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Nanoscale Seebeck effect at hot nanostructures

Abstract

The aim of this work is to study the nanoscale Seebeck effect at hot nanostruc-
tures. At first, we study the thermo-electrophoresis self-propulsion mechanism for
a heated metal capped Janus colloid. The self-propulsion mechanism is mainly in-
duced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes
its origin from the separation of charges occurring while a temperature gradient is
present in a electrolyte solution: A strong absorption of laser light by the metal
side of the particle creates a temperature gradient which in turn acts on ion-species
(positive and negative) and drives them to the hot or the cold region. This mo-
tion of ion results in a dipolar electric field which, close to the particle, depends
strongly on the surface properties. The change of behavior of the electric field at
the insulating or conducting surface does not affect the velocity of the particle. At
second, we study the effect of hydrodynamic interactions and counterion condens-
ation in thermophoresis for DNA polymer. As the main result, the thermophoretic
mobility shows, in function of the chain length, a non-monotonous behavior and
consists of two contributions induced by the dominant driving forces which are the
thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the
end, we compare our theoretical result with recent experiment on single-stranded
DNA.

Keywords: thermophoresis, temperature gradient, self-propulsion, Janus col-
loid, permittivity gradient, DNA, Seebeck effect, hydrodynamic.
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Effet Seebeck à l’échelle nanométrique de
nanostructures chaudes

Résumé

L’objectif de ce travail est d’étudier l’effet thermoélectrique à l’échelle nanométrique
des nanostructures chauffées. Dans un premier temps, nous étudions les mécan-
ismes d’autopropulsion thermo-électrophorétique de particules Janus chauffées par
laser. Ce mécanisme d’autopropulsion est principalement induit par l’effet Seebeck
ou l’effet thermoélectrique. Cet effet provient de la séparation des charges surv-
enues lorsqu’un gradient de température est présent dans la solution d’électrolyte:
Une forte absorption du laser par la partie métallisée de la particule génère un
gradient de température qui en retour agit sur les espèces ioniques (positive et
négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement
d’ions entraine la création d’un champ électrique dipolaire qui, à proximité de la
particule, dépend fortement des propriétés de surface. Ce changement de com-
portement de ce champ électrique sur une surface isolant ou conductrice n’affecte
pas la vitesse de la particule. Dans un second temps, nous étudions les effets
d’interactions hydrodynamiques et de la condensation des contre-ions sur la ther-
mophorèse des polymères d’ADN. Comme résultat principal, la mobilité thermo-
phorétique montre, en fonction de la longueur de la chaîne, un comportement
non-monotone et se compose de deux contributions induites par les forces con-
ductrices dominantes que sont l’effet Seebeck et le gradient de permittivité. À
la fin, nous comparons notre résultat théorique avec une récente expérience sur
l’ADN.

Mots clés: thermophorèse, gradient de temperature, auto-propulsion, partic-
ule Janus, gradient de temperature, ADN, effet Seebeck, hydrodynamique.
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Chapter 1

Introduction

1.1 Phoretic transport

When applying an external force on microparticles suspended in a fluid, the system
leads to a transport mechanism known as the name of phoresis. The concept of
phoretic transport has been known for more than a century, and it’s defined as
a movement of colloidal particles caused by an applied external field. The most
important property of phoretic transport is that there are no external force [1]. The
motion arises from the action of the particle on the surrounding fluid. The phoretic
movement of particle arises mainly from the interaction between the surface of the
particle and its surrounding fluid or even with the various solutes solvent. This
transport mechanism shows basic differences with the transport induced by body
forces such as gravity, where the external field exerts a net force on the particle.
In the last few decades, the development of experimental techniques, studying

the migration of particles under the influence of an gradient field, are strongly based
on this phoretic transport phenomenon. Among these techniques, one can cite the
field-flow fractionation method (FFF) which was first introduced by Giddings [2].
The FFF method consists of separating particles by applying a gradient field to
a fluid suspension pumped trough a long channel. In this method, the separation
of particles is caused, first, by the applied field which is perpendicular to the flow
in the channel, and second by the differences in particle’s phoretic mobility. In
the same way, another experimental method, consisting of amplified migration of
large particles in a solution through a channel, are developed more recently [3].
The phoresis mechanism has also brought a huge improvement in other trapping
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CHAPTER 1. INTRODUCTION 6

techniques for colloidal particles [4] or for DNA [5], and constitute the key physical
property when studying self-propulsion movement for microswimmers.

1.2 Mechanisms

Among the class of phoretic transport, the particles can move by electrophoresis,
diffusiophoresis or thermophoresis. These possibilities consist of creating motion
of a suspended microparticle by imposing a gradient field such as an electric field,
a temperature gradient or a concentration gradient of small solutes surrounding
the particle. The resulting transport mechanism refers to electrophoresis, thermo-
phoresis, and diffusiophoresis, respectively. The electrophoresis mechanism is the
most oldest one because it was established by Smoluchowski since 1905 [9], and
later Keh and Anderson developed this concept by clarifying the role of the electro-
static boundary effects on the electrophoretic motion of a charged non-conducting
colloidal spheres [10].
Next comes the method of diffusiophoresis which was first established by Derjag-

uin [6], and much later by Anderson and Prieve when studying migration of particle
in salt solution [7]. As a theoretical point of view, the diffusiophoresis mechanism is
the motion of particle caused by a concentration gradient of molecular substances
which is due to the formation of the absorption layer of neutral solutes or ions at
the surface of the particle [8].
By comparison to electrophoresis and diffusiophoresis, the physical properties

of thermophoresis were developed much later by scientists as Ruckenstein when
dealing with thermophoresis for colloidal particles [11], by Giddings [12], Brochard
and de Gennes when studying the effect of hydrodynamic interactions in thermo-
phoresis for polymer [25]. Thermophoresis is the movement of particle driven by
a temperature gradient. For charged particles, the basis of this transport mech-
anism is the formation of the electric double-layer or the absorption layer around
the dissolved particles.

1.3 Motion in a temperature gradient

Thermophoresis mechanism is strongly based on the phenomenon of thermo-osmosis
which is defined as a flow of a charged liquid driven by a temperature gradient [8].
The origin of thermo-osmosis was first discussed theoretically and experimentally
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by Derjaguin and Sidorenkov [14]. Indeed, thermo-osmosis is due to the response
of co-ions and counterions present in the interfacial region to the applied or gen-
erated temperature gradient. The thermo-osmotic mechanism can be explained in
two ways: First, the strong presence of excess ions in the interfacial region leads
to an excess pressure within the diffuse region. Second, the presence of an tem-
perature gradient causes the motion of ion-species to the hot or the cold region.
This motion of ions lead to a variation of the pressure within the interfacial region,
which is higher at the cold region and lower at the hot region. As a consequence,
there is a flow of a charged fluid toward higher pressure to lower pressure. Due
to this flow of ions, the particle moves in opposite direction to the temperature
gradient. The particle velocity is directly proportional to the temperature gradient
where the constant of proportionality is the thermophoretic mobility DT .
However, the question of which direction the particle moves was not clear.

When calculating the thermophoretic coeffi cient of a colloidal particle in a electro-
lyte solution, Ruckenstein provided a first answer by stating that a particle always
moves towards the cold region [11]. Recent experiments studying mechanism of
hot colloids in electrolyte solution, however, showed that particles can move in
either direction. Among these experiments, one can cite the work reported by
Simoncelli et al. [15]. They have trapped optically a Janus particle in a focused
laser beam and have measured the vertical position of particle in 10mM of ionic
strength in function of the increasing laser power. The important observation is
when they used different electrolytes NaCl, NaOH, and LiCl, then the behavior of
the particle significantly changes. Another experiment by Eslahian et al. reports
a rather similar behavior [16]. Here, they have measured the particle’s velocity
in a mixed electrolyte solution NaOHxCl1−x in function of a parameter x. When
this parameter x varies from 0 to 1, the electrolyte solution changes gradually
from NaCl to NaOH, and, as the result, the sign of the particle’s velocity becomes
positive or negative, respectively. This change of sign of the particle’s velocity is
generally due to the thermal induced salt-gradient and eventually to the electrolyte
Seebeck effect [17, 18, 19]: An applied temperature gradient exerts thermal forces
on salt-ions, which depending on their solvation enthalpy, move to the hot or the
cold boundaries. As a consequence, this motion of ions leads to the existence of
an electric field known as Seebeck field. This generated Seebeck field is due to
the motion of salt-ions once a temperature gradient is present in an electrolyte
solution, and plays a very important role because it gives a new contribution on
the particle’s velocity, which is similar to Smoluchowski’s electrophoretic mobility
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[1]. In more general cases, this Seebeck effect can also determines the direction of
motion of particle.

1.4 Summary

The aim of this present work is to study the thermophoresis mechanism for hot
colloid particle immersed in an electrolyte solution, and for polyelectrolytes. For
colloid particle, the self-propulsion mechanism is largely induced by the electrolyte
Seebeck effect which in turn results from the existence of the temperature gradi-
ent in the system. In the case of a metal capped colloid, the system generates
an dipolar electric field which acts on the electric double-layer and self-propels
the particle by thermo-electrophoresis. The resulting particle velocity is directly
proportional to the applied thermal gradient and the constant of proportionality
is known as a thermophoretic mobility. This mobility depends upon on several
parameters like the electrolyte Seebeck coeffi cient, the solvent salinity and the
particle size. For polyelectrolytes, the thermophoresis mechanism arises from the
hydrodynamic interactions between the repeat units in the polymer chain. In other
words, the transport mechanism is induced by the two dominant forces which are
the thermally induced permittivity gradient and the electrolyte Seebeck effect.
This thesis is organized as follows: In section 2, we review previous results on

the electrolyte Seebeck effect. In section 3, we theoretically study the Seebeck effect
of a heated Janus colloid immersed in an electrolyte solution. We will try to see
how the self-propulsion mechanism induced by thermoelectric field can depend on
the surface properties of the particle. This particle’s surface can be in a different
geometries where the system is in non-equilibrium condition and the resulting
electric properties is treated within the Poisson-Boltzmann theory. In the case
of an conducting surface, the particle carry a high electrical conductivity on its
metal cap which forms an isopotential surface. This isopotential condition imposes
a significant polarization charge which modifies the double-layer potential and
the thermoelectric properties. In section 4, we will discuss about the effect of
hydrodynamic interactions in a dilute polyelectrolyte solution. This last point was
studied in term of series expansion for Oseen tensor. In addition, we will see, in
this section, how the counterions condensation effect can play an essential role on
the thermophoretic mechanism for DNA. Finally in section 5, we will study the
dynamics of ion, in electrolyte solution, depending on time. Here, the system is in
non-stationary state. In this case, the characteristic time scale for ions diffusion
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will results from the charge conservation equation which rely the ionic current and
the electric charge density.



Chapter 2

Electrolyte Seebeck effect

In this chapter, we review known results on the electrolyte Seebeck effect in dif-
ferent geometries. All the following results in this part are taking from the paper
in Ref. [29]

2.1 Seebeck effect in a 1-D geometry

In electrolyte solution, an applied temperature gradient exerts thermal forces on
salt-ions which migrate along the gradient. By response, the system generates a
macroscopic thermoelectric field which in the one-dimensional system, is given by

E =S∇T
(
1− e−z/λ

)
, (2.1)

where S is a constant of proportionality between the electric field E and the tem-
perature gradient, λ the thickness of the electric double-layer and z the normal
coordinate perpendicular to the screened surface. The coeffi cient S is known as
a electrolyte Seebeck coeffi cient [30, 31]. In the one-dimensional case, the tem-
perature gradient present in the system is constant. So if we define T2 as the
temperature of the hot boundary and T1 the temperature of the cold boundary,
then the temperature gradient reads,

∇T =
T2 − T1
L

,

where L is the length of the system.

10



CHAPTER 2. ELECTROLYTE SEEBECK EFFECT 11

Figure 2.1: Schematic view of the Seebeck effect in a 1 dimensional system. Due to
the presence of a temperature gradient, cations and anions accumulate at the cold
and hot boundaries, respectively. This result in the macroscopic thermoelectric
field E =S∇T which is constant in the bulk and vanishes at the boundaries. This
figure is reprinted with permission from Ref. [29].

The physical process of the generation of the electrolyte Seebeck field is sketched
in Fig. 2.1 with positive and negative ions located in the cold and hot region,
respectively. The motion of ions generates a current which in turn break the uni-
formity of the electrolyte solution. We will show in next section that this current
for positive and negative ions is different because it depends on their heat of trans-
port and the reduced Soret coeffi cient. Once a charge separation appears between
the two boundaries, then the system generates a thermoelectric field which in turn
acts on the ions and drives them. The behavior of this thermoelectric field is well
described by Eq. (2.1) where the exponential factor describes the accumulation of
charges in the hot and cold boundaries. In the bulk, the thermoelectric field takes
the expression E =S∇T which is constant in volume, whereas it vanishes at the
boundaries. In addition, the sign and magnitude of the Seebeck field depends on
the coeffi cient S which can be positive or negative depending on the solution used.
The corresponding thermocharge density follows from Gauss’s law, ρ = ε divE,

and its expression reads as,
ρ = −σ

λ
e−z/λ,
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where σ = ±εS∇T takes opposite signs at the cold and hot boundaries. In the
bulk, the thermocharge density vanishes, ρ = 0, and in the boundaries it’s screened
by counterions.

2.2 Seebeck effect in 3-D system

Here we detailed the Seebeck effect in the vicinity of a heated colloidal particle.
In the system, the particle, totally covered by a thin metal layer, generates a
temperature gradient once heated. As illustrated in Fig. 2.2, due to the presence
of this temperature gradient, the co-ions move to the hot region (near the particle
surface) whereas the counterions move to the cold region. This phenomenon of
charge separation induces a thermoelectric field which at distances well beyond
the Debye length reads as E =S∇T . Thus, near the particle surface the complete
expression of the Seebeck field come from the stationary electro-osmotic equation
for the ionic current.

2.2.1 ion current

The colloid particle is immersed in a electrolyte solution composed of monovalent
ions with densities n± for respectively positive and negative ions. Once the particle
is heated, it generates a symmetric temperature gradient. This temperature gradi-
ent exerts thermal forces on salt-ions and induces their motions. As a result, the
system generates an ionic current

J± = −D±
(
∇n± + 2n±α±

∇T
T
∓ n±

eE

kBT

)
, (2.2)

where D± the positive and negative ionic diffusion coeffi cient. The vector field
J± is the current of positive and negative ions. This current is the sum of three
different terms: the diffusion current ∝ ∇n± which is given by Fick’s law, the
thermodiffusion current ∼ α±∇T with α± the reduced Soret coeffi cient which
characterize the drift of ions in presence of the temperature gradient, and the
electric driven current ∝ E which is due to the presence of the thermoelectric
field in the system. When the system reaches the steady-state, the three different
currents, which are the diffusion currents cancel each other, resulting in J± = 0.
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In the following, we will detail the behavior of the thermoelectric field and the
total charge density in the steady state where the mobile ionic current given by
each ionic species vanishes.

2.2.2 Thermoelectric field and thermocharge

Here we give the complete expression of the thermoelectric field of a uniform
particle of radius a and centered at r =0. We denote by n0 the bulk salinity and
ρ = e(n+ − n−) the charge density. If we assume that ion densities n± differ only
weakly from their bulk value, that is n+ + n− ≈ 2n0 and ρ/e � n0, one can
linearize the sum of J+ − J− in the following form,

∇ρ+ 2n0e (α+ − α−)
∇T
T
− 2n0e

2 E

kBT
= 0. (2.3)

Thus we can perform Eq. (2.3) by applying the relation between the thermo-
electric field E and charge density ρ, called Gauss’s law

∇E =ρ/ε, (2.4)

where ε the solvent permittivity. Inserting this last equation into Eq. (2.3) in the
steady state, one obtains the equation satisfied by the thermoelectric field,

∇2E− 1

λ2
(E−S∇T ) = 0, (2.5)

where λ2 = εkBT/2n0e
2 is the Debye screening length and S = (α+ − α−) kB/e is

the Seebeck coeffi cient. The vector quantities E, ∇T in Eq. (2.5) are considered
to be symmetric in the case of an isotropic surface (uniform colloid particle). Now
if we consider a 3-D spherical symmetry, only their radial components are finite,
i.e, they depend only on the radial distance r from the particle center.
The temperature gradient remains always in the stationary state because of

the fact that heat diffuses much faster than ions, and its expression is given by

∇T = −δTa
r2

,

where δT is the excess temperature at the particle surface. To solve Eq. (2.5),
one has to specify the boundary conditions. Here the particle is considered to be



CHAPTER 2. ELECTROLYTE SEEBECK EFFECT 14

uncharged, i.e, it doesn’t carry surface charge. In this case, the thermoelectric field
is equal zero at the particle surface, E(r = a) = 0. The second condition states
that the thermoelectric field vanishes at large distances, E → 0 when r →∞.
With these two conditions and solving Eq. (2.5), the thermoelectric field reads

as,

E=S∇T
(

1− r + λ

a+ λ
e(a−r)/λ

)
. (2.6)

This last equation characterizes the behavior of the thermoelectric field in the
vicinity of a heated gold colloid particle. This Seebeck field takes its origin from
the separation of charges caused by the temperature gradient. In addition, it’s
important to note that this thermoelectric field is not an external applied field
but the field generated by the system composed of colloid particle plus electrolyte
solution.
In the steady-state, the thermoelectric field present in the solution is described

by Eq. (2.6), where at distance well beyond (a + λ) the screening exponential
term vanishes and the remainder long-range electric field E=S∇T varies with the
inverse of the square distance. Applying Gauss’law, the thermocharge density will
scale as, ρ ∝ e(a−r)/λ, which vanishes at long distances well beyond the Debye
screening length.
The total thermocharge is found by integrating the thermocharge density over

the particle surface, then it reads as

Q = −eŜ a
lB

δT

T
, (2.7)

where Ŝ the reduced Seebeck coeffi cient. This is the net thermocharge accumulated
in the vicinity of the particle surface. The thermocharge Q is independent of the
radial distance r and thus its sign depends on the coeffi cient Ŝ which is positive for
NaCl solution and negative for NaOH solution [32]. The sign of the thermocharge
Q tells which ion species is accumulated in the particle’s vicinity. For example,
in NaCl solution, anions diffuse toward high temperature thus negative charge is
accumulated at the particle surface, resulting inQ < 0; whereas for NaOH solution,
the inverse phenomenon occurs and the particle accumulated a net positive charge.
For typical value of the excess temperature δT = 30K and a particle size about a ∼
1µm in NaCl or NaOH electrolyte solution, the corresponding net thermocharge
is about Q ∼ 100e. For protonated salts in water or alcohol solution, the value of
the thermocharge becomes much higher.
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Figure 2.2: Schematic view of the Seebeck effect in a 3 dimensional system. We
show here the Seebeck effect in the vicinity of a hot colloid particle. Due to the
thermal gradient, the particle accumulates a net thermocharge Q and thus results
in a radial thermoelectric field given in Eq. (2.6). This figure is reprinted with
permission from Ref. [29].



Chapter 3

Nanoscale Seebeck effect

3.1 Introduction

In recent years, artificial microswimmers have attracted much attention in many
different areas such as microfluidic application [21]. In some physical systems, the
motion of particles is due to an external applied field like a uniform electric field
(electrophoresis) or a chemical (diffusiophoresis) or temperature gradient (ther-
mophoresis). If phoretic motion of passive particles is rather well understood
[1, 22, 18], this is not always the case for self-propelled particles. In these sys-
tems, it’s more diffi cult to predict the direction of motion of particle or to describe
exactly all the physical forces inducing the motion of particle.
Recent experiments on half-metal coated colloid particles (Janus particle), in a

defocused laser beam [38] or by optical trapping [39], reveal the strong presence of
thermophoresis forces in the sense that: Once the particle is heated, the absorption
of laser by the metal side generates a local temperature gradient which in turn
drives the particle by thermophoresis. To go even further in to order understand
more the question of self-propulsion mechanism induced by thermophoresis, the
colloids particles are immersed in electrolyte aqueous solution. In this situation,
recent experiment reveals that the stationary height of colloid particle increases
with the laser power, and even varies with the ion species [15]. In other words, this
last point means the sign and magnitude of thermophoresis depend strongly on
the electrolyte composition; this was confirmed by recent work on hot colloids [16].
In addition to thermal effect, one observes thermoelectric effect, called electrolyte
Seebeck effect, which occurs during the self-propulsion mechanism of hot colloid

16



CHAPTER 3. NANOSCALE SEEBECK EFFECT 17

particle in an electrolyte solution. This Seebeck effect plays an essential role on the
transport mechanism of hot particle, and even depends on the surface properties of
the particle. It’s important to question that how the thermoelectric properties with
the induced slip-velocity vs can change at an insulating and conducting surfaces.
In this present chapter, we deal with the self-propulsion mechanism of hot Janus

colloid induced by thermoelectrophoresis: As illustrated in Fig. 3.1, due to the
presence of a temperature gradient, the Janus particle, immersed in a electrolyte
solution, carries opposite thermocharges on its two poles which in turn results
in a dipolar thermoelectric field. This field acts on the electric double-layer and
self-propels the particle with velocity u. The transport velocity can be derived
directly when taking the surface configurational average of the boundary slip-
velocity vs which is a function of the parallel thermoelectric field E‖ = S∇‖T .
This parallel field is modified close to a conducting surface but does not change
at an insulating surface (upper and lower hemispheres in Fig. 3.1c). At the
conducting surface, the gold cap forms an isopotential surface because of its high
electrical conductivity, thus the parallel electric field vanishes. In both cases, the
resulting transport velocity does not be changed by the surface electric properties,
but in turn depends strongly on the salt composition.

3.2 Boundary layer approximation

3.2.1 Electrostatic boundary conditions

Surface charges of colloidal particles are usually treated in Poisson-Boltzmann the-
ory. Since an analytic solution exists in one dimension only, the widely used bound-
ary layer approximation neglects the surface curvature. As long as the screening
length λ is much smaller than the particle radius a, there is a separation of length
scales: The properties of the electric double layer vary much more rapidly in per-
pendicular direction than parallel to the surface.
The resulting approximation is best discussed in terms of Gauss’ law ρ =

div(εE). This divergency comprises two terms, the normal field component decays
on the scale of the Debye length, ∂zE⊥ ∼ E⊥/λ, whereas the permittivity and the
parallel electric field vary on the scale of the particle radius, ∂xE‖ ∼ E‖/a. Thus
to linear order in small parameter λ/a, the divergency of the electric field is given
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Figure 3.1: Schematic view of a thermoelectric self-propulsion mechanism of a
heated Janus particle. a) The electric double-layer of a charged Janus particle
immersed in a electrolyte solution. The ions are screened with valency of the order
of z ∼ 105. The Debye length λ, characterizing the thickness of electric double-
layer (dashed line), is much more smaller than the particle radius a ∼ 1µm. b)
Thermocharge accumulated by the electrolyte Seebeck effect (S < 0); the resulting
(positive and negative) thermocharge density is larger at the hot metal cap; for an
excess temperature of a few kelvin one has a net charge of about QT ∼ 100e [40].
c) Dipole component of the thermoelectric field E in the vicinity of a heated Janus
particle. The parallel field E‖ vanishes at the metal cap (upper hemisphere), but
is finite at the insulating surface.
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by its normal coordinates,
dE⊥
dz

=
ρ

ε
. (3.1)

For further use, we integrate from the surface to a distance B that is much larger
than the screening length but much smaller than the particle radius, and find

E⊥(B)− E⊥(0) =
1

ε

∫ B

0

dzρ(z) ≡ σ

ε
. (3.2)

The second identity defines the charge density per unit area of the diffuse layer.
This parameter also determines the double-layer potential ϕσ, as is obvious from
the Poisson-Boltzmannmean-field expression for the diffuse layer, ρ = 2en sinh(eϕσ/kBT ).
In the case of an electric double layer at equilibrium, the electric field usually

vanishes at large distance, E⊥(B) = 0, resulting in the value at the particle surface

E⊥(0) = −σ
ε
. (3.3)

Then −σ corresponds to the charge per unit area of the surface, which exactly
cancels that of the diffuse layer.
On the contrary, the main results of the present paper are derived from Eq.

(3.2), with the outer boundary condition determined by E⊥(B) = S∇⊥T . This
implies that σ as defined in (3.2) does not correspond to the surface charge density.
In the range of the distance B, the temperature gradient is almost identical to that
at the particle surface, ∇⊥T = ∇⊥TS.

3.2.2 Temperature gradient at the particle surface

Since the heat conductivities of liquid and solid are different in general, the particle
deforms the temperature field in its vicinity. For a sphere, a conductivity contrast
modifies the parallel and perpendicular components of the temperature gradient
according to

∇‖TS → ξ‖∇‖TS, ∇⊥TS → ξ⊥∇⊥TS, (3.4)

with the well-known constants [32]

ξ‖ =
3κw

2κw + κP
, ξ⊥ =

3κP
2κw + κP

, (3.5)

expressed in terms of the thermal conductivities κw and κP for the liquid and the
solid, respectively. We suppress these factors in the following sections but restore
them when discussing the slip velocity.
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3.3 Seebeck effect: uncharged particle

Here we evaluate the thermoelectric properties at the particle surface which does
not carry a surface charge, i.e, the particle is considered to be uncharged.

3.3.1 Debye-Hückel approximation

Here we derive the thermocharge of an otherwise uncharged hot Janus particle
in the weak-coupling approximation where the electrostatic energy eϕ is much
smaller than the thermal one kBT . We start by giving the equation satisfying by
the electric field E and charge density ρ which obtained by using Debye-Hückel
approximation,

∇ρ+
ε

λ2
(S∇T − E) = 0. (3.6)

This last equation has two unknowns: The thermocharge density ρ and the
electric field E. To have only one unknown and simple computations, we solve the
corresponding equation satisfying by the electrostatic potential ϕ. Now introdu-
cing the Gauss’s law ρ = ε divE with the relation E = −∇ϕ into Eq. (3.6), one
has to solve

∇2ϕ− 1

λ2
(ϕ− S∆T ) = 0, (3.7)

where ∆T = T (r)− T0 with T (r) the temperature field given in term of a series
multipolar expansion and T0 the bulk temperature (see Appendix A2).
The linear differential equation (3.7) is obtained within the weak-coupling ap-

proximation, and his general solution reads as,

ϕ = −
∞∑
n=0

(
Stn

an+1

rn+1
+ cn

kn (r/λ)

kn (a/λ)

)
Pn (c) , (3.8)

where c = cos θ cosine of the polar angle, and kn (x) =
√

2
πx
Kn+1/2 (x) the modified

spherical Bessel function of the second kind.
The potential in (3.8) is still not complete because of the unknown coeffi cients

cn which can be found by specifying the electrostatic boundary conditions which in
turn will depend on the surface properties of the particle. In the following sections,
we will try to find the coeffi cients cn and discuss the thermoelectric properties for
both insulating and conducting surfaces.
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3.3.2 Insulating particle

Here the particle does not carry a surface charge, thus the electrostatic boundary
conditions require that the normal electric field vanishes at the particle surface,
E⊥(0) = 0, whereas at the outer boundary one has E⊥(B) = S∇⊥TS. From Gauss’
law (3.2), one readily finds

εS∇⊥TS =

∫ B

0

dzρT (z) ≡ σT , (3.9)

where the second equality defines the thermocharge per unit area. As illustrated
in Fig. 3.1b, a negative Seebeck coeffi cient implies a positive surface charge at
the hot boundary, σT > 0. In general, the temperature varies along the particle
surface, and so does σT = σT (x).
With the boundary conditions in (3.9), the electrostatic potential completely

reads as

ϕ = −S
∑
n

tnPn(c)

(
an+1

rn+1
− (n+ 1)

λ

r
e(a−r)/λ

)
. (3.10)

Before computing the component of the electric field, we approximate that,
within the screening layer, the factor (a/r)n is close to unity, thus we discarded the
corresponding factor in the following equations. Applying this last approximation
and taking the perpendicular derivative of the potential ϕ, the normal component
of the electric field reads, to leading order in λ/a,

E⊥ = S∇⊥T (1− e−z/λ), (3.11)

where ∇⊥T ≈ (TS − T0) /a with TS the temperature field at the particle surface.
The normal component of the electric field is screened by the thermocharge

such that it vanishes at the surface. The parallel component, on the other hand,
remains unchanged and is finite at the surface,

E‖ = S∇‖TS, (3.12)

where the parallel gradient of the temperature field is taken to be∇‖TS ≈ sin θδT/a.
The thermocharge density follows from Gauss’ law, ρT = −∇2ϕ. With the

same approximation as for the normal field component above, one finds for the
thermocharge density

ρT = −σT
λ
e−z/λ, (3.13)
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with σT = εS∇⊥TS the thermocharge per unit area.
This thermocharge density ρT decreases exponentially before it vanishes at

large distances well beyond the Debye screening length. Since the Debye screening
length λ is much smaller than the particle radius a, then the temperature gradient
∇⊥T is taken to be constant through the charged layer. For a micron size particle
at an excess temperature of 10 K, and a typical Seebeck parameter S = 10−4 V/K,
the surface charge density σT takes a value of about 10e per square micron and
the electric field about 1 kV/m.

3.4 Charged surfaces

3.4.1 Poisson- Boltzmann theory

In the previous sections, we derived and discussed about the thermoelectric prop-
erties for a hot colloid particle in the Debye-Hückel approximation where the elec-
trostatic energy eϕ is much smaller compared to the thermal energy kBT . In the
case of a strong charged particle, this last point is necessary satisfied because of
strong-coupling system and the electrostatic properties will be governed by the
well-known Poisson-Boltzmann equation.
Contrary to Debye-Hückel approximation, where all the derived equations are

linear, the Poisson-Boltzmann equation is non-linear and does not have an ana-
lytical solution in a 3D system. To overcome this diffi culty, we resort to the usual
boundary layer approximation: The particle radius is much larger than the Debye
screening length, a� λ. As a consequences, the particle surface can be considered
as flat and the resulting non-linear Poisson-Boltzmann equation will be treated in
planar geometry where the solution results in a 1D problem.
Consider a hot charged particle with a surface charge σ in contact with electro-

lyte solution. Within the above approximation, the electrostatic potential satisfy
the 1D equation,

∂2zϕσ =
kBT

eλ2
sinh

eϕσ
kBT

, (3.14)

where z is the normal distance to the particle surface. The solution of this equation
is well-known and results in,

ϕσ(z) = −2kBT

e
ln

1 + ge−z/λ

1− ge−z/λ , (3.15)
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with the shorthand notation

ĝ = ge−z/λ, g =

√
1 + `2/λ2 − `/λ.

The parameter g is given by the ratio of the Gouy-Chapman length ` and the
Debye length λ,

` =
e

2π`B|σ|
, λ =

1√
8π`Bn

,

where the Bjerrum length `B, the surface charge density σ, and the salinity n. In
the following we assume a negative surface charge −σ.
Taking the perpendicular derivative dϕ/dz, the normal electric field reads

E⊥ = −σ
ε
e−z/λ

1− g2
1− ĝ2 . (3.16)

This field is perpendicular to the particle, and it satisfy the relation E(0) =
−σ/ε.
The charge density in the diffuse layer is readily obtained from Gauss’ law

ρ = εdE/dz,

ρ =
σ

λ
e−z/λ

(1− g2)(1 + ĝ2)

1− ĝ2 . (3.17)

Integrating over z one finds ∫ ∞
0

dzρ(z) = σ, (3.18)

which means that the counterions ρ completely screen the surface charge density
−σ.
We briefly reviewed the Poisson-Boltzmann theory in thermal equilibrium, then

we will discuss in the following sections about thermoelectric properties for both
insulating and conducting surfaces.

3.4.2 Charged insulating surface

Now we consider an insulating surface with an electric double layer. In this case,
the diffuse layer consists of both double-layer and thermocharge contributions,

ρ = ρ0 + ρT . (3.19)
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For notational convenience we assume a negative surface charge density −σ0,
as is the case for most colloids. Then the electric field at the outer boundary is
given by the Seebeck field, and at the inner one by E⊥(0) = −σ0/ε, and Eq. (3.2)
becomes

S∇⊥TS +
σ0
ε

=
1

ε

∫ B

0

dz(ρT + ρ0) =
σI
ε
, (3.20)

with the charge density of mobile ions per unit area,

σI = σT + σ0. (3.21)

Note that the two contributions are related to the Seebeck field and to the surface
charge, respectively.
The corresponding Poisson-Boltzmann potential ϕσI , which is defined through

ρT+ρ0 = ε∂2zϕσI , has to be calculated with an effective surface charge σI = σT+σ0,
with the parameter

g =

√
1 + l2/λ2 − l/λ,

where the Gouy-Chapman length,

l =
e

2πlB |σ0 + εS∇⊥TS|
. (3.22)

Taking the normal derivative of the total electrostatic potential, ϕI = ϕT +ϕσI ,
the normal component of the electric field reads

E ins⊥ (z) = S∇⊥T −
(σ0
ε

+ S∇⊥T
)
e−z/λ

1− g2
1− ĝ2 . (3.23)

The second term of this last equation result from the perpendicular derivative of
ϕσI , and it decays rapidly through the screening layer. Because of the constant
temperature gradient ∇⊥T through the charged layer, the first term is constant
on the scale of the Debye length. One readily verifies that E⊥(z) satisfies the
boundary condition, at the particle surface E⊥(0) = −σ0/ε, and well beyond the
screening length E⊥(B) = S∇⊥T .
The parallel component of the electric field reads as,

E ins‖ (z) = S∇‖T −∇‖ϕσI . (3.24)

This parallel field does not vanish at the surface z = 0 because the second term
gives rise to a term proportional to ∝ ∇‖T . Both contributions vary slowly on the
scale of the particle radius and are of comparable magnitude.
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3.4.3 Charged conducting surface

Now we turn to conducting surfaces, for example the gold cap of the upper hemi-
sphere in Fig. 3.1c. Because of its high electric and thermal conductivities, the
metal layer may considerably modify the thermoelectric properties in the double-
layer and at the particle surface. The electrostatic boundary conditions impose a
constant potential, or a vanishing parallel electric field [41],

E‖(0) = S∇‖T −∇‖ϕσC (0) = 0. (3.25)

On the other hand, at the outer boundary z = B the parallel field takes the finite
value ∇‖T . These conditions cannot be satisfied with the surface charge discussed
above.
To achieve (3.25) the mobile electrons in the metal surface move until their

polarization charge density σP modifies the double-layer potential such that its
gradient cancels the thermoelectric field at the surface. In one hand, the polariz-
ation charge is determined by inserting ϕσ with

σC(x) = σT (x) + σ0 + σP (x) (3.26)

in Eq. (3.25) and solving for σP . In the other hand, we assume that the total
charge does not change, so one has for the surface integral

∫
dSσP = 0. With

these two conditions, the polarization charge is determined by

σP = −σ0

(
e
√

1 + b2

kBT
(ST − ζ)− d ln ε

d lnT
− 1

)
TS − 〈TS〉

2T
, (3.27)

where TS the temperature field at the particle surface and 〈TS〉 its mean value,
b = l/λ the ratio of the Gouy-Chapman length and screening length, and ζ the
surface potential.
In the weak-coupling limit, the Gouy-Chapman length l is much larger com-

pared to the Debye screening length, b = l/λ� 1. Thus expanding in linear order
Eq. (3.27), the polarization charge will be simplified as

σP = −εS
λ

(TS − 〈TS〉) . (3.28)

Since the diffuse layer screens the local surface charge density, σP induces a
corresponding change of the mobile charge density, ρP , and we have ρC = ρT +ρ0+
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ρP . We recall that the double-layer potential ϕσ is calculated with the parameter
σC which accounts for the charge density of the diffuse layer, σC =

∫
dzρC(z),

whereas the surface charge density is given by −(σ0 + σP ). Accordingly, we have

E⊥ (0) = −σ0 + σP
ε

(3.29)

at the particle surface.
Now taking the normal and the parallel derivative of the total potential, ϕ =

ϕT + ϕσC , the normal component of the electric field reads as

Econd⊥ (z) = −
(
σ0 + σP

ε
+ S∇⊥T

)
1− g2
1− ĝ2 e

−z/λ + S∇⊥T, (3.30)

for the parallel field component, one has

Econd‖ (z) =

(
1− 1− g2

1− ĝ2 e
−z/λ

)
S∇‖T. (3.31)

At the particle surface, one can verify that Econd⊥ satisfies Eq. (3.29) whereas
for the parallel field is zero at the particle surface Econd‖ vanishes. As shown in Fig.
3.2, with increasing distance, the double-layer potential ϕσ decays and vanishes
well beyond the screening length, and the electric field is given by, E = S∇T.

3.5 Hydrodynamic phoretic velocity

3.5.1 Slip-velocity

Closely following Ref. [32], we evaluate the boundary slip-velocity vs which is
derived from a fluid mechanical treatment. For that we adopt the low Reynold
number hydrodynamic Stokes equation which describes the velocity field of an
incompressible fluid (∇ · v = 0) in the steady state,

η∇2v = ∇P − f , (3.32)

where η the solvent viscosity, P the osmotic pressure, and f the force exerted by
the particle on the surrounding charged fluid (force per unit volume).
For an approximate solution of the Stokes equation, we consider a geometry

where the Debye screening length is much more smaller than the particle radius,
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Figure 3.2: Variation of the parallel componentEcond‖ of the electric field in function
of the ratio of the normal distance z and the Debye length λ. For the plot we
used the following parameters: The Seebeck coeffi cient for NaOH solution S =
−200µV/K, particle radius a = 1µm, the Debye length λ = 30nm, and the excess
temperature δT = 30K. The dashed lines indicate, the long-range thermoelectric
field E∞ = −SδT/a ≈ 6kV/m.
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Figure 3.3: Variation of the normal component Econd⊥ of the electric field in func-
tion of the ratio of the normal distance z and the Debye length λ. For the plot
we used the following parameters: The Seebeck coeffi cient for NaOH solution
S = −200µV/K, particle radius a = 1µm, the Debye length λ = 30nm, and the
excess temperature δT = 30K. The dashed lines indicate, the long-range thermo-
electric field E∞ = −SδT/a ≈ 6kV/m, and the normal field at the particle surface
E⊥ (z = 0) = − (σ0 + σP ) /ε ≈ −1.8× 103kV/m.
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λ� a. In this case, the particle surface is considered as flat and the hydrodynamics
quantities vary slowly along the particle surface, but much more rapidly in the
normal direction [1]. Now if we adopt a local coordinates x and z, respectively,
parallel and perpendicular to the surface, the normal coordinate of the velocity
field vanishes, vz = 0. In the parallel direction, the velocity field depends hardly
on the x component, that is vx = vx (z), implying the equation ∂2zvx = fx−dP/dx.
Integrating this last equation with the Stokes boundary conditions, where at the
surface the velocity vanishes vx |z=0= 0 and becomes constant at a distance equal
to the Debye length λ, one finds the boundary slip-velocity as,

vs =
1

η

∫ ∞
0

dzz(f‖ −∇‖P ), (3.33)

where η is the solvent viscosity and where the driving force consists of several
terms. The first one derives from the Maxwell tensor and contains electric forces,

f = ρE− 1

2
E2∇ε, (3.34)

that is, the Coulomb force exerted by the electric field on the charge density ρ and
the change in electric energy due to a permittivity gradient.
To linear order in the temperature induced perturbations we have

f = ρ0(S∇T −∇ϕσ)− 1

2
(∇ϕσ0)

2 ∇ε, (3.35)

where ∇ϕσ in the first term still depends on the detail of the electric double
layer and, in particular, takes quite a different form at insulating and conducting
surfaces.
The second term in (3.33) stems from the pressure P = δnkBT exerted by

the excess concentration of mobile ions δn = n[cosh(eϕσ/kBT )− 1] in the double
layer. When evaluating the gradient one needs to account for its variation with
temperature, salinity, and the potential ϕσ, resulting in

∇P = −ρ0∇ϕσ + (ρ0ϕσ0 + δnkBT )
∇T
T

+ δnkBT
∇n
n
. (3.36)

In these relations for f and ∇P , the potential ϕσ varies rapidly in normal direc-
tion, and slowly along the surface. The quantities T , ε, and n vary slowly in all
directions, on the scale of the particle parameter.
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Gathering the different terms one obtains the force density

f −∇P = ρ0S∇T − h
∇T
T
− δnkBT

∇n
n
− 1

2

(
∇ϕσ0

)2 ∇ε, (3.37)

where we use the shorthand notation for the double layer enthalpy density h =
ρ0ϕσ0 + δnkBT . As a remarkable feature, the parallel gradient ∇‖ϕσ has dis-
appeared from the double-layer forces. If both the electrostatic force f and the
osmotic pressure P depend on the precise form of the parameter σ, these terms
cancel in (3.37). Since ∇ϕσ is the only term to depend on the polarization charge
σP , this quantity no longer is relevant and, as a consequence, the slip velocity does
not depend on the conductivity of the particle surface.
With the known Poisson-Boltzmann expressions for ϕσ and its derivatives, the

integral in (3.33) is readily performed

vs = −εζ
η
Sξ‖∇‖T +

ε(ζ2 − 3ζ2T )

2η

ξ‖∇‖T
T

− εζ2T
2η

(∇‖ε
ε

+
∇‖n
n

)
, (3.38)

with the surface potential ζ = ϕσ0(0) and the quantity [32],

ζT =

(
2kBT

e

)[
ln cosh

(
eζ

4kBT

)2]1/2
. (3.39)

For weakly charged surfaces, where the ζ-potential is smaller than kBT/e ≈
25 meV, one has ζT ≈ ζ, whereas in the opposite case, ζT is significantly smaller
than ζ. Note that we have restored the factor ξ‖ which accounts for the thermal
conductivity contrast of particle and solvent.
This result does not depend on the electrical conductivity of the particle sur-

face. The slip velocity is the same at insulating and conducting surfaces, although
the electric field at the particle surface shows a very different behavior. A sim-
ilar effect was shown to occur for the electrophoretic mobility at a metal surface
[42], resulting in an electro-osmotic slip velocity that is the same at insulating and
conducting surfaces.

3.5.2 Drift velocity

The boundary slip-velocity in (3.38) varies along the particle surface with respect
to the polar angle θ. Taking its configurational average along the surface, we find
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Figure 3.4: Electric double-layer including the thermocharge (temperature in-
creases from left to right). At an insulating surface, the surface charge density
σ0 is not affected by the Seebeck effect, whereas the diffuse layer comprises the
non-uniform thermocharge density ρT . At a conducting surface (right panel), the
condition of a constant surface potential requires a polarization charge σP ; the
corresponding counterions add to the diffuse layer and to the non-uniform ther-
mocharge.
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the particle drift velocity u = −〈vs〉 which is opposite to the osmotic flow in the
boundary layer. Simplifying the thermal conductivity ratio ξ‖ ≈ 1 (particle and
solvent thermal conductivities taken to be equal: kw ≈ kp) and taking the surface
integral of Eq. (3.38), one readily obtain the particle drift velocity

u = −
ε
(
ζ2 − ζ2T

)
3η

∇T
T

+
εζ2T
3η

(
∇ε
ε

+
∇n
n

)
+

2εζ

3η
ET , (3.40)

where the first term results from the thermoosmotic flow in the electric double-layer
and the last term accounts for the velocity induced by the self-generated Seebeck
field ET = S∇T with the Helmotz-Smoluchowski’s electrophoretic mobility εζ/η
multiplied by the factor 2/3.
As for the slip-velocity, the sign and magnitude of this particle drift velocity

does not depend on the electrical conductivity of the particle surface, but vary
strongly with the electrolyte Seebeck coeffi cient S which in turn takes specific
values depending on the electrolyte composition used. For NaCl solution, the res-
ulting velocity u > 0, thus the particle moves toward hot region, whereas for NaOH
solution, u < 0, one observes the motion of particle in opposite direction.

3.6 Results and discussion

In previous sections, we have already derived the expressions of the electric prop-
erties, the thermocharge and the induced transport velocity of an uncharged or
charged hot colloid in contact with electrolyte solution. Now we are going to discuss
in details about these results, and to see which impact they can have in possible
applications.

3.6.1 Thermocharge and electric field

The thermoelectric properties are quite independent of the particle’s equilibrium
surface charge density. For the sake of clarity, we mainly discuss the case of an
uncharged particle.
Due to strong absorption of laser light by the metal cap, the particle generates

an asymmetric temperature gradient which in turn creates a thermoelectric field
or Seebeck field. This Seebeck field does not result from an externally applied
voltage but from the ionic current (2.2) induced by the temperature gradient.
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Although the electric boundary conditions at the surface of a dispersed colloidal
particle are the same, its behavior in the vicinity are quite different from that of
an external electric field, and in particular results in a thermocharge density at
the particle surface, which is given by the equation (3.13). The behavior of the
thermocharge density does not depend on the surface properties of the particle: In
both cases, an insulating and conducting surface, it decays exponentially and takes
the value zero at the bulk. Because of the non-uniform temperature gradient along
the surface, ∇⊥T varies slowly along the surface; and with the assumption λ� a,
the temperature gradient can be considered as constant through the charged layer.
The thermocharge per unit area reads, in the case of a NaOH electrolyte solution
carrying an excess temperature of 30K and a Seebeck coeffi cient S = −200µV/K,
as

σT = εS∇⊥T ∼ 10−4e/nm2. (3.41)

In Fig. 3.5, we show the electric field lines around an insulating and conducting
particle. We compare first the field lines around the low-permittivity insulating
particle shown in Fig 3.4 a and b, then we see secondly the case of an conducting
particle. Because of the strong permittivity contrast, when an external electric
voltage is applied then the resulting field does not penetrates in the particle. As a
consequence, the field at the particle surface is by the factor 3εw/ (2εw + εP ) ≈ 3/2
greater than in the bulk. On the contrary, the Seebeck field, determined by Eq.
(3.6), is not deformed by the permittivity contrast (εP � εw) in the vicinity of
the particle, and everywhere follows the temperature gradient. The explanation
of this effect is the fact that the temperature gradient is assumed to be constant
everywhere, and the normal component of the thermoelectric field is screened by
the accumulation of mobile ions in the vicinity of the particle. On the conducting
surface, the polarization effect modifies the double-layer potential and imposes
isopotential condition at the metal surface. As a consequences, the parallel field
vanishes at the particle surface, and, as illustrated in Fig 3.5c, the thermoelectric
field at the particle surface is given by its normal component.

3.6.2 Polarization charge on the conducting surface

We discussed in the section above the thermocharge which occurs on both insu-
lating and conducting surfaces. On the latter, however, the isopotential condition
of electrostatics imposes in addition a polarization charge on the metal coating,
which is screened by mobile ions. In other words, the thermal polarization effect
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Figure 3.5: Electric field lines for insulating and conducting particles. a) Elec-
tric field due to an applied external voltage. The field does not penetrate in a
low-permittivity particle, resulting in parallel component at the surface which is
by a factor 3εw/(2εw + εP ) ≈ 3

2
larger than the bulk field. b) Thermoelectric

field in the vicinity of an insulating particle. Assuming a constant temperature
gradient, that is, similar thermal conductivities of particle and solvent, we find
that the field is not deformed by the permittivity contrast (εP � εw) but follows
the constant temperature gradient, E = S∇T . Within one Debye layer from the
particle surface, its normal component E⊥ is screened by ion accumulation, that
is, the thermocharge ρT , as shown in the left panel of Fig. 3.4; the parallel com-
ponent E‖ does not vanish, and the particle surface is not at constant potential.
c) Thermoelectric field in the vicinity of a conducting particle. Polarization of the
metal surface adjusts the surface charge density such that the parallel component
of the field vanishes, resulting in an isopotential surface. The corresponding non-
uniform surface charge σ is illustrated in the right panel of Fig. 3.4. The normal
component of the electric field corresponds to the surface charge parameter σ.
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modifies the charge parameter σ on the electric double-layer by σP which, in the
weak-coupling approximation, is given by (3.28).
For a micron size particle in NaOH solution with an excess temperature of 30K,

an electrolyte Seebeck coeffi cient S = −200µV/K and a Debye length λ = 2nm,
the polarization charge is of the order of

σP =
εS (TS − 〈TS〉)

λ
∼ 10−2

e
nm2

. (3.42)

From comparison of ∇⊥T ≈ (TS − T0) /a, it is clear that σP exceeds the ther-
mocharge σT by a factor a/λ which, for micron-size particles, is of the order of
a/λ ∼ 100.
The resulting electric field lines of a heated Janus colloid are shown in Fig 3.1

c: The far-field corresponds to the Seebeck field E = S∇T , whereas the near-field
depends strongly on the surface properties. At the conducting cap (the metal side),
the parallel component vanishes within one Debye length. In order to relate the
thermally induced charges and the thermoelectric field to the surface conductivity,
we show in Fig. 3.5b and c how the Seebeck field of a constant temperature
is deformed in the vicinity of a colloid with an insulating or conducting surface
coating. Both differ significantly from the deformation of an applied electric field,
which is shown in Fig. 3.5a. As a conclusion, we say that the behavior of the
thermoelectric field at solid boundaries is very different from that of a voltage
induced field.

3.6.3 Granular gold surface

The above discussion assumes a continuous gold cap, which does not always cor-
respond to the actual experimental situation. For example, the cap of the particles
used in Ref. [15] consists of a dense coverage of nano-sized gold grains, visible in
scanning electron microscopy images [39] and illustrated in Fig. 3.6.
These grains do not connected to a continuous gold structures. Each grains

forms an equipotential surface, and, as in the case of a continuous gold cap, the
resulting parallel field vanishes within one screening length. As illustrated in Fig.
3.6, we see the existence of a potential jump between nearby grains; their cold
and hot boundaries carry polarization charges which result in a strong electric
field in the grain’s spacing. As a consequence, the picture developed for micron-
size conducting surfaces remains correct at the nanoscale. Because of the surface
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cold hot 

λ 

Figure 3.6: Parallel component E‖ of the thermoelectric field in the vicinity of a
granular gold cap (S > 0). Each metal grain forms an equipotential surface and
carries opposite polarization charges σP at its cold and hot sides. Like on the
continuous cap in Fig. 3.1c, E‖ vanishes in a layer of about one screening length.
On the insulating surface at the left, the field is given by (3.12).

roughness one may expect a somewhat smaller slip velocity than at a homogeneous
cap.

3.6.4 Comparison with experiment

A recent experiment reported thermoelectric driving of hot silica particles with a
granular gold cap [15]. Probing the particle’s self-propulsion velocity in 10 mM
solutions of NaCl, LiCl and NaOH, revealed a strong salt-specific effect, which
agrees qualitatively with the Seebeck coeffi cients of these electrolytes, SNaCl >
SLiCl > SNaOH. When comparing to experimental findings, one has to add to
vs the thermo-osmotic and related contributions, subsumed in vosms , which are of
comparable magnitude but independent of the ion species [16].
Contrary to what was observed for passive polystyrene beads in an external

temperature gradient [16], the experiments of Ref. [15] seem to indicate that the
negative Seebeck effect of NaOH does not result in a change of sign of the self-
propulsion velocity of an active particle. This could be related to the granular
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gold surface, the properties of which could differ from the behavior derived for a
continuous gold surface assumed in this paper. As another possible explanation, we
mention the strong increase of vosms with temperature, whereas the thermoelectric
contribution was found to be rather constant [16].

3.7 Conclusion

The aim of this present study was to understand the nanoscale Seebeck effect for
a hot metal nanostructure in contact with electrolyte solution. In other words, we
studied the self-propulsion mechanism induced by the thermo-electrophoresis effect
of an active particle. In this problem, the thermoelectric properties are studied by
considering different surface geometry, i.e, the surface of the particle can behaves
as an insulating or a conducting surface.
At the insulating surface, the diffuse layer consists of two contributions: The

double-layer charge ρ0 inducing by the surface charge σ0 which is not affected by
the Seebeck effect, and the non-uniform thermocharge ρT which is proportional to
the surface excess temperature TS. This temperature field increases, in the case
of a Janus particle, from the passive hemisphere to the heated cap, resulting in a
parallel component of the Seebeck field along the particle surface. On the conduct-
ing surface, the parallel temperature gradient induces polarization charge on the
metal structure, which modify the double layer such that the parallel component
of the electric field vanishes at the surface. Surprisingly, this does not affect the
thermally induced slip velocity, which turns out to be identical on insulating and
conducting surfaces.
In addition, our theoretical results agree qualitatively with a recent experi-

ment [15]: When regarding specific-ion effects, the self-propulsion velocity shows
a significant variation with the used salts NaOH, NaCl, LiCl. Taking into account
these above points, we can conclude that the thermoelectric properties of hot Janus
particles in an electrolyte solution depend strongly both on the material properties
and the specific-ion effects.



Chapter 4

Hydrodynamic interactions in
DNA thermophoresis

4.1 Introduction

The dynamics of polyelectrolytes is of considerable interest in a fields such as mi-
crofluidics and biotechnology applications [33]. Understanding their dynamics can
be essential to perform properties of electrophoresis or thermophoresis of polyelec-
trolytes. In the past, the first models predicting the dynamics of polymer chain in
solution was developed by Rouse and Zimm [34, 35]. In these theories, the polymer
is modelled as a chain with a large number of spherical beads connected by springs.
The main difference between these two models is the effect of hydrodynamic in-
teractions which are absent in Rouse’s model and present in Zimm’s model. Con-
sequently taking into account these hydrodynamic interactions between beads, the
diffusion coeffi cient scale as: D ∝ N−υ, where the Flory exponent υ = 0.6 for real
chains in good solvent [13]. This last equation shows that the diffusion coeffi cient
of the polymer chain varies with the number of beads, i.e, it depends strongly on
the molecular-weight.
In contrary, phoretic mechanism for polymers in a dilute solution is usually con-

sidered to be independent on the molecular-weight. This point was first discussed
and confirmed by Giddings when studying thermophoresis of high polymers [12],
and later by Brochard and de Gennes by showing that the hydrodynamic interac-
tions have no effect on thermophoresis for polymers [25]. More recently, consider-
able progress has been made on DNA-phoresis; these results revealed, however, a

38
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molecular-weight dependence on the mobility in the range where the persistence
length L ∼ λ with λ the Debye screening length [36, 37]. Muthukumar confirmed
this molecular-weight dependence and showed the importance of " hydrodynamic
screening" on DNA phoresis [27, 28].
In this present chapter, we investigate in the hydrodynamic screening of DNA

thermophoresis, and in particular we study the influence of hydrodynamic interac-
tions in a dilute polyelectrolytes solution: In the polymer chain, a given molecular
creates a flow field and drags its unit neighbor beads. This effect increases the
velocity of the chain until it saturates at large distances well beyond the Debye
screening length, where the drag forces exerted by charged monomers and the
corresponding counterions cancel each other. We evaluated theoretically the ther-
mophoretic mobility DT of a polymer chain of n beads. This mobility shows, in
function of the chain length, a non-monotonuous behavior and consists of two con-
tributions: a dielectrophoresis induced by permittivity gradient and the Seebeck
effect. At the first time, we begin by studying about the hydrodynamic interactions
arising during the mechanism process. At second, we give a detailed calculation of
the phoretic coeffi cients and we discuss about the counterion condensation effect
which strongly influences the thermophoretic mobility’s behavior. At the end, we
compare our theory with recent experimental result on single-stranded DNA [44].

4.2 Thermodynamic forces

Due to the presence of the temperature gradient, the system exerts lateral forces
on the counterions surrounding the charged monomer which in turn moves the
fluid with respect to the particle surface. The created force, called force density or
thermodynamic force, results from the interactions at the solid-solvent interface,
and his general expression reads as [51]

f = − (ρψ + nikBT )
∇T
T
− E2

2
∇ε− nikBT

∇n0
n0

+ ρET , (4.1)

where ε the solvent permittivity, n0 the bulk salinity, ni = n+ + n− the ex-
cess ion density and ρ = e (n+ − n−) the total charge density. The force density
(4.1) describes the force exerted on the counterions cloud surrounding the charged
monomer, and it’s given in terms of quantities describing the electric double layer
and the thermoelectric field. In Eq. (4.1), the terms proportional to ∝ ∇T and
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Figure 4.1: Schematic view of a charged polymer in an electrolyte solution. a) The
drag on bead i consists of two contributions: First, the motion of bead j, driven
by the force F, creates a flow field v(r− rj) and thus drags its neighbor i. Second,
due to the force f exerted by the bead j, the fluid element dV moves and in turn
exerts a drag on bead i. These contributions cancel each other at distances well
beyond the Debye length λ. b) At the scale of the Debye length, a polyelectrolyte
is a rigid molecule; at short distances within λ, the spacing of two beads of radius
a is well described by rij = 2a |i− j|.
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∝∇n0 result from the osmotic pressure i.e the pressure of the excess density of mo-
bile ions, the second term ∝∇ε results from the divergence of the Maxwell stress
tensor which describes the force exerted by the charged-monomer surface, and the
last term ρET describes the force exerted by the macroscopic thermoelectric field
ET = S∇T on the monomer’s counterion density ρ [18].
All the terms in f are of comparable magnitude but for small molecules, that

is, for molecules’s size a much more smaller than the screening Debye length λ,
then the companions field ET and ∇ε dominate whereas the gradients ∇T and
∇n0 are negligible. Thus the simplified expression of the density force becomes,

f = −E
2

2
∇ε+ ρET , (4.2)

where the first term is proportional to the thermally induced permittivity gradi-
ent ∇ε = (dε/dT )∇T , with the charged monomer’s electric field E. Since the
permittivity decreases with rising temperature, dε/dT < 0, the surrounding water
moves to the hot, as recently confirmed experimentally for thermoosmosis in a
capillary [45]. By reaction, the molecule migrates toward the cold. The electrolyte
Seebeck coeffi cient S is a salt-specific quantity that may take either sign, resulting
in motion along the temperature gradient or opposite to it [16].
The density force given in Eq. (4.1) play also the rule of source term in the

hydrodynamic Stokes equation. Now assuming that the electrostatic potential eψ
is much more smaller than the thermal energy kBT (eψ � kBT ) then the charge
density ρ can be expanded in quadratic order in term of ψ as, ρ ' −εψ/λ2. In-
serting the number permittivity derivative τ = −d ln ε/d lnT , the Debye screening
length λ2 = 1/8πn0lB the Debye length with lB = e2/4πεkBT the Bjerrum length,
we can write the density force as a linear function of the thermal gradient,

f =

(
τεE2

2kBT
− δαεψ

eλ2

)
kB∇T. (4.3)

The force density f acts on the surrounding water and, by reaction, the mo-
lecular unit is subject to the opposite force F = −

∫
dV f [51]. Thus the velocity

field induced by the moving bead i at the position of its neighbor j, consists of
two contributions,

v(rij) = G(rij) · F+

∫
G(rij − r) · f(r)dV, (4.4)
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where G(r) = (1 + r̂r̂)/8πηr is the Oseen tensor with the viscosity η and r̂ = r/r
[52]. The first term describes the long-range velocity field v ∼ 1/r or “stokeslet”
of a particle subject to an external force F; it gives rise to strong hydrodynamic
effects on diffusion and sedimentation [13]. The second term is characteristic for
phoretic motion; it may be viewed as the sum of stokeslet flows of strength fdV
and centered at a distance r from the particle. Since both E and ρ vanish well
beyond the Debye length, the second term cancels the first one at large distances,
rij � λ, whereas it is small for nearby beads.

4.3 Hydrodynamic interactions

We want here to study the influence of the hydrodynamic interactions in a dilute
polyelectrolytes solution. Now consider a polyelectrolyte chain of n building blocks
where each molecular bead of charge q results in a Debye-Hückel surface potential
ζ = q/4πεa, as illustrated in Fig. 4.1. Throughout this paper, we assume that
the molecular size a is small compared to the Debye screening length λ. Unit i
creates a flow field v(r − ri) in the surrounding fluid and thus drags its neighbor
j. Then the overall velocity u of the chain is given by the sum of the monomer
contribution u1 and the mutual advection,

u = u1 +
1

n

∑
i,j 6=i

〈v(rij)〉 , (4.5)

where the angular brackets 〈· · ·〉 indicates the configurational average with respect
to rij = rj − ri. Before computing Eq. (4.5) and finding the velocity of the chain,
one have to specify the flow field v(rij) and all the physical forces arising during
the mechanism process. In order to simplify the second term in the velocity u,
the configurational average is done with the equilibrium distribution function. The
later being isotropic, the only finite component of the mean drag velocity is along
the temperature gradient, and the tensor equation in (4.4) is simplified to a scaler
one where the Oseen tensor is replaced by its diagonal part by G(r) = 1/6πηr.
Inserting the expression of the density force and averaging over the position i of
the polymer chain, the Eq. (4.5) becomes

u = u1 +
1

n

∑
i,j 6=i

∫ 〈
G(|rij − r|)−G(rij)

〉
f(r)dV, (4.6)
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The second term in parenthesis depends on the details of the counterion distribu-
tion; for later use we expand the pre-average Oseen tensor in term of Legendre
Polynomials Pk(cos θ), with cos θ = r̂ij · r̂,

G(|rij − r|) =
1

6πη

∞∑
k=0

Pk(cos θ)
hkij

Hk+1
ij

, (4.7)

where hij = min (r, rij) denotes the smaller of the distances r and rij, and Hij =
max (r, rij) the larger one.
Now the problem remain to compute the volume integral in Eq. (4.6), and, in

other word, to evaluate Eq. (4.7) with an appropriate counterion distribution. We
start by evaluating the monomer’s electrical potential ψ with the corresponding
electric potential E = −∇ψ which are both screened. In this case, the electrostatic
potential of a single bead of valence ẑ is well described by the Debye Hückel
approximation,

ψ = ζ
a

r
e−r/λ, (4.8)

where the single bead surface potential ζ = −ẑe/4πεa, which we assume to be
negative.
By applying E = −dψ/dr we obtain easily the radial monomer’s electric field.

Inserting Eq. (4.8) into Eq. (4.6), one finds the only finite contribution stems
from the term k = 0 in Eq. (4.6), and the remainder vanishes for an isotropic
screening cloud. Assuming that the particle’s radius a is much smaller than the
Debye length λ, and the quantity na be of the order of λ, the volume integral in
Eq. (4.6) is readily performed by doing a first order development in term of a/λ.
We obtain,∫ 〈

G(|rij − r|)−G(rij)
〉
f(r)dV = τ

εa2ζ2

6ηT

〈
e−2rij/λ

r2ij

〉
− 2S

εaζ

3η

〈
e−rij/λ

rij

〉
, (4.9)

where S = δαkB/e is the electrolyte Seebeck coeffi cient. This last equation char-
acterizes the hydrodynamic interactions between monomers and shows the latter
is exponentially screened.
To find the complete expression of the chain’s velocity, we begin by simplifying

the configurational average by treating the molecules as rigid rods such that the
distance of beads i, j simplifies to rij = |i− j| d, where d the distance between two
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consecutive beads. As a consequences, the double sum is replacing by the double
integral over i and j. So we have to compute,

u = u1 +
1

n

τ εa2ζ26ηT

∫ n∫
1

didj

(
e−2|i−j|d/λ

|i− j|2 d2

)
− 2S

εaζ

3η

∫ n∫
1

didj

(
e−|i−j|d/λ

|i− j| d

)∇T.
(4.10)

Eliminating the absolute value and computing the double integral over i and
j, one finds finally

u =
ζ2

3η
(1 + χε)∇ε+

2εζ

3η
(1 + χS)ET . (4.11)

where the quantities χε and χS account for hydrodynamic interactions (see Fig.
4.2) With χε = 0 = χS one has the explicit expression for the monomer velocity
u1.
The hydrodynamic correction factor for the motion driven by the permittivity

gradient reads,

χε =
a2

d2

(
(1 + 2nd̂)

E2d̂ − E2nd̂
n

+ e−2d̂ − e−2nd̂

n

)
, (4.12)

with the shorthand notation Ex = Ei(−x) for the exponential integral function
which is defined as

Ei (x) =

∫ x

−∞

e−u

u
du,

and d̂ = d/λ for the ratio of the monomer length and the Debye length. For the
Seebeck term we find

χS =
2a

d

(
End̂ − Ed̂ +

e−nd̂ − e−d̂

nd̂

)
, (4.13)

The factor 2 in the exponential and Ei functions in χε arises from the screening
factor of the force density, E2 ∝ e−2r/λ, whereas the factors in χS are related to
the decay of the screening cloud, ρ ∝ e−r/λ. The Seebeck term χS can be seen
as an electrophoretic mobility which is identical to Muthukumar result [27], albeit
with the bead distance d instead of Kuhn length l. In the expression of the chain
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velocity u, we detect two terms: a dielectrophoresis induced by the permittivity
gradient ∇ε and the electrolyte Seebeck effect induced by the thermoelectric field
ET = S∇T . The influence of these two terms are shown in Fig. 4.2 where we
plotted the quantities χε and χS as a function of the molecular weight. Both vanish
for monomers, n = 1, whereas for long molecules they tend toward the constants
χ∞ε = (a/d)2(2d̂E2d̂ + e−2d̂) and χ∞S = −2(a/d)Ed̂.

4.4 Counterion condensation

In addition to hydrodynamic interactions arising during the dynamics of polyelec-
trolytes, we oberve another phenomenon which is called counterion condensation:
due to Coulomb interactions, a strong charged polyelectrolyte exerts a powerful at-
traction on counterions which partly condense on the polymer until its line charge
density is reduced to the critical value e/lB [53]. The condensed ions move with
the polymer chain, and the uncondensed mobile ions present in the ionic atmo-
sphere are well treated by the Debye-Hückel theory. Because of this condensation
effect, everything change even the effective charge per monomer q = −ẑe. This
charge remain unknown, and to overcome this diffi culty, we estimate his value by
taking into account its reduction along the barre charge n. Thus we consider for
simplicity

ẑ = ξ−1 +
1− ξ−1

1 + βn
, (4.14)

where ξ = lB/d is called the Manning parameter, and βn = (n2 − 1)n−20 with
n0 an arbitrary constant value. This constant value enhance the precision of the
analytical curve, and n0 = 80 we obtain best fits for the experimental data (see Fig.
4.2). The parameter ξ modelizes the counterion condensation effect, in the sense
that, if ξ > 1 the condensation effect takes place because the Coulomb interaction
is very strong and dominates the thermal one; but if ξ < 1, meaning that the bead
spacing d is larger than the Bjerrum length lB ' 7Å, then the electrostatics forces
acting on the chain is very weak compared to the thermal forces, and thus the
condensation effect doesn’t occur in this case.
However, the condensation effect is relevant for polyelectrolytes because the mo-

lecules are strongly charged and the bead spacing distance d is something between
3 and 4Å. The valency ẑ of the effective charge given in Eq. (4.14) satisfy com-
pletely the Manning’s prediction, in the sense that, for a monomer the quantity
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βn vanishes, one has ẑ = 1, and for long chains βn goes to infinity, thus the res-
ulting effective charge valence decrease along the barre charge until it converge to
ẑ = ξ−1.

4.5 Results and comparison with experiment

The thermophoretic mobility is defined from the drift velocity relation u = −DT∇T .
From this equation, the thermophoretic mobilty reads,

DT = τ
εζ2

3ηT
(1 + χε)− S

2εζ

3η
(1 + χS) . (4.15)

We can obtain a detailed expression by inserting the valence of the effective
charge ẑ and the Bjerrum length lB,

DT =
kB

12πηa

{
ẑ2
lB
a

(1 + χε) + 2ẑ (1 + χS) Ŝ

}
, (4.16)

where the parameter τ = −d ln ε/d lnT ≈ 1.4 which arises from the permittivity
gradient, and the dimensionless Seebeck coeffi cient Ŝ = S(e/kB). This thermo-
phoretic mobility is valid for small monomers, that is, for monomer’s size much
more smaller than Debye length. For monomers the mobility is independent of
the Debye length, whereas for longer chains, the correction factors give rise to
complex dependencies on λ and n. This mobility shows also two contributions
which are plotted as a function of n and shown in Fig. 4.2. These contributions
have a non-monotonuous behavior, both they reach a maximum and decrease until
they reach a finite constant value for large n; for typical parameters of DNA in
weak electrolyte, the permittivity term shows an overall decrease, ẑ2(1 +χ∞ε ) < 1,
whereas the Seebeck term is enhanced, ẑ(1 + χ∞S ) > 1. As a consequence, the
thermophoretic mobility has the same behavior. The explanation of this variation
is nothing else that the first increase result from the hydrodynamic interactions
between monomers then the decrease is caused by the reduction of the effective
charge inducing by the condensation effect.
Our theory gives the thermophoretic mobility DT in Eq. (4.16), whereas exper-

iment often probe the Soret coeffi cient ST = DT/D, where the diffusion coeffi cient
D = kBT/6πηRh is determined by the hydrodynamic radius Rh of the molecules.
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Figure 4.2: Variation of the two contributions to the thermophoretic mobility
DT , the dielectrophoretic coeffi cient ∼ 1 + χε and the Seebeck effect ∼ 1 + χS,
depending on the molecular weight. The parameters used for this plot: monomer’s
size a = 4.25Å, monomer’s distance d = 3Å and Debye length λ = 5 nm. The
factors, χε and χS characterize the hydrodynamic interactions and increase with
the chain length n (dashed line), ẑ2 and ẑ result from the counterion condensation
which reduce the mobility (Solid line).
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Figure 4.3: The variation of the hydrodynamic radius Rh = R(n) [1 + (λ− 7) /42]
where we took from the paper [55] and R[n](nm) is an adjustable parameter with n
is the number of beads in the polymer chain. We took for this parameter: R(5) =
1.35, R(10) = 1.71, R(22) = 2.01, R(50) = 3.7, R(80) = 4.74.

Unfortunately, for short molecules, there is no simple and generally formula for
the hydrodynamic radius. To overcome this diffi culty, we have estimated the value
hydrodynamic radius in the simple way by,

Rh = R(n)

[
1 +

λ− λ0
L

]
, (4.17)

where λ0, L are an arbitrary constant lengths, andR(n) be an adjustable parameter
which describes also the measured mean value of the hydrodynamic radius. The
hydrodynamic radius is modelized in Eq. (4.17) in order to determine the diffusion
coeffi cient D and the Soret coeffi cient ST , and to agree with recent experimental
measurement [55]. Fig. 4.3 shows the measured values of the hydrodynamic radius
Rh in function of the Debye length, which agree slightly with the analytical one
from Eq. (4.17). The values for n = 10 and 22 slightly increase with the Debye
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Debye length λ (nm) Soret coeffi cient ST (10−2/K) at T = 15◦C
2 mer 5 mer 10 mer 22 mer 50 mer 80 mer

2.16 0.78 1.19 1.86 2.11 3
3 1.03 1.49 2.12 2.86 3.10 3.27
4.16 1.15 1.9 2.7 3.69 4.6
5.2 1.29 1.89 2.89 3.8 5.19 4.8
6.16 1.45 1.89 2.59 4.2 5.79 6.21
7 1.5 1.89 3.2 4.41 5.8 6.31
8 1.43 2.25 3.07 4.44 6.58 6.29
9.74 1.48 2.09 3.4 4 7.1 6.09
11.25 1.45 2.2 3.29 8.81 5.21

Table 4.1: Experimental value of ssDNA Soret coeffi cient in function of the
Debye length at the corresponding chain length: 5 monomers, 10 monomers, 22
monomers, and 80 monomers.

length, as expected from the increased stiffness in weak electrolyte. The data for
n = 5 and 50 show a slight decrease and significant scatter.
In Fig 4.4 we compare our theory with the experimental Soret data for single-

stranded DNA as a function of the Debye length λ, taken from Ref. [44] and given
in Table 4.1. The theoretical curves are calculated with Eq. (4.16) and a simple
model for the diffusion coeffi cient D, as described above. The best agreement
with the data is obtained when retaining in Eq. (4.16) the permittivity-gradient
term only, that is, for zero Seebeck coeffi cient, Ŝ = 0. The increases of ST with
the Debye length arises mainly from the hydrodynamic correction χε. For short
chains, that is for n < 30, the variation with n is of purely hydrodynamic origin,
whereas for larger chains counterion condensation plays an important role, as is
clear from Fig. 4.2.
In order to clearly display the effect of hydrodynamic interactions, we plot in

Fig. 4.5 the thermophoretic mobility in (4.16) as a function of the molecular-weight
n. The experimental points are obtained from DT = DST , with the measured
coeffi cients ST and D which are determined from the estimated function for the
hydrodynamic radius Rh given in Eq. (4.17). The theoretical curves are calculated
with the permittivity only (Ŝ = 0). The initial increase of the data up to n = 22
agree quantitatively with the relation (4.12), thus providing strong evidence for
the role of hydrodynamic interactions. The maximum and the subsequent decrease
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Figure 4.4: Variation of experimental and analytical Soret coeffi cient ST in function
of the Debye length λ. The parameters used here for the two graphs are: the
monomer’s size a = 4.25Å and distance between monomer d = 3Å, the reduced
Seebeck coeffi cient Ŝ = 0.
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Figure 4.5: Variation of experimental and analytical: a) thermophoretic mobility
DT in function of the chain length n. The parameters used here for the two graphs
are: the monomer’s size a = 4.25Å and distance between monomer d = 3Å, the
reduced Seebeck coeffi cient Ŝ = 0.
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Figure 4.6: Thermophoretic mobility DT as a function of the chain length n, for
different values of the dimensionless Seebeck coeffi cient Ŝ. For negative Ŝ the
thermoelectric field in (4.11) drives the molecules toward the hot, whereas the
permittivity gradient points toward the cold. Since the latter dominates for short
molecules and the latter for long ones, DT changes sign as the n increases.



CHAPTER 4. HYDRODYNAMIC INTERACTIONS INDNATHERMOPHORESIS53

are well described by counterion condensation according to (4.14). Adding a signi-
ficant thermoelectric contribution, i.e, increasing the reduced Seebeck coeffi cient
Ŝ, would not improve the quality of the fit, quite on the contrary. This indicates
that the Seebeck field in NaCl solution is small, confirming a previous analysis of
thermophoretic measurements on polystyrene beads [16].
The electrolyte Seebeck effect was discarded in the above analysis of Soret

data in NaCl solution. In Fig 4.6 we plot the complete thermophoretic mobility
DT as a function of the molecular-weight n, for several values of the dimensionless
Seebeck coeffi cient Ŝ. As the most striking feature, for negative Ŝ the superposition
of the two contributions in (4.16) may result in a change of sign of DT . From
Fig. 4.2 it is clear that for short chains, the permittivity gradient term prevails,
whereas for longer molecules the Seebeck term dominates because of its much
larger hydrodynamic factor χS. The resulting velocity difference could be used
for specific accumulation of one component at a heated spot. For example, in an
electrolyte with Ŝ = −0.3, the permittivity gradient dominates for short molecules
(n < 50) which move to the cold accordingly, whereas longer chains are driven to
the hot by the thermoelectric field.

4.6 Conclusion

The objective of this chapter was to discuss about the effects of hydrodynamic
interactions and thermoelectric field occurring during the thermophoresis mechan-
ism for DNA in electrolyte solution. As a summary of our main result, we start
with the non-monotonuous behavior of the thermophoretic mobility DT which
consists of two contributions: The motion induced by the permittivity gradient,
that is the dielectrophoretic term χε; and the one induced by the Seebeck field
χS. These two contributions have the same behavior: With increasing the chain
length n, it presents a first increase resulting from the hydrodynamic interactions,
and a decrease caused by the counterion condensation. For longer chains, that is
for large n, the mobility DT presents a limit which is obtained by letting χ→ χ∞

and ẑ → ξ−1. This limit does not depend on the molecular-weight n, and does not
vanish for high salinity or small Debye length, contrary to what was observed for
micron-size colloidal particle [16].
In addition, the comparison of our theoretical results with the experimental

data, shown in Fig. 4.4 and 4.5, reveals a strong dependence on the molecular-
weight, which arises from the interplay of the hydrodynamic interactions and the
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condensation effect. Finally, the change of sign of the mobility DT depend on
the negative value of the Seebeck coeffi cient S; and in a physical term, it results
from the interplay between the dominant driving forces: The thermally induced
permittivity gradient and the Seebeck field with a negative Seebeck coeffi cient.



Chapter 5

Ion dynamics: time dependent
effect

In section 3, we studied the thermoelectric properties of a metal capped colloid
particle moving in a electrolyte solution. In that studies, all the physical properties
are derived in the stationary state where the system is independent of time. Thus
in this chapter, we will study the ion dynamics properties, and in other words the
electrolyte Seebeck effect in the non-stationary state. We will also try to find the
ion diffusion time scale and discuss about its effect on thermophoresis .

5.1 Charge conservation equation

In electrolyte solution, when ion-species are influenced by a non-uniform temper-
ature gradient, thus results in an ion current J± which is detailed in section 2. We
define the total ion current by I =e (J+ − J−) and by linearizing, his expression
becomes,

I = −εD
{
∇2E− 1

λ2
(E−S∇T )

}
, (5.1)

where ε the solvent permittivity andD = (D+ +D−) /2 the ion diffusion coeffi cient
(more details in Appendix D). We want here to write the equation satisfied by the
thermoelectric field in the non steady state. We start by the charge conservation
equation related the total ion current I and the charge density ρ = e (n+ − n−),

∂tρ+ div I =0. (5.2)
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Applying Gauss’s law divE = ρ/ε, one obtains the equation describing the
evolution of the generated electric field inside and outside the particle’s electric
double-layer,

∂tE = D

(
∇2E− 1

λ2
(E−S∇T )

)
. (5.3)

This last equation results from the charge conservation equation and charac-
terizes the behavior of the electric field in the non-stationary state. When we put
∂tE = 0, we find the equation (3.6) given in section 2 and section 3 where the
system reaches the stationary state. The equation given in (5.3) is called reaction-
diffusion equation where the right hand side describes the creation of the electric
field, the left hand side characterizes the term of diffusion and the term S∇T
plays the rule of source for the thermoelectric field. To study the dynamics of
colloid particle in an electrolyte solution, we will try to solve the reaction-diffusion
equation in (5.3) and find the generated electric field in all state.

5.2 Effect on Janus particle

Consider a half-metal covered Janus colloid of radius a and centered at r = 0.
The self-generated temperature gradient is asymmetric due to half-metal absorp-
tion and remains always in the stationary state due to faster heat diffusion. Here
we consider a particle with no surface charge, i.e, we are in the case of an in-
sulating uncharged surface. To have simple computations, we define the reduced
electrostatic potential by the relation E = −SδT∇ψ, then the advection-diffusion
equation becomes

∂ψ

∂t
= D

(
∇2ψ − 1

λ2
(ψ − Tl)

)
, r > r0, (5.4)

n ·∇ψ = 0, r = r0, (5.5)

where r0 = a the particle radius, and Tl (r) = (T (r)− T0) /δT is the reduced
temperature field with T (r) the self-generated temperature field [56]. For r > a,
the reduced temperature field reads

Tl =

∞∑
n=0

tnPn (c)
(a
r

)n+1
(5.6)
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where c = cos θ and Pn the Legendre polynomial, and the coeffi cients tn are
given by, t2k = −t2k+1 = (−1)k /π (2k + 1), except the first coeffi cient t0 = 1/2 +
1/π.
The boundary condition in (5.5) says that the normal component of the electric

field vanishes at the particle surface. The partial differential equation is solving by
the Laplace transform with no initial condition, and by expanding the solution in
first order in term of λ/a, with λ� a, one finds, outside of the particle for r > a,
the electrostatic potential as

ψ (r,t) = ψ (∞)
(
1− e−t/τ ion

)
, (5.7)

where ψ (∞) is the potential in the steady state where the time exponential factor
vanishes. Applying the relation E = −SδT∇ψ, one can find easily the correspond-
ing electric field (for more details see Appendix E). In Eq. (5.7) the quantity

τ ion =
λ2

D
, (5.8)

represents the characteristic time scale expressing the time of ion diffusion over the
screening length. This time scale characterizes also the particle relaxation time,
i.e, the time which the particle start moving. For typical values of the diffusion
coeffi cient D ∼ 10−9 m2/s and the Debye length λ = 50 nm, the relaxation time
is in the order of τ ion ∼ µs. Important to note that this ion diffusion time scale is
by several order of magnitude greater than the thermal and hydrodynamic time
scales which are, respectively, given by τ th = λ2/α and τ hy = λ2/ν with the heat
diffusivity α ∼ 10−7 m2/s and ν ∼ 10−6 m2/s the kinetics viscosity. This last point
tell us at which moment the particle start moving and enable us to discuss in more
detail the effect of this relaxation time on thermophoresis.

5.3 Effect on thermophoresis

In the previous section, we discussed about the Seebeck effect in the non-steady
state and computed the ion diffusion time scale τ ion. In this present section we
will study by details the time-dependent effect on the thermophoretic motion of
particles. The particle’s slip velocity can be written as,

vs(t) = vels (1− e−t/τ ion ) + vosms (1− e−t/τ th ), (5.9)
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Figure 5.1: Time-dependent slip velocity vs as the sum of the thermoelectric slip
velocity vels and the thermo-osmotic slip velocity v

osm
s . The plots are done in the

interval of time t = 0 to t = 10µs and with the fixed parameters: S = −200µV/K
for NaOH solution, a = 1µm, λ = 50nm, the surface potential ζ = −70mV.

and which consists of two contributions: the time-dependent thermo-osmotic slip
velocity vosms and the thermoelectric slip velocity vels . The thermo-osmotic slip
velocity vosms sets in on the heat-diffusion time scale τ th ∼ 10 nanoseconds. The
Seebeck effect requires ion diffusion which occurs on the time scale τ ion that may
attain a microsecond. Since in many instances, the thermoelectric slip velocity vels
is stronger and carries the opposite sign [17, 16], the onset of the Seebeck effect
could even result in a reversal of the direction of motion.

5.4 Conclusion

The aim of this small chapter was to discuss about the dynamics of ions occurring
once a temperature gradient is present in the system. In other words, we studied the
time dependent effect, i.e, when the system is not in the stationary state. For that
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we started by the charge conservation equation which rely the charge density ρ and
the current caused by the diffusion of ion. The solution of this reaction-diffusion
equation gives rise to the non-stationary thermoelectric field E and the character-
istic time scale for ion diffusion τ ion. This time scale characterizes also the particle
relaxation time. Indeed, this ion-diffusion time scale is by several order of mag-
nitude greater than the thermal and hydrodynamic time scale. As a consequence,
we observed a change of behavior in the motion of particle during the first mil-
liseconds. This variation can be seen in the expression of the slip-velocity which
consists of two different contributions: The time-dependent thermoelectric and
thermo-osmotic slip-velocity, vels (t) and vosms (t), which set in on the ion-diffusion
time scale τ ion ∼ 1µs and the heat-diffusion time scale τ th ∼ 10nanoseconds, re-
spectively. In Fig. 5.1, we showed the evolution of these two contributions in
function of time, and, as the result, we found that the time-dependent thermoelec-
tric slip-velocity dominates over the thermo-osmotic one. This last point shows
how the Seebeck effect takes considerably an important place on the direction of
motion of colloids in electrolytes.



Chapter 6

Summary and conclusion

This thesis was elaborated in order to study the nanoscale Seebeck effect at hot
metal nanostructure. The electrolyte Seebeck effect is an important and power-
ful phenomenon on the transport mechanism for colloids or polyelectrolytes. To
achieve completely this work, we organized this thesis in different chapters: The
first two chapters was an introducing part of our work, where in chapter 1 we
presented in detail different class of phoretic transport mechanism such as elec-
trophoresis, diffusiophoresis and thermophoresis. Among these transports mechan-
isms, the motion induced by thermophoresis for hot colloids in electrolyte solution
and for polyelectrolytes was studied in this present thesis. In electrolytes systems,
the thermophoresis mechanism is not only caused by the thermally-induced salt
gradient but also by the electrolyte Seebeck effect. The origin of this electrolyte
Seebeck was presented and detailed in chapter 2.
After introducing the electrolyte Seebeck effect in 1-Dimension and 3-Dimension

in chapter 2, we go to more complexes geometries in chapter 3 and we tried to
understand how the electrolyte Seebeck effect behaves when the particle’s surface
varies from an insulating to a conducting surface. In this chapter, we tried also to
understand how the change of behavior of the electric properties at an insulating
and conducting surfaces can affect the induced slip-velocity vs, and at the end
we computed the resulting particle drift velocity u. As a main result of this part,
we found that: Near the insulating surface, the parallel component of the electric
field E‖ is finite, whereas at an conducting surface carrying an high electrical con-
ductivity, the isopotential condition imposes a polarization charge which modifies
the double-layer potential such that its gradient cancels the thermoelectric field
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at this surface, thus the parallel electric field vanishes. Surprisingly, the change
of behavior of the thermoelectric field in function of the electrical conductivity
does not affect the thermally-induced slip-velocity. This slip-velocity is identical
at the insulating and conducting surfaces. As a consequence, the particle’s drift
velocity, resulting from the configurational average of the slip-velocity, also does
not depend on the material properties but his sign vary strongly with the salt
composition used NaOH, NaCl or LiCl. These above theoretical results have in-
tensively revealed how both material properties and specific-ion effects can modify
thermoelectric properties near a surface of a hot Janus colloid in an electrolyte
solution.
Another important result for this work was presented in chapter 4, where we

studied hydrodynamic interactions in thermophoresis for polyelectrolytes. In this
chapter, we evaluated theoretically the thermophoretic mobility DT , which arises
from mutual advection of the n repeat units of the molecular chain. This mobility
was studied in term of series expansion for the Oseen tensor. The two main phys-
ical phenomena occurring during DNA thermophoresis mechanism are the hydro-
dynamic interactions between monomers and the counterion condensation. Taking
into account these phenomena, we found, as the main result, the thermophoresis
DT has a non-monotonous behavior and consists of two contributions: The first
one is the motion induced by the permittivity gradient, that is the dielectrophoretic
term χε; and the second one is induced by the Seebeck effect χS. With increasing
the chain length n, these two contributions present a first increase which is due to
hydrodynamic interactions, and a decrease caused by the counterion condensation.
We also observed that, for long chains, the Seebeck term dominates because of its
larger hydrodynamic factor χS, whereas for short chains the dielectrophoretic term
χε prevails. These theoretical results agree with experimental data, in the sense,
they both revealed a strong dependence on the molecular-weight and an interesting
interplay between hydrodynamic interactions and condensation effect.
Finally, we studied briefly in chapter 5 the time-dependent effect on the dynam-

ics of ions in electrolyte solution. In this chapter, we wanted to know at which time
scale ions diffuse once a non-uniform temperature gradient is present. Solving the
charge conversation equation and applying the Debye-Hückel approximation, we
found the non-stationary thermoelectric field with the characteristic time scale for
ion-diffusion τ ion = λ2/D ∼ 1µs, which is, from comparison, much more greater
than both hydrodynamic and thermal time scales. At the end of this chapter,
we studied the time-dependent effect on particle’s slip-velocity which consists of
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two contributions: The time-dependent thermoelectric and thermo-osmotic slip-
velocity, vels (t) and vosms (t), which set in on the ion-diffusion time scale τ ion ∼ 1µs
and the heat-diffusion time scale τ th ∼ 10nanoseconds, respectively. Plotting
the time-evolution of this two contributions, one observed the thermoelectric slip-
velocity more stronger than the thermo-osmotic one in a first ten microseconds.
These above points show the important role playing by the electrolyte Seebeck
effect on the thermophoresis mechanism for colloids or polyelectrolytes.



Appendix A

Seebeck effect of an uncharged
particle

A.1 Equation for the ionic current

Here we give details for the expression of the ionic current resulting from the
motion of the ion-species and the approximation done during the computations.
We recall the expression of the current given by each ion-species,

J± = −D±
(
∇n± + 2n±α±

∇T
T
∓ n±

eE

kBT

)
. (A.1)

If we define the total ionic current I =e (J+ − J−), one can find his expression
as follows,

I =−e (D+∇n+ −D−∇n−)−2e
∇T
T

(D+n+α+ −D−n−α−)+(D+n+ −D−n−)
e2E

kBT
.

(A.2)
It’s now important to compute and to linearize the quantities: D+∇n+ −

D−∇n−, D+n+α+−D−n−α−, D+n+−D−n−, in order to simplify the expression
(A.2). In addition, if we assume that the ions densities n± vary weakly from the
bulk, that is n+ + n− ≈ 2n0 and ρ/e� n0, one finds the following quantities as,

D+n+ −D−n− ≈ 2Dn0,

D+∇n+ −D−∇n− ≈ D
∇ρ
e
,

D+n+α+ −D−n−α− ≈ (D0 (α+ + α−) +D (α+ − α−)) ,
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where D =
(
D+ +D_

)
/2 and D0 = (D+ −D−) /2 with D± the diffusion coeffi -

cient for positive and negative ion. Inserting these above quantities, the expression
of the total current is simplified to,

I = −D
(
∇ρ+ 2n0e (α+ − α−)

∇T
T
− 2n0e

2 E

kBT

)
− 2eD0 (α+ + α−)

∇T
T

.

(A.3)
Rearranging terms, finally the expression of the total current reads as,

I =−D
(
∇ρ+

ε

λ2
(S∇T − E)

)
, (A.4)

where ε the solvent permittivity, λ2 = εkBT/2n0e
2 is the Debye screening length

and S = D−1 (D+α+ −D−α−) kB/e is the Seebeck coeffi cient.

A.2 Debye-Hückel theory

We start by the equation satisfying by the charge density ρ and the electric field
E which result from the expression of the total ionic current in the steady state.
Thus putting I =0, one has

∇ρ+
ε

λ2
(S∇T − E) = 0. (A.5)

In order to find out the corresponding charge density ρ and the electric field
E, it’s more easier to solve the differential equation satisfying by the unknown
electrostatic potential by introducing the relation E = −∇ϕ with Gauss’s law
equation ρ = ε divE into the Eq. (A.5), one has

∇2ϕ− 1

λ2
(ϕ− S∆T ) = 0, (A.6)

where ∆T = T (r)− T0 with T (r) the temperature field given in term of a series
multipolar expansion

T (r) = T0 +
∑
n

tnPn (c)
an+1

rn+1
, (A.7)

where c = cos θ the cosine of the polar angle. The mean excess temperature t0 =
q/4πka is determined by the rate of the heat absorption q, the thermal conductivity
of the solvent k, and the particle radius a.



APPENDIX A. SEEBECK EFFECT OF AN UNCHARGED PARTICLE 65

The differential equation (A.5) has two solutions: the homogeneous and in-
homogeneous part, thus the electrostatic potential has two contributions,

ϕ = ϕT + ϕσ. (A.8)

The stationary heat equation for the temperature field, ∇2T = 0, implies that
the divergence of the thermoelectric field vanishes, ∇ · E =0. The corresponding
thermopotential ϕT , first solution of equation (A.6), reads as

ϕT = −S (T − T0) , (A.9)

whereas the second solution is given by the Debye-Hückel potential ϕσ, and results
from the equation

∇2ϕσ =
ϕσ
λ2
. (A.10)

To solve this equation, we decompose the solution

ϕσ (r) =
∑
n

ϕn (r)Pn (cos θ) , (A.11)

in the Legendre polynomial basis (Pn)n≥0. Inserting into Eq. (A.6), one has to
solve the following equation

d2ϕn
dr2

+
2

r

dϕn
dr
−
(
n(n+ 1)

r2
+

1

λ2

)
ϕn = 0. (A.12)

These kind of equations are solved by Bessel functions, and for spherical particle
the general solution is given in term of series expansion

ϕσ (r) =
∞∑
n=0

cn
kn (r/λ)

kn (a/λ)
Pn (cos θ) , (A.13)

where kn =
√

2
πx
Kn+1/2 (x) the modified spherical Bessel function of the second

kind. For the sake of notational convenience, we introduce the factor kn (a/λ)
such that the radial solutions are normalized at the particle surface r = a. The
complete electrostatic potential reads as,

ϕ = −
∞∑
n=0

(
Stn

an+1

rn+1
+ cn

kn (r/λ)

kn (a/λ)

)
Pn (c) , (A.14)

where c = cos θ. Now it remains to define the coeffi cients cn which depend on the
electrostatic boundary conditions used at the particle surface.
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A.3 Insulating particle

In the case of an insulating uncharged surface, the particle carries no surface charge
then the electrostatic boundary conditions require that the normal component of
the electric field vanishes,

E⊥ (r = a) = 0. (A.15)

Taking the radial derivative of the potential at the point r = a, the coeffi cients
cn read as,

cn = Stn(n+ 1)
λ

a

kn (a/λ)

k′n (a/λ)
,

with the dimensionless derivative k′n (x) = ∂xkn (x). In order to simplify the ex-
pression of the coeffi cients cn, we assume that the particle radius a is much greater
than one Debye length, λ� a. With this assumption, we expand in term of series
λ/a the corresponding function

kn (r/λ)

kn (a/λ)
=
a

r
e(a−r)/λ

[
1 +

λ

a

n (n+ 1)

2

(
1− a

r

)
+ ...

]
.

Thus the first terms of the series are well approximated by

kn (r/λ)

kn (a/λ)
≈ a

r
e(a−r)/λ (n <

√
a/λ).

In the most relevant near-field range, this approximation is even valid for n < a/λ.
To leading order in the small parameter λ/a, we have k′n (a/λ) /kn (a/λ) = −1 +
O(λ/a). Then the above coeffi cients read as,

cn = Stn(n+ 1)
λ

a
. (A.16)

The electrostatic potential, final solution of the differential equation (A.6), reads
as

ϕ = −S
∑
n

tnPn(c)

(
an+1

rn+1
− (n+ 1)

λ

r
e(a−r)/λ

)
. (A.17)

The screened term is by a factor λ/a smaller than the first one; yet their radial
derivatives cancel each other at r = a, thus satisfying (A.15).
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With the relation E = −∇ϕ, the normal component of the electric field reads,
to leading order in λ/a,

E⊥(r) = S∇⊥T (r)(1− e(a−r)/λ). (A.18)

In the screened terms we have discarded factors of a/r, since they are close to
unity in the range where the exponential function is finite. This explicit how the
thermocharge screens the normal electric field. The parallel field component, on
the contrary, is hardly affected by the thermocharge,

E‖(r) = S∇‖T (r)(1 +O(λ/a)). (A.19)

The thermocharge density follows from Gauss’law, ρT = −ε∇2ϕσ. With the
same approximations as for the normal field component above, we have

ρT = − ε
λ
e(a−r)/λS∇⊥T |S. (A.20)

Integrating over the radial coordinate we find the charge per unit area

σ =

∫ ∞
0

drρT = −εS∇⊥T |S. (A.21)

Integrating over the particle surface gives the total charge

QT = −4πaεSt0, (A.22)

which is determined by the isotropic component of the excess temperature.

A.4 Conducting particle

In the case of an conducting surface, the electrostatic boundary conditions impose
that, at the particle surface, the parallel component of the electric field vanishes,
whereas the normal component is compensated by the surface polarization charge
σP ,

E⊥ =
σP
ε
, E‖ = 0. (A.23)

For the surface polarization charge, we write it as the series expansion in the
Legendre polynomial basis, σP =

∑
n snPn (c). Now taking the normal and the
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parallel derivative of the electrostatic potential ϕ, the condition (A.23) enable to
determine the coeffi cients cn and sn, to leading order in λ/a,

cn = Stn, sn = −εStn
λ

(n > 0),

and because of charge conservation, the isotropic terms read as

c0 =
λ

a
St0, s0 = 0.

Inserting these coeffi cients, the electrostatic potential reads as,

ϕ = −St0
a− λea−rλ

r
− S

∑
n>0

tnPn(c)

(
an+1

rn+1
− ea−rλ

)
. (A.24)

With the same approximation done as in the insulating case and the surface
polarization condition

∫
S
σSdS = 0, the expression of the electrostatic potential

becomes

ϕ = −St0
a− λea−rλ

r
− S(TS − 〈TS〉)

(
1− ea−rλ

)
, (A.25)

where TS the temperature field at the surface and 〈TS〉 its mean value. The first
term account for the isotropic part of the thermopotential whereas the last term
account for the anisotropic thermopotential and for the polarization effect. With
the expression of the potential given below, one deduces the expression of the
polarization charge

σP = − ε
λ
S(TS − 〈TS〉). (A.26)

Before computing the component of the electric field, we approximate that,
within the screening layer, the factor (a/r)n is close to unity, thus we discarded
the corresponding factor in the following equation. With this approximation, the
normal component of the electric field reads as,

E⊥(r) = S∇⊥T (r)− S(TS − 〈TS〉)
λ

e
a−r
λ , (A.27)

and the parallel component,

E‖(r) = S∇‖T
(
1− e(a−r)/λ

)
. (A.28)
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The component E⊥ and E‖ satisfy the boundary conditions in (A.23). Applying
Gauss’s law, ρ = −ε∇2ϕ, we find the thermocharge density within the same
approximation,

ρP = − ε

λ2
e(a−r)/λS(TS − 〈TS〉). (A.29)



Appendix B

Poisson-Boltzmann theory

Previously, we derived the thermoelectric properties of an uncharged hot colloids in
a weak-coupling approximation. Now in the case where the particle carries a surface
charge σ and in contact with an electrolyte solution, the electrostatic potential ϕσ
is solved by the Poisson-Boltzmann equation

∇2ϕσ = −ρ
ε

=
kBT

eλ2
sinh

eϕσ
kBT

. (B.1)

This last equation is non-linear and doesn’t have an analytical solution in 3-
dimensional system. Now if we assume that the particle radius is much larger than
the Debye screening length, then the curvature of the surface can be neglected,
and the non-linear Poisson-Boltzmann equation can be solved in planar geometry
where the Laplace operator reduces to the second derivative with respect to the
vertical coordinate z, and the potential is the 1D solution [41]

ϕσ(z) = −2kBT

e
ln

1 + ge−z/λ

1− ge−z/λ , (B.2)

with the shorthand notation

ĝ = ge−z/λ, g =

√
1 + `2/λ2 − `/λ.

The parameter g is given by the ratio of the Gouy-Chapman length ` and the
Debye length λ,

` =
e

2π`B|σ|
, λ =

1√
8π`Bn

.
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Here we use the Bjerrum length `B, the surface charge density σ, and the salinity
n. In the following we assume a negative surface charge −σ.
Taking the perpendicular derivative dϕ/dz, the normal electric field reads

E⊥ = −σ
ε
e−z/λ

1− g2
1− ĝ2 . (B.3)

This field is perpendicular to the particle, and it satisfy the relation E(0) =
−σ/ε.
The charge density in the diffuse layer is readily obtained from Gauss’ law

ρ = εdE/dz,

ρ =
σ

λ
e−z/λ

(1− g2)(1 + ĝ2)

1− ĝ2 . (B.4)

Integrating over z one finds ∫ ∞
0

dzρ(z) = σ, (B.5)

which means that the counterions ρ completely screen the surface charge density
−σ.
The Debye-Hückel approximations is obtained by taking the limit of small

surface charge, where `/λ� 1 and g = 1
2
λ/`, resulting in

ϕσ = −σλ
ε
e−z/λ, E⊥ = −σ

ε
e−z/λ, ρ =

σ

λ
e−z/λ.



Appendix C

Polarization charge

Here we are in the case of a charged conducting surface with an electrolyte solution.
The mobile electrons in the metal move until the resulting polarization charge σP
the double layer potential which is treated within the Poisson-Boltzmann theory.
In order to determine σP , we begin by assuming that the polarization charge
is much more smaller than the uniform surface charge σ0, then we expand the
Poisson-Boltzmann potential in linear order

ϕσ = ϕσ0 + σP
dϕσ0
dσ0

, (C.1)

where σ = σP + σ0 the unknown surface charge.
Taking the parallel gradient of the above equation, one obtains

∇‖ϕσ = ∇‖ϕσ0 −
∇‖σP
σ0

2kBT

e
√

1 + b2
, (C.2)

where b = l/λ the ratio of the Gouy-Chapman length l and the Debye length λ.
The electrostatic boundary conditions impose that the gradient vanishes at the
surface ∇‖ϕσ (z = 0) = 0, thus solving for σP we obtain

∇‖σP
σ0

= − e

2kBT

√
1 + b2

(
S∇‖T −∇‖ϕσ0

)
. (C.3)

In this last equation, one has to compute the parallel gradient of the Poisson-
Boltzmann potential with the uniform surface charge. Thus we have at z = 0,

∇‖ϕσ0 = ζ
∇‖T
T
− 4kBT

e

∇‖g
1− g2 , (C.4)
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where ζ the potential at the particle surface. Note that, in this last equation the
Gouy-Chapman length l = e/2πlB |σ0| is given with the uniform surface charge.
The last term in Eq. (C.4) result in

∇‖g
1− g2 = − 1

4
√

1 + b2

(∇‖ε
ε

+
∇‖T
T

)
,

then the equation (C.4) becomes,

∇‖ϕσ0 = ζ
∇‖T
T

+
kBT

e

1√
1 + b2

(∇‖ε
ε

+
∇‖T
T

)
. (C.5)

Inserting this in Eq. (C.3), we obtain finally the surface charge σP in Poisson-
Boltzmann theory as,

∇‖σP = −eσ0
√

1 + b2

2kBT

(
S∇‖T − ζ

∇‖T
T

)
+

1

2

(∇‖ε
ε

+
∇‖T
T

)
,

With the permittivity gradient ∇ε = (dε/dT )∇T . The integral gives

σP = −σ0

(
e
√

1 + b2

kBT
(ST − ζ)− d ln ε

d lnT
− 1

)
TS − 〈TS〉

2T
. (C.6)

The last factor follows from the condition of charge neutrality,

〈σP 〉 =
1

S

∫
S

σPdS = 0.

In the Debye-Hückel limit, the Gouy- Chapman length is large as compared
to the Debye length, b = l/λ � 1. Expanding in first order in b−1, we find the
surface polarization charge in Debye- Hückel approximation as,

σP =
εS

λ
(TS − 〈TS〉) . (C.7)



Appendix D

Time dependent Seebeck effect

Here we give the details of calculation of the thermoelectric properties in a non-
stationary state for a half-metal heated Janus colloid. We consider here an un-
charged particle and we assume that the Debye screening length λ is much more
smaller than the particle radius a. We start by giving the behavior of the tem-
perature profile around the heated particle. The result of the following section is
taken from the paper in Ref. [56].

D.1 Temperature field

The Janus particle of radius a is centered at r =0, its lower hemisphere is coated
by a thin metal layer with the conductivity kC which is considered to be much
higher than both of the particle kp and the surrounding fluid k (taken to be equal
for simplicity k ≈ kp). We therefore assume that the cap is held at constant
temperature T0 + δT , with T0 the bulk temperature. Important to note that the
temperature profile remain always in the stationary state because of half metal
absorption.
Let Tl = (T (r)− T0) /δT be the reduced temperature field and solution of the

stationary heat equation,
∇2Tl = 0, (D.1)

with the mixed boundary conditions

∂rTl | a+ = ∂rTl |a− , 0 ≤ θ ≤ π/2, (D.2)

Tl (a) = 1, π/2 ≤ θ ≤ π. (metal side) (D.3)
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The solution of the Eq. (D.1) in the liquid phase (r > a) is

Tl (r, θ) =
∞∑
n=0

tnPn (cos θ)
(a
r

)n+1
, (D.4)

and inside the particle (r < a), one finds

Tl (r, θ) =

∞∑
n=0

tnPn (cos θ)
(r
a

)n
, (D.5)

where Pn the Legendre polynomial and the coeffi cients tn are given by

t2k = −t2k+1 =
(−1)k

π (2k + 1)
, (D.6)

except for the first coeffi cient which reads as, t0 = 1/2 + 1/π.

D.2 Conservation equation

We start by the charge conservation characterizing the creation and diffusion of
the ionic current inside and outside the screening layer. This equation is satisfied
by the electric charge density ρ = e (n+ − n−), with n± the ions densities, and the
total ion current I = e (J+ − J−),

∂ρ

∂t
+ div I =0. (D.7)

The expression of the total current I, given in appendix A, is obtained within
the Debye-Hückel approximation, and by applying Gauss’s law, ρ = ε divE, his
expression becomes

I = −εD
(
∇2E− 1

λ2
(E−S∇T )

)
. (D.8)

In the simple way, the conservation equation can be written only in function
of the unknown electric field E. For that, we apply again the Gauss equation, so
one has

∇ · (∂tE) = ∇ ·
{
D

(
∇2E− 1

λ2
(E−S∇T )

)}
. (D.9)
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In this last equation, the left and right hand sides functions depend on the
same variables, thus it can be simplified as

∂tE = D

(
∇2E− 1

λ2
(E−S∇T )

)
. (D.10)

where D = (D+ +D−) /2 the sum of ion diffusion coeffi cient.
This partial differential equation modelizes the distribution of the generated

electric field inside the system in the non-stationary state. The right hand side
characterizes the term of reaction and the left hand side the term of diffusion.
When ∂tE = 0, we find the same differential equation as in section A.2 where the
system is in steady state.
We want here to solve the Eq. (D.10) and find out the generated electric field

and the ion diffusion time scale which characterizes the time of creation of the
Seebeck field. To have simple computations, the problem is reduced to solve the
differential equation satisfying by the reduced electrostatic potential ψ according
to E = −SδT∇ψ.
Inserting this last relation to Eq.(D.10), one has to solve the following equation,

∂ψ

∂t
= D

(
∇2ψ − 1

λ2
(ψ − Tl)

)
. (D.11)

For further, we assume that the Debye screening length λ is much more smaller
than the particle radius a. When we consider that the particle carries no surface
charge, thus the normal component of the electric field vanishes at the surface. As
a consequence, the resulting electrostatic boundary conditions reads as,

n ·∇ψ = 0, for r = a, (D.12)

where n the normal unit vector perpendicular to the particle surface.

D.3 Method of resolution

The differential equation (D.11) with its boundary condition (D.12) given above
depend in space and in time. To solve these kind of equations, one of the best
way is to apply the Laplace transform where the time derivative is replaced by the
function, sψ̃, where ψ̃ is the function Laplace transform of the electric potential
and s an variable in the Laplace space.



APPENDIX D. TIME DEPENDENT SEEBECK EFFECT 77

With this transformation, the Eq. (D.11) becomes

∇2ψ̃ −
(
s

D
+

1

λ2

)
ψ̃ =

Tl

λ2s
. (D.13)

Now this last equation is solved by the method of direct solution. In this case,
the electrostatic potential consists of two contributions,

ψ̃ = ψ̃h + ψ̃T , (D.14)

where the thermopotential (inhomogeneous part) reads as,

ψ̃T = s−1 (1 + sτ ion)Tl, (D.15)

where the parameter,

τ ion =
λ2

D
, (D.16)

characterizes the ion diffusion time scale or relaxation time for the creation of the
thermoelectric field.
The homogeneous part ψ̃h is well described by the Debye-Hückel equation,

∇2ψ̃h =

(
s

D
+

1

λ2

)
ψ̃h. (D.17)

In the previous sections, it has been shown that the general solution of this
last equation is the usual modified spherical Bessel functions. Thus we obtain,

ψ̃h =
∑
n

c̃n (s)
kn
(
r
√

1 + sτ ion/λ
)

kn
(
a
√

1 + sτ ion/λ
)Pn (cos θ) . (D.18)

With the assumption a� λ, the modified Bessel functions kn can be simplified
and developed in term of λ/a in the following way,

kn
(
r
√

1 + sτ ion/λ
)

kn
(
a
√

1 + sτ ion/λ
) =

a

r
e
(a−r)
λ

√
1+sτ ion

[
1 +

λ

a

n (n+ 1)

2
√

1 + sτ ion

(
1− a

r

)
+ · · ··

]
,

where the first terms of the series are well approximated by,

kn
(
r
√

1 + sτ ion/λ
)

kn
(
a
√

1 + sτ ion/λ
) ≈ a

r
e
(a−r)
λ

√
1+sτ ion

(
n <

√
a/λ
)
.
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In order to find the coeffi cients c̃n in the Laplace space, as in previous sections
we apply the boundary condition (D.12). To leading order in λ/a, we find

c̃n (s) = − (n+ 1)
λ

a

tn
s (1 + sτ ion)

. (D.19)

Thus the function Laplace transform of the reduced electrical potential com-
pletely reads as,

ψ̃ (r, s) =
∑
n

{(a
r

)n+1
− (n+ 1)

λ

r
e
(a−r)
λ

√
1+sτ ion

}
tnPn (cos θ)

s (1 + sτ ion)
. (D.20)

To find the original function, we must compute the inverse Laplace transform
of Eq. (D.20). Here, the inverse transform is very diffi cult to calculate because of
the presence of the square root. To overcome this diffi culty, we approximate that
sτ ion � 1, and to leading order in λ/a we find finally

ψ (r, t) = ψ (∞)
(
1− e−t/τ ion

)
, (D.21)

where the function,

ψ (∞) =
∑
n

tnPn(cos θ)

(
an+1

rn+1
− (n+ 1)

λ

r
e(a−r)/λ

)
, (D.22)

is the reduced electrostatic potential in the steady state.
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Figure D.1: The radial thermoelectric field E/E0 and charge density ρ/ρ0, with
E0 = −SδT/a ∼ 30KV/m and ρ0 = −SεδT/λ (a+ λ) ∼ 571.43 × 10−3V/µm2, in
function of the radial distance r/a at three different times scale. The relaxation
time is about τ = 0.0025s = 2.5ms then we have taken the interval of time as
t ∈ [0.1τ , τ ] with the following parameters: the excess temperature δT = 30K, the
diffusion coeffi cient D = 1µm2/s, the Seebeck coeffi cient S = −10−3V/K, and the
Debye length λ = 50nm. The dashed line and the continuous line in these graph
represent, respectively, the numerical inversion for the Laplace transform based
on the Talbot’s method and the approximate analytical solution. This numer-
ical computation has been done in order to validate the approximation solution
resulting from the invers Laplace transform.
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