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Résumeé

L 'Objectif de cette these a été de développée une théorie spécifique d’identification pour les
systemes Hamiltonien a ports, en raison de leurs remarquables propriétés de conservation de
puissance et stabilité sous la préservation d’énergie d’interconnexion (e.g. interconnexions
paralléle, série ou feedback). Par rapport a l’identifiabilité structurelle entrée/sortie déja
connu, les systemes Hamiltonien a ports, peut étre analysée pour identifiabilité, par utiliser
les énergies de stockage, commande ou dissipation correspondant aux ports, qui peut étre
représentée en relation avec les paramétres inconnus du systeme. Par utiliser des
informations en temps réel pour les énergies de puissance, c’est possible de déterminer les
paramétrés du systéme, pour une représentation dans [’état d’espace. Avec le nouveau
formalisme d’identification par énergies de puissance, une nouvelle classe d’algorithmes
d’identification peut étre développée a cote de |’approche classique sur [’état d’espace. Une
autre raison pour développer une théorie d’identification des systemes Hamiltoniens a ports,
c’est leur utilité et avantages pour une commande basée sur le modele. A cet égard, le modelé
doit étre adaptée et assez représentatif pour les systemes dynamiques sélectée. C’est le cas
des modelés Hamiltoniens dans plusieurs applications en temps réel, ou ces modelés inclure
I’information nécessaire pour la solution de commande, mais avec différents degrés de
complexité. Comme la thése présente, les systemes Hamiltoniens a ports peut étre analysee
pour identifiabilité structurelle ou pratique, par utiliser un large set des techniques dont
certains peut étre prolongée pour les applications en temps réel. Un modelé de perturbation
c¢’est proposée pour les systemes Hamiltoniens a ports, par introduire une paire entrée/sortie
par le port d’interaction du systeme avec [’environnement externe. Comme pour le cas non
perturbé, c’est prouvé que les propriétés générales des systemes Hamiltoniens sont aussi
préserve dans ce cas. Une autre raison pour développer cette théorie, c’est donné par la
possibilité de développer des algorithmes d’identification dans la boucle ouverte ou ferme
adaptée pour les systemes Hamiltoniens a ports. La discrétisation symplectique en temps
représente un autre probléme important en vue du développement d’une théorie pour les
systemes Hamiltoniens a ports, par introduire une cadre générale dans le cas non linéaire ou
linéaire, qui combine des différentes regles de discrétisation pour les fluxés et efforts. Ainsi
des algorithmes d’identification peuvent étre développés en relation avec les méthodes de
discrétisation symplectique. Un Hamiltonien d’erreur discréte peut étre introduit entre les
systemes en temps continu et en temps discrete, qui préserve en méme temps les propriétés
structurelles des systemes Hamiltoniens a ports. Par utiliser des projections orthogonales,
obliques dans un contexte sous-espace, des algorithmes d’identification classique ou
nouveaux (énergie de puissance) peuvent étre analysé ou développée en vue d'une théorie
d'identification des systemes.

La premiere partie de la thése ‘Introduction’ est divisé en deux parties: une qui
présente certaines notions de base, d’identification des systemes et une deuxieme partie qui
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introduit un nouveau formalisme pour la modélisation et commande des systémes
Hamiltoniens & ports.

Ainsi [identification des systemes est définie comme une partie d’ingénierie de
commande, qui construit des modelés mathématiques en utilisant des données observées.
Pour un systeme dynamique, on peut associe deux types de signaux: signaux observable
(sorties) et signaux contrdlable (entrées).

A cote de cela, dans les applications en temps réel, des perturbations peuvent étre rencontré
entre le systeme et [’environnement externe. Les modelés mathématiques pour les systemes
dynamiques sont utiles dans la plupart de recherche scientifique et peut avoir différentes
formes: des équations différentielles, équations dans [’état d’espace ou fonctions de transfere.

L'une des approches de modélisation mathématique, c’est basée sur l'utilisation des
modéles mathématiques, par utiliser les lois de la physique pour un systeme dynamique. Cette
approche a des points faibles, comme la grande complexité du modéle ou la difficulté
d’estimation grace a plus de parameétres. Ces problemes peuvent étre résolus, par utiliser des
techniques d’identification, qui permit la simplification de la description physique de
modelés, en utilisant des modéles a complexité réduite. Les systemes dynamiques sont en
général décrits en temps continu, par utiliser des équations différentielles, mais les
procédures d’identification des systemes sont réalisées en général en temps discrete, en
utilisant des données échantillonnées.

Les sources principales des perturbations rencontré pour un systéme dynamique sont:
erreurs de mesure, perturbations de processus non mesurées, inadéquation du modéle ou une
combinaison de tous. Les modelés mathématiques sont utiles dans une grande classe des
applications pour simulation ou prévision, mais aussi dans des domaines non-technique:
économie, écologie ou biologie. Dans le domaine d’identification des systemes sont
rencontres une grande classe des modelés, utilisé pour different applications de commande.

Ces modelés peut étre classifie comme: modelés analytiques et expérimentales;
modelés linéaires ou non linéaires; modelés paramétriques ou non paramétriques; modelés
SISO,SIMO, MISO, MIMO; modelés variable et non variable avec le temps; modelés en
temps discrete et en temps continu; modelés avec des parametres distribué et localisés;
modelés en domaine de temps et fréquence. Les modeéles mathématiques peut étre détermine
en deux maniere différents. Une premiere maniere est connue comme modélisation, qui divise
le systeme globale en petit sous-systemes, dont les propriétés sont bien connues a partir des
connaissances antérieures. Ces petits sous-systemes sont connectés  par relations
mathématiques, pour construire le systeme global. Cette technique de modélisation nécessite
pas des expérimentés avec le systeme. La deuxiéme approche pour modélisation
mathématique est appelé identification des systemes, et est représentée par expérimentation
pratique avec le systeme, utilisant les signaux entrée/sortie pour l’analyse des données et
construction du modeéle.

Les principales sujets dans [’identification des systemes sont: l'identification de la
structure du modele, I’identification du retard pur de temps, l’identification des modeles de
bruit en temps continu, [’identification des systemes multi-variable, [’identification dans le
domaine fréquentiel, logiciel d'identification des modeéles. Une notion important pour
’identification des systemes, c’est le concept de vrai systeme, qui c’est une représentation



abstrait pour un systeme dynamique, different de [’'modele mathématique, ou des modelés
estimé par identification.

La probléme d’identification est définie comme suit: Détermine une modele en temps
continu pour le systéme continu originel, & partir de M mesures échantillonnées de [’entrée
et sortie. Les entités de base d’une procédure d’identification des systéemes sont: l'ensemble
de données,; [’ensemble des modeéles candidate; une méthodologie utilisé pour [’évaluation du
modele, par utiliser un ensemble des données.

Une procédure d’identification c’est composé de quatre étapes principales:
la premiere étape représente une méthodologie d’identification, ou ['utilisateur peut choisir
les entrées, signaux mesurée ou pas de temps, afin de donner suffisamment informations sur
le comportement du systeme réel basé sur quelques contraints; pour la deuxiéme étape un
ensemble des modelés peut étre identifiée a partir de laquelle le plus représentatif doit étre
sélectionnée. Celle-ci est considéré I'étape plus difficile, comme les informations apriori doit
étre combinées avec des propriétés specifiques du modele et I'expérience en ingénierie.

La troisieme étape de la procédure d’identification évalue les modelés en rapport
avec les mesures réelles, par utiliser un algorithme d’identification, pour obtenir une modéle
qui approximé les donnes entrée/sortie basée sur un critérium selectionne.

Pour la quatriéeme étape, une validation de modele est réalisée, qui montre que le
modele est suffisamment représentatif pour le systtme dynamique sélectionné. Le modéle
finale est seulement utile pour une application spécifique, et pas une derniere description du
systeme. Le modele obtenu par identification peut étre inefficace pour diverses raisons:
la procédure numérique échoué a trouver le meilleur modele estimé, selon le critere
selectionne; le critere d’estimation n’est pas approprié pour [’application, [’ensemble des
modeéles sélectionnées n’a pas contenu une bonne description pour le systeme actuel; la base
des données n’a pas été assez informative, afin de sélectionner les modeles appropriés.

La deuxieme partie d’introduction, présente |’approche de modélisation et commande
pour les systemes Hamiltoniens a ports, qui ¢’est une modélisation basée sur le port. Cette
approche de modélisation crée un cadre unifié pour la modélisation des systéemes de
différentes branches physiques (mécanique, électrique, hydraulique et d’autres).

Dans la modélisation basée sur le port, le systtme physique est considére comme
I’interconnexion de trois types de composants idéaux: éléments de stockage d'énergie;
elements de dissipation d’énergie et éléments de routage d’énergie. L’élement central d’un
systeme Hamiltonien a ports ¢ est la structure d’interconnexion Dirac, pour lequel est associe
la lettre D. Une propriété centrale des structures Dirac, c’est que la composition de deux ou
plus structures Dirac, c’est aussi une structure Dirac. Cette propriété montre que la
puissance est préserve par l'interconnexion des systemes Hamiltoniens a ports, au moyen de
ports externes.

La modélisation basee sur le port, inclure aussi un ensemble des notations graphique,
pour représenter la structure de l’systeme physique, comme un ensemble des éléments idéaux
interconnectée par des bords, qui capture les fluxes d’énergie entre eux. Le nom introduit
pour ces bords c’est liaisons et le graphique global de I’systeme physique s ’appelé Graph de
liaison. Par utiliser des connections avec la théorie des circuits électriques, le flux d'énergie
le long des liens, est représentée par paires des variables, dont le produit est toujours égal a



la puissance. Quelques exemples de ces paires sont les voltages et courants dans le domaine
électrique, vitesses, et forces dans la mécanique translationnelle, fluxes et pressions en
hydraulique, etc.

Les interconnexions dans les systémes Hamiltonien a ports sont réalisé par utiliser des
paires des fluxes et d’efforts dénoté par(t,e). Les systemes Hamiltoniens a ports sont décrits

aussi par la loi de conservation de puissance, qui montre que la puissance totale qui entre (ou
part) le systéme est conserve. A cote de ca, les systtmes Hamiltoniens a ports peut étre
décrit par la forme bilinéaire, qui est positif semi-définie et non dégénére, mais aussi par
utiliser la forme implicite de représentation. Un autre domaine dans la construction de la
théorie des systemes Hamiltoniens a ports c’est la commande, ou les systemes dynamiques
soNnt conmsidérés comme ouvert pour interaction avec [’environnement et aussi pour
l’interaction de commande.

Les développements pour les systémes de commande sont connectés avec la théorie de
la synthése des réseaux électriques. Par exemple, il existe plusieurs méthodes pour faconnage
de [’énergie/puissance ou commande basé sur la passivité, pour les ports de stockage et
dissipation, ou des techniques qui reposent sur la représentation du systeme de commande en
tant que systeme Port-Hamiltonien. La représentation de type Port-Hamiltonien des systemes
dynamiques multi-physiques sont aussi utiles pour des calculs numériques, par utiliser des
différents logiciels.

Quelques exemples des systémes Hamiltoniens a ports sont introduits dans la derniére
partie de la section, représentée par un circuit LC, microphone a condensateur circuit ou un
moteur & courant continu. Ces trois exemples sont considére dans tous les chapitres comme
exemplification pour les définitions et propositions propose. Les derniéres deux sections de
I’introduction présent les objectives principales de la theése et un résume sur chapitres.

La deuxieme partie de la thése ‘ldentifiabilité structurelle des systemes Hamiltoniens
a ports’, fait une analyse théorétique ou structurelle des systemes Hamiltoniens a ports, pour
explorer la structure de modele et vérifie si les paramétres de systeme ont une solution unique
globalement ou localement, par utiliser la connaissance des signaux d’entrée et sortie.
Certaines techniques classiques d'identifiabilité structurelle sont: ’analyse d’observabilité et
contrélabilité, le test direct, la transformation de Laplace, I'expansion en série de puissance,
ou la transformation de similarité.

Bien que les systemes Hamiltoniens soient des modéles basés sur la connaissance qui
peut étre décrit par un nombre réduit des paramétres physiques, peu d’études existe sur
["analyse d’identifiabilite, comme [’identifiabilite structurelle. 1l devrait étre mentionné dans
la littérature une exception pour le cas particulier d’un échangeur de chaleur.

Dans la deuxiéme partie de ce chapitre ils sont rappelé certaines définitions
(observabilité, controlabilité, identifiabilite globale/locale ou identifiabilité fort locale) avant
de présenter [’analyse d’identifiabilité des systemes Hamiltoniens a ports. L’analyse
d’identifiabilité pour les systemes Hamiltoniens a ports, débute par montrer que il peut étre
converti dans une forme canonique observable, préservant dans le méme temps la structure
Hamiltonien.

Ensuite, un résultat général est montré pour les systémes Hamiltoniens a ports dans le
cas lossy et les conditions nécessaires  sont  écrites  pour  [’analyse



d’observabilité/controlabilite. Un autre analyse d’identifiabilité pour les systemes
Hamiltoniens a ports est réalisé par utiliser le test direct, qui utilise les définitions classique
d’identifiabilite globale/locale appliqué pour la forme sur [’état d’espace. Pour
l’identifiabilité forte locale des systemes Hamiltoniens a ports, c’est proposé le test de
[’expansion en série de puissance, qui détermine une solution unique pour les parametres du
systeme, par calculer les dérivés de la sortie dans un point d’intérét.

L’analyse est réalisé dans le cas lossless ou lossy des systemes Hamiltoniens a ports,
montrant aussi quel est le numéro minimum d’équations nécessaire a résoudre. A cote des
approches classiques pour [’analyse d’identifiabilite structurelle, c’est proposé une approche
en énergie de puissance, qui utilisé les entrée et les énergies de puissances généré, pour
déterminer l’identifiabilité structurelle des paramétres.

Ce résultat est dii au fait que entre [’entrée et les énergies de puissances, une fonction
de transfert existe et aussi une modéle, nécessaire dans l’analyse d’identifiabilité. Ainsi est
montré que les énergies de puissances peuvent étre utilisées pour I’analyse d’identifiabilité
des parametres et nouveaux définitions sont proposées  pour l’identifiabilité locale et
globale.

Aussi est introduit le concept de port identifiabilité, qui fait une analyse pour
identifiabilité des paramétres correspondant a un seul port. Aprés, nouveaux définitions
sont proposé pour [’identifiabilité globale ou locale.

L’analyse d’identifiabilite basée sur la puissance, est réalisée a partir de [’observation
que les énergies de puissance associe a chaque port sont lie avec les parametres inconnu. De
plus, les relations entre les énergies des ports et les paramétres inconnu ont une structure
triangulaire (partiellement découplé) et ['analyse d’identifiabilite peut étre réalisée
séparément pour chaque port de l’systeme. L’approche d’identifiabilite basée sur la
puissance peut étre applique aussi pour le cas non linéaire, ou le model c’est plus complexe,
mais la structure d’interconnexion c’est aussi une structure Dirac.

En avantage important de I’approche par énergies de puissances, c’est que [’analyse
d’identifiabilité peut étre réalisée pour chaque port, pour sous-ensembles des parameétres, par
introduire le concept d’identifiabilité du port. La derniére partie de cette section est dédié a
la présentation des exemples pour les solutions proposées, par trois modeles simples (circuit
LC, microphone a condensateur circuit, moteur a courant continu) présenté dans le chapitre
précédent.

La troisieme partie de la thése ‘ldentifiabilité pratique des systemes Hamiltoniens a
ports’, réalise une analyse d’identifiabilité pratique pour les systemes Hamiltoniens a ports,
par utiliser [’analyse d’observabilité/controlabilité, dans la présence d’un modele de
perturbation. L identifiabilite pratique est réalisé aprés [’analyse d’identifiabilite structurelle
qui donne une model théoriquement identifiable.

Dans la littérature scientifique, plusieurs methodes ont été proposee et étudie a partir
de laquelle certains des plus importants sont: méthodes pour l’analyse des fonctions des
sensibilité, la méthode de simulation Monte Carlo, la méthode de matrice de corrélation, la
méthode de Weijers et Vanrolleghem, méthodes basée sur la commande et autres. Les
techniques d’analyse pour identifiabilite pratique ont été appliques pour plusieurs types des
modelés linéaires ou non linéaires, dont certains sont: modelés dynamiques HIV, modéles de



réseaux de réactions biologiques, modeles de réseau métabolique, modeles de fermentation
d’acide acétique, modeéles biochimiques de la riviére, modeles de thérapie photo dynamique,
modeéles de cristallisation de créme glacée et autres.

Le modele de perturbation est définit et introduit par une paire entrée/sortie sur le
port d’interaction, parce qu’il représente [’interaction de systeme avec [’environnement
externe. Aprés, un systéme Hamiltonien a ports perturbée est décrit sous la forme de [’état
d’espace, pour lequel une forme équivalent est trouvé et montré a préserver les propriétés
des systemes Hamiltoniens a ports dans le cas lossless ou lossy. Un résultat général est
formulé pour [’observabilité de [’'modele Hamiltonien a ports perturbé, comme pour le cas
non perturbé.

La derniere partie de cette section fait une analyse d’identifiabilité pratique pour les
trois exemples proposée dans le premier chapitre de la these. Pour le modéle de circuit LC, il
a eté prouvé que il est identifiable pratiquement pour une modele de perturbation de type
bruit blanc, par utiliser I’analyse d’observabilité/controlabilité. Pour le cas lossy il a été
prouvé que le microphone a condensateur circuit n’est pas observable et ainsi non-
identifiable pratiquement, par utiliser |’analyse d’observabilité/controlabilité. Pour le modele
de moteur a courant continu il a été prouve avec cette approche, que il est identifiable
pratiquement dans la présence d’'un modele de perturbation de type bruit blanc.

La quatrieme partie de la these ’Intégration en temps symplectique et Hamiltonien
d’erreur discréte’, présente une cadre de discrétisation en temps pour les systémes
Hamiltoniens a ports dans le cas linéaire ou non-linéaire et aussi il propose un Hamiltonien
d’erreur discréte  pour différentier les systémes en temps continu et discréte avec le
formalisme Hamiltonien a ports.

La commande de processus assisté par ordinateur, est réalisée en temps discret en
échantillonnant le signal continu. Ainsi, plusieurs techniques de discrétisation ont été désigné
pour approximer avec précision, les modeéles du processus ou control. Parmi ceux-ci,
lorsqu'on considére les modeles d'intégration de bas niveau, on pourrait citer les plus
importants: la régle Etape Invariant, la régle Pole-Zero Apparié, régles d'Euler
implicite/explicite, la regle de Tustin, la regle Transformation Bilinéaire Généralisée, la
regle du point milieu ou la regle Runge-Kutta. Pour techniques d'intégration plus élevées du
processus ou control, des méthodes de discrétisation comme Boxer-Thaler et Madwed, ont
été introduit, avec une précision plus élevée pour le modele estimé, mais avec une
implémentation pratique complexe et faible possibilité pour [’analyse de stabilité. Les
systemes Hamiltoniens a ports ont des propriétés remarquables comme la conservation
d’énergie de puissance et stabilité sous l'interconnexion qui préserve la puissance
(interconnexions paralleles, séries ou feedback). L’interconnexion en temps par préserver la
structure des systemes Hamiltoniens, c’est un probleme actuel de recherche et
développement.

Pour la discrétisation en temps des systemes Hamiltoniens a port, c’est proposé une
discrétisation combiné pour les fluxes et les efforts, pour que les propriétés principales (loi de
conservation de puissance, stabilisation de puissance, etc.) sont préservé en temps discrete.
Apres, les relations nécessaires sont dérivé en temps discrete pour le cas linéaire ou non-
linéaire des systéemes Hamiltoniens a ports, pour préserver les propriétés caractéristiques.



Comme réegles de discrétisation pour les fluxes et les efforts, quatre régles ont été proposée:
Euler implicite/explicite, la régle du point milieu, ou la régle implicite trapézoidale. Pour le
cas non linéaire il est prouvé, que par combiner n’importe quelle régles du premier ordre
(Euler implicite/explicite) pour les fluxes et efforts, les conditions nécessaires sont préservée
pour le systeme Hamiltonien en temps discréte. Pour le cas linéaire il a été prouvé que par
combiner une regle de premiéere dégrée pour les fluxes avec une régle de premiére ou
deuxieme degrée pour les efforts, les relations nécessaires sont satisfait pour le systeme
Hamiltonien a ports discrete. L’analyse est réalisée dans le cas linéaire par utiliser le cadre
proposé et quatre régles de discrétisation, développant ainsi douze schémes de discrétisation
dans le cas lossless ou lossy, a partir de laquelle certains sont prouvee de pas préserver le
formalisme proposé. Pour simulations, seulement trois schemes ont été sélectionnée dans le
cas lossless ou lossy (Euler implicite/explicite pour les fluxes et les efforts, Euler implicite
pour les fluxes et implicite trapézoidal pour les efforts, implicite trapézoidal regle pour les
fluxes et implicite point milieu regle pour les efforts), a partir de laquelle la derniere a été
prouvé par calcul et simulation de pas préserver les conditions nécessaires dans le cas lossy.

Comme exemple pour simulations, un circuit LC (cas lossless) et un circuit de
microphone a condensateur (cas lossy) ont été considéres, pour lequel plusieurs simulations
ont été effectuées sur les sorties du systeme, énergies de puissance, logarithme d’erreur, loi
de conservation de puissance ou Hamiltonien d’erreur discrete.

Par discrétisation en temps, la structure et régles d’interconnexion Dirac (D) sont
préservé comme pour le systeme en temps continu. La deuxieme partie de ce chapitre, définit
un Hamiltonien d’erreur discréte pour les cas lossless ou lossy, qui représent [’erreur de
discrétisation entre les systemes en temps continu et discrete avec une structure Hamiltonien
a ports. Cela est un outil nécessaire pour [’analyse de [’erreur de discrétisation par utiliser
une représentation de type Hamiltonien, mais aussi pour les algorithmes d’identification,
pour vérifier les performances des modelés estimées, par [’approche dans [’énergie de
puissance.

Le cadre de discrétisation courant peut étre prolongé a des lois de discrétisation plus
générale (Runge Kutta, collocation, etc.) dans le cas non linéaire ou linéaire.

La cinquieme partie de la thése, ‘ldentification des systemes Hamiltonien a ports sur
Pétat d’espace’, présente une analyse et développement des algorithmes d’identification
déterministe pour les systémes Hamiltonien a ports, par utiliser une approche classique ou
nouveau (énergie de puissance). Les algorithmes d'identification de type sous-espaces, sont
basée sur concepts de la théorie des systemes, algebre linéaire ou statistique.

Les principales nouveautés conceptuelles dans les algorithmes d’identification sous-
espace sont: l’état du systeme est central pour l’identification des systemes par rapport a
[’approche classique, qui utilise le contexte entrée/sortie; I’approche d’identification sous-
espace est basée sur concepts et algorithmes de [’algébre linéaire numérique (décomposition
QR, décomposition SVD et ses généralisations avec des angles entre sous-espaces;
I’approche d’identification sous-espace offre une cadre géométrique ou différents modeles
sont traités de maniére unifiée; les concepts théorétique se traduisent par des
implémentations logicielles conviviales (il n'y a pas de besoin explicite de paramétrages et



donc pas de problémes trés techniques et théoriques pour ['utilisateur, comme des
paramétrisations canoniques).

Par rapport aux approches classique, certains des principaux points introduits par les
algorithmes d'identification de type sous-espaces sont:

- parameétrisations: [’approche d’identification de type sous-espace utilise seulement [’ordre
du systeme. Avec les approches classiques, une partie de recherche a été concentré sur
modeles canoniques (formes canoniques incontrélable et observable avec un nombre
minimal des parameétres). Les points faibles de cette approche sont: ils peuvent conduire a des
problemes numériqguement mal conditionnés, avec des résultats sensible a petites
perturbations; il est nécessaire de chevaucher les paramétrages, car aucun des parameétres
existants ne couvrira tous les systemes dynamiques; en practice des modeles minimales de
type sous-espace are désirable. En cas de modes incontrdlables mais observables, des
paramétrages spéciaux sont nécessaires. Tous ces problemes sont éliminés dans le cas
d'identification de type sous-espaces.

- convergence: Les algorithmes d’identification sous-espace sont plus rapides que I’approche
classique, car ils ne sont pas itératifs et aucun probleme de convergence n'existe. Ainsi, le
mangue de convergence, la convergence lente ou I'instabilité numérique sont éliminés.

- Réduction du modeéle: Dans [’identification de type sous-espace, le modéle réduit du systeme
dynamique résulte directement par les données d'entrée/sortie, sans avoir a calculer a
I'avance le modéle de haut niveau.

Pour [’analyse d’identification, un scheme simple de discrétisation de [’chapitre
précédent a été sélectionnée, qui utilise une regle Euler explicit pour les fluxes et une régle
Euler implicite pour les efforts, qui a aussi une structure similaire avec I’approche classique.
Dans le méme temps, un contexte générale déterministe a été définit pour tous les schemes de
discrétisation, présenté dans le chapitre 4, par utiliser des projections orthogonales ou
obliques, comme on peut le voir aussi dans [’annexe F.

Par utiliser le scheme de discrétisation symplectique sélectionnée, pour deux
algorithmes d’identification classique, plusieurs simulations ont été réalisé pour les
entrée/sorties du systéme, énergies de puissance et loi de conservation de puissance.

Dans la deuxieme partie du chapitre, une cadre d’identification déterministe de type
énergie de puissance est définit théoriquement, par utiliser la loi de conservation de
puissance et les projections orthogonales ou obliques. Par utiliser ce contexte, trois modéles
équivalents sous une forme d’état d’espace peut étre obtenu pour chaque port, comme
conséquence aux définitions et propositions proposé dans le deuxiéme chapitre, pour
I’identifiabilité globale/locale ou port-identifiabilité. Ainsi c’est prouvé et définit une cadre
d’identification déterministe pour [’approche de [’énergie de puissance, a partir de
[’approche classique. Dans ce nouveau contexte il est supposé un certain nombre de mesures
connues de l’entrée et énergies de puissance et il est désirée a déterminer [’ordre du systeme
inconnu et les parametres du systéme, donné par les matrices du systeme A,B,c . Comme
cette approche utilise la loi de conservation, c’est nécessaire d’avoir d’informations au moins
sur deux énergies du port, pour préserver la structure Hamiltonien. Les hypotheses initiales,
pour le contexte proposée suivez les mémes étapes comme dans [’approche classique pour
une entrée bien sélectionnée, intersection entre les futures entrées et les états passés ou les



matrices de pondération. Ensuite, sont définies les projections obliques correspondant aux
ports, pour lesquels une décomposition SVD est réalisée. Ainsi, [’ordre du systeme dynamique
peut étre déterminé correspondant a chaque port et une décomposition des projections
obliques peuvent étre prouvés et réalisés en utilisant les matrices d'observabilité étendues et
les états du systeme. En utilisant la décomposition SVD, nous pouvons déterminer separément
les matrices d'observabilité étendues correspondant aux ports avec les états associes.

Aussi est proposé un algorithme d’identification déterministe de type énergie de
puissance, qui utilise le nouveau cadre d’identification et détermine comme prévu trois
modeéles équivalents sur [’état d’espace pour les systemes Hamiltonien a ports.

La derniere partie de chapitre est dédié a simulations avec un algorithm
d’identification déterministe de type énergie de puissance, pour un modele de moteur a
courant continu, sur lequel plusieurs simulations ont eté réalisé pour la réponse du systéme,
correspondant a modelés estimé pour les trois ports (commande, stockage, dissipation). Ainsi
le cadre générale déterministe de type énergie de puissance est prouvé, et aussi les définitions
et propositions de deuxieme chapitre. La derniére partie de chapitre, fait une analyse pour les
performances des modéles estimées par utiliser un index de validation, dans la présence d’un
modele de perturbation proposé dans le troisieme chapitre, qui est plutdt une modéle
déterministe. En conclusion, les modéles des systémes Hamiltonien a ports peut étre estimé
par utiliser des algorithmes d’identification sous une forme d’état d’espace, dans une
approche classique ou nouveau (énergie de puissance), qui utilise un scheme de discrétisation
symplectique.

Les principales contributions de la thése sont: l’analyse du utilité, nécessite ou
possibilités de développement d’une théorie d’identification des systémes, en vue des
solutions améliorées en temps réel de modélisation et commande; [’analyse de la structure de
modéle des systémes Hamiltonien a ports, nécessaire pour [’identification des systemes, la
sélection des techniques approprié pour [’analyse d’identifiabilité structurelle des systemes
Hamiltonien a ports, a partir de la théorie d’identifiabilité classique; l’analyse, preuve et
formulation des propositions et définitions spécifique pour les systemes Hamiltonien a ports
dans le cas lossless ou lossy; le développement des nouveaux (spécifique) techniques
d’identifiabilité structurelle pour les systemes Hamiltonien a ports, par utiliser les énergies
de puissance correspondant a ports;, [l'introduction d’'un nouveau concept ‘port
identifiabilité’, avec des définitions spécifique pour [’identifiabilité locale ou globale
correspondant a un port; [’adoption d’un modele Hamiltonien perturbé, par introduire une
paire entrée/sortie correspondant a la port d’interaction de l’systéme avec [’environnement,
[’analyse, preuve et formulation des nouveaux propositions pour les systemes Hamiltonien a
ports, pour prouver que par convertir a la forme canonique observable dans la présence d 'un
modele de perturbation, les principales propriétés sont conservé; la sélection d’une cadre de
discrétisation symplectique pour les systemes Hamiltonien a ports, par discrétisation
combinée des fluxes et efforts; la sélection de quatre regles de discrétisation (Euler
implicite/explicite, implicite point milieu ou trapézoidale) pour exemplification; [’analyse du
cadre symplectique discréte dans le cas linéaire ou non linéaire et la formulation des
propositions nécessaires ou regles générales; la simulation de [’cadre proposé avec un
microphone a condensateur circuit pour trois schemes, pour montrer la conservation ou non
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conservation des propriétés pour les systemes Hamiltonien a ports aussi en temps discrete;
l'introduction d’un Hamiltonien d’erreur discréte, utile dans [’analyse de [’erreur, pour la
méthode de discrétisation pour les systemes Hamiltonien & ports dans le cas lossless ou lossy;
La simulation de I’'nouveau concept proposé (Hamiltonien d’erreur discrete) par utiliser un
modele de microphone a condensateur circuit pour les schemes de discrétisation
selectionnée; le développement d’un logiciel de simulation spécifique pour le cadre de
discrétisation symplectique proposée avec douze schemes de discrétisation pour le cas
lossless ou lossy; la formulation générale des équations matricielles entrée/sortie pour les
schemes de discrétisation proposée, la formulation d’une cadre d’identification déterministe
pour chaque scheme symplectique, la sélection d’un schéme de discrétisation pour [’analyse
des algorithmes d’identification; la sélection des algorithmes d’identification classique
approprié de type d’état d’espace pour les systemes Hamiltonien a ports, [’analyse, preuve
et formulation d’un nouveau (énergie de puissance) cadre d’identification déterministe pour
les systemes Hamiltonien a ports, la proposition d’un nouvel algorithme spécifique (énergie
de puissance) déterministe pour le nouveau cadre d’identification; [’analyse en simulation
des algorithmes d’identification déterministe de type classique ou nouveau (énergie de
puissance) par utiliser le modele d’un moteur a courant continu sous forme Hamiltonien a
ports; 'analyse de précision pour le modeéle estimé, par introduire une index de validation
entre les modeles estimées et réels dans la présence de ’'modéle de perturbation proposée
dans le troisiéme chapitre.

Les principales perspectives a la fin de la these sont: [’analyse d’identifiabilité
structurelle ou pratique des systemes Hamiltonien a ports par utiliser des autres techniques
ou la proposition des autres, nouveau; le développement des applications améliorées
d’identification et commande en temps réel, par utiliser I’approche de modélisation et
commande des systemes Hamiltonien a ports pour les systemes dynamiques complexes; le
développement des nouveau (spécifiques) notions et algorithmes d’identification, pour
[’approche énergie de puissance proposé dans la these; le développement des plateformes de
test en temps réel dans le laboratoire pour tester et analyser les algorithmes d’identification
et théories de commande; le développement des autres schémes symplectique de discrétisation
en temps pour les systemes Hamiltonien a ports par utiliser des réegles de discrétisation plus
complexe (Runge-Kutta, collocation, etc.),; le développement d’une théorie d’identification et
commande nécessaire pour le cas stochastique des systemes Hamiltonien a ports, qui contient
aussi une modele de perturbation plus proche de la réalité; [’analyse des schemes de
discrétisation symplectique proposée, aussi pour solutions de commande connu dans la
littérature (Modéle de Commande Prédictif, Commande w,,n_, Commande Quadratique

Linéaire, etc.); le développement des modules d’identification, commande et discrétisation
des systemes, pour étre utilise a une plus grande échelle; ['introduction des solutions
d’identification et commande dans une environnement industrielle.
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Notations

In this section we will present the main notations introduced for each chapter of the thesis, for
a clear understanding of the interested reader.

In chapter 2 of the thesis we have denoted with ¢ € ® , the unknown parameters (o)
from the parameter space (o ), that are generally searched by system identification
techniques. We can have unknown parameters corresponding to the system matrices A,B,c

(a9 1B 0 e ) or Port Hamiltonian system matrices r,Q, B (eR 04 ,eB).

For the power energy approach proposed in section 2.5, the unknown parameters

corresponding to the storage, control or dissipation ports are defined by 6, .6,. 0p5 |

while for the port-identifiability concept proposed, the unknown parameters are defined by

6, Where T represents one of the system ports. For the local identifiability analysis, the

unknown parameters in a specific point of interest are defined by ¢*, which become

9;8 ,9;C 0 PR* for the power energy approach or 9; for the port-identifiability case. For
the observable canonical form representation of Port Hamiltonian systems, we will introduce
the obs index for the necessary terms in the state-space representation. By T « R™" we have
denoted a non-singular transformation matrix corresponding to the Port-Hamiltonian

representation. For the power series expansion identifiability analysis, we have denoted with

k
u (K t, ) y[ ](to Jthe k™ order derivate of the system inputs (u ) or outputs (y ) at a specific
point of interest t .

With Aloss respectively A5 We have denoted the lossless and respectively the

dissipative parts of the matrix A" = A + Apes defined for lossy Port Hamiltonian systems.

loss
R,p Was introduced as notation for the identifiability matrix, necessary for the

observability/controllability test analysis.

In chapter 3 of the thesis, obs index represents the observable canonical form terms
corresponding to Port Hamiltonian systems in the lossless or lossy case. For an equivalent
observable canonical form state-space representation of Port-Hamiltonian systems, we have

used the notation obsT for the terms. With T T T s © R™M we have denoted non-

2 bs
singular transformation matrices applied to the state-space system. By Y1k 7 o Were defined

the terms corresponding to the equivalent observable canonical form representation of the
input (8 ) and perturbation (k ) matrices.

TF, and TF , represent transfers functions from the input to the output and from the

perturbation to the output. By Rr it was defined the identifiability matrix used for the

D
analysis of the observability and controllability of Port Hamiltonian systems in the lossless or
lossy case. ¢ ‘ (k =1..n ) represents the terms which compose the identifiability matrix r  in

an equivalent observable canonical form.

16



With Aloss and A, We have defined the lossless respectively lossy parts of the

matrix A" = Alpss * Ares defined in the lossy case of Port Hamiltonian systems similar to

chapter 2.
In chapter 4 of the thesis, we have introduced F . .E . as notations for the flow and

efforts discretization rules at discrete-time step i . For all the discrete-time Port-Hamiltonian
systems terms, we have used the hat notation (”) to differentiate from the continuous-time

ones. é., fg, €., ‘:c and én . fR defines the discrete-time efforts and flows corresponding

to the storage (S), control (C) or dissipation (R) ports. gi *Egq Tepresents the composed
time-discretization of the flows and efforts rules applied to a continuous-time term, which in

our case is the effort ﬂ(x). The differentiation term of the flow (di) becomes 2%, the

ax dt At

energy balance (ddit) translates to % and the effort ‘Zi becomes AA—Hfor discrete-time
X X

Port-Hamiltonian systems. Beside this notations, were introduced the terms x, or x:k to define
the medium value of two succesive discrete-time terms (xk X g OF X >?k+1) for the states
(xk) orinputs(uk).

For the difference between two Port-Hamiltonian systems defined in section 4.4, we
have used the index A or B for the terms corresponding to one or another systems. For the
terms representing the Port-Hamiltonian system corresponding to the difference between

systems A and B, we have used the notation w ALB" where w represents one of the Port-

Hamiltonian system elements. For the discrete-time simulation analysis, we have denoted

with N the number of discrete-time steps, at sampling-time of discretization, tg the time-

interval and o[Atk } the k" order of convergence of the discretization method.

In chapter 5 of the thesis, a series of notations have been realized for the subspace
identification analysis performed on Port-Hamiltonian systems, using the classic or new
power energy approach.

U i1 Yos0ig Were used to define the input and output block Hankel matrices,

which can be expressed using past (v ,.v,) or future (u f,Yf) informations. When

augmenting or decreasing one row from the past or future inputs or outputs, the notations use

a+(ug.yg)or —(u7,y ;) The state sequences are defined by xiOI c R™ where xg

d

stands for the past states ( x g )and X . stands for the future states. 1, is used to define the

L
projector operator which projects the row space of a matrix onto the row space of the matrix

Le R . m * defines the Moore-Penrose pseudo-inverse of a matrix m < R™™ . We define
the orthogonal projection by G /L , which represents the projection of the row space of the

matrix G < R ™ on the row space of the matrix L. An important concept for the subspace

17



identification algorithms is the oblique projection, by which a matrix G € R P4 can be

decomposed as linear combinations of two non-orthogonal matrices (L < R and F e R )
and the orthogonal complement of L and F . For the subspace identification approach
presented in this chapter the oblique projection will be denoted by o, and will be calculated

using the future inputs and outputs (Yf U ) and the Willems matrix (w , ) of the past

inputs/outputs  (u , .y, ). For the power energy approach, the oblique projections

corresponding to the ports will be denoted by o, (storage), o,. (control) or o

S C iR

(dissipation). w, < R"™!" and w , R M- define two weighting matrices, which are multiplied

to the obligue projection and influence the result of the SVD decomposition.
The SVD notation represents the Singular Value Decomposition of a matrix
M < R™M _ For the power energy approach, the matrix elements corresponding to the SVD

decomposition will have indexes representing the ports (u 5+ SgVg-Storage, U . .s. V. -

control, u R SR

matrices corresponding to the continuous-time Port Hamiltonian model (A,8.c ). T er™"
represents a non-singular similarity transformation, which become T T

v - dissipation). A,8,C have been used to define the discrete-time system

cTr for the storage

control or dissipation ports in the power energy approach.
In the power energy approach, indexes corresponding to the ports (S — storage, C-

control, R- dissipation) have been introduced to designate the system states ( x ? ), system

outputs (y ; ), extended observability matrix (r; ), Henkel matrix (w , ) or system degree
(n). With c [k] have been denoted the binomial coefficients or combinatorial numbers,
n

which is the coefficient of x¥ in the polynomial expansion @+ x)" . Ty C;y have been

used as notations for the observability and controlability matrices of an equivalent
continuous-time PCH system.

W, W represent the observability and controlability grammians of a Port

Hamiltonian system. 1 ,H ., H , and v v v, were used to define the transfer functions

S C R C R
and system outputs corresponding to the system ports (S — storage, C — control, R —
dissipation).

v _index IS a notation used for the validation index between the estimated data and
real data, which is used in system identification to see the accuracy of the estimated model.

In Appendix F, several notations have been adopted to distinguish between the current
time-discretization scheme parameters and the approach proposed in chapter 5, but also for a
more compact writing of the equations.
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Introduction

The first chapter of the thesis makes a general presentation of the system identification
domain, introducing notions like modelling, types of models, modelling and identification
procedure. A second part of the chapter makes a general presentation of Port-Hamiltonian
systems with their special properties of power energy conservation and Dirac interconnection
structure, that permits the interconnection of multiple sub-systems from different domains of
physics or chemistry. Three classic examples of Port-Controlled-Hamiltonian systems
represented by an LC circuit, capacitor microphone circuit or DC motor are introduced for
the lossless and lossy cases, to be used in the next chapters.

The last two sections of this chapter, introduce the main objectives of the thesis together with
a summary of the chapters.

1.1Systems and system identification

This subsection of the introduction presents some basic definitions necessary in system
identification and makes connections with a dynamic system represented in input/output form
and also introduces disturbances.

The physical models represented by hypotheses, laws of nature, may be of more or less
formal in character, but they have a basic property, that they connect the system observations
together into a general pattern. System identification represents a control engineering branch,
which deals with building mathematical models for dynamical systems, using observed data.
A dynamic system can be associated with a global object, where variables of different kinds
interact and produce observable signals. A dynamic system corresponds to two types of
signals: observable signals called outputs and controllable signals called inputs. Beside these
two signals, in real applications disturbances are encountered between the system and
external world. These are classified as: directly measurable disturbances and disturbances
observed on the outputs. The notion of a system is central in modern science and many
problems are solved in a system-oriented framework. These systems can be dynamic, which
means that the current output value depends not only on the current external stimuli, but also
on their earlier values. The outputs of dynamic systems whose external stimuli are not
observed, are called time series [1,2].

1.1.1 Models

When interacting with a system, it is necessary to have a mathematical description that
connects its variables. A model can be generally defined using the relationship between the
observed signals. These models may come in different forms, with different degrees of
mathematical formalism. Depending on the control necessities, a complexity of the model
will be chosen [1,2].

The use of mathematical models, is necessary in a large class of domains of engineering and
physics. Mathematical models of dynamical systems are useful in most areas of scientific
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enquiry and can take various forms, such as: differential equations, difference equations,
state-space equations or transfer functions. A possible approach for mathematical modelling,
is based on the use of mathematical equations which describe the physical laws that govern
the process. This approach may have drawbacks such as the high complexity of the obtained
model or the difficulty of estimation due to over parameterization. These drawbacks extend
also to process control solutions [8]. To overcome this modelling issues, identification
techniques were introduced [1-8], to make a simpler physical description of the systems, using
reduced complexity models. The dynamic systems encountered in real world, are generally
described in continuous time, using differential equations. Most part of the system
identification techniques, make use of discrete time models, also known as sampled data
models. Some approaches using continuous time techniques, were realized in [9,10,11].

A linear time-invariant continuous-time system with input v and output y , can be described
as:

y(t) = H (p)u(t) + v(t) 1)

where H is the transfer function, p the time-domain differential operator and the additive
term v(t) represents errors or disturbances of all natures. The main sources for v(t) can be

measurement errors, unmeasured process disturbances, model inadequacy or a combination of
all of these. It is assumed that the input signal {u(t), t, <t<ty, } isapplied to the system, with

u(t), y(t) both sampled at discrete times t ty The sampled signals are denoted with

L
{u (t, ) y(t, )} Mathematical models are useful in a broad class of applications for simulation

or forecasting, but also in non-technical fields like: economy, ecology or biology [1,2].

1.1.2 Model classification

In system identification, are encountered a broad class of models, used for different
control applications. These models can be classified as [3]: analytical models and experimental
models; linear and nonlinear models; parametrical and non-parametrical models; SISO, SIMO,
MISO, MIMO models; variable and invariable models with time; continuous-time and
discrete-time models; models with lumped and distributed parameters; time-domain and
frequency-domain models.

1.1.3 Procedure for building mathematical models

A physical model, can be determined on the basis of real observed data from the
system’s response, by interaction with external stimuli. Mathematical models can be
determined in two different ways. A first way is known as modelling, which splits up the
global system into small subsystems, whose properties are well known from previous
knowledge. These small subsystems are connected through mathematical relations, to
construct the global system. This modelling technique doesn’t necessitate any experiments
with the system. The second approach for mathematical modeling is called system
identification and is represented by practical experimentation with the system, using
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input/output signals for data analysis and model construction [1,2]. Important topics in system
identification are: the identification of the model structure; the identification of the pure time-
delay; the identification of continuous-time noise models; identification of multivariable
systems; identification in closed-loop; identification in frequency-domain; software for model
identification [8].

1.1.4 The true dynamic system

The so-called true system is an entity distinct from the mathematical models obtained by
physical modeling, using equations. Between these two descriptions of a dynamic system,
certain relations can be realized but never an exact connection. The mathematical models that
describe a physical system need to be connected with their practical usefulness, not with the
true system model. Even so, the necessity of a true system, it is necessary to define an ideal
context, for identification techniques and their properties [1,2].

1.2 System identification procedure

The identification problem: Determine a continuous-time model for the original
continuous-time system, from m sampled measurements of the input and output,

zM —Quf, )yl R, (as for example the model in equation (1)) [8]. The basic entities of a

system identification procedure are: the data set; the set of canditate models; a methodology
used for the model evaluation, using a data set. The first step of the identification procedure,
is represented by a specific identification methodology, realized using input/output data from
the real system, where the user may choose the inputs, measured signals or time steps. The
objective of this identification step, is to give enough informations on the behaviour of the
real system, subject to some constraints. At the second step, a set of possible models might be
identified, from which the most representative model can be selected for the real system. This
is considered the most important and difficult step of the identification procedure, where
apriori knowledge of the system behaviour and engineering experience, need to be combined
together with specific properties of the models [1-7]. The third step of the identification
procedure, is represented by the application of an identification algorithm, where the models
are evaluated in rapport with the real measurements. At the end of these steps, a model that
best suits the input/output data is obtained, using a certain proposed criterion. The last step of
the identification procedure, is represented by the model validation, which shows that the
model is representative enough for the selected dynamic system. At this step, certain
procedures can be performed to see if the model is confident for further use, or it has to be
rejected and replaced with a new one. The final model that is validated after the identification
procedure, is only useful for a particular application and not a last and real description of the
system [1-7]. The model obtained by identification, can be unefficient for a variety of reasons:
the numerical procedure failed to find the best estimated model according to the selected
criterion; the estimation criterion is not appropriate to the application; the selected model set
did not contain a good description for the current system; the data set was not informative
enough in order to select appropriate models. A general diagram which may be used for the
identification procedure is presented on Figure 1.1 hereafter [1-7].
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Figure 1.1. System identification loop.

1.3 Port-Controlled-Hamiltonian systems

Port-Controlled-Hamiltonian systems, represent a new generation of nonlinear systems
for network modelling of complex physical systems, from different energy domains [12-19].
This new modelling formulation, can be seen as a re-thinking of standard control techniques,
opening a broader way for the formulation of control problems [19]. From a modelling
perpective, this theory starts from the port-based modelling theory developed by Henry
Paynter [20,23] and Breedveld [21,22,23]. This modelling approach creates a unified
framework for modelling of systems from different physical branches (mechanical, electrical,
hydraulic, thermal and others). Central in port-based modeling is the energy, which makes the
connection between the physical branches and the identification of the system’s components
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which capture the main physical characteristics, given by the energy-storage, energy-
dissipation and energy-routing. Port-based modelling includes also a set of graphical
notations, to represent the structure of the physical system, as a set of ideal elements
connected by edges, that capture the energy flows between them. The name introduced for
these edges is bonds and the global graph of the physical system is called a bond graph. Using
connections with electrical circuit theory, the energy flow along the bonds is represented by
pairs of variables, whose product always equals power. Some examples of such pairs are
voltages and currents in the electrical domain, velocities and forces in translational
mechanics, flows and pressures in hydraulics, etc. A Port-Hamiltonian formulation of bond
graph theory can be found in [24]. Port-based modelling is also regarded as an abstraction of
the theory of across and through variables [25]. Another origin of Port-Hamiltonian systems
theory is geometric mechanics [26-30]. The basic idea of geometric mechanics is to represent
the Hamiltonian dynamics in a coordinate-free manner, using a state-space representation (the
phase space of the system) given by a symplectic or Poisson structure, together with a
Hamiltonian function for the energy. This approach created a path for the analysis of
Hamiltonian systems behaviour, showing their basic features like symmetries or conserved
quantities. This geometric approach was also succesfully extended to infinite-dimensional
Port-Hamiltonian systems [31]. Another inspiring domain in the construction of Port-
Hamiltonian systems theory is control, where the dynamical systems are regarded as being
opened for interaction with the environment and also for control interaction. The control
systems developments are connected with electrical network synthesis theory. The geometric
formulation of this theory starts with [12, 29, 30, 32-38], mainly for the analysis and control
of nonlinear mechanical systems. One important difference, between Port-Hamiltonian
systems and Hamiltonian mechanics, is that for Port-Hamiltonian systems, the interconnection
is not symplectic in the phase space, but in the augmented Bond space which includes both
port variables for the system components and “external” interaction ports. In this way, the
theory of Port-Hamiltonian systems, is a connection between geometry and network theory.
The geometric element that makes a generalization for symplectic and Poisson structures, is
called a Dirac structure [39-41]. Dirac structures were introduced in [16, 42,43] and used for
mechanical systems with constraints resulting in Hamiltonian differential-algebraic
equations. The theory could also be extended to distributed-parameter case [44]. A central
property of Dirac structures, is that the composition of two or more Dirac structures, is again a
Dirac structure. This property shows that the power is conserved by the interconnection of
Port-Hamiltonian systems, by means of external ports. A new extension of Port-Hamiltonian
systems theory in rapport with the geometric mechanics, is the inclusion of energy-dissipating
elements. Together the port-based modelling and Port-Hamiltonian systems, can be seen as a
general theory for the modelling of complex physical systems from different areas of
engineering. Because this theory is based on two major concepts of energy and power, it is
ideal for mathematical modelling of multi-physics systems. Another important aspect of this
theory, is that is offers a clear view also for control solutions, mostly for the nonlinear case,
by means of appropriate theoretical concepts and tools. For instance, there exists many
methods for energy/power shaping or passivity-based control designs, of the storage and
dissipation ports, or techniques which rely on the representation of the controller system as
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port-Hamiltonian system itself. Port-Hamiltonian representation of dynamical multi-physics
systems are also useful for numerical computations, for instance using different software suits
the 20-sim (based on bond graphs) or Modelica/Dymola environments.

In port-based modelling, a physical system is regarded as the interconnection of three types of
ideal components: energy-storing elements; energy-dissipating (resistive) elements and
energy-routing elements. Some classical examples of such Port-Hamiltonian system
components are:

- springs, inductors, capacitors, ideal inductors for the energy-storing components;

- dampers or resistors for the energy-dissipating components;

- transformers, gyrators and ideal constraints for the energy-routing elements.

For simplicity of notation, each port of the Hamiltonian system will be assigned a letter as
follows: S for the storage port, R for the energy-dissipating components. The central
component of a Port-Hamiltonian system, the Dirac structure is assigned the letter D. A
graphical representation of Port-Hamiltonian systems, using the above notations, is given in
Figure 1.2.

Storage Dissipation

e
I ['I

Figure 1.2. Port-Hamiltonian system.

The interconnections within the Port-Hamiltonian system are realized using pairs of flow and
effort variables, usually denoted (f,e). One such pair of vectors of flow and effort variables
forms an abstract entity called port, while the complete set of flow and effort variables, forms
the port variables. As the notations show in Figure 1.2, the flow and effort pairs, are

associated to the ports as follows: (f e ) for the storage power-port; (f e ) for the

dissipation power-port and (fI e ) for the external power-port. Associated to each port, there

were defined scalar entities, called energies (powers) (e; f eE fo and eIT f, ) that are

g
transmitted through the connections [19,23]. As was already presented in Figure 1.2, the
central component of a Port-Hamiltonian system, the Dirac structure has an important
property of power conservation: the Dirac structure connects the various port elements (flows
and efforts), in order to conserve the total power associated to the system [19,23]. The power

port elements are defined as follows: the flows are defined on a finite-dimensional linear
space of flows F, while the efforts are defined on the dual linear space E:=F". The total
space of flow and effort variables is FxE and represents the space of port variables or Bond
space. As a consequence, the total power entering (or going out, according to the sign
convention) is expressed as [19,23]:

P={e|t), (f.e)e FxE (1.1)
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where (e|f) corresponds to the duality product for eeE acting on f<F. In vector

representation, (1.1) becomes:
<e|f>=eT f (1.2)

*

where f crKand ee (R kj . In the following lines, will be introduced a definition for a

Dirac structure [19,23].

Definition 1.1 (Dirac structure) [23]

Consider a finite-dimensional linear space F , with E = F". A subspace D < FxE is a Dirac
structure if:

1.<e|f>:0,f0|‘a|| (f,e)e D

2. dim D =dim F

In the above definition, property 1 corresponds to power-conservation and expresses the fact
that the total power entering or (leaving) a Dirac structure is zero. This definition can be
generalized to the infinite-dimensional linear space r, defining in this way a infinite-
dimensional Dirac structure. This definition is essential for the class of Port-Hamiltonian
systems called distributed-parameter systems. In connection to the power of Port-Hamiltonian
systems, it was defined a bilinear form << >~ on the space FxE , as:

<<(fa,ea),(fb,eb]>>::<ea‘fb>+<ebfa> (1.3)

with (12 e? ),[ £0 P } < FxE . This form is positive semi definite. It is also non-degenerate,

meaning that << (f a,ea),(fb,eb]»: o for a||[fb,eb] implies that (f2,e?)=0[19,23].

Therefore it is symmetric positive-definite and may be used as an inner product. This inner
product in turn may be used to give a geometric characterization of Dirac structures, as in the
proposition below.

Proposition 1.1 ( geometric characterization of Dirac structures [40,41])
A Dirac structure on FxE is a subspace D < FxE , such that:
D=D" (1.4)
where 1 denotes the orthogonal companion with respect to the bilinear form <<, >> .
Some simple examples of Dirac structures D < FxE are given below:
a) Let J:E - Fbe a skew-symmetric linear mapping, that is J=-3%, where
3" E - E" = F isthe adjoint mapping. Then:
graph J = {(f,e)e FxE|f = Je} (1.5
is a Dirac structure.
b) Let w:F — E be a skew-symmetric linear mapping. Then:
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graph o = {(f,e)e FxE|e=a)f} (1.6)

is a Dirac structure.
c) Let kK = F be any subspace. Define:

Kt =fe E|<e|f>=0,for all  fek} 1.7)

L

then kxk — < FxE is a Dirac structure [19,23].

An important property of Port-Hamiltonian systems, is their stability under interconnection.
The interconnection of Port-Hamiltonian systems results in a new Port-Hamiltonian system
with power continuity, which means that the resulting Hamiltonian will be the sum of the sub-
systems Hamiltonians and, similarly, the total dissipation will be the sum of the sub-systems
dissipations. As an example, we consider the interconnection of two Dirac structures, o, and

D, as in the following figure.

N
N

Figure 1.3. The interconnection of two Dirac structures.

In Figure 1.3, two Dirac structures were considered D A C FXF XE XE, with E; = Fi*

(i=12)and D, c F,xF xE xE ;With E = FS*. In this representation, . is the space of
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shared flow variables and E,=F ; the space of shared effort variables. The interconnection
of the two Dirac structures is defined with the following constraints:

fAszBer,eAzeBeE2 (18)

Thus the composition of two Dirac structures, results in:
b oD - j(fl,el, f3,e3)e leEleng 3‘3(f2 ,e2 )e szE 2s.tl
A°EB -
[(fl'el’ f2,e2)e DA and (— f2,e2, f3,e3)e DB J
For the composition of two Dirac structures, the following theorem was proposed.
[16,23,45,46]

(1.9)

Theorem 1.1

Let D, < F XE XF XE, and Dp e F,xE ,XF o xE be Dirac structures.

Then b p°Dpg c FxE xF XE Isa Dirac structure.

30



Below we will introduce some examples of Dirac structures.

1.3.1 Dirac structures examples

One example of Dirac structure, is a transformer [20,21,23], which links two scalar bonds

with flow and effort variables (f, e, )< R?and (t, e, Je R * using the following relation:
f, = af
2= %1 (1.10)
e =-ae,

where « is a constant, called transformer ratio. The generalized vectorial form for (1.10) is:

(1.11)

with (2 ,e2) and [ £b b J pairs of column vectors for the flow and effort variables and A

an invertible matrix of appropriate dimension. Another example of Dirac structure is a
gyrator, which can be defined using the following relations:

f1 = ﬂez

ﬂel = - f2
For p =1, the structure from (1.12) is called a symplectic gyrator. The multi-dimensional case
for (1.12), is given below:

(1.12)

a _ b
= (1.13)

GTe2 -_¢b

where G is an invertible matrix of appropriate dimensions. Other examples of Dirac
structures are ideal k -dimensional interconnection structures such as the 0 junction (common
effort or parallel connection in electricity) or the 1 junction (common flow or serial
connection in electricity) [20,21,23]. Port-Hamiltonian systems are made of the connection of
Dirac structures with energy storing and energy dissipating elements. Those are described in
the next to sub-sections.

1.3.2 Energy storing elements

The energy-storing multi-port element (s ), is introduced as the union of all energy-storing
elements within the system. The port variables for this case are represented by (fS e ),

where fg and e. are vectors of equal dimension, where e denotes the total power

T
S S 'S
within the Dirac structure for the energy storing elements. The complete storage energy is
defined using a state space x , together with a Hamiltonian function H : X — R representing
the energy [23]. The rate x represents the vector of flow variables for the energy storing

multi-port element. For any state x ¢ X , the flow vector x is assumed to be an element of the
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linear space T, x , corresponding to the tangent space of x at xe x . Using local

X

coordinates for the states x = ( xn )|, the flow variables become x = (xl, S T L

X

11
The vector of effort variables is given by the gradient vector aH /ax(x)e Ty X , the dual space
of the tangent space T, x . Using the states coordinates x = (xl, . Xp )T of x , the effort

variables can be vectorialy represented using the vector aH /ox(x) of partial derivatives of the

energy H with respect to the states. This gives rise to the following power-balance equation
for the energy-storing multi-port element:

d_H - <6i(x)‘x>: 6 H (x)x (1.14)

dt oX
The interconnection of the energy-storing elements with the storage port (fS e ) of the Dirac
structure, is realized through the notations:
fo——x,e. =M (1.15)

Thus, the power balance for the storage port is:

d . T
RH ™ (x)x:—eS fS (1-16)

T
9 _H (x)x is the power

The minus sign convention, was introduced due to the fact that .
X

flowing into the energy-storing elements and eg the power flowing into the Dirac

f S
structure.

1.3.3 Energy dissipating elements
As was already introduced above, the second multi-port element r , is related to internal

energy dissipation caused by friction, resistance or others. For this port, the following port
variables (fR eq ) are introduced together with a static relation r . This relation (or its graph)

satisfies:

R FoxEp (1.17)
and:

(erltr)-cR fg =0 (1.18)
for all (f R€R Je R . The static relation R is called an energy-dissipating relation or resistive

structure. Without any power supplied to the external port, the power balance relation for the
whole system becomes:

T
eSf

Using (1.16) and (1.19), we can write:

vel fo =0 (1.19)

H=—egf :e-lgf <0 (1.20)
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A special case for the energy-dissipating relations, appears when the resistive relation can be
expressed using an input-output mapping:

fo-—Fleg) (121)

where F:R™ - R™ satisfies e] Fle, )<o for all eg eR™ (m the number of energy

dissipating elements). In case of linear resistive elements, (1.21) can be expressed as:
fo=-Rep (1.22)

with a positive semi-definite symmetric matrix R =R >0 .
1.3.4 External ports

An external port (fI € ) can be introduced within a Dirac structure interconnection, for the

interaction of the system with the environment. This interaction of the system with its
environment can be realized through a controller or an interaction port. A possible example
of an interaction port, is given by a controlled robotic system interacting with its environment.
Another example of external ports is represented by sources, in electrical circuits where the
input can be the voltage while the current through the source is then the output variable.

egfs+el_;fR+e-lrf|=0 (1.23)
Then (1.20) becomes:

d T T T

EH e fo+e f <e f (1.24)

due to eTR fo <0. This relation can be translated into the fact that the increase of the internal

energy or the Hamiltonian, has as an upper bound which is the externally supplied power.

1.3.5 Port-Hamiltonian dynamics

The dynamic behaviour of a Port-Hamiltonian system, can be introduced using the following
definition.

Definition 1.3 (implicit definition of Port-Hamiltonian systems)

Consider a state space x and a Hamiltonian:
H:X - R (1.25)
defining the energy-storage. A Port-Hamiltonian system on x is defined by a Dirac structure:

DcTy X<T . XF_ XE _ xF . XE

x MU x XERXER X %R
having energy-storing port (f_ e Je T, x«7 J and a resitive structure:
R FpoXE

corresponding to an enegy-dissipating port (f,.e,)e F.xE , . Its dynamics is specified by:
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1 (1'26)
(fR (theq (t))e R(x(t)te R

1.3.6 Input-state-output Port-Hamiltonian systems

A particular class of Port-Hamiltonian systems, is the one of the input-state-output port-
Hamiltonian systems, for which the dynamics is explicitely described by explicit state-space
equations and where the flow and effort variables describing the resistive, control or
interaction ports are splitted into conjugated input-output pairs. This class of dynamic
systems, can be defined using the following system of equations:

\ % =[J(x)- R(x )]aaH (x)+ g (x)u + k(x)d
| X
z:dy=aT 0200 xe X (1.27)
\ 6x
| oH
tZ—k ()ax (x)

where (u, y) are the input-output pairs related to the control port ¢ , while (d, z) corresponds

to the input-output pairs of the interaction port 1. In (1.27) yTuand 2" d correspond to the
power energies of respectively the control and interaction ports. Here the matrix J(x)

(interconnection matrix), is skew-symmetric and the dissipation matrix R(x)= R(x)" >0

positive semi-definite. For a linear resistive relation t_ - -Re_ with R =RT

an input matrix associated to the dissipation port, a Dirac interconnection structure associated
to the explicit input-state-ouput form may be defined as:

[-J(x) —gp(x) -g(x) —k(X)T‘
\
\
|
\

>0 and 95

gt (x) 0 0 0

\
\
| R (1.28)
g7 (x) 0 0 0

T

g
k' (x) 0 0 0o |

I

This structure represents a modulated Dirac structure where the matrices J,g,.g and k

depend on the energy variables x .
1.3.7 Port-Hamiltonian systems examples

This section introduces some examples of Port-Hamiltonian systems, for the lossless or lossy
cases, which will also serve as running examples in the thesis.

1.3.7.1 Lossless Port-Hamiltonian systems

A first example of a Port-Hamiltonian system, is represented by an LC circuit, as depicted in
Figure 1.4.
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Figure 1.4. Controlled LC circuit.

This example considers an LC-circuit with two inductors of magnetic energies H_(», ) and
H, (¢2) (¢, and ¢, being the magnetic flux linkages) and a capacitor with electric energy
H, Q) (q being the charge). In the linear case, the following relations are used:

2 __1t 2 _ 1 52
2L1¢11H2(¢ )2L2 (/)2’H3(Q)_ 2CQ (129)

Considering a voltage source v =u and applying the Kirchoff’s laws, the following input-
state-output port-Hamintonian representation for the considered system results:

Hl(fﬂ )=

on |
. | |
S IV
T IR it @
| | o
6. | Lo
192 L+ o OJIBHI{J
199 ]
y = si (current through the first inductor)
?1
The total energy of the system is:
H(Q,(pl,(pz):H1(¢)1)+H2(¢)2>+H3(Q) (131)
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1.3.7.2 Lossy Port-Hamiltonian systems

For the lossy case, a capacitor microphone circuit is considered as in Figure 1.5.

«—F

]

|f- --\I

R E
Figure 1.5. Capacitor microphone.

In this case, the capacitance c(q) has a nonlinear model as it is dependent on the
displacement q of the right plate (mass m ). Attached to the right plate is a spring (with spring
constant k ) and a damper (with constant ¢ > 0) and also a mechanical force r is considered
for the air pressure due to the sound. The dynamical equations for the displacement of this
system are:

s
aq [
4] |(ro 1 0] 0 0 oﬁlaqi o1 o
Ipl=11-1 0 op}o c O}\Iai|+I1IF+|O|E (1.32)
IQ.l 1y o ol Te o ilwlapi o] 1|
=3 ) LR =
LoQ ]
_oH _
1_6p_
_L1oH
yZ_RaQ_

In (1.32), p denotes the momentum, R the resistance of the resistor and 1 the current
through the voltage source. The total energy of the system, representing the Hamiltonian is
given by the following relation:

o2 v o o e2 Y g2
H(a,p.Q)= P+ —k(a-q) +2C(q)Q (1.33)

where g is associated to the equilibrium position of the spring. Here it should be remarked
that Fq is the mechanical power, while e1 the electrical power of the system. For the

measurement of the mechanical force r , the voltage over the resistor will be used.
Another example of lossy PCH system is represented by a DC motor, as depicted in Figure

1.6, where six interconnected sub-systems may be distinguished: two energy-storing
elements: an ideal inductor L with state energy variable o (flux-linkage) and a rotational

inertia J . with state energy variable p (angular momentum); two energy-dissipating
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elements: the electrical resistor r and the viscous mechanical friction b ; a gyrator K ; an
ideal voltage source v .

Figure 1.6. DC motor.

The Port-Hamiltonian model for the interconnection of these six sub-systems is:
o 1

61 =R -KIL |
| =1 ! +] NV
[Pl Lk by P o)
e |
(1.34)
Bl
L
_ \ |
=0 o]LI
Ve |
and the corresponding total Hamiltonian function is:
_t 2, 2
H(p.(ﬂ)—ZL(ﬂ +2JE p (1.35)

1.4 Motivations and necessity for a Port-Controlled-Hamiltonian systems
identification theory

This subsection, puts in discussion the usefulness and necessity of a system
identification theory for Port-Controlled-Hamiltonian systems, starting from the theoretical
concepts introduced in this chapter. The motivations for a specific identification theory of
Port-Controlled-Hamiltonian systems comes from their remarkable property of power energy
conserving for the complete system, which connects the storage, control or interaction ports,
through a Dirac structure. Compared with the classic input/output formulation for the
structural identifiability analysis, the identifiability of Port-Controlled-Hamiltonian systems
can be analysed (as will be proved in chapter 2), also in terms of storage, dissipation or
control power energies, possibly associated to sub-systems from different domains of
engineering (mechanical, electrical, thermal, etc.). Thus it is possible, by having real-time
informations on the power energies, to determine the dynamic system parameters, given in
state-space form. Using this power energy approach, a new class of identification algorithms
can be proposed in the future, besides the classic known state-space identification techniques.

Another important issue of an identification theory for PCH systems, is their utility
and advantages for model-based control. In this application, the control model needs to be
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representative and suitable enough for the considered dynamical systems. This is the case of
PCH models in many real applications, where these models include enough “physical”
information for the control design, but still are of tractable complexity. As it will shown in the
thesis, PCH systems can be easily adapted, to be used for structural or practical identifiability
analysis, using a broad class of techniques, some being adapted for real-time applications. A
perturbation model can be proposed for these systems (see chapter 3), by introducing an
interaction port of the system with the environment, preserving in this way the general model
structure. It might also be possible to propose in the future, efficient open-loop or closed-loop
identification algorithms specifically dedicated to PCH systems.

Symplecticity (i.e. conservation of the power-pairing form) of PCH systems allows to
identify their parameters using identification techniques in discrete-time form, provided
symplectic discretization schemes are used. For instance, no numerical dissipation (due to the
sampling/discretization) will affect the value of the identified parameters for the dissipation
relation. It will be shown in chapter 4 how continuous-time PCH systems may be converted
to discrete-time form, using a broad class of discretization schemes for the flows and efforts
spaces. A discretization error Hamiltonian can be introduced between the continuous and
discrete-time systems, preserving the properties and structure of the system, which may be
used to get structured information on the power error energies. Due to their remarkable
structure, identification procedures and algorithms can be developed for PCH systems, to
identify only the parameters with a physical meaning.

1.5 Thesis objectives

The main goal of this thesis is to check the possibility to develop a specific identification
theory for PCH systems. Thus the main objectives proposed for the thesis are: the structural
and practical identifiability analysis of PCH systems using classic or new (specific) proposed
techniques; the selection of proper symplectic time-discretization techniques which combine
the flow and effort discretization and conserve the main characteristic properties of PCH
systems; the introduction of a discretization error Hamiltonian between the continuous and
discrete-time PCH systems for the error analysis; the description of discrete-time PCH
systems using matrix 1/0 equations, orthogonal or oblique projections for the selected
symplectic discretization schemes, suitable for state-space identification algorithms; the
selection, analysis and development of state-space identification algorithms for PCH systems
in the deterministic or stochastic cases.

1.6 Summary of the thesis

The introduction was dedicated to a general presentation of system identification and Port-
Controlled-Hamiltonian systems theories, as well as for the motivations to develop an
identification theory for PCH systems. It ends with the main objectives of the thesis and a
summary on chapters.

In chapter 2, a structural identifiability analysis of PCH systems is proposed using
several classical or new (specific) techniques. As classic techniques were selected: the
observability/controllability analysis, the direct test or the power series expansion. A new
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proposed identifiability analysis is realized using the power energies corresponding to PCH
systems ports and thus, new specific definitions and propositions are proposed for the global
and local identifiability. Also a new concept of port identifiability is introduced, specific to
the unknown parameters associated to one port of a PCH system. For each identifiability
analysis technique, examples are proposed for the lossless and lossy cases using the LC
circuit, the capacitor microphone circuit or the DC motor models. A complete set of proofs for
the results of chapter 2 may be found in Appendix A to C.

In chapter 3, a practical identifiability analysis of PCH systems is proposed using the
observability/controllability concepts, in the presence of a proposed perturbation model. As
the system perturbation is caused by the interaction of the PCH system with the environment,
it is introduced a perturbed model, by an input/output pair corresponding to the interaction
port. Thus the states and the system outputs have a perturbed model, as for classic state-space
systems. In this case, it is proved the conservation of basic PCH systems laws, when
converting to the observable canonical form for identifiability analysis in the presence of a
perturbation model. Again, the LC circuit, capacitor microphone circuit and DC motor
examples are used as examples to illustrate the practical identifiability analysis.

Chapter 4 introduces a symplectic time-discretization framework for PCH systems,
using different discretization rules for the flows and efforts. As discretization rules for the
flows and efforts of PCH systems were selected the implicit/explicit Euler rule, the implicit
mid-point rule or the implicit trapezoidal rule. The second part of the chapter introduces the
difference between two PCH systems and its application to the definition of a discretization
error Hamiltonian system between the continuous and discrete-time systems. The LC circuit
and the capacitor microphone circuit are considered for the lossless or lossy case as examples.
In appendix E can be found a complete set of symplectic discretization schemes using the
selected discretization rules for the flows and effots, which are proved to conserve (or not) the
basic PCH systems properties in discrete-time.

Chapter 5, makes an analysis of the subspace identification algorithms for PCH
systems using the time-discretization schemes of chapter 4. Thus matrix I/O representations,
orthogonal or oblique projections are proved and defined for the selected schemes. For the
analysis using the identification algorithms, it is selected a simple scheme that uses Euler
rules for the flows and efforts and gives a similar state-space structure as the classic one. First
the analysis is realized using classic state-space algorithms and then a new context is
proposed for a power energy approach, that makes use of the inputs/power energies
knowledge. The system identification analysis is performed using a DC motor model, to
illustrate the results. Thus it is proved that performing the estimation algorithms, equivalent
PCH systems can be found, which preserve the PCH systems structure.

Chapter 6 draws the main conclusions that result at the end of the thesis on each
subject proposed for study throughout the thesis. Also are introduced the personal
contributions and perspectives for further work on identification of Port-Controlled-
Hamiltonian systems.
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2. Structural Identifiability of Port-Controlled-Hamiltonian
Systems

This chapter presents a theoretical and practical analysis of Port-Controlled-Hamiltonian
systems structural identifiability, using general concepts from classic identification theory
and also introducing a new approach making use of the power-port energies. Classical
observability/controllability or direct tests for structural identifiability are investigated. For
each of these tests, a general rule is found to be used for Port-Controlled-Hamiltonian
systems. Using the power energies associated to the ports, new definitions are introduced for
the global/local identifiability of Port-Controlled-Hamiltonian systems and also a new
concept of port-identifiability is proposed. Three examples are considered: a LC circuit for
the lossless case and a capacitor microphone circuit and DC motor for the lossy case.
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2.1. Introduction

The system identification field uses statistical methods to build mathematical models

for dynamic systems on the basis of measured datas. Among the main issues in system
identification are the optimal design of experiments, necessary to generate efficient
informative datas for fitting such models as well as model reduction [1,4,44].
Related to the field of system identification, the following notions have been introduced in the
literature: theoretical or structural identifiability, practical identifiability (being used when
experimental datas are perturbed with noise) or sensitivity analysis, which is used in
mathematical modelling, to evaluate the sensitivity of the output variables, to parameter
values and input variables [45]. This chapter makes a theoretical and practical analysis of
Port-Controlled-Hamiltonian systems structural identifiability, which form a class of
nonlinear systems very useful for multiphysics systems modelling and control problems [23].
The concept of structural identifiability was first proposed by Bellman and Astrom [46],
where identifiability analysis is performed by exploring the model structure and verifying
whether the system parameters have a unique solution, globally or locally, using the
knowledge of the input-output signals (see [46,47,48, 49] for application-oriented papers or
[50,51,52,53,54] for theoretical contributions on structural identifiability). Some of the main
structural identifiability techniques for linear systems are: the Laplace transform [45, 46, 55,
56], the power series expansion proposed by Pohjapalo [45,46,55, 56,57] or the similarity
transformation, proposed by Walter and Lecourtier [45, 55, 56, 58]. Another useful approach
for structural identifiability is the direct test. This test, represents a direct analysis of the
parameters identifiability, using either the global or local identifiability definitions,
analytically [45,59] or numerically [45, 60]. Although PCH systems are basically knowledge
based models which may be described using only a limited number of physical parameters,
quite surprisingly enough very few studies investigate issues related to their identifiability,
even the structural identifiability analysis. It should be mentioned the exception of [61] where
the very particular application case of a heat exchanger is studied. The aim of this chapter, is
therefore to explore the structural identifiability of linear PCH systems. In section 2.2, the
identifiability definitions which will be used for the structural identifiability analysis are
reiterated. Section 2.3 proposes a transformation of linear PCH systems to the observable
canonical form. In section 2.4 the structural identifiability of PCH systems is analyzed, using
either the observability/controllability concepts or the direct test. Section 2.5 proposes a new
approach for the structural identifiability analysis of PCH systems, by introducing a new set
of definitions for the global/local identifiability, using the powers associated to each port,
together with a new concept of ‘port-identifiability’. Section 2.6 is dedicated to examples for
the indentifiability characterizations developed in sections 2.3, 2.4 and 2.5 using an LC circuit
for the lossless case or a a capacitor microphone circuit or a DC motor, for the lossy case.
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2.2 Definitions

Let us consider the dynamical system:
X(t)=g(t, x(t)u(t),0) (2.1)
y(t)=h(x(t)u(t)e) (2.2)
where x(t)e R™ is a vector of state-variables, y(t)e R represents the measurement or output
vector, u(t)e R P the known system input vector and ¢ < r 9 the parameter vector [1,4, 45].

Definition 2.1: Controllability [45,62]

For the dynamical system(2.1) - (2.2), a (nonzero) state x X is controllable to the zero state,
if there exists an input function a(t) and a time T <o, such that @ (@, x,T )=0 (where

o (i, x,T ) is the trajectory with initial condition x(0) = x and input u(t), t< 0,7 |).

Definition 2.2: Observability [45,62]

A state xe Xxis unobservable if y(t)=co(0,x,t)=0 for all t>o0, ie, if x is

undistinguishable from the zero state for all t > 0. The unobservable subspace x " of x |,
is the set of all unobservable states of the dynamical system (2.1) - (2.2). The system (2.1) -

(2.2) is completely observable if xU"°PS  — (o}

The controllability and observability definitions, represent two basic concepts in system
identification, due to the connections realized between the inputs, states and outputs of a
dynamic system represented in state-space form [1,4,45,62] and also, may indicate when the
system is identifiable. For example, the observable canonical (minimal) form of a system, is
identifiable when it satisfies also the controllability condition. This however doesn’t give any
information on the identifiability of the parameters from the original A,B,c realization
(which may be non-minimal, for instance). The observability/controllability will be
considered as necessary conditions for (global or local) structural identifiability as defined
hereafter. In 2.4 the observability and controllability will be used for the identifiability
analysis of PCH systems written in a minimal (observable canonical) form. Next are defined
two central concepts of global and local identifiability introduced by Glad and Ljung
[1,4,45,62].

Definition 2.3: Global Identifiability

The dynamical system (2.1) - (2.2) is said to be globally identifiable, if for any admissible

input u(t) and any two sets of parameter vectors o, and e, , from the parameter space o ,

the following equality y(u,0, )= y(u.0, ) holds if and only if o, =0, .
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Definition 2.4: Local identifiability

A dynamic system defined by (2.1) - (2.2) is said to be locally identifiable, if for any e within

an open neighborhood of some point 6 in the parameter space o , the following relation
y(u.0,)=y(uo,) holdsifand only if o, =0, .
The above two definitions are useful in section 2.4, 2.5 and 2.6 for the direct test
identifiability analysis of PCH systems parameters and for the introduction of new definitions
using the power port energies and also for identifiability examples. Another concept in
identification is given assuming an initial known state, or local strong identifiability, also
termed as x,, identifiability [45,70,71].

Definition 2.5: Local strong identifiability (x, identifiability)

For an admissible input u(t) in the time range of interest [to ,tlJ and for a given initial state
Xg = x(tO ), which is independent of ¢ and not an equilibrium point, if there exist an open set

0

© ° within the parameter space o such that, for any two different parameter vectors

O - -
6,.0, 0", the solutions x(t,0,u) exist on [to,to +e (ty <e<t, -t,) forboth o, and o, ,

2 1
and yft.0,,x,.ut)= ylt.o,. x,.ut) on ft;.t, +e], the system structure is said to be locally

strong identifiable (or x, identifiable).

This definition is introduced, as it is related to the power series expansion identifiability test
of PCH systems presented in section 2.4.3. In some sense it is a local identifiability analysis,
which is local both for the states space and time, being in that sense very similar to the related
concept of local observability for non-linear systems. Other definitions for identifiability have
been introduced for practical or theoretical reasons. Some of them may be found in [46, 64,
65, 66].

2.3. Observable canonical form representation of PCH systems

This section, presents a proof for the conversion of PCH systems to observable canonical
forms, conserving the basic properties of PCH systems, by which they are defined. This result
will be used in section 2.4 to prove structural identifiability result for PCH systems.

Remark: The observable canonical form representation can be applied only for SISO PCH
systems.

In the linear time-invariant lossless case, a PCH system reduces to:
x(t)= JQx (t)+ Bu (t)

T (2.3)
ly(t)=B" Qx(t)
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where (u, y) is the input-output pair corresponding to the control port, J is a skew-symmetric
interconnection matrix and the Hamiltonian(energy), is H = x' Qv 2 where @ is assumed to
be symmetric positive definite. The system (2.3) may be written in the usual state-space form:

X = AX + Bu (2.4)
y = Cx

Witha=10Q e R™ | BeR™™ and c =87 Q< R ™" . In order to express this system
in the observable canonical form, a transformation matrix is applied:

Xobs = Tops * (2.5)
where:
T _[T T . n—-1,T 1
T obs _LC (CA) (7 |
is the usual observability matrix. The obtained observable canonical form reads then:
[ _ -1
%Ixobs _Tlobs QT obs Xobs * Tobs BY (2.6)
lly =CT obs *obs
with:
[0 1 0 0 b, 1
* B
) 0 1 0 | b
| | | 2
T obs QT obs :} ' I‘Tobs B :IbS } 2.7)
0 0 0 1 looe | '
I a -a -a -a | | b |
[~ ¢9n n-1 n-2 1] !
ctTl -p o 0o o o]

To prove that (2.6) still has the PCH form, it is sufficient to introduce an equivalent form:

jxobs - Jobs Qobs Xobs * Bobs u 28
e (2.8)
ly_ obs “obs

with:
-1
CT =C (2.9)
T

Using standard matrix computations and properties of the the matrices applied to the original
system (2.3), one then obtains the following results: (see appendix A.1 for details)

b3 =30 -1 T

[

|~ obs obs obs ~ obs

l AT ) -1

lQobs h Qobs B Tobs QT obs (2'10)
| _ T _ T -1

[C obs ~ Bobs Cobs =B T obs

which prove that (2.8), still has the usual explicit PCH form. Applying the same ideas for the
lossy case:
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Xx=(J -—R)Qx + Bu

2.11
e (2.11)

where R is some positive semi-definite (R =RT

observable canonical form:

>0) dissipation matrix, results in the

-1 +T . Bu

X =T (J - R)QT obs Xobs obs (2.12)

(

| “obs obs
1 4
Ly =CT obs *obs
Equivalently this may be written:

jxobs - (‘] obs Robs )Qobs Xobs Bobs u (2.13)

[y = C:obs Xobs

with:

o_bs - (‘] obs ~ Robs )Qobs
cr 1 -c (2.14)
B

Using standard matrix computations together with the properties of the J ,rR and @ matrices,
one gets:

T Ap -1

( AT

IQobs _Qobs _Tobs QT obs =0

J _ 4T _ T

| J obs J obs Tobs T obs (2'15)
| -r" = T

[Robs Robs Tobs RT obs =0

This allows to conclude that (2.13) has the usual explicit PCH form (see Appendix A.2 for
detailed computations).

2.4 Structural identifiability of PCH systems

This section presents an analysis of PCH systems structural identifiability, using either the
controllability/observability definitions, direct test or the power series expansion. For each
proposed identifiability test, both the lossless and the lossy cases are considered. As was also
presented in section 2.2, two basic conditions which must be satisfied for a state-space system
to be identifiable (using a minimal realization) are the observability and controllability of the
system. As a consequence the direct test or power series expansion will be applied to prove
respectively the identifiability, assuming first that the system is observable and controllable.
Omitting this necessary conditions for the identifiability tests, situations may be encountered
when the parameters are identifiable according to the selected test, but the system being
unobservable or uncontrollable, the transfer function degree reduces by simplifications and
some parameters of the original (A,B ,C ) state-space realization might not be analyzed
[1,67]. All identifiability tests analyzed in this work may be considered as roughly equivalent,
since they all search for a unique solution of the unknown parameters. However the
observability/controllability identifiability test, the direct test or the power port test are related
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with the global and local identifiability definitions, while the power series expansion test is
related to the local strong identifiability (see section 2.2).

2.4.1 Observability and controllability analysis

This part of section 2.4 proves the structural identifiability of PCH systems in the lossless and
lossy cases, using the observability/controllability concepts introduced in section 2.2, for a
minimal realization representation of the dynamic system. For the observable canonical form
representation of PCH systems (see section 2.3), it is only necessary to prove that:

T n-2 n-1 1 2.16
ID _LBobs Aobs Bobs obs Bobs Aobs Bost ( ) )

is full rank, which means that the pair (Aps *Bops ) is controllable. Using basic properties of

R

matrix multiplication, transposition, inverse, together with PCH systems properties, it may be
found that (see appendix B.1.1, formulas (B.1)-(B.21), for details):
Rip = Q[B ~AB .. (—1)”‘1[A”‘1BMB AB ... A”‘ls} (2.17)

Then, the following proposition from [69] may be used:

Proposition 2.1:

Consider the linear lossless Port-Controlled-Hamiltonian system from (2.3)

a) If (2.3) is observable, then det @ = 0 and (2.3) is controllable.
b) Assume det Q = 0, then (2.3) is observable if (2.3) is controllable.

Therefore a minimal condition, for the identifiability of linear lossless PCH systems, is that
the dynamic system (2.3) is observable. In the lossy case, the structural identifiability matrix
has the form:

r ~ ( ) | 2.18
Rip = I_Tobs B Tobs (3 —R)QT obs Tobs & obs (0 —R)QT obs T obs BJ (2.18)
where Tobs is the usual observability matrix, given in the case of lossy PCH systems as (see

appendix B.1.2, equations B.22-42, for details):
ws =010 Catate) 1) () ey (2.19)

with:
def

A" = (J+R)Q (2.20)

The following generalization of proposition 2.1 may be proved (see appendix B.1.2) also in
the lossy case.
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Proposition 2.2 [193]:

Consider the linear lossy PCH system (2.11), defining A" = (J +R)Q :
a) If (2.11) is observable, then det Q = 0 and the pair (A”,B) is controllable;
b) Assume det Q = 0, then (2.11) is observable if (A", B) is controllable.

Using the result from (2.18) and (2.19), the identifiability matrix, can be also expressed as
follows (see (B.43-49) in Apendix B.1.2):

R|D=Q{(—1)OB 1t (a"B) ... (—1)”*1[A"”‘1BMB AB .. A”‘ls} (2.21)

Therefore, it may be concluded, for instance, that a lossy PCH system is identifiable if it is
observable (then according to proposition 2.2, det Q = 0 and the pair (A", B) is controllable)

and controllable (i.e. the pair (A, B)=((J - R)Q, B) is controllable).

2.4.2 Direct identifiability

The direct structural identifiability test, relies on the global or local identifiability definitions
(see section 2.2) which states that the output equality:

y(u,@l): y(u,@z) (222)

holds if and only if ¢, =6, (where ¢ ,6, are parameter vectors from e ). A linear lossless

PCH system may be represented either using the unstructured (usual) state-space realization:
x=Alo ) k+Blo,g h

y==¢ 0 K 229)
where ¢ .0 .0, <© represent the unknown parameters, included in the A,B,c
matrices, or using the structured realization:
(%=(3Q )0, K+BlO,g k
(2.24)

et o b

T

where 3 = -3 T is a skew-symmetric matrix and Q =Q " > 0 is a positive definite matrix. In

the case of the structured realization for PCH systems, the interconnection matrix J = -3 7 is
generally known. It reflects the interconnection relations (such as Kirchoff’s laws in electrical
circuits or balance equations in the general case). It is very often built only with elements in
{-1,0,+1} (or any other non-parametric finite set of numbers), even in the hybrid (switching)

case where 3 =37 (t). Therefore, the ¢ wa Opg Opc < © Pparameters in the state-space
form (2.23) are usually the elements from the @ (and possibly B ) matrix. Parameters in the
Q matrix typically characterize the constitutive energy storing equations. Using the direct
identifiability test applied for the PCH systems (2.23), we can write the following relation:
flxu,0,)= flu0,) (2.25)

where:
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def %
f =
Y
and ¢,.6, < © represent two set of unknown parameters corresponding to two distincts sets

2
of A,B,c matrices which characterize the PCH system. It is easily seen that the relations:

[HHAl “%ha 2
ngBlngB 2 (2.26)
1%Hc 1= PHe 2

need to be satisfied to obtain structurally identifiable parameters On g Ope < © (see

Appendix B.2.1, for detailed computations). In (2.26) O a1 %81 %c 1@ and

On 2O 2 %pc o < © represent two sets of unknown parameters included in the state-

space matrices A,B,c of a lossless PCH system. With the assumptions that J = -3 7 s
skew-symmetric and Q =Q ' >0, the lossless system (2.24) is thus necessarily structurally
identifiable for this test. In the lossy case, a supplementary dissipation matrix R =R' >0
arises from the dissipative constitutive equations. In this case (2.23) becomes:

JX =(O-RR)Oyy K+ BlO g k

re(eTeou )

and similar computations (see Appendix B.2.2), allow to conclude that the following relations
need to be satisfied:

(2.27)

[ -
“vn1 = %Ha 2
Je

He1 = “HB 2 (2.28)

Phc1 = PHe 2
to prove the structural identifiability of the lossy PCH system (2.27) parameters
On g Opc <©- In (228) 0,,,0, 5,0, c,c© and o, .0 5,0, ,¢<0©

represent two sets of unknown parameters included in the state-space matrices A, B,c , which

define a lossy PCH system, for which the direct identifiability test is applied. In case we don’t
obtain direct relations between the parameters, as in (2.26) and (2.28), we can get equality of
repports between the unknown parameters and thus obtain unidentifiable parameters.

2.4.3 Power series expansion identifiability

In this paragraph we will test linear PCH systems for local strong identifiability (x0

identifiability). A general mathematical formulation will be found and demonstrated for the
lossless and lossy cases, using the power series expansion approach to test the structural
identifiability. Starting from the explicit state-space form of a PCH system (2.23), the
following general relations:

a )=y g (229)
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may be computed. Step by step computations (see appendix B.3.1, formulas (B.58-85)), in the
lossless case, lead to:

2, )87 0, { 1 (8T gy ) Rl b5 24T oy ) 00y ol w-l-”] (2.30)

2
for at least: k>_—"" 1 nm relations, corresponding to the unknown parameters. These

relations have to be solved for the unknown parameters included in the matrices @ (with
[n 2, nj/Z parameters) and B (with nm parameters). In the lossy case, the general state-

space representation of linear PCH systems is:
jx =(3-RRQNO, K+ Bl b

2.31
|y = C (9 HC )x ( )
The k" order term of the power series expansion (2.29), has then the following form:
k-1 . e
ak(t0)=[BTQ)(0HC {AK(QHA x + EOA'(QHA JB(o,g ! ”j (2.32)

Using PCH systems properties and step by step computions, similar to the ones for the
lossless case (see appendix B.3.2, (B.86-B.101)), one obtains:

( k T k ]
( D (A + Ares | (0, )] @0, e+
leo Ioss * Ares )T (GHA )J Q(QHA )"(k - I)J

for at least:

k2n2+n+nm

relations, with:
def

(A * Ares )T = (3+RR)" =Q(R-J)

It may be noticed that, for the lossy case, the minimal number of equations to be solved using
the power series expansion test is given by the number unknown parameters included in the

matrices Q (with (nz +nj/2 parameters), r (with [nz +nj/2 parameters) and B (with

nm parameters). If the solution of (2.30) (lossless case) or (2.33) (lossy case), for the
unknown parameters is unique, then the PCH structure is considered to be locally strong

identifiable or X, identifiable. Using the general results from (2.30) or (2.33), the following

proposition can be formulated for local strong identifiability of PCH systems.
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Proposition 2.3

A linear Port-Controlled-Hamiltonian system is local strong identifiable or X, identifiable,

when the system (2.30) or (2.33) of equations, representing the lossless and lossy cases, has a
unique solution of the parameters.

This proposition represents a generalization of the results for the lossless or lossy PCH
systems, when applying identifiability tests in a local point of interest on the system’s
trajectory.

2.5. Energy based identifiability

This section investigates local and global structural identifiability of linear PCH systems from
known informations on powers through the ports, associated to the unknown parameters to be
identified, introducing a new concept of port-identifiability. From (2.11), the unknown
parameters considered for PCH systems in the general lossy case, are represented by the
positive semi-definite symmetric matrices Q e R™™ and rR< R™" and by the input matrix

Be R™™ | while the skew-symmetric interconnection matrix J < R™" is generally known.
The energy based identifiability analysis, is realized starting from the observation that the
power energies associated to each port are related with the considered unknown parameters.
Moreover, the relations between powers in the ports and unknown parameters have a
triangular (partially decoupled) structure and the identifiability analysis may be realized
separately for each port of the PCH system, as it will be shown later. The energy based
approach proposed in this section for the identifiability analysis of port-Hamiltonian systems
can be applied also in the nonlinear case, where the model is more complex but the
interconnection structure is still a Dirac structure. Obviously, in the nonlinear case,
unidentifiable parameters may also result from the non-injectivity of the interconnected
subsystems constitutive equations. Similarly to previous sections, we assume that the PCH
system is observable and controllable before performing this identifiability analysis. Using the
usual input/output pairs of conjugate variables (efforts and flows), the power associated to
each port of a PCH system may be explicitly computed. These power variables are quite often
the variables which can be effectively measured. This justifies identifiability definitions
specific for PCH systems. Let us consider the general lossy case:

jX:(J—R)Qx + Bu
ly = BTQx

Introducing in (2.34), the storage (s ) and control (c ) port variables fg=—%,eq =Qx , and

(2.34)

e. =y, o0negets:

C
J—fs =(J-R)eg +Bf
(2.35)
{ec = BT eS
From (2.35), we observe that f e and ec Mmay be computed from the unknown

parameters 99 (storage), o, (control) and ¢ (dissipation) parameters, solving a triangular

system of the form:
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i[fs =F(9R,9Q,93j

4:ec = F(GB,GQJ (2.36)
|

|

leS =F [HQ J
As previously, the interconnection matrix J is assumed with constant known parameters
(very often the J interconnection matrix is considered as symplectic and built only from +1

or —1 values). In (2.31), ¢ includes (at most) (n? + n)/2 unknown real parameters from the

R

semi-positive definite dissipation matrix r, 6 . the (n? + n)/z (at most) unknown real

Q
parameters from the positive definite @ matrix and ¢, (at most) the nm unknown real

parameters included in the input matrix s . Using the definition of port conjugate variables
(from the power pairing (1.1)), the power associated to the storage port may be written as:

P :e; fg = (0x ) (3 —R)Ox - Bu) (2.37)
The powers corresponding to the control and dissipative ports are:
T
T T
Pe =l Te :[B ij u (2.38)
T T
Pa el fo=el Rk, (2.39)

We will now adopt the direct identifiability test approach from section 2.4.2 and consider two
independent sets of parameters for the PCH system in (2.34). The storage port powers can be
written then:

Psy = (le)T (-(-Rr R x-B,u) (2.40)

PSZ:(sz)T FO-R,R,x-B,u) (2.41)

Since the powers Poy and P, represent known variables, using the direct identifiability test,
we may assume P, =P, , that is:

(le)T (~(o- Rl)le— Blu): (QZX)T (- R, )sz— Bzu) (2.42)

The above relation can be further developed:

T T T _
- X QlJle+x QlRlle—x QlBlu_

. ) ; (2.43)
=—X QZJQ2x+x Q2R2Q2x—x Qszu
Moving the right elements to the left in (2.43), the following relation results:
T T
X (QlJQl_QZJQZ)X+X (Q1R1Q1_Q2R2Q2)X (2.44)

T
—x (QlBl—QZBZ)Jzo

Due to the skew-symmetry property of the interconnection matrix J , the 1% term of (2.44) is

zero and we can write then:

x"[Q;R,Q, -Q,R,Q, x-x" [Q,B,-Q,B, k=0 (2.45)
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Then we can write the following relations:
leRlQl =Q,RyQ;
Q181 =Q, B,
in order for (2.45) to hold. In order to solve (2.46), we will consider further two sets of
unknown parameters, associated to the dissipative port:

PR1 = eg - Rl)eR (2.47)

Py =en R, kg (2.48)
Using the direct identifiability test applied for the power of the dissipative port, the following
relation results:

(2.46)

en R kg =ef R, BL (2.49)
or:
en-R +R, P =0 (2.50)
From (2.50), we can deduce:
R,=R, (2.51)

which means that unknown parameters matrices R, ,R, associated to the power energies of

172
the dissipative port, for two independent sets of parameters are equal. In this case, it must be
underlined, that the direct identifiability test, using the power energy associated to the
dissipative port, takes in consideration only a subset of parameters, given by the resistive
matrix R and also that the test, can be applied independently of the direct identifiability
result obtained for the storage port or control port. Replacing the result from (2.51) in (2.46),
we can write the following relation:

QR1Q1 =Q,RQ,y

(2.52)
Q181 =Q,8B,

Multiplying further the first relation in (2.52), with the inverste‘1 to the left and right, it

results:
-1 -1

R1=Qp "Q,R1Q,Q (2.53)
where Q, is assumed non-singular. This relation is satisfied if and only if:

[~ -1

Q, Q, =1

I (2.54)

{Qle_l =
that is:

Q, =Q, (2.55)
Replacing the result from (2.55) in (2.52), it results:

JQlRlQl =Q;RQy (2.56)

Q181 = Q1 By
Multiplying the 2" equation in (2.56) with Ql‘1 to the left it results:
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B, = B, (2.57)

From (2.51),(2.55) and (2.57) it results that the unknown parameters Q,,8,,R, and
Q,. Ry Qy: corresponding to the storage port power energies from (2.40) and (2.41) are
equal to:

(Ql

2
(2.58)

| 2

P17 P2
when applying the direct identifiability test. From these results, we may conclude that
knowing the powers associated to the storage and dissipation ports are sufficient to analyse
the identifiability of all the parameters included in the Q,RrR,B matrices, which define the
general structured representation of a lossy PCH system as in (2.34). It should be remarked
that for the lossless case, the first relation in (2.46) dissapears and it might be possible not to
characterize all the parameters for identifiability. When measurements are available from the

control port, the following relation between the control power and system’s parameters will
be used (see (2.35) and (2.36)):

Q
R, =R
B, =8B

T T
Pe =¢¢ fc :[B Qx] u (2.59)
For two sets of unknown parameters, the powers associated to the control port have the
following form:

T
Peq = (BlT le] u (2.60)
T
Pczz[B-ersz u (2.61)
Applying the direct identifiability test and assuming Poy = Pcgpr WE have:
xT Q,Byu =xTQ282u (2.62)

Moving to the left the right elements, the relation becomes:
X' (lel—QZBZ)J:O (2.63)

From (2.63), the following relation can be written, between the unknown parameters included
in the power energies associated to the control port:

Q,B,=Q,B, (2.64)
In this case, the direct identifiability test, using the power associated to the control port,
applies only for a subset of parameters given by the Q,B matrices. This test might give
unidentifiable parameters when it is applied independently from the results obtained using the
power energy associated to the storage port and dissipation port. However, when all the power
energies are known, since the unknown parameters Q;,B; and Q-,B; are also parameters used
in (2.58), then we may conclude from (2.64) that:

Q,=Q

J L2 (2.65)

1B =8B,
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When the B matrix comes from structural relations (or is perfectly known), the control port
power may be tested independently from the storage and dissipation ports and (2.64) allows to
analyse for identifiability only a subspace of the storage parameters (parameters from the Q

matrix). Another observation is that the control and dissipative power energies allow the
identifiability analysis of only a subset of the parameters given in the @ , B and r matrices,

while the storage port power allows the analysis of all system’s parameters. In any case, it may be
noticed from the previous developments that a PCH system can be analyzed for structural
identifiability using only the powers associated to the ports (a single variable for each port),
and not necessarily using the usual input/output pairs (used in the general identifiability
definitions of section 2) which are required for classical systems. The resulting structural
identifiability analysis may be splitted into sub-problems using the triangular form of system
(2.36), each sub-problem corresponding to power energies for the storage, control and
dissipation ports of the PCH system. Using these observations and the results from (2.58) and
(2.65), we will now reformulate the definitions for global and local identifiability, specifically
for PCH systems. Then we will define a notion of port-identifiability associated to each
independent port.

Proposition 2.4: Global Identifiability

A lossy Port-Controlled-Hamiltonian system represented in state-space form (2.34), is
said to be globally identifiable if, for any energy variables x(t) in the finite-dimensional

state-space manifold x , any input u(t), any dissipative port effort variable e, (t) in the

total Dirac structure b and any two sets of parameter vectors

0 10ps 2:9pc1:0pc 2:%pr 1 Opr o 1N the parameter space e, corresponding

respectively to the storage, control and dissipative ports, the following relations:

P X”6’P31 P lu0pg, )
j| x u, 9PC1 PC (x,u,HPCZ)
l R(RHPRl) F’R(eR'ngz)
hold between the power energies, if andonly if 6 o =0, ,. 051 =0pc 5 O0pr1 =R 5 -

Proposition 2.5: Local Identifiability

A lossy Port-Controlled-Hamiltonian system represented in state-space form (2.34) is
said to be locally identifiable if for any: energy variables x(t) in the finite-dimensional

state-space manifold x , any input u(t) any dissipative port effort variable eg(t) in the

total Dirac structure b and any two sets of parameter vectors

Ops19ps 2:%pc 1% 2:9pr1 OPR 2 within an open neighborhood of some points

B;S , H;C : H;R in the parameter space o , corresponding respectively to the storage,

control and dissipative ports, the following relations:
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( =
JPS(x,u,HPSl) PS(X’U’QPSZ)
‘PC (x,u,@PCl): Pc (x,u,HPC 2)
Prler Ppr1)= Prler Opg ;)
hold between the power energies, if and only if 9551 =9ps 2 %pc1=%pc 2 %r1=9pR 2 -
In the above two definitions, Ops1%s 2 %pc 1 %pc 2 and 6, .6, , represent two sets

of unknown parameter vectors, from the parameter space e , corresponding to the storage

power port P , control-port power port Pc and dissipative-port power port P, , respectively

given in (2.37), (2.38) and (2.39). Starting from the above definitions, more appropriate
definitions can be formulated only for a particular port, corresponding to a Port-Hamiltonian
system, using the power energy formulation, introducing in this way, a new concept of port-
identifiability.

Definition 2.1: Global port-identifiability

Let consider the port T of a lossy Port-Controlled-Hamiltonian system represented in state-

space form (2.34). Let define x. :=(x,u) when T is a storage or control port or x_ =e

T T ~°R
when T is a dissipation port. Then, the port T is said to be globally identifiable, if for any x

any two sets of parameter vectors o, .6, in the parameter space e associated to port T,
the following relation P (x; 0., )= P (x; .0, holds between the power energies if and

onlyifo. =o0.,.

Definition 2.2: Local port-identifiability

The port T of a lossy Port-Controlled-Hamiltonian system represented in state-space form in (2.34),

is said to be locally identifiable, if for any iT (as in definition 2.1) and any 051915 within an open

neighborhood of some point eT* in the parameter space © associated to port T,

holds between the power energies, if and only if 0;,=0

X .0 )=P

Pr oy 0ry X

r Kr0r,) T2

In the above two definitions, depending on the selected port for identifiability analysis, x

represents the pair (x,u) corresponding to the parameters included in the power of the storage

port Ps (defined in (2.37)), control port Pc (defined in (2.38)) or alternatively x, =e, stands

for the effort associated to the dissipative port, P (defined in (2.39)). In any case, ¢..,.0.,

represents two sets of unknown parameter vectors from the parameter space e , which
describe the chosen PCH system port’s power p.. . When compared to the previously selected

structural identifiability tests for PCH systems, the power based energy formulation has the
advantage of splitting the whole structural identifiability analysis into sub-parts,
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corresponding to the system’s ports, using the power of these ports as known variables. In this
way, it is possible to observe that a sub-set of parameters, corresponding to one of the
system’s port are identifiable, without performing the whole identifiability analysis.

2.6 Structural identifiability examples

This section presents some structural identifiability analysis examples, where the results from
sections 2.3, 2.4 and 2.5 are applied to PCH systems, using the observability/controllability
definitions, direct test, power series expansion or the new propositions and definitions based
on power energies, presented in section 2.5. The systems considered as examples are a
lossless LC circuit, a lossy capacitor microphone circuit or a DC motor (see section 1.3.7).

2.6.1 Observability and Controllability analysis

In the case of the lossless PCH systems represented by an LC circuit, it can be proved that the
determinant of the identifiability matrix r j from (2.17), has the following form (see detailed

computations in Appendix C.1.1):
1

det R ID = - W (266)
12
The above determinant is different from zero (det R =0 ), when:
[C # oo
L, # & (2.67)
|LL2 # Foo

When (2.66) is satisfied, the identifiability matrix r is full rank and the LC circuit model is

observable and controllable, from which the LC circuit system is structurally identifiable in
any minimal realization form. In the case of the lossy capacitor microphone circuit, it can be
proved that the system is not observable (see Appendix C.1.2 formulas (C.6-8)), because the

observable transformation matrices T obs 1 Tobs 2 corresponding to the inputs 8,8, are rank

defficient. Due to the fact that the capacitor microphone circuit is not observable, it is not
structurally identifiable in a minimal realization form. In this particular case, before applying
some estimation methods for the parameters, it is necessary to have a closer view on the
model structure to obtain an observable/controllable dynamic system or to propose or apply
other identifiability analysis technigues. Therefore the DC motor example will be considered
as an illustration for the lossy case. Indeed it satisfies the observability/controllability
conditions assumed initially for the structural identifiability analysis. For simplicity of the
computations we will assume that the interconnection matrix J contains only +1/-1 values,
which means that the gyrator transformation coefficient is considered to be k =1 for the DC
motor. In this case, it can be proved that the determinant of the identifiability matrix from
(2.21), has the following value:

det R, = — — (2.68)
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The necessary conditions for this determinant to be different from zero are:

R#+/-w

[‘]E #+ /- (2.69)

A complete proof of the result (2.68) can be found in Appendix C.1.2, formulas (C.9-13).

2.6.2 Direct identifiability

As was explained in section 2.4, this identifiability analysis assumes that the necessary
conditions of observability/controllability are satisfied. The direct test examples presented
below are performed using the global identifiability definition presented in section 2.2.

Using the direct identifiability analysis in the case of a lossless PCH system, represented by
an LC circuit (see section 1.3.7), the following relations can be written:

T . L] i . L]

}\ 0 - | [ 0 - -]

‘} 11 Lo1 I 0] } Lo Lo } 0]

‘}_CL 0 0 IX+I1}U:}—CL 0 0 }X+I1Iu

J‘ 111 o] 112 o] (2.70)
= 0 o | = 0 o |

H Cu J LClZ J

T ] [ 1

1o o Olx=10 o 0 Ix

considering two sets of unknown parameters L, L, .C,, €® and L, ,L,, .C,, ©, that

describe the dynamic system. From simple computations, the following result is obtained:

“‘11 =Ly
|c11 =C,, (2.71)
ta =Ly

from which, it can be concluded that the LC circuit is global identifiable, and the parameters

C.L,.L, <o identifiable for this identifiability test. A complete proof of the results (2.71) is

given in Appendix C.2.1 (formulas (C.14-16)). Due to the fact that the capacitor microphone
circuit is an unobservable system and the proposed initial conditions
(observability/controllability) for the identifiability analysis using this test are not satisfied,
the analysis is not performed further for this example. For the lossy case, we shall rather
consider the DC motor example, which satisfies the observability/controllability conditions.
For this example, we can write the following relations:

(2Rt AR U

H Ls JbE11 }XHF”“J:} Lo ‘]bElZ I

“ 1 " } 0] } 1 ) I M
X+ | u

IL L11 ‘]Ellj L L1o JE12J 10]

\

‘F 1 ] [ i

“L— 0|X=|L— O‘X

M 11 I [t ]



(2.72)

where:
R3]
L J
_ | El c_aTo_ 1 4
Tl e PO
L L JEJ
Using standard algebraic computations, we conclude that:
‘(Rn = Rpp
Lip =ty
5 ) (2.73)
} E11 -~ “E12
P11 =Ppp

The DC motor model is therefore globally identifiable for the parametersr, L.y beo. A

complete proof of this results, can be found in Appendix C.2 between (C.17) and (C.21). The
above examples, can be also realized using the local identifiability definition from section 2.2
for the identifiability analysis.

2.6.3 Power series expansion identifiability

As was already stated in the previous sections, a necessary condition for the identifiability
analysis using this test, is the observability/controllability condition. In order to test the local
strong identifiability of a lossless PCH system represented by a LC circuit, using the power
series expansion, a simple example is considered, with the input u(t)and output data y(t),

given as follows:

(2.74)

A time t, -1, a state-space vector x(t)=[t t t

considered for testing. Using (2.30), the power series expansion elements, are computed for
the first eight elements, deducing the following relation:

3, fig )=yt )0 (2.75)

between the k™ order derivate of the output y|t 0 ) and the k™ order element of the power series

, with the value xft )= 1 1] are

expansion a, t, ), when k >1. This result is due to the fact that the product between BT Q

k

and the sum of the elements from the paranthesis, of the form A*xft, )+ A¥Bu ), for the

)
0

k™ order element a, [t, ), is always zero for the LC circuit, when k > 1. The complete proof of
the result from (2.75) is given in Appendix C.3 between (C.22) and (C.34) formulas. From the

above results, it can be concluded that the solution of the unknown parameters for the LC
circuit:
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(2.76)

is unique and the system is said to be local strong identifiable or x, identifiable. For the case

of the capacitor microphone circuit, due to the fact that the initial conditions of
observability/controllability are not satisfied, the local strong identifiability test is not further
performed.

2.6.4 Energy based identifiability

As for the previous tests, the necessary conditions to be satisfied before the energy based
identifiability analysis is performed, are the observability/controllability conditions. The
examples considered below for the power based identifiability analysis have been investigated
considering both the global identifiability of the PCH system or global port-identifiability,
using the power energy at some specific port. In the case of the lossless LC circuit, the
following relations can be written:

I 1 r 1

[P 0 | [ 0 |

€1 ro1 | ‘12 o7

J\ o 1 o il o 1o o I (2.77)
| Ly, T L) o

I . ;LOJ | . IM

| 0 0 e 0 0 R

m LZlJ { LZZJ

using relation (2.46) for the power energy associated to the storage port, where

T -
Bj=B,=[0 1 o] . In the above relations, ¢, L, .L,, e and c, L, L, €©

represent two sets of unknown of parameters, which describe the LC circuit. Using (2.77), it
results:

Ly =Ly (2.78)
In this case, we cannot give any information on the identifiability of the parameters C, L, and

thus the LC circuit cannot be said to be global port identifiable for the storage port, with
L,.C.L, asunknown parameters. In the case of the control port, the following relation:

r 1 r 1

Erl A I

|11 ) | ‘12 ) |

l'o — o IB,=l 0o — o0 IB (2.79)
| Ly N Lo |2

| | \ |

0 o 11 A

i Ly ]| Lo
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may be written relating two sets of unknown parameters c, .L,.L, © and

Cpy Ly Ly, €©, by assuming Pey=Pco (see relation (2.64)). Assuming B, =B, =B,
since B doesn’t include any unknown parameters in this example, it results:
00
= (2.80)
=12 1 | "12 |
o | o]

and L, =L, . Itresults that the LC circuit cannot be said to be global port identifiable for

the control port, as only the L, e © unknown parameter can be analysed. In this case, we

1
observe that the parameters c,L, < @ from (2.79) cannot be tested for identifiability using

the control port power energy, as the constant B8 matrix includes null elements. Since the B
matrix is structural in this example (i.e. does not include any numerical parameters), the
identifiability analysis for the control port may be performed independently from the results
obtained for the storage port, with L, < @ as unknown parameter. From (2.78) and (2.80), it

results that the LC circuit, is not global identifiable, using the identifiability proposition
formulated in section 2.5, as only the L, parameter is found to be identifiable and . L2)

parameters are not. In the case of the capacitor microphone circuit, due to the fact that the
system doesn’t satisfy the observability/controllability conditions, the identifiability analysis
is not further performed. For the lossy DC motor example, using the power energy
identifiability formulation from section 2.5, the following relations can be written:

1 H 1 H

— —

}\ L1 |:HL12 H

o] o |

JF R T T R i

‘}_% . { }_172 0 } (2.81)

I

L

I i1 12 |
for the storage port (using relation (2.46)), by applying the direct identifiability test for two
sets Ly, . Jpq Ry by @ and L, 9., R, b, c© 0f unknown parameters. From
(2.81) it results the following relation:

L, =L

j 11 12 (282)

(R11 = Rpo
between the unknown parameters L,, .L,, and R, .R,, . At the next state, we apply the
identifiability analysis of the dissipative port power energy and we can write:

[R 01 IR 0 1

B =1 12 | (2.83)

LO bllJ LO blZJ
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using (2.51), for two sets rR,. ,b,., e® and R, ,b

1 P11 1 b, €O of unknown parameters. From
(2.83) it results:

R =R
J 11 12 (284)

The identifiability analysis using the dissipative port power energy can be applied
independently from the analysis performed for the storage port or control port, as was also
explained in section 2.5. From (2.84) it results that the DC motor model, is global port
identifiable for the dissipative port power energy associated to the unknown parameters
R,b e ® .Using (2.82),(2.84) in (2.81), it results:

‘“‘11 =L
Yenn “YED (2.85)
}Rll - T12
P11 =Ppp
when the storage port power energies satisfy:
Poy = Ps) (2.86)
for two sets Lig Jgqg Ry by €@ and Ly Jpgp Ry by €© of unknown parameters. It

results then, that the DC motor PCH model is global port identifiable for the storage port. For
the control port power energy, we can write the following relations (using (2.64)):

M1 1 [ 1 |
T 9 | T 9 |
|11 11 e i 2.87)
| 1 gl 1 ! :
|0 o L
L Yen | i Yer |
for two sets of unknown parameters L, . J_,, e® and L, .J_,, <© associated to the
control port power energy. Equation (2.87) is equivalent to:
R
tu et (2.88)

o ] Lo |

or L, =L, .Dueto the fact that 8 is non-parametric and with structurally zero elements,

the parameter 3 _ cannot be analysed for identifiability using only the control port power

E
energy. Again, because the B matrix is non-parametric, the identifiability analysis of the
L e ® parameter may be performed independently from the storage port and dissipative port
identifiability analysis results. From (2.88) it results that the DC motor PCH model is not
global port identifiable for the control port power energy, as only the parameter L < o results
as identifiable using this approach. From (2.84), (2.85) and (2.88), it results that the DC motor
PCH system is global identifiable using the power energy identifiability formulation from

section 2.5. In consequence the parameters L,J . ,R,be e are identifiable using the power

based propositions and definitions from section 2.5. The previous examples can be also
performed for the local identifiability of the PCH system or a specified selected port.
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Conclusions

This chapter proposed an analysis of the structural identifiability of linear PCH systems in
connection with the known classical theory. The appropriate structural identifiability tests,
selected for the study of PCH systems, were the following ones: the
observability/controlability based test (which give necessary conditions for a system to be
identifiable in a minimal realization form), the direct test and the power series expansion test.
Each of these tests were applied to linear PCH systems (in the lossless and lossy cases) and
corresponding general characterizations for the structural identifiability were found. Section
2.5 of the chapter, introduced new propositions for the global and local identifiability of PCH
systems, using the power energies associated to the ports, as each power port energy
corresponds to a set of unknown parameters. A new concept, of port-identifiability was
proposed, which is more appropriate to PCH systems power energy form, making an explicit
use of their power-conserving Dirac interconnection structure. This new port-identifiability
concept, gives the opportunity to make identifiability analysis of PCH systems only for a
subset of the parameters. The identifiability analysis tests and definitions, were applied to
some illustrative examples: a linear lossless PCH system (a LC circuit) and both a capacitor
microphone circuit and a DC motor for the lossy case. The introduction of new propositions
and definitions for the identifiability analysis of PCH systems, using the power port energies,
permits also future work on estimation algorithms using this concepts. An important
advantage of the power port energy approach, it was proved to be the possibility to split the
identifiability analysis on different ports, representing a subset of the parameters by
introducing the port-identifiability concept. Taken together the power energies corresponding
to the ports can give informations on the global/local identifiability of all system’s parameters
contained in the Q,B or r matrices, where the analysis can be performed in a triangular
fashion (as explained in 2.36). Also it was proved that using this approach, some parameters
cannot be analysed for identifiability (see the LC circuit example) since the input matrix (B )
is structural with null elements. An open topic of research starting from the results of this
chapter, is the selection, development and verification of practical identifiability methods,
which are more suitable to be used for PCH systems, in the presence of a perturbation model.
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3. Practical Identifiability of Port-Controlled-Hamiltonian systems

This chapter aims to propose a practical identifiability methodology for Port-Controlled-
Hamiltonian systems starting from the classical state-space theory, which makes use of the
observability and controllability concepts. It is proved the conservation of the basic
properties for Port-Controlled-Hamiltonian systems, when converted to the observable
canonical form, in the presence of an external perturbation model, in the lossless and lossy
cases. The perturbation model for Port-Controlled-Hamiltonian systems is defined by
introducing a new input/output pair for the interaction port. It is proposed and demonstrated
a methodology for converting the Port-Controlled-Hamiltonian systems into an equivalent
observable canonical form, by applying a similarity transformation matrix to the system. The
last two sub-sections, are dedicated to the formulation of a general context for the practical
identifiability analysis of Port-Controlled-Hamiltonian systems, using the observability and
controllability concepts, a definition useful for observability and controllability and three
examples with the proposed methodology. As examples are considered a lossless Port-
Controlled-Hamiltonian system, represented by an LC circuit and two lossy Port-Controlled-
Hamiltonian systems, represented by a capacitor microphone circuit and a DC motor.

3.1 Introduction

While structural identifiability makes a theoretical analysis of a system, in order to obtain
unique values of the parameters after the model structure parameters have been selected, the
practical identifiability takes in consideration also the experimental conditions, with the
quality and quantity of measurements [119-145].

Practical identifiability is performed after the structural identifiability analysis gives a
theoretically identifiable model [45]. In the scientific literature [119-162], several practical
identifiability analysis methods have been proposed and studied, from which some of the
most relevant are: methods for the analysis of the sensitivity functions, Monte Carlo
simulation method, correlation matrix method, Weijers and Vanrolleghem method, control
based methodologies or others. Practical identifiability analysis techniques, have been applied
for diverse kinds of linear or nonlinear models of interest, from which some are [119-145]:
HIV dynamic models, bilogical reaction networks models, metabolic network models, acid
acetic fermentation models, biochemical models of the river, photodynamic therapy models,
ice-cream cristalization models or others. In this chapter the practical identifiability of Port-
Hamiltonian systems is adressed, using the observability and controllability concepts known
in classical system theory [2,4]. A perturbation model specific for this systems is proposed
using the interaction port of Port-Hamiltonian systems, which is used later to find a general
formulation of the practical identifiability methodology. Section 3.2 demonstrates the
conservation of the Port-Controlled-Hamiltonian system properties, when converted to the
observable canonical form in the presence of a perturbation model, for the lossless and lossy
cases and defines the perturbation model by means of the interaction port.

Section 3.3 presents a generalization for the conversion of the observable canonical form of
Port-Hamiltonian systems into an equivalent form, used for the practical identifiability
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analysis. Section 3.4 demonstrates and formulates some general results for the proposed
methodology for Port-Hamiltonian systems, using the classical theoretical notions of
observability and controllability, for the lossless and lossy cases. Section 3.5 presents some
examples for the practical identifiability analysis of Port-Hamiltonian systems, using the
general results presented in the previous sections, for a lossless Port--Hamiltonian system
represented by an LC circuit and two lossy Port-Hamiltonian systems given by a capacitor
microphone circuit and DC motor.

3.2 Observable canonical form of Port-Hamiltonian systems

In this section, it is generally proved the conservation of the basic properties of Port-
Hamiltonian systems, when converted to the observable canonical form, in the presence of a
perturbation model, in the lossless and lossy case. The perturbation model is defined with the
help of the interaction port of the system with the environment.

3.2.1 Lossless PCH systems

A lossless Port-Hamiltonian system represented in the explicit form, in the presence of a
perturbation model, can be written as follows:

[x = JQx + Bu + Ke

y=BTQx + K Qx (3.1)
‘[z = KT Qx
In this representation of lossless Port-Hamiltonian systems, (u, y) represents the input-output
pair, corresponding to the control port c, while(e,z) represents the input-output pair,
corresponding to the interaction port 1, necessary for the perturbation model. The
perturbation model Ke (t) proposed in (3.1), for the system states represents the fact that the
states are perturbed by interaction with the environment. The output z of the interaction port
I, is added over the system outputs (y ) and is associated to the same perturbation at the
interaction port. In (3.1), kK e R™™ represents the perturbation model matrix and e(t)

represents a white noise sequence, acting over the system states. The state-space
representation from (3.1), can be equivalently written:

(X = JOQx + Bu + Ke

Jy=(C+E)x (3.2)

‘L2=Ex

where, BeR™™ c-BToecrR™ and E-kTQecRrR™" | In order to convert the state-

space representation from (3.2), to the observable canonical form, the observable
transformation matrix Tops Must be applied to the state-space system as follows:

X =T X (3.3)
S has the following structure:

bs

where T
ob
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(3.4)

Remark: The observable canonical form applies only to SISO PCH systems.
Using (3.3), (3.2) can be expressed as follows:

(-1, B
Tobs Xobs = JQT ob Xobs + Bu + Ke
(3.5)

_ -1 -1
[y B (CT obs * ET obs jxobs

Multiplying with Tops 10 the left in (3.5), it results:

bs

(. ~ 1
Jxobs _Tobs JQT obs *obs +Tobs Bu +Tobs Ke

_ -1 -1
[y - [CT obs  ET obs ]Xobs

(3.6)

In order to prove that the state-space representation (3.6) still has an explicit Port-
Hamiltonian form, we write it equivalently as:

jxobs - Jobs Qobs Xobs * Bobs U Kobs € (3 7)

[y - (C obs * Eobs )Xobs

Further we introduce a proposition for the observable canonical representation of lossless
PCH systems, which is proved to be generally valable.

Proposition 3.1

A lossless Port-Controlled-Hamiltonian system (3.1), can be equivalently transformed to the
observable canonical form (3.7), when the following relations hold:

(‘]obs :_J;)rbs = T obs ‘]T(;rbs

JQobs :Q;)rbs :To_bl-Q o_bi =0
}Cobs :B;)rbsQobs :BTQTo_bi
‘{Eobs :K;)rbsQobs :KTQTo_bls

In the following lines we will give a complete proof of Proposition 3.1.

Proof:

Using (3.1), we can write the following relations:
\(Tobs QT o_bi = obs Qobs,
J 8! QT o_bi - B(Ibs Qobs - Cobs (3.8)
‘[KT QT o_bt; - K;)rbs Qobs - Eobs

Replacing Bobs = Tops B and E bs = Tobs < from (3.6) in (3.8), the following relations

result:
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l[T r -3 o

obs obs obs ~ obs

T -1 \T
| B QT obs (Tobs B) Qobs (3'9)
[ T -1 T
[K QM obs = (Tobs K ) Q obs

Using the matrix transpose properties, the 2" and 3" relations from (3.9) can be expressed as:
( -1 T T

{BT QT obs =B Tobs Qobs (3.10)
‘LK ! QT o_bls =K TTc;rbs Qobs
Multiplying (3.10), to the left with the matrix pseudo-inverses 7T and 7T of B and K,
the following relations result:
%(QT o_bi - Tc-)rbs Q obs (3.11)
‘LQT o_bi - Tc;rbs Qobs

~T to the left, in

In (3.11) it can be observed, that both relations can be multiplied with T obs

which case the following relation result:

T r -1
Qobs - Tobs QT obs (3'12)
Replacing the value of Q bs from (3.12) in (3.9), the following relation results:
T,0r =3 1 Tor it (3.13)

obs obs obs obs obs

(3.13) can be multiplied to the right with Tops @ Q ~1 and TOTbS , in which case the following

relation results for J :
obs

3. =1 ] (3.14)

obs obs obs

For the next step ngs is computed using (3.12), in order to prove that Qups = ngs >0,

and the following relations:
T T
Q] :[T*TQT 4} :T*T(T*TQJ S L (3.15)

obs obs obs obs obs obs obs
can be written fongbS using the matrix transpose properties. Using the property Q =Q ' of a
PCH system, (3.15) becomes:

T T Ar -1
Qobs = Tobs T obs (3.16)
From (3.12) and (3.16), it results:
T “T o -1
Qobs - Qobs - Tobs QT obs (3'17)

The matrix Q is semi-positive definite (Q =@ T >0), in which case the following relation:

27 Qz 20 (3.18)
is always satisfied for any real vector z < R" . Using (3.17) and (3.18), it can be observed that

, Is composed by positive semi-definite elements, given by the matrix To_l , in which

Qobs bs

case we can write:
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Qe -0l >0 (3.19)

obs
Computing ngs using (3.14), in order to prove that Jops = -ngs , the following relation
can be written:

T
T _ T _
obs {Tobs IT obs j = Tobs (Tobs

using the matrix transpose properties. (3.20) can be further expressed as:

J ' (3.20)

T T T
Jobs = Tobs ¥ Tobs (3.21)
Using the skew-symmetry property (3 = -3 ) of a Port-Hamiltonian system, (3.21) becomes:
T T
Jobs = "Tobs I7 obs (3.22)
From (3.14) and (3.22), it results that:
T T
obs = Jobs = Tobs V' obs (3.23)
Using (3.6), (3.7) and (3.17), the following relation:
T
Cobs = Bobs Qobs (3.24)
can be equivalently written:
T -T -1
c:obs - (Tobs B) Tobs QT obs (3'25)
Using matrix transpose properties, (3.25) can be expressed as follows:
T-T +-Tqor -1
Cobs =B Tobs Tobs 2T obs (3.26)
Performing the simplifications, (3.26) becomes:
Tar -1
Cops =B QT ¢ (3.27)
Using (3.6), (3.7) and (3.27), it results:
-1 T
Cobs = T obs = Bobs Qobs (3.28)
Using (3.6),(3.7) and (3.17), the following relation:
T
Eobs =K obs Qobs (3'29)
can be expressed as follows:
T -T A -1
Eobs - (Tobs K) Tobs QT obs (3'30)
Using the matrix transpose proprieties, (3.30) becomes:
ToT +-Tar -1
Eobs =K Tobs Tobs QT obs (3'31)
Performing the simplifications, (3.31) becomes:
T -1
Eops = K QT ops (3.32)
From (3.6),(3.7) and (3.32), it results:
T Tar -1
Eobs =K obs Qobs =KoQr obs (3'33)

From (3.12),(3.15),(3.14),(3.19), (3.23), (3.28) and (3.33), it results that the observable
canonical form state-space representation from (3.6) of lossless PCH systems, conserves the
basic properties and thus the proof of Proposition 3.1 is complete. More generally, the
observable canonical form of lossless PCH system in the presence of a perturbation model is:
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Xobs - Jobs Qobs Xobs * Bobs u Kobs € (3 34)

[y - (C obs +E obs )Xobs

where the relations from Proposition 3.1 were proved to hold. Using Proposition 3.1 we can
write:

-1

(
} =J Q. =T JQT
\

Aobs obs ~ obs obs obs

Bobs :Tobs B

| Kops = Tobs K (3.35)
}Cobs - BT QT o_bls

‘lEobs =k QT o_bls

where A, eR™ B cR™M ¢ cr o p™m g RN represent the
obs obs obs obs obs

system matrices in the observable canonical form of PCH systems.

3.2.2 Lossy PCH systems

A general lossy PCH system, in state-space form representation, can be written as follows:

(X =(J - R)Qx + Bu + Ke

y=BTQx+K' Qx (3.36)
|[z -k T ox
Similarly with the lossless case, (e,z) represents an input-output pair corresponding to the
interaction port 1 , which is used for the perturbation model over the states and outputs.

Remark: The perturbation model is introduced by means of the interaction port 1 , due to the
reason that the PCH system is perturbed when interacting with the external environment.
Applying the perturbation model (as it is usually done in the classic case) might not preserve
the power balance of the system, hence its Port Hamiltonian structure.

The following definition for the perturbation model is proposed both for the lossless and lossy
cases.

Definition 3.1

The perturbation model of a lossy Port-Controlled-Hamiltonian system (3.36), is defined by
an input-output pair (e, z), corresponding to the interaction port 1 , where:

1) the input e(t), represents a white-noise sequence of perturbation, corresponding to the

system states perturbation model k ¢ R ™™ ;
ii) the output z(t), represents the output perturbation, acting over the system output y(t).
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Similarly with the lossless case, applying the state-space transformation from (3.3) to a lossy
PCH system from (3.36), in order to convert it to the observable canonical form, the following
relations result:

(-1, _ -1
|TO « Xobs = (J -R)QT obs Xobs * Bu + Ke
P | -1
| y=CT obs Xobs * ET obs Xobs (3'37)
|, -1
[Z ET obs *obs

with T obs the observable canonical form transformation matrix. An equivalent representation

b

of (3.37), can be obtained by multiplying the 1% relation with Tops 1O the left, in which case it

bs
results:

(

X -1 +T . Bu+T_. Ke
Jobs

obs Xobs obs obs

=T (J -R)QT
025 : (3.38)
[y - (CT obs * ET obs Jxobs
In order to prove that the state-space representation (3.38) has the usual Port Hamiltonian
form, we write it equivalently as:

jxobs - (‘] obs Robs )Qobs Xobs * Bobs U+ Kobs € (3 39)

[y - (C obs * Eobs )Xobs

and we introduce a proposition as for the lossless case, which is proved later.
Proposition 3.2

A lossy Port-Controlled-Hamiltonian system (3.36), can be equivalently transformed to the
observable canonical form (3.39), when the following relations hold:

( _ T T
}Jobs B Jobs _Tobs JTobs
AT =T -1
‘Qobs _Qobs _Tobs QTobs =0
ST T
‘Robs - Robs _Tobs RTobs
\ T ol -1
\Cobs a Bobs Qobs =B QT obs
| T Tor -1
tEobs - Kobs Qobs =K QTobs
Proof:
Using (3.38) and (3.39), the following two relations:
(5T o7 -1 U
B QT :(T B) Q
4: ] oEsl obs ) obs (3.40)
LK QT obs :(Tobs K) Qobs

result. By means of matrix transpose properties, (3.40) can be further written as:
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-1 T, T

B' QT =B'T! 0

[
%\ ) obs1 ] Ol-Jl-S obs (3.41)
‘LK QT obs ~ K Tobs Qobs

Putting in corespondence the pseudo-inverse matrix of Bas T, <R™" and of K as

T, e R™" we can write further:

K
[ -1 T
|QT obs _Tobs Qobs (3 42)
-1 T
lLQT obs _Tobs Qobs

Applying also the inverse of T ops results in:

T p -1

obs QT obs ~ Q obs (3'43)

T

For the next step, we prove the basic PCH systems propertyq . = ngs >0 . Using (3.43),

obs

o' can be written as:
obs

T
T T ~r -1
Qobs = (Tobs QT obs j (3.44)
Equivalently we can write (3.44) as follows:
T
T ~T (¢ -T T oTo-1
Qobs = Tobs ( obs Q] “Topbs @ Tobs (3.45)

Using the PCH systems property Q =Q ' , (3.45) can be further expressed as:

T T -1
Qobs - Tobs QT obs (3'46)
From (3.43) and (3.46), the following relation is obvious:
T ~T o -1
Qobs - Qobs - Tobs QT obs (3.47)
As the matrix Q is semi-positive definite, the following relation hold:
21 Q220 (3.48)

for every real vector z < R" . From (3.47), Qs is formed by positive semi-definite elements,

from the columns of To‘bi , in which case Qs is then positive semi-definite and the

following relation:
Q! >0 (3.49)

obs

Q

obs

holds. For the next step, the properties 3 . =-37 and R, =Rr' >0, which define a
obs obs obs obs

PCH system are proved. Using (3.38), (3.39) and (3.47), the following relation can be written:
-1 T o7 -1
T obs (3 - R)QT obs (J obs ~ Robs )robs QT obs (3.50)

. Con ; : -1 T
to determine 3, and R ops .Multiplying to the right with Tops * @ and Tobs (3.50)

bs b

becomes:

T — _
T obs (- R)Tobs - (‘]obs R obs )

Developing further the left part of (3.51), it results:

(3.51)
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! T RTI =3 -R (3.52)

obs obs obs obs obs obs
From (3.52), it can be observed that the equality holds when:
( T _
JTobs I obs = JO—T-S (3.53)
LRobs - Tobs RT obs

Using the 1* relation from (3.53), 4 gbs can be computed as follows:

T

T T
Yobs = [Tobs IT obs j (3:54)
Using the matrix transpose properties, (3.54) can be also expressed as:
T T+T
Jobs = Tobs 7 Tobs (3.55)
Using the skew-symmetry property J = -3 T of a PCH system, (3.55) can be also written as:
T T
Jobs = Tobs ™9 T ops (3.56)
From (3.53) and (3.56), the following relation results:
T T
obs = Jobs = Tobs " T obs (3.57)

Using (3.53), Rgbs can be calculated as follows:

T

T T
Robs = [Tobs RT obs ] (3.58)
and becomes further:
RT =17, R'T] (3.59)

obs obs obs

using the matrix transpose properties. Using the property (r = R T ) of a PCH system, (3.59)
can be expressed as:

T T
Robs - Tobs RT obs (3.60)
From (3.53) and (3.60), it results that:
R, =R' =T  RT! (3.61)

obs obs obs obs
The matrix R is semi-positive definite (R > 0), in which case the following relation can be
written:

2T Rz >0 (3.62)
for any real vector z < R" . Using (3.61) and (3.62), R ops is formed by positive semi-definite

elements, given by the columns of ToTbS . In this case, it can be concluded that R obs is also

positive semi-definite and the following relation:

T
obs = Rops 20 (3.63)

is satisfied. For the next step it is necessary to prove that Cops = , for the state-

T
Bobs Qobs
from (3.38) and Q s from (3.47), the following

space system from (3.38). Replacing B s

relation results:

B T T~ -1
obs (Tobs B) Tobs QT obs

Using the matrix transpose properties, (3.64) can be written as:

C (3.64)
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T-T +-Tqr -1
Cobs =B Tobs Tobs 2T obs (3.65)
Performing the possible simplifications, (3.65) becomes:
T~ -1
Cobs =B Qr obs (3.66)
Using (3.38), (3.39) and (3.66), the following relation results:
Tt -1 -1 T
Cobs =B Qr obs T obs Bobs Qobs (3'67)

T
In order to prove that Eobs = Kobs Qons 'K obs

(3.47), in which case the following relation for E,

is replaced from (3.38) and Q pe from

bs
T -T o -1
Eobs - (Tobs K) Tobs QT obs (3.68)
is written. Using the matrix transpose properties, (3.68) can be expressed as:
T T +-Tar -1
Eobs =K Tobs Tobs T obs (3.69)
Performing the simplifications, (3.69) becomes:
T -1
Eops = K QT ops (3.70)
Using (3.38),(3.39) and (3.70), the following relation:
-1 T At -1 T
Eobs = ET obs Ko QT obs Kobs Qobs (3'71)

holds. From (3.38), (3.39), (3.47), (3.49), (3.53), (3.57), (3.61), (3.63),(3.67) and (3.71) it
results that the observable canonical form representation of the lossy PCH system from (3.38),
conserves the basic properties and thus the proof of Proposition 3.2 is completed. We can
write the following general form:

[y - _
Xobs (‘] obs Robs )Qobs Xobs * Bobs u+K obs €
| y = (C obs * Eobs )Xobs (3'72)
lz - Eobs Xobs
for which the following relations hold:
( B _ -1
I Aobs B Tobs (3 - R)QT obs
IBobs - Tobs B
nT _ -1
Icobs a Bobs Qobs =CT obs
| K obs Tobs K
lE k' Q. =€eTt (3.73)
I obs = " obs “obs obs
| _o" _1-T -1
|Qobs Qobs = Tobs 2T obs
I T T
I Jobs = "Jobs = Tobs T obs
T _ T
[Robs - Robs - Tobs RT obs
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3.3 Equivalent representation of the observable canonical form

This section presents a technique of conversion into an equivalent observable canonical form
of lossless and lossy PCH systems. This canonical form representation is necessary for
introducing a general rule for the practical identifiability analysis of Port-Hamiltonian systems
in section 3.4. This way we introduce the following proposition:

Proposition 3.3

A Port-Controlled-Hamiltonian system in the observable canonical form for the lossless
(3.34) or lossy (3.72) cases, can be equivalently transformed to:

Ir -a, 10 . 01| ‘F 711 T‘ lf V91 TI
ger | %2 Ot oo O det | 712 | Gef | 722 |
AobsT = I "I’BobsT - } }’KobsT - I }
-2, 0 1 [ 71n-1 | 172 n-11
lL_an 0 0 .. OJI ‘Lyln J |L}/Zn Jl
def
CopsT = L o .. .. 0]

using the following notations:

def
Xy = 71,1U (s)+ 791 E(s) - alY (s)+ X 5 (s)

def
X, = yl,ZU (s)+ Y 99 E(s)- a,y (s)+ X 3(5)

def
|sx n_1 = 71,n—1U (s) - an—lY (s)+ X n_1(5)
| def
% = 7V )4y, (E()-anY(s)
} def
Y (s) = Xl(s)
I def i>0, j<k
e = > biaj;|=12
I i=k,
| i=0
I i=i-1
[ j=j+1
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Proof:

The proof of this proposition is presented further step by step. The Port-Hamiltonian systems
represented in state-space form (3.34), for the lossless case, or (3.39), for the lossy case, can
be also written as follows:

X, = X +b1u+k1e

{1 2
IXZ :x3+b2u+k2e
l'i (3.74)
|xn_1=xn+bn_1u+kn_1e
Ixn =-apX; —..—a;Xp +bpu+kpe
[yle
Thatistheusual (A, B, .C LK observable canonical state space form with:
obs obs obs obs
o 1 0 0]
| |
| 0 0 1 e 0|
| |
A ops :I : I (3.75)
| 0 0 0 w1
| |
7% "% T o T8
T
Bobs :[bl b2 b”]
C obs = o 0]
k, &, Kn |
From (3.75), the following relations result:
fx2 = b u—k e
Ix3 —b u—k e
j (3.76)
}xn =X -b _1u—kn_1e
V=
Replacing x, with y in (3.76), we can write:
‘(xz = y—blu—kle
}xgzyfblufkleszusze
I ) . . . .
Jx4—y —blu—bzu—b3u—kle—k2e—k3e (3.77)
[...
\
_ ,(n-1) (n-2) - (n-2) B
}xn =y -b,u —..=b _,Ui-b__u-kpe -k e

Using the last two relations from (3.77), it results:
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(n) (n-1) . . (n-1) .. .
y —blu _"'bn—zu_bn—lu_kle - noo&- K, 4
~ap y—an_l(y—blu - kle)—an_z(y'—blu' —byu- kle—kze)..

(n-1) (n-2) . (n-2) .
(y —blu ...—bn_zu—bn_lu—kle —...—kn_ze—kn_le}

..k

(3.78)

+bphu+kpe
The transfer function from (3.78), can be splitted in two separate transfer functions
corresponding to the plant and perturbation model, as follows: TF  (s) represents the transfer

function acting between the input U (s) and output v (s) of the system, while TF , (s) the

transfer function acting between the perturbation and the output v (s)of the system.

Converting (3.78) to the continuous form, using the Laplace transform, we can write:

n-1

s“Y(s)—bls”‘lu (s)==b__ sZU(s)—bn_lsU (5) -k s"TTE(s) - -k _ZSZE(S)—kn_lsE (s) =

2 n

—apY(s)- an_l(sY (s)—blu (s) - klE(s)) - an_z(szY (s)—blsU (s)—b2U (s) - klsE (s) -
Ky E(8) = a2(sn_2Y (s)—blsn_SU () =b, _4sU (s)=b_ U (s)- kls”‘3E(s)—...kn_3sE (s) -

n-1 n-2 n-2
"n_zE(S»—al(s V() =bys" TR0 () mby 0 (5)-by U () s"TPE() ok s (5)- |
Lkn_lE(S) J

bpU (s) + kp E(s)
(3.79)
Equivalently (3.79) can be written as:

Y (s)(sn +tap+a, s+ an_zsz...+ alsn_1] =U (s)(blsn_1 +sN2 (b2 + a1b1)+ sn_3(b3 + azbl + albz)...

+s(bn +a1bn_2+a b +...a b )+an

203 n_2Pq bl+a b +...a1bn_

-1 -1 n-2"2 1700+

2
n-1 n-2 n-3
E(s)(kls s (k2+a1k1]+s ey +ayk, +agk, ).

sl g rak, ,ra k. groa ok Jra o kora ok, +oak o +kp)
(3.80)
Using (3.80), the plant transfer function TF , (s), has the form:
\ |
\ \
1 1
n-1 n-1 n—k‘i21’j<k ‘
zakbn_k+zs \ 3 b|aj\
k=0 k=1 } i=k }
| j=0 |
isic |
| )
j=i+1
TR () = " (3.81)
> s a
K=o n—k

An equivalent expression for (3.81) is:
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= k=0 (3.82)

TFl(s):

x

I™Msin M
S ow»
~

=~

In (3.82) o is defined as follows:

S ba. (3.83)
k

j=j+1

In (3.83)if j-0, a,

n
z

TR, (5) = "fk— (3.84)
2

k=0
Taking the common factor at the numerator and denominator s" in (3.84), the transfer
function becomes:

k k=1
- - (3.85)
s Y s a > s a

k=0 ke Zo
In a similar way with the transfer function of the plant model from (3.85), the transfer

function of the perturbation model is:

s" ; 7y s K ; 2
k=1 °K ko1 2K
TF, (s)= - =— (3.86)
s" oy sk—Ng K D L K
k=0 T v So n-
where the termy,, is defined similarly with 71k 8S:
(
\
\
\
\
‘ i>0, j<k
Yok = T KA (3.87)
} i=k,
\ j=0
} i=i-1
{ j=j+1
Using (3.85) and (3.86), (3.80) becomes:
n n n
Y(s)( s sk=Nga ):U(s)( s 7 sk E(s)( s 7 sk | (3.88)
lk=0 k] k= ) k=2 2 )

(3.88) can be equivalently written as follows:
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Y(s)[s_nan +sl_nan_1+...+als_1+1J=U (s)[ g ylks_k}+ E(s)[ g 7/2ks_k] (3.89)
k=1 k=1

From (3.89), the value of the outputy (s) becomes:
n
V()= 3 s b U7, EG) -2, Y () (3.90)
k=1

Making the following notations [163,164]:
( def
lsx1 = 73U () + 75 E(8)=a Y (s)+ X, (5)

def
X, = ;/1]2U (s)+;/22 E(s)- a,Y (s)+ X3(s)

def (3.91)

ne1 = TanaY ()@ Y X, ()

an equivalent state-space representation of (3.74) is:
(
11 1% P X Ut ®
ly = _
Xo = —8,X  + Xgty Ut )y,

X, =—a, X, +X

(3.92)
i"n—l:_""n—lxl“‘”*71,n—1“+72,n—1e
[xn z_anxl+71,nu+72,ne
(3.92) can be equivalently written as:
(
T A TR IR IR E U I O
. } }‘ by U+ | \
X = | x I ‘y | le (3.93)
H—an_l 0 0 1}‘ n—1| } ln_l} }72n_1}
IL —an 0 0 oJL Xn | Lyl,nj | 72n |
\
[y=[1 0 0 o]x1

We introduce the following notations for the equivalent state-space representation of the
observable canonical form:

‘F -a; 1.0 01| |F711 TI ‘F 791 T‘
get | %2 01 ° Gef | 712 | def | T2 |
AobsT - } "'I’BobsT - I :’KobsT - } } (3 94)
}*an_l 0 1I I71n—1l }72,n—1} '
| —an 0 0 OJ | "1n ] | Yon ]
def
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B ops from (3.94) can be also expressed as:

bsT
1A [ I L N LR
712 P2tk | P2 b IO |
B ypsT :i }:}b3 +ab, +a,b }: } I+I }+ )0 | (3.95)
|71n71‘ ... \ \bn—1| |a1bn_2‘ I I
y | ‘b +a,b +..+a b | ‘b . b | |2 bj
L L n-1"1] [°n | [*1%n-1 | n-1"1

In the following lines we will find an equivalent representation of 8__ . Using (3.95) we can

obsT

write:
R PO N
il 1 i—: 0 01 a, 0 0 Ho 1 0 .. oH...2 } (3.96)
. T ] LN
[21P0_1 | ILO 0 0 0 alJ“LO 0 0 OJI_bn J
lfo Tl ‘Vaz o 0 0 0 T”ro 0 0 01Hr by W‘
iazbl I } 0 a, 0 0 0 Ho 0 0 OH b, }
ia2b2 ::} o 0 a, 0 0 Hl 0 0 OH } (3.97)
|- || a e 01by 4|
|La2bn—2J| ‘LO o 0 0 azJ”LO 0 0 OJHL bn J
R O
|0 10 a1 0 0 o o 0 .. O] b, |
o sl o 0 a0 oo o . o .| (39)
L I o0y
[#n-1P1] lL 0 0 0 an_1J|L1 0 0 of by |
by 1o oy ]
lb, | Jo 1 0 ollb, |
N o 0 1 .. o] o (3.99)
P ] 10 0 0 1jPn
Using (3.96)-(3.99), Bopsr  CAN be further expressed as:
”1 0 0 01| ‘Fo 0 0 01‘ |F0 0 0 OHIFbl Tl
J0 1 0 OI }al 0 0 o; I 0 0 0 O:sz I
BobsT =‘}0 0 1 0:4—}0 a, 0 O}+...I 0 0 O Omb I
|- |- o I n—-1 |
o 0 0 . 1) {0 o 0 . oo |a,, 0 0 0 oy |
(3.100)
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from which it results:

|r 1 0 0 o?\r b, 1
\ \
i N 1 (1) Z H K } 3.101
BobsT I 4 4 H } (3. )
: i
|%n-1 %n-—2 3p-3 1JL bn |
More compact we can express B , . as follows:
obsT - T2 Aobs Bobs (3'102)
where T, A is defined as follows:
obs
|r 1 0 0 01|
1 0 0
def I 1 I
TyAops = I a, a, 1 OI (3.103)
| o
| 1 |
|%h-1 %nh-2 Zn-3 |
and ToeR™0  represents a non-singular matrix. Replacing B bs and Abs from (3.35) or
(3.73) for the lossless or lossy case of Port-Hamiltonian systems in (3.102), it results:
-1
BobsT T2T0bs AT obs Tobs B (3.104)
Performing the possible simplifications in (3.104), it results:
Bopst = T2Tops AB (3.105)
Similarly with B ey W Can proceed for k obsT and the following relation can be written:
M1 0 0 0T Kk, 1
| TR
: a, 1 0 .. 0 :| k, |
| |
K obsT I a, a; 1 .0 H I (3.106)
|%h-1 %h-2 Zp-3 1JL Kn |
K obsT from (3.106), can be then expressed as:
K obsT T2 Aobs K obs (3'107)
where 7,A  has the form from (3.103). Replacing k - and A = from (3.35) or (3.73)
for the lossless or lossy PCH systems in (3.107), it results:
-1
K obsT T2T0bs AT obs Tobs K (3'108)
This can be further expressed as follows:
Kopst = T2Tops AK (3.109)
after simplifications. A | . can be equivalently written as:
AobsT = T1%obs (3.110)
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where T, eR nxn

expressed as:

is a non-singular square matrix. Using (3.38) or (3.78),(3.115) can be also

=T 71 (3.111)

AobsT 1Tobs A obs

3.4. Practical identifiability analysis

This section presents a general formulation of the proposed practical identifiability
methodology, using the observability and controlability concepts, for PCH systems in the
lossless or lossy cases.

3.4.1 Lossless PCH systems

Using the general results obtained in section 3.3, the extended identifiability matrix used for
the practical identifiability analysis, for the lossless case of Port-Hamiltonian systems, has the
following form:

T n-1 1
Rib = L[BobsT K obsT ] A obsT [B obsT K obsT ] = Aopst BobsT K obsT ]J
(3.112)
Replacing AbsT * BobsT and K opsT from (3.111), (3.105) and (3.109), (3.112) becomes:
[ . n-1 1
RID - LhZTobs AB T2Tobs AK ] (TlTobs AT obs ] [TZTobs AB T2Tobs AK ]J
(3.113)
Further we can write (3.113) as:
R =f,T, A8 1.7, AK] [t7 Attt 1 a8 TT AT 1T T,  AK|
ID _L 2 obs 2 obs | "1 obs obs "2 obs 1" obs obs 2 obs |
[ 3 n-1 4 n-1 |
L(TlTobs AT obs ] T2T0bs AB [TlTobs AT obs ] T2T0bs AK J
(3.114)
More compactly we can write:
HTzTobs A 0 0 . 0 1||F[B K]]]'
\ -1 |
\i 0 T1Tobs ATobs T2Tops A O 0 iI[B K]Il
_ 0 0 0 |
RID_JI [ i
o 0 o .. 0 [ X
| SR
-1
[lL 0 0 0o .. [TlTobs AT o ] ToT obs AJL[B K]JJ
(3.115)

Using (3.110), A, can be determined by multiplying Apst 1O the left with Tl_l, from

.
which results the following relation:

-1
T1 AobsT = Pobs (3.116)
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When the system is observable, it results that A _  is of full rank, with det (Aobs )=n .Using
the following property of a determinant:
det (A, B, )= det (A, det (B, ) (3.117)
it results that:
det (A_, )= det [Tl—ljdet (Agper ) (3.118)
Using the property:
1
det (T,7")= 3.119
i (3119)
(3.118) can be also expressed as:
det (AObS ): Wdet (AObST ) (3120)
As A is of full rank for a lossless Port-Hamiltonian system in the observable canonical
form, it results that det A )=0 when det (Tl);t 0 and det (AObsT J«0. Hence T, and
Apst are full rank. Using (3.102), the following relation can be written:
BobsT = T2%0bs Tobs B (3.121)
Multiplying to the left with Tz_l in (3.121), the following relation results:
-1
T2 BonsT = Aobs Tobs B (3.122)
For the B matrix, a pseudo-inverse matrix Tg eR MXN exists, which satisfies:
BT g = | (3.123)

where 1ermn s the identity matrix. Multiplying (3.122) to the right with T, , the following
relation is obtained:

-1 3
T, BobsT Ta = Aups Tobs (3.124)

Multiplying further (3.124) to the right with To_bls , the following relation results:

Tl 1 _a (3.125)

2 obsT TBTobs obs

Due to the fact that det (Ao )=0 when the system is observable, it results that

bs

det[Tz_lB T 11

obsT TB Obsj must be also different from 0. Using the properties of the

determinant (3.117) and (3.119), det( Agps ) CAN be also expressed as follows:

1

Because det (AO =0 when the system is observable, it results that det (TZ) and

bs

det( B . Tpg) must be also different from zero and thus the matrices T, , B T, and

2’ TobsT B
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T are full rank with  rank (T

=rank | B T =rank (T
obs ) ( j (

obsT 1B =n. The following

2 obs )

mathematical notations:
[ def
€1 = ToTgps A
I def
chz = T1Tobs AT obs T2Tops A (3.127)
g
|
{

def n-1
1

Cn = (TlTobs AT obs ] T2 ops A
can be introduced, to get a compact expression for (3.115). Using the properties of the
determinant from (3.117) and (3.119), and the results from (3.120) and (3.126) for the rank of
T, T,.T A and B . T, itcanbe deduced that:

1’2’ obs ' obsT bsT
det C, )20,k =1.n (3.128)
from which it results that the matrices from (3.127), are also full rank:
rank (C " )=n (3.129)
In order to prove that the identifiability matrix rRip from (3.115) is full rank, a minor of R
of the form:
R'=[R, R, Ry . Rpj (3.130)

is selected, where R, represents column elements from ¢ 8 or ¢, k and R;, R, ...,Ry

k 2
form an nxn  dimension matrix. A first condition for r’ to be of maximal rank, is that
rank (R, ) is maximal. In order to prove that rank (R, ) is maximal, r, can be expressed as a

product of the form:

R, = AB’ (3.131)

where A’ represents a matrix ¢, from (3.127) and B'represents a column from B or K .

k
Using the following relation for matrix ranks:

rankA +rankB —n < rank (AB) < min( rank (A), rank (B)) (3.132)
we can write:
rank A+ rank B'—n < rank (A'B’)< min (rank (A’) rank (B')) (3.133)
Using (3.129), (3.133) becomes:
n+rank B'—n < rank (Rk )< min (n, rank (B') (3.134)

It is known thatrank (B')<n,as B'< R™?! and (3.134) becomes:
rank B’ < rank (Rk )< rank (B') (3.135)

From (3.135), it results that rank (R, )= rank 8 and is thus maximal, when rank (8')-1. The

following relation can be written in this case:
rank (Rk )=rank (B')=1 (3.136)

An equivalent condition for r’ to have full rank as in (3.136), is that ker (R')= nullity (R")
with r’defined in (3.130) (the columns of R’ linearly independent). This statement, can be
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also expressed as follows: for a vector x < R" , the unique solution to the equation R'x = 0 is
the null vector x = 0 q- Wecan write also the relation:

rank (R')+ nullity (R')=n (3.137)
3.4.2 Lossy PCH systems

The practical identifiability matrix in this case, has the following form:

[ n-1 1l
Rip = L[B obsT K obsT ] A obsT [B obsT K obsT ] (AobsT ) [B obsT K obsT ]J
(3.138)
Equivalently this relation can be written as:
r 0 1 !
il(Tlebs PT,T o0 0 0 0 “F[B K]H
| \
B K
|I 0 roa, FT,m A O 0 H[ ]}\
I 0 S
H 0 0 0 0 }\ : \}
| -1 I |
I 0 0 0 M Agps [ ToTops AL K]JJ
(3.139)

replacing the matrix elements Bonst ' KobsT * AopsT from (3.105), (3.109) and (3.110). In

the following lines we will formulate and prove a proposition for the observability of lossy
PCH systems, considering also the presence of the perturbation model.

Proposition 3.4:

Consider the linear lossy PCH system (3.36), defining A"=(J +R)Q :
a) If (3.36) is observable, then det Q = 0 and the pair (A", B + K ) is controllable;
b) Assume det Q = 0 , then (3.36) is observable if (A", B + K ) is controllable.

Proof:
For the next step we search for a simplified form of the similarity transformation T obs defined
in (3.4), for the lossy case of Port-Hamiltonian systems.
In this case:
C+E:[BT+KT]Q:(BT+KT]QT:(Q(B+K))T (3.140)
(C+E)A= [BT LKT jQ((J ~R)Q)= [BT +KT JQT ([— 3T _RT JQ} (3.141)

can be written using the PCH systems properties Q =Q " and J=—JT . For a more compact
expression in (3.141), we introduce the notations:
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( def
A = J

loss Q (3.142)
\ def

|Ares = RQ
representing the lossless and the dissipative part of A matrix. Using (3.142), (3.141)
becomes:

(C+E)A= (BT kT ][— ALss — A ]Q (3.143)
Equivalently we can write:
(C+E)A= [BT + KT ](— Aloss — Ares " (3.144)

Using the property @ = Q' of PCH systems, (3.144) becomes:

(C + E)A:[BT KT j(—l)l(Q(A + Ares :(BT KT j(—l)l(A +Aps )| @ (3.145)

loss

Equivalently we can write:

c+E)A=(-1'(Q (AIOSS + Ares B+ KT (3.146)
Using (3.145), we compute the term(c + E)a? as follows:
(C+E)AZ = (—1)1[3T KT J(Aloss + Ares )T Q3 -R)Q) (3.147)
Using the properties of PCH systems, (3.147) becomes:
2 1T T T T T
(C+E)AZ = (-1) [B LK j(AIoss + Ares | QH—J R )Q] (3.148)
Using (3.142) we can write equivalently:
(C+E)AZ = (—1)2[5T TKT j(AIOSS +Ares || (A +Ares | Q (3.149)
(3.149) can be equivalently written as:
2
(C+E)AZ = (—1)2[BT T KT I(Aloss ¥ Ares ) } Q (3.150)

3

The next element (c + E)A° of the transformation matrix Tops is:

2
T+ Ares ! ] Q3 -R)IQ (3.151)

From PCH systems properties, (3.151) can be expressed further as:

+ Ares )TJZQT(—JT —RTJQ (3.152)

(C +E)AS = (—1)3(5T LK T j[(A

(c+E)AS = (—1)3(5T Tk T j[(A
Using (3.142), we can write:

3
t Ares } Q (3.153)
From (3.145), (3.150) and (3.153), we can deduce the following general relation:

c+E)AS = (—1)3[BT + kT j((Aloss

k
€ +E)ak (o) [BT KT ]((A ¥ Ares )| j Q (3.154)

loss

for the terms of T, in (3.4). For the next step we prove the equivalence between

bs

k T
(<Aloss +Ares ! J and {(Aloss + Ares )kJ
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We can write then:
k
{(Aloss + Ares )T j = (Aloss + Ares )T (Aloss + Ares )T

T

using matrix properties. For the term [ (a oss T Ares )kj , We can write:

|
-
((Aloss + Ares )kj - <(Aloss * Ares )(Aloss + Ares ). (Aloss + Ares ))T

Using matrix transpose properties, (3.156) can be further expressed as:
T

((Aloss * Ares )k] - (Aloss + Ares )T ((Aloss + Ares ) (Aloss + Ares ))T
Applying k — 2 times the matrix transpose properties, (5.157) results as:

((Aloss + Ares )kj - <AIoss " Ares | (Aloss + Ares |'

From (3.155) and (3.158), we conclude that:

(Aloss + Ares )T

Using (3.159), (3.154) becomes:

T
crEak - (8T kT flag «ams ] 0
(3.160)
Using (3.160), the similarity matriXTObs , has the form:
] [BT KT jQ |
} (BT KT J(_1)1<Aloss + Ares )T Q }
| __
T = | \
obs } (BT +KT ]( )2{(A|0SS + Ares )21 Q }
} T T n-1 n-1)' }
\L[B + K j(—l) {(AIOSS + Ares "7 QJ
Equivalently we can write:
IF [BT kT JQT TI
I [BT+KTJ( (A, +Ares ) QT |
obs | |
I T T n-1 n-1 T T I
L[B 1K ](—1) ((Aloss v A " Q |
More compactly we can write:
| QB+ k) ]
. } (—1)1[BT vk T ](Q (Aloss + s ) i
obs _} I
\( l)n—l 8T kT ( (A A )n—l)T|
L_ [ " )KQ loss * "res J
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or:

(3.164)

obs

+
>
=
@D
w
—_
|
—
[on}
+
~
—_
-
-

We can write also as:

Tobs

(3.165)

'
|
lt(_ 1)n_1{Q (Aloss

From (3.165), the transformation matrix 7, can be equivalently written as:

bs

Tmszﬁ4ﬁmw+K»(49@MMS+AMXB+M)W vn“%ewm5+maw*w+K%
(3.166)

Also we can write:

be Q[(—l)O(B +K) A A JBHK) o CDTTHAL 4 A JTTHB K )}

(3.167)

Using the matrix notation:

def
AT = (A + Ares ) (3.168)
we can write equivalently:
Tmszqﬁ49w+K> AT+ K) en“4mw“%B+Kﬂ

(3.169)

Thus a lossy Port-Hamiltonian system in the presence of a known perturbation model is
observable, when det @ = 0 and the pair (A", (B + K)) is controllable.

3.5 Practical identifiability examples

This section presents three representative examples of practical identifiability analysis using
the observability and controllability concepts, and the general results from sections 3.2 to 3.4.

3.5.1 Lossless PCH systems

For the practical identifiability analysis of the LC circuit, it was considered a Gaussian White
noise perturbation model, generated by software of the following form:
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r8.77 1
K = I 7.36 } (3.170)
[0.04 |
In order to analyse the practical identifiability property of the LC circuit, the following values
have been considered for the parameters of the real system:

Ly =L, =1
T (3.171)
72
2
Thus the semi-positive definite matrix Q becomes:
B |
}E o 0 } lrz 0 OW‘
Q:IO Li 0 }=|o 1 0] (3.172)
| 1 L | lLo 0 1J‘
lo o LI
{ Lo ]

A necessary condition to apply the practical identifiability analysis, is first to test the
observability of the system without the presence of the perturbation model (or structural
identifiability analysis). The observable transformation matrix in this case is:

|0 — o |

| “1 |

| 1 |
T =|-— 0 0 | (3.173)
obs L C

| 1 |

| 0 1 1]

L2c L/.L.C
1°2

Using (3.173) it can be easily proved that the system is observable and the practical
identifiability analysis can be further realized. Using (3.170) and (3.172), the matrix E
corresponding to the perturation model, has the following form:

E=-K'Q=[7.54 7.3 0.04] (3.174)
while the matrix ¢ has the following form:
c=B'Q=[0 1 0] (3.175)
Computing the transformation matrix 7 from (3.4) for the observable canonical form of
the system, the following result is obtained:
[ C+E 1 [17.54 8.36 0.04 1
T =‘ (C+E)A I: I -16.64 17.54  —17 .54 } (3.176)

obs | o1 | |
|(C+E)A®| |-70.16 -16.64 16.64 |

Computing the A, B,c'and K matrices in the observable canonical form, the following
results are obtained using (3.35):
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|ro 1 -1.19 -10 7‘ |ro 1 01|
_ -1 _| a0 —7 | .
Aom _Tom ATom _|O 4.8-10 1 \—IO 0 1I (3.177)
lLO ~3.99 4.8.10 7 J‘ 0 -4 0]
Ir 8.36 1‘
Bops = Tobs B :i 17 .54 } (3.178)
| -16 .64 |
, _ -1 T _ an =7 B . —61:
Clps =(CH+ET o _Lo.99 1.2-10 3.5-10 J_[1 0 0]
(3.179)
‘( 215 .357 1‘
K obs :Tom|<=} -17 .54 } (3.180)
| - 737 .108 |

In (3.179), c'represents the matrix c + E corresponding to the output perturbation applied
over the system output as in (3.2). Using (3.94), (3.95) and (3.106), the equivalent observable
canonical form of the LC circuit is:

|r4.8~10_7 1 ~1.19 .10‘77'
_ | -7 |
obsT = | 399 4.8-10 1 | (3.181)
| 0 0 0 |
L J
|r8.36 W‘
Bopsy = !17:53 (3.182)
116 .71 |
Copsy =1 0 0] (3.183)
|r8.77 1‘
Kopst =17-35 | (3.184)
35.03 |
Using (3.112),(3.181), (3.182), (3.183) and (3.184), the practical identifiability matrix, is:
|r8.36 8.77 17.53 7.35 -16.80 —0.30 1|
Rpp =I117.53 7.35 -16.64 0.03 -69.98 -29.36 | (3.185)
|L16 71 35.03 0 0 0 0 J

In order to determine the controllability property of the system in the presence of a

perturbation model, the matrix rank of r |, is determined by selecting for instance the 2nd 4t

and 6™ columns in (3.185), for which the determinant has the following value:
rg.77 7.35 -0.30 |

|
det Ry =det| 7.35 0.03 -29.36

D = —7570 .89 (3.186)

|
| 1
|35.03 0 0 |

Thus it can be concluded that the identifiability matrix r . is of full rank and the LC circuit

ID
is said to be practically identifiable in the presence of the selected perturbation model. In case
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the transformation matrix L in (3.176) is rank defficient, the LC circuit is not practically

b
identifiable for the corresponding perturbation model.

3.5.2 Lossy PCH systems

For the case of the capacitor microphone circuit, the observable transformation matrix has the
following general form:

Tobs = [Tobs 1 Tobs 2] (3.187)
where:
( |
0 = 0]
ke
Tobs 1 1 m T 0 (3.188)
PRI
Lm 2 m 2 m 3 J
represesents the transformation matrix corresponding to the first input B =00 1 o]t
and:
[ 1
\ 1 \
|0 0 — |
\ Rc |
_| 1| 3.189)
ps2 =10 0 - | 3.
0ons } (RC )2 }
00—
] (Re)” ]

From (3.188) and (3.189), it can be observed, that the observable transformation matrices

T obs 1 Tobs 2 corresponding to the inputs B,.B, are rank defficient and in conclusion, the

system is not observable to perform identifiability analysis in the presence of the perturbation
model. For the lossy case a second example is therefore considered, represented by a DC

motor, which will be proved to be observable. The observable transformation matrix T obs

from (3.4) when no perturbation is applied over the system, has the following form:

M1 ]
\ T |

T obs :}_i ! I (3.190)
L L2 LI ¢ J

for a gyrator term K =1. Considering a particular case for the real parameters with

DC
L=R=1and J_ =b=1/2, itis easy to see that the determinant of T obs is different from O

and the system is then observable. In this case, we consider a Gaussian White noise
perturbation model of the form:
PEERCCN

3.191
e (3.19)
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for the matrix k, corresponding to the perturbation model. The matrix E=K'Q

corresponding to the perturbation model, has the following form:
E=[.755 2.94] (3.192)

while the matrix ¢ = BT @ has the form:
C=01 o] (3193)
The observable transformation matrix from (3.4) becomes:

[2.755 2.94 1
[C+E ] (3.194)

Tobs | | |

(C+E)A] |0.185 -8.45 |

Computing the A, B ,c'and k matrices for the observable canonical form using (3.73), we
get:

4 :|r—0.002 1.003 1‘:|r0 11

Aobs = Tobs AT obs o rwe | |ls 2J (3.195)

Bobs = Tobs B (3.196)

Cops =(C+ENT & =foo2 -o0002]=f o] (3.197)
Kobs = Tons K = [9'1155097 ] (3.198)

As for the lossless case, c'represents the matrix ¢ + E corresponding to the perturbation
applied over the system output as in (3.36). Using (3.94), (3.95) and (3.106), we can write the
equivalent observable canonical form as follows:

[-1.999  1.003 1

A = | 3.199

obsT 1 _3.000 -0.002 | (3.199)
[2.755 1

= 3.200

BObST 1_5'695 J ( )

Copst = O] (3.201)
[9.155 T

= 3.202

 obsT |Les.213 J ( )

Using (3.138), (3.199),(3.200),(3.201) and (3.202) the practical identifiability matrix for the
equivalent observable canonical form is:

[2.755  9.155 0.203 -12 .069 1

Rip = | (3.203)
| 5.695 6.213 -8.279 - 27 .487 |

In order to determine the controllability of the system, it is necessary to prove that the matrix

Rip is not rank deficient. We select then a minor formed with the 1% two columns for which

we check the determinant:

[2.755  9.155 |
= det | |=-35.021 (3.204)

det R’I
|5.605 6.213 |

D

Using the result from (3.204), it results that the DC motor is practically identifiable for the
selected perturbation model and parameters. As for the lossless case example, the DC motor is

not practically identifiable when the transformation matrix T obs in (3.194) is rank deficient.
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Conclusions

The present chapter proposed a practical identifiability methodology for Port-Hamiltonian
systems, starting from classic theoretical aspects of state-space systems, which combine the
basic known observability and controllability concepts. Section 2 proved that Port-
Hamiltonian systems can be converted to the observable canonical form, in the presence of a
perturbation model, conserving the basic properties of PCH systems. Also it was introduced a
definition for the perturbation model of Port-Hamiltonian systems, using the interaction port
of the system with the environment. Section 3 was dedicated to the conversion of Port-
Hamiltonian systems into an equivalent observable canonical form, which is used for the
practical identifiability analysis in section 4 and 5. The last two sections proposed some
general formulations for the proposed practical identifiability methodology in the lossless or
lossy cases in the presence of a perturbation model and presented some examples of a LC
circuit, a capacitor microphone circuit and a DC motor. The results of this chapter show that
the LC circuit and DC motor are identifiable in the presence of a perturbation model, while
the capacitor microphone circuit is not observable and thus not practical identifiable.
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4.Symplectic time integration and discretization error Hamiltonian

A general framework of time-discretization is proposed in this chapter for PCH systems, in
the nonlinear and linear case, by combining different time-discretization rules for the flows
and efforts, preserving thus the structure. A set of symplectic time-discretization schemes is
proposed using classic first or second order rules for the flows and efforts. For each time-
discretization scheme, the symplecticity with respect to the natural power pairing (bilinear
form) is proved and the resulting conservation of the total energy is checked both for the
lossless or lossy cases. The differentiation of two PCH systems, is then introduced and
applied in order to define a discretization error Hamiltonian, for which the power energies
of the ports, are given as the difference between the continuous and discrete-time systems.

4.1 Introduction

Computer aided process control, is realized in discrete-time by sampling the continuous-time
signal. Therefore, many discretization techniques have been designed to approximate
accurately, the process and controller models [71-80]. Among these, when considering low
order integration models, one could mention among the most important ones: Step Invariant
or Zero Order Hold (ZOH) rule, Matched Pole-Zero rule, forward and backward Euler rules,
Tustin rule, Generalized Bilinear Transformation rule, mid-point rule or Runge-Kutta rule.
For higher integration techniques of the process or controller, discretization methods like
Boxer-Thaler and Madwed [81-91], have been introduced, with higher accuracy for the
approximated model, but with complex practical implementation and low possibility for
stability analysis. PCH systems have some remarkable properties, among others power-energy
conservation and stability under power preserving interconnection (e.g. parallel, series or
feedback interconnections) [91]. Structure preserving time-integration (also termed as
geometric integration) of Hamiltonian or PCH systems is thus a natural question and indeed a
current research concern [9-106]. The aim of this chapter, is to develop discrete-time (control
or simulation) models which inherits the structural properties of the continuous-time model
(e.g. conservativeness, dissipativity or passivity, stability, controllability, etc.). In this chapter,
we propose a methodology to generate symplectic time-discretization schemes for PCH
systems, combining distinct discretization rules for the flow and effort variables. Some
combinations of classical rules (explicit and implicit Euler, trapezoidal or mid-point rules) are
investigated as an illustration of the methodology. For each of these combinations, the
symplecticity is proved and the power conservation law checked. Then we introduce a similar
approach to the backward error analysis, which has been previously developed for closed
Hamiltonian systems in [96]. This generalization is based on a differentiation technique
between two PCH systems, which defines a new PCH system with respect to the power-
energy difference between ports of the two original PCH systems. A discretization error
Hamiltonian system is then built using this difference between the continuous-time (original
model) and the discrete-time model, obtained by the previously defined symplectic integration
schemes. The chapter is organized as follows:
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Section 4.2 presents a general framework for symplectic time-discretization in the nonlinear
and linear case, discussing the necessary conditions to preserve the power conservation law
and also introduces the power pairing bilinear form, as well as explicit and implicit forms for
discrete-time PCH systems.

Starting from this general framework of symplectic time-discretization, section 4.3 presents a
set of three symplectic time-discretization schemes, using four first or second order rules for
the flows and efforts, by writing the associated power conservation law, bilinear form and the
explicit and implicit discrete-time PCH systems.

Section 4.4 introduces a new concept to differentiate two PCH systems with respect to the
power energies associated to the ports, as a new Port-Hamiltonian system. This formulation is
then used to define a discretization error Hamiltonian system between the continuous-time
and discrete-time PCH systems.

Section 4.5 presents a set of simulations for the selected symplectic time-discretization
schemes to prove the theoretical results, by drawing specific curves like output responses,
power energies, error logarithm for the continuous-time, discrete-time systems or
discretization error Hamiltonian.

4.2 Structural preserving discretization of PCH systems

This section presents a symplectic time-discretization methodology for PCH systems,
assuming that two different discretization rules are used for the flows and efforts, in order to
obtain a discrete-time PCH system. The first part of this section presents a general framework
for time-discretization in the nonlinear and linear case, with necessary conditions which must
be satisfied to preserve the PCH systems basic properties. The second part presents a set of
three symplectic time-discretization schemes, using four first or second order time-
discretization rules (explicit and implicit Euler, implicit mid-point rule and implicit
trapezoidal rule) for the flows and efforts.

4.2.1 General framework of symplectic discretization

This section introduces a general framework for symplectic time-discretization in the
nonlinear and linear cases, which considers two different discretization rules for the flows and
efforts. The power conservation law is derived for the discretized system together with all
other characteristic properties of PCH systems. The linear case of the proposed methodology
is easily derived from the nonlinear one in section 4.2.1.1, 4.2.1.2 and used further for time-
discretization of three symplectic schemes in section 4.3. By time-discretization it is proved
that a discrete-time PCH system results, for which the flows and efforts of the continuous-
time system ports, are approximated with discrete-time flows and efforts, while the
interconnection structure (D) is conserved. In the sequel, we will consider general
approximations denoted:
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(
|
|
def . def
Jéc (i) = Edi[BT (x).(ﬁ(x)]], fo i) = Fd () (4.1)
|
|

def def
én ) . Edi[ﬂ(x)], f i) : Edi[—R(x)-%(x)]

respectively for the discrete-time flows and efforts associated to the storage (éS f s ),control
(éc . fo ) anddissipation (¢, f ) ports.
Remark: The discrete-time flow fR (i) of the dissipation port, is not considered for

discretization similarly to the storage port flow( fs ), as the continuous-time flow( f ;) can
be generally expressed in relation to the effort (e ) using an input-output mapping
fr =—F(eR )[23] .
We introduce the discrete-time power conservation law as:

ég (i)f (i)+ég (i)f e (i)+é-F2 (i)f g (i)=0 (4.2)
which must be satisfied also in discrete-time. For the discrete-time flows and efforts
introduced in (4.1), we define the discrete-time finite-dimensional spaces F and its dual
E = F  .Using (4.1) and (4.2) we can derive the following relation:

eg(l)f (|)+eg (i)f e (|)+ég(i)fR(|):
T

_ Edl[ai ] Fd . (J(x))Fd . * Ed [a': (x)]+

OH T OH
" Edl[g ] Fd . (R(x)) Fd *Edi[ax (x)]

oH T (4.3)
- Edl[g ] Fd; (B(x))-Fd; (u)+

oH T
+ Edl[g ] Ed; (B(x))-Fd; (u)-

oH T oH

which we observe to be satisfied for:
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(

|

|

|

|

}

I T
4—[Edi[ﬂ(x)]] -Edi(R(x))-Edi[ﬂ(x)]:O (4.4)
|

|

|

|

|

|

|

|

]
_[Edi[ﬁ(x)n Fd (B(x))-Fd  (u)=0

Remark: The composition between the flow (Fd ;) and effort (Ed ; ) time-discretization rules,
is defined by Fd ; *Ed ;, where the effort and flow discretization rules, are applied succesively

on the continuous-time effort model. When performing the time-discretization of the storage
port flow f in the nonlinear case, it is necessary to discretize the interconnection matrix

(3(x)) and dissipation matrix (Rr(x)) separately, before performing the product with the

discrete-time effort Ed, [ai(x)] , @s it is not possible to multiply a continuous-time value with

oX

a discrete-time one. Separate time-discretization is considered thus, for all the continuous-
time parameters.
The necessary conditions for (4.4) to hold are then:
(
| Ed i[%(x)] _Fd, *Ed i[ﬂ(x)J
JEd i (R(x))= Fd . (R(x)) (4.5)
|Ed; (B(x))= Fd; (B(x))

t

Remark: The dissipation flow fg Can be discretized also as

fR = —Fd(R(x))Fd; * Ed i{aai(x)] , in which case the first two relations in (4.5) are always
X

satisfied and thus, the necessary conditions are reduced, making possible to generate a

broader class of discretization schemes. In order to generate also non-symplectic time-

discretization schemes as counter examples, we will consider further the case of (4.1) to

discretize the dissipation flow f_ . It can easily be observed in (4.5), that using the same

Euler time-discretization rule (explicit or implicit) for the flows and efforts with a nonlinear
model, will always satisfy all three relations. Also it can be proved, that using the same
second order time-discretization rules (implicit mid-point or implicit trapezoidal rule) for the
flows and efforts, will satisfy the second and third relations of (4.5), but never the first one for
a nonlinear model.
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For the linear case which is considered in the next sections, the necessary conditions for (4.4)
to be satisfied become:

( T

}Ed.i 3Fd.*ed. [P ]2 o

| I ax ! I ox

| oH T AH

JEd.— ‘R-Fd,*Ed .| —|= (4.6)
| I ox ! I ox

} T

Ed [P R.oEq.[27

{ I ax I ox

In this case, the last relation from (4.4) dissapears, as the input matrix s doesn’t have a
nonlinear model. Using the necessary conditions proposed in (4.4) for the preservation of the
conservation law (4.2) in discrete-time, we propose the following proposition for the
preservation of the power conservation law:

Proposition 1[194]

The PCH system (1.27), preserves the power conservation law (4.2) by symplectic time-
discretization using the discretization rules (4.1) for the power port flows and efforts, when
(4.5) holds.

Remark: This proposition can be also used for the linear case analysis of PCH systems, when
(4.6) holds. As will be seen in the next sections, situations may occur in which one of the
conditions in (4.5) or (4.6) is satisfied but not the others and thus, the preservation of PCH
systems structural properties in discrete-time is not satisfied.

We introduce further the discrete-time equivalent for the energy balance (Hamiltonian) using
(1.24) and (4.1), by:

00X
(4.7)
oH
- i((J (x)- R(x))- Ed i[g(x)]J
‘\+ B(x)-u J
which is equivalent to:
def

H(t+ At) M (t)+ At-[é(T: fo +ép ij (4.8)

by straightforward computation when (4.5) or (4.6) holds and thus, (1.24) is also preserved in

discrete-time. An equivalent description of a Dirac structure can be realized by introducing

the discrete-time bilinear form [23]:
def

f‘a> (4.9)
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on the discrete-time space of flows and efforts (FxF ™) with (fa,éaj,[ £b ,ébje FxF ™ .

Replacing the discrete-time flows and efforts from (4.1) in (4.9), we can write equivalently
[117]:

OX oX OX
b
(Fa . (C x) o (u),Ed i[- R(x).[ﬂ(x)m -
L ox 7)) (4.10)
b
[Ed I[%(x)] Edl[BT (x)-%( )] Ed I[%(X)H
(Fd (%) Fd. () Ed. _R(x)-[ﬂ(x)] ) .
L | ! | ! 1 oxX J

The discrete-time bilinear form from (4.10) is related to the definition of discrete-time power
conservation law defined in (4.2), for which (4.5) must be satisfied. We also introduce the
implicit discrete-time dynamics form for the PCH system using (1.26), as:

l(Fd (- ), Ed i[‘;—':(x)], Fd . (u), Ed i[BT (x)~aaix(x)],w
I oH oH }e P (4-11)
LEd i[— R(x)‘[g(x)]], Ed i[g(x)] J

Remark: The Dirac interconnection (D) structure and rules are preserved by time-
discretization, as they serve only for power port interconnection. This structural preserving
time-discretization methodology, can be adapted to more general classes of time-
discretization rules (see Runge-Kutta methods, collocation methods, etc.) [96, 114].

4.2.1.1 Lossless PCH systems

The general continuous-time explicit form of the linear lossless PCH systems, for which we

apply symplectic discretization is:

(X =1J aai+ Bu

X 4.12

ly-gT .21 @12
| oX

A general form of the symplectic time-discretization schemes for the lossless case, when

using different discretization rules for the flows and efforts as defined in (4.1), can be written

as follows:

(4.13)
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Remark: In the above relation, F . and E; » Fepresent the time-discretization rules (explicit

di
or implicit form) applied for the continuous-time flows and efforts at step i of discretization
as defined in (4.1).

More compactly, we can write (4.13) as:

(
Ji—)t((i)—J Fd | * Ed i[%}LB-Fd ()

| T oH
. =B Ed.|l—
[yl '[6x]

(4.14)

where i corresponds to the current discretization time-step for the selected rules. In the
lossless case, the discrete-time power conservation law (4.2) becomes:

é; (i)fg (i)+ég (i) (i)=0 (4.15)

Using the general time-discretization form from (4.3) in the linear case, the right side part of
(4.14) becomes:
T T
[Ed i[ﬁ]] [— J-Fd, =Ed i[ﬁJ— B - Fd i(u)J+[Ed i[ﬂ]] B-Fd;(u) (4.16)

oX 00X oX
Performing the possible simplifications in (4.16), it results that the total discrete-time power-

conservation law is:

.
61 ()fg )+el (), ()= —[Ed I[ain 3 -Fd | +Ed I[i}—':] (4.17)

ox

From (4.17) it results that the power conservation law is satisfied in discrete-time, when the
right part of the equality is zero.

Remark: For the linear lossless case presented in this section, the only relation that needs to
be satisfied in (4.6) is the first one, in order to preserve the discrete-time power conservation

law (4.1). This happens when the discret-time terms Ed i[ai] and Fd, x Ed i[ai] have

oX oX

common matrix factors to the left and right of the skew-symmetric matrix J .
In this case, the right part of the product in (4.17) is zero and the power conservation law
holds in discrete-time. Using (4.7) we define the discrete-time energy (Hamiltonian) as:

an 4 AHTAX—E oH TBF -y (4.18)
YR (EJ At d‘(a_x] P @)=y '
when (4.15) holds. Then it is obvious from (4.8), that the discretized (approximated)
Hamiltonian energy function H (x) is also conserved in discrete-time form. Using (4.9) and

(4.10), the expression of the discrete-time bilinear form, for lossless PCH systems can be
written as follows:

(4.19)
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where i corresponds to the current time-discretization step for the selected symplectic scheme.
Using (4.11), we introduce the discrete-time implicit form in the lossless linear case as:

or more generally:
(g ieg i) f ()66 ()] D (4.21)

Remark: The interconnection rules for the Dirac structure (o ) remain in the discretized
Bond Space, which is basically the same (the efforts and flows at discrete times have values in
the same vector spaces as for the continuous case).

4.2.1.2 Lossy PCH systems

The general explicit form of a linear lossy PCH system, for which we apply the symplectic
time-discretization, is:

i -r) I By

ox (4.22)
ly-pT oH
[ oX

A general expression of the symplectic time-discretization schemes for lossy PCH systems,
when applying two different discretization rules for the flows and efforts, is the following:
(

oH
Jxk+1_xk +At-(J —R)-Fdi*Ed i[g]JrAt-BFd i(u)

| T oH
.=B' .Ed.| —
ty' '[6x

(4.23)

Remark: Fai and E; represent two different discretization rules applied for the flows and
efforts at step i (in explicit or implicit form) of time-discretization.
More compactly, we can write (4.23) as:

[
Ji—:(i)_(J “R)-Fd, +Ed i[aa—l;:]+B~Fd )

| T oH
. =B' .Ed.|—
tyl '[ax

Remark: This symplectic time-discretization methodology, can be adapted and applied for
any two time-discretization rules (even the same), applied to the flows and efforts.

Using the continuous-time power conservation law introduced in (1.23), we can write the
discrete-time equivalent as:

ég (i)f (i)+ég (i)f e (i)+é£ (i)fr ()=0 (4.25)

Using the discrete-time flows and efforts defined in (4.1), we can write further:

[Edi[%HT[— (J - R)-Fd; = Edi[%]— B - Fdi(u)]+[Edi[%HT B-Fd;(u)

(4.24)

(4.26)
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for the discrete-time power conservation law. Performing the possible simplifications in
(4.26), the power conservation law becomes:

X oX

(e (B oS- ] e 2]

As for the nonlinear case, the necessary condition to be satisfied in discrete-time for power
conservation law becomes then:

o 5] e e ) o (2

;
6T (i) (i) el ()f g ()+eh ()f g ()= —{Ed ,[aai]] J-Fd, *Ed i[ﬂ}
. (4.27)

T (4.28)
_[Ed [ﬁj] R - Edi [ﬂj_o
I ox ox
We observe that this relation holds for:
[ T
[Edi[ain ~J~Fd-*Ed-[aiJ:O
oX ! I ox
J . . (4.29)
| ea . [2H RFd. +ed. [ Ed [P Roga [2H
| I ox I N I ox I ox
Then we can derive a condition for (4.29) to be satisfied as:
oH oH
Ed i(a_x] = Fd; = Ed i(a_x] (4.30)

Using the continuous-time relation (1.24) for the energy balance (Hamiltonian), we define the
discrete-time equivalent as for the nonlinear case in (4.7):

def T
%(i) - [Edi [%N Fdi[(J ~R)E [%J+B-u]= g fo vep o (4.31)

The right part of (4.31) results by straightforward computation replacing the discrete-time
flows and efforts as defined in (4.1), when (4.30) is satisfied. The expression of the linear
discrete-time bilinear form as defined in (4.10) for the nonlinear case becomes:

B (i)<[Edi[%}BT .Edi[i—j],Edi[%Ha‘[Fdi(x),Fdi(u),R,Edi[ZiX]]b>+
ez o 2 o o2

(4.32)
The implicit form of the discrete-time linear lossy PCH system is then:
: oH T oH oH oH
[Fd i (= %), Ed i[a_x]‘ Fd(u),B' -Ed i[a—xj,—R-Ed i[a_x]’ Ed i[a_x]]e D (4.33)

or more compactly:
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[fs (i) 6 (i) fo (i)eq (i) Fri)eg (i))e D (4.34)

where the Dirac structure p conserves its structure by time-discretization as was already
exaplained.

4.3 Symplectic discretization schemes

A set of three symplectic time-discretization schemes for the lossless and lossy PCH systems
are considered here as examples in the linear case, using different (first or second order)
discretization rules for the flows and efforts. As discretization rules are proposed: explicit and
implicit Euler rule, implicit mid-point rule and implicit trapezoidal rule. For each combined
time-discretization scheme, it is checked and proved the power conservation law of the
system, the bilinear form is expressed together with the explicit and implicit forms for the
discrete-time PCH system, using the general framework of 4.2.1.

4.3.1 Lossless PCH systems

In the case of lossless PCH systems, the following three symplectic discretization schemes
were proposed to check the general framework introduced in section 4.2.1: explicit Euler rule
for the flows and implicit Euler rule for the efforts; implicit Euler rule for the flows and
implicit trapezoidal rule for the efforts; implicit trapezoidal rule for the flows and implicit
mid-point rule for the efforts. We have selected these simple symplectic time-discretization
schemes as examples for the general framework of 4.2.1, to see if the PCH systems properties
are satisfied in discrete-time and also to point out their performances.

Remark: Non-symplectic time-discretization schemes for lossless PCH systems can be
obtained when the first relation of (4.6) doesn’t hold.

4.3.1.1 Symplectic discretization scheme |

For the first symplectic time-discretization scheme, it was selected the explicit Euler rule for
the flows and implicit Euler rule, for the efforts. Combining the explicit Euler rule for the
flows and implicit Euler rule for the efforts using (4.3), the following relations result for the
explicit form of the discrete-time PCH system:

[AX AH

(k)=3 .- ——(Kk)+B-u
A Ax “ i (4.35)
{F(k #1)=Qx, v, =B O,
Remark: The composed time discretization Fd ; = Ed i[aaiJ of the effort becomes ox , , by
X

applying the flow discretization over AA—H.
X

The second relation in (4.35) for the discrete-time flow results from the fact that the total
energy (Hamiltonian) of the system, can be generally written as:
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H ()= T ox (4.36)

Remark: In all time-discretization schemes that follow, we have adoppted the notation *a-,
to designate the discrete-time differentiator of the flows and efforts, while the current
discretization time-step of the flow and efforts, is represented by k or k+1, corresponding
also to the explicit or implicit forms of the discretization rules. The discrete-time forms of
PCH systems from the general framework, will borrow the explicit or implicit form as the
flow discretization rules selected.

Using (4.35) the discrete-time power energy associated to the storage port at step « of time-
discretization, can be defined as:

def T
3 = 6T (k) k)= [2H A% = (3.8 1) 8.
Pot) = e ) g )= )] [~ Tht]=or [0 - B v, | (4.37)
where &g (k) and f s (k) represent the discrete-time forms of the effort and flow defined in
(4.1). From straight-forward computations, we obtain the following general relation:
def A
Po (k) = —6g (k)-B-fg (k) (4.38)

using discrete-time flows and efforts. Similarly for the control port power energy, we can
write:

R def T T T T
P (k) = el (k)fe ()= y]u, =[B kaj U (4.39)
From simple computations, we can write (4.39) as:
def .
Po (k) = € (k)-B-f. (k) (4.40)

using the discrete-time flows and efforts of the control and storage ports. Using (4.38) and
(4.40), the total power energy at step « of discretization is conserved, since we can write:

s )+ P (k)= -6 (k)B-f (k)+6g (k)B-f (k)=0 (4.41)

Using (4.18), we define the discrete-time energy (Hamiltonian) as:
def .
%(k) = el k)= ylu, (4.42)
Using (4.38) and (4.40), it becomes further:
def
AH T ~
T(k) = €4 (k)Bf

The discrete-time bilinear defined in (4.19) becomes in this case:

. . b . . a
B (k) = <(és<k>.éc (ENORNT) >+<(é5 Kheg ([ 15 k) g ) > (4.44)

P.(k)+P

< (k) (4.43)

which becomes further for this scheme:

B (k) = <{(ka),[BT .Q.anay[i_f(k)yuk]b>+<((ka),(BT ,Q.anb’[i_:(k),uk]a>
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by replacing the discrete-time efforts and flows of each port as defined in (4.1). Using (4.20),
the implicit form of the discrete-time linear lossless PCH system at step « of discretization, is
then:

(fs (k) &g (), fo () 6c (k))e D (4.46)

where the Dirac structure (D) is described by the same linear equations as the original
continuous-time one.

4.3.1.2 Symplectic discretization scheme |1

For the second symplectic time-discretization scheme, the implicit Euler rule and the implicit
trapezoidal rule, were selected for the flows and efforts as defined in (4.1). Applying the
selected discretization rules, to the continuous-time form of the lossless PCH system from
(4.12) using (4.4), it results the following explicit form of the linear lossless discrete-time
PCH system:

[ Ax _
Jzk+l Xk+1+B’uk+1 (447)
|ﬂ(k+1) Q-X, =81 .Q-x |
| A k+1 Ykt~ k+1
where the following notation was adopted for simplicity:
def
X T X e | (4.48)

ket T T2

ﬂ] of the effort becomes

Remark: The composed time- discretization Fdi*Edi{a
X

X, +X

Q[%} by applying the flow discretization over AA—Hat step k +1.
X

At the next step, the power conservation law (4.15) is checked by time-discretization. The

power energy associated to the storage port at step « +1 of time-discretization, can be defined

as follows using (4.47):

def
Pok+1) = el k+1)f (k+1)=(Q-x JyQx ,-Bu ) (4.49)
From simple computations, (4.49) can be written more compact as:
def
Polk+1) = -6l (k+1)B- f(k+1) (4.50)

The discrete-time power energy of the control port, can be defined using the following
formula by replacing the discrete-time flows and efforts:
def T

Pok+1) = 6l (k+1)f (k+1):[BT -Q~>?k+1] Uyt (4.51)
Equivalently, we can write this relation as:
def .
Polk+1) = 60 (k+1)B-f (k+1) (4.52)

Using (4.50) and (4.52), it results that the discrete-time power conservation law (4.15) is
conserved:
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P (k+1)+ P (k+1)=—6F (k+1)-B-f_ (k+1)+ €L (k+1)-B-f_ (k+1)=0 (4.53)
From (4.18), we define the energy (Hamiltonian) as:
AH def T ) T
T(k+1) = —es(k+l)fs(k+1): Y e1Uk a1 (4.54)
which becomes further:
AH def T .
F(k +1) = ég (k+1)Bf, (k+1) (4.55)
Using (4.19), the discrete-time bilinear form is defined as:
def . b
B (k+1) = <(éS (k+1)6 (k +1))a,[ fo k1) fo (k +1)] >+
(4.56)
a
+<(és(k+1),éc(k+1))b,[fs(k+1), fc(k+1)j >
which becomes further by replacing the discrete-time flows and efforts defined in (4.1):
A def a b
B (k+1) = <(Q)?k+l, BT .Q .;k+1J ,[_ i—)t((k +1),uk+1] >+
(4.57)

b a
— T — AX
+<[Q.xk+1,B 'Q'Xk+1j ’[_E(k+l)'uk+lj >

for the selected symplectic time-discretization scheme. Using (4.21), the implicit form of the
discrete-time lossless PCH system, has the following form:

(fs(k+1),és(k+1), fo (k+1),éC(k+1)]eD (4.58)

where the the Dirac structure (D ) is conserved by time-discretization.
4.3.1.3 Symplectic discretization scheme 111

For the last symplectic time-discretization scheme in the linear lossless case, it was selected
the implicit trapezoidal rule for the flows and implicit mid-point rule for the efforts, which are
two second order discretization rules. Applying these time-discretization rules using (4.1), for
the continuous-time lossless PCH system from (4.12), it results the following explicit form for
the discrete-time system:

[AX

+B-u,

k+1)=3-Q- k+1 k+1

>

(4.59)

>>||>
Ie—r

T . . X

\ - 0.% _
| Ax (k+1)=Q er1 Vi1 = B

where the following notations:
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‘u—kﬂ -1k . k+l (4.60)
= dif Kk T k41
l k+1 2

were adoppted for simplicity.

Remark: The composed time-discretization rd ; » Ed i[aa—':] of the effort becomes Qx:k+ L by

applying the flow discretization over AA—Hat step k +1.
X

Next we determine if the power conservation law (4.15) is conserved by time-discretization
for the selected discretization rules. The discrete-time power energy, associated to the storage
port, can be defined as follows:

. def N T _

Po (k+1) = 6 (k+1)fg (k+1)= (Qik+1) (I X, B -u_k+1) (4.61)
by replacing the discrete-time flows and efforts as defined in (4.1).
Then it is straightforward that:

P (k+1):_ég (k+1)B- f (k+1) (4.62)
The discrete-time control port power energy, is defined as follows:
. def . _ L
Pok+1) = el (k+1)f (k+1)= [BT Q -xk+lj 0y (4.63)
and it can be also expressed as:
def
Polk+1) = 6 (k+1)B-f (k+1) (4.64)

It is obvious then that the total power energy is conserved in discrete-time:
Pe (k+1)+ P (k+1)= _ég (k+1)-B-f (k+1)+ ég (k+1)B-f_ (k+1)=0 (4.65)
Using (4.18), the energy (Hamiltonian) of this scheme is defined as:

AH def

—lkr1) = _é; (k+1)fg (k+1)= yLluk+l (4.66)
Using (4.62) and (4.64) it results further:
def
S0 kv1) = 6l (ke1)Big (1) (4.67)

At
Hence, the discrete-time bilinear form (4.19) for this symplectic time-discretization scheme is
defined as:
def

. a /- ) b
B (k+1) = <(és(k+1),éc (k +1)) ,(fs(k+1), fc(k+1)j >+
(4.68)

+<(és (k +1),éC (k +1))b,(fs (k +1), fC (k +1))a>
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which becomes:

R def B T 3 a Ay B b
BF(k+1): (Q-ka,B -Q-xk+1] ,[—E(k+l),uk+l] +

b a
— T — AX —
+<[Q.xk+1,B 'Q'Xk+1j ,[—A—t(k+1),uk+1] >

when replacing the discrete-time flows and efforts using (4.1) and (4.59).
Using (4.21), the implicit form of the discrete Dirac structure, that results for the lossless PCH
system of the selected symplectic time-discretization scheme, is the following:

(4.69)

[f"s(k+1),és(k+1), fo lk+1)6, (k+1)jeD (4.70)

Remark: The implicit form of the discrete-time PCH systems remains basically the same and
thus, in the proposed time-discretization structural preserving framework, we have used the
explicit PCH form, power conservation law and bilinear form to describe a meaningful
discrete-time system. For the selected time-discretization rules (explicit/implicit Euler,
implicit mid-point and implicit trapezoidal) it can be easily proved that the linear lossless
PCH systems always conserve the structural properties defined in the general framework of
(4.2.1.1) for any combination of time-discretization rules of the flows and efforts.

4.3.2. Lossy PCH systems

As for the lossless case, in the linear lossy case are selected the same three symplectic time-
discretization schemes, for which it is also proved using the general framework from (4.2), the
preservation of PCH systems basic properties in discrete-time.

Remark: Non-symplectic time-discretization rules for lossy PCH systems, can be obtained
when (4.30) doesn 't hold.

4.3.2.1 Symplectic discretization scheme |

The first symplectic time-discretization scheme selected for linear lossy PCH systems, is
represented by an explicit Euler rule for the flows and implicit Euler rule for the efforts.
Applying the general symplectic time-discretization framework from (4.13) for the selected
discretization rules, it results:

[i—:(k):(a —R)-Q-xk +B Uy

4.71
|ﬂ(k)—Q~x —BT-Q-X ( :
ax TR e Ve T k

Remark: It is possible to select the same time-discretization rules for the flows and effort in
the general framework of 4.2 on lossless or lossy cases, maintaining the same conditions for
the preservation of PCH systems power conservation law. The composed time-discretization
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Fd ; * Ed i[aai] of the effort becomes (3 - R)Qx o by applying the flow discretization over
X

AH

AX

For the next step, the preservation of the discrete-time power conservation law is checked.
Using (4.1) and (4.71), the power energy associated to the storage port at step « of
discretization, can be defined as:

def .
P (k) = ¢l ()f k)= x ) 0 -R)Q-x -B-u,] (4.72)
Using simple relations, it is straightforward that:
. def A
Po k) = 6 (k) R-é¢ (k)-€L (k)-B-f (k) (4.73)
The discrete-time control port power energy, can be defined as:
A def . T
Pe (k) = 6] (k).fc(k):[BT -Q-xkj Uy (4.74)
Equivalently this relation can be written as:
def
. e r
pe (k) = €T (k}B-ic k) (4.75)
using simple mathematical relations. For the dissipation port, it results:
A def N
Pr(k) = & (k) o (k) (4.76)
for the power energy. Using simple relations, (4.76) can be equivalently written as:
. def
Prlk) = —lox, T Rlx, )= 61 ()-R-ég (k) (4.77)
Using (4.73), (4.75) and (4.77), the total power energy in discrete-time form is:
Pg (k)+ Pe (k)+ Pp (k)= ég Ré (k)_ég (k)B-fg (k)+ég (k)Bf (k)_ég ()Ré ¢ (k)=0

(4.78)
which satisfies the power conservation law (4.25) and thus the necessary conditions from
(4.30). Using (4.31), the discrete-time energy (Hamiltonian) can be defined as:

%(k) = el k) )=yl u el K)F g (k) (4.79)
which is equivalent to:
def
%(k) = _(ég ()Ré (k)- 61 (k)sfc(k)]:ég ()Bf . ()- €L (kRTg (k) (4.80)

using (4.73), (4.75) and (4.77).
The discrete-time bilinear form, can be defined using (4.32) as:

(4.81)

Using (4.1) and (4.71), we can write then:
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A def T a  ax b
BF(k) = (kaiB 'Q'Xerxkj ,[_E(k)lukl_R'ka] +

b a
T AX
+<[ka,B ~ka,ka] ,[—E(k),uk,—R-ka] >

Using (4.34), the implicit form of the discrete-time Dirac structure at step k of discretization,
is then:

(4.82)

(fgkheg k) fe (k)ég (k) g (k)ép (k)]e D (4.83)

where the Dirac structure p , is conserved by time-discretization.
4.3.2.2 Symplectic discretization scheme 11

For the second symplectic time-discretization scheme of the linear lossy PCH systems, it was
proposed the implicit Euler rule for the flows and implicit trapezoidal rule for the efforts.
Applying this symplectic time-discretization scheme using (4.1) and (4.24) to the linear lossy
PCH system from (4.22), it results:

[AX

JA—t(k+l):(J—R)Q)Tk+1+B~uk+l .80
| AH — T — '
[U(k +1)= ka+1’ Y1~ B 'ka+l
where we have adopted the notation:
def (x + X )
= k k+1
X\ 4 = ij (4.85)
Remark: The composed time discretization Fd, «Ed i[aaij of the effort becomes
X
(Xk + Xk 1) . - - - AH
(3-R )QL#J , by applying the flow discretization over A—at step k +1.
X

for a compact representation. For the next step, the power conservation law, is checked in
discrete-time using (4.25), (4.27),(4.30) and (4.84). The storage port power energy can be
defined as:

def
Po(k+1) = &g (k+1)f¢ (k+1)= (QIkH)T - RIQX, ., - B -uk+1) (4.86)
Using simple relations, we can write then:
) def A
Po(k+1) = 6 (k+1)Ré¢ (k+1)-€L (k+1)-B-f (k+1) (4.87)
For the control port power energy, the discrete-time form is defined as:
Pe (k +1)de:f 6L (k+1)f g (k+1)= [BT QX—MJT Uy (4.88)
Equivalently, this relation can be written as:
. def )
Pok+1) = 6 (k+1)Bf (k+1) (4.89)
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The discrete-time dissipation port power energy, can be expressed as:

def
Polk+1) = el (k+1)f (k+1) (4.90)
Using simple relations, which describe PCH systems, we can write equivalently:
def
Polk+1) = 60 (k+1)Ré¢ (k+1) (4.91)

Using (4.87), (4.89) and (4.91), the discrete-time power conservation law is:

T .
s (k +1)Bf

P.(k+1)+P k+1)+F;R(k+l):é1S—(k+l)Ré k+1)-6 k+1)

3 c! (4.92)

s c!

T : T A _
+éq (k +1)BfC (k +l)7es (k +1)ReS (k+1)=0

Thus the discrete-time power conservation law defined in (4.25) is satisfied for the selected
scheme as (4.30) holds. Using (4.31), the discrete-time energy(Hamiltonian) is defined as:

def
AH . ~ . N
Slkv1) = _eg (k+1)fg (k+1)= yl+1uk+1+e£ (k+1)f o (k+1) (4.93)

Which using (4.87), (4.89) and (4.91) is equivalent to:

H def R . . .
AA—t(k+1) - _[eg (k+1)RéE  (k +1)- 6 (k+1)BfC(k+1)]= (4.94)

T
C S S

The discrete-time bilinear form, can be defined as:

) def a R R b
B (k+1) = <(és (k+1)éc (k+1) 6 (k+1) ,(fs(k+1), fok+t) fo(k+1) >+

=6l (k+1)Bf (k+1)- 6L (k+1)RE (k+1)

(4.95)
+<(és<k+1),éc(k+1),éR(k+1))b,[f‘S(k+1), fi lk2) 7 (1] >

Replacing the discrete-time flows and efforts as defined in (4.1) for the selected symplectic
time-discretization scheme, it results:

def Ax

A —_ —_ —_ a = b
BF(k+1) = <[ka+1’BTQXk+1'QXk+1] '[_E(k+1)'uk+l’_Rka+1] >+
(4.96)

b a
— T — — AX —
+<[ka+1'B ka+1‘QXk+lj '[_A_t(k+l)’uk+1'_RQXk+1] >

Using (4.34), the implicit form of the discrete-time linear lossy PCH system for this scheme,
is the following:

(fs (k+1)6g (k+1) fo (k+1) e (k+1) f o (k+1),éR(k+1)]e D

(4.97)
where the Dirac structure conserves its structure by time-discretization.

4.3.2.3 Symplectic discretization scheme 111

For the third symplectic time-discretization scheme of the linear lossy PCH systems, it was
selected the implicit trapezoidal rule for the flows and implicit mid-point rule for the efforts,
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which are two second order time-discretization rules. Applying this time-discretization
scheme using the general framework defined using (4.1) and (4.24), to the linear lossy PCH
system from (4.22), the following explicit form is derived for the discrete-time system:

[AX

Xk +1)= (3 -RRQX, , + Bl
%2:_' i +1 T+1 . (4.98)
[F(k+l):QXk+l’yk+1:B ’ka+l

where we have used the notations:

| ( w

Mot 7| J

lg M ) (4.99)
| L )

P n

t L J

for simplicity.

Remark: The composed time discretization Fdi*Edi[ﬂJ of the effort becomes

oX
(J-R)Q fk E by applying the flow discretization over AA—Hat step k +1.
X

At the next step, the power conservation law of the PCH system is checked in discrete-time.
The discrete-time power energy associated to the storage port at time-step k +1, can be
defined as follows for the selected time-discretization rules:

def . _ — _
P (k+1) = ég (k+1)fg (k+1)= (ka+1)T (- RQX, ., — B '”k+1) (4.100)
From simple mathematical computations, the following relation results:
def
Po(k+1) = 6L (k+1)Reg (k+1)-6] (k+1)Bf (k+1) (4.101)
In (4.101), the following notation has been introduced:
N def 1
eg k+1) = E(és(k)+és(k+1)) (4.102)
The discrete-time control port power energy, can be defined as follows:
. def T A T L
P k+1) = & (k+1)fc(k+1):[B ka+l] 0y (4.103)
Equivalently this relation can be written as:
def
Polk+1) = 60 (k+1)B-f (k+1) (4.104)

The discrete-time dissipation port power energy, is defined as:
def

Polk+1) = 6f (k+1)f (k+1) (4.105)
From simple mathematical relations, we can write (4.105) equivalently:
ﬁR(kH):_ég (k+1)Ré ¢ (k +1) (4.106)
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Using (4.101), (4.104) and (4.106), we can write the power conservation law in discrete-time
form:

Pg (k +1)+ F;C (k +1)+ F;R (k +1)= ég (k +1)-R -3;— (k +1)- é; (k +1)-B - fAC (k +1)+ (4.107)
+ég (k+1)B-fg (k +1)—é1: (k+1)-R-ég (k+1)
Making the possible simplifications in (4.107), it results that:

P (k+1)+ P (k+1)+ P (k+1)= 67 (k +1)-R-(eg (k +1)- ¢ (k +1) (4.108)

which shows that the general condition of (4.30) is not satisfied. Then we conclude that this
symplectic discretization scheme, is not appropriate for lossy PCH systems time-
discretization.

Remark: For the selected time-discretization rules (explicit/implicit Euler, implicit
trapezoidal and implicit mid-point) and general framework from 4.2 in the linear lossy case,
it can be easily proved that symplectic time-discretization schemes (4.30 satisfied) can be
obtained when using a first order rule (explicit/implicit Euler) for the flows and any other
rules for the efforts.

4.4 Difference between two PCH systems

This section, introduces and defines a new concept to differentiate two PCH systems a and
8 , in the lossless or lossy case, on the basis of the difference between the power energies
associated to the ports. Particularly this concept is useful also to make a differentiation
between the continuous-time PCH system (system A) and a discrete-time PCH system
(system B ), by introducing a time-discretization error Hamiltonian system, that has as
power energy corresponding to the ports, the difference between the power energies of the
continuous-time and discrete-time systems. A schematic overview of the proposed idea, is
given in figure 4.1 below, for the general case which includes also dissipation terms.

Figure 4.1. The difference of two lossy Port-Controlled-Hamiltonian systems A and B , defined with respect to
power energies of the ports.

In Figure 4.1, the power energies corresponding to the storage (P, ), control (P, ) and

dissipation ports (FTR ), for the new proposed difference PCH system are equal to the

difference between the power energies corresponding to the ports. It will be proved in the next
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two subsections (in the continuous-time case) that this difference system is indeed a PCH
system. For the discretization error Hamiltonian, that represents the difference between the
continuous-time (system A ) and discretized (system B ) systems, we will assume that the
discrete-time PCH system is defined as a perturbed continuous-time PCH system (system B )
at discretization times for the continuous-time one (A ).

4.4.1 Lossless PCH systems

In this section a new PCH system is defined, for the difference between two lossless PCH
systems ( A and B ), with respect to the power energies of the ports. We consider two lossless
PCH systems (A and B ), represented generally as follows in the explicit form:

kg )

The storage port power energies, corresponding to systems a and s, can be written as:

[ dx oH
I th—JA(x)aXAA‘(xA)+BA(xA)-uA
|
| oH
|yA:BL(XA)aXA(XA)
{ N (4.109)
| dx
| dtB:JB(XB)aXB(XB)
I B
oH
IVB:BE(XB) -
(

éxB

|[ (on )
T A
IPSA “esa Tsa =7 5y )l Balcahiy
; LA )T (4.110)
| oH
| _al _ ( B W
1Pse =% Tse = 7| o (XB)\ Bglxghig
L L""B )
oH T oH oHg T oH o _
Remark: The terms o, (xA)JA(xA)W(xA)and g (XB)JB<XB)axB (xg) in
(4.110) are zero, due to the skew-symmetry of 3 (x , Jand 4 (x5 ).
The power energies corresponding to the control port for this two systems, are the following:
( T
| T (6H A )
IPCA “eca fca =Yal%a T 5 (XA)I Bplalua
4 LA )T (4.111)
| oH
| _aT _ T ,( B j
ILPCB “ecg fce =~ YpUs | oxg (Xs)j Bglxg)ug

Summing up the power energies corresponding to the storage and control ports for systems
A and B, the total power is conserved, as follows:

[Psa * Pea = (4.112)
[Psg *Pcg =0
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For the next step, we wish to derive a lossless PCH system, which has as power energies
associated to the ports, the difference between the power energies of systems A and B .The
power energy difference, corresponding to the storage and control ports of systems A and B,
can be defined as follows:

P e A C P (M
}Ps = 5 T =g Tsn ~%sp Tsp :LGX (XB)J Bg g lug _‘\aXA (XA>)| NN AN
4
o def oH i oH T
IPC = ¢ fc =°ca fea "o fcs =|(a A (XA)w BA(XA)UA_(a ° (XBﬂ Bglxg)ug
L KA ) | g )
(4.113)

introducing the notations:

( def def

~T i T

Jes - [eSA ®sB I fg = [fSA ~fsg ] (4.114)

| g def _ def T '

°c = bca eee ! fc = lfca ~fea

Summing both relations in (4.113), we observe that the power conservation law is satisfied
and we can write the relation:

Pg +Pg =0 (4.115)
We propose then the following explicit form for the difference PCH system:
( oH
‘ rdxAT f A (X )w
| | \ Al
;dfl dt I:PA(XA) L JBA(XA> 0 Wl(UAW
} g | [0 —JBxB)JaHB(X i 0 -8By [xg )] ug |
J [ dt ] LaxB BJ
\ (aH A )
}_def {yAW‘ (BA(XA) 0 WTI aXA (XA)I
1y = =
} LVBJ |\ 0 _BB<XB))‘ | oH (x )i
[ (oxg B
(4.116)
For this difference PCH system it can be easily proved, that the following relations hold:
( T T
o~ o - oH oH
85 s =85 T =_|( aXA (XA))I BA(XA)'”A{M—B(XB)} Bglxg)ug
%| L77A ) B (4.117)
BRI E A LIV VAR LLE RN
e~ fo=e. fo = X B,Ix,Ju, - X B, (x, Ju
|LCS SS'\‘”A AJ AV A AL@XB BJ BB/ "B

between the difference of the power energies ( ES and p c ) for the storage and control ports

from (4.113), with the power energies of the proposed difference PCH system from (4.116).
Remark: The energy (Hamiltonian) for the proposed difference PCH system can be easily
derived in the lossless or lossy case from the results, based on the power conservation law.
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A complete proof of the basic properties that describes a PCH system, for the difference PCH
system proposed in (4.116), can be found in Appendix D.1. For the lossless difference
Hamiltonian proposed in (4.116), we introduce the following definition.

Definition 4.1

(fsa €5 fca ecale D, @Nd

(feg esp+ fop +8cp Je D defined in (4.109), with respect to the power energies

corresponding to the ports, is represented by another lossless PCH system
defined as follows in explicit form:

The difference between two lossless PCH systems f

f

(“_S'G'Ts"‘c”?_c)6 Dalg:

(._ def _ oH ALB (- — _ _
Xaip - ‘]AJ_B(XAJ_B)a; Knrg 1 Bars®arelaLs
J ALB (4.118)
\ def __ oH
Yarg = BZJ_B —ALE (¢ )
| Kprg AP
where
( oH
} def (x ) - def (3, (x, ) 0 ) o def I(ax . (XA))I
Xplp = , Iais®ars ol A0 I‘ﬁzi " i
J LXBJ L 0 _JB<XB)) 8XAJ_B |6HB (X )| (4119)
| [oxg P
AR PN Y PR
‘[ ALBTALB] T | g _BB<XB)J‘yAJ_B _[yBJl LA

Remark: This definition may be used for the time-discretization process, to define a
discretization error Hamiltonian system (in the lossless or lossy case) as the difference
between two PCH systems, the original continuous-time one and a continuous-time perturbed
PCH system, whose values at discrete-times are the ones of the discrete-time PCH system
(approximation). This is possible only when symplectic time-discretization schemes are used
to get a discrete-time PCH approximation for the original system as presented in the previous
sections.
When the error between the continuous-time and discrete-time system PCH systems (A and
B8 ) is identically zero, the following relations hold:

jPSA = Psg Pea =Peg I ala)=3g g8 x,)

XA = YA =Yg Ua =Y

=g g (4.120)
B

between both systems .

4.4.2 Lossy PCH systems

As for the lossless case, a difference PCH system is defined in this section between two lossy
PCH systems (A and B ), with respect to the power energies corresponding to the ports. The
explicit form of the two lossy PCH systems A and B , can be written as:
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[ dx oH

I th:(JA(XA) RA(XA))aX:(XA)’LBA(XApA
|

| OH

IyA:BL(XA)axA(XA)

{ A o (4.121)
| X

I dtB :(JB(XB)_RB(XB))aXBB(XB>+BB(XB)UB
|

| T oH g

|lyB = BB(XB)aXB xg

The power energies corresponding to the storage port for this two systems, can be computed
using (4.121) as follows:

| T [OH A WT 9H A (aHAWT
IPsa =®sa fsa 7| 5y <XA)\ RA(XA)aX (XA)_I ox | NN
| A ) A LA )
4| . . (4.122)
oH oH oH
PSP S - WA | A i WA Kl WO RS MY
BMB
ILSB S8 USB 7| kg 8] BB o B, e Te
.  Th aHAT oH , daHBT< b )aHB( )
emark: The terms o, (xA)JA(xA)W(xA) an e xg N g g e xg) in
(4.122) are zero due to the skew-symmetry of 3, (x, ) and 45 (x5 ).
For the control port power energy, we can write :
( T
| T (6H A )
IPCA “eca Tea T o (XA>| NN
| LA )T (4.123)
| T (Mg ()
1P ~®ce fes :L@X (XB)l Bglxg g
L B )
For the dissipation port power energy, it results ;
( T
‘ T (8H A W f@H A )
}PRA =Cra TRA T 7 5y (XA)\ Rl ax (XA)I
oH oH
ool o oM e (M)
\L RE T °RB TRB T 7| G "B BB Gy )

Summing up, the power energies of systems A and B, from (4.122), (4.123) and (4.124), the
total energy is conserved as follows:

Poar +P +P =0

SA CA RA (4.125)
[PSB + PCB + PRB =0

where P, .P., .Po, and Psg'Pcg ' Prpg '€ the power energies corresponding to the

storage, control and dissipation ports of systems A andB . For the next step, we propose a
lossy PCH system, which has as power energies corresponding to the ports, the difference of
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the power energies for systems A and B . The difference of the power energies,
corresponding to the storage port for systems a and s can be expressed as follows using
(4.122):

.
S T T [OH A ) VHA )
Ps =85 Ts =esa fsn “%se Ts =) 5 kall Ralxa ox b )i-
) L77A J
T T T
(aHB( )) {aHBj (OH o ) (oHg )
- X R (x - (x ) B (x )u + (x ) B (x )J
oxg (B BB G, |k, Al PaTaAT G e Pe e e
(4.126)
where the notations:
def
) (4.127)

have been adopted. The difference between the power energies corresponding to the control
port, for systems A and B, using (4.123) is:

.
Ec =8¢ f~c =eca foa ~ca Tca :(Z‘:—A(XAﬂ IV
; oA (4.128)
[ Ste )] matis by
where the following notations:
def
(4.129)

were used. The difference between the power energies corresponding to the dissipation port,
for systems A and B, can be calculated using (4.124) as follows:

T
- - oH oH
=T T T A A
PR=®R TR =°ra TRA “%RrB "RB - o (XAﬂ RA(XA{aX (XA)L
T
(aH B ) oH 5 )

+L—5XB (XB)J RB(XB axB (xB)J

where the following notations were introduced:
( def
=T
JeR = bra cre | (4.131)
| ~ def T
TR = [fra ~ Tro |

Summing up the difference between the power energies of the storage, control and dissipation
ports, from (4.126), (4.128) and (4.130) of systems A and B, it results:

e 0 (4.132)

~T~ ~ _
eS fS+e fR_
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or:

ES + ';C + ISR =0 (4.133)
From (4.132) or (4.133), it results that the total power energy for the difference PCH system

of systems A and B, is also conserved. An explicit form of the difference PCH system of

systems A and B, can be defined as:
|[ FdxAT (aHA(X )W
I;de:f} dt I:((JA(XA)‘RA(XA)) 0 H ox, A L(BA(XA) 0 Jua)
LI ° ~9g g _RB(XB)))MHB(X )} Lo -Bglxg)fug)
J | dt | | oxg BJ
I (aHA(X )j
| _def Ty 1 (BA(XA) 0 )} X A I
VST o e (x. )] oH |
| Yl 88 B ()
[ Lax BJ
(4.134)

For the above difference lossy PCH system, it can be easily proved (see Apendix D.2), that
the following relations hold:

( T T

o1 p o M, oH , oH g oH g

ies fs RS fs = 5XA (XA)RA(XA)GXA ( A)_ 3"5 (XB)RB(XB)GXB (XB)
T T

| OH oH

J_ axAA (p B pbcp iy + aXB g JBg lxg hig

- aH T oH T

IeCT fczeg fe = A (XA)BA<XA)“A : (g JBg lxg b

I GXA 6xB

| T T

1~ - oH , oH , oH g oH g

R fR:eR fR:_aXA (XA)RA(XA)GXA (XA)+ ox (XB)RB(XB)ﬁxB (XB)

(4.135)
between the difference of the power energies of two lossy PCH systems ( 2 and 8 ) and the
power energies of the difference PCH system proposed in (4.124).

Remark: A complete proof of the basic properties which describe a PCH system, for the
proposed difference PCH system from (4.134), can be found in Appendix D.2.

Using the results presented above, we can formulate the following general definition, for the
difference lossy PCH system, of two systems (A and B ), in rapport with the power energies
of the ports.

Definition 4.2

The difference between two lossy PCH systems (fSA esn Tea ®ca frA 'CRA Je b, and

f e f Je D g defined in (4.121), with respect to the power energies

(fSB ¢sg ' 'ce '®ce ' 'rRB '®RB
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corresponding to the ports, is another lossy Port-Controlled-Hamiltonian system

(fg &g fo 8e. fg.Eg)e D, 5 » defined as follows in explicit form:
I[* def _ — _ OH A1 g (- — _ —
XaLe ~ (‘]AJ_B(XAJ_B>_RAJ_B(XAJ_B))ax KnrgBars®arelaLs
J ALB (4.136)
- def — H LB
[yAJ_B =B AJ‘B(XAJ_B)aXAJ_B
where
|f; % (xp) = ! )dif(JA(xA) 0= dif(RA(xA) o)
IAJ_B LX J ALBYVALB | 0 _JB(XB)J ALB ‘k 0 _RB(XB))"
l (0H ,)
I@I—lALB(; )de:fIaxA I’B_ de;f(BA(xA) 0 Wy def (Y 5)
IaXALB ALB IaHBI ALB lk 0 B, (xy )] ALB Ly J
[ L@XB J
(4.137)

When the error between the continuous-time and discretized trajectory of the PCH systems
(A and B) is identically zero, then the following relations hold, between the parameters:

Psa =Pse'Pca =Pcs 'Pra = Pra

(Pep =Pog P
Jl‘]A(XA)_JB(XB)’RA(XA)_RB(XB)’ (4.138)

[B X =B =u

A( al=Bglglxy=xgya=vg.u,
between the parameters that describe both systems.

B

4.5 Simulation examples

This section presents a set of simulations to test the symplectic time-discretization schemes
proposed in section 4.3 and also to analyze the discretization error Hamiltonian concept
proposed in section 4.4. As PCH systems examples, were considered two linear systems,
given by an LC circuit and a capacitor microphone circuit, respectively for the lossless and
lossy cases.

4.5.1 Lossless PCH systems

For the first symplectic time-discretization scheme proposed in section 4.3.1, that uses the
explicit Euler rule for the flows and the implicit Euler rule for the efforts, it was selected a
sampling time At =0.005 , a horizon length N =40 and a sinusoidal type of the input. The
output response of the continuous-time/discrete-time LC circuit, can be seen in the following
figure, together with the time-discretization error.
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Figure 4.2. a) Output response of the continuous-time (green) /discrete-time (red) LC circuit
b) Time-discretization error (gray)

From Figure 4.2.b, it can be observed that the time-discretization error between the
continuous-time and discrete-time system outputs, has an amplitude of evolution smaller than
o.0001 . In the next figure, the power energies of the storage and control ports will be
represented for the continuous-time/discrete-time systems and also for the discretization error
Hamiltonian system.
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Figure 4.3. a) Power energies representation for the continuous-time (storage (green) and control (magenta)
ports) and discrete-time (storage (red) and control (blue) ports) systems. b) Power energies representation for the
storage (red) and control (blue) ports of the discretization error Hamiltonian system.

From Figure 4.3.a, and Figure 4.3.b, it can be observed that the power conservation law of
PCH systems is satisfied for the continuous-time/discrete-time systems (green line) and also
for the discretization error Hamiltonian system, as the storage and control ports have
opposite power energies values at each time-step in rapport with zero.

Remark: The discretization error Hamiltonian for the selected time-discretization scheme,

has power port energies with maximum magnitute of order 5.10 ~8

compared to the continuous-time/discrete-time power port energies.

, which is very small as

For the second symplectic time-discretization scheme, the system output representation of the
continuous-time/discrete-time systems and time-discretization error, is given in Figure 4.4.

119



QUTPUT RE

0.08 010 012 014 016 018 020 b 000 0.02 0.04 0.06 0.08 010 0.2 0.14 0.16 018 020
TIME [s] TIME [s]

Figure 4.4. a) Output response of the continuous-time/discrete-time LC circuit
(green/red) b) Discretization error (gray).

From Figure 4.4.b) we observe that the time-discretization error amplitute is smaller than
0.0001 and has a similar form to the first symplectic time-discretization scheme. The following
figure represents the power energies for the continuous-time/discrete-time systems and
discretization error Hamiltonian.

0.000021 -

POWEFR EHERGIES

' | ! ! ! ! ! '
0.06 0.08 0.10 0.2 0.4 0.16 018 020

| ' ' | ' ' ' ' ' ! 2
0.0z 0.04 0.06 0.08 0.10 012 014 0.16 0.18 0.20 0.00 0.02 0
TIME [s]

TIME [s]

Figure 4.5 a) Power energies representation for the continuous-time (storage (green) and control (magenta) ports)
and discrete-time (storage (red) and control (blue) ports) systems. b) Power energies representation for the
storage (red) and control (blue) ports of the discretization error Hamiltonian system.

Similarly to the previous symplectic time-discretization scheme, the discrete-time
Hamiltonian system and discretization error Hamiltonian satisfy the power conservation law
of PCH systems. For the third symplectic time-discretization scheme, the system outputs and
time-discretization error representation is given in Figure 4.6.
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Figure 4.6. a) Output response of the continuous-time/discrete-time LC circuit
(green/red). b) Discretization error (gray).

From Figure 4.6.b the time-discretization error maximum amplitude of the system output is
0.00019 , Which is bigger as compared to the previous time-discretization schemes.
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Remark: The big time-discretization error amplitudes obtained with this scheme, are due to
the high errors in the first steps, as the outputs are expressed by means of the states, which
propagate the errors over time, using recursive relations.

The power energy representation of the continuous-time/discrete-time systems and
discretization error Hamiltonian are given in Figure 4.7.
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Figure 4.7 a) Power energies representation for the continuous-time (storage (green) and control (magenta) ports)
and discrete-time (storage (red) and control (blue)) systems b) Power energies representation for the storage
(red) and control (blue) ports of the discretization error Hamiltonian system.

As for the previous cases, the discrete-time Hamiltonian system and discretization error
Hamiltonian satisfy the power conservation law, which defines PCH systems.

Remark: In order to perform a good time-discretization of a PCH system, the input selection
is important. When selecting a non-constant input over a sampling-time interval, the
discretized power energies and discretization error Hamiltonian might not give correct
results (mainly for the storage and control ports), as the power energies are mathematically
expressed as products between discrete-time flows and efforts, while for the output response
the results might still be appropriate, with convergence satisfaction.

In order to make a good distinction between the time-discretization schemes, the logarithm
representation is performed in Figure 4.8, between the discretization error and number of
steps (N ) for a time-step At =0.0005 and a time-interval tg =5s.

__________

LOG [Error}

&
T

4.5

-5-D_I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -‘-i
00 02 04 06 D8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

LOG(N)

Figure 4.8. Logarithm of the maximum error and number of steps ( N ) for the system output:
:green — symplectic scheme I, red- symplectic scheme I,
black- symplectic scheme I11.
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From Figure 4.8, it is obvious that the least performant symplectic time-discretization scheme
for an increasing number of steps (N ), is the first one (green), which is a first order scheme
(o(at)) with a logarithm of the error between —2 and -2.6. For the second and third time-

discretization schemes, which are in fact of second order type (o(mzj), we observe

improved results with an increasing number of steps (N ), with a logarithm of the error that
tends to -5 for the second scheme. For a small number of steps (N <10 ), the second time-
discretization method still performs better as compared to the other two, the third one being
the least performant.

Remark: From Figure 4.6 and 4.8, we observe that the third time-discretization scheme is
not recommended to be used for a small number of steps (N ), due to big discretization
errors.

In the next Figure, we also represent the logarithm of the error in rapport with the number of

steps (N ) for the power energies.
26 T
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Figure 4.9. Logarithm of the maximum error and number of steps ( N ) for the
power energies: red — symplectic scheme I, magenta — symplectic scheme I,
blue —symplectic scheme IlI.

Similarly to the output response case, the second order scheme obtains improved
performances as compared to the other two, while the first one which is a first order type
(o(at)), is less performant. In Figure 4.10 the second scheme is represented separately, to

have a better view of the result.
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Figure 4.10. Logarithm of the maximum error and number of steps (N )

for the power energies of symplectic scheme I1.
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Remark: From the selected time-discretization schemes, the second one which is of order two

type (0 [At 2 ]) is recommended to be used for time-discretization as compared to the other

two, due to its good performances on the output and power energies time-discretization
(see Figure 4.8 and 4.9).

4.5.2 Lossy PCH systems

For the lossy case, the time-discretization of the capacitor microphone circuit is performed
using N =3000 Ssteps, a sampling time At =0.005 and a sinusoidal type of the input signal. For
the first symplectic time-discretization scheme, the system outputs response in continuous-
time/discrete-time and time-discretization error, are represented in Figure 4.11.
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Figure 4.11. a) Output responses of the continuous-time/discrete-time capacitor microphone circuit, represented
with green/red (y, ) and magenta/blue (y, ). b) Discretization error represented with black (y, )

and gray (y, ).

Figure 4.11.b shows that the time-discretization error evolution of the first system output is in
the range -0.0036 and 0.0006 , having a similar sinusoidal behavior as the first output does.
In the following Figure, the power energies of the continuous-time/discrete-time systems and
discretization error Hamiltonian are represented.
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Figure 4.12. a) Power energy representation for the storage/control/dissipation ports of the continuous-time
(black — storage port power energy, magenta- control port power energy, cyan — dissipation port power energy,
gray-sum of power energies)/discrete-time systems (red-storage port power energy, blue — control port power
energy, green — dissipation port power energy) b) Power energy representation of the discretization error
Hamiltonian (green- storage port, blue — control port, magenta — dissipation port, gray — sum of power
energies).

As this figure reflects, the power conservation law is satisfied for the continuous-
time/discrete-time Hamiltonian systems and discretization error Hamiltonian for the selected
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discretization scheme. As Figure 4.12.b shows, we observe that the discretization error
Hamiltonian has the same form for the power energies as the continuous-time system, with
bounded errors in the range - 0.02,0.021 . For the second symplectic time-discretization
scheme, the system outputs representation of the continuous-time/discrete-time systems, can
be seen in the next figure.
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Figure 4.13. a) Output responses of the continuous-time/discrete-time capacitor microphone circuit, represented
with green/red (y, ) and magenta/blue (y, ). b) Discretization error represented with black (y,)

and gray (y, ).
From Figure 4.13.b, we observe that the time-discretization error between the continuous-

time/discrete-time systems of Yy is smaller in modulus as compared to the first symplectic

scheme, having a domain of variation between -0.0017 and 0.00255 . The power energy
representation of the continuous-time/discrete-time systems and discretization error
Hamiltonian can be seen in Figure 4.14.
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Figure 4.14. a) Power energy representation for the storage/control/dissipation ports of the continuous-time
(black — storage port power energy, magenta- control port power energy, cyan — dissipation port power energy,
gray-sum of power energies)/discrete-time systems (red-storage port power energy, blue — control port power
energy, green — dissipation port power energy) b) Power energy representation of the discretization error
Hamiltonian (green- storage port, blue — control port, magenta — dissipation port, gray — sum of power energies).

Similarly to the previous symplectic discretization scheme, the power conservation law is
satisfied for both the continuous-time/discrete-time Hamiltonian systems and discretization
error Hamiltonian.

Remark: As compared to the first symplectic time-discretization scheme, the discretization
error Hamiltonian of this scheme, has much smaller power energies bounded between
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-0.008,0.008 due to the second order rule type (O[Atzj) method selected for time-

discretization.
For the third symplectic time-discretization scheme, the outputs response for the continuous-
time/discrete-time systems and time-discretization error are given in Figure 4.15.
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Figure 4.15. a) Output responses of the continuous-time/discrete-time capacitor microphone circuit, represented
with green/red (y, ) and magenta/blue (y, ) b) Discretization error represented with black (y, )

and gray (y, ).

From Figure 4.15.b, we observe that the domain of variation for the time-discretization error
is between -0.004 and 0.004 , which makes it less performant as compared to the other two
schemes, for the selected parameters. The following figure represents the power energies of
the continuous-time and discrete-time systems.
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Figure 4.16. a) Power energy representation for the storage/control/dissipation ports of the continuous-time
(black — storage port power energy, magenta- control port power energy, cyan — dissipation port power
energy)/discrete-time system(red-storage port power energy, blue — control port power energy, green —

dissipation port power energy) b) Power conservation law of the discrete-time system.

In Figure 4.16.b we can observe that in this case, the power conservation law is not satisfied,
but also on Figure 4.16.a, given by the dark regions on the power conservation law (gray),
which are non-zero for the discrete-time system.

Remark: The power conservation law is not satisfied with this time-discretization scheme as
(4.30) from the general framework, doesn’t hold for this scheme. Thus the selection of this
time-discretization scheme is not recommended for lossy PCH systems time-discretization.
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In order to make a comparison on the accuracy of the three symplectic time-discretization
schemes for the capacitor microphone circuit, in the following figure is represented the
logarithm between the error and number of steps (N ), for the system output (y, ) for a time-

step At=0.0005 and time-interval t. = 5s.
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Figure 4.17. Logarithm of the maximum error and number of steps (N )
for the system output ( y, ): green — symplectic scheme I,
red- symplectic scheme I, black- symplectic scheme I1I.

As for the lossless case, we observe that the first symplectic time-discretization scheme is less
performant as compared to the other two, as it is of first order (o(at)) and the others of

second order (o(at)? ), shown in the graphic by the slopes. Also for a small number of steps

(N <10), the second symplectic time-discretization scheme performs better when compared
to the other two. In the following figure, is checked the accuracy of the symplectic time-
discretization methods for the power energies, by logarithm representation of the error versus
number of steps (N ) for a time-step (At = 0.0005 ) and time interval t, =5s.
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Figure 4.18. Logarithm of the maximum error and number of steps (N) for
the storage, control and dissipation port power energies: scheme | - green,

red,black;scheme Il — blue, magenta,cyan; scheme 111 —dark magenta, gray,
dark yellow.
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As Figure 4.18 shows, it is obvious that the second time-discretization scheme performs better
as compared to the other two, with bigger accuracy (slopes) for the storage, control or
dissipation ports. Also for a small number of steps (N <10 ) the second time-discretization
scheme is still better compared to the other two on each port.

Remark: For each symplectic time-discretization scheme, the storage and dissipation port
power energies slopes almost coincide, as for each time-discretization scheme, the control
port power energy has a small (neglijable) influence on the result (see the general relations
from section 4.3.2). For the selected symplectic time-discretization schemes examples, the
second one is recommended to be used with linear PCH systems in the lossless or lossy case,
due to its high accuracy.

Conclusions

This chapter treated an actual and necessary issue in control engineering, that of PCH
systems structural preserving time-discretization. A general time-discretization framework
was first proposed for the nonlinear PCH systems using a combined time-discretization
concept for the flows and efforts. General conditions were derivated to satisfy the power
conservation law in discrete-time and for the rest of PCH systems structure (energy, bilinear
form, implicit form). The necessary conditions proposed in the nonlinear case, were derivated
also in the linear one, to be used later for symplectic time-discretization examples. A set of
symplectic time-discretization schemes were proposed, using distinct time-discretization rules
for the flows and efforts. For the combined symplectic time-discretization concept proposed
in this chapter, four representative time-discretization rules were selected to be used as
examples: explicit Euler rule, implicit Euler rule, implicit mid-point rule and implicit
trapezoidal rule. For each symplectic time-discretization scheme, the basic properties of PCH
systems were checked and proved, writing the power conservation law, the bilinear power
form together with the implicit and explicit realizations of the discrete-time PCH system.
Performing all of these steps, it was proved that for the linear lossless case, all the selected
schemes are symplectic (i.e. structure preserving), as the only relation to be satisfied always
holds. For the linear lossy case, the power conservation law necessary conditions does not
always hold and thus, the PCH structure might loss it’s symplecticity by time-discretization.
Section 4.4 introduced a new concept to differentiate two PCH systems, with respect to the
power energies corresponding to the ports. Particularly we can associate this formulation,
with the difference between the continuous-time and discrete-time PCH systems. Thus a
discretization error Hamiltonian system was introduced as the difference between the
continuous-time and discrete-time PCH systems. Some simulation examples are presented for
the lossless and lossy cases, using two linear PCH systems given by an LC circuit and a
capacitor microphone circuit in section 4.5, to underline the performances of the symplectic
time-discretization schemes or discretization error Hamiltonian system. The symplectic
discretization techniques proposed in this chapter, can be further extended for several control
strategies of PCH systems, were high performances are necessary.
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5. State-space identification of PCH systems

In this chapter an analysis of Port Controlled Hamiltonian systems identification is proposed
using classic state-space techniques known in the literature in the deterministic case. The
analysis is performed using the most simple symplectic time-discretization scheme which
makes use of the Euler explicit and implicit rules for the flows and efforts and results in a
discrete state space realization, similar to the “classic” one.

For the deterministic case, a power energy approach is proposed, which makes use of the
power conservation law. Using ortogonal/oblique projections gives the possibility to
determine three different but equivalent realizations (corresponding to the control, storage
and dissipation ports) for the system. As an example for this analysis a DC motor model is
selected, to perform the identification simulations.

5.1 Introduction

Subspace identification algorithms are based on concepts from system theory, linear algebra
or statistics [107]. The main conceptual novelties in subspace identification algorithms are:
the state of the system is central when speaking of system identification as compared to the
classical approaches, which uses an input/output context; the subspace system identification
approach is based on concepts and algorithms from numerical linear algebra (QR
decomposition, SVD decomposition and its generalizations, together with angles between
subspaces); the subspace identification approach offers a geometric framework, where
different models are treated in a unified manner; the theoretical concepts translates into user-
friendly software implementations (there is no explicit need for parameterizations and thus no
highly technical and theoretical issues for the user, like canonical parameterizations). As
compared to the classical approaches, some of the main points introduced by subspace
identification algorithms are:

- Parametrizations: The subspace identification approach makes use only of the system
order. With classical approaches, a part of the research was concentrated on canonical
models (Ex: uncontrollable or observable canonical forms with minimal number of
parameters) [107,164-170]. The main drawbacks of this approach are: they can lead to
numerically ill-conditioned problems, with results sensitive to small perturbations;
there is a need to overlap the parametrizations, since none of the existing ones will
cover all dynamic systems; in practice minimal state-space models are desirable. In
case of uncontrollable but observable modes, special parametrizations are necessary.
All of these problems are eliminated in case of the subspace identification approach.

- Convergence: Subspace identification algorithms are faster than the classical
approach, as they are not iterative and no convergence issues exist. Thus the lack of
convergence, slow convergence or numerical instability are eliminated.

- Model reduction: In subspace identification, the reduced model of the dynamic
system results directly from input/output data, without having to compute in advance
the high-order model.

Subspace identification algorithms represent the input-state-output generalizations of the

classical theory of the seventies, which used impulse responses for state-space
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identification [107,171-179]. Some research results of influence can be found in [107,180-
185] and for the combined deterministic-stochastic problem in [107,118,186,187,188].

5.2 Deterministic identification

In this section we recall some theoretical notions useful in the deterministic state-space
identification analysis of PCH systems, using time-discretization schemes developed in
chapter 4. The subspace identification of purely deterministic systems, with no measurement
nor process noise (vk =w, = 0) represents the ideal state-space identification case with no

perturbations. This form of identification was introduced only as an academic issue, to be
used for the identification of the system parameters [107]. Deterministic subspace
identification algorithms, represent a class of algorithms used to compute the state-space
models on the basis of input/output data. Further we will formulate the deterministic
identification problem, which will be used also for PCH systems identification.

Deterministic identification problem [107]:

Given: s measurements of the input u €R M and output Y, € rR ! generated by the unknown
deterministic system of order n :

Xk+l N AXk k (51)

Determine:
- The order n of the unknown system;

- The system matrices AcR™" , BeR™™ | c<cr™ (up to within a similarity
transformation);
Remark: The above classic state-space system identification problem will be adapted and
used for PCH system formulation using a proper time-discretization scheme from chapter 4.

In the literature [107-118], a series of techniques regarding deterministic state-space
identification have been developed. In the following lines, some useful notations will be
introduced for subspace identification algorithms of classic state-space systems. A central
element in subspace identification algorithms are the Hankel matrices, constructed from
input/output data. The input Hankel matrix has the following form:

[ Yo Y1 %2 SER

| |

Y Y2 Y i

| |

| |

def | u u: u. | def def
U ) e—l i-1 i i+1 i+j-2 |3(U0“_119_(Upj
0/2i-1 = | u. ) u. . | - ‘U |~ Ju

i i+1 i+2 -l (Pir2i-1) f
I i+1 UYi+2 i+3 Uit j I

i |

u,. u,. u,. u,. .
L 2i-1 2i 2i+1 2I+]—2J (5.2)
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where u , stands for the past inputs and u ; for the future inputs. The number of block rows

i, I1s a user-defined index, which should be at least as large as the system order, we want to
identify. As the number of inputs is m , this matrix consists of 2mi rows, while the number of
columns j represents the number of data samples used, equal to s - 2i+1 [107]. Shifting one

row the past inputs u , , we can define the matrices u ; and u P for the past and future

inputs [107]. For instance we can write the input block Hankel matrix as:

( UO ul U2 uJ_]_ w
| |
| uy u, ug U |
L ;
[ u u. u |
| I I+l +3-2 Jgef (U} )
Ugraica =] Ui i+1  Yit2 Yivjo1 | = = I (5.3)
T
I Yin iv2  Yis3 Uit j }
! ' |
LUZi—l Ui Upig - u2i+j—2J

which is useful in the computation of the oblique projections o, , future states x id+1 , etc.

Similarly with the inputs, are defined the output block Hankel matrices

Yo/0i0Yp Y Yp. Y - Using the Willems notation, it was introduced the Hankel matrix
consisting of inputs and outputs as w /i1
def .
W (Yol _(Vel_,
0/i-1 ly [Ty | P
torsi-1) UP) (5.4)
When augmenting one row to the past inputs/outputs, we can define:
+
. [Up)
Wy =
i
P (5.5)

Remark: The matrices presented above can be determined in different forms for each
symplectic discretization scheme developed in chapter 4. The explicit/implicit Euler rules
were selected for time-discretization of the flows and efforts throughout the chapter, for
simplicity in computation and similarity with the classic approach [107].
The state sequences for subspace identification algorithms are defined as follows:
def .
d d d d d nxj
Xyo= [Xi e N2 Xi+j—l)€ R (5.6)
with i representing the subscript of the first element of the state sequence. We also define the

past states sequence by xg and future states sequence by x‘]f

identification algorithms make use of observability and controllability concepts, we introduce
the extended (i > n ) observability matrix r; defined as follows in the literature [107]:

. As the subspace

r. =[c CA .. CAi_ljeR“X” (5.7)
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where the pair {A,c} is assumed observable. The reversed extended controllability matrix

d

denoted as A is defined by:

F’dif[Ai‘lB Al=2p . Bj (5.8)

A

where the pair {A, B} is assumed controllable. We also introduce the lower block triangular

matrix H ¢ as [107]:

(D 0 0 0)

| cB D 0 . 0l

d def | \
HO = i CAB CB D 0 } (5.9)

| o

LCA =2 ca' %8 cal"%B .. DJ

In the following lines we will introduce the matrix input-output equations for classic state-
space systems, which is useful also for Port Controlled Hamiltonian systems identification.

Matrix Input-Output equations
+ H id U p
+HIU (5.10)

‘f’ - A'x g
Remark: The proof of this theorem can be easily determined from matrix relations using
recursive relations. For the symplectic discretization schemes developed in chapter 4, this
theorem can be adapted and proved for further analysis with state-space identification
algorithms.

Further we introduce a definition for the persistency of excitation of the input signal applied
for state-space identification [107]. This notion is strongly connected with the identifiability
analysis presented in the previous chapters, as good excitation signals give proper identified
models.

d
X +AiUp

Definition (Persistency of excitation)

The input sequence u, e R™ s persistently exciting of order 2i, if the input covariance

k
matrix
def
RU = @l g0 1Y gygia) (5.11)
has full rank, which is 2mi .
Remark: In the statistical theory, the covariance matrix o[G,L] of two matrices G < R P9

and L e R™ is defined as:

cp[(;,l_]dif EJ.[G AT } (5.12)

where E represents the expectation operator and j the length of the data series available.
Further we introduce the projector operator 1 by [107]:
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nLde:f LT~[L~LT ]+-L (5.13)

which projects the row space of a matrix onto the row space of the matrix L e R 9 where
" represents the Moore-Penrose pseudo-inverse of the matrix « . The orthogonal projection
is defined in the literature [107] by:

def

+
G/L = G~HL:G~LT[L-LTJ L (5.14)

and represents the projection of the row space of the matrix G < R P4 on the row space of the
matrix L. The matrix L is bolded, as the result of the orthogonal projection lies in the row
space of L . We also introduce the operator:

c/Lt = c.m (5.15)
where 11 L is the geometric operator that projects the row space of a matrix onto the
orthogonal complement of the row space of the matrix L. 11 n is defined by [107]:

nlelj—nL (5.16)
Further we introduce the concept of oblique projection, by which the matrix ¢ can be
decomposed as linear combinations of two non-orthogonal matrices (L and r ) and the
orthogonal complement of L and F . We can think of the oblique projection as follows [110]:
project the row space of ¢ orthogonally on the joint row space of L and F ; decompose the

result along the row space of F .
The oblique projection is further introduced by the following corollary [107]:

Corollary 1 Oblique projections

The oblique projection of the row space of G € R P along the row space of L € R % on the
row space of F < R™ can also be defined as:

r T 77
G/ F=G/L" F/LJ‘J F (5.17)

I 1

The proof of this corollary follows by straight computations using the matrix inversion
lemma:

ra Bl Y
| |
IC D

(A—BD ‘10) —[A—BD ‘1C] BD 1

-1

[ -1 -1 1
| |
| |
| |
|—D_1C[A—BD ‘1(:] D_1+D_1C(A—BD ‘1c]BD _1J|

]

starting from the definition of oblique projections:

Definition 1 Oblique projections

The oblique projection of the row space of G « R P along the row space of L R™ on the
row space of F < R™ is defined as:
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:
def T

FF

GI F = G[FT LTJ”
LKLFT LL

+1
FL \
|

| F (5.19)

/ inrst /r [ columns

The concepts of orthogonal and oblique projections presented above, are necessary in the
development of subspace identification algorithms and estimation of system parameters.
Further we introduce the deterministic identification theorem for the classic state-space
approach, useful for the state-space identification of PCH systems. Two important advantages

of the deterministic identification theorem are: the state-sequence x ‘f’ can be calculated using

- 4

input-output data, without knowing the system matrices A,B,c,D; the extended
observability matrix (r; ) can be determined directly from the input-output data.

Theorem: Deterministic identification

Under the assumtions that:
1. Theinput u, is persistently exciting of order 2i
2. The intersection of the row space of u ¢ (future inputs) and the row space of x ‘g
(past states) is empty.
3.The user-defined weighting matrices w, < R"™" and w, < R M- are such that w, is of
full rank and w, obeys: rank W)= rank v pw, ), where w, is the block Hankel

matrix containing the past inputs and outputs and with o, defined as the oblique
projection:

0, =Y /U W, 1)

T
s, 0 (V W
_ 1 1
w,ow, =, UZ{O O]IVT | )
2 )
we have:
1. The matrix o; is equal to the product of the extended observability matrix and the
states:
d
0, =T, X 3

f

2. The order of the system is equal to the number of singular values in (2) different from
Zero.
3. The extended observability matrix r; is equal to:

_w -l <172
Lp=W U s ieT (4)

4. The part of the state sequence x ‘: that lies in the column space of w , can be

recovered from:
d -1.1/2,, T (5)

X fWZ :Tl Sl Vl

5. The state sequence x ‘]f is equal to:
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x4 -rt*.o. (6)

Specific choices of the weighting matrices (w, and w,) lead to different identification

algorithms [107] and the choice of this weights determines the state-space basis in which the
final model is obtained. The similarity transformation (T ) is introduced to make the

recovered observability matrix (T;) and state sequence (X ‘: ) exactly equal to the original

ones. Using different weighting matrices result in different observability and state space
sequences matrices. Each set of results will lead to a set of system parameters (A,B,C ),

equivalent up to a similarity transformation to the original (real) system. In (3) o, represents

the oblique projection of the row space of the future outputs (Y ¢ ) along the row space of the

future inputs (u , ) on the row space of w, (past inputs U, and outputs Y , ) and can be

determined to be equal to the product between the observability matrix (T;) and the state-

sequence ( X ‘f’ ). Using the SVVD decomposition it is computed the system order from the non-

zero singular values. Further are determined the state-sequences ( x ‘;' ) and the extended

observability matrix () as in (3), (4) and (5). A summary of this theorem, can be given by
the following relations:

(

Irank [Yf /U f ~ij:n

lrowspace (Yf o -w p]: rowspace [X ‘:] (5.20)
|

|

[columnspac e(Y /U f "W p J = columnspac e(Fi)

f

From this summary, the resulting algorithms are called subspace algorithms, as they compute
the system parameters (A, B, C ) as subspaces of projected data matrices.

Remark: The proof of this theorem is straightforward from simple computations and can be
found in extended form in [107]. The deterministic identification theorem formulated above
can be developed also for the symplectic discretization schemes of chapter 4 (see Appendix
F). In the deterministic identification algorithms, we will make use only of the most simple
time-discretization scheme, which combines two first-order Euler rules for the flows and
efforts.

5.2.1 Deterministic identification algorithms

In this section we will briefly present two deterministic identification algorithms known from
the literature and applied for classic state-space identification systems [107]. We have
considered this two algorithms from the following reasons: they have the same state-space
structure with PCH systems; they both make use of the deterministic identification theorem
presented previously; they are simple to understand and implement for the user. A first class
of algorithms are the intersection algorithms [107, 109-116, 192], where the row space of the
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state sequence x ¢ is computed as the intersection between the row space of the past inputs
and outputs and the row space of the future inputs and outputs:

U U f
rowspaceX U = rowspace ( P )m rowspace W (5.21)
f ly | [Y J
P f
Different ways to compute the intersection have been developed, from which a first way

T
makes use of a SVD decomposition [114,115, 116] of the Hankel matrix [u 02i1Yo 2i—1)

, While a second way [109, 112] is by using as basis of the intersection, the principal
directions between the row space of the past inputs-outputs and the row space of the future
inputs-outputs. In the literature [108,109, 117, 118,189] projection algorithms have also been
developed, for which, we remark that the system order and extended observability matrix can
be determined from a SVD decomposition. Further we introduce two deterministic
identification algorithms, which will be applied and tested for PCH system state-space
identification, using a simple time-discretization scheme.

Deterministic algorithm | [107]

1. Calculate the oblique projections:

O, =Y /U Wy (5.22)

O, =Y /U Wg (5.23)
2. Calculate the SVD of the weighted oblique projection:

W oW, =usv T (5.24)

3. Determine the order by inspecting the singular values in s and partition the SVD
accordingly to obtainu and s, .

4. Determine r; and r, , as:

ri=wlu . -r (5.25)
5. Determine xiOI and xi‘]'+ as:

1

d + d +
X[ =10, X =T"0;, (5.26)

6. Solve the set of linear equations for a,s,c and o :
(x4 [x 2]
|Y'+1\ [A B}U' | (5.27)
.. C D i
i i
The current algorithm makes use of the following steps from the deterministic identification

theorem: the order of the system from inspection of the singular values; the extended

d
i

observability matrix r, ; the state sequence x & = X ‘: . This algorithm determines the system
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parameters (A,B,c,D) by using the oblique projections o, ,,0; and determining the

extended observability matrices P and system-states x id , X id+1.
Deterministic algorithm 11 [107]
1. Calculate the oblique projection:
O; =Y, /U W, (5.28)
2. Calculate the SVD of the weighted projection:
W10iWp=Usv T (5.29)

3. Determine the order by inspecting the singular values in s and partition the SVD
accordingly to obtainu, .u ,and s .

4. Determine r, and ril as:

172 1 T
Ty =W,U, 8%, I =u,w, (5.30)
5. Determine A from r, as A:ri+r_i.
6. Determine c as the first 1 rows of r.
with:
M, ™ M. )=rty ut
1 2 i i f f (5.31)
L, o, L)=rt
7. Solve B and D from:
" (L Ly Liog L)
( 1) | L L. .. L. o |
Mol I (Y %o 5.32
“lL. L, .. o 0 .
Lo o r [B] %2
M ) e —
L 'J LL 0 oJ

The current algorithm makes use of the deterministic identification theorem to determine: the
system order from singular value inspection; the extended observability matrix r,. As
compared to the first algorithm, the second one determines separately the matrices A,c from
the matrices B,D .

5.2.2 Matrix 1/O representation of symplectic discretization schemes

This section will prove, that discrete-time PCH systems can be written by means of a matrix
input/output representation [107], for a simple time-discretization scheme, that makes use of
Euler discretization rules for the flows and efforts.

Remark: A complete analysis for the proposed time-discretization schemes of chapter 4, can
be found in Appendix F using matrix 1/O representations, orthogonal or oblique projections.
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Further we consider a simple time-discretization scheme that assumes an explicit Euler rule
for the flows and an implicit Euler rule for the efforts. Applying this time-discretization
scheme, starting from the general relations formulated in chapter 4, we can express the
discrete-time form of the state-space system as follows:
Jka:Axk+Buk (5.33)
[yk = Cx K

where the following notations have been adopted:

__def
A = I +AT-A

B = AT-B (5.34)

Remark: Even if the state-space structure from (5.33) is the same with the classic state-space
approach [107], the performed results are different. These differences come from the
discretization methodology used, which gives different state-space matrices (see 5.34).

In the above relation A< R™" B R™™ c<rR™ represent the matrices of the initial
continuous-time PCH system. Computing the states and outputs for k =1, we obtain:

JxleXOJrBuO (5.35)
ty0=Cx0
For k = 2, it results:
( w2 = =
X, =A“X,+ABu, +Bu
l 2 0 B 0 B 1 (536)
[yl=Cx1=CAx0+CBu0
For k = 3, it results:
[, _ A3 2= = =
Jx3_A xO+A Bu0+ABu1+Bu2 (537)
[y2=Cx2=C;2x0+C;BuO+CETu1
Adopting the notations:
[ def  _ . _ __
|A? :[A'_lB Al"28 . AB B]
J (5.38)
| def T
{Up = (uo up o ui—l)

we can deduce the following general form for the future states, using also (5.35), (5.36),
(5.37) and (5.38):

xd - x =;ixg+A?

. i U p (5.39)

where X ?) = X, represents the initial state (past state). Adopting the notations:
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( _ _
}ri - (c CA CA?2 CA'_lJ
|
0 0 0 0
| [ o ]
- } CcB 0 0 o} (5.40)
IHid = : CAB CcB 0 0}
| - |
{ Lc;i‘z ca'=3s cal"%p .. OJ

where T; is the extended observability matrix and H id the lower block triangular Toeplitz

matrix, we can write the following general relations:
( d d
Y, =T.-Xp+HU

P P

J | dp | (5.41)
lYf =TyX L+ HTU

for the past and future output vectors. The vector of the past and future inputs and outputs are

denoted as follows:

[ T
IYP =V Y1 ¥y Yl—l)
| def
U, =, u, u u. )
P 0 "1 2 -1
4' ! (5.42)
| def T
IYT =0 i Yieo Py
| def
.
Y - Ui Uiy Vi o Uy
Using (5.39) and (5.41) we can write the following matrix input-output equations:
‘(x‘: =alx§+adu
vazrixg+Hidup (5.43)
v  _ d d
Vi =TiX$ +HIU

e

which has the same structure as for the classic state-space systems [107].

Remark:

The matrix input-output equations (5.43), of this symplectic time-discretization scheme, are
similar as form to the classic state-space systems used with subspace identification algorithms
(see [107]). Following the same steps of the deterministic identification theorem formulated
for classic state-space systems, we can also prove the results for the current symplectic time-
discretization scheme.

5.2.3 Simulations and discussion

In this section, we will perform a set of simulations using the deterministic identification
algorithms described in section 5.2.1 using the time-discretization scheme presented in 5.2.2,
which has a similar form to the classic one [107]. The simulations are performed on a lossy
PCH system represented by a DC motor, presented in chapter 1 (see section 1.3.7.2). For the
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first example we will consider the DC motor with a white noise sequence as input signal,
generated by software, a horizon length ( j = 50 ) and a time interval t, =105 . In the first figure

is represented the output response of the real and estimated systems for the selected
parameters.
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Figure 5.1. Output response of the real (green), estimated (red) and error (blue)
for the deterministic algorithm 1.

In Figure 5.1 the output responses of the real and estimated systems are ilustrated, and as was
expected for the case with no perturbations, the estimation errors are almost null, excepting
the first identification steps. In the following figures, we will make a representation also for
the power port energies to prove the symplecticity of the PCH system by identification.
Remark: The power port energies representation for the identification algorithms of this
chapter, is introduced as a consequence of the structural identifiability concepts proposed in
chapter 2, but also to prove the power conservation law, when performing the system
identification. Thus by system identification are obtained equivalent state-space models given
by (Ae.Be.Ce ), Which approximate the real state-space system given by (A,B,C).

For the control port, the power energy representation of the real and estimated systems, is
given in the following figure.
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Figure 5.2. Control port power energy representation of the real (green),
estimated (red) and error (blue) for the deterministic algorithm |I.

From this figure we observe that the estimation of the control port power energy is almost
perfect for this deterministic algorithm, with an error almost zero on the time-interval.

For the dissipation port, the power energy representation of the real and estimated systems is
drawn in Figure 5.3.
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DISSIPATION PORT
&
S
=

TIME [s]

Figure 5.3. Dissipation port power energy representation of the real (green),
estimated (red) and error (blue) for the deterministic algorithm |I.

As Figure 5.3 shows, the estimated error on the time-interval is almost zero, excepting the
first steps of estimation. For the storage port power energy, the real and estimated responses,
can be seen in Figure 5.4.

TIME [g]
Figure 5.4. Storage port power energy representation of the real (green),
estimated (red) and error (blue) for the deterministic algorithm |I.

As expected, the power energy responses of the real and estimated systems, have a very good
fit on the time-interval, excepting the initial estimation steps. In the following figure, is

analysed the preservation of the power conservation law for the estimated system.
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Figure 5.5. Estimated system port energies (green — storage port, red —control port,
blue-dissipation port) and power conservation law (black) for deterministic algorithm 1.
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From Figure 5.5, the power conservation law of the estimated system is thus satisfied, which
makes it an equivalent PCH system of the real system, that satisfies the basic properties.
Remark: The estimated system represents an equivalent PCH system, obtained by applying a
non-singular transformation matrix (1 < R™" ) to the real one and was proved in chapter 2
to preserve Hamiltonian properties.

For the second deterministic algorithm, we will consider the same scenario as for the first
deterministic algorithm. Thus we consider a scenario with a horizon length (j=50) and a

time-interval t, =10s. In the following figure, we represent the fitness between the output

response of the real and estimated systems.

11-

[
, ! § |

l||l Lol e b !
08 | A Ir ,’ | It I :
Jl||lll| i i
04- ;'J I "[ng /| || I|I|| Ml
02-) IJ|II “m; -J' ' rl' LI| i I
00~ 'f»T I'.-rlﬁlllwl— I -||- |‘5H' '|I—|JI'|TJH— n|r|r|
02 .r ||'|'| 'lP |'| ﬂ |'f f I 1|‘II | ”lfi'l'“'l '“ '*'II AR

i .

OUTPUT RESFONSE

06- . | I‘ : | -
o8- l.- |! !f | || | |i b

115 1 1 o 1 1 1 | 1 1 1

TIME [s]

Figure 5.6. Output response of the real (green), estimated (red) and error (blue)
for the deterministic algorithm 11.

As expected, the fitness between the real and estimated output responses of the DC motor is
almost perfect in the deterministic case, with errors close to zero as the blue line shows. For
the control port, the fitness analysis of the real and estimated systems, is performed in the

following figure.
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Figure 5.7. Control port power energy representation of the real (green),
estimated (red) and error (blue) for the deterministic algorithm I1.

From Figure 5.7 we observe a very good estimation of the real system control port power

energy, with errors that are close to zero on the time-interval. For the dissipation port, the
fitness analysis performed for this algorithm, can be found in the following figure.
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Figure 5.8. Dissipation port power energy representation of the real (green),
estimated (red) and error (blue) for the deterministic algorithm II.

Acording to Figure 5.8, the estimated error between the real and estimated dissipation port
power energy is almost zero, with higher errors on the first steps of the algorithm. For the
storage port power energy, the fitness test analysis is ilustrated in the following figure.
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Figure 5.9. Storage port power energy representation of the real (green),
estimated (red) and error (blue) for the deterministic algorithm I1.

As this graphic shows, the fitness of the real and estimated storage port power energy is
almost perfect, with the exception of the first estimation steps. In the next figure, the
preservation of the power conservation law is performed for the estimated model.
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Figure 5.10. Estimated system power port energies (green — storage port, red —control port,
blue-dissipation port) and power conservation law (black) for deterministic algorithm I1.

As Figure 5.10 shows, the power conservation law is satisfied, preserving thus the basic
properties of PCH systems for the selected scenario.

Remark: The results obtained with the deterministic identification algorithms for the DC
motor model are similar as expected, with an almost perfect fit between the real and
estimated parameters due to the absence of the perturbations.

5.3 Power energy approach

In this section it is proposed a power energy context for the deterministic identification of
PCH systems in the general lossy case. The lossless case can be determined easily from the
results. This section is in direct relation with the results on structural identifiability proposed
in chapter 2 section 2.5, were we have defined the global/local identifiability or global/local
port identifiability by means of the port energies. The current context makes use of the
subspace identification approach to estimate the real system parameters from known inputs
and power port energies. Thus we will formulate and prove a specific power energy
deterministic identification theorem and propose an algorithm to demonstrate by simulation
the results.

5.3.1 Deterministic identification

This section formulates the power energy deterministic identification context, together with a
specific theorem completely proved.

Given: s measurements of the input u, R M and power port energies P (k). Pg (k). Pg (k)
generated by the unknown deterministic system of order n :
d _ 5.d
Xk+1 Axk +Buk (544)
—_— d .
Yy = C Xk

Determine:
- The order n of the unknown system;

143



- The system matrices AcR™" BecR™™ c cr™, up to within a similarity
transformation (T ¢ R ™" );

Remark: At least two power port energies must be known, in order to perform this
deterministic identification approach in the lossy case, as we make use of the power
conservation law.

On this deterministic identification approach, we make use of the power conservation law, in
which case we can consider the control port states as the sum between the storage and
dissipation port states, as follows:

d
c =LpWps +LpWpp (5.45)

where we define the storage and dissipation states by:
def

|[X d = LW

%| fS P PS (546)
| q def

|[X R = LPW PR

d

94in the classic approach can be written as x .

Remark: The states x . =L_. W where

p po
d i~+,,d i+
Lp :[Ai ~ AT H, ‘A r, } (see 107]).
and thus, we can also define:
def

x‘:c :chjs”(?R (5.47)

Further we write the future outputs on the control port as:

d
Yo =TiLpW g +wop J+nfu (5.48)

Making use of the control port power energy relation (PC = yTu), we can write:

Y = [Pcf U ?]T (5.49)

Remark: u ; is the Moore-Penrose pseudo-inverse of the future inputs matrix applied to the

dynamic system.
(5.49) is also equivalent to:
T

Yo = —((PSF +Poe BT j (5.50)
using the power conservation law.We define further the future outputs corresponding to the
storage and dissipation ports, as:

( def T

+
nys - _(PSFU fJ
! (5.51)
|
|
(

_ +
Y = {PRFUfj



Remark: Similarly to the classic case, we can define the past/future power energies or system
outputs corresponding to each port.
Multiplying in (5.48) with the orthogonal projection (11 UL )of the future inputs, we get:

f

Y IUF+Y o JUT =Tl W W o Jiu T (5.52)

1S f R PR

+

Multiplying to the right with the pseudo-inverse matrix[(vv bs *Wpg JIU T ] , We get:
+ +
1 1 1 1
[st /U f][@vps FW oo J1u f] +[YfR/U f][(vvps FW o J1u f} =T;Lp (5.53)
Again we can multiply to the right with w .o +w . :

N
(st /UiJ((\NPs W R )/UiJ Wog +Wpg )+

.
+[Y1R /U”[(WPS *Weg )/U%j Wos +Wpg J=TiLp W o +w o)

We observe that to the left part we can split in two oblique projections corresponding to the
storage and dissipation ports, defined as:
def

(5.54)

(
Jois = Vg IV Wog s Wpp ) (5.565)
| def
R = YR 'Y (Wog +Wog )
Then it results:
Ojs +Ojg =TilpWpg +Wpp ) (5.56)
(5.55) can be also written as:
( T
s :_[PSfUJfr} 10 W W g |
4| . (5.57)
iR :‘[PRfU” 10 Wpg +Wpe )

using the future inputs and power energies. Further we can define the oblique projections
corresponding to the storage and dissipation ports as:

[ def
O. =T..L_W
Jl IS » iC P PS (558)
%k = Tic tpWer
Using (5.46), we can write further:
( d
Ois =Tic X
J ) (5.59)
‘[OiR =Tic X g

Remark: The oblique projection corresponding to the sum o.. +o.. , is defined as the

oblique projection corresponding to the control port:
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0. = 0. +0. (5.60)

Performing the SVD decomposition of o, as in the classic case, we can write:

W, 0. W, =W, [0, +0. )W, (5.61)
This can be split as:
W, 0, W, =W, -0 W, +W -0 W, (5.62)
Then it results:
W0, W,=Ucs vl +u_s vi-u_s.v] (5.63)
ic 2 $°s's RR'R c’c'c

by SVD decomposition on each port oblique projection. w_,w , are weighting matrices such
that w  is of full rank and rank W , )= rank fw , -w ) [107].

Remark: We have denoted Ug.Sg.Vgs Up.Sp.Vp and Uc.Sg Ve @S the matrix
elements corresponding to the SVD decomposition of the storage, dissipation and control

ports oblique projections (o, ,0,,.0,. ). We can thus inspect the singular values

contribution for the storage, control or dissipation ports, to determine the dynamic system
degree and recover the system parameters.
For the control port we can write the SVD decomposition as:

d d _ T
wlric[xfs+fo].w2_quCvC (5.64)
We can split this relation as follows:
r 1/2 1

1 "iC C cC C

Jw T.. =U_-S
xd W oo7-l.gl/2 T
fc 2

(5.65)
C C C

Remark: We have denoted the extended observability matrix r; as r, corresponding to the

C
control port power energy. Similarly we define the storage and dissipation port observability

matrices as riS ‘riR .

For the storage port oblique projection o, , we can write:
w,r.x% w_=u_.s_ .v] (5.66)
which can be also split in:

1 S S s S

_-1 12 T
g W, =Tg 87 Vg

wW,.r.. =u._.st/2.t
J (5.67)

Similarly we can write for the dissipation port oblique projection, the SVD decomposition:

d _ T T
Wy Tip X Wy =UpSp Ve (5.68)

This can be split in:
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1 iR R R R

-1 1/2 T
W, =Tpr s v

W, .r.. =u_.si/2.¢
J (5.69)

Remark: The similarity transformation matrices corresponding to the control, storage or
dissipation ports are denoted by To Tg TR @s they can be in different space dimension, as
will be shown also by simulation.

Further we define the state vectors on each port, corresponding to the control port SVD

decomposition as:

\[ d +

Xice = Tic %

} d def .

*‘X s = Tic Ois (5.70)
\ def

| y d _rt

Kier T Tic Or

[ def

| x d o
|X fsc riS OIC
I q def N
4|x ' = Tis O (5.71)
| def
|y d _ +
|X fSR S Oir
L
For the dissipation port power energy, the state vector sequences are defined as
( def
Ixd —_ pt.
ZXtre T TR Oic
I d def .
*lx rs ~ Tir "Ois (5.72)
| def
I x d = rt.
KRR T TR OiR
l

We have denoted the state vector sequences corresponding to each port differently for each
SVD decomposition. Further we define a specific deterministic identification theorem for the
power energy approach.

Theorem: Deterministic identification (power energy approach)

We consider the initial assumptions:
1. The input is persistently exciting of order 2i

2. The intersection of the row space of U ¢ (future inputs) and the row space of x f', (past

states) is empty.
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3. The user defined weighting matrices w, < R Xl and W, eR M- are such that w is of

full rank and w ) obeys:
rank W b )= rank (\N p W 2) (5.73)

where w, represents the Hankel matrices containing the past inputs and outputs

corresponding to the ports.

We define the oblique projections corresponding to the storage, dissipation and control
ports, as:

def

Ojs = Yy /U ¢Wp

(5.74)

O
Il

=<
c
=

def

= 0..+0

R
C iS iR

(
\
\
\
\
T
\
} o)

i

i
(

Remark: The control port oblique projection o,. can be expressed as a sum between the

storage port (oiS ) and dissipation port oblique projections (ojr ), by means of the power

conservation law (see 5.60).
We consider the singular value decomposition (SVD) corresponding to the power ports:

! W, - | [ v |
W,0. W, =W, [0.. +0. - U U | =
17ic V2 1%is iR M2 c1 c2
0 O)ly T | )
v, | (5.75)
T T T
=Uc15c1Vc17VsSsVs *URSRYR

1.The oblique projections corresponding to the storage, dissipation and control ports, equal
to:

j def q def q def q

{Ois = Tic Xl %k = Tic X r %ic = Tic X e (5.76)
J def d def d def d

{Ois = Tis X s 1Ok = Tis X r % = Tis X e (5.77)
j def q def q def q

[OiS = Tig X e i0jp = Tjp "X 100 = T X (5.78)

by SVD decomposition.

2. The order of the dynamic system corresponds to the number of singular values of the
storage, dissipation and control port oblique projections in (5.75).

3. The extended observability matrix r, can be determined for either port as:
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s1/2

( w1
Tig =Wy " Ug 557 Tg
w -l <ll2
lriR =W, U s STy (5.79)
| w1 12
[Fic =W, U s T

Remark: T represents a non-singular transformation matrix applied for each port.

4. The part of the state sequences x ?s d  x ?c

, X
R

corresponding to the storage, dissipation

or control ports, that lies in the column space of w , , can be recovered from:

d -1 J1/2 , T
X W, =T."-S Vo
fSS 2 S S S

d ) _rt -1 c1/2 ,,T. 5.80
X G W, =Tt st/2v (5.80)
d -1 1/2

X

[
|
|

_ . T
Xee Wp =T gt v¢
5.Thestatesequencesx?s,x‘:R,xd

. corresponding to the storage, dissipation and control

ports equal to:

-rto.:x%9  -rt.o_:x% -rt.o (5.81)

d I d I d _ ot

X f5S Fis Qs i X SR Fis Oir X fsc Tis Oic (5.82)
d def N d def N d def N

Xwrs “ TR %si*mr =~ TR O% ' Xme = Tir %ic (5.83)

Proof:

We will start the proof with the control port oblique projection, for which we prove that

rank W o, )= rank [w o IU H .But w_ can be written equivalently as:

P
. 0 (Y
W, | m I ZW (5.84)
HP T JLX p J
Further we can write:
o fu,ut)
w_/ut [ | (5.85)

P f d
tHi ri(: JLX%/U%J

According to the first two assumtions of the theorem, the following holds:

Up l(uplui)l c 85
rankLX?)J—rankLXg/U¢J (5.86)
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which proves that rank W b )= rank [w p /U ? } . Further we denote the SVD decomposition of

1 ne-
wp/ufas.

S o)V
WUy =g, UCZ{ gl )

v (5.87)
OJLV

U ClSCI C1

O+4 O+

0
iy

Since w p /U ? is a linear combination of the columns of w b and since the rank of w b and

w _ /u + are equal, we find that the column spaces of w

b /U and w , /u ¢ are also equal. This

P f

implies that w , can be written as:

P
W, =U R (5.88)
Then using (5.87), we can write:
+
[WP Iu H[WP Iu H Wp :(U c1501VchJ[V01SEiUE1J(UC1R) (5.89)

which proves that the following holds:

1 1 "
[WP/UfJ[WP/UfJ W, =W, (5.90)
Thus it results the oblique projection of the control port as:
d
Oic =Tic "X e (5.91)

Using (5.59) and (5.74), we can determine the oblique projections corresponding to the
storage and dissipation ports as:

iS iC fCcS

| _ d
[OiR Tic X R

and thus (5.76) is proved. For the storage port oblique projection, it is necessary to prove that:

o.-r. x4
l (5.92)

+

[Wp/uilwplufj W =W o (5.93)

In this case, the property rankw o = rankw , /U ? generally might not hold and thus the

column spaces of w . and w , /u f are not always equal. In this case, we can write w ¢ as:

S

W, =U,R (5.94)

PS

Using (5.87), we can write then:
+

(WP v ?]{WP v ?J Wps :[U 01SC1VCT1][V01361U21](U 2R) (5.95)

Performing the possible simplifications, it results:
+

[WP/UJ{J(WP/U?J W, =U,R (5.96)

150



Thus the SVD decomposition of the storage port oblique projection (oiS ) can be in a
different space dimension from the control port oblique projection (oic ) as will be seen by

simulation examples. Then the oblique projections corresponding to the storage port results as

in (5.77). For the dissipation port oblique projections it is necessary to prove that:
+

L i
[WP/Ufj{WP/UfJ Wop =W oo (5.97)
Similarly to the storage port rankw . =rankw /Ui‘ doesn’t hold generally and the
column spaces of w ,, and w  /u # might be different. In this case, we can write:
+
L L T -1, T
[WP V% ]{WP V% j W pR :[UClSC1VCIJ(VC1SCIUClj(U:%R) (5.98)
where:
W =UgR (5.99)
Performing all simplifications in (5.98), it results:
+
1 1
[WP/Ufj[WP/Uf) Wop =U,R (5.100)

As for the storage port, the oblique projection corresponding to the dissipation port o may

iR
be in a different space dimension, but still representing an equivalent system to the real one.
Thus the oblique projections corresponding to the dissipation port can be determined as in

(5.78). The second claim of the theorem follows from the fact that W, 0. W, is equal to the

product of two matrices w r.. (n. columns) and X ‘:CC w, (n. rows). Since both matrices

have rank ne due to assumption 3 of the theorem, their product is also rank ne - Thus the

second claim is proved for the control port. For the storage port oblique projection we can

write that w, o w,is equal to the product of W T (nS columns) and x ?sc w2 (ng rows).
Using assumption 3 of the theorem, their product is also rank ng and thus statement 2 is
proved for the storage port. Similarly for the dissipation port oblique projection, we can write

that w o. w,is equal to the product between w,r,, (n, columns) and X fRCWZ(nR

rows). Using assumption 3 of the theorem, their product is rank n_ and thus statement 2 is

proved for the dissipation port.

Remark: We have denoted with e Mg Ng the system degrees obtained for the control,

S
storage or dissipation ports by SVD decomposition. Thus it is possible to obtain three
different and equivalent systems for the real PCH model.

Statement 3 and 4 of the theorem can be easily obtained by spliting the SVD decomposition
on each port as in (5.65), (5.67) and (5.69). The last statement of the theorem can be easily
obtained from the first one.

Remark: Similarly to the classic case it is easy to prove that o, , =T, X ?+1 holds for

each port.
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Further we propose a specific deterministic identification algorithm for the power energy
approach, which is in fact an extension of Deterministic algorithm | from section 5.2.1 to the
power energy approach.

Remark: We observe that this theorem proves also the definitions and propositions proposed
for the power based structural identifiability of chapter 2, as each power energy can be
corresponds to a transfer function from the input to the port output and also is a function of
the unknown parameters. Thus, three equivalent systems can be determined for the dynamic
system by system identification as will be shown later.

5.3.2 Deterministic identification algorithm

1.Calculate the oblique projections corresponding to the storage, dissipation and control
ports as:

()

0. :[stluf}(wp)
0.

|

l |

{ s T {Y% /u;](wp)
j(OiR E [YfR /UfJ(WP)

|
|

|

(R)

def
0. = 0.. +0.
iC iS iR
(C)4| def
o,. = 0O, +0,.
lL [u—ljc (u—ljs (i-1)R

Remark: We have denoted with v fs Y the future outputs corresponding to the storage

fR

and dissipation ports (see 5.51).
2. Calculate the SVD decomposition of the weighted obligue projections corresponding to the
ports:
T
W, 0. W, =UcS. V¢
U

(
\ isT 2"
Jw O W, =U_S_VJ
1TIR T2 R°R'R
_ T
twloiCWZ =UcScVe
3. Determine the system order, by inspecting the singular values of either the storage,
dissipation or control ports and partition the SVD accordingly.

4. Determine r; and F[i—l] on each port as:
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1/2
is =Wy UsSg Ts: i-1)s Tis
- 1/2
iR W1 YUrSR Tr® i-1)R TR

Lo 12+ . B
[FiC =W, U S, TC'F[HJC =Tic

Remark: The extended observability matrix of the system r, , can be determined using one of

the power energies corresponding to the ports.

5. Determine the states x id and x id+1 corresponding to each port:
- x99 -r*to_:x9 -rt*o
iSS iS TiS "7 isSR iS iR "7 isC iS " iC
Xd ot .y d ot .y d +

(i+1)ss _r[i—ljso(i—ljs’x[nl]sre _F(i—ljso(i—l)R’X[nl]sc _F[i—l}so[i—ljc

Xd -+ ;Xd _r* Ly d r+

(
|
|l (i+1)Rs - [ifl}Ro[i—ljs (i+1)RR N [ifljRo[ifl]R’X[Hl]RC - [ifljRo[ifle
(
|
|
|

x d Tt 0 . x d -T* 0 . x d -t 0
(i+1]cs (i—l)c [i—l]s’ [i+1jCR (i—ljc [i—ljR’ [i+1]cc [i—l]C (i—l)c

6. Solve the linear set of equations for A,B,c, D , using either the storage, dissipation or
control ports as:

o

l( (i+1)sC ] Ag Bs\(xgcw
I(P U+ii)T|:LCS D |V i),

:d cfir) (/)J )I i)
(x{:ﬂch )I:(AR B ) x4 )
\PC(|/|)J+(i/i)T)| Cr DRJLU(I“)J
(X((ji+l)CC L(AC B )( idccj
P i i) Cc DCJLU(i/i)J

Remark: This algorithm finds three equivalent models to the real one given by
Ag.Bg.Co. Do, AL By .Cp. Dy and Ac Bo Co D¢ corresponding to the system ports.
Further we will define and prove a proposition useful to determine the observability matrix

(T, ) of an equivalent PCH system for the selected time-discretization scheme, starting from

the observability matrix r, of (5.33).
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Proposition 5.1 The extended observability matrix r,, —of a discrete-time PCH system

H
(5.33) in its equivalent form, when using a symplectic discretization scheme with an explicit
Euler rule for the flows and implicit Euler rule for the efforts, can be determined recursively
using the following formula:

Fin =Tty (5.101)
where ry is defined as:
[0 )
‘ Ixn ‘
... \
(Ollxn ) }0- }
def i-1 j I . i J J | ljxn |
T _J_ch[il]loljxn }+p_zo CB[i—l—pJ_ B[l—Z—p]r(i—3—p)H
) B lo \
Lr(i_ j)H J i>p+3 } 11xn }
E |
Lol(p+1)xn J

Remark: We have adopted the notation CB[k] for the binomial coefficients or
n

combinatorial numbers in (5.101).

Further we will present a proof of the proposition which makes use of the binomial theorem.
Proof:

Using (5.33) and (5.34), the observability matrix of an equivalent state-space system can be
described by the following formula:

_ T
riz(c CA .. CA'_l] 71 (5.103)

where T represents a non-singular simularity transformation of the dynamic system.
Remark: For simplicity in all computations we will consider the time-step at=1 for the
selected time-discretization scheme.

Using (5.34), we can also write the observability matrix as:
T

riz[c c(A+1) .. C(A+I)i_lj 71 (5.104)
We will consider first the case with i=2:
c -1
- [c(A+ I)]*T (5.105)
which can be split in:
(len )
Ti=Tyy +Ip | (5.106)

r. :(c CA .. CAHJ 771 (5.107)



for the observability matrix of an equivalent PCH system.

Remark: r.
iH

continuous-time model, as defined in the previous chapters.
From (5.106) we can determine recursively r, , fori=2as:

represents the observability matrix of an equivalent PCH system for the

Ty =Ti-Ip. | (5.108)
L (u—l)H J
For i =3 we can write:
c |
ri=jcarn) Tt (5.109)
LC(A+ |)2)|
This relation can be further split as:
(c ) 0 0
ri=jca It l+|(c )T 1+|(o )T -1 (5.110)
lca ?) oy c)
Using (5.107) we can write equivalently:
(Ollxn ) :(Ollxn WI (Ollxn )I
r, =T, +|2r[i—1}H J+}ilzxn Ir[i_sz : (5.111)
L [i—ZJHJ Lolixn J
For i = 4 we can write the observability matrix as:
(€ |
IC(A+I) I ., ,
ri:IC(A+I)2 IT (5.112)
lca+1)®)
Using (5.107) we can write this relation as:
°y oYy
0 Vj2c 4 | jo |4 |0 |
F.=T.. +|3r - T ~+/0 - T +‘0 | (5.113)
1 iH L (I—le ‘CA | | ‘ ‘ZC ‘ \ |
|3F ‘ \1—* ) |
lo ) -2 lo ) i
This relation can be equivalently written as:
0 0 0
o g e g jI g ] I(F(i—stW
r.=r., + - T,. |+10 |- + -
i iH LSF[I—]-]HJ : [|72)H} ISF_ } }Zr[i_stI }1(1 I IO }
0 jou 2R g J U (=3H ] (o )
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(5.114)
Further we will use the binomial theorem (binomial expansion) and write T, as:

71 (5.115)

|(0 1 1) jl
iC Ch I_J—CB JJAO i ( |
1 0 ) c CB1 —(:Blh1 | 2 °
R +CB[i—1]Lr[i_1)H J_i I_J z}) +CB[i1] g[|—2)H i
clalLfale
0 J
; | | |
el i
_i i+”'+CB[i—1J}--- I—I ( | I+
|c Cq 2 -Cy 2 )AI_4| Ty 'CLCB[::EJ_CB{::ELAM
i
CB[i_l]g i_ILJ
o (5.116)

Remark: In order to write the above relation in a simplified form, we have added and

subtracted c g [_j J (i=1,.., i—2)oneach line as in (5.116).
|_
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Further we can develop as follows:
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(5.118)



| e !

i o | i

._1| | O | \C(CB iJ_l e, iJ_Z *(CB ij—l g jﬂAo ]
i jZ:lCB[Il]CB{iZJFI[JIX:J.]H ..L [ ] [ ] | [ ] [ ]U
; el el el el

| Kz |

(5.119)

f C

\ \ ||

HCB |J—1 ““s ij—z )'(;“_X” LI

(Ollxn )| | [ ] [ JJF(i3J')H i
" o Lo )
e i 1t w i
-1 J j 0 =1y |
el ealll i
} _ i "c(cB |J—2 —cg jWAO |
LC[CB[:JCB[:ZHAIZJJ i L [ ] []J i
iCL B['J—Z] CB[iJ_snAl_s_J i

Iol(i—l)xn } i

L ) )

(5.120)
Repeating the development of the 2" term in (5.120), we arrive by recursive computation at
(5.102) and the proof ends. Similarly to Proposition 5.1 we can introduce the following
proposition for the computation of an extended controllability matrix of a PCH system.

Proposition 5.2 The extended controllability matrix ¢, of a discrete-time PCH system

(5.33) in its equivalent form, when using a symplectic discretization scheme with an explicit
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Euler rule for the flows and implicit Euler rule for the efforts, can be determined recursively
using the following formula:

Ciy =C;+C (5.121)

where ¢ f is defined as:

Iollxn }

[ |

O | lo . |

-1 iy | j j | |

i fel s sl el

(Ciim | izpes 1 %11xn |

| \

lto J

(5.122)

Proof:
The proof follows the same steps as Proposition 5.1 to determine the recursive formula
5.121.
Remark: The controllability matrix of a classic state space system is defined by

_ T
C. = [B AB .. A'_lB} , and it can also be determined for PCH systems as for the

observability matrix (see chapter 2).The previous two propositions are useful in determining

the equivalent state-space system matrices (AH B, . Chy ) of a PCH system given by:

|[AH ~1.A.T 1
4|BH =T-B (5.123)
|
-1
{CH =C-T

using r; and c; of (5.33). Using (5.123) we can determine also the obsevability and

controllability Grammians as:

o2 «-Twy 27 -1
[Mo =T Mol (5.124)
we=twirT
where:
{Wé :o})eATtCTCe At gt
4: 2 ‘S’ At oo T AT (5:129)
lLWC :ée tee e tat

Further we will prove and determine that between the inputs and power port energies, we can
determine separate transfer functions, which are in fact associated to the oblique projections
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defined in the power energy deterministic identification approach. The power energies
associated to the ports in continuous-time form, can be determined as:

|[PC = (Qx )T Bu

Py = (@) R(Qx)- ()" Bu (5.126)
|
|
l
Changing to Laplace transform representation, we can write equivalently:

[ 1 T
Pc (s)= {Q(sl -A)"B-U (s)} U (s)

P = (@) R(Qx)

[Q(sl Ay lau (s)jT R(Q(sl ~a)yleu (s)j—(Q(sl ~a)yleu (s)JT BU (s) (5.127)

|

|

|

(pg )
|

IPR (s)= —(Q(sl Ay lsu (s)] R(Q(sl A tis.u (s)]
l

where X (s)= (sl — A)_l BU (s) Is determined from the continuous-time state-space
representation. But the control port power energy can be also written as:

Pe (8)=Y " (5):U(s) (5.128)

Equivalently we can write then:
Pc (s):[C(sI - A)_l BU (s)| U(s) (5.129)

Expressed using the transfer function, we can write:
Pe (5)=(H o (5)U (s) U s) (5.130)

Then (5.127) can be equivalently written as:

.
C

JPS (s)=U T (s)-H { (s)U(s) (5.131)
T
R

where H c (8)Hg(s)Hp(s)can be deduced from straight computations:

S
‘[H (s)=C (sl - A)_lB

C
H (s)= BT (sl —A) T Q-R-Q(sl —A) tB-c(sl —A)tB (5.132)
\
H o (s)=-B" (sl A TQ.RQsI -A) B

l

Thus we can write the following relation between the power port transfer functions:
He(s)=-H(s)=H(s) (5.133)

Equivalently we can write:
Yo (s)==Yg (s)=Yq(s) (5.134)

where;
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Yo(s) = Hg(s)U(s) (5.135)

\
\
‘LYR(S) = Hp(s)U(s)

Remark: This results show that between the input and power port energies, we can define
separate transfer functions, which satisfy also the conservation law (5.133) and are in
correspondence with the oblique projections defined in the deterministic identification

context.
5.3.3 Simulations and discussion

This section is reserved for a set of simulations using the algorithm presented above and the
deterministic identification context, formulated for the power energy approach, using a DC
motor model. For simulations, we consider a case scenario with a horizon length ( j =100 )

over a time interval tg =10s. For the control port, we obtain an equivalent 2" order system

represented with red in the following figure.
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Figure 5.11. Output response of the real (green), estimated (red) and error
(blue) for the control port.

As the graphic shows, the fitness between the real (green) and estimated (red) systems is
almost perfect (error almost zero), excepting the beginning of the time interval. For the
storage port power energy, we obtain an equivalent 3" order model, with the following
graphic representation.
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Figure 5.12. Output response of the real (green), estimated (blue) and error
(magenta) for the storage port.

From this graphic, the estimated 3 order model cannot approximate perfectly the real system
response, which is a 2" order system and thus, the errors (magenta) have increased
amplitudes over time. It should be remarked that for the first part of the time-interval, the
errors have higher amplitudes and they decrease with increasing time. Similarly to the control
and storage ports, we represent the output response obtained for the equivalent system on the
dissipation port, which is also a 3 order model.
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Figure 5.13. Output response of the real (green), estimated (black) and error
(cyan) for the dissipation port.

As expected the 3™ order model estimation obtained for the dissipation port, doesn’t provide a
perfect approximation of the real dynamic system (2" order model), with errors (cyan) of
higher amplitudes. As for the storage port, the estimation errors have higher amplitudes in the
beginning of the time-interval as the model approximation is weaker compared to the control
port model. In the following figure, we represent the system responses for the real and
estimated models for all three ports.
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Figure 5.14. Output response of the real (green), control port (red),
storage port (blue), dissipation port (black) estimated models.

As this figure shows, we can observe a good estimation of the DC motor model on each port,
excepting the first part of the time-interval, where big estimation errors can be found mainly
for the storage and dissipation port models. In the following figure, we also represent the
output errors obtained for each port model.
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Figure 5.15. Output errors for the control port (blue), storage port (magenta) and
dissipation port (cyan) estimated models.

Further we will perform a set of simulations for the perturbed PCH model proposed in chapter
3, using the power energy identification algorithm proposed in this section.

Remark: The perturbed PCH system model proposed in chapter 3, is more a deterministic
one, as the outputs are perturbed using a fixed model that preserve the PCH system structure,
while the states are perturbed using a white noise sequence.

In order to choose a model that better approximates the real one, we will introduce for this
analysis, the following validation index known in the literature [195]:

(5.136)
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where y. represents the real values of the system outputs, y represents the medium value of
the system outputs and y; the estimated values of the system outputs. We will consider three

models for the output perturbation model of the k matrix (see eq. (3.36)), to ilustrate the
results by simulation. As a first model of the perturbation matrix k , we will consider the

following model k =[0.13 —0.24]" on a horizon length j = 200 . In the following figure, we
represent with different colours the real and estimated models for each port.
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Figure 5.16. Output response of the real (green), control port (red), storage port (blue),
dissipation port (black) estimated models.

For the first simulation, with the control port system outputs we have obtained the following
validation index v _index =0.9946 , with a third order model, being also the best

approximation for the real model of the system. For the storage port model, it was determined
a validation index v _index =0.9394 for a third order model, being also the model with less

performances as compared to the other two port models. For the dissipation port model, the
validation index has the following value v _index =0.9404 , which makes it a good

approximation of the real model. In the second case, we have considered the following model

kK =[0.5 -0.6]" for the output perturbation matrix. Applying the power energy deterministic

identification algorithm of this section, we obtain the following responses of the system
outputs.
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Figure 5.17. Output response of the real (green), control port (red), storage port (blue),
dissipation port (black) estimated models.
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As for the first case, the best approximation of the real model is obtained for the control port
estimation with a third order model and validation index v _index =0.9997 . The less

performant estimation is realized for the storage port, with a 3" order model and validation
v_index =0.8939 , which makes it the worse approximation of the real model. For the

dissipation port model, the estimation gets a 3 order model with a validation index
v_index =0.9170 which makes it a better approximation compared to the storage port case.

For the 3" case we will consider the following perturbation matrix k =[0.75 —o0.8]" to

check the models performance on each port. We thus obtain the following responses of the
system outputs for the real and estimated models.
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Figure 5.18. Output response of the real (green), control port (red), storage port (blue),
dissipation port (black) estimated models.

As for the previous two cases, the control port obtains the best approximation of the real
model, with a 3" order model and a validation index v _index = 0.9998 , which is very close

to one. As expected, for the storage port we obtain the less performant model of the real one,
with a 3 order model and a validation index v _index = 0.8340 , showing higher errors of

estimation. Also for the dissipation port model, we obtain poor results with a 3™ order model
and a validation index of v _index =0.8492 .

Remark: When determining a higher order (equivalent) state-space system from system
identification, we can write it equivalently as follows:

Hxl(k+l)) (TlKTl_l Tlxlsz_l)(xl(k” (TlB_ |

| | =1 - 1" u
J\XZ(kH)J (ToAnT) T2A22T21kaz(k)J LTZBZJ (5.137)

where (A, B,C ) represents the internal dominant system as defined in the literature [176],

given generally by the analytical model. Thus we can determine an equivalent PCH system
[Tl AT l‘l,Tls,CT 1‘1j for the dynamic system, expressed in analytic form. From (5.134) we

can derive the case of an equivalent PCH system of the same order as the analytic model, for
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AL :o,K2 5, =0.B, =o,c_2 — 0. By system identification, it is never possible to

determine the exact system matrices ( A, B, c ) of the real system, only an equivalent form

1=0,A

(TIAT 1‘1,T18,CT 1‘1]. From (5.137), it is not really necessary to determine an equivalent

high order PCH system to the initial one.
Conclusions

This chapter proposed an analysis of subspace identification algorithms known from the
literature for PCH systems, using a simple symplectic time-discretization scheme of chapter 4,
that gives a similar (PCH state-space structure) to the classic one. It can be proved, that for the
selected time-discretization scheme, a matrix 1/0O representation, orthogonal or oblique
projections can be determined, which are used with the subspace identification algorithms.
We should remark that the subspace identification analysis of this chapter, can be extended
also for other symplectic time-discretization schemes presented in chapter 4, increasing the
complexity of computations and time duration. Using two classic deterministic identification
algorithms, several simulations were realized, that prove to give equivalent PCH system
models for the real system (DC motor) considered. Further it was proposed a new (power
energy approach) in the lossy case, starting from the classic one, using the identifiability
concepts introduced in chapter 2, that makes use of the inputs and power port energies
knowledge to determine the system parameters. Thus the new identification framework, can
estimate equivalent PCH models corresponding to each port. Several simulations were
performed to ilustrate the deterministic power energy approach for the DC motor model. The
perturbation model proposed in chapter 3, which preserve the PCH structure was also
analysed. This model structure was tested on the power energy deterministic identification
context, for several perturbation models using a validation index to check the performances of
the estimated models when compared to the real one.
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6. Conclusions, personal contributions and perspectives

The final chapter presents the main conclusions, personal contributions and perspectives, that
result at the end of the proposed thesis on the identification of Port-Controlled-Hamiltonian
systems. The main objectives proposed for the thesis, were: the selection of the main reasons
and advantages to develop a system identification theory for Port-Controlled-Hamiltonian
systems, as presented in chapter 1; the structural identifiability analysis of Port-Controlled-
Hamiltonian systems using different techniques: observability/controllability concepts, direct
test, power series expansion or a new (specific) power energy approach; the practical
identifiability ~ analysis  of  Port-Controlled-Hamiltonian ~ systems  using  the
observability/controllability concepts; the introduction of a perturbed PCH model by means
of the interaction port, which is also proved to conserve PCH systems properties; the selection
of a set of symplectic discretization schemes, which combine different first or second order
discretization rules for the flows and efforts, conserving the basic PCH systems structure; the
introduction of a discretization error Hamiltonian as a difference between the continuous and
discrete-time PCH systems, which is proved to conserve the main properties; the analysis of
known state-space identification algorithms from the literature to be used for PCH systems;
the introduction of matrix 1/O representation, orthogonal or oblique projections for the
selected time-discretization schemes in view of a subspace identification approach; the
selection of the most simple and reliable symplectic discretization scheme to be used with the
identification algorithms for analysis; the introduction of a new context for subspace
identification of PCH systems using the knowledge of the inputs/power energies to determine
equivalent PCH systems on each port; the analysis of the proposed subspace identification
algorithms or new (power based) for a proposed PCH system model; the introduction of a
criterion for performance validation of the estimated models for a selected perturbation
model.

Chapter 1, made a general presentation of the system identification control theory, from the
modelling of dynamic systems, types of models, modeling procedures with a general schema
known in practice or theory. Further in section 1.3, the PCH modeling and control approach
was introduced, as a new approach, with their explicit/implicit/bilinear forms, Dirac
interconnection structure or dynamics. For the identifiability analysis throughout the thesis,
three representative examples were proposed for the lossless or lossy case, as follows: LC
circuit, capacitor microphone circuit or DC motor. Section 1.4, introduced the main reasons
for the development of an identification theory of PCH systems starting from their remarkable
properties. The last two sections of chapter 1, 1.5 and 1.6, introduced the main objectives of
the thesis and a summary on chapters.

Chapter 2, proposed an analysis of the structural identifiability of PCH systems using
different known or proposed techniques. As classic structural identifiability techniques, the
following ones were selected: the observability/controllability based test; the direct test or the
power series expansion test. For each approach, general expressions have been proved and
found and proper definitions have been formulated specific for PCH systems. Beside this
classic identifiability techniques, a new (power based approach), was proposed using the
power energies corresponding to each port. Thus, new propositions and definitions were
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introduced for the global and local identifiability of a PCH system and also, a new concept of
port-identifiability, was proposed specific to one of the systems ports. For each structural
identifiability technique, examples have been considered for the lossless or lossy case, using
an LC circuit, capacitor microphone or a DC motor.

Chapter 3, made a practical identifiability analysis of PCH systems using the
observability/controllability concepts known from classic state-space identification theory.

A perturbation model of PCH systems was proposed in this chapter, by means of an
input/output pair corresponding to the interaction port, such as the preservation of the main
properties holds. An equivalent observable canonical form known from the literature was
proposed for PCH systems, on the proposed model. For a known perturbation model,
examples were considered for the analysis of the practical identifiability using the
observability/controllability concepts in the lossless or lossy case, using the model of an LC
circuit, capacitor microphone or a DC motor.

Chapter 4, proposed a new framework for symplectic time-discretization of PCH systems,
using different discretization rules for the flows and efforts. As discretization rules, were
selected: implicit/explicit Euler rule, implicit mid-point rule or implicit trapezoidal rule. For
the combined symplectic discretization framework, general expressions were defined for the
explicit/implicit forms, power conservation law or bilinear form of discrete-time PCH systems
in the lossless or lossy case. For the selected first or second order discretization rules, it was
checked the conservation of the main properties in discrete-time in the lossless or lossy case.
It was proved that some symplectic time-discretization schemes, doesn’t preserve the power
conservation law in discrete-time, when introducing dissipation elements in the system.
Section 4.4, introduced a methodology to differentiate two different PCH systems in the
lossless or lossy case, by creating a new PCH system, which conserves the main characteristic
properties. The new system, can be particularly used for the discretization analysis, by
introducing a discretization error Hamiltonian, as the difference between the continuous and
discrete-time models. The last part of the chapter, made several simulations for the lossless or
lossy case, using a capacitor microphone circuit, to test the performances of the selected
symplectic discretization schemes and discretization error Hamiltonian. A complete set of
symplectic discretization schemes can be found in Appendix E for the lossless or lossy case,
for which the main properties of PCH systems are checked using the general relations
introduced in section 4.2.

Chapter 5, proposed an analysis of classic subspace identification algorithms for PCH
systems using one time-discretization scheme developed in chapter 4. Thus it was determined
a matrix 1/0O representation, together with ortogonal and oblique projections for the selected
time-discretization schemes. As time-discretization scheme for the analysis using the
identification algorithms a simple scheme was selected, which uses Euler time-discretization
rules for the flows and efforts and has a similar state-space structure to the classic one. A new
(power energy) context was also proposed, to determine the system parameters using the
inputs and power port energies knowledge, which is proved to determine equivalent PCH
systems corresponding to each port. Simulations using the proposed or new (energy based)
deterministic identification algorithms are performed for a DC motor model.
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Personal contributions

>

The analysis of the usefulness, necessity and possibilities of development of a system
identification theory for PCH systems, in view of an improved real-time modelling
and control;

The analysis of the PCH systems model structure, which is necessary in process
identification;

The selection of appropriate structural identifiability techniques for PCH systems from
the classic identification theory;

The analysis and proof of the selected structural identifiability techniques, that can be
used for PCH systems in the lossless or lossy case;

The introduction of a new (specific) structural identifiability approach for PCH
systems, by means of the power energies corresponding to the ports, by proposing
specific propositions for the global or local identifiability;

The introduction of a new concept of port identifiability, with specific definitions for
the global or local identifiability for a closer analysis;

The introduction of a perturbed PCH model by means of an input/output pair
corresponding to the interaction port of the system with the environment;

The analysis and proof that PCH systems conserve their main characteristic properties,
when converted to the observable canonical form in the presence of a perturbation
model;

The selection of symplectic time-discretization schemes to be used for PCH systems;
The introduction of general expressions for the explicit/implicit/bilinear forms or
power conservation law of discrete-time PCH systems in the lossless or lossy case, for
the combined time-discretization framework;

The analysis and proof of the main characteristic properties of PCH systems in the
lossless or lossy case, for the selected symplectic discretization schemes;

The introduction of a difference PCH model between two PCH systems, which is
proved to conserve the main properties;

The adoption of a discretization error Hamiltonian model, as a difference between the
continuous-time and discrete-time PCH systems, for a description using the power
energies corresponding to the ports;

The development of a simulation software (Labwindows environment) for the analysis
and simulation of the selected symplectic time-discretization schemes;

The general formulation of matrix 1/0 equations for the selected symplectic time-
discretization schemes;

The introduction of orthogonal or oblique projections for the selected symplectic
time-discretization schemes;

The selection of appropriate classic or new subspace identification algorithms, for
PCH systems;

The simulation of the selected identification algorithms, using one symplectic time-
discretization scheme, which is similar to the classic approach.
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Main perspectives

» The development of improved real-time identification and control applications using
the new PCH modelling and control approach for complex dynamic systems;

» The development of new (specific) system identification theory and algorithms using
the power energy approach, introduced in chapter 2;

» The development of real-time test platforms in the laboratory, to test the proposed
identification and control theory and algorithms;

» The possibility to analyse for identification and control purpose, the PCH systems not
only in continuous-time but also in discrete-time, using the proposed symplectic time-
discretization schemes;

» The development of other appropriate symplectic time-discretization schemes for PCH
systems using more general and complex discretization rules, like Runge-Kutta or
collocation methods;

» The possibility to develop specific identification algorithms, corresponding to each
symplectic time-discretization scheme proposed in the thesis;

» The development of high-quality software modules for time-discretization of PCH
systems, using symplectic discretization schemes;

» The development of performant software modules for the real-time identification and
control of PCH systems using the proposed algorithms;

» The introduction and use of the proposed identification and control techniques or
algorithms in an industrial environment.
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Appendix A: OBSERVABLE CANONICAL FORM REPRESENTATION OF
PCH SYSTEMS

A.l. LOSSLESS PCH SYSTEMS

For the lossless PCH systems from (2.3), it is known, that ¢ =BT @ and in this case, (2.9)
becomes:
-1

( _
ITobs QT obs ! obs Qobs
T -1

J| B QT obs Cobs (A1)

| _oT

[Cobs B Bobs Qobs
Replacing Bobs = Tobs B from (2.7) in (A.1), we get:

( -1 _

T obs QT obs ~ Y obs Qobs

T -1 T

J|B QT obs (Tobs B) Qobs (A'Z)

| - T

[Cobs _(Tobs B) Qobs
Developing further the 2" relation in (A.2), we get:

T e -1 T T
B QT obs B Tobs Qobs (A'3)
Multiplying with the right pseudo-inverse T; Tg of B in (A.3), the following relation is
obtained:
-1 T
QT obs ~ Tobs Qobs (A'4)

In the above relation, T is a psedo-inverse matrix Tg eR M- which satisfies:

BT g = | (A.5)

Multiplying to the left with the pseudo-inverse To‘T of T

T . . .
bs ops ' N (A.4), the following form is

obtained for the o obs matrix:

1T ar -1
Qobs B Tobs QT obs (A.6)
Replacing the value of @ ops TrOm (A.6) in the 1% relation of (A.2), it results:
-1 T e -1
Tobs QT obs ~ J obs  obs QT obs (A'7)
It can be observed, that we can multiply to the right with 7, @ * o1 and TOTbS , and
J becomes then:
obs
_ T
obs Tobs T obs (A-8)
Using matrix transpose properties, we compute Q st as follows:
Ql =1 TqoTr 1 (A.9)

obs obs obs

183



Using the property @ = QT of a PCH system, (A.9) becomes:
! =7 Torl (A.10)

obs ~ obs obs

From (A.6) and (A.10), it can be observed that Qops = ngs . Because q is positive semi-

definite @ = " > 0 for a PCH system, it results that for all real vectors x < R" , the following
relation x" Qx >0 is also satisfied. From (A.10), we observe that the matrix Q be is also a
positive semi-definite matrix, as it is composed of positive semi-definite elements, given by
the column elements of TO_;S. We conclude, that for the Q bs matrix from (A.6), the
following relation holds:

T
Qobs - Qobs =0 (A11)
Using (A.8) together with matrix transpose properties, the matrix transpose of J obs IS:
T T
T T T T
Yobs = (Tobs IT obs ] - [Tobs ) <Tobs ‘]> (A.12)
The above relation, can be equivalently written as:
T _ T, T
‘]obs _Tobs J Tobs (A-13)
Using the property 3 = -3 T of a PCH system, (A.13) becomes:
T T
Jobs = ~Tobs T obs (A.14)
From (A.8) and (A.14), it results that J s = —ngs . Using (A.1) and (A.6), we prove the
following relation:
T -1
Cobs - Bobs Qobs =CT obs (A.15)
Using (2.6) and (A.6), the above relation can be also expressed as:
T -T o -1
Cobs - (Tobs B) Tobs QT obs (A'16)
(A.16) can be written further as:
_mT T T p -1
Cobs =B Tobs Tobs QT obs (A-17)

After possible simplifications, the final result of c obs is:

T A -1
Cops =B QT ops (A.18)
From (A.18) and (A.1), it results:
-1 T
Cobs =CT obs Bobs Qobs. (A.19)

Using (A.6), (A.8), (A.11), (A.14) and (A.19), the observable canonical-form from (2.8):

Jxobs - ‘]obs Qobs Xobs * Bobs. u (A 20)

Ly - Cobs Xobs

is also a PCH system, where the PCH systems parameters satisfy:
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( _ T T

\ J obs J obs Tobs ol obs

J AT T -1

‘Q obs Q obs Tobs QT obs (A'Zl)
\ _ T _ T -1

[C obs ~ Pobs Qobs =B QT ops

This end the proof of (2.10).

A.2 LOSSY PCH SYSTEMS

For the lossy case, replacing Bobs = Tobs B from (2.12) in the 2" relation from (2.14), the

following relation can be written:

T -1 T
B QT obs (Tobs B) Qobs (A'22)
(A.22) can be further expressed as:
T a7 -1 T T
B QT obs ~ B Tobs Qobs (A.23)

In order to find the pseudo-inverse of B , a matrix T, « R™" exists, for which the following

B
relation holds:

BT 5 = | (A.24)
where 1 < R™" represents the identity matrix. Multiplying to the left with Tg in (A.23), we
get:

-1 T
QT obs Tobs Qobs (A.25)

Multypling further to the left with the inverse T of T obs in (A.25), we obtain the

obs
following relation:

-T

Tobs

QT o_bls - Qobs (A.26)

AT T :
Inorder to provethat Q = =Q - >0, Q iscalculated as follows:

T Ty
Qobs - [Tobs QT obs ]
(A.27)
Using the matrix transpose properties, (A.27) can be expressed also as:
T
T ~T(+-T
Qobs = Tobs [Tobs Q]
(A.28)
(A.28) becomes further:
T _+-TaT,-1
Qobs _Tobs Q Tobs (A.29)

Using the property @ =Q T of a PCH system, (A.29) can be expressed as follows:
T

T Ar -1
Qobs - Tobs QT obs (A'SO)
From (A.26) and (A.30), it can be observed that:
T T A -1
Qobs - Qobs - Tobs QT obs (A'Sl)
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It is known, that @ is a positive semi-definite matrix, which means also, that for every vector
x e R", the following relation holds:

xT Qx >0 (A.32)
Using (A.32), it can be observed that qQ obs in (A.31) is also formed by positive semi-definite

elements, generated with the column elements of To_bi , together with the @ matrix. The
following relation results then:
-qQ! >0 (A.33)

obs obs

Q

The matrices 3, and Rops  CaN be calculated, using the 1% relation from (2.14), where

bs bs
Q e is replaced from (A.31), as follows:

-1 -T -1
obs ~ <J obs ~ Robs }robs QT obs (A.34)

In (A.34), it can be seen that a multiplication can be realized to the right with Tops + @ ~1 and

Tobs (J -R)QT

TOTbS and the relation becomes:
T
T obs (- |:a)Tobs - (‘] obs ~ Robs ) (A.35)
(A.35) can be also expressed as follows, on the left part:
T T _
obs T obs " Tobs ' obs ~ Yobs ~ Nobs (A.36)
From (A.36), it can be seen that the relation holds for:
( T
JTobs T obs J obs (A.37)
T
{Robs - Tobs RT obs
Using (A.37), J gbs is computed as follows:
T T
) obs (Tobs T obs ] (A.38)
From matrix transpose properties, (A.38) becomes:
T T
J obs Tobs (Tobs J) (A'39)
(A.39) can be equivalently written as:
T T, T
‘]obs :Tobs J Tobs (A'4O)
Using the property 3 = -3 7 of a PCH system from (2.11), (A.40) can be expressed as:
T _ T
Jobs = Tobs o obs (A.41)
From (A.37) and (A.41), it results that:
_ T T
Jobs = "Jobs = Tobs 7 obs (A.42)
Using (A.37), the value of R;)rbs , becomes:
T

RT 71 ] (A.43)

obs [Tobs R obs
From matrix transpose properties, the following relation is obtained from (A.43):
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T \T
Robs - Tobs (T obs R) (A'44)

which can be expressed also as follows:
RT -1 RTTT (A.45)

obs obs obs

Using the property R = R' of a PCH system, (A.45) becomes:

T -~ T
Robs - Tobs RT obs (A'46)
From (A.37) and (A.46), we observe that:
T _ T
Robs - Robs - Tobs RT obs (A'47)

It is known that r is positive semi-definite, which means that for every vector xe R" , the
following relation is satisfied:

xT Rx 20 (A.48)
In (A.47) it can be observed, that R ps is formed by semi-positive elements, given by the
columns of TOTbS . Using (A.47) and (A.48), the matrix R,
it can be concluded that:

bs 1S also positive semi-definite and

ST
Rops = Rops 20 (A.49)
In order to prove that c ) —ct 71 for the observable canonical form of the
obs obs ~ obs obs

T 47 -1
PCH system from (2.11), we replace Bobs = Tobs B from (2.12) and Qs = Tobs 2T ons

from (A31)inc = andit results:

bs
T -T qr -1
Cobs = (Tobs B) Tobs 9T obs (A.50)
(A.50) becomes further:
_pl T -T -1
Cobs =B Tobs Tobs QT obs (A51)

After performing all the simplifications in (A.51), the relation becomes:

T A -1
Cops =B QT ¢ (A.52)
Using (2.12), (2.14) and (A.52), it can be observed that:
-1 T -1 T
Cobs =cT obs B QT obs ~ Bobs Qobs (A'53)

From (2.12), (2.13), (2.14), (A.31), (A.33), (A.37), (A.42), (A.49) and (A.53), is results that
the observable canonical form representation from (2.12) of the initial PCH system from
(2.10), is also a PCH system which conserves the basic properties. The general form of this
state-space system is:

jxobs - (J obs ~ Robs )Qobs Xobs * Bobs Y (A.54)

[y - Cobs Xobs

For the lossy PCH system from (A.54), the following relations hold then:
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T -1

( AT -

|Qobs _Qobs _Tobs QT obs = 0

J _ 4T _ T

IJ obs Jobs a Tobs I obs (A'SS)
|LR R -7 RTT >0

obs obs obs obs

which represent also the result from (2.15).

Appendix B: STRUCTURAL IDENTIFIABILITY OF PCH SYSTEMS

B1.OBSERVABILITY/ CONTROLABILITY ANALYSIS

B.1.1 LOSSLESS PCH SYSTEMS

For the observability/controllability based structural identifiability test, replacing
-1

B T B,and A, =T AT from (2.7), in the lossless case, (2.16) becomes:
obs obs obs obs obs
r 1 1" 1 B.1
RID :|LTobs B Tobs AT obs Tobs B [Tobs AT obs j Tobs BJ ( ’ )

In the following lines, a general form will be found for the term A(‘:bs from (B.1). For the

2

term A% , the following relation can be written:

obs
2 _ -1 -1
Aobs - Tobs AT obs Tobs AT obs (B'Z)
which becomes after simplification:
2 _ 2- -1
Aobs _Tobs A Tobs (B'3)

For the term Agbs , We obtain the following form using (B.3):

3 _ 2. -1 -1
Aobs B Tobs A Tobs Tobs ATobs (B.4)
which becomes after simplification:
3 3; -1
Ats = Tabs A Tops (B.5)

From (B.1), (B.3) and (B.5), the following general relation:

kK ko -1
obs _Tobs A Tobs (B'G)

. - Replacing the result from (B.6) in (B.1), the

A

can be deduced for a k power of A

identifiability matrix r 5 becomes:

D
0 -1 n-1, -1 1
Rip = LTobs B Tobs AT obs Tobs B Tobs A Tobs Tobs BJ (B.7)
Equivalently, (B.7) becomes:
I n-1n1
Rip = LTObs B Tops B T A BJ (B.8)

The above relation, can be also expressed as:
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[ n-1,1
Rib = Tops LB AB .. A BJ (B.9)

The transformation matrix T obs from (2.5), can be also expressed as follows:

BT

O

w
- -
o O
> >

Tobs

us]

(B.10)

]
|
|
|
|
|
|

BTQA n—1i
L J

The first 4 elements of the transformation matrix T ops + CAN be also expressed as follows:

[
}
|
\
=
\
E
|
\

bs

{c -8TQ
ICA = -(AB )T Q
| T
B.11
1CA2=(—1)2[AZBJ Q (B8.11)
|
|
(

using the PCH systems and matrix transpose properties.
From (B.11), the following relation can be deduced:

.
CAk_lz(—l)k_l[Ak_lB] Q (B.12)

for the elements of the transformation matrix L with k >1. Using (B.12), the expression
of the identifiability matrix from (B.9) becomes:

|
I T |
|- (AB) Q Ir 1.1
Rib :I HB AB .. A" BJ (B.13)
| T |
| . n-1 n-1 ‘
L( 1) [A B] QJ
Using the property @ =o' of PCH systems, (B.13) can be written as follows
|
\ T T |
—Ae ) Q Ir 151
Rib :} HB AB A" BJ (B.14)
\
| (-
L
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The above relation becomes:

[B AB .. An_lB} (B.15)
n-1 n-1 T

-1 AN"'B

NG

which represent also the relation (2.17). Using Proposition 2.1, if the lossless PCH system

from (2.3) is observable, the following two relations:

rank [B ~AB .. (71)”_1A”*18}=n (B.16)

) |
}
\
\
\
\

rank[B AB .. A”‘ls} (B.17)

hold for the elements of the identifiability matrix in (2.17). Using the properties of the matrix
determinant, the following relation:

det R, =det (R, R, ) (B.18)

D 172
can be written, for the determinant of the identifiability matrix r j from (B.15), where the

following notations:

R {B ~AB .. (71)”_1A”*18} (B.19)

R :[B AB .. A“‘ls} (B.20)

were introduced. Using the following property of the determinant det (AB )= det Adet B,
(B.18) is equivalent to:
(B.21)

is full

det RID = det Q det R1 det R2

The above determinant is different from 0, which means the identifiability matrix r

rank and the system controllable, for det Q = 0, det R, = 0 and det R, = 0.

B.1.2 LOSSY PCH-SYSTEMS

For the lossy case of PCH systems, an equivalent form of (2.18), can be obtained by

searching for a general form of the term A(l)(bs . Computing the term Asbs using (2.14), the

following relation is obtained:

2 -1 -1
Aobs = Tobs (I -R)QT obs ' obs (I -RQT obs (B.22)
After the possible simplifications in (B.22), the relation becomes:
2 2 -1
Aobs = Tobs (G -RR) T obs (B.23)
The next term Ag’bs can be written as:
3 -1 2_-1
Acbs = Tabs (3 =RIQT s Tops (O -RIQ)TT o (B.24)

After the possible simplifications in (B.24), it results:
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3 3.-1
b = Tobs (B =RR)T (B.25)
Using (B.23) and (B.25), the following general relation:
k k-1
Asbs = Tobs (G -RRQ)"T (B.26)

k

can be deduced for the term AObs

(2.18), we get:

with «k > 1. Replacing the result of A(')‘bs from (B.26) in

[ n-1,1
Rio =T ops LB AB .. A BJ (B.27)

where A= (3 -R)Q from (2.11). In the next lines an equivalent form will be found, for the

observable transformation matrix T obs from (2.5) in the lossy case. The 1% two elements of

, can be written as follows:
Q=(@B) (B.28)
C:CA:BTQTH—JT—RTJQJ (B.29)

the transformation matrix T obs

C=8B

using the PCH systems properties. Introducing the notations Aloss = @ and A = RQ with
the matrix transpose properties, (B.29) becomes:
T (_ A — Ares )T Q (B.30)

CA =B
loss

Using the property @ =@ " of a PCH system together with matrix transpose properties, (B.30)
can be also expressed as follows:

CA = (1) QA + Ares B) (B.31)

A
loss

The next term ca 2 from the transformation matrix T ops has the following form:

bs

ca?2-(-1teT (Ags * Ares QU -RrRQ (B.32)

which becomes further:
2

cAa?-(-1)?8T ((AIOSS T+ Ares ' J Q (B.33)

using the properties of PCH systems and matrix transpose. Using (B.33), ca 3 becomes
further:

2
cad=(-1)?8T [(AIOSS ¥ Ares )| J QU -R)IQ (B.34)

From PCH systems and matrix transpose properties, the above relation can be equivalently in
the following form:

+ Ares ! ] 0 (B.35)
From (B.30), (B.33) and (B.35), the following general form can be deduced for the term ca ¥
, With k >1:

k
t Ares || } 0 (B.36)

Using matrix transpose properties, the following relation can be easily deduced:

k kKT
cak-(-1)s ((Aloss
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{(Aloss +Ares )| J = UAloss + Ares )k J (B.37)
In this case, (B.36) becomes:
T
ca k- (_1)k gT {(Aloss + Ares ) j (B.38)
The corresponding transformation matrix T ops @ CaN be written then:
8o |
\ |
\ B' (_1)1(Aloss + Ares ) Q |
Tops = } I (B.39)
| ) T |
‘LBT (—1)n_1{<A|OSS + Ares ) j Q|
Using PCH systems properties, (B.39) can be also expressed as follows:
|
| \
8" (—1)1(A|oss +hAres ) QT |
Tops = I } (B.40)
| ) y T \
BT hg A [ QT
Another expression for (B.40) is:
(18 ) ]
| |
(-1t (an)B) |
Tobs = I I (B.41)
| T n-1 k T T |
|LB (-1) {(Aloss + Ares ) j Q J
This represents the result from (2.19), where the following notations were introduced:
(A - JQ
loss
Ares = RQ (B.42)
|[A" = (Aloss + Ares )
For the identifiability matrix in (2.21) to be full rank and the pair (Aobs B s ) controllable
for lossy PCH systems, the following matrix notations are introduced:
R =Q (B.43)
[ .\0 1 n-1( y,n-1,)1
R, =1(-1)"B (-1 (A"B) .. (-1 A" 7B B.44
o= |18 U)o 1) [ ) | (B.44)
R3={B AB .. A”fls} (B.45)
The identifiability matrix r , from (2.21), becomes then:
Rip = RiR,Ry (B.46)
Using the determinant properties, we can write the following relation:
det (R D )= det (Rl)det (R2 )det (Rg) (B.47)
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Then the identifiability matrix r is full rank and the system controllable, when det R, =0,

ID

det R, »0and det R 3% 0 .Using the expression of A, Aoss and A" matrices from (2.11) and
(B.42), the following relation can be written:
A=2A — A" (B.48)

loss
The identifiability matrix R b from (2.21), becomes also:
0 1
-1)"B
! ]
Rib =Q[(—1)OB 1t(arB) .. (_1)n—1[Ann—1BJ1

(B.49)
,,)n -1 _1

°]

8 LA, —AB . A -

B.2 DIRECT IDENTIFIABILITY

B.2.1 LOSSLESS PCH SYSTEMS

For the direct structural identifiability test applied to a lossless PCH system, the following
relations can be written using (2.24) and (2.25):

((9Q )0y 1 X+ B0 g b= (0Q )0y , K+ B0, , b

B.50
(570 o k(o2 ouc o o
(B.50) can be further expressed as:
(000 1 )= (0000 5 = (Blo g 5 ) B0,
(B.51)

YiaT T

{[[B Q](GHC 1)_[8 Q](QHC 2)}‘ =0
From (B.51), we observe that the relations hold (for every admissible input v and generated
states x ), only if:

l[ JQ 101 5 )
Jl PNETN 52
(o7 Qj< ch 570 oy )
Solving the above system of equations, the following relations:
(HHA 17 %4A 2
J|9H|31 =%4B 2 (B.53)
%He 1= %He 2
need to be satisfied between the unknown parameters o, .60 . ,.6,,, and
Orn2 %8 2 %hc 2 in order to have identifiable parameters ¢, .0 . 0 He - This

represents also the result from (2.26).
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B.2.2 LOSSY PCH SYSTEMS

For the lossy Port-Controlled-Hamiltonian systems, the following relations can be written
using the direct identifiability test:

(0 -RIRQNO %)+ BO g (1 = (3 -RIQNOy , +BIO g , 1

(B.54)
{[BT QJ(QHC 15 (BT QJ(QHC 2
The above relation, can be also written as:
|[((J ~RIQIO -0 -RIRIO Ly, I+ (Bl g, )-BlO g, =0
(B.55)

I(B QJ( HC 1)‘(BTQ](6’HC 2)]x= 0

by moving the right elements to the left. From (B.55), it can be seen that the relations hold
for:

(
((G-R) HAl)Z((J_R)Q)<9HA2)
LIS (®:56)
| T
(e7a)0 HC1> (270 oy )
Solving the system of equations from (B.56), the following relations:
JQHAl Oha 2
|9HB 17 %8 2 (B.57)
1PHe 1= PHe 2
need to be satisfied, between the unknown parameters o, ,.0,.,.6,., and
a2 %8 2% He 2 in order to have identifiable parameters ¢, .6 Opc <O This
represents the result from (2.28).
B3.POWER SERIES EXPANSION IDENTIFIABILITY
B.3.1 LOSSLESS PCH SYSTEMS
For the power series expansion identifiability test, the first term in (2.29) is:
aglty)=Clo,c Kb, (B.58)
The 2" term in (2.29) is:
al(to): C(HHC )x(to) (B.59)
Replacing x(t, )= Alo ,, xlt, )+ B0,z b from (2.23)in (B.59), we get:
a,lty)=cloye Nal, K, )+ Blo,g M) (B.60)
Replacing c(o,,. )= 8" Q in (B.60) using the PCH systems properties, it results:
al(to):[BTQj(HHC Al +BlO0 g b (B.61)
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Using (B.61), the 3 element of the power series from (2.23), a,lt, )is:

a,lty)=a,lt,)=clo . Al k+Blo,5 b) (B.62)
Developing further (B.62), the relation becomes:
a,lty)=cloye Nal,, Nalo, k+Blog b)+Blo 5 ki) (B.63)

The 4™ element of the power series, a, (to Jfrom (2.29), has the following form:

ayly )=l { Ll )} (B.64)
Using (B.63),(B.64) becomes:
a,lt, )= [BTQj(eHC Jalo )(A(GHA. Jx+ 8O, 5 M BlO,g (B.65)
Computing further the 4™ element of the power-series expansion from (B.65), it becomes:
a,lt, )= [BT QJ(@HC {AZ(HHA Jx+ Al . JBlOg ki+vBlOg )uj (B.66)
Using (2.23) in (B.66), it results:
3., x+AaZl0,, Bl b+
a lt )=[BTqll A0 HA 7= THB (B.67)
stol= (370 e )[ Ay B0 g N+ Bl g b

The 5™ element of the power-series expansion, has the following form:
4
ayfio)-clo,e [x g, (8.68)
\ )
Developing (B.68) using (B.67), it results:
3 a2 :
Aoy BlOLg ki Bl g ki
Replacing the 1% derivate of the states, x from (2.23), (B.69) becomes:
4 3 2 ,
b )- [BT Q](‘ch Ao p I+ A%, B b+ AZle,, Bl N+ |
+ AL, BlOg Ki+Blog I

(B.70)
Using (B.58),(B.61),(B.63), (B.67) and (B.70), a general form of the power series from (2.29)
can be deduced, in the lossless case of PCH systems:
k-1
K ]

ak(to):(BTQ](HHC {AK(QHA o+ AK o, Blo g b+ v A%l B, )u( |

(B.71)
Developing further the right part of (B.71), the following relation results:
k-1 . k-1-i
ak(to):(BTQJ(HHC fAk(aHA )x+_zOA'(aHA BO, g )u[ )] (B.72)
\ = )

th

k—1—i
In the above equation, the term u[ ) represents the the (k -1-i)" order derivate of the

k-1-i
input signal u . When (k -1-i)=0, the term u[ ) from (B.72) is u . Replacing the matrix
Alo, Jwith 3o inthe lossless case, it results:
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2, ltg )= EBT Q](QHC ﬁ(JQ (6 I+ kz_l
| z

- k-1-i
10 ) 0 Rl T @73
0 )
which is equivalent to (2.30). In order to express in a different way (B.73), the term Qa ¥,

will be written in a general form for k >1. For k =1, the following relation can be written for
a lossless PCH system:

oA =-ATQ (B.74)
using the PCH systems properties. For k = 2, the following relation results:
2 _ T( LT T( T B.75
QA [(Q [ J MQ ( J ]]Q] (B.75)
(B.75) can be equivalently written as follows:
ea? =17 () (1) Q (B.76)
Replacing A = JQ , in the lossless case, it results:
2
a?=(1?[aT ) @ (B.77)
For k =3, the term QA ¥ can be written in the following form:
A3 =Q(IQ )3Q J3Q ) (B.78)
(B.78) can be also expressed as follows:
QA% = (@1 )@ @ ) (B.79)
Using PCH systems properties, (B.79) becomes:
3 T T T T T T
A ° = -J -J -J B.80
o[ (37 Jfor (7)o 57 ) @
which is equivalent to:
3
a®=(1°(aT ] o (B.81)

Using the results from (B.74), (B.77) and (B.81), a general form can
be deduced for ga K :

Qa K - (—1)k(ATj Q (B.82)

Using (B.82), (B.72) becomes:

k-1
k

a ty)=8T00 4 {(—1) AT (o, Jox + P
The unknown parameters of a lossless PCH system, are contained in the matrices Q and B ,

and the dimensions of the unknown parameter space 0, for Q and B matrices, are the

(ATl ) 02l b T aY)
0 )

following:

[

| -

"oQ > (B.84)
| _

[nHB = nm

From (B.84), the total number of unknown parameters of a lossless PCH system results
directly:
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n,, =n,. +n (B.85)

B.3.2 LOSSY PCH SYSTEMS

In the lossy case of PCH systems, the expression from (2.32), can be further rewritten in an

equivalent form, by computing the terms QA ¥ in a general form. For k =1, QA K becomes as
follows:

QA =—[QTJT—QTRTJQ (B.86)
using the PCH systems properties. (B.86) can be also written as:
or =-((10) ~(Ra)" Jo (B.87)

For an easier representation of (B.87), the following notations can be used:
( def

A = 10
0ss (B.88)
| def
|Ares = RQ
where A ceR™ and Ap. e R™" correspond to the lossless respectively resistive
res

loss
matrices, that compose the matrix A< R™" | which defines a lossy PCH system. Using the
notations from (B.88), (B.87) becomes:

QA = ((A,OSS J' s (Ares )T }Q (B.89)
(B.89) can be further written as:
QA = (1)t (A e * Ares " (B.90)
The next term of QA ¥ for k = 2, has the form:
QA% =QI -RR(I -RIQ (B.91)
Using the PCH systems properties, (B.91) can be expressed as follows:
QAZ:QT[—JT—RT]QT[—JT—RTjQ (B.92)
Using (B.88), (B.92) can be written as:
Qa2 - (—1)2(AIT(;SS + A s ]ZQ (B.93)
For « - 3, the term Qa K has the following form:
A% =QU-RRU-RRE-RK (B.94)
(B.94) can be expressed as:
QA3:QT[—JT—RTJQT(—JT—RT]QT[—JT—RTJQ (B.95)
using the PCH systems properties. Using (B.88), (B.95) becomes:
a3 - (- 1)3[AI)SS AL ]SQ (B.96)

Using (B.90), (B.93), (B.96), we can deduce the general term for Qa ¥ :
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k
AN =1 [Agy +ARs | @ (B.97)

loss

for the lossy case of PCH systems. Using (B.97), (2.32) becomes:

\
ak(to):BT(eHB )\ k-1 - i
F izo (_l)l((AT - At j(gHA )} QB (045 >J[

(B.98)
k—1—ij

W
|
|
|
|
J

In this case, the unknown parameters, are included in the matrices R R™" , g e R™" and
B <R ™M | The dimensions of the unknown parameters 04 for R, 0 and B matrices are

the following:
|( _ n 2 + N
"R =7
' 2
n +nNn
ngq =" (.99)
In,. =nm
|

From (B.99), the total number of unknown parameters of a lossy PCH system is:
ngH:n9R+n9Q+nHB=[n2+n+nm] (B.100)

For the lossy case of the linear PCH systems, the necessary system of equations that need to
be solved, for the power-series expansion identifiability test, is the following:

I((—l)k [(Aloss + Ares )T (HHA )}k X + )|
algl-8tlog | i .| (8a01)
L+ z (—1)'((AIOSS + Ares || j B (0,5 )u[ ]J

which represents also (2.33).
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Appendix C: STRUCTURAL IDENTIFIABILITY EXAMPLES

C.1 OBSERVABILITY AND CONTROLABILITY ANALYSIS

C.1.1 LOSSLESS PCH SYSTEMS

In the case of the lossless PCH systems, represented by an LC circuit, the matrix terms of the
state-space system, represented in the observable canonical form from (2.6), are the
following:

[ 1 EN
0 1 0 } Ly I
A =10 0 1,8, :}o I‘Cobs L o 0] (C.1)
R G- I B
| (71 2) ] | CLi |
where Aobs * Bops and c ops + WWere computed using (2.10). The transformation matrix L

from (2.5) has the following form, for the LC circuit:

( ) 7

| 0 — 0 |
\ L |
} L 0 0 I (C.2)
T =|- .
obs } L]_C I
|0 - ; L, L. C |
L LZe bt J
The structural identifiability matrix from (2.16), computed for the LC circuit, becomes:
[ 1
e 0
| Cly L, P |
= | A1 | .
i | 0 L2 c2.3 | (C3)
I
00—
|L coLrL, J|
The determinant of this identifiability matrix is:
1
det R ID - T (C4)
coLoL
172
This determinant is different from o , when the following relations are satisfied:
(C # too
Ll # Foo (C5)
‘lLZ # too

which represents also (2.67).
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C.1.2 LOSSY PCH SYSTEMS

In the lossy case of PCH systems, represented by the capacitor microphone circuit described
in section 1.3.7, the observable transformation matrix T, has the following form:

bs
T obs :[Tobsl T obs 2] (C.6)
where:
| |
|0 e 0]
IR
C
T =-— - — 0 (C.7)
obs 1 i m 2 2
|i _ ko 0l
Lmz m2 I'T\3 J

represesents the transformation matrix corresponding to the first input B =0 1 0]" and:

[ 1
oo L
| " c8)
T =0 0 - .
o2 (Re)? | (
oo 1|
I (Re)® |

T
represents the transformation matrix corresponding to the 2™ input B, :{0 0 ﬂ .
From (C.7) and (C.8), it can be observed that the observable transformation matrices

T obs 1 Tobs 2 corresponding to the inputs B, B, are rank defficient and in conclusion, the

system is not observable. In the case of lossy PCH systems, represented by the DC motor, the
matrix elements of the observable canonical form from (2.13) are:

re
‘F 0 1 Tl I
- 1 Rb R b = | \ =
Aobs 7\—T—r _f_\]_l Bobs ] R \’Cobs =L ol, (C.9)
l “7E E E | ey
’ L L™ ]
The observable canonical form transformation matrix is:
= R
L 2
_ | L |
Tobs = I R 1 I (C.10)
L2 L g |
The structural identifiability matrix from (2.21), applied to the DC motor is:
1 R
L 2 c11
"o R 1”7 )
lL IS P Jl

The determinant of the above identifiability matrix, is the following:
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1
R - (€12)

3
LJE

This determinant is different from o , when the following relations are satisfied:

L # o
Jg # %o (C.13)
which represents also the result from (2.69).
C.2 DIRECT IDENTIFIABILITY
C.2.1 LOSSLESS PCH SYSTEMS
For the direct identifiability test applied to the LC circuit, (2.70) becomes further:
I 1 1 1 1|
i 0 - — + |
H b b Lo Lo } rol
|I I R 0 0 IX = I 0 I
c c
11 12
J} A L] (C.14)
[ ——— 0 0
I{ cn Cp |
[T 1 1
o ——-—— o0lx=0
Lt te

by moving the right elements, to the left. From (C.14), we observe that the relations hold
when:

JEE S
IL11 L2
1 1
JC—_C?: 0 (C.15)
I~11
} 1 1
— -0
["21 L 22
Using (C.15), it results:
“‘11 =Ly
J|cll =C,, (C.16)
(La1 = L2

which represents the result from (2.71).
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C.2.2 LOSSY PCH SYSTEMS

For the lossy case represented by a DC motor, from section 1.3.7, the application of the direct
identifiability test, results in the following relations:

1|
| 01
X =1 |
I 10]
J

(C.17)

by moving the right elements to the left in (2.72). We can write then:

( 1 "1 1 1

R
\ ,
J bn b2 Jenn e (C.18)
\

n

1 b b

[uny

(Y2 Y2 e JEn

From the 2" and 3" relation of (C.18), it results that:

J‘]Ell =JEe1 (C.19)
b11 = b2

Using (C.19) in (C.18), we can write then:

R,. =R
J 11 12 (C20)
1by1 =Dy

From (C.19) and (C.20), the following relations result:
JJ e1r Vet Tl (C.21)
[Ry1 = RapPyg =Ppp

which represents also (2.73). This result concludes that the unknown parameters of the DC

motor J ., L,R,be @, are structuraly identifiable for this test.

C.3 POWER SERIES EXPANSION IDENTIFIABILITY

C.3.1 LOSSLESS PCH SYSTEMS

In the lossless case of PCH systems, represented by the LC circuit, the 1% element of the
power series expansion identifiability test, is computed using (2.29) as follows:

aglty)- Ll_l (C.22)

and using (2.74), we conclude that L, =1.Using (2.29), the 2" element of the power series

expansion, can be written as follows:
alty)=8"Qlaxlty )+ Bulty)) (C.23)
Replacing all the known elements in (C.23), the following relation can be written:
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al(to)z—%+2 (C.24)

for the 2" element of the power series expansion. Using (2.29), the 1% derivate of y(t) at
ty=11is y(to )= 1and using also (C.24) and (2.30), the value of the capacity results:

c=1 (C.25)
Using (2.30), the 3" element of the power series expansion results as:

a,lty)= BTQ(Azx(tO)+ ABU (to)] (C.26)
Replacing all the known elements in (C.26), the relation becomes after computations:

az(to):(—1+i)|:0 (C.27)
L b2
Using (2.29), the 2" derivate of y(t) is 0, and from (2.30) and (C.27), the following result:

L, =1 (C.28)

is obtained for L, . Using (2.30), the 4™ element of the power-series expansion has the
following form:

a,lty )= BTQ[A3x<tO)+ A2 Bu (to)j (C.29)
Replacing all the known elements in (C.29), the following relation is obtained:
a,t,)=0 (C.30)
Using (2.29), (2.74) and (C.30), the following result:
aglty)=vlty)=o0 (C.31)

can be calculated. Using (2.30), the 5™ element of the power series expansion, has the
following form:

a,lty)= BTQ[A4x(tO)+ A3Bu (to)j (C.32)
Replacing all the known elements in (C.32), the following relation results:
a,lty)=o0 (C.33)
Using (2.29), (2.74) and (C.33), the following relation:
4)
a,lt,)=y" ', )=0 (C.34)

can be written. From (C.27), (C.31), (C.34), the relation (2.76) is deduced for the power series
expansion identifiability test, applied to the LC circuit.
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Appendix D: Difference between two PCH systems

Appendix D.1 Lossless PCH systems

This appendix proves in detail the basic properties of the difference lossless PCH system
defined between two nonlinear systems ( A and B ) in rapport with the power energies. The
total energy for two lossless PCH systems a and B is conserved and thus, we can write the
following relations:

jPSA *Pea =0

(D.1)
|Psg *Pcg =0
where p., .P., and P, P, represent the power energies corresponding to the storage
and control ports. Using (1.24), we can write:
[ dH
j th = —ega Tsa =%ca fea
(D.2)
dH
t B =—eT f :eT f
at SB 'SB ~ "CB CB

for two lossless PCH systems ( A and B ). The power energies corresponding to the storage

and control ports, for systems a ande , can be written as:
SA egA fsaPea = EEA fea (D.3)
Pss :egB fsg +PcB :egB feB
using flows and efforts. Subtracting both relations in (D.2), it results:
dH,-Hg) 5 . T ¢ _oT T (D.4)

m ~7°sa "sa "%sB 'se “°ca 'ca “%cB 'cB

(P
!

(D.2) can be also written as:

( T

| dHA _(aHA(X )) dXA__eT ;

I dt _L ox A )| dt SA "~ SA

<| (D.5)
dH oH dx

197 B _( B ) B _ T

|L dt _(axB (XB)J dt ®se "sg

using the chain rule differentiation. The explicit form of the two nonlinear lossless PCH
systems ( A and B ), can be written as:
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dx oH

S0l

oX

f
|
I A

Y =B by ),

| A (D.6)
|

|

|

|

|

L

(XA)+ BA(XA)UA

oH

o

B g ) B B g g

dt axB

GHB

(g )

The energy difference for the storage and control ports of systems A and &, can be written
as follows:

Vg =8g lxg) oxg

( [f 1

| T T _ SA

JeSA fsan ~®sp fsg = [ESA ®sB I {_ fog J
(D.7)

T T |HCA |

lteCA fea ~Cs fos =Fca  °cs F{_ e |

The flows fon fsp of systems A and B, can be expressed also as:
dx dx
_ A _ B
{fSA T odt fsg = dt (D.8)

The power energies corresponding to systems a and s, can be written as follows using (D.6)
and (D.8) for the storage port:

(
T (Ha o A ?
}eSA fsa :lkaXA (XA))I _‘]A(XA>5XA (XA)_BA(XA)JAJ
D.9
E 20 )] =g g 128 ) e o | -
e f = X -J 5 X X, |- B (X
\LSBSB axg B | TTB B e e Te e e
Equivalently we can write:
( T T
| 1 (0H , ) oH , (0H , |
IeSA Fsa :_lk ox (XA)} JA(XA)aXA ( A)_IkaXA (XA)j Bl by
D.10
%}T (oHg ) oH (Mg ) o0
ILeSB Tsg T (XB)J ‘]B(XB)aXB (XB)_LGXB (XB)J Bglxg g
The 1% terms in both relations of (D.10) are reduced by skew-symmetry of J Ala g xg)
Then it is straightforward:
( T
| T (GHA w
s Fsa N (XA)} Bl by
| ) (D.11)
oH
IS AT - WS | PSP
ILSBSB ErL iR



For the control port power energies of systems A and B, we can write :
( T

LT T [OH A )

IeCA fea :yA“A:LaXA (XA)j NN

| ) (D.12)
oH

T T B

ILeCB fce =VB's :[aXB <XB)j Bglxghg

Summing up the power energies from (D.11) and (D.12), the power conservation law is
satisfied. At the next step, a lossless PCH system is defined, which has as energy
corresponding to the ports, the difference between the energies of systems a and s . Then the
following relations results for the power energies of the new defined lossless difference PCH
system using (D.7), (D.11) and (D.12):

| (g ) (M ap )
S =TT T T B A
Ips:es s =®sa Tsa ~®se fsB :kaXB (XB)J Bg kg g | ox (XA))I Bl by
L P (e ) e
1Pc =% Tc =°ca feca ~%c fee = 5 (XA)I BA(XA)UA_LaX (XB)J Bglxg g
l LA ) B
(D.13)
with the following notations:
( def def
=T o7 T
Jes - [eSA eSB]T‘fS - [fSA *fSB] (D.14)
| def - def T '
°c = bca ece ] 8 = lfca ~fes

Summing both relations in (D.13), the total power conservation law for the new defined
difference PCH system, is conserved:

P, +P. - (D.15)

For the next step, an explicit form is proposed for the difference lossless PCH system, as
follows:

|[ Fdx 5 1 (aHA(X )w

I;de:f} dt IJJA(XA) 0 WI oy A L(BA(XA) 0 up)
LT _JB(XB)JIaHB Lo ~Bglxg)lug

J s [ oxg (XB)J (D.16)
| oH , '
I_denyAT (BA(XA) 0 )Tl(ax (XA)W

o= |:| B, (x5 )l IoH \

I Ye ) (0 B *B /) (. )

l Loxg B

for which, (D.13) must be satisfied. Using (D.16), the power energies corresponding to the
storage and control ports, can be defined as:
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| T %
_ def - oH oH -
Ips - e_sT fs =i aXA (xp) aXB (XB)H d:t I

L A B J|7 B |
| | dt | (D.17)
e om T NN 0 Tru,]
Pe = ec fo =) (XA) <XB)\‘ - I \
I[ L6xA oxg JL 0 BB(XB)JLUBJ
Using (D.16), (D.17) becomes:
[ r oH 1
| | ( A (x )W |
LA P N U E e N VN Y
J s s LaxA AT oxg B JIL 0 Ig xB)JIaHB o )} o By [xg))u JI
| [ LaXB BJ J
| . .
[ oH oH
'tgfc:[aX:(XA)] B lxa ki |(5XB<XB)} Bglxghig

(D.18)
Making the possible simplifications in (D.18) due to the skew-symmetry of the 3, (x, ). 3, (x5)
matrices, it results:

P () (g )

}Ps =eg fg = ox , (XA)J BA(XA>JA+L5XB (XB)) Bglxghg

4 (D.19)
o () (e, )

Pc =% Tc =15 (XA)\ BA(XA)JA_IaX <XB)J Bg g hig

\ A ) L7"B

( (on V' (on V'

_TC T -

}es fs =eg T :_lk 6x: (XA)j BA(XA)“AW(;XBB (XB)J By (kg b

4 (D.20)
TioleTi [May, )WTB oo, el g oy,

fofe e fe T 5, Al Pala AT 5T Pele e

between the difference of the power energies of the ports, for systems a and s and the power
energies for the new defined difference lossless PCH system from (D.16). Using (D.20), we
can also write the power balance relation of the proposed difference PCH system, as follows:

gq fg+el fo =0 (D.21)
or:
Pg + P =0 (D.22)

For the next step, we wish to prove the following definition of a Dirac structure, for the
proposed difference lossless PCH system from (D.16).
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Definition D.1

A Dirac structure on FxF * is a subspace D c FxF *, such that:

) (&]r)-o0
i) dim [TAJ_B = dim F
The first property, is satisfied due to the power-conservation law of the energies given in

(D.21) or (D.22). This property can be also written as follows:

(Eg e Mg 1 ))=0 (D.23)
where the following notations:
def

e = 65,6 ) (D.24)

ALB

def

= (fg ) (D.25)
are introduced for the lossless case. For the second statement of the above definition, an
equivalent characterization of a Dirac structure is given from the total space of flows and

efforts variables FxF *, by introducing a bilinear form <<,>> on the space FxF , as:
def

5 - < (f'a,e-a),[f‘b,e-b}>>;_<aa\f'b>+<ab

with (f_a,ga),(f_b,e?b]e FxF *. The space of flows is defined by F = F_ xF_, while the

fa > (D.26)

space of efforts F * is defined by E_S XE -

proposition for the proposed difference lossless PCH system from (D.16).

For the next step, we wish to prove the following

Proposition D.1

A constant Dirac structure on FxF " isasubspace D , , < FxF  such that:

~ L
D, g=D"ALEB (D.27)

where 1 denotes the orthogonal complement with respect to the bilinear form:

<<, >> .

Proof:

satisfy (D.27). Then for every (f.&)<D, .,

<< (1E)f.8)s= (5]1)+ (811 (D.28)
In the above relation, the flow f and effort & are defined for the proposed difference lossless
PCH system in (D.24) and (D.25). Using (D.28), we can write further:
<(e_s e lfg ie )> (D.29)

Let D, g
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expressing the flows and efforts of each port. By the non-degeneracy of the bilinear form
<<, >> .

dim D - ALB = dim [FXF ] dim 5 =2dim F —dm D (D.30)
ALB
D

—dim F . We also assume that b is a Dirac

Using (D.27), it results that dim ALB ALB

structure, satisfying the properties i) and ii) of Definition D.1. Let (f 2 &2 )[ £b ,e_b] be any

flow and effort vectors contained in EMB. Using the linearity property, we can write:
[f_a L fP g gh J €D, g - Using property i) of Definition D.1:
O:<e7a +eblray f_b>:<e_a‘f_b>+<e_b f_a>+

+<€a\{a>+<e‘b‘€b>: <e_a‘f_b>+<e_b f'a>
Due to the property i) of the Definition D.1:
<€a‘f_a>:<e_b‘f_b>=0 (D.32)
Using (D.24) and (D.25), (D.32) can be written as:
(e e e i) )

This implies also that D =D - aLB. Using the 2" property of Definition D.1 and

(D.31)

ALB

dim DL ALB =2dim F —dim EALB,itfoIIowsthat:

dim D, o =dm DT o (D.34)

yielding that D - D aLB . For the difference lossless PCH system proposed in (D.16),

ALB
between two systems (A and B ) in rapport with the power energies, the following notation is
introduced for the skew-symmetric matrix of the new defined system:

_ def (3 (x,) 0 )
J kK, o)=1 A"A (D.35)
ALB 'Y ALB L 0 _JB<XB))|
Next we check the skew-symmetry property of J ALB (x ALB ) matrix and we can write:
T
;T AJ_B(;AJ_B):(JA(XA) N 1 (D.36)
0 -3 (kg )J
Using the skew-symmetry of the 4 , (x , Jand J 5 (x; ) matrices, (D.36) becomes:
_ 3, x,) o )
N C ~2ala (D.37)
ALB 'Y ALB |\ 0 J B (X B ))

From (D.35) and (D.37), it results also the skew-symmetry of 4, _(x, o):

209



; iT (alkal o0 } (D.38)

)? = - X
ALB(AJ_B) AJ_B(ALB) o ~3g kg

Further we introduce the notation:

T (Q by

o
J——

QuipXaig) = (D.39)
ALB\ALB l\ 0 QB<XB))|
for which we compute the matrix transpose and we obtain:
T
_ 0
QTAJ_B(;AJ_B)=(QA<XB) ; ) (D.40)
L 0 Qg (xg )J
From the positive definiteness of the @ , (x , J @ (x5 ) matrices, we can write also:
= - ST (- (R xp) o0 |
QAJ_B(XAJ_B):QAJ_B(XAJ_B)ZI 0 Q. (x )IZO (D.41)
( BYB/)
In the above relations, the following notation has been adopted for the states:
_ def (XA )
X = (D.42)
ALB LXB J
inputs:
_ def (u A )
u - (D.43)
ALB L“ 5 J
matrix inputs:
_ def (B (x ) 0 )
B X = ATA (D.44)
AJ_B(AJ_B) lk 0 ‘BB<XBU
and outputs:
_ def (yA)
Yalg :LYBJ (D.45)

for the difference lossless PCH system, from (D.16). The difference lossless PCH system of
systems A and B, can be defined in explicit form as follows:
[ def _
Ix = 3

=

oH _

- ALB (- - —
AJ_B(XAJ_B)gx (XAJ_B)+BAJ_B(XAJ_B)LJAJ_B

ALB (D46)

| Sl Mais (o

Yare = BAJ_B<XAJ_B)5XAJ_B NS

<]

The implicit form of the proposed difference lossless PCH system, is defined as:

(fs egofo e Je Dals
Equivalently (D.47) can be written as:

( o aHAJ_B _

| T XALB 5y (XAJ_B)‘UAJ_B’yAJ_BleDAJ_B
k ALB )

(D.47)

(D.48)

As the basic properties of lossless PCH systems, are validated also for the proposed lossless
difference PCH system, of system a and s , the proof of Definition 4.1 ends.
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Appendix D.2 Lossy PCH systems

Similar to the lossless case, this appendix is reserved to the proof of the basic properties
which describe a lossy PCH system for the proposed difference PCH system of two systems
( Aand B ). Due to the power energy conservation law of systems A and B , we can write:

P +P + P =0
j SA CA RA (D.49)

(Pse *Pcg *Pre =0

where p P and Peg +P P represent the power energies corresponding to

SA ’PCA " RA CB ' RB
the storage, control and dissipation ports of systems aand B . Using (1.24) for systems A
and B, we can write for the energy (Hamiltonian):

(dH
J th :_egA fsa :‘%A fea +era ra (D.50)
|dH g T T T |
"ot~ °se fse “°cs fcs *°re s
Using flows and efforts, the power port energies from (D.49), can be defined as follows:
( def T def - def T
JPSA = ®safsa'Pca = %cafea'Pra = ®ra TR (D.51)
‘ def T def T def T
[Pse = ®s fse'Pce = °ce fce 'Pre = ®rB 'rB
Subtracting both relations from (D.50), we can write:
dH , -H . )
A B/ T T T T T T
dt = ~®sa Tsa "% fsg =ca fca ~©ca Tce *°ra TRA “°rB TRB (D.52)
(D.50), can also be written as:
( T
jdH o (OH , |, T
ot | ox bea ) o %A s
\ {77 A )
4‘ . (D.53)
}dH B :(aHB (Xgﬂ dx o :7% 3
B SB
L dt kaXB ) dt
using the chain rule differentiation. The explicit form of the two lossy PCH systems
( Aand B), can be written as follows:
[ dx oH
A A
} at :(JA(XA>_RA(XA>)6XA (XA)+BA(XA)“A
\
\ oH
}yA = BL(XA)@X A (XA)
; A (D.54)
| dx g oH
} at :(JB(XB)_RB(XB))aXB (XB)+BB(XBLB
\
oH
| _aT B
‘LyB - BB (XB ) 5XB (XB)

The difference between the power energies of the storage, control and dissipation ports, can
be expressed using the relations:

211



[f
®ia fsa o8 Tss =Fsa s SfA |
-~ ss |

(
|
|
[f |
T CA
JeCA fea ~°Cs 'os =Fca  °cs Fl_f | (D-55)
| [~ fes |
| [f i
o7 RA
'f 7a Tra ~¢Re Tre = Fra eRBFL_f J
The flows f¢, . f . , corresponding to the systems A and B, can be written as:
dx dx
A B
ijA:—— fog = - (D.56)

| dt ' SB dt

Using (D.54) and (D.56), the power energies corresponding to the storage port of systems A
and B, result as:

T N LY I n
IPSA:eSAfSAZIaX (XA)\ \(_‘]A(XA)_RA(XA))aX (XA)_BA(XA)JAI
| T (Mg ) Hg |
1Pse =°sa TsB "o, (XB)J L‘(JB(XB)‘RB(XB))(;XB (XB)‘BB(XB)“BJ
(D.57) can be written further as:
T (o, ) faH Al (o) )(aH Al )
Psa =%sa fsa =71 5 (XA)I I alca ox <XA)|+| ox (XA)\ Ralxa ox (XA)I_
L7 A ) L77A J U7TA J L7 A )
(oM, V'
Iax (XA)j BA(XA)“A

= | |
e

(D.58)
Remark: From the skew-symmetry of the o ,(x,) and J(x,) matrices, the terms
T T
(aHA( )w faHA w (aHB j oH g )
X 3, (x (x, ) and (xq )l 3, (x (x5 )l are zero.
LaxA A)' A A\axA A)' oxg BJ B BkaXB BJ

(D.58) becomes then:
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( oH oH oH

IPSA egA Fsa (aXA(XAﬂ RA(XAiaxA(XAﬂ_(aXA(XAﬂ NN A

4| LA ) LA ) LA ) (D.59)
T T

PSR PR (.- W RS {6”B(x (e ) e g

Tse T s T oy ve ) e Te | o e T o )] Tete e

The difference between the storage port power energies of systems A and B, is given as
follows:

~T 7 T T [OH A ) faHA \
s Ts =®sa fsa ~%se TsB = | o (XA)I R X g ax (XA)\_
A ) L77A )
(on ) oH | [oH )
- B (x, ) R(x{ B (x. )I- Alx )l B, (x, b, + (D.60)
oxg B TBUB g BT ok, TAT TaTAlA
T
(6HB< )w
+ X B (x )J
ox, B "BlBlB
In the above relation, the notations:
- def
e :[eSA eSB]T (D.61)
- def [f |
_ | SA (D.62)

have been adoped for the effort and flow of the storage port difference of systems A and B .
For the control port, the power energies of systems A and B, can be written as:

{ ( oH V'
T T A
|PCA:eCAfCA:|BA(XA)aX Kall ua
l k A ) (D.63)
' oH
T T B
IPCB =¢cs "cs :[BB (XB>axB (XB)J“B
Using matrix transpose properties, (D.63) becomes further:
( T
T [(Ha
Pea =%ca fea 7| 5y (XA)\ INCIN TN

|
|
| LA ) (D.64)
|
|
|

T (e ()
Pee =°ce e ZLax (XB>| B g g
I B
The difference between the power energies of the control port, of systems A and s from

(D.64), can be written as:
T

(-ZFFC:eCAfC/-\ _EZB e :LW:(XA)J BA(XA)JA_LaX <XB)J BB(XB)“B

e

with the following notations adopted:
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def

A (D.66)
~ def [f |
fo =1 A (D.67)
|~ fes |
For the dissipation port, the power energies corresponding to systems a and s are:

( T

\ T (oH , ) f@H A )

}PRA =°ra "RA :_lk ox (XA)j Rl ox, (XA))I

4‘ . (D.68)

oH oH
TR S LW S S Rt W
|"RB ~ °RB 'RB | oxg BJ BBL@XB BJ

The difference between the dissipation port power energies of systems A ands , is then:

(on V' oH | (oH V'
T T T T _ [P A A B
®R 'R =®ra "rRa ~®rB RSB o, (XA)J RA(XA{aXA (XA))ﬁLaXB (XB)J RB(XB{aX
(D.69)
with the notations:
T def
ep = [eRA eRB]T (D.70)
~ def [f 1
foo= 1 RA (D.71)

" ee |
for the efforts and flows. Summing up the power energies for the ports, of systems A and B
in (D.59), (D.64) and (D.68), it results:

(T T T ~
leSA fsa *eca fca *6ra TR =0 (D.72)
eT f +eT f +eT f =0
ese fse *ecB fea *°re 'Re

or:
jPSA *Pca *Pra =0 (D.73)
[PSB+PCB +PRB =0

For the next step, a difference lossy PCH system is defined, which has as power energies of
the ports, the difference between the power energies of systems A and B . Summing up the
power energies associated to the difference lossy PCH system from (D.60), (D.65) and (D.69),
it results:

ed fo+8l fo+8% fo =0 (D.74)
It results that the difference between the power energies of the ports of systems A and B,
also satisfies the power conservation law. An explicit form of the difference lossy PCH

system, is defined as:
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0 )T(axA(A)):
K B(XB)J \LX |
o)

L ox

Further we check if the relations from (D.60), (D.65), (D.69) and (D.74), are also satisfied for
the new defined difference lossy PCH system from (D.75). Computing the storage port power
energy for the new defined system, we can write:

(
|
|
i
MBAXA) Al (D.75)
|
|
|
|
|
|

roT . S B T
T - | oH g a1 A aH g |
s fs =152 (XA) o (XB)” i |7 ax (XA) » (XB)|
| A B B | A B |
S (076
D.7
[ oH 1
i (A(A)_RA(XA))aX:(XA)_BA(XALA
| \
| oH |
|L< B( B)_RB(XB))aXB (XB)J"BB(XB)“B J‘
B
(D.76) becomes further
T T
- oH oH oH oH
=T A A A
es fsz_aXA (XA).JA(XA)aX (XA)+ ox (XA)RA(XA)axA (XA)
T T T
oH oH oH oH oH
A B B B B
- 6XA (XA)BA(XA)"A*’ ox (XB) JB(XB)aX (XB)_ axg (XB)RB(XB)ﬁxB (XB)
T
oH
+ 6)(: (XB)BB(XB)JB
(D.77)
Remark: Due to the skew-symmetry property of J A(x A) and 3, (xB) matrices, the terms
T T
oH oH oH oH
A A B B
o, (xA)JA(xA)aX (x , ) and e (XB)JB(XB)GXB (xg ) equal zero.

(D.77) becomes then:
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. - 0oH oH oH
&g fg = aXA <XA)RA(XA)5X e p)- ax CININEIN TN
; A : (D.78)
oH oH oH
_ B R B B B
ox g XB) B "B ox g XB)+ ox g (XB) B(XB)“B
which is equivalent to:
T T T
N oH oH oH oH
e;— fS:aXA (XA)RA(XA)aXA(XA>_ 6XB (XB)RB(XB)axB (XB>
] A ‘; B B (D.79)
oH oH
o bl S ke B leg b
Comparing the result from (D.60) and (D.79), we can write:
T T
e~ = - 0H oH oH oH
e fg =g fg = aXA (XA)RA(XA)gx—A(XA)_ 6XB (XB)RB(XB)@XB g )
; A . A B B (D80)
oH oH
_6x: (XA)BA<XA)uA+aXB g B g bxg hig

which proves the power energy equality, between the difference of the storage port power
energies of systems A and B and the storage port power energy of the new defined
difference lossy PCH system from (D.75). Next we determine if the control port power energy
of the proposed difference PCH system from (D.75), is equal to the difference between the
control port power energies of systems A and B . Using (D.75), the control port power
energy, can be defined as:

T
| T [ (XA)ﬂ
(_:‘—(;r f_c de:f VT u—:\(BA(XA) 0 W } 6XA I\ (UA) (D81)
H 0 -8 lxg | }aHB( H g )
| o el
{ Loxg )
Equivalently we can write:
[ T T |
T : oH o) OH g " )I(BA(XA) 0 Yua) (0.6
ccC LaxA Al oxg BJ‘\ 0 7BB(XB)JLUBJ
Expressed further (D.82) results as:
T T
. - oH oH
eg fC:ax: (XA)BA(XA)‘jA_ﬁ (XB)BB(XB)~UB (D.83)
Using (D.65) and (D.83), the following equality results:
T T
- _4~ OH oH
eg fC:eg fC:ax: (XA>BA(XA)’JA_ﬁ (XB)BB(XB)UB (D.84)

and thus the difference of the control port power energies, of systems A and B is equal to
the control port power energy of the new defined difference lossy PCH system from (D.75).
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For the next step, we determine, if the the difference between the dissipation port power
energies of two systems ( A and B ) from (D.69), is equal to the dissipation port power energy
of the lossy PCH system defined in (D.75). The dissipation port power energy of the
difference lossy PCH system proposed in (D.75), can be computed using the relation:

_ def _
en fr = —e_;R()?ALB)e_R (D.85)
where we have used the linear relation between the flows and efforts:
fo=-RK, g kg (D.86)
for the flows and efforts. The dissipation matrix r in (D.86), is defined as:
def (R, (x ) 0 )
R (x j =1 ATA (D.87)
sel T o gl
For the dissipation port effort variable, we can adopt the notation:
(OH » ))
def | ox A
e = A | (D.88)
| oH |
| B (XB )l
L oxg J
Using (D.87) and (D.88), (D.85) becomes :
(OH . )
T T (X )
T - de;f_faHA o) oH g " )T(RA(XA) 0 ) ax, A (0.89)
R R ~ A B/ _ | | '
EN x g o Rp (g )]l oM
L J l —(XB )l
L oxg J
After basic computations, (D.89) becomes:
T T
i oH oH oH oH
e;— fR:_aXA (XA)RA<XA)6X—A(XA)+ 6XB (XB)RB<XB)6XB(XB) (Dgo)
A A B B
Comparing the results from (D.69) and (D.90), it results:
T T
e~ - oH oH oH oH
e;fRze;fRz—aX: (XA>RA(XA)ﬁ(XA)+ ax; (XB)RB(XB)GX; (D.91)

which proves the equality, between the difference of the dissipation port power energies of
systems A and B and the dissipation port power energy, of the new defined difference lossy
PCH system in (D.75). Using (D.80), (D.84) and (D.91), the power conservation law is
satisfied for the new defined difference PCH system in (D.75):

el fg+el forep fp=0 (D.92)
or:

Pg + P +Pg =0 (D.93)
In (D.93), P ,P. P . represent the power energies associated to the storage, control and

dissipation ports for the new defined difference lossy PCH systems of systems A and B . For
the next step, it is introduced and proved a definition of a Dirac structure, corresponding to
the difference lossy PCH system defined in (D.75).
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Definition D.2

A Dirac structure on FxF , is a subspace D, g C FXF ", such that:

i) (&]f)- o0

Il)dlm DAJ_B =dim F

B

The first property of the Definition D.2 corresponds to the power-conservation law, which is
equivalent to (D.92) for the difference PCH system, that expresses the fact that the total power
entering (or leaving) a Dirac structure is always zero. For the second statement of Definition
D.2, an equivalent characterization of a Dirac structure is introduced related to the geometric

structure of the total space of flows and efforts variables FxF *, by defining a bilinear-form.
The bilinear form corresponding to the difference lossy PCH system, can be defined as
follows:

def

_ e -a -
BF = << % e

a,fb

>r<el £ (D.94)

a. < fb,e_b >>i=< @

_ _ def def
with (72,53)( 70,50 e FxF ™, where F = FoxFoxF. and F* = E. xE. xE
' ' ' ! S C R S C R

represent the total space of the flows and efforts corresponding to the new defined difference
lossy PCH system for systems A and B, in (D.75). Developing further (D.94), we can write:

_ def - - - - - a
BF N <(€S'E_C’E_R)a‘(f5’fC‘fR)b>+<(e_3'e_C'e_R>b(fS'fC'fR) > (D95)

where:

<(e‘s,e‘c,e‘R),(fS,fC,f'R)>:o (D.96)
as it has been proven from (D.92). For the next step, we introduce and prove the following
proposition for the new defined difference lossy PCH system from (D.75).

Proposition D.2

A constant Dirac structure on FxF ~ isasubspace D , , < FxF  such that:

B
= l}
D, g=D ALB (D.97)
where 1 denotes the orthogonal complement with respect to the bilinear form <<, > .
In the above definition D_A | g "epresents the Dirac structure corresponding to the proposed

difference lossy PCH system, of systems A and B .

Proof:

We first consider D , . to satisfy (D.97). Then for every (f &)< D, we can write:

w (1,8)(f.8)5= <e‘|F>+<e‘|{>:z<a|{> (D.98)
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Decomposing the flows and efforts from (D.98) on each port, it results:

2<(€S,€C,e‘R),(fS,fC,fR)>:o (D.99)

By the non-degeneracy of the bilinear form <<, >> :

. — 1 o - —* T - _ . __ . -
dm DL ALB 7dlm[FxF J dim D, 5 =2dm F -dim D, (D.100)

Using (D.97) it results that dim D, g=dmF. We also assume that D, g 152 Dirac

structure, satisfying the properties i) and ii) of Definition D.2. Then we consider

(r2,e? )[ £b ,e_b] to be any vectors contained in b, . Using the linearity of the flows

Al

5 Using property i) of Definition D.2, we

f'a>

Al

Fa>+<aa\{a>+<e‘b‘€b>:<e‘a\€b>+<ab

and efforts, we can write [f_a +fP za +€b]e D
can write:

oz<aa+e‘b fa, f_b>:<e_a‘f_b>+<e_b

=<< (f_a,e_a),[f_b,e_b]>>

(D.101)
Due to the property i) of Definition D.2:

<€a‘f_a>:<e_b‘f_b>=0 (D.102)

Expressing the flows and efforts in (D.102) for each port, it results:
—-a ra Ta ca ca ca b b b b b b
<(es,ec,eRj,(fS, C,fR)>:<EeS,eC,eRJ,(f5,fc,fR]> (D.103)
This implies that D, . <D*:aLB. Using the 2" point of Definition D.2 and
=} LT L = - :
dim D, p =2dm F -dm D, o, it follows that:

dim D , p=dm D, . (D.104)
yielding that o,  , =D,  , which ends the proof. For the difference lossy PCH system
defined in (D.75), we adopt the following notation:

_ def (3 (x,) o )

J (k, o)=1 A"A (D.105)

ALBY ALB |\ 0 _JB(XB))'
. . . T — )
for the skew-symmetric matrix. Computing J , . (xM B ), we get:
T
T — (‘] A (X A ) 0 W
SIS NN ; (D.106)
0 Ig kg )
Due to the skew-symmetry of J (x A) and 3, (x B ) matrices, the above relation can be also
written as:
— (-3 Alca) o l
J X )= (D.107)
ALB(ALB \ 0 JB(XB)J
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From (D.105) and (D.107), it results that we can write the following relation:

— — _ J (x ) 0
AJ_B(XAJ_B>:_J;J_B<XAJ_B ):|( Ao A ~3x )W (D.108)
s B Xg )

J

which proves that the matrix J , corresponding to the new defined difference

ALB (;AJ_B)
lossy PCH system from (D.75), preserves the skew-symmetry property. For the dissipation
matrix corresponding to the difference lossy PCH, we adopt the notation:

_ def (RA(XA) 0 )
RALB(XALB):\ 0 _RB<XB)J (D.109)
Computing the matrix transpose of R ALB (>?AL B ), we can write:
o IRAk e
Rarplapgl=l A4 N (D.110)
Lo _RB(XB)J

Due to the positive definiteness of r , (x A ) and Rr B (x B ) matrices, it results that:

RT (¢ _(RA(XA) o )
RAJ_B(XAJ_B)—\ 0 —rg ) (D.111)
and then we can write:
— — R, (x,) 0
RAJ_B(XAJ_B):RAJ_B(XAJ_B):( A W, (D.112)

L 0 —RB(XB))

Remark: The presence of the negative term (Rr (xB )) in (D.112) for the difference PCH

system (D.75) dissipation matrix, is due to the power port energy difference concept
proposed for systems A and B .Thus, the difference PCH system (D.75) will augment
internally to the dissipation port, the energy corresponding to system B and not dissipate it.
For the input matrix corresponding to the difference lossy PCH system proposed in (D.75),
the following notation is adopted:

_ alea) (D.113)

Using the notations introduced in (D.105), (D.109) and (D.113), we can equivalently write
the explicit form of the difference lossy PCH system from (D.75), as:
( (oH )

—A(x, )
def _ () Al
2 R XA

A

qu

AJ_B()?AJ_B)_ ALB(;AJ_B))“.;HB +BAJ_B()?AJ_B{UBJ

\
J LaxB
\
\
\
\
\
\
l

|
|
(g )J

(D.114)

(D.114) can be equivalently written as:
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o" |5

>

(
ALB L
(

ALB ~ L“

(

| - AJ_B(AJ_B)ia)? AJ_B)\ atB XAl laLs
j U77AL J

|

|

l

(D.115)

(D.116)

(D.117)

(D.118)

This represents the explicit form of the new defined difference lossy PCH system for
systems A and B . The implicit form of the difference lossy PCH system proposed for

systems A and B, can be defined as:

(fS’eTS’ fo 8 fro®R
Using the explicit form from (D.115), (D.119) becomes:

( N aHAJ_B = oH

| T XALB 5y Kaipbiais Vare:
\ ALB

e_)eD

NELIY N X

(D.119)

|

()?AJ_B )|
J

(D.120)

Due to the satisfaction of the general propositions and definitions which define a PCH system,
the difference lossy PCH system proposed in section 4.4.2 by the Definition 4.2 is also a PCH

system.
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Appendix E Symplectic discretization schemes
E.1 Lossless PCH systems

This part of the appendix presents a set of symplectic discretization schemes for the lossless
and lossy case, which make use of the explicit/implicit Euler, implicit mid-point and implicit
trapezoidal rules for the flows and efforts.

E.1.1 Symplectic discretization scheme |

This symplectic discretization scheme assumes an implicit Euler rule for the flows and an
explicit Euler rule for the efforts. The initial continuous-time form of the explicit lossless
PCH system is:

[

oH
X=1J 6_x+ Bu
E.l

ly-gT 2H =D
| ox

Applying the general discretization framework from (4.1) and (4.14), we can write in discrete-

time as follows:

= 3 A 1) B
Xy 1= X, tAL U( +1)+At-Bu

Hpq=H, +AXQx (E.2)

|
| T AH
[yk+1_B S (k +1)

Remark: The composed time-discretization F di *Edi [ai] of the effort becomes ox

ax k+l !

by applying the effort time-discretization AA—Hat step k+1 .
X

Equivalently (E.2) can be written as follows:
AW
} At

P rn)= 00 (E3)
|

(k +1)=JQ Bu

Xk+1+ k+1

AX

BT

tyk-rl: QXk+1

Remark: The step « +1in the parenthesis of flows, efforts and power energies, is due to the
implicit form of the scheme, given by the flow time-discretization rule.

The discrete-time power energy associated to the storage port F35 (k +1), can be defined as:

def

Plk+1) = el k+1)fgtk+1)=lox, T [_i_:(kH)J (E.4)
using (E.3). From simple mathematical relations, it is straightforward that we can write:
def R
Pe(k+1) = 79:; (k +1)Bf - (k+1) (E.5)
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For the control port, the following relation can be defined as:
def

Pe (k+1) = ég (k+1)f (k+1) (E.6)
Using (E.3) and simple mathematical relations, (E.6) can be equivalently written:
def
Pok+1) = 6 (k+1)Bf (k+1) (E.7)

From (E.5) and (E.7), the power conservation law for the discrete-time PCH system is
satisfied, as follows:
P (k+1)+ P (k+1)=—6¢ (k +1)Bf  (k +1)+ 6 (k +1)Bf (k+1)=0 (E.8)

Using (4.18), we can define the discrete-time energy (Hamiltonian) as:

AH def

k1) = _ég (k+1)fg (k+1)= yLluk+1 (E.9)
which is equivalent to:

AH def T R

F(k +1) = ég (k+1)Bf. (k+1) (E.10)

when using (E.5) and (E.7). Using the general relation from (4.19) for the discrete-time
bilinear form, we can define it as follows:

A def T a [ Ax b
BF(k+1): [ka+1,B ka+1] ’[_E(ku)’ukﬂJ +

b a
T AX
+<[QX|<+1'B ka+1) ’[_E(k”)’“ml] >

Using (4.21), the implicit form of the discrete-time lossless PCH system, for the selected
symplectic discretization scheme is defined as:

(E.11)

[fs(k+1),és(k+1), fo (k+1)6, (k+1)jeD (E.12)
Replacing the known values of the flow and energy from (E.3), we can write further:
{—i—f(k+l),%(k+l),uk+l,yk+1]e D (E.13)

Remark: The Dirac interconnection structure (p ) and rules, are conserved by time-
discretization as they only serve for power port interconnection.

E.1.2.Symplectic discretization scheme Il

This symplectic time-discretization scheme assumes an explicit Euler rule for the flows and
an implicit mid-point rule for the efforts. The initial continuous-time explicit form of the
lossless PCH system, for which we apply this time-discretization scheme, has the following
form:

()'(:Jaai‘F Bu

X E.14
e (E.14)
[ OX



Considering the explicit Euler rule time-discretization for the flows and the implicit mid-point
rule for the efforts, using the general framework from (4.1) and (4.14), it results:
( AH

}Xk+1:Xk+At'\]'E(k)+BUk
X, +X
( K k+lw
\
‘ _ T .AH
V=8

Remark: The composed time-discretization  F . «E . [aai] of the effort, becomes

X

ERLTS - SRR : _ AH
Q Lf J by applying the flow discretization rule for the discrete-time effort VR
X

Equivalently we can write (E.15) as:

{%(k)zJQ[%}rBuk

( n ( &9
| AH X T %% 41 N R "
|—(k+1)=Q —————=y, =B Q ————
| ax Tz )k Tz

Remark: The step k in the parenthesis of the flows, efforts and power energies is due to the
explicit form of the scheme, given by the flow time-discretization rule.
The discrete-time power energy of the storage port, can be defined as:

N AH T Ax E17
Pg ) = e b ()= )| [~ ) (E17)
Using simple computations, we can derive further the following relation:
Pg (k)= _ég (k)Bf . (k) (E.18)
For the control port, we define the following discrete-time power energy:
. def A
Pe (k) = €L (k)fg (k) (E.19)
which is equivalent to:
. def T .
Po (k) = ég(k)B-f (k) (E.20)

using simple mathematical relations. By making the sum between the storage power energy
and control power energy from (E.18) and (E.20), we get:

P (k)+I5C(k):—é-Sr C(k)+é£ (k)Bf . (k) (E.21)

from which it results that the discrete-time power conservation law holds for this scheme.
Using (4.18), we can define the discrete-time energy (Hamiltonian) as:
def

(k)Bf

%(k) = el g k)=ylu, (E.22)
Using (E.18) and (E.20), E(22) is equivalent to:
def .
%(k) = 6l (k)B-fo (k) (E.23)



Using (4.19), the bilinear form of the lossless PCH system, can be defined as:

E§F (k)de:f <{Q)?k,BTQ)?k ]a,[i—f(k),uk]b>+<(QIk,BTQIk ]b,[—i—:(k),uk ]a>

(E.24)
where we have adopted the notation:
def (x + X
X, = {%} (E.25)
The implicit form of the discrete PCH system is defined using (4.21) as:
[fs (k)eg (k) fo (k)6 (k)]eD (E.26)
which is equivalent to:
[—i—)t((k),ka,uk,BTka]eD (E.27)

E.1.3.Symplectic discretization scheme 111

This symplectic time-discretization scheme, makes use of the implicit mid-point rule for the
flows and explicit Euler rule for the efforts. The initial continuous-time lossless PCH system,
for which we apply the time-discretization scheme, has the following form:

(X =1J i"’ Bu
| TaxaH (E.28)
LR
Using (4.1) and (4.14), for the selected time-discretization rules, it results:
( (x + X
AH | Tk k+1)
ka+l=xk+At-J~AXL 5 J+AI~B-ukJrl
J|Hk+1:Hk+Ax~ka (E.29)
| _ T AH
|[yk+1_B ~ (k +1)
Equivalently we can write (E.29) as:
|[A—X(k +1)=1J (AH (xk i Xk+1)+ Bu
| At AX L 2 J k+1
|
| AH
4|F(k)= QX (E.30)
| T
R B x k+1

|
(
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Remark: The composed time-discretization F di *Edi [aai] of the effort, becomes

X

(X + X W . . . AH . .
Q % by applying the flow discretization rule for — by replacing Xy 1 with
X

—_—

“k T X%
2

Equivalently we can write:
( (x + X
AX B k k+1w
}A—t(k+1)_JQij+ Bu,
|
AH

k)= E.31

by (k)=Qx (E31)
| _aT
|yk+l_B QXk+1
|

(
Remark: The step k +1, in the parenthesis of the discrete-time flows, efforts and power
energies, is due to the implicit discretization rule selected for the flows and thus for the
scheme.
The discrete power energy associated to the storage port, can be defined as:

def

Polet) - el (ern)fg k+)=(ox, T [—i—)t((k+1)] (E.32)
From simple relations, we can write equivalently:
def
Pg (k+1) = - ég (k+1)Bf . (k +1) (E.33)
For the control port, we can define the power energy as:
. def .
Polk+1) = 6L (k+1)f (k+1) (E.34)
From (E.34) we can further derive the relation:
def
Pe(k+1) = é (k+1)Bf (k+1) (E.35)

From (E.33) and (E.35) it results the power conservation law of the discrete-time PCH system
atstep k+1:

Pe (k+1)+ P (k+1)= _ég (k +1)Bf . (k +1)+ég (k+1)Bf. (c+1)  (E.36)

Thus the power conservation law is satisfied in discrete-time. Using (4.18), we define the
discrete-time energy (Hamiltonian) as:

AH def T ) T
?(ku) = —bg k+1)fgk+1)=y, qu, (E.37)
which is equivalent to:
def N
%(k+l) = 6l (k+1Big (1) (E.38)

when using (E.33) and (E.35). Using (4.19), the discrete-time bilinear form for the selected
symplectic discretization scheme is defined as:
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) def T a Ay b
BF(k+1)= (ka+1,B ka+1j ,[—E(k+l),uk+1] +

b a
T AX
+<[ka+1’B ka+1] ‘[_E(k+l)’uk+l] >

The implicit form of the discrete-time lossless PCH system is defined as:
(f‘s (k+1)6g (k+1) F (k+1) 6 (k+1)j (E.40)

(E.39)

where the interconnection Dirac structure conserves it’s structure by time-discretization.
Replacing the discrete-time flows and efforts in (E.40), it results:

A
[—A—)t((k+1),ka+1,uk+l,BTQxk+1]eD (E.41)

E.1.4 Symplectic discretization scheme IV

This symplectic time-discretization scheme assumes an implicit Euler rule for the flows and
an implicit mid-point rule for the efforts. The initial continuous-time lossless PCH system for
which we apply the time-discretization scheme, has the following form:
[ oH
X=1J g+ Bu
E.42
ly-gT &4 (=42
[ oX
Applying the selected time-discretization rules for the flows and efforts using (4.1) and (4.14),

it results:

k+1 k X k+1
X, +X
( K k+1)
lHkH:HKMX-Q.ij (E.43)
|
| _pT AR
Vet = BY — (k +1)
Remark: The composed time-discretization of the effort F di *Egi [aai], becomes
X

(X * X4
Lz )

Equivalently we can write:

Q by applying the implicit Euler rule over AA—Hat step k +1.
X

[AH X+ X
Ig(k +1)=JQ [%} Bu, .,

|%(k v1)- Q[%j (E.44)
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Remark: The step k+1, in the parenthesis of the discrete-time flows, efforts and power
energies is due to the implicit discretization rule selected for the flows and thus for the
scheme.
The discrete-time power energy associated to the storage port is defined as:

T

def . X X
P lk+1) = 6% (+1)fg k+1)= (Q(ww [—A—X(k +1)] (E.45)
L 2 J At
( )
Using simple computations, we can write:
def
Po (k+1) = 6L (k+1)Bf (k+1) (E.46)

For the control port, we define the discrete-time power energy as:

T
e Can) o eT (+1)7, (k+1)JBTq[%N 0y (E.47)
\ )
which results in:

. def A

Polk+1) = 6 (k+1)Bf (k+1) (E.48)
from simple computations. Using (E.46) and (E.48), the power energy conservation law in
discrete-time is satisfied:

P (k+1)+ P (k+1)=—67 (k +1)Bf  (k +1)+ 6 (k +1)Bf (k +1)=0 (E.49)
Using (4.18), the discrete-time energy (Hamiltonian) is defined as:
def .
%(ku) = el k)i k)= y] U (E.50)
(E.50) can be equivalently written as:
AH def .
—lke1) = 60 (k+1)Bf (k+1) (E.51)
using (E.46) and (E.48).
Using (4.19), the discrete-time bilinear form is defined as:
) def a b
B, (k+1) = <(Q>Tk+1, BT Q)Tk+1j ,[—i—)t((k +1),uk+1] >+
(E.52)
— T ~— b AX a
* <[ka+l’ B ka+1] ‘[_ E(k +1)’uk+l] >
where X, is defined as:
+1
def x, +x
- k" k1
Xk+l = % (E53)

The implicit form of the discrete-time PCH system for the selected symplectic discretization
scheme is defined as:

[fs (k+1)6g (k+1) f (k+1) 6, (k+1)]eo (E.54)

Replacing the discrete-time flows and efforts using (E.44), we can write equivalently:
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AX -
_E(k+1)’QXk+1‘uk+l’yk+1 eD (E.55)

E.1.5 Symplectic discretization scheme V

For this symplectic time-discretization scheme it is assumed an implicit mid-point rule for the
flows and an implicit Euler rule for the efforts.The initial continuous-time lossless PCH
system for which we consider the selected symplectic discretization scheme, is:

(

X:Jaai+8u

X E.56
ly-gT 2H (559
[ oX

Applying this symplectic time-discretization scheme using (4.1) and (4.14), it results:

( AH [ Xk Xpi
Xk+1:Xk+J'AX[ ? +]+Buk+l

H =H +AX.QX (E57)

k+1 k k+1

\
\ LT AH
lyk+1—B v (k +1)

Using the first two relations, we can write:

| At ' L 2 J k+1

—(k+1)=Qx Kl (E.58)

. : - oH (X Xt |
Remark: In this case the combined operator Fai *Egi [—] becomes Q! X*—**=! as

ox L 2 J

L AH : e ST ke
we apply the implicit mid-point rule forA—, which replaces Xy 1 with EEea— for the
X

effort discretization. The step k +1 in the parenthesis of the flows, efforts or power energies,
corresponds to the implicit form of the discretization scheme, given by the flows time-
discretization rule.

The discrete-time power energy associated to the storage port, can be defined as:

. def T . T AX
Po o) - 6f (+1)fg k+1)=(ox, ) [—E(k +1)] (E.59)
Equivalently we can write:
def
Pg(k+1) = - ég (k+1)Bf . (k +1) (E.60)
For the control port, the discrete-time power energy is defined as:
. def .
Polk+1) = 6L (k+1)f (k+1) (E.61)

We can write equivalently (E.61) as:
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def
Pok+1) = 6 (k+1)Bf ¢ (k+1) (E.62)
Using (E.60) and (E.62), the total power energy of the system is:

c c : clk+1)=0 (E.63)

and thus the discrete-time power conservation law of the PCH system is satisfied.
Using (4.18), we define the discrete-time energy (Hamiltonian) as:
def

F;S(k+1)+ls (k+1):—é£(k+1)BfA (k+1)+ 6. (k+1)Bf

%(k+1) - el ke kD)= y] U (E.64)
Using (E.60) and (E.62), it results further:
AH def T .
F(k +1) = ég (k+1)Bf . (k+1) (E.65)
Using (4.19), we define the discrete-time bilinear form as:
A def a b
B (k+1) = <[Qx R BT Qx k+1j ,[—i—)t((k +l),uk+lj >+
(E.66)
T b AX a
* <[QX k+1’ B Qx k+1] ’[_E(k +1)’uk+1] >
The implicit form of the discrete-time PCH system is defined as:
[fs(k+1),és(k+1), fo (k+1)6, (k+l)]eD (E.67)
which results as:
[—i—)t((k+l),ka+l,uk+l,yk+1JeD (E.68)

by replacing the discrete-time flows and efforts. As for the previous cases, the Dirac
interconnection structure ( D ) conserves its properties by time-discretization.

E.1.6 Symplectic discretization scheme VI

For the current symplectic discretization scheme, it is assumed an implicit trapezoidal rule for
the flows and an explicit Euler for the efforts. The initial continuous-time lossless PCH
system for which we apply this time-discretization scheme is:
J)’( =1J Z—';:Jr Bu
E.69
ly-pgT 2H (569
| ox
Applying the general framework from (4.14) for the selected symplectic time-discretization

scheme, we can write:

( At AH AH At
|Xk+1:Xk+7J[F(k)+H(k l)] —(Buk+Bu k+l)
lHk+1:Hk+QXk v =M (E.70)
| T AH

[yk+1_ B S (k +1)
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or equivalently:

[AX 1

IA_t(k+1) (JQx +JQXk+1)+EB(uk+uk+l)

AH AH

llg K Tk )= 00y (E.71)
|

P’kJrl_B i1

Remark: By applying the composed time-discretization rule Fai * Egi [E;i] for the effort, it
X

Xk + Xk 1) - - AH - - - - -
X _X*=2 1 by mtroducmgA— in the flow time-discretization rule, after
X

results in Q( >

applying the Euler rule discretization. The step k +1in the parenthesis of the discrete-time
flows, efforts or power energies corresponds to the implicit form of the discretization scheme,
given by the flows time-discretization rule.
Next we define the power energy associated to the storage port at step « +1, as follows:

def

R A A
polk+1) = e k+1)fg(+)=oc, T [—A—)t((k+1)] (E.72)
Using simple mathematical relations, (E.72) can be written equivalently as:
def N
P (k+1) = - ég (k +1)Bf . (k+1) (E.73)
where we have adopted the notation:
- def (u, +u
) [k Yk | (E.74)
Lz )
The control port power energy, can be defined as:
def
Pe (k+1) = (k +1) (k +1)= y-|[+lu_k+l (E.75)
which can be equivalently written as:
def
Pok+1) = ég T (k +1)Bf c (k+1) (E.76)

from straightforward computations. From (E.73) and (E.76), the total power energy of the
discrete-time system is:

Py (k+1)+ Py (k+1)= ~61 (k+1)Bf . (k +1)+ 61 (k +1)Bf . (k +1)= 0 (E.77)

and thus, the power conservation law is satisfied in discrete-tlme.
Using (4.18), the discrete-time energy (Hamiltonian) is defined as:

AH def T N T
N ——(k+1) = —é5 k+1)fg (k+1)= Vi 1Yk i1 (E.78)
Using (E.73) and (E.76), it results as:
def a
%(k+1) = 6l k1B (k1) (E.79)

Using (4.19), the discrete bilinear form of this symplectic discretization scheme is defined as:
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) def T a Ay B b
BF(k+1) = [ka+1,B ka+1} ,[—E(ku),ukﬂJ +
(E.80)

b a
T AX —
+<[ka+l’B ka+lj '[_E(k+1)’uk+l] >

The implicit form of the discrete-time PCH system is defined as:

[fs(k+l),és(k+1), fo (k+1)6, (k+1)jeD (E.81)
Replacing the discrete-time flows and efforts in (E.81), it results:
Ax _
[_E(k+1)’ka+1‘uk+l’yk+lJeD (E.82)

E.1.7. Symplectic discretization scheme VI

This symplectic discretization scheme assumes an explicit Euler rule for the flows an implicit
trapezoidal rule for the efforts. The continuous-time form of the lossless PCH system, for
which we apply the time-discretization scheme is:
JX =1J aaier Bu
E.83
ly-pgT 2H (=5
| oX
Applying the general discretization rules from (4.1) and (4.14), for the current symplectic
time-discretization scheme it results:

[ X +At~J~ﬂ(k)+At~B-u

ka+1: k Ax k
X + X
lHk:Hk_lw.Q[—k—lz k} (E84)
|
| -BT ﬂ(k)
|7k AX

ﬂ] of the effort, results in

Remark: The composed time-discretization Fai * Eg [ -
X

Q [@} by applying the flow discretization rule over the effort AA_H.
X

Equivalently we can write (E.84) as:

| ( )
| l )
J—(k): Q[Xk_l—k} (E.85)
et
1 L )
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Remark: The step k in the parenthesis of the flows, efforts or power energies is due to the
explicit time-discretization rule selected for the flows, which applies for the whole
discretization scheme.

The discrete-time power energy associated to the storage port can be defined as:

T
. def . ( (xk_1+xkﬂ ( (Xk—1+xk) W
Po(k) = 6f (k). (k)=|Ql K=t "k Ih | ol k=t "k [ g, (E.86)
SR D
which results in:
def
Ps(k) = —ég ()f (k) (E.87)

from straightforward computations. For the control port, we define the following discrete-time
power energy:

Pe (k) = 6L (kK)f, (k) (E.88)
which can be equivalently written as:
def A
Pe (k) = & (k)Bf, (k) (E.89)

using straightforward relations. From (E.87) and (E.89) the power conservation law of PCH
systems is satisfied in discrete-time:

Pg (k)+ Py (k)= _ég (k)Bf (k)+ég (k)Bf . (k)=0 (E.90)
Using (4.18), the discrete-time energy (Hamiltonian) can be defined as:
AH def T . T
S = g () fg )=y u (E.91)
which is equivalent to:
def
%(k) - ¢l (k)Bf (k) (E.92)

using (E.87) and (E.89). Using (4.19), the discrete-time bilinear form is defined as:
def

B (k) - <(Q>Tk,BTQ)Tk)a,[i—)t((k),uk]b>+<(Q§k,BTQikjb,[i—)t((k),uk]a> (E.93)

where the notation:

def x + X
- k-1" "k
X = — o (E.94)
has been adopted. The implicit form of the discrete-time PCH system is defined as:
(f‘s(k),és(k), fe (k),éc(k)]eo (E.95)
Replacing the discrete-time flows and efforts in (E.95) it results:
[_i_:(k),qzk,uk,yk]eo (E.96)
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E.1.8 Symplectic discretization scheme VIII

This symplectic time-discretization scheme assumes an implicit trapezoidal rule for the flows
and an implicit Euler rule for the efforts. The initial continuous-time lossless PCH system for
which we apply this symplectic time-discretization scheme, is:

H
J)'(:J a—+ Bu

oX
E.97
ly-pT 2H (=40
| ox
Applying the general framework from (4.1) and (4.14) for the selected scheme, results in:
[ AX 1(AH AH 1
IE(k +1)= E[H(k)+ U(k +1)]+ E(BU K + Uk+1)
AH
Jlg(k +1)=0Qx, 4 (E.98)
| T AH
|Lyk+l:B E(k-{—l)
Adopting the following notations:
(O def
|ﬂ(k +1) = —(Qx +Qx )
k k+1
| Ax y 2 * (E.99)
R S 5!
[ k+1 2
it results:
[Ax AH _
—(k+1)=J3 —(k+1)+ Bu
J t AX K+l (E.100)
| AH T
[E(k +1)= Qx k+1' Ykl ~ B Qx k+1

ﬂ} , results in

Remark: The composed time-discretization of the effort Fi *Edi[a
X

(Xk * Xk+1 W H - - . AH .
Qkff by applying the flow discretization rule for A—.The step k+1 in the
X
parenthesis of the flows, efforts or power energies, are due to the implicit discretization rule
selected for the flows, which apply for the whole scheme.

For the storage port, the discrete-time power energy can be defined as:
def

~ T ~ T AX
Pglk+1) = 61 (k+1)fg k+1)=(0x, ] [_E(ku)] (E.101)
Equivalently we can write (E.101) as:
Py k+1)=—6% (k+1)Bf (k +1) (E.102)
The discrete-time power energy associated to the control port, can be defined as:
. def N
Pe k1) = 6L (k+1)f (k+1) (E.103)

From straightforward computations, this relation is equivalent to:
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def N
Pe (k+1) = é (k+1)Bf (k+1) (E.104)

From (E.102) and (E.104), the discrete-time power conservation law is satisfied:
Py (k+1)+ Py (k+1)= ~6] (k +1)Bf . (k +1)+ 61 (k +1)Bf . (k +1)= 0 (E.105)
Using (4.18), we can define the discrete-time energy (Hamlltonlan) as:

AH def

—lke1) = —e k+D)fg (k+1)=y] T, (E.106)
which can be equivalently written as:
AH def T N
N ——(k+1) = &5 (k+1)Bf  (k+1) (E.107)

using (E.102) and (E.104). Using (4.19), the discrete-time bilinear form can be defined as:
def

a b
BF(k+1) = <(ka+1,BTQXk+1] [ i)t((kJrl) . 1] >+

b a
T AX
+<(ka+1‘B ka+1j [ At Sk k+1] >

The implicit form of the discrete-time PCH system is defined as:
[fs (k+1)6g (k+1) f (k+1) 6 (k+1)je D (E.108)

where the Dirac interconnection structure (o ) is conserved by time-discretization.
Replacing the discrete-time flows and efforts, we can write equivalently:

AX —
[_E(k+l)’QXk+l‘yk+1’uk+1J€D (E.109)

E.1.9 Symplectic discretization scheme IX

This symplectic time-discretization scheme makes use of an implicit mid-point rule for the
flows and an implicit trapezoidal rule for the efforts. The continuous-time lossless PCH
system, for which we apply this symplectic time-discretization scheme is:

H
JXzJ a—+ Bu

| TaXaH (E.110)
TR

Using (4.1) and (4.14) for the selected symplectic time-discretization rule, it results:

( X + X X, + X
1A% o2 L ( k-1" "k k k+1) B
IA( ) 2QL 2 ’ 2 f Yt
|
X, + X
LI ol e ke | (E.111)

AX L 2 J

|
|
| (xk4-x|“L )
(EE
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Remark: The composed time-discretization of the effort F di *Egi [aai] results in
X
X + X X, + X
iQ( k=1 Kk , K k+1), by applying the flow discretization rule on 2F_ which
2 L 2 2 J AX
X + X X, +X
replaces x, and x,  with X=1_Kand Kk K+
+1 2 2
Adopting the following notations:
‘(; dif (xk_1+xk )
<L 2z )
l (E.112)
| _ def ,  _
{Xk+1 B E(Xk+xk+l)
(E.111) becomes:
[AX =
}A_t(k +1)=JQ X\ g tBUL
AH _
JU(kH):ka+1 (E.113)
\

Remark: The step k +1, in the parenthesis of the flows, efforts or power port energies
corresponds to the implicit form of the discrete-time scheme, given by the flow discretization
rule.
The discrete-time power energy corresponding to the storage port, can be defined as:

def

P k+1) = 6l (k+1)fg k+1)=lox, ' (F3ex _ -8By, ) (E.114)
which is equivalent to:
. def A
P (k+1) = - ég (k +1)Bf . (k+1) (E.115)
For the control port power energy, we define the discrete-time energy as:
A def A T
Pok+1) = el (k+1)f (k+1)= [BT Q)Tk+lJ Uy (E.116)
which can be also equivalently written as:
Pe (k +1)de:f ég (k +1)Bf (k+1) (E.117)
From (E.115) and (E.117), the the discrete-time power conservation law is satisfied:
P (k+1)+P ¢ (k+1)= _ég (k +1)Bf  (k +1)+ ég (k+1)Bf (k+1)=0 (E.118)
Using (4.18), the discrete-time energy (Hamiltonian) is:
AH def T . T .
F(k +1) = —ég k+1)fgk+1)=65 k+1)f. (k+1) (E.119)
which is equivalent to:
AH def T .
F(k +1) = &g (k+1)Bf (k+1) (E.120)

236



using (E.115) and (E.117). Using (4.19), the discrete-time bilinear form for the selected
discretization scheme is defined as:

a

def b
~ — — A
BF(k+1) = <(ka+1’BTQXk+1] '[_A_)t((kJrl)’ukJrl] >+

(E.121)
X ..BTQX DA k+1 :
" (ka+1‘ ka+1j [_E( " )’uk+1]

The implicit discrete-time form of the PCH system is:

(fs (k+1), 6 (k+1), fio (k+1) 6, (k+1)] (E.122)
which is equivalent to:

AX —

[—E(k+1),ka+l,uk+l,yk+l]eD (E.123)

when replacing the discrete-time flows and efforts.

E.2 Symplectic discretization schemes for lossy PCH systems

E.2.1 Symplectic discretization scheme |

This symplectic discretization rule assumes an implicit Euler rule for the flows and an explicit
Euler rule for the efforts. The initial continuous-time lossy PCH system, for which we apply
the current symplectic time-discretization scheme is:

=0 -r) 2 ey

ox (E.124)

ly-gT H

| ox
By applying the implicit Euler for the flows and explicit Euler for the efforts, we get the

following relations:

[ AH
X, g =X AL - R)U(k +1)+ At-B Uy
|Hk+l:Hk+Ax-ka (E.125)
| _ T AH
[yk+l_B ~ (k +1)
Remark: The composed time-discretization of the effort Fai * Egi [Zi] becomes qx el by
X

applying the the implicit Euler rule for AA—H.
X

Equivalently we can write:
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A—(k +1)=(J - R)Qx ka1 T BU L

A_(k +1)= Qx el

e
=B ka+1

(E.126)

Remark: The step k +1, in the parenthesis of the flows, effort or power energies, correspond
to the implicit form of the scheme, given by the implicit time-discretization rule selected for

the flows.
The discrete-time storage port power energy is defined as:
def A
Pok+1) = 6L (k+1)fg k+1)=(x, ) O -R)x, , -Bu, )
which is equivalent to:

def
5 LT AT LT .
Pg (k+1) = eS(k+1)ReS(k+1) es(k+1)BfC(k+1)

For the control port, we can define the following discrete-time power energy:

. def T . T T
Pc (k+1) = éc (k+1)fC(k+l):[B ka+1j Up g
which is equivalent to:

def

P (k+1) = ég (k +1)Bf . (k +1)

C
For the dissipation port, we define the power energy as:
. def )
Polk+1) = 6f (k+1)f (k+1)
Using the general relation:

fR:—ReR

we can write further the discrete-time power energy as:
A def
Polk+1) = —6f (k+1)Ré  (k+1)
The discrete-time dissipation port effort variable, can be written as:
def

. AH
eR(k +1) = U(k +1)= x Kl

Then the discrete-time power energy of (E.133) becomes:

. def T

Prike1) = —lox, ) Rlox, )
which is equivalent to:

def
5 LT A
PR(k+1) = - ég (k +1)Res(k+1)

(E.127)

(E.128)

(E.129)

(E.130)

(E.131)

(E.132)

(E.133)

(E.134)

(E.135)

(E.136)

Using (E.128), (E.130) and (E.136), the power conservation law is satisfied in discrete-time:

S
+ 6l (k+1)Bf . (k+1)-6] (k+1)Ré . (k+1)=0
S C S S

Using (4.31), the discrete-time energy (Hamiltonian) can be defined as:
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Po (k+1)+ P (k+1)+ P (k+1)= 6L (k +1)RE¢ (k +1)- 6L (k+1)Bf (k +1)+

(E.137)



def
H R A . A
AA—t(k +1) = -6 (k+1)fo (k+1)=y] u vl (k+1)f (k+1) (E.138)

which can be writen as:

def
AH AT ° T

Using (E.128), (E.130) and (E.136). Further we define the discrete-time bilinear form as:

k+1)-éo (k +1)Ré . (k +1) (E.139)

def a b
B_(k+1)= = ([ox BT Ox ox A%k +1)u, . —ROX +
F k+1' kK+1' =" k+1) "| At k41’ k+1

b a
T dx
+<(ka+1’B ka+l'QXk+1j ’[_E(k+1)'uk+l’_RQX k+1J >

The implicit form of the discrete-time PCH system is defined as:
(k+1) 6 (k +1)] €D (E.140)

(fs (k+1)6g (k+1) f (k+1) 6 (k+1), f

Cc R

which is equivalent to:
dx
[_d_t(k +1).Qx ket Ykt Ve T RX g X k+1] €D (E.141)

when replacing the discrete-time flows and efforts.
E.2.2. Symplectic discretization scheme 11

For this scheme it is assumed an explicit Euler rule for the flows and an implicit mid-point
rule for the efforts. The initial continuous-time lossy PCH system, for which we apply the
current time-discretization scheme is:

[)'(:(J —R)ﬂ+ Bu

ox (E.142)
ly-pgT 2H
[ oX
Using (4.1) and (4.24) for the current symplectic time-discretization scheme, it results:
I[xk+1 = X, +At-(J - R)%(kh At-Bu
(Xk—l + xk w
ij :Hk_1+Ax-QLfJ (E.143)
|
ly —gT 2H
V=8
Remark: By applying the composed time-discretization for the effort . «E . [aai], it
X

X + X
results Q(%} , when using the explicit Euler rule for AA—H.
X

We can write equivalently:
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|
\
122 (0)- 0%, (E.144)
\
t

when adopting the notation:
X X
X - (k—1—+k) (E.145)

Remark: The step k in the parenthesis of the flows, efforts or power energies, correspond to
the explicit form of the discrete-time scheme, given by the flow discretization rule.
For the discrete-time storage port power energy, we can write:

. def N _ _
Ps (k) = €T ()fs (k@X, ) (-( -RRK, ~Bu ) (E.146)
More compact we can express this relation as:
N def N
Pe (k) = g (KRé (k)-ég (K)Bf, (k) (E.147)
For the control port, the power energy can be defined as:
def .
Pe (k) = &l (k)f, (k) (E.148)
which becomes:
. def T )
Pc k) = éq (k)BfC (k) (E.149)

from straightforward computations.
For the dissipation port, the discrete-time power energy can be defined as:

Polk) = éf (k) (k) (E.150)
which is equivalent to:
def T
Pn(k) = € (k)REL (k) (E.152)
by using the general relation:
fo=-FRep (E.152)
But the discrete-time effort variable can be defined as:
def
6q (k) = %(k) (E.153)
and (E.151) becomes:
N def T
Pp k) = —é5 (k)Ré (k) (E.154)

Using (E.147), (E.149) and (E.154), the discrete-time power conservation law holds:

Pe (k)+ P . g g c (k)+ég (k)Bf (k)_ég (k)Ré (k)  (E.155)

Using (4.31), the discrete-time energy (Hamiltonian) can be defined as:

(k)+ P, (k)=6 (k)R (k)-¢ (k)Bf
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S0 (k) = -6 )i K)=yiuy +eh (E.156)
Using (E.147), (E.149) and (E.154), it results:
def .
%(k) = 6L (Bf (k)-6g ()Ré (k) (E.157)

Using (4.32), the discrete-time bilinear form is defined as:

def a b
3 = = - d —
BF(k) = <[karBTQXk1Qij x[_ﬁ(k),ukl_RQXk] >+

(E.158)
— T . — N dx — a
+ <(ka B QX QX j ,[—d—t(k),uk ~RQX, ] >
The implicit form of the discrete-time PCH system is defined as:
[ fok)eg () fo (k)eg (k) T k)ep (k)je D (E.159)
using (4.33) and (4.34). Replacing the discrete-time flows and efforts we can write:
[—g—)t((k),QYk,uk,yk,—RQZk,QYkJeD (E.160)

E.2.3 Symplectic discretization scheme 111

For this symplectic discretization scheme, we assume an implicit mid-point rule for the flows
and an explicit Euler rule for the efforts. The initial continuous-time lossy PCH system, for
which we apply this time-discretization scheme, is:

= -r) 2 By
ox (E.161)
T OH
ly-pgT 2
| ox
Applying the current symplectic time-discretization scheme using (4.1) and (4.24), it results:
( ( X, +X
AH k" Tk+1 )
ka+1 = X, +At-(J - R)FLK +1,fj+At~Bu el
lHk+1:Hk+Ax-ka (E.162)
| _ T AH
|[yk+1 =B ~ (k +1)
Remark: The composed time-discretization of the effort Fai * Egi [aaij , results in
X
X, +X
Q(ww , by applying the implicit mid-point rule for 2.

L 2 J AX
Adopting the following notation:

def (x, + x
- k k+1
X1 = [%} (E.163)

It results:
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[AX
IA_:( RIQx k+1 tBUki
A
J|AX k+1 k+1
|
_B ka 1

{ k+1

(E.164)

Remark: The step k+1in the parenthesis of the discrete-time flows, efforts or power
energies, correspond to the implicit form of the discretization scheme, given by the flow time-

discretization rule.

The discrete-time power energy associated to the storage port can be defined as:

def
Pg (k+1) = (k +1)f ¢ (k+1)= (ox k+1)T (- R)QX, ,, - Bu k+1)
Using simple mathematlcal relatlons, we can write further:
) def
Pg (k+1) = (k+1) (k+1) (k+1) (k+1)

where:
def (€ (k)+ég (k+1)) Q(xk Xy )

eAS(k+1)=L > J_ L > J

The discrete-time power energy associated to the control port can be defined as:

def A T
Po(k+1) = el (k+1)f (k+1)= (BT o k+1] Uy
Equivalently we can write:
def N
Pok+1) = 6 (k+1)Bf (k+1)
For the dissipation port, the discrete-time power energy is defined as:
. def R
Polk+1) = 6f (k+1)f (k+1)
Using the general relation:

fR:—ReR

between flows and efforts, we can write (E.170) as:
. def
Polk+1) = —6 (k+1)Ré _ (k+1)

Using the discrete-time effort relation:

AH
R (k +1) = E(k +1)= QX k+1
the discrete-time power energy becomes:

def
Pgk+1) = (k+1) g (k+1)

(E.165)

(E.166)

(E.167)

(E.168)

(E.169)

(E.170)

(E.171)

(E.172)

(E.173)

(E.174)

Using (E.166),(E.169) and (E.174), the dlscrete-tlme power conservation law is not satisfied:

S
+eL (k+1)Bf  (k+1)-6l (k+1)Ré¢ (k+1)
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(E.175)

Equivalently, we can write (E.175) as:

A N . Qx, —Qx

Pe (k+1)+ P (k+1)+ P (k+1)= 6] (k +1)R($W (E.176)

y 2 )‘

and thus the power conservation law doesn’t hold for this discretization scheme, as (4.30) is
not satisfied.
Remark: As the discrete-time power conservation law doesn’t hold for this scheme, the rest
of discrete-time PCH systems properties will not be defined.

E.2.4 Symplectic discretization scheme IV

In this case, an implicit Euler rule for the flows and an implicit mid-point rule for the efforts
are selected for time-discretization. The continuous-time PCH system for which we apply the
symplectic discretization scheme is:

[, oH
x=(J-R)—+Bu
ox (E.177)
ly-pgT 2H
[ oX

Using the general framework relations from (4.1) and (4.24), for the current symplectic time-
discretization scheme, it results:

[ AH X, + X
}xk+1 = X AL -R)— [k 11, K k+l)+At~Bu -
\
X, +X
_ [ Xk |
‘Hk+1_Hk+Ax-QL : (E.178)
} T AH
‘yk+1—B E(k +1)
t
Remark: The composed time discretization of the effort Fai *Egi [aai] , results in
X
X, +X
Q [%} , as we apply the flow discrezitation rule over AA_H.
X
Adopting the following notation:
def (x + X )
= k k+1
(E.178) becomes:
[A _
|A—)t((k +1)= (I -RIQX,  +Bu,
|
AH _
llg(k +1)=0%, (E.180)
|Nk+1 - Q)?k+1
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Remark: The step k +1 in the parenthesis of the discrete-time flows, efforts or power energies
correspond to the implicit form of the discretization scheme, given by the flows time-
discretization rule.

The discrete-time power energy associated to the storage port, can be defined as:
def . _ _
Pok+1) = 6L (k+1)f  k+1)=(Qx, ) (0 -RRX, , -Bu, ) (E.181)
which is equivalent to:
def

P (k+1) = ég (k+1)RéS(k+1)—ég (k+1)Bf . (k +1) (E.182)
from simple calculus. For the control port, the discrete-time power energy can be defined as:
. def R _ T
Pe (k+1) = 6L (k+1)f (k+1)= (BT ka+1j fo k+1) (E.183)
which is equivalent to:
def
Pe (k+1) = ég (k +1)Bf (k+1) (E.184)
For the dissipation port, the discrete-time power energy is defined as:
def
Polk+1) = &L (k+1)f o (k+1) (E.185)
which transforms to:
def
Pglk+1) = _é; (k+1)Ré o (k +1) (E.186)
using the general relation:
fo=-Re o (E.187)
Using the discrete-time effort variable:
def AH _
§n (k+1) = F(k +1)=ka+1 (E.188)
(E.186) becomes:
def
Pglk+1) = _ég (k+1)Ré (k+1) (E.189)

From (E.182),(E.184) and (E.186), the discrete-time power conservation law is satisfied:
ng (k +1)+ ISC (k +1)+ F3R (k +1)= ég (k +1)RéS (k +1)—ég (k +1)BfC (k +1)+

- (E.190)
+ ég (k+1)Bf . (k+1)- ég (k+1)Ré ¢ (k+1)=0
Using (4.31), the discrete-time energy (Hamiltonian) is defined as:
def . .
%(k +1) = - ég (k+1)fg (k+1)= y-ll(—+1uk+1 veh (k+1)f o (k+1) (E.191)
Using (E.182), (E.184) and (E.189), we can write equivalently:
def
%(k+l) = 6] (k+1Bfg (+1)- 6] (k+DREg (k+1) (E.192)

Using (4.32), the discrete-time bilinear form can be defined as:
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def a b
; = Tor v [ AX "
B (k+1) = <(ka+1’B ka+1’QXk+1j '[_E(k+l)'“k+1'_RQXk+1] >+
(E.193)
— T . — — b AX - a
<[ka+l’B ka+1’QXk+1] '[_E(k+l)’uk+l'_Rka+l] >
The implicit discrete-time form is defined as:
(fs(k+1),és(k+1), fo (k+1)6, (k+1),fR(k+1),éR(k+1)JeD (E.194)
Replacing the discrete-time flows and efforts we can write equivalently:
[_i_f(k+l)’Qik+l’uk+l‘yk+l’_RQ;k+1’Q;k+lJeD (E.195)

E.2.5 Symplectic discretization scheme V

On this scheme, we assume an implicit mid-point rule for the flows and an implicit Euler for
the efforts. The initial continuous-time lossy PCH system, for which we perform the time-
discretization is:

oH

[X:(J - R)—+ Bu

J ox (E.196)
ly_gT 91

[ OX

Applying the time-discretization rules for the flows and efforts using the general framework
of (4.1) and (4.24), it results:

[ ax (X X )
IE(k+1):(J7R)QL—2 J+B“k+1
|
AH
1?“‘ +1)=Qx (E.197)
| T
ka+1 =B Oy
l
Remark: The composed time-discretization of the effort Fai * Egi [E;i], results in
X
X, +X
Q [%} , by applying the implicit mid-point rule on AA—H.
X
Introducing the notation:
def (x, +x
= [ e | (E.198)

ket T

we can write equivalently:
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[Ax _

}E(ku) (J R)ka+1+Buk+l

AH

{Fku Kt (E.199)
|

{yk+1_B 41

Remark: The step k +1 in the parenthesis of the discrete-time flows, efforts or power
energies correspond to the implicit form of the discretization scheme, given by the flows time-
discretization rule.

For the storage port, the discrete-time power energy can be defined as:

def X, + X
Pg (k+1) i 6 (k+1)f (k+1):(ka+1)T [—(J —R)Q[%]_Buk_ﬂ] (E.200)

Equivalently we can develop as:

P (k +1)dif 6 (k+1)Re S(k +1)-ég Tk +1)BfC (k +1) (E.201)
For the control port power energy, we define the discrete-time power energy as:
def A T
Pok+1) = el (k+1)f (k+1)= [BT o k+1] Uy (E.202)
which is equivalent to:
def A
Pe (k+1) = ég (k +1)Bf . (k+1) (E.203)

For the dissipation port, the discrete-time power energy is defined as:
def

Polk+1) = 6f (k+1)f (k+1) (E.204)
which is equivalent to:
def
Polk+1) = —6 (k+1)Ré (k+1) (E.205)
when using the general relation:
fa =—Rep (E.206)
The discrete-time effort variable is defined as:
def
6p (k+1) = AA"X' (k+1)=0Qc, (E.207)
Then the discrete-time power energy becomes:
def
Pplk+1) = (k +1)Rég (k +1) (E.208)

Using (E.201), (E.203) and (E.208), the power conservation law doesn’t hold in this case:

P.(k+1)+ ISC (k +1)+F3 (k +1)=éT (k +1)R€S (k +1)—ég (k +1)BfC (k +1)+

(
S (E.209)
+eg (k+1)Bf . (k+1)- ¢ (k +1)Ré ¢ (k+1)
More compact, we can write this relation as:

P (k+1)+ P (k +1)+ Py (k +1)= €1 (k +1)R [ eq k+1)-¢ (k+1)J (E.210)
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or replacing the discrete-time flows and efforts:

~ ~ n X, —X

Pe (k+1)+ P (k+1)+ P (k +1)= (Qx k+1)T RQ [%} (E.211)
Remark: The current time-discretization scheme is not a symplectic one, as (4.30) doesn’t
hold and thus, the rest of PCH systems properties are not defined.

E.2.6 Symplectic discretization scheme VI

In this case, an implicit trapezoidal rule for the flows and an explicit Euler rule are selected
for time-discretization. The initial continuous-time lossy PCH system, for which we apply the
discretization scheme is:
= -r) 2 By
ox (E.212)
ly-pT 2H
| ox
Applying this symplectic time-discretization scheme using the general framework of (4.1) and
(4.24), it results:

>

[Ax ) (KT ¥krn ) oYk Yk )
I t(k+1)_(J7R)QL ; J+EsL ; J

oM ox, (E.213)

I >

k +

_nT
Y1 = B Qx k+1

|
|
|
L

Remark: The composed time-discretization of the effort Fai *Egi [aai], results in
X
X, +X
Q[%} , by applying the implicit trapezoidal rule on AA—H.
X
Equivalently (E.213) can be written as:
( X, + X u, +u
}A—(k+1) (J—R)Q( k k+1)+B( k k+1)
A U
AH
J " (k+1)=Qx 4 (E.214)
\
} Y41~ QX k+1
t
Introducing the following notations
def x, + x
= k k+1
e = T (E.215)
def u, +u
- k k+1
Uy = = (E.216)

we can write equivalently:
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[AX — —_

}M (k+1)=(J R)ka+1+Buk+1

AH

|aH 1) 0x g (E.217)
\

tyk+1_B 11

Remark: The step k +1 in the parenthesis of the discrete-time flows, efforts or power
energies correspond to the implicit form of the discrete-time scheme, given by the flows
discretization rule.

The discrete-time power energy associated to the storage port can be defined as:

def
P (k+1) = €L (k+1)fg (k+1)= (ka+1)T (G -RrRlx, ,-80, ) (E.218)
which is equivalent to.
def
F3S (k+1) = (k +1)Re (k +1)-6 (k +1)Bf (k +1) (E.219)
where:
def (6. (k)+é. (k+1
s een) s [Esl)r s brt) (E.220)
: o)
For the control port, the discrete-time energy is defined as:
def T R T T _
Po (k+1) = el (k+1)f (k+1):(B ka+1] 0y (E.221)
which is equivalent to:
def
Pok+1) = 6 (k+1)Bf (k+1) (E.222)
For the dissipation port, the discrete-time power energy can be defined as:
def
Polk+1) = 6f (k+1)f (k+1) (E.223)
which is equivalent to:
def
Pplk+1) = (k +1)Ré g k+ 1) (E.224)
when using the following general relation:
fo=-Reg (E.225)

The dissipation port effort variable can be defined as:

6p (c+1)= 2 (i1 1) (E.226)

= Qx
AX k +1
From (E.219),(E.222) and (E.224), the discrete-time power conservation law results as:

3 (k+1)+I5C(k+1)+I5 (k+1)_e (k +1)Re (k+1) (k+l)Bf (k +1)+

S : C (E.227)
+e-£ (k+1)Bf (k+1)-¢ (k+1) g lk+1)
which is equivalent to:
~ ~ n X, —X
Pe (k+1)+ P (k+1)+ P (k +1)= (Qx k+1)T RQ [%} (E.228)

248



and thus, the discrete-time power conservation law doesn’t hold.
Remark: The power conservation law doesn’t hold for this scheme as (4.30) is not satisfied.

E.2.7 Symplectic discretization scheme VII

This symplectic time-discretization scheme assumes an explicit Euler rule for the flows and
an implicit trapezoidal rule for the efforts. The initial continuous-time lossy PCH system for
which we perform the symplectic discretization is:

[X: (J - R)£+ Bu

ox (E.229)

ly-pT 2H

| oX
Using the general time-discretization framework from (4.1) and (4.24) for the selected
discretization scheme, it results:

( X + X
‘A_X _ _ ( k-1 k )
k=0 R)QL ; J+Buk
\
X + X
|28 o ol et X | (E.230)
| AX L 2 J
\
| X _ + X
- o et
1 L J
Remark: The composed time-discretization of the effort Fai * Egi [E;i], results in
X
Q[w} by applying the flow discretization rule on AA—H.
X
Introducing the notation:
def [ x X
X, = e (E.231)
Lz )
it results:
M—X(k)z (J -R)QX, + Bu
} At k k
AH _
JU(k): Qx, (E.232)
\ TACT
tyk =B Qxy

Remark: The step « in the parenthesis of the flows, efforts or power energies correspond to
the explicit form of the discrete-time scheme, given by the flows discretization rule.
The discrete-time power energy associated to the storage port can be defined as:

A def . _ _

Pe (k) = 6L k) (k)=(x, J' (- -RlQX, -Bu, )  (E233)

Equivalently we can write:

(E.234)



from strainghtforward computations. The discrete-time control port power energy, can be
defined as:

. def . T
Pe (k) = 6] (k)fc(k):(BTka] U (E.235)
which is equivalent to:
. def T )
Po (k) = ég (k)Bf. (k) (E.236)
The dissipation port power energy, can be defined as:
def .
Po (k) = &L (k)fg (k) (E.237)
which is equivalent to:
Po(k)-6g (K)Ré (k) (E.238)
When using the following general relation:
fp=—Rep (E.239)
The discrete-time effort variable is defined as:
def
6n (k) - AAHX (k)= Q¥, (E.240)

Using (E.234), (E.236) and (E.238), the discrete-time power conservation law is satisfied:
T

Pg (k)+ P (k)+ P (k)= 6 (K)Ré ¢ (k)-6g (k)Bf . (k)+ 6 (k)Bf (k)-€{ (K)Ré¢ (k)=0 (E.241)
Using (4.31), the discrete-time energy (Hamiltonian) is defined as:
A0 6T i Tu, el (k)f E.242
Using (2.234), (2.236) and (2.238), (2.242) results as:
def A
%(k) = 6l k)Bf. (k)¢ (OReg () (E.243)
Using (4.32), the discrete-time bilinear form can be defined as:
) def a b
B, (k) = <(Q;k,BTQIk ,Q)TkJ ,[—i—’:(k),uk ~RQ Ik] >+

(E.244)
b

a
- <[Qx‘k 87 0%, .0, | ,[—i—:(k),uk -RQ x—k] >
The implicit form of the discrete-time PCH system can be defined as:
[f‘s (k)eg (k) fo (k)6 (k) To(k)ég (k)]e D (E.245)

Replacing the discrete-time flows and efforts of each port, it results:
AX

[_A_t(k)'Q;k'uk'yk’_RQ;k’Q;kjeD (E246)
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E.2.8 Symplectic discretization scheme VIII

In this case, an implicit trapezoidal rule for the flows and an implicit Euler rule for the efforts
were selected for time-discretization. The initial continuous-time lossy PCH system, for
which we apply this symplectic discretization scheme is:

J)‘(:(J “R) M gy

oX
E.247
ly-pT 2H ( :
| oX
Applying this time-discretization rules for the flows and efforts, it results:
I[i_)t((k L) (- R)Qka+2"k+1)+ B(“k *2“k+11
| L )| J
AH
13& +1)=0Qx (E.248)
| T
ka+1 =B Oy
l
Remark: The composed time-discretization of the effort Fai * Egi [E;i] , results in
X
Q[%} by applying the implicit trapezoidal rule on AA—H.
X
Adopting the notations:
def (x + X )
= k k+1
X1 = L > ) (E.249)
def (u +u )
- k k+1
Uy = ij (E.250)
(E.248) becomes:
[ Ax — _
I_t(k +1)=(J RIQX, , +BU
H
%E(k f1=0c, (E.251)
|

Remark: The step k +1 in the parenthesis of the discrete-time flows, efforts or power
energies correspond to the implicit form of the discretization scheme, given by the flows
time-discretization rule.
The discrete-time power energy corresponding to the storage port can be defined as:

. def . T

P (k+1) = €L (k+1)fg (k+1)=(Qx k+1) - RIQX, ;- Bu_k+1) (E.252)
which is equivalent to:

def
P (k+1) = ég (k+1)Re (k +1)—é£ (k +1)Bf . (k+1) (E.253)
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from straight computations. The discrete-time power energy associated to the control port can
be defined as:

. def A T

Po (k+1) = 6l (c+1)f (k+1):[BTQx k+1} 0y (E.254)
which is equivalent to:

def

Po (k+1) = 6 (k+1)Bf  (k+1) (E.255)

from straightforward computations. For the dissipation port, the discrete-time power energy
can be defined as:
def

Polk+1) = &L (k+1)f - (k+1) (E.256)
which results in:
A def
Pglk+1) = _ég (k+1)Ré (k +1) (E.257)
Using the general relation:
fo=—Reg (E.258)
the discrete-time effort variable is defined as:
def
6o (k+1) = %(k+1)=Qx - (E.259)
From (E.253), (E.255) and (E.257), the discrete-time power conservation law is:
P (k+1)+ P (k+1)+ Py (k+1)= 67 (k +1)Reg (k +1)- €L (k +1)Bf (k +1) (£.260)
+eL (k+1)Bf. (k+1)- 6L (k+1)Ré¢ (k+1)
(E.260) is equivalent to:
Po (k+1)+ P (k+1)+ P (k +1)= 6] (k +1)R[e_ST (k+1)-¢ (k +1)] (E.261)
or:
R R R X, —X
P (k +1)+P ¢ (k+1)+ Pp (k +1)= (Qx k+1)T RQ (M X | (E.262)

oz )
and thus the discrete-time power conservation law is not satisfied.
Remark: This time-discretization scheme is not symplectic as (4.30) doesn 't hold.

E.2.9 Symplectic discretization scheme IX

For this time-discretization scheme, it was selected an implicit mid-point rule for the flows
and an implicit trapezoidal rule for the efforts. The initial continuous-time lossy PCH system
for which we perform the time-discretization is:
o3 -r) 2y
J ox (E.263)
ly-pT 2H
[ oX
Applying this time-discretization scheme, using (4.1) and (4.24) it results:
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t 2L 2 2 J

AH ool Fl ke | E.264
IAX (k+1) QL 7| ( )
| - (xk+xk+w

EER

Remark: The composed time-discretization of the effort F . +E .[Zi
X

di di ] ., results in

X + X X, + X
Q L%k, X ke | , by applying the flow discretization rule on 2H-.
2L 2 2 J AX
Adopting the notations:
def x, +x
= k k+1
Keay -~k (E.265)
and:
_ def (X, +X
x _ (wW (E.266)

(E.264) becomes:

(

|

| A

ll_(k £1)=QK, , (E.267)
|

Remark: The step k +1, in the parenthesis of the flows, efforts or power energies correspond
to the implicit form of the time-discretization scheme, given by the time-discretization rule
selected for the flows.
The discrete-time power energy corresponding to the storage port, can be defined as:

. def . T —

Po (k+1) = &g (k+1)f¢ (k+1)= (Q)?k+l) - R)QX, ,, - Bu k+1) (E.268)
Equivalently we can write:

Pg (k+1)= ég (k+1)RE (k +1)_ég (k +1)Bf (k+1) (E.269)
from straightforward computations. In (E.269), e g k+1) is defined as:

N def (€. (k)+éq (k+1)
e (k+1) = B S j (E.270)

R

The discrete-time power energy corresponding to the control port can be defined as:

def T

Po (k+1) = el (k+1)f (k+1):(BTQx—k+1] u (E.271)

+1

which is equivalent to:
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def
. T .
Pc (k+1) = éq (k+1)ch(k+1)

The dissipation port power energy, can be defined as:

def
. T .
Pr (k +1) = én (k +1)fR(k +1)

which results in:

. def T
Pr k+1) = —ég (k +1)RéS (k +1)
Using the general relation:
fR = — Re R
the discrete-time effort variable is defined as:
def
X AH _
eR (k +l) = U(k +1): QXk+1

Using (E.269), (E.272) and (E.274), the discrete-time power conservation law is:

. . T - T .
Po(k+1)+ Pc (k +1)+ PR(k +1)7es (k +1)Res (k +1) éq (k +1)ch (k +1)

g
+ég (k+1)Bf . (k+1)- ég (k+1)Ré (k+1)
Equivalently we can write:

Pg (k+1)+ P (k+1)+ P (k +1)= 6 (k +1)R(é‘s (k+1)- € (k +1))
or:
(X = %41 )

| |
. 2 )

Pg (k+1)+ P (k+1)+ Py (k+1)=(0%, , JTRQ

(E.272)

(E.273)

(E.274)

(E.275)

(E.276)

(E.277)

(E.278)

(E.279)

Thus the discrete-time power conservation law is not satisfied with this discretization scheme.
Remark: This time-discretization scheme is not symplectic, as (4.30) from the general

framework is not satisfied.
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Appendix F Matrix 1/O representation of symplectic time-discretization schemes and
deterministic identification

General remark: This Appendix comes to prove that the symplectic time-discretization
schemes proposed in chapter 4, can be used for deterministic identification of PCH systems
using ortogonal or oblique projections. The main differences between the discretization
schemes are given by different structures of the past/future states and output vectors,
maintaining in the same time the classic approach of state-space form. Thus all symplectic
time-discretization schemes can be used as well for determining the system parameters.

F.1 Symplectic discretization scheme 11

For the 2" symplectic discretization scheme of chapter 5, it is proposed an implicit Euler rule

for the flows and an explicit Euler rule for the efforts. Applying the general discretization

schemes introduced in chapter 4, we can write the following state-space form:
Jxk+1:AXk+Buk+l (F.l)
Vi1 = Sk

where the A, B,C matrices represent the state-space matrices of the discrete-time PCH

system. For k =0, the above equation is:

X =;X +B_U
P Ao ey (F2)
1Yy =S
For k =1, (F.1) becomes:
(, _ & _ 22
lxz_Axl+Bu2_A x0+ABu1+Bu2 (F.3)
[y, =Cx = CA +CBuU
For k =2, we can write:
(v _ a3y +a23 Ny
ng—A O+A Bu1+ABu2+Bu3 (F4)
lyS—CA2 0+C;B_u1+CETu2
Using (F.2), (F.3) and (F.4), the following relations can be deduced:
[ d d _xiyd , ,d,+
Ixf =X = AIX AU
0
JYP:( )Xd+H_d up (F.5)
| 1"I 1} i-1
|
_ d d +
l[Yf =X LY
In the above relation, u ; represents the vector:
U;,":(u1 u, us .. ui) (F.6)

from which the 1% input u, is missing, while u; is augmented.
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Remark:

The matrix input-output equations of this symplectic discretization scheme are similar with
the classic state-space form, with the 1% output always zero. In this case, as for the previous
symplectic discretization scheme, the proof of the deterministic identification theorem follows
the same steps as for the classic case and it won’t be performed further.

F.2 Symplectic discretization scheme 111

This symplectic discretization scheme, assumes an explicit Euler rule for the flows and an
implicit mid-point rule for the efforts. Applying the general discretization rules introduced in
chapter 4, we can write the following state-space representation:

| :Xk+(;_ {%J+ E?uk
| G
} y ( SRR

S )
The implicit form of this time-discretization scheme is:

[fs (k)eg () fo (k)ég (k) Fp k)6 (k)je D (F.8)

Remark: Using the same rules as for the 1* two symplectic discretization schemes, the results
are laborious and no general (recursive) formulas can be found for a vectorial representation
of the states and outputs. By combining this symplectic time-discretization scheme with the 1%
one, a vectorial representation of the states and outputs may be obtained.

Using (5.24) and (F.7), it can be observed that the following relations can be written:

Tk d (;—W_k—l d —K d
ko1 T A X0 A Yok R J[A %ot AP ork-2 A ¥o P A Yok 1J (F.9)
+B_Uk
More compact this relation can be written as:

A2i2A 1)~ N N (2Bu )

_(A +2A -1 |—k_1 (A+1] d (A-1].d K
Xk+1_t—2 JA x0+L 5 JAkUD/k_1+L 5 JAk—1U0/k—2+{ . J (F.10)
Next we adopt the notations for simplicity:

( def - —
a=d = A~Ad:[AkB ak-lg ABJ
I k+1 k
def __ _ _ _ —_ _
JA*d = Aad :[Akle ak-2g ABJ (F.11)
|k k-1
| — —
=k (A2 2a -1 ]

Remark: The minus sign was introduced for the reversed extended controllability matrix in
(F.11) as the last term is missing.
Using (F.11), (F.10) becomes:
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—d d ~d d =
=1 AhPork-r TP ork-r A% York-2 T8 1York-2 T2BYy
X =A X + (F.12)
k+1 0 2
Further we can write:
d d = -d _,d
A% U A% B ATY A u
Tkt k+1 0/k+( K j 0/k+[ K k_1J 0/k-2 (F13)
k1 T Xo * 5 :
More compact the above relation can be written as:
= v 1
R LR IR W 19
2 Mok |
Adopting the notations:
def
|(A*d il -d _,d d i g
| ket 2| "k k-1 “k+l Tk )] (F.15)
| def
* T
Vo = Vo s You
(F.14) becomes:
_ 2 k+l *d o *
X, = A Xg +A, 1Y o/k (F.16)

Remark: The state-space form of (F.16) is similar as form to the classic state-space
representation.

Then we define the future states, as follows:

d d
£ =%

For the system outputs, using the 2™ relation in (F.7), we can write:

d
p

X _Aix du’ (F.17)

*
+Ai

X + X = =
[ Kkt X)) e (Tkea,d L *d kyd . *d, *
yk_CL—Z J_Z[A Xp+a, Vg ptA xP+Aku0/k_1] (F.18)
This relation can be further written as:
U
= = * * 0/k-2
y =S (AkL Ak d, Cf Ad( | (F.19)
k™3 P o1 %k Tk LU* J
0/k-1
Then we can represent the past and future outputs vectorialy as:
[ *%k d -k*d *%
Yp=T; Xp+H “U,
J *—d *%x Kk (FZO)
{Yf:rixf”'i U
where:
def 0 def — —. T
r lw . Lr. ),r. -[c ca .. call (F.21)
i 2 LF J i i
-1
(A" 0 o A" o o]
|1 0 |
def def | ,*d *d
ok 0 0 A 0 0l
xd Z x A oZ Ay 1 l (F.22)
P 0 i | |
- * |
LA.d 0o ATd o 0]
i—-1 1
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Xf 1+Xf
—4 _
D —— .

. ; (F.23)
Then the final form of the matrix input-output equations is:

(d _yd _riyd  *d, *

Ixf =x; =AlXxg+a U,

' x4 4 xd

|—d f-1 f

X - -

1 2 (F.24)

|

_ ** d **d *

IYP—FI Xo+H, TUp

| B * —( *x *%

p/f_rixf+Hi U

Thus we introduce the following theorem for the matrix 1/O representation of this
discretization scheme.

Theorem F.1

The matrix I/O equations of a discrete-time PCH system represented in explicit form in (F.7)
and in implicit form in (F.8), for a symplectic time-discretization scheme with an explicit
Euler rule for the flows and implicit mid-point rule for the efforts are:

Ix_d _xf_1+x‘]i'

X s (F.25)
ti=Ff*X§+Hf*dUE

ltYf :ri*x_‘f’+Hi**du’;*

At the next step, we search for an equivalent state-space representation using (5.33) and (F.7).
Replacing x, from (5.33) in (F.7), it results:

— A — 1 — — —
Xk+1_AXk—1+Buk—1+[ ; }(xk_lJrAxk_1+Buk_l)+Buk (F.26)
Equivalently we can write:
— - _ —, —_ _ — _
) _2Axk71+28uk71+Axk71+A Xk—1+ABuk—1+ZBUk_Xk—l_AXk—l_Buk—l
k+1 ~ 2
(F.27)
Performing the possible simplifications, this relation becomes:
2 o —_— _  _{u
xk+1:($)xk_l+%[AB+B 2Bf k_ljl (F.28)
L J S
Using the 2" relation from (F.7), we can write for the outputs:
X + ;X + B_U
Y, = C[ k-1 k2—1 k-1 J (F.29)
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(F.29) can be further written as:

C+A cB
yk :[ 5 }Xk—lJrTuk—l (F30)

Using (F.28) and (F.30), we can Write the following two relations:

—_ — || x
) [P ST e
e " C+/? 1, — I ¥k-1 | (F-31)
L E(CB o) JL“k J
A simpler representation of the above system is:
(Xk+1w ('& %ka—ﬂ (F.32)

| [ | g
SPENIRTIN-Y (P
where the following notations have been adopted:

f~def(X2+2;_lj._def 1 —— —
JA =ij,5 - 2(AB+B 28
(F.33)
| —_
|cdif —C+A,5dif lice o
l 2 2

Remark: Similar to the classic state-space approach, it is possible to recover the initial state-
space matrices (A,B,c ) by solving (F.32) when having knowledge of the input/output

vectors.

In the following lines, we will prove the deterministic identification theorem for this
symplectic time-discretization scheme. We propose thus a deterministic identification
theorem as in the classic state-space case for the selected symplectic discretization scheme,
which is proved further.

Theorem F.2

Under the assumtions that:
I. The input Uy is persistently exciting of order 2i .

I. The intersection of the row space of u T (future inputs) and the row space of x g
(past states) is empty.

l11. The user-defined weighting matrices w, « R™" and w < R X are such that W,

is of full rank and w , obeys: rank [w . ] = rank [w W, ] , where w  is the block

Hankel matrix containing the past inputs and outputs.
and with o, defined as the oblique projection:

:[Yf 1o ]WP Q)
and the singular value decomposition:
U, sV, (2)

we have:
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The matrix o, is equal to the product of the extended observability matrix and the
states:

*

7 d
0; =T X 3)
The order of the dynamic system is equal to the number of singular values in (2)
different from 0.

The extended observability matrix ri* is equal to:

* -1 o 1/2
Ly =W, U s eT (4)

The part of the state sequence x_(: that lies in the column space of w, can be

recovered from:

x_‘:w 1 1s1/2y T (5)

d

The state sequence x_f is equal to:

.
xf:rﬁoi (6)

Remark: The proof follows the same steps as for the classic state-space approach [107] in
the deterministic identification.

Proof:

Using (F.24), we can write the average value of the future states as:

(x4 +x9)

cd | f-1 fl_1(Ti-1yd _ ,*d > Tiyd o xd*
X% = ; =S AT g A LU s ATX D AU (F.34)

L J

- :I_l :I * * (U : )
Xd:(A + A )Xd_’_ (A,d Ad]| P—ll (F35)
f L 2 J P 2 i-1 i u* |
P )
Adopting the notations:
|[Ai dif (Al al)
R
(F.36)
| def
| 10 *d
[AM - Z(Ai—l A ]
(F.35) becomes:
X(::A' xg+AMu;* (F.37)
where:
e O€f . o T
Ug = (u b1 upj (F.38)
Using (F.24), we can write (F.37) equivalently:
><_‘;I :A:VI [ri***YP—ri**+Hi**du;*]+AMu;* (F.39)
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More compact, we can write:

Zd N
Xf—[AM A

or equivalently:

by adopting the notations:

:[A Al pTrg Tl r.**+J
M M i i M

Using (F.24), we can write for the future states as:
* * * **d **
Y =TiLpWp+H, U

As for the classic case, we multiply this relation with the orthogonal projection of u :*

(future inputs) and we get:

Y. 1 FLW s H U
Frlgp™L i PR el T fur L

We remark that the term u *:n - is zero and thus, it results:
u

Vil ey r LPWPHUf x|

Using the definition of the orthogonal projection (F 45) becomes:

**i
Yf/Uf =T, LPW /Uf

(F.40)

(F.41)

(F.42)

(F.43)

(F.44)

(F.45)

(F.46)

Multiplying to the right with the pseudo-inverse w /u )" and W, we can further write:

+
**J_ * **J_ *_ * * *
o g e

(F.47)

Similarly to the definition of classic state-space systems, we can define an oblique projection

in this case:

O —F LPWP

where:

Using (F.41), (F.48) becomes:

where:

holds.
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Further the weighting matrices W, eR lixli and w_ < r ™ are introduced, such that w, is of

2 €
full rank and w , obeys rank [w ; } - rank [vv w 2] It is necessary to prove that:
P

rank [W iy ] =rank |W_ /U **J‘] (F.52)

P f

Using (F.22) and (F.24), we can write w ; as:

! *Jupl
. 4i-6
| ( '**dJ ol ° | (F.53)
C i e
where:
** ** * * T
Up :UOIi—1:[UO/i—2 UO/i—lj (F.54)
Multiplying to the right with the orthogonal complement of u ’;*l , We can write:
U * *
x (|(4|—6)m 0 )( Pyt **i)|
wonoo,, = i | (F.55)
P uf 1 ‘ H ** r** | X d -
S Ry
which becomes further:
(l - (U *k /U *x | )
ek 4i-6 Jup
wouh o (4i-6) [ T (F.56)
P f | N *k ‘| d U x|
L D R
Using also the initial conditions assumed for Theorem F.2, it results:
(U] up
rank | ] | = rank I ] | i (F.57)
‘ | **
\X P LX P /U f )

which proves then (F.52).

Remark:
The initial conditions are maintained as for the classic case, the only difference is that w ; is

changing his structure according to the symplectic time-discretization scheme.
**J_

As for the classic case, we can develop the (SVD) decomposition of w ; 0 as
T
s, 0 (V
* *x | 1 w 1 T
woult =g UZ{O ojIVT} U, SV, (F.58)
V2 )
Remark: Since w , /u " is a linear combination of the columns of w ; and since the rank
of w, and w /u " are equal, the column spaces of w ; and w 5 /u " must be also
equal.
We can write then w _ as:

P
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*

W_ =U_R (F.59)

P 1
Using the SVD decomposition (F.58), we can write:
+
* **J_ * **J_ * T _1 T
(WP O ](WP e j W =[U181V1 )(vlsl u, J(UlR) (F.60)
Using the properties:
T T
Uju =v, v =1 (F.61)
assumed for the SVD decomposition, it results:
+
* **J_ * **J_ * *
[wp/uf ][WP/Uf j Wp =W, =UR (F.62)
Using (F.59) and (F.62) it is obvious that:
+
* **J_ * **J_ * *
[WP/Uf ](WP/Uf J Wo =W, (F.63)

which proves also (F.51). For the 2" claim of the theorem, we can write:

W, oW, :[wlrrj[x_‘fjwzj (F.64)

where 1" has n columns and x_‘: n rows. The rank of this product is also n, which proves

the statement of the theorem. Introducing a non-singular similarity transformation (1 ¢ R ™"

), we can write w, r;" and x_‘]i' w, as follows:

1
* 1/2
W, =u,8°T (F.65)
< d ~1.1/2,, T
X QW =T 7784V (F.66)

Multiplying to the left with wl‘1 in (F.65), we get:

* -1, <1/2

Ty =W, U, 8077 (F.67)
which proves statement 4 of the theorem. From (F.66) also the 4™ statement of the theorem
results. Using (F.50), the future states can be written as:

x4 -ri*o, (F.68)

which proves the last statement of the theorem. From (F.50), (F.64),(F.66), (F.67) and (F.68),
it results that the deterministic identification theorem proposed for the current discretization
scheme is proved.

F.3 Symplectic discretization scheme 1V

In this case, it is assumed an implicit mid-point rule for the flows and an explicit Euler rule
for the efforts. The discrete-time state-space representation of this symplectic time-
discretization scheme, starting from the general relations of chapter 4, is the following:

( _ X + X ) _
k-1 k
><k+1:xk+(A—|{fJ+Buk+1 (F.69)

|
Vi1 = Xk
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The general implicit form of the PCH system for this symplectic discretization scheme, is the
following:
(fgk+1)eg(k+1) fo (k+)es (k+1) fpk+1)ep (k+1)eD (F.70)

Using the 1% relation from (5.24) in (F.69), we can write the following equivalent relation:

Tk d (A1) Tk-1 d —k d —
“kr1 = A %o +AkU0/k—1+L 2 J(A Yot A York-2 A %o +AkU0/|<—1]+ Bl
(F.71)
Equivalently we can write:
A k+1 Ak k-1 N N 2Bu
ARt AR A (A+1].d (A-1].4d K+1
X1 = > X0 +L > JAkUO/k—l+L ” JAk_lu 0/k-2"" 5
(F.72)
Adopting further the notations:
{fkﬂ de:f ak+l, oak _ak-1
| 2 (F.73)
| q def __ q — — = L
[A_ = AA :[AB AXT'B AB]
k+1 k
(F.72) becomes:
~k 10 -d _.d d d (UO/k_Z)I
=11 ~ ~ _
X, g = A X0+E(Ak -AL 1t ZB]\UOIk—l | (F.74)
U k+1 J
Further we adopt the notations:
( def
|A¥d _ 1l ,-d _,d -d d 5
Ak 2[Ak Aror B A ZBJ
I ,  def T
Poe Yoz Yorka Ul (F.75)
| def
d _
IXP = X,
l
and (F.74) is equivalent to:
k+lyd | *d o, *
X, 4= A X +A, Yo (F.76)
Then we can write then the following relation for the future states as for the classic case:
d _d _Hiyd *d,, *
XL =X{ =A X +A UL (F.77)
where:
* T
Up =Ugsiis Yosia Vil (F.78)
For the system outputs we can write:
~k *d, *
yk+1:ka:C[A Xo + 4, UO/k—l] (F.79)
Vectorialy we can write then the past outputs Y, of the state-space system, as follows:
** d **d **
Yp=T; Xg+H "U, (F.80)



with the following notations:

|[**def LT, def . N

Iri :(0 Fi—l] ‘UP :[0 0 u0 ui—2j

| T

J ( 0 0 0 o) (F.81)
. def 1A 0 o o '
pd 2 el o \

" :

| LA’fd 0 .. 0]

| i—2

The first zero appears in (F.81), because the initial output is zero. Similarly with (F.80), we
can write for the future outputs the following relation:

¢ +H9ul (F.82)

Y. =T.X
T f-1 f

f

The future states term x ‘: d

) stands for the future states x . Vector, with one step behind.

The future inputs U, and H " are defined by:

ISCI
def T I *d I
* B * * * *d_ A 0 0
U —[ul_l u; u2i_2] H, _Ci 1 I (F.83)
| . T
*d
LAi—l 0 .. OJ

From (F.77), (F.80) and (F.82), we can write the matrix input-output equations for this
symplectic time-discretization scheme:

(yd _ ~iyd *d,, *

x 9 =atx 2 atlug

JY N R R IV (F.84)
P i T i p :
ly -1’ xd +Hi*dU*

[ f I f-1 f

As for the classic state-space approach, we formulate the following theorem:
Theorem F.3

The matrix input-output equations of a discrete-time PCH system, represented in explicit form
in (F.69) and in implicit form in (F.70), for a symplectic time-discretization scheme with an
implicit mid-point rule for the flows and explicit Euler for the efforts are:

(¢d _nigd  ,*d =

_ 1
‘Xf—AX UF’

i
** d **
i

Uy (F.85)

d, *
v f

+ A

JYP:Fi X

ly - d *
[Yf =0y XL H,

P

** d
+ H

P

Next an equivalent state-space representation will be written using (F.69) and (5.24).
Replacing the states from (5.33) in (F.69), we can write:
o LA

Xk+1=Axk—1+Buk—1+LTJ(Xk—l+ k-1 k—1)+Buk+1 (F.86)



Equivalently we can write:

) :ZAXk_1+ZBuk_1+Axk_1+A xk_1+ABuk_l—xk_l—Axk_l—Buk_1 K+l
k+1 2
(F.87)
More compact this relation can be written as:
N — _——  _Ju, .1
xk+1:(wka_l+i[B+AB 28{ k-1 (F.88)
L 2 J 2 Uit ]
The system outputs can be computed as follows:
Vg =Xy =C(Axk_1+ Buk—l) (F.89)
Equivalently we can write:
u
~ — k-1
Y., =CAx, _,+lce o e (F.90)
U k+1)
Using (F.88) and (F.90), the following relation results:
ToR2 0 1 —— %l
(Xk+l)_|(% %(B+AB ZB))lu I (Fgl)
\ |~ 2 _ k-1 '
Vket) L ca & o Ju, |
Adopting the following notations for a compact represention:
(_def 0 a2 _ ~def , _ __  _
A= 2212 ~ g - Z(B+AB 2B)
l 2 - (F.92)
| ~def _ _def _ _ def T
[C = CAD - s ofi, ; =, u .,
we can simplify then (F.91) as follows:
X A oRr )X
M ][ 5 -1 (F.93)
D

Yk+1) (C

Further a deterministic identification theorem, will be proved for the selected symplectic time-

discretization scheme.

Remark: Similar to the classic state-space case, it is possible to recover the state-space

matrices ( A, B,c ) by solving (F.93), knowing the input/output vectors.

Thus we propose the following theorem:
Theorem F.4

Under the assumtions that:
I. Theinput u, is persistently exciting of order 2i

I1. The intersection of the row space of u : (the future inputs) and the row space of x g (the

past states) is empty.
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- j—1)x[ j-1
1. The user-defined weighting matrices w, « rR"™ and W, e R(J ] ]are such that w

1

is of full rank and w, obeys: rank [W - ]: rank [W cw ] where w _ is the block
p-1 p-1"2 P

Hankel matrix containing the past inputs and outputs and with o defined as the oblique
projection:
oiz(vf /Uf_lelo_1 (1)

and the singular value decomposition:

T
s, 0 (V W
_ 1 1 _ T
wlo|w2_(u1 uz{ )| L 1=Ugsv (2)
0 0JjyT |
2 )
we have:
1.The matrix o is equal to the product of the extended observability matrix and the
states:
* . d
O =Ty X ,
©)
2. The order of the system is equal to the number of singular values in (2) different from
0.
3. The extended observability matrix rr is equal to:
* -1 1/2
Ty =W, U, s 0eT (4)

4. The part of the state sequence x ‘:_l that lies in the column space of w, can be
recovered from:
d o -1.1/2,, T
XL W, =T sV, (5)

5. The state sequence X ?—1 is equal to:

d *
xf_lzri+oi (6)
Proof:
Using (F.85), we can write:
x‘: :;i(rr*+YP—l"i**+Hi**dUT)*}+ATdUP (F.94)
where:
** * T
SEEICEEY (F.95)
**d *d *d T
H. =c(o Ay AFZJ (F.96)
Up =[0 0 uy . ui_z] (F.97)

Remark: The first zero terms in (F.95),(F.96) and (F.97) corresponds to the first output of
the system response, which is zero.
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(F.94) can be also written as:

X ‘]f - (frl*” I**d A’:d j(z f )I+ firl*”vp (F.98)
P
Adopting the following notations:
I[LTD de:f (_ I**+ I**d A*ifd flrl**+J
4| e . (F.99)
lLWP = [UP U, YPJ
we can write (F.98) as:
X ‘: = LW, (F.100)
Using (F.85) and (F.100), we can write:
Vo=, wl o endut (F.101)
Multiplying to the right with the orthogonal projection of U | , it results:
Y £TT *LzrrL’;_lW;_anf *J_+Hi*dU’;1'IUf * | (F.102)

Remark: The terms L;, _, and w;_l come from the fact that the future outputs, are

expressed in rapport with the future states, with one step behind x ‘;' e

We can write then:

*J_ _ * * * *J_
YU S =Tl W /U (F.103)

using the orthogonal projection operator and the property:

U nUf . (F.104)
*J_ * *J_ + * * * *
[Yf ' J[WP—llu f J Wp 1 =Tiltp Wp_y
(F.105)
We introduce then the oblique projection for the left term:
+
*J_ * *J_ *
0; :[Yf 1o J[Wp_l/u ) J wWo o, (F.106)
Using (F.100) and (F.105), we can write:
0;-Tix{ | (F.107)
In (F.105), the following relation has been used:
+
* *J_ * *J_ * *
[wp_l/u ¢ ][wp_l/u ¢ ] Wo =Wgo (F.108)
For the next step it is necessary to prove that:
* * *J_
rankW o = rank (W p_q /Y J (F.109)

We can then write the following relation:
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(I 0 0 | u
Nz e
Wo o= 0 |[2|_4]m 0 |} Up I (F.110)
- " 'Lx ¢ |
L H i1 0 Fi_1J p
where:
Wo=LoW, (F.111)
Further we multiply to the right with the orthogonal projector of u ’; , which satisfies:
uon ., =0 (F.112)
Fou L
and we can write:
( (U I )
| 0 0 ) P *1
} (2i-4)m I ui I
> - lu ™ |
Pl =L _} 0 2ia)m 0 I‘U Pnuf | (F.113)
\ |
**d ** ‘ d |
Equivalently we can write:
( (U I )
| 0 0 ) P *1
| (2i-4) | uree
* *J_ _ ‘ * |
W, /U _I 0 |[2i_4]m 0 I‘U Hur 1| (F.114)
\ |
**d ** ‘ d |
LHi_l 0 r'—lexPHUf o |
or:
( Yur it
Lo R
* *i * *l
Wo U :I 0 |[2i_4)] 0 HU p /U { (F.115)
*%* (] *k d * |
L i—1 0 |—1JLXP/Uf J
Using the initial conditions assumed on this theorem, it results:
o™ (U * U J_)
Ve A
rank }U P }: rank }U p U fl I (F.116)
‘ d ‘ *
X d L
.y Lx p 'Yt J

which proves (F.109).

Remark: It is necessary to use the same initial conditions, as for the classic state-space case,
in order to prove (F.109), the only difference is given by the structure of W; , Which is
changing according with the symplectic time-discretization scheme.
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We then introduce the SVD decomposition:

T
wo o Ut =y UZ{O o} L 1=Ugsyg (F.117)
VR
2 )
where w /U ’;i is a linear combination of the columns of w ;_1 and using (F.109), the
column spaces of w . and w_ , /u’ " are also equal. We can write then the following
relation:
W, ,=U,R (F.118)
Using the decomposition from (F.117), we can write:
+
* *1 * *1 * T -1, T
(wp_l/u ) ][wp_llu f j WP—1:(U151V1 j[vlsl U] j(UlR) (F.119)
Grouping the terms in (F.119), it results:
+
* *| * *1 * T -1(, T
(Wpillu ¢ ][Wpillu ¢ J wWo o, :ulsl[v1 V1]31 ( 1 UljR (F.120)
Using the properties:
T T
Uju =v, v =1 (F.121)
related to SVD decomposition, it results:
+
* *J_ * *J_ *
[wp_l/u ] J[wp_llu ‘ } Wo  =U R (F.122)
which is also equal to (F.118). We then compute:
* o d
W, 0w, =W, IiX o W, (F.123)

_ - j—1)x( j-1 -
where we consider w, < R lixli- and W, e R( X ].The future states vector X ‘:_1 in this

case is:

d d d d d nx(j-1)
Xf—l [Xi—l X, Xi+j—3 Xi+j—2}€R (F.124)

d

The rank of wlri*and XL W, is n and also is their product. Thus statement 2 of the

theorem is proved. Introducing a non-singular transformation matrix (T < R™" ), we can
write:

(eri*=u1511/2T
J d -1.1/2, T (F.125)
[xf_lwzzT S
from which the observability matrix ri* Is:
* -1, <1/2
Ty =W, U, 87T (F.126)

This proves statement 4 of the theorem. Statement 5 of the theorem is given by the 2™ relation

of (F.125). From (F.107), we can recover the states x ?_1 X

x9  -rito, (F.127)
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which proves the last statement of the theorem.
F.4 Symplectic discretization scheme V

This symplectic time-discretization scheme assumes an implicit Euler rule for the flows and
an implicit mid-point rule for the efforts. The general form of this symplectic discretization
scheme is:
( Al ) _
X1 = % 5 J(Xk+xk+1)+8uk+1
J (F.128)
Iy ZC(Xk X1 )

k+1
L2 )

X

.
L

The implicit form of the PCH system for this symplectic discretization scheme is:

(fgk+1)eg(k+1) fo (k+i)e (k+1) fo(k+1)eq (k+1)eD (F.129)
Using (5.33) and (F.128), we can write equivalently:
Tk d (A-1) Tk d —k+1 d —
Xk+17A X0+AkU0/k—1+LTJ[A X0+AkU0/k—l+A X0+Ak+1UO/k]+Buk+l
(F.130)
This relation can be further written as:
~k d k+1 ad Tk+2 ad
) :2A XO+2AkU0/k_1+A XO+AAkU0/k_1+A XO+AAk+1U0/k
K+l k d 2 (F.131)
L d A k+1 =
AT Mok T AT X T A Yok TR Y
2
This relation can be further written as:
(Ak+2 4k (— ] N 2Bu
A + A A+1) g (A-1].d K+1
B e . e e e T e Ry S [ (F.132)
Adopting the notations:
( def  _ _ Y
A~ :[AkB ak-1g AZB ABj
j k+1
| = def(;k+2 Akw def (F'133)
|Ak+1 _ + ’xp _ XO
2
L L J
(F.132) becomes:
—d d d d =
=1 d A|<+1U0/|<—1+A|<U0/|<—1+A|<+2U0/|<+1+{‘Ak+1 BJUO/k+1
Xpep AT T Xt 2
(F.134)
More compact we can write (F.134) as:
= u
_k+lyd  1( —d d d .\ d —(York-1)
X g =A XP+2(Ak+1+Ak Ak+2+[ A e BHU | (F.135)
(" 0/k+1)

Adopting further the notations:
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def

[ _
A% l(A‘d Al ad +[—Ad B]
l k+1 2( k+1 k k+2 k+1 ) (F.136)
|, def
Vo = Vonea Yoren)
we can express the states as:
Tkl d o xd o *
X, g = A L (F.137)
The future states become then:
d d _Jiyd  *xd , *
X$ =X =AXg AU, (F.138)
where:
* * * * * T
Up =[u0 ug e U, uiflj (F.139)
stands for the past outputs. We compute then the system outputs, as follows:

c C(ikyd  *d, * “k+lyd | o*d o *
yk+1:?(xk+xk+l):?[A Xp+8 Ug o +A XP+Ak+1UO/kJ (F.140)
At state k , the output can be written as:

c= c= c |rU 0 1|
_C Tk-1yd  C Tkyd CT *d *d 11~ 0/k-2
Yy =5 A Xp+ A XP+2LA|<—1 Aleu* | (F.141)
Yok ]
A vectorial representation of the past outputs is:
** d **d **
Yp =Ty Xg+H U, (F.142)
Using the notations:
def 0 def = =
r;” o= %w . +ri*),rl - [C CA CA'*lJ :
)
*d *d
wrg O g I(A—l 0 A O)l o Oef -
i ; L LS LY
42 Ais1 o)
(F.143)
similar to the classic case. For the vector of future outputs, we can write:
*_d **d **
Y =TypXp+H U (F.144)
where:
d d
g et X PRy
Xt = —5 (F.145)

Using (F.138), (F.143), (F.144) and (F.145), the matrix input-output equations result as:

272



I[x‘fJI :fixg+A’;dU;
I—d xf—1+xcfj
fo: 2

iYP =ri**xg+Hi**du;*
{Yf :Fr)(_?+H:*du:*

Theorem F.5

(F.146)

The matrix input-output equations of a discrete PCH system, represented in explicit form in
(F.128) and in implicit form in (F.129), for a symplectic discretization scheme with an

implicit Euler rule for the flows and implicit mid-point rule for the efforts are:

(yd _Kiyd *d  *
IXf_A Xp+A U,
| d d
=g Tttty
X =
X 2
|
_ ** d **d **
IYP_Fi Xp+H UL
| _L*7d *% *k
[Yf‘rixf”"i Uy
Next we write a more compact form of (F.128), using (5.24) as:
(A-1), = = \.=
xk+1=xk+L 5 J(xk+Axk+Buk)+BukJrl
Developing this relation, we can write:
_ — __ — _
_2Xk+AXk+A xk+ABuk—xk—Axk—Buk
X =
k+1 2
_2 - __ -
) _(A +|WX +ABuk Bu, +2Bu,
k+17L 2 J k 2
Equivalently we can write:
N2 __ _(u
x (A +I)x +Las-B 28] K |
k+1 2 J k 2 u \
U k+1)

For the system outputs, we can write:

y = C—(x + X ): —
k+1 o V'k k+1 2
Equivalently we can write:

oAl 1eg of 'k
k+1t2Jk

Using (F.151) and (F.153) it results:
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(F.148)

(F.149)

(F.150)

(F.151)

(F.152)

(F.153)



ESETREY R
~—(AB-B 2B
(ykm T2 ( ) ): (F.154)
\Tk+1) L %(CB 0) J
Further we can adopt the notations:
(_def (1 _def __ _  _
A e_(AZ-HWBe_(AB—B 28
J L ) (F.155)
| _ def ~ . def _ _ def
lt = C;A;D = %(CB O}uk = (uk uk+l)T
and (F.154) becomes:
(Xk”-w (;‘ gkaj (F.l56)

l\yk+l)|_‘kc~ 5)|LJkJ

Remark: As for the classic state-space case, it is possible to recover the state-space matrices
(A,B,c ) by solving (F.156), when knowing the input/output vectors.

Next we propose a deterministic identification theorem corresponding to this symplectic time-
discretization scheme and perform the proof as in the classic state-space case.

Theorem F.6

Under the assumtions that:

I.The input u, is persistently exciting of order 2i

I. The intersection of the row space of u ’;* (the future inputs) and the row space of x g (the

past states) is empty.
IIl. The user-defined weighting matrices w, « R"™!" and w, « R ™ are such that w _ is of

full rank and w, obeys: rank [W;]: rank {W;WZJ, where w . is the block Hankel

matrix containing the past inputs and outputs and with o, defined as the oblique
projection:

oiz[vf/U’;*].w* (1)

and with the singular value decomposition:

()

.

woow, =, Uz{l ](VlTW
0 0

\Fy

we have:
1.The matrix o is equal to the product of the extended observability matrix and the

states:
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0, =T x¢

2.The order of the system is equal to the number of singular values in (2) different
from 0.

3.The extended observability matrix ri* is equal to:

l"-* W —1U S1/2

i 1 171 T (4)
4.The part of the state sequence x ‘: that lies in the column space of w , can be
recovered from:
< d ~1.1/2,, T
X QW =T 758 75V, (5)
5.The state sequence x f]f is equal to:
—4 .
x4 =rito, (6)
Proof:
Using the first three relations of (F.147) we can write:
[x x|
X7+ X
_d ] |—1 | **+ **+ **d ** **
X _LfJ_AM [ri Yp-T; "H, TUL J+AMUP
(F.157)
where we define:
|[A' de_f NRETN
Mo 2
™| J (F.156)
{ def «d «d
[AM - ;(Ai—l A| }
Equivalently we can write:
_d _ i **+ **d i **+ (U ;*)
X9 - [A M AT TH] AT ]LY (F.159)
P
Adopting the notations:
[ = i *k *% i wk
JLP:{AM—AMFI | Au T ]
. » T (F.160)
[w b= (u b YP]
(F.159) becomes:
—y
XL =LlpWy (F.161)
Using (F.161), the future outputs from (F.147) become:
* * * **d **
Y =TjLpWo +H TU (F.162)

Next we apply the orthogonal operator 11 ... , to the right:
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_ * * * **d **
Yf~1'IUf**J_—]"iLPWP1'[Uf**J_+Hi Ufnuf**J— (F.163)
Using the orthogonal projection operator, we can write equivalently:
**J_ _ * * * **J_
YU T =T LW JU (F.164)

+
Multiplying to the right with the pseudo-inverse [W NIV ] and w  , we can write:

+
**J_ * **J_ * * * *
[Yf/Uf ][wp/uf J Wo =T LW, (F.165)
Using (F.161) and the oblique projection operator, we can write:
* d
0 =Ty X (F.166)
For the next step, it is necessary to prove that:
rank [W ; ] = rank [W; /U :*J‘ ] (F.167)

Using the expression of w ; from (F.160), we can write equivalently:

* (I[4i—2)m ° Yu ;*)

R IR (160
( i U P
where u " has the following form:
*% * * T
Up Z[U 0:/i-2 UO/i—l] (F.169)
We then multiply in (F.168) with the orthogonal complement of u ’;*l and we get:
x ('[4i-2)m 0 )(U ;*Huf L W
| n™ ]
N Hi r' )LXPHUf**J_J
Using the two initial conditions assumed for the theorem, it results that:
(U**) (U;*/U:*J_W
rank | | | = rank } . . } (F.171)
| | **
\X P LX P /U f J
Then we get:
rank [W ; ] = rank [W; /U ?J‘ ] (F.172)

Remark: The initial conditions assumed on the deterministic identification theorem for this
symplectic discretization scheme are similar to the classic case, the difference being given by

the block Hankel matrice w ; which changes the structure.

We denote then the SVD decomposition of w ; /u . as:

U, sV, T (F.173)



Asw ; /u "t isalinear combination of the columns of w J and (F.172) is satisfied, then the
column spaces of w 5 and w 5 /u " are also equal. We can write then:
Wg =U R (F.174)
Using the SVD decomposition from (F.173), we can write:
+
* **J_ * **J_ * T _1 T
(W b /U ][W /U j W = [U A j(vlsl u, J(u (R (F.175)
Using the properties:
T T
ViV, =Uu U= (F.176)
associated to the u ,v matrices from the SVD decomposition, it results:
+
* **J_ * **J_ *
[wp/uf j[wp/uf ] Wy =U R (F.177)
Using (F.174) and (F.177), we can write the following relation:
+
* **J_ * **J_ * *
{WP/Uf J(WP/Uf J Wo =W, (F.178)
Using (F.166), we can write the product:
*d
W, 0W, =W, Iy X Sw, (F.179)

We observe that the products w 1ri* and x ?w , contain ncolumns and respectively n rows,

from which the product rank is also n . This proves statement 2 of the theorem.

Introducing a non-singular simularity transformation (T <« R™" ) in (F.179), we can split
(F.179) in two pieces, as follows:

* 1/2
W,y =U,s0°T (F.180)
< d “1.1/2,, T
X W, =T 7787V (F.181)

Multiplying (F.180) to the left with wl‘1 , We can write further:

* -1, <1/2
My =W, U, s et (F.182)

From (F.181) and (F.182), statements 4 and 5 of the theorem are proved. Using (F.166) it
results also that the future states sequence is equal to:

x ¢ -r*o, (F.183)

which proves the last statement of the theorem.

F.5 Symplectic discretization scheme VI

For this symplectic time-discretization scheme, it is assumed an implicit mid-point rule for the
flows and implicit Euler rule for the efforts. The general explicit form of this symplectic
discretization scheme is:
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( X, + X
X = X HAT NEA TSR
k+1 L 2 J k+1 (F.184)
|
[ k+1 k+1
The implicit form of the PCH system for this symplectic discretization scheme is:
(g k+1)eg (k+1) fo(k+1)es (k+1) fo(k+1)ey (k+1))e D (F.185)
Combining (5.33) with (F.184), it results:
Tk d A=) d —k+1 d —
“ke1 = A X0 M Yok 12 J[A %o A Yosk-1 A X0+Ak+1U0/k}+Buk+l
(F.186)
This relation can be further written as:
(_k+2 ~k ) (_ j e 2 Bu
) + A A+l ¢ [A-1].4d k+1
L N R Mot T Pk T (F.187)
Adopting the notation:
— def “k+2 k
Ak+1 _ (u) (F188)
2
we can write further:
S =ke1, L [A+1) 4 (A-1).d 2Buy
X, g = A x0+L . JAkUO/k—1+L—2 JAk+1U0/k+ 5 (F.189)
As for the previous cases, we adopt the notation:
def
-d . Y .d _(xkz Fk-1% =
AL = A= [A B AT'B .. ABJ (F.190)
and (F.189) becomes:
A-d A d =
o ksl AitYork—r A 2% orker A kiY ork T B Yk (F.191)
k+1 0 2
Further we can write more compact as:
= ru il
_ T k+l 10 —d d d _.d 17 0/k-1
M = A+ 31800 Ay Ak+2+[ A% B] \ Jl (F.192)
0/k+1
Adopting the notations:
( def T
[,*d _ 1( —d d d _.d =
e 2{Ak+1+Ak A|<+2+[ A B] j
|
.
J|U = Vorka UO/k+1) (F.193)
| def
d _
IXP = X,
l
we can write the states as:
Tkl d | xd o *
X, g = A Xp+a, Uy (F.194)

For the future states we can write then:
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d _yd _yiyd, *d *
x$=x =AlXg A U, (F.195)
where:
* * * * T
us - [uo T ui_lJ (F.196)
represents the vector of past outputs. We can write the output vector as:
~k+lyd | o*d ot
yk+1:C[A Xp+Ak+1U0/kJ (F.197)
We can write then the following relations for the past outputs:
* d *d *
Yp =Ty Xg+H"U, (F.198)
where:
[, def — -
}ri - [c CA CA'_le
*d
R (159
‘Hi = C} :UP :(uo uy ul_l]
\ *d
A 0
{ L i-1 J
Similarly we can write the vector of the future outputs as follows:
ve=rixdenidu’ (F.200)

f f

From (F.195), (F.198) and (F.200), we can write the following relations for the matrix input-
output equations:

* *d *

[ d

lYP:FixP+Hi U,

ly  —rrx*d  prdy” (F.201)
AR i 7ot [ f

I d d _ Tiyd ., *d, *

[xf_xi =Aalx g +aug

Theorem F.7

The matrix input-output equations of a discrete-time PCH system, represented in explicit form
in (F.184) and in implicit form in (F.185), for a symplectic discretization scheme with an
implicit mid-point rule for the flows and implicit Euler for the efforts are:

( -

v =1 x94pnrdy
P p T P
ly  —rrx*dprdgt
‘f 1 i f
I, d d _ Tiyd *d L *
txf_xi =Alx g +atfug

Next we write an equivalent representation of (F.184) using (5.33) as for the classic case.
Thus we can write:

™ (F.202)

Further this relation becomes:
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2x, + AX +K2x +XB_u - X, —AXx, —Bu +2B_u

k k K kK~ Tk k k k+1
X1 = > (F.203)
After making possible simplifications, we can write:
(A241) ABu, —Bu, +2Bu
AS+1 k k k+1
X\ g = L > Jxk + 5 (F.204)
An equivalent representation of (F.204) is:
N2 __ _[(u
xk+l—(u)xk+i(AB—B 2Bf | (F.205)
S Ly
For the system outputs, we can write:
yk+l:CXk+1:C(AXk+Buk) (F.206)
Equivalently we can write:
— —_ u
Y., =CAx +[cB ofuk )I (F.207)
" k+1)
Using (F.205) and (F.207), it results:
T2 . _ (xk W
(xk+1):|(A 2+I %(AB_B ZB)huk } (F.208)
y | = — |
\Tk+1)
L CA cB o) )L”k+1j
Adopting the notations:
[ _ def A2 L def __  _ _
A = B = (AB-B 2B
| 2 (F.209)
| def _ _def _
[C = CAD - e ofi, =l u T
it results:
MERNERS S (F.210)
‘\yk+l)‘ l\C D)‘Luk
Remark:

As for the classic state-space case, the state-space matrices (A, B,C ) can be recovered by
solving (F.210) when knowing the input/output vectors.

Further we will propose and prove a deterministic identification theorem associated to the
current symplectic discretization scheme.

Theorem F.8

Under the assumtions that:
I. Theinput u, is persistently exciting of order 2i

I1. The intersection of the row space of u ’; (the future inputs) and the row space of x g

(the past states) is empty.
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l11. The user-defined weighting matrices w, < R"™"" and w , < r X are such that w, s of

full rank and w, obeys: rank [W;J: rank [W;wzj, where w; is the block Hankel

matrix containing the past inputs and outputs and with o, defined as the oblique
projection:
oiz[vf/uf}wp 1)

and the singular value decomposition:

T
s, o)V, |
_ 1 1
woow, =, Uz{o 0]:\/T (2)
2 )
we have:
1. The matrix o, is equal to the product of the extended observability matrix and the
states:
o.=r x4 ©)

2. The order of the system is equal to the number of singular values in (2) different from

0.
3. The extended observability matrix r " is equal to:
* -1, <1/2
Ty =W U s T (4)

4. The part of the state sequence X | that lies in the column space of w, can be recovered
from:
d ~1.1/2,, T

X LW, =T s 4V, (5)

5. The state sequence X ‘: is equal to:
d *
x4 =rito, (6)
Proof:

Using (F.201), the state vector can be written equivalently:

d d i * 4 * 4 *d . * *d . *
XL =X =A [ri Yp -T; TH, UP]+Ai b (F.211)
Equivalently this relation can be written as:
d R e I I L
X =[Ai ~T; "H, JUP+A r7y, (F.212)

Adopting the notations:

) b ' (F.213)

(F.212) becomes:
x9=1w] (F.214)
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Using (F.214), the future outputs have the following form:

G R IV (F.215)
Multiplying to the right with the orthogonal projector of u ’; , We get:

Vel e =T L;W;nUf*l (F.216)
On the left and right hand, we can apply the orthogonal projection operator and it results:

VilU . =T LoWp /U (F.217)

+
Multiplying to the right with the pseudo-inverse [w; /U - ] w; it results:
+
[Yf/Uf*L][w;/uf*L] WS =T LW, (F.218)

We observe that the left term is the expression of an oblique projection and then we can write:

* K *
Oi =T LPWP

or equivalently:

At the next step, it is necessary to prove:
rank [W;j: rank [W; /U f*l}

w  can be equivalently written as:

* ( 2mi 0 )(U:’W
WP = *(q *‘ ‘
LHi r, J‘\XSJ
where:
* * T
Up =Ugsii=Uosin Yol

Multiplying to the right with the orthogonal complement of u

(uln
w [ Momi 0)} i
Plur ™l T |yrd
Uf LHi ri J x 911
\
Using the orthogonal projection operator, we can write further:
(UZ 1u
soow [lomi 0P

woutt -
p /Y *d x|
LHi T thg/u

Using the initial conditions on the theorem, it results:
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*

uf

uf

N it results:

*1

*1

|
\
|
\
\
Y

£l

|
|
f*iJ

(F.219)

(F.220)

(F.221)

(F.222)

(F.223)

(F.224)

(F.225)



(F.226)

rank

Ta T *

which proves F.221.
Remark: As for the classic case, the initial conditions assumed on this symplectic
discretization scheme maintain the same form, changing in accordance only the block Hankel

matrice (w , ) structure and inputs (U , .U ’; ).

Then we write the SVD decomposition of w ; /U - as:
T
S, 0 (V )
w U INTRRRTIN AT s F.227
p /Uy =l 2{0 o T (F.227)
"2 )

where w; /U - is known to be a linear combination of the columns of w ~ and since the

P
rank of w ; and w /u , are equal, then the column spaces of w  and w_ /u , are
f*L P p /Y xL
also equal. We can introduce then the relation:
w ; =U1R (F.228)

from which we can write:
+

{W; o ][W; /U fu} w2 :(UlslvlT j(vlsl‘lulT J(UlR) (F.229)

Using the properties:

T T
ViV =U U = (F.230)
associated to the SVD decomposition, it results:
+
[WP/Uf*J_J[WP/Uf*J_] Wo =W, (F.231)
Using (F.228) it results:
+
[WP/Uf*LJ[WP/Uf*J—J Wo =W, (F.232)
For the 2" claim of the theorem, we observe that:
d
Wy 0 -W, =W, Ty X LW, (F.233)

‘:w n rows, from which we

We know that the product w,-r has n columns and x Sw,

conclude that;
rank (\l\ll 0w, )=n (F.234)

This proves statement 2 of the theorem.
Introducing a non-singular transformation matrix (T < R™" ), we can write:

283



[ 1/2

wlrI =U, st
J d -1.1/2,, T (F.235)
[x P W, =T s

Multiplying to the left with wl‘1 in the 1% relation, it results:
* -1, <1/2
Ty =W, U, 80T (F.236)

Thus statement 3 of the theorem is proved. The 2" relation from (F.235) proves statement 4

of the theorem. Using (F.220) we can compute the state sequence x ‘]f as follows:

d _r*+go. (F.237)
This proves statement 5 of the theorem.
F.6 Symplectic discretization scheme VII

For this symplectic discretization scheme, it is assumed an implicit trapezoidal rule for the

flows and an explicit Euler rule for the efforts. The general explicit form of the PCH system

for this symplectic discretization scheme, is the following:
—1

lxk+1 *k 5 }( k—1+Xk)+EB(uk+uk+l) (F.238)

|
[ kK+1

while the implicit form of the PCH system for this symplectic discretization scheme is:
(fgk+t)eg (k+1) fo(k+1)e. (k+1) fg(k+1) ey (k+1)eD  (F.239)

Using (5.24) and (F.238), we can write equivalently:

7k d 1 N k-1 d ~k d
o1 TA X M Yokt (A"{A Yot AP ork-2 A ¥o T A Yok 1]
B )
2 Yk k+1
(F.240)
Equivalently we can write:
Tkl Tk k-1 — — —
A Xg +2AT X, — A X0 (A+|)d (A_wd B
X = + AT U + A U +—(u +u )
k+1 2 L 2 J k 0/k-1 L 2 J k-1 0/k-2 2 vk k+1
(F.241)
Further we adopt the notation:
def __ ., _ _ N
A9 = aad —(ake Akl . aB (F.242)
k+1 k
Then we can write:
_ d d ~d d ~
(AZi2a-i]zker, A% ok TAMork-r A York-2 T2 kYork-2 Bl
X =, — A XA + + +
k+1 L 2 J 0 2 2 2
(F.243)

We can write this relation further:
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(A2 +2A-1 )7k L(y-d _ad d d —WI(UO/k_ZW
Xk+1:L 2 JA 0t Mk Ttk B (Ak+1 B])|U0/k—1\
LU0/k+1J
Then we adopt the notations:
l[fkﬂde_f ak+l, ok _ ak-1
| 2
|
def
*d 1( —d d d d =
A = —| A - A A A B
J| k+1 2( k k-1 k ( k+1 D
| def
[ * _ T
[UO/k = Vo2 Yorker Yorken)
and (F.244) becomes:
_ Tk+l, d *d o *
Xk+1_A XP+Ak+1 K
We can write the future states as:
d _yd _Hiyd , *d, *
X$ =X =AXg AU,
where:
* * * * T
UP:(UO Y1 “i—1J

is defined in (F.245). Similarly we compute the system outputs using the formula:
[Kk x 4 4 a*d }

P Tk
We can generalize then a vectorial representation for the past outputs:

c c SN
=M = 0/k-1

Y+ K

**

_ *% d **d
Yp =T Xp+H TU,
where:
[, def LT, def . N
Ir.” = fo T U =|0 0 wu u
i i-1] ' P 0 i-2
J ( 0 0 o)
o def AT g 0l
IH. d _ c} 0 }
|
| - T
| AT 0
I L i—2 J

Remark: In (F.251), we have zero terms for r™, u "

P
output is zero, on this symplectic scheme.
For the future outputs we can write:
_ *d d *d *
Ve =TioXy +HTU L
where H i*d .U " are defined as follows:

f
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(F.245)

(F.246)

(F.247)

(F.248)

(F.249)

(F.250)

(F.251)

and H i**d . due to the fact that the 1%

(F.252)



|[ (A’;d o .. 0]
R N T
H¢ = ¢t |
et ot
| A*d 0
| (2% J
|, def . T
Y = [“i—1 Ui o “2i—2}

Using (F.247), (F.250) and (F.252), the matrix input-output equations of this scheme, can be
written as:

(
_ *%* d **d **
va_ri Xp+H U
_ * d *d *
llYf‘rin_ﬁHi U (F.253)
I d _xd _piygd , a*dy
[ f i P i

Then we can introduce the following theorem:

Theorem F.9

The matrix input-output equations of a discrete PCH system, represented in explicit form in
(F.238) and in implicit form in (F.239), for a symplectic discretization scheme with an
implicit trapezoidal rule for the flows and explicit Euler for the efforts are:

( * %
_ d **d *%*
}YP_Fi xo+H U
_ * d *d *
J\(f_rixf_1+Hi U (F.254)
I, d d _ Tiyd *d L *
txf_xi =AIX S AU

An equivalent state-space representation of (F.238) can be obtained by combining it with
(5.24). Then we can write:

— — (A=l — — 1=
xk+l=Axk_1+Buk_l+L 5 J(Xk—1+Axk—1+Buk—1)+EB(uk+uk+1) (F.255)
This relation becomes further:
_ _ _ — —

) _ 2Axk_1+ZBuk_1+Axk_1+A Xk—1+ABuk—17Xk—1

ki o 2 (F.256)

_Axk—l_Buk—1+Buk+Buk+1

2
A simplified form of the above relation is:
_(2;+K2—IW 1(5 XB_)J 1B_ lB—
Xk+1*L 2 Jxk—1+5 * k-1 5% T3 %%

(F.257)
Equivalently, we can write:
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(”k_N
T SN TR T (F 258)
k+1_L 2 Jk—l k | '
Luk+lJ
For the system outputs, we can write the following relation:
Vi1 =Xy =C(Axk L TBuU, 1) (F.259)
This relation can be also written as:
[ug .y ]
y ~ CAX +(CB_ 0 Oju | (F.260)
k+1 k-1 k|
L k+lJ
Using (F.258) and (F.260), we can write the following state-space representation:
_ =
— - — ) |
l(xk+1\| 28+ ’; B+AB B B)liukfli (F.261)
— — u
k1) | ca €8 o o) Jik |
Luk+lj
Adopting the following notations, we can write:
[_def (, % . 22 _def . . __  _  _
A = (w),s - lE+aB B B8)
N 2 (F.262)
| _def _ _def _ _ def .
c =caip =B 0 ofay =l ou v,
and it results:
X TR )X
MEIMERC (F.263)
k1) (€ DYk

Remark:

As for the classic case, the original state-space matrices (A,B,c ) can be recovered by
solving (F.263) when knowing the input/output vectors.

Next we will introduce and prove a deterministic identification theorem for the selected
symplectic time-discretization scheme.

Theorem F.10

Under the assumtions that:
1. Theinput u, is persistently exciting of order 2i
2. The intersection of the row space of u ’; (the future inputs) and the row space of x g

(the past states) is empty.

: - : i j-1)x/ j-1
3. The user-defined weighting matrices w, « R"™" and w, < R (=217 are such that w,

is of full rank and w, obeys: rank (Wp_lj: rank (wp_lwzj, where w ; is the block
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Hankel matrix containing the past inputs and outputs and with o, defined as the oblique

projection:
0, =[Yf I ]wp_l

and the singular value decomposition:

T

1)

)

S, o)(VlT |
wow,=UL, U, . OJIVT ::Ulslv1
"2 )
we have:
1. The matrix o, is equal to the product of the extended observability matrix and the
states:
* . d
0; =Ty X ,

(3)

2. The order of the system is equal to the number of singular values in (2) different

from 0.
3. The extended observability matrix ri* is equal to:
1

* 1/2
ry =W U, s 0ot

4. The part of the state sequence X ‘]i' that lies in the column space of w

recovered from:

-1.1/2,, T
W, =T sV
f-1 2 1 1

5. The state sequence X ?—1 is equal to:
1T O
Proof:

Using (F.254), the future outputs can be expressed as:

x4 Ai(p ™y _pty
f i P i i

We can write this relation as:

Adopting the notations:

Then (F.265) simplifies to:

Using (F.254) we can write for the future outputs:
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can he

Q)

(6)

(F.264)

(F.265)

(F.266)

(F.267)



*  * *

*d *
Ye=TiLlp Wp ,+H. U, (F.268)

By multiplying to the right with the orthogonal projector of u ’; we get:

_ * * * *d *
anuf*l_riLP_lwp_anf*L+Hi UfHUf*J— (F.269)
which is equivalent to:
* *x *
YU - =Ly W5 /U - (F.270)

+

Next we multiply to the right with [w p_q /U - ] Wo and it results:

+
* * *

[Yf Vo }[Wp_llu f*J—] Wy ,=TiLp W5 (F.271)

We observe that to the left we have an oblique projection (o; =v . /u f*w ;_1) and using

(F.267) it results:

o, -r;x9 (F.272)
which proves the first statement of the theorem. In (F.271) we have used the relation:
+
[wp_llu - ][wp_llu fu] Wo  =Wo (F.273)
We next prove the relation:
rank [W ;_J = rank [W ;_1 /U - ] (F.274)
We write next w  _, equivalently:
U *
(Vs 0 0 m( P )|
w* | B9 Il (F.275)
P-1"~ *% *x | P | !
Lo H; i |
{ i )iy d
7P
Next we can multiply to the right with the ortogonal projector of u *l and it results:
(b*n |
P *1
(Mg 0 0 ﬂ uree
* =‘ (3|—5j HU**H ‘ (F 276)
PruTE g e P Ut |
\ i )
| y d \
Lx ol Uf *L

Using the orthogonal projection operator, we can write equivalently:
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[u*n |
| P e L
. Maicsm 0 O |
WP—1/Uf*¢:I ) g . }|UPHUf*J-| (F.277)
\ i i )I d I
x &n
P
Assuming the initial conditions on the theorem, we can write:
(U * W (U /U - W
P | =
| ** |7 I ** ‘
rankIUP I—rank:UP /Uf*J_ } (F.278)
d
X | y d \
7P Lx p /U L |

and thus (F.274) is proved.
Remark: The initial conditions assumed for this symplectic time-discretization scheme,

follow the same form with the classic state-space one, where the block Hankel matrice w;

and past/future inputs (U .U ", ) change their structure.

1

Then we introduce the SVD decomposition of w _, /u ., as:

T
s, 0 (V )
* _ 1 1
Wp 11U« u, Uz{o o]l _ (F.279)
v
"2 )
Since w;_l U - is a linear combination of the columns of w ;_1and since the rank of
W P_1and W, /U - are equal, the column spaces of w b1 and w p_q /U - are the
same.
We can write the relation:
W, ,=U,R (F.280)
Also we can write:
+
* * * T -1, T
(Wp_l /U - ][W p_q /U - J Wo = [ulslv1 j(vlsl U, JUlR (F.281)
Using the SVD decomposition properties:
T T
Vv =u U = (F.282)

corresponding to the SVD decomposition from (F.279). Grouping the terms in (F.281), we

can write:
+

* * * T -1(,, T
[Wp_llu - ][WP—l/U f*L] W, o, =Ulsl(v1 vljs1 (Ul Ul}R (F.283)
Performing the simplifications, it results:
+
[Wp_l/U - }[wp_llu f*J—] W, ,=UR (F.284)

Using (F.280) and (F.284), it results that:

290



[wp_llu - ][wp_llu fu] Wo  =Wo (F.285)
For the 2" claim of the theorem, we observe that:

* . d
W oW, =W Iy Xt W, (F.286)

where wlri* has n columns and x ‘:_1w , n rows. It results that the product w o,w, has
rank n . This proves statement 2 of the theorem. Next we introduce a non-singular similarity
transformation matrix (T < R ™" ) and we can write the next two relations:

(W ~* _ 1/2

lwlri =U, s, T

(F.287)

d -1.1/2,, T
X W, =T "-S"%v
[ f-1 2 1 1

From the 1% relation of (F.287) we can recover ri* by multiplying to the left with wl‘1 as
follows:

* -1, <1/2
My =W, U, s et (F.288)

(F.287) and (F.288) proves statements 3 and 4 of the theorem. Using (F.272) we compute the
future states as follows:
x4 -r'fo. (F.289)

This proves statement 5 of the theorem for this particular symplectic time-discretization
scheme and ends the proof.

F.7 Symplectic discretization scheme V111
For this symplectic time-discretization it was assumed an explicit Euler rule for the flows and

an implicit trapezoidal rule for the efforts. The general explicit state-space form of this
symplectic discretization scheme, is the following:

( A _
Jxk+1:xk+{ . }(xk_1+xk)+8uk
(F.290)
X + X
ka :c( k-1t Xk |

IR U
using the notations from (5.25).The implicit form of the PCH system for this symplectic
discretization scheme is:

(fg (kheg (k) o (heg (k) fr (k)ep (k))e D (F.291)
Combining (5.33) with (F.290), it results:
~k d A-1 | Tk-1 d ~k d
Xk+1:A XO+AkU0/k—l+{—2 }[A 0+Ak_1u0/k—2+A x0+Aka/k_1]+
+B_Uk
(F.292)

Equivalently we can write this relation as:
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~k d k —.d “k+1 —.d k-1
) _2A xo+2AkU0/k_1+A XO+AAk_1UO/k—2+A XO+AAkU0/k_1—A x0
k+1 2
d ~k d =
Ak_1UO/k—27A x0 AkU0/k—l+ZBuk
(F.293)
More compact we can write:
2 . _ N N 2B u
_(A F2A -1 k1 (A+1].d (A-1].d K
Xk+1_L—2 JA x0+L , JAkUO/k—1+L ; JAk_1U0/k_2+—(|:.294)
Adopting the notations:
lf?kﬂdeif(;ml”/\k_;k—l)
: J
j L (F.295)
| def __ _ _ _ _ def
a4 = aad —[akg ak-lp AB | x 9 = «
| k+l k 0
(F.294) becomes:
q _
ket Sk ork PR Porker 1 Y L BU
k+1 ~ P 2 2"k ~0/k-2 k-1 0/k-2 2
(F.296)
This relation can be written as follows:
= —\\(U
Xks1=AK+1x d I A=d _d o ,d +[Ad Bj( 0/k-2 | (F.297)
P ol k k-1 k+1 k U |
" o/k )
We introduce the notations:
[ def _
a0 (A_d _ad A4 +[Ad BJW
| def
* T
[UO/k - (UO/k—Z UO/k)
Then (F.297) becomes:
_ Tk+ly d *d L *
X, 1= A Xp A, Uy (F.299)
Next we can write the future states as follows:
d _od _Tiyd *d, *
XL =X{ =AXS+A U, (F.300)
where:
* * * * T
U =[ug v o uy) (F.301)

represent the past inputs associated to the states. Using (5.33) and (F.290) the system outputs
become:
(Ak-1xd % > Akyd Ay *

U + AT X~ +A )

L 2

This relation can be also written as:
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V, - chjx d +%{A*kdil A™d }(U o2 | (F.303)
)

For the vector of past outputs we can write:
d

** d **

Yp=Tj Xg+H; "U, (F.304)
where the following notations have been adopted:
def 0 def = =.
T 1” . Lr.*j,r.* - [c CA .. CA'_lj
[ ZMF' J |J [
| i-1
l *d *d T
|, def Cl“—l w0 Ay J o def [ ut us
g d _ = 0LU = -2/0  "-1/0 0/i-3 |
| ] 2 . . * * . *
A% o AT o (UZ170 Yoo Yosi-2)
{ L i-2 i-1 J
(F.305)
Next we introduce the future outputs vector as:
Y§-rrx t]j +H "y N (F.306)
where x_‘: is defined as:
d d
g e X MK
Xy = —5— (F.307)

and u " represents the matrix of future outputs, similar to the past system outputs (u ").

From (F.300), (F.304), (F.306) and (F.307) the following matrix input-output equations
result:

( X +xd
de Aixd  avdy*.yd -1 f
= +A. : - -
1 P i P f 2 (F.308)
{szri I R R MV

Theorem F.11

The matrix input-output equations of a discrete-time PCH system, represented in explicit form
in (F.290) and in implicit form in (F.291), for a symplectic discretization scheme with an
explicit Euler rule for the flows and implicit trapezoidal rule for the efforts are:

‘( x4 4xd

d =iod *xd . * = f-1 f

(X" =A'X_+A."U_ ;X =———

R p A VUpiXy 2 (F.300)
| —

‘LYP_ri XP+Hi UP’Yf_rin+Hi Uf

Further we will find an equivalent representation of (F.290), when combined with (5.33).
Replacing the state-space values from (5.33) in (F.290) and using the notations from (5.34), it
results:
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X1 = Ax_+Bu +L 5 J(Xk—l AKX Buk_1)+ Bu, (F.310)
This relation can be further written as:
—, __ _ _ _
) _ 2Axk 1+ZBuk 1+Axk_1+A xk_1+ABuk_l—xk_l—Axk_l—Buk_1+ZBuk
k+1 2
(F.311)
Equivalently we can write:
2 ox __  _(u
xk+1:(wka_1 1B+ asB 2Bi k_ljl (F.312)
2 ) 2 Mk
Similarly we can write for the outputs:
y, = C(M) - C(&W (F.313)
D
Further this relation can be written as:
— _ u
o= SRk bes of k] (F.314)
2 k-1"12 Uy J

Using (F.312) and (F.314), we can write the following relations for the state-space system of
(F.290):

(k+1w |( + 24 - i(B_Jr;E?) 2|3_)|(Xk—1)|
Ve )] Uy | (F.315)
C+CA iCET 0
L 2 J“k J
Adopting the notations:
[._,def X2+2A7| ._def
JA: 5 B - (B+AB 28]
F.31
| ~def o ca ~def g _ def . (F.316)
i 2 ) E(CB 0}uk—l - U uk)
(F.314) becomes:
TR )(X
VM)FM Ei|(~k_1) (F.317)
STRDICIN-D ey

Remark:
The state-space matrices (A,B,c ) can be recovered by solving (F.317) when having

knowledge on the input/output vectors.

As for the classic state-space case, we propose and prove further a theorem associated to the
current symplectic time-discretization scheme.

Theorem F.12

Under the assumtions that:
I. Theinput u, is persistently exciting of order 2i
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Il. The intersection of the row space of u ’;* (the future inputs) and the row space of x g

(the past states) is empty.

1. The user-defined weighting matrices w, < R™! and w, < R X are such that w is of

2

full rank and w , obeys: rank [W;J: rank [W; -wz}, where w; is the block Hankel

matrix containing the past inputs and outputs and with o, defined as the oblique
projection:

oi:[vf/uf}wp 1)
and the singular value decomposition:
T
s, O fV W
_ 1 1 T
woow, =, UZ{O OJIVT TUlslVl (2)
2 )

we have:
1.The matrix o, is equal to the product of the extended observability matrix and the states:

* d
0 =T X § 3
2.The order of the system is equal to the number of singular values in (2) different from 0.
3. The extended observability matrix ri* is equal to:
* -1, <1/2
Ty =W U s teT (4)

4.The part of the state sequence x ? that lies in the column space of w, can be recovered

from:
><_‘]1'w2 :T—1511/2V1T ®)
5. The state sequence x_‘: is equal to:
x4 -r*o. (6)

f i i
Proof:

Using (F.309) we can write the average value of the future states, as follows:
2 d

**
** +

i **+ **d
X5 = Ay [ri Yp-T; "H, UP}+AMUP (F.318)
where the notations have been adopted:
I[Ai de:f N fl
| M 2 (F.319)
IA de_f 1 A*d A*d
|l M E( i-1 i J
Equivalently we can write this relation as:
_d i **+ **d i **+ (U ;*)
X§=[ay Ay TR Ay T ]LY | (F.320)
P
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Adopting the notations:
Al T
M i

Then (F.320) becomes:

For the future outputs, we can write then:

*  x *
Yf:FiLW +H

** *%
PP i v f

Multiplying to the right with the ortogonal projector of u -

* * *
VI g STiLpWpTl )

Using the orthogonal projection, we can write equivalently:

* *

*
Y, /U :riLP P/U

f f **J_ f **J_

+

Multiplying to the right with [W; /U . ] w

*

5 We get:

Y. /U WU twlorL”
£ e WP Y ey p=Tilp

On the left in (F.326), we have an oblique projection:
0, :[Yf /U f**]wp
Then we can write:

Using (F.322), it results:

o.=r. x4
i i g

In (F.326), the following relation was used:

[WP /U - }[WP /U f**J-J W, =W,
At the next step it is necessary to prove that:

rank [W;jz rank [W; /U (el J

First we observe that we can write w ; as follows:

Multiplying to the right with the ortogonal projector of u

*
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**+

it results:

x| »We get:

)

(F.321)

(F.322)

(F.323)

(F.324)

(F.325)

(F.326)

(F.327)

(F.328)

(F.329)

(F.330)

(F.331)

(F.332)



| 0 U )
* ( (4i-6]m ) P s L
S } o d ol | (F.333)
L Fi )prnuf**LJ
Using the initial conditions assumed on the theorem, it results:
*Kx U *
AT
rank | | = rank | | (F.334)
| x d | d
P KoY e

and (F.331) holds.

Remark: The same initial conditions, as for the classic case are used in order for (F.334) to
hold, the only difference is that w; is changing form according to the symplectic time-

discretization scheme.

We introduce the SVD decomposition of w ; /U f as:

**J_
* O)
WF,/uf*U:(U1 2{0 o) =u st (F.335)
As w ; /U - |s a linear combination of the columns of w ; and because the rank of w
and w p /U - are equal, it results also that the column spaces of w ; and w p /U - are
equal. We can write then w  as:
Wp =U,R (F.336)
Using the SVD decomposition in (F.335), we can write then:
+
* * * T 1, T
{WP U e ][WP U ) ] W = [ulslv1 j(vlsl u, J(UlR) (F.337)
where:
T T
Uju =V, v, =1 (F.338)
Performing the simplifications in (F.337), we get:
+
[WP/Uf*m ][WP/Uf**J_] W, =U,R (F.339)
From (F.336) and (F.339), it results that:
+
{wpluf*ﬂ](wp/uf*u] Wo =W, (F.340)
For the 2" claim of the theorem, we can write:
< d
W oW, =w, r P X W, (F.341)
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In (F.340) we observe that wlri* has n columns and x_‘]{'w , nrows. From this it results that

their product is of rank n . Thus the 2" claim of the theorem is proved. For the 3™ statement
of the theorem, we introduce a non-singular similarity transformation (T < R™" ),
for which we can write:

(W * 1/2
W.r; =U,S;'°T
l _1d | 1 —11 /2, T (F.342)
{x (W, =T is Y
Multiplying to the left in the 1% equation with wl‘1 , We get:
* -1, <1/2
Ty =W, U, 8077 (F.343)

which represents statement 3 of the theorem. From (F.342) and (F.343) it results that
statements 3 and 4 are satisfied for the deterministic theorem. Using (F.329), we can
determine the average value of the states as:

x4 o, (F.344)

This proves the last statement of the theorem.

F.8 Symplectic discretization scheme IX

For this case, the symplectic discretization scheme assumed an implicit Euler method for the
flows and implicit trapezoidal rule for the efforts.The explicit form of the discrete-time PCH
system with this symplectic discretization scheme is:

( (A1)

lxk+1:Xk+L 2 J(Xk+xk+1)+Buk+l
J (F.345)
IV _C(xk”ku\
k+1 ~
AR G
while the implicit form is:
(fgk+1)eg(k+1) fo (k+1)es (k+1) fp(k+1)ep (k+1)e D (F.346)
Combining (5.33) with (F.345), we can write the following relation:
=k d (A1) 7k d —K+1 d (28U, |
Xk+1_A x0+Aka/k_1+L 5 J[A X0+AkU0/k—l+A X0+Ak+1U0/kJ+ >
(F.347)
Equivalently we can write this relation as:
~k d Tkl A d k2 T ad Tk
2A X0+2AkUO/k—l A xO+AAkUO/k_1+A x0+AAk+1UO/k—A x0
X = + +
k+1 2 2
d “k+1 d =
+_A|<U0/k—1_A Yo Aok T2BY
2
(F.348)

More compact this relation can be written as:
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(;k+2+;kj (;+I d (;—Iw d 2Bu|<+1

Xk+l:L—2 Jx0+L . JAkUO/k_l-rL . JAk+1U0/k+—2 (F.349)
Adopting the notation:
def __ . —_ N
A9 = aad —(ake Akl . aB (F.350)
k+1 k
We can write:
_ — ~d d d d
) (akr2ak ] l(Ak+1UO/k—1+AkUO/k—1w+|(Ak+2UO/k+1_Ak+1U0/k LBk

AL A U O

(F.351)
or:
~k+2 7k _\(U
X g = (%)XO +%(A_kil + A(lj( A‘lj(+2 +[_A(lj<+l B N(U O/k_lw (F.352)
L J K WPorket)
Then we can adopt the notations:
{fkudff [(Ak+2 Ak wd _
| - 2 J P70
| t
def _
Javd D L{p-d a0 s +[—Ad B]) (F.353)
| k+1 2 k+1 k k+2 k+1 )
I ,  def
I{UOIK = Uos Yorka)
and it results:
Tktly d o *d o, *
X, g = A X p+a " Vo (F.354)
As for the classic case, we can express the future states as:
d d _riyd *d,,*
XL =X =AXg A U, (F.355)
where U ; represent the past states, given as:
L def
Up =gy Yoyl (F.356)
Using (F.355) we can compute also the system outputs:
X, + X — —

_(k k+1)_C k, d *d,  o* k+1, d *d o o*
yk+1_chJ_?[A Xp 8 Ug +A XP+Ak+1U0/kj (F.357)
Equivalently we can write:

CC(Tk . Tk+llyd . C (. *d . *d (UO/k—l)
yk+17?(A + A pr+?(Ak Ak+1]U* I (F.358)
\"o/k )
We can define the vector of past outputs as:
** d **d **
Yp=T; Xg+H TU, (F.359)

when adopting the notations:

299



[ def 0 def — _
}ri** - %w . Lri* ri = [c CA CA'_l]
| url—lj J
| [ A" 0o a™d 0] (F.360)
| eg Gef oL 0 | def . T
Hy o= 2| o iy Nl (Uon—s Uon-z}
| [ 4is2 M1 0
For the future outputs, we can write:
*_d **d **

Ye=TpxLaH U (F.361)
where:

xS X ‘:

x? - (F.362)

Thus we can formulate, the matrix input-output equations using (F.355),(F.359),(F.361) and
(F.362), as folllows:

‘( x9d 4 xd
= * *  — f-1 f
X§ A At p X (F.363)
{ .
‘ *% d **d *% *_d **d **%
\LYP:Fi XP+Hi UP’Yf:rin+Hi Uf

Thus we propose the following theorem as in the classic state-space case:
Theorem F.13
The matrix input-output equations of a discrete-time PCH system, represented in explicit form

in (F.345) and in implicit form in (F.346), for a symplectic discretization scheme with an
implicit Euler rule for the flows and implicit trapezoidal rule for the efforts are:

‘( x4 4 xd
d _ =iod *d, o * od f-1 f
g A Xp AT YR Xy = 2 (F.364)
‘ *%* d **d *%* * _d **d *%x
\Lszl"i Xp+H TUL Y =Ty X CaH U
Using (5.33) and (F.345), we can write:
— —, —_ — _ _
) :2xk+Axk+A Xk+ABuk_Xk_AXk_Buk+ZBuk+1 (F365)
k+1 5 .
Performing the possible simplifications in (F.365), it results:
(_2 ) __ _[u
Ac+1 1 k
X, = ——"x +=(AB-B 2B (F.366)
k+1 L 2 J k o Kuk+1)‘
For the system outputs in (F.345), we can write then:
(X + ;X + B_U j
k k k
V1= CL > J (F367)

More compact (F.367) becomes:
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C+CA cB
yk+1=[ 5 }(k+ > Yk (F.368)

Using (F.365) and (F.367), we can write then:

22
(xk“) |( Lo lae-s 25)](Xk )'
_ 2 u (F.369)
Vier) |C s I !
L EC JL k+1J
Further we adopt the notations:
[_def L2 _def . __
JAe:A;';Be:E(AB—B 2B 70
F.37
| ~ def C+C; _def _ def T ( )
[C = 5 ; = (CB O}Uk = (uk uk+1)
and it results:
(XkJrlw_('& gka) (F371)

Vks1) (C 'SJ‘LGkJ

Remark: As for the classic case, the state-space matrices A,B,c can be recovered when
solving (F.371) for known input/output vectors.

We propose and prove further a theorem suited for this symplectic discretization scheme.
Theorem F.14

Under the assumtions that:

I. Theinput u, is persistently exciting of order 2i

I. The intersection of the row space of u ’;* (the future inputs) and the row space of x g (the

past states) is empty.

lIl. The user-defined weighting matrices w, < R"™"" and w < r X are such that w, s of

full rank and w, obeys: rank [W;J: rank (W;sz ,where w; is the block Hankel

matrix containing the past inputs and outputs and with o, defined as the oblique
projection:
Oi:£Yf/UfJWP 1)

and the singular value decomposition:

vl
_ 1 1 T

w,ow, =, UZ{O 0]l TI u,s,Vv, (2)

V2 )

we have:
1. The matrix o is equal to the product of the extended observability matrix and the
states:

0 -1 x4 ©)
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2. The order of the system is equal to the number of singular values in (2) different
from 0.

3. The extended observability matrix ri* is equal to:

* ~1,, <1/2
ry =W U, s 0ot (4)

4. The part of the state sequence x ‘: that lies in the column space of w, can be

recovered from:

Tdyw _c-1.1/2,T
X LW, =T 728 4V, (5)

5. The state sequence x_‘: is equal to:
x_‘: -1 "o, (6)

Proof :

Using (F.364), we can write the relation:

x_‘;' :A:VI [ri***YP—ri**+Hi**du;*]+AMu** (F.372)

for the future states, where:

[
Al =
| M 2 (F.373)
|A de_f 1 A*d A*d
lt Mo E{ i-1 i J
Equivalently we can write:
-d i wxy R i *x (U ;*)
X —[AM Ay TP H, Au Ti ]LY J (F.374)
P
Adopting the notations:
|[ * dEf | **+ **d i **+
L, = [A ~-A A ]
P M M I M i
J ! (F.375)
| . def - T
e = [U P YPJ
it results:
_d * *
XL =LpWp (F.376)
Using (F.364), we can compute the future outputs as follows:
* * * **d *%*
Y =TiLpWp +H, "U (F.377)
Multiplying to the right with the orthogonal projector of u ey it results:
* * * **d *x
anuf**L:FiLPWPHUf**L+Hi Ufnuf**L (F.378)

As the 2" term to the right in (F.378) is null, it results:
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Yf/Uf**J_zl"iL WP/Uf (F.379)

+
Multiplying to the right with the pseudo-inverse [w; /U f*u] and w’, it results:

P H
+
[Yf /U - ][WP /U - ]{WP /U - ] Wo =T, LW, (F.380)
Then we observe that in the left part, we have an oblique projector as follows:
+
0, :[Yf /U f**]wp :[Yf /U - ][vvp /U - ][WP /U - J wo (F.381)
Then it results:
O, =T; LW, (F.382)
Using (F.376) it results:
*d
O =T; X | (F.383)
In (F.381) we have used the relation:
+
[WP/Uf**J-J[WP/Uf**J-J Wo =W, (F.384)
Then we have to prove the following relation:
rank [W ; j = rank [W; /U - } (F.385)

In this case w ; can be written as follows:

!  Jup
. 4i-2
W '**d]m N (F.386)
\ .
C Yo% e )
Assuming the initial conditions of the theorem, it results:
(U**) |(UP /U f**J-Wl
rank | | | = rank | . | (F.387)
| |
\XP) LXP/Uf**J_J

which proves (F.385).

Remark: As in the classic state-space case, the initial conditions assumed on the theorem
follow the same lines, the only difference being given by the block Hankel matrice w; or

past/future inputs (u ;.U ("), which change the structure according to the symplectic

discretization scheme.

For w ; U .. Wecan perform the SVD decomposition:

*

(F.388)



*

Since w’ /u is a linear combination of the columns of w and

P frrL P
Kk (w?’ Kk lw >y the col fw”andw’ It al
ran [ P]_ran b Uf*ﬂ , the column spaces of w , an WF,/uf**L result also as
equal.
We can write in this case:
W, =UR (F.389)

Using (F.388) and (F.389), it results:

N
[vv; U ey }[w; /U f*u} w o =[ulslv1T ][vlsl‘lulT j(UlR) (F.390)

Using the properties:

T T
ViV, =Uu U = (F.391)
associated to the SVD decomposition, we get:
+
[wp/uf**ijlwp/uf*u] W, =U,R (F.392)
Using (F.389) it results:
+
[WP/Uf**J_][WP/Uf**J_] Wp =W, (F.393)
In order to prove statement 2, we can write the following relation:
* o d
W, 0w, =W, Ty X LW, (F.394)

We observe in (F.393) that w " has n columns and x_‘:w , has n rows and it results that

their product is also of rank n . This proves statement 2 of the theorem. For the statement 3 of
the theorem, we consider a non-singular similarity transformation (1 < R™" ), in which case
we can write:

( * 1/2
W,r. =U,seT
J—1dl 1 711 1/2,, T (F.395)
\x (W, =T s o
We can deduce then that:
* -1 1/2
Ty =W, U, 8007 (F.396)

which represents also the statement 3 of the theorem. From (F.395) and (F.396) statements 3
and 4 are proved. Using (F.383) we can deduce the average value of the states x_‘: as:

x ¢ -ri"o, (F.397)

This proves the last statement of the theorem.

F.9 Symplectic discretization scheme X

For this symplectic discretization scheme it is assumed an implicit trapezoidal rule for the
flows and an implicit Euler rule for the efforts. The general explicit form of this PCH system

IS:
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f Al 1=
jxkuzxk*[ 2 ](Xk+xk+l)+58(uk+uk+l) (F.398)
|[ykJrl = & k+1

and the implicit form is:
(fgk+1)eg (k+1) fo(k+1)e, (k+1) fo(k+1)ey (k+1))e D (F.399)

Similar with the previous schemes, we combine this scheme with the 1** time-discretization
scheme and using (5.33) we can write:

_ 2k d 1 ~k d k4l d 1=
Xk+17A XO+AkUO/k—1+E(A_IIA XO+AkU0/k—1+A X0+Ak+1U0/kj+zB(uk+uk+l)
(F.400)
Equivalently this relation becomes:
~k d k1 ad k+2 ~.d ~k d
) _2A XO+2AkU0/k_1+A XO+AAkU0/k_1+A XO+AAk+1UO/k—A XO_AkUO/k—l
k+1 2
T k+1 d
e Mok Ly Ly )
2 k k+1
(F.401)
Grouping the terms in (F.401):
(W¥xg A 2 | Ry Al 1 —
X = | 0 0|+ AdU + d +—B(u +u )
k+l ™| 2 2 R0kl Tken 07k T Tk Tk
\ )
(F.402)
and adopting the notation:
def
-d Aad _(akz yk-1%x NS
= AAY =|A"B A B .. AB F.403
k+1 k [ } ( )
it results:
_ —d d —d d
) _(|+A21;kx +Ak+1UO/k—1+AkU0/k—1+Ak+2UO/k_Ak+1UO/k+_B—(u co )
k+1_L 2 J 0 2 2 k k+1
(F.404)
Introducing also the past states:
ddef
Xp = X (F.405)
results in:
_ d d d d
(a2 )=k d ka1 ork "2 York-1 "2k 2% 0rk+1 241 0k
X = AKX @4 (F.406)
k+1 L 2 J P 2
Performing the simplifications it results:
_ d d
2)_ A%uU +AY U
k+1 L 2 J P 2

Equivalently we can write:
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Using the notations:

|

\

\

| 1

NG :—[Ad Ad ]
‘ k+1 2 k k+2
|

[ * _ T
Yok = Yorka Uo/kat)

we can express then the states as:

k+1l, d

*d *

- A

XK +1 Xp t A 1Y ok
As in the classic state-space case, the future states can be written as:
d _y _ aiyd , *d *
XL =xp=Aalxgafug

where u ;; denotes the past outputs defined as:
def

*

.
Up = bosia Yoyl
As for the states, we can write the outputs as follows:

_C(Tk+lyd *d o *
yk+1_2[A XP+Ak+1UO/k]

or equivalently:

~C Tk+1yd ,C *d ,, *

Yk =5 A X e P Y ok
Adopting the notations:

( def — —

r” - C—(I A CA'_lJ

[ 2

|

| fA*d 0)

Hi® = 51 - o

| | Ad 0

| A0

| def

u: - u’

[ P 0/i-1

we can write then the past outputs vector as:

_ * d *d *
Yp =Ty X5 +H U,

Similarily we can write the relation for the future outputs:
v, =1 x¢ +Hi*dU*

f f

f

Using (F.411),(F.416) and (F.417), it results the matrix input-output equations:
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{xd:x —Aalxd vy
| f ! P i P
_ * d *d *
lIYP =0 X +H U, (F.418)
| _ * d *d *
LYf_Fin-rHi U

We propose thus the following theorem for the matrix input-output equations:

Theorem F.15

The matrix input-output equations of a discrete-time PCH system, represented in explicit form
in (F.398) and in implicit form in (F.399), for a symplectic discretization scheme with an
implicit trapezoidal rule for the flows and implicit Euler rule for the efforts are:

(d _y _aiyd ¥, *
Ixf_xi_A Xp+Aa. U
_ * d *d *
ll\(F,_rixP+Hi Up (F.419)
| _ * d *d *
LYf_FinJrHi U

In order to get an equivalent representation of (F.398), we combine it with (5.33) and it
results:

=X +§(;—I)(xk +;xk +B_uk)+B %(uk +uk+1)

[
4|Xk+1 k

B _ (F.420)
|Lyk+1:C(AXk +Buk)
Equivalently we can write:
[x _2><k+Xxk+;2xk+XB_uk—xk—Xxk—B_uk+B_uk+B_uk+l
k+1~ 2 (F.421)
|[yk+1 =C;xk +CB_uk
A more compact form of the above relation is:
PRSI e
[yk+1:CAXk +CBuk
This relation can be also written as:
2 __ _(Xk )
X A+l 1
( k+1)|_|( 5 E(AB B)Wluk I (F.423)
y | — = \
(Tk+1)
L CA s o )Luk+1J
Introducing the notations:
[ def (72 _ def .
|A:(A 2+|);B :%(AB B)
[ J (F.424)
| _def _ _def _  def .
{c = cA;D = [cB o}i, = o uk+1)

it results:
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J[ " ] (F.425)
Remark:

The initial state-space matrices A,B,c can be recovered by solving (F.425), when having
knowledge on the input/output vectors.

Similar to the classic state-space case, we propose further a theorem for the deterministic
identification corresponding to this symplectic discretization scheme.

Theorem F.16

Under the assumtions that:
. The input u_is persistently exciting of order 2i

I. The intersection of the row space of U ’; (the future inputs) and the row space of x g (the

past states) is empty.

l11. The user-defined weighting matrices w, < R"™"" and w, < R X are such that w, s of

full rank and w, obeys: rank [w;]: rank (W;WZJ, where w . is the block Hankel

*%x

matrix containing the past inputs u and outputs v, and with o, defined as the

P P
oblique projection:
oiz[Yf/uwaP 1)
and the singular value decomposition:
T
s, 0 (Vl | T
w,ow, =, Uz{ol O}Ilezulslvl 2)
("2 )
we have:
1. The matrix o, is equal to the product of the extended observability matrix and the
states:
* . d
0; =T X 3
2. The order of the system is equal to the number of singular values in (2) different
from 0.
3. The extended observability matrix r is equal to:
* -1, <1/2
Ty =W U, s 0ot 4)

4. The part of the state sequence X ‘;' that lies in the column space of w, can be

recovered from:
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Tw, -1 s 2] (5)

X 2 1 1

5. The state sequence X ‘: is equal to:

d *
x ¢ -r. "0, (6)

Proof:

Using (F.419), we can write the future states as:

d = * * *d . * *d . *
xf:A'(riWP—ri*Hi UP]+Ai U, (F.426)
Or equivalently:
d *q =i % *d * =i %
Xf:[Ai —A'Fi+Hi ]UP+A'Fi+YP (F.427)
More compact we can write:
x 9 =Lpwy (F.428)
Adopting the notations:
[ * dEf * = * * = *
ILP = (Ald —A'F|+Hld A'F|+]
! (F.429)
|, def . T
|pr = (u b ij
Using (F.419) and (F.429), the future outputs are:
* * * *d *
Y =TiLpWpg +H. TU (F.430)
Multiplying to the right with the orthogonal projector of u .., it results:
E * *d
anufu:ri"PWPHUf*lJrHi ufnuf*L (F.431)
The 2™ term to the right is null and then it results:
Yf/Uf*l:FiLPWP/Uf*L (F.432)
+
Multiplying to the right with the pseudo-inverse [w; oy } and w _ , it results:
+
[YfIUf*J—][WP/Uf*J—] Wo =T LW, (F.433)
It can easily be observed to the left in (F.433) an oblique projection and we can write then:
oi:[v /Uf*]WP:FiLPWP (F.434)
Using (F.428) it results:
o =r; x4 (F.435)

In (F.433) we have used the relation:
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[WP/Uf*L][WP/Ufu] W, =W, (F.436)

For the next step we will prove that:

rank (W ; ] = rank [W; . ] (F.437)
For this symplectic scheme, we can write W | as:
W = (IZLT“ O*“(U - | (F.438)
P LH.d r; J'xd |
' 'A% p )
where:
* * T
Up =Ugia=Uosia Yoyl (F.439)
Multiplying to the right with &1 Uf *L , We get:
N (R CEE
Wl el = m | (F.440)
e
ST
Using the orthogonal projection operator, (F.440) becomes:
(U 1u )
I, . 0 P *1
Wi L ‘[HZTJ F*J T (F.441)
i i LX b U - J
Assuming the initial conditions of the theorem, it results:
(L) (up o, |
rank | © | = rank | P (F.442)
y d |‘ I \ '
Ke) o [XR Y e

Remark: The initial conditions assumed for the current symplectic discretization scheme, are
the same with the classic state-space case approach, the only difference comes in the

structure of the block Hankel matrice w ; and past/future inputs (u ; U ’; ).

which proves (F.437). Introducing the SVD decomposition of w ' /u .. it results:

.
* s, 0 (V )

woiu o, o=, u, ]t W| 1 (F.443)
P T Palg o), T
V2 )

Since w ; /U L is a linear combination of the columns of w ; and since the rank of w

*

and w ; /U - are equal, then also the column spaces of w

andw /U - are also equal.

Thus we can write w  , as:
Wo =U,R (F.444)
Using the SVD decomposition of (F.443), we can write:
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+
[w; o ][vv; /U fu} w o :[ulslvlT j(vlsl‘lulT ](UlR) (F.445)

Together with the properties of the SVD decomposition:

T T
ViV, =Uu U = (F.446)
it results:
+

[WP/Uf*J—][WP/Uf*L] W, =U,R (F.447)

From (F.444) and (F.447), it results:

+

[W;/Ufu][w;/“fu] WS =W (F.448)

The 2" claim of the theorem can be proved by writing:
W.OW, =W, X W, (F.449)

We observe that the product vvlri* has n columns and x ‘f’w n rows, from which the rank

2

of w o,w, resultsto be also n . According to the SVD decomposition, we can write:

( * 1/2

JWF:US T

LR (F.450)

d o -1.1/2,T
\XfWZ_T 5.0V,

Using the first equation of (F.450), it results the extended observability matrix:

* -1, <1/2
Ty =W, U, s0°T (F.451)

From (F.450) and (F.451), statements 3 and 4 are proved. Multiplying to the left with the
pseudo-inverse ri* *in (F.435), it results the states value:

d _r’*o. (F.452)

This proves statement 5 of the theorem.

Appendix G: Controllability and observability grammians

In this section, we determine a general relation between the controllability and observability
gramians in the lossy case. In order to do that, we write first the observability grammian as
follows:

ce AUt (F.453)

Replacing c = BT @, we can write equivalently:

w2 - jeA toee Toe Mgy (F.454)
0

At

. : T . .
Further we will develop an equivalent form for e* 'q and qe using the general relation

of the exponential e* . Thus for “ *q we can write:
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eATtQ:[|+£[ATt]+i(ATt] +...]Q (F.455)

k
Further we will determine an equivalent relation for (AT ] Q using the PCH systems

properties. For k =1 we can write:

T

ATQ=(1-RR) Q=07 (3-R)TQ=Q(J3-RKQ  (F.456)

Introducing the notations:
( def

A =
loss Q (F.457)
| def
|Ares = RQ
It results:
ATQ=( 1)1Q(AIOSS + Ares ) (F.458)

For k = 2, we can write as follows:
2

(AT e=(-rR) (V-RR) Q (F.459)
Using the matrix transpose properties, we get:
2
[ATJ Q-0T(U-rR)'QT(-R)Q (F.460)
Using the PCH systems properties this is equivalent to:
2
[AT ] Q=( 1)2Q(AIOSS + Ares (F.461)
Thus it is straightforward that:
k
[AT ] Q=1 QA +Ars (F.462)
It results then that:
eATtg _ge At (F.463)
where:
def
A" = A|OSS + Avres (F464)

Further we determine an equivalent form for Qe At using the matrix exponential form. Thus

we will find a general relation for Qa ¥ using the PCH systems properties. For k =1, we can
write:

QA=Q(J—R)Q=QT[JT—RT]Q (F.465)
Using (F.457) we can write equivalently:

QA = (1A, A ) Q=(1tAaTQ (F.466)

loss
For k = 2 we can write:
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M 2-QU-RQUI-RRQ :QT(JT “RT ]QT (JT _RT jQ (F.467)

Using the PCH systems properties and (F.457), we can develop (F.467) as:

2
QA 2= (- 1)2[(AIOSS + Ares ' J Q (F.468)

From (F.466) and (F.468) we can deduce that:

Ak =(- 1)k [(Aloss + Ares )T J Q (F.469)
It results then that:
e At _e-ATtg (F.470)
Using (F.463) and (F.470), we can write the observability grammian as:
w :?Qe‘A'tBBTe‘A'Ttht (F.471)
0
which is equivalent to:
WOZ:QOFe‘A'tBBTe‘A'TtdtQ (F.472)
0
We observe that in the middle of (F.472) we have the controllability Grammian:
w 2 O})e‘A'tBBTe‘A'Ttdt (F.473)
0
and thus it results:
2 2
ws=QwiQ (F.474)
from which we obtain the following general relation:
W, = QW (F.475)

Remark: The lossless case of (F.475) can be easily deduced when A, =0, by
straightforward computations, following the same pattern of the proof.

Further we will determine the necessary conditions for the internal balancing of (5.134) as in
[176] for x, . x, states. For the x, states we can write:

X, —eT AT Tty (F.476)
where T'=[r, o] and A= Fi“ gt 1| . By straightforward computation it results:
21 22
X_l —TeAlg (F.477)
Then the controllability Grammian results as:
ngzo})T eMpg T ATt Ty (F.478)
0
which is equivalent to:
wi o =TtwlrT (F.479)



Then we determine Y_l as:

Voot leTAT h (F.480)

[EEN

By straightforward computation we can write:

v =ce ATt (F.481)

Then the observability Grammian of x, states, results as:

1

Wélzo(ij_lTY_ldt :OET'_TeATtCTCe AT Ly (F.482)
Using (F.474) it results:
wl =T Twlirtot TowlZor ! (F.483)
Then we write the internal balancing relation [179]:
wl =wl =32 (F.484)

where =, represent the singular values from grammian decomposition.Using (F.479) we can

easily deduce that:

W, =3 T’
J ° 1 (F.485)
We =Ty,
Using (F.479), (F.483) and (F.484) we will determine further a relation between the
Grammians W and w c by straightforward computation:
WC2 :T"lT"TQW(':ZQT’_lT’_T (F.486)
This relation can be equivalently written as:
T
w.w ! :T’_lT'_TQW(’:[T'_lT'_TQWC'] (F.487)
Then it results directly:
w, =TT Tow, (F.488)
Using (F.483) and (F.484) we can write the following relation:
sy T T T Tom-T
WWL =Q 7 T 2,2, TQ (F.489)
from which it results:
, 1.7
Wi =Q Tz, (F.490)

Remark: The results obtained for the x , states for internal balancing [176] can be easily

derived from the previous relations by straight computation.
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Abstract

The present thesis ‘Identification des systémes hamiltoniens a ports’, proposed the
development of a specific theory for Port Controlled Hamiltonian (PCH) systems
identification, due to their remarkable properties of energy preserving, interconnection of
systems from multiple domains of physics, etc. An analysis of structural identifiability is first
performed using classic or new (power energy) techniques to check the model structure
identifiability. A new context of identifiability is proposed here, which makes use of the
inputs and power port energies knowledge and also a ‘port identifiability’ concept is proposed
for the analysis of PCH systems. Then a practical identifiability analysis is performed using a
classic test, by adopting a perturbation model introduced on the interaction port of the PCH
system. Further a discrete-time framework is proposed, with different classic discretization
rules for the flows and efforts, that prove to preserve the continuous-time structure. The last
part of the thesis proposes the analysis of classic subspace identification algorithms for PCH
systems using the previous time-discretization schemes. Beside this it is proposed a new
(power energy), which makes use of the known inputs and power energies to determine the
unknown system parameters. On this new context it is proved by algorithms and simulation,
that equivalent PCH systems for the real model, can be identified on each port. Thus it is
proved that the system parameters can be determined in a classic or new (power energy)
manner.

Keywords: system identification, Port Hamiltonian systems, structural identifiability,

observability, controlability, energy based identifiability, practical identifiability,
discretization error, symplectic discretization, deterministic identification.
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Résumé

L’Objectif de cette thése est de développeré une théorie de I’identification spécifique
pour les systemes Hamiltonien & ports. Les raisons principales pour motiver cette théorie
résident dans les propriétés remarquables de ces systemes, notamment leur structure de Dirac
et sa stabilité par interconnexion conservative de puissance (e.g. parallele, séries ou
feedback). Dans la premiére partie, les systemes Hamiltoniens sont analysés en ce qui
concerne leur identifiabilité structurelle, par analyse de leur observabilité/commandabilité, par
tests directs, par 1’analyse en série de puissance de leur fonction de transfert ou par une
nouvelle approche énergétique d’analyse d’une identifiabilité spécifique associée a un port.
Dans la partie suivante, des modeles de perturbation par port d’interaction sont introduits et
permettent 1’analyse de I’identifiabilité ‘pratique’ des systémes hamiltoniens a ports. Le
quatriéme chapitre présente des schémas de discrétisation en temps qui préserve les bilans de
puissance et d’énergie et leur application sur des exemples de systéme hamiltoniens a ports
linéaires et non linéaires. L erreur de discrétisation est analysée en introduisant la notion de
représentation hamiltonienne de I’erreur de discrétisation. Dans la derniére partie de cette
thése, une approche d’identification dans 1’espace d’état est développée pour les systéemes
obtenus par discrétisation symplectique des systemes hamiltoniens a ports. Les cas
déterministe est analysé et une approche énergétique basée sur les résultats d’identifiabilité
structurelle développé dans la premiére partie est proposée. Enfin, dans la derniere partie, les
contributions du travail sont rappelées et quelques perspectives pour des travaux futurs sont
présentées.

Mots cles: identification des systemes, systemés Hamiltonian a ports, identifiabilite
structurelle, observabilité,commandabilité, identifiabilité énergétique, identifiabilite pratique,
erreur de discretization, discrétization symplectique, identification déterministe.
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