysis context
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8048515: 50 push % eax
...: ... ... ...

8048516: e8 cd ff ff ff c a l l 80484e8 ¡f¿
804851b: 83 c4 04 add $0x4 ,% esp
804851e: 8b 45 fc mov -0x4(%ebp) ,% eax
8048521: c9 l e a v e
8048522: c3 r e t

...: ... ... ...

Listing 5.6: Example of an ”out parameter”, i.e. a return value passed by reference

Global variable Listing 5.7 presents a function that uses a global variable

to return a value (in this case, the global variable is at address 0x8049900. At

address 0x8048505, this global variable is written by f ; and at address 0x8048538

it is read by main after f has returned. Here again, if 0x80048505 ∈MR(e), then

it will be considered as a return value of f .

080484 ff ¡f¿:
...: ... ... ...

8048505: a3 00 99 04 08 mov %eax ,0 x8049900
804850a: 90 nop
804850b: 5d pop %ebp
804850c: c3 r e t

0804850d ¡main ¿:
...: ... ... ...

8048530: e8 ca ff ff ff c a l l 80484ff ¡f¿
8048535: 83 c4 04 add $0x4 ,% esp
8048538: a1 00 99 04 08 mov 0x8049900 ,% eax

...: ... ... ...

Listing 5.7: Example of a global variable used to return a value

5.2.3.4 Consistency with C compiled binaries

In this section, we show that Definition 14 and Definition 15 are compliant with

the notion of parameters and return values at source level in C, if Mp(e) is wisely

chosen. In fact, every example given in the previous section was obtained by

compilation from C ; we propose to make explicit the set of Mp(e) for each

example that leads to obtain parameters and return values in keeping with the C

source code.

Parameter
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Register and stack parameter Listing 5.8 is the C code from which Listings

5.1 and 5.2 were obtained (one was compiled for 32bit architecture, the other one

for 64bit architecture). In this source code, f has one parameter (namely a). With

Mp(e) that excludes %ebp and %esp, in both cases from the assembly code we

retrieve this one parameter (%edi in the first case and %ebp + 0x8 in the later

case).

i n t f( i n t a) –
i n t b = a + 1;

...

Listing 5.8: C code of a function with one parameter - source from which Listings

5.1 and 5.2 were obtained

Global variable Listing 5.3 corresponds to a compilation of the C code pre-

sented in Listing 5.9. In this scenario, the location of the global variable (here

0x80497a0) is considered as a parameter of f if Mp(e) includes any addressable

memory location. However, to be compliant with source level, i.e. to exclude

VALUE from the parameters of f , one can set Mp(e) in a way that excludes the

data segment of the binary under analysis. Thus, f would have no parameter

according to our definition, which is what is defined at source level.

i n t VALUE = 0xcafe;

i n t f(void) –
i n t a = VALUE;

...

Listing 5.9: C code of a function using a global variable - source from which Listing

5.3 was obtained

Return value In C, a function can return either none or one parameter, but no

more. This means that, to be compliant with the prototypes of functions as defined

in C, our definition of a return value should exclude out parameters and global

variables (at least). To exclude global variables, it is enough to set Mr (e) to

exclude the data segment of the binary under analysis, where global variables are



98 CHAPTER 5. DEFINITIONS

stored. Regarding out parameters, we could add a criterion to exclude fromMr (e)

every location that is computed from input parameters of f .

5.2.4 Arity

5.2.4.1 Inputs

For each execution ε of f , we denote by inε(f ) the set of m ∈ M(f ) that are

parameters of f during ε, according to Definition 14. We denote by ine(f ) the set

of m ∈M(f ) that are parameters of f during e:

ine(f ) =
⋃
ε∈ebf

inε(f )

In other words, ine(f ) is the set of memory locations that are detected as

parameters of f during at least one execution of f .

By extension, we define the set of parameters of f relative to any possible

execution e:

Definition 16. The set of parameters of f ∈ F(E(B)) is

in(f ) =
⋃

e∈E(B)

ine(f )

From this, we can define the notion of arity of f relatively to parameters as

follows.

Definition 17. The parameter arity of f , denoted by #pf , is the number of differ-

ent memory locations ofMp that are parameters in at least one possible execution

ε of f .

#pf = |in(f )|

We denote by #pfe = |ine(f )| the parameter arity of f relative to one execution

e of the binary under analysis B.

5.2.4.2 Outputs

In the same way, we denote for each execution ε of f outε(f ) the set of m ∈Mr

that are return values according to Definition 15, and the set of return values of f

during e:
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oute(f ) =
⋃
ε∈ebf

outε(f )

We define by extension the set of return values of f relatively to any possible

execution e:

Definition 18. The set of return values of f ∈ F(E(B)) is

out(f ) =
⋃

e∈E(B)

oute(f )

From this, we define the return value arity of f as follows.

Definition 19. The return value arity of f , denoted by #r f , is the number of

different memory locations of Mr that are return values in at least one possible

execution ε of f :

#r f = |out(f )|

We denote by #r fe = |oute(f )| the return value arity of f relative to one

execution e of the binary under analysis B.

5.2.4.3 Order of parameters

We propose to order the two sets in(f ) and out(f ) with indexes from 1 to #pf

and from 1 to #r f respectively, so we can designate parameters of f by their

index. For any i ∈ J1,#pf K, we denote by fp[i ] the memory location holding the i th

parameter of f , and for any j ∈ J1,#r f K, we denote by fr [j ] the j th return value of

f , accordingly to a given order of the two sets. This order can be set, for example,

regarding the calling convention (they usually specify an order of memory locations

to be used to pass parameters). In any case, this order should be invariant, and

should not depend on the considered execution. We may not detect the first and

third parameter of a function during an execution e, but the second parameter

would still be indexed by 2.

5.2.5 Type

In this section, we propose definitions relative to typing of parameters. First, we

present what we aim to express through the notion of typing, and then we propose

definitions of operations and typing.
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5.2.5.1 Nature

Typing is usually considered as a high-level notion, although it also exists at binary

level. The main difference is that, whereas at source level, type is often explicitly

determined (either set or inferred), at binary level there is no meta-data associated

to a memory location to store its type. Typing is then relative to operations that

can be performed on a data, and not defined explicitly when the data is set. For

instance, an address is not explicitly declared as such in a binary code, however

it will probably be used to access a memory location, whereas an integer value

would not. Usually, the notion of type of a variable holds in fact three levels of

information:

1. the nature of data (address, integer, etc.) from a semantic point of view,

2. the size of data (one byte, two bytes, four bytes, etc.),

3. meta-data (nature of the data pointed by an address, signed or unsigned

integer, etc.).

At source level, these three levels are useful, for instance to perform type

checking (usually at compilation time) and to optimize the assembly code produced.

However, the semantic distinction between variables is made at level 1 only : the

kind of data defines the operations that can be performed on the variable, whereas

the size may not.

In this work, we call typing the nature of the data, i.e., according to the kind

of operations that can be performed on it. The following definitions lead to a

precise description of typing regarding function parameters and return values.

5.2.5.2 Operations

Instructions usually manage their operands asymmetrically. Therefore, we introduce

the notion of operation, as a couple of an instruction and one of its operands.

Definition 20. Given an instruction ins = (opcode, operands), we construct

|opcode| operations as follows:

(opcode, operands) −→ {(opcode, i),∀i ∈ J1, |opcode|K}

We denote by (op, i)(p) the operation (op, i) applied to the parameter p.
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5.2.5.3 Typing

For each parameter of a given function, we define its type according to the kind of

operations that can be performed on it. We first define the notion of set of possible

types, which corresponds to the types that are considered in a given context.

Definition 21. A type t is defined by a set of operations (op, i) that can be applied

to data of this type.

Definition 22. The set of types T (e) is the set of types that are considered during

an execution e.

In other words, T is a set of sets of operations.

Definition 23. The set of operations, during an execution e, used to discriminate

types, is the set of all operations defining at least one type:

O(e) =
⋃
t∈T
{(op, i) ∈ t}

From these definitions, we can express the function type for parameters of a

function, according to a given execution.

Definition 24. For a function f , an execution ε ∈ ebf , and for any p ∈ inε(f ) ∪
outε(f ) , we define

typeε(p) = T (e) \ {t ∈ T (e) | ∃(op, i) ∈ O(e), (op, i)(p) and (op, i) /∈ t}

This formula states that possible types of p given the execution ε is the set of all

considered types for which we have not observed inconsistency, i.e. discriminating

operations of other types applied to p.

Note that any operation performed on p that is not in O(e) has no influence

on its type. We generalize Definition 24 to the entire execution e:

Definition 25. For a function f and an execution e, we define the possible types

of p ∈ in(f ) ∪ out(f ):

typee(p) =
⋂
ε∈ebf

typeε(p)

From this definition of possible types, three scenarios can occur:
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1. typee(p) = ∅: this means that the set of operations applied to p does not

correspond to any type t ∈ T (e). In this case, we conclude that the type of

p is inconsistent (noted INCONS).

2. |typee(p)| > 1: this means that the set of operations applied to p is not

enough to conclude on the type of p: several types are consistent with the

operations seen during e. In this case, we conclude that the type of p is

undefined (noted UNDEF).

3. |typee(p)| = 1: exactly one type t of T (e) is consistent with the set of

operations performed on p. In this case, p is typed with t.

Finally, we define the type of a parameter (resp. return value) regarding any

execution as follows:

Definition 26. For a function f of a binary B, let us denote by St the set

St =
⋂

e∈E(B)

typee(p)

for p ∈ in(f ) ∪ out(f ). We define the type of p as follows:

type(p) =


the unique element of St if |St | = 1

UNDEF if |St | > 1

INCONS if |St | = 0

This definition is a generalization of Definition 25 to every execution of B.

5.2.5.4 Example

A concrete instance of these definitions to propose a typing is given in Section

6.2.1, where we present our approach. In addition, we propose here a basic example

with three considered types: booleans, integers and floats. We define the sets

corresponding to each type as follows:

• bool = {AND, OR, XOR, NOT, CMP},

• int = {ADD, SUB, MULT, XOR, DIVE4, CMP, MOD},
4Euclidean division
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• f loat = {ADD, SUB, MULT, DIVF5, CMP}.

Note that in this instruction set, operations are not typed, except for the

division (DIVE and DIVF). For example, the ADD instruction can be applied to a

float or an integer. In some instruction sets, there would be different instructions

to deal with different types of variable.

Now consider in Listing 5.10 three executions of the same function f , taking

one parameter fp[1] at memory location %rdi, from which we want to retrieve the

type. The given instructions are the one actually executed during the call of f .

// First execution of f
f:

PUSH %ebp
MOV %esp , %ebp
SUB 0x4 , % esp
MOV % e d i , -0x4(%ebp)
CMP -0x4(%ebp), 0
JLE ret˙err

ret˙err:
MOV -1, % eax
RET

// Second execution of f
f:

PUSH %ebp
MOV %esp , %ebp
SUB 0x4, % esp
MOV % e d i , -0x4(%ebp)
CMP -0x4(%ebp), 0
JLE ret˙err
CMP -0x4(%ebp), 0xFF
JGE mask
SUB 1, ˙-0x4(%ebp)
CMP -0x4(%ebp), 0
JE ret˙err

ret˙err:
MOV -1, % eax
RET

// Third execution of f
f:

PUSH %ebp
MOV %esp , %ebp
SUB 0x4, % esp
MOV % e d i , -0x4(%ebp)
CMP -0x4(%ebp), 0
JLE ret˙err
CMP -0x4(%ebp), 0xFFFF
JGE mask

mask:

5Floating division
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MOV -0x4(%ebp), % eax
XOR 0xFFFF , % eax
...

Listing 5.10: Three executions of a function f taking one parameter

During the first execution ε1 of f , the only operation performed on fp[1] is a

comparison (CMP), which does not allow to conclude. The second execution ε2

leads to more instructions to be executed, and in particular instruction SUB. Finally,

during the third execution ε3 of f , instructions CMP and XOR are computed.

According to Definition 24, and O(e) deduced from the instructions specified

in definitions of bool , int and f loat, we have:
typeε1 (fp[1]) = {bool, int, f loat}
typeε2 (fp[1]) = {int, f loat}
typeε3 (fp[1]) = {bool, int}

From these three sets, we can deduce the type of the first parameter of f in

the execution e:

typee(fp[1]) =
⋂

ε ∈ebf

typeε(fp[1]) = {int }

In this example, the intersection of these sets gives a set with exactly one

element, so we can conclude that fp[1] is typed with the type int.

5.3 Behavior

The previous section was related to structure of a binary, and focuses on the

functions themselves (and in particular its parameters and return values). In this

section, we define notions relative to the behavior of a binary program during its

execution. Our point of view is still at the granularity of functions, so the behavior

we aim to capture is relative to the way functions are called during the execution.

We also consider data flow to express a sharing of information between functions.

5.3.1 Number of calls

First, we introduce a notation relative to the number of calls of functions. For any

execution e, and for any function f ∈ F(e), we denote by nce(f ) the number of
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times f is called during execution e. For function f ∈ F(e) that is never executed

during e, nce(f ) = 0.

In other words, nce(f ) is the number of times %pc takes as a value the address

of the first instruction of f during e.

5.3.2 Data flow

We need to define a notion of data flow from a memory location m to another

memory location m′.

Definition 27. Given two memory locations m1 ∈ M∗(e) and m2 ∈ M∗(e) and

two instructions i1 and i2 of an execution e, there is a data flow between (i1, m1)

and (i2, m2) if:

• the minimum content of m1 is copied to location m2 at instruction ic between

instructions i1 and i2 and the minimum content of m2 is not modified in

any way between ic and i2,

• or there exists m3 ∈ M∗(e) and an instruction i3 such that there is a data

flow between (i1, m1) and (i3, m3) and between (i3, m3) and (i2, m2).

We denote a data flow between (i1, m1) and (i2, m2) by (i1, m1) ⇀ (i2, m2).

Definition 28. Given two memory locations (m,m′) ∈ M∗(e)2, there is a

rupture of data flow between m and m′ at instruction ir , if there exists an

instruction i0 < ir such that (i0, m) ⇀ (ir − 1, m′) and the minimum content of

m′ is modified at instruction ir (where ir − 1 is the instruction that immediately

precedes ir ).

5.3.3 Def-use

5.3.3.1 Def-use chain

We also define a def-use chain between two functions f and g of F(e), as follows:

Definition 29. For f ∈ F(e) and g ∈ F(e) two functions of the execution e,

there is a def-use chain between f and g if:

• f writes a value at a memory location m ∈ Mr (e) during an execution

εf ∈ ebf at instruction i ,
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• g reads a value at a memory location m′ ∈ Mp(e) during an execution

εg ∈ ebg posterior to εf , at instruction i ′,

• there is a data flow between (i , m) and (i ′, m′).

In other words, there is a def-use chain between f and g when f sets a value

that is used later by g.

Example Listing 5.11 presents an illustration of a def-use chain between f and

g. First, f is called and outputs a value through the register %eax. This output

value is stored on the stack, and later (with no overriding in between) it is passed

to f through register %edi6.

40059f: bf 28 00 00 00 mov $0x28 ,% e d i
4005a4: e8 40 01 00 00 callq 4006e9 ¡f¿
4005a9: 48 89 45 f8 mov %eax ,-0x8(% rbp )
... : // -0x8(%ebp) is not overriden i n between
4005c3: 48 8b 45 f8 mov -0x8(% rbp ) ,% eax
4005c7: be 28 00 00 00 mov $0x28 ,% e s i
4005cc: 48 89 c7 mov %eax ,% e d i
4005cf: e8 22 04 00 00 callq 4009f6 ¡g¿

Listing 5.11: Example of a def-use chain - static illustration

5.3.3.2 Def-use value

From this definition, we define a def-use value between a parameter and a return

value.

Definition 30. For f ∈ F(e) and g ∈ F(e) two functions of the execution e, and

for i ∈ J1,#r f K and j ∈ J1,#pgK, we define a def-use value between fr [i ] and gp[j ],

denoted by dfe(fr [i ], gp[j ]), the number of times a def-use chain exists between f

and g such that the memory location written by f is fr [i ] and the memory location

read by g is gp[j ] during e.

In other words, the def-use value of fr [i ] and gp[j ] is the number of times the

i th return value of f is used as a j th parameter of g.

6In x86-64 System-V calling convention, the register %eax is used by functions to return values

during a return; %edi and %esi are the two registers used to store the first two parameters being

passed during a call.
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5.3.4 Coupling

Now, let f and g be two functions of F(e), for e a given execution of the binary

B. We define the ρ-coupling as follows:

Definition 31. For i ∈ J1,#r f K and j ∈ J1,#gK, fr [i ] and g[j ] are ρ-coupled if:

• type(fr [i ]) = type(gp[j ]),

• dfe(fr [i ], gp[j ]) ≥ ρ× nc(g, e).

The value of ρ is called the rate of a coupling between fr [i ] and gp[j ].

In other words, fr [i ] and gp[j ] are ρ-coupled if they have the same type, and the

j th parameter values of g during the execution e come from the i th return value of

f in a proportion of at least ρ.

5.3.4.1 Discussion

We introduce the typing in our definition of coupling to add a semantic meaning

to the def-use chain. We could imagine def-use chains between an allocator and a

random generator for instance, where the random generator would use addresses

as seeds. In this case, there would be a def-use chain between the two, but we

exclude this in our definition because the use of this value would be semantically

very different in an allocator and in a random generator.

5.4 Allocator

One can find, for example in [CSB13], empirical definitions of allocators, mostly

based on observation and heuristics. In this section, we attempt to propose a

general definition of what is an allocator of resources, independently from the kind

of resources we deal with. The goal is to understand what we want to retrieve in

Chapter 7, and to justify heuristics and approximations we make. In the rest of

this work, we apply these definitions in the specific context of memory allocators

(see Section 7.2).

5.4.1 Resource

First of all, we define a resource as an indexed set of elements that can be used.
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Definition 32. A resource R of size M is a set of M ”cells”, each one denoted

by an index p ∈ N :

R = {pi ∈ N, i ∈ J0,M − 1K}

In other words, R is represented by a subset of N, of size M.

A memory space indexed by addresses is one example of resource, as well as

time slots or a set of CPUs that can be assigned tasks.

From a resource, we can define subsets of the resource R, that we denote by

r ⊂ R.

5.4.2 Block

Given a resource R composed of indexed cells, we can define blocks of cells as a

sequence of consecutive cells of R.

Definition 33. A resource block is a sequence of consecutive cells, denoted by

|p, s〉 with (p, s) ∈ N× N :

|p, s〉 = {p + i , i ∈ J0, s − 1K}

For any p ∈ N, we have |p, 0〉 = {∅}. We denote by B the set of all resource

blocks.

Definition 34. A block (p, s) is a resource block over R if and only if

∀i ∈ J0, s − 1K, p + i ∈ R

We denote by B(R) the set of resource blocks of R.

5.4.3 Fragmentation

A set of blocks that do not overlap also define a resource. We call it fragmented

resource.

Definition 35. We define the set of fragmented resources, denoted by P , in the

following way:

∀π ∈ 2N×N, π ∈ P ⇔ ∀(x, y) ∈ π × π, x 6= y ⇒ |x〉 ∩ |y〉 = {∅}
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In other words, a fragmented resource is a resource described as a set of

blocks that do not overlap.

A given resource r can always be described in at least one fragmented way.

Definition 36. For r = {pi , i ∈ J0,M − 1K}, a fragmented description of r is

π = {(pi , 1), i ∈ J0,M − 1K}

Note that this fragmented representation is not unique.

5.4.4 Projection

To explicit the link between fragmented resources and the set of cells they are

defined over, we introduce the projector operator.

Definition 37. For a fragmented resource π ∈ P , we call support or projected form

and we denote by π↓ the resource composed by every cell of π :

π↓ = {p + j, (p, s) ∈ π and j ∈ J0, s − 1K}

5.4.5 Fragmented state of a resource

In the other way, we can define the set of possible fragmented descriptions of a

given resource from its projected form.

Definition 38. For a given resource state r ∈ R, the set of all possible fragmented

descriptions P (r) of r is:

P (r) = {π ∈ P | π↓ = r}

Definition 39. By extension, for a resource R, we define P (R) as the set of all

possible fragmented descriptions of any state r of R :

P (R) = {π ∈ P | ∃r ⊂ R, π↓ = r}

5.4.6 Allocator of resources

Now that we have defined a resource and its possible fragmented descriptions, we

can define an allocator of resource.
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5.4.6.1 Allocated resource, resource available

Let R be the addressable resource for a given program. We define π ∈ P (R) as

the resource allocated by the program at a given point of the execution. This

allocated resource is described in a fragmented form. π induces two subsets of R
that are complementary:

• π↓ ⊂ R : support of the fragmented resource allocated by the program

• π↓ ⊂ R : resource not allocated by the program

A resource cell cannot be allocated and not allocated in the same time.

5.4.6.2 Allocate and free

Definition 40. We define an allocating function al loc as follows:

al loc

∣∣∣∣ P (R) −→ P (R)

π −→ π′

such that:

π′ = π ∪ {(p, s)}, (p, s) ∈ B(π↓)

The block (p, s) added to π′ can be the empty block (s = 0), for instance in

the case of a failure during the allocation.

Definition 41. We define a freeing function f ree as follows:

f ree

∣∣∣∣ P (R) −→ P (R)

π −→ π′

such that:

∀(p′, s ′) ∈ π′,∃(p, s) ∈ π, {(p′, s ′)}↓ ⊂ {(p, s)}↓

Remarks. Every block in π′ (after being freed) is included in a block of π (present

before the call to free). In particular:

• a free cannot bring new resource cells in π′,
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• a free cannot lead to a new organization of allocated blocks (e.g. merge of

two consecutive blocks),

• a free can target a subpart of a block (partial free),

• a free can target several blocks (multiple free).

5.4.6.3 Allocator

Definition 42. We define an allocator of a given resource r as a couple

(al loc, f ree) of an allocating function al loc and a freeing function f ree, both

defined over R.
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Chapter 6

Structure inference

As presented in Chapter 2, structure-level information is interesting to retrieve

from a binary, in a reverse-engineering context. In this chapter, we propose to

retrieve structure at a function-level granularity. In particular, we are focusing on

the arity of functions and the type of their parameters.

We assume, as a starting point, that functions are well-identified in the binary.

Although we discussed about the difficulties to retrieve functions in a binary, several

works have been conducted (see [BBW+14] and [ASB17] for instance) with good

success. In addition, our implementation, we rely on Pin to detect the beginning

and the end of routines. Retrieving functions is thus not in the scope of this work.

6.1 Arity

6.1.1 Problem

The problem of arity we address in this chapter is the following:

Problem 1. Given a binary program B, for any f ∈ F(E(B)), we want to retrieve

the two sets in(f ) and out(f ).

In other words, we aim to retrieve the parameters and return values of any

function f executed during e. Usually, arity corresponds to the number of parame-

ters a function take, i.e. in our case, it would mean #pf and #r f . However, we

assume that we do not know where parameters are located. Thus, our notion of

arity includes the location of parameters.

113
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6.1.2 Criteria

In Section 4.1.3, we presented the three main criteria we focus on in this work. The

accuracy criterion will be evaluated through experiments (see Chapter 9). However,

we propose definitions of false positive and false negative in order to evaluate the

kind of errors our approach may encounter. We also propose discussions about

scalability and universality.

6.1.2.1 Accuracy

To discuss the accuracy criterion, we first propose definitions of what we call false

positive and false negative, relatively to Problem 1.

Definition 43. We call false positive in an execution e, a memory location m ∈
Mp(e) \ ine(f ) (resp. m ∈ Mr (e) \ oute(f )) that is detected as a parameter

(resp. return value) of f .

In other words, a false positive corresponds to detecting a parameter that does

not exist.

Definition 44. We call false negative in an execution e, a memory location m ∈
ine(f ) (resp. m ∈ outf (f ) that is not detected as a parameter (resp. return

value) of f .

In other words, a false negative corresponds to not detecting some parameters

that exist. To comply with the criterion of accuracy we mentioned in Section 4.1.4,

we aim to limit both false positives and false negatives.

6.1.2.2 Universality

Passing parameters (and returning values) can be performed through many mech-

anisms. In well known architectures (x86, x86-64, ARM,...), it is either through

the stack or through registers (and sometimes both) ; but one can imagine more

esoteric methods. The flexibility of the approach we propose relies on the possibility

to define Mp(e) and Mr (e), the two sets that specify the memory locations that

might be used to pass parameters and to return values. They can be defined for

each binary B, depending on the architecture, the calling convention being used,

etc. ; and for each execution e, depending on the execution parameters. However,

some cases cannot be handled by this method:
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1. if the calling convention is unknown: this can happen if the program header

is incorrect or if the calling convention is not documented e.g., a custom

calling convention,

2. if functions use different calling conventions,

3. if the calling convention changes during the execution.

In the last two cases, one single definition of Mp(e) (and Mr (e)) is not

accurate enough to perform a consistent analysis. We would have to define several

sets, one for each function in the second case, and one for each ”step” of the

execution in the third case. Although it is conceivable, the impact on scalability

would become an issue.

6.1.2.3 Scalability

The main argument for scalability is dynamic instrumentation, as mentioned in

Section 4.2.1. However, we need to keep the instrumentation as lightweight as

possible, to limit the overhead at execution due to the dynamic inspection. This

overhead is highly dependent on the size of the sets Mp(e) and Mr (e), so they

need to be wisely chosen. We propose in Chapter 8.2 definitions of these sets for

a x86-64 architecture and System V AMD64 ABI calling convention leading to a

reasonable overhead (less than ×10).

6.1.3 Arity over one execution

We propose in this section an approach over one execution e of a binary B, in order

to retrieve #pfe and #r fe for every f ∈ ebf . Then, in Section 6.1.5, we answer

Problem 1 by a generalization to several executions.

6.1.3.1 Two steps analysis

Our approach is composed of two steps. First, we perform an instrumented

execution e of the binary under analysis B. During this step, some events are

logged (see Section 6.1.3.3) corresponding to what we need in order to solve

Problem 1. Then, from the log obtained, we reconstruct some information relative

to the execution - see Section 6.1.3.4.
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6.1.3.2 Event counter

Each event we will log (see next section) will be indexed with a positive integer,

to uniquely identify it and to order events that occur during the execution e. In

particular, the same event can lead to several entries in the log ; in this case, every

entry will correspond to the same value of the event counter, which makes explicit

the fact that these entries are related to the same event. Index values start from

1, and are incremented by 1 each time a new event is logged. We denote by ec

the event counter.

6.1.3.3 Inspection

We present in this section the inspections we need to perform during the execution

e of the binary B in order to address Problem 1. There are two kinds of events we

need to keep track of: function calls and returns, and location accesses.

Function calls and returns To be able to assign a parameter to a function, we

need to keep track of a consistent stack of calls, relatively to the execution. To

do so, we need to log each call and return (according to the definitions given in

Section 5.2.1.1).

Event 1. Function call or return:

• ec : the event counter,

• f : the function identifier,

• io: an indicator to know if f is being called (CALL) or is returning (RET).

From these events, we show in Section 6.1.3.4 how to reconstruct a consistent

stack of calls.

Location accesses We also log, during the execution e, every access to a memory

location of Mp(e) and Mr (e), i.e., potential locations for a parameter and/or

return value.

Event 2. Location access:

• ec : the event counter,
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• a: the memory location being accessed (either a register or a memory ad-

dress),

• io: an indicator to keep track of the nature of the access (W for write and R

for read).

With the knowledge of the stack of calls, we can deduce, for an access event

ec, which function f is performing it by retrieving the last call event, anterior to

ec , and that has no return corresponding event before ec . This is explained in the

next section with more details.

6.1.3.4 Reconstruction

From the logged events described in Section 6.1.3.3, we reconstruct the stack of

calls and the location accesses as follows.

Stack of calls We construct a function StackOf Cal ls, such that at any event

counter ec of the execution e, StackOf Cal ls(ec) returns an ordered list of events

corresponding to calls that have not returned at event counter ec yet. We give in

Algorithm 2 a naive algorithm to implement this function from the logged events,

but the actual implementation uses high-level data structures and optimizations to

be efficient on several calls (see Section 8.2).

Location In the same way, for any function f , we are able to extract from

the log file the list of events that correspond to each call of f . For instance,

AccessEvents(f ) returns a list of access events that occurred during the execution

of f for each call to f . The output is therefore a list of lists of events (one list

of events per call to f ). As for the stack of calls, we give in Algorithm 3 an

algorithm to implement this, but our actual implementation is more efficient (see

Section 8.2). In addition, we construct two other functions, P rev iousWr ite and

P rev iousRead which return, for a given event counter ec and a memory location

m, the latest event e in the log file that occurred before ec and that performed

a write (for P rev iousWr ite) or a read (for P rev iousRead) of m. An (naive)

implementation of P rev iousWr ite is given in Algorithm 4.
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Function StackOfCalls(log, ec)
Input: log a list of events sorted by event counter

Input: ec max event counter to consider in the construction of the stack

of calls

begin

S ← Stack();

foreach event e in log do

if e.ec > ec then

return S;

end

if e is an instance of Event 1 then

if e.io == CALL then
S.push(e)

else

e ′ ← S.pop();

while e ′.f 6= e.f and not S.empty() do

e ′ ← S.pop();

end

end

end

end

return ∅
end

Algorithm 2: Extraction of the state of the stack of calls at a given event counter

ec

6.1.4 Heuristics

From the reconstructions presented in the previous section, we propose heuristics

to deduce parameters of functions according to the execution e that was inspected.

6.1.4.1 Read before written

According to Definition 14, a parameter of f during the execution e is a memory

location m ∈ Mp(e) that is read before written. This means that among every

location of Mp(e), we need to find out the ones read before written by f and the

ones that are not during e. For an execution ε ∈ e(f ) of f , and for a memory
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location m ∈Mp(e), three scenarios can occur:

1. unused: m is never accessed during ε,

2. read before written: m is read by an instruction of f before written during ε,

3. write before read: m is (over)written by an instruction of f before read during

ε.

The intuition we use here is the following: the second scenario (read before

written) leads directly to the conclusion that m is a parameter of f . However,

scenarios of type 1 or 3 are clues for m not to be a parameter of f , but it is not

enough to conclude: there might exist an execution ε′ of f where m is read before

written.

Heuristic 1. Inside a function, one read before write on a memory location m ∈
Mp(e) means that m is a parameter of f , but a write before read or an unused

one does not allow to conclude.

As we cannot conclude on m in the case of unused and write before read only,

and to we assume that m is not a parameter of f if for any ε ∈ e(f ), m is never read

before written. However, in another execution e ′ of the same binary under analysis,

there might exist such an execution ε of f . Algorithm 5 illustrates Heuristic 1

in pseudo-code. Regarding return values, we use the exact same argument and

conclude that a read before written after a return implies a return value from the

last function that returned.

6.1.4.2 Ascendant propagation

The intuition for this heuristic is that we need to consider parameters that are not

actually used by the function f , but transmitted to another function g. Consider

this simple example:

int f(int a) –

int b = g(a);

if (b % 2 == 0)

return b / 2;

else

return 3*b + 1;

˝
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In this case, the value of a is never used by f , and if it is already at the correct

memory location for the call to g, it is not read nor written, and thus would not

be detected as a parameter of f . To answer this issue, we propose the ascendant

propagation heuristic:

Heuristic 2. A parameter detected for fn and last written by f0 is also a parameter

of any fi between f0 and fn in the stack of calls at the time fn is called.

6.1.4.3 Descendant propagation

The exact same argument stands for return values, illustrated by the following

example:

int f(void) –

return g();

˝

Here again, the value returned by g will not be used by f , and because it is

already at the correct memory location for return values, there is no need for f to

access it. This leads to the descendant propagation heuristic:

Heuristic 3. A return value detected for fn and last written by f0 is also a return

value of any fi between fn and f0 in the stack of calls at the time fn returns.

6.1.5 Generalization to answer Problem 1

The last two sections presented an approach and heuristics to retrieve ine(f ) and

oute(f ) for any f ∈ ebf . To answer Problem 1, we need to discuss: first, how

to deduce in(f ) and out(f ) from several ine(f ) and oute(f ) ; and second, the

coverage of F(E(B)).

6.1.5.1 Arity of f from a few executions

From Definition 16, we recall that

in(f ) =
⋃

e∈E(B)

ine(f )

From a practical point of view, it is not realistic to perform every possible

execution e ∈ E(B). We propose a heuristic to deduce in(f ) from ine(f ) in

practice.
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Heuristic 4. in(f ) can be computed from a small number of different executions

e ∈ E(B) such that f ∈ F(e). This number can possibly be one.

6.1.5.2 Coverage

Problem 1 is about finding the arity of every function f ∈ F(E(B)). However,

given a set of executions {e1, e2, ..., en} ∈ E(B), we can only deduce #pf and #r f

for f ∈
⋃
F(ei). We address this question in our experiments (see Chapter 9.2),

but in practice this is one limitation of our approach based on dynamic analysis: to

analyze a given function f , we must observe at least one execution of f , i.e. we

must forge an input of the binary B such that the execution leads to f .

6.1.6 Discussion

6.1.6.1 Validation

The method we propose is based on heuristics. To validate our approach, we

propose to test it on a selection of open-source programs. Open-sourceness

provides source-level information access that can be compared with the results of

our analysis. These experiments and the results are detailed in Chapter 9.

6.1.6.2 Limitations

The main limitation of this heuristic-based approach is inherited from dynamic

instrumentation: we cannot detect parameters that are not used during the

executions of f we observe in e. We could suppose their existence, in some cases,

using additional heuristics based on the calling convention ordering of parameters

(see Section 8.2). However, doing this kind of specific deductions lead to a loss

of generality (as it supposes that the calling convention specifies an order of

parameters) and to more false positives.

6.2 Types

This section proposes an approach to retrieve types of parameters, based on the

results of the arity detection. The general problem of this section is the following:
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Problem 2. Given a binary program B and a function f ∈ F(E(B)) such that

in(f ) and out(f ) are known, for any i ∈ J1,#pf K and j ∈ J1,#r f K, we want to

retrieve type(fp[i ]) and type(fr [j ]).

In Section 6.2.1, we present the types that we choose to consider. Section

6.2.2 refines Problem 2 according to our type set. We discuss criteria relatively

to the problem in Section 6.2.3. Section 6.2.4 presents our approach to analyze

one execution. We present our heuristics to answer the refined problem in Section

6.2.5, extends our answer to several executions in Section 6.2.6. Finally, we open

a discussion in Section 6.2.7.

6.2.1 Set of types

We propose to focus the type detection on what we consider as the main semantic

distinction in the use of data: addressing. One of the reasons why we consider this

is because bad addressing is an important source of software crashes. The set of

types we propose only aims to distinguish addresses, denoted by ADDR, from other

kind of data that we denote by NUM. The following sections define explicitly the

sets that will be used to address Problem 2 in our case.

6.2.1.1 Addresses

We define the type ADDR as follows:

ADDR = {LOADl, STOREr}

where: LOAD is a generic operation taking two operands l and r such as LOAD

l, r loads the content of the memory cell pointed by l into the memory location

r; and STORE is a generic operation taking two operands l and r such that STORE

l, r stores the value l (or the content of the memory location l to the memory

cell pointed by r.

In other words, any value that is used as a left operand of LOAD or as a right

operand of STORE is an address.

6.2.1.2 Numeric values

Our focus is on detecting addresses, so we do not need any other type. We say

that a parameter that is not an address is a numeric value, denoted by NUM. To be

compliant with definitions we proposed in Section 5.2.5.3, we could define another
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set of operations named NUM, containing every operation except for LOADl and

STOREr. Instead, we choose to redefine the set we denoted by UNDEF in Section

5.2.5.3: every parameter that is undefined, i.e., the observed execution e does not

include an operation of O(e), is considered as numeric value.

In other words, we rename UNDEF into NUM.

Another consequence of the unique type we are interested in is that we cannot

have INCONS results. We recall that INCONS means that discriminating operations

of different types were applied to the same parameter: because we only have one

type (i.e., one set of discriminating operations), this cannot happen.

6.2.1.3 Set of types and set of operations

In conclusion, we have only one type: T = {ADDR }, and the set of operations we

propose is composed of two operations: O = {LOADl, STOREr}. By extension, we

consider NUM (i.e., what is denoted by UNDEF in our definitions) as a second type,

but not related to any specific operation.

6.2.2 Refinement of the problem

From the set of types we consider, we refine Problem 2:

Problem 3. Given a binary program B and a function f ∈ F(E(B)) such that

in(f ) (resp. out(f )) is known, for any i ∈ J1,#pf K (resp. j ∈ J1,#r f K), we

want to determine if f [i ] (resp. f [j ]) is of type ADDR.

6.2.3 Criteria

In this section we discuss the implications of the three criteria of our approach

relatively to type analysis.

6.2.3.1 Accuracy

Let us first define what we call false positive and first negative in the case of

typing.

Definition 45. A false positive is a parameter or a return value p ∈ in(f )∪out(f )

of a function f ∈ F(E(B)) detected as an ADDR whereas type(p) = NUM.
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Definition 46. A false negative is a parameter or a return value p ∈ in(f )∪out(f )

of a function f ∈ F(E(B)) such that type(p) = ADDR which is not detected as an

ADDR.

To be compliant with the target of accuracy, we try to avoid both false positives

and false negatives.

6.2.3.2 Scalability

The type analysis is based on the arity results. This induces that only relevant

memory locations ofMp(e) andMr (e) are to be watched. Less memory locations

to watch means less instrumentation. However, we need to perform analysis of

every LOAD and STORE. We limit as much as possible the actions to perform when

handling these instructions. Experimental results (see Chapter 9) shows that we

keep a scalable approach doing this.

6.2.3.3 Universality

Because this step comes after the detection of arity, it inherits the limitations due

to this step (unknown calling convention, none or multiple calling conventions).

However, we do not introduce in this step of type detection new assumptions that

would lead to a restriction of the set of binaries we can target.

6.2.4 Type over one execution

The approach we propose for type detection is very similar, in its design to the

approach used for arity detection (see Section 6.1.3). Once again, we present in

this section an analysis of one execution e of the binary under analysis B. It is also

in two steps, one for inspection - see Section 6.2.4.1, and one for reconstruction

- see Section 6.2.4.2. Our approach is based on events to be logged, that differ

in a few points from the events presented in Section 6.1.3.3. We keep the same

definition of event counter that we proposed in Section 6.1.3.2, i.e. an integer

value that is incremented each time an event is logged, with an exception that we

present in the next section.

6.2.4.1 Inspection

Calls and returns In opposition to the arity problem, we do not need here to

keep a consistent stack of calls. However, we need to instrument every call of
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functions that take more than zero parameter, and every return of those that

return more than zero value. More precisely, for every f ∈ F(E(B)),

• if #pf > 0, we instrument every call to f ,

• if #r f > 0, we instrument every return from f .

At each call (resp. return) instrumented, for every m ∈ in(f ) (resp. m ∈ out(f )),

we log an event which includes the concrete value stored at m.

Event 3. Value of parameter or return value:

• ec : the event counter,

• f : the function being called or returning,

• io: an indicator to know if f is being called (CALL) or is returning (RET),

• i : the position of the parameter (resp. return value) being logged (i.e., its

position in the ordered set in(f ) (resp. out(f )),

• v : the concrete value of the parameter (resp. return value), i.e. the value

stored at the memory location corresponding to the parameter f [i ].

Incrementation of the event counter In Section 6.1.3.2, we defined the

event counter as an integer that is incremented each time an event is logged.

However, in this case, we want to be able to identify parameters (or return values)

relative to the same call. Therefore, even if we log several events for several

parameters, we only increment ec when a new call or return is instrumented, or

one of the events presented in the next section occur. This means that three

concrete values of three different parameters of a function f corresponding to the

same call will be logged with the same ec .

LOAD and STORE To detect addresses, we also need to instrument LOAD and

STORE instructions. In other words, we log the operands of every instruction that

uses it for addressing. The logged events have the following format:

Event 4. Memory access:

• ec : the event counter,

• m: the concrete value being used as an address,

• io: an indicator to know if the location m was read (R) or written (W).
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6.2.4.2 Reconstruction

To conclude on the type of a parameter, we need two kind of offline analysis based

on the log of events produced by the inspection as described in the previous section.

Concrete values First, for any function f , we need to get the concrete values

of the i th parameter (resp. return value) of f during e, for any i ∈ J1,#pf K
(resp. i ∈ J1,#r f K). Algorithm 6 presents a possible implementation of this

for parameter values. However, for the same reasons we detailed for arity, the

actual implementation is more efficient (but also less readable). A very similar

implementation applies to the detection of return values.

Memory operands Second, we need to be able to say, for any concrete value

v , if it has been used as a memory operand during the execution e. Algorithm 7

parses the log file and return true if an memory access event was log with v as a

memory operand, and false otherwise.

6.2.5 Heuristics

In this section, we propose heuristics to conclude, from an execution e, on typee(p)

for any f ∈ F(e) and any p ∈ ine(f ) ∪ oute(f ). In Section 6.2.6, we generalize

this to conclude on type(p) independently of a given execution e.

6.2.5.1 Value-based detection

First, we assume that integer values and address values have a very small probability

to collide in a normal execution. Typically, integers will have small values whereas

addresses will be around 264 on 64bit architectures. In other words, we assume

that the set of values for integers is disjoint from the set of values for addresses.

This leads to the first heuristic:

Heuristic 5. Once a value is typed, every further occurrence of the same value

has the same type.

This means that we generalize the definition of typee to values, and that once

a value v is typed as an address, any further occurrence of it will be considered

as an address as well. In opposition to parameters, and although the type of a

value is detected by the use of v in a particular execution e, it has no reason to be

dependent on e. We denote by type(v) its type.
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Discussion This is an over-approximation. Indeed, an integer that would have

the same value v as an address would be considered as an address. We discuss in

Section 6.2.7.1 how we deal with this regarding accuracy (and soundness).

6.2.5.2 Addressing

Second, we propose a heuristic to detect some addresses from the logged events,

assuming that a value v is an address as soon as it is used as it.

Heuristic 6. A value used as a memory operand is an address.

In other words, every value v such that IsMemOp(log, v) is true is considered

as an address. This, in addition to Heuristic 5, means that we can detect v as an

address the moment it is used.

6.2.5.3 Address parameters

We use a strong heuristic to infer data flow from the observations of the logged

events.

Heuristic 7. For any function f ∈ F(e), an execution ε ∈ ebf , and for any

p ∈ inε(f ) ∪ outε(f ) getting at some point the concrete value v during ε, if

type(v) = ADDR, then typeε(p) = ADDR.

This heuristic means that if a function f takes a value v as a parameter p, and

if this same value v is used later or was used before as a memory operand, , then

we assume a data flow (as defined in Definition 27) between p and the use of v .

Assuming this data flow allows to conclude on the type of p from the type of v .

6.2.5.4 Once an address, always an address

Finally from several executions ε1, ε2, ...εn ∈ ebf of a function f ∈ F(e), we

deduce typee(p) for every parameter p ∈ ine(f ) ∪ oute(f ) with the following

heuristic.

Heuristic 8. If a parameter p of f is detected as an address in one execution

ε ∈ ebf , then we deduce that its type in e is always ADDR.

typee(p) =

{
ADDR if ∃ε ∈ ebf , typeε(p) = ADDR

NUM otherwise
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6.2.5.5 Algorithm

These heuristics lead to a simple algorithm to detect parameters that are addresses

according to the logged event of one execution - see Algorithm 8.

6.2.6 General answer to Problem 3

To generalize from typee(p) to type(p), we use the same arguments as presented

in Section 6.1.5 regarding arity. From Definition 26, we recall that for a given

parameter p,

type(p) =
⋂

e∈E(B)

typee(p)

In our case, using Heuristic 8, it means that if there is any execution ε ∈ E(B)bf
such that typeε(p) = ADDR, we deduce that type(p) = ADDR. This allows to

conclude that a parameter p is an address without exploring every possible execution

e of E(B).

6.2.7 Discussion

We discuss in this section some particular points regarding our heuristics. As for

arity, a heuristic-based approach requires experiments to be validated. We present

our implementation and results in Sections 8.3 and 9.3.

6.2.7.1 Accuracy

As mentioned in Section 6.2.3.1, a false positive would be to detect a parameter

p as an address (ADDR) whereas it is in reality a numeric value (NUM). With our

approach, it can occur in practice with large integer values. In particular, there

can be some ”unfortunate” collisions between big integers and address values.

Heuristic 8 would deduce a dataflow, in such a case, that does not exist in practice.

This problem can occur, in particular, if we deal with random generators which

are good candidates to output various integers with high values that could collide

with addresses. This point could be addressed specifically, with a more refined

dataflow tracking (using other heuristics), but it would be to the cost of scalability.

In practice, we show in Chapter 9 that the accuracy of type detection is very

acceptable and that the rate of false positives is lower than the rate of false

negatives.
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6.2.7.2 Variable typing

The general answer to Problem 2 hides another assumption to deduce the general

type of a parameter from several executions of a given function: we assume that

a parameter p is always of the same type (this is the meaning of Heuristic 8).

However, we could have parameters whose types depend on the context of the

call. In such paradigms, our approach will lead to conclude with INCONS for a lot

of parameters (if we would consider more types than ADDR only). However, such

behaviors are not common in compiled computer programs.
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Function AccessEvents(log, f)
Input: log a list of events sorted by event counter

Input: f the function from which we want to extract events

begin

access events ← List();

cur r events ← List();

cur r cal l ← None;

foreach event e in log do

if e is not an instance of Event 2 then

continue;

end

last cal l ← StackOf Cal ls(log, e.ec).top();

if last cal l .f = f then

/* If a new call to f occurred, we need to store

the list of events corresponding to the

previous call */

if last cal l .ec 6= cur r cal l .ec then

access events.add(cur r events);

cur r events ← List();

cur r cal l ← last cal l ;

end

cur r events.add(e);

end

end

return access events;

end
Algorithm 3: Extraction of the memory location events relative to a given

function f
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Function PreviousWrite(log, m, ec)
Input: log a list of events sorted by event counter

Input: m the memory location of interest

Input: ec the event counter from which we want to retrieve the previous

write

begin

prev event ← None;

foreach event e in log do

if e is not an instance of Event 2 then

continue;

end

if e.ec >= ec then

return prev event;

else if e.a = m and e.io = W then

prev event ← e;

end

end

return prev event;

end
Algorithm 4: Retrieving the latest write access to m that occurred before ec
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Function ReadBeforeWritten(log, f)
Input: log a list of events sorted by event counter

Input: m the memory location of interest

Input: ec the event counter from which we want to retrieve the previous

write

begin

read bef ore wr itten ← Set();

foreach event e in log do

if e is not an instance of Event 2 then

continue;

end

prev ← P rev iousWr ite(log, e.a, e.ec);

cur r f ← StackOf Cal ls(log, e.ec).top();

if StackOf Cal ls(log, prev .ec).top() 6= cur r f then

/* read bef ore wr itten is a set, so add will be

effective only if e.a is not already in the

set */

read bef ore wr itten.add(e.a);

end

end

return read bef ore wr itten;

end
Algorithm 5: Procedure to detect read before written events and conclude on

the existence of parameters
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Function ConcreteValuesP(log, f, i)
Input: log a list of events sorted by event counter

Input: f the function considered

Input: i the position of the parameter of f of which we want concrete

values

begin

vals ← List();

foreach event e in log do

if e is an instance of Event 4 then

continue;

end

if e.f = f and e.i = i and e.io = CALL then

vals.add(e.v);

end

end

return vals;

end
Algorithm 6: Get concrete values taken as parameter during an execution e for

a given function f

Function IsMemOp(log, v)
Input: log a list of events sorted by event counter

Input: v the value to be typed

begin

foreach event e in log do

if e is an instance of Event 3 then

continue;

end

if e.v = e then

return true;

end

end

return false;

end
Algorithm 7: Determining if a given value v is a memory operand
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Function Type(log, f, i)
Input: log a list of events sorted by event counter

Input: f the function under analysis

Input: i the position of the parameter of f to infer

begin

foreach value v in ConcreteValuesP(log, f , i) do

if IsMemOp(log, v) then

return ADDR;

end

end

return NUM;

end
Algorithm 8: Address parameter detection



Chapter 7

Inference of address flow

In this chapter, we focus on address flow between functions. Based on the

structures of functions we infer in Chapter 6, we are interested in the production

and the use of ADDR values. Section 7.1 introduces an approach to retrieve couples

of functions relative to ADDR parameters, and Section 7.2 focuses on detecting

memory allocators.

7.1 Coupling

In this section, we present an approach to retrieve the notion of coupling we

proposed in Section 5.3.4, which aims to capture a behavioral pattern at function

level. We first present the intuitions of this pattern in Section 7.1.1. In Section

7.1.2, we define the problem we address. Section 7.1.3 discusses this problem

relatively to our criteria. The approach and our heuristics to target one single

execution are presented in Sections 7.1.4 and 7.1.5. In Section 7.1.6, we extend

this to answer Problem 4. Finally, we discuss our approach in Section 7.1.7.

7.1.1 Intuitions

Our work focuses on functions, and one particularity of functions is that they usually

output values and take parameters. A behavioral analysis includes to determine how

return values are used later in the execution, and where the parameters of functions

come from. The notion of coupling aims to describe a dynamic pattern in return

135
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value reuse. More specifically, it targets functions f and g such that a parameter

of g is ”often” a value output by f . Details about ”often” and what we mean

by this were given in Section 5.3.4, but the intuition here is to find interactions

between functions. This is interesting, from a reverse-engineering process point of

view, because it gives a good idea of both data flow and control flow with a single

representation that is simple to get. Saying that f an g are coupled means that f

returns values that are given to g as parameters, which allows to deduce that f is

often call before g and that there is a data flow from f to g.

7.1.2 Problem

We define in this section the problem we address. First, we refine the notion of

coupling, based on the notion of type we introduced in Section 6.2.1.

7.1.2.1 Strong coupling

The set of types we consider in this work is composed of two types: NUM and ADDR.

We propose a restriction to the definition of coupling to focus on addresses.

Definition 47. For (f , g) ∈ F(E(B))2 and (i , j) ∈ J1,#r f K × J1,#pgK, we say

that fr [i ] and gp[j ] are strongly ρ-coupled for a given ρ ∈ [0, 1] if fr [i ] and gp[j ] are

typely ρ-coupled and type(f ) = type(g) = ADDR.

7.1.2.2 Definition of the problem

In this work, we focus on the detection of functions that are strongly coupled,

according to a coupling rate ρ. We do not target coupling of functions that does

not include address parameters. The problem we address is, thus, to retrieve a

subset of the functions that are ρ-coupled according to Definition 31.

Problem 4. For a given couple rate ρ ∈ [0, 1] and a binary B, we want to retrieve

every (f , g) ∈ F(E(B))2 and (i , j) ∈ J1,#r f K× J1,#pgK, such that f [i ] and g[j ]

are strongly ρ-coupled.
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7.1.3 Criteria

7.1.3.1 Accuracy

Because coupling is a statistic notion, it is not relevant to define a notion of

accuracy relatively to the global definition. We could say that a false positive would

be a couple (f , g) detected whereas it does not exist, and a false negative would be

a couple (f , g) not detected whereas it holds, but we would rather focus on false

positives and negatives regarding the def-use chains. In this sense, we call false

positive a value that is considered to be output by f and taken as a parameter by

g whereas it is not.

Definition 48. We call false positive a def-use chain between f and g detected

but that does not exist.

A false negative would be a value that is output by f and taken as a parameter

by g but not detected.

Definition 49. We call false negative a def-use chain between f and g not detected

but that does exist.

Here again, we aim to limit the number of both false positives and false

negatives.

7.1.3.2 Scalability

As mentioned in more details in Section 7.1.4.1, the inspection we need to perform

to address Problem 4 is a subset of the inspection relative to coupling. In addition,

we propose several heuristics in our experiments to lighten the instrumentation -

see Section 8.4. In conclusion, this analysis is less expensive, in overhead, than the

type detection presented in Section 6.2.

7.1.4 Coupling over one execution

7.1.4.1 Inspection

To perform couple detection, we need an instrumentation which is close to the one

presented in Section 6.2.4.1 for type recovery. In fact, the inspection we propose

here can be seen as a subpart of it. This means in particular that we could perform

couple detection from the same log file. This will be discussed in Section 7.1.7. We
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present here the instrumentation required for coupling, i.e. the minimum events to

log.

Calls and returns As in the inspection for types, we need concrete values of

parameters and return values of functions. To do so, we instrument calls and

returns: each time a function f is called (resp. returns), a handler is called to log

concrete values of parameters (resp. return values) p ∈ in(f ) (resp. p ∈ out(f )).

Therefore, this analysis is based on the results of arity detection. The logged

events have the same format as defined in Event 3.

Addresses involved However, this analysis differs from the one relative to type

detection as it uses the results of type inference to lighten the instrumentation.

Because we are only interested in detecting strong coupling, i.e. coupling involving

addresses, we only need to instrument, during the step, functions that have an

address in their undertyped prototype, and to log only parameters that are of type

ADDR. Table 7.1 shows examples of functions that we do or do not instrument

according to their C-like prototypes. The first symbol (3 or 7) corresponds to the

call instrumentation, and the second symbol to the return instrumentation.

in \ out VOID f(... NUM f(... ADDR f(...

VOID) 7 / 7 7 / 7 7 / 3

NUM) 7 / 7 7 / 7 7 / 3

ADDR) 3 / 7 3 / 7 3 / 3

NUM, NUM, ADDR) 3 / 7 3 / 7 3 / 3

Table 7.1: Instrumentation of calls/returns of functions according to the type of

their parameters/return values

Sampling In addition to only instrumenting a subset of functions of F(E(B)),

we do not log every concrete value. Indeed, we propose in Section 7.1.5 to detect

coupling on a finite (small) sample of concrete values. We only instrument the

first N calls to each function, and get the N first concrete values of f [i ] for any

i ∈ J1,#f K such that type(f [i ]) = ADDR. N is a parameter of the instrumentation

to be specified (see Section 9.4 for details on the influence of N). Note that
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despite N, every return value is logged. The reason we do this is explained in

Section 7.1.5.2.

7.1.4.2 Reconstruction

To retrieve couples from the logged events, we require two reconstructions: the

set of concrete values of parameters and return values, and a function to compute

the intersection of two sets.

Parameter and return values This is the same reconstruction as pre-

sented in Section 6.2.4.2: we need two functions ConcreteV aluesP and

ConcreteV aluesR to get the concrete values of parameters and return values of

a given function and a given position of the parameter. The implementation is the

same as presented in Algorithm 6.

Intersection of sets We also need a function Intersect that takes two sets of

values as parameters, and returns the intersection of them, i.e. a set of values that

are in both input sets. The implementation is straight-forward, so the algorithm is

not presented here.

7.1.5 Heuristics

We present here two heuristics we use to retrieve strong couples from the inspection

of an execution e as explained in the previous section.

7.1.5.1 Collision implies dataflow

Our first heuristic is similar to Heuristic 7, and is relative to data fow. The definition

of coupling is based on data flows beteen return values and parameters. However,

computing data flow dynamically is expensive. On the other hand, the address

space is large (264 elements in 64bit architectures), so an unfortunate collision is

very unlikely. That is the reason why we assume a data flow between an address

return value and an address parameter as long as they have the same concrete

value.

Heuristic 9. For a given execution e, given two functions f and g in F(E(B)),

a return value r ∈ oute(f ) and a parameter g ∈ ine(g) such that type(p) =

type(r) = ADDR, if r takes the concrete address value a and if p takes the same
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address value a further in e, we assume a data flow from r to p according to

Definition 27.

In other words, two occurrences of the address value implies a data flow.

7.1.5.2 Sampling

Definition 31 is not symmetric. In particular, the parameter ρ is the proportion

of parameter values that comes from the return values of another function. We

propose to compute this proportion on a sample of values instead of all values

observed during e.

Heuristic 10. For r a return value, and p a parameter, we can compute the rate

coupling ρ of the couple (r, p) over an execution e on a sample of concrete values

of p.

However, due to the asymmetry of the definition of coupling, although we

can sample parameter values, we still need to get every concrete return value.

Otherwise, we could miss some def-use chains between r and p because the sample

of concrete values of r would not contain a given concrete value v of p.

7.1.5.3 Algorithm

From these two heuristics, we propose in Algorithm 9 a possible implementation to

determine if two functions f and g in F(e) are strongly ρ-coupled relatively to an

execution e, and according to a given coupling rate ρ.

7.1.6 Generalisation to answer Problem 4

Similarily to what we did for arity and type, we assume that, from one execution e,

we can conclude on coupling on any execution e ∈ F(E(B)). If we have several

executions e1, e2, ...en, and for each a list of logged events logi , we generalize

Algorithm 9 to perform the computation on more concrete values. We recall that

for each execution, we keep at most N concrete values for each parameter p. With

n executions, we can thus perform the computation of coupling on largest data

set (at most n ∗ N). What is interesting is that these values are obtained from

different executions ; we assume that they capture more possible cases than if we

get n ∗ N values from one execution (supposing that there are enough executions

of g).
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7.1.7 Discussion

7.1.7.1 Rupture of dataflow

In our approach, Heuristic 9 induces that we do not consider ruptures in dataflow:

from a collision of values we deduce a def-use chain (based on this dataflow). This

can seem drastic at first: if there are many instructions executed between the def

and the use, there are many chances that there is no dataflow anymore between

the two (because of overriding at some point). However, because we are tracking

addresses, this is not a problem: twice the same address at two different points

of the program point at the same memory cell, and this does not depend on the

concrete dataflow of the address between these two points. The content may have

been overwritten, but both accessors can read/write in the same cell. In addition,

if we know who allocates memory (see Section 7.2 for allocator retrieving): we

could consider a free of a given cell as a rupture of data flow.

7.1.7.2 Inspection

As mentionned before, we propose an instrumentation to perform coupling detection

over one execution with as less overhead as possible. However, it would be possible

to perform both type and coupling detection from the same trace (with the same

instrumentation of the execution). For clarity purpose, we decide to keep a clear

separation between these two steps and each one is performed with a specific

instrumentation.

7.2 Memory allocator

7.2.1 Motivations

Many harmful program defects and security vulnerabilities are due to memory errors

occurring in the heap (see [QLZ05] and [CGMN12] for instance). For this reason,

memory accesses are subject to many researches ([RB08], [BR04], [VCKL05]).

Both static and dynamic existing techniques allowing to detect such heap related

issues often heavily rely on some a priori knowledge of memory allocation and

liberation functions1. For instance, Valgrind [NS07] requires to know the allocator

to perform a memory leak analysis. However, numerous real-life application now

1like the classical malloc() and free() in C programs
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embed their own allocators, and retrieving the corresponding function pair could

be quite challenging, in particular when the source code is not (fully) available. In

this section, we propose an approach to retrieve allocators from a binary program.

First, we state the problem we address in Section 7.2.2. Section 7.2.3 gives some

precisions about our approach relatively to the criteria we chose in Section 4.1.3.

We present our instrumentation and reconstruction algorithms over one particular

execution in Section 7.2.4. In Section 7.2.5 and Section 7.2.6, we propose heuristics

and algorithms to retrieve respectively ALLOC and FREE from the instrumented

execution.

7.2.2 Problem

Problem 5. From an execution e of a binary program B, retrieve the couple

(ALLOC, FREE) corresponding to the most frequently used allocator during e (ac-

cording to Definition 42).

7.2.3 Criteria

In this section, we discuss Problem 5 relatively to the three criteria we focus on.

7.2.3.1 Accuracy

Our approach to answer Problem 5 outputs a couple (ALLOC, FREE) detected as

the allocator of an execution e. For this problem, it is not really relevant to define

false positives and false negatives, and so soundness and completeness, as there

should be exactly one most frequently used allocator during an execution e (or

none if the program never allocates memory). However, ALLOC could be used in

further analysis, for example to follow the use of memory blocks after allocation, or

to track use-after-frees. Thus, we propose ways to test the result of the detection

of (ALLOC, FREE) - see Section 9.5, to conclude on the consistency of this couple

as an allocator. If the test fails, then the output of our final detection would be

None (or equivalent). In this context, we can define a false positive as a concrete

output couple (ALLOC, FREE) that does not correspond to an allocator. A false

negative would be the output of None whereas the binary under analysis performs

allocations during e. To be sound-oriented, we want our approach to ouput only

correct allocators.
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7.2.3.2 Universality

The definition of allocators we proposed in Section 5.4 aims to be as generic as

possible, and to capture the largest set of different implementations of memory

allocators (see Section 9.5.2). For instance, we do not use strong asumptions on

the prototype of ALLOC and FREE to drive our detection ; although such asumptions

could be used to validate efficiently the consistency of our results - see Section 9.5.1.

However, our inspection may exclude some particular cases of allocators by design.

We discuss in Sections 7.2.5.3 and 7.2.6.2 limitations of our approach, respectively

for ALLOC and FREE.

7.2.3.3 Scalability

The instrumentation we propose is a subset of the instrumentation performed for

type detection - see Section 6.2.4.1. The scability of allocator detection during

execution is thus bounded by the scability of type detection. In fact, we use several

arguments to reduce the inspection to functions that are potential candidates for

ALLOC and FREE (see next section), and do not instrument every function of F(e).

However, this approach has an expensive offline step (see Section 9.5), and could

be a problem with very large traces of execution - see Section 9.5.

7.2.4 Allocator over one execution

In this section, we present the online (Section 7.2.4.1) and offline (Section 7.2.4.2)

steps to retrieve the most frequently used allocator over one execution e. From

these steps, we propose in Section 7.2.5 heuristics to answer Problem 5.

7.2.4.1 Inspection

The inspection we propose here is a subset of the inspection for types. Actually,

we only need to instrument CALL and RET events, using the exact same format as

presented in Event 3. By opposition to coupling instrumentation, we need every

call and every return to be logged. However, we do not need to instrument every

function, and among these functions we do not need to log every concrete value

of parameters.

Strong couples First, we only instrument a function f ∈ F(e) if there exists a

function g and two indexes i and j such that f [i ] and g[j ] or g[j ] and f [i ] are stronly
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ρ-coupled, with ρ = 0.9 (this is a parameter of the instrumentation). The idea

behind this is that ALLOC and FREE must be strongly coupled with a high coupling

rate, so there is no need to instrument functions that are not part of couples.

Address parameters Second, as we target memory allocators, we are not inter-

ested in parameters and return values that are not of type ADDR. For every function

that is instrumented (i.e., every function coupled with at least one other function

with ρ > 0.9), we only log concrete values of parameters and return values that

are addresses. If a function has no parameter (or return value) of type ADDR but

needs to be instrumented, we log an empty event to get an entry corresponding to

the call (return): this is needed to keep a compliant stack of calls.

7.2.4.2 Reconstruction

To reconstruct data from the logged events, we reuse some algorithms we proposed

in the previous chapters, and we need another algorithm.

Reuse From the previous analysis, we need the following points:

• StackOf Cal ls (Algorithm 2) - get the concrete state of the stack of calls

at event counter ec given in parameter.

• ConcreteV aluesR (Algorithm 6) - get the concrete values output by a

given function as i th return value,

• type (Section 6.2) - for any parameter of any function of e, we assume

that we did retrieve its type and that it is available through a function

type : f [i ]← type(f [i ]). The same stands for typer which gives the type

of return values.

Number of callers In addition, we need to retrieve, for every function f ∈ F(e),

the number of unique callers c ∈ F(e), i.e. the functions that, at some point

of the execution e, called f . This is used in our heuristics to detect ALLOC and

FREE, and in particular to check the criterion of diversity of callers that we present

in Sections 7.2.5.1 and 7.2.6.1. We propose an implementation from the logged

events corresponding to e in Algorithm 10.
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7.2.5 Retrieve ALLOC

To retrieve the most frequently used allocator, we propose first to detect ALLOC.

The knowledge of ALLOC will be used then to retrieve FREE with a second offline

analysis - see Section 7.2.6.

7.2.5.1 Heuristics

We propose three heuristics to retrieve ALLOC relatively to ne execution.

Allocation and addresses According to Definition 42, an allocating function is

a function which transfers an unallocated block (p, s) ∈ B(ρ↓) to the allocated

memory. For this newly allocated block to be usable by the program, this function

must output a way to access this block. Our heuristics assume this is done by

outputting a pointer to the block.

Heuristic 11. The allocating function outputs as a return value the address p of

the allocated block (p, s).

Diversity of callers Usually, allocators present a public interface (ALLOC, FREE)

but use several internal functions, either to find a block to allocate (according to a

given strategy) or to merge free blocks. These internal functions manipulate blocks

as much as the public interface, however we are not interested in their detection.

As they are internal, they cannot be called by a lot of different functions. We

use this as a criterion to eliminate them from the possible candidates for (ALLOC,

FREE).

Heuristic 12. The less a function f is called by various other functions, the less

it is likely that f is an allocating function.

Production of new addresses Finally, our main heuristic is relative to the pro-

duction of new addresses. Heuristic 11 emphasis the relation we consider between

allocation and output of addresses. In facts, only allocators are, by definition, able

to allocate memory. This means that every address output by a function is either

the pointer to a new allocated block or the address corresponding to an already

allocated memory. In our heuristic, we assume that an allocation mainly outputs

new addresses, and other functions do not use a lot of addresses never seen before.
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Heuristic 13. The more a function f outputs new addresses (never seen before),

the more it is likely that f is an allocating function.

An implementation to compute the number of new addresses a function has

produced during an execution is presented in Algorithm 11. Note that we assume

we know the type of each parameter of functions (i.e., we have already performed

a type analysis of e).

7.2.5.2 General algorithm

From the three heuristics we proposed in the previous section, in Algorithm 12 we

propose to compute a score for every function f ∈ F(e), and to output the best

candidate for ALLOC. In this algorithm, we choose to set the criterion diversity of

callers to 3: indeed, more than 3 callers means that it is not an internal function

of the allocator only called by ALLOC and FREE

7.2.5.3 Discussion

Non unicity of ALLOC Our heuristics target one allocator (the one with the

highest score, regarding our criteria), although there might be several ones in a

given program. For example, one custom allocator can be used in the core of

a given program whereas the standard libc allocator (malloc, free) would be

used in libraries. Our approach focuses on the most frequently used (our score is

computed in this way), but it could be adapted to detect allocators using other

criteria. To avoid the detection of (malloc, free) in case a program embeds a

custom allocator and uses a lot of library functions (these functions do use malloc

and free and not the custom allocator), we can ignore, for example, any call from

a library to a library for this analysis. This approach is proposed and implemented

in Section 8.5, and allows to detect the custom allocator instead of the one used

by libraries.

Wrappers The case of wrappers and layers of allocators is a little bit specific.

Due to the diversity of callers criterion presented in Heuristic 12, a wrapper around

an allocator will hide the real allocator from detection. For example, see Listing 7.1.

In this example, wrapper alloc is a wrapper around malloc which performs a

safety check and returns the allocated block. In this scenario, malloc is never called

directly (except through wrapper alloc), so it will not be detected as an allocator

(because of the diversity of callers criterion). On the other hand, wrapper alloc
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will likely be detected as ALLOC because, if we ignore malloc, it produces new

addresses and probably has more different callers. This is a minor issue, as it is

easy to retrieve malloc from wrapper alloc - see Section 8.5.

void *safe˙alloc(size˙t s i z e ) –
void * p t r = malloc( s i z e );
i f ( p t r == NULL)

exit (1);
return p t r ;

˝

Listing 7.1: Example of a wrapper around malloc in C

Based on prototypes Detection of allocators is based on the results of the

prototype inference. In this approach, we assume that prototypes were infered

correctly. Incorrect typing could lead to erroneous deduction regarding ALLOC

(and thus FREE). For example, if a random generator, used many times during

an execution, is inferred as outputting an address, then it will end up with a high

score (many addresses produced and a sufficient variety of callers) and might be

considered as an allocator.
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Function StrongCouples(log, ρ)
Input: log a list of events sorted by event counter

Input: ρ the coupling rate

begin

couples ← List();

foreach function g in F (e) do

foreach parameter j in J1,#pgeK do

if typee(g[j ]) 6= ADDR then

continue;

end

p vals ← ConcreteV alsP (log, g, j).size();

nb tot ← p vals.size();

foreach function f in F (e) do

foreach i in J1,#r feK do

if typee(f [i ]) 6= ADDR then

continue;

end

r vals ← ConcreteV alsR(log, f , i).size();

nb shared ← Intersect(p vals, r vals).size();

if nb shared/nb tot > ρ then

couples.add((f [i ], g[j ]));

end

end

end

end

end

return couples;

end
Algorithm 9: Recovering strong ρ-couples from an execution e
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Function NbCallers(log, f)
Input: log a list of events sorted by event counter

Input: f the function of interest, from which we cant to compute the

number of callers

begin

cal ler s ← Set();

foreach event e in log do

if e is an instance of Event 3 and e.f = f then

/* Get the stack of calls just before f was

called, and take the top element */

cal ler ← StackOf Cal ls(log, e.ec − 1).top();

/* cal ler s is a set, so cal ler will only be added

if not already in the set */

cal ler s.add(cal ler);

end

end

return cal ler s.size();

end
Algorithm 10: Compute the number of callers of a given function f during an

execution e
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Function NbNewAddr(log, f, i)
Input: log a list of events sorted by event counter

Input: f the function of interest, from which we cant to compute the

number of callers

Input: i the return value considered

begin

nb new ← 0;

addr seen ← Set();

foreach event e in log do

if e is not an instance of Event 3 then

continue;

end

if (e is CALL and type(e.f [e.i ]) 6= ADDR) or (e is RET and

typer (e.f [e.i ]) 6= ADDR) or e.v ∈ addr seen then

continue;

end

if e is RET and e.f = f and e.i = i then

nb new ← nb new + 1;

end

addr seen.add(e.v);

end

return nb new ;

end

Algorithm 11: Compute the number of new addresses output by f as the i th

return value during the execution e
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Function GetAlloc(log)
Input: log a list of events sorted by event counter

begin

al loc ← None;

retidx ← None;

best score ← 0;

foreach function f in F (e) do

if NbCal lers(log, f ) < 3 then

continue;

end

foreach i ∈ J1,#r f K do

score ← NbNewAddr(log, f , i);

if score > best score then

best score ← score;

al loc ← f ;

retidx ← i ;

end

end

end

return (al loc, retidx);

end
Algorithm 12: Retrieve ALLOC from an execution e
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7.2.6 Retrieve FREE

Once we have retrieved ALLOC = (al loc, retidx), we can use this result to retrieve

FREE. From the logged events, and with some heuristics, we can output the best

candidate to be the FREE function that corresponds to ALLOC.

7.2.6.1 Heuristics

Freeing and addresses According to Definition 41, a freeing function is a function

that transfers an allocated block (p, s) to the free memory. To do so, this function

must have a way to known which block needs to be freed. In this heuristic, we

assume that it is given as a parameter by passing a pointer.

Heuristic 14. The freeing function takes as a parameter the address p of the

block (p, s) to be freed.

Diversity of callers We reuse here Heuristic 12, that we presented relatively to

ALLOC, with the same argument. Allocating and freeing functions are susceptible

to be called by any other function, so the diversity of their callers is a clue: a

function that is called by a very small number of different functions is not a good

candidate for FREE.

Last accessor The main criterion to retrieve FREE, in our approach, is based

on the definition: FREE ”moves” a block from the allocated memory to the free

memory, which means that this block should not be accessed after its liberation.

Consequently, FREE should be the last accessor of a memory block (before it is

reallocated).

Heuristic 15. The more times a function f is the last accessor of a memory block

(p, s) output by ALLOC, the more it is likely that f is a freeing function.

This heuristic, combined with Heuristic 14, implies that FREE should be the last

function to take as a parameter the value p output by ALLOC. Algorithm 14 shows

how we can compute, for a given function f , the number of times this function

is the last accessor of a value output by ALLOC. This algorithm uses Accessors,

described in Algorithm 13, which computes for a value val the list of functions f

such that:

• f is ALLOC and outputs val in the corresponding return value (given by

retidx),
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• or f takes val as a parameter.

Function Accessors(log, alloc, retidx, val)
Input: log a list of events sorted by event counter

Input: al loc the allocating function

Input: retidx the index of the return value of al loc where the address

of the allocated block is output

Input: val the value for which we want to retrieve the accessors

begin

accessors ← List();

foreach event e in log do

if e.val 6= val then

continue;

end

if e.io = CALL or (e.f = al loc and e.i = retidx) then

accessors ← (e.f , e.i);

end

end

return accessors;

end
Algorithm 13: Compute the accessors of a value val during an execution e

7.2.6.2 General algorithm

According to these heuristics, we compute the score of every function f ∈ F(e),

i.e. on one hand the number of times it is the last accessor of a memory block -

see Algorithm 14, and on the other hand the number of its different callers. From

these scores, we can output the best candidate for FREE in keeping with ALLOC -

see Algorithm 15.

7.2.6.3 Discussion

Relies on ALLOC In the same way our detection of ALLOC relies on the prototype

inference, FREE does. But more than that, the detection of FREE relies strongly on

the detection of ALLOC. Indeed, our approach targets (ALLOC, FREE) as a couple,

and if the first element of the couple is wrong, the couple is not relevant anymore.
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Function NbLastAccessor(log, alloc, retidx, f, i)
Input: log a list of events sorted by event counter

Input: al loc the allocating function

Input: retidx the index of the return value of al loc where the address

of the allocated block is output

Input: f the function to consider

Input: i the parameter of f to consider

begin

nb last accessor ← 0;

foreach val in ConcreteV aluesR(log, al loc, retidx) do

accessors ← Accessors(log, val);

prev ← None;

foreach accessor (f unc, param) in accessors do

if prev = f and (f unc = al loc and param = retidx) then

nb last accessor ← nb last accessor + 1;

end

prev ← f unc ;

end

end

return nb last accessor ;

end
Algorithm 14: Compute the number of times a given function f is the last

accessor of an allocated block through an execution e
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Function GetFree(log, alloc, retidx)
Input: log a list of events sorted by event counter

Input: al loc the allocating function

Input: retidx the index of the return value of al loc where the address

of the allocated block is output

begin

f ree ← None;

best score ← 0;

foreach function f in F (e) do

score ← NbLastAccessor(log, , al loc, retidx, f );

if NbCal lers(log, f ) > 3 and score > best score then

best score ← score;

f ree ← f ;

end

end

return f ree;

end
Algorithm 15: Retrieve FREE corresponding to a given ALLOC from an execution

e
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Note that an inconsistent couple should be detected by the additionnal step to

test the inferred couple - see Section 8.5.

Assume few bugs Our heuristics, and in particular Heuristic 15, assume that

FREE is the last accessor of an allocated block. This approach supposes, as an

underlying asumption, that ”bugs are rare” (quoted from [CSB13] - the authors

use the exact same heuristic), and especially use-after-free bugs. Indeed, these

bugs are, by definition, bugs where a block is accessed after it has been freed. In

this scenario, FREE is no longer the last accessor of this block. If it happens rarely

enough, this does not interfere with our detection. However, if more than half

freed blocks are then accessed by the same function, this could lead to an incorrect

detection.



Summary of heuristics

7.3 Arity

Heuristic 1. Inside a function, one read before write on a memory location m ∈
Mp(e) means that m is a parameter of f , but a write before read or an unused

one does not allow to conclude.

Heuristic 2. A parameter detected for fn and last written by f0 is also a parameter

of any fi between f0 and fn in the stack of calls at the time fn is called.

Heuristic 3. A return value detected for fn and last written by f0 is also a return

value of any fi between fn and f0 in the stack of calls at the time fn returns.

Heuristic 4. in(f ) can be computed from a small number of different executions

e ∈ E(B) such that f ∈ F(e). This number can possibly be one.

7.4 Type

Heuristic 5. Once a value is typed, every further occurrence of the same value

has the same type.

Heuristic 6. A value used as a memory operand is an address.

Heuristic 7. For any function f ∈ F(e), an execution ε ∈ ebf , and for any

p ∈ inε(f ) ∪ outε(f ) getting at some point the concrete value v during ε, if

type(v) = ADDR, then typeε(p) = ADDR.

157
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Heuristic 8. If a parameter p of f is detected as an address in one execution

ε ∈ ebf , then we deduce that its type in e is always ADDR.

typee(p) =

{
ADDR if ∃ε ∈ ebf , typeε(p) = ADDR

NUM otherwise

7.5 Couple

Heuristic 9. For a given execution e, given two functions f and g in F(E(B)),

a return value r ∈ oute(f ) and a parameter g ∈ ine(g) such that type(p) =

type(r) = ADDR, if r takes the concrete address value a and if p takes the same

address value a further in e, we assume a data flow from r to p according to

Definition 27.

Heuristic 10. For r a return value, and p a parameter, we can compute the rate

coupling ρ of the couple (r, p) over an execution e on a sample of concrete values

of p.

7.6 Memory allocator

7.6.1 ALLOC

Heuristic 11. The allocating function outputs as a return value the address p of

the allocated block (p, s).

Heuristic 12. The less a function f is called by various other functions, the less

it is likely that f is an allocating function.

Heuristic 13. The more a function f outputs new addresses (never seen before),

the more it is likely that f is an allocating function.

7.6.2 FREE

Heuristic 14. The freeing function takes as a parameter the address p of the

block (p, s) to be freed.

Heuristic 15. The more times a function f is the last accessor of a memory block

(p, s) output by ALLOC, the more it is likely that f is a freeing function.
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Chapter 8

Implementation

In this chapter, we present our implementation of the several analysis presented

in Part II. For each, we give more precise details about the practical analysis, and

specify several points in order to adapt efficiently to a particular target: x86-64

binaries. We implemented every analysis described in this chapter in an open-source

tool we named scat, that we present in the next section. Scat was presented

at SANER 2017 [dGFM17] and is available at https://github.com/Frky/scat.

The rest of this chapter is organized as follows: Section 8.2 and Section 8.3 present

the implementation of the structure analysis, Section 8.4 presents the couple

analysis and Section 8.5 presents the implementation for allocators retrieving. This

implementation aims to provide a partial validation of our approach, and especially

the respect of the criteria we stated in Section 4.1.3. In particular, we propose

experiments to validate accuracy and scalability (see Chapter 9). However, the

universality criterion would require to implement our approach on other architectures

to be fully validated.

8.1 Scat

Our tool, named scat, implements the approaches we presented in Chapter 6 and

Chapter 7. Initially, the name scat stood for strong coupling, arity and type, but

because it evolved since its first version (and in particular extended to allocator

retrieving and memory analysis), now it is no longer more than a wink to jazz

lovers. It used to have a logo - see Figure 8.1, but since the only paper we used
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Figure 8.1: Historical logo of our tool scat

this logo in was rejected, we gave it up (although it was probably not the reason

for the reject).

In Section 8.1.1, we present the general concept of scat and its architecture.

We then present the scope that we target with this implementation, and its

limitation regarding universality - see Section 8.1.2. Finally, an overview of the

technical choices we made regarding the instrumentation is given in Section 8.1.4.

8.1.1 General presentation

8.1.1.1 Usage

Scat is a command-line interface tool. From a prompt, one can perform online

analysis, i.e. instrument the execution of any program and providing possible

arguments. There is one command for each online analysis: launch arity,

launch type, launch couple and launch memalloc. For these analysis, scat

makes the interface with the dynamic instrumentation tool that we use: Pin - see

Section 8.1.4.1. Every instrumented execution outputs a log file, either with the

results of the inference (for arity and type) or for events to be treated in an offline

analysis (for couple and memalloc). Details are given in the relative sections of

this chapter for each.

Scat also proposes several commands to perform offline analysis from the log

files produced by the online analysis. In addition to produce the results from the

logged events in the case of two-steps analysis, one can use scat to test the results

of the inference, if it can provide the sources required by the tool to construct an

oracle. For instance, scat embeds a C source-code analyzer, to compare the results

of structure inference with source-level information in the case of open-source
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programs. This will be discussed in Chapter 9.

8.1.1.2 Architecture

The global architecture of scat is given in Figure 8.2. As mentioned before, some

online analysis directly output the results (arity and type), and some others

require an offline step (couple and memalloc). The online analysis is performed

using Pin - see Section 8.1.4.1. To do so, we write what is called pintools, i.e.

C++ code to specify the instrumentation to perform (including what instruction to

instrument and the corresponding handler for each, the logging functions, etc.).

The offline analysis is written in Python, and consists in parsing and analyzing log

files produced by the online step.

8.1.1.3 Philosophy

Scat proposes an implementation of our approach with several characteristics that

worth the mention. First, it presents a set of properties that are inherited from the

goals we stated in Section 4.1: scalability and universality. The implementation

of scat aims to target a large set of binary programs with few requirements, and

with a reasonable overhead, to be able to analyze large programs. Second, and

as a consequence of the approach we propose in Chapter 6 and Chapter 7, scat

performs analysis dynamically, and each one in one single execution. Third, as

design choices, scat is open-source1 and flexible: anyone can add new pintools

and new offline analysis, and the integration to the command line interface is

documented on GitHub. .

8.1.2 Scope

We present, in this section, the scope of our implementation. In particular, we

do focus on one binary architecture and one calling convention. However, our

approach does extend to other architectures and our implementation could be

extended to deal with them.

Remark To test our implementation, we focus on compiled programs, and that

is the reason why we choose a particular calling convention. In the case of not-

compiled programs, they only need a calling convention when they want to interact

1https://github.com/Frky/scat

https://github.com/Frky/scat
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Figure 8.2: General architecture of scat
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with libraries. Otherwise, they do not have to follow any calling convention. If we

want to analyze a hand-written program that does not follow a calling convention,

then the implementation of scat needs to be adapted.

8.1.2.1 x86-64 System V ABI

We choose to focus our implementation on x86 binaries, and in particular x86-64.

This architecture is widely used in desktop computers, so we can perform analysis

on a large variety of programs. Regarding the calling convention, we focus on

the main calling convention on Linux: x86-64 System V ABI. The choice of

targeting a Linux calling convention is motivated by the large set of open-source

programs that we can use to test our approach and compare the results of our

analysis with source-level information - see Chapter 9. In the following, we specify

the main points of this calling convention, and how we use it in our implementation.

Parameters and return values This calling convention specifies memory loca-

tions that functions must use to pass (and get) parameters and return values:

• parameters - denoted as Mp: %rdi, %rsi, %rcd, %rdx, %r8, %r9 for

integers and %xmm0, %xmm1, ..., %xmm7 for floats,

• return values - denoted as Mr : %rax for integer and xmm0 for float.

The two lists for parameters (integers and floats) are ordered: if a function

takes only one parameter, this parameter must hold in %rdi, etc. If there are more

parameters than registers can hold, additional values are passed through the stack.

Note that, in this calling convention, Mp ∩ Mr = ∅, which allows some

shortcuts in the implementation: the location itself is enough to know if we are

dealing with a return value or a parameter. This is a specific case, but we could

imagine scenarios where it is not true. Our approach would not be limited, but our

implementation would have to be adapted.

Limitations This calling convention induces, by construction, limitations in

the general approach we presented. For instance, a function cannot return more

than two values with this scheme. Actually, we assume in our implementation that

a function returns at most one value (i.e., both %rax and %xmm0 cannot be used

by the same function to return two values). This assumption comes from the fact

we deal with compiled programs in our tests, but we could easily get rid of it to

adapt our tool to functions outputting two values at the same time.
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Floating values It is important to note that floating values are handled by

specific registers. This means that the architecture itself is dealing with types.

Consequently, we include, in the types we target, the type FLOAT, which is very

specific: we do not use instructions but registers to conclude that a value is a

FLOAT. This particularity is specific to the targeted architecture, and does not

impact the general approach we presented in Section 6.2.

8.1.3 Identifiers from one execution to another

In our implementation, we need to have ways to identify several elements from a

point of one execution to another, and from one execution to another. In particular,

we need to identify functions and parameters of functions.

8.1.3.1 Functions

The problem of identifying functions we have to deal with here is very specific

to our implementation. A natural way of identifying functions is by their name,

but, according to the university criteria, we aim to target stripped binaries, where

symbols are removed (and in particular function names). The next idea that

comes is to use entry points of functions, i.e. the target of CALL instructions (or

equivalent). However, because Pin performs just-in-time compilation, the entry

points of functions at runtime depend on the instrumentation we perform: from

one execution to another, if the instrumentation changes, the entry points of

functions change. For instance, a function f will not have the same entry point if

we perform instrumentation for arity and if we perform instrumentation for types.

Eventually, we identify functions by a couple (image, offset), where image

is the name of the image being loaded (i.e., either the main program or the name

of a library) and offset the static offset of the function in the image. This is a

good identifier because 1) the name of images remain even in stripped binaries

(otherwise, the dynamic loader would not know which library should be loaded),

and 2) the static offset does not depend on the execution so it is invariant. In the

following of this chapter, when we mention a function f, it is in fact identified by

the corresponding couple that we abstract for more clarity.

8.1.3.2 Parameters

By opposition to functions, parameters have a consistent identifier: their memory

location (we recall that these memory locations are expressed relatively to a base
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address, so they are invariant from one execution to another). Even for stack

parameters, the memory location being expressed relatively to %ebp, it is invariant.

However, for clarity, we identify parameters by an integer that corresponds

to the order given by the calling convention we target. For instance, a parameter

located in the register %rdi will be designed by the integer 1, a parameter in

register %rsi will be designed by 2, etc. In addition, we use the integer 0 to design

the return value of a function. We can do this because according to the calling

convention we target, a function can only output one value (either through %rax

or %xmm0).

8.1.4 Technical choices

In this section, we present the main technical choices we made in the implementation

of scat. In particular, we present how we instrument executions, how we choose

traces, and how we actually instrument calls and returns of functions.

8.1.4.1 Instrumentation: Pin

We perform dynamic instrumentation of executions using a framework developed

by Intel: Pin. Through some code written in C++, called pintools, we specify

what to instrument, the handlers, and actions to perform before (initialization)

and after (logging) the execution of a program. We write one pintool for each

analysis. The handlers, initialization and ending functions have nothing particular

to be mentioned in the general case; however we give here some details about how

the inspection and instrumentation is performed by and using Pin.

Before executing a binary program, using Pin’s function INS AddInstrument-

Function, we call instrument instruction for each instruction statically de-

tected by Pin. This function takes an instruction as a parameter, and regarding

the kind of instruction, add an handler on this instruction or not. This handler

takes as a parameter the context of the execution when it occurs (i.e., in particular,

register values), and other optional arguments (for instance, we can give to the

handler of a call the targeted address). For instance, Pin provides INS IsCall

which returns a boolean if the instruction is a call, either direct or indirect. If we

want to instrument every direct CALL instruction, we can write something as the

code presented in Listing 8.1.

/* If the instruction is a direct call - function provided by Pin */
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i f (INS˙IsDirectCall(ins)) –
/* Get the targetted address - function provided by Pin */
ADDRINT addr = INS˙DirectBranchOrCallTargetAddress(ins);
/* Get the function being called from the targetted address */
FID fid = fn˙lookup˙by˙address(addr);
/* Insert handler - function provided by Pin */
INS˙InsertCall(ins ,

IPOINT˙BEFORE ,
/* Handler to be executed */
(AFUNPTR) fn˙call ,
/* Context of the call , ie reg values etc. */
IARG˙CONST˙CONTEXT ,
/* Function being called */
IARG˙UINT32, fid ,
IARG˙END);

˝

Listing 8.1: Example of an instrumentation using Pin

The other interesting inspection functions we use in our pintools are:

• INS RegRContain - return true if the instruction performs a read on a given

register,

• INS RegWContain - return true if the instruction performs a write on a

given register,

• INS IsStackRead - return true if the instruction performs a read of the

stack,

• INS IsRet - return true if the instruction is a return,

• INS MemoryOperandCount - return the number of memory operands of the

instruction,

• INS MemoryOperandIsWritten - return true if the memory operand given

in parameter is written.

8.1.4.2 Number of calls to conclude

For the structure analysis we implemented, i.e. for arity and type detection, we use

a parameter MIN CALLS2, that can be specified before the instrumented execution.

This parameter states the number of times a given function must be called -at

2Actually, in the case of type detection, it is named MIN VALS, but it has the same role - see

Section 8.3.5.1



8.1. SCAT 169

least- during the instrumentation if we want a result. In other words, for a function

called less than MIN CALLS during an execution e, we will not conclude on its arity

(or type). On the other hand, we can conclude for every function that is called

more than MIN CALLS. A high value of MIN CALLS means that we will conclude on

a small number of functions (especially for short executions); however the results

should be more accurate. The influence of this parameter on both the number of

functions inferred and the accuracy is discussed in Sections 9.2.2 and 9.3.2.

8.1.4.3 Call and ret instrumentation

In Section 5.2.1.1, we proposed a semantic definition of CALL and RET, indepen-

dently from an instruction set. Here, we specify this definition to x86-64 instruction

set.

CALL To instrument function calls, we first use the Pin inspection function named

INS IsCall which includes every well-identified CALL instruction (i.e., direct call

from register, indirect call from register, direct call from address, etc.: all these

instructions have a different opcode in x86-64). These instructions correspond to

the CALL as we defined it in Definition 7: it saves the return address on the stack

and modifies the value of pc to execute the targeted address.

In addition, and to include jump-based calls, we also instrument every indirect

branching that is not a call (if it is a call, then it is instrumented from the

first point). We use INS IsIndirectCallOrBranch to perform this. For this

instrumentation, we do not check if a return value has been saved before the jump.

This is an empirical deduction: among the calls that we miss with the INS IsCall

instrumentation, a large proportion are calls performed through indirect branching,

and almost every indirect branching corresponds to a call in a compiled code, in

comparison with the source-level code.

RET To instrument returns, we use two mechanisms. First, we instrument every

RET function of the instruction set using INS IsRet. This is the main and classical

way to handle returns. However, and especially regarding optimized compiled code,

one RET instruction can correspond to multiple functions in the same time (tail call

mechanism). To handle this, we use a stack of calls that we present in the

next section, which is updated at each call and return. When a function returns,

every function in the stack of calls that was called after this function and that have

not returned yet is also considering as returning.
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8.1.4.4 Stack of calls

For every instrumentation of our implementation, we keep track of the stack of calls

that we update at each call and return we instrument. For scalability, and in order

to instrument large binaries that use deep recursivity (e.g. git), we implement

a particular call stack we named Hollow Stack. Moreover, we add a new feature

that we need for descendant propagation of parameters (see Section 6.1.4.3) that

we named shadow of the stack. The call stack we use in the rest of this chapter

implements both features.

Hollow Stack The aim of this design named Hollow Stack is to keep a good

sampling of the calls that occurred and have not returned yet, even when it is not

possible (or very inefficient) to keep every single call in the stack. In general, even in

large binaries, the call stack is not really deep, except for programs using recursion:

this leads to performance and memory issues. The Hollow Stack behaves exactly

like a straightforward fixed-size stack until a given limit size is reached. In this

case, it will start to discard elements in the middle. The intuition is that with a

reasonably-sized stack3, overflow only occurs in cases of heavy recursion. When

this happens, the stack is filled with a lot of redundant calls in its middle while the

bottom and the top will contain relevant calls (head and tail of the recursive calls

chain). The principle of this stack is shown in Figure 8.3.

Shadow of the call stack We propose to add another functionality to our call

stack, we name shadow of the stack. When an element is popped from the stack,

the head of the stack is updated accordingly, but the elements are not actually

deleted. The actual deletion is performed when a push occurs. Therefore, it

is possible to access every element that was popped after the last push. What

we name shadow of the stack is the set of elements that were popped but still

accessible in fact. Figure 8.4 illustrates this idea. A concrete example of this is

what actually occurs in the stack of a binary during the execution: an instruction

POP moves the stack pointer but does not actually erase the data.

3For example, the number of functions inside the executable can be used as a large upper

bound
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Figure 8.3: Recursive calls chain and the corresponding hollow stack
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Figure 8.4: Illustration of the shadow of the stack on an example
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8.2 Arity

In this section, we present the specificities of our implementation to retrieve arity

of functions. This implementation takes some liberties regarding the approach we

presented in Section 6.1. We present an evaluation of it in Section 9.2.

8.2.1 Combined analysis

In Section 6.1, we proposed an approach in two steps: an online instrumentation

step and an offline inspection step. In our implementation, we actually do both

steps at once: deductions on arity are made during the instrumentation, and this

only step directly outputs the arity results. The choices we made that illustrate

this distinction with the approach we described previously are detailed in the rest

of this section.

8.2.2 Practical heuristics

In addition to heuristics we presented in Section 6.1.4, which were relative to the

approach, we use some heuristics relative to the implementation. These heuristics

do not improve the theoretical approach, but may correct some misdetections due

to an imperfect instrumentation. In particular, we assume that we might miss

some reads, writes, calls and returns during our implementation.

8.2.2.1 Parameters and returns

As mentioned in Section 8.1.2, some specific memory locations hold parameters.

To pass a parameter, the caller must write its value at one of these memory

locations, and the callee fetches it after the CALL. As a reminder, if a function f

writes at some memory location m ∈Mp, g is called later (but before f returns)

and reads at memory location m, and if m was not overwritten in between, then we

deduce that m holds a parameter of g. However, we claim that this only holds if no

function (neither f nor any other one) returns in between. Indeed, a function has

no obligation to preserve values in registers, and therefore we cannot assume that

m would not have been overwritten (maybe it has not been during one particular

observed execution, but we cannot assume this is the general case). This leads to

the following heuristic:
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Practical heuristic 1. For a function f accessing a memory location m ∈Mp, if

a RET occurred since the last write of m, then m cannot hold a parameter of g.

An example of such a situation (artificially built) is given in Listing 8.2. In

principle, such a scenario should not occur with compiled code: f should not be

accessing %edi in this way after g returned. However, what can happen is that we

miss some instructions, for instance a write of f in %edi after g returned. This

heuristic is thus mainly used to correct some errors due to imperfect instrumentation.

f:
PUSH %ebp
MOV %esp , %ebp
...
// f calls g
CALL g
...
// then f reads % e d i
MOV % e d i , % eax
...

g:
PUSH %ebp
MOV %esp , %ebp
...
// i n between , g overrides % e d i
XOR % e d i , % e d i
...
RET

Listing 8.2: Example of a register being read after a return that may lead to a

misdetection

8.2.2.2 Return values and calls

In the same way, we cannot assume that a memory location m ∈Mr is preserved

by other function calls. Therefore, a CALL between the write of m and its read

prevent the detection of a return value:

Practical heuristic 2. For a function f accessing a memory location m ∈Mp, if

a CALL occurred since the last write of m, then m cannot hold a return value of

g.
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8.2.3 Instrumentation

To perform arity analysis, as mentioned in Section 6.1.3.3, we need to instrument

two types of event: function calls and returns, and location accesses. Function

calls and returns are instrumented as presented in Section 8.1.4.3. We only add a

few specific operations in the corresponding handlers - see next section. Regarding

location accesses, we proceed as follows: we provide two lists, one for parameter

locations and one for return value locations; and each instruction that either reads

or writes one of these locations is instrumented - handlers for each are detailed

in next section. These lists correspond to the memory locations specified by the

calling convention to pass parameters and return values - see Section 8.1.2. The

specific case of stack parameters is discussed in Section 8.2.4.3.

8.2.3.1 Data

Our instrumentation uses the several global variables:

• ec: an event counter incremented by each handler,

• sc: stack of calls,

• ssp: stack of %esp values - this is required to detect stack parameters,

• last call: value of the event counter when the latest call occurred,

• last ret: value of the event counter when the latest return occurred,

• last write: array where, for each memory location m monitored for parame-

ters or return value, last write[m] is the event counter of the latest event

that performed a write at memory location m,

• nb calls: array to store the number of calls of each function,

• nb detection: 2D array, where nb detection[f][m] is the number of

executions of the function f where the memory location m ∈ Mp was

detected as a parameter (or a return value if m ∈Mr ).

8.2.3.2 Instrumented schemes

For arity detection, we instrument any instruction that corresponds to one of the

following schemes:
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• a function CALL,

• a function RET,

• an access to a memory location of Mp or Mr .

8.2.3.3 Handlers

For each of these instrumented schemes, we perform some actions in the corre-

sponding handler, that aims to prepare the final detection of arity: in addition

to logging events (as presented in Section 6.1.3.3), some information relative to

inspection are directly treated at runtime.

Functions

Call Each time a function f is called, we perform the following actions:

• push f to the call stack sc: sc.push(f);

• push %esp to the sp stack ssp - note that it is the old value of %esp, i.e.

the value before the call that is pushed: ssp.push(%esp);

• increment the number of calls to f: nb calls[f] ← nb calls[f] + 1;

• save the event counter of the last call: last call ← ec;

• increment the event counter: ec ← ec + 1.

Return When a function f returns, we perform the following actions:

• pop f from the call stack sc: sc.pop();

• pop %esp from the sp stack ssp: ssp.pop();

• save the event counter of the last return: last ret ← ec;

• increment the event counter: ec ← ec + 1.

Parameters
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On read For a read access to a memory location m of Mp, we do:

• if last ret ¿ last write[m], do nothing - this means that a function has

returned since the last write of m;

• for each function f in the call stack, if the call to f occurred after

last write[m], increment the corresponding number of detection:

nb detection[f][m] ← nb detection[f][m] + 1;

• increment the event counter: ec ← ec + 1.

On write For a write access to a memory location m of Mp, we do:

• update the last write of m: last write[m] ← ec;

• increment the event counter: ec ← ec + 1.

Return value

On read When a memory location m for return value, i.e. in Mr , is read, we

do the following:

• if last call ¿ last write[m], do nothing - this means that a function

has been called since the last write of m;

• for each function f in the shadow of the call stack, if the return of f occurred

after last write[m], increment the corresponding number of detection:

nb detection[f][m] ← nb detection[f][m] + 1;

• increment the event counter: ec ← ec + 1.

On write When a memory location m for return value, i.e. in Mr , is written,

we do the following:

• update the last write of m: last write[m] ← ec;

• increment the event counter: ec ← ec + 1.
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8.2.4 Detection

From the data we collect during the execution, we present here our method to

retrieve arity of functions.

8.2.4.1 Thresholds

In addition to the global parameters presented in Section 8.1.4, and in particular

MIN CALLS, the arity detection relies on two other adjustable parameters, one to

conclude on parameters and one to conclude on return values. The influence of

both is evaluated in Section 9.2.

Because executions of a given function are not necessarily sequential, several

paths may lead to use or not some parameters the function takes. This would

lead to false negatives (i.e., parameters that we miss). On the other hand, if our

instrumentation misses some writes of memory locations, we may end up with false

positives (i.e. detecting parameters that do not exist). This is the reason why we

use two thresholds: PARAM THRESHOLD and RET THRESHOLD. These thresholds are

used to conclude on the arity based on the rate of detection of each parameter

(resp. return value) relatively to the number of executions of the function.

8.2.4.2 Deduction of arity

At the end of the execution, the two arrays nb calls and nb detection contain

respectively the number of calls of each function and the number of times a given

parameter/return value has been detected for a given function. Our algorithm

to compute arity, from these data collected at runtime, is given in Algorithm 16.

Actually, in addition to the number of parameters of each function, we keep the

corresponding memory locations, as this information is needed for further analysis

(and in particular, type analysis).

8.2.4.3 Stack parameters

Identification and location As for other memory operands, we instrument each

read and write for which the memory location is computed relatively to %esp or

%ebp. Reads and writes are handled in the exact same way as for registers, except

that the memory location is identified by an offset relatively to %ebp, and it is the
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reason why we need to keep a stack of values of %ebp in addition to the call stack4.

Size Stack parameters are harder to deal with than register parameters. Indeed,

if we can elude the size of register parameters, it is very important when it comes

to the stack: from eight bytes on the stack, we can hardly conclude on the number

of parameters (two int ? eight char ? etc.). The strategy we adopt is to reduce a

stack access of a memory location to its first byte. In other words, if at some point

% ebp - 4 is read, the number of bytes actually read does not matter: we only

log a read access to % ebp - 4. The idea behind this is that if a stack parameter

is 4-bytes long, it will never be accessed from the second, third or fourth byte.

8.3 Type

In this section, we present our implementation to retrieve types of parameters and

return values.

8.3.1 Context

For the recall, we defined in Section 6.2 the subset of types we were interested in:

T = {NUM, ADDR}

We defined ADDR as the subset of the following abstract instructions:

ADDR = {LOADl, STOREr}

In this implementation, we extend ADDR to any memory operand of any instruc-

tion of the x86-64 instruction set - see Section 8.3.5.3.

In addition, we mentioned in the previous section that floating values are already

typed at assembly level because they use specific registers. Thus, in the scope of

this implementation, we actually distinguish three types: FLOAT, ADDR and INT,

where FLOAT are detected at the previous step using register-based deductions, and

ADDR are detected as detailed in the following of this section, using instruction-based

deductions - as presented in Section 6.2.

4As explained in Section 8.3.5.2, we actually store the value of %esp, but just after a call, the

value of %esp is copied into %ebp, so it does correspond to the value of the %ebp of the function

being called
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8.3.2 Base point

The type detection is based on the arity results. In particular, we need, from the

previous inference, the following data for each function f:

• the location of each non-float parameter of f,

• the location of each float parameter of f,

• whether f outputs a value or not,

• and if so, the memory location corresponding to its value.

In other words, we need more than the strict arity, but these information are

retrieved from the arity detection, so we do not need more than what can be

output by the implementation presented in Section 8.2.

In the following, we abstract the memory location when we denote by p a

parameter of a function f, but in practice we use this memory location to get the

concrete value of p when f is called. We denote by P[f] the list of parameters

of f that are not floating parameters, and R[f] the information about its return

value: None if no return value for f was detected during arity inference, FLOAT if it

was detected as a floating return value and NUM otherwise. We recall that FLOAT

parameters can be deduced from the memory location itself.

8.3.3 Combined analysis

As for the arity inspection, we take some liberties regarding the two-steps approach

we presented in Section 6.2. In particular, we deduce some elements from the

instrumentation at runtime, and instead of outputting a log file, we directly output

the inference results. The main advantage of this is to not store large log files,

and to speed up the approach with runtime deductions. However, we could not do

this in the general case: we use practical heuristics that are based on the scope of

the concrete architecture we target.

8.3.4 Practical heuristic

In the previous section, we presented practical heuristics to minimize the errors due

to an imperfect instrumentation - see Section 8.2.2. Here, we present practical

heuristics for another purpose. Instrumenting every memory access, and keep
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track of every single value detected as an address, would be very heavy and hardly

scalable. Our practical heuristic aims to speed up the instrumentation and keep

scalability.

Practical heuristic 3. The address space is continuous, and therefore a value v

that is between two addresses a1 and a2 is an address.

This means that, instead of keeping a list of concrete values that have been

detected as addresses, we only need to keep track of the lower and the upper

bound.

8.3.4.1 Regions

To do so, we implement what we call regions. A region is characterized by two

attributes and two methods:

• low: the lower bound of the region,

• high: the higher bound of the region,

• contains(addr): return true if and only if addr is between low and high,

• extend to(addr): update bounds to include addr - if addr ¡ low then

low takes the value of addr, and if addr ¿ high then high takes the value

of addr.

In other words, a region is an interval of addresses that we can update when we

detect a new address. For type detection, we use two regions: the address space,

that we denote by addr space, and which aims to include the heap and the stack

at runtime; and the data section, denoted by data space, which aims to represent

the memory area where static data needed by the program at runtime are stored.

The address space region is initialized empty, with low = 0xFFFFFFFFFFFFFFFF

and high = 0. It aims to be updated, during the execution, every time a new

address is detected. On the other hand, the data section region is initialized

according to the data segment described in the header of the binary, and is

invariant during the execution.
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8.3.5 Instrumentation

8.3.5.1 Parameters

The detection of types is parameterized by two values: MIN VALS and MAX VALS.

MIN VALS has the same role as MIN CALLS in the arity detection: it represents the

minimum number of values we need to conclude on the type of a given parameter.

However, to avoid collecting a too large amount of data, we also add a maximum

limit, MAX VALS, from which we stop collecting additional values. In other words,

during the instrumentation, we collect at most MAX VALS values for each parameter

p of each function f, and during the detection we only conclude on the type of a

parameter if we collected at least MIN VALS values.

8.3.5.2 Data

Our implementation relies on the following global variables:

• ec: an event counter incremented by each handler,

• sc: stack of calls,

• addr space: a region representing the address space, as described in Section

8.3.4.1,

• vals: a 2D array, where vals[f][p] is a list of concrete values for the

parameter p of P[f] ; note that vals[f][0] is a list of concrete return

values of f.

Remark We do need the call of stack to have information about which function

is returning. Indeed, when a CALL is performed, the operand tells us which function

is being called. However, when a RET occurs, there is no way to know at which

function it corresponds, except by keeping a consistent call of stack.

8.3.5.3 Instrumented schemes

For type detection, we instrument three types of schemes: two relative to functions

and one relative to memory accesses:

• any function call,
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• any function return,

• any read or write to a memory location.

8.3.5.4 Handlers

For each instrumented scheme, an handler is called to perform the relevant actions

we need for type detection.

Functions

Call When a function f is called, we perform the following actions:

• push f to the call stack sc: sc.push(f);

• for each parameter p of P[f], if len(vals[f][p]) ¡ MAX VALS, then we add

the concrete value v of p to the list of collected values: vals[f][p].add(v);

• increment the event counter: ec ← ec + 1.

Return When a function f returns, we perform the following actions:

• pop f from the call stack sc: sc.pop();

• if R[f] is NUM, and if len(vals[f][0]) ¡ MAX VALS, then we add the

concrete value v of the return value to the list of collected values:

vals[f][0].add(v);

• increment the event counter: ec ← ec + 1.

Memory accesses When an address a is used as a memory operand, we do:

• if a is not in the address space inferred so far, extends the address space to

include a: addr space.extend to(a);

• increment the event counter: ec ← ec + 1.

In other words, the only thing we do when an address is observed is to update

the bounds of the address space to include this new address (if needed).
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8.3.6 Detection

8.3.6.1 Thresholds

We base our detection of types on two thresholds: MIN VALS and ADDR THRESHOLD.

They are parameters of the implementation, and their impact is evaluated in Section

9.3.2.2.

MIN VALS We presented it in Section 8.3.5.1: it states the minimal number of

values we need to deduce the type of a parameter. If, for a given parameter, we

did not collect at least MIN VALS concrete values during the execution, then we do

not infer its type. The higher this value is, the more accurate is the result, but the

less parameters we are able to infer.

ADDR THRESHOLD This rate is the minimum proportion of addresses a parameter

should take as concrete values to be typed as an address. Indeed, we could have a

few unfortunate collisions between addresses and integers (and therefore, an INT

parameter could take a value that is inferred as an ADDR). The ADDR THRESHOLD

value states the maximum number of unfortunate collisions that are still acceptable

to deduce a given parameter is an address.

8.3.6.2 Deduction of types

At the end of the execution, we have the bounds of the inferred address space

addr space, concrete values of parameters and return values of each function in

vals. For each concrete value of a given parameter p, we compute the number of

times it is detected as an address, relatively to the total number of values. If this

rate is above ADDR THRESHOLD, we deduce that p is an ADDR parameter. This is

detailed in Algorithm 17. This algorithm outputs, for a given function f, a type for

each of its parameters in an array, plus a value for the type of its return value.

8.3.6.3 Output

At this point, scat outputs C-like undertyped prototypes of functions - see Listing

8.3 for an example5. Note that this is the result of only two instrumented executions

of a binary, possibly stripped.

5In this example, and in the following ones in Chapter 9, we work on unstripped binaries for

more clarity, but our tool can deal as well on stripped binaries
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scat ¿ display grep type
addr fts˙alloc(addr , addr , i n t );
void pr˙sgr˙start˙if( i n t );
i n t kwsexec(addr , addr , i n t , addr);
void setbit( i n t , addr);
void print˙sep( i n t );
addr strcmp(addr , addr);
i n t tr( i n t , i n t );
i n t EGexecute(addr , i n t , addr , i n t );
i n t undossify˙input(addr , i n t );
addr ˙dl˙fixup( i n t , i n t );
...

Information about inference
— Last inference: 2016 -07 -21 14:53:05
— Total functions infered: 38

Listing 8.3: Example of the display of C-like prototypes using scat

8.4 Coupling

8.4.1 Context

The goal of this implementation is to retrieve address-based couples, as defined in

Section 7.1.2.2. This detection is relative to an execution of the program, and

parameterized by a coupling rate ρ. We only target coupling involving addresses, so

the instrumentation only targets functions that use addresses (either in parameter

or as a return value).

8.4.2 Base point

To retrieve couples, we need the results of type inference. Actually, we require to

know, among the parameters of a given function f, which is an address, and if f

outputs an address or not. We denote by Pa[f] the set of address parameters

of f. Note that in fact Pa[f] contains memory locations corresponding to these

parameters, for the couple analysis to be able to get concrete values at runtime. In

addition, we denote by Ra[f] a boolean to indicate if f returns an address (true)

or not (false). These data can be reconstructed directly from the output of the

type analysis for each function that has been inferred.
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8.4.3 Two-steps analysis

By opposition to first two implementations we presented in this chapter, our

implementation of the coupling analysis is a two-steps analysis, as described in

Section 7.1. During the first step, we instrument the execution and log the relevant

information we need to retrieve couples. This step is presented in Section 8.4.4.

The second step consists in an offline parsing of the logs and a computation of

coupling rates to retrieve ρ-couples. The implementation of this step is given in

Section 8.4.5.

8.4.4 Instrumentation

8.4.4.1 Parameters

As for type detection, we base our instrumentation on two parameters: MIN VALS

and MAX VALS. These two parameters have the same role as presented in Section

8.3.5.1. MIN VALS is used as a threshold to conclude or not on coupling (if there is

not enough values, we cannot conclude), whereas MAX VALS is used at runtime to

stop the accumulation of values when we consider that we have enough of them.

8.4.4.2 Events

For each of the two events presented in Section 3, and that we need to perform

coupling detection, we explicit here the concrete elements that are logged.

Call For each call of f, and for each parameter p of Pa[f], we log:

• ec - the event counter when the call occurs;

• fid - the identifier of the function f that is called;

• pid - the identifier of the parameter p of f;

• v - the concrete value of the parameter.

Return Similarly, for each return of f, we log:

• ec - the event counter when the call occurs;

• fid - the identifier of the function f that is called;
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• rid - a special identifier to indicate this is a return value of f;

• v - the concrete value returned by f.

8.4.4.3 Instructed schemes

For coupling, we instrument two instruction schemes, and although in the previous

analysis we instrumented every single call and return, here we filter the functions

to be instrumented. We instrument the following schemes:

• every call to f if f takes at least one ADDR parameter,

• every return from f if f outputs an ADDR return value.

8.4.4.4 Handlers

Call When a function f is called, we perform the following:

• push f to the call stack sc: sc.push(f);

• increment the number of calls to f: nb calls[f] ← nb calls[f] + 1;

• for each parameter p of Pa[f], if len(vals[f][p]) ¡ MAX VALS, log the

corresponding event;

• increment the event counter: ec ← ec + 1.

This handler aims to collect concrete values for each address parameter of f, up

to MAX VALS values.

Return When a function f returns, we perform the following:

• pop f from the call stack sc: sc.pop();

• if Ra[f] is true, then log a return event with the concrete value v of the

return value of f;

• increment the event counter: ec ← ec + 1.

This handler aims to collect all concrete address values output by f during the

execution.
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8.4.5 Detection

8.4.5.1 Parameters and thresholds

The detection of couples is based on the rate ρ that is a parameter of the analysis:

we only output couples that have a coupling rate equal or above ρ. In addition,

and as mentioned earlier, we use the threshold MIN VALS to determine whether

the coupling rate of a given couple (f, g) can be computed: if the number of

parameter values of g is not enough (i.e. if it is less than MIN VALS), we skip it.

8.4.5.2 Deduction

From the log we obtained during the instrumented execution, we need to reconstruct

a collection of values, stamped with the event counter (to keep track of the

chronology) for each parameter of each function. This is performed in Algorithm

18. Thus, we can compute the coupling rate for each possible couple, and only

output the relevant ones (i.e. the ones with a coupling rate above ρ). Algorithm

19 presents the implementation.

8.5 Allocators

This section presents our implementation of allocator retrieving. As for coupling,

the actual implementation is really close to the approach we presented in Section

7.2.4.

8.5.1 Context

We aim to retrieve the main allocator of a program during one execution. By ”main

one”, we mean the one that is the most frequently used. For the recall, we target

allocators as defined in Section 5.4, i.e. we need to retrieve two functions: the

allocating function, that we generally denote by ALLOC, and the freeing function

that we denote by FREE. A given program could embed several allocators, i.e.

several couples (ALLOC, FREE), either within several layers or even completely

independent ones. In the case of a multiple-layers allocator, it is easy, from the

detected layer (i.e., the most frequently used one), to retrieve the others layers by

tracking addresses it produces. In the case of several independent allocators, our

implementation can be extended.
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8.5.2 Base point

For this analysis, we require the results of prototype analysis (i.e., arity and type

retrieving), plus the results of coupling analysis. From prototype analysis, we

actually need the set Pa[f] of parameters that are addresses, for each function

f, plus the boolean Ra[f] which indicates if f returns an address or not. This

requirement is the same as for coupling analysis. From the coupling analysis, we

need a list Cρ of tuples (f, g, i) such that the output of f is ρ-coupled with

the ith parameter of g. Here again, ρ is a parameter of the implementation. We

denote by Fρ the set of functions that are involved in a couple of Cρ, either as a

left or as a right operand of the couple.

8.5.3 Practical heuristics

To perform the analysis on concrete binaries, we need to specify general heuristics

proposed in Section 7.2.5.1. In particular, we make a strong assumption relative

to the prototype of ALLOC.

8.5.3.1 Memory bloc and address

Because we work with ADDR concrete values, we reduce a memory block to the

address of its first cell in our implementation. This means, in particular, that two

different addresses are seen as two blocks. The problem it raises, when one wants

to retrieve an allocator, is that it is hard to distinguish new addresses corresponding

to new blocks and new addresses corresponding to an existing block (beginning

of the block plus an offset). In particular, Heuristic 13 does not work anymore,

because a function that returns addresses within a block will be seen as a producer

of addresses.

8.5.3.2 Prototype of ALLOC

To fix this, we add a practical heuristic on the prototype of ALLOC. If functions

can easily produce new addresses with an offset from an existing address, only

ALLOC can produce new addresses from scratch, i.e., without taking an address as

a parameter.

Practical heuristic 4. ALLOC does not take an address as a parameter.
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8.5.4 Instrumentation

8.5.4.1 Parameters

The only parameter of this instrumentation is ρ, which is in fact inherited from the

parameter of coupling analysis: as we base our allocator detection on ρ-coupled

functions, we must have perform the coupling step with the same ρ before. However,

as we need to collect every address value involved, there is no parameter such as

MIN CALLS or MAX VALS.

8.5.4.2 Handlers and logging

The instrumentation of the execution for allocators detection is very similar to the

one for coupling analysis: the same handlers are used, and the same data is logged.

The only two differences are the following.

First, we do not instrument the same functions. For coupling, we instrument

every function that deals with addresses. Instead, here we only instrument CALL

and RET for functions that are involved in a ρ-couple, according to the results

of Section 8.4. Second, by opposition with coupling detection, for allocators we

need to collect every concrete value for parameters we are interested in (i.e., ADDR

parameters involved in a ρ-couple).

In conclusion, the target of our inspection is every function f ∈ Fρ, and for

each of these functions we collect every ADDR data, either in parameter or as a

return value.

8.5.5 Detection

From the logged events, we perform an offline analysis to retrieve the allocator

in two steps: first, we find the best candidate for ALLOC, and from it we retrieve

the best candidate for FREE. We propose, in Section 9.5, a metric to evaluate the

relevancy of the output couple (ALLOC, FREE). If the consistency is below a given

threshold, we can try with the second best candidates, etc.

8.5.5.1 Implementation of the address table

To retrieve ALLOC and FREE, we need to track addresses when they are used.
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AddrTable For ALLOC we need to be able to know if a given address was seen

before, and to mark a new address as seen. To to this efficiently, we implement an

address table, AddrTable, which is basically a hashtable with three main methods:

• add(a) - add the address a in the table,

• contains(a) - return true if and only if a was added to the table before,

• items() - return the list of addresses that correspond to an entry in the

table.

AddrTableDic For FREE, we do need to know if an address was seen before, but

in addition we need to store a list of accessors for each address. We implement

a variant of AddrTable, named AddrTableDic, where each address is associated

with a list of accessors, initially empty. In addition of the two methods inherited

from AddrTable, a third method allows to add a function to the list of accessors

of an address:

• add accessor(a, f) - add f to the list of accessors of a (if a is not in the

address table, it is added).

8.5.5.2 Deduction

We present, in Algorithms 21 and 23, versions of the algorithms presented in

Section 7.2 adapted to the notations of the implementation and dealing with the

parameters, but the logic of the algorithm is unchanged. This implementation relies,

for ALLOC, on the dictionary callers, computed by the function ComputeCallers

presented in Algorithm 20 ; and for FREE on the list of accessors of each address

accessors computed in Algorithm 22. We also use data structures we implemented

to improve the efficiency of the analysis, and in particular the address table to keep

track of the new addresses.
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Function Arity(nb calls, nb detection, f)
Input: nb calls the number of calls of each function

Input: nb detection the number of detection of each memory location

for each function

Input: f the function for which we compute the arity

begin

if nb calls[f] ¡ MIN CALLS then

/* The number of calls to f is too small to be able

to conclude */

return n.c., n.c.;

end

nb in ← 0;

foreach memory location m ∈Mp do

rate ← nb detection[f][m] / nb calls[f];
if rate ¿ PARAM THRESHOLD then

nb in ← nb in + 1;

end

end

nb out ← 0;

foreach memory location m ∈Mr do

rate ← nb detection[f][m] / nb calls[f];
if rate ¿ PARAM THRESHOLD then

nb out ← nb out + 1;

end

end

return nb in, nb out;

end
Algorithm 16: Get the arity of function f from one execution
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Function Type(addr space, data space, vals, f)
Input: addr space the region corresponding to the inferred address space

Input: data space the region corresponding to the data section

Input: vals 2D array with concrete values of parameters and return values

Input: f the function for which we compute type of its parameters

begin

type ← Array() ;

foreach parameter p of f do

if p not in P[f] then

type[p] ← FLOAT ;

continue;

end

nb addr ← 0;

foreach value v of vals[p][v] do

if addr space.contains(v) or data space.contains(v) then

nb addr ← nb addr + 1 ;

end

end

rate ← nb addr / len(vals[f][p]);

if rate ¿ ADDR THRESHOLD then

type[p] ← ADDR ;

else

type[p] ← INT ;

end

end

/* Dealing with the return value */

if R[f] is FLOAT then

ret type ← FLOAT ;

else

nb addr ← 0;

foreach value v of vals[f][0] do

if addr space.contains(v) or data space.contains(v) then

nb addr ← nb addr + 1 ;

end

end

rate ← nb addr / len(vals[f][0]);

if rate ¿ ADDR THRESHOLD then

ret type ← ADDR ;

else

ret type ← INT ;

end

end

return type, ret type;

end

Algorithm 17: Get the type of parameters for function f from one execution
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Function CollectValues(events)
Input: events a list of events

begin

/* vals is a 2D array of lists, where vals[f][p] is a

list of concrete values for parameter p of function

f */

vals ← 2DArray() ;

foreach event e in events do

vals[e.fid][e.pid].add(e);

end

return vals ;

end

Algorithm 18: Get concrete values for each parameter (and return value) of

functions from the logged events
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Function Couples(vals)
Input: vals a 2D array where vals[f][p] is a list of concrete values

for parameter p of function f

begin

couples ← Array();

foreach function f in vals.indexes() do

if not Ra[f] then

continue;

end

foreach function g in vals.indexes() do

foreach parameter p in Pa[g] do

if len(vals[g][p]) ¡ MIN VALS then

continue;

end

nb ← 0 ;

foreach value v in vals[g][p] do

if v in vals[g][0] then

nb ← nb + 1 ;

end

end

if nb / len(vals[g][p]) ¿ ρ then

couples.add(f, g, p);

end

end

end

end

return couples ;

end

Algorithm 19: Get concrete values for each parameter (and return value) of

functions from the logged events
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Function ComputeCallers(events)
Input: events a list of events

begin

call stack ← CallStack();

callers ← Dict();

foreach event e in events do

if e.is call() then

caller ← call stack.top();

call stack.push(e.fid);

else

call stack.pop();

caller ← call stack.top();

end

if caller not in callers[e.fid] then

callers[e.fid].add(caller);

end

end

return callers ;

end
Algorithm 20: Get the callers of every function from the logged events
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Function GetAlloc(events, callers)
Input: events a list of events

Input: callers a dictionary, where for each function f, callers[f] is

a list of all the callers of f during the execution

begin

nb new addr ← Dict();

addr seen ← AddrTable();

foreach event e in events do

/* For ALLOC, we ignore calls and consider only the

returns */

if e.is call() then

continue;

end

/* A parameter identifier negative indicates no

concrete value - we ignore it */

if e.pid ¡ 0 then

continue;

end

/* A new address is detected */

if not addr seen.contains(e.v) then

/* If the function has less than 3 callers, then

we ignore it and do not mark the address as

seen */

if len(callers[e.fid]) ¡= 3 then

continue;

end

/* If the function takes an address as parameter,

it cannot be ALLOC according to Heuristic 4 */

if len(Pa[f]) != 0 then

continue;

end

nb new addr[e.fid] ← nb new addr[e.fid] + 1;

end

end

/* We return the function f such that nb new addr[f] is

maximum */

return nb new addr.max key();

end
Algorithm 21: Get the best candidate for ALLOC



198 CHAPTER 8. IMPLEMENTATION

Function ComputeAccessors(events, callers, ALLOC)
Input: events a list of events

Input: callers a dictionary, where for each function f, callers[f] is

a list of all the callers of f during the execution

Input: ALLOC the best candidate for ALLOC

begin

accessors ← AddrTableDict();

/* By default, cells of this dictionary are initialized

with 0 */

nb addr ← Dict();

/* First step: we iterate on events and construct the

list of functions that use each address */

foreach event e in events do

if e.is call() then

if not accessors.contains(e.v) then

accessors.add(e.v);

end

/* For address e.v, we keep track of the function

(and its parameter) that took it as a

parameter */

accessors[e.v].add accessor(e.fid, e.pid);

else if e.fid = ALLOC then

if not accessors.contain(e.v) then

accessors.add(e.v);

end

/* If a new address was output by ALLOC, we add

it to the list of allocated addresses */

accessors[e.v].add accessor(e.fid, 0);

end

end

return accessors;

end
Algorithm 22: Compute the list of accessors for each address
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Function GetFree(accessors, ALLOC)
Input: accessors a list of accessors for each address value

Input: ALLOC the best candidate for ALLOC

begin

/* Second step: we iterate on addresses, and for each

we get a list of functions that used it (either as a

return value or as a parameter) */

foreach addr, call in accessors.items() do

if len(call) = 0 or call.count(ALLOC) = 0 then

continue;

end

/* We split the list of calls with ALLOC: we end up

with several lists, each one being a sequence of

calls (ie a couple fid, pid) that used addr */

call seq ← call.split(ALLOC);

candidates ← List();

foreach list l in call seq do

/* For each list, we keep as a potential

candidate the last accessor of the address

(before a call to ALLOC or the end of the

execution) */

candidates.add(call seq.last());

end

foreach couple f, p in candidates do

nb addr[(f, p)] ← nb addr + 1;

end

end

/* We return the couple (f, p) corresponding to the

best candidate for FREE according to the number of

times it is the last accessor of an address, ie the

couple (f, p) such that nb addr[(f, p)] is maximum

*/

return nb addr.max key();

end
Algorithm 23: Get the best candidate for FREE according to a given ALLOC
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Chapter 9

Evaluation

This chapter presents experiments, both to assess our approach and to observe the

influence of the different parameters. For each type of binary analysis, we propose

a metric to assess the accuracy of our results. Regarding arity and types, we

propose to compare the results inferred with source-level prototypes of functions on

C open-source programs. For couples, the metric we use is the number of couples,

and the number of unique functions involved in the detected couples. For allocators,

we propose to retrieve the well-known standard libc allocator in several programs,

as well as custom allocators. Finally, we propose a new metric to validate the

consistency of a detected allocator which does not require a new execution.

9.1 Methodology

In this section, we present the general methodology we use to validate our imple-

mentation for each analysis. In particular, we provide details about the benchmarks

we use, the production of oracles and how we produce accuracy results.

9.1.1 Open-source programs compiled from C

For all our tests, we use C open-source programs, compiled with gcc1 for Linux

x86-64 architecture. Indeed, using open-source programs, compiled from C, allows

to retrieve easily some source-level information to produce oracles that thus can

1to validate universality, it would be interesting to test with other compilers as well

201
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be compared with analysis results to evaluate the accuracy. This will be detailed in

each of the following sections, but as an example, from the C source-code we can

easily retrieve the arity of each function. Note that, because we perform a dynamic

instrumentation, we capture functions embedded in the binary under analysis as

well as functions from dynamically loaded libraries. Our numeric results include

both.

Our benchmark consists of several sets of programs, with different purposes of

validation.

9.1.1.1 Detection on small programs

The first benchmark we propose is composed of all 106 programs of the GNU

coreutils [osb]. The purpose of this benchmark is to propose tests over a variety

of different small programs with different uses and behaviors. We aim to show that

even on short executions, our approach allows to retrieve accurate information.

For each program, we provided one input in a configuration file. As an input,

we give required parameters for the program to run plus one or two options taken

from the manual page. These inputs aim to represent a usual execution of the

programs, with no particular thought on the coverage or the time of execution.

As they are small programs, testing all of them is fast, but the coverage is poor

(as we perform one single execution), and the number of functions inferred is small

(10 to 15 functions for each program).

Note that, in this chapter, each time we present a result with the label

coreutils, we actually give the average over all coreutils programs.

9.1.1.2 Influence of inputs

The purpose of this benchmark is to show that the results of our analysis is stable

over several executions with different inputs.

We propose three different tests to evaluate this stability:

• 8cc [Uey12] - 8cc is a small C compiler. In this test, we compile with 8cc

each of the 43 C source code provided with the compiler on GitHub (2).

• ls (from coreutils) - we provide 1000 different sequences of command line

arguments for ls. Each sequence, generated randomly from the ls manual

page, is composed of five random parameters.

2https://github.com/rui314/8cc/tree/master/test

https://github.com/rui314/8cc/tree/master/test
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• bash [osa] - we provide 17 hand-written bash scripts taken from this bash

tutorial: http://tldp.org/LDP/abs/html/.

9.1.1.3 Common programs

Finally, we propose a benchmark of several programs that aim to represent the

kind of programs we may use every day, either in a personal or in a professional

environment.

• git [git] - ”free and open source distributed version control system”.

• grep [gre] - ”grep prints lines that contain a match for a pattern”.

• mupdf-x11 [mup] - ”mupdf is a lightweight PDF, XPS, and E-book viewer”.

• objdump [bin] - ”objdump is a program for displaying various information

about object files. For instance, it can be used as a disassembler to view an

executable in assembly form. It is part of the GNU Binutils for fine-grained

control over executables and other binary data.”

• openssl [ope] - ”OpenSSL is an open source project that provides a robust,

commercial-grade, and full-featured toolkit for the Transport Layer Security

(TLS) and Secure Sockets Layer (SSL) protocols”.

• opusenc [opu] - ”open, royalty-free, highly versatile audio codec” that aims

to replace Vorbis and other proprietary codecs.

• readelf [bin] - ”Displays information about ELF files”. In particular,

readelf embeds a parser for ELF headers, section table, symbol table,

etc.

• strings [bin] - ”print the strings of printable characters in files.”

• tar [osc]- ”tar provides the ability to create tar archives, as well as various

other kinds of manipulation”.

• vim [vim] - ”vim is a highly configurable text editor built to make creating

and changing any kind of text very efficient. It is included as ”vi” with most

UNIX systems and with Apple OS X”.

http://tldp.org/LDP/abs/html/
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9.1.2 Production of an oracle

9.1.2.1 Arity and type

Our tool scat embeds a source-code parser to produce oracles for arity and types,

based on clang. It works in the following way:

• For a given program, we provide to scat a path to the directory containing

source files of the program.

• Using clang, for each of the files in the given directory, we parse the semantic

tree and get every function declaration.

• For each of these functions, we get from its declaration the number of

parameters it has.

• For each parameter, we get its undertype by reducing its type to basic types

in C3 (clang provides this functionality): if this basic type is float, then

the oracle’s type is FLOAT, if the type includes a * (dereferencing operator in

C), then it is ADDR, otherwise it is a NUM.

• Every undertyped prototype recovered this way is stored to be used later as

an oracle.

For all these steps, the corresponding command in scat is parsedata. Scat

also handles library dependencies to produce an oracle for dynamically-loaded

functions.

9.1.2.2 Allocator

For allocator detection, we produce an oracle manually: for each program of our

benchmark, we provide the allocator to be retrieved that we suppose from both

source code and assembly (manual) analysis.

9.1.3 Measurements

We have four main points of interest during our experiments, regarding our imple-

mentation: the accuracy of its results, the scalability of our approach, and finally

the influence of parameters and inputs on the results.

3Meaning that every custom type definition is inlined



9.1. METHODOLOGY 205

9.1.3.1 Accuracy

The measurement of accuracy is particularly relevant for the first two analysis we

presented: arity and type detection. For each one, we produce an oracle from the

source-code and compare directly the results with it. Since the coupling is a new

notion we defined, we do not have an external oracle to compare our results with.

Finally, regarding allocators, we propose a particular methodology in Section 9.5. In

addition, we propose to evaluate the rate of both false positives and false negatives

on our results (for each step except couple).

Comparison Every comparison between the results of analysis and the oracle is

performed through a scat command as well - this is motivated by a fully-automated

approach. The corresponding command is accuracy. For arity, it compares, for

each inferred function, the numeric value of the number of parameters with the

oracle, and outputs a percentage of accuracy. For type, it compares for each

inferred function, and for each of its parameters, the undertype with the oracle. It

also outputs a percentage of correct types.

9.1.3.2 Scalability

To evaluate the scalability of our approach, for each analysis, we present times of

execution and overheads. To compute overheads, we make two comparisons:

• no pin: this is the time of execution of the program under analysis when

executed in a normal environment (through command line).

• pin empty: this is the time of execution of the program when executed

through Pin, but with no active nor passive instrumentation - in other words,

we measure here the minimum overhead due to Pin.

For each analysis, we compute the overhead of our instrumentation relatively

to both no pin and pin empty.

9.1.3.3 Influence of parameters

In addition to accuracy, we propose experiments to evaluate the influence of

parameters of each analysis on the results. Details are given in each corresponding

section, but in a few words, we evaluate the impact of MIN CALLS on both the

number of functions inferred and the accuracy of the results for arity analysis. For
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types, we evaluate the impact of ADDR THRESHOLD on accuracy, and the influence

of MIN VALS as well. For coupling, we present the number of couples and left (resp.

right) side operands in function of the value of ρ, MIN VALS and MAX VALS.

9.1.3.4 Influence of inputs

Because our approach works on a single trace of execution for each step, we must

ensure that the results are not too much dependent on this particular trace, and

so on the inputs given to a program. To evaluate this dependency, we perform

experiments on 8cc, ls and bash, over various inputs, to test the influence of the

trace of execution on the results. This experiment is to show that our results are

stable regarding the input (in terms of accuracy and scalability).

9.1.4 Reproductibility of experiments

To make our tests reproducible, they are fully automated and integrated to scat,

as well as the tested programs and inputs. Everything needed to re-run our tests is

available in the GitHub repository of scat. Note that it includes the production of

latex tabulars and charts as well as the actual execution of tests. For each result

we present, we provide the scat command line used to run the tests.

9.1.5 Platform

We run our tests on a Linux Mint 17 64 bits virtualized with Virtual Box

4.3.20. The host characteristics are an Intel Core i7-4610M and 16 Go of RAM.

The virtual machine was attributed two CPU cores and 8GB of RAM. We use Pin

2.14 for the instrumentation and CLang 1-3.4 to produce oracles from source.

9.2 Arity

In this section, we present the results of our tests relatively to arity.

9.2.1 Metric

For each of our tests, we compare the results of our inference with the data

recovered from the source code. Because of dynamic linking and imperfections

of our implementation, we do not recover, from source, every function that is



9.2. ARITY 207

embedded in the binary. Therefore, there are some functions that we do detect

but for which we do not have an oracle. These functions are excluded from our

statistics.

Accuracy The accuracy we present is the percentage of functions for which the

arity of parameters was correctly inferred. An accuracy of 90% means that, among

the functions we inferred and for which we have an oracle, the result is correct for

90% of them. The same computation stands for the accuracy of the arity relative

to return parameters. Note, however, that the arity of return values, in our context,

is necessarily 0 (function not returning any value) or 1 (function returning either

an integer or a float value).

More precisely, given the set of functions inferred for which we have an oracle

denoted by F , for each function f ∈ F , we denote by #pf and #r f the arity (resp.

for parameters and return value) of f according to the oracle, and #i
pf and #i

r f

the result of the arity analysis of f . Then, the accuracy is computed as follows

(for return parameters, replace #i
pf by #i

r f and #pf by #r f ):

accuracy =
|{f ∈ F | #i

pf = #pf }|
|F|

False positives and false negatives

For parameters Among the errors we get from the detection, sometimes we

detect too many parameters, and sometimes we miss parameters. The rate of

false positives, denoted by ef p, is the rate of errors due to a detected arity higher

than expected, and the rate of false negatives, denoted by ef n, is the rate of errors

due to a detected arity less than expected.

ef p =
|{f ∈ F | #i

pf > #pf }|
|F|

ef n =
|{f ∈ F | #i

pf < #pf }|
|F|

For return values In the same way, we define false positives and false negatives

over the return values as follows:
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ef p =
|{f ∈ F | #i

r f > #r f }|
|F|

ef n =
|{f ∈ F | #i

r f < #r f }|
|F|

Number of functions tested For each test, we also present the number of

functions tested, i.e. the total number of functions inferred minus the functions

for which we do not have any oracle: |F |.

9.2.2 Results

Our results have been produced using scat: tests have been fully automatized and

are reproducible (see test and chart commands in the documentation of scat -

https://github.com/Frky/scat).

9.2.2.1 General results

scat ¿ test arity accuracy -t test/config/general.yaml

scat ¿ chart arity accuracy general

Table 9.1 presents the results of our arity analysis, for every entry of our

benchmark. These results have been obtained with the following values for param-

eters: MIN CALLS = 5, PARAM THRESHOLD = RET THRESHOLD = 0.1. Particular

entries coreutils and 8cc are an average of, respectively, every program in the

coreutils and every trace of 8cc (with different inputs) - therefore, there are

overlaps and the total number of functions tested may include several times the

same functions.

Discussion First, these results show that our approach is accurate: we achieve

an accuracy rate of 93% for the arity of parameters, and 93% for return values, on

a total of 2000 functions. It also shows that the number of false positives, is lower

than the number of false negatives. In particular, we end up with zero false positive

in the detection of return values.

https://github.com/Frky/scat
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accuracy (in %) false neg. false pos. total tested

param ret param ret param ret param ret

8cc 0.98 0.97 4 8 2 0 283 283

bash 0.95 0.95 8 15 7 0 283 283

coreutils 0.93 0.82 154 448 15 0 2515 2515

git 0.96 0.93 15 33 6 0 492 492

grep 0.91 0.84 6 14 2 0 86 86

mupdf-x11 0.94 0.95 13 17 7 0 348 348

objdump 0.89 0.96 7 5 7 0 132 132

openssl 0.96 0.96 4 8 3 0 194 194

opusenc 0.94 0.86 2 5 0 0 36 36

readelf 0.93 0.95 4 3 0 0 59 59

strings 0.95 0.90 1 2 0 0 20 20

tar 0.85 0.86 16 15 0 0 106 106

vim 0.91 0.90 18 27 8 0 275 275

TOTAL 0.93 0.93 94 144 40 0 2031 2031

Table 9.1: General results of arity detection in one execution on coreutils, 8cc

and common applications

False negatives False negatives are mostly due to unused parameters. Some-

times, it is because the parameter is obsolete (and has been kept for compatibility

reasons), and sometimes because it was not used in our trace of execution because

we did not activate all paths. Regarding return values, most of false negatives are

due to a return value that is not checked (e.g. the return value of printf).

False positives False positives are mostly due to an improper implementation.

Missing some instructions performing a write in a register may lead to errors of this

kind. Indeed, we observe a read-before-write event on a given register and then

deduce a parameter whereas the memory location has been written since last call.

9.2.2.2 Influence of parameters

scat ¿ test arity ¡param to test¿ -t test/config/8cc.yaml

scat ¿ chart arity ¡param to draw¿ 8cc

To assess the influence of each parameter of the inference, we ran our tests

on 8cc with different values for each. Figure 9.1 presents these results. For each
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of the sub-figures, one parameter varies while the others remain at their default

values: MIN CALLS = 10, PARAM THRESHOLD = RET THRESHOLD = 0.1. These

measurements were performed on the 8cc program with 43 different inputs. Each

point corresponds to an average over all inputs for a given set of values for

parameters.

Discussion These results allow to conclude on the interest of each parameter of

the analysis.

MIN CALLS Figure 9.1a illustrates two points. First, as expected, the value of

MIN CALLS impacts the number of functions we can infer: the higher the value, the

less functions are executed at least MIN CALLS times during one execution. Second,

its value impact, but not significantly, the results of accuracy. We performed the

same tests on coreutils and on our common programs, and got similar results.

We make two hypothesis to explain this:

PARAM THRESHOLD The influence of PARAM THRESHOLD is shown in Figure 9.1b.

We observe that, for PARAM THRESHOLD ¡ 0.4, this parameter has no influence

on the accuracy of our results. However, from 0.4, it has a negative impact on

the accuracy, as we miss more and more parameters. In addition, the rate of false

positives is not significantly impacted by the value of the parameter.

RET THRESHOLD Figure 9.1c shows explicitly that this parameter has no in-

fluence at all on the results of arity detection. We explain that by the fact that

relevant return values of functions are always fetched, whereas non-import ones

are almost always ignored.

9.2.2.3 Influence of the input

scat ¿ test arity accuracy -t test/config/8cc.yaml

scat ¿ chart arity variability 8cc

Figure 9.2 presents the accuracy of the arity analysis for every entry (i.e. for

every source code that we compile) of 8cc with the following values of parameters:

MIN CALLS = 10, PARAM THRESHOLD = RET THRESHOLD = 0.1.
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(a) MIN CALLS from 5 to 100

(b) PARAM THRESHOLD from 0.05 to 1

(c) RET THRESHOLD from 0.05 to 1

Figure 9.1: Influence of parameters on arity detection over 8cc
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Each bar corresponds to one particular input of 8cc. The number on the x-axis

corresponds to the number of functions inferred during the analysis. On the y-axis,

we have first the accuracy (in %), and then the percentage of false negatives and

positives. The total (accuracy (in %) + false positives (in %) + false negative (in

%)) is logically equal to 1. Please note that the y-axis starts from 0.90.

Figure 9.2: Influence of the input on the accuracy of arity inference - tested on

8cc compiler

In addition, we performed the same tests on ls and bash. For these three sets

of tests, we present in Listing 9.1 the average and standard error of the accuracy,

the false positive and the false negative rates. These measures confirm that the

results of analysis are very stable regarding the inputs.

[8cc]
average/standard deviation:
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— accuracy: 0.974/0.0013
— false positive: 0.00358 /0 .00117
— false negative: 0.0227 /0 .00147
[bash]
average/standard deviation:
— accuracy: 0.943/0.0081
— false positive: 0.0103 /0 .00428
— false negative: 0.0462 /0.0102
[ls]
average/standard deviation:
— accuracy: 0.908/0.0224
— false positive: 0.00288 /0 .00489
— false negative: 0.0894 /0.02

Listing 9.1: Average and standard error on accuracy, false positives and false

negatives on arity detection when the input varies

Discussion Working on a single execution could lead to results that are highly

dependent on the trace we observe. Figure 9.2 shows that, in facts, our arity

detection is stable over inputs: with 43 different inputs, we end up with different

functions inferred, but the accuracy is very stable as well as the number of false

positives and negatives.

9.2.3 Overhead

Table 9.2 presents the overhead of our instrumentation, relatively to a normal exe-

cution (no pin) and to an execution using Pin but performing no instrumentation.

These experiments show two important points. First, the overhead in percentage is

significant (up to 51589% on objdump). Although the major part of this overhead

is due to Pin, it is still to be endured. Second, and despite this high overhead, the

actual times of execution remain acceptable: no analysis lasts longer than fifteen

seconds, whereas we target programs whose sizes go up to 13MB.

These timing results are still to be discussed. Indeed, some of these programs

have a lot of i/o (in particular tar), and these i/o can delay the execution (and

thus attenuate the impact of the instrumentation). In addition, Pin induces a

cost of instrumentation, before the program starts the actual execution, that does

not depend on the time of execution. Therefore, on small programs (such as the

coreutils), this fixed cost increases the overhead more importantly than with

larger programs (e.g., vim).
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program size no pin empty online

8cc 293 KB 0.019 0.668 3481% 3.629 18903%

bash 1 MB 0.064 4.207 6565% 8.089 12624%

coreutils 132 KB 0.004 0.235 6014% 0.862 22057%

git 5 MB 0.694 2.259 325% 5.344 770%

grep 687 KB 0.006 0.505 7958% 1.748 27573%

mupdf-x11 13 MB 2.189 3.262 149% 14.856 678%

objdump 2 MB 0.005 0.586 12596% 2.400 51589%

openssl 778 KB 0.010 0.692 7251% 2.102 22010%

opusenc 111 KB 0.111 0.824 740% 9.042 8124%

readelf 660 KB 0.005 0.554 10163% 1.974 36245%

strings 1 MB 0.003 0.284 8255% 0.866 25206%

tar 1 MB 5.812 5.829 100% 7.181 123%

vim 8 MB 0.838 4.997 596% 7.877 940%

Table 9.2: Overhead of the arity detection on 8cc, coreutils and common

programs

9.3 Type

The experiments for type accuracy are very similar to the ones for arity.

9.3.1 Metric

Regarding types, we use the same metrics as the ones presented in previous section

for arity.

We denote by P the set of parameters such that:

1. p ∈ P is a parameter of a function f for which the arity was correctly inferred

at previous step,

2. we do have an oracle for the type of p, that we denote by type(p),

3. we have inferred a type, denoted by type i(p).

9.3.1.1 Accuracy

The accuracy we compute for type is the following:

accuracy =
|{p ∈ P | type(p) = typei(p)}|

|P |
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In other words, the accuracy is the number of parameters we correctly infer,

considering only parameters of functions for which we correctly inferred the arity,

and such that we have an oracle for the type.

9.3.1.2 False positives and false negatives

According to our definitions, a false positive is a parameter detected as an address

whereas it is not, and vice-versa for a false negative.

ef p =
|{p ∈ P | type(p) 6= typei(p) and typei(p) = ADDR}|

|P |

ef n =
|{p ∈ P | type(p) 6= typei(p) and type(p) = ADDR}|

|P |

9.3.2 Results

As for arity, we present three kind of results here: general results (see Section

9.3.2.1), influence of parameters on the results (see section 9.3.2.2) and influence

of inputs on the results (see Section 9.3.2.3).

9.3.2.1 General results

scat ¿ test type accuracy -t test/config/general.yaml

scat ¿ chart type accuracy general

Table 9.3 shows the accuracy of type analysis for every entry of our bench-

mark. These results have been obtained with the following values for parameters:

MIN VALS = 10 and ADDR THRESHOLD = 0.5. Note that the accuracy is computed

for every parameter that is both detected by the arity step and in the oracle: it

means that a parameter detected by the arity step that does not exist (according

to the oracle) is not taken into account ; the same stands for parameters that are

in the oracle but not detected.

Discussion As for arity, these results show that our implementation is accurate:

on average, the type of parameters is successfully detected in 96% of the cases.

The accuracy for return parameters is lower, but we have no explanation for the

difference.
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accuracy (in %) false neg. false pos. total tested

param ret param ret param ret param ret

8cc 0.98 0.96 4 7 3 2 307 216

bash 0.96 0.90 14 20 2 4 374 239

coreutils 0.92 0.81 208 276 55 7 3299 1528

git 0.94 0.92 26 7 4 13 530 263

grep 0.95 0.88 4 7 3 0 129 58

mupdf-x11 0.96 0.93 17 10 11 12 746 305

objdump 0.94 0.92 3 4 12 4 231 105

openssl 0.95 0.85 9 13 5 11 308 160

opusenc 0.98 1.00 0 0 1 0 53 24

readelf 0.94 0.91 1 3 5 1 106 47

strings 0.94 0.82 2 3 0 0 34 17

tar 0.96 0.91 4 6 1 1 142 75

vim 0.97 0.93 8 11 2 2 342 176

TOTAL 0.96 0.91 88 84 46 48 2995 1469

Table 9.3: General results of type detection in one execution on coreutils, 8cc

and common applications

9.3.2.2 Influence of parameters

scat ¿ test type ¡param to test¿ -t test/config/8cc.yaml

scat ¿ chart type ¡param to draw¿ 8cc

To evaluate the influence of each parameter of the inference, we ran our tests

on 8cc with different values of each. For a given value, we run 43 times 8cc, with

43 different inputs. Figure 9.3 presents these results. For each of the sub-figures,

one parameter varies while the other remains at its default value: MIN VALS =

10, ADDR THRESHOLD = 0.5. In Figure 9.3a, MIN VALS varies from 5 to 200 with

a step of 5. For each point, we compute the average (of accuracy, number of

functions, etc.) on each execution of 8cc (corresponding to one input). In Figure

9.3b, ADDR THRESHOLD varies from 0.05 to 1 with a step of 0.05.

Discussion From these experiments, we can conclude on the impact of each

parameter on the results.
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(a) MIN VALS from 5 to 100 (b) ADDR THRESHOLD from 0.05 to 1

Figure 9.3: Influence of parameters on type detection over 8cc

MIN VALS Figure 9.3a shows that the MIN VALS parameter has a significant

impact on the number of functions inferred, which is logical: it has the same

role as MIN CALLS had for arity detection. Therefore, the more we require values

to conclude, the more we need the function to be executed, and thus the less

functions are to be inferred.

This experiment shows that, for type inference, this parameter has almost no

impact on accuracy. This is because the accuracy of the type inference relies on

the inference of the addressable space rather than on function calls. We conclude

from this that types of parameters can be inferred over a very small number of

concrete values.

ADDR THRESHOLD In Figure 9.3b, we observe an interesting phenomenon:

ADDR THRESHOLD has almost no influence on the accuracy of the type inference.

From ADDR THRESHOLD = 0.80, we start observing an increase of the number of

false negatives, and then the total accuracy, but this variation is not significant.

We explain this fact by the method we use to detect addresses. First, we infer the

whole address space, and then every concrete value that is between the bounds

of this address space is considered as an address. Because we do not perform a

particular detection (through data flow for instance) for each value of parameter

(we only check its membership to the address space inferred), there is no reason

we would have a different behavior from one execution of a function to another.

These results confirm this hypothesis.
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9.3.2.3 Influence of the input

scat ¿ test type variability -t test/config/8cc.yaml scat

¿ chart type variability 8cc

Here again, we test this influence by performing type inference on the C compiler

8cc on the 43 different inputs, with the default values for each parameter (MIN VALS

= 10, ADDR THRESHOLD = 0.5). For each, we present the accuracy in percentage,

as well as false positives and false negatives - see Figure 9.4. Please note that the

y-axis starts from 0.90. As for arity, the numbers below each bar corresponds to

the number of parameters and return values tested.

Figure 9.4: Influence of the input on the accuracy of type inference - tested on

8cc compiler

As for arity, we also performed the same experiment on ls (with various
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command line arguments) and on bash (with various scripts to execute). Listing

9.2 presents the average and standard error for each.

[8cc]
average/standard deviation:
— accuracy: 0.97/0 .00265
— false positive: 0.00964 /0 .00113
— false negative: 0.0207 /0 .00202
[ls]
average/standard deviation:
— accuracy: 0.888/0.0501
— false positive: 0.00792 /0 .00907
— false negative: 0.105/0.0561
[bash]
average/standard deviation:
— accuracy: 0.957/0.0104
— false positive: 0.0073 /0 .00154
— false negative: 0.0359 /0 .00962

Listing 9.2: Average and standard error on accuracy, false positives and false

negatives of type detection when the input varies

Discussion On this set of data, we observe that the influence of the input is

very small: the lower accuracy we get is around 0.96 and the higher is below 0.98.

The number of false positives and false negatives is also stable in function of the

input (around 0.015 for each). This is confirmed by the low standard error on ls

and bash.

9.3.3 Overhead

In Table 9.4, we present time measurements and overhead of our instrumentation,

relatively to both a non-instrumented execution and an execution through Pin with

no runtime inspection. These results lead to the same conclusion as for arity: the

overheads very are similar.

9.4 Couple

This section presents our results on couple detection. Whereas, for arity and type,

we had an easy way to compute accuracy by comparison of the inferred results

with an oracle, such oracle does not exist for coupling. The metrics we propose
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program size no pin empty online

8cc 293 KB 0.019 0.668 3481% 4.253 22153%

bash 1 MB 0.064 4.207 6565% 7.356 11480%

coreutils 132 KB 0.004 0.235 6014% 0.590 15116%

git 5 MB 0.694 2.259 325% 4.780 688%

grep 687 KB 0.006 0.505 7958% 1.510 23808%

mupdf-x11 13 MB 2.189 3.262 149% 15.576 711%

objdump 2 MB 0.005 0.586 12596% 2.103 45186%

openssl 778 KB 0.010 0.692 7251% 2.067 21649%

opusenc 111 KB 0.111 0.824 740% 4.006 3599%

readelf 660 KB 0.005 0.554 10163% 1.904 34951%

strings 1 MB 0.003 0.284 8255% 0.799 23248%

tar 1 MB 5.812 5.829 100% 7.982 137%

vim 8 MB 0.838 4.997 596% 7.938 947%

Table 9.4: Overhead of the type detection on 8cc, coreutils and common

programs

are then different. Note that a second evaluation of couple is presented in Section

9.5: indeed, coupling helps detecting allocators efficiently.

9.4.1 Metric

The indicators we present in this section are the following: #function the total

number of functions candidates for couples (i.e., functions with at least one address

in their prototype), #couples the number of couples detected, #left and #right

the number of left (resp. right) operands in couples, i.e. the number of different

functions f (resp. g) such that there exists at least one couple (f , g) inferred.

Despite the lack of oracle, as the notion of coupling is a notion we introduce in

this work, our experiments aim to show that:

• relatively to the number of candidates, the number of couples is much

lower than the number of possible combinations; this aims to emphasize the

relevance of the notion of coupling as a way to identify data flows,

• relatively to the number of couples, the number of left and right operands is

low; in particular, a few functions are involved in couples as a left operand.

This means that there are few sources of addresses, and many consumers.
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9.4.2 Results

In the following sections, we present general results with these indicators - Section

9.4.2.1, the influence of parameters - Section 9.4.2.2, and the influence of inputs -

Section 9.4.2.3.

9.4.2.1 General results

scat ¿ test couple general -t test/test/general.yaml

scat ¿ chart couple general general

Table 9.5 presents the general results of the couple detection. In this table, we

observe, first, that the number of couples is generally lower that the number of

instrumented functions (i.e. functions dealing with addresses). This shows that

the notion of coupling has an interest: we do not end up with all the possible

couples (which would be the number of functions to the power two). Second, we

can note that the number of left-side operand in couples is significantly lower than

the number of right-side operands. This is an interesting point, if we anticipate on

allocator detection: it means that sources of addresses in coupling are not many.

In other words, a few different functions seem to be sources of couples, regarding

the total number of couples.

9.4.2.2 Influence of parameters

scat ¿ test couple ¡param to test¿ -t test/config/8cc.yaml

scat ¿ chart couple ¡param to draw¿ 8cc

As a reminder, couple inference has three parameters: ρ, which is the threshold

for which we want to find couples, MIN VALS and MAX VALS that are parameters

relative to the number of values we should get to conclude on coupling. Results

presented in Figure 9.5 show the influence of these parameters on the indicators

we mentioned earlier, tested on 8cc. In each subfigure, we normalized the data:

we are interested in the trend rather than in the numeric values. For each, one

parameter varies while the others take their default value: ρ = 0.5, MIN VAlS =

10 and MAX VALS = 200. In Figure 9.5a, ρ varies from 0.05 to 1 with a step of

0.05. In Figure 9.5b, MIN VALS varies from 10 to 200 with a step of 10, and

Figure 9.5c is the same for MAX VALS.
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(a) Influence of the parameter rho on the number of couples

and left/side operands - tested on 8cc

(b) Influence of the parameter MIN VALS on the number of

couples and left/side operands - tested on 8cc

(c) Influence of the parameter MAX VALS on the number of

couples and left/side operands - tested on 8cc

Figure 9.5: Influence of parameters on couple detection over coreutils



9.4. COUPLE 223

functions couples left right online (s) offline (s)

8cc 338 465 75 97 2.61 18.85

bash 380 241 42 42 4.52 7.24

coreutils 54 12 3 3 0.36 0.72

git 653 16 4 4 0.68 3.39

grep 156 47 12 16 0.97 2.74

mupdf-x11 1105 1750 97 335 10.54 54.73

objdump 187 48 8 17 1.30 3.68

openssl 231 370 24 76 1.41 5.11

opusenc 195 33 9 16 2.10 4.57

readelf 109 39 10 15 1.11 2.78

strings 55 6 3 2 0.44 0.90

tar 182 73 19 24 6.95 4.31

vim 410 161 23 45 50.60 6.87

TOTAL 4055 3261 329 692 2646.39 115.89

Table 9.5: General results of couple detection in one execution on coreutils, 8cc

and common applications

Discussion

ρ The parameter ρ is the most important parameter of this step, because it

directly influences the couples we want to retrieve. Without surprise, the higher ρ

is, the less couples are detected. Between ρ = 0.05 and ρ = 1, the number of

couples detected is divided by two. Number of left and right operands are impacted

in similar ways. However, we observe that there is a clear discontinuity around ρ

= 0.5 for the number of couples and the number of right operands, whereas the

number of left operands seems not to be subject to it. We have no clear explanation

of this phenomenon yet: a manual analysis would be required to understand what

is happening with ρ = 0.5.

MIN VALS The MIN VALS parameter influences the number of couples we get

from the analysis. We distinguish three phases in the evolution; from MIN VALS

= 10 to MIN VALS = 70, the number of couples lowers, and the number of right

operands too. However, the number of left operands is not impacted. Then the

number of left operands drastically decreases: it is almost divided by two from

MIN VALS = 70 to MIN VALS = 100. Then, from 110 to 140, the three indicators

are stable: this is the second phase. During the third phase, i.e. from 150 to 200,
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we observe a slow diminution of the number of couples and the number of right

operands, but once again the number of left operands is stable.

From this, we deduce that, except for points of discontinuity, the number of left

operands is not impacted by the value of MIN VALS, whereas the number of couples

and the number of right operands are. This is because, for the left operands, we

keep every single value that is output, independently from MIN VALS (which only

state the number of values of parameters we need to conclude). In conclusion,

it is possible to adjust the value of MIN VALS depending on what we want: if we

want a high number of left operands, we should take a low value, and vice-versa.

If we want as much couples as possible, we should take a value of MIN VALS at the

beginning of a phase (depending on what we want regarding the number of left

operands), and otherwise we should favor a value at the end of a phase.

MAX VALS This parameter, according to Figure 9.5c, has no impact on the

number of couples, nor on the number of left/right operands. This seems to

indicate that we can perform coupling statistics on a few number of values: from

100 values, there is no need to collect more as it does not impact the results.

9.4.2.3 Influence of the input

scat ¿ chart couple variability

We propose to observe the impact of the inputs on the number of couples we

infer. Once again, we produce our data from the C compiler 8cc, with 43 different

inputs, and each time the same values of parameters (the default ones). Figure

9.6 presents the results. In this figure, each bar corresponds to one input of 8cc.

For each, we present the number of couples, the number of left operands and the

number of right operands.

Discussion This time, we observe that the input has an impact on the couples

we detect for ρ = 0.5: the number of couples varies from around 400 to more

than 700. However, half of the inputs lead to the detection of 400 couples, ± 5%.
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Figure 9.6: Influence of the input on the number of couples and left/side operands

- tested on 8cc compiler

9.5 Allocators

This section presents our experiments on allocators. To our knowledge, there

is no free benchmark available relatively to allocator detection. This makes the

evaluation of our implementation hard to automatize. We propose a benchmark

composed of several programs using malloc and free from the libc, that we try

to detect. For these, the oracle is easy to construct, and tests can be performed

on a reasonable amount of programs with very little manual intervention. However,

the obvious drawback is that it does not evaluate the capacity of our approach to

detect other allocators. We also provide several examples of custom allocators we

successfully detect with scat, but these examples are very long to construct: we

need to find open-source programs that do not use the libc standard allocator,
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and then find the custom allocator to construct an oracle. For this reason, we do

not provide a large number of examples with custom allocators.

9.5.1 Metric

To evaluate our approach, we propose several metrics and experiments.

9.5.1.1 Do we retrieve allocators?

First, we propose to test the allocator detection with a ”yes/no” oracle (manually

provided): these tests aim to show the capability of scat to successfully retrieve

allocators in binaries.

9.5.1.2 How to evaluate the consistency of our results?

To evaluate the consistency of a supposed allocator (ALLOC, FREE), we propose to

check two main properties that it should satisfy. For each property, we count an

error each time it is violated.

Errors First, a FREE should only occur on addresses allocated by ALLOC. This

means that every time FREE is called with a parameter that was not output by

ALLOC before, we detect an error. Second, an ALLOC should not return the same

address twice if it was not released by FREE in between. Here again, every time we

see an allocated address being re-allocated, we count an error.

Error rate We compute the error rate as the total number of errors (generated

by either ALLOC or FREE) divided by the number of calls to ALLOC plus the number

of calls to FREE. If this error rate is below a threshold, we validate the detected

allocator. Otherwise, we conclude that the couple (ALLOC, FREE) is inconsistent.

Note that, among the two properties we presented, one is relative to ALLOC

and the other is relative to FREE. However, if one or the other of these functions

was inferred incorrectly, it would most certainly lead to errors relative to both. For

instance, a misdetection of FREE would lead ALLOC to generate errors, because

blocks would not be freed properly (considering the FREE function that was inferred).

That is the reason why we only consider the global error rate rather than two error

rates (one for ALLOC and one for FREE), and we use it to validate or invalidate the
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allocator as a couple, but one of the two functions can still be correct, and we

could use other indicators to invalidate each one individually.

Consistency We present in Section 9.5.2.2 an experiment to show that the

consistency rate, i.e. one minus the error rate, is very high for allocators, and that

it is significantly lower for other couples. We set our threshold at 0.95 (i.e. a

couple with a consistency rate above 0.95 should be an allocator, whereas a couple

with a lower consistency rate should not be an allocator), and our experiment show

that it is indeed a good value.

Cost Note that the consistency rate can be computed on the same data as we

compute ALLOC and FREE: therefore it does not require any new execution.

9.5.2 Results

9.5.2.1 General results

scat ¿ test alloc couple -t test/config/general.yaml

scat ¿ chart alloc couple -t test/config/general.yaml

Tables 9.6 and 9.7 presents the general results of our allocator detection, based

on the results of the coupling inference, respectively on coreutils programs and

other programs from our test suit. Each of these programs use the standard libc

allocator. In both tables, the second column shows if the functions ALLOC/FREE

where correctly inferred (�) or not (×) - n.c. indicates that no function was output

as a good candidate. The third column presents the error rate (i.e. one minus the

consistency rate). The third and fourth columns present the time of execution in

seconds for, respectively, the online step and the two offline steps (one to retrieve

ALLOC and one to retrieve FREE).

Discussion First, we observe that every time our analysis outputs an ALLOC, it

is the correct one. No candidate is output at all (n.c.) in 4 cases. On the other

hand, FREE is retrieved in 26 over 48 times, which is less good - in 8 cases, no

candidate for FREE is output at all, i.e. 4 times when ALLOC was detected. Note

that, in facts, no allocator was found in much more cases: we did not include, in

Table 9.6, programs in coreutils for which no candidate for ALLOC was output.
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It is not rare on small programs, because the trace is often too short to be able

to differentiate the allocator from other couples. This also means that Table 9.6

presents every single result on coreutils for which we output an ALLOC function:

there is no hidden results here.

Second, errors on the detection of FREE are almost always detected by an

error rate above the threshold of 0.05. Actually, we present in Section 9.5.2.2

experiments to show that this error rate is a very good criterion to detect errors in

the allocator detection.

Finally, we can observe that the time of execution is very acceptable: around

one second for coreutils programs. In addition, the offline computation is also

quick enough to be scalable.

9.5.2.2 Consistency rate

scat ¿ test alloc consistency -t test/config/general.yaml

scat ¿ chart alloc consistency -t test/config/general.yaml

To evaluate the relevance of the consistency rate, we propose the following

experiment: for each program of our benchmark, we test every candidate for ALLOC,

and for each of them, we test every couple (ALLOC, FREE) for the 3 best candidates

for FREE relatively to ALLOC. For each couple, we compute the consistency rate,

and see if it is compatible with the correctness of the couple:

• for the good couple (ALLOC, FREE) (i.e. the allocator we are looking for),

– if the consistency rate is above 0.95, then it is compliant (dark-blue

dot);

– if the consistency rate is below 0.95, then we have a false negative

(light-gray dot);

• for wrong couples,

– if the consistency rate is above 0.95, then we have a false positive

(red dot if both ALLOC and FREE are incorrect, orange dot if ALLOC is

correct);

– otherwise it is compliant (dark-blue dot).

Figure 9.7 presents the results of this experiment. The horizontal line shows the

0.95 threshold, and vertical lines separate the different programs of our benchmark.
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Figure 9.7: Relevancy of the consistency rate to detect wrong allocators

Discussion At first look, this experiment shows that the consistency rate is a

good indicator: a large majority of dots are dark-blue, which means that the rate

is consistent with the correctness of the allocator. However, it presents false

negatives and false positives that we try to explain in this section.

The red dots: false positives False positives are the worst type of error we

can get: it means that the consistency rate validates a couple whereas both ALLOC

and FREE were wrongly inferred. It occurs 8 times. We manually analyzed these

eight cases, and we found that:

• In two cases,we end up with an alternative allocator: the program does

not use a unique allocator during the execution, but there is a unique FREE

function. Our heuristics are not suited to detect such cases.

• In three cases, we do not find memory allocators but functions that could corre-
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spond, in a certain way, to the definition of allocators of other types. In particu-

lar, we have functions of IO on files (e.g. (find line, save line to file))

that could be seen as allocators of lines. Another example is the couple

(new fd bitmap, dispose fd bitmap) which is an allocator of bitmaps.

• Three cases would require a deeper manual investigation.

The orange dots: half-false positives In 9 cases, the consistency rate

validates a couple (ALLOC, FREE) whereas only ALLOC is correct. In these cases, a

very few errors are detected because, although FREE is wrongly inferred, a very few

reallocations occur. Since reallocation errors are the only ones allowing to detect a

wrong FREE function, we obtain false positives in these cases.

The light-gray dots: false negatives We have 6 false negatives, i.e. couples

that correspond to the correct allocator but that are rejected by the consistency

rate criterion.

9.5.2.3 Custom allocators

Manual and early experiments on several programs show that our method is able

to find custom allocators.

Jasper Scat is able to retrieve the custom allocator embedded in jasper, Using

couples, we detect the custom allocator embedded in jasper: (jas malloc,

jas free). The computation of the consistency gives the following results: we end

up with 6 errors in 204 calls, that is an error rate of 2.94 × 10−2. This allocator

is interesting, as it was at the origin of several CVE due to use-after-frees - see

CVE-2016-9591, CVE-2016-9262 and CVE-2015-5221 for instance. These CVE

requires to know the allocator (in these cases, it was retrieved manually by the

authors).

openssl With scat on one of the testing binaries of openssl4, we retrieve, with

no option, the standard libc allocator. This is because every function from the

libc which is used in openssl uses the standard allocator. However, if we ignore

everything happening in the libc, we end up with the couple (CRYPTO malloc,

4hmactest in this case
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CRYPTO free), which is a custom allocator embedded in openssl. The consistency

rate of this allocator is equal to 1.13 × 10−25.

jansson [akh] Jansson6 uses its own allocator, (jsonp malloc, jsonp free),

that scat successfully retrieve with a consistency rate of 0.00 (no error in 57 calls

to ALLOC and 57 calls to FREE).

9.5.3 Membrush [CSB13]

The detection of allocators has not been subject to many researches. The most

advanced existing work is [CSB13]. They also propose a heuristic-based approach in

a dynamic context. Nevertheless, they use active instrumentation (and in particular,

they replay the executions of a given function several times), which we exclude (as

explained in Section 4.2.3). In addition, they base their approach on the tracking

of the first allocation an allocator needs to perform (even custom ones): either

through a system call mmap or brk, or through a standard allocator as malloc. It

would have been interesting to compare our results with theirs. However, they use

a proprietary benchmark (namely SPECINT 2006), and the source code of their

implementation is not available. Finally, the authors do not provide measurements

about overhead. Thus, it is hard to compare our two approaches.

547 errors were detected over 2111 calls to ALLOC and 2040 calls to FREE
6a C library for encoding, decoding and manipulating JSON data
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ALLOC/FREE error rate online (in s) offline (in s)

b2sum �/� 0 0.474 0.209/0.219

base32 �/� 0 0.561 0.121/0.119

base64 �/� 0 0.529 0.123/0.361

cat �/� 0 0.48 0.177/0.199

chgrp �/� 0.000397 0.521 0.143/0.132

chmod �/� 0.000408 0.389 0.154/0.169

chown �/� 5.15e-05 2.44 8.58/9.24

comm �/× 0.724 0.43 0.723/0.336

cp �/� 0.000936 1.47 0.749/0.553

csplit �/� 0 0.972 0.513/0.881

cut �/× 0.753 0.377 0.13/0.19

df �/× 0.27 0.677 0.677/0.658

dir �/× 0.0227 0.43 0.916/0.12

dircolors �/� 0 0.407 0.244/0.291

du �/� 0.000446 0.706 0.598/0.596

fmt �/� 0 0.483 0.496/0.605

fold �/� 0 0.569 0.129/0.134

ginstall �/� 0 2.35 0.529/0.54

groups �/× 0.743 0.511 0.296/0.375

head �/� 0 0.545 0.14/0.408

id �/× 0.743 0.533 0.282/0.373

join �/× 0.5 0.487 0.483/0.329

logname �/� 0 0.657 0.314/0.439

ls �/× 0.0495 0.854 0.662/0.59

pinky �/� 0 0.62 0.179/0.194

pr �/� 0 0.652 0.504/0.289

rm �/� 0.000198 20.5 0.268/0.268

shred �/� 0 1.68 0.344/0.527

shuf �/× 0.949 0.431 0.109/0.179

sort �/� 0 0.682 0.397/0.243

split �/� 0 0.542 0.153/0.141

stat �/� 0 0.791 0.203/0.198

stty �/� 0 0.504 0.161/0.143

tail �/� 0 0.501 0.143/0.2

tee �/� 0 0.435 0.119/0.13

truncate �/� 0 0.458 0.132/0.145

tsort �/× 0.428 0.395 0.325/0.638

uniq �/× 0.999 1.31 4.14/4.47

uptime �/� 0 0.613 0.136/0.127

vdir �/× 0.0538 0.909 0.366/0.316

who �/� 0.0259 0.684 0.178/0.142

whoami �/× 0.287 0.495 0.757/0.397

Table 9.6: General results of the allocator detection for programs using (malloc,

free) on coreutils
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ALLOC/FREE error rate online (in s) offline (in s)

8cc n.c./n.c. 0 2.45 14/9.88

bash ×/× 0.13 4.12 0.497/0.224

git n.c./n.c. 0 3.37 0.388/8.64e+04

grep �/× 0.885 0.857 0.711/0.648

mupdf-x11 �/� 0.0384 7.99 26.2/12.3

objdump �/× 0.978 1.03 0.676/0.453

openssl �/� 0.00403 1.59 0.707/0.809

opusenc ×/× 0 1.6 1.17/0.966

readelf n.c./n.c. 0 0.96 0.175/8.64e+04

strings n.c./n.c. 0 0.424 0.233/8.64e+04

tar �/� 0.000663 7.07 1.36/1.2

vim �/� 0.402 32.9 1.11/0.764

Table 9.7: General results of the allocator detection for programs using (malloc,

free) on the general benchmark
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Conclusion

In this work, we proposed heuristic-based approaches to analyze binary programs

from a single execution, at function-grained level. We aimed to retrieve structural

information about functions, and behavioral information related to address

data-flow, such as coupling and retrieving allocators. Our analyses do not rely on

source code, and are applicable to stripped binaries.

We presented definitions, at binary level, of several notions that are usually

source-level notions: functions, parameters and types. Although these concepts

have already been defined and studied in previous works, they were expressed

relatively to the source level. Instead, we proposed definitions that focus exclusively

on the machine code, and yet that are consistent with source-level considerations.

The interest of this is that we can express these concepts on binary code that is

not obtained by compilation. From these definitions, we proposed heuristics to

retrieve information from a single execution of binary programs. First, we have

shown that we can retrieve arity of functions (i.e. the number of parameters they

take) with simple heuristics, through one lightweight instrumentation. The main

heuristic we used is to consider as a parameter a memory location that is read by a

function before it has been written (since the function call). Second, we proposed

a way to retrieve undertypes of each parameter, i.e., to differentiate parameters

holding addresses from parameters holding numeric values. The central heuristic

of this part is to consider as an address every concrete value used as a memory

operand at some point of the execution (not necessarily in the considered function).

Third, we introduced a notion of coupling which is useful to retrieve allocators of

resources. Two functions are coupled with a coupling rate ρ if parameter values

of one function come from the output of the other in a proportion of at least ρ.

We also proposed a statistic method to retrieve coupling from a single execution.

235
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Finally, we presented heuristics to retrieve efficiently the main memory allocator in

a binary program. The major heuristic of this step consists in identifying as an

allocator a function that outputs a lot of memory addresses, and the corresponding

deallocator as the last accessor of an allocated memory block. In addition, we

proposed a metric, named consistency rate, to confirm or deny the result of the

allocator analysis.

Our experimental results show that the approach is indeed accurate and

scalable. Relatively to accuracy, we present a rate of 93% for arity detection, and

for undertype detection. For allocators, we have shown that our approach is able

to retrieve the standard libc allocator on many programs, as well as custom

embedded allocators in several examples (openssl, jasper, etc.). We have also

shown that our consistency rate is a very good indicator to validate the detection

when it is indeed correct, and to detect errors when it is not. From a scalability

point of view, we presented the overhead of our implementation for each step. We

have shown that the execution time remains limited with common programs such

as git or mupdf. However, using Pin to perform dynamic instrumentation leads

to an important overhead in percentage, especially on small programs executing

fast (e.g., coreutils programs).

This work could be extended in several directions. First, we propose

experiments to test our approach in various contexts. It would be interesting

to perform more experiments, to confirm several points. Regarding the low

coverage7 (because we work on a single execution), we could use scat with

a fuzzer, such as AFL, to improve the number of functions we detect (and

because we perform a lightweight instrumentation, this seems practical). In

addition, the approach should be tested with other compilers than gcc and on

other architectures than x86-64 to ensure the universality of our method in practice.

Second, we propose some perspectives to extend the approach, and we discuss

the possible applications of our results.

From a global point of view, our approach focuses on imperative programming,

with few considerations about object-oriented programming and functional pro-

gramming. As a perspective, it would be interesting to see how it can be adapted

to such paradigms.

Our definition of arity does not include variadic functions (i.e. functions with a

7i.e., we only detect a few number of functions
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variable number of parameters). It could be extended, to detect parameters that

are not always given during a call. However, such an approach would be delicate

to develop with respect to our criteria.

The notion of types we target is a significant restriction of the types we express

at source level. In particular, we do not include the notion of size in our subtypes.

Detecting size of data is a challenging issue: at assembly level, operations are often

performed on the whole registers (e.g. on 64 bits) although the relevant data is

only one byte long. Such analyses would require a refinement of data flow that is

more precise that the one we proposed at the grain of functions. More generally,

we could extend our approach to focus on a grain of data structures.

We introduced a notion of coupling, that we use to detect allocators. However,

this notion is general, and could be interesting in other contexts. For instance,

finding transitive couples (f coupled with g and g coupled with h) may be useful

to have an overview of the behavior of a program.

Regarding the detection of allocators, the perspectives are manifold. First, our

approach leads to the detection of the most frequently used allocator, but there

might be other allocators embedded in a given program. A future work would be

to detect every allocator in a binary, and to retrieve a hierarchy, how they interact

and what part of the program uses which one. Second, we target ALLOC and FREE,

but an allocator often presents other methods, and in particular REALLOC. The

detection of REALLOC would be very interesting to understand how the program

reuses memory. Third, the detection of custom allocators allow to perform memory

checks for safety and security. In particular, detecting use-after-free bugs is a

trending research subject, but many analyses rely on the knowledge of the allocator.

The combination of our approach to detect allocators with analyses of this type can

lead to detect new bugs and vulnerabilities in programs using a custom allocator.

To conclude, this work shows that it is possible to perform accurate analyses

on common programs in one instrumented execution. In particular, a lightweight

instrumentation can lead to retrieve prototypes of functions, coupled functions and

memory allocators with a good accuracy and a minimum of false positives. It also

shows that heuristic-based approaches lead to an implementation that is scalable

and usable in practice.

Whereof one cannot speak, thereof one must be silent. – Ludwig

Wittgenstein
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