
HAL Id: tel-01841485
https://theses.hal.science/tel-01841485

Submitted on 17 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation d’efficacité et restructuration automatisées
de noyaux de calcul

Christopher Haine

To cite this version:
Christopher Haine. Estimation d’efficacité et restructuration automatisées de noyaux de calcul. Data
Structures and Algorithms [cs.DS]. Université de Bordeaux, 2017. English. �NNT : 2017BORD0639�.
�tel-01841485�

https://theses.hal.science/tel-01841485
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

par Christopher Haine

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Kernel optimization by layout restructuring

Date de soutenance : 3 Juillet 2017

Devant la commission d’examen composée de :

Henri-Pierre CHARLES . . Directeur de Recherche, CEA Rapporteur
Allen MALONY Professeur, Université de l’Oregon Rapporteur
Emmanuel JEANNOT Directeur de Recherche, Inria Examinateur
Pascale ROSSE-LAURENT Ingénieur, Atos . Examinateur
Olivier AUMAGE Chargé de Recherche, Inria Encadrant
Denis BARTHOU Professeur des Universités, Bordeaux INP Directeur de Thèse

2017

2

Abstract

Careful data layout design is crucial for achieving high performance, as nowadays processors
waste a considerable amount of time being stalled by memory transactions, and in particular spa-
cial and temporal locality have to be optimized. However, data layout transformations is an area
left largely unexplored by state-of-the-art compilers, due to the difficulty to evaluate the possi-
ble performance gains of transformations. Moreover, optimizing data layout is time-consuming,
error-prone, and layout transformations are too numerous to be experimented by hand in hope to
discover a high performance version.

We propose to guide application programmers through data layout restructuring with an ex-
tensive feedback, firstly by providing a comprehensive multidimensional description of the initial
layout, built via analysis of memory traces collected from the application binary in fine aiming at
pinpointing problematic strides at the instruction level, independently of the input language. We
choose to focus on layout transformations, translatable to C-formalism to aid user understanding,
that we apply and assess on case study composed of two representative multithreaded real-life
applications, a cardiac wave simulation and lattice QCD simulation, with different inputs and
parameters. The performance prediction of different transformations matches (within 5%) with
hand-optimized layout code.

Keywords:
Performance profiling, Layout restructuring, Vectorization, Binary rewriting

4

Résumé

Bien penser la structuration de données est primordial pour obtenir de hautes performances, alors
que les processeurs actuels perdent un temps considérable à attendre la complétion de trans-
actions mémoires. En particulier les localités spatiales et temporelles de données doivent être
optimisées. Cependant, les transformations de structures de données ne sont pas proprement ex-
plorées par les compilateurs, en raison de la difficulté que pose l’évaluation de performance des
transformations potentielles. De plus, l’optimisation des structures de données est chronophage,
sujette à erreur et les transformations à considérer sont trop nombreuses pour être implémentées
à la main dans l’optique de trouver une version de code efficace.

On propose de guider les programmeurs à travers le processus de restructuration de données
grace à un retour utilisateur approfondi, tout d’abord en donnant une description multidimen-
sionnelle de la structure de donnée initiale, faite par une analyse de traces mémoire issues du
binaire de l’application de l’utilisateur, dans le but de localiser des problèmes de stride au niveau
instruction, indépendamment du langage d’entrée. On choisit de focaliser notre étude sur les
transformations de structure de données, traduisibles dans un formalisme proche du C pour fa-
voriser la compréhension de l’utilisateur, que l’on applique et évalue sur deux cas d’étude qui sont
des applications réelles, à savoir une simulation d’ondes cardiaques et une simulation de chromo-
dynamique quantique sur réseau, avec différents jeux d’entrées. La prédiction de performance de
différentes transformations est conforme à 5% près aux versions réécrites à la main.

Keywords:
Profilage de performance, Restructuration de données, Vectorisation, Réécriture de binaire

6

Contents

Introduction 11
Data layout design for high performance . 11
Contributions . 12
Outline . 13

1 Context and Problem 15
1.1 The memory layout/pattern issue . 16

1.1.1 Modern architectures complexity . 16
1.1.2 The locality issue . 18
1.1.3 Layout abstractions . 22

1.2 The complicated relationship between compilers and data layouts 23
1.2.1 Static approaches . 24
1.2.2 Dynamic approaches . 25
1.2.3 Data restructuring techniques . 27
1.2.4 Vectorization . 28

1.3 The lack of user feedback . 29
1.3.1 Compiler feedback . 29
1.3.2 Tools . 31
1.3.3 The importance of quantification . 32

1.4 Towards a data layout restructuring framework proposal 32
1.4.1 Proposition overview . 33
1.4.2 Data restructuring evaluation . 35

2 Vectorization 39
2.1 Layout Transformations To Unleash Compiler Vectorization 39
2.2 Hybrid Static/Dynamic Dependence Graph . 40

2.2.1 Static, Register-Based Dependence Graph. 40
2.2.2 Dynamic Dependence Graph. 41

2.3 SIMDization Analysis . 42
2.3.1 Vectorizable Dependence Graph. 42
2.3.2 Code Transformation Hints. 43

2.4 Conclusion . 44

7

CONTENTS

3 Layout/pattern analysis 45
3.1 Data layout formalism . 45
3.2 Layout detection . 48
3.3 Delinearization . 50

3.3.1 General Points . 52
3.3.2 Properties . 54
3.3.3 Characterization . 55
3.3.4 Case Study . 57

3.4 Conclusion . 59

4 Transformations 61
4.1 Layout Operations . 61

4.1.1 Permutation . 62
4.1.2 Splitting . 63
4.1.3 Compression . 64

4.2 Exploration . 65
4.2.1 Basic Constraints . 65
4.2.2 Locality Constraints . 67
4.2.3 Parallelism Constraints . 69

4.3 Case Study . 71
4.4 Conclusion . 75

5 Code Rewriting and User Feedback 77
5.1 Systematic Code Rewriting . 77

5.1.1 On locality . 78
5.1.2 Formalism Interpretation . 79
5.1.3 Copying . 81
5.1.4 Remapping . 83

5.2 User Feedback . 84
5.2.1 Layout issues pinpointing . 85
5.2.2 Hinting the rewriting . 85

5.3 Low-level implementation . 86
5.3.1 Loop kernel rewriting . 86
5.3.2 SIMDization . 87

5.4 Conclusion . 88

6 Transformations Evaluation 91
6.1 Evaluation methodology . 91

6.1.1 Principle of in-vivo evaluation . 91
6.1.2 Automatic mock-up generation and vectorization 92
6.1.3 Current state of implementation . 93

6.2 Experimental results . 94
6.2.1 TSVC . 94
6.2.2 Lattice QCD benchmark without preconditioning 95
6.2.3 Lattice QCD benchmark with even/odd preconditioning 96
6.2.4 Lattice QCD application without preconditioning 97

8

CONTENTS

6.2.5 2D cardiac wave propagation simulation application 98
6.3 Conclusion . 98

Conclusion and Future Challenges 101
6.4 Summary . 101
6.5 Perspectives . 102

9

CONTENTS

10

Introduction

Data layout design for high performance

Applications performance is a major concern in many domains, indeed constraints from embed-
ded system for mobile technologies, constraints of graphics rendering for video processing or sci-
entific contraints such as precision and problem sizes for instance in the area of scientific comput-
ing – or High Performance Computing –, require significant focus on efficient computing resources
utilization. Applications are so demanding that they require supercomputers, that is clusters of
computers working together on the same scientific problem, to even address the most computa-
tionally challenging tasks. In such context, performance is key to minimize the time to solution,
in particular some problems are unsolvable without high performance.

In computer science, there are many vectors of performance to address, one of them is the
memory usage, as modern processors waste a considerable amount of time being stalled by mem-
ory transactions completion. Intrinsic memory technologies considerations prevent proper syn-
ergy between processor and memory, and memory caches has proven necessary to partially cir-
cumvent this issue. Therefore, application code performance is highly sensitive to cache usage,
however optimal cache usage is difficult to achieve and poorly approximable.

Pushed by specialized domains needs, many architecture developped with distinguishing fea-
tures such as Graphic Processing Units (GPUs) that use in particular large vectors to tackle imag-
ing problems. Also, tremendous demand on computer resources fuels systematic architectural
changes, creating a wide landscape of computer architectures. In high performance computing
for instance, it is common to schedule tasks on heterogeneous systems, that is systems composed
of different flavours of processors such as CPUs/GPUs couples. Given that performance is inti-
mately tied to each given architecture, it becomes difficult to properly produce efficient code.

In particular, cache memories themselves are different from one architecture to one another.
This implies that memory accesses optimizations for one given architecture may impair perfor-
mances on another given architecture. Memory accesses are typically performed on distinct mem-
ory sections – or layouts – with access patterns that have a direct impact on cache usage: regular
coalesced accesses tend to improve cache usage while strided patterns tend to cause issues of per-
formance. Moreover, the advent of SIMD units on general purpose processor (CPUs) allow further
performance improvement if data layout accesses are contiguous. Layout design should in theory
be adapted for any targeted architecture in order to reach high performances.

As a result, hardware is generally underutilized as complicated access patterns on data lay-
outs do not optimally or near-optimally use the cache memories, and vectorization over SIMD
units often fails for various reasons such as lack of contiguity in particular. To efficiently take ad-
vantage of computing resources, automated tools are required, both to allow programming time

11

CONTENTS

minimization and to rapidly find near-optimal solutions.
A natural solution for automatic code optimizations would be compilers, which are equipped

by state-of-the-art techniques to produce quality binaries for a quantity of target architectures.
However compilers are facing numerous difficulties, particularly in the context of layout transfor-
mations that considerably hinder its capabilities and prevent it from reaching peak performance.
Levels of abstractions in the code typically provide fewer semantics specificities useful for com-
piler optimizations; the order in which given compiler optimizations are applied is important; the
evaluation of transformations, in particular for data layout transformations, relies on basic heuris-
tics and theoretical models that are considerably inaccurate; the lack of information at compile
time on data layouts in general, in particular pointer expressions and indirections are challenging.
Besides, compilers by themselves do not make proper advancement in phase with architectures
advancement. As a result, the performance gap between compiled application code and expert
programmer code [93] is significant. Finally, compilers also provide no feedback as to why data
restructuring is not applied, what are the actual issues and how to resolve them.

Contributions

Now there is another class of programs commonly referred to as tools that are used to specifi-
cally pinpoint issues in applications, in order for the programmer to modify the code to optimize
for performance. MAQAO [8] and TAU [98] for instance are such performance profiling tools.
However, most tools consist in mere problem pinpointing, no optimizations are suggested to the
programmer to improve his code, leaving the programmer the burden of inventing and testing
layout restructuring strategies by hand and for each targeted architecture. Assessing transfor-
mations benefit beforehand would represent valuable information for the programmer, to know
which transformation is opportune and how much gain is expected. Tools need more sophistica-
tion to address this topic, in particular quality user feedback has to be provided in order to tackle
the data layout restructuring issue.

To address compilers limitations relative to the layout issues and the lack of feedback from both
compilers and tools, we propose a novel approach to data restructuring; that consists in using the
user application binary and collecting memory traces from said binary to analyse, transform, and
evaluate new layout possibilities; and we make the following contributions for that matter:

– Data layout formalism. Data layouts are defined not only by the layout itself but also by
the layout access patterns. Such a complete definition is particularly verbose in the code,
especially when the number of access patterns is significant. We propose a concise formal-
ization of layout/patterns, which eases not only discussions throughout this document and
discussions with user via elaborate feedback, but also allows systematic expression of layout
transformations. This contribution was published in [38].

– Initial layout normal form. Layout restructuring implies analysing the initial suboptimal
layout in the first place, then to express it using our data layout formalism, in the aim of
exploring transformations on it. Analysis consists in delinearization of the initial layout,
based on the flat layout definition as given by memory traces of the user application, in
order to transform the flat accesses definition into a multidimensional entity with the par-
ticular property of constituting a normal form of the layout. This means in particular that
the initial layout expression in our formalism is independent of any compiler optimizations

12

CONTENTS

on memory accesses such as unrolling for instance, which creates multiple instructions for a
single initial access instruction.

– In-vivo evaluation. Given the importance of providing quality user feedback, an evalua-
tion technique is inevitable to quantify each transformation potential benefit. Considering
compilers static models and simulation approaches are typically inaccurate and incomplete,
we propose to evaluate transformations in-vivo which means in the context of the user ap-
plication run, as to obtain a realistic performance estimation. The main idea is to perform a
checkpoint at the application kernel of interest, and then re-executing the kernel with differ-
ent layout flavours using mock-up codes. This contribution was published in [39]

– SIMD detection and application. The recent introduction of SIMD units in general purpose
processors implies a significant performance gain to obtain from them. All kernels are not
necessarily candidates for vectorization over SIMD units, in particular, dependences issues
may hinder vectorization. Therefore, determining intrinsic kernel vectorizability is essential,
and our SIMD detection technique was published in [6]. Furthermore, for all vectorizable
kernels we implement SIMDization in our evaluation codes, as well as transformations that
are designed to take advantage of this particular feature.

These contributions provide the application programmer with elaborate feedback, that is firstly
providing a performance issues report pinpointing data layout issues as a whole and also instruc-
tion by instruction. Second, it consists in proposing identified transformations strategies, helping
copying the data from the initial to the new layout as well as changing the mapping of each indi-
vidual memory instructions. Third, the evaluation step permits to quantify every single restruc-
turing strategy to allow the user to make an enlightened choice of restructuring. This approach
has several benefits. First of all, unlike many optimizations that are architecture-dependent and
obfuscate the code, our transformations suggestions simply alter the layout mapping. Second,
layout restructuring is intrinsically independent of control flow optimizations, therefore it can be
performed alongside any control transformations and has no negative impact on them. Finally,
the approach is not architecture-dependent and can be implemented on any system, the evalua-
tion step allows to measure actual layout performance encompassing fluctuations due to specific
architectural effects.

Outline

Chapter 1 presents the context and problem that leads to the need of data layout restructuring.
Chapter 2 explains how to determine kernel vectorizability from both static and dynamic analysis
of the application binary. Chapter 3 shows the steps to reconstruct the application original prob-
lematic layout from memory traces into a formal representation. Chapter 4 presents the trans-
formation space exploration heuristic, manipulating the layout formal representation. Chapter 5
explains how to rewrite the code based on new layout mappings selected by the heuristic. It allows
to generate evaluation code versions as well as user feedback. Chapter 6 details the data restruc-
turing evaluation methodology and experimental results. Finally, the last chapter concludes this
work and presents perspectives and future challenges.

13

CONTENTS

14

Chapter 1

Context and Problem

1.1 The memory layout/pattern issue . 16
1.1.1 Modern architectures complexity . 16
1.1.2 The locality issue . 18
1.1.3 Layout abstractions . 22

1.2 The complicated relationship between compilers and data layouts 23
1.2.1 Static approaches . 24
1.2.2 Dynamic approaches . 25
1.2.3 Data restructuring techniques . 27
1.2.4 Vectorization . 28

1.3 The lack of user feedback . 29
1.3.1 Compiler feedback . 29
1.3.2 Tools . 31
1.3.3 The importance of quantification . 32

1.4 Towards a data layout restructuring framework proposal 32
1.4.1 Proposition overview . 33
1.4.2 Data restructuring evaluation . 35

Nowadays computers architectures are complex, numerous, and differ noticeably
from each another. Thus, the codes and especially the memory accesses to data lay-
outs must be greatly architecture-dependent in order to achieve high performance.
The notion of good layout is vague to programmers, as there is no such thing as
performance portability. Plus, different layers of data structures abstractions form
a gap between the logical and the physical layout, so writing efficient code has an
unacceptable complexity for the user, therefore an automated way is needed. Given
compilers limits in the context of data restructuring and the lack of feedback from
both compilers and tools, we propose a framework aiming at guiding the program-
mer through his layout restructuring process. First, we pinpoint the layout issues
with a comprehensive report, then we propose layout transformations with both
a high-level representation and a precise instruction-level modification report. Fi-
nally, we quantify each of the transformations in terms of performance gain, in order
to direct the user towards the potentially most profitable layout.

15

1.1. The memory layout/pattern issue

Figure 1.1: Memory performance versus CPU performance [82]

1.1 The memory layout/pattern issue

1.1.1 Modern architectures complexity

In recent years, a lot a researching efforts has been devoted to computer architecture design
to address the ever-growing computational need. Semiconductor manufacturers, while watching
clock speed reach a plateau, has repeatedly applied transistor miniaturization, one of the main
vectors of processor design, increasing single processor complexity to keep allowing to obtain
better performance this way. This interest has made processor performance evolution grow lin-
early following Moore’s law [75]. The trend is that the number of transistors on a microprocessor
chip doubles every 18 months, making architectural design specificities change on a frequent reg-
ular basis. However, memory technology development has not seen quite a growth as shown
by Figure 1.1, in fact since the 1980s the performance gap between processors and memory has
aggravated steadily. Current memory technology is intrinsically not able to keep up with proces-
sor performance as first discussed in [116], urging to find architectural solutions to circumvent
the so-called memory wall: memory performance limitations mask the significant performance
improvements made on processors, as the codes are slowed down because processors spend too
much time stalled by memory requests taking too long to complete.

Memory has been forced off of the microprocessor given its growing size/space requirements,
which induces increased latency with respect to processor registers. This physical constraint has
been addressed by the introduction of the cache memory to the microarchitecture, creating a mem-
ory hierarchy from the registers to the main memory. It allows frequently accessed data to be closer
to the processor and thus to improve latencies. When a data element is requested by the processor,
the cache is first checked for the presence of said element. If it actually is present, then the latency
to fetch the element is lesser than direct main memory access. If it is not, then the element is
fetched from the main memory and brought back to the cache, in place of older data, speculating
it may be used again (temporal locality) in a close future. Given the success of cache memory, this
approach has been further developed to continue optimizing memory access performance. Today,

16

1. Context and Problem

different levels of cache are commonly found in most microprocessors.

Caches take advantage of the so-called spatial locality of data accesses to improve memory
usage. Indeed, given the memory is far from the processor, caches request cache blocks – or cache
lines – of memory elements to the ram instead of single elements, under the speculation that
consecutive elements may be used in a recent future, as it is the case for instance for large arrays or
vector accesses. Cache line size is typically 64 bytes on x86 CPUs architecture like the Sandy Bridge
for instance, which corresponds to 16 single precision floating point elements or again 8 double
precision elements, that is an arguably small number of element and on typical compute intensive
kernels operating on large arrays, one may be tempted to pre-emptively load even larger blocks of
memory into the cache to further optimize memory access performance. In turn, both hardware
and software prefetch are implemented to anticipate even further the spatial locality property of
data accesses, by performing multiple cache line prefetch. Consequently, performing contiguous
accesses is essential, as the hardware is designed to take advantage of spatial locality to cover for
the inherent limits of the memory technology to sufficiently rapidly provide the processor with
data.

Because it has been assigned the difficult task of bridging the gap between respectively proces-
sor and memory performances, cache design choices has a direct impact on applications memory
access performance. For instance, the respective cache memory level size criterion alone makes
performance vary for a single given application, as the application datasets tendancy to fit entirely
or almost entirely in the cache can greatly maximize its performance. Although, for any dataset
size especially significantly large datasets, blocking can help considering block sizes fitting the
cache memory. It consists in principle to arranging the memory accesses such as temporal and
spatial locality in particular are maximized. The idea is that the blocks loaded from the main
memory into the cache memory has to be filled with elements that all need to be used quickly by
the program , so they do not get evicted from the cache before they are used, provoking cache
misses and forced to be reloaded. To ensure a good temporal locality property, the element we
need to access several times has to be quickly re-accessed so it does not get evicted from the cache.
Cache eviction are indeed ruled by a Least Recently Used (LRU) policy in most modern architec-
tures, which states that the least recently used cache line is substituted by a newly requested cache
line on a cache miss.

Another cache design choice concerns the respective cache levels associativity. Indeed, within
the cache, memory references are segregated in different sets, which prevents too many inoppor-
tune evictions. Each of the set contains n blocks where n is the given number in n-associativity,
which is commonly varying from 4 to 16 given the architectures and the cache level. For instance
the Intel Sandy Bridge L1 and L2 caches are 8-way associative, while the L3 is 16-way associative,
whereas the AMD Bulldozer L1 cache is 4-way associative and its L2 cache is 16-way associa-
tive. The number of blocks in each set allows a leeway in the context of eviction policies, as an
entry least recently used among the n blocks , so intensive memory accesses do no thwart each
another. Nevertheless, with a significant number of array with respect to n, which is dependent
of the application, evictions can potentially happen more often as well as cache misses, sinking
the application performance. As a result, because of varying implementations of cache designs

17

1.1. The memory layout/pattern issue

considering cache size, associativity, energy consumption , latencies and other important param-
eters, programmers cannot assume their application data layout performance is constant across
different architectures: performance is not portable. Also, taking into account these parameters
when writing efficient code has most certainly a great impact on application performance.

In the beginning of the 2000s, the first multi-core processors appeared with the IBM Power 4.
having several cores on a single chip permits to increase processors performance while avoiding
raising the processor frequency and benefiting from thread-level parallelism as many applications
are able to take advantage from it. In this configuration, typically, the L1 cache and sometimes
the L2 cache are private to each core, as if we considered two separate processors. However, the
Last-Level Cache (LLC), typically the L3 cache, and sometimes the L2, is often shared among the
cores on the same chip, causing contention issues. Even considering a simple case where threads,
each placed on a different core, do not access at all the same pieces of data. First of all, the simple
fact of sharing a cache means that a cache miss caused by one given thread may evict a cache line
loaded by another thread. Second of all, we observe what is called true sharing effects when two
threads on two separate cores share the same element on the same cache line, a synchronization
step has to happen between the two concerned cores, to ensure validity of the data. Third of all,
false sharing happen when two threads on different cores access different data elements of the
same cache line. The first thread that modifies its data in said cache line triggers cache coherency
protocols that proceeds to invalidate the cache line from the other threads core respective caches,
forcing them to reload the wanted piece of data from the main memory. The second thread, once
it modifies the data on the same cache line, invalidates in turn the same cache line on other cores
caches, and so on. Even though spatial/temporal locality prevails when it comes to data layout
performance, false sharing may in some cases interfere as it is shown in [105].

Nowadays microprocessors feature single Instruction Multiple Data (SIMD) vector units, po-
tentially providing substantial performance improvement by concurrently applying the same in-
struction to all the elements of a vector. A rich and complex API of SIMD instructions has been
developed on multiple architectures (such as AVX for Intel or NEON for ARM). Thus, the perfor-
mance of a code is highly dependent on the use of the SIMD instructions, assuming the algorithm
is vectorizable. Efficient vectorization, or SIMDization, is usually achieved over contiguous ar-
rays, as it involves contiguous small vectors to be loaded and to be applied arithmetic operations
without performance overhead. In a sense, the use of SIMD rewards the spatial locality aspect. To
load more efficiently packed data, many ISA impose the base pointer to be aligned on cache line
size boundary for aligned access, unaligned accesses can also be performed with special instruc-
tions at cost of a performance penalty.

1.1.2 The locality issue

Because the layouts spatial locality is determinant for application performance and intrinsically
dependent of the underlying architecture, the programmer has an important responsibility in his
application code design. Application code algorithmic needs to impose the creation of elaborate
data structures, expressed by array and structure types often combined, and complicated patterns
expressed by loop nests iterations. A good spatial locality is a consequence of simple patterns that
skim through the arrays in a contiguous manner by accessing the arrays element consecutively.

18

1. Context and Problem

1 f l o a t a [n] [n] , b [n] [n] , c [n] [n] ;
2
3 for (i = 0; i < n ; i ++) {
4 for (j = 0; j < n ; j ++) {
5 a [i] [j] += b [i] [j] ∗ c [j] [i] ;
6 }}

Figure 1.2: spatial locality issue caused by a strided pattern on c array, while the layout c is allo-
cated in a simple contiguous fashion

Now, if a given layout is a contiguous array, non-contiguous access patterns alter spatial local-
ity and cause issues of performance. Non-contiguous accesses with fixed stride are also called
strided accesses, the stride being the distance between the element accessed at a given iteration
step a[i] and the element accessed at the next iteration step a[i+1]. In fact, large strides may imply
performance issues. If a[i] and a[i + 1] are distant from a stride s > 1 and they are on the same
cache line, there is no issue of performance additional to alignment and SIMD consideration. Most
SIMD instructions require memory accessed to be aligned on a 64-byte boundary and the data to
be packed, which means there must not be non-unit stride between elements or a penalty occurs.
In this cas, multiple loads may need to be performed and additional assembly instructions need to
be added in order to form a packed vector, that is a vector full of contiguous elements. If a[i] and
a[i + 1] are located on different cache lines, other penalty occur as the cache has to find the other
cache line, and possibly to fetch it from the main memory. consequently, if the stride is at least
one cache line long, an access to the main memory is required for each distinct access on the array.
Similarly, the larger the stride, the more TLB misses which are costly in terms of cycles. Translation
Look-aside Buffer (TLB) misses occur when the requested data elements is located on a memory
page not currently mapped by the TLB. This causes extra performance penalty as the right physi-
cal page address need to be mapped on a virtual address and the corresponding record entry has
to be added into the TLB. Additionally, these potential issues of performance due to poor spatial
locality may have another serious downside if the elements located in-between a[i] and a[i+1] are
not consumed quickly by the computations. Indeed, in the meantime, the corresponding cache
line or page entry may be evicted from their respective caches and causes systematic cache misses
or TLB misses if applicable.

As an example, Figure 1.2 exhibits a C source code where stride issues occur. The three arrays
a, b, c are correctly allocated in a contiguous manner. The given loop nest expresses patterns on
these arrays: arrays a and b are properly accessed, there is no stride issue as each element is
separated from the next element by a unit stride which means contiguous accesses. However,
the innermost loop happens to navigate through the outer dimension of the array c. Because the
memory space is linear, multidimensional structures are linearized on the memory space which
means the next elements on the second dimension for instance are distant from a stride n here
on the given example, which is the inner dimension size. Consequently, c array has a stride n
between each access, implying a poor spatial locality and performance issues accentuated if n is
significantly large.

The programmer is also in charge of the data structures choice, which is influenced by the ap-
plication algorithms he implemented. Among the classical data structures, the struct type is an
object constituted of a collection of elements with a different logical meaning, and is typically ac-

19

1.1. The memory layout/pattern issue

cessed by distinct instructions on distinct fields, which are the structure elements. This implies
each instruction accessing an array of structures has an intrinsic stride that is the size of the struc-
ture, which has several implications on the layout performance. Firstly, if there are unused fields,
that is fields that are not accessed by a given fragment, or cold fields, which are fields that are less
intensively used than others, then performance issues due to bad spatial locality may arise from
the strided accesses provoked by the structure in the case where certain fields are unused, since
they may be brought to the cache uselessly.

Secondly, even if all the fields are hot, that is they all are intensively accessed, then the struc-
ture achieves good spatial locality, because the element are all quickly used and the structures
are accessed in a contiguous manner. However, the nature of structure access prevents efficient
vectorization. Indeed, the efficient use of SIMD instructions requires packed load, so the elements
has to be consecutive in memory which is not the case for structure fields which are interleaved,
therefore on an Array of Structure (AoS) access, the next field access is distant from a stride equal
to the structure size. Also, because field accesses are typically performed by distinct instructions,
it may be tempting to use different threads to handle them, however that would not be efficient if
different fields are on the same cache line which is the case if the structure elements are typically
single elements such as single or double precision floating point elements, because false sharing
would occur.

For these reasons, Structures of Arrays (SoA) may be preferred. In this scenario, single instruc-
tions access distinct contiguous arrays allowing allegedly good spatial locality, and consequently
allowing packed loading and storing and efficient vectorization if applicable. Nevertheless, in
the case of large arrays inside the SoA, additional TLB misses occur, especially if there is a large
number of structure fields, which causes and implies a not so good spatial locality property. In the
general case, it is not obvious if the performance gain due to vectorization is enough to mask TLB
misses penalties. There is a way of shaping the data structure to benefit theoretically of both good
spatial locality and vectorization, that is primarily thought for targeting general CPUs/Many-
cores with SIMD extensions and referred to as Arrays of Structures of Arrays (AoSoA). AoSoAs
construction consists in dividing the higher dimension in the innermost dimension, such as a few
consecutive elements belonging to the same field become contiguous, typically it is chosen to rep-
resent a size of the vector size so as to enable vectorization. As a result since the vector fields are
accessed at once among the instruction accessing several fields, there is a good spatial locality as
well as all elements are used quickly enough not to be frequently evicted from the cache memory.

Figure 1.6 shows code examples highlighting the different patterns caused by 3 different struc-
ture topology. Any access on the structure is described by a different pattern, therefore the whole
application accesses; that means both the individual access instructions and the loops nests; are
different from one implementation to the other. Thus, passing from one data structure to the other
necessitates a considerable programming effort.

Consequently, the patterns are dependent of the layouts shape or topology; the topology is a
property of the layout and not the pattern, and is therefore independent of scheduling consider-
ations. Multidimensional structures intrinsically impose additional patterns issues as shown by
Figure 1.7. Here, the array datarr is 4-dimensional, where the two innermost dimensions are ac-
tually either explicit structure fields or at least analogous to structure fields, as each instruction
access a distinct structure field. There are several spatial locality issues here. First of all, the inner-
most structure-like dimension has one hot field out of two total fields, producing a useless stride

20

1. Context and Problem

1 struct s { f l o a t a , b , c , d ; } ;
2 struct s A [N] ;
3
4 for (i = 0; i < N; i ++) {
5 A [i] . b = . . .
6 }

Figure 1.3: Array of Structures (AoS)

1 struct s { f l o a t a [N] , b [N] , c [N] , d [N] ; } ;
2 struct s A ;
3
4 for (i = 0; i < N; i ++) {
5 A . b [i] = . . .
6 }

Figure 1.4: Structure of Arrays (SoA)

1 struct s { f l o a t a [p] , b [p] , c [p] , d [p] ; } ;
2 struct s A [N/ p] ; / / assuming N%p==0
3
4 for (i = 0; i < N/ p ; i ++) {
5 for (j = 0; j < p ; j ++) {
6 A [i] . b [j] = . . .
7 }}

Figure 1.5: Array of Structures of Arrays
(AoSoA)

Figure 1.6: 3 data layouts versions of A implementing classical ways of handling structures.
Choosing the best implementation with the best parameters p is not straightforward as their re-
spective performance is highly dependent on the architecture.

1 for (Xstep = 1; Xstep<Nx+1; Xstep ++)
2 {
3 for (Ystep = 1; Ystep < Ny+1; Ystep ++)
4 {
5 . . .
6 Vm= d a t a r r [Xstep] [Ystep] [0] [(step−1)%2];
7 dVmdt= d a t a r r [Xstep] [Ystep] [1] [(step−1)%2];
8 IK1= d a t a r r [Xstep] [Ystep] [2] [(step−1)%2];
9 x1= d a t a r r [Xstep] [Ystep] [4] [(step−1)%2];

10 INa= d a t a r r [Xstep] [Ystep] [5] [(step−1)%2];
11 m= d a t a r r [Xstep] [Ystep] [6] [(step−1)%2];
12 h= d a t a r r [Xstep] [Ystep] [7] [(step−1)%2];
13 I s = d a t a r r [Xstep] [Ystep] [8] [(step−1)%2];
14 d= d a t a r r [Xstep] [Ystep] [9] [(step−1)%2];
15 f = d a t a r r [Xstep] [Ystep] [1 0] [(step−1)%2];
16 Cai= d a t a r r [Xstep] [Ystep] [1 1] [(step−1)%2];
17 Isum= d a t a r r [Xstep] [Ystep] [1 2] [(step−1)%2];
18 D i f f = d a t a r r [Xstep] [Ystep] [1 3] [(step%2)] ;
19 I s t i m = d a t a r r [Xstep] [Ystep] [1 4] [(step%2)] ;
20 . . .

Figure 1.7: Example of Cardiac wave simulation [112]. The 4-dimensional array datarr is actu-
ally used as an array of structures and imposes complex patterns with sub-optimal spatial locality.

21

1.1. The memory layout/pattern issue

of 2 elements. Secondly, the second innermost dimension is composed of constant fields, while
the two outermost dimensions are processed by the nested loop, implying a stride equal to the
product of the two first structures size between consecutive elements which hinders vectorization.
While there are intuitively certain ways of optimizing this particular layout, the application con-
text has to be considered as the layout may be used in other intensive nested loops. Also whether
to choose between AoS-like or SoA-like or AoSoA-like transformations is not straightforward and
depends on the underlying architecture, therefore choosing the best restructuring is difficult. This
code excerpt is part of a real life application, namely cardiac wave simulation published in [112].
Its optimization is further discussed in this document.

1.1.3 Layout abstractions

In order to alleviate the programmer the task of explicitly writing optimal code, especially when it
comes to maximizing data layouts performance for any targeted architecture, numerous abstrac-
tion layers have been proposed. In fact many languages, in particular Object-Oriented languages
propose so-called abstract data types, as opposed to data structures, that allow logical representa-
tion of the layout by behavior rather than by physical aspect as for data structures. This behavior
is defined by the application of high-level functions to iterate, access and manipulate data layouts
without explicitly referencing any physical layout. This abstraction layer is also provided by li-
braries, hiding in particular the complexity of AoSoA layouts with SIMDization to the user, such
as ASX [100] or Cyme [32].

GPGPU programming model is unusual for most programmers, one of the most important dif-
ference with CPU programming is that memory accesses have to be coalesced in order to get the
most of the significantly fine-grained thread-level parallelism, therefore AoS to SoA transforma-
tion need to be expressed in order to pass from the host (CPU) to the device (GPU), as SoA layouts
tend to naturally take advantage of the GPUs. The Thrust CUDA library [9] allows such an ab-
straction, providing functions and iterators to transform and process the SoA layout on the device.
The programming of systems composed of both CPUs and GPUs is also known as heterogeneous
programming and is challenging for many reasons. One of them is that the heterogeneous context
may imply transferring data between devices, in particular between CPUs and GPUs that require
differently shaped layouts in order to achieve high performance. The Dymaxion++ API [17] pro-
poses the programmer to annotate his code with pragmas in order to optimize memory patterns
by remapping the data especially from the CPU main memory onto the GPU main memory and
also from the GPU main memory to the GPU scratchpad memory. The remapping is performed on
the GPU, the API proposes a few simple transformations such as the transpose and non-unit stride
removal. Similarly, both DL [102] and Kokkos [27] proposes layout transformations in heteroge-
neous context, and addresses the AoS to SoA/AoSoA transformations, with Kokkos addressing
manycore architectures as well.

Explicit SIMD programming resorts to low-level function (eg Intel Intrinsics) close to the actual
SIMD assembly instructions, making them both impractical to use and typically not portable. To
mask the difficulty of SIMD programming to the users, many abstractions layers have been pro-
posed to cope with this matter. The OpenMP shared memory multiprocessing API have recently
released OpenMP 4.0 SIMD [104]. similarly to the original pragmas commending multithreaded

22

1. Context and Problem

1 for (k = 0 ; k < N; k++) {
2 for (i = 0; i < N; i ++) {
3 for (j = 0; j < N; j ++) {
4 . . .
5 a [k] += a [k]∗ c [j] [i]
6 + b [k] ;
7 } } }

Figure 1.8: Kernel with spatial locality issues.
(Synthetic benchmark)

1 for (k = 0 ; k < N; k++) {
2
3 for (j = 0; j < N; j ++) {
4 for (i = 0; i < N; i ++) {
5 . . .
6 a [k] += a [k]∗ c [j] [i]
7 + b [k] ;
8 } } }

Figure 1.9: Loop interchange

1 for (k = 0 ; k < N; k++) {
2 transpose (t , c) ;
3 for (j = 0; j < N; j ++) {
4 for (i = 0; i < N; i ++) {
5 . . .
6 a [k] += a [k]∗ t [i] [j]
7 + b [k] ;
8 } } }

Figure 1.10: Data restructuring

Figure 1.11: Loop interchange or data restructuring? The difficulty of performing proper data re-
structuring evaluation on the compiler side prevents it from making the most profitable decision,
by often choosing control optimizations over both data restructuring opportunities and combined
loop and data transformations opportunities.

execution, OpenMP 4.0 uses pragmas clauses to guide loop SIMDization, independently of the
underlying architecture. Meanwhile Intel has proposed Intel Cilk Plus SIMD, that feature C/C++
languages extensions to express vectorization. That includes a semicolon notation operator, which
much like in Fortran language allows to specify array sections and allows single code line vector
operations, that is without using a loop structure just like in Fortran. Another advantage of this
notation is that it indicates the compiler potential vectorization opportunities. The Boost.SIMD
C++ library [29] allows SIMD instructions abstraction with higher-level functions, independently
of the ISA, saving the programmer the effort of rewriting low-level code at each ISA change. The
library provides hundreds of already vectorized mathematical functions. Cyme [32] library uses
abstract data types to create an AoSoA layout out of AoS to enable efficient vectorization, spar-
ing the user a tedious code rewriting to perform the AoSoA transformation. Additionally, both
semiconductor manufacturers Intel and AMD propose math libraries with vectorized functions
with respectively the Intel MKL [46] and the AMD ACML [5] . The Intel MKL library for instance
disposes of pre-vectorized BLAS, LAPACK and FFT, that are composed of many intensively used
functions.

1.2 The complicated relationship between compilers and data layouts

While they offer numerous optimizations and particularly loop transformations, compilers do not
sufficiently explore data restructuring, in the aim of maximizing spatial locality and performances.
Figure 1.11 illustrates one of the challenges of data restructuring: should only control transforma-
tions be performed, should only data transformations be performed, or both?

23

1.2. The complicated relationship between compilers and data layouts

1 for (i1 = 0; i1 < N; i1 ++) {
2 for (i0 = 0; i0 < N0; i0 ++) {
3 A [i0] [i1] = . . .
4 } }

Figure 1.12: Transpose case

1.2.1 Static approaches

Numerous loop transformations techniques have been proposed. The idea is to optimize spatial
locality by modifying the loop nest and therefore the access pattern, without altering the data
structure. The transformation is consequently local to the loop nest, whereas data structure trans-
formations would require complicated global analysis, as the transformation gain has to be as-
sessed for the whole application since the data structure is accessed in more than only one loop
most of the time.

Early works like the one done by Carr et al. in [15] proposed to integrate such loop transforma-
tions in compilers, particularly focused on spatial and temporal locality by minimizing accesses
to the main memory. A set of simple transformations such as loop permutation, loop reversal,
loop fusion and distribution are studied. Loop permutation for instance is the transformation that
allows switching between row-major and column-major in particular. The transformations are
chosen by a cost model based on computing each of the loops cost in terms of number of cache
lines if they were in the innermost position. As it has been argued that loop transformations are
well understood and improve temporal locality as opposed to data layout transformations, few
works have been focused exclusively on array restructuring. Nevertheless a first benefit of the
approach is that it is intrinsically independent of loop control considerations. Leung et al. [61]
propose to optimize data locality by array restructuring via index transformation matrices. The
proposed cost model has only a local view, global application benefit is not assessed, which is a
common difficulty with data transformation.

To the best of our knowledge, Ciernak et al. [21] were among the first to propose assessing
unifying data layout and control transformations. However, optimizing for both control and data
is difficult as transformation space search is expensive, especially for an arbitrary high amount of
loops and arrays to assess, the authors thus propose a heuristic to try to cope with the issue, with
a pre-selected pool of transformations. The formalism to express loop and data transformations
is quite similar. The stride vector, expressing the strides between elements accesses is retrieved
statically, the idea is to push a loop with stride 1 on the inner part of the loop nest. Loop nest
transformations are formally described by an algebraic representation.

Thus, simple loop transformations such as loop inversion can be expressed this way:(
i1′

i0′

)
=

(
0 1
1 0

)(
i0
i1

)
(1.1)

Where the input stride vector
(
i0
i1

)
is derived from the original loop nest given in Figure 1.12

In an analogous manner to Equation 1.1, simple layout transformations can also be expressed
with the same formalism:

TA = TA ⇐⇒
(
1 0
0 1

)(
i1′

i0′

)
=

(
0 1
1 0

)(
0 1
1 0

)(
i0
i1

)
24

1. Context and Problem

WhereA is the initial access matrix and TA is the restructured array after performing the trans-
pose by applying the transformation matrix T .

Kandemir et al. [49] are under the same constraint as [21] as detailed before on the difficulty
of finding the best unified transformations between control and data layout and developed a dif-
ferent heuristic for that matter. One of the problems is that layout transformation itself has to
satisfy multiple nests, the heuristic focuses on optimizing the nest that takes the most time, and
transform the other accordingly. They also propose other choices of loop nests to optimize, it can
be chosen by profiling or user-specified. In [48] the authors reinforced the control/data transfor-
mations study by adding interprocedural locality optimization, using the call graph to propagate
the cost model results. [26] proposes a new purely static mathematical model to optimize locality
with focus on multithread contention limitation.

The polyhedral model introduced in [33] intended to leverage static loops transformations with
a new formalism. Although controversial mostly in reason of the expensive cost on the compiler
time, polytope model implementations have found their way to compilers such as GCC [107] and
LLVM [36]. Polyhedral model expresses nested loop transformations, where both iteration domain
and dependences are represented by Z-polyhedra, allowing convenient code validity verification
for instance. Transformations apply on the iteration domain D defined by a Z-polyhedron as loop
counters are integer:

D = {x | Dx+ d ≥ 0}

For instance, Loechner et al. [65] implemented the polyhedral model to improve the locality
of nested loops, with a special focus on avoiding TLB misses, as opposed to most similar works
where focus is on regular cache misses only.

Although the polyhedral model is initially intended for control transformations, Lu et al. [66]
proposed to assess locality via polyhedral analysis identifying potential for data transformation,
with a special focus on inter-thread contention to target CMP (Chip Multi-Processors). Two of
the studied transformations are the strip-mining and the permutation. Strip-mining consists in
reshaping for instance an array dimension with size n × p into a 2-dimensional array with di-
mensions n and p respectively, analogously to loop tiling. Permutation transformation consists in
permuting array dimensions, similarly to the row-major to column-major transformation. Choice
of transformation is driven by the polyhedral analysis. Other works also are based on the polyhe-
dral model power for data layout transformations such as [63].

1.2.2 Dynamic approaches

Compilers are facing challenges difficult to overcome. In particular as far as data restructuring
is concerned, it has been shown [85] that optimal data placement on a partitioned cache is NP-
hard and poorly approximable. Therefore, building an accurate cache performance model is not
simple. Moreover, the optimization scope is the entire program source code, as said before finding
the optimal restructuring strategy given an arbitrary number of loops and arrays is also difficult.
Nevertheless, as shown in the previous section, a lot of research effort on static analysis has been
focused on proposing heuristics to cope with these challenges. However, most layout optimiza-
tions are still left unexplored by compilers, as supplementary hurdles limit their power. First of all,
the lack of information on memory dependences at compile time is challenging, indeed inferring

25

1.2. The complicated relationship between compilers and data layouts

1 for (i L =0 ; i L < L /2 ; i L +=1) {
2 for (j =0; j <4; j ++) {
3 r0 = U[idn [4∗ i L]] [0] ∗ tmp [j] ;
4 r0 += U[idn [4∗ i L]] [1] ∗ tmp [n2+ j] ;
5 r0 += U[idn [4∗ i L]] [2] ∗ tmp [2∗n2+ j] ;
6 r1 = U[idn [4∗ i L]] [3] ∗ tmp [j] ;
7 r1 += U[idn [4∗ i L]] [4] ∗ tmp [n2+ j] ;
8 r1 += U[idn [4∗ i L]] [5] ∗ tmp [2∗n2+ j] ;
9 r2 = U[idn [4∗ i L]] [6] ∗ tmp [j] ;

10 r2 += U[idn [4∗ i L]] [7] ∗ tmp [n2+ j] ;
11 r2 += U[idn [4∗ i L]] [8] ∗ tmp [2∗n2+ j] ;
12 ID2 [j] += r0 ;
13 ID2 [n2+ j] += r1 ;
14 ID2 [2∗n2+ j] += r2 ;
15 }

Figure 1.13: Example of Lattice QCD simulation. The 2D array U uses an indirection. All elements
are complex double values. The space iterated by the outer loop is a 4-D space, linearized, and the
indirection is used to walk through the white elements of a 4-D checkerboard.

memory behavior is risky and in general compiler conservativeness prevents it from performing
most restructuring strategies to avoid jeopardizing program correctness. Similarly, pointer ref-
erences in general are difficult to handle. The presence of aliasing for instance limits compilers
capabilities. Also all data structures referenced by pointers in general are hard to recognize and
optimize, namely arrays of pointers and classic trees, graphs and lists. Indirections happen when
arrays indexed by another arrays elements, which is the case in sample code given in Figure 1.13
for the U array that is indexed by the idn array. This is typically ignored by compilers. Libraries
loaded by the program are out of the compilers reach, that implies compilers cannot take library
routines into consideration when exploring transformations. Compilers also still fail for a lot of
cases involving complicated index computation and induction variables.

Nevertheless, it is possible to assist the compiler with profiling. It consists in dynamically as-
sessing certain program behavior, often on a given program portion rather than the whole pro-
gram because the approach can be costly in terms profiling time. This dynamic approach is often
used at complementing compiler analysis, rather than in a standalone way where the optimization
scope is limited and lacks of general program semantics. Profiling is useful in several ways, such
as information gathering for instance for memory accesses, patterns can be established from run-
ning and analysing some hot functions in the program. Many works take advantage of dynamic
informations in addition to compiler optimizations. Ding et al [24] perform array restructuring
at runtime, with two different transformations that are locality grouping and data packing that
improve temporal locality in particular. Locality grouping reorder computations by array affin-
ity, while data packing is a data layout restructuring technique that allows to gather elements
with close temporal locality into the same cache line. Shen et al. [97] propose an affinity analysis
technique, which consists in regrouping in memory arrays that are always accessed together in
the program. Authors argue symbolic analysis by the compiler suffice and no profiling is really
needed. However more complex codes with complicated pointer references may challenge such
static analysis. Cho et al. [20] use profile information on memory access patterns to effectively use
the scratchpad memory.

26

1. Context and Problem

A C DB A D B C

A DCB A

A B C D A B C D A C A C B D B D

B C D

reordering

splitting

interleaving

cache line

Figure 1.14: Classical cache-conscious restructuring techniques – Common aim is to segregate hot
(green) and cold fields

Another approach to improve compiler optimizations is the so-called iterative compilation [11]
[53] . It consists in exploring the compiler optimization space by iteratively compiling and mea-
suring the effectiveness of given optimizations. One of the approach major concerns is that it is
time consuming, as a result a lot of works focus on one particular aspect to optimize.

1.2.3 Data restructuring techniques

Several well-known strategies have been studied for array restructuring in the aim of cache uti-
lization improvement, or cache-conscious strategies. In this context, profiling is an advantage as
it helps characterizing the hot and the cold fields of a structure. Hot fields are typically the most
intensively accessed as opposed to the cold fields, which interfere with the hot fields by various
cache effects.

Field reordering When data structures are larger than the cache line, reordering structure fields
[18] [52] [108] may allow better affinity between fields, that is to segregate hot fields and cold fields
on different cache lines if applicable. Indeed, initially in the programmer source code fields are
usually ordered logically, therefore profiling information on locality is useful to order them rather
by frequency of usage in order to limit cache pollution.

Class Splitting Class splitting [18] is a technique similar to field reordering, the difference lies
in the fact the class splitting targets structures that are typically smaller than cache line size. Some
padding for instance can separate hot from cold fields, so as to segregate hot fields from cold
fields.

Field interleaving Field interleaving [108] is an alternative to class splitting, that proposes filling
the cache line with interleaved hot field instances instead of padding, as depicted in Figure 1.14.

Coloring Depending on associativity, an arbitrary small number of concurrent accesses on the
same cache set can occur without generating conflicts. However when the number of array refer-

27

1.2. The complicated relationship between compilers and data layouts

ences is significant, conflicts can greatly affect the code performance. Based on cache associativity
knowledge, the idea of coloring [19] is to segregate – by color/temperature – hot and cold fields
so as to partition the virtual space in a way that maps hot fields in the same cache set, and the cold
fields in another cache set so as to avoid hot field cache lines eviction caused by substitution by a
cold field. Padding is employed if necessary to properly partition the data structure on the virtual
space.

Clustering Clustering [19] [69] is a technique that consists in the dynamic remapping of recur-
sive data structures such as linked lists for instance, to improve spatial locality by optimizing
cache utilization by packing data fields in a cache line. The aim is to gather two temporarily close
nodes on the same cache line, that is the case for two consecutive elements via the ”next” pointer
for instance. Also by properly packing cache line, less cache lines are needed and therefore it min-
imizes inopportune hot cache line replacement by the cache replacement policy. However, such
structures have to be fixed or change very little, because of dynamic restructuring overhead.

Memory segmentation Memory segmentation [95] is a technique which sorts highly referenced
objects hopefully on a small set of pages, from short lived objects and not highly references objects.
This way the method allows to limit TLB misses. One drawback is the potential fragmentation of
the heap.

1.2.4 Vectorization

With the advent of short vector SIMD instructions in modern processors, SIMDizability and au-
tomated SIMDization have been the topic of several research efforts. Indeed, making use of these
SIMD units has early been recognized as key for performance [59]. Compilers such as from Intel,
IBM or PGI, as well as GNU GCC [80, 79, 78, 107] have received much auto-vectorization effort
to enable and extend their capabilities [56, 56, 28, 4]. Scout [58] has been designed to vectorize
at a higher level, by translating scalar statements to vectorized statements using SIMD intrinsics.
However, Malecki et al. showed in their SIMDization tests [73] on the TSVC suite that many po-
tentially vectorizable constructs are left unaddressed by state of the art compilers, either because
some known theoretical techniques have not yet been implemented, because no known theoretical
techniques exist for codes with complex structure, or because the compiler must act conservatively
as a consequence to a lack of available information at compile-time [83].

An hybrid compile-time/run-time approach is proposed by Nuzman et al. [77] using a two-
step vectorization scheme. The compile-time step performs expensive analysis operations. The
run-time, specialization step is performed by an embedded just-in-time compiler. This approach
enables some degree of adaptiveness to the hardware at run-time. However, the run-time step
does not alter the vectorizability status using dynamic dependency information. Adaptiveness is
also explored by Park et al. [30] by guiding the application of optimizations in a predictive manner
through a machine-learning approach, and by Tournavitis et al. [106] in a technique associating
profile-driven auto-parallelization together with machine-learning.

Multiple approaches have been followed in this attempt to group isomorphic elementary com-
putations together. Loop-level approaches have been explored for several decades. Back in 1992,
Hanxleden and Kennedy [110] made proposals for balancing loop nest iterations over multiple
lanes of a SIMD machine. MMX instruction sets and alike started to gather interest with works

28

1. Context and Problem

such as Krall’s [57] proposing to apply vectorization techniques to generate code for SIMD ex-
tensions. Larsen introduced the concept of Superword-Level Parallelism (SLP) [59] which groups
isomorphic statements together, when potentially packable and executable in parallel. More re-
cently Nuzman et al. [81] explored SIMDization at the outer-loop level. Much work has also been
devoted into employing polyhedral methods [12]. Several works have been conducted to allow
compilers to accept more complex code and data structures, such as alignment mismatch [28],
flow-control [99], non-contiguous data accesses [79] or minimizing in-register permutations [90],
for examples. SIMDizing in the context of irregular data structures is also being studied [89]. All
these works have in common that they accept unmodified source code as input and they attempt
to generate the best SIMDized binary code for the target hardware. They do not involve the pro-
grammer in their attempt to produce good SIMD code and usually give little information back to
the programmer when their attempt fails.

1.3 The lack of user feedback

Compilers have a lot of limitations in the context of data layout optimizations, and progress in
compiler advances is slow with respect to architectural advancesTherefore code stay sub-optimized
as far as data structures are concerned. At this point, the user is left with little to no clue on how
to address his performance issues. The use of automatic tools is needed to guide the programmer
through performance optimizations, first to locate performance issues and second to perform so-
lutions if applicable or at least hint them. Numerous tools have been developed over the years
to help the programmer locating performance issues in the application code, but very few give
programming recommendations and strategies for actual performance problem fixing

1.3.1 Compiler feedback

Compiler shortcomings in the context of data restructuring are difficult to address, as little to
no feedback is given to the programmer as to understand compiler choices relative to data re-
structuring. Nevertheless, efforts has been done in this direction in the context of vectorization.
Compilers often fail to vectorize a number of candidate kernels that are actually intrinsically vec-
torizable, and compiler provide a compilation option (eg -ftree-vectorizer-verbose=[N]
with GCC, -vec-report[N] with ICC) to produce a vectorization report, usually a file contain-
ing information on the failure reasons.

1 Analyz ing loop at t sc . c :838
2
3 tsc . c :838 : note : m isa l ign = 0 bytes o f r e f c [i 4 2]
4 tsc . c :838 : note : m isa l ign = 0 bytes o f r e f d [i 4 2]
5 tsc . c :838 : note : m isa l ign = 0 bytes o f r e f b [i 4 2]
6 tsc . c :838 : note : m isa l ign = 0 bytes o f r e f a [9]
7 tsc . c :838 : note : not consecut ive access a [9] = 25 ;
8
9 tsc . c :838 : note : not vec to r i zed : compl icated access

pa t t e rn .
10 tsc . c :838 : note : bad data access .
11 }

1 for (i n t i = 0; i < LEN/ 2 ; i ++) {
2 a [2∗ i] = c [i] ∗ b [i] + d [i] ∗ b [i] +

c [i] ∗ c [i] + d [i] ∗ b [i] + d [i]
∗ c [i] ;

3 }

Figure 1.15: GCC 4.8.1 vectorization report excerpt on TSVC s1111 benchmark

29

1.3. The lack of user feedback

1 LOOP BEGIN at use r rou t i ne . c (77 ,2)
2 remark #15344: loop was not vec to r i zed : vec to r dependence prevents
3 v e c t o r i z a t i o n
4 remark #15346: vec to r dependence : assumed OUTPUT dependence between ID2 l i n e
5 95 and ID2 l i n e 95
6 remark #15346: vec to r dependence : assumed OUTPUT dependence between ID2 l i n e
7 95 and ID2 l i n e 95
8
9 LOOP BEGIN at use r rou t i ne . c (82 ,3)

10 remark #15516: loop was not vec to r i zed : cost model has chosen vec to r l eng th
11 of 1 −− maybe poss ib le to ove r r i de v ia pragma / d i r e c t i v e w i th vec to r l eng th
12 clause
13 remark #15387: v e c t o r i z a t i o n support : sca la r type occupies e n t i r e vec to r
14 remark #15475: −−− begin vec to r loop cost summary −−−
15 remark #15476: sca la r loop cost : 499
16 remark #15477: vec to r loop cost : 213.000
17 remark #15478: est imated p o t e n t i a l speedup : 2.180
18 remark #15488: −−− end vec to r loop cost summary −−−
19 LOOP END
20 LOOP END

Figure 1.16: ICC vectorization report excerpt on Lattice QCD simulation code (see Figure 1.13)

Typically, non-unit strided patterns is a common cause of vectorization failure as reported
by GCC pictured in Figure 1.15. On this example, there is only one loop with mostly perfectly
contiguous array accesses, except for one access on array a that is labelled a complicated access
pattern. Two issues are at stake here. First of all, the lack of contiguity prevents efficient vector-
ization. Second, assuming the array base address is aligned on a vector boundary, and given the
stride 2, half of the elements are unaligned with respect to vector boundaries, which among others
prevents packed loads.

In principle, it is possible to vectorize using partial load assembly instructions, gathering
scalars in a single vector by using additional assembly instructions to reshuffle the SIMD vec-
tors. Another solution is to restructure the array a, to compress unused elements and gather hot
elements in order to achieve contiguous accesses and enable efficient vectorization. However
the potential vectorization gain remains uncertain for both solutions, as other factors such as the
application context, for instance the whole loop nest localities has to be taken into account for
performance assessment.

Lack of dynamic information imposes compilers conservative dependence management, indeed
without profile information handling data dependences is risky. Unfortunately, this causes a lot
of potentially advantageous vectorization failures as well, as shown in Figure 1.16. The innermost
loop has a reduction-like dependence on ID2 accesses, preventing compiler vectorization.

It is unfortunate because the outer loop is vectorizable and intrinsically parallel. The outer
loop has not been vectorized because the compiler preferred to ignore vectorization opportunities
because the complex double element fills the entire vector. However, outer loop parallelization
can be achieved by splitting real and imaginary parts of complex numbers. Whether to choose
between segregating real and imaginary parts or not is not contemplated here and would make
suitable candidates for performance assessment.

30

1. Context and Problem

1.3.2 Tools

Profiling is a method to analyze programs dynamically, which is particularly opportune for
identifying performance bottlenecks and runtime behaviors the conventional compilation tech-
niques cannot grasp. It consists generally in instrumenting the code prior to execution, in order
to insert probes into the code to prepare runtime measurements, and then running the probed
code to collect runtime information. It allows among others to get time measurements, particu-
lar hardware counters values, memory traces, and the number of function calls. Memory traces
for instance are program memory accesses records, useful to notice sub-optimal memory access
patterns responsible for bad performance. Different approaches to profiling exist.

GNU gprof [34] is a famous performance profiling tool, it involves program interruptions to al-
low sampling, which is a light form of instrumentation that uses approximations to deduce code
profiles. Gprof requires the user to recompile and relink his application. Many vendor-specific
profiling tools are available, such as Intel VTune AMD CodeAnalyst, ARM Streamline and Nvidia
visual profiler. Valgrind [76], PIN [67] and VTune [88] are profiling tools that perform instrumen-
tations via Just-In-Time (JIT) recompilation with different motivations. Valgrind JIT recompila-
tion does not directly target the physical architecture, rather, it uses simulation on-the-fly with
a simplified ISA similar to RISC. On the other hand, PIN replaces on-the-fly original binary in-
structions with novel instructions such as user probes for instance, code portion by code portion,
and performs analysis on-the-fly as well. TAU [98] is another profiling tool that proposes differ-
ent solutions for instrumentation, one of them is an API for source code instrumentation. In each
case the binary is rewritten, either during runtime or offline. TAU has the advantage of support-
ing heterogeneous architectures. Vampir [54] is a profiling tool that also target CPU/GPU, the
instrumentation is performed via compiler wrapper and the user code needs recompilation and
relinking much like gprof for instance. Overhead due to instrumentation have typically an order
of magnitude of 10 or 100 times, which can be significant on real applications. A technique im-
plemented in many tools is the sampling, a statistic method that extrapolate performance results
from a smaller subset of probing instances. Most of profiling tools offer performance analysis to
help, however the user is left with the task of improving, implementing and evaluating potential
optimizations.

Some works have followed the path to act on the source code side. Frameworks such as the
Scout [58] source-to-source compiler enable the programmer to annotate the source code with
pragma directives that are subsequently translated to SIMDized code. A recent work of Evans
et al. [31] presents a method to analyze vector potential, based on source annotated code and an
on-the-fly dependence graph analysis using the PIN framework. Other works aim at specialized
fields and will produce efficient code for a selected class of applications, e.g. stencil computa-
tions [47, 42] for instance, or allow to auto-tune specific kernels [111]. Profiling tools such as Intel
VTune [45] or the suite Valgrind, for instance, can diagnose code efficiency and pinpoint issues
such as memory access patterns with bad locality. Intel VTune may even suggest that the program-
mer resorts to SIMD intrinsics. However, such an action is not always desirable for code readabil-
ity and maintainability. More elaborate works focus on specific code optimization [111][56], other
works [42] suggest data restructuring, but are limited to very specific cases such as stencils here.
V P 3[114] is a tool for pinpointing SIMDization related performance bottlenecks. It tries to predict
performance gains by changing the memory access pattern or instructions. However, it does not

31

1.4. Towards a data layout restructuring framework proposal

1 for (i = 0; i < N; i ++) {
2 for (j = 0; j < N; j ++) {
3 a [i] [j] = a [i] [j]∗ c [j] [i]
4 + b [i] [j] ;
5 }
6 }

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

basis-unrolled restructured restructured-unrolled

S
pe

ed
up

 p
re

di
ct

io
n

x86
ARMv7

Figure 1.17: Kernel s1115 from TSVC suite, showing the need for quantified optimization strategy
assessment.

propose high level restructuring. Similarly, ArrayTool [64] can be used to regroup arrays, to gain
locality, but there is no deeper change in data layouts.

1.3.3 The importance of quantification

Although user hints are important in the sense that they may provide valuable feedback to the
programmer, there is no guarantee they are not incorrect. The listing on Figure 1.17 shows a
kernel extracted from the TSVC benchmark suite [14, 73], a suite of codes for the evaluation of
SIMDization capabilities of compilers. This kernel is part of the function s1115. Array c is
stored row-major, but accessed column-major, which hinders SIMDization. A possible strategy
is to transpose the c array. Another classical strategy is to perform partial loop unrolling. A
third strategy is to combine both data transpose and loop unrolling. The barplot on Figure 1.17
shows the relative speed-ups of these strategies compared to the original version. Comparisons
are made both for an x86 architecture, the Intel Sandy Bridge E5-2650 @2GHz using icc 13.0.1, and
an ARM architecture, the ST-Ericsson Snowball (ARMv7 Cortex-A9 @800MHz) using gcc 4.6.3.
Both architectures clearly show very dissimilar behaviors on this example, to the point that the two
strategies showing good results on x86 perform poorly on the ARM architecture. Consequently,
quantification is useful and would be particularly relevant for user feedback.

1.4 Towards a data layout restructuring framework proposal

The plethora of computer architectures and their systematic replacements make programming
more complicated, despite the numerous abstractions proposed. Using these abstractions means
less control over performance on the programmer side, often it is not possible to obtain decent
performance without obfuscating the code too much. The non-portability of performance impose
the user layout design choices of an unacceptable complexity. Moreover it is generally difficult to
estimate the potential gain of a given restructuring strategy. Given the compiler intrinsic limits in
the domain of array restructuring and the insufficient feedback reported to the programmers in
general, we propose an original framework to overcome these difficulties.

32

1. Context and Problem

Application
binary

Instrumented
application binary

Run instrumented
application

Memory
traces

Analysis

Transform
and

Binaries with

transformed kernels

applications

Run transformed

V1

V2

Hints to user

Figure 1.18: Big picture

1.4.1 Proposition overview

We propose a tool for elaborate user feedback on data layout restructuring, the aim is to guide
the user through his steps of performance optimization process. First by pinpointing initial lay-
out/pattern issues via a clear report with high-level vision of the issues, as well as a precise re-
port to figure which individual instructions are responsible of the performance issues. Then, the
tool suggests a reasonable set of relevant transformations although possibly ambitious, by both
a high-level representation and the individual memory accesses to modify in order to implement
the new suggested layout mapping. Finally, each of the suggested transformations are provided
with proper quantification of benefits, allowing the user to have a good sense of the gain to expect
first, and then which transformation to choose. The tool principle is illustrated in Figure 1.18, it
works based on the original user application binary. An instrumentation is applied in order to
probe all the memory accesses performed by the code, generating a set of memory traces. Then
an analysis step is applied using the input profile, to characterize the given memory patterns and
the layout structures. Given the potential suboptimality of the data structures, a heuristic chooses
a restricted set of appropriate transformation candidates for optimization, which are finally auto-
matically generated by rewriting the application binary, constructing this way the so-called code
mock-ups. These mock-ups are binary codes built with the sole purpose of mimicking actual user
code behavior, would he apply the transformation considered. Mock-ups are timed in order to
deduce the potential performance gain or lack of gain, and permit to finally report an elaborate
user feedback: first, a proper description of each transformation is given, in particular all the code
modifications needed are pinpointed to the programmer; second, each of the said transformations
are quantified, meaning that a performance gain estimation is provided to the user, so as to guide
his implementation choice to improve application layout performance.

The benefits of this approach are manifold. The user feedback we provide is exploitable, in the
sense that it is a reliable guide to performance optimization. Unlike most tools that offer perfor-
mance issues reports, our approach accompanies the user through the next steps of performance
optimization, that is providing clear restructuring strategies options, and then giving a way of
weighing the mentioned options by reporting performance estimations of each option. Besides, in-
herent code complexity especially with high-level abstraction may even conceal otherwise obvious
optimizations to the user. An automatic tool allows among other benefits to traverse a reasonably
large space of transformation possibilities, which includes a significant number of transformations
the user potentially would not consider. As the user is let the choice of array restructuring, some
transformations application may require deeper modifications than others. Indeed, the tool works
on a smaller scope than the whole application, therefore its visibility is limited. The decision of

33

1.4. Towards a data layout restructuring framework proposal

restructuring is left to the user who knows his application, and can decide how to apply the mod-
ifications, for instance if the array should be restructured for the totality of the application rather
than on a given particular kernel. Finally the user could prefer to choose transformations easier
to apply even if they do not bring near-optimal performance, as opposed to users that need the
greatest performance improvement they can obtain. While proposal helps portability, user can
also utilize feedback to write highly optimized code depending on his requirements. As a matter
of fact, were the transformations all not beneficial, the information would still be useful to the
programmer as he would know array restructuring is not a viable option and therefore not waste
time trying to optimize code this way.

Plus, layout mapping modifications are not obfuscating the code. This approach allows to push
to bridge the important gap [94] between typical compiler output and expert programmer hand-
written output. Moreover, data layout restructuring is intrinsically independent to control flow
optimization. This means any control optimizations can be applied in any order without interfer-
ing with any data layout optimization. The proposed method is also non architecture-dependent,
as the layout remapping does not assume any particular architectural feature. The proposed
framework operates on a small application code portion, usually the hottest kernel, making its
visibility somewhat restricted. Besides, the use of memory traces implies the method applies on
a given run parameters, and can be seen as tailored to the given run for that matter. Therefore
code validity can not be ensured, as number of parameters such as arrays sizes are indeterminate.
However, we allow ourselves to explore aggressively more transformations than compilers con-
sider, some may not be applicable for a given application but the user is notified and can make an
appropriate choice. On the other side, compiler products need to be operational for all parameters
due to semantics preservation and lack of information because it is not specific enough. For that
matter, the interaction Tool/User we propose is useful, as it allows the user to rewrite his code,
perhaps in a simpler way than it was and potentially enable more compiler optimizations.

This work encompasses a certain number of contributions. First of all, a new formalism is
proposed in order to express data layout and data patterns. Its concise form allows to simplify
discussions around layouts and patterns, and to apply transformations in an efficient systematic
way. Apart from the formalism presented earlier in this sections, other original formalism have
been introduced recently to express data structures in a certain level of abstraction. ArrayOL [13] is
a language specific for signal processing, where arrays and patterns in particular are represented
as vectors, and transformations as matrices. Other works like Torch7 [22] and TensorFlow [2]
rather choose to represent data arrays by tensors.

Second, we use the formalism to express the initial application troublesome layout in a normal
form, independent of compiler optimizations, which correspond to the delinearized version of
the flat accesses as given by the memory traces. This is particularly useful in our binary approach
as the input binary is the product of prior compiler optimizations and memory instructions can
be expressed in different ways, as it is the case for unrolling transformations for instance. Delin-
earization is the first analysis to perform on the compiler side, in order to be able to restructure
the layout. Parametric delinearization, for some particular codes, has been proposed by Grosser
et al. [35]. Specifically for stencil codes, using the polyhedral model, Henretty et al.[41] propose a
complete restructuring of layout for SIMDization. This would not apply to the Lattice QCD code
given in Figure 1.13 because of the indirection. Berdine et al.[10] propose to analyze the shape of

34

1. Context and Problem

Figure 1.19: MAQAO architecture

more complex data structures, such as recursive data structures with linked lists in particular.

1.4.2 Data restructuring evaluation

There are basically three main techniques for data restructuring evaluation, necessary to choose
a near-optimal solution. First of all, there are the theoretical performance models, that can be
incorporated in compiler static analysis and assume a simplified view of the architecture. Then,
there is the simulation approach, that consists in tracing memory patterns and using a simplified
thus lighter architecture environment, a cache simulator typically, to perform measurements on
the considered transformations, and is usually used to assess one particular parameter such as the
cache miss rate for instance. However, to assess memory accesses performance, several param-
eters have to be taken into account. The cache miss rate alone, while relevant, cannot properly
model all caches considerations. Our approach consists in measuring the impact of restructuring
transformations in-vivo, which means code is executed on the actual user architecture. Therefore
the measurements are more accurate than cache models or simulations, as they represent real
measurements with all architectural considerations included. Both simulation and in-vivo imply
running only a portion of the program, usually the hotspot kernel of the program, because they
both rely on memory traces which are costly in terms of time to obtain and thus instrumentation
is rarely performed on the whole application. Several previous works have proposed techniques
to extract pieces of code for evaluation [60, 84], and shown that such an operating mode is viable
for performance measurements [3].

We use the MAQAO profiling tool [8] to instrument and to patch the application binary. As
shown in Figure 1.19, MAQAO is a tool the operates at binary level. It extracts the code rep-
resentation from the user application binary, from which it performs static analysis, and which
it can instrument in order to perform dynamic analysis on collected memory traces. Compared

35

1.4. Towards a data layout restructuring framework proposal

to PIN [68], a tool with similar functionalities, MAQAO performs static rewriting-based instru-
mentation from binary to binary and further analyzes the collected information in a post-mortem
fashion. PIN, on the contrary, dynamically rewrites binary codes while they execute, and performs
analysis on the fly. As most of MAQAO work is done offline, the overall cost for analyzing a bi-
nary with MAQAO is much smaller than with PIN. With MAQAO, it is possible to captures mem-
ory streams by instrumenting all instructions that access memory, on a specified code fragment
(such as a function or loop). For each instruction instrumented, the flow of addresses captured
is compressed on-the-fly using a lossless algorithm, NLR, designed by Ketterlin and Clauss [51].
This compressed trace represents the accessed regions with a union of polyhedra, captures ac-
cess strides and multidimensional array indexing (when possible). The purpose of tools based on
dynamic dependency graph analysis [71] such as our MAQAO approach is therefore to explore
SIMDizability from an entirely different point of view. As such, MAQAO is a complementary
analyser with respect to vectorizing compilers, for application programmers to investigate where
and how their code could be restructured to enable or improve vectorization by the compiler.
Holewinski et al. propose a similar approach [43], which is the closest from our own work, to the
best of our knowledge so far. However, their implementation does not preserve structural infor-
mation about the application such as iterated memory references inside loop nests. This limits the
amount of details that can be reported to the programmer, and this also limits the richness of the
information that could be injected back inside a vectorizing compiler to improve its output. Our
approach instead preserves such key information, which distinguishes from prior efforts.

A lot of works have addressed the problem of data layout restructuring. Rubin et al. [92] re-
grouped many existing arrays restructuring techniques we detailed earlier in this document, and
assessed their impact using simulation allowing combinations between the different transforma-
tions. They research a good layout solution by iteratively applying the transformation and sim-
ulating them. Hundt et al. [44] proposed both a compiler method for data layout transformation
and an advisory tool. The profile-based restructuring heuristic they present for array splitting
is based on the hot field/cold field separation. They provide both non-profile and profile prof-
itability analysis. However, the number of transformations they investigate is low because in a
lot of their test cases transformations are invalid. In the most difficult cases, the advisory tool is
used instead to suggest more effective structure designs. A later paper [87] expands their work
to multithread consideration, with a special focus on the false sharing issue. Mannarswamy et al.
[74] implemented a compiler method using profile information to perform data transformations.
Given the difficulty of performing whole program transformations, they proposed to apply the
layout transformation on a smaller region, performing selective data copies for local region opti-
mization. Wu et al. [115] proposed algorithms to reorganize data on GPU in the aim of improving
data coalescing, crucial for GPU performance. Kofler et al. [55] focused on AoS to SoA transfor-
mations on GPU as well, the idea is to separate AoS by fields using hardware parameters in a first
time, then to select a good transformation, which can be a SoA or something else. Annotations
and specific data layout optimizations with compiler support has been proposed by Sharma et al.
[96]. The source-to-source transformation requires to describe in a separate file the desired array
interleaving. Similarly, the array unification described by Kandemir [50] and Inter-Array Data
regrouping [25] propose to merge different arrays at compile-time in order to gain locality. The
POLCA semantics-aware transformation toolchain is an Haskell framework offering numerous
transformation operators using programmer inserted pragma annotations [103]. Neither of these
approaches provide an assessment of the performance gains to guide the user restructuring or hint

36

1. Context and Problem

generation, and these compile-time approaches cannot handle indirections. Li et al. [62] used data
layout transformation on the compiler side to enable vectorization in the context of loops with
data structure accesses. The StructSlim profiler [91] helps programmers into data restructuring
through structure splitting. For GPU, copy is performed at transfer time and data layout change
is also performed at this step [109, 101]. Code analysis is performed statically, on OpenCL for
instance. The same approach has been explored for heterogeneous architectures [70], assessing
affinity between fields and clustering fields, and devising multi-phase AoS vs SoA data layouts
and transforms. Finally, Gupta et al. [37] proposed a new formal way of quantifying both spatial
and temporal locality, with an approach based on memory traces.

37

1.4. Towards a data layout restructuring framework proposal

38

Chapter 2

Vectorization

2.1 Layout Transformations To Unleash Compiler Vectorization 39

2.2 Hybrid Static/Dynamic Dependence Graph . 40

2.2.1 Static, Register-Based Dependence Graph. 40

2.2.2 Dynamic Dependence Graph. 41

2.3 SIMDization Analysis . 42

2.3.1 Vectorizable Dependence Graph. 42

2.3.2 Code Transformation Hints. 43

2.4 Conclusion . 44

Using SIMD instructions is essential in modern processor architecture for high per-
formance computing. Compilers automatic vectorization shows limited efficiency
in general, due to conservative dependence analysis, complex control flow or index-
ing. Typically, not only poorly designed layouts or strided patterns constitute per-
formance issues by themselves without SIMD considerations, they also may hinder
full SIMD optimizations, causing even more performance lack of gain in a SIMD
context. This chapter details a technique to determine if a given kernel is intrinsi-
cally vectorizable. In particular, we notice that data layout issues is a common cause
of vectorization failure, which can be solved by performing data layout transforma-
tions

2.1 Layout Transformations To Unleash Compiler Vectorization

For modern multi-core architectures, the Single Instruction, Multiple Data (SIMD) instructions are
essential in order to reach high levels of performance. With the increase of vector width – up to
16 floats for Intel Xeon Phi SIMD vectors for instance – SIMD instructions are real performance
multipliers. Several options are given to the application developer in order to vectorize a code:
explicit vectorization through assembly instructions, intrinsics, GCC vector extensions or other
language extensions (such as Intel SPMD Program compiler for instance [86]) or implicit vector-
ization through the automatic vectorizer of the compiler.

39

2.2. Hybrid Static/Dynamic Dependence Graph

Explicit vectorization, however, is complex and time consuming, assembly and intrinsics-
based approaches also are not portable and GCC extensions only offer a limited subset of arith-
metic operations. Consequently, the vectorization effort for most applications is delegated to the
compiler, which may not entirely succeed or even completely fail to meet the programmer expecta-
tions, depending on the code structure and complexity. Indeed, an over-conservative dependence
analysis, an incomplete static information concerning the control-flow or a strided data layout are
among the main reasons why the compiler may not generate vector code, even though the code
actually is vectorizable. Therefore, determining whether the code is vectorizable, independently
of any compiler limitations, as well as pinpointing the issues that may hinder vectorization and
the transformations required to enable it are critical capabilities for the developer.

Our approach is based on a twofold static and dynamic dependence analysis of the binary
code, and generates vectorization hints for the user. By combining a static and dynamic depen-
dence analysis, our method identifies the limiting factors for vectorization, such as misaligned
data, non contiguous data together with opportunities to vectorize, obtained through reschedul-
ing, loop transformations, reduction rewriting and vectorizable idiom rewriting. The runtime
analysis is essential in capturing dependences in presence of complex control flow or structure
indexing. This approach is complementary to what compiler optimization reports can provide,
bringing a more detailed analysis of vectorization opportunities, in particular of the opportunities
missed by the compiler.

2.2 Hybrid Static/Dynamic Dependence Graph

The dependence analysis we propose is a combination of a static dependence analysis, for regis-
ters, and dynamic dependence analysis for memory dependences. The static dependence analysis
on registers is already implemented in MAQAO and corresponds to an SSA analysis. Memory
dependences are obtained by tracing with MAQAO all memory accesses within the innermost
loops, and then computing dependence distances.

2.2.1 Static, Register-Based Dependence Graph.

The dependence graph on registers is resulting from an SSA (static single assignment form[23])
analysis, proposed by MAQAO. Besides, MAQAO handles special cases for dependences on x86:

• xor instructions, applied twice to the same register, set the value of this register to 0. While
the operation is reading a register, this is not considered as a read access.

• SIMD instructions can operate only on the lower or higher part of a SIMD register. Opera-
tions that operate on different parts of a register are not considered in dependence.

In addition to the existing analysis, we tag all dependences where a register is read for an address
computation. The graph is then partitioned according to these edges (cutting the graph through
these edges), usually in two parts: Instructions preceding these edges are address computation
instructions (such as index computation, update of address registers), while instructions after
these edges are actual computation (memory accesses, floating point operations, . . .) for which
SIMDization may be applied. When an indirection occurs, the dependence graph has a path with
two tagged edges and can therefore be partitioned into three or more subgraphs. The partition of
instructions following all tagged edges is said to be the computational part of the graph, while the

40

2. Vectorization

other instructions are part of the address computation part of the graph. In the rare cases where it is
not possible to cut the graph following tagged edges, we assume there is no computational part.

2.2.2 Dynamic Dependence Graph.

Dynamic dependences are essential to capture what the compiler may have missed, concerning
the control flow or the way data structures are indexed. The dynamic dependence graph is built
from the memory trace for each read and write instructions in innermost loops.

Algorithm 1 describes how dependence distances are computed. w.trace denotes the trace cap-
tured for an instruction w. For each couple of read and write accesses in a loop, we first perform
an interval test, based on their trace (line 2), and then compute a dependence distance. The depen-
dence distance is defined as the number of loop iterations between two instructions accessing the
same memory location. When two traces have the same loop structure, the subtraction between
the traces (line 4) subtracts the expressions that are at the same position in the trace. If the result is
not the same constant value for all subtractions, then ∗ is returned, otherwise the constant value
is returned. The special ∗ dependence distance notation between two instructions denotes the fact
that their dependence distance is not constant during the execution of the program. Note that only
uniform dependences are captured this way but as far as SIMDization is concerned, this captures
all vectorization opportunities that do not require non-local code transformation.

for(i=1; i<100; i++)
C[i] = C[i - 1] + B[2 * i];

(a) Code example

for i0 = 0 to 98
read 0x2ba1a3bd4428 + 4 * i0

(c) Compressed trace for C[i-1]

for i0 = 0 to 98
write 0x2ba1a3bd442c + 4 * i0

(b) Compressed trace for C[i]

for i0 = 0 to 98
read 0x2ba1a4000000 + 8 * i0

(d) Compressed trace for B[2 * i]

Figure 2.1: Example of trace compression using NLR. For the code in (a), one compressed trace
per memory access is produced, (b), (c) and (d).

Algorithm 1: Dynamic Dependence computation for an innermost loop L
for w, a write and r, a read in L do1

if w.trace ∩ r.trace 6= ∅ then2
if loops of w.trace = loops of r.trace then3

return r.trace− w.trace;4
else5

return ∗;6
7

else8
return 0 ;9

10
11

For the example in Figure 2.1.b and 2.1.c, both traces have the same structure, the same strides,
and the difference between the read and the write addresses is an offset of −4. Then we evaluate
how this difference can be compensated by a variation in the loop indices (here i0). We find a
unique solution within the loop bounds, 1 and this shows that the dependence distance between
the write and the read is 1. In general, finding the vector of iteration counters that compensate for
the offset between the read and the write leads to a multi-dimensional dependence vector. Only
read after write dependences are evaluated, and the sequential order of the assembly code is used
to compare relative positions for reads and writes. Note that all distances for register dependences

41

2.3. SIMDization Analysis
for (int i = 1; i < LEN2; i++) {

for (int j = 1; j < LEN2; j++) {
bb[j][i] = bb[j][i-1] + cc[j][i];

}

0x4077d8 : MOVSS	0x849094(%RCX,%RAX,1),%XMM0

stride : 1024, 4

0x4077e1 : ADDSS	0x76cc94(%RSI,%RAX,1),%XMM0

stride : 1024, 4

0

0x4077ea : MOVSS	%XMM0,0x76cc94(%RCX,%RAX,1)

stride : 1024, 4

0 1, 0

0x4077f3 : ADD	$0x4,%RAX

1

1

1

1

0x4077f7 : CMP	$0x3fc,%RAX

0

0x4077fd : JNE	4077d8

Figure 2.2: Code and dependence graph for one loop of function s2233 in TSVC benchmark.

correspond in this case to innermost loop carried dependences. Figure 2.2 presents the s2233 func-
tion from TSVC and its dependence graph, combining both the static and dynamic graphs. The
nodes each represent an assembly instruction, along with its strides when it is a memory access.
The dashed edges in red represent dependences for registers used in address computation. Cut-
ting the graph along these edges separates the computational part (left nodes) from the address
computation and control part. The bold blue edge, labelled with 1, 0 represents the memory de-
pendence corresponding to bb, directly computed from the trace. The strides denoted on the
edges have two values: 1024 and 4. The first one corresponds to the stride for the innermost loop,
j, and the second to the i loop. This shows that here, none of the accesses have good spatial
locality.

2.3 SIMDization Analysis

The SIMDization analysis is in two steps: First, we determine whether the code has a parallelism
compatible with a SIMDization, independently of any data layout or control limitations (such
as large stride). Then, we refine the analysis to detect special cases and accordingly guide the
programmer towards enabling and improving the vectorizability of the code.

2.3.1 Vectorizable Dependence Graph.

The dependence graph (static and dynamic) is first partitioned according to address computation
edges as described previously. The graph is said vectorizable if one of the three conditions applies
to the computational part of the graph:

• There is no cycle.

42

2. Vectorization

• There is a cycle, with a cumulative weight greater than the width of SIMD vectors.

• There is a cycle, with a cumulative weight smaller than the width of SIMD vectors, and the
instructions of the cycle all are of one of the following types: add, mul, max, min. The cycle
corresponds to a reduction.

A code with a vectorizable dependence graph may require transformations in order to be SIMDiz-
able. This is detailed in the following section.

2.3.2 Code Transformation Hints.

We propose to identify a number of transformations required for the SIMDization of the code,
depending on the dependence graph, on the stride expressions, and on the control flow graph.

Data alignment: When the graph is vectorizable without cycle, misaligned data is detected by
comparing the starting address of all memory streams with the width of SIMD vectors. In the
simpler case, the user can either change memory allocation of heap-allocated data structures, or
use pragmas for aligning stack-allocated data. When for instanceA[i] andA[i+1] occur in the same
code, one of the two accesses is misaligned. This would require shuffle instructions, or unaligned
loads/stores whenever they exist.

Rescheduling: When the graph is vectorizable without cycle, there may still exist some depen-
dences with non-null distance. Due to the fact that the analysis is performed on assembly code,
this may require some modifications at the source code such as some rescheduling of loads/stores
and computations, splitting some larger instructions. A template of the vector code is generated
by our tool (an example is given in the following section), giving a correct instruction schedule
after SIMDization.

Loop transformations: Loop interchange is proposed when all accesses within the loop have a
large innermost loop stride, and another loop counter in the expression corresponding to the same
outer loop has a stride 4 (for floats and ints). Interchanging these two loops would result in better
locality and enable SIMDization.

Loop reversal: Traces with negative stride expressions lead to this hint. Note that if other reads
for instance have a positive stride, the reversal is not beneficial any more.

Data reshaping required: This is a fallback hint for large innermost loop strides, and for codes
with indirection (detected on the static dependence graph). On the Sandybridge and Xeon Phi
architectures, instructions for loading or storing non-consecutive elements into/from SIMD vector
have been added to the ISA (GATHER on Xeon Phi and Sandybridge and SCATTER on Xeon Phi).
Use of these instructions, through assembly code or intrinsics, is an alternative to data reshaping.

Versioning required: The static analysis on the code may lead to a conclusion different from the
trace analysis. For instance, the trace may find a regular stride for a memory stream whereas stat-
ically, this stream results from an indirection, or depends on a parameter. Similarly, the dynamic
control flow (the real path taken) may be a subset of a more complex static control flow. In these
cases, the trace may have captured only one behavior of the code, for a particular input. The vec-
torization may only be possible in this case through the versioning of the loop, depending on the
values of the array, of a parameter.

Idiom Recognition: When the code is vectorizable, with 0 dependence distances or with reduc-
tions, the dependence graph can match a predefined dependence graph representing a well known
computation. The shape of the dependence graph and the instructions themselves are matched
with the predefined graphs. In this case, the user can call a library function instead of trying to

43

2.4. Conclusion

vectorize the actual code. The predefined functions considered are so far: dot product, daxpy,
copy, sparse copy (copy with an indirection either in the load or in the store), but more complex
functions can be added with ease.

All these hints help the user rewriting his code to enable SIMDization, and in particular, this
document explores in depth the problem of Data reshaping by proposing quality SIMDizing layout
transformations.

2.4 Conclusion

We showed in this chapter a novel technique to highlight vectorization issues, providing the pro-
grammer with detailed feedback on vectorization hurdles in his application Some issues corre-
spond to control optimizations, that are simple and clear enough for the user to apply, some can
be handled by state-of-the-art techniques as well. While some issues can be overcome via control
optimizations , data layout issues remain a major problem that compiler analysis is too limited to
resolve and deep code modifications are required, and user is still clueless on how the modifica-
tions should be made, and how much is he expected to gain by applying them. In the following
chapters, we propose to study extensively data layout transformations, in particular the hint of
data reshaping is quantified, and deep code modifications are pinpointed to the user.

44

Chapter 3

Layout/pattern analysis

3.1 Data layout formalism . 45
3.2 Layout detection . 48
3.3 Delinearization . 50

3.3.1 General Points . 52
3.3.2 Properties . 54
3.3.3 Characterization . 55
3.3.4 Case Study . 57

3.4 Conclusion . 59

In order to apply opportune data layout transformations, knowledge of the initial
memory structure is required beforehand. This chapter details how memory access
patterns are formalized, regardless of their respective method of acquisition, be it
from compiler analysis or memory traces analysis for instance. We then explain and
detail our choice of analysing memory traces for that matter, that is how we sort out
the initial structure, and how we delinearize it to obtain an intermediate representa-
tion that has two purposes. Firstly, it gives a consistent approach to properly apply
transformations. Secondly, handiness of the IR allows to provide quality feedback
to the programmer. We also detail how intrinsic kernel SIMDizability can be de-
termined from said memory traces, combining both static and dynamic analysis to
obtain valuable information in the aim of high performance achievement.

3.1 Data layout formalism

Discussing data layouts transformation is not as straightforward as it may sound. Not only the
structure design must be abstracted but also the patterns that access it, because more than the lay-
out itself it is the data access patterns that dictate the code performance. Indeed, on the one hand,
layout expression lies in the programming language definition, which can be verbose especially
if the structure is complex: the structure itself is composed of different fields that can be arrays
or structures themselves and so on. On the other hand, the data access patterns are described in
the source code by loop nests, potentially addressed by multiple complex expressions, with the

45

3.1. Data layout formalism

possible presence of induction variables, pointers, or index tables. A new level of abstraction is
required to allow reasoning on data layouts and access patterns in a systematic manner.

We consider data layouts as any combination of arrays and structures, of any length. A layout
is the description of this combination and the elements that are accessed in it. This description
is done for each function, for each different structure. Implicitly, all layout are considered for
a given program fragment. A syntactic memory access expression in the code defines a set of
memory address values. This can be denoted as:

base+ J

where base is the base address and J is a set of positive integers including 0 representing memory
offsets. All addresses are within a range [base, base + d − 1] where d is the diameter of J . The set
of offsets J can be represented as a function:

SJ,d : [0, d− 1] → {0, 1}
x → 1 if x ∈ J, 0 otherwise

This function characterizes the set J , since S−1J,d(1) = J . Follows an example to illustrate this point:
S{0,4,8,12},16 :

0 0 01 0 0 01 0 0 01 0 0 01

15th0th ...

Which represents a structure of 16 elements, only 4 of them are actually accessed. Intuitively,
this especially allows to express strides, which are factors indicating offsets between two consec-
utive memory accesses. In the particular case where J is an interval, that is the structure elements
are accessed consecutively, structure is denoted Ad, or AJ,d if d > #J meaning there is an offset
before the array, and possibly padding after it as well. This kind of layouts will be referred to as
array layouts in the following.

Example:
A16 :

1 1 11 1 1 11 1 1 11 1 1 11

15th0th ...

By default, if SJ,d is not an array layout, we will call it a structure layout. Now, this flat def-
inition of memory accesses does not account for the data structure itself, and array of structures
(AoS), structures of arrays (SoA) or any other combination can be written in this manner. To build
a multidimensional data structure, we define the product operator ⊗ on such functions:

SJ,d ⊗ SJ ′,d′ : [0, d− 1]× [0, d′ − 1] → {0, 1}
x, y → SJ,d(x) ∗ SJ ′,d′(y)

The product ⊗ defines a multidimensional operator, of domain [0, d− 1]× [0, d′ − 1].
Example:
A4 ⊗ S{0},4 :

46

3. Layout/pattern analysis

1

1

1

1

⊗
0 0 01

=

01

01

01

1 0

0 0

0 0

0 0

0 0

This represents the product of two flat structures, one array layout and one structure layout,
and the obtained result is a two-dimensional array of structures. Note that the formal description
corresponds to the intuitive representation of the data, as an AoS corresponds to the combination
of the two types of layouts, described by Ad′ ⊗ SJ,d for some values of d, d′ and J .

For any two layouts expressed as any product of unidimensional layouts, we define a sum
operator, corresponding to the union between the elements accessed by each operand: if L1 and
L2 are layouts with the same domain J :

L1 ⊕ L2 : J → {0, 1}
x → L1(x) + L2(x)

where the addition on integers is a saturated addition.
Example:
(A4 ⊗ S{0},4) ⊕ (A4 ⊗ S{1,2},4) :

01

01

01

1 0

0 0

0 0

0 0

0 0

⊕

1 010

1 010

1 010

1 010

=

111 0

111 0

111 0

111 0

This operation is useful to merge different patterns that access the same structure into a single
expression, because the same factorization identities exist with ⊕ and ⊗ as with integers, thus
some simplifications are possible between expressions involving both operators:

(SI,d ⊗ L)⊕ (SJ,d ⊗ L) = SI∪J,d ⊗ L (3.1)

(L⊗ SI,d)⊕ (L⊗ SJ,d) = L⊗ SI∪J,d (3.2)

Intuitively, union between structures is applicable only if they have the same coordinates:
generic layout L must be equal in both operands, otherwise it would mean we are trying to unify
two structures that are far apart in memory, which makes no sense and erases useful information.

47

3.2. Layout detection

Also, by definition, if a given structure L is repeated in a contiguous manner, then we can write it
as an array of structure.

n⊕
k=1

L = An ⊗ L (3.3)

3.2 Layout detection

Performing data layout transformations requires analysis of initial data structures themselves in
the first place. It is important because each array has specific patterns, thus specific transforma-
tions. Therefore, identifying each pattern array affiliation is a necessary step. On the source code,
finding whether two memory accesses correspond to the same array region is performed by an
alias analysis. Delinearization can be used in some simple cases to retrieve the multidimensional
structure associated to the addresses. Because indirections or complex operations can be involved
in the address computations, we propose to resort to memory traces. The code fragment is exe-
cuted and all memory accesses generate a trace. This trace is compacted on-the-fly with the NLR
method [51] in order to find possible regularities in strides. Memory addresses accessed for each
load/store of the code fragment are compacted as shown below:

1 for (i = 0; i <1000; i ++)
2 for (j =0; j <50000; j ++)
3 A [j] = . . .

Figure 3.1: C snippet

1 for i0 = 0 to 999
2 for i1 = 0 to 49999
3 val 0x6c4560 + 4∗ i1
4 endfor
5 endfor

Figure 3.2: Trace snippet, given for an
array A of 4-Bytes elements

Translation from memory traces to formalism is immediate, the memory access pattern de-
scribed in Figure 3.1 by instruction A[j] gives : S{[0,49999]},50000, which is a structure whose ele-
ments are accessed consecutively which can also be written as A50000. The stride of 4 in the trace
in Figure 3.2 corresponds to the size of the element in bytes, a single precision float here.

Data layouts are said to be distinct if their memory accesses are in intervals that do not in-
tersect. The distinct data layouts must be detected. Then, for each data structure, restructure it
into a multidimensional layout. This has been described in a paper [39]: The idea is to merge
the different memory accesses according to the intersection of their interval of addresses. We can
determine a base address common to the data layouts found (the minimum address), and a maxi-
mum diameter for the layout (the maximum address value minus the base). This analysis consists
in determining the layout of data accessed by each assembly instruction. The data layout detection
focuses on finding out: How many arrays are accessed, with how many dimensions, with which
element structure (that is, how many fields per array element). This assumes that each load/store
assembly instruction of the studied function accesses exactly one single array.

Memory addresses accessed for each load/store of the code fragment are compacted as shown
in Figure 3.4. Traces are here represented by loops iterating over the successive address values
taken during the execution. The first step of the analysis consists in identifying the loads/stores
that access the same array. To this end, each region accessed by a load/store is converted to a

48

3. Layout/pattern analysis

1 for (n l = 0 ; n l < ntimes ; n l ++) {
2 for (i = 0; i < N; i +=2) {
3 a [i] = a [i −1] + b [i] ;
4 }
5 }

Figure 3.3: C source code of function s111 from TSVC benchmarks [72].

1 # Trace for access a [i −1] S t r i ded i n t e r v a l for a [i −1]
2 for i0 = 0 to 999
3 for i1 = 0 to 1535
4 val 0x1525d40 + 8∗ i1 => [0x1525d40 ; 0x1525d40 + 8∗999; 8]
5 endfor
6 endfor
7 # Trace for access b [i] S t r i ded i n t e r v a l for b [i]
8 for i0 = 0 to 999
9 for i1 = 0 to 1535

10 val 0x1528d84 + 8∗ i1 => [0x1528d84 ; 0x1528d84 + 8∗999; 8]
11 endfor
12 endfor
13 # Trace for access a [i] S t r i ded i n t e r v a l for a [i]
14 for i0 = 0 to 999
15 for i1 = 0 to 1535
16 val 0x1525d44 + 8∗ i1 => [0x1525d44 ; 0x1525d44 + 8∗999; 8]
17 endfor
18 endfor

Figure 3.4: Trace example on function s111 from TSVC benchmarks [72]. Each trace is compacted
with NLR algorithm into loops in this simple example, iterating over successive addresses. A
simplified representation with strided intervals is used.

simpler representation, using a strided interval (lower address, upper address, access stride). For
clarity, in the trace the name of the array in Figure 3.4 is shown in comments.

Formally, let I denote the set of assembly instructions accessing memory. We define a relation
≡array between instructions i1, i2 ∈ I as: i1 ≡array i2 iff i1 and i2 access to the same array. ≡array is
an equivalence relation, the classes representing the different arrays. The idea is that two instruc-
tions with overlapping accessed memory regions are equivalent. Algorithm 2 finds the different
arrays by merging overlapping regions. Its complexity is O(N logN), due to the sorts.

Lemma 1 Algorithm 2 finds the sets of instructions that access the same arrays. It computes I/ ≡array.

For example, the analysis of the three regions from Figure 3.4 builds the sets L = {0x1525d40,
0x1525d44, 0x1528d84} and U = {0x1525d40 + 8 ∗ 999, 0x1525d44 + 8 ∗ 999, 0x1528d84 + 8 ∗ 999}.
The two first regions are found as being accesses to the same array, while the third one is not since
0x1526d84 > 0x1525d44 + 8 ∗ 999.

Now, the second step of the analysis consists in finding load/store instructions accessing the
same element field within an array of structures (e.g. t[0].x, t[1].x, .., t[n].x). Among
the instructions accessing to the same array of structures, we define a relation ≡field between
each pair of instructions accessing the same field in the same array. Thus formally, for each two
instructions i1, i2 accessing the same array (i1 ≡array i2), the relation i1 ≡field i2 is verified iff
i1 ≡array i2 and:

lower1 ≡ lower2 (mod gcd
i∈[i1]≡array

(stridei)).

49

3.3. Delinearization

Algorithm 2: Identifying distinct arrays from access traces.
Data: I = list of load/store triplets [loweri, upperi, stridei], i = 1..N
Result: OUT = I/Rarray, the set of instructions grouped by array they access.
L = {loweri, i = 1..N} ;1

U = {upperi, i = 1..N} ;2

sort L by increasing addresses;3

sort U by increasing addresses;4

CLASS = {I1} ;5

for k = 2..N do6

if Lk > Uk−1 then7

OUT = OUT ∪ {CLASS};8

CLASS = ∅ ;9

CLASS = CLASS ∪ {Ik} ;10

OUT = OUT ∪ {CLASS};11

The gcd of the strides of all accesses on the array corresponds to the size in bytes of the structure.
The values of lower1 and lower2 modulo this size correspond to the offset of the field within a
structure. Then, fields for each partition I/Rarray can be sorted according to their lower value
modulo the gcd of the strides. Determining the field layout of an array of structures can be done
with a O(N logN) complexity.

In the previous example, the two strided intervals [0x1525d40; 0x1525d40 + 8 ∗ 999; 8] and
[0x1525d44; 0x1525d44+8∗999; 8] are not found equivalent, since 0x1525d40 6≡ 0x1525d44 (mod 8).
Therefore the two instructions access different fields in an array of structures. Note that in the ini-
tial C code, there is no structure. However, the stride 2 on the loop counter entails that all loads
on a are on even indices while the stores are on odd indices, a behavior similar to an access to a
2-field structure.

To sum up, Figure 3.8 shows how we can recover array affiliation of each pattern. Finally, the
set of traces on each array has the form:

n⊕
k=1

SIk,d (3.4)

Which is simply the union of all the patterns affiliated to a given initial array.

3.3 Delinearization

Raw memory accesses have a complicated expression an potential a large number of terms. It is
necessary to reduce it to a simple compact expression to allow systematic operations. Along with
mathematical simplifications, delinearization is a solution to simplify the flat access definition,
by exposing the multidimensional aspect of the layout. We explain that such a multidimensional
representation allows us to conveniently express the layout specificities through our formalism.

50

3. Layout/pattern analysis

1 for (n l = 0 ; n l < ntimes ; n l
++) {

2 for (i = 0; i < N; i +=2) {
3 a [i] = a [i −1] + b [i] ;
4 / / A3 A1 A2
5 }
6 }

Figure 3.5: Source code

1 for i0 = 0 to 999
2 for i1 = 0 to 1535
3 val 0x1525d40 + 8∗ i1 # A1
4 endfor
5 endfor
6 for i0 = 0 to 999
7 for i1 = 0 to 1535
8 val 0x1528d84 + 8∗ i1 # A2
9 endfor

10 endfor
11 for i0 = 0 to 999
12 for i1 = 0 to 1535
13 val 0x1525d44 + 8∗ i # A3
14 endfor
15 endfor

Figure 3.6: Associated memory traces consider-
ing 4-Bytes elements, therefore the factor 8 rep-
resented corresponds to a 2-element stride.

L3

L1

L2

U1

U3

...

U2

0x1525d40

0x1525d44

0x1528d38

0x1528d3c

...

0x1528d84

0x152bd7c

A1
A3

A2

Figure 3.7: Memory Space

Figure 3.8: Layout Detection: we have here three distinct access patterns in the source code, cap-
tured by the memory traces. Figure 3.7 highlights how they are separated or aggregated to the
same array, by computing their intersections, as detailed in Algorithm 2

51

3.3. Delinearization

3.3.1 General Points

Initial data layout specificity lies in its patterns – or strides –, when it comes to the regular case (ie
regular strides). Essentially, strides are factors indicating offsets between two consecutive mem-
ory accesses, as said before. Factorization allows to exhibit this specificity in the formalism we
defined, while simplifying the initial expression and making it easy to manipulate and transform.
As we defined it, this factorization constitutes a delinearization of the initial structure, as⊗ is mul-
tidimensional, and can be applied on any strided unidimensional layout. In the general case, the
memory accesses are given as addresses, linearized and with no multidimensional address. The
objective is to discover the different multidimensional layouts used in the code fragment consid-
ered. The following describes how to delinearize a single given layout out of the series of layouts
obtained by array detection detailed before. The operation is the same for each of them.

The general formulation of the layout, after the array detection, is a sum of n structure layouts,
each corresponding to the different memory accesses:

base+⊕nk=1SIk,d (3.5)

where d is the diameter of the layout, and n the number of patterns , potentially significant. How-
ever, factorization may enable some simplifications as defined previously, reducing the number of
terms of the sum by performing the union operation.

The transformations of this layout into a multidimensional layout resorts to several rewriting
rules, creating additional dimensions. These rules are the following:

SI×n,p×n → SI,p ⊗ (An, ik) if I = {j × p+ k, j ∈ I, k ∈ [0, n]
∣∣∣ p > n} (3.6)

SI,p×n → SJ,p ⊗ (A[ω+k[,n, ik) if I = {j × n+ k + ω, ω < k, k ∈ [0, n[} (3.7)

SI,p×n → (An, ik)⊗ SJ,p if I = {k × p+ j, j ∈ I, k ∈ [0, n]
∣∣∣ p > #j − 1} (3.8)

Sp×I+j,p×n → SI,n ⊗ SJ,p (3.9)

where p is a scalar. These rules represents different ways of factorizing by p. Tuples (A, i)
represents arrays with their associated iterator, as retrieved from the trace, that is of importance
for the next Chapters.

Intuitively, Rule 3.8 consists in finding a AoS in the initial layout, that is a consecutively re-
peated stride p, with possibly a smallish offset j. The offset determines the position of the element
– its field number – in the internal structure. We give a full example to get a better grasp on rule
3.6 in particular, and at the same time all the rules as well.

Example:

1 struct T { f l o a t a , b , c , d ; } ;
2 struct T t [4] ;
3 for (j =0; j <4; j ++) {
4 t [j] . a = . . .
5 t [j] . c = . . .
6 }

Figure 3.9: Code snippet

1 for i1 = 0 to 3
2 va l 0x6c4560 + 16∗ i1
3 endfor
4 / / s t r i d e 16 must be d iv ided

by 4 (s i z e o f (f l o a t))

Figure 3.10: Trace snippet

52

3. Layout/pattern analysis

Here we are dealing with a structure of 4 fields, resulting in a access pattern with a stride of 4
within the single loop expressed. Therefore layout can be expressed as base+[0, 3]×4+2, or again
S{[0,3]∗4+2},16. Figure 3.11 below shows how delinearization operates on this example, focusing on
access on the c field as depicted in Figure 3.9:

S
{[0,3]∗ 4 + 2 },16

Rule3.8−−−−−→ A4 ⊗ S{2},4

0 10 0 0 10 0 0 10 0 0 10 0

p p pj

→

00 1 0

00 1 0

00 1 0

00 1 0

Figure 3.11: Formalism Graphic Representation Example of Rule 3.8

On this case, the stride p indicates the presence of a structure, while the offset j indicates the
position of the field inside the structure: we recognize here the AoS, that can be written as a 2-
dimensional layout.

More generally, note that after delinearization, S functions are never arrays A. Even after
union simplifications and potentially newly found full structures – in the sense that all the fields
are accessed– are discovered , an S is never viewed as an A, despite mathematical equivalence.
The rewriting rules basically show without ambiguity they are reconstructed structures, this still
implies strided patterns, not contiguous access patterns. Another benefit of the factorization is
the isolation of arrays, id est contiguous memory chunks, that we may want to reorder to our
convenience at the time of transformation choices, as we will discuss in the next chapters.

Now this set of rules is used to systematically transform the flat initial layout into an equivalent
multidimensional layout. Algorithm 3 explains how to repeatedly apply the rewriting rules in
order to find the simplest multidimensional layout.

Algorithm 3: Delinearization
Data: Initial unidimensional layout: base+⊕nk=1SIk,d
Result: A multidimensional layout, if possible
repeat1

foreach rule among (1), (2), (3) do2

If the rule can apply, apply it to all terms of the sum ⊕, at the same position of the ⊗.3

4

until no rule applies ;5

There is no constraint on the order in which to apply the rules, as long as the rule applies it is
applied right away on the input layout formal expression. This property of the rewriting system is

53

3.3. Delinearization

called confluence: there is no preferred order to get to the unique solution. Because the topology
is the same regardless of the pattern, when a rule is applied on a given term of a given operand of
⊕, it must be applied as well on all the terms. Moreover, because all the rules imply diminishing
layout sizes, algorithm is guaranteed to terminate.

As a final word on that topic, if a given layout is intrinsically unidimensional, no rule would
be applicable and its structure would stay in its original form.

3.3.2 Properties

We want to show that the product of rewriting rules is a normal form.

Termination Proof Rewriting rules can only produce A or S functions from a given S function.
Consequently, as no rule applies on A functions, they cannot be derivated. Structures in the gen-
eral sense on the other hand are defined such as their diameters is always strictly greater than 1,
as a structure of size one is the neutral element of ⊗. We want to show that the rewriting rules
always produce simpler objects from a structure SI,d; producing structures SI′,d′ equipped with a
set I’ such as #I ′ < I , or structures that have a strictly smaller dimension, that is d′ < d; which
implies that the system terminates.

The first 3 rules (3.6, 3.7, 3.8) all similarly divide a structure of size p × n into two separate
structures of respective size p and n. As stated before, both p and n are necessarily strictly greater
than 1, therefore both produced structures are smaller than the initial one. The 4th rule (3.9)
produces two structures. One of them has a size of p < p× n which implies it cannot be infinitely
derivated. The other has a set I necessarily smaller than the initial one p× I + j, which implies it
cannot be infinitely derivated either.

Finally, we have shown that each rules cannot be derivated infinitely, thus the rewriting system
terminates.

Confluence Proof We want to show that the rules commute two by two.
Rules 3.6 and 3.8:

• If J = ∅ and p 6= 1, rule 3.6 is unapplicable.

• If J = ∅ and p = 1, then I is an interval [0, n[and thus SI,d is actually written as An

• If J 6= ∅, In rule 3.6, ∀j ∈ J, ∀k, j × p > k, while in rule 3.8, ∀j′ ∈ J ′, ∀k, k × p > j′. Therefore
J × p and J’ are distinct, meaning rules are have distinct domains of application and can be
thus be applied in arbitrary order.

Rules 3.8 and 3.9:

• Rule 3.9 is a generalization of Rule 3.8 that applies on structures in the general sense rather
than uniquely on arrays. The key is that both rules extract a factor p out of a structure/array,
therefore

– if Rule 3.9 is applied after Rule 3.8, p has already been taken out as it would have using
Rule 3.9

54

3. Layout/pattern analysis

– if Rule 3.8 is applied after Rule 3.9, either SI,n = An or the array represented by an
interval is left untouched by Rule 3.9 and still can be properly transformed by Rule 3.8

Rules 3.6 and 3.7 are mutually exclusive as a scalar ω as defined in 3.7 differs from the two
rules.

Therefore, by transitivity, the rewriting system is confluent.
Finally, termination and confluence properties together imply that the rewriting system entails

a normal form.

3.3.3 Characterization

We want to shed light on some particular and well-known access patterns that are correctly han-
dled by our delinearization technique.

Structure fields with different sizes Proposed formalism does not take into account element
size information – or element type. Structures should not be made of differently sized elements,
first because of the induced stride, second because of the potential alignment issue, depending
on the ordering of the different field in the structure. Implicitly, here, all elements have the same
type that is determined beforehand, at the array detection step. We distinguish instructions by
their respective types, this way we segregate memory traces and therefore, layouts. This way,
transformed layout will be of only one data type.

Now, structure fields can still be arrays of different sizes. If the structure is not divisible by
the array size, then it may be because we are dealing with a structure with arrays of different
sizes. First of all, if there is a single lonely element in the structure, it must be extracted just like
described before for the heterogeneous data type structures case. Second, the presence of such
structure is explicitly handled by Rule 3.7, as shown in the following example.

Example:

1 struct s { f l o a t a [2] , b [m0] , c [m1] ; } ;
2 struct s A [N×M] ;
3 . . .
4 for (j =0; j<N; j ++) {
5 for (i1 = 0; i1 < n1 ; i1++) {
6 for (i0 = 0; i0 < n0 ; i0++) {
7 A [j] . b [i0] . . .
8 A [j] . c [i1] . . .
9 } } }

Figure 3.12: Synthetic example of a case of structure of arrays with different sizes

Which gives, after tracing the two patterns:

S{M×[0,N [+[0,n0[+2},NM

⊕ S{M×[0,N [+[0,n1[+2+m0},NM

Rule 3.8 applies:

AN ⊗ S{[0,n0[+2},M

⊕ AN ⊗ S{[0,n1[+2+m0},M

55

3.3. Delinearization

Here, the classical SoA Rule 3.6 is inapplicable, due to the offsets within the structure. These
are actually structure of different arrays, treated by Rule 3.7:

AN ⊗A[2,n0+2[,M

⊕ AN ⊗A[2+m0,n0+2+m0[,M

This depicts how the formalism expresses structures of arrays of different sizes, they are rep-
resented as incomplete arrays, as here M = 2 + m0 + m1. The structure fields b and c in Figure
3.12 are materialized here by the sum of two layouts.

Scattered structure Rewriting system also handles array of pointers, a class of layouts that can
be poorly allocated arrays of arrays. They can also correspond to fixed trees or graphs; were
they still in the building phase, our topological approach of layout transformations would not be
useful. Array of pointers correspond to the case where the trace of a given instruction is separated
in several equivalent chunks. That means multidimensional elements can be separated by any
offsets ωk, it does not affect delinearization. A corresponding given access pattern has the form:

base+ (ω0 = 0) + SI,d + ω1 + SI,d + · · ·+ ωn−1 + SI,d

Which is also

base+
n−1⊕
k=0

(ωk + SI,d)

Or again

base+

n−1⊕
k=0

(S∅,ωk
+ SI,d) (3.10)

Now, NLR algorithm by itself is not able to detect such pattern in the trace. However, it hap-
pens that this problem is close to the longest repeated substring problem, the key being to match
Equation 3.10 pattern, where the longest repeated substring corresponds to the term SI,d. The
initial string s is formed by the distance between each access in the trace elements (or addresses)
a such as:

(s0, s1, . . . , sn−1) = (a1, a2, . . . , an)− (a0, a1, . . . , an−1)

From s we build the suffix tree [113], that allows efficient resolution of the longest repeated sub-
string problem. Finally, we have actually found an array of pointers pattern if the distance be-
tween each substring is exactly the substring size plus 1, which corresponds to the offset ωk whose
value is irrelevant. Note that the need for finding an offset value between the substrings automat-
ically excludes any eventual substring overlapping.

Formalized array of pointers described by Equation 3.10 does not fall under the definition of
an array of structures as we defined it, because all the elements here are different due to their
respective offsets. However, as we will see in the next section, offsets – chunks of memory where
no element is accessed – are removed by compression, which allows us to retrieve the natural
array definition. This gives:

56

3. Layout/pattern analysis

base+
n−1⊕
k=0

SI,d

Which is, using property 3.3:

base+An ⊗ SI,d

Non distinct patterns Rule 3.9 allows to extract unnecessary strides out of the arrays expression
(=factorization). However, incompressible strides complicate the array expression and may limit
transformations opportunities.

Example:

1 for (i0 = 0; i0 < n0 ; i0++) {
2 a [4∗ i0] = a [28∗i0] ;
3 . . .
4 }

Figure 3.13: Synthetic example of imperfectly overlapping patterns

Which gives, after delinearization:

S{4×[0,n0[},28×n0

⊕ S{28×[0,n0[},28×n0

Rule 3.9 applies:

S{[0,n0[},7×n0
⊗ S{0},4

⊕ S{7×[0,n0[},7×n0
⊗ S{0},4

Rule 3.6 and Rule 3.8 apply:

S{0},7 ⊗An0 ⊗ S{0},4
⊕ An0 ⊗ S{0},7 ⊗ S{0},4

Stride 7 here is incompressible, the expression can not be simplified any more. This kind of
supplementary stride will limit our transformation power – as it should.

3.3.4 Case Study

Let us consider the example code in Figure 3.14, that belongs to a Lattice QCD application.
We want to apply Algorithm 3 to restructure the example trace below:

57

3.3. Delinearization

1 for (i L =0 ; i L < L /2 ; i L +=1) {
2 for (j =0; j <4; j ++) {
3 r0 = U[idn [4∗ i L]] [0] ∗ tmp [j] ;
4 r0 += U[idn [4∗ i L]] [1] ∗ tmp [n2+ j] ;
5 r0 += U[idn [4∗ i L]] [2] ∗ tmp [2∗n2+ j] ;
6 r1 = U[idn [4∗ i L]] [3] ∗ tmp [j] ;
7 r1 += U[idn [4∗ i L]] [4] ∗ tmp [n2+ j] ;
8 r1 += U[idn [4∗ i L]] [5] ∗ tmp [2∗n2+ j] ;
9 r2 = U[idn [4∗ i L]] [6] ∗ tmp [j] ;

10 r2 += U[idn [4∗ i L]] [7] ∗ tmp [n2+ j] ;
11 r2 += U[idn [4∗ i L]] [8] ∗ tmp [2∗n2+ j] ;
12 ID2 [j] += r0 ;
13 ID2 [n2+ j] += r1 ;
14 ID2 [2∗n2+ j] += r2 ;
15 } }

Figure 3.14: Example of Lattice QCD simulation. The 2D array U uses an indirection. All elements
are complex double values. The space iterated by the outer loop is a 4-D space, linearized, and the
indirection is used to process the white elements of a 4-D checkerboard.

1 for i0 = 0 to 255
2 for i1 = 0 to 255
3 val 0x00001000 + 16384∗ i0 + 32∗ i1
4 val 0x00001008 + 16384∗ i0 + 32∗ i1
5 endfor
6 for i1 = 0 to 255
7 val 0x00003010 + 16384∗ i0 + 32∗ i1
8 val 0x00003018 + 16384∗ i0 + 32∗ i1
9 endfor

10 endfor

The trace is given as a for..loop enumerating addresses and out of simplification, only
corresponds to the trace generated by the memory access of matrix U in the first statement, and
removing the outer dimension. Removing the scheduling information, we can build the follow-
ing initial structure corresponding to the values of the trace. Essentially, the iterated domains
correspond to the domains of the structures:

U + S{2048∗[0,255]+4∗[0,255]},d

⊕ S{2048∗[0,255]+4∗[0,255]+1},d

⊕ S{2048∗[0,255]+4∗[0,255]+1024+2},d

⊕ S{2048∗[0,255]+4∗[0,255]+1024+3},d

Applying Rule 3.9 removes the stride 4:

U + S{512∗[0,255]+[0,255]},d ⊗ S{0},4
⊕ S{512∗[0,255]+[0,255]},d ⊗ S{1},4
⊕ S{512∗[0,255]+256+[0,255]},d ⊗ S{2},4
⊕ S{512∗[0,255]+256+[0,255]},d ⊗ S{3},4

58

3. Layout/pattern analysis

This can be simplified, by merging the first two lines and the last two ones:

U + S{512∗[0,255]+[0,255]},d ⊗ S{0,1},4
⊕ S{512∗[0,255]+256+[0,255]},d ⊗ S{2,3},4

Applying Rule 3.8 transforms the structure into an array of structures:

U + A256 ⊗ S{[0,255]},512 ⊗ S{0,1},4
⊕ A256 ⊗ S{256+[0,255]},512 ⊗ S{2,3},4

Finally, applying Rule 3.6 splits the first structure into a structure of arrays:

U + A256 ⊗ S{0},2 ⊗A256 ⊗ S{0,1},4
⊕ A256 ⊗ S{1},2 ⊗A256 ⊗ S{2,3},4

This corresponds to an AoSoAoS: This is an array of 2 lines, even lines and odd lines. Even lines
have 256 elements that are structures of 4 doubles, using only the first 2. Odd lines have 256
elements having 4 doubles, using only the last 2.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

3.4 Conclusion

This chapter focus was on data layout expression in a novel formalism. We proposed an algorithm
to detect distinct initial arrays based on memory traces, and we proposed a rewriting system
that allows to express any given layout on a normal form, which is a delinearized expression
of the initial layout. We also shown on case study that regular structures such as checkerboard
patterns can be expressed using our formalism and are in fact AoS of AoS. The next step after
array delinearization is the layout transformations exploration.

59

3.4. Conclusion

60

Chapter 4

Transformations

4.1 Layout Operations . 61
4.1.1 Permutation . 62

4.1.2 Splitting . 63

4.1.3 Compression . 64

4.2 Exploration . 65
4.2.1 Basic Constraints . 65

4.2.2 Locality Constraints . 67

4.2.3 Parallelism Constraints . 69

4.3 Case Study . 71
4.4 Conclusion . 75

Finding the best layout transformation is difficult, runtime randomness and ev-
erchanging computer architectures along with the unpredictability factor of data
structures make it hard to determine a priori such a layout. However, it is possible
to propose a narrow selection of educated guesses as to which layout transformation
is thought to potentially improve performance. This chapter presents the transfor-
mations space exploration, that means exploring the most promising layout in terms
of locality in the first place, which is the one performance judge we can rely on and
can be computed through our proposed formalism. The exploration is also shaped
to preferably address layout designs that take advantage of different levels of par-
allelism.

4.1 Layout Operations

We define in this section basis operations on data layouts. Formally, all correct transformations L′

of L are such:
|L′−1(1)| = |L−1(1)| (4.1)

Where L′ and L are layouts as we defined in Section 3.1. This states the first constraint on data
layout transformations: the initial layout elements must be preserved. Indeed, the memory traces

61

4.1. Layout Operations

approach ensures that all the layout elements are actually used for the computations, since the
layout representation is based exclusively on data actually processed. Whereas on a compiler-side
approach, possibly unused – ever – layout elements cannot be spotted and evicted. However, it
is more likely that the possible gaps in a layout are artifacts of the memory traces, in the sense
that they are meant to be used, but just not for the particular run the memory traces capture. This
entails uncertainty on the appropriate transformation to apply: should the gaps be preserved?
Should they be erased by default? One more note on the formulation of correct transformations
(Equation 4.1), redundant layouts – ie layouts composed of some duplicated elements – are not
considered for the moment.

Now, actual transformation operations need to be properly characterized. Indeed, it is neces-
sary to define systematic operations allowing a wide set of new layouts to be constructed. More-
over, it is the sequence of transformations that defines the data mapping over the new layout,
which is essential for transformations code generation. For this matter, we introduce in Table 4.1
a rewriting system describing given layout operations we want to perform.

Permutation L⊗ L′ → L′ ⊗ L
Splitting An×m → An ⊗Am

Compression SI,d → SI′,d′ , if#I = #I ′and d′ < d

Table 4.1: Layout transformations rewriting system

This rewriting system reflects that our approach focus is on layout topology changes, con-
sistently with the delinearization system proposed in Section 3.3, where the layout topology is
defined by the number and the size of the layout respective dimensions. It particularly means that
transformations which swap individual array elements are not considered, as we assume all the
structure fields are hot so the swapping have no impact on actual layout performance. Let us now
expand more thoroughly on the mentioned operations.

4.1.1 Permutation

High performance can only be achieved through locality in the data access patterns. Therefore we
need to explicit a way of properly altering locality, meaning reordering memory blocks, in hope
to optimize memory accesses. To do so, we define the permutation operation as the following:

L⊗ L′ → L′ ⊗ L (4.2)

A lot of locality optimizations can be expressed as layout permutations. An intuitive example
is the matrix transposition. Let M be a 2-dimensional matrix of size n×m, it can be expressed as:

M = An ⊗Am

The transposed matrix is the permutation of the two terms, which gives a new matrix MT :

MT = Am ⊗An

This is also the operation that expresses formally the common AoS (Array of Structures) to
SoA (Structures of Array) transformation, crucial on nowadays architectures and thus subject of
numerous research efforts (see Chapter 1). Suppose the following excerpt:

62

4. Transformations

1 struct s { f l o a t a , b , c , d ; } ;
2 struct s A [4] ;
3 . . .
4 for (i = 0; i < 4; i ++) {
5 A [i] . b = . . .
6 }

Then the layout obtained via delinearization is an AoS expressed as:

A4 ⊗ S{1},4

Where the outer dimension is the explicitly defined array of structure of 4 elements A. The inner
dimension is a structure s that has only one element accessed, it is the field nicknamed b. The
transformation to SoA is a permutation that optimizes locality as graphically shown below

A4 ⊗ S{1},4
permutation−−−−−−−−→ S{1},4 ⊗A4

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

→
0 0 0

1 1 11

0 0 00

0

00 0 0

Where the horizontal layers represent contiguous chunks of memory. The layout expression after
permutation is the following:

S{1},4 ⊗A4

And the resulting transformed code can be written as:
1 struct s { f l o a t a [4] , b [4] , c [4] , d [4] ; } ;
2 struct s A ;
3 . . .
4 for (i = 0; i < 4; i ++) {
5 A . b [i] = . . .
6 }

4.1.2 Splitting

Another way of optimizing locality is to carefully change the different array dimensions sizes,
in order to take advantage of different levels of parallelism such as SIMD-level or thread-level
parallelism for instance. Indeed, if applicable, one may be wanting to reshape the initial array
to have a small contiguous innermost dimension to allow efficient SIMDization, and similarly
have an outer dimension large enough to be conveniently parallelized with threads for instance.
Moreover, reshaping layout dimensions according to the knowledge of architecure such as cache
sizes etc. also can have massive impact on performance.

The splitting operation allows us to divide a given dimension into smaller ones:

An×m → An ⊗Am

63

4.1. Layout Operations

Note that this is a parameterized transformation, in the sense that n and m have to be chosen,
among the values that divide n×m obviously as the array size must be an integer greater than 1.
A concrete example is the transformation from AoS to AoSoA (Array of Structure of Arrays). The
idea behind AoSoAs is to take profit of recent architectures such as Intel MIC 1or more generally
any architecture with SIMD units.

A256 ⊗ S[0,3],4
splitting−−−−−→ A64 ⊗A4 ⊗ S[0,3],4

permutation−−−−−−−−→ A64 ⊗ S[0,3],4 ⊗A4

The resulting layout now have an inner dimension suitable to SIMD parallelization.
We define the inverse operation to splitting that is the merger operation, that, even though it

doesn’t affect physically the topology, allows mathematical simplification of the layout formula-
tion:

SI,n ⊗ SJ,m → SI′,n×m, if#I
′ = #I ×#J

4.1.3 Compression

Initial layout detected may be composed of unused elements, that we may want to erase in order
to improve locality. Structure compression is defined as the following:

SI,d → SI′,d′ ,#I = #I ′, d > d′

Where the elements of I ′ are remapped in order to not leave unused space in the structure.
Example:

A4 ⊗ S{0},4
compression−−−−−−−−→ A4

01

01

01

1 0

0 0

0 0

0 0

0 0

→ 1 1 1 1

As an AoS with only one structure field used is inherently simply just one array. We define the
inverse operation to compression which is the expansion, aiming at performing padding, which
is basically filling structures with blanks, in order to make them fit better in the cache:

SI,d → SI′,d′ ,#I = #I ′, d < d′

1https://software.intel.com/en-us/articles/memory-layout-transformations

64

https://software.intel.com/en-us/articles/memory-layout-transformations

4. Transformations

4.2 Exploration

Transformations rewriting system 4.1 in itself is not terminating. This is due to the fact that infinite
sequences such as the following exist:

L
permutation−−−−−−−−→ L′

permutation−−−−−−−−→ L
permutation−−−−−−−−→ L′ . . .

This highlights the need for an algorithm to constrain transformation sequences. Moreover, while
the number of different transformed layouts {L′′} of L is finite, we can notice that:

• Number of permutations of a finite set of element is finite

• Number of divisors of an integer is finite

• Number of zeros in a structure is finite

It still remains too large for evaluation purposes, as the number of permutations may be large, the
number of splitting as well and numerous equivalent transformations or even useless transforma-
tions need to be pruned. In practice, rewriting system 4.1 is already constrained by the original
layout topology, because its topology may not allow certain given transformations. As an exam-
ple, S{0,2,1,3},4 does not allow any transformation at all. Let us assume they are all applicable. This
is the worst case scenario for the exploration, and the best from the user point of view because this
means there are a lot of restructuring possibilities.

4.2.1 Basic Constraints

It is necessary to narrow down the exploration space, therefore evicting useless transformations
and equivalent transformations is important. Indeed, the consecutive application of given trans-
formations of 4.1 constitutes a path. In fact, there are potentially several ways to pass from a
layout A to a layout B, as depicted in Figure 4.1. Different paths induce different code transforma-
tions and different element distribution. Algorithm 4 details how we reduce exploration space to
a reasonable set.

We allow only one Split operation for each structure/dimension of the layout, with fixed pa-
rameters. The split operation is not meant to be performed by itself, because both the initial and
resulting topologies are equivalent as shown in example below:

AN ⊗AM → ANM

Indeed, there is no topological difference between a 2-dimensional array layout and a uni-
dimensional array layout, what makes the topology is the structure/array alternation. It is the
permutations that allow actual topological reshaping. Now, it is necessary to limit the number of
split because having a large number of array/dimension fragment is not beneficial and a lot of
combinations entail equivalent layout, by merger simplification. As an example, let us consider
the following transformation:

65

4.2. Exploration

0 1 5 62 3 4 7

0

1

2

3

4

5

6

7

0 1 2 3

4 5 6 7

0 1

2 3

4 5

6 7

A

A x A A x A

8

A x A4 2

4 42 2

split

split

permutation

Figure 4.1: Several paths lead to the same topology, with a different element ordering — Elements
distribution is irrelevant in the context of our study as we assume all the fields are hot fields
(therefore swapping consecutive elements does not influence performance) — longer paths mean
more complex code transformation

66

4. Transformations

ALNM
split−−−→AL ⊗ANM
split−−−→AL ⊗AN ⊗AM

permutation−−−−−−−−→AL ⊗AM ⊗AN
merger−−−−→AL ⊗AMN

merger−−−−→ALMN

This shows an useless path induced by too many splits. Here, at each step layouts are equiva-
lent to one another in a topological sense. Moreover, split creates new dimensions, which implies
increased combinatorials, Split operation is mainly thought to enhance parallelism, by construct-
ing an adequately sized array for SIMD or thread-level paralellism for instance. Thus we judge it
not necessary to try an extensive set of possibilities.

Compression is performed once per dimension, and we only consider the case where all zeros
are removed, as we assume for now more zeros mean less performance. We do not deal with the
padding case. This decreases the number of paths and useless transformations significantly as
well.

Finally, that leaves the combinatorial analysis on permutations only, that depends on the num-
ber of dimensions of the layout.

Algorithm 4: Basic Layout Transformation Space Exploration
Data: L = Sn ⊗ · · · ⊗ S1: Initial multidimensional layout,
Sλ: structures to split with fixed parameters
Result: {L′}: Set of transformed layouts from L
foreach term Sk in L do1

compression(Sk)2

3

foreach term Sλ in L do4

split(Sk)5

6

L′← {permutation(L)}7

4.2.2 Locality Constraints

We have bounded the exploration with basic constraints, however the set of potential transformed
layouts remains too large, mostly because of the combinatorials, and needs to be shortened. To
do so, we introduce supplementary constraints to help the making of a reduced relevant set of
solutions. Locality is the key notion when it comes to data layout optimization. Although the
perfect layout is not known in advance due to various noises as discussed earlier, we present here
the intuition that can help us make educated guesses on which layouts may improve performance.
Let us now elaborate on the three locality-related aspects at stake here:

67

4.2. Exploration

• The notion of access order ~s0

• The inter-iteration stride ~sh

• The intra-iteration stride ~sv

The objective is to minimize the triplet σ = (~s0, ~sh, ~sv), ie a given transformed layout has a
near-optimal locality property if σ → 1. Aforementioned triplet allows us to rate any given layout
in terms of locality, then the idea is to select an arbitrary restricted number of the best rated layouts
to evaluate for performance.

Access Order

More than the topology itself, the order elements are accessed must be taken into account when
designing an optimized layout. Indeed, consecutively accessed elements need to be in close prox-
imity to ensure high performance. This order is explicitely given by the memory traces. As an
example, let us consider the following trace:
1 for i1 = 0 to 999
2 for i0 = 0 to 49999
3 val 0x6c4560 + 4∗ i1 + 200000∗ i0
4 endfor
5 endfor

Which, after delinearization, entails:

(A1000, i0)⊗ (A50000, i1)

Here the performance issue lies in the fact that the outer dimension is accessed first, given
i0 is the deepest iterator, which causes each element to be accessed with a penalty. An intuitive
transformation is the matrix transpose:

(A50000, i1)⊗ (A1000, i0)

where the deepest iterator i0 is affected to the deepest dimension, meaning elements are now
accessed in order. Consequently, our aim is to transform layouts in a way that preserves natural
access order, that is to sort the dimension by iterator number.

Finally, let us explicit ~s0:

s0,j =

{
1, if ik ≤ j
#ij−1 × · · · ×#i1, else

Note that loop bounds can be parametric. Let us now consider a couple examples.
Example 1:

(AN3 , i3)⊗ (AN2 , i2)⊗ (AN1 , i1)⊗ (AN0 , i0)

That makes:

~s0 = (1, 1, 1, 1)

68

4. Transformations

Which represents a perfect access order.
Example 2:

(AN0 , i0)⊗ (AN1 , i1)⊗ (AN3 , i3)⊗ (AN2 , i2)

That makes:

~s0 = (1, 1, N3 ×N2, N3 ×N2 ×N1)

Which implies the considered layout has a costly alteration of the access order, induced by large
strides.

Intra-iteration Stride

It is the distance between the elements accessed within the same iteration. To optimize locality,
this distance must be small.

sv,j =


1 , if j = 1 or Aj−1 !exists

#Aj−1 × 2/P (j − 1) , else if j − 1 = 2 and innermost = Sc

#Aj−1/P (j − 1) , otherwise

Where Sc represents the complex number structure and where P (dimension) expresses the
level of parallelism on the given dimension: it is the scalar equivalent to the number of elements
processed simultaneously. For instance, if on a given architecture SIMD vectors size is v, then
P (1) = v, where 1 represent the innermost dimension, where the SIMD instructions apply. In-
tuitively, if arrays inside structures are too large to be entirely processed in parallel, they will
degrade locality especially if they are significantly large. Such a non-optimal locality property
is typically the case on CPU where vectors are small in front of the arrays of a SoA, and where
consequently the intra-interation strides are significant.

Inter-iteration Stride

This is the distance between two memory addresses accessed by a given instruction at iteration n
and n+1. If all addresses between the two are accessed in the meantime, there is no locality issue.
Gaps in the layout tend to increase dramatically this number, therefore it is important to have an
indicator of such effect in the context of our transformation space exploration.

sh,j = dj−1 −#Ij−1

~sh allows to measure locality breaches over a given layout.

4.2.3 Parallelism Constraints

Because of architectures complexity, more contraints are highly relevant to our space exploration,
in particular in regards to parallelism. We detail basic performance requirements for data layout
transformations in multithread and SIMD contexts.

69

4.2. Exploration

Multithread

Locality constraints also permit to avoid low performing multithread work share. Indeed, it is
crucial not to accidently make an inappropriate layout for thread-level parallelism, as performance
variation may be significant.

Figure 4.2: A given thread t accessing only a block of the layout (green elements). There is a
penalty for passing from a line to the other as locality is breached (red elements are unused)

Careless loop parallelisation may induce thread blocking effects, for instance when the par-
allelisation is not applied on the highest-level dimension. Thread blocking constitutes a locality
breach, as it is shown in Figure 4.2 on layout L. Each memory access thread affiliation informa-
tion is unambiguously made available by the memory traces. Thread t layout chunk LT of initial
layout L is given as:

LT = S{1,Y } ⊗Ay ⊗ S{1,X} ⊗Ax

Where the dimension of L are X × Y and the dimensions of LT are x × y. While it is con-
ceivable to perform customized transformations tailored for each thread and a given thread pool,
we choose not to deal with thread-level layout parameterizability and to also offer less painful
transformations for the user, by viewing the initial layout as one chunk which means disregard-
ing multithread affiliation. Therefore, while we are able to report the user thread blocking effects
and suggest him to revise his loop parallelisation, we assume it is not an inherent layout issue and
do not make a special case. However, for the sake of parallel distribution, we will prioritize lay-
outs that exhibit a large outer dimension, that is layouts on the formAX⊗LwhereX is arbitrarily
large.

SIMD

SIMD itself brings another constraint to our space exploration, because to be efficient it requires
the transformed layout to be on the form L ⊗ Av where v is the vector size. However, different
layouts accessed within the kernel of interest may be treated separately in the context of vectoriza-
tion. Indeed, to benefit the most of vectorization, layouts may need to be transformed accordingly

70

4. Transformations

to avoid using additional assembly in order to reorder the values in the right registers and the
right memory places. In fact, it is difficult to determine beforehand if it would be advantageous
to also transform the other layouts accordingly. Therefore, it may be interesting to evaluate both
approaches.

Let us now expand on how we transform other layouts Lo accordingly to the layout of interest
L transformation. First of all, if the layout Lo is read-only, then it is not useful to modify the layout,
a couple of assembly instructions such as unpacks will deal with it conveniently. Otherwise, we
have a few more restructuring options. Outer loop vectorization can be a powerful ally in particu-
lar when the innermost loop iterations can be executed in parallel. However operations on vectors
accessed exclusively by the innermost loop may be tricky to perform with SIMD instructions, it
may be smart to restructure them in order to effectively vectorize the kernel.

Consider the following example:{
L = (AL, i1)⊗ (Sdmc, i0)

Lo = (A12, i0)

As it stands, Lo cannot be directly manipulated with packed instructions. A possible transfor-
mation would be: {

L = (AL/v, i1)⊗ (Sdmc, i0)⊗ (Av, i
′
1)

Lo = (A12, i0)⊗ (Av, i
′
1)

Where the second array has been allocated v more space. This is the classic computations ver-
sus memory compromise, which we propose to address by our profiling methodology. Disposing
of more memory can be determinant for performance especially if the kernel is significantly large,
as such a secondary array can namely serve as a temporary buffer.

4.3 Case Study

We propose to explicit transformations application on real-life codes layouts. Their respective
performance improvements are addressed in Chapter 6.

Lattice QCD Layout Transformation

In quantum physics, Lattice QCD is an approach to compute the strong interaction as modeled
by quantum chromodynamics (QCD) in the standard model of physics, where quarks and gluons
interact via a color charge, analoguous to the electromagnetic charge. The lattice is the discretiza-
tion of spacetime into a 4-dimensional grid. We study here codes expressed through Qiral [7], a
Domain Specific Language (DSL) that allows to ease the expression of parallelism on Lattice QCD
simulations.

We focus here on the main array U (see code in Figure 4.3) – the lattice – in the sense that it
is large enough, intensely accessed and a significant amount of large stride issues are reported,
therefore it constitutes an interesting candidate for data restructuring. However, since we study
transformations on U and only U , the two other arrays this kernel operates on (CRNEAp, CRNEp)
and worth mentioning due to their size — 1/8th of U both — are left untouched. As a conse-
quence, full kernel parallelism cannot be achieved. Nevertheless, significant performance gain
opportunities remain, as shown by the results presented in Section 6.2. U is read-only, therefore a

71

4.3. Case Study

layout transformation limited to the scope of the function would require a copy-in, but no copy-
out. The copy-in is the operation that consists in copying the data from the old layout to the new
one, while the copy-out is the inverted operation. In this case, copy cost impact is minimized
since copy-in can be performed at the actual array declaration. We study two different numerical
schemes, generating different memory access patterns.

1 / / double complex∗ U[L] [d] [m] ;
2
3 for (iL = 0; iL < L ; iL ++)
4 {
5 xgemm(0 ,1 ,3 ,4 ,4 ,1 ,&CRNEp[sup (iL , dx) ∗12] , l i 8 , 0 , tmp) ;
6 xgemmfast (0 ,0 ,3 ,4 ,3 ,1 ,U [uup (iL , dx)] , tmp ,0 , ID2) ;
7 . . .
8 xcopy (12 , ID1 , ID2) ;
9 xsca l (12 , − kappa , ID1) ;

10 xgemm(0 ,1 ,3 ,4 ,4 ,1 ,&CRNEp[sdn (iL , dx) ∗12] , l i 2 , 0 , tmp) ;
11 xgemmfast (0 ,0 ,3 ,4 ,3 ,1 ,U [udn (iL , dx)] , tmp ,0 , ID2) ;
12 . . .
13 xcopy (12 , ID15 , ID2) ;
14 xsca l (12 , − kappa , ID15) ;
15 xgemm(0 ,1 ,3 ,4 ,4 ,1 ,&CRNEp[iL ∗12] , l i 5 , 0 , ID29) ;
16 xcopy (12 , &CRNEAp[iL ∗12] , ID29) ;
17
18 xaxpy (12 ,1 , ID15 ,&CRNEAp[iL ∗12]) ;
19 xaxpy (12 ,1 , ID1 ,&CRNEAp[iL ∗12]) ;
20 }

Figure 4.3: Code except from Lattice QCD simulation. We study layout transformation on main
array U

Qiral benchmark without preconditioning According to the memory traces analysis, the ac-
cesses to U are given by

AL ⊗ S{1},d ⊗ Sm ⊗ Sc
where L = 131072, d = 8,m = 9, c = 2. The innermost structure corresponds to complex, double
numbers.

A quick glimpse on U general structure shape highlights two main performance issues. First
of all, the size of the 3-dimensional inner multi-level structure imply significant (= d × m × c)
strides, thus we can assume spacial locality may be improved by restructuring the layout. Second,
AoS-fashion general structure prevents efficient SIMDization, working on contiguity might enable
automatic SIMDization, or at least allow efficient SIMDization. We can also notice that only 1 out
of 8 elements is accessed in the superstructure.

For reference, let us explicit σ to characterize the non-optimality of locality of U .

• ~s0 = 1, as there is only one array layout dimension and the loop is perfectly nested.

• ~sv = 1, as the only array layout is on the outer dimension

• ~sh = (7, 1, 1), because of the gap on the last structure layout dimension.

This shows that locality, apart from the significant gap provoked by the not fully utilized struc-
ture layout S{1},d, can be viewed as satisfying. However, the inner multi-level structure that in-
hibits vectorization is an issue the transformation should definitely address.

72

4. Transformations

Each transformation we propose removes memory gaps formed by unused elements — in the
context of the instance evaluated — therefore the resulting layouts are 1/8th the size of U . Con-
sequently, ~sh = 1. We study four specific layout transformations, implementing different flavours
of SoAs and AoSoAs. AoSoA-cplx and SoA-cplx which preserve complex number structure, id est
they keep real and imaginary parts of a given complex number contiguous, whereas AoSoA-dbl
and SoA-dbl are layouts oblivious to complex numbers. We make sure they all guarantee perfect
access order, ie ~s0 = 1 by enforcing iterator lexicographic order. Thus the only judge of locality left
to decide between them is ~sv, that we will explicit for each transformation.

AoSoA-dbl transformation is given by:

AL ⊗ S{1},d ⊗ Sm ⊗ Sc
compression−−−−−−−−→ AL ⊗ Sm ⊗ Sc

merger−−−−→ AL ⊗ Sm×c
reshaping−−−−−−→ AL/v ⊗Av ⊗ Sm×c

permutation−−−−−−−−→ AL/v ⊗ Sm×c ⊗Av

Which gives:
~sh = (v/P (v)) = (1)

AoSoA-cplx transformation is given by:

AL ⊗ S{1},d ⊗ Sm ⊗ Sc
compression−−−−−−−−→ AL ⊗ Sm ⊗ Sc
reshaping−−−−−−→ AL/v ⊗Av ⊗ Sm ⊗ Sc

permutation−−−−−−−−→ AL/v ⊗ Sm ⊗Av ⊗ Sc

Which gives:
~sv = (1, v × c/P (v)) = (1, 2)

SoA-dbl transformation is given by:

AL ⊗ S{1},d ⊗ Sm ⊗ Sc
compression−−−−−−−−→ AL ⊗ Sm ⊗ Sc

merger−−−−→ AL ⊗ Sm×c
permutation−−−−−−−−→ Sm×c ⊗AL

Which gives:
~sv = (L/P (v))

SoA-cplx transformation is given by:

AL ⊗ S{1},d ⊗ Sm ⊗ Sc
compression−−−−−−−−→ AL ⊗ Sm ⊗ Sc
permutation−−−−−−−−→ Sm ⊗AL ⊗ Sc

73

4.3. Case Study

Which gives:
~sv = (L× 2/P (v))

To sum up, for CPU vectorization in particular, the degree of parallelism P(v) is typically small
in front of L, which implies ~sv >> 1. Thus AoSoA transformation are expected to perform better
than SoA on this kind of architectures.

Qiral benchmark with even/odd preconditioning The preconditioning considered iterates on
one out of 2 values of the lattice, but in a checkerboard fashion: only the white positions of a 4D
checkerboard are visited. According to memory traces analysis described before and applied to
this application, memory accesses to U are given by:⊕

x,y,z,t≡0[2]

(
⊗

k=x,y,z,t

Al ⊗ Sk,2)

Here, what initially appeared to be an 1-dimensional array of L elements on the outermost dimen-
sion is in fact a 4-dimensional array, sparsely processed by its patterns as only one element out
of two are accessed. Indeed, its basis addresses form a 4-dimensional checkerboard-style pattern,
so half of the initial layout is used in this case. Again, because there is only one base on the d-
elements dimension, 1/8th of this half is actually processed. Since 164 = L/2, the access function
can also be written as:

AL/2 ⊗ SI,2 ⊗ S{1},d ⊗ Sm ⊗ Sc
compression−−−−−−−−→ AL/2 ⊗ S{1},d ⊗ Sm ⊗ Sc

Therefore, proposed transformations for this benchmark are the same as the one before.

Qiral application without preconditioning According to memory traces analysis described be-
fore and applied to Qiral, access is given by:

AL ⊗ Sd ⊗ Sm ⊗ Sc

and encounters similar difficulties as the benchmarks studied before, as the inner superstruc-
ture still forms a SIMDization-challenging gap. We study two transformations.

AoSoA-fashion transformation:

AL ⊗ Sd ⊗ Sm ⊗ Sc
merger−−−−→ AL ⊗ Sd ⊗ Sm×c

reshaping−−−−−−→ AL/v ⊗Av ⊗ Sd ⊗ Sm×c
permutations−−−−−−−−→ AL/v ⊗ Sd ⊗ Sm×c ⊗Av

SoA-fashion transformation:

AL ⊗ Sd ⊗ Sm ⊗ Sc
merger−−−−→ AL ⊗ Sd ⊗ Sm×c

permutations−−−−−−−−→ Sm×c ⊗ Sd ⊗AL

74

4. Transformations

1 for (Xstep = 1; Xstep<Nx+1; Xstep ++)
2 {
3 for (Ystep = 1; Ystep < Ny+1; Ystep ++)
4 {
5 . . .
6 Vm= d a t a r r [Xstep] [Ystep] [0] [(step−1)%2];
7 dVmdt= d a t a r r [Xstep] [Ystep] [1] [(step−1)%2];
8 IK1= d a t a r r [Xstep] [Ystep] [2] [(step−1)%2];
9 x1= d a t a r r [Xstep] [Ystep] [4] [(step−1)%2];

10 INa= d a t a r r [Xstep] [Ystep] [5] [(step−1)%2];
11 m= d a t a r r [Xstep] [Ystep] [6] [(step−1)%2];
12 h= d a t a r r [Xstep] [Ystep] [7] [(step−1)%2];
13 I s = d a t a r r [Xstep] [Ystep] [8] [(step−1)%2];
14 d= d a t a r r [Xstep] [Ystep] [9] [(step−1)%2];
15 f = d a t a r r [Xstep] [Ystep] [1 0] [(step−1)%2];
16 Cai= d a t a r r [Xstep] [Ystep] [1 1] [(step−1)%2];
17 Isum= d a t a r r [Xstep] [Ystep] [1 2] [(step−1)%2];
18 D i f f = d a t a r r [Xstep] [Ystep] [1 3] [(step%2)] ;
19 I s t i m = d a t a r r [Xstep] [Ystep] [1 4] [(step%2)] ;
20 . . .

Figure 4.4: Cardiac wave simulation [112]

2D cardiac wave propagation simulation application

We focus on an application [112] whose main kernel code is given in Figure 4.4. The kernel we
chose to study uses two arrays, input U and input/output O, where most of the accesses are
performed in a stencil fashion onU which is the array we will examine here. According to memory
traces analysis described before and applied to this benchmark, access is given by:

AX ⊗AX ⊗ S{1},a ⊗ S{1},s

where a = 15, s = 2 and where the output matrix O is initially encapsulated in original layout
— at the 14th field of the a-elements structure, while the rest of the data lies in the 0th field —
therefore suffering the same stride issues. We restructure it as well into a distinct similar array.
Stencil layout actually hides an inner superstructure of size a× s, which implies a large stride and
possibilities of performance improvement. Parameter X vary with the dataset and its value is one
of {256, 512, 1024} for the datasets we chose to study. Copy-in can be placed as early as the array
initialization.

We study one transformation:

AX ⊗AX ⊗ S{1},a ⊗ S{1},s
compression−−−−−−−−→ AX ⊗AX ⊗ S{1},a
compression−−−−−−−−→ AX ⊗AX

4.4 Conclusion

We covered the different existing layout transformations; some of them are popular ones and al-
ready acknowledged for their benefits; explaining their uses and how they are expressed in our
data layout formalism. Transformations space exploration is driven by two fundamental con-
straints. The first, locality, is meant to ensure all data is properly used in an efficient way. The

75

4.4. Conclusion

second is parallelism. We guide the exploration in such way to exhibit SIMD-friendly layouts in
order to obtain the most of the computers performance. We also ensure that multithread distri-
bution is appropriately done so the locality property is not degraded and the layout is processed
efficiently over multiple cores. For better understanding, we also detailed examples of transfor-
mations on case study, using two real-life application codes, and we characterized their relevance
in the context of transformation space exploration. By nature, said formalism can be manipulated
conveniently to express transformation paths, which encode the information of how the related
user source code transformations should be written, this is the topic of the following chapter.

76

Chapter 5

Code Rewriting and User Feedback

5.1 Systematic Code Rewriting . 77
5.1.1 On locality . 78

5.1.2 Formalism Interpretation . 79

5.1.3 Copying . 81

5.1.4 Remapping . 83

5.2 User Feedback . 84
5.2.1 Layout issues pinpointing . 85

5.2.2 Hinting the rewriting . 85

5.3 Low-level implementation . 86
5.3.1 Loop kernel rewriting . 86

5.3.2 SIMDization . 87

5.4 Conclusion . 88

Formal abstraction introduced in the previous chapters allows us to rewrite ini-
tial application code and seek high performance improved versions. Considering
a given formal transformation, two generations are applied separately. First, we
propose pseudo-C language code snippets of proposed transformations, providing
valuable feedback. Second, we create mock-up codes serving evaluation purposes
via binary rewriting. Evaluation results are complementing user feedback by quan-
tifying each given transformation, providing a reliable gain estimation for the pro-
grammer to make an appropriate decision in terms of application code rewriting.

5.1 Systematic Code Rewriting

This chapter discusses the implementation of the restructuring strategies detailed in the previous
chapters. Each of the selected layout transformations has to be generated for evaluation of its
potential, but also as it is automatically generated, it is possible to notify the programmer about
the aspects of the transformation, meaning not only transmitting the main idea behind but also
precise individual memory instruction rewriting.

77

5.1. Systematic Code Rewriting

The formalism we defined in the previous chapters, that abstracts data structures, gives a com-
plete overview of the stride issues, and can be translated to pseudo-C in a straightforward man-
ner. As for evaluation code versions themselves, they are implemented through mock-up codes,
which are binary versions rewritten from the original user application binary, which are not totally
semantically equivalent to the initial code. The sole purpose of their existence is to predict the im-
pact of given layout transformations on kernel performance. Preservation of semantics can not be
guaranteed as the approach is based on memory traces, which reflect only the memory accesses
performed on a given run, or more precisely, a given instance of a given function. However, our
goal is to tend to actual user rewritten kernel behavior and performances, so we try to tend close
to the initial version semantics.

5.1.1 On locality

The code transformation, and the evaluation that comes with it, is local. Indeed, memory traces
collection is costly in terms of elapsed time. Generally, it entails 100× of slowdown factor for
MAQAO instrumentation for instance, which operates directly on the binary file and it is the
least intrusive method for probing memory accesses. That is why instrumentation is usually per-
formed on a restricted scope, namely a given function of interest. Consequently, our visibility
is constrained to the function scope only, as opposed to compiler visibility that is the entire pro-
gram, minus the runtime information the memory traces contains. Another difference with the
traditional compiler transformation approach is that we perform code rewriting, as opposed to
compiler code generation. The difference lies in the fact that the compiler disposes of the im-
maculate source code and a wide set of optimizations to apply, while in our case, the input of
our framework is a binary file already featuring numerous compiler optimizations. Therefore, the
degree of freedom is lesser, as we keep the initial binary code skeleton and rewrite inside. Be-
sides, aforementioned compiler optimizations can constitute noise to our approach, as it renders
the binary less readable, in the sense that it may be harder to analyse through top-notch opti-
mizations, an example is the unrolling that multiply instructions within the loop nest considered
and complicate both the analysis and generation that prefer factorized code. Another example is
the SIMDization, compilers try to vectorize as they can suboptimized layout accesses, by some-
times performing partial loads and such, requiring analysis to first unvectorize the code, before
performing actual layout transformations, and possibly revectorizing afterwards if applicable. As
said before, our binary-based approach implies using code already optimized by a compiler. On
the other hand layout transformation is independent to control optimizations, and as we operate
well after a mixture of compiler control optimization, we are not concerned by the pass order is-
sue, namely the fact that compiler passes best order of application is unknown in the general case.
Therefore proposed codes are better or worse than initial code, depending only on the layout
proposed.

We distinguish three major aspects of code modifications, as depicted in Figure 5.1. First of all,
we need to retrieve the data from the original layout and map it onto the new layout, as our scope
is as wide as the function of interest only, we can not assume we have control on the original
layout allocation, often it will be allocated earlier in the program. One way to cope with that
is to copy the data into a newly allocated structure. This operation is named copy-in, while the
reverse operation, which consists in storing the new data back into the original layout, is called
copy-out. The later permits to get back to the normal application functioning as we leave the
function and consequently our scope of optimization. Second, the loop nest structure has to be

78

5. Code Rewriting and User Feedback

1 / / O r i g i n a l hotspot loop nest
2 for (i0 =0; i0 < n0 ; i0 += 1)
3 {
4 A [. . .]
5 }

→

1 / / (1) Copy of i n i t i a l l ayou t i n t o opt imized s t r u c t u r e
2 copy in (newA, A) ;
3
4 / / (2) Loop nest r e w r i t i n g
5 for (i t 0 =0; i t0<nt0 ; i t 0 ++)
6 {
7 / / (3) New mapping
8 newA [. . .]
9 }

10
11 copy out (A,newA) ;

Figure 5.1: The three main steps of loop nest rewriting — copy of the initial layout, new loop nest
itself, individual memory instruction new mapping

rearranged, accordingly to the respective restructuring strategies contemplated, that may induce
nest-breaking transformations such as loop permutations or loop fusions for instance. Finally,
each of the individual memory accesses instructions have to be modified in order to take account
of the new memory mapping.

5.1.2 Formalism Interpretation

According to Chapter 3, we can write a generic n-dimensional layout as:{
Adn−1

SIn−1,dn−1

⊗ · · · ⊗

{
Ad0
SI0,d0

Even though as formally defined Sd = Ad, there is a difference between the two notations that
is important to mention for code generation purposes. As given by delinearization described in
chapter 3, A functions actually represent memory chunks accessed wholly by any assembly in-
struction probed for memory traces – much like the array represented by an A in the traditional
notation AoS – , while S functions usually represent small memory chunks where only one el-
ement is accessed per instruction, much like structure fields in C programming language. This
distinction allows us to make deductions from the formal description of the layout. The A ele-
ments are consecutive and need to be processed by loop structures, thus each dimension written
as an A represents a loop level. Said otherwise, there are as many loops as As needed to process
the entire layout.

Example – Lattice QCD:
Consider the following layout transformation:

AL ⊗ S{2},d ⊗ Sm ⊗ Sc
AoSoA−dbl−−−−−−−→ AL/v ⊗ Sm×c ⊗ Av

We can deduce the corresponding loop nests:

1 for (i0 =0; i0 < L ; i0 += 1)
2 {
3 . . .
4 }

→

1 for (i0 =0; i0<L / v ; i0 ++)
2 {
3 for (i1 =0; i1<v ; i1 ++)
4 {
5 . . .
6 }
7 }

79

5.1. Systematic Code Rewriting

Here, the initial layout only has one A which implies one loop in the code. However, the
second layout as an additional A, consequence of an AoS to AoSoA transformation. In terms of
code, it means another loop need to be written.

Formalism also hints the loop bounds. Loop bounds are — outermost to innermost — the
{dp−1, . . . , d1} as given in Equation5.1.2, where p is the number of arrays A, and the set elements
their respective diameters. Indeed, there is no loop on a given structure S, since only one element
is accessed by the pattern, rather it becomes part of the strides. The loop increment on dimension
j is given by:

sj =

j∏
k=0

dk

which is the linearized stride on the dimension j ∈ [0, p− 1]
Example – Lattice QCD:
Consider the following layout transformation:

AL ⊗ S{2},d ⊗ Sm ⊗ Sc
AoSoA−dbl−−−−−−−→ AL/v ⊗ S m× c ⊗A v

Therefore the memory accesses have the form given in Figure 5.2.

1 for (iL=0 ; iL < L ; iL +=1) {
2 for (j =0; j<n2 ; j ++) {
3 . . .
4 r0 += U[8∗ iL + 2] [1]∗ tmp [n2+ j] ;
5 / / r e a l pa r t eq . to
6 / / U[8∗ i L + 2] [1] [0]
7 . . .
8 }}

1 / / double newU;
2 for (i0 =0 ; i0 < L / v ; i0 ++){
3 for (i1 =0; i1<v ; i1 ++) {
4 . . .
5 r0 += newU [i0 ∗ (m∗c∗v)
6 + 2∗(v)
7 + i1]
8 ∗tmp [n2+ j] ;
9 . . .

10 }
11 }

Figure 5.2: Memory access example on Lattice QCD layout transformation

Here given in C, 3-dimensional newU has therefore 2 non-unit inter-dimensional strides (m×
c× v, v) that are explicit through the formalism.

Now that the intuition is given, the problem is the following: Loop nest as given by the for-
malism is different than the one in the initial code. There are several reasons behind this matter.

First of all, loop nest in the trace is different than corresponding loop nest in the code. Com-
pilers may transform the loop nest as initially expressed in the source code, a lot of optimizations
(loop fusion, strip mining, useless loops removal, etc.) themselves provoke important modifi-
cations impacting the binary, and thus the memory traces. There are also indirections that may
conceal some information to the compiler, such as a regular strided multi-dimensional access that
can be rightfully interpreted as loops by the NLR algorithm that compress that memory traces.
Another point is that delinearization may result in different layout structure than the one ex-
pressed in the source code. Indeed, it is not meant to match the source code representation, rather
it permits to obtain a normal form. Moreover, the formalism does not comprise all the loops in
the initial code fragment considered, just the ones the layout of interest depends on, as they are
reported in the memory traces.

Second, the formalism we obtain after a lot of different reshaping strategies implies different
intuitive loop nest than the one in the trace. An example is the AoS to AoSoA transformation
where another loop is injected in the original loop nest as given by the memory traces.

80

5. Code Rewriting and User Feedback

1 for (iL=0 ; iL < L ; iL +=1) {
2 for (j =0; j<n2 ; j ++) {
3 . . .
4 r0 += U[8∗ iL + 2] [1]∗ tmp [n2+ j] ;
5 . . .
6 }}

1 for i0 = 0 to 131071
2 val 0x100910 + 1152∗ i0
3 endfor

Figure 5.3: Loop nest as it appears in memory traces is different than the loop nest in the source
code – Here loop on j has been unrolled by the compiler, and U does not depend on it thus it does
not appear in the trace

We explain in this chapter how the code layout transformations are smoothly integrated in the
original binary loop nest for code mock-up generation, and how loop nest code restructuring can
be hinted to the user. Multiple inner loops may have different expressions in the formalism. We
will first assume they have the same expression, that is there is one layout transformation to apply
per layout.

5.1.3 Copying

As discussed before, because our scope is local it is likely that the layout of interest allocation is
unreachable, meaning that performing a copy to pass from the original suboptimal layout to the
new layout is inevitable. The programmer however, as he has a global view on his source code,
can decide to apply the copy earlier in the code, or even skip the copy by directly allocating the
layout according to the transformations suggestions if applicable. Still, one way to perform the
copy is to copy each trace one by one. However, this would result in a lot of instructions, possibly
costly patterns and certainly poor performance. Copying time can be critical if the copy is close
to the innermost kernel of interest, therefore it is important to have an efficient and fast copy
code, and formalism can help us doing so. Moreover, both arrays, the old one and the new one,
cannot be accessed in a contiguous manner because otherwise that would mean their topology is
identical, which would be useless in our case. The key here is to guarantee that one of them is
accessed contiguously for performance

Here again, the notion of iterator is leading. Indeed, we need to be able to perform the mapping
between the old and the new layout, and the iterators, as given by the memory traces, guarantee
the order of access to the old layout. The splitting transformation in particular, unlike permutation
and compression, induce the creation of new iterators out of the original ones, and it is important
to be able to track back to the initial iterator to ensure correct mapping between the old structure
and the new structure.

Let−→× be the non-commutative multiplication, and the associated division operators
−→
/ and

←−
/

are defined by:
c = a

−→×b ⇐⇒ a = c
−→
/ b ⇐⇒ b = c

←−
/ a (5.1)

We add the notion of iterators to the transformations rewriting system described in 4.1.

(L, i1)⊗ (L′, i0)→ (L′, i0)⊗ (L, i1)

(Anm, i
′
1
−→× i′0)→ (An, i

′
1)⊗ (Am, i

′
0)

(SI,n, i1)⊗ (SJ,m, i0)→ (SI′,nm, i1
−→× i0), if#I ′ = #I ×#J

(SI,d, i)→ (SI′,d′ , i), if#I = #I ′, d ≤ d′

(5.2)

81

5.1. Systematic Code Rewriting

Because the new layout is gapless by default, we propose to perform the copy in a manner that
allows contiguous access on this layout. The general expression of the copy can be written such
as:

new[i′n] . . . [i
′
1] = old[e(im)] . . . [e(i1)]

Where the i′ iterators correspond to the copy loop nest iterators and where the e(i)s are ex-
pressions, that depend on at least one of the i′s, and that can be infered from the results of the
transformations described by 5.2, in order to have only expressions of i′s in the copy code. We
express e as a rewriting system:

i1 = i′0
−→
/ i0 → i′0 / #i0

i0 = i′0
←−
/ i1 → i′0 % #i0

iY = i′1
−→× i′0 → i′1 ×#i′0 + i′0

(5.3)

If any iterator is not an interval, that is a structure with unused fields, then the copy instruction
model is duplicated and we use all the combinations of the scalars instead.

Example: Consider the following transformation:

(AX , i2)⊗ (SW , i1)⊗ (AY Z , i0)

split | i0=i′1
−→× i′0−−−−−−−−−−→ (AX , i2)⊗ (SW , i1)⊗ (AY , i

′
1)⊗ (AZ , i

′
0)

permutation−−−−−−−−→ (AX , i2)⊗ (AY , i
′
1)⊗ (SW , i1)⊗ (AZ , i

′
0)

merger | i′2=i2
−→× i′1−−−−−−−−−−−−→ (AXY , i

′
2)⊗ (SW , i1)⊗ (AZ , i

′
0)

(5.4)

Therefore copy code is on the form:

new[i′2][i1][i
′
0] = old[e(i2)][i1][e(i0)]

Let us now express each of the e(i)s in terms of i′s:

i′2 = i2
−→× i′1

5.1⇐⇒ i2 = i′2
−→
/ i′1

5.3⇐⇒ e(i2) = i′2/#i
′
1

⇐⇒ e(i2) = i′2/Y

i′1 = i0
−→
/ i′0

5.1⇐⇒ i0 = i′1
−→× i′0

5.1⇐⇒ i0 = (i′1 = i′2
←−
/ i2)
−→× i′0

5.3⇐⇒ e(i0) = (i′2%#i′1)×#i′0 + i′0

⇐⇒ e(i0) = (i′2%Y)× Z + i′0

82

5. Code Rewriting and User Feedback

Let i1 = {0, 1, 3}.
Finally, the copy code is the following:

1 for (ip2 =0; ip2<XY; ip2 ++) {
2 for (ip0 ; ip0<Z ; ip0 ++) {
3 new [ip2] [0] [ip0] = o ld [ip2 /Y] [0] [(ip2%Y) ∗Z + ip0] ;
4 new [ip2] [1] [ip0] = o ld [ip2 /Y] [1] [(ip2%Y) ∗Z + ip0] ;
5 new [ip2] [3] [ip0] = o ld [ip2 /Y] [3] [(ip2%Y) ∗Z + ip0] ;
6 }}

Note that such code snippet can be reported to the user as it is, and can be used as it is as
the copy is always correct. Only the aliases {old, new} must be modified as they are given here
arbitrarily. This same code is also used in the mock-up code generation.

5.1.4 Remapping

Each memory access in the original loop nest need to be modified as a new mapping is given
after data restructuring. A solution would be to rewrite the entire loop nest in order to access the
new layout efficiently, however such deep code modifications would possibly require more static
analysis to ensure the mock-up code is close enough to a user rewritten version . We propose to
access the new layout elements using a NEXT function to theoretically calculate every iteration
the new position to reach, however in practice such function would be in most cases removed by
the compiler via the use of induction variables.

We want to express the new layout iterators i′s in terms of the original layout iterators is and
generate the expressions needed to properly calculate the new accesses

new[e(i′n)] . . . [e(i
′
1)]

This is done again thanks to 5.2. However, the i iterators are given by the memory traces, and thus
different from the source code iterators. We need to inject them into the original loop lest, in order
to correctly access the new layout. So, in order not to make the addresses calculation rely on costly
/ and %, we make a first pass to remove these operators by adding systematically a new iterator:

(i′k/X, i
′
k%X)→ (i′k, i

′′
k)
∣∣∣#i′′k = X (5.5)

Then, for each of the multi-level structure fields combination, we write a function given in
Figure 5.4 to compute the addresses to be accessed by any memory instruction on the layout of
interest, independently of the original control, that we will insert prior to any of said memory
instructions.

Example
Based on 5.4, all the memory instructions in the transformed loop nest have the form:

new[e(i′2)][i1][e(i
′
0)]

83

5.2. User Feedback

1 NEXT(r0)
2 {
3 i f (jn > #in) return ; / / unreachable
4 i f (jn−1 > #in−1) jn−1 = 0 ; jn++;
5 . . .
6 i f (j1 > #i1) j1 = 0 ; j2++;
7 r0 = base + e(in) ∗ (#in−1 ∗ ... ∗#i1)
8 + e(in−1) ∗ (#in−2 ∗ ... ∗#i1)
9 . . .

10 + e(i1)
11 j1++;
12 }

Figure 5.4: NEXT function

We need to express the e(i′)s in terms of is, since the loop iterators are is here:

i′2 = i2
−→× i′1

5.1⇐⇒ e(i′2) = i2 ×#i′1 + i′1

⇐⇒ e(i′2) = i2 × Y + (i′1 = i0
−→
/ i′0)

5.1⇐⇒ e(i′2) = i2 × Y + i0/#i0

⇐⇒ e(i′2) = i2 × Y + i0/Z

i′0 = i0
←−
/ i′1 ⇐⇒ e(i′0) = i0%#i′0

⇐⇒ e(i′0) = i0%Z

Therefore all the new memory accesses are on the form:

new[i2 × Y + i0/Z][i1][i0%Z]

Then, after division-removing pass (5.5) it becomes:

new[i2 × Y + i0][i1][j0]

We deduce the following NEXT function that calculates individual memory accesses.
1 NEXT(r0 , i1)
2 {
3 i f (i0 > Y) i0 = 0 ; i2++;
4 i f (j0 < Z) j0 = 0 ; i0++;
5 r0 = base + i2 ∗ Y + i0 ∗ (Y ∗ Z)
6 + (i1) ∗ Z
7 + j0
8 j0++;
9 }

Where i1 is a structure field, and depends on the memory instruction base address itself.
Then, the compiler can use induction variables to remove unnecessary ifs and duplications,

and generate efficient code.

5.2 User Feedback

One of our main contributions is the feedback we can provide, as to which layout transformations
to apply and how to proceed. Now that we explained how the layout remapping is done, we

84

5. Code Rewriting and User Feedback

can report to the user. Here we detail how automatic feedback is generated, thanks to both the
formalism and the memory traces.

This section exclusively deals with the remapping feedback problem, as the copy feedback
subject as been treated previously and the quantified feedback is the next chapters topic.

5.2.1 Layout issues pinpointing

The first feedback we must provide the user with is the actual layout issues happening in his
application. Gaps and SIMD-inhibiting structures can be reported to the user in a very concise
and convenient way. Because the formalism itself is naturally not to be used raw for feedback,
we propose to resort to the NumPy [1] notation to immediately translate the formalism to a more
user-friendly version.

Example – Lattice QCD benchmark:
Consider the following layout:

A131072 ⊗ S{2},8 ⊗ S9 ⊗ S2

Let us use a C declaration to express the layout structure:

a[131072][8][9][2]

Now mixed with NumPy semantic to give a hint of access patterns:

a[0 : 131072,′ 2 : 3′,′ 0 : 9′,′ 0 : 2′]

Where 2 : 3 actually means an access to the element 2 only, while 3 represents the unreached
upper bound. Here we used the ” notation reserved to data fields access to hint the presence
of a structure on the dimension where it appears. This notation is originally meant to refer to a
single data field name, but since we do not have any, we assume the names would be the fields
position, potentially several – if not all – of them. Finally, we have translated all potential the
layout issues held by the formalism representation into more conventional notations for better
user understanding.

Furthermore, we can also report issues up to the individual memory instruction level. This is
done by translating the memory traces into a C representation of the formalism notation, as shown
in Figure 5.5. Here the user can notice that the innermost loop accesses the outermost dimension
of the layout, which is bad for performance and SIMDization.

5.2.2 Hinting the rewriting

Having reported the layout issues to the programmer, now we want to propose possible solutions,
as to which layout may improve the user application performance.

Example – Lattice QCD benchmark:
Consider the following transformation:

AL ⊗ S{2},d ⊗ Sm ⊗ Sc
AoSoA−dbl−−−−−−−→ AL/v ⊗ Sm×c ⊗Av

Table 5.2.2 reports how the formalism is translated to the user, using C/NumPy notations,
where v is a given SIMD vector size. Description of both initial and transformed layout is shown,

85

5.3. Low-level implementation

1 for i1 = 0 to 131071
2 va l 0x7f845baa2168 + 1152∗

i1
3 endfor
4 for i1 = 0 to 131071
5 va l 0x7f845baa2170 + 1152∗

i1
6 endfor
7 for i1 = 0 to 131071
8 va l 0x7f845baa2178 + 1152∗

i1
9 endfor

10 . . .

1 / / double A [1 3 1 0 7 2] [8] [9] [2] ;
2 for (i0 =0 ; i0<131072; i0 ++)
3 {
4 A [i0] [2] [0] [0]
5 A [i0] [2] [0] [1]
6 A [i0] [2] [1] [0]
7 A [i0] [2] [1] [1]
8 A [i0] [2] [2] [0]
9 . . .

10 A [i0] [2] [8] [1]
11 }

Figure 5.5: Layout issues pinpointed to individual instruction level

Representation Initial Layout AoSoA-dbl Transformation
Formalism A131072 ⊗ S{2},8 ⊗ S9 ⊗ S2 A131072/v ⊗ S9×2 ⊗Av

C declaration A[131072][8][9][2] A[131072/v][9 ∗ 2][v]
NumPy A[:, ′2 : 3′, ′ :′, ′ :′] A[:, ′ :′, :]

Table 5.1: View of given layout transformation through C/NumPy

aiming at highlighting the global idea behind the proposed transformation, so the user gets the
big picture of how his code should be transformed to comply with the given transformation.

It is possible to go further, up to the individual instruction level to suggest corrections in order
to rewrite the memory accesses accordingly to the hinted transformation. Thanks to the formalism
and the knowledge of the instructions base addresses thanks to the memory traces, it is possible
to give a C representation of what the new accesses should resemble for a given layout transfor-
mation, in order to give a sense of how the access should be performed. Figure 5.6 shows how
the initial accesses can be rewritten to map onto the new structure. The difficulty here lies in the
fact that it might not be straightforward to pass from the initial loop nest to the new one, the loop
design is still the user responsibility.

5.3 Low-level implementation

We have detailed an approach to redesign memory mapping, in this section we explain how the
modifications are applied at lower level in order to actually rewrite the user application binary
code.

5.3.1 Loop kernel rewriting

The first step in rewriting the user application binary loop kernel of interest is to retrieve said
kernel. We use MAQAO to disassemble the binary and to perform basic loop analysis as to re-
trieve the control flow graph and the dependence graph. This way we obtain the kernel assembly
listing as well as its address in the binary, so it is possible to patch a new modified kernel instead.
The patch consist in editing the binary kernel, the idea is to replace the original kernel by NOP
instructions – instructions with no effect other than padding the binary – so as not to compromise
all hardcoded binary offsets in the code, and to add jump instructions to and from a safe area

86

5. Code Rewriting and User Feedback

1 / / double A [1 3 1 0 7 2] [8] [9] [2] ;
2 for (i0 =0 ; i0<131072; i0 ++)
3 {
4 A [i0] [2] [0] [0]
5 A [i0] [2] [0] [1]
6 A [i0] [2] [1] [0]
7 A [i0] [2] [1] [1]
8 A [i0] [2] [2] [0]
9 . . .

10 A [i0] [2] [8] [1]
11 }

1 / / double newU[131072/ v] [1 8] [v
] ;

2 for (i0 =0 ; i0 < 131072/v ; i0
++)

3 {
4 for (i1 =0; i1<v ; i1 ++)
5 {
6 newU [i0] [0] [i1]
7 newU [i0] [1] [i1]
8 newU [i0] [2] [i1]
9 newU [i0] [3] [i1]

10 newU [i0] [4] [i1]
11 . . .
12 newU [i0] [1 7] [i1]
13 }
14 }

Figure 5.6: Loop nest rewriting

at the end of the binary file where the new kernel code is added. We choose to encapsulate this
new kernel in a function body, which as a few consequences. For instance, we ought to be careful
with stack usage, it is perturbed by the insertion of a new function, in place of the old hot spot.
Therefore instructions using offsets relative to the stack pointer become wrong, a simple fix is to
retrieve the data pointed prior to the function call itself and store it into newly allocated structures.
Likewise, instructions using IP register need to be treated carefully, and we may want to suggest
the use of other registers instead.

In order not to manage the registers ourselves, we choose to resort to compiler register re-
allocation. This means the assembly code we rewrite is written as C inline assembly, and then
recompiled before being patched onto a new binary, as a function call.

Every memory instruction that accesses the initial sub-optimized layout has to be changed, so
the data is accessed exclusively via the newly generated layout. In the case where the new struc-
ture is composed of more dimensions than the initial layout, code generation may or may not use
additional integer registers, the decision is made by compiler register allocation. Furthermore,
the new layout we allocate is well-aligned which makes possible the use of aligned instructions.
Therefore as for alignment, all the initial hardcoded offsets are removed from the memory instruc-
tions. Other instructions such as arithmetic operations are left untouched, in a non-SIMD context.

As we assume fixed stride instructions, indirections do not happen anymore. Indeed, in some
applications code, patterns mapped by index table are in fact regular patterns, but suffer of a
deficit of performance due to indirections. The difficulty here is transparent in this specific case,
as the new layout does not require an index table, and the indirection leftovers in the code are
evicted through dead code elimination.

5.3.2 SIMDization

The vectorization analysis as described in Chapter 2 allows us to determine if vectorization is
actually applicable to a given innermost loop kernel. If it is, then a lot of code modifications is
needed, to feature new access patterns alongside the use of SIMD instructions and other SIMD-
related adjustments.

We have to substitute the original hot loop with the new one, which is shorter by a factor equal
to the architecture vector size. The initial number of iterations is retrieved from the memory traces,

87

5.4. Conclusion

therefore the mock-up loop is bound to the run captured. Increment on the new layout is modified
to be vector-sized, and if pointers are updated within the loop before the first use as revealed by
static dependence analysis – that is what we name pre-incrementation – the original instruction
has to be placed right before the loop to set the pointer correctly.

1
2 loop : . . .
3 add $0x4 , %rax
4 movsd (%rax) ,%xmm7
5 . . .
6 jmp loop

1 add $0x4 , %rax
2 loop : . . .
3 movapd (%rax) ,%xmm7
4 add $0x10 , %rax
5 . . .
6 jmp loop

Figure 5.7: Pre-incrementation fix – assuming vector size is 0x10 bytes

As shown in Figure 5.7, since the new iterator has a wider stride, pre-incrementation becomes
incorrect as the base address is shifted. Most of the instructions mnemonics need to be substituted
for their SIMD equivalent. We use packed instructions, and exclusively scalar instructions such as
movsd with three parameters, has to be replaced by their equivalent SIMD instructions.

1 movsd 0x40(%r10 ,%r14 , 1) ,%xmm7 1 movapd (%r10) ,%xmm7

Figure 5.8: Non-SIMD instructions substitution

Figure 5.8 shows an example of instruction that need to be replaced by an equivalent SIMD
instruction. Particular instruction shown does not have an equivalent but still can be effectively
substituted, as we use exactly one register for the new layout. Then it is up to the register real-
location to reaffect registers if needed. One of difficulty of binary code rewriting is that compiler
optimizations may complexify the loop instructions. However, some compiler optimizations can
be untangled, that is the case for partial loads that are replaced by a single packed load operation.

1 movsd (%r10) ,%xmm6
2 movhpd 0x8(%r10) ,%xmm6 1 movapd (%r10) ,%xmm6

Figure 5.9: Partial load eviction

Figure 5.9 shows an example of partial load that can be merged into one instruction, which can
be advantageous if the two addresses are far apart.

Reductions are spotted through SIMD analysis, thus we are able to tackle them using horizon-
tal operations. We can also spot read-only arrays or constants and unpack them.

5.4 Conclusion

We presented in this chapter how based on data layout formalism we are able to rewrite the user
application binary, and notify the user with comprehensive feedback on how to apply the code
modifications needed to implement suggested transformations. Formalism allows us to limit the
copy overhead, in order to pass from the initial suboptimal layout to a new given transformed
layout, and to remap each of the loop kernel accesses individually. We also gave details of im-
plementation at low-level, where binary and assembly tricks are useful to process the input user

88

5. Code Rewriting and User Feedback

binary and produce an efficient output. Assessment of transformations and transformed binary at
the same time is presented in the next chapter.

89

5.4. Conclusion

90

Chapter 6

Transformations Evaluation

6.1 Evaluation methodology . 91
6.1.1 Principle of in-vivo evaluation . 91
6.1.2 Automatic mock-up generation and vectorization 92
6.1.3 Current state of implementation . 93

6.2 Experimental results . 94
6.2.1 TSVC . 94
6.2.2 Lattice QCD benchmark without preconditioning 95
6.2.3 Lattice QCD benchmark with even/odd preconditioning 96
6.2.4 Lattice QCD application without preconditioning 97
6.2.5 2D cardiac wave propagation simulation application 98

6.3 Conclusion . 98

To assess the performance of proposed layout transformations, we introduce a novel
technique that is the in-vivo evaluation. The idea is to directly measure transformed
kernel performance in the context of the user application, so the prediction can be
reliable as the numbers correspond to real use case. We show how we accelerate such
potentially costly evaluation with a methodology based on checkpoint/restart, that
only replays the kernels of interest within the user application. Then we present
the final results of our framework on sets of benchmarks, as well as on two real-life
multithreaded applications, namely a lattice QCD simulation and a cardiac wave
propagation simulation. We show how performance prediction are reliable for the
user to make data layout restructuring decision opportune in order to reach a signif-
icant performance gain.

6.1 Evaluation methodology

6.1.1 Principle of in-vivo evaluation

High accuracy of predictions can only be reached if the mock-ups behave closely like the user-
restructured version. To do so, we perform dynamic evaluation in the context of the application,
which we call in-vivo evaluation, thus tending to preserve application execution conditions.

91

6.1. Evaluation methodology

Evaluation of our different restructuring strategies resorts to Checkpoint/Restart technique:
The original binary is patched with a checkpoint function call, then run until the checkpoint; right
before the hot function call, for this matter. This produces a context file, which serves as a base
context for instrumentation and for all mock-up evaluations. The binary code is instrumented
in order to collect the memory trace and restarted from this context. Several layout transforma-
tions are applied on the initial code, generate as many versions and for each of these versions, the
application is again restarted from the same context. Note that contrarily to the common use of
checkpoint/restart, here the code checkpointed is different from the codes restarted (with mod-
ified layout or instrumentation added). The context is also used for a reference timing, using a
binary containing the initial kernel of interest, in order to deduce speedup from mock-up timing
measurements. Context file also ensures the memory addresses collected by the instrumenta-
tion are always valid through re-runs. Indeed, restructuring strategies implementations rely on
memory areas knowledge, as we need to retrieve data from original layout to be copied in our
optimized layout. The one parameter our approach does not preserve is cache state. Cache warm-
up may be a solution, but goes beyond the scope of this document. Re-runs are stopped at the
function of interest exit, and function timing is deduced at this point. For checkpoint/restart, we
resort to the BLCR library [40].

Restarting a context file with other binaries than the original one is not a proper use case
handled by the checkpoint/restart software, we need to adapt. Being a snapshot of the original
process, the context file features information such as memory data, binary instructions and library
information, among others. When the restart utility is run, it requires the initial binary as well as
the libraries used to be exactly the same as they were at the checkpoint time. Now, as said before,
code mock-ups are different binary versions that need to be restarted using the context of a real
user application run. Therefore the original code section that is subject to modification has to be
concealed, and one way to do so is to encapsulate the section in a new library, dynamically loaded
after the restart point, in order to be absent from the context file and the restart to be safely exe-
cuted, even though the initial library is replaced by mock-up libraries, which incorporates many
modifications. The aforementioned section is simply the function of interest, and is called right
after the restart point, as the initial application was stopped right before its call. This approach can
be generalized to evaluate multiple instances, id est same callee but different callers and parameter
values, and to evaluate multiple functions.

It is important to note that instrumentation is performed only for given set of functions, and
never on the whole application as it is overly costly, in terms of both instrumentation time and
memory usage. The estimation of the global impact of layout transformations can be obtained by
adding the impacts on the different points of interest. One of the consequences of restarting at the
functions of interest, and stopping at their respective exits, is the minimization of the whole set of
evaluation elapsed time. Indeed, even though the hot kernels represent a large proportion of the
overall application time, the rest of the application execution is not negligible, especially when it
is re-run multiple times.

6.1.2 Automatic mock-up generation and vectorization

Not all loop kernels are intrinsically SIMDizable, thus we first have to determine if loop kernels
of interest are actually SIMDizable before effectively attempting SIMD optimizations. We rely on
MAQAO, which is able to determine loop kernel SIMDizability [6], checking dependence in par-
ticular. SIMDizability of loops is not an absolute necessity in the context of mock-up generation,

92

6. Transformations Evaluation

as performance improvement is still achievable through locality optimization. Mock-up libraries
are copies of the reference hotspot library, with deeply modified critical area. Modification has
two aspects, relative to layout and SIMDization.

Copying of initial library skeleton requires a few binary operations. First, the old kernel must
be substituted, and second, a function call to the mock-up kernel is added instead. Also two
other function insertions have to be performed to the new binary, corresponding to copy-in and
copy-out to/from the new layout.

Performing copy-in is essentially retrieving data from the old array, rearranged in a newly
allocated array in order to improve performance through contiguous accesses. The mapping de-
pends on the restructuring strategy considered and shall be reused in the copy-out function. Data
retrieval is possible since memory trace analysis provides the array base address, or at least the
array lowest address accessed during the function execution, which might be different since mem-
ory traces are profile-dependent. New array size is defined by the memory traces analysis, conse-
quently only the data accessed during a given run are collected here, it may not be the actual size
of the initial array and may lack elements, although they are not used in this very computation.

For the sake of our evaluation, we need to find suitable spots to perform copy-in and copy-
out, proposed to the user. The difficulty is to optimize hot loop performance, id est pushing away
the copies from the kernel to minimize their impact, while avoiding cache pollution potentially
induced by inopportune insertion of copy functions. Optimizing copies placement for the whole
function is difficult, rather we focus on kernel optimization on a smaller scope. The idea is to move
the copy up to the beginning of the function if applicable, the further away from the innermost
kernel, the best it is for its performance.

6.1.3 Current state of implementation

The framework we discussed is currently a prototype, written in LUA. The input user application
can originally be written in C, C++, Fortran or any language as long as there is a binary version
for the framework to analyse. The framework is currently not fully automatic, there are still some
tasks the user has to perform by himself to use it properly. The hotspot function detection has to
be done by the user which is feasible with any profiling tool. Also, once said function is spotted
it has to be written in an external dynamic library, so it can be swapped with mock-up libraries –
the libraries that contain each one different mock-up function – and re-ran without disturbing the
checkpoint/restart software functioning.

From then on, all the framework steps are automatic, except for the transformations selec-
tion that has to be user specified: the transformation space exploration is currently not imple-
mented. Nevertheless, our framework scripts process automatically the user binary to add the
actual checkpoint function call which is added before the hot function call, as well as the dlopen
system call that permits to open the dynamic mock-up libraries right after the restarts. Then the in-
strumentation, trace analysis, transformations implementations and the evaluation are automatic.
Instrumentation is performed by MAQAO in our implementation, which is also the case for the
disassembly step to retrieve the original loop kernel assembly code.

As for vectorization, our method to determine kernel intrinsic vectorizability is implemented
in MAQAO, which tells us when to perform vectorization on our restructured kernels. Our kernel
vectorization is a naive implementation and uses SSE2 instructions. It basically consists in orig-
inal instruction substitution by SIMD instructions, and the few other operations as described in
Chapter 5.

93

6.2. Experimental results

Finally, the user feedback itself is not currently implemented.

6.2 Experimental results

The objective of the section is to show how relevant the speedup hints are, in the sense that they
provide useful advice to the programmer, as to which layout transformation best suits his needs.
To do so, we compare our framework speedup predictions with actual user C-level code restruc-
turing performance, following the transformation hints automatically proposed. All the code
mock-ups produced and analyzed in this section implement transformations explained in Sec-
tion 4.3. Each of these are vectorized by default, and are accompanied by another mock-up which
is intended to serve as a referent non-SIMD version, in order to observe the sole effect of layout
restructuring on performance, for the sake of this discussion.

We used an Intel(R) Xeon(R) CPU E5-2650, 2.00GHz 2*8-core processor, with its SSE2 features,
which implies 2-elements vectors as all codes studied use double precision numbers. Also, rewrit-
ten C codes following our framework guidelines are compiled with icc 15.0.0 and gcc 5.3.1, both
with O3 flag.

6.2.1 TSVC

We assess the accuracy of our mockup-driven predictions on a suite of benchmarks, TSVC [72].
TSVC consists of 151 functions intended to explore the typical difficulties a compiler can meet in
the context of vectorization. Out of these 151 benchmarks, 31 matches data layout access issues,
our primary focus in this study. The others correspond to control issues, mostly already well
handled by compilers. In Figure 6.1, we report speedups obtained by mockup kernels and by
manually restructured (correct) kernels over compiled basis kernel compiled with icc 13.0.1, on
Intel Sandy Bridge E5-2650 @2GHz. These kernels are a subset of the data layout issue category.

Non-contiguous stride accesses are an obstacle to vectorization, compilers may see the oppor-
tunity of vectorization but consider it not efficient enough to vectorize. This is the case for bench-
marks s111 and s128, performing accesses with strides 2. Their respective mockups show signifi-
cant gain to expect from data restructuring. When 2-dimensional arrays are accessed column-wise
(in C) or row-wise (in Fortran), accesses with large strides are performed, and one may resort to
data transposition prior to massive computations, in order to allow vectorization. Code mockup
here predicts significant gains to expect from restructured kernel, which is effectively perfectly
reached. One big challenge for compiler autovectorization is brought by rescheduling issues, that
is, codes where compilers see vector dependences it can not resolve, although such dependences
could be fixed by permuting instructions or loop peeling. All s241, s243, s211, s212, s1213, s244
and s1244 benchmarks have rescheduling issues and are not vectorized by the compiler. Here, the
dynamic dependence graph enables to find a correct schedule for SIMD code. In some cases, a
non-contiguous data pattern may not cause performance issues, as they are already well handled
by the compiler and/or the architecture. Here, benchmarks showing no speedup over the basis
kernel (s1111, s131, s121, s151) correspond to alignment issues, which can be solved by unaligned
accesses or vector permutations. On this very architecture, unaligned accesses do not produce a
significant performance overhead, therefore data restructuring will not bring better performance.

For all these measurements, the time to restructure data (using a copy) is not included. In-
deed, the benchmarks are small functions and a copy is, with a few exception, not amortized.

94

6. Transformations Evaluation

 0

 1

 2

 3

 4

 5

s111 s1111 s128 s131 s121 s151 s1115 s241 s243 s211 s212 s1213 s244 s1244

S
pe

ed
up

mockup
correct

Figure 6.1: TSVC Mockup Prediction on x86

Code Initial Layout Transformed Layouts [short name]
Qiral excerpt AL ⊗ S{1},d ⊗ Sm ⊗ Sc AL/v ⊗ Sm×c ⊗Av [AoSoA-dbl]

Qiral precond.
excerpt

⊕
x,y,z,t≡0[2]

(
⊗

k=x,y,z,t

Al ⊗ Sk,2) AL/v ⊗ Sm ⊗Av ⊗ Sc [AoSoA-cplx]

⊗S{1},d ⊗ Sm ⊗ Sc
Sm×c ⊗AL [SoA-dbl]
Sm ⊗AL ⊗ Sc [SoA-cplx]

Qiral application AL ⊗ Sd ⊗ Sm ⊗ Sc AL/v ⊗ Sd ⊗ Sm×c ⊗Av [AoSoA]
Sd ⊗ Sm ⊗AL [SoA]

Cardiac Wave AX ⊗AX ⊗ S{0},a ⊗ S{0},s AX ⊗AX

Table 6.1: Studied Transformations, obtained as described in Section 4.3

Performance of the mockup is in most cases close to the real transformed code. When there are
differences, this is explained by the fact that the mockup results from a binary transformation,
while the correct hand-tuned code results from a source-to-source transformation. Hence, the bi-
nary code resulting from hand-tuning the source code may not be exactly the same as the mockup
code due to compiler optimizations.

6.2.2 Lattice QCD benchmark without preconditioning

The copy-in can be inserted anywhere prior to the computations, as we have already established
in Section 4.3. As for the kernel itself, initial layout and transformations applied are given in Table
6.1. The reference version operating on the initial layout is not automatically vectorized by neither
icc nor gcc. Hand-rewritten versions are not autovectorized neither, although complex multiply
optimization is applied by icc. cplx versions use C complex type, as originally written in the Qiral
application, while dbl versions bypass complex multiply optimization with macros so the entire
kernel is viewed as using only double precision elements by the compiler.

95

6.2. Experimental results

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

AoSoA-dbl AoSoA-cplx SoA-dbl SoA-cplx

S
p
ee
d
u
p

Transformation

mock-up without SIMDization
mock-up with SIMDization

handwritten+icc
handwritten+gcc

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

AoSoA-dbl AoSoA-cplx SoA-dbl SoA-cplx

S
p
ee
d
u
p

Transformation

mock-up without SIMDization
mock-up with SIMDization

handwritten+icc
handwritten+gcc

Figure 6.2: Lattice QCD Benchmark without Preconditioning (left), with Even/Odd Precondition-
ing (right) Speedup, single thread.

Figure 6.2 shows performance prediction results obtained for each transformation, along with
the comparison with the hand-optimized version. While code mock-ups are transformed binary
versions, the hand-optimized version remains in C, potentially taking advantage of further com-
piler optimizations (icc and gcc). The whole set of mock-ups performance constitutes a part of
user feedback we propose.

All mock-ups predict performance improvement for each of the four transformation presented,
which is backed by the user rewritten version, with an average relative error of 16%. Globally,
mock-ups approach the actual rewritten kernel performance, except for AoSoA-cplx where the
performance prediction is somewhat pessimistic, although reasonably reliable. The gap between
prediction and reality on this specific case is in fact due to icc complex multiply optimization,
which outperforms indisputably the mock-up too naive SIMDization. The mock-up basically uses
partial loads to vectorize over the complex type, while icc uses vector operations to perform fast
complex multiply. On the other hand, gcc performance collapse when it comes to complex compu-
tations, compilation did not entail any SIMDization or complex multiply optimization. Moreover,
loop parallelization proposed by mock-ups takes over when it comes to SoA transformation, as it
slightly outperforms rewritten versions, and we can notice icc compiler work on complex number
on SoA-cplx version pushes it towards mock-up prediction, with respect to the SoA-dbl version,
while general SoA loss of spacial locality lead to lesser performance here on traditional CPU.

6.2.3 Lattice QCD benchmark with even/odd preconditioning

We propose now to assess mock-up prediction on another benchmark, whose initial layout is
defined in Section 4.3. Data patterns are beyond compiler understanding here, which does not
vectorize the initial kernel once again. Even the properly reconstructed kernels are not vectorized
despite apparent feasibility, except for icc complex multiply optimization.

Overall predictions are reliable with a 13% average relative error, as shown in Figure 6.2. Aside
from the excellent predictions on both AoSoA-dbl and SoA-dbl restructuring – roughly 0% on aver-
age relative error on both – , slightly pessimistic AoSoA-cplx and SoA-cplx illustrate here again the
gap between mock-ups naive SIMDization and compiler complex multiply optimization. This
particular benchmark and previous benchmark both typically illustrate how binary to binary
transformations can not compete with full compiler optimizing power, however the gap is not

96

6. Transformations Evaluation

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16

S
p

ee
d

u
p

Number of Threads

SoA proposed
SoA handwritten

AoSoA proposed
AoSoA handwritten

Figure 6.3: Lattice QCD Application Restructuring+SIMDization Speedup — with respect to ref-
erence using respectively equal number of threads — average relative error is roughly 4%

big enough to mislead the user, who is provided a realistic gain to expect.

6.2.4 Lattice QCD application without preconditioning

We focus on Qiral application whose initial layout definition is given in Section 4.3. The stride-
forming and SIMDization-hindering structures are processed entirely, and the whole layout is
used for the computations. We study two different transformations, as defined in aforementioned
section, which are basically one SoA and one AoSoA, really close to the fundamental ones as the
complex structure is split, thus innermost dimension is contiguous unlike AoSoA-cplx and SoA-cplx
transformations we addressed before.

The initial conditions remain close to the benchmarks as far as compilation is concerned, since
no SIMDization occurred, were it for initial layout or the restructured ones. However, we resort to
intrinsics to vectorize the kernel of interest, which may be an interesting solution for the program-
mer to overcome compiler SIMDization failure, and possibly allow to improve still sub-optimized
code/layout, which is precisely the very role of mock-ups proposed to highlight. Indeed, if the
programmer modified kernel performance is clearly below predicted gain and the kernel has not
been SIMDized, predicted gain should be achievable with intrinsics.

Predictions for SoA and AoSoA are reliable with an average relative error of 4%, as shown in
Figure 6.3, as mock-up SIMDization tend closely to user restructured kernel with intrinsics. With
a packed thread policy and hyper-threading disabled, the multithread context does not disrupt
mock-up prediction, since here the kernel is parallel and compute-bound.

Another takeaway is that indeed AoSoA outperform SoA transformations, experiments made
coroborate the relevance of our locality characterization made by our transformation space explo-
ration, meaning we have an acceptable sense of which transformation would perform well.

97

6.3. Conclusion

6.2.5 2D cardiac wave propagation simulation application

We focus on a layout and a set of transformations defined in Section 4.3 For the sake of these ex-
periments, we rewrote reference application code so that original array is allocated in a linearized
manner, in order to provide a fair reference for performance evaluation. The application kernel of
interest was not vectorized, but was successfully vectorized after data layout restructuring, con-
sequently no intrinsics are used in rewritten user codes. Thread placement policy is packed with
no hyper-threading allowed, and mock-up copy-in is multithreaded as well. We study layout re-
structuring impact on performance on three different datasets, corresponding to three different
layout sizes. Initial layout and applied transformations are described in Section 4.3.

As one could intuitively expect, significant gain occurs after data restructuring, as high as
roughly 2.4× on average as shown in Figure 6.4 on Dataset-256, which is almost constant indepen-
dently of the number of threads involved. Furthermore, the gain of SIMDization alone is about
roughly 2× which is substantial using 2-elements vectors, even though performance decreases
slightly when two NUMA nodes have to be allocated when using more than 16 threads. Mock-up
prediction average relative error is 9% too optimistic in this experiment. This overoptimism can
be explained by the effect of too hot data on the kernel performance, because in the mock-up im-
plementation, the copy is performed right before the kernel, which may constitute an unnatural
warm-up in the context of the application.

The second kernel we study here depends on Dataset-512, whose layout size is augmented by
a factor 4 with respect to Dataset-256. In this new configuration, restructuring gain is dramatically
higher than before as shown in Figure 6.4, increasing with the number of threads and reaching
up to roughly 14× with 8 threads, as application achieves to take full advantage of all private L2
caches. Moreover, prediction remains consistently slightly overoptimistic as memory cache may
be warmer before kernel execution than actual real application cache, while still being accurate
with an average relative error of as low as 5%.

Dataset-1024 layout is 4 times the size of Dataset-512, and Figure 6.5 shows application reaches
peak performance for 8 thread similarly to Dataset-512, at a total speedup of roughly 28×. Pre-
dictions accuracy is reliable, with average relative error of roughly 10%. Finally, mock-ups mimic
well actual application tendencies, independently of multithread and dataset constraints. This
highlights here the crucial importance of data structures design, showing how advantageous data
restructuring can be for the programmer. In this very case, data layout restructuring is sufficient
to enable autovectorization with an excellent gain – up to 28× –, saving as well the user the time
of hand vectorization via instrinsics for instance. In the end, from the programmer point of view,
after the code restructuring is applied to exhibit a proper stencil, state-of-the-art stencil optimiza-
tions techniques can be contemplated for further performance improvement.

6.3 Conclusion

We have presented a methodology to evaluate data layout transformations, the in-vivo evaluation
that permits to directly assess the given transformations gain or lack of gain in the context of the
user application. We implemented this method at the user application binary level. We explained
that using a checkpoint/restart technique we minimize the cost of such an approach, as only the
kernel of interest is replayed.

The performance prediction of multiple transformations matches within 5% the performance

98

6. Transformations Evaluation

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16

S
p

ee
d

u
p

Number of Threads

mock-up without SIMDization
mock-up with SIMDization

handwritten+icc

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16

S
p

ee
d

u
p

Number of Threads

mock-up without SIMDization
mock-up with SIMDization

handwritten+icc

Figure 6.4: 2D Wave Propagation Application Restructuring+SIMDization Speedup on Dataset-
256 (left) or on Dataset-512 (right) — with respect to reference using respectively equal number of
threads — average relative error is 9% (left), 5% (right)

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16

S
p

ee
d

u
p

Number of Threads

mock-up without SIMDization
mock-up with SIMDization

handwritten+icc

Figure 6.5: 2D Wave Propagation Application Restructuring+SIMDization Speedup on Dataset-
1024 — with respect to reference using respectively equal number of threads — average relative
error is 10%

of hand-transformed layout code, which shows our evaluation technique is a reliable tool for the
user to select an appropriate new layout design out of a set of quantified transformations.

99

6.3. Conclusion

100

Conclusion and Future Challenges

Memory accesses are costly on modern architectures, as processors performance exceeds memory
performance significantly. Applications are slowed down by suboptimal memory access patterns,
therefore specific attention to data layouts design is required when writing high performance
code. A given layout that performs well on a given architecture is not guaranteed to perform
similarly well on another given architecture. Automated programs are needed to tackle this issue
of appropriate layout design choice. However, compilers typically have tremendous difficulties
when addressing the layout restructuring issue, particularly because of the lack of information
at compile time on data structures, pointers, indirections and such. Tools on the other side help
programmers locating performance issues in their applications, but do not performance optimiza-
tions guidelines with different transformations and their potential gain, as a result the user is left
clueless about which layout restructuring to perform.

In turn, both compilers and tools feedback are unsufficient. We proposed a framework for data
restructuring that provides the programmer with elaborate feedback, providing the user with a
selection of transformations with detailed steps of applications on the source code, along with
quantification of each transformation in order to help the user make a choice of restructuring
based on expected gain.

6.4 Summary

Tackling the issue of layout restructuring resorts to several steps, namely the analysis of problem-
atic layouts and patterns, then the transformation space exploration, the resulting code rewriting
and the user feedback generation and finally the transformations evaluation. First, we detailed
a novel formalism to express data layouts and patterns, in order to simplify the discussions on
data layouts transformations and to systematically express transformations. We explained how
we retrieve the initial layout/patterns definition based on memory traces collected from the user
application instrumented binary, and how we can delinearize the obtained layout in order to get a
multidimensional representation on a normal form, independent of any compiler optimizations.
Using our formalism, we described a set of transformations to reshape the initial layout, by per-
muting layout dimensions or removing gaps for instance. In particular, common transformations
such as AoS to SoA and AoS to AoSoA transformations were conveniently expressed. We then
detailed our transformation space exploration, by applying contraints to reduce the number of
possibilities as the set of transformations to be selected has to be evaluated in-vivo which is costly
in terms of elapsed time. We also constraint the exploration space to preferentially select transfor-
mations suitable to SIMDization and multithread, as significant performance improvement can be
obtain through this different levels of parallelisms, in particular layout has to be properly designed

101

6.5. Perspectives

not to be badly divided among threads causing additional performance issues.
Transformed layouts then have to be implemented through binary rewriting, where several

major code modifications has to be applied. First of all, the initial layout must be copied to the
new layout. The copy code is automatically generated and evaluated and can be proposed to the
user as such for comprehension purposes. Also, all the individual memory accesses have to be
remapped to properly use the new layout. We then detailed how we generate automatic user
feedback to clearly notify the user of performance issues on his original application, and how to
modify the code to incorporate the suggested modification with respect to each transformation
proposed.

In the last chapter, we detailed our evaluation methodology relying on a checkpoint/restart
technique, in order to quantify each transformation by a potential gain estimation. The idea of the
in vivo approach is to implement each transformation on a separate binary and replay the kernel
of interest which each layout version in the context of the application for performance assessment.
To do so, a checkpoint call is placed right before the kernel of interest and the application is run for
reference timing. Then the user application binary is instrumented using probes for each mem-
ory instruction and the kernel is re-run to obtain memory traces. After analysis, transformations
and binaries rewriting, each binary version substitutes the original kernel and is evaluated. This
approach has led reliable predictions below 5% in average of relative error on two real life appli-
cations, that are implementations of Lattice QCD and Cardiac wave simulation respectively with
different preconditioners and different datasets, showing the quantified hints are trustworthy in-
dicators for the programmer to make layout restructuring decisions.

6.5 Perspectives

As proposed, our data layout restructuring approach feedback allows the programmer to select
an appropriate transformation with a potentially high performance gain, saving him the time of
performing the code modifications by hand for each of the proposed transformation to determine
only afterwards which is the best. However, in the end, following our framework suggestions the
user still has to perform one transformation by hand, even though he his well guided in his pro-
cess. Indeed, our approach being based on memory traces, it is consequently tailored for a given
run and therefore optimizations cannot be safely performed. The user can still supervise the out-
put code in order to make adjustements if needed to make the new code valid. User supervision
is needed in all cases because neither compiler nor tools nor frameworks has the full visibility on
the code and especially the input parameters or datasets that can greatly influence the resulting
appropriate layout designs. In the end, the application developer is the only one that has the
knowledge of the data layouts. An idea would be to inject more semantics into the source code
to specify a class of layouts susceptible to be used. This would allow more general approach to
layout transformations. An alternative would be to run several instrumentations to test different
datasets/preconditionners or more general runtime-dependent parameters.

In some cases, the mock-up transformation can in fact be semantically equivalent and can con-
stitute a proper code transformation, when the control is not too complicated to analyse statically
in the sense that it does not comprise conditionals, indirections or difficult induction variables for
instance. We can report to the programmer when it is the case. Here, profiling may help in the case
compilers miss optimizations on the source but the output binary is easier to analyse, for instance
when inlining has been applied. Also user interaction may be contemplated in this case to go

102

6. Transformations Evaluation

further, indeed sometimes indirections are used in the code but the corresponding memory access
patterns are in fact regular, so one may think of a way to specify such patterns unambiguously
to the compiler via pragmas for instance, to guarantee regular behavior through the indirection
instructions.

Our in-vivo approach uses code instrumentation for memory traces and therefore is usually
applied on a small portion of the code, usually the kernel of interest which is typically the most
time consuming kernel. This constrains us to perfom a copy, which implies that the original sub-
optimal layout has to be copied in a new hopefully optimized layout. The placement of the copy
itself is a non trivial question. Ideally, for the user, the best case scenario would be to restructure
the layout from the very definition/allocation of it, this way no overhead could be accounted dur-
ing the run of the program. Alas, for our evaluation purposes in particular it is not doable, we
must find a suitable spot within the kernel of interest. Theoretically, the farther from the innermost
loops using the layout the better since it is where its influence is the lowest on kernel performance.
However, cache effects being extremely difficult to model and therefore to predict, nothing guar-
antees the copy will not have a negative impact on performance, especially on the other kernels.
Inversely, performing the copy close to the innermost may have benefits since the copy brings the
layout elements into the cache, and thus they may already be available for use in the innermost
kernels.

Besides, our approach focuses on one hotspot, usually the function which monopolizes the ex-
ecution time. In some cases however, execution time is mainly shared between multiple hotspots.
In this context, the local aspect of our approach is challenged, as the evaluation of the global im-
pact of the respective hotspot is difficult. Indeed, applying a given transformation on a given
hotspot may be profitable locally but nothing guarantees in theory the other hotspots would ben-
efit from it or at least not be impaired and that the benefit would be global. Therefore, the space
exploration of transformations of multiple hotspot accordingly is challenging. Because the cost of
instrumentation for memory traces is high especially when multiple hotspots are involved, it may
be useful to determine beforehand if the hotspots perform computations on the same data lay-
outs. In the case where the hotspots does not use the same memory areas, transformations can be
thought independently. A lighter alternative to memory traces is the page traces, where instead of
tracing each of the individual memory access, we detect page faults and note which pages are ac-
cessed by which hostpots, as it has been done in [16]. It allows to pre-emptively select candidates
before tracing all memory accesses. Similarly on a multithreaded context, we can also characterize
which memory areas are accessed by which thread, and identify if given layouts are accessed by
multiple threads. Still, the global evaluation is challenging, in particular when multiple instances
of a given hotspot are performed, for instance with different parameters, or different layouts.

The operations we defined are simple sums and cartesian products of layouts. One may con-
template more elaborate operations in some specific domains such as tensor operations for QCD
or deep learning. Common patterns such as convolution patterns may be analysed and expressed
with an enriched formalism , with specific transformations applications according to new opera-
tors. For this matter, layout duplication may be considered, which might help alleviate the kernels
of some dependences and, also might permit better pattern alignment and better vectorizations as
stencils for instance uses neighbor elements at each step of computation which causes alignment
issues. There is here a performance compromise with the supplementary memory space allocated,
which must be evaluated. Similarly, diagonal patterns or triangle matrices and their operations
may also be formalised to enrich our transformation power.

103

6.5. Perspectives

104

Bibliography

[1] Numpy, library for scientific computing in python. https://github.com/numpy/
numpy.

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[3] Chadi Akel, Yuriy Kashnikov, Pablo de Oliveira Castro, and William Jalby. Is source-code
isolation viable for performance characterization? In Intl. Workshop on Parallel Software Tools
and Tool Infrastructures, 2013.

[4] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-Based
Approach. Morgan Kaufmann, 2002.

[5] AMD AMD. Core math library (acml). URL http://developer. amd. com/acml. jsp, page 25, 2012.

[6] Olivier Aumage, Denis Barthou, Christopher Haine, and Tamara Meunier. Detecting
simdization opportunities through static/dynamic dependence analysis. In Workshop on
Productivity and Performance (PROPER), 2013.

[7] Denis Barthou, Gilbert Grosdidier, Michael Kruse, Olivier Pene, and Claude Tadonki. QI-
RAL: A High Level Language for Lattice QCD Code Generation. In Programming Lan-
guage Approaches to Concurrency and Communication-centric Software Workshop, Tallinn, Es-
tonia, 2012. arXiv:1208.4035.

[8] Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi. Per-
formance tuning of x86 OpenMP codes with MAQAO. In Tools for High Performance Comput-
ing. Springer Berlin Heidelberg, 2010.

[9] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for cuda. GPU
computing gems Jade edition, 2:359–371, 2011.

[10] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W O’hearn, Thomas
Wies, and Hongseok Yang. Shape analysis for composite data structures. In International
Conference on Computer Aided Verification, pages 178–192. Springer, 2007.

[11] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou. Iterative
compilation in a non-linear optimisation space. In Workshop on Profile and Feedback-Directed
Compilation, 1998.

105

https://github.com/numpy/numpy
https://github.com/numpy/numpy

BIBLIOGRAPHY

[12] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In ACM SIGPLAN Conf. on Prog. Lang.
Design and Implementation, 2008.

[13] Pierre Boulet. Array-OL revisited, multidimensional intensive signal processing specification. PhD
thesis, INRIA, 2007.

[14] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: a test suite and results. In
Conf. on Supercomputing, 1988.

[15] Steve Carr, Kathryn S McKinley, and Chau-Wen Tseng. Compiler optimizations for improving
data locality, volume 29. ACM, 1994.

[16] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and William Jalby. Cere:
Llvm-based codelet extractor and replayer for piecewise benchmarking and optimization.
ACM Transactions on Architecture and Code Optimization (TACO), 12(1):6, 2015.

[17] Shuai Che, Jiayuan Meng, and Kevin Skadron. Dymaxion++: a directive-based api to opti-
mize data layout and memory mapping for heterogeneous systems. In Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pages 916–924. IEEE,
2014.

[18] Trishul M Chilimbi, Bob Davidson, and James R Larus. Cache-conscious structure defini-
tion. In ACM SIGPLAN Notices, volume 34, pages 13–24. ACM, 1999.

[19] Trishul M Chilimbi, Mark D Hill, and James R Larus. Cache-conscious structure layout. In
ACM SIGPLAN Notices, volume 34, pages 1–12. ACM, 1999.

[20] Doosan Cho, Sudeep Pasricha, Ilya Issenin, Nikil Dutt, Yunheung Paek, and SunJun Ko.
Compiler driven data layout optimization for regular/irregular array access patterns. In
ACM Sigplan Notices, volume 43, pages 41–50. ACM, 2008.

[21] Michał Cierniak and Wei Li. Unifying data and control transformations for distributed shared-
memory machines, volume 30. ACM, 1995.

[22] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like envi-
ronment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376,
2011.

[23] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Ef-
ficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Prog. Lang. and Systems, 1991.

[24] Chen Ding and Ken Kennedy. Improving cache performance in dynamic applications
through data and computation reorganization at run time. In ACM SIGPLAN Notices, vol-
ume 34, pages 229–241. ACM, 1999.

[25] Chen Ding and Ken Kennedy. Inter-array data regrouping. In Proceedings of the 12th Interna-
tional Workshop on Languages and Compilers for Parallel Computing, LCPC ’99, pages 149–163,
London, UK, UK, 2000. Springer-Verlag.

106

BIBLIOGRAPHY

[26] Wei Ding and Mahmut Kandemir. Improving last level cache locality by integrating loop
and data transformations. In Computer-Aided Design (ICCAD), 2012 IEEE/ACM International
Conference on, pages 65–72. IEEE, 2012.

[27] H.C. Edwards and C.R. Trott. Kokkos: Enabling performance portability across manycore
architectures. In Extreme Scaling Workshop (XSW), 2013, pages 18–24, Aug 2013.

[28] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. Vectorization for SIMD architec-
tures with alignment constraints. In ACM SIGPLAN Conf. on Prog. Lang. Design and Imple-
mentation, 2004.

[29] Pierre Estérie, Joel Falcou, Mathias Gaunard, and Jean-Thierry Lapresté. Boost. simd:
generic programming for portable simdization. In Proceedings of the 2014 Workshop on Pro-
gramming models for SIMD/Vector processing, pages 1–8. ACM, 2014.

[30] Louis-Noël Pouchet Eunjung Park, John Cavazos, Albert Cohen, and P. Sadayappan. Predic-
tive modeling in a polyhedral optimization space. In ACM/IEEE Intl. Conf. on Code Generation
and Optimization, 2011.

[31] G. Carl Evans, Seth Abraham, Bob Kuhn, and David A. Padua. Vector seeker: A tool for
finding vector potential. In Workshop on Prog. Models for SIMD/Vector Processing, pages 41–
48, New York, NY, USA, 2014. ACM.

[32] Timothée Ewart, Fabien Delalondre, and Felix Schürmann. Cyme: A library maximizing
simd computation on user-defined containers. In Julian Martin Kunkel, Thomas Ludwig,
and HansWerner Meuer, editors, Supercomputing, volume 8488 of Lecture Notes in Computer
Science, pages 440–449. Springer International Publishing, 2014.

[33] Paul Feautrier. Automatic parallelization in the polytope model. In The Data Parallel Pro-
gramming Model, pages 79–103. Springer, 1996.

[34] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof: A call graph execution
profiler. In ACM Sigplan Notices, volume 17, pages 120–126. ACM, 1982.

[35] Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sadayappan, and Sebastian Pop. Op-
timistic delinearization of parametrically sized arrays. In Proceedings of the 29th ACM on In-
ternational Conference on Supercomputing, ICS ’15, pages 351–360, New York, NY, USA, 2015.
ACM.

[36] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger,
and Louis-Noël Pouchet. Polly-polyhedral optimization in llvm. In Proceedings of the First
International Workshop on Polyhedral Compilation Techniques (IMPACT), volume 2011, 2011.

[37] Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. Locality principle revisited:
A probability-based quantitative approach. Journal of Parallel and Distributed Computing,
73(7):1011–1027, 2013.

[38] Christopher Haine, Olivier Aumage, and Denis Barthou. Rewriting system for profile-
guided data layout transformations on binaries. Euro-Par, 2017 (to appear).

107

BIBLIOGRAPHY

[39] Christopher Haine, Olivier Aumage, Enguerrand Petit, and Denis Barthou. Exploring and
evaluating array layout restructuring for simdization. In James Brodman and Peng Tu, edi-
tors, Intl. Workshop on Languages and Compilers for Parallel Computing (LCPC), pages 351–366,
Cham, 2015. Springer International Publishing.

[40] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for linux clusters.
Journal of Physics: Conf. Series, 46(1):494, 2006.

[41] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam, and P. Sa-
dayappan. Data layout transformation for stencil computations on short-vector simd ar-
chitectures. In Proceedings of the 20th Intl. Conf. on Compiler Construction: Part of the Joint
European Conf.s on Theory and Practice of Software, CC’11/ETAPS’11, pages 225–245, Berlin,
Heidelberg, 2011. Springer-Verlag.

[42] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam, and P. Sa-
dayappan. Data layout transformation for stencil computations on short-vector simd archi-
tectures. In Intl. conference on compiler construction: part of the joint European conferences on
theory and practice of software, 2011.

[43] Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin Fauzia, Louis-
Noël Pouchet, Atanas Rountev, and P. Sadayappan. Dynamic trace-based analysis of vec-
torization potential of applications. In ACM SIGPLAN Conf. on Prog. Lang. Design and Imple-
mentation, 2012.

[44] Robert Hundt, Sandya Mannarswamy, and Dhruva Chakrabarti. Practical structure layout
optimization and advice. In Proceedings of the International Symposium on Code Generation and
Optimization, pages 233–244. IEEE Computer Society, 2006.

[45] Intel. Vtune, 2014. http://software.intel.com/en-us/intel-vtune-amplifier-xe.

[46] MKL Intel. Intel math kernel library, 2007.

[47] Julien Jaeger and Denis Barthou. Automatic efficient data layout for multithreaded stencil
codes on cpus and gpus. In IEEE Intl. High Performance Computing Conf., pages 1–10, Pune,
India, December 2012. IEEE Computer Society.

[48] Mahmut Kandemir, Alok Choudhary, J Ramanujam, and Prithviraj Banerjee. A framework
for interprocedural locality optimization using both loop and data layout transformations.
In Parallel Processing, 1999. Proceedings. 1999 International Conference on, pages 95–102. IEEE,
1999.

[49] Mahmut Kandemir, J Ramanujam, and Alok Choudhary. Improving cache locality by a
combination of loop and data transformations. IEEE Transactions on Computers, 48(2):159–
167, 1999.

[50] MahmutTaylan Kandemir. Array unification: A locality optimization technique. In Rein-
hard Wilhelm, editor, Compiler Construction, volume 2027 of Lecture Notes in Computer Sci-
ence, pages 259–273. Springer Berlin Heidelberg, 2001.

108

BIBLIOGRAPHY

[51] Alain Ketterlin and Philippe Clauss. Prediction and trace compression of data access ad-
dresses through nested loop recognition. In ACM/IEEE Intl. Conf. on Code Generation and
Optimization, pages 94–103, New York, NY, USA, 2008. ACM.

[52] Thomas Kistler and Michael Franz. Automated data-member layout of heap objects to im-
prove memory-hierarchy performance. ACM Transactions on Programming Languages and
Systems (TOPLAS), 22(3):490–505, 2000.

[53] Peter MW Knijnenburg, Toru Kisuki, and Michael FP O’Boyle. Iterative compilation. In
Embedded processor design challenges, pages 171–187. Springer, 2002.

[54] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S Müller, and Wolfgang E Nagel. The vampir performance analysis tool-
set. In Tools for High Performance Computing, pages 139–155. Springer, 2008.

[55] Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic data layout optimizations
for gpus. In European Conference on Parallel Processing, pages 263–274. Springer, 2015.

[56] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet, and P. Sa-
dayappan. When polyhedral transformations meet SIMD code generation. In ACM SIG-
PLAN Conf. on Prog. Lang. Design and Implementation, 2013.

[57] Andreas Krall and Sylvain Lelait. Compilation techniques for multimedia processors. Intl.
J. of Parallel Programming, 2000.

[58] Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn, and Wolfgang E. Nagel. Scout:
a source-to-source transformator for SIMD-optimizations. In Workshop on Productivity and
Performance (PROPER), 2011.

[59] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism with mul-
timedia instruction sets. In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation,
2000.

[60] Yoon-Ju Lee and Mary Hall. A code isolator: Isolating code fragments from large programs.
In Langages and Compilers for High Performance Computing, 2004.

[61] Shun-Tak Leung and John Zahorjan. Optimizing data locality by array restructuring. Depart-
ment of Computer Science and Engineering, University of Washington, 1995.

[62] Peng-yuan Li, Qing-hua Zhang, Rong-cai Zhao, and Hai-ning Yu. Data layout transfor-
mation for structure vectorization on simd architectures. In Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS In-
ternational Conference on, pages 1–7. IEEE, 2015.

[63] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. A compiler
framework for extracting superword level parallelism. In Proceedings of the 33rd ACM SIG-
PLAN Conf. on Programming Language Design and Implementation, PLDI ’12, pages 347–358,
New York, NY, USA, 2012. ACM.

109

BIBLIOGRAPHY

[64] Xu Liu, Kamal Sharma, and John Mellor-Crummey. Arraytool: A lightweight profiler to
guide array regrouping. In Proceedings of the 23rd International Conference on Parallel Architec-
tures and Compilation, PACT ’14, pages 405–416, New York, NY, USA, 2014. ACM.

[65] Vincent Loechner, Benoı̂t Meister, and Philippe Clauss. Precise data locality optimization of
nested loops. The journal of Supercomputing, 21(1):37–76, 2002.

[66] Qingda Lu, Christophe Alias, Uday Bondhugula, Thomas Henretty, Sriram Krishnamoor-
thy, Jagannathan Ramanujam, Atanas Rountev, Ponnuswamy Sadayappan, Yongjian Chen,
Haibo Lin, et al. Data layout transformation for enhancing data locality on nuca chip mul-
tiprocessors. In Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th Interna-
tional Conference on, pages 348–357. IEEE, 2009.

[67] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In Acm sigplan notices, volume 40, pages
190–200. ACM, 2005.

[68] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In ACM SIGPLAN Conf. on Prog. Lang.
Design and Implementation, 2005.

[69] Chi-Keung Luk and Todd C Mowry. Compiler-based prefetching for recursive data struc-
tures. In ACM SIGOPS Operating Systems Review, volume 30, pages 222–233. ACM, 1996.

[70] Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, and Vivek Sarkar. Adha: Automatic data
layout framework for heterogeneous architectures. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, PACT ’14, pages 479–480, New York, NY,
USA, 2014. ACM.

[71] Jonathan Mak and Alan Mycroft. Limits of parallelism using dynamic dependency graphs.
In Intl. Workshop on Dynamic Analysis, 2009.

[72] S. Maleki, Yaoqing Gao, M.J. Garzaran, T. Wong, and D.A. Padua. An evaluation of vector-
izing compilers. In Parallel Architectures and Compilation Techniques (PACT), 2011 Intl. Conf.
on, pages 372–382, Oct 2011.

[73] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A. Padua. An
evaluation of vectorization compilers. In Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT), 2011.

[74] Sandya S Mannarswamy, Ramaswamy Govindarajan, and Rishi Surendran. Region based
structure layout optimization by selective data copying. In Parallel Architectures and Compi-
lation Techniques, 2009. PACT’09. 18th International Conference on, pages 338–347. IEEE, 2009.

[75] Gordon E Moore et al. Cramming more components onto integrated circuits. Proceedings of
the IEEE, 86(1):82–85, 1998.

[76] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM, 2007.

110

BIBLIOGRAPHY

[77] Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin Williams, David Yuste, Albert
Cohen, and Ayal Zaks. Vapor SIMD: Auto-vectorize once, run everywhere. In ACM/IEEE
Intl. Conf. on Code Generation and Optimization, 2011.

[78] Dorit Nuzman and Richard Henderson. Multi-platform auto-vectorization. In ACM/IEEE
Intl. Conf. on Code Generation and Optimization, 2006.

[79] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of interleaved data for SIMD.
In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation, 2006.

[80] Dorit Nuzman and Ayal Zaks. Autovectorization in GCC—-two years later. In Proceedings
of the GCC Developers’ Summit, 2006.

[81] Dorit Nuzman and Ayal Zaks. Outer-loop vectorization: revisited for short simd architec-
tures. In ACM/IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT),
2008.

[82] David A Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

[83] Paul M. Petersen and David A. Padua. Static and dynamic evaluation of data dependence
analysis. In Intl. Conf. on Supercomputing, 1993.

[84] Eric Petit, François Bodin, Guillaume Papaure, and Florence Dru. ASTEX: a hot path based
thread extractor for distributed memory system on a chip. In HiPEAC Industrial Workshop,
2006.

[85] Erez Petrank and Dror Rawitz. The hardness of cache conscious data placement. In ACM
SIGPLAN Notices, volume 37, pages 101–112. ACM, 2002.

[86] Matt Pharr and William R. Mark. ispc: A SPMD compiler for high performance CPU pro-
gramming. In Conf. InPar, 2012.

[87] Easwaran Raman, Robert Hundt, and Sandya Mannarswamy. Structure layout optimization
for multithreaded programs. In Code Generation and Optimization, 2007. CGO’07. International
Symposium on, pages 271–282. IEEE, 2007.

[88] James Reinders. VTune performance analyzer essentials, volume 14. Intel Press, 2005.

[89] Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, and Wolfram
Schulte. SIMD parallelization of applications that traverse irregular data structures. In
ACM/IEEE Intl. Conf. on Code Generation and Optimization, 2013.

[90] Gang Ren, Peng Wu, and David Padua. Optimizing data permutations for SIMD devices.
In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation, 2006.

[91] Probir Roy and Xu Liu. StructSlim: A lightweight profiler to guide structure splitting. In
ACM/IEEE Intl. Conf. on Code Generation and Optimization, 2016.

[92] Shai Rubin, Rastislav Bodı́k, and Trishul Chilimbi. An efficient profile-analysis framework
for data-layout optimizations. In ACM SIGPLAN Notices, volume 37, pages 140–153. ACM,
2002.

111

BIBLIOGRAPHY

[93] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer,
Mikhail Smelyanskiy, Milind Girkar, and Pradeep Dubey. Can traditional programming
bridge the ninja performance gap for parallel computing applications? In Proceedings of
the 39th Annual International Symposium on Computer Architecture, ISCA ’12, pages 440–451,
Washington, DC, USA, 2012. IEEE Computer Society.

[94] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer,
Mikhail Smelyanskiy, Milind Girkar, and Pradeep Dubey. Can traditional programming
bridge the ninja performance gap for parallel computing applications? In ACM SIGARCH
Computer Architecture News, volume 40, pages 440–451. IEEE Computer Society, 2012.

[95] Matthew L Seidl and Benjamin G Zorn. Segregating heap objects by reference behavior and
lifetime. In ACM SIGPLAN Notices, volume 33, pages 12–23. ACM, 1998.

[96] Kamal Sharma, Ian Karlin, Jeff Keasler, James R. McGraw, and Vivek Sarkar. Data layout op-
timization for portable performance. In Jesper Larsson Träff, Sascha Hunold, and Francesco
Versaci, editors, Euro-Par, pages 250–262, Berlin, Heidelberg, 2015. Springer Berlin Heidel-
berg.

[97] Xipen Shen, Yaoqing Gao, Chen Ding, and Roch Archambault. Lightweight reference affin-
ity analysis. In Proceedings of the 19th annual international conference on Supercomputing, pages
131–140. ACM, 2005.

[98] Sameer S Shende and Allen D Malony. The tau parallel performance system. The Interna-
tional Journal of High Performance Computing Applications, 20(2):287–311, 2006.

[99] Jaewook Shin, Mary Hall, and Jacqueline Chame. Superword-level parallelism in the pres-
ence of control flow. In ACM/IEEE Intl. Conf. on Code Generation and Optimization, 2005.

[100] Robert Strzodka. Abstraction for aos and soa layout in c++. GPU Computing Gems: Jade
Edition, 2011.

[101] I-Jui Sung, G.D. Liu, and W.-M.W. Hwu. Dl: A data layout transformation system for het-
erogeneous computing. In Innovative Parallel Computing (InPar), 2012, pages 1–11, May 2012.

[102] I-Jui Sung, Geng Daniel Liu, and Wen-Mei W Hwu. Dl: A data layout transformation system
for heterogeneous computing. In Innovative Parallel Computing (InPar), 2012, pages 1–11.
IEEE, 2012.

[103] Salvador Tamarit, Julio Mariño, Guillermo Vigueras, and Manuel Carro. Towards a
semantics-aware transformation toolchain for heterogeneous systems. In Program Trans-
formation for Programmability in Heterogeneous Architectures (PROHA) workshop, 2016.

[104] Xinmin Tian and BR De Supins. Explicit vector programming with openmp 4.0 simd exten-
sion. Primeur Magazine, 2014, 2014.

[105] Josep Torrellas, HS Lam, and John L. Hennessy. False sharing and spatial locality in multi-
processor caches. IEEE Transactions on Computers, 43(6):651–663, 1994.

112

BIBLIOGRAPHY

[106] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. Towards a
holistic approach to auto-parallelization: integrating profile-driven parallelism detection
and machine-learning based mapping. In ACM SIGPLAN Conf. on Prog. Lang. Design and
Implementation, 2009.

[107] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen. Polyhedral-
model guided loop-nest auto-vectorization. In Parallel Architectures and Compilation Tech-
niques, 2009. PACT’09. 18th International Conference on, pages 327–337. IEEE, 2009.

[108] Dan N Truong, François Bodin, and André Seznec. Improving cache behavior of dynam-
ically allocated data structures. In Parallel Architectures and Compilation Techniques, 1998.
Proceedings. 1998 International Conference on, pages 322–329. IEEE, 1998.

[109] Ying-Yu Tseng, Yu-Hao Huang, Bo-Cheng Charles Lai, and Jiun-Liang Lin. Automatic data
layout transformation for heterogeneous many-core systems. In Ching-Hsien Hsu, Xuanhua
Shi, and Valentina Salapura, editors, Network and Parallel Computing, volume 8707 of Lecture
Notes in Computer Science, pages 208–219. Springer Berlin Heidelberg, 2014.

[110] Reinhard v. Hanxleden and Ken Kennedy. Relaxing simd control flow constraints using loop
transformations. In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation, 1992.

[111] Brice Videau, Vania Marangozova-Martin, Luigi Genovese, and Thierry Deutsch. Optimiz-
ing 3d convolutions for wavelet transforms on cpus with sse units and gpus. In Intl. europar
conference on parallel processing, 2013.

[112] Wei Wang, Lifan Xu, John Cavazos, Howie H. Huang, and Matthew Kay. Fast acceleration
of 2d wave propagation simulations using modern computational accelerators. PLoS ONE,
9(1):1–10, 01 2014.

[113] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata Theory, 1973.
SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11. IEEE, 1973.

[114] David C. Wong, David J. Kuck, David Palomares, Zakaria Bendifallah, Mathieu Tribalat,
Emmanuel Oseret, and William Jalby. Vp3: A vectorization potential performance proto-
type. In Workshop on Programming Models for SIMD/Vector Processing, Feb 2015.

[115] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. Complexity
analysis and algorithm design for reorganizing data to minimize non-coalesced memory
accesses on gpu. In ACM SIGPLAN Notices, volume 48, pages 57–68. ACM, 2013.

[116] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

113

	Introduction
	Data layout design for high performance
	Contributions
	Outline

	1 Context and Problem
	1.1 The memory layout/pattern issue
	1.1.1 Modern architectures complexity
	1.1.2 The locality issue
	1.1.3 Layout abstractions

	1.2 The complicated relationship between compilers and data layouts
	1.2.1 Static approaches
	1.2.2 Dynamic approaches
	1.2.3 Data restructuring techniques
	1.2.4 Vectorization

	1.3 The lack of user feedback
	1.3.1 Compiler feedback
	1.3.2 Tools
	1.3.3 The importance of quantification

	1.4 Towards a data layout restructuring framework proposal
	1.4.1 Proposition overview
	1.4.2 Data restructuring evaluation

	2 Vectorization
	2.1 Layout Transformations To Unleash Compiler Vectorization
	2.2 Hybrid Static/Dynamic Dependence Graph
	2.2.1 Static, Register-Based Dependence Graph.
	2.2.2 Dynamic Dependence Graph.

	2.3 SIMDization Analysis
	2.3.1 Vectorizable Dependence Graph.
	2.3.2 Code Transformation Hints.

	2.4 Conclusion

	3 Layout/pattern analysis
	3.1 Data layout formalism
	3.2 Layout detection
	3.3 Delinearization
	3.3.1 General Points
	3.3.2 Properties
	3.3.3 Characterization
	3.3.4 Case Study

	3.4 Conclusion

	4 Transformations
	4.1 Layout Operations
	4.1.1 Permutation
	4.1.2 Splitting
	4.1.3 Compression

	4.2 Exploration
	4.2.1 Basic Constraints
	4.2.2 Locality Constraints
	4.2.3 Parallelism Constraints

	4.3 Case Study
	4.4 Conclusion

	5 Code Rewriting and User Feedback
	5.1 Systematic Code Rewriting
	5.1.1 On locality
	5.1.2 Formalism Interpretation
	5.1.3 Copying
	5.1.4 Remapping

	5.2 User Feedback
	5.2.1 Layout issues pinpointing
	5.2.2 Hinting the rewriting

	5.3 Low-level implementation
	5.3.1 Loop kernel rewriting
	5.3.2 SIMDization

	5.4 Conclusion

	6 Transformations Evaluation
	6.1 Evaluation methodology
	6.1.1 Principle of in-vivo evaluation
	6.1.2 Automatic mock-up generation and vectorization
	6.1.3 Current state of implementation

	6.2 Experimental results
	6.2.1 TSVC
	6.2.2 Lattice QCD benchmark without preconditioning
	6.2.3 Lattice QCD benchmark with even/odd preconditioning
	6.2.4 Lattice QCD application without preconditioning
	6.2.5 2D cardiac wave propagation simulation application

	6.3 Conclusion

	Conclusion and Future Challenges
	6.4 Summary
	6.5 Perspectives

