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RESUME 

 

Les infections aiguës des voies respiratoires inférieures constituent la 

troisième cause de décès dans la population mondiale, avec 3,2 millions de décès. 

Parmi cette mortalité, au tour de 1 million c’était des enfants de moins de 5 ans, 

représentant la première cause de mortalité dans ce groupe d’âge, selon l'OMS en 

2015. Le virus respiratoire syncytial (VRS) est considéré comme un agent étiologique 

important dans le millieux pediatric et les estimations sont que ce virus cause 3 

million d’hospitalization par an. Un aspect important du pronostic des infections 

virales est le rôle de co-infection bactérienne. La combinaison d’agents viraux et 

bactériens a été signalée entre le VRS et les bactéries Streptococcus pneumoniae. 

En raison de l’importance clinique de cette co-infection et le taux élevé de circulation 

du VRS, il est important de comprendre comment le système immunitaire est affecté 

à l'infection de ces deux agents pathogènes. Notre étude identifie la réponse 

immunitaire dans les macrophages, ainsi comme les interactions entre le VRS et le 

facteur de transcription p53. Les résultats montrent un profil particulier a cette co-

infection mixte dans le macrophages et des modifications dans la réponse immune 

innée que nous a permis de mieux comprendre les mécanismes de pathogenèse du 

VRS dans les cellules épithélial pulmonaires en regardant la régulation de p53. Dans 

la dernière partie, nous avons évalué l'impact direct de l’infection mixte chez les 

primates non-humain et ce modèle nous a montré les difficultés et complexités des 

établir une pneumonie sévère. 

 

 

 

Mots-clés : VRS ; S. pneumoniae ; co- infection ; réponse immune ; p53 

pathway.  
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ABSTRACT 

 

Respiratory viruses play a leading role in the etiology of respiratory infections. 

Currently, respiratory syncytial virus (RSV) is generally considered to be the etiologic 

agent of respiratory disease in pediatric importance, as children can develop 

bronchiolitis and pneumonia when infected with the virus. The first RSV infection 

occurs in the first two years of life in about 95% of children, with the peak incidence 

occurring in the first few months of life. An important aspect of the prognosis of viral 

infections is the role of bacterial co-infection. The combination of viral and bacterial 

agents has been reported between RSV and Streptococcus pneumoniae bacteria. 

Because of the clinical importance of this co-infection and the high rate of RSV 

circulation, it is important to understand how the immune system is affected by the 

infection of both pathogens. Our study was designed to evaluate the immune 

response in macrophages, in addition to interactions between RSV and p53 

transcription factor. The results show a particular profile of this mixed co-infection in 

macrophages and p53 regulation that implies several modifications in the innate 

immune response and that allowed us to better understand the mechanisms of 

pathogenesis of RSV in pulmonary epithelial cells. In the last part, we evaluated the 

direct impact of mixed co-infection in non-human primates and this model showed us 

the difficulties and complexities of establishing severe pneumonia. 

 

 

 

 

Keywords: RSV; S. pneumoniae; mixed-infection; immune response; p53 

pathway  
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Tous les résultats présentés ici ont été développés dans le cadre du projet de 

thèse visant à mieux comprendre les infections mixtes au cours de la pneumonie. Ce 

travail a eu la collaboration ferme et efficace entre les Laboratoire de Pathogènes 

Emergents et Virpath, permettant l'approfondissement et menant à des conclusions 

importantes dans la pathogenèse des virus respiratoires lors de la présence ou 

l'absence de bactéries dans des modèles in vitro et in vivo. 

1. ACUTE LOWER RESPIRATORY TRACT 

INFECTIONS 

The respiratory tract constitutes a wide and critical frontier at the interface 

between the body and the environment. This complex organ system is divided into 

the upper airways and lower airways. The upper airways or upper respiratory tract 

includes the nose and nasal passages, paranasal sinuses, the pharynx, and the 

portion of the larynx above the vocal folds (cords). The lower airways or lower 

respiratory tract includes the portion of the larynx below the vocal folds, trachea, 

bronchi, and bronchioles. The lungs can be included in the lower respiratory tract or 

as a separate entity and include the respiratory bronchioles, alveolar ducts, alveolar 

sacs, and alveoli [1]. Upper respiratory tract infections are less severe whereas lower 

infections are often associated with high mortality rates [2]. Acute lower respiratory 

tract infections constitute the third leading cause of human death worldwide with 3.2 

million deaths in 2015 (Figure 1), and the first cause of mortality in children under 

five years of age, according to the World Health Organization (WHO) [3, 4].  

Figure 1 Causes of death worldwide.  
Lower respiratory infections constitute the third cause of death in the world population (red bar) being 
responsible for 3.2 million of deaths in 2015. Heart diseases (Ischemic heart disease – blue bar - and 
strokes – pink bar) were the most cause of deaths. Among the 5 main causes of global death 
described, lower respiratory infections are the only transmissible infectious disease [3]. 
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 The diversity of pathological agents makes it difficult to prevent, diagnose and 

treat these diseases, contributing to high mortality rates [5-8]. These diseases can 

affect the general population, but severe cases and high mortality rates are found 

among children up to age 5, immunosuppressed adults and elderly [9-11]. 

Acute lower respiratory infections constitute a major global health burden due 

to the emergence of resistance to antimicrobial treatments, the presence of multiple 

pathogens and the recurrence of infections throughout life [12-14]. In this context, 

more knowledge about respiratory diseases and their etiological agents are very 

important to improve or propose novel prophylactic and therapeutic approaches.  

1.1. Definition and clinical symptoms 

Respiratory tract infections are responsible for a variety of clinical features that 

range from milder manifestations, such as the common cold to acute lower 

respiratory tract infections, represented by bronchiolitis and pneumonia [15, 16]  

Pneumonia is an inflammatory process that takes place in the alveolar spaces, 

whereas, in bronchiolitis, inflammation rather occurs in bronchi (Figure 2). The 

symptoms are relatively similar between pneumonia and bronchiolitis; they begin as 

a common cold (nasal congestion, high fever, and decreased appetite) and after 2 to 

3 days it is possible to observe several complications of the disease. Pneumonia 

usually accompanies a dry cough, thoracic pain, and extreme tiredness while 

bronchiolitis accompanies a characteristic wheezing. At this stage of both diseases, 

cough is persistent and the difficulty of feeding is marked, besides the accelerated 

breathing. Apnea is a very common symptom in infants less than 2 months during 

bronchiolitis while confusion occurs in the elderly with pneumonia. Complications 

such as hypoxia (low oxygen level) and cyanosis (blue-tinged skin) are indicative of 

both severe diseases [16, 17]. 
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Figure 2 Differences between Pneumonia and Bronchiolitis.  
Lower respiratory tract diagram showing affected lung regions during respiratory tract infections. A) 
Pneumonia is characterized by infection in the alveoli airways and normally occurs in the terminal part 
of the lobular lung. B) Bronchiolitis is restricted in the bronchial region and remains near to principal 
bronchi. Adapted from Eugenia et al [18]. 

Bronchiolitis affects children younger than 2 years old with a high mortality rate 

among preterm infants, due to the characteristics of this age group in which the lung 

and immune system are functionally immature, forming ideal spots for viral infection 

[19]. Pneumonia affects all ages but is extremely severe in children up to 5 years of 

age, immunosuppressed adults and the elderly [20-22]. The most common 

pneumonia is community-acquired pneumonia, which is acquired in an extra-hospital 

environmental [6, 23, 24].  

The pathogenesis of respiratory infections involves a complex interplay 

between virulence factors of a number of different pathogens – including bacteria, 

virus and/or fungi – and host response [25]. An overview of the etiological agents of 

pneumonia and bronchiolitis is presented in the following chapter and the 

host/pathogens interactions involved in these respiratory infections will be 

approached in the second part of this manuscript. 

1.2. Etiology 

The upper respiratory tract, mainly the nasopharynx, constitutes a rich and 

diverse niche in microbes. It is believed that most respiratory infections of the lower 

respiratory tract must have originated from this microbial niche. Thus, commensal 

microorganisms are also found in cases of severe disease, making it difficult to 

determine precisely etiological pathogens [2, 26]. 
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1.2.1. Respiratory viral infections 

The main viruses associated with lower respiratory tract infections are 

Influenza Viruses, human respiratory syncytial viruses (RSV), human parainfluenza 

viruses (hPIV), human metapneumoviruses (hMPV) and human Coronaviruses (CoV) 

[20, 27, 28].  

a) Influenza Viruses 

Influenza viruses cause an acute infection popularly known as Flu that has a 

high rate of recurrence and the ability to infect individuals in all age groups. Influenza 

viruses epidemics are estimated to result in about 3 to 5 million cases of severe 

illness, and about 250000 to 500000 deaths [29].  

Influenza A, B and C viruses belong to the family Orthomyxoviridae [30]. 

Among these three types, Influenza A viruses (IAV) is responsible for the major 

pandemic and seasonal epidemics events being considered more virulent and 

genetically more variable [31]. IAV have the ability to achieve a large spectrum of 

animal reservoirs, among mammals and birds. Instead, Influenza B types are 

composed of two circulating lineages (Victoria and Yamagata) in the human 

population causing seasonal epidemics but without the capacity to promote 

pandemic events. Influenza C type is the less common and often only cause a mild 

infection in children [32-34]. 

IAV is divided into subtypes according to antigenic properties of the two viral 

surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Historically, 

three subtypes of HA (H1, H2, and H3) have acquired the ability to be transmitted 

efficiently among humans and seasonal subtypes H1 and H3 are most co-circulate 

detected [35]. However, other subtypes, such as H5, H6, H7, and H9 occasionally 

affect humans and are considered possible threats to a future pandemic [36]. IAV 

can cause pandemics when a strain which was not previously circulating among 

humans emerges and transmits among humans. As the majority of the population 

has no immunity against these viruses, the proportion of persons in a population 

getting infected may be quite large [37]. Also, zoonotic Influenza viruses can cause 
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sporadic severe infection in humans through direct contact with infected animals, 

such as swine or birds but rarely spread very far among humans [38]. 

IAV is spherical and elongated virions with a diameter varying between 95 to 

120 nanometers (nm) and morphological virions are shown in Figure 3A [39]. In the 

viral envelope are inserted the surface glycoproteins HA and NA, and also the M2 

channel, which is a protons channel. The viral envelope is constituted from host cell 

membrane and M1 proteins delimit the inner portion of the viral particle. The negative 

single strand RNA viral genome is composed of 8 segments and each single RNA 

strand is coated by nucleoprotein (NP) and associated to an RNA-polymerase-RNA-

dependent complex composed by basic polymerase 1 (PB1), basic polymerase 2 

(PB2) and acid polymerase (PA) [40]. IAV genome encodes up to 17 structural and 

nonstructural proteins that play different roles in the architecture and dynamics of 

viral replication [35, 40-43]. A schematic viral particle is represented in Figure 3B.  

 

Figure 3 Influenza virus particle.  
A) Cryo-electron micrographs (Cryo-EM) presenting different strains of Influenza A subtypes. B) 
Schematic structure of Influenza viral particle showing surface glycoproteins (HA, NA, and M2). Each 
segment of the viral genome is also represented and RNP complex is highlighted to show each protein 
that forms this complex. Also, nonstructural proteins are listed. Adapted from Moulès et al [39]. 

The HA glycoprotein possesses two primordial functions for the replicative 

cycle. First, the HA recognizes and binds to sialic acid receptors on the cell surface 
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and then allows the fusion of the viral envelope with the internal membrane of the 

endosome, allowing the release of vRNPs in the cytoplasm [44]. The other 

glycoprotein, NA is involved in the liberation of new virions from the surface of the 

host cell due to its sialidase activity, thus allowing viral dissemination [45]. A 

schematic representation of the different steps of the replicative cycle Influenza A 

viruses is presented in Figure 4. 

 

 

Figure 4 The Replicative cycle of IAV.  
IAV binds to the respiratory epithelial cells by residues of sialic acid on the cell surface. Then, the 
internalization occurs by endocytosis of the virus. The low pH in the endosome triggers the fusion of 
the viral and endosomal membranes, releasing the genome into the cytoplasm. The genome is 
imported into the nucleus where they serve as a template for translation and transcription of the viral 
genome. New proteins are synthesized from messenger RNA (mRNA) viral and the viral genome is 
replicated by means of a complementary RNA (cRNA) of positive sense. The newly produced vRNA 
assembles with the viral polymerase and the nucleocapsid protein to form the biologically active 
ribonucleoprotein complexes (RNPs). After packaging of the RNPs into new virions the virus is 
released from the cell surface by the action of the NA glycoprotein. Adapted from Dubois et al. [43] 

Two important evolutionary mechanisms are involved in the replicative cycle of 

influenza viruses,  the antigenic drift and shift, which allow it to evade the immune 

system and adapt to new hosts [31]. The antigenic drift mechanism results from point 

mutations inserted during the replicative process, caused by the low fidelity of the 

viral RNA-dependent RNA polymerase enzyme, facilitating rapid viral evolution [41]. 

This process allows viral antigenic evolution by the selection of new variants 

containing amino acid alterations in HA and NA proteins [41]. More drastic changes 

in the viral genome may occur, such as the rearrangement of gene segments 
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(antigenic shift), resulting in the emergence of a new variant with pandemic potential, 

as occurred with the A (H1N1) virus pdm09 [46]. The mechanism of antigenic shift 

occurs due to the rearrangement between the gene segments of viruses of distinct 

origins during the simultaneous infection of two viral particles in the same cell. 

The seasonality of IAV is complex and influenced by a set of socio-economic 

(social, behavioral and cultural interactions), viral (the continuous process of 

generation and selection of new strains) and ecological/environmental factors [47]. 

Influenza viruses have their peak epidemic from May to September in the temperate 

regions of the Southern Hemisphere, between December and March in the 

temperate regions of the Northern Hemisphere, and throughout the year (with a 

higher incidence in the rainy season) in Tropical and subtropical regions [48]. 

Due to the evolutionary characteristics of influenza viruses, the annual impact 

on morbidity and mortality of their epidemics and their pandemic potential, the 

constant surveillance of these viruses as well as the rapid identification of new 

emergent strains are extremely important. 

b) Respiratory Syncytial Virus 

The human Respiratory Syncytial Virus (RSV) is considered as an etiological 

agent of major pediatric importance in respiratory infectious disease such as 

pneumonia and bronchiolitis [49, 50].The first RSV infection occurs in the first two 
years of age and the peak incidence usually occurs in the first months of life [51]. 

Also, RSV infection during the first year is associated with the development of 

recurrent wheezing, asthma, and others chronics lung diseases later in life [52, 53]. 

Cases of reinfection by RSV are common throughout life, but the clinical symptoms in 

children with older age and adults are milder nature [54]. Some studies associate 

RSV infection with a relevant morbidity and mortality in children with prematurity, 

bronchopulmonary dysplasia, and congenital heart disease, in the elderly [22] and in 

immunocompromised individuals [55, 56]. 

Human RSV is a member of the new family Pneumoviridae [57] with Bovine 

Respiratory Syncytial Virus and murine pneumonia virus. RSV particles have 

irregular spherical morphology, with a diameter around 100-350 nm (Figure 5A). 
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Long filamentous particles having a diameter from 60 to 200 nanometers and more 

than 10µm in length have also been described in the literature [54]. 

RSV possesses a negative, non-segmented single-stranded RNA genome 

[58]. Three surface glycoproteins are inserted at the surface of the viral envelope: the 

fusion protein (F), the attachment glycoprotein (G) and the small hydrophobic protein 

(SH). Two proteins compose the viral matrix and are known as M and M2-1. The 

nucleocapsid - a protein complex associated with the vRNA - is formed by the 

phosphoprotein (P), the nucleoprotein (N), the largest subunit of the polymerase (L) 

and the M2-2 transcription factor. RSV genome encodes 11 proteins, with two non-

structural proteins, NS1 and NS2 which are expressed only during cell infection and 

are not packaged into the viral particle [59-65]. A schematic representation of RSV 

particle is represented in Figure 5B and RSV genome in Figure 5C. 

 

Figure 5 Respiratory syncytial virus particle and genome.  
A) Electron transmission micrograph of different stages of the budding process of RSV particles in the 
cytoplasm membrane. B) A schematic figure representing RSV viral particle with glycoproteins of the 
surface (F, G, and SH), matrix protein and viral RNA bound to N, P and L proteins. C) RSV genome 
showing representative proteins of each genome region. Adapted from Norrby et al. [66].   

There are two major groups of the virus, RSV A, and B, based on differences 

in reaction with monoclonal antibodies against the major structural glycoproteins G 

and F, and also by genetic comparison analysis [54]. Each group was further 

subdivided into genotypes based on nucleotide sequence variability [54, 67].  

Overall, the role of surface glycoproteins F and G in mediating receptor 

binding are not completely understood. Some studies have shown that heparin 

sulfate present at the cell surface is essential for RSV entry into continuous cell lines 
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and interactions with nucleolin, annexin II, ICAMs and Toll-like receptors may also be 

associated with the process of binding the RSV to cells in vitro [68-76]. The F protein 

also mediates the fusion of infected cells with adjacent cells that are not infected, 

contributing to the formation of large multinucleated cells called syncytia [77].  A 

schematic of RSV replication showing principle steps is represented in Figure 6. 

 

Figure 6 Replicative cycle of RSV.  
Replication cycle begins when viral surface proteins interact with a cell receptor. After viral attachment 
fusion between viral and cell membrane occurs in a pH-independent process. All RSV replication 
steps occur in the cell cytoplasm and viral maturation occurs with the assembly of the nucleocapsid by 
combining genomic vRNA with N protein, which is accompanied by the addition of P and L proteins for 
envelope assembly. Matrix proteins aggregate with the viral surface proteins in the cellular membrane 
and the complete viral particle is released by budding, taking a portion of the plasma membrane in a 
reverse process to penetration by fusion. In addition to transcription and translation of proteins, viral 
genome produces a positively stranded RNA intermediate, which serves as a template to generate 
copies of the viral genome. Adapted from Collins et al. [54] 

Patterns of seasonality and duration of RSV outbreaks vary considerably 

between geographical regions. In temperate climates, epidemics have been 

described in the winter months [78-80] while in tropical regions, epidemics appear to 

occur in rainy seasons [81]. However, it is possible that the seasonality of the virus is 

not only related to climatic factors but also to socioeconomic factors increasing the 

risk of RSV contamination [82-84]. In most RSV epidemics reported, the co-

circulation of different genotypes of groups A and B were detected [78, 79, 85]. 
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c) Others Human Viruses 

Others respiratory viruses are capable to cause acute lower respiratory tract 

infections in humans such as:  

Human Parainfluenza viruses (hPIVs) are common respiratory pathogens that 

induce acute respiratory tract diseases in infants and immunocompromised adults 

[86, 87]. Serological surveys have indicated that 80% of children are infected with 

hPIV-3 by 4 years of age and hPIV infections re-occur throughout life. The hPIV 

belong to a diverse group of enveloped single-stranded RNA viruses within the family 

Paramyxoviridae and based on genetic and antigenic analyses, hPIVs have been 

divided into four major subtypes (hPIV-1 to hPIV-4), with subtypes 1 and 3 being 

most frequently found in severe cases [88]. 

Human metapneumoviruses (hMPV) were first identified in 2001 and 

constitute a common cause of acute respiratory infection in individuals of all ages 

worldwide [89, 90]. hMPV is a member of the family Pneumoviridae, that also 

includes RSV, and two distinct hMPV genotypes, A and B, which can be divided into 

two subgroups: A1, A2, B1, and B2 circulate worldwide. hMPV and RSV share 

similar clinic features causing severe disease in the same range of age between 

children with an incidence around 15% of all respiratory tract infections [91-95]. 

Human Coronaviruses (HCoV) infections display a wide range of symptoms 

and their role in pediatric lower respiratory infections is still not clear [96, 97]. There 

are currently five coronaviruses (family Coronaviridae) known to infect humans and 

they are associated with both upper and lower respiratory tract infections in all age 

groups [96, 98-100]. Thus, the role of coronaviruses in pneumonia has not been 

completely clarified but HCoV 229E and OC43 have been recognized as causes of 

viral upper respiratory infection and were linked to pneumonia in children and 

immunocompromised adults [101, 102]. 

1.2.2. Respiratory bacterial infections 

Etiological studies of acute lower respiratory tract infection identify a high 

prevalence of different types of bacteria, even more than viral detection. Among the 

most frequent bacterial causes of pneumonia are Streptococcus pneumoniae, 
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Haemophilus influenzae, and Staphylococcus aureus. All these pathogens are 

asymptomatic bacteria which carriage is well described in healthy individuals [103]. 

Also, Mycoplasma pneumoniae and Chlamydia pneumoniae are opportunistic 

bacteria considered as important pathogens causing pneumonia and bronchiolitis 

[104-110]. 

a) Streptococcus pneumoniae 

Streptococcus pneumoniae (S. pneumoniae) can colonize the nasopharynx 

asymptomatically but is one of the leading causes of high mortality and morbidity in 

infants, the elderly and immunocompromised people [111-114]. Prior to the use of 

antibiotics, more than 75% of pneumonia cases were caused by S. pneumoniae [23]. 

However, nowadays, studies show that only 5 to 15% of pneumonia cases are 

caused by S. pneumoniae in developed countries and a higher proportion of cases 

described in low and income countries [23, 27, 115, 116]. S. pneumoniae induced-

pneumonia is commonly named pneumococcal pneumonia. 

S. pneumoniae is a gram-positive, encapsulated bacterium classified into 92 

serotypes [117, 118] based on the composition of polysaccharide capsule. Despite 

this diversity, only a limited number of serotypes (around 20%) are responsible for 

almost 90% of all pneumococcal diseases and serotypes isolated in asymptomatic 

children generally reflect serotypes that cause disease [119]. The epidemiology of 

pneumococcal pneumonia exhibits a seasonal fluctuation with a peak incidence 

during the winter months [120].  

S. pneumoniae is detected in the airways of healthy individuals [121] and 

carriage rates are around 60% to 80% in children under five years old [122]. 

Colonization state (the first step to infection) occurs when bacteria promotes 

adhesion on the mucosal surface of the nasopharynx. The surface of the bacterium 

consists of 3 structures with several virulence factors that could contribute to 

colonization and development of pneumococcal diseases as described in Figure 7 

[26, 123, 124].  
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Figure 7 Pneumococcus surface structure and major virulence factors.  
A) Scheme of S. pneumoniae surface structure showing capsule, cell wall, and cell membrane. The 
principal's virulence factor PSpA, PspC, LytA, Pneumolysis and ABC complex are identified. B) The 
virulence factors showed in part A with each main role in respiratory tract infection. Adapted from 
Kadioglu et al. [123].  

b) Haemophilus influenzae 

Haemophilus influenza (H. influenzae) is a gram-negative bacterium also 

found in the upper and lower respiratory tract as commensal bacteria. H. influenzae 

can be divided due to differences in the capsular polysaccharide, with six different 

strains (a-f), and nonencapsulated strains (NTHi) [125]. Polysaccharide capsule is a 

major virulence factor in protecting the bacterium from phagocytosis and stimulating 

the inflammatory response [125]. H. influenzae serotype b is considered an important 

agent causing pneumonia in children under five years of age, elderly and 

immunosuppressed [126]. Also, viral-bacterial dynamics has been described 

suggesting that viral infection increases NTHi colonization [127-129].  

c) Others respiratory bacteria 

Some studies have suggested that other bacteria, such as Staphylococcus 

aureus, Mycoplasma pneumoniae, and Clamidophyla pneumoniae, may cause 

pneumonia with elevated mortality among HIV positive population [10, 130]. 

Staphylococcus aureus (S. aureus) is another commensal bacteria of the 

human nasopharynx that causes respiratory infections [131]. S. aureus is a gram-

positive, facultatively anaerobic bacterium, usually without a capsule. This species of 

bacteria is widely distributed, being able to live in a wide variety of environments due 

to its tropism for several tissues. S. aureus is composed of several species and 
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subspecies [132], whereas methicillin-resistant Staphylococcus aureus (MRSA) is the 

principal responsible for hospital infections, among organisms resistant to antibiotics 

[133].  

Mycoplasma pneumoniae (M. pneumoniae) are distributed globally and are 

the smallest prokaryotic microbes present in nature. Mycoplasma is divided into 

seven species that are pathogenic to humans, including M. pneumoniae [134] that 

accounts for approximately 20% of all pneumonia and higher rates correlated with 

the degree of immunosuppression accounts in the HIV-infected population [135].  

Chlamydophila pneumoniae (C. pneumoniae), with the two others species C. 

psittaci and C. trachomatis, are responsible for lung infections and C. pneumoniae 

remains a particular problem in the HIV-infected population [8, 130]. C. pneumoniae 

is an obligate intracellular pathogen that induces an inflammatory reaction which 

contributes to damages in epithelial respiratory tract [136, 137]. 

1.2.3. Mixed Respiratory infections 

The upper respiratory tract constitutes a dynamic and equilibrated 

microbiological niche, notably composed of commensal viruses and bacteria. 

Perturbation of this equilibrium, by the emergence of a pathogen and/or imbalance of 

the host immunity, can constitute the starting point of respiratory diseases [2, 26, 

138]. Usually, the opportunistic bacteria, such as S. pneumoniae, S. aureus, and H. 

influenza are co-detected with respiratory viruses during lower respiratory tract 

infections [127, 139-142]. However, determining the contribution of viral/bacterial co-

infection to disease severity is highly complex. There is an abundance of distinct 

viruses and bacterial species carried commensally in the nasopharynx and samples 

for laboratory diagnosis are generally contaminated with components of upper 

respiratory tract [143]. The use of the same pathways, cofactors, and the overlap in 

the inflammatory mediators produced by different pathogens create an opportunity 

for augmentation of the immune response during dual or sequential infection. The 

complexity of microbiome interactions in the airways possibly contributes to the 

susceptibility to exacerbations and the natural course of airway diseases [144, 145].  
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 Thus, many aspects of the relationship between co-infection detection and 

disease severity remain unclear. However, in the literature, some studies have 

classified viruses/bacteria interactions in two distinct scenarios: 

Bacterial superinfection is described when viral infection promotes favorable 

conditions to commensal bacteria causes an infection in the lower respiratory tract. 

The association of viruses and bacteria is described by epidemiological studies that 

show a high prevalence of bacteria in severe disease during seasonal epidemics of 

the respiratory virus [146]. During IAV pandemics, bacterial superinfection was 

observed in adults and children associated with increased morbidity and mortality 

[147-149]. Bacteria superinfection is also demonstrated by quantitative studies that 

show an increasing of commensal bacteria during a viral infection. For example, IAV 

and RSV infection increase colonization rates of S. pneumoniae and H. influenzae 

which can lead to secondary complications contributing to the disease severity [128, 

142, 146, 150-155]. 

Mechanisms associated with viruses predisposing the respiratory tract to 

bacterial superinfection [156] are poorly understood with two potential explanations:  

(I) Viral infection can increase bacterial adherence into epithelial cells, as 

described for IAV infection which is capable to exposes bacterial receptors on the 

surface of host cells by cleaving sialic acids residues in the upper respiratory tract 

[128, 157-161]. RSV, on the other hand, is thought to bind directly to H. influenzae 

and S. pneumoniae [129, 159, 162], increasing bacterial proximity to the epithelial 

monolayer and augmenting attachment to host cell receptors. Also, viral infection can 

induce disruption of epithelial cell tract enabling bacteria to access into deep 

epithelial cells [147].  

(II) Viral infection can also predispose bacterial superinfection via the 

alteration of host’s innate immune response. Viral replication may increase 

recruitment and activation of pro-inflammatory immune cells and may also directly 

affect the immune system [163-166]. Additionally, viral presence also affects the 

production and biological activity of cytokines [167] impairing bacterial clearance in 

its initial phase.  
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Bidirectional synergism or bacterial predisposition to viral disease is 

represented by an increased viral susceptibility to bacterial infection. It might be 

possible that microbial interactions may disturb the equilibrium of the microbiota, 

creating an opportunity for viral invasion and transmission in the lower respiratory 

tract.  

Epidemiological studies show that pneumococcal conjugate vaccine not only 

reduced the incidence of pneumonia due to S. pneumoniae but also prevented 

approximately 33% of pneumonia associated with respiratory viruses [168]. Also, 

several studies have shown that the presence of a specific bacterial species may 

promote viral infection in the respiratory tract such as S. pneumoniae was shown to 

enhanced RSV infection in vitro and in vivo [144, 169, 170]. In addition, pre-exposure 

of epithelial cells to bacteria alters the response to subsequent viral infection, 

suggesting that bacterial presence could facilitate viral attachment to host cells [171].   

1.3. Diagnostic of lower respiratory tract 
infections 

The diagnostic of pneumonia or bronchiolitis is performed through clinical 

examinations taking into account the history and the age of the patient. This clinical 

diagnosis should be performed according to WHO criteria [120]. In addition, to 

confirm the diagnosis of pneumonia, a chest X-ray can be performed, being able to 

show the extent of the disease and to identify the presence of complications that 

increase the severity of the disease. Usually, clinicians start the treatment without an 

etiologic detection due to the low sensitivity and/or lack of specificity of current 

diagnostic tools. In severe cases, laboratory tests capable to identify the pathogen 

are usually requested and a great effort has been made to improve etiological 

diagnosis methods [172, 173]. The quality of the collection, packaging, and transport 

of clinical samples are essential for an optimal diagnosis. In general, nasopharyngeal 

secretion samples are used for detection of viruses while blood samples are 

analyzed for bacterial detection [172, 173]. The most common laboratory detection 

methods are pathogen isolation, molecular detection, immunofluorescence and 

antibodies detection.  
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Pathogen isolation is a method where samples are incubated in different 

conditions and the most abundant pathogen is detected and identified. During a long 

time, this type of identification was considered the preferred method in diagnostics. 

For bacterial culture, the problems of this method are the false-negative detection 

due antibiotic pretreatment and nonculturable bacteria [174]. For viral isolation in cell 

culture, the support and conditions can vary a lot. Influenza virus can be isolated in 

embryonated chicken eggs or mammalian cell lineages (MDCK) while for RSV 

isolation, other mammalian cell lineages (HEp-2) are most common. The main 

disadvantage of these procedures is the relatively long period of time required 

between 7 to 10 days, depending on the pathogen [173].  

 Molecular detection is based on nucleic acid amplification and nowadays 

polymerase chain reaction (PCR) assay is considered a primordial technique for 

pathogen characterization. This method can be used directly on clinical samples and 

the rapid nature of the results can greatly facilitate investigation of outbreaks of 

respiratory illness. In addition, this method allows detecting multiples pathogens 

together being capable to identify different respiratory pathogens and its subtypes 

[173]. Also, it is possible to make quantitative analyses correlating pathogen load to 

the severity of disease [175, 176]. However, although PCR is highly specific, 

sensitivity has been shown to vary depending on the patient sample tested [177, 

178]. 

Indirect immunofluorescence assay is the most common test in the diagnosis 

of various respiratory viruses.  This technique is based on antibody staining of virus-

infected cells in original clinical specimens and is a rapid and sensitive method for 

diagnosing viral infections [173]. 

Serological diagnoses are important approaches when clinical specimens are 

unobtainable or when a laboratory does not have the resources required for 

pathogen isolation. Serological methods such as the haemagglutination inhibition test 

are essential for many epidemiological and immunological studies and for evaluation 

of the antibody response following vaccination for Influenza virus, for example [173].  

Biomarkers approaches can help to predict or to recognize potential cases of 

severity. Biomarkers are biological markers that function as indicators of a pathogen-

related disease, or of disease severity [179]. The first biomarker proposed during an 
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infection were white cell count and erythrocyte sedimentary rate but nowadays they 

have been replaced by C-reactive protein (CRP) and procalcitonin (PCT) which have 

higher sensitivity and specificity for severity prognostic [180-199]. They seem to have 

suboptimal sensitivity and specificity for differentiated bacterial to viral pneumonia 

[187, 200, 201].  

Several others biomarkers capable of identifying the etiology and predict 

complications, outcomes, and mortality of pneumonia have been studied. Tumor 

necrosis factor (TNF) receptor 2 and interleukin (IL)-10  characterization studies don’t 

show success but tissue inhibitor of metalloproteinases has shown promise for the 

identification of bacterial pneumonia in children [195, 202-205]. Also, an association 

of different biomarkers like CRP, TRAIL, and IP-10 were described and might offer 

advantages in the differentiation of viral or bacterial pneumonia.  

In addition, innovative technologies, including microarray-based whole 

genome expression arrays, proteomics, and metabolomics, can be a basis for 

biomarker discovery. For example, specific host responses induced show a 

microRNA bio-signatures that can be identified using microRNA analyses [199]. 

However, further studies are necessary before routine use of biomarker assays [199, 

206]. 

1.4. Treatments for lower respiratory tract 
infections  

Treatments for lower respiratory tract infections depend on the nature of the 

etiological agent, resulting in antibiotic or antiviral treatment, in the case of bacterial 

or viral infections, respectively.  

1.4.1. Antiviral treatments  

Viral replication is linked to metabolic processes of the host cells and safe 

antivirals offering benefits by reducing mortality as well as the duration of disease 

symptoms and complications are described. The available antivirals include classical 
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approaches focused on targeting the viral cycle and new antiviral strategies targeting 

the host instead of the virus [207].  

a) Anti-influenza drugs  

According to their targets in the viral replicative site, anti-influenza drugs are 

classified into three groups: targeting M2 channel, neuraminidase inhibitors, or 

polymerase inhibitors. 

Inhibition of viral envelope fusion to cell membranes by M2 proton channel 

blockers is represented by amantadine and rimantadine. These inhibitors were 

approved by health authorities but transmissible resistance variants rapidly emerged 

from patients after treatment and since 2009, they are not recommended for clinical 

use anymore [208].  

Viral NA protein is an attractive target for drug action as it is essential for 

infectivity and has a highly conserved active site across influenza A and B viruses 

[31]. Inhibitors of NA, which block the sialidase activity of NA and prevent the release 

of new viral particles, are represented by zanamivir, oseltamivir, peramivir, and 

laninamivir [209]. This class of antiviral is approved for human treatments and 

oseltamivir is the most recommended worldwide. Viral resistance to oseltamivir was 

reported confirming the need for new antiviral therapies [210, 211].  

Inhibitors of viral polymerases, which interrupt replication and transcription of 

the viral genome, include inhibitors of PB2 and NP. Some molecules such as 

nucleozin, naproxen, RK424 (NP inhibitors) and VX-787 (inhibitors of PB2) are in 

pre-clinical phases studies with promising results [212]. 

An alternative strategy less prone to antiviral resistance consists to target the 

host rather than the viral determinants. Fludase (DAS181) is inhibitory for a range of 

influenza A and B viruses, altering the ability of the virus to replicate efficiently. 

Potent antiviral properties during clinical trials with reduced inflammatory responses 

in mice and ferrets were described. Also, Fludase promotes protection against 

secondary pneumococcal infection of mice [213, 214]. Another example is the 

acetylsalicylic acid and its derivate demonstrate antiviral activity against influenza A 

viruses with some ongoing phase I/II clinical assays [215]. Also, the combination of 
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antiviral agents like oseltamivir with immune modulators like acetylsalicylic acids has 

been evaluated and shown to increase survival in animal models [212, 215, 216].  

In addition, RNA-based screening studies or other similar high-throughput 

approaches are very helpful to identify new cellular targets. These studies provide a 

valuable library to select novel cellular drug targets [217, 218]. Targeting cellular 

rather than viral factors could be an important approach to prevent the problem of 

resistance to classic antivirals.  

b) Anti-RSV drugs  

To date, no effective and accessible treatment for RSV is available. The only 

drug licensed is inhaled ribavirin. Ribavirin is an analog of purine nucleotides which 

inhibits viral replication. However, its use remains limited because of a lack of results 

proving its efficacy and suspicion of side effects. Ribavirin is sometimes used in 

some circumstances but is not recommended in most cases [219-222]. 

Some anti-RSV treatment targets viral replication cycle by intervention in 

membrane fusion and RNA synthesis. Membrane fusion inhibition, such as GS-5806, 

prevents virus-cell fusion and cell-cell syncytium formation and has shown promise 

results in early-phase clinical trials with efficacy and safety in hospitalized adults 

[223, 224]. Inhibitors of RNA synthesis during RSV replication are divided into two 

groups. Nucleoside analogs represented by ALS-8112 and ALS-8176 target the 

active site of the polymerization domain, and non-nucleoside inhibitors (BI-

compoundD) bind to other regions of the polymerase. These molecules are in 

ongoing studies and show promising results but further evaluation is necessary to 

determine effectivity and safety [225-228].  

Despite the importance of this viral pathogen, there are not adequate 

treatment options available. Thus, it is important to continue to identify and 

characterize possible targets for antiviral drugs. 

1.4.2. Antibiotics 

Against bacterial infections, antibiotics are widely used worldwide. There are 

cytotoxic or cytostatic towards the microorganism and often act by inhibiting the 
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synthesis of a bacterial cell wall [229, 230]. For mild to moderate pneumonia 

suspected to be of bacterial origin, amoxicillin is recommended first-line therapy. 

Amoxicillin appropriately covers the most prominent invasive bacterial pathogen, S. 

pneumoniae [231]. During an atypical bacterial suspicion, a macrolide (azithromycin) 

is recommended [232]. In addition, a third-generation cephalosporin is recommended 

for a specific group of patients [5].  

Due to the indiscriminate use of antibiotics, the emergence of antibiotic-

resistant strains is considered a serious problem [230]. Thus, preventing lower 

respiratory tract infections through vaccination and prophylaxis is important.  

1.5. Prevention of lower respiratory tract 
infection 

Prophylaxis is considered one of the best alternatives for combating 

respiratory tract infections. The prophylaxis method most common are vaccines, but 

passive immunization has also been overspread worldwide. 

1.5.1. Viral prophylaxis 

The development of viral vaccines are based on attenuated, recombinant, 

inactivated and subunit composition strategies. 

A traditional strategy that has worked for several pathogens involves the 

development of attenuated viral strains. Attenuation can be accomplished by serial 

passage or cold-adaptation and has the advantage of expressing most of the 

pathogen’s antigens to improve immune response. Attenuated vaccines for Influenza 

viruses have been produced for more than 50 years, however, this vaccine has a 

restricted use in USA and Russia [233, 234]. Using this strategy, attenuated RSV 

strains have been developed [235, 236] but failed in some clinical trials [237, 238]. 

The disadvantage of this strategy is the that, in rare cases, the live attenuated 

vaccine strain can revert to its virulent wild-type, causing severe disease [239]. 

Alternatively, recombinant vaccines consisting viral protein expressed in other 

in vivo support have been increasingly used for vaccine development [240]. This 
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approach was described for influenza virus which HA protein was expressed in insect 

cells by baculovirus vectors [233]. For RSV, viral antigens expressed in other viruses, 

such as Sendai virus, vaccinia virus, adenovirus, and parainfluenza or in bacteria 

was studied. Despite promising results in murine studies, studies in adults showed 

relatively low capacity for inducing neutralizing activity [241-243], so they have not 

been advanced into clinical phases. Another approach of recombinant RSV vaccine 

carrying host cytokines capable to promote immune responses suggests that these 

formulations can modulate the immune response being effective alternatives for 

immunization against RSV [244-249].  

Inactivated vaccines are composed of purified virus chemically inactivated and 

are capable to generate humoral and cellular immunity. The annual Influenza vaccine 

around the world is an inactivated vaccine [31, 233, 234]. This vaccine, during 

decades, was composed of 2 IAV strains and one strain of Influenza B virus 

according to circulated subtypes detected by surveillance. In 2016, WHO decided to 

add another Influenza B virus subtype to try to increase vaccine coverture [34, 233]. 

Even if this Influenza vaccine has a great coverture and seroconversion, the 

constantly evolving of influenza viruses requires continuous global monitoring and 

annually reformulation of influenza vaccines [250, 251]. For RSV, during 60’s, a 

clinical trial of a formalin-inactivated RSV vaccine not only failed to prevent RSV 

infection but caused an increase in severe disease [252]. This experience had a 

profound negative impact on subsequent RSV vaccine development and the immune 

mechanisms that led to enhanced disease in this clinical study are not yet fully 

elucidated, making difficult to advances into clinical evaluation of inactivated RSV 

vaccines [253].  

For RSV vaccine, lability and heterogeneity in particle size represent obstacles 

for the formulation of a stable vaccine [254] and despite the many approaches 

developed and tested, there is still no vaccine defined for use in humans.  

Thus, the prophylactic palivizumab is indicated in months prior to the 

seasonality of RSV for premature babies; children with congenital pathology or with 

chronic lung disease by WHO. Palivizumab is a humanized mouse IgG1 monoclonal 

antibody directed against a conserved epitope on the surface fusion protein of RSV. 

This passive prophylaxis shows a potent RSV neutralizing activity and has been 
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clearly demonstrated to protect against RSV. The administration of palivizumab in 

specific risk groups is limited by its expensive cost in many low and income countries 

[221]. Consequently, prevention of RSV infection is a public health priority, and global 

initiatives have advanced numerous efforts to expand the field [255]. Continued 

research into the pathogenesis of RSV disease and immune responses are important 

to contribute to the development of RSV vaccines.  

1.5.2. Pneumococcal vaccine  

The polysaccharide capsule from encapsulated bacteria is a major virulence 

factor and can be used as an antigen for vaccine development [256, 257]. However, 

that does not induce a complete response and cannot provide adequate protection 

against pneumococcal infection in children [24]. Thus, the polysaccharide was 

chemically conjugated to different bacterial protein [258] and the first conjugate 

vaccine used was composed of 7 different serotypes of pneumococcus (PVC 7). In 

2009, two new conjugated vaccines were licensed for use with 10 and 13 different 

serotypes (PCV 10 and PVC 13). Serotypes coverture of each conjugated vaccine is 

shown in Table 1.  

Pneumococcal vaccine Serotypes 

PCV 7  4, 6B, 9V, 14, 18C, 19F, 23F 

PCV 10      1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, 23F  

PCV 13      1, 3, 4, 5, 6B, 6C, 7F, 9V, 14, 18C, 19C, 19F, 23F  

Table 1 Pneumococcal vaccine.  
Serotypes included in each pneumococcal vaccines approved to use worldwide [259].  

A reduction in pneumococcal disease among vaccinated children have been 

observed since the introduction of the first PCV vaccine in 2000 [151, 260-264]. In 

addition, vaccination in children has been shown to reduce pneumococcal disease 

among the elderly by preventing the transmission due the diminished of the carriage 

in general population [265-267].  

The challenge of the pneumococcal vaccine is the existence of 92 serotypes 

since vaccinated individuals remain susceptible to serotypes not included in the 
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vaccine [268-270]. Also, changes of serotypes carried out in the nasopharynx of 

children [271] were detected and the potential risk of other serotypes infections make 

the pneumococcal disease an important problem of global health, especially in 

children and must be a priority. 

Therefore, new potential vaccines that effectively protect against pneumonia 

have been investigated and are undergoing clinical trials [24, 272-274].   
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2.  Host-pathogen interactions 

The human body is constantly exposed to microbes and prevention of 

opportunistic infections is made by physical or anatomical mechanisms (skin, 

mucosa), mechanical (cilia in respiratory tract cells, tight junctions) and biochemical 

(tears, saliva) barriers as well as cellular mechanisms including innate and immune 

responses [1]. 

The pathogenesis of respiratory infections involves the complex interplay 

between virulence factors, environmental conditions, the magnitude and temporal 

dynamics of the host response, and host susceptibility factors. The severity of 

disease is associated with an enhanced host immune response which is essential for 

pathogen control but can cause collateral damage to the tissues, leading to mortality 

in some cases. In addition, several pathogens evolved strategies to counteract or 

hijack host responses constitute by multiple elements including diverse cell types 

(epithelial cells, dendritic cells, macrophages, monocytes, and granulocytes), various 

pattern recognition receptors, a large array of cytokines and chemokines, cellular 

stress, and different pathways [25, 275]. 

Thus, in this chapter, immune response and others cellular mechanisms 

important during Influenza virus, RSV and S. pneumoniae infection was highlighted 

as resumed in Figure 8. 
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Figure 8 Host-pathogen interactions.  
Important complex cell physiological processes in the control of pathogen infection showing an 
immune and inflammatory response, in addition to p53 pathway. all these cellular mechanisms are 
often targeted or modulated by pathogens during infection. Each pathway will be explained in the next 
part. Adapted from Sun et al. [275].   

2.1. Immune response 

In the respiratory tract, epithelial cells are constantly in contact with 

potential pathogens having the important function to activate immune 

responses. The immune response is divided into innate and adaptive 

immunity. The innate response is the first line of defense induced by a 

pathogen and aims to control the infection locally and to activate an adaptive 

response. The adaptive response is specific to the pathogen, more systemic 

and durable [276]. A chronological course of innate and adaptive immunity is 

schematically showed in  
Figure 9. 
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Figure 9 Chronological course of innate and adaptive immunities.  
Innate mechanisms confer rapid protection, keeping the invading microorganisms under control until 
the development of adaptive immunity. It may take several days and even weeks for adaptive 
immunity to become effective. 

 

Figure 10 Innate and adaptive cells.  
Innate immune cells (macrophages, dendritic cells, natural killers, basophil, neutrophil and mast cells) 
exists before the invading microorganism, they are effectors cells capable of recognized several 
molecules of various pathogens. Adaptive cells are developed following exposure to a particular 
invading agent. It is able to react more quickly and more effectively to subsequent contacts, they 
specifically identify a molecule with high specificity. Adaptive immunity is divided into a cellular and 
humoral response. During the cellular response, CD8+ T cells are capable to identify and kill infected 
cells while CD4+ T cells increase macrophages quantity and/or increases antibodies expression by B 
cells (humoral response).  
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2.1.1. Innate immune response 

The innate immune response begins as soon as the pathogen enters the 

target cell and is implicated in recognition and protection of infections. The innate 

system consists of different cells as shown in Figure 10.  

The recognition of the pathogen by receptors is the first step in the host cell 

membrane during infection. This recognition is based on a limited repertoire of 

receptors called pattern recognition receptors (PRRs) that detect conserved microbial 

components known as pathogen-associated molecular patterns (PAMPs) [276]. This 

initial response triggered by infection is mediated by three major receptor families - 

PRRs: Toll-like receptors, RIG-I-like receptors (RLRs), and NOD-like receptors 

(NLRs) that will be detailed above. 

Toll-Like Receptors (TLRs) are type 1 transmembrane proteins that are able to 

recognize PAMPs from bacteria, parasites, fungi, and viruses [277]. TLRs are one of 

the largest classes of PRRs with 10 receptors (TLRs 1-10). TLRs family is well 

conserved among organisms and homologous receptors are found in plants, insects 

and other vertebrates [276, 278]. Normally TLR 1, 2, 4, 5, 6 and 10 are expressed on 

the cell surface while TLR 3, 7, 8 and 9 are intra-vesicular [276, 279]. The expression 

profile of TLRs in different cell types may be tissue-specific and highlight the different 

role between cells of the immune system (macrophages, dendritic cells, neutrophils, 

B and T cells) and epithelial cells [277].  

Viral attachment and fusion proteins, as well as the components of bacterial 

cell wall, are able to be recognized by these receptors. The summary of TLR 

receptors and pathogens ligands are described in Table 2. 
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TLR Microbial ligands Reference 
TLR1 Recognize lipoproteins; minority role in pneumococcus 

infection. 
[276] 

TLR2 Recognizes a large number of binders, such as bacterial 
peptidoglycans and lipoproteins, and  surface viral 
proteins of  RSV and IAV 

[280, 281] 

TLR3 Viral recognition due double-stranded RNA viral of RSV 
and IAV. 

[280-288] 

TLR4 Viral recognition due to surface viral proteins of RSV and 
IAV; and bacterial lipopolysaccharide and pneumolysin. 

[276, 280, 281, 289] 

TLR5 Recognizes gram-negative bacteria and flagellin  [290] 
TLR6 Recognize lipoproteins; minority role in pneumococcus 

infeciton 
[276] 

TLR7 Viral recognition due single-stranded RNA viral of RSV 
and IAV 

[280-283, 291, 292] 

TLR8 Recognizes single-stranded and double-stranded RNA; 
relevance during virus infection is unknown. 

[293] 

TLR9 Recognizes DNA; protector role against pneumococcus 
infection 

[276, 294] 

TLR1/TLR2 
TLR2/TLR6 

Recognizes large number of bacterial binds, and a large 
range of viruses  

[295] 

Table 2 TLR and microbial ligands.  
TLR family represented by 10 receptors capable to recognize different microbial ligand. 

Once the ligand is recognized, TLRs dimerize and initiate a signaling cascade 

leading to the activation of the proinflammatory response [296]. Signaling cascade is 

divided into two major families of transcription factors – Nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB) and interferon regulatory factor (IRF) [25] 

which will be detailed in the next part of this manuscript.  

TLR signaling is finely regulated to differentiate resident flora and to avoid 

excessive inflammation, which can cause damage to the tissue contributing to the 

severity of disease [288]. Thus, the activated cascade may be negatively regulated at 

different levels by different mechanisms such as protein phosphorylation and 

degradation [282, 297].  

Another family of PRRs, RIG-I-Like Receptors (retinoic acid-inducible gene-I; 

RLRs) is intracellular helicases capable to detect [207] most respiratory viruses, 

including influenza viruses, RSV and hPIV, and others RNA viruses. Activated-RIG-I 

leads to the regulation of transcription factor IRF and NF-kB, inducing a very 

important antiviral response [280, 281, 298, 299].  

NOD-Like Receptors (nucleotide oligomerization domain; NLRs) is another 

cytosolic PRR [207]. This family of more than 20 proteins is involved in various 

cellular processes of the immune response [300]. Some NLRs, including NLRP3, are 
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critical for the formation of inflammasome complexes which are involved in the 

proinflammatory responses [301, 302]. NLRP3 is expressed by monocytes, dendritic 

cells, neutrophils, macrophages, and human bronchial epithelial cell and is essential 

for the recruitment of innate immune cells during RSV and Influenza infection [303-

307].  

Another attendant of this family is the NOD2 receptor that should mediate the 

recognition of viral single-strand RNA.  NLR NOD2 binds RSV genome and triggers 

the innate response, also described for Influenza virus and S. pneumoniae, leading 

to the production of type I IFN [276, 280, 281, 301]. 

All PRRs are represented in Figure 11. 

 

Figure 11 PRRs signaling pathway.  
Different classes of host PRRs (TLRs, RLRs, and NLRs) that trigger distinct signaling pathways 
culminating in the induction of IFNs and/or proinflammatory cytokines. Adapted from Kumar et al 2009 
[277]. 
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2.1.2. Adaptive immunity 

The adaptive immunity is a durable response to pathogens and has been 

extensively studied for many years, contributing to vaccine development. Also, an 

exacerbated activation of this response contributes to the severity of the disease 

[308]. Overall, this response is highly specific being capable to recognize various 

antigens and to produces a specific immune response to each one. Once produced, 

memory cells have a long life and are able to recognize antigen for years. Thus, 

subsequent responses to the same antigen are usually faster, greater, and 

qualitatively different from the first. Adaptive immune cells are shown in Figure 10 

and are divided into two types: humoral and cellular response.  

The adaptive humoral immune response is mediated by antibodies expression 

produced by B lymphocytes. Antibodies recognize bacterial antigens, neutralize the 

infection and eliminate these antigens by various effector mechanisms. During viral 

infection, the virus specifics antibodies can block viral entry and subsequent 

establishment of infection. In Influenza virus infection, HA protein is neutralized by 

host antibodies while for RSV, F protein is probably the viral protein neutralized [275, 

281].  

 The adaptive cellular immune is characterized by a T-lymphocyte-mediated 

response against intracellular microorganisms, such as viruses and some bacteria. T 

lymphocytes occur in two main classes when activated. The first, CD8+ or cytotoxic, 

kill infected cells while the second class, the CD4+ or helper, coordinate the immune 

response promoting the activation of B lymphocytes and macrophages.  

CD8+ cytotoxic T cells play an important role performing direct elimination of 

infected cells. They are recruited to the site of infection, where they recognize and 

eliminate the infected cell preventing the production of progeny. In the other hand, 

CD4+ T cells produce various cytokines profile. The classic profile is helper T cells 

type 1 (Th1), which promote the activation of macrophages while Th2 cells, regulates 

antibodies production by B lymphocytes [309]. More recently, other profiles have 

been described, such as cells of Th17 and regulatory T cells, which control the 

inflammatory process [280, 281].  
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A particularity of the immune system in neonates is their reduced ability to 

produce Th1-responsive cytokines with normal or increased cytokine production to 

the response of type Th2 and Th17 [221] 

During RSV infection, T and B cells are downregulated [310] leading to a poor 

induction of long-lasting immunity resulting in difficulties to the development of an 

effective vaccine [275, 311-314].	

2.2. Inflammatory response 

The severity of respiratory infections is closely linked to inflammation and 

tissue damage in the airways. Inflammation is induced by multiple signaling pathways 

such as NF-kB and interferon regulatory factor (IRF) - the two major transcription 

factors – and others more recently described like p53 pathway [285, 315, 316].  

During mixed infection, both S. pneumoniae	 and RSV have been shown to 

stimulate inflammasome activation. The culmination of the multiple signaling 

pathways triggered by S. pneumoniae	 primarily results in an NF-kB-mediated 

inflammatory response, while RSV infection results in a strong interferon response. 

There is, however, the potential for considerable overlap between the signaling 

pathways triggered by each pathogen, which could lead to synergistic stimulation of 

inflammation during co-infection [304, 317, 318]. 

 
Figure 12 Inflammatory responses.  
NF-kb pathway and Interferon pathway activation promote transcriptional activity of a number of genes 
responsible for inflammatory response. Adapted from Lester et al. [297] 
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2.2.1. NF-kB pathway 

The NF-κB family of transcription factors consists of five protein subunits that 

share an affinity for the κB DNA sequence motif and are divided into two classes: the 

NF-κB proteins (p105/p50 or NFkB1 and p100/p52 or NFkB2) and the Rel proteins 

(c-Rel, RelB, and RelA/p65) [319].  

The NF-κB, composed of a p50 and RelA/p65 subunit, is considered a key 

transcription factor in antiviral cytokines production. Upon a variety of stimuli, such as 

viruses or bacteria, NF-κB migrates into the nucleus whereby it binds and activates 

target gene promoters of numerous cytokines [320] like ICAM, IL-1, IL-6, IL-8, and 

TNF-α, which are crucial for the response to inflammation [321]. 

There are a number of different mechanisms to regulate the transcriptional 

response downstream of NF-κB pathway activation and some viral proteins were 

described to interact with NF-kb pathway such as the NS2 protein of Influenza virus 

[318].  

Antiinflammatory drugs such as aspirin, dexamethasone, and prednisone can 

indeed inhibit pathway activation, placing NF-κB as a prime target for therapies 

against inflammatory disease [319]. 

2.2.2. Interferon pathway 

Interferon (IFN) is a family of cytokine capable to produce an antiviral 

response, mediated by type I and type III, and to promotes macrophages activation 

by type II interferon [298].  

Type I IFNs, including IFN-α and IFN-β, has an important role in restricts virus 

replication and spread. In addition, there is evidence that they are also produced in 

response to pneumococcal colonization resulting in a synergistic stimulation during 

mixed infection [298].  

More recently, type III IFN (IFN- λ1, 2 and 3) have been proposed to have a 

crucial role in virus control in the respiratory tract, as they are expressed at higher 

levels than type I IFNs in human airway [322-325].  

Due to IFN response importance in preventing viral infection, viruses have 

different strategies to evade to this response. For influenza viruses, the principal IFN 
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antagonist is NS1 and NS2 proteins that target the IFN system at multiple stages 

(Talon J, Horvath CM 2000)[283].  

RSV also encodes two proteins, NS1 and NS2, which prevents the synthesis 

and signaling of type I and III IFNs. NS1 and NS2 work either individually or 

synergistically to block almost every essential step of the IFN pathways. These viral 

proteins promote the degradation of a number of elements of these pathways, 

including interferon regulatory factor and proteins coded by Interferon stimulate 

genes through proteasomal degradation [326-333]. 

a) Interferon regulatory factors (IRFs) 

There are two major interferon regulatory factors: IRF 3 and IRF 7 in the 

antiviral response. IRF 3 is constitutively expressed while IRF 7 expression is 

enhanced significantly upon stimulation. Viral activation of the IRFs results in homo- 

or heterodimerization of IRF3 and/or IRF7 and subsequent nuclear translocation to 

bind to type I and III IFN promoters.  In general, IFN-β and IFN-λ1 are predominantly 

activated by IRF 3, while IRF 7  promotes the transcription of IFN-α and IFN-λ2 and 3 

[334, 335]. During RSV infection, IRF3 degradation is promoted, reducing drastically 

IFN-β expression [336].  

b) Interferon-stimulated genes (ISGs) 

The interferon signaling cascade induces the expression of many genes 

known as Interferon stimulated genes (ISGs). The transcription induction of nearly 

1000 genes is regulated by IFNs and some are capable to encode direct antiviral 

effectors or molecules [337]. Some ISG already described to be modulated during 

virus infection are described in Table 3. 

Further research on their expression and function is needed to better elucidate 

their contribution of ISG to the immune response during respiratory infection [283, 

337, 338].  

Some of the proteins encoded by ISGs have a well-defined role in the 

pathogenesis by a variety of mechanisms with virus, cell or tissue specific effects 

[283, 337]. For example, Mx proteins were among the first ISGs identified and MxA 
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protein prevents Influenza replication by the interaction with viral proteins such as 

PB2 and nucleocapsid [339, 340].  

ISG Virus 

Eif2ak2 / Pkr, Oas1b, Rnasel Vesicular stomatitis virus, Vaccinia virus, flavivirus 

Isg15 Chikungunya Virus, Influenza virus,  Vaccinia virus 

Ifit1 West Nile virus, HCoV 

Ifit2 Vesicular stomatitis virus, West Nile virus  

Ifitm3 / Ifitm Influenza virus, RSV 

Rsad2 / viperin West Nile virus, Chikungunya virus 

Samhd1 HIV 

Bst2 / tetherin Vesicular stomatitis virus 
Table 3 ISG modulated during different virus infection.  
ISG already described in the literature to have an important role in viral infection. Adapted from 
Schoggins et al [337]  

2.3. p53 pathway 

The p53 protein, discovered in 1979, was described as "guardian of the 

genome" due to its major function as a tumor suppressor. The new classification 

“guardian of homeostasis” is maybe more appropriate, covering all known p53 

biological activities [341-344]. The transcription factor p53 can activate several genes 

that regulate large quantities of cellular mechanisms in response to different types 

and intensity of stresses [345-347].  

The p53 transcriptional activity binds to the promoter of the target to regulate 

gene expression [348-350]. However, even if this protein acts as a nuclear 

transcription factor, p53 can also play a role outside the nucleus through protein-

protein interactions [351]. The p53 protein, formed by 393 amino acids, is expressed 

at low concentrations in various cell types and tissues and has a short half-life being 

continuously degraded [352-355].  

Alterations in the structure and function of p53 are detected in a large number 

of cancers types and TP53 gene mutation is linked to the poor patient prognosis of 

cancer [356, 357]. Emerging role in various physiological processes and coordination 

of diverse cellular responses to different stress are shown in Figure 13 [358]. In 
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recent years, p53 regulation in several cell programs including cell metabolism, 

fertility, and immune regulation was described [345, 359, 360].  

 

Figure 13 The p53 network.  
Genes are represented by node and interactions by lines. P53 is activated by a large range of 
regulators, shows on blue line, which controls many distinct biological processes showed in the red 
line. Interactions are annotated as positive (arrow), negative (T-bar), or modifying (solid circle). 
Adapted from Kastenhuber et al. [348]. 

In conclusion, there are different types of interactions with p53 for example, 

DNA damage promotes p53 activation driving cell-cycle arrest, senescence, or 

apoptosis [361, 362] while hypoxia, thermal shock, and oncogenes promote p53 

stabilization [363, 364]. Also, pathogens can modulate p53 to optimize their infection 

as shown in Figure 14. 
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Figure 14 Scheme of the p53 pathway.  
Different types and intensities of stresses activate p53 by mediators like Mdm2. Activated p53 initiates 
transcription of hundreds of target genes (transducers) that subsequently mediate cellular responses 
such as cell cycle arrest, apoptosis or senescence. Adapted from Vousden et al. [361].  

2.3.1. Mechanisms of p53 regulation 

The regulation of p53 is complex and controlled by many factors including 

protein stabilization, activation, and posttranslational modifications. The most 

important posttranslational modifications of p53 include ubiquitinylation, 

phosphorylation, acetylation, and methylation [365]. 

a) Ubiquitinylation   

Ubiquitinylation is a highly regulated, flexible and reversible process that mark 

proteins for degradation, changes in activity and re-localization [366]. Ubiquitinylation 

of p53 is mainly mediated by mouse double minute 2 (Mdm2) [366, 367] an E3-

ubiquitin ligase protein which binds to p53, forming p53 / Mdm2 complex. This 

complex allows p53 degradation by the proteasome [368-370]. Controversially, the 

Mdm2 expression is transcriptionally regulated by p53 defining a negative-feedback 

loop, where p53 increases the expression of Mdm2, and this, promotes  p53 

degradation as showed in Figure 15 [367, 371, 372]. Several others E3-ubiquitin 

ligases have been identified that could play a role of substitute/alternative of Mdm2 

such as Cop1, Pirh-1, Pirh-2, Trim24, Arf-BP1, Topors, Chip, Carp1, Carp2, p300, 

and CBP. However, their role is not already understood [373-375].   

Due to this major role of Mdm2 in p53 activation and the critical need for p53 

stabilization during stress or cancer development, some studies look for Mdm2 
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inhibitors [376]. A small molecule Nutlin-3a, which can disrupt the p53 / MDM2 

complex, has proven to be highly specific in inducing p53 stabilization in phase I 

clinical trials with promising results [377-379].  

 

Figure 15 p53/Mdm2 complex.  
A) P53 and MDM2 form A negative-feedback loop, where p53 induces transcription of MDM2, which 
repress the transcriptional activity and proteasomal degradation of p53, in unstressed cells. B) Stress 
or MDM2 antagonists lead to MDM2 degradation promoting p53 accumulation, resulting in cell cycle 
arrest and other p53 responses. If the stress can be resolved, the cells may return to the pre-stress 
state. If the p53 activating signal cannot be alleviated, p53 initiates specific responses, such as 
apoptosis or senescence [380]. 

b) Phosphorylation 

Phosphorylation of p53 or Mdm2 can occurs on many different sites of these 

proteins. These modifications can be important in the activation of the p53 network 

[381]. The regulation and consequences of this phosphorylation are defined by 

different levels of stimuli for example, during a low DNA-damage, phosphorylation 

results in partial activation of p53 but in too severe damage, p53 is fully activated and 

lead to cell death [356, 366, 382-385].  

c) Other modifications 

Several other post-translational modifications play an important role in the p53 

regulation. Acetylation of p53 occurs on several lysine residues at the C-terminal 

domain and mainly results in increased DNA binding of p53, promoting the activation 

of its target gene [386]. Methylation in a specific region of p53 can suppress 

transcriptional activity of p53 while if it occurs in another region, can activate p53. 

Also, some lysine residues of p53 that are modified by acetylation can also be 

methylated [386-390]. Others modifications of p53, such as prolyl isomerization and 
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glycosylation, may also contribute to the regulation of p53 stability and activity [356, 

366, 391]. 

2.3.2. p53 isoforms 

TP53 gene encodes several isoforms of p53 due to the usage of multiple 

promoters, alternative translation initiation sites, and alternative splicing, as shown in 

Figure 16 [392-396].  

P53α is the canonical full-length p53 protein and inclusion of alternative exons 

gives rise to p53β and p53γ protein isoforms. Some studies reported that these 

isoforms retain characteristics of a tumor suppressor and both expressions are lost in 

cancer tumors [392, 397].  Also, changes in the relative abundance of p53 isoforms 

have been implicated in senescence and aging as p53β was described to modulates 

p53α transcriptional activity in response to stress and promotes apoptosis and 

senescence [392, 398-401].  

These multiple p53 isoforms might contribute significantly to the generation of 

distinct p53 pathways [402]. Altogether, modulate p53 isoform expression and thus 

cellular response can be a therapeutic target to control p53 pathway. 

 

Figure 16 Schematic of the p53 isoforms.  
p53a is composed of two transactivation domains (TA-1 and TA-2), a proline-rich domain (PRD), the 
DNA-binding domain (DBD), the hinge domain (HD), the oligomerization domain (OD), and a 
regulatory domain. The theoretical molecular weight of each protein isoform is indicated and the color 
of the protein domains represents different exon. Adapted from Joruiz et. al. [395]. 
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2.3.3. Biological responses induced by p53 target 

genes 

In the past two decades, a huge number of p53 target genes have been 

identified in various cell types. The classical role of proteins encoded by p53 target 

genes is apoptosis modulation [403-407] and cell cycle regulation [408]. Apoptosis is 

a type of programmed cell death activated by a variety of intracellular or extracellular 

death signals and is a common cellular response to infection.  Multiple strategies to 

modulate, positively or negatively, the apoptotic responses of the host cell have been 

described for different pathogens [409, 410]. In addition to apoptosis, p53 promotes 

DNA repair by cell cycle and by modulation of the activity of various DNA repair 

systems [362]. 

Nowadays, the non-canonical p53 pathway show modulation in numerous 

aspects of cellular metabolism [411], inflammation pathway and immune response 

[348]. p53 changes the activity of multiple metabolic pathways, including glycolysis, 

mitochondrial oxidative phosphorylation and fatty acid synthesis via transcriptional 

and non-transcriptional regulation, promoting the preservation of cellular energy 

under conditions of nutrient restriction [412]. 

Another non-canonical role of p53 recently described is during inflammation 

and immune response [345, 413-415]. p53 inactivation in immune cells augments 

inflammation via multiple pathways, such as enhancing the production of 

inflammatory cytokines and chemokines in macrophages and promoting the 

differentiation and function of T cells. p53 also regulates many target genes involved 

in the immune response creating a loop of amplification of the immune response 

triggered by infection and mediated by p53. The antiviral role played by p53 limits 

virus replication, enhances antiviral activity modulated by IFN type I [416], and 

regulates TLR3 expression and function [417] as represented in Figure 17.  
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Figure 17 p53 pathway role during the antiviral response. 
Viral activation of TLR 4 promotes IFN expression that induces p53 transcriptional activation. Target 
genes important for the antiviral response, such as TLR3, IRF5, ISG15, and IRF9, are up-regulated 
promoting important implications in the immune response. Adapted from Munoz-Fontela [345] 

In addition, the most important transcription factor in immune response, NF-

kB, is known to have opposite effects with p53. Some studies show that this balance 

NF-kB / p53 coregulates proinflammatory cytokine secretion [316]. Thus, NF-kB 

activity often shows a negative correlation with p53 while p53 can also suppress the 

NF-kB pathway.  

  

Figure 18 p53 and NF-kB modulation.  
During extrinsic or intrinsic stress, p53 and NF-kB pathway is activated and they can reciprocally 
regulate each other by different interactions. Adapted from Ak et al.[418] 
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2.3.4. Functional interplay between pathogens and 

p53 

Modulation of p53 is an essential step for pathogens to extend the survival of 

the host cell, to access nutrients during intracellular replication and to modulate the 

immune response. However, targeting p53 may compromise the natural safety 

system of a cell promoting mutations and tumorigenesis, correlating to a number of 

pathogens that are considered oncogenic [419-421].  

The p53 protein was discovered during a study with the oncogenic virus SV-40 

which has a protein capable to physically interact with p53 and inhibit p53-mediated 

transcription [342]. Since then, a large number of other oncogenic and non-

oncogenic pathogens were described to interact in different ways with p53.  

The strategy of impairing the transcriptional activity of p53 is also used by 

others viruses, including hepatitis B virus, human T lymphotropic virus, hepatitis C 

virus and HIV, and some bacteria, like Neisseria gonorrhoeae [422, 423]. 

Another strategy of p53 inhibition was described by different pathogens, for 

example, human papillomavirus, adenovirus, Epstein–Barr virus and Kaposi’s 

sarcoma-associated herpesvirus and some bacteria such as Shigella flexneri, 

Helicobacter pylori, and Chlamydia trachomati promoting proteasomal degradation 

[424-427]. In contrast to these pathogens, Salmonella enterica and P.aeruginosa 

induces acetylation of p53, which is a stabilizing modification that is associated with 

cell cycle arrest in infected cells [419, 428]. Some virus and their interactions with 

p53 pathway are shown in Table 4. 
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Family	 Virus	
Viral	
protein	

Interplay	with	p53	 Functional	effects	 Reference	

Bornaviridae	
Borna	disease	
virus	

p24	 P53	inhibition	
Cellular	response	
modification	mediated	
by	p53	

[429]	

Bunyaviridae	 Hantaan	virus	 N	 P53	degradation	 Apoptosis	prevention	 [430]	

Coronaviridae	 SARS-CoV	 -	 P53	down-regulation	
Inhibition	of	antiviral	
activity	by	p53	

[431]	

Flaviviridae	 Zika	virus	 -	 P53	activation	 Apoptosis	induction	 [432]	

Paramyxoviridae	 hPIV-3	 -	
Induced	down-
regulation	of	p53	

Apoptosis	prevention	 [433]	

Picornaviridae	 Poliovirus	 -	 P53	degradation	
Inhibition	of	antiviral	
activity	by	p53	

[434]	

Poxviridae	 Vaccinia	virus	 B1R	 P53	phosphorylation	
Cellular	response	
modification	mediated	
by	p53	

[435]	

Reoviridae	 Avian	reovirus	 p17	 P53	phosphorylation	 Apoptosis	induction	 [436]	

Retroviridae	 HIV	 Vif	
Inhibition	of	Mdm2-
p53	interaction	

Cell	cycle	arrest	 [437]	

Rhadboviridae	 VSV	 -	
P53	phosphorylation	
/	inhibition	of	p53	
acetylation	

Apoptosis	induction	/	
Inhibition	of	antiviral	
response	

[438,	439]		

 Table 4 Virus and their interplay with p53 pathway. 
Functional effects of virus interactions with p53 pathway showing different levels of interaction. 

The functional interactions between influenza viruses or RSV and p53 have 

been reported in a limited number of studies, and infection of influenza viruses 

significantly alters the gene expression of several host factors belonging to the p53 

pathway [438, 440-443]. 

Influenza viruses and RSV induce apoptosis in numerous cell types and the 

role of viral proteins which participates in the induction of cell death and cell cycle 

arrest was described in the literature [444-451].  

Several levels of regulation of p53 transcriptional activity are affected during 

the time course of IAV infection. The global down-regulation of p53 target genes 
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during initial phases of influenza infection is in accordance with the inhibition of p53 

pathway during this transient context [452]. After, IAV induces posttranslational 

modifications that stabilize the p53 protein throughout the course of infection [410, 

452-454]. The enhance of p53 transcriptional activity limited viral replication and has 

an important role in the induction of the IFN response [410]. The viral protein NS1 

participates in the stabilization of p53 [454, 455] while NP protein induces apoptosis 

and cell death [440]. p53 isoforms are involved in the regulation of these p53-

dependent antiviral properties [452, 455]. Infection differentially modulates the 

expression of ∆133p53α and p53β at both transcriptional and posttranscriptional 

levels. The modulation of ∆133p53α and p53β isoforms play distinct roles in the viral 

cycle by acting as regulators of the p53-dependent antiviral activity [396]. Further 

investigations are needed to better understand p53 pathway during the time-course 

of infection. 

Groskreutz and colleagues have shown that RSV induces the down-regulation 

of p53 during the time-course of infection, with a consecutive impact on apoptosis 

and survival of airway epithelial cells [441]. However, the underlying mechanisms of 

p53 modulation, possibly involving viral proteins, remain to be determined.  The NS1 

and NS2 RSV proteins play an essential role in suppressing apoptosis and facilitating 

virus growth through the inhibition of interferon responses [456], NS1 also interacted 

with components involved in cell cycle regulation and DNA damage repair, promoting 

a G1-phase arrest in the cell cycle [457]. The F protein triggers p53-dependent 

apoptosis in the late phase of acute infection [442] while P protein may inhibit 

apoptosis [458]. This discordance in the literature may reflect cell-specific responses 

to RSV infection or differences in the strain and infectivity of the virus [433]. The 

effect of viral modulation in p53 protein may be important targets for therapy in RSV 

infection. P53 modulation by IAV and RSV are represented in Figure 19. 
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Figure 19 p53 pathway modulation by IAV and RSV.  
NS1 protein of IAV is capable to interacts with p53 protein and inhibit transcriptional activity during 
infection. Also, an NS1 protein of RSV is capable to inhibit p53 by Mdm2 interaction.   
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Ce travail de thèse se base principalement sur les interactions RSV / hôte 

dans le contexte d'infections simples ou de co-infections, en raison de l'importance 

clinique de l'infection mixte, du taux élevé de circulation de ces pathogènes et du 

manque d'arsenal thérapeutique existant. 

En effet, il est important de comprendre comment le système immunitaire est 

modulé à différents niveaux, in vivo et in vitro, ce qui aide à mieux comprendre les 

mécanismes pathogéniques, identifier les biomarqueurs dans le contrôle de 

l'inflammation ou trouver des cibles potentielles pour de nouvelles stratégies 

antivirales. 

 

 

This thesis work has mainly based on the interactions RSV / host in the 

context of simple infections or co-infections, due to the clinical importance of mixed 

infection, the high rate of circulation of these pathogens and lack of existing 

therapeutic arsenal. 

Indeed, it is important to understand how the immune system is modulated at 

different levels, in vivo and in vitro, which helps to better understand the 

pathogenesis mechanisms, identify biomarkers in the control of inflammation or to 

find potential targets for new antiviral strategies. 
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RESULTS  
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Les résultats de la thèse sont divisés en trois chapitres pour faciliter la 

compréhension de chaque groupe de résultats. La connexion entre les chapitres est 

représentée dans la figure ci-dessous. 

Les résultats du chapitre 1 obtenus au Laboratoire des pathogènes émergents 

(Fondation Mérieux) ont permis de consolider les résultats en cours du groupe et de 

renforcer le modèle de co-infection des macrophages en plus de favoriser 

l'identification des biomarqueurs. 

Le chapitre 2 était le résultat d'un partenariat avec le laboratoire Virpath, et en 

profitant de l'expertise de ce groupe, nous visions à approfondir la connaissance de 

la co-infection dans des mécanismes importants pour la cellule, visant à corréler 

avec la réponse immunitaire trouvée dans le étude des macrophages (chapitre 1). 

Le chapitre 3 a été développé en collaboration avec la société Cynbiose 

(incluant LPE et Virpath), pour examiner les différents niveaux d'interaction proposés 

et aussi pour appliquer les conclusions obtenues dans les études in vitro (chapitres 1 

et 2). 

 

The results of the thesis are divided into three chapters to facilitate 

comprehension of each group of results. The connection between the chapters is 

represented in the figure below. 

Chapter 1 results obtained at Laboratoire des Pathogenes Emergents 

(Fondation Mérieux) provided the consolidation of the results that were in progress 

by the group and strengthened the model of co-infection in macrophages in addition 

to promoting the identification of biomarkers. 

Chapter 2 was the result of a partnership with the Virpath laboratory, and 

taking advantage of the expertise of this group, we aimed to deepen the knowledge 

of co-infection in important mechanisms for the cell, aiming to correlate with the 

immune response found in the macrophages study (chapter 1). 

Chapter 3 was developed in collaboration with the company Cynbiose 

(including LPE and Virpath), to look the different levels of interaction proposed and 

also to apply the conclusions obtained in the in vitro studies (Chapter 1 and 2). 
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Chapter 1 Host-viral interactions during single 
or mixed infections: role of innate immune 

responses  
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In this chapter, two works will be presented, in which we observe an innate 

immune response during viral or mixed infection. The importance of each pathogen 

(IAV, RSV and S. pneumoniae) has already been highlighted by the introduction of 

this manuscript. These two works highlighted certain aspects of the in vitro host 

innate immune response during exposition by single or mixed infections. 

The majority of respiratory viruses, including IAV and RSV, and bacteria are 

recognized in human airway respiratory cells by TLRs and RIG-I as reviewed in 

general introduction. This recognition leads to the initial production of antiviral 

inflammatory response and activation of immune cells like macrophages with an 

expression of cytokines and chemokines [459-461]. Individually, each pathogen 

interacts with immune cells and has different strategies to evade host immunity 

response. Influenza virus and RSV are capable to make modifications in cellular 

mechanisms during virus replication while S. pneumoniae possesses a number of 

virulence factors which may confound immune responses [462]. Together, viral–

bacterial co-infection subverts many aspects of immunity, of which result in a failure 

to control the pathogens and contributes to severity disease [156, 309, 463-468]. 

Clinical evidence suggests that infection with particular combinations of 

pathogens results in the more severe clinical outcome [140, 168]. The most detailed 

mixed infection described in the literature is Influenza virus and S. pneumoniae. 

Bacterial superinfection after IAV pandemics was described and highlights the 

importance of Influenza infection in disease severity [147, 323, 469-472]. Thus, in our 

first study published in Scientific Reports, we set-up an optimization in IAV / S. 

pneumoniae macrophages infection and observed a potential biomarker and the 

mechanism involved in its expression after the double infection on these cells. 

Another mixed infection that appears to be very important in disease severity 

in pediatrics community is RSV and S. pneumoniae. Some studies show bacterial 

superinfection as an important risk factor for hospitalization for RSV infection [128, 

129, 473, 474]. Co-infections RSV / S. pneumoniae are frequently detected in 

respiratory diseases and pneumococcal bacterial load and carried serotypes can 

indicate clinical severity when co-infected with RSV [139-141, 473, 475-479]. Thus, in 

the second manuscript, we look mixed infection of RSV and pneumococcus in 

macrophage infection.  
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The main objective of these studies is to better understand how pathogens 

interactions and cell infection can lead to disease severity. For this purpose, we 

establish a macrophages model for each co-infection. Macrophages are strategically 

situated in the primary lung defense and play a central role in innate host defense. 

They are capable of initiating innate and adaptive immune responses. In addition, 

they are a primary source of inflammatory and immunomodulatory cytokines in lungs 

against invading pathogens. Some studies show that macrophages are able to limit 

RSV or Influenza virus replication participating in the clearance viral. In vivo studies 

which macrophages are depleted show an enhanced disease in both viral infections 

[459, 480, 481].  

Several studies have also identified an important role for macrophages during 

the initial phase of host defense against S. pneumoniae even if this bacterium has a 

polysaccharide capsule which limits bacterial phagocytosis by macrophages [322, 

323, 482]. 

The majority of mixed co-infection models described in the literature is realized 

using respiratory tract cells and focuses on interactions between the pathogens. It is 

well established that Influenza viruses enhance susceptibility to secondary bacterial 

infection promoting bacterial superinfection [309, 483]. Also, direct interaction of RSV 

and S. pneumoniae was shown to increases bacterial virulence [159]. In 

macrophages cells infected with Influenza virus decreased of binds and phagocytosis 

of S. pneumoniae was shown [309, 484-486]. In the literature, some mechanisms of 

RSV and other bacterial co-infection were already described, but the information is 

incomplete and scarce mainly when restricting information about RSV and S. 

pneumoniae co-infections is searched. 	

In addition to better thoughtful the role of macrophages during simple and 

mixed infection, we also tried to better understand cellular mechanisms and we 

described a set of potential biomarkers capable to indicate the severity of the disease 

or the etiology of infection. The relevance of new biomarkers to help diagnostics 

methods was highlighted in the diagnostic topic of introduction chapter of this 

manuscript. In our two articles, we confirmed the importance of biomarkers and we 

contribute to the literature with a description of new biomarkers. Also, to show the 
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close interactions between mixed infections and macrophages we described the 

cellular mechanisms and activated-pathway in the expression of these biomarkers. 

In the last part of the first article, we performed a translational study to 

correlates in vitro experiments with clinical specimens of children with pneumonia. 

The correlations between severity of disease and pathogens were shown and 

confirmed the selected cytokine as a potential biomarker. 

The results suggest potential biomarkers to generate an assay that could 

discriminate between single or mixed infection during pneumonia. Further research is 

needed to clarify how mixed infection modulates the cytokines/chemokines 

expression in macrophages. A better understanding of the host immune responses to 

mixed infections is important for designing vaccines and other preventative agents in 

the future. This group of results enriches the literature on respiratory infections and 

the role of macrophages in the response to mixed infection and promotes greater 

knowledge about the role of IP-10 as a potential biomarker. 
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Article 1. Viral and bacterial co-infection in severe 
pneumonia 
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Article 2. RSV infection in macrophages promotes 
IP-10 expression during bacterial co-infection  
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Chapter 2 Host-viral interactions during single 
and mixed infections: role of the cell guardian 

p53  
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Respiratory viruses have been shown to modulate the host response in a 

variety of mechanism while host cells have numerous strategies to resist infection, 

replication and virus spread using different cellular mechanisms to the elimination of 

pathogens. RSV infections are characterized by an extensive inflammatory response 

through the activation of cell networks and immunoregulatory genes. However, the 

mechanisms involved in the inducible expression, regulation of these immune 

modulators and the dynamics of the virus-host interface are not well-understood [25, 

487]. 

Several different signaling pathways were described during RSV infection 

such as protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and NF-

kB. MAPK are involved in RSV replication in human airway epithelial cells [488]. The 

precise trigger of NF-kB activation is uncertain and may involve oxidative stress, 

virus replication, viral nucleic acid, or expression of individual viral proteins. NF-kB is 

a family of inducible transcription factors that control or modulate the expression of 

several hundred genes, many of which are involved in a variety of activities including 

cell proliferation, differentiation, and death, as well as modulating the host immune 

response to viral invasion [489]. 

In addition to signaling pathways well studied in the literature, there are some 

others important pathway in the interactions between virus and host response 

responsible for regulating inflammatory cytokine and chemokine production,  

To go forward into the knowledge between pathogen interactions and cellular 

mechanisms, we decided to look at the p53 pathway that, as was shown in the 

Introduction chapter of this thesis, participates in important cellular mechanisms and 

is a target of the pathogens. For this purpose, we performed a set of experiments on 

the respiratory tract of epithelial cells as they are known to express wild-type p53. 

These cells are the first site of virus infection and try to limit viral infection through 

cellular mechanisms. Thus, we can highlight the role of p53 during viral infection. 

Studies on influenza virus and the interactions with p53 have been conducted 

since 2011 by the VirPath team and the results have already been published and are 

available in the literature. As the interactions are complex and involve several factors 

of transcription, a lot of work is still underway and in parallel of my thesis, I 
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contributed to the attached article in appendices which described Mdm2 interactions 

and influenza virus. This manuscript was submitted to Scientific Reports journal. 

Due the epidemiological importance and urgency to develop an effective 

vaccine or RSV treatment, we investigated the role of p53 during this infection. To 

study the role of p53 in RSV infection we used several methodologies already 

described in the literature to identify and measure the intensity of p53 activity as well 

as using molecules and RNA silencing techniques to manipulate p53 activity over the 

course of infection. Also in this article, we used a cell lineage that does not have the 

TP53 gene, to better identify virus replication under these conditions. 

In addition to the RSV results presented in the first article, we performed some 

experiments in parallel with parainfluenza 3 virus, because although it has recently 

been separated from the family and is no longer part of the RSV family, this virus has 

several structural similarities as well as a cycle replicative. Also, for this viruses, we 

started to look p53 isoforms expression.  

After characterizing the interaction of RSV with the p53 pathway, we 

attempted to show the role of co-infection in the modulation of this pathway. Only 

preliminary results were presented in discussion due to difficulty in standardizing the 

co-infection. Adding the bacteria means more manipulation of the cells, with changes 

in the medium and more external changes, which causes stress in the cell and 

makes it difficult to identify the role of p53. As the Influenza virus is more easily 

manipulated in vitro and has mechanisms more accurate than compared to RSV, we 

also performed the co-infection of IAV and bacteria, to identify the role of the p53 

protein.     
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Article 1. Role of p53/NF-kB functional balance in 
RSV-induced inflammation and immune responses  
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Chapter 3 Host-viral interactions during single 
and mixed infections: development of severe 

pneumonia model 
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Pneumonia is a common inflammatory illness of the lungs which was 

described in the introduction part of this manuscript. The etiology of pneumonia can 

be either bacterial and/or viral, thus, mixed infection is a key element that promotes 

severe inflammatory disease and mortality. 

Currently, the mechanisms involved in the lethal synergism between RSV and 

S. pneumoniae co-infection still remains misunderstood. We tried to develop a co-

infection Nonhuman Primates (NHP) model of severe pneumonia susceptible to RSV 

and S. pneumoniae infection like the human. NHP lungs closely resemble the human 

lung anatomically and physiologically. NHP also exhibit immune responses to 

bacterial infections similar to the human and have some studies in vaccine 

development, including for S. pneumoniae.  

RSV infection occurs an early age when maternal antibodies are present and 

in the failure of natural infection to prevent reinfection. A history of a formalin-

inactivated RSV vaccine that enhanced disease in young children, and the lack of 

animal models that fully reproduce the pathogenesis of RSV infection in human 

difficult an efficacious vaccine development. RSV infection has already been 

observed in cynomolgus [490, 491]. Importantly, no study focus on pneumonia 

induced by mixed viral and bacterial infection in cynomolgus macaques. Very few 

new models are in development and no relevant models for respiratory diseases on 

primate are currently available due to the limited qualified centers in Europe. 

In this study, we tried to develop a nonhuman primate model of severe 

pneumonia to evaluate pneumonia onset induced by mixed infection. Given the 

suboptimal performance of current diagnostic tests, we would like to characterize 

potential clinically relevant molecular profiles and to investigate the feasibility of 

identifying biomarker to severe pneumonia. 
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Article 1. Establishing severe pneumonia in non-
human primate model during mixed infection 
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Au cours de mon travail de thèse, l'objectif général était de mieux comprendre 

les interactions multiples et complexes entre les pathogènes respiratoires et l'hôte, à 

différents niveaux, in vitro et in vivo. En effet, mon travail était centré sur différents 

pathogènes ou combinaisons d'entre eux (IAV, RSV, S. pneumoniae), sur différents 

modèles cellulaires in vitro (macrophages, cellules épithéliales pulmonaires 

humaines), et in vivo (primate non humain), et sur différents types des voies 

cellulaires (réponse immunitaire, voie p53 / NF-kB). Ces différents projets ont mis en 

évidence quelques points intéressants de discussion générale que je voulais aborder 

dans ce chapitre. 

 

During my thesis work, the general objective was to better understand the 

multiple and complex interactions between respiratory pathogens and the host, at 

different levels, in vitro, and in vivo. Indeed, my work was focused on different 

pathogens or combination of them (IAV, RSV, S. pneumoniae), on different in vitro 

cellular models (macrophages, human lung epithelial cells), and in vivo (Nonhuman 

primate), and on different types of cellular pathways (immune response, p53/NF-kB 

pathway). These different projects have highlighted some interesting points of 

general discussion I wanted to address in this chapter.  
 
Does viral-bacterial coinfection influence the severity of disease?  
 
A large number of clinical studies have described an enhanced severity of 

disease in the context of mixed infections, highlighting the importance of performing 

studies to better understand the role of each pathogen as well as host/pathogen 

interactions [156, 492-499]. In light of the major public health burden, pneumonia 

caused by S. pneumoniae following IAV infection has been extensively studied in 

children and adults with a correlation of disease severity [155, 500, 501]. In contrast, 

the clinical significance of bacterial co-infections during RSV remains relatively 

unclear. Children with RSV/bacterial co-infection have been found to be hospitalized 

for longer periods and required ventilator support for longer than sole RSV infections 

but more studies are needed to confirming this correlation [140, 141, 476].  
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In our translational study (article #1, chapter 1), the patient cohort studied was 

restricted (n=74) but the classification of non-severe and severe pneumonia was 

accurately defined, according to an exhaustive list of criteria. Thus, we managed to 

demonstrate an increase in disease severity in mixed infection cases. However, 

determining the precise contribution of each pathogen to disease severity by the 

clinical setting remained extremely difficult. Studies focused on the identification of 

etiological agents are difficult to compare due to a lack of standards for information 

on severity, In addition, variation in techniques, diagnostic cut-off values, and 

pathogens targeted between studies may confound the determination of the overall 

clinical significance of viral/bacterial co-infection.  

In addition to clinical studies, several reports show the interactions between 

pathogens, suggesting a correlation with severity disease. For example, It was 

demonstrated that respiratory viral infection promotes an increasing of S. 

pneumoniae density in children with pneumonia [502]. Moreover, direct interactions 

between virus and bacteria are capable of increased virulence of the other 

pathogens, such as was described for RSV that is capable to interact with a protein 

of S. pneumoniae increasing bacterial virulence [159]. Bacterial-virus interactions 

were not studied in this thesis, however, the detection of the two pathogens in the 

same macrophage showed by immunofluorescence in article #1 (chapter 1) reveals 

that the model developed in Chapter 1 can be used in viral-bacterial interactions 

studies. Complementary studies, like immunoprecipitation, will be necessary to 

identify possible close viral-bacterial interactions.  

A better understanding of pathogens involvement and their contribution to 

disease severity is required for the development of future strategies for the 

prevention and treatment of severe respiratory tract infection. In vivo studies 

constituted a good methodology for an attempt this goal confirming the necessity of 

in vivo models. Also, another important point to better understand the contribution of 

each pathogen for disease severity is to better understand interactions and strategies 

that the pathogen can utilize in cells during infection. For this attempt, I focused my 

interest on host/pathogen interactions at the level of p53, a key transcription factor at 

the crossroads between large numbers of cellular pathways – including innate 

immune responses. 
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Are macrophages activated cells during acute lower respiratory 
infections? 

 

Macrophages are a population of phagocytic cells composed of different 

phenotypes according to the local environment and differentiate stimuli [503, 504]. 

They are known to constitute long-lived reservoirs for some persistent viruses (e.g., 

HIV and Chikungunya virus)[505, 506] and several studies suggest that they 

contribute to allergic inflammatory responses and chronic respiratory disease, in 

addition to lower respiratory tract infections [507-510]. 

In the lungs, alveolar macrophages (AMs) are found in abundance and they 

are strategically situated as the first line of defense against respiratory pathogens 

playing a central role in innate host defense [480, 511, 512]. AMs constitute a subset 

of macrophages that develops from fetal liver monocytes and is phenotypically and 

functionally different from other tissue macrophages [513]. Alteration of the 

physiological function of AMs during infection, such as pattern of cytokines and 

chemokines profile, could lead to lung damage [514-517] 

 Numerous studies demonstrate that AMs play an important role in the 

response to infection [513, 517-520]. High expression of pro-inflammatory cytokines 

and up-regulation of many innate defense genes by AMs in response to IAV infection 

[513].  In addition, AMs are capable to control RSV infection with an important role in 

phagocytosis and cytokine production [513, 521, 522]. Also, they play important role 

in control bacterial infection [515, 523]. 

Despite the poorly characterization of human monocyte-derived macrophages 

phenotypes, some studies show comparable results between AMs and monocyte-

derived macrophages [514, 524]. Results from article #1 (Chapter 1) described a 

reduction of phagocytosis of S. pneumoniae by viral infection confirming results 

already published in different macrophages subtypes [322, 480, 481, 484, 519, 525, 

526]. An in vivo model could also contribute to this aspect since on obtaining 

bronchoalveolar aspirate the quantification and identification of active macrophages 

during co-infection could be performed. 

To substantiate the important role of macrophages in co-infection, the 

expression of cytokines and chemokines by these cells was measured. In a model in 
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vitro developed in article 1 and 2 (Chapter 1), IAV and RSV infection altered 

biological functions in the monocytes-derived macrophages, inducing an antiviral 

state and bacterial co-infection show an exacerbated inflammatory response, 

mediated at least by IP-10 expression.  

 

Importance of cytokines and chemokines expression during respiratory 
infections: a good strategy for the development of biomarkers of interest?  

 

The disease severity is not only determined by the causal agent, but also by 

interactions between the immune response and pathogen. The balance of this 

interaction is regulated through complex interactions between immune cells and pro- 

and anti-inflammatory cytokines [527]. Also, different pathogens may trigger different 

inflammatory responses depending on their intrinsic properties [528, 529]. It is well 

known that the cytokine storm is present in severe pneumonia, so, cytokines appear 

to be good biomarkers targeting the immune response.  In chapter 1 (articles #1 and 

#2), mixed co-infection show an increase of cytokines expression when compared 

with RSV or IAV single infection, suggesting an increased inflammatory pathway. In 

addition, CXCL-10/IP-10 expression pattern found in bacterial and viral pneumonia 

highlight its importance as severity biomarker. IP-10 is expressed by macrophages in 

early response to infection and attracts activated T-cells to the site of inflammation 

IP-10 expression in macrophages infected with RSV was already described [513, 

530, 531]. 

Also, Hayney et al described that an increased IP-10 concentration measured 

in serum of adult with pneumonia correlates with the severity, duration, and illness 

symptoms and concluded that IP-10 could serve as a useful marker or predictor of 

respiratory infections severity in adults [532]. In addition, Principi et al. described IP-

10, in addition to CRP and TRAIL expression capable to distinguish bacterial from 

viral infections [481]. Thus, we propose that IP-10 is an important component during 

mixed infection and associated with others can be a good set of biomarkers. 

Macrophages normally express cytokines in response to infection by 

pathogens. Often it is also activated by the cytokines expressed by the respiratory 

tract cells that are the primary site of infection. To continue studying the interactions 
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between RSV infection and the immune system, I have chosen to study an important 

cellular mechanism capable of modulating various pathways in the epithelial cells 

which play an important role in the immune response. 

 
Host-Pathogens interactions: Role of the master cell regulator p53 

pathway during viral infection: similarities and differences between IAV, RSV, 
PIV-3, and mixed-infection. 

 

Respiratory tract epithelial cells are the first site of infection and promote the 

immune response activation. In the immune response, p53 not only promotes the 

activation of IFN-stimulated genes (ISGs) but also enhances IFN production in virus-

infected cells [345]. 

The human parainfluenza viruses (hPIVs) belong to a diverse group of 

enveloped single-strand RNA viruses within the Paramyxoviridae family, a large 

group of viruses that was recently reformulated. The hPIV genome is quite the same 

of RSV genome, and viral replication is almost the same [533]. After RSV, hPIV type 

3 is the leading cause of hospitalization for respiratory illness in young children from 

ages 0 to 2 years, with a marked increase among 1- to 2-year-olds [87]. Due to hPIV-

3 importance and similarities with RSV, we decided to look for p53 interactions during 

hPIV-3 infection. 

As part of complementary results, p53 protein and mRNA expression show 

that hPIV-3 promotes the downregulation of p53 by transcriptional level while the 

same group of results shows a posttranscriptional regulation of p53 during RSV 

infection in article 1 of Chapter 2. The decreased of p53 during these viral infections 

were already described by Ellis et al and Marques et al. [433, 534] with some 

contrarious results, probably due to differences in virus strain and time-course of 

infection. However, there are not many data in the literature that describe more 

details about these interactions.  
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Figure 20 Post-transcriptionally p53 modulation during hPIV-3 infection.  
The p53 pathway can be modulated during different stages of infection. A) Results from early stages 
of infection showing no differences in p53 protein expression by western blot, a decreased in mRNA 
expression without changes in the p53 transcriptional activity. B) During late stages of infection, 
western blot revealed a decreased of p53 proteins, while mRNA expression is stabilized but an 
important decreased of transcriptional activity of p53 is detected, suggesting a post-transcriptional 
impairment of p53 by hPIV-3. C) The half-life of p53 was measured with cycloheximide technique 
described by XX. hPIV-3 apparently, don’t change half-life of p53, probably they don’t promote p53 
degradation.	

The interactions between p53 and viral-bacterial infections are not available in 

the literature and even if preliminaries results show a tendency of increased mRNA 

p53 expression in IAV-S. pneumoniae infections, complementary results in future 

projects are needed. 
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Figure 21 A different pattern of p53 expression during viral and mixed infections.  
RT-PCR was used to quantify mRNA p53 expression in late stages of infection and the modifications 
apparently are up-regulation of p53 showing a synergism of expression during IAV and Sp infection. 

 

The interplay between influenza viruses and p53 has been reported in different 

studies [438, 440, 452, 514] and influenza viruses modulate p53 transcriptional 

activity is modulated during time-course of infection, with a significant increase in 

early infection [455]. In contrast, this activity is significantly inhibited during the later 

stages of infection, correlating to elevated NS1 protein levels, which has been 

described to inhibit p53-mediated transcriptional activity [455]. Results in article #1 

(Chapter 2) show that RSV infection modulates p53 transcriptional activity and an 

important role for non-structural protein NS1, contributing to inhibition of p53 activity 

by proteasomal degradation. 

Further studies are required to understand the impact of RSV infection on p53 

biological functions. To explore others possible p53 regulation by RSV and PIV-3 

preliminary results shows the possible role of p53 isoforms in their self-regulation. 
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Expression of p53 isoforms during viral infections: insights of p53 
regulation 

 

Since some interplays between p53 and respiratory viruses have been 

described, Terrier and colleagues investigated the role of ∆133p53α and p53β in the 

context of an IAV infection [396, 402]. In the literature, it was reported that p53β can 

promote p53 transcriptional activity while ∆133p53α inhibits in different cell lineages 

[397, 401, 402]. In addition, several studies reported a deregulation of p53 isoforms 

expression in human cancers [393, 395, 397-400].  

For Influenza virus, distinct roles of the ∆133p53α and p53β isoforms were 

described in the literature, showing a modulation of the expressions of ∆133p53α and 

p53β	 at the transcriptional and posttranscriptional levels affecting viral production.  

Preliminary results can’t show the impact of RSV in the expression of mRNA of these 

two isoforms, however, hPIV-3 show an impact on ∆133p53α and p53β expression.  

 

Figure 22 Expression of p53 isoforms during RSV or hPIV-3 infection.  
During early stages of infections, no differences in p53 isoforms expression were detected during RSV 
infection. Controversially, hPIV-3 promotes a diminution of p53 isoform expression.  

In order to evaluate the role of p53 
isoforms mRNA expression during 
RSV (light grey) or hPIV-3 (dark 
grey) infection, A549 cells were 
infected and results from 6 and 12 
hours post-infection are shown. No 
significant differences in the isoforms 
expression were detected during 
RSV infection while hPIV-3 is 
probably capable to impaired p53 
isoforms expression with a 
transcriptional strategy.  
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This preliminary results according to with the other preliminary result 

comparing hPIV-3 to RSV, showing that these viruses don’t have the same strategies 

to regulate p53 activity. Further studies like inhibition of both p53 isoforms during 

infection to look the impact on viral replication and western blot analyses to conclude 

if these differences in mRNA level are representative of protein level are necessary 

to understand the impact of different p53 isoforms during viral infection and 

confirming the antiviral role of the p53 pathway. 

 

Development of severe pneumonia model: application and difficulties 
 

A severe pneumonia model could be important to help to understand the 

development of severity and also to evaluate antiviral approaches and vaccine 

candidates due to proximity respiratory tract among non-human primates and 

humans. 

Animal models of viral or bacterial infection that have been studied include the 

ferret and rodents, particularly cotton rats and mice [160, 273, 535-537]. Bacterial 

and host factors contributing to colonization have been defined in animal models and 

in a mouse acute pneumonia model [24, 123]. For RSV infection, they have shown 

viral replication and antibody response mimicking infection in humans but these 

models not develop the measurable clinical disease and cannot be utilized to model 

cellular immunity [14, 35, 38, 160, 535, 538]. Also, utilization of some non-human 

primates as a model of viral or bacterial respiratory infection was already described. 

For example, RSV-infected chimpanzees were used to evaluate live-attenuated RSV 

vaccine candidates, while African green monkeys and rhesus macaques have been 

used to model the FI-RSV vaccine-enhanced efficacity [538]. Therefore, currently 

available NHP models of RSV are not sufficiently permissive to use them as a 

gatekeeper for either efficacy or safety [539] and clinical symptoms are not well 

detailed and severe pneumonia was not described during RSV infection agreeing 

with results on article #1 (Chapter 3).  

Differences in the route of inoculation were described to contribute to viral 

replication and disease severity [169, 243, 540]. In article 1 (chapter 3) results 

showed that even with an invasive inoculation of pathogens (intratracheal route) the 
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development of pneumonia was not severe. Thus, may be indicated that the 

quantities of the pathogen are the most important criteria for disease severity. 

 
Improvement in the development of severe pneumonia in NHP model: 

particularities of RSV infection 
 

Different strains of RSV have already been described to infect primates, and 

reference strains and isolated clinical sample are usually adapted to the animal to be 

studied [540-542]The objective of this work was to develop a model of severe 

pneumonia caused by mixed infection, thus, a standard strain, well described and 

without passage in the animal was chosen. Its known that may be adapted strains 

can induce a more effective immune response and maybe help to explain why the 

severe disease was not detected.  

Also, more studies of efficient entry of RSV are needed to help to identify fully 

permissive animal models. Initial attachment processes of RSV infection involve 

binding to glycosaminoglycans, or to C-type lectins which are abundantly expressed 

in many cell types across many species [54]. Thus, maybe are others necessary 

receptors that promote viral entry and viral tropism. 

Severe pneumonia caused by RSV occurs mainly in newborns, so younger 

primates may potentiate the impact of infections, as described in humans. In 

summary, a possible strategy to optimize the severe pneumonia model may be, in 

addition to increasing the number of bacteria, use in vivo adapted virus and/or 

younger animals. 

The literature describes the use of several species of monkeys as a model of 

respiratory infection, associated with good permissiveness and spontaneous 

production of the disease after a few days of infection. 
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Model of severe pneumonia, benefits, and challenges  
 

To conclude, a model of severe pneumonia can help the development of safe 

vaccines and treatment. NHP model can be used to evaluate therapeutics and 

pathogenesis for each pathogen and also in combination. Also, it can be used to 

study various aspects of pathogenesis, particularly the immune response patterns 

due to similarities in respiratory tract infection. 

With the development of a model of severe pneumonia due to mixed infection, 

many innate immune response mechanisms can be the answer and drug targets can 

be explored. In view of all works presented in this thesis, in vivo model could be a 

strategy of research to clarify an innate immune response, cellular mechanisms, and 

complexities in disease severity development. 
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Les infections des voies respiratoires inférieures sont causées par de 

nombreux pathogènes et l'impact des co-infections est un facteur important de la 

maladie grave. L'impact des co-infections sur la modulation de la réponse 

immunitaire innée a été étudié. A cette fin, un modèle pour l'étude in vitro de 

l'infection mixte dans les macrophages par RSV et S. pneumoniae a été développé 

et la modulation de la réponse inflammatoire par l'expression des cytokines a été 

étudiée. Les résultats démontrent que la co-infection des cellules immunitaires 

dérégule la réponse inflammatoire avec l'expression IP-10, identifiée dans notre 

étude, comme un pronostic biomarqueur potentiel de la pneumonie sévère.  

En outre, le rôle de la voie p53 au cours de l'infection par RSV a été étudié 

pour mieux caractériser les pathogénies virales, les stratégies pour détourner les 

mécanismes cellulaires et la modulation de la réponse immunitaire. Un aspect 

important de cette modulation a été décrit soulignant la participation de deux 

protéines virales importantes.  

En conclusion, l'étude pilote à l'établissement d'un modèle in vivo de 

pneumonie sévère a été développée montrant les difficultés et les défis de ce type de 

modèle. Les particularités des pathogènes pouvant contribuer au développement 

d'un modèle in vivo ont également été soulignées. 
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Lower respiratory tract infections are caused by many pathogens and the 

impact of co-infections is an important factor of the severe disease. The impact of co-

infections on the modulation of the innate immune response was investigated. To this 

end, a model for the in vitro study of mixed infection in macrophages by RSV and S. 

pneumoniae was developed and the modulation of the inflammatory response by 

cytokines expression was studied. The results demonstrate that co-infection of 

immune cells deregulates the inflammatory response with IP-10 expression, 

identified in our study, as a potential biomarker prognostic of severe pneumonia.  

In addition, the role of p53 pathway during RSV infection was investigated to 

better characterize viral pathogeneses, strategies to hijack cell mechanisms and 

modulation of immune response. An important aspect of this modulation was 

described highlighting the participation of two important viral proteins.  

To conclude, the pilot study to the establishment of an in vivo model of severe 

pneumonia was developed showing difficulties and challenges of this type of model. 

Particularities of pathogens that can contribute to the development of an in vivo 

model were also highlighted.  
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Article 1. Influenza A viruses alter the stability and 
antiviral contribution of host E3-ubiquitin ligase 
Mdm2 during the time-course of infection 

In parallel to the thesis, I contributed to another study that leads to a 

submission article. This work shows detailed interactions between Influenza virus 

and Mdm2 protein, highlighting the importance of p53 pathway during viral infection.  
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Article 2. Phylogenetic analyses of influenza A 
(H1N1)pdm09 hemagglutinin gene during and after 
the pandemic event in Brazil 

Also, in parallel to my thesis, I participated in some evolutionary analyses of 

Influenza virus. The Brazilian national reference center of Influenza virus work on the 

surveillance and evolutionary analysis of influenza virus detected in Brazil. The 

collaboration with this laboratory, where I did my master degree, is still established 

and I contributed to this article published by the Brazilian team. 
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