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Abstract 

    Head and Neck Squamous Cell Carcinoma is ranked among the top ten deadliest cancers due to its 
high radioresistance and recurrence. One radiosensitizing strategy is the use of high-Z metal 
nanoparticles. In this study, ultrasmall gadolinium-based nanoparticles, AGuIX®, were used for their 
potential as a radiosensitizing agent. The objectives of this work were to determine the radiosensitizing 
conditions of AGuIX® in an HNSCC cell model, their localization after uptake, and the biological 
consequences generated at the subcellular level after the combined treatment. A preliminary 
proteomic approach was initiated in order to identify potential molecular targets involved in 
radiosensitization.  
    The treatment of SQ20B cells with 0.8mM Gd for 24h resulted in a dose enhancement factor (DEF) 
of 1.3. AGuIX® were predominantly localized in lysosomes. The overproduction of radical oxygen 
species following AGuIX® + radiation was intimately involved in the radiosensitization, although largely 
subdued by the high level of endogenous antioxidant defenses. Autophagy was specifically triggered 
after the combined treatment, while other irradiation-induced cell deaths remained unchanged. The 
number of complex, residual double strand breaks (DSBs) was specifically increased with AGuIX® 
combined to radiation. Lastly, our preliminary proteomic analysis allowed the isolation of potential 
molecular targets with great promise. Collectively, it seems that the radiosensitizing effect observed 
in this work may result from a combination of events. 

Future work is required to understand the mechanisms linking lysosomes-entrapped AGuIX® with 
the upregulation of autophagic cell death after radiation. 
 
Keywords: Head and Neck Squamous Cell Carcinoma (HNSCC); ionizing radiation; nanomedicine; 
radiosensitizing strategies; nanoparticles; AGuIX®; Radical Oxygen Species (ROS) 
 

Résumé 

Les cancers des Voies Aérodigestives Supérieures sont classés parmi les dix cancers les plus agressifs 
du fait de leur radioresistance intrinsèque et leur forte probabilité de récurrence. L’objectif de ce 
travail a été d’étudier le potentiel radiosensibilisant de nanoparticules à base de gadolinium, AGuIX®, 
sur un modèle cellulaire de cancer des VADS. Après avoir déterminé et validé les conditions optimales 
de radiosensibilisation de notre modèle par les AGuIX®, leur localisation après internalisation ainsi que 
les conséquences biologiques générées à l’échelle subcellulaire ont été successivement étudiées. 
Enfin, une approche préliminaire protéomique a été initiée afin d’identifier des cibles moléculaires 
potentielles impliquées dans cette radiosensibilisation. 

 Le traitement des cellules SQ20B avec 0.8mM Gd pendant 24h se sont révélées être optimales avec 
un DEF (dose enhancement factor) de 1.3. Les AGuIX® sont localisées presque exclusivement dans les 
lysosomes après internalisation. La radiosensibilisation est liée à une surproduction de radicaux libres 
oxygénés, minimisée toutefois par des défenses antioxydantes endogènes élevées. Le traitement 
combiné (AGuIX®+ irradiation) déclenche spécifiquement la mort cellulaire autophagique et 
s’accompagne d’une augmentation significative du nombre de cassures double brins résiduelles 
complexes. L’étude protéomique préliminaire a permis d’identifier une cible moléculaire 
potentiellement impliquée dans cette radiosensibilisation (la ribonucléotide réductase), cible qui fera 
l’objet d’une suite à ce travail. De plus, la prochaine étape sera de comprendre les mécanismes qui 
relient les AGuIX® internalisées dans les lysosomes avec l’augmentation de la mort cellulaire 
autophagique après irradiation. 

 
Mots clés: Cancers des Voies Aéro-Digestives Supérieurs (VADS); irradiation ionisante; nanomédicine; 
stratégie radiosensibilisante; nanoparticules; AGuIX®; Radicaux Libres Oxygénés (RLO) 
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Head and Neck cancer belongs to one of the most prevalent cancers with the majority of 
cases representing squamous cell carcinoma (SCC) arising in the stratified epithelium of the 
oral cavity, pharynx, and larynx (Leemans et al, 2011). This group of cancer is known under 
the common name of Head and Neck Squamous Cell Carcinoma (HNSCC), and is ranked among 
the ten deadliest cancer worldwide due to its high radioresistance and recurrence, which in 
turn leads to a 5-year survival rate less than 50%.  The annual incidence of HNSCC is around 
600,000 new cases, frequently presented as locally advanced disease and accounts for 
350 000 deaths worldwide per year (Siegel et al., 2016). HNSCC therefore represents an 
important health concern. Current treatment of HNSCC patients is based on the stage and 
anatomic location, independent of the underlying biology, and consists in surgery, 
chemotherapy, radiotherapy, or a combination of these different cancer treatments. Although 
advancements in the therapeutic options, (in the delivery as well as in the supportive care), 
have moderately improved the quality of life for patients, the risk of regional and distant 
relapse is still high. Indeed, patients with recurrent or metastatic HNSCC present an enhanced 
morbidity and a poor prognosis, with a median survival of ten months (Sacco and Cohen, 
2015). Thus, besides gaining insight into the molecular principles that control the high 
incidence of local recurrence and distant metastasis, the development of more effective and 
less toxic therapeutic modalities for the management of HNSCC is needed and mandatory. 
Radiation therapy remains a crucial treatment modality, but rates of therapeutic success are 
still unacceptable. The different mechanisms that contribute to the radioresistance 
phenomena in HNSCC are numerous and complex, thus explaining why many promising 
therapies have often failed during their evaluation in clinical trials.  

In the vision of the development of new radiosensitizing strategies (increasing the dose 
delivered to the tumor while sparing the healthy surrounding tissues), the field of 
nanotechnology/nanomedicine is quite attractive and shows great promise. Indeed, 
nanoparticles (NPs) composed of high-Z atoms, such as metallic (gold, platinum) and oxide 
(hafnium, gadolinium) nanoparticles (NPs) have been proposed as potential nanodrugs to 
amplify radiation-based therapies (Hainfeld et al., 2008; Porcel et al., 2010; Le Duc et al., 
2014). These are being presented as new compounds able to improve both expected aspects 
of innovative radiation-based therapies: specificity and efficiency. Results obtained with 
various types of NPs showed that they can specifically increase the radiosensitivity of tumor 
cells. Among these, gadolinium-based nanoparticles (GdBNs) have been designed, which can 
act as multimodal agents and improve not only the therapeutic index of the treatment, but 
also Magnetic Resonance Imaging (MRI) performance (theranostics) (Sancey et al., 2014). In 
this study, we will use GdBNs named AGuIX® (Activation and Guidance of Irradiation by X-
rays) nanoparticles, which are ultrasmall (2-5 nm hydrodynamic diameter) gadolinium-based 
nanoparticles.  These nanoparticles are characterized by their high colloidal stability and good 
Gd chelation, an absence of in vivo toxicity, a high EPR effect (which means that they will 
preferentially accumulate in tumors due to the tumor’s leaky vasculature, which will in turn 
increase the local dose inside the tumor while sparing the healthy surrounding tissues), a good 
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biocompatibility after IV injection, a facilitated renal excretion, and their potential use as a 
contrast agent for M.R.I., making AGuIX® a promising theranostic agent (Sancey et al., 2014). 

 
Although many groups have shown early evidence of the radiosensitizing potential of 

AGuIX®, little is known about the subcellular mechanisms leading to the radiosensitization. Up 
to now, a significant number of in vitro demonstrations of the radiosensitizing effect of GBNs 
have been reported following different experimental conditions.  These experimental 
conditions varied in terms of the energy of irradiation from keV to MeV, different 
concentrations of nanoparticles (from 0.1 to 1 mM), and times of incubation (from 1h to 24h), 
different types of tumor cell lines, as well as the nature of the irradiation (photons, neutrons 
or ions) (Sancey et al., 2014).  Indeed, several in vitro studies have demonstrated the 
radiosensitizing effect of AGuIX® nanoparticles combined to photon irradiation in 
glioblastoma cells (Štefančíková et al., 2016; Štefančíková et al., 2014), cervical carcinoma 
HeLa cells (Luchette et al., 2014), HNSCC (Miladi et al., 2015), and prostate cancer cells (K. 
Butterworth, personal communication). Apart from the work of Miladi et al. where the 
involvement of mitotic catastrophe and late apoptosis were demonstrated in HNSCC (Miladi 
et al., 2015), little is known about the subcellular effects of these GBNs, the organelles 
involved in their radiosensitizing effect, as well as the connection between the physical, 
chemical, and biological effects of GBNs. Moreover, although GBNs were never found to be 
localized within nuclei (Rima et al., 2013), γ-H2AX or 53BP1 foci have been generally quantified 
to reflect DNA double-strand breaks (DSBs) and contradictory results have been reported with 
the same GBNs in different cell lines. While an increase of residual DSBs have been 
demonstrated in HNSCC, 1h after treatment with GBNs combined to radiation (Miladi et al., 
2015), opposite results have been reported with AGuIX® in glioblastoma (Štefančíková et al., 
2016).  

Given the variety of experimental conditions and cells involved in the studies mentioned 
above, as well as for other high-Z NPs, it seems impossible that all induce the same cellular 
response. Moreover, in the direction of a better understanding of the radiosensitization 
process, the clonogenic survival curve assay cannot be the only way to probe the cellular 
responses which therefore should be investigated in more details. This work has been 
undertaken with AGuIX® containing DOTAGA as a macrocyclic Gd3+ chelate which is a more 
stable and better chelator (Mignot et al., 2013) compared to the acyclic ligand DTPA that could 
release toxic gadolinium (Rogosnitzky et al., 2016). 

Despite AGuIX®’s potential to induce radiosensitization in cancer cells, there are several 
challenges towards their clinical translation which has, to date, led to only a few clinical trials 
being undertaken (NCT02820454: NANO-RAD and NCT03308607: NANOCOL).  

The first objective of this work was to determine the radiosensitizing conditions of AGuIX® 
in an HNSCC cellular model, SQ20B J.L. cells. Their subcellular localization was studied by time-
lapse confocal microscopy.  The mechanism leading to the radiosensitization with the 
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combined treatment of AGuIX® treatment + ionizing radiation was then studied in terms of: 
(1) ROS production and the oxidative cellular state, (2) the types of cell deaths involved and 
(3) the potential resulting DNA-damage. At last, a proteomic approach was initiated in order 
to reveal potential targets and/or subcellular pathways involved after the combined 
treatment. This work was therefore expected to better understand the mechanisms of action 
mediating the biological effects of this new formulation of AGuIX®, and the potential 
subcellular targets in cells in order to move towards clinical applications in a more robust way. 
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CChapter I. Head and Neck Squamous Cell Carcinoma 

1. Generalities, Facts, and Statistics 
Head and Neck Squamous Cell Carcinoma (HNSCC) is a very heterogeneous disease with 

different sites as well as different histological characteristics. HNSCC represents all cancers 
arising from the epithelium mucosa of the oral cavity, oropharynx, laryngopharynx, and larynx.  

 
 

 
Figure 1: HNSCC sites. 

 
HNSCC represents a major worldwide health concern as it represents 12% of all 

malignancies and is ranked as the eighth deadliest cancer. 650 000 new cases are diagnosed 
each year and over 320 000 individuals die every year, ranking this type of cancer eighth 
according to the World Health Organization. In France, it is the ranked the fourth most 
common type of cancer and the fifth cause of cancer mortality.  This type of cancer is known 
to be caused by alcohol consumption, tobacco use, and more recently, the infection by the 
Epstein-Barr virus and human papillomavirus (HPV) have also been found to be linked to this 
type of cancer. HNSCC can be treated via surgery when possible, chemotherapy, radiotherapy, 
or a combination of these different treatments, radiotherapy remaining the most frequently 
used. However, improvements in survival rates for patients remain low as 5-year survival of 
patients is still under 50% which is unacceptable. This bad prognostic is mostly due to the 
resistance of the tumors to radiotherapy as well as its recurrence. It is therefore mandatory 
to further investigate more efficient treatment options. (Jemal et al., 2007; Boyle and Levin, 
2008) 
 

HNSCC are classified under the TNM system (T= size of primary tumor, N= degree of spread 
to regional lymph nodes; M= presence of distant metastasis). However, as previously 
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mentioned, HNSCC tumors being very heterogeneous, this system lacks biological and 
molecular markers, which leads to the same treatment for malignancies that are significantly 
different. This might, in part, explain the low survival rates while the recurrence is high. 

2. Frequently dysregulated pathways in HNSCC 
In order to find more efficient treatments, much research has been focused on the 

understanding of the molecular networks involved in head and neck carcinogenesis. Two 
classes of genes are present in cells: oncogenes and tumor suppressor genes. It was shown 
that for many cancer types, carcinogenesis mostly comes from an imbalance where oncogenes 
will be overexpressed and therefore will promote cell proliferation (Hanahan and Weinberg, 
2011). Genetic and epigenetic alterations observed in HNSCC show a loss of tumor suppressor 
function and aberrant gene and protein expression making HNSCC a particularly radio-
resistant type of cancer with a bad prognosis (Molinolo et al., 2010). 
 

Genetic and epigenetic alterations observed in HNSCC include alterations leading to 
dysplegia (abnormality of development, alteration in size, shape, and organization of cells) 
(9p21, 3p21, 17p13), carcinoma in situ and invasive tumors (Forastiere et al., 2001, Califano 
et al., 1996). Several known tumor suppressor genes have been highlighted in HNSCC including 
p16 and p14ARF. Loss of the chromosomal region 9p21 is found in 70-80% of dysplastic lesions 
of the oral mucosa, which together with the inactivation of the remaining alleles of p16 and 
p14ARF by promoter hypermethylation, represent one of the earliest and most frequent events 
in HNSCC progression (Molinolo et al., 2009; Forastiere et al., 2001; Califano et al. 1996). 
 

One of the characteristics of cancer cells is their ability to replicate endlessly.  In HNSCC, it 
has been shown that this proliferative property is linked to the genetic and epigenetic 
inactivation of p16, the mutation of p53 and an enhanced activity of telomerase (Todd et al., 
2002). The inactivation of p16 in HNSCC tumors allows cells to bypass the “replicative stress-
induced senescence”, while the enhanced telomerase activity prevents the shortening of the 
telomeres and the consequent generation of signals from uncapped telomeres that impinge 
on p53 and other molecules involved in the DNA-damage response (Collado et al., 2007; 
Molinolo et al., 2009). 
 

Nearly 50% of HNSCC cases have mutations in the p53 tumor suppressor gene (Poeta et al., 
2007; Boyle et al., 1993). p53 can halt the cell’s progress in the cell-cycle if it detects DNA-
damage and therefore can trigger apoptosis if the detected DNA damage is not repaired. 
However, this tumor suppressor gene is often mutated in most human cancers. Therefore, in 
HNSCC, mutations rendering p53 inactive are associated with tumor progression and 
decreased overall survival (Poeta et al., 2007). If p53 does not present point mutations, it can 
also be inactivated by its ubiquitin-dependent degradation (Molinolo et al., 2009; Vousden 
and Lane, 2007). Infection by HPV will also bring in a new mechanism in which p53 is 
inactivated and is unable to play its tumor suppressor role. The following can therefore be 
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responsible for a reduced activity of p53 including: the infection with HPV16 and/or HPV18, 
the overexpression of MDM2, or the inactivation of p14ARF (Molinolo et al., 2009; Vousden 
and Lane, 2007). This therefore leads to further accumulate unchecked alterations due to 
inappropriate cellular response to DNA damage.  
 

Aberrant gene and protein expression in HNSCC include members of the Wnt and Notch 
family which have been shown to be involved in tumor progression of HNSCC (Leethanakul et 
al., 2000). Altered expression of genes involved in cell signaling, gene transcription, cell cycle 
regulation, oncogenesis, tumor suppression, differentiation, motility and invasion have also 
been reported in HNSCC (Leethanakul et al., 2000, Alevizos et al., 2001). Frequently 
upregulated genes include the matrix metalloprotease (MMP) family members, such as MMP-
1, MMP-3, MMP-10, and MMP-12, pro-angiogenic chemokines, including IL8 (CXCL8) and Gro-
α (CXCL1) whereas down-regulated genes include KRT4, MAL, SPINK5, and TGM3 (Ye et al, 
2008; Ziober et al., 2006). Using proteomics analysis, several dysregulated, over- or under-
expressed, proteins in HNSCC were identified such as heat shock proteins HSP60 and HSP27, 
calgranulin B, myosin, tropomyosin, and galectin 1 in tongue carcinoma tissues (He et al., 
2004). 
 

The Epidermal Growth Factor Receptor (EGFR) is overexpressed in 80-90% of all HNSCC 
tumors (Grandis and Tweardy, 1993). Overexpression of EGFR represents an independent 
prognostic marker and can correlate with increased tumor size, increased radioresistance, and 
increased risk of occurrence (Grandis and Tweardy, 1993; Ang et al. 2002; Gupta et al., 2002). 
This overexpression is due to gene amplification with more than 12 copies per cell found in 
HNSCC (Temam et al., 2007). Examples of pathways activated via EGFR includes the 
Ras/Raf/mitogen protein kinase (MAPK), the transducer and activator transcription (STAT), 
and the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) 
pathway, all these leading to the malignant growth and metastatic potential of HNSCC 
(Molinolo et al., 2009). The over-expression of EGFR and its consequences will be further 
discussed in the paragraph entitled targeted therapies. 
 

Another factor in HNSCC cancer growth is the aberrant activity of the transcription factor 
NFκB. NFκB was shown to be, in part responsible in the treatment resistance of HNSCC tumors 
as its dysregulation promotes tumor angiogenesis and metastasis, and suppresses the pro-
apoptotic potential of chemotherapeutic drugs and radiotherapy (Karin et al., 2005; Nakanishi 
and Toi, 2005). In HNSCC, the expression and activity of NFκB is often upregulated, and its 
protein level increases gradually from pre-malignant lesions to invasive cancer (Ondrey et al., 
1999, Mishra et al., 2006; Sawhney et al., 2007; Bindhu et al., 2006), which suggests that NFκB 
signaling plays an important role at the early stages of HNSCC carcinogenesis. In fact, NFκB 
promotes the expression of the anti-apoptotic protein Bcl-2 in HNSCC (Jordan et al., 1996). 
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In summary, as described above, several dysregulated signaling pathways in HNSCC were 
highlighted that could have a therapeutic interest as diagnostic markers and/or potential 
therapeutic targets including: 
 

 the activation of the signal transducer and activator of transcription (STAT) proteins 
 the Wnt protein family 
 the transforming growth factor-β (TGF-β) (dual role in carcinogenesis: acts as a potent 

tumor suppressor during the early stages while it would promote tumor growth at later 
stages) (Prime et al., 2004) 

 the aberrant function of the phosphatidylinositol 3-kinase (PI3Ks), PTEN, AKT and 
mTOR signaling network 

 
All these frequently dysregulated pathways are summarized in Figure 2. (Molinolo et al., 2009) 
 

 
 
Figure 2: Frequently dysregulated pathways in HNSCC (Molinolo et al., 2009). 

3. Treatments options in HNSCC 
The treatment options chosen will depend on several factors including the type and stage 

of the cancer, the possible side effects, and the patient’s overall health.  
 
 



Bibliography Review   Chapter I. Head and neck Squamous Cell Carcinoma 

37 

3.1. Surgery 

Surgery is the oldest type of cancer therapy and remains one of the most effective 
treatments as it removes the cancerous tumor and some surrounding healthy tissue (in order 
to make sure that no cancer is left). Surgery in cancer treatment can take multiple forms: 

- Laser technology: can be used to treat early-stage tumors, especially when it was 
found in the larynx. 

- Excision (most commonly used) which removes the tumor as well as a small part of the 
surrounding healthy tissue. 

- Lymph node dissection or neck dissection: when the cancer has spread 
- When cancer has spread in a large part and therefore requires major tissue removal 

(i.e. removal of the jaw, skin, pharynx, or tongue), reconstructive (plastic) surgery can 
be performed in order to replace the missing tissue. This allows the patient to recover 
his/her appearance as well as the function of the affected area. 

 
Often, one surgery is not sufficient and the patient will be further treated with chemo 

and/or radiotherapy in order to destroy the remaining cancerous cells. 
 

Although surgery might be thought of as the therapy with the most “positive” outcome, 
there are still several side effects dependent on the location and type that cannot be ignored 
in particular: temporary or permanent loss of normal voice, impaired speech, hearing loss, 
difficulty in chewing and swallowing, swelling of mouth and throat area, difficulty breathing 
and facial disfigurement. Also, if total laryngectomy, patients may have decreased functioning 
of the thyroid gland (which will need to be managed). 

3.2. Chemotherapy 

Chemotherapy is defined as the use of drugs to destroy cancer cells, usually by stopping 
the cancer cell’s ability to grow and divide. However, one of its major drawbacks is that the 
majority of the drugs used in chemotherapy do not specifically target cancer cells but all cells 
that divide rapidly. Systemic chemotherapy, usually delivered by IV injection or swallowing of 
a pill or capsule, gets into the bloodstream to reach cancer cells throughout the body. Side 
effects of chemotherapy include fatigue, risk of injection, nausea and vomiting, hair loss, loss 
of appetite, and diarrhea.  
 

Depending on the administered mode of chemotherapy, we can define four different types 
of chemotherapies including simultaneous, adjuvant, palliative, or inductive neoadjuvant 
chemotherapy. 
  
Induction chemotherapy is employed as the primary treatment for cancer therapy that will 
be followed by another approach such as surgery or radiotherapy. Such a treatment allows to 
give a first evaluation of the tumor’s response to treatment: if a patient responds to inductive 
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chemotherapy, it means that the tumor is sensitive to the treatment and therefore, the next 
step will be radiotherapy.  If not, there is a probability of non-response to radiotherapy which 
will direct towards surgery. The use of cisplatin in combination with taxanes and Fluorouracil 
(5-FU) seemed up to now to be most efficient (Vermorken et al., 2007; Qin et al., 2012). 
However, it appears that this type of approach does not result in a significant increase in the 
time of survival nor in the locoregional control of the tumor.  
 
Simultaneous or concomitant chemotherapy uses chemotherapeutic agents in combination 
with radiotherapy.  The chemotherapy treatment can be used as mono-therapy where 
cisplatin is mostly used, whereas in poly-chemotherapeutic treatments, the combination of 
platin salts (cisplatin or carboplatin) with 5-FU are commonly used. Concomitant 
chemotherapy has shown benefits compared to radiotherapy alone (Pignon et al., 2009). 
Concomitant chemotherapy allows the preservation of healthy organs with a decrease of 
laryngectomies for example (Forastière et al., 2003) as well as an increased survival that is 
significant when comparing to patients treated with radiotherapy alone (+ 6% at 5 years) 
(Pignon et al., 2009).  
 
Adjuvant chemotherapy allows for the treatment of residual tumors by chemotherapy +/- 
radiotherapy after surgery and/or following a radiotherapy treatment.  Two studies showed a 
better efficacy of adjuvant chemotherapy used with radiotherapy after surgery including a 
better locoregional control and a significant increase of the 5-year survival of patients (Bernier 
et al., 2004; Cooper et al., 2004). 
 
With palliative chemotherapy, the aim is a little different than other types of chemotherapy, 
as the main goal is to increase the patients’ life with a particular attention in improving the 
patients’ quality of life.  In this case, mono- or multiple-therapies are mostly used, including 
treatment with methotrexate, platin salts, 5-FU, taxanes, or anti-EGRF antibody.  
 

Platinum derivatives are the most widely used and effective drugs in HNSCC. Cisplatin, a 
planar heavy-metal complex, targets DNA and will form different kinds of DNA adducts 
including 1,2-intrastrand cross-links, inter-strand cross-links, monofunctional adducts, or 
protein-DNA cross-links. A study showed including 288 patients with recurring and 
metastasized HNSCC, showed that monotherapy of cisplatin had an average remission rate of 
28% (Al-Sarraf, 1987). Another agent under the same category is carboplatin. Although this 
molecule showed a more favorable nephrotoxic, ototoxic, and emetogenic profile, it was more 
myelotoxic (Canetta et al., 1985). However, higher concentrations of carboplatin, compared 
to cisplatin, are needed to have the same effect on DNA. 
 

Methotrexate is another compound used in HNSCC showing promising results as it blocked 
tumor growth. It blocks the formation of tetrahydrofolic acid because of its high affinity for 
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dihydrofolic acid reductase, a co-enzyme for C1-metabolism during the synthesis in the G1 
phase (Hoffmann, 2012). 
 

5-FU, developed by Heidelberger et al., exists since 1957 following an observation that the 
uracil base was used more often in tumoral DNA synthesis. It is believed that following intra-
cellular nucleotide metabolism, 5-FU blocks the key enzyme, thymidylate synthase, which 
leads to a reduction of desoxythymide triphosphate (dTTP), a preliminary product of DNA 
synthesis(Sommer and Santi, 1974). In addition, it appears that it acts on RNA synthesis by 
blocking it (Hoffmann, 2012). If used as a monotherapy in HNSCC, 5-FU only improved 
remission rate by 15% which is rather low (Al-Sarraf, 1987). Therefore, a combination with 
cisplatin is important to observe important therapeutic benefits (Armand and Couteau, 1995).  
 

Mitomycin C is an antibiotic used as a chemotherapeutic agent. This drug inserts itself 
between the two strands of DNA therefore causing irreversible damage triggering cytotoxic 
signaling cascades. It can either be used as a monotherapy or in combination with 5-FU. It can 
also be used in combination with radiotherapy and it will increase the outcome compared to 
radiotherapy alone (Budach et al., 2005). 
 

Taxanes (paclitaxel, docetaxel) are also employed for their cytostatic properties.  Taxanes 
will block cell division and therefore tumor growth by inhibiting the spindle apparatus. 
Docetaxel monotherapy in HNSCC has a good response rate of 42% (Dreyfuss et al., 1996). 
Promising remission rates were obtained when combining taxanes with 5-FU and a platin, salt 
but toxicity can be an issue when administered as induction therapy (Posner et al., 2007, 
Vermorken et al., 2007). 
 

Other chemotherapeutic drugs used in HNSCC include bleomycin, which binds specifically 
to guanine and cleaves single and double strands of DNA (Muller and Zahn, 1976); vincristine, 
which binds to tubulin and therefore inhibits the polymerization to microtubule therefore 
inducing the cell the a metaphasic arrest (Madoc-Jones and Mauro, 1968). Last, other more 
rarely used compounds include ifosfamide, gemcitabine, pemetrexed and oral etoposide… 
(Hoffmann, 2012) 
 
Table 1 shows selected milestones in the history of chemotherapy specifically for the 
treatment of HNSCC while Table 2 shows FDA-approved chemotherapeutic agents for the 
treatment of HNSCC. 
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Year (Study) Advances 

1965 (Rosenberg et al.) Michigan State University researchers discover platinum-based 
compounds can impact cell division (precursor to cisplatin). 

1970 (Ansfield et al.) 
Trials at University of Wisconsin demonstrate increased survival with 
5-FU-based concurrent chemoradiation in advanced 
oral/oropharyngeal HNSCC. 

1977 (Wittes et al.) Memorial Sloan Kettering reports “major response” rate of 30% in 
recurrent HNSCC patients receiving platinum-based chemotherapy. 

1982 (Kish et al.) 
Trials at Wayne State University show improved survival with 
combination 5-FU/cisplatin therapy compared with single-agent 
therapy in advanced HNSCC. 

1991 (VA Laryngeal Cancer Group) 
Induction chemotherapy followed by radiation shown to be 
equivalent to surgery followed by radiation in advanced laryngeal 
cancer, allowing for “organ preservation.” 

2004 (RTOG 9501 and EORTC 22931 trials) Improved locoregional control demonstrated in high-risk patients 
receiving postoperative concurrent chemoradiation. 

2006 (Bonner et al.) Cetuximab-based chemoradiation is superior to radiotherapy alone, 
becoming the first targeted therapy used in HNSCC. 

2016 (KEYNOTE-012 and CheckMate 141 
trials) 

Efficacy of immune checkpoint inhibitors pembrolizumab and 
nivolumab demonstrated in recurrent/metastatic HNSCC. 

5-FU= 5-fluoracil; CheckMate 141 = Trial of Nivolumab vs. Therapy of Investigator’s Choice in Recurrent or Metastatic Head 
and Neck Carcinoma; EORTC = European Organization for Research and Treatment of Cancer; KEYNOTE-012 = Study of 
Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors; HNSCC = head and neck squamous cell carcinoma; 
RTOG = Radiation Therapy Oncology Group; VA = Veteran Affairs. 
 
Table 1: Selected milestones in the history of chemotherapy for HNSCC (Blasco et al., 2017)
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Agent Mechanism Year of 
Approval Indication Important Trials 

Methotrexate Antimetabolite 1959 Advanced HNSCC Hertz et al., 1956 

Hydroxyurea Inhibits DNA 
synthesis 1967 Concurrent chemoradiation in 

locally advanced HNSCC Argiris et al., 2003 

Bleomycin Induces DNA 
damage 1973 Advanced HNSCC Ichikawa, 1968 

Cetuximab EGFR inhibitor 2006 

Concurrent chemoradiation in 
locally advanced HNSCC; 
combination chemotherapy in 
recurrent/metastatic HNSCC 

Bonner et al., 2006, 
Vermoken et al., 2008 

TPF Combination 
chemotherapy 2006 Induction in unresectable 

locally advanced HNSCC 
Vermoken et al., 2007, 
Posner et al., 2007 

Pembrolizumab PD-1 inhibitor 2016 Recurrent/metastatic HNSCC Seiwert et al., 2016 

Nivolumab PD-1 inhibitor 2016 Platinum-refractory 
recurrent/metastatic HNSCC Ferris et al., 2016 

EGFR = epidermal growth factor receptor; HNSCC = head and neck squamous cell carcinoma; PD-1 = programmed death 
protein 1; TPF = docetaxel/displatin/5-fluorouracil. 

 
Table 2: Food and Drug Administration-Approved Systemic Agents in the treatment of HNSCC (Blasco 
et al., 2017). 

 
Further discussion on cetuximab, a targeted therapy and chemotherapeutic drug 

frequently used in HNSCC will be discussed later in a dedicated paragraph.  

3.3. Radiotherapy 

Radiation therapy is the use of high-energy X-rays or other particles to destroy cancer cells. 
A radiotherapy treatment plan is established which usually consists of a specific number of 
treatments given over a set period of time.  Radiotherapy treatment plan in HNSCC consists 
of 2Gy irradiation 5 times a week for 7 weeks, for a total dose of 70Gy. In the case of HNSCC, 
radiotherapy can be the unique treatment or it can be used as adjuvant therapy, for example 
after surgery in order to destroy the remaining cancerous cells which were not removed by 
the surgery. 
 

The most common type of radiotherapy used is external-beam radiation therapy (radiation 
delivered by a machine outside of the body). Radiotherapy has majorly improved since its 
invention and a specific type of external-beam radiation therapy is intensity-modulated 
radiation therapy (IMRT) which uses advanced technology to accurately direct the beams of 
radiation at the tumor while minimizing the field to the healthy tissues.  
 

Side effects of radiotherapy are numerous and include tooth decay, short- or long-term 
pain or difficulty swallowing, changes in voice because of swelling and scarring, loss of 
appetite, redness or skin irritation in the treated area, fatigue, nausea, hearing loss …  In order 
to reduce these side effects, new techniques and protocols to improved radiotherapy 
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protocols have been proposed including accelerated fractioning, hyperfractionation, 
intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), or 
tomotherapy. 
 

 Accelerated fractioning: the dose of radiation treatment is delivered on a shorter period 
of time, so that cancer cells have less time to repair radiation-induced damages. 

 
 Hyperfractionation: the dose of radiation is delivered in fraction throughout the day in 

order to reduce the amount of radiation received at once, therefore allowing healthy cells 
to better recover, while limiting the time for cancer cells to recover. This will indeed limit 
the late side effects caused by radiotherapy. This type of therapy showed a better overall 
5-year survival in patients following their treatment (8% gain) but without improving the 
locoregional control (Bourhis et al., 2006) 

 
 Intensity-modulated radiation therapy (IMRT): This irradiation mode allows for a more 

precise radiation dose to the 3-D shape of the tumor by modulating the intensity of the 
radiation in multiple small volumes. It also allows higher radiation doses to be focused to 
regions within the tumor while minimizing the dose to surrounding normal critical 
structures. Treatment is carefully planned by using 3-D computed tomography (CT) or 
magnetic resonance (MRI) images of the patient in conjunction with computerized dose 
calculations to determine the dose intensity pattern that will best conform to the tumor 
shape. Typically, combinations of multiple intensity-modulated fields coming from 
different beam directions produce a custom radiation dose that maximizes tumor dose 
while also minimizing the dose to adjacent healthy tissues.  Toxicity due to the treatment 
is reduced, even when the doses are increased. This type of radiation is mostly used to 
treat prostate cancer, head and neck, and the central nervous system. It can also be used 
in breast cancer, thyroid, lung, gastrointestinal, gynecologic malignancies and certain 
types of sarcomas, and can also be beneficial for treating pediatric malignancies. 

 
 Volumetric modulated arc therapy (VMAT): Advanced form of IMRT, delivers a precisely-

sculpted 3D dose distribution with a 360-degree rotation of the gantry in a single or multi-
arc treatment. VMAT can deliver the total dose to the tumor in a 360-degree rotation in 
less than two minutes. 

 
 Tomotherapy: Type of IMRT, also called helical tomotherapy. The radiation is focused on 

the tumor from many different directions as the accelerator is coupled to a scanner in 
order to visualize the tumor “in real-time”. This enables the delivery of a high dose to the 
tumor, by always doing a maximum to spare the healthy tissue in proximity. 

 
However, radiotherapy alone still results in poor local control and survival owing to the 

radio-resistance of HNSCC tumors which leads to their recurrence.  
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The interaction of X-ray with matter will be further discussed in the next chapter which is 
specific to radiotherapy. 

3.4. Targeted therapies 

Novel therapies giving alternatives to chemotherapy and/or radiotherapy are arising to 
mainly counter the many side effects that patients face when receiving such treatments as 
well as improve their quality of life. Chemotherapy and radiotherapy, although much progress 
has been done, do not only target tumor cells but can also cause damage to healthy cells.  
Therefore, increasing interest was focused on targeted therapies. These therapies are called 
as such because the molecule used specifically targets a certain molecule/target of the cancer 
cell. Several examples exist targeting different pathways and will be developed in the 
following paragraphs.   
 

A special focus, because more commonly used in HNSCC, is the development of a 
monoclonal antibody against the Epidermal Growth Factor Receptor (EGFR) which is 
Cetuximab, and was approved for use by the FDA in 2006. 
 
 
 

 

Figure 3: Signaling pathways activated following 
ligand binding of EGFR. (Hoffmann, 2012) 

 
As can be observed in Figure 3, following ligand binding to the EGFR, intracellular and 

nuclear cellular signaling cascades are activated, which leads to a conformational change and 
auto-phosphorylation of EGFR.  This is followed by the consecutive activation of signaling 
pathways leading to tumor-cell proliferation, survival, and metastasis.  Inhibition of this ligand 
binding or receptor phosphorylation has been a new therapeutic approach in HNSCC 
(Hoffmann, 2012).  
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3.4.1 Development of drugs (monoclonal antibodies) targeting the overexpression 
of EGFR 

 
The overexpression of EGFR is one of the main causes for decreased overall survival due to 

its role in cancer cell survival.  The epidermal growth-factor receptor has many roles including 
proliferation, differentiation, anti-apoptotic signaling, angiogenesis, and metastasis. 
Expression of EGFR is found in 90% of HNSCC cancer cases, and it is used as an independent 
prognostic marker as high expression is associated with increased tumor size, decreased 
radiation sensitivity, and increased risk of recurrence. 
 

After studying the overexpression of EGFR as a potential target to specifically target 
tumors, two main categories of molecules of key importance were identified (Figure 4): 
 

- Monoclonal antibodies (i.e. cetuximab, panitumumab) 
- Tyrosine kinase inhibitors (i.e. gefitinib and erlotinib) 

 
 

 
 

Figure 4: Mechanism of action of cetuximab (monoclonal antibody) or gefinib (tyrosine kinase 
inhibitor) (Graham et al., 2004). 
 

3.4.1.1 Cetuximab 
 
Cetuximab is a chimeric (human/mouse) monoclonal antibody against EGFR that received 

FDA approval for recurrent and metastatic HNSCC, as well as for locally advanced HNSCC.  
Many clinical trials were put in place in order to see the effects and the possibilities of 
bettering cancer therapy using cetuximab.  One of the pioneering studies was done in patients 
with locally advanced HNSCC without a primary surgical treatment option, where two 
treatments were compared: cetuximab combined with radiotherapy versus radiotherapy 
alone.  When comparing radiotherapy alone to radiotherapy + cetuximab, an increase in the 
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median survival time by 19.7 months (49.0 vs. 29.3 months) was observed for I.R. + cetuximab.  
An increase in the median time to loco-regional failure by 9.5 months (24.4 vs, 14.9 months) 
was also observed (Hoffmann, 2012; Bonner et al., 2006; Bonner et al., 2010).  No benefits 
were seen for patients at the T4 or N0 stage, those who had a poor Karnosfsky index, nor for 
those who were over 65 years of age (Hoffmann, 2012). Several Phase III trials are underway 
to study the interaction of radiotherapy with cetuximab (RTOG-0920; GORTEC2007-01, and 
GORTEC2007-02). 
 

Following the many clinical trials, cetuximab/Erbitux® + radiation therapy was registered 
for the treatment of patients with advanced HNSCC in 2006, and in 2008, it was also approved 
in combination with first-line chemotherapy for patients with recurrent/metastatic HNSCC.  In 
summary, Erbitux® (cetuximab) can be prescribed with radiation therapy for the initial 
treatment of certain types of locally or regionally advanced head and neck cancer.  Erbitux® 
can also be used in combination with platinum-based chemotherapy with 5-FU for patients 
whose tumor has returned in the same location or spread to other parts of the body.  
Additionally, Erbitux® is approved for the use alone to treat patients whose tumor has 
returned in the same location or spread to other parts of the body and whose disease has 
progressed following platinum-based chemotherapy1. 
 

A couple of other monoclonal antibodies were developed including matuzumab, a 
humanized EMD72000, a version of IgG1 with an elongated half-life (Bier et al., 2001), 
panitumumab and zalutumumab, which are two completely humanized antibodies, IgG2a and 
IgG1 respectively.  All four antibodies bind to the EGFR with a higher affinity than the 
endogenous ligands, which therefore prevents the dimerization, internalization, and auto-
phosphorylation.  Preclinical studies have shown an inhibition of the proliferation and the 
induction of apoptosis in the tumor.  Also, some interest has been turned towards the 
combination of anti-EGFR antibodies with taxanes (Hoffmann, 2012). 
 

However, one problem still remains, and that is the : intrinsic and acquired drug resistance. 
According to Boeckx et al. (2013), “many HNSCC tumors remain nonresponsive to EGFR 
targeting agents, as the response rate with such agents, as for instance cetuximab as a single 
agent, is consistently lower than 15%”.  Possible mechanisms of resistance to EGFR-targeted 
therapy in HNSCC are illustrated in Figure 5. 
 
 
 
 
 
 
 
1https://www.erbitux.com/ 
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Figure 5: Possible mechanisms of resistance to EGFR-targeted therapy in HNSCC described: (1) 
overexpression of ligands, (2) activating mutations in EGFR, (3) translocation of EGFR to the nucleus, 
(4) loss of PTPRS, (5) activating Ras mutations, (6) downregulation of DUSP, (7) activating mutations in 
PIK3CA or inactivating mutation in PTEN, (8) activation of Src kinases, (9) dysregulation of the STAT 
pathway, (10) heterodimerization with other ErbB family members, (11) parallel signaling of other 
receptors, IGF-1R or MET, (12) overexpression of the Aurora kinase A and B, (13) deregulation of cyclin 
D1 or the A870G polymorphism, (14) loss of functional p53, and (15) activation of HIF-1 signaling. 
(Boeckx et al., 2013). 
 
 

3.4.2 Anti-angiogenesis 
 
In HNSCC, it was shown that a correlation exists between tumoral VEGF (Vascular 

Endothelial Growth Factor) expression and tumor stage, vascular invasion, and survival.  
Therefore, antibodies against VEGF are being developed (bevacizumab, Avastin®), as well as 
tyrosine kinase inhibitors that attack intracellularly at the receptor domain 
(sunitinib/sorafenib). (Hoffmann, 2012) 
 

3.4.3 Signaling cascade inhibition 
 

3.4.3.1 Tyrosine kinase inhibitors (TKIs) 
 
It was shown that one main reason for resistance to drugs targeting EGFR was due to a 

mutation such as EGFRvIII, which appears to be responsible for the constitutive activation of 
the downstream signaling cascade.  In order to overcome this resistance, new possibilities 
targeting downstream signaling cascades have been shed to light.  One such approach is 
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targeting the EGFR-associated tyrosine kinase. Table 3 summarizes selected clinical studies 
using TKI for HNSCC treatment. 

 

Study, phase Number of 
patients Characteristics tumor Dosage Result 

 
Gefitinib- selective EGFR inhibitor- 

Cohen et al., 2005 
II, monotherapy 70 Recurrent/metastatic 250mg/d OR 1.4%, PR 1, SD 23, OS 

5.5 mo 

Kirby et al. 2006 
II, monotherapy 47 Recurrent/metastatic 500mg/d OR 4.3%, PR 4, SD 13, OS 

4.3 mo 

Stewart et al. 2009 
III, monotherapy 486 Recurrent 250-500mg/d OS 5.6-6.0 mo 

 
Erlotinib- selective EGFR inhibitor- 

Siu et al. 2007, 
I/II, combination 
therapy + cisplatin 

51 Recurrent/metastatic 
100mg/d + 
Cisplatin 
(75mg/m2 3 w-1) 

CR 1, PR 8, OS 7.9 mo 

Soulieres et al. 2004 
II, monotherapy 115 Recurrent/metastatic 150mg/d OR 21%, PR 5, SD 44, OS 

6.0 mo 

 
Lapatinib-dual tyrosine kinase inhibitor (EGFR, HEP2)- 

Abidoye et al. 2006, 
II, monotherapy 42 

Recurrent/metastatic 
with (A) or without (B) 
previous EGFR inhibitor 

1500ng.d A: SD= 37%; TTP= 1.6 mo 
B: SD= 20%; TTP= 1.7 mo 

 
Sorafenib-multi-kinase inhibitor- 

Williamson et al. 2010 
II, monotherapy 41 Recurrent/metastatic 2x400mg/d PR 1, OS 9.0 mo 

 
Table 3: Selected clinical studies with TKI for HNSCC treatment (Hoffmann, 2012) 
 
 

3.4.3.2 mTOR and other signaling molecules 
 
Sirolimus/rapamycine (Rapamune®) inhibits a number of cytokine-mediated signal 

transduction pathways via the complexation of the mTOR protein, a 282 kDa phosphoinositide 
3-kinase often activated in HNSCC.  The deactivation of mTOR prevents mTOR-dependent cell 
metabolism which in turn disrupts the cell cycle and inhibits cell growth.  Even though 
sirolimus is a novel treatment approach, studies in HNSCC are currently limited to Phase I trials 
(Cohen et al., 2011; Hoffmann, 2012).  Rapamycin derivatives, such as everolimus, 
temsirolimus and forolimus, are potent mTOR inhibitors that are more stable and soluble than 
rapamycin which would therefore make them more attractive.  Early clinical studies of these 
agents as monotherapy or in combination with chemotherapy and chemo-radiotherapy have 
been initiated (Hoffmann, 2012). 
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Other therapeutic points of attack targeting the tumor’s own signaling cascade include the 
inhibition of the protein kinase C (Carducci et al., 2006) or the proteasome NF-kappa B by 
bortezomib (Dudek et al., 2009; Hoffmann 2012). 

 
 

Figure 6: The complex signaling cascade at the cellular level in HNSCC with potential points of 
therapeutic targets. (Hoffmann, 2012). 
 

3.4.2 (Radio)-Immunotherapy: a new arising type of targeted therapy 
 
Several studies have suggested that the immune system has an important role in the 

therapeutic effects of radiation, promoting tumour cell death in the radiation field. In view of 
these interactions, combining radiation with checkpoint blockade immunotherapy could 
increase radiosensitization and improve local tumour control. Radiation-induced DNA and 
membrane damage, as well as cytoplasmic reactive oxygen species (ROS) activate many 
transcription factors and signalling pathways that modulate the immunophenotype and 
immunogenicity of tumour cells (Sharabi et al., 2015) (Figure 7). 
 

The changes in MHC class 1 expression that occur after radiation seemed to be mediated 
by radiation-induced activation of mTOR, and subsequent enhanced translation and antigen 
presentation (Reits et al., 2006). Radiation also activates dendritic cells and enhances cross-
presentation of tumour antigens resulting in activation and proliferation of tumour-specific 
CD8 T cells (Gupta et al., 2012). The induction of antigen-specific immune responses is not 
sufficient for tumour eradication and cells of the adaptive immune system have to be able to 
infiltrate or invade into the tumour to eradicate it. In that sense, radiation has been 
demonstrated to increase tumour-infiltrating lymphocytes (Deng et al., 2014; Sharabi et al., 
2015). Radiation has also been reported to modulate the expression of immune checkpoint 
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ligands, including PD-L1, on the surface of tumour cells and on immune cells in the tumour 
microenvironment (Parikh et al., 2014). Many preclinical studies from several different groups 
have reported substantial increases in locoregional tumour control when radiation is 
combined with checkpoint blockade immunotherapy (Dovedi et al., 2014; Deng et al., 2014; 
Yoshimoto et al., 2014) though it warrants further clinical investigation. 
 

 

Figure 7: Radiation induces changes to the tumour cell immunophenotype (Sharabi et al., 2015). 
 
In that sense, many murine studies have shown evidence for distant and persistent anti-

tumour effects, which are probably immune-mediated, after radiosensitizing immunotherapy. 
The combination of radiation with anti-CTLA-4 antibodies was the first assay (Demaria et al., 
2005) that demonstrated a statistically significant improvement in local tumour control on a 
metastatic breast carcinoma cell line. Recently, similar results were obtained by Belcaid et al. 
(2014) using an orthotopic glioblastoma model to study the effects of stereotactic radiation 
combined with anti-CTLA-4 antibody (Belcaid et al., 2014). Similar to anti-CTLA-4, several 
preclinical reports have noted the synergistic effects of radiation and anti-PD-1 
immunotherapy on local control. Zeng et al (2013) used intracranial implantation of a mouse 
glioma cell line and presented evidence for a long-term survival of mice that received the 
combined treatment. In another study, Deng et al (2014) reported a significant improved local 
tumour control when radiation was combined with anti-PD-L1 in mouse models of breast and 
colorectal cancer (Zeng et al., 2013; Deng et al., 2014). All these results suggest 
immunotherapy as the fourth pillar in cancer treatment alongside surgery, chemotherapy, and 
radiation. 
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Immunotherapy is an arising treatment option that is being more and more studied for its 
potential as a cancer therapy option: it would be designed to boost the body’s natural 
defenses in order to fight off cancer. This mode of therapy is of particular interest as the 
immune system plays a key role in the development of HNSCC, there is therefore a growing 
number of studies focusing on immunotherapy for HNSCC.  Table 4 shows a selection of clinical 
immunotherapy trials in HNSCC patients.  
 
FDA approved immunotherapeutic drugs 
 

For recurrent or metastatic HNSCC patients (where the tumor does not respond to 
chemotherapy), there are two immunotherapeutic drugs that were approved in 2016 which 
are: pembrolizumab (Keytruda) which was approved by the FDA in August 2016, and Nivolumb 
(Obdivo), which was approved in November 2016. Both are immune checkpoint inhibitors. 
These two drugs were also approved for the treatment of certain patients that have advanced 
lung cancer or melanoma. 

 
Pembrolizumab is a monoclonal antibody anti-PD-1 (programmed death-1) which 

potentiates the T-cells’ responses, including anti-tumoral responses. 
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Clinical trial title Phase Target Population 

Pembrolizumab (MK3475) Versus standard treatment for 
recurrent or metastatic Head and Neck Cancer (MK-3475-
040/KEYNOTE-040) 

III PD-1 R/M HNSCC after platinum 
failure 

A study of pembrolizumab (MK-3475) for first line 
treatment of recurrent or metastatic squamous cell cancer 
of the Head and Neck (MK-3475 048/KEYNOTE-048) 

III PD-1 R/M HNSCC first line 

Tolerance and efficacy of pembrolizumab or cetuximab 
combined with RT in patients with locally advanced HNSCC 
(PembroRad) 

II PD-1 + 
Irradiation Locally advanced HNSCC 

Talimogene Laherparepvec with pembrolizumab for 
recurrent metastatic squamous cell carcinoma of the Head 
and Neck (MASTERKEY232) 

I PD-1 + 
oncolytic virus 

R/M HNSCC after platinum 
failure 

Trial of Nivolumab vs Therapy of investigator’s choice in 
recurrent or Metastatic head and neck carcinoma 
(CheckMate 141) 

III PD-1 R/M HNSCC after platinum 
failure 

Study of Nivolumab in combination with Ipilimumab 
compared to the Standard of Care (Extreme Study 
Regimen) as First Line Treatment in Patients with recurrent 
or Metastatic Squamous Cell Carcinoma of the Head and 
Neck (CheckMate 651) 

II PD-1/CTLA-4 R/M HNSCC first line 

Safety study of Anti-LAG-3 with and without Anti-PD-1 in 
the treatment of solid tumors. I PD1/LAG-3 R/M HNSCC 

immunotherapy naive 

Study of MeDI4736 Monotherapy and in combination with 
tremelimumab versus standard of care therapy in patients 
with Head and Neck Cancer. 

III PD-1/CTLA-4 R/M HNSCC after platinum 
failure 

 
Table 4: Selected clinical immunotherapy trials in HNSCC patients (Fuereder, 2016). 
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CChapter II. Radiotherapy 
 
As seen in the previous chapter, radiotherapy is very often used as a treatment option in 

HNSCC as an about 75% of patients with HNSCC will receive radiotherapy as their primary 
treatment or as adjuvant therapy. The concept of radiotherapy is the use of ionizing (high-
energy) radiation in order to cause damages to cancer cells.  
 

There are different types of radiations, of which not all are ionizing. Ionizing radiation is 
defined as a radiation, (energy emitted from a source), made-up of particles with sufficient 
energy to cause ionization when it encounters an atom in the medium through which it passes 
through, as it can remove tightly bonded electrons from it, and the atom therefore becomes 
charged.  
 

The interaction of ionizing radiation with matter is characterized by the linear energy 
transfer (LET) which represents the density of energy absorbed by matter and is dependent 
on the distance travelled by the energy. LET is expressed in keV/μm and is represented by:  
 

LET= dE/dl 
Where: dE= the average energy transferred to matter, 

dl: the distance travelled by the particle 
 

The LET is dependent on two factors: the type of ionizing radiation and its energy. It is 
important to note that the energy deposited is different than the energy emitted by the 
source. The international unit used for ionizing radiation is Gray (Gy) which represents the 
number of Joules deposited for 1kg of matter. 

1. Interactions of ionizing radiations (photons) with matter 
 
The physical interactions between matter and particles are of three types: 

 
 Atoms’ ionization: if the energy of the incoming radiation is superior to the binding 

energy of electrons present in the matter, the electron is pulled off from its electronic 
cloud. 

 Atoms’ excitation: if the energy is not sufficient to pull-off the electron, it can still be 
sufficient to move the electron from its fundamental level to a level of higher energy, 
the atom is then excited. 

 Thermal transfer: if the energy is not sufficient to excite the atom, it can be high 
enough to increase its kinetic energy of translation, rotation, and vibration, which is all 
known under the term of thermal transfers.  

 



Bibliography Review   Chapter II. Radiotherapy 

54 

When ionizing radiation interacts with matter, a couple of physical interactions can occur 
including the photoelectric effect, the Compton effect, pair production, Thomson-Rayleigh 
diffusion, and/or nuclear reaction. The occurrence of these different phenomena depends on 
the kinetic energy of the incoming photons and the atomic number of the atoms encountered 
in their path.  

1.1. The Photoelectric Effect 

The photoelectric effect (Figure 8) is defined as the ejection of an electron from the surface 
of an atom following the interaction with an incoming photon, where the incoming photon 
has an energy equal or above the binding energy (W) of the electron. When the incident 
photon encounters an inner-shell of the atom and ejects an electron from this shell, the 
photon gives up all its energy to the electron which “flies-off” as a photoelectron carrying a 
kinetic energy equal to the photon energy minus W. At that time, the atom is in an excited 
state, to go back to its stable state, an electron from a higher orbital comes to fill out the 
space. The released energy that was needed, can then cause the emission of a fluorescent 
electron or be absorbed by another electron ejected from the atom, named the Auger 
electron (depicted in Figure 8). 
 

The photoelectric effect is dependent on the atomic number of the matter crossed and 
when this last one is superior to 25, and occurs with incoming photons having a weak energy 
(inferior to 0.1 MeV). 
 
 

 
 

Figure 8: Representation of the photoelectric effect. 
 

1.2. The Compton Effect 

The Compton effect (Figure 9) occurs when the incident X-ray photon with relatively high 
energy (in average 1 MeV) ejects an electron from an atom and an X-ray photon of lower 
energy is scattered from the atom. The reaction produces an ion pair: a positive atom and a 
negative electron (recoil electron). The energy of the photon is distributed between the kinetic 
energy of recoil electron and the energy retained by the deflected photon. There are two 
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factors that determine the amount of energy the photon transmits. First, it depends on the 
initial energy (the higher the energy, the more difficult it is to deflect: high energy travel 
straight retaining most of the energy while low energy scatter back at an angle of 180°). The 
second factor is the angle of deflection, as the greater the angle, the less the energy is 
transmitted. With a direct hit, maximum energy is transferred to the recoil electron. The 
photon retains some energy and deflects back along its original path at an angle of 180°.  
 

The probability of occurrence depends on the total number of electrons and the energy of 
radiation. 
 

 
 

Figure 9: Representation of the Compton effect. 
 

The similarities and differences between the photoelectric and Compton effects are 
summarized in the following table: 
 

 
Photoelectric Effect Compton Effect 
A low-energy phenomenon A mid-energy phenomenon. 
Photon delivers its total amount of energy to a 
single electron. 

The photon transfers part of its energy to a 
single electron. 

The photon disappears after the interaction. The wavelength of the scattered photon is 
higher than that of the incident photon. 

 
Table 5: The photoelectric vs. Compton effect. 

1.3. Pair production 

An electron (●-) and a positron (●+) with the same mass and energy as the incident photon 
can be emitted from matter when the kinetic energy of the incoming photon is greater than 
1.02 MeV (representing twice the mass of an electron at rest) and interacts with the atom’s 
nucleus (see Figure 10).  The emitted electron and positron lose their energy via ionization 
and excitation of the medium. The positron will undergo annihilation with a negative electron 
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of the environment, therefore emitting two γ-photons with individual energies of 0.511 MeV 
forming an angle of 180 degrees between them. 
 
 

 
Figure 10: Representation of pair production. 

 
The photoelectric effect, the Compton effect, and pair production are the three 

predominant types of interactions that occur during a radiotherapeutic treatment with the 
current photon energy used. 

1.4. Thomson-Rayleigh diffusion 

During the Thomson-Rayleigh diffusion, the incoming photon interacts with an electron 
which will absorb the energy and re-emits the electron with the same energy in another 
direction. However, it is important to note that this form of interaction does not occur often 
with ionizing radiation as this phenomenon occurs with very weak energy photons, such as 
those emitted in the specter of infrared, visible, and low-energy X-rays. 

1.5. Nuclear reaction 

A nuclear reaction will occur, as the name implies, when the incoming photon interacts 
directly with the atom’s nucleus and there will be an emission of one or a few neutrons. Again, 
this interaction occurs very rarely in radiotherapy, as the photon energy required for this 
phenomenon to occur is quite high (greater than 10 MeV) which is very seldom used in 
medicine. 

1.6. Predominance of each effect 

The occurrence of each effect is dependent on the energy of the incoming photons as well 
as the atomic number of the elements present in the matter with which it will interact. These 
phenomena are well represented in the figure below. 
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Figure 11: Relative importance of the three effects as a function of the incident photon’s energy and 
the atomic number of the target: representation of the predominance of the photoelectric effect 
versus Compton effect versus pair production. A. Predominance of the different effects as a function 
of the absorbent type. B. Probability of having each physical effect as a function of the incident energy.  
 
 

As previously mentioned, Thomson-Rayleigh diffusion is predominant in weak energy 
irradiation, while the nuclear reaction will occur solely if the photons’ energy is very high. 
These effects occur in “extreme” cases, which make therefore make them rare in the medical 
field. 
 

Therefore, the most predominant effects observed in the clinical field, are the photoelectric 
effect and pair production: these two effects are even so more dependent on the energy of 
the atomic number of the encountered matter. These interactions are therefore important 
when the atomic number of atoms encountered is superior to 25. The photoelectric effect is 
predominant in the case of low-energy photons (incident energy inferior to 0.1 MeV), while 
pair production is predominant when the incoming energy is superior to 10 MeV. 

2. Biological effects of ionizing radiations: direct vs. indirect effect 
In order to simplify the understanding of the biological interactions of ionizing radiation 

with matter, we can distinguish two types of effects: direct and indirect. The subcellular target 
of direct effects is mainly DNA. The incoming electrons will directly cause damage to DNA, 
whereas the process goes through water radiolysis for indirect effects. These two types of 
effects are further discussed in the next paragraphs. 
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Figure 12: Direct vs. indirect effect following ionizing radiation. (Desouky et al., 2015) 

2.1. Direct effect 

Ionizing radiation can have an effect with matter through the direct interaction of the 
electrons with cellular components: these molecules will therefore become excited or ionized. 
Radiation directly hits DNA, modifying its molecular structure. In order for the molecules to 
go back to their stable form, they will either release a photon of fluorescence or a rupture of 
a chemical covalent bond will occur and highly reactive species will appear. Electrons as well 
as these species will highly react with the cell’s DNA. This interaction therefore leads to cell 
damage or even cell death if the cell is unable to repair the damage. 

2.2. Indirect effect: water radiolysis 

As cells are mainly composed of water (about 80%), an indirect effect can occur when the 
incoming radiation first interacts with the water molecules within cells (water radiolysis: see 
Figure 13). Following this interaction, free radicals will be produced, mainly hydroxyl (HO•) 
and alkoxy (RO2•) (Jordan and Sonveaux, 2012). Free radicals are very highly reactive species 
that interact with DNA molecules and disrupt its structure. Hydrogen peroxide, H2O2, is also 
produced and is known to be toxic to cells, more so to DNA molecules.  

 

These free radicals can also interact with other cellular organelles, such as mitochondria or 
other cellular constituents such as proteins, lipids, and will therefore cause damage to the cell. 
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Figure 13: Schematic representation of the indirect effect of ionizing radiation. A. Water radiolysis. B. 
Subsequent reactions following water radiolysis. C. DNA damage. D. Damage fixation. (Jordan and 
Sonveaux, 2012). 
 

3. DNA Damage induced by ionizing radiations and DNA damage repair 

3.1. DNA damage 

Following ionizing radiation, multiple DNA lesions can occur including base modifications, 
oxidative lesions, abasic sites, DNA-protein cross-link, single and double strand breaks. Figure 
14 shows the different types of DNA damage that can occur while Table 6 shows the number 
of lesions caused by 1 Gray irradiation per nucleus. 
 

 

Figure 14: Types of DNA damage induced by ionizing radiation. (Lomax et al., 2013)
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Type of DNA lesion Number of lesions/Gray/Nucleus 

Single-strand breaks 750 

Double-strand breaks 40 

Intra or inter-chain lesions 30 

DNA-Protein bridging 150 

Base Modifications 1400 

Sugar Modifications 1200 
 

Table 6: Number of lesions per Gray per nucleus depending on the type of DNA damage. 
 

Since not all DNA damages listed above were studied during this PhD work, I will only go 
further in details with three types of DNA lesions: base oxidation (8-oxo-guanine), single-
strand breaks (SSBs), and double-strand breaks (DSBs). 
 

3.1.1. Base modification 
 
Purine and pyrimidine bases, as well as the -ose constituents of DNA, can be oxidized by 

the hydroxyl radicals. One common type of base modification is the oxidation of the guanine 
base, the most frequent being 8-oxo-7,8-dihydrodeoxyguanine (8-oxoguanine). 

 

Figure 15: Oxidation of guanine following ionizing radiation. Molecular structure of guanine and 8-oxo-
guanine. (Mutagenesis and DNA Repair, www.atdbio.com) 

3.1.2. Single-strand breaks (SSB) 
 

Single-strand breaks are the result of the deoxyribose oxidation, which leads to the rupture 
of the phosphodiester bond between the phosphate and the deoxyribose (Evans et al., 2004). 
This break leads to a spacing between the two DNA strands which allows water molecules to 
penetrate, which will in turn break the hydrogen bonds between the two DNA strands. The 
number of SSB increases with the radiation dose. However, these types of lesions are easily 
repaired by the cell and therefore has a low impact on the cell’s viability. 
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3.1.3. Double-strand breaks (DSBs) 
 

Double-strand breaks are the result of, either a single hydroxyl radical on the deoxyribose 
with transfer of the formed radical on the opposite strand, or by two hydroxyl radicals going 
through the same regions in a lapse of time insufficient for the cell to repair the first break 
(Dikomey et al., 1998). The number of these types of lesions is also dependent on the dose of 
irradiation, however these types of lesions are much harder for the cell to repair and therefore 
play an important role in the cell’s fate: survival or death induced by irradiation. 

DNA damage repair: Overview of the mechanisms involved 

Cell Cycle Checkpoint Regulation following IR-Induced DNA Damage 

The cells’ fate is highly regulated by the cell cycle. In order to move through the cell cycle, 
the cell must pass checkpoints.  Its successfulness in passing these checkpoints is highly 
dependent on the DNA’s integrity.  Two checkpoints exist during interphase, including the G1 
checkpoint which will allow the cell to enter chromosomal replication, and the G2 checkpoint, 
which will allow the cell to enter mitosis. When the cell arrives at the checkpoint of the cell 
cycle, it will assess whether its genome is ready for division, or if repair needs to occur prior 
to division.  Figure 16 shows the process a cell enters when it reaches a cell cycle checkpoint: 
a cell will have a few options depending on its DNA integrity. If the DNA has no errors it will 
progress to cell division. If the DNA needs repair, it will stop in the cycle and allow for the DNA 
to repair. If DNA repair is successful, the cell can progress to cell division. If the DNA is not 
repaired, one of two options can happen: the cell will die through apoptosis, or it will move 
on to cellular division however with mutations (which can lead to the development of cancer). 

 

Figure 16: Potential fates of the cell at the cell cycle checkpoint. (Santivasi and Xia, 2014)  

Ataxia Telangectasia mutated and Rad3 related (ATR) and Ataxia Telangectasia Mutated 
(ATM), two serine/threonine-specific protein kinases, are fundamental proteins involved in 
the repair of DNA-strand lesions. ATR is activated by the presence of single strand breaks, 
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generated from the uncoupling of helicase and DNA polymerase during replication fork 
stalling, while ATM is activated by double-stranded breaks. When SSB or DSBs are detected by 
ATR and ATM, these proteins are phosphorylated and activate downstream signaling for the 
repair of the lesions. Many different transducers and effectors are activated and play a role in 
these types of DNA repair (Santivasi and Xia, 2014; Brown and Baltimore, 2003; Jossen and 
Bermejo 2013; Lee and Paull, 2007). 

 

Figure 17: ATM and ATR regulate the S/G2 cellular response to DNA damage. (Santivasi and Xia, 2014) 

Several DNA repair pathways exist depending on the type of DNA lesion. These include 
direct reversal, base excision repair (BER), nucleotide excision repair (NER), mismatch repair, 
homologous recombination (HR), and non-homologous end-joining (NHEJ). In the following 
paragraphs, we will focus on the three pathways studied in this work i.e for the repair of base 
oxidations, SSBs, and DSBs. 
 

3.1.4. Base excision repair (BER) 
 

Base excision repair (BER) is by definition the repair system used for the repair of damaged 
bases resulting from small chemical modifications. BER can therefore be used for the repair of 
oxidized, methylated, alkylated or deaminated bases as well as abasic sites and single-strand 
breaks (Christmann et al., 2003). The above-mentioned damages lead to a chemical structure 
modification of the DNA but does not deform its double-helix.  This repair pathway is often 
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considered as the principal guardian of induced damages by the cellular metabolism, in 
particular from the oxidative stress (Hoeijmakers, 2001). 

BER is composed of four main steps (see Figure 18) (Parsons and Dianov, 2013): 1. 
Recognition of the lesion by a DNA glycosylase specific to the damaged base, or by PARP1 in 
the case of a SSB; 2. Cleavage of the phosphodiester bond by an AP endonuclease (this step 
will not occur in SSB repair); 3. Repolymerization by specific proteins; 4. Ligation of the newly 
synthesized nucleotides. 

 

Figure 18: Schematic representation of the base excision repair pathway (BER) (Jeppesen et al., 2011). 

3.1.5. Homologous recombination (HR) and non-homologous end joining (NHEJ) 
 

Following double-strand breaks of DNA after ionizing radiation, the cell will respond using 
one of the two adequate repair mechanisms: homologous recombination (HR) or non-
homologous end joining (NHEJ) (Figure 19). If the damages are not repaired or not properly 
repaired, DSBs can be sufficient to trigger apoptosis (Frosina, 2009). 
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In homologous recombination (HR), the cell uses a DNA template in order to re-synthesize 
the new DNA strand: it is characterized by deriving the correct sequence from a homologous 
strand of intact DNA, making it a “high-fidelity” repair (Santivasi and Xia, 2014). This 
mechanism uses nuclease-mediated resection of damaged DNA ends, polymerization of new 
DNA, and ligation to restore strand integrity (Santivasi and Xia, 2014). This repair pathway is 
mainly used during the S and G2 phases of the cell cycle. 

Non-homologous end joining (NHEJ) functions occurs during the G1 phase of the cell cycle 
and will repair a wide variety of DSBs with distinct break structures and sequences (Lieber et 
al., 2003). NHEJ is mainly regulated by DNA-PK and KU. Compared to HR, NHEJ shows little 
fidelity as it does not use or uses little homologous template to repair the break. This type of 
repair consists in digesting the damaged base, repolymerization/repair, and finally digestion 
(Weterings and Chen, 2008). 

It was suggested that there is a connection between the malfunction of NHEJ and 
radioresistance: in several types of cancer, in particular in glioblastoma multiforme (GBM), the 
increased function of DNA-PK, primary enzyme used in NHEJ, was demonstrated to increase 
radiation resistance (Santivasi and Xia, 2014; Burma and Chen, 2004).  
 

 

Figure 19: Overview of A. homologous recombination and B. non-homologous end-joining (Weterings 
and Chen, 2008). 
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4. Radiosensitizing strategies  
As mentioned above, radiation therapy plays an essential role in the treatment of 

numerous cancers including head and neck squamous cell carcinoma, yet therapeutic efficacy 
is hindered by treatment-associated toxicity and tumor recurrence. Moreover, a 
complementary approach is to explore mechanisms of reducing normal tissue injury that is 
induced by ionizing radiation, which is especially important in dose-escalation studies that aim 
to increase tumor control probability.  Both approaches, increasing tumor cell kill and 
decreasing morbidity, can improve cure rates and the quality of life of cancer patients 
undergoing radiotherapy. Central to success is finding and exploiting genetic or 
microenvironmental differences between normal and malignant tissues.  
 

Ionizing radiation as applied in the radiotherapy clinic induces a complex response in cells. 
Some processes aim to repair damage, whereas others counteract propagation of the damage 
or induce cell death. In addition, many aspects of the tumor microenvironment, such as 
hypoxia or vasculature development have been widely investigated with respect to improving 
radiotherapy. As the mechanisms that contribute to radioresistance are numerous, an 
extensive literature has been proposed for the understanding and the reversal of this 
phenomenon which cannot therefore be fully exposed in this manuscript. Among all the 
strategies explored, one can mention the modulation of the DNA damage response, the 
modulation of the cell cycle checkpoints, the modulation of the signal transduction pathways, 
receptor targeting strategies, the modulation of the microenvironment, the targeting of 
cancer stem cells (CSCs), and other directions, further described in the sections below. 

4.1. Modulating the DNA damage response 

Owing to genetic instability, tumors are often defective in one aspect of DNA repair but 
usually have backup pathways for accomplishing repair. Attacking these backup pathways can 
render the tumor radiosensitive while leaving the normal tissue relatively resistant. Inhibitors 
of important molecules in DNA damage repair, such as ATM (Zou et al., 2008 ; Biddlestone-
Thorpe et al., 2013 ; Vecchio et al., 2014 ; Dohmen et al., 2017), ATR (Fokas et al., 2012 ; 
Vávrová et al., 2013 ;  Šalovská et al., 2014), DNA-dependent protein kinase (DNA-PK) (Du et 
al., 2010 ; Niazi et al., 2014 ; Dolman et al., 2015 ; Mamo et al., 2017) but also RAD 51 
(Kobashigawa et al., 2015 ; King et al., 2017) or PARP (Hirai et al., 2012 ; Wuster et al., 2016 ; 
Lohse et al., 2016) have been shown to sensitize cancer cells to radiotherapy. Besides DNA 
repair, other targets may be mentioned such as telomerase (Wang et al., 2015 Wu et al., 
2017), histone deacetylase (Hehlgans et al., 2013; Barrazuol et al., 2015; Chun et al., 2015). 
Transcription factors such as STAT3 (Bonner et al., 2009; Zhang et al., 2015; Ouédraogo et al., 
2016), TCF4 (Kendziorra et al., 2011) or NFκB (Kim et al., 2005; Watson et al., 2009) have also 
been suggested as potential radiosensitizing targets.  

Due to potential toxicity, only very few inhibitors of repair are on the market with an FDA 
approval. Ongoing clinical trials and targets are summarized in Annex 1.  
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Integrin cell adhesion molecules, as well as their associated adaptor proteins are also 

attractive targets which may play a crucial role in tumor cell resistance to cancer therapy 
(Cordes et al., 2006; Eke et al., 2013; Eke et al., 2012; Cordes et al., 2006; Nam et al., 2010; 
Weaver et al., 2002; Damiano et al., 2001; Cordes et al., 2003; Gao et al., 2014; Mantoni et al., 
2011; Cabodi et al., 2010). Indeed, many essential pro-survival signals come from the tumor 
microenvironment including integrin-mediated cell adhesion to the ECM (Cordes et al., 2003; 
Hanahan and Weinberg, 2011).  β1 integrin is an interesting radiosensitizing approach, as their 
targeting has shown a promising approach to overcome HNSCC radioresistance (Cordes, 2006; 
Eke et al., 2012; Cordes and Park, 2007; Eke et al., 2012). β1-integrin-mediated adhesion was 
shown to confer radioresistance due to their role in the regulation of DNA repair via the 
FAK/JNK1 signaling pathway (Dickreuter et al., 2015). In a recent study, Steglich et al. (2015) 
used a siRNA targeting the α3 integrin which resulted in a reduced clonogenic survival and 
enhanced radiosensitivity through the induction of apoptosis. It was demonstrated that these 
events were associated with the decrease of the phosphorylation of Akt, Cortactin and Paxillin. 
Moreover, the simultaneous inhibition of α3 and β1 integrin led to higher cytotoxicity and 
radiosensitization compared to α3 integrin alone (Steglich et al., 2015), a result which was 
however cell line-dependent. 
 

Another dual targeting option, involving β1 integrin and EGFR, was tested in order to 
counteract inhibit radioresistance in HNSCC. The combined β1 integrin-EGFR targeting 
resulted in an enhanced cytotoxicity and radiosensitization in eight out of ten tested HNSCC 
cell lines, as a result of FAK dephosphorylation. In vivo experiments targeting integrins also 
showed a better tumor control. (Eke et al., 2015). Very recently, Koppenhagen et al. (2017) 
hypothesized that c-Abl tyrosine kinase could be an important mediator of β1 integrin 
signaling for radioresistance. They demonstrated a greater degree of radiosensitization in a 
subset of cancer cell lines with simultaneous β1-integrin/c-Abl targeting compared to 
monotherapies. This showed that c-Abl is an important determinant of radioresistance in cell 
lines originating from different solid tumors (Koppenhagen et al., 2017). And again, this 
showed the benefits of dual- or multi-targeting therapies. 

4.2. Modulating cell cycle checkpoints 

Interfering with the cell cycle control might result in a loss of G1 or G2/M block, failure of 
DNA repair and, thus, induction of cell death. Numerous in vitro studies have been published 
about the use of checkpoint kinases (CHKs) or cyclin-dependent kinases (CDKs) inhibitors as 
radiosensitizing agents. Among these, one can quote the specific inhibition of CHK-1 (Wang et 
al., 2012; Collins et al., 2013), CHK-2 (Jobson et al., 2009; Riesterer et al., 2011) or CDKs 
(Kodym et al., 2009; Raqhavan et al., 2012). On the basis of these successful in vitro studies, 
second-generation pyridopyrimidine-derived inhibitors with high specificity towards CDK4/6 
are for example being tested clinically (Michaud et al., 2010). Palbociclib (PD0332991, PD) has 
received FDA approval for potential treatment of breast cancer, and Abemaciclib (LY2835219) 
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is undergoing a phase III trial for breast and lung cancer (Gelbert et al., 2014; Barton et al., 
2013). However, only few pre-clinical studies have up to now addressed the combination of 
CDK-inhibitors with radiotherapy (Cen et al., 2012; Barton et al., 2013). 

4.3. Modulating signal transduction pathways 

As important intracellular factors, aberrant tumor transmembrane signal transduction 
pathways, which include the prosurvival cascades (PI3K ⁄ Akt, MAPK⁄ ERK and JAK ⁄ STAT) and 
the pro-apoptosis pathways (Wnt), p53 and TNF-α ⁄ NF-κB), have been proved to be crucial 
determinants of the probability of cell sensitivity to radiation in various malignancies. Among 
the strategies inhibiting proliferative pathways, one can mention the PI3K/Akt pathway after 
combination of LY294002 and radiation (Liu et al., 2011), BKM120 and radiation (Liu et al., 
2014) or PI3K/mTOR pathway after combination of NVP-BEZ 235 and radiation (Maity et al., 
2011 ; Potiron et al., 2013 ; Kuger et al., 2013). 

 
Considering the MAPK/ERK pathway, AZD6244 has been reported to enhance 

radiosensitivity (Chung et al., 2009). The co-targeting of PI3K and MAPK has also been 
successfully investigated (Williams et al., 2012). With regard to the JAK/STAT pathway, several 
chemical compounds, including S3I-201, Stattic, STA-21 and a JAK kinase inhibitor AG490 have 
been reported to successfully inhibit JAK. STAT signaling and effectively improve the 
sensitization to radiation of tumors without obvious toxicity (Kim et al., 2008). Among the 
strategies promoting pro-apoptotic pathways, the Wnt signaling pathway has been explored 
through the use of niclosamide (Yin et al, 2016), curcubitacin B (Duangmano et al., 2012), LGK-
974 (Tian et al., 2017) or miRNAs (hsa-miR-138-2-3p); according to the predicted genes and 
pathways of differential miRNAs target, down-regulated expression of has-miR-138-2-3p 
under radiation was thought to play a key role in enhancing the radio-sensitivity in human 
laryngeal squamous cancer stem cells (Zhu et al., 2017) as radiosensitizing agents. 
 

Although understanding the cellular and molecular basis for innate and acquired resistance 
of cancer cells to radiotherapy is a prerequisite for overcoming this difficulty, there are 
potential concerns and challenges related to the clinical use of current targeted drugs owing 
to their low cancer selectivity and specificity. Therefore, the development of multi-targeting 
agents or direct conjugation of multifarious therapeutic molecular agents may accomplish 
promising efficacy. 

4.4. Receptor targeting strategies 

The recent shift to the development of anticancer therapies that target specific alterations 
in cancer cells, fueled by the clinical success of monoclonal antibodies (mAb) targeting growth 
factors or their receptors and inhibitors of receptor tyrosine kinases (TK) has also sparked an 
interest in combining molecular targeted therapies with radiation therapy. Bevacizumab, a 
monoclonal antibody against vascular endothelial growth factor A (VEGF-A), is a pioneering 
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targeted agent that has been studied in large clinical trials (Schmidt et al., 2012). Although the 
toxicities of treatments were acceptable, similar survival to historical control were generally 
obtained, whatever the type of cancer studied (Small et al., 2011; Chinot et al., 2014). 
Concerning the Epidermal Growth Factor Receptor (EGFR), which is known to play an 
important role in tumor progression and treatment resistance for many types of malignancies 
including head and neck, colorectal and nonsmall lung cancer, many studies have shown the 
in vitro efficiency of anti-EGFR-targeted therapies in combination with radiotherapy (Raben et 
al., 2005; Wang et al., 2011; Lu et al, 2012). To date, the only FDA approved use of an anti-
EGFR therapy (cetuximab) in combination with radiation therapy is for locally advanced head 
and neck cancer. In a large, multi-institutional, randomized trial, Bonner et al. (2010) reported 
an overall survival benefit when adding cetuximab to RT in locally advanced HNSCC. However, 
the follow-up study, RTOG 0522, which added cetuximab to cisplatin-based chemoradiation 
for locally advanced HNSCC, did not show a survival benefit with the addition of cetuximab 
(Ang et al., 2014). Similarly, a recently reported randomized phase III trial for stage IIIA/B non–
small-cell lung cancer (NSCLC), RTOG 0617, demonstrated no clinical benefit with the addition 
of cetuximab to standard or dose-escalated chemoradiation (Bradley et al., 2015). A related 
EGFR antibody, panitumumab, has been examined in the randomized phase II trials for HNSCC, 
CONCERT-1 (Mesia et al., 2015) and CONCERT-2 (Giralt et al, 2015): both treatments 
demonstrated no additional benefit with the addition of panitumumab.  
 

Apart from anti-EGFR receptor antibodies, other small molecules such as EGFR-receptor 
tyrosine kinases inhibitors (erlotinib, afatinib…) have been reported to radiosensitize cancer 
cells in vitro (Tsai et al., 2013; Huguet et al., 2016). Although a phase II trial of erlotinib 
combined with temozolomide in addition to RT in glioblastoma multiforme reported better 
survival than historical controls (Prados et al, 2009). However, a randomized phase II trial 
comparing erlotinib plus cisplatin-based chemoradiation with chemoradiation alone in 
patients with locally advanced HNSCC demonstrated no difference in clinical complete 
response rates between the two groups (Martins et al., 2013). So, there are many single 
institutional case series that have provided mixed data, with some suggesting safety and 
others suggesting unexpected toxicities. Despite this and given the important role EGFR plays 
in several types of cancer and the well-defined role of EGFR in the response to radiation 
therapy, this receptor remains an important target for radio- and chemoradiosensitization. 

 
Another interesting target is the targeting of integrins as it was previously described in 

section 4.1. 

4.5. Modulating the microenvironment  

Two aspects of the tumor microenvironment have been widely investigated with respect 
to improving radiotherapy, namely hypoxia and vasculature development. Both can exert a 
considerable influence on the response to ionizing radiation and both are valid targets for 
improving the response to therapy. Considering the fact that hypoxia render cells more 
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resistant to killing by ionizing radiation, several groups suggested that inhibition of HIF-1α (a 
product of hypoxia-inducible genes) is a promising strategy for radiosensitization (Kessler et 
al., 2010; Yang et al., 2014; Jin et al., 2015; Wozny et al., 2015). Pre-treatment of tumors with 
elevated levels of oxygen prior to radiotherapy may represent a means for selectively 
targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective 
adjuvant to radiation therapy (Clarke et al., 2014). Recently, the use of oxygen mimetics was 
suggested as an innovative approach to the therapy management of resistant tumors (Kumar 
et al., 2015). The second approach concerns the development of the vascular system, which 
is essential for progressive tumor growth. Treatments targeting angiogenesis, thus resulting 
in microvessel destabilization, was reported to potentiate irradiation in vitro and in vivo in 
cancer cells but not normal cells (Maggiorella et al., 2009). More recently, Nox4 knockdown 
was demonstrated to suppress glioblastoma cells proliferation, invasion, and tumor 
associated angiogenesis, thus increasing their radiosensitivity in vitro (Li et al., 2014).  

4.6. Targeting cancer stem cells (CSCs)   

The CSCs, also referred to as ‘tumor-initiating cells,’ possess inherent abilities such as self-
renewal, differentiation, pluripotency and resistance to conventional chemo- and 
radiotherapies. These cells are also capable of invading and migrating to other tissues 
(metastasis). The end result is a highly recurrent, refractory and metastatic disease, following 
chemo- and radiotherapy. It has been suggested that the degree of radiosensitivity of the 
intact tumor may correlate with the number of CSCs at the time of treatment. Moreover, the 
ability of the remaining surviving cells at the end of radiation therapy to re-establish the CSC 
niche also influences the final outcome of radiation treatment. Targeting CSCs remains 
therefore an attracting challenge to overcome treatment failure and recurrence. In that sense, 
many attempts have been made to selectively kill these cells including selective targeting of 
cell cycle (Han et al, 2013 ; Bertrand et al., 2014), DNA damage response pathways (Lim et al., 
2014 ; King et al., 2017), signal transduction pathways (Kahn et al., 2014), anti-apoptotic 
pathways (Berghauser et al., 2014; Gilormini et al., 2016) or through the use of miRNA (Yang 
et al., 2015 ; Zhu et al., 2017). Carbon ion exposure has also been proposed as a promising 
and more effective tool to eradicate CSCs compared to photons (Bertrand et al., 2014; Park et 
al., 2017). 

4.7. Other directions 

Outside the targets mentioned above and apart from nanotechnologies, many reports have 
proposed other promising strategies to improve radiosensitization: modulation of oxidative 
stress (Boivin et al., 2011; Xu et al., 2013; Sun et al., 2015), inhibition of heat shock proteins 
(Aloy et al., 2008; Kabakov et al., 2010 ; Schilling et al., 2017), ceramide metabolism (Alphonse 
et al., 2004 ; Pchejetski et al., 2010 ; Morad et al., 2013), Bcl-2 family (Loriot et al. 2014; Zerp 
et al., 2015; Gilormini et al., 2016),  microtubule manipulation (Hoffstetter et al., 2005 ; Forde 
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et al., 2011). Various molecules such as curcumin (Verma, 2016), metformin (Koritzinski, 2015) 
or mitochondrial metabolism-interfering agents (Mitrakas et al., 2014) have also been studied. 

 

 
 
Figure 20: Schematic representation of existing and future radiosensitizing strategies for HNSCC. 
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CChapter III. Nanotechnology: the rise of nanomedicine 
 
As seen in the first chapter of this bibliography review, the 5-year survival for head and 

neck squamous cell carcinoma is quite low as it is less than 50%. In order to increase survival 
as well as the patient’s quality of life, radio-sensitizing strategies are being more and more 
studied to increase radiotherapy efficacy. At the end of chapter 2, various radiosensitizing 
strategies were presented, however the focus of this PhD work is the use of nanoparticles to 
increase radiotherapy efficacy. As depicted in Figure 21, various approaches are available to 
do so. Our work will specifically focus on the use of gadolinium-based nanoparticles, a type of 
metal-based nanoparticles, as radiation sensitizers.  However, prior to focusing our attention 
to Gd-based nanoparticles, we will first review the literature to discuss the background of 
nanotechnology and the rise of nanomedicine, the different definitions and notions that are 
important to know and understand, as well as discuss the different types of nanoparticles that 
exist as radiosensitizers.  
 

 
 

Figure 21: Different approaches for enhancing radiation efficacy with nanotechnology (Inspired from 
Kwatra et al., 2013). 

1. Generalities 
Nanosciences can be defined as “the science and engineering implicated in the design, 

synthesis, characterization, and application of materials and devices whose smallest 
functional organization in at least one dimension is on the nanometer scale.” (Silva, 2004) 
  

Nanosciences can also be described as the understanding and control of matter that have 
a dimension of roughly 1 to 100 nm, where unique phenomena enable novel applications, 
and therefore can widely be used in biology and in medicine. Presently, 95% of all new 
potential therapeutics has poor pharmacokinetics and biopharmaceutical properties. There is 



Bibliography Review   Chapter III. Nanotechnology: the rise of nanomedicine 

72 

a huge need for novel drug fabrication in order to have specific interactions with the diseased 
tissue only. Therefore, one of the greatest values of nanosciences will be in the development 
of new and effective medical treatments as they open many opportunities for imaging, 
diagnostics, and specific drug delivery to diseased sites.  
 

It is important to note the physico-chemical characterizations of nanomaterials which is of 
the outmost importance for nanomedicine applications. 
 

 
 

Figure 22: Cascade for nanomaterial characterization.  The physico-chemical properties of nanocarriers 
affect their pharmacokinetic and pharmacodynamic profiles.  Detailed characterization of 
nanomedicine products is necessary to predict their performance in the clinical setting. (Wicki et al., 
2015) 
 

Nanotechnologies being a field with promises in a variety of applications is receiving 
increasing global investment from governments and industries (Paull et al., 2003). Worldwide 
investment in nanotechnology-related research & development by government organizations 
has considerably increased as well as the number of publications and clinical trials (Figure 23).  
 

In France, nanosciences and nanotechnology mobilize more than 5 300 researchers in 240 
laboratories (Campus France, La recherche en nanosciences en France) and is ranked second 
after Germany for their investment in nanosciences’ research, and 5th worldwide in terms of 
publications (Invest in France Agency, Les Nanotechnologies en France).  
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Figure 23: “Total number of publications (Web of Science®) and clinical trials (clinicaltrials.gov) during 
the last 10 years. (A) The number of publications in the field of nanoparticles for cancer therapy is 
increasing exponentially. The ratio between new publications in the field of cancer and new 
publications in the field of toxicology has remained stable over the last 4 years. (B) The number of 
launched clinical trials (phases 1, 2, 3, 4) investigating nanomedicine drugs for cancer therapy is 
increasing constantly over the last 10 years. However, the total number of clinical trials is only about 
2% of the total number of publications in the field of cancer nanomedicine.” (Wicki et al., 2015). 

1.1. Nanotechnologies for medical applications: Nanomedicine 

An important growing field within nanotechnologies, is the development of nanomedicine 
in various domains including cancer diagnostics and therapy, neurology, cardiac diseases, lung 
diseases, vaccine delivery… (Thorley A. and Tetley T., 2013) Nanomedicine uses nanoscale 
materials, such as biocompatible nanoparticles and “nano-robots” for the diagnosis, delivery, 
sensing, or triggering purposes in a living organism. 

1.2. Nanomedicine for cancer 

One of the greatest hopes within medicine with nanotechnology is the potential for 
significant advances in the field of oncology. The transition from unspecific therapies to 
therapies which can target cancer growth with very considerable specificity can be realized 
with bio-nanotechnologies. Current popular cancer treatments such as chemotherapy and 
radiation therapy are non-specific. This leads to healthy tissue being damaged in the same 
way as cancerous tissue, limiting the dose that is safe for a patient to receive. In order to 
maximize the success of this nanoscale approach to cancer treatment, it remains necessary to 
learn more about the biological processes which drive cancer growth, the mechanisms which 
bind particles to cells, the course of uptake of particles within cancer cells as well as the 
biological functionalization of nanoparticles for cancer treatment. 
 

There are many important reasons why there is such a drastic development of 
nanomedicine for cancer applications, including: 

- Overcoming problems of solubility and chemical stability of anti-cancer drugs. 
- Protection of anti-cancer compounds from biodegradation or excretion, therefore 

influencing the pharmacokinetic profile of a compound. 
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- Improving the distribution and the targeting of anti-tumor medication. 
- The design so their payload is released upon a trigger resulting from a stimuli-sensitive 

nanomedicine therapeutics. 
- The potential decrease of resistance of tumors against the cancer treatment (by 

increasing circulation time of compound and by mediating stimuli-responsive drug 
release as well as endocytic drug uptake). 

 
1.2.1. Different types of nanoparticles used in cancer therapy 

 
Different types of nanoparticles can be used for cancer clinical care including viral 

nanoparticles, organic nanocarriers and inorganic nanoparticles.  Each of these are 
represented in Figure 24 and each will be further discussed in the next paragraphs. 
 

 
Figure 24: “Schematic illustration of established nanotherapeutic platforms. Different nanomedicine 
products such as drug conjugates, lipid-based nanocarriers, polymer-based nanocarriers, inorganic 
nanoparticles, and viral nanoparticles are used in clinical cancer care. (Wicki et al., 2015) 
 

Viral nanoparticles can be of interest in cancer therapy as the tumor-homing viruses 
engineered to express therapeutic proteins can be used.  An example of such nanoparticle is 
JX-594 which is a poxvirus designated to replicate in tumor cells and induce their destruction 
via the activation of the EGFR-Ras-MAPK signaling pathway. The JX-594 viral nanoparticle also 
has the expression of granulocyte colony-stimulating factor (G-CSF) which potentially 
increases the immunological anti-tumor response.  In a clinical study, 10 patients with primary 
or metastatic liver cancer were injected intratumorally with JX-594.  Results showed 3 cases 
of partial remission and 6 cases of stable disease (Park B. et al., 2008). In another phase 1 
clinical trial, JX-594 was used to treat advanced solid tumors in 23 patients (Breitbach C. et al., 
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2011).  The virus was successful in that it specifically reached the tumor site while normal 
tissue showed no viral replication. Adjacent epithelium up took the particles however they 
were not active, therefore showing no toxicity. A dose-related anti-tumor activity of JX-594 
was observed.  This study was the first to show a dose-related viral replication and tumor 
response after intravenous injection of an oncolytic virus (Wicki et al., 2015). 
 

Other success using oncolytic nanoparticles included the OPTiM study in patients with 
advanced (stage IIIB-IV) melanoma (Andtbacka et al., 2013).  T-Vec, and other oncolytic viruses 
were tested in clinical trials however, none of which reached the market, mainly due to 
concerns arisen concerning their biosafety and cytocompatibility (Vile R. et al., 2002). 
 

Organic nanocarriers used for a wide range of applications whether for targeted or non-
targeted drug delivery, included several subtypes: drug conjugates, lipid-based nanocarriers, 
natural polymers- protein and peptide or glycan nanocarriers, and last but not least synthetic 
polymer-based nanocarriers. 
 

Drug conjugates are defined as “nanotherapeutics because of their size scale in the lower 
nanometer range and their conjugation to active pharmaceutical ingredients (Duncan, 2006; 
Hawe et al., 2011). The active agents are covalently linked to targeted antibodies and peptides 
or to polymers.  The conjugate is usually mono- or oligomeric, and is intended to improve 
targeted delivery of the drug without necessarily impacting on drug solubility, stability, or 
biodegradability. In contrast, nanocarriers based on lipids, proteins, glycans, or synthetic 
polymers usually encapsulate the drug, and they obviate the need to link the drug covalently 
to the carrier.”  Approved antibody conjugates include trastuzumab-emtansine which targets 
HER2-overexpression in breast cancer (Verma et al., 2012) and brentuximab-vedotin against 
CD30-positive Hodgkin lymphoma and anaplastic large-cell lymphoma (Younes et al., 2010).  
Polymer-drug conjugates are an interesting class as they change the pharmacokinetic profile 
of a drug (Duncan, 2006, Duncan et al., 2005).  As an example, the HPMA copolymer-
doxorubicin conjugate PK1 is a novel anti-cancer agent with a significantly lower frequency of 
cardiotoxicity and alopecia compared to free doxorubicin.  A phase 2 study showed promising 
signs of activity in breast cancer and non-small-cell lung cancer (Seymour et al., 2009). 
 

Lipid-based nanocarriers include two classes: liposomes (closed phospholipid bilayers) and 
micelles (normal phase, oil-in-water micelles).  What makes them attractive is their capacity 
to carry 1 to 6 drug molecules per monoclonal antibody, which represents a load of three to 
four orders of magnitude compared to antibody-drug conjugates.  The first nanocarrier 
approved by the U.S. FDA was pegylated liposomal doxorubicin (Doxil® or Caelyx®) in 1995 
(Barenholz, 2012, Harrison et al., 1995). Since then, five more lipid nanocarriers were 
approved for clinical use including: non-pegylated liposomal doxorubicin (Myocet) (Chan et 
al., 2004), non-pegylated liposomal daunorubicin (DaunoXome®) (Gill et al., 1996), non-
pegylated liposomal cytarabine (DepoCyt®) (Gökbuget N. et al., 2011), vincristine sulfate 
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liposomes (Marquibo®) (O’Brien et al., 2013), and liposomal mifamurtide (Mepact®) 
(Frampton 2010, Meyers et al., 2008).  Although none of these are targeted, the nano-
formulations of doxorubicin, daunorubicin, and vincristine prolong the half-life of the 
cytotoxic compounds and in turn improve their toxicity profiles.  Liposomal formulations allow 
stable encapsulation of drugs but these formulations still reach the tumor via the enhanced 
permeability retention effect.  In order to target them to the tumor tissue, liposomes will have 
to be modified on their surface to improve specificity.  An example to target liposomes is the 
conjugation of antibodies, antibody fragments, or single-chain antibodies to its surface 
(Huwyler et al., 1996, Koshkaryev et al., 2013) By adding these compounds at its surface 
however, it was observed that the plasma half-life was reduced, probably due to the 
entrapment of Fc-containing ILs in the endoplasmic reticulum.  Therefore, Fc-free antibodies 
were developed, such as anti-HER2, anti-EGFR (i.e. cetuximab) or anti-VEGFR2 (i.e. DC101) 
antibodies. (Huwyler et al., 1996; Koshkaryev et al., 2013; Mamot et al., 2003 ; Mamot et al., 
2005 ; Park et al., 2002 ; Wicki et al., 2012).  Further in-vivo studies on mice xenografted with 
human cancer cells showed that these antibody-grafted nanocarriers delivered their cytotoxic 
compounds specifically to the cells expressing the target antigen.  In a clinical study, treatment 
of tumors (breast cancer in the MMTV-PyMT mouse model and HT-29 human colon cancer 
xenograft transplantation model) with anti-VEGR2-targeted and doxorubicin-loaded ILs 
resulted in a tumor shrinkage to 1/6th of the size when compared to tumors treated with an 
identical dose of non-targeted liposomal doxorubicin (Wicki A. et al., 2012).  This study clearly 
demonstrated the benefits of using targeted lipid nanocarriers instead of their non-targeted 
counterparts.  An additional advantage of these targeted lipid nanocarriers is their capacity to 
overcome multidrug resistance in cancer cells (Mamot et al., 2012; Huwyler et al., 2008).  The 
first clinical trial with GAH-coated doxorubicin-loaded ILs (MCC-465) in patients with 
metastatic stomach cancer (Matsumura et al., 2004) showed that out of 18 patients were 
treated, 10 of the 18 had stable disease but no remission was observed. 
 

In addition, lipid nanocarriers have also been studied for systemic delivery of nucleic acids 
and other substances with short plasma half-life (Li and Rana 2014, Pecot et al., 2011), as well 
as testing the feasibility and efficacy of siRNA delivery (Coelho et al., 2013; Couvreur et al., 
2006). 
 

There is only one type of protein-based nanoparticle that has reached the clinical setting: 
albumin-nanoparticle-bound paclitaxel (nab-paclitaxel; Abraxane®).  This type of nanoparticle 
is being used in breast cancer, non-small-cell lung cancer, and pancreatic cancer.  In this case, 
we cannot talk about an active targeted nanoparticle but it has been observed that albumin 
may mediate transcytosis of the compound via the gp60 receptor on the epithelium which 
enhances its deliver to the tumor site. (Predescu et al., 2004).  During the clinical trials, it was 
observed in breast cancer that nab-paclitaxel improved response rates compared to 
conventional paclitaxel (Gradishar et al., 2005), and that nab-paclitaxel in combination with 
gemcitabine increased survival in pancreatic-cancer patients when compared to gemcitabine 
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monotherapy (Hoff et al., 2013).  Other albumin stabilized nanoparticles including ABI-008, 
ABI-009, and ABI-011. (Qu et al., 2013) are under clinical trials. 
 

No glycan nanocarriers for systemic cancer therapy has been approved yet but there are 
ongoing phase 1 and 2 trials for the proof-of-concept.  It would seem that these types of 
nanoparticles show fewer side effects.  For example, cyclodextrin nanoparticles were 
compared to free camptothecin in a phase 2 clinical trials and fewer side effects were 
observed as well as an overall response rate of 64% (Weiss et al., 2013). 
 

Synthetic polymer-based nanocarriers show much promise for nanomedicine therapeutics 
due to their chemical versatility (Kamaly et al., 2012). Many types of synthetic polymer-based 
nanocarriers are under clinical trials and are summarized in Table 7 (see below).  
 

Inorganic nanoparticles have also been of increased interest for cancer therapy.  These 
types of nanoparticles have a variety of applications including imaging, radiosensitization, and 
drug delivery (Huang et al., 2011). These types of nanoparticles will be further discussed, but 
just to mention a few, iron oxide nanoparticles are used for diagnostic purposes (Ross et al., 
2009) while others are being tested in clinical trials for the magnetic resonance imaging of 
tumors.  An example of patented iron-oxide nanoparticle is NanoTherm®, an aqueous colloidal 
dispersion that is activated, after tumor internalization, through thermal ablation performed 
with an alternating magnetic field applicator (magnetic hyperthermia).  This type of therapy 
was shown to be beneficial and robust data was already collected for glioblastoma (Rivera et 
al., 2010).  Although not approved worldwide, NanoTherm® gained marketing approval in 
several European countries (Wicki et al., 2015).   
 

Other inorganic nanoparticles are hafnium oxide nanoparticles which will be further 
discussed in details in the radiosensitization paragraph.  As of 2015, no inorganic nanoparticle 
for drug delivery has received market approval but some of them are in the testing phase in 
clinical trials including pegylated colloidal gold-TNFα particles for cancer therapy (Libutti et al., 
2010) and silicon nanocarriers for parenteral peptide delivery (Kovalainen et al., 2013). 
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1.2.2. Passive versus active targeting 
 

Passive targeting plays on the enhanced permeability and retention effect: it exploits the 
anatomical differences present between normal and diseased tissues. It occurs due to the 
extravasation of the nanoparticles at the diseased site where the microvasculature is leaky. In 
order for the nanoparticles to be able to reach the diseased site, they must be able to freely 
circulate in blood. 
 

 
 

Figure 25: Representation of the enhanced permeability retention effect. The vasculature in tumors is 
leaky and permeable allowing small sized-objects (i.e. nanoparticles) to pass through. 
 

Active targeting requires the conjugation of a receptor specific ligand that can promote site 
specific targeting. Success of drug targeting depends on the selection of the targeting 
moieties. The moiety should be abundant, have a high affinity and specificity, and must be 
well suited to chemical modification for conjugation. Ligands are coupled to nanoparticles in 
two ways: either by covalent or non-covalent bonding. Covalent bonding may be the 
formation of disulfide bonds, cross-linking between two primary amines, or the reaction 
between a carboxylic acid and a primary amine… Non-covalent bonding can imply the physical 
association of the targeting ligands to the nanocarrier surface. One of the advantages of non-
covalent bonding is the elimination of rigorous, destructive reaction agents used. However, 
potential problems with non-covalent bonding include low and weak binding, poor control of 
the reactions as the ligand may not be in the desired orientation. 

2. Nanoparticles coupled to Radiotherapy 
As summarized in Figure 21, different types of nanoparticles can be used for 

radiosentization purposes. They can be divided in different subgroups, including polymeric 
nanoparticles (i.e. albumin nanoparticles, poly(lactic-co-glycolic acid) (PLGA) nanoparticles,  
high-Z nanoparticles (i.e. gold, gadolinium-based nanoparticles…), superparamagnetic 
nanoparticles (SPIONS), quantum dots  and non-metal based nanoparticles. 
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2.1. Different types of radiosensitizing nanoparticles 

In this paragraph, we will briefly describe different types of nanoparticles that can be used 
as radiation therapy sensitizers before focusing on AGuIX® which were used for this work. 
 

2.1.1. Quantum dots 
 

Quantum dots (QDs) can be defined as small fluorescent nanocrystals (2 to 10 nm) that are 
composed of semiconductor materials displaying quantum mechanical properties due to their 
small size.  QDs have the particularity that they can absorb a broad spectrum of 
electromagnetic waves and emit light usually in the near infrared range (Seeta Rama Raju et 
al., 2015).  QDs have a central core made of a metal or a metalloid that can be encapsulated 
by biocompatible molecules, such as ZnS and silica, to prevent them from being eliminated 
from the body before they reach cancer cells (Jin and Hildebrandt, 2012).  Currently, due to 
their optical and electrical properties, their use is mainly as diagnostic agents (Wegner and 
Hildebrandt, 2015). A couple of quantum dots made of CaF, LaF, ZnS or ZnO have already been 
studied for their potential as radiosensitizers (Kwatra et al., 2013; Juzenas et al., 2008; Wang 
et al., 2008).  The mechanism of action relies on the generation of radical oxygen species upon 
the interaction of high-energy photons (X-rays and gamma rays) with the heavy metals since 
quantum dots have a high atom and electron density, which will in turn cause localized and 
targeted damage to cancer cells (Park et al., 2006; Carter et al., 2007; Kwatra et al., 2013; 
Juzenas et al., 2008). 
 

 
Figure 26: Mechanism of action following the interaction of high-energy photons with a quantum dot 
(Juzenas et al., 2008). 
 

It was observed that QDs are taken up by endocytosis and retained in lysosomes (Juzenas 
et al., 2008; Silver and Ou 2005).  QDs were also observed in the perinuclear region using an 
immunofluorescence staining of the lysosomal membrane protein LAMP-2 (Saftig, 2005).  For 
a better internalization, QDs can be functionalized either by using a peptide containing a cell 
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entering signal (Zhou and Ghosh, 2007; Patel et al., 2007), or targeting receptor-mediated 
endocytosis by binding specific peptidic receptors (Delehanty et al., 2006).  In cancer cells 
overexpressing the folate receptor, the functionalization of QDs with folate also showed an 
increased cellular internalization (Delehanty et al., 2006; Bharali et al., 2005; Schroeder et al., 
2007). (Juzenas et al., 2008) 
 

A recent study was published using tungsten sulfide QDs as multifunctional 
nanotheranostics for in-vivo dual-modal image-guided photothermal/radiotherapy synergistic 
therapy. (Yong et al., 2015).  The authors developed WS2, QDs of a small size (3 nm) with good 
biocompatibility.  As seen previously, this small size allows for the non-retention of the 
particles in the liver while allowing renal excretion.  Due to its high Z number WS2 was 
predicted to be a good radiosensitizer. Indeed, treatment of HeLa and HepG2 cells with these 
WS2 QDs for 24h resulted in radiosensitization (inhibition of cell survival from 75% to 31%) 
without any toxicity when in absence of radiation. In-vivo studies indicated no obvious signs 
of abnormal mouse behavior in body weight, eating, drinking, nor activity.  QDs accumulated 
in the kidney, liver, and spleen, without any further hepatic nor renal dysfunctions and 
promising results were obtained in vivo.  
 

2.1.2. Superparamagnetic iron oxides 
 

Superparamagnetic iron oxide nanoparticles (SPIONS) are composed of an iron oxide core 
that gives them paramagnetic abilities when placed in a magnetic field (Seeta et al., 2015).  
SPIONS are therefore used as contrast agents in magnetic resonance imaging (MRI) as well as 
for drug delivery to tumors.  In addition, these types of nanoparticles have been studied for 
their potential radiosensitizing properties.  SPIONS have shown negligible toxicity to healthy 
tissues which allows for their usage in therapy (Mikhaylov and Vasiljeva, 2011).   
 

It was reported that these SPIONs can induce cytotoxic effects due to the production of 
ROS such as hydrogen peroxide, hydroxyl radical, hydroperoxyl radical and superoxide anion 
which in turn results in DNA (Huang et al., 2013) and other cellular organelle damage (Kwatra 
et al., 2013).  In addition, an enhancement in radiation efficacy was observed on MCF-7 cells 
as the nanoparticles enhanced the impact of X-rays on ROS generation by about 240% (Klein 
et al., 2012). 
 

Another example studied is a superparamagnetic chitosan iron oxide nanoparticle carrying 
human Adenovirus type 5 early region 1A (E1A) gene.  The E1A gene is known to reduce the 
expression of HER-2 and increase the expression of p53, two proteins that are known to play 
a role in the regulation of radioresistance in cancer (Kwatra et al., 2013; Raybaud-Diogène et 
al., 1997).  The combination of genetic therapy with increased oxidative stress by iron oxide 
nanoparticles further enhanced the radiosensitivity of human cervical cancer in xenografted 
mice (Kwatra et al., 2013; Shen et al., 2010).  A nanocomposite using Fe3O4/Ag conjugated to 
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the EGFR antibody could be used as a theranostic agent: this nanocomposite can be used as a 
diagnostic tool through MRI and was shown to be a radiosensitizer in nasopharyngeal 
carcinoma in a dose-dependent manner (Zhao et al., 2012). 
 

2.1.3. Non-metal based nanoparticles 
 

Non-metal based nanoparticles, although less largely used than metal-based nanoparticles, 
can also be used as radiosensitizing agents.  For example, Klein et al. synthesized ultrasmall 
uncapped and aminosilanized oxidized silicon nanoparticles and tested them in-vitro on MCF-
7 (breast cancer) and 3T3 cells (mouse fibroblast cells).  Their results showed a radiosensitizing 
effect when the treated cells were exposed to X-rays of 3 Gy (Klein et al., 2013).  It was also 
reported that these nanoparticles induced a significant increase in ROS production that 
reached the mitochondria and caused oxidative stress damage within the organelle.  The 
increased ROS production was observed in both the cancer cells and normal cells but the 
deleterious effects were more significant in cancer cells (Klein et al., 2013; Kwatra et al., 2013).  
 

Another example of a non-metal-based nanoparticles is C60, a fullerene that has potent 
anti-cancer activities and induces markers of autophagy in cancer cells (Zhang et al., 2009) but 
significant toxicity in normal tissue was put in evidence which limits its use (Sayes et al., 2005).  
In order to further explore its capacities, a team used nanocrystals of underivatized fullerene 
C60 (Nano- C60) at concentration that were non-toxic to normal cells and studied their 
radiosensitizing potential. B16 (mouse melanoma cell line) and SMMU-7721 (human hepato-
carcinoma cell line) were treated with Nano- C60 and exposed to γ-radiation and results 
showed enhanced membrane damage and induction of apoptotic cell death (Veeraraghavan 
et al., 2011). 
 

As previously mentioned, polymeric nanoparticles are also available and have been 
formulated using different chemotherapeutic agents either alone or in combination (Kwatra 
et al., 2013).  Genexol-PM, a clinically approved formulation of paclitaxel was studied on non-
small cell lung cancer mouse xenograft models.  This formulation was found to be both a 
better radiosensitizer than the normal drug and a safer therapeutic issue with much reduced 
exposure of the drug to the healthy lung tissue (Kwatra et al., 2013; Werner et al., 2013).  
Another example is a nanomiceller composite formulation of doxorubicin which showed a 
significant enhancement of radiation sensitivity in a multicellular spheroid of A549 lung cancer 
cell line (Xu et al., 2012). 
 

Biodegradable lipid polymer nanoparticles have also been designed using docetaxel as the 
entrapped drug and targeted to cancer tissue using folate. The studies indicated that the 
targeted nanoparticles showed better radiosensitizing properties as compared to drug alone 
or unmodified nanoparticles.  The studies also showed that the radiosensitizing effects using 
nanoparticulate formulations significantly depends on the time gap between the dosing of the 
formulation and the radiation (Kwatra et al., 2013; Werner et al., 2011). 
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2.1.4. Metal-based nanoparticles 

 
Metal-based nanoparticles will be further discussed in the next chapter. 

2.2. Focus on metal-based nanoparticles 

2.2.1. Hafnium nanoparticles 
 

Hafnium oxide nanoparticles, NBTXR3, were designed so they concentrate in tumor cells to 
achieve intracellular high-energy dose deposit.  Magglorella et al. (2012) studied hafnium 
oxide nanoparticles and observed a nine-fold radiation enhancement compared with water.  
In addition, the nanoparticles showed satisfactory dispersion and persistence within the 
tumor as they formed clusters in the cytoplasm of cancer cells.  NBTXR3 nanoparticles have a 
hydrodynamic diameter of 50 nm, a polydispersity index of 0.100, and a zeta potential of -50 
mV.  The irradiation source was a cobalt-60 (average photon energy: 1.25 MeV) at a dose rate 
of 0.66 or 0.46 Gy/min, a 6-MV accelerator at a dose rate of 1Gy/min or an applicator coupled 
to a curietherapy device containing a high dose rate iridium-192 source (average photon 
energy: 0.38 MeV).  The cell lines tested were HT1080 (human fibrosarcoma model), HCT116 
(human colorectal tumor cell line), and A673 (human Ewing family type sarcoma model).  
Results showed the location of NBTXR3 nanoparticles in vesicles (endosomes) in the cell’s 
cytoplasm. The energy release from the clusters of nanoparticles constitutes what the authors 
called a dose deposit ‘hotspot’, which could lead to high and localized destruction of biological 
subcellular structures and induce cell death (Maggiorella et al., 2012). 
 

A good dispersion of NBTXR3 was observed in-vivo following one IT injection with 
nanoparticles both in the central and peripheral areas of the tumor. After 14 days, the 
nanoparticles were still present in the tumor but the evaluation was no longer possible due to 
ethical mice sacrifice.  A marked increase in the radiation response of HT1080 tumor 
xenografts was observed with an enhanced biological response (EBR) over 1.5 as well as an 
increase in the apoptotic response in the cells treated with NBTXR3 combined with irradiation.  
Six clinical trials using NBTXR3 are ongoing with one clinical trial completed.  These clinical 
trials are summarized in Table 8 below.  
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2.2.2. Silver nanoparticles 
 

Silver nanoparticles conjugated with BSA have shown a radiosensitizing effect on gastric 
cancer cells (Huang et al., 2011) and hepatocellular carcinoma (Zheng et al., 2013) probably 
resulting from the release of Ag+ cations from the silver microspheres inside the cells.  These 
cations are oxidative agents and may capture electrons, which could further reduce the 
cellular ATP content and increase ROS production (Bergs et al., 2015; Huang et al., 2011). 
 

Magnetic silver Fe3O4/Ag nanocomposites, conjugated to an EGFR-specific antibody (C225) 
were used as a theranostic agent for simultaneous molecular targeted cancer therapy and MRI 
diagnosis (Zhao et al., 2012).  The use of these nanoparticles in nasopharyngeal carcinoma 
cells (CNEs) showed a time- and concentration-dependent inhibition of proliferation and 
enhanced X-ray cytotoxicity by a factor of 2.26 (Zhao et al., 2012). 
 

2.2.3. Titanium nanoparticles 
 

Titanium is already used for photodynamic therapy, which is based on the generation of 
radical oxygen species (ROS) upon photoactivation.  Historically, nanotitania has been used to 
induce cancer cell apoptosis and can be used as a photosensitizer in UV photodynamic therapy 
(PTD) for endobronchial and esophageal cancers (Townley et al., 2012; Ozben, 2007).  
However, this technique is limited to superficial tumors due to its limitation of the penetration 
depth of UV light.  
 

Very few studies have used titanium nanoparticles as radiosensitizing agents. In 2012, 
Townley et al. published a study with titania nanoparticles doped with rare earth elements.  
The nanoparticles were coated with silica to inhibit aggregation and to improve its 
biocompatibility.  In this study, they used Hep-G2 cells, grown as 3D spheroids to best 
represent the tumor environment. The combined treatment led to an increase of apoptosis as 
assessed by the cells’ morphology and the loss of contact between the cells within the 
spheroid.  An in-vivo study was also undertaken used to test the efficacy of these 
nanoparticles: human non-small cell lung cancer xenografts were established by injecting 
A549 cells subcutaneously into the hind limb of SCID Beige mice.  No toxicity due to 
nanoparticle treatment was observed, nanoparticle augmented radiation therapy as the 
tumor growth was reduced compared to radiation treatment alone: the tumors of mice who 
had received the nanoparticles were approximately half the size of the ones treated with 
irradiation alone.  Once again, this study shows the potential use of titanium-based 
nanoparticles to enhance the efficacy of radiation therapy.  
 

In 2013, Mirjolet et al. published their work on the radiosensitization of glioblastoma cell 
lines (SNB-19 and U87 MG) using titanate nanotubes (TiONts).  TiONts have a diameter of 
about 10 nm with an inner cavity of about 4nm, and a length of about several hundred 



Bibliography Review   Chapter III. Nanotechnology: the rise of nanomedicine 

86 

nanometers.  TiONts entered the cells via endocytosis with an invagination of the membrane 
or via a diffusion process and were free in cytosol or localized inside vesicles.  Clonogenic 
assays showed a significant radiosensitization for cells incubated with the TiONts compared 
to control cells (SF2 = 0.36 vs. 0.18 for SNB-19 cells and 0.60 vs. 0.43 for U87MG cells).  After 
24h of treatment with or without TiONts, no differences in ROS production, early apoptosis 
and autophagy was observed.  However, cell cycle analysis showed an increase, in both cell 
lines, of the number of cells in the G2 phase after treatment with TiONts.  As cells in the G2 
phase are more sensitive to radiation, treatment with TiONts led to a significant increase, in 
both cell lines, of γ-H2AX foci as a result of DNA damage (residual DNA double-stranded-
break).  
 

More recently, Nakayama et al. (2016) used titanium peroxide nanoparticles combined to 
X-ray irradiation in a pancreatic cancer model.  They observed an increase of hydroxyl radical 
and hydrogen peroxide levels in cells treated with PAA-TiOxNPs and X-ray irradiation but 
without any increase of the superoxide level.  They also observed that X-ray + PAA-TiOxNPs 
induced a higher number of γ-H2AX foci and induction of apoptosis.  In-vivo experiments 
showed a reduction of the tumor volume to 35.4% compared to X-ray alone without any 
toxicity throughout the 43 days of observation. Despite an intra-tumoral injection of PAA-
TiOxNPs instead of intravenous injection, overall results from this study highlighted the 
potential of using PAA-TiOxNPs combined to radiotherapy in pancreatic cancer. 
 

2.2.4. Gold nanoparticles 
 

Gold nanoparticles have been extensively studied in nanomedicine owing to its presumed 
biocompatibility and a potential better absorption of X-rays due to its high atomic number. 
Various studies show the efficient use of gold nanoparticles as radiosensitizers, with studies 
showing a Dose Enhancement Factor (DEF) of up to 50. Although their toxicity is yet to be 
further studied, detailed experiments were brought to light investigating the effects of 
different parameters of a nanoparticle including its size, shape, surface coating, 
concentration, and photon energy which each have an impact in the radiosensitizing 
capacities. However, we must keep in mind that different results were obtained according to 
the tumor cell lines studied. Moreover, as it was long believed that radiosensitization using 
gold nanoparticles would only be achievable in keV range, it was a big surprise to observe 
radiosensitization by gold nanoparticles using X-rays in the MeV range (as often used in the 
medical setting). 
 

Gold nanoparticles represent a wide platform for a variety of different applications as it can 
be seen in Figure 27.  The main in-vitro and in-vivo studies were summarized in a recent paper 
(Her et al, 2017) as shown in the following tables. From these tables, we can observe that gold 
nanoparticles have been widely studied with different sizes, types, and in different cellular 
models and different energies showing its wide application as a radiosensitizing agent. 
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Figure 27: Different types of gold nanoparticles and their applications.  a. The synthetic versatility of 
AuNPs.  AuNPs offer a unique platform for straightforward manipulation of particle size, shape, surface 
coating and functionalization, enabling fine-tuning of particle properties. b. Biomedical applications of 
AuNPs.  Owing to their unique physico-chemical, optical and electronic properties, AuNPs have been 
exploited for a wide range of applications in diagnostics, imaging, delivery, and therapy.  (Her et al., 
2017) 
 

a. 

b. 
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2.2.5. Gadolinium nanoparticles 
 

Gadolinium-based nanoparticles have been receiving increased interest as these 
nanoparticles can be used as theranostic agents: for both imaging (in MRI) and therapy 
(combined with radiotherapy for example). This is the case with the 2 nm gadolinium 
nanoparticles developed by Le Duc et al. (2014) which were shown to accumulate 
preferentially in tumors via the EPR effect (discussed previously). As an example, Figure 28 
shows the enhanced contrast properties given by Gd-nanoparticles which have accumulated 
in the tumor (brain of a 9L gliosarcoma-bearing rat) by the EPR effect, 20 min following 
injection, whereas they are not found in the healthy tissue.  Since these types of nanoparticles 
can be followed by MRI, image-guided microbeam radiation therapy can be applied: the 
healthy tissue will be spared while the tumor will receive a greater dose of irradiation. Better 
survival rates were reported using this technique in 9 L gliosarcoma-bearing rats. 
 

 
Figure 28:  T1-weighted MRI images of the brain of a 9LGS-bearing rat before and 5, 20, and 45 minutes 
after intravenous injection of GBNs. (Le Duc et al., 2011) 
 

Another example where gadolinium was used is in gadolinium-chemotherapeutic 
conjugates. One of these is motexafin gadolinium which is greatly studied and was licensed by 
the FDA for the treatment of non-small cell lung cancer with secondary brain metastases 
(Richards and Mehta, 2007). By creating an imbalance in the radical scavenging capability of 
the target cells (oxidation of various intracellular metabolites such as ascorbate, NADPH, and 
glutathione) which in turn promotes the generation of ROS, this drug leads to a potential lethal 
radiation-induced damage to DNA (i.e. double-stranded breaks). In addition, it was observed 
that motexafin-gadolinium suppresses the activity of ribonucleotide reductase which in turn 
inhibits the processes of DNA synthesis and repair. 

2.3. Physicochemical mode of action of high-Z metal NPs 

The nanoparticles effectively provide dose enhancement through an enhanced interaction 
cross-section with the X-ray photons (Townley et al., 2012) which therefore increase 
therapeutic efficiency and cause localized damage to DNA and organelles within the cancer 
cells.   

The interaction of the ionizing radiations with high-Z metal nanoparticles will undergo via 
the photoelectric effect inner-shell ionization: one of the deeply bound electrons will be 
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expelled. The resulting atom is unstable and a re-arrangement of the electronic orbitals either 
by emission of low energy photons (fluorescence) and electrons (Auger emissions) will occur. 
From a single inner-shell ionization, several Auger emissions can occur: the process is referred 
to as the Auger cascade. Electrons issued from the Auger cascade of energies of a few keV or 
less with penetrations of 10-100 nm, and will therefore deposit their energy very locally.  

 
The phases of radiosensitization can be divided into three phases: the physical phase, the 

chemical phase, and the biological phase. During the physical phase of radiosensitization, 
there are three main types of physical interactions that will occur between photons and the 
high-Z metal of the nanoparticles: the photoelectric effect, usually followed by Auger 
cascades, the Compton effect, and pair production. These three types of interactions were 
previously described in Chapter II. The chemical phase corresponds to competitive reactions 
between radical scavenging agents (such as GSH) and ROS production. At last, the biological 
phase corresponds to the responses of the biological targets to the ionizing radiation at the 
molecular, cellular, and tissue levels. In radiobiology, these responses are described as the 
5Rs: repair, reoxygenation, redistribution, repopulation, and intrinsic radiosensitivity. (Cui et 
al., 2017) These 5Rs are considered to be the key factors which will in turn the outcome of the 
treatment (Steel et al., 1989; Harrington et al., 2007; Pajonk et al., 2010). See Figure 29 for a 
schematic representation of these 3 phases of radiosensitization. 
 

This property of high localized dose of deposited energy is highly attractive for the use of 
nanoparticles in combination with radiotherapy: the tumor will receive a high deposition of 
energy following irradiation in the presence of the nanoparticles inside of the tumors, while 
sparing healthy tissues (since the nanoparticles will accumulate preferentially in the tumor 
site either via the EPR effect or by active targeting of the nanoparticles to the tumor site). This 
high deposition of energy would therefore 1) spare healthy tissues and therefore reduce toxic 
effects of radiotherapy and 2) allow for a decreased dose delivery to the tumor and therefore 
better the quality of life for the patient. 
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3. AGuIX® (Activation and Guidance of Irradiation by X-ray) nanoparticles 
In order to minimize the dose of ionizing radiations delivered to the patient while 

enhancing the radio sensitivity of tumors, a new approach on the rise is the development of 
hybrid nanoparticles made of gadolinium oxides. Gadolinium, a rare earth metal, is a high-Z 
element currently used as a contrast agent for MRI. Free gadolinium ions cannot be used as it 
is highly toxic in humans, but can be used by chelating the gadolinium with DOTAREM 
(gadoterate muglumine), which is a gadolinium-based contrast agent indicated for 
intravenous for magnetic resonance imaging (MRI) and which allows Gd3+ to form a stable 
non-toxic complex. 
 
AGuIX® present multiple characteristics that make them an attractive radiosensitizer including 
their small size (hydrodynamic diameter < 5 nm), high colloidal stability and good gadolinium 
chelation, absence of in-vivo toxicity, high EPR effect, biocompatibility and possibility of IV 
injection, facilitated renal excretion, and their use as a contrast agent for MRI which makes it 
a theranostic agent (Sancey et al., 2014). 
 

 
Figure 30: Schematic representation of AGuIX® nanoparticles. Gadolinium atoms are represented in 
yellow and are chelated by DOTA derivatives (brownish color), and the polysiloxane matrix which is 
mainly composed of silicon (grey), oxygen (red), and nitrogen (blue). 

3.1. AGuIX® as radiosensitizers: state-of the-art 

As previously mentioned, adding a high-Z element such as gadolinium will allow for an 
increased interaction with the incoming radiation (see details above, general mechanisms of 
action for heavy metal nanoparticles), which will in-turn causes increased damages to cancer 
cells.  Since water is the major constituents of cells (~80%), the coefficient of photon mass 
energy absorption is quite low compared to that of gadolinium (Figure 31 below (a)).  In 
addition, in Figure 31 b, we can observe the energy deposited as a function of the distance 
from the nanoparticles (total energy decomposed in auger-and photo-electrons). 
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Many in-vitro and in-vivo studies were done in a variety of models in order to validate the 
use of AGuIX® for clinical applications.  We will first discuss the studies performed in-vitro to 
then discuss what was found in vivo. 

 
 

 
 

Figure 31: a. Comparison of photon mass energy absorption coefficients for gadolinium and soft 
tissues. b. Illustration of nanoscale effects around irradiated AGuIX® gadolinium nanoparticles. (Sancey 
et al., 2014) 
 

3.1.1. In vitro studies 
 

Many studies were performed on different cellular models as well as using different 
energies were already performed which validated the use of AGuIX® as a radiosensitizing 
agent.  A few will be detailed in this section. 
 

In 2014, Luchette et al. (Luchette et al., 2014) demonstrated a radiosensitizing effect of 
AGuIX® on HeLa cells when treating the cells with 0.5mM AGuIX® for one hour in culture media 
with an average dose enhancement of 1.54 and 1.15 for 220 kVp and 6 MV energies 
respectively.  They also calculated the sensitivity enhancement ratio (SER) at 4 Gy of 1.54 and 
1.28 for 220 kVp and 6 MV energies respectively (SER calculated by dividing the SF4Gy + AGuIX® 
over SF4Gy).  Internalization of AGuIX® inside the cells was measured by ICP-MS and the 
intracellular concentration of gadolinium was of 0.059 mM.  An observation was made by the 
author that was often observed by others, that radiosensitization depended on the radiation 
dose as variation was observed between the different irradiation doses.  Additionally, by 
taking into account the energy used for radiotherapy, the authors observed that 
radiosensitization also varied with the energy of the incoming beam: kVp versus MV.  The 
authors hypothesized that the radiosensitization was primarily caused by photoelectrons.  
Since the probability of photoelectric interaction is inversely proportional to the cube of the 
photon energy, these are more present in kVp-range energies (lower energy and therefore 
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high photoelectric interaction probability) (Butterworth et al., 2010; Rahman et al., 2009; 
Chithrani et al., 2010; Jain et al., 2011).  
 

Another study was published in 2015 (Detappe et al., 2015) showing a radiosensitizing 
effect on Panc-1 cells (pancreatic cancer cell model).  Again, two photon energies were used: 
220 kVp and 6 MV (same as the energies previously used on HeLa cells), but in addition they 
also test a flattening filter free 6 MV beam (FFF).  The cells were treated with 0.5 mM AGuIX®, 
and different incubation times were tested: 30 min, 1, 3, 6, 24, and 48 hours.  They observed 
a saturation of the internalization of AGuIX® after 30 minutes of treatment with a 
quantification of 1.25 pg of gadolinium internalized per cell.  Transmission Electron 
Microscopy (TEM) images were taken in order to observe the localization of AGuIX® in Panc-1 
cells after 1 hour of internalization: the nanoparticles were predominantly localized in the 
cytoplasm in vacuoles.  A clonogenic survival assay (in the presence of AGuIX® during 
irradiation) was done to observe the radiosensitizing effect of AGuIX®, and the following were 
found: 

- For the 220 kVp irradiation: SER (4Gy): 1.41; DEF 20%: 1.31 
- For the 6 MV STD: SER (4Gy): 1.12; DEF 20%: 1.23 
- For the 6 MV FFF: SER (4 Gy) 1.20; DEF 20%: 1.3 

 
In 2015, another gadolinium-based nanoparticle (AGuIX® of first generation, chelated by 

DTPA) were validated for the radiosensitizing potential in a head and neck squamous cell 
carcinoma (HNSCC) model.  SQ20B J.L. cells were treated with 0.4 mM or 0.6 mM AGuIX® and 
the irradiation was done using a 250kV photon irradiator.  A radiosensitizing potential was 
observed with corresponding SER (2 Gy) of 1.2 (0.4 mM GBNs) and 2.06 (0.6 mM GBNs).  
Localization was studied using confocal microscopy using GBNs-Cya5.5 nanoparticles and a 
strictly cytosolic localization was observed.  ICP-OES was performed to quantify gadolinium 
content and 1.24 pg/cell of gadolinium was found.  Cytotoxicity tests showed not toxicity 
issues 72h after nanoparticle treatment.  In order to see if the nanoparticles had an influence 
on DNA double-stranded breaks (DSBs) even though the nanoparticles are not localized in the 
nucleus, foci γH2Ax were quantified.  Thirty minutes after a 2 Gy irradiation, 0.4 mM GBNs 
induced an increase of γH2Ax by 41% while 0.6 mM GBNs increased γH2Ax by 53%.  Twenty-
four hours after the 2 Gy irradiation, the non-treated cells returned to their basal level of 
γH2Ax while in cells treated, 30% of the initial number of γH2Ax remained.  Following cell cycle 
analysis and caspase-2 tests, it was concluded that the combination of GBNs with photonic 
irradiation inhibited cell proliferation, modified the distribution of cells in the cell cycle and 
induced mitotic catastrophe leading to apoptotic cell death (Miladi et al., 2015). 
 

Kobt et al. studied a melanoma model (B16F10) and published in 2016 showing a 
radiosensitizing effect of AGuIX® in-vitro as well as in-vivo (later discussed).  B16F10 cells were 
treated with 0.6 mM of AGuIX® for one hour in serum free DMEM.  In order to study the 
localization of the AGuIX® in B16F10 cells, confocal microscopy was used with FITC-labeled 
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AGuIX® nanoparticles.  The nanoparticles were located in the cytoplasm inside vesicles: these 
results were confirmed with TEM.  The SER at 2 Gy was calculated and found to be 2.08 with 
a DEF of 1.3.  They also observed an increase in the directly lethal damage as the α-factor 
increased (the α-factor is obtained from the linear quadratic equation using the clonogenic 
survival curve assay).  Foci γH2Ax were counted at thirty minutes and 24 hours.  While no 
changes were observed with the addition of AGuIX® at 30 minutes after 2 Gy irradiation, 24 
hours after irradiation, the number of residual γH2Ax increased by an average of 9 (19.3 
foci/nucleus after irradiation alone versus 28 foci/nucleus after irradiation + 0.6 mM AGuIX®). 
(Kobt et al., 2016) 
 

Novel nanoparticles are being developed with the addition of the bismuth ion on AGuIX® 
in order to further increase their radiosensitizing potential.  This silica-based nanoparticle 
(SiBiGdNP) therefore contains both gadolinium and bismuth which makes it a nanoparticle 
suitable for use as an imaging agent in both MRI and CT.  A549 Non-Small Cell Lung Cancer 
(NSCLC) cells were treated with 0.5 mM of SiBiGdNP for 30 minutes prior to irradiation.  
Irradiation with the addition of SiBiGdNP resulted in a dose enhancement factor of 1.99.  An 
increase in γH2Ax and 53BP1 foci was observed along with a significant increase in apoptosis. 
(Detappe et al., 2017) 
 
These studies as well as other studies using AGuIX® are summarized below in Table 11.  
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3.1.2. In-vivo studies 
 

In-vivo studies were realized to validate the radiosensitizing effect observed in vitro with 
the aim of being able to move on to clinical trials with AGuIX®.  In vivo, AGuIX® nanoparticles 
accumulated via the EPR effect after intravenous injection (Lux et al., 2011; Sancey et al., 2014; 
LeDuc et al., 2014; LeDuc et al., 2011; Dufort et al., 2016).  They were tested in several models 
including glioma, head and neck, lungs, pancreas, melanoma, and multiple brain metastases, 
and showed a high efficiency for both use as a contrast agent in MRI and a radiosensitizing 
agent using external X-rays which makes it a strong theranostic agent. 
 

In 2014, 9L-gliosarcoma (9LGS) cells were implanted in the brain of male fisher F344 rats.  
After an intravenous injection of an aqueous solution containing 40 mM of AGuIX®, a rapid 
highlight of the kidney and later of the bladder was observed by MRI.  In addition, angiography 
images showed a clear highlight of the blood brain vessels with a better contrast for the 
nanoparticles bearing tumors due to the higher relaxivity and longer residence time in the 
blood circulation.  The authors observed an accumulation of AGuIX® in the tumor via the EPR 
effect.  Irradiation of the animals 20 minutes after the intravenous injection of AGuIX® leads 
to an important increase of the median survival time to 102.5 days which corresponds to an 
increased life span of 439%. (Le Duc et al., 2014) 
 

In 2015, gadolinium-based nanoparticles (chelated by DTPA) showed a radiosensitizing 
effect in SQ20B xenografted tumors.  In vivo optical images were acquired and showed an 
intra-tumoral localization of nanoparticles immediately after injection and for 15 minutes.  
The combination of the nanoparticles with a 10 Gy irradiation strongly limited tumor growth: 
the mean tumor growth was 5-fold smaller in tumors that received the combined treatment 
compared to the tumors that had received irradiation only.  Increased apoptotic cell death as 
well as an altered tumor proliferation was observed after the addition of nanoparticle 
treatment alongside radiation. (Miladi et al., 2015) 
 

In 2016, after showing a radiosensitizing effect of AGuIX® on B16F10 melanoma cells, these 
cells were othotopically grafted into mouse brains to mimic melanoma brain metastases.  A 
kinetic study was performed in order to determine the amount of nanoparticles as well as 
their distribution within the tumor cells versus the surrounding healthy tissues.  It was 
concluded that radiation exposure could be performed from 1 to 24 hours after injection of 
the AGuIX® solution (substantial uptake of AGuIX and absence in healthy tissue).  Irradiation 
was done five days after tumor implantation and 3.5 hours post AGuIX-injection for a highest 
tumor to healthy tissue ratio.  When compared to the control group, the addition of AGuIX® 
prior to irradiation improved treatment efficacy by 3-fold: the increase in life span for the 
irradiated-only tumor was 8.3 % while it increased to 25% with the addition of AGuIX®. (Kotb 
et al., 2016) 
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In 2017, SiBiGdNP also showed their radiosensitizing potential in vivo in a fast-growing 
subcutaneous xenograft solid tumor model (A549 lung adenocarcinoma).  The group treated 
with SiBiGdNP followed by radiation showed a statistically significant improvement in tumor 
growth delay and survival.  A significant increase in DNA damage was also observed in the 
tumor when the irradiation was performed after SiBiGdNP treatment (89%) compared to 
radiation alone (67%), and compared to non-irradiated treated and non-treated cells control 
groups (8 and 5% respectively). (Detappe et al., 2017) 
 

In 2016, a safety evaluation and imaging properties of AGuIX® was done in nonhuman 
primates (NHP).  This study was performed in the context of MRI studies in atherosclerosis 
bearing animals and healthy controls.  In healthy NHP, the pharmacokinetics and toxicity 
profiles demonstrated the absence of dose, time, and sex-effects, as well as a suitable 
tolerance of intravenous administration of the nanoparticles.  This preliminary investigation 
reports the efficient and safe imaging of atherosclerotic plaques.  Although this study does 
not show the radiosensitizing properties of AGuIX®, we can show with this study the multiple 
facets and opportunities that these nanoparticles offer as a strong imaging agent. (Kotb et al., 
2016) 
 

 
Figure 32: T1-weighted image of a slice, including a kidney (K) and bladder (B) of a mouse before (t=0), 
5 min after and 60 min after intravenous injection of AGuIX® nanoparticles. (Sancey et al., 2014) 
 
AGuIX® renal kinetics and mechanism of elimination (Sancey et al., 2015) 
 

In vivo studies showed a rapid kidney accumulation and renal clearance of AGuIX® 
nanoparticles.  This is mainly due to its small size (hydrodynamic diameter <6nm) (Deen, 
2004).  Twenty-four hours after intravenous injection, less than 0.2% of the injected dose of 
the radiolabeled particles was observed in any other organ (Sancey et al., 2015; Lux et al., 
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2011; Mignot et al., 2013; Kryza et al., 2011; Bianchi A et al., 2013).  After injection, AGuIX® 
nanoparticles rapidly reached the kidneys, as early as 5 minutes after IV injection. One week 
after injection, most of the signal had been cleared, indicating effective particle elimination 
from the body via urine (Figure 32). 
 
AGuIX® nanoparticle biodegradation and toxicity studies 
 

Concerning the elimination of AGuIX®, it was shown that small degraded particles were 
eliminated from the body in the first minutes post-injection, whereas full native AGuIX® NPs 
were entrapped in the proximal convoluted tubules from a few hours to several days before 
elimination from the organism as native AGuIX® NPs. (Sancey et al., 2015). 
 

Prior to a clinical application, a safety evaluation of AGuIX® was essential. The renal 
function, assessed through the serum creatinine levels and histological analysis as well as the 
Maximum Dose Tolerated (MDT), see Table 12).  Serum creatinine results showed a transient 
small increase 30 minutes after AGuIX® administration whereas histological studies showed 
neither atrophic tubules nor necrotic cells in the tubules, the absence of lesions in the 
glomeruli and the absence of fibrosis or edema the interstitial tissue.  The authors therefore 
concluded that the observed modifications were slight and transient after three consecutive 
injections of AGuIX® NPs. (Sancey et al., 2015) 
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Figure 33: a. Quantitative imaging of Gd and sodium (Na) by LIBS, related to the distribution of AGuIX 
NPs in the kidney as a function of elapsed time after administration. b. Two-photon microscopy of mice 
kidneys, from 5 minutes to 2 weeks after a single injection of 200 μL of Rhodamine B-AGuIX (red) at 40 
mM Gd.  The nucleus and vessels were stained by injecting 50 μL of a mixture of Hoechst 33342 (blue) 
and FITC-Dextran 70 kDa (green) 5 min before acquisition. (Sancey et al., 2015) 
 

 
Table 12: Determination of the Maximum Dose Tolerated (MDT) of AGuIX® in non-tumor bearing Mice 
after a Single IV Injection. (Sancey et al., 2015) 
 
 

3.1.3. Ongoing and upcoming clinical trials 
 

After ten years of academic research for the preclinical proof of concept, clinical trials have 
started in 2016.  The first clinical trial is on brain metastases and is sponsored by the University 
Hospital of Grenoble-Alpes (NANO-RAD, Dr. C. Verry).  The study is a dose-escalation study 
with 5 dose levels (3 patients/dose level): 15, 30, 50, 75, and 100 mg/kg.  Patients with multiple 
brain metastases have a high mortality with a life expectancy of less than 4 months: this is 
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mostly due to a poor distribution of cytotoxic and targeted therapies.  The study protocol is 
schematized in Figure 34 (obtained from S. Dufort, nhTherAGuIX). 
 

 
 

Figure 34: Timeline of the study protocol for the first in Man NANORAD-Phase I. 
The primary objective of the study was to determine the maximal tolerated dose (MTD).  

Four additional secondary objectives were also defined: 
 

- Secondary objective 1: Pharmacokinetic characteristics of AGuIX®- samples of blood 
will be taken at T= 0, 15, 30 minutes, and 1, 2, 4, 6, 10 (or 12), 24 hours, and 8 days 
after AGuIX® injection; as well as urine samples over 24 hours (3 fractions at 4h and 1 
fraction at 12h) and at 8 days. 

- Secondary objective 2: MRI & AGuIX® tumor targeting by evaluating the distribution 
and elimination of AGuIX® in brain metastases and surrounding healthy tissues. 

- Secondary objective 3 and 4: Therapeutic response consisting in the evaluation of the 
intracranial progression free survival and the evaluation of the overall survival. 

 
Inclusion criteria were the following: patients had cerebral metastases non-eligible to a 

local treatment by surgery or excision surgery nor stereotactic radiotherapy aged 18 years or 
older with no upper limit. The Eastern Cooperative Oncology Group (EcOG) performance 
status must be equal or greater than 3, have no prior brain irradiation. Moreover, an absence 
of renal insufficiency and normal hepatic function is needed. All the details can be found on: 
https://clinicaltrials.gov/ct2/show/NCT02820454?term=AGuIX&recrs=a&rank=1 
 

More clinical trials on other types of cancers are underway. A clinical trial is currently going 
through ANSM (Agence National de Sécurité du Médicament et des produits de santé) to 
hopefully start the trial in 2018.  A clinical trial will hopefully start in 2019 on Head and Neck 



Bibliography Review   Chapter III. Nanotechnology: the rise of nanomedicine 

105 

Cancer, as well as on glioblastoma and lung cancer.  Many institutes are involved in this 
project.   
 

 
Figure 35: Pipeline of clinical trials with AGuIX®. 
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CChapter IV. Radical Oxygen Species (ROS) in Cancer, the role of 
mitochondria and other organelles 

 
Cellular exposure to ionizing radiation leads to oxidizing events that alter the atomic 

structure through the direct interactions of radiation with target macromolecules or via 
products of water radiolysis that results in the generation of reactive chemical species by the 
stimulation of oxidases and nitric oxide synthases (see Figure 36 below). 
 

 

Figure 36: Effects of ionizing radiation on different subcellular compartments. (Taken from Azzam et 
al, 2014) 

Ionizing radiation may also disrupt mitochondrial functions significantly contributing to 
persistent alterations in lipids, proteins, nuclear DNA (nDNA) and mitochondrial DNA 
(mtDNA). 

1. Water radiolysis and generation of reactive oxygen species 
As previously seen in Chapter II, water is the major ( 80%) constituent of cells. The 

absorption of energetic radiations by water results in both excitations and ionizations leading 
to the production of free radicals that in turn can attack other critical molecules (indirect 
effect). The complex events linked to the absorption of high-energy photons can be divided 
into four consecutive temporal stages: during the first or “physical” stage, the energy 
deposition is caused by the incident radiation and secondary electrons are generated. The 
resulting species are extremely unstable and undergo fast reorganization in the second or 
“physicochemical” stage. During the third stage, the various chemically reactive species 
diffuse and react with one another or with the environment. In the final, biological stage, the 
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cells respond to the damage resulting from the products formed in the preceding stages. The 
species produced in the radiolysis of pure deaerated water are e−aq, •OH, H•, H2, and H2O2, 
respectively (Ferrradini and Jay-Gerin, 1999). In the presence of oxygen, e−aq and H• atoms 
are rapidly converted to superoxide/perhydroxyl (O2•−/HO2•) radicals. In biological systems, 
organic radicals (R•) are also formed, initiated by •OH radicals for example which usually react 
rapidly with O2 to give peroxyl radicals (RO2•). The RO2• radicals can abstract H• from other 
molecules to form hydroperoxides (ROOH), a reaction known to be involved in lipid 
peroxidation. 

2. Generation of reactive nitrogen species 
Ionizing radiation can also stimulate inducible nitric oxide synthase (NOS) activity in hit cells 

(Mikkelsen et al, 2003), thereby generating large amounts of nitric oxide (•NO). •NO reacts 
with O2 •− to form the peroxynitrite anion (ONOO−) which is highly reactive and capable of 
attacking a wide range of cellular targets, including lipids, thiols, proteins and DNA bases but 
in their immediate vicinity. By contrast, the much lower reactivity of H2O2 and O2•− allows 
them to diffuse a longer distance away from the originating site. In the presence of catalytic 
redox metal ions (principally Fe2+ and Cu+), these species lead to the production of •OH radicals 
via Fenton and Haber-Weiss chemistry which can enhance damage (Halliwell and Gutteridge, 
2007). 

3. Other sources of reactive species 
An additional major source of intracellular ROS is the NADPH oxidases which are enzyme 

complexes that catalyzes the production of superoxide from O2 and NADPH (for the four 
isoforms NOX1, NOX2, NOX3 and NOX5) and the production of H2O2 by NOX4 (Meitzler et al., 
2014). Whereas tissue distribution varies greatly, cellular localization is somewhat less diverse. 
All NOX proteins exist as transmembrane species and have been found, to varying degrees, at 
the plasma membrane surface. Intracellular localization has been characterized for NOX1, 
NOX4, and NOX5 in such structures as trafficking vesicles, the ER, mitochondria, or nuclear 
membranes (Fulton, 2009; Graham et al., 2010). Mitochondrial ROS are the largest contributor 
to cellular ROS and it was estimated that 1% of the total mitochondrial O2 consumption is used 
to produce superoxide (Quinlan et al., 2012; Handy and Loscalzo, 2012). Mitochondria have 
seven known sites capable of producing superoxide (Murphy, 2009; Brand, 2010) but the sites 
with the greatest maximum capacities to produce superoxide   (O2.-) are at complex I and 
complex III of the electron transport chain. O2.- is then converted to hydrogen peroxide (H2O2) 
by superoxide dismutase in the matrix (SOD2; also known as MnSOD), or in the 
intermembrane space (SOD1; also known as CuZn–SOD). The H2O2 is degraded in the matrix 
by glutathione peroxidase 1 (GPX1) or peroxiredoxins (PRDX3 or PRDX5) using reducing 
equivalents obtained from the oxidation of reduced glutathione (GSH). Oxidized glutathione 
(GSSG) is reduced by glutathione reductase, which obtains its equivalents from NADPH 
oxidation. H2O2 generated in the matrix can oxidize proteins, lipids or mitochondrial DNA 
(mtDNA). Oxidized proteins are repaired by the enzymatic systems thioredoxin/thioredoxin 
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reductase and glutaredoxin (GRX)/glutathione/glutathione reductase, as well as the 
methionine sulfoxide reductase depending on the oxidized damage.  TRX2 and GRX are 
subsequently reduced by thioredoxin reductase 2 or by glutathione. Lipid hydroperoxides are 
reduced by GPX4. Ultimately, all ROS removal depends on the availability of GSH, which is 
maintained by the availability of NADPH in the respective compartments. Different subcellular 
compartments can be affected by ETC-derived ROS, depending on where the superoxide is 
generated: ROS can be driven toward the intermembrane space or released in the matrix. 
When high levels of ROS overwhelm the antioxidant capacities in both compartments, ROS 
can reach cytosol since they have some ability to cross membranes, H2O2 through aquaporins 
and superoxide through anion channels (Han et al., 2003; Bienert et al., 2007). They can then 
participate in redox signaling or cause oxidative damage. 
 

 
 

Figure 37: Production of ROS and their evolution: either they degrade to water after the action of 
antioxidants or in the presence of Fe2+, they are converted to OH• which can cause damages to cells. 
(Sullivan et al., 2014) 

4. Reactive oxygen species (ROS) signaling pathways regulation 
Cytosolic ROS (cROS) and mitochondrial ROS (mROS) act as signaling molecules regulating 

various signaling pathways.  For example, it was observed that they:  
- enhance phosphoinositide 3-kinase signaling (PI3K).  This pathway is hyper-activated 

in many cancers and it has been shown to increase proliferation, promote survival, and 
increase cellular mobility (Cantley, 2002).  

- activate hypoxia-inducible factors (HIFs) in order to initiate a transcriptional network 
which allows tumor cells to adapt to their lower oxygen microenvironment.  It was 
observed that transcriptional targets of HIFs include genes that promote survival under 
hypoxia, shifting to a metabolism with increased glycolysis, and the activation of 
angiogenesis (Semenza, 2003) 

- modify the cell’s metabolism. 
- The overproduction of ROS in cancer cells increases tumorigenic mutations which in 

turn increases the production of ROS. 
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Surprisingly, in cancerous cells, a vicious circle is put in place as ROS will stimulate the 

production of even more ROS which will in turn increase mitochondrial mutations which will 
increase mROS production. Moreover, high mitochondrial ROS levels can result in long 
mitochondrial permeability transition pore (mPTP) openings which may release a ROS burst 
leading to the destruction of mitochondria, and if propagated from mitochondrion to 
mitochondrion, a phenomenon called ROS-induced ROS release (Zorov et al., 2014). 
 

 
Figure 38: Increased ROS in cells will modify cellular signaling pathways which in turn will promote cell 
survival, growth, and proliferation which leads to tumorigenesis. (Sullivan et al., 2014) 

5. Mitochondria and delayed effects of ionizing radiation 

5.1. Generalities 

Mitochondria is a double membrane-bound organelle found in all eukaryotic cells and are 
mostly known as the “power house” of the cell as it provides energy (ATP) to the cell.  Although 
energy production is one of the most known and important function of mitochondria, it is not 
its only role: mitochondria are also involved in many other tasks such as signaling, cellular 
differentiation and cell death, which makes it a central organelle in the control of the cell’s 
fate.   

Mitochondria are complex organelles which cooperate with their host cells by contributing 
to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. One of the 



Bibliography Review   Chapter IV. Radical Oxygen Species (ROS) in Cancer 

111 

particularities of mitochondria is that it has its own circular DNA composed of 16 569 bp 
encoding for 37 genes of which codes for 13 polypeptides of the mitochondrial electron 
transport chain (ETC), 2 rRNA, and 22 tRNA.  As we will see later, mitochondrial DNA can also 
be affected by IR, and more specifically, a common deletion of 4977 bp was put in evidence 
(Peng et al., 2006; Prithivirajsingh et al., 2004).  The study of this common deletion can be a 
functional test since it most likely results from the increased production of mROS. A schematic 
representation of the mtDNA is represented in Figure 39 showing the full length and what it 
codes for, as well as where the common deletion occurs.   
 

 
 

Figure 39: Schematic representation of the mtDNA and the delimitation of the common deletion (Shen 
et al., 2010). 

5.2. mROS production after ionizing radiations 

Upon cellular exposure to ionizing radiation, ROS generating-oxidases may be activated, 
antioxidants modulated, and metabolic activity altered in response to the oxidative insult. 
Among the multitude of induced effects, IR may disrupt mitochondrial functions because they 
occupy a substantial fraction of cell volume, they consume about 90% of the body's oxygen 
and are the richest source of ROS (Cadenas and Davies, 2000) as they divert about 1-5% of 
electrons from the ETC to the formation of superoxide radicals by ubiquinone-dependent 
reduction (Boveris et al., 1976). The leakage of electrons (mainly from complexes I and III of 
the ETC) results in the reduction of O2 to create superoxide (O2 •). Radiation causes further 
leakage of electrons from the ETC and therefore results in excess O2•− generation (Droge, 
2002), in addition to the ROS produced during water radiolysis. ROS production by 
mitochondria plays multiple roles in signalling cascades (Sabharwal and Schumacker, 2014 as 
a review) and mediates apoptosis (Wu and Bratton, 2015) whereas excess ROS may cause 
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mutations in mitochondrial DNA, and damage or alter the expression of proteins required for 
critical mitochondrial and cellular functions. 

5.3. mROS damage to mitochondrial DNA 

Considering mitochondrial DNA (mtDNA), short- and long-term radiation-induced ROS/RNS 
could result in damage to mtDNA and/or nuclear DNA (nuDNA) coding for mitochondrial ETC 
subunits as well as the biochemical machinery necessary for their proper expression and 
assembly. Unlike nuclear DNA, mtDNA is not protected by histones; therefore, the 
proofreading capacity is limited and ROS that is generated in the matrix can attack it (Alexeyev 
et al., 2013). Accordingly, the rate of mitochondrial mutation is much greater than for nuclear 
DNA (Larssen et al., 2005). Among the potential mutations, which include insertions, point 
mutations and changes in mtDNA copy number, the ‘common deletion’ in the mitochondrial 
genome is one of the major events following ROS attack. This deletion involves the loss of 
4977 base pairs coding for genes that include subunits of the mitochondrial ATPase, NADH 
dehydrogenase complex I and cytochrome c oxidase (Prithivirajsingh et al, 2004). It has been 
proposed that the ‘common deletion’ leads to inefficient mitochondrial metabolism and thus 
increased ROS production (Biskup and Moore, 2006). 
 

Figure 40 schematizes the damages that can result to mitochondrial DNA mutations 
throughout different stages of the tumorigenic growth.  When ROS production is low, the 
mitochondrial biosynthetic capacity is intact and therefore there are no or very few mtDNA 
mutations. With a high ROS production, but when the mitochondrial biosynthetic capacity 
remains intact even with mtDNA mutations, tumorigenicity is increased.  Only once the 
mitochondrial biosynthetic capacities are impaired due to the high ROS production (too much) 
will the tumorigenicity decrease as cells will die. 
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Figure 40: Evolution of tumorigenicity as a function of mitochondrial DNA mutations (Sullivan et al., 
2014).  

5.4. Other damages induced by mROS 

Considering other mitochondrial functions, the inner mitochondrial membrane is located 
near the site of ROS production and is therefore prone to lipid peroxidation. Peroxidation of 
mitochondrial phospholipids can increase proton permeability of the inner mitochondrial 
membrane (Stewart and Heales, 2003), alter the fluidity and other biophysical properties of 
mitochondrial membranes and impair biochemical functions of various transporters and 
respiratory enzymes in the inner and outer membranes. In that sense, cardiolipin (CL), a 
phospholipid located at the level of the inner mitochondrial membrane, is known to be 
intimately involved in several mitochondrial bioenergetics processes as well as mitochondrial-
dependent steps in apoptosis and mitochondrial membrane stability and dynamics (Paradies 
et al., 2010). Oxidation of CL promotes the detachment of cytochrome c from mitochondria 
(Petrosillo et al., 2001) leading to the permeabilization of the outer mitochondrial membrane 
and the triggering of apoptosis (Ott et al., 2007). Moreover ROS may promote mitochondrial 
permeability transition by causing oxidation of thiol groups on the adenine nucleotide 
translocator, which is believed to form part of the mitochondrial permeability transition pore 
(Valko et al., 2007).  

6. Radical oxygen species and their implication in tumorigenesis 
It is a well-known fact that mitochondria, even in a normal cell, produce reactive oxygen 

species (mROS) as a natural byproduct of the ETC. These mROS will act as signaling molecules 
and can stimulate a cell towards a “pro-growth” response.  It is all a question of balance: mROS 
produced by the ETC will be counteracted by anti-oxidant enzymes.  However, if the cell is 
unable to maintain its redox homeostasis, it can lead to a tumor-like signaling and metabolic 
reprogramming.  Increased ROS production has long been observed to be a hallmark of many 
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tumors and cancer cell lines (Szatrowski and Nathan, 1991).  As previously mentioned, ROS 
can cause damage to proteins, lipids, and DNA, therefore it is believed that ROS, if not 
counteracted, can promote genomic instability in turn leading to tumors (Ames et al., 1993).  
As we can observe in Figure 40, tumor cells generate increased ROS capable of increasing 
tumorigenesis by activating signaling pathways regulating cellular proliferation, metabolic 
alterations, and angiogenesis: the cell is in a state of increased ROS which promotes 
tumorigenesis but the level of ROS is not high enough to be toxic to the cells.  Only once the 
ROS levels have surpassed a certain level will they become toxic to the cell and the cell will 
die.  However, it is hard to know where that threshold is and it is often cell type-dependent.  
Since ROS seems to play a crucial role in carcinogenesis, researchers have used this knowledge 
to develop therapeutic approaches to kill cancer cells, and these approaches will be described 
in the next paragraph. 
 

 
 

Figure 41: Representation of the ROS levels in three different cell states alongside with the main ROS 
generators and ROS scavengers (Sullivan et al., 2014) 

6.1. Targeting Radical Oxygen Species for therapy: a clinical approach 

Even though all the different mechanisms on how ROS promotes tumorigenesis are not fully 
understood, it was clearly demonstrated that ROS play an important role in the spread of 
cancer as mentioned previously.  Therefore, two therapeutic approaches were studied in 
which case both target ROS.  One involves the suppression of ROS production in order to 
inhibit cellular proliferation, and the second does the opposite by increasing ROS to overcome 
the “threshold” and selectively kill cancer cells.  On Figure 42, one of the approaches tries to 
bring back the cell to its cytostatic state, while the other aims at overcoming the threshold so 
that the ROS levels are cytotoxic.  Figure 42 schematizes these two approaches. 
 



Bibliography Review   Chapter IV. Radical Oxygen Species (ROS) in Cancer 

115 

 
 

Figure 42: Balance of ROS and anti-oxidants in normal and cancer cells.  In normal cells, this balance is 
modified depending on the stresses that the cell undergoes but will always remain in homeostasis.  In 
cancer cells, ROS levels are elevated but so are antioxidants.  Two therapeutic approaches are studied: 
one to restore cytostasis while the other induces oxidative cell death. (Sullivan et al., 2014)  
 

6.1.1. Suppressing ROS to inhibit proliferation 
 

Since it was observed that ROS stimulates proliferation, one approach was to inhibit ROS 
production.  The first case studies involved treatments of antioxidants such as antioxidant 
vitamins, including β-carotene and vitamin A or E, however results were contrary to what was 
expected: this supplementary treatment of antioxidants increased the risk of cancer (Omenn 
et al., 1996; Klein et al., 2011).  In addition, an in-vivo study on genetic mouse models of K-
Raf- or B-Raf-induced lung cancer, treatment with NAC or vitamin E enhanced tumor growth 
and accelerated mortality in a significant way (Sullivan and Chandel, 2014). It is therefore 
important to further study the therapeutic option of inhibiting ROS as some mechanisms are 
not yet well understood.  Explanations were formulated stating that such treatments lack 
specificity, however it is still vague.  It is also important to note that the immune system is an 
important modulator of cancer growth and has been shown to be sensitive to ROS levels (Sena 
et al., 2013).   
 

Another approach studied was the direct inhibition of ROS production.  However, 
decreasing mROS will automatically inhibit the ETC which is not a good option as it will lead to 
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toxicity through inhibition of mitochondrial respiration.  Again, surprising results were 
obtained, as patients taking the drug metformin, an inhibitor of complex I of the ETC, have a 
reduced risk of cancer incidence and mortality (Noto et al., 2012; El-Mir et al., 2000; Owen et 
al., 2000).  Another approach is to inhibit NADPH oxidases: loss of NOX 4 showed an activation 
of apoptosis in pancreatic cancer cells (Mochizuki et al., 2006).  Additional positive results 
were obtained using inhibitors of NADPH oxidase activity on mouse models of cancer in-vivo 
(Bhandarkar et al., 2009; Munson et al., 2012). 

 
6.1.2. Increasing ROS to selectively kill cancer cells  

 
Increasing ROS production in order to overcome the threshold and have a cytotoxic level 

of ROS has been proposed in different therapeutic approaches. Indeed, as seen in Chapter 3, 
the use of nanoparticles to radiosensitize cancer cells is expected to increase the ROS levels 
to a toxic level to provoke cell death.  This mechanism is also how many current 
chemotherapeutics function (Conklin; 2004). 
 

Another interesting approach used is the inhibition of antioxidants since cancer cells 
increase their expression in order to maintain homeostasis.  By inhibiting antioxidants, the 
cells will be exposed to their endogenously produced ROS which, without defense, can be 
toxic (Gorrini et al., 2013).  Another approach involves the use of chemical drugs such as 
dimethylfumarate (a glutathione depleting agent) and L-buthionine sulfoximine (a GSH 
biosynthesis inhibitor) so the cell is unable to “counter-act” with the submerging quantity of 
ROS produced.  It was observed that the transient alteration of the cellular redox buffering 
before irradiation triggered apoptosis in a head and neck squamous cell carcinoma model 
(Boivin et al., 2011). 
 

7. Effects of ionizing radiation on lysosomes and other cell organelles 
Most studies studying the effects of ionizing radiation focus on the damages done on the 

nucleus, and more specifically on DNA.  As these effects were already thoroughly discussed in 
Chapter 2, we will therefore focus on a quick overview of the other organelles that can also 
be damaged by ionizing radiation such as lysosomes, plasma membrane or the endoplasmic 
reticulum. 

7.1. Effects of ionizing radiation on lysosomes 

In attempts to explain the cytotoxic effects of radiation damage, HO· has been repeatedly 
invoked as an important intermediate, because HO· forms by radiolysis of water. However, it 
should be noted that even small amounts of H2O2 formed intra-lysosomally should induce 
substantial Fenton-type chemistry leading to lysosomal rupture with release of hydrolytic 
enzymes and redox-active iron (Persson et al., 2005). Released lysosomal redox-active iron 
may partly relocate to nuclear and mitochondrial DNA, causing site-specific HO· production in 
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the presence of oxidative stress (Tenopoulou et al., 2005). Such site-specific HO· induction 
would be much more powerful with respect to DNA damage than random formation of HO· 

due to radiolysis of water. 

7.2. Effects of ionizing radiation on other cell organelles 

IR has also recently been shown to induce endoplasmic reticulum (ER) stress thereby 
activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells, 
an activation that precedes caspase activation in irradiated IEC-6 cells. (Lee et al., 2014). ER 
stress has also been shown to trigger both apoptosis and autophagy, and act as an important 
mediator linking the two programmed cell death pathways (Moretti et al., 2007). 
 

Apart from the radiation-induced plasma membrane signaling involving the acid 
SMase/ceramide pathway (see Chapter V), the effects of IR on biological membranes include 
alterations in membrane proteins, peroxidation of unsaturated lipids accompanied by 
perturbations of the lipid bilayer polarity and fluidity (Berroud et al., 1996). Moreover, 
membrane lipid peroxidation results in increased membrane permeability to small molecules 
and ions (Stanimirovic et al., 1995). The inability of plasma membrane to maintain ionic 
homeostasis could therefore result in cell death. 
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CChapter V. Ionizing Radiation (IR)-induced cell death 
 
Several modes of cell killings, such as apoptosis, necrosis, autophagy, mitotic catastrophe, 

and senescence, occur after exposure to IR (see below). Among these, apoptosis and mitotic 
catastrophe are major forms of cell death induced by IR. 
 

 
Figure 43: Ionizing radiation (I.R.)-induced cell deaths (Kim B. et al., 2015) 

1. Apoptosis 
Apoptosis is a prevalent form of cell death underlying radiation therapy. Among a spectrum 

of cellular components, DNA is the main target of IR. Damaged DNA triggers signaling 
transduction pathways involved in cell cycle arrest and apoptosis. Radiation induces mostly 
the intrinsic apoptotic pathway (mitochondrial release of cytochrome c and subsequent 
apoptosome formation), but depending on the dose and cell type, the extrinsic apoptotic 
pathway (death receptor-mediated caspase activation) or the membrane stress pathway 
(ceramide production and subsequent second messenger signaling) might be the 
consequence of irradiation (Takasawa et al., 2005). 
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Figure 44: Different signaling pathways activated following radiation-induced apoptosis (Bill McBride, 
Dept Radiation Oncology, David Geffen School Medicine, UCLA). 

1.1. The intrinsic apoptotic pathway 

The intrinsic apoptotic pathway is initiated by signaling following SSBs and DSBs if DNA 
repair is not successful (Gudkov and Komarova, 2003). The control and regulation of apoptotic 
mitochondrial events occur through members of the Bcl-2 protein family (Cory and Adams, 
2002), which govern the mitochondrial membrane permeability and can be either pro-
apoptotic or anti-apoptotic. Following p53 activation in response to IR, an overexpression of 
PUMA, Bax and NOXA occurs (Kuribayashi et al., 2011). After its translocation to the 
mitochondria, PUMA disrupts a complex by p53 and the anti-apoptotic protein  Bcl-Xl. 
Liberated p53 dissolves the complex of the anti-apoptotic Bcl-2 and the pro-apoptotic Bax. 
Released Bax then triggers cell death by the permeabilization of the outer mitochondrial 
membrane and the subsequent release of cytochrome c (Dejean et al., 2006). In addition, IR 
enhances the production of mitochondrial ROS which in turn also triggers cytochrome c 
release (Ogura et al., 2009). The release of cytochrome c into the cytosol leads to the 
formation of the cytochrome c/APAF1/caspase-9 containing apoptosome complex (Cain et al., 
2000). The initiator caspase-9 then activates the effector caspases-3 and -7, thus inducing the 
post-mitochondrial-mediated caspase cascade (Cain et al., 1999) which results in the 
activation of cytoplasmic endonuclease and further degradation of nuclear material. 

1.2. The extrinsic apoptotic pathway 

Radiation-induced apoptosis is also executed through the extrinsic apoptotic pathway : the 
activation of p53 by radiation causes downstream transactivation of the receptor CD95, DR5 
and the CD95 ligand (Sheard, 2001). The complex formation between death receptors and 
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their cognate death ligands results in receptor trimerization and clustering of death domain 
receptors. Furthermore, recruitment of an adaptor protein like as Fas-associated death 
domain (FADD) mediated by Death Domain (DD) leads to the formation of the death inducing 
signaling complex (DISC) by the interaction between pro-caspase 8 and FADD. The resulting 
complex activates caspase-8 as a caspase initiator which in turn triggers executioner caspases 
3 and 7 which results in cell death (Fulda and Debatin, 2006). 

1.3. The membrane stress apoptotic pathway 

DNA damage-independent apoptotic processes do not require p53. Radiation-induced 
plasma membrane damage  results in the activation of sphingomyelinase (Kolesnick, 2002), 
followed by the  release of ceramide, which acts as the second messenger. Once released, 
ceramide exhibits diverse effects on signalling complexes including the:  
- activation of stress-activated protein kinases (SAPKs) such as JNK and p38 (Ruvolo, 2003), 
- activation of the kinase suppressor of Ras (KSR-1) pathway resulting in the up-regulation of 
the downstream MAPK pathway (Zhang et al., 1997),  
- binding to cathepsin D  
- recruitment and activation of protein phosphatases (Pettus et al., 2002)  
- … 

2. Mitotic catastrophe 
Along with apoptosis, mitotic catastrophe accounts for the majority of IR-induced cancer 

cell death. Mitotic catastrophe or mitotic cell death results from the premature induction of 
mitosis before completion of the S and G2 phases (Castedo et al., 2004). Aberrant mitosis 
produces an atypical chromosome segregation and cell division causing the formation of giant 
cells with aberrant nuclear morphology, multiple nuclei, or several micronuclei (Eriksson et 
al., 2007). Interestingly, mitotic catastrophe can be enhanced by a p53 deficiency and a 
weakened G2/M checkpoint (Ianzini et al., 2006). The induction of mitotic catastrophe 
induced by IR is associated with the increased expression of cyclin B1 and the kinase activity 
of Cdc2 (Ianzini et al., 1997).  
 

As a conclusion, it has been suggested that IR-induced cellular damage may induce the 
premature entry of cells into mitosis and that mitotic cell death may be a key contributor to 
the loss of clonogenic potential in tumor cells and solid tumors exposed to IR, especially those 
with a p53 deficiency. 

3. Necrosis and necroptosis  
Necrosis has historically been regarded as an uncontrolled, i.e., not genetically regulated, 

form of cell death. Necrosis is much less common after IR treatment but does occur. The 
decision as to whether they will undergo apoptosis or necrosis after IR exposure seems to be 
dose-dependent in some cancer cell types, as shown by Rainaldi and co-workers (2003). More 
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recently, a programmed/genetically regulated type of necrosis, necroptosis, was identified : 
this program is caspase-independent and controlled by the receptor-interacting protein 1 and 
3 (RIP1/3) kinases (Cho et al., 2009). Although little is known about this type of death, recent 
studies indicate necroptosis to be a novel mechanism of IR-induced death of some endocrine 
cancer cell types, such  as thyroid and adrenocortical carcinoma cells (Neh et al., 2011). 

4. Senescence  
Senescent cells are viable but non-dividing and undergo irreversible cell cycle arrest and 

stop DNA synthesis. Cellular senescence is a process that results from multiple mechanisms, 
including telomere shortening, tumor suppressor signals such as p53 and p16INK4A/pRb, and 
DNA damage. Although p53-independent mechanisms have also been described in IR-induced 
senescence (Chen et al., 2010), a genetically regulated response to IR-induced DNA damage is 
usually seen in solid tumor-derived cell lines, especially those with wild-type p53 (Mirzayans 
et al., 2005). Indeed, the IR-induced retardation of tumor growth is largely attributable to the 
induction of senescence, not apoptosis, in some lung cancer cell types (Luo et al., 2013). 

5. Autophagy 
Autophagy induced by radiation is critical to the cell fate’s decision, particularly in solid 

tumors (Jaboin et al., 2007). Autophagy induced by radiation play bi-directional effects in the 
cell fate’s decision whether cells survive or die depending on the severity and duration of this 
phenomenon (Dalby et al., 2010). Besides, dual activity of autophagy on tumor cell fate in-
vitro (Mo et al., 2014 ; Wu et al., 2014), as well as recently in-vivo studies, also demonstrated 
that irradiation-induced autophagy exerts a crucial activity on tumor clearance by the immune 
system (Huang et al., 2014). 
 

 

Figure 45: In-vitro and in-vivo observations following autophagy induced by radiation. 
 

As  radiation can directly or indirectly damage DNA which can activate the repair signaling 
pathway, a large number of proteins participating in the DNA damage repair signaling pathway 
such as p53 (Fei et al., 2003), ATM, PARP1 (Rodriguez-Vargas et al., 2012) , FOXO3a, mTOR 
(Kim et al., 2011) and SIRT1 (Lapierre et al., 2015) are involved in the regulation of autophagy.  
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However, emerging recent evidence suggests that ionizing radiation can also cause injury 
to extranuclear targets such as the plasma membrane, mitochondria and endoplasmic 
reticulum (ER) and induce the accumulation of ceramide, ROS, and Ca2+ concentration which 
can in turn activate many signaling pathways modulating autophagy. Ceramide can induce ER 
stress (Jiang et al., 2014) and mitochondrial dysfunction (Sentelle et al., 2012) , which are two 
important autophagic triggers. ROS is an essential activator of cytoplasmic signaling cascades 
such as p38, JNK, HIF-1α which activate autophagy-related signaling pathways (Liu et al., 
2014). ROS can also cause injury to mitochondria and ER which elevate the levels of ROS and 
Ca2+ concentration and decrease ATP (Zhang et al., 2013). Changes to these molecules are 
important to induce autophagy. Moreover, ROS production activates ER membrane sensors 
of ER stress which in turn triggers autophagy. All these radiation-induced autophagic triggers 
are illustrated below. 
 

 
Figure 46: Radiation-induced autophagic triggers (Hu et al., 2016). 
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1. Cell culture and treatments 

1.1. Cell Culture  

SQ20B J.L. cell line was used as the in vitro model in this study. This cell line was derived 
from a human larynx radioresistant carcinoma obtained from the John Little Laboratory 
(Harvard School of Public Health, Boston, USA).  SQ20B J.L. cells were previously characterized 
with a 2Gy survival fraction of 72%.  

 
The cells were cultured in Dulbecco’s Modified Eagle’s Medium-Glutamax (DMEM-

Glutamax) containing 4.5 g/L of glucose (ThermoFisher ref 10566016), supplemented by 10% 
of fetal calf serum (FCS) (PAA ref A15-151), 0.04 mg/l of hydrocortisone (Sigma ref H0396), 
100 U/ml of penicillin and 0.1 g/L of streptomycin (PAA ref P11-010). The cells were kept in an 
incubator at a constant temperature of 37°C and 5% CO2. 

1.2. AGuIX® (Activation and Guidance of Irradiation by X-ray) nanoparticles 

AGuIX® nanoparticles were provided by a collaborative research group, the laboratory of 
O. Tillement (FENNEC Team director, part of the Institut Lumière Matière laboratory, 
University Claude Bernard Lyon 1).  
 

These nanoparticles are made of a polysiloxane core grafted to 7-10 Gd-DOTA species via 
amide functions in the periphery. Their molecular mass is about 8.5 +/- 1 kDa with a 
hydrodynamic diameter of 3.0+/- 0.1nm. A detailed description of these nanoparticles was 
previously reported by Sancey et al (2014).  Figure 47 shows a schematic representation of 
AGuIX® nanoparticles along with their main characteristics. 
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Figure 47: Characterization of AGuIX® nanoparticles. a. Schematic representation of AGuIX®. b. 
Hydrodynamic diameter and c. Zeta potential, measured by DLS d. Physical properties of AGuIX®. (Kotb 
et al., 2016) 

1.3. AGuIX® treatment of SQ20B cells 

Preparation of the AGuIX® solution 
 

AGuIX® were received lyophilized for a better conservation.  The day of the treatment, 
AGuIX® are resuspended in sterile dH2O for a minimum of one hour. AGuIX® were then diluted 
to the appropriate concentration in DMEM alone. Once resuspended, the nanoparticles are 
kept for a maximum of 24 hours for stability purposes. 
 
SQ20B treatment 
  

SQ20B J.L. cells were seeded at a density of 40 000 cells/cm2 16 hours prior to AGuIX® 
treatment. Before treatment, cells were washed with Phosphate-Buffered Saline (PBS), and 
then incubated with 0.8mM Gd for 24 hours in DMEM-Glutamax alone (without FCS). After 
the 24 hours of incubation with AGuIX®, the nanoparticles were removed, the cells were 
washed twice with PBS and full SQ20B J.L. culture media was added to the flasks before 
irradiation. 

1.4. DMF/BSO treatment 

After the 24h AGuIX® treatment, the cells were rinsed twice with PBS. The cells were then 
incubated for four hours prior to irradiation with dimethylfumarate (DMF 250 mM solubilized 
in DMSO), a GSH-depleting agent, and L-buthionine sulfoximine (BSO 100 mM solubilized in 
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PBS) an inhibitor of GSH biosynthesis, at working concentrations of 100μM each. Controls 
without DMF/BSO were done in parallel to directly compare both conditions. 

1.5. Photon Irradiation 

Monolayers of cultured cells were irradiated using an X-Rad 320 irradiator (Precision X-ray 
Inc., North Branford, CT) located at the Lyon-Sud Medical School, with an energy of 250 kV 
and an intensity of 15 mA delivered at a dose rate of 2Gy/min. The distance between the beam 
and the cells was kept constant at 50 cm.  Figure 48 is a photo taken of the interior of the X-
Rad 320 irradiator and the screen for the control panel. 
*Note: the cells were never irradiated in the presence of AGuIX®.  After the 24 hours treatment, 
the “non-internalized” nanoparticles were washed off, and the cells were irradiated solely with 
the nanoparticles inside the cells or the ones that had adhered to the cells’ membrane. 
 

 
Figure 48: Photo of the interior of the X-ray irradiator (Laboratory of Cellular and Molecular 
Radiobiology, Lyon-Sud Medical School, Lyon, France). 

2. Characterization of the radiosensitization effect of SQ20B J.L. cells by 
AGuIX® 

2.1. Determining the AGuIX® concentration and ideal medium for a radiosensitizing 
effect 

This next section will describe the protocol used for determining the radiosensitizing 
conditions of SQ20B JL cells with AGuIX® nanoparticles. The radiosensitizing effect of AGuIX® 
was determined and validated by the clonogenic survival curve assay. 
 

SQ20B J.L. cells were plated in 25 cm2 flasks at a density of one million 16 hours prior to 
AGuIX® treatment. The cells were then treated as previously detailed in paragraph 1.3. After 
AGuIX® treatment (0 or 0,8mM Gd), cells were washed twice with PBS, placed in fresh SQ20B 
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J.L. medium, and irradiated at varying doses from 0 to 10 Gy. The cells were then trypsinized 
and reseeded in 25 cm2 flasks at different cell densities (see table below) depending on the 
treatment received. For each treatment conditions, two cell concentrations were seeded in 
triplicates for a total of 6 X 25cm2 flasks per condition (see Table 13 for seeding 
concentrations). Cell survival was assessed by the standard colony formation assay as 
described by Beuve et al., 2008. 
 

Dose (Gy) 0mM Gd 0,8mM Gd 
0 150/300 150/300 
1 150/300 150/300 
2 200/400 200/400 
3 300/600 300/600 
4 400/800 400/800 
5 500/1000 500/1000 
6 800/1600 800/1600 
8 1000/2000 1000/2000 

10 2500/5000 2500/5000 
 
Table 13: Seeding concentrations of SQ20B J.L. cells for the clonogenic cell survival assay depending 
on the treatment conditions. 
 

Once the cells were re-seeded in fresh SQ20B J.L. cell medium, they were placed in the 
37°C-5% CO2 incubator until the control (0mM Gd-0Gy) had undergone six cellular divisions 
(which corresponds to a clone of 64 cells). A cell that was able to divide six times is considered 
a viable cell. The cells were fixed for thirty minutes using a 96% ethanol solution and then 
colored using Giemsa for another thirty minutes. The Giemsa was diluted in distilled water at 
a fraction of 1/20th. The clones of 64 cells or bigger were then counted using the colony 
counter COLCOUNTTM (Oxford Optronix), and the survival was calculated using the following 
formula: 
 

Survival = number of colonies/ (PE * number of seeded cells) 
where PE is the plating efficiency measured at 0 Gy (number of colonies/number of 

seeded cells) 
 
The survival curves are then established using the linear quadratic equation S= exp(-αD-βD2), 
where:  

- S = survival,  
- D = the dose,  
- α= tangent at the origin of the curve describing the immediate lethal lesions  
- β = tangent of the curve after the “shoulder” describing sub-lethal lesions 
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The ratio α/β therefore measures the repair capacities of the cell and therefore characterizes 
a cell or tissue type.  
 

2.1.1. Survival Fraction at 4Gy (SF4Gy) 

In order to isolate the radiosensitizing concentration of AGuIX®, concentrations varying 
from 0 to 3 mM Gd along with three different culture media were tested: HBSS, PBS Ca2+/Mg2+, 
and serum-free DMEM-Glutamax. In order to screen these different conditions, the survival 
fraction at 4Gy (SF4Gy) was evaluated. Each time the following technique was used: 
 

Cells were plated at a density of 1 million in 25 cm2 flasks. Once plated, the cells were 
treated with AGuIX® concentration varying from 0-3 mM Gd for one hour. The AGuIX® solution 
was then removed and the cells were washed twice with PBS and placed back in their culture 
medium. The cells were irradiated at 4Gy, then trypsinized and re-seeded in 25cm2 flasks at 
the following clonal densities: 150 and 300 cells for the control (0Gy) and 400 and 800 cells 
for the cells that had received a 4Gy irradiation. The cells were then put back in the incubator 
and left between 8-12 days, until the untreated and non-irradiated cells had clones of at least 
64 cells (6 divisions). Once clones had reached the 64 cells, cells were washed twice with PBS, 
fixed, stained, and counted as previously described.  
 

Once the radiosensitizing AGuIX® concentration was determined, different incubation 
times were tested: 1h, 4h, 12h, and 24h in order to optimize the radiosensitizing effect. The 
same SF4Gy protocol was used. 
  

2.1.2. Determining the quantity of gadolinium internalized by Inductively Coupled 
Plasma-Atomic Emission Spectrometry (ICP-AES) 

 
Cells were plated at a density of 7 million in 175 cm2 flasks and incubated with different 

AGuIX® concentrations. After treatment, the cells were rinsed twice with PBS and trypsinized, 
centrifuged at 300 x g for 5 minutes at room temperature (RT), and rinsed twice with PBS. The 
samples were then kept as dry pellets at 4°C until further treatment. 
The samples were transferred in 50 mL falcon tubes and 2 mL of ultrapure water was added. 
For the next step (the mineralization step), the samples were transferred to a new 50 mL 
falcon tube followed by the addition of 4-5 mL of aqua regia (composed of a mix of nitric acid 
and hydrochloric acid, optimally at a molar ratio of 1:3). The samples were kept at 80°C for 
three hours. Ten mL was then filtered through a 0.2 μm filter and analyzed with a Varian 710-
ES (ILM- Fennec Team). 
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2.1.3. Toxicity studies 
 
2.1.3.1. Trypan blue toxicity assay 

 
In order to verify cellular toxicity of AGuIX® treatment in SQ20B JL cells, trypan blue toxicity 

assay was performed. Trypan blue is used as a viability test as cells that uptake trypan blue 
are considered non-viable. 
  

SQ20B J.L. cells were plated in six-well plates at a density of 400 000 cells per well and 
treated with AGuIX® for either one or twenty-four hours in serum-free DMEM-Glutamax. After 
treatment, cells were rinsed twice with PBS and put back in their culture medium. For the 
times over 24h, the cells were trypsinized and re-plated as to not exceed an 80% confluency. 
 

At t = 24h, 48h, 72h, 120h and up to 7 days, the cells were trypsinized; 10 μL of trypan blue 
solution was added to 10 μL of the cell suspension and the cell viability was measured using 
the Countess automated cell counter (Invitrogen) that allow to quantify the number of total 
cells, live cells, dead cells, and percent viability. 
  

2.1.3.2. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
toxicity assay 

 
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is a 

colorometric assay used to measure the cellular metabolic activity. NAD(P)H-dependent 
cellular oxidoreductase enzyme activities reflect the number of viable cells: the enzymes are 
capable of reducing the tetrazolium dye MTT to its insoluble formazon: we will then observe 
a purple color which is more or less dark depending on the number of viable cells. 
 

SQ20B JL cells were plated in six-well plates at a density of 400 000 cells per well and 
treated with AGuIX® for either one or twenty-four hours in serum-free DMEM-Glutamax. After 
treatment, cells were rinsed twice with PBS, trypsinized and re-plated in 96-well plates.  
 

At t = 24h, 48h, 72h, 120h and up to 7 days, 200 μL of a solution at 0.5 g/ml of MTT (Sigma, 
M-5655) was added to each well. The plate was incubated for two hours at 37°C and 5% CO2. 
The wells were then rinsed twice with PBS and 100 μL of DMSO were added to each well and 
left for thirty minutes under agitation (during which the DMSO will dilute the crystallized 
MTT). At the end, the plate was read at an absorbance of 560 nm using the SpectraMax M2 
spectrophotometer (Molecular Devices). 
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2.1.4. Proliferation assay: confluency percentage measurements by Incucyte 
 
SQ20B J.L. cells were plated in 25 cm2 flasks and received corresponding treatments. After 

either a 0 or 10 Gy irradiation, cells were trypsinized and re-seeded in a 96-well plate at a 
density of 5 000 cells per well. Pictures were taken in phase contrast by the Incucyte (Essen 
Biosciences) every two hours for 7 days.  Photographs of the IncuCyte where the plates are 
put is shown in Figure 49. 
 

 
 

Figure 49: Interior of the IncuCyte apparatus. 

2.2. Cellular localization of AGuIX® in SQ20B JL cells 

2.2.1. Confocal microscopy 
 
Cells were plated in two-chambers LabTek®II Chambered #1.5 German Coverglass System 

(Dutscher) and AGuIX® covalently linked to Cya5.5 (as a fluorescent marker) were used. 
 

For co-localization studies with the nucleus, the cells were fixed in 4% PFA for 20 minutes, 
rinsed three times with PBS for 5 minutes and then exposed to DAPI (1μM) (4’,6’-diamidino-
2-phenylindole) for 15 minutes. After staining the nucleus, the cells were rinsed three times 
with PBS for 5 minutes and then kept in 1 mL of PBS for observation under the confocal 
spinning disk microscope of the μLife Platform (see Figure 50) (CEA-Grenoble). 
 

For the co-localization studies with the mitochondria or lysosomes, live-cell imaging was 
performed. SQ20B J.L. cells were incubated with either 200 nM Mitotracker-Green 
(Invitrogen) for 45 min or 75 nM Lysotracker-green (Invitrogen) for 45 minutes in culture 
medium prior to AGuIX®-Cya5.5 treatment. The probes were then washed out and the cells 



Materials and Methods 

134 

rinsed twice with PBS before treatment with AGuIX®-Cya5.5. After 24 hours of incubation, the 
AGuIX®-Cya5.5 were washed out of the cells, and the cells were observed using the confocal 
spinning disk of the μLife Platform (CEA-Grenoble).  
 

AGuIX®-Cya5.5 were excited with a laser at 642 nm, while Lysotracker and Mitotracker-
Green were excited at 491 nm. Images were taken in 60X oil objective on a z-width of 15 μm 
with step-sizes of 0,5 μm. 
 

 
Figure 50: Confocal spinning-disk microscope (μLife Platform, CEA-Grenoble, Grenoble, France). 
 
A kinetic study was also done in order to observe the internalization of AGuIX® in time: 1h – 
2h – 4h – 6h. 

3.  Study of cell death after AGuIX® treatment + irradiation 

3.1. Study of apoptosis and necrosis 

The CaspACETM FITC-VAD-FMK in situ Marker (Promega) was used to quantify total caspase 
activity by flow cytometry. The cells were trypsinized and incubated with 5 μM CaspACETM 
FITC-VAD-FMK for 20 minutes at room temperature. The cells are then washed twice with PBS 
and resuspended in PBS for flow cytometry analysis with an excitation at 488 nm and emission 
at 530 nm (LSRII, BD, Biosciences- Lyon Sud Medical School, see Figure 51 showing a photo of 
the LSRII used throughout the thesis).  Figure 52 represents the graphs obtained using the 
DIVA software.  After a 10Gy irradiation, the peak expands and slightly shifts to the right 
representing an increase in the number of cells positively stained by the marker. 
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Figure 51: LSR II BD Biosciences and the computer for acquisition. (Lyon-Sud Medical School, Lyon, 
France). 

 
Figure 52: Representative graphs of total caspase analysis in flow cytometry (LSRII). a. 0mM Gd 0Gy; 
b. 0,8mM Gd 10Gy. 
 

Apoptosis and necrosis were studied using the Annexin V/P.I. assay (Alexa Fluor 488 
Annexin V/Dead, Ref V13241, Life Technologies SAS). The cells were trypsinized and marked 
for 15 minutes with 1 μL of annexin and 1 μL of P.I. per tube in 200 μL of 1X buffer provided 
in the kit, as instructed by the manufacturer. The cells were then centrifuged and washed once 
with PBS. The cells were re-suspended in 500 μL of PBS and analyzed using the FACSCalibur 
(Becton Dickinson). The excitation/emission wavelength was 488/530 for Annexin FITC and 
585/45 for propidium iodide (CEA-Grenoble). 
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Figure 53: Representative graphs of Annexin/P.I. in flow cytometry (FACSCalibur). a. 0mM Gd 0Gy; b. 
0,8mM Gd 10Gy. (CEA-Grenoble, Grenoble, France) 

3.2. Study of the cell cycle kinetics 

Samples were collected at 24, 48, 72, 192, and 240 hours after a 10Gy irradiation. *Note: 
Two things are important to note.  First, the supernatant must be kept (the trypsin will be 
stopped using this supernatant) and after trypsination, the cells must be kept on ice at all 
times. After trypsination, the cells were centrifuged for 10 minutes at 300 x g at 4°C and rinsed 
twice with cold PBS. The cells were then re-suspended in 250 μL of PBS and 2 mL of 70% 
ethanol per tube was added in order to fix the cells. The cells must remain in the 70% ethanol 
for at least 24h prior to the proceeding of the protocol. 
 

For cell cycle analysis by flow cytometry by flow cytometry, the cells were centrifuged for 
five minutes at 300 x g and 4°C, rinsed twice with cold PBS and then marked with 500 μL of a 
DAPI (4’,6’-diamidino-2-phenylindole) solution with a final concentration of 1 μg/mL in PBS. 
The samples were then analyzed by flow cytometry at an excitation wavelength of 355 nm 
and an emission of 450 nm (FACScan, BD LSRII flow cytometer, BD Biosciences). The different 
phases of the cell cycle (sub-G1, G0/G1, S, G2/M, and 4n) can be studied and quantified as is 
shown in Figure 54. 
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Figure 54: Schematic representation of a cell cycle in flow cytometry (LSRII BD Biosciences- Lyon-Sud 
Medical School Lyon, France).  The different cell cycle phases are represented by P3: sub-G1, P4: GO-
G1, P5: S, P6: G2/M, and P7: 4n. a. 0mM Gd 0Gy, b. 0mM Gd 10Gy. 

3.3. Study of other cellular death pathways via Western Blot 

Senescence and autophagy were explored via Western Blot using the p16 and p21 
antibodies for senescence and LC3B for autophagy. 
 

3.3.1. Sample preparation for Western Blot 
 

At t = 24, 48, 72, 120, 192, and 240 hours after a 10Gy irradiation, the cells were trypsinized, 
centrifuged for 5 minutes at 300 x g at 4°C and rinsed twice with PBS. The samples were then 
stored at -80°C as dry pellets. Once all samples were collected, we proceeded with protein 
extraction: the cells were lysed with 100-500 μL of lysis buffer (150 mM NaCl, 50 mM Tris-HCl 
pH 8.0, 1% Triton X-100) containing anti-proteases and anti-phosphatases (Roche) for 30 
minutes at 4°C. The lysates were then centrifuged at 15 000 x g for 20 minutes at 4°C. The 
supernatants were then transferred to a new labelled Eppendorf tube while the pellet was 
thrown away (the pellet contains the cells’ debris). 
 

The protein concentration of each sample was measured using the Bicinchonic Acid (BCA) 
assay. A standard curve was done with bovine serum albumin, with concentrations varying 
from 0-80 mg/L. The standard and the samples were incubated with SDS 0.05% and BCA-CuSO4 
0.01% for 30 minutes at 37°C and the absorbance was measured at a wavelength of 562 nm. 
 

3.3.2. Polyacrylamide Gel Electrophoresis (SDS-PAGE) and transfer on a nitrocellulose 
membrane 

 
Depending on the studied protein, 20 μg or 40 μg was diluted to the 4th in a denaturing 

buffer (Laemmli buffer: 125 mM Tris-HCl pH 6.8, 20% glycerol, 2% SDS, 5% β-mercaptoethanol, 
0.05% bromophenol blue) and denatured for 5 minutes at 95°C. The samples were then 
deposited on the polyacrylamide gel. 
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 Gel preparation 
 

12% polyacrylamide gels were casted using the Bio-Rad’s TGX Stain-FreeTM Fast CastTM 
Acrylamide kit 12% (BioRad Catalog number 161-0185). These gels include unique trihalo 
compounds that allow rapid fluorescent detection of proteins without staining (known as 
Stain-FreeTM Technology). The protocol for the gel preparation is shown in Figure 55.  Fully 
prepared casted gels were also used. 
 
 

1) Resolver solution preparation 

 
2) Stacker solution preparation 

 

 
3) Insertion of comb and polymerization 

 
Figure 55: Schematic representation of the three different steps for the preparation of the gel for 
Western-Blot. 
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 Gel migration 
 

The protein samples previously prepared were deposited onto the polyacrylamide gel. A 
protein molecular weight standard (AmershamTM ECLTM RainbowTM Marker-Full Range, GE 
Lifesciences Ref RPN800E) was deposited in the first lane. The migration was performed at 
100 V for 15 minutes and then increased to 120 V for about 90 minutes in a Mini-PROTEAN® 
Tetra Cell (Bio-Rad) tank. The migration buffer used was Tris-Glycine Buffer 10X (Sigma T4904) 
diluted to 1X and 1% SDS (TGS-Glycine Buffer 1X-1% SDS).  
 

After migration, the gel was removed from its cast and placed in the BioRad system in order 
to activate total proteins (by activating all tryptophans) for later normalization during analysis. 
The trihalo compounds (mentioned earlier) react with tryptophan residues in a UV-Induced 
reaction to produce a fluorescence, which can be detected by the imager within gels.  
 

Next, a semi-dry transfer was performed with the Trans-Blot Turbo Transfer System (Bio-
Rad) and consumables that are ready-to-use: paper filters and a nitrocellulose membrane 
already incubated in transfer buffer. The transfer program with the following parameters was 
used: 

- For MiniGel: 1,3A- 25V-7 minutes 
- For 2 MiniGels or 1 MidiGel: 2.5A-25V-7 minutes 

 
The protocol then slightly varied depending on the protein of interest and will therefore be 

described separately. 
 
Protein of interest: p16 
 

After transfer, the nitrocellulose membrane was rinsed for 5 minutes in PBS (Phosphate 
Buffer Saline) and incubated for one-hour with the blocking solution (PBS-Tween 0.5%-5% 
milk). The membrane was then rinsed three times with the solution PBS-Tween 0.5% for 5 
minutes. Next, the primary antibody was incubated (1/2 000 dilution) in PBS-Tween 0.5%-Milk 
1% for one hour at room temperature (RT) under gentle agitation. Then, the membrane was 
rinsed three times with PBS-Tween 0.5% for 5 minutes and the secondary antibody, goat 
antibody anti-mouse HRP (1/10 000) was incubated for one hour under gentle agitation at RT. 
The secondary antibody was removed and the membrane rinsed three times with PBS-Tween 
0.5% for 5 minutes followed by 2 washes with PBS alone. Finally, the membrane was exposed 
for about 30 seconds to the revelator solution ClarityTM Western ECL Substrate (Sigma, 
Cat#170-5061). The protein was revealed using the BioRad ChemiDoc XRS system (Molecular 
Imager) and normalized with GAPDH. 
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Protein of interest: p21 
 

After transfer, the nitrocellulose membrane was rinsed for 5 minutes in TBS (Tris-Buffered 
saline, Sigma T5912) and incubated for one-hour with the blocking solution (TBS-Tween 0.5%-
5% milk). The membrane was then rinsed with the solution TBS-Tween 0.5% for 5 minutes 
three times and incubated with the primary antibody (1/500 dilution) in TBS-Tween 0.5%-Milk 
5% overnight at 4°C. The following morning, the membrane was rinsed three times with TBS-
Tween 0.5% for 5 minutes and incubated with the secondary antibody, the goat antibody anti-
mouse HRP (1/10 000) for one hour under gentle agitation at RT. The secondary antibody was 
removed and the membrane was rinsed three times with TBS-Tween 0.5% for 5 minutes 
followed by 2 washes with TBS alone. The membrane was then exposed for 5 minutes to the 
revelator solution ClarityTM Western ECL Substrate (Sigma, Cat#170-5061) and the protein was 
revealed using the BioRad ChemiDoc XRS system (Molecular Imager). 
 
Protein of interest: LC3B 
 

After transfer, the nitrocellulose membrane was rinsed for 5 minutes in TBS and then 
incubated for one-hour with the blocking solution (TBS-5% milk-1% BSA). The membrane was 
then rinsed with the solution TBS-Tween 0.1% for 10 minutes three times. Next, the primary 
antibody is incubated (1/2 000 dilution) in the blocking buffer overnight at 4°C. The membrane 
was then rinsed in water once and then three times with TBS-Tween 0.1% for 10 minutes 
followed by the incubation with the secondary antibody, rabbit IgG HRP-conjugated (1/20 
000) in blocking buffer for one hour under gentle agitation at RT. The secondary antibody was 
removed and the membrane is washed three times with PBS-Tween 0.1% for 10 minutes 
followed by 2 washes with TBS alone. The membrane was then exposed for 5 minutes and the 
protein revealed as described above. 
 

Protein 
of 
interest 

Supplier/Reference Production 
host 

Protein 
Quantity 

SDS-
Page Gel 

Blocking 
solution 

Dilution 

p16 
(16 kDa) 

BD 
Biosciences/550834 Mouse 40 μg 16% 

PBS-
0,5%Tween20-

5% Milk 
1/2000 

p21 
(21 kDa) Sigma/P1484 Mouse 40 μg 12% 

TBS-
0,5%Tween20-

5% Milk 
1/500 

LC3B 
(17 kDa) 

BioTechne/NB100-
2220 Rabbit 20 μg Gradient 

TBS-
0,5%Tween20-

1% BSA- 5% 
Milk 

1/2000 

Table 14: List of proteins of interest studied by Western Blot analysis with references and protocol 
details. 
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3.3.3. Revelation and analysis 
 

Following an exposition of 5 minutes to the revelator solution ClarityTM Western ECL 
Substrate, the BioRad Imager system was used for the imaging of the gels. Depending on the 
antibody tested, images were taken every minute for approximately one hour. The images 
were then analyzed using the ImageLab Software.  Figure 56 shows the AmershamTM ECLTM 
RainbowTM Marker full range ladder which is used to determine the molecular weights of the 
bands that appear on the membrane.  On the left is the apparatus used for revelation. 

 

   
 

Figure 56: AmershamTM ECLTM RainbowTM Marker-Full Range, GE Lifesciences Ref RPN800E (left);  
BIO-RAD ChemiDOcTM XRS (right) (INAC/SyMMES/CIBEST, CEA-Grenoble, Grenoble, France). 

4. Kinetic study of cellular and mitochondrial radical oxygen species (ROS) 
production induced by AGuIX® + IR 

4.1. Cytoplasmic reactive oxygen species assay 

CM-H2DCFDA (Thermo Fischer, C6827), a general oxidative stress indicator, was used to 
detect cellular ROS production in SQ20B JL cells 0h-120h after a 10 Gy irradiation. After AGuIX® 
treatment, cells were rinsed twice with HBSS after which, for the times t = 0 min, 15 min, 30 
min, 1h, 4h, and 24h, the cells were incubated for 10 minutes with a 2.5μM CM-H2DCFDA 
solution prior to the 10Gy irradiation. For the T= 48h, 72h, and 120h, the cells were trypsinized, 
reseeded, and incubated with the same conditions before the collection of cells. At the 
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corresponding times, the cells were rinsed twice with PBS, trypsinized, and the trypsin was 
inhibited using the recovered culture medium. The cells were centrifuged twice and then re-
suspended in PBS for flow cytometry analysis using the blue laser with an excitation at 488nm 
and a maximum emission at 525 nm (LSRII, BD Biosciences, Lyon-Sud Medical School). 

4.2. Mitochondrial reactive oxygen species assay 

MitoSOXTM red assay (Thermo Fischer, M36008), a specific mitochondrial superoxide 
indicator, was used to detect mitochondrial ROS more specifically. MitoSOXTM was used at a 
concentration of 5 μM in HBSS for 10 minutes. The same protocol was used as described for 
the CM-H2DCDA assay. Fluorescence intensity was measured by flow cytometry at an 
excitation wavelength of 488 nm and emission wavelength of 575 nm (LSRII, BD Biosciences, 
Lyon-Sud Medical School). 

5. Study of nuclear damages induced by AGuIX® + IR 

5.1. Detection of single-stranded breaks: Comet assay +/- FPG 

Cells were plated in six-well plates at a density of 400 000 cells per well in triplicate and 
irradiated at either 4 or 10Gy. Four times were analyzed after irradiation: immediately after 
(0 min), 30 min, 2 h, and 24 h post-irradiation. For each treatment conditions, 3 slides without 
FormamidoPyrimidine [fapy]-DNA Glycosylase (FPG) and 3 slides with FPG were prepared and 
an internal positive control (+H2O2) was included. 
 

5.1.1. Slide preparations 
 

The slides should be prepared at least one day in advance. 100 mL of normal agarose at 1% 
(1 g of agarose in 100 mL of PBS without Ca2+ nor Mg2+) was prepared by melting the agarose 
on a heat block under gentle agitation. Each slide was dipped in the agarose and then left to 
dry overnight. 
 

5.1.2. Collection of the cells 
 

The cells were trypsinized as typical protocol. The cells were then centrifuged at 300 x g for 
5 minutes at 4°C and then re-suspended in freezing buffer at a concentration of 200 000 cells 
in 100 μL (for 50 mL of freezing buffer: final concentrations of 85.5 g/L sucrose, 11.76 g/L 
sodium citrate, 50 mL/L DMSO, and the pH was adjusted to 7.6 with a few drops of citric acid 
0.1 M. The volume was then adjusted to 50 mL with milli-Q dH2O and the solution filtered 
through a 0.2 μm filter and kept at 4°C). The cells were then stocked at -80°C until further 
treatment. 
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5.1.3. Depositing the cells on the slides 
 

A 0.6 % solution of low-melt agarose was prepared in PBS. The solution should be well 
diluted but should not be brought to a boil. The solution was added in Eppendorf tubes before 
the addition of the 900 μL of low-melt agarose solution. The tubes were placed in the pre-
heated 37°C water bath. The previously collected cells were taken out from the -80°C and 
dipped in the water bath to unfreeze them.  After centrifugation for 5 minutes at 300 x g at 
4°C, the supernatant was removed and the pellet re-suspended in 100 μL of PBS to the 900 μL 
of low-melt agarose. The solution was homogenized and 100 μL of the solution was added to 
each slide (deposition of about 20 000 cells per slide). A coverslide was immediately put and 
the slides were put on ice for a minimum of 10 minutes. 
 

5.1.4. H2O2 positive control 
 

The coverslide was removed and 100 μL per slide of a 50 μM H2O2 solution was deposited. 
A coverslide was immediately put over and the slide put back on ice for 10 minutes. After 
removing the coverslide, the slide was rinsed with 1 mL of PBS. Note: a maximum of the PBS 
should be removed from the slide. 
 

5.1.5. Cell lysis 
 

After removing the coverslide, the slides were placed at the bottom of a container where 
they will be covered with lysis buffer for one hour (a 1 L solution is prepared with the following 
final concentrations: 2.5 M NaCl, 10 mM Tris, 0.1 M EDTA; the pH was then adjusted to 10 
with concentrated NaOH). Immediately prior to use, to 133,5 mL of the previously prepared 
solution, 15 mL of DMSO and 1.5 mL of Triton are mixed. After cell lysis, the slides were rinsed 
three times for 5 minutes with Tris-HCl 0.4 M, pH 7.4 (dilution by 1/3 of the previously 
prepared 1L of Tris-HCl 1.2 M (145,5 g of Tris was weighed and the pH was then adjusted to 
7.4 with concentrated HCl). 
 

5.1.6. Incubation with Fpg (formamidopyrimidine [fapy]-DNA glycosylase) 
 

The slides were left to dry for about 5 minutes on the lab-bench while the FPG solutions 
were prepared as follows: 
 

- With FPG: FPG 0.05 u/μL (1.25 μL/slide) + FPG buffer diluted 10 times in milli-Q H2O. 
- Without FPG:  FPG buffer diluted 10 times in milli-Q H2O. 
 

For each condition, 100 μL of the with FPG solution or without FPG solution was deposited 
on the slides and a coverslip was put down. The slides were set on a humidified bed and put 
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in a 37°C incubator for one hour. After the one-hour incubation, the slides were put on an ice-
bed in order to stop the enzymatic reaction. 
 

5.1.7. Migration 
 

After removing the coverslips, the slides were placed in an electrophoresis tank. The slides 
were covered with the electrophoresis buffer (0.3 M NaOH and 1mM EDTA diluted in MilliQ 
dH2O) that was previously prepared and stored at 4°C. An “equilibration” time of 30 minutes 
was observed before starting the electrophoresis which was performed at a voltage of 25 V, 
300 mA, for 30 minutes. After migration, the electrophoresis buffer was thrown out, and the 
slides were rinsed three times for 5 minutes in Tris-HCl 0,4 M buffer. 
 

5.1.8. Analysis 
 

The counting of the comet assay by microscopy was usually done the following day. For a 
reading within the next 15 days, 50 μL of Gel Red was added per slide and a coverslip was put 
right away. For each slide, comets were counted under the microscope using the 10X 
objective: a minimum of 50 comets were counted per slide. For storage, the slides were kept 
at 4°C in the dark. 

5.2. Detection of double-stranded breaks: Foci ƳH2AX 

Cells were plated in six-well plates at a density of 400 000 cells per well in duplicate for 
each condition: 30 minutes and 24 hours after a 2Gy irradiation. Cells were rinsed twice with 
cold PBS and then fixed in a 4% PFA (paraformaldehyde) solution for 20 minutes. The cells 
were rinsed 3 times with PBS in order to remove any traces of PFA.  
 

After collection, the cells were permeabilized for 5 minutes with a permeabilization buffer 
made of PBS-0,2% Triton X100 solution. The cells were then washed 3 times for 5 minutes with 
a wash solution (PBS-0,1% Tween 20- 0,05% Triton X100) and then aspecific sites were blocked 
with a PBS- 0.2% milk-5% FCS- 0,05% Triton X100 for 10 minutes. This blocking step was 
followed by a one-hour incubation of the monoclonal primary antibody produced in mouse: 
the anti-phospho-histone H2AX (Ser 139) clone JBW301 (Invitrogen Ref 05-636) 100 μl of the 
antibody solution (1/1000 dilution in blocking buffer) was deposited on each coverslide. 
Following the hour incubation with the primary antibody, the cells were rinsed 3 times for 5 
minutes with the wash buffer and then incubated for one hour with the secondary antibody 
Alexa-Fluor 488-antiIgG against mouse produced in goat (Invitrogen Ref A11001) (1/500 
dilution in blocking buffer). The cells were then rinsed twice for five minutes in a PBS-0,1% 
Tween 20 solution. The nucleus of cells was stained with DAPI at a concentration of 1 μg/ml 
for 15 minutes and washed three times in PBS for 5 minutes each. Each coverslide was then 
mounted using the mounting medium Fluoromount (Sigma). 
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Slides were left to dry for about 24 hours and are then polished for an optimal conservation. 
Each slide was then counted for a minimum of 300 nuclei per slide using the Metafer analysis 
system which uses both the intensity and size as parameters to distinguish a foci under a 63X 
objective. 

 

 
Figure 57: The Metafer platform used for γH2AX analysis along with the microscope (Lyon-Sud Medical 
School). 
 
A kinetic study 0 min- 30 min - 1h – 2h – 4h – 6h – 24h was once realized in triplicate in order 
to study the repair kinetics of DNA double-stranded breaks. The study with T= 30 minutes and 
24 hours was done in triplicate with duplicate slides for each condition.  

5.3. Quantification of 8-oxo-G by HPLC-MS/MS  

5.3.1. DNA Extraction 
 

Each dry pellet was re-suspended in 750 μL of the lysis buffer A and transferred in 2 mL 
Eppendorf tubes. The buffer lysis A solution is composed of 10.97 g of sucrose, 101 mg of 
MgCl2, 121 mg of Tris, 100 μL of deferoxamine, and 1 mL of Triton X100. The pH was adjusted 
to 7.5 before the addition of Triton X100 and the volume was adjusted to 100 mL. This buffer 
allows the lysis of the cells’ plasma membrane. The tubes were then centrifuged for 5 minutes 
at 1500 x g at RT. The supernatant was removed and 750 μL of Lysis buffer solution A was 
again added to the tubes and centrifuged at 1500 x g for 5 minutes at room temperature. After 
removing the supernatant, the pellet was re-suspended in 300 μL of lysis buffer B (for a volume 
of 100 mL: 186 mg of EDTA-Na2, 121 mg Tris, 150 μL deferoxamine. The pH was verified and 
adjusted to 8.0). Eighteen μL of 10% SDS (Sodium Dodecyl Sulfate) was added to the mixture 
and the solution vortexed. 1.5 μL of RNAse A (Sigma, ref R5125-250mg) (100 mg/ml) and 3.5 
μL of RNAse T1 (1U/μL) were added and the suspension was incubated at 50 °C for 15 minutes. 
Fifteen μL of protease (Qiagen ref 19157) per sample was then added and the mixture 
vortexed and incubated at 37° C for one hour. Following the hour incubation, 600 μL of a NaI 
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solution was added (20 mM EDTA-Na2, 7.6 M NaI, 40 mM Tris/HCl, 0.30 mM deferoxamine) 
followed by 1 mL of 100 % isopropanol per sample. Each sample was gently agitated and then 
centrifuged for five minutes at 5000 x g at RT. The supernatant was then removed and 500 μL 
of 40% isopropanol was added. The samples were once again centrifuged for 5 minutes at 
5000 x g at RT. The supernatant was removed and 500 μL of 70% ethanol was added followed 
by a centrifugation at 5000 x g for 5 minutes at RT. Following this centrifugation, a maximum 
of the supernatant was carefully removed and the pellet was re-suspended with 50 μL of 
deferoxamine 0.1 mM. 
 

5.3.2. Enzymatic Digestion 
 

A mix was prepared so that each sample received: 
- 0.25 μL of phosphodiesterase II at 0.1 U/μL (Sigma, ref P9041-25U) 
- 0.5 μL of DNase II at 10U/μL (Sigma, ref D4138-20KU) 
- 2.5 μL of Nuclease P1 at 0.2U/μL (Sigma ref N8630-1VL) 

(P1 buffer solution: 300 mM ammonium acetate (Sigma ref A1542-250g), 1 mM ZnSO4 
(Sigma), adjusted pH to 5.3. For the nuclease P1, a concentration of 0.2U/μL was used. 
The nuclease P1 was diluted in the P1 buffer) 

- 2.5 μL of MNSPDE buffer  
(For a 10X solution: 200 mM succinic acid (Sigma ref S3674-100g) and 100 mM CaCl2 
(Sigma ref C1016-100G) adjusted to pH6) 

 
5.5 μL of the mix was added to each sample and the samples were vortexed and incubated 

for 2 hours at 37°C. The samples were vortexed after the first 30 minutes of incubation. 
 

After the two hours of incubation, 6.55 μL of the following mix was added to each sample: 
- 6μL of phosphatase alkaline buffer (500 mM Tris (Sigma ref 34549), 1mM EDTA (Sigma 

ref T6066), pH8) 
- 0.5 μL of phosphodiesterase I (Sigma, ref P3243-1VL) 
- 2 units of alkaline phosphatase (Sigma ref P6774-2KU) 

 
After a 2-hour incubation of the samples at 37°C, 3.5 μL of 0.1N HCl was added to each 

sample before centrifugation at 5000 x g for 5 minutes. If ethanol remained in the tubes, it 
was evaporated by speed vacuum for 10 minutes. The samples were then transferred to HPLC 
vials and kept at 4°C or -20°C until HPCL MS/MS analysis. (Note: while transferring samples to 
HPLC vials, one must be careful with air bubbles at the bottom of the vials.)  
 

5.3.4. Analysis by HPLC MS/MS 
 
The measurements were made with a TSQ Quantum Ultra electrospray ionization tandem 

mass spectrometer (Thermo Fisher Scientific Inc.). 
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Figure 58: Photograph of the HPLC coupled to a MS/MS for detection of 8-oxo-guanine 
(INAC/SyMMES/CIBEST, CEA-Grenoble, Grenoble, France). 

6. Functional consequences on the mitochondria of AGuIX® + I.R. 

6.1. Common deletion of mitochondrial DNA 

The cells were trypsinized and rinsed twice with PBS and kept at -80°C as a dry cellular 
pellet until further treatment. 
 

6.1.1. Cell lysis 
 

The cells were lysed with a buffer containing Tween 20, NP40, Tris HCl pH 8.3 completed 
with dH2O to which proteinase K was added to a final concentration of 0,1 mg/mL. The cellular 
pellets were then grinded to explode the mitochondrial membranes using the Tissue Lyser II 
at a 30Hz frequency for 2 minutes. The samples were then incubated in a heat block set at 
56°C for 30 minutes followed by 15 min incubation at 98°C to inactivate the Proteinase K. 

 
6.1.2. Sample preparation 

 
In order to prepare the sample solutions for PCR analysis, the samples underwent a series 

of dilution. First, the lysis buffer previously used was diluted by a factor of 7 and sonicated for 
10min. The samples were diluted as follows: 20 μL of lysat + 40 μL non-sonicated lysis buffer 
+ 60 μL of milliQ H2O. Twenty μL of this first dilution were then added to 80 μL of the sonicated 
diluted lysis buffer to have a final dilution of 1/9. 
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6.1.3. Mix preparation 
 

The Fast Start DNA Master Syber Green I kit (Roche) was used for the PCR assay. First, the 
Mastermix was prepared by adding 10 μL of tube 1a to 1b. Then the PCR mix was prepared as 
follows (volumes per sample): 

- 0.4 μL of forward Primer 20 μM 
- 0.4 μL of reverse Primer 20 μM 
- 7.4 μL of nuclease free H2O 
- 4.8 μL of MgCl2 

The mix was vortexed and 2 μL of the Mastermix was added.  
 

15 μL of this mix was added to each well of the PCR plaque and 5 μL of each sample was 
deposited. The plaque was then centrifuged at 700 rpm for 5 minutes at room temperature. 
 

The thermal profile for the PCR (Stratagene) was as follows: 1 cycle for 10 minutes at 95°C 
(denaturation), 45 cycles at 5 seconds at 54°C, 8 seconds at 72°C (amplification), 20 seconds 
at 95°C, 30 seconds at 68°C, 30 seconds at 98°C (fusion). 
 

Three couple of primers were used: total mitochondrial DNA (tot mtDNA), deleted 
mitochondrial (del mtDNA), and GAPDH. 

 
The total and deleted mitochondrial DNA were both normalized with GAPDH before 
calculation of the ratio: deleted mtDNA/total mtDNA. 
 

Primer Forward/Reverse Sequence 
Tot mtDNA F 5'- GGACTAACCCCTATACCTTCTGCAT -3' 

R 5'- CGGGTGTGCTCTTTTAGCTGTT -3' 
Del mtDNA F 5'- CCTTACACTATTCCTCATCACCCAA -3' 

R 5'- TGTGGTCTTTGGAGTAGAAACCTGT -3' 
GAPDH F 5'- CTGACCTTTACTCCTGCCCTTTG -3' 

R 5'- CATGGTATTCACCACCCCACTATG -3' 
 
Table 15: Corresponding chosen primers. 

6.2. The mitochondrial membrane potential 

The JC-1 (5’,5’, 6, 6’-tetrachloro-1, 1’, 3, 3’-tetraethylbenzimidazolycarbocyanine iodide) 
dye (Sigma-Aldrich, Ref T4069) was used to measure the mitochondrial membrane potential 
drop. After trypsination, the cells were incubated with JC-1 for 20 minutes at 37°C at a 
concentration of 5 μM. Cells were then analyzed using flow cytometry with an excitation 
wavelength of 488 nm and an emission wavelength of 525 nm (LSRII, BD Biosciences). 
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Measuring  glutathione content in SQ20B J.L. cells 
 
 Sample preparation 
 

Cells were plated at a density of 150 000 cells in six-well plates and were treated with 0mM 
or 0,8mM of AGuIX®, and depleted or not of glutathione (see section DMF/BSO treatment).  
At t =0 minutes and 24 hours after irradiation, glutathione measurements were performed. At 
a given time, the supernatant was removed and the cells were washed twice in PBS. 150 μL of 
R1 (composed of NEM/EDTA/γGLU-GLU) was added to each well and the wells were shaken 
for 10 seconds. N-ethymaleimide (NEM) is used to block glutathione in its reduced form 
therefore avoiding the generation of artefactual high levels of glutathione disulfide. Next, 50 
μL of R2 (6% ASS) was added and the wells were again shaken for 10 seconds. The plates were 
then left to rest for 30 minutes at room temperature. After the scraping step, the solution 
from the well was removed from each well and centrifuged for 10 minutes at 4500 tr/minutes 
at 4°C. The supernatant was then transferred to a clean 1,5 mL Eppendorf tube.  
 

HPLC MS/MS 
 

Glutathione concentration (from a cell pellet) was measured by HPLC MS/MS (Agilent 
Technologies, Venissieux, France), in a positive electrospray ionization mode after a 
separation by chromatography on a 150mm×2mm stability 100 BS-C17 column (CIL Cluzeau, 
Sainte Foy La Grande, France). Briefly, after removal of proteins by sulfosalycic acid 6%, the 
stabilization of glutathione by 20 mM of NEM and adding gamma glutamyl-glutamic acid as an 
internal standard, the cell pellet was degraded by a freeze/thaw cycle followed by a 
centrifugation at 10.000g during 10 minutes. The supernatant was then diluted in a mobile 
phase and injected into the chromatographic system.  
 

The elution was performed using a mobile phase containing MeOH/acetate ammonium 
buffer (8mM) adjusted to pH 2.7 (63/37, V/V) in an isocratic mode. Chromatograms were 
recorded in single ion monitoring (M+H)+ at m/z 277 for gamma glutamyl-glutamic acid, at 308 
for GSH, at 433 for GSH-NEM and 613 for GSSG for 10 minutes. The results were integrated 
with Chemstation software (Agilent Technologies (version B.01.01)). 
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7. Proteomic Analysis 

7.1. Sample preparation 

7.1.1. AGuIX® treatment and Irradiation (Lyon-Sud Medical School) 
 

Cells were plated at a density of 40 000 cells/cm2 16 hours prior to AGuIX® treatment in T7 
flasks. The next day, the cells were treated with 0mM Gd or 0.8mM Gd for 24 hours. Prior to 
irradiation, AGuIX® were removed from the medium, the cells were rinsed twice with PBS and 
then irradiated at 10 Gy and put back in the incubator at 37°C 5% CO2 for 24 hours. 
 

Twenty-four hours after irradiation, the cells were trypsinized and each flask was separated 
into two: 

- One half would be used for protein extraction in order to dose the quantity of proteins 
using the BCA assay (previously detailed) 

- Cells will be re-suspended in Laemmli 2X buffer for a final concentration of 3 μg/μl for 
proteomics analysis. 

 
For quality check, the samples used for protein extraction were ran through a 

polyacrylamide gel electrophoresis. The gel was stained using a Coomassie blue solution, and 
de-stained with an acetic acid solution. 
 

The samples were then brought to the EDyP Platform (CEA - Grenoble) in dry ice for further 
preparation of the samples for proteomic analysis. 

7.2. Shut-gun Proteomics (EDyP Platform) 

7.2.1. Protein extraction and digestion 
 

Once the samples were received by the platform, a staking gel (so proteins are 
concentrated in one single band) was done and each band (4 total for the 4 separate samples), 
was cut out of the gel for further treatment: each sample was treated and digested by trypsin 
in order to separate proteins into peptides (smaller fragments for nanoLC MS/MS).  
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Figure 59: Schematic representation of trypsin digestion of proteins. Trypsin will cut proteins after 
lysine or arginine. After trypsin digestion, different lengths of peptides were obtained.  
 
 

7.2.2. Nano Liquid-chromatography 
 

After digestion of proteins by trypsin, the peptides are injected into the liquid 
chromatography (nanoLC because a volume between 5-10 μl (which is equivalent to 500 ng) 
at a rate of 300 nl/min). The peptides are then fragmented in the mass spectrometer (Orbitrap 
Velos from Thermo) and fragmentation spectra are obtained. 
 

 
 

Figure 60: Schematic representation of nano-Liquid Chromatography followed by Mass Spectroscopy 
MS/MS. Representation of spectra obtained from the MS/MS. 
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7.2.3. Sequence information 
 
Once the spectra are obtained, the sequence of amino acids of peptides is determined and 

ran through bioinformatics tools to identify the full-length proteins. In parallel, in order to 
validate the experimental results, an available protein database underwent in silico tryptic 
digestion followed by in silico fragmentation to then obtain masses which were compared to 
the experimental masses. Using bioinformatics tools, the proteins were identified and protein 
identifications were validated using a software named Proline. 

 

 
 

Figure 61: Following nanoLC MS/MS, amino acids are determined from the spectra, and using 
bioinformatics tools, proteins are identified.  
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Figure 62: Photos representing the equipment used for the Proteomics study (EdYP Platform, CEA-
Grenoble, Grenoble, France). a. Protein extraction and digestion by a robotized system; b. Nano-Liquid 
Chromatography; c. MS/MS; d.  Sequence information, peak integration. 
 

7.2.4. Data analysis 
 

Once all data was extracted and protein identification was finished, an Excel worksheet was 
given with the name of identified proteins, fold-change, and spectral counts. 
 

In the Excel sheet, the following was detailed: 
- Pep: the number of peptides corresponding to the protein 
- SC (Spectral Count): number of peptides observed for one protein, but these peptides 

can be shared peptides between different proteins 
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- SCC (Specific Spectral Count): number of peptides specific to a unique protein 
- WSC (Weighted Spectral Count): logarithmic calculation which takes into account SC 

and SCC 
 

Two different techniques were used in order to further analyze the results obtained and 
the analysis was focused on the comparison of 10Gy versus 0,8mM Gd + 10 Gy.  
The fold-change was calculated as the ratio:  
 

0,8mM Gd + 10 Gy / 10 Gy 
 

First, proteins with a fold change of ≤ 0,8 (under-expression) or ≥ 1,2 (over-expression) 
were identified (which corresponded to 800+ proteins) and then ran through proteomics 
bioinformatics analysis tools to identify modulated signaling pathways. One such tool used for 
the analysis of the results was DAVID (Database for Annotation, Visualization and Integrated 
Discovery https://david.ncifcrf.gov/). 
 

Another analysis technique which is used by the EDyP platform is more drastic and will 
consider a significant fold-change only when a protein was over-expressed or under-expressed 
by a minimum factor of 5. 16 proteins were modulated using these more drastic cut-offs, and 
individual bibliography research using PubMed was done. 
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CChapter I. Characterization of the radiosensitizing effects of AGuIX® 

 

 

adiosensitization using high-Z metal nanoparticles has shown great promises to 
improve radiotherapy treatment in radio-resistant tumors, such as in Head and Neck 
Squamous Cell Carcinoma (HNSCC).  In this study, we have used a new formulation of 

gadolinium-based nanoparticles named AGuIX® (Activated Guidance Irradiation by X-rays) in 
order to determine their potential as a radiosensitizer in vitro, using SQ20B J.L. cells, a radio-
resistant HNSCC cell line.  

Therefore, this first chapter of the Results & Discussion section is devoted to the 
characterization of the effects of AGuIX® nanoparticles which includes the optimization of the 
radiosensitizing conditions of AGuIX® on this cellular model.  Firstly, different concentrations, 
media, and incubation times have been tested.  Next, the potential toxicity has been checked, 
and the cellular localization of AGuIX® with respect to the nucleus, mitochondria, and 
lysosomes has been studied using confocal microscopy. 

 

R 



 

158 



Results & Discussion                                           Chapter I. Characterization of the radiosensitizing effects of AGuIX® 

159 

Although we will not develop the imaging potential of these nanoparticles since this work 
is only focused on an in vitro model to explain the mechanisms of radiosensitization, it is 
important to underline their theranostic potential for their use in the clinical field. Indeed, 
Gadolinium (Z= 64, M= 157.25), with its seven unpaired electrons, is one of the most 
interesting element as a contrast agent since the paramagnetic effect of one ion and its 
influence on the relaxation time directly depend upon the number of unpaired electrons 
generating the electronic spin that interferes with the nuclear spin of hydrogen (Lorusso et 
al., 2005, Rohrer et al., 2005). 

Prior experiments in our laboratory used nanoparticles with 
Diethylenetriaminepentaacetic acid (DTPA) as the gadolinium chelating agent and presented 
evidence for a radiosensitizing effect (Miladi et al., 2015).  However, toxicity issues were raised 
as DTPA was not a strong enough chelating agent and could therefore potentially release 
gadolinium. Free gadolinium is highly toxic to humans with increasing evidence showing that 
the chemical instability of the chelate can lead to exchanges with other metal ions (zinc Zn2+, 
copper Cu2+, or calcium Ca2+), which can in turn have biological consequences.  The ionic radius 
of Gd3+ (107.8 pm) is close to that of Ca2+ (114 pm) and this element is an inorganic blocker of 
many types of voltage-gated calcium channels at the nano- to micro-molar concentrations.  It 
consequently inhibits these physiological processes which depend upon Ca2+ influx 
(contraction of smooth, skeletal, and cardiac muscle, transmission of nervous influx, blood 
coagulation, etc.) (Lansman, 1990; Biagi and Enjyeart, 1990; Evans, 1990).  Gadolinium can 
also inhibit the activity of some enzymes (Ca2+-activated-ATPase in the sarcoplasmic reticulum 
of skeletal muscle fibers, some dehydrogenases and kinases, glutathione S-transferases, etc.) 
(Evans, 1990; Itoh and Kawakita, 1984), and has a remarkable capacity to depress the 
reticuloendothelial system (Evans, 1990).  The chelator DTPA was therefore dropped and was 
replaced by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a stronger 
gadolinium chelating agent. 

Two parameters are important when discussing the stability of a gadolinium contrast agent 
to insure the non-release of gadolinium: the thermodynamic stability and the kinetic stability.  
By definition, as gadolinium is chelated, a thermodynamic equilibrium exists between the 
metal [M], the ligand [L], and the complex [ML]: 

[M] + [L]             [ML] 
 

The toxicity of gadolinium complexes depends on their ability to release Gd3+ ions.  The 
stability of gadolinium complexes is expressed in terms of log Ktherm, where Ktherm is the 
thermodynamic stability constant, defined as: 

Ktherm = [ML]/[M][L] 
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The better stability of Gd-chelated agent by DOTA can also be explained by the chemical 
structures of DOTA, which has a cyclic structure, versus DTPA, which has a linear chemical 
structure (Figure 63). 

 
Figure 63: Chemical structures of Gd-DTPA (linear) versus Gd-DOTA (cyclic) chelating agents. (Idée et 
al., 2006) 

 
Ligand L Log K’ Log Ktherm (GdL) Log Ktherm (CaL) Log Ktherm (CuL) Log Ktherm (ZnL) 

DTPA 17.7 22.1 10.7 21.4 18.3 

DOTA 18.8 25.8 17.2 22.6 21.0 
Table 16: The log K’ value and the Ktherm constants for the ligand and different elements found in the 
body depending on the ligand type: DTPA versus DOTA.  (Idée et al., 2006) 

 
Another parameter that is important to take note of is the kinetic rate at which equilibrium 

is reached, estimated through the half-life (T1/2) of dissociation of the complex.  In a very acidic 
medium, the complex dissociation is a pseudo-first-order reaction, with: 

Dissociation rate = kdiss[H+] [GdL]. 
 

As [H+] is considerably higher than [GdL] throughout the whole dissociation process, it was 
considered that [H+] is constant and equal to [H+]0. Therefore: 
 

Dissociation rate = kobs[GdL] 
 

where 
 

kobs = kdiss[H+]0. 
 
 

Gadolinium chelates Kobs (s-1) T1/2 

Gd-DTPA 1.2 X 10-3 10 min 

Gd-DOTA 2.1 X 10-5 >1 month 
Table 17: Kobs values and T1/2 for DTPA and DOTA chelating agents. (Idée et al., 2006) 

 
The main physicochemical criterion to minimize any transmetallation in vivo is the kinetic 

stability.  It is now well-established that the macro-cyclic ligand (i.e. DOTA) has a much slower 
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decomplexation and transmetallation reaction kinetics and is consequently characterized by 
an inertia to decomplexation or transmetallation. (Idée et al., 2006) 
 

An additional factor probably in-part responsible for having to re-determine the 
radiosensitizing conditions is that the DTPA-gadolinium-based nanoparticles were designed 
differently as they had a gadolinium oxide core surrounded by polysiloxane shell while AGuIX® 
nanoparticles have a polysiloxane core surrounded by gadolinium chelates covalently grafted 
on the inorganic matrix.  Very often, as it was mentioned in the bibliography review, the 
conditions used for one type of nanoparticle on a specific cell line is not completely 
transferable to another couple nanoparticle/cell line.  It was therefore very important to 
determine the conditions for use before moving on. 

1. Determining the optimal radiosensitizing conditions of AGuIX® 
nanoparticles on SQ20B J.L. cells 

In order to determine the optimal radiosensitizing conditions of AGuIX® nanoparticles in 
SQ20B J.L. cells, several parameters and experimental conditions were tested including: 
various culture media, increasing NPs concentrations from 0 to 3 mM Gd, and the time of 
incubation. The survival fraction at 4Gy (SF4Gy) assay was used as a first preliminary test to 
screen a greater number of conditions to establish the best radiosensitizing effect. Thereafter, 
a full clonogenic survival curve was performed in order to validate the radiosensitizing 
concentration isolated by the SF4Gy assay. 

1.1. Assessing of the concentration and media parameters 

In order to test one parameter after another, the first treatment time used was one hour 
as previously validated with DTPA NPs on SQ20B J.L. cells (Miladi et al., 2015). Three culture 
media were successively tested (HBSS, PBS Ca2+/Mg2+, and serum-free DMEM-Glutamax), with 
increasing AGuIX® concentrations from 0mM Gd (control) to 3mM Gd. Two independent 
experiments were done for each tested media, including six 25cm2 flasks with two varying cell 
concentrations. 
 

1.1.1. AGuIX® treatment in HBSS media 
 

Hanks’ Balanced Salt Solution (HBSS) was the first media tested according to the previous 
study with DTPA NPs (Miladi et al., 2015). 
 

 SF4Gy assay 
 
Figure 64 shows the SF4Gy obtained for the different concentrations of AGuIX®. 
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Figure 64: Survival fraction at 4Gy varying concentration from 0-3 mM Gd in HBSS media (n=2). 

 
In this culture medium, 1.5 mM Gd was the smallest radiosensitizing concentration 

obtained with a SF4Gy of 0.32 compared to 0.45 for untreated cells.  
 

 Full clonogenic survival curve assay 
 

Next, the complete clonogenic survival curve was performed using the AGuIX® 
concentration isolated by the SF4Gy assay, i.e. 1.5 mM Gd.  As depicted in Figure 65, no 
significant radiosensitizing effect was obtained under these experimental conditions.  This 
result is the mean of two independent experiments. 

 
Figure 65: Clonogenic survival assay 0-8 Gy following a 1h AGuIX® treatment in HBSS media at 1.5mM 
Gd. Blue: 0mM Gd, red: 1,5mM Gd. (n = 2). Each experimental point represents the counting of 6 
independent T25cm2 flasks, and the curve represents the combination of two independent 
experiments. 
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[Gd] (mM) α β 10% 
Survival 

50% 
Survival 

EBR-10% EBR-50% 

0 0.095 0.0247 7.92 3.72 
0.972 0.847 

1.5 0.0127 0.0331 8.15 4.39 
Table 18: Summary of the parameters evaluating the radiosensitizing effect of AGuIX® at 1.5mM Gd in 
HBSS. (The α and β parameter are calculated using the linear quadratic equation S=exp(-αD-βD2, 
described page 126 of the Materials and Methods section). 
 

As can be seen in Table 18, whether we look at the 10% Enhanced Biological Response (EBR) 
or the 50% EBR, it is lower than 1, which means that treating the cells with AGuIX® prior to 
radiation does not increase cellular death.  In addition, one might notice in Figure 65, that the 
red curve (cells treated with 1.5mM Gd) is over that of the untreated cells, however, most 
error bars overlap and therefore we can conclude that there are no significant differences in 
the survival fraction between untreated and treated cells.   
 

Collectively, after analyzing the clonogenic survival curve assay, we did not validate 1.5 
mM Gd for 1 hour in HBSS as a working radiosensitizing condition. 
 

1.1.2. AGuIX® treatment in Phosphate Buffer Saline (PBS) Ca2+/Mg2+ 
 

Phosphate Buffer Saline (PBS) with Ca2+ and Mg2+ was the second medium tested.  (*Note: 
Ca2+/Mg2+ was necessary, otherwise the cells would unattach from the flask). 
 

 SF4Gy assay 
 

Figure 66 shows the SF4Gy obtained for the different concentrations of AGuIX® tested.   
 

 
Figure 66: Survival fraction at 4Gy varying concentration from 0-3 mM Gd in PBS Ca2+/Mg2+ media 
(n=2). 
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In this medium, 1.0mM Gd was the smallest radiosensitizing concentration obtained with 
a SF4Gy of 0.32 compared to 0.48 for untreated cells. 
 

 Full clonogenic survival curve assay 
 

Again, the complete clonogenic survival curve was then performed using the gadolinium 
concentration isolated by the SF4Gy assay, i.e. 1mM Gd.  As it can be observed in Figure 67, no 
significant radiosensitizing effect was obtained in this medium with 1mM Gd. 

 

 
Figure 67: Clonogenic survival assay 0-8 Gy following a 1h AGuIX® treatment in PBS Ca2+/Mg2+ media at 
1mM Gd. Blue: 0mM Gd, red: 1mM Gd (n= 2). 

 
[Gd] (mM) α β 10% 50% EBR-10% EBR-50% 

0 0.0189 0.0473 6.75 3.62 
0.935 0.889 

1.0 -0.0217 0.0471 7.22 4.07 
Table 19: Summary of the parameters evaluating the radiosensitizing effect of AGuIX® at 1mM Gd in 
PBS Ca2+/Mg2+. 
 

As can be seen in Table 19, both the 10% and the 50% EBR were lower than 1, which means 
that treating the cells with 1 mM AGuIX® prior to radiation does not improve survival.  Again, 
one might notice in Figure 67 that the red curve (cells treated with 1mM Gd) is over that of 
the untreated cells with error bars overlapping which means that there are no differences in 
the survival fraction between untreated and treated cells.  At last, a negative α value was 
obtained whereas no difference concerning the β parameter occurred between untreated and 
treated cells.   
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In this culture medium, the clonogenic survival curve assay did not allow us to choose 1mM 
Gd for 1 hour in PBS Ca2+/Mg2+ as a working radiosensitizing condition.  
 

1.1.3. AGuIX® treatment in serum-free DMEM-Glutamax 
 

Dulbecco’s Modified Eagle’s Medium was the third and last media tested.   
 

 SF4Gy assay   
 

Figure 68 shows the SF4Gy obtained for the different concentrations of AGuIX® tested. 
 

 
Figure 68: Survival fraction at 4Gy varying concentration from 0-3 mM Gd in serum-free DMEM-
Glutamax media (n=2). 

 
The concentration 0.8 mM Gd was noted as the best radiosensitizing concentration when 

the treatment was done in serum-free DMEM-Glutamax with a SF4Gy of 0.28 compared to 0.42 
for untreated cells.  
 

 Full clonogenic survival curve assay 
 

When performing the full clonogenic assay using 0.8 mM Gd in serum-free DMEM-
Glutamax, no radiosensitizing effect was observed, as can be seen in Figure 69. We were 
therefore unable to validate the concentration of 0.8mM Gd in DMEM-Glutamax.  

 
As can be seen in Table 20, both the 10% and 50% EBR were close to 1 thus confirming the 

absence of a radiosensitizing effect.  As shown in Figure 69, the survival curves obtained for 
untreated and treated cells were very close to each other.  However, we can note a difference 
in the α parameter, as it is doubled in the presence of nanoparticles, which suggest that more 
immediate lethal lesions should occur, whereas no significant difference was obtained 
concerning the β parameter. 
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Figure 69: Clonogenic survival assay 0-8 Gy following a 1h AGuIX® treatment in serum-free DMEM-
Glutamax media. Blue: 0mM Gd, red: 0.8mM Gd (n= 9). 
 

[Gd] (mM) α β 10% 50% EBR-10% EBR-50% 

0 0.0589 0.0354 7.25 3.65 
0.964 1.058 

0.8 0.1103 0.026 7.52 3.45 
Table 20: Summary of the parameters evaluating the radiosensitizing effect of AGuIX® at 0.8mM Gd in 
serum-free DMEM-Glutamax. 
 

When treating the cells for 1 hour with 0.8mM Gd in serum-free DMEM-Glutamax for one 
hour, we do not observe any radiosensitizing effect. 
 

The three mediums tested are quite different in their composition: some are isotonic 
solutions (PBS and HBSS) whereas DMEM-Glutamax is a much more complex solution 
containing inorganic salts, amino acids, vitamins, and phenol red. The complete ingredient 
lists for HBSS, PBS Ca2+/Mg2+, and DMEM-Glutamax with corresponding concentrations can be 
found in Annex 3. 
 

When analyzing the results obtained for the SF4Gy assay in all three media, an interesting 
observation can be made, and that it that there is no linear relationship between the Gd 
concentration used and the SF4Gy: the radiosensitizing effect of AGuIX® does not represent a 
linear relationship.  Indeed, one could think that as the AGuIX® concentration is increased, the 
radiosensitizing effect would increase.  Surprisingly, a U-shaped curve occurred. Considering 
the results obtained with the full clonogenic survival curve assays, i.e. since there was no 
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significant radiosensitizing effect whatever the culture medium or the Gd concentration used, 
we decided to increase the incubation time with the AGuIX® nanoparticles before irradiation. 

1.2. Increasing the incubation time 

As the lowest concentration of AGuIX® isolated from the SF4Gy assays was obtained in 
serum-free DMEM Glutamax, we further used these experimental conditions with increasing 
the incubation time: 1 hour (reference treatment time), 4, 12, and 24 hours. Moreover, we 
quantified the amount of AGuIX® taken up by the cells by inductively coupled plasma atomic 
emission spectroscopy (ICP-AES) in order to investigate if more AGuIX® internalized would 
improve radiosensitization. 
 

1.2.1. Internalization of AGuIX in SQ20B J.L. cells: ICP-AES experiments 
 

In order to quantify gadolinium internalization by SQ20B J.L. cells, a kinetic study ranging 
from 1h up to 24h was performed with ICP-AES. 
 

As mentioned above, a concentration of 0.8mM Gd in serum-free DMEM-Glutamax was 
used throughout these experiments.  The results are summarized in Figure 70. 
 

 
Figure 70: Quantity of gadolinium internalized by SQ20B J.L. cells as a function of the incubation time 
(1-4-12-24 hours of exposure to 0.8 mM Gd) in serum-free DMEM-Glutamax quantified by ICP-AES.  
The three wavelengths of gadolinium are represented (342, 336, and 332 nm). This is a mean of 2 
independent experiments with three flasks for each, and three separate readings from the ICP. 
 

After one-hour of incubation with the AGuIX®, SQ20B J.L. cells internalized about 0.05 pg 
Gd/cell.  This value was not significantly modified even after 4 and 12 hours of treatment (ICP 
values are 1h: 0.0484; 4h: 0.0651; 12h: 0.0571 pg/cell, respectively).  However, under the 
same experimental conditions, about 0.11 pg of gadolinium per cell was internalized after 24 
hours of AGuIX® treatment, whatever the wavelengths of gadolinium (335, 336, and 342 nm) 
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used.  This is more than 10 times lower than the quantity that was internalized by these cells 
when treated with the DTPA-gadolinium-based nanoparticles (1.24 pg/cell: Miladi et al., 
2015). When compared to other studies, the quantity of nanoparticles internalized by SQ20B 
J.L. cells is quite low. Indeed, 0.4 pg Gd/cell was found in B16F10 melanoma cells after 1 hour 
of treatment with 0.6 mM Gd (Kobt et al., 2016), while 1.25 pg Gd/cell were found in Panc-1 
cells after only 30 minutes of incubation (Detappe et al., 2015), whereas 0.059 mM of 
gadolinium was taken up by HeLa cells, one hour after treatment with 0.5 mM Gd (Luchette 
et al., 2014).   
 

1.2.2. Survival Fraction at 4Gy (SF4Gy) response when increasing AGuIX® treatment 
time:  
 

Following these experiments, the impact of this longer incubation time with AGuIX® was 
checked with the SF4Gy assay and a full clonogenic survival curve was performed. 
 

 SF4Gy assay 
 

Figure 71 shows the SF4Gy obtained for the different concentrations of AGuIX® tested while 
Table 21 shows the enhanced biological response (EBR).  
 

 
Figure 71: Survival fraction at 4Gy at 0.8mM Gd following different AGuIX® treatment times (1h-4h-
12h-24h). The values are the mean ± SD of three independent experiments. 

 
As depicted in Figure 71, a significant decrease of the SF4Gy was obtained only after a 24h 

incubation time with AGuIX®. This result was perfectly correlated with the ICP-AES 
experiments and underline the fact that a minimum amount of internalized Gd can result in a 
significant biological effect. 

The EBR values were calculated and are enumerated in Table 21. 
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Treatment time (H) EBR (4Gy) 

1 1.076 

4 1.173 

12 1.018 

24 1.436 
Table 21: Calculated Enhanced Biological Response (EBR) at 4Gy for the four different incubation times 
at 0.8mM Gd in serum-free DMEM-Glutamax. 

 
The treatment time of 24 hours was retained as the optimal treatment time at a 

concentration of 0.8 mM Gd in serum-free DMEM-Glutamax with a SF4Gy of 0.37 compared to 
0.53 for untreated cells. This represented an EBR of 1.436.  
 

 Full clonogenic survival curve assay 
 

The experimental conditions reported above were then validated with the clonogenic 
survival curve assay. Figure 72 shows a significant radiosensitizing effect of 0.8 mM AGuIX® 
when incubated for 24h before irradiation in serum-free DMEM-Glutamax.  A summary of the 
parameters evaluating the radiosensitizing effect of AGuIX® under these treatment conditions 
is reported in Table 22. 
 

 
Figure 72: Clonogenic survival assay 0-10 Gy following a 24h AGuIX® treatment in serum-free DMEM-
Glutamax at a concentration of 0.8mM Gd. Blue: 0mM Gd, red: 0,8mM Gd. This result is the mean ± 
SD of three independent experiments. (***, p<0.005 vs. irradiated SQ20B cells). 
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[Gd] (mM) α β 10% 50% EBR-10% EBR-50% 

0 0.1593 0.0079 9.75 3.65 
1.281 1.377 

0.8 0.2357 0.0088 7.61 2.65 
Table 22: Summary of parameters evaluating the radiosensitizing effect of the addition of AGuIX® for 
24 hours at 0.8mM Gd in serum-free DMEM-Glutamax. 
 

Radiosensitization with NPs can occur after various conditions of treatment (concentration, 
incubation time …) depending on the cell line and the type of nanoparticles used.  For example, 
Townley et al. studied X-ray-activable titania nanoparticles on two rhabdomyosarcoma and 
MCF-7 cells, and incubated them at 225 nmoles per well overnight (Townley et al., 2012), while 
gold nanoparticles have been used in varying concentration going from 1 nM (14 nm gold 
nanoparticles coated with citrate used on HeLa cells in combination with a photon energy of 
220 kVp Chithrani et al., 2010) to 1 mM on BAEC cells using a 150 kVp irradiator with an 
observed DEF of 4 (Rahman et al., 2009). There are many different kinds of gold nanoparticles 
developed as radiosensitizers, different sized nanoparticles, with different coatings, used in a 
variety of cell lines and with different types of irradiation, all of which are summarized in 
Coulter et al., 2013.  Even in the studies of AGuIX® as radiosensitizers, different concentrations 
varying from 0.05 mM to 1.0 mM, and various incubation times have been used to observe a 
radiosensitizing effect in different cell lines as can be seen in Table 11 of the bibliography 
review.  (Sancey et al., 2014)  
 

Our radiosensitizing conditions with AGuIX® and SQ20B J.L. cells were finally determined 
to be 0.8 mM Gd for 24 hours in serum-free DMEM-Glutamax.  With these conditions, the 
SF4Gy is 1.382 and we have a 50% Enhanced Biological Factor (EBR) of 1.377.  This 50% EBR 
was calculated following the clonogenic survival curve assay (and therefore the nine 
irradiation doses were taken into account when calculating the value), whereas in Table 21, 
we have an EBR (4Gy) at 1.436, value which was calculated with only two points.  This EBR is 
in the same range compared to what is currently published in studies using AGuIX® 
nanoparticles as a radiation sensitizer, whether in HeLa (cervical cancer), Panc-1 (pancreatic 
cancer), U87 (glioblastoma), and B16F10 (melanoma), with DEFs varying from 1.17 (Panc-1) to 
1.54 (HeLa).  
 

In 2014, Štefančíková et al. reported an enhancement factor close to 23% in U87 cells 
treated with 0.5 mM Gd for 6 hours which corresponds to a decrease of the SF2Gy to 0.24 
compared to 0.31 in untreated cells.  Moreover, they showed an increase in the α-parameter 
(with an α of 0.4 in untreated cells vs 0.71 in treated cells respectively), a result slightly higher 
than our (0.16 in untreated cells vs 0.24 in treated cells).  Two years later, they published 
another study where U87 cells were treated with 1 mM Gd for one hour, which resulted in an 
EBR of 1.47.  In HeLa cells, Berbeco et al. (2014) tested two irradiation sources: 220 kV and 6 
MV (to see their potential in a clinical setting).  When treating HeLa cells with 0.5 mM Gd for 
one hour, they observed a SER4Gy of 1.54 when irradiating at 220 kVp and 1.28 after exposure 
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to 6 MV.  The average DEF was calculated to be 1.54 at 220 kVp while it was a little lower for 
the 6 MV irradiation source: 1.15.  
 

Collectively, these results and our current study, suggest that the extent of 
radiosensitization with AGuIX® nanoparticles essentially depends on the cellular model used. 
Indeed, whatever the time of incubation or the concentration of AGuIX® used in these 
different cellular models, radiosensitization occurs with a fairly comparable EBR. 
 

Prior to definitively using the experimental conditions defined above for the rest of this 
PhD work, we wanted to verify the impact of using a full medium (containing 10% FBS) on the 
radiosensitizing effect of AGuIX®. Indeed, previous work in the lab demonstrated that an 
agglomeration of DTPA-based nanoparticles occurred in the presence of FCS. 
 

Figure 73 and Table 23 show the results obtained with the clonogenic survival assay when 
treating SQ20B J.L. cells with the conditions previously determined for AGuIX®, but in full 
media (in the presence of 10% FCS). 

 

 
Figure 73: Clonogenic survival assay 0-6 Gy following a 24h AGuIX® treatment in full media at a 
concentration of 0.8mM Gd. Blue: 0mM Gd, red: 0,8mM Gd. 
 

[Gd] (mM) α β 10% 50% EBR-10% EBR-50% 

0 0.1906 0.0241 6.58 2.7 
1.079 1.059 

0.8 0.1979 0.0293 6.1 2.55 
Table 23: Summary of the parameters evaluating the radiosensitizing effect of the addition of AGuIX® 
in full media. 
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In the presence of 10% FCS (full SQ20B J.L. medium), using the radiosensitizing conditions 
determined in serum-free DMEM-Glutamax, no radiosensitizing effect was observed as 
assessed by the survival curve assay (Figure 73) and the various radiobiological parameters 
reported in Table 23.  In addition, the α and β values are also the same, as can be seen in Table 
23.  
 
After testing different AGuIX® concentrations in different media using the SF4Gy and the 
clonogenic survival curve assays, as well as quantifying the gadolinium intake of SQ20B J.L. 
cells, the following radiosensitizing conditions were determined for AGuIX® nanoparticles 
in the SQ20B J.L. cellular model: a concentration of 0.8 mM Gd for 24 hours in serum-free 
DMEM-Glutamax. These are the set conditions for the rest of the work presented 
throughout this PhD work. 

2. Toxicity study 
Once the radiosensitizing conditions treatment were determined, we verified the 

treatment toxicity of AGuIX® in the absence of irradiation. In this study, three tests were used: 
a proliferation assay, the trypan blue assay, and the MTT assay, respectively. 

2.1. Proliferation assay: % confluency measurements by IncuCyte 

The IncuCyte live imaging allows an optimized in vitro microscope based on the 
proliferation of SQ20B J.L. cells, taking a picture in phase contrast every two hours for up to 
seven days. This assay was realized up to 168h after treatment with AGuIX®. As depicted in 
Figure 74, SQ20B J.L. cells continued to proliferate, whether the cells had been treated with 
0mM Gd or 0.8mM Gd in free-serum DMEM-Glutamax. 
 

 
Figure 74: Proliferation assay measuring the percentage confluency using the IncuCyte Live Cell 
Analysis (n=2). 



Results & Discussion                                           Chapter I. Characterization of the radiosensitizing effects of AGuIX® 

173 

2.2. Cell viability: Trypan Blue assay 

The trypan blue assay is a dye exclusion test widely used to monitor cellular toxicity: viable 
cells have intact cell membranes which do not allow trypan blue to enter, whereas nonviable 
cells will have a blue cytoplasm.  The percent viability was calculated by dividing the number 
of viable cells by the number of total cells (live + dead cells). 
 

 
Figure 75: Percentage of viability using the blue trypan assay (n=3). 
 

As can be observed in Figure 75, the percent viability of SQ20B J.L. cells with or without 
AGuIX® treatment remains unchanged, thus demonstrating the absence of AGuIX® toxicity. 

2.3. Mitochondrial activity: MTT assay 

A third assay was performed in order to validate the absence of toxicity following AGuIX® 
treatment: the MTT assay. This assay is a colorimetric assay for assessing the cell’s metabolic 
activity. NAD(P)H-dependent cellular oxidoreductase enzymes may, under defined conditions, 
reflect the number of viable cells present. These enzymes are capable of reducing the 
tetrazolium dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to its 
insoluble formazan, which has a purple color. Mitochondrial activity was measured starting 48 
hours after treatment, (the time 24 hours was used as a reference), until 7 days after AGuIX® 
treatment. As seen in Figure 76, AGuIX® treatment does not significantly affect mitochondrial 
activity.  
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Figure 76: Percent (%) of proliferation measured by the MTT assay (n=3). 
 

Using these three different assays, we have clearly demonstrated that the previously 
determined AGuIX® treatment conditions were not toxic to cells, nor at the cellular level (blue 
trypan assay) nor at the mitochondrial level (MTT assay). 
 

These same tests were also performed with an additional control, i.e. SQ20B J.L. cells in 
their full medium (in the presence of 10% FCS).  No significant differences were noted between 
cells that were always in full media compared to cells that had been in serum-free DMEM-
Glutamax for 24 hours. 

3. Subcellular localization of AGuIX® in SQ20B J.L. cells 
The nanoparticles’ localization inside cells once internalized is of great interest as it can 

help in the understanding of the cellular mechanisms by which radiosensitization could occur. 
We therefore focused on their localization with respect to the nucleus, mitochondria, and 
lysosomes, using AGuIX® bound to Cya5.5 for an application in confocal microscopy. 

3.1. With respect to the nucleus 

 
After twenty-four hours of incubation with AGuIX®-Cya5.5, cells were fixed in 4% PFA and 

the nuclei were stained with DAPI. Thirty-one slices were taken (Z-positions). The pictures 
taken shown in Figure 77 are representative of more than 100 cells that were imaged. 
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Figure 77: Three separate planes of the localization of AGuIX®-Cya5.5 nanoparticles in SQ20B J.L. cell 
line with respect to the nucleus with a confocal spinning-disk microscope (μLife Platform, CEA-
Grenoble). a. DAPI (nucleus); b. AGuIX® -Cya5,5; c. Merge. Experiments realized on fixed cells (4% PFA); 
60X, with S. Gerbaud- team Biomics. 
 

As shown in Figure 77, no co-localization of AGuIX® nanoparticles with the nucleus 
occurred, a result which is in accordance with previous published worked, whether with 
AGuIX® (Štefančíková et al., 2014; Kobt et al., 2016), or other types of nanoparticles. 

3.2. With respect to mitochondria 

After twenty-four hours of incubation with AGuIX®-Cya5.5, cells were put in a humidified 
chamber kept at 37°C and 5% CO2 to visualize live cells, without fixing them.  The cells were 
stained with Mitotracker-Green prior to the incubation with AGuIX®-Cya5.5.  Thirty-one slices 
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were taken (Z-positions).  The pictures taken shown in Figure 78 are representative of more 
than 100 cells that were imaged.  
 

 
Figure 78: Three separate planes of the localization of AGuIX® nanoparticles in SQ20B J.L. cell line with 
respect to mitochondria with a confocal spinning-disk microscope (μLife Platform, CEA-Grenoble). a. 
Mitotracker-green; b. AGuIX® -Cya5,5; c. Merge. Experiments realized on live cells; 60X, with S. 
Gerbaud- team Biomics. 

 
As can be observed in Figure 78, no co-localization of AGuIX®Cya5.5 nanoparticles with 

mitochondria was obtained.  This is in accordance with Štefančíková et al. (2014), who had 
also done co-localization studies between mitochondria and AGuIX®-Cya5.5.  
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3.3. With respect to lysosomes 

After twenty-four hours of incubation with AGuIX®-Cya5.5, cells were put in a humidified 
chamber kept at 37°C and 5% CO2 to visualize live cells, without fixing them.  The cells were 
stained with Lysotracker-Green prior to the incubation with AGuIX®-Cya5.5.  Thirty-one slices 
were taken (Z-positions).   
 

 
Figure 79: Three separate planes of the localization of AGuIX® nanoparticles in SQ20B J.L. cell line in 
respect to lysosomes with a confocal spinning-disk microscope (μLife Platform, CEA-Grenoble). a. 
Lysotracker-green; b. AGuIX® -Cya5,5; c. Merge. Experiment realized on live cells; 60X, with S. Gerbaud- 
team Biomics. 

 
The pictures taken shown in Figure 79 is representative of more than 100 cells that were 

imaged.  As depicted in Figure 79, we can observe a major co-localization of AGuIX®-Cya5.5 
with lysosomes whereas some free AGuIX®-Cya5.5 remain in the cytosol.  
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3.4. Kinetic study of the internalization of AGuIX® by confocal microscopy: 1h-2h-4h-
6h, with respect to the lysosomes 

This next section illustrates the kinetics of the internalization of AGuIX® nanoparticles 
inside SQ20B J.L. cells.   

 
Indeed, in Figure 80, we can observe that very few nanoparticles are internalized after one 

hour of treatment, and that as time goes by, more nanoparticles appear in the cells.  In 
addition, we observe that after 1 and 2 hours of incubation, the internalized nanoparticles are 
free in the cytoplasm as there is no co-localization between AGuIX®-Cya5.5 and lysosomes.  
However, starting at the time point of 4 hours, we start observing some co-localization.  We 
can therefore speculate that the internalization of nanoparticles by the lysosomes is a slow 
process.  Figure 80 shows one set x-and y-locations, however more than ten photos were 
taken for each time points with more than ten cells per microscopic field and the same pattern 
was observed. 
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Figure 80: Kinetic study (1-2-4-6 hours) of the localization of AGuIX® nanoparticles in SQ20B J.L. cell line 
in respect to lysosomes with a confocal spinning-disk microscope (μLife Platform, CEA-Grenoble). a. 
Lysotracker-green; b. AGuIX® -Cya5,5; c. Merge. Experiment realized on live cells, on the same x and y 
location, and Z= 16; 60X, with S. Gerbaud- team Biomics. 
 

Collectively, our results clearly indicate that under our experimental conditions, AGuIX® are 
not targeted to the nucleus nor to the mitochondria. AGuIX® mostly co-localize with 
lysosomes although some AGuIX® stay free in the cytosol. Our results are in accordance with 
those published by Štefančíková et al. (2014) which used confocal microscopy and 
transmission electron microscopy (TEM) to observe the localization of AGuIX® in U87 cells 
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(human glioblastoma cells).  In a first experiment, using label-free AGuIX® and SR-DUV 
microscopy, they showed that AGuIX® nanoparticles (free of dye) enter the cells and remain 
located exclusively in the cytoplasm.  TEM experiments confirmed these results, namely that 
no electron dense regions were found in the cell nucleus but NPs clusters appeared vesicles 
with average diameters between 400-800 nm which corresponds to endosomes and 
lysosomes (Huotari and Helenius; 2011). Moreover, membrane invagination was observed 
which would suggest that AGuIX® enter U87 cells via endocytosis.  Using confocal microscopy, 
the intra-lysosomal localization of AGuIX® was definitely proven.  This observation was also 
obtained with AGuIX® in Chinese Hamster Ovary (CHO) cells (Porcel et al., 2014).  AGuIX® 
clusters of sizes between 400-900 nm were observed regardless of the concentration used, 
0.6 or 1 mM Gd or the incubation time (1 hour, 6 hours, and 12 hours).  The authors observed 
AGuIX® in U87 cells for up to 37 hours (end time of their observation). Furthermore, after 1 
hour of incubation, TEM images revealed an AGuIX® localization in vacuoles in the cytoplasm 
in Panc-1 cells (Detappe et al., 2015).  
 

Using FITC-labeled AGuIX® particles and confocal microscopy, Kobt et al. (2016) recently 
reported that nanoparticles were inside vesicles, a result confirmed by TEM images. (Kobt et 
al., 2016).   
 

All these studies demonstrated that AGuIX® enter the cells mainly via the endocytic 
pathway and remain in vesicular structures such as lysosomes. As some AGuIX® seem to stay 
freely in the cytosol, they might enter the cells independently of the endocytic pathway or 
might have been released after lysosome leakage. However, they are never found within the 
nucleus nor the mitochondria. 
 
 
CHAPTER I TAKE-HOME MESSAGE: 
 
The conditions for the radiosensitization of SQ20B J.L. cells with AGuIX® were determined 
as follows: 0.8mM Gd for 24 hours in serum-free DMEM-Glutamax; this corresponds to 0.11 
pg of gadolinium internalized per cell.  These conditions are not toxic to cells whether at the 
cellular or the mitochondrial level.  In addition, it was demonstrated that AGuIX® are 
exclusively localized in the cytoplasm: there is no co-localization between AGuIX® 
nanoparticles and the nucleus, nor do they co-localize with the mitochondria.  AGuIX® 
nanoparticles were found to be either free in the cytosol or internalized by lysosomes.  This 
internalization by the lysosomes seemed to be a slow process as assessed by the microscopy 
kinetic study. 
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CChapter II. Study of the Oxidative Stress Induced by the combined 
treatment of AGuIX® + I.R. and its functional consequences on 
mitochondria 
 

 

wing to the physical properties of high-Z metal nanoparticles, the over-production of 
radical oxygen species (ROS) is the most widespread hypothesis for the molecular 
mechanisms underlying the expected radiosensitizing effect when used in 

combination with ionizing radiation. This hypothesis has therefore been translated for AGuIX® 
in cellular models, although this has not always been proven in vitro.   

In addition to damages to the nucleus which will be studied in Chapter IV, ionizing radiations 
can induce damages to the plasma membrane, as well as cellular organelles such as the 
mitochondria.  Mitochondria are the power-houses of a eukaryotic cell, and damages to the 
mitochondria can be an indicator of cells undergoing stress which could in turn lead to cellular 
death. 

The following chapter of the Results & Discussion section is therefore devoted to the kinetic 
study of both cytosolic (cROS) and mitochondrial (mROS) ROS in order to check if ROS and 
oxidative stress are indeed the initiating mechanisms leading to radiosensitization.  Two 
subcellular oxidative stress markers, i.e. the mitochondrial membrane potential and the 
common deletion of the mitochondrial DNA, were investigated. 

 

O 
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1. Study of the oxidative stress (cytosolic and mitochondrial reactive oxygen 
species) induced by the the combined treatment of AGuIX® + I.R.  

Besides theoretical data concerning nanoparticles irradiated in water, such information in 
cellular models is lacking. The generation of both cytosolic and mitochondrial ROS was 
therefore investigated by flow cytometry using the fluorescent probes CM-H2DCFDA and 
Mitosox for cROS (cytosolic ROS) and mROS (mitochondrial ROS), respectively.  

1.1. Cytosolic Radical Oxygen Species (cROS) 

In order to quantify the production of cROS after the combined treatment, a kinetic study 
starting right after irradiation until five days post-irradiation was performed.  A representative 
graph obtained by flow cytometry using CM-H2DCFDA is shown in Figure 81.  CM-H2CDFDA is 
a fluorescent probe allowing for the measurement of cytosolic reactive oxygen species. This 
probe is better retained in cells and diffused passively into the cells, where its acetate groups 
are cleaved by the intracellular esterases and its thiols-reactive chloromethyl group reacts 
with intracellular glutathione and other thiols. The resulting oxidation produces a fluorescent 
adduct. 

 

 
Figure 81: Kinetic study of cytosolic ROS (cROS) production, 0 to 120 hours after a 10 Gy irradiation 
measured by flow cytometry as a function of the mean fluorescence intensity. This figure is 
representative of one of three independent experiments, with triplicate samples for each condition.  
 

Under our experimental conditions, Figure 81 shows that the addition of AGuIX® did not 
induce a significant increase of cROS production compared to irradiation alone, regardless of 
the time after irradiation, except immediately after irradiation where we had a 35% increase 
of cROS with AGuIX®treatment combined with irradiation.  As previously reported in SQ20B 
J.L. cells (Alphonse et al., 2002; Bionda et al., 2008), the increase of cROS is late following the 
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exposure to radiation but the incubation with AGuIX® did not induce any additional effect for 
the times tested starting at 15 min post-irradiation.  

1.2. Mitochondrial ROS (mROS) 

As mitochondria are an important source of ROS within most mammalian cells (Turrens, 
2003), the same kinetic experiment was performed for mROS production. A representative 
graph obtained by flow cytometry using the MitoSox as a specific probe is shown in Figure 82.  
 

 
Figure 82: Kinetic study of mitochondrial ROS (mROS) production, 0 to 120 hours after a 10 Gy 
irradiation measured by flow cytometry as a function of the mean fluorescence intensity. This figure is 
representative of three independent experiments, with triplicate samples for each condition. 
 

As observed with cROS, the addition of AGuIX® does not induce any significant additional 
mROS compared to radiation alone (Figure 82), regardless the time after irradiation. As 
mentioned previously, the increase of mROS after radiation alone is delayed in time, starting 
at 24 hours after irradiation (+14% AGuIX® + irradiation versus irradiation alone) and a peak 
at 48 hours (+19%) which then decreases 72 and 120 hours after irradiation (the increase 
between the two treatments is less important). Collectively, these results are surprising 
because the incubation with AGuIX® prior to radiation was expected to enhance massively 
ROS production in SQ20B J.L. cells.  
 

However, it is well known that some cancer cells with upregulated redox and antioxidant 
ability can escape from the damaging effects of radiation by scavenging ROS, leading to 
radioresistance (Lee et al, 2004; Diehn et al., 2009). This is particularly true for the SQ20B J.L. 
cell line (Boivin et al, 2011) which exhibits a very high endogenous level of reduced 
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glutathione, the major non-enzymatic cellular anti-oxidant. By transiently inhibiting this anti-
oxidant system (4-hour treatment with DMF and BSO prior to irradiation), we were able to 
trigger apoptosis in this radio-resistant cancer cell line.  Indeed, GSH is a major ROS-scavenging 
system in cells and important redox modulating enzymes such as the peroxidases, 
peroxiredoxins and thiol reductases rely on the pool of reduced GSH as their source of 
reducing equivalents (Forman et al., 2009; Boivin et al., 2011). 

2. Kinetic study of the mitochondrial membrane potential (Ψm) after AGuIX® + 
I.R. 

The mitochondrial membrane potential is a biological marker of mitochondrial dysfunction 
which occurs before the cells enter apoptosis.  The different treatment conditions were 
studied, to see whether the combination treatment of AGuIX® + I.R. induced a bigger 
percentage drop of the mitochondrial membrane potential which would reflect a 
mitochondrial stress.  

 

 
Figure 83: Kinetic study 24-240 hours post-irradiation of the percentage drop in the mitochondrial 
membrane potential (Ψm) depending on the treatment conditions. This figure is representative of 
three independent experiments. All samples were normalized to the control (0mM Gd 0Gy), and the 
statistics was done on 0.8mM Gd 0Gy versus 0.8mM Gd 10Gy, and 0mM Gd 10Gy vs. 0.8mM Gd 10Gy. 
Statistical analysis was realized with the Student’s t test. Significant results have a p value <0.05 (*), 
<0.01 (**), or <0.005 (***). 
 

As can be observed in Figure 83, we can first conclude that the addition of AGuIX® alone 
does not induce a drop in the mitochondrial membrane potential, while 72 hours post-
irradiation, we start observing a drop of the mitochondrial membrane potential which is 
persistent through 10 days post-irradiation.  Indeed, 72 hours post-irradiation, the cells have 
a 74% drop in their mitochondrial membrane potential compared to 63.4% with the addition 
of AGuIX® (representing a greater drop by 15%), which was not significant.  However, this 
small difference is even less at T= 120 and 240 hours post-irradiation which leads to the 



Results & Discussion  Chapter II. Study of the Oxidative Stress 

186 

conclusion that we cannot report any significant differences between irradiated only cells and 
those treated with AGuIX® prior to irradiation.  Although the drop of Ψm has already been 
reported in SQ20B J.L cells following irradiation (Alphonse et al, 2002), the combined 
treatment did not have any additional effect on the alteration of the mitochondrial 
transmembrane potential (except at 72h post IR). 

3. Study of the mitochondrial DNA (mtDNA) common deletion after AGuIX® + 
I.R. 

The mitochondrial DNA (mtDNA) is also known as a target of oxidative stress and thus a 
cellular marker indicating that the cell is undergoing an oxidative attack.  In this next section, 
the common deletion of mtDNA was quantified at two different irradiation time points: 24 
and 72 hours.  24 hours was chosen in order to observe the “initial” level of damages, and 72 
hours allowed for the cells to in part recover from the irradiation and allow for replication.  It 
is important to note that mtDNA deletions induced by radiation are not immediately present 
after treatment because their formation requires mtDNA replication (Prithivirajsingh et al., 
2004; Kubota et al., 1997).  In addition, in many other assays throughout this PhD work, we 
started observing an effect of irradiation 72 hours post-irradiation, which can be explained by 
the high resistance to irradiation of these cells.  Two different irradiation doses were studied: 
4 and 10 Gy.  The results are expressed as the ratio of deleted mtDNA over the total mtDNA. 
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Figure 84: Deleted mtDNA/total mtDNA ratio for SQ20B J.L. cells following different treatment 
conditions. a. 24 hours post-irradiation. b. 72 hours post-irradiation.  Representative data of two 
independent experiments with biological triplicates. 
 

As can be seen in Figure 84, we did not observe any differences 24 hours post-irradiation 
in accordance with what is found in the literature.  Seventy-two hours after irradiation alone, 
there is no effect after a 4 Gy irradiation (deleted mtDNA/total mtDNA ratio = 1.16) while this 
ratio increased after a 10 Gy exposure (ratio deleted mtDNA/total mtDNA = 1.67.  Irradiation 
alone does not induce the common deletion of the mitochondrial DNA.  The treatment with 
AGuIX® had no influence on the deleted mtDNA/total mtDNA ratio, 24h after radiation, 
whatever the dose applied. However, 72h after a 4 Gy irradiation, we observed an increase in 
the amount of deleted mitochondrial DNA with a ratio of deleted mtDNA/total mtDNA of 2.93 
which is statistically significant, using the Student test, compared to irradiated only cells.  It is 
interesting to note that there are no differences detected after the combined treatment of 
nanoparticles with the 10 Gy irradiation. One of the hypothesis emitted was that there is a 
higher death rate of the cells that received 10 Gy and in turn had a damaged mtDNA, which 
therefore led to the measurements of cells that were able to resist the treatment.
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4. Radiosensitization after the addition of DMF/BSO treatment 
In order to bypass the antioxidant ability of SQ20B J.L. cells, we lowered their GSH content 

after the incubation with AGuIX® but prior to the irradiation. Under these conditions, we 
hypothesized that a significant increase of ROS caused by the addition of AGuIX® prior to 
radiation should be highlighted. 

4.1. Quantification of the endogenous GSH content in SQ20B J.L. cells 

According to Boivin et al. (2011), we first incubated SQ20B J.L. cells for 4h with a mixture 
of 100 μM dimethylfumarate (DMF, solubilized in DMSO), a GSH-depleting agent, and 100 μM 
L-buthionine sulfoximine (BSO, solubilized in PBS), a GSH biosynthesis inhibitor before 
measuring their endogenous GSH content. 
 

As shown in Figure 85a, control experiments showed that no major differences in the GSH 
content occurred between non-treated and AGuIX® treated cells.  As shown in Figure 85b, the 
endogenous GSH content was measured immediately after a 10Gy irradiation.  Exposure to 
radiation alone led to a decrease of the GSH content (276 μmol/l vs. 312 μmol/l in control 
cells), a decrease even more marked for cells treated with AGuIX® before irradiation (203 
μmol/l vs 312 μmol/l in control cells) was noted.  Although these values indicate that a 
significant amount of GSH was consumed after irradiation, with all the more after AGuIX® 
treatment, there remains a sufficient quantity to scavenge ROS.  
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Figure 85: Glutathione (GSH) concentration (μmol/l) measured in SQ20B J.L. cells with or without 
DMF/BSO treatment. a. Samples collected right after DMF/BSO treatment, cells were not irradiated. 
b. 24 hours after a 10Gy irradiation (n=2). 

 
Figure 85b shows that after incubation of SQ20B cells with DMF/BSO before radiation 

and/or treatment with AGuIX®, the levels of endogenous GSH were undetectable.  

4.2. Comparative study of cytosolic ROS produced with or without the addition of 
DMF/BSO 

In view of the results reported above, the kinetic study of both cROS and mROS production 
was evaluated up to four hours following a 10 Gy irradiation ± AGuIX®, with and without 
DMF/BSO.  (Note: Since we had to trypsinize and re-seed the cells starting with samples 24 
hours post-irradiation, the cells would therefore be in the absence of DMF/BSO, we decided to 
look at the prior kinetic points, up to 4 hours after irradiation, to see if there was an early boost 
of cROS post-irradiation with AGuIX® in the presence of DMF/BSO. The same was done for the 
mROS experiment).   
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When compared to Figure 87a, (without DMF/BSO treatment), the results presented in 
Figure 87b show a huge increase of cROS immediately after irradiation which is reinforced by 
the prior treatment with AGuIX®. This increase dropped at fifteen and thirty minutes until a 
second increase in cROS started after one hour and peaked four hours after irradiation. In 
both cases, treatment with AGuIX® led to a boost of cROS compared to radiation alone.  This 
will be further explained in the discussion section.   
 

 
Figure 86: Example of a flow cytometry CM-H2DCFDA analysis. a. 0mM Gd 0Gy; b. 0.8mM Gd 0Gy; c. 
0mM Gd 10Gy; d. 0.8mM Gd 10Gy; with DMF/BSO treatment prior to a 10 Gy irradiation. 
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Figure 87: Kinetic study (0-4hours) of cytosolic ROS (cROS) measured by the LSRII flow cytometer (BD 
Biosciences) using the CM-H2DCFDA assay, normalized to the non-treated non-irradiated cells. a. 
Without DMF/BSO treatment. b. With DMF/BSO treatment 4 hours prior to the 10 Gy irradiation. 
These results are representative of two independent experiments with triplicate samples for each. (p-
value *: <0.05; **<0.01; ***: <0.005). 
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4.3. Comparative study of mitochondrial ROS produced with or without the addition of 
DMF/BSO 

Compared to Figure 88a in which no differences were observed between 10Gy versus 
AGuIX® + 10Gy, depletion of cells from its GSH content resulted in a burst in mROS 
immediately after irradiation without any significant difference between irradiated cells and 
irradiated cells treated with AGuIX®. However, this increase is not maintained over time. It 
should also be noted that this initial burst of mROS is much lower quantitatively than that 
obtained for cROS. This can be in part explained by the fact that the initial ROS produced after 
water radiolysis within mitochondria should escape the organelle rapidly. As AGuIX® did not 
enter mitochondria (see Chapter I), this could explain the absence of difference between 
mROS obtained after radiation alone versus AGuIX® + radiation. 

 
Figure 88: Kinetic study (0- 4hours) of mitochondrial ROS (mROS) measured by the LSRII flow cytometer 
(BD Biosciences) using the Mitosox assay, normalized to the non-treated non-irradiated cells. a. 
Without DMF/BSO treatment. b. With DMF/BSO treatment 4 hours prior to the 10 Gy irradiation. 
Representative results of two independent experiments with triplicate samples for each. (p-value *: 
<0.05; **<0.01; ***: <0.005). 
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Figure 89: Example of a flow cytometry Mitosox analysis. a. 0mM Gd 0Gy; b. 0.8mM Gd 0Gy; c. 0mM 
Gd 10Gy; d. 0.8mM Gd 10Gy; with DMF/BSO treatment prior to a 10 Gy irradiation. 

5. Studying the effect of DMF/BSO treatment on the clonogenic survival 
assay  

As the amount of cROS is increased after the irradiation of SQ20B cells treated with 
DMF/BSO, this should have consequences on the clonogenic curve assay. 
 

 
Figure 90: Clonogenic survival assay 0-10 Gy for SQ20B J.L. cells, with various treatment protocols; +/- 
AGuIX® and +/- DMF/BSO. (exp.= experimental values; calc.= calculated values using the quadratic 
linear formula). (***, p<0.005 vs. irradiated SQ20B cells) 
 

As shown in Figure 90, an additional radiosensitizing effect occurred after depletion of the 
GSH cellular content: the 50% survival EBR increased up to 1.6, which is better than any 
currently published data.  Again, this effect is dose dependent, with an EBR (10Gy) up to 2.5 
after the addition of AGuIX® in GSH-depleted cells (see Table 24).  
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DMF/BSO WITHOUT WITH 
[Gd] (mM) 0 0,8 EBR 0 0,8 EBR 

0 Gy 1 1 - 1 1 - 
2Gy 0.76 0.67 1.134 0.71 0.51 1.392 
4Gy 0.51 0.40 1.275 0.40 0.22 1.818 
6 Gy 0.31 0.20 1.550 0.18 0.08 2.250 
8 Gy 0.17 0.09 1.889 0.06 0.03 2.000 

10 Gy 0.08 0.04 2.000 0.02 0.008 2.500 
Table 24: Calculated survival fractions at different irradiation doses (0-10 Gy) depending on the 
different treatments (+/- AGuIX® and +/- DMF/BSO). 
 
 

DMF/BSO WITHOUT WITH 
[Gd] (mM) 0 0,8 0 0,8 

α 0.11 0.164 0.1134 0.2995 
β 0.0143 0.168 0.0293 0.0187 

10% 9.3 7.8 7.1 5.7 
50% 4.1 3.2 3.3 2.1 

EBR-10% 1.192 1.246 
EBR-50% 1.281 1.571 

Table 25: Summary of the parameters evaluating the radiosensitizing effect of the addition of AGuIX® 
and/or DMF + BSO. 
 

Collectively, our results strongly suggest that the addition of the AGuIX® treatment in 
combination with irradiation is not sufficient to overflow the total anti-oxidant defenses of 
SQ20B J.L. cells, despite a significant radiosensitizing effect.  However, when cells are depleted 
from their glutathione content, the combined treatment results in an excess of oxidative stress 
when compared to radiation alone, thereby resulting in an improvement of radiosensitization. 
 
 
CHAPTER II TAKE-HOME MESSAGE: 
 
In this second chapter of Results & Discussion, we have demonstrated that no statistical 
differences in terms of cROS and mROS were produced between irradiated only and AGuIX® 
+ irradiated samples.  However, when depleting SQ20B J.L. cells from their glutathione 
content prior to irradiation, a huge increase of cROS and a moderate increase of mROS can 
occur right after irradiation, increase that is reinforced with AGuIX®. Under these 
experimental conditions, a significant improvement of the 50% EBR (close to 1.6) could be 
obtained. 
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CChapter III. Study of the different types of cellular deaths induced by 
the combination of AGuIX® + I.R. 
 

 

he clonogenic survival assay demonstrated an EBR of 1.3 when treating cells for 24 
hours with 0.8mM Gd implying that the combined treatment, AGuIX®/ionizing 
irradiation, leads to an increase in cell death, or a decrease in cell proliferation.  

However, one question remains: which type of cell death or cellular death pathway(s) is (are) 
activated with the addition of AGuIX®? 

In this next chapter, we will therefore study the five main types of radiation-induced cell death: 
apoptosis (via the total caspases activation and the Annexin V/P.I. assays), necrosis (via the 
Annexin V/P.I. assay), mitotic catastrophe (via the cell cycle distribution), senescence and 
autophagy (via the Western Blot analysis of p16 and p21 for senescence, and LC3B for 
autophagy). 

    

T 
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1. Apoptosis, Necrosis, and Mitotic Catastrophe 
As described in the bibliography section, different types of cellular deaths can result 

following ionizing radiation.  Most commonly known and observed types of deaths are 
apoptosis, necrosis, and mitotic catastrophe. Therefore, three different types of tests were 
done to answer the question whether the radiosensitizing effect observed with the addition 
of the AGuIX® treatment is a result of an increase in these cell death pathways.  The first set 
of results shown will be the results obtained using the total caspases kit for apoptosis and the 
annexin V/P.I. assay where apoptotic cells can be isolated from necrotic cells. Mitotic 
catastrophe was checked through the cells’ distribution in the different phases of the cell 
cycle. 

1.1. Total Caspases activation 

The activity of total caspases was measured by flow cytometry with a starting point at 24 
hours after irradiation until 10 days after. A representative graph obtained showing the shift 
of fluorescence intensity following a 10Gy irradiation measured by flow cytometry 10 days 
post-irradiation is represented in Figure 91. 

 
As summarized in Figure 92, the activation of caspases started at 48 hours after irradiation 

alone and increased with time up to 81.5% of positive cells at 240h compared to the control. 
However, we did not notice any significant differences between AGuIX® treated cells and 
those that were only irradiated, whatever the time course after irradiation. These results 
demonstrated that the treatment with AGuIX® does not increase the number of apoptotic 
cells under our experimental conditions.  
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Figure 91: Representative graphs at 10 days after irradiation of flow cytometry analysis measuring the 
fluorescence intensity of Alexa Fluor 488. a. 0mM Gd 0Gy; b. 0.8mM Gd 0Gy; c. 0mM Gd 10Gy; d. 
0.8mM Gd 10Gy. 
 

 
Figure 92: Kinetic study of apoptosis from 24 hours to 10 days following a 10 Gy irradiation in SQ20B 
J.L. cells using the CaspACETM FITC-VAD-FMK kit to observe the activation of total caspases following 
the different treatment conditions. An increase in the activation of caspases appears starting at 48 
hours post-irradiation (between 0.8mM Gd and 0.8mM Gd 10Gy). However, we do not observe any 
statistical differences between irradiated only and the cells that received prior AGuIX® treatment. 
Representative results of three independent experiments with triplicate samples for each. (p-value *: 
<0.05; **<0.01; ***: <0.005).
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1.2. Annexin V/P.I. 

The Annexin V/P.I. assay was used to measure necrosis, which is another irradiation-
induced cellular death pathway. In addition, this assay allowed us to confirm the results 
regarding apoptosis.  Figure 93 shows the representative graphs of Annexin V versus 
Propidium Iodide obtained by flow cytometry 10 days post-irradiation. 
 

 
Figure 93: Representative graphs of Annexin/P.I. in flow cytometry (FACSCalibur); the x-axis represents 
the cells marked by Annexin V-FITC; while the y-axis represents Propidium Iodide marked cells. If cells 
are on the bottom left corner, they are considered negative for both markers which are live cells 
(Annexin-V – and P.I. -); top left corner are cells that are positive for P.I. (Annexin-V – and P.I. +) …; top 
right are cells that are positive for both markers (Annexin-V + and P.I. +) which are the necrotic cells; 
and bottom right corner are positive only for Annexin-V (Annexin-V + and P.I. -) which are the early 
apoptotic cells.  a. 0mM Gd 0Gy; b. 0,8mM Gd 0Gy; c. 0mM Gd 10Gy; d. 0.8mM Gd 10Gy.  
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Figure 94: Kinetic study of apoptosis versus necrosis in SQ20B J.L. cells using the Annexin/P.I. kit to 
evaluate the cellular death pathways after the different treatment conditions. a. Early apoptosis. b. 
Late apoptosis/necrosis (n=1).
 

As shown in Figure 94, the addition of AGuIX® to irradiation did not induce any significant 
increase of neither apoptotic nor necrotic cells and this, regardless of the time after 
irradiation.  Concerning apoptosis, this result confirmed those obtained with the total caspase 
assay reported above.  

1.3. Study of the cell cycle 

By studying the cell cycle, we are able to observe whether cells are undergoing apoptosis 
(sub-G1) or mitotic catastrophe (polyploid cells) as well as the number of cells in the G2/M 
phase (phase where DNA damage is repaired).  Indeed, radioresistant cells have often been 



Results & Discussion  Chapter III. Study of the different types of cellular death 

201 

shown to have an increased number of cells in the G2/M phase. Figure 95 shows the raw 
results obtained from the Diva Software analysis. 
 

 
Figure 95:  Representative graphs of the cell cycle analysis 240 hours post-irradiation, using the Diva 
Software analysis after flow cytometry. a. 0mM Gd 0Gy; b. 0.8mM Gd 0Gy; c. 0mM Gd 10Gy; d. 0.8mM 
Gd 10Gy. Phases of the cell cycle: sub-G1 (P3); G1 (P4); S (P5); G2/M (P6); Polyploid (P7). 
 

As it can be observed in Figure 96, we did not observe any significant differences between 
AGuIX®-treated/irradiated cells compared to irradiated cells, whatever the cell cycle phase.  
Concerning the sub-G1 phase (apoptosis), the results confirm those obtained with the 
caspases assay as well as the P.I./Annexin reported above.  Concerning the G2/M phase, 
besides a transient increase obtained at 24h after irradiation alone, no significant differences 
between the different treatment conditions were obtained.  Finally, the percentage of 
polyploid cells remained low (around 10% for AGuIX® treated and irradiated cells), even 10 
days after irradiation.  
 

Collectively, our results allow us to conclude that the treatment with AGuIX® before 
irradiation does not induce any additional increase in apoptosis compared to irradiation only 
(confirmed with 3 different assays), nor mitotic catastrophe, nor necrosis.  
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Therefore, two other cellular deaths pathways potentially induced by ionizing radiation, 
namely senescence and autophagy, were investigated by Western Blot analysis, using p16, p21, 
and LC3B specific antibodies.  For p16, results were normalized using GAPDH, which is an 
ubiquitous protein often used for normalization purposes, whereas total proteins were used for 
the normalization of p21 and LC3B. 

2. Kinetic study of senescence 
The analysis of the expression of two proteins, namely p16 and p21, are conventionally used 

to monitor cells undergoing senescence (Stein et al, 1999).  

2.1. p16 

p16, also known as cyclin-dependent kinase inhibitor 2A, is a tumor suppressor protein as it 
slows down the cell cycle by prohibiting the progression of the cell from the G1 phase to the S 
phase. As previously mentioned, the homozygous deletion of p16 is frequently found in HNSCC.  
p16 is extensively used as a biomarker which is associated with a more favorable prognosis as 
measured by cancer-specific survival, recurrence-free survival, as well as locoregional control… 

 

 
Figure 97: p16 protein expression analysis by Western Blot. a. W/B membrane for p16 normalized by GAPDH.  
b. Calculated ratio p16/GAPDH (arbitrary units) (n=2).  
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As shown in Figure 97, p16 expression is very low or even absent in SQ20B J.L. cells, 
independent of the time after irradiation. The pre-treatment with AGuIX® did not increase the 
expression of p16, whatever the time course studied.  

2.2. p21 

p21Cip1 (also known as p21Waf1), known as cyclin dependent kinase inhibitor 1, represents a 
major target of p53 activity, thus linking DNA damage to cell cycle arrest.  
 
 

 
Figure 98: p21 protein expression analysis by Western Blot. a. W/B membrane for p21.  b. Membrane of 
total proteins used for normalization purposes. c. Calculated ratio p21/total proteins (arbitrary units) 
(n=2). 
  

As can be seen in Figure 98, there is a small increase of p21 expression in SQ20B J.L. which 
started 72h after irradiation and peaked after 120h before decreasing.  Nevertheless, no 
differences were observed after treatment with AGuIX® compared to irradiated cells alone.  We 
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can conclude that the enhanced biological effect obtained by the addition of AGuIX® does not 
involve senescence.    

3. Kinetic study of autophagy 
Autophagy was studied by Western Blot using the LC3-B antibody.  The microtubule-

associated protein 1A/1B-light chain 3 (LC3) is a soluble protein with a molecular mass of 
approximately 17 kDa that is ubiquitously distributed in mammalian tissues and cultured cells 
(Tanida et al, 2008). LC3 is the most widely used marker of autophagosomes, with the 
identification of the two isoforms: LC3B-I and LC3B-II. 

 
Figure 99: LC3B protein expression analysis via Western Blot. a. W/B membrane for LC3B (I+II).  b. 
Membrane of total proteins used for normalization purposes. c. Calculated ratio LC3B/total proteins 
(arbitrary units). This figure is representative of two independent experiments (n=2). 
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As shown in Figure 99, although no differences in LC3B protein expression occurred up to 72 
hours after irradiation, a significant increase was obtained starting at 120h after irradiation with 
a significant difference after the addition of AGuIX® compared to irradiation alone (+62.5 %).  
192h after irradiation, the increase of LC3B expression reached + 114% compared to radiation 
alone and + 350% compared to AGuIX® alone.  In addition, we can also note, that there is no 
difference in LC3B expression between non-treated and treated cells in the absence of 
irradiation, which indicates that AGuIX® alone did not induce autophagy.  

 
From these results, we can conclude that AGuIX® combined to radiation induced autophagy 

in SQ20B J.L. cells, a result which could explain the increase of the EBR obtained in Chapter 1 of 
the Results section.  
 

The objective of this chapter was to determine by which mechanism AGuIX® sensitize SQ20B 
J.L. cells to radiation therapy. Although radiation alone has been previously reported to trigger 
late apoptosis and mitotic catastrophe (Alphonse et al, 2013), our results demonstrate that 
neither apoptosis, necrosis, mitotic catastrophe, nor senescence were involved in the radio-
enhancing effect of AGuIX®. Autophagy was the only cell death pathway that was specifically 
found to be triggered after AGuIX® treatment combined with radiation. 
 

Although the radiosensitizing effect of AGuIX® was previously reported to occur in different 
cellular models (Kotb et al., 2016; Štefančíková et al., 2014; Štefančíková et al., 2016; Porcel et 
al., 2014; Detappe et al., 2015;…), none of these have presented evidence for the involvement of 
one particular type of cellular death pathway in the radiosensitizing effect obtained.  Only one 
study using DTPA-based gadolinium nanoparticles showed that the combined treatment led to 
mitotic catastrophe followed by late apoptosis.  These results were confirmed either with TEM 
microscopy as well as caspase-2 activation. Besides radiosensitization, the use of gadolinium 
oxide (Gd2O3) NPs has been very recently reported to regulate apoptosis through the 
upregulation of Bax/Bcl-2 gene expression (Alarifi et al., 2017), while the induction of apoptosis 
in MCF-7 cells was demonstrated to occur after ER stress (Wang et al., 2014) induced by 
gadolinium endohedral metallofullerenol ([Gd@C82(OH)22]n) NPs. 

Apart from gadolinium NPs, many reports have been published concerning the effect of other 
type of NPs in the triggering of apoptosis whether in association with radiotherapy or not. In 
association with radiotherapy, one can cite the effect of gold nanorods on melanoma cells (Xu et 
al., 2012), the effect of thio-glucose-bound gold nanoparticles (Glu-GNPs) on lung cancer cells 
(Wang et al., 2013), or the effect of silver NPs on glioma cells (Liu et al., 2013; Liu et al., 2016).   

 
Concerning autophagy, it was demonstrated that some NPs are able to trigger autophagy 

independently of radiation exposure: this is the case for oleic acid-coated iron oxide NPs, TiO2 
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NPs (Kenzaoui et al., 2012), silica NPs (Wei et al., 2017) or glycan-coated silver NPs (Panzarini et 
al., 2015). Combined with radiation, recent reports also presented evidence for a radiosensitizing 
effect involving autophagy: with AgNPS in glioma cells at clinically relevant megavoltage energies 
(Liu et al., 2016), copper cysteamine NPs in colorectal carcinoma (Liu et al., 2017), or selenium 
NPs in breast cancer cells (Cheng et al, 2017). By contrast, no triggering of autophagy was 
obtained in glioblastoma following the treatment with titanate nanotubes combined, or not, with 
radiation (Mirjolet et al., 2013).  

 
All these results presented clearly suggest that the cell death pathways involved either in the 

radiosensitization or in anti-cancer toxicity is dependent on the type of nanoparticle, its physico-
chemical characteristics, as well as the cellular model studied. 
 
 
CHAPTER III TAKE-HOME MESSAGE: 
 
In this third chapter of Results & Discussion, we overviewed the various types of cellular deaths 
pathways induced by ionizing radiation.  We have concluded that the enhanced biological 
response observed with the clonogenic survival assay with AGuIX® treatment was due to 
autophagy. No significant differences were noted after AGuIX® treatment combined with 
irradiation compared to irradiation alone in terms of apoptosis, necrosis, mitotic catastrophe, 
and senescence.  
 
 
 



 

208 



 

209 

CChapter IV. Study of the DNA-damage induced by AGuIX® combined with 
radiation 
 

 

s reviewed in the second chapter of the bibliography section, the main cellular target of 
ionizing radiation is DNA.  The track of a charged particle (an electron or an ion) may 
pass through and ionize the DNA directly (direct action), or ionize water molecules in the 

vicinity, thereby producing highly reactive oxygen species (ROS), which can diffuse to DNA and 
react with the target molecule (indirect action). Chemical reactions in DNA induced either by the 
direct or indirect action may result in DNA damage such as base oxidation, single strand breaks 
(SSBs) or double strand breaks (DSBs). Although base damage and SSB are of minor relevance for 
cell survival, since these lesions are essentially all repaired, a fraction of DSBs (which increases 
with radioresistance) cannot be repaired because of their higher complexity, and constitute the 
most severe DNA damage after irradiation leading to cell death, senescence, mutations, or 
genomic instability. 

Even though AGuIX® nanoparticles did not enter the nucleus, as previously seen in Chapter 1, it 
was possible that AGuIX® combined to radiation might have an effect on the cellular DNA repair 
capacities. 

In this next chapter, we have therefore studied three types of DNA-damage potentially induced 
by AGuIX® combined with radiation.  Single-strand breaks (SSBs) and oxidative DNA damage have 
been assessed by the comet assay, and double-strand breaks (DSBs) by the γH2Ax foci assay.  
Additionally, an experiment focusing on the quantification of base oxidation (namely guanine) 
was assessed via HPLC coupled to MS/MS. 

 

A 
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1. Detection of DNA single-strand-breaks (SSBs) and DNA oxidative damage 
Single-strand breaks were studied via the comet assay at four different time points (t= 0, t= 

30, t=120 min and t= 24h), and after a 4Gy irradiation (black bars).  As shown in Figure 100 panel 
a, right after irradiation (0’), the initial peak (maximum) of SSBs induced by radiation alone or 
with the combined treatment is very low as these breaks are usually repaired very rapidly. No 
further increase of SSBs was obtained, whatever the time point (panels b, c and d), after radiation 
alone or with the combined treatment.  
  

 
Figure 100: Kinetic study of single-strand breaks (-FPG) and oxidative damage (+FPG) following a 4 Gy 
irradiation +/- AGuIX® expressed in terms of the mean % tail intensity.  a. 0 min post-irradiation ; b. 30min 
post-irradiation ; c. 2 hours post-irradiation ; d. 24h post-irradiation. This figure represents biological 
triplicates of an independent experiment, but is representative of three independent experiments (n=3). 

 
After treatment with formamidopyrimidine DNA glycosylase (FPG enzyme, red bars), which 

led us to quantify the oxidation of the guanine base, an increase of base oxidation was observed 
immediately after irradiation (panel a), which remained sustained until 120 min (panel c) and 
then decreased under the control values after 24h. AGuIX® treatment combined to radiation led 
to a slight increase of 8-oxo-guanine (+ 13%) at t=0, compared to radiation alone, whereas no 
differences are observed at t= 30 minutes, two hours, and twenty-four hours post-irradiation. 
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2. Quantitative measurement of 8-oxo-guanine by HPLC-MS/MS 
In view of the results that were obtained by the comet assay (+FPG), it seemed that the 

oxidative damage occurred after the combined treatment, this immediately after irradiation.  As 
the comet assay is only a semi-quantitative method, we have sought to further quantify the 8-
oxo-guanine damages by HPLC coupled to MS/MS. 
 

Samples were therefore prepared using two irradiation doses, 4 and 10 Gy, at the same time 
points.  As can be observed in Table 26, no differences were noted between the different 
treatments as for each sample we remained in the background noise of the apparatus and we 
were therefore unable to conclude about the 8-oxo-guanine damages. 
 

However, this experiment was only done once.  Most likely, the irradiation doses are too low 
and increasing the irradiation dose to 40, or even 100 Gy, would have probably allowed the 
observation of some differences. 
 

Treatment 
conditions 

Time after irradiation (H) 
0 0.5 2 24 

0mM Gd 0Gy 0.38 0.35 0.38 0.28 
0.8mM Gd 0Gy 1.00 0.93 0.49 0.17 
0mM Gd 4Gy 0.74 0.38 0.33 0.35 
0.8mM Gd 4Gy 0.78 0.32 0.55 0.38 
0mM Gd 10Gy 0.17 0.35 0.20 0.48 
0.8mM Gd 10Gy 0.69 0.54 0.27 0.88 

 
Table 26: Quantitative measurement by HPLC-MS/MS of 8-oxo-guanine DNA damage expressed in terms 
of 8-oxodGuo/106 normal bases for different time points post-irradiation dependent on the treatment 
conditions.(Biological triplicates). 

3. Detection of DNA double-stranded breaks (DSBs) 
The γH2AX assay exploits the phosphorylation of the histone variant H2AX (resulting in γH2AX) 

in response to the induction of DNA DSBs. This event can be visualized microscopically within a 
cell using a specific fluorescent antibody. This presents an important advantage of measuring the 
number of foci in situ, thus allowing the quantitation of the radiation response in individual cells, 
and building the distribution of cells with respect to this response. 
 

3.1. Initial (30 min) and residual (24h) γH2Ax after 2 Gy irradiation 

Previous studies on SQ20B J.L. cells have identified an initial peak of γH2Ax foci 30 minutes 
post-irradiation which corresponds to the maximum of DSBs obtained, and the residual number 
of foci after DNA repair, 24 hours post-irradiation (Hanot et al., 2012).  We therefore selected 
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these two-time points in order to evaluate the impact of AGuIX® combined with a 2 Gy irradiation 
on this biomarker of DSBs. For this assay, we used an irradiation dose of 2Gy, as at greater doses, 
the quantification of γH2Ax foci are impossible to count (too many). The results are summarized 
in Figures 101-103.  The software used for the acquisition and analysis of γH2AX is Metafer 
(Metasystems, Heidelberg, Germany).  The foci’s size and intensity were independently 
determined for each independent experiment. 

 

 
Figure 101: Initial (30 minutes) and residual (24 hours) γH2Ax per nucleus after a 2Gy irradiation +/- 
AGuIX®. Duplicate slides and three independent experiment, 600+ nuclei were counted (p-value *: <0.05; 
**<0.01; ***: <0.005).

 
As can be seen in Figure 101, there are no significant differences between untreated and 

treated cells, 30 minutes after irradiation.  However, the number of residual foci (at t=24 hours) 
was slightly but significantly increased after the addition of AGuIX® (+17%; 0.8mM Gd + 2Gy 
versus 2Gy).  The quantification of DSBs was performed using microscopy images as represented 
in Figure 102 (nucleus in blue and γH2Ax foci in green).  For each independent experiment, more 
than 600 nuclei were counted. 
 

Besides the global analysis of the number of γH2Ax foci, one can also follow cell to cell 
variability of radiation-induced foci by looking at the distribution of the nuclei plotted as a 
function of the number of foci per nucleus (Figure 103). 

 
Thirty minutes after irradiation (Figure 103a), no significant differences were obtained in the 

distribution of γH2Ax foci after the combined treatment (AGuIX® + irradiation), compared to 
radiation alone. The same can be stated for Figure 103b. Indeed, in Figure 103b, which represents 
the distribution of γH2Ax foci 6h after irradiation, no significant differences were obtained in the 
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distribution of nuclei displaying γH2Ax foci after treatment with AGuIX® compared to radiation 
alone. However, for the residual γH2Ax foci (24 hours after irradiation), we can observe that the 
number of cells displaying less than 5 foci per nucleus and between 25-36 foci is greater for 
untreated, irradiated cells compared to AGuIX®-treated cells (Figure 103c).  The main result of 
this analysis was obtained with cells displaying more than 50 foci per nucleus that were 
significantly increased after treatment with AGuIX® prior to radiation compared to radiation 
alone. 
 

 
Figure 102: Representative nuclei depending on the treatment conditions and the time post-irradiation. 
Blue: nucleus (DAPI); green: γH2Ax (Alexa-Fluor 488). 
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Figure 103: Distribution classes of the number of foci/nucleus as a function of the number of nucleus 
included in the class: irradiated only cells (2Gy) versus AGuIX® + irradiated cells (0.8mM Gd 2Gy). a. 30 
minutes post-irradiation (initial number of γH2Ax); b. 6 hours post-irradiation c. 24 hours post-irradiation 
(residual γH2Ax).  300+ nuclei were counted for each condition. 
 

Collectively, these results indicate that the global analysis of the residual γH2Ax foci reported 
in Figure 101 did not reflect some interesting results such as the presence of nuclei displaying a 
very high number of residual foci which have been thus highlighted, and which probably 
represent very complex and clustered DSBs induced specifically after treatment with AGuIX®. 
Moreover, one must keep in mind that SQ20B J.L. cells do not necessarily internalize the same 
number of AGuIX® which can result in a variability of residual DSBs after irradiation. 

3.2. Kinetic study of the formation and repair of DSBs 

To study whether the combination treatment of AGuIX® + irradiation had an influence on the 
dynamics of DNA repair in SQ20B J.L. cells, we decided to perform a kinetic study with 
intermediate time points including one, two, four, and six hours post-irradiation. 
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Figure 104: Kinetic study (0-0.5-1-2-4-6-24 hours) of foci γH2Ax after a 2 Gy irradiation depending on the 
different treatment conditions. Each condition was done in biological triplicate with a minimum of 300 
nuclei quantified per biological sample. 
 

As can be observed in Figure 104, there were no significant differences between the two 
experimental conditions, i.e treatment with AGuIX® before irradiation versus irradiation alone.  
From these results, we can conclude that treatment of cells with AGuIX® before radiation had no 
influence on the kinetics of DNA repair in SQ20B J.L. cells.  
 

In order to explain the slight differences concerning the residual γH2Ax foci obtained after 
treatment with AGuIX® (see Figure 103), we should keep in mind that a maximum dose of 2Gy 
has to be used to be able to count γH2Ax foci. When referring to the clonogenic survival curve in 
Figure 72, the difference between untreated and AGuIX®-treated cells exposed to a 2Gy 
irradiation is not very important (ratio of 1.1).  This might be one limitation of the γH2Ax foci 
assay to estimate unrepaired DNA damage. 
 

Despite the absence of NPs within nuclei, the question as to whether the radiosensitizing 
effect induced by the combination treatment of AGuIX® + irradiation is dependent or not on DNA-
damage has been studied by teams working with AGuIX® as well as other metal-based 
nanoparticles as radiosensitizing agents.  Although similar results were found for initial DSBs, 
results varied for the number of residual foci, 24 hours after photons irradiation.  Indeed, an 
increase of 45% of residual DSBs compared to non-treated cells was reported in a melanoma 
model (Kobt et al., 2016), an increase of 40 % in a head and neck cell line (Wozny et al., 2017) 
whereas no increase of DSBs were obtained in glioblastoma cells after the addition of AGuIX® 
combined to radiation (Štefančíková et al., 2016).  These results strongly underline the large 
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variations in the results obtained, depending on the treatment conditions as well as the cellular 
type studied.   
 

For other metal-based NPs, such as gold nanoparticles, similar contradictory results have been 
reported. As an example, the use of 1.9 nm gold nanoparticles did not enhance radiation-induced 
DSBs formation nor inhibit DNA repair in MDA-MB-231 breast cancer cells irradiated with MV 
electrons (Jain et al., 2011).  In contrast, the combination of 50 nm citrate-coated gold NPs with 
6 MV photons resulted in an increase of DSBs in HeLa cells (Chitrani et al., 2010; Berbeco et al., 
2012). For gold NPs, It would seem that bigger diameter NPs tend to induce DNA damages, 
whereas smaller ones do not. 
 
 
CHAPTER IV TAKE-HOME MESSAGE: 
 
In this chapter focusing on the DNA-damage induced by the combination of AGuIX® with 
irradiation, it appears that despite the absence of AGuIX® within nuclei, the radiosensitization 
obtained by AGuIX® nanoparticles also involves DNA-damage.  Although only slight differences 
in the average number of residual DSBs were obtained after treatment with AGuIX® prior to 
irradiation, some significant differences were noticed in some cells that displayed a high 
number of foci per nucleus (>50) as a reflection of unrepairable complex DNA damages.   
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CChapter V. Shotgun/Bottom-up Proteomics study: preliminary 
experiments  
 

 

 lthough the cellular experiments that were undertaken in this work (ROS production 
measurement, study of the different types of I.R-induced cell deaths, DNA-damage …) 
are commonly used for the studies on the radiosensitizing effects of nanoparticles, the 

complexity of the molecular mechanisms implemented requires more efficient and informative 
experimental approaches. Among these, proteomics was chosen because the proteome reflects 
more accurately the dynamic state of a cell and can help identify a molecular signature on the 
cell’s behavior based on protein pathways as well as signaling cascades.  

The goal of this preliminary analysis was therefore to observe the change of the proteomic profile 
of SQ20B J.L. cells after AGuIX® + photon irradiation using the shotgun proteomics technique. This 
type of analysis was initiated to provide more in-depth analysis of potential protein targets and 
signaling pathways that would be modulated following this combined treatment.  

It is important to keep in mind, that this project could be in itself a thesis topic, but here, it was 
undertaken during the last months of our work to open into a new perspective that should lead 
to future work. In addition, this study should create new opportunities and challenges for those 
seeking to gain greater understanding of the mode of action of NPs at the subcellular level. 

A 
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Proteomics is the study of all the proteins of a proteome: the term proteomics arise from 
merging the term “protein” and “genomics” (Wilkins et al., 1996; James, 1997). Why did we 
choose to study proteomics instead of the genome (genomics) or transcriptome 
(transcriptomics)? Because the proteins are the end result and the direct bio-functional 
molecules in the living organisms. It is considered as a post-genomic discipline that identifies and 
quantifies all the proteins of a proteome, including expression, cellular localization, interactions, 
post-translational modification, and turnover as a function of time, space, and cell type (Zhang 
et al., 2013). There are possibly 100 000 protein forms encoded by the approximate 20 235 genes 
of the human genome (Gstaiger and Aebersold, 2009). 

The technique used was shotgun proteomics, also referred as “bottom-up” protein analysis, 
which refers to the characterization of proteins by the analysis of peptides released from the 
protein through proteolysis (Wolters et al., 2001; Yates, 2004; Link AJ et al., 1999; Yates, 1998). 
Shotgun proteomics provides an indirect measurement of proteins through peptides derived 
from proteolytic digestion of intact proteins. In a typical shotgun proteomics experiment, the 
peptide mixture is fractionated and subjected to LC-MS/MS analysis. Peptide identification is 
then achieved by comparing the tandem mass spectra derived from the peptide fragmentation 
with theoretical tandem mass spectra generated from in silico digestion of a protein database. 
Protein inference is accomplished by assigning peptide sequences to proteins. Because peptides 
can be either uniquely assigned to a single protein or shared by more than one protein, the 
identified proteins may be further scored and grouped based on their peptides (Zhang et al., 
2013). This technique was further explained previously, in the Material and Methods section, 
however it is important to keep in mind this process when analyzing and discussing the results. 

 
As introduced above, a proteomic study was performed to observe the proteins’ dynamics 24 

hours post-irradiation. This time point, which is close to the irradiation time, is important for a 
preliminary study, in order to see what strategies/mechanisms of defense the cell activates or 
disactivates following the treatment applied.  We should therefore pinpoint the disrupted 
proteins and/or signaling pathways that can lead to cell death (radiosensitization) or cell survival 
(radioresistance). 
 

The results obtained from this preliminary study are described in the next section and have 
been analyzed in two separate ways: (1) first, by using a set cut-off often discussed in scientific 
papers and chosen by both hosting labs: greater than or equal to 1.2 (for the over-expressed 
proteins), and less than or equal to 0.8 (for under-expressed proteins).  (2) Secondly, modulated 
proteins will be considered only if their expression varied by a factor of a minimum of five: an 
over-or under-expression of a factor 5.  Figure 105 summarizes the results obtained with shut-
gun proteomics with more than two-thousand proteins identified. 
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Figure 105: Summary of the raw data obtained following shot-gun proteomics for SQ20B J.L. cells and how 
the analysis can be done. 
 

We will first mention the different signaling pathways that were put in evidence when using 
two different bioinformatics tools (Database for Annotation, Vizualization, and Integrated 
Discovery (DAVID) software and Ingenuity Pathway Analysis (IPA)) with the proteins that were 
modulated by a minimum of 20%, which represented, as can be seen in Figure 105, more than 
30% of the total number of identified proteins. 

1. Analysis of proteins with a fold-change ≥ 1.2 (over-expression) or ≤0.8 
(under-expression) using the DAVID software 

1.1. DAVID Software Analysis 

When applying the cut-off ≤0.8 or ≥1.2, more than 800 proteins were identified as modulated.  
In order to analyze such a list of proteins, the software DAVIDS Bioinformatics Genomics was 
used, as described in the Materials and Methods section.  By using this software, the following 
pathways were identified (see list below, with the number of genes identified in the 
corresponding pathway): 

 
 Metabolic pathways (15 genes) 
 Valine, leucine, and isoleucine degradation (5 genes) 
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 Carbon metabolism (6 genes) 
 Butanoate metabolism (3 genes) 
 Propanoate metabolism (3 genes) 
 Beta-Alanine metabolism (3 genes) 
 Fatty acid degradation (3 genes) 
 Oxidative phosphorylation (4 genes) 
 Fatty acid metabolism (3 genes) 
 Glycolysis/Gluconeogenesis (3 genes) 
 Fatty acid elongation (2 genes) 

 
The metabolic pathway seems to be implicated in the cells’ reaction to the combined 

treatment, as 15 genes are modulated within the pathway.  It is also interesting to note that some 
of the identified pathways have a direct implication with the energy metabolism of a eukaryotic 
cell, such as oxidative phosphorylation, glycolysis/gluconeogenesis.  Since a cell needs energy in 
order to survive, and the main organelle where ATP production is produced in the mitochondria, 
these results seem to correlate with previous results obtained during the course of the PhD. 
 

These pathways are summarized in Figure 106 with the most affected metabolic pathway 
(with the most modulated proteins) being the glycan biosynthesis and metabolism as well as the 
lipid metabolism, as can be observed in Figure 106. The names of the corresponding modulated 
genes are listed in Table 27. Genes implicated in the other identified pathways by the DAVIDS 
software are listed in Table 28-31.  
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Figure 106: Modulated proteins in the metabolic pathways, with 15 genes being affected. Analysis 
performed with the DAVID Software. (*Note: the red stars represent the modulated proteins).  
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Modulated genes 
 

OVER- or UNDER-expressed in 
0.8mM Gd 10Gy 

3-hydroxyisobutyrate dehydrogenase (HIBADH) UNDER 

3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL) UNDER 

ATP synthase, H+ transporting, mitochondrial Fo complex 
subunit G(ATP5L) 

OVER 

NADH: ubiquinone oxidoreductase core subunit S3 (NDUFS3) OVER 

NADH: ubiquinone oxidoreductase subunit A12 (NDUFA12) OVER 

Acyl-CoA dehydrogenase, C-4 to C-12 straight chain (ACADM) OVER 

Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) OVER 

Aldehyde dehydrogenase 3 family member A1 (ALDH3A1) OVER 

Aldehyde dehydrogenase 4 family member A1 (ALDH4A1) OVER 

Dihydrolipoamide S-acetyltransferase (DLAT) OVER 

Enoyl-CoA hydratase, short chain 1 (ECHS1) OVER 

Hydroxyacyl-CoA dehydrogenase (HADH) UNDER 

Pyruvate dehydrogenase (lipoamide) alpha 1 (PDHA1) UNDER 

Serine hydroxymethyltransferase 2 (SHMT2) OVER 

Succinate-CoA ligase ADP-forming beta subunit (SUCLA2) UNDER 
Table 27: Modulated genes within the metabolic pathways. 
 

Table 28 summarizes the genes modulated in the carbon metabolism, while Table 29 lists 
modulated genes from the citrate cycle. 
 

Modulated genes OVER- or UNDER-expressed in 
0.8mM Gd 10Gy 

Acyl-CoA dehydrogenase, C-4 to C-12 straight chain (ACADM) OVER 

Dihydrolipoamide S-acetyltransferase (DLAT) OVER 

Enoyl-CoA hydratase, short chain 1 (ECHS1) OVER 

Pyruvate dehydrogenase (lipoamide) alpha 1 (PDHA1) OVER 

Serine hydroxymethyltransferase 2 (SHMT2) OVER 

Succinate-CoA ligase ADP forming beta subunit (SUCLA2) UNDER 
Table 28: Modulated genes in the carbon metabolism. 
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Modulated genes OVER- or UNDER-expressed in 
0.8mM Gd 10Gy 

Dihydrolipoamide S-acetyltransferase (DLAT) OVER 

Pyruvate dehydrogenase (lipoamide) alpha 1 (PDHA1) OVER 

Succinate-CoA ligase ADP-forming beta subunit (SUCLA2) UNDER 
Table 29: Modulated genes in the citrate cycle (TCA Cycle). 
 

Figure 107 schematizes the mitochondrial transport chain and the modulated proteins with 
Table 30 enumerating them.  
 

 
Figure 107: Illustration of the mitochondrial Electron Transport Chain (ETC) where oxidative 
phosphorylation occurs. (*Note: the red stars represent the modulated proteins). 
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Modulated genes OVER- or UNDER-expressed in 
0.8mM Gd 10Gy 

ATP synthase, H+ transporting, mitochondrial Fo complex subunit 
G (ATP5L) 

OVER 

NADH: ubiquinone oxidoreductase core subunit S3 (NDUFS3) OVER 

NADH: ubiquinone oxidoreductase subunit A12 (NDUFA12) OVER 

Cytochrome c oxidase subunit 7A2 (COX7A2) OVER 
Table 30: Modulated genes in the oxidative phosphorylation. 
 
 
 

Modulated genes OVER- or UNDER-expressed in 
0.8mM Gd 10Gy 

Aldehyde dehydrogenase 3 family member A1 (ALDH3A1) OVER 

Dihydrolipoamide S-acetyltransferase (DLAT) OVER 

Pyruvate dehydrogenase (lipoamide) alpha 1 (PDHA1) OVER 
Table 31: Modulated genes in the glycolysis/gluconeogenesis pathway. 
 
 

Observing the modulated genes within a signaling pathway is one way to analyze the results.  
With the DAVIDS software, we can also classify the proteins by their location and/or their 
biological functions.  Since throughout this PhD work, we, in part, wanted to observe the 
mitochondrial consequences of the combined treatment, as well as the oxido-reduction state of 
the cells, Table 32 lists the modulated mitochondrial proteins (72 proteins were identified as 
mitochondrial proteins), while Table 33 lists the modulated oxidoreductase proteins (37 
proteins).    
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Gene Name 
Fold change 

(IR/IR + 
AGuIX®) 

OVER- or UNDER-
expressed in 

0.8mM Gd 10Gy 

2,4-dienoyl-CoA reductase 1, mitochondrial(DECR1) - UNDER 

3-hydroxyisobutyrate dehydrogenase(HIBADH) 2.000 UNDER 

3-hydroxymethyl-3-methylglutaryl-CoA lyase(HMGCL) 2.000 UNDER 

5-phosphohydroxy-L-lysine phospho-lyase(PHYKPL) - UNDER 

ATP synthase, H+ transporting, mitochondrial Fo complex 
subunit D(ATP5H) 

- OVER 

ATP synthase, H+ transporting, mitochondrial Fo complex 
subunit G(ATP5L) 

0.500 OVER 

ATPase family, AAA domain containing 3B(ATAD3B) - OVER 

BCL2 like 1(BCL2L1) - OVER 

BRI3 binding protein(BRI3BP) - OVER 

G elongation factor mitochondrial 1(GFM1) 2.000 UNDER 

NADH:ubiquinone oxidoreductase core subunit S3(NDUFS3) 0.333 OVER 

NADH:ubiquinone oxidoreductase subunit A12(NDUFA12) 0.500 OVER 

NADH:ubiquinone oxidoreductase subunit A6(NDUFA6) - OVER 

NADH:ubiquinone oxidoreductase subunit S5(NDUFS5) - UNDER 

NDUFA4, mitochondrial complex associated(NDUFA4) - UNDER 

OPA1, mitochondrial dynamin like GTPase(OPA1) - UNDER 

SAMM50 sorting and assembly machinery 
component(SAMM50) 

- UNDER 

TP53 induced glycolysis regulatory phosphatase(TIGAR) 0.500 OVER 

Acyl-CoA dehydrogenase family member 9(ACAD9) 2.000 UNDER 

Acyl-CoA dehydrogenase, C-4 to C-12 straight chain(ACADM) 0.500 OVER 

Acyl-CoA thioesterase 9(ACOT9) 0.500 OVER 

Adenylate kinase 4(AK4) - UNDER 

Aldehyde dehydrogenase 4 family member A1(ALDH4A1) 0.500 OVER 

Apolipoprotein O(APOO) - OVER 

Biphenyl hydrolase like(BPHL) - OVER 

caseinolytic mitochondrial matrix peptidase proteolytic 
subunit(CLPP) 

2.000 UNDER 

Clusterin(CLU) - UNDER 

Coproporphyrinogen oxidase(CPOX) - OVER 
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Cytochrome b5 reductase 3(CYB5R3) 0.500 OVER 

Cytochrome c oxidase subunit 7A2(COX7A2) 0.500 OVER 

Cytochrome c1(CYC1) - UNDER 

Dihydrolipoamide S-acetyltransferase(DLAT) 0.500 OVER 

Dynamin 1 like(DNM1L) - UNDER 

Enoyl-CoA delta isomerase 1(ECI1) - UNDER 

Enoyl-CoA hydratase, short chain 1(ECHS1) 0.200 OVER 

Ferredoxin reductase(FDXR) - UNDER 

Glycerol-3-phosphate dehydrogenase 2(GPD2) - UNDER 

Holocytochrome c synthase(HCCS) - OVER 

Hydroxyacyl-CoA dehydrogenase(HADH) 2.000 UNDER 

Leucine zipper and EF-hand containing transmembrane 
protein 1(LETM1) 

1.500 UNDER 

Mitochondrial antiviral signaling protein(MAVS) 0.500 OVER 

Mitochondrial carrier 2(MTCH2) - OVER 

Mitochondrial ribosomal protein L24(MRPL24) - UNDER 

Mitochondrial ribosomal protein L37(MRPL37) 0.500 OVER 

Mitochondrial ribosomal protein L39(MRPL39) - OVER 

Mitochondrial ribosomal protein L4(MRPL4) - OVER 

Mitochondrial ribosomal protein L46(MRPL46) - UNDER 

Mitochondrial ribosomal protein S15(MRPS15) - UNDER 

Mitochondrial ribosomal protein S22(MRPS22) 2.000 UNDER 

Mitochondrial ribosomal protein S23(MRPS23) 0.500 OVER 

Mitochondrial ribosomal protein S25(MRPS25) - UNDER 

Mitochondrial ribosomal protein S28(MRPS28) 1.500 OVER 

Mitochondrial ribosomal protein S9(MRPS9) 2.000 UNDER 

Monoamine oxidase A(MAOA) - UNDER 

Peptidyl-tRNA hydrolase 2(PTRH2) - UNDER 

Peptidylprolyl cis/trans isomerase, NIMA-interacting 4(PIN4) - OVER 

Polyribonucleotide nucleotidyltransferase 1(PNPT1) - OVER 

Protein kinase cAMP-activated catalytic subunit 
alpha(PRKACA) 

- OVER 

Pseudouridylate synthase 1(PUS1) - OVER 

Pyruvate carboxylase(PC) - OVER 
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Pyruvate dehydrogenase (lipoamide) alpha 1(PDHA1) 0.500 UNDER 

Queuine tRNA-ribosyltransferase catalytic subunit 1(QTRT1) - UNDER 

Ras homolog family member T2(RHOT2) - OVER 

Serine hydroxymethyltransferase 2(SHMT2) 0.445 OVER 

Solute carrier family 25 member 13(SLC25A13) 0.200 OVER 

Solute carrier family 25 member 4(SLC25A4) - OVER 

Succinate-CoA ligase ADP-forming beta subunit(SUCLA2) 2.000 OVER 

Synaptojanin 2 binding protein(SYNJ2BP) - OVER 

Thioredoxin reductase 2(TXNRD2) 0.667 UNDER 

Translocase of outer mitochondrial membrane 40(TOMM40) 0.250 OVER 

Transmembrane protein 126A(TMEM126A) - OVER 

Tyrosyl-tRNA synthetase 2(YARS2) - OVER 
Table 32: Modulated mitochondrial genes. 
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Gene Name 
Fold change 

(IR/IR + 
AGuIX®) 

OVER- or UNDER-
expressed in 

0.8mM Gd 10Gy 

2,4-dienoyl-CoA reductase 1, mitochondrial(DECR1) - UNDER 

3-hydroxyisobutyrate dehydrogenase(HIBADH) 2.000 UNDER 

C-terminal binding protein 1(CTBP1) - UNDER 

C-terminal binding protein 2(CTBP2) - UNDER 

NAD(P)H quinone dehydrogenase 1(NQO1) 2.000 UNDER 

NADH:ubiquinone oxidoreductase core subunit S3(NDUFS3) 0.333 OVER 

Acyl-CoA dehydrogenase family member 9(ACAD9) 2.000 UNDER 

Acyl-CoA dehydrogenase, C-4 to C-12 straight chain(ACADM) 0.500 OVER 

Aldehyde dehydrogenase 1 family member A1(ALDH1A1) 0.500 OVER 

Aldehyde dehydrogenase 3 family member A1(ALDH3A1) 0.500 OVER 

Aldehyde dehydrogenase 4 family member A1(ALDH4A1) 0.500 OVER 

Aldo-keto reductase family 7 member A2(AKR7A2) 0.500 OVER 

AlkB homolog 5, RNA demethylase(ALKBH5) - OVER 

Biliverdin reductase B(BLVRB) 2.000 UNDER 

Carbonyl reductase 3(CBR3) - OVER 

Coproporphyrinogen oxidase(CPOX) - OVER 

Cytochrome P450 family 51 subfamily A member 1(CYP51A1) - UNDER 

Cytochrome b5 reductase 1(CYB5R1) - UNDER 

Cytochrome b5 reductase 3(CYB5R3) 0.500 OVER 

Dehydrogenase/reductase 7(DHRS7) - OVER 

Dihydrofolate reductase(DHFR) - UNDER 

Ferredoxin reductase(FDXR) - UNDER 

Glycerol-3-phosphate dehydrogenase 2(GPD2) - UNDER 

Hydroxyacyl-CoA dehydrogenase(HADH) 2.000 UNDER 

Hydroxysteroid dehydrogenase like 2(HSDL2) - OVER 

Inosine monophosphate dehydrogenase 1(IMPDH1) - OVER 

Monoamine oxidase A(MAOA) - OVER 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3(PLOD3) - UNDER 

Prolyl 3-hydroxylase 1(P3H1) - UNDER 

Pyruvate dehydrogenase (lipoamide) alpha 1(PDHA1) 0.500 OVER 

Retinol dehydrogenase 10 (all-trans)(RDH10) - OVER 
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Saccharopine dehydrogenase (putative)(SCCPDH) 2.000 UNDER 

Sepiapterin reductase (7,8-dihydrobiopterin:NADP+ 
oxidoreductase)(SPR) 

- UNDER 

Thioredoxin domain containing 12(TXNDC12) - UNDER 

Thioredoxin reductase 1(TXNRD1) - OVER 

Thioredoxin reductase 2(TXNRD2) 0.667 OVER 

Tumor protein p53 inducible protein 3(TP53I3) - UNDER 
Table 33: Modulated proteins with an oxidoreduction function. 

1.2. IPA Analysis 

When analyzing proteomics results, it is important to use multiple analysis software to 
compare and complete the analysis, one being complementary of the other.   

 
Since the results obtained were analyzed using a free trial, it is important to note that the 

number of runs was limited and not all functions of the IPA software were “activated”. However, 
several interesting facts came out during these analysis. First, the clathrin-mediated endocytosis 
pathway was clearly present due to the internalization of the nanoparticles. Next, the NRF2, 
NFκB, and Myc signaling pathways seem to play a critical role in the radiosensitization by AGuIX® 
nanoparticles. Again, the mitochondria seem to be affected with the addition of AGuIX® 
treatment. 
 

Twenty-three molecules were associated with clathrin-mediated endocytosis signaling and 
are summarized in Table 34, while the 22 modulated proteins associated with the NRF2-mediated 
oxidative stress response are listed in Table 35. 
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Gene Name 
OVER or UNDER-

expressed in  
0.8mM Gd 10Gy 

Localization Type(s) 

Actin gamma 1 OVER Cytoplasm Other 

ARP3 actin related protein 3 homolog UNDER Plasma membrane Other 

Adaptor related protein complex 1 
beta 

OVER Cytoplasm Transporter 

Adaptor related protein complex 2 UNDER Cytoplasm Transporter 

Adaptor related protein complex 2 
beta 

UNDER Plasma membrane Transporter 

Apolipoprotein A1 UNDER Extracellular Space Transporter 

ADP ribosvlation factor 6 OVER Plasma Membrane Transporter 

Actin related protein 2/3 complex OVER Cytoplasm Other 

Cell division cycle 42 UNDER Cytoplasm Enzyme 

Clathrin light chain B OVER Plasma membrane Other 

Clusterin UNDER Cytoplasm Other 

Casein kinase 2 alpha 2 OVER Cytoplasm Kinase 

Casein kinase 2 beta UNDER Cytoplasm Kinase 

Cortactin UNDER Plasma Membrane Other 

Dynamin 1 like UNDER Cytoplasm Enzyme 

Hepatocyte growth factor-regulated OVER Cytoplasm Other 

Heat shock protein family A (Hsp70) UNDER Cytoplasm Enzyme 

Integrin subunit beta 1 UNDER Plasma Membrane Transmembrane 
Receptor 

Myosin VI OVER Cytoplasm Other 

Myosin IE OVER Cytoplasm Enzyme 

Prenylcysteine Oxidase 1 OVER Cytoplasm Enzyme 

Phosphatidylinositol binding clathrin UNDER Cytoplasm Other 

Ras-related C3 botulinum toxin OVER Plasma Membrane Enzyme 

Table 34: List of the 23 modulated proteins associated with clathrin-mediated endocytosis signaling. Gene 
name, over-or under-expressed, cell localization, and corresponding type.  
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Gene Name 
OVER or UNDER-

expressed in 
0.8mM Gd 10Gy 

Localization Type(s) 

Actin gamma 1 OVER Cytoplasm Other 
Aldo-keto reductase family 7 
member A2 

UNDER Cytoplasm Enzyme 

Caseinolytic mitochondrial 
matrix 

OVER Cytoplasm Peptidase 

CREB binding protein UNDER Nucleus Transcription regulator 
Cullin 3 OVER Nucleus Enzyme 
DnaJ heat shock protein family 
(Hsp40) Member A2 

UNDER Nucleus Enzyme 

DnaJ heat shock protein family 
(Hsp40) Member A3 

OVER Cytoplasm Other 

DnaJ heat shock protein family 
(Hsp40) Member JB11 

OVER Cytoplasm Other 

DnaJ heat shock protein family 
(Hsp40) Member C8 

UNDER Nucleus Other 

DnaJ heat shock protein family 
(Hsp40) Member C9 

OVER Nucleus Other 

DnaJ heat shock protein family 
(Hsp40) Member C10 

UNDER Cytoplasm Enzyme 

Epoxide hydrolase 1 OVER Cytoplasm Peptidase 
FK506 binding protein 5 UNDER Nucleus Enzyme 
Glutathione S-transferase theta 
1 

OVER Cytoplasm Enzyme 

3-hydroxyacyl-CoA dehydratase 
3 

UNDER Cytoplasm Enzyme 

Mitogen-activated protein 
kinase kinase 1 

UNDER Cytoplasm Kinase 

Microsomal glutathione S-
transferase 2 

UNDER Cytoplasm Enzyme 

NAD(P)H quinone 
dehydrogenase 1 

OVER Cytoplasm Enzyme 

NRAS proto-oncogene GTPase OVER Plasma 
Membrane 

Enzyme 

Protein kinase C iota OVER Cytoplasm Kinase 
Thioredoxin UNDER Cytoplasm Enzyme 
Thioredoxin reductase 1 OVER Cytoplasm Enzyme 

Table 35: List of the 22 modulated proteins associated with NRF2-mediated oxidative stress response. 
Gene name, over-or under-expressed, cell localization, and corresponding type.  
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Although one might argue that an over- or under- expression of 20% is small, in biology, a 
small variation can have an important biological impact.  This is why we thought it was interesting 
to analyze the proteomic results obtained using these low cut-off values. 

2. Analysis of proteins with a fold change of 5X over or under-expressed: the 
identification of 16 modulated proteins 

The analysis was then focused by restricting even more the cut-off of what was considered 
significant: the cut-off was therefore set by taking into account a change in protein expression 
starting at 5 times over or under-expressed: in this case, sixteen proteins were identified and are 
summarized in the table below (Table 36). 

Protein 
OVER or UNDER-

expressed in 
0.8mM Gd 10Gy 

Localization 

Heterogeneous nuclear ribonucleoprotein L UNDER Nucleus/Cytoplasm 
S-formylglutathione hydrolase OVER Cytoplasm 
Crk-like protein OVER Cytoplasm 
Calcium-binding mitochondrial carrier 
protein Aralar2 

OVER Mitochondria 

Proteasome subunit beta type OVER Nucleus/Cytoplasm 
cDNA FLI78268, highly similar to homo 
sapiens fusion 

OVER Nucleus 

cDNA FLI78655, highly similar to Homo 
sapiens exportin 5 (XPO5) 

OVER Nucleus 

Urindine phosphorylase 1 OVER Cytoplasm, association with 
cytoskeleton 

FACT complex subunit SPT16 UNDER Nucleus 
Nuclear cap binding protein subunit 1 UNDER Cytosol, mitochondrion nuclear cap 

binding complex, nucleoplasm 
AP-2 complex subunit beta UNDER Plasma membrane 
Polyadenylate-binding protein UNDER Cytosol/nucleus 
Low-molecular weight phosphotyrosine 
protein phosphatase 

UNDER Cytosol 

H.Sapiens ras-related Hrab1A protein UNDER Endoplasmic reticulum 
Nuclear pore complex protein Nup205 UNDER Nuclear membrane 
Ribonucleoside-diphospate reductase UNDER Cytoplasm 

Table 36: List of proteins with an over- or under- expression of at least 5 times with its cellular localization. 
 

After reviewing the literature on the above-cited proteins, we focused on the ribonucleoside-
diphosphate reductase (RNR) as a potential promising target, which was found to be under-
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expressed after treatment with AGuIX® nanoparticles in addition to the irradiation. Indeed, RNR 
has already been identified, and serves as a prognostic and predictive biomarker in many 
different types of cancers (i.e. in hepatocellular carcinoma, thyroid carcinoma, colorectal cancers, 
pancreatic cancers, nasopharyngal carcinoma, …) Moreover, an elevated RNR activity and/or the 
over-expression of this protein has been related to an increase of drug resistance as well as an 
increase of both the angiogenic and invasive potential of the cancer cells.  

 
Ribonucleotide-reductase (RNR) is a unique enzyme, because it is responsible for reducing 

ribonucleotides to their corresponding deoxyribonucleotides, which are the building blocks 
required for DNA replication and repair. Dysregulated RR activity is therefore associated with 
genomic instability, malignant transformation, and cancer development. RNR is composed of two 
sub-units: RRM1 and RRM2, containing two homodimers.  RRM1 contains allosteric regulatory 
sites and catalytic domain, while RRM2 contains two irons for catalytic activity.  RRM2 is inducible 
by p53 and is necessary for DNA repair, as well as mitochondrial DNA maintenance for example. 

 
This protein has already been the topic of several studies for its potential as a therapeutic 

target in some cancers via the use, in particular, of siRNA directed against RNR.  Studies include 
its inhibition via an siRNA to reverse tamoxifen resistance in breast cancer (Shah et al., 2014), the 
suppression of oral squamous cell carcinoma (OSCC) cell growth (Iwamoto et al., 2015), the 
induction of autophagy in hepatocellular carcinoma (Chen et al., 2014), as well as the reduction 
of cell proliferation and invasion via apoptosis induction in gastric adenocarcinoma (Kang et al., 
2014). Moreover, two studies by Rahman et al., using siRNA nanoparticles targeting RRM2, 
demonstrated an induction of apoptosis, the suppression of cell proliferation, and an inhibition 
of the tumors’ growth (Rahman et al., 2012), regulated via an increase of Bcl-2 degradation 
(Rahman et al., 2013). The use of gemcitabine, an RNR inhibitor, allowed the restoration of 
docetaxel sensitivity in OSCC. The targeting of RNR with a microRNA inhibited glioma 
proliferation (Jiang et al., 2017), and the combination of clofarabine and the inhibition of RNR 
with a siRNA caused the reduction of xenografts in multiple myeloma (Sagawa et al., 2017). 

 
The study of RNR as a potential target in HNSCC has also been extensively studied, in vitro, in 

vivo, and in clinical trials.  Indeed, an in vitro and in vivo efficacy of the combined treatment of 
hydroxyurea, an RNR inhibitor, with a histone deacetylase inhibitor (valproic acid, VPA) on HNSCC 
cell lines freshly established from human tumors, was demonstrated.  This effect was shown to 
be induced by BIM induction and EGFR down-regulation (Stauber et al., 2012). We can also cite 
two clinical trials using RNR inhibitors.  First, there is an ongoing Phase II assay on 27 grade III and 
grade IV patients studying the radiosensitizing effect of gemcitabine, an RNR inhibitor, however 
important side effects remain a hold-back (Agular-Ponce et al., 2004). Secondly, a phase II assay 
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on 32 patients with recurrent and metastatic HNSCC was undertaken with 3-AP Triapine, a RNR 
inhibitor, but showed only a modest effect (Nutting et al., 2009).   

 
Western Blot analysis was needed to be performed in order to validate this under-expression 

of RNR when SQ20B J.L. cells are treated with AGuIX®. RRM1 and RRM2 specific antibodies were 
therefore used. Our first experiments with anti-RRM1 antibody did not give any results, in terms 
of expression following the combined treatment. Actually, the modulation of RRM2 expression, 
via the validation by Western Blot experiments, is still in progress. One must keep in mind that 
the analysis of the proteome under our experimental conditions constitute preliminary 
experiments that need to be strengthened in the near future. 

  
At the time point-chosen, twenty-four hours post-irradiation, we are able to observe, not only 

proteins that would in the long-term lead to cell death, but also proteins that could help the cells 
to resist cell death (those radioresistant mechanisms activated by the cells).  It would have been 
interesting to do a kinetic study in time, perhaps up to 240 hours post-irradiation (end-point of 
the clonogenic survival curve assay), to observe what proteins were still over- or under-
expressed.  We would expect that after the combined treatment of AGuIX® and I.R., proteins 
leading to cell survival (resistance) would be under-expressed, while those leading to cell death 
would be over-expressed. It is clear from this preliminary proteomic study that the resulting cell 
death by the radiosensitization of AGuIX® is the result of multiple signaling pathways.  

 
In this chapter, we have shown that proteomics is certainly a very powerful and useful 

approach in our problematic. This technique could also allow us to understand the link between 
lysosome, autophagy, and complex DNA damage highlighted in this work after the combined 
treatment of AGuIX® and radiation. 
 

 

CHAPTER V TAKE-HOME MESSAGE: 
 
Shot-Gun Proteomics is a powerful approach which allowed us to isolate 2000 + proteins with 
more that 800 proteins modulated when the fold-change IR/0.8mM Gd + IR cut-off was set at 
≥1.2 or ≤0.8. When using bioinformatics tools, it was observed that the energetic metabolism 
of the cell was probably affected. 
 
When the cut-off was set at 5X OVER- or UNDER- expressed, 16 proteins were modulated, 
among which the ribonucleoside-disphosphate reductase caught our attention as it impacts 
cancer susceptibility, and can serve as a target for anti-cancer therapies.  
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Head and neck cancer represents a major worldwide health concern, with 90% classified as 
squamous cell carcinoma. These cancers arise from the epithelial lining of the oral cavity, 
oropharynx, larynx and hypopharynx (Jemal et al., 2007; Boyle and Levin, 2008), and is strongly 
associated with certain lifestyle risk factors including tobacco, alcohol consumption. More 
recently, the infection by HPV 16 or 18 was also identified as a risk factor (Kreimer et al., 2005). 
The five-year overall survival rate of HNSCC patients is quite low, as it remains between 40 and 
50%.  This low 5-year survival rate can be, in part, attributed to the fact that 2/3rd of patients 
present Stage III, IVa/b at diagnosis, which is advanced and therefore requires a much harsher 
treatment, yet less effective. Indeed, the remaining one-third of the patients diagnosed at an 
early stage of the disease (Stage I or II) has a rather optimal survival rate, and the treatment 
usually involves a single treatment modality with either surgery or radiation, as chemotherapy or 
a combination of chemotherapy and radiation is not indicated in these cases. For Stage III/IV 
patients, postoperative concomitant chemo-radiation, which is a much heavier treatment plan, 
has huge impacts on the patients’ quality of life associated with a low survival rate.  For all these 
reasons, HNSCC remains an important worldwide health concern, ranked amongst the top cancer 
in terms of diagnostics as well as for cancer-related deaths, due to its high recurrence and 
radioresistance. 

 
While radiation therapy plays an essential role in HNSCC treatment, its therapeutic efficacy is 

hindered by treatment-associated toxicity and tumor recurrence. The use of radiotherapy in 
HNSCC has one main limitation which is the close proximity of numerous radiation-sensitive 
organs in the head and neck area. Careful radiation planning is needed in order to preserve the 
organs’ function and the patients’ quality of life, while keeping in mind that the radiotherapeutic 
dose delivered must be maximized in order to achieve loco-regional tumor control and patient 
survival. Indeed, toxicity to surrounding healthy tissues limits the dose deliverable to the patient.  
In order to reduce this toxicity, conventional RT is based on a fractionated regime, (Joiner, 2009) 
(for HNSCC, doses of 2Gy 5 times a week for 7 weeks, totaling a dose of 70Gy). This fractionation 
allows for the recovery of healthy tissues to sub-lethal irradiation doses (known as the optimal 
therapeutic window) (Baskar et al., 2012; Kim and Tannock, 2005).  In addition, HNSCC tumors 
include a high degree of heterogeneity in genotype, phenotype, and microenvironment, leading 
to a variability in their radiation sensitivity and responses in different populations of tumor cells 
(Meacham and Morrison, 2013; Burrell et al., 2013, Junttila and de Sauvage, 2013). 

 
In order to counteract radioresistance and overcome its limitations, it is necessary to combine 

radiotherapy with an agent that will increase the dose delivered to the tumor while sparing the 
healthy tissue, which defines a performing radiosensitizing agent. Up to now, the only recent 
radiosensitizing agent approved by the FDA, is cetuximab, an EGFR antibody but   its success 
remains disappointing. In order to develop efficient radiosensitizing agents for HNSCC, it is 



General Discussion 

242 

important to improve our understanding on the different mechanisms underlying HNSCC 
radioresistance.  

 
One thoroughly studied pathway is the DNA damage response (DDR).  Alterations of the DDR 

in cancer cells strongly contribute to radioresistance by preventing mutations and/or cell death. 
A strong link has been identified between Ku80 and radioresistance, as its overexpression has 
been linked with markedly worsened locoregional recurrence and overall survival (Moeller et al., 
2011; Chang et al., 2006; Nimura et al., 2007; Chang et al., 2008). Two additional proteins were 
identified for their implication in radioresistance due to their involvement in NHEJ DDR are PARP 
(poly-(ADP-ribose) polymerase) (Nowsheen et al., 2011) and the enzyme TRIP 13 (Scheckenbach 
et al., 2014). The overexpression and mutation of Rad-51, a homologous recombination (HR) 
factor was associated with worse clinical outcomes for chemoradiation. Therefore, both NHEJ 
and HR were identified as pathways that play an important role in radioresistance. ATM and ATR 
are two proteins particularly vital in the initiation of DDR, and their subsequent promotion of 
DNA repair through HR and NHEJ. These proteins play a role in the regulation of the cell cycle 
progression using checkpoint kinases 1/2 (CHEK1/2) to control cyclin dependent kinase (CDK) 
activity in order to delay the cell cycle and allow time to repair the cells. The understanding of 
these mechanisms led to effectively elicit radiosensitization of HNSCC if the ATM-CHEK2 and ATR-
CHEK1 pathways were disrupted (Sankunny et al., 2014; Mansour et al., 2013). However, the 
knockdown of CDK2 sensitized HNSCC cell to radiation in monolayer culture, but failed to 
significantly do so in a physiologically representation cell culture model which used a 3D 
extracellular matrix (ECM) (Soffar et al., 2013). 

 
A well-known protein, with a role as a central regulator of many cellular processes and which 

has a very important role and influence in the radioresistance of HNSCC by contributions to the 
DDR and cell death, is p53. Indeed, mutant p53 is thought to contribute to radiation failure in 
HNSCC (Alsner et al., 2001; Koch et al., 1996; Alsner et al., 2001). The use of metformin 
potentialized radiotherapy both in vitro and in vivo on TP53 mutational status, while no influence 
was observed on wild-type TP53. In an effort to understand this phenomenon, the authors 
hypothesized that cells with mutated TP53 favor the glycolytic metabolic pathway for energy 
production, which would explain their sensitivity to metformin (Sandulache et al., 2012). Patients 
receiving post-operative radiation therapy and are concurrently treated with metformin had less 
locoregional recurrence and improved survival compared with matched controls (85% vs. 41%) 
(Skinner et al., 2012). A Phase I dose-finding study in HNSCC to examine the addition of 
metformin to chemoradiation is underway (NCT02325401). 

 
Cell cycle modulators such as SAR-020106, a CHEK1 inhibitor, promoted mitotic entry of cells 

after radiation-induced G2/M arrest, which in turn led to an increased apoptosis in p53-deficient 
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HNSCC cells. In this study, reduced tumor growth with no evidence of metastasis nor toxicity 
were observed in a mouse xenograft model that had received the combined treatment of SAR-
020106 with irradiation (Borst et al., 2013). No clinical trials are ongoing for SAR-020106, but a 
phase I trial for CCT245737, another isolated CHEK1 inhibitor is underway. Another compound of 
interest is P276-00 which inhibits the cyclin-d/CD4/P16/pRB/E2F axis and can induce apoptosis 
by triggering G1/S arrest (Mishra et al., 2013). Other agents include Olaparib, a PARP inhibitor, 
which showed an additive effect when treated in combination with PF-0477736, a CHEK1 
inhibitor on HPV-positive HNSCC cell lines. A phase I trial combining Olaparib and cetuximab, with 
RT in advanced HNSCC is currently ongoing (NCT01758731).  

 
Other radioresistant features of HNSCC include for example the tumor’s microenvironment, 

the interplay of immune response to radiation therapy, the cancer stem cell paradigm and the 
dysfunction of pathways leading to apoptotic cell death. Indeed, the epidermal growth factor 
receptor is responsible for an aberrant signaling which can mediate resistance to radiation by 
modifying the induction of apoptosis. Pathways downstream of EGFR, such as PI3K/Akt/mTOR or 
MAPK/ERK, may also contribute to the radioresistance by mitigating apoptosis (Ettl et al., 2015; 
Nakagawa et al., 2012). We already mentioned that Cetuximab, an anti-EGFR drug approved by 
the FDA was disappointing in terms of efficacy. Focus therefore turned to fully-humanized 
monoclonal EGFR antibodies such as Panitumumab. However, Panitumumab plus RT had similar 
outcomes to chemoradiotherapy in locoregional control at two-year follow-up (51% versus 61%, 
respectively) with the regimens showing a similar toxicity profile (Giralt et al., 2015). 
Nevertheless, it was demonstrated that the inhibition of EGFR in HNSCC can actually trigger a 
tumor promoting inflammatory response via NOX4, which could partly explain the disappointing 
results obtained with Cetuximab and Panitumumab. In addition, therapeutic failure of EGFR 
inhibition may occur due to the superfluous effects of EGFR’s downstream pathways MAPK/ERK 
and PI3K/Akt/mTOR, which promote NHEJ DNA repair via DNA-PKs (Saki et al., 2013; Toulany et 
al., 2005; Minjgee et al., 2011; Gupta et al., 2002). Therefore, another approach was the 
development of tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, which can act on 
the intracellular portion of the receptor to inhibit phosphorylation of downstream effectors. Up 
to now, an ongoing Phase II trial did not show any improvements in term of outcomes and an 
increased toxicity was observed (Rodriguez et al., 2012).  

 
As both cetuximab and TKIs have encountered low response rates in clinical practice, EGFR 

antisense DNA has also been investigated as another way to target EGFR signaling (Lai et al., 
2009). Phase I trials using EGFR antisense DNA with Cetuximab and radiation therapy are ongoing 
(NCT0090346, NCT01592721). Besides these trials, other small molecules such as panobinostat 
(an histone deacetylase inhibitor), or dasatinib, a Bcr-Abl and Src family tyrosine kinase inhibitor, 
are under clinical evaluation. Figure 8 summarizes these different targeted pathways.  
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Figure 108: Molecular-targeted therapies in development for the treatment of head and neck squamous 
cell carcinoma. Arrows indicate signal modulation and bars denote inhibition. (Yamamoto et al., 2016) 

 
Research in the development of radiosensitizing strategies has also focused on the 

improvement of radiotherapy efficacy in terms of increase of the dose delivered to the tumor 
while sparing the surrounding healthy tissues. These radiosensitizing strategies will play on one 
or more, of the 5 Rs of Radiobiology (namely Repair, Redistribution, Reoxygenation, 
Repopulation, and intrinsic Radiosensitivity) which are considered as the biological factors that 
determine the “success or failure” of RT (Steel et al., 1989; Pajonk et al., 2010; Brown et al., 
2014). One option, among others, the use of nanoparticles. As overviewed in the bibliography 
section (see Chapter 3), different types of nanoparticles can be used as radiation sensitizers 
(metal-based, quantum dots, superparamagnetic iron oxides and non-metal-based 
nanoparticles). Among these, high-Z metal nanoparticles and in particular gold nanoparticles 
have received much attention for their radiosensitizing potential. As stated in the review 
published by Cui et al. (2017), a radiosensitizer enhances radiation therapy at different levels:  

 
- at the molecular and cellular levels, by modifying pathways involved in DNA repair, cell 

cycle checkpoint and progression, as well as cellular death and proliferation (to achieve 
higher levels of cell death by irradiation).  

- at the tissue level, by preventing the tumor regrowth by killing subpopulations of cancer 
cells that would normally be radioresistant (i.e. those under hypoxia or in the S phase), by 
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inhibiting tumor angiogenesis or reducing tumor hypoxia prior to irradiation, by regulating 
the function of tumor blood vessels as well as diminishing oxygen and nutrient supply and 
by damaging tumor blood vessels post irradiation (Seiwert et al., 2007: Ma et al., 2003).  

 
Moreover, during the developmental stage of any kind of drug, one must keep in mind the 

requirements for its clinical translation. As stated by Coleman and Mitchell (1999) and Wardman 
(Wardmann, 2007), there are a number of key items that must be examined including (1) the 
identification of targets of the radiosensitizer; (2) the accessibility of radiosensitizer targets for 
radiosensitization; (3) the stability of the targets and finally, the (4) toxicity of the 
radiosensitizer enhanced RT to tumor relative to normal tissues. These identified steps for gold 
nanoparticles can be translated to all types of NPs, such as the gadolinium-based nanoparticles 
used in this study. 

Although the use of nanoparticles, as radiosensitizers has been extensively studied, the 
translation into clinics is still insufficient. As reviewed by Brun and Sicard-Roselli (2016), many 
unanswered questions remain among which the lack of consensus between the different studies. 
As an example, the cell line, radiation energy, physicochemical properties of the NPs (size, shape, 
and surfactant used), concentrations, incubation times have varied significantly in the different 
studies which makes it near to impossible to make comparisons which in turn would lead to 
meaningful conclusions (since we are not comparing the exact same things) (Jain et al., 2011; 
Coulter et al., 2012). However, consistent findings concerning AuNPs radiosensitization between 
these studies led to interesting points:  

(1) AuNPs enhance the effects of high energy photon RT where the Compton effect dominates 
(Kong et al., 2008; Rahman et al., 2009; Chithrani et al., 2010), providing evidence that they can 
be used at clinically relevant energies;  

(2) their cellular localization in close proximity to biological components has a great impact on 
their radiosensitization capabilities;  

(3) they are found to be sequestered as clusters in endosomal and lysosomal vacuoles 
following cell entry. The impact of the nanoparticle’s size is influenced at the level of the cellular 
uptake, rather than an influence on the biological impact once internalized, and the manner of 
energy deposition of electrons generated following NPs + IR (Chithrani et al., 2010; Chithrani et 
al., 2010); and lastly  

(4) hypoxia has been reported to diminish radiosensitization by AuNPs, due to the important 
roles of oxygen in RT (Cui et al., 2014; Jain et al., 2014).  

These different observations on AuNPs should be translated to other types of nanoparticles, 
although this remains to be demonstrated. (Cui et al., 2017).  For a successful translation to 
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clinics, the understanding of the different mechanisms that underpin its effectiveness should 
involve multidisciplinary collaborations between chemists, radiation oncologists, radiation 
physicists, and molecular biologists.  

In this work, AGuIX® nanoparticles were used to evaluate their potential as a radiosensitizing 
agent while trying to understand their potential mechanism of action at the cellular level.  AGuIX® 
are gadolinium-based nanoparticles that have been developed mainly for imaging due to their 
magnetic resonance contrast properties but they also have a potential role in radiation therapy 
as a radiosensitizer (Le Duc et al., 2011; Porcel et al., 2010; Le Duc et al., 2014; Sancey et al., 2014; 
Mignot et al., 2013; Kotb et al., 2016; Mowat et al., 2011; Štefančíková et al., 2014; Miladi et al., 
2015).  In order to improve the effectiveness of gadolinium chelators as MRI contrast agents 
(Frullano and Caravan, 2011), the formulation of AGuIX® has moved towards a macrocyclic 
chelator (DOTA) instead of a linear gadolinium chelator (DTPA). In the present study, the 
radiosensitizing potential of this new formulation of AGuIX® in the HNSCC cell model SQ20B J.L. 
was demonstrated, resulting in a SF4Gy of 1.382 with an Enhanced Biological Factor (EBR) of 1.3 
which is similar to what is currently published for other studies using AGuIX®, namely in HeLa 
(cervical cancer) (Luchette et al., 2014), Panc-1 (pancreatic cancer) (Detappe et al., 2015), U87 
(glioblastoma) (Štefančíková et al., 2014; Štefančíková et al., 2016), and B16F10 (melanoma) cells 
(Kotb et al., 2016), with DEFs varying from 1.17 to 1.54.  
 

Regarding AGuIX®, and more generally high-Z NPs, one question that is often raised concerns 
whether there is a preferential localization of AGuIX® for radiosensitization. In accordance with 
Štefančíková et al. (2014) in glioblastoma, we showed that AGuIX® are not targeted to the nucleus 
nor the mitochondria but are mostly located in lysosomes, while a few AGuIX® remain free in the 
cytosol. Similar results were also obtained in CHO cells for example, where NP clusters of sizes 
between 400-900 nm were observed in the cytoplasm regardless of the concentration used or 
incubation time (Porcel et al., 2014).  
 

One other main question addressed during this PhD was to further understand which 
connections may exist between the physical and biological effects of AGuIX®. The hypothetical 
mechanism behind the use of metal-based nanoparticles is based on the over-production of 
secondary electrons leading to an increase of cellular ROS which in turn would lead to cell death. 
Evidence obtained to date suggests that the generation of ROS as well as oxidative stress strongly 
contribute to the biological impact of gold nanoparticles (Taggart et al., 2014; Butterworth et al., 
2012; Nel et al., 2006; Xia et al., 2006; Cui et al., 2013; Pan et al., 2009; Mroz et al., 2008; Rim et 
al., 2013; Berbeco et al., 2012). However, only a few data are up to now available in vitro. As 
pointed out in this work, and despite of radiosensitization, the increase of ROS production 
following the combined treatment was lower than expected. One possible explanation was that 
SQ20B cells, as many other radioresistant cancer cells, exhibit upregulated antioxidant systems 
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(see Zhou et al., as a review). Previous work from our lab effectively reported that SQ20B cells 
display a high endogenous glutathione (GSH) content which largely contributes to their 
radioresistant properties. Although GSH is a major ROS-scavenging system in cells, the important 
redox modulating enzymes including the peroxidases, peroxiredoxins, and thiol reductases also 
rely on the pool of reduced GSH as their source of reducing equivalents (Boivin et al., 2011; 
Forman et al., 2009). In view of these elements, a transient GSH-depleting strategy was previously 
investigated which resulted in the radiosensitization of the SQ20B cell line used in this study 
(Boivin et al., 2011). Using the same experimental approach, i.e after GSH depletion, we clearly 
demonstrated that the pretreatment of cells with AGuIX® resulted in a net increase of cellular 
ROS after radiation thereby strongly suggesting a ROS-mediated radiosensitizing effect of AGuIX®. 
No increase of ROS was obtained in mitochondria under the same experimental conditions, 
probably because AGuIX® did not enter mitochondria. The increase of cellular ROS was further 
evidenced through the clonogenic survival curve by an increase of the EBR from 1.3 to 1.6. 
Nevertheless, one must keep in mind that it still remains very difficult, if not impossible, to 
discriminate for sure a direct production of ROS by AGuIX® as a consequence of irradiation, from 
an overproduction of ROS as a cellular response and therefore to conclude about an additive or 
a synergetic effect of irradiation and AGuIX®. Anyway, our results suggest that lowering 
endogenous antioxidant defenses could be an interesting strategy to optimize the 
radiosensitizing effect of AGuIX®. 

 
However, radical oxygen species also play a central role in carcinogenesis and a strong link 

exists between mitochondria and ROS. Indeed, ROS, in the form of superoxide, hydroxyl free 
radicals and hydrogen peroxide are produced from physiological metabolic reactions. 
Mitochondria are major contributors to cellular ROS and multiple antioxidant pathways are 
present to neutralize excess of ROS including superoxide dismutase (SOD2), glutathione, 
thioredoxin, and peroxiredoxins. The early observation that cancer cells have a high ROS levels 
compared to normal cells let to an overly simple hypothesis that inhibiting ROS could be a 
successful therapeutic strategy. However, a more complex picture was emerging, where ROS can 
stimulate signaling and proliferation whereas the concomitant upregulation of antioxidant 
pathways can prevent ROS-mediated cytotoxicity and thus may even enhance tumor survival 
(Vyas et al., 2016; Shadel and Horvath, 2015; Sullivan and Chandel, 2014). This paradigm is 
illustrated in the figure below schematically representing this “threshold” concept. 
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Figure 109: ROS levels in normal versus cancer cells. Cancer cells have elevated basic ROS level compared 
to normal cells. It can be therapeutically utilized by various anticancer agents, which further increases ROS 
generation to such as toxic level and may induce death specifically in cancer cells, but not in normal cells 
(Galadari et al., 2017). 
 

Thus, manipulating the endogenous antioxidant content is a double-edged sword that needs 
a careful evaluation before use.  

 
Next, the different types of cellular deaths known to be induced by radiation therapy 

(apoptosis, necrosis, mitotic catastrophe, senescence, and autophagy) were studied after the 
combined treatment. To our knowledge, only one study using DTPA-based gadolinium 
nanoparticles reported that the combined treatment led to an increase of mitotic catastrophe 
followed by late apoptosis (Miladi et al., 2015). Otherwise, many reports were published 
concerning the effect of other type of NPs in the triggering of apoptosis. In combination with 
radiotherapy, examples include the effect of gold nanorods on melanoma cells (Xu et al, 2012), 
the effect of thio-glucose-bound gold nanoparticles (Glu-GNPs) on lung cancer cells (Wang et al, 
2013), or the effect of silver NPs on glioma cells (Liu et al, 2013; Liu et al, 2016). With this new 
formulation of AGuIX®, no enhancement of apoptosis nor mitotic catastrophe were obtained 
after radiation. Among the other alternative cell death modalities, autophagy and/or autophagic 
cell death was the only cellular event that was significantly enhanced after AGuIX® compared to 
radiation alone. Thus, it is not particularly surprising that excessive autophagy (as obtained after 
our combined treatment) can promote cell death rather than cell survival. Although the specific 
mechanism that links between radiation and autophagy has not been well established, some 
studies have connected the mTOR pathway to radiation-induced cell death, as radiation could 
cause decreased phosphorylation of the autophosphorylation site of p-mTOR (decreased p-
mTOR/mTOR ratio) (Paglin et al, 2005). Up to now, many trials have been conducted to modulate 
autophagy for improving the outcome of cancer treatment in combination with currently used 
treatment modalities such as radiotherapy in different cancer types (Tam et al, 2017). Among 
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these, some studies using different types of nanoparticles combined with radiation presented 
evidence for a radiosensitizing effect involving autophagy: AgNPS in glioma cells at clinically 
relevant megavoltage energies (Liu et al, 2016), copper cysteamine NPs in colorectal carcinoma 
(Liu et al, 2017) or selenium NPs in breast cancer cells (Cheng et al, 2017). 

Apoptosis only accounts for 20% or less of radiation-induced cell death, strongly supporting 
the involvement of other types of I.R. induced cell-death (Schleicher et al., 2010). In our case, the 
only type of death that resulted in an enhancement between irradiation alone and the combined 
treatment was autophagy.  Autophagy, derived from “auto” (self) and “phagos” (to eat), is a 
catabolic process in which the cells digest and recycle their own cytoplasmic contents, to ensure 
healthy cellular homeostasis by eliminating waste and long-lived or damaged cellular 
constituents. Indeed, autophagy is an augmented cellular protein recycling pathway in some 
cancer cell death (PCD) type II under certain circumstances. Autophagy has a dual role in cancer, 
as autophagy help cancer cells survive under nutrient-limiting conditions by recycling protein and 
protecting cancer cells from cellular damage caused by anti-cancer drugs or ionizing radiation, 
possibly by removing damaged macromolecules or organelles.  Additionally, some anti-cancer 
therapy typically induces autophagy in proportion to noxious stimuli, and defective or excessive 
autophagy leads to autophagic cell death (Shintani et al., 2004; Lambert et al., 2008). It would 
seem that autophagy occurs more under apoptosis-defective conditions (Yousefi et al., 2006; Luo 
et al., 2007), and therefore, autophagy after irradiation plays different roles according to the 
dose of radiation and propensity of cells to undergo apoptosis after lethal damage (Jo et al., 
2015). The authors concluded that radiation-induced apoptosis occurs later than autophagy and 
is caspase-independent, which could explain the results that were obtained during this PhD work 
as no significant differences were observed between irradiation alone versus irradiation + AGuIX® 
treatment. Autophagy plays an important role in cancer because of its tumor suppressing and 
tumor protecting functions (Tam et al., 2017). The phosphatidylinositol-3-kinase (PI3K)-protein 
kinase B (Akt)-mTOR pathway is one of the most important autophagy signaling pathways in 
cancer growth and progression (Nagelkerke et al., 2015), and as it was discussed in the 
bibliography review, the PI3Ks, AKT, and mTOR signaling networks are aberrant in HNSCC 
(Molinolo et al., 2009).  

Increased autophagic cell-death induced by the combined treatment was an interesting result, 
as the role of autophagy in radiation therapy is an ongoing debate, as to whether it has a 
cytoprotective role or a cytotoxic one (Jaboin et al., 2007). Autophagy induced by radiation plays 
a bi-directional effect in the cell’s fate decision since survival or death may depend on the severity 
and duration of the stress (Li et al., 2016; Hu et al., 2016). When the stress is mild, autophagy can 
degrade and recycle damaged or unwanted cellular constituents in autophagolysosomal vesicles 
to provide additional energy supply during stress, which has an essential effect in the quality of 
control of organelles and cellular adaptation to stress (Ito et al., 2005; Hu et al., 2016). Indeed, 
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the cytoprotective function of autophagy induced by radiation is considered to reflect the cell’s 
capacity to eliminate toxic species such as free radicals and damaged and unwanted proteins or 
organelles to generate energy and metabolic precursors (Yang et al., 2015). Although some 
studies have shown that autophagy enhanced the anticancer effects of radiotherapy on patients 
affected by oral squamous cell carcinoma and glioblastoma (Wu et al., 2014; Saglar et al., 2014), 
other studies have shown that tumor resistance to radiation therapy is linked to the upregulation 
of autophagy (colon cancer, prostate cancer, glioma, nasopharyngeal, breast cancer) (Sun et al., 
2015; Yang et al., 2015). These contradictory results therefore call for an ongoing debate on the 
real role of autophagy in cancer therapy. Cytotoxic autophagy is named autophagic cell death 
and can be also called type II apoptosis (Gewirtz et al., 2009). Studies have shown that several 
proteins involved in the DNA damage repair signaling pathways or in the oxidative stress signaling 
pathways participate in the modulation of autophagy. Reactive oxygen/nitrogen species 
generated in the context of radiation exposure are essential activators of cytoplasmic signaling 
cascades such as p38 MAPK, JNK, HIF-1α, which play essential roles in the regulation of autophagy 
(Liu et al., 2014). 

 
Autophagy is therefore a double-edged sword that can either promote the destruction or the 

protection of tumor cells, based on the different tumor types and stage, and may interact with 
current treatment modalities. Figure 110 demonstrates the different outcomes of autophagy on 
cancer cells.  

 

 
Figure 110: Effects of efficient or deregulated autophagy in cancer development (Inspired from Aredia et 
al., 2012). 
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In this work, evidence is presented for an enhancement of autophagy with AGuIX® after 

radiation. As visualized with fluorescence microscopy, AGuIX® could trigger autophagic cell death 
or autosis an autophagy-dependent non-apoptotic form of cell death, characterized by unique 
morphological changes such as focal swelling of the perinuclear space or ER disappearance (Liu 
and Levine, 2015). However, at this stage of our work, our results do not really allow us to 
distinguish for sure between cell death accompanied by signs of autophagy (i.e cell death with 
autophagy) from cell death as a consequence of autophagy (autophagic cell death, such as 
autosis) (Liu and Levine, 2015). Further exploration of the crosstalk between increased autophagy 
due to AGuIX® treatment with irradiation should be further studied. 

Another interesting fact to note is the potential link that exists between lysosomes and 
autophagy, as the lysosome has an important role in this process, as shown in Figure 111. 
Lysosomes are actors of autophagy as these organelles are part of the autophagosome 
composition, without which, autophagy would not occur.  In addition, it has been very recently 
suggested that one unique and defining aspect of regulated autophagic cell death is the absolute 
requirement for lysosome membrane permeabilization (LMP) (Karch et al., 2017). Although the 
authors demonstrated the requirement of the Bax/Bak proteins to increase LMP, LMP is known 
to occur in response to a large variety of stimuli (Johansson et al., 2010), among which ROS is one 
of them (Denamur et al., 2011; Oku et al., 2017). As AGuIX® were found to be mainly localized in 
lysosomes, the exposure of cells to radiation led to an increase of ROS, most certainly in 
lysosomes. Because lysosomes are organelles extremely active in redox reaction and contain 
significant amounts of transition metals, like iron (Yu et al., 2003), ROS produced after exposure 
of AGuIX® to radiation may form other reactive species such as HO. through the Fenton reaction 
(Baird et al., 2006) which are highly deleterious to lysosomal membranes. Future studies should 
be designed to address this hypothesis.  

 
Figure 111: Autophagosome and autolysosome formation (Aredia et al., 2012). 
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In an effort to understand the effect of AGuIX® at the subcellular level, another question can 
be asked: is it mandatory to target the nucleus to have a radiosensitizing effect?  The ongoing 
debate as to whether the radiosensitizing effect induced by the combined treatment is DNA-
damage dependent or not was studied by several teams working with AGuIX®, as well as other 
metal-based NPs. Although similar results were found for initial DSBs, results varied for the 
number of residual foci, 24 hours after irradiation and AGuIX® treatment.  Indeed, an increase of 
residual DSBs, was reported in a melanoma model (Kotb et al., 2016) or in in a head and neck cell 
line (Wozny et al., 2017) whereas no increase of DSBs were obtained in glioblastoma cells 
(Štefančíková et al., 2016) under the same experimental conditions. Although the residual DSBs, 
expressed as the number of cells that still have ϒH2Ax foci 24h after the combined treatment was 
moderately increased in this study, the number of cells displaying more than 50 foci per nucleus, 
was significantly increased after treatment with AGuIX® when compared to radiation alone. This 
observation suggests that the treatment with AGuIX® caused a net increase of more complex and 
lethal DSBs compared to radiation alone, a result which is in perfect accordance with the increase 
of the α parameter obtained from the clonogenic survival curve assay. All these data strongly 
underline the large variations in the results obtained, depending on the conditions of treatment 
used, as well as the cellular type studied.  For other metal-based NPs, such as gold NPs, similar 
contradictory results have been reported. As an example, the use of 1.9 nm gold nanoparticles 
did not enhance radiation-induced DSBs formation nor inhibit DNA repair in MDA-MB-231 breast 
cancer cells irradiated with MV electrons (Jain et al., 2011), while the combination of 50 nm 
citrate-coated gold NPs with 6 MV photons resulted in an increase of DSBs in HeLa cells (Chithrani 
et al., 2010; Berbeco et al., 2012).  

 
In this study, we demonstrated that AGuIX® were able to radiosensitize SQ20B, an HNSCC cell 

line, via the induction of intracellular ROS which strengthened the radiation effect. Once taken 
up by cells, AGuIX® largely accumulated in lysosomes and resulted in the generation of further 
complex DNA damage. Moreover, autophagy and/or autophagic cell death appeared to mediate 
the effectiveness of this treatment combination. However, future studies are required to 
understand the mechanisms linking lysosomes-entrapped AGuIX® with the upregulation of 
autophagy/autophagic cell death after radiation. There seems to be a strong link between the 
regulation of ROS, autophagy, and the lysosomal metabolism, with a very fine regulation of these 
three factors which will make the balance lean to either the side of cell death or cell survival. The 
end result of radiosensitization using AGuIX® is the result of a combination of pathways, and does 
not rely on only one mechanism. As discussed, the notion of balance and threshold is very 
important in the radiosensitizing effect of AGuIX® nanoparticles in HNSCC. 
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Head and Neck cancer remains a huge health burden, ranked 6th most common cancer 
worldwide. This is in particular due to its high radioresistance against which the development of 
new performing therapeutic sensitizing strategies is needed.  By definition, a radiosensitizing 
agent should increase the radiation dose received by the tumor and increase lethal damages 
while sparing the healthy tissue in order to avoid recurrence and improve the patients’ quality of 
life.  Among the different options of radiosensitizing strategies, high-Z metal nanoparticles have 
recently been the subject of growing interest.  Nanotechnology has been proposed as a novel 
experimental field since the early 2000s, and gave rise to nanomedicine, with much promise 
being shown with regards to a potential transition into clinical practice.  

In this study, we have used a novel formulation of gadolinium-based nanoparticles, named 
AGuIX®, as a potential radiosensitizing agent on an in vitro HNSCC radioresistant cell line model, 
SQ20B J.L. The first aim of this study was to determine the best radiosensitizing conditions of 
AGuIX® in this model, and to characterize them in terms of potential toxicity, and to look for their 
cellular localization once internalized.  We successfully demonstrated that radiosensitization 
occurred in SQ20B J.L. cells when treated with 0.8 mM Gd for 24 hours in serum-free DMEM-
Glutamax. This concentration and time of incubation resulted in a SF4Gy of 1.382 and a 50% 
Enhanced Biological Factor (EBR) of 1.4. Internalized AGuIX® nanoparticles amounted to about 
0.11 pg of Gd per cell, as measured by ICP-AES, and were demonstrated by confocal microscopy 
to mostly co-localize with lysosomes but not with the nucleus nor the mitochondria. Toxicity 
assays showed that the treatment did not induce any toxicity to SQ20B J.L. cells in the absence 
of ionizing irradiation, whether at the cellular or the mitochondrial level.  

The second aim of this work was to understand the mechanisms through which the 
radiosensitizing effects of SQ20B J.L. cells with AGuIX® could occur. Indeed, one main question 
remains in the field of radiosensitization by nanoparticles: what links exist between the physical, 
chemical, and biological phases? To answer these questions, we firstly investigated the 
involvement of the oxidative stress potentially resulting from the combination of AGuIX® to 
radiation therapy. Secondly, the different types of radiation-induced cell death pathways were 
investigated to bring an explanation of what was obtained with the clonogenic survival assay. 
Thirdly, DNA-damage and repair were measured after the combined treatment, as DNA is known 
to be the primary target of radiotherapy. 

The increase in cytosolic and mitochondrial ROS was minimal when cells were treated with 
AGuIX® prior to irradiation. As radioresistant cells are most of the time overprotected against 
oxidative stress (as previously demonstrated in our lab for SQ20B J.L. cells), which in part explains 
their radioresistance capacities, we used a pharmacological approach (DMF + BSO) to deplete the 
cells from their high endogenous reduced glutathione content, four hours prior to irradiation and 
after AGuIX® treatment. Under these experimental conditions, a clear increase in cROS right after 
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irradiation occurred, reinforced by the prior treatment with AGuIX® before irradiation.  This 
phenomenon is observed again, one and four-hours post-irradiation. In terms of mROS, a 
significant increase was observed immediately after irradiation which was not maintained over 
time. This should be explained by the fact that AGuIX® do not co-localize with mitochondria, the 
initial burst probably resulting from water radiolysis products. After glutathione depletion, the 
amount of ROS was significantly increased which had an impact on the clonogenic survival curve, 
with the 50% EBR increasing from 1.281 to 1.571. Altogether, these results strongly suggested 
that the initial effect of AGuIX® was in part subdued by the endogenous high level of antioxidant 
defenses of SQ20B J.L. cells. In view of the results obtained and with regards to the involvement 
of oxidative stress in the radiosensitization process, a simultaneous antioxidant treatment with 
AGuIX® and radiation should perhaps be evaluated in vivo to improve this radiosensitizing 
strategy.  However, this should be done with extreme caution since we may keep in mind that 
antioxidant activity can have divergent effects on cancer cells depending on the cellular context. 

Concerning mitochondria, no significant differences were observed after the combined 
treatment versus radiation alone, either through the loss of the mitochondrial membrane 
potential or the amount of mROS generated. Another functional test was the measurement of 
the common deletion of mtDNA, an early oxidative stress marker for which an increase was 
obtained, 72 hours after a 4 Gy irradiation.  

Apoptosis, necrosis, mitotic catastrophe, senescence, and autophagy are classically the five 
types of cell deaths involved after radiation exposure. Our results showed that apoptosis, 
necrosis, mitotic catastrophe, and senescence remained unchanged after the combined 
treatment compared to radiation alone. Autophagy/autophagic cell death was the only cell death 
pathway that was specifically triggered after the treatment with AGuIX® before radiation. This 
result is intriguing, as autophagy is a double-edged sword in radiotherapy and cancer in general, 
with cytotoxic as well as cytoprotective roles. Further investigations should be undertaken for a 
better understanding of this finding. 

Considering DNA damage, although no differences were noted for the amount of initial double 
strand breaks (DSBs), i.e 30 minutes after a 2Gy irradiation, a significant increase of residual 
complex DSBs was obtained after the combined treatment as evidenced by the number of cells 
displaying more than 50 foci/nucleus which was significantly increased after AGuIX® treatment 
compared to radiation alone (45 nuclei with 50 or more foci/nucleus versus 23 nuclei with 50 or 
more foci/nucleus).  These results confirm those obtained through the clonogenic survival curve 
(see the increase of the α parameter) namely that AGuIX® treatment results in the persistence of 
more complex and lethal DSBs compared to radiation alone. 

In order to investigate more deeply how radiosensitization via AGuIX® could occur, a 
preliminary proteomic approach was initiated in order to highlight some subcellular targets 
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potentially involved. After setting a selective cut-off, this approach allowed us to highlight 16 
proteins that were at least 5 times over- or under-expressed when SQ20B J.L. cells were treated 
with AGuIX®. Among these, the ribonucleoside-diphosphate reductase (RNR) also known as 
ribonucleoside diphosphate reductase (rNDP) caught our attention because it is an enzyme that 
catalyzes the formation of deoxyribonucleotides from ribonucleotides and that play a 
fundamental role in the maintenance of a constant deoxyribonucleotides cellular content for cell 
division and DNA repair. Moreover, this protein has already been suggested as a promising 
prognostic and predictive biomarker in many different types of cancer: generally, its over-
expression is attributed to a bad prognosis (increase of drug resistance, increase in angiogenic 
and invasive potential of cancer cells). Therefore, its under-expression after AGuIX® + radiation, 
could be a hypothesis to explain how AGuIX® combined to radiation can radiosensitize SQ20B J.L. 
cells. Confirmation of these results by Western blotting experiments is currently under 
investigation. 

To summarize the results obtained during the course of this study, we can state the following: 
we have demonstrated that the new formulation of AGuIX® designed with DOTA as a chelating 
agent are able to radiosensitize SQ20B J.L., an HNSCC cell line, via the induction of intracellular 
ROS which strengthens the radiation effect. Once taken up by cells, AGuIX® largely accumulated 
in lysosomes and resulted in the generation of complex DNA damage. Moreover, autophagy 
and/or autophagic cell death appears to mediate the effectiveness of this treatment 
combination.  The proteomic analysis allowed the isolation of a potential target with great 
promise, the ribonucleoside-diphosphate reductase. It clearly seems that the radiosensitizing 
effect observed results from a combination of events.  

 
The results obtained during this PhD thesis are summarized in the figure below.  However, 

future studies are required to understand the mechanisms linking lysosomes-entrapped AGuIX® 
with the upregulation of autophagy/autophagic cell death after radiation. It clearly seems that 
the effect observed results from a combination of events leading to the radiosensitization of 
HNSCC and certainly not only via one mechanism. These results should also be confirmed in other 
radioresistant HNSCC cell lines before in vivo studies. The proteomic study should also be 
strengthened by taking into account the other over- and under-expressed proteins in this 
radiosensitizing protocol. 
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Figure 112: Schematic representations of results obtained following irradiation versus irradiation + 
AGuIX® treatment. 
 
 

Although there are still many questions remaining unclear and needing further investigation, 
this PhD shed, at least some light, into the potential mechanisms involved in the 
radiosensitization of SQ20B J.L. by AGuIX® nanoparticles, an essential step to move towards more 
clinical trials. 
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Introduction 

Les cancers des Voies Aérodigestives Supérieures (VADS) représentent un souci majeur de 
santé, classés au 6eme rang par ordre de fréquence. Près de 600 000 nouveaux cas sont 
diagnostiqués par an, et ceux-ci sont responsables de 350 000 morts au niveau mondial. Leurs 
taux de survie à 5 ans est inférieur à 50% : ce faible taux est dû à leur radioresistance intrinsèque 
et leur forte probabilité de récurrence. La majorité des cas de ces cancers représente des 
carcinomes de cellules squameuses et regroupe l’ensemble des cancers de la cavité buccale, 
l’oropharynx, hypopharynx ainsi que les sinus de la face. Les principaux facteurs de risques de ces 
cancers incluent notamment le tabac, l’alcool, et plus récemment, l’infection par le virus HPV 
(Human Papilloma Virus) a été identifié comme cause. Les traitements en vigueur incluent la 
chimiothérapie, la radiothérapie, ou la chirurgie, ou une combinaison entre ces différents 
traitements. Le choix du traitement dépendra de la phase à laquelle le patient est diagnostiqué 
(Stade I/II versus stades plus avancés du cancer). Les avancées récentes visent donc le 
développement de stratégies radiosensibilisantes, les nanotechnologies représentant 
actuellement un axe de recherche prometteur. 

Parmi ces nanotechnologies, l’utilisation de nanoparticules comme agent radiosensibilisant 
est très étudié, du fait de leurs très intéressantes propriétés physico-chimiques. Tout d’abord, 
leur petite taille et leur rapport surface/volume permettent d’augmenter la dose d’irradiation 
reçue par les cellules tumorales tout en épargnant les tissus sains avoisinants. Au cours de ce 
travail, nous avons utilisé des nanoparticules à base de gadolinium, les AGuIX®, qui sont 
composées d’un squelette de silice, avec des fonctions amine (NH2) sur lesquelles sont greffées 
des ions de gadolinium avec une molécule hautement chélatrice, le DOTAGA. Elles possèdent de 
multiples propriétés, essentielles pour être utilisées comme agent radiosensibilisant : une petite 
taille (entre 2-5 nm de diamètre hydrodynamique), une stabilité colloïdale élevée, une bonne 
chélation du gadolinium, une absence de toxicité in vivo ainsi qu’une excellente excrétion rénale. 
De plus, ces nanoparticules sont biocompatibles et peuvent être injectées par voie intra-
veineuse. Leur petite taille devrait optimiser leur pouvoir radiosensibilisant par un effet EPR 
élevé, ce qui permet d’augmenter la dose locale dans la tumeur tout en épargnant le tissu sain. 
De plus, les AGuIX® peuvent être utilisées en tant qu’agent de contraste pour l’IRM, ce qui en fait 
un excellent agent théranostique (utilisation pour le diagnostic et la thérapie). L’hypothèse 
mécanistique sur laquelle se base l’effet radiosensibilisant des nanoparticules à base de Z élevé 
est la suivante : les AGuIX® étant composées de nombreux atomes de gadolinium, entre 7 et 10 
par nanoparticules, l’irradiation devrait entraîner une surproduction d’électrons secondaires 
ainsi que des cascades d’électrons Auger, et donc un dépôt dose locale très élevé (de l’ordre de 
centaines de Gray) à proximité des AGuIX®. Ceci se traduit ensuite par une forte augmentation 
des radicaux libres oxygénés (RLO), qui exerceront leur effet délétère sur de multiples cibles 
subcellulaires (protéines, lipides, ADN …) avec pour conséquence l’activation de diverses voies 
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de mort cellulaires. Cette hypothèse se base pour l’instant essentiellement sur des résultats 
obtenus à l’aide de modèles théoriques et il est donc important de les valider tout d’abord sur 
des modèles cellulaires tumoraux. Le but de cette thèse a donc été est donc de démontrer 
l’efficacité des AGuIX® en tant qu’agent radiosensibilisant dans les cancers des VADS tout en 
essayant de comprendre les mécanismes de réponse de la cellule à ce traitement.  

Ce travail a été réalisé sur une lignée cellulaire des cancers des VADS radiorésistante (SF2Gy= 
0.72), les SQ20B J.L. Les nanoparticules utilisées sont donc les AGuIX®, et un irradiateur X-Rad 
320 (Energie : 250 kV, 2Gy/min, intensité : 15 mA) pour l’irradiation photonique a été utilisé. Ce 
travail a été divisé en quatre parties. La première a consisté à déterminer et valider sur notre 
modèle les conditions expérimentales optimales de radiosensibilisation par les AGuIX® et de 
préciser leur localisation subcellulaire après internalisation. Dans la suivante, nous avons voulu 
vérifier sur ce modèle cellulaire si le traitement combiné génère effectivement une surproduction 
de RLO, ceci à l’échelle de la mitochondrie mais également de la cellule entière. Une optimisation 
du traitement combiné AGuIX®/irradiation a également été testée, la lignée résistante SQ20B 
étant particulièrement bien protégée contre le stress oxydant. Ensuite, nous avons recherché si 
un type de mort cellulaire radio-induite apoptose, nécrose, catastrophe mitotique, senescence, 
ou autophagie) était augmenté ou bien spécifiquement déclenché par le traitement combiné. 
Comme conséquences de l’irradiation, différents dommages de l’ADN ont été étudiés et 
quantifiés : les cassures simples brins, les dommages oxydatifs (mesure de la 8-oxo-guanine) ainsi 
que les cassures doubles brins qui sont les cassures les plus létales. Enfin, une approche 
préliminaire de protéomique a été initiée afin d’identifier des cibles moléculaires potentielles 
impliquées dans cette radiosensibilisation. 

 
Les résultats obtenus sont divisés en cinq chapitres, avec des explications condensées qui sont 

accompagnés, pour certains chapitres, par une figure récapitulative des résultats majeurs 
obtenus. 

Chapitre I : Caractérisation de l’effet radiosensibilisant des AGuIX® 

Après avoir testé différents temps d’incubation et différentes concentrations d’AGuIX®, un 
traitement des cellules SQ20B avec à une concentration de 0.8 mM de Gd pendant 24 heures 
s’est révélé être celui donnant l’effet radiosensibilisant le plus satisfaisant. De plus, en absence 
d’irradiation, les AGuIX® ne sont pas toxiques, ni à l’échelle cellulaire, ni à l’échelle 
mitochondriale. Une fois internalisées, les AGuIX® sont presque exclusivement localisées dans les 
lysosomes ; aucune colocalisation avec le noyau ou bien les mitochondries n’ayant été observée 
par microscopie confocale. Ces résultats sont représentés dans la Figure 114 ci-dessous.  
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Figure 113: Effet radiosensibilisant des AGuIX® et leurs localisations subcellulaires. A. Courbe de survie 
clonogénique des SQ20B J.L. 0-10 Gy suite à un traitement de 0.8mM Gd pendant 24h dans du DMEM-
Glutamax sans sérum de veau fœtal. (Bleu : 0mM Gd ; rouge : 0.8 mM Gd) ; B-D : Internalisation des 
AGuIX®-Cya5.5 (rouge) en microscopie confocal de fluorescence, 60X par rapport aux B. noyaux (DAPI : 
bleue) ; C. mitochondries (Mitotracker-Vert) ; et D. lysosomes (Lysotracker-Vert). Ces images sont 
représentatives de plus de 200 cellules.  
 
Chapitre II : Etude du stress oxydant induit par le traitement combiné AGuIX® + I.R. et ses 
conséquences fonctionnelles sur l’activité mitochondriale. 

Une étude cinétique des radicaux libres oxygénées (RLO) cytosoliques (RLOc) et 
mitochondriaux (RLO)m a ensuite été réalisée après une irradiation à 10Gy pour vérifier si 
l’hypothèse mécanistique évoquée précédemment au cours des études théoriques permettait 
d’expliquer l’effet radiosensibilisant, ou son déclenchement, obtenu après traitement par les 
AGuIX®. Nous avons montré que la différence entre l’irradiation seul et le traitement combiné 
(AGuIX® + irradiation) était minime à la fois pour les RLOc et RLOm. Ces résultats nous ont surpris, 
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compte-tenu de l’effet radiosensibilisant obtenu. Cependant, il est bien connu que les cellules 
cancéreuses radiorésistantes sont le plus souvent très bien protégées par un équipement anti-
oxydant très performant qui leur permet de détoxifier tout ou partie des RLO radio-induits. En ce 
sens, une étude, faite préalablement au sein du laboratoire, avait démontré que les cellules 
SQ20B possède un taux endogène de glutathion très élevé. A l’aide d’un traitement 
pharmacologique (association DMF + BSO) permettant de dépléter la cellule de son contenu en 
glutathion après traitement avec les nanoparticules, 4 heures avant irradiation. Une étude 
cinétique de la production de RLO à des temps courts, de 0 minute à 4 heures, puis plus longs 
jusqu’à 72 heures, a ensuite été réalisée. Dans ces conditions, nous avons mettre en évidence 
une nette augmentation des RLOc a été observée juste après irradiation, augmentation encore 
plus nette avec le après pré-traitement par les AGuIX®. Après diminution une deuxième vague de 
RLOc apparait une heure et quatre heures après irradiation. Concernant les RLOm, 
l’augmentation est nette, tout de suite après irradiation mais aucune différence n’a été obtenue 
entre l’irradiation seule et le traitement combiné. Cela vient probablement du fait que les 
nanoparticules ne sont pas internalisées par les mitochondries, les RLO mesurés provenant 
uniquement de la radiolyse de l’eau. Grâce à ses expériences de déplétion, nous pouvons donc 
conclure, que les RLO jouent bien un rôle dans la radiosensibilisation observée, celle-ci étant 
minimisée dans la cellule en conditions basales, du fait de ses défenses antioxydantes élevées. 
Une courbe de survie cellulaire clonogénique a été faite après déplétion en glutathion : les 
résultats montrent que, le 50% EBR passe de 1.281 à 1.571. Les résultats obtenus pour les RLOc 
sont représentés dans la Figure 115.  

Les tests fonctionnels mitochondriales n’ont montré aucun changement significatif entre 
irradiation seule et AGuIX® + irradiation, comme en témoigne la chute du potentiel membranaire 
mitochondrial obtenue après irradiation Par contre, en ce qui concerne la délétion commune de 
l’ADN mitochondrial, 72 heures après une irradiation de 4Gy, le ratio ADNmt délété/ADNmt total 
a augmenté de 2.93, ce qui est une différence significative entre l’irradiation seule et le 
traitement combiné. Ce résultat est donc un élément supplémentaire confirmant l’implication 
des RLO dans l’effet radiosensibilisant des AGuIX®. 
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Figure 114: Etude cinétique (0-72h) des RLO cytosolique (RLOc) mesurée en cyrtométrie de flux (LSRII flow 
cytometer, BD Biosciences) en utilisant la sonde CM-H2DCFA, normalisée par rapport aux cellules non-
traitées et non-irradiées. A. Sans déplétion de glutathion. B. Avec déplétion de glutathion. 
 
Chapitre III : Etude des différents types de mort cellulaires radio-induites par le traitement 
combiné AGuIX® + I.R. 

Comme il a été démontré avec la courbe de survie clonogénique, le traitement des SQ20B J.L. 
avec les nanoparticules AGuIX® combiné à l’irradiation photonique augmente la mort des cellules 
SQ20B, dont le type était à préciser. Cinq types de morts radio-induites ont été étudiés au cours 
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de cette thèse : l’apoptose, la nécrose, la catastrophe mitotique, la senescence, et enfin 
l’autophagie. Aucune différence significative n’a été trouvée entre l’irradiation seule et le 
traitement combiné pour ces différents types de mort à l’exception de l’autophagie. Nous avons 
donc démontré que le traitement par les AGuIX® avant irradiation augmente de façon spécifique 
l’autophagie et/ou la mort cellulaire autophagique. La Figure 116 illustre ce résultat 
(quantification du Western Blot du LC3B et confirmation par microscopie confocale). 

 

 

Figure 115: Augmentation de la mort cellulaire par autophagie suite au traitement combiné (AGuIX® + 
irradiation). A. Quantification par Western Blot de l’expression de LC3B en fonction des protéines totales 
de 24 à 192 heures après une irradiation de 10Gy. B. Photo de microscopie, a 10X, 10 Gy versus 10 Gy + 
0.8mM Gd 0, 24, et 192 après irradiation. (Bleu : DAPI ; Vert : LC3B-Alexa Fluor 488).  
 
 



Résumé Français 

267 

Chapitre IV : Etude des dommages induit à l’ADN par les AGuIX® combinées à l’irradiation. 

Au cours de cette thèse, plusieurs dommages radio-induits ont été étudiés : les cassures 
simples brins, les dommages oxydatifs (8-oxo-guanine, de façon qualitative avec le test des 
comets + FPG et de façon quantitative en HPLC MS/MS) ainsi que les cassures double-brins. En 
ce qui concerne les cassures simple-brin, aucune différence entre l’irradiation seul et le 
traitement combiné n’a été relevée. Pour la mesure des 8-oxo-guanines, alors qu’une 
augmentation de ces dernières avaient été mise en évidence avec l’enzyme FPG, nous n’avons 
valider quantitativement ces résultats par HPLC-MS. Enfin, en ce qui concerne les cassures 
double-brins, aucune différence n’a été obtenue pour les cassures initiales (T=30 min). Pour les 
cassures résiduelles à 24h, une augmentation importante des CDBs résiduelles complexes 
(présentant plus de 50 foci par noyau) a été observée après pré-traitement par les AGuIX®, un 
résultat parfaitement corrélé avec l’augmentation du paramètre α obtenu par la courbe de survie 
clonogénique. Ces résultats sont représentés dans la Figure 117B. 
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Figure 116: Mesure des cassures doubles brins de l’ADN (γH2Ax). A. Image représentative des CDBs suite 
aux différents traitements, bleu : noyau (DAPI), vert : γH2Ax. B. Quantification du nombre de CDBs 
complexes résiduelles (24h après irradiation), suite à 2Gy, 0 (gris) vs. 0.8 mM Gd, exprimée en fonction 
du nombre de noyau contenant x nombre de foci. 
 
Chapitre V : Etude Protéomique- expériences préliminaires 

L’étude protéomique, quoique préliminaire, s’est révélée montrée très informative. Selon le 
cut-off choisi, et avec les outils de bio-informatiques, plusieurs voies de signalisation se sont 
révélées comme étant potentiellement modulées après traitement par les AGuIX® et l’irradiation. 
Une des voies avec plusieurs protéines impliquées (sur- ou sous-expression de 20%) concerne le 
métabolisme cellulaire.  En outre, 72 protéines mitochondriales et 39 protéines impliquées dans 
les défenses antioxydantes ont été modulées. Avec un cut-off beaucoup plus sélectif (facteur 
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minimum de 5), l’étude a permis de mettre en évidence 16 protéines différentiellement 
exprimées après traitement combiné. Parmi elles, une a retenu notre attention : la 
ribonucléotide réductase qui est significativement sous-exprimée dans nos conditions 
expérimentales. En effet, la surexpression de cette protéine est connue comme étant la plupart 
du temps liée à un mauvais pronostic, ceci dans de nombreux cancers.  Du fait de sa fonction 
biologique, à savoir la fourniture de désoxyribonucléotides pour la synthèse et/ou la réparation 
de l’ADN, sa sous-expression suite au traitement combiné serait une piste permettant de mieux 
comprendre la radiosensibilisation par les AGuIX®. 

Conclusion 

L’utilisation de nanoparticules AGuIX® en tant qu’agent radiosensibilisant a été démontrée et 
validée sur une lignée radiorésistance des cancers VADS, les SQ20B.  Cette effet radiosensibilisant 
est le résultat d’une induction de RLO qui a renforcé l’effet de l’irradiation. Les AGuIX® 
internalisées sont localisées majoritairement dans les lysosomes et l’effet combiné du traitement 
des AGuIX® avec l’irradiation a induit des cassures double brins de l’ADN résiduelles et plus 
complexes. L’autophagie et/ou la mort autophagique expliquerait l’augmentation de l’effet 
délétère de l’irradiation induit par les AGuIX®. Le lien entre l’internalisation des  AGuIX® dans les 
lysosomes et le déclenchement de la  mort par autophagie sera la prochaine étape dans la 
compréhension des résultats déjà obtenus. De plus, l’étude protéomique initiée au cours cette 
étude, a permis d’isoler une protéine en particulier, la ribonucléotide réductase, qui semblerait 
jouer un rôle important dans la radiosensibilisation des AGuIX® dans les cancers des VADS. La 
confirmation des résultats obtenus par d’autres méthodes (WB) constitue également un axe 
majeur dans la poursuite de ce travail. 
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AAnnex 1: The DNA damage response pathways and its inhibitors. Ongoing 
clinical trials and targets. (Velic et al., 2015) 
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AAnnex 2: AGuIX® synthesis and characterization during the synthesis 
 
Gadolinium-based nanoparticles are synthesized in five main steps: 

- The first step consists in the synthesis of the oxide core Gd2O3: GdCl3 is dissolved in diethylene 
glycol (DEG) and reacts with concentrated sodium hydroxide (10 M) to form the Gd2O3 core.   

- In the second one, the Gd2O3 core is englobed by a polysiloxane layer by adding TEOS (tetraethyl 
orthosilicate) and APTES (3-aminopropyl)triethoxysilane). A mix of DEG, ultra-pure dH2O and the 
catalyzer TEA (triethylamine) is added in parallel. The “coating” is followed by measuring the 
nanoparticles’ size by DLS (Dynamic Light Scattering) every 24 hours. At the end of the reaction, 
the temperature as well as the agitation are decreased and the solution must stay at room 
temperature for at least 72 hours.  

- The third step, performed at room temperature for 48 to 72 hours, is grafting the DOTAGA which 
consists in the reaction between the anhydride present on the DOTAGA anhydride and the amines 
present at the surface of the nanoparticle to create amide bonds.  

- In the fourth step, the nanoparticles are precipitated in acetone, filtrated under vacuum and then 
re-dispersed in ultra-pure dH2O. The solution is left to mature for one hour prior to evaporating 
the acetone under a ventilated hood. The solution is then purified by tangential filtration at 5 kDa 
and left to rest for a minimum of 12 hours: this purification/rest step is repeated three times. The 
particles’ purity is then verified by HPLC: if the ratio area of the principal peak/total area of all 
peaks is superior or equal to 90%, the solution is filtered through a 1.2 μm followed by a 0.2 μm 
filter.  

- Finally, in order to store the nanoparticles’ solution, the last step consists in the lyophilization and 
conditioning of the nanoparticles. For it, the solution is first divided in pilulier and frozen at -80°C 
for more than 2h prior to being lyophilized (in the next 7 days after freezing, the pressure is of 
0.041 mbar, for a time of 48 hours or more). The samples are then conditioned and labeled. Figure 
29 represents all the synthesis steps described for the formulation of AGuIX® (Mignot et al., 2013) 
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Figure 29: Scheme of SRP synthesis a) core synthesis; b) polysiloxane shell synthesis; c) DOTAGA grafting; d) 

transfer to water; e) core dissolution, f) polysiloxane fragmentation (Mignot et al., 2013) 
 
Throughout the synthesis steps, the nanoparticles are characterized with different techniques: their size 
is controlled using DLS followed by HPLC. At the end of the fourth step, a measure by relaxometry is done 
to determine the T1- relaxation time value. The concentrations in gadolinium (bound and free) are 
measured, as well as the synthesis yield.
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AAnnex 3: Media composition of HBSS, PBS Ca2+/Mg2+, and DMEM-
GlutamaxTM 

 

Components Molecular 
Weight 

Concentration 
(mg/L) mM 

Inorganic Salts    
Calcium chloride (CaCl2) (anhyd.) 111.0 140.0 1.2612612 
Magnesium chloride (MgCl2-6H2O) 203.0 100.0 0.49261084 
Magnesium Sulfate (MgSO4-7H2O) 246.0 100.0 0.40650406 
Potassium Chloride (KCl) 75.0 400.0 5.3333335 
Potassium Phosphate monobasic (KH2PO4) 136.0 60.0 0.44117647 
Sodium Bicarbonate (NaHCO3) 84.0 350.0 4.1666665 
Sodium Chloride (NaCl) 58.0 8000.0 137.93103 
Sodium Phospate dibasic (Na2HPO4) 
anhydrous 

142.0 48.0 0.33802816 

Other components    
D-Glucose 180.0 1000.0 5.5555553 

HBSS composition with the corresponding molecular weight, concentration (mg/L), and molarity (mM). 

 

PBS Ca2+/Mg2+ 

Components Molecular Weight Concentration 
(mg/L) mM 

Inorganic Salts    
Calcium chloride (CaCl2) (anhyd.) 111.0 100.0 0.9009009 
Magnesium chloride (MgCl2-6H2O) 203.0 100.0 0.49261084 
Potassium Chloride (KCl) 75.0 200.0 2.6666667 
Potassium Phosphate monobasic 
(KH2PO4) 

136.0 200.0 1.4705882 

Sodium Chloride (NaCl) 58.0 8000.0 137.93103 
Sodium Phospate dibasic (Na2HPO4-
7H2O) 

268.0 2160.0 8.059702 

PBS Ca2+/Mg2+ composition with the corresponding molecular weight, concentration (mg/L), and molarity 
(mM). 
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DMEM-GlutamaxTM composition with the corresponding molecular weight, concentration (mg/L), and 
molarity (mM). 

Components Molecular Weight Concentration 
(mg/L) mM 

Amino Acids    
Glycine 75.0 30.0 0.4 
L-Alalanyl L Glutamine 217.0 862.0 3.9723501 
L-arginine hydrochloride 211.0 84.0 0.39810428 
L-Cystine 2HCl 313.0 63.0 0.20127796 
L-Histidine hydrochloride-H2O 210.0 42.0 0.2 
L-Isoleucine 131.0 105.0 0.8015267 
L-Leucine 131.0 105.0 0.8015267 
L-Lysine hydrochloride 183.0 146.0 0.7978142 
L-Methionine 149.0 30.0 0.20134228 
L-Phenylalanine 165.0 66.0 0.4 
L-Serine 105.0 42.0 0.4 
L-Threonine 119.0 95.0 0.79831934 
L-Tryptophan 204.0 16.0 0.078431375 
L-Tyrosine 181.0 72.0 0.39779004 
L-Valine 117.0 94.0 0.8034188 
Vitamins    
Choline chloride 140.0 4.0 0.028571429 
D-Calcium pantothenate 477.0 4.0 0.008385744 
Folic Acid 441.0 4.0 0.009070295 
Niacinamide 122.0 4.0 0.032786883 
Pyridoxine hydrochloride 206.0 4.0 0.019417476 
Riboflavin 376.0 0.4 0.0010638298 
Thiamine hydrochloride  337.0 4.0 0.011869436 
i-Inositol 180.0 7.2 0.04 
Inorganic Salts    
Calcium Chloride (CaCl2-2H2O) 147.0 264.0 1.7959183 
Ferric Nitrate (Fe(NO3)3"9H2O)  404.0 0.1 2.4752476E-4 
Magnesium Sulfate (MgSO4-7H2O) 246.0 200.0 0.8130081 
Potassium Chloride (KCl) 75.0 400.0 5.3333335 
Sodium Bicarbonate (NaHCO3) 84.0 3700.0 44.04762 
Sodium Chloride (NaCl) 6400.0 6400.0 110.344826 
Sodium Phosphate monobasic 
(NaH2PO4-2H2O) 

154.0 141.0 0.91558444 

Other Components    
D-Glucose (Dextrose) 180.0 4500.0 25.0 
Phenol Red 376.4 15.0 0.039851222 
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Abstract 

Resistance of tumor cells to radiation therapy remains a serious concern, therefore the study of 
radiosensitizers has emerged as a persistent hotspot in radiation oncology particularly in head 
and neck carcinoma. Considering the drawbacks of conventional chemo-radiotherapy, the use of 
gadolinium-based nanoparticles as radiosensitizers has shown great promise in pre-clinical 
research. However, the translation to clinics is hindered by disparities in observed in vitro 
biological responses, with sometimes contradictory results. This study was aimed to determine 
the radiosensitizing potential of AGuIX® after cellular uptake, and the resulting subcellular events 
in a radioresistant HNSCC cellular model. Our results demonstrated that once taken up, AGuIX® 
accumulated in lysosomes. After photons exposure, AGuIX® increased intracellular oxidative 
stress leading to complex DNA damage. Although radiation triggered late apoptosis and 
mitochondrial impairment, pre-treatment with AGuIX® radiosensitized cells by specifically 
increasing autophagic cell death. Collectively, these results provide insights into the complexity 
of nanomedicine.  

Keywords: Radiotherapy, Head and Neck Cancer, radiosensitization, gadolinium-based 
nanoparticles (AGuIX®), Lysosomes, DNA damage 

Background 

Head and neck squamous cell carcinoma (HNSCC) is the sixth-most common cancer, accounting 
for over 600,000 new cases and 350,000 deaths worldwide per year1. Despite advances in new 
radiotherapeutic or chemoradiation strategies for the treatment of HNSCC, patient prognosis has 
not improved2,3 as the development of radioresistance, in particular in recurrent tumors, remains 
a major clinically unresolved problem. Thus, for an effective patient management, there is still 
an urgent need to identify and develop novel agents to radiosensitize HNSCC tumors. Despite its 
critical role in cancer therapy, there are additional challenges associated with radiotherapy. 
Firstly, the toxicity to surrounding normal tissues often limits the maximum dose of irradiation 
(IR) that can be delivered to tumors4. In addition, tumors include a high degree of heterogeneity 
in their genotype, phenotype, and microenvironment, leading to variability in radiation sensitivity 
and responses in different tumor cell populations5,6,7. 

For over a decade, nanomedicine has been proposed as a new strategy to improve radiotherapy 
treatments. Studies have been devoted to the development of tumor-targeting nanodrugs with 
the aim to improve the radiation effects in the tumor, while diminishing the exposure of healthy 
tissues to cytotoxic, and genotoxic effects8,9,10. High-Z atoms, such as metallic (gold, platinum), 
and oxide (hafnium, gadolinium) nanoparticles (NPs), have been proposed as potential 
nanodrugs to amplify radiation-based therapies11,12,13. The activation of these nanoparticles by 
radiation should lead to an electron burst and consequently to oxidative stress which will in turn 
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lead to damages to biomolecules.  Among these, gadolinium-based nanoparticles (GBNs) have 
been shown to hold significant potential as theranostic agents14, the presence of gadolinium 
allowing them to be used as contrast agents for magnetic resonance imaging (MRI)15. Among 
these, AGuIX® (Activation and Guidance of Irradiation by X-ray) are ultrasmall (< 5 nm) 
gadolinium-based nanoparticles which have been characterized by a safe behavior14,16, a renal 
clearance13, and a preferential accumulation in tumors17 by the enhanced permeability and 
retention (EPR) effect. Therefore, owing to their physicochemical properties, AGuIX® exposed to 
radiation are expected to produce extra radical oxygen species (ROS) in addition to the primary 
water radiolysis products. 

Up to now, a significant in vitro radiosensitizing effect of GBNs has been reported following 
different experimental conditions such as varying the energy of the irradiation from keV to MeV, 
different concentrations of nanoparticles (from 0.1 to 1 mM), and times of incubation (from 1h 
to 24h), as well as different types of tumor cell lines, or the nature of irradiation (photons, 
neutrons or ions)14. Indeed, several in vitro studies have demonstrated the radiosensitizing effect 
of GBNs nanoparticles combined to photon irradiation in glioblastoma cells18,19, cervical 
carcinoma HeLa cells20, HNSCC21, and prostate cancer cells (K. Butterworth, personal 
communication). Apart from the work of Miladi et al., where the involvement of mitotic 
catastrophe and late apoptosis was demonstrated21 in HNSCC, little is known about the 
subcellular effects of GBNs, the organelles involved in their radiosensitizing effect, and the 
connection between the physical, chemical, and biological effects of GBNs. Moreover, although 
GBNs were never found to be localized within nuclei22, γ-H2AX or 53BP1 foci have been generally 
quantified to reflect DNA double strand breaks (DSBs) and contradictory results have been 
reported with the same GBNs in different cell lines. While an increase of residual DSBs have been 
demonstrated in HNSCC, 1h after treatment with GBNs combined to radiation21, opposite results 
have been reported with AGuIX® in glioblastoma19.  

Given the variety of experimental conditions and cells involved in the studies mentioned above, 
as well as for other high-Z NPs, it seems impossible that all induce the same cellular response. 
Moreover, in the direction of a better understanding of the radiosensitization process, the 
clonogenic survival curve assay cannot be the only way to probe the cellular responses which 
therefore should be investigated in more details. This work has been undertaken with AGuIX® 
which contain DOTAGA as a macrocyclic Gd3+ chelate which is a more stable and better chelator15 
compared to the acyclic ligand DTPA that could release toxic gadolinium23. 

Despite AGuIX®’s potential to induce radiosensitization in cancer cells, the complexity of the 
phenomenon in the current state justifies that only a few clinical trials have been undertaken 
(NCT02820454: NANO-RAD and NCT03308607: NANOCOL) to date. The objective of this work 
was therefore to better understand the mechanisms of action mediating the biological effects of 
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this new formulation of AGuIX® and the subcellular targets in cells in order to move towards 
clinical applications in a more robust way. 

Methods 

Cellular Culture 
The SQ20B J.L. cell line was derived from a human larynx radioresistant carcinoma obtained from 
the John Little Laboratory (Harvard School of Public Health, Boston, USA) with an SF2Gy of 72%. 
Cells were cultured as previously reported24. 
 
AGuIX® treatment and irradiation 
AGuIX® nanoparticles14 are resuspended in dH2O and further diluted to the appropriate 
concentration in DMEM alone.  
SQ20B J.L. cells were seeded at a density of 40 000 cells/cm2 16 hours prior to AGuIX® treatment 
and incubated with 0.8mM Gd for 24 hours in DMEM-Glutamax. Nanoparticles were removed by 
washing with PBS before irradiation with an X-Rad 320 irradiator (Precision X-ray Inc., North 
Branford, CT): Energy: 250 kV, intensity: 15 mA, and 2Gy/min dose rate. 
 

DMF/BSO treatment 
 
After treatment with AGuIX® and washing with PBS, cells were incubated for 4 hours prior to 
irradiation with 100 μM dimethylfumarate (DMF), a GSH-depleting agent, and 100 μM L-
buthionine sulfoximine (BSO), a GSH biosynthesis inhibitor.  
 
Clonogenic Cell Survival Assay 
 
After treatment with or without AGuIX® and irradiation, clonogenic cell survival curves were 
performed as previously described25. After coloration with Giemsa, clones with 64 cells or more 
were counted using COLCOUNTTM (Oxford Optronix).  Clonogenic survival curves were fitted 
according to the linear quadratic equation (SF= e-[α●D + β●D●D]) where SF is the surviving fraction, α 
represents the probability of lethal events and β the sublethal events; and D the irradiation dose. 
The survival fraction at 4Gy (SF4Gy) was first used to assess the radiosensitizing concentration of 
AGuIX® nanoparticles (AGuIX® treatment of 1 hour). 
 
Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) 
 
After treatment with 0.8mM AGuIX® for 1, 4, 12, and 24 hours and trypsination, cells were 
centrifuged, rinsed with PBS before adding ultrapure water and 4-5 mL of aqua regia (mix of nitric 
acid and hydrochloric acid (1:3)). The samples were kept at 80°C for three hours, filtered through 
a 0.2 μm filter and analyzed with a Varian 710-ES (Varian, Les Ullis, France). 
Toxicity Assays 
 
Trypan blue toxicity assay 
 



Submitted; Simonet et al. 

333 

After treatment with AGuIX®, cells were trypsinized (for incubation times over 24h) and re-plated 
as to not exceed an 80% confluency. After addition of 10 μL of trypan blue solution to 10 μL of 
the cell suspension, viability was measured using the Countess automated cell counter 
(Invitrogen). 
  
MTT toxicity assay 
 
After trypsination and re-plating, 200 μL of a 0.5 g/ml of MTT solution (Sigma, St-Quentin-
Fallavier, France) was added to each well. The plate was incubated for two hours at 37°C and 5% 
CO2 and rinsed with PBS. 100 μL of DMSO were added to each well and left for 30 minutes under 
agitation before reading at 560 nm using the SpectraMax M2 spectrophotometer (Molecular 
Devices). 
Proliferation assay: confluency percentage measurements by Incucyte 
 
After treatment with AGuIX®, cells were trypsinized and re-seeded in a 96-well plate at a density 
of 5 000 cells per well. Pictures were taken in phase contrast by the Incucyte (Essen Biosciences, 
Ann Arbor, MI, U.S.A.) every two hours for 7 days.   
 
Comet Assay +/- FPG  
 
Alkaline single-cell gel electrophoresis (Comet Assay) was performed as described by De Rosa et 
al.26 and Forestier et al.27. The study of the damage’s extent was done for time after irradiation 
0, 30, and 120 minutes and was evaluated as the average of the triplicate values of the percent 
tail intensity. 
 
γH2Ax Immunofluorescence Assay 
 
The method used was described by Wozny et al24. Each slide was counted for a minimum of 300 
nuclei per slide using the Metafer (MetaSystemsTM, Heidelberg, Germany) analysis system which 
uses the size and intensity as parameters to distinguish a foci under a 63X objective. 
 
Fluorescence Confocal Microscopy  
 
Cells were plated in two-chambers LabTek®II Chambered #1.5 German Coverglass System 
(Dutscher, Brumath, France) and AGuIX®-Cya5.5 were used. 
 
For co-localization studies with the nucleus, cells were fixed in 4% PFA for 20 minutes, and 
exposed to DAPI (1μM) for 15 minutes. The cells were kept in 1 mL of PBS for observation under 
the confocal spinning disk microscope.  For the co-localization studies with the mitochondria or 
lysosomes, live-cell imaging was performed. SQ20B J.L. cells were incubated with either 200 nM 
Mitotracker-Green (ThermoFischer, Saint-Aubin, France) or 75 nM Lysotracker-green 
(ThermoFischer) for 45 minutes in culture medium prior to AGuIX®-Cya5.5 treatment. The probes 
were then washed out with PBS before treatment with AGuIX®-Cya5.5 for 24 hours, cells were 
observed using the confocal spinning disk. AGuIX®-Cya5.5 were excited with a laser at 642 nm, 
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while Lysotracker and Mitotracker-Green were excited at 491 nm. Images were taken in 60X oil 
objective on a z-width of 15 μm with step-sizes of 0,5 μm. 
 
Autophagy was visualized under the microscope using the LC3B primary antibody diluted at 
1/500 (BioTechne, Lille, France) and the secondary antibody, rabbit IgG-Alexa Fluor 488 (1/500 
dilution). Images were taken using the Isis software under the 10X objective. 
 
Study of the cellular death pathways 
 
The CaspACETM FITC-VAD-FMK in situ Marker (Promega, Charbonnières Les Bains, France) was 
used to quantify total caspase activity by flow cytometry, as previously described by Gilormini et 
al28.  
 
Necrosis was studied using the Annexin V/P.I. assay (Life Technologies, Courtaboeuf, France). The 
cells were trypsinized and marked for 15 minutes with annexin and P.I. per tube in 1X buffer. 
After centrifugation, cells were re-suspended in PBS and analyzed using the FACSCalibur (Becton 
Dickinson). The excitation/emission wavelength were 488/530 for Annexin FITC and 585/45 for 
P.I. 
 
For autophagy, LC3B protein expression was studied via Western Blot analysis using the LC3B 
primary antibody at 1:2000 (BioTechne, Lille, France) and the secondary antibody, rabbit IgG HRP-
conjugated at 1:20 000. 20μg of proteins was deposited on a 12% polyacrylamide gel. 
  
Reactive oxygen species assay 

 
MitoSOXTM (Life Technologies) and CM-H2DCFDA (Thermo Fischer) were used to detect 
mitochondrial and cellular ROS respectively. MitoSOXTM was used at 5μM, while CM-H2DCFDA 
was used at 2.5μM in HBSS for 10 minutes. The fluorescence intensity was measured by flow 
cytometry at an excitation/emission wavelength of 488/575 nm (MitosoxTM) and 488/525 nm 
(CM-H2DCFDA).   
 
Mitochondrial membrane potential 
 
The mitochondrial membrane potential was measured using the JC-1 dye (Sigma) as previously 
reported28. 
 
Measurement of the common mitochondrial DNA (mtDNA) deletion 
 
mtDNA extraction was done without DNA purification as described in Peinnequin et al.29. qPRC 
was done using three primers: total mtDNA, deleted mtDNA, and GAPDH. 
  
Statistical analysis 
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Each experiment was done in triplicates. Statistical analysis was realized with the Student's t test. 
Significant results have a p value < 0.05 (*), < 0.01 (**) or < 0.001 (***). 

 
 

Results 
 
AGuIX® treatment and subcellular localization 
 
Preliminary experiments aimed to assess the best experimental conditions (AGuIX® 

concentration, time of incubation) to radiosensitize SQ20B J.L. cells. As summarized in 
Supplemental Figure 1, a concentration of 0.8 mM AGuIX® after 24h of treatment was selected 
for further investigations. AGuIX® uptake was linear with time (Supplemental Figure 1B) with an 
intracellular amount of 0.11pg Gd internalized by SQ20B cells, 24h after treatment. Without 
radiation, AGuIX® nanoparticles are not cytotoxic at the cellular (Supplemental Figure 2A and 2B) 
nor at the mitochondrial level (Supplemental Fig 2C). Confocal microscopy showed that AGuIX® 
co-localized in large quantities with lysosomal structures throughout the cytoplasm. AGuIX® were 
not visualized in mitochondria nor in the nucleus (Figure 1). 
 
In vitro assessment of AGuIX®’s radiosensitization in SQ20B J.L. cells 
 
As depicted in Figure 2A, the survival curve of SQ20B cells demonstrates an enhanced sensitivity 
to radiation in the presence of AGuIX®. The sensitivity enhancement ratio (SER) was 1.4 at 4Gy 
(Figure 2B) and the dose enhancement factor (DEF) was 1.3.  The α-parameter (reflecting direct 
lethal damage) was increased from 0.1593 to 0.2357 with AGuIX® whereas the β-parameter (sub-
lethal damage) did not change. As shown in Figure 3, no differences were observed in the single-
strand breaks (SSBs) at all time points (Figure 3 A-D) whereas an increase of oxidized purines (8-
oxo-G) was observed right after a 4 Gy irradiation (t=0), following AGuIX® treatment (Figure 3A). 
Considering the initial peak of γH2Ax foci (t=30 min), there were no significant differences 
between untreated and treated cells (Figure 3E). For the residual γH2Ax foci (t=24h), Figure 3G 
shows that the number of cells displaying more than 50 foci/nucleus is significantly increased 
after AGuIX® treatment compared to radiation alone (45 nuclei with 50 or more foci/nucleus 
versus 23 nuclei with 50 or more foci/nucleus thus confirming that the treatment with AGuIX® 

results in the persistence of more complex and lethal DSBs compared to radiation alone.  
 
Cellular death pathways induced by AGuIX® treatment  
 
As demonstrated by the clonogenic survival curve, AGuIX® combined to radiation increased 
SQ20B cell death. But one question remains: what kind of death? When considering apoptosis 
and necrosis, no significant differences were obtained between AGuIX® treated and untreated 
SQ20B cells, even 192h post-irradiation (Supplemental Figure 3). Mitotic catastrophe and 
senescence were also investigated but no differences between AGuIX®-treated cells compared 
to radiation alone were obtained (data not shown). Autophagy was then studied using LC3B as a 
specific autophagosomes’ antibody. Although no differences in LC3B protein expression occurred 
up to 72 hours after irradiation, an increase was obtained starting 120h up to 192h (Figure 4A 



Submitted; Simonet et al. 

336 

and B). Interestingly, a more important increase was obtained after treatment with AGuIX® 
compared to radiation alone: +62.5% at 120 h and +114%, 192h after the combined treatment, 
respectively. This result was confirmed by confocal microscopy using the same LC3B antibody 
(Fig 4C). Collectively, these results demonstrated that the treatment of SQ20B cells with AGuIX® 
before irradiation significantly strengthened autophagy and/or autophagic cell death in SQ20B.  

 
Involvement of oxidative stress in the radiosensitizing effect of AGuIX® 
 
A kinetic study of ROS production was performed up to 4 hours post-irradiation either at the 
cytosolic (cROS) or the mitochondrial level (mROS).  As can be seen in Figure 5A and 5B, we were 
not able to highlight any significant differences in mROS nor cROS between AGuIX®-treated cells 

and irradiated cells, a result that seemed surprising considering the radiosensitizing effect 
obtained. SQ20B J.L. cells are known to be highly radioresistant and we previously demonstrated 
that these cells are over-protected against oxidative stress due to their high endogenous 
glutathione (GSH) content30. We therefore depleted SQ20B cells from their GSH content using 
DMF + BSO30 after AGuIX® treatment but prior to irradiation. Under these experimental 
conditions, flow cytometry studies with ROS specific probes allowed us to show a burst of mROS 
immediately after irradiation, which is not maintained over time, and without any significant 
differences between irradiated cells and irradiated cells treated with AGuIX® (Figure 5C). This 
result is consistent with the fact that we did not obtain any co-localization of AGuIX® with 

mitochondria (Figure 1). This initial burst of mROS was probably solely related to the 
consequences of water radiolysis after irradiation. At the whole cellular level, the initial burst of 
ROS, immediately after irradiation (Figure 5D), was much more important quantitatively 
compared to that obtained for mROS, and was significantly reinforced by AGuIX®. This burst of 
ROS then dropped at 15 and 30 min after irradiation until a second increase in cROS started after 
one hour and peaked four hours post- irradiation. In both cases, the pretreatment of SQ20B cells 
with AGuIX® led to a significant enhancement of cROS compared to radiation alone. Since the 
amount of ROS was increased, the consequences in terms of radiosensitization were ascertained 
by the clonogenic survival curve depicted in Figure 5E. Under these experimental conditions, i.e 
after GSH depletion, the 50% EBR increased from 1.281 to 1.571 and the α parameter from 0.113 
to 0.299 (see Table 1). Collectively, these results strongly suggest that the initial effect of AGuIX® 

was somewhat subdued by the endogenous high level of antioxidant defenses. 
 
Mitochondrial subcellular damage induced by the addition of AGuIX® nanoparticles  
 
In addition to nuclear damage (Figure 3), we further focused on the potential mitochondrial 
damage after the combined treatment. As can be observed on Figure 6A, we started observing a 
decrease of the mitochondrial membrane potential 72h after irradiation. This trend increased 
with time to reach - 30% (irradiated-only cells) versus - 36% (AGuIX® treated cells) 240h post 
irradiation which was not significant. These results demonstrated that AGuIX® had no influence 
on the decrease of the ΔΨm obtained after radiation.  
 
Figures 6B represents the ratio of deleted mtDNA/total mtDNA 24h and 72h post-irradiation.  As 
shown, no significant differences are observed 24 hours post-irradiation while at 72h post-
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irradiation, there is no effect after a 4Gy irradiation alone (deleted mtDNA/total mtDNA ratio = 
1.16) while we can observe an increase in the amount of deleted mitochondrial DNA with a ratio 
of deleted mtDNA/total mtDNA of 2.93 which is statistically significant compared to irradiated 
only cells.  
 

Discussion 
 

Radiation therapy plays an essential role in the treatment of HNSCC, yet the therapeutic efficacy 
is hindered by the treatment-associated toxicity and tumor recurrence. Recent radiosensitization 
research has focused on therapeutic strategies involving, among others, nanoparticles to 
enhance radiation damage to cancer cells while limiting the radiation effects on normal tissues. 
Despite promising results obtained in terms of radiosensitization by high-Z nanoparticles, the 
absence of the precise cellular targets and connection between the physical, chemical, and 
biological effects is slowing down the translation to more clinical trials.  
 
AGuIX® are gadolinium-based nanoparticles developed mainly for imaging due to their magnetic 
resonance contrast properties, but also have a potential role in radiation therapy as a 
radiosensitizer9,12-15,17-19,21.  Moving towards the improvement of gadolinium chelators as MRI 
contrast agents31, the formulation of AGuIX® has moved towards a macrocyclic chelator (DOTA) 
instead of a linear gadolinium chelator (DTPA). In the present study, the radiosensitizing potential 
of this new formulation of AGuIX® in the HNSCC cell model SQ20B J.L. was demonstrated, 
resulting in a SF4Gy of 1.382 with an Enhanced Biological Factor (EBR) of 1.3 which is similar to 
what is currently published for studies using AGuIX®, namely in HeLa (cervical cancer)20, Panc-1 
(pancreatic cancer)32, U87 (glioblastoma)19,33, and B16F10 (melanoma) cells17, with DEFs varying 
from 1.17 to 1.54.  
 
Regarding AGuIX®, and more generally high-Z NPs, an open question remains: is there a 
preferential localization of AGuIX® for radiosensitization? In accordance with Štefančíková et al. 
in glioblastoma33, we showed that AGuIX® are not targeted to the nucleus nor the mitochondria 
but are mostly located in lysosomes, while a few AGuIX® remaining free in the cytosol. Similar 
results were also obtained in CHO cells for example, where these NPs clusters of sizes between 
400-900 nm were observed in the cytoplasm regardless of the concentration used or incubation 
time 34.  
 
In an effort to understand the effect of AGuIX® at the subcellular level, the results reported above 
raise the following questions: is there a biological effect and is this effect mandatory to target 
the nucleus? The debate as to whether the radiosensitizing effect induced by the combined 
treatment is dependent or not on DNA-damage has been studied by several teams working with 
AGuIX®, as well as other metal-based NPs. Although similar results were found for initial DSBs, 
results varied for the number of residual foci, 24 hours after irradiation and AGuIX® treatment.  
Indeed, an increase of residual DSBs, was reported in a melanoma model17 or in in a head and 
neck cell line35 whereas no increase of DSBs were obtained in glioblastoma cells19 under the same 
experimental conditions. Although the residual DSBs, expressed as the number of cells that still 
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have ϒH2Ax foci 24h after the combined treatment was moderately increased in this study, the 
number of cells displaying more than 50 foci/nucleus was significantly increased after treatment 
with AGuIX® compared to radiation alone. This observation suggests that the treatment with 
AGuIX® caused a net increase of more complex and lethal DSBs compared to radiation alone, a 
result which is in perfect accordance with the increase of the α parameter obtained from the 
clonogenic survival curve. All these data strongly underline the large variations in the results 
obtained, depending on the conditions of treatment used, as well as the cellular type studied.  
For other metal-based NPs, such as gold NPs, similar contradictory results have been reported. 
As an example, the use of 1.9 nm gold nanoparticles did not enhance radiation-induced DSBs 
formation nor inhibit DNA repair in MDA-MB-231 breast cancer cells irradiated with MV 
electrons36, while the combination of 50 nm citrate-coated gold NPs with 6 MV photons resulted 
in an increase of DSBs in HeLa cells37,38.  
 
The next question that needed to be clarified was: which connections exist between the physical 
and biological effects of AGuIX®? The hypothetical mechanism behind the use of metal-based 
nanoparticles is based on the over-production of secondary electrons leading to an increase of 
cellular ROS which in turn would lead to cell death. However, only a few data are up to now 
available in vitro. As pointed out in this work, and despite of radiosensitization, the increase of 
ROS production following the combined treatment was lower than expected. One possible 
explanation was that SQ20B cells, as many other radioresistant cancer cells, exhibit upregulated 
antioxidant systems (see Zhou et al., as a review)39. Previous work from our lab effectively 
reported that SQ20B cells display a high endogenous glutathione (GSH) content which largely 
contributes to their radioresistant properties. Although GSH is a major ROS-scavenging system in 
cells, the important redox modulating enzymes including the peroxidases, peroxiredoxins, and 
thiol reductases also rely on the pool of reduced GSH as their source of reducing equivalents30,40. 
In view of these elements, a transient GSH-depleting strategy was previously investigated which 
resulted in the radiosensitization of the SQ20B cell line used in this study30. Using the same 
experimental approach, i.e after GSH depletion, we clearly demonstrated that the pretreatment 
of cells with AGuIX® resulted in a net increase of ROS after radiation thereby strongly suggesting 
a ROS-mediated radiosensitizing effect of AGuIX®. This increase of ROS was further evidenced 
through the clonogenic survival curve by an increase of the EBR from 1.3 to 1.6. Nevertheless, 
one must keep in mind that it still remains very difficult, if not impossible, to discriminate for sure 
a direct production of ROS by AGuIX® as a consequence of irradiation, from an overproduction 
of ROS as a cellular response and therefore to conclude about an additive or a synergetic effect 
of irradiation and AGuIX®. 
 
Up to now, another recurring question persists: what kind of cell death and/or biological effect 
is induced after the pre-treatment of cells with AGuIX®? To our knowledge, only one study using 
DTPA-based gadolinium nanoparticles reported an increase of mitotic catastrophe followed by 
late apoptosis21. Otherwise, many reports were published concerning the effect of other type of 
NPs in the triggering of apoptosis. In combination with radiotherapy, examples include the effect 
of gold nanorods on melanoma cells41, the effect of thio-glucose-bound gold nanoparticles (Glu-
GNPs) on lung cancer cells42, or the effect of silver NPs on glioma cells43,44. With AGuIX®, no 
enhancement of apoptosis nor mitotic catastrophe was obtained after radiation. Autophagy 
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and/or autophagic cell death was the only cellular event that was significantly enhanced after 
AGuIX® compared to radiation alone. Although autophagy is predominantly cytoprotective, even 
in response to radiation45,46, excessive or persistent autophagy can also be cytotoxic47,48. Indeed, 
many biological responses, among which cell death pathways, are governed by threshold effects, 
above and below which either no response occurs or a qualitatively different response is 
initiated. Thus, it is not particularly surprising that excessive autophagy (as obtained after our 
combined treatment) can promote cell death rather than cell survival. Up to now, many trials 
were conducted to modulate autophagy to improve the outcome of cancer treatment in 
combination with radiotherapy49. Among these, some studies using nanoparticles combined with 
radiation presented evidence for a radiosensitizing effect involving autophagy: AgNPS in glioma 
cells at clinically relevant megavoltage energies44, copper cysteamine NPs in colorectal 
carcinoma50, or selenium NPs in breast cancer cells51. In this work, evidence is presented for an 
enhancement of autophagy with AGuIX® after radiation. As visualized by fluorescence microscopy 
(see Figure 4C), AGuIX® could trigger autophagic cell death or potentially autosis52, an autophagy-
dependent non-apoptotic form of cell death, characterized by unique morphological changes. 
However, at this stage of our work, our results do not really allow us to distinguish for sure 
between cell death accompanied by signs of autophagy (i.e cell death with autophagy) from cell 
death as a consequence of autophagy (autophagic cell death)52.  

Nevertheless, it has been very recently suggested that one unique and defining aspect of 
regulated autophagic cell death is the absolute requirement for lysosome membrane 
permeabilization (LMP)53. Although the authors demonstrated the requirement of the Bax/Bak 
proteins to increase LMP, LMP is known to occur in response to a large variety of stimuli54, among 
which ROS55,56 is one of them. As AGuIX® were found to be mainly localized in lysosomes (Figure 
1), the exposure of cells to radiation led to an increase of ROS, most certainly in lysosomes. 
Because lysosomes are organelles extremely active in redox reaction and contain significant 
amounts of transition metals, like iron57, ROS produced after exposure of AGuIX® to radiation 
may form other reactive species such as HO. through the Fenton reaction58 which are highly 
deleterious to lysosomal membranes. Future studies should be designed to address this 
hypothesis.  

Concerning mitochondria, our results show that the pretreatment of cells with AGuIX® did not 
change the impact of radiation on this organelle, a result that could potentially be explained by 
the fact that AGuIX® did not get into mitochondria due to inner membrane impermeability.  

In this study, we demonstrated that AGuIX® were able to radiosensitize SQ20B, an HNSCC cell 
line, via the induction of intracellular ROS which strengthened the radiation effect. Once taken 
up by cells, AGuIX® largely accumulated in lysosomes and resulted in the generation of complex 
DNA damage. Moreover, autophagy and/or autophagic cell death appeared to mediate the 
effectiveness of this treatment combination. However, future studies are required to understand 
the mechanisms linking lysosomes-entrapped AGuIX® with the upregulation of 
autophagy/autophagic cell death after radiation. 
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Figure Legends 

Figure 1: Subcellular localization of AGuIX®-Cya5,5 (red) in SQ20B J.L. cells observed in 
fluorescence confocal microscopy, 60X, with respect to A. the nucleus (DAPI: blue); B. 
mitochondria (Mitotracker-Green) and C. lysosomes. (Lysotracker-Green). Representative data 
of 200+ cells. 

Figure 2: Radio-sensitization of SQ20B J.L. cells with AGuIX® nanoparticles. A. Clonogenic cell 
survival curve 0-10Gy: untreated (0 mM Gd) versus treated cells (0.8mM Gd). The survival at 4Gy 
was 0.49 (+/- 0.03) for untreated cells and decreased to 0.34 (+/- 0.03) after treatment of cells 
with 0,8 mM AGuIX® for 24h. Experimental (exp) values are the numbers obtained with ColCount, 
while the calculated (calc) values are obtained with the linear quadratic formula. Each value 
represents the mean +/- SD of 3 experiments performed in triplicate (***, p<0,005 vs. irradiated 
SQ20B cells). B. Table with radiation response of SQ20B J.L. cells untreated or treated with 
AGuIX®. 

Figure 3: DNA-damage induced by AGuIX® combined to ionizing radiation. A-D: Kinetic study of 
single-strand breaks (+/- FPG) measured by the comet assay following a 4Gy irradiation: A. 0 h; 
B. 0.5 h; C. 2h; D. 24h. E-G: Kinetic study of double-strand breaks measured by the γH2Ax assay 
following a 2Gy irradiation: E. 0.5 h; F. 6 h; G. 24 h. Representative data of 300+ nucleus. 

Figure 4: Kinetic study of autophagy using LC3B antibody A. Western Blot analysis 24-192 h post-
irradiation and total proteins. B. Quantification of LC3B protein (total proteins were used for the 
normalization). C. Representative images of LC3B expression by fluorescence microscopy: 
nucleus (blue, DAPI); autophagosomes (green, LC3B antibody) 0, 24, and 192 hours post-
irradiation; 10X objective. Representative data of two independent experiments. 

Figure 5: Study of the mitochondrial and cytosolic oxidative stress induced after AGuIX® + 
radiation. Values were normalized as a function of the non-treated and non-irradiated cells. A-B: 
Kinetic study of mitochondrial ROS (mROS) (A) and cytosolic ROS (cROS) (B) 0 - 4 hours post-
irradiation (10 Gy). C-D Kinetic study of mROS (C) and cROS (D) 0 - 4 hours post-irradiation (10 
Gy) after glutathione depletion. Mean average intensity measured by flow cytometry in 
triplicates. E. SQ20B J.L. clonogenic survival curve varying treatment conditions (+/- AGuIX® 
and/or +/- DMF/BSO). Representative data of two independent experiments with biological 
triplicates. 

Table 1: Summary of the parameters evaluating the radiosensitizing effect of the addition of 
AGuIX® and/or DMF + BSO. 

Figure 6: Functional consequences of the combined treatment on mitochondria. A. Kinetic study 
24-240h post-irradiation (10 Gy) of the percentage drop in the mitochondrial membrane 
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potential (ΔΨm). B. Deleted mtDNA/total mtDNA ratio for SQ20B J.L. cells following a 4Gy 
irradiation with or without AGuIX®. Representative data of two independent experiments with 
biological triplicates.  
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Legends for Supplemental Figures 

 

Supplemental Figure 1: Determination of the radiosensitizing conditions. A. Survival fraction at 
4Gy with varying AGuIX concentration from 0 to 3 mM in DMEM without fetal bovine serum. B. 
Quantity of gadolinium internalized by SQ20B J.L. cells as a function of treatment time (1-4-12-
24 hours of exposure to AGuIX® treatment) in serum-free DMEM-Glutamax (0.8mM Gd) 
quantified by ICP-AES.  The three wavelengths of gadolinium are represented (342, 336, and 332 
nm). This is a mean of 2 independent experiments with 3 flasks for each, and 3 separate readings 
from the ICP. 

Supplemental Figure 2: Toxicity assays. A. Proliferation assay measuring the percentage 
confluency using the IncuCyte Live Cell Analysis. B. Percentage viability using the blue trypan 
assay. C. Percent (%) proliferation measured by the MTT assay. Representative data of two 
independent experiments with biological triplicates. 

Supplemental Figure 3: Study of cellular deaths pathways. A.  Caspase activation 24-240 h post-
irradiation using the CaspACETM FITC-VAD-FMK in situ Marker (Promega) and measured by flow 
cytometry. Representative data of three independent experiments with biological triplicates. B. 
Study of necrosis 24-192h post-irradiation using the Annexin V/P.I. assay measured by flow 
cytometry.  
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Abstract 

    Head and Neck Squamous Cell Carcinoma is ranked among the top ten deadliest cancers due to its high 
radioresistance and recurrence. One radiosensitizing strategy is the use of high-Z metal nanoparticles. In 
this study, ultrasmall gadolinium-based nanoparticles, AGuIX®, were used for their potential as a 
radiosensitizing agent. The objectives of this work were to determine the radiosensitizing conditions of 
AGuIX® in an HNSCC cell model, their localization after uptake, and the biological consequences generated 
at the subcellular level after the combined treatment. A preliminary proteomic approach was initiated in 
order to identify potential molecular targets involved in radiosensitization.  
    The treatment of SQ20B cells with 0.8mM Gd for 24h resulted in a dose enhancement factor (DEF) of 
1.3. AGuIX® were predominantly localized in lysosomes. The overproduction of radical oxygen species 
following AGuIX® + radiation was intimately involved in the radiosensitization, although largely subdued 
by the high level of endogenous antioxidant defenses. Autophagy was specifically triggered after the 
combined treatment, while other irradiation-induced cell deaths remained unchanged. The number of 
complex, residual double strand breaks (DSBs) was specifically increased with AGuIX® combined to 
radiation. Lastly, our preliminary proteomic analysis allowed the isolation of potential molecular targets 
with great promise. Collectively, it seems that the radiosensitizing effect observed in this work may result 
from a combination of events. 

Future work is required to understand the mechanisms linking lysosomes-entrapped AGuIX® with the 
upregulation of autophagic cell death after radiation. 
Keywords: Head and Neck Squamous Cell Carcinoma (HNSCC); ionizing radiation; nanomedicine; 
radiosensitizing strategies; nanoparticles; AGuIX®; Radical Oxygen Species (ROS) 

Résumé 

Les cancers des Voies Aérodigestives Supérieures sont classés parmi les dix cancers les plus agressifs du 
fait de leur radioresistance intrinsèque et leur forte probabilité de récurrence. L’objectif de ce travail a 
été d’étudier le potentiel radiosensibilisant de nanoparticules à base de gadolinium, AGuIX®, sur un 
modèle cellulaire de cancer des VADS. Après avoir déterminé et validé les conditions optimales de 
radiosensibilisation de notre modèle par les AGuIX®, leur localisation après internalisation ainsi que les 
conséquences biologiques générées à l’échelle subcellulaire ont été successivement étudiées. Enfin, une 
approche préliminaire protéomique a été initiée afin d’identifier des cibles moléculaires potentielles 
impliquées dans cette radiosensibilisation. 

 Le traitement des cellules SQ20B avec 0.8mM Gd pendant 24h se sont révélées être optimales avec 
un DEF (dose enhancement factor) de 1.3. Les AGuIX® sont localisées presque exclusivement dans les 
lysosomes après internalisation. La radiosensibilisation est liée à une surproduction de radicaux libres 
oxygénés, minimisée toutefois par des défenses antioxydantes endogènes élevées. Le traitement combiné 
(AGuIX®+ irradiation) déclenche spécifiquement la mort cellulaire autophagique et s’accompagne d’une 
augmentation significative du nombre de cassures double brins résiduelles complexes. L’étude 
protéomique préliminaire a permis d’identifier une cible moléculaire potentiellement impliquée dans 
cette radiosensibilisation (la ribonucléotide réductase), cible qui fera l’objet d’une suite à ce travail. De 
plus, la prochaine étape sera de comprendre les mécanismes qui relient les AGuIX® internalisées dans les 
lysosomes avec l’augmentation de la mort cellulaire autophagique après irradiation. 

Mots clés: Cancers des Voies Aéro-Digestives Supérieurs (VADS); irradiation ionisante; nanomédicine; 
stratégie radiosensibilisante; nanoparticules; AGuIX®; Radicaux Libres Oxygénés (RLO) 
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