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Laplacien hypoelliptique et formule des traces
tordue

RESUME

Dans cette thése, on donne une formule géométrique explicite pour les intégrales
orbitales semisimples tordues du noyau de la chaleur sur un espace symétrique, en
utilisant la méthode du laplacien hypoelliptique développée par Bismut. On montre
que nos résultats sont compatible avec les résultats classiques de la théorie de 'indice
équivariant local sur les espaces localement symétriques compacts.

On utilise notre formule explicite pour évaluer le terme dominant dans ’asympto-
tique quand d — +o0o de la torsion analytique équivariante de Ray-Singer associée
a une famille de fibrés vectoriels plats Fy sur un espace localement symétrique com-
pact. On montre que le terme dominant peut étre calculé a ’aide de W-invariants
au sens de Bismut-Ma-Zhang.

MoTs CLEFS : laplacian hypoelliptique, intégrale orbitale tordue, formule des traces
tordue, torsion analytique équivariante.

Hypoelliptic Laplacian and twisted trace formula

ABSTRACT

In this thesis, we give an explicit geometric formula for the twisted semisimple
orbital integrals associated with the heat kernel on symmetric spaces. For that
purpose, we use the method of the hypoelliptic Laplacian developed by Bismut. We
show that our results are compatible with classical results in local equivariant index
theory.

We also use this formula to evaluate the leading term of the asymptotics as d —
+oo of the equivariant Ray-Singer analytic torsion associated with a family of flat
vector bundles Fj; on a compact locally symmetric space. We show that the leading
term can be evaluated in terms of the W-invariants constructed by Bismut-Ma-
Zhang.

KEYWORDS : Hypoelliptic Laplacian, twisted orbital integral, twisted trace for-
mula, equivariant analytic torsion.
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INTRODUCTION (EN FRANGAIS)

L’objet de cette thése est de donner une formule géométrique explicite pour les
intégrales orbitales semisimples tordues associées au noyau de la chaleur, en utilisant
la méthode du laplacien hypoelliptique développée dans [B11].

On utilise notre formule explicite pour évaluer le terme dominant dans ’asympto-
tique quand d — +o0o de la torsion analytique équivariante de Ray-Singer associée
& une famille de fibrés vectoriels plats F,; sur un espace localement symétrique com-
pact. On montre que le terme dominant peut étre calculé a I’aide de W-invariants
au sens de [BMZ17].

Table des matiéres
i. Un groupe réductif réel
ii. Laplacien hypoelliptique et espaces symétriques
iii. Intégrales orbitales semisimples
iv. Intégrales orbitales tordues
v. Résultats de la thése
vi. Intégrales orbitales tordues et théoréme de 1’indice local
vii. Torsion analytique équivariante de Ray-Singer sur 7

viii. Asymptotique de la torsion équivariante de Ray-Singer

© 00 3 O ot W W N o=

ix. Structure de la thése

i. Un groupe réductif réel. Soit G un groupe réductif réel connexe d’algébre de
Lie g, et soit # € Aut(G) une involution de Cartan de G. Soit K l'’ensemble des
points fixes de 6 dans G. Alors K est un sous-groupe maximal compact de G. Soit
¢ 'algebre de Lie de K, et soit p C g l'espace propre de 'action de 6 associé a la
valeur propre —1. La décomposition de Cartan de g est donnée par

(i-1) g=pPt
Alors on a
(1_2) [pa p]v [E7E] C E? [E7p] - p

Soit B une forme bilinéaire symétrique non-dégénérée qui est invariante par G et 6
telle que B soit positive sur p et négative sur ¢.

On pose m = dimp, n = dim €.

Soit X = G/K lespace symétrique associé. On note p : G — X la projection
canonique, donc il est un K-fibré principal sur X. Le scindage (i-1) induit une forme
de connexion sur ce K-fibré principal.

Le groupe K agit sur p par ’action adjointe, on a

(1—3) TX =G xg p.

Alors B induit une métrique riemannienne sur X telle que la forme de connexion
sur p : G — X induit la connexion de Levi-Civita V¥,

On a que X ~ R™ est de courbure sectionnelle nonpositive. On note d(-,-) la
distance riemannienne sur X.
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ii. Laplacien hypoelliptique et espaces symétriques. Soit p¥ : K — Aut(E)
une representation unitaire de dimension finie de K, et soit F' = G xx FE le fibré
vectoriel associé sur X avec une connexion unitaire V. En particulier, £ induit un
fibré vectoriel N sur X. R

Le fibré vectoriel TX @& N est canoniquement trivial sur X. Soit 7 : X — X
I'espace total de TX & N. On a X~ X x g.

Soit Ug l'algébre enveloppante de g, et soit C'® € Ug l'opérateur de Casimir associé
a B, qui est dans le centre de Ug. Si eq, - -, €,4n €st une base de g, et si ej, - -,
erin €st la base duale de g relativement a B, alors

m+n

(ii-1) CO=—eje;.

i=1
Le Casimir C? induit un opérateur elliptique C®¥ agissant sur C*°(X, F). Soit £X
I'opérateur qui différe par une constante explicite de ’action de ECQ’X sur C°(X, F).

Pour ¢ > 0, on note exp(—tLX) 'opérateur de la chaleur associé.

Par [B11, Sections 0.1, 0.3 et 0.6], le laplacien hypoelliptique £;* est une défor-
mation de £, de sorte que si b — 0, L converge dans le sens adéquat vers £X.
On rappelle la construction de £;¥ en abrégé.

Soit DX I'opérateur de Dirac de Kostant [Kos97] associé a (g, B). Alors D8 agit
sur C®(X, F), et son carré est égal & —2L%. Dans [B11, Chapitre 2], lauteur a défini

un opérateur de Dirac généralisé D;', b > 0 agissant sur C(X, 7 (N (T* X & N*) @
F)) en utilisant D®¥ et une version de 'opérateur de Dirac sur la fibre TX & N.
Dans [B11, Section 2.13], le laplacien hypoelliptique £; sur X est défini par
1~ 1
(ii-2) LY = —-D9X2 4 292
2 2
Par [B11, Proposition 2.15.1], on a
(ii-3) 23, £y] = 0.

Soit ATX®N le Laplace usuel le long des fibres TX @ N. La formule explicite
suivante de £;' est établie dans [B11, Section 2.13|,

X 1 N TX712 1 TX®ON 2 4 AT XONT)
L _—51[3 Y +27)2(—A + Y] —m—”)+T
1 [ee] o~k . * *
(ii-4) - <VCT)((TXEBN,7T (A (T*X®N*)QF)) o(a ](YTX))

—c(ad(YT¥) 4 ifad (YY) — ipE(YN)> :

Par un résultat de Hémander [Hor67], £; est un opérateur hypoelliptique. La
structure de £;¥ est proche de la structure du laplacien hypoelliptique étudiée dans
le travail de Bismut [B05| et de Bismut-Lebeau [BLO8|. En fait, étant donnée une
variété riemannienne M, la théorie générale du laplacian hypoelliptique [B05| peut
donner une famille d’opérateur Ly|p=o sur TM interpolant le laplacien elliptique sur
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M (lorsque b — 0) et le flot géodésique sur T'M (lorsque b — +00). Alors on peut
espérer que lopérateur £ a des propriétés similaires.

Des méthodes d’analyse ont été développées par Bismut pour obtenir les propriétés
convenables de la résolvante de L. Pour ¢ > 0, soit exp(—tL;\) l'opérateur de la
chaleur associé a £;. Dans |[B11], on a démontré que exp(—tL;\) posséde un noyau
de la chaleur lisse qlfft, et que le noyau qiﬁ converge dans le sens adéquat vers le
noyau de exp(—tLX) lorsque b — 0.

Dans la section 3 de la présente thése, nous rappelons la construction de £; sur
X en plus de détail. Dans la sous-section 3.7, nous rappelons aussi des résultats sur
qft établis dans [B11, Chapitres 4 et 11].

iii. Intégrales orbitales semisimples. Soit Isom(X) le groupe de Lie d’isométries
de X, et soit Isom(X)? la composante connexe de I'identité. Nous avons I’homomor-
phisme évident G — Isom(X)°.

Si ¢ € Isom(X), soit dy la fonction de déplacement sur X associée a ¢. Alors d,
est une fonction convexe. Comme dans [E96], ¢ est dit semisimple si dy atteint sa
valeur infimum m, dans X, et ¢ est dit elliptique si ¢ a des points fixes dans X. Si ¢
est semisimple, soit X (¢) C X I'ensemble minimisant de dy, qui est une sous-variété
convexe de X.

Dans [B11, Chapitres 3 et 4], on a donné une interprétation géométrique pour les
intégrales orbitales associées & un élément semisimple v € G. Ainsi que X (7y) est un
espace symétrique associé au centralisateur Z(7) de . Alors 'espace total du fibré
normal Nx(,)/x peut étre identifié avec X. Etant donné un opérateur dont le noyau
de Schwartz a une propriété de décroissance gaussienne appropriée, son intégrale
orbitale associée a « peut étre écrite comme intégration le long de la fibre Nx()/x.
En particulier, les intégrales orbitales Trl [exp(—t£X)], Try™ [exp(—tL£)Y)] sont bien
définies. Ces intégrales orbitales sont dites elliptiques et hypoelliptiques.

Dans [B11, Chapitre 4, on a montré que les intégrales orbitales Tr [exp(—t£Y)],
Tr,"[exp(—t£Y)] coincident pour ¢ > 0, b > 0. En utilisant ce fait, dans [B11,
Chapitre 6], on a donné une formule géométrique explicite pour Trl" [exp(—t£Y)],
qui est obtenue en calculant la limite de Try" [exp(—t£;)] lorsque b — +oc.

En utilisant ce résultat, Shu Shen [S18] a donné une démonstration de la conjecture
de Fried pour des espaces compacts localement symétriques, complétant le travail
de Moscovici et Stanton dans [MS91].

iv. Intégrales orbitales tordues. Soit ¥ le sous-groupe compact de Aut(G) qui
se compose des automorphismes de (G, B, 0). Si o € 3, soit £7 le sous-groupe fermé
de X2 engendré par . On pose

(iv-1) G=GxX, K7=K xX°.
Si o € 3, on définit la conjugation tordue C sur G telle que si v, h € G,
(iv-2) C?(h)y = hyo(h™1).
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Alors C7 définit une action de G sur G. Si y € G, on dénote [y], 'orbite de . Soit
Z(vo) le stabilisateur de 7 sous I'action de G par C?. Alors on a

(iv-3) Z(yo)={9g€G : vyog=gyo € G}
On a l'identification
(iv-4) Ve = Z(yo)\G.

Comme l'action de o préserve K et B, G agit sur X isométriquement. Soit v € G
tel que o soit semisimple, et soit X (yo) C X 'ensemble minimisant de d,,. On
montre que X (yo) est aussi un espace symétrique et que [y], est un sous-ensemble
fermé dans GG. Dans la sous-section 1.5, nous étendons les constructions géométriques
de [B11, Chapitre 3| a notre cas.

Nous supposons également que E s’étend comme représentation unitaire de K :
la question de l'existence de tels relévements sera examinée plus en détail dans la
section 2. L’action de G? sur X se releve a F.

Soit Q7 une algébre d’opérateurs agissant sur C°(X, F) qui commutent avec G°
et qui ont une propriété de décroissance gaussienne appropriée.

Dans la section 4, nous montrons que si o est semisimple, si ) € Q7 a pour le
noyau ¢ € C(G,End(E)), on peut définit une intégrale Trb?[Q] par la formule

(iv-5) Th[Q] = / )l 0 ).

Comme indiqué par la notation, Tr! (@] ne dépend que de la classe de conjugaison
[yo] de vo dans G°. On les appelle intégrales orbitales tordues [L80, Fli82, C84,
ArCg9, Lip15, BeLil7]. Dans la sous-section 4.2, nous donnons aussi une description
géométrique pour Tr7I[Q].

Les opérateurs £X, £;¥ commutent avec action de G°. Donc exp(—tLX) est dans
Q°, alors on a l'intégrale orbitale tordue correspondante Tr[exp(—t£%X)]. Dans la
sous-section 4.3, nous étendons la définition des intégrales orbitales tordues aux
intégrales orbitales tordues hypoelliptiques Tr, e [exp(—tLX)].

Soit I" un sous-groupe discret cocompact de G tel que o(I") C I'. Pour simplifier,
nous supposons que ' est sans torsion, de sorte que Z = I'\ X est une variété lisse
compacte équipée d’une action de X°.

Le fibré vectoriel F' descend en un fibré vectoriel sur Z que nous notons encore
F. L’action de 7 sur Z se reléve au fibré F. Si Q € Q7, alors ) descend en un
opérateur Q7 agissant sur C*°(Z, F).

Dans la sous-section 1.8, nous montrons que si v € I', yo est semisimple, de telle
sorte que Tr?/[Q] est bien définie. De plus, I' N Z(y0) est un sous-groupe discret
cocompact de Z(vyo), de telle sorte que I' N Z(yo)\ X (y0) est compact.

Soit C' I’ensemble des classes de conjugaison tordues de I' définies a la Definition
1.8.2. Dans la sous-section 4.5, d’aprés Langlands [L80], Flicker [F1i82| et Bergeron-
Lipnowski [BeLil7], nous récupérons une version tordue de la formule des traces de
Selberg [Sel56],

(iv-6) Tr[o?Q”) = ) Vol(I'N Z(y0)\X (v0)) TePI[Q).

bl ec
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Dans la suite, on considére le cas ot @ = exp(—tLY), t > 0.

v. Résultats de la thése. Dans la section 4, nous établissons une identité fonda-
mentale qui dit que, pour b > 0, t > 0,

(v-1) Trl N exp(—tLY)] = Try 0V exp(—tLyY)].

En fait, en utilisant (ii-3), on montre que la dérivée du coté droit de (v-1) par
rapport & b > 0 est nulle, alors le coté droit ne dépend pas de b. Donc (v-1) est une
conséquence du fait que le noyau qlft converge dans le sens adéquat vers le noyau de
exp(—tL*) lorsque b — 0.

Nous faisons alors b — +o0o dans (v-1). L’évaluation de la limite du coté droit
se concentre autour X (yo), ou la description géométrique des intégrales orbitales
tordues joue un réle important.

Décrivons plus en détail notre résultat principal. Si o est semisimple, aprés conju-
gaison, on peut supposer que

(v-2) y=ek"' acp, ke K, Ad(k)oa = a.
On pose
(v-3) K(yo)=Z(yo) N K.
Soit 3(vo), €(yo) algebres de Lie de Z(vo), K(vyo). On a le scindage
(v-4) 3(o) = p(yo) & E(y0),

ou p(yo) est l'intersection de 3(yo) et p.
On pose 39 = kerad(a). Alors 3(yo) C 3¢. Soit 35 Uorthogonal & 3¢ dans g. Soit
35 (7o) Torthogonal & 3(yo) dans 30, alors on a le scindage

(v-5) 35 (Yo) = pg (o) & &5 (o).

Dans la sous-section 5.1, pour Y € €(yo), nous définissons une fonction analytique
Jyo sur (o) par la formule

b _ 1 A(iad(Y) o))

- Fo00) = Tt = A6 7 A(iad (1))
1 det(1 — exp(—iad(Yy))Ad(k™'0))|gt (70) ] /*
det(1 — Ad(k~'0))l;s (o) det(1 — exp(—iad(Y, $)Ad(k '0))lpt (o) '

Le résultat essentiel de cette thése est le suivant.

Théoréme 1. Pourt > 0, on a l’identité suivante :

exp(—|al*/2t)
2ty

(v-7) / o T () expl—in (V)

4y
(2mt)a/2”

TN exp(—tLY)] =

exp(—|Yg[*/2¢)
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Si 0 = Idg, nous récupérons la formule obtenue dans [B11, Théoréme 6.1.1].
En utilisant (v-7), on peut aussi obtenir des formules pour les intégrales orbitales
tordues plus générales.

Notez que les fonctions A sur p et € (avec des roles différents) apparaissent dans la
fonction J,, (V). Le caractére de (E, p¥) apparait aussi naturellement dans (v-7).
La formule (v-7) présent des analogies avec la formule du point fixe de Lefschetz
d’Atiyah-Bott [AB67, AB68|, ot on a le E—genre équivariant et le caractére de Chern
équivariant.

Soit A un endomorphisme auto adjoint de F qui commute avec I'action de K°7.
On considére A comme une section paralléle de End(F') commutant avec ’action de
G?. On pose

(v-8) L5 =LY+ A

Le Théoréme 1 s’é¢tend au cas de exp(—tLY}).

vi. Intégrales orbitales tordues et théoréme de l’indice local. L’opérateur
L descend en un laplacien £Z sur Z. Soit DZ 'opérateur de Dirac sur Z. Par [B11,
Sections 7.2 et 7.3|, & une constante prés, D%? coincide avec 2L£%. Le nombre de
Lefschetz x,(F) est donné par

(vi-1) Yo (F) = Trg[o? exp(—tD%?/2)].

Soit ?Z ’ensemble des points fixes de o dans Z. Alors x,(F') peut étre calculé par
le théoréme du point fixe de Lefschetz de Atiyah-Bott [AB67, AB68|, de telle sorte
que

(vi-2) Yo(F) = / A%(TZ|sg, VT2l 2)ch? (F, V).
°Z

Dans le Lemme 1.8.7, on montre que ?Z est 'union de I' N Z(yo)\X (yo) C Z
avec elliptique vo, v € T'. Dans la section 7, nous vérifions que si nous évaluons le
coté droit de (vi-1) en utilisant (iv-6), (v-7), nous récupérons I’équation (vi-2). Pour
ce faire, nous devons explorer en détail la théorie de la représentation du groupe
K.

Dans la section 2, a la suite de [L80, C84, Bou87, DK00, Belii17|, nous donnons
une classification des représentations de K7 & ’aide des racines de K, pour nous per-
mettre d’évaluer le caractére de K7 dans la partie droite de (v-7). Plus précisément,
on construit un élément 7 € Aut(K') d’ordre fini, de telle sorte que les représenta-
tions de K7 puissent étre transformées en représentations de K7. Alors 7 agit sur
I’ensemble des poids dominants P, .

Soient Irr(K7), Irr(X7) les ensembles des classes d’équivalence des représentations
unitaires irréductibles de K7, ¥7. Dans la sous-section 2.4, nous montrons que

orbites dans P, , sous l'action du
(vi-3) Irr(S7)\Irr(K7) ~ {

groupe fini engendré par 7
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vii. Torsion analytique équivariante de Ray-Singer sur Z. Si E est une re-
présentation de G7, alors F' = G X i F/ est un fibré vectoriel plat sur X, et F' descend
en un fibré vectoriel plat sur Z. Soit V7 la connexion plat canonique sur F, et soit
(2(Z, F),d?") le complexe de de Rham associé. Soit d%¥* 'adjoint formal de d%*".
On pose

(vii-1) D! = d#" 4 q%h,

A un endomorphisme auto adjoint prés, Popérateur 2£4 coincide avec le laplacien
de Hodge D%%2, Soit NN (T"%) I'opérateur de nombre sur Q' (Z, F). Soit P* la pro-
jection orthogonale sur (ker D%)L T'espace orthogonal a ker D dans Q' (Z, F),
et soit [DZF2)~! I'inverse de D% 12 agissant sur (ker DZ%F)L.

Pour s € C et Re(s) assez grand, on pose

(Vii—?) ﬁg(gTZ, VF’f, gF)(S) = —Tr, [NA(T*Z)O_[DZ,F,Q]—SPJ_] )

Alors 9,(g7%,VES gF)(s) s’étend en une fonction méromorphe de s € C, qui est
holomorphe en s = 0.
On définit la torsion analytique équivariante de Ray-Singer par la formule

109,(g"™%, V5, g") (0)
2 0s '

Si 0 = Idg, il s’agit simplement de la torsion analytique ordinaire de Ray-Singer
[RS71, RS73|, on la note par T (¢7%, VS gf).

Dans la sous-section 7.8, comme dans [BMZ17, Section 8|, nous obtenons une
formule géométrique pour les intégrales orbitales tordues pour le noyau de la chaleur
qui apparaissent dans I’évaluation de la torsion analytique équivariante de Ray-
Singer. On obtient alors des résultats sur 7, (g7%, V7 gf).

Si v est sous la forme dans (v-2), on pose

(vii-3) Tolg™, V" 4" =

(vii-4) e(yo) = rke(Z(y0)) — rke(K(yo)) € N.
L’entier (o) ne dépend que de la class [v],.
Proposition 1. Si une des trois hypothéses est vérifiée :
(1) m est pair et o preserve l'orientation de p ;
(2) m est impair et o ne preserve pas l'orientation de p ;
(8) Pour~y €T, e(yo) # 1,
alors on a
(vii-5) To(g"7, VT ") =0

La Proposition 1 étend des résultats dans [MS91, Corollaire 2.2|, [Lot94, Propo-
sition 9|, [BL95, Théoréme 3.26]|, [B11, Section 7.9], [BMZ17, Théoréme 8.6].
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viii. Asymptotique de la torsion équivariante de Ray-Singer. Dans la sec-
tion 9, nous utilisons le Théoréme 1 pour obtenir une version locale de ’asymptotique
de la torsion analytique équivariante de Ray-Singer lorsque le fibré vectoriel F' tend
vers l'infini en un sens adéquat.

Bergeron et Venkatesh [BeV13| ont considéré le comportement asymptotique de
la torsion analytique d’espaces localement symétriques par revétement fini. Miiller
[Miil12] a initié I'étude de la torsion analytique de Ray-Singer pour les puissances
symétriques d’un fibré vectoriel plat donné sur les variétés hyperboliques. Bismut-
Ma-Zhang [BMZ17] et Miiller-Pfaff [MiP13] ont également étudié la suite de fibrés
vectoriels plats associés aux multiples d’un poids dominant qui induisent les repré-
sentations correspondantes de la forme compacte U de G. Ici, nous nous intéressons
a asymptotique de la torsion analytique équivariante de Ray-Singer pour un espace
localement symétrique compact Z. Ce probléme a déja été considéré par Ksenia Fe-
dosova [Fed15] par des méthodes d’analyse harmonique sur le groupe réductif G. Ici,
comme dans [BMZ17|, nous allons utiliser la formule explicite du Théoréme 1.

Nous supposons que 'action de o sur GG s’étend en un automorphisme de U. On
pose

(viii-1) U? =U % %°.

Dans la suite, nous supposons que (E, p¥) est une représentation unitaire de U?. En
utilisant ’astuce unitaire de Weyl, cette représentation s’étend en une représentation
de G, alors on obtient un fibré vectoriel plat F' sur X ou Z équipé d’une action
de 7. On considére principalement la torsion analytique équivariante associée &
l’action de o.

Dans la sous-section 8.2, en conséquence de (v-7) et (vi-3), nous nous ramenons
au cas ou F est U-irréductible, et ol le poids A de E est fixé par o. D’abord, on
peut construire une famille de représentations Ey de U associée a A, en remplagant A
par d\, d € N. Ensuite, par (vi-3), on peut étendre chaque F, en une représentation
de U7, mais en générale, 'extension n’est pas unique. On utilise l'idée de [BMZ17|
pour donner une facon canonique de construire les extensions.

Soit M) la variété de drapeaux associée a A, de telle sorte que U? agit holomor-
phiquement sur M), et que cette action se reléve au fibré en droite canonique associé
Ly — M,. Alors pour d € N, U7 agit sur H(O’O)(M,\, Lf\l). Nous obtenons une famille
de représentations irréductibles (Ey, pP1) de U’ donnée par H*0(M,, L{), d € N.

Soit F} le fibré vectoriel plat associé a I'action de G sur Ey, et soit D%%¢ 'opéra-
teur défini dans (vii-1) pour le fibré F,. Dans [BMZ17], on a introduit une condition
de non-dégénérescence, et on a montré que si cette condition est vérifiée, il y a des
constantes ¢ > 0, C' > 0 telles que pour d € N,

(viii-2) DZ%F4 > cd? — C.

Dans [BMZ17], un résultat important est la construction du W-invariant, ou on
a montré que sous ladite condition de non-dégénérescence, le terme dominant de
I'asymptotique de T (g4, Ve gFe) lorsque d — +o00 est donné par le W-invariant,
qui peut étre calculé localement.
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Dans la derniére partie de la présente thése, on se consacre a l’extension de ce
résultat en cas de la torsion équivariante. Dans la sous-section 9.3, on montre que
sous la méme condition de non-dégénérescence, quand d — 400, 'asymptotique de
To(gT%, Vs gFa) peut étre évalude a I'aide de formes différentielles explicites Wi
associées a des éléments elliptiques yo, v € T, qui sont exactement les W-invariants
au sens de [BMZ17, Sections 2 et 8|. Les invariants W,, forment un ensemble fini
d’invariants sur les points fixes de o sur Z.

Une différence entre notre résultats et les résultats de [BMZ17, Section 8| est
la présence de facteurs oscillants de la forme exp(c,,dv/—1), ¢,, € R. En fait, en
calculant le terme dominant de 'asymptotique de T,(g7%, Ve gfa) par (v-7), il
faut évaluer asymptotique de Tr%[pPe(k~'o exp(iy/d))] avec k € K, y € £(yo)
lorsque d — “+o00. Quand on utilise le théoréme du point fixe de Berline-Vergne
[BV85] pour ce faire, on voir que le terme dominant de Tr"[pP(k~'o exp(iy/d))]
est une somme finie des intégrales de Duistermaat-Heckman [DH82, DH83| associées
les points fixes de k1o sur M. Si z € M, est fixé par k~'o, laction de k~'o sur
L, . est représentée par un nombre h € S', alors pour d € N, P'action de k1o sur
LY, est représentée par h?, qui est justement un facteur oscillant susdit.

Dans la Proposition 9.3.1, en utilisant (viii-2), nous montrons que la contribution
des éléments non-elliptiques vo, v € T' & 'asymptotique de la torsion analytique
équivariante de Ray-Singer est exponentiellement petite.

Nos résultats sont compatibles avec les résultats de Ksenia Fedosova [Fed15|. Dans
[Fed15], on a considéré 'asymptotique de la torsion analytique de Ray-Singer pour
des orbifolds hyperboliques compacts. En utilisant la formule des traces de Selberg,
elle a montré que les éléments elliptiques de I' contribuaient a I'asymptotique de la
torsion analytique de Ray-Singer par un pseudo-polynéme en d contenant également
des facteurs oscillants, et que la contribution des éléments non-elliptiques dans I' est
exponentiellement petite.

ix. Structure de la thése. La thése est structurée de la maniere suivante. Dans la
section 1, nous introduisons une extension G de G par un groupe compact d’auto-
morphismes X, et nous établissons les constructions géométriques associées a 'action
des éléments semisimples de G sur X.

Dans la section 2, nous classifions les représentations irréductibles de K7, et nous
donnons une formule de caractére de Weyl pour K°.

Dans la section 3, nous rappelons la construction du laplacien hypoelliptique as-
socié a (G, K), et les propriétés de son noyau de la chaleur dans [B11].

Dans la section 4, nous définissons les intégrales orbitales tordues associées a un
élément semisimple yo. Dans la sous-section 4.5, nous dérivons la version tordue de
la formule des traces de Selberg pour les espaces localements symétriques compacts.

Dans la section 5, nous montrons le résultat essentiel de la présente thése, et nous
donnons quelques extensions.

Dans la section 6, nous rappelons la formule explicite du noyau de la chaleur
hypoelliptique sur I’espace vectoriel euclidien, et nous montrons que notre formule
est compatible avec les calculs de [B11, Section 10.6].
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Dans la section 7, nous montrons la compatibilité de notre formule avec les résul-
tats de la théorie de 'indice équivariant local. Dans la sous-section 7.8, nous obtenons
des résultats sur I’évaluation de la torsion analytique équivariante de Ray-Singer sur
les espaces localement symétriques compacts.

Dans la section 8, nous construisons une suite de représentations F; de G? et une
famille de fibrés vectoriels plats Fy sur Z.

Enfin, dans la section 9, nous calculons "asymptotique de la torsion analytique
équivariante de Ray-Singer lorsque d — +o0.

Dans tout la these, si E = E, @ E_ est un espace vectoriel Zy-gradué, et si 7 = +1
définit cette structure Zg-graduée sur F, si A € End(F), on définit la supertrace de
A par

(ix-1) Trg[A] = Tr¥ [T A].

Si A est une algebre Zs-graduée, si a,b € A, on note [a, b] le supercommutateur
de a, b, de tell sorte que

(ix-2) [a,b] = ab — (—1)ds@dee®)pq

Si B est une autre algébre Z,-graduée, on note A®B le produit tensoriel Zo-gradué

de A et B.
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INTRODUCTION

The purpose of this thesis is to give an explicit geometric formula for the twisted
semisimple orbital integrals associated with the heat kernel. For that purpose, we
use the method of the hypoelliptic Laplacian developed in [B11].

We also show that our results are compatible with classical results in the local
equivariant index theory for compact locally symmetric spaces. In the last part of
the present thesis, we use this formula to evaluate the leading term in the asymptotic
expansion as d — 400 of the equivariant Ray-Singer analytic torsion associated with
a family of flat vector bundles F,; on a compact locally symmetric space.

0.1. A real reductive group. Let GG be a connected real reductive group with Lie
algebra g, and let § € Aut(G) be a Cartan involution. Let K be the fixed point set
of 8 in G. Then K is a maximal compact subgroup of GG. Let £ be its Lie algebra,
and let p C g be the eigenspace of 6 associated with the eigenvalue —1. The Cartan
decomposition of g is given by

(0.1.1) g=pat.

And we have

(0.1.2) [p,p], [6,€ C & [t p] Cp.

Let B be a G and #-invariant nondegenerate bilinear form on g, which is positive
on p and negative on £. Put m = dimp, n = dim €.

One main geometric object in this thesis is the symmetric space X = G/K. The
form B induces a Riemannian metric on X, so that X ~ p with nonpositive sectional
curvature. Let d(-,-) denote the Riemannian distance on X.

0.2. Hypoelliptic Laplacian and symmetric spaces. If (E,p”) is a unitary
representation of K of finite dimension, then F' = G X E is a Hermitian vector
bundle on X. In particular, p, £ descends to the vector bundles T X, N on X. Then
TX @ N is canonically trivial on X. Let 7 : X — X be the total space of TX & N,
sothat??:Xxg.

Let Ug be the enveloping algebra of g, and let C® € Ug be the Casimir operator
associated with B. Then C9 lies in the center of Ug. Also C? descends to an elliptic
operator C%% acting on C*(X, F). Let £LX be the operator which differs by an

1
explicit constant from the action of ng’X on C®°(X, F). For t > 0, let exp(—tL™Y)

be the associated heat operator.

As explained by Bismut in [B11, Sections 0.1, 0.3 and 0.6], the hypoelliptic Lapla-
cian £ is considered to be a deformation of £LX, so that as b — 0, £ converges in
the proper sense to £X. We introduce briefly the construction of £; [y~o.

Let D%X be the Dirac operator of Kostant [Kos97] associated with (g, B), whose
square coincides with —2£% acting on C*(X, F)). In [B11, Section 2.12|, the author
defined a generalized Dirac operator D5\, b > 0 acting on C’OO(/;(\, TN (T*XDN*)®
F)) by combining D%X and a version of Dirac operator along the fiber TX & N.
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The hypoelliptic Laplacian £; on X is defined as

1A 1
(0.2.1) ¥ = _§D9,X,2 n 595(,2.

Let ATX®N be the standard Laplace along the fiber TX @ N. The following
explicit formula of £;' is established in [B11, Section 2.13],

X 1 N TX7|2 1 TX®ON 2 NAA(T*X@N*)
£ = IV YR+ s (A Y —m—n) +
1 [o5] % . * *
(0.2.2) +5 <V5T§TX®N,7T (A (T*X®ON*)QF)) + 2(ad(YTY))

—c(ad(Y"™) +ifad (YY) — z'pE(YN)> :

The structure of £ is very closed to the structure of the hypoelliptic Laplacian
studied in the work of Bismut [B05| and Bismut-Lebeau [BLOS].

In [B11], the proper functional analytic machinery was developed in order to
obtain the analytic properties of the resolvent and of the heat kernel of L.

Let exp(—tL;\) be the heat operator associated with £X. In [B11], Bismut proved
that there is a smooth heat kernel q,fft associated with exp(—tL;' ), and that as b — 0,
the kernel q,i(t converges in the proper sense to the kernel of exp(—tL%X).

In section 3 of the present thesis, we recall the construction of L [p~o on X with
more details, and in subsection 3.7, we also recall some results on qiﬁ established in
[B11, Chapters 4 and 11].

0.3. Semisimple orbital integrals. Let Isom(X) be the Lie group of isometries
of X, and let Isom(X)? be the connected component containing the identity. We
have the obvious homomorphism of Lie groups G — Isom(X)°.

If ¢ € Isom(X), let dy(z) = d(z, ¢(x)) be the displacement function associated
with ¢. As in [E96], ¢ is called semisimple if d, reaches its infimum value my in X,
and ¢ is called elliptic if ¢ has fixed points in X. If ¢ is semisimple, let X (¢) C X
be the minimizing set of d,, which is a convex submanifold of X.

In [B11, Chapters 3|, given a semisimple element v € G, Bismut showed that X ()
is a symmetric space associated with the centralizer Z () of 7, then he constructed
a normal coordinate system for X based on X (7). Based on this, Bismut gave a
geometric interpretation for the associated orbital integrals, so that it can be written
as an integration along the fiber of normal bundle Nx(,),x of X(v). In particular,
the orbital integrals Trl [exp(—t£X)], Tr,"exp(—tLY¥)] are well-defined. These
orbital integrals are said to be respectively elliptic and hypoelliptic.

In [B11, Section 4.6], Bismut showed that for t > 0, b > 0, TrD[exp(—t£Y)],
Tr,Mexp(—tL¥)] coincide. Then by making b — +oo in TrM [exp(—t£¥)], Bismut
obtained an explicit geometric formula for Trexp(—t£Y)].

Using this formula, Shu Shen [S18] gave a full proof of the Fried conjecture for
compact locally symmetric spaces, completing the work of Moscovici and Stanton
[MS91].
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0.4. Twisted orbital integrals. Let X be the compact subgroup of Aut(G) con-
sisting of the automorphisms of (G, B, ). If 0 € 3, let 37 be the closed subgroup
of ¥ generated by o. Put

(0.4.1) G'=GxX, K7=K xX°.
If o € 3, we define the o-twisted conjugation C? on G such that if h,v € G,
(0.4.2) C?(h)y = hyo(h™).

Then C7 gives an action of G on itself. Let Z(yo) C G be the twisted centralizer
of v € G, and let [v], be the orbit of v € G by the action C?. We have

(0.4.3) Vo 2 Z(yo)\G.

Then the twisted orbital integrals [L80, F1i82, C84, ArC89, Lip15, BeLil7| are re-
ferred to certain integrals on Z(yo)\G.

The group G? acts on X isometrically. Let v € G be such that vo is semisimple,
and let X(yo) C X be the minimizing set of d,,. In subsection 1.5, we extend
the geometric constructions in [B11, Chapter 3| to our case, so that X (yo) is the
symmetric space associated with Z(vo).

We also assume that E extends as a unitary representation of K7, the question
of the existence of such lifts will be revisited in more detail in section 2. Then the
action of G? on X lifts to F. Let Q7 be an algebra of operators which commute
with G? and have the proper Gaussian decay.

In section 4, for @) € Q7, one has a geometric formulation for the twisted orbital
integral Trhel [@Q]. In particular, the elliptic heat kernel has well-defined twisted
orbital integral Tr[exp(—t£Y)]. In subsection 4.3, we extend the definition of
twisted orbital integrals to the hypoelliptic orbital integrals Try""/[exp(—t£¥)].

Let I" be a cocompact discrete subgroup of G such that o(I') C I'. For simplicity,
we assume that I' is torsion free, so that Z = I'\ X is a compact smooth manifold
equipped with an action of 7.

The vector bundle F' descends to a vector bundle on Z, which we still denote it
by F'. The action of 37 on Z lifts to F'. If Q € Q7, then @ descends to an operator
Q% acting on C=(Z, F).

In subsection 1.8, we show that if v € I', vo is semisimple. Let C' be the twisted
conjugacy classes of I' defined in Definition 1.8.2. In subsection 4.5, following Lang-
lands [L80], Flicker [F1i82| and Bergeron-Lipnowski [BeLil7|, we rederive a twisted
version of Selberg’s trace formula [Sel56],

(0.4.4) Tr[o”Q” = Y V(yo)Tx[Q),

[l ec

where the factor V(yo) is a volume term only depending on the class ma

0.5. The results of this thesis. In subsection 4.4, we establish the fundamental
identity which says that, for b > 0, t > 0,

(0.5.1) Tel o fexp(—tL£Y)] = Try0Vexp(—tLyY)].
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We then make b — 400 in (0.5.1), and the right-hand side can be localized near
X(vo). The geometric formulation of the twisted orbital integrals established in
section 4 plays an essential role here.

If yo is semisimple, after conjugation, we may and we will assume that v = e®k =1,
where a € p, k € K and Ad(k)a = oa. Put K(yo) = Z(yo)N K, and let ¢(yo) be its
Lie algebra. In subsection 5.1, we define an analytic function .J,,(Yg) in Yy € &(yo)
by an explicit formula.

Our main result of this thesis is as follows.

Theorem 0.5.1. Fort > 0, the following identity holds:

052) / el ) (i ()

v}
(2mt)a/?”

exp(—[Y[*/2t)
If o = Idg, we recover the formula obtained in [B11].

0.6. Connections with equivariant local index theory. The operator £X de-
scends to a Laplacian £Z on Z. Let DZ be the classical Dirac operator on Z. By
[B11, Sections 7.2 and 7.3|, D%? coincides with 2£Z up to an explicit constant. The
Lefschetz number is given by

(0.6.1) Xo(F) = Try[o? exp(—tD%?/2)].

Let ?Z be the fixed point set of o in Z. Then y,(F') can be computed by the
Lefschetz fixed point theorem of Atiyah-Bott [AB67, AB68|, so that

(0.6.2) Xo(F) = / AY(TZ|oy,NT272)ch? (F, VF).
°Z

In section 7, we verify that when evaluating the right-hand side of (0.6.1) using
(0.4.4), (0.5.2), we recover equation (0.6.2). To do this, we have to explore in more
detail the representation theory of K.

In section 2, following [L80, C84, Bou87, DKO00, BeLil7|, we give a classification
of representations of K¢ in terms of a root data of K, so that we can evaluate
the character of K in the right-hand side of (0.5.2). More precisely, we construct
an element 7 € Aut(K) of finite order, so that the representations of K7 can be
transformed to representations of K7. Also 7 acts on the set of dominant weights
P,..

Let Irr(K7), Irr(X7) be the sets of the equivalence classes of the irreducible unitary
representations of K7, ¥ respectively. In subsection 2.4, we show

orbits of P, under the action of
(0.6.3) Irr(S7)\Irr (K7) ~ { }.

the finite group generated by 7
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0.7. Equivariant Ray-Singer analytic torsion of Z. If E is a representation of
G, then F' = G x i F is a flat vector bundle on X, and F' descends to a flat vector
bundle on Z with a canonical flat connection V. In this case, the operator 2£%
is just the Hodge Laplacian D%2 up to a known self-adjoint endomorphism.

Let N*("%) denote the number operator on Q(Z, F). Let [D%"2]~! be the
inverse of D%?2 acting on the orthogonal space of ker D% in Q' (Z, F).

For s € C, Re(s) large enough, set

(071) 0U(gTZ7 VF’fv gF)(S) = _TrS [NAA(T*Z)O—[DZ’FQ]_S] .

By standard heat equation methods, 9,(g7%, V57, g¥')(s) extends to a meromorphic
function of s € C, which is holomorphic near s = 0.

Put
109,(g7%,VES g 0
2 Os (0)
The quantity (0.7.2) is called the equivariant Ray-Singer analytic torsion of the de
Rham complex (2 (Z, F),d?*). If o is the identity map, this is just the ordinary
Ray-Singer analytic torsion [RS71, RS73|.

In subsection 7.8, as in [BMZ17, Section 8|, we obtain an explicit formula for
the twisted orbital integrals for the heat kernel that appears in the evaluation of

To(g"%, V7 gF). Then we get some nontrivial algebraic conditions on p and o
such that T, (g7%, VE/, gF') vanishes.

(0.7.2) T (g™ 2,V gF) =

0.8. Asymptotics of equivariant Ray-Singer analytic torsions. In section 9,
we will use our explicit formula to obtain an explicit local version of the asymptotics
of the equivariant Ray-Singer analytic torsion when the vector bundle F' tends to
infinity in the proper sense.

Bergeron and Venkatesh |[BeV13| has considered the asymptotic behaviour of an-
alytic torsion of locally symmetric spaces under finite coverings. Miiller [Miil12]
initiated the study of Ray-Singer analytic torsion for symmetric powers of a given
flat vector bundle on hyperbolic manifolds. Also Bismut-Ma-Zhang [BMZ17| and
Miiller-Pfaff [MiiP13] studied the case where one considers a sequence of flat vector
bundles associated with multiples of a given highest weight defining a representation
of the compact form U of G. Here, we will be concerned with the asymptotics of
the equivariant Ray-Singer analytic torsion for a compact locally symmetric space
Z. This problem has already been considered by Fedosova [Fed15| using methods of
harmonic analysis on the reductive group G. Here, as in [BMZ17], we will exploit
instead the explicit formula of Theorem 0.5.1.

We assume that the action of ¢ on G extends to U. Put U7 = U x ¥7. In the
sequel, we assume that (E, p¥) is a unitary representation of U?. This representation
extends to a representation of G°.

In subsection 8.2, as a consequence of (0.5.2) and (0.6.3), we show that we may
assume that F is also U-irreducible, so that the highest weight A\ of E is fixed
by o. Let M, be the flag manifold associated with A\. We show that U? acts
holomorphically on M, and that this action lifts to the associated canonical line
bundle Ly — M. Then for d € N, U’ acts on H9(M,, L{). We get a family of
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irreducible representations (Ey, pP4) of U given by H®0 (M, LY). The flat vector
bundles Fj are the ones associated with the action of G on Ej.

In subsection 9.3, we show that under nondegeneracy condition, as d — 400, the
asymptotics of T, (g7%, Vel gFe) can be evaluated in terms of explicit forms W,
associated with elliptic elements vo, v € I', which are the W-invariant defined in
[BMZ17]. A difference from the result in [BMZ17, Section 8] is that the coefficients
of W, have oscillating factors of the form exp(c,,dv/—1), Cyvo € R.

Also, in Proposition 9.3.1, we show that under the above nondegeneracy condition,
the contribution of non-elliptic elements vo, v € I" to the asymptotic equivariant
Ray-Singer analytic torsion is exponentially small.

Our results are compatible with the results of Ksenia Fedosova [Fed15], where she
considered the asymptotics of Ray-Singer analytic torsions for compact hyperbolic
orbifolds. Using Selberg’s trace formula, she showed that the elliptic elements of
I’ contributed to the asymptotic Ray-Singer analytic torsion by a so-called pseudo-
polynomial in d containing the oscillating factors in the same way, and that the
contribution of non-elliptic elliptic elements in I' is exponentially small.

0.9. The organization of the thesis. The thesis is organized as follows. In section
1, we introduce an extension G of G by a compact group of automorphism ¥, and
we establish the associated geometric structures on the symmetric space X.

In section 2, we classify the irreducible representation of K in terms of root data
of K, and we give a Weyl character formula.

In section 3, we recall the construction of the hypoelliptic Laplacian associated
with (G, K') and the properties of its heat kernel proved in [B11].

In section 4, we define the twisted orbital integrals associated with yo. In sub-
section 4.5, we rederive a twisted version of Selberg trace formula for the locally
symmetric space.

In section 5, we prove the main result of the present thesis, and give some exten-
sions.

In section 6, we recall the explicit formula for the hypoelliptic heat kernel on the
Euclidean vector space, and we show that in this case, our formula is compatible
with the computations in [B11, Section 10.6].

In section 7, we show the compatibility of our formula for twisted orbital integrals
to the results in local equivariant index theory.

In section 8, we construct a sequence of representations E; of G and an associated
sequence of flat vector bundles F,; on Z.

Finally, in section 9, we compute the asymptotics of equivariant Ray-Singer ana-
lytic torsions as d — +o0.

Notation: if £ = F, & E_ is a Zy-graded vector space, and if 7 = £1 defines the
Zo-grading, if A € End(FE), we denote by Trs[A] the supertrace of A.

If Ais a Zs-graded algebra, if a,b € A, [a,b] will be our notation for the super-

commutator of a, b, so that

(0.9.1) [a,b] = ab — (—1)ds@ dee®)p,

If B is another Zy-graded algebra, we denote by A®RB the Z,-graded tensor product
of A and B.
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1. THE SYMMETRIC SPACE X = G/K AND SEMISIMPLE ISOMETRIES

This section is to introduce a compact subgroup ¥ of Aut(G) and establish the
geometric structures of X associated with semisimple elements of the semidirect
product of G and X.

This section is organized as follows. In Subsection 1.1, we introduce the real re-
ductive group G and the symmetric space X. We describe the semisimple isometries
of X.

In subsection 1.2, we introduce a compact subgroup ¥ of Aut(G) and the semidi-
rect product G of G and ©. We show that X is a quotient space of G.

In subsection 1.3, we describe the semisimple elements in G and their centralizers.

In subsection 1.4, if yo, v € G, and if 0 € ¥ is semisimple, we get a representation
of X(vo) in a global geodesic coordinate system.

In subsection 1.5, we describe the normal bundle Nx(,s,x. We get a normal
coordinate system based on X (o) that identifies X to the total space of Nx(y0/x-

In subsection 1.6, we introduce the return map along the geodesics in X (yo) that
connects z, yo(x), € X(yo). We also interpret X (yo) as the fixed point set of a
symplectic diffeomorphism of the total space of the cotangent bundle of X.

In subsection 1.7, we recall a pseudodistance on X, X , and we extend the estimates
obtained in [B11, Section 3.9] to our case.

Finally, in subsection 1.8, we introduce a cocompact discrete subgroup I' of G
preserved by o, and we show that if v € I", yo is semisimple. We also introduce the
locally symmetric space Z, and describe the fixed point set of ¢ in Z.

If H be a Lie group of finite dimension, let H° be the connected component of
H containing the identity element of H. In the sequel, we will call H° the identity
component of H.

1.1. Symmetric space and displacement function. Let G be a connected real
reductive group [K02, §7.2|, and let 6 be a Cartan involution of G whose fixed point
set, K is a compact maximal subgroup of G. Then K is connected. Let g be the Lie
algebra of G, and let € be the Lie algebra of K. The Cartan decomposition of g is
given by

(1.1.1) g=p@EL

The vector spaces p,t are the eigenspaces corresponding to the eigenvalues —1, 1 of
f acting on g. Then we have

(1.1.2) [€,p] Cp, [&€,[p,p]CE
Put
(1.1.3) m=dimp, n=dimé.

Then dim g = m + n.

Let B be a nondegenerate # and G invariant bilinear symmetric form on g which
is positive on p and negative on €. Let (-,-) be the scalar product on g defined by
—B(-,6).
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For g,¢' € G, put
(1.1.4) Cl9)y' = 99’9 €G.

Let Ad(-), ad(:) denote respectively the adjoint actions of G, g on g. We also use
Ad(g) abusively to denote the conjugation C'(g) on G.
Let X be the symmetric space G/K. The tangent bundle T'X is given by

(1.1.5) TX =G xx p.

The scalar product B|, induces a Riemannian metric g** on 7X. Then G and 6
act on X isometrically. In the following, let d(-,-) denote the Riemann distance on
X.

Let w® be the canonical left-invariant 1-form on G with values in g, then

1
(1.1.6) dw? = —i[wg,wg].
Let w®,wP be the & p components of w® with respect to (1.1.1). Then
(1.1.7) w? =Wt + o
By (1.1.1), (1.1.2), equation (1.1.6) splits as
1 1
(1.1.8) dw? = —[w', wP], dw® = —§[wé,wé] — i[w",wp}.

The projection p : G — G/K defines a K—principal bundle on X, and the
connection form corresponding to the splitting (1.1.1) is just w® Let Q be the
associated curvature, then by (1.1.8),

(1.1.9) 0= [P W € ) Bt

By (1.1.5), w® induces an Euclidean connection VI¥ on T'X. By the first identity
in (1.1.8), VT¥X is the Levi-Civita connection of (T'X, g7%). Let RT* be its curvature.
If a,b,c € p, by (1.1.5), (1.1.9), RT™ is just the equivariant representation of the
map a,b,c € p — —[[a,b],c] € p. Ifa,b e p,

(1.1.10) (—[[a,b],b],a) = —([a,b],[a,b]).

By (1.1.10), we deduce that X has nonpositive sectional curvature. Given a point
x € X, the exponential map T, X — X is a covering. Since X is simply connected,
then this map one to one. In particular, if x = p1 € X, then the exponential map
exp, : p — X given by Y? € p — exp,(YP?) = exp(Y?) - x is a diffeomorphism
between p and X.

If (E, p¥) is an orthogonal (or a unitary) representation of K on an Euclidean (or
a Hermitian) space E of finite dimension, then F' = G x g E is an Euclidean (or a
Hermitian) vector bundle on X. The connection form w® induces an Euclidean (or
a Hermitian) connection V¥ on F.

The action of G on X lifts to an action on F', so that if g,h € G,x = ph € X,
f € E, then

(1.1.11) g:Fy = Fye (h, f) = (gh, [).
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Let C*°(G, E) be the set of smooth functions on G valued in E. The right mul-
tiplication of K on G induces an action of K on C*(G, E), such that for k € K,
se C>®(G,E),

(1.112) (k.5)(g) = PP (k)s(ghk).

Let C% (G, E) be the subspace of C*(G, E) of the sections fixed by K. Let C°(X, F)
be the vector space of the smooth sections of F' over X. Then we have

(1.1.13) C*(X,F)=Cg(G,E).

Also the left action of G on itself induces an action of G on C*°(X, F) such that
if s € C¥(G,E), if g,h € G, then

(1.1.14) (hs)(g) = s(h™'g).
Moreover, V¥ is G-invariant.

Put
(1.1.15) N=Gxgt.

We call N the normal bundle on X. Let VY be the connection on N associated
with wt.
By (1.1.5), (1.1.15), we have

(1.1.16) TX &N =G xxg.

Let VTX®N be the connection on 7X@ N associated with wt, equivalently, VI X®N —
VIX@VY. Asin [B11, Section 2.2|, the map [g,a] € Gxxg — (pg, Ad(g)a) € X x g
gives an identification of vector bundles

(1.1.17) TX@N~X xg.

InAthe whole thesis, let 7 : X — X be the total space of T X to )A( , and let
7 : X — X be the total space of TX & N to X. We also denote by 7 : X — X the
obvious projection.

Let Ut be the enveloping algebra of €. Let vy, -+ ,v, be a orthonormal basis of £
with respect to —Blg, then the Casimir operator C* € U€ of K with respect to Bl
is given by

(1.1.18) ct=> 0l
=1

Then C* lies in the center of Ut.
We denote by C%F € End(FE) the corresponding Casimir operator acting on FE,
so that

(1.1.19) CHF =" " (vy).
=1

In particular, let C** € End(¢), C* € End(p) be the Casimir operators associated
with the adjoint actions of K on €, p respectively. Moreover, we can regard C*® as
a section of End(7'X).
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Let Ric® be the Ricci tensor of X, let S¥ be its scalar curvature. Then by [B11,
(2.6.8)], we have

(1.1.20) Ric* = C*  §% = Tv*[C*).

Let Isom(X) be the Lie group of isometries of X. Then we have a group homo-
morphism G — Isom(X).

Definition 1.1.1. If ¢ € Isom(X), the displacement function d, of ¢ is the function
on X defined as

(1.1.21) de(x) =d(z,¢z) , v € X.
Put my = inf,cx dy(x).

Since X has nonpositive sectional curvature, by [E96, Chapter 1, Example 1.6.6],
dy is a continuous nonnegative convex function and d3 is a smooth convex function.

Definition 1.1.2. We say ¢ € Isom(X) is semisimple if dg(x) reaches its infimum
me in X. A semisimple isometry ¢ is called elliptic if it has fixed points in X, i.e.
mg = 0. If ¢ is semisimple, put X (¢) = {x € X | dy(x) = my}.

Remark 1.1.3. If ¢ is semisimple, X (¢) is just the set of all critical points of d?,
which is a convex subset of X. If ¢ is elliptic, then X (¢) is the set of fixed points

of ¢.
If 2(s), s € [0, 1] is a smooth path in X, let 4(s) denote its tangent vector at z(s).
If f € C®(X),let Vf denote the gradient of f with respect to g7.

Lemma 1.1.4. Take ¢ € Isom(X) and v € X such that dy(z) > 0. Let z(s),s €
[0,1] be the unique geodesic in X joining x and ¢(x) with constant speed. Then

1
(1.1.22) Vdy(z) = ((071)ui(1) — 2(0)).
¢ dg ()
Proof. At first, we have
1

1.1.23 dy(z) = ———Vd(z).

(11.23) V() = g7 V@)
Then the calculus on the length of the geodesic shows the identity in (1.1.22). This
completes the proof of our lemma. O

As a consequence, if ¢ is a semisimple isometry of X with m, > 0. Fix a point
x € X, let x(s),s € [0,1] be the unique geodesic in X joining z and ¢(x) with
constant speed. Then z € X (¢) if and only if ¢,&(0) = #(1). In this case my is just
the length of the path x(-).
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1.2. A compact subgroup of Aut(G). Let Aut(G) be the Lie group of automor-
phism of G [Hoc52, Theorem 2|, and let aut(G) be its Lie algebra. Let 1 denote
the unit element of G, and let 14 be the identity automorphism of G. We have the
injective group morphism,

(1.2.1) Aut(G) — Aut(g).

Definition 1.2.1. The semidirect product of G and Aut(G) is given by
(1.2.2) G x Aut(G) :={(g,9) | g € G, ¢ € Aut(G)},

with the group multiplication:

(1.2.3) (91,61) - (g2, B2) = (9191(92), P192).

The unit element is (1,1g). Also (g,¢)~! = (¢ (g7'),071).

We can view G and Aut(G) as Lie subgroups of G x Aut(G). In particular, G is
a normal subgroup of G x Aut(G). We have the exact sequence of Lie groups,

(1.2.4) 1 =G — G xAut(G) = Aut(G) — 1.
We have the corresponding exact sequence of Lie algebras,
(1.2.5) 0—g—g®at(G) = aut(G) — 0.

Then g is an ideal of g @ aut(G).
We will often use the notation g¢ instead of (g, ¢). Let C'(6) be the inner auto-
morphism of G x Aut(G) associated with 6. Then C'(6) is an involution.

Definition 1.2.2. Put
(1.2.6) Y= {¢ € Aut(GQ) : ¢f = 0¢, ¢ preserves the bilinear form B}.

Then ¥ is a compact Lie subgroup of Aut(G), and let ¢ be its Lie algebra. The
action of ¥ on g preserves the splitting (1.1.1) and the scalar product of g. In
particular, > contains all the inner automorphisms defined by elements in K.

Let G be the preimage of ¥ under the projection G x Aut(G) — Aut(G). Then
G=GxY. Let g be its Lie algebra, then
(1.2.7) g=gDe,

Moreover, the adjoint action of ¢ on g preserves the splitting (1.1.1).

Remark 1.2.3. In general, the group G is not necessary to be reductive. An example
is the Euclidean space R™. In this case G = R" x O(n) and the corresponding Lie
algebra g = R™ @ so(n) with a twisted Lie bracket. One can show that g is not a
reductive Lie algebra. We will return to this case in section 6.

The group automorphism C'(€) maps G into itself, i.e., if ¢ € X, geQqG,
(1.2.8) C(0)(g0) = b(9)9.
Let K be the fixed set of C(#) in G. Then
(1.2.9) K=KxX.
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Let € be the Lie algebra of K, by (1.2.9),
(1.2.10)

=l
|

),

EDe
We have a splitting of g associated with C'
=pD

(
(1.2.11) g,

where p,% are the eigenspaces of C' (9) in g corresponding to eigenvalues —1, 1 re-
spectively.

If o € 3, let 37 be the closed subgroup of ¥ generated by o. Let G” be the
closed subgroup of G generated by G and o, and let K be the closed subgroup K
generated by K and . Then we have

(1.2.12) Go=GxX? K=K xX°.
If o is chosen and fixed, let g7, ¥ be the Lie algebras of G?, K?. Then the

analogues of (1.2.7) - (1.2. 11) for the groups £7, G?, K hold.

If g € G, let Z( ) be the centralizer of g € GinG. Ifoc ey, put

2(5) = 2(3) N G,

(12.13) @) fg)
Z°(9) = Z(g) N G°.
In particular, if g € G (resp. G?), Z(g) (resp. Z°(g)) is just the centralizer group
of g in G (resp. G7). We denote respectively by Z%(g), Z°(g), Z°°(g) the identity
components of Z(g), Z(g), Z°(g), and we denote respectively by 3(g), 3(9), 37(9)
their Lie algebras. Then,
3(9) =3(9) N,
37(9)=3@)Nng”.

Given o € ¥, the map g € G — o(g) € G descends to a diffeomorphism of X:
r € X — o(x) € X. By (1.1.5), (1.2.6), the tangent map of o is given by the map
(g9,f) = (c(g),0(f)) with g € G, f € p. Then o € Isom(X).

Recall that the left actions of G on X are also isometries. Then G acts on X
isometrically.

(1.2.14)

Proposition 1.2.4. We have the identification of manifolds,
(1.2.15) X =G/K.

Proof. We know that G acts on X transitively. Put = pl € X, and let éz C G be
the centralizer of z. If g¢ € G is such that go(x) = x then gx = z, this is equivalent
to g € K, so that éw = K. Then we have X = é/[? This completes the proof of
our proposition. O

Remark 1.2.5. The group injection G — G induces the identification between G /K
and G/ K described above and its inverse is given by the canonical projection G — G.
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A consequence of Proposition 1.2.4 is that if g € G there exist unique f € p,
k € K such that

(1.2.16) g=ek.
If o € 3, using the same arguments as in the proof of Proposition 1.2.4, we get
(1.2.17) X =G"/K".

We always use the identifications in (1.2.15), (1.2.17) without specific mention. We

also use p denote both the projections G — X and G — X.
By (1.2.15), (1.2.17), we get

(1.2.18) TX =G xzp=G" Xkop.

Remark 1.2.6. By [H79, Chapter 4, §3, Remark 2|, the group actions of Gon X give
a closed Lie subgroup of Isom(X ). The kernel of this group morphism G — Isom(X)

is given by {k € K : Ad(k Jp =1,} = ker(Ad : K — O(p)).
It also follows from the Cartan fixed point theorem and the same arguments as
in [E96, Proposition 1.13.14] that K is maximal compact subgroup of G.

If the representation p¥ : K — Aut(E) lifts to a representation of K , which is
still denoted by p”, then we have

(1.2.19) F=GxE.

As in (1.1.11), the action of u € ¥ on F is given by u(g, f) — (u(9), p¥ (1) f).
As in (1.1.13), we have

(1.2.20) C®(X,F) = C%(G, B).

Then G acts on C®(X, F). If s € C(X, F) is represented by a section in C52(G, E),
then by (1.1.14), if p € 37, g € G,

(1.2.21) (s)(9) = p"(w)s(u"(g))-

Also V¥ is invariant under the action of G.

Lemma 1.2.7. Let C*¥ be the Casimir operator defined in (1.1.19). If (E, p¥) is
a repesentation of K, if u € 32, then
(1.2.22) pt () CHF = C¥FpP ().

The endomorphism C%F descends to a parallel section of End(F) over X which
commutes with 3.

Proof. If v € £, we have

(1.2.23) pP(a)p"(v) = pP(o(v))p"(0).
Then using the fact that o acting on ¢ preserves B and (1.1.19), (1.2.23), we get
(1.2.22).

By (1.2.21), (1.2.22), the second part of our lemma is clear. This completes the
proof of our lemma. 0
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Remark 1.2.8. If (E, p¥) lifts to a representation of K¢, then the analogues of
(1.2.19) - (1.2.22) still hold for the pair (G7, K7).

If we take E/ = ¢ with the adjoint action, then by (1.1.15), we get
(1.2.24) N=Gxzt=G" xgot.

1.3. The decomposition of semisimple elements in G.

Definition 1.3.1. We say an element g € G to be semisimple(resp. elliptic) if its
isometric action on X is semisimple(resp. elliptic).

Ifge CN;, then dj is invariant by the action of Z (). Recall that if g is semisimple,
X(g) is the minimizing set of dj.
We can extend the results in [B11, Theorem 3.1.2] to our case.

Theorem 1.3.2. We assume that v € G is semisimple. If g € G, x = p(g9) € X,

then x € X(*y) if and only if there exist a € p,k € K such that Ad(k)a = a and
v =C(g)(e"k™"). In this case, m, = |al.

Proof. Using Lemma 1.1.4 and by (1.2.6), (1.2.15), the proof of our theorem is just
a modification of the proof of [B11, Theorem 3.1.2]. O

By Theorem 1.3.2, v € G is elliptic if and only if it is conjugate in G to an element
of K. An element v E G is said to be hyperbolic if it is conjugate in G to e ,a € P.

Remark 1.3.3. Since o preserves the splitting in (1.1.1), the conjugation of o on G
preserves semisimple elements in GG. Moreover, it preserves elliptic elements and
hyperbolic elements in G.

If a € g, put

(1.3.1) Z(a)={g e G : Ad(g)a = a}.

If a € p, by [B11, Proposition 3.2.8], and using the uniqueness of Cartan decom-
position in (1.2.16), we get

(1.3.2) Z(e%) = Z(a).

Remark 1.3.4. In general, a modification of |[B11, Proofs of Theorem 3.2.6 and
Proposition 3.2.8| shows that (1.3.2) holds for a € g.

The Lie algebra of Z(a) is given by

(1.3.3) 3a)={feg: [fa =0}
Let Z(a) be the centralizer of a in G and let 3(a) be its Lie algebra. Then
(1.3.4) Z(a) = Z(a) NG, 3(a) = ker(ad(a)|y) = 3(a) N

We now assume that v = ek~ € G is such that
(1.3.5) acp, ke K, Ad(k)a = a.
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By Theorem 1.3.2, v is semisimple, and z = pl € X (7).

If h € Z(v), then h(X(y)) = X(7). As in |[E96, Theorem 2.19.23] and [B11,
eq.(3.1.7)|, we have the result as follows.

Proposition 1.3.5. We have

(1.3.6) Z() = Z(e*) N Z(k).

Proof. Tt is clear that Z(e*) N Z(k) C Z(y), we only need to prove the reverse
direction. We adapt the proofs of [B11, Theorem 3.2.6 and Proposition 3.2.8| to get
this conclusion. B

Take h € Z(7). Let f € p and k' € K be such that h = e/k" as in (1.2.16). Then
hx = pel € X(v). Put y = vo = pe® € X(7), then hyx = yhr € X (7).

Put y, = pe®®, s € [0,1] the unique geodesic in X joining = and y and z; =
pet! |t € ]0,1] the unique geodesic connecting x and hx. Since X (7) is geodesically
convex, then the paths y., z. lie in X (). Also we have two other geodesics vyx., hy.
in X (7). These four geodesics form a geodesic rectangle in X () with the vertexes
x,y, hx, vhr = hvyz.

Let ¢;(s),0 < s <1 be the geodesic connecting z; and vz, for all £. In particular,
if s,t € [0,1],

(1.3.7) co(s) = ys, c1(s) = hys, c1(0) = 4, (1) = vy
If t € [0,1], let E¢(t) be the energy function associated with the geodesics ¢;(-),
Le.,
1
(1.3.8) Es(t) = §d3/(9ct).
In particular, Ef(t) is a constant function in ¢, so that
(1.3.9) EY(0) = 0.

Put J, = %]tzoct(s) the Jacobi field along y,. By (1.3.7), in the trivialization
given by parallel transport,
J, —ad®(a)J, =0,
(1.3.10) )
J0:f7 leAd(k_ )f7

where the differentials J, J are taken with respect to the Levi-Civita connection

along ..
Also we have

(1.3.11) E}(0) = /1 (|75 + |[a, J]|*) ds.
By (1.3.9), (1.3.10), (1.3.11), we g;et

(1.3.12) fesla)np, Adk)f = f.

Applying (1.3.12) to h = e/k’, hy = yh, we obtain
(1.3.13) eMdEeg =1 — a1y,
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Using the uniqueness of Cartan decomposition in (1.2.16), we get

(1.3.14) Ad(K)a=a, K'k™' = k'K
By (1.3.12), (1.3.14), we get h € Z(e*) N Z(k). This completes the proof of our
proposition. O

In general, if v € G is semisimple, then by Theorem 1.3.2, there exist g € é,
a €p, k € K such that

(1.3.15) v =ge'k g, Ad(k)a = a.
Put
(1.3.16) T=ge"g", e =gk lg".

The element 7y, (resp. 7.) is called the hyperbolic (resp. elliptic) part of . Then
Y = YnYe = YeYn- By Proposition 1.3.5,

(1.3.17) Z(y) = Z(ve) N Z(w).

Theorem 1.3.6. Let v = veyn = YnYe be the semisimple element given in (1.3.15),
(1.3.16). If there exist ¢’ € G, a' € p, k' € K such that

(1.3.18) Ad(K)a' = d', v =g'e” (k) ()"
Then
(1.3.19) Ye=g'e"(g) =g () (g) "

Proof. We can rewrite the identities in (1.3.15), (1.3.18) as follows,

(1.3.20) y=ge"k g7 =g (k)N g) T
Put h = g~ 1¢, by (1.3.20),

(1.3.21) he? (K)"'h™! = ek,

We only need to prove that

(1.3.22) he“h™t =eo | h(K)'ht = kL
Put o/ = e*k~ 1.

There is unique f € p and k” € K such that h = e/k”. Put « = pl,y = ph, then
by Theorem 1.3.2, z,y € X (v/), and v'z,7'y € X (7).

Put z(s) = pe®/,s € [0,1] the geodesic connecting z and y. If ¢ € [0,1], put
I(t) = pe'®,1(t) = hpe'”. Then I(-) is the unique geodesic joining z and 7'z, and [(-)
is the unique geodesic joining y and ~+'y.

Furthermore, we have the fourth geodesic given by ~'z(+) joining 7'z and v'y. All
the vertexes and geodesics lie in X (7). Then they form a geodesic rectangle in
X (v'), so that the same arguments using the Jacobi field and energy function as in
the proof of Proposition 1.3.5 show that

(1.3.23) e/ € Z(a)N Z(k).
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By (1.3.21), (1.3.23),

(1.3.24) eAE L RN TR T = et

Then

(1.3.25) Ad(K"Yd =a, K'"(K)" (k") =kt

It follows from (1.3.25) that

(1.3.26) K'e (K~ = et K(K)THE") T = k7

Let C(e’) act on both sides of identities in (1.3.26), we get (1.3.22). This completes
the proof of our theorem. O

1.4. The minimizing set X(yo). In this subsection, we fix v € G, o € ¥ such
o> SO that
X(yo) is a Z(~yo)- invariant closed convex subset of X. Recall that the group G7 is

the closed subgroup of G generated by G and o.
Since 0o = o6, if x € X,

that o is semisimple in G. Recall that X (o) is the minimizing set of d

(1.4.1) do(r)o(02) = dyo (2).
If v € K, then X(v0) is preserved by 6.
If g € G,
(1.4.2) C(g)(yo) = gyo(g t)o € G°.
Let C? : G — G be such that if g, h € G,
(1.4.3) C?(g)h = gho(g™") € G.

Fix go € G such that xy = p(go) € X (y0). By Theorem 1.3.2, there exists a € p,
k € K such that

(1.4.4) Ad(k)a = ca, v=C%(go)(e"k™).
As in (1.3.15), put 9, = goe®gp ', ¥ = C?(go)(k~1)o, then

(1'4'5> Yo = :Yh:/e = :Ye:/h-
By (1.3.17) and using the fact that gy € G, we get
(1.4.6) Z(yo) = Z() N Z(3.) = Clgo)(Z(e") N Z (k™" 7).
Let 3(k'o) be the Lie algebra of Z(k™'c). Then
(L4.7) 3(k7'0) = {f € o | Ad(k)f = of}.
By (1.3.4), (1.4.6), we get
(1.4.8) 3(v0) = Ad(g0) (3(a) N3(k™10)).

Proposition 1.4.1. As submanifolds of X, we have
(1.4.9) X(yo) = go(X(e* )N X (ko)) C X.
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Proof. If y = pg € X(y0), by Theorem 1.3.2, there exists a’ € p, k' € K such that
o = C(g)(e” (K)~'o). Also by Theorem 1.3.2, Proposition 1.3.6,

(1.4.10) pl9o'9) =gy € X (") N X (k7"0).
Then
(1.4.11) X(yo) C go(X(e) N X (k7 '0)).

If y = pg € X(e?) N X(k~'o). By Theorem 1.3.2, there exist a’ € p, ki, ky € K
such that
(1.4.12) e*=C(g) (e k), Ad(ky)d =d' | k™1 = C(g)(k3 ).

By (1.3.17), (1.4.4), we have k;'o € C(g7)Z(e*) = Z(a') N Z(ky). Put k' =
koky € K, then e’k 'o = ge? (k) 'og™" with Ad(k')d’ = od’. Thus y = pg €
X(e*k~'o) and goy € X (yo). This completes the proof of our proposition. O

We can use xy = pgo as the base point to get a global geodesic coordinate for X.
Indeed, we have a diffeomorphism,

(1.4.13) P,y Ad(go)p = X, y — exp(y)zo.
In the case when gy = 1, this coordinate system is just (exp,,p) defined in subsection
1.1.

Proposition 1.4.2. In the coordinate system defined by ®4,, we have,
(1) goX(e*) = Ad(g0)(3(a) Np);
(2) goX (k~'o) = Ad(go)(3(k~"o) N p).

Proof. The first identification is proved in [B11, Theorem 3.2.6]. We only prove the
second one. Clearly, Ad(go)(3(k™'0) Np) C go X (ko).

If b € p is such that @, (Ad(go)b) € goX (k™ '0), then there exists ¥’ € K such
that

(1.4.14) k™t exp(a(b)) = exp(b)k'.
We can rewrite (1.4.14) as
(1.4.15) exp(Ad(kHob)k™! = exp(b)k'.
Then we get
(1.4.16) Ad(kto)b=b, K =k
From (1.4.16), b € 3(k~'c) N p. This completes the proof of our proposition. O

Theorem 1.4.3. In the coordinate system defined by ®,,, we have

(1.4.17) X(yo) = 3(vo) N Ad(go)p.

go’

Proof. This is just a consequence of (1.4.8) and Propositions 1.4.1, 1.4.2. O
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Remark 1.4.4. Since 3(yo) = 3(yo) N g, we can rewrite (1.4.17) as
(1.4.18) X(y0) = 5(70) 1 Ad(go)p.
We have another Cartan decomposition of g associated with gy,

(1.4.19) g = Ad(go)p & Ad(go)t.

Put pg, (vo) = 3(yo) N Ad(go)p and &, (yo) := 3(yo) N Ad(go)t. Since o preserves
the splitting (1.1.1), by (1.4.7),(1.4.8), we get

(1.4.20) 3(70) = Pgy (70) © ¥y (10).
Then in the coordinate (®4,, Ad(go)p), (1.4.17) is equivalent to
(1.4.21) X(yo) = pgo(v0).

Recall that Z(yo) acts on X (yo) isometrically.
Definition 1.4.5. We define a map p : 2(70) — X(yo) by
(1.422) 5(5) = G0

Note that if gy = 1, the map p in (1.4.22) is just the restriction of p to 2(70).

Lemma 1.4.6. The action of Z(yo) on X(yo) is transitive, and the stabilizing
subgroup of xq is given by Z(yo) N C(go)K. Moreover, Z°(vyo) acts on X(yo)
transitively.

Proof. Let g € G be such that © = p(g) € X(v0), by Theorem 1.4.3, there exists y €

P (7o) such that p(g) = exp(y)xo. Clearly, exp(y) € Z°(yo), so that p(exp(y)) = .
Then Z°(yo) acts on X (o) transitively, so does Z(yo).
If g € Z(vyo) fixes xg, then

(1.4.23) Clg")g € K,
this is equivalent to that g € Z(yo)NC(go) K. The proof of our lemma is completed.
]

In the sequel, we put
Ky, (vo) = Z(yo) N Clgo) K,
(1.4.24) Kg,(yo) = Z7 (o) N C(go) K7,
Ky, (y0) = Z(y0) N C(go) K.
Theorem 1.4.7. We have the identification of Z(yo)-manifolds,
X(0) = Z(y0)/Kg(70)
(1.4.25) _ -
~ Z(70)/Kg(70).
As submanifolds of X, we have

X(yo) = Z(y0)/Kg(70) - o
(1.4.26) ~ ~
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Proof. This is a consequence of Lemma 1.4.6. 0

Corollary 1.4.8. Induced by the map p, we also have the identification of Z°(yo)-
manifolds,

X(yo) =~ Z°(v0)/(Z°(vo) N C(g0) K)
~ Z7°(y0)/(Z°(vo) N C(g0) K).

Moreover, the groups Z°(yo) N C(go) K, Zo(la) NC(go)K coincide with the identity
components K, (7o), Ko (v0) of Kg,(70), Kg(v0) respectively.

(1.4.27)

The group embeddings K, (yo) = Z(yo) and IN(gO('yJ) — Z(y0) induce respec-
tively the isomorphisms of finite groups,

K (70K (v0) = Z°(yo)\Z (v0),

(1.4.28) [?30(70)\[?90(70) ~ Z%(vo)\Z(yo).

Proof. The identifications (1.4.27) is clear.
~ Using the fact that X(yo) is contractible, we get that Z%vo) N C(go)K and
Z%~o) N C(go)K are connected. Then

Ky (o) = Z°(yo) N Cg0) K,
Ky (yo) = Z°(y0) N C(g0) K.

Since K and K both are compact, the groups in (1.4.28) are finite. By (1.4.25),
(1.4.27), (1.4.29), we get (1.4.28). The proof of this corollary is completed. O

(1.4.29)

Remark 1.4.9. In (1.4.25), (1.4.26), (1.4.27), (1.4.28), (1.4.29), we can replace Z(yo),
Kgy(y0) together with their identity components by Z7(vyo), K (yo) and their
identity components. In particular, we have

(1.4.30) Kq'(yo) = Z7°(y0) N C(go) K.

Remark 1.4.10. Note that the representation of X (yo) in (1.4.26) does not depend
on the choice of the base point xg. N

We also can choose a representative gy € G for the point g € X (o), and the
analogues of the above results with respect to gg can be obtained immediately.

Using Propositions 1.4.1 and 1.4.2, Theorem 1.4.3 and by (1.4.19), if we use the
Cartan decomposition (1.4.19) instead of (1.1.1) and we use the left transition Ly,
to identify subsets of X, we can reduce our assumption of v in (1.4.4) to the simple
case where gg = 1.

Then we can rewrite (1.4.4) as follows,

v ="k, Ad(k)a = oa,

1.4.31
( ) a€p, ke K.
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In the following sections, we will only consider this simple case, and we will drop
the subscript gy in all the associated notation.

1.5. The normal coordinate system on X based at X (o). In this subsection,

we always assume that yo € G is of the form given in (1.4.31). Then 2z = pl €
X(vo).

By (1.4.8) with g = 1, a lies in the center of (o). Let 3%+ (yo) be the orthogonal
subspace to a in 3(v0), let p®(yo) be the orthogonal subspace to a in p. Then we
have

(1.5.1) 3" (o) = pH(y0) @ E(y0).
Moreover, 3%+ (yo) is an ideal of 3(yo).
Let Z%%(y0) be the connected Lie subgroup of Z°(yo) that corresponds the Lie
algebra 3% (yo). Note that if a # 0, we have
(1.5.2) Z%(yo) ~ Z%0(yo) x R,

where €' maps into t|a| € R.

As in [B11, Theorem 3.3.1], let X% (y0) be the image of Z%+(y0) by the pro-
jection p, which is a convex submanifold of X (o). Then we have
(1.5.3) Xt (yo) = Z2%0(y0) /K (v0).
If a # 0, by (1.5.2), (1.5.3), we have the identification of Riemannian Z°(yo)-
manifolds,

(1.5.4) X(yo) ~ X**(y0) x R,

so that the action of e’ on X (y0) corresponds to the translation by ¢|a| on R, and
the action of yo on X (yo) is just the translation by |al.
Let 31 (7o) be the orthogonal subspace of 3(yo) in g with respect to B. Put

(1.5.5) pr(y0) =5 (yo) Np, & (y0) =57 (o) NE.
Then the splitting (1.4.20) with go = 1 shows that
(1.5.6) 37 (10) = p(yo) ® - (70).

The normal bundle of X (yo) in X is given by
Nx(yo)/x = Z(70) XK (30) P (70),

= Z(VU) X K(vo) p(y0)

Let Nx(y0)/x be the total space of Nx(yo)/x — X(y0)

(1.5.7)

. By (1.5.7), a point in
Nx(y0)/x is represented by a pair (g, f) with g € Z(vyo) or Z('ya) and f € pt(yo).

Let P,, : X — X(vo) be the orthogonal projection from X into X (yo). As in
[B11, Theorems 3.4.1 and 3.4.3|, we can define a normal coordinate system on X
based at X (o) as follows.

Theorem 1.5.1. We have the diffeomorphism of Z(’ya)—manifolds,
(158) Pro :NX('yO')/X — X7
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defined by

(1.5.9) Po(9: f) = plgexp(f)) € X.

Under this diffeomorphism, the action of vo on X is represented by the map (g, f) —
(exp(a)g, Ad(k™")o f), and the projection P,, is given by P,,(g, f) = (g,0).

Proof. The proof of this theorem is the same as the first part of the proof of [B11,
Theorem 3.4.1]. O

Proposition 1.5.2. If (g, f) € Nx(y0)/x, then

(1.5.10) dyo(Pro (95 ) = dyo(pyo (1, 1)),

Moreover, there exists a constant c,, > 0, for f € p*(yo) with |f| > 1, such that
(15.11) Do (s (1, £)) > ] + € 1.

There exist C, >0, CI_ >0 such that, for f € pt(yo), if |f| > 1,

(15.12) Vo (o (1, £))] = €y,

and if |f| <1,

(15.13) IV, (pro(L, £))/2] = C1 1.

In particular, the function d?,U/Q is a Morse-Bott function, whose critical set is
X (yo), and its Hessian on X (o) is given by the symmetric positive endomorphism
L
on p=(y0),
ad(a)

L5.14) VEVE, /2= @)

(2cosh(ad(a)) — (Ad(k™ Yo + o tAd(k))).

Proof. As we have seen, the geometric structures of X associated with yo are the
same as the ones considered in [B11, Chapter 3|, we can adapt the proof of [B11,
Theorem 3.4.1] to prove this proposition. We here only give the detail of the geo-
metric part of the proof. B

The equality in (1.5.10) comes from the fact g € Z(vo).

For f € p(yo), if t € R, set

(1.5.15) 0 (t) = dyo(pe'l).
It is a convex function from ¢ € R to Rxo.
First we assume that o is elliptic, i.e. a = 0, y0 = .. Since 1 — Ad(7.) is
invertible on pt(yo), there is ¢,, > 0 such that
(1'5'16) |(1 - Ad(&e)ﬂ > CWU’f|'

Use the results of [E96, Proposition 1.4.1], we have

(1.5.17) dyo(pyo(1, 1)) = d(pro (1, f), pro(1, Ad(Fe) f)) 2 [(1 — Ad(%e) f1-

Then we get (1.5.11) for this case. Using the convexity of ¢¢(t), we can also get
(1.5.12), (1.5.13) when a = 0.
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Let us assume that yo is non-elliptic, i.e. a # 0. Let f € pt(yo) be such that
|f] = 1. By (1.5.15), ¢4(0) = |a|] > 0. Then ¢(¢) is a smooth convex function.

The curves pet/, yope!f for t € R are two geodesics in X orthogonal to X (yo).
Let ¢(s),s € [0,1] be the unique geodesic connecting pe’/ and yope!/. We have
co(s) = pe.

Put Jy s = 2|i_oce(s) the Jacobi field along co(s). As in (1.3.10), in the trivial-
ization given by parallel transport, we have
jf,s — adQ(a)Jf,S = 0,
Jro=1f, Jp1 = Ad(k™'o)f = Ad(F.) f.

The unique solution of (1.5.18) is given by

(1.5.18)

(1.5.19) Jr,s = cosh(sad(a))f + W(Ad(lfl)a — cosh(ad(a)))f.
As in (1.3.8), set Ef(t) = 505(t). Then we have

(1.5.20) E7(0) = |a|¢}(0).

Also we have,

(15.21) BH0) = [ (g +le, 7))

Thus E7(0) continuously depends on f € p*(yo). By (1.5.19), there exists C' > 0
such that if f € p*(y0), |f| =1, then EF(0) > C.

Now we can proceed the proof using the same arguments as in [B11, eq.(3.4.22) -
eq.(3.4.28)|, when replacing k! by k~'o, we get (1.5.11) - (1.5.13).

The identity (1.5.14) follows from (1.5.19) and [B11, eq.(3.4.29)].

The proof of our proposition is completed. O

Remark 1.5.3. If € X (o), under the identification in Theorem 1.5.1, by (1.5.11)
the displacement function d., is increasing at least linearly along the normal fiber at
x. This property will be used in the geometric interpretation of the twisted orbital
integrals in section 4.

The group K(yo) (resp. K(v0)) acts on the left on K (resp. K). We define
a vector bundle pt(v0) k(o) X K (resp. pL(VU)f((W) x K ) on K(yo)\K (resp.
I:((WU)\[Z') by the relation, for f € p(y0), k € K (resp. K) and h € K(yo) (resp.
K(y0)),
(1.5.22) (f, k) ~ (Ad(h)f, hk).
We also define the right action of k € K (resp. K) on pL(vo) x K (resp. p*(vo)x K)
is the multiplication on K (resp. K) from the right side by k.

By Theorem 1.5.1, we can define two maps as follows,

0vo (9, f k) € Z(70) X k(o) (01 (70) X K) = ge’k € G,

(1.5.23) ) _ | - p-
Ov0 (9, 1K) € Z(70) X g(he) (7 (70) X K) = ge'k € G.
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Theorem 1.5.4. The map 0., in (1.5.23) a diffeomorphism of left Z(yo)-spaces
and of right K-spaces, and 0., is a diffeomorphism of left Z(yo)-spaces and of right
K-spaces. The projection p is represented by (g, f, k) — (g, f). Moreover, under

this diffeomorphism, we have
(15.24) P (10) k(o) X K = Z(70)\G,
- pL(’YU)f((W) x K = Z(yo)\G.

Proof. The first two statements in our theorem follow from Theorem (1.5.1). The
identifications in (1.5.24) are just consequences of the diffeomorphisms in (1.5.23).
U

Remark 1.5.5. In Theorems 1.5.1 and 1.5.4 and in Proposition 1.5.2, we also can

replace Z(yo), Z(yo), K(yo), K(yo) by their identity components. These results
are also true for Z7(yo), K?(vo) and their identity components. In particular, we
have

pJ_("YU)KO(—ya) x K = ZO("}/U)\G,
(1.5.25) pl(va)f(o(w) x K = Z°(yo)\G,
pl('yU)KU,O(,YU) X K7 = ZJ’O(’YO')\GU.

If 5 € G, let 7] C G be the conjugacy class of 7 in G, i.e.,
(1.5.26) 71 ={C(@7 : §<aY.

Proposition 1.5.6. If ¥ € G is semisimple, then the conjugacy class of ¥ in G is
a closed subset.

Proof. We can assume that 4 = yo given by (1.4.31). Then the above geometric
constructions are applicable.

We suppose that {7;}ien C [y0] is a Cauchy sequence in G with the limit g, € G.
In particular, we have, as i — +o0,

(1.5.27) A(pF, pio) — 0.
By (1.5.24), for i € N, there exists g; = efik;, f; € pt(y0), k; € K such that

(1.5.28) Y = g, *vogi.
By (1.5.27), (1.5.28), we get, as i — +00,
(1.5.29) d(vyope’, gipgo) = 0.

Use the triangle inequality for the distance d on X, by (1.5.29), we get, as i — 400,
(1.5.30) d(yope”, pe’') = d(pl, pgo)-
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Using (1.5.11), (1.5.30), we get the set {f;}icy is a bounded set in p*(yo). Then
we can assume that there exist f’ € p(yo), k¥’ € K such that, as i — +o0,

(1.5.31) fi—=f, k=K.
Put ¢ = ek € é, then as i — 400,
(1.5.32) g — 4.
By (1.5.28), we get
(1.5.33) go = (9")"'vog € [yal.
This completes the proof of our proposition. O

Let dx be the volume element on X induced by the Riemannian metric. Recall
that Y? € p — exp,,(Y?) € X defines a global geodesic coordinate of X. Let dY?
be the volume element on the Euclidean space p. Then there is a positive smooth
function 7 on p such that n(0) = 1 and, under the identification of manifolds,

(1.5.34) dx =n(Y*)dY?.
By [B11, eq. (4.1.12)], there exist ¢ > 0,C > 0 such that
(1.5.35) n(Y?) < cexp(C|Y?]).

Let dk be the normalized Haar measure of K. Put
(1.5.36) dg = dxdk.

Then dg is a left-invariant Haar measure on GG. Since G is unimodular, dg is also
right-invariant.

Let dy be the volume element on X (o) induced by Riemannian metric, let df be
the volume element on the Euclidean space p*(vyo). Then dydf is a volume element
on Z%(y0) X go(yey p(yo) which is Z°(yo)-invariant. By Theorem 1.5.1, there is a
smooth positive KY(yo)-invariant function r(f) on pt(yo) such that we have the
identity of volume elements on X,

(1.5.37) dx = r(f)dydf,

with 7(0) = 1. Moreover, by |B11, (3.4.36)], there exist C' > 0, C’ > 0 such that for
f € pt(yo),

(1.5.38) r(f) < Cexp(C'|f]).

Let dk’° be the Haar measure on K°(yo) that gives volume 1 to K°(vo), and let
du® be the K —invariant volume form on K°(vyo)\K, so that

(1.5.39) dk = dk"du’.
Set
(1.5.40) dz" = dydk”.

Then d2° is a left invariant Haar measure on Z°(yo). Combining (1.5.37) - (1.5.40),
we get

(1.5.41) dg = r(f)dz"df du®.
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Also by (1.5.25), r(f)dfdu® can be viewed as a measure on Z°(yo)\G such that
(1.5.42) dg = dz° - r(f)df du®.

Then dv® = r(f)dfdu’ is exactly the measure on Z°(yo)\G that is canonically
associated with dg and dz°.

When replacing Z°(yo), K°(yo) by Z(yo), K(yo), one can define measures dk/,
du, dz, dvon K(yo), K(yo)\K, Z(yo), Z(yo)\G such that the analogues of (1.5.39)
- (1.5.42) still hold.

Let dn be the normalized Haar measure on K°(yo)\ K (yo) such that

(1.5.43) dk' = dk"dn.

By the normalization of dk™, dk’, we have
(1.5.44) / dn = Vol(K (yo)) = 1.
KO(yo)\K(v0)

Moreover, using (1.4.28) for the groups K?(vo) and Z7(vo), we get
(1.5.45) dz = dz%dn.
Using the canonical projection Z°(yo)\G — Z(y0)\G, and by (1.4.28), we get
(1.5.46) dv° = dndv.
Let du be the normalized Haar measure of 37. Put
(1.5.47) dg = dgdp.

This defines a bi-invariant Haar measure on G°. If dk is the normalized Haar
measure on K7, then dk = dkdu.

Let dk be the normalized Haar measure on K?(vo), let di” be the K7 —invariant
measure on K7(yo)\ K7 such that

(1.5.48) dk: = dk°di’ .
Set
(1.5.49) dz° = dydk’.

Then dz7 is a left invariant Haar measure on Z?(vo). Furthermore,
(1.5.50) dg = dadk = r(f)dydfdk®du® = dz° - r(f)dfdi°.

Then dv? = r(f)dfdu’ is a measure on Z7(yo)\G°.

Also the analogues of (1.5.47) - (1.5.50) can be formulated for the groups G, K,
5, Z(vo) and the orbit space Z(vo)\G.

In the sequel, we will always use these measures for the associated integrations.
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1.6. The return map along the minimizing geodesic in X (vo). In this sub-
section, we still assume that yo € G is of the form given in (1.4.31).

Recall that 7 : X — X is the total space of the tangent bundle T'X to X. Let X*
be the total space of the cotangent bundle T*X. We still use m denote the canonical
projection from T*X to X. Let p be the generic element of T* X, and then ¥ = 7*p
is a smooth 1-form on X*. Put w = d*" ¢, which is the canonical symplectic form
on X*. The identification of the fibres TX and T*X by the metric ¢”X identifies
the manifolds X and X*.

Put H(z,p) = 3|p|* the Hamiltonian on X*. Let V be the Hamiltonian vector
field associated with H. Then V is the generator of geodesic flow. Let {y;}ier be
the corresponding 1—parameter subgroup of diffeomorphisms of X*, which preserves
the symplectic form. When identifying X and X™*, we may consider ¢; as a flow of
symplectic diffeomorphisms of X. If (x, YIX) € X if (2, VI¥) = py(x, YTX), then
t € R — x, € X is the unique geodesic in X such that xg = z, 3 = Y7X

The action of yo lifts to X and A*. Since yo is isometry, these actions correspond
by the identification through the metric g”*. Then o preserves the symplectic form
of X or X*. Now we study the symplectic diffeomorphism (yo) "ty of X.

Set

(1.6.1) Fo={2€X : (yo)  pi(z) = 2}.

The element a € p defines a constant section of X x g. By (1.1.17), we can view a
as a smooth section of TX @ N. Let a’X, a” the corresponding parts of this section
in T'X, N respectively. Recall that we have a global geodesic coordinate system
centered at z = pl which identifies p with X by Y? € p — exp(Y?)z. By [B11,
Proposition 3.2.4|, we have

(1.6.2) a’*(Y?) = cosh(ad(Y"))a, a(Y?) = —sinh(ad(Y?))a.
Definition 1.6.1. Let i, : X — X be the embedding
(1.6.3) reX = (z,a)eXx.

We get the extension of [B11, Proposition 3.5.1] to our case.

Lemma 1.6.2. we have

(1.6.4) Frp = i X (0).

Proof. For x € X (yo), let g € Z°(y0) be such that pg = . Then a’*(z) is given
by [g, (Ad(g~)a)?]. By (1.4.6), we get a’*(x) = [g,a]. Then

(1.6.5) o1((z,a™)) = [ge*, a] = yo(x,a™¥(x)) € X.

We get i, X (yo) C F(vyo).

If (z,YTX) € F(yo), then z; is a geodesic connecting z and ~yo(z) such that
(v0). Yy = Y™, Since i, = V;'¥, we get that z is a critical point of d2,. By
Remark 1.1.3, we get # € X (vyo). Furthermore, Y7¥ = ¢?*(z). This completes the
proof of our lemma. 0
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Let 30 = 3(a), and put
(1.6.6) po = kerad(a) Np, € =kerad(a)N¢e.
Let 3¢, pg, & be the orthogonal spaces to 30, po, € in g, p, € with respect to B, then
(1.6.7) 30 =PoBto, 35 =Py Bty

By (1.4.8), the space 3(yo) is a Lie subalgebra of 30. Also p(yo), &(yo) are
subspaces of pg, € respectively. Let 3i(y0), pa(v0), € (yo) be the orthogonal
spaces to 3(70), p(70), €(yo) in 30, Po, to. Then

(1.6.8) 30 (70) = py (o) @ &5 (o).

Moreover, the action ad(a) gives an isomorphism between py and €. Let p be the
isomorphism from py & € to py & py given by

(169) p(ev f) = (67 _ad(a)f)
The connection VI¥ on T'X induces a splitting
(1.6.10) TX ~m"(TX & TX).

In (1.6.10), the first copy is identified with its horizontal lift, and the second copy
is the tangent bundle along the fibre, which is the kernel of dr : TX — TX.

If x € X(yo), then (z,a™X) € F,,. The differential d((yo) ;) is an automor-
phism of T{, ,rx)X. Let g € Z (o) be such that z = pg. We identify T{, ,rx)X with
the vector space p @ p by the left action g on T, .)X.

We also have the extension of [B11, Theorem 3.5.2].

Proposition 1.6.3. The following identity holds at (z,a’™) € F,q,

o) deo) ebe = |7 0] o (st o] )

In particular, we have

_ “TAA(K)]p, o TAd(K)| }
d((~vo) ! — |9 Po B Po
(1.6.12) ((’V ) 901)’13065)00 [ 0 o 1Ad(/€)|p0
d((70) "' p1) |yt aps = po (07 AA(Y)) [ 0 p7"
The eigenspace of d((yo) te1) associated with the eigenvalue 1 is just TF,, ~
p(70) © {0} C po @ po.

Proof. We adapt the proof of [B11, Theorem 3.5.2| to prove our proposition.

Let z4,s € [0,1] be the unique geodesic connecting x and ~yo(z) with constant
speed. Let J; € T, X be a Jacobi field along this geodesic which satisfies
(1.6.13) J+ RIX(J, )i =0,

Using the splitting (1.6.10) of X, the differential dy; at (z,a™™) is given by the
linear map (Jo, Jo) = (J1, J1).
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We trivialize the tangent space along x, to the vector space T, X by the parallel
transport with respect to the Levi-Civita connection. Then (1.6.13) becomes the
differential equation for J, € p

(1.6.14) J —ad?*(a)J =0,
this is equivalent to
g |J| 0 1 [ Js
(1.6.15) a [ J.J _ { £ 0} [ JJ |
Then we have
Ji| 0 1 Jo
(1.6.16) { JJ ~ exp ( L{ 2 0} ) [ J.O] |

By (1.6.16), we get (1.6.11). If we take (Jo, Jo) € po @ po, we get the first identity
in (1.6.12).

If (Jo,Jo) € pg @ pg, then (J,, J,) € py @ pg. Put

(1.6.17) Hy=p~t(J,, J,) € pt @t
Then (1.6.14) is equivalent to

(1.6.18) H+a,H =0,

so that

(1.6.19) H, = Ad(e™*)H,.

By (1.6.17), (1.6.19), we get the second identity in (1.6.12).

The second identity of (1.6.12) shows that the kernel of d((yo) '¢;) —1in p & p
is just the kernel of d((yo) Y1) — 1 in pg & po. Then, by (1.4.8) for gy = 1 and the
first identity in (1.6.12), we get that this kernel coincides with p(yo) @ {0}. Since
F.o is the fixed point set of (yo) ‘1, then the kernel of d((yo) tp1) — 1 is just
TF,,. This completes the proof of our proposition. O

Recall that X is the total space of TX ® N and 7 : X — X denote the nat-
ural projection. The flow {p;}er lifts to a flow of diffeomorphisms of X. If
(2, YIX YN) € X, set
(1.6.20) (2, V"5, V) = 0y (2, YT, YY),
then ; is just the geodesic starting at = with speed YV,I¥, and Y,V is the parallel
transport of Y along ;.

Recall that &(k~'o) is the eigenspace of € corresponding to the eigenvalue 1 of
Ad(k™'o). Clearly K°(yo) acts on &(k~'o). Put
(1.6.21) N(k™'o) = Z°(y0) X ko(re) Bk "0).

Then N(k™'o) is a subbundle of N|x(,,). Let N(k7'o) be the total space of
N(k™'0). Let i, be the embedding (z,YN) € N (k'o) = (z,a”,YN) € X.

Set

(1.6.22) ]?W ={z € X, (yo) o1z = 2}
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As in |B11, Section 3.6] and Lemma 1.6.2, we have
Proposition 1.6.4. We have the following identities,
N(k™'o) ={Y" € N|x(yo) | Ad(k" o) YN = YV},
(1.6.23) 1Fro = Fro,
Fro = iaN(k™'0).

Proof. The first identity in (1.6.23) follows from (1.6.21), and the second one follows
from (1.6.1), (1.6.20), (1.6.22). Using the first two identities in (1.6.23) and by
Lemma 1.6.2, we get the third identity. O

1.7. A pseudodistance on X. If z,2' € X, let Tfl be the parallel transport from
T X into T, X with respect to VI¥ along the unique geodesic joining 2’ et . We
recall a definition in [B11, Section 3.8| as follows.

Definition 1.7.1. If (x, f), (2, f') € X, set
(1.7.1) 5((x, f), (@, f) = d(z,a") + |72 f' = f.
We call it a pseudodistance on X.

If zg =pl € X, put

(172) dwo((‘rv f)? (x/7 f/)) = d(:];‘7 $/) =+ |T$0f - T;(:f/|'
Then d,, is a distance on X'. By [B11, eqgs. (3.8.9), (3.8.10)], there exists C' > 0
such that

(1.7.3) 6((z, f), (2", f) = day ((z, f), (2", )] < Cd(,2).
By Lemma 1.6.2, if x ¢ X (v0), for any t € R,

(1.7.4) (v0) e, YIH) # (2, YT,
If (z, YTX) € X with z ¢ X(y0), [YT¥]| =1, set

(1.7.5) (2, YT = yo(z, YTX).

Then for t € R, we have

(1.7.6) ez, YTX) # pi(2, YTX/)-

Proposition 1.7.2. Given 3 > 0, there exists C,5 3 > 0 such that if x € X s such
that d(z, X (yo)) > B, if YTX e T, X, |[YTX| =1, for t > 0, then

(1.7.7) (e, YT), oo (2, YY) > Coo .

Proof. Using Lemma 1.1.4 and Proposition 1.5.2, an easy modification of the proof
of [B11, Theorems 3.9.1| gives a proof of our proposition.
O

Similarly, following the same arguments of the proofs of [B11, Theorems 3.9.2 -
3.9.4 |, we also have their analogues as follows.
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Proposition 1.7.3. Given 3, M > 0, there exists Cyo 50 > 0 such that if v € X is
such that d(z, X (yo)) > B, if YIX € T, X, for 0 <t < M,

(1.7.8) §(pe (2, YT5), o _yyo (2, YTX)) > Croponr-

Proposition 1.7.4. Given 3 > 0,u > 0, there exists Cysp, > 0 such that if
fept(vo), Ifl < B, 2= pyo(l, f), VTF —a"™| > p,

(1.7.9) 8(p1/2(x, YTX), 0 1070 (2, YY) > Crop -

Given v > 0, there exists C, > 0 such that if f € pt(yo), |f| <1, 2 = py(1, f),
YIX e T,X, [YTX| < v, then

(L710)  Slpuala, YY), poymo(e, YT)) > G (1f] + YT — a™¥).
For z, 2’ € X, we still denote by le the parallel transport from N, into N, along

the unique geodesic connecting 2’ to  with respect to V.
Take (z,Y) € X. Set

(1.7.11) (@, Y") =~o(x,Y).
Put
(1.7.12) 2, =72, Y), zy =T (2, Y).

Let YV, YY" be the parallel transports of YV, YN along z,, ) with respect to VV.
The same as in [B11, Theorem 3.9.5], there exists ¢,, > 0 such that f € p* (o),
[fI <1 2= pyo(L, f), if [YTF —a"™] < 1, then

1/2

(1.7.13) ‘Txl/2Y1/2 1/2’ 2 ’ (Ad(k™"o) — YN’ Cro (| f + YTH = a™X YY),

We can extend § to a pseudodistance on X. Combining Proposition 1.7.4 and
(1.7.13), an estimate can be established for this pseudodistance on X'.

1.8. The locally symmetric space Z. Let I' be a cocompact discrete subgroup
of G.

Lemma 1.8.1. If I" is a cocompact discrete subgroup of G, then any v € T' is
semisimple, and T'NZ(7) is a cocompact discrete subgroup of Z(). More generally,
ifceX, o) CTl,ifyel, then yo € G is also semisimple, and T N Z(vyo) is a
cocompact discrete subgroup of Z(vo).

Proof. The first part of this lemma was proved in [M17, Proposition 3.9]. Also if
v €T, o) CT, by [Sel60, Lemmas 1,2|, 'NZ (o) is a discrete cocompact subgroup
of Z(yo). We only need to prove that yo is semisimple. We will adapt the proof of
[M17, Proposition 3.9] to obtain this conclusion.

Recall that p : G — X is a proper projection. Since I' is cocompact, we choose
and fix a compact fundamental domain U C G for I'\G. Then we have

(1.8.1) G=T-U.
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There is a sequence {g; }iew C G such that
(1.8.2) dvo(Pgi) = Moy as @ — 400.
Using (1.8.1), there exists a sequence {v;}iew C I' such that h; = v;9;, € U. Then
the convergence becomes
(1.8.3) d(phi, vivo(v; po(hi)) — M.

Since U is compact, we may and we will assume that {h;};cn is a convergent
sequence with limit h € U.
As in [M17, eq.(3.47)], we have

d(ph, vvo (v po(h)) < d(ph, phi) + d(phs, vvo (7 )po(hi)
(1.8.4) +d(yiyo (7 po(hi), vivo (v po ()
= 2d(ph, ph;) + d(pgi, Yopg;).

By (1.8.2), the right-hand side of (1.8.4) converges to m,, as i — +00, then the
set {d(ph,yiyo(v; )po(h))}tien is bounded. Note that y;yo(y; ') € T, since T is
discrete, the set of such y;yo(v; ') is finite. This implies that there exist infinite 7,
such that v,,,y0(7,,!) =+ € . Then my, = m,,, and we have

(1.8.5) Moo = d(ph,~'pa(h)) = d(p(ym, 1), Yop(Ym, 1))

Therefore, vo is semisimple. O

Definition 1.8.2. If v1,v5 € I', we say that v, ~ 5 if there exists v € I' such that

(1.8.6) 1 = C7 ().
which is the same as,
(1.8.7) Yoo = C(7v)(mo).

By (1.8.7), one verifies that ~ is an equivalence relation. We denote by C the set of
equivalence classes in I'. Let [7]0 be the equivalence class of v € T". If v is elliptic,

we say that mo is an ellipticaass. Let E be the set of elliptic classes in C.

The map v € ' — (7)o (y) € mg induces the identification
(1.8.8) bl =T NZ(yo)\T.
Lemma 1.8.3. The set E is finite.

Proof. Let U C G be the compact fundamental domain for I'\G as in the proof of
Lemma 1.8.1.

Put
(1.8.9) V=ptpU)=U-K.

Then V is a compact subset of G. We denote by V! the set of the inverses of
elements in V. Then V™! and V - 0(V~!) are compact in G.
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For any [’y] € E, there exists 7/ € [’y] such that 7/o has fixed points in p(V') =
p(U). Let g, € U such that pg, is fixed by ~'o. Then we get

(1.8.10) Y €UKo(U)NT CV-o(V-HAT.
Since V - o(V ') is compact and T is discrete, V - o(V=') NT is a finite set. This
completes the proof of our lemma. O

Remark 1.8.4. If we take 0 = 14, then the set E is just the set of conjugacy classes
of elliptic elements in I', which is a finite set.

Proposition 1.8.5. We have

1.8.11 inf - > 0.
( ) b2 ™

Proof. Suppose that we have a sequence of [;] € C\E, ¢ € N such that m.,, — 0
as ¢ — +00. Y

Let U C G be the compact fundamental domain in the proof of Lemma 1.8.3.
Then for each class [%]U, there exists ] € [%]U, z; € p(U) such that

(1.8.12) dyo(Ti) = Mg

Since U is compact, we may and we will assume that {z; };cn is a convergent sequence
with the limit z € p(U).
The triangle inequality shows

(1.8.13) d(z,vio(v)) < d(x,z;) 4 d(2s, vio(2:)) + d(vio(2), vio ().
By the assumption, there exists ig € N such that if i > ¢, then
(1.8.14) d(z,vio(x)) < 1/2.

Since I' is discrete, there exists only finite number of 7/ such that (1.8.14) holds,
then this contradicts the assumption that m.,, — 0 as ¢ = +o0o. This completes

the proof of our proposition. O
Set
1.8.15 cre = inf m.,.
(1.8.15) br T pece

By Proposition 1.8.5, we have

(1.8.16) cre > 0.

Lemma 1.8.6. There exist ¢ > 0, C' > 0 such that for R > 0, x € X, we have
(1.8.17) t{vo non-elliptic : v €T, dys(z) < R} < Cexp(cR).



44 BINGXIAO LIU

Proof. If x € X, R > 0, let Bg(z) be the metric ball centred at x of radius R. Then
by (1.5.34), (1.5.35), there exists ¢ > 0, C" > 0 such that, for x € X, R > 0,

(1.8.18) Vol(Bg(z)) < C"exp(dR).

If T is torsion free, then using the same arguments as in the proof of [MiP13,

Proposition 3.2|, we get (1.8.17). Note that it also a special case of [MM15, eq.(3.19)].
If T is not torsion free, let E(I') C I" be the set of elliptic elements in I". By

Remark 1.8.4, E(I') is a disjoint union of finite conjugacy classes in I".  Then by
Proposition 1.5.2, there exists ¢y > 0 such that if v € E(I"), € X, then

(1.8.19) cod(z, X (7)) < dy(x).
Put
(1820) Cr = Crig > 0.

Let ¢ be such that
1

(1.8.21) 0<e< 1 min(cr, cry).

By (1.8.15), (1.8.20), (1.8.21), if v,7 € ', 0, 7/ are non-elliptic, and if y~1v" is
non-elliptic, then if x € X, we have
(1.8.22) voB.(z) N oB.(x) = 0.

If yoB.(z) Ny'oB.(x) # 0, then v~ !4 is elliptic, and there exists 2/ € oB.(z)
such that
(1.8.23) d(x', v 1y2') < 2e.

Put r = (% +1)e + ;. By (1.8.19), ™'/ has fixed points in 0B, (x). We can fix ¢
small enough such that r < 1.
Let U C G be a compact fundamental domain for I'\G, and let V; be the closed

1-tube neighbourhood of p(U) in X. The same arguments in the proof of Lemma
1.8.3 show that

(1.8.24) I(U)=t{y €T : ~ has fixed points in V; C X}

is finite. If v € T, then [(U) = I(yU).
Fixx € X, R > 0. If v € I" is such that

(1.8.25) d(xz,vo(z)) < R.
Then
(1.8.26) voB.(x) C Bric(z).
There exists vy € I" such that
(1.8.27) oB,(z) C p(vU).
Let v € I' be such that o is not elliptic. Set
(1.8.28) I(yo) = {4 € T': 4'o non-elliptic, yo B.(z) N0 B.(z) # 0}.

By the arguments (1.8.22) - (1.8.24), we get
(1.8.29) 41(vo) < (V).
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By (1.8.26), (1.8.28), (1.8.29), we get
8{~vo non-elliptic : v €T, d,,(z) < R}
< (U)Vol(Bprye(x))/Vol(B:(x)).
By (1.8.18), (1.8.30), we get (1.8.17). 0

(1.8.30)

Put Z = T'\X =I'\G/K. By |ALRO7, Example 1.20|, Z is a compact orbifold.
Recall that the vector bundle F' on X is defined by a K-representation (E, p¥) in
subsection 1.1. Then F' descends to an orbifold vector bundle F' on Z. In particular,
the tangent bundle T'X descends to the orbifold tangent bundle 77, and N also
descends to a orbifold bundle, which we still denote it by N.

We now assume that I" is torsion free, so that Z is a smooth compact manifold.
Let 0 € ¥ be such that o(I') = I". Then the action of X7 preserves I', and ¥7 acts
isometrically on Z.

Let 7Z C Z is the fixed point set of ¢ in Z. If g € G, we denote by [g]x (resp.
[g9]z) the corresponding point in X (resp. Z). If A C X, we denote by [A]z C Z the
image of A C X under the canonical projection X — Z.

Lemma 1.8.7. Then [g|7 € °Z if and only if there is an elliptic element yo, v € T
such that [g]x € X(yo) C X. If 1,72 € I are in the same class in C, then we have

(1.8.31) [X(m10)]z = [X(y20)]z C Z.
If v1, 2 are not in the same class in E, then we have
(1.8.32) [(X(m0)]z N [X(120)]7 = 0.

Proof. For any g € G, if [g]z € ?Z, then there are vy € I" and k¢ € K such that

(1.8.33) o(g) = Ygko.

Then 'yala(g) = gky, this implies that [g]x € X is a fixed point of 7510, so that
7o Lo is elliptic.

If x € X and vo(z) = x, then [z]z = [0(2)]z € Z. This completes the proof of
the first part of our lemma.

If 71, 72 are in the same class in C, then by (1.8.7), there is v € I" such that

(1.8.34) 10 = yye0y "t
Then we have
(1.8.35) X(mo) =9X (7o) C X,

so that (1.8.31) holds.
Suppose that [y1] , [12] are in E. If [X(y10)]z N [X(%20)]z # 0 in Z, since

Y10, 720 are elliptic, We can find v €I and x € X such that
(1.8.36) Y ryo(y)o(z) = vo(z) = .

Then v, 'y~ 'yi0(y)o(x) = o(x). Since I is torsion free, then 7, = y~'y,0(7), which
says that [y1] = [72]0. Then we get (1.8.32). O

-~ o Sty
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Using Lemma 1.8.7, we get that
(1.8.37) 72 = Uy eplX(10)]z.

Moreover, the right-hand side in (1.8.37) is a disjoint union.

By Lemma 1.8.1, 'NZ(~0) is a cocompact discrete subgroup of Z(vyo). Moreover,
since I' is torsion free, I' N Z (o) is also torsion free. Then I' N Z(yo)\ X (y0o) is a
compact smooth manifold

Take [y] € E, let v € I' be one representative of [] . If v € X(y0), if yo € T is
such that vz € X (y0), then a similar argument like (1.8.36) gives that vy € Z(y0).
Thus the projection X — Z induces an identification between I' N Z(yo)\ X (yo)
and [X(vyo)]z C Z. Then (1.8.37) can be rewritten as

(1.8.38) "2 = Up) esl' N Z(10)\X(y0),

Let C(Z, F) be the vector space of continuous sections of ' on Z. We can identify
this vector space with the subspace of C'(X, F) consisting of continuous sections over
X which are left I'—invariant, i.e.,

(1.8.39) C(Z,F)=0C(X,F)".
By (1.2.20), (1.8.39), we obtain
(1.8.40) C(Z,F) = Ck(G,E)".

We now assume that (E, p¥) lifts to a representation of K?. If s € Cx (G, E)', €
¥, then us € C% (G, E) is given by (1.2.21). If y € T', g € G, then

(s)(vg) = p"(1)s(n~' (v9))
(1.8.41) =" (W)s(u (V)" (g))
= p"(w)s(n="(9)) = (1s)(9)-

Then ps € Cx (G, E)''. The action of u € X7 descends to an action u? on C(Z, F).

Proposition 1.8.8. Take MU_ € E with the representative v € I'. Under the identi-

fication in (1.8.38), the action of o on the bundles over °Z restricted to [X (yo)]y is
given by the action of yo on the corresponding vector bundles over TNZ(yo)\X (y0).

Proof. Take zo = p(go) € X (y0). There is k € K such that

(1.8.42) T = C7(g0) (k7).
By Proposition 1.4.1 and (1.8.42), we have
(1.8.43) X(yo) = go(X (ko).

By (1.2.19), (1.8.43), we have the identification of vector bundles corresponding
to the identification in (1.8.38),

(1.8.44) Flix(oy, 2 TN Z(vo)\ 90(Z(k™'0) X k10 E).
If g€ Z(k™'o), by (1.8.42), we get
(1.8.45) o(gog) = v "gogk™".
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Put © = p(gog9) € X(yo) and z = [gog]z € [X(7v0)]z. The computation on an
small neighbourhood of z is equivalent to do the computation on a neighbourhood
of z. If v € F, ~ FE, then

o(z,0) = (0(2),00)

= [(o(g09), p"(0)v)]z

= (909, p" (k™' 0)0)]z € Fo(z)

Take the lift of [(gog, p¥(k~'o)v)]z around x, we have

(1.8.47) [(g0g, PP (k7 oB)0)] 2 = goktogy (z,v) = yo(z,v).

This completes the proof of our proposition. O

(1.8.46)

Remark 1.8.9. If T is not torsion free, then Z is a compact orbifold. In this case,
(1.8.37) still holds, but the union in the right-hand side of (1.8.37) is not a disjoint
union any more.

For 71, 72 € T, if 710, a0 are elliptic, if v, 'y, is elliptic, then we have

(1.8.48) X(m0) N X (20) = o~ (X (9 ')
If 75 v, is not elliptic, then we have
(1.8.49) X(y10) N X (ye0) = 0.

These identities are compatible with the corresponding results in the proof of Lemma
1.8.6.
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2. A CLASSIFICATION OF REPRESENTATIONS OF K¢

This section is devoted to a proper classification of the irreducible representations
of K7, and the question of lifting representations of K to representations of K°.

This section is organized as follows. In subsection 2.1, we reduce the classification
of representations of K7 to the classification of representations of a subgroup K¢’
of K x Aut(K).

In subsection 2.2, we recall a Weyl character formula for non-connected compact
Lie group obtained in [DKO00].

In subsection 2.3, we give a classification of the irreducible unitary representations
of a finite extension K7 of K by the orbits in the set of dominants weights.

Finally, in subsection 2.4, we give a constructive correspondence between represen-
tations of K" and representations of K7, so that a classification of representations
of K7 is established. In the last part, we give a criterion for the extension of a
K-representation to a K?-representation to exist.

In this section, we use the same notation as in subsections 1.1 and 1.2.

2.1. Irreducible representations of K“. Fix ¢ € ¥, let 37 be the closed sub-
group of Aut(G) generated by o. Recall that K = K x ¥ and K7 = K x X7
Since o preserve the group K, we have the natural homomorphism of Lie groups:

(2.1.1) f:X7 — Aut(K).

Put H = ker f. Let £% C Aut(K) be the image of f. The group X7 is a compact
subgroup of Aut(K) generated by f(o).

Definition 2.1.1. Let K be the closed subgroup of K x Aut(K) which is generated
by K and f(o).

Then
(2.1.2) K7 =K xX7.

The homomorphism f extends trivially to a homomorphism from K¢ onto K7,
which we still denote by f.

We regard H as a closed Lie subgroup of K7, then it lies in the center of K?.
Then

(2.1.3) K = K°/H.

If (E,p¥) is an irreducible unitary representation of K, then using f, one can
get a corresponding irreducible unitary representation of K. Conversely, if (E, p¥)
is an irreducible unitary representation of K7, then Schur’s lemma says that for
h € H, p(h) is a scalar operator in Aut(E). Let 1z be the identity map of E.

Proposition 2.1.2. For an irreducible unitary representation (E,p%) of K°, there
exists an 1-dimensional representation (L,pY) of X7 such that the representations
(E @ L,pP®t) is an irreducible representation of K¢ satisfying that if h € H,
pE®L(fL) =1g.
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Proof. The restriction of p¥ to H can be regarded as a 1-dimensional representation
of H over C. Let (L,p") be its dual representation. We can extend (L, p¥) to the
group X7. One can verify that (L,p") is just the representation we want. This
completes the proof of our proposition. O

Let X%, x*, x¥®* be the characters of these representations of K° appeared above,
then, on K7, we have
(2.1.4) YEOL =y E oy E

In particular, the values of x* depend only on the factor in X7, ie., if § € K°,
k € K, then

(2.1.5) XZ(gk) = (x"(9))"'x"*" (gk).
By (2.1.3), the representation F ® L in Proposition 2.1.2 can be regarded as an
irreducible unitary representation of K. Then in most cases where we need to deal

with the characters of representations, it is enough to work on representations of
K7 instead of representations of K°.

2.2. Finite extension of K and a Weyl character formula. Let K be a com-
pact Lie group such that the identity component K° = K. Then K /K is a finite
group.

Let T C K be a maximal torus of K with Lie algebra t. Let W(K,T) be the
associated Weyl group. Let £C, t€ be the complexification of €, t. Let R(€t) C t*
be the associated (real) root system. Let R, (¢, t) C R(E t) be a system of positive
roots with the simple root system ®(&, t). If there is no risk of confusion, we use the
notation W, R, R,, ® instead of W (K, T), R(¢,t), R (¢,t), D¢, t).

Note that if w € W

(2.2.1) det(w) = (—1)/F\w Bl

Let ¢ be the Weyl chamber defining the positive root system R,. Let P, C t*
be the set of dominate weights with respect to R,. As in [DKO00, eq. (3.15.2)], put

(2.2.2) Np(e) = {ge K | Ad(@)(c) = c}.

Then Nz(c) is a closed Lie subgroup of K with Lie algebra t. Let N ~(¢)? be the
identity component of Nz (¢). Then Nz (c)® = T. Moreover, if u € Nz(c), the action
Ad(u) on t* preserves R..

By [DKO00, Proposition (3.15.1)], the injections Nz (¢) — K and T — K induces
an isomorphism of finite groups:

(2.2.3) Np(e)/T = K/K

In particular, Ng(¢) N K =T.
Asin (1.3.1), if v € €, set

(2.2.4) Z(w)={ge K : Ad(G)v =v}.
By [DKO00, Proposition (3.15.2)], there exists v € ¢ such that
(2.2.5) Z(v) = Ng(c).
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Using [DKO00, Lemma (3.15.3)], if u € Nz(c), then there exists z € Nz(c) which is
arbitrary close to u such that S = K%(2) is a torus in K, i.e., 2 is a regular element
in K , and z commutes with u. One can verify S is a subtorus of T. Moreover, if g
and z are in the same connected component of K , then ¢ is conjugate by an element
of K to an element of zS. Then a consequence of (2.2.3) is that the character of a

representation of K is determined by its restriction to the subgroup N #(c).
Set

(2.2.6) pe :% o

aERy

Then if u € Nz(¢),
(2.2.7) Ad(u)pe = pe.
For a subset @) C R, put
(2.2.8) £0 = Bacqla-
In particular, set
(2.2.9) n=tp,.

If u e Nz(c), set
(2.2.10) W(uT) = {w e W | Ad(u)|¢ commutes with w}.

If w e W(uT'), then Ad(u) preserves the subspace €z, \..z, -
Let the function ¢ in u € Nz(c) be given by

§(u) = det(1 — Ad(u™"))a
(2.2.11) = Z det(w) det(Ad(u™b))
)

weW (uT

’ERJr\wR+ :

Note that 0 is just the function defined in [DK00, eq.(3.15.11)], and that the second
equation in (2.2.11) follows from [DKO00, eq.(4.13.32)].

Lemma 2.2.1. Ifu € Ni(c), t € T, then

(2.2.12) S(tu) = Y det(w) det(Ad(u))[ey, \,, €7PT2(E),

weW (uT)

Proof. Since the actions Ad(u~'), Ad(t™!) and Ad(t~'u~"') on € preserve the sub-

space €r,\w.r,, then
(2.2.13) det(Ad(tu™))len, on,
o = det(Ad(t™)) _ det(Ad(u™))

’ER+\L/.J-R |ER+\w-R+'

Also we have

(2.2.14) det(Ad(t™))

’ER+\w»R+ = 6_2ﬂ—izo¢€R+\w‘R+ a(t),
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Then it is enough to show that
(2.2.15) Z o= pg—w- pr,
a€R\w-R4

which is a classical result of the root system theory of Lie groups [DKO00, Section
4.9]. O

Let (E, p¥) be an irreducible unitary representation of K. Set

(2.2.16) Em)={e€E : p¥(v)e=0for all v €n}.

Similarly, if w € W(uT), set

(2.2.17) Ew-n)={e€E : p"(v)e=0forall v € &, r, }.

By ((2).2.2), (2.2.10), the subspaces E(n), E(w - n) are invariant by the action of
Ng(c).

When we regard (E, p¥) as a unitary representation of K, each irreducible compo-
nent corresponds a highest weight A € P, . Let Q(F, p¥) be the set of these highest
weights. Since Nz (c) preserves R, Ny(c) also preserves Q(F, p¥). By the discus-

sion in [DKO00, pp. 307, since (E, p©) is K-irreducible, the set Q(E, pZ) consists of
one single orbit under the adjoint action of Nz (c).

Lemma 2.2.2. If (E, p¥) is an irreducible unitary representation of[? and also an
irreducible representation of K. Let A € P, be its highest weight with respect to
R.. Then X is fized by the adjoint action of Nz(c).

Proof. In this case,
(2.2.18) QE, p¥) = {\}.
Then our lemma follows from that if u € Nz (c), Ad(u)|; preserves the set Q(E, p¥).
O

If A € Q(E, p¥), let E\ be the subspace of E associated with the weight A\. By
[DKO00, Corollary (4.13.2)]
(2219) E('ﬂ) = EB)\EQ(E,pE)E)v

Let x¥ be the character of (E, p¥). By [DK00, eq.(4.13.34)], if u € Nz(c), then
2220) Sy = 3 det(w)det(Ad(w ey, TP (W) o)

weW (uT)

Now we suppose that (E, p?) is an irreducible unitary representation of K and
also an irreducible representation of K with the highest weight A. By Lemma 2.2.2
and (2.2.19), we have

(2.2.21) E(n) = E,.
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If we W(T), then E(w-n) = E,». If u € Ng(c), t € T, by (2.2.12), (2.2.20),
(2.2.21), we get

§(tu)x P (tu)
= ) det(w)det(Ad(u"

weW (uT)

(2.2.22) Nler,oon,

X Trlp® (u) ., | P (2).
If w =1, (2.2.22) becomes the classical Weyl character formula for K.

2.3. Representations of the principal extension of K. We assume that K is
compact, semisimple, connected and simply connected. Then the center Z(K) of K
is a finite Abelian group.

The identity component of Aut(K) is just the group of inner automorphism
Inn(K). The outer automorphism group of K is defined as

(2.3.1) Out(K) = Aut(K)/Inn(K).

Choosing a basis of Chevalley, any automorphism 7 of associated Dynkin diagram
could be lift to an automorphism of K canonically, which we still denote by 7. Then
we get an embedding Out(K) — Aut(K), so that we can identify Out(K) with
its image in Aut(K’), which is a finite group and acts on Inn(K) canonically. By
the results in [Bo04, Chapter VIII, §4.4 and Chapter IX, §4.10], we have the group
isomorphism

(2.3.2) Aut(K) = Inn(K) x Out(K).
As in (1.2.4), we get an exact sequence of Lie groups from (2.3.2),
(2.3.3) 1 — Inn(K) — Aut(K) — Out(K) — 1.

Moreover, the group Out(K) acts on K. Note that the decomposition in (2.3.2)
depends on the choice of maximal torus 7" and the root system (R, R ).
Set

(2.3.4) K = K » Out(K),

which is so-called the principal extension of K. We can regard K as a model group
for the group K.

Remark 2.3.1. In fact, we can drop the assumption that K is simply connected.
If « € R, let V() denote the 2—dimensional real vector subspace of £ such that
its complexification is just €, + ¢ . If « € @, we fix a v, € V(a) such that
B(v4,v4) = —1. The pair (P, (v4)aecs) is called a framing of (K,T'). Let O be the
subgroup of Aut(K') that leave (P, (Vo )aca) stable. Then Aut(K) is the semi-direct
product of Inn(K) and O as in (2 3.2). In particular, O is isomorphic to Out(K).
We refer to [Bo04, pp. 324] for more detail.

Let 7 € Out(K) with order Ny. We denote by (7) the finite cyclic group generated
by 7 in Out(K). Let K7 be the closed subgroup of K generated by K and 7. Then

(2.3.5) K™ =K x (1).
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In the sequel, we classify the irreducible complex representations of K™ by explicit
constructions.

Let Irr(K™) be the set of the equivalent classes of the irreducible complex repre-
sentations of K7. Let Cly, be the set of all Ni" roots of 1.

Let (E,p¥) be an irreducible unitary representations of K7, and let x* be its
character. We can decompose it as a direct sum of irreducible unitary representations
of K, written as:

(2.3.6) E=0lE,.

Let A\; € P, be the highest weight of E;.

In the following, let (Ej, p®) be an irreducible unitary representation of K with
the highest weight A € P, and let x, be the corresponding character. Then (2.3.6)
can be rewritten as

(2.3.7) E =0l E,.

When restricting to K, we have

d
(2.3.8) X = x
i=1

Lemma 2.3.2. (1) If k € K, put pP7 (k) = pP (7 '(k)) € Aut(E). Then
(E), pE“*l) 15 an irreducible representation with the highest weight TA € Py, .

(2) If (E, p¥) is a representation of K™, if W C E is a K -invariant subspace which
is an irreducible representation of K with the highest weight X\, then p¥ ()W

18 also a K-invariant subspace of E, and it is an irreducible representation of
K with the highest weight T.

Proof. These two statements follow from that if t € T', v € E), then
(2.3.9) PP (7))o = 2N (E))v = 2T (t).
O

Lemma 2.3.3. Let (E,p") be a finite-dimensional unitary representation of K™
such that it can be written as a direct sum of m copies of Ey\ as K-representation.
If there exists d € N such that 7@ -\ = X, then there exists a K-invariant subspace
W of E such that (W, p¥) is irreducible representation of K with the highest weight
A, and W is invariant under the action of p¥(7%)

Proof. Since ) is fixed by the adjoint action of 7¢, then the representation (Ey, p™*) is
isomorphic to (Ey, pP»™), there is J € GL(E,) such that Jop (k) = pBr(r4(k))o.J.
By the Schur’s lemma, the map J is unique up to a non-zero constant multiplication.
Then

(2.3.10) Homp ((Ex, p™), (Ex, p™7")) = CJ C End(E,).
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By the assumption in the lemma, we have E = EY"™. Then for k € K

pEA(k) 0 . 0
(2.3.11) PP(k) = ? P A:(k) N ?
6 () .. pEA.(k)

We also have
(2.3.12) PP (rh)p" (k) = p” (79(k))p" (7).
Let 7,; € End(E)) be the (4,7) block of p¥(7%) under this decomposition. By
(2.3.12), we get
(2.3.13) 7i; € Hom ((Ex, p™), (B, p™7)).

Then by (2.3.10), there exists a;; € C such that 7,; = a;;J. Put A« = (a;5) €
M nxm(C), which is a non-zero complex matrix.
Since J is an isomorphism, there exists a non-zero vector v € F) and a € C* such

that Jv = av. Also there exists a non-zero w = (wy, -+ ,w,,) € C™ and b € C such
that A.aw = bw. Put v = (wyv,- -+ ,w,v) € E. Then v # 0, and we have
(2.3.14) pP(r)0 = abv.

Since p¥(79) is invertible, then ab # 0. Let W be the smallest subspace of E
invariant by K-actions containing v. Then W is a representation of K, and it is
stable by the action p¥(7%).

Now we show that W as K—representation is isomorphic to (Ey, p™).

Suppose that w; # 0. Let P; be the projection from E to the first copy of E).
Then for any k € K,

(2.3.15) PipP (k) = p" (k) Py.

Put Py = Pi|w : W — E). Then (2.3.15) implies that Py is a morphism between
these two K —representations. Since Pyv = wyv # 0 € E,, we get that Py is
surjective. We only need to show that Py is injective.

If w € W, there are some ¢, € C for finite numbers of k € K such that u =
> cep®(k)v. Then

Py p® (% u = abw, Z crp™ (74(k))v
k

= buy cep™ (T4 (k) Jv
(2.3.16) Z P

k
= bJch,oE*(k)wlv
k
If Pyyu =0, then
(2.3.17) Pwp®(ru = 0.
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By (2.3.16), we get
(2.3.18) bwiJ Y epp™ (k)o = 0.
k

Since bw; # 0, we get
(2.3.19) > erp™ (k)v = 0.
k

In the same time, the i""-component of p(79)u is given by

(2.3.20) ZaijijchpEk(k)v.
k

J
Using the identity ), ajw; = bw;, (2.3.19) is equivalent to u = 0, so that Py is
injective. Then (W, p¥) is isomorphic to E) as K-representations. This completes
the proof of our lemma. 0

As an analogue of the results in [DKO0O, pp. 307|, we have the following result.

Proposition 2.3.4. These \; in (2.3.7) are distinct and they form an orbit of length
d in Py, under the action of 7. In particular, we have d |Ny.

Proof. This proposition follows from Lemmas 2.3.2 and 2.3.3. O

Set 7 = pF(1) € Aut(E). If ¢ € Cl,, then we define a new irreducible unitary
representation of K7 with the same vector space E and the following actions,

pe (1) = cr?,
pE(k) = pP(k), if k € K.
By (2.3.7), (2.3.21) and Proposition 2.3.4, the representation (E, p¥) has the same

orbit in Py, as (E, p¥).
We can define an action of Cx on Irr(K7) by the map ¢ : p¥ — pF.

(2.3.21)

Proposition 2.3.5. Let A be the map which sends the irreducible unitary representa-
tion of K™ to its corresponding orbit in Py, then A induces an 1—1 correspondence
A of two orbit spaces

(2.3.22) A O\Irr(K7) >~ (T)\ Py .

Proof. We prove that A’ defined in (2.3.22) is a bijection. Firstly, we prove the
surjectivity of A’.

If A € Piy. let [A] denote the orbit of A under the action of (7). Let d be the
length of [A], then d|Ny. Then
(2.3.23) A ={\7A - 77N} C Py

In particular, 79\ = \.
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Let (Eo, h®, pg) is an irreducible unitary representation of K with the highest
weight \, where A0 is an invariant Hermitian metric on Ey. If i = 1,--- ,d — 1, put

(2324) Ez = Eo, Pi = pgii, hEl = hEO.

Then (E;, h¥ p;) is an irreducible unitary representation of K with the highest
weight 7¢\ € [7]. Since 79\ = \, there exists Jy € Aut(Fjp) such that if k¥ € K, then

Since 7™ = 1 and using the Schur’s lemma, we get that Jévo/d € Aut(Ep) is a scalar
operator. Then after a rescaling by a number, we assume that

(2.3.26) JYM = Tdp, .

Furthermore, Jy € U(Ey, h*).

Put (E,pF) = &L (E;, p;) with k¥ = @;h¥". Note that as vector spaces, £ =
E$.

Let 7F be an automorphism of E in the following form,

o 0 0 .- 0 Jo
Idg, 0 0 0 0

(2.3.27) P=10 ldg O 0 0] cU(B,nb.
0 0 0 - Idg O

We have

(2.3.28) 84 = diag{Jo, -, Jo}.

Then

(2.3.29) BN = 1dp.

Moreover, one can verify that if & € K, then
(2.3.30) EpP (k) = p¥(r(k))T".

Set pf(1) = 7, then (E, p¥) becomes a unitary representation of K7. In fact,
this representation is irreducible (see (2.3.36) in Remark 2.3.6). By our construction,
we have A(E, p¥) = [A].

Next we prove the injectivity of A’. Suppose that (F, p') is an irreducible unitary
representations of K7 that has the same orbit [A]. We still denote by (E, p¥) the
representation constructed above. Then after an isomorphism of K —representations,
we can assume that F' = E, p¥|x = pf'|x. Put

(2.3.31) " =pf(7).
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Under the decomposition £ = E?d, by Lemma 2.3.2 and the Schur’s lemma, we get
the automorphism 7/ must have a matrix representation as follows,

0 0 0 e 0 caJo
eoldg, 0 0 .- 0 0
(2.3.32) =1 0 cldg 0 - 0 0
0 0 0 e CdflIdEo 0
where ¢, -+, cq € C* are constant. Similar to (2.3.28), we have
(2.3.33) B = ¢ cq diag{Jo, -+, Jo},
and
(2.3.34) (cp---cq)™/? = 1.

Let ¢ € Oy, be such that ¢ = ¢;---cg. Then (c7P)? = 759 We see that the
character of the representation (E,pF) is the same as the character of (F, p!) on
K7, then (F,p") ~ (E, pF) as the representations of K™. This completes the proof
of our proposition. O

Remark 2.3.6. Let (E = E$?, p¥) be the irreducible representation constructed in
the proof of Proposition 2.3.5 for [A\] C Py,. Let Jy be the automorphism given in
the above proof, then we can write down a formula of the character x* of (E, p%):
itke K,

d—1

SOED DOk
(2.3.35) XE (k") =0, if dti;

xP (ki) = ZTrEO[pEO(T_i(k))Jg], for j=1,2,---,Ny/d .

The equations in (2.3.35) are compatible with (2.2.20). Also if dk™ is the normalized
Haar measure of K7, a direct calculation shows that

(2.3.36) / IXF|2dEk™ = 1.

2.4. Irreducible unitary representations of K°’. This section is devoted to clas-
sify the irreducible representations of K. We still use the same notation associated
with K as in subsections 2.2 and 2.3. If there is no risk of confusion, if k € K, we
will denote by Ad(k) both the conjugation of K by k and the adjoint action of k on
the Lie algebras.

Recall that 37 is the compact Abelian group generated by f(o) € Aut(K). We
also use ¢ abusively instead of f(o) in this section. Let Irr(X?) be the set of
irreducible unitary representations of ¥?. Note that the representations in Irr(37)
are 1-dimensional. It is well-known that Irr(X?") can be realized as a discrete group.
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Remark 2.4.1. Since Y7 is a product of a torus and an Abelian finite group, we
get that Irr(3°) is isomorphic to the product of some Z* and a finite subgroup of
St c C~.

We define a left group action of Irr(%%) on Irr(K?’). For (L, p*) € Trr(2), we can
regard (L, p*) as a representation of K° through the group projection K" — %
Then the group action of (L, p¥) on Irr(K?') is defined for (E, p¥) € Irr(K°') by

(2.4.1) (L,p") - (E,p") = (L® E, p* @ p").

It is clear that (L ® E, p* ® p¥) is also an irreducible unitary representation of K°’.
Let Irr(X7)\Irr(K?) be the orbit space of Irr(K ) under the action of Irr(X).

Let 7 be the image of f(o) under the group projection Aut(K) — Out(K), which
is uniquely determined by f(o).

As in subsection 2.3, after choosing a maximal torus T and the positive root
system R, we have the identification of groups in (2.3.2). Then 7 can be identified
with an element in Aut(XK), which is still denoted by 7. By (2.3.2), there exists
k* € K such that

(2.4.2) o= Ad(k*) o7 € Aut(K).

In general, k* can be differed by any element in Z(K). We just fix one choice of k*
in the sequel.

Proposition 2.4.2. Let (E,p¥) € Irr(K?'). There exists ¢, € C such that the
formulas

pr(r) = cop®((K7) ™) p" (),

(2.4.3) i o
p(k)=p~(k), if k€ K,

define an irreducible representation (E,p%) of K™.

Proof. Put
(2.4.4) A — PE((kJ*)fl)pE(o-) c Aut(E).
Then if k € K,

Set
(2.4.6) k =k r(k*) - 7o (k)

= N (k) o (K)E € K.
Then
o(k) =k € K,

(2.4.7) ) -

In the same time, we have

(2.4.8) ANo = pB (=1 p (5o,
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Then AN commutes with p¥(o). If k € K, then
(2.4.9) AN pE (k) = pP (k)" (™) p" (k) = p" () A™.

Since F is irreducible as K —representation, A is a scalar operator, so that there
exists ¢, € C such that

(2.4.10) cNoANo = [dg.
Then we can set
(2.4.11) PP (1) = ¢, A,

so that (2.4.3) defines a representation of K.
If F has a proper subspace invariant under K7, then this subspace must be invari-
ant under K. We conclude that the representation (E, p¥) of K7 is irreducible. [

Remark 2.4.3. The number ¢, is determined by (2.4.10), therefore the different
choices of this number are the multiplications of a fixed ¢, by numbers in Cl,.

Proposition 2.4.4. The construction of representations of K™ from representations
of K in Proposition 2.4.2 induces an injection

(2.4.12) ¢ Irr(B7)\Irr(K') — Cy\Irr(K7).

Moreover, ¢ is independent of the choice of k* and the choice of ¢, in Proposition
2.4.2.

Proof. If (L, p") € Irr(X7), the representation (L, pl) - (E, p¥) is isomorphic to
(E, pP) as representations of K. Then their associated representations of K7 con-
structed in Proposition 2.4.2 correspond to the same orbit in P,,. We get that the
map ¢ above is well-defined. In particular, the different choices of k* and ¢,do not
change the orbit of E in P, as K—representations. By Proposition 2.3.5, we see
that ¢ is independent of the choices of k* and c,.

Now we prove the injectivity of ¢. Suppose that (Ej, p1) and (Es, p2) are two
irreducible representations of K" which have the same image under the map ¢. Let
(E1, p1), (E2, p2) be the corresponding irreducible representations of K7 defined in
Proposition 2.4.2 with suitable choices of ¢,. Then by Remark 2.4.3, we could and
we will assume that £ = E| = E,, p¥ = p; = po.

Let ¢y, co be the two numbers chosen for defining p;(7) and ps(7), i.e.,

(2.4.13) ap®((K)Hpi(o) = e2p” ((k*) 1) pa(o),
and
(2.4.14) MGE Ny (0™) = 1dp = P (k) pa(a™).

Let a be a non-zero eigenvalue for ps(o) with an eigenvector v € E. Put L =
Cv C E. The equality above shows that v is also an eigenvector of ps(o) for the

c
eigenvalue ~24. Then the complex line L, with the restriction of p; (resp. p2) to the
C1

Abelian group X, becomes a representation of X%, we denote it by (Ly, p¥) (resp.



60 BINGXIAO LIU

(L, p¥)). These constructions imply that the representation (E; @ Ly, p; ® p¥) of
K° is isomorphic to the representation (Ey ® Lo, ps ® pk). This is equivalent to
that (Ey, p1) and (B9, p2) lie in the same orbit in Irr(X7")\Irr(K’). This proves the
injectivity of ¢, so that the proof of our proposition is completed. O

Theorem 2.4.5. We have a canonical bijection between the two orbit spaces:

(2.4.15) Irr (Z7)\Irr (K') ~ Cy\Irr(K7).

Proof. To prove (2.4.15), we only need to prove the surjectivity of ¢ defined in Propo-
sition 2.4.4. Take an irreducible representation (E), p") of K associated with \ €
P, .. Since K is a closed subgroup of K, we have the induced K?'-representation
Ind¥”(E,). Now take any K“-irreducible component V of IndX” (E,), which is
always of finite dimension.

By the Frobenius reciprocity [DK00, Theorem (4.7.1)], we have

(2.4.16) Hom o (V, IndX” (Ey)) ~ Homg (Resk”'V, Ey).

The left-hand side of (2.4.16) is non-empty, then the restriction of V' to K has a
K-irreducible component corresponding to A. Then the K?'-representation V' is sent
to the orbit [A] by ¢. This completes the proof of our theorem. O

Remark 2.4.6. In fact, we have the group identification Irr((7)) = Cy,. Then we
can rewrite (2.4.15) in an uniform way

(2.4.17) Irr(S7)\Irr (K') ~ Trr((7))\Irr (K 7).

Combining Proposition 2.1.2 and Theorem 2.4.5, we get a bijection,
(2.4.18) Irr(27)\Irr (K7) =~ Cy, \Irr(K7).

One important observation to (2.4.17) is that we can get a version of Weyl character
formula for K7 from the Weyl character formula given in subsection 2.2 for K7,
which is in terms of the root data of K. We will use this observation in subsection
7.3.

We still use the root data of K fixed in subsection 2.2 and the group identification
(2.3.2). Recall that 7 is the projection of o in Out(K). Recall that if (E, pF) is a
finite-dimensional unitary representation of K, Q(E,p¥) C P, denote the set of
the highest weights associated with the K-irreducible components of F.

Using the correspondence in (2.4.18), we get a criterion for the extension of a
K-representation to a K?-representation to exist.

Proposition 2.4.7. If (E, p¥) is a finite-dimensional unitary representation of K,
then we can extend it to a representation of K if and only if the following conditions
are satisfied:
(1) If X € Q(E,pP), then TA € Q(E, p¥), i.e., QUE,p¥) is a disjoint union of
T-orbits in Py ;
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(2) If X € Q(E, p¥), then the multiplicity of Ey in E is equal to the multiplicity of
ET)\ mn F.
Moreover, the representation E can be extended to an irreducible representation
of K if and only if Q(E,p") has only one T-orbit and the multiplicity of any
K-irreducible component is 1. In this case, the extension is unique up to a 1-
dimensional unitary representation of ¥°.

Proof. This is just a consequence of Propositions 2.1.2, 2.3.5 and 2.4.2 and Theorem
2.4.5. O



62 BINGXIAO LIU

3. THE HYPOELLIPTIC LAPLACIAN ON X

The purpose of this section is to recall the construction of the hypoelliptic Lapla-
cian £;¥, b > 0 on X in [B11, Chapter 2|. The constructions involve Clifford algebras
and the Dirac operator of Kostant [Kos97]|.

This section is organized as follows. In subsection 3.1, we introduce the general
Clifford algebras.

In subsection 3.2, we recall the construction of the flat connections on vector
bundle A'(T*X & N*) on X.

In subsection 3.3, we introduce the harmonic oscillator on an Euclidean space,
and the corresponding K-invariant operator on g with respect to the bilinear form
B.

In subsection 3.4, we consider the Casimir operator associated with g and the
Dirac operator of Kostant.

In subsection 3.5, we introduce the Dirac operator Dy, b > 0 acting on C*°(G X
g, A'(g*)) and a key formula of its square obtained in [B11, Section 2.11]. We explain
how the operator ®, descends to an operator D;  acting on COO(/?,%*(A‘ (T"X &
N*)® F)).

Finally, in subsection 3.6, we introduce the hypoelliptic Laplacian £;¥ defined in
[B11, Section 2.13] and the associated Bianchi identity in [B11, Section 2.15].

In subsection 3.7, we introduce results on the heat kernel of £;* obtained in [B11,
Chapters 9 and 11].

3.1. Clifford algebras. Let V' be a real vector space of dimension m equipped
with a real-valued symmetric bilinear form B. The Clifford algebra ¢(V') of V' with
respect to B is an associative algebra generated by 1 and a € V' with the relations,
ifa,beV,

(3.1.1) ab+ ba = —2B(a,b).

We will denote by ¢(V') the Clifford algebra associated with —B.
Then ¢(V), ¢(V) are filtered by length, their associated Gr’ is just A'(V'). Also
they are Zs-graded algebras, we can write

(3.1.2) (V)= cr(V)@ e (V), &V)=2c.(V)@e (V).

Now we assume that B is nondegenerate. Then B induces an isomorphism ¢
between V and V* i.e., if a,b € V, then ¢(a) € V* is given by

(3.1.3) (pa, by = Bla,b).
Let B* be the corresponding bilinear form on V*, i.e., if o, 8 € V*, then
(3.1.4) B*(a,f) = B(¢™ a, 97 B) = {a, 971 B).

Then B* induces a nondegenerate symmetric bilinear form on A" (V*), which we still
denote by B*.
If a € V, let ¢(a), ¢(a) € End(A'(V*)) be given by

(3.1.5) cla) = p(a) N — i4, c(a) = p(a) A+ iq.
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Then c(a), ¢(a) are odd operators, which are respectively antisymmetric, symmetric
with respect to B*.

If a,b € V, then
(3.1.6) [c(a), c(b)] = =2B(a,b), [c(a),(b)] = 2B(a,b), [c(a),c(b)] = 0.
By (3.1.6), A'(V*) is a ¢(V)®¢(V) module. If D € ¢(V) or &(V), then we denote by
¢(D) or ¢(D) the corresponding actions on A'(V*) defined in (3.1.5).
Definition 3.1.1. The symbol map o : ¢(V) — A(V*) is such that if D € ¢(V), then

(3.1.7) o(D) = ¢(D)1 € A" (V).

The map o identifies ¢(V') with A'(V*) as vector spaces. Similarly, we have a
symbol map for ¢(V).

Let ey, -+, e, be a basis of V, and let e}, ---, e’ be the dual basis of V' with
respect to B, so that B(e;, ej) = 0;;. f a €V, then

(3.1.8) a= ZB(G, er)e

i=1
Let el, .-+, €™ be the basis of V* which is dual to the basis e, ---, €,. Then
e’ = p(ef).

If & € AP(V*), then the inverse map of o is given by
1 * *
(3.1.9) cla) = o Yo alen, el )elen) e ele,) € (V).
1<y, ip<m

Let A(V') be the Lie algebra of endomorphisms of V' that are antisymmetric with
respect to B. Then A(V') embeds as a Lie algebra in ¢(V). If A € A(V), the image
c(A) of Ain ¢(V) is given by

(3.1.10) ZB Aej, e})ele)c(e;).
If a € V, then
(3.1.11) [c(A), c(a)] = c(Aa).

Note that A € A(V) defines naturally an element o € A*(V*) by

1 . .
(3.1.12) a= §ZB(Aei,ej)e’/\e].
i,J
Then c(a) = 2¢(A) € ¢(V).
When replacing B by —B, e} is changed to —e}, and c(e;) is changed to —c(e;).
If Ae A(V), then it is also antisymmetric with respect to —B. We denote by ¢(A)
the corresponding element in ¢(V'). By (3.1.10), we get

(3.1.13) :—fZB e, €5)c(e:)ele;).
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Instead of (3.1.11), we have

(3.1.14) [c(A),c(a)] = ¢(Aa).
If A€ End(V), then A induces an action on A"(V*), and this action is given by
(3.1.15) Alp-vey = —(Ae;, ) e,
By |B11, eq.(1.1.14)], if A € A(V'), then
(3.1.16) Alavey = c(A) +¢(A).

Definition 3.1.2. The number operator N4 (V") on A'(V*) is such that, if o« € AP(V*),
then

(3.1.17) NAYVDo = pa.

By [B11, eq.(1.1.15)], we have
. 1
(3.1.18) NAV) % = Se(e))ales).
If (V', B’) is another pair like (V, B), then (V & V', B @ B’) is still another such
a pair. We have the identifications of Clifford algebras,
(3.1.19) c(Vav)=cV)&cV'), eV e V) =aV)Re(V').

We refer to [LM89|, [BGV04, Chapter 3|, [B11, Chapter 1] for more detailed
discussions on Clifford algebras.

3.2. The flat connections on A (T*X@®N*). Recall that the map (g, f) € Gxg —
Ad(g)f € g identifies the vector bundle TX & N with the trivial vector bundle g on
X. Recall that the connection VXN = VTX ¢ V¥ is the Euclidean connection of
TX @ N induced by the connection form w®. Let VIX®N:/ denote the flat connection
on g, i.e. the connection associated with the connection form w?.

By (1.1.7), we get

(3.2.1) VIXONS = gTXEN 1 ad(wh).

Let VA (T"X®N").f be the connection on A'(7*X @ N*) induced by V7X®N./ Then
by (3.1.16), (3.2.1),

(3.2.2) VA TXONDT — gATXOND) 4 e(ad(+)) + (ad(-)).

Let VTX®N.J* be the dual connection of VIX®N:/ with respect to the metric on
TX @& N, then

(3.2.3) VIXONLx — gTXON _ad(wP).

Let VA (I"X&N").f% be the associated connection on A'(T*X @ N*). As in (3.2.2),
we get

(3.2.4) VA ITXOND S — A TTXONT) _ (ad(+)) — c(ad(+)).

Moreover, both VA (" X&N").f g (I XEN"). L% preserve the degree of A" (T*X @ N*).
We recall another connection on A'(T*X @ N*) defined in [B11, Definition 2.4.1],
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Definition 3.2.1. Put
(3.2.5) VA TXON). o] A (T XONY) _ o(ad () + 2(ad()).

By [B11, Proposition 2.4.2], VA (T"X&N")./F i a flat connection on A" (T*X G N*).

Also the connection VT ¥FN)T4S qoes not preserve the degree of A (T*X @ N*).

3.3. The harmonic oscillator on an Euclidean space V. Let V' be an Euclidean
space with scalar product g", let AV denote the associated Euclidean Laplacian on
V, and let ¢(V'), ¢(V) be the corresponding Clifford algebras. Let ey, ---, e, be an
orthonormal basis of (V, g").

Let Y € V denote the tautological section of V', and let Y* denote the metric
dual of Y in V*. If v € V, let V, denote the differential operator on V' along the
vector v.

Let dV be de Rham operator on V, and let d"* be its formal adjoint. Set

(3.3.1) d = exp(=[Y[*/2)d" exp(|Y[*/2),

i.e., d is the Witten twist [Wit82] of d" associated with the function |Y|2/2. We
have

(3.3.2) d=d" +Y*A.

Let d be the formal adjoint of d. Then by [B11, eq.(1.6.7)],

(3.3.3) d =d" +iy.

Then the corresponding Hodge Laplacian is given by

(3.3.4) [d,d] =AY +|Y|*? —=m+ 2N,
Set

(3.3.5) -
DY = e(e;)Ve,, € =c(Y).

Then DV, £V, DV’ EV" are linear differential operators acting on C*(V) @ A (V*).
In particular, DV is a classical Dirac operator.
By [B11, eq.(1.6.2)], we have

d+d =DV + &Y,
(3.3.6) -
d—d =DV +&V.
Then
(3.3.7) [d,d]= (DY +&V)?=—(D" + &)

The kernel of the unbounded operator [d, E*] is an one-dimensional line spanned
by the function exp(—|Y|?/2)/7x™/4.
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Let ¢(g), ¢(g) be the Clifford algebras associated with (g, B), (g, —B). Then G

acts by automorphisms of ¢(g), ¢(g), so that if g € G, e € g, then

(3.3.8) g-cle) =c(Ad(g)e), g-cle) =c(Ad(g)e).
By restricting B to p, ¢, we get the Clifford algebras c(p), ¢(p), c(¥), ¢(¥).
(1.1.1), (3.1.19), we have

(3.3.9) c(g) = c(p)@c(t),  g) = cp)&e(e).

The scalar product (-, -) of g is given by —B(-,0-). Let ey, - - -, e, be an orthonor-
mal basis of p, and let e,,+1, -+, €ntn be an orthonormal basis of €. Let ej, ---
er,+n be the dual basis of g with respect to B, then

er=¢e;jforl <j<m;
(3.3.10) 7 ==

e;f:—ejform—i-lgjgm—i-n.

If Y € g, we split Y in the form
(3.3.11) Y =YY" +YE
with Y* € p, Yt € &. As in (3.3.5), set
(3.3.12) DP =) c(e;)V,,, E =2Y").
j=1

By (3.3.4), (3.3.7), we have

1 1 g
(3.3.13) 5(D”+8”)2: 5(—N’+\Y”12—m) + NAGT,
Note that B is negative on £. We define the operators D¥, £ by the formulas,
m+n
(3.3.14) D= Y c(e))V,,, E=2Y").
j=m+1

Let DY, £Y be the operators defined in (3.3.5) on the Euclidean space (& —B). By

[B11, eq.(2.8.10)], we have
(3.3.15) Dt=DY &'=-¢&"
By (3.3.4), (3.3.7), (3.3.15), we have

1 1 .
(3.3.16) 5(—mE +i€h? = 5( — A Y2 —n) + NMED,

Since K preserves the scalar products on p and €, the above constructions are

K-equivariant.

Then DF, EF, DY, £* are linear differential operators acting on A'(g*) ® C*(g).

Moreover,

(3.3.17) [DP + &Y, —iD +iEY =0

Let A? be the Euclidean Laplacian of (g, (-,-)). By (3.3.13), (3.3.16), (3.3.17), we
get

(3.3.18) %(Dp + & —iDt i) =

(=AY +|Y]* — (m+n)) + NV,

N —
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3.4. The Casimir operator and the Dirac operator of Kostant. Let Ug be
the universal enveloping algebra of g. If we identify g to the vector space of left-
invariant vector fields on G, then the enveloping algebra Ug is identified with the
algebra of left-invariant differential operators on GG. Moreover, the adjoint action of
G on g induces a corresponding action on Ug.

Let C?® € Ug be the Casimir element of G associated with the bilinear form B. If
€1, “*, em+n 15 a basis of g and if e}, ---, e} ., is the dual basis of g with respect
to B, then

m-+n

m—+n

(3.4.1) Co=—> cle;.
=1

Also (€% lies in the center of Ug. Following Lemma 1.2.7, C9 commutes with G.

Ifey, -+, ey is an orthonormal basis of p, and if e, 41, -+ -, €y 18 an orthonormal
basis of ¢, by (3.3.10), (3.4.1), we have

m m-+n

(3.4.2) CoO==> e+ > e
i=1 i=m+1

Set

(3.4.3) Cofl = - "¢
i=1

Recall that the Casimir operator C* of K was defined in (1.1.18), then
(3.4.4) C9 = 4+ .

Put k9 € A3(g*) such that if a,b,c € g,
(3.4.5) k%(a,b,c) = B([a,b],c).

Since the action of g € G preserves B, we have
(3.4.6) Ad(g)k® = K°.

We can view k9 as a closed left and right invariant 3-form on G.
Let B* be the bilinear form on A'(g*) given by (3.1.4). By |B11, eqgs.(2.6.4) and
(2.6.11)], we have

m+n

"Qg K’g ZB 6276] 17 ]])
(3.4.7) ij=1

1 1
= §Trp [Chp] + ETI”E [CE,?] .

Let k' € A3(8*) be the element defined by the same formula as in (3.4.5) with
respect to (& Bl¢). Then by (3.4.7), we get

(3.4.8) B*(k*, kY = 6Tr HeH.
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Recall that the Clifford elements c(x?), ¢(—~r?), c(k'), ¢(—k") are given as in
(3.1.9). If e € £, let ad(e)|, be the restriction of ad(e) to p. Then ¢(ad(e)l,) € ¢(p).
By [B11, eq.(2.7.4)], we have

(3.4.9) A(—k%) = =2 | D @len)e(ad(e)],) + (—k").

Definition 3.4.1. Let D® € ¢(g) ® Ug, Ds e ¢(g) ® Ug be the Dirac operators,
m—+n 1
D? = zl: c(ef)e; + 50(’19)7

(3.4.10)

m+n

~ 1
Do = dled)es + 5o(—n0).

i=1

The operators D?, D? are the Dirac operators of Kostant [Kos97].

Set

Dg =) elej)e;,

(3.4.11) S
~ N N 1
Dy == > elej)(e;+elad(e;)ly) + 5e(—").

j=m+1
By [B11, eq.(2.7.6)], we have
(3.4.12) D? = D%, + DS,

By [B11, Theorem 2.7.2], we have
~ ~ 1
(3.4.13) [DY,, DY) =0, D% =—-C%— ZB*(Hg, K9).
We have the analogues of (3.4.11) - (3.4.13) for D9. In particular, we have

1
(3.4.14) D%? = C% + ZB*(/-;g, K9).

3.5. The operator D; . As we saw in subsection 3.4, D¢ is a first order differential
operator acting on C*®(G, A'(g*)). Recall that DP + EP — iD* + i€ is a differential
operator acting on A'(g*) ® C*(g). We have

(3.5.1) C™(G, N (g") ® C%(g)) = C=(G x g,A'(g7)).

Definition 3.5.1. For b > 0, let ©, on C*°(G x g, A'(g*)) be the differential operator
given by,

~ 1
(3.5.2) Dy, = D +ic([Y, Y?]) + 5(D" + &P —iD* +i&Y).

If Y € g, let Y, Y denote the tangent vector fields on G associated with Y,
Y* € g. The following identity is obtained in [B11, Section 2.11].
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Theorem 3.5.2 (Bismut). We have the following formula for D%,

92 D2 1 1 NA@)
71) =t 5\[Yéayp]’2 + @(—AP@E +HYP—m—n)+ T

1
(3.5.3) +s (Y’“H‘Y*—Ng |+ clad(Y? +14Y")

Yy

+2ic(ad(Y")|,) — ¢ ad(Y”))) :

As we saw before, the kernel H C A'(g*)®La(g) of the operator DP+EP—iD'+iE" is
one-dimensional and spanned by exp(—|Y|?/2). Let P be the orthogonal projection
operator on H, then by [B11, eq.(2.10.2)|, we have

(3.5.4) P<Bg +ic([Yt, Y"]))P = 0.

Recall that (E, p¥) is a unitary representation of K7. If s € C*°(G x g, A (g")QE),
as in (1.1.12), the action of k € K is given by,

(3.5.5) (k.s)(g,Y) = p~ @B (k) s(ghk, Ad(E~H)Y).

Let CR(G x g, A (g*) ® E) denote the set of K-invariant sections.
Recall that 7 : X — X is the total space of TX & N. Let YV :AYTX + YN,
YT¥ e TX, YN € N be the tautological section of 7*(TX & N) over X.

Definition 3.5.3. Let H be the vector space of smooth sections over X of the vector
bundle C*(TX & N, 7*(A(T*X & N*) ® F)).

We can identify H with O (X, 7* (A (T*X & N*)® F)). Let V* be the connection
induced by the connection form w on X. We can identify the element of p and T'X to
the corresponding horizontal lift in TX by the connection VX & V. The Bochner
Laplacian A#X acting on H is given by

(3.5.6) AX =NV

j=1
By (3.4.3), (3.5.6), we have the identity of operators acting on H,
(3.5.7) Col = _AHX

Let e € ¢ [e,Y] on g is a Killing vector field. Let LEQY] be the Lie derivative
acting on C*°(g, A'(g*)), then by [B11, eq.(2.12.4)],
(3.5.8) Liy1 = Viey] — (¢ +0)(ad(e)).

By [B11, eq.(2.12.16)|, we have the identity of operators acting on H,

m+n

(35.9) Ct= > (Liw — ")

j=m+1
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The operators D¥, ﬁ%p ﬁg/ are K —invariant. Let DX, ﬁﬁ}x, ﬁ%}x be the cor-
responding differential operators on the smooth sections of H. We still use the
notation C? to denote the Casimir operator on X. By [B11, Theorem 2.12.2|, we
have the following identities of operators,

C? = C%H 4
Dox = By 4 DY, (DY, DY =0,

m

BEY =3 eV,
(3.5.10) i=1
m-+n 1
N, X -~ ~, ~
BYY == 37 @le) (LY, )+ Flad(es)l) — pE(e)) + 5o—K),
j=m+1
~ 1
D¥%? — 9 — ZB*(FLQ, K?).

Let DX £TX DN EN be the differential operator on 7*(A (T*X & N*) @ F)
along the fiber X induced by D*, £¥, D, £*. Then the operator D, defined in (3.5.2)
induces an operator D;* on C°(TX & N,7*(A'(T*X & N*) ® F)). By (3.5.2), we
get

~ 1
(3.5.11) D = D% +ic([YN, YTX]) + g(DTX + ETX —iDN 1 ig™M).
By [B11, Theorem 2.12.5|, we have

1 X,2 1A X,2 1 N TX1|2
e D | ) ST
1 NA'(T*X@N*)
+—(—ATX@N+|Y|2—m—n)+7

2b2 b2
(3.5.12) 1
+ (V%X +clad(YT¥))

— c(ad(Y"™X) +ifad(YN)) — ipE(YN)>.

The connection VA (T X&N).f%F ig defined by (3.2.5). Let VHIF be the connec-
tion on H that is induced by VA (I"X&N).f«f I By (3.2.5), (3.5.12), we get

1 X,2 1~ X,2 1 N yTX7|2
0% = D2 4 YNy
50 = D0 4 S| YT
1 NA(T*XeN*)

+ %(V@"Tf;’f — c(ifad(YY)) — ip® (YY)).

3.6. The hypoelliptic Laplacian. Let C*¥ be the operator acting on C*(X, F')
induced by C?, and we still denote by A”* the Bochner Laplacian acting on
C>*(X,F). Then C%" descends to —A7X.
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By (1.1.18), (1.1.19), C* induces an endomorphism C%% of E, it descends to C**
acting C*°(X, F'). Then
(3.6.1) O = —AHX 4 obF
We now recall the definition of the elliptic operator £X in [B11, Definition 2.13.1].
Definition 3.6.1. Let L* be the operator acting on C*(X, F),

1 1
(3.6.2) £X = 5099( + gB*(mg, K9).
Then £X commutes with G°.

Let (-,-) denote the Hermitian metric on A'(7T*X & N*) ® F associated with B*
and g¥". The Cartan involution # acts on X, so that

(3.6.3) OYT* v N) = —yTX vy N,
Let dvg be the volume form on X coming from the Riemann metric on X and the
Euclidean scalar product on TX & N.

Let n(-,-) be the Hermitian form on the space of smooth compactly supported
sections of T (A (T*X & N*) ® F') over X,

(3.6.4) n(s,s’) = / (s0f,s)dvy.

x
As in [B11, Sections 2.12 and 2.13|, we put

1~ 1
(3.6.5) Ly = —5D¥%2 4 5@5‘2.
The operator £X acts on C*(X, 7 (A (T*X & N*) @ F)).
The following result is taken from [B11, Theorem 2.13.2].

Theorem 3.6.2. The operator L\ is formally self-adjoint with respect to n(-,-).

Moreover, % + L is hypoelliptic.

The operator L;X is called the hypoelliptic Laplacian associated with (G, K). By
[B11, equation (2.13.5)], for b > 0, we have

1 NA(T*X&N*)
27[)2(_ATX@N+’Y‘2_m_n)+ -

(3.6.6) —i—1 <V¥Tx +cad(YT¥)) — clad(YT¥) + ifad(Y™))

b
—ip® (YN)) :

1
£ = Sl N, YR 4

By [B11, Proposition 2.15.1|, we have the identity
(3.6.7) D, L] = 0.

As in (1.1.14), the left action of G” on itself induces actions of G” on C*(X, F)
and C°(X,7*(A(T*X & N*) ® F)). Since o preserves the bilinear form B and the
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Cartan decomposition (1.1.1), we find that G° commutes with D#X and D, so
that £ commutes with G7.

3.7. The hypoelliptic heat kernel. Let A be a self-adjoint element of End(F)
which commutes with the action of K?. Then A descends to a self-adjoint parallel
section of End(F') which commutes with the left action of G°.

Definition 3.7.1. Let L} be the operator acting on C*(X, F),
(3.7.1) LY =%+ A

From |B11, Section 4.4], for t > 0, the operator exp(—t£%) has a smooth kernel
pi (z,2") with respect to the volume element dz on X.

The section A lifts to X. As in [B11, eq.(4.5.1)], let LY, be the differential
operator acting on C* (X, #*(A'(T*X & N*) ® F)) given by

(3.7.2) Ly, =Ly + A

In [B11, Sections 4.5 and 11.8|, Bismut showed that the heat operator exp(—tﬁf;b)
is well-defined for b > 0,¢ > 0 with a smooth kernel ¢ ((x,Y), (2’,Y”)). By [B11,
Section 11.8|, given b > 0, ¢t > 0, qgft((x,Y), (', Y")) is rapidly decreasing together
with its derivatives in the variables (2/,Y”), the decay in the variable 2’ is measured
via d(z,z’).

Moreover, using the same argument as in [BGV04, Theorem 2.48|, we can get a
Duhamel’s formula for ¢, ((z,Y), (', Y")),

0

%Qg,(t((% Y), (x/’ Y,)) =

t
(379 -/ < JR S CRONEAT)
0 (x//’yl/)ex

8£1)4(b X ARV Yl " "
(Tb))(xﬂ’y//)qb”((:ﬂ YY), (2, Y"))de"dY"™ ) ds.

Equivalently, we also have this Duhamel’s formula written in operator form,
X

o t oL
(3.7.4) % exp(—tﬁib) = _/0 exp(—(t — S)Eﬁ,b)ﬁ exp(—sﬁib)ds.

As in [B11, Sections 4.5|, let P be the projection from A (7*X & E*) ® F on
AN(T*X @ E*)® F. Fort >0 and (2,Y),(2/,Y’) € X, put

1
(375) a5, ((2,Y), (@', Y") = Ppf (w,2/)x ™" exp (= |V + [Y']?)) P

We recall a result established in [B11, Theorem 4.5.2 and Chapter 14].
Theorem 3.7.2. Given M > e >0, there exist C,C" > 0 such that for 0 < b <
Mye<t< M, (x,Y), (Y € X,

(3.7.6) 654 ((2,Y), (2", Y"))

< Cexp (—C'(d*(z,2) + [Y)? + [Y'])).
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Moreover, as b — 0, we have the convergence in any C*—norm on any compact
subset,

(3.7.7) Goe((2,Y), (2, Y")) = qg,((2,Y), (2, Y")).
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4. THE TWISTED ORBITAL INTEGRALS

This section is devoted to give a geometric interpretation for the twisted orbital
integrals associated with a semisimple element in G.
Recall that if o € 3, X7 is the closed subgroup of ¥ generated by o, and that

(4.0.1) G'=GxX, K7=KxX°.

Let v € G be such that yo is a semisimple element in G?. By subsection 1.4, we
may and we will suppose that yo is such that

v =e"k"", Ad(k)a = oa,

4.0.2
( ) a€p, ke K.

In this section, we always assume that (F, p¥) is a K°-representation.

This section is organized as follows. In subsection 4.1, we introduce an algebra
Q7 of invariant kernels on X.

In subsection 4.2, we introduce a geometric formalism of the twisted orbital inte-
grals associated with vo. We show that they vanish on commutators.

In subsection 4.3, when replacing F by A (T*X & N*) @ C**(TX & N,R)® F,
we introduce the associated algebra Q7 of invariant kernels, and we obtain the
corresponding twisted orbital integrals.

In subsection 4.4, we introduce the twisted orbital integrals for elliptic heat kernel
and hypoelliptic heat kernel. We show that they coincide.

Finally, in subsection 4.5, we rederive a twisted version of Selberg trace formula
for the locally symmetric space Z.

4.1. An algebra of invariant kernels on X. In [B11, Chapter 4], a vector space
Q of continuous invariant kernels was defined. We recall its definition and some
properties as follows.

Definition 4.1.1. Let Q be the vector space of continuous kernels ¢ € C(G,End(FE))
satisfying the following two properties:
— There exist C,C" > 0, such that

(4.1.1) lq(9)] < Cexp(=C'd*(p1,pg)), ¥V g € G.
— For k, k' € K, we have
(4.1.2) a(kgk') = p®(k)a(g)p” (K').

Recall that dk is the normalized Haar measure on K and that dg = dxdk is a
bi-invariant Haar measure on G.
For ¢ € Q and ¢,¢' € G, put

(4.1.3) 9(9,9") = qlg™'¢') € End(E).

Let C*(G, E) be the set of bounded contiuous sections of E on G, and let C% (G, E)
be the set of K-invariant sections in C*(G, E). For s € C%(G, E), put

(4.1.4) (@Q5)(g) = / 1(9,9)5(g)dg'-
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By (1.5.34), (1.5.35), (1.5.36) and the condition in (4.1.1), the integral (4.1.4) is well-
defined. Moreover, the conditions (4.1.1) and (4.1.2) guarantee that Qs € C%(G, E).
Then ¢ € Q defines an integral operator @ acting on C®(X, F') commuting with the
action of G on F. Let ¢q(z,2") € Hom(F,/, F,) be the corresponding continuous
kernel on X x X, which is just the descent of ¢(g,¢’) to X x X.

On Q, the composition of two kernels is given by

(4.1.5) *q(g) = /G () (¢) " 9)dg,

which defines the operator QQ'. Then (Q, x) becomes an associative algebra.
Put o = pF(0) € Aut(E).

Definition 4.1.2. Let Q7 be the vector subspace of the ¢ € Q such that

(4.1.6) q(o(9)) = 0c®q(g)(0”) ™" € End(E).
Equivalently, for any z, 2’ € X
(4.1.7) ¢~ (o(x),0(2") = oq™* (z,2")o™" € Hom(Fy (), Fyz))-

Then Q7 is the subalgebra of Q consisting all the kernels commuting with the
action of o on C°(X, F').
Also we can extend ¢ € Q7 to a continuous map ¢ € C(G?,End(E)) by,

(4.1.8) q(gn) = q(9)p" (1) € End(E) , g € G, pp € 3.
Then we lift it to a continuous kernel defined on G° x G°,
(4.1.9) G(gp, ') = G((gp)"'hyt') € End(E).

Then by (4.1.1), (4.1.2), for §j € G, k € K°, we have

|q~(§)‘ S CeXp(_O/dz(p]-apg))a

q(kg) = p"(k)q(9), q(gk) = 4(g)p" (k).

Recall that dyu is the normalized Haar measure of X7 and that dg = dgdu is a

bi-invariant Haar measure on G?. Then the operator () defined above is also defined
by the kernel g, i.e., if s € C%,(G°, E),

(4.1.11) (Q3)(@) = / 46, 3)s(7)dg'

o

(4.1.10)

4.2. Twisted orbital integrals. If ¢ € Q7, and if x € X, then vyoq(z,v0o(z)) €
End(F,o()), so that Tr" [yoq(z, yo(z))] is well-defined.

Let h(y) be a compactly supported bounded measurable function on X (o). Then
we have an analogue of [B11, Theorem 4.2.1] as follows,

Proposition 4.2.1. The function Tr"[yoq(x,vo(z))h(p,ox) is integrable on X.
We have the identity,

/ T [yoq(z, 70 () A(por)de

(4.2.1) *

_/( )TrE[UEq(e’fve"f)]T(f)df h(y)dy.
pt(vo

X(vo)
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Proof. We adapt the proof of [B11, Theorem 4.2.1] to prove our proposition. By
Proposition 1.5.2 and (4.1.1), we have
0P q(e™ e = |g(ef yoed)]

< Cexp(—C'd*(pe!, pryoe’))
(4.2.2) = Cexp(—C'd*(pe!, pyoe))
= Cexp(=C'd3,(pro(1, 1))
< Cexp(=C'(lal + ey f1)%)-
By (1.5.38), (4.2.2), the function Tr®[cPq(e~/ve?)|r(f) is integrable in f € p*(yo).

Using Fubini’s theorem, we get (4.2.1). This completes the proof of our proposition.
O

By (1.5.24), (1.5.25), and using the fact that the Haar measures of K, K°(yo),
K (y0o) have volume 1, we have

[ mfetale e nd = [ ot o)l
(423) pt(vo) Z9(yo\G

= / ¥ (o q(v o (v))]dw.
Z(yo)\G

If we use the kernel ¢ on G° and the related measures defined in subsection 1.5, we
also have,

(4.2.4) / TrF[oPq(e ™ ye D r(f)df = TrF G0~ yoo]di?.
pt(yo) 27 (yo)\G®

Remark 4.2.2. If E is a representation of f( and if ¢ commutes with the action of
Y on C*(X, F), then we can extend ¢ to G. If dv is the corresponding measure on
Z(vo)\G, then we get

(4.2.5) / TeE (o Pq(e T yeNr(f)df = TrP[G(v yot]do.
pt (o) Z(yo)\G

Let [yo] denote the conjugation class of yo in G7.

Definition 4.2.3. We define the orbital integral associated with yo for ¢ € Q7 by
the formula,

Q= [ mlfg( ()
(4.2.6) DleNG

~ [ mEeEae e ey
pt(yo)
Integrals like (4.2.3) - (4.2.6) are called twisted orbital integrals.

The same arguments in [B11, Page 80| show that Tr0[Q] only depends on the
conjugacy class of yo in G?. Indeed, if h € G?, the map g € G — C(h)g € G°
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induces a map Z7(y0)\G” — Z7(C(h)(y0))\G°. Since d§ is bi-invariant on G,
C(h) maps the volume element di” of Z7(yo)\G? to the corresponding volume
element on Z7(C'(k)(y0))\G?. Then the integral in the right-hand side of (4.2.4)
remains the same if we replace yo by C(h)(y0o).

Remark 4.2.4. Following Remark 4.2.2, if ' is a representation of K and ¢ commutes
with the action of ¥ on C*°(X, F), then TrP[Q] only depends on the conjugacy
class of yo in G.

The following proposition extends [B11, Theorem 4.2.3].
Proposition 4.2.5. For Q,Q" € Q°, we have
(42.7) Tel([Q, ) = 0.

Equivalently, Te0[] is a trace on the algebra Q°.

Proof. Using the formalism in (4.2.4) and Definition 4.2.3, we can adapt the proof
of [B11, Theorem 4.2.3| to prove our proposition.
Let d,, be the current on G” so that

(4.2.8) £6. = / F(B) " oD)dir.
G Z7 (yo)\G°

Since dv7 is invariant under the right-action of G” on Z7(y0)\G’, d,, is invariant
by conjugation. If ¢ € Q7, let ¢ be the function on G? given in (4.1.8). Then by
(4.2.4), (4.2.6),

(4.2.9) ThlQ] = / T2 [q)056 = TP[G # 050(1)]-
Also we have

(4210) QR(’YU)_l = R(,ya)—lQ.

As in (4.1.8) - (4.1.11), the current §(,,)-1 on G7 defines an operator R(,,)-1.
Then we can rewrite (4.2.9) as

(4.2.11) Trh7Q] = THM[QR(,0)1].
By (4.2.10), (4.2.11), we get
(4.2.12) T0Q, Q) = TH[[Q, @ Riyey1] = THV[[Q, @ Riyoy1]] = 0.

This completes the proof of our proposition. O
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4.3. Infinite dimensional orbital integrals. Recall that 7 : X — X is the total
space of TX & N. In the sequel, if V is a real vector space and if E is a complex
vector space, we will denote by V' ® E the complex vector space V ®r E. We use
the same convention for the tensor product of vector bundles.

Let dY®, dY* be the volume elements on the Euclidean vector spaces p, €. Since
K7 acts isometrically on p and &, these volume elements are K?—invariant. Then
dY = dYPdY"is a volume element on g which is G° —invariant. Let dY7X dY", dY
be the corresponding volume elements on the fibres of TX, N, TX & N over X.

Let C°*(g,IR) be the vector space of real valued smooth bounded functions on
g. We replace the finite-dimensional vector space by the infinite dimensional space
E=ANp* D) ®C®(g,R)® E with the natural group action of K°. Then the
vector bundle F' on X is replaced by

(4.3.1) F=ANT'X®N)®CTX®N,R)®F.

Let C’b(i’\,%*(A' (T*X & N*) ® F)) be the vector space of continuous bounded
sections of T (A (T*X & N*) ® F) over X.

The group K7 acts on C*(Gox g, N (p*DE)RE), so that if s € C*(G? x g, A" (p* D
t*) ® E) then for k € K°
(4.3.2) (ks)(3,Y) = p* T O=E (&) s(gk, Ad(k™)Y).

Let C%,(G° x g, A'(p* ® ) ® E) be the vector space of K?-invariant continuous

bounded function on G7 x g with values in A'(p* @ €*) ® E. Then we have
433) C' X, TN (T X & N*) @ F)) = C% (G7 x g, A (p* @ €) @ E)
B = CR(Gx g Ny &) © B).

Definition 4.3.1. Let Q% be the vector space of continuous kernels ¢(g, Y, Y”) defined
on G X g x g with values in End(A (p* @ €*) ® E) such that
—IfgeG kK e K,Y,)Y' €g, then

q(kgk', Y, Y")
= pNEEE () g (g, Ad(KTY, Ad(K)Y") p PTEISE (1),

— If oA TEBE — JNGTEMIBE (5) ¢ Aut(A(p* @ €) ® E), then

(4.3.4)

(4.3.5) a(a(g),0Y,0Y") = ot T (g, Y, YT) (o PEIEE)
— There exist C,C" > 0 such that
(4.3.6) |a(g, Y, Y")| < Cexp(=C'(d*(pl.pg) + Y + [Y'[)).

We will denote Q7 the subspace of Q7 consisting of smooth kernels.

Since A'(p* @ €*) ® E is a representation of K7, as in (4.1.8), we can extend ¢ to
a kernel ¢ defined on G x g x g,

(4.3.7) (g, Y, Y") = q(g, Y, pY")pN O OEE (1) VY € g, pe X
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Ifqg € Q7. put q((9.Y), (¢, Y")) = alg™'g". Y. Y"). If s € Cp (G xg, A (p* @)D E),
put

(4.35) (@5)(9.Y) = / 0((9.Y), (¢, Y"))s(g, Y')dY"dg'

By (4.3.4), (4.3.6), Q is an operator acting on C% (G x g, A'(p* @ &) ® F). Recall
that the action of ¢ is given by

(4.3.9) (05)(g,Y) = oM@ EEg (571 (g) o7V,

Then (4.3.5) is equivalent to Qo = 0@Q.

Equivalently, the operator Q acts on C*(X,7* (A (T*X ® N*) ® F)) with kernel
(), (2, Y).

By [B11, Proposition 4.3.2] and using the fact that o preserves dzdY, Q7 is
an associative algebra with respect to the composition of operators. Let [, ] be the
supercommutator on 7 defined by the Zs—graded structure of End(A (p* )R F),
and let Tr,A ®"®¥)®E] he the supertrace on End(A (p* @ €) ® E).

If g € G, let q(g) be the operator on £ defined by the kernel ¢(g,Y,Y”). Let
o¢ € End(€) denote the action of o on &.

Then for g € G, 0°q(g~'yo(g)) acting on £ is given by the continuous kernel
o TEIBE (o= 'ya( ),07Y,Y") on g x g. When restricting to the diagonal, this
kernel is also continuous. By (4.3.6), Tr,Y ®"®FISE[GA 0 SWISE 0~y b (g) 67 1Y,Y)]
is integrable on Y € g.

If 0¢q(g~'vo(g)) is trace class, with the decay condition and by [Duf72, Proposi-
tion 3.1.1], we get

Trf[0%q(g " yo(9))] =
(4.3.10) /TrgA‘(p*éBE*)@E[UA‘(P*GBF*)@E (g 'vo(g), 0 Y, Y)]aY.
g

Remark 4.3.2. A sufficient condition for our operator to be a trace class is that the
kernel together with its derivatives in Y,Y” of arbitrary orders lie in the Schwartz
space of g x g.

Using (4.3.6), there exists C,, > 0 such that

(4.3.11) ‘/ TN OIS (EEE (576 (g), 071, Y )|AY
. . g

< O,y exp(=C'd*(pg, vopg)).

By Proposition 1.5.2, along the normal fiber of X (7o), the displacement function
d., is increasing at least linearly with respect to the norm of normal vectors, the
same arguments in Proposition 4.2.1 show that the left-hand side of (4.3.11) is
integrable on pt(yo). Then we have the analogue of (4.2.1), if h(y) is a compactly
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supported bounded measurable function on X (yo),

/}? T [yoq((z,Y), yo(x,Y )| h(prex)dzdY

(4.3.12) =/ h(y)dy
X(vo)
. / Ty N PTENEE [N GO g (e~ e?l Y, oY) (f)df dY
pL(vo)xg

Definition 4.3.3. We define Tr,"?/[Q] as in (4.2.6) for Q € Q°, i.e.,
Tr,n7[Q)

(4 3 13) = /(ZO( o TrsA‘(p*@e*)(@E[aA'(p*GBE*)@Eq(v*lfya(v),K UY)]dde
e yo xg

N / Ty N P ERE [N S g (T ye Y, oY) (f)dfdY.
pt(yo)xg
Expressions such as (4.3.13) are called twisted orbital supertraces.

If 0°q(g~yo(g)) is trace class for any g € G, using (4.3.10), we can rewrite
(4.3.13) as

Tr, o] Q] = Trsg[a‘sq(vfl’YU(v))]dU
(4.3.14) e

:/()ﬂqfdfwfmﬂﬂ#
pt(vo

Proposition 4.3.4. If Q,Q' € Q7, then
(4.3.15) Tr,P7[Q, Q) = 0.

Proof. By the above constructions, the proof of our proposition is just an easy
modification of the proof of Proposition 4.2.5. This extends [B11, Theorem 4.3.4].
O

4.4. A fundamental identity. Recall that the operators £}, L}, are defined in
subsection 3.6.

Proposition 4.4.1. For anyt > 0, pi* € Q°.

Proof. This follows from [B11, Proposition 4.4.2] and from the fact that £* com-
mutes with the left action of o. O

It follows from subsection 4.2 and Proposition 4.4.1 that for ¢ > 0, the twisted
orbital integral Tr[exp(—t£Y)] is well-defined.
Using (3.7.6) and the fact that £}, commutes with o. If b > 0, ¢ > 0, then

gi\, € Q7. By subsection 4.3, Tr,07exp(—t£%,)] is well-defined.
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As an extension of [B11, Theorem 4.6.1], we have a fundamental identity as fol-
lows.

Theorem 4.4.2. For any b > 0,t > 0, the following identity holds,
(4.4.1) Tr, 07! [exp(—tLY,)] = Tl [exp(—tLY)].

Proof. By (3.7.3), (4.3.13) and using Proposition 4.3.4, we get

0 0
(4.4.2) oy T bollexp(—tL),)] = —t T, [%Lg{b exp(—tL,)].
As in |[B11, eq. (4.6.4)-(4.6.7)|, we have
0] 1 0
(4.4.3) %‘Cil(,b = 5[335{7 %95], [Qi(, ﬁix(,b] =0.
By (4.4.2), we have
9 [yo] X t [vo] X 0 X X
) %TrS [exp(—tL'Ayb)] = —§TrS [[’Db ,%’Db ]exp(—tﬁAyb)]
o t ” 0
= —ETrsh ]H@i{a %95 eXP(—tﬁix(,b)]]-
By Proposition 4.3.4 and (4.4.2) - (4.4.4), we get
(4.4.5) ngrs['M [exp(—tﬁi‘{b)} =0.
It is now enough to prove that
(4.4.6) })li% Tr, 07! [exp(—tLY,)] = Tl exp(—tLY)].

By (1.5.11) and Theorem 3.7.2, given ¢t > 0, there exist C,C” > 0 such that for
0<b<1,fep(70),Y € (TX & N)eip,

(4.4.7) |45, ((e/p1,Y), 70 (e'p1, V)| < Cexp (= C'(If1* + [Y]?))
Using (3.7.7), (4.2.6), (4.3.13) and dominated convergence, we get (4.4.6). The
proof of our theorem is completed. O

4.5. A twisted trace formula for 7. Let I' be a cocompact discrete subgroup of
G. Let 0 € ¥ be such that o(I') = I'. We still assume that the vector bundle F is
given by a finite-dimensional representation (E, p¥) of K°.

Put Z =T'\X =I'\G/K. We use the notation in subsection 1.8. Recall that the
vector bundles TX, N, F over X descend to the orbifold vector bundles T'Z, N, F
over Z. Moreover, 27 acts isometrically on Z and its action lifts to an action on the
bundles TZ, N, F.

For simplicity, we assume that I' is torsion free, then Z is a compact smooth
manifold. Let 7 : Z — Z be the total space of TZ & N. Let dz be the volume
element of Z induced by the Riemannian metric. We still denote by dg the volume
element on I'\G induced by dg.
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Let Q) € Q7 with the associated kernel ¢q. The operator ) descends to an operator
Q% acting on C(Z, F). Let ¢%(2,2'), 2,2 € Z be the continuous kernel of Q% over
Z. Then by [B11, eq.(4.8.6)],

(4.5.1) 07 (2,2) =Y 1 (v 2 2) =) ¥ (292 )y

vel ~el'

Recall that o7 is the induced action of o on C*°(Z, F) as in (1.8.41). Then ¢Q
descends to the operator 0?Q%. We also denote by z, 2’ their arbitrary lifts in X.
By (4.5.1), the kernel of UZQZ is given by

(4.5.2) (c?Q Zofyq v o 2), 2 Zaq 2),7v2')y.

~yel el

If @ € Q7 as in subsection 4.3, the analogues of (4.5.1), (4.5.2) still hold.

Since the operators £, Eib commutes with G, they descend to operators £, Eib
on Z, Z respectively. Also for t > 0,b > 0, the operators exp(—tL%), exp(—tﬁib)
are trace class. By (4.4.3), we have the following analogue of [B11, Theorem 4.8.1],
Theorem 4.5.1. For anyt > 0,b > 0,

(4.5.3) Try[o” exp(—tL],)] = Tr[o? exp(—tLF)].

Proof. The differential operator ;' descends to a differential operator D7, so that
the analogue of (3.6.7) still holds.

When replacing the twisted orbital supertraces by the standard supertraces, we
can establish the analogues of (4.4.2) - (4.4.5), so that

0
(4.5.4) %Trs[az exp(—tL4,)] = 0.
Since Z is compact, by Theorem 3.7.2, as b — 0, Try[o” exp(—tL% )] converges to
Tr[oZ exp(—tL%)]. This completes the proof of our theorem. O

By (4.1.7) and (4.5.2), we have the identity,

(4.5.5) (0ZQ%)(2,7) Zq z,y0(z
vyel
By (1.8.40), the kernel (¢Z2Q%)(z, 2') lifts to G x G, so that
(4.5.6) (07Q")(9,9") =D _alg"vo(g))o” € End(E).
yel

If 02Q? is of trace-class, then
Tio?Q7) = [ (07 Q) (z. 2
z

(4.5.7)
- / Tl 9.9l
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Recall that C' is the set of twisted conjugacy classes defined in Definition 1.8.2. If
MU € C, set

(4.5.8) (g9 = > algTMvo(g)o".

Y€l

Then (4.5.6) can be rewritten as

(4.5.9) (0”Q)g,9) = Y (g, ¢).

b, ec

The function ¢~"bl, (g,9) is left I'—invariant. Put

(4.5.10) Tr[Q%bl] = / Tr[g Dk (2, 2))dz.
A

Then

(4.5.11) Tro?Q”] = Y Tr[Q7DL].
bl,ec

We have

(15.12) QAL = [ el 2k (5. 9)ldp.

NG

By (1.8.8), we get
(45.13) QML = [ Tlatglgro(g)lds
INZ(o)\G
We use the notation in subsection 4.2. By (4.5.13), we obtain

(4.5.14) TT[QZ’MU] = Vol(I' N Z(yo)\Z(v0)) / Tr¥ o q(v o (v))]dv
Z(vo\G
Since I' is torsion free, I' N Z(yo) acts freely on X (yo). By Lemma 1.8.1, I' N
Z(yo)\Z (o) is a smooth compact manifold. The compact group K (o) acts freely
on the right on I' N Z(~vo)\Z(y0), so that

(4.5.15) Vol(T'N Z(yo)\Z(yo)) = Vol(K (yo))Vol(T' N Z(yo)\ X (o))
By (1.5.46) and (4.2.6), we have
Vol(K(y0)) E[ _E, ( —1 _ .yl
4.5.16 —— Tr" o™ q(v™ " vyo(v))|dv = Tr .
(45.16) VA0 A o) Q
Then using Vol(K) = 1, (4.5.14) can be rewritten as
(4.5.17) Tr[Q%M] = Vol(I' N Z(yo)\ X (v0)) TrP[Q].

Remark 4.5.2. The identity (4.5.3) is compatible with Theorem 4.4.2; (4.5.11) and
(4.5.17).
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Let e be an elliptic class in E, let [e] be all the elliptic classes in £ which are
(C?—conjugate to e by elements of G. Thus there is k € K such that for each
ma € [e], we have g, € G satisfying

(4.5.18) k=C%(g;")7.

Without the risk of confusion, if g € G, we now denote by [g] the corresponding
point in I'\G. We define a right action of ko on T'\G by
(4.5.19) R(ko)[g] = [0 (gk)].
Let (T\G)ko be the fixed points set of R(ko) in I'\G. Then we have the following
identify,
(4.5.20) M\Gho = |J (TN Z(o)\Z(70)) - g,

bl €le

This union is a disjoint union. One can verify that (4.5.20) is a refined version of
(1.8.38).
By (4.5.14), we have

(4.5.21) > Tr[?b] =Vol((F\G)ka)/ Trloq(v™"ko (v))ldv.
!

b, €le ZkoN\G

A direct computation shows that Z(ko) acts on (I'\G), on the right. Recall that
K(ko) = KN Z(ko). Let A(ko) be the subgroup of K (ko) of the elements that act
like identity on (I'\G)g,. It is a finite group of I' N K (ko). Then we get

(452)  Voll(T\Gh) = Sy

Equation (4.5.22) is of special interest in connection with the equivariant index
formulas for orbifolds [V96].

Vol((I\G) o/ K (ko).
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5. A FORMULA FOR SEMISIMPLE TWISTED ORBITAL INTEGRALS

The purpose of this section is devoted to give a proof of Theorem 0.5.1. The
geometric constructions of sections 1 and 4 play an important role in the proof. The
proof is partly composed from [B11, Chapter 9.

This section is organized as follows. In subsection 5.1, we introduce an explicit
function J,, on £(yo).

In subsection 5.2, we give a proof of our geometric formula.

Finally, in subsection 5.3, we extend our formula to general twisted orbital inte-
grals.

5.1. The function J,,(Y{) on £(yo). Recall that the function A\(I) is given by

~ x/2
5.1.1 Alx) = ———.
( ) (=) sinh(z/2)
Let H be a finite-dimensional Hermitian vector space. If B € End(H) is self-adjoint,

2
then s1nh(/B/2) is a self-adjoint positive endomorphism. Put

(5.1.2) A(B) = det /2 [Sinf(/BQ/Q)} .

Recall thaicvé =G x X, I?Nz K x¥. Let 7 € G be a semisimple element of the
form 7 = e*k~! with a € p,k € K and Ad(k)a = a. We can write k= = k710,
ke K,ocX Put~y=e%"!ecGsothat ¥ = vo. Recall that X7 is the closed
subgroup of 3 generated by o, and that

(5.1.3) G" =G XY, K' =K xy°.
We now recall the notation in subsection 1.6. Let 30 = 3(a). Put
(5.1.4) po = kerad(a) Np, € =kerad(a)N¢E.

Recall that 35, py, & are the orthogonal spaces to 39, po, € in g, p, € with respect
to B, so that

(5.1.5) 50 =Po@to, 33 =Py Bty

Also 3(vo) is a Lie subalgebra of 39, and p(yo), &(yo) are subspaces of pg, €
respectively. Recall that 33 (7o), pg(70), €5 (7o) are the orthogonal spaces to 3(yo),
p(yo), €(yo) in 30, po, tr. Then

(5.1.6) 50 (70) = py (v0) @ & (70).

For Y3 € €(y0), ad(YY]) preserves p(yo), &(yo), py (o), €5 (vo), and it is an anti-
symmetric endomorphism with respect to the scalar product.

If Y§ € €(y0), as explained in [B11, pp. 105], the following function in Y{ has a
natural square root, which depends analytically on Y{,
(5.1.7) det(1 — exp(—i@ad(YOE))ad(kfla))|33(W) det(1 — Ad(k™'0))

|3é (vo)
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Remark 5.1.1. If dim 35 (yo) = 1, then Ad(/{:_lo)\aé(vg) = —1 and ad(Y{ =0,
the square root is 2. If 35 (yo) is of dimension 2, if Ad(k~')o is a rotation of angle
¢ and Had(YOE)\z& (vo) acts by an infinitesimal rotation of angle ¢, such a square root
is given by

)it (7o)

cbxﬁqb'

(5.1.8) 45111(2)5111( ).

We will denote the above square root by
1/2
(5.1.9) [det(l — exp(—ifad(YE))ad (k™ 0)], 0y det(1 — Ad(k_la))\jé(w)} .

If Y{ = 0, then this square root has the value det(1 — Ad(k_la))]ﬁ(w).

In (5.1.9), we may as well replace 33 (yo) by pg (o) or €5 (yo), where 0 acts as —1
or 1. Then the following function A(YF) has a natural square root that is analytic
in Yg € ¢(y0),

A = !
07 " det(1 — ad(k~10))+ (o)
det(1 — exp(—iad(V§))ad(k"' )|y o)
det(1 — exp(—iad(Yy))ad(k~10)) ]+ (10

(5.1.10)

Its square root is denoted by
1
det(l — ad(k O-))|3J'(’ya)
det(1 — exp(~iad(V))ad(h~0))les o) ]2
det(1 - exp(—iad(}fo%)adwla))mw]

AI/Z(Y-(-)E)

(5.1.11)

Definition 5.1.2. Let J,,(Yy) be the analytic function of Y7 € £(yo) given by

e 1 (zad(Y )|p(70))
T1e(Yo) = | det(1 — Ad(ya))|5 |12 4 (zad(Y etro)
(5.1.12)
1 det(1 — exp(—iad(Yy))Ad(k~ 0))|s¢<w)]1/2
det(1 — Ad(k™10)) [t 10y det(L — exp(—iad(Y5))Ad(A™'0)) i (vo) ]

If o = 1, then the function J,(Y{) given by (5.1.12) is exactly the same function
defined in [B11, eq. (5.5.5)]
By (5.1.12), there exist ¢,,, C, > 0 such that,

(5.1.13) | 120 (Y5)| < 30 exp(Cho Y5 1)
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Example 5.1.3. If G = K, X = G/K is reduced to a point. Let y = k™! € K,0 €
Aut(K). In this case, we have for Y € ¢(k10),

1
Jw(YoE) ==
A(iad (Y() e(10))
det(1 — exp(—iad(Y$)Ad(k710))|er (yoy ]2
det(1 — Ad(k~10))e- (10) '

(5.1.14)

Put p = dimp(yo), ¢ = dim¥€(yo), then r = dimj(yo) = p+q. Let eq,--- ¢,
be an orthonormal basis of p(yo), and let e,.1,--- , e, be an orthonormal basis of
t(yo). Let e!, - -+, e" be the corresponding dual basis of 3(yo)*. Let 3(vyo), 3(yo)* be
another copies of 3(y0), 3(yo)*. We underline the obvious objects associated with

3(y0), 3(vo)".

Put

(5.1.15) a= Z ce;)e € c(3(70))BA (3" (70)).
i=1

By the splitting (1.1.1) of g, we have
(5.1.16) pxg=px(pdt).
We denote by y the tautological section of the first copy of p in the right-hand side
of (5.1.16), and by Y? = Y? + Y* the tautological section of g = p @ €. We also
denote by dy, dY® = dY?dY* the volume forms on p, g respectively. Recall that
APPE — AP 1 At is the standard Laplacian on g = p @ &, i.e., the second factor in
the right-hand side of (5.1.16). Let V¥ denote differentiation in the variable y € p,
and let VY denote the differentiation in the variable Y? € g.

As an analogue in [B11, Section 5.1], let Pa,yy be the differential operator acting

on C®(p x g, A'(g°)®A (3*(70))) defined as follows. If Y € €(y0), set

1 1
Poye ==|[Y a] + [Y],Y7]|? — AP + o — V]
(5.1.17) v =5V a] + Yo, YA = 5 v

)
= Vietvg fag]

—¢(ad(a)) + c(ad(a) + i0ad(Yy)).
By Hormander [Hor67|, the operator % + Py 1s hypoelliptic.
Let Rye be the smooth kernel of exp(—7P, yt) with respect to the volume dydY™

on p x g. Then for (y,Y?), (v, YY) € p x g,
(5.1.18) Rys((y,Y?), (y/,Y")) € End(A (57 (70)"))@c(3(70)) @A (37 (70)).

Definition 5.1.4. Let Try be the supertrace functional on c(3(70)) N (3" (7)) such
that it vanishes on monomials of nonmaximal length, and gives the value (—1)"
to c(ey)e! -+ c(e,)e”. We extend it to a supertrace functional on the vector space
End(A (35 (y0)*))®c(3(70))®A (3*(y0)) by the supertrace on End(A (31 (y0)*)). We
still denote it by TArS

Now we give an important result established in [B11, Theorem 5.5.1]|.
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Proposition 5.1.5. For Y} € (o), we have

1al5) = (2”2

Tr, [Ad(kla)
pL(vo)x (p@et (vo))

(5.1.19)
g (Y. A1) V)| gy,

Proof. Note that the operator PQ,YOE has the same expression as the operator defined
in [B11, Definition 5.1.2].

If 0 = 1¢, then (5.1.19) is just the result of |[B11, Theorem 5.5.1]. In the proof
of [B11, Theorem 5.5.1], the computations of the supertrace functional in the right-
hand side of (5.1.19) only depend on the adjoint actions of v, k' and a and the
fact that they commute with each other.

In general, when replacing 7, k~! by yo, k~'o, the computations in [B11, Chapter
5| still hold. Then the result of [B11, Theorem 5.5.1] still hold. This completes the
proof of our proposition. O

Remark 5.1.6. If t > 0, if we replace B by B/t, the function J,, is unchanged.

5.2. A formula for the twisted orbital integrals for the heat kernel. We
assume that (F,pP) is a unitary finite-dimensional representation of K?. Recall
that A € End(£) commutes with the action of K7, and that [yo] is the conjugacy
class of yo in G°.

Theorem 5.2.1. For any t > 0, the following identity holds:

exp(—|af?/21)

TehMexp(—tLY)] = e

2.1
(5 ) dYbE

em.Ef, E(.—1 Bl —|Y§|2/2t
/W) o (G T (07! ) e P(05) = ) P
Proof. For b >0, s(z,Y) € C* ()?,%*(A'(T*X ® N*) ® F)), set
(5.2.2) Fys(z,Y) = s(z,bY).

For t > 0, we denote with an extra subscript ¢ the hypoelliptic Laplacian defined
in subsection 3.6 associated with the bilinear form B/t. Then by [B11, eq.(2.14.4)],

we have
X — X
(5.2.3) F 4t Lyt Foi = tLy,.

Using Remark (5.1.6) and by (5.2.3), it is enough to prove (5.2.1) with ¢ = 1. Then
by (4.4.1), we only need to make b — +oo in Tr,"” lexp(—L},)]-

Since all the analytic and geometric constructions of [B11| only depend on the
fact that G acts on X as a group of isometries, replacing G by G? does not change

anything from that point of view. This is why we will freely use the arguments in
[B11, Chapter 9].

NA(T*X®N*)/2 _NA(T*X@N™)/2
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Using Propositions 1.7.2 - 1.7.4 and (1.7.13), and following the arguments in [B11,
Section 15.7], we extend the estimates on hypoelliptic heat kernels of [B11, Theorem
9.1.1]to our case when replacing v, k~! by yo, k~'o. Then using Theorem 1.5.1,
and by (4.3.13), as b — 400, Tr,07 lexp(—L,)] is localized to an integral near
Fro CX.

Using the rescaling techniques in [B11, Sections 9.2 - 9.5] to the above integral,
we get

lim Tr! [GXP(—Ef,b)]

b—4o00
= eXp(_‘a‘Q/Z) /(y7y97y()f)
ept (Yo) x (pt* (o)) xt(y0)
Tr, [Ad(K™ o) Ry (f, Y?), Ad(K ™1 o)(f,Y7))]
e (k) exp(—ip” (V) — A)] exp(—[¥E[2/2)dydYdy;.

By (5.1.19), (5.2.4), we get (5.2.1). This completes the proof of our theorem. [
Remark 5.2.2. Let (E, p¥) be a representation of K. If K has trivial center, and if
ko € K, 0 =C(ky) € X, put
(5.2.5) (o) = p" (ko).

Then using (5.2.5), we extend (FE, p¥) to a representation of K. In this case, we
have the identity of orbital integrals,

(5.2.6) el exp(—t£%)] = Tel*ol [exp(—tL%)].

(5.2.4)

5.3. A formula for general twisted orbital integrals. Let A7) be the stan-
dard Laplacian on 3(yo) with respect to the scalar product induced by the scalar
product of g. For t > 0, let exp(tA39)/2) be the corresponding heat operator with
the Gaussian heat kernel denoted by exp(tAS0?) /2)((y, YE), (v, YY')). Here the heat
kernel is computed with respect to the volume element on 3(vo) induced by the
scalar product. Let y, Y{ denote the elements in p(y0), &(yo) respectively.

Then

eXp(tAﬁ(’YU)/z)((y, }/OE>7 (y/’ )/E)E/)) _
(5.3.1) : |
@rywrare Pl —y /2 = Y = Y20,

Let 0,—, be a distribution on 3(yo) = p(yo) @ €(yo) associated with the subspace
{y = a}. Then J,,(Y§)p¥ (k™ o) exp(—ip?(Yy))dy=a is a distribution on 3(yo) with
values in End(E). Applying the heat operator exp(tA30?) /2 — tA) to this distribu-
tion, we get a smooth function over 3(yo) with values in End(£). This function can
be evaluated at 0 € 3(yo). Then Theorem 5.2.1 can be rewritten as follows,

T Nexp(—tL5)] = TrP | exp(tA0?) /2 — tA)
(5.3.2)
[ 120 (Ye)p" (k™" 0) exp(—ip™ (Y5))dy=d] | (0)
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Let S(R) be the Schwartz space of R, let S°**(R) be the space of even functions
in S(R). The Fourier transform of h € S(R) is given by

(5.3.3) h(y) = /R e 2T (2 da.

Take p € S (R), then u € S°*(R). We now assume that there exists C' > 0 such
that for any k& € N, there exists ¢, > 0 such that

(5.3.4) 9 ()] < e exp(=Cly[?).

Then pu(vVLX 4+ A) is a self-adjoint operator with a smooth kernel, which we denote
u(VLX + A)(x,2') € Hom(F,, F,), x,2’ € X. As explained in |B11, pp. 115], we
have

(5.3.5) u(VEX +A) € Q.

Since o commutes with £X + A, we can get u(v/£X + A) € Q°. Then the corre-
sponding twisted orbital integral Tr/[u(v/£X + A)] is well-defined. From (5.3.4),

the kernel of u(y/—A39) /2 + A) on 3(yo) has a Gaussian-like decay.
Theorem 5.3.1. The following identity holds:

Trhel [N(m)] —TyE {u(\/m)b]w(ybe)

(5.3.6)
() expl—in )5 -] (0.

Proof. This is just an analogue of [B11, Theorem 6.2.2]. Using Theorem 5.2.1 and by
(5.1.13), (5.3.2), (5.3.4), an easy modification of the proof of [B11, Theorem 6.2.2]
proves our theorem. O
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6. THE CASE OF EUCLIDEAN VECTOR SPACE

The purpose of this section is to compute explicitly the twisted orbital integrals
and twisted orbital supertraces for the heat kernels in the case of Euclidean vector
space. As in |[B11, Section 10.6], we will show that the formulas fit with our formula
in Theorem 5.2.1.

This section is organized as follows. In subsection 6.1, we recall the explicit
formula for the hypoelliptic heat kernel in the case of an Euclidean vector space.

In subsection 6.2, using the explicit formula of hypoelliptic heat kernel, we com-
pute the associated twisted orbital supertraces, and we show that these computations
are compatible with Theorem 5.2.1.

6.1. An Euclidean vector space. Let E be an Euclidean vector space of dimen-
sion m. We will consider the case where G = FE.

The Cartan involution is given by §(z) = —x for z € E, so that K = {0}. The
Lie algebra of G is given by

(6.1.1) g=F,
so that
(6.1.2) p=FE, £=0.

The bilinear form B is just the scalar product of E.
Let O(E) be the orthogonal group of E, let I(E) be the group of isometries of F.
Then

(6.1.3) I(F)=FE xO(E).
In this case, we have
(6.1.4) Aut(G) = GL(E).
By the definition of ¥ in (1.2.6), we get
(6.1.5) Y =0(F).
Then
(6.1.6) G=GxX=1(E), K =0(E).

Moreover, the adjoint action of ¥ on g is just given by the matrix action on E.
If vy € E,o0 € O(F), then yo € G, then is

Z(vo) = ker(1 — o),
3(yo) = ker(1 — o).
Moreover, we have the orthogonal splitting,

(6.1.7)

(6.1.8) E =%ker(1 —o)®Im(1l — o).
Let 31 (7o) be the orthogonal space of 3(yo) in E. Then
(6.1.9) 37 (yo) = Im(1 — o).

In our case, X = E. For any v € E,0 € O(E), x € X, the action of yo on X
is given by yo(x) = ox + v € X. Moreover, TX = E, N = 0. The Euclidean
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connection and the flat connection on T'X coincide. Also the displacement function
associated with yo is

(6.1.10) dyo(z) = |7y + o(2) — 7|

Lemma 6.1.1. Any element in I[(E) is semisimple. The element o is elliptic if
and only if v € Im(1 — o).

Proof. Let v = v + 72 be the orthogonal decomposition of v by (6.1.8), where
T € ker(1 —0),7% € Im(1 — o).
By the formula (6.1.10), we see that if z € E, then

(6.1.11) do(@) > I
In particular, we have
(6.1.12) dyo((1— 0')7172) = |l
By Definition 1.1.2, yo is semisimple, and is elliptic if and only if v; = 0, which
is equivalent to that v € Im(1 — o). O

A similar argument also shows that o is conjugate to ;0. This result is just a
version of Theorem 1.3.2 in this case. The minimizing set associate with o is

(6.1.13) X(yo) = (1 —0) 'y +ker(1 — o).

The normal bundle Nxonx of X(vo) in X is just 37(yo). The decomposition
in (6.1.8) is the normal coordinate system defined in Theorem 1.5.1.

We consider the trivial vector bundle F' = R over X. Now, we recall some results
about the hypoelliptic heat kernel obtained in [B11, Chapter 10|

Let AP be the scalar Laplacian on E. Then the operator £X defined by (3.6.2)
over F is given by

1

(6.1.14) LX = —§AE7H,

If x = (x',--- ,2™) is the canonical coordinate of E, then
e N~ O

6.1.15 AT = —_—.

( ) ; a(.fC])Q

For t > 0, let p;(x, 2') be the smooth heat kernel on E associated with exp(tAFH /2).
Then
(6.1.16) (2,7) = ——— exp(—— |z — ')

- DAL T = orgymz PV g '

The bundle TX @ N is just E and X = X = ExE. The first copy of FE is identified
with X, and the second copy with TX. We use (z,Y") denote the generic element
of E x E. The operator L for b > 0 defined in (3.6.6) acts on C*°(E x E, A'(E*)).
Let AEY be the Laplacian along the second copy of E and V# be the derivative
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along X. Let N ¥") be the number operator of A'(E*). The hypoelliptic Laplacian
L;* defined in (3.6.6) is given by,

1 NAED
X BV 2 H
For t > 0,b > 0, let ¢;,((z,Y),(2/,Y")) denote the smooth kernel associated with
exp(—tLy).
Put
’ Y - Y/
Hy (2, Y), (2, Y") = b— taulrlh(t/2b2)(\Y|2 + |Y’|2) 4 Q
7 2 sinh(¢/0?)
(6.1.18) !
' — 2 — b tanh(t/262)(Y + Y')|%.
T o o tanh(ija)) ¢ ¢ Y tanh(/207)(Y £ Y7)]
and
b2 2 2 2
Kbﬂf((xa Y)) (xla Y/)) = .72’67”2&) Y — €t/2b Y”
(6.1.19) 1 2sinh(t/b?)
'~z — b2 tanh(t/262)(Y + Y%
T S0 o tanh(aja)) ¢ ¢ Y tanh(t/207)(Y +Y7)]
Set
i b26t/b2 Tm/2
hyy((z,Y), (2, Y") =
l(@Y), (@, 1) | 472 sinh(t/b%)(t — 2b? tanh(t/2b?)) |
exp ( — Hy:((z,Y), (', Y"))),
(6.1.20) _ P~ Hual(2,Y) (2 ) -
E v , Y’)) b26t/b m/
k -
il 1), (@ | 472 sinh(t/b%)(t — 2b2 tanh(t/202)) |

exXp ( - Kb,t((xa Y)7 (xla Y,)))
By [B11, eq. (10.5.3)], we have the identity

bQ
6120 Hi(@ ). @) = e (GOVE - 1Y) )0 ). (7).
An explicit formula for the kernel ¢ ((x,Y), (/,Y”)) € End(A(E¥)) is given in
[B11, Proposition 10.6.1].
Proposition 6.1.2. For b > 0,t > 0, the following identity holds:

qg,(t((xv Y)? (I/7 Y/)) =

(6.1.22) ~ -
b he ((z, =Y /b), (2!, =Y /b)) exp(—tN™ F7) /b?).

As explained in [B11, Remark 10.5.2], we can see the estimate as in (3.7.6) from
the explicit formula in (6.1.22): given M > € > 0, there exist C a1, C, ), > 0 such

that for 0 <b < M,e <t < M, (z,Y), (2, Y") €X,
| (2, Y), (', Y"))| <

(6.1.23)
Conrexp (= Cly(lz — 2P+ Y+ [Y']).
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In this case, if we make b — 0, we get
1 1
(6120)  Hyl(e, ~Y/0), (=Y [0) > S (VP4 VP) + oo’ = af

By (6.1.20), (6.1.22) and (6.1.24), the convergence of the hypoelliptic heat kernels
to the elliptic heat kernel in (3.7.7) is clear in this case.

Remark 6.1.3. The hypoelliptic Laplacian [,gft on the Euclidean space serves as a
model operator for general versions, and the heat kernel g\,((z,Y), («/,Y”)) given
by (6.1.22) is a step stone for the estimates (3.7.6) of the general hypoelliptic heat
kernel. We refer to [B11, Sections 13.2, 13.3 and 15.1] for more details.

6.2. Twisted orbital integrals on an Euclidean vector space. Since we have
the explicit formulas for the elliptic heat kernel p;(x,z’") and the hypoelliptic heat
kernel q,i(t((a:, Y), (2',Y")), we can calculate their orbital integrals by the definitions,
e, (4.2.6), (4.3.13).

Now we fix v € E,0 € O(E) such that v € ker(1 — o). We put 7 = vo € [(E).
By (6.1.7), the centralizer of ¥ in E is

(6.2.1) Z(3) = Z(0) = ker(1 — o).

Then we have

(6.2.2) P() =300 =35(0), p*(3)=5"() =35"(0), t7F) =0.
By (6.1.13), the minimizing set is

(6.2.3) X(F) = ker(1 — o)

Proposition 6.2.1. We have the following identity:

(] E.H _ exp(—|y[*/2¢) 1
(6.2.4) Tr[exp(tA™" /2)] (2mt)r/2 det(1 — U)|Im(17cr)'

Proof. The kernel p;(x, 2') is given explicitly in (6.1.16), by Definition 4.2.3, we have

el [exp(tAFH/2)] 2/ pi(f,y +of)df

()
2
(6:2.5) S e
_ew(-hP/2) 1

(27Tt)p/2 det(l _U)’fﬁ).

By (6.1.9), (6.2.5), we get (6.2.4). O
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Proposition 6.2.2. For b > 0,t > 0, the following identities hold:
TrMexp (— L)) =det(1 - 0|
620 x /( e )G o oYY

ep(-hP2) 1
(27Tt)p/2 det(l — O')|1m(1_a) '

Proof. Since o € O(E), its transpose 0! = o~ !, then
(6.2.7) Tr,* (g exp(—tNY E) /1)) = det(1 — e /Y 0) .

Using the fact that |Y| = |oY], (6.1.21) and Proposition 6.1.2, we get the first
equality.

The kernel function &}, ((z,Y), (2/,Y")) is given by (6.1.20). We rewrite the split-
ting of £ in (6.1.8),

(6.2.8) E=;37) @5 (3)

IfY € E, let Y =Y 4+ Y5 be the corresponding orthogonal decomposition. Then
dY = dY1dY;. And o acting on E preserves this decomposition. We recall that

v €3(7)-
By (6.1.20), we get

/ klft((fv Y),(*y—i—af, UY)>dde
(FY)E-(NXE

h2et/v m/2
- Lﬂ sinh(¢/b2)(t — 20 tanh(t/20?))

(6.2.9)
% /lm EeXp<—Kb,t((f, Y), (y+of,0Y)))dfdY.

By (6.1.19), (6.2.8), if f € 3-(7), we have

Kb,t((fﬂ Y)? (7 + Uf? UY))

1 2
- 1— 2 tanh(t/20%)(1 + o) Y-
2(t—2b2tanh(t/2b2))‘( 0)f + b tanh(t/26%)(1 + 0)Y,|
6.2.10 tb? tanh(t/20? 1
o e el
t — 2b2 tanh(t/2b%) t 2
b2e—t/b2

e (1= o)),
 Zsmnpy L € oY
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We can separate the integration in (6.2.9) to the product of three integrals with
respect to df, dYi, dYs. Then we get

kft((f? Y)? (ry + Uf? OY))dde

(FY)et(WMxE
_ exp(=h*/2t) 1 (/") 1
o @rtp2 det(1 — o)y (1—e )P | det(1 — et/P0) | 15|
Since 0 € O(E), the following identities hold:
| det(1 — e/ 0)| ;5| = (/)" P det(1 — e 0) 1),

det(1 — e Y 0)|p = (1 — e )P det(1 — ™Y 0)| 1 (5,
Combining (6.1.9), (6.2.11) and (6.2.12), we get the second identity in (6.2.6). O

(6.2.11)

(6.2.12)

Remark 6.2.3. The identities (6.2.4) and (6.2.6) are compatible with the identities
in [B11, Propositions 10.6.2 and 10.6.3|.

The last equation in (6.2.6) shows that the twisted orbital supertrace Tr [exp (-
tLX)] does not depend on b > 0, and it is equal to Tr0l [exp(t AP /2)], which is a
consequence of Theorem 4.4.2. Now we verify that these results are compatible with
our formula in (5.2.1) for semisimple orbital integrals.

Use the notation in subsection 5.1, we have

(6213) 30 =9Ppo = E, EO =0.
And
(6.2.14) M =p(H)=3073), &EA) =3 =0.

Put p = dim3(7).
Since £(7) = 0, the function defined in (5.1.12) is just
- 1
 det(1 = 0)|m(1-0)
Recall that the representation E here is just the trivial representation on R. Then
the right-hand side of (5.2.1) reduces to the same number in (6.2.4):

exp(—[y]*/2t) 1
@2 det(l — o) (o)’

(6.2.15) J5(0)

(6.2.16)
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7. CONNECTIONS WITH LOCAL EQUIVARIANT INDEX THEORY

This section is devoted to verify the compatibility of our formula in Theorem
5.2.1 for the twisted orbital integrals of heat kernels to the Lefschetz fixed point
theorem of Atiyah-Bott [AB67, AB68| on locally symmetric spaces. Recall that the
McKean-Singer formula [McS67] expresses the equivariant index of a Dirac operator
D as a supertrace involving the heat kernel for D?.

This section is organized as follows. In subsection 7.1, we construct the Dirac
operator DX acting on the twisted spinors over X. We show that under a proper
assumption of K, DX is invariant by the action of X°. We show that if vo is
semisimple but non-elliptic, Tr"7 [exp(—tD¥2/2)] vanishes.

In subsection 7.2, we introduce the equivariant characteristic forms of T'X and of
N. We state a formula for Ty [exp(—tDX2/2)] in terms of equivariant character-
istic forms when ~vo is elliptic.

In subsection 7.3, we establish the main result of subsection 7.2.

In subsection 7.4, we prove the compatibility of our formula to the Lefschetz
formulas for the action of ¥7 on Z = I'\ X.

In subsection 7.5, we consider the case of de Rham operator of X.

In subsection 7.6, we consider the case where G = K. Then we get an identity of
characters of K7.

In subsection 7.7, we consider the de Rham operator associated with a flat bundle
obtained via a representation of G°.

Finally, in subsection 7.8, we apply Theorem 5.2.1 to the evaluation of the equi-
variant Ray-Singer analytic torsions over Z.

7.1. The classical Dirac operator on X. Here we will assume p to be even
dimensional and oriented, and K to be semisimple, connected and simply connected.
Recall that dimp = m.

Let Spin(p) be the Spin group of p. We have the exact sequence of Lie groups,

(7.1.1) 1 — Zy — Spin(p) — SO(p) — 1.

If m > 4, Spin(p) is just the universal cover of SO(p). Since K is connected and
simply connected, the adjoint representation K — SO(p) lifts to a homomorphism
K — Spin(p).

To avoid confusion with the notation in subsection 3.1, let ¢(p) denote the Clifford
algebra of (p, Bl,), and let SP = S% &S be the Zy-graded complex Hermitian vector
space of p-spinors. Then we have the classical identification of Z, graded algebras
by [ABS64, Part I: §5],

(7.1.2) &(p) ® C ~ End(SP).

Moreover, Spin(p) embeds in ¢, (p). Then Spin(p) acts unitarily on S® and preserves
the Zo-grading. Therefore, K acts on S* via a representation p®° induced by the
action of Spin(p). In particular, the action of K preserves S¥.

By (3.1.10), if f € ¢, we have

(7.13) o (f) = ead())]y):
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The group K acts on SO(p), Spin(p) by conjugation. Set
(714) Pso(X) =G Xk SO(]J), PSpin(X) =G Xk Spln(p)

Then the projection in (7.1.1) induces a double cover of principal bundles Pgpi, (X) —
Pso(X). This gives a spin structure on X. Moreover, S* descends to the Hermit-
ian vector bundle ST = STX @ ST of (T'X, g’ *)-spinors. Let V5™ denote the
induced connection on S”¥ by the connection form w?*.

We fix o € ¥, and we assume that its action on p preserves the orientation. Recall
that K7 = K x X7. Then K7 acts naturally on Pso(X).

We will assume that the homomorphism K — Spin(p) can be extended to a
homomorphism K7 — Spin(p). Then the action of K7 on Pso(X) lifts to an action
on the bundle Pgpi, (X). By [LM89, Definition 14.10 in Chapter 3|, this is equivalent
to say that the action of K7 preserves the spin structure.

If e € p, then
(7.1.5) p* (0)e(e)p™ (07") = c(oe) € c(p).
In particular, we have the unitary representation
(7.1.6) p¥ K7 — Aut®en(SP).

We also assume that the representations (E, p¥) of K satisfy the conditions in
Proposition 2.4.7. This representation extends to a representation of K which is
still denoted by p¥. In general, this extension is not unique, we just fix one choice.
Now G acts on sections of S7X @ F over X, and this action is compatible with its
action on X. Recall that V¥ is a unitary connection on F with the curvature R’
and that V¥ is invariant under the action of G°.

Let DX be the classical Dirac operator acting on C*°(X, ST*X @ F). If ey, -+ , e,
is an orthogonal basis of T X, then

(7.1.7) DX = () Vi
=1

We can write DX in matrix form with respect to the Zy-splitting of C*°(X, STX @ F),
so that
x |0 D*

(7.1.8) D" = [Df 0

Let A% be the Bochner Laplacian acting on C*(X, ST¥ @ F). Recall that S¥
is the scalar curvature of X, which is a constant given by (1.1.20). By a formula of
Lichnerowicz |Lic62|, we have

X,2 X,H s¥ 1 ~ \= P
(7.1.9) DY = —ANH 4 = o Z c(e;)c(e; )R (e, ¢5).
1<i,5<m

Let £X be the operator defined in (3.6.2), with E replaced by S* ® E. Then by

[B11, Theorem 7.2.1], we have

DX? X | R

1
SOV,
2

(7.1.10)
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Put
(7.1.11) A= —iTrE[C“] _Lewr

o 48 2 '

By Lemma 1.2.7, A commutes with K7. We get
DX’2
(7.1.12) — = LY € Q.

Let v € G be such that yo is semisimple. We still assume that
(7.1.13) y=e%k""acp ke K Adk)a = oa.
Theorem 7.1.1. If yo is nonelliptic, i.e., if a # 0, for Y§ € €(yo),
(7.1.14) T, [p* (k7o) exp(—ip® (V)] = 0.

For any t > 0, we have
(7.1.15) Tr 0 exp(—tD*?/2)] = 0.

Proof. By |BGV04, Proposition 3.23|, we have
(=)™ (Tr,% [ (k™' o) exp(—ip™ (¥;))])* =
det(1 — Ad(k™'o) exp(—iad(Yy)))|p-

If a # 0, then a is an eigenvector in p of Ad(k~'o) exp(—iad(Yy)) associated with
the eigenvalue 1, so that (7.1.14) holds.

To prove (7.1.15), we use the formula in Theorem 5.2.1. Inside the integral in
(5.2.1), we have

Trssp@)E[psp@E(k_la) eXp(_Z‘PS‘J@E(Yo({) —tA)] =

(7.1.16)

(7.1.17) Te, " [p% (k™' o) exp(—ip™ (¥5))]
x Tr¥[p¥ (ko) exp(—ip®F (Y]) — tA)]
By (5.2.1), (7.1.14), (7.1.17), we get (7.1.15). O

7.2. The elliptic case. We still use the same assumptions as in subsection 7.1. We
can apply the results of section 2.

Let yo € G° be an elliptic element. We may and we will assume that v = k=1, k €
K. Then X (yo) C X is just the fixed point set of yo. Recall that X (yo) is a totally
geodesic submanifold of X and pl € X(yo). Recall that

(7.2.1) p = dimp(yo).
On X (y0), let Nx(y0)/x denote the normal of X(yo) in X. Then
(7.2.2) TX|x(yo) = TX(70) ® Nx(y0)/x-
Note that yo acts isometrically on T'X|x () and preserves (7.2.2). We have
(7.2.3) dimTX (yo) = p, dim Nx(y0)/x = m — p.

In particular, p and m — p are even.
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Let £6,,--- ,+60,,0 < 6; < 7 be the distinct nonzero angles of this action on
Nx(yo)/x, Which correspond to the distinct angles of the action of Ad(k~1)o on
pt(v0). Let Nx(y0)/x.0,, 1 < i < s be the part of Nx(,0)/x on which yo acts by a
rotation of angle 6;.

The action of yo on T'X|x(y¢) is parallel, so that VX induces metric connections
on the above subbundles of 7X|x(yo). Let RTX09) RNx(e/x0: 1 < i < s be the
their curvatures.

If 8 € R\27Z, set

(7.2.4) A(w) = 2sinh ()

Given 0;, let ﬁei(NX(W/X)ﬁi, V¥x(e/x).6:) be the corresponding multiplicative genus.
The equivariant A-form of (T'X|x(0), VIXIX62)) is given by

A(TX | x (o), VIXIx00)

RTX(yo) % . N .
) [T A% (Nxtro/x).0,, VIX07900) € (X (70).

i=1

(7.2.5)

= A(—

21

We have a similar formula for the closed form A (N| X(ro), VVIXGo).

Note that there are questions of signs to be taken care of, because of the need to
distinguish between 6; and —#;, especially for the case where 8; = m. We refer to
[AB67, AB68| and also [LM89, Theorem 14.11 in Chapter 3|, [BGV04, Chapter 6|
for more detail.

Let o(T' X (70)), o( Nx(y0\x)) be the orientation lines of TX (o), Nx(yo)\ x respec-
tively. Because of the £1 sign ambiguity in (7.2.5) explained as above, the differen-
tial form A\W(TX|X(W)’ V7 XIxeo)) can be regarded as a section of A'(T*X (y0)) ®
0(Nx(y0)/x)- Since the orientation of TX is equivalent to the orientation of p, then

A7 (TX]| X(y0), VIXIx09)) can be identified naturally to a section of A (T*X (y0)) ®
o(TX (y0o)).

The equivariant Chern character form of the bundle (F, V) is given by

R ‘ X (o)

(7.2.6) W (F|x(y0), VEX00) = Tr[p? (k'o) exp(— 5
i

)l

The closed forms in (7.2.5), (7.2.6) on X (o) are exactly the ones that appear in
the Lefschetz fixed point formula of Atiyah-Bott [AB67, AB68S].

Let the function A7 (0) on X (o) be the component of degree 0 of the form
E""’(TX | X (400, VIXIX6)) and let the function 1@”"‘(0) be the component of degree
0 of A\W(N|X(W), VNIxt), These are constants on X (yo). Put

(7.2.7) A7(0) = A7l (0) A7l (0).
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Using the same arguments as in the proof of [B11, Proposition 7.1.1] and (1.1.9),
one can prove the following identities of differential forms on X (vyo),

A7(TX|x(y0), VIXXC0D) AV (N x50, VVIX¥C0) = 477(0).
(7.2.8) b (T X | x(y0), VIXXOD) 4+ b7 (N x (10, VVI¥0)
= Tr?ad(k o).

Let U be the canonical section of norm 1 in AP(p(y0)*) ® o(p(yo)) (respec-
tively AP(T*X (y0)) ® o(TX (v0))). For a € A(p(yo)*) @ o(p(yo)) (respectively
AN (T*X (y0)) @ o(TX (y7))), for 0 <1 < p, let oV be the component of o of degree
[. We define o™ € R by

(7.2.9) aP) = gy,
Theorem 7.2.1. If yo = k~'o,k € K, for any t > 0,
Tr, D7) [exp(—tD*?/2)]

1 _ .
= ot [l PRI SO ) (i ()~ 14)
7.2.10
eXp<_| 0 | / ) (27Tt)q/2

= [A°(TX | x50, VX0 ) e (F, VI,

Proof. The first identity in (7.2.10) follows from Theorem 5.2.1. The next section is
devoted to the proof of the second identity in (7.2.10). O

7.3. Proof of the second identity in (7.2.10). Recall that f(o) € Aut(K) is the
restriction of o to K, and that K is the closed subgroup of K x Aut(K') generated
by K and f(0).

Since K is simply connected, by [DKO00, Corollary (3.15.5)], if p € Aut(K), K(u)
is a connected Lie subgroup of K.

Let €% be the set of regular elements in £. By [DK00, Lemma (3.15.4)] and since
¢ is semisimple, there exists 7/ € Aut(K') such that 7/ lies in the same connected
component of Aut(K) as f(0) and S = K(7') is a torus of K, i.e., 7/ is regular in
Aut(K). Let s = £(7') be the Lie algebra of S.

By [DKO00, Lemma (3.15.4)], there exists v € s N €8, If t = ¢(v) C ¢, then tis a
Cartan subalgebra of €. Let T' C K be the corresponding maximal torus of K, and
let W be the associated Weyl group. Let ¢ C t be the Weyl chamber that contains
v. Let R be the root system associated with (¢,t), and let R, C R be the positive
root system associated with c.

Since 7’ fixs v, 7/ preserves t and ¢, so it preserves T and R,. Also s C t, so that
S is a subtorus of T'. In particular,

(7.3.1) S=T(#), s = (7).
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As explained in subsection 2.3, using the above root data of €, we can construct
a group inclusion

(7.3.2) Out(K) — Aut(K),
so that
(7.3.3) Aut(K) ~ Inn(K) x Out(K).

By (7.3.2), (7.3.3), we identify Out(K) with a finite subgroup of Aut(K) that acts
on K and preserves T', R,.

Let 7 € Out(K) is the image of f(0) € Aut(K) under the projection Aut(K) —
Out(K). By (7.3.3), we identify 7 with an element in Aut(K’). Recall that

(7.3.4) K™ =K x (1).

Here (7) is the finite cyclic group generated by 7 in Out(K).
There exists £’ € K (not unique in general) such that

(7.3.5) Ad(K) o7 =+ € Aut(K).
Put 7 = k7 € K7. By (7.3.1), we have
(7.3.6) S=K(1),s=t7), K eT.
There exists kg € K such that
(7.3.7) Ad(k™Y) o f(o) = Ad(kg) o Ad(7) € Aut(K).
By (2.4.2), (7.3.5), (7.3.7), we can put
(7.3.8) k* = kkok' € K
so that
(7.3.9) f(o) = Ad(k*) o7 € Aut(K).

By [Seg68, Proposition 1.4] and [BtD85, Proposition 4.3|, there exists k; € K and
So € S such that

(7.3.10) ko = k1soAd(7) (k).

Then

(7.3.11) K(k™'o) = Ad(k;) (K (s07)) C K.
Moreover,

(7.3.12) S C K(soT).

Lemma 7.3.1. The torus S is a maximal torus of K(soT).

Proof. Since S is a torus in K (so7), if S” is a torus in K (so7) containing S, then S’
is fixed by 77, so that S = 5" g
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By (7.3.11) and by Lemma 7.3.1, Ad(k;)S is a maximal torus of K (k™ 'o).
Recall that pg is defined in (2.2.6). Since the adjoint actions 7, 7 preserve R, we
have

(7.3.13) Ad(7)pe = Tpe = pe € t".

Using the scalar product of € restricting to s, t , we identify s, t with s*, t*, so that
we can regard s* as a subspace of t*. By (7.3.6), we have

(7.3.14) s* = t°(7) = t'(7).
By (7.3.13), we get
(7.3.15) pe € 5.

By [Kos99, Proposition 1.84] and [B11, Proposition 7.5.1], we have

1 1
2 12 _ L mkrote _ Lpe

(7.3.16) A% | pe|* = 24Tr [C™] 4B (K, K).

Let m : t = C be the polynomial function
(7.3.17) m(t) = [ (ira.t).

aER,

Let A%, At be the standard Laplacians in £, t. When acting on Ad-invariant functions
on €, we have the identity of differential operators

1
(7.3.18) At = = Almr,.
Te
Recall that r, = |Ry| and that R, defines a natural orientation on £/t. Let

o¢ : t = C be the denominator in Weyl’s character formula,

oe(t) = [T (explin(a, 1)) — exp(—im(a.t)))
(7319) acRy

= (—i)"* det Y2(1 — Ad(e™"))|ese.

The function g¢(t) can be extended to a function on 7'
As in (2.2.2), set

(7.3.20) Ni-(¢) ={g € K™ | Ad(9)(c) = c}.
Then Nk-(c) is a Lie subgroup of K7, and

(7.3.21) 7 € Nk (c).

In fact, one can verify

(7.3.22) Ng-(¢) =T x (7).

Recall that the function 0 is defined on Ng-(c) by (2.2.11). By (2.2.6), (7.3.19),
if t € T, then

(7.3.23) 5(t) = e ™1 (1) gg(t).
Lemma 7.3.2. There exists c(so7) € S' such that if t € t, then
(7.3.24) det V/2(1 — exp(—ad(t))Ad(so7)) e = c(so7)e 2™ Pl §(e 50 7).
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Proof. Let v C € be the orthogonal space of t. Let ¢(t) denote the associated Clifford
algebra. The adjoint actions of sq7 and T preserves t and its scalar product.
By (2.2.9), we get

(7.3.25) tr C=ndn.

Since so7 preserves R, it preserves the splitting in (7.3.25). Moreover, if t € s, then
the adjoint action of exp(—t) € S also preserves the splitting in (7.3.25).

Let Ay, -+, A\, beits eigenvalues of Ad(s¢7) on n with corresponding eigenvectors
vi, -+, v, € n, which form a C—basis of n. Then
(7.3.26) Ad(so?)v; = A\jo;,  j=1,-- 4.
where vy, -+, 0, is a basis of n.
Take 6, € [0,27) such that \; = eV=1%. Put
(7327) fj =v; +v; €r, e; =vV—1v; —v—1v; €.
Then fi, 1, --+, fr,, e, form a R-basis of t, and each subspace t; spanned by f;,

e; is invariant by Ad(so7). Moreover, under the oriented basis f;, e;, Ad(so7) acts
on t; by the matrix,

cos(#;) —sin(6;
(7.3.28) sin((Qj)) cos(éj;)
Put
0O —6; --- 0 O
#Hn 0 --- 0 O
(7.3.29) A=]: Tl :
o 0 --- 0 =8y
0O 0 - 63 O

Then A € so(t) and Ad(sp7) = e € SO(t). Moreover, A preserves the splitting in
(7.3.25) and
(7.3.30) Av; = v/=10,0,.

Put S* = A’(n). By [BGV04, Proposition 3.19], S* is just the spinor space associ-
ated with t. Let p°° denote the action of c(tr) on S*. Using the identification of Lie
algebras between so(tr) and ¢*(r) in [BGV04, Proposition 3.7], so(t) acts on S* by

p°". In the same time, so(t) acts on S by its action on n, which we denote by .
By [BGV04, Lemma 3.29|, we have

. 1
(7.3.31) P (A) = \(A) — §Tr“[A].
Put
(7.3.32) g = e @) ¢ Spin(t).

Then g is a lift of Ad(s¢7) € SO(tr). Another lift is —g.
If t € t, then as in (7.3.31), we have

(7.3.33) 5 (—ad(t)) = A(—ad(t)) + %Tr“[ad(t)}.
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By (2.2.6), (2.2.9), we have
(7.3.34) %Tr“[ad(t)] = 2ripy, 1),
Note that if g € U(n), then
(7.3.35) Tr* M A(g)] = det(1 — g)|n-
By [BGV04, Proposition 3.24], we have
det /2(1 — exp(—ad(t))Ad(so7)) |,
(7.3.36) = 4"+ Tr2 "[exp(—p” (ad(t))g]
= tir+em 2™ det(1 — e *Ad(so7))|a exp(2mi{pe, t)).
By (2.2.11), we get
det(1 — e *Ad(so7))]n

7.3.37

( ) = (—1)"* det Ad(s¢7)|n exp(—4mi{pe, t))d(e " s07).
Set

(7.3.38) c(so7) = £(—i)*+e 2™ M det Ad(so7)|, € S

By (7.3.36), (7.3.37), (7.3.38), we get (7.3.24).

Remark 7.3.3. Lemma 7.3.2 is an extension of [Bou87, Lemmas 2.3.3 and 3.6.3].

Using (7.3.9) and the fact that o € Aut(G), we can extend the action of 7 on K
to an automorphism of GG, which we still denote by 7, i.e.,

(7.3.39) 7= Ad((k*)™") oo € Aut(G).

Note that 7 as an automorphism of G is no longer of finite order. Moreover, 7 € ¥,

and then we can regard 7 as an element in K.
As in (7.3.11), we get,

(7.3.40) Z (k™ o) = Ad(k1)Z(so7).
Also
3(k7o) = Ad(k1)3(s07),
(7.3.41) t(k'o) = Ad(ky)E(se7),
p(kto) = Ad(ki)p(so7).
From Proposition 2.1.2 and (2.1.5), we may and we will assume that (E, p¥) is
an irreducible unitary representation of K.

By Proposition 2.4.2 and (7.3.9), there is an irreducible unitary representation
(E,p”) of K™ and a constant ¢, € S! such that

pr(T) = crp™((K) )" (f (),

(7.3.42) . .
pr(k) = p= (k).
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We will denote by x¥ the character of p¥ on K%, and denote by Y” the character
of p¥ on K.
If h € K, by (7.3.8), (7.3.10), (7.3.42), we get

(7.3.43) RE (kT Rk so7) = eox P (Wb~ f (o).

Let Py, be the system of dominant weights with respect to the root data R, of
(K,T). Let A € Py, be the highest weight of an irreducible component of F as a
representation of K, then by [B11, eq.(7.5.7)|, when restricting to this irreducible
component, we have

(7.3.44) CoF = —47*(|pe + AI” = |pel).

Since (E, p¥) is K°-irreducible, by Theorem 2.4.5, the set of highest weights
associated with the different K-irreducible components of E is a 7-orbit in P, . By
(7.3.13), the identity in (7.3.44) holds for all K-irreducible components of E. Then
by (7.1.11), (7.3.16), the following identity in End(E) holds,

(7.3.45) A =272pe + A2

Recall that W is the unit volume form on p(yo) with values in o(p(y0)). Let Pf[]
be the Pfaffian on so(p(vyo)) defined by W.

Proof of the second identity in (7.2.10). If the restricting of (E, p¥) to K is not ir-
reducible, by (2.2.20), (2.3.35), (7.3.42), both sides of the second identity in (7.2.10)
vanish. So we may as well assume that (E, p¥) is an irreducible representation of
K.

Let A € P, be the highest weight of (E, p¥). By Lemma 2.2.2, we have,

(7.3.46) T-A= A\
Moreover, by (7.3.14), (7.3.15), (7.3.46), we have
(7.3.47) At e € 5"

Asin [B11, (7.7.7)], if Y{ € €(vo),

Te,™ [p™ (k™' o) exp(—ic(ad(Y7)))]
(7.3.48)

~

= PHAA(Y) o] A (180 (V) o) (A7 oo 0)) 7
By (5.1.12) and (7.3.48), we have
Lo (YT [0% (k~10) exp(—ic(ad (Y])))]
= (=1) P 0 2P [ad (V) 0] A" (iad(
det(1 — exp(—iad(YéO))Ad(k”la))]EL(W) }1/2
det(1 — Ad(k710))]eL (10

Using (7.2.5), (7.3.39), (7.3.40), (7.3.41), if we replace yo by so7 and replace Yy
by Ad(k;')YE € €(so7) in the right-hand side of (7.3.49), the identity in (7.3.49)
still holds.

(7.3.49) Y5)lerer)

A\U*lkhjl(wo) (O) {



HYPOELLIPTIC LAPLACIAN AND TWISTED TRACE FORMULA 107
Combining (5.2.1), (7.3.42),(7.3.45) and (7.3.49), we get

Tr 0 [exp(—tD¥?/2)]

(_1>dimpL(sof—)/QC;1

— =212t A+pe|?
(27t )p/?

Pfdye S{_A\—l-dyé soT
(7.3.50) /e<so+) [2d(Y)lpson] A (12d(¥0)lesor))

AT hon (0)

det(1 — exp(—iad(¥y")) Ad(so7))[ex (s01) V12
det(1 — Ad(s07))ex (s97)
Yy

¥ [ﬁE(Sof') eXP(_iﬁE(YoE))] exp(— ’YOE ’2/%) (Qﬂt)q/Q '

Let (07) be the curvature form associated with Z°(so7) — X(so7) as an ana-
logue of © in (1.1.9), when replacing g by 3(so7). In particular,

(7.3.51) Q07 € A%(p(s07)*) @ E(s07).
If a, B € N(p(s07)*), a,b € €(soT), we define

(7.3.52) (a®a, B xb) =aAfa,b) € N(p(soT)").
Also we put
(7.3.53) la®a|? = {a®a,a®a).

By [B11, eq. (7.5.17)], we have
(7.3.54) PEad(YE) oyr] = [exp(— (Y7, Q007
As in |[B11, eq. (7.5.19)], an explicit calculation shows,
(7.3.55) | Q30712 — (),
Then we can rewrite (7.3.50) as follows,

Tr, ! [exp(—tDX’2/2)]
(_l)dimpi(SO%)/Qc;l
(2mt)r/?

X |:/ 2{\_1(2'3(1(%?)|g(50{—))2+_1851‘p1-(so+) (O)
£(soT)

—272t| A+ pe|?

(7.3.56)

{det(l — exp(—iad(YY))ad(so7))]e< (so7) }1/2
det(1 — ad(s07))lex (s07)
dYb{r max
(2mt)a/?

Te®[5" (s07) exp(—ip” (Y5))] exp(—[¥g + Q7|2 /2t)
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Set
L = { A7 (id (Y5)reom))
€(s07)
(7.3.57) det V2(1 — exp(—iad(Y))ad (s07)) et (o)
~ ~ o~ s0f dYE max
Te?[f(s07) exp(—ip” (Yg))] exp(—|Yg + #2072 /21) o )Oq/z

Let A'*7) and A® be the standard Laplacian in £(sy7) and s respectively. Then we
can rewrite (7.3.57) as

L = exp(ea 0 12) (A4 (0l
(7.3.58) det 1/2(1 — exp(—iad(YEO))ad(sO%))|EL(SO+)

) [T

Let R’ be the root system of (£(s¢7),s) and let R/ be a positive root system in
R'. Let mes7)(Y), 0e(so7)(y), ¥y € s be the functions defined as in (7.3.17), (7.3.19)
with respect to (£(so7),s). Put 7, = |R|.

The function
A (iad(Y5) o) det V2 (1 — exp(—iad(¥y))ad (s07)) e (s07)

X" (s07 exp(—iYy))

is invariant by adjoint action of K(so7). By (7.3.18), we get

(7.3.59)

1 A— .
Ly = [We( . exp(tA*®/2) (WE(SO%) (y) A" (iad (y) es0)
soT

(7.3.60) det 1/2(1 — exp(—iad(y))ad(s07))|eL(s07)
ot exp(i) ) (19210

The function appearing in the right-hand side of (7.3.60) is viewed as a function of

y € s, which is invariant by the Weyl group W (K(s¢7),5), and lifts to a central

function on €(so7). This guarantees that the function can be evaluated at —tQt=07),
If y € 5, then

> O¢(s07
(7.3.61) A ad(y)|egeps)) = —or )

By (7.3.17), (7.3.19), (7.3.61), we get

me(sor) (Y) A (1ad (1) |esor)) = (—1)"* 050 (i)

(7.3.62) ' 1/2 ;
= (=1)"* det '/2(1 — exp(—iad(y))) le(sor)/s-
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Using the decomposition £/s = €/t ® t/s and (7.3.24), we get

(7.3.63) Te(so) () A (1ad(y) e(sor)) det V2(1 — exp(—dad(y)) Ad(507)) e (so7)
3. _ (_1)T5rc(80f‘) det 1/2(1 . Ad(sof‘))]t/5€2ﬁ<pe’y>5(807ﬁ67iy).

Using (2.2.22) for the representation (FE, p¥) with u = so7 and t = exp(—iy),y € s,
we have

PPl §(sgre )X (so7 exp(—iy))

(1369 — %™ det(s) det(Ad((507) Dles. ., Trlp" (507, 202
SEW (so7)

Then the right-hand side in (7.3.64) implies that
L 2™t [g1(iad(_tQa(80+))|e(SO%))
(7.3.65) det /(1 — exp(itad(2°7))ad (s07)) e (s95)
XZ(s07 eXp(itQZ’(5°+)))] max.

Then using (7.2.5), (7.2.7), we get
Tr 0 [exp(—tD*2/2)]

Cr -dim €L (so7 As07 A—1/; s07
~ @2rt)r2 {Zd FDR AT () A7 iad (HF) o))

7.3.66 A | Jmax
( ) det 1/2(1 — exp(itad(m(sm)))Ad(sof))|EL(SO%)QE(507 exp(itQﬁ(SoT)))}

Cil

= G {ESO%(O)(ﬁsf’f)‘l(iad(tQ"’(S(’%))]E)QE(SO% exp(imé@o*)))] :
Also the parameter ¢ is killed automatically in the right-hand side of (7.3.66).

Note that the curvature R7¥XIx¢o) is given by the adjoint action of the connection
form 30 associated with Z%(yo) — X (y0), and that RF|x(,0) = pZ(209)). By
(7.3.41), (7.3.42), (7.3.43), the last identity in (7.3.66) is just

(7.3.67) [27"(0)(27")1(N|X(W), vNX<w>)xE(pE(klaexp(—f)))]

)

Then by (7.2.6), (7.2.8), (7.3.67), we get the second identity in (7.2.10). O

Remark 7.3.4. We make a useful observation here. If F = C is the trivial represen-
tation of K%, then the highest weight A = 0, by (7.3.63), (7.3.64), the function on
S

(7.3.68) 5 = Tagoor) () A (12d(y) (o)) det V(1 = exp(—iad(y)) Ad(507)) e (s
is an eigenfunction of A® associated with the eigenvalue 472 |pe|?.
By (7.3.16), (7.3.41), the function on t(vyo) given by

(7369)  y = Tagoop (1) A (1d(1)ry) det 2(1 = exp(—iad () Ad(10) ez
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is an eigenfunction of A7) associated with the eigenvalue —1B*(xt, ).

7.4. The local equivariant index theorem on Z. We make the same assump-
tions as in subsections 1.8, 4.5, and we use the corresponding notation. In particular,
we assume o(I') =T.

Recall that Z = I'\ X is a compact orbifold, and the Abelian group X7 acts on
Z. Also the bundle of T'X-spinors ST¥ descends to the bundle of T'Z-spinors ST%.
The assumptions in subsection 7.1 make S7% an equivariant Clifford module over
Z with respect to the action of 37. Moreover, the Clifford connection VSTIOF g
>7-invariant.

The operator DX descends to the classical Dirac operator D? on Z, which acts
on C*(Z,87? @ F') and commutes with ¥°. Similarly, the operator £ descends to
an operator £4. By (7.1.12), we have

%DZ’Q = L4
Let Df be the corresponding component of DZ with respect to the decomposition
in (7.1.8). Then D7 is a Fredholm operator.
Let ker D be the kernel of DZ in C*(Z,S7% @ F'), which is naturally a finite-
dimensional representation of . The equivariant index of DZ (or Lefschetz num-
ber) associated with o is defined by

(7.4.1)

(7.4.2) Indy. (0, D?) = Tr.* P’ [o].

We now assume that I' is torsion free. Then Z is a compact smooth manifold.
Recall that 77 C Z is the fixed point set of ¢, which is a finite disjoint union of
[X(70)], 1] € E by (1.8.37). Let A7(T'Z|oz,VT?2), ch®(F, VF) be the closed
differential forms on “Z defined by (7.2.5), (7.2.6).

By [AB67, AB68| and [LM89, Theorem 14.11 in Chapter 3|, Inds. (o, D) can be

computed by the Lefschetz fixed point formula of Atiyah-Bott, so that
Indyo (0, D?) = Try[o? exp(—tD%?/2)]
7.4.3 ~
( ) — / AU(TZ|OZ,VTZ‘GZ)ChU(F, VF)
o7

By Proposition 1.8.8, if [fy]g € E, the action of 0 on ST ® F|ix (40 Is equiv-

alent to the action of k~!'o on the corresponding vector bundle S™* ® F over
I'NZ(k~*o)\X(k™'o). Then on each component [X (yo)] of “Z, the following func-
tion is constant,

(7.4.4) [E”(TZ\UZ, V1Zle2)ch? (F, VF)]
and it is equal to

(7.4.5) {E’f‘lﬂ(me(klo), VT XIxw—10))ch o (F VF)] .
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Then by (4.5.11), (4.5.17) and using Theorem 7.1.1, Theorem 7.2.1, we get
Trgfo?e P72 = Y Vol(I' N Z(y0)\X (v0))

bl eE
max

(7.4.6) x [EU(TZ\UZ, VT4 2)eh (F, VF)

=Y / A%(TZ|z, VT2 2)ch? (F, V7).
X (o))

MUEE
By (1.8.38), (7.4.6) is equivalent to the second identity in (7.4.3).

7.5. The de Rham operator. In this subsection, we no longer assume that dim p
is of even dimension or that K is simply connected. We assume that G has compact
center. Recall our notation m = dim p.

Let (©2.(X),d") be the de Rham complex of smooth forms on X with compact
support. Let d** be the formal adjoint with respect to the L, product induced by
the Riemannian structure on X.

Put

(7.5.1) D* =d* 4+ d**.

Then D*? = [d¥,d**] is the Hodge Laplacian of X.
Let £X be the operator defined in (3.6.2) with £ = A'(p*). By [B11, Proposition
7.8.1], we have,

X2
(7.5.2) D2 =LY~ éB*(m?, kY — 116Trp[cﬂp].
Set
(7.5.3) B— LBt k) — Lrwe[ctr.

8 ’ 16
By (3.4.7), (3.4.8), we also have
(7.5.4) p = —éB*(/{g, K?).

It is a scalar operator on . (X). By (7.5.2), (7.5.3), we can write
1
(7.5.5) §DX’2 = L5
Recall that the Casimir operator C? descends to the operator C®* acting on Q.(X).
By (3.6.2), (7.5.4), (7.5.5), we get
(7.5.6) D*? = 09X,

Let e(T'X, V™) be the Euler form of TX that is associated with the Euclidean
connection VX If dim X is even-dimensional, then

(7.5.7) e(TX, V') = Pf {P;:(}

If dim X is odd-dimensional, then e(T'X, V™) vanishes identically.
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The semisimple element yo is assumed to be in the form in (7.1.13). Let T'(yo) C
K (o) be a maximal torus with Lie algebra t(yo) C €. As in [B17, eq.(8.9)], set

(7.5.8) b(y0) = {e € p(k~'0) | [e, t(y0)] = 0}.
Then
(7.5.9) a € b(yo).

If Y € €(yo), there exists kg € K(yo) such that Ad(ky)Y{ € t(yo). Then if
v € b(vyo), we have

(7.5.10) exp(ad(Yy))k o Ad(ky v = v.
Theorem 7.5.1. Ifdimb(yo) > 1, ift > 0,
(7.5.11) Tr 0o exp(—tD*2/2)] = 0.

In particular, if yo is nonelliptic, then (7.5.11) holds.

Proof. Note if Y € €(vyo), then
T O exp( i ) (1) ) (o)
= det(1 — exp(iad(Yy))Ad (o k))],.

If dim b(yo) > 1, then by (7.5.10), the right-hand side in (7.5.12) vanishes identi-
cally. Using the formula in (5.2.1), we get (7.5.11). If yo is nonelliptic, then a # 0.
By (7.5.9), we get dim b(vyo) > 1.

(7.5.12)

0

Theorem 7.5.2. If yo is elliptic, fort > 0,
(7.5.13) Tr 0 exp(—tD¥?/2)] = [e(TX('yU),VTX(W))}maX.

Proof. Now v = k! € K. Then

(7.5.14) b(yo) C p(yo).
Moreover, by [K86, pp. 129], b(yo) @ t(yo) is a Cartan subalgebra of 3(vo).

Case 1: if m is odd and o preserves the orientation of p, or if m is even and o
does not preserve the orientation of p, then the right-hand side of (7.5.12) vanishes
identically so that the left-hand side of (7.5.13) vanishes. Also dimp(yo) is odd, so
that the right-hand side of (7.5.13) vanishes.

Case 2: if dimb(yo) > 1, then by Theorem 7.5.1, the left-hand side in (7.5.13)
vanishes. Let w?(?) = wt9) 4 (,#(09) be the left-invariant 1-form on Z°(yo) with
values in 3(yo). Recall that 09 is the curvature of the connection form Z°(yo) —
X (yo), e,

1
(7.5.15) Q07 = — [P07), w07 € A(p(0)") @ B(70).

By (7.5.10), if Y € €(y0), then
(7.5.16) Pf[ad(Yy)] = 0.
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By (7.5.7), (7.5.15), (7.5.16), we get e(TX (yo), VIX09)) = 0.
Case 3: if b(yo) = {0}, then t(vy0) is a Cartan subalgebra of 3(yo). We may and
we will assume that either m is even and o preserves the orientation of p, or m is

odd and o does not preserve the orientation of p. Then dim p(vyo) is even.
By (7.5.12), we get

Te* ) exp(—ip" P (Y5)p" ) (ko))
(7.5.17) = (=) PO 2PE[ad (Y] [y A2 (1A (V) pr0)
det(1 — e ™D AA(k™10)) 1 (1)
By (5.1.12), we get
T (Vo) Tt D fexp(—ip™ ®7 (V) p* O (k)]
= (= 1) PEad (Y5) [pr) ) A" (1ad (V) |y70)
[det(l — e ODAd(k710)) 2 (40) 1/2.
det(l — Ad(k’_lO'))zL(vo)
We use the arguments as in (7.3.51) - (7.3.58). Then
(_1)dimp('ya)/2 B
(27t )p/2

(75.19) x [expw’w/z) (Pf[ad(YO*)|p<w>]2—1<z‘adm*>rm)
[det(l _ eiiad(YO)Ad(kila))aL(vU)]1/2 (—tp0)) -
det(1 — Ad(k710));1 (40

Let me(,0)(Yy) be the corresponding function on t(yo) as in (7.3.17). By (7.3.18),
we get

(7.5.18)

Tr 0 [exp(—tD*?/2)] =

exp(tAt7) 2) (Pf[adm*)wﬂﬁ1<z'ad<xf>|3<w>>

[det(l — e P ODAA(K 1)), (4011172
det(l — Ad(k_lg))zL(,ya)

1
= exp(tAt9) /2 (77 A YOPFad (YY) (0o
P— p( /2) | Te(yo) (Yo ) PE[ad(Y) |p(yer)]

(7.5.20)

L det(1 — e=0DAA(k™10)),1 (y0) 1172
A7 (iad(Yy) 5000 | det(1 = Ad(E 1)), z) g >
Yo

If we compare the right-hand side of (7.5.20) and the right-hand side of (7.3.60),
we may see that if we replace G by its compact form, then we can apply the same
arguments as in (7.3.61) - (7.3.66) to evaluate (7.5.20). More precisely, put

(7521) gc = g ®r C, u= \/—lp@g.
The Lie algebra u is called the compact form of g. By (7.5.21), we have
(7522) dc = Uc.
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Also B extends a negative definite bilinear form on u and a C-bilinear form on gc.
Let G¢ and U be the connected group of complex matrices associated with the Lie
algebras gc and u. Since G has compact center, by |[K86, Proposition 5.3|, U is a
compact Lie group.

Let k* € A*(u*) be defined by (3.4.5). One can verify

(7.5.23) B*(k", k") = B*(k?, k?).

Since o preserves the splitting (1.1.1), then ¢ is an automorphism of Lie algebra
u. We will assume temporarily that o lifts to an automorphism o of U.
Let U(vyo) be the centralizer of yo in U with Lie algebra u(yo) C u. Then

(7.5.24) u(yo) = vV—1p(yo) @ t(yo).

Moreover, t(yo) is a Cartan subalgebra of u(yo). We still use T'(yo) C U denote
the corresponding maximal torus. Similarly, we have

(7.5.25) ut(yo) = V—1pt(yo) @ £ (y0).

The root system R(¢(y0),t(y0)) can be extend to a root system R(u(yo),t(y0)).
Also the positive root system R'(¢(yo),t(yo)) can be extended to a positive root
system RT(u(yo),t(yo0)).

Let Ty(40)(Yy) be the function on t(yo) defined in (7.3.17) with respect to u(yo).
Then

(7.5.26) Tur0)(Yg) = £ PO P ad(Y]) oo e (V) -
The right-hand side in (7.5.20) can be rewritten as

i(_i)dimp(va)/z t(yo) B A-1/: 4
T )(YE) exp(tA™N7 [2) | Tyre) (Yo ) AT (1ad(Yg) u(ro))
u(yo 0

[det(l — e ODAA(K10) )yt (y0) 112
det(1 — Ad(k~10))

(7.5.27)

ut(yo)
By (7.3.69) in Remark 7.3.4, the function in Y§ € t(yo),

det(1 — e‘iad(YOE)Ad(k_la))ul(w)]1 /2

0 41, ¢
(7528) WH(WG)()/O)A (Zad(}/O”u(’yo'))[ det(l _ Ad(kilo'))uL(,YU)

is an eigenfunction of A'0?) associated with the eigenvalue —1B*(x", £*), which is
equal to —3 B*(k9, k9).
By (7.5.4), (7.5.19), we get
(—1)dimp(e)/2
(2mt)r/?
det(1 e AR )) 1)
det(1 — Ad(k~10));1(y0)

Te,07 [exp(—tD¥?/2)] = Pflad (=) 0]

(7.5.29)

A~ (iad (—t00) | o)) [
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By (7.5.15) and using the same arguments as in the proof of [B11, Proposition
7.1.1], one can prove that

det(1 — e AG (- 1g))

z#(w)}l/? -1
det(1 — Ad(k—la))él( ’

(7.5.30) A~ (iad(—t200)[, )]

v9)

By (7.5.29), (7.5.30), we get

(—1)dime(r0)/2
(2mt)r/?

_ [Pf[ad(Qa(w))|p(w)]]max.

T, fexp(—tD¥?/2)] = [Pf [ad(—tﬂﬁ(”"))\ma)]}

(7.5.31)

2

By (7.5.7), we get (7.5.13).

In general, the adjoint action of ¢ on u does not lift to an automorphism of U. If
u is semisimple, then by [K86, Theorem 4.26], there exists a finite cover group U’ of
U which is simply connected so that o lifts to an automorphism of U’.

If u is not semisimple, let 3(u) be the center of u, then

(7.5.32) u=3u) ® [u,ul.
Since G has compact center, we have
(7.5.33) 3(u) C

Also the action of o on u preserves the splitting in (7.5.32). Let Z°(U) be the
identity component of the center of U and let U* be the analytic subgroup of U
with the Lie algebra [u,u]. Let U*™ be the compact universal cover group of U®.
Then U' = Z°(U) x U*s is a compact finite cover group of U. The action o on u lifts
to an automorphism of U’.

Let K’ C U’ be the analytic subgroup associated with the Lie subalgebra €. Then
K’ is a finite cover group of K. If k € K, then Ad(k) on u can be replaced by Ad(k’)
with some k' € K.

We use U’ and k' € K’ instead of U and k € K, the arguments (7.5.26) - (7.5.31)
still hold. This completes the proof of (7.5.13) in full generality. 0

Let NA® NAT"X) be the number operators of A'(p*), A'(T*X) respectively. If
g is an isometry of p, then

(7.5.34) Tr NP [NYEDg] = gblbzo det(1 — g~teb).

If the eigenspace associated with the eigenvalue 1 is of dimension > 2, then the
quantity in (7.5.34) vanishes. If m is even and ¢ preserves the orientation of p, or if
m is odd and g does not preserve the orientation of p, then by [B11, eq.(7.9.2)], we
have

(7.5.35) Tr M PNV — E)g] = 0.
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By Theorem 5.2.1, we obtain
T@hﬂ[@vﬂﬂ”x>—?g)exp(—tDX9/2n

1
—exp—tﬁ—aQQt/ Ty (Y
(7536) (27Tt)p/2 ( | | / ) ty0) ol ( 0)
¢
AT En T Ciad (Y 1y 4%
Try (N 5 ) exp(—iad(Yy))ad(k o) Bty

Now an extension of [B11, Theorem 7.9.1] can be established.

Theorem 7.5.3. If one of the following three assumptions is verified:
(1) m is even and o preserves the orientation of p;
(2) m is odd and o does not preserve the orientation of p;
(3) dimb(yo) > 2,

then fort > 0, we have

(7.5.37) Ty, Dl [(NA 77X %) exp(—tDX2/2)] = 0.

Proof. The first two cases follows from (7.5.35) and (7.5.36). The third case follows
from (7.5.10), (7.5.12), (7.5.29) and (7.5.36). 0

7.6. The case G = K. We now assume G = K. Then g = ¢ p = 0. The space
X = G/K is reduced to one point. Then by (1.2.6),

(7.6.1) > = Aut(K)

We now take o € Aut(K). Recall that K is the compact group generated by K
and o in K x Aut(K). Let (E, p¥) be a finite-dimensional unitary representation of
Ko. Puty=k'lo, ke K.

Let A be the endomorphism of £ defined in (7.1.11). Then

(7.6.2) LY =0.
The kernel (k) on K associated with exp(—tL%) is given by
(7.6.3) q(k) = pP (k) € Aut(E).

Recall that the function J5(Yf) is given by (5.1.14).
Theorem 7.6.1. Ift > 0, then

/ ORI 0) exp(ip () — 14

7.6.4
(7.6 e

(2mt)a/?

exp(~[Y[2/2¢) — TP [ (ko).

Proof. By (4.2.4), (4.2.6), (5.2.1), we get (7.6.4). This is a special case of Theorem
7.2.1. O
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7.7. The de Rham operator associated with a flat bundle. We still assume
that G has compact center. Let (E, p”) be a representation of G°. We use the same
notation p¥ for the restrictions of this representation to G, to K and to K°.

Recall gc, u are given in (7.5.21). Let Uu, Ugc be the enveloping algebras of u,
gc respectively. Recall that U, G¢ are the connected groups of complex matrices as-
sociated with u, gc. Then Ugc can be identified with the left-invariant holomorphic
differential operators on G¢. By [K86, Proposition 5.6], G is still reductive, and
G, U are closed subgroups of G¢. In particular, U is a maximal compact subgroup
of G(c.

Let C* be the Casimir operator of U associated with B, by (1.1.18), (3.4.2), we
have

(7.7.1) C*=C*eUgnUu.

The representation (E, p¥) can be regarded as a representation of u, or a C-linear
representation of gc. By Weyl’s unitary trick [K86, Proposition 5.7|, if U is simply
connected, then it is equivalent to consider representations of G, of U on FE, or
holomorphic representations of G¢ on E. Also by the arguments in Case 3 of the
proof of Theorem 7.5.2, when replacing U by a finite cover group of U, we can always
assume that o extends to an automorphism of U and that the representation of u
on E can be extended to a representation of U. Then by (7.7.1), we have

(7.7.2) CcvF = 0% € End(E).

Let 7" be a maximal torus of U with Lie algebra t' C u. Let R(u,t) be the
associated root system with the positive roots system R, (u,t). Recall that p, is
defined as in (2.2.6). If (E, p?) is an irreducible unitary representation of U with
the highest weight X € t*, then by (7.3.44), (7.7.2), we get

(7.7.3) C¥F = —4m*(lpy + N> = | pul?)-
Also by (7.3.16), (7.5.23), we have

1
(7.7.4) - 13*(/19, K9) = 4| py|*.

The group ¥ now embeds in Aut(U). Put
(7.7.5) U =U x%°.

Then (E, p¥) is a representation of U°. We equip E with a Hermitian metric h*
invariant by U°, then h¥ is also invariant by the action of K° and p” maps p to
self-adjoint elements in End(F£).

Put F = G x g E. Let V¥ be the Hermitian connection induced by the connection
form w*. Then the map (g,v) € G xxg E — pP(g)v € E gives the canonical
identification of vector bundles on X,

(7.7.6) GxxyE=XXE.
Then F is equipped with a canonical flat connection V/ so that

(7.7.7) VES = VF 4 pB(wP).
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Recall that R is the curvature of V¥,
1
(7.7.8) R = —ipE([wp,wp]).

As in (7.2.8), we claim that if £ € K, then if z € X(k™ o)

F
(779) T (ko) exp(— )] = TP (ko).
i
Indeed, using (7.7.8), one gets at x = pl € X(k7'0), s € R,
O o B[ A GH)RE -1 sR”
s 10 [P (k™ o) exp(—- )]
(7.7.10) 1 {P)@E sp” ([w?, b))
= RTTEHPE(W’D%PE(W’J)PA ® )®E(k IU) eXP(T)H
=0.

When taking s = 0 and s = 1 in TrZ[pA ¢?D9F(p~1q) exp(—sﬁj)L we get (7.7.9).
Let (Q.(X, F),d*") be the de Rham complex associated with the flat vector
bundle (F, VF/). Let d¥¥* be the adjoint operator of d*¥" with respect to the L,

metric on (X, F'). The Dirac operator DX of this de Rham complex is given by
(7.7.11) DXF — gXF o gX.Fx

Recall that c(p), ¢(p) act on A'(p*) by (3.1.5). Similarly, ¢(7TX), ¢(TX) act on
A (T*X). We still use eq, ---, e, to denote an orthonormal basis of p or T'X, and
let e!, ---, e™ be the corresponding dual basis of p* or T*X.

Let VA (T"X)@Fu he the connection on A (T*X) ® F induced by VX and V.
Then the standard Dirac operator is given by

(7.7.12) DX = Z c(ej)VeAj‘(T*XWU,
j=1
By [BMZ17, eq.(8.42)], we have
(7.7.13) DYF = DY 4 Teles)pt ().
j=1

The Casimir operator C® descends to an elliptic differential operator C®* acting
on C®(X, A (T*X)® F), and recall that C®¥ defines a smooth section of endomor-
phism of F. Asin (3.6.2), set

1 1
(7.7.14) L5 = ng’X + gB*(I{g, K9).
By [BMZ17, Proposition 8.4] and (3.4.8), (7.5.4), we have
DXF2

1 1
(7.7.15) = L5 - —ovF — éB*(FLg, K9).

2 2

In particular, D*%2? commutes with the action of G°.
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We still assume that yo is a semisimple element given by (7.1.13). Recall that
b(yo) C p(k~'o) is given in (7.5.8) and that the notation []™** refers to the forms
on X(vyo).

Theorem 7.7.1. Fort > 0, the following identity holds:

Tr 0 [exp(—tDXF2/2)]

= M exp(iTl”E [CE’E] + %Trp [C&p]) / JW(YOE)

(27Tt)p/2 48 t(yo)
(7.7.16) A (p*)®ET A (p)QE (1.—1 C N (pF)RE (vt t o E
TN OIS OIS (L) exp(—ip VB () 4 £ COF)
dYs
exp(~ ¥ 1/20)
If dimb(yo) > 1, then
(7.7.17) Tr,0 [exp(—tDXF2/2)] = 0.

If vo is elliptic, then

(7.7.18)  Tr 0 7exp(—tD*?/2)] = [e(TX (yo), VIO "™ TP [ (ko).

Proof. The identity in (7.7.16) follows from (5.2.1), (7.5.3), (7.7.15).
As in (7.1.17), one can write

TN VSB[ 0 (1 0) exp(—ip I () + £ C0F))
(7.7.19) = Tr N 0[N ) (ko) exp(—ip ) (¥8))]

. t
X TrE[pE(kflo-) eXp(_ZpE()/E)E) + icng)]

By (7.7.19), the proof of (7.7.17) is exactly the same as the proof of Theorem
7.5.1.

The proof of (7.7.18) is a combination of the proofs of Theorem 7.2.1 and of
Theorem 7.5.2. We still use the same notation as in the proof of Theorem 7.5.2.

The arguments in Case 1 and Case 2 of the proof of Theorem 7.5.2 are still
applicable. Then we reduce the proof of (7.7.18) to Case 3 where dimb(yo) = 0.
Then t(vo) is the Cartan subalgebra of ¢(yo) and of u(yo) in the same time.

Using the arguments (7.5.17) - (7.5.27), we get
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i(_i)dimp('ya)/2
(2nt)?

[ exp(tAY0?) /2) <A\_1 (iad (Y utro)

[det(l — e P ODAA(E10) )yt (30112
det(1 — Ad(k—10))

Ty, 1] [exp(—tD*2/2)] = exp(—tp)

(7.7.20)

ul(vo)
t max
T () expl-in () + 5OV ) (0000 |
We may and we will assume that (FE, p¥) is an irreducible unitary representation
of U?. Now we can proceed the arguments in subsection 7.3 to (7.7.20). Using the

corresponding character formula of U as in (7.3.64) and by (7.5.30), (7.7.3), (7.7.4),
(7.7.9), we get (7.7.18). 0

Remark 7.7.2. If we take £ = C with the trivial representation, we get Theorem
7.5.1 and Theorem 7.5.2 as consequences of Theorem 7.7.1.
If we take G = K, (7.7.18) reduces to (7.6.4).

Theorem 7.7.3. Ift > 0, the following identity holds:
Tr, 0] {(NA‘T*X) — %) exp(—tD* 2 /2)}

= M exp(iTre[CB’E} + %Tl“p [Cé’p])/ J“/U(YOE>

2mt)r/? 48
(7.7.21) (2rt) te)
Tr A 6o {( NAGY) _ %) PN PIRE (=15
(o t dYy
i N )RE (1t Y eE _1vE2 0
exp(—ip PO + 5OV expl-I1SP 20

If m is even and o acting on p preserves the orientation, or m is odd and o does
not preserve the orientation of p, or if dimb(yo) > 2, then (7.7.21) vanishes.

Proof. The proof of (7.7.21) follows from (5.2.1), (7.5.3), (7.7.15). The proof of the
rest part is the same as the proof of Theorem 7.5.3. O

Corollary 7.7.4. If yo is elliptic, i.e., v = k™' € K, if dimb(yo) = 0, then

(7.7.22) Tr bl | (VA7) — %) exp(—tD*F2/2)| =0,
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Proof. As in the proof of Theorem 7.5.2, when ~o is elliptic, b(yo) @ t(yo) is a
Cartan subalgebra of 3(yo).

If dim b(yo) = 0, then dim p(yo) is even. If 7 preserves the orientation of p, then
dim pt(y0) is even. If v does not preserves the orientation of p, then dim p*(yo) is
odd. By Theorem 7.7.3, we get (7.7.22). O

7.8. Equivariant Ray-Singer analytic torsions on Z. Let Z be the compact
smooth manifold considered in subsection 7.4. The group 7 acts on Z isometrically.

The flat vector bundle F' defined in subsection 7.7 descends to a flat vector bundle
on Z, which we still denote by F' on which X7 also acts. Also the operator DX
descends to the corresponding operator D%* so that

(7.8.1) DZF — gZF | gZFx,

Then D% commutes with 7.
Let H (Z, F) be the cohomology of (Q(Z, F),d?T). By Hodge theory,
(7.8.2) ker D% ~ ' (Z, F).

Recall that the equivariant index of D%! is defined in (7.4.2). In this case, we will
change the notation to

(7.8.3) Xo(F) = Tr,T @5 5],
Let N*(7"2) denote the number operator on ' (Z, F). By standard heat equation
methods, there exists [ with 2] € Ny such that as ¢t — 0, for £ € N|

_ar | —1/2
Tt pe1y2

byt 4 agth 4 o(tF).

Tr, [NY T2 57 exp(—tD%52)] + - ag 4 appat P

(7.8.4)

Let (DZ2)~1 be the inverse of D%2 acting on the orthogonal space of ker D% in
Q(Z,F).

Definition 7.8.1. For s € C, Re(s) > [, set
(7.8.5) Io(g"?, V5 g ) (s) = —Tr [NV T 267 (D#F2) 70
By [See67], J,(g7%,VE/ g¥)(s) extends to a meromorphic function of s € C,
which is holomorphic near s = 0.
Definition 7.8.2. Put

109,(g"™%, V7, g") (0)
2 Os '

Then (7.8.6) is called the equivariant Ray-Singer analytic torsion of the de Rham
complex (' (Z, F),d*")|RS71, RS73, BG04, BLO0S].

(7.8.6) To(g"?, V5 g") =
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For ¢t > 0, as in |[BLO0S, eq.(1.8.5)], put

1 -
b(F,g") = 5T [(NA 12 _ %)02(1 — tD#%"2 /2) exp(—tD%**? /4)]

(7.8.7) 1 5
(1 + Qta)Trs |:(NA~(T*Z) - %)0’2 eXp(—tDZ,F,2/4)] .
Then by(F, g") is a smooth function in ¢ > 0.
Put
(7.8.8) Xy (F) = Z YT 70 o],
i=
By [BLOS, eqs.(1.8.7),(1.8.8)], as t — 0,
(7.8.9) bi(F,g") = O(V1).
Ast — o0,
1
(7.8.10) bi(F.g") = SX(F) = Txa(F) + O(1/VA).
Set
1, m
(7.8.11) beo(F,g") = 5o (F) = X (F).

Let I'(s) be the Gamma function. By [BLOS, eq.(1.8.11)], we have

TZ —Ff F dt e F Py At
To(g 2,V g") = i bt(Fg )t 1 (be(F,g") = bso(F, g ))7

—(I"(1) +2(log(2) — 1))bso(F, g").

(7.8.12)

By (4.5.11), (4.5.17), we get, for t > 0,

Tr {(NA T2) _ 2)0 exp(— tDZ’F‘2/4)}

(7.8.13) = mze:cVOI(F N Z(yo)\X (y0))

Tr,0! [(NA (T"X) _ 5 ) exp(— tDX’F’2/4)} .

For v € T, if vo is conjugate to an element e*,k~'o as in (7.1.13), put

(7.8.14) e(yo) = dim b(e"k o).
Then €(y0o) is an integer which depends only the class ma € C. We also put
(7.8.15) e(m) = €(vo).

Proposition 7.8.3. If one of the following three assumptions is verified:
(1) m is even and o preserves the orientation of p;

(2) m is odd and o does not preserve the orientation of p;
(3) Fory €T, e(yo) # 1,
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then we have
(7.8.16) To(g", V5 g") =0

Proof. If m and o verify one assumption of the first two cases in Proposition 7.8.3,
then by Theorem 7.7.3 and (7.8.13), we get, for t > 0,

(7.8.17) T, [(NY (T2 — %)UZ exp(—tD%F2/4)] = 0.

By (7.8.7), (7.8.17), we get the function b;(F, g*') vanishes identically for ¢ > 0. In
particular,
(7.8.18) boo(F, ") = 0.
By (7.8.12), we get (7.8.16).

Note that if v € T is such that yo is non-elliptic, then e(yo) > 1. If the third
assumptions is verified, then if v € T", by Theorem 7.7.3, Corollary 7.7.4, the identity

(7.8.17) still holds. Then the same arguments above shows that (7.8.16) holds. This
completes the proof of our proposition. O

Note that Proposition 7.8.3 is just an analogue of some classical results of the
analytic torsion as in [MS91, Corollary 2.2|, [Lot94, Proposition 9], [BL95, Theorem
3.26], [B11, Section 7.9], [BMZ17, Theorem 8.6].
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8. A KIRILLOV FORMULA AND THE W-INVARIANT

The purpose of this section is to construct a sequence of representations associated
with a given representation of U?. Also we prove a Kirillov formula to compute the
asymptotic behaviour of associated characters.

Also in we recall the construction of the W-invariant of locally symmetric space
in [BMZ17|, which will be applied to the commutator Z°(yo).

This section is organized as follows. In subsection 8.1, we recall a fixed point
formula of Berline and Vergne [BV85] for U°.

In subsection 8.2, when F is a representation of U? with a fixed highest weight
A by o, we construct a sequence of representations of U7 using the geometry of the
flag manifold M), eventually by replacing A by d\.

In subsection 8.3, we recall the constructions of the form W on X associated
with the group G. This construction will be applied to the symmetric space X (yo)
associated with Z°(yo) with v € K.

In subsection 8.4, we show that the nondegeneracy condition associated with
G implies the nondegeneracy condition associated with Z°(yo) in the case of the
coadjoint orbit of A.

8.1. A fixed point formula of Berline and Vergne. We use the same notation
as in subsections 7.5, 7.7. Recall that U is the compact form of G, so that K is a
closed subgroup of U. We assume that ¢ acts on U as an automorphism. Then ¢
acts on U. Recall that

(8.1.1) U =U x 5.

Let M be a compact complex manifold equipped with a holomorphic action of U°.
We denote by T'M the holomorphic tangent bundle of M. Let g be a U°-invariant
Hermitian metric on T'M.

Let L be a holomorphic line bundle on M, let ¢ be a Hermitian metric on L,
and let V¥ denote the corresponding Chern connection. If r% is the curvature of
V%, then

TL

L
(8.1.2) a(L,g”) = py

In the sequel, we assume that c;(L, g*) is a positive (1,1)-form, i.e., if B € TM,
then —icy (L, g*)(B, B) defines a Hermitian metric on TM. We also assume that
the holomorphic action of U? on M lifts to a holomorphic unitary action on L.

If y € u, let y™ be the associated real vector field on M, and let L?f denote the
natural action of y on the smooth sections of L, which lifts y™ to L. Then y™ (1.0
is a holomorphic section of TM. Let p: M — u* be the map such that

(8.1.3) Ly = Vi —2mi{u, y).

We call i the moment map associated with the action of U on L.
If y1, yo € u, then by [BMZ17, eq.(3.8)], we have

(8.1.4) (1, [y1, w2} = ea (L, g") (w1 93").
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Let VM be the Chern connection on M, and let RT™ be its curvature. If y € u,
let LZM be the natural action of y on the smooth sections of TM. Let v7(y) be
the map given by

(8.1.5) 2miv™ (y) = VI — LM,
Set
(8.1.6) ¢ =det TM.

Then ¢ is a holomorphic line bundle on M.

The metric g™ induces a Hermitian metric ¢¢ on &, and U acts holomorphically
and isometrically on &. Also the analogues of (8.1.2) - (8.1.4) hold. Let V¢ denote
the corresponding Chern connection on &, and let r¢ be the curvature of V¢. Then

(8.1.7) r¢ = Tr[R™].
By (8.1.2), we have
1
(8.1.8) a(&, ¢) = ——Tr[R™],
2m

Let v : M — u* be moment map associated with the action of U on M and
c1(&,¢%). Then by (8.1.3),

(8.1.9) LS = Ve, —2mi(v, y).
By (8.1.5), (8.1.9), we have
(8.1.10) Tl ™ (y)] = (v, ).

Put L? = L% 1f i > 0, H®)(M, L) is a finite-dimensional representation of U?.
By Kodaira’s vanishing theorem, for d € N such that ¢;(L¢ ® €, ng@f) >0, if i > 0,
H©) (M, L) vanishes.

If B is a complex (g, q) matrix, put

(8.1.11) |B| = sup |s|.
s€Sp(B)

If B is such that |B| < 27, set

8.1.12 Td(B) = det ——.

(8.1.12) (B) = det -

If B is Hermitian, no condition on B is necessary to define Td(B).
Set

(8.1.13) e(B) = det B.
We fix ug € U°. Put
(8.1.14) Z=U%up)NU.

Let Z° be the connected component of Z containing the identity, and let 3 C u be
the Lie algebra of Z. -

Let “M be the fixed point set of M. Then “°M is a complex submanifold of M,
and the group Z acts holomorphically and isometrically on “° M.
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If 2 € “M, let e, .. €% 0<6,---,0, <271 be the distinct eigenvalues of
ug acting on T, M. Since ug is parallel, these eigenvalues are locally constant on
M. Then T X |uops splits holomorphically as an orthogonal sum of the subbundles
TM?Y%. The Chern connection V7Mu0ar on T'M|uys splits as the sum of the Chern
connection on TM% . Let R% denote the corresponding curvature.

The equivariant Todd genus is given by

) RO Td,, R
wong, g7 Mlroar) = Td(—m)};[o (j)( ~ 9 +16;).

If y € 3, let v"™Mlonm(y) be the restriction of v7¥(y) to “M, which is given by
the same formula as in (8.1.5) with respect to the action of Z on T'M |ug ;.

The action of "Ml (y) preserves the splitting of TM|u ;. Then the equivariant
Todd genus Tdy* (T M |ups, g 1*0r) is given by the same formula in (8.1.15) when

0; RY .
replacing o by the equivariant curvature o 1 TM%

Tdy°(TMluwys) the equivariant cohomology class of Td(T M |uyy, g™ Imorr). We
refer to [BV85], [BGV04, Chapter 7| for more details.

If z € “M, ug acts on L, by a complex number pf(ug) of modulo 1. The
equivariant Chern character form of L|uoy, is given by

(8.1.16) chy” (Llsonr, g"1"0v) = p* (uo) exp (2mi{p, y) + 1 (Llwonr, gH*0M)).

If d € N, then

(8.1.17)  chyo(L?
For u € U7, set

(8.1.18) Xr,d(u) = TTsHm")(M’Ld)[UL

By [BV85, Theorem 3.23|, if y is in a small neighbourhood of 3, we have

(8.1.15) Td*(TM

(y). Also, we denote by

wo M s ngIqu) = p"(up)® exp (27m'd<,u, y) + deq (L Ll“OJVI))'

uo My g

Xz,d(uoe?) :/ Tdy° (T M [uoar) p" (uo)"
wo M

exp (2mid(p, y) + dey (Llvonr, ngqu))

(8.1.19)

8.2. A sequence of unitary representations of U?. Let u™® be the set of regular
elements in u.

Lemma 8.2.1. We have
(8.2.1) u(o) Nu'e £ ().

Proof. If u is Abelian, then 0 € u™8. If u is not Abelian, as in (7.5.32), if 3(u) is the
center of u, then

(8.2.2) u=3u)® u,ul.

Since [u, u] is semisimple, it is isomorphic to the Lie algebra of Aut(U). In partic-
ular, if o € Aut(U), by [DK00, Lemma (3.15.4)], [u,u](0) contains regular elements
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n [u,u]. By (8.2.2), a regular element in [u,u] is also regular in u. This completes
the proof. O

We fix v € u(o)Nue. If ' = u(v), then t' is a Cartan subalgebra of u. Let 77 C U
be the corresponding maximal torus. Let Ry be the associated root system, and let
Wy be the associated Weyl group. Let ¢ C t' be the Weyl chamber containing v,
and let P, (c) be set of the dominant weights on u with respect to c.

Put

(8.2.3) a=1tnNuo).

Then a is a Cartan subalgebra of u(c). Let A C U%(¢) be the corresponding maximal
torus.

Let (E, p) be an irreducible unitary representation of U?, and let x¥ be its char-
acter. Since o preserves Ry, then by Theorem 2.4.5, p¥ (o) permutes the different
U-irreducible components in E. If (E, p¥) is not irreducible as a U-representation,
then if u € U, xF(uo) = 0.

We may and we will assume that (F, p¥) is also irreducible as a U-representation.
Let A € P, (c) be the highest weight of (E, p¥). Then

(8.2.4) goA= A
Then A € a*.
Set
(8.2.5) U(N)={uelU : u- A=A}
Put
(8.2.6) UN) =U(N)NU.
Then
(8.2.7) U(N\) =U(N) x X7,
Recall that the group Nyo(c) is defined as in (7.3.20) for the group U?, then
(8.2.8) Nyo(c) C U%(N).

By [W73, Lemma 6.2.2], U(\) is a connected compact subgroup of U. Moreover,
by [P09, Propositions 1.2.20 and 1.2.22|, there exists a torus

(8.2.9) Th'CA

such that

(8.2.10) U\ = Zy(Th).
It is clear that

(8.2.11) T CcU(N).

If X is regular, we have U(\) = T" and T} = A.
Let u(A) be the Lie algebra of U()), and let t; be the Lie algebra of T;. Then

(8.2.12) t C £ Cu()).
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Let Ry denote the root system of (u(\), ). Then
(8.2.13) R; C Ry.

Definition 8.2.2. A Weyl chamber ¢’ relative to (u, t') is called T3-admissible if there
exists a Weyl chamber ¢; of (u(X),t') such that if Ry, Ry are the positive roots
systems of Ry, Ry associated with ¢/, ¢;, then

(1) Ri4 = Ry N Ry;
(2) Iface RU—&-\RI,—H o € Ry, if a+ o € Ry, then a + o € RU+\R1,+.

By |[W73, Lemma 6.2.9|, there always exists Tj-admissible Weyl chamber ¢’ of
(u,t). Put

(8.2.14) br= )

a€Ry\R1, 4+
One can verify that
(8.2.15) [u(A), b ] C by, [b4,b4] Cby.
Set
(8.2.16) M, =U/UN).
Then by |W73, Lemma 6.2.13|, M), is a complex manifold with
(8.2.17) TMy = U xy by

Moreover, U acts holomorphically and isometrically on M. Put n, the complex
dimension of M.

In fact, if A is regular, then we can take ¢ = ¢, M) is a complex manifold which
does not depend on A. Put

(8.2.18) M=U]T.
We have a holomorphic projection

Moreover, py is U-equivariant.
Since o preserves U(A), the group U7 acts on M,. We have the identification of
homogeneous spaces,

(8.2.20) My = U’ JU°(A).

Use the arguments in [W73, Proof of Lemma 6.2.9|, there always exists a T}-
admissible Weyl chamber ¢’ such that Ry, is preserved by o, and that \ is a
dominant weight with respect to ¢’. Then the action of o preserves b, and the
holomorphic action of U on M) extends to a holomorphic action of U? on M,.

By (8.2.17), (8.2.20), we get

(8.2.21) TMy = U7 Xy by
Let E*+ C E be the vector space
(8.2.22) E* ={w e FE : if ve by, then p”(v)w =0}

Then E'+ is preserved by U°(\). Recall that Ey is the highest weight line of E.
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Lemma 8.2.3. We have
(8.2.23) E' = E,.

Moreover, the differential of the representation Ex of U(N) at 1 € U(N) is given by
2mi\ s u(\) — C.

Proof. Clearly, E\ C E'+. We only need to prove that dim¢ E*+ = 1.

We claim that E®+ is an irreducible unitary representation of U()) with highest
weight A. Indeed, if there are two linearly independent, non-zero highest weight
vectors in E°+ as a U()) representation, then these two vectors are also the highest
weight vectors with respect to the action of U on E, so that this is a contradiction
with the assumption that E is U-irreducible.

If o € Ry ¢, then (o, \) = 0. Let py\) be the element defined in (2.2.6) for R, ;.
Then by the dimension formula [BtD85, Chapter VI, Theorem (1.7)], we have

. (o, A4 puiny)
(8.2.24) dimg E' = -
H <057 pu()\)>

a€Ry ¢

=1

Put
(8225) L)\ =U° XUU()\) E,\.

Then L) is a holomorphic line bundle over M), with the U?-invariant Hermitian
metric gi*, and ¢;(Ly, g™) is a closed symplectic (1,1)-form. The action of U’ on
M, lifts to a holomorphic unitary action on L.

By [W73, Theorem 6.3.7], H®9(M,, L,) is a unitary representation of U? iso-
morphic to (E, p¥). If d € Ny, put

(8.2.26) E; = H®O(M,, LY).

Then (E,, pP?) is an irreducible unitary representation of U? associated with the
highest weight d\ € P, (¢/). Let xq be the character of U? associated with (Ey, p¥?).
By the results in subsection 8.1, the character y, is given by (8.1.19). In the
sequel, if uw € U, we will give an explicit description for the fixed point set of u in
M,y
Put

(8.2.27) Ny(T) (o) ={u € Ny(T") : Ad(u)|y commutes with oly}.

Then Ny (T7)(0) is a closed subgroup of Ny (T"). Let Ny(A) be the normalizer of A
in U, then one can verify that

(8.2.28) Ny(T") (o) = Ny(A).
If w e Ny(T")(o), then
(8.2.29) w-\ea.



130 BINGXIAO LIU

If v € U, put ug = yo € U?, then by [Seg68, Proposition 1.4, there exists u € U,
to € A such that

(8.2.30) ug = utgo(u™t)o.

Remark 8.2.4. Since in general o is not of finite order, (8.2.30) is not a direct
consequence of [Seg68, Proposition 1.4]. But a slight modification of the proof of
[Seg68, Proposition 1.4] will extend its conclusion to our case.

As in (8.1.14), put Z = U(up), and let 3 be its Lie algebra. Put
(8.2.31) ap = tyo € A7

Let U(ap) be the centralizer of ap in U, and let U%ag) be its identity connected
component. Moreover,

(8.2.32)  Nu(a) = a.

Then A is also a maximal torus of U°(ay).
By (8.2.30), we get

(8.2.33) Z =uU(ap)u™t, Z° =uUap)u™".

Then Ad(u)(A) is a maximal torus of Z.
Let “oM be the fixed point set of ug in M, let "M, be the fixed point set of wug

in M. If o' € U, let [u']), [u/] denote, respectively, the corresponding points in M),
M.

Lemma 8.2.5. We have
(8.2.34) My = ZUNy(T')(o)U(N) JU(N) C M.

Moreover, “ My has finite connected components. If v € uNy(T')(o), then the
connected component of [u']y is isomorphic to the flag manifold Z°/Z°(uw' - \) as
complex manifolds.

Proof. 1t X is regular, then M) = M, and (8.2.34) is just an equivalent version of the
results in [DHV84, 1.2 : Lemme (7)| and [Bou87, Lemme 6.1.1|. In general, (8.2.34)
can be regarded as a consequence of [Bou87, Lemma 7.2.2], where the author use a
different formulation. Here we give a proof of our lemma using our notation.

One can verify that the left-hand side of (8.2.34) does not depend on the choice
u and ¢, satisfying (8.2.30). Let “0 M, be the fixed point set of ag, by (8.2.30), we
have

(8235) qu/\ :U'GOM)\.
We claim that
(8236) p}\(qu) = qu/\.

Indeed, the first set in (8.2.36) is included in the second set. If u € U is such that
[u]y € “0M,, then

(8.2.37) u tugu € U7(N).
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As in (8.2.30), there exists g € U(\) such that
(8.2.38) g tutugug € A°.
Then [ug] € "M, and py([ug]) = [u]a-
The same arguments in the proof of [Bou87, Lemme 6.1.1] shows that
(8.2.39) “M = U%ao)Ny(T')(0)/T' C M.
By(8.2.33), (8.2.35), (8.2.36), (8.2.39), we get (8.2.34).
Recall that Ny(T")(o)/T" is finite, by (8.2.11), Ny(T")(o)U(X)/U(A) is a finite
set. Then “ M, is a finite union of Z°-orbits in M,.
Fix u' € uNy(T")(0) and = = [u']5 € “0M,. Then the centralizer of z in Z° is just
the subgroup Z°(u' - \).
Let t € Nyo(¢') C U?(X) be such that
(8.2.40) upu’ = u't.
Then by (8.2.21), the action of ug on T, M) is identified with the adjoint action of ¢
on b,. Then
(8.2.41) T, M, = b, (t).
It is clear that Ad(u')b.(t) C 3., and then we can take the complex structure on

Z°/Z°(u'-\) such that Ad(u/)b, (t) is identified with the holomorphic tangent bundle
of Z°/Z°(u/ - \). This completes the proof of our lemma.
O

Remark 8.2.6. If X\ € a*, let O, C u* denote the coadjoint orbit of A in u*. Then
(8.2.42) O, ~ M,.

Moreover, the moment map g on M, is just given by the inclusion i: Oy < u*.
By [BMZ17, eq.(8.123)], we have

(8.2.43) 0NN (1) =Wy -\
The fixed points set of ug in O, is given by Oy N 3*. Then by (8.2.42), we get
(8.2.44) WM~ Oy N3
Since the set
(8.2.45) u- (Oxna*) = O0\NAd(u)(a*)

is finite, we get that Oy M 3" is a finite union of Z°-orbits. From this formalism, we
get another proof of Lemma 8.2.5.

By Lemma 8.2.5, let “"M/{, jed be distinct connected components of “0M,. In
particular, J is a finite set. Take ! € uNy(T")(o) such that
(8.2.46) z; =[]\ € M.
Then by Lemma 8.2.5, we have the identification
(8.2.47) WM~ 2%/ 200 - N).
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We will denote

(8.2.48) B = (u!) tugu! € Nyo(c) C U7(N).
If jeJ, set
(8.2.49) n; = dime Z°/Z°(w? - \).

Since Z acts on “0 M, then we can divide *° M into different Z-orbits, in particular,
Z will permute the different connected components. If j € 7, let [j] denote the set

of indexes j’ in J such that “o M i/ and %o M )]\ lie in the same Z-orbits.
Let C'J be the set of classes [j] in J. Suppose that

We will denote the class [j,| by k¢, £ = 1,---,s. Moreover, the dimension n; only
depends on the class [j], we will denote n,, = n;,.
If x € “oM,, there exist j € J, z € Z such that

(8.2.51) T = 2.
Then zu/ € U is a representative of the point z. By (8.2.48), we have
(8.2.52) upzu? = zulhl.

Recall that p™ (ug) : “ My — S represents the action of ug on Ly|uopr,. Then by
(8.2.52), we get at x,

(8.2.53) P (ug) = p™ (h9).

By (8.2.53), p™*(ug) is constant on each Z-orbits, it is a locally constant function
on "o M/\.

Let 3(u/ - \) be the Lie algebra of Z°(uw/ - \), and let 3-(u’ - A) be the orthogonal
of 3(u? - X) in 3. Put

(8.2.54) q(w’ - A) = gNu(u - ).
Let g*(u/ - \) be the orthogonal of g(u? - A) in g. Then

Let Td™ (T M |uoar, , g" *"0¥1) be the equivariant Todd genus on “0 M, defined
in subsection 8.1, and let the function ¢,,, on "M denote the component of degree
zero of Td"® (TMA]uOMmgTM*‘“OMA).

By (7.2.5), (8.1.12), (8.1.15), if x = [u]) € “0M,, then

1 Auol, 1
u = A e 0).
(8.2.56) Puo (7) det V/2(Ad(uo)| gt (u-n)) v

It is clear that ¢,, is a locally constant function on “°M). In particular, if x €
“o MY, then

(8.2.57) Puo () = Puo (7).
Moreover, ¢,,(x;) only depends on the class [j] € C.J.
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Definition 8.2.7. Put
(8.2.58) n(ug) = max{n; : j€ J}.
Let CJ(ug) C CJ be the set of k, such that n,, = n(ug).

Recall that @ M) — u* is the moment map associated with the action of U on
Ly — M,.

Definition 8.2.8. If y € 3, j € J, set

(8.2.59) Rio,,\(?/) = / . exp (2mi(p, y) + CI<L>\’“OM79L/\‘HOM))'
Ifee{l,- -, s}, set
(8.2.60) Ry (y) = pug(i,) Y Rl \(1).

JEKL

Note that Rfmy)\(y) is just of the same type as the functions defined in [BMZ17,

Section 1.4]. We can verify that R/ | is a Z’-invariant function on 3, and that RS’ |

is a Z-invariant function on 3. Also Rio, ,(y) can be computed by the localization
formulas in [BGV04, Chapter 7|, [DH82, DHS3].

Let A3 be the standard Laplace on 3, then by [BMZ17, eq.(8.146)|, we have
(8.2.61) NR = —4Am? AR

UQ, A"

Proposition 8.2.9. Ify € 3, as d — +00, then

(8.2.62) Xd(ey/duo) — o) Z pEA (hjz)dRKe

moay) +O(d ),
HzECJ(uo)

Proof. By (8.1.19), as d — oo, the leading term of y4(e¥/ug) is given by the
integrals over the connected components of “0A/, with maximal dimension n(ug).
Then using (8.1.19), (8.2.53), (8.2.56), (8.2.59), we get (8.2.62). O

8.3. The forms e;, d; and the W-invariant. In this subsection, we recall the
construction of the forms e;, d; introduced in [BMZ17].

Let Sg be the symmetric algebra of g, which can be identified with the algebra of
real differential operators with constant coefficients on g. Let o : Ug — Sg be the
symbol map of Ug, which is also an isomorphism of vector spaces. For instance, if
u,v g,

(8.3.1) o(uv) = %(uv +vu) + %[u, v].

Let p be another copy of p. Recall that the symbol map of Clifford algebras is
defined in Definition 3.1.1, then we get a symbol map

(8.3.2) o:cp)®Ug— A(p*) @ Sg,

which is an identification of filtered Z,-graded vector spaces.
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Recall that w? is the left-invariant 1-form on G with values in p. Let ey, -+, ey,
be an orthonormal basis of p, then €, -- -, &, is a basis of p, and let €', ---, " be
the corresponding dual basis of p*. Put
(8.3.3) B=> e cp @y

i=1

By [BMZ17, eq.(1.8)], 8% € AQ(A*) ® Eis given by

(8.3.4) B = [B gl = *e & eiej].

Let B be the corresponding element of Bin A'(p*) ® Ug. Then 5° € A*(p*) ® Ug
coincides with 32 in (8.3.4).
Let |38]? € Sg be given by

(8.3.5) B = el
i=1
Let AP be the Laplacian of Euclidean space p, then
(8.3.6) B =
By [BMZ17, eq.(1.10)|, we have
(8.3.7) 1B € S?g N S*u, |B]* = —iB]* € S*ge.
Set
p
(8.3.8) 6] =) B(@)* € Us.
i=1
By [BMZ17, eq.(1.14)|, we have
(8.3.9) 18] € Ugn U, |B]> = —if|* € Ugc.
Then
(8.3.10) o(181%) = 18P
Set
(8.3.11) => @@ c(p) ® Ug.

=1
Then we have

(8.3.12) o(c(p)) = B.

Recall that TX @& N = G x i g. Note that the Lie bracket of g lifts to a Lie bracket
on the fiber of TX @ N. In the sequel, let g, be a copy of TX & N equipped with
the Lie bracket on the fiber, so that g, is a family of Lie algebras on X. Also we get
the bundle of enveloping algebras
(8.3.13) Ug, =G xg Ug.

Similarly, put
(8.3.14) Sg, = G Xk Sg.
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Let TX (resp. T*X ) be another copies of T'X (resp. 7*X) on X. Recall that
VX is the Levi-Civita connection of TX.

Let V97 be the connections on T*X X ®g induced by the connection form w*,
and let VU9 be the connections on 7% X ® Ug, induced by w'. We still denote by
VYU the corresponding connection on ¢(TX) @ Ug,..

Then w? can be considered as a section of T*X ® g,, and (3, 5 can be considered

as a section of T*X ® g T°X Ug, respectively. By [BMZ17, eq.(1.41)], we have

t

(8-3.15) ngﬁI/B — O’ ngr,aé — O
Definition 8.3.1. For t > 0, let A; be the superconnection
(8.3.16) A = yUeru + \/E/C\(é)

As in [BMZ17, Definition 1.2|, A? is a smooth section of [A’ (T*X)@E(f)\()]e"en ®
Ug,, and o(A?) is a smooth section of [A'(T* X)RA (T*X)]*"*" @ Sg,..

Recall that the product (-, -)" is defined in (7.3.52). By [BMZ17, Theorem 1.3 and
eq.(8.70)|, we have

A = (@ RT)0(@)0(E;) - o
(8317 B + 2@ P E),
)= L4y g

2

Let N be a compact complex manifold, and let n”¥ be a smooth real closed non-
degenerate (1,1)-form on N. We assume that U acts holomorphically on N and
preserves the form 7". Let p : N — u* be the moment map associated with the
action of U and n™.

If y € u, set

(8.3.18) R(y) = /Nexp(2m'<u,y> + ™).

Then R is U-invariant function, we can extend it to a holomorphic function uc — C.
If y € uc, let Im(y) denote the component of y in 7u.
The algebra Su acts on R(y). Then by [BMZ17, eq.(1.24)],

(8.3.19) wmwwmwzﬂwmmﬁwwW+mww+m»

We regard £ as a subspace of u* by the metric dual of £ C u.
Definition 8.3.2. We say that (IV, u) is nondegenerate (with respect to w?) if

(8.3.20) p(N)yNe =0.
Equivalently, there exists ¢ > 0 such that
(8.3.21) (. iB)* > c.

If there is no confusion, we also that say u is nondegenerate (with respect to w?).
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By [BMZ17, eq.(1.27)], if (N, i) is nondegenerate, there exists Cp > 0, C; > 0
such that, if y € ug,

(8.3.22) | exp(—t|8") R(y)| < Coexp(—te + Cy[Im(y))).

Definition 8.3.3. The Berezin integral fB is the linear map from

A (T*X)BA (T*X) into A'(T*X) such that, if & € A(T*X), o € A (T*X),
B

/ ad’ =0, if dega’ < m;

(8.3.23) .

B (_1)m(m+1)/2
et A NE = .
m/2

More generally, let o(p) be the orientation line of p, which can be identified with
o(p). Then fB defines a map from A'(T*X)@A (7{*}) into A (T*X)®o(p).

If B is an antisymmetric endomorphism of f)?, let wp € AQ(J{*}) be the form
given by vy, vy € TX — (v1, Bvy). By [BMZ17, eq.(1.30)], we have

(8.3.24) / exp(—wp/2) = Pf[zi].
Set
(8.3.25) L= i e NE.

Let ¢ be the endomorphism of A"(7T*X) ®g C which maps a € A*(T*X) @ C
into (27i)~*/%q.

Definition 8.3.4. For t > 0, set

WP A B

5 exp(—o (A7) R(0),

dy = —(2mi)™ %) 0 Vit
(8.3.26) /

o = (2020 [ exp(—o (AN RO)

Then d;, e; are smooth real forms on X.

Let [-]™** be defined as in (7.2.9) for X. Then [d;]™*, [e,]™** are constant function
on X. By |[BMZ17, Theorem 2.10|, we have

(8.3.27) u+%;m$m_www

Also if (N, p) is nondegenerate, and if H is a compact subset of X, there exists
cyg > 0 such that, on H, as t — +o0,

(8.3.28) d; = O(e™1"), e, = O(e™ ).
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Definition 8.3.5. If (N, 1) is nondegenerate, set

+oo dt
(8.3.29) W= —/ 4%
0

Then W is a smooth form on X with values in o(7T'X). We call it the W-invariant.

As shown in [BMZ17], W appears naturally as the leading term in the asymptotics
of analytic torsions.

Note that the above constructions are universal, so that we can apply to any
reductive group. If yo € G satisfies (7.1.13), then Z°(yo) is real reductive group.
We can define the forms e;, d; associated with Z°(yo). In particular, the form w?
is replaced by wP(yo), and we still have a nondegeneracy condition as in Definition
8.3.2 for this case.

If the nondegeneracy condition is verified, we will denote the form defined in
(8.3.29) by W, to indicate its relation with yo.

8.4. A nondegeneracy condition. Recall that M), is the complex manifold de-
fined in subsection 8.2. As in Remark 8.2.6, we can always identify M, with the
coadjoint orbit O, in u*. In [BMZ17, Proposition 8.12|, the authors gave an equiv-
alent condition for the nondegeneracy of (M), 1) with respect to w” using the Weyl
group of U.

Recall that

(8.4.1) u=+v—-1pod¢L
Using the orthogonal relations, we have
(8.4.2) ut=/—1p" .
Then the nondegeneracy condition of wP is also equivalent to that if v € Oy, v always
has a nonzero /—1p*-part in the splitting (8.4.2).
Let v € K, then ~vo is an elliptic element in G°. We can also consider it as an

element in U°.
Recall that the fixed point set of yo in M) is given by

(8.4.3) My = Ujes " Mi,

and that each connected component "7 M f\ is complex submanifold of M, equipped
with a holomorphic action of U°(yo).
Note that the function R/, , defined in (8.2.59) is just the function (8.3.18) asso-

ciated with the group Z°(vyo) and the complex manifold 77 M /]\
Recall that R"];/OU/\’ RZ; \ are the functions defined in Definition 8.2.8. For ¢ > 0,
let the forms e, d;* on X (yo) be defined in Definition 8.3.4 with respect to the
function R .
As in Remark (8.2.6), given j € J, the moment map associated with the action
of U°(yo) on 7 M is just the restriction of u to 77 My, which we will denote by /.
Given *, if for j € x, ;47 is nondegenerate with respect to the action of U°(yo)
on ”“’Mf\' and wP0?) then by (8.3.28), if H is a compact subset of X (yo), there exists
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cy > 0 such that, on H and for ¢ € {1,--- s}, as t = +o0,
(8.4.4) d:‘@ = O(echt)’ efz _ O(eiCHt),
Put

" +oo . dt
(8.4.5) W = _/O e

Then W2 is a smooth differential form on X(vyo) valued in o(T'X(y0)). Since
dim p(yo) is odd, by (8.3.17), (8.3.26), (8.4.5), the degree of W% is odd.

Proposition 8.4.1. Lety € K be as above. If (My, ) is nondegenerate with respect
to w?, then for j € J, (""MJ, i) is nondegenerate with respect to W)

Proof. As in Remark 8.2.6, we get

(8.4.6) M~ Oy Nu(yo)”.
The splitting (8.4.2) induces a splitting of u(yo)*,
(8.4.7) u(yo)" = v—1p(yo)" @ t(yo)".

By Definition 8.3.2, if (My, u) is nondegenerate, then p(My) N € = ), so that
W (7 M) Ne(yo)* = 0, which says that (M5, ?) is nondegenerate with respect to
wP(?) . This completes the proof of our proposition. O
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9. THE ASYMPTOTICS OF THE EQUIVARIANT RAY-SINGER ANALYTIC TORSION

In this section, we compute the asymptotics of the equivariant Ray-Singer analytic
torsion associated with a family of flat vector bundles defined by the representations
in subsection 8.2. We extend the results of [Miil12|, [BMZ17, Section 8] and [Fed15].

In subsection 9.1, we recall some results on the spectral gap of Hodge Laplacian
obtained in [BMZ17, Section 4| under nondegeneracy condition. Also we establish
estimates on the elliptic heat kernel on X, which allows us to evaluate the contri-
butions of non-elliptic twisted orbital integrals when ¢ is small.

In subsection 9.2, using the formula of Proposition 8.2.9, we compute the asymp-
totics of the elliptic twisted orbital integrals when dim b(yo) = 1.

In subsection 9.3, we compute the leading term of the equivariant Ray-Singer
analytic torsion T, (g7%,VIa/ gFfe) as d — +oo using the twisted trace formula
on Z established in subsection 4.5. We show that only the elliptic twisted orbital
integrals contribute to the leading terms. Finally, we describe the asymptotics of
the equivariant Ray-Singer analytic torsion in terms of the W-invariants associated
with Z%(vyo), v € T.

9.1. A lower bound for the Hodge Laplacian on X. Let e, ---, e, be the
orthogonal basis of TX or p. Recall that C%# is defined in (3.4.3). Let C##:F be
its action on E. Then

(9.1.1) CoE = coHE L ObE

Let A”X be the Bochner-Laplace operator on bundle A (T*X) ® F.
By [BMZ17, eq.(8.39)], we have

DXF2 — _AHX 4 5 — 1<RTX(ei, e;)er, eyele;)c(e;)cleg)cler)
(9.1.2) 4 8 X
—CoE i(c(ei)c(e]—) — /c\(ei)/c\(e]—))RF(ei, e;j).
Put
O(B) = 5 LR o1, e, )en ea)elen)eley len)eled)
(9.1.3)

_CeHE | %(dei)C(e]’) —¢le;)ele;)) RY (4, ¢5).

Then ©(F) is a self-adjoint section of End(A(7*X) ® F), which is parallel with
respect to VAT X)®F Then we rewrite (9.1.2) as

(9.1.4) DYF2 = _APX L o(R).
Let (-, )z, be the Ly scalar product of Q_(X, F'). By (9.1.4), if s € Q_(X, F), then
(9.1.5) (D25, 8) 1, > (O(E)s, s)1,.

Let AfX% denote the Bochner-Laplace operator acting on QY(X, F), and let
pi(z,2') be the kernel of exp(tA™X/2) on X with respect to dz’. We will de-
note by p;"'(g) € End(A’(p*) ® E) its lift to G explained in subsection 4.1. Let A
be the scalar Laplacian on X with the heat kernel pi( 9,
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Let ||p/""(g)|| be the operator norm of p;""(g) in End(Af(p*) ® E). By [MiiP13,
Proposition 3.1], we have, for g € G,
(9.1.6) [l (Il < 2" (9)-

Let pf be the kernel of exp(tA%X /2), then

(9.1.7) =l p".
Let ¢;*'" be the heat kernel associated with DF2 /2, then by (9.1.4), for z, 2’ € X
(9.1.8) ¢ " (z,2') = exp(—tO(E) /2)p (z, ).

We use the same notation as in subsection 8.2. Recall that w? is given in (1.1.7),
and that p : M, — u* is the moment map associated with the action of U on
Ly — M,.

Let Ey4, d € N be the sequence of representations constructed in subsection 8.2. If
i is nondegenerate with respect to w?, by [BMZ17, Theorem 4.4 and Remark 4.5],
there exist ¢ > 0, C' > 0 such that, for d € N,

(9.1.9) O(Ey) > cd® - C.
By (9.1.4), (9.1.5), (9.1.9), we get
(9.1.10) DY Fe? > cd? — C.

Lemma 9.1.1. If u is nondegenerate with respect to wP, there exists dy € N and
co > 0 such that if d > dy, v,2' € X

(9.1.11) g ", 2)|| < e PP (x, o).

Proof. By (9.1.9), there exist dy € N, ¢ > 0 such that if d > dj,

(9.1.12) O(Ey) > dd*

Then if ¢ > 0,

(9.1.13) || exp(—tO(Ey)/2)|| < e=1/2,

By (9.1.6), (9.1.7), (9.1.8), (9.1.13), we get (9.1.11). This completes the proof of our
lemma. O

Let I' be a discrete cocompact subgroup of G such that o(I') = I'. Recall that C
is the set of twisted conjugacy classes in I' defined in Definition 1.8.2. Recall that £
is the set of elliptic classes in C. Note that by Lemma 1.8.3, F is a finite set. Recall
that by Proposition 1.8.5,

9.1.14 - = _inf o> 0.
( ) cr, M;gg\gmv >0

Let qf(’Ed be the heat kernel associated with DXF42/2 If x € X, v € T, set
Ut(Ed7 o, I)

(9.1.15) 1 - - m
= STy AN CXSF | (VAN 5)‘]5’2&(”770(%))7‘7 '

2
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Lemma 9.1.2. If i is nondegenerate with respect to wP, there exists Co > 0, co > 0
such that if d is large enough, fort >0, x € X, v €T,
(9.1.16) lvi(Eq, o, )| < Codim(Ey)e T pX 0z, vo (x)).

Proof. Using Lemma 9.1.1, by (9.1.15), we get (9.1.16). This completes the proof of
our lemma.

O

Remark 9.1.3. This lemma is an analogue of the estimate in [M{iP13, Proposition
5.3].

Proposition 9.1.4. There exist constants C > 0, ¢ > 0 such that ifv € X, t €]0, 1],
then

(9.1.17) > P (x,v0(2)) < Cexp(—c/t).

v€I',yo non—elliptic

Proof. By [Don79, Theorem 3.3|, there exists Cy > 0 such that when 0 < ¢ < 1, one
has

d2 /
(9.1.18) 0z, ') < Cot™™/2 exp(—i;x)).
By Lemma 1.8.6, (9.1.14), (9.1.18), and using the same arguments as in the proof
of [MiiP13, Proposition 3.2, we get (9.1.17). O

9.2. Asymptotics of the elliptic twisted orbital integrals. In this subsection,
we always assume that v = k~! € K. As we saw in Theorem 7.7.3, Corollary 7.7.4,
if vo is elliptic, the orbital integral in (7.7.21) vanishes except dimb(yo) = 1. In
the sequel, we will concentrate on this case, so that dim p(yo) is odd.

As in (8.2.1), there exists

(9.2.1) V'€ E(yo) NEeE.
If
(9.2.2) t =),

then t is a Cartan subalgebra of €. Let T be the corresponding maximal torus of K.
Put

(9.2.3) t(yo) = tNt(yo).

Then t(yo) is a Cartan subalgebra of £(yo). Let b(vyo) C p(yo) be the subspace
defined in (7.5.8). Then b(yo) @ €(y0) is a Cartan subalgebra of 3(yo).
We can also regard o as an element of U?. Then

(9.2.4) u(yo) = vV—1p(yo) ® E(yo).
Put
(9.2.5) h(y0) = V~1b(y0) & t(y0).
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Then h(vo) is a Cartan subalgebra of u(yo).
Set ug = yo € U7, if we use the notation in subsection 8.2, then Z = U(yo) and
3 = u(yo). We will use the associated notation in subsection 8.2 by replacing ug by

o

Let (Ey, pP?), d € N be the family of irreducible unitary representations of U°

defined in (8.2.26). Then we extend this family to a family of representations of G°.
Set

(926) Fd =G XK Ed.
Now we can establish an extension of [BMZ17, Theorem 8.14].

Theorem 9.2.1. Suppose that dimb(yo) = 1. Fort >0, as d — +o0,
a0 =1y bel [(NA‘<T*X> — %) exp(—tD* a2 /de)]

-9 Z pE)\ (hjl)d[ef/ez]max + (Q(lel)7

ke €CT (yo)
(9.2.7) ‘
o)t bol [y My, DT X Fa2 o2
d Tr,"7 [ (N 2)(1 B ) exp(—tD /2d*)
=2 Y P O,
Kke€CT (yo)

Proof. To prove (9.2.7), we will adapt the proof of [BMZ17, Theorem 8.14] .
By (7.7.19), (7.7.21), for d € N5, we get

Tr, bl {(NA'(T*X) - %) exp(—tDFa? /2d2)]

dP t t
= TP X TP tp / - YE d
(27t )P/2 exp(48d2 r[CH] + 1642 r*[CHP]) to0) Jro (Yo /d)
X T} OOV 00— ) oM ) (ko) exp(—ip™ ) (3 /)]
_IYOEIQ) dYy
2t 7 (2mt)a/?

(9.2.8)

t
x TePa[pPt (k™ o) exp(—ip™ (Yy /d) + TdQCB’Ed)] exp(

By (5.1.12), as d — +o0,
1
det(l — Ad(k‘lo))|pL(w)

Let p, be the half of the sum of the positive roots given by the Weyl chamber ¢’.
By (7.7.2), (7.7.3), we have

(9.2.10) C%Pt = —Am*(|dA + pul® = |pul®).
By (9.2.10), as d — +o0,

(9.2.9) Jo(Yy/d) = +0(d™).

Cngd

(9.2.11) -

-
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By (8.2.62) in Proposition 8.2.9, as d — +o0,
d =0T e pPa (ko) exp(—ip™ (Vg /d)]

(9.2.12) = S pBW)RE (—iYE) + O@d ).
ke€CT (v0)

Let b*(yo) C p(y0o) be the space orthogonal to the one-dimensional line b(yo) in
p(vyo). Take Y§ € t(yo), then by [BMZ17, eq.(8.133)],

Ty M CO[(NA ) — %)p/\-(pw(k—la) exp(—iph 0 (VE/d))]
(9.2.13) = —det(1 — exp(—iad(Yy/d)))]o: (yo)
det(1 — Ad(k™"o) exp(—iad(Yy /d)))|pe (10)
By [BMZ17, eq.(8.134)] and (9.2.13), as d — +oo,
9210 AP T N OO [(NA ) %)pA‘(w)(,{—lU) exp(—iph O (VE/d))]
= —det(iad(Yy))]or (yo) det(1 — Ad(k™0))|p2(r0) + O(d7H).

Recall that 207 is curvature associated with Z°(yo) — X(yo). Let Q0 ¢
A%(p(y0)*) ® €(yo) be a copy of 0%, Now let L and the Berezin integral be the
ones as in (8.3.15) and (8.3.23) associated with p(yo). Then by (8.3.24), we have

max

B
(9.2.15) W—P/Qdet(z‘ad(yo“))yww):—[ / Lexp((Yg, 007 4 Qi0)))

By (9.2.14), (9.2.15), we get, as d — 400,
w2 T N OOV OD) = ) oM (ko) exp( =i 07 (Y /)]

(9.2.16) = {/E Lexp((YE, 09 4 ﬁa(w)»] -

det(1 — Ad(k™"'0))|pL(r0) + O(d7H).

Equation (9.2.16) extends to Y3 € &(yo).
By (9.2.8) - (9.2.14), we get

dfn(va)flTrs['ycr] |:(NA<(T*X) _ %) exp(_tDX,Fd72/2d2):|

exp(—2m2t|\|? .
s I
(9 9 17) ke€CJT (yo)

B\ max
[ [ e aon aon| Ry, i)
t(yo)
Y
(2mt)1/2’

exp(—[Yg|*/2t)
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Using the same arguments as in [BMZ17, eq.(8.143) - eq.(8.154)], we get

max

241112 B
exp(—27r t|)‘| ) / {/ LeXp(<YE)E,Qﬁ(’YU) +§5(70)>) Rfe
t(yo)

p/2 WU,A(_i%E)
(9.2.18) (2t

dYOE _ K¢ 1max
(27Tt)q/2 - [ t/Z]

By (9.2.17), (9.2.18), we get the first identity in (9.2.7). By (8.3.27), we get the
second identity in (9.2.7). The proof of our theorem is completed. O

exp(—|Yg|*/2t)

Proposition 9.2.2. There exists C' > 0 such that for d € Nyg, 0 <t <1,

‘dn(w)lTrs['w] [(NA‘(T*X) . %) exp(—tDX’Fd’Q/QdQ)] ‘ < C’/ﬂ
(9219) ‘dn(va)lTrs['ya] [(NA(T*X) N %)(1 o tDX,Fd,Q/dQ)

exp(—tDX’Fd’2/2d2)}‘ < OVt

Proof. The integral in the right-hand side of (9.2.8) can be rewritten as

e -
/ JW(\/EYO )Tri\‘(P*)[(NA'(P*) _ @)p/&'(n*)(k—lg)e—m‘\ (p >(\/5Y(f/d)]
t(yo)

d 2
(9.2.20)
TP (o) explip ™ (VIV fd + 08 esp(- 0Ty D8
0 2d2 2 (277)‘1/2 ’
By (9.2.13), (9.2.14), if Y € t(yo), when d is large and ¢ is small, we get,

dr-1 o o
(9221) @D PO (k) exp(—ip O (VY /d)

= —det(iad(Yy))|o- (o) det(1 — Ad(k™'0)) |y (40) + O(VEd ).

Te, N I[N O — %)

Then we use the estimates in the proof of Theorem 9.2.1, we get the first estimate
of (9.2.19).
If Y € €(vo), set

FUV) = Ty (V) det(1 = Ad(™" ) exp(—iad () o

9.2.22
( ) A0 TrE [ pFa (1 g) exp(—ipPt (YY)

Then f(Y{) is analytic function on &(yo). Let V f(Yg) be the gradient of f on £(yo)
with respect to the Euclidean scalar product of (o). Then if ¢t > 0,

Q \/iYE)E 1 \/%}/OE \/inE

(9.2.23) ol (g ) = (V) 5
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If Y{ € t(yo), by (9.2.13), (9.2.22), we have

L
TrsA'(P*)[(NA'(P*) _ %)p (p )(k 0’) eXp( “(p )(\fyé/d))]
(9.2.24)
TP (o) expl—ip (VY ) + 0¥
= O et e~ zad(xf Y2 /)l oy
Put
Fevgd) = 2 (AT det — xp(iad VAN /)i )
- Ly 08 VG
(9.2.25) dp—l
t(p 1)/2 det( eXp(_iad(\/%}/OE/d))Hbl(wa)
- 480 (o ettt = exp(iad (VY /) s

A simple computation shows that there exists ¢ > 0, C' > 0, for d € Ny,
0<t<1,and Y} € t(yo),

([ drt ,
(9.2.26) g (t(p 72 det(1 exp(—zad(\/f%“/d)))\bi(w)) < C"exp(c|Yy)).
Each part in the right-hand side of (9.2.25) lifts to a central function of ¢(yo). Then
the estimate as in (9.2.26) still holds for Y{ € £(yo).

Also since dim b*(yo) is even, when taking the Taylor expansion of the function
as follows

m VIYE, !

) 2d >t(p—1)/2

0201) LV det(1 — exp(—iad(VIY /)] (o).
the terms of even power of Y have no negative powers of the parameter ¢ in their
coefficient. Then by (9.2.25), (9.2.26), we get that there exist C' > 0 such that for
d€N>0,0<t§1,
(9.2.28) Ft. Y8 d)exp(— V22 20| < C.
t(yo)

Using the fact that the two quantities in (9.2.19) are related by the operator
1+ 2t2, and by (9.2.24), (9.2.28), we get the second estimate in (9.2.19). This
completes the proof of our proposition. O

Remark 9.2.3. The estimates in (9.2.19) for the twisted orbital integrals can be
viewed as an analogue of the estimates in [BMZ17, Theorem 6.5]
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9.3. Asymptotics of the equivariant Ray-Singer analytic torsions. In this
subsection, we assume that I' is torsion free. Recall that Z = I'\ X is now a compact
manifold equipped with a group action of 3. We will use the notation in subsections
4.5, 7.8. Then the flat vector bundle F,; descends to a flat vector bundle on Z,
which we still denote by Fj;. Also the operator DX¥¢ descends to the corresponding
operator D%%4. Moreover, the action of 37 lifts to F; so that D%f¢ commutes with
37, For d € Ny, let

(9.3.1) 09", VIl gh)(s)

be the function defined in Definition 7.8.1 for flat vector bundle F};, which is holo-
morphic near s = 0.

Recall that the equivariant Ray-Singer analytic torsion of the de Rham complex
(Y(Z, Fy),d%*a) is given by

100,(g"%, V", g™
93.2) T, 950 ) = S ),

If 1 is nondegenerate with respect to w?, then by (9.1.10), we have
(9.3.3) D%fa? > cd? — C.
Then if d is large enough, we have
(9.3.4) H(Z,Fy) =0.
By (7.8.6), (7.8.8), if d is large enough, we have
(9.3.5) Xo(Fa) =0, xo(Fa) = 0.

Let b;(Fy, g"), t > 0 be the function defined in (7.8.7) for the flat vector bundle
Fy. Then by (7.8.11), (9.3.5), we have

(9.3.6) boo(Fy, g7) = 0.
By (7.8.9), as t — 0,

(9.3.7) bi(Fu, g™) = O(V).

By (7.8.10), as t — +00,

(9.3.8) bi(Fa, g™) = O(1/V1).

Then by (7.8.12), we have

Foo dt
(939> 7;(9TZ’ de,f’ ng) — _/ bt(Fdang>7'
0
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Proposition 9.3.1. If i is nondegenerate with respect to w?, then there exists ¢ > 0
such that for d large enough,

To(g" %, VieT, gfe)

:_% Z Vol(T' N Z(yo)\ X (o))

bl eE

(9.3.10)

d
- dt
/ Ty, D] [(NA TX) _ %)(1 — D70 22) exp(—tD 2 [ad?) | =
0

+ O™,

Proof. By |BMZ17, eq.(7.3)], (9.3.9), we can write

+o0 dt
T (g™ 2, Vel gFt)y = — / bt(Fd,ng)7
(9.3.11) 1/

d

dt

- / bt/dQ(Fdang)7'
0

By (9.3.3) and using the same arguments as in [BMZ17, Subsection 7.2|, we can
get that there exists ¢ > 0 such that

e F, dt —cd
(9.3.12) b(Fa,g")— = Oe™™).
1/d t
By (4.5.5), (7.8.7), (9.1.15), we get
0
Fay
(9.3.13) by(Fy, ") = (14 QtE) /Z ;Ut(Ed,”ya, z)dz.

We split the sum in (9.3.13) into two parts:
(9.3.14) oo+ >
v€l'yo elliptic  ~v€Tl',yo non-elliptic

By (4.5.8), (4.5.10), (4.5.14), we get the integral of the first part of sum in (9.3.14)
is just the sum on elliptic classes E in the left-hand side of (9.3.10).
If x € X, put

(9.3.15) h(Fy, g5 ) = > v(Bg, yo, x).

v€ET',yo non-elliptic

Then it is enough to prove that

¢ 0 dt
(9.3.16) / (1+ 275)/ hija2(Ea,vo, 2)dz— = O(e™ ).
o ot’ J, ¢

Indeed, using Lemma 9.1.2 and by (9.1.4), there exists C' > 0, ¢ > 0, ¢’ > 0 such
that if d is large enough, 0 < ¢ < d, then

(9.3.17) \hija2 (F, g5, 2)| < C dim(Ey)e " exp(—c"d?/t).
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By (8.1.19), there exists Cy > 0, [ € N such that

(9.3.18) dim(Ey,) < Cod'.

It is clear that

(9.3.19) / b a( Fas g7, 2)dz = O(e=%).
Also

t

! dt d dt
/ hija2(Fa, g l‘)t / ht/d2(Fd,QFd,$)7
1
By (9.3.17), 9318) then

d
dt
/ hijae(Fu, g™, x)—
(9.3.20) 0

dt g U e dt
| ht/dz Fy, 9% x )—‘ < Ce@'®/? dim(Ed)/ e /Qt? = O(e™),
(9.3.21) 70 0
p 4 dt
‘/ ht/dQ(Fd, Fa .I' 7| < Ce™ ¢ ddlm(Ed)/ —t t O(G_Cd).
1

Combining (9.3.19), (9.3.21), we get (9.3.16). This completes the proof of our propo-
sition. O

Remark 9.3.2. Asin [BMZ17, Remark 8.15], by (5.1.13), (7.7.21), if 7o is not elliptic,
i.e., a # 0, then there exists C' > 0, ¢ > 0 such that, for ¢ > 0,

Tr,0) [(NA‘<T*X> — %) exp(—tD* 42 /94%)

(9.3.22) !

< exp(—UdQ) exp(—c't).
In particular, the constant ¢’ does not depend on yo. Also by (9.1.14), we have
(9.3.23) la| > cr .

We can see that the estimate (9.3.16) is compatible with (9.3.22).

For each class ¢; = MG in £, we fix a k; !¢ K such that the element ~; € I is

C?-conjugate to k; ' by an element in G. Recall €(e;) is given by (7.8.15) such that
e(e;) = dimb(k; o).

Put
(9.3.24) o) ={e, €E : €(eg;) =1}
Recall that n(k; 'o) is defined as in (8.2.58) for k; 'o. Set
(9.3.25) m(o) = max{n(k; o) : ¢ € €(0)},
and set
(9.3.26) (o) ={e, €E : ele;) =1, n(k; o) =m(o)}.

If €(o) is an empty set, we may set m(o) = —1.
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Note that for each k; !,
as in subsection 9.2. We use the corresponding notation as in subsection 8.2. Note
that given fi(d), f2(d) two functions in d € N, we say that fi(d) = fa(d) + o(1) as

d — +o0 if f1(d) — fa(d) — 0 as d — +o0.

we have a finite set of differential forms W;ﬁlo defined

Theorem 9.3.3. If i1 is nondegenerate with respect to w*, as d — +0o0,
(9.3.27)
dfm(a)flﬁ(gTZ, de,f7 ng)
= 3 VTN ZGoN\X o) X P 7] + o).
€€ (0) ke €CT (ki 'o)
In particular, if C(o) as d — 400,

= Q)’
(9.3.28) 7;(gTZ, Vdef’ ng) _ O(efcd).

Proof. If MU is an elliptic class and MU ¢ C(o), then by Theorem 7.7.3, Corollary
7.7.4, we get

(9.3.29) Tr,"! {(NA'(T*X) - %) exp(—tD*Fa? /4d2)] = 0.

If e; € €(0), using Theorem 9.2.1 and by (9.2.19), (9.3.29), as d — +o0, we have

1
pexy M dt
Tr,0! {(NA X — ) (1 = tD% 142 /24?) exp(—tD* 2 /4d2)] —

(9.3.30) s b dt -
e N Y / g e o),
re€CT (ko) 0

For t > 0, if x € X, we have

(9.3.31) qu’QEd(x, vio(z))yio = /X qt)jfd (z, x’)qufd (@', yio(x))yiodx'.
The identity in (9.3.31) is equivalent to
9332 g o) = [exp(—D 8 i () o] o).

By (9.1.10), (9.3.32), there exists C' > 0, ¢ > 0 such that if d is large enough,

1D Fe2g] 5 (2, yio () Jior ||

< Cexp(—cd’t)|[DYF42¢] P (w, vio (2))yio ||
By (4.2.6), (9.1.4), (9.1.8), (9.3.33), and using the same arguments in the proof of

Lemma (9.1.2) and the estimates of derivatives of heat kernels as in (9.1.18), there
exists ¢ > 0, C' > 0 such that , for d large enough, and 1 <t < d,

(9.3.33)

d—nk o) =1y o] [(NA‘(T*X) o T)(l . tDX,Fd,2/2d2>
° 2
(9.3.34)
exp(—tD**4? /4d%)]| < Cexp(—ct).
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By (8.4.5), (9.3.34), and using the dominated convergence theorem, as d — +00,
d
dn(kilo')l/ Tr [vio] (NA'(T*X) o m)(l _ tDX’Fd’2/2d2>
o 2

(9335) eXp(—tDX’Fd72/4d2) it

j e K maxdt
S | pEA(h]z)dfl A5, + o(1).
ke€CJ(k; o)
By (8.4.5), (9.3.10), (9.3.24), (9.3.25), (9.3.26), (9.3.30), (9.3.35), we get (9.3.27).
Equation (9.3.28) follows from Proposition 9.3.1. This completes the proof of our
theorem. O

Remark 9.3.4. Using the estimates in [BMZ17, Section 7.3], we can refine the result
of Theorem 9.3.3 to
(9.3.36)

d—m(U)—lr];(gTZ’ VFd’f, gF,i)
= D VT NZ(yo\X(wo))[ Y, pP )W "] + 0@,

&€ (o) ke €CT (k7o)

Remark 9.3.5. The proofs of results in subsections 9.2 - 9.3 hold even if I" has elliptic
elements, then the above results can be extended easily to the case where I is just
cocompact discrete and not torsion free, so that Z is a compact orbifold.

As explained in subsection 0.8, the results in Proposition 9.3.1, Theorem 9.3.3 are
compatible with the results of Ksenia Fedosova [Fed15]|, where she considered the
asymptotics of Ray-Singer analytic torsions for compact hyperbolic orbifolds, i.e.,
G = Spin(1,2n 4 1) and T may have elliptic elements.
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Résumé :

Dans cette thése, on donne une formule géométrique explicite pour les intégrales orbi-
tales semisimples tordues du noyau de la chaleur sur un espace symétrique, en utilisant
la méthode du laplacien hypoelliptique développée par Bismut. On montre que nos ré-
sultats sont compatible avec les résultats classiques de la théorie de I'indice équivariant
local sur les espaces localement symétriques compacts.

On utilise notre formule explicite pour évaluer le terme dominant dans ’asymptotique
quand d — +oo de la torsion analytique équivariante de Ray-Singer associée a une
famille de fibrés vectoriels plats F,; sur un espace localement symétrique compact. On
montre que le terme dominant peut étre calculé a 'aide de W-invariants au sens de
Bismut-Ma-Zhang.

Title : Hypoelliptic Laplacian and twisted trace formula
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Abstract :

In this thesis, we give an explicit geometric formula for the twisted semisimple orbital
integrals associated with the heat kernel on symmetric spaces. For that purpose, we
use the method of the hypoelliptic Laplacian developed by Bismut. We show that our
results are compatible with classical results in local equivariant index theory.

We also use this formula to evaluate the leading term of the asymptotics as d — 400
of the equivariant Ray-Singer analytic torsion associated with a family of flat vector
bundles F,; on a compact locally symmetric space. We show that the leading term can
be evaluated in terms of the W-invariants constructed by Bismut-Ma-Zhang.




