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Abstract

Subdivision schemes are widely used for rapid curve or surface generation. Re-
cent developments have produced various schemes, in particular non-linear, non-
interpolatory or non-uniform.

To be used in compression, analysis or control of data, subdivision schemes
should be incorporated in a multiresolution analysis that, mimicking wavelet anal-
yses, provides a multi-scale decomposition of a signal, a curve, or a surface. The
ingredients needed to define a multiresolution analysis associated with a subdivision
scheme are decimation scheme and detail operators. Their construction is straight-
forward when the multiresolution scheme is interpolatory.

This thesis is devoted to the construction of decimation schemes and detail
operators compatible with general subdivision schemes. We start with a generic
construction in the uniform (but not interpolatory) case and then generalize to non-
uniform and non-linear situations. Applying these results, we build multiresolution
analyses that are compatible with many recently developed schemes. Analysis of
the performances of the constructed analyses is carried out. We present numerical
applications in image compression.
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Résumé

Les schémas de subdivision sont largement utilisés pour la génération rapide de
courbes ou de surfaces. Des développements récents ont produit des schémas variés,
en particulier non-linéaires, non-interpolants ou non-homogènes.

Pour pouvoir être utilisés en compression, analyse ou contrôle de données, ces
schémas de subdivision doivent être incorporés dans une analyse multiresolution qui,
imitant les analyses en ondelettes, fournit une décomposition multi-échelle d’un sig-
nal, d’une courbe ou d’une surface. Les ingrédients nécessaires à la définition d’une
analyse multiresolution associée à un schéma de subdivision sont des schémas de
décimation et de détails. Leur construction est facile quand le schéma de multires-
olution est interpolant.

Cette thèse est consacrée à la construction de schémas de décimation et de dé-
tails compatibles avec un schéma de subdivision le plus général possible. Nous com-
mençons par une construction générique dans le cas d’opérateurs homogènes (mais
pas interpolants) puis nous généralisons à des situations non-homogènes et non-
linéaires. Nous construisons ainsi des analyses multiresolutions compatibles avec de
nombreux schémas récemment développés. L’analyse des performances des analy-
ses ainsi construites est effectuée. Nous présentons des applications numériques en
compression d’images.
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Présentation du travail en Français

La thèse est organisée en 4 parties.
La première fait une revue sur les schémas de subdivision et les analyses mul-

tiresolutions qui leur sont associées.
On présente en particulier les schémas classiques linéaires et homogènes (inter-

polants de Lagrange, splines) et le schéma PPH (piecewise polynomial harmonic)
qui est un exemple de schéma non-linéaire (on s’intéresse en particulier à sa version
non-interpolante). Le cadre général des analyses multiresolutions basé sur une pré-
diction par subdivision est détaillé ainsi que les propriétés souhaitables pour une
telle structure.

La seconde partie présente une approche générique pour construire tous les sché-
mas de décimation consistants avec un schéma de subdivision linéaire et homogène
donné. Sa construction s’appuie d’abord sur une inversion matricielle qui conduit à
des décimations consistantes dont le masque a une longueur minimale (décimations
élémentaires) puis sur la génération de tous les schémas consistants en utilisant des
combinaisons convexes de versions translatées des décimations élémentaires. On
génère ainsi des opérateurs de décimations consistants avec de nombreux schémas
dont certains pour lesquelles de tels opérateurs n’avaient jamais été proposés.

Le chapitre 3 constitue une généralisation du chapitre 2 à des schémas non-
linéaires ou non-homogènes. Dans le cas de schéma adapté à des segmentations de
l’axe réel, une analyse locale permet de définir un opérateur de décimation agis-
sant sur un intervalle fixé. Cet opérateur se couple avec un opérateur homogène
construit suivant le chapitre précédent afin d’obtenir un schéma défini sur toute la
droite et consistant avec la subdivision. Dans le cas de donnés localisées sur un inter-
valle, une construction global de décimation consistante est proposée. Elle s’appuie
sur l’inversion d’une matrice obtenue à partir de la subdivision sur l’ensemble de
l’intervalle. Enfin, pour des opérateurs généraux h (en particulier non-linéaire), une
troisième approche est introduite. Elle consiste à supposer l’existence d’un opéra-
teur h̃L linéaire qui est presque un inverse à gauche de h au sens où h̃Lh − I est
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contractant. Dès que cet opérateur existe, il est alors possible de définir une déci-
mation (non-linéaire) consistante. Sachant que de nombreux schémas non-linéaires
(en particulier PPH) sont construits par perturbation d’un schéma linéaire hL, il est
naturel de chercher parmi tous les schémas de décimation h̃L consistants avec hL

ceux qui réalisent la contraction. Nous exhibons ainsi des décimations non-linéaires
consistantes pour le schéma PPH non-interpolant.

Le chapitre 4 termine la construction des analyses multiresolutions avec l’introduction
des opérateurs de détail. On génère ainsi une famille d’opérateurs (subdivision,
décimation, détails) compatibles qui permettent de définir une analyse multireso-
lution. Les propriétés intéressantes des analyses multiresolutions, en vue de leur
application en analyse/traitement de données sont la décroissance des détails et la
stabilité. Pour ce qui est de la décroissance des détails(avec l’échelle j), une pro-
priété essentielle est la reproduction des polynômes. Nous détaillons les conditions
sur h et h̃ pour avoir une telle propriété. Pour la stabilité de l’analyse multireso-
lution, la difficulté se concentre sur celle de l’opérateur de décimation. Dans le cas
linéaire, nous montrons que la stabilité de l’opérateur de décimation correspond à
la stabilité d’un opérateur de subdivision construit à partir des coefficients d’une
puissance de l’opérateur de décimation. Le chapitre se termine par des exemples
numériques et en particulier une estimation numérique des constantes de stabilité
pour des schémas linéaire et non-linéaire dans le cadre de la compression d’images.

Une conclusion permet de mettre en évidence quelques perspectives de prolonge-
ment de la thèse. On évoque en particulier l’optimisation des opérateurs impliqués
(subdivision linéaires, décimation consistante) et un résultat théorique sur la stabil-
ité des opérateurs de décimation non-linéaire. La comparaison des performances des
différentes analyses multiresolutions construites est aussi un champ qu’il convient
d’explorer.

Chapitre 1. Etat de l’art et revue des principaux résultats

Ce chapitre effectue une revue sur les schémas de subdivision et les analyses mul-
tiresolutions qui leur sont associées. La Section 1.2 est dédiée aux schémas de sub-
division avec leur définition et le rappel des notions de convergence et de stabilité.
Les exemples historiques de schémas (schémas de Chaikin, interpolant de Lagrange,
spline) sont présentés ainsi que des schémas plus récents non-interpolants (Lagrange
décalé, PPH décalé). Dans la Section 1.3 est introduit le cadre général des analyses
multiresolutions. On commence par les opérateurs de décimation et la relation de
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consistance qui les lie aux opérateurs de subdivision. On introduit les opérateurs
de détails et on définit la notion de compatibilité entre ces quatres opérateurs. Une
présentation générale de la décroissance des détails en fonction de j est effectuée.
Cette section s’achève sur les notions de reproduction polynomiale et de stabilité.

Chapitre 2. Décimations linéaires consistantes avec un schéma
de subdivision linéaire homogène

Après avoir traduit sur les masques la notion de consistance, on montre tout d’abord
que pour un schéma de subdivision fixé, l’ensemble des schémas de décimation
linéaires consistants est stable par les opérateurs de translation et de combinaison
convexe. Ensuite on prouve que sous une hypothèse d’inversibilité d’une certaine
matrice (proche mais généralement de taille plus petite que les matrices de raffine-
ment définies dans [21]), il existe un nombre fini de schémas de décimation consis-
tants de longueur inférieure à un certain entier 2α lié à la longueur du masque du
schéma de subdivision. On appelle ces schémas des schémas de décimation élémen-
taires. Enfin on démontre que tout schéma consistant s’exprime comme combinaison
convexe de translatés de schémas de décimation élémentaires. La Section 2.3 est
dédiée à des exemples d’application : on considère tout d’abord des schémas splines
et interpolants de Lagrange. On s’intéresse aussi aux schémas de subdivision issus
de la construction des ondelettes à support compact. Finalement, on traite le cas
des schémas non-stationnaires de Lagrange pénalisés.

Chapitre 3. Schémas de décimations consistants avec des
schémas de subdivision généraux

On s’intéresse ici à des schémas de subdivision non-homogènes ou non-linéaires.
Pour les schémas de subdivision non-homogènes, on suppose tout d’abord qu’une
segmentation de l’axe réel permet de séparer des zones où le schéma est homogène
et des zones, de taille réduite, où le schéma n’est pas homogène. Sur chaque zone
non-homogène une analyse locale permet de définir, par inversion matricielle, un
opérateur de décimation agissant sur toute la zone. Sous certaines hypothèses, ce
schéma se couple avec un opérateur de décimation homogène sur les autres zones
afin d’obtenir un schéma de décimation globalement consistant. Cette stratégie est
illustrée sur des exemples. Une stratégie consistant à découpler les points d’indice
pair des points d’indice impair est également présentée. Elle conduit à une déci-
mation globale (agissant sur la zone entière) qui peut présenter un intérêt si cette
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zone reste de taille réduite. Une dernière construction, qui sera reprise dans le cas
de schémas non-linéaires consiste, un schéma de subdivision h étant donné, à sup-
poser l’existence d’un schéma de décimation linéaire h̃L tel que h̃Lh est proche de
l’identité au sens où h̃Lh−I est contractant. Alors il est possible, par un algorithme
de point fixe, de construire une décimation h̃ consistante avec h. Cette construction
est particulièrement pertinente quand h est lui même construit comme une pertur-
bation d’un schéma de subdivision hL, ce qui est le cas pour les schémas PPH. Nous
exhibons dans ces cas, des schémas h̃L qui vérifient l’hypothèse de contraction.

Chapitre 4. Analyse multiresolution

Le dernier chapitre traite des analyses multiresolutions. Leur construction com-
plète nécessite d’introduire les opérateurs de détails. On s’inspire encore de la
situation dans le cas de schémas linéaires pour définir des opérateurs de décima-
tion et de subdivision associés aux détails pour des schémas généraux. Les pro-
priétés importantes des analyses multiresolutions, en vue de leur application en
analyse/traitement d’images, sont la décroissance des détails et la stabilité. Pour
la décroissance des détails dans le cas linéaire, une propriété essentielle est la re-
production des polynômes. Nous détaillons les conditions sur h et h̃ pour avoir
cette propriété. Une généralisation aux schémas généraux est proposée. Pour ce
qui est de la stabilité, sachant que celle des schémas de subdivision est acquise, la
difficulté se concentre sur celle du schéma de décimation. Nous montrons que dans
le cas linéaire celle-ci correspond à la stabilité d’un opérateur de subdivision con-
struit à partir d’itérés de l’opérateur de décimation. Nous n’avons pas de résultat
théorique sur la stabilité des décimations non-linéaires introduites plus haut. Ce
chapitre se termine par des exemples numériques d’application des analyses mul-
tiresolutions complètes pour des décompositions d’images. Quelques comparaisons
entre différentes constructions sont présentées. Les résultats montrent que les con-
stantes numériques de stabilité des schémas de décimation non-linéaires sont du
même ordre de grandeur que celles associées aux schémas linéaires. De plus, les
analyses multiresolutions non-linéaires non-interpolantes qu’il est désormais possi-
ble de construire apparaissent comme des alternatives prometteuses aux approches
plus classiques pour la compression d’images.
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Conclusion

La conclusion met en particulier en évidence plusieurs propositions de prolongement
de ce travail. L’étude théorique de la stabilité des analyses multiresolutions non-
linéaires est bien sûr à effectuer. Compte tenu du large choix et des différentes
constructions proposées, un travail de comparaison entre les différentes analyses
produites est à faire.

9



10



General Introduction

Subdivision schemes and multiresolution analyses are extensively investigated in
different fields where they are applied for signal analyses, geometric modeling, com-
pression, approximation or numerical analyses. Recent developments of general
subdivision operators raise the question of systematical construction of associated
multiresolution analysis: this question has to be addressed as soon as the subdivi-
sion scheme is non-linear and non-interpolatory. This thesis is devoted to provide
some answers to this type of problem.

Background

The story of subdivision schemes started with De Rahm in [18], even if a relevant
step forward was made by Chaikin [13] that proposed a method to generate curves.
After that, the extension from subdivision to surfaces and related topics was exten-
sively investigated [11, 20]. After being developed during the following decades, it
became popular around the beginning of this century.

Subdivision schemes [12, 21] are powerful tools for the fast generation of refined
sequences ultimately representing curves or surfaces. Especially subdivision surfaces
are one of the most important methods used in Computer Graphics which could
eventually replace NURBS in engineering CAD ([32]).

Traditional research for subdivision scheme focusses on the construction of new
schemes, and generally the properties of the generated curve or surface (smooth-
ness,convexity,etc.) are essentially considered. Other related topics also attract
many attention like analysis of new domains and new ranges, adding criteria for
judging the quality of a scheme and other solution oriented new propositions.

Multiresolution subdivision has been applied to surface generation which is intro-
duced in [11]. Following a set of fixed refinement rules, each finer mesh is obtained
from a coarse mesh by adding details at each level. Several constrained modelling
techniques have been developed, such as a cut-and-paste editing technique for mul-

11



tiresolution surfaces proposed in [9], or in [10] a method for creating sharp features
and trim regions on multiresolution subdivision surfaces along a set of user-defined
curves has been introduced. Various forms of multiresolution subdivision surfaces
can be also found in [30, 36].

Coupled with decimation schemes, a subdivision generates multi-scale trans-
forms largely used in signal/image processing [3, 5] that generalize the multireso-
lution analysis/wavelet framework [17]. A decimation could be introduced as the
reverse subdivision, for example by M. F. Hassan [27], or it could be associated to
the scale relation in multi-scale transform of multiresolution analysis.

Above all, the advantage of using subdivision schemes to construct multireso-
lutions relies on the flexibility of subdivision schemes (a subdivision scheme can
be non-stationary, non-uniform, position-dependent, interpolating, approximating,
non-linear...) (e.g. [5]). As a counterpart, the construction of suitable consistent
decimation operators is not always straightforward. When subdivision schemes are
uniform, interpolatory, linear and stationary, the decimation operators can be easily
defined. However, more investigations should be done in the other situations. The
treatment of such situations is the main motivation of this thesis.

Contributions

The main contributions of this thesis can be summarized as follows,

1. A generic approach is proposed for the construction of linear uniform consis-
tent decimation operators for linear uniform subdivision schemes. Related
properties are established;

2. Two generic approaches are proposed for the construction of linear consistent
decimation for linear subdivision scheme which can be uniform or not;

3. A generic approach is proposed for the construction of consistent decimation
for general subdivision scheme that can be linear or not;

4. A complete framework for multiresolution transform is defined introducing
detail operators;

5. Analysis of the properties of the constructed multiresolutions is performed,
including compatibility, stability, polynomial approximation and decay of de-
tail/prediction error.

12



Structure of this thesis

This thesis is organized as follows,
Chapter 1 is devoted to an overview of the different mathematical elements

involved in multiresolution associated to subdivision, including decimation and
details. Definitions and related properties are provided. Different examples of
subdivisions including interpolatory, non-interpolator, linear, non-linear, uniform,
non-uniform as well as examples related to wavelet multiresolution analysis are de-
scribed. Meanwhile, some well known results for those examples are also mentioned.

In chapter 2, a generic approach is proposed to construct all linear consistent
decimation schemes associated to a given linear uniform subdivision scheme. The
starting point of the method is the interpretation of the consistency property in
terms of a condition on the subdivision and decimation masks. It leads to the
construction of consistent elementary decimation operators that can be used to
generate all the consistent decimation operators. Several examples are provided at
the end of this chapter in the case of standard and non-standard schemes.

In chapter 3, we extend the construction to more general frameworks, includ-
ing non-uniform and non-linear one. Starting from the uniform case, we show how
the construction can be locally adapted to take into account the presence of seg-
mentation points on the real line and guarantee the consistency of the decimation.
A second approach is then proposed to treat the specific case of the interval. It
involves the inversion of a matrix constructed from the subdivision on the whole
interval. Finally, a third approach is introduced to construct consistent decimations
for general subdivision scheme including non linear ones. This method especially
focusses on subdivisions that can be expressed as the sum of a linear part and a
non-linear one. By establishing a fixed-point equation, a decimation operator can
be calculated as soon as a contraction property is satisfied.

In chapter 4, the construction of the complete compatible multiresolution frame-
work is addressed. Based on the couple of subdivision and consistent decimation
provided by previous chapters, it is achieved by introducing a couple of compatible
details operators (subdivision and decimation). The key point of this construction
is that the prediction error belongs to the kernel of an associated linear decimation
operator. A theoretical analysis of the properties of the multiresolution is also per-
formed. At the end of the chapter, several numerical tests are conducted to evaluate
the capabilities of some new subdivision-based multiresolutions in the framework of
image compression.
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Chapter 1

Overview

1.1 Introduction

This chapter provides an overview on the background of the thesis. We introduce
many definitions and concepts required for the development of our works. This
chapter is divided into two parts, the first part is devoted to subdivision schemes,
while the multiresolution framework is introduced in the second part.

1.2 Subdivision Schemes

1.2.1 Definitions and Notations

A reference article on subdivision schemes has been published in 1991 [12]. Another
very nice paper [21] was published one year later, and is devoted to curve and surface
generation.

In this thesis we restrict ourself to binary subdivisions.

Definition 1.1 (Subdivision Schemes).
A univariate linear subdivision scheme h is defined through a real-valued sequence
(hk)k∈Z having a finite number of non-zero values such that

h :


l∞(Z)→ l∞(Z)

(fk)k∈Z 7→ ((hf)k)k∈Z

with
(hf)k =

∑
l∈Z

hk−2lfl . (1.1)
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Any set of the form {hk : k0 ≤ k ≤ k1, k ∈ Z} containing all non-zero values of
(hk)k∈Z is called a mask of the operator h of length k1 − k0 + 1 and is denoted Mh.

Moreover, we define the prediction stencil associated to (hf)k as the set of indices
{l : hk−2l 6= 0}.

Subdivision is generally iterated starting from an initial sequence (f j0k )k∈Z to
generate (f jk)k∈Z (j is a scale parameter) as

f j+1 = hf j, j ≥ j0. (1.2)

For all value of j, f j is associated to a dyadic grid Xj = (k2−j)k∈Z.
In this context, the advantage of using subdivision for data prediction relies on

the flexibility in the choice of the mask. The simplest strategy consists in considering
the same mask for every position, scale and data f j (leading to linear uniform and
stationary operators) [19].

Further situations can be considered by defining (hk)k∈Z according to scale or
position,

• a subdivision scheme h is said to be non-uniform if (hk)k∈Z depends on the
position l where it is applied [6],

• a subdivision scheme h is said to be non-stationary if (hk)k∈Z depends on
the level j [7].

A subdivision scheme can also be non-linear [15] if the sequence (hk)k∈Z non-
linearly depends on the sequence (f jl )l∈Z.

Definition 1.2 (Convergence of Subdivision Schemes).
A subdivision scheme h is uniformly convergent if for all f 0 ∈ l∞(Z), there exists a
continuous function f ∈ C(Rs) such that

lim
j→∞
||hjf 0 − f( ·2j )||∞ = 0,

where f( ·2j ) denotes the sequence {f( k2j ) : k ∈ Zs}.
The function f is called the limit function of f 0 and is denoted by f∞ = h∞f 0.

Definition 1.3 (Stability of Subdivision Schemes).
A convergent subdivision scheme h is stable if there exists a constant C ∈ R such
that for all f, fε ∈ l∞(Z),

∀i ∈ N, ||hif − hifε||∞ ≤ C||f − fε||∞.
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Note that if the subdivision h is linear, the stability (∃C ∈ R,∀i ∈ N, ||hi|| ≤ C)
is a direct consequence of the convergence of the subdivision scheme.

The remaining of this section is devoted to several examples of subdivision
schemes.

1.2.2 Classical 2-point Uniform Subdivision Schemes

A very popular subdivision scheme is the following 2-point scheme also known as
corner cutting [21]. It is defined as

f j+1
2k = rf jk + (1− r)f jk

f j+1
2k+1 = sf jk + (1− s)f jk+1

,

where 0 ≤ s < r < 1 and corresponds to the mask

Mh = {h−2, h−1, h0, h1} = {1− r, 1− s, r, s}.

This scheme is known to be uniformly convergent.

2-point Interpolatory Scheme

Taking r = 1 and s = 1
2 , we get the 2-point interpolatory subdivision scheme

f j+1
2k = f jk

f j+1
2k+1 = 1

2f
j
k + 1

2f
j
k+1

,

corresponding to the mask

Mh = {h−2, h−1, h0, h1} = {0, 1
2 , 1,

1
2}.

Note that this scheme can also be considered as a particular Lagrange subdivi-
sion scheme (Example 1.2.5 with l = r = 1 and xl = 0, xr = 1/2) or a particular
B-spline subdivision scheme (Example 1.2.4 with m = 2).

This scheme is uniformly convergent.

2-point Symmetrical Scheme

Taking r = 3
4 and s = 1

4 , we have the 2-point symmetrical subdivision scheme
f j+1

2k = 3
4f

j
k + 1

4f
j
k+1

f j+1
2k+1 = 1

4f
j
k + 3

4f
j
k+1
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corresponding to the mask

Mh = {h−2, h−1, h0, h1} = {1
4 ,

3
4 ,

3
4 ,

1
4}.

Note that this scheme can also be considered as a particular Lagrange subdivi-
sion scheme (Example 1.2.5 with l = r = 1 and xl = 1/4, xr = 3/4) or a particular
B-spline subdivision scheme (Example 1.2.4 with m = 3).

This scheme is uniformly convergent.

1.2.3 Classical 4-point Interpolatory Subdivision Schemes

Another classical subdivision studied in [25] is the 4-point centered interpolatory
subdivision defined as

f j+1
2k = f jk

f j+1
2k+1 = −wf jk−1 + (1

2 + w)f jk + (1
2 + w)f jk+1 − wf

j
k+2

corresponding to the mask

Mh = {h3, h2, h1, h0, h−1, h−2, h−3, h−4} = {−w, 0, 1
2 + w, 1, 1

2 + w, 0,−w, 0} .

This scheme is known to be uniformly convergent to C0 limit functions if |w| < 1
4 ,

and uniformly convergent to C1 limit functions if 0 < w < 1
8 .

1.2.4 B-spline Subdivision Schemes

B-splines1 on specific grids are known to satisfy scaling relations that are the starting
points to define related subdivision schemes [21, 8].

The scaling relation satisfied by the B-spline basis functions of order m reads,

Bm(t) =
∑
k

hmk Bm(2t− k),

which implies that any spline function

C(t) =
∑
k

f jkBm(2jt− k)

with control knots (f jk)k∈Z, can also be written as

C(t) =
∑
k

f j+1
k Bm(2j+1t− k)

1 we call splines of order m (m ≥ 2) relatively to a grid {xk}k∈Z the space of functions f such
that f ∈ Cm−2 and f |[xk,xk+1] ∈ P m−1.

18



with
f j+1
k =

∑
l

hmk−2lf
j
k k ∈ Z . (1.3)

From the definition Bm+1(t) =
∫ t
t−1 Bm(τ)dτ and B1(t) = χ[0,1] with χω the charac-

teristic function of the domain ω, it follows that the mask of the B-spline subdivision
of order m is given by

hmk = 1
2m−1

(
m

k

)
, k = 0, 1, . . . ,m . (1.4)

Note that this mask is usually used with a translation of index.
The B-spline subdivision (1.3) is linear, uniform and converges to spline func-

tions.

1.2.5 Lagrange Subdivision Schemes

Given two integers (l, r) ∈ N∗2, for a given set of l+ r distinct points, the Lagrange
interpolating polynomial of a continuous function f is the unique polynomial of
degree l+r−1 that coincides with the function at each point. Lagrange subdivision is
defined by sampling the Lagrange interpolating polynomial related to dyadic points
at specified positions.

If l (resp. r) stands for the number of points at the left (resp. right) side of the
targeted interval, the elementary Lagrange polynomials read

∀i ∈ Z, −l + 1 ≤ i ≤ r, Li(x) =
r∏

m=−l+1,
m 6=i

x−m
i−m

.

Choosing two distinct points (xl, xr) with xr−xl = 1
2 , a general Lagrange subdivision

scheme h is written as 
f j+1

2k =
r∑

n=−l+1
Ln(xl)f jk+n

f j+1
2k+1 =

r∑
n=−l+1

Ln(xr)f jk+n

.

Its mask is given by 
h2i = L−i(xl)

h2i+1 = L−i(xr)
, (1.5)

which leads to

Mh ={h−2r, h−2r+1, h−2r+2, h−2r+3, . . . , h2l−2, h2l−1}

={Lr(xl), Lr(xr), Lr−1(xl), Lr−1(xr), . . . , L−l+1(xl), L−l+1(xr)}.
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In general, two types of Lagrange subdivision are interesting to study, the in-
terpolatory Lagrange subdivision scheme that is obtained by setting xl = 0 and
xr = 1

2 , and the shifted Lagrange subdivision scheme that is obtained by setting
xl = 1

4 and xr = 3
4 .

Interpolatory Lagrange subdivision is therefore defined as (hf)2k = fk

(hf)2k+1 = ∑r
n=−l+1 Ln(1

2)fk+n
,

with  h0 = 1
h2i+1 = L−i(1/2), −r ≤ i ≤ l − 1

.

Shifted Lagrange subdivision is defined as (hf)2k = ∑r
n=−l+1 Ln(1

4)fk+n

(hf)2k+1 = ∑r
n=−l+1 Ln(3

4)fk+n
,

with  h2i = L−i(1/4), −r ≤ i ≤ l − 1
h2i+1 = L−i(3/4), −r ≤ i ≤ l − 1

.

A Lagrange subdivision is linear, uniform and convergent.

4-point Interpolatory Lagrange Scheme

Taking l = r = 2 and xl = 0, xr = 1/2, the centered 4-point interpolatory Lagrange
subdivision scheme is written as

f j+1
2k = f jk

f j+1
2k+1 = − 1

16f
j
k−1 + 9

16f
j
k + 9

16f
j
k+1 −

1
16f

j
k+2

,

and corresponds to the mask

Mh = {h3, h2, h1, h0, h−1, h−2, h−3, h−4} = {− 1
16 , 0,

9
16 , 1,

9
16 , 0,−

1
16 , 0} . (1.6)

Note that the 4-point interpolatory Lagrange scheme is a special case of the
4-point interpolatory scheme of Example 1.2.5 corresponding to w = 1

16 .
This scheme is convergent to C1 limit functions.
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4-point Shifted Lagrange Scheme

Taking l = r = 2 and xl = 1/4, xr = 3/4, the 4-point shifted Lagrange subdivision
scheme is defined as f j+1

2k = − 7
128f

j
k−1 + 105

128f
j
k + 35

128f
j
k+1 − 5

128f
j
k+2

f j+1
2k+1 = − 5

128f
j
k−1 + 35

128f
j
k + 105

128f
j
k+1 − 7

128f
j
k+2

,

and corresponds to the mask

Mh = {h−4, h−3, h−2, h−1, h0, h1, h2, h3} (1.7)

= {− 5
128 ,−

7
128 ,

35
128 ,

105
128 ,

105
128 ,

35
128 ,−

7
128 ,−

5
128}.

According to [22], this scheme is convergent and has smoothness C2.

1.2.6 PPH Subdivision Schemes

A full description of the original PPH scheme is available in [3].

4-point Shifted PPH Scheme

A shifted PPH Subdivision has been derived in [1]. It is a non-linear non-interpolatory
subdivision scheme.

Rewriting the Lagrange polynomial as

Pk(x) = L−1(x)f jk−1 + L0(x)f jk + L1(x)f jk+1 + L2(x)f jk+2

+ lk(x)
(
−(∆2fk + ∆2fk+1) + 2(∆2fk + ∆2fk+1

2 )
)
,

(1.8)

with
∆2fk = (f jk+1 − f

j
k)− (f jk − f

j
k−1),

the so-called PPH scheme is obtained by substituting arithmetic mean by harmonic
mean in (1.8) as

F j+1
k (x) = L−1(x)f jk−1 + L0(x)f jk + L1(x)f jk+1 + L2(x)f jk+2

+ 2lk(x)
(
H(∆2fk,∆2fk+1)− A(∆2fk,∆2fk+1)

)
,

with
H(x, y) = xy

x+ y
(sign(xy) + 1),

A(x, y) = x+ y

2 ,
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and

sign(x, y) =

 −1, if xy < 0
1, if xy ≥ 0

.

Taking

lk(x) =

 L2(x), if |∆2fk| ≤ |∆2fk+1|
L−1(x), if |∆2fk| > |∆2fk+1|

,

and denoting
DHAk = H(∆2fk,∆2fk+1)− A(∆2fk,∆2fk+1),

with an evaluation at position xl = 1/4 and xr = 3/4, the 4-point shifted PPH
subdivision scheme is defined as f j+1

2k = Pk(1
4) +Nk(1

4)
f j+1

2k+1 = Pk(3
4) +Nk(3

4)
,

where

Nk(x) =

 2L2(x)DHAk, if |∆2fk| ≤ |∆2fk+1|
2L−1(x)DHAk, if |∆2fk| > |∆2fk+1|

. (1.9)

More precisely,
if |∆2fk| ≤ |∆2fk+1|, f j+1

2k = − 7
128f

j
k−1 + 105

128f
j
k + 35

128f
j
k+1 − 5

128f
j
k+2 − 5

64DHAk

f j+1
2k+1 = − 5

128f
j
k−1 + 35

128f
j
k + 105

128f
j
k+1 − 7

128f
j
k+2 − 7

64DHAk
, (1.10)

if |∆2fk| > |∆2fk+1|, f j+1
2k = − 7

128f
j
k−1 + 105

128f
j
k + 35

128f
j
k+1 − 5

128f
j
k+2 − 7

64DHAk

f j+1
2k+1 = − 5

128f
j
k−1 + 35

128f
j
k + 105

128f
j
k+1 − 7

128f
j
k+2 − 5

64DHAk
. (1.11)

Note that the 4-point shifted PPH scheme can be considered as the linear 4-point
shifted Lagrange scheme with a non-linear perturbation.

In the following, we show that the 4-point shifted PPH scheme can also be
considered as the linear 2-point shifted Lagrange scheme with a (different) non-
linear perturbation.

Rewriting (1.8) as

Pk(x) =(2L−1(x) + L0(x)− L2(x))f jk + (−L−1(x) + L1(x) + 2L2(x))f jk+1

+ (L2(x)− L−1(x))∆2fk+1 + L−1(x) · 2(∆2fk + ∆2fk+1

2 ),
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or

Pk(x) =(2L−1 + L0(x)− L2(x))f jk + (−L−1(x) + L1(x) + 2L2(x))f jk+1

+ (L−1(x)− L2(x))∆2fk + L2(x) · 2(∆2fk + ∆2fk+1

2 ),

then a scheme involving 2 points in the linear part is obtained by substituting
arithmetic mean by harmonic one,

Fk(x) =(2L−1 + L0(x)− L2(x))f jk + (−L−1(x) + L1(x) + 2L2(x))f jk+1

+ (L2(x)− L−1(x))∆2fk+1 + L−1(x) · 2H(∆2fk,∆2fk+1),

or

Fk(x) =(2L−1 + L0(x)− L2(x))f jk + (−L−1(x) + L1(x) + 2L2(x))f jk+1

+ (L−1(x)− L2(x))∆2fk + L2(x) · 2H(∆2fk,∆2fk+1).

With the evaluation at position xl = 1/4 and xr = 3/4, the 4-point shifted PPH
subdivision scheme can be also defined as
if |∆2fk| ≥ |∆2fk+1|, f j+1

2k = 3
4f

j
k + 1

4f
j
k+1 + 1

64∆2fk+1 − 7
64H(∆2fk,∆2fk+1)

f j+1
2k+1 = 1

4f
j
k + 3

4f
j
k+1 − 1

64∆2fk+1 − 5
64H(∆2fk,∆2fk+1)

,

if |∆2fk| ≥ |∆2fk+1|, f j+1
2k = 3

4f
j
k + 1

4f
j
k+1 − 1

64∆2fk − 5
64H(∆2fk,∆2fk+1)

f j+1
2k+1 = 1

4f
j
k + 3

4f
j
k+1 + 1

64∆2fk − 7
64H(∆2fk,∆2fk+1)

.

Defining the function

R(x, y) =

 y −H(x, y) if |x| ≥ |y|
−x+H(x, y) if |x| < |y|

,

we finally have f j+1
2k = 3

4f
j
k + 1

4f
j
k+1 + 1

64R(∆2fk,∆2fk+1)− 6
64H(∆2fk,∆2fk+1)

f j+1
2k+1 = 1

4f
j
k + 3

4f
j
k+1 − 1

64R(∆2fk,∆2fk+1)− 6
64H(∆2fk,∆2fk+1)

. (1.12)

4-point Interpolatory PPH Scheme

With an evaluation at position xl = 0 and xr = 1/2, the 4-point interpolatory PPH
subdivision scheme is defined as f j+1

2k = f jk

f j+1
2k+1 = − 1

16f
j
k−1 + 9

16f
j
k + 9

16f
j
k+1 − 1

16f
j
k+2 − 1

8DHAk
. (1.13)
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In a similar way, the 4-point interpolatory PPH subdivision scheme can be
rewritten as the 2-point interpolatory Lagrange subdivision with a non-linear per-
turbation [4],  f j+1

2k = f jk

f j+1
2k+1 = 1

2f
j
k + 1

2f
j
k+1 − 1

8H(∆2fk,∆2fk+1)
. (1.14)
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Figure 1.1: Left: Interpolatory Lagrange subdivision with Gibbs phenomenon,
Right: Interpolatory PPH subdivision avoiding the Gibbs phenomenon.

The advantage of the PPH scheme is that it is able to avoid the Gibbs phe-
nomenon [2] in the vicinity of discontinuous points where oscillations are generated
by applying the Lagrange scheme (Figure 1.1).

1.3 Multiresolution Analysis

1.3.1 Decimation Schemes

A decimation operator can be interpreted as the left inverse of a subdivision oper-
ator. Similarly to the subdivision schemes, linear uniform decimation schemes are
defined as follows,

Definition 1.4 (Decimation Schemes).
A univariate linear decimation scheme h̃ is defined through a real-valued sequence
(h̃k)k∈Z having a finite number of non zero values such that

h̃ :


l∞(Z)→ l∞(Z)

(fk)k∈Z 7→ ((h̃f)k)k∈Z
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with
(h̃f)k =

∑
l∈Z

h̃l−2kfl .

Any set of the form {h̃k : k0 ≤ k ≤ k1, k ∈ Z} containing all non-zero values of
(h̃k)k∈Z is called a mask of the operator h̃ of length k1 − k0 + 1 and is denoted Mh̃.

Mimicking the subdivision construction, a decimation scheme can be linear or
non-linear, stationary or non-stationary, uniform or non-uniform etc.

Definition 1.5 (Stability of Decimation Schemes).
A decimation scheme h̃ is stable if there exists a constant C ∈ R such that for all
f, fε ∈ l∞(Z),

∀i ∈ N, ||h̃if − h̃ifε||∞ ≤ C||f − fε||∞.

Subdivision and decimation are connected through a consistency property.

Definition 1.6 (Consistent Decimation).
A decimation operator h̃ is said to be consistent with the subdivision scheme h if

h̃h = I (1.15)

where I stands for the identity operator.

1.3.2 Multiresolution Analysis Framework

Following the definition of Harten [26], a multiresolution analysis is characterized
by the introduction of a family of separable spaces (V j)j∈Z (j is a scale parameter)
and two families of decimation and prediction operators connecting two successive
spaces V j and V j+1.

These two operators can be constructed from previous decimation and subdi-
vision schemes. If f j ∈ V j is obtained after decimation (h̃) of f j+1 ∈ V j+1, hf j

does not usually coincide with f j+1. In order to recover f j+1 after a decimation
and a prediction, a sequence of prediction errors ej+1 =

(
ej+1
k

)
k∈Z

is introduced and
defined as:

ej+1 = (I − hh̃)f j+1. (1.16)

Introducing W j a complementary space of V j in V j+1, i.e. V j+1 = V j ⊕W j,
if (g, g̃) is a couple of operators such that g̃g = IW j , h̃g = 0 and g̃h = 0, we get
g̃f j+1 ∈ W j and f j+1 = hh̃f j+1 + gg̃f j+1.
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The operator g is called a detail subdivision operator and g̃ a detail decimation
operator.

A one-scale transform of the multi-scale analysis of Harten can be illustrated as
follows,

f j

f j+1

dj

hf j+gdj

||

h̃ g̃

h g

The set of operators (h, h̃, g, g̃) verifies the exact reconstruction condition,

hh̃+ gg̃ = I.

Definition 1.7.
The set of operators (h, h̃, g, g̃) is said to be compatible if and only if

h̃h = I, g̃g = I, h̃g = 0, g̃h = 0.

Note that the consistency between subdivision and decimation is a necessary
condition for compatibility.

Iterating this process and denoting j > j0, multi-scale decomposition and recon-
struction transforms can be finally constructed as:

Decomposition : f j 7→ {f j0 , dj0 , . . . , dj}, (1.17)

f j f j−1 f j−2

dj−1

· · ·

dj−2

h̃ h̃

g̃ g̃

Reconstruction : {f j0 , dj0 , . . . , dj} 7→ f j+1 . (1.18)
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f j0 f j0+1 f j0+2

dj0

· · ·

dj0+1

h h

g g

These two transforms are of prime importance in data analysis and compression.
Subdivision-based multiresolution is an appealing framework for data analysis

since it inherits the flexibility of the construction of subdivision operators. However,
even if the operator h can be easily adapted according to the problem under study,
the specification of the full multiresolution process (i.e. the operators h̃, g and g̃)
is more involved. For example, the construction of a decimation is still difficult to
tackle for non-interpolatory schemes since, generally, a subsampling operator does
not satisfy the consistency property. Moreover, the detail sequences can be obtained
in the linear case by decomposing the prediction error on a basis of Ker(h̃) but this
approach cannot be applied when h̃ is not linear.

In this thesis, we propose some solutions to circumvent these difficulties.

1.3.3 Polynomial Approximation

The behavior of the prediction error is controlled by the polynomial (quasi) repro-
duction property which is recalled by the following definitions.

Let πn denote the space of polynomial of degree not larger than n ∈ N.

Definition 1.8 (Polynomial Quasi-reproduction).
An operator U : l∞(Z) 7→ l∞(Z) is said to quasi-reproduce polynomials up to degree
L if

∀f ∈ πL(R), ti = (k2−i)k∈Z,∃g ∈ πL(R), tj = (k2−j)k∈Z, s.t. Uf(ti) = g(tj) .

Definition 1.9 (Polynomial Reproduction).
An operator U : l∞(Z) 7→ l∞(Z) is said to reproduce polynomials up to degree L if

∀f ∈ πL(R), ti = (k2−i)k∈Z,∃tj = (k2−j)k∈Z, s.t. Uf(ti) = f(tj) .

The polynomial reproduction property is actually preserving exactly the sam-
pled polynomial while the polynomial quasi-reproduction property is preserving the
degree of the sampled polynomial. In the literature, polynomial quasi-reproduction
is also called degree preserving [28] or polynomial generation [23], and polynomial
reproduction is also called polynomial preservation [31].
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Note that all the schemes considered in this thesis are assumed to reproduce
constants since it is a necessary condition for convergence.

Precisely, a scheme U is said to reproduce constants if

∀k ∈ Z, f = C =⇒ ∀k, (Uf)k = C.

It is easy to verify that a linear subdivision scheme reproduces constants if and
only if ∑

k∈Z
h2k =

∑
k∈Z

h2k+1 = 1 .

Similarly, a linear decimation scheme reproduces constants if and only if

∑
k∈Z

h̃k = 1 .

1.3.4 Prediction Errors and Details

For applications in signal processing or approximation, the performance of the mul-
tiresolution process is controlled by the behavior of the prediction error with regards
to the scale and more precisely by the amount of small prediction error values at
each scale. Under some general conditions, the norm of the prediction error expo-
nentially decays with the scale and this decay rate plays a key role in the sparsity
of the multiresolution representation. This property is recalled in the following
definition.

Definition 1.10 (Decay of the norm of the prediction error).
A prediction error ej is said to decay with a decay rate of p if and only if

||ej||∞ ≤ C2−pj,

where C is a constant that does not depend on j.

Since ej = gdj, and g is usually chosen linear and continuous, in this case, the
decay rate of the prediction error implies the same decay rate of the details.

1.3.5 Stability

A key point in practice is also the sensitivity of the multiresolution process to
perturbations. It is related to the stability property of the decomposition and
reconstruction transforms that is recalled in the next definition.
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Definition 1.11 (Stability of the multiresolution).
The reconstruction transform is said to be stable with regards to the norm || . ||∞
if there exists a constant C such that for all {f j0 , dj0 , ..., dj−1} and {f j0ε , dj0ε , ..., dj−1

ε },

||f j − f jε ||∞ ≤ C

||f j0 − f j0ε ||∞ +
j−1∑
i=j0
||di − diε||∞

 , (1.19)

where {f j0 , dj0 , ..., dj−1} and {f j0ε , dj0ε , ..., dj−1
ε } stand for the decomposition of f j

and f jε .
The decomposition transform is said to be stable with regards to the norm || . ||∞
if there exists a constant C such that for all (f j, f jε ),

||f j0 − f j0ε ||∞ +
j−1∑
i=j0
||di − diε||∞ ≤ C||f j − f jε ||∞, (1.20)

where {f j0 , dj0 , ..., dj−1} and {f j0ε , dj0ε , ..., dj−1
ε } stand for the decomposition of f j

and f jε .
The multiresolution is said to be stable if the associated decomposition transform

and reconstruction transform are stable.

In the linear case, the stability of the multiresolution is guaranteed as soon as
the subdivision and decimation are stable. In the non-linear case, the stability
of the multiresolution is not easy to deduce. A condition for the stability of the
subdivision scheme and also of the reconstruction was given in [1]. It is recalled as
follows,

Proposition 1.1.
Let h = hL+hN be a non-linear subdivision scheme with hL denoting the linear part
and hN a non-linear perturbation, if there exists M > 0 and c < 1 such that for all
f, fε ∈ l∞(Z),

||hNf − hNfε||∞ ≤M ||f − fε||∞,

||δ(hf − hfε)||∞ ≤ c||δ(f − fε)||∞,

where δ is a linear operator defined by hN · = F (δ·), then the subdivision scheme h
is stable and the associated reconstruction is stable.

1.4 Conclusion

The subdivision framework leads to a large family of subdivision operators thanks
to the flexibility in the construction of the mask. This is not the case when con-
sidering wavelet multiresolution analysis, since the prediction and the decimation
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are fixed once scaling functions and wavelets are specified. However, for a given
subdivision scheme, the construction of a decimation mask leading to a family of
consistent decimation operators is more involved and the complete construction of
compatible and stable operators (h, h̃, g, g̃) is difficult. These topics are addressed in
the following chapters. We start in Chapter 2 with an original method to generate
consistent decimation operators associated to a fixed subdivision.
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Chapter 2

Consistent Decimations for
Uniform Linear Subdivision
Schemes

2.1 Introduction

This chapter deals with the construction of decimation operators associated to linear
uniform subdivision schemes.

Exploiting the consistency condition and the uniform property, a generic ap-
proach is introduced following two steps that are fully described in Section 2.2. A
special attention is also given to the connection between the matrix involved in
this construction and the so-called refinement matrices involved in the analysis of
subdivision schemes [21]. Finally, several examples of decimation construction for
standard and non-standard subdivision schemes are provided in Section 2.3.

Most of the content of this chapter has been presented at the 9th International
Conference on Mathematical Methods for Curves and Surfaces in Norway and pub-
lished in Lecture notes in computer sciences [29].

2.2 Generic Approach

2.2.1 Consistency Condition

The consistency property (1.15) can be reformulated as a condition satisfied by the
masks of the subdivision and decimation operators. It is given by the following
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proposition,

Proposition 2.1.
Let h be a linear subdivision operator with mask (hk)k∈Z i.e.

∀j, ∀
(
f jl
)
l∈Z

,
(
hf j

)
k

=
∑
l∈Z

hk−2lf
j
l . (2.1)

Let h̃ be a linear decimation operator with mask (h̃k)k∈Z i.e.

∀j, ∀
(
f j+1
l

)
l∈Z

,
(
h̃f j+1

)
l
=
∑
k∈Z

h̃k−2lf
j+1
k . (2.2)

Then h and h̃ satisfy the consistency relation (1.15) if and only if

∀j ∈ Z,
∑
i∈Z

hih̃i+2j = δj,0 . (2.3)

where δj,0 is the Kronecker delta.

Proof.
According to (2.1) and (2.2), the consistency condition (1.15) implies that ∀ (f jm)m∈Z,

∀m ∈ Z, f jm =
∑
k∈Z

h̃k−2m
∑
l∈Z

hk−2lf
j
l =

∑
l∈Z

(
∑
k∈Z

h̃k−2mhk−2l)f jl

which is equivalent to

∀m ∈ Z,
∑
k∈Z

h̃k−2mhk−2l = δm,l

that leads to (2.3).

Remark 2.1.
The proof of Proposition 2.1 can be also performed using Laurent polynomials. It
is given in Appendix A.

Corollary 2.1.
Given a couple of subdivision and consistent decimation schemes, if the subdivi-
sion scheme reproduces constants, according to the consistency equation (2.3), the
decimation scheme also reproduces constants.
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2.2.2 Notations and Properties

We first introduce the shifted decimation operator defined below,

Definition 2.1 (Shifted Decimation Operator).
If h̃ is a decimation operator constructed from the sequence (h̃k)k∈Z, for t ∈ Z, we
denote Tt(h̃) the decimation operator related to the sequence (h̃k−t)k∈Z.

Using this shifted operator, it is then possible to generate new consistent deci-
mation operators from existing ones by linear combination. Indeed we have,

Lemma 2.1.
Let h be a subdivision operator constructed from the sequence (hk)k∈Z,

1. if h̃ and h̃′ are two decimation operators consistent with h and constructed
from the sequences (h̃k)k∈Z and (h̃′k)k∈Z, then

∀λ ∈ R, λh̃+ (1− λ)h̃′

is consistent with h.

2. if h̃, h̃′ and h̃′′ are three decimation operators consistent with h and constructed
from the sequences (h̃k)k∈Z, (h̃′k)k∈Z and (h̃′′k)k∈Z, then

∀λ ∈ R,∀t ∈ Z, h̃+ λT2t(h̃′)− λT2t(h̃′′)

is consistent with h.

Proof.
With the consistency condition (1.15), it is easy to verify

1. ∀λ ∈ R, ∑
k

hk+2j(λh̃+ (1− λ)h̃′)k

=λ
∑
k

hk+2jh̃k + (1− λ)
∑
k

hk+2jh̃
′
k

=λδj,0 + (1− λ)δj,0
=δj,0.

2. ∀λ ∈ R,∀t ∈ Z, ∑
k

hk+2j(h̃+ λT2t(h̃′)− λT2t(h̃′′))k

=
∑
k

hk+2j(h̃k + λh̃′k−2t − λh̃′′k−2t)

=δj,0 + λδj+t,0 − λδj+t,0
=δj,0.
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As a result, a general construction of consistent decimations is straightforward
and provided by the next proposition.

Proposition 2.2.
Let h be a given subdivision operator, denote {h̃i}i∈I a set of decimation operators
which are consistent with h, then a general consistent decimation operator can be
constructed as

∑
t∈T

∑
i∈I

ci,tT2t(h̃i) (2.4)

with

∀t ∈ T ,
∑
i∈I

ci,t = δt,0, 0 ∈ T ⊂ Z .

Remark 2.2.
Note that different coefficients ci,t may lead to the same operator.

In the next section, we develop a method to construct a specific set of decimation
operators consistent with a given subdivision scheme. Then we show that (2.4) can
be used to derive, from this set, all consistent decimation operators from this set.

2.2.3 Elementary Decimation Operators

The starting point of the method is the consistency relation (2.3) and its reformu-
lation as a vectorial equation. Since Mh and Mh̃ can be of different lengths, several
situations have to be considered to describe the generic method. They are fully
specified in the following,

Theorem 1.
Let h be a subdivision operator with mask

Mh = {hn−2α, hn−2α+1, . . . , hn, hn+1}

of length 2(α + 1) with hn−2αhn+1 6= 0 or of length 2α + 1 with hn−2α = 0 and
hn−2α+1hn+1 6= 0.
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Denote HMh
the following matrix,

HMh
=



hn hn−2 · · · hn−2α 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · hn−2α · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · hn−2α

0 0 · · · hn+1 hn−1 · · · hn−2α+1


.

If det(HMh
) 6= 0, there exists 2α consistent decimation operators which masks are

of length not larger than 2α.
These masks are given by each row of H−1

Mh
.

Proof.
First, let us assume that Mh is of even length (hn−2αhn+1 6= 0) and denote formally
for any integer m ∈ Z,

Mh̃ = {h̃n−m, h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1},

the mask of a consistent decimation operator of length not larger than 2α. Here the
parameter n controls the centering of the mask Mh. The parameter m is related to
the shift between the masks Mh and Mh̃.

If h̃ is consistent with h then the consistency condition (2.3) is verified. It can
be written as

[h̃n−m, h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1]



hn−m−2j

hn−m+1−2j
...

hn−m+2α−2−2j

hn−m+2α−1−2j


= δj,0 . (2.5)

To ensure that (2.5) makes sense with a given Mh, we should have

{hn−m−2j, hn−m+1−2j, . . . , hn−m+2α−1−2j}
⋂
{hn−2α, hn−2α+1, . . . , hn+1} 6= ∅,

which means  n−m+ 2α− 1− 2j ≥ n− 2α
n−m− 2j ≤ n+ 1

.
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and leads to

−m+ 1
2 ≤ j ≤ −m+ 1

2 + 2α .

Whenm is odd, (2.5) corresponds to 2α+1 linear equations for j ∈ {−m+1
2 , . . . ,−m+1

2 +
2α} including

h̃n−mhn+1 = δm,−1 for j = m+ 1
2

and

h̃n−m+2α−1hn−2α = δm,4α−1 for j = m+ 1
2 + 2α.

Since hn+1hn−2α 6= 0, it necessarily leads to h̃n−mh̃n−m+2α−1 = 0. If h̃n−m = 0, then
Mh̃ is equivalent to {h̃n−m′ , h̃n−m′+1, . . . , h̃n−m′+2α−2, h̃n−m′+2α−1} where m′ is even
by considering

{h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1, 0},

and replacing m− 1 by m′. The same kind of argument holds when h̃n−m+2α−1 = 0
by considering

{0, h̃n−m, . . . , h̃n−m+2α−2, h̃n−m+2α−2} .

Therefore, m can always be considered as even without losing generality. Since
m is even, (2.5) leads to 2α linear equations for j ∈ {−m

2 ,−
m
2 +1, . . . ,−m

2 +2α−1}
that can be written as

[h̃n−m, h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1]HMh
= [δm,0, δm−2,0, . . . , δm−4α+2,0]

with

HMh
=



hn hn−2 · · · hn−2α 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · hn−2α · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · hn−2α

0 0 · · · hn+1 hn−1 · · · hn−2α+1


,

where the column index corresponds to parameter j.
For m ∈ {0, 2, . . . , 4α− 4, 4α− 2}, equation (2.5) can be written as

H̃Mh
HMh

= I2α
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with

H̃Mh
=



Mh̃0

Mh̃2

...
Mh̃4α−4

Mh̃4α−2


=



h̃0
n h̃0

n+1 · · · h̃0
n+2α−1

h̃2
n−2 h̃2

n−1 · · · h̃2
n+2α−3

... ...
h̃4α−4
n−4α+4 h̃4α−4

n−4α+5 · · · h̃4α−4
n−2α+3

h̃4α−2
n−4α+2 h̃4α−2

n−4α+3 · · · h̃4α−2
n−2α+1


.

Each row of H̃Mh̃
corresponds to a value of m and to a consistent decimation op-

erator. Note that, specifically for the decimation operators defined above, the su-
perscript k for h̃k controls the shift between Mh and Mh̃k . Since det(HMh

) 6= 0,
H̃Mh

= H−1
Mh

, that concludes the proof when Mh is of even length.
In the case of subdivision mask of odd length, the same proof can be conducted

assuming hn−2α = 0 and the same matrix H̃Mh
can be deduced if det(HMh

) 6= 0.

The decimation operators obtained in Theorem 1 are called elementary deci-
mation operators.

If the subdivision mask is of odd length, it can be proved that the last row of H̃Mh

can be obtained by a linear combination of translated versions of the decimation
masks associated to the other rows. It is therefore enough to focus on the 2α −
1 elementary decimation operators. This important result is stated by the next
proposition,

Proposition 2.3.
Let h be a prediction operator constructed from the mask

M ′
h = {hn−2α+1, hn−2α+2, . . . , hn, hn+1}

of length 2α + 1, α ≥ 2 with hn−2α+1hn+1 6= 0.
We note H ′M ′

h
the following matrix

H ′M ′
h

=



hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · hn−2α+2


.

If det(H ′M ′
h
) 6= 0, there exists 2α − 1 consistent elementary decimation operators

which masks are of length not larger than 2α − 1 . These masks are given by each
row of H ′−1

M ′
h
.
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Proof.
Following Proposition 1, we construct a similar matrix with hn−2α = 0

HM ′
h

=



hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · 0
0 0 · · · hn+1 hn−1 · · · hn−2α+1


.

Since hn−2α+1 6= 0 and det(H ′M ′
h
) 6= 0, we have det(HM ′

h
) 6= 0 and we can introduce

H̃M ′
h

=



Mh̃0

Mh̃2

...
Mh̃4α−4

Mh̃4α−2


=



h̃0
n h̃0

n+1 · · · h̃0
n+2α−2 0

h̃2
n−2 h̃2

n−1 · · · h̃2
n+2α−4 0

... ... ...
h̃4α−4
n−4α+4 h̃4α−4

n−4α+5 · · · h̃4α−4
n−2α+2 0

h̃4α−2
n−4α+2 h̃4α−2

n−4α+3 · · · h̃4α−2
n−2α h̃4α−2

n−2α+1


with H̃M ′

h
= H−1

M ′
h
.

Note that the last row of H̃M ′
h
denoted Mh̃4α−2 is the only mask with a non-zero

last term. Therefore h̃4α−2
n−2α+1 6= 0 according to the consistency condition.

In the sequel, we show that the last row of H̃M ′
h
can be obtained by linear

combinations of the translated versions of the above ones.
First, note that the set

{h̃0
n+2α−2, h̃

2
n+2α−4, . . . , h̃

4α−6
n−2α+4}

has at least one non-zero term, otherwise, according to the consistency condition,
all terms in

{h̃0
n+2α−3, h̃

2
n+2α−5, . . . , h̃

4α−6
n−2α+3}

would be also zero which implies det(H̃M ′
h
) = 0.

So there exists h̃4α−4−2t
n−2α+2+2t 6= 0 for t ∈ {1, 2, . . . , 2α − 2}. Introducing λ =

h̃4α−4
n−2α+2/h̃

4α−4−2t
n−2α+2+2t, we note

h̃∗ = h̃4α−4 + λT−2t(h̃4α−2−2t)− λT−2t(h̃4α−4−2t)

which can have non-zero value from index n − 4α + 2 to n − 2α + 2. Calculating
the last term gives

h̃∗n−2α+2 = h̃4α−4
n−2α+2 + λh̃4α−2−2t

n−2α+2+2t − λh̃4α−4−2t
n−2α+2+2t = 0 .
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It means that h̃∗ can have non-zero value from index n− 4α + 2 to n− 2α + 1.
Since det(HM ′

h
) 6= 0, h̃4α−2 is the unique consistent operator with a mask of

length not larger than 2α and admitting non-zero values from index n− 4α + 2 to
n− 2α + 1. It therefore implies that h̃∗ = h̃4α−2.

Thus, eliminating the last row and column of HM ′
h
, we construct the matrix

H ′M ′
h

=



hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · hn−2α+2


.

Since det(H ′M ′
h
) 6= 0, we then get elementary consistent decimation operator masks

by considering the rows of H̃ ′M ′
h

= H ′−1
M ′
h
.

By construction, H ′M ′
h
is a (2α− 1)× (2α− 1) sub-matrix of HMh

,

HMh
=
H ′M ′h 0
U hn−2α+1


with U = [0, . . . , 0, hn+1, hn−1, . . . , hn−2α−1].

According to the blockwise inversion of a matrix,

A B

C D

−1

=
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

 ,
we have

H̃Mh
= H−1

Mh
=
 H̃ ′M ′

h
0

−h−1
n−2α+1UH̃

′
M ′
h

h−1
n−2α+1


which means that H̃ ′M ′

h
in Proposition 2.3 is a (2α − 1) × (2α − 1) sub-matrix of

H̃Mh
introduced in Theorem 1.

So far, a generic method was proposed to construct a set of consistent decimation
operators. It remains to show that it can be used to generate all the consistent
decimation operators, which is achieved in the next section by exploiting formula
(2.4).
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2.2.4 Completeness of Generic Approach

In this section, we prove that the approach of Theorem 1 combined with Proposition
2.2 generates all the consistent decimation operator of any length.

More precisely, we have the following proposition that shows how all consis-
tent decimation operators can be recovered using linear combinations of translated
versions of elementary operators.

Proposition 2.4.
Given a subdivision scheme h satisfying the hypotheses of Theorem 1, combining
elementary decimation operators with formula (2.4) generates all the consistent dec-
imation operators.

Proof.
Let’s first considerMh = {hn−2α, hn−2α+1, . . . , hn, hn+1} the mask of a given operator
h of length 2(α+1) with hn−2αhn+1 6= 0. Then, Proposition 1 provides 2α consistent
elementary decimation operators of length 2α which can be denoted as

Mh̃2i = {h̃2i
n−2i, h̃

2i
n−2i+1, . . . , h̃

2i
n−2i+2α−2, h̃

2i
n−2i+2α−1}

with i = 0, 1, 2, . . . , 2α− 1.
Let Mh̃ = {h̃m−2β, h̃m−2β+1, . . . , h̃m, h̃m+1} be the mask of an arbitrary decima-

tion operator h̃ consistent with h. The length ofMh̃, 2β+2, is supposed to be larger
than 2α that is to say β > α− 1 , otherwise h̃ is an elementary operator itself and
the proof is completed. Moreover, m in Mh̃ is always chosen to ensure n−m even
by assuming that h̃m−2β and h̃m+1 can be zero. However, {h̃m−2β, h̃m−2β+1} 6= {0, 0}
and {h̃m, h̃m+1} 6= {0, 0} are always guaranteed.

The consistency of h and h̃ implies directly n− 2α− 1 < m < n+ 2β + 1.
The aim is to prove that h̃ can be represented as a linear combination of trans-

lated version of (h̃2i)0≤i≤2α−1.
This will be achieved in two steps. The first step consists in writing h̃ as the sum

of a term involving some h̃2i or its translated versions and of another one denoted h̃∗

that is a consistent decimation operator with a shorter mask than Mh̃. The second
step is an iteration of this process until h̃∗ is an elementary decimation operator.
We restrict the proof to the first step since the second one is straightforward.

The starting point is the consistency condition (2.3). Considering j = m−n
2 − β

and j = m−n
2 + α, it leads to

hnh̃m−2β + hn+1h̃m−2β+1 = δm−n
2 −β,0 , (2.6)
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hn−2αh̃m + hn−2α+1h̃m+1 = δm−n
2 +α,0 . (2.7)

According to α and β, at least one of the two above RHS term is equal to zero. Let
us suppose that the RHS of (2.6) is zero, i.e.

hnh̃m−2β + hn+1h̃m−2β+1 = 0. (2.8)

Since hn+1 6= 0, we cannot have h̃2i
n−2i = 0 for all i ∈ {1, 2, . . . , 2α−1} according

to the consistency condition.

Let us introduce the two following operators with a mask of length 2α with
h̃′m−2β 6= 0,

Mh̃′ = {h̃′m−2β, h̃
′
m−2β+1, . . . , h̃

′
2α−2β+m−2, h̃

′
2α−2β+m−1} = Tm−2β−n+2i(h̃2i),

Mh̃′′ = {h̃′′m−2β+2, h̃
′′
m−2β+3, . . . , h̃

′′
2α−2β+m, h̃

′′
2α−2β+m+1} = Tm−2β−n+2i(h̃2i−2)

which are elementary operators with the same translation. The consistency condi-
tion implies

hnh̃
′
m−2β + hn+1h̃

′
m−2β+1 = 0. (2.9)

Considering (2.8) and (2.9), h̃m−2β = 0 leads to h̃m−2β+1 = 0 which is not
allowed. Moreover, h̃m−2β+1 = 0 implies hn = 0 and then h̃′m−2β+1 = 0. Therefore
there exists λ ∈ R/{0} such that

λ[h̃′m−2β, h̃
′
m−2β+1] = [h̃m−2β, h̃m−2β+1] . (2.10)

According to Proposition 2.1, h̃∗ = h̃−λh̃′+λh̃′′ is consistent with h. Since Mh̃

has length 2β + 2, Mh∗ has length 2β from index m− 2β + 2 to m+ 1.
If β = α, Mh̃∗ and Mh̃′′ have the same length and indices. According to Propo-

sition 1, h̃∗ = h̃′′ and
h̃ = λh̃′ + (1− λ)h̃′′ ,

which leads to the expected result with a zero second term.
If β > α, Mh̃∗ has a shorter length than Mh̃ and

h̃ = λh̃′ − λh̃′′ + h̃∗ ,

that allows us to iterate by replacing h̃ with h̃∗ and then to conclude.

41



The above process actually eliminates the first two terms h̃m−2β, h̃m−2β+1 of Mh̃

using elementary decimation operators. If we suppose that the RHS of (2.7) is zero,
a symmetrical similar process can be performed and the last two terms h̃m, h̃m+1 of
Mh̃ will be eliminated.

To complete the proof in the case of subdivision mask of odd length, we suppose
hn+1 = 0 in (2.8) and (2.9). It is straightforward that h̃m−2β = 0, h̃m−2β+1 6= 0
and then h̃′m−2β = 0. Moreover, introducing Mh′ and Mh′′ with h̃′m−2β = 0 and
h̃′m−2β+1 6= 0, there exists λ 6= 0 verifying (2.10).

2.2.5 Refinement Matrices

In this section, we explore the relation between the refinement matrices A0, A1

introduced in [21] and the subdivision matrices HMh
, H ′Mh

introduced in Theorem
1 and Proposition 2.3.

For a subdivision h with a mask of length 2α + 2

Mh = {hn−2α, hn−2α+1, . . . , hn, hn+1}

if hn−2αhn+1 6= 0, the refinement matrices of dimension (2α + 1) × (2α + 1) are
written as

A0 =



hn hn−2 · · · hn−2α 0 · · · 0 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0 0

0 hn hn−2 · · · hn−2α · · · 0 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0 0
... ...
0 0 · · · hn hn−2 · · · hn−2α 0
0 0 · · · hn+1 hn−1 · · · hn−2α+1 0
0 0 0 0 hn hn−2 · · · hn−2α



A1 =



hn+1 hn−1 · · · hn−2α+1 0 · · · 0 0
0 hn hn−2 · · · hn−2α · · · 0 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0 0
... ...
0 0 · · · hn hn−2 · · · hn−2α 0
0 0 · · · hn+1 hn−1 · · · hn−2α+1 0
0 0 0 0 hn hn−2 · · · hn−2α

0 0 0 0 hn+1 hn−1 · · · hn−2α+1
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if hn−2α = 0, the refinement matrices of dimension 2α× 2α are written as

A′0 =



hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · 0
0 0 · · · hn+1 hn−1 · · · hn−2α+1



A′1 =



hn+1 hn−1 · · · hn−2α+1 0 · · · 0
0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
... ...
0 0 · · · hn hn−2 · · · 0
0 0 · · · hn+1 hn−1 · · · hn−2α+1

0 0 · · · 0 hn · · · hn−2α+2


if hn+1 = 0, a similar form is easy to be deduced.

It is then straightforward that the subdivision matrix HMh
(H ′Mh

for masks of
odd length) is sub-matrix of refinement matrices.

Exploiting the structure of the refinement matrices, the following results hold.

Proposition 2.5.
All the consistent elementary decimation operators can be deduced by inverting one
of the refinement matrix. Moreover, the eigenvalues of each refinement matrix are
the eigenvalues of the subdivision matrix HMh

(H ′Mh
for mask of odd length) plus

the first or last non-zero values of the subdivision mask.

Proof.
Consider the case hn−2α 6= 0, then

A0 =
HMh

0
U hn−2α

 .
Applying the blockwise inversion of matrix A0,

A−1
0 =

 H−1
Mh

0
−h−1

n−2αUH
−1
Mh

h−1
n−2α


and all elementary decimation operators are included in A−1

0 .
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Moreover, starting from A0, it is straightforward that the eigenvalues of HMh

are also the eigenvalues of A0 and that hn−2α is the eigenvalue of A0 associated to
the eigenvector

[
0
1

]
.

The proof is achieved by considering all other cases in the same way.

2.3 Examples and Applications

We here apply the generic method described in the previous section to construct
decimation operators consistent with several subdivision schemes. Depending on
the scheme, our method allows to revisit the classical decimation construction, but
also provides original ones in situations where there were, up to now, no available
decimation (shifted Lagrange, penalized Lagrange, for example). It is a first step
in the definition of new multiresolution analyses.

2.3.1 2-point Scheme

A general 2-point uniform scheme is given by the mask

Mh = {h−2, h−1, h0, h1} = {1− r, 1− s, r, s}.

Since r 6= s, Theorem 1 can be applied with

HMh
=
 h0 h−2

h1 h−1

 =
 r 1− r
s 1− s

 .
We get 2 consistent elementary decimation operators defined by

H̃Mh
= H−1

Mh
=
 h̃0

0 h̃0
1

h̃2
−2 h̃2

−1

 =
 1−s

r−s −1−r
r−s

− s
r−s

r
r−s


2-point Interpolatory Scheme

By taking r = 1 and s = 1
2 , we get the 2-point interpolatory Lagrange subdivision

or B-spline of order 2.
The 2 consistent elementary decimation operators are obtained by

H̃Mh
= H−1

Mh
=
 h̃0

0 h̃0
1

h̃2
−2 h̃2

−1

 =
 1 0
−1 2

 .
Note that the decimation h̃0 represents a sub-sampling and h̃2 represents an

extrapolation which could also be applied in a symmetrical direction.
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2-point Symmetrical Scheme

By taking r = 3
4 and s = 1

4 , we get the 2-point shifted Lagrange subdivision or
B-spline of order 3.

The 2 consistent elementary decimation operators are obtained by

H̃Mh
= H−1

Mh
=
 h̃0

0 h̃0
1

h̃2
−2 h̃2

−1

 =
 3

2 −1
2

−1
2

3
2

 .
According to formula (2.4), another consistent decimation can be constructed

as follows with λ ∈ R,

[h̃−2 h̃−1 h̃0 h̃1] = λ[0 0 h̃0
0 h̃0

1] + (1− λ)[h̃2
−2 h̃2

−1 0 0]
= [−1

2(1− λ) 3
2(1− λ) 3

2λ − 1
2λ]

.

Taking λ = 1/2, we get the symmetrical operator

[h̃−2 h̃−1 h̃0 h̃1] = [−1
4 ,

3
4 ,

3
4 ,−

1
4]. (2.11)

Following (2.4), a consistent decimation operator

Mh̃ = [ 1
16 ,−

3
16 ,−

1
16 ,

11
16 ,

11
16 ,−

1
16 ,−

3
16 ,

1
16], (2.12)

can be constructed as

h̃ = 1
2 h̃

2 + 1
2 h̃

0 − 1
8T−2(h̃2) + 1

8T−2(h̃0) + 1
8T2(h̃2)− 1

8T2(h̃0).

Moreover, the decimation proposed in [14],

Mh̃ = [ 3
64 ,−

9
64 ,−

7
64 ,

45
64 ,

45
64 ,−

7
64 ,−

9
64 ,

3
64], (2.13)

can be constructed by formula (2.4) as

h̃ = 1
2 h̃

2 + 1
2 h̃

0 − 3
32T−2(h̃2) + 3

32T−2(h̃0) + 3
32T2(h̃2)− 3

32T2(h̃0).

Remark 2.3.
The refinement matrix associated to this 2-point symmetrical subdivision is

A =


3
4

1
4 0

1
4

3
4 0

0 3
4

1
4

 .
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By inverting A, we can recover the two elementary operators from the first two
rows,

A−1 =


Mh̃0

Mh̃2

Mh̃4

 =


h̃0

0 h̃0
1 h̃0

2

h̃2
−2 h̃2

−1 h̃2
0

h̃4
−4 h̃4

−3 h̃4
−2

 =


3
2 −1

2 0
−1

2
3
2 0

3
2 −9

2 4


and not surprisingly, the third row can be deduced by combining the first two rows,

h̃4 = 3T−2(h̃0)− 3T−2(h̃2) + h̃2.

2.3.2 Lagrange Subdivision Scheme

4-point Interpolatory Lagrange Scheme

The centred 4-point interpolatory Lagrange subdivision scheme corresponds to the
mask

Mh = {h3, h2, h1, h0, h−1, h−2, h−3, h−4} = {− 1
16 , 0,

9
16 , 1,

9
16 , 0,−

1
16 , 0} .

Applying Theorem 1, since

HMh
=



h2 h0 h−2 h−4 0 0
h3 h1 h−1 h−3 0 0
0 h2 h0 h−2 h−4 0
0 h3 h1 h−1 h−3 0
0 0 h2 h0 h−2 h−4

0 0 h3 h1 h−1 h−3


=



0 1 0 0 0 0
− 1

16
9
16

9
16 − 1

16 0 0
0 0 1 0 0 0
0 − 1

16
9
16

9
16 − 1

16 0
0 0 0 1 0 0
0 0 − 1

16
9
16

9
16 − 1

16


,

6 consistent elementary decimation operators are obtained by

H̃Mh
= H−1

Mh
=



h̃0
2 h̃0

3 h̃0
4 h̃0

5 h̃0
6 h̃0

7

h̃2
0 h̃2

1 h̃2
2 h̃2

3 h̃2
4 h̃2

5

h̃4
−2 h̃4

−1 h̃4
0 h̃4

1 h̃4
2 h̃4

3

h̃6
−4 h̃6

−3 h̃6
−2 h̃6

−1 h̃6
0 h̃6

1

h̃8
−6 h̃8

−5 h̃8
−4 h̃8

−3 h̃8
−2 h̃8

−1

h̃10
−8 h̃10

−7 h̃10
−6 h̃10

−5 h̃10
−4 h̃10

−3


=



9 −16 9 0 −1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
−1 0 0 −16 9 0
−9 0 80 −144 90 −16


.

The five first elementary decimation operators defined above correspond to
sub-sampling (row 2, 3 and 4 of H̃ ′Mh

) and polynomial extrapolations of degree
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3 (from the positions (0, .5, 1, 2) to x = −1 for first row and from the positions
(−2,−1,−.5, 0) to x = 1 for fifth row).

These five elementary operators can be also obtained by applying Proposition
2.3,

H̃ ′Mh
=



h̃0
2 h̃0

3 h̃0
4 h̃0

5 h̃0
6

h̃2
0 h̃2

1 h̃2
2 h̃2

3 h̃2
4

h̃4
−2 h̃4

−1 h̃4
0 h̃4

1 h̃4
2

h̃6
−4 h̃6

−3 h̃6
−2 h̃6

−1 h̃6
0

h̃8
−6 h̃8

−5 h̃8
−4 h̃8

−3 h̃8
−2


=



9 −16 9 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
−1 0 9 −16 9


.

We verify that
h̃10 = h̃8 + 9T−2(h̃8)− 9T−2(h̃6)

which means that the operator associated to the last row of H̃Mh
can be obtained

by linear combination of the translated versions of the operators associated to the
two rows above.

Note that as for all interpolatory subdivision, sub-sampling provides an opti-
mally stable decimation with ∑l |h̃l| = 1.

4-point Shifted Lagrange Scheme

The 4-point shifted Lagrange subdivision scheme corresponds to the mask (1.7).
Applying Theorem 1,

HMh
=



h2 h0 h−2 h−4 0 0
h3 h1 h−1 h−3 0 0
0 h2 h0 h−2 h−4 0
0 h3 h1 h−1 h−3 0
0 0 h2 h0 h−2 h−4

0 0 h3 h1 h−1 h−3



=



− 7
128

105
128

35
128 − 5

128 0 0
− 5

128
35
128

105
128 − 7

128 0 0
0 − 7

128
105
128

35
128 − 5

128 0
0 − 5

128
35
128

105
128 − 7

128 0
0 0 − 7

128
105
128

35
128 − 5

128

0 0 − 5
128

35
128

105
128 − 7

128


.
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We get the 6 elementary decimation operators,

H̃Mh
= H−1

Mh
=



h̃0
2 h̃0

3 h̃0
4 h̃0

5 h̃0
6 h̃0

7

h̃2
0 h̃2

1 h̃2
2 h̃2

3 h̃2
4 h̃2

5

h̃4
−2 h̃4

−1 h̃4
0 h̃4

1 h̃4
2 h̃4

3

h̃6
−4 h̃6

−3 h̃6
−2 h̃6

−1 h̃6
0 h̃6

1

h̃8
−6 h̃8

−5 h̃8
−4 h̃8

−3 h̃8
−2 h̃8

−1

h̃10
−8 h̃10

−7 h̃10
−6 h̃10

−5 h̃10
−4 h̃10

−3



=



24367
1152 −63605

1152
31115
576 −10325

576 −4165
1152

2975
1152

2975
1152 −4165

1152
1771
576 −565

576 − 245
1152

175
1152

175
1152 − 245

1152
875
576 −245

576 − 133
1152

95
1152

95
1152 − 133

1152 −245
576

875
576 − 245

1152
175
1152

175
1152 − 245

1152 −565
576

1771
576 −4165

1152
2975
1152

2975
1152 −4165

1152 −10325
576

31115
576 −63605

1152
24367
1152


.

A symmetric consistent decimation operator is obtained by combining the two
rows in the middle of H̃Mh

,

Mh̃ = {h̃−4, h̃−3, h̃−2, h̃−1, h̃0, h̃1, h̃2, h̃3} (2.14)

= { 95
2304 ,−

133
2304 ,−

35
256 ,

1505
2304 ,

1505
2304 ,−

35
256 ,−

133
2304 ,

95
2304}.

Another symmetric consistent decimation operator of length 12 can be derived
as

Mh̃ = {h̃−6, h̃−5, h̃−4, h̃−3, h̃−2, h̃−1, h̃0, h̃1, h̃2, h̃3, h̃4, h̃5} (2.15)

= { 19
16128 ,− 19

11520 ,
19
576 ,− 19

576 ,− 2623
16128 ,

7639
11520 ,

7639
11520 ,− 2623

16128 ,− 19
576 ,

19
576 ,− 19

11520 ,
19

16128}

These two last decimation operators are used in the last chapter for the con-
struction of non-linear multiresolution.

2.3.3 B-spline Subdivision

B-spline Subdivision of Order 4

The B-spline subdivision scheme of order 4 corresponds to the mask

Mh = {h3, h2, h1, h0, h−1, h−2} = {1
8 ,

1
2 ,

3
4 ,

1
2 ,

1
8 , 0}.
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We obtain four elementary decimation operators from

HMh
=


h2 h0 h−2 0
h3 h1 h−1 0
0 h2 h0 h−2

0 h3 h1 h−1

 =



1
2

1
2 0 0

1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8

 ,

H̃Mh
= H−1

Mh
=


h̃0

0 h̃0
1 h̃0

2 h̃0
3

h̃2
−2 h̃2

−1 h̃2
0 h̃2

1

h̃4
−4 h̃4

−3 h̃4
−2 h̃4

−1

h̃6
−6 h̃6

−5 h̃6
−4 h̃6

−3

 =



5
2 −2 1

2 0
−1

2 2 −1
2 0

1
2 −2 5

2 0
−5

2 10 −29
2 8

 .

B-spline Subdivision of Order 5

The B-spline subdivision scheme of order 5 corresponds to the mask

Mh = {h3, h2, h1, h0, h−1, h−2} = { 1
16 ,

5
16 ,

5
8 ,

5
8 ,

5
16 ,

1
16}.

We obtain four elementary decimation operators from

HMh
=


h2 h0 h−2 0
h3 h1 h−1 0
0 h2 h0 h−2

0 h3 h1 h−1

 =



5
16

5
8

1
16 0

1
16

5
8

5
16 0

0 5
16

5
8

1
16

0 1
16

5
8

5
16

 ,

H̃Mh
= H−1

Mh
=


h̃0

0 h̃0
1 h̃0

2 h̃0
3

h̃2
−2 h̃2

−1 h̃2
0 h̃2

1

h̃4
−4 h̃4

−3 h̃4
−2 h̃4

−1

h̃6
−6 h̃6

−5 h̃6
−4 h̃6

−3

 =



35
8 −47

8
25
8 −5

8

−5
8

25
8 −15

8
3
8

3
8 −15

8
25
8 −5

8

−5
8

25
8 −47

8 −35
8

 .

Other operators of length not larger than 10 can be constructed following (2.4)
using four instance {λ1, λ2, λ3, λ4} as

[h̃−6 h̃−5 h̃−4 h̃−3 h̃−2 h̃−1 h̃0 h̃1 h̃2 h̃3]
= λ1[0 0 0 0 0 0 h̃0

0 h̃0
1 h̃0

2 h̃0
3]

+ λ2[0 0 0 0 h̃2
−2 h̃2

−1 h̃2
0 h̃2

1 0 0]
+ λ3[0 0 h̃4

−4 h̃4
−3 h̃4

−2 h̃4
−1 0 0 0 0]

+ λ4[h̃6
−6 h̃6

−5 h̃6
−4 h̃6

−3 0 0 0 0 0 0] .

A centred consistent decimation operator of length 6 can be obtained taking
{λ1, λ2, λ3, λ4} = {0, 1/2, 1/2, 0},

[h̃−4 h̃−3 h̃−2 h̃−1 h̃0 h̃1] = [ 3
16 − 15

16
5
4

5
4 − 15

16
3
16].
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Remark 2.4.
The values {λ1, λ2, λ3, λ4} = { 1

100 ,
47
300 ,

47
60 ,

1
20} minimize ∑3

i=−6 |h̃i| to the value 163
40 .

The corresponding decimation operator gets a smaller stability constant than any
of the elementary decimation for which the stability constants are (14, 6, 6, 14).

B-spline Subdivision of Order 7

The B-spline subdivision scheme of order 7 corresponds to mask

Mh = {h3, h2, h1, h0, h−1, h−2, h−3, h−4} = { 1
64 ,

7
64 ,

21
64 ,

35
64 ,

35
64 ,

21
64 ,

7
64 ,

1
64}.

Applying Theorem 1,

HMh
=



h2 h0 h−2 h−4 0 0
h3 h1 h−1 h−3 0 0
0 h2 h0 h−2 h−4 0
0 h3 h1 h−1 h−3 0
0 0 h2 h0 h−2 h−4

0 0 h3 h1 h−1 h−3


=



7
64

35
64

21
64

1
64 0 0

1
64

21
64

35
64

7
64 0 0

0 7
64

35
64

21
64

1
64 0

0 1
64

21
64

35
64

7
64 0

0 0 7
64

35
64

21
64

1
64

0 0 1
64

21
64

35
64

7
64


.

We get the 6 elementary decimation operators,

H̃Mh
= H−1

Mh
=



h̃0
2 h̃0

3 h̃0
4 h̃0

5 h̃0
6 h̃0

7

h̃2
0 h̃2

1 h̃2
2 h̃2

3 h̃2
4 h̃2

5

h̃4
−2 h̃4

−1 h̃4
0 h̃4

1 h̃4
2 h̃4

3

h̃6
−4 h̃6

−3 h̃6
−2 h̃6

−1 h̃6
0 h̃6

1

h̃8
−6 h̃8

−5 h̃8
−4 h̃8

−3 h̃8
−2 h̃8

−1

h̃10
−8 h̃10

−7 h̃10
−6 h̃10

−5 h̃10
−4 h̃10

−3



=



231
16 −593

16
343
8 −217

8
147
16 −21

16

−21
16

147
16 −105

8
71
8 −49

16
7
16

7
16 −49

16
63
8 −49

8
35
16 − 5

16

− 5
16

35
16 −49

8
63
8 −49

16
7
16

7
16 −49

16
71
8 −105

8
147
16 −21

16

−21
16

147
16 −217

8
343
8 −593

16
231
16


.

A symmetrical consistent decimation operator of length 8 is obtained by com-
bining the two rows in the middle of H̃Mh

,

Mh̃ = {h̃−4, h̃−3, h̃−2, h̃−1, h̃0, h̃1, h̃2, h̃3}

= {− 5
32 ,

35
32 ,−

91
32 ,

77
32 ,

77
32 ,−

91
32 ,

35
32 ,−

5
32}.
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2.3.4 Compactly Supported Wavelet Subdivision

Wavelets and, more precisely, scaling functions for multi-resolutions [17], are known
to provide subdivision operators.

Orthogonality and zero moment conditions translate on the scaling coefficient
Mh′ = {h′0, h′1, . . . , h′2N−1} as [17]

∑
i h
′
ih
′
i+2j = 2δj,0∑

i(−1)ih′iip = 0
(2.16)

for j ∈ Z, p = 0, 1, . . . , N − 1.
According to orthogonal compactly supported wavelet theory, the rescaled op-

erators h =
√

2h′ and h̃ = 1√
2h
′ are consistent subdivision/decimation operators.

More precisely, compact support wavelets of length 2N constructed in [17] lead to
the unique couple (subdivision and decimation) with the same mask (up to

√
2

rescaling) with exponential decay of the error corresponding to L = N − 1.
For N = 2 we get from [17]

[h′0 h′1 h′2 h′3] = [1 +
√

3
4
√

2
3 +
√

3
4
√

2
3−
√

3
4
√

2
1−
√

3
4
√

2
] .

Applying Proposition 1 for h =
√

2h′ we get

HMh
=
h0 h−2

h1 h−1

 =
3−

√
3

4
1+
√

3
4

1−
√

3
4

3+
√

3
4

 ,
H̃Mh

=
h̃0

2 h̃0
3

h̃2
0 h̃2

1

 =
 3+

√
3

4 −1+
√

3
4

−1+
√

3
4

3−
√

3
4

 ,
and therefore two elementary decimation operators h̃0 and h̃2.

For λ = 1
2

√
3−1√
3+1 , the linear combination

[h̃0 h̃1 h̃2 h̃3] = λ[0 0 h̃0
2 h̃0

3] + (1− λ)[h̃2
0 h̃2

1 0 0]

= [1 +
√

3
8

3 +
√

3
8

3−
√

3
8

1−
√

3
8 ]

provides h̃ = 1√
2h
′.

2.3.5 Penalized Lagrange Subdivision

We finally consider a non-stationary (i.e. depending on the scale j ) subdivision
scheme recently introduced in [34] and focus in the sequel on the associated consis-
tent decimation masks generated by our approach.
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Using the notations of [34], the scheme is here constructed from a polynomial
Pj(x) = 100(2−2j)x2 − 2−4jx4 and a vector of penalization C = (0, 2, 0, 0).

Denoting

Mh(j) = {h(j)
3 , h

(j)
2 , h

(j)
1 , h

(j)
0 , h

(j)
−1, h

(j)
−2, h

(j)
−3, h

(j)
−4},

it first comes out that

lim
j→−∞

Mh(j) = {− 1
16 , 0,

9
16 , 1,

9
16 , 0,−

1
16 , 0}, (2.17)

and

lim
j→+∞

Mh(j) = {1
8 ,

1
3 , 0, 0,

9
8 , 1,−

1
4 ,−

1
3} . (2.18)

Therefore, according to the scale j, the subdivision evolves from the classical
interpolatory Lagrange subdivision (2.17) to a non-interpolatory one of Lagrange-
type. Indeed, the coefficients in (2.18) are the point values at x = 0 or x = 1

2 of the
Lagrange functions associated with the stencil {−1, 1, 2}.

Figure 2.1: Six coefficients of the mask of a decimation operator consistent with the
penalized Lagrange subdivision scheme for scale −10 ≤ j ≤ 10.

According to Theorem 1, it is then possible to generate for each j ∈ Z the matrix
of associated consistent elementary decimation masks.

Consistent elementary decimations associated to (2.17) are provided in Section
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2.3.2. Focussing on (2.18), we get

H̃limj→+∞M
h(j)

=



480
107 −424

107 −
27
107

72
107 − 18

107
24
107

− 9
107

24
107

480
107 −424

107 −
108
107

144
107

− 54
107

144
107 − 9

107
24
107 − 6

107
8

107

− 3
107

8
107 − 54

107
144
107 − 36

107
48
107

− 18
107

48
107 − 3

107
8

107 −216
107

288
107

−108
107

288
107 − 18

107
48
107 −975

107
872
107


.

As an example, Figure 2.1 displays the evolution of the third row of the previous
matrix for j ∈ [−10, 10]. It appears that the decimation mask quickly converges
towards its asymptotical limit which is a sub-sampling ({0, 0, 0, 0, 1, 0}) when j →
−∞ and {− 54

107 ,
144
107 ,−

9
107 ,

24
107 ,−

6
107 ,

8
107} when j → +∞. It is also interesting to

notice that, as expected, these decimations are consistent with the asymptotical
subdivision schemes associated with the masks (2.17) and (2.18) respectively.

2.4 Conclusion

A generic approach for the construction of decimation operators consistent with a
given subdivision scheme has been developed. It is first based on the generation
of elementary decimation operators by inverting a matrix obtained from the mask
of the subdivision scheme and connected to the so-called refinement matrices. All
consistent decimation operators can then be derived by a linear combination of
translated versions of elementary ones. This approach has been applied in the case
of standard and non-standard schemes. In this last situation, the interest of our
method stands in the possibility to generate many consistent decimation operators
that was, up to now, not available in the literature. In the next chapter, we extend
this construction to more general subdivision schemes.
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Chapter 3

Consistent Decimations for
General Subdivision Schemes

3.1 Introduction

A general subdivision scheme can be non-linear, non-uniform, non-stationary etc..
In this chapter, several approaches are introduced to construct consistent decima-
tions for those types of schemes.

The first approach (Section 3.2) is devoted to an extension of the previous uni-
form generic method to handle the decimation associated to linear non-uniform
subdivision scheme following a position-dependent strategy [6]. In Section 3.3, we
introduce a global approach that can be exploited for any kind of linear subdivision
scheme applied on an interval. Finally, a last contribution is provided in Section
3.4 that allows the construction of decimation for non-linear frameworks.

3.2 Non-Uniform Subdivision Schemes

3.2.1 Construction

We focus on specific non-uniform subdivision schemes constructed following a position-
dependent strategy [6]. This type of scheme was developed for non-regular data.
The construction relies on the adaption of the prediction stencil to avoid crossing
segmentation points and generating Gibbs oscillation in the vicinity of these points.

The subdivision process involves the so-called refinement matrices studied in
Section 2.2.5 as well as edge matrices that are associated to the prediction around
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segmentation points. In this work, we focus on a unique segmentation x0 = 0 and
introduce two edge matrices H0 and H1 of size l × l and l′ × l′ (l and l′ depend on
the stencil length and on the position-dependent strategy) that map {f j1 , · · · , f jl }
(resp. {f j−l′+1, · · · , f

j
0}) to {f j+1

1 , · · · , f j+1
l } (resp. {f j+1

−l′+1, · · · , f
j+1
0 }). l and l′ are

supposed to be large enough to take into account at least a uniform prediction for
the last (resp. first) element of the previous finite sets.

The following result then holds,

Proposition 3.1.
Let h be a linear position-dependent subdivision scheme. If H0 and H1 are invert-
ible, H−1

0 and H−1
1 provide decimation masks consistent with the subdivision in the

vicinity of the segmentation point.

Introducing the set of index I0 ⊂ {1, 2, . . . , l} (resp. I1 ⊂ {−l′+1,−l′+2, . . . , 0})
such that each element of {f j+1

k }k∈I0 (resp. {f j+1
k }k∈I1) is predicted using a uniform

subdivision, we then have,

Proposition 3.2.
Let h be a linear position-dependent subdivision scheme satisfying the assumption
of Proposition 3.1 and h̃u a decimation operator consistent with the associated uni-
form subdivision. Denoting k∗0 = min(I0) and k∗1 = max(I1), if (h̃uk)k∈Z is such that
h̃un−2(l+1) = 0,∀n ≤ k∗0 and h̃un+2l′ = 0,∀n ≥ k∗1, then the decimation constructed
from Proposition 3.1 and Theorem 1 is consistent with the position-dependent sub-
division operator.

As shown below, taking 4-point scheme as example, points in circle can be
subdivided using uniform scheme while points in rectangle can be decimated using
uniform scheme.

f j1 f j2 f j3 f j4 f j5 f j6

f j+1
1 f j+1

2 f j+1
3 f j+1

4 f j+1
5 f j+1

6 f j+1
7 f j+1

8 f j+1
9 f j+1

10 f j+1
11 f j+1

12

Remark 3.1.

1. The condition on the uniform decimation operator introduced in Proposition
3.2 is always satisfied when h̃u is elementary.
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2. For a fixed uniform decimation, if this condition is not satisfied, a consistent
position-dependent decimation can be constructed by locally adapting (i.e.
reducing) the length of the decimation mask in the vicinity of the segmentation
point.

This approach is exploited in the numerical tests of Section 3.3.3 in the case of a
finite sequence to adapt the decimation at the boundaries of the interval containing
the data.

3.2.2 Examples

We restrict these examples to the generation of consistent decimation mask on the
right of a segmentation point.

4-point Interpolatory Lagrange Scheme

Based on the 4-point Lagrange polynomial, according to (1.5), the adapted inter-
polatory subdivision in the vicinity of the segmentation point is obtained by taking
xr ∈ {−3

2 ,−
1
2} and x

l ∈ {−1, 0}, which leads to

H0 =



35
16 −

35
16

21
16 − 5

16

1 0 0 0
5
16

15
16 − 5

16
1
16

0 1 0 0

 .

Inverting H0, we get 
f j1

f j2

f j3

f j4

 =


0 1 0 0
0 0 0 1
−4 15 −20 10
−20 70 −84 35




f j+1

1

f j+1
2

f j+1
3

f j+1
4


and the matrix involved in the previous equation provides consistent decimation
masks.

Note that the decimation for {f j3 , f j4} can also be calculated by subsampling
that can therefore be used for any positions.

4-point Shifted Lagrange Scheme

Based on the 4-point Lagrange polynomial, according to (1.5), the shifted subdivi-
sion in the vicinity of the segmentation point is obtained by taking xr ∈ {−5

4 ,−
1
4}
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and xl ∈ {−3
4 ,

1
4}, which leads to

H0 =


195/128 −(117/128) 65/128 −(15/128)
77/128 77/128 −(33/128) 7/128
15/128 135/128 −(27/128) 5/128
−(7/128) 105/128 35/128 −(5/128)

 .

Inverting H0, we get
f j1

f j2

f j3

f j4

 =


5/16 15/16 −5/16 1/16
1/16 −5/16 15/16 5/16
−35/16 135/16 −189/16 105/16
−231/16 819/16 −1001/16 429/16




f j+1

1

f j+1
2

f j+1
3

f j+1
4


and the matrix involved in the previous equation provides consistent decimation
masks.

Note that the decimation for {f j3 , f j4} can also be calculated by a uniform ap-
proach without adaption, in this example, only the first two rows are needed to get
{f j1 , f

j
2} to satisfy the consistency.

Remark 3.2.
In practice, it turns out that it is more efficient to replace, when possible, the
decimation mask obtained following Proposition 3.1 by the decimation coming from
the generic uniform approach. For the 4-point interpolatory and shifted Lagrange
schemes, there always exist decimation operators to perform this replacement while
holding the consistency. This generalization to other type of schemes remains an
open question.

3.3 Linear Subdivision Schemes

3.3.1 Global Consistent Decimation

In this section we construct a global decimation operator transforming globally any
sequence (f j+1

k )1≤k≤2n into a sequence (f jk)1≤k≤n.
Let us first introduce some notations.

Definition 3.1 (Subsampling, Interlacing and Scaling Operators).
Let (σ, σ′) be a pair of subsampling operators defined as

∀e ∈ l∞(Z),


(σe)k = e2k+1,

(σ′e)k = e2k,
k ∈ Z.
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and τ be the interlacing operator,

∀u, v ∈ l∞(Z), (τ(u, v))k =


ui, k = 2i+ 1,

vi, k = 2i,
i ∈ Z.

and λ be the scaling operator,

∀f = (fk)k∈Z ∈ l∞(Z), (λf)i = λifi, i ∈ Z, λi ∈ R.

We have

στ(u, v) = u, σ′τ(u, v) = v,

and

τ(σ·, σ′·) = I.

A global consistent decimation operator can then be constructed by the following
proposition.

Proposition 3.3.
Given hL a linear subdivision operator, we introduce he and ho two operators asso-
ciated to even and odd terms of hL,

∀k ∈ Z, f ∈ l∞(Z),


(hef)k = (hLf)2k,

(hof)k = (hLf)2k+1.

If there exist a left inverse for the operators ho and he, denoted (ho)−1 and (he)−1

(i.e. (ho)−1ho = I, (he)−1he = I), then for all scaling operator λ,

h̃L = λ(ho)−1σ + (I − λ)(he)−1σ′

defines a consistent decimation scheme with hL.

Proof.
The proof is straightforward since hL = τ(ho·, he·).

Remark 3.3.
The inverse of operators ho and he exists if the kernel of the subdivision hL is
reduced to {0}.
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3.3.2 Matrix Representation

In this section, for practical issues, we provide a matrix representation of the oper-
ators introduced in Definition 3.1 and Proposition 3.3.

Definition 3.2.
Let X and X ′ stand for the matrix form of operators σ and σ′,

X =



1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0
... ... ... ...
0 0 0 0 · · · 1 0

 , X ′ =



0 1 0 0 · · · 0 0
0 0 0 1 · · · 0 0
... ... ... ...
0 0 0 0 · · · 0 1

 .

Let T be the matrix form of operator τ ,

T =



1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
... ... ... ...
0 0 0 0 · · · 1 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 0 0 0 · · · 1


.

We get for all matrices U and V with suitable dimensions,

T

XU
X ′U

 = U.

and

XT

U
V

 = U, XT

U
V

 = V.

Proposition 3.4.
Denoting H the matrix of dimension 2n × n associated to a linear subdivision hL

that maps {f j1 , f
j
2 , . . . , f

j
n} to {f

j+1
1 , f j+1

2 , . . . , f j+1
2n }, then

H = T

XH
X ′H


where XH and X ′H are square matrices of dimension n×n. If they are invertible,
introducing the matrix

Λ =



λ1 0 · · · 0
0 λ2 · · · 0
... ... ... ...
0 0 · · · λn
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where ∀i = {1, 2, . . . , n}, λi ∈ R, then

H̃ = [Λ(XH)−1 (I − Λ)(X ′H)−1]T−1, (3.1)

is a matrix verifying H̃H = I, and is associated to a global linear decimation oper-
ator consistent with hL.

3.3.3 Example of Construction of Global Consistent Deci-
mation Operators

In this section, we compare the decimation matrix constructed following the two ap-
proaches of Section 3.2 and 3.3.1 in the case of the 4-point shifted Lagrange subdivi-
sion scheme adapted to the two edges of an interval. Considering an initial sequence
of length 8, the matrix H that maps {f j1 , f j2 , . . . , f j8} to {f j+1

1 , f j+1
2 , . . . , f j+1

16 } is

H =



195
128 −117

128
65
128 − 15

128 0 0 0 0
77
128

77
128 − 33

128
7

128 0 0 0 0
15
128

135
128 − 27

128
5

128 0 0 0 0
− 7

128
105
128

35
128 − 5

128 0 0 0 0
− 5

128
35
128

105
128 − 7

128 0 0 0 0
0 − 7

128
105
128

35
128 − 5

128 0 0 0
0 − 5

128
35
128

105
128 − 7

128 0 0 0
0 0 − 7

128
105
128

35
128 − 5

128 0 0
0 0 − 5

128
35
128

105
128 − 7

128 0 0
0 0 0 − 7

128
105
128

35
128 − 5

128 0
0 0 0 − 5

128
35
128

105
128 − 7

128 0
0 0 0 0 − 7

128
105
128

35
128 − 5

128

0 0 0 0 − 5
128

35
128

105
128 − 7

128

0 0 0 0 5
128 − 27

128
135
128

15
128

0 0 0 0 7
128 − 33

128
77
128

77
128

0 0 0 0 − 15
128

65
128 −117

128
195
128



.

Combining the decimation mask (2.14) with the adaption proposed in Section 3.2
and the practical replacement with uniform decimation operators, a global decima-
tion can be constructed from H̃1 such that
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H̃T
1 =



5
16

1
16 0 0 0 0 0 0

15
16 − 5

16
95

2304 0 0 0 0 0
− 5

16
15
16 − 133

2304 0 0 0 0 0
1

16
5

16 − 35
256

95
2304 0 0 0 0

0 0 1505
2304 − 133

2304 0 0 0 0
0 0 1505

2304 − 35
256

95
2304 0 0 0

0 0 − 35
256

1505
2304 − 133

2304 0 0 0
0 0 − 133

2304
1505
2304 − 35

256
95

2304 0 0
0 0 95

2304 − 35
256

1505
2304 − 133

2304 0 0
0 0 0 − 133

2304
1505
2304 − 35

256 0 0
0 0 0 95

2304 − 35
256

1505
2304 0 0

0 0 0 0 − 133
2304

1505
2304 0 0

0 0 0 0 95
2304 − 35

256
5

16
1

16

0 0 0 0 0 − 133
2304

15
16 − 5

16

0 0 0 0 0 95
2304 − 5

16
15
16

0 0 0 0 0 0 1
16

5
16


where H̃T

1 denotes the transpose of H̃1.
As expected, the same decimation mask is used except for the 2 first and last

rows.
On the contrary, when the global approach of Section 3.3 is used, taking Λ = 1

2I,
we get from (3.1) the full matrix H̃2 representing the global consistent decimation.

H̃T
2 =



967
3196 − 122

4263
93

3982 − 101
11369

23
5808 − 39

22936
22

34369 − 55
31813

229
293

279
5470

40
12017

23
105865

1
70897

1
921661 0 0

1304
4439

509
1226 − 178

1477
107

1835 − 457
18680

145
13596 − 57

14249
85

7874

− 1514
2775

487
868

167
4561

57
23851

11
70897

3
251362 − 1

251362
3

538633

− 442
3725

114
881

869
1582 − 499

2909
133

1641 − 284
8275

308
23759 − 414

11815
1453
3514 − 357

2152
273
466

269
7035

17
6848

7
36657 − 8

125681
23

258095
829

39713 − 826
55397

841
18801

931
1601 − 3079

16565
2312

26423 − 127
3939

273
3151

− 485
2308

77
1007 − 277

1474
972

1663
17

448
17

5824 − 17
17472

17
12480

17
12480 − 17

17472
17

5824
17

448
972

1663 − 277
1474

77
1007 − 485

2308
273

3151 − 127
3939

2312
26423 − 3079

16565
931

1601
841

18801 − 826
55397

829
39713

23
258095 − 8

125681
7

36657
17

6848
269

7035
273
466 − 357

2152
1453
3514

− 414
11815

308
23759 − 284

8275
133

1641 − 499
2909

869
1582

114
881 − 442

3725
3

538633 − 1
251362

3
251362

11
70897

57
23851

167
4561

487
868 − 1514

2775
85

7874 − 57
14249

145
13596 − 457

18680
107

1835 − 178
1477

509
1226

1304
4439

0 0 1
921661

1
70897

23
105865

40
12017

279
5470

229
293

− 55
31813

22
34369 − 39

22936
23

5808 − 101
11369

93
3982 − 122

4263
967

3196


where H̃T

2 denotes the transpose of H̃2.
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We finally develop in the next section a method to generate a decimation con-
sistent with a given general subdivision scheme. It is exploited in practice to handle
the case of some specific non-linear schemes.

3.4 General Subdivision Schemes

The subdivision h in this section can be of any type, as long as we know how to
calculate the subdivided sequence.

3.4.1 Generic Approach

The following result holds,

Theorem 2.
Let h be a subdivision operator, if there exists a linear decimation h̃L so that h̃Lh−I
is contractive1, then for any f j+1 ∈ l∞(Z), the fixed-point equation

f j = h̃Lf j+1 − (h̃Lh− I)f j (3.2)

has a unique solution.
Moreover, h̃ : f j+1 7→ f j is a decimation operator consistent with h.

Proof.
The existence and uniqueness of the solution of the fixed-point equation is a conse-
quence of the Banach fixed point theorem since h̃Lh− I is contractive.

Considering f̂ j such that f j+1 = hf̂ j is a solution of equation (3.2), it is then
the unique solution for given (h, h̃L) and f j+1. Thus f̂ j is a decimated sequence
from f j+1 and (3.2) defines a consistent decimation.

According to the Banach fixed-point theorem,f j = h̃f j+1 = limn→∞(f j)n can be
constructed by induction: (f j)0 = h̃Lf j+1

(f j)n+1 = h̃Lf j+1 − (h̃Lh− I)(f j)n
. (3.3)

If a non-linear subdivision scheme h is considered as h = hL + hN where hL is
a linear scheme and hN a non-linear perturbation, the previous proposition can be
used to exhibit a decimation consistent with h provided h̃LhN is contractive.

1 Operator U : l∞(Z) 7→ l∞(Z) is said to be contractive if there exists c ∈ R, 0 < c < 1, for all
(u, v) ∈ (l∞(Z))2, such that ||Uu− Uv|| ≤ c||u− v||.
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Remark 3.4.

1. Given f j+1, the different choices of linear decimation operators h̃L lead to
different f j and associated prediction errors. This flexibility is exploited in
the numerical tests of Chapter 4.

2. If h̃L is consistent with h, the fixed-point equation reduces to f j = h̃Lf j+1.

3.4.2 Examples and Numerical Results

4-point Shifted PPH Scheme

We use Theorem 2 to generate a decimation consistent with the 4-point shifted PPH
scheme recalled in Section 1.2.6.

Before introducing the main result in Proposition 3.5, two lemmas are required.

Lemma 3.1.
∀x, y, a, b ∈ R,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))| ≤ 2 ·max(|x− a|, |y − b|).

Proof.
we distinguish different cases:
(1) x, a > 0, y, b < 0, then H(x, y) = H(a, b) = 0,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))|

≤|A(x, y)− A(a, b)|

≤max(|x− a|, |y − b|).

(2) x, y, a > 0, b < 0, then H(a, b) = 0,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))|

=
∣∣∣∣∣a− x2 + b− y

2 + 2xy
x+ y

∣∣∣∣∣
≤
∣∣∣∣a− x2

∣∣∣∣+
∣∣∣∣∣ b2 + y

2
x− y
x+ y

∣∣∣∣∣+
∣∣∣∣∣12 2xy
x+ y

∣∣∣∣∣
≤1

2 |x− a|+
1
2 |y − b|+max(|x|, |y|)

≤2 ·max(|x− a|, |y − b|).
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(3) x, y, a, b > 0 or x, y > 0, a, b < 0,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))|

=
∣∣∣∣∣( 2xa

(x+ y)(a+ b) −
1
2)(y − b) + ( 2yb

(x+ y)(a+ b) −
1
2)(x− a)

∣∣∣∣∣
≤max

(∣∣∣∣∣ 2xa+ 2yb
(x+ y)(a+ b) − 1

∣∣∣∣∣ ,
∣∣∣∣∣ 2xa− 2yb
(x+ y)(a+ b)

∣∣∣∣∣
)
·max(|x− a|, |y − b|)

≤2 ·max(|x− a|, |y − b|).
and we can conclude the other cases by symmetry.

Lemma 3.2.
Given x, y, a, b ∈ R, if (|x| − |y|)(|a| − |b|) < 0, then ∀p, q ∈ R,

|p(H(x, y)− A(x, y))− q(H(a, b)− A(a, b))| ≤ max(|p|, |q|) ·max(|x− a|, |y − b|).

If p = q = 1,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))| ≤ max(|x− a|, |y − b|). (3.4)

Proof.
We first prove (3.4) under the condition (|x| − |y|)(|a| − |b|) < 0 by distinguishing
different cases:
(1) xy < 0, ab < 0, then H(x, y) = H(a, b) = 0,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))|

≤
∣∣∣∣∣x− a2 + y − b

2

∣∣∣∣∣
≤max(|x− a|, |y − b|).

(2) xy > 0, ab < 0 then H(a, b) = 0,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))|

≤
∣∣∣∣x− y2

∣∣∣∣+
∣∣∣∣∣a+ b

2

∣∣∣∣∣
≤max(|x− a|, |y − b|).

(3) xy > 0, ab > 0,

|(H(x, y)− A(x, y))− (H(a, b)− A(a, b))|

=
∣∣∣∣∣xa+ xb+ ya− yb

2(x+ y)(a+ b) (x− a)
∣∣∣∣∣+

∣∣∣∣∣−xa+ xb+ ya+ yb

2(x+ y)(a+ b) (y − b)
∣∣∣∣∣

≤1
2 |x− a|+

1
2 |y − b|

≤max(|x− a|, |y − b|).
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and we can conclude the other cases by symmetry.
In the other hand, (|x| − |y|)(|a| − |b|) < 0 leads to

|(H(x, y)− A(x, y)) + (H(a, b)− A(a, b))| ≤ max(|x− a|, |y − b|),

and
|H(x, y)− A(x, y)| ≤ max(|x− a|, |y − b|).

Then for p, q ∈ R satisfying,
(1) p > q > 0,

|p(H(x, y)− A(x, y))− q(H(a, b)− A(a, b))|

=|q(H(x, y)− A(x, y))− q(H(a, b)− A(a, b)) + (p− q)(H(x, y)− A(x, y))|

≤(|q|+ |p− q|) ·max(|x− a|, |y − b|)

≤p ·max(|x− a|, |y − b|).

(2) p > 0 > q, |p| > |q|,

|p(H(x, y)− A(x, y))− q(H(a, b)− A(a, b))|

=| − q(H(x, y)− A(x, y))− q(H(a, b)− A(a, b)) + (p+ q)(H(x, y)− A(x, y))|

≤(|q|+ |p+ q|) ·max(|x− a|, |y − b|)

≤p ·max(|x− a|, |y − b|).

and we can conclude the other cases by symmetry.

We will prove successively that the 4, 8 and 12 point decimations h̃L of section
2.3 lead to contraction.

Proposition 3.5.
Denote h = hL+hN the 4-point shifted PPH subdivision scheme given by (1.10,1.11),
if h̃L is given by (2.14) or (2.15), then h̃LhN is contractive.

Proof.
In order to prove the contractivity, we focus on ||h̃LhNu− h̃LhNv||∞.

With the notations Nk, DHAk of Section 1.2.6, we get for all l ∈ Z,

(h̃LhNu)l − (h̃LhNv)l

=
∑
k

h̃2k−2lN
u
k (1

4) +
∑
k

h̃2k+1−2lN
u
k (3

4)−
∑
k

h̃2k−2lN
v
k (1

4)−
∑
k

h̃2k+1−2lN
v
k (3

4).
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Let’s denote p = 2L2(1
4) = 2L−1(3

4) = − 5
64 and q = 2L2(3

4) = 2L−1(1
4) = − 7

64 .
(1) if |∆2uk| ≤ |∆2uk+1| and |∆2vk| ≤ |∆2vk+1|,

|(h̃LhNu)l − (h̃LhNv)l|

≤
∑
k

∣∣∣p · h̃2k−2l + q · h̃2k+1−2l

∣∣∣ |DHAuk −DHAvk|.
(2) if |∆2uk| > |∆2uk+1| and |∆2vk| > |∆2vk+1|,

|(h̃LhNu)l − (h̃LhNv)l|

≤
∑
k

∣∣∣q · h̃2k−2l + p · h̃2k+1−2l

∣∣∣ |DHAuk −DHAvk|.
(3) if (|∆2uk| − |∆2uk+1|)(|∆2vk| − |∆2vk+1|) < 0, according to Lemma 3.2,

|(h̃LhNu)l − (h̃LhNv)l|

≤
∑
k

max
(
|p · h̃2k−2l + q · h̃2k+1−2l|, |q · h̃2k−2l + p · h̃2k+1−2l|

)
·max(|∆2uk+1 −∆2vk+1|, |∆2uk −∆2vk|).

Since
|DHAuk −DHAvk| ≤ 8 · ||u− v||∞,

max(|∆2uk+1 −∆2vk+1|, |∆2uk −∆2vk|) ≤ 4 · ||u− v||∞,

combining the previous cases with (2.14) leads to

||h̃LhNu− h̃LhNv||∞ ≤
307
384 ||u− v||∞.

Moreover, if the decimation mask is given by (2.15), we have

||h̃LhNu− h̃LhNv||∞ ≤
15481
20160 ||u− v||∞.

Proposition 3.6.
Denote h = hL+hN the reformulation of the 4-point shifted PPH subdivision scheme
given by (1.12), if h̃L is given by (2.11), then h̃LhN is contractive.

Proof.
With the same notations as in the previous proof, we have

(h̃LhNu)l − (h̃LhNv)l

= 1
64(

∑
l

h̃2k−2l −
∑
l

h̃2k+1−2l)(R(∆2uk,∆2uk+1)−R(∆2vk,∆2vk+1))

− 6
64(

∑
l

h̃2k−2l +
∑
l

h̃2k+1−2l)
(
H(∆2uk,∆2uk+1)−H(∆2vk,∆2vk+1)

)
.
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And

|H(∆2uk,∆2uk+1)−H(∆2vk,∆2vk+1)|

≤2 ·max(|∆2uk+1 −∆2vk+1|, |∆2uk −∆2vk|)

≤8 · ||u− v||∞.

According to proposition 2 of [2],

|R(∆2uk,∆2uk+1)−R(∆2vk,∆2vk+1)|

≤max(|∆2uk+1 −∆2vk+1|, |∆2uk −∆2vk|)

≤4 · ||u− v||∞.

Since ∑l(h2l − h2l+1) = 0 and ∑l(h2l + h2l+1) = 1, it comes

||h̃LhNu− h̃LhNv||∞

≤| 1
64 · 0 · 4 + 6

64 · 8| · ||u− v||∞

=48
64 ||u− v||∞.

Numerical Convergence of the Fixed-point Iteration

Starting from a discretization of the discontinuous function displayed in Figure 3.1
left, we investigate the numerical convergence of the fixed-point algorithm (3.3) in
the case of the 4-point shifted PPH when h̃L is given by (2.14).

The slope of the curve displayed in the right of Figure 3.1 exhibits the conver-
gence rate of the algorithm. It appears that very few iterations (less than 17) are
required for convergence.

68



0 0.5 1

-2000

-1000

0

1000

2000

3000

4000

5000

5 10 15 20 25 30

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 3.1: Left : Discontinuous test function, Right : Construction of the non-
linear decimation operator : log2 ||f jn−f

j
n−1||∞ versus n for the fixed-point algorithm

(3.3).

3.5 Conclusion

In this chapter, we proposed several new constructions of decimation operators con-
sistent with general subdivision scheme. Adapting the method introduced in Chap-
ter 2, a first approach in the case of linear non-uniform subdivision scheme was
developed. It is based on the inversion of the edge matrix obtained from the mask
of the subdivision scheme associated to the prediction in the vicinity of segmenta-
tion points. A second approach was then described and led to the construction of
consistent global decimation for any type of linear subdivision scheme applied on an
interval. A matrix representation was also provided for practical issues. Finally, we
considered general subdivision and introduced a new method for non-linear scheme
based on the resolution of a fixed-point equation. Using the last method we were
able to define a non-linear decimation consistent with the shifted PPH for which
there was, up to now, no available consistent decimation in the literature.

In the next chapter, these constructions are plugged into the multi-scale frame-
work to derive new multiresolution analysis.
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Chapter 4

Multiresolution Analysis

4.1 Introduction

This chapter deals with the full construction of multiresolution analysis associated
to a given subdivision scheme. Starting from the generation of consistent decimation
operators using the methods described in the previous chapters, we introduce a new
approach to derive compatible detail subdivision and detail decimation operators
according to Definition 1.7. After a description of this construction in Section 4.2,
several results related to the analysis of subdivision-based multiresolutions are pro-
vided. They first concern the polynomial reproduction property (Section 4.3) then
we focus on the stability of the multiresolution transforms as well as on the predic-
tion error decay (Section 4.4). Finally, several numerical results of multiresolution
analyses are given in Section 4.5 for linear and non-linear subdivision schemes. Their
interest is illustrated by an application in the framework of image compression.

4.2 Construction of Compatible Operators

We first establish an important result related to the action of a decimation oper-
ator on the sequence of prediction errors. Then, it is exploited to construct detail
subdivision and detail decimation operators.

4.2.1 Prediction Errors and Kernel of Decimation

For linear subdivision schemes, the prediction error (1.16) belongs, by construction,
to the kernel of the associated consistent decimation operator. This statement
guarantees the existence of a couple of detail subdivision and detail decimation
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operators (g, g̃) which are compatible with the couple of subdivision and decimation
operators (h, h̃).

A similar result can be derived for general subdivision and decimation con-
structed following Theorem 2. It is given by the next proposition,

Proposition 4.1.
Let h be a general subdivision operator and h̃ be a consistent decimation operator
given by Theorem 2 with h̃L the involved linear decimation operator. The associated
prediction error ej+1 verifies

h̃Lej+1 = 0, (4.1)

and
h̃ej+1 = 0. (4.2)

Proof.
Under the contraction condition, the unique solution for equation (3.2) is denoted

f̂ j = h̃f j+1.

Then, the prediction error can be written as

ej+1 = f j+1 − hh̃f j+1

= f j+1 − hLf̂ j − (h− hL)f̂ j

= (I − hLh̃L)f j+1 − (I − hLh̃L)(h− hL)f̂ j,

Applying h̃L and using the consistency relation lead to (4.1).
Suppose wj = h̃ej+1,

wj = h̃Lej+1 − h̃L(h− hL)wj

= −(h̃Lh− I)wj

according to the fixed-point theorem, wj = 0 is the unique solution which leads to
(4.2).

4.2.2 Detail Subdivision and Detail Decimation

In this section, we construct a couple of detail subdivision and detail decimation
operators (g, g̃) compatible with (h, h̃). Using the operators introduced in Definition
3.1, we have
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Theorem 3.
Let h be a subdivision operator and h̃ a consistent decimation constructed following
Theorem 2, we introduce h̃e and h̃o the two operators associated to even and odd
terms of h̃L,

∀k ∈ Z, f ∈ l∞(Z),


(h̃of)k =

∑
l

h̃L2l+1−2kf2l+1

(h̃ef)k =
∑
l

h̃L2l−2kf2l

.

If there exists a linear left inverse operator of h̃e, denoted (h̃e)−1, then (g, g̃) defined
as 

g̃ = σ(I − hh̃)

g = τ(·,−(h̃e)−1h̃o·)
(4.3)

are detail operators compatible with (h, h̃).

Proof.
Thanks to Proposition 4.1, we have

hLej+1 = 0 =⇒ h̃oσej+1 + h̃eσ′ej+1 = 0.

Taking dj = σej+1,
σ′ej+1 = −(h̃e)−1h̃odj,

Therefore,
ej+1 = τ(σej+1, σ′ej+1) = τ(dj,−(h̃e)−1h̃odj).

Thus a pair of detail operators are constructed since
dj = σej+1 = g̃f j+1

ej+1 = gdj

where (g, g̃) are defined by (4.3).
Finally, we prove the compatibility of (h, h̃, g, g̃).
According to Proposition 4.1, we have h̃Lg = 0 and h̃g = 0. Then

g̃g = σ(I − hh̃)g = σg − σhh̃g = σg = I.

Under the consistency condition h̃h = I, we have

g̃h = σ(I − hh̃)h = 0,

which concludes the compatibility proof.
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Remark 4.1.
If h is an interpolatory subdivision, the subsampling operator h̃ = σ is consistent
with h and h̃o stands for the identity operator.

In the sequel, exploiting the notations of Definition 3.2, we provide a practical
representation to construct g and g̃ in the case of a finite set of data.

Matrix Representation

In this section we establish the relation between prediction error vector and de-
tail vector using matrix representation which is sufficient to illustrate the details
operators previously introduced.

Denoting E the vector of prediction error and H̃L the matrix associated to h̃L,
according to Proposition 4.1,

H̃LE = 0,

then
(H̃LXT )(XE) + (H̃LX ′T )(X ′E) = 0,

if H̃LX ′T is invertible,

X ′E = −(H̃LX ′T )−1(H̃LXT )(XE).

Therefore, taking the detail vector as

D = XE,

the prediction error becomes

E = T

XE
X ′E

 = T

 D

−(H̃LX ′T )−1H̃LXTD

 = T

 I

−(H̃LX ′T )−1H̃LXT

D.
Thus, the detail subdivision matrix is

G = T

 I

−(H̃LX ′T )−1H̃LXT

 .
Remark 4.2.
Proposition 2.2, Theorem 2 and Theorem 3 can be used to construct quadruplet of
compatible operators generating a multiresolution associated to a general subdivi-
sion scheme. It is then possible to extend classical results for multi-scale analyses
to the subdivision-based multiresolution framework. In the linear case, one can for
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example exploit the work of [35] on the lifting scheme and consider the compatible
operators (h, h̃+ sg̃, g− sh, g̃), s ∈ R. Similarly, one can show that (h+ sg, h̃, g, g̃−
sh̃), s ∈ R is compatible as well as

(
1√
2(h+ 1

s
g), 1√

2(h̃+ sg̃), 1√
2(g − sh), 1√

2(g̃ − 1
s
h̃)
)
, s ∈

R. All these strategies allow integrating more flexibility in the construction and
could be interesting to increase the performance of multiresolution analysis in prac-
tical situations. This last point has not been tested in this thesis and remains an
open question for further investigation.

4.3 Polynomial Reproduction of Linear Uniform
Multiresolution

We first establish a series of results on the polynomial reproduction and quasi-
reproduction of subdivision and decimation operators. Then we focus on the oper-
ator hh̃ that is involved in the multiresolution transform in Section 4.3.2.

4.3.1 Subdivision and Decimation Operators

Let us first prove the following lemma,

Lemma 4.1.
For a finite set {cl : l ∈ Z},

∀p = 0, 1, 2, . . . , L ∈ Z, s0 ∈ Z, t0 ∈ R,
∑
l

cl+s0(l + t0)p = δp,0,

is equivalent to

∀p = 0, 1, 2, . . . , L ∈ Z, s0, s ∈ Z, t0, t ∈ R,
∑
l

cl+s0+s(l + t0 + t)p = (t− s)p.

Proof.
It is easy to verify that

∑
l

cl+s0+s(l + t0 + t)p

=
∑
l

cl+s+s0(l + s+ t0 + (t− s))p

=
p∑

n=0

(
p

n

)∑
l

cl+s+s0(l + s+ t0)n(t− s)p−n.
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The two following propositions are interpretations of Definition 1.9 and Defi-
nition 1.8 in terms of conditions on the mask of the subdivision and decimation
operators.

Proposition 4.2.
A subdivision operator h quasi-reproduces polynomials up to degree L if and only if

∀n ∈ {0, 1, 2, . . . , L},
∑
l∈Z

h2l(2l)n =
∑
l∈Z

h2l+1(2l + 1)n. (4.4)

A subdivision operator h reproduces polynomials up to degree L if and only if

∀n ∈ {0, 1, 2, . . . , L},∃t ∈ R,
∑
l∈Z

h2l(2l)n =
∑
l∈Z

h2l+1(2l + 1)n = tn. (4.5)

where t is a translation factor, such that f ∈ πL becomes f(· − t) in Definition 1.9.

Proof.
If h quasi-reproduces polynomials up to degree L, for all f(x) = ∑p

i=0 aix
i ∈

πp(R), p ≤ L, there exists g(x) = ∑p
i=0 bix

i ∈ πp(R) such that

∀k, g((k − t)2−(j+1)) =
∑
l

hk−2lf(l2−j)

where t denotes a translation factor. That is to say,

∀k,∀p ∈ {0, 1, 2, . . . , L},
p∑
i=0

bi((k − t)2−(j+1))i =
∑
l

hk−2l

p∑
i=0

ai(l2−j)i. (4.6)

Introducing m = k − 2l, then m and k have the same parity,

∀k, ∀p ∈ {0, 1, 2, . . . , L},m ∈ {· · · , k − 2, k, k + 2, · · · },
p∑
i=0

bi(k − t)i2−(j+1)i =
∑
m

hm

p∑
i=0

ai
i∑

n=0

(
n

i

)
(k − t)n(−m+ t)i−n2−(j+1)i,

Removing the arbitrariness of k, for m varying as even or odd, we have

∀i ∈ {0, 1, 2, . . . , L}, bi2−(j+1)i =
∑
m

hm
L∑
n=i

an

(
n

i

)
(−m+ t)n−i2−(j+1)n.

Finally, for m varying as even or odd,

∀i ∈ {0, 1, 2, . . . , L}, bi =
L∑
n=i

an

(
n

n− i

)(∑
m

hm(m− t)n−i
)

(−1)n−i2−(j+1)(n−i),

(4.7)
expanding this equation for each i, the only condition to ensure the existence of
{bi}0≤i≤L is that ∑m hm(m− t)n−i does not depend on the parity of m, which leads
to (4.4).
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Further, if h reproduces the polynomials up to degree L, which means ∀i ≤
L, bi = ai, then (4.7) is equivalent to

∀i ∈ {0, 1, 2, . . . , L},
∑
m

hm(m− t)i = δi,0,

where m varies as even or odd. According to Lemma 4.1, this is equivalent to (4.5).

Remark 4.3.

1. If i = L in (4.7), we have bL = aL(∑m hm), that is to say if the subdivision op-
erator reproduces constants, it always preserves the leading coefficient. Other
coefficients are given by (4.7).

2. If t = 0, h reproduces the same polynomial without translation, in this case,

∀n ∈ {0, 1, 2, . . . , L},
∑
l∈Z

hk−2l(k − 2l)n = δn,0.

A condition for polynomial quasi-reproduction using Laurent polynomial repre-
sentation was found in [16], we prove the equivalence with our mask representation
in Appendix A.

Proposition 4.3.
A decimation operator h̃ quasi-reproduces polynomials up to any degree if and only
if

∑
l

h̃l 6= 0. (4.8)

A decimation operator h̃ reproduces polynomials up to degree L if and only if

∀n ∈ {0, 1, 2, . . . , L},∃t ∈ R
∑
l∈Z

h̃ll
n = tn, (4.9)

where t is a translation factor such that f ∈ πL becomes f(·+ t
2) in Definition 1.9.

Proof.
If h̃ quasi-reproduces polynomials up to degree L, for all f(x) = ∑p

i=0 aix
i ∈

πp(R), p ≤ L, there exists g(x) = ∑p
i=0 bix

i ∈ πp(R) such that

∀k, g((k + t

2)2−j) =
∑
l

h̃l−2kf(l2−(j+1))
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where t
2 denotes a translation factor. That is to say,

∀k,∀p ∈ {0, 1, 2, . . . , L},
p∑
i=0

bi((k + t

2)2−j)i =
∑
l

h̃l−2k

p∑
i=0

ai(l2−(j+1))i. (4.10)

Introducing m = l − 2k,

∀k,∀p ∈ {0, 1, 2, . . . , L},
p∑
i=0

bi(2k + t)i2−(j+1)i =
∑
m

h̃m

p∑
i=0

ai
i∑

n=0

(
n

i

)
(2k + t)n(m− t)i−n2−(j+1)i,

Removing the arbitrariness of k, we have

∀i ∈ {0, 1, 2, . . . , L}, bi2−(j+1)i =
∑
m

h̃m
L∑
n=i

an

(
n

i

)
(m− t)n−i2−(j+1)n.

Finally, we obtain

∀i ∈ {0, 1, 2, . . . , L}, bi =
L∑
n=i

an

(
n

n− i

)(∑
m

h̃m(m− t)n−i
)

2−(j+1)(n−i), (4.11)

expanding it for each i, the only condition to ensure the existence of {bi}0≤i≤L is
that ∑m h̃m 6= 0, which leads to (4.8).

Further, if h̃ reproduces the same polynomial, which means ∀i ≤ L, bi = ai, then
(4.11) is equivalent to

∀i ∈ {0, 1, 2, . . . , L},
∑
m

h̃m(m− t)i = δi,0.

According to Lemma 4.1, this is equivalent to (4.9).

Remark 4.4.

1. If i = L in (4.11), we have bL = aL(∑m hm), that is to say if the decima-
tion operator reproduces constants, it always preserves the leading coefficient.
Other coefficients are given by (4.11).

2. If t = 0, h̃ reproduces the same polynomial without translation, in this case,

∀n ∈ {0, 1, 2, . . . , L},
∑
l∈Z

h̃ll
n = δn,0.

The following proposition exhibits the connection between polynomial (quasi)
reproduction of consistent subdivision and decimation,
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Proposition 4.4.
Given a subdivision operator h and a consistent decimation operator h̃,

1. if h reproduces polynomials up to degree L, then h̃ reproduces polynomials up
to degree L.

2. if h quasi-reproduces polynomials up to degree L and h̃ reproduces polynomials
up to degree L, then h reproduces polynomials up to degree L.

Proof.
Under condition (2.3),

1. (4.5) leads to (4.9).

2. (4.9) and (4.4) leads to (4.5).

More details can be found in Appendix B.

4.3.2 Composing Subdivision with Decimation

In this section, we focus on the operator hh̃.

Proposition 4.5.
Let h be a subdivision operator and h̃ be a decimation operator.
hh̃ quasi-reproduces polynomials up to degree L if and only if

∀n ∈{0, 1, 2, . . . , L},∑
l∈Z

h2l
∑
m∈Z

h̃m(m− 2l)n =
∑
l∈Z

h2l+1
∑
m∈Z

h̃m(m− 2l − 1)n (4.12)

and hh̃ reproduces polynomials up to degree L if and only if

∀n ∈{0, 1, 2, . . . , L},∃t ∈ R,∑
l∈Z

h2l
∑
m∈Z

h̃m(m− 2l)n =
∑
l∈Z

h2l+1
∑
m∈Z

h̃m(m− 2l − 1)n = tn.
(4.13)

where t is a translation factor such that f ∈ πL becomes f(·+ t) in Definition 1.9.

Proof.
The proof is similar to the two previous ones, the key equations will be

∀k, g((k + t)2−(j+1)) =
∑
l

hk−2l
∑
m

h̃m−2lf(m2−(j+1))
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by changing index,

∀i ∈ {0, 1, 2, . . . , L}, bi =
L∑
n=i

an

(
n

n− i

)(∑
l

hl
∑
m

h̃m(m− l − t)n−i
)

2−(j+1)(n−i),

(4.14)
with l and k of same parity. (4.12) is deduced directly and (4.13) follows from the
equivalence to

∀n ∈{0, 1, 2, . . . , L},∑
l∈Z

h2l
∑
m∈Z

h̃m(m− 2l − t)n =
∑
l∈Z

h2l+1
∑
m∈Z

h̃m(m− 2l − 1− t)n = δn,0

under the condition ∀i ≤ L, bi = ai.

Remark 4.5.
If t = 0, hh̃ reproduces the same polynomial without translation, in this case,

∀n ∈{0, 1, 2, . . . , L},∑
l∈Z

h2l
∑
m∈Z

h̃m(m− 2l)n =
∑
l∈Z

h2l+1
∑
m∈Z

h̃m(m− 2l − 1)n = δn,0 .
(4.15)

By considering the definition of subdivision and decimation, a more commonly used
formulation of (4.15) is

∀k, n ∈ {0, 1, 2, . . . , L},
∑
l

hk−2l
∑
m

h̃m−2l(m− k)n = δn,0.

According to Proposition 4.4, the polynomial reproduction of a subdivision h is
sufficient for polynomial reproduction of hh̃ if h̃ is consistent with h. Indeed, we
have a better result,

Theorem 4.
If the subdivision h and the decimation h̃ are consistent operators, h quasi-reproduces
polynomials leads to hh̃ reproduce polynomials without translation.

Proof.
The proof exploits that (2.3) and (4.4) lead to (4.15). More details can be found in
Appendix B.

Remark 4.6.
Since (4.15) can lead to (4.4) without consistency condition (2.3), if hh̃ reproduces
polynomials up to degree m, the subdivision operator h must quasi-reproduce poly-
nomials of degree greater than or equal to m.
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4.3.3 Connection between Polynomial (Quasi) Reproduc-
tion Degree and Operator Length

Proposition 4.6.
Let h be the B-spline subdivision scheme of order m (mask of length m + 1) given
by (1.4), then h quasi-reproduces polynomials up to degree m − 1. Moreover, it is
the only mask of length m+ 1 that leads to the quasi-reproduction of polynomials up
to degree m− 1.

Proof.
This proof is performed in two steps, first, we prove that the mask (1.4) verifies
(4.4), then, we prove its uniqueness.

We first prove by induction that
m+1∑
k=0

(
m+ 1
k

)
kn(−1)k = 0, ∀n ≤ m, (4.16)

i) it is easily verified for m = 1,

n = 0,
(

2
0

)
+
(

2
1

)
· (−1) +

(
2
2

)
= 0,

n = 1,
(

2
0

)
· 0 +

(
2
1

)
· (−1) +

(
2
2

)
· 2 = 0.

ii) suppose

∀n ≤ m− 1,
m∑
k=0

(
m

k

)
kn(−1)k = 0,

then
m+1∑
k=0

(
m+ 1
k

)
kn(−1)k

=
m∑
k=1

(
m+ 1
k

)
kn(−1)k + (m+ 1)n(−1)m+1

=
m∑
k=1

(
(
m

k

)
+
(

m

k − 1

)
)kn(−1)k + (m+ 1)n(−1)m+1

=
m∑
k=0

(
m

k

)
kn(−1)k +

m∑
k=0

(
m

k

)
(k + 1)n(−1)k+1

=
m∑
k=0

(
m

k

)
(kn −

n∑
i=0

(
n

i

)
ki)(−1)k

= (−1)
n−1∑
i=0

(
n

i

)
(
m∑
k=0

(
m

k

)
ki(−1)k)

= 0.

81



Splitting (4.16) with respect to even and odd indices leads to (4.4).
To prove uniqueness, we rewrite (4.4) as

A



h0

−h1

h2

−h3
...


=



2
0
0
0
...


with A =



1 −1 1 −1 · · ·
1 1 1 1 · · ·
0 1 2 3 · · ·
0 12 22 32 · · ·
... ... ... ...


.

The determinant of A is given by

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · ·
1 2 3 · · ·
1 22 32 · · ·
... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · ·
0 2 3 · · ·
0 22 32 · · ·
... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · ·
0 1 3 · · ·
0 12 32 · · ·
... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·

each determinant is the determinant of a Vandermonde matrix, so det(A) ≥ 0 and
{hi}0≥i≥m+1 is uniquely determined.

Remark 4.7.
For a subdivision operator with fixed length, the B-spline scheme is the scheme
which gives the highest degree of polynomial quasi-reproduction.

Proposition 4.7.
Let h be a p-point Lagrange subdivision scheme given by (1.5) (of length 2p), then
h reproduces polynomials up to degree p− 1. Moreover, it is the only mask of length
2p which leads to the reproduction of polynomials up to degree p− 1.

Proof.
The proof also includes two parts, first we verify the polynomial reproduction con-
dition (4.5) with the mask given by (1.5), then we prove the uniqueness of this mask
with fixed length.

Taking l + r = p and denoting xl = −t/2, thus xr = −t/2 + 1/2, with a little
calculation, we find that ∀n ∈ {0, 1, 2, . . . , l + r − 1}

l−1∑
i=−r

h2i(2i)n =
l−1∑
i=−r

r∏
k=−l+1,
k 6=−i

−t/2− k
−i− k

(2i)n = tn .

l−1∑
i=−r

h2i+1(2i+ 1)n =
l−1∑
i=−r

r∏
k=−l+1,
k 6=−i

−t/2 + 1/2− k
−i− k

(2i+ 1)n = tn .
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which verify (4.5).
To prove uniqueness, we rewrite (4.5) with (1.5) as

A



h−2r

h−2r+2
...

h2l−4

h2l−2


=



1
t
...

tl+r−2

tl+r−1


and B



h−2r+1

h−2r+3
...

h2l−3

h2l−1


=



1
t
...

tl+r−2

tl+r−1


,

with

A =



1 1 · · · 1 1
−2r −2r + 2 · · · 2l − 4 2l − 2
... ... ... ... ...

(−2r)l+r−2 (−2r + 2)l+r−2 · · · (2l − 4)l+r−2 (2l − 2)l+r−2

(−2r)l+r−1 (−2r + 2)l+r−1 · · · (2l − 4)l+r−1 (2l − 2)l+r−1


,

B =



1 1 · · · 1 1
−2r + 1 −2r + 3 · · · 2l − 3 2l − 1

... ... ... ... ...
(−2r + 1)l+r−2 (−2r + 3)l+r−2 · · · (2l − 3)l+r−2 (2l − 1)l+r−2

(−2r + 1)l+r−1 (−2r + 3)l+r−1 · · · (2l − 3)l+r−1 (2l − 1)l+r−1


.

Since A and B are invertible Vandermonde matrices the uniqueness is straightfor-
ward.

Remark 4.8.
For a subdivision operator with fixed length, Lagrange scheme is the scheme which
gives the highest degree of polynomials reproduction.

Proposition 4.7 states that a p-point Lagrange subdivision always reproduces
(and also quasi-reproduces) polynomials of degree p − 1. In the symmetrical case,
it gains one more degree for polynomial quasi-reproduction, which is clarified in the
following proposition.

Proposition 4.8.
Let h be the shifted 2p-point symmetric Lagrange subdivision operator, then h repro-
duces polynomials up to degree 2p−1 with a translation of 1/2 and quasi-reproduces
polynomials up to degree 2p.
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Proof.
It is easy to verify that ∀n = 0, 1, 2, . . . , 2p− 1,

p−1∑
i=−p

Li(
1
4)
(

2i+ 1
2

)n
=

p−1∑
i=−p

Li(
3
4)
(

2i+ 1 + 1
2

)n
= δn,0,

and
p−1∑
i=−p

Li(
1
4)(2i)2p =

p−1∑
i=−p

Li(
3
4)(2i+ 1)2p.

the proof is completed according to Proposition 4.2.

4.4 Stability of the Multiresolution and Decay of
the Prediction Errors

4.4.1 Stability of the Multiresolution

In the linear case, since the subdivision is assumed to be convergent, we focus on
the stability study of the decimation operator.

The following proposition provides a condition to ensure this property.

Proposition 4.9.
A linear decimation operator h̃ is stable if the subdivision whose mask is constructed
from sequence 2(h̃l)l∈Z is stable.

Proof.
For all (f jl )l∈Z ∈ V j subdivided from V 0 by successively applying a subdivision
operator h,

f jl =
∑
lj−1

hl−2lj−1

∑
lj−2

hlj−1−2lj−2 · · ·
∑
l1

hl2−2l1
∑
l0

hl1−2l0f
0
l0

=
∑
l0

hjl−2j l0f
0
l0 .

If h is stable, there exists C ∈ R, such that

∀l,
∑
l0

∣∣∣hjl−2j l0

∣∣∣ ≤ C, (4.17)

then ∑
l

∑
l0

∣∣∣hjl−2j l0

∣∣∣ ≤∑
l

C.
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Since ∑l

∣∣∣hjl−2j l0

∣∣∣ is independent of l0,
∀l0,

∑
l

∣∣∣hjl−2j l0

∣∣∣ ≤ 2jC.

For all (f 0
l0)l0∈Z ∈ V 0 decimated from V j by h̃j,

f 0
l0 =

∑
l1

h̃l1−2l0
∑
l2

h̃l2−2l1 · · ·
∑
lj−1

h̃lj−1−2lj−2

∑
lj

h̃lj−2lj−1f
j
l

=
∑
l

h̃jl−2j l0f
j
l .

(4.18)

Since (hl)l∈Z is constructed by 2(h̃l)l∈Z, we have
∑
l

∣∣∣h̃jl−2j l0

∣∣∣ = 2−j
∑
l

∣∣∣hjl−2j l0

∣∣∣ ≤ C

which leads to the stability of decimation h̃.

The assumption on the stability of the subdivision associated to 2(h̃l)l∈Z can be
replaced by a general condition that can be more easily satisfied in practice. Let us
first introduce the following useful lemma.

Lemma 4.2.
Let h̃ be a decimation operator, the operator h̃i, i ∈ N∗ stands for its i-th iteration.
Then the decimation operator h̃ is stable if and only if h̃i is stable.

Proposition 4.10.
The decimation operator h̃ is stable if and only if there exists i ∈ N∗, such that the
subdivision h constructed from sequence 2(h̃il)l∈Z is stable.

Proof.
The proof is straightforward by taking j = ik in the proof of Proposition 4.9, since
(4.18) can be rewritten as

f 0
l0 =

∑
l1

h̃l1−2l0
∑
l2

h̃l2−2l1 · · ·
∑
lik−1

h̃lik−1−2lik−2

∑
lik

h̃lik−2lik−1f
ik
lik

=
∑
li

(
∑
li−1

· · ·
∑
l1

h̃li−2li−1 · · · h̃l1−2l0) · · ·
∑
lik

(
∑
lik−1

· · ·
∑

lik−i+1

h̃lik−2lik−1 · · · h̃lik−i+1−2lik−i)f iklik

=
∑
li

h̃ili−2il0 · · ·
∑
lik

h̃ilik−2ilik−if
ik
lik

and the necessity is concluded by Lemma 4.2.
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In the non-linear case, since the decimation is not always a subsampling operator,
the stability of the decomposition is not straightforward and a numerical test is
provided in Section 4.5.2.

4.4.2 Decay of the Prediction Errors

The next proposition provides a condition to deduce the decay rate of the prediction
error for linear uniform subdivision schemes.

Proposition 4.11.
Let h be a linear uniform stable subdivision operator and h̃ be a linear stable deci-
mation operator.
If (4.15) is satisfied, i.e.

∀k, n ∈ {0, 1, 2, . . . , L},
∑
l

hk−2l
∑
m

h̃m−2l(m− k)n = δn,0,

then for sufficiently large j ∈ Z,

||ej|| ≤ C2−(L+1)j, (4.19)

where C does not depend on j.

Proof.
Condition (4.15) is equivalent to

∀1 ≤ n ≤ L, kn =
∑
l

hk−2l
∑
m

h̃m−2lm
n,

and implies that

∀j ∈ Z,∀1 ≤ n ≤ L, (k2−j)n −
∑
l

hk−2l
∑
m

h̃m−2l(m2−j)n = 0 . (4.20)

Moreover, for any j, one can introduce fj ∈ CL0(R) with L0 >> L such that
f jk = fj(k2−j). We postpone to the end of the proof the construction of a particular
fj to get the expected result of the proposition.

Using Taylor expansion, it then comes out,

f jk = fj(k2−j) =
L+1∑
n=0

1
n!f

(n)
j (0)(k2−j)n + o((2−j)L+1)

and the prediction error (1.16) can be rewritten

ejk =
L+1∑
n=1

1
n!f

(n)
j (0)

(
(k2−j)n −

∑
l

hk−2l
∑
m

h̃m−2l(m2−j)n
)

+ o((2−j)L+1).
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According to (4.20),

ejk = 1
(L+ 1)!f

(L+1)
j (0)

(
(k2−j)L+1 −

∑
l

hk−2l
∑
m

h̃m−2l(m2−j)L+1
)

+ o(2−j(L+1)).

(4.21)
To finish the proof we introduce a particular fj such that ∀i ≤ L0, ||f (i)

j ||∞ is
controlled independently of j that leads to a constant C independent of j such that
||ej|| ≤ C2−j(L+1).

For any j ∈ [J0, Jmax − 1], fj is constructed from fJmax ∈ CL0(R).
More precisely, starting from (fJmaxk )k∈Z with fJmaxk = fJmax(k2−Jmax), (fJmax−1

k )k∈Z
is written

fJmax−1
k = (DJmax−1

Jmax fJmax)k =
∑
l∈Z

h̃l−2kf
Jmax
l =

∑
l∈Z

h̃lf
Jmax
l+2k =

∑
l∈Z

h̃lfJmax((l+2k)2−Jmax),

fJmax−1 can therefore be defined as ∀x ∈ R

fJmax−1(x) =
∑
l

h̃lfJmax(l2−Jmax + x),

and it is straightforward that ∀i ≤ L0,

||f (i)
Jmax−1||∞ ≤ (

∑
l

|h̃l|)||f (i)
Jmax||∞ . (4.22)

Iterating this process, ∀j ∈ [J0, Jmax − 1],

||f (i)
j ||∞ ≤ (

∑
l

|h̃l|)Jmax−j||f (i)
Jmax||∞ . (4.23)

Since h̃ is stable, there exists C > 0 does not depends on j such that

||f (i)
j ||∞ ≤ C||f (i)

Jmax||∞,

and (4.21) leads to
||ej|| ≤ C2−(L+1)j.

Remark 4.9.
According to Theorem 4, in the case of a consistent decimation, condition (4.15) in
the previous proposition can be replaced by an assumption of quasi-reproduction of
the subdivision operator.

Proposition 4.11 is extended to the case of non-linear subdivision schemes.

87



Proposition 4.12.
Let h be a non-linear subdivision scheme with h = hL+hN where hL quasi-reproduces
polynomials up to degree p, and h̃ be a stable consistent decimation operator con-
structed according to Theorem 2. If there exists q ∈ N such that for any polynomial
Pq−1 of degree (q − 1), defining (f jk)k∈Z = (Pq−1(k2−j) + εjk)k∈Z,

hNf j = O(εj),

then the decay rate of the associated prediction error is at least min(p, q).

Proof.
For a consistent couple (h, h̃),

f̂ j = h̃f j+1 = h̃Lf j+1 − h̃LhN f̂ j.

The associated prediction error can be written as

ej+1 = (I − hLh̃L)f j+1 − (I − hLh̃L)hN f̂ j,

since (I − hLh̃L) is a linear operator and h̃ is stable,

ej+1 = O(2−min(p,q)j),

the proof is achieved.

4.4.3 Examples

4-point Shifted Lagrange Scheme

Since 

1 1 1 1
2 0 −2 −4
22 02 (−2)2 (−4)2

23 03 (−2)3 (−4)3

24 04 (−2)4 (−4)4

25 05 (−2)5 (−4)5




− 7

128
105
128
35
128

− 5
128

 =



1
−1

2

(−1
2)2

(−1
2)3

−13
2

59
2




1 1 1 1
3 1 −1 −3
32 12 (−1)2 (−3)2

33 13 (−1)3 (−3)3

34 14 (−1)4 (−3)4

35 15 (−1)5 (−3)5




− 5

128
35
128
105
128

− 7
128

 =



1
−1

2

(−1
2)2

(−1
2)3

−13
2

13
4


,
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this scheme reproduces polynomials of degree 3 and quasi-reproduces polynomials
of degree 4, thus the decay rate of the associated prediction error is 5.

Proposition 4.13.
The decimation operator given by (2.14) is stable.

Proof.
The proof is straightforward since the subdivision operator constructed from 2(h̃3

l )l∈Z
is convergent. Indeed, following the algorithm proposed in [24] and with the same
notations, we have

maxi∈Z
∑
j∈Z
|b[9]
i−29j| = 0.983338 < 1.

It means that Sb is contractive after 9 iterations and therefore that the scheme is
convergent.

2-point Shifted Lagrange Scheme, B-spline of order 3

Since 
1 1
0 −2
02 (−2)2

03 (−2)3


 3

4
1
4

 =


1
−1

2

1
−2

 ,


1 1
1 −1
12 (−1)2

13 (−1)3


 1

4
3
4

 =


1
−1

2

1
−1

2

 ,

this scheme reproduces polynomials of degree 1 and quasi-reproduces polynomials
of degree 2, thus the decay rate of the associated prediction error is 3.

Proposition 4.14.
The decimation operator given by (2.12) is stable.

Proof.
The stability is ensured since the subdivision operator constructed from 2(h̃2

l )l∈Z is
convergent. The convergence is verified because

∀i1, i2, i3, i4 ∈ {0, 1}, max
(

(1
2)4||A(1)

i1 A
(1)
i2 A

(1)
i3 A

(1)
i4 ||

)
= 0.71987 < 1,

where A(1)
0 , A

(1)
1 are associated refiniment matrices for differences.

Proposition 4.15.
The decimation operator given by (2.13) is stable.
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Proof.
The stability is ensured since the subdivision operator constructed from 2(h̃2

l )l∈Z is
convergent. The convergence is verified because

∀i1, i2, i3, i4, i5 ∈ {0, 1}, max
(

(1
2)5||A(1)

i1 A
(1)
i2 A

(1)
i3 A

(1)
i4 A

(1)
i5 ||

)
= 0.86584 < 1,

where A(1)
0 , A

(1)
1 are associated refiniment matrices for differences.

4-point Interpolatory Lagrange Scheme

Since 

1 1 1 1
3 1 −1 −3
32 12 (−1)2 (−3)2

33 13 (−1)3 (−3)3

34 14 (−1)4 (−3)4




− 1

16
9
16
9
16

− 1
16

 =



1
0
0
0
−9


,

this scheme reproduces polynomials of degree 3 and quasi-reproduces polynomials
of degree 3, thus the decay rate of the associated prediction error is 4.

B-spline Scheme of Order 4

Since



1 1 1
2 0 −2
22 02 (−2)2

23 03 (−2)3

24 04 (−2)4




1
2
1
2

0

 =



1
1
2
4
8


,



1 1 1
3 1 −1
32 12 (−1)2

33 13 (−1)3

34 14 (−1)4




1
8
3
4
1
8

 =



1
1
2
4
11



this scheme reproduces polynomials of degree 1 and quasi-reproduces polynomial of
degree 3, thus the decay rate of the associated prediction error is 4.
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B-spline Scheme of Order 5

Since


1 1 1
2 0 −2
22 02 (−2)2

23 03 (−2)3

24 04 (−2)4

25 05 (−2)5




5
16
5
8
1
16

 =



1
1
2
3
2

2
6
8


,



1 1 1
3 1 −1
32 12 (−1)2

33 13 (−1)3

34 14 (−1)4

35 15 (−1)5




1
16
5
8
5
16

 =



1
1
2
3
2

2
6
31
2


,

this scheme reproduces polynomials of degree 1 and quasi-reproduces polynomials
of degree 4, thus the decay rate of the associated prediction error is 5.

B-spline Scheme of Order 7

Since 

1 1 1 1
2 0 −2 −4
22 02 (−2)2 (−4)2

23 03 (−2)3 (−4)3
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,

this scheme reproduces polynomials of degree 1 and quasi-reproduces polynomials
of degree 6, thus the decay rate of the associated prediction error is 7.
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4.5 Numerical Tests

Several tests are performed in this section to study the multiresolution analyses
associated to the 4-point shifted Lagrange and PPH schemes. The two first ones
are related to the numerical investigation of the prediction error decay and of the
stability of the multi-scale decomposition transform. The last one is devoted to the
evaluation of the performance of the new multiresolutions for image compression.

4.5.1 Decay Rate of the Prediction Error

Starting from a point value discretization of the function displayed in Figure 3.1, a
multi-scale decomposition transform is applied from a fine level j = 12 to a coarse
one j0 = 7. Figure 4.1 provides the evolution of the prediction error (in log-scale)
with respect to the level. It appears that the decay rate is larger for the linear
approach (slope of 5.0379, to be compared with the theoretical value of 5) than for
the non-linear one (slope of 4.21979). This can be explained by the presence of the
non-linear perturbation term that reduces the degree of polynomial approximation.
As a comparison, the interpolatory Lagrange approach leads to a slope of 4.00717,
to be compared with the theoretical value of 4.
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Figure 4.1: Logarithm of the prediction error versus scale for different schemes :
4-point shifted PPH, 4-point shifted Lagrange and 4-point interpolatory Lagrange
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Figure 4.2: Various test functions : from top to bottom, the function is less regular.

On Figure 4.2, 4.3, 4.4 and 4.5, we focus on the effect of the data regularity
on the behavior of the prediction error. When moving from regular to non-regular
test functions, one can observe that the non-linear approach outperforms the linear
one in terms of decay rate and error values. This important result is exploited in
Section 4.5.3 for image compression.
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Figure 4.3: Evolution of the prediction error (log-scale) versus scale in the vicinity
of point x0 = 0.5 associated to the test functions of Figure 4.2.
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Figure 4.4: Test functions with discontinuity at point x0 = 0.5.
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Figure 4.5: Evolution of the prediction error (log-scale) versus scale in the vicinity
of point x0 = 0.5 associated to test functions of Figure 4.4

4.5.2 Estimation of the stability constant

Given a sequence f j = (f jk)k∈Z, we denote f̂ j = (f̂ jk)k∈Z a perturbed sequence and
{f̂ j0 , d̂j0 , d̂j0+1, . . . , d̂j−1} its associated decomposition. The decomposition stability
constant is defined as

Cs = ||f j − f̂ j||1
||f j0 − f̂ j0||1 +∑j−1

i=j0 ||di − d̂i||1
.
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column index 10 60 110 160 210 260 310 360
Cs- SPPH 1.1889 1.2463 1.1605 1.2192 1.1739 1.2283 1.1454 1.2076
Cs- SLAG 1.1516 1.2488 1.2701 1.2417 1.2034 1.2566 1.2419 1.2488

Table 4.1: Estimation of the stability constant for the decomposition associated
to the shifted PPH and the shifted Lagrange schemes based on image stream

column index 10 60 110 160 210 260 310 360
Cs- SPPH 1.2650 1.1648 1.2557 1.2350 1.2425 1.2415 1.1421 1.1367
Cs- SLAG 1.1562 1.2358 1.2535 1.2225 1.2636 1.2459 1.3485 1.2499

Table 4.2: Estimation of the stability constant for the decomposition associated
to the shifted PPH and the shifted Lagrange schemes based on image texmos3

This constant is evaluated for different columns of the images stream (Figure 4.7)
and texmos3 (Figure 4.8) where the perturbation is obtained by adding a white
gaussian noise (N (0, 10)). Figure 4.6 shows an example of f̂ j constructed from
the 10-th column of each image. The numerical estimations of the decomposition
stability constant are shown in Table 4.1 and Table 4.2 for each image considering
shifted PPH (SPPH) and shifted Lagrange schemes (SLAG).
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Figure 4.6: Perturbed sequence constructed from the 10-th column of image stream
(left) and image texmos3 (right), noise in blue and origin data in green

Since the linear shifted Lagrange decomposition is known to be stable, the sim-
ilarity between the stability constants associated to the two schemes is a good
tendency that leads to think that the non-linear shifted PPH decomposition is sta-
ble.
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4.5.3 Image Compression

Four multiresolution frameworks are considered in this section. They are associated
to the following subdivisions and decimations,

interpolatory Lagrange the 4-point interpolatory Lagrange subdivision scheme
associated to the mask (1.6) and the consistent subsampling decimation.

shifted Lagrange the 4-point shifted Lagrange subdivision scheme associated to
the mask (1.7) and the consistent decimation associated to the mask (2.14).

interpolatory PPH the 4-point interpolatory PPH subdivision scheme and the
consistent subsampling decimation.

shifted PPH the 4-point shifted PPH subdivision scheme given by (1.10,1.11) and
the consistent decimation constructed from Theorem 2 involving the linear
decimation (2.14).

Starting from an image of size 512 × 512 (j = 9), several decompositions are
first performed until j0 = 5. Then, after truncation of the detail coefficients with
different thresholds, the reconstruction transform is applied and the resulting im-
age is compared to the original one. The performance of each tested approach is
evaluated by computing the so-called PSNR (Peak Signal Noise Ratio) defined as
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Figure 4.7: Left : test image stream, Right : PSNR versus compression ratio for
interpolatory Lagrange, shifted Lagrange, interpolatory PPH and shifted PPH mul-
tiresolutions.
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PSNR = 10 log10

 mnf 2
max∑n

i=1
∑m
k=1

∣∣∣f jik − f̂ jik∣∣∣2


with respect to the compression ratio which is the ratio between the size of the
original image and the size of the compressed image.

The results on the first image (Figure 4.7) show that the shifted schemes (that
are non-interpolatory) exhibit a better performance than that of interpolatory ones.
Moreover, the shifted PPH scheme outperforms the linear shifted one.

For a sketchy image (Figure 4.8), we get more significant compression ratios
while the shifted PPH scheme still outperforms the linear shifted one. In this case,
non-interpolatory approaches lead to better results for high compression ratio.
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Figure 4.8: Left : test image texmos3, Right : PSNR versus compression ratio
for interpolatory Lagrange, shifted Lagrange, interpolatory PPH and shifted PPH
multiresolutions.

The result stated by Theorem 2 allows different choices of linear decimation
operators and therefore different prediction errors and details. To evaluate the
effect of this choice on the capability of the 4-point shifted PPH multiresolution,
four linear decimations are considered in the sequel : decimation of length 8 given
by (2.14) (L8), decimation of length 12 given by (2.15) (L12) and decimation given
by (2.11) (Quarter). Figure 4.9 displays the evolution of the PSNR with respect to
the compression ratio for those multiresolutions.

It appears that the choice of the linear decimation has a non negligible effect on
the capability of the multiresolution. In this test, the decimation given by (2.14)
leads to the best results. This clearly indicates that in practice, the construction of
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the linear decimation has to be carefully chosen before applying Theorem 2. This
point will be studied in future investigations.
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Figure 4.9: PSNR versus compression ratio for the 4-point shifted PPH subdivision
scheme with three different consistent decimation operators, stream image

4.6 Conclusion

A generic approach was developed in this chapter to fully construct multiresolution
analysis associated to general subdivision scheme. Starting from consistent deci-
mation operators following Theorem 2 of Chapter 3, detail subdivision and detail
decimation operators are introduced by exploiting the action of some specific linear
decimation on the so-called prediction error. Several theoretical results were then
established to ensure polynomial quasi-reproduction and reproduction. This prop-
erty is important since it controls the prediction error decay rate which was further
studied. A special attention was also devoted to the stability of the multi-scale
transforms. In order to show the interest of these new developments for practical
issues, we finally focussed on two linear (shifted Lagrange) and non-linear (shifted
PPH) schemes. The last application illustrated that it is now possible to exploit the
advantages of these non-standard subdivision schemes in the framework of image
compression.
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Conclusion and Perspectives

This thesis was devoted to the construction of a compatible multiresolution frame-
work based on a given subdivision scheme. Because of the diversity of subdivision
schemes, different approaches were developed to deal with different kinds of subdi-
vision scheme that can be linear or non-linear. We first focussed on the construction
of decimation operators. Exploiting the consistency property between subdivision
and decimation, a first approach was introduced in the linear uniform framework.
It was then extended to non-uniform (position-dependent) strategies. Its advan-
tages first stand in the simplicity of its implementation since it relies on the inver-
sion of matrices constructed from the subdivision masks. Moreover, the length of
the decimation mask can be fixed beforehand which allows, similarly to subdivi-
sion, integrating only the information in the vicinity of the point of interest. For
more general linear subdivision scheme, we proposed in a second approach a global
method for decimation construction in the sense that it takes into account all the
available data in a given interval. It can then be used for any kind of linear sub-
division scheme without adapting locally the decimation. This approach remains
limited to a small size of data since it involves the inversion of a full matrix. It
is therefore more efficient when it is coupled with a zone-dependent strategy [33].
Finally, a last approach was proposed in the case of general subdivision scheme
(linear or non-linear). Given a subdivision h, the key point is the existence of linear
decimation operator h̃L such that h̃h − I satisfies a contraction property. Besides
the genericity of this method, its main advantage stands in the flexibility of the
choice of h̃L that, as it was shown in numerical studies, can have some influence on
the capabilities of the associated multiresolution. To fully complete that connection
with subdivision-based multiresolution, so-called detail decimation and subdivision
operators were introduced and the resulting multiresolution analyzed (polynomial
approximation, prediction error decay, stability of the multi-scale transforms). For
practical issues, several examples of standard and non-standard schemes (linear or
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non-linear) were studied. The last promising test of this thesis showed that it is now
possible to define new multiresolution analysis and exploit the advantages offered
by subdivision schemes in the framework of image compression.

Future works concern :

• The full analysis of the multiresolution in the non-linear framework : the
multi-scale transforms have been constructed but the theoretical analysis of
the decomposition stability still remains an open question. Further investiga-
tions are also required to derive the prediction error decay rate in the case of
the shifted PPH scheme that has only been studied numerically in this thesis.

• The choice of the linear operator in the general method for the construction
of consistent decimations : we proposed a method that can be applied in both
linear and non-linear frameworks provided there exists a linear decimation h̃L

such that h̃Lh− I satisfies a contraction property. It is therefore important to
clarify the relation between h̃L and the prediction error behavior. It will then
be interesting to construct an automatic selection of this linear operator in or-
der to optimize the multiresolution capability. It will also include a theoretical
analysis of the contraction property for every considered decimation.

• The coupling between subdivision-based multiresolution and classical strate-
gies used in the wavelet framework : it is now possible to construct the four
operators involved in multiresolution analysis. One can then exploit existing
strategies such as the lifting scheme [35] in order to improve their compression
capability.

• The application to image compression : a first numerical test was conducted to
decompose and reconstruct images using shifted Lagrange and PPH schemes.
It appeared that non-interpolatory approaches are promising to improve the
compression ratio for a fixed PSNR. However, further tests on geometric and
real images are necessary to confirm this conclusion. It would be also inter-
esting to consider multiresolutions associated to other non-standard schemes
such as the penalized Lagrange one [34] or the kriging one [7] that offer the pos-
sibility to combine interpolatory and non-interpolatory predictions. A bench-
marking of all these different approaches would be valuable to better clarify
their advantages and limitations as well as the specific situations where they
should be used.
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Appendix A

Alternative Proofs

Proof of the consistency condition (Proposition 2.1) using
Laurent polynomial

Denote
F j(z) =

∑
k∈Z

f jkz
k, F j+1(z) =

∑
k∈Z

f j+1
k zk,

and
h(z) =

∑
k∈Z

hkz
k, h̃(z) =

∑
k∈Z

h̃kz
k.

Equation (2.1) leads to
F j+1(z) = h(z)F j(z2),

and equation (2.2) leads to

F j(z2) = 1
2(h̃(z−1)F j+1(z) + h̃(−z−1)F j+1(−z)).

The consistency condition implies that

h(z)h̃(z−1) + h(−z)h̃(−z−1) = 2

With a little calculation,
∑
i,j

hih̃jz
i−j +

∑
i,j

hih̃j(−z)i−j = 2,

∀k ∈ Z,
∑
j

h2k+jh̃jz
2k = 1,

and finally,
∀k ∈ Z,

∑
j

h2k+jh̃j = δk,0.
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Equivalence with polynomial quasi-reproduction using Lau-
rent Polynomial

Denote h(z) = ∑
l hlz

l, then its d-th derivative is

h(d)(z) =
∑
l

hl

(
d−1∏
m=0

(l −m)
)
zl−d.

Let’s consider

h(d)(−1) =
∑
l

hl

(
d−1∏
m=0

(l −m)
)

(−1)l−d =
∑
l

hl

(
d∑

m=0
s(d,m)lm)

)
(−1)l−d,

where s(d,m) denotes the Stirling numbers of the first kind.

h(d)(−1) =
d∑

m=0
s(d,m)

(∑
l

hll
m(−1)l

)
(−1)−d

with s(d,m) = −(d− 1)s(d− 1,m) + s(d− 1,m− 1), we have

h(d)(−1) =
d∑

m=0
(−(d− 1)s(d− 1,m) + s(d− 1,m− 1))

(∑
l

hll
m(−1)l

)
(−1)−d,

h(d)(−1) = (d− 1)
d−1∑
m=0

s(d− 1,m)
(∑

l

hll
m(−1)l

)
(−1)−(d−1)

+
d∑

m=0
s(d− 1,m− 1)

(∑
l

hll
m(−1)l

)
(−1)−d.

By recurrence, we have

∀n ∈ {0, 1, 2, . . . , L},
∑
l∈Z

hll
n(−1)l = 0.

which is equivalent to (4.4).
Finally, we have the equivalence between condition (4.4) and

∀d ∈ {0, 1, 2, . . . , L}, h(d)(−1) = 0.
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Appendix B

Calculation Details

The proof of Proposition 4.4 is based on the following lemma.

Lemma B.1.
If (2.3) is verified,

1. (4.5) leads to (4.9).

2. (4.9) and (4.4) leads to (4.5).

Proof.
Changing index in (2.3) gives,

∑
j

h2k+jh̃j = δk,0.

For p ∈ {0, 1, 2, . . . , L}, it follows,

∑
k

(∑
j

h2k+jh̃j(2k)p
)

=
∑
k

(
δk,0(2k)p

)
,

∑
k

(∑
j

h2k+jh̃j(2k + j − t− j + t)p
)

= δp,0,

∑
k

(∑
j

h2k+jh̃j

p∑
i=0

(
p

i

)
(2k + j − t)p−i(−j + t)i

)
= δp,0,

∑
j

p∑
i=0

(
p

i

)(∑
k

h2k+j(2k + j − t)p−i
)
h̃j(−j + t)i = δp,0,

that leads to

∑
k

h2k+j(2k + j − t)p = δp,0 =⇒
∑
j

h̃j(j − t)p = δp,0.
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Otherwise,∑
k

p∑
i=0

(
p

i

)∑
j

(
h̃j(j − t)i(−1)i

)(
h2k+j(2k + j − t)p−i

)
= δp,0,

if h2k+j(2k + j − t)p−i does not depend on the parity of j,∑
j

h̃j(j − t)p = δp,0 =⇒
∑
k

h2k+j(2k + j − t)p = δp,0,

which completes the proof.

The Proof of Theorem 4 is based on the following lemma.

Lemma B.2.
We have,

1. (4.15) leads to (4.4).

2. (2.3) and (4.4) leads to (4.15).

Proof.
1. According to equation (4.15), ∀k, n ≤ L,

δn,0 =
∑
l

hk−2l
∑
m

h̃m−2l(m− k)n

=
∑
l

hk−2l
∑
m

h̃m−2l ((m− 2l)− (k − 2l))n

=
∑
l

hk−2l
∑
m

h̃m−2l
∑
i

(
n

i

)
(m− 2l)i(k − 2l)n−i(−1)n−i

=
∑
i

(
n

i

)(∑
l

hk−2l(k − 2l)n−i
)(∑

m

h̃m−2l(m− 2l)i
)

(−1)n−i.

By expanding it with respect to each n ≤ L, we know that for h̃ being fixed,∑
l hk−2l(k − 2l)i should not depend on the parity of k for all i ≤ L which leads to

(4.4).

2. Let us first introduce the following notations,

En
e,e =

∑
l

h2l
∑
k

h̃2k(2k − 2l)n,

En
o,o =

∑
l

h2l+1
∑
k

h̃2k+1(2k − 2l)n,

En
e,o =

∑
l

h2l
∑
k

h̃2k+1(2k + 1− 2l)n,

En
o,e =

∑
l

h2l+1
∑
k

h̃2k(2k − 2l − 1)n.
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where Ee,o is associated with even indices of Mh and odd indices of Mh̃.
First we will prove that the consistency condition (2.3) implies

∀n ∈ N, En
e,e + En

o,o = δn,0 . (B.1)

It is easy to verify that for n = 0, E0
e,e +E0

o,o = 1. Moreover, for any n ∈ N∗, the
consistency condition leads to

∑
j

(
∑
i

hi−2jh̃i)(2j)n =
∑
j

δj,0(2j)n,

∑
i

(
∑
j

hi−2j(2j)n)h̃i = 0 .

Splitting the previous sum with respect to even and odd indices, we get
∑
i

(
∑
j

h2i−2j(2j)n)h̃2i +
∑
i

(
∑
j

h2i+1−2j(2j)n)h̃2i+1 = 0,

∑
l

h2l
∑
k

h̃2k(2k − 2l)n +
∑
l

h2l+1
∑
k

h̃2k+1(2k − 2l)n = 0,

which is precisely,
En
e,e + En

o,o = 0 .

Considering (B.1), condition (4.15) with ∀0 ≤ n ≤ L,

En
e,e + En

e,o = δn,0, E
n
o,e + En

o,o = δn,0 . (B.2)

becomes ∀n ∈ {0, 1, 2, . . . , L}
∑
l

h2l
∑
k

h̃2k(2k − 2l)n =
∑
l

h2l+1
∑
k

h̃2k(2k − 2l − 1)n,

∑
l

h2l
∑
k

h̃2k+1(2k + 1− 2l)n =
∑
l

h2l+1
∑
k

h̃2k+1(2k − 2l)n,

which can be written as
∑
l

h2l
∑
k

h̃2k

n∑
i=0

(
n

i

)
(−1)i(2k)n−i(2l)i

=
∑
l

h2l+1
∑
k

h̃2k

n∑
i=0

(
n

i

)
(−1)i(2k)n−i(2l + 1)i,

∑
l

h2l
∑
k

h̃2k+1

n∑
i=0

(
n

i

)
(−1)i(2k + 1)n−i(2l)i

=
∑
l

h2l+1
∑
k

h̃2k+1

n∑
i=0

(
n

i

)
(−1)i(2k + 1)n−i(2l + 1)i.
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It leads to
n∑
i=0

(
n

i

)
(−1)i(

∑
l

h2l(2l)i −
∑
l

h2l+1(2l + 1)i)
∑
k

h̃2k(2k)n−i = 0,

n∑
i=0

(
n

i

)
(−1)i(

∑
l

h2l(2l)i −
∑
l

h2l+1(2l + 1)i)
∑
k

h̃2k+1(2k + 1)n−i = 0,

which shows the equivalence between (4.4) and (4.15) under condition (2.3).
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