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Chapter 1

Résumé en français

Cette thèse est consacrée à l'étude expérimentale des processus d'interaction inélastiques

à l'÷uvre dans les circuits mésoscopiques. Les circuits mesurés sont réalisés dans des

gaz bidimensionnels d'électrons crées à l'interface d'une hétérojonction semi-conductrice

GaAs/Ga(Al)As. Nous avons exploré les régimes de l'e�et Hall quantique entier et frac-

tionnaire, ainsi que les interactions entre un conducteur cohérent et le circuit dans lequel il

s'insère.

Transport d'énergie dans le régime de l'e�et Hall quantique

Dans l'e�et Hall quantique, les excitations électroniques de basse énergie se propagent le long

des bords de l'échantillon dans des canaux unidimensionnels et chiraux. Nous avons étudié

les mécanismes d'interaction, auxquels sont sensibles ces excitations, à travers les échanges

d'énergie qui en découlent dans des situations hors d'équilibre. Une situation hors-équilibre

est générée dans un canal en utilisant un contact ponctuel quantique partiellement transmis

et, après propagation, la distribution en énergie est sondée en mesurant le courant tunnel

traversant une boîte quantique. Nos expériences menées dans le régime entier, pour deux

canaux co-propageants (νL=2), démontrent que la spectroscopie complète de la distribution

en énergie d'un canal de bord peut être mesurée avec une boîte quantique. Nous observons

une forte relaxation d'énergie le long d'un canal qui dé�e l'image usuelle d'électrons libres, et

nous identi�ons les interactions inter-canal comme le mécanisme inélastique dominant. Nos

résultats révèlent que les interactions au sein du même canal, ou avec des excitations ther-

malisées, sont irrelevantes, mais suggèrent la présence de modes co-propagatifs additionnels.

Finalement, on démontre expérimentalement qu'il est possible de contrôler e�cacement la

relaxation en énergie. D'abord, on force la relaxation d'un canal hors-équilibre en le dilu-

ant vers un contact ohmique �ottant. A l'opposé, sa dynamique de relaxation est gelée en

fermant son canal co-propageant dans une petite boucle. Des expériences similaires, menées

dans le régime fractionnaire au facteur de remplissage νL=4/3, nous ont permis d'étudier la
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chiralité du �ux d'énergie. Nos mesures révèlent que le �ux d'énergie est non chiral alors que

le courant électrique longe les bords avec une chiralité bien dé�nie. Nous démontrons que

le �ux d'énergie antichiral est porté par des excitations de volume, montrant un couplage

entre les excitations de bord et de volume.

Blocage de Coulomb dynamique dans un conducteur cohérent modèle

Du fait de la granularité de la charge et de l'interaction Coulombienne, un conducteur co-

hérent est couplé au circuit dans lequel il s'insère. En particulier, son impédance est modi�ée

par son environnement, modi�ant les lois usuelles de composition d'impédances. C'est e�et

des interactions, connu comme blocage de Coulomb dynamique, est prédit d'être pondéré

par le même facteur de Fano apparaissant dans le bruit de grenaille. Nous avons démontré ce

fort lien en mesurant la conductance d'un contact ponctuel quantique inséré dans un circuit

modi�able in-situ.

Mots-clé Physique mésoscopique, gaz bidimensionnel d'électrons, mécanismes inélastiques;

e�ets Hall quantique entier et fractionnaire, canaux de bord, dynamique hors-équilibre,

boîte quantique, contact ponctuel quantique; lois de composition d'impédances, blocage

de Coulomb dynamique, conducteur cohérent.
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1.1 Résultats principaux obtenus pendant la thèse

• Démonstration d'une nouvelle technique de spectroscopie pour mesurer la

fonction de distribution en énergie électronique, en utilisant une boîte quan-

tique [1]. Cette quantité fondamentale est obtenue, pour la première fois, dans un

circuit mésoscopique sémiconducteur.

• L'observation d'une forte relaxation en énergie le long de deux canaux de

bord co-propageants qui conteste l'image usuelle de canaux sans intéraction

de l'e�et Hall quantique à νL = 2 [2]. Nos résultats montrent que l'interaction

inter-canal, sans échanges de particules, est le mécanisme inélastique dominant, cepen-

dant, une fuite d'énergie du système suggère un couplage additionnel envers d'autres

excitations co-propageantes pas encore identi�ées.

• Démonstration de deux techniques qui permettent de contrôler les échanges

d'énergie le long de deux canaux co-propageants à νL = 2 [3]. En modi�ant les

chemins parcourus par les canaux, il est possible d'augmenter, ou de geler, la relaxation

en énergie d'un canal hors-équilibre.

• L'observation d'un �ux d'énergie antichiral dans l'e�et Hall quantique frac-

tionnaire à νL = 4/3, alors que le courant électrique reste chiral. Nous mon-

trons que le �ux d'énergie antichiral se propage dans le coeur de l'échantillon, alors

que le courant électrique circule le long du bord de l'échantillon. Le �ux antichiral est

porté par des excitations de volume neutres.

• Démonstration du fort lien entre le blocage de Coulomb dynamique et le

bruit de grenaille chez les conducteurs cohérents [4]. Nos mesures montrent

que les corrections à la conductance d'un contact ponctuel quantique, dues au blocage

de Coulomb dynamique, sont renormalisées en amplitude par le facteur de Fano qui

résulte de ses coe�cients de transmission, en accord quantitatif avec les prédictions

récentes [5, 6].

1.2 Transport d'énergie dans l'e�et Hall quantique entier

1.2.1 Canaux de bords dans l'e�et Hall quantique entier

Transport: description sans interactions

L'e�et Hall quantique entier, découvert en 1982 par von Klitzing, Dorda et Pepper [7], est un

phénomène quantique macroscopique qui apparaît lorsqu'un gaz bidimensionnel d'électrons
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est soumis à un fort champ magnétique perpendiculaire. L'e�et est caractérisé par une

résistance longitudinale nulle, ainsi que par une résistance de Hall quanti�ée en fractions

entières du quantum de resistance: RHall = 1
νL

h
e2 , où νL est un nombre entier. Dans ce régime,

les seules excitations de basse énergie se propagent le long des bords de l'échantillon dans un

sens bien dé�ni par le champ megnétique, réalisant des canaux de bord co-propageants dont

le nombre est égal a νL. En négligeant l'intéraction Coulombienne, les νL canaux de bords

sont décrits comme des conducteurs unidimensionnels idéaux et chiraux. Une analogie entre

les canaux de bord et les faisceaux lumineux, ainsi que la possibilité de les manipuler avec des

constrictions ajustables comme l'injection et détection sélective, et l'usage comme diviseur

de faisceau (lame semi-re�échissante), ont ouvert la voie à des expériences interférentielles

sur les canaux de bords [8, 9, 10, 11, 12, 13, 14, 15]

L'impact de l'interaction coulombienne

La description usuelle des canaux de bords ignore l'interaction coulombienne car les mesures

de transport standard n'y sont pas sensibles [16]: à cause de la la chiralité, les électrons

injectés dans una canal de bord ne peuvent pas être rétrodi�usés dans les échantillons macro-

scopiques, de sorte que le courant électrique circule le long des bords en ignorant les détails

microscopiques des échantillons. Cependant, il est attendu que l'intéraction coulombienne

puisse modi�er de façon dramatique la nature même des excitations de bord:

1. Dans des potentiels de con�nement doux obtenus dans la plupart de réalisations ex-

périmentales, il est prédit que l'intéraction coulombienne reconstruit le pro�l de densité

proche du bord [17, 18, 19]. A cause de cette reconstruction, des branches addition-

nelles d'excitations de bord on été est prédites [19, 20].

2. Pour une intéraction su�samment forte entre canaux de bords co-propageants, ils

est prédit que le dynamique en résultant est décrite par des excitations bosoniques

delocalisées parmis les canaux [21]. Dans le cas de deux canaux à νL = 2 qui portent

des spins opposés, la dynamique de spin et de charge sont séparées dans un mode de

charge rapide et un mode de spin lent [22].

En étant sensibles a la cohérence de phase d'un seul canal de bord, les expériences récentes

d'interférométrie Mach-Zehnder [11, 12, 13, 14, 15, 23] ont démontré toute une zoologie

de phenomènes incompatibles avec la description sans intéraction. Il en a suivi un débat

théorique considérable, mais il n'y a toujours pas de modèle permettant d'englober tous

les résultats expérimentaux. Les expériences d'interférométrie Mach-Zehnder sont di�ciles

à interpreter directement car elles sont sensibles à deux processus distincts de déphasage:

D'un côté, les méchanismes inélastiques qui vont limiter de façon fondamentale le temps de
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vie des excitations électroniques sondées. D'un autre côté, le bruit de basse fréquence1 qui

peut se coupler aux excitations sondées, et brouiller arti�ciellement la phase mesurée. Nous

proposons de s'a�ranchir de la deuxième contribution en mesurant directement des e�ets

dus uniquement aux mécanismes inélastiques. Pour cela, il su�t de mesurer les échanges

d'énergie qui en découlent, lorsqu'un canal de bord est excité dans un état hors d'équilibre.

Dans ce but, nous avons mis en place une nouvelle technique de spectroscopie nous

permettant de sonder le fonction de distribution électronique, f(E), dans des situations

hors-équilibre. La mesure de f(E) nous a permis de mesurer les courants d'énergie portés

par les excitations électron-trou du canal de bord mesuré, sans paramètres ajustables, et

d'identi�er les mécanismes inélastiques auxquels elles sont sensibles.

1.2.2 Approche experimentale

Dans un système électronique unidimensionnel et chiral, les excitations électron-trou de

la mer de Fermi, sans intéractions, portent un �ux d'énergie (chaleur), JH , directement

charactérisé par la fonction de distribution électronique, f(E). Dans ce cas, JH ne dépend

point des détails microscopiques [24]:

JH =
1

h

∫ (
E − EF

)(
f(E)−Θ(EF − E)

)
dE, (1.1)

où EF est l'énergie de Fermi et Θ(E) la fonction marche unité de Heaviside.

Indépendamment du �ux d'énergie total, des changements dans la forme de f(E) sont une

signature directe d'échanges d'énergie, et ils peuvent être utilisés pour traquer les mécanismes

inélastiques en jeu. Ce principe a été implémenté avec succès dans des �ls métalliques

mésoscopiques [25] et dans des nanotubes de carbone [26].

Dans le régime de l'e�et Hall quantique entier, la distribution en énergie d'un canal de

bord peut être extraite du courant passant à travers un état localisé, réalisé dans une boîte

quantique, couplé dans le régime tunnel. De plus, une situation hors-équilibre, contrôlée et

ajustable, peut être génerée dans une petite constriction, réalisée par un contact ponctuel

quantique, lorsqu'elle est opérée comme diviseur de faisceaux et polarisée en tension.

Une boîte quantique comme �ltre à énergie

Une boîte quantique est une �aque d'électrons su�samment petite pour que le spectre ré-

sultant du con�nement soit discret. Quand elle est couplée à des électrodes par des barrières

tunnel opaques, seuls les électrons ayant la même énergie qu'un niveau discret de la boîte

peuvent la traverser. Dans la limite où un seul niveau discret est dans le fenêtre de tran-

port (Figure 1.1.a), le courant traversant la boîte, IQD, est directement proportionnel à la

1Mais a des fréquences suppérieures à l'inverse du temps de mesure.
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di�érence entre les distributions en énergie électronique dans les deux électrodes drain (D)

et source (S), à l'énergie du niveau discret, Elev:

IQD = IMax(fD(Elev)− fS(Elev)), (1.2)

où IMax encapsule les détails microscopiques du couplage tunnel, et est constante pour des

densité d'états tunnel dont la variation en énergie est négligeable. Une grille métallique

couplée capacitivement à la boîte permet de changer l'énergie du niveau discret et donc de

l'énergie sondée, en changeant la tension de grille VG. De plus, l'application d'une di�érence

de potentiel entre les deux électrodes, permet de séparer leur contribution à (2.2) et donc de

sonder distinctement leur distribution en énergie, fD/S(E), en balayant l'énergie du niveau

discret. En pratique, on a mesuré la transconductance de la boîte quantique, ∂IQD/∂VG, qui

est donc proportionnelle à [∂(fD(E)− fS(E))/∂E]E=Elev
(Figure 1.1.a, droite).

Un contact ponctuel quantique comme source de situations hors-équilibre

Un contact ponctuel quantique (CPQ) est une petite constriction du gaz bidimensionnel

d'électrons dont la largeur est ajustable [27]. Dans le regime de l'e�et Hall quantique

entier, ils peuvent être utilisés comme des diviseurs de faisceux de sorte qu'ils transmet-

tent/ré�échissent partiellement une paire de canaux de bords incidents. Quand la trans-

mission est réglée dans la gamme 0 < τ < 1, et le CPQ est polarisé en tension, il mélange

les populations des canaux incidents qui portent des potentiels électrochimiques di�érents.

Lorsque la di�usion par le CPQ est élastique et τ indépendante de l'énergie, la distribu-

tion en énergie des canaux sortants est simplement la somme de deux fonctions de Fermi

fF (E) translatées en énergie, pondérées par le coe�cient de transmission/ré�ection corre-

spondants, τ/1 − τ . En conséquence, la distribution en énergie des canaux sortants a une

forme en double-marche [28] (encart gauche dans Figure 1.1.b):

f(E) = τfF (E − eVD1) + (1− τ)fF (E − eVD2), (1.3)

où VD1/2 sont les potentiels appliqués aux canaux incidents (avec les notations de la Fig-

ure 1.1.b). Au delà de la di�usion élastique, the �ux de chaleur, JQPC
H , injecté par le CPQ

dans chacun des deux canaux sortants partiellement couplés, peut être déduit de considéra-

tions très générales de bilan de puissances. Il vaut:

JQPC
H =

τ(1− τ)e2(VD1 − VD2)
2

2h
+
π2

6h
(kBT )2, (1.4)

où le premier terme est la contribution des excitations hors-équilibre injectées par le CPQ,

alors que le deuxième est le �ux de chaleur2 porté par les excitations chirales purement

thermiques à la température �nie T .

2Ce �ux de chaleur est directement obtenu en injectant une fonction de Fermi de tempeérature T dans

(1.1) [29].
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Figure 1.1: Spectroscopie hors-équilibre avec une boîte quantique. a Schéma du

principe: (Gauche) Transitions tunnel possibles avec un seul niveau discret. (Droite) Le courant

traversant la boîte IQD(VG) est proportionnel à la di�érence de distributions fD/S(E) de chaque

côté de la boîte (D/S: drain/source). En pratique, nous mesurons la transconductance ∂IQD/∂VG,

proportionnelle à [∂(fD(E)−fS(E))/∂E]E=Elev
. b Micrographie de l'échantillon mesuré: les grilles

y apparaîsssent en clair. Un CPQ (grilles du bas), polarisé en tension, injecte une situation hors-

équilibre dans un canal de bord côté drain (encart gauche). Une boîte quantique (grilles du haut)

mesure la fD(E) après une propagation de 0.8 µm. Côté source, fS(E) est à un équilibre froid

(encart droite). c fD(E) extraites en intégrant les mesures brutes ∂IQD/∂VG, pour une transmission

de CPQ τ ≃ 0.5 et des polarisations de CPQ di�erentes δVD = VD1 − VD2. Les fD(E) mesurées

ont une forme en double marche, comme prédit par l'equation (1.3). d Symboles: Flux de chaleur,

JH , extrait des données dans les mêmes conditions experimentalles qu'en c. Mêmes symboles que c:

mêmes données, ∗: données issues d'un deuxième refroidissement. Courbe: prediction (1.4) du �ux

de chaleur injecté par le CPQ. On n'observe pas de fuite d'énergie signi�cative, à notre résolution

près, après une propagation de 0.8 µm.

1.2.3 Résultats experimentaux pour deux canaux co-propageants,

νL = 2

D'abord, nous démontrons expérimentalement le principe de spectroscopie hors-équilibre

avec une boîte quantique comme �ltre à énergie [1]. Les mêmes mesures montrent que
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l'analogie optique entre les contacts ponctuels quantiques et les lames semi-ré�¢hissantes

tient aussi pour le transport d'énergie.

Deuxièmement, nous démontrons une forte relaxation en énergie tout au long du chemin

de propagation [2]. Ces mesures contestent l'image usuelle de canaux indépendants et nous

discutons les possibles mécanismes inélastiques responsables.

Finalement, nous démontrons qu'il est possible de contrôler la relaxation en énergie de

canaux de bords hors-�quilibre [3]. Une première technique permet de forcer la relaxation

vers un �quilibre froid. Alors qu'une deuxième technique permet de geler la relaxation et

d'atteindre des longueurs de relaxation au moins quatre fois suppérieures.

Spectroscopie de la distribution en énergie d'un canal de bord hors-�quilibre

Pour démontrer la validité de notre approche experimentale, nous mesurons la distribution

en énergie après une courte distance de propagation depuis l'injection de la situation hors-

équilibre. Nous utilisons un contact ponctuel quantique (CPQ), avec une transmission et

polarisation en tension ajustables, pour injecter diverses situations hors-équilibre dans un

canal bord. Une boîte quantique, placée après une propagation de L =0.8 µm, sonde la

distribution en énergie correspondante (Figure 1.1.b).

Les distributions en énergie mesurées (Figure 1.1.c) sont proches des prédictions pour

une di�usion élastique données par (1.1). De plus, le �ux de chaleur extrait grâce à (1.3),

est égal au �ux injecté par le CPQ (1.4), à notre résolution près (Figure 1.1.d).

Ces mesures démontrent qu'un CPQ est un diviseur de canaux élastique et donc l'analogie

optique entre CPQ et lames semi-ré�échissantes reste valide pour le transport d'énergie.

De plus, elles montrent que la fonction de distribution en énergie électronique peut être

extraite quantitativement a partir du courant traversant un boîte quantique. Finalement, la

relaxation en énergie pour deux canaux co-propageants est petite à l'échelle sous-micronique.
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Figure 1.2: Échanges d'énergie à νL = 2 a Schéma du dispositif utilisé pour mesurer la relax-

ation d'un canal de bord. b Données brutes de relaxation (∝ ∂f(E)/∂E) pour δVD =36 µV (sym-

boles) translatées verticalement pour di�érents L. Le signal évolue avec la distance de propagation

et sature dans un régime d'électrons chauds. Lignes continues: �t de Fermi avec T = 85 mK, plus

chaud (large) que le signal d'équilibre (ligne discontinue) c Flux de chaleur mesuré soustrait du �ux

d'équilibre (symboles) et prediction du �ux injecté par le CPQ (ligne continue). Le �ux diminue

avec L et sature plus bas que la limite permise pour un système à 2 canaux fermé (line discon-

tinue). d Schéma du dispositif utilisé pour mesurer les échanges d'énergie entre canaux. e Données

brutes à l'équilibre (ligne discontinue) et δVD =54 µV (symboles), translatées verticalement. Le

pic d'équilibre s'élargit (chau�e) avec L. f Flux de chaleur mesuré soustrait du �ux d'équilibre

(symboles pleins), prediction du �ux injecté par le CPQ (ligne continue) et limite d'équipartition

pour un système à 2 canaux fermé (line discontinue). Le canal chau�e avec L, et sature à un �ux

proche de la saturation mesurée en c [L =10 µm du c montré en symbole ouvert ( ▽ )].
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Échanges d'énergie dans l'e�et Hall quantique à νL = 2

Nous avons sondé la dynamique de relaxation des canaux de bords en mesurant la distribution

en énergie f(E), après di�érentes longueurs de propagation L depuis le point d'injection de

la situation hors-équilibre. La situation hors-équilibre est obtenue avec une transmission �xe

de τ = 0.5 pour le canal partiellement transmis par le CPQ.

Relaxation en énergie: Dans un premier temps, nous injectons la situation hors équilibre

dans le même canal qui est sondé après propagation (Figure 1.2.a). Nos mesures ∂IQD/∂VG ∝
∂f(E)/∂E presentées en Figure 1.2.b, démontrent la présence de mécanismes inélastiques

car la forme de f(E) évolue le long de la propagation. Le canal atteint un régime d'électrons

chauds, car il sature, dans les longues distances, à une fonction de Fermi de température

T = 85 mK (lignes continues pour L = 10 et 30 µm) alors que la température de base

est de ∼ 30 mK. Pour une analyse plus quantitative, nous extrayons le �ux de chaleur

atteignant la boîte quantique avec (1.1) et on soustrait le �ux d'équilibre pour charactériser

les excitations hors-équilibre uniquement (Figure 1.2.c). La dépendance avec L du �ux de

chaleur hors-équilibre, nous permet de dé�nir une longueur de relaxation Linel. En utilisant

les vitesses de propagation mesurées par d'autres groupes dans des échantillons similaires,

nous obtenons une fourchette pour le temps de vie des excitations injectées. Ce temps de vie

�ni, nous donne une incertitude en énergie grâce a la relation d'Heisenberg, qui au �nal est

comparable voir supérieure à l'énergie moyenne des excitations injectées. Ceci suggère que

l'énergie des excitations électron-trou d'un seul canal est mal dé�nie, ce qui conteste l'image

usuelle de canaux sans intéractions.

Échanges d'énergie entre canaux co-propageants: A �n de tester directement les

échanges d'énergie entre canaux, nous générons la situation hors équilibre dans le canal

interne, alors qu'on sonde f(E) dans le canal externe (Figure 1.2.d). Le canal sondé devient

de plus en plus chaud, comme suggéré par les données brutes Figures 1.2.e. Ceci est con�rmé

par la Figure 1.2.e, où l'on voit que le courant de chaleur porté par des excitations du canal

non-excité augmente avec la propagation le long du canal mis hors d'équilibre. Nous trouvons

que le �ux de chaleur mesuré aux grandes distances est indépendant du canal excité, montrant

que les échanges d'énergie inter-canal sont trés e�caces. Cependant, ce mécanisme n'est pas

le seul en jeu car les �ux de chaleur de saturation tombent en dehors de la fourchette prédite

pour des intéractions inter-canal uniquement [30, 31] (ligne continue dans les Figures 1.2.c

et f).

Couplage vers d'autres excitations co-propageantes: Néanmoins, la dépendance en

énergie, et en distance de propagation, des �ux de chaleur mesurés montrent que les excita-
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tions thermalisées n'interviennent pas dans la relaxation mesurée. Cette conclusion englobe

par exemple les phonons du substrat, les spins nucléaires, ou les excitations électroniques

des grilles utilisées pour dé�nir les di�érents parcours. Cependant, nos mesures sont com-

patibles avec des échanges d'énergie avec des branches d'excitations co-propageantes. Mais

par contre, aucun transfer de charge inter-canal n'est observé.

Deux techniques pour contrôler la relaxation en énergie

Dans le but de réaliser des expériences d'optique quantique sur les canaux de bords, ou de

les utiliser pour le traitement quantique de l'information, il est souhaitable d'augmenter leur

longueur de relaxation et donc de décohérence. D'un autre côté, il est utile de disposer d'une

technique permettant de forcer la relaxation vers l'équilibre, par exemple pour réinitialser

l'état d'un canal. Nous avons démontré deux techniques nous permettant de réaliser ces

deux situations opposées, en modi�ant la géométrie des chemins de propagation.

Forcer la relaxation vers l'équilibre avec une sonde de tension: Les contacts

ohmiques �ottants (sondes de tension) ont été utilisés par les théoritiens [32] pour imiter les

e�ets de relaxation en énergie et de décohérence dans le cadre de la théorie de la di�usion

élastique (sans-intéractions).

Suivant cette idée, nous utilisons une sonde de tension pour forcer la relaxation vers

l'équilibre: un canal de bord est mis hors d'équilibre comme dans l'expérience de relaxation

précédente, mais dans son chemin de propagation il est couplé, à travers un CPQ intermédi-

aire, vers une sonde de tension (Figure 1.3.a). La distribution en énergie de ce même canal

est mesurée par une boîte quantique située a 0.8 µm du CPQ intermédiare, de sorte que les

e�ets de relaxation sont négligeables le long de cette petite distance (comme démontré en

Figure 1.1).

La Figure 1.3.b montre nos données brutes ∝ ∂f(E)/∂E (symboles) pour di�érentes

transmissions du CPQ intermédiaire, τim = Gim × h/e2. Lorsque le canal n'est pas couplé

à la sonde de tension τim = 0, on observe un signal hors-équilibre. Ce signal évolue avec la

transmission du CPQ intermédiaire vers un pic d'équilibre (froid) à τim = 1, montrant que la

sonde de tension force la relaxation des excitions hors-équilibre qui lui sont incidentes et les

thermalise à la température de base. Les lignes continues sont la prédiction de la théorie de

la di�usion élastique:la somme des signaux τim = 0 et τim = 1 pondérés respectivement par

la transmission et re�ection du CPQ intermédiaire. Le bon accord obtenu avec la theéorie

de la di�usion élastique nous assure: i) un bon contrôle sur cette technique pour forcer

la relaxation ii) nous informe que les échanges d'énergie entre un canal froid et un canal

hors-équilibre anti-propageant à ∼ 0.5 µm sont négligeables et iii) con�rme que la relaxation

le long de chemin sous-micronique reliant le CPQ intermédiare à la boîte quantique est
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négligeable.

im

δV

D

L=2.2 µm

δV=36 µV

D

δV

L in

Lout

(L (µm),L (µm)):in out
(2.2,2.2)

(2.2,10)

(2.2,30)

(10,10)

a

b

c

d

Figure 1.3: Contrôle de la relaxation en énergie. a Schéma du dispositif utilisé pour forcer

la relaxation vers l'équilibre avec une sonde de tension. b Données brutes de relaxation ∝ ∂f(E)/∂E

du canal externe (symboles) translatées verticalement pour di�érentes transmissions du CPQ inter-

médiaire τim = Gim× h/e2. Lignes continues: prédictions de la théorie de la di�usion élastique. Le

signal hors-équilibre à τim = 0 évolue avec τim vers un pic d'équilibre froid à τim = 1. c Schéma

du dispositif utilisé pour geler la relaxation le long d'un canal avec une boucle fermée. d Données

brutes de relaxation ∝ ∂f(E)/∂E (symboles) translatées verticalement pour di�érentes polarisa-

tions du CPQ d'injection, pour di�érentes géométries caractérisées par (Lin,Lout) en microns. Le

signal est identique à notre résolution dans les con�gurations (2.2,2.2) et (2.2,10) montrant le gèl de

la relaxation (la relaxation est complète pour (10,10), ligne continue est un �t de Fermi). Le signal

de (2.2,30) montre une relaxation en énergie, mais le �ux de chaleur correspondant est identique à

(2.2,2.2) et (2.2,10) à notre incertitude expérimentale près (données non montrées ici).
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Geler la relaxation le long d'un canal avec une boucle fermée: De façon plus

surprenante, nous avons démontré qu'il est possible de geler la dynamique de relaxation

d'un canal de bord hors-équilibre. Pour cela, il su�t de fermer son canal co-propageant (ici

le canal interne) dans une boucle su�samment petite.

Le principe de l'expérience est présenté dans la Figure 1.3.c: Le canal externe est mis

hors-équilibre avec un CPQ, comme dans les expériences précentes de relaxation, et propage

pendant une distance Lout avant d'être mesuré. Le canal interne est propagatif pour une

distance Lin qui peut être égale ou inférieure à Lout. Ce deuxième cas est obtenu grâce à

un CPQ intermédiaire qui transmet parfaitement le canal externe et ré�échit complètement

le canal interne. Le long du parcours supplémentaire du canal externe Lout − Lin, le canal

interne est enfermé dans une boucle de même périmètre Lout−Lin. Comme la boucle forme

un état localisé, elle ne peut absorber de l'énergie, dans le régime stationnaire, à moins d'être

couplée a d'autres excitations. De plus, une boucle su�samment petite donne lieu à une

densité d'états discrète qui peut diminuer les échanges d'énergie entre canaux.

Nos mesures brutes ∝ ∂f(E)/∂E du canal externe sont présentées dans la Figure 1.3

pour di�érentes géometries caractériseées par (Lin, Lout) en microns, et pour di�érentes po-

larisations en tension du CPQ d'injection (translatées verticalement) de transmission τ = 0.5

pour le canal externe. Le signal mesuré est le même, à notre résolution près, pour (2.2, 2.2)

et (2.2, 10) ce qui montre que la relaxation du canal externe est gelée le long d'une boucle

de ∼8 µm. Ce résultat est d'autant plus saisissant car pour une propagation commune de

10 µm (10,10) le canal a déja complètement relaxé à son équilibre local d'électrons chauds

(ligne continue �ts de Fermi). La boucle de 8 µm gèle de façon e�cace la relaxation du canal

externe. Ce qui démontre en plus qu'il n'y pas mécanismes inélastiques au sein du canal

externe pour les énergies et distances < 10 µm considérées.

Pour mieux comprendre cet e�et, nous avons mesuré la relaxation le long d'une boucle

de 28 µm (2.2,30). Nos mesures montrent que le signal change par rapport à (2.2,10) et

(2.2,30), et donc que la canal externe relaxe. Par contre, le �ux de chaleur du canal externe

après propagation est identique dans les trois géometries (2.2,2.2-10-30). En conséquence,

une boucle fermée de 28 µm n'empèche pas la relaxation, mais conserve l'énergie du canal

externe.

On peut comprendre ces e�ets à cause de la discrétisation de la densité d'états dans la

boucle dues aux conditions aux limites périodiques. Utilisant la valeur standard de vitesse

de propagation 105 m/s, on obtient un spectre espacé de ∼ 52 µeV pour la petite boucle de

(2.2,10), et espacé de ∼ 15 µeV pour la grande boucle (2.2,30). Dans la petite boucle, l'écart

d'énergie du canal interne est comparable ou suppérieur à le fenêtre dénergie injectée dans

le canal externe (36 et 54 µeV), et supprime les échanges d'énergie entre les deux canaux.

Ce qui n'est pas le cas pour la grande boucle. De plus, le fait que l'énergie en sortie de la
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grande boucle est identique aux autres con�gurations (2.2,2.2) et (2.2,10), montre que les

possibles degrés additionnels predits pour les canal externe [20] n'absorbent pas d'énergie

pour les énergies considérée et des distances < 30 µm et que le canal interne fermé en boucle

n'est point couplé à d'autres excitations que celles mesurées sur le canal externe. Les degrés

de liberté responsables de la fuite d'énergie manifeste en Figure 1.2.c ne sont donc toujours

pas identi�és.

1.3 Transport d'énergie dans le régime de l'e�et Hall

quantique fractionnaire

1.3.1 L'e�et Hall quantique fractionnaire

L'e�et Hall quantique fractionnaire fut découvert en 1982 par Tsui, Störmer et Gossard

[33] et est un des phénomès les plus intriguants de la matière condensée. Contrairement

à l'e�et Hall quantique entier, il est intrinsèquement du à l'intéraction coulombienne, et

en resultent des e�ets surprenants: par exemple, dans ce régime les excitations chargées

portent une charge fractionnaire [34], comme démontré en [35, 36], et elles sont prédites [37]

d'exhiber une statistique d'échange fractionnaire (interpolant entre les statistiques usuelles

de Fermi-Dirac et de Bose-Einstein).

Comme dans l'e�et Hall quantique entier, le corps du système a un gap dans son spectre

d'excitations, et les seules excitations de basse énergie ne peuvent se propager que le long des

bords de l'échantillon dans des canaux chiraux. Ceci résulte en une résistance longitudinale

nulle et une résistance de Hall quanti�ée. Par contre, dans l'e�et Hall quantique fraction-

naire, les canaux de bord ne peuvent pas être décrits par des branches d'excitations chirales

de fermions sans-intéractions. La théorie e�ective développée par Wen [38], les décrit par

des liquides de Luttinger chiraux. Cette théorie prédit des caractéristiques I-V non lineéaires

dans des contacts tunnel [39], avec des lois de puissances dont les exposants sont universels et

ne dépendent que du facteur de remplissage, νL, caractérisant la résistance de Hall fraction-

naire. Même si les expériences observent couramment ces lois de puissances, les exposants

sont systématiquemnt inférieurs [40] à ceux prédits par le théorie. Ces déviations systéma-

tiques pourraient résulter des détails microscopiques du bord, comme la reconstruction du

pro�l de densité attendue pour les potentiels de con�nement doux [17, 19]. Mais de nos

jours, les détails microscopiques des canaux de bords sont mal connus expérimentalement.

Même des informations aussi importantes comme le nombre de branches d'excitations de

bords et leur chiralité, qui peuvent être non triviaux pour certains régimes de l'e�et hall

fractionnaire [41, 42], ne sont toujours pas connus.
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1.3.2 Vers la mesure des détails microscopiques des bords avec du

transport d'énergie

Le transport d'énergie, notamment de chaleur, peut donner des informations précieuses sur

la structures des canaux de bord. Par exemple, des branches d'excitations neutres sont

attendues pour certains régimes (comme νL = 2/3 ou 5/3) [42]. Ces modes neutres n'ont

toujours pas été observés car ils sont transparents au transport de charge, mais par contre ils

devraient transporter un �ux de chaleur antichiral [43]. Nous avons développé un système

expérimental qui permet de mesurer des �ux de chaleur dans le r�gime de l'e�et Hall quantique

fractionnaire. Les premières mesures préliminaires, dans le régime de νL = 4/3, montrent le

potentiel de cette technique en dévoilant une dynamique hors équilibre riche.

Exploiter le blocage de Coulomb d'un îlot de charge comme �ltre à énergie

Dans le but de tester la chiralité des �ux de chaleur, il su�t d'utiliser une sonde d'énergie

qualitative. Nous avons employé un îlot sensible au blocage de Coulomb comme un �ltre

passe haut d'énergie:

Le transport de charge à travers l'îlot, dans le régime tunnel séquentiel, est bloqué tant

que l'énergie des excitations électroniques incidentes est inférieure à l'énergie de charge de

l'îlot [44, 45]. Le courant qui le traverse, intègre donc les excitations incidentes de plus haute

énergie que l'énergie de charge, et permet de l'utiliser comme un �ltre passe-haut d'énergie.

Dans nos expériences, nous avons avons utilisé un contact ponctuel quantique (CPQ)

dans la limite de faible transmission. Dans notre échantillon, le CPQ présente des diamants

de Coulomb dans cette limite (Figure 1.4.a), montrant que le transport électrique est sensible

à une physique d'énergie de charge3.

1.3.3 Mesures de tranport d'énergie à νL = 4/3

Le principe de l'expérience est schématisé dans la Figure 1.4.b: deux CPQs "d'injection" (en

rouge) sont utilisés pour générer un situation hors d'équilibre dans deux endroits le long d'un

canal de bord. L'énergie portée par le même canal est sondée par un troisième CPQ (noir),

opéré dans un régime de blocage de Coulomb, et situé entre les deux points d'injection.

Cette géométrie permet la comparaison directe entre les �ux chiral et antichiral de chaleur

générés par les CPQ d'injection situés respectivement en amont et en aval de la même sonde.

3C'est e�et est possiblement dû au désordre résiduel de l'échantillon, qui peut créer un petit état localisé

a proximité du CPQ.
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Chiralité du �ux de chaleur et du courant électrique

Le courant électrique mesuré, dans les situations d'équilibre et hors-équilibre, suit le bord de

l'échantillon avec la chiralitée imposée par le champ magnétique. Par contre, nous observons

que le signal du CPQ sonde dépend non seulement de l'énergie injectée en amont, mais

aussi en aval (Figure 1.4.c). Ce qui démontre que le �ux de chaleur n'est pas chiral, alors

que le courant électrique l'est. La géométrie elliptique du signal de sonde, en fonction de

la polarisation en tension des CPQs en amont et en aval, montre que le �ux de chaleur

antichiral est insensible à l'énergie injectée en amont. En conséquence, il ne peut pas être du

à un simple chau�age local au dessus du gap d'activation thermique du régime fractionnaire

testé4.

Couplage avec des excitations de volume neutres

En e�ectuant les même mesures dans des géométries di�érentes, nous observons que le signal

ne dépend que de la distance "à vol d'oiseau" entre l'injection et la sonde, et non pas du

parcours précis des canaux de bord. Le test le plus strict, est de connecter un contact

ohmique �ottant au canaux de bord entre le CPQ sonde et le CPQ d'injection en aval, sans

modi�er la distance à vol d'oiseau entre sonde et injection. Ces observations démontrent que

le �ux de chaleur anti-chiral est porté par des excitations de volume neutres. Et donc, que

le canal de bord hors équilibre est couplé à ces excitations.

4Qui de surplus s'accompagnerait d'une rétrodi�usion �nie du courant électrique.



1.3 Transport d'énergie dans le régime de l'e�et Hall quantique fractionnaire17

a

b

c L Lupstream downstream~ ~1.5µm 
0.2

0.4

0.6

0.8

0
.2

0
.4

0
.6

0
.8-0.10 -0.05 0.00 0.05 0.10

-600

-400

-200

0

200

400

600

δ
V

Q
P

C
(µ

V
)

V
G

(V)

0

0.1445

0.2891

0.4336

0.5781

0.7227

0.8672

1.000

inner edge channel transmission

V
V V V

1
2 3 4

L Lupstream downstream

-40

-20

0

20

40

-40 -20 0 20 40

δ
V

u
p

s
tr

e
a

m
[µ

V
]

δV
downstream

[µV]

Figure 1.4: Flux de chaleur antichiral dans le régime de l'e�et Hall quantique

fractionnaire à νL = 4/3. a Graphe 3D en couleur de la transmission du CPQ sonde, en

fonction de ses tensions de grille et de polarisation. Les projections en tension de grille et en

polarisation (encarts haut et droit respectivement) correspondent aux droites jaunes du graphe.

Des diamants de Coulomb sont visibles aux petites transmissions (tension de grille). b Schéma du

dispositif utilisé pour tester la chiralité du tranposrt de chaleur. Un CPQ sonde (noir) compare

le �ux de chaleur chiral et antichiral généré par deux CPQ d'injection (rouges) situés en amont

et en aval respectivement. c Graphe 3D en couleur de la transmission du CPQ sonde en fonction

de la polarisation des CPQ d'injection en aval (δVdownstream) et en amont (δVupstream). Le CPQ

sonde est opéré avec une énergie de charge ∼ 30 µeV (encart de droite en a). Le signal à travers

la sonde dépend de la polarisation du CPQ en aval, démontrant un �ux d'énergie antichiral. La

géometrie elliptique du signal montre que le �ux antichiral ne dépend pas de l'énergie totale locale,

mais seulement de l'énergie injectée en aval.
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1.4 Blocage de Coulomb dynamique dans un conducteur

cohérent

La dernière partie de cette thèse s'intéresse à comment les lois classiques de composition

d'impédance sont modi�ées par l'intéraction coulombienne dans les circuits quantiques. La

théorie du blocage de Coulomb dynamique [46] explique comment la conductance d'un con-

ducteur cohérent est modi�ée par le circuit dans lequel il s'insère. Des prédictions récentes

[5, 6] prédisent un fort lien entre cet e�et et le bruit de grenaille du conducteur cohérent.

Nous avons testé cette prédiction forte en mesurant le blocage de Coulomb dynamique d'un

conducteur cohérent modèle, un contact ponctuel quantique (CPQ), dont les coe�cients de

transmission (et donc son bruit de grenaille) peuvent être modi�és in-situ.

1.4.1 Composition d'impédances dans les circuits quantiques

Dans les circuit classiques, les conducteurs sont décrits par leurs relations constitutives en-

capsulées dans leur impédance, ou admittance. La dynamique d'un circuit complexe est

complètement déterminée par ces impédances et par les règles de composition d'impédances

données par les lois de Kirscho�. Dans les circuits quantiques, un conducteur (élastique) est

caracterisé par ses coe�cients de transmission pour les ondes électroniques qui lui sont inci-

dentes [47, 48, 49]. Si les électrons maintiennent une cohérence de phase entre les di�érents

conducteurs du circuit, des phénomènes d'interférences peuvent modi�er les lois classiques de

composition [32, 50]. Mais, même quand les conducteurs sont espacés de plus de la longueur

de cohérence de phase, des e�ets associés à la granuralité de la charge et à l'intéraction

coulombienne peuvent modi�er les lois de composition classiques. Le blocage de Coulomb

dynamique décrit ces e�ets [46], et en pratique, il en résulte que la conductance d'un conduc-

teur cohérent diminue aux basses tensions et tempéraures lorsqu'il est inséré dans un circuit

résistif.

1.4.2 Blocage de Coulomb dynamique

Quand un électron est transmis, ou ré�échit, par une barrière de potentiel, le pulse de

courant associé peut exciter les modes électromagnétiques du circuit dans lequel il s'insère.

Comme un partie de l'énergie portée par l'électron est transférée au circuit, le processus de

transmission devient inélastique et dépendant en énergie. De plus, la transmission, et donc

la conductance, de la barrière vont donc dépendre de l'impédance qui caractérise le circuit

dans lequel elle s'insère [46]. C'est e�et à été balisé pour les jonctions tunnel opaques depuis

le début des années 90, pour lesquelles la théorie du blocage de Coulomb dynamique [46]

donne une description complète. Cependant, ce phénomène n'est pas restreint aux jonctions
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tunnels, mais à tout conducteur cohérent ayant des coe�cients transmission, τi, quelconques.

Seulement récemment, deux théories [5, 6] ont été capables de traiter ce cas plus général,

mais dans la limite d'environnements de faible impédance. Les deux théories trouvent que les

corrections à la conductance d'un conducteur cohérent quelconque ont la même dépendeance

fonctionnelle en énergie (tension et température) et en impédance de l'environnement que

pour les jonctions tunnel opaques. Mais l'amplitude de cette correction par rapport au

cas des jonctions tunnel est renormalisée par le facteur de Fano, F =
∑
τi(1 − τi)/

∑
τi,

comme pour le bruit de grenaille [48, 49]. Par exemple, les barrières de transmission parfaite

(τi ∈ {0, 1}) ne génèrent pas de bruit de grenaille, et comme il n'y a plus de pulses de

courant, les électrons transmis ne peuvent plus exciter les modes électromagnétiques. Même

si une expérience pionnière dans des contacts atomiques [51] a testé qualitativement cette

forte prediction en 2001, il manquait toujours une expérience explorant la dépendance du

bloacage de Coulomb dynamique pour un rang large de facteurs Fano.

1.4.3 Test expérimental de la théorie du blocage de Coulomb dy-

namique dans un conducteur cohérent modèle

Dans le but de tester les prédictions du blocage de Coulomb dynamique pour di�érents

facteurs de Fano, nous avons mesuré cet e�et dans un CPQ dont les coe�cients de trans-

missions (et donc son facteur de Fano) peuvent être modi�és continûment in-situ. Grâce à

cette modularité, ils constituent un banc d'essai privilégié pour le transport quantique. Et

ils ont déjà été utilisés avec succès, comme tels, pour tester les prédictions de la théorie de la

di�usion élastique, pour la conductance [27] ou le bruit de grenaille [52, 53] d'un conducteur

cohérent quelconque.

Nous avons inséré un CPQ dans un circuit ajustable (Figure 1.5.a): L'impédance en

série au CPQ peut être selectionnée parmis di�érentes valeurs, dont un court circuit à haute

fréquence pour lequel le blocage de Coulomb est pratiquement nul. Avec cette limite de basse

impédance, nous pouvons caractériser le CPQ pour extraire et sélectionner ses coe�cients

de transmission τi (Figure 1.5.b). Pour un jeu de τi donné, nous basculons à une impédance

série plus élevée qui donne cause au blocage de Coulomb dynamique, et mesurons comment

la conductance du CPQ est modi�ée. La dépendance en température et l'amplitude des

corrections à la conductance mesurées sont sont bien reproduites par le théorie du blocage

de Coulomb dynamique. Finalement, en refaisant ces mesures pour un ensemble large de

coe�cients de transmission, nous démontrons que les corrections à la conductance d'un

conducteur cohérent, due au blocage de Coulomb dynamique, sont renormalisées par rapport

à celles d'un jonction tunnel, par le même facteur de Fano qui caractérise le bruit de grenaille

du conducteur (Figure 1.5.c).
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Ces résultats fournissent des bases solides à la compréhension des lois de composition

d'impédance dans les circuit quantiques.
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Figure 1.5: Test expérimental de la théorie du blocage de Coulomb dynamique

avec un contact ponctuel quantique. a Image au microscope électronique de l'échantillon

et schéma électrique correspondant (insert droit). Un contact ponctuel quantique est placé en

série avec une résistance. La résistance série peut être sélectionnée parmi trois valeurs in-situ,

en polarisant sélectivement les grilles métalliques rouge et verte utilisées comme des interrupteurs

électriques. Insert bas: image au microscope électronique du contact ponctuel quantique situé au

centre de la zone encadrée sur l'image globale de l'échantillon. b Le contact ponctuel quantique est

caractérisé par la mesure de sa conductance lorsque la résistance série court-circuitée. c Correction

relative à la conductance du contact ponctuel quantique en présence d'une résistance série de 1.2 kΩ,

tracée en fonction de sa conductance. Ligne continue: prédiction théorique pour une jonction tunnel

renormalisée par le facteur de Fano obtenu à partir de la conductance du contact ponctuel quantique.



Chapter 2

Introduction

2.1 Mesoscopic physics in solid state circuits

We live in a �big� world ruled by classical laws build upon �small� objects ruled by quantum

mechanics. This dichotomy may be used to distinguish the macroscopic from the microscopic

world, but the frontier between them is fuzzy since it is system and energy scale dependent.

Mesoscopic physics [54] focuses on systems which are large in comparison to usual microscopic

(atomic) scales but which nevertheless exhibit quantum coherent phenomena.

Solid state electronic circuits are pioneering systems where mesoscopic e�ects have been

observed. Since the 80's, the microfabrication techniques inherited from the computer in-

dustry, coupled with the cryogenics techniques developed in the 50's, have permitted to

investigate submicron scale circuits. Even if constituted by large amounts of atoms, quan-

tum e�ects are found to be important in these circuits at low temperatures, usually in the

sub-Kelvin range. Investigating quantum e�ects in small circuits gives access to a new axis

of complexity to test and develop our basic understanding of nature, and is also particu-

larly relevant for the computer industry. Indeed, quantum e�ects, such as tunnel leakages

or interference phenomena, become important as the size decreases and could a�ect the

devices functionalities even at room temperature. On the other hand, quantum mechanics

o�ers new potentially powerful perspectives for information processing and transmission. In

this respect, quantum circuits are most promising since they can be engineered to realize

quantum bits, to perform logic operations and are, in principle, easily integrable.

2.2 Coulomb interactions in quantum circuits

Non-interacting approaches have provided fairly accurate descriptions of solid state conduct-

ing systems since the very early theoretical models, like Drude's or Sommerfeld's. This may

appear surprising since they ignore the long range Coulomb interaction that tends to couple
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the charged carriers. The main reason is that, as electrons tend to repel each other, they

are surrounded by a neutralizing positive background charge furnished by the lattice ions so

that Coulomb interaction becomes screened and short ranged. In most systems, the Lan-

dau theory of Fermi liquids [29] predicts that a Fermi sea develops and that the low energy

physics remains described by long lived single-particle excitations (quasiparticles). These

quasiparticles obey a fermionic statistics and carry the same charge as electrons. However,

quasiparticles are not really free but still subjected to the residual screened Coulomb interac-

tions by which they couple to each other and loose their quantum coherence. These residual

interactions increase with the con�nement and are expected to have dramatic consequences

in one dimensional conductors [55]. Moreover, quasiparticles also couple to their electro-

magnetic environment. Understanding such electrodynamic e�ects is not only interesting in

fundamental science, but is necessary to engineer the functionalities of quantum circuits.

This thesis is devoted to investigating Coulomb interaction e�ects in three distinct

regimes accessible in 2D electron gas (2DEGs) circuits. In the �rst part of the manuscript,

I will present a series of experiments investigating the quantum Hall e�ect in the the inte-

ger and fractional regimes. Our approach relies on the measurement of the energy trans-

fers (energy exchanges and energy currents) arising in low dimensional circuits driven out-

of-equilibrium. In the second part, I present an experiment investigating the non-trivial

impedance composition laws arising, in quantum circuits, from the interplay of Coulomb

interaction and the discreteness of charge.

2.3 Main experimental results obtained during my PhD

• The demonstration of a novel spectroscopic technique to extract the elec-

tronic energy distribution function using a quantum dot [1]. This fundamental

quantity is obtained for the �rst time in a mesoscopic semiconductor circuit.

• The observation of strong energy relaxation along νL = 2 quantum Hall edge-

channels, challenging the wide-spread non-interacting picture [2]. While

the dominant inelastic mechanism is found to follow from inter-channel interactions

without particle exchanges, a small energy leak suggests the coupling to additional

co-propagating excitations.

• The demonstration that energy exchanges can be e�ciently tuned in νL = 2

quantum Hall edge-channels [3]. By manipulating the edge-channel paths it was

possible to tune up or down the energy relaxation of a non-equilibrium edge-channel.

• The observation of a non chiral energy current at νL = 4/3, while charge

current remains chiral. We show that this antichiral energy current �ows through
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the bulk, whereas the electrical current �ows chirally along the edge.

• The demonstration of the strong link between the dynamical Coulomb

blockade and shot-noise for short coherent conductors [4]. Dynamical Coulomb

blockade corrections to the conductance of a quantum point contact are found to be

renormalized by the Fano factor resulting from its �nite transmission coe�cients, in

quantitative agreement with recent predictions [5, 6]

2.4 Energy transfers in the integer quantum Hall regime

The non-interacting picture of the integer quantum Hall e�ect has a strong analogy with optics

[8, 9, 10], where edge-channels play the role of light beams. While several experiments have

demonstrated the potential of this analogy to perform electron quantum optics experiments,

they have also revealed the �rst signatures of interaction e�ects in the integer quantum Hall

e�ect, which are not yet fully understood [11, 12, 13, 14, 15]. In order to shed new light

on this issue, we have developed a scheme to perform the energy distribution spectroscopy of

single-particle excitations in an edge-channel driven out of equilibrium. With this scheme, we

could investigate experimentally the energy exchanges and currents along two co-propagating

edge-channels (νL = 2) of the integer quantum Hall e�ect.

2.4.1 The integer quantum Hall e�ect and edge-channels

Non-interacting description

The integer quantum Hall e�ect, discovered in 1982 by von Klitzing, Dorda and Pepper [7],

is a macroscopic quantum e�ect that arises when a 2D electron gas is submitted to a strong

perpendicular magnetic �eld. It is characterized by a vanishing longitudinal resistance and

a Hall resistance quantized in units of the resistance quantum RHall = 1
νL

h
e2 , where νL is

an integer. In this regime, the only low energy excitations propagate along the edge, in the

so-called edge-channels whose number match the �lling factor νL. In the non-interacting

picture, the νL edge-channels are described as νL 1D co-propagating chiral conductors. The

analogy between edge-channels and light beams and the possibility to manipulate them with

tunable small constrictions (quantum point contacts), such as selective populating, detecting

and beam-splitting them, permits to implement electron analogues of interferential devices

[9].

The role of Coulomb interactions

The usual description of edge-channels neglects Coulomb interactions since standard trans-

port measurements are not sensitive to them [16]: the edge-channels' chirality forbids electron
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backscattering and the electric current �ows along the edge, irrespective of the microscopic

details. However, we know that interactions can have dramatic consequences on the very

nature of the edge excitations: Coulomb interactions are expected to reconstruct the edge

density pro�le [17, 19] for the smooth con�nement potentials realized in most experiments.

This gives rise to additional branches of acoustic edge excitations of the reconstructed edge

[19, 20]. Moreover, strong enough interactions between co-propagating edge-channels are ex-

pected to yield to collective bosonic excitations delocalized amongst the edge-channels [21].

For instance, at νL = 2 the dynamics may split in a fast symmetric charge mode and a slow

antisymmetric spin mode [22].

Being sensitive to the phase coherence of a single edge-channel, the Mach-Zehnder ex-

periments have recently demonstrated a zoology of phenomena incompatible with the single-

electron picture [11, 12, 14, 23]. These phenomena provide the �rst pieces of evidence for

interaction e�ects in the integer quantum Hall e�ect. Up to now, there is an active debate in

order to describe all the experimental �ndings within a single theoretical model. A drawback

of Mach-Zehnder experiments is that they are sensitive to di�erent contributions to dephas-

ing: On the one hand, the inelastic mechanisms at work fundamentally limit the quantum

lifetime of the interfering excitations. On the other hand, low frequency noise, at frequen-

cies higher than the inverse measurement time, can blur the electronic phase measured in

these experiments. This limitation can be overcome by directly investigating the inelastic

mechanisms through the energy exchanges they induce in non-equilibrium situations.

2.4.2 Energy distribution spectroscopy and energy currents along

quantum Hall edge-channels

In 1D chiral systems the heat �ow carried by single particle, electron-hole, excitations of the

1D Fermi sea can be directly related to the electronic energy distribution function, f(E),

without sample dependent parameters [24]:

JH =
1

h

∫ (
E − EF

)(
f(E)−Θ(EF − E)

)
dE, (2.1)

where EF is the Fermi energy and Θ(E) the Heaviside step function. Moreover, in out-of-

equilibrium situations changes in f(E) are a direct signature of energy exchanges and can

be used to track the inelastic mechanisms at work, as demonstrated in mesoscopic metallic

wires [25] and carbon nanotubes [26]. In the integer quantum Hall e�ect, the edge-channels'

energy distribution can be extracted from the tunneling current �owing through a localized

state (in a quantum dot), while a voltage biased constriction (a quantum point contact) can

be used to drive an edge-channel out-of-equilibrium in a controlled way.
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A quantum dot as an energy �lter

A quantum dot is a small electron box whose density of states is discrete due to con�nement

quantization. When it is coupled to two electrodes by opaque tunneling barriers, only the

electrons matching the discrete energy levels inside the box can �ow through it. Assuming a

single level lies inside the transport window, the current �owing through the quantum dot,

IQD, is directly proportional to the di�erence of electron populations on both drain (D) and

source (S) electrodes at the energy of the resonant level, Elev, as depicted in Figure 2.1.a:

IQD = IMax(fD(Elev)− fS(Elev)). (2.2)

The distributions in both electrodes are obtained separately by applying a global electro-

chemical potential di�erence between them, such that an electrode population is zero, or

one, when the other is not, as shown in Figure 2.1.a. A capacitively coupled metallic gate,

is used to sweep the energy of the resonant level, which gives access to the full drain and

source electrodes' energy distributions, fD/S(E). In practice, we measured the quantum dot

transconductance with the gate voltage which is proportional to the derivative of the energy

distributions ∂EfD/S(E) (Figure 2.1.a, right).

A quantum point contact as a tunable heat source

A quantum point contact is realized with a small 2DEG constriction of tunable width [27].

In the integer regime of the quantum Hall e�ect, they can be used as beamsplitters that

partially transmit/re�ect the incoming edge-channels. When a quantum point contact of

intermediate transmission probability 0 < τ < 1 is voltage biased, it mixes the populations of

incoming edge-channels having di�erent electrochemical potentials. Assuming the scattering

is elastic, the outgoing non-equilibrium edge-channel energy distribution is the sum of two

energy translated Fermi functions, fF (E), weighted by the respective transmission/re�ection,

probabilities τ/1− τ . Consequently, the outgoing energy distribution displays a double-step

shape [28] (left inset in Figure 2.1.b):

f(E) = τfF (E − eVD1) + (1− τ)fF (E − eVD2), (2.3)

where VD1/2 are the potential biases applied to the incoming edge-channels (see Figure 2.1.b).

Beyond the non-interacting picture, the heat �ow, JQPC
H , in both outgoing edge-channels at

the quantum point contact can be deduced from general power balance considerations:

JQPC
H =

τ(1− τ)e2(VD1 − VD2)
2

2h
+
π2

6h
(kBT )2, (2.4)

where the �rst term is the non-equilibrium contribution that adds to the equilibrium heat

�ow carried by thermal chiral electron-hole excitations at temperature T (second term).
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Figure 2.1: Non-equilibrium edge-channel spectroscopy using a quantum dot. a

Schematical description of the energy spectroscopy principle: (Left) Possible tunneling events when

a single active level lies in the transport window. (Right) The current �owing through the quantum

dot, IQD, is proportional to the di�erence of energy distributions, fD/S(E), on both drain/source

(D/S) sides to the quantum dot. In practice, we measure the transconductance ∂IQD/∂VG, pro-

portional to the energy derivative of the di�erence between fD(E) and fS(E). A global potential

di�erence is applied between D and S in order to separate their contributions to the quantum dot

signal. b Sample micrograph: Surface gates appear bright. A voltage biased quantum point contact

(de�ned by the bottom gates) injects a non-equilibrium energy distribution in an edge-channel on

the drain side. The quantum dot (de�ned by gates on top) is used to probe the resulting fD(E)

after a short propagation length of 0.8 µm. The source fS(E) is at cold equilibrium (right inset). c

Energy distributions in the drain edge-channel extracted by integrating the quantum dot signal for a

�xed quantum point contact transmission probability τ ≃ 0.5 and di�erent biases δVD = VD1−VD2.

The resulting energy distributions show a double-step structure, as predicted by the scattering ap-

proach. d Symbols: Heat current, JH , extracted from the data shown in c and from a second run

with the same quantum point contact transmission (∗). Continuous line: prediction (2.4) for the

heat current injected by the voltage biased quantum point contact. No signi�cant energy loss is

found at our experimental accuracy after a 0.8 µm propagation length.
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2.4.3 Experimental results, νL = 2

First we demonstrate the experiment principle and the optical analogy between quantum

point contacts and beam-splitters regarding energy transport [1]. Second, we demonstrate

a strong energy relaxation along the edge-channels' path, challenging the single-particle

picture, and we discuss the responsible inelastic mechanism [2]. Third, we demonstrate how

to tune the energy exchanges in non-equilibrium edge-channels [3].

Non-equilibrium edge-channel energy distribution spectroscopy

We generate a non-equilibrium situation in an edge-channel using a voltage biased quantum

point contact for di�erent biases and transmissions. We use a quantum dot to measure the

resulting energy distribution a short distance downhill L =0.8 µm (Figure 2.1.b). The mea-

sured energy distributions (Figure 2.1.c) are found close to the non-interacting prediction

(2.3). The heat �ow extracted using (2.1) (Figure 2.1.d) matches the heat �ow injected at the

quantum point contact (2.4), at our experimental accuracy. This demonstrates that quan-

tum point contacts are well described as tunable beam-splitters regarding energy resolved

transport. It also shows that a quantum dot is a reliable tool for performing the energy

distribution spectroscopy. Regarding the low energy dynamics of the integer quantum Hall

e�ect edge-channels at νL = 2, these measurements demonstrate that relaxation e�ects are

small in the short propagation path between the quantum point contact and the quantum

dot at the probed energies.

Energy relaxation of non-equilibrium edge-channels

It is possible to address the relaxation dynamics of single-particle excitations by probing

f(E) after di�erent propagation lengths from the heat injection point [25]. Changes in f(E)

are a direct signature of the inelastic mechanisms at work.

In our second experiment, we have varied the propagation distance between the heat

injection point and the f(E) probe (Figure 2.2.a). This experiment revealed an energy

relaxation towards a hot electron regime. This can be seen in Figure 2.2.b, where the

measured quantum dot transconductances, ∂VG
IQD proportional to ∂Ef(E) (symbols), are

�tted using Fermi functions (continuous lines) at long propagation lengths. Performing an

exponential �t of the local heat current (Figure 2.2.c) relaxation with the propagation length

we obtained an inelastic length of about 2.5 µm at mean excitation energies of about 125 mK.

With the knowledge of the drift velocity, this quantity gives an upper limit to the quantum

lifetime of the probed excitations. Using the drift velocities measured in similar samples in

other groups, we �nd that the energy uncertainty associated with the quantum lifetime is

larger than, or comparable to, the mean excitation energy. Consequently, the single particle
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states' energy appears ill de�ned. This result challenges the usual non-interacting picture of

edge-channels at νL = 2.

By probing f(E) in an edge-channel, while driving out of equilibrium its co-propagating

edge-channel (Figure 2.2.d), we provide direct proof (Figures 2.2.e and f) of energy exchanges

between edge-channels, without particle exchanges. This interaction mechanism is found to

be dominant. However, it is not the only mechanism, since some heat is found to leak out of

the two edge-channel system as shown in Figures 2.2.c and f. The energy and propagation

length dependence of the relaxation rules out interactions with thermalized excitations such

as bulk phonons, as expected from the predictions of [56] or electronic states in the metallic

gates used to de�ne the edge-channel paths. Instead, the data suggests the presence of

additional co-propagating excitations.

Up and down control of the energy relaxation in an edge-channel

In order to perform quantum optics experiments and for quantum information applications

with edge-channels, it is bene�cial to increase the relaxation and coherence length. It is

also useful to dispose of techniques permitting to drive the system back to equilibrium, for

instance to perform fast resets. We have demonstrated experimentally the up/down control

of energy relaxation of a single integer quantum Hall e�ect edge-channel.

Driving the energy relaxation with a voltage probe:

Floating ohmic contacts (voltage probes) have been used by theoreticians to mimic en-

ergy relaxation and decoherence e�ects within the non-interacting scattering approach. We

have performed a relaxation experiment where the non-equilibrium edge-channel is diverted

to a �oating ohmic contact through an intermediate quantum point contact (Figure 2.3.a).

The resulting energy distribution is probed at the quantum dot after a short subsequent

propagation length. Our measurements (Figure 2.3.b) are found to follow accurately, with-

out �tting parameters, the scattering approach predictions.
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Figure 2.2: Energy exchanges along νL = 2 edge channels. a, Energy relaxation: A

voltage biased quantum point contact of conductance 0.5e2/h heats the outer outgoing edge-channel

whose energy distribution, fD(E), is probed with a quantum dot after a propagation distance L. b,

Raw data for setup a at δVD =36 µV(symbols) shifted vertically for several L. The nonequilibrium

double dip relaxes over Linel ≃ 3 µm towards a dip broader than the equilibrium dip at δVD = 0

(dotted line). Solid lines are calculations with a Fermi distribution at 85 mK. c Excess heat current

extracted from data (symbols) and prediction at quantum point contact output (continuous line).

The outer edge-channel cools down as L is increased and saturates at a value below expectations for

two interacting edge-channels (dotted line). d Energy exchanges between edge-channels: A voltage

biased quantum point contact of conductance 1.5e2/h heats the inner outgoing edge-channel, while

the outer edge-channel's fD(E) is probed at distance L. e Raw data for setup d at δVD = 0 (dotted

line) and δVD =54 µV (symbols), shifted vertically for several L. The dip broadens as L is increased.

f Excess heat current extracted from data (full symbols), prediction at the quantum point contact

output (continuous line) and expected for two interacting edge-channels (dotted line). The outer

edge-channel heats as L increases, up to an excess temperature close to that of setup a [L =10 µm

in c is shown here as open symbols ( ▽ )].
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Freezing energy exchanges with a closed loop:

More importantly, we have demonstrated a technique permitting us to freeze the relax-

ation dynamics. We have performed an energy relaxation experiment on the outer edge-

channel while the inner edge-channel is closed in a looped geometry for most of the outer

edge-channel propagation (Figure 2.3.c). This scheme may be informative since an edge-

channel localized in a loop cannot absorb energy in the stationary regime and its density of

states is discrete due to the periodic boundary conditions.

We �nd that when the inner edge-channel is su�ciently small, the non-equilibrium outer

edge-channel f(E) remains constant. Indeed, the measured quantum dot transconductance

signal is identical, at our accuracy, in both (Lin = Lout =2.2 µm) and (Lin =2.2 µm,

Lout =10 µm) con�gurations, whereas the probed outer edge channel path is 8 µm longer in

the second con�guration (see Figure 2.3.d). In contrast, the fully co-propagative geometry,

(Lin = Lout =10 µm), yielded to a full energy redistribution for the same propagation length

(▽). The length characterizing the energy exchanges is therefore increased by at least a factor
of four. We attribute this behavior to the discrete energy spacing of the inner edge-channel,

which is larger than the energy injected in the outer edge-channel for the (Lin =2.2 µm,

Lout =10 µm) loop.

This �nding also provides very strong constraints regarding the pertinent energy exchange

mechanisms. It implies that interactions within the non-equilibrium edge-channel excita-

tions are incontrovertibly negligible to the relaxation dynamics on an 8 µm length scale at

the probed energies. Moreover, we �nd that the electronic energy at the quantum dot in the

probed outer edge-channel is identical at our experimental accuracy in the con�gurations

(Lin = Lout =2.2 µm) and (Lin =2.2 µm, Lout =30 µm), despite the important changes

observed in the shape of f(E). This shows that energy redistribution with the predicted

additional modes of the excited outer edge-channel [19, 20] remain small for a 28 µm prop-

agation length.
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Figure 2.3: Tunning the edge-channel relaxation. a Increased relaxation setup: A non-

equilibrium edge-channel is diverted towards a �oating ohmic contact (voltage probe) through an

intermediate quantum point contact. The resulting fD(E) is probed with a quantum dot 0.8 µm

downstream the intermediate quantum point contact. b Raw data for setup a for di�erent trans-

missions, Gimh/e2, of the intermediate quantum point contact. The non-equilibrium double dip

at 0 transmission evolves towards an equilibrium single dip as the intermediate transmission is

increased to 1 (continuous line: predictions from the scattering approach). c Freezed relaxation

setup: The outer edge-channel is driven out of equilibrium and probed after a tunable propagation

length, Lout. The inner edge-channel is fully re�ected by an intermediate quantum point contact of

conductance e2/h and reaches the quantum dot after a Lin =2.2 µm propagation path. Below the

intermediate quantum point contact, the inner edge-channel forms a closed loop of tunable length

Lloop = Lout − Lin. d Raw data in di�erent con�gurations (Lin, Lout) for di�erent heating quan-

tum point contact biases (symbols). The same signal is obtained when Lin = Lout =2.2 µm and

(Lin =2.2 µm, Lout =10 µm), so that a 8 µm loop freezes the relaxation dynamics that take place

when both edge-channels follow the same propagation path (Lin = Lout =10 µm). A larger loop of

28 µm does not suppress the energy relaxation (Lin =2.2 µm, Lout =30 µm). The resulting f(E)

can be �tted with a Fermi function (continuous lines) that corresponds to the same heat current as

for Lin = Lout =2.2 µm.
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2.5 Energy transport in the fractional quantum Hall regime

2.5.1 The fractional quantum Hall e�ect

The fractional quantum Hall e�ect discovered in 1982 by Tsui, Störmer and Gossard [33] has

proven to be one of the most intriguing phenomena in condensed matter physics. Contrary to

the integer quantum Hall e�ect, it was soon realized it is an e�ect arising from Coulomb in-

teractions. Its single particle excitations have been demonstrated to carry fractional charges

[35, 36], and are predicted to display fractional exchange statistics, interpolating between

Bose-Einstein and Fermi-Dirac statistics.

As in the integer quantum Hall e�ect, the bulk is gapped and the only low energy

excitations can propagate at the edge of the sample in chiral edge-channels. This results

in a vanishing longitudinal resistances and a quantized Hall resistance. However, in the

fractional quantum Hall e�ect, edge-channels cannot be described as non-interacting 1D

chiral fermions. The e�ective theory developed by Wen [38], describes edge-channels as chiral

Luttinger liquids. It predicts a non linear I-V curve of tunneling point contacts [39], with a

universal power law behavior whose exponent is directly linked to the �lling factor νL. Several

experiments have demonstrated such power law behavior, however the found exponents are

systematically lower than the predicted ones [40]. Such deviations could possibly result from

sample dependent e�ects, like the reconstructed edge pro�le for a smooth con�nement. Up

to now, many crucial information regarding the fractional edge-channels is still missing. For

example, the number of edge modes, their chirality and their coupling, which are expected

to be non trivial for some FQHE regimes, are still not known.

2.5.2 Towards testing the edge structure with heat transport

Heat transport is expected to provide new information on the edge structure. For instance

neutral modes are predicted in hole conjugated regimes to the 1/m fractions (like the 1−1/3

or 2 − 1/3 regimes) [42]. These neutral modes remain up to now elusive to experiments

because they are transparent to charge transport. However, they are expected to carry an-

tichiral heat currents [43]. We have developed a setup to perform heat transport experiments

in the fractional quantum Hall e�ect. The �rst heat transport measurements performed in

the νL = 4/3 regime have already revealed a rich behavior.

A Coulomb blockaded island as heat probe

In order to test the heat current chirality, qualitative heat transport measurements are

su�cient. We have used a Coulomb blockaded island as high-pass energy �lter:

The current �owing through the island, when tunnel coupled to two electrodes, is blocked
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as long as the incident electronic excitations do not carry an energy comparable or superior

to the charging energy. Such Coulomb blockaded islands [44] act as high pass energy �lters

that can be used to probe the excitations hotter than the addition energy.

In the following experiments, the Coulomb blockaded island is realized with the help of

a quantum point contact near its pinch o� region. In this situation, our quantum point

contacts displays Coulomb diamonds (Figure 2.4.a) when sweeping both gate voltage and

bias demonstrating that charging energy physics in�uence the electrical transport1.

2.5.3 Energy transport measurements, νL = 4/3

The experiments we have performed are described schematically in Figure 2.4.b. Two �in-

jection� quantum point contacts (red) both tuned to half transmission, are used to drive

an edge-channel out of equilibrium in two distinct points along the edge. The local heat is

probed with a �probe� quantum point contact (black) operated in the Coulomb blockaded

regime, and located between the two injection quantum point contacts. This geometry allows

us to make a one to one comparison between the forward and the backward heat current,

with the same heat probe.

Charge vs. heat transport chirality

The electrical current is found to follow the edge with the chirality imposed by the magnetic

�eld, even in the probed non-equilibrium situations. In contrast, we �nd (Figure 2.4.c)

that the edge-channel is locally heated when injecting the non-equilibrium situation in both

upstream and downstream quantum point contacts. This demonstrates that the heat �ow is

not chiral, while the charge �ow remains chiral. The elliptical geometry of the heat signal

measured as a function of the upstream and downstream quantum point contact biases

demonstrates the antichiral heat �ow is unsensitive to the energy injected by the upstream

quantum point contact. Therefore it cannot be explained by a plain local �killing� of the

fractional quantum Hall e�ect due to heating.

Coupling to neutral bulk excitations

Performing the same measurements in di�erent geometries, we �nd that the antichiral heat

signal depends only on the direct distance between the injection quantum point contact and

the probe quantum point contact irrespective of the edge propagation path linking both

quantum point contacts. The most stringent test is to connect a �oating ohmic contact

to the edge, which forces the edge-channels' relaxation, without changing the direct, �as

1The residual static disorder close to the quantum point contacts may be responsible for the single particle

charging e�ects.
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Figure 2.4: Antichiral heat �ow in the νL = 4/3 fractional quantum Hall e�ect. a

Color plot of the transmission of the probe quantum point contact as a function of its gate and

bias voltage (gate voltage and bias projections correspond to the yellow line). Coulomb diamonds

develop at small transmissions (gate voltage). b Scheme used to test the heat �ow chirality: Two

quantum point contacts (red), tuned to half transmission, are voltage biased in order to create

a non-equilibrium situation both upstream and downstream of a probe quantum point contact

(black), used in the Coulomb blockaded regime. Voltage sources are used to bias the heat injection

quantum point contacts, while the probe quantum point contact is kept unbiased. c Color plot

of the transmission through the probe quantum point contact tuned to display an addition gap of

30 µeV (right projection in a), as a function of the injection quantum point contact biases placed

∼1.5 µm up and downstream. The energy injected in the downstream quantum point contact a�ects

the probe quantum point contact signal, revealing an antichiral heat �ow. The ellipsoidal geometry

of the probe signal shows that the antichiral heat �ow does not depend on the total local energy,

but only on the energy injected downstream.

the crow �ies� distance between injection and probe. These observations establish that the

anti-chiral heat �ow is fully carried by bulk excitations. Consequently, the non-equilibrium

fractional edge-channels appear to be e�ciently coupled to neutral bulk excitations.
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2.6 Dynamical Coulomb blockade in short coherent con-

ductors

The last part of this thesis is devoted to an experiment that investigates how the Coulomb

interaction modi�es the transport properties of a quantum conductor when it is embedded

in a macroscopic circuit. By inserting a quantum point contact in a tunable circuit, we

have measured the dynamical Coulomb blockade corrections to the quantum point contact's

conductance as a function of its transmission coe�cients. Our measurements demonstrate

the strong predicted link [5, 6] between the dynamical Coulomb blockade and shot-noise.

2.6.1 Impedance composition laws in quantum circuits

In classical circuits, the circuit dynamics is fully characterized by the constitutive relations

of the circuit elements. These are usually described as frequency dependent impedances.

Combined with the relations given by Kirscho�'s laws, the whole circuit dynamics results

from the classical impedance composition laws. In quantum circuits, such simple composition

laws do not hold anymore even in the presence of well de�ned coherent conductors separated

by a distance longer than the phase coherence length. In practice, the conductance of a

quantum conductor is reduced at low bias and temperature when inserted in a resistive

circuit. This phenomenon is called dynamical Coulomb blockade (see [46] for a review).

2.6.2 Dynamical Coulomb blockade

When an electron tunnels through a barrier, the corresponding current pulse excites the

electromagnetic modes of the circuit in which it is embedded. As a result, some energy is

transferred from the electron to the circuit. Electron tunneling becomes inelastic and the

barrier's conductance depends on the impedance of the environment [46]. This e�ect has been

thoroughly investigated in small and opaque tunnel junctions since the beginning of the 90's

and has proven to be well described by the dynamical Coulomb blockade theory. However,

this phenomenon is not restricted to tunnel junctions. Only recently, two theoretical works

[5, 6] have been able to handle the general case of a short coherent conductor with arbitrary

transmission coe�cients, τi, for the limit of low impedance environments. Both theories �nd

that the dynamical Coulomb corrections to a quantum conductor's conductance exhibit the

same energy dependence as for tunnel junctions, but is renormalized in amplitude by the

same Fano factor, F =
∑
τi(1− τi)/

∑
τi, that also renormalizes the current shot-noise (see

[48, 49] for a review on noise in quantum transport). For instance, a perfectly transmitting

�barrier� (τi ∈ {0, 1}) does not give rise to current �uctuations and the electron �ow cannot

couple to its electromagnetic environment. Although a pioneering work on atomic contacts
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[51] tested qualitatively these predictions in 2001, an experiment exploring the full parameter

dependence of the theory was still missing.

2.6.3 Experimental test of the dynamical Coulomb blockade theory

for short coherent conductors

In order to test the dynamical Coulomb blockade predictions for arbitrary transmissions, we

have measured the dynamical Coulomb blockade corrections to a quantum point contact con-

ductance. Quantum point contacts are local scatterers whose transmission coe�cients can

be tuned in-situ. Thanks to this modularity, they realize test beds for coherent conductors.

As such, they have already been used [27, 52, 53] to demonstrate the scattering approach

predictions linking the transport properties of a quantum resistor to its transmission coef-

�cients, like the multichannel Landauer formula [47, 57] of conductance, or the shot-noise

theory [58, 59].

We have embedded the quantum point contact in a tunable circuit (Figure 2.5.a) where

the series impedance can take several values, including a shorting low impedance path. In the

low impedance limit, dynamical Coulomb blockade correction are relatively small. Therefore,

we can characterize and select the quantum point contact's transmission coe�cients (Fig-

ure 2.5.b). For a given transmission coe�cients set, we selected a higher series impedance

and measured the resulting correction to the quantum point contact conductance. The con-

ductance corrections are found to be quantitatively described by the dynamical Coulomb

blockade theory in both amplitude and temperature dependence. By repeating these steps

for a wide range of transmission coe�cient sets de�ning di�erent Fano factors, we demon-

strate that dynamical Coulomb blockade corrections to conductance are renormalized, with

respect to those arising in tunnel junctions, by the same Fano factor renormalizing the

shot-noise (Figure 2.5.c).

Our result gives solid grounds to the understanding of impedance composition laws in

quantum circuits. Moreover, we have demonstrate a reliable method to measure dynamical

Coulomb blockade corrections in 2DEGs.
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Figure 2.5: Experimental test of the dynamical Coulomb blockade theory with a

quantum point contact.a Sample micrograph and electrical scheme (right inset). A quantum

point contact is set in series with di�erent resistance paths. The series resistance can be selected by

voltage biasing the red and green gates used as electrical switches. Bottom inset: quantum point

contact micrograph corresponding to the highlighted area above. b Conductance characterization

of the quantum point contact transmission coe�cients, when the series resistance is shunted. c

Dynamical Coulomb blockade correction to the quantum point contact conductance arising from a

series resistance of 1.2kΩ for di�erent quantum point contact's conductances. Solid line: Fano factor

dependence resulting from the quantum point contact's transmission sets, the dynamical Coulomb

blockade corrections are renormalized by the Fano factor.
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This Part describes an experimental investigation of the low energy physics in the regime

of the quantum Hall e�ect, under the point of view of energy transport measurements. Chap-

ter 2 introduces the basis of the quantum Hall e�ect, putting special emphasis on its edge

properties and highlighting some open questions on Coulomb interactions e�ects on the edge

structure. Chapter 3 presents the principle of our experimental approach: We will use well

known nanostructures to generate tunable non-equilibrium situations, using voltage biased

quantum point contacts, and to probe the resulting non-equilibrium electronic distribution

function, using a quantum dot as an energy �lter. Chapter 4 demonstrates the experimental

implementation of the proposed non-equilibrium spectroscopy technique in the regime of the

integer quantum Hall e�ect at �lling factor two. Using the same tools, Chapter 5 presents

an investigation of the energy exchanges taking place at �lling factor two, while Chapter 6

demonstrates two di�erent setups permitting us to tune the energy relaxation, both increasing

and freezing it. Chapter 7 recapitulates our �ndings regarding the low energy physics at �lling

factor two. Last, Chapter 8 presents a preliminary investigation of the fractional quantum

Hall e�ect at �lling factor 4/3, using a similar approach.
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Chapter 3

The quantum Hall e�ect

3.1 Introduction

The integer quantum Hall e�ect (IQHE) was discovered by Von Klitzing, Dorda and Pepper

in 1980 [7]. They discovered that a two dimensional electron gas (2DEG), realized in the

inversion layer of a silicon MOSFET, displayed universal transport properties when a strong

perpendicular magnetic �eld was applied to it. It is the �rst universal result obtained in

Semiconductor Science and was awarded by a Nobel Prize. Irrespective of the microscopic

details, the Hall resistance of the 2DEG was found to exhibit plateaus, as a function of the

magnetic �eld, at integer quotients of the resistance quantum1 RQ = h
e2 ,

RHall =
1

νL

h

e2
, νL ∈ N∗. (3.1)

The plateaus are accompanied by a vanishing longitudinal resistance, as can be seen in

Figure 3.1. In the original article, it was already realized that the universality of the Hall

plateaus could be used for metrological applications. The νL = 2 plateau on Ga(Al)As

2DEGs is used since 1990 to maintain the Ohm standard of the International Unit System.

State of the art measurements yield to a relative uncertainty on the resistance quantum RQ

of one part per billion2:

RQ =
h

e2
= 25812.807557(18) Ω (3.2)

Two years later, Tsui, Störmer and Gossard [60] discovered the fractional quantum Hall

e�ect (FQHE) on high mobility 2DEGs realized in GaAS/Ga(Al)As heterojunctions. The

FQHE manifests as fractional plateaus in the Hall resistance, νL ∈ Z∗. The 4/3 and 5/3

fractions are visible in Figure 3.1 giving rise to plateaus at the Hall resistances R4/3 = 3
4

h
e2 and

R5/3 = 3
5

h
e2 . In the FQHE regime, the 2D electrons are driven into an exotic state of matter.

For instance, the low energy excitations of this new phase have been demonstrated to carry

1Also called Von Klizing's constant, RK .
2Value taken from CODATA.
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Figure 3.1: Hall and longitudinal resistances of a 2DEG at low temperatures

and strong magnetic �elds. Top: Optical micrograph of a Ga(Al)As 2DEG hall bar.

Ohmic contacts (non homogenous) are used to bias and probe the 2DEG (blue, inside the

clear cuts). Bottom: Wide plateaus develop at quotients of the resistance quantum h/e2,

while the longitudinal resistance vanishes. The classical limit of linear resistance is observed

at low �elds. Experimental conditions: 2DEG density ne = 2 1015 m−2 and temperature

T = 100 mK.

fractional charges e
3
[35, 36], and are predicted to display anyonic statistics [37] interpolating

between Bose-Einstein's and Fermi-Dirac's. The Nobel prize was awarded in 1998 to their

discoverers, and to Laughlin for giving the basis [34] of our theoretical understanding of the

FQHE.

Both IQHE and FQHE are similar3 in that they display an excitation gap4. In conse-

quence the low energy excitations, determining their transport properties, propagate along

3Excepting the half integer fractions that we are not going to deal with.
4For completely �lled and empty energy levels, an in�nitesimal variation of the chemical potential cannot

change the electron number and the electronic �uid is incompressible.
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the the edges of the sample. However IQHE and FQHE have starkly di�erent origins: In the

IQHE the excitation gap results from the quantization of the cyclotron motion driven by the

magnetic �eld, and the incompressibility results from the Pauli principle. At the opposite,

the incompressibility of the FQHE arises from the Coulombic repulsion between electrons in

a partially �lled cyclotron band.

In the following we are going to introduce the non-interacting quantum mechanics of a 2D

electron gas submitted to strong perpendicular magnetic �elds. With these tools, we will be

able to introduce the notion of edge channels and see how the IQHE can be described within

a powerful non-interacting picture. As an opening to the research carried during this Thesis,

we will further discuss how Coulomb interactions may modify this simple picture. We will

later introduce the FQHE, a truly many body phenomena driven by Coulomb interactions,

where the edge channel picture holds as well. We will �nish by highlighting some open

questions regarding the edge physics of the FQHE.

3.2 From classical to quantum cyclotron motion

3.2.1 Classical dynamics

The classical dynamics of 2D non-interacting electrons in the presence of a uniform perpen-

dicular magnetic �eld, B, are described by cyclotron orbits. The trajectories are circular,

and their angular frequency is given by the cyclotron pulsation

ωC =
eB

m

irrespectively of the orbit's radius5. The in�uence of the periodic lattice is obtained by

replacing the free electron mass me by the e�ective mass of the 2DEG conduction band. In

GaAS/Ga(Al)As 2DEGs, the band mass is m = 0.067me.

3.2.2 Semi-classic dynamics

Since a 2DEG is a degenerate Fermi liquid (EF >> kBT , the electrons participating to

its transport properties have a well de�ned (Fermi) kinetic energy, vF . Therefore, their

cyclotron radius, rC , decreases with the applied magnetic �eld.

rC =
vF

ωC

=
mvF

eB

At low temperatures6, the quantum coherence is maintained along the cyclotron loop and

the density of states is a�ected by the periodic boundary conditions for the quantum phase.

5The dynamics are isochronous like in an harmonic oscillator.
6Electrons are decoupled from the phonons in the subKelvin range.
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In consequence, the physical properties are periodic with the cyclotron radius and therefore

with the inverse of the magnetic �eld. For instance, 1/B Shubnikov-de Haas oscillations [61]

develop in the longitudinal resistance. Nevertheless, a 2DEG presents some elastic scattering

due to residual disorder. Therefore, the picture holds only if the cyclotron radius is inferior

to the elastic mean free path, rC < le, in order to observe such modulations. The onset

of Shubnikov-de Haas oscillations provides a straightforward method to determine le with

simple transport measurements.

For higher �elds, one reaches the quantum limit of rCkF ∼ 1, where the very notion of

trajectory fails.

3.2.3 Landau quantization

The quantum version of the cyclotron motion was solved by Landau in the 20's and is a

textbook problem [62, 63]. Because of the applied magnetic �eld, one has to express the

mechanical momentum, p̂mech, in terms of the canonical momentum, p̂, so that ⃗̂pmech =

⃗̂p+ eA⃗(r̂). The kinetic energy hamiltonian reads:

Ĥ =
1

2m
(⃗̂p+ eA⃗(r̂))2 (3.3)

Energy spectrum

Within the Landau gauge A⃗(r̂) = (0, x̂B, 0), the ansatz ψk(x, y) = eikyfk(x) leads to the

reduced problem:

Ĥk =
1

2m
p̂2

x +
1

2
mωC(x̂+ kl2B)2, (3.4)

where lB =
√
h/eB. Eq. (3.4) describes a 1D transverse harmonic oscillator in the x direc-

tion, centered in Xk = −kl2B. The resulting energy spectrum is:

ϵk,n = (n+
1

2
)~ωC . (3.5)

The energy levels de�ned by (3.5) are called Landau levels and are independent of the gauge

choice.

Degeneracy

Spinless electrons The absence of energy dependency on the momentum ~k gives rise

[62, 63] to a huge (macroscopic) degeneracy W which is the same for each Landau level:

W = BS/Φ0, (3.6)

where Φ0 = e/h is the �ux quantum and S the sample surface. This means that every

Landau level can a�ord as many electrons as the number of �ux quanta threading through

the sample.
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Spin 1/2 In the case of 1/2 spin particles, the Zeeman coupling EZ = gµBS⃗ · B⃗ can

resolve the spin degeneracy. There are two limiting regimes with respect the the Zeeman

gap7 ∆Z = EZ(S = −1/2)− EZ(S = +1/2):

1. ∆Z > kBT : Every Landau level splits in two spin polarized branches, separated by the

Zeeman energy. Each spin branch has the �spinless� degeneracy W given by (3.6).

2. ∆Z < kBT < ~ωC : Thermal �uctuations mix the opposite spin branches and the

resulting spin degeneracy multiplies W (3.6) by 2.

In Ga(Al)As/GaAs 2DEGs, the spin-orbit scattering renormalizes the gyromagnetic fac-

tor which reads g = −0.4. The Zeeman gap at 4T is about

∆Z(B = 4T )/kB ≃ 1 K (3.7)

while the cyclotron energy is about

~ωC(B = 4T )/kB ≃ 80 K. (3.8)

Both energies scale linearly with B, so the ratio ~ωC/2EZ ∼ 80 is independent of the �eld.

With the typical sheet densities ne = 2 1015 m−2 in the sub Kelvin range, both spin split

branches of the lowest Landau level are fully �lled at B ∼ 4 T.

Eigenfunctions

The Landau gauge is useful for dealing with translation invariant geometries on the y di-

rection. It is therefore well suited for extracting transport properties. The corresponding

eigenfunctions are expressed in terms of the nth Hermite polynomials Hn:

ψn,k(r⃗) =
1√
L
eikyHn(x+ kl2B)e

− 1

2l2
B

(x+kl2B)2

(3.9)

The magnetic length lB therefore characterizes the space dispersion around the central

position Xk. In the lowest Landau level, lB gives the variance of the zero point �uctuations

in the transverse motion. The magnetic length is roughly ∼10 nm at 4 T, and scales as

1/
√
B.

The symmetric gauge A⃗(⃗̂r) = (−B
2
ŷ, B

2
x̂, 0) has a continuous central symmetry and is

therefore well suited for dealing with Coulomb interactions. The eigenfunction have therefore

a de�nite angular momentum m. If we restrict to the lowest Landau level, the eigenfunctions

read:

ψm(z) =
1√

2πl2B2mm!
zme−

1
4
|z|2 , m ∈ N∗+ (3.10)

where z = x+iy
lB

parameterizes the 2D plane. The chirality build by the magnetic �eld imposes

only positive angular momenta, m ∈ N+∗.

7The gyromagnetic factor is negative.



48 The quantum Hall e�ect

3.2.4 Conductivity

Mean current of eigenstates

We consider samples which are invariant in the y direction and use the Landau gauge. We

restrict to the lowest Landau level for simplicity. Despite the eiky dependence on (3.9), a

state having a momentum ~k does not carry any current. It is the mechanical momentum

⃗̂p + eA⃗(⃗̂r) that is related to the particle current
⃗̂
J = e

m
(⃗̂p + eA⃗(⃗̂r)), and not the gauge

dependent ⃗̂p. The x component of < k| ⃗̂J |k > is obviously null since the transverse dynamics

of (3.9) are those of a harmonic oscillator. It is easy to see that the y component vanishes

too:

< k|Jy|k > = − e

m
< ψk|p̂y + eAy(r̂)|ψk >

= − eωC√
πl2B

∫
dxe

− 1

l2
B

(x+kl2B)2

(x+ kl2B) = 0. (3.11)

Transverse electric �eld

In the presence of an electric �eld E⃗ = (E, 0, 0), the potential term V = eEx simply adds

to the hamiltonian Ĥk (3.4). The potential translates the oscillator to the new position

Xk = −kl2B − mE
eB

, and adds an electrostatic and a kinetic term with respect to Xk:

ϵn=0,k =
1

2
~ωC + eEXk +

1

2
m|vD|2, (3.12)

where v⃗D = E⃗×B⃗
B2 is the classical drift velocity of the crossed �eld con�guration E⃗ ⊥ B⃗. The

wave function has now a group velocity, v⃗, in the y direction equal to v⃗D:

v⃗ = (0,
1

h

∂Ek

∂k
) =

E⃗ × B⃗
B2

. (3.13)

Therefore, Xk follows the equipotential lines ∇⃗V = 0 and can be seen as the guiding center

of a quantum drifting motion. The drifting motion is fully delocalized in the y direction and

presents transverse zero point �uctuations on the lB scale.

Since all states have the same drift velocity, the response of a Landau level to an electric

�eld reads:

j⃗ =
nee

B

(
0 −1

+1 0

)
E⃗ (3.14)

where ne is the 2D electronic density. Therefore, a Landau level behaves as a good conductor

in a perpendicular magnetic �eld, and has the same (local) response as in the classical Hall

e�ect [61].
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3.2.5 Metal/band insulator transition

Taking into account the Pauli principle, the relevant parameter describing the non-interacting

physics is the �lling factor of the Landau levels νL:

νL =
neS

W
=
neΦ0

B
(3.15)

Non-integer νL: For non-integer �lling fractions, the chemical potential µ lies within the

last Landau level ⌊νL⌋+1, which is incompletely �lled. Since electrons can be added without

a�ecting µ, the system is perfectly metallic and displays the conductivity tensor (3.14).

Integer νL: For integer �lling fractions νL ∈ N∗+, all bands are either full or empty. In

consequence, a cyclotron gap EνL+1 − EνL
= ~ωC separates the valence n = νL from the

conduction band n = νL + 1. The incompressible Fermi gas is a band insulator.

By sweeping the magnetic �eld at a constant density, a quantum phase transition is trig-

gered between both phases with an 1/B periodicity. However, the insulating phase only

appears for the discrete values of B de�ned by

νL(B) = n, n ∈ N∗+. (3.16)

3.3 Integer quantum Hall e�ect

It may seem surprising at �rst sight, but the universality and robustness of the IQHE are a

consequence of �nite size e�ects and a (small) disorder.

3.3.1 Edge channels

According to (3.13), the con�nement that stucks the electrons in the sample gives a �nite

drift velocity vD to the electrons located near the edges. Therefore, when the chemical

potential lies between two Landau levels in the bulk of the sample, the only available low

energy excitations are the drifting edge states crossing the Fermi energy at the edges of the

sample [64], which is depicted in Figure 3.2. Since the drifting states follow the equipotential

lines, they de�ne 1D conducting channels. The quantized value of the Hall resistance will

follow from the multichannel Landauer formula [47, 57] for perfectly transmitted channels.

Finally, the edge channels are chiral: the drift velocity imposes a de�nite propagation sense

which is opposite on opposite edges. Therefore, backscattering is forbidden along an edge,

which yields to a vanishing longitudinal resistance [64, 65].
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Figure 3.2: Edge-channels in �nite size clean samples Localized states populate the

Landau levels in the bulk of the sample. At the edge of the sample, the bending of the

Landau levels gives rise to chiral propagative states (Black: semi-classical picture yields to

skipping orbits). When the chemical potential lies between 2 Landau levels in the bulk, the

only low energy excitations are the 1D chiral edge states crossing the Fermi energy EF .

However, in translation invariant samples, edge channels arise only in a very small range

of B, following the relation8 (3.16). In order to explain the wide magnetic �eld range for

which the Hall plateaus are observed, one needs to consider the e�ect of disorder. Before

deriving the transport properties of edge channels, we �rst show how disorder leads to robust

edge channels.

3.3.2 E�ect of disorder

We consider the e�ect of small and smooth disorder: Its amplitude is smaller than the

cyclotron gap (Zeeman), and its gradient is smaller than ~ωC/lB (∆Z/lB). Within these

conditions, disorder cannot mix di�erent Landau levels (spin branches), and can be adiabat-

ically added to their energy (3.12). This results in a potential landscape exhibiting additional

8This constraint is relaxed in the presence of edge channels, since the Fermi energy can evolve continuously

between two Landau levels in the bulk. However in macroscopic samples, the surface where the Landau levels

are bent is negligible in front of the total surface. Therefore, the magnetic �eld range giving rise to edge

channels is extremely small.
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valleys and hills.

Localized states

When the Fermi energy crosses a valley (or a hill) in the bulk of the sample, it gives rise to

additional drifting states within the bulk, which are analogous to the edge channels. However,

since the drifting motion follows the equipotential lines, these additional drifting states

simply encircle the valleys (or hills), and are localized (see Figure 3.3 left). In consequence,

they cannot contribute to the current �owing through the sample.

B

ν L=2 ν L=1

Figure 3.3: Localized and extended states in a dirty sample. Drifting states crossing

the Fermi energy in a dirty sample originating from the lowest (red), 1st (blue) and 2nd

(yellow) Landau levels. Edge channels are perfectly transmitted along the sample. Drifting

states arising from disorder are localized within the bulk. The transition between two sit-

uations having a well de�ned number of edge channels is driven by the percolation of the

innermost (here, the blue) edge-channel.

Percolation

For macroscopic samples, the drifting bulk states furnish a reservoir of localized states. At

a �xed density, sweeping the magnetic �eld will change the size of the localized orbits.

Therefore, even if they do not contribute to transport, they pin the Fermi energy between

two Landau levels for wider ranges of magnetic �eld. Following this picture, the transition

between two situations having a distinct number of well de�ned edge channels is driven by

the percolation of the innermost edge channel as depicted in Figure 3.3.

This thesis focuses on the transport properties of edge channels. From now on, we

will follow the literature and de�ne νL as the number of well de�ned edge channels, unless

explicitly specifying �lling factor.
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3.3.3 Transport properties of edge-channels

The scattering approach to quantum transport provides a powerful and intuitive framework

to compute the transport properties of a quantum Hall system. Within this approach [47, 57,

59], it is not only possible to derive the quantized Hall resistances and vanishing longitudinal

resistances, but also to describe [65] more re�ned experiments in which edge channels are

distinctly biased and probed [66, 67]. The resulting properties of edge channels permit to

develop an analogy between the IQHE and optics.

Two wire resistance
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Figure 3.4: Two wire probing of the IQHE, νL=1. The sample is contacted by two

reservoirs biased at electrochemical potentials VR and VL. The chiral edge-channels are

only fed by the contact linked by causality, the up (down) edge-channel is fed by a Fermi

distribution with a potential VR (VL) (top right and top left insets respectively).

The two wire resistance problem at νL = 1 is depicted in Figure 3.4. Because of the

chirality, the electrons �owing at one edge are only populated by the reservoir which is

causally linked to them. The chiral currents therefore read,

I→ = e

∫
vD(E)ν(E)n→(E)dE (3.17)

I← = e

∫
vD(E)ν(E)n←(E)dE (3.18)

where vD(E) is the drift velocity of the EC, ν(E) is the 1D energy density of states per

unit length, and n→ (n←) are the populations imposed by the right (left) reservoirs. Since
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the reservoirs are at equilibrium with their respective voltage sources VR(VL), the electron

populations are Fermi functions translated in energy one from the other:

n→ = fF (E − eVL)

n← = fF (E − eVR)

Moreover, the velocity is given by vD(E) = 1/h(∂E/∂k), while the energy density of states

in 1D is simply ν(E) = (∂E/∂k)−1. Thus, the product v(E)ν(E)=1/h is universal. By

applying the nodal law in each reservoir and performing the precedent simpli�cation one

obtains the Landauer formula for perfectly transmitted channels [47]:

I = I→ − I← =
e

h

∫
fF (E − eVL)− fF (E − eVR)dE

=
e2

h
(VL − VR) (3.19)

The two wire conductance is thereby the conductance quantum GQ = e2/h and the two wire

resistance equals the resistance quantum RQ = h/e2.

Equilibrium currents: Following the same arguments, at equilibrium VL = VR = V the

chiral channels carry a local equilibrium current

I→ = I← =
e2

~
V. (3.20)

The net current I = I→ − I← is obviously null. However, the circulation of the equilib-

rium current around the sample perimeter is �nite. These diamagnetic currents follow Le

Chatelier's principle, and tend to oppose to the external magnetic �ux.

Two wire resistance at arbitrary νL: For arbitrary integer �lling factors νL ∈ N∗+,

the system can be viewed as νL pairs of chiral edge channels in parallel. Following the

arguments presented in the precedent paragraph, each channel carries the same currents

de�ned by (3.17) and therefore the 2 wire resistance of the whole system is simply the

parallel composition of νL resistance quanta [47, 57, 59]:

R2wire
νL

=
1

νL

h

e2

The Hall Bar experiments

Chirality: What really makes the IQHE a unique system in quantum transport is the edge

channel chirality: Namely, the edge channels having opposite propagation sense are spatially

separated (see Figure 3.2). Therefore, backscattering is forbidden in macroscopic samples

having a moderate disorder.Moreover, it permits to contact separately the edge channels

having opposite chiralities. This is what is done in Hall bar geometries (Figure 3.5).
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Figure 3.5: Hall bar probing probing of the IQHE, νL= 1. The edge channels chiral-

ity forbid backscattering and the edge channels maintain their initial potential along their

propagation. The voltage drop due to the �nite 2 wire resistance develops between opposite

edges. Therefore, the Hall resistance matches the 2 wire resistance.

Longitudinal resistance: The �rst consequence of chirality is that the injected chiral

currents (I→, I←) are conserved along the edge [64, 65]. Therefore, the electrochemical po-

tential imposed by the reservoirs is kept the same all along the propagation. The longitudinal

resistance vanishes as long as it is measured along the same edge. The edge chiral transport

current without dissipation.

Hall resistance: However, there is a �nite 2 wire resistance according to (3.19). Therefore,

a voltage drop develops between the biasing contacts when a current �ows through the

sample. Because of the chirality, this voltage drop can only develop between edge channels

on opposite edges [64, 65]. The Hall resistance is thereby equal to the two wire resistance:

RHall = 1
νL

h
e2 . And the Joule heating RHallI

2 can only be dissipated in the reservoirs used to

feed the sample [68] (see red and blue spots in Figures 3.4 and 3.5).

Spin: The precedent arguments apply for spinless particles. For spin resolved electrons,

∆Z > kBT , they apply as well, but one has to keep in mind that the edge channels originate

from spin split branches of the Landau levels. For spin degenerate electrons, ∆Z < kBT , the

spin degeneracy multiplies by two the conductances, and only even fractions arise.
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Testing the edge-channel picture

The edge channel picture, combined to the scattering approach, gives the correct values of

the multi terminal resistances measured in Hall experiments. But, can we consider that

several co-propagating edge channels (νL ≥ 2) are well de�ned, distinct objects? One can

perform more re�ned experiments based on the edge channel picture in order to test this.

Such experiments were originally coined as anomalous quantum Hall e�ect [66, 67, 69].

The anomalous quantum Hall e�ect: The anomalous quantum Hall [66, 67, 69] e�ect

arises in 2DEGs with small constrictions. Small enough constrictions can be used to transmit

a sub-set of n edge channels, while re�ecting the other νL−n. Therefore, one can selectively

bias and probe a sub-set of the edge channels. If the edge channels are distinct, they each

carry their own potential, at least up to some equilibration length.

R         =R
1 constriction

2 wire 2 wire

R         =R
2 constrictions

2 wire 2 wire

   =1v
L

   =1v
L

Figure 3.6: Anomalous quantum Hall e�ect through small constrictions, νL = 2

Left: A small constriction fully transmits (re�ects) the outer (inner) edge-channel. Since the

current is transmitted by the outer edge channels edge-channels only, the 2 wire resistance

matches the ν = 1 Hall resistance. Right: Same argument applies to two constrictions in

series ,if there is no electrochemical potential equilibration between the constrictions.

We consider the simplest case of two co-propagating edge channels (νL = 2) and con-

strictions that fully transmit the outer edge channels while fully re�ect the inner edge chan-

nels, which is depicted in Figure 3.6 left. Since only the outer edge channels transmit the

current, the two wire resistance through the constriction matches the νL = 1 resistance:

R2wire
1constriction = R2wire

νL=1 . If two such constrictions are placed in series (Figure 3.6 right), the

outer edge channel still connects opposite reservoirs and we obtain R2wire
2constriction = R2wire

νL=1 .

This is a stark violation of classical impedance composition laws, by which one would expect

R2wire
2constriction = 2R2wire

1constriction. Such e�ects where originally coined as anomalous quantum Hall

e�ect and are a paradigm of ballistic transport e�ects. They are nothing but the consequence

that distinct edge channels can carry their own potentials.
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Equilibration length: If the distance between both constrictions is long enough, some of

the charge injected in the outer edge channel will tunnel to the closed loop inner edge channel

(black line in Figure 3.6). Eventually, the electrochemical potentials of the two counter

propagating outer edge channels, and of the closed loop inner edge channel, equilibrate

between the constrictions. In this limit, one recovers the classical result R2wire
2constriction =

2R2wire
1constriction. This scheme can be used to characterized the equilibration length between

edge channels biased at di�erent potentials [66, 67, 69], for instance by increasing the size

of the loop until one reaches the classical impedance composition law.

The inter-channel charge equilibration lengths are long (& 100 µm in the sub Kelvin

range) since the small overlapping between the di�erent edge channels' wavefunctions expo-

nentially suppresses it [56, 70]. At νL = 2 the tunneling is further suppressed by the opposite

spin polarization of the two copropagating edge channels. In this case, spin conservation im-

poses that the tunneling of an electron is accompanied by a nuclear spin �ip. Such events

take place at a low rate due to the small hyper�ne coupling, which explains the very large

equilibration lengths, up to the millimeter range, demonstrated at νL = 2 below 0.1 K [71].

The two co-propagating edge channels have therefore well de�ned electron populations on

nearly macroscopic distances.

3.3.4 Optical analogy

The unique properties of edge channels permit to develop an analogy with optics summarized

in Figure 3.7. This analogy has led to a new branch of experiments, where quantum optics

concepts are implemented with electron edge channels.

An edge channel mimics an optical �ber for electrons, since it can be used to propagate

an injected charge without loss of (electrochemical) power. Moreover, constrictions can be

used not only to selectively populate and probe the edge channels, but they can also be

tuned to partially transmit and re�ect a chiral pair of them. These tunable constrictions

are called quantum point contacts [72, 73] (QPC) and are the edge channel analogue of a

beam-splitter for light beams.

These tools are the building blocks for realizing interferential experiments with electrons

propagating in edge channels. Fabry-Pérot resonances were �rst observed in the late 80's

[50]. State of the art are the demonstration of electronic Mach-Zehnder interferometers

(MZI) [8, 13, 15, 74], and of 2 particle electronic coherence using two coupled MZIs [9].

Last, an on demand single-electron source for edge channels has been realized [10].

The IQHE therefore opens avenues of investigation involving quantum optics concepts,

the fermionic character of electrons and the many-body physics due to Coulomb interactions.
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2DEG edgeoptic fiber

beam splitter QPC

Figure 3.7: Optical analogy in the IQHE between EC and light beams. Top: Edge

channels mimic optic �bers. Bottom: Partially transmitting small constrictions (quantum

point contacts) mimic beam-splitters.

3.4 Interaction e�ects in the integer quantum Hall e�ect

Even if the IQHE was discovered nearly 30 years ago, the role of Coulomb interactions still

causes an active debate since it is di�cult to measure by usual experimental approaches.

Here we highlight two main reasons:

Charge transport: In the precedent section we have seen in detail how the edge channels'

chirality yields to the universal transport properties observed in Hall bar experiments. This

universality has drawn much attention to the IQHE and is exploited on metrological purposes

or in the optical analogy. But on the other side to the coin, it starkly limits what can be

learned from usual charge transport experiments [16].

Optical probing: Kohn's theorem [75] shows that an homogeneous irradiation �eld only

couples to the center of mass motion of the many cyclotron orbits. Since the center of mass

dynamics are irrespective of Coulomb interactions, simple absorbtion measurements can only

measure the non-interacting excitation gap.

However, Coulomb interactions can yield to dramatic e�ects on the very nature of the edge

excitations. In the following we introduce the main e�ects that are expected to arise. We

will conclude reviewing some experimental results giving some information on interaction

e�ects.
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3.4.1 Spontaneous spin polarization

Following the discussion on the spin degeneracy, the even integer fractions of Hall resistances

arise only if the spin gap ∆Z ∼ ~ωC/80 is larger than temperature and disorder. However,

typical Hall resistance measurements, as in Figure 3.1, reveal that both even and odd frac-

tions of the Hall resistance arise at the same magnetic �elds so that both gaps should be

comparable. This is the consequence that the exchange energy protects the spin polarization

of completely �lled Landau levels.

Let's see the simplest case of νL = 1, where the ferromagnetic ground state reads:

|F >= Φ(z1, . . . , zN)| ↑, . . . , ↑> . (3.21)

Since the orbital part must be antisymmetric, two particles cannot be too close to each other

diminishing the Coulombic repulsion. The exchange term thus lowers the interaction energy

with respect to unpolarized states. Its energy scale per particle unit can be evaluated [62]

to be −
√

π
8

e2

ϵlBkB
∼ 100 K at B ≃ 4 T, which is two orders of magnitude higher than the

Zeeman gap (3.7). The polarized states are therefore protected by the exchange energy for

higher energies than those dictated the Zeeman coupling only.

Recent investigations at νL = 1 have however revealed that the spin polarization at

νL = 1 decreases on a 200 mK scale [76]. The available theories on spin excitations (spin

density waves [77] and spin topological textures [78]) fail to describe such behavior. The

quantum ferromagnetism of the lowest Landau level is still an open problem.

3.4.2 Inter channel interactions

As long as the dispersion of non-interacting edge channels can be linearized, interactions

within and between co-propagating 1D chiral fermions (1DCFs) can be handled by exact

methods using the bosonization framework (see e.g. [55] and references therein). The key

point is that the linearized hamiltonian of 1DCFs,

H0 = ~vD

∫
dk(k − kF )ĉ†kĉk

can be expressed in terms of the local density operator

ρ̂(x) = ĉ†(x)ĉ(x)− < ĉ†(x)ĉ(x) >Fermi sea

so as to display the expression [38]:

H0 = π~vD

∫
ρ̂2(x)dx. (3.22)
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Naïve derivation

Since the bulk of the sample is incompressible, the only low energy excitations must be surface

waves. Linearizing the con�nement potential near the Fermi energy, the electrostatic energy

of an edge displacement wave E can be expressed in terms of the bulk density ne = νL

2πl2B
, the

local electric �eld E and the transverse displacement per unit length, h(x), caused by the

local density change h(x) = ρ(x)
ne

:

E =

∫
dx

∫ h(x)

0

neEydy

=

∫
neE

2
h2(x)dx

=
π~vD

νL

∫
ρ2(x)dx. (3.23)

Quantizing the density operator yields directly to (3.22) for one IQHE edge-channel (νL = 1).

This naïve argument can be made rigorous by deriving the action of edge excitations [21].

It is found that the Fourier transform of the density operators follow bosonic commutation

rules.

Local interactions within a channel

Departing from the expression (3.22), it is straightforward to see that local density-density

interactions, within a branch of 1DCFs (νL = 1), simply renormalizes their drift velocity:

Ĥ = Ĥ0 + Ĥint = π~vD

∫
ρ̂(x)2dx+ g

∫
ρ̂(x)2dx

Ĥ = π~(vD +
g

π~
)

∫
ρ̂(x)2dx (3.24)

where g is the local interaction parameter. The �nal expression has the same form as (3.22),

but with a drift velocity, v, renormalized by interactions:

v = vD +
g

π~
(3.25)

Local inter-channel interactions, νL = 2

We consider here the case of density-density interactions between co-propagating branches

of 1DCFs 9. The total hamiltonian is quadratic in the density �elds of both edge channels

labeled by the index i = 1, 2 and, following (3.25, interactions within the edge channels are

hidden in the velocities vi: [21]:

H = π~
∫ {

v1ρ̂1(x)
2 + v2ρ̂2(x)

2 +
g12

π~
ρ̂1(x)ρ̂2(x)

}
dx (3.26)

9Note that analytical solutions can also be obtained in the more general framework of non-chiral and

non-Fermi 1D conductors, see e.g. [79].
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Such hamiltonian can be easily diagonalized by a rotation in the density �eld spinor

(ρ̂1, ρ̂2), giving rise to eigenmodes (ρ̂c, ρ̂n) which are linear combinations of the initial density

�elds [21, 22, 31, 80]:

H = π~vc

∫
dxρ̂c(x)

2 + π~vn

∫
dxρ̂n(x)2 (3.27)

ρ̂c(x) = cos(θ)ρ̂1(x) + sin(θ)ρ̂2(x)

ρ̂n(x) = sin(θ)ρ̂1(x)− cos(θ)ρ̂2(x)

vc =
v1 + v2

2
+

√(g12

π~
)2

+
(v1 − v2

2

)2
vn =

v1 + v2

2
−
√(g12

π~
)2

+
(v1 − v2

2

)2
where the pre-factors read:

cos(θ) =
1√
2

√
1 +

v1 − v2√
4(g12

π~ )2 + (v1 − v2)2

sin(θ) =
1√
2

√
1− v1 − v2√

4(g12

π~ )2 + (v1 − v2)2

Large interaction limit: In the large interaction limit g12 ≫ π~|v1 − v2|, one �nds

θ = π/2 and the eigenmodes are simply the symmetric, ρ̂c(x), and antisymmetric, ρ̂n(x),

combinations of the initial density �elds. In this limit the corresponding velocities read

[21, 22, 31, 80]:

vc =
v1 + v2

2
+
g12

π~
(3.28)

vn =
v1 + v2

2
− g12

π~

and are di�erent. The dynamics are therefore fully delocalized amongst both channels.

Notably the symmetric mode, ρ̂c(x), carries a charge while the antisymmetric mode, ρ̂n(x),

does not. Even if the structure of (3.28) implies that a negative velocity is possible for the

neutral mode, it is not very physical since the initial velocities also contain the interaction

term within the each channel (3.25). In the limit dominated by interactions, one would

expect g1 ∼ g2 ∼ g12 = g (see following section) and therefore:

vn =
1

π~
(g1 + g2

2
− g12

)
+
vD1 + vD2

2
≃ vD1 + vD2

2
(3.29)

vc =
1

π~
(g1 + g2

2
+ g12

)
≃ 2g

π~
.

The charge mode velocity would measure the interaction parameter, whereas the neutral

mode velocity would measure the mean drift velocity of the non-interacting problem.
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Charge mode (fast) Spin mode (slow)
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Figure 3.8: Spin charge separation in νL = 2 strongly interacting edge-channels.

Red/Blue: electron/hole like 1DCF excitations of an edge channel. Top: Strong interactions

between edge channels yields to a spinless charge mode (fast) and a spin neutral (slow) mode.

Middle: An electron like excitation of a single edge channel is a linear combination of the

spin and charge modes. Bottom: The spin and charge modes, excited by the injection of a

single electron in a single edge channel, spatially split due to their di�erent drift velocities.

Spin-charge separation: In the particular case of νL = 2, the edge channel index also

labels the electron spin, as depicted in Figure 3.8. Thereby, the charge mode, ρ̂c, carries no

spin, while the neutral mode, ρ̂n, carries a spin [21, 22, 31, 80]. In consequence, the spin and

charge dynamics split in the strong interaction limit. However, DC charge transport cannot

be sensible to such e�ect since it integrates (in time) amongst both charge and spin modes

which globally carry the same amount of charge as two non-interacting channels.

3.4.3 Edge reconstruction

A con�nement potential tends to shrink the electron �uid whereas the Coulomb electronic

repulsion tends to expand it. This antagonistic forces lead to an instability of the non-

interacting edges [18] that may deeply modify their physics. For moderate con�nement

potential gradients, such instability may give rise to additional co- and counter-propagating

channels [19]. In the limit of smooth potentials, the self consistent edge-potential is expected
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to reconstruct in an alternate series of compressible and incompressible strips [17]. As a result

of this edge reconstruction, additional branches of acoustic excitations modes are predicted

to arise within the compressible strips [20].

x
y

E

EF

Sharp confinement Smooth confinement

wide compressible stripeedge instability

~100nm

∂ V     <ħω  /10l y conf C B

≈l B

Figure 3.9: Edge instability due to the Coulomb repulsion Left: Sharp potential

limit, non-interacting chiral edge channels (1DCFs) are well de�ned at the fermi energy

EF. Center: The self-consistent potential bends at a critical con�nement potential gradient

∂yV . This bending leads to additional co- and counter-propagating 1DCFs. Right: Smooth

con�nement potential limit. The self-consistent potential alternates wide compressible and

small incompressible strips every time a Landau level crosses the Fermi energy.

Edge instability

In the sharp con�nement limit, the con�nement potential overpowers the Coulomb repulsion

(hard wall limit). The non-interacting picture of edge channels described as one dimensional

chiral fermions (1DCFs) (see Figure 3.9 Left) is well suited in this limit .

At a critical value of the con�nement gradient, it is energetically favorable to bend the self-

consistent potential. Indeed, the bending gives rise to additional co- and counter-propagating

edge channels, which are spatially separated on a lB scale (see Figure 3.9 Center). These

additional 1DCFs permit to distribute spatially the charge originally carried by the non-

interacting channel, thus increasing the self consistent capacitance. Numerical Hartree-Fock

calculations of the self consistent potential pro�le predict a critical value at lB∂yV ∼ ~ωC/10

[19].

Since the current carried by 1DCFs does not depend on the microscopic parameters

(3.19), the contribution to DC current of the co- and counter-propagating 1DCFs always

cancel each other and are invisible in DC Hall bar experiments.
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Edge reconstruction

In the smooth potential limit lB∂yV ≪ ~ωC , compressible electrons can rearrange their den-

sity in order to screen the con�nement potential. At non-integer local �lling fractions, the

electrons completely screen the con�nement potential, whereas at local integer values the

incompressible electrons cannot. This yields to an alternation of compressible and incom-

pressible strips parallel to the edge [81] (see Figure 3.9 Right), every time a Landau level

crosses the Fermi energy.

Depletion length: We �rst assume a zero magnetic �eld. In a realistic model, the con-

�nement potential follows from a voltage biased top metallic gate. The applied negative

voltage, VG, depletes the 2DEG beneath the gate and up to a transverse depletion length lD

in which the electron density is null. At distances higher than lD the potential is completely

screened, so that lD �xes the screening length of the problem and must be larger than the

Bohr radius aB = 4πϵ~2

me2 of the 2DEG. Neglecting the distance between the 2DEG and the

top metallic gate planes, the electrostatic problem can be solved in terms of lD [17]:

lD =
2VGϵ

eπne

(3.30)

The density pro�le is found as:

n(y) =

√
y − lD
y + lD

neΘH(y − lD) (3.31)

where y is the distance from the gate and ΘH is the Heaviside step function.

For a typical bulk density ne = 2 1015 m−2, gate voltage VG = 1 V and taking ϵ =

(ϵ0 + ϵGaAs)/2 ≃ 7ϵ0, the depletion length is about lD ∼ 125 nm which is much larger than

aB ∼ 6 nm.

Dipolar strips: We �rst consider spinless Landau levels. At any reasonable magnetic �eld,

the depletion length lD (3.30) should remain the same since ~ωc/eVG is small. However, the

density pro�le n(y) may be slightly modi�ed by the Landau levels. Indeed, at positions

where all the Landau levels are fully occupied or empty, the incompressibility yields to a

poor screening. But with incompletely �lled Landau levels, the gas is locally compressible,

and one should recover the low magnetic �eld density pro�le. This yields to an alternate

series of compressible and incompressible strips parallel to the gate (Figure 3.9.right).

Labeling the incompressible stripes with the Landau levels i giving rise to them, they are

located at the distances yi from the gate de�ned by:

n(yi) = i
B

Φ0

⇒ yi = lD
ν2

L + i2

ν2
L − i2

(3.32)
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where the �rst equation follows from (3.15) and the second from (3.31). νL is the Landau

level �lling factor in the bulk and Φ0 the �ux quantum.

For a single Landau level at the Fermi energy, 1 < νL < 2, the width of the incompressible

stripe u1 is explicitly found [17] as:

u1 =

√
4ϵ~ωC

πe2
(
∂n/∂y

)
y=y1

=

√
8aBlD
π

νL

ν2
L − 1

(3.33)

which is much smaller than its distance to the gate y1, since: u1/y1 ∝
√

aB

lD
. Therefore, the

width a of the compressible stripe can be de�ned as

a = y1 − lD =
2lD

ν2
L − 1

(3.34)

which is much wider than the incompressible strip width.

Spin polarized states The same arguments apply to spin splitted Landau levels. How-

ever, one should replace ~ωC → ∆Z = gµBB in (3.33) in order to consider a Zeeman gap,

rather than the cyclotron gap. The incompressible strips are smaller by a factor
√

80. How-

ever, the position of the incompressible stripes (3.4.3) does not change, and neither do the

widths of the compressible stripes.

Incompressible bulks: At bulk �lling factor νL = 2, the outer compressible strip is

about 2
3
lD ∼ 85 nm with the usual sample parameters. At integer bulk �lling factors, the

innermost incompressible strip position is singular in this model, since the original density

(3.31) assumes a compressible bulk. However, the long range of Coulomb interaction will be

cut at some other screening length which can be given by the distance to other gates. But,

as a general rule, the innermost compressible stripe is wider than the outer one.

Additional excitation branches

In reconstructed edges, the compressible strips are the siege of transverse dynamics cor-

responding to density oscillations across the strip width. Because of the perpendicular

magnetic �eld, these density oscillations are propagative and give rise to additional acoustic

branches of edge excitations [20].

The starting point is the hydrodynamic description of a single compressible strip of width

a. The dynamics are described by the Euler equation and the continuity equation which is
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linearized in the electronic velocity v⃗:

˙⃗v + ωC(
z⃗

|z|
× v⃗)− e2

4πϵm
∇⃗r⃗

∫
r⃗1
δn(r⃗1)

|r⃗ − r⃗1|
dr⃗2

1 (3.35)

δṅ+ ∇⃗r⃗ · (n0v⃗) = 0

where δn is the density di�erence from its initial value δn(y) = n(y)−n0(y). These equations

admit analytical solutions [20] in the long wavelength limit ka≪ 1, using the density pro�le

n0(y) =
2

π
n̄ arctan(

√
y

a
) (3.36)

where n̄ is the bulk density. This model reproduces the main features of the density pro�le

(3.31) found in [17].
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Figure 3.10: Dispersion relation of the reconstructed edge modes. The wave vector

is normalized by the compressible strip width a. The charge mode j = 0 displays the same

dispersion as classical edge magnetoplasmons [82, 83]. All additional modes j > 0 are gapless

and acoustic. Inset: numerical values used for the calculation.

The solutions of (3.35) yield to an in�nite series of gapless propagative excitation branches

labeled by the number of nodes, j, of their transverse oscillations across the strip width [20].

Their dispersion relations read:

ϵ(k)j=0 = ln
( e−γ

2|ka|

) 2n̄e2

4πϵωC

k (3.37)

ϵ(k)j>0 =
2n̄e2

4πϵωC

k

j
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where γ is the Euler constant. These dispersion relations are plotted in Figure 3.10 for

typical sample parameters.

Charge density mode j=0: The j = 0 mode [20] has no transverse dynamics. It is

therefore a 1D charge density wave of �nite width and can be pictured as a rigid displacement

of the whole edge pro�le. Its dispersion (3.37) is the same as that of the classical edge

magnetoplasmon [82, 83] of a non-degenerate electron gas.

The logarithmic term in the j = 0 mode (3.37) is the logarithmic correction due to the

long range part of Coulomb interactions [55] taken into account by the last term in (3.35).

Since top metallic gates screen this long range part on a 100 nm scale, the j = 0 mode can

be linearized up to k < 2π/100 nm. This is also the limit where dispersion relations (3.37)

hold since the strip width scales with the strip to gate distance (3.34).

Following the arguments of the bosonization section, the linearized charge mode can

be mapped to the non-interacting 1D chiral fermion excitations of non-interacting edge-

channels. This naïve argument can be made rigorous within a full quantum derivation of

the compressible strip electrodynamics [84].

Internal transverse modes j>0: The j = 1 mode can be pictured as a propagative

dipole, the j = 2 as a tripole and so on. These additional acoustic branches have slower

drift velocities since they cost a smaller charging energy per unit length. Since the density

pro�le within the stripe is not symmetric (3.36) across its width, they propagate a �nite

charge and may be observed in dynamical charge transport. However, applying a DC bias

raises the electrochemical potential of the whole compressible strip so that it couples only

to the charge j=0 mode. Therefore, the DC properties of reconstructed edges are the same

as those of non-reconstructed edges.

3.4.4 Experimental signatures?

Time resolved charge transport experiments can be used to test the dynamic response of the

ECs in time of �ight experiments, but have never been able to demonstrate the existence of

the predicted additional modes of reconstructed edges. Being sensitive to the single particle

phase coherence, Mach-Zehnder interferometer (MZI) experiments provided strong evidence

for interaction e�ects. There is currently an active debate in order to interpret the MZI

results.

Time of �ight experiments

Time of �ight experiments are useful to probe the dynamical response of edge excitations.

In the IQHE, time of �ight experiments are implemented by applying a voltage pulse in a
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contact and probing the the delay time before some current arrives to another contact linked

by chirality some distance away [85, 86]. When the propagation distance is high enough,

the applied pulse may split in several pulses carried by the edge excitations having di�erent

drift velocities. By knowing the (edge) propagation length between both contacts one can

deduce the drift velocities of the current-carrying excitations.

Reported drift velocities of νL= 2: Several experiments carried at νL = 2 with di�erent

geometries including chemically etched edges, gate de�ned edges and samples completely

covered by a (screening) top gate, yield to a drift velocity for the fast mode in the range of10

v ∈ [5 104, 5 105]m.s−1.

Testing the additional modes of reconstructed edges: Similar experiments have been

used to test the existence of the additional transverse modes [87, 88] of the reconstructed

edge, for which there are strong predictions [20] for the dispersion relation (3.37), and there-

fore their drift velocities. However, the number of time delayed pulses observed in these time

of �ight experiments has never been higher than the �lling factor of the measured systems

and can therefore be explained by (eventually interacting) νL co-propagating 1DCFs. Con-

sequently, up to now there is still no direct signature of the additional reconstructed edge

excitation branches.

Coulomb interaction dependence of drift velocity: Last, time of �ight experiments

can be used to investigate the e�ect of Coulomb interactions on the drift velocity of the edge

excitations [89]. The idea is to probe the drift velocity for di�erent values of the gate voltage

used to de�ne the edge of the sample. Di�erent gate voltages result in di�erent distances

(3.30) between the edge channels and the gate that screens the Coulomb interactions within

and between them. By modifying the interaction parameters, one tunes the renormalized

drift velocities as expected by (3.25) and (3.27).

Such experiments demonstrate it is possible to tune the drift velocity by a factor of

∼ 2 − 3 by changing the gate bias on the volt range [89, 90]. The results of [89] show that

typical edge channels velocities at νL = 2 are rather dominated by the interaction term.

Mach-Zehnder interferometers

Several observations in the recent Mach-Zehnder interferometers are incompatible with the

non-interacting picture of edge channels:

• A multilobe structure arises in the visibility of the interference fringes when sweeping

the energy bias of the edge channel impinging on the interferometer [11, 15, 74].

10See Chapter 4 for further details.
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• It has been established that the current �uctuations in a co-propagating edge channel

dephase the interfering edge channel [12, 23].

• The dephasing length, LΦ, characterizing the propagation length after which the edge

channel looses its quantum coherence has been obtained at νL = 2 [14]. The resulting

value is surprisingly low, LΦ = 20µm at 20mK, which is comparable to those found

in di�usive metallic wires [91] where the elastic scattering with impurities increases

interaction e�ects.

Such unexpected observations have yield to an active theoretical debate (e.g. [92, 93,

94, 95]). Even if a spin-charge separation model (3.27) explains the observed multilobe

dependence of the interference fringes at νL = 2 [93], or a mean-�eld treatment of the

capacitive coupling [96] between edge channels explains the temperature dependence of the

dephasing lengths also at νL = 2 [23], a single theoretical framework able to explain all the

observations is still missing. MZI interferometers are di�cult to interpret since they are

sensitive to the EC phase coherence and therefore to both inelastic mechanisms and purely

dephasing mechanisms, but cannot directly discriminate between them.

3.5 Fractional quantum Hall e�ect

Before �nishing this chapter, we introduce some basic aspects of the fractional quantum Hall

e�ect (FQHE). In this regime, the bulk is incompressible and the low energy physics are also

determined by the edge properties. We will see how Coulomb interactions give rise to an

incompressible bulk for special values of the �lling factory, which can be understood using

a variational wave function introduced by Laughlin [34]. We will �nally discuss the main

di�erences between IQHE and FQHE edge channels.

3.5.1 Bulk incompressibility

The FQHE is observed for incompletely �lled landau levels. Therefore, the Pauli principle

alone cannot give rise to a bulk incompressibility. One needs to take into account Coulomb

interactions.

Position of the problem

If the temperature and disorder are smaller than the cyclotron or spin gap11 one can safely

ignore any Landau level mixing. Since we are only dealing with a �xed Landau level, all

electrons share the same kinetic energy. This constant removed from the problem, one

11Correctly renormalized to take into account the exchange energy.
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faces a pure Coulomb interaction Hamiltonian in 2D. Traditional perturbative approach are

therefore unappropriate.

Energy scales: Since the Coulomb interaction is the only energy scale, the energy scales

arising in the FQHE will be proportional to

EC(lB) =
e2

4πϵlB
(3.38)

where the magnetic length lB =
√
h/eB is the only relevant length in the lowest Landau

level. As a consequence, the energy scales arising in the FQHE must have a
√
B dependence.

Electron hole symmetry: Since the partially �lled band is fully �at, and that Coulomb

interaction only depends on the charge squared, there is a perfect electron-hole symmetry.

Therefore, if we understand the �lling factors such as νL < 0.5 of the lowest Landau level

(LL), we obtain the properties of the 1− νL > 0.5 by a charge conjugation transformation.

Laughlin trial wave function

Very soon after the FQHE discovery, Laughlin [34] found a trial many-body wave function

that seized all the important aspects of the FQHE in the lowest Landau level. Laughlin's

wavefunction reads as:

Ψq =
∏
i>j

(zi − zj)
qe−

∑ z2
i
4 (3.39)

where q is a positive integer, and z = x+iy
lB

as in (3.10).

Equation (3.39) is a good trial wave function for the following reasons:

1. The exact wave function of the lowest Landau level must be a linear combination

of slater determinants of the lowest Landau level eigenfunctions (see (3.10) in the

symmetric gauge). This is the case of (3.39). For q = 1, the trial wave function is

actually the exact slater determinant of the νL = 1 IQHE.

2. Coulomb interactions conserve the angular momenta, and commute with the angular

momenta operator. It can be therefore diagonalized in a basis of de�nite angular

momentum. According to (3.39), all electrons in the Laughlin wave function have a

de�nite angular momentum q~.

3. The polynomial term in (3.10) nulli�es the wave function when two electrons get close

to each other, diminishing the repulsive energy.
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Ground state properties: The Laughlin wave function describes a ground state having

the following properties:

i) Since electrons have Fermi-Dirac statistics, Laughlin wave function must be antisym-

metric under particle exchange. This �xes q to be an odd integer, and introduces the

�magical� numbers q ∈ N∗+.

ii) Even if it is a variational wavefunction, the variational parameter is found to be �xed

by the bulk �lling factor 1/q = νL [34]. Laughlin wave function is �xed without performing

any energy minimization! Moreover, it implies that it is a trial wave function for the following

�lling fractions of the lowest Landau level:

νL =
1

q
q ∈ N+∗ (3.40)

iii) The electronic density is found squaring (3.39) and integrating the particles but one.

This results in a uniform electron liquid, so there is no symmetry breaking (one does not

expect gapless goldstone modes).

iv) One can �nd a Hamiltonian for which (3.39) is the exact ground state [97]. Such

hamiltonian is essentially a close range interaction hamiltonian, for which a �nite gap sepa-

rates the ground state from excited states.

v) Exact diagonalization numerical calculations [98] of the interacting ground state yield

to wave function overlaps with (3.39) better than 99%. Laughlin wave function is indeed a

very good trial wave function.

Charged excitations: Single particle excitations can be directly obtained from the trial

ground state [34]. By multiplying (3.39) by
∏

i(z0 − zi) the local density is lowered at z0.

Developing the resulting polynomial part, one �nds that this state is still an eigenstate of the

angular momentum, and can be seen as a quasi-hole. Adding q quasi-holes at z0 is equivalent

to adding an electron in z0, since one multiplies the wave function by
∏

i(z0 − zi)
q. Since

the electronic density is uniform , q quasiholes are therefore neutralized by an electron. As

a consequence, the resulting quasi-hole charge e∗qh is fractional:

e∗qh =
e

q
= νLe (3.41)

where νL is the �lling factor of the parent ground state. Quasi-electrons are found using

charge conjugation e∗qe = −νLe. Single-particle excitations carry therefore a fractional charge

given by the the fractional �lling factor.

Similar arguments link the quasihole/quasielectron densities (nqh/qe) to the �lling factors

around the parent state �lling factor νL = 1/q:

nqh =
1

2πl2B
(1− qνL), νL < 1/q nqe =

1

2πl2B
(qνL − 1), νL > 1/q (3.42)
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These quasiparticles cost a �nite energy ∆qe/qh [34], and therefore the ground state is

incompressible. The excitation gap at �xed density ∆FQHE = ∆qe + ∆qh, scales with
√
B,

and can be computed from the spatial dependence of Laughlin wave function. At �lling

factor 1/3, the excitation gap is typically found as [62] ∆1/3 ≃ 0.1 e2

4πϵlB
= 3.7[K/

√
T]
√
B.

However, in real samples, there is a �nite extension on the z direction which lowers the

Coulomb repulsion, and the magnetic �eld is �nite, so there is some contribution from other

Landau levels. Numerical simulations taking into account both e�ects provide a reasonable

agreement with the excitation gaps measured by thermal activated transport in high mobility

samples [99].

Hierarchy The trial wave function provides directly the description of the 1/q fractions.

At �lling factors other than 1/q, the quasiparticles may condense on a Laughlin ground state

for quasiparticles [97] instead of electrons. Departing from a parent 1/q fraction, this gives

rise to a whole hierarchy of similar incompressible states at the �lling factors [97]:

νL =
2p

2pq + 1
(3.43)

This hierarchy describes most of the measured features of Hall bar experiments performed

in high mobility samples.

Composite fermions The q = 1 hierarchy can be found within a mean �eld approach

due to Jain [100]. In this picture, 2 �ux quanta are adiabatically attached to the electrons.

Therefore, the resulting composite fermions see a reduced e�ective mean �eld Beff = B −
2neΦ0 = B − BνL=1/2. The e�ective mean �eld cancels at bulk �lling factor 1/2, which can

be seen as a Fermi sea of composite fermions12 [103].

In this approach, the hierarchy of �lling factors νL(p) = p
2p+1

, and its hole conjugated

hierarchy 1 − νL(p), can be understood as the pth Landau level resulting from the integer

quantum Hall e�ect of composite Fermions. For instance the 1/3 FQHE is the �rst Landau

level of the composite fermions. The corresponding activation gap is therefore:

∆1/3 = ~ωeff
C =

~eBeff

meff

(3.44)

where meff is the composite Fermion mass. Since ∆νL(p) scales as
√
B, the corresponding

e�ective mass meff has the same scaling according to (3.44).

This bold prediction has been experimentally demonstrated by measuring the Shubnikov-

de Hass oscillations of composite fermions around their zero e�ective magnetic �eld (B =

BνL=1/2). The composite fermions e�ective mass, and even their gyromagnetic factor [102,

12Strictly speaking it is not a normal Fermi liquid since its e�ective mass diverges at 1/2. It has nevertheless

a well de�ned Fermi surface [101, 102].
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104] have been measured around νL = 1/2[102] and around νL = 3/2 [104]. The resulting

composite fermion giromagnetic factor is found very close to the electron g factor in GaAs,

geff = −0.4.

3.5.2 Fractional edge channels

Since the FQHE is described by a ground state having a �nite excitation gap, the low energy

physics take place at the edge of the sample as in the IQHE. This is why their transport

properties look so similar. However, FQHE edge-channels display some non-trivial correla-

tions due to the Coulomb interactions giving rise to them, and exhibit di�erent tunneling

conductances or current �uctuations.

Hydrodynamic approach

Since the the bulk is incompressible, one can apply the same arguments as for the IQHE, and

describe the edge excitations as chiral charge density waves [38]. The Hamiltonian describing

a single fractional edge-channel νL = 1/q 13 reads :

Ĥ =
πvD

νL

∫
dxρ̂2(x). (3.45)

A correct quantization of the density operator due to Wen [38] gives rise to a Kac-Moody

algebra:

[ρ̂k, ρ̂k′ ] =
νL

2π
kδk+k′ (3.46)

[Ĥ, ρ̂k] = vDρ̂k (3.47)

The FQHE edge channel density �elds are therefore a physical realization of the Tomonaga-

Luttinger model [55] with (chiral) electrons moving in only one direction.

Transport properties

This model is exactly solvable, and has led to many strong predictions for the edge transport

properties. We only cite three of them.

1. The two wire conductance at �lling factors νL = 1/q are directly given by GνL
= νL

e2

h

[21] and explain accurately the fractional Hall resistance values measured in Hall bar

experiments.

13Namely, for the Laughlin ground states 1/q. In the hierarchies given by (3.43) there can be several

edge channels, having fractional or integer interaction parameters and moving upstream or downstream the

chirality. They are a consequence of the topological properties of the bulk, and are characterized by the

topological matrices introduced by Wen [38].
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2. The shot-noise due to the quantum partition of fractional edge channels has been

predicted by Kane, Fischer and Matthew [105]. When a scatterer weakly transmits

the incoming edge channels, the transmission events correspond to electron hoping

and one recovers the poissonian shot-noise of electron tunneling barriers. But when a

scatterer is tuned in a weak backscattering limit (its two point conductance is slightly

smaller than νL
e2

h
), the quantum partitioning results from the (weak) backscattering

events of the quasiparticles carried by the fractional edge. This results in a poissonian

shot-noise renormalized by the quasiparticles charge. This scheme has been �rst used to

measure the charge carried by Laughlin quasiparticles at q = 3 [35, 36], demonstrating

a fractional charge e∗qe/qh = ∓ e
3
.

3. The algebra (3.46) describes a correlated �uid displaying power law correlation func-

tions [55] for q ̸= 1. Therefore, the overlap with non-interacting electrons is not perfect

and energy dependent. This results in nonlinear tunneling density of states, when in-

jecting an electron to a fractional edge channel. The corresponding di�erential electron

tunneling conductance G = ∂I/∂V is predicted to be universal and present a power

law scaling G ∝ {V 1/νL−1, T 1/νL−1} [63]. However, the measurements systematically

obtain a lower exponent α < 1/νL − 1 [106].

Some open questions: FQHE edge channels can be the siege of similar interaction e�ects

as those introduced for the IQHE. For instance the inter-channel interactions for multiple

co-propagating edge channels, or to edge reconstruction (changing the energy scale from ~ωC

to ∆FQHE). Moreover, it it expected that for some hole conjugated fractions 0.5 < νL < 1,

antichiral edge channels arise next to chiral ones [41, 107]. Interactions between them can give

rise to antichiral neutral modes [42], and such interactions are expected to be important since

they are necessary to obtain the correct values for the measured Hall resistances [108]. These

interaction e�ects are non-universal and could be responsible to the systematic deviation

between the universal prediction for tunneling conductances and the measured ones. But

the debate is still open.

3.6 What are the low energy excitations?

Coulomb interaction can have deep e�ects on the dynamics of the QHE edge channels. In

the IQHE, even the very nature of the edge-excitations can be starkly di�erent from the

non-interacting 1DCF. In the FQHE, they can modify the universal properties predicted

for ideal edges. However, such e�ects are intrinsically di�cult to track or to interpret with

the existing experiments. This question is specially relevant regarding the optical analogy

in the IQHE: Interactions between co-propagating edge channels not only may limit the
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dephasing length of the 1DCF excitations of an edge channel, but also could yield to collective

eigenmodes for which the constrictions used as beam-splitters in the optical analogy do not

play this role anymore. On the other hand, the edge reconstruction constitues the basis for

the theoretical understanding of the edge electrostatics, and yields to strong predictions by

which additional acoustic excitations arise. Such additional modes could result in additional

decoherence paths for the 1DCFs, but up to now there is none direct proof of their existence.

They could also modify the tunneling density of states of FQHE, and explain the systematic

mismatch between predictions and measurements.

The following chapters are devoted to describe and implement a new experimental ap-

proach permitting us to perform quantitative energy transport experiments in the IQHE.

This new technique will be implemented in the νL = 2 IQHE in order to probe its non-

equilibrium dynamics and extract new information on the nature of edge excitations.

We will further present a preliminary investigation of the 4/3 FQHE using similar, yet

qualitative, experimental approach. Even if this work is not concluded, it has already re-

vealed a coupling between the FQHE edge channels and neutral bulk excitations, yet uniden-

ti�ed.



Chapter 4

Experimental approach

This chapter presents the experimental approach used to probe the low energy physics of the

edge-channels arising in the integer quantum hall e�ect (IQHE). We argue that the inelastic

mechanisms at work can be extracted from energy relaxation experiments for a propagative

electronic system. We propose a voltage biased constriction, used as a beam splitter, to

generate a non-equilibrium situation in an edge-channel. And propose a Coulomb blockaded

island, used as an energy �lter, to probe the local energy distribution. We �nally discuss the

link between the electronic energy distribution and heat current for 1D chiral systems.

4.1 What can be learned from energy relaxation experi-

ments?

4.1.1 Testing the inelastic mechanisms at work

When a system is driven out of equilibrium, it can interact with its environment and relax to

a local equilibrium. For a propagative system (see Figure 4.1. Top), the inelastic mechanisms

taking place along the propagation modify the local energy distribution f(E,L) until a limit

f(E) is reached (∂f(E,L)/∂L = 0). One can then compare the f(E,L) evolution with

di�erent theories in order to discriminate between them. Such scheme has been successfully

implemented in mesoscopic metallic wires [25, 91]. Even without a theory to test, important

information can be obtained from the shape of f(E) using very general arguments (see

Figure 4.1) as was done in carbon nanotubes [26].

There are three limit cases where it is easy to link f(E) to the inelastic mechanisms at

work:

• No relaxation: When the inelastic mechanisms are negligible, the injected f(E)

remains the same during the propagation (Figure 4.1. 1).
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• Cold equilibrium: When the system interacts with thermalized states at tempera-

ture T , f(E) will relax towards1 a cold equilibrium at temperature T . For electronic

systems, this is a Fermi function

fF (E) = 1/(1 + exp[(E − µ)/kBT ])

where µ is the electrochemical potential (Figure 4.1. 3).

• Hot equilibrium: Interactions within the electronic system conserve the injected

excitation energy and f(E) may relax to a hot electron regime characterized by a hot

temperature Fermi function (Figure 4.1. 2, plain red curve). If the system interacts with

co-propagating excitations, the injected excitation energy may redistribute between

them yielding to a hot electron regime with a smaller hot temperature (but proportional

to the square root of the injected power)2 ( Figure 4.1. 2, dotted red curve).

1Assuming that the coupling between them is not energy dependent.
2Interactions with thermalized states having a vanishing DOS (or in the coupling) at low energies would

also yield to a hot electron regime. However, the hot temperature would saturate irrespective to the injected

power.
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Figure 4.1: 3 simple limits of inelastic mechanisms. Top: Scheme representing an en-

ergy relaxation experiment in a propagative edge-channel. A non-equilibrium edge-channel

can relax during its propagation when interacting with its environment (question mark).

Middle: Three f(E) limits after propagation corresponding to three distinct situations

(schematics at the bottom). 1. Non-interacting system, the injected non-equilibrium f(E),

here a non-equilibrium double-step, remains the same. 2. Relaxation due to interactions

within the channel (plain red curve) yield to a hot electron regime conserving the injected

energy. Relaxation due to interactions with co-propagative excitations (dotted red curve)

redistribute the energy between them and yields to a hot electron regime having lost some

energy. 3. Relaxation due to interactions with thermalized states yields to a cold f(E), at

thermal equilibrium with the base temperature.
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4.1.2 Testing the nature of edge-excitations

The inelastic length, Linel, characterizes the length before the local equilibrium f(E) is

reached. Since energy exchanges yield to orthogonal states, Linel gives an upper limit to the

phase coherence length, LΦ. Moreover, Linel can be used to derive an upper limit to the

quantum lifetime, τinel, of the probed excitations, when knowing their drift velocity. Indeed

an energy uncertainty, ∆E, is associated to the �nite lifetime, by the Heisenberg relation:

∆E · τinel ≥ ~/2.

Therefore, τinel can be used to test if the probed excitations have a well de�ned energy

(∆E/E << 1).

If a single electronic excitation is injected above the Fermi sea, the corresponding energy

uncertainty ∆E is directly the width of the single particle Green function Fourier transform

(spectral width) [109]. When injecting a many-particle excited state, as we will do, one can

still compare the energy uncertainty to the mean energy of the excited states.

4.2 Tuning an edge-channel out of equilibrium

When applying a bias to an electric system of �nite resistance, R, a Joule heating PJoule =

V I = V 2/R is dissipated. In the IQHE, the Joule heating resulting from the �nite two wire

resistance cannot be dissipated along the edge channels, since the longitudinal edge channel

resistance is null. Therefore, the Joule heating is only dissipated at the reservoirs used to

bias the sample [68], which are big enough to maintain a constant temperature. As a result,

the edge channels are at local equilibrium with the contacts feeding them, and their resulting

f(E) are just Fermi functions at thermal equilibrium.

In order to drive an edge channel out of equilibrium, a voltage biased quantum point

contact (QPC) is tuned to partially transmit/re�ect the incoming edge channels. This results

in a non-equilibrium (non Fermi) f(E) by generating additional electron-hole excitations

across the Fermi sea.

4.2.1 Quantum point contacts (QPC) in the regime of the integer

quantum Hall e�ect

QPCs are small tunable constrictions realized in a 2DEG by voltage biased top metallic

gates. The gates are capacitively coupled to the 2DEG so that a negative gate voltage

depletes the 2DEG beneath and near the gates. In a split-gate geometry, it results in a

2DEG constriction whose width can be tuned by changing the applied gate voltage, VQPC .
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Figure 4.2: QPCs in the IQHE, νL = 2. a Setup de�ning the two wire conductance

of a QPC. b Two wire conductance of a QPC as a function of the gate voltage, revealing

the transmission coe�cients of the edge channels. The colored areas correspond to the

situations depicted in c. A conductance measurement yields to the transmission sets for

both edge channels. c Edge channel transmission through a QPC for di�erent gate voltages

yielding to di�erent constriction widths.

In the IQHE, a small constriction will be able to couple the edge channels of opposite

edges propagating, in opposite directions. The complete sequence from a wide constriction to

a closed one, obtained by changing the gate voltage, is depicted in Figure 4.2.c for νL = 2. For

a wide enough constriction (large VQPC), both edge channels are completely transmitted. For

smaller values of VQPC , the opposite inner edge channels are close enough so that an incoming

electron can be either re�ected on the opposite inner edge channel or transmitted within the

same edge channel. For an even smaller width (VQPC), the inner edge channels become

completely re�ected, while the outer ones are completely transmitted. For smaller widths

(VQPC) the same sequence repeats for the outer edge channels. Summing up, only a pair of

opposite edge channels (having the same LL index) can be partially transmitted/re�ected

at a time, the other pair being fully re�ected (or transmitted).

Within the sequential picture (Figure 4.2.c), the transmission coe�cients can be obtained
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from a simple conductance measurement. Indeed, the multichannel Landauer formula links

the two wire conductance to the sum of the QPC transmission coe�cientsGQPC = e2

h

∑νL

i=1 τi,

and from Figure 4.2.c, only one channel is partially transmitted 0 < τ < 1. The di�erential

conductance measured through a QPC at νL = 2 is plotted in Figure 4.2.b as a function of

VQPC . The conductance plateaus correspond to fully transmitted, or re�ected, edge channels

as depicted by the color matching schemes in Figure 4.2.c, and the transitions between

conductance plateaus correspond to intermediate transmissions between 0 and 1 for a single

pair of edge channels (Figure 4.2.c).

4.2.2 Consequences of the spatial separation of the incoming and

outgoing channels

In the IQHE, the incoming edge channels are spatially separated from the outgoing ones.

Therefore, it is not only possible to distinctly bias the incoming channels but also to distinctly

probe the outgoing ones. It is this spacial separation between incoming and outgoing edge

channels that is exploited in the optical analogy, where a partially transmitting QPC is the

edge channel analogue of a beam-splitter.

We will exploit this spatial separation of the scattering modes to generate a non-equilibrium

distribution function in a well de�ned edge channel that can be distinctly probed.

4.2.3 Energy distribution in the outgoing edge channel in the non-

interacting models

The scattering approach goes beyond the conductance predictions, it also predicts the shape

of the energy distribution function, f(E), in the outgoing edge channels. The f(E) in the

incoming edge channels are Fermi functions, fF (E), of di�erent electrochemical potentials

shifted by the voltage bias −eV applied to the corresponding electrode.

The electrons populating an edge channel, outgoing from the QPC, have the probabilities

τ/1−τ to be fed by the di�erent sources. The resulting non-equilibrium distribution functions

fD(E) read [28]:

fD(E) = τfF (E − eVD1) + (1− τ)fF (E − eVD2) (4.1)

where eVD1/2 label the electrochemical potentials of the transmitted/refelected incoming edge

channels (see Figure 4.3). In consequence, voltage biased QPCs inject a non-equilibrium

energy distribution in the coupled outgoing channels, displaying a double-step like shape

(red insets in Figure 4.3). The perfectly transmitted/re�ected edge channels maintain the

original equilibrium (Fermi) f(E).
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Figure 4.3: Generating a non-equilibrium f(E) with a voltage biased QPC. A

voltage biased QPC in the νL = 2 IQHE set to partially transmit the outer edge channel

(red), also fully re�ects the inner edge channel (black). Within the scattering approach,

outgoing outer edge channels present non-equilibrium f(E)s (Top right and bottom left

insets), while outgoing inner edge channels present the incoming equilibrium (Fermi) f(E)

(top left and bottom right insets).

4.2.4 Energy injected by a QPC

The non-equilibrium fD(E) contains additional electron-hole excitations across the Fermi sea

than those dictated by thermal �uctuations. Neglecting interactions, the energy of electron-

hole excitations is simply additive and reads [29]:

Eqp = ν

∫
dE(E − µ)(fD(E)−Θ(µ− E)) (4.2)

where µ is the Fermi energy of the corresponding ground state, ν the density of states per

unit length and energy (assumed constant on all relevant energy range), and Θ(E) is the

Heaviside step function.

Neglecting the energy dependence on ν, the electrochemical potential µ of a double-step

like fD(E) (see Figure refChap3noneqQPCs top-right inset) reads:

µ = EF = −eVD2 − eτ(VD1 − VD2). (4.3)

Introducing (4.1) and (4.3) in (4.2), one �nds that the energy of electron-hole excitations in

each outgoing edge channels coupled by the QPC reads:

Eqp =
π2

6
ν(kBT )2 +

τ(1− τ)
2

ν(eVD1 − eVD2)
2. (4.4)
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The �rst term in 4.4 is the equilibrium energy Eeq
qp = π2

6
ν(kBT )2 due to the thermal oc-

cupations of electron-hole excitations. Therefore, a voltage biased QPC injects additional

electron-hole excitations corresponding to an excess energy Eexcess
qp = Eqp − Eeq

qp given by:

Eexcess
qp

ν
=
τ(1− τ)

2
(eVD1 − eVD2)

2. (4.5)

4.2.5 Role of additional modes in reconstructed edges

The simple picture provided by the scattering approach, could be modi�ed by the additional

modes [20, 84] predicted to arise with smooth con�nement potentials(see previous chapter).

Indeed, an electron tunneling into the compressible strip could excite also these additional

modes. This would yield to a non-linear I −V curve [110, 111] in the low transmission limit

τ << 1. in practice, linear I-V characteristics are frequently observed at integer �lling factors

[106]. Therefore, it is assumed ad-hoc that only the rigid displacement of the compressible

edge, namely the standard edge channel charge mode, is excited by tunneling events [112].

However, there are no predictions for intermediate transmissions. Therefore the possible

excitations of additional edge modes remains an open question.

One could test the relevance of such modes by measuring the single particle excitations

f(E) at the output of a QPC. If additional modes were emitted, the resulting excitations

energy Eqp would be smaller than (4.4).

4.3 f(E) spectroscopy with a quantum dot as an energy

�lter

4.3.1 Quantum dots

A quantum dot is a small electron box with a quantized electronic energy spectra. In

2DEGs, planar quantum dots [50] are realized with capacitively coupled top metallic gates

(Figure 4.4.a). Applying a negative voltage to the top gates permits to con�ne an electronic

droplet to a size smaller than the electronic wavelength.

Since the early 90's, quantum dots de�ned in 2DEGs have been extensively investigated.

Because these quantum dots are highly tunable, many physical regimes can be realized and

probed. To cite a few: coherent manipulation of a single electron spin [113], important

Coulomb e�ects [114], or Kondo physics [115]. Although energy �ltering with a quantum

dot was demonstrated more than a decade ago [116, 117], we show that quantum dots can

be used to extract the full f(E) of the probed electrodes.
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Figure 4.4: Energy distribution spectroscopy with a quantum dot. a Micrograph

of a quantum dot (QD), where top metallic gates appear brighter (gates on the bottom

corners are grounded and irrelevant). b Scheme of a QD in the IQHE at νL = 2. Outer edge

channels (EC) on both drain (D) and source (S) sides (red lines) are tunnel coupled to the

QD, inner ECs (black lines) are fully re�ected. A voltage biased side gate (magenta) is used

to sweep the electrostatic energy of the con�ned states insides the QD. Incoming ECs on the

source side are grounded. The current �owing through the QD, IQD is probed in a contact

on the bottom right side. c Schematic description of the incoming single particle f(E) on

both drain and source sides. The tunnel coupled QD has a single energy level, Elev, within

the transport window. d The current, IQD (transconductance, ∂IQD/∂VG) is proportional

to fD − fS (∂(fD − fS)/∂E), when the tunneling density of states is constant.

4.3.2 Resonant tunneling through a discrete level

We �rst consider the current �owing through a non-degenerate single electronic state, of

energy Elev, contacted by two electrodes (see Figure 4.4.c). When the transmission between
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the electrodes and the quantum dot are small enough, electrons will tunnel through the

quantum dot, one at a time. This is the sequential tunneling regime [45].

We de�ne P0/1 as the probability that the discrete level is respectively empty or occupied

with one electron. We call τ
D/S
k the transmission probability between the discrete level and

the state labeled by k in respectively the drain or source electrode. According to Fermi's

golden rule, the mean current �owing from the drain/source electrode to the quantum dot

read:

ID/S =
e

h

∫
dϵkρ

D/S
k τ

D/S
k {P0fD/S(ϵk)− P1[1− fD/S(ϵk)]}δ(ϵk − Elev)

(4.6)

where ρ
D/S
k is the density of the coupled states at the drain/source electrode, and fD/S the

energy distribution on the drain/source electrodes.

Assuming that the tunneling probabilities τ
D/S
k and the densities of states ρ

D/S
k are con-

stant, we de�ne the couplings ΓD/S = ρD/SτD/S/h. The mean current �owing through the

quantum dot in the stationary regime is IQD = ID = −IS, where the second equality follows

from charge conservation. Since the discrete level can be either full or empty, we have the

second condition P0 + P1 = 1, and the stationary current can be found as [45]:

IQD = e
ΓDΓS

ΓD + ΓS

[fD(Elev)− fS(Elev)]. (4.7)

Therefore, the current �owing through the quantum dot is directly proportional to the

di�erence of f(E) on both sides to the quantum dot at the energy of the discrete level.

4.3.3 Energy distribution spectroscopy principle

For a single discrete level coupled in the sequential tunneling regime, we have according to

(4.7), for energy independent couplings:

IQD = Imax
QD (fD(Elev)− fS(Elev)), (4.8)

where Imax
QD encompasses the sample dependent parameters.

Sweeping the probed energy: Elev can be easily swept by applying a voltage bias to a

side gate capacitively coupled to the electronic con�ned state (magenta gate in Figure 4.4.b).

Elev is therefore directly proportional to the side gate voltage VG:

Elev(VG) = E0 − eηGVG (4.9)

where E0 is an unimportant constant depending on the quantum dot electrostatics, and ηG

is the lever arm characterizing the capacitive coupling.
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Resolving the drain/source contributions: In order to resolve the distinct contribu-

tions of the drain/source fD/S(E) to IQD, it is su�cient to apply a high enough global

electrochemical potential di�erence between them (situation depicted in Figure 4.4.c). The

full fD/S(E) spectroscopy of both drain and source electrodes can be therefore accessed by

probing IQD as a function of the single level energy Elev ∝ VG, in this situation (which is

pictured in Figures 4.4.c and d).

Di�erential transconductance: In practice, it is useful to measure the di�erential transcon-

ductance ∂IQD/∂VG. The corresponding raw signal reads:

∂IQD

∂VG

(VG) = −eηGI
max
QD

[(
∂fD(Elev)

∂Elev

)
Elev(VG)

−
(
∂fS(Elev)

∂Elev

)
Elev(VG)

]
, (4.10)

where we introduced the de�nition of the lever arm ∂Elev/∂VG = −eηG. We have plotted in

Figure 4.4.d the di�erential transconductance resulting from an equilibrium source electrode,

and a double-step like fD(E) in the drain side, whose electrochemical potential has been

raised with respect to the source. The non-equilibrium fD(E) gives rise to a negative double

dip, whereas the equilibrium fS gives rise to a single peak.

Since VG is the available experimental knob, it is crucial to characterize the proportionality

lever arm, ηG. The lever arm can be characterized by probing the resonances in (4.10) at

equilibrium for di�erent temperatures. For instance, the contribution of the equilibrium

source at temperature T (Fermi function) to (4.10) reads:

ηGe
2

2kBT

ΓDΓS

ΓD + ΓS

1

cosh2
(

E0−eηGVG

kBT

) , (4.11)

whose amplitude scales with 1/T and its width at half maximum is about ∆VG = 3.55kBT/eηG.

Moreover, single electron e�ects, arising from the smallness of the quantum dot, can also be

exploited to extract ηG.
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4.3.4 Single electron electrostatics

The quantum dot must be small in order to have a well de�ned discrete spectra, in con-

sequence its capacitance, CΣ, is small too and the corresponding single electron charging

energy EC = e2

2CΣ
is large. In the sequential tunneling regime, the charge in the quantum

dot de�ned by an integer number of electrons, n, can only change by one.
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Figure 4.5: Single electron stability diagram and Coulomb diamonds. a Electrostatic

scheme of a quantum dot, taking into account the voltage source. Electrons inside the

quantum dot are labeled by n, electrons furnished by the source by p. 4 di�erent tunneling

events (blue) can modify the circuit energy. b ∂IQD/∂VDS conductance plot of a quantum

dot, as a function of voltage bias VDS and gate voltage VG. Three consecutive Coulomb

diamonds (n − 1, n, n + 1) are shown. The diamonds frontiers are linked to the tunneling

processes described in a (blue).The frontiers' slopes depend on the quantum dot capacitances

(magenta).

Single charge electron circuit: When n is large, the Coulombic repulsion between the

con�ned electrons can be treated within a mean �eld approach. In this limit, the electrostatic

energy can be taken as independent of n and be encompassed within the capacitance CΣ.

The total energy of the circuit is the sum of the quantum dot electrostatic energy and the

work supplied by the voltage source [118]. At zero temperature it reads:

En,p(VDS, VG) =
(−ne+ CDVDS + CGVG)2

2CΣ

− peV +
n∑

i=1

Ei + ϵ(VDS, VG), (4.12)

where n and p are integers labeling the electron number inside the dot, n, and the electrons

supplied by the voltage source, p. ϵ(VDS, VG) is a function that only depends on the voltages

(and is therefore irrelevant to single electron tunneling) and
∑n

i=1Ei is the energy due to
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the occupation of the �rst nth discrete levels inside the quantum dot. The circuit parameters

are depicted in the circuit schematic (Figure 4.5), and CΣ = CD + CS + CG.

Sequential tunneling regime: In the large charging energy EC limit, EC >> kBT , and

moderate biases, EC & |eVDS|, only one electron can tunnel at a time [45]. The corresponding

tunneling events changing the number n of charges trapped within the dot are pictured in

Figure 4.5.a. Electrons can tunnel in the charge degeneracy points, where the n and n ± 1

charge states have the same energy:

A : En+1,p−1 − En,p = 0

⇒ VDS =
CG

CΣ − CD

VG −
n+ 1/2

CΣ − CD

− CΣ[E(n+ 1)− E(n)]

e(CΣ − CD)

B : En−1,p+1 − En,p = 0

⇒ VDS =
CG

CΣ − CD

VG −
n− 1/2

CΣ − CD

− CΣ[E(n)− E(n− 1)]

e(CΣ − CD)
(4.13)

C : En−1,p − En,p = 0

⇒ VDS = −CG

CD

VG +
n− 1/2

CD

+
CΣ[E(n)− E(n− 1)]

eCD

D : En+1,p − En,p = 0

⇒ VDS = −CG

CD

VG +
n+ 1/2

CD

+
CΣ[E(n+ 1)− E(n)]

eCD

Inside these frontiers of the (VG, VDS) plane, the current is blocked since there is not

enough available energy to a�ord the single electron charging energy. Therefore n is �xed.

Outside these frontiers, the current is constant (if the couplings ΓD/S are energy indepen-

dent) until an excited (electron or hole) discrete state enters in the transport window. The

corresponding degeneracy points are found replacing E(n ± 1)− E(n) by E(n ± 2)− E(n)

in the precedent conditions. The resulting stability diagram can be probed by plotting the

conductance of the quantum dot as a function of VG and VDS. It can be used to characterize

the quantum dot electrostatic parameters as highlighted in Figure 4.5.b.

Lever arm and stability diagram: The side gate lever arm is simply related to the

quantum dot capacitances [118] and can be found from the slopes of the Coulomb diamonds

sneg = −CG/CD and spos = CG/(CΣ − CD):

ηG =
CG

CD + CS + CG

(4.14)

= (s−1
pos − s−1

neg)
−1 (4.15)

Selecting the probed electrodes: The processes A and B in Figure 4.12 only couple to

the drain electrode, while C and D to the source electrode. Since A and B (C and D) yield
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to a positive (negative) slope in the (VG, VDS) plane, one can easily identify what electrode

is probed by the quantum dot for a given (VG, VDS). Negative slopes in the stability diagram

probe fD(E), while negative slopes probe fS(E)

4.3.5 Sequential tunneling through multiple discrete levels

When multiple discrete levels lie in the transport window, non-intuitive dynamical e�ects

can arise. In the sequential tunneling regime, the strong Coulomb energy impedes changes

of more than one electron. Therefore, the many electron paths due to the many levels do not

add in parallel. The resulting expression for the mean current can be starkly di�erent [119]

from the one found for a single level (4.8), which limits its application range. Moreover,

dynamical e�ects can modify the sharp features of the stability diagrams plots at �nite

temperature, see appendix for more details. Both e�ects will limit the experimental accuracy

on the lever arm experimental calibration, when using the simple single level model (4.8).

The general problem of non symmetric multiple levels with energy dependent couplings

(A.1) and (A.4) can be handled numerically [119], when the couplings to the discrete levels

and their energy spacings are known. However, using this scheme to probe an unknown

f(E) would need an independent calibration of the couplings which cannot be done by DC

measurements alone, and complicates the analysis. In order to probe an unknown f(E), it is

therefore desirable use a quantum dot with a single active level within the transport window

needed to probe the relevant energy scales.

4.3.6 Metallic islands

A quantum dot is in the Coulomb blockaded �metallic� regime when the discrete level spacing

is small, Ei+1 − Ei << kBT , but the single electron charging energy is large EC > kBT .

This regime can be pictured as the continuous limit of the multiple level quantum dot

Ei+1−Ei << 1. The current is therefore blocked inside the Coulomb diamonds provided by

the conditions (4.13). But since the density of states in the con�ned region is continuous,

the current also evolves continuously outside the charge degeneracy limits (4.13). For energy

independent couplings at zero temperature, and assuming full relaxation between tunneling

events, I-V curves are linear for biases outside (4.13) [45]. These systems can be used as a

high pass energy �lter to probe the electrodes electronic excitations at energies higher than

(4.13). Therefore, the energy cut-o� for the probed excitations can be swept with the gate

voltage VG.
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4.4 Energy transport in 1D systems and f (E)

This section details the strong link between the single particle f(E), and the energy currents

carried by 1D chiral non-interacting fermions (1DCFs). We show, that the knowledge of

f(E) fully de�nes the energy current [24], using the very same arguments that yield to the

universal transport results for ballistic transport [57].

The chiral energy current, Jqp, carried by non-interacting electron-hole excitations in a

chiral 1D channel reads [24]:

Jqp =

∫
dEv(E)ν(E)(E − µ)(f(E)−Θ(µ− E)),

(4.16)

where introduced the drift velocity v(E), the density of states per unit length ν, the Fermi en-

ergy µ and the Heaviside step function Θ(E). Since in 1D systems, the product v(E)ν(E) =

1/h is universal and energy independent, the energy �ow is fully characterized by f(E):

Jqp =
1

h

∫
dE(E − µ)(f(E)−Θ(µ− E)) (4.17)

which is directly contained within f(E).

It is useful to de�ne the non-equilibrium temperature Tqp as the temperature needed to

obtain an equilibrium chiral energy current equal to Jqp:

Jqp =
1

h

∫
dE(E − µ)(fF(E, Tqp, µ)−Θ(µ− E)) (4.18)

(4.19)

where we introduced the Fermi function fF(E, T, µ), describing the electron-hole occupations

at temperature T and Fermi energy µ. Since the integral in (4.18) gives π2

6
(kBTqp)

2 [24, 29]

one obtains:

Jqp =
π2

6h
(kBTqp)

2. (4.20)

The non-equilibrium temperature, Tqp, is therefore a (quadratic3) measure of the energy

current carried by the electron-hole excitations. According to (4.17) and (4.20), it can be

directly extracted from f(E) without sample dependent parameters. Moreover, it has a direct

physical interpretation, when the non-equilibrium f(E) describes a broadband excited state

and the density of states is energy independent. In this limit, the whole excitation energy is

roughly ν(kBTqp)
2 while the number of excited states is roughly νkBTqp. Therefore, kBTqp is

roughly the mean energy of the electronic excitations.

3But since the excitation energy is always positive, it is a well de�ned bijective measure.
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Chapter 5

Non-equilibrium edge-channel

spectroscopy

5.1 Experimental demonstration in the νL = 2 quantum

Hall e�ect

This section reproduces an article we have published in Nature Physics [1] where we demon-

strate experimentally the non-equilibrium edge channel spectroscopy. For this purpose, we

have probed the energy distribution f(E) generated by a voltage biased quantum point con-

tact (QPC) after a short propagation path. These measurements, also permit to discard that

the predicted additional [20] modes of reconstructed edges [17] are not emitted by voltage

biased QPCs at �nite transmissions.
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Non-equilibrium edge-channel spectroscopy in
the integer quantum Hall regime
C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly and F. Pierre*
The study of heat transport has the potential to reveal new
insights into the physics of mesoscopic systems. This is
especially true of those that show the integer quantum Hall
effect1, in which the robust quantization of Hall currents
limits the amount of information that can be obtained from
charge transport alone2. As a consequence, our understanding
of gapless edge excitations in these systems is incomplete.
Effective edge-state theory describes them as prototypical
one-dimensional chiral fermions3,4—a simple picture that
explains a large body of observations5 and suggests the use of
quantum point contacts as electronic beam splitters to explore
a variety of quantum mechanical phenomena6–8. However,
this picture is in apparent disagreement with the prevailing
theoretical framework, which predicts in most situations9

extra gapless edge modes10. Here, we present a spectroscopic
technique that addresses the question of whether some
of the injected energy is captured by the predicted extra
states, by probing the distribution function and energy flow
in an edge channel operated out-of-equilibrium. Our results
show it is not the case and therefore that regarding energy
transport, quantum point contacts do indeed behave as optical
beam splitters. This demonstrates a useful new tool for heat
transport and out-of-equilibrium experiments.

The integer quantum Hall effect, discovered nearly thirty years
ago1, has recently experienced a strong revival driven by milestone
experiments towards quantum information with edge states7,11,12.
Beyond Hall currents, new phenomena have emerged that were un-
expected within the free one-dimensional chiral fermions (1DCFs)
model. The ongoing debate triggered by electronic Mach–Zehnder
interferometer experiments7,13–15 vividly illustrates the gaps in our
understanding. Coulomb interaction is seen as the key ingredient.
In addition to itsmost striking repercussion, the fractional quantum
Hall effect16, the edge reconstruction turns out to have deep
implications on edge excitations. This phenomenon results from
the competition between Coulomb interaction that tends to spread
the electronic fluid, and the confinement potential: as the latter gets
smoother, the non-interacting edge becomes unstable17. Theory
predicts new branches of gapless electronic excitations in recon-
structed edges10,18, which breaks the mapping of an edge channel
onto 1DCFs and, possibly, the promising quantum optics analogy.
For most edges realized in semiconductor heterojunctions (except
by cleaved edge overgrowth19), edge reconstruction results in wide
compressible edge channels separated by narrow incompressible
strips9 and the new excited states are overall neutral internal charge
oscillations across the edge channels’ width10.

In practice, the predicted extra neutral modes are transparent
to Hall currents. More surprisingly, a linear I–V characteristic
is frequently observed for tunnel contacts (different behaviours
were also reported, for example, ref. 20), whereas a nonlinear

CNRS, Laboratoire de Photonique et de Nanostructures (LPN)—Phynano team, route de Nozay, 91460 Marcoussis, France.
*e-mail: frederic.pierre@lpn.cnrs.fr.

characteristic is predicted21–23. This contradiction is resolved by
assuming ad-hoc that only rigid displacements of compressible
edge channels are excited by tunnel events, and not internal
excitations10,21,22,24. The rigid displacement model arguably relies
on the overriding strength of Coulomb interaction that tends to
orthogonalize bare tunnelling electrons and correlated electronic
fluids24. However, the above argument does not hold at arbitrary
transmission probabilities, where several electron processes occur.
Therefore, the role of predicted internal excitations has to be
determined experimentally. The present work provides such a test.
An edge channel is driven out-of-equilibriumwith a quantumpoint
contact (QPC) of arbitrary transmission, possibly exciting internal
modes. A short distance away, the resulting energy distribution f (E)
is measured with a tunnel-coupled quantum dot expected to probe
only rigid displacement excitations, hereafter called quasiparticles.
Consequently, the amount of energy injected into internal modes at
the QPCwould appear as an energy loss in f (E).

Measurements of the energy distribution in mesoscopic devices
were first carried out in 1997 on metallic circuits using a
superconducting tunnel probe25. In two-dimensional electron-gas
systems, non-Fermi energy distributions could not be measured
because transferring the techniques developed for metal circuits is
technically challenging (although hot electrons have been detected,
for example, ref. 26). Regarding the quantum Hall regime, the state
of the art is the very recent qualitative probe of heating27. Here, we
demonstrate that f (E) can be fully extracted from the tunnel current
across a quantum dot. In the sequential tunnelling regime, the
discrete electronic levels in a quantum dot behave as energy filters28,
as previously demonstrated with double quantum dots29. Assuming
a single active quantum-dot level of energy Elev, and ignoring the
energy dependence of tunnel rates and tunnelling density of states
in the electrodes, the quantum-dot current reads

IQD= Imax
QD (fS(Elev)− fD(Elev)) (1)

where the subscript S (D) refers to the source (drain) electrode;
fS,D are the corresponding energy distributions and Imax

QD is the
maximum quantum-dot current. In practice, fS,D are obtained
separately by applying a large enough source–drain voltage
(Fig. 1a,b) and the probed energy Elev = E0− eηGVG is swept using
a capacitively coupled gate biased at VG, with ηG being the gate
voltage-to-energy lever arm and E0 an offset. Raw data ∂IQD/∂VG
measured by lock-in techniques are proportional to ∂fD,S(E)/∂E .

A tunable non-Fermi energy distribution is generated in an
edge channel with a voltage-biased QPC. Similar set-ups were
used previously to create imbalanced electron populations between
co-propagating edge channels30, each characterized by a cold Fermi
distribution. Only in a very recent experiment27 was an edge
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Figure 1 | Experimental implementation of non-equilibrium edge-channel spectroscopy. a, Schematic description of the energy distributions’ fD,S(E)
spectroscopy with a single active electronic level of tunable energy Elev(VG) in the quantum dot. b, The current IQD (∂ IQD/∂VG) is proportional to
fS(E)− fD(E) (∂(fS(E)− fD(E))/∂E) ignoring variations in tunnel rates and tunnelling density of states. c, Electron-beam micrograph of the sample. Surface
metal gates appear brighter. Electronic excitations propagate anticlockwise along two edge channels of the quantum Hall regime. The outer edge channel
(solid white lines) is partly transmitted (dashed lines) across the QPC and the quantum dot. The inner edge channel (not shown) is always reflected. The
QPC is used to drive out-of-equilibrium the drain outer edge channel. Gates partly covered by the insets are grounded and do not influence the electron
paths. Left inset: Non-interacting electrons prediction for fD(E) in the outer edge channel at the output of the QPC. Right inset: Equilibrium Fermi function
fS emitted by a cold ground.

channel heated up. Beyond heating, f (E) is here controllably tuned
out-of-equilibrium. Let us consider one edge channel and assume
it can be mapped onto non-interacting 1DCFs. According to the
scattering approach5, the energy distribution at the output of a QPC
of transmission τ is a tunable double step (Fig. 1c, left inset)

fD(E)= τ fD1(E)+ (1−τ )fD2(E) (2)

where fD1 (fD2) is the equilibrium Fermi distribution function
in the partially transmitted (reflected) incoming edge channel of
electrochemical potential shifted by eVD1 (eVD2). In the presence
of edge reconstruction, the above energy distribution applies to
the quasiparticles if internal modes are not excited at the QPC.

On the other hand, if internal modes are excited, there are no
theoretical predictions because a QPC is very difficult to treat
non-perturbatively in their natural bosonic formalism.

The sample shown in Fig. 1c was tailored in a two-dimensional
electron gas realized in a GaAs/Ga(Al)As heterojunction, set to
filling factor two and measured in a dilution refrigerator of base
temperature 30mK. The experiment detailed here focuses on the
outer edge channel represented as a white line. The inner edge
channel (not shown) is fully reflected by the QPC and the quantum
dot. We checked that charge tunnelling between edge channels
is negligible along the 0.8 µm propagation length from the QPC
to the quantum dot.

We first carry out a standard nonlinear quantum-dot
characterization28 (Fig. 2, top left inset). The two large signal stripes

NATURE PHYSICS | VOL 6 | JANUARY 2010 | www.nature.com/naturephysics 35
© 2010 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys1429
http://www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1429

 

T
fit

 (
m

K
)

 Drain

Source

T (mK)

(VD = ¬88 μV)

30 mK

320 mK

Source

Drain

VG (V)

VG (V)

V
D

 (
μV

)

VD = 0

(VS = 0)

¬0.536¬0.537¬0.538¬0.539

¬150

¬100

¬50

0

0

100

200

300

¬0.536¬0.537¬0.538¬0.539

0 100 200 300

¬0.3

0

0.3

I Q
D

/
V

G
 (μ

S)
∂

∂

Figure 2 | Equilibrium edge-channel spectroscopy and quantum-dot characterization. Temperatures Tfit are obtained by fitting the quantum-dot drain
dip and quantum-dot source peak in ∂ IQD/∂VG (respectively, left and right peaks in bottom right inset), and from the single ∂ IQD/∂VD peak at VD=0 (raw
data not shown) with ηG=0.057. We assumed a single active level in the quantum dot and Fermi energy distributions in source and drain. Errors within
T± 10% are enclosed between the dashed lines. Top left inset: Surface plot of ∂ IQD/∂VG (negative is brighter, positive darker) measured at T= 30 mK for
an outer (inner) drain edge channel biased at VD (−88 µV). The intense stripes’ slopes yield ηG=0.052±9%. The enclosed dashed lines outline the small
contributions of other electronic levels. Bottom right inset: ∂ IQD/∂VG measured at VD−VS=−88 µV for several temperatures.

are frontiers of consecutive Coulomb diamonds and are accounted
for by a single active quantum-dot level. Small contributions
of three extra levels of relative energies {−95,30,130} µeV are
also visible. The lever arm extracted from the stripes’ slopes
is ηG ' 0.052 ± 9%.

Then, we test the spectroscopy with known Fermi functions
by measuring ∂IQD/∂VG(VG) at VD1 = VD2 = −88 µV for several
temperatures (Fig. 2, bottom right inset). By fitting these data with
equation (1) using Fermi functions, we extract a fit temperature
scaled by the lever arm Tfit/ηG. The value ηG = 0.057, compatible
with the nonlinear quantum-dot characterization, is found to
reproduce best the mixing-chamber temperature T with Tfit. The
drain and source fit temperatures are shown in Fig. 2, together with
Tfit obtained using the standard procedure28 from ∂IQD/∂VD(VG)
at VD ' 0. We find deviations mostly within ±10% (dashed
lines in Fig. 2) except for a saturation at Tfit ≈ 50mK possibly
owing to a higher electronic temperature. In the following, we use
ηG=0.057 obtained here in the same experimental configuration as
to measure unknown f (E)s.

Electrons are now driven out-of-equilibrium in the drain outer
edge channel. In the following, the electrode D2 and the inner drain
edge channel are voltage biased atVD2=−88 µVand the source edge
channels are emitted by a cold ground.

First, the bias voltage across the QPC is set to δVD ≡ VD1 −

VD2=36 µV and its conductanceGQPC= τ e2/h is tuned by applying

VQPC to the bottom left gate in Fig. 1c (see Fig. 3a). Note that at
30mK, we find the transmission τ is constant within 2% with the
QPC voltage bias below 36 µV. Typical sweeps ∂IQD/∂VG(VG) and
the corresponding fD(E) are shown in Fig. 3b and e, respectively.
The quantum-dot drain negative contribution transforms from a
single dip at τ ={0,1} into two dips separated by a fixed gate voltage
and with relative weights that evolve monotonously with τ ∈]0,1[.
The solid lines are fits with equation (2) using for fD1,D2 two Fermi
functions shifted by a fixed energy and weighted by the factors τfit
and 1−τfit. The values of τfit are found to deviate by less than 0.03
from the measured transmission τ (Fig. 3c), in accurate agreement
with the free 1DCF model. The plus symbols in Fig. 3 correspond
to data obtained in a second cooldown.

In a second step, the QPC transmission is fixed to τ ≈ 0.5
and the bias voltage δVD is changed. Typical raw data are shown
in Fig. 4a. These were obtained in a third cooldown with a
quantum dot renewed by the thermal cycle showing no signs
of extra quantum-dot levels in the probed energy range. The
single dip in the quantum-dot drain contribution (bright) at
δVD = 0 splits into two similar dips that are separated by a gate-
voltage difference proportional to δVD. In contrast, the quantum-
dot source peak (dark) is mostly unchanged but slowly drifts
parallel to one quantum-dot drain dip owing to the capacitive
coupling between the drain and the quantum dot. In the first
cooldown, VD1 was kept within [−106,−34] µV to minimize
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Figure 3 | Spectroscopy of an edge channel tuned out-of-equilibrium with the conductance of a QPC. The QPC’s voltage bias is here fixed to
δVD≡VD1−VD2= 36 µV. The data shown as plus symbols in c,d were obtained in a second cooldown with a renewed ηG=0.059±7%. a, Measured GQPC

versus VQPC applied to the lower left metal gate in Fig. 1c. The symbols are data points obtained during the corresponding edge-channel spectroscopy. The
solid line was measured earlier with δVD=0. b, Measured ∂ IQD/∂VG (symbols) for the quantum-dot drain contribution (data have been aligned in VG and
normalized to Imax

QD ). The two dips correspond to a double-step energy distribution fD(E). c, The symbols are τfit obtained from fits of the data (solid lines
in b) assuming fD(E) is the weighted sum of two Fermi functions. We find an accurate agreement with the non-interacting 1DCF model prediction
τfit=GQPCh/e2. d, Generalized non-equilibrium temperature (symbols, see text) extracted from the data and theoretical prediction for free 1DCFs (solid
line). The error bars are dominated by uncertainties on ηG. e, Energy distributions obtained by integrating the data in b.

complications related to extra quantum-dot levels (lower bound)
and to ensure well-separated source and drain contributions (upper
bound). The symbols in Fig. 4b and e are, respectively, data
and extracted fD(E) for the quantum-dot drain contribution at
δVD = {−18,0,18,27,36,45,54} µV and τ = 0.58. The solid lines
in Fig. 4b are fits with equation (2) using the measured τ and for
fD1,D2 two Fermi functions shifted in energy by the fit parameter
−eηGδVG. The resulting ηGδVG are plotted as symbols versus δVD
in Fig. 4c. Those obtained in the third cooldown are shown as
purple star symbols using the renewed lever arm ηG = 0.062. We
find ηGδVG ' δVD as expected from the non-interacting 1DCF
model. Deviations are always smaller than 8 µV (5 µV) for the first
(third) cooldown, a reasonable agreement regarding uncertainties
in ηG of±10% (±5%).

In the two experiments above, we found the measured
quasiparticle f (E)s verify predictions of the scattering approach.
To establish the QPC/beam-splitter analogy one also needs to

demonstrate that internal edge-channel modes are not excited. A
direct test consists of extracting the quasiparticle heat current J qpE
from the data, and comparing it with the full edge-excitations’
heat current JE obtained from power-balance considerations (see
Supplementary Information for details):

JE(T = 0)=
(eδVD)2

2h
τ (1−τ )

The cancellation vν = 1/h of velocity (v) and density of states per
unit length and energy (ν) that applies to the 1DCF quasiparticles
permits us to obtain J qpE from the measured f (E) without any
sample-specific parameters:

J qpE =
1
h

∫
(E−µ)(f (E)−θ(µ−E)) dE (3)
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Figure 4 | Spectroscopy of an edge channel tuned out-of-equilibrium with the voltage across a QPC. The QPC’s conductance is here fixed to
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corresponding to the fixed potential VD2. The solid lines are fits assuming fD(E) is the weighted sum of two Fermi functions. c, The symbols are the fit
parameters ηGδVG. The solid line is the prediction for non-interacting 1DCFs. d, Generalized non-equilibrium temperature (symbols) and theoretical
prediction for free 1DCFs (solid line). The good data–prediction agreement demonstrates that internal modes are not excited at the QPC within our
experimental accuracy. e, Energy distributions obtained by integrating the data in b.

where µ is the electrochemical potential and θ(E) is the step
function. Consequently, we measure quantitatively the quasipar-
ticle heat current. The result of this procedure is shown as sym-
bols in Figs 3d and 4d using the generalized non-equilibrium
temperature Tqp ≡

√
6hJ qpE /πkB together with the prediction

T1DCF=
√
T 2+τ (1−τ )3(eδVD/πkB)2 if none of the injected power

is carried on by internal modes (solid lines). We find a good
agreement Tqp ' T1DCF without fitting parameters and essentially
in or close to error bars. Hence, within our experimental accuracy,
the propagative internal modes do not contribute to heat transport
and therefore are not excited. Note that the relatively small ob-
served deviations are cooldown dependent, which suggests that the

quantum-dot detector is responsible for these deviations. Indeed,
the data can be more accurately accounted for including a second
active quantum-dot level (see Supplementary Information). Last,
preliminary data show a significant energy redistribution with the
inner edge channel for propagations longer than 2 µm in the probed
energy range. Therefore, the observed small discrepancies could also
result from the finite 0.8 µmpropagation length.

Overall, we demonstrate that QPCs in the quantum Hall regime
are tunable electrical beam splitters for one-dimensional fermions,
that is, rigid edge-channel displacements, (1) by comparing the
energy distribution at a QPC output with predictions of the
scattering approach5, and (2) by showing that internal edge-channel
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modes are not excited. This does not only rule out non-ideal
QPC behaviours to explain the surprising phenomena observed on
electronic Mach–Zehnder interferometers7,13–15, it also establishes
a solid ground for future quantum information applications
with edge states. Finally, an essential part of this work is the
demonstration of a new technique to measure the fundamental
energy-distribution function. It makes f (E) accessible for most
systems where quantum dots can be realized. We expect it will
trigger many new experiments dealing with heat transport, out-of-
equilibrium physics and quantum decoherence.
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5.1.1 Ruling out additional modes emission by QPCs

The di�erence of the measured fD(E) with the non-interacting prediction are small, but it

is however di�cult to rule out, from a direct comparison, the in�uence of the additional

modes [20] predicted in reconstructed edge channels [17]. Nevertheless, the power carried by

the probed 1DCFs can be extracted from the measured fD(E) (article equation 3) and very

general power balance considerations can rule out any energy leak from the probed 1DCFs

(up to our incertitude in the extracted Tqp).

Figure 5.1 recapitulates the logical structure that permits us to discard the emission of

energy towards additional modes by the voltage biased QPCs.

Heat �ow injected by the QPC

From general power balance considerations, we obtain the heat �ow injected at the QPC

output. We consider the simpli�ed circuit at �lling factor 1 (one edge channel) shown in

Figure 5.2.

The total power P = V I = V 2τe2/h, with τ the quantum point contact transmission,

dissipated in the source (S) and drain (D) electrodes (nearby the hot spots shown as red

areas in Figure 5.2, see e.g. [68]), can be decomposed into two contributions [24]:

P = V 2τe2/h = Pδµ + Pedge. (5.1)

The �rst one (Pδµ) corresponds to the energy injected into the drain and source elec-

trodes due to the electrochemical potential di�erence δµ between the electrodes and the

corresponding incoming edge. The edge electrochemical potential is de�ned as that of a

�oating electrode inserted in its path (Figure 5.3), in the spirit of the `measurement reser-

voir' model (see e.g. [24]). At unity transmission τ = 1, this `electrochemical power' is

the only contribution to the dissipated power Pδµ(τ = 1) = P = (eV )2/h. In general, the

electrochemical power injected by each edge in its output electrode is (δµ)2/2h and gives

the same information as the DC current. At arbitrary transmission τ , the electrochemical

potential di�erence at the input of both the source and drain electrodes is |δµ| = τe|V | and
one �nds:

Pδµ = (τeV )2/h. (5.2)

The second contribution Pedge = 2(J in
E − Jout

E ) corresponds to the di�erence between the

incoming J in
E and outgoing Jout

E energy current carried on by all edge excitations, even by

the predicted additional modes, respectively in and out the corresponding electrode. The

factor two here accounts for the two electrodes. Note that Pedge corresponds to the amount

of energy that would be absorbed by two �oating reservoirs inserted along the path of the

edges incoming to source and drain electrodes and thermalized at the same temperature as
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H1: Tunnel contacts do not couple to internal EC modes

H2: "Quasiparticles" can be described as 1D chiral fermions

       (quasiparticles = rigid EC displacement excitations)

H3: Internal EC modes are propagative

H1 ⇒ I1: f(E) measured with a tunnel coupled QD is that 

               of quasiparticles

H2 + I1 ⇒ I2: Quasiparticle heat current J    given by Eq. 4

H3 ⇒ I3: If ∃ excited internal states at QPC then this implies 

               excess J   < excess edge excitations heat current J

Working hypothesis

Implications of hypothesis

E

qp

E

qp

E

E

qp

E

Experimental observations

E1: Measured f(E) complies with Eq. 1

E2 (using I2): Excess J   ~ excess J

E1 + I1 ⇒ C1: Quasiparticles f(E) obey the scattering model 

                        of QPCs 

E2 + I3 ⇒ C2: Internal modes are not excited at the QPC

C1 + C2 ⇒ C3: Regarding energy transport, QPCs in int. QHR

                         are electrical analogues for quasiparticles of 

                         tunable beam splitters

Conclusions

Figure 5.1: Logical structure of the arguments ruling out the emission of additional

reconstructed edge modes by voltage biased QPCs. The hypothesis H1 relies on

the linear I-V characteristic for tunnel contacts that is mostly observed (including here) in

the integer quantum Hall e�ect [20, 84, 110, 111, 112]. The hypothesis H2 holds for each

edge channel's 1DCFs quasiparticle branch according to [20, 38, 84, 110]. Note that the

hydrodynamic approach considers speci�cally rigid edge channel displacements [38]. The

hypothesis H3 is a prediction for internal edge channel modes [19, 20, 84, 110].
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D SV

Figure 5.2: Simpli�ed schematic circuit used for power balance considerations.

The Landau level �lling factor is here set to one. The edge channel is shown as a white

line and the propagation direction of electronic excitations is indicated by an arrow. The

dissipated power V 2GQPC = V 2τe2/h is injected into the source (S) and drain (D) electrodes

by the corresponding incoming edge channels.

δV
 

P/2

P  /2
P    /2 δμ
edge

Figure 5.3: Electrochemical power Pδµ and excitation power Pedge injected by a

QPC. Scheme of setup permitting to distinguish the electrochemical power Pδµ from the

excitation power Pedge. The excitation power Pedge is dissipated by all ohmic contacts, even

a �oating contact (red spot the bottom �oating contact). The electrochemical power Pδµ is

dissipated only in contacts having a di�erent electrochemical potential from the incoming

edge channel (blue spot in the right ohmic contact).

their corresponding electrode (�gure 5.3). This contribution vanishes at zero transmission

and also at unity transmission, as long as the drain and source electrodes are at the same

temperature since in that case J in
E = Jout

E . At intermediate transmissions, Pedge is obtained

from Equations 5.1 and 5.2:

Pedge = P − Pδµ = τ(1− τ)(eδVD)2

h
. (5.3)

This last quantity is identical to the one obtained from the double step distribution function
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(using the J in
E following from Equation 4.1 and article Equation 3, and the equilibrium heat

current Jout
E = π2

6h
(kBT )2). Therefore the observed agreement between measured quasiparti-

cle f(E) and the prediction of Equation 4.1 already implies that the excess energy current

is carried on by quasiparticles and not internal edge channel modes. However, the most

straightforward evidence is to extract the energy current directly from the measured quasi-

particle energy distribution function. The predicted internal modes being propagative, the

observation that excess quasiparticle energy current and full excess edge current are similar

(see article Figures 3d and 4d) implies internal edge channel states are not excited by a

voltage biased QPC of arbitrary transmission within our experimental accuracy on Tqp.

5.1.2 Supplementary Data

In this section we present supplementary data regarding other cooldowns, that were not

shown in the article. Since the quantum dot is renewed by the thermal cyclings (see Fig-

ure 5.4), these additional measurements test the robustness of our �ndings. Indeed, Article

Figures 3.d and 4.d show that the excess temperatures (and therefore quasiparticle heat

currents) measured for di�erent cooldowns (and renewed quantum dots) match within our

experimental uncertainty. Di�erent cooldowns also agree in the transmission and QPC bi-

ases used to �t our experimental data, shown in Article �gures 3.c and 4.c, with the non-

interacting formula given by Article Equation 2.

For completeness, we show here:

1. The quantum dot calibration data in Figure 5.4.

2. Data obtained in cooldown two with a �xed bias voltage δVD = −36 µV and several

values of the QPC conductance are shown in Figure 5.5. These data correspond to

symbols (+) in article Figure 3.c and d. Note that here VD2 and the inner edge channel

potential are set to −129 µV.

3. Data obtained in cooldown three with a �xed QPC conductance GQPC ≃ 0.5e2/h and

several values of the QPC voltage bias δVD are shown in Figure 5.6. As for cooldown

one, VD2 and the inner edge channel potential are here �xed to −88 µV.
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Figure 5.4: Quantum dot calibration in cooldowns two and three. This �gure comple-

ments Figure 2 that focused on cooldown one. (a) and (b) are calibration data for cooldowns

two and three, respectively. Errors in Tfit within ±7% for cooldown two (a) and within ±5%

for cooldown three (b) are enclosed between the black dashed lines. Note that an additional

quantum dot level of relative energy −56 µeV for cooldown two is visible in the top left inset

of (a).
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Figure 5.5: Spectroscopy of an edge channel tuned out-of-equilibrium with the

conductance of a QPC in cooldown two. The QPC's voltage bias is here �xed to

δVD ≡ VD1 − VD2 = −36 µV. a, Measured GQPC versus VQPC applied to the lower left

metal gate in Figure 1c. Symbols are data points obtained during the corresponding edge

channel spectroscopy. The continuous line was measured with δVD = 0. b, Measured

∂IQD/∂VG (symbols) for the quantum dot-drain contribution (data have been aligned in VG

and normalized to Imax
QD ). Continuous lines are �ts assuming fD(E) is the weighted sum of

two Fermi functions. The detailed set of used �t parameters is given in Table 5.3. c, Energy

distributions obtained by integrating the data in (b) and using ηG = 0.059.
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Figure 5.6: Spectroscopy of an edge channel tuned out-of-equilibrium with the

voltage across a QPC in cooldown three. The QPC's conductance is here �xed to

GQPC = 0.5e2/h. a, Measured ∂IQD/∂VG (symbols) for the quantum dot-drain contribution.

Data have been shifted vertically for clarity, and horizontally to align the peak corresponding

to the �xed potential VD2. Continuous lines are �ts assuming fD(E) is the weighted sum

of two Fermi functions (see Table 5.4). b, Energy distributions obtained by integrating the

data in (a) and using ηG = 0.062.
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5.2 Experimental procedures

5.2.1 Extraction of the energy distribution function

The distribution functions f(E) are obtained by integrating with VG the normalized data

−(∂IQD/∂VG)/Imax
QD from a charge stability zone (IQD = 0) on the negative side up to VG =

−(E − E0)/eηG.

5.2.2 Extraction of the electrochemical potential

The electrochemical potential µ enters in the evaluation of the energy density, and conse-

quently in the heat current Jqp
E and in the generalized quasiparticle temperature Tqp. The

parameter µ is here obtained very directly from the measured f(E) since the density of states

has a negligible energy dependence in the probed range:

µ = Emin +

∫ Emax

Emin

f(E)dE, (5.4)

with Emin (Emax) an energy under (above) which we assume f(E) = 1 (f(E) = 0). Note

that µ is obtained up to the same unknown constant o�set E0 as f(E), however this has no

impact since only the di�erence E − µ plays a role.

5.2.3 Estimation of uncertainties on the lever arm ηG

Uncertainties in the gate voltage-to-energy lever arm conversion factor ηG are mostly re-

sponsible for our error bars on energy related quantities (e.g. article Figures 3.d and 4.c and

4.d).

This parameter is extracted from two independent calibration procedures: First, we per-

form a non-linear characterization of the quantum dot [120] and extract ηG from the slopes of

the Coulomb diamond ∂IQD/∂VG(VG, VD) (hereafter called procedure 1). Second, we measure

∂IQD/∂VG(VG) at several temperatures and extract ηG from the scaling between �t temper-

atures (using Fermi functions in Equation 1) and measured mixing chamber temperatures

(hereafter called procedure 2).

In procedure 1, uncertainties on ηG are obtained from the change in slopes corresponding

to displacements equal to the full width at half maximum of the peaks at the highest drain-

source voltage. This gives ηG = 0.052 ± 9%, 0.062 ± 8% and 0.055 ± 9% for, respectively,

cooldowns one, two and three.

In procedure 2, uncertainties in ηG are obtained from the dispersion in �t temperatures

Tfit around measured temperatures T of the dilution refrigerator mixing chamber. We

evaluate roughly the uncertainty by �nding the range of ηG that permits us to account

for most Tfit at T > 50 mK. The reader can get a direct idea of the used uncertainties
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in Figure 2 and Supplementary �gure 5.4, where the expected �t temperatures using the

considered extremal values of ηG are shown as dashed lines. This gives ηG = 0.057 ± 10%,

0.059± 7% and 0.062± 5% for, respectively, cooldowns one, two and three.

In the article, we have chosen to use the values of ηG and the associated uncertainties

extracted using procedure 2, in the same experimental con�guration as to measure unknown

f(E)s.

5.2.4 Estimation of error bars

The error bars in the �gures take into account the �nite signal to noise and reproducibility

(i.e. the standard error in the average value), and, if it applies, uncertainties in the lever

arm.

Regarding the �nite signal to noise and reproducibility our approach is very straight-

forward. We perform a statistical analysis on the considered quantity extracted from up

to a hundred di�erent VG sweeps in the exact same experimental con�guration. The corre-

sponding standard error is then plus/minus the mean deviation per sweep divided by the

square root of the number of sweeps. This is the only contribution for the parameter τfit

whose typical error bars are found to be about 0.02, small compared to the symbol size in

Figure 3.c. Note that in practice, we acquired the large number of sweeps necessary for an

accurate statistical analysis in only a few realizations per experiment. In other realizations

of a given experiment (i.e. when changing only the QPC conductance or the applied voltage

bias), we assumed that the observed mean deviation per sweep is unchanged and estimate

the standard error using the corresponding number of sweeps (generally more than �ve).

It turns out that, except for the immune τfit, error bars are mostly dominated by uncer-

tainties on the lever arm ηG and therefore are proportional to the overall energy (namely,

Tqp or δVD). Indeed, the standard error on Tqp was always found smaller than 1 mK for

cooldowns one and three, and 4 mK for cooldown two. Nevertheless, the full error bars

shown in �gures include both contributions, taken as independent from each other.

5.2.5 Fit procedures

We �tted the measured (∂IQD/∂VG)/Imax
QD using article Equations 1 and 2, with Fermi func-

tions for fD1 and fD2. The full set of �t parameters is not only constituted of τfit and ηGδVG

shown in article Figures 3c and 4c, respectively. It also includes the temperatures TD1 and

TD2 of the corresponding Fermi functions. We recapitulate the full set of used �t parameters

in Tables 5.1, 5.2, 5.3 and 5.4.
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GQPC (e2/h) τfit TD1(K) TD2(K)

0 0 0.042 0.042

0.15 0.18 0.158 0.042

0.26 0.25 0.078 0.046

0.35 0.33 0.071 0.049

0.43 0.42 0.067 0.050

0.51 0.48 0.062 0.054

0.59 0.58 0.064 0.054

0.59 0.61 0.067 0.056

0.65 0.65 0.062 0.056

0.72 0.73 0.061 0.053

0.78 0.77 0.056 0.059

0.88 0.86 0.053 0.073

1 1 0.045 0.045

Table 5.1: Summary of parameters used to �t the data shown in article Figure 3.b

(cooldown one). The conductance GQPC is measured. Note that near zero and full trans-

mission, the �t temperature of the small corresponding peak is not very signi�cant. In order

to focus on the �t parameter τfit, we chose to �x ηGδVG = 30 µV. If ηGδVG is set free, we

�nd values within 30 ± 1 µV, except at GQPC = 0.9e2/h where ηGδVG = 39 µV. Note that

τfit is not a�ected more than ±0.03 by whether ηGδVG is �xed or free.

δVD (µV ) TD1 (K) TD2(K) ηGδVG (µV )

-18 0.049 0.049 -12

0 0.040 0.040 0

18 0.048 0.045 13

27 0.054 0.054 20

36 0.061 0.056 29

45 0.074 0.063 38

54 0.076 0.073 46

Table 5.2: Summary of parameters used to �t the data shown in article Figure 4.b

(cooldown one). Here δVD is the applied voltage bias and the parameter τfit is set to the

measured GQPCh/e
2 = 0.58.
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GQPC (e2/h) τfit TD1 = TD2(K) ηGδVG (µV )

0 0 0.043 -36

0.10 0.08 0.046 -30

0.20 0.18 0.050 -31

0.30 0.28 0.057 -30

0.40 0.41 0.062 -30

0.50 0.49 0.065 -30

0.60 0.61 0.063 -31

0.70 0.71 0.063 -30

0.81 0.80 0.057 -30

0.91 0.89 0.054 -28

1 1 0.049 -36

Table 5.3: Summary of parameters used to �t the data shown in Figure 5.5.b

(cooldown 2). The conductance GQPC is measured. The applied QPC voltage bias is here

δVD = −36 µV. The lever arm is ηG = 0.059.

δVD(µV ) TD1 (K) TD2(K) ηGδVG (µV )

-57 0.089 0.077 -56

-37 0.073 0.061 -36

-18 0.055 0.054 -15

0 0.044 0.044 0

9 0.046 0.043 7

19 0.057 0.052 15

28 0.064 0.055 24

37 0.073 0.060 32

48 0.088 0.070 44

58 0.094 0.080 53

Table 5.4: Summary of parameters used to �t the data shown in Figure 5.6.a

(cooldown 3). Here δVD is the applied voltage bias and the parameter τfit is set to the

measured GQPCh/e
2 = 0.5. The lever arm is ηG = 0.062.
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5.3 Limits and constraints on the spectroscopic technique

5.3.1 Additional quantum dot levels

The simple procedures used to extract f(E) from the quantum dot signal follow from the

simple model used to describe the quantum dot article Equation 1, in which only a single

energy lies within the transport window. However at least one energy level is close to the

resonances used to perform the fD(E) spectroscopy. One could be naïvely tempted to this

simple model in a multilevel case, but this simple form does not hold when Coulomb blockade

e�ects are important (see e.g. Appendix and [119]). Coulomb interactions build in strong

constraints on the available states, namely a single electronic state can be occupied at once,

so that when multiple discrete levels lie in the transport window it does not result in multiple

transport paths in parallel. One has to solve the sequential tunneling rate equations in order

to compute the resulting current which can result in non-intuitive dynamical e�ects (even

in the stationary regime). In particular, it was shown that the gate voltage position of a

Coulomb peak can be shifted by about its width when the temperature changes [119]. We

found a similar phenomenon could change the gate voltage separation between the two dips

observed in presence of a double step energy distribution.

By solving the master equation with non-equilibrium energy distributions, using a slightly

modi�ed version of the code provided by [119], and with a second level of energy ε nearby the

�rst active level, we could reproduce the observed di�erence between ηGδVG and δVD shown

in article Figure 4.d. Such second level for cooldown one is not visible in the top left inset of

article Figure 2 but its existence is suggested by data taken in slightly di�erent conditions

(not shown) and by the observed TS > TD at T = 30 mK (see article Figure 2). The presence

of such a level can reduce |δVG| by a constant o�set for |eδVD| > |ε| if asymmetrically coupled

to the source and drain electrodes. Figure 5.7 shows ηGδVG extracted from cooldown one

(data also shown in Figure 4c) together with dashed lines of slopes as expected from ηG =

0.057 but o�set by ±7 µV which is compatible with a second level located at ε ≈ −10 µeV,

below the �rst level.

Even in the presence of multiple levels, one could in principle extract the energy distri-

bution by solving the corresponding rate equations. However, a full characterization of the

tunneling rates linking the discrete levels to the electrodes should be carried which compli-

cates the analysis and implies longer characterization work.

5.3.2 Energy relaxation

Last, the probe quantum dot and the injection QPC have a �nite propagation length between

them. Changes in f(E) can therefore result from the energy relaxation arising during this
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Figure 5.7: Possible explanation with additional quantum dot levels of observed

small deviations on cooldown one. Data shown as symbols are those obtained in

cooldown one and also displayed in article Figure 4c. Dashed lines correspond to the slope

predicted by ηG = 0.057 but shifted horizontally by ±7 µV. Such shifts are compatible with

the presence of a second active quantum dot level located at ε ≈ −10 µeV, below the �rst

level.

�nite propagation. This e�ect, although probably small for the short 0.8 µm propagation

length considered here, could explain the also small deviation observed between the free 1D

chiral fermions model and our data in article Figures 3d and 4d. Another indication that

energy relaxation along the edge is not fully negligible is the observed increase in the �t

temperatures TD1 and TD2 with injected power (see Supplementary tables 5.1, 5.2, 5.3 and

5.4). A detailed analysis of the energy relaxation along the propagation path is shown in

the next chapter.



Chapter 6

Energy exchanges in the integer

Quantum Hall e�ect

The possibility to probe the electronic f(E) in out-of-equilibrium situations in 2DEGs opens

the path to performing energy relaxation experiments in the IQHE. A similar approach,

using Normal-Insulator-Superconductor (N-I-S) junctions as quantitative f(E) probes, has

already been used to test the inelastic mechanisms at work in mesoscopic metallic wires [25]

(the high magnetic �eld regime has also been probed using the non-linearities of a dynamical

Coulomb blockaded tunnel junction [121]) and in carbon nanotubes [26]. However Josephson

junctions and dynamical Coulomb blockade are technically challenging to implement in the

IQHE. Up to now, only a very qualitative probing of energy transport in the νL = 1 IQHE

was performed using narrow wires as local heaters and heat probes [122]. Although it was

possible to test the chirality of heat transport using this simple scheme, the lack of control

on the generated non-equilibrium situation and on the heat probe energy sensitivity could

not permit to discriminate between di�erent possible inelastic mechanisms1.

In the precedent chapter, we have demonstrated that a well controlled and tunable non-

equilibrium situation can be created in an edge-channel with the help of a voltage biased

QPC, and that the non-equilibrium f(E) can be directly extracted from the transconduc-

tance measured through a tunnel coupled quantum dot. In this chapter we are going to

exploit these tools in order to perform quantitative energy relaxation and energy exchange

experiments in the νL = 2 IQHE. We �nd a strong energy relaxation, without inter-channel

particle exchanges, towards a hot electron regime in a 3 µm scale that challenges the usual

non-interacting 1DCF picture of edge-channels. Interactions within the edge-channel and

with thermalized states2 are found to be irrelevant to the relaxation dynamics, whereas in-

1For instance, the article claims that there is a signi�cant energy relaxation towards (bulk) thermalized

stated, but a relaxation towards a hot electron regime within the non-equilibrium edge-channel could also

give rise to their measured signal if their heat probe signal is dominated by the highest energy excitations.
2Such as lattice vibrations, or the electronic states of the metallic gates used to de�ne the edge-channel
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ter edge-channel interactions play a dominant role. Last, an energy leakage from the two

edge-channel system within the 1DCF basis suggests the presence of other co-propagative

excitations, yet unidenti�ed.

6.1 Experimental setup

How to tune the relaxation length: In order to perform energy relaxation experiments

on edge-channels, we have chosen to use a single quantum dot as an f(E) probe, and various

QPCs to create a non-equilibrium f(E) in distinct places (see Figures 6.1 and 6.2). Indeed,

it is easier (and faster) to characterize a QPC rather than a quantum dot. We have also

used two top metallic plates surrounding the quantum dot in order to screen the capacitive

coupling between the quantum dot and the gates used to de�ne the QPCs and the di�erent

propagation paths (Figures 6.1 and 6.2). Since these plates are grounded, they do not in�u-

ence the electron paths. Figures 6.2 shows the 0.8, 2.2, 10 µm edge-channel paths between

the QPC and the quantum dot. A further 4 µm path can be used using the left QPC, while

closing the other ones. And a 30 µm path can be realized similarly to the 10 µm path (Fig-

ure 6.2.d), but using the right gate shown in Figures 6.1 to re�ect the edge-channels towards

the QPC.

Addressing energy relaxation and energy exchanges: We will always probe f(E)

in the outer edge-channel since our quantum-dot is optimized for doing so3. However, the

double step like non-equilibrium f(E) can be injected in the outer edge-channel (tuning the

QPC at GQPC = 0.5e2/h, see Figure 4.2) in order to perform energy relaxation experiments

within the outer edge-channel. Or the same non-equilibrium f(E) can be injected in the

inner edge-channel (tuning the QPC at GQPC = 1.5e2/h, see Figure 4.2) in order to test

directly the energy exchanges between both edge-channels.

Power injected by QPCs: The non-equilibrium fD(E) in either the inner or outer edge-

channels are always injected through a QPC having a 0.5 transmission for the partially

transmitted edge-channel. So the excess power injected by the QPC, JQPC
excess, in the non-

paths.
3In order to probe the inner edge-channel, the outer one should be fully transmitted. The quantum dot

should be wider and therefore have smaller excitation energy gaps when used to probe the outer edge-channel,

limiting the voltage range in which it can be safely used (multiple level complications). Moreover, since the

edge-channels exchange energy (see further sections) the perfectly transmitted outer edge-channel would be

more noisy ([12, 23]) and could perturb the resolution of the inner edge-channel spectroscopy.
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1 µm

ne≈ 2 1015m-2, T ≈ 30mK

B=4.25T

νL=2

Figure 6.1: Measured sample micrograph. All top metallic gates (appearing brighter)

that are used in the following experiments are visible. A magnetic �eld of 4.25T is applied

entering the picture, de�ning two co-propagative edge-channels having an anticlockwise chi-

rality. The mesa edge is visible at bottom right of the micrograph, chemically de�ned edge

paths are short compared to the gate de�ned edges. 3 QPCs (bottom-left) can be used to

generate a non-equilibrium f(E) in 3 distinct places, and a quantum dot (middle-top) is

used to probe f(E) after the edge-channel propagation. The propagation length is selected

with the help of top metallic gates (see �gure 6.2). The top metallic plates surrounding the

quantum dot are grounded and do not in�uence the electron paths.

equilibrium edge-channel reads (Equations 4.16 and 4.1):

JQPC
excess =

e2

4h
δV 2

D (6.1)

characterized by an excess temperature TQPC
excess which is linear in the QPC voltage bias |δVD|:

kBT
QPC
excess =

√
3e

2π
|δVD| (6.2)

All measurements are performed at a base temperature of 30mK.
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Figure 6.2: Selecting the propagation length with top metallic gates. a Schematic

principle of the energy relaxation experiment. b The 0.8µm edge-channel path is selected

by injecting a non-equilibrium f(E) in the QPC, closest to the quantum dot, biased by

voltage sources VD1 and VD4. c The 2.2µm edge-channel path is selected by injecting a

non-equilibrium f(E) in the QPC, second closest to the quantum dot, biased by voltage

sources VD2 and VD4, while the closest QPC is fully closed (GQPC = 0). d The 10µm edge-

channel path is selected by injecting a non-equilibrium f(E) in the QPC, second closest

to the quantum dot, biased by voltage sources VD2 and VD4, while the closest QPC fully

transmits both edge-channels (GQPC = 2e2/h). The red gate (bottom-right) is tuned to

re�ect both edge-channels to the quantum dot, de�ning the 10µm path.
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Measuring f(E)

We follow the methods introduced in Chapter 2, to measure the non-equilibrium f(E) after

the several propagation paths on the drain side of the quantum dot (left in Figure 6.1). The

lever arm calibration is here slightly di�erent:

Lever arm calibration: The lever arm ηG, permitting to link the side gate voltage VG to

the electrostatic energy inside the dot has been extracted using a method slightly di�erent

from Chapter 2. This issue is here more stringent since several calibrations where needed

each time the bias of the surrounding gates where signi�cantly modi�ed within the same

cooldowns. This results from the capacitive coupling between quantum dot and the gates

de�ning the several paths4 a more straightforward method was needed.

We �rst performed a characterization of the QD in the non-linear regime [120] and ex-

tracted ηG from the slopes of the Coulomb diamond ∂IQD/∂VG(VG, VD) (hereafter called

method 1).

We also measured ∂IQD/∂VG(VG, VD = −88 µV) at several temperatures and extracted

ηG from the scaling between the measured mixing chamber temperatures and the �t temper-

atures TS (TD) of the source peak (drain dip) obtained assuming Fermi functions (hereafter

called method 2 (method 3)) (see Chapter 2 article Figure 2 [1]).

We de�ned ηG as the average of the three values obtained with these methods, and used

the corresponding standard error to de�ne uncertainty on ηG. The average values of ηG used

in the present work are recapitulated in Table 6.1 with their relative standard errors. Note

that we found small variations between the various average values of ηG, well within standard

errors. This suggests that the relative error bars between experimental con�gurations is

smaller than the absolute error bar displayed in all �gures.

6.2 Energy relaxation along the edge-channels

This section shows our energy relaxation measurements: the same outer edge-channel is

driven out of equilibrium and probed after a selected propagation length (setup depicted

in Figure 6.2.a). The raw quantum dot signal ∂IQD/∂VG ∝ ∂fE/∂E for the di�erent prop-

agation length shows a strong energy relaxation on a few µm scale. We further provide

quantitative information on the corresponding inelastic mechanisms by extracting the gener-

alized temperature Tqp (see Equation 4.20), and analyze its dependence with the propagation

length and QPC voltage bias.

The experiment principle is recalled in Figure 6.2.a and the practical implementations of

several propagation paths is depicted in Figures 6.1.b, c, and d.

4Despite the presence of the screening plates. But it is hard to screen 3D �elds with 2D plates.



116 Energy exchanges in the integer Quantum Hall e�ect

{L,GQPC} ηG ∆ηG/ηG

{(µm), (e2/h)} (%)

{0.8, 0.5}+ 0.0593 5.3

{4, 1.5}+ 0.0610 3.5

{4, 0.5} 0.0610 3.5

{2.2, 0.5} 0.0610 3.5

{2.2, 1.5} 0.0610 3.5

{10, 0.5}+ 0.0606 5.7

{30, 0.5} 0.0606 5.7

{10, 1.5}+ 0.0598 6.3

Table 6.1: Used lever arms ηG and their relative standard errors ∆ηG/ηG. The symbol (+)

points out experimental con�gurations, characterized by {L,GQPC}, for which the full QD

calibration was performed.

6.2.1 f(E) vs propagation length

We �rst measure the non-equilibrium fD(E) after several propagation lengths, and several

QPC biases. Figure 6.3 shows the quantum dot signal ∝ ∂fE/∂E measured during a same

cooldown for the propagation lengths L={0.8, 2.2, 4, 10, 30 µm} and a QPC voltage bias5

δVD = 36µV .

Energy exchanges: The double-dip measured at 0.8µm corresponds to the energy deriva-

tive of a double-step like fD(E) close to the fD(E) injected by the QPC (see Chapter 2). It

is found to evolve towards an equilibrium like single dip reached within 10 µm (continuous

lines are �ts using the derivative of a Fermi function). The mere fact that the quantum dot

signal, and therefore fD(E), evolves with the propagation length is the signature that energy

exchanges take place along the edge-channels propagation.

Small inelastic length: The initial double-dip structure is already washed out between

the 2.2 µm and the 4 µm propagation paths. This de�nes roughly a characteristic scale for

the fD(E) evolution of about 3 µm. This inelastic length corresponds to a characteristic

input energy per injected excitation of about kBT
QPC
excess(δVD = 36 µV) ≃ 10 µeV (Equa-

tion 6.2).

5δVD is de�ned as the di�erence between the potential applied to the transmitted edge-channel towards

the quantum dot and the potential applied to the re�ected edge-channel. For the 0.8µm path, it is de�ned

as δVD = VD1 − VD4 (see Figure 6.2.b). For the 2.2µm path it is δVD = VD2 − VD4 (Figure 6.2.b, and so

on.)
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δV=0

δV=36µV
τ    =0.5QPC

D

D

Figure 6.3: Quantum dot signal (∝ ∂fD(E)/∂E) as a function of the propagation

length for non-equilibrium situation de�ned by δVD =36 µV and τQPC = 0.5 Vertical

o�sets applied for clarity, horizontal o�sets are applied to align the chemical potentials in VG.

The initial non-equilibrium double-dip signal evolves towards a stationary single dip (L = 10

and 30 µm) in a characteristic length scale of about3 µm. The stationary dip is wider than

the equilibrium signal (dotted lines) indicating that a hot electron regime is reached. This

conclusion is strengthened by the hot Fermi function derivative �ts (continuous lines) yielding

to the same �t temperature of THot = 85 mK at both L = 10 and 30 µm, ∼ 2 times the

equilibrium dip temperature Teq = 40 mK.

Saturation in a hot electron regime: The signal evolution saturates between the 10 µm

and 30 µm, indicating that a stationary regime is reached regarding energy exchanges. Both

signals can be �tted with the same Fermi function con�rming that a local equilibrium is

reached (continuous lines in Figure 6.3). However, both Fermi �ts gives a �t temperature of

THot = 85 mK whereas the base temperature is 30 mK. The non-equilibrium edge channel

relaxes to a hot electron regime. The di�erence between the saturation and the equilibrium

signal is stark (dotted line in Figure 6.3 is the signal measured at δVD = 0).

Fitting the equilibrium dip at δVD = 0 using a Fermi function gives an equilibrium tem-

perature Teq = 40 mK, similar to the low temperature limit of the quantum dot calibrations
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shown in Chapter 2 (e.g. article Figure 1). The resonance is larger than the base temperature

30 mK, measured by a calibrated Ruthenium oxide resistance thermally anchored to the cold

�nger. This is possibly due to a unperfect electron thermalization at high magnetic �elds6.

It could also result from capacitively coupled charge �uctuations around the quantum dot

which could make oscillate the discrete level energy at faster rates than our integration time

(∼ 0.8 s). Anyway, it de�nes our temperature (energy) resolution limit, so that we will refer

to Teq when extracting the excess energy carried by the probed edge channel.

6.2.2 Discarding experimental artifacts

We have performed some supplementary checks in order to ascertain that the measured

propagation length evolution of the quantum dot signal is unambiguously due to energy

exchanges. First, one can ask whether the observed evolution with the propagation length

could be attributed to the di�erent QPCs used. Second, changes on fD(E) could result

from charge transfer between the edge-channels (through tunneling across the incompressible

strip separating both edge-channels). Third, the quantum dot could be perturbed by the

interaction mechanisms at work. We have checked that neither of these scenarii takes place.

Di�erent QPCs?

(i) Experimental con�gurations L ∈ {2.2, 10, 30} µm use the same voltage biased QPC but

the signal is di�erent.

(ii) Similar hot Fermi dips (not shown) as those measured at L = {10, 30} µm were obtained

at L = {12, 32} µm with a di�erent QPC (light blue metallic gates in Figure 6.2, also used

here for the L = 4 µm propagation path).

(iii) These results have been reproduced in three di�erent cooldowns (data not shown), with

renewed quantum dots and QPCs.

No particle exchanges

It is known that the electrochemical potentials of co-propagating ECs equilibrate only on

large propagation distances [66, 67, 69]. At low temperatures and �lling factor νL = 2,

macroscopic equilibration lengths of 1 mm were reported [123]. We have nevertheless veri�ed

that no particle exchanges take place along our smaller propagation paths.

Direct inter-channel charge equilibration test: First, the most straightforward ap-

proach to test the presence of tunneling is to perform an anomalous quantum Hall e�ect

6At low magnetic �elds, we �nd an excellent agreement on the temperature dependence of the dynamical

Coulomb blockade correction to the conductance of a QPC (Chapter 9). Which demonstrates good electron

thermalization at low magnetic �elds.
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measurement [66], namely biasing the two edge channels at di�erent potentials and measur-

ing them separately after some propagation distance. This can be done by using injection

and measurement QPCs set to the conductance GQPC = e2/h to separate the two edge-

channels. We did this measurement, and also a variation of this measurement in which

the injection QPC was set to GQPC ≃ 0.5e2/h, for L = 30 µm and for the largest applied

bias voltage δVD = ±54 µV. We found, at base temperature T = 30 mK, that tunneling

between co-propagating edge channels was always negligible (less than 1% of the population

di�erence).

Direct coupling vs gating: Second, in order to perform this test, simultaneously to

data acquisition, we made use of the fact that in absence of charge tunneling between edge-

channels, the inner edge-channel is only capacitively coupled to the quantum dot, as is if

it were a plunger gate. Therefore, the presence of tunneling between co-propagating edge-

channels shows up as deviations from a strict proportionality between ∂IQD/∂Vin(VG) and

∂IQD/∂VG(VG), where Vin is the potential applied to the inner edge channel. We systemat-

ically applied an AC modulation eδVin to the inner edge-channel electrochemical potential

at a speci�c frequency, di�erent from the outer edge-channel's and quantum dot gate mod-

ulation frequencies. We could do this by separating the two edge-channels upstream of the

injection QPC (see Figure 6.2 with Vin = VD4), except for L = 4 µm, where the injec-

tion QPC is the foremost upstream. We then measured ∂IQD/∂Vin by lock-in techniques,

and checked that there were no such deviations at the largest applied bias voltage in each

experimental con�gurations which is shown in Figure 6.4.a.

Both tests agree: We veri�ed the pertinence of this second test at a larger fridge temper-

ature T = 190 mK, where the �rst test (i.e. anomalous quantum Hall e�ect measurements)

showed the presence of tunneling between co-propagating edge-channels (8.7%, 5.0% and

2.3% equilibration at δVD = 54 µV, 36 µV and 0 V, respectively, after a propagation distance

30 µm). The fact that we also observed signi�cant deviations from ∂IQD/∂Vin ∝ ∂IQD/∂VG

demonstrates the pertinence of this second test.

No energy resolution loss

The quantum dot could be perturbed by the non-equilibrium edge-channel and loose some

of its energy sensitivity. For instance, the capacitive coupling between the quantum dot

discrete level and the non-equilibrium (noisy [31]) channel could yield to higher electronic

temperatures when measuring the width of the quantum dot resonance. This is di�cult to

track in the non-equilibrium drain signal, since we do not have de�nite prediction for the

relaxed fD(E). However, the equilibrium source peak can be used as a witness of the energy
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Figure 6.4: Discarding experimental artifacts for the energy relaxation a Quantum

dot transconductances with respect to the gate voltage, VG and with respect to the inner edge-

channel potential, VinnerEC , for a relaxation path of 30 µm. The gate voltage range permits to

see both drain and source contributions to the quantum dot signal. ∂IQD/∂VinnerEC has been

rescaled in amplitude. The strict proportionality between both signal demonstrates the inner

edge-channel is only capacitively coupled with the quantum dot, even in non-equilibrium

situations and for the longest probed path. b Relaxation, ∂IQD/∂VG measurements, for the

longest propagation paths and at equilibrium (dotted line), showing both the non-equilibrium

drain (left, left inset) and the cold equilibrium source (right, right-inset) contributions to

the quantum dot signal. The source contribution is not a�ected by the energy relaxation.

The quantum dot energy resolution is not perturbed by interaction e�ects.

resolution, since it is fed by an equilibrium cold ground. Figure 6.4.b shows the full gate

voltage sweep of the quantum dot signal at equilibrium and for the relaxation paths of 10

and 30 µm, where both the drain (left) and source (right) electrode contributions to the

quantum dot signal can be seen. The source peak remains essentially unchanged between

the equilibrium and long path non-equilibrium situations. The small changes in the source

peak are within 10% of its initial width, corresponding to about 5 mK in temperature.

This is negligible in front of the saturation hot temperature found in the drain signals

(THot = 85 mK).

The quantum dot energy sensitivity can therefore be considered as constant when com-
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pared to the strong energy exchanges observed.

6.2.3 Energy currents

We de�ne the excess temperature Texc, characterizing the excess heat current with respect

to the equilibrium chiral heat �ow Jeq = π2

6h
(kBT )2. The QPC bias and propagation length

dependence of Texcess permit to discuss the possible inelastic mechanism responsible for the

relaxation shown in Figure 6.3.

Excess energy current and excess temperature

De�nition: We de�ne the excess temperature Texcess as:

Jqp(Texcess) = Jqp(Tqp)− Jqp(Teq) (6.3)

⇐⇒ Texcess =
√
T 2

qp − T 2
eq, (6.4)

which measures the energy current carried by the excitations additional to the thermal

excitations giving rise to equilibrium (chiral) energy currents. Texcess permits to compare

di�erent quantum dot con�gurations yielding to slightly di�erent drain equilibrium tempera-

tures Teq (due to quantum dot imperfections), and to compare the data obtained in di�erent

experimental runs (measured base temperatures range between 30 and 40 mK).

Extraction of Texcess: We have extracted Tqp with the same method describes in Chapter

3. We therefore obtain Texcess from Equation 6.3, where Teq is the Fermi �t temperature of

the equilibrium drain signal at δVD = 0. However, in order to limit artifacts related to the

�nite signal-to-noise ratio7, to the �nite energy window probed and to the simple quantum

dot model used, we also always tried to �t the data assuming that fD is the weighted sum

of two Fermi functions. This yielded an alternative value for Texcess. First, at equilibrium,

the Fermi �t gave an estimate of deviations of our detector from the simple quantum dot

model (Chapter 2 last section). Second, as long as the accuracy of the non-equilibrium �ts

was found equal to or better than that of the reference at equilibrium (most often the case),

Texcess was taken as the average value of the �t and the integral (Chapter 3) procedures.

Displayed error bars on Texcess include the two independent contributions of the standard

deviation between extraction procedures for Texcess and for ηG. In practice, we found in most

cases that the error is dominated by the latter contribution.

Figure 6.5 presents the resulting excess temperatures for the di�erent propagation lengths

and voltage biases.

7The signal to noise ratio is minimal when ∂IQD/∂VG approaches zero. Since the corresponding energy

ranges correspond to the large energy single particle excitations, small �uctuations can impact the integrated

energy current.
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Figure 6.5: Excess temperature for several relaxation path lengths and QPC volt-

age biases The outer edge-channel cools down (symbols) as the relaxation propagation

length is increased and saturates to values roughly proportional to the injected TQPC
excess (dashed

line: prediction at QPC output). The saturation values are found below the expectations

for two interacting edge-channels (Dotted line: Lower bound accessible for two interacting

1D channels).

Possible inelastic mechanisms

No coupling towards thermalized states: For every �xed non-equilibrium situation,

the excess temperature decreases with the propagation length and saturates in rough pro-

portionality to the excess temperature,

TQPC
excess =

√
3e2

(πkB)2
τ(1− τ)|δVD|,

injected by the QPC: Texcess ≈ (0.61 ± 0.04) × TQPC
excess. Since the saturation (hot electron

regime) excess temperature scales with the injected power, the relaxation dynamics are in-

compatible with a relaxation driven by interactions with thermalized excitations. In particu-

lar, the relaxation due to the coupling with thermalized acoustic phonons is found negligible

in agreement with theoretical expectations [56, 70]
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Weak energy exchanges within the excited edge-channel: Moreover, energy ex-

changes within the 1DCFs of the same edge-channel are relatively weak compared to the

dominant mechanism. Indeed, they preserve Texcess, instead we �nd fD(E) (Figure 6.3) and

Texcess (Figure 6.3) evolve on the same length scale.

Co-propagating excitations Our data is nevertheless compatible with a relaxation in-

duced by interactions with co-propagative excitations. The simplest case of all would cor-

respond to interactions with the co-propagating inner edge-channel initially at equilibrium.

This mechanism is most plausible since it is known that at νL = 2 the low frequency current

�uctuations of the inner edge-channel couple to the outer one, making it loose its coherence

[12, 23]8. In the steady state for two interacting co-propagating channels only, both edge-

channels should exhibit the same saturation Texcess. Power conservation on the two-channel

system further constraints Texcess to match:

Texcess →
TQPC

excess√
2

(6.5)

which is plotted in Figure 6.5 as a dotted line.

Since the saturation values of Texcess are found below this limit9 our relaxation data

suggests that more than one co-propagative excitations branches are coupled to the non-

equilibrium outer edge-channel [30, 31].

Self consistency of single particle excitations

Our measurements show a rather fast relaxation towards a hot electron regime. The inelastic

length, Linel, characterizing the energy loss from the non-equilibrium edge-channel can be

used to test the self consistency of the single particle 1DCFs picture: The �nite quantum

lifetime corresponding to Linel can be used to extract the energy uncertainty of single par-

ticle excitations. By comparing it to their mean energy, we can show that single particle

excitations have an ill-de�ned energy.

Inelastic lengths: We have extracted the quantity Linel(δVD) by �tting Texc(L) at a �xed

non-equilibrium situation, de�ned by the QPC bias δVD, with the exponential function

T fit
excess(L) ≡ (TQPC

excess − T sat
excess) exp (−L/Linel) + T sat

excess, (6.6)

where T sat
exc is a second �t parameter that corresponds to the excess temperature at large

propagation lengths.

8Note that low frequency noise induced dephasing demonstrates a capacitive coupling, but does not

demonstrate energy exchanges.
9Three di�erent cooldowns with renewed quantum dots and QPCs validate this statement.
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The values of Linel(δVD) extracted by this procedure are recapitulated in Table 6.2. Error

bars ∆L on Linel are standard errors obtained taking into account error bars in the extracted

Texcess. T
fit
excess(L) corresponding to Linel shown in Table 6.2 are displayed as continuous lines

in Figure 6.6.

1 100,0

0,1

 VD=54 V
 VD=36 V
 VD=18 V

T ex
ce

ss
 (K

)

L ( m)

Figure 6.6: Fits of Texcess(L) used to extract Linel. The resulting �t parameters are shown

in Table 6.2.

δVD Linel ∆L

(µV) (µm) (µm)

18 2.5 0.85

36 2.5 0.4

54 1.8 0.65

Table 6.2: Linel and corresponding standard error obtained by �tting Texc(L) (see text).

Quantum lifetime: A lower bound for the 1DCF's lifetime can be obtained from Linel,

by using the range of drift velocities vD ∈ [0.5, 5] 105 m/s measured in similar structures at

νL = 2 [89]. Applying the time-energy uncertainty relation, one �nds for δVD = 36 µV that

the energy linewidth of 1DCF states ∆E > ~vD/2Linel ∈ [6, 70] µeV is of the same order or

larger than their characteristic energy kBT
qpc
exc (δVD = 36 µV) ≈ 10 µeV, and therefore are

ill-de�ned electronic edge excitations.
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Ref. vD n µ d

(105 m/s) (1015m−2) (m2V−1s−1) (nm)

[124] 0.85 1.9 70 120

[124] 0.55 2.3 50 90

[125] 1 1 75 130

[90] [1,3] 1.2 100

[89] [2.8,4.3] 3.2 170 110

[11] > 1 ∼ 1.5 85

Table 6.3: Drift velocities at νL = 2 with metal gates. The main sample parameters are given

when known (n: electron density, µ: mobility, d: depth of 2DEG). Samples in [124, 125] are

fully covered by a metallic gate at the surface, others have metallic side gates. The range of

values in [89, 90] was obtained by changing the metal side gate voltage bias (more negative

voltages give larger velocities). The data in [11] permits to obtain a lower bound for vD from

the observed phase rigidity up to an energy of at least 10 µeV in an electronic Mach-Zehnder

with an extra length of 2.4 µm along a metal side gate in one of the interferometer's two

paths (using Eq. 2 in [11] with φ < 1 rad).

Consequently, although the 1DCF representation of edge states is very powerful at short

distances, the observed short Linel challenges the description of quantum Hall excitations as

quasiparticles localized in one edge channel.

Range of drift velocities in similar systems: The range of drift velocities vD ∈
[0.5, 5] 105 m/s used is obtained from di�erent sources that are recapitulated in Table 6.3.

We focus on GaAs/Ga(Al)As devices set to display the integer quantum Hall e�ect at νL = 2.

Furthermore, the above range of vD concerns only devices that are either fully covered by

surface metal gates or with edges de�ned by voltage biased metal gates. Note that similar

devices without metal gates have a drift velocity typically one order of magnitude larger

(e.g. [89]), which would result in an even more stringent failure of the self consistent test

described in the last paragraph.10.

6.2.4 Summing up

First, our energy relaxation data on the outer edge-channel demonstrate strong energy ex-

changes challenging the single-particle 1DCF picture.

10Note that all used values, excepting the last one, are extracted from time of �ight experiments. Strictly

speaking, they measure the drift velocity of the charge magnetoplasmon mode and are sensitive to the

interactions between ECs (see Equations 3.27). But if 1DCFs are well de�ned, it should be similar to the

1DCFs' velocity, and can be used to perform a self consistent test of the 1DCF picture.
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Moreover, the energy relaxation dependence on the QPC bias yields to strong constraints

to the possible inelastic mechanisms. For instance, coupling thermalized excitations (such

as phonons, or the electronic states within the metallic gates used to de�ne the edge-paths)

are ruled out by our data. Interaction within the 1DCFs of the outer edge-channel are found

to be not the dominant mechanism, if relevant at all. Finally, our data is compatible with

interactions with al least more than one co-propagative excitation branch. In the following

section we will directly test the energy exchages between the 1DCFs excitation of both

co-propagating edge-channels.

6.3 Energy exchanges between edge-channels

It is most natural to assume the 1DCFs of the two co-propagating ECs exchange energy.

This hypothesis can be tested directly by generating a non-equilibrium energy distribution

in the inner EC (GQPC ≃ 1.5e2/h), with fD(E) still being measured in the outer EC (see

Figure 6.7.a).

6.3.1 Inter channel energy exchanges measurements

Inter-channel energy exchanges: Figure 6.7.b shows the raw data obtained in this

con�guration at δVD = 54 µV for several propagation lengths L. We �nd that the initial

equilibrium dip broadens as L is increased, and therefore that the outer edge-channel heats

up11 when propagating next to the non-equilibrium inner edge-channel. This unambiguously

demonstrates energy exchanges between edge-channels. Figure 6.7.c shows Texcess in the outer

edge-channel (symbols), which increases with L as expected from the raw data.

Energy currents equilibration: It is noteworthy that at L = 10 µm, Texcess is ap-

proximately independent of which of the inner or the outer edge-channel is driven out-of-

equilibrium (compare full and open symbols (▽) in Figure 6.7.c), and therefore the energy

currents carried by both inner and outer edge-channel single particle excitations equilibrate

at long distances. Disregarding the energy leakage from the 2 edge-channel 1DCFs system

and disorder, this �nding would imply [31] that the edge-channels interact in the strong

coupling limit (g12 ≫ ~|v1 − v2| using Equation 3.27's notations), strengthening the �nding

that 1DCFs single particle excitations within a single edge-channel are ill-de�ned already on

a ∼ µm scale.

11The dip's width is proportional to the outer edge-channel temperature.
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(b)

(c)

(a)

Figure 6.7: Inter channel energy exchanges setup and measurements. (a) The inner

EC is driven out-of-equilibrium. (b) Raw data at δVD = 0 (dotted line) and δVD = 54 µV

(symbols), shifted vertically for several L. The dip broadens as L is increased. (c) Excess

temperatures extracted from the data (full symbols) and prediction at the QPC output

(dashed line). The outer EC heats up as L is increased, up to an excess temperature close

to that when driving the outer EC out-of-equilibrium (Texcess(L = 110 µm) in Figure 6.5 are

shown here as open symbols (▽)).
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Comparison to Mach-Zehnder experiments: These results are in qualitative agree-

ment with the recent investigations of dephasing at νL = 2, which established that current

noise in the inner edge-channel reduces the phase coherence in the outer edge-channel [12, 23].

The dephasing length Lϕ(T ) ≃ 20 µm/(T/20 mK) [14] can be compared to our inelastic

length, Linel. Using the injected excess temperature TQPC
exc = 115 mK at δVD = 36µV , we

�nd an Lϕ(115 mK) ≃ 3.5 µm, which is similar to the corresponding Linel = 2.5 ± 0.4 µm

(see Table 6.2). This strengthens the hypothesis that a same physical mechanism is at the

root of both dephasing and energy exchanges. However, contrary to dephasing [23], energy

exchanges cannot be accounted for by low frequency noise within perturbation theories [96].

6.3.2 Comparison with recent theories

Two recent theories [30, 31] have been developed in order to understand our experimental

�ndings:

Disorder assisted perturbative coupling: Within the widespread picture of 1DCF

quasiparticles, the minimal approach is to include interactions between co-propagating edge-

channels as a small perturbation. However, in absence of disorder, energy exchanges between

1DCFs of di�erent drift velocities vD would be essentially suppressed, due to combined

energy and momentum conservations. Therefore, it is crucial to assume a su�cient disorder

to break momentum conservation. Motivated by the present work, Lunde et al. modeled

inter edge-channel interactions as a density-density coupling, where disorder changes the

coupling coe�cient along the edge with a correlation length ℓ [30]. Within this model,

Texc(L/L0, δVD) was obtained up to an unknown length scaling factor L0. Comparing with

the relaxation experiment data, it was found that the non-linear shape of Texc(δVD) can be

reproduced using a reasonable micron-scale ℓ [30] (Figure 6.8.left). However, since two weakly

interacting 1DCF branches cannot result in Texc < TQPC
exc /

√
2 at saturation, and we �nd that

Texc at long L saturates about ≈ 13% below this lower bound (displayed as a dotted line in

6.5), this two channel theory cannot reproduce the absolute value of Texc. Such discrepancy

is signi�cantly larger than experimental error bars. Although a good agreement data-theory

was reached in [30] assuming ad-hoc the presence of a hidden third EC, one may wonder

if the discrepancy results from the perturbative treatment of interactions. Importantly, the

weak interaction hypothesis could not be checked in [30], due to the unknown length scaling

factor in the theory.

Plasmon approach: Alternatively, density-density interactions between co-propagating

1DCFs can be handled non-perturbatively using the bosonization technique [55]. Motivated

by the present experiment, Texc was recently calculated in the bosonization framework [31].



6.3 Energy exchanges between edge-channels 129

Assuming strong interactions and a standard drift velocity 105 m/s, calculations are found to

reproduce the measured non-linear shape of Texc(δVD) and also the energy relaxation length

scale, without the need to introduce disorder [31] (Figure 6.8.right). However, the same

lower bound T qpc
exc /
√

2 was con�rmed for arbitrary interaction strength between two 1DCF

branches. In [31], the data are reproduced quantitatively by assuming ad-hoc 25% of the

energy leaks out toward other degrees of freedom.

Figure 6.8: Comparison of the energy relaxation data with two recent theories (see

text). Left: Figure extracted from [30] Right: Figure extracted from [31]. Both theories

reproduce the non-linear shape and the energy relaxation length scale. The energy leak with

respect to the predictions of both two channel models suggest a coupling towards additional

co-propagating modes.

The main outcome of the data-theory comparisons strengthen the case that additional

co-propagative excitations need to be taken into account.

6.3.3 Summing up

We have demonstrated that co-propagating edge-channels are directly exchanging energy

without particle exchanges. This inelastic mechanism is e�cient and the energy currents

carried by both edge-channels equilibrate on about 10 µm. But even if is the main inelastic

path, the observed energy leakage from the two channel, within the 1DCF basis, suggests

that additional co-propagative additional excitations do step in.
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These results are seemingly bad news regarding the quantum information potentialities

of edge-channels following from the optical analogy since both rely on the non-interacting

picture. However, we will further see it is possible to tune the energy relaxation in both up

and down, recovering this seemingly lost potential.
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We investigate the energy exchanges along an electronic quantum channel realized in the integer

quantum Hall regime at a filling factor of �L ¼ 2. One of the two edge channels is driven out of

equilibrium and the resulting electronic energy distribution is measured in the outer channel, after several

propagation lengths 0:8 �m � L � 30 �m. Whereas there are no discernible energy transfers toward

thermalized states, we find efficient energy redistribution between the two channels without particle

exchanges. At long distances L � 10 �m, the measured energy distribution is a hot Fermi function whose

temperature is lower than expected for two interacting channels, which suggests the contribution of extra

degrees of freedom. The observed short energy relaxation length challenges the usual description of

quantum Hall excitations as quasiparticles localized in one edge channel.
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The basic manifestation of the quantum Hall effect is a
quantized Hall resistance RH ¼ h=e2�L, accompanied by a
vanishing longitudinal resistance. In this regime, quantiza-
tion of the two-dimensional cyclotron motion opens a large
gap separating Landau levels in the bulk of the sample
from the Fermi energy. The only available low energy
excitations propagate along the edges, where the Landau
levels cross the Fermi energy. The effective edge state
theory suggests these excitations are prototypal one-
dimensional chiral fermions (1DCF) [1], each of the �L

edge channels (EC) being identified with a one-
dimensional conductor. Because backscattering is forbid-
den by chirality, ECs are considered to be ideal ballistic
quantum channels. Their similitude with light beams has
inspired electronic analogues of quantum optics experi-
ments [2–5] and proposals for quantum information appli-
cations [6]. However, the nature and decoherence of edge
excitations are poorly understood, as highlighted by un-
expected results obtained with electronic Mach-Zehnder
interferometers: an unusual energy dependence of the in-
terference fringes’ visibility [2,7], a non-Gaussian noise
[8], and a short coherence length [9,10]. Interactions be-
tween ECs and with their environment are seen as the key
ingredient to explain these results (see, e.g., [11,12]).

In the present experimental work, we investigate the
interaction mechanisms taking place along an EC through
the energy exchanges they induce. A similar approach was
previously used on mesoscopic metal wires [13] and on
carbon nanotubes [14]. Here we focus on the filling factor
�L ¼ 2, where two copropagating ECs are present, and at
which the above unexpected results were observed. Our
experiment relies on the techniques we recently demon-
strated to drive out of equilibrium an EC and to measure
the resulting energy distribution fðEÞ of 1DCF quasipar-
ticles [15]. There, we drove out of equilibrium only the
outer EC, and fðEÞ was measured in the same EC after a
short 0:8 �m propagation distance, for which the energy
redistribution is negligible. Here, we drive out of equilib-

rium selectively either the inner or the outer EC and probe
fðEÞ in the outer EC after various, much longer, propaga-
tion paths, up to 30 �m. The electronic energy transfers,
including those within and between the ECs, are revealed
through changes in fðEÞ along the edge. This gives us
access to the underlying interaction mechanisms.
The measured sample displayed in Fig. 1 was tailored

in a two-dimensional electron gas realized in a
GaAs=GaðAlÞAs heterojunction of density 2� 1015 m�2,
mobility � ¼ 250 m2 V�1 s�1, and measured in a dilution
refrigerator of base temperature 30 mK [16]. The relevant
ECs are defined by voltage biased surface metallic gates

FIG. 1 (color online). Sample micrograph: metallic gates ap-
pear bright; the two widest gates (not colorized) are grounded.
The current propagates counterclockwise along two edge chan-
nels (EC) depicted by lines. White dashed lines indicate inter-
mediate EC transmissions. At the output of the voltage biased
quantum point contact (left in figure), the electronic energy
distribution is a double step (left inset) in the partly transmitted
EC (dashed outer EC in figure). After an adjustable propagation
distance (L ¼ 4 �m in figure), the energy distribution fD in the
outer EC is measured using a quantum dot (white circle, see right
inset).
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(except a small portion defined by mesa etching for the
longest propagation paths, see [16]). The energy distribu-
tion fDðEÞ in the outer EC at the drain (D) side of a
quantum dot (QD, white circle in Fig. 1) is probed using
the QD as an energy spectrometer, as has already been
described in [15]: We record the differential conductance
@IQDðVGÞ=@VG / @fDðEÞ=@E, with IQD the tunnel current

across the small QD set to have a single active electronic
level, while sweeping the voltage VG applied to a capaci-
tively coupled gate [15]. The path length L 2
f0:8; 2:2; 4; 10; 30g �m is tuned in situ by first choosing
the pair of metallic gates that define the quantum point
contact (QPC) at which a nonequilibrium energy distribu-
tion fQPC is induced, and then by applying a negative

voltage to selected gates to define the path between the
QPC and the QD. A nonequilibrium smeared double step
fQPCðEÞ [15] is induced at the output of the voltage biased

QPC selectively in the outer or inner EC by adjusting the
QPC’s conductance to 0:5e2=h or 1:5e2=h, which are
illustrated in Figs. 2(a) and 3(a), respectively.

First, we generate a nonequilibrium energy distribution
in the measured outer EC [Fig. 2(a)]. The raw @IQD=@VG

data are shown in Fig. 2(b) for several lengths L, at fixed
QPC voltage bias �VD ¼ 36 �V. For the shortest propa-
gation length L ¼ 0:8 �m, we find a double dip close to
expectations for noninteracting ECs and, consequently,
that energy exchanges are small on this scale [15]. As L
is increased the signal evolves toward a single dip. This
demonstrates energy exchanges, which occur here on a
characteristic length Linel � 3 �m [16]. At the two longest
propagation paths, we find the same broad dip within
experimental accuracy. It corresponds to a drain Fermi
distribution of temperature Thot ¼ 85 mK (solid lines on
top of data at L ¼ 10 and 30 �m), much larger than the
equilibrium dip’s temperature Teq ¼ 40 mK (data at

�VD ¼ 0 are shown for comparison as a dotted line).
Complementary tests were performed to ascertain the ob-
served energy exchanges are not artifacts [16].

We now investigate the interaction mechanisms respon-
sible for the established energy exchanges. A simple
mechanism could be the tunneling of charges between
copropagating ECs, but we found it is here negligible
[16]. In particular, anomalous quantum Hall effect mea-
surements [17] showed that there is here no equilibration
along the considered paths between the different electro-
chemical potentials of the two copropagating ECs.
Important information to elucidate the interaction mecha-
nisms can be obtained from the total energy Eout of the
probed outer EC’s 1DCFs. Let us consider several scenar-
ios. (i) If interactions are essentially between 1DCFs in the
same EC, then energy conservation in the stationary re-
gime implies Eout is unchanged along the propagation path.
On the other hand, (ii) if there is a significant interaction
with thermalized states, such as the many quasiparticles
within the surface metal gates along sample edges or the
phonons, then Eout should relax toward its cold equilibrium

value Eoutð�VD ¼ 0Þ, or, if either the coupling constant or
the density of these states vanishes at low energies, toward
a fixed value at large �VD. Last, (iii) if interactions are
essentially with other copropagating states, then the in-
jected energy redistributes. Therefore Eout should decrease
to a value above Eoutð�VD ¼ 0Þ by an amount proportional
to the injected energy. The copropagating states could be
the inner EC’s 1DCFs or/and additional internal EC modes
[18] that are predicted to exist in most situations due to
edge reconstruction [19].
Figure 2(c) shows the outer EC’s energy for various L

and �VD as the generalized excess temperature Texc �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½Eout � Eoutð�VD ¼ 0Þ�=��2k2B

q
(symbols), with � the

outer EC’s density of states per unit length and energy. The
ratio Eout=� can be obtained from fD using

(c)

(b)

(a)

E

fD ??

FIG. 2 (color online). (a) The outer EC is driven out of
equilibrium. (b) Raw data (symbols) at �VD ¼ 36 �V, shifted
vertically for several L. The nonequilibrium double dip relaxes
over Linel � 3 �m toward a dip broader than the equilibrium dip
at �VD ¼ 0 (dotted line). Solid lines are calculations with a
Fermi distribution at 85 mK. (c) Excess temperatures extracted
from the data (symbols) and prediction at the QPC output
(dashed line). The outer EC cools down as L is increased and
saturates at a value below expectations for two interacting ECs
(dotted line, see text).
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Eout=� ¼
Z
ðE��Þ½fDðEÞ � �ð�� EÞ�dE; (1)

with �ðEÞ the step function and � the electrochemical
potential (the full procedure to extract Texc is detailed
in [16]). We find Texc relaxes as L increases, from a value

very close to the QPC output prediction T
qpc
exc ¼ffiffiffi

3
p

ej�VDj=ð2�kBÞ (dashed line) at L ¼ 0:8 �m, down to
Texc � ð0:61� 0:04ÞTqpc

exc at L ¼ 10 and 30 �m for
j�VDj> 20 �V. The saturation of Texc at long propagation
lengths to a value proportional to T

qpc
exc at the QPC output is

incompatible with significant dissipation toward thermal-
ized states on the probed length scales [scenario (ii)].
Instead, this observation corresponds to expectations for
interactions with copropagating states [scenario (iii)]. Last,
energy exchanges between 1DCFs of the same EC [sce-
nario (i)] are relatively weak compared to the dominant
mechanism. Indeed, they preserve Texc, whereas we find fD
and Texc evolve on the same length scale, as seen in
Figs. 2(b) and 2(c). Additional experiments not shown
here further demonstrate that this energy exchange mecha-
nism is negligible for L � 10 �m [20].

The data are compatible with energy redistribution with
copropagating states, but which states? It is most natural to
assume the 1DCFs of the two copropagating ECs exchange
energy. This hypothesis can be tested directly by generat-
ing a nonequilibrium energy distribution in the inner EC
(GQPC ’ 1:5e2=h), with fD still being measured in the

outer EC [see Fig. 3(a)]. Figure 3(b) shows raw data
obtained in this configuration at �VD ¼ 54 �V for several
L. We find that the dip broadens as L is increased, and
therefore that the outer EC heats up. This unambiguously
demonstrates energy exchanges between ECs. Figure 3(c)
shows Texc in the outer EC (symbols), which increases with
L as expected from the raw data. Note that TexcðL ¼
10 �mÞ is approximately independent of which of the
inner or the outer EC is driven out of equilibrium, as would
be expected for a complete energy current equipartition
between ECs.

These results are in qualitative agreement with recent
investigations of dephasing at �L ¼ 2, which established
current noise in one EC reduces phase coherence in the
second EC [8,21]. The dephasing length L�ðTÞ ’
20 �m=ðT=20 mKÞ [10] can be compared to the inelastic
length. Using the injected excess temperature Tqpc

exc ¼
115 mK at �VD ¼ 36 �V, we find L�ð115 mKÞ ’
3:5 �m, similar to the corresponding Linel ¼ 2:5�
0:4 �m [16]. This strengthens the case for a same physical
mechanism at the root of both dephasing and energy ex-
changes. However, contrary to dephasing [21], energy ex-
changes cannot be accounted for by low frequency noise
within perturbation theories.

We now discuss different theoretical models aiming at
explaining the present data. Within the widespread picture
of 1DCF quasiparticles, the minimal approach is to include
interactions between copropagating ECs as a small pertur-
bation. However, in absence of disorder, energy exchanges

between 1DCFs of different drift velocities vD would be
essentially suppressed, due to combined energy and mo-
mentum conservations. Therefore, it is crucial to assume a
sufficient disorder to break momentum conservation.
Motivated by the present work, Lunde et al. modeled inter
EC interactions as a density-density coupling, where dis-
order changes the coupling coefficient along the edge
with a correlation length ‘ [22]. Within this model,
TexcðL=L0; �VDÞ was obtained up to an unknown length
scaling factor L0. Comparing with the data, it was found
that the nonlinear shape of Texcð�VDÞ can be reproduced
using a reasonable micron-scale ‘ [22]. On the other hand,
general arguments imply that two weakly interacting

1DCF branches cannot result in Texc < Tqpc
exc=

ffiffiffi
2

p
at satura-

tion [16,22]. Surprisingly, we find Texc at long L saturates
about � 13% below this lower bound [displayed as a
dotted line in Fig. 2(b)]. Such a discrepancy is significantly

(b)

(c)

(a)

E

fD ??

FIG. 3 (color online). (a) The inner EC is driven out of
equilibrium. (b) Raw data at �VD ¼ 0 (dotted line) and �VD ¼
54 �V (symbols), shifted vertically for several L. The dip
broadens as L is increased. (c) Excess temperatures extracted
from the data (full symbols) and prediction at the QPC output
(dashed line). The outer EC heats up as L is increased, up to an
excess temperature close to that when driving the outer EC out of
equilibrium [TexcðL ¼ 10 �mÞ in Fig. 2(c) are shown here as
open symbols (5 )].
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larger than experimental error bars. Although a good
agreement data theory was reached in [22] assuming
ad hoc the presence of a hidden third EC, one may wonder
if the discrepancy results from the perturbative treatment of
interactions. Note that the weak interaction hypothesis
could not be checked in [22], due to the unknown length
scaling factor in the theory.

Alternatively, density-density interactions between cop-
ropagating 1DCFs can be handled nonperturbatively using
the bosonization technique [23]. Within this framework,
edge states are depicted as collective magnetoplasmon
modes. For strong enough interactions, these are fully
delocalized over the ECs [12,24]. At filling factor 2, where
the two ECs have opposite spin polarities, this yields
spinless charge waves and chargeless spin waves propagat-
ing at different velocities. These edge states appear strik-
ingly different from quasiparticles, where both charge and
spin propagate at the same speed. Motivated by the present
experiment, Texc was recently calculated in the bosoniza-
tion framework [25]. Assuming strong interactions and a
standard drift velocity 105 m=s, calculations are found to
reproduce the measured nonlinear shape of Texcð�VDÞ and
also the energy relaxation length scale, without the need to
introduce disorder [25]. However, the same lower bound

T
qpc
exc=

ffiffiffi
2

p
was confirmed for arbitrary interaction strength

between two 1DCF branches. In [25], the data are repro-
duced quantitatively by assuming ad hoc 25% of the
energy leaks out toward other degrees of freedom.

The main outcome of the data-theory comparisons is
that additional states need to be taken into account.
Experimental observations, in particular, the saturation at
the same hot Fermi distribution for both L ¼ 10 and
30 �m, put stringent constraints on these states. The pre-
dicted internal EC modes mentioned in scenario (iii) seem
plausible candidates. However, additional experiments not
shown here demonstrate that 1DCFs and internal modes
localized in the same outer EC do not exchange energy
[20]. Although this weakens the internal modes hypothesis,
note that energy exchanges with the inner EC’s internal
modes were not dismissed.

One conceptually important question concerns the na-
ture of the pertinent edge excitations. Are these better
described as Fermi quasiparticles localized in an EC or
as delocalized bosonic collective states? The above com-
parison with theories did not permit discrimination.
Nevertheless, the experimental results can be used to test
whether the quasiparticle description is self-consistent.
Indeed, a lower bound for the 1DCF’s lifetime can be
obtained from Linel, by using the range of drift velocities
vD 2 ½0:5; 5� � 105 m=s measured in similar structures at
�L ¼ 2 [16,26]. Applying the time-energy uncertainty re-
lation, one finds for �VD ¼ 36 �V that the energy line-
width of 1DCF states �E> @vD=2Linel 2 ½6; 70� �eV is
of the same order or larger than their characteristic energy
kBT

qpc
exc ð�VD ¼ 36 �VÞ � 10 �eV, and therefore are ill-

defined electronic edge excitations. Consequently,

although the 1DCF representation of edge states is very
powerful at short distances, the observed short Linel chal-
lenges the description of quantum Hall excitations as qua-
siparticles localized in one edge channel.
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Rev. Lett. 92, 026805 (2004).
[4] S. Ol’khovskaya et al., Phys. Rev. Lett. 101, 166802

(2008).
[5] I. Neder et al., Nature (London) 448, 333 (2007).
[6] R. Ionicioiu, G. Amaratunga, and F. Udrea, Int. J. Mod.

Phys. B 15, 125 (2001); T.M. Stace, C.H.W. Barnes, and
G. J. Milburn, Phys. Rev. Lett. 93, 126804 (2004).

[7] E. Bieri et al., Phys. Rev. B 79, 245324 (2009).
[8] I. Neder et al., Nature Phys. 3, 534 (2007).
[9] L. V. Litvin et al., Phys. Rev. B 75, 033315 (2007).
[10] P. Roulleau et al., Phys. Rev. Lett. 100, 126802 (2008).
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Chapter 7

Tuning the relaxation of integer

quantum Hall edge-channels

This chapter shows it is possible to tune the energy relaxation in both increasing it or

freezing it [3]. First, we show it is possible to increase the relaxation up to full relaxation

towards thermal equilibrium, by diverting a non-equilibrium edge-channel towards a voltage

probe through an intermediate QPC . Such a scheme could be used to perform fast resets of

�ying Q-bits [126]. More surprisingly, we demonstrate it is possible to freeze the relaxation

dynamics by closing the inner edge-channel in a small loop. We obtain inelastic lengths more

than 4 times longer that could yield to a phase coherence length in the 1DCF basis beyond

100 µm at 20 mK, therefore recovering the potentialities of the optical analogy.

7.1 Driving the relaxation up with a voltage probe

We show it is possible to drive the system up to full relaxation by diverting the non-

equilibrium edge channel towards a �oating ohmic contact. The ohmic contact here plays

the role of the so-called `voltage probe' introduced by theorists to account for decoherence

and energy relaxation within the scattering approach to quantum transport [32].

7.1.1 A voltage probe as a heat sink

Voltage probes act as reservoirs that absorb all incoming electronic quasiparticles and emit

new quasiparticles with a Fermi statistics at the electrochemical potential dictated by cur-

rent conservation or voltage bias. These absorption/emission processes mimic both the �nite

quantum lifetime and the energy relaxation toward thermal equilibrium of electronic excita-

tions. In practice, the voltage probe is realized by a large ohmic (metallic) contact connected

to the outer edge-channel (the setup schematic shown Figures 7.1 and 7.2.a). The impact of

similar �oating Ohmic contacts on current noise has previously been investigated [127]. More
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recently, their dephasing properties were characterized using an electronic Mach-Zehnder in-

terferometer [128]. Here we use an experimental setup that permits us to fully explore the

relaxation of energy with such a voltage probe.

1 µm

IQD

eVG

}

IQD

?

f

Figure 7.1: Voltage probe setup. Sample e-beam micrograph: metallic gates appear

bright; the wide gates on the left and right of the quantum dot (QD) are grounded and

can be ignored. Electronic excitations propagate counter clockwise along two edge channels

(EC), depicted by lines. Dashed lines connecting ECs indicate transmission through quantum

point contacts (QPC). At the output of the injection QPC, the energy distribution finj is a

double step (left inset) in the half transmitted outer EC. Electronic excitations travel along

adjustable paths from the injection QPC to the QD, and part of the outer EC can be diverted

toward a �oating ohmic contact by tuning the intermediate QPC's transmission. Right inset:

the tunnel current IQD through the QD is proportional to the energy distribution fQD probed

at the QD in the left outer EC.
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7.1.2 Experimental principle

The experiment performed is as follows, see Figures 7.1 and 7.2.a. The injection QPC located

L = 2.2 µm upstream of the quantum dot drives the outer edge-channel out of equilibrium

at a voltage bias δV = V1 − V2 = 36 µV. The resulting non-equilibrium outer edge-channel

propagates for 1.4 µm along the edge before it reaches the intermediate QPC across which

it is partly transmitted, with a probability τim = Gimh/e
2 ∈ [0, 1], toward the �oating

ohmic contact (connected to the bottom right edge-channels in Figure 7.1). The energy

distribution in the outer edge-channel is measured at the quantum dot, 0.8 µm downstream

of the intermediate QPC.

7.1.3 Tuning f(E) relaxation by changing the coupling to a voltage

probe

Figure 7.2.b shows the raw data (∂IQD(VG)/∂VG)/Imax
QD obtained for di�erent intermediate

QPC transmissions τim spanning from zero to full transmission (symbols). At τim = 0, we

observe a double dip that corresponds to signi�cant but incomplete energy redistributions

(see L = 2.2 µm in 6.3; note that the data shown here in Figure 7.2.b were obtained in a

di�erent cooldown). In contrast to this non-equilibrium double dip, the energy derivative of

a Fermi function is a single dip whose width and inverse amplitude are proportional to the

temperature. In the opposite limit, τim = 1, we observe a narrow single dip �tted using a

cold Fermi function at T = 36 mK (continuous line). This shows that edge-channels emitted

by the �oating ohmic contact are fully thermalized, and that they are not heated up along

their way back to the intermediate QPC by the (nearby) opposite/counter-propagating hot

edge states (see Fig. 7.1). At incomplete transmissions, the signal in Fig. 7.2.b exhibits a

more complex shape that we now compare to predictions of the scattering approach.

Comparison to scattering approach predictions: The scattering approach predicts

the energy distribution at the intermediate QPC's output is the sum of the distribution

functions in the two incoming edge-channels weighted by their respective transmission prob-

abilities τim and 1− τim [32]. Since interactions are ignored in this approach, it applies only

if energy relaxation along the 0.8 µm path between the intermediate QPC and the quantum

dot is small, which was shown to be the case in Chapter 3's article [1]. Energy relaxation

occurring upstream of the intermediate QPC is taken into account by using the data at

Gim = 0 as the reference signal that originates from the injection QPC.

The scattering approach predictions, shown as continuous lines in Figure 7.2.b, are the

sum of the data measured at Gim = 0 and at Gim = e2/h weighted, respectively, by the

independently measured re�ection 1 − Gimh/e
2 and transmission Gimh/e

2 probabilities of
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δV

QD

(a)

(b)

L=2.2 µm

δV=36 µV

G h/e
i

Figure 7.2: Driving the relaxation with a voltage probe (a) Experiment schematic:

the outer edge channel's relaxation is forced by partly diverting it toward a �oating ohmic

contact, through the intermediate QPC (middle split gate) of conductance Gi ∈ [0, 1] e2/h.

(b) Raw data (symbols) at δV = 36 µV are shifted vertically for di�erent values of Gi. The

dashed line is a Fermi �t (Tfit = 36 mK). Continuous lines are the weighted sums of the data

at Gi = 0 and e2/h, as predicted by the scattering theory.

the intermediate QPC. We �nd a good agreement, without �tting parameters, with the data.

This shows energy exchanges can be tuned up to full relaxation toward equilibrium, in
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quantitative agreement with the scattering theory.

Regarding the inelastic mechanisms at work, the full thermalization measured at Gim =

e2/h, is found irrespective to the presence of the (nearby) opposite/counter-propagating hot

edge states. This observation ensures that the energy loss found in the relaxation experiments

cannot be accounted by a coupling towards opposite/counter-propagating edge-channels that

could carry away the injected power.

7.2 Freezing the relaxation with a small loop

We now show that energy exchanges can be strongly reduced at νL = 2, by closing the inner

edge channel on itself along the outer edge channel's path.

7.2.1 Localized vs propagative edge-channels

When an edge-channel is closed to form a loop, it becomes a localized state. Therefore

it cannot absorb energy in the stationary regime, unless it is coupled to thermalized ex-

citations. Moreover, for small enough loops, the periodic boundary conditions yield to a

discrete electronic spectra, which is expected to diminish the phase space available to the

inter-channel interactions that were found to be the dominant interaction mechanism. We

have implemented a closed loop setup in order to investigate the impact of such closed loops

to the νL = 2 relaxation dynamics.

7.2.2 Closed loop setup

The experiment schematic is shown in Fig. 7.4.a. For the intermediate QPC's conductance

set to Gim = e2/h, the outer edge-channel is fully transmitted while the inner edge-channel

is fully re�ected at the QPC.

De�ning a closed loop edge channel: Contrary to the previous setup to enhance energy

relaxation, the transmitted outer edge-channel does not reach the �oating ohmic contact.

Instead, it is re�ected toward the quantum dot by applying a su�ciently negative voltage to a

surface metal gates barring the way (bottom right gate Fig. 7.1, or another gate further away:

right gate in Figure 6.1). As a result, for Gim = e2/h the inner edge-channel propagates

on a shorter distance from injection QPC to quantum dot (set to Lin = 2.2 µm) than

the outer edge-channel (selected between Lout ≃ 10 or 30 µm). The extra outer edge-

channel propagation path takes place along a closed inner edge-channel loop of perimeter

Lloop = Lout − Lin ≃ 8 µm or 28 µm.
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V1

V2

IQD

1 µm

L   =2.2 µmin

Figure 7.3: Experimental realization of a closed loop setup A non-equilibrium situa-

tion is generated in the outer edge-channel at a QPC (yellow gates) situated 2.2 µm uphill

the quantum dot used to probe fD(E) in the outer edge-channel. An intermediate QPC

(blue and green gates) tuned at GQPC = e2/h fully re�ects the inner edge-channel, while

fully transmitting the outer edge-channel. The transmitted outer edge-channel is re�ected

by a second gate (red gate) towards the probe quantum dot, de�ning an extra propagation

path along an inner-edge channel closed in a loop. The corresponding schematic is shown in

Figure 7.1.a and the corresponding raw data, (Lin = 2.2 µm, Lout = 10 µm) in Figure 7.1.b.

Fully propagative geometries: For Gim = 0 or 2e2/h, both the inner and outer edge-

channels co-propagate along the same length L = Lin = Lout ∈ {2.2, 10} µm.

In the following, we characterize the experimental con�guration by the two propagation

lengths (Lin ( µm), Lout ( µm)).

7.2.3 Small loop vs large loop

Relaxation measurements along a small loop: Figure 7.4.b shows as symbols the raw

data obtained for δV = −36, 36 and 54 µV applied to the injection QPC. The striking
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feature is that the data for (2.2, 2.2) and those for (2.2, 10) are essentially identical, up to

our experimental resolution. This demonstrates directly that the energy distributions in the

probed outer edge-channel remain unchanged in the extra 8 µm path along the inner edge-

channel closed loop. The contrast is stark when compared to (10, 10), where the outer edge-

channel propagates on the same length as (2.2, 10), but along a fully co-propagative (open)

inner edge-channel path. Indeed, in the latter con�guration the non-equilibrium double dip

structure, that remained apparent for (2.2, 2.2) and (2.2, 10), is completely washed out and

the energy distributions have relaxed toward hot Fermi functions (as stressed in Figure 6.3,

continuous lines are the hot electron Fermi �ts).

Therefore, closing the inner edge-channel on a 8 µm loop switches the intensity of energy

exchanges in the outer edge-channel from complete energy redistribution, to negligible!

Relaxation measurements along a large loop: For the increased loop size of 28 µm ob-

tained in the con�guration (2.2, 30), fD(E) now ends up similar to a hot Fermi function: the

raw signal evolves towards a single dip that can be �tted by a Fermi function (Figure 7.4.b).

This shows energy exchanges reappear for 28 µm inner edge-channel's loops.

Energy currents: As in the precedent chapter, we obtain further quantitative informa-

tion, by extracting the excess energy currents, carried by the single-particle excitations,

characterized by the excess temperature Texc (Equation 6.3).

Figure 7.5 shows as symbols the excess temperatures extracted from the data with a

closed inner edge-channel as well as in the corresponding con�gurations with a fully co-

propagative inner edge-channel. For completeness, we also give in Table 7.1 the Fermi �t

temperatures corresponding to the continuous lines shown in Figure 7.4.b.

(Lin, Lout) δV Tfit

( µm) µV (mK)

(10, 10) −36 81

(10, 10) 36 83

(10, 10) 54 129

(2.2, 30) −36 101

(2.2, 30) 36 108

(2.2, 30) 54 145

Table 7.1: Fit temperatures corresponding to the continuous lines shown in

Fig. 7.4.b.

The main result is that the excess temperature is identical, at our experimental accuracy,

in the con�gurations (2.2, 2.2) and (2.2, 30) despite the important energy exchanges taking
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Figure 7.4: Freezing the relaxation dynamics with a closed loop a The non-

equilibrium outer edge channel propagates partly along a closed inner edge channel's loop,

except when Lin = Lout. b Raw data (symbols) for various (Lin ( µm), Lout ( µm)) are

shifted vertically for the di�erent δV ∈ {−36, 36, 54} µV. The data for (2.2, 10) are mostly

unchanged from those for the short direct path (2.2, 2.2). This implies that energy exchanges

are negligible in the outer edge-channel along the 8 µm closed inner edge-channel loop. The

contrast is stark with the data for the corresponding direct path (10, 10), which exhibit a

broad Fermi dip (continuous lines are �ts with hot Fermi functions). The observed energy

relaxation toward a broad dip for the larger 28 µm inner edge-channel loop of (2.2, 30) shows

the above freezing of energy exchanges depends on the loop's dimensions.

place in the latter (seen in Figure 7.4.b).

On the contrary, the full propagation con�guration (10, 10) displays substantially smaller

excess temperatures.
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Figure 7.5: Excess temperatures extracted from the raw data for various (Lin, Lout)

con�gurations. Fig. 7.4 shows some of the corresponding raw data. Both small (2.2, 10)

and large (2.2, 30) closed loops yield to the same excess temperature found at (2.2, 2.2), up

to our experimental incertitude, so that the outer edge-channel does not loose its excess

power along both small and large loops. The full propagation (10, 10) excess temperature is

sensibly lower.

7.2.4 Interactions vs. available phase space

We �nd experimentally that energy exchanges can be frozen over along a 8 µmloop, but

recovered for a longer 28 µm loop. We attribute this behavior to the discreteness of energy

levels in the closed inner edge-channel loop, whose spacing competes with the available

energy. Indeed, for a 8 µm closed loop and using the standard νL = 2 drift velocity vD ≈
105 m/s (obtained from references in 6.3), the energy spacing δEin ≈ 52 µeV, is larger than

or comparable to e|δV |. Since the available energy in the outer edge-channel is not su�cient

to excite the discrete inner edge-channel's energy levels, energy exchanges between edge-

channels, which were shown in the precedent chapter to be the dominant inelastic mechanism

at νL = 2 , are frozen. This analysis is consistent with the observation of important energy

exchanges for a 28 µm inner edge-channel closed loop: the corresponding spacing δEin ≈
15 µeV is smaller than e|δV |, therefore there is enough available energy to excite the discrete

inner edge-channel's energy levels. This analysis is implicitly perturbative in interactions

since the above estimates of available energy assume two-body collisions. However, similar

conclusions can be reached within the non-perturbative bozonisation framework 1.

1P. Degiovanni, private communication.
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7.2.5 Consequences on the inelastic mechanisms

The observation of frozen energy exchanges also provides important information regarding

the inelastic mechanisms at work along the edge-channels at �lling factor νL = 2. These

informations complement those obtained in the precedent chapter. In particular, the relax-

ation freezing implies that internal energy exchanges within the outer edge-channel are not

only smaller than those with the inner edge-channel, but are incontrovertibly negligible on an

8 um length scale at the probed energies (while a complete energy redistribution was found

at this length scale for both co-propagating edge-channels, Figure 6.3). This conclusion

encompasses interaction with additional modes of the outer reconstructed edge-channel.

Second, it also encompasses energy exchanges between the outer edge-channel and bulk

states located within the closed inner edge-channel loop, for instance due to disorder in-

duced inhomogeneities in the density. Indeed, Figure 7.5 shows that the overall electronic

energy probed at the quantum dot in the outer edge-channel is identical in the con�gura-

tions (2.2, 2.2) and (2.2, 30), despite the important changes observed in the shape of fD(E).

It also shows that energy redistribution with the predicted additional modes of the outer

edge-channel are small also on the 28 µm propagation length.



Chapter 8

Conclusions and perspectives, νL = 2

edge-channels

8.1 Non-interacting picture challenged

The single particle excitations of νL = 2 exhibit a strong energy relaxation characterized

by an inelastic length Linel = 2.5 µm for non-equilibrium situations with an excess energy

kBTexc ≃ 10 µeV. The corresponding higher bound to the single particle excitation quantum

lifetime (found using the drift velocities measured in similar systems) yields to an excita-

tion spectral width comparable to the characteristic excitation energy. Therefore, our data

strongly suggest that the single-particle particle excitations of νL = 2 edge-channels have an

ill-de�ned energy.

8.2 Inelastic mechanisms at νL = 2

Inter-channel interactions between 1DCFs excitations, without particle exchanges, are found

to be the dominant inelastic mechanism, yet not the only one since we �nd an energy leak

from the two channel system. This energy leak is compatible with interactions towards

additional co-propagating modes, yet unidenti�ed.

However, energy exchanges with the following excitations are ruled out by our observa-

tions:

• Thermalized excitations, such as lattice vibrations, spin states or electronic states in

the metallic gates used to de�ne the edge paths.

• Interactions within the outer edge-channel (including the predicted additional modes

of the reconstructed outer edge-channel).
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• Interactions with counter-propagating cold edge states �owing on opposite edges at

about a 0.5 µm distance.

8.3 Towards macroscopic phase coherence?

We have found that the small closed loop technique freezes the relaxation dynamics for

lengthes at least 4 times longer than the �natural� inelastic length, Linel. We also expect

it to increase the dephasing length, LΦ, since closing the inner edge channel on a loop also

suppresses its low frequency current �uctuations, which have been demonstrated to dephase

the outer edge-channel [12, 23].

Moreover, the observed Linel is comparable to LΦ found at νL = 2 [14], strengthening

the hypothesis that a same physical mechanism is at the root of both dephasing and energy

exchanges. Therefore, we expect that LΦ would be increased by the same factor of 4, yielding

to 80 µm dephasing lengths at 20 mK (4 times LΦ found in [14]).

In practice, inner edge-channel loops are easily implementable by top-metallic gates in

a comb geometry as presented in Figure 8.1.a, and are even compatible with optical litho-

graphic techniques. Experiments relying on the optical analogy of the 1DCFs, could therefore

be carried on the outer edge-channel for nearly macroscopic distances.

8.4 Towards plasmon interferometry?

Last, the energy currents redistribution found at 10 µm suggests a strong coupling between

1DCFs of both edge-channels. Since other excitations also step in, the system cannot be

simply described with the charge and neutral plasmon modes predicted for two interacting

channels. Nevertheless, these bosonic modes can be longer lived than the single particle

excitations, and could be used as quantum channels [31] to perform quantum information

experiments.
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~2 µm

VLOOPS

Figure 8.1: Possible implementation of the the closed loop technique. Inner edge-

channel forming a series of small quantizing loops (of about 2 µm diameter) realized with a

top-metallic gate in a comb geometry are expected to yield to higher dephasing lengths for

the 1DCFs excitations in the outer edge-channel.
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Chapter 9

Energy transport in the fractional

quantum Hall e�ect

9.1 Introduction

As stressed in the introductive chapter to this part, very little is known about the detailed

microscopic features of fractional quantum Hall (FQHE) edge channels. The 2DEG used

to investigate the νL = 2 integer quantum Hall e�ect (IQHE) has a high enough electron

mobility, µe ≃ 2 106 m.s−1, and develops clear 4/3 and 5/3 plateaus, as can be seen in

Figure 3.1. In this chapter, we present an investigation of the edge dynamics at νL = 4/3,

from the viewpoint of energy transport, similar to that realized at νL = 2. Although, this

work is still in progress, the �rst results already illustrate the power of our experimental

approach. In particular, our preliminary investigations of the νL = 4/3 FQHE demonstrate

a coupling between edge channels and neutral bulk excitations.

9.1.1 Edge channels at νL = 4/3

The edge dynamics of the νL = 4/3 fractions have been described theoretically by a series

of articles by Kane and Fischer [42, 43], within the chiral Luttinger liquid (CLL) formalism

[38]. The νL = 4/3 fraction has two co-propagating edge-channels:

• The outer edge-channel results from the completely �lled S = +1/2 spin branch of the

lowest Landau level. It can be pictured as a non-interacting branch of one dimensional

chiral fermions (1DCFs).

• The opposite spin branch of the lowest Landau level has a νL,↓ = 1/3 �lling factor. It

gives rise to a co-propagating edge-channel described as a CLL of Laughlin quasipar-

ticles with q = 3 (a 1/3 fractional charge density wave, in the hydrodynamic picture).
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The (electrochemical) equilibration length between both co-propagating edge channels,

lµ, is expected to diverge at low temperatures [108], even in the presence of impurity assisted

scattering. Therefore, each edge channel is expected to carry its own potential on large

distances.

9.1.2 Experimental approach

In order to probe the low energy physics of FQHE edge channels, we follow the proposal

of Kane and Fischer [43] of using energy transport experiments. Our setup will be slightly

di�erent from their proposal though.

Heat transport properties of 4/3 edge channels

Heat currents in the FQHE: As a general rule, Kane and Fischer found [43] that in the

FQHE, the chiral heat current carried by edge channels, JH , at temperature T reads:

JH = νH
π2

6h
T 2 (9.1)

where νH is the di�erence between the number of chiral and antichiral edge channels at one

edge. The quantity νH is a topological invariant characterizing the fractional edges [38] and

is independent of the microscopic parameters of the sample. The heat conductance simply

re�ects the di�erence between chiral and antichiral modes.

Heat current in 4/3 edges: Since the FQHE at νL = 4/3 presents two co-propagating

edge channels, it corresponds to νH = 2, and the edge chiral heat current J
4/3
H reads:

J
4/3
H =

π2

3h
T 2. (9.2)

If the edge channels are uncoupled to other excitations, heat transport is ballistic, and gives

no more information (even less) than charge transport. However, it can reveal acoupling

with other states.

Experimental tools

We have used a non-equilibrium toolkit similar to the one demonstrated in the precedent

chapters to probe edge dynamics, in the νL = 4/3 FQHE. A voltage biased quantum point

contact (QPC), of partial transmission, is used to create a non-equilibrium situation in the

coupled edge channels. Second, the energy at a di�erent location is probed with an energy

�lter. Since we are mainly interested in testing the chirality of the heat current, a qualitative

heat �lter is su�cient. We have used a tunnel coupled island, displaying a Coulomb blockade

gap, as a high pass energy �lter.
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One may wonder why we do not use exactly the same setup as for the νL = 2 experiments,

since it has proved to give quantitative results in the IQHE. However, we did not manage

to operate the quantum dot in a canonical regime at νL = 4/3, since we systematically

found multiple resonant levels with a ∼ kBT spacing forbidding us to extract quantitative

information.

Experiment description

We have used two QPCs tuned to half transmission as heat sources. A 3rd QPC displaying

Coulomb diamonds is used as high pass energy �lter. Therefore, even if the energy �lter

only provides qualitative information on the probed excitations, the setup permits us to

perform a direct, one to one, comparison of the local heating for an edge channel driven out-

of-equilibrium upstream and downstream the probe. The setup is depicted in Figure 9.1.

V
V V V

1

2 3 4

L Lupstream downstream

Figure 9.1: Experimental principle. Two QPCs tuned to half transmission (red) locally

drive out of equilibrium an edge channel upstream and downstream an intermediate QPC

(black). The intermediate QPC is used as an energy �lter to probe qualitatively the local

energy in between the sources. This scheme permits to compare the chiral and antichiral

heat currents contributions to the probed energy.

We have implemented this setup at νL = 4/3, where the edge heat currents are expected

to be chiral. Already this �simple� fractional state has revealed new surprising features.

First, we have observed an anti-chiral energy current in non-equilibrium situations, whereas

the charge current �ows downstream with the expected chirality. Second, we demonstrate

that this anti-chiral heat current is not due to a plain local �killing� of the local FQHE(for

instance, due to local thermally activated transport). Last, we show that the antichiral heat

current is carried by neutral bulk excitations.
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In the following, we �rst characterize the 4/3 FQHE properties of our sample. Next we

will show that in our sample, a QPC exhibits a Coulomb blockaded gap when tuned in the

tunneling regime. We will exploit this energy dependence on its transmission signal in order

to perform the energy transport experiments.

9.2 Sample characterization

In this section we characterize the 4/3 FQHE properties of our sample, which is the same

sample used to investigate the νL = 2 IQHE in the previous chapters. First, we extract the

transport fractional gap ∆4/3 from thermally activated transport measurements. Second,

we show that the co-propagative edge-channels can be selectively biased and probed with

QPCs. Last, we show that they can carry their own potentials in the active region of our

sample.

Bulk characterization

Measurement setup: We have measured the Hall and longitudinal resistance with a three

contact measurement. We label the contacts following the edge chirality (Figure 9.2.a). The

current I is injected in contact (3) and �ows along the perimeter before impinging on contact

(1). The intermediate contact (2) is connected to a cold ground.

The potential V1 equals the current impinging on contact 1 times its 2 wire resistance to

the ground R4/3 = 3
4

h
e2 . The resistance (V3 − V1)/I measures the �longitudinal� resistance

plus the polarization wire resistance RS. In the νL = {3, 2, 4/3} plateaus, it saturates at low
temperature to a �nite value RS = 290 Ω corresponding to the series wire resistance at high

magnetic �elds. Therefore, the longitudinal resistance reads RL = V3−V1

I
−Rsat.

Thermally activated transport measurements: In the thermally activated regime

kBT . ∆4/3, thermal �uctuations yield to a moderate population of single particle excita-

tions across the fractional gap ∆4/3. In consequence, the longitudinal resistance follows an

Arrhenius activation law RL(T ) ∝ exp(−∆4/3/2kBT ). Figure 9.2.b presents the Arrhenius

plot of the longitudinal resistance in two distinct regions of the sample. Region 1 is homo-

geneous, and we �nd no residual backscattering from contact 3 to 2, while region 2 is not

homogeneous due to sample processing1 (there is a small backscattering, 2% of the polariza-

tion current2, from contact 3 to 2). From the Arrhenius plot, we identify a linear dependence

in the range of T ∈ [100, 300] mK, corresponding to a fractional gap ∆4/3/kB = 315±10 mK

and ∆4/3 = 335± 10 mK respectively for regions 1 and 2.

1After processing we �nd a dark shape in the middle of region 2, but nowhere else.
2Which increases the �series resistance� to ∼ 600 kΩ



9.2 Sample characterization 153

V

V1

3

I

321 RS

B

2 4 6 8 10 12 14
1.5

2.0

2.5

3.0

 Region 1
 Region 2

R
L
  exp(- /2T)

4/3
= {315, 335}mK

 

 

ln
[R

L(
Ω

 )]

1/T (K   )-1  

Δ

Δ
4/3∝

a) b)

Figure 9.2: Determination of the thermal activation transport gap. a) Schematic of

the three contact scheme used to measure the longitudinal resistance RL b) Arrhenius plot

of the longitudinal resistance measured in two distinct regions of the sample (see text). The

Arrhenius plot reveals an activated transport dependence Rl(T ) ∝ exp(∆4/3/2kBT ) in the

T ∈ [100, 300] mK range. Linear �ts give the activation gaps ∆4/3/kB = {315, 335}±10 mK.

These thermal activation measurements integrate over the sample surface and are sen-

sitive to disorder. The resulting transport excitation gap ∆4/3 is therefore smaller than

the intrinsic excitation gap ∆ characterizing the FQHE. This is due to the disorder energy

enlargement Γ of the discrete energy levels, so that ∆ = ∆4/3 + Γ [102]. We can roughly

estimate the Landau level broadening Γ from the onset of the measured Hall plateaus. We

measure an o�set at about B∗ ≃ 200 mT, so that the Landau level broadening Γ ≃ ~ωC(B∗)

is about Γ/kB ≃ 2.5 K. The resulting fractional gap reads:

∆/kB = (∆4/3 + Γ)/kB ≃ 2.8K (9.3)

and is in rough agreement with the 4/3 fractional gap extracted from the 3/2 composite

fermion masses found in the literature [104]. For this, we extrapolate the
√
B dependence

of the composite fermion mass, meff , found at B = 2.9 T in [104]. This leads to an e�ective

mass in our working conditions:

meff (B = 6 T) =

√
6

2.9
0.42me, (9.4)

which corresponds to the fractional gap:

∆

kB

=
~eBeff

kBmeff

= 2.89 K
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where Beff is the e�ective magnetic �eld seen by the composite fermions: Beff = 3(B −
BνL=3/2). This value is compatible with our transport characterization (9.3).

Edge characterization

We �rst check that our QPCs can be used to selectively populate either co-propagating edge-

channel. We further verify that both co-propagating channels can carry their own potentials

in the active region of our sample (shown in Figure 6.1).

Selective population by a QPC: Using a similar scheme as depicted in Figure 9.2.a,

we have probed the current re�ected, Iref , by a QPC as a function of its gate bias VQPC .

The corresponding plot (Figure 9.3) reveals two current steps. The most negative gate

voltage current step matches the 3
4
step expected from the re�ection of the integer outer

edge channel. While the higher voltage conductance step matches the expected contribution

1/4 of a fully re�ected fractional inner edge channel. The large gate voltage range of the

intermediate plateau ∼ 0.35 V ensures that the integer and fractional edge channels can be

distinctly populated by a voltage biased QPC.

Anomalous quantum Hall e�ect measurement: By tuning two consecutive QPCs in

the intermediate plateau, we have selectively populated and probed the chemical poten-

tials of the co-propagating edge-channels in the active region of our sample (see Anomalous

Hall e�ect in Chapter 2). Even in non-equilibrium situations and electrochemical potential

di�erences between co-propagating channels up to 200 µeV we �nd no electrochemical equi-

libration in the tested 2 µm paths (two consecutive QPCs in the region surrounded by a

grounded gate in Figure 6.1).

9.3 Coulomb blockade in a quantum point contact

Our approach to probe a local energy relies on the non-linearity of a mesoscopic conductor.

In our samples, the QPCs exhibited Coulomb diamonds when the fractional outer edge

channel is in the low transmission regime. This can be seen when plotting their inner edge

channel transmission as a function of the QPC's gate and bias voltage, (Figure 9.4). This

feature results most probably from the residual disorder present in our sample. If a local

scatterer is found close to the QPC, it may create a small resonant level sensitive to charging

e�ects.

The transmission remains null up to a charging energy ∆EC , and after a sharp increase

evolves slowly (Figure 9.4. right inset). Such abrupt change can be used as a high pass energy
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Figure 9.3: Current re�ected by a QPC vs its gate voltage in the 4/3 FQHE.

The re�ected current reveals two successive steps. Full re�ection of the inner edge channel

saturates at 1/4 of the polarization current, Ipol. Full re�ection of the outer edge channel

increases the re�ected current by 0.75Ipol. The (fractional) inner edge channel yields to a

1/3e2/h two wire conductance, while the (integer) outer edge channel to e2/h. The large

intermediate plateau ensures that both edge channels can be selectively populated.

�lter. Most notably, the addition gap ∆EC can be tuned by sweeping the gate voltage (VG).

This permits to sweep the energy range of the probed excitations.
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Figure 9.4: Coulomb diamonds in a QPC. Color plot of the inner edge channel transmis-

sion by a QPC in the high backscattering regime (blue: vanishing transmission, red: unity

transmission). The inner edge channel transmission presents sharp Coulomb diamonds as

a function of gate and bias voltages. In most of the probed range, the transmission only

presents sharp feature across the diamonds. The resulting energy dependent transmissions

(right inset for a representative gate voltage) can be used as high pass energy �lter. The

energy cut-o� is given by the edges of the blockaded region diagram, and can be tuned by

sweeping the gate voltage.
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9.4 Energy transport measurements

9.4.1 Charge vs heat chirality

Setup: We �rst tune the energy �lter to a small addition gap ∆EC ≃ 30 µeV. The energy

�lter probes the electronic excitations at energies higher than the addition gap.

We tune both injection QPCs to half transmission for the inner edge channel. They are

tuned to display the smallest possible energy dependence in the used bias windows. We

systematically checked that the resulting re�ected DC current is linear up to 5% changes

in the slope. We name QPC1 and 2 the injection QPCs placed respectively upstream and

downstream the energy �lter.

The �as the crow �ies� distance between the QPC 1(2) to the energy �lter is 1.5 µm

(1.4 µm). The three QPCs are directly connected by chiral edge channels as pictured in

Figure 9.1. The edge distance along the edge channel path connecting the QPC 1(2) to the

energy �lter is ledge =1.8 µm (1.4 µm).

Anti-chiral heat �ow: We bias the injection QPC 1(2) at δV1(2), while keeping the voltage

di�erence across the energy �lter null3. We show in Figure 9.5 the color plot of the energy

�lter transmission τ as a function of δV1 and δV2. The energy �lter increases with the

upstream bias δV1 as expected from the edge channels chirality. The striking feature is that

it depends on the downstream bias δV2. This demonstrates the presence of an anti-chiral

heat �ow.

Chiral charge �ow: All along the energy transport measurement, we test the charge

�ow chirality. We do so, by injecting a small AC current IAC = 9.1 pA across QPC 2 at

small frequency f (< 100 Hz). This modulation permits to trace the origin of the injected

current. Performing lock-in measurements, we �nd that the current impinging, at frequency

f , to a contact connected by chirality to QPC 2 matches IAC (at our absolute accuracy of

0.1 pA). Moreover, we �nd that no current at frequency f impinges in the contacts situated

beneath QPC 1 and beneath the energy �lter (contacts recovering the chiral edge channels

at the bottom of Figure 9.1). Therefore, charge transport follows the edge chirality in the

non-equilibrium situations.

Thermal killing? One may wonder if the anti-chiral heat �ow is due to a plain thermal

killing of the FQHE on the heated regions, since ∆4/3 ∼ ∆EC . However, it can be dis-

carded with the following arguments. First, the observation of a chiral charge transport

3We neglect the . 5% energy dependence of QPC 1 transmission for doing so.
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Figure 9.5: Antichiral heat �ow. Color plot and projections of the energy �lter trans-

mission for the inner edge channel, as a function of the bias applied to the heat injection

QPCs 1 and 2. The transmission depends on the bias applied to QPC2 placed downstream

the detection point, revealing an antichiral heat �ow. Red points: intercept of the data

with a τ = 0.03± 20% plane. The signal presents an elliptical symmetry τ = f(V 2
1 + αV 2

2 ).

Continuous lines: ellipses of aspect ratio α = 2.5± 0.3, and small axis R1 =34 µV.

seems incompatible with a thermally activated transport. More importantly, the signal sym-

metry manifest in Figure 9.5 permits to discard this mechanism. Indeed the energy �lter

transmission presents an elliptical geometry with respect to the injection QPC biases. Such

particular geometry implies that the energy �lter signal is a function of δV 2
1 + αδV 2

2 only,

with an aspect ratio α.

We estimate the aspect ratio by intercepting the data with a τ = 0.03 ± 20% plane

(red points in Figure 9.5. right), and adjusting the corresponding graph with an elliptic

function. Note that only the signal in the low transmission limit is meaningful, since at

�nite transmissions the energy �lter itself perturbs signi�cantly the probed edge channel.

We �nd an aspect ration α = 2.5± 0.3.

Now, since the energy injected by QPCs 1 and 2, EQPC 1/2, scale with δV
2
1/2, we �nd that

the energy �lter signal is a function of EQPC 1 + αEQPC 2 only:

τ(EQPC 1, EQPC 2) = f(EQPC 1 + αEQPC 2).

Therefore, the antichiral heat �ow contribution to the energy �lter signal appears to be

unsensitive to the energy injected upstream.
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9.4.2 Coupling to bulk excitations

Setup: In order to test wether the antichiral heat current is carried by edge or bulk ex-

citations, we set the QPC2-energy �lter direct distance �as the crow �ies� to d =2.2 µm,

but change the edge path between them with the help of top metallic gates. We can use an

intermediate QPC to fully transmit4 both co-propagating edge channels towards a �oating

ohmic contact (Figure 9.6.b). When the intermediate QPC is closed, we have ledge = 2.2 µm

(Figure 9.6.a). Therefore, we can change the edge channel path linking the probe QPC to

the injection QPC. The ohmic contact path permits us to perform a stringent test of wether

the antichiral heat �ow is carried by edge excitations: Since the ohmic contact forces the

relaxation of the incoming edge excitations, there can be no counter propagating heat �ow

along the edge in this con�guration.
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Figure 9.6: Coupling to bulk excitations. a Schematic of the l = edge =2.2 µm setup.

b Schematic of the ohmic contact setup. c Energy �lter transmission τ as a function of

the downstream QPC 2 bias δV2 in four distinct situations. The distance �as the crow �ies�

between QPC2 and energy �lter is set to d =2.2 µm. QPC 2 is tuned to half transmission

for the inner edge channel. �: The edge channel linking the energy �lter to QPC2 has a

propagation length ledge =2.2 µm. ▽: the edge channel is fully diverted to a �oating ohmic

contact between QPC2 and the probe QPC (see b). Both setups give similar antichiral heat

�ow signals.

Measurements: We show in Figure 9.6.b the probe QPC transmission, τ , as a function

of the downstream QPC bias δV2, for the four edge path situations: ledge = 2.2 µm and the

ohmic contact path. The fact that the probe QPC signal depends on the downstream bias in

4Inner edge channel transmission > 92% even in non-equilibrium situations.
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the ohmic contact path setup, shows directly that some energy is carried by bulk excitations.

Note that a direct comparison with the Ledge = 2.2µm is not possible, since the probe QPC

is not exactly the same5. The main point is that we �nd at ledge =2.2 µm a similar counter

propagating heat �ow signal.

These measurements give evidence for a coupling between the non-equilibrium edge chan-

nel and bulk excitations. Since no antichiral charge �ow was found, these bulk excitations

are neutral.

9.4.3 Energy dependence of the antichiral heat current

We further characterize the bulk excitations carrying the antichiral heat current by investi-

gating the dependence of the aspect ratio α as a function of the low energy cut-o� ∆EC . The

energy dependence is found compatible with spin excitations or neutral quasielectron/hole

collective excitations.

Setup: We come back to the initial setup depicted in Figure 9.1, but tuning the energy

�lter to di�erent addition gaps ∆EC . This yields to di�erent low energy cut-o�s for the the

probed excitations (changing VG in Figure 9.4).

Measurements: Figure 9.7 shows the energy �lter transmission, as a function of the

upstream and downstream QPC biases, τ(δV1, δV2), for di�erent addition gaps ∆EC . We

have intercept all measurements data with a same plane6 τ = 0.03 ± 20%, that we adjust

with an ellipse of aspect ratio α and principal axis R = δV2(τ = 0.03). The aspect ratio, α,

characterizes the relative contribution to the local energy signal of the downstream heating

with respect to the upstream heating. The principal axis, R, characterizes the applied bias

on the downstream QPC to achieve an energy signal τ = 3%. We present the addition gap

dependence of α and R in Figure 9.8.

We �nd that the bias needed to obtain a 3% transmission signal roughly scales linearly

with the addition gap: R ∼ 2δV2 (Figure 9.8.b ), validating that indeed, we are probing

energies higher than the addition gap. As we increase the probed energies, the aspect ratio

diminishes (Figure 9.8.a). The exact energy dependence is di�cult to interpret, since the

geometry is quite complicated (for instance, the edge channel driven out of equilibrium may

not only couple to the bulk excitations, but also to the outer edge channel too which is fully

transmitted besides the probe QPC). However, we observe that the aspect ratio diminishes

5Due to the capacitive coupling between the probe QPC and the intermediate QPC. A large gate voltage

range had to be swept between a fully transmitting QPC situation, and a fully re�ecting situation (see e.g.

Figure9.3)
6The value of 3% is high enough to achieve a reasonable signal to error ratio, while slow enough so that

the measurement does not perturb the probed edge channel.
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Figure 9.7: Raw data τ(δV1, δV1) for di�erent addition gaps ∆EC ∈ {30 µeV, 200 µeV}. The
�as the crow �ies�distance between energy �lter and QPC 1(2) is d1(2) = 11.5 µm(1.4 µm).

The aspect ratio diminishes as the addition gap increases.

at higher energies. Therefore, the upstream and downstream contributions to the probed

energies tend to equilibrate at higher energies.

Nature of the coupled bulk states? Assuming, as predicted, that bulk excitations are

gapped [77, 129], no bulk excitations should contribute in the zero energy limit. Therefore,

the aspect ratio should diverge7 at low energies. We use α = 2 to de�ne the characteristic

energy scale. It corresponds to a chiral heating two times more e�ective than the antichiral

heating. The characteristic energy scale is about 100 µeV.

What could be these bulk states? The presence of quasielectron/hole neutral collective

bulk excitations [129], and neutral spin density waves [77] are predicted. We now compare

these excitation gaps to our �ndings:

i) The 4/3 FQHE is spin polarized [76], since the upper spin branch (s = −1/2) of

the lowest partial level is partially �lled, while the lower spin branch is completely �lled

(s = +1/2). This spontaneous symmetry breaking gives rise to gapless spin excitations in

the small Zeeman coupling limit [77]. However, the Zeeman energy imposes a spin excitation

gap ∆S = gµBB imposed by Larmor's theorem. The Zeeman gaps for plain electrons and

7We cannot probe energies lesser than ∼ 30 µeV, since when the probe QPC has sharp features within

this energy range, the transmission is not in the τ << 1 limit.
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Figure 9.8: Energy dependence of the aspect ratio α and the principal ellipse

radius R = δV2(τ = 0.03) Black squares: ellipse aspect ratio, decreases with the energy

�lter addition gap. Red circles: Principal ellipse axis R = δV2(tau = 0.03), represents the

downstream bias δV2 needed to obtain a signi�cant energy �lter signal, at a given ∆EC . We

�nd roughly scales with the addition gap. Horizontal error bars re�ect the bias asymmetry

of the Coulomb diamonds (see Figure 9.4, where ∆EC(VD > 0) ̸= ∆EC(VD < 0)). Vertical

error bars re�ect the uncertainty on adjusting the data at τ = 0.03 ± 20% with an ellipse.

They are typically about 20%.

composite fermions are respectively ∆e
S = gµBB ≃ 150 µeV and ∆CF

S = geffµB3(B −
BνL=3/2) ≃ 30 µeV. For composite fermions, we took the e�ective mass (9.4) and the same

gyromagnetic factor as for plain electrons [104].

ii) Quasielectron/hole bulk collective excitations display a magneto-roton minima at

about the 10% of the fractional gap ∆ [129]. The magneto-roton minima corresponding to

our bulk characterization, ∆(9.3), is about 25 µeV (9.3).

All expected gapped excitations are therefore compatible with the observed energy de-

pendence of α.

Ellipse bending: A second feature we can see in Figure 9.8 is that the elliptic shape bends

for higher addition gaps. We remind that all outer edge channels are fully transmitted,

that δV1 is the voltage di�erence of QPC1 symmetrically voltage biased, while δV2 = (3
4

+

0.51
4
)RQI

pol
QPC2 is the voltage di�erence of QPC2 which is current polarized. Therefore, if

the QPC1 transmission where di�erent from 1/2 for the inner edge channel, the real voltage

di�erence across QPC2 would depend on both δV2 and δV1 as we have de�ned. This would

result on a rotation in the δV1, δV2 plane. However, we systematically checked that the

di�erential transmission of QPC1 remains close to 1/2 up to 10% and that the 2 wire voltage
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drop across QPC2 matches (3
4
+0.51

4
)RQI

pol
QPC2 up to the percent. We have therefore no good

explanation for such bending.

Reproducibility: All the observed features have been reproduced in several runs (di�erent

cool downs) and with a second sample within the same chip.

Similar e�ects arise when heating the outer edge channels upstream and downstream

QPCs (QPC two wire conductance set to 0.5e2/h), but measuring the inner edge channel8.

These measurements are sensitive to direct energy exchanges between co-propagating edge-

channels heated upstream, and to energy exchanges with bulk excitations in both upstream

and downstream injections. We �nd that the aspect ratio evolves from 1.2 to 1 in a similar

same energy range.

9.5 Conclusion and perspectives

The investigation of the 4/3 FQHE had to be stopped since our sample was deadly injured by

a voltage source disfunction. Our results are therefore preliminary and incomplete. However,

our data illustrates the power of our experimental approach since it already reveals a coupling

between edge channels and neutral bulk excitations. But, we have not been able to carry a

systematic investigation on such bulk excitations.

Further work would need to extract a quantitative heat transport measurement (with

a quantum dot for instance), at least on the outer edge channel which is expected to have

linear tunneling density of states. This could be used to extract a reliable value for the

corresponding coupling. A systematic distance dependence on the bulk signal should can

performed with well suited geometries in order to characterize the transport regime of these

bulk excitations.

On another direction, our approach is already well suited to the probe the chirality of

energy currents. It can be directly implemented to investigate the elusive neutral antichiral

modes predicted for some special �lling factors [42] like 2/3 or 5/3. If bulk excitations were

also excited in these regimes, a setup using an ohmic contact would permit to separate the

antichiral heat �ows carried by bulk and edge excitations.

8We only observed Coulomb diamonds in the low tunneling regime of the inner edge channel. Not in the

outer edge channel, whose transmission step is much more abrupt than for the inner one (see Figure 9.3).
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Chapter 10

Dynamical Coulomb blockade in short

coherent conductors

10.1 Impedance composition laws in quantum circuits

A central question of quantum electronics is how do quantum conductors behave when

placed in an electric circuit. This is important since the possibility to combine di�erent

quantum conductors in a same circuit may open the path to new functionalities. However,

it is a problem far more complex than its classical counterpart for two main reasons.

First, if two conductors are composed in a circuit within distances shorter than the phase

coherence length LΦ, the non locality of the electronic wave function impedes to distinguish

them as distinct conductors. In consequence, one has to solve the full quantum problem in

order to predict the circuit's dynamics. This can be dealt within the scattering approach

to quantum transport in the DC [47] and AC [130] responses. For example, we can cite the

Aharonov-Bohm oscillations arising in small rings [131], the Fabry-Pérot resonances arising

in double-barriers [50] or even the universal relaxation times arising in mesoscopic RC circuits

[132].

The second reason is important even for well de�ned conductors, separated by distances

longer than LΦ. When taking into account the Coulomb interaction, the quantum �uctua-

tions of charge arising in quantum conductors may couple them to their electromagnetic envi-

ronment. In quantum circuits the main electromagnetic environment is the series impedance

seen by the conductor. Therefore, the transport properties of a quantum conductor depend

on the circuit in which it is embedded. This interaction e�ect is called dynamical Coulomb

blockade [133, 134] and can be handled within a (phenomenological) quantum description of

the whole electric circuit (see [46] and references therein).
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In order to understand how the dynamical Coulomb blockade modi�es the usual impedance

composition laws, I will brie�y remind the description of classical circuits. I will further show

how to describe a quantum circuits: First, by presenting the scattering approach to quantum

transport across a quantum conductor. Second, by presenting the quantum description

of a macroscopic circuit. Last, I will discuss the mechanism by which the microscopic

quasiparticles �owing through a quantum conductor couple to the macroscopic degrees of

freedom of the surrounding circuit.

10.1.1 Classical circuits

In classical circuits [135] a circuit element is fully characterized by the constitutive relation

linking its dynamical degrees of freedom, namely the current �owing through it, I, and

the voltage drop across it V . The constitutive relations are usually encapsulated in the

frequency dependent impedances Z(ν), by V (ν) = Z(ν)I(ν), or admittances Y (ν), by I(ν) =

Y (ν)V (ν). The dynamics of a complex circuit follow from the linearity of Maxwell's equations

and Kirscho�'s laws (the nodal law for currents and the string law for voltages). These

constraints determine the classical circuit composition laws: Impedances add in series, while

admittances add in parallel.

Kirscho�'s laws can be seen as kinematic constraints on the circuit's dynamical degrees

of freedom and should not change in a quantum circuit. Indeed, the nodal law follows from

charge conservation, while the string law follows from energy conservation. Nevertheless, it

is the circuit dynamics, and the very description of a single circuit element, that change in

a quantum circuit.

10.1.2 Scattering description of a quantum conductor

A quantum coherent conductor is a conductor whose dimensions are smaller than the elec-

tronic phase coherence length, LΦ
1. At this scale, electron transport can be seen as a

scattering problem for the electronic (Schrodinger) waves [47, 57, 59]. A complete review on

this approach can be found in [48] and [49].

Scattering matrix

As stressed in the introduction, it is a good approximation to neglect Coulomb interactions

in a good conductor, since the low energy quasiparticles of a Fermi liquid are long lived [29].

Strictly speaking, it is therefore a scattering problem for the non-interacting quasiparticles's,

that obey Fermi statistics and carry a discrete charge, e. Nevertheless, transport is fully

1In GaAS/Ga(Al)As 2DEGs, LΦ ≃ 20 µm at 20mK.



10.1 Impedance composition laws in quantum circuits 169

…

COHERENT CONDUCTOR SET OF INDEPENDENT

CONDUCTION CHANNELS

   τ     

i 1-τ 
S =i

L<LΦ

Landauer,

Büttiker,

Martin
i

i

i

i

τi

 i 1-τ

    τ 

Figure 10.1: Scattering description of a quantum conductor Left: Schematic picture

of a quantum conductor. Contacts appear grey, the conductor in green. Two electron paths

are represented (blue, red). Right: Schematic picture of the decomposition in independent

conduction channels [59]. Transmission probability, τi, is represented for an independent

channel's modes block. Within an arbitrary global phase, the scattering matrix block of a

single independent channel mode, i, can be described by the matrix Si.

described by a scattering matrix, S, linking the incoming and outgoing quasiparticles on

both sides to the conductor:

|Ψout,R,Ψout,L >= S|Ψin,R,Ψin,L > (10.1)

where R/L label the right and left side of the conductor, out/in label the outgoing and

incoming waves. And where Ψ can be eventually a tensor product over all the relevant

quantum numbers2, for example:

|Ψout,R >= ⊗n|ψout,R,n > (10.2)

where n represents the relevant quantum numbers spanning the Hilbert space of the outgoing

waves on the right side.

Neglecting interactions, S can be (block) diagonalized [57, 59] in a basis of independent

conduction channels, irrespectively of the complexity of the sample's geometry. This is

pictured in Figure 10.1, where i labels the independent conduction modes. In this basis

any incoming mode is transmitted or re�ected within the same mode, avoiding any mode

mixing. Namely, the anihilation operators of the outgoing independent mode i, b̂i,L/R, are

only related to the incomming �elds in the same mode, âi,L/R, through:(
b̂i,L

b̂i,R

)
= Si

(
âi,L

âi,R

)
(10.3)

2Whose dimensions can be di�erent on either side.
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where Si is the independent mode block matrix shown in Figure 10.1. Si is hermitian due

to time inversion symmetry, and unitary due to charge conservation. Si is therefore com-

pletely characterized by the transmission amplitude
√
τi whose square gives the transmission

probability for the incoming modes âi,L/R.

Current operator

The strong consequence of this decomposition is that the current operator results from a

simple summation over the independent channels' contributions, Î =
∑

i Îi. The Heisenberg

representation of the particle current carried by mode i, Îi, reads (see e.g. [58]):

Îi =
e

h

∫
dϵ1dϵ2

[
â†i,L(ϵ1)âi,L(ϵ2)− b̂†i,L(ϵ1)b̂i,L(ϵ2)

]
ei(ϵ1−ϵ2)t/~

Îi =
e

h

∫
dϵ1dϵ2

{
τ
[
â†i,L(ϵ1)âi,L(ϵ2)− â†i,R(ϵ1)âi,R(ϵ2)

]
+ (10.4)

+ i
√
τ(1− τ)

[
â†i,R(ϵ1)âi,L(ϵ2)− â†i,L(ϵ1)âi,R(ϵ2)

]}
ei(ϵ1−ϵ2)t/~

Therefore, Î depends only on the transmission probabilities of the independent chan-

nels's modes {τi}, and on the boundary conditions determining the incoming modes. The

microscopic complexity of the sample is simply encapsulated in {τi}. However, it does not

depend on the density of states ρ(E), or velocity v(E) = (∂E
∂k

)E), which results from the

decomposition in 1D modes for which ρ(E)v(E) = 1/h [47].

Boundary conditions: reservoirs When the quantum conductor is fed by voltage biased

electron reservoirs, the boundary conditions impose the statistical averages (labeled by<>β):

< â†i,A(ϵ1)âj,B(ϵ2) >β = δijδABδ(ϵ1 − ϵ2)fF,A(ϵ) (10.5)

where fF,L/R are the Fermi-Dirac energy distribution functions at equilibrium with the

electrochemical potentials, eVL/R, applied to the left and right reservoirs: fF,L/R(E) =

1/(1 + exp[β(E − eVL/R)]) and β = 1
kBT

. For simplicity, we will de�ne VL = V and VR = 0.

Dynamics of a quantum conductor

Since the current is now a quantum operator and conduction is probabilistic, the full dy-

namics of the quantum conductor cannot follow anymore from a simple constitutive relation.

However, all statistical cummulants of the current operator can be computed from the scat-

tering matrix. They de�ne the Full Counting Statistics of charge transfer [136] and provide
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a complete description of the probabilistic conductor's dynamics. In this sense, the con-

ductance is the �rst cummulant, the correlation of current �uctuations the second, and so

on.

Conductance Nevertheless, the mean current is still simply related to the voltage bias:

< Î >β =
e

h

∑
i

∫
dEτi[fF,L(E)− fF,R(E)]

=
e2

h

∑
i

τiV (10.6)

= GV,

where the energy dependencies of τi are neglected. The �nal expression de�nes the multi-

channel Landauer formula of conductance [47, 57]

G =
e2

h

∑
i

τi. (10.7)

where it can be seen that conductance is simply the transmission of the incoming modes.

Quantum noise The noise of electron current is characterized by the spectral density of

the symmetrized correlation of current �uctuations

SII(V, ω) =

∫
dteiωt < ∆Î(t)∆Î(0) + ∆Î(0)∆Î(t) >β (10.8)

where ∆Î are the current �uctuations ∆Î = Î− < Î >β. By introducing (10.4) in (10.8),

simplifying using Wick's theorem and using the correlation relations provided by (10.5), one

�nds that in the low frequency limit SII reads [58, 59] (for a review see [48, 49]):

SII(V, 0) =2
e2

h

∑
i

∫
dE

{
τi(1− τi)

[
fF (E − eV )− fF (E)

]2
+

+ τi
[
fF (E)(1− fF (E)) + fF (E − eV )(1− fF (E − eV ))

]}
. (10.9)

The �rst term is null at equilibrium, when eV = 0. Using the property of Fermi functions

f(1− f) = −kBT∂f/∂E, the equilibrium noise reads:

SII(0, 0) = 4
e2

h

∑
i

∫
dEτi

[
fF (E)(1− fF (E))

]
= 4kBT

∂ < Î >β

∂V

= 4kBTG. (10.10)
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The equilibrium noise only traces the thermal �uctuations of the reservoirs and follows the

�uctuation-dissipation theorem.

A zero temperature, only the �rst term in (10.9) contributes. In this limit, noise is

pure shot noise due to the discrete charge partitioning by the scatterer. Such noise is the

result of the quantum correlations build in by the scattering of undistinguishable fermionic

quasiparticles. Neglecting energy dependencies on τi, it reads:

SII(V, 0)T=0 =2
e2

h

∑
i

∫
dEτi(1− τi)

[
fF (E − eV )− fF (E)

]2
= 2

e3|V |
h

∑
i

τi(1− τi) (10.11)

= 2eF | < Î >β |.

The last expression de�nes the Fano factor F as:

F =

∑
i τi(1− τi)∑

i τi
. (10.12)

Since τi < 1, F veri�es F < 1 and shot noise is sub-Poissonian. This is a result of the strong

correlations build by the Pauli principle that tend to regularize the electron �ow [59]. In

particular, perfectly transmitted or re�ected modes do not give rise to shot noise [52, 53].

In conclusion, the scattering approach provides a complete description of non-interacting

quantum conductors. For instance, we have seen that conductance is simply the transmission

of incoming quasiparticles, or that perfectly transmitting conductors do not give rise to

additional current �uctuations.

Now that we dispose of a powerful approach to describe a quantum conductor, let's see

how we can provide a quantum description of a classical linear circuit.

10.1.3 Quantum description of a linear macroscopic circuit

The classical description of electric circuits is already a phenomenological approach that en-

capsulates the complexity of Maxwell's equations in continuous media, in discrete elements.

For instance, a capacitor can be seen as an �electric �eld box� while an inductor as a �mag-

netic �eld box� [137]. This phenomenology can be pushed forward to the quantum level by

identifying the canonical dynamical variables of the circuit and applying to them Dirac's

correspondence principle. Raw as it may seem, this approach can be derived from micro-

scopic electrodynamic considerations (see Appendix in [46]). We will follow [46] to provide

the quantum description of an LC circuit and extend it to general linear circuits. We refer

the reader to [46] for further details.
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LC circuits

The dynamics of a closed LC circuit can be described with a phase ϕ de�ned as

ϕ(t) =
e

~

∫ t

−∞
dt′U(t′), (10.13)

where U is the voltage drop across the capacitor U = Q/C, Q the in�uence charge deposited

on the capacitor plates and C its capacitance. With these notations, the Lagrangian of an

LC circuit, L, reads

L =
C

2

(
~
e
ϕ̇

)2

− 1

2L

(
~
e
ϕ

)2

. (10.14)

which permit to identify ϕ and Q as the canonical degrees of freedom. Applying Dirac's cor-

respondence principle to them results in a commutation relation to their quantum operators:

[ϕ̂, Q̂] = ie. (10.15)

The Hamiltonian of an LC circuit therefore reads

Ĥ =
Q̂2

2C
+

1

2L

(
~
e
ϕ̂

)2

(10.16)

so that the charge (or phase) dynamics are those of an harmonic oscillator of pulsation

ω = 1√
LC

. The Hilbert space is spanned by the occupation number of the oscillator mode.

General linear circuits

A macroscopic linear circuit is characterized by its complex impedance Z(ω) and can be dis-

sipative, so that switching on to the Hamiltonian formalism is not straightforward. However,

already in Nyquist's treatment of equilibrium noise [138], a dissipative circuit of resistance

R was modeled by a transmission line whose characteristic impedance matched R. As a

transmission line can be seen as a series composition of LC circuits, it can be treated within

a conservative framework. More generally, the Caldeira-Leggett theorem [139] ensures that

any linear circuit of arbitrary impedance, Z(ω), can be decomposed in an eventually in�-

nite series of LC circuits of frequencies {ωn}, whose density is given by ℜe[Z(ωn)]. The

Hamiltonian of a capacitor in parallel with a general impedance therefore reads:

ĤC//Z =
Q̂2

2C
+
∑

n

q̂n
2

2Cn

+
1

2Ln

(
~
e
ϕ̂n

)2

. (10.17)

As a consequence of the string law, (10.17) is constrained by ϕ̂ =
∑

n ϕ̂n, so that the phase

across the capacitor ϕ̂ is bilinearly coupled to the oscillator bath . A general linear circuit

is therefore described by a bosonic oscillator bath, whose Hilbert space is spanned by the

occupation numbers of the di�erent oscillator modes.

Now that we know how to describe a macroscopic circuit within a quantum mechanical

framework, we can discuss how do the microscopic excitations �owing through a quantum

conductor may couple to the macroscopic degrees of freedom of the electric circuit.
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10.1.4 Coupling the microscopic to the macroscopic

The coupling between the microscopic and macroscopic degrees of freedom of an electric

circuit is a consequence of the granularity of charge and Coulomb interactions. In the

following we illustrate this coupling in the simplest case where the quantum conductor is a

tunnel junction de�ned in a good conductor. With this picture in mind, and with the tools

presented in the previous sections, we will be able to introduce a phenomenological coupling.

Microscopic picture of tunneling events

A tunnel junction, depicted in Figure 10.2, consists on a insulating barrier separating two

conducting electrodes. The barrier is thin enough so that the incoming quasiparticles have

a (small) probability to tunnel through. Within the scattering approach, such conductor is

in the limit ∀i τi << 1. According to (10.11) and (10.12), its shot noise is Poissonian, so

that tunneling events are scarce and uncorrelated.

For our present purposes, it is however simpler to describe tunnel junctions within a

tight-binding model de�ned by the Hamiltonian

Ĥ = ĤL + ĤR + Ĥe
T (10.18)

where ĤL/R =
∑

k ϵk,L/Râ
†
k,L/Râk,L/R describe free quasiparticle on the left/right electrodes

and where the barrier is modeled by a point like tunneling hamiltonian

Ĥe
T =

∑
kl

Tklâ
†
k,Râl,L − T †klâ

†
k,Lâk,R (10.19)

where the transmission Tkl amplitudes are small.

Since we are dealing with a good conductor, electric �elds within the electrodes are

screened and the quasiparticles can be pictured as plain electrons dressed by a neutralizing

polarization cloud. However, the polarization cloud results from the in�uence of many

electrons, and the transmissions |Tkl|2 are low, so that only the plain electrons can tunnel

through the barrier. By taking a look to Figure 10.2, one can see that, in consequence, an

in�uence charge Q matching the discrete charge e is deposited on the barrier plates, at every

tunneling event.

Phenomenological coupling

Environment hamiltonian The insulating barrier de�nes a geometrical capacitance C,

so that Q sees an electric circuit de�ned by the parallel composition of the geometrical

capacitance C and the series impedance, Zseries(ω) , characterizing the circuit used to bias the

barrier. Therefore, the hamiltonian describing the macroscopic environment of the tunneling

electrons, Ĥenv, is given by (10.17).
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tt

Figure 10.2: Microscopic picture of a charge transfer across a tunneling barrier.

Schematic description of a quasiparticle (plain electron: red, polarization cloud: blue) tunnel-

ing through a barrier (light gray). After the single charge transfer, the incoming polarization

cloud is deposited on one side to the barrier, while the same amount is removed on the op-

posite plate. An in�uence charge e is deposited on the plates of the barrier, thus charging

its geometrical capacitance.

Coupling According to the commutation relation (10.15), a charge kink of discrete value

e on Q̂ is described by the translation operator in charge space e−iϕ̂. Therefore, the coupling

between the tunneling quasiparticles and their electromagnetic environment can be simply

obtained by introducing this translation operator in Ĥe
T (10.19):

ĤT =
∑
kl

Tklâ
†
k,Râl,Le

−iϕ̂ − T ∗klâ
†
k,Lâk,Re

+iϕ̂ (10.20)

The resulting problem for tunnel junctions is described by the total Hamiltonian

Ĥ = ĤL + ĤR + ĤT + Ĥenv, (10.21)

where ĤT not only couples quasiparticles on both electrodes, but also couples the quasipar-

ticle tunneling to the electromagnetic modes of the circuit described by Ĥenv. In this model,

the in�uence of a voltage source, V , manifests in the electrode hamiltonians ĤL/R so that

ϵk,L = ϵk,R + eV (10.22)

The canonical theory of the dynamical Coulomb blockade permits to calculate the mean

current of this problem, which we are going to see in the following section.
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Range of validity Note that this approach can be built upon microscopic considerations

of the electrodynamics triggered by tunneling events, but does not hold for all possible

geometries (Appendix in [46]). First, the approach is justi�ed if the characteristic time that

takes to homogenize the in�uence charge Q on the capacitor plates is smaller than the other

characteristic timescales. Second, it applies only in the case of �short� junctions, so that the

tunneling time can be also be neglected. If it is not the case, the e�ective impedance seen

by the tunneling electrons is renormalized [140].

10.2 Dynamical Coulomb blockade

The dynamical Coulomb blockade theory was initially developed for tunnel junctions in the

early 90's [133, 134] and has been thoroughly investigated in small [141, 142] and large [143,

144] tunnel junctions during the 90's. Anticipating the results, the single charge transfers

across the barrier may excite the modes of the electromagnetic environment. Quasiparticle

tunneling becomes inelastic and therefore there are fewer available states to tunneling. The

current is blocked so that the di�erential conductance exhibits a dip at low biases and

temperatures. Since higher impedance lead to stronger dissipation, the conductance dip is

deeper for higher environment impedance. At the end of this section, we will discuss the

general case of an arbitrary quantum conductor which has only been predicted recently [5, 6]

in the limit of low impedance environments.

10.2.1 Dynamical Coulomb blockade of tunnel junctions

Tunnel junctions are easy to deal with theoretically since the coupling Hamiltonian HT

de�ned by (10.20) is �small� and can be taken as a perturbation to the total hamiltonian Ĥ.

This means that the quasiparticle transition rates across thee barrier,
−−−→
Γ(V ) and

←−−−
Γ(V ), can

be computed from the Fermi golden rule. Finally, the mean current is simply obtained from

the transition rates through < I(V ) >= e
[−−−→
Γ(V )−

←−−−
Γ(V )

]
.

Transition rates

In order to calculate the transition rates, we follow reference [46]. The starting point is the

Fermi golden rule with respect to ĤT giving the rate for the i→ f transition:

Γi→f =
∑
i,f

2π

~
| < f |ĤT |i > |2δ(Ei − Ef ) (10.23)

This expression can be calculated assuming that |i/f > are equilibrium states. This ap-

proximation means that the charge relaxation time should be shorter than the time between

two tunneling events. In this limit, |i/f >= |E > |R > are tensor products of equilibrium
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quasiparticle states |E >, labeled by their energy, and equilibrium environment states |R >

spanned by thermal occupations of the oscillator bath (10.17).

The transition rate for electrons tunneling from left to right therefore reads:

−→
Γ (V ) =

2π

~
∑
E,E′

∑
k,l

| < E ′|Tklâ
†
k,Râl,L|E >β |2×

×
∑
R,R′

| < R|e−iϕ̂|R′ >β |2δ(E + ER − E ′ − ER′). (10.24)

which is a product of a quasiparticle and an environment terms constrained by energy con-

servation.

A straightforward calculation shows that the quasiparticle term is∫
dϵkdϵl

∑
k,l

|Tkl|2fF,L(ϵl)[1− fF,R(ϵk)]. (10.25)

It is the simple summation over the joint probabilities to �nd a quasiparticle in state l and

energy ϵl on the left electrode, to �nd an empty space on state k and energy ϵk on the right

electrode, weighted by the transmission probability between both states. The summation

over k, l can be averaged when neglecting the energy dependencies on tunneling probabilities.

This de�nes a tunneling conductance

GT =
2πe2

~
∑
k,l

|Tk,l|2. (10.26)

The environment term is more engaging. Nevertheless, it is simply a function of ϵl − ϵk,
so that (10.24) can be written in the appealing form:

−→
Γ (V ) =

GT

e2

∫
dϵldϵkfF,L(ϵl)[1− fF,R(ϵk)]P (ϵl − ϵk) (10.27)

Where P (ϵ) encompasses the environment term, and where following (10.22), we have

fF,L(ϵl) = fF (ϵl − eV ) and fF,R(ϵk) = fF (ϵk). This equation shows that P (ϵ) is the proba-

bility that a tunneling electron gives an amount of energy ϵ to the environment, as depicted

in Figure 10.3. On the contrary, P (−ϵ) is the probability that it receives an energy ϵ from

the environment. This probability can be expressed with the help of the phase correlation

function3 J(T ) :

J(T ) =< ϕ̂(t)ϕ̂(0)− ϕ̂(0)2 >β (10.28)

so that P (ϵ) is the Fourier transform of eJ(t) [46]:

P (ϵ) =
1

2π

∫
dteJ(t)eiϵt/~. (10.29)

3Since the equilibrium density matrix of the environment has a gaussian measure in the ϕ representation,

all equilibrium dynamical quantities can be expressed by the �rst and two moments of ϕ̂.
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The phase correlation function J(t) can be obtained [46] from the �uctuation-dissipation

theorem, yielding to:

J(t) = 2

∫ ∞
0

dω

ω

ℜe[Zenv(ω]

RQ

{
coth

(
1

2
β~ω

)
[cos(ωt)− 1]− i sin(ωt)

}
, (10.30)

where RQ = h
e2 ≃ 25.8 kΩ, and where the environment impedance Zenv is the parallel

composition of the barrier's capacitance, C, and the series impedance, Zseries(ω), describing

the circuit used to bias the junction:

Zenv =
Zseries(ω)

1 + iωZseries(ω)C
(10.31)
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Figure 10.3: Transport across tunnel junctions. a Tunnel junction biased through perfect

leads. Left: electric scheme. Middle: Tunneling events are elastic, their number is propor-

tional to the transport window de�ned by the reservoir populations. Right: The resulting

di�erential conductance GT = ∂I/∂V , de�ned by (10.26), is independent of the bias. b Tun-

nel junction biased through a series impedance. Left: electric scheme, the series impedance

dissipates some of the energy carried by the tunneling electrons. Middle: Tunneling events

are inelastic, reducing the phase space available to transport at low energies. Right: The

resulting di�erential conductance G(V ) develops a dip at low energies. At high energies, the

intrinsic GT is recovered.
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Properties of P (ϵ)

Normalized P (ϵ) can indeed be considered a probability since it is correctly normed∫
dϵP (ϵ) = eJ(0) = 1.

Charging energy P (ϵ) obeys the sum rule∫
dϵϵP (ϵ) = i~J ′(0) =

e2

2C
.

The maximum energy that a tunneling electron can exchange with its electromagnetic envi-

ronment is indeed given by the single electron charging energy of the capacitor.

Detailed balance P (ϵ) obeys a detailed balance equation

P (−ϵ) = e−βϵP (ϵ). (10.32)

The probability for a tunneling electron to excite the environment is therefore larger than

the probability for the opposite energy transfer by a Boltzmann factor. In particular, a

tunneling electron cannot absorb any energy from a zero temperature environment.

Direct bias When the junction is biased by perfect leads, the phase ϕ is �xed by the

voltage source, V , ϕ = e
~V t and displays no quantum �uctuations (there is no dissipation).

J(t) is therefore null and P (ϵ) = δ(ϵ) so that electron tunneling is elastic. One recovers the

usual tunneling rates for elastic tunneling:

−→
Γ (V ) =

GT

e2

∫
dϵfF (ϵ− eV )[1− fF (ϵ)] (10.33)

Low impedance limit In the low impedance limit, ℜe[Zenv(ω)] << RQ, P (ϵ) can be

simpli�ed by expanding the exponential to its �rst order eJ(t) ≃ 1 + J(t). This expansion

consists in neglecting all multi-photon energy transfers.

P (ϵ) reads in this limit:

P (ϵ) = δ(ϵ) +
2

ϵ

ℜe[Zenv(ϵ/~)]

RQ

2

1− e−βϵ
(10.34)

which is the sum of an elastic and a single photon emission contributions.

Conductance

The mean current is obtained using < I(V ) >= e[
−→
Γ (V )−

←−
Γ (V )] where

←−
Γ (V ) =

−→
Γ (−V ) by

the symmetry of the problem. The di�erential conductance G(V ) = ∂I
∂V

is therefore obtained

from (10.27):

G(V )

GT

=

∫∫
dEdE ′fF (E)

[
− ∂fF

∂E
(E ′ − eV )− ∂fF

∂E
(E ′ + eV )

]
P (E − E ′) (10.35)
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It is useful to de�ne the environment corrections to the tunneling conductance δG ≡ G(V )−
GT . Using (10.35) one gets:

δG

GT

(V ) =

∫
dEfF (E)

∫
dϵP (ϵ)

∂[fF (E + eV + ϵ)− fF (E + eV − ϵ)]
∂E

. (10.36)

Zero temperature limit Using the detailed balance relation (10.32) it can be shown [46]

that in the zero temperature limit:

G(V ) = GT

∫ e|V |

−∞
dϵP (ϵ) (10.37)

where it is clear that G(±∞) = GT . The consequent dynamical Coulomb blockade correction

to the tunneling conductance is therefore:

δG

GT

(V ) = −
∫ +∞

e|V |
dϵP (ϵ). (10.38)

This relations result from the fact that a zero temperature: i) The environment can only

absorb energy (10.32). ii) Tunneling electrons cannot emit energies higher than eV due to

their Fermi-Dirac statistics. It also demonstrates that the corrections to conductance, which

is a DC property, depend on the environment's impedance at the high frequencies de�ned

by hν > eV .

Zero bias conductance drop: low impedance limit Using the low impedance limit of

P (ϵ), the conductance correction (10.36) can be found at zero bias :

δG

GT

(V = 0, T ) =

∫ +∞

0

dϵβ
ℜe[Z(ϵ/~)]

ϵRQ

sinh(βϵ)− βϵ
sinh2(βϵ/2)

(10.39)

It is noteworthy that in this single photon exchange limit, the temperature dependence of

δG/GT only depends on the quasiparticle Fermi functions. One sees in (10.39) that the

blockade is due to the environment impedance at frequencies hν > kBT .

Temporal representation Following equations (10.29), (10.30) and (10.35) one needs to

perform four successive integrals in order to calculate G(V ) from the environment impedance

Zenv. However, the conductance can be directly related to J(t) [145], reducing the number

of integrations to two:

δG

GT

(V ) = 2

∫ +∞

0

dt

~β
πt

~β
ℑm
[
eJ(t)

]
cos( eV t

~ )

sinh2( πt
~β

)
(10.40)

RC circuits

When the tunnel junction is biased through a series resistance Zenv(ω) simply reads:

ZRC
env(ω) =

R

1 + iωRC
(10.41)
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Zero temperature limit In the limit of zero temperature, the conductance correction

(10.38) corresponding to the environment impedance (10.41) can be found analytically. It

yields to: (
δG

GT

)
RC

(V, T = 0) = − R

RQ

ln

(√
1 +

(
~

eRCV

)2
)

(10.42)

The conductance therefore develops a dip at low biases having a logarithmic bias dependence.

The zero temperature dip's amplitude is found to scale with the series resistance.

Zero bias conductance drop: low impedance limit In a low resistance RC circuit, we

can use (10.39) for the evaluation of the conductance drop at zero bias. It depends only on

the normalized temperature βEC , with EC = e2

2C
being the single electron charging energy

of the barrier and on the ration R/RQ. It reads:

δG

GT

(V = 0, T )RC =

∫ +∞

0

R

RQ

1

1 +
(
π R

RQ

ϵ
βEC

)2

(
coth(ϵ/2)

ϵ
− 1

sinh2(ϵ/2)

)
dϵ (10.43)

where it can be seen that the blockade correction is null in the high temperature limit

kBT >> EC . A typical dilution fridge temperature 30 mK corresponds to a capacitance of

about 30 fF.

Approximating the RC dependence by a hard low pass dependence
(
1+
(
π R

RQ

ϵ
βEC

)2)−1

∼
1−Θ(ϵ− βEC

πR/RQ
) one obtains the approximate expression:

δG

GT

(V = 0, T )RC ≃ 2
R

RQ

ln

(
βEC

πR/RQ

)
+ α, (10.44)

where α is independent of temperature. The logarithmic dependence can be used to make

quick estimations of the RC circuit parameters from a measured temperature dependence of

δG(V = 0).

The canonical dynamical Coulomb blockade theory is found to provide a complete com-

prehension of the impedance composition laws for a tunnel junction embedded in a generic

linear circuit. This theory can be extended in order to take into account �nite size e�ects

corresponding to long tunnel junctions, where the capacitor's charge homogenization time

cannot be neglected [143], or to take into account the transversal time of tunneling electrons

[140]. However, it cannot be applied to general quantum conductors having arbitrary (not

small) transmission probabilities. In the following we are going to see a recent generalization

to quantum conductors that works in the low impedance environment limit.

10.2.2 Dynamical Coulomb blockade of quantum conductors

Only recently the dynamical Coulomb blockade has been worked out for the case of a short

quantum conductors whose transversal time can be neglected. Since a general conductor
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cannot be treated as a perturbation it is a di�cult problem. This di�culty has been cir-

cumvented [5, 6] by taking the limit of a low impedance circuit, for which the quantum

�uctuations of phase are small (see equations (10.28) and (10.30)). In this limit, the cor-

rections to the conductance of a quantum conductor are found to exhibit the same bias,

temperature and environment impedance dependence as those found for tunnel junctions

(10.35) or (10.26). However, they are renormalized in amplitude by the same Fano factor F

(10.12) that also renormalizes the amplitude of shot noise (10.11) with respect to that of a

tunnel junction (for which F = 1).

Coupling hamiltonian for small phase �uctuations

In order to sketch the derivation of this strong result, we are going to follow [51] in the

simplest case of a single scattering mode. Using the notations of the scattering approach,

the coupling hamiltonian can be written as:

Ĥscatt =

∫∫
dϵ1dϵ2

√
τ
[
b̂†R(ϵ1)âL(ϵ2)e

−iϕ + b̂†L(ϵ1)âR(ϵ2)e
+iϕ
]
. (10.45)

where the electromagnetic environment is introduced as a C-number. The particle current

operator found in (10.4) therefore follows the Hamilton equation Î = e
~

(
∂Ĥscatt

∂ϕ

)
ϕ=0

. In

consequence, if the phase �uctuations ϕ are small we have Ĥscatt = Ĥscatt(ϕ = 0)+δĤscatt(ϕ).

In order to obtain the quantum �uctuations of ϕ we treat it as an operator and obtain

δĤscatt =
~
e
ϕ̂

[
Î0 +

ϕ̂2

2

(∂Î
∂ϕ

)
ϕ=0

]
, (10.46)

so that the �nal problem reads

Ĥ = Ĥ0 + δĤscatt (10.47)

where H0 is the hamiltonian describing uncoupled conductor and environment.

The current operator is also perturbed by the phase �uctuations:

Î(ϕ) =
e

h

∫
dϵ1dϵ2e

i(ϵ1−ϵ2)t/~

{
τ
[
â†i,L(ϵ1)âi,L(ϵ2)− â†i,R(ϵ1)âi,R(ϵ2)

]
+ (10.48)

+ i
√
τ(1− τ)

[
â†i,R(ϵ1)âi,L(ϵ2)e

−iϕ − â†i,L(ϵ1)âi,R(ϵ2)e
+iϕ
]}

which can be expanded as Î0 + δÎ

δÎ = ϕ̂
(∂Î
∂ϕ

)
ϕ=0

+
ϕ̂2

2

(∂2Î

∂ϕ2

)
ϕ=0

(10.49)

The �rst and second derivatives of Î are simply found from (10.48).(∂Î
∂ϕ

)
ϕ=0

=
e

h

∫
dϵ1dϵ2e

i(ϵ1−ϵ2)t/~
√
τ(1− τ)

[
â†i,R(ϵ1)âi,L(ϵ2) + â†i,L(ϵ1)âi,R(ϵ2)

]
(∂2Î

∂ϕ2

)
ϕ=0

= i
e

h

∫
dϵ1dϵ2e

i(ϵ1−ϵ2)t/~
√
τ(1− τ)

[
â†i,R(ϵ1)âi,L(ϵ2)− â†i,L(ϵ1)âi,R(ϵ2)

]
(10.50)
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Correction to current

Since δHscatt is �small� we can calculate the correction to the mean current of the coupled

problem < δÎ(t) >=< e−iĤt/~δÎeiĤt/~ > with a perturbative expansion on δĤscatt. Up to

second order on ϕ, it reads [51]:

< δÎ(t) > =< δĨ(t) >β +
1

i~

∫ ∞
0

dτ <
[
Ĩ0(t+ τ) + δĨ(t+ τ), δH̃scatt(t)

]
>β +

− 1

~2

∫ ∞
0

∫ τ

0

dτdτ ′ <
[[
Ĩ0(t+ τ), δH̃scatt(t+ τ ′)

]
, δH̃scatt(t)

]
>β (10.51)

where <>β denotes an average on the uncoupled equilibrium states, and where the tilde de-

notes the interaction representation Ã = e−iĤ0t/~ÂeiĤ0t/~. In order to carry this calculation,

we assume a stationary state.

The �rst term is null according to (10.50). Realizing that [Î0(t1), Î0(t2)] = 0 for an energy

independent transmission, the second term also vanishes. The last term yields to the �nal

expression for the correction to the mean current:

δI = τ(1− τ) e
~

∫ +∞

−∞
dt

[
e−i(ϵ1−ϵ2)t/~ < ϕ̃(t)ϕ̃(0)− ϕ̃(0)2 >β ×

×
∫∫

dϵ1dϵ2

{
fL(ϵ1)

[
1− fR(ϵ2)

]
− fR(ϵ1)

[
1− fL(ϵ2)

]}]
. (10.52)

Realizing that e2

h
τ is the conductance of the uncoupled scatterer, and that the �rst term is

the Fourier transform of J(t), this correction is directly proportional to the one that would

exhibit a tunnel junction in a low impedance environment, which can be directly extracted

from (10.27). The proportionality factor is simply the Fano factor for one mode F = 1− τ .
This result can be generalized to a multimode scatterer resulting in the relation [5, 6]:(δG

G

)
{τi}

= F ({τi})
(δG
G

)
{τi≪1}

. (10.53)

The relative corrections to the conductance of a quantum conductor are those that would

arise for a tunnel junction in the same environment, but renormalized in amplitude by the

conductor's Fano factor F ({τi}) =
∑

i τi(1−τi)∑
i τi

.

This strong prediction has been tested in atomic contacts [51] where it was found that

the corrections to conductance due to an electromagnetic environment where starkly reduced

when the contact's transmission probabilities approached one. However, a quantitative test

of the full transmission dependence of the theory has been missing.

10.3 Experimental test of the dynamical Coulomb block-

ade theory for short coherent conductors

In order to test the dynamical Coulomb blockade theory for short coherent conductors, we

have used a model quantum conductor (we have chosen a quantum point contact, QPC)
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whose transmission coe�cients, and therefore its Fano factor, can be tuned in situ. We

have embedded it in a tunable circuit whose series resistance can be selected between two

di�erent resistances and a high frequency shorting path. By selecting the short circuit

path, we have been able to characterize the QPC transmissions when the corrections due

to the environment are negligible. After this, we have been able to trigger and measure

the environment corrections by selecting a higher series resistance. We have measured the

resulting changes in the QPC conductance as a function of its Fano factor F . We obtain

a quantitative agreement with the theory, giving solid grounds to our understanding of

impedance composition laws in quantum circuits.

10.3.1 Published article

I hereby reproduce the article published in the Physical Review Letters detailing our exper-

iment.

Our approach is novel in the sense that we do not extract the dynamical Coulomb block-

ade from G(V ) curves as is usually done in tunnel junctions or atomic contacts. We measure

instead how di�erent electromagnetic environments modify the zero bias conductance of the

same conductor δG(V = 0, T ). This allows us to extract the environment corrections with-

out biasing, and therefore without heating the sample. The electronic temperature being

known, it is easier to compare our signal to the theoretical prediction (10.53).

I will afterwards give further details on the capacitive cross-talks and the universal con-

ductance �uctuations arising in our sample and limiting our approach. I will further detail

the the numerical estimation of the QPC geometric capacitance needed to perform a quan-

titative comparison with the theories predictions.
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We observed the recently predicted quantum suppression of dynamical Coulomb blockade on short
coherent conductors by measuring the conductance of a quantum point contact embedded in a tunable on-
chip circuit. Taking advantage of the circuit modularity we measured most parameters used by the theory.
This allowed us to perform a reliable and quantitative experimental test of the theory. Dynamical Coulomb
blockade corrections, probed up to the second conductance plateau of the quantum point contact, are
found to be accurately normalized by the same Fano factor as quantum shot noise, in excellent agreement
with the theoretical predictions.
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A tunnel junction exhibits a drop of its conductance at
low voltages and temperatures when it is embedded in a
resistive circuit, in violation of the classical impedances
composition laws. This quantum phenomenon, known as
dynamical Coulomb blockade (DCB), results from the
excitation of the circuit’s electromagnetic modes by the
current pulses associated with tunnel events. The theory is
well understood and verified experimentally for tunnel
junctions [1–5], but it is only recently that it has been
extended to short coherent conductors [6]. The strong
recent prediction is that DCB corrections are simply re-
duced by the same normalization factor as quantum shot
noise, as a consequence of electron flow regulation by the
Pauli exclusion principle [7,8]. The aim of this work is to
perform an accurate experimental test of the DCB theory
for coherent conductors and thereby to provide solid
grounds to our knowledge of impedances composition
laws in mesoscopic circuits.

A powerful description of coherent conductors in ab-
sence of interactions is provided by the scattering ap-
proach, which encapsulates the complexity of transport
mechanisms into the set f�ng of transmission probabilities
across the conduction channels indexed by n. In short
conductors, the energy dependence of f�ng can be ne-
glected provided that h=�dwell � kBT, eVSD, where �dwell

is the dwell time in the conductor, T the temperature and
VSD the applied voltage [9]. The conductance then reads
G � GQ

P
n�n, with GQ � 2e2=h the conductance quan-

tum, and the current shot noise at zero temperature is SI �
2eIF, where 2eI is the Poissonian noise and F �P
n�n�1� �n�=

P
n�n is the Fano factor. More generally,

the full counting statistics of charge transfers can be for-
mulated with f�ng [8]. How is this picture modified by
Coulomb interaction? First, the low energy excitations
are transformed from electrons to Fermion quasiparticles
of finite lifetime which thereby limits the coherent extent
of conductors [10]. Second, Coulomb interaction couples a
coherent conductor to the circuit in which it is embedded,
which results in the DCB. In practice, DCB corrections
reduce the transmission probabilities at low energies. The

theory of DCB has first been worked out for small tunnel
junctions of resistance large compared to the resistance
quantum RK � h=e2 ’ 25:8 k� and embedded in macro-
scopic linear circuits characterized by a frequency depen-
dent impedance Zenv��� [1,3]. The theory has been found in
excellent agreement with experiments [2], and, more re-
cently, extended to low impedance [4] and long [5] tunnel
junctions. From a theoretical standpoint, tunnel junctions
are easy to deal with since they can be treated perturba-
tively. The generalized DCB theory to short coherent con-
ductors, whose transmission probabilities can take any
value between 0 and 1, assumes instead that quantum
fluctuations are small. This hypothesis limits its validity
to low environmental impedance Re�Zenv���� � RK. The
striking prediction is that the amplitude of DCB correc-
tions to the conductance of coherent conductors is reduced
relative to tunnel junctions by the same Fano factor as
quantum shot noise [6]. Further theoretical investigations
concluded that a similar relation holds more generally
between the Coulomb corrections to the nth cumulant of
current fluctuations and the (n	 1)th cumulant [11].
Experimentally, a pioneer work performed on an atomic
contact showed that DCB corrections are strongly reduced
when the transmission probability approaches 1, in quali-
tative agreement with the theory [12]. However, as pointed
out by the authors of [12]: ‘‘it (was) not possible to con-
clude whether or not (the theory) is quantitatively correct.’’
Indeed, at large transmissions, relatively large universal
conductance fluctuations were superimposed on the DCB
signal whereas, in the tunnel regime, the set of transmis-
sion probabilities could not be extracted reliably due to
significant DCB corrections. Up to now a quantitative test
of the dynamical Coulomb blockade theory for a coherent
conductor was missing. The present experiment fills this
gap.

In this experiment, we have measured the variations in
the resistance of a quantum point contact (QPC) realized in
a 2D electron gas (2DEG) while changing the adjustable
on-chip circuit in which it is embedded. The conduction
channels of a QPC are directly related to the 1D subbands
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quantized by the transverse confinement [13]. By reducing
the confinement with voltage biased top gates, the trans-
mission probabilities of the conduction channels are in-
creased continuously and, for adequate geometries [14],
one channel at a time. Consequently, the QPC’s conduc-
tance GQPC � �n	 �n	1�GQ corresponds to n channels
fully transmitted and one channel of transmission proba-
bility �n	1. The knowledge of the transmission probabil-
ities combined with the ability to change them con-
tinuously make of a QPC a powerful test-bed for short
coherent conductors [15]. As described later, we can
change in situ the circuit surrounding the QPC using
voltage biased metallic top gates to deplete the 2DEG
underneath. It is by monitoring the QPC’s resistance as a
function of the circuit impedance that we can extract
accurately the amplitude of DCB corrections.

The measured sample, shown in Fig. 1, was realized in a
GaAs=Ga�Al�As heterojunction. The 2DEG is 94 nm deep,
of density 2:5
 1015 m�2, Fermi energy 100 K and mo-
bility 55 m2 V�1 s�1. The sample was patterned using
e-beam lithography followed by chemical etching of the
heterojunction and by deposition of metallic gates at the
surface. The QPC is formed in the 2DEG by applying a
negative voltage VQPC to the metallic split gates shown in
Fig. 1(b). Two stripes of width 1:4 �m and 3:8 �m [16],
and of length 100 �m, much longer than the electron
phase coherence length L� � 10 �m, were patterned in
the 2DEG by chemical etching to form an on-chip resist-
ance in series with the QPC. Measurements were per-
formed in a dilution refrigerator of base temperature
T � 40 mK. All measurement lines were filtered by com-

mercial �-filters at the top of the cryostat. At low tem-
perature, the lines were carefully filtered and thermalized
by arranging them as 1 m long resistive twisted pairs
(300 �=m) inserted inside 260 �m inner diameter CuNi
tubes tightly wrapped around a copper plate screwed to the
mixing chamber. The sample was further protected from
spurious high energy photons by two shields, both at base
temperature. Conductance measurements were performed
using standard lock-in techniques at excitation frequencies
below 100 Hz. The sample was current biased by a voltage
source in series with a 10 M� or 100 M� polarization
resistance at room temperature. Voltages across the sample
were measured using low noise room temperature ampli-
fiers. The source (S)-drain (D) voltage was kept smaller
than kBT=e to avoid heating. We applied a small perpen-
dicular magnetic field B � 0:2 T [17] to minimize non-
ideal behaviors of the QPC such as sharp energy
dependence of the transmissions resulting from Fabry-
Pérot resonances with nearby defects, and imperfect trans-
missions across ‘‘open’’ channels.

In our experiment the QPC is embedded in an electro-
magnetic environment schematically represented as a
R==C circuit in Fig. 1(c). The parallel capacitance (C) is
the geometrical capacitance between the source electrode
(S) and the vertical near rectangular conductor on the right
side of the QPC. If the short circuit electrode (SC) is
disconnected (VSC <�0:3 V), the on-chip series resist-
ance can take two values RS � 1:2 k� and 7 k� depend-
ing on whether the wider 2DEG stripe is, respectively,
connected (VR � 0) or disconnected (VR � �0:35 V), us-
ing the metal gate voltage VR as a switch. If the SC
electrode is connected (VSC ’ 0), it acts as a low imped-
ance (RSC) high frequency path to ground in parallel with
RS. Note that DCB reduces the dc conductance of a coher-
ent conductor but that these DCB corrections depend on
the impedance of the electromagnetic environment at high
frequencies, typically �� kBT=h 2 �0:8; 4� GHz for T 2
�40; 200� mK. Consequently, while the SC electrode is
connected at room temperature to a high input impedance
voltage amplifier, at high frequencies its impedance is
expected to be reduced to the on-chip resistance of the
SC electrode plus, approximately, the vacuum impedance
377 � due to antenna effects on length scales larger than a
fourth of the electromagnetic wavelength. This is symbol-
ized in Fig. 1(c) by a high frequency impedance RSC in
series with a capacitor that acts as a high frequency short
circuit.

The experiment was performed as follows: (i) We first
selected a series resistance RS � 1:2 k� or 7 k� with VR.
(ii) With the short circuit electrode (SC) connected (VSC ’
0), we tuned the QPC with VQPC. In this configuration the
DCB corrections are minimum because the series resist-
ance RS is shorted at high frequency by RSC. Since the SC
electrode is disconnected from ground at the near DC
frequencies applied to measure the sample, it could be
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100µm

B=0.2T

C

FIG. 1. (a) E-beam micrograph of the sample tailored in a
GaAs=Ga�Al�As heterojunction. The 2DEG is patterned by
chemical etching, etched areas are darker. Active top metal gates
are colorized in the lighter gray. Electrode labels S, D and SC
stand, respectively, for source, drain and short circuit.
(b) Magnified view of the metallic split gate used to tune the
QPC. (c) Schematic representation of the sample.
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used to measure separately the QPC and the series resis-
tances. (iii) We then disconnected the SC electrode by
applying a negative voltage VSC, therefore increasing the
high frequency circuit impedance and consequently the
DCB corrections. By simultaneously measuring the varia-
tions of the source (S)-drain (D) resistance, which is the
sum of the QPC and the series resistance, we can extract
the amplitude of DCB corrections.

Figure 2 shows �R, the resistance variation of the QPC
plus the series resistance from their values at VSC �
�0:8 V, plotted versus VSC at GQPC�VSC � 0� � 0:5GQ,
T � 40 mK and B � 0:2 T for RS � 1:2 k� and 7 k�.
The dependence of �R with VSC results from two contri-
butions: (i) At VSC <�0:3 V the SC electrode is discon-
nected and �R is a linear function of VSC with a negative
slope that does not depend on RS. This is a consequence of
the capacitive cross talk between the metal gate controlled
by VSC and the QPC. We have checked (data not shown)
that this slope, which is a nonmonotonic function of VQPC,
is proportional to the derivative of the QPC’s resistance
with VQPC. The normalization factor ’ 10�3 is in rough
quantitative agreement with the sample geometry. (ii) For
VSC >�0:3 V we observe, on top of the linear capacitive
cross talk, a sudden drop when VSC increases. We attribute
this resistance drop, written hereafter �RDCB, to the reduc-
tion of DCB corrections as the parallel high frequency
short circuit electrode SC gets connected. As expected,
�RDCB is larger in the more resistive environment RS �

7 k�. In the following we extract �RDCB by measuring
the QPC in series with RS successively at VSC � �0:1 V
(SC electrode connected) and VSC � �0:33 V (SC elec-
trode disconnected). We then subtract the capacitive cross
talk contribution obtained from �R�VSC � �0:56 V� �
�R�VSC � �0:33 V�.

Figure 3 shows as symbols the measured temperature
dependence of the DCB signal at GQPC�VSC � �0:1 V� �
0:33GQ for RS � 1:2 k� and 7 k�. The continuous lines
are predictions of the DCB theory for tunnel junctions [3],
normalized by the one-channel Fano factor F �
1�GQPC=GQ ’ 0:67. The schematic R==C circuit model-
ing the QPC’s electromagnetic environment is shown in
Fig. 1(c). The real part of its impedance plugged into the
theory reads Re�Zenv���� � R=�1	 �2�RC��2�. The cal-
culated �RDCB is the difference in the amplitude of DCB
corrections for open and closed short circuit switch. The
corresponding circuit resistance R is, respectively, R � RS
and R � 1=�1=RS 	 1=RSC�. The only fit parameter in our
calculation is the SC high frequency impedance that we
fixed at RSC � 1 k�, in agreement with the sum of the on-
chip SC resistance estimated from the geometry to 600�
100 � and the vacuum impedance 377 �. Other parame-
ters plugged into the DCB calculation are the measured
series resistances RS � 1:2 k� or RS � 7 k� and the
geometrical capacitance C � 30 fF estimated numerically
with an accuracy of �5 fF [18]. The very good agreement
between data and theoretical predictions provides a strong
support to our interpretation and allows us to now compare
the measured dependence of DCB on transmission proba-
bilities with the predicted Fano reduction factor.
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FIG. 2. Resistance variation �R of the QPC in series with the
on-chip resistance RS � 1:2 k� (�) or RS � 7 k� (�) plotted
versus the voltage VSC that controls the high frequency short
circuit (SC) switch [see Fig. 1(c)]. For VSC <�0:3 V the SC
switch is open and �R exhibits a linear dependence with VSC due
to the direct capacitive cross talk with the QPC. The DCB signal
�RDCB is the difference between the resistance measured at
VSC ’ 0 (SC switch closed) and the resistance measured for an
open SC switch taking into account the linear capacitive con-
tribution (dashed line).
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To test the generalized dynamical Coulomb blockade
theory, we measured the relative amplitude of DCB cor-
rections versus the QPC conductance at 40 mK and for
RS � 1:2 k� [19] (see Fig. 4). The predictions depend on
the set f�ng, it is therefore crucial to extract accurately the
transmissions probabilities of the QPC. The inset in Fig. 4
shows the QPC conductance up to 2GQ versus the split gate
voltage VQPC, measured at T � 40 mK and B � 0:2 T. We
subtracted 350 � from the data to account for the residual
DC series resistance by adjusting the first three pla-
teaus on multiples of the conductance quantum [20].
From the maximum deviation between our data and the
best fit (continuous line in inset of Fig. 4) using Büttiker’s
model of QPCs [14], we estimate our accuracy on the
transmission probabilities f�1 � min�1; GQPC=GQ�; �2 �

max�0; GQPC=GQ � 1�g to be better than 0.05. The continu-
ous line in Fig. 4 shows the relative amplitude of DCB as
predicted by theory [6]. We observe an excellent quantita-
tive agreement between the data and the Fano factor F �
��1�1� �1� 	 �2�1� �2��=��1 	 �2� that controls quan-
tum shot noise [15].

To conclude, we have performed a quantitative experi-
mental test of the generalization of dynamical Coulomb
blockade theory to short coherent conductors embedded in
low impedance circuits. We find dynamical Coulomb
blockade corrections that are reduced in amplitude by the
same Fano factor as quantum shot noise, in quantitative
agreement with the predictions. This result is not only
important within the fundamental field of quantum electro-
dynamics in mesoscopic circuits. It also provides solid
grounds to engineer complex devices with coherent con-
ductors and to use dynamical Coulomb blockade as a tool

to probe the transport mechanisms. For this purpose DCB
has the advantage on shot noise that the signal increases
when the probed energies decrease.
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10.3.2 QPC/short-circuit gate capacitive cross-talk

In article Figure 2, we observe a linear dependence on the measured resistance with the

gate voltage, VSC , used to switch the short impedance path. The measured signal is the

series composition of the QPC and the series resistance RS, so that a capacitive cross-talk

between the short-circuit gate and the QPC resistance gives rise to a linear dependence on

the measured signal with VSC .
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Figure 10.4: QPC/short-circuit gate capacitive cross-talk calibration. The �-

nite QPC conductance change arising as a result of a small QPC gate voltage change

∆VQPC =0.31 mV, as a function of the initial QPC conductance, is compared to the the

one arising in response to a short-circuit gate voltage change ∼ 1000 higher ∆VSC =0.33 V.

We have calibrated the QPC/short-circuit capacitive coupling by comparing the QPC

conductance change resulting from a small increase of QPC gate voltage, ∆VQPC =0.31 mV,

to the one resulting from a higher decrease of the short-circuit gate voltage ∆VSC =0.33 V.

Figure 10.4 shows this comparison as a function of the initial QPC conductance. The agree-

ment between both curves demonstrates the capacitive coupling between the QPC and short-

circuit gate, and reveals that the cross-talk scaling factor is about 1000:

∂GQPC

∂VQPC

≃ 1000
∂GQPC

∂VSC

.
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This scaling factor is in rough agreement with the sample geometry since the QPC/QPC

gate distance is about 0.1 µm while the QPC/short-circuit gate distance is about 33 µm.

10.3.3 Universal conductance �uctuations

The full investigation on the Fano factor dependence of the environment correction to the

QPC conductance, shown in article Figure 4, was only realized for the smaller series resis-

tance RS =1.2 kΩ setup. Indeed strong �uctuations were found to arise for the RS = 7 kΩ

environment when sweeping the gate voltage VSC , as shown in Figure 10.5. These �uctua-

tions appear the same for di�erent sweeps and are a consequence of the universal conductance

�uctuations [54] of the thin wire used to de�ne the series impedance. They are triggered

by the capacitive coupling between the short-circuit gate and the electrostatic energy of the

wire.
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Figure 10.5: Universal conductance �uctuations in the RS =7 kΩ signal. Repro-

ducible �uctuations arise in our signal while sweeping the gate voltage VSC in the RS =7 kΩ

environment. Such �uctuations are stronger as the QPC resistance becomes comparable to

the series resistance.

Since our raw signal is the series composition of the QPC and the series resistance, RS,

the �uctuations in the series resistance manifest only when the QPC resistance becomes

comparable to RS. For RS =1.2 kΩ the QPC resistance is always (much) higher and our

signal is free from this contribution. However for RS =7 kΩ the QPC resistance becomes

comparable around GQPC ∼ 2e2/h. In these conditions, universal conductance �uctuations
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10 μm

Figure 10.6: Decomposition of the sample in electrostatic islands The sample (shown

on the right panel) is cut in di�erent electrostatic islands (Blue and Red), taking into account

the mesa and the top gates. The charge relaxation capacitance is calculated numerically as

the geometric capacitance between island blue and red, on the simpli�ed geometry shown

on the left. This particular geometry yields to 25 fF.

step in our signal (see Figure 10.5) forbidding the extraction of δGQPC .

10.3.4 Numerical estimation of the QPC capacitance

The geometrical capacitance of the QPC has been estimated numerically using a C code

provided to us by Daniel Esteve. The code calculates the DC geometrical capacitances

between di�erent plates following an electrostatic energy relaxation algorithm [135]. We

assume that the mesa and the gates are on the same plane and that the dielectric constant

is simply ϵ = (ϵ0 + ϵGaAs)/2.

We approximate the charge relaxation capacitance C as the geometrical capacitance to

ground seen from the central mesa plate situated between the QPC and the resistive paths

(see article Figure 1). We have to cut the sample geometry in di�erent electrostatic islands,

but we can control the stability of the resulting capacitance by using di�erent geometries

(see an example in Figure 10.6). This gives us the mean value and standard error used in

the article C = 30±5 fF. It also informs us that C is dominated by the large mesa plates on

both sides to the QPC.

10.3.5 Conclusion and perspectives

Our experiment demonstrates that, in low impedance electromagnetic environments, the

dynamical Coulomb blockade corrections to the conductance of a quantum conductor are
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accurately described by (10.53) as predicted by [5, 6]. This result does not only provide

solid grounds to our comprehension of impedance composition laws in quantum circuits. It

demonstrates an accurate novel experimental approach to measure the environment e�ects

on a quantum conductor. It also demonstrates a strong like between the current correlations

due to the quantum conductor and its coupling to its electromagnetic environment, at least

in the limit of a low environment impedance.

Recent theoretical developments have generalized this link to the full counting statistics

of the quantum conductor [146]. The environment corrections to the nth cumulant of the

current operator are found to be proportional the the (n + 1)th uncoupled cumulant. Such

predictions should be tested by measuring the environment correction to the current noise.

On the other hand, the coupling of an arbitrary quantum conductor to an arbitrarily

large impedance environment is not yet fully understood, even if the particular case of a

single channel coupled to an RC circuit has been exactly solved in [147]. Moreover, the

composition laws between di�erent quantum conductors, such as tow QPCs in series, are

still unknown. Our experimental approach could be implemented in order to test these

unexplored regimes.
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Experimental methods





Chapter 11

Experimental techniques

This chapter presents the experimental techniques we have used during this thesis. All of

them are quite standard, but we will present them for completeness.

First, we detail the circuit nanofabrication. We introduce how a two dimensional electron

gas (2DEG) is realized at the interface of two semi-conductors and provide the di�erent steps

used to process our samples.

Second, we detail the low electric noise techniques used to bias and measure our samples

at very low temperatures.

11.1 Circuit nanofabrication

During this thesis, we have worked with GaAS/Ga(Al)As based 2DEGs. They were grown

by molecular beam epitaxy (MBE) in the LPN clean-room facilites. Growing good quality

2DEGs is performed, in the Phynano-Team, by Antonella Cavanna, Abdelkarim o Ouerghi,

Bernard Etienne and Ulf Gennser. I will introduce here how a 2DEG can be obtained at the

interface of two semi-conductors that have a di�erent band gap. With the resulting picture,

we will be able to introduce how we can tune the 2DEG geometry with voltage biased top

metallic gates. Last, we will detail the fabrication process by which we de�ne the contacts

needed to bias and probe the sample, and the gates used to tune its properties.

11.1.1 GaAs/Ga(Al)As two dimensional electron gases

During this thesis we have used 2DEGs obtained at the interface of gallium arsenide (GaAs)

and aluminium doped gallium arsenide (Ga(Al)As), as depicted in Figure 11.1.b.

Since GaAs and Ga(Al)As have di�erent band gaps, their bands develop a sharp discon-

tinuity when they are juxtaposed. In the limit of clean samples and low temperatures, their

respective chemical potentials lie in the middle of their gaps (electroneutrality), and must
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Figure 11.1: 2DEG obtained at the interface of GaAs and Ga(Al)As. a) Non-

interacting band plot (EC : conduction band, EV : valence band) as a function of the growing

axis z. The di�erent band gaps give rise to a band discontinuity at the heterojuntion interface.

b) Self-consistent conduction band plot as a function of the growing axis (see text). An

asymmetric quantum well develops at the interface. The quantum well traps the electrons

provided by the donors (Si: silicon doping plane). The z dynamics of the trapped electrons

are frozen when the Fermi energy (EF ) lies between two discrete states.

equilibrate when brought in contact (Figure 11.1.a). However, chemical potentials equili-

brate as a result of a charge transfer between both materials. Therefore, the materials are

not electrically balanced, and an electric �eld arises at the interface between them. The

resulting conduction band is bent and develops an asymmetric quantum well at the interface

of the heterojunction (see Figure 11.1.b). This quantum well can trap the electrons fur-

nished by the dopant layer (here a silicium layer), even when it is spatially separated from

the quantum well.

Since surface states can also trap the excess electrons, the amount of charge transfer

from the doping layer to the quantum well depends on the ratio of the relative distances

between surface and doping plane and between doping plane and quantum well. When the

charge transferred to the quantum well �lls only the lowest well level (as in Figure 11.1.b),

the dynamics on the growing axis are frozen. Neglecting the zero point �uctuations in the z

axis, a metallic 2DEG is formed at the heterojunction interface.

The resulting 2DEG can reach very high mobilities µ & 106 cm2.V.s−1 as a consequence

of the small disorder seen by the 2DEG. This is due to 2 main reason:

1. The string parameters of Ga(Al)As and GaAs are nearly the same. There are therefore

no mechanical constrains at the interface, giving rise to a clean sharp interface.

2. The doping layer presents some disorder due to the random positioning of the dopants
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in the doping plane. But, since a �nite distance separates the doping plane from the

electron channel, the disorder potential seen from the 2DEG is smoothed.

Of course, such arguments only apply if you can control the nature and concentration

of the di�erent chemical elements with a high precision. This is why MBE is used to grow

such systems, since it permits to control them within an atomic layer accuracy. Typical

parameters on the growing are: the doping plane to surface distance, the doping plane to

interface distance, dopant concentration, aluminium concentration (slightly changes the gap

and the string parameter). Last but not least, a cap layer of GaAs is deposited on top of

the wafer to avoid the aluminium oxidation. As a result, the 2DEG properties can be long

lived.

Electronic properties at cryogenic temperatures The high mobilities obtained in

2DEGs correspond to relatively large elastic scattering times τ = µ
emeff

& 40 ps for mobilities

µ in the 106 cm2.V.s−1 range. The resulting mean free path lengths, le, for typical sheet

densities ne v 1015 m−2 reach tens of microns. Moreover, the reported phase coherent

lengths can also reach the microns below 100 mK. This can be probed, for instance, by

measuring Aharonov-Bohm oscillations in small rings [148].

Therefore, using standard nano-fabrication and cryogenic techniques, 2DEGs can be

used to investigate the properties of ballistic electrons sensitive to quantum phase coherence

e�ects.

Measured samples In all our samples, the 2DEG to surface distance is about 100 nm.

The 2DEG used to investigate the dynamical Coulomb blockade (DCB) has a mod-

erate mobility µ = 0.55 106 cm2.V.s−1, a Fermi energy of 150 K and a sheet density

ne = 2.5 1015m−2.

The 2DEG used to investigate the QHE has a high mobility µ = 2.5 106 cm2.V.s−1,

Fermi energy of 70 K and a sheet density ne = 2 1015m−2. The growth parameters of this

2DEG have been optimized in order to display the smallest longitudinal resistance in the

νL = 2 plateau. It is the very same 2DEG wafer used to perform the Mach-Zehnder samples

investigated by the CEA-Saclay nanoelectronics group [14, 23, 74, 128].

11.1.2 Gate depletion

As we have seen, a 2DEG is a 2D metallic conductor buried within a semi-conducting bulk

and has moderate sheet densities. Therefore, its density, and even its geometry, can be

modulated by �eld e�ect techniques.

A metallic gate on the surface develops a Schottky gap with the semiconductor under-

neath, therefore it is galvanically disconnected from the 2DEG. Since it is only capacitively
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coupled with the 2DEG, a negative gate voltage will depopulate the electrons situated be-

neath the gate and up to a depletion length around the gate, as depicted in Figure 11.2.

One can therefore tune in situ the geometry of the 2DEG with the help of such top metallic

gates. This tunability makes a 2DEGs'circuits distinguished choices for carrying mesoscopic

physics experiments.

V

V
G

I
a)

b)

c)250 nm

Figure 11.2: Fine tuning the 2DEG geometry with top gates. a) Electron beam

micrograph a top metallic gate (appear brighter) on top of an GaAs/Ga(Al)As sample. b)

3D scheme of a 2DEG (grey) depleted by top metallic gates (magenta). A negative gate

voltage VG depletes the 2DEG beneath the gate and up to a transverse depletion length.

The geometry of the 2DEG can be tuned in situ, here, to form a small constriction. Ohmic

contacts (yellow) are needed to contact galvanically the 2DEG from the surface. c) Scheme

of an electric circuit used to tune and probe a 2DEG.

11.1.3 Nano-fabrication

The circuit nanofabrication is based on electron beam lithography.

Our process follows 4 electronic insolation steps:

1. De�ne the ohmic contacts needed to bias and probe the sample (see Figure 11.2.b and

.c).

2. De�ne the alignment marks, needed to obtain a good relative accuracy in the following

lithographic steps (A manual alignment is here performed with step 1).
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3. De�ne the 2DEG large geometry (mesa).

4. De�ne the top metallic gates.

Optical micrographs of the sample at the end of each step are presented in Figure 11.3.

The only notable di�erence between the DCB and QHE samples processing is that we

have used titanium-gold gates in the DCB sample, while we have used aluminium gates in

the QHE. Aluminium gates are preferable, since the Schottky gap to GaAs is slightly larger

than for gold. Therefore, unwanted gate to 2DEG leakage should be smaller.

We now present the detailed process used to nano-structure the sample used to investigate

the quantum Hall e�ect.

Cleaning the surface:

1. Trichlorethylene bath at 100 ◦C for 1 min, then 2 min with ultrasounds.

2. Aceton bath with moderate ultrasounds for 2 min.

3. Isopropanol clearing.

Ohmic contacts: see Figure 11.3.a (after annealing).

1. Resist deposition: Spin-coating with 50 g/L PMMA at 5 krpm for 60 s (Acceleration

at 2 krpm/s). Deposited resist height is about 700 nm.

2. Cleaning the backside of the substrate with isopropanol in cotton sticks and sticking

it to a silicium substrate with 30 g/L PMMA as glue.

3. Resist baking for about 1 h at 160 ◦C.

4. Electronic beam insolation to de�ne the mask. Beam acceleration 100 kV, with typical

dose 1000 µC/cm−2.

5. Resist development: Bath of MIBK-isopropanol solution (respective volume ratio 1/3)

for 45 s. Then clearing 10 s in an isopropanol bath.

6. Metal vapor deposition: Ohmic contacts consist in the successive deposition of Nickel:

40 Germanium: 600 Gold: 1200 Nickel: 250 Gold: 1000 in Angstroms. Contacts

are mostly made from gold. Germanium dopes the semiconductor and diminishes the

Schottky barrier. The Ge-Au mixtures is eutectic at eutectic temperature Teutectic =

370 ◦C facilitating their penetration. Nickel substitutes to gallium, and facilitates the

di�usion of gold [149]. The top gold layer on top of a thick 25 nm nickel is to facilitate

the sample connection (wire bonding).
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7. Lift-o� (removes the metal over non-insolated regions):

• trichlorethylene bath at 80 ◦C until metal removes.

• Acetone clearing.

• Isopropanol clearing.

8. Ohmic contact annealing (drives the vertical di�usion of the deposited metal, needed

to contact the 2DEG). The contacts are pre-heated, set to eutectic temperature, then

heated slightly to icrease the eutectic mixture di�usion.

risetime [s] plateau [s] T [ ◦C]

5 40 120

10 120 370

15 50 420

9. Contacts testing: successive two wire probing of ohmic contacts, two at a time. R2wire ∼
1 kΩ at room temperature (in the dark) is dominated by the 2DEG sheet resistance.

Check that I-V curves are linear.

Alignment marks: Alignement marks (Figure 11.3.b) are needed to realign the electron

beam stage between the mesa de�nition and gate deposition.

1. Resist deposition: Spin-coating with 40 g/L PMMA at 5 krpm for 60 s (Acceleration

at 2krpm/s). Deposited resist height is about 400 nm.

2. Steps 2-3-4-5 same as before.

3. Metal vapor deposition: Titanium: 200 Gold: 2000 in Angstroms.

4. Lift-o�.

Mesa etching: De�nes roughly the geometry of the 2DEG by chemical etching. Fig-

ure 11.3.c shows the aluminium mask used to protect the 2DEG. Figure 11.3.d shows the

2DEG sample after etching.

1. Steps 1-2-3-4-5 same as before.

2. Desoxyde the surface that is going to be covered by aluminium: 10 % HCl 5 s.

3. Aluminium metal deposition: 100 nm. Protects the 2DEG beneath.

4. Lift-o�.
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5. Chemical etching of the non-protected with a 1 H2O2−3 H3PO4− 80 H2O mixture

in volume. 3 successive baths for about 20 s, checking the deepness of the resulting

etching between each bath. Yields to ∼ 45 nm etching.

6. Check that etched regions are galvanically disconnected from mesa: measure the re-

sistance between an ohmic contact use to contact the mesa, and a contact used to

polarize a gate (etched all around). Test gives R > 50 MΩ (limited by measurement)

even under light exposure.

Gates: Deposition of the top metallic gates, see Figure 11.3.e.

1. Test the electric beam dose needed and gate thickness to obtain good pro�les: test the

same pattern on a plain GaAs wafer.

2. Desoxide the surface: 10 % HCl 5 s.

3. Resist deposition: Spin-coating with PMMA A3 at 5 krpm for 60 s (Acceleration at

2 krpm/s). Deposited resist height is about 125 nm.

4. Resist baking.

5. Electronic beam insolation to de�ne the mask. Beam acceleration 100 kV, with a dose

1400 µC/cm−2.

6. Resist development.

7. Aluminium vapor deposition 50 nm.

8. Lift-o�

Back-end: At the end of process, the sample is glued to a ceramic holder. The holder will

be plugged in the cold �nger of the dilution fridge, and permits a direct coupling with the

measurement lines of the fridge. The last step in the process is the wire bonding between

the ohmic and gate contacts of the chip to the ceramic contacts leading to the desired mea-

surement lines, see Figure 11.3.f. Cold ground contacts should be bonded �rst to equilibrate

the mesa potential to the ceramic potential. Gates should be bonded last, when the sample

potential is more uniform, to avoid electrostatic shocks. All contacts and gates are shorted

for transporting the sample out of the clean room.
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500 μm

Figure 11.3: Optical micrographs after successive process steps for the QHE sam-

ple. a) Ohmic contacts after annealing. b) Alignment marks. c) Aluminium mask pro-

tecting the 2DEG from chemical etching. d) 2DEG de�ned by chemical etching. e) Top

metallic gates (electron beam micrograph of the active region shown in Chapter 4). f) Wire

bonding.
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11.2 Low-noise measurement techniques

All the experiments performed in this thesis rely on near DC electronic techniques. This

section presents the cryostat wiring and �ltering, the room temperature electronics and

polarization schemes that we have used.

11.2.1 Cryostat wiring

Cryostat wires are �ltered by commercial π−�lters at the top of the cryostat (room temper-

ature). At low temperature, the lines are �ltered by arranging them as 1 m long resistive

twisted pairs (300 Ω/m) inserted inside 260 µm inner diameter CuNi. The tubes are tightly

wrapped around a copper plate screwed to the mixing chamber assuring a good electronic

thermalization. The access resistance measured at null magnetic �eld is dominated by the

twisted pairs Raccess ≃ 350 Ω. The sample is further protected from spurious high energy

photons by two shields, both at base temperature.

11.2.2 Room-temperature electronics

DC Biasing: The samples are current biased using stabilized DC voltage sources Yokogawa

7621 in series with 10 MΩ or 100 MΩ polarization resistance. Gates are also voltage biased

with the same voltage sources, or battery powered when there is no need for an accurate

voltage sweep.

Conductance measurements and ampli�cation: Conductance measurements are per-

formed using standard lock-in techniques at excitation frequencies below 200 Hz. An AC

polarization is added to the DC bias, keeping the resulting AC voltage smaller than kBT

to avoid arti�cial �heating�. The sample response is measured in phase at the excitation

frequency. We use commercial numeric lock-ins , Standford SR810.

Small signals are pre-ampli�ed by low noise voltage ampli�ers designed and build by the

Electronic Service of the Institut Neel at Grenoble (0.8 nV/
√

Hz above 10 Hz).

The polarization resistances and preampli�ers are placed in a copper Faraday box con-

nected to an earth ground piked outside the lab, which de�nes the ground for our measure-

ment system. The measurement lines are shielded between the Faraday box and the top of

the cryostat. Therefore, all small signals are protected from background noise.

All measurements are recorded on computer via IEEE-GPIB interfaces, optically isolated

from the experiment.
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Gate protection The small gates used to de�ne the quantum point contacts (QPC) and

quantum dots (QDOT) can literally explode when bruskly biased1. All gates are biased

through home-made RC-�lters of adjustable bandwidth (≥ 1 Hz), to prevent from bad ca-

bling accidents or voltage source disfunctions. Moreover, all gates and contacts can be

shorted to the ground to protect the sample during the cooling.

11.2.3 Polarization schemes in the QHE

The DCB experiment is measured performing standard four wire measurements with the

precedent tools.

In the QHE experiments, we take pro�t of the (metrological) two wire resistance quanti-

zation due to the quantum Hall e�ect (see Chapter 2). All contacts2 that are current biased

see a two wire resistance to the ground. This is realized by placing as many cold grounded

contacts as there are possible edge paths for the injected current. Therefore, the current po-

larization results directly in a voltage polarization, Vpol = RνL
Ipol, irrespective of the 2 wire

resistance of the biased QPCs or QDOT. At the opposite, if a �oating contact is connected

to a cold ground by the edge chirality, the voltage measured Vmeas on it gives directly the

current impinging on it Imeas: Vmeas = RνL
Imeas.

1At room temperature they can even explode due to triboelectric charging. At subKelvin temperature,

the electron-phonon coupling is low enough to prevent an explosion, however an electrostatic shock can

translate a gate for some hundreds of nanometers.
2But one, it is the ohmic contact used to drive an edge channels out of equilibrium (Chapter 6), or to

current bias the QPC with a 0.8 µm distance to the quantum dot (Chapter 4-5-6).



Appendix A

Sequential tunneling through multiple

discrete levels

When multiple discrete levels lie in the transport window, non-intuitive dynamical e�ects

can arise. In the sequential tunneling regime, the strong Coulomb energy impedes changes of

more than one electron. Therefore, the many electron paths due to the many levels do not add

in parallel. The resulting expression for the mean current can be starkly di�erent [119] from

the one found for a single level (3.8), which limits its application range. Moreover, dynamical

e�ects can modify the sharp features of the stability diagrams plots at �nite temperature.

Both e�ects will limit the experimental accuracy on the lever arm experimental calibration,

when using the simple single level model (3.8). We �rst de�ne the general problem of

sequential tunneling in multiple levels. We will after illustrate two of its dynamical e�ects:

i) some expected resonances can vanish for particular ratios of the couplings, ii) the position

of the resonances can be shifted for asymmetric couplings, with respect to what is expected

at zero temperature (direct energy balance considerations).

A.0.4 General problem

The general problem follows from the rate equations for the occupation probabilities, Pi,

of the discrete states , Ei. These probabilities can be encapsulated within the vector P⃗ =

{Pi}, whose time dependence depends on the couplings to the electrodes and their energy

distributions [119]:

dP⃗

dt
= [Γ]P⃗ . (A.1)

For example, when an electron can populate 1 of N available states, we can label P0 the

probability for no occupied states and Pi > 0 the probability that only state i is occupied.
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With these notations, it is easy to check that the coupling matrix [Γ] has the form:

[Γ] =



−
∑N

i=1 γ0→i γ1→0 γ2→0 . . . γN→0

γ0→1 −γ1→0 0 . . . 0

γ0→2 0 −γ2→0
. . .

...
...

...
. . . . . . 0

γ0→N 0 . . . 0 −γN→1


(A.2)

where the γi→j take into account the couplings ΓD/S(E) and electrodes' fD/S(E) at the

energies Ei of the coupled discrete levels:

γi→0 = ΓD(Ei)[1− fD(Ei)] + ΓS(Ei)[1− fS(Ei)] (A.3)

γ0→i = ΓD(Ei)fD(Ei) + ΓS(Ei)fS(Ei).

In the stationary regime dP⃗ /dt = 0, P⃗ is found as the eigenvector of [Γ] of null eigenvalue,

and the mean current reads [119]:

I = ID = −e
N∑
1

ΓD(Ei)Pi[1− fD(Ei)]− P0

N∑
1

ΓD(Ei)fD(Ei)) (A.4)

A.0.5 Vanishing resonances and negative di�erential resistances

We here illustrate that the addition of a discrete level in the transport window, can not only

increase the current �owing through the quantum dot, but also diminish it, or leave it the

same, if the tunnel couplings are di�erent for di�erent levels. Indeed, when the coupling of

the additional level is small, it can trap the tunneling electron for a long time, so that the

mean current diminishes.

3 discrete levels:

We consider the simplest case of symmetric coupled levels, at zero temperature1, when

1-2 electrons can populate 3 discrete levels at the energies Ei, which is depicted in Fig-

ure A.1. Left. When the drain and source couplings are symmetric, ΓD(Ei) = ΓS(Ei) = Γi,

the coupling matrix [Γ] is symmetric too and admits a uniform eigenvector for the null eigen-

value, so that the occupation numbers only depend on the number of possible states. We

label P (n1, n2, n3) the joint probability for the occupation numbers, ni ∈ {0, 1}, of the levels
i. Therefore, the mean current in the regimes depicted in Figure A.1. Right can be easily

found:

1The electrodes energy distribution functions are therefore either 0 or 1 at the discrete levels energies,

which simpli�es the shape of [Γ].



207

• Level 2 only in the transport window (black inset and region in Figure A.1. Right) gives:

P (1, 0, 0) = P (1, 1, 0) = 1/2, all others being null. Which yields to |Iblack| = eΓ2/2.

• All three levels in the transport window (red inset and region in Figure A.1. Right)

give: P (1, 0, 0) = P (0, 1, 0) = P (0, 0, 1) = P (1, 1, 0) = P (0, 1, 1) = P (1, 0, 1) = 1/6

yielding to |Ired| = e
∑3

i=1 Γi/3.

• Two levels in the transport window (green/blue insets and regions in Figure A.1. Right)

give: P (1, 0, 0) = P (0, 1, 0) = P (1, 1, 0) = 1/3 (green) and P (0, 1, 0) = P (0, 0, 1) =

P (0, 1, 1) = 1/3 (blue) yielding to |Igreen/blue| = e(Γ2 + Γ1/3)/3.

Now, it is easy to check that Ired > Igreen/blue irrespective of the couplings. However,

Igreen/blue − Iblack = e(2Γ1/3 − Γ2)/6 can be positive, negative or null. Therefore, for some

special fractions of the couplings, the current can remain �at when a discrete level is in

resonance with an electrode Fermi energy. Second, this can give rise to negative di�erential

conductances for a large range of couplings de�ned by 2Γ1/3− Γ2 < 0.

n=1 n=2
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Figure A.1: 3 discrete level quantum dot. Left: Schematic of electron tunneling through

a 3 level quantum dot. Right: Stability diagram at zero temperature, colored regions cor-

respond to color marching insets. Black: level 2 in the transport window Red: All levels in

the transport window. Green: Levels 1 and 2 in the transport window. Blue: Levels 2 and

3 in the transport window.

Generalization:

As long as the couplings are symmetric and thermal occupations negligible, the same ar-

guments can be generalized to arbitrary numbers of electrons in an arbitrary number of
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discrete levels. We consider n/n+ 1 electrons that can be placed amongst N discrete levels.

All possible states have a probability P = 1
Cn

N+Cn+1
N

, resulting from the number of possible

states Cn
N + Cn+1

N . The mean current reads:

I = ePJ
N∑
i

Γi. (A.5)

Since all states are equiprobable, the current is just a function of
∑N

i Γi multiplied by P

times a factor J . J accounts for all states that are coupled to level i, namely the number of

states not having an electron on it: J = Cn
N − Cn−1

N−1 = Cn
N−1. Therefore the current reads:

I = e
Cn

N−1

Cn
N + Cn+1

N

N∑
i

Γi. (A.6)

Which generalizes the precedent conclusions. We have pictured in red, in Figure A.2, the

ranges where the addition of a discrete level in the transport window always gives rise to a

current increase.

n n+1

V
G

V
DS

Figure A.2: Stability diagram in a symmetric quantum dot, zero temperature.

According to (A.6): Crossing a discrete level, increasing |VDS|, through a red line always

increases the current. Crossing a discrete level through a black line can increase, diminish

or maintain the current.

A.0.6 Resonance displacements

The presence of multiple levels in the transport window can translate the position of the res-

onances expected from energy balance considerations (3.12) at zero temperature. Therefore,

the slopes of the stability diagram do not only depend on the electrostatics, but also on the
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relative couplings to the multiple levels. Such e�ects are already discussed in [119]. We give

here the simplest case where 0/1 electrons can populate N discrete levels. We analyze the

case where the lowest level, E1, is in resonance with the source, while all the excited levels,

Ei>1, face a fully occupied drain electrode (negative VDS).

Under these conditions we have fD(Ei) = 1, fS(E1) = f and fS(Ei>1) = 0. The coupling

matrix Γ (A.2) is here a N + 1×N + 1 matrix that can be directly diagonalized. The null

eigenvector gives:

P (0, 0, . . .) =
1

1 + α1+f
1−f

+
∑

i>1 αi

(A.7)

P (1, 0, . . .) =
α1 + f

1− f
1

1 + α1+f
1−f

+
∑

i>1 αi

P (0, . . . , 1, 0, . . .) =
αi

1 + α1+f
1−f

+
∑

i>1 αi

where αi =
ΓD(Ei)

ΓS(Ei)
(A.8)

And the corresponding stationary current reads:

I = ID = −eP0

N∑
i=1

ΓD(Ei)

I = −e
∑N

i=1 ΓD(Ei)

1 + α1

1− f
1 + A(1− f)

(A.9)

with A =

∑
i>1 αi

1 + α1

When fS is a Fermi function in resonance with the lowest level, f(E) = fF (E − E1) =

1/(1 + exp[(E − E1)/kBT ]), one �nds that the mean current reads:

I = −eΓD(E1) + ΓD(E2)

(1 + α1)(1 + A)

1

1 + exp[E − E1 − kBT ln(1 + A)]

= −eΓD(E1) + ΓD(E2)

(1 + α1)(1 + A)
fF [E − E1 − kBT ln(1 + A)] (A.10)

A current step arises as for a single level (renormalized in amplitude), but the position of

the current step feature occurs at an energy larger by kBT ln(1 + A) than the energy of

the discrete level E1. Therefore, the presence of additional levels in the transport window

translates the resonances positions on a kBT scale. These shifts will limit the accuracy when

extracting the lever arm from the slopes of a stability diagram.

The general problem of non symmetric multiple levels with energy dependent couplings

(A.1) and (A.4) can be handled numerically [119], when the couplings to the discrete levels

and their energy spacings are known. However, using this scheme to probe an unknown
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f(E) would need an independent calibration of the couplings which cannot be done by DC

measurements alone, and complicates the analysis. In order to probe an unknown f(E), it is

therefore desirable use a quantum dot with a single active level within the transport window

needed to probe the relevant energy scales.
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