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Introduction

Computer hardware evolves at a much faster pace than algorithms and their implemen-
tations. Since mid-2000s, we have thus seen the advent of multi-core CPUs, with an ever
increasing number of cores and with ever larger SIMD (Single Instruction, Multiple Data)
units. Graphics Processing Units (GPUs) and other many-core architectures (like the In-
tel Xeon Phi processors, the PEZY-SC2 chip, the Matrix-2000 accelerator or the Sunway
SW26010 processor) have also been increasingly used in HPC (High Performance Comput-
ing): almost all most powerful1 and most energy-efficient2 supercomputers now rely on
such many-core architectures. These hardware changes are all meant to deliver ever greater
compute powers, as well as ever greater energy efficiencies. New hardware changes are still
required to reach exascale computing (1018 floating-point operations per second) in the forth-
coming years, and could also imply technological breakthroughs such as Memristor-based
memories, photonics for interconnection networks . . .

However, when such new hardware changes are introduced, many numerical applica-
tions requiring HPC, including those in scientific computing, do not fully exploit these hard-
ware improvements. This is partly due to the difficulty and development time required to
adapt at best these numerical applications to a new architecture or to new hardware features.
This makes the current state of many application codes being designed to a previous hard-
ware generation. For example, some applications do not exploit many-core architectures,
or CPU SIMD units, or even multi-core CPUs. Targeting multiple architectures at a time
for performance portability can also be challenging. Programming paradigms and tools are
continuously improving to ease this development process and minimize its time. Yet, we
argue that in many cases algorithmic changes are also required, in addition to the program-
ming efforts, to reach the best performance. These changes can modify more or less the
original algorithm in order to expose more parallelism levels, higher parallelism degrees or
more regular computations. These changes also often require both expertise in HPC and in
the application domain: strong algorithmic changes, which can have the highest impact on
performance, can only be done with a complete understanding of the algorithm and with
a deep knowledge of the application domain, including the possible algorithmic variants.
Such breakthroughts involve thus often interdisciplinary research.

Our research work has therefore mainly focused on such algorithmic changes in order to
adapt at best numerical applications in scientific computing to high performance architectures, while
relying on new and relevant programming paradigms. This research topic can be related to
algorithm-architecture matching, but here the architecture is fixed and we aim to adapt ex-
isting algorithms or design new algorithms to exploit at best the selected architecture. Of

1See the top of the TOP500 list of the fastest supercomputers in the world: https://www.top500.org/
2See the top of the GREEN500 list which ranks the TOP500 list by energy efficiency: https://www.top500.org/

green500

https://www.top500.org/
https://www.top500.org/green500
https://www.top500.org/green500
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course some applications, such as classical HPC kernels (dense matrix multiplication, naive
solving of the N-body problem . . . ), can naturally match new HPC architectures. As far
as we are concerned, we have instead focused on several specific or key applications in scientific
computing, whose efficient deployment on the targeted architecture was challenging (and ben-
eficial in the end). We have mainly used performance as the ultimate criterion, but we have also
considered power efficiency when relevant. Besides, while distributed memory parallelism
also requires algorithmic changes to scale at best with the number of nodes, this is a well-
know and older issue in HPC. Since several of our applications were efficiently exploiting
such parallelism via MPI, we have mainly targeted single node improvements on various
HPC architectures.

Our work has been structured according to the following research directions.

• Designing algorithms for many-core or multi-core architectures, or both. Current
HPC architectures can be classified in multi-core or many-core architectures, mainly
depending on their number of cores. Multi-core CPUs are designed to maintain a high
serial compute power on each core. On the contrary, many-core architectures are based
on numerous cores with a lower compute power each: this enables in total greater
compute power and greater energy efficiency. But this requires massive and fine-grained
parallelism on the algorithmic side.

For a given application, if the most efficient algorithm (in terms of total work per-
formed) is or can be designed as massively parallel, then one can benefit from the
greater compute power of many-core architectures. However, for some applications
(for example the N-body problem, or the computation of topological abstractions in
scientific visualization) there may exist a more efficient algorithm, requiring less to-
tal work when performed in serial, but exposing fewer levels or degrees of coarse-
grained parallelism. It may then be worth here designing a parallel algorithm for
multi-core CPUs which may compete with massively parallel but less efficient algo-
rithms on many-core architectures. Task parallelism turned out to be especially relevant
for such efficient algorithms with constrained parallelism. Depending on the appli-
cation and on the possible algorithms, one can therefore choose to design algorithms
for many-core or multi-core architectures, or even for both via hybrid algorithms which
can take advantage of the best of each architecture. The aim here is to determine the
algorithm-architecture couple that will lead in the end to the best performance for this
application.

We have hence managed to modify a birth and death process for cell nuclei extrac-
tion in histopathology images in order to obtain massive parallelism suitable to GPUs.
Conversely, thanks to task-based parallelism we have been able to rewrite for multi-
core CPUs a scientific visualization algorithm which was very efficient but intrinsically
sequential. Finally, we have shown the interest of a hybrid CPU-GPU algorithm on in-
tegrated GPUs for the dual tree traversal of a fast multipole method in astrophysics,
when considering performance results as well as power and cost efficiencies.

• Handling SIMD divergence. The SIMD (or vector) execution is present on all HPC ar-
chitectures. While GPUs heavily rely on such execution model, the SIMD share in the
overall compute power of CPUs has constantly increased over the past years: starting
from 128-bit SSE units, to 256-bit AVX ones, and now to 512-bit AVX-512 ones. Un-
fortunately, many applications can expose parallel but irregular execution flows which
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lower, partially or totally, the SIMD gain. Rewriting the algorithm in order to handle
SIMD divergence and to improve SIMD regularity can hence offer important perfor-
mance gains.

Such contributions have been obtained with the SPMD3-on-SIMD programming model
for two applications in computer arithmetic: for generating correctly rounded elemen-
tary functions and for numerical validation using stochastic arithmetic.

• Taking advantage of new heterogeneous architectures. During the past years, we
have seen the introduction of several new heterogeneous HPC architectures: the Cell
processor, GPUs, Intel Xeon Phi processors, integrated GPUs . . . We have hence been
able to study the impact and the relevance of these new heterogeneous architectures in
order to take advantage of these for scientific applications. These studies have mostly
been based from a performance point of view, but also from a power efficiency point of
view (especially for the integrated GPUs). Each time, we have selected an application
for which the new architecture could be beneficial in theory, but numerous issues (re-
garding low level algorithmics and implementation) had to be solved to convert these
theoretical advantages in practical gains. Such work has been performed for the fast
multipole method on the Cell processor, for atomic physics on GPUs and for seismic
imaging on integrated GPUs.

Finally, along these three research directions we have tried as much as possible to design
algorithms that could also be suitable to different HPC architectures. This can however raise
some issues due to, sometimes subtle, differences at the hardware level. This performance
portability topic has thus been also investigated for some applications and algorithms.

The rest of this document is organized as follows.

• Chapter 1 offers a brief introduction to HPC from a technical point of view. We aim
thereby at defining and briefly presenting the technical terms that will be used in the
rest of the document.

• Chapter 2 contains a summary of our research results since our PhD thesis in 2006.
These are classified into the three research directions mentioned above.

We have then chosen to detail two of our main research directions.

• Chapter 3 presents algorithmic contributions for different applications in order to ob-
tain massive parallelism on GPU architecture, to efficiently exploit multi-core CPUs
via task parallelism, and to combine multi-core and many-core architectures thanks to
a hybrid CPU-GPU algorithm on integrated GPUs.

• The second research focus is detailed in chapter 4 which deals with the handling of
SIMD divergence on HPC architectures for two applications in computer arithmetic.

Finally, conclusions and research perspectives are given at the end of the manuscript.

3SPMD stands for: single program, multiple data.
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Chapter 1

Evolution of HPC architectures and
their programming

We briefly describe here the evolution of HPC architectures since mid-2000s, along with their
programming.

1.1 Architectures

Since the breakdown of Dennard scaling around 2006, the CPU frequencies have stopped
increasing, and even sligthly decreased. Moore’s law has since led to the advent of multi-core
CPUs with an ever increasing number of cores. In 2018, we can target CPUs with up to 32
cores, with twice as many hardware threads (thanks to 2-way SMT - simultaneous multi-
threading), within HPC nodes containing multiple sockets, possibly implying NUMA (non-
uniform memory access) effects. In the meantime, CPU vector (or SIMD - single instruction,
multiple data) units have also increased in size from 128-bit SSE units, to 256-bit AVX[2]
units, and now to 512-bit AVX-512 units. The SIMD share in the overall compute power of
CPUs has thereby constantly increased over the past years: SIMD computing offers indeed
important performance gains at a relatively low hardware cost. In a HPC context, we usu-
ally use one thread per (logical or physical) CPU core: memory and compute latencies have
therefore to be overlapped thanks to caches and to ILP (instruction-level parallelism).

Also starting from mid-2000s, we have seen the advent of heterogeneous architectures in
HPC, which offer increased raw compute-power, as well as increased power efficiencies,
by differing from standard CPUs in the usage of the chip transistors. While an important
share of a standard CPU chip is devoted to memory caches, instruction control (out-of-order
execution, branch prediction . . . ) and to comptatibility with previous architectures, these
heterogeneous architectures reduce this share in favor of an increased number of (simpler)
compute units.

The Cell processor has hence enabled to break the Petaflop barrier (1015 flop/s) in 2009
thanks to its heterogeneous architecture. This architecture was composed of a general-
purpose core and of 8 HPC cores with in-order execution and 128-bit SIMD units, offering
more than 200 Gflop/s in single precision. Each HPC core had its own local store instead of a
cache. This local store had to be manually managed through explicit data transfers from/to
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the main memory over a 200 GB/s internal bus.
Concurrently, Graphics Processing Units (GPUs) have been increasingly used for high-

performance scientific computing. Each GPU core relies also on in-order execution, without
branch prediction, and the GPU caches are much smaller than the CPU ones. This enables
a much higher number of cores1 (hundreds, and nowadays, thousands of cores) with how-
ever lower frequencies than on CPU, resulting in a many-core architecture. These GPUs offer
theoretically one order of magnitude greater compute power and internal memory band-
width than multi-core CPUs. Contrary to CPU cores, best performance is usually obtained
by overloading as much as possible each GPU core with numerous threads in order to over-
lap memory and compute latencies. Besides, GPUs rely on an implicit SIMD execution for
both computations and memory accesses. The SIMD width is 32 on NVIDIA GPUs (a warp)
and 64 on AMD GPUs (a wave-front), which is greater than CPU SIMD widths. Overall, best
GPU performance is therefore obtained for massive, regular and fine-grained data paral-
lelism. It also has to be noticed that data has first to be transfered over a PCI Express bus
with limited bandwidth (lower than 15.8 GB/s on PCI Express 3.0), which can bottleneck the
overall GPU performance.

Starting from 2010-2011, AMD (with its APUs - accelerated processing units) and Intel
have introduced integrated GPUs (iGPUs). The iGPU cores share the same die as the CPU
cores and can directly access the CPU main memory (without PCI transfers) via specific zero-
copy buffers where a large fraction of the main memory can be allocated. This enables to avoid
explicit copies between the main memory and the GPU memory, to alleviate the possible
performance bottleneck on discrete GPUs due to the PCI bus, and to allocate more memory
than within a discrete GPU. Moreover, these iGPUs (along with their CPU) are usually more
compute powerful than standard CPUs. They also offer reduced memory consumptions,
especially compared to a discrete GPU with a dedicated CPU, thanks to lower GPU core
frequencies and to lower CPU performance. However their compute power and memory
bandwidth are lower than discrete GPU ones (see e.g. [SFLC17] for details). The possible
performance gains over discrete GPUs depend thus on the application and algorithm fea-
tures (frequency and volume of PCI transfers, proportion of work deported on GPU . . . ).
Regarding Intel iGPUs, it has to be noticed that each compute unit contains two SIMD FPUs,
concurrently performing four 32-bit flops each, but on the software side the SIMD width can
range from 1 to 32 (see [78] for the Intel Graphics Gen8 architecture).

Another many-core architecture has been proposed by Intel with the Xeon Phi coproces-
sors. The first generation (Knights Corner, KNC) was only available accross a PCI Express
bus and offered up to 61 x86 in-order cores, with 4-way SMT (4 hardware threads per core)
and 512-bit SIMD units. The second generation (Knights Landing, KNL) is available as a
standalone processor, offers up to 72 cores, with out-of-order execution and AVX-512 SIMD
units. Other recent many-core architectures include the PEZY-SC2 chip (2048 cores with 8-
way SMT), the Matrix-2000 accelerator (128 cores) or the Sunway SW26010 processor (260
cores with a heterogeneous architecture similar to the Cell processor).

1.2 Programming

For more than 20 years, the HPC standard for multi-process parallel programming (on
shared or distributed architectures) has been MPI. For multi-thread parallelism, there ex-

1Note however that a GPU core does not match a CPU core, but rather a CPU SIMD lane.
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ist different possibilities. Explicit, low-level programming is available with POSIX threads,
which were the basis of the Cell programming (along with SIMD intrinsics and explicit DMA
transfers). Higher-level programming is available for example via compiler directives in
OpenMP [2]. Task parallelism, originally introduced in Cilk, has also gained a greater interest
in the last 10 years, thanks to progress achieved by advanced task runtimes: StarPU [9],
OmpSs [47], Swan [150] . . . (see [144] for a review). This task parallelism has been pro-
gressively introduced in OpenMP for irregular or nested parallelism: independant tasks
first; then data-dependencies, priorities . . . Task parallelism is also available in the Intel TBB
(Threading Building Blocks).

While these programming paradigms can also be used to deploy applications on the
Xeon Phi many-core architecture, GPUs require different paradigms based on SPMD (sin-
gle program, multiple data) programming. CUDA has first generalized the use of NVIDIA
GPUs for HPC scientific computing. A CUDA program consists in GPU codes (kernels) and
in a host code running on the CPU that can launch these kernels on the GPU, each kernel
being executed for each thread of each block within a grid of blocks. With a programming
similar to CUDA, the OpenCL standard has then been released to support most HPC archi-
tectures: NVIDIA and AMD GPUs, Intel iGPUs, multi-core CPUs, Xeon Phi coprocessors
(Knights Corner, but not Knights Landing), the Cell processor, FPGAs (field-programmable
gate arrays) . . . An OpenCL kernel is written in the same SPMD style as a CUDA kernel, is
launch from the host on the device via a command queue, and is executed for each work-item
of each work-group of a ND-range. Higher-level approaches also exist for GPU program-
ming, such as the ones based on compiler directives in the host code: see HMPP [15, 45],
OpenACC [1] and OpenMP [2].

Finally, as far as SIMD programming on CPU is concerned, several programming para-
digms are possible. Firstly, intrinsics enable the use of vector instructions without using
assembly language by relying on vector-specific functions. Using such intrinsics is always
possible, but rather tedious in general: one has to write specific code for each intrinsic set
(SSE, AVX, AVX-512 ...) and each vector width. Secondly, automatic vectorizing is a compi-
lation technique in which the compiler analyses the code and decides whether it is possible
and efficient to vectorize it. In practice, this can be limited by the compiler ability to per-
form the dependency analysis, as well as by pointer aliasing issues, memory misalignments,
nested loops, function calls within loops . . . Thirdly, the newest versions of OpenMP (starting
from OpenMP 4.0), as well as the Intel compiler and Intel Cilk Plus, contain compiler direc-
tives aimed at vectorizing loops. Using such directive-assisted vectorization, the user can
force the vectorization and circumvent the limitations of automatic vectorization. Finally,
another possibility to exploit the SIMD units is to rely on the SPMD-on-SIMD programming
model [57, 119]. All computations are written as scalar ones and it is up to the compiler to
merge such scalar computations in SIMD instructions. The main advantages are the ease of
programming and the portability: the programmer needs neither to write the specific SIMD
intrinsics for each architecture, nor to know the vector width, nor to implement data padding
with zeros according to this vector width. The vector width will indeed be determined only
at compile time (depending on the targeted hardware). Moreover, like compiler directives,
no data dependency analysis is required by the compiler: it is up to the user to ensure that
the scalar computations can be processed correctly in parallel. Such programming paradigm
has been increasingly used in HPC: first on GPUs with CUDA and then on various compute
devices with OpenCL. On CPU, such programming model is available in OpenCL (OpenCL
implicit vectorization), as well as in the Intel SPMD Program Compiler (ispc) [119].
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Chapter 2

Research summary

In this chapter, we present the research results we have obtained since the defense of our PhD
thesis in 2006: first with an INRIA postdoctoral position at LAM (Laboratory of Astrophysics
in Marseille), then starting from 2007 with an assistant professor position at Université Pierre
et Marie Curie (UPMC, now Sorbonne Université since 2018) in the PEQUAN team (Perfor-
mance and Quality of Numerical Algorithms) of the Scientific Computing department of the
computer science laboratory (LIP6).

The first three sections summarize our results according to the three research directions
presented in the introduction of the manuscript. Section 2.1 deals with the design of mas-
sively parallel algorithms for many-core architectures, of task-based algorithms for multi-
core CPUs, and of hybrid algorithms on integrated GPUs. Section 2.2 presents how regular
computations can be obtained for best SIMD performance, thanks to a strong algorithmic
rewriting or to a specific implementation of the low level operations. Section 2.3 shows how
we have been able to take advantage of the emergence of several new heterogeneous archi-
tectures for specific applications in scientific computing.

Besides, we have also worked on another topic dealing with the automatic multi-thread
parallelization of domain-specific sequential code. So, we describe in Sect. 2.4 how we have
managed to automatically generate efficient parallel code for shared memory architectures
within a data assimilation framework.

Our publications are listed in Appendix A, and the supervised or co-supervised students
are listed in Appendix B.

2.1 Massive parallelism, task parallelism and hybridization

We present here how we have managed to design a massively parallel algorithm for many-
core architectures (Sect. 2.1.1), a task-based parallel algorithm for multi-core architectures
(Sect. 2.1.2), and a hybrid CPU-GPU algorithm on integrated GPUs (Sect. 2.1.3).

2.1.1 Massive parallelism for image segmentation

Histopathologists, who study diseased tissues at microscopic level, are facing an ever in-
creasing workload, especially for breast cancer grading. Automatic image analysis can here
greatly reduce this workload and help improving the quality of the diagnosis [152]. In order
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to perform the detection and extraction of cell nuclei in histopathology images for breast
cancer grading, we have considered a marked point process combined with a “birth and
death” algorithm. While this process offers good quality results, it is extremely compute
intensive, and the targeted images can be huge. We have thus studied (with C. Avenel and
D. Béréziat) its parallelization and its performance scaling on the number of cores and on
the number of nuclei (hence on the image size) [AFB13]. Due to the intrinsic sequentiality
of the death step of the original algorithm, we have proposed a new overlapping energy in
order to design a new parallel death step, leading to an overall massively parallel algorithm.
We have hence obtained very good speedups on multi-core CPUs (11× on 12 CPU cores), as
well as on a GPU many-core architecture. Thanks to a specific deployment including a new
scan of the ellipse area, the GPU is indeed twice faster than two multi-core CPUs. This work
is presented in Sect. 3.1.

2.1.2 Task parallelism for scientific visualization

In scientific visualization, the merge trees [20, 132] and the contour trees [18, 26, 141] are
fundamental topology-based data structures that enable the development of advanced data
analysis, exploration and visualization techniques, for example on 3D tetrahedral meshes.
Their augmented version enable all visualization applications including topology-based data
segmentation and tree simplification to discard noisy data. In order to efficiently process
ever larger scientific data, highly efficient parallel algorithms are required to build such trees
on a visualization workstation with multi-core CPUs. The reference algorithm of Carr et
al. [26] is however intrinsically sequential as a global view on the data is required for the
efficient processing of each mesh vertex.

In [GFJT16] we have proposed, with C. Gueunet, J. Jomier (from Kitware) and J. Tierny,
a parallelization of this algorithm on multi-core CPUs in shared memory based on a static
decomposition of the range of the vertex values among the different threads. This approach
leads to good speedups, but these are limited by extra work at the partition boundaries and
by load imbalance among the partitions. Such extra work issue also applies to another multi-
thread parallelization of the augmented merge-tree computation based on partitions of the
geometrical domain [115]. On the other hand, massively parallel approaches (such as [99])
cannot produce augmented trees and lead to moderate speedups on multi-core CPU (or with
a hybrid CPU-GPU deployment) when compared to the reference sequential algorithm: the
sequential execution of this massively parallel algorithm is indeed up to three times slower
than the reference implementation [44] of the optimal algorithm of Carr et al. [26].

In [GFJT17], we have therefore completely revisited the augmented merge tree computa-
tion on shared memory multi-core architectures by partitioning the tree construction at the
arc level and by using independent arc constructions which can be expressed using tasks.
This does not introduce extra work in parallel, and we can naturally benefit from the dy-
namic load balancing of the task runtime. This has also made it possible to accelerate the
processing when there is only one task left. To our knowledge this implementation is the
fastest to compute the augmented merge trees in sequential, being more than 1.5x faster for
most data sets than the reference sequential implementation [44]. In parallel, we outperform
our previous implementation [GFJT17] by a factor 5.0 (in average). This work is presented
in Sect. 3.2.

Regarding the contour tree computation, we have recently improved our task-based ap-
proach in [GFJTxx] thanks to a new parallel algorithm to combine the two merge trees, and
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thanks to a complete “taskification” of the algorithm which enables us to overlap the com-
putations of the two merge trees in order to provide more tasks to the runtime (up to 1.34x
performance gains).

2.1.3 Hybridization for astrophysical N-body simulations

After our PhD thesis dealing with HPC for fast multipole methods (FMMs), our postdoctoral
study at LAM (Laboratory of Astrophysics in Marseille) has lead to a detailed comparison
[FAL11] of hierarchical methods for astrophysical N-body simulations (used for galactic dy-
namics studies). This comparison has encompassed O(N logN) Barnes-Hut tree-codes and
O(N) FMMs (presented in Sect. 3.3.1), and has shown that Dehnen’s algorithm [39], imple-
mented in the falcON code, is one order of magnitude faster than serial executions of Barnes-
Hut tree-codes and outperforms serial executions of a standard FMM. Dehnen’s algorithm
is a FMM specific to astrophysics: it relies in particular on a double recursion down the oc-
tree (dual tree traversal, DTT) which is well suited for the highly non-uniform astrophysical
distributions of particles. However, at that time falcON was only serial since 2002.

In [LF14], we have (with B. Lange) parallelized falcON in the pfalcON code on multi-core
CPUs thanks to task-based parallelism for the DTT, and to the SPMD-on-SIMD program-
ming model for vectorization. pfalcON has been shown to be competitive with a Barnes-
Hut tree-code on a high-end GPU. One then naturally aims at combining the best algorithm
(FMM with DTT) with the most powerful hardware currently available (GPU). Due to its
double recursion, obtaining an efficient DTT on many-core architectures like GPUs is how-
ever challenging. This has been achieved in [FTxx] (with M. Touche) with a new hybrid
CPU-GPU algorithm on integrated GPUs (iGPUs): while the DTT is performed on the CPU
cores (with task-based parallelism), all the computations can be efficiently performed on the
iGPU cores (after specific optimizations). Using OpenCL, we have been able to target both
Intel iGPUs and AMD APUs. Thanks to its lower SIMD width and its greater compute-
power, the Intel iGPU performs in the end better than the AMD APU, and can match the
performance of two standard CPUs, of one high-end CPU, or even of a GPU tree-code, be-
ing hence up to 4.2x more power-efficient (based on the theoretical TDP values) and 6.2x
more cost-efficient than these architectures. This work is presented in Sect. 3.3.

2.2 Improving computation regularity

We present here how we have managed to handle SIMD divergence for two applications in
computer arithmetic.

2.2.1 HPC for solving the Table Maker’s Dilemma

In floating-point arithmetic, having fully-specified operations is a key-requirement in order
to have portable and predictable numerical software. Since 1985 and the IEEE-754 standard
(revised in 2008), the four arithmetic operations (+,−,×, /) are specified and must be cor-
rectly rounded: the computer must return the floating-point number that is the nearest to
the exact result. This is not fully the case for the basic mathematical functions which may
thus return significantly different results depending on the environment. Hence, it is almost
impossible to estimate the accuracy of numerical programs using these functions, and their
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portability is difficult to guarantee. This lack of specification is due to a computer arith-
metic problem called the Table Maker’s Dilemma. To compute the result f(x) of a function f
in a given format, where x is a floating-point number, we first compute an approximation to
f(x) and then we round it to the nearest floating-point number. The Table Maker’s Dilemma
consists in determining the accuracy of the approximation to ensure that the obtained result
is always equal to f(x) rounded to the nearest floating-point number. To solve this problem,
we must locate, for each considered floating-point format and function f , what is the hardest
to round point, i.e., the floating-point number x such that f(x) is closest to the exact mid-
dle of two consecutive floating-point numbers. The exhaustive search over all floating-point
numbers being prohibitive, specific algorithms [95, 136] can solve this problem but still re-
quire extremely long computation times (several years of CPU time at the time). The use of
HPC is therefore crucial in order to obtain reasonable computation times. In the long term,
such work should enable to require the correct rounding of some functions in a future ver-
sion of the IEEE-754 standard, which will allow to completely specify all the components of
numerical softwares.

Focusing on double precision, we have studied (with M. Gouicem [58] and S. Graillat)
the Lefèvre algorithm [95] which offers massive and fine-grained data-parallelism over nu-
merous sub-domains of the definition domain of f . For each sub-domain, two steps are
performed: first the generation of an affine approximation of f , and then a search for hard to
round points (HR-cases).

While the affine approximation generation has a regular control flow, we have first shown
that the original HR-case search of Lefèvre algorithm presents divergence issues when exe-
cuted on SIMD architectures [FGG12]. Thanks to the continued fraction formalism, we have
rewritten in [FGG16] this algorithm in order to strongly reduce this divergence in the exe-
cution flow, leading to a GPU performance gain of 3.4x over the original algorithm on GPU,
and of 7.4x over the original algorithm on a multi-core CPU. Thanks to the SPMD-on-SIMD
programming model and to the OpenCL portability, we have then shown in [AFGZ16] (with
C. Avenel, M. Gouicem and S. Zaidi) that such algorithm is more efficiently deployed on
GPU (NVIDIA or AMD) SIMD units than on CPU or Xeon Phi (Knights Corner) ones. This is
partly due to the dynamic hardware handling of divergence on GPUs, which is better suited
for our regular algorithm than the static software handling of divergence on CPUs. This
regular algorithm presents indeed important divergence in its control flow, but low diver-
gence in its execution flow. This work on SIMD divergence handling for the Table Maker’s
Dilemma is presented in Sect. 4.1.

As far as the affine approximation generation is concerned, we have managed to obtain
performance gains similar to the HR-case search thanks to a hybrid CPU-GPU deployment
[FGG16]. In the end, for the complete solving of the Table Maker’s Dilemma, we obtain over-
all speedups of up to 7.1x on one GPU over the original Lefèvre algorithm on one multi-core
CPU. The (roughly) 2 months of computation time on a multi-core CPU currently required
to process all binades of a given function can thus be reduced to (roughly) 1 week of compu-
tation time on a GPU.

2.2.2 High performance stochastic arithmetic

Numerical validation consists in estimating the rounding errors occurring in numerical sim-
ulations because of the finite representation of floating-point numbers in computers. When
these rounding errors pile up, the result of a floating-point computation can greatly differ
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from its exact result. In the context of high performance computing, new architectures, be-
coming more and more parallel and powerful, offer higher floating-point compute power.
Thus, the size of the problems considered (and with it, the number of operations) increases,
becoming a possible cause for increased uncertainty. As such, estimating the reliability of a
result at a reasonable cost is of major importance for numerical software.

Several approaches exist for the numerical validation of scientific codes: interval arith-
metic, backward error analysis or probabilistic methods. We have here focused on Discrete
Stochastic Arithmetic [153], the probabilistic approach implemented in the CADNA1 library.
Discrete Stochastic Arithmetic considers several executions of each operation with a ran-
domly chosen rounding mode. From the samples obtained, we can get, through statis-
tical analysis, a 95 % confidence interval on the number of exact significant digits of the
result. CADNA has been successfully used for the numerical validation of real-life applica-
tions [19,80,81,106,129] written in C, C++, or Fortran. At the start of this work, there already
existed an MPI version of CADNA [105] as well as a prototype of CADNA on GPUs [84], but
CADNA was not best suited for HPC. Its overhead on execution time was usually between
10 and 100 times [80] and could go up to several orders of magnitude on highly optimized
codes [105]. Furthermore, it could not use one of the mainstay of parallel computing on
CPU, namely SIMD (or vector) instructions, because of the explicit rounding mode change
required for each scalar operation.

As part of a collaboration with P. Eberhart, J. Brajard and F. Jézéquel, we first have man-
aged in [EBFJ15] to reduce the scalar overhead by up to 85%, while also enabling the sup-
port of SIMD codes with the SPMD-on-SIMD programming model and thus leading to ad-
ditional speedups between 2.5 and 3. This has been accomplished thanks to an emulation
of the floating-point operations with an opposite rounding mode, to function inlining, to a
new random number algorithm and implementation and to the SPMD-on-SIMD model: this
work is detailed in Sect. 4.2.

As GPUs also (partially, but heavily) rely on SIMD execution, we have also been inter-
ested in the impact of some of these improvements on the CADNA-GPU prototype. We
have thus managed to improve the performance of this CADNA-GPU prototype by up to
61%: see [ELB+18] and Sect. 4.2.4. Finally, we have also enabled the support of OpenMP
codes by CADNA in order to estimate the round-off error propagation in multi-threaded
OpenMP codes: see [EBFJ16] and Sect. 4.2.4.

2.3 Taking advantage of new heterogeneous architectures

We present here how we have managed to benefit from new heterogeneous architectures (at
that time: the Cell processor, GPUs, and integrated GPUs) for specific applications.

2.3.1 The Fast Multipole Method on the Cell processor

During our PhD thesis, we had started working on the fast multipole method (FMM) for
Laplace equation in astrophysics and in molecular dynamics. This algorithm, considered as
one of the most important in scientific and engineering computing [46], solves the N-body
problem with a linear operation count for any given precision. Thanks to a hierarchical
octree data structure, the potential or force field is decomposed in a near field part, directly

1Control of Accuracy and Debugging of Numerical Applications: http://cadna.lip6.fr

http://cadna.lip6.fr


14 Chapter 2 – Research summary

computed, and a far field part approximated with multipole and local expansions. The FMM
is considered as a challenging HPC application since this algorithm is highly non-trivial and
presents several phases with different computational intensities and different (possibly ir-
regular) memory access patterns [93]. As part of our PhD thesis, we had presented a ma-
trix formulation of the most time-consuming operator of the far-field computation (i.e. the
M2L operator - multipole-to-local), which had enabled us to use level 3 BLAS routines (Basic
Linear Algebra Subprograms) leading to significant speedups. For the targeted precisions,
this approach outperformed the existing enhancements (FFT, rotations and plane waves), in
case of both uniform [CFR08] and non uniform distributions [CFR10] (thanks to a new oc-
tree data structure). Thanks to a hybrid MPI-thread (POSIX threads) approach we had also
parallelized this FMB code (Fast Multipole with BLAS) on shared and distributed memory ar-
chitectures. A static octree decomposition allowed for load balancing and data locality (via
cost functions and Morton ordering of the octree cells), and a mutual exclusion mechanism
prevented write/write conflicts among the threads.

After our PhD thesis we have targeted the efficient deployment of the FMM on the hard-
ware accelerators (HWAs) available at that time, namely the Cell processor and the GPUs.
At that time, only N-body simulations via direct computation [8, 87] or with cut-off radius
[49,98,138] had already been implemented on the Cell processor. The FMM had however al-
ready been deployed on GPUs for both uniform [60,160] and non-uniform [29,72,93,120] dis-
tributions of particles. The far field part was generally less efficiently implemented on GPU
than the near field part (direct computation) [29, 60, 93]. Moreover, such implementations
were based on a thorough deployment of the near field and/or far field computations of
the FMM on the GPU, along with all the data structures, which required important algorith-
mic changes and programming efforts. This resulted in GPU or CPU-GPU implementations
that outperformed CPU ones (highly optimized CPU implementations could also reduce the
CPU-GPU performance gap [29]).

Given a new HWA, our approach has rather focused on offloading only the most time
consuming FMM computations (the direct computations and the M2L operations) on this
HWA following a performance-portability tradeoff. Thanks to the FMB matrix formulation,
and provided that BLAS routines are available on the HWA, we could indeed benefit from a
straightforward and highly efficient implementation of the M2L operations on this HWA, for
any required precision. Contrary to other FMM implementations on HWA, we did not had
to write and highly optimize specific far-field computations for each new HWA. Moreover,
we could rely on the ability of the FMB code to group multiple M2L operations into one
single matrix-matrix product (for efficient processing with level 3 BLAS routines): this en-
abled us to increase the computation grain, for both uniform and non-uniform distributions,
and thus to offset the cost of offloading M2L operations on the HWA. A similar idea had
been developed for GPUs in [140], where multiple M2L operations are performed at once
(but without BLAS routines) on the GPU. Regarding the direct computation of the N-body
problem, this key application in HPC is among the first ones to be efficiently implemented
on new HWAs [8, 87, 111]. The direct computation could thus also be efficiently performed
within our FMM deployment on a new HWA.

The most time consuming FMM operations correspond to small or medium computation
grains, which are moreover involved in irregular computation schemes due to the possible
non-uniform distributions of particles. That is why we have targeted (with J.L. Lamotte) the
heterogeneous architecture of the Cell processor, whose internal bus has lower latency and
higher bandwidth than the PCI Express bus of GPUs. Thanks to specific low-level algorith-
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mics, regarding computation kernels, communication overlapping with computation, load
balancing, task scheduling, conflict handling and synchronization overheads, we have first
very efficiently deployed the near-field direct computations on the Cell processor [FL09].
Our code compared favorably with previous results in the literature for direct N-body com-
putations on the Cell processor as well as on GPU, especially for low numbers of particles
per octree leaf. Since, unfortunately, the latest IBM Cell SDK [74] did not provide efficient
BLAS routines for complex numbers on the Cell processor, we had to write our own (sim-
ple but efficient) matrix-matrix multiplications, achieving up to 92.38% and 90.96% of the
Cell peak performance in single [BFL10] and double [FL13] precisions, respectively. To our
knowledge, we have in the end proposed the first (and last) deployment of the FMM on the
Cell processor [FL13]. Thanks to suitable task scheduling and data handling within each
Cell processor, our implementation scaled efficiently on several Cell blades, in both single
and double precisions, and for both uniform and non-uniform particle distributions.

2.3.2 Atomic physics on GPUs

This section describes the deployment of a simulation in atomic physics (the PROP program)
on GPUs. The PROP program is part of the 2DRMP [24, 128] suite which models electron
collisions with H-like atoms and ions at intermediate energies. The primary purpose of the
PROP program is to propagate a global R-matrix [23], <, in the two-electron configuration
space. The propagation needs to be performed for all collision energies, for instance, hun-
dreds of energies, which are independent. Propagation equations are dominated by matrix
multiplications involving sub-matrices of <. However, the matrix multiplications are not
straightforward in the sense that < dynamically changes the designation of its rows and
columns and increases in size as the propagation proceeds [137].

In a preliminary investigation PROP was selected by GENCI2 and CAPS,3 following their
first call for projects (2009–2010) for GPU deployments. At that time, CAPS was delivering
HMPP (Hybrid Multicore Parallel Programming) [15, 45], a hybrid and parallel compiler
that relies on compiler directives to deploy, compile and execute legacy codes on heteroge-
neous architectures like GPUs. Such approach has since then been reused in OpenACC [1]
or in OpenMP 4.X [2]. Using HMPP, CAPS developed a version of PROP in which matrix
multiplications are performed on the GPU or the CPU, depending on the matrix size. Un-
fortunately this partial GPU implementation of PROP did not offer significant acceleration
(speedup of 1.15x between one NVIDIA Tesla C1060 GPU and one Intel Xeon x5560 quad-
core CPU) due to the use of double precision and to the small or medium sizes of most
matrices.

As part of a collaboration with R. Habel, F. Jézéquel, J.-L. Lamotte and N.S. Scott (from
Queen’s University of Belfast, UK) we have first studied in [FHJ+11] [FHJ+13] the numerical
stability of PROP using single precision arithmetic. The peak performance ratio between
single and double precisions varies indeed between 2 to 4 on HPC GPUs and the GPU mem-
ory accesses and CPU-GPU data transfers are faster in single precision because of the format
length. This study has shown that PROP using single precision, while relatively stable for
some small cases, gives unsatisfactory results for realistic simulation cases above the ioniza-
tion threshold where there is a significant density of pseudo-states.

2GENCI: Grand Equipement National de Calcul Intensif, http://www.genci.fr/en
3CAPS was a software company providing products and solutions for many-core application programming

and deployment.

http://www.genci.fr/en
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We have thus deployed all computation steps of PROP (in double precision) on GPUs
in order to avoid the overhead generated by data transfers. In addition to all matrix prod-
ucts, other matrix operations (constructions, copies, additions, scalings, linear system solv-
ings) are performed on the GPU. Moreover I/O operations on CPU are overlapped by GPU
computations thanks to double-buffering with POSIX threads, and matrices are dynamically
padded to match the inner blocking size of CUBLAS [110] and MAGMA [100]. These im-
provements have led to a speedup of 4.6x (respectively 9.0x) for one C1060 (resp. C2050)
GPU over one Intel Q8200 quad-core CPU [FHJ+11], which justifies the deployment work.
Starting from Fermi GPU architectures, we also rely on concurrent kernel executions on
GPU, both among propagations of multiple energies and within each energy propagation:
this is relevant here due to our small or medium computation grain kernels, and this leads
to an additional gain of around 15% [FHJ+13]. Overall, this work has shown the relevance
of GPUs for such a simulation in atomic physics.

2.3.3 Leveraging integrated GPUs for seismic imaging

In order to discover and study new oil deposits, oil and gas companies can send acoustic
waves through the subsurface and collect the echoes reflected by the rock layers. Seismic
imaging algorithms are then used to delineate the subsurface geologic structures from the
collected data. Reverse Time Migration (RTM) is the most famous algorithm for seismic
imaging and is widely used by oil and gas companies. However, RTM requires large mem-
ory capacities and long processing times. HPC solutions based on CPU clusters and hard-
ware accelerators are thus widely embraced. Clusters of GPUs have hence been used since
2009 to accelerate RTM [4, 51, 96, 102, 108, 112, 114] thanks to their increased compute power
and to their high memory bandwidth. However, the performance of these GPU deploy-
ments are limited by the GPU memory capacity, by the high (CPU+)GPU power consump-
tion, and by the frequent CPU-GPU communications that may be bottlenecked by the PCI
transfer rate. These CPU-GPU communications are due to required data snapshots (within
each node) and to inter-node communications: depending on the number of compute nodes
and on the data snapshotting frequency, these can bottleneck the performance of multi-node
RTM GPU implementations [4, 33, 51, 112]. Although numerous software solutions, such as
temporal blocking or overlapping the PCI transfers with computations, have been proposed
to address this issue, they require extensive programming efforts.

As part of a collaboration (funded by TOTAL) between TOTAL (H. Calandra), AMD,
CAPS Entreprise (R. Dolbeau) and LIP6 (I. Said [126] and J.-L. Lamotte), we have therefore
considered the AMD APUs (Accelerated Processing Units) and their integrated GPUs (iGPUs,
see Sect. 1.1) as an attractive hardware solution to the PCI bottleneck of the RTM, while
allowing the iGPU cores to exploit the entire system memory and offering reduced mem-
ory consumptions. However, these APUs are almost one order of magnitude less compute
powerful and have a lower memory bandwidth than discrete GPUs, which can lower or
annihilate these assets in practice.

We have thus first studied the relevance of successive generations of APUs for high per-
formance scientific computing, based on data placement strategies and on memory and
applicative (a matrix-matrix multiplication and a 3D finite difference stencil) benchmarks
[CDF+13] [SFL+16]. Theses OpenCL benchmarks have been carefully optimized for the
three considered architectures: CPUs, discrete GPUs and APUs (using only the iGPUs of
the APUs). In addition to a performance portability study, we have shown that the APU
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iGPUs outperform CPUs and may outperform discrete GPUs for medium-sized problems
(matrix-matrix multiplications) or for problems with high PCI communication requirements
(finite difference stencils with data snapshotting). Moreover, our study has shown that APUs
are more power efficient (up to 20%, when considering the complete compute node) than
discrete GPUs. The feasibility of hybrid computing on the APU (using both the CPU and
the iGPU, with either task-parallel or data-parallel deployments) has also been surveyed
[ESFC14].

We have then extended this CPU/APU/GPU study for seismic applications (seismic
modeling and RTM), on one node (using Fortran90+OpenCL and real power measurements)
and on up to 16 nodes (using MPI in addition to Fortran90+OpenCL and estimated power
efficiencies) [SFLC18]. We have shown the relevance of overlapping both I/O and MPI com-
munications with computations on APU and GPU clusters, where all computations are per-
formed on the APU iGPUs or on the discrete GPUs. In the end, APUs deliver performances
that range between those of CPUs and those of GPUs, and the APUs can be as power efficient
as the GPUs.

2.4 Parallel code generation for data assimilation

In environmental science, climatic events are usually modeled through very large numerical
codes. Many parameters of these models are estimated by assimilation of in-situ or satellite
observations. Using data assimilation one can indeed reduce the differences between the
forecasts of the model and the actual observations. In variational data assimilation methods,
this is achieved thanks to the minimization of a cost function whose gradient is computed
based on the adjoint model. From the direct model, that runs the simulation, we can indeed
deduce the adjoint model that computes the sensitivity of all the parameters with respect to
the actual observations. Programming the adjoint model is a difficult task that can even re-
quire a complete rewriting of the direct model. These issues have led to the development of
the YAO framework by the LOCEAN laboratory4 at Sorbonne Université. YAO eases the de-
velopment of software for variational data assimilation [109] thanks to a modular graph which
defines the data dependencies between smaller units of computations (modules) written by
the user. This modular graph then enables the code generation of both the direct and the
adjoint models. This approach has proved suitable for small and medium sized codes.

In order to process larger problems efficiently, and targeting shared memory architec-
tures, we have investigated (with L. Nardi, F. Badran, and S. Thiria from LOCEAN) the gen-
eration of parallel OpenMP codes with YAO, by taking advantage of the similarity between
the modular graph and the reduced dependence graph used in automatic parallelization
[NBFT12]. While data races (write/write conflicts) arising in the adjoint code prevent the
use of generic software for automatic parallelization (such as for example CAPO [82], Gas-
pard2 [139] or PLuTo [16]), the parallel code generation by YAO can handle these data races
automatically thanks to OpenMP atomic directives. This leads however to limited speedups
(below 50% of parallel efficiency). We can avoid these atomic operations thanks to a sub-
domain decomposition automatically generated (along with the suitable sub-domain size)
thanks to the modular graph. This has enabled us to improve speedups up to 9.4x on 12
CPU cores [NBFT12].

4Laboratoire d’Océanographie et du Climat : Expérimentations et Approches Numériques, Oceanographic & Climate
Laboratory: experiments and digital approaches, https://www.locean-ipsl.upmc.fr

https://www.locean-ipsl.upmc.fr
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Chapter 3

Designing algorithms for many-core or
multi-core architectures, or both

3.1 Massive parallelism on many-core architecture for image seg-
mentation

We first focus on an image segmentation application for breast cancer grading which has
been rewritten to enable massive and fine-grained parallelism. Breast cancer grading in
histopathology – the study of diseased tissues at microscopic level – is strongly based on the
size and aspect of nuclei. Small cell nuclei of almost same sizes will denote a small grade,
whereas a marked size variation will conduct to a higher grade. The detection and extraction
of nuclei (see Fig. 3.1) are thus important issues in the domain of automatic image analysis
of histopathology images. Moreover, the reduction of the computation time is becoming
critical, because of the huge microscope slide sizes (up to 100, 000 by 100, 000 pixels).

Extraction algorithms can be divided into two main categories: classification and seg-
mentation. The classification ones, see [158] for instance, will not be able to separate and
count nuclei. The segmentation can be performed using active contour model (Snakes) [85],
but as one snake would be needed for every nucleus, this solution is not relevant here. The
segmentation can also be performed using the level set approach using free shapes [65,151],
or parametric ones [21]. A parametric shape based model decreases the amount of computa-
tion, and is sufficient for a good cell nuclei detection here. However, in breast cancer images
the nuclei often appear joint or even overlapped. We thus consider here a marked point
process, which enables us to extract nuclei as individual joint or overlapping objects with-
out necessarily discarding overlapping parts and therefore without major loss in delineation
precision [88]. Various authors applied point processes to image analysis [11, 42]. We use
here a simulated annealing algorithm combined with a “birth and death” process as in [43].

This process is extremely compute intensive, especially on large images: its paralleliza-
tion is therefore crucial, as well as its good scaling on the number of nuclei, hence on the
image size. Several images can of course be processed in parallel on multiple compute
nodes. Since this application is primarily intended for histopatologists in hospitals where
only one single workstation will be available, we focus here on the parallel processing of a
given image on one single node, targeting in particular massive and fine-grained parallelism
for many-core architectures. To our knowledge, such birth and death process has not been
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Figure 3.1 – Example of a good quality detection on a histopathology image

deployed on parallel architectures yet.
In the following, we first present the original birth and death process applied to histology

images and we show that one step of this algorithm is inherently sequential. We then detail
how we have revised this algorithm in order to obtain a parallel birth and death algorithm
that scales on the number of cores and on the number of nuclei. Finally, we present perfor-
mance results on both multi-core CPUs and GPU. More details can be found in [AFB13].

3.1.1 Birth and death process for cell nuclei extraction

We consider the framework of histopathology images, but this work could easily be gener-
alized for the detection of any elliptically shaped object. The goal here is to perform the cell
nuclei detection (as in Fig. 3.1). We give here a high-level description of the algorithm, and
we refer the reader to [10] [AFB13] for the detailed theoretical background.

3.1.1.1 Marked Point Process and original birth and death algorithm

A Marked Point Process (MPP) can be used to detect an arbitrary number of objects. MPP is
a stochastic process where a realization w is a set of marked points w1, ..., wn. As cell nuclei
may be correctly approximated by ellipses (see [10] for a justification), an object wi will be
described by the center xi of an ellipse, with small and big axes ai, bi ∈ [rmin, rmax], and with
an orientation θi ∈ [0, 2π].

The aim here is to determine the realization w which minimizes the energy function U :

U(w) = γd
∑
wi∈w

Ud(wi) + γp
∑
wi∈w

Up(wi) , (3.1)

where Ud(wi) are the data-fidelity terms, their sum measuring the relevance between w and
the image, and Up(wi) are the interaction terms, their sum measuring the coherence of w.
The parameters γd and γp are weighting coefficients. The goal of the data-fidelity term is to
evaluate the relevance of an ellipse in the image: for instance an ellipse wi correctly placed
should give a low value for Ud(wi). Concretely, this term depends on xi, ai, bi and θi, and
is computed based on the Bhattacharyya distance between the inside and outside borders
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of the ellipse wi [10]. The interaction term must be defined in order to avoid the superposi-
tion of the ellipses wi. Concretely, Up controls the overlapping of ellipses by measuring the
intersection between ellipses:

Up(wi) =
∑

px∈Ai

|{wj ∈ w \ wi, px ∈ Aj}| ,

with Ai the set of all pixels inside the ellipse wi, and w \ wi ≡ {wj , ∀j 6= i}. This term
increases when the percentage of overlapped surface grows.

To compute the optimal realization w, we use a simulated annealing algorithm combined
to a “birth and death” process: the birth step consists in generating a large number of ellipses
wi, each one being one realization of a Poisson distribution; the death step examines each
ellipse wi: the ellipse is isolated from w and we compute the new energy U(w \ wi). If the
energy decreases the ellipse is effectively removed from w, otherwise the ellipse is kept with
a probability depending onU(w), onU(w\wi) and on a parameter δ. In practice, this usually
results in removing each ellipse overlapped by an ellipse with a better (lower) data-fidelity
term, as well as in removing non-overlapped ellipses that are incorrectly placed. The birth
and death process is iterated until convergence. To expect a fast convergence, the parameter
δ should decrease: this parameter can be related to the decreasing “temperature” of the
simulated annealing algorithm. The convergence of such algorithm has been proved in [43].
The original sequential birth and death algorithm can now be described as follows.

Initialization: give suitable values for the various parameters. Set w to an empty set.
1. Birth: randomly generate a large number of ellipses and add them to the current real-

ization w.
2. Data-fidelity term computation: for each ellipse of the realization, Ud is computed.
3. Overlap map computation: in order to compute Up in the next step, we first build a map

giving the number of ellipses overlapping each pixel. For each ellipse, we have to visit
the pixels inside this ellipse and update the map.

4. Death: sort the ellipses wi in decreasing order of their data-fidelity term. This sorting
step ensures the best ellipses (i.e. the ones having the lowest Ud values) are processed
as last, with thus lowest Up values. Then for each sorted ellipse wi, compute the over-
lapping energy Up. This term is directly given by the sum of elements of the overlap
map over the ellipse. Depending on Ud and Up, the ellipse is then either removed or
kept (with a computed probability), and if removed, its contribution is removed from
the overlap map.

5. Stop if all the ellipses added in the birth step and only them are removed in the death
step; otherwise, decrease δ and go to step 1.

3.1.1.2 Inherent sequentiality of the death step

The three first steps can be easily computed in parallel (with some synchronizations: see
Sect. 3.1.2.2). The death step is however inherently sequential: the ellipses have to be treated
in the decreasing order of their data-fidelity term. This is important for good quality results
because the ellipses with better data-fidelity terms are hence computed last, ensuring they
are unlikely to be deleted due to overlapping with ellipses with worse data-fidelity terms.

One could first consider not to parallelize the death step. But since the death step time
corresponds to 20% of the overall computation time (in serial on CPU), the resulting speedup
would be limited to 5x on any number of cores according to the Amdahl’s law.
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Since the number of ellipses is quite large (for example, around 20, 000 on a 1024× 1024
image or 320, 000 on a 4096×4096 image), one could then try to parallelize the original death
step by browsing the sorted list of ellipses with a fixed number of threads NT . The ordering
of the ellipse would therefore be only partially respected. But one could aim to have this
way high enough parallel speedups with reasonably good result quality. The results of such
a parallelization have been simulated in [AFB13]: unfortunately, the quality of the results
quickly drops to unacceptable values as the degree of parallelism increases (above just 4
threads). Moreover, this reduction of quality comes along with an increase of the number of
iterations.

3.1.2 Scalable parallel birth and death process

We now show how we have designed a new parallel birth and death (PBD) algorithm.

3.1.2.1 A new birth and death algorithm

A parallel death step. In order to obtain an algorithm which scales with the number of cores,
a new way to compute the overlapping energy independently of any ordering is required.
In that aim, we propose a new overlapping energy U∗p (wi):

U∗p (wi) = |{px ∈ Ai, Ud(wi) > min(px)}| ,

with min(px) the minimal data-fidelity term of all ellipses overlapping the pixel px.
We can now compute this overlapping energy based only on the ellipses with the best

(i.e. minimal) data-fidelity terms. Each ellipse thus needs to know the exact number of its
pixels which are overlapped by an ellipse with a better data-fidelity term. The 2D overlap
map now stores for each pixel the minimal data-fidelity term among all ellipses overlapping
this pixel. During the new overlap map computation step, for each ellipse we thus have to
store its data-fidelity term d in the overlap map, for each of its pixels p, if d is lower than the
current value of p.

During the death step, each ellipse can then count the number of pixels having a better
data-fidelity term than its own one. It is thus possible to determine which ellipse to keep
or to delete in any order. This allows the death step to be computed in parallel. Moreover,
when an ellipse is deleted, the overlap map is not modified any more, which reduces the
computation load. The overlapping energy is indeed now based on all possible ellipses,
including both the already removed ones and the currently kept. This new algorithm ensures
that no ellipse will be removed due to an overlapping with a worst ellipse.

We have shown in [AFB13] that the quality of the new algorithm matches indeed the one
of the original algorithm in a serial execution, and that this quality is not degraded when
increasing the number of threads (see Sect. 3.1.2.2 for the parallelization). Moreover, the
number of iterations does not increase with the number of threads.

Stop criterion. The stop criterion used in [10] – waiting for no new ellipse created and no
previous ellipse deleted – is too strict: the number of iterations grows proportionally to the
image size. As we are looking for a scalable algorithm, which can handle the biggest images,
our new birth and death algorithm now stops whenever Rtotal

Rnew+Rold
> µ, with Rtotal the total

number of ellipses kept in the realization after the death step, Rnew the number of ellipses
added during the last birth step and not deleted, and Rold the number of ellipses from the
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Figure 3.2 – A new scan of the ellipse area on GPU.

past realization deleted during the last death step. This new criterion checks that there is
less than one change (a new ellipse added or an old one deleted) every µ ellipses (µ = 500 in
practice). As the number of ellipses depends on the image size, this leads to a stop criterion
that scales with the image size.

3.1.2.2 Efficient deployment on parallel architectures

In order to show the scalability of our new PBD algorithm, we have deployed it on both
multi-core CPUs and on GPU. Regarding multi-core CPUs with shared memory, the deploy-
ment has been performed with OpenMP, using a dynamic load balancing for each step, with
appropriate computation grain sizes for the threads, and atomic operations and locks for
the thread synchronizations. Regarding the GPU deployment in CUDA, we detail in the
following how this has been efficiently performed.

Birth step: the GPU deployment of the birth step is straightforward. Each GPU thread
handles one single pixel, within a 2D grid of the size of the image, and the blocks of threads
are organized so as to ensure coalesced memory loads. CUDA atomic operations are re-
quired for the creation of ellipses, as all threads store the created ellipses in the same array.
These atomic operations are not expected to be problematic in practice since the number of
created ellipses is very small regarding the number of pixels: on a 1024×1024 image, around
20, 000 ellipses are created whereas the number of pixels is 50 times greater.

Data-fidelity term: in a first naive version, directly based on the OpenMP version, each
GPU thread handles one single ellipse to compute its data-fidelity term. In order to better
match the fine-grained parallelism of GPUs and to reduce the compute divergence among
threads within the same warp, we modified this using multiple threads per ellipse. Each
thread computes the value of a point from its polar coordinates inside or outside the ellipse.
Reductions are then applied to retrieve the variances and the means from the inside and
outside borders, needed to compute the Bhattacharyya distance. In that aim, we use an
efficient GPU reduction provided in the NVIDIA CUDA GPU computing SDK1.

Overlap map computation: in a first naive GPU version, directly based on the OpenMP
version, each thread handles one single ellipse, in order to compute the minimal data-fidelity

1See: https://developer.nvidia.com/cuda-code-samples

https://developer.nvidia.com/cuda-code-samples
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term for each of its pixels. We scan the ellipse area line by line, from top left to bottom right,
and for each pixel we store in the overlap map the data-fidelity term of the current ellipse
if this one is lower than the current value. This however leads to uncoalesced memory
accesses, to irregularities in the control flow within each warp (each ellipse having a different
size), and to a too large computation grain per thread.

We thus propose here a new area scan of the ellipse more efficient on GPU. As presented
in Fig. 3.2, we start the scan from the horizontal line passing by the center of the ellipse. One
half of the threads then scans up, while the other half scans down. This ensures much more
coalesced memory accesses and threads within a warp now share their cache lines.

In order to compute the minimal value during the scan, we could use an atomic “min”
function. Unfortunately, the corresponding CUDA function only deals with integers, whereas
our data-fidelity term is a single precision floating-point number. Our solution is to use the
atomic “exchange” function: for each pixel p of each ellipse, in case the data-fidelity term d
of the current ellipse is smaller than the actual value of p in the overlap map, we exchange
this value with d and we check that no other thread has performed an exchange with an even
lower data-fidelity term in between. In this case, the exchange process is repeated until the
correct minimal value has been written.

Death step: for this step, the overlapping energy computation relies on a scan of each
ellipse, which is performed in the same way as in the previous step. However, we need here
to sum the number of pixels which are overlapped by an ellipse with a better data-fidelity
term. Therefore, since an ellipse area scan is performed by multiple threads, a reduction is
needed to sum up the values of all threads. In that aim, we use the GPU reduction provided
in the NVIDIA CUDA GPU computing SDK. Besides, we store the kept ellipses continuously
in memory by performing an atomic “increment” on the number of ellipses. These atomic
operations are not expected to be problematic in practice as the number of kept ellipses is
very small regarding the number of created ellipses: on a 1024 × 1024 image, around 200
ellipses are kept whereas the total number of ellipses is 100 times greater.

3.1.3 Performance results

The following tests have been performed with a 4096 × 4096 image on one compute server
composed of one NVIDIA Fermi C2070 GPU and two Intel X5650 hex-core CPUs with 2-way
SMT (hence 24 hardware threads in total).

As presented in Sect. 3.1.2.2, the parallelization of the birth step of the PBD process is
straightforward (except for the atomic operations). We therefore obtain very good parallel
speedups on both CPU (up to 9.21) and GPU (up to 39.46) in Figs. 3.3a and 3.3b. The par-
allelization of the data-fidelity term computation step is also straightforward and offer very
good speedups on CPU (up to 14.47) as presented on Figs. 3.3c and 3.3d. A good speedup of
21.28 is also obtained on GPU when using one GPU thread per ellipse (CUDA naive). Using
multiple threads per ellipse enables us to reach an acceleration of 29.58.

The performance of the overlap map computation step (see Figs. 3.3e and 3.3f) is however
constrained by the numerous synchronizations required to update, in each pixel, the mini-
mum data-fidelity value of all the ellipses that overlap on this pixel. In OpenMP, we rely on
multiple locks and we obtain a speedup of 5.79 on the two CPUs: this could be improved
with new OpenMP 4.0 atomic operations (not available at the time of this work). The CUDA
code can already benefit from atomic “exchange” operations for this overlap map computa-
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Figure 3.3 – Average computation times and corresponding speedups (with respect to the sequential CPU run
without OpenMP) of the birth and death steps.
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Figure 3.4 – Total computation times and speedups (with respect to the sequential CPU run without OpenMP)
per iteration of the birth and death process.

tion step, but the naive CUDA implementation (with one CUDA thread per ellipse) offers
only a speedup of 6.99. Our new scan of the ellipse area presented in Sect. 3.1.2.2 enables
here to have much more coalesced memory accesses and to reduce the cache trashing within
each warp. Moreover, the reduction over all pixels within each ellipse is also efficiently
performed. Thanks to this new ellipse area scan we thus obtain a good speedup of 19.35.

With the new PBD algorithm, the death step is also efficiently performed in parallel on
both CPU and GPU as shown in Figs 3.3g and 3.3h. On the GPU, the death step also benefits
strongly from our new ellipse area scan, which leads to a twice greater speedup.

When considering the complete execution on Figs 3.4a and 3.4b, we obtain very good
overall speedups (up to 11.00) with OpenMP on multi-core CPUs. The naive GPU imple-
mentation offers a limited speedup of 11.64, whereas a better match with the fine-grained
parallelism of GPUs enables us to obtain a good GPU speedup of 22.94 over a sequential
CPU run. We recall that according to Amdahl’s law, we were limited to a maximum speedup
of 5.0 for the complete original birth and death process with a non-parallelized death step.

3.1.4 Conclusion

We have presented a new scalable parallel birth and death algorithm for cell nuclei extraction
in histopathology images. Contrary to the original birth and death algorithm, whose death
step was inherently sequential, this new algorithm scales on the number of cores and on the
number of ellipses. Thanks to efficient deployements in OpenMP and in CUDA, we manage
to obtain good speedups on multi-core CPUs and on GPU. While the power consumption
of the two CPUs is roughly the same as the GPU one, the GPU is 2 times faster, thanks to
its greater compute power, than the two multi-core CPUs for this application which justifies
the GPU code development and optimization. It has to be noticed that an OpenCL imple-
mentation could have enabled us to have one single source code for both CPU and GPU, to
study which step of the birth and death process can benefit from the implicit vectorization
on multi-core CPU (SSE, AVX) and to test the scalability of our algorithm on the many-core
architecture of the Intel Xeon Phi processors.

Finally, we emphasize that such birth and death process can accelerate breast cancer
grading applications, as well as numerous other applications based on extraction of elliptically-
shaped objects.



3.2 – Task parallelism on multi-core architecture for scientific visualization 27

3.2 Task parallelism on multi-core architecture for scientific visu-
alization

3.2.1 Merge and contour trees in scientific visualization

Scientific data sets, resulting from acquisition devices or from numerical simulations, are
more and more complex and constantly increasing in size. In order to efficiently visu-
alize and interactively explore such data sets, advanced data analysis algorithms are re-
quired. For scalar field visualization, topological data analysis techniques [48, 68, 118] en-
able to capture the structure of the input data into high-level topological abstractions such
as merge trees [20, 132], contour trees [18, 26, 141], Reeb graphs [117, 121] or Morse-Smale
complexes [61]. Such topological abstractions are fundamental data structures that enable
the development of advanced data analysis, exploration and visualization techniques, in-
cluding for instance: small seed set extraction for fast isosurface traversal [27, 149], feature
tracking [133], data-summarization [116, 156], transfer function design for volume render-
ing [155] and similarity estimation [71, 145]. Moreover, their ability to capture the features
of interest in scalar data in a generic, robust and multi-scale manner has contributed to their
use in a variety of applications such as: turbulent combustion [20,62,92], computational fluid
dynamics [50, 86], material sciences [63, 64], chemistry [59] or astrophysics [124, 130, 134].
However, as computational resources and acquisition devices improve, the resolution of the
geometrical domains on which scalar fields are defined also increases. In order to enable
truly interactive exploration sessions, highly efficient parallel algorithms are therefore re-
quired for the computation of these topological abstractions. However, most topological
analysis algorithms are originally intrinsically sequential as they often require a global view
on the data.

We focus here on merge trees and contour trees, which are fundamental topology-based
data structures in scalar field visualization, and more precisely on the augmented versions
of these trees (where the arcs hold all the corresponding regular vertices of the domain),
which enable all visualization applications including e.g. topology-based data segmenta-
tion. Considering a visualization workstation composed of multi-core CPUs with shared
memory, previous parallelizations [115] [GFJT16] of the reference sequential algorithm [26]
lead to extra work in parallel and to possible load imbalance. On the other hand, massively
parallel approaches (such as [99]) cannot produce augmented trees and lead to moderate
speedups when compared to the reference sequential algorithm.

We present here a new approach (detailed in [GFJT17]) which completely revisits the tra-
ditional, sequential merge tree algorithm to re-formulate the computation as a set of local
tasks that are as independent as possible. This requires local sorting traversals, new data
structures (Fibonacci heaps), a new criterion for the detection of the saddles which generate
branching in the output tree, as well as an efficient procedure to process the output arcs in
the vicinity of the root of the tree. No extra work is introduced in parallel, and we naturally
benefit from the dynamic load balancing of the task runtime. This results in lower compu-
tation times, in sequential as well as in parallel on multi-core CPUs with shared memory
thanks to the OpenMP task runtime. In the context of augmented contour tree computation,
we show that a direct usage of our merge tree computation procedure also results in lower
overall computation times, both in sequential and parallel. Performance results on real-life
data sets demonstrate that our approach outperforms sequential [44] and parallel [GFJT16]
reference implementations, both for augmented merge and contour tree computations.
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(a) (b) (c)

Figure 3.5 – Topology driven hierarchical data segmentation. (a) Input scalar field f (color gradient), level-set
(light green) and critical points (blue: minimum, white: saddle, green: maximum). (b) Split tree of f and its

corresponding segmentation (arcs and their pre-images by φ are shown with the same color). (c) Split tree of f
and its corresponding segmentation, simplified according to persistence.

Background. Although our algorithm supports arbitrary dimensions, we will consider
here a 3D tetrahedral (unstructured) meshMwhere a scalar field f is defined on the vertices
ofM. This scalar field can for example correspond to the results of a numerical simulation in
each mesh vertex. The star St(v) of a vertex v is the set of tetrahedrons ofM which contain
v as a vertex corner. The link Lk(v) is the set of faces of the tetrahedrons of St(v) which do
not intersect v. Let Lk−(v) be the lower link of the vertex v: Lk−(v) = {σ ∈ Lk(v) | ∀u ∈ σ :
f(u) < f(v)}. The upper linkLk+(v) is given byLk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f(u) > f(v)}.
Then, given a vertex v, if its lower (respectively upper) link is empty, v is a local minimum
(respectively maximum). If both Lk−(v) and Lk+(v) are simply connected, v is a regular
point. Any other configuration is called a saddle point (white spheres in Fig. 3.5a). Critical
points denote minima, maxima and saddles.

A level-set is defined as the pre-image of an isovalue i ∈ R ontoM through f : f−1(i) =
{p ∈ M | f(p) = i} (see Fig. 3.5a). Each connected component of a level-set is called a
contour. In Fig. 3.5b, each contour of the level-set of Fig. 3.5a is shown with a distinct color.
Similarly, the notion of sub-level set, noted f−1−∞(i), is defined as the pre-image of the open
interval (−∞, i) ontoM through f : f−1−∞(i) = {p ∈ M | f(p) < i}. Symmetrically, the sur-
level set f−1+∞(i) is defined by f−1+∞(i) = {p ∈ M | f(p) > i}. Let f−1−∞

(
f(p)

)
p

(respectively
f−1+∞

(
f(p)

)
p
) be the connected component of sub-level set (respectively sur-level set) of f(p)

which contains the point p. The split tree T +(f) (see Fig. 3.5b) tracks the merges of the
connected components of the sur-level sets, each connected component corresponding to
one arc in T +(f). The join tree, noted T −(f), is defined similarly to track the merges of the
connected components of the sub-level sets. Irrespective of their orientation, the join and
split trees are usually called merge trees, and noted T (f) in the following. The notion of Reeb
graph [121] is also defined similarly to track the merges of the connected components of the
level sets. The Reeb graphs defined on simply-connected domains being loop-free, such a
Reeb graph is called a contour tree and we will note it C(f). Contour trees can be computed
efficiently by combining the join and split trees with a linear-time traversal [26, 141]. In
Fig. 3.5, sinceM is simply connected, the contour tree C(f) is also the Reeb graph of f . Since
f has only one minimum, the split tree T +(f) is equivalent to the contour tree C(f).
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Note that f can be decomposed into f = ψ ◦ φ where φ : M → T (f) maps each point
inM to its equivalence class in T (f) and where ψ : T (f) → R maps each point in T (f) to
its f value. Since the number of connected components of f−1−∞(i), f−1+∞(i) and f−1(i) only
changes in the vicinity of a critical point [48,103], the pre-image by φ of any vertex of T −(f),
T +(f) or C(f) is a critical point of f (blue, white and green spheres in Fig. 3.5a). In particular,
the pre-images of vertices of valence 1 necessarily correspond to extrema of f [121]. The pre-
images of vertices of higher valence correspond to saddle points which join (respectively
split) connected components of sub- (respectively sur-) level sets. Since f−1−∞(f(M)) = M
for the global maximum M of f , φ(M) is called the root of T −(f) and the image by φ of
any local minimum m is called a leaf. Symmetrically, the global minimum of f is the root of
T +(f) and local maxima of f are its leaves.

Note that the pre-image by φ of T (f) induces a complete partition ofM. In particular,
the pre-image φ−1(σ1) of an arc σ1 ∈ T (f) is guaranteed by construction to be connected.
This latter property is at the basis of the usage of the merge tree in visualization as a data
segmentation tool (see Fig. 3.5b) for feature extraction. In practice in the augmented version
of the merge trees, φ−1 is represented explicitly by storing, for each arc σ1 ∈ T (f), the list
of regular vertices of M that map to σ1. Moreover, T (f) can be progressively simplified
by iteratively removing its “shortest” arcs connected to leaves (see Fig. 3.5c): this can help
discard noisy simulation or acquisition results.

Related work. In order to compute (augmented and non-augmented) merge trees, the
reference and optimal, but sequential, algorithm of Carr et al. [26] relies on a preliminary
sort of all vertices ofM according to their scalar value. All vertices are then processed by
increasing (respectively decreasing) scalar value in order to construct the join tree T −(f)
(resp. the split tree T +(f)) by keeping track of the connectivity evolution of the sub-level
sets L−(i) (resp. sur-level sets L+(i)) with Union-Find data structures [36]. We emphasize
here the importance of the vertex ordering: this ensures that when visiting a vertex v in e.g.
the join tree computation, all vertices u with f(u) < f(v) (that it to say, all vertices belonging
to the sub-level set of f(v)) have already been visited. In particular, when visiting a saddle
all the connected components of its sub-level set have been processed and can be merged.

Previous shared memory parallel approaches have considered partitioning the mesh in
a static decomposition among the threads, by either dividing the geometrical domain [115]
or the range of scalar values [GFJT16]. Due to the non-respect of the global ordering in
parallel, this leads in both cases to extra work (with respect to the sequential mono-partition
computation) at the partition boundaries when joining results from different partitions. This
can also lead to load imbalance among the different partitions [GFJT16].

Regarding shared memory parallel approaches for tetrahedral meshes, Maadasamy et
al. [99] introduced a multi-threaded variant of the output-sensitive algorithm by Chiang et
al. [31], where the arcs of the (non-augmented) merge trees are evaluated by triggering mul-
tiple monotone path computations for each saddle point. This massively parallel algorithm
results in good scaling performances on tetrahedral meshes, but its sequential version is up
to three times slower than the reference implementation (libtourtre [44], see Table I in [99])
of the optimal algorithm [26]. This only yields eventually speedups between 1.6x and 2.8x
with regard to libtourtre [44] on a 8-core CPU [99]. Besides, their hybrid CPU-GPU version
does not offer any performance gain over the multi-core CPU for such unstructured meshes.
These moderate speedups over libtourtre can be explained by the lack of efficiency of the
sequential algorithm based on monotone paths by Chiang et al. [31] in comparison to that of
Carr et al. [26], due to the cost of extracting all critical points and to some unnecessary mono-
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Figure 3.6 – Overview of our augmented merge tree algorithm (2D toy elevation example).

tone path computations. Moreover, this approach cannot produce an augmented merge tree.
Carr et al. [28] presented a data parallel algorithm following a similar approach, also for
non-augmented trees. Smirnov et al. [132] described a new data structure for computing in
parallel the same information as the merge tree. However, the parallel implementation (with
atomic variables) requires at least 4 threads to outperform the sequential version (without
atomic variables) and offers thus limited speedups (up to 5.8x on 32 CPU cores) compared
to this sequential version.

3.2.2 Task-based parallel merge tree computation

We now present our new merge tree computation algorithm, here illustrated with the join
tree T −(f), which has been designed for an efficient task-based parallelization. Instead of
introducing extra work with a static decomposition of the mesh or of the range of scalar
values among the threads, our algorithm naturally distributes the computations of the merge
tree arcs on the CPU cores via independent tasks. We hence avoid any extra work in parallel,
while enabling an efficient dynamic load balancing on the CPU cores thanks to the task
runtime. This dynamic load balancing will handle the varying computation cost associated
to each arc. Moreover, this algorithm enables us to build the augmented merge tree.

Leaf search. First, we search for all leaves in T −(f) (see Fig. 3.6, left): for each vertex
v ∈ M, its lower link Lk−(v) is constructed via a local operation. If it is empty, v is a leaf of
T −(f). This embarrassingly parallel step is processed with an OpenMP for loop.

Leaf growth. For each local minimumm, the arc σm of the join tree connected to it is con-
structed (with its segmentation) with a procedure that we call local leaf growth (see Fig. 3.6,
center left). This is achieved by implementing an ordered breadth-first search traversal of
the vertices ofM initiated in m. This traversal is performed with a priority queueQm which
ensures that, within the current connected component, the vertices are processed by increas-
ing scalar values. Contrary to the global sorting traversal of the reference sequential algo-
rithm [26], we thus rely here on local sorting traversals. When visiting a saddle, we cannot
ensure anymore that all the connected components of its sub-level set have already been
processed: a local leaf growth has therefore to stop when reaching a saddle, and the merge
of the connected components will be performed only when all leaf growths have reached the
saddle. Each leaf growth being independent from the others, spreading locally until it finds
a saddle, we naturally implemented it as a task.

Saddle stopping condition In order to stop the leaf growth procedure started at a leaf m
when reaching the saddle s corresponding to the other extremity of σm (white disks, center
left in Fig. 3.2.2), a local saddle detection is required. Instead of the costly critical point
detection, which would also introduce unnecessary computations for non-critical points, we
rely on the following faster test: when the next vertex returned by the priority queue has
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a lower f value than the vertex visited last, this implies that the last visited vertex was a
saddle [GFJT17], which closes the arc σm.

Union-Find data structures [36] (one Union-Find node per leaf) enable us to check whether
a vertex has already been visited by the current growth. Our Union-Find implementation
supports concurrent find operations from parallel arc growths (executed simultaneously by
distinct tasks). A find operation on a Union-Find currently involved in a union operation is
also possible but infrequent, and safely handled in parallel by atomic operations.

We will also have to detect the last task reaching a saddle. In this purpose, each task de-
tecting a saddle s atomically decrements an integer counter, initialized to the size of Lk−(s)
during the leaf search step, by the number of vertices below s coming from the current
growth. The task setting this counter to zero is the last reaching this saddle.

Saddle growth The last leaf growth reaching a saddle s will be in charge of the growth
for the arc of T −(f) initiated in s, noted σs (see Fig. 3.6, center right). However, in order to
represent all the connected components of sub-level set merging in s, this last task will have
first to perform the union of the priority queues Qm0 ,Qm1 , . . .Qmn of all the arcs merging
in s. If done naively, this operation could yield a quadratic runtime complexity for our
approach overall. We thus model each priority queue with a Fibonacci heap [36, 53], which
supports the merge of two queues in constant time. Similarly to the traditional merge tree
algorithm [26, 141], we also rely on the Union-Find data structure to precisely keep track of
the arcs which also need to be merged (by the last task) at a given saddle s.

We emphasize that the time complexity of our algorithm is therefore exactly equivalent
to the linearithmic one of the reference sequential algorithm [26, 141].

Trunk growth. We have also managed to improve time performance by abbreviating the
process when only one arc growth is remaining. This last arc growth, starting at a saddle s,
will visit all the remaining, unvisited, vertices ofM upwards until the global maximum of f
is reached, possibly reaching on the way an arbitrary number of pending join saddles, where
other arc growths have been stopped and marked terminated (white disks in Fig. 3.6, center
right). As illustrated in Fig. 3.6 (right), this will constitute a monotone path from s up to the
root of T −(f). We call this sequence the trunk of T −(f).

The trunk of the join tree can be computed faster than through the breadth-first search
traversal. Let s be the join saddle where the trunk starts. Let S = {s0, s1, . . . sn} be the sorted
set of pending join saddles (which still have unvisited vertices in their lower link). The trunk
is constructed by simply creating arcs that connect two consecutive entries in S. Next, these
arcs are augmented by simply traversing the vertices of M with higher scalar value than
f(s) and projecting each unvisited vertex v to the trunk arc that spans it scalar value f(v).
Using OpenMP, we parallelize the loop of this vertex projection procedure using chunks
of contiguous vertex indices (chunks are dynamically distributed to the threads). For each
chunk, the first vertex is projected on the corresponding arc of the trunk using dichotomy.
Then, each new vertex processed next relies on its predecessor for its own projection.

As the number of tasks can only decrease, the detection of the trunk start is straightfor-
ward. Each time a task terminates at a saddle, it decrements atomically an integer counter,
which tracks the number of remaining tasks. The trunk starts when this number reaches one.

3.2.3 Contour tree computation

Once the join and split trees have been computed, we can build the contour tree. In order to
obtain an augmented contour tree, each arc of T (f) needs to be equipped with the explicit
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Figure 3.7 – Merge tree
scalability results. The gray area
denotes using 2 threads per core.

Figure 3.8 – Number of remaining tasks throughout time. The
chart is cropped at 16 to highlight the “suboptimal” sections.

sorted list of vertices which project to it. In a post-processing step, we reconstruct these explicit
sorted lists in parallel thanks to local orderings during the arc growth step, and thanks to a
specific parallel procedure for the trunk step (see [GFJT17] for details).

Next, we combine the join and split trees into the output contour tree by adding arcs
from both trees leaf after leaf, according to the reference algorithm [26]. Each time we add
an arc of one of the two trees, we have to remove the list of regular vertices of this arc from
the other tree. As this algorithm is not straightforward to parallelize, and as this combination
step represents a minor part in the overall sequential computation (about 2% of the total
time), we execute it sequentially in this implementation.

3.2.4 Performance results

In this section we present performance results obtained on a workstation with two Intel Xeon
E5-2630 v3 CPUs (8 CPU cores and 16 hardware threads each). By default, parallel execu-
tions will thus rely on 32 threads. These results were performed with our VTK/OpenMP
based C++ implementation using g++ version 5.4.0 and OpenMP 4.0. This implementation
(called Fibonacci Task-based Merge tree, or FTM) was built as a TTK [146] module. For the
Fibonacci heap, we used the implementation available in Boost.

Our tests have been performed using eight data sets from various domains. The first one,
Elevation, is a synthetic data set with only one arc in the output tree. Five data sets (Ethane
Diol, Boat, Combustion, Enzo and Ftle) result from simulations and two (Foot and Lobster)
from acquisition, containing large sections of noise. For the sake of comparison, these data
sets have been re-sampled on the same regular grid of size 5123.

Merge tree performance results. Speedups for the join tree are presented in Fig. 3.7. The
split tree leads to similar speedups [GFJT17], and overall our FTM implementation achieves
an average speedup of 10.4 on 16 cores (65% of parallel efficiency). The monotonous growth
of all curves implies that more threads always leads to faster computations, which enables
us to focus on the 32-thread executions.

One can notice that the Lobster data set presents speedups greater than the ideal one for 4
and 8 threads. This unexpected but welcome supra-linearity is due to the trunk processing of
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Table 3.1 – Sequential join tree computation times (in
seconds) and ratios between libtourtre (LT), Contour
Forest (CF) and our Fibonacci Task-based Merge tree

(FTM), on a 2563 grid (bold: FTM speedups).

Dataset LT CF FTM LT / FTM CF / FTM

Elevation 5.81 7.70 3.57 1.63 2.15
Ethane Diol 11.59 17.75 7.14 1.62 2.48
Boat 11.84 17.11 6.93 1.70 2.46
Combustion 11.65 16.87 8.06 1.44 2.09
Enzo 14.33 17.99 17.94 0.79 1.00
Ftle 11.32 15.62 7.15 1.58 2.18
Foot 9.45 12.72 5.94 1.59 2.14
Lobster 11.65 14.80 13.99 0.83 1.05

Table 3.2 – Parallel join tree computation times (in
seconds) and ratios between libtourtre (LT), Contour
Forest (CF) and our Fibonacci Task-based Merge tree

(FTM), on a 2563 grid.

Dataset LT CF FTM LT / FTM CF / FTM

Elevation 5.00 2.33 0.43 11.63 5.42
Ethane Diol 8.95 4.54 1.33 6.73 3.41
Boat 8.24 4.40 0.69 11.94 6.38
Combustion 7.96 5.82 0.94 8.47 6.19
Enzo 12.18 8.92 1.98 6.15 4.51
Ftle 8.19 4.98 1.04 7.88 4.79
Foot 7.60 6.94 1.27 5.98 5.46
Lobster 8.40 9.02 2.40 3.50 3.76

our algorithm. The trunk step is indeed able to process vertices 30x faster than the arc growth
step, since no breadth-first search traversal is performed in the trunk step (see Sect. 3.2.2).
However, for a given data set, the size of the trunk highly depends on the order in which
leaves have been processed. Since the trunk is detected when only one growth remains
active, distinct orders in leaf processing will yield distinct trunks of different sizes, for a
given data set. Hence maximizing the size of this trunk minimizes the required amount
of computation, especially for data sets like Lobster where the trunk encompasses a large
part of the domain. Note however, that the leaf ordering which would maximize the size
of the trunk cannot be known in advance. In a sequential execution, it is unlikely that the
runtime will schedule the tasks on the single thread so that the last task will be the one
that corresponds to the greatest possible trunk. Instead, the runtime will likely process each
available arc one at a time, leading to a trunk detection at the vicinity of the root. On the
contrary, in parallel, it is more likely that the runtime environment will run out of leaves
sooner, hence yielding a larger trunk than in sequential, hence leading to increased (possibly
supra-linear) speedups.

We now compare our approach to two reference implementations, which are, to the best
of our knowledge, the only two public implementations supporting augmented trees: (i)
libtourtre (LT) [44], an open source sequential reference implementation of the traditional al-
gorithm [26]; and (ii) the open source implementation [146] of the parallel Contour Forest
(CF) algorithm [GFJT16]. Due to the important memory consumption of CF, these compar-
isons are performed on a 2563 grid. As shown in Table 3.1, our sequential implementation is
about twice faster than CF and more than one and half time faster than LT for most data sets.
This is due to the faster processing speed of our trunk step. The parallel results for the merge
tree implementation are presented in Table 3.2, where only the initial sort is parallelized in
LT. Regarding CF we report the best time obtained on the workstation, which is not neces-
sarily with 32 threads. Indeed, as detailed in [GFJT16] increasing the number of threads in
CF can result in extra work due to additional redundant computations, especially on noisy
data sets. On the contrary, FTM always benefits from the maximum number of hardware
threads. In the end, FTM largely outperforms the two other implementations for all data
sets: LT by a factor 7.8 (in average) and CF by a factor 5.0 (in average).

Contour tree performance results. As detailed in [GFJT17], when using our parallel
merge tree implementation to build the contour tree, we obtain an average speedup of 7.9x
on 16 cores (49% of average parallel efficiency). In sequential, our implementation is also in
average 1.5x faster than LT and 1.3x faster than CT. In parallel, our implementation outper-
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forms in average a naive parallel version of LT2 by a factor 4.7x and CF by a factor 2.7x.
Limitations and following work. The performance of our approach is currently limited

by two weaknesses. First, while the combination represents a minor part in the overall com-
putation in sequential (about 2% of the total time), its current sequential implemantation can
in fact limit the overall parallel speedups on such number of cores according to Amdahl’s
law. In [GFJTxx], we have recently proposed a parallel version of the combination which
offers performance gains in parallel thanks to the introduction of a trunk step (similar to the
trunk step of the merge trees, and offering a higher degree of parallelism).

Second, the number of tasks gradually decreases in our arc growth step. As presented
in Fig. 3.8, and depending on the data set and on the number of cores, a significant share of
this step can be performed with a number of remaining tasks lower than than the number
of available threads, hence not fully exploiting our parallel CPU compute power and limit-
ing our parallel speedups. In [GFJTxx], we have therefore fully “taskified” our merge tree
computation by introducing tasks in all steps other than the already task-based arc growth
step: namely the leaf search, the trunk step, the post-processing step and the combination
step. This enables then us to perform the two merge tree computations in parallel and to
overlapp the task processing of the two trees. The arc growth step of a given tree can then be
processed concurrently with the arc growth step (or with the trunk or post-processing step)
of the other tree, hence providing more tasks to the runtime. This results in speedups up to
1.34x (1.24x in average) for the computation of the merge trees.

3.2.5 Conclusion

We have presented here a new algorithm to compute the augmented merge trees on shared
memory multi-core architectures [GFJT17]. This new approach completely revisits the tradi-
tional algorithm to compute the merge tree using independent local growths which can be
expressed using tasks. This has required local sorting traversals, the use of Fibonnacci heaps
and a new criterion for the saddle detection. This has also made it possible to accelerate the
processing when there is only one task left. This implementation is the fastest to compute
the merge trees in augmented mode in sequential, as well as in parallel where no extra work
is introduced in our approach and where we can benefit from the dynamic load balancing
of the task runtime. Moreover, we have recently improved our approach regarding the con-
tour tree computation [GFJTxx], partly thanks to a complete “taskification” of the algorithm
which enables us to take advantage of the overlap of the two merge tree computations.

We are currently extending this work to the Reeb graph construction, which generalizes
the contour tree on non simply-connected meshes. Again, we target the deployment of the
best sequential algorithm on a multi-core workstation, and we will have to adapt our task-
based approach to the extra processing required to handle the possible loops in the domain
(e.g. in a torus) which generate cycles in the Reeb graph. Besides, efficiently deploying
our approach on a larger number of cores (such as the Intel Xeon Phi processor) would be
challenging, and may require further algorithmic improvements (especially regarding the
arc growth step). Another interesting research direction would finally consists in studying
the relevance of our approach for in-situ visualization, where the analysis code is executed
in parallel and in synergy with the simulation code generating the data.

2Using a parallel sort and processing the two merge trees in parallel.
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3.3 Dual tree traversal on integrated GPUs for astrophysical N-
body simulations

3.3.1 N-body algorithms

The N-body problem describes the computation of all pairwise interactions among N bod-
ies (or particles). Once computed, the corresponding forces are used to update the body
positions and velocities for the next time-step. In astrophysics, such N-body simulations are
essential and widely used for galactic dynamics studies. The gravitational force computa-
tion is the most time-consuming part and limits in practice the number of bodies, which is
currently much smaller than the number of stars in a real galaxy.

The direct computation of all pairwise interactions amongN bodies leads to a prohibitive
O(N2) runtime complexity. Thanks to the mutuality of gravity (Newton’s third law), which
states that the force of a particle A on a particle B is the opposite of the force of B on A,
one can halve the computation cost, but this latter remains too expensive for millions of par-
ticles. Hierarchical methods [12, 30] have therefore been introduced to reduce this runtime
complexity, thanks to an octree data structure. This octree is built by inserting particles one
by one and by subdividing octree leafs containing more than a given maximum number of
particles, denoted by Ncrit. Thanks to this octree, the force field is decomposed in a near-field
part, directly computed, and a far-field part approximated with various expansions.

Barnes-Hut tree-codes. The Barnes-Hut tree-code algorithm [12] computes the gravita-
tional forces among N particles with a O(N logN) runtime complexity thanks to monopole
(and possibly quadrupole) moments. For each target body, the octree is here recursively tra-
versed and “body-cell” or “body-body” interactions are evaluated depending on the mul-
tipole acceptance criterion (MAC): D

r < θ, where D denotes the octree cell side length, r is
the distance from the target body to the cell center of mass, and θ is an input parameter that
balances accuracy and computation cost. Such expansions are well-suited for the relatively
low accuracies required in astrophysical N-body simulations, where a relative force error of
few 10−3 is usually adequate. The loop on the target bodies is parallel which enables CPU
parallel implementations with multi-threading and/or with MPI [135]. This inherent paral-
lelism has also been efficiently exploited to develop GPU implementations that run entirely
on the GPU [13,14,25] and outperform multi-core CPUs. The Bonsai code3, is currently one
of the fastest GPU tree-codes.

Fast multipole methods for astrophysics. Dehnen’s algorithm [39] can be considered as
a fast multipole method (FMM) [30] specific to the relatively low accuracies required in astro-
physics. This O(N) algorithm indeed relies on “cell-cell” interactions and requires specific,
low accuracy local expansions based on cartesian Taylor expansions, as well as a specific
MAC that can balance (along with the expansion order, which is fixed to 3) the accuracy and
the computation cost. This MAC is defined for two cells (A,B) (see Fig. 3.9a) as:

rA,max + rB,max

R
< θ ,

where rC,max denotes an upper limit for the distance of any body within the node C from
its center of mass [39]. Once the octree has been built using at most Ncrit particles per oc-
tree leaf, the multipole expansions are calculated during an upward pass in the octree. The
interactions are then computed in the following two steps.

3See: https://github.com/treecode/Bonsai

https://github.com/treecode/Bonsai
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Figure 3.9 – Dual tree traversal in Dehnen’s algorithm.

The first step (interaction phase) relies on the dual tree traversal (DTT) presented in Fig. 3.9.
If the MAC succeeds between two cells (A,B), their interactions can be approximated: both
local expansions ofA andB are updated based on the multipole expansions ofA andB (M2L
- multipole-to-local - operation) as shown in Fig. 3.9a. More precisely, once the contribution
of the multipole expansion of B on the local expansion of A has been computed, we can
at low cost deduce the opposite contribution (of the multipole expansion of A on the local
expansion ofB) using the mutuality of M2L interactions. The DTT algorithm enables indeed
to consider both operations at the same time. If the MAC fails, the larger cell (B here) is split
and the MAC is applied between A and all the children of B (see Fig. 3.9b, with 8 children
in 3D). This is applied recursively, and A can then be split when the MAC fails with A as the
larger cell (see Fig. 3.9c). This thus leads to a dual recursive traversal of the octree. When
the MAC fails for two octree leafs, or when the number of particles is too low (depending
on empirical thresholds [39]), the direct computation (P2P - particle-to-particle - operation) is
used instead of the expansions. Thanks to this DTT, Dehnen’s algorithm consistently uses
the mutuality of the interactions to (approximately) halve the computation cost in the near-
field part as well as in the far-field part. This DTT also enables to better preserve the total
momentum than tree-codes [39]. Other work regarding DTT in fast multipole methods can
be found in [143, 154, 159], as well as in [34, 97] for molecular dynamics.

After the interaction phase, the evaluation phase is used to evaluate the local expansion of
each cell for each body within this cell, thanks to a (simply) recursive downward pass of the
octree. These two steps correspond together to the most time consuming part.

DTT implementations. Dehnen’s algorithm has been implemented in the falcON 4 code.
As first shown in [39], and as we have then detailed this in [FAL11], this code offers O(N)
computation times one order of magnitude smaller than serial executions of Barnes-Hut
tree-codes. Moreover, these computation times are much less sensitive to the distribution of
particles: this is very important for astrophysical simulations where the particle distributions
representing galaxies or groups of galaxies are highly non-uniform.

In [LF14], we have parallelized falcON in the pfalcON code5 on multi-core CPUs and on

4Force ALgorithm with Complexity O(N), available in http://carma.astro.umd.edu/nemo/
5Available at: https://pfalcon.lip6.fr

http://carma.astro.umd.edu/nemo/
https://pfalcon.lip6.fr
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Intel Xeon Phi thanks to task-based parallelism (with OpenMP and Intel TBB). Each time
an interaction fails the MAC, we create one task for each of the (up to) eight interactions
involving the children of the larger cell: see Fig. 3.9d. The mutuality of the interactions is
here fully preserved, but introduces write conflicts among tasks that are updating the local
expansion of the same cell via different M2L operations. These conflicts are handled via
atomic operations emulating fast locks. A different, but also task-based, DTT parallelization
has been presented in [142] and implemented in the exaFMM code (see: https://github.com/
exafmm/exafmm) thanks to a rewriting of the DTT (see also [40]). Both pfalcON and exaFMM
offer very good scaling on multi-core CPUs (up to 15.8x on 16 cores for pfalcON), as well as
on many-core Xeon Phi processors (up to 60x on a 5110P Xeon Phi for pfalcON) [LF14] [5].
Since the falcON code is dedicated to astrophysical simulations, pfalcON is slightly faster
than exaFMM for such simulations.

Moreover, in [LF14] the near-field part has been vectorized using the SPMD-on-SIMD
model of ispc (see Sect. 1.2): ispc has been here preferred to OpenCL on CPU because of its
faster kernel launches (fine SIMD computation grains in pfalcON) and because the same data
structures can be shared between the pfalcON C/C++ code and the ispc code. Moreover
with ispc we can use SIMD vectors twice larger than the hardware vector width, and we
explicitely control the loop over all computations (contrary to OpenCL): this gives us more
control for efficient and safe direct computations with the mutuality of gravity. Thanks to a
hybrid strategy that efficiently combines scalar and vector code, we have thereby managed
to have one single portable source code for SSE, AVX and Xeon Phi vector instructions, which
offers in the end similar or better performance than the hand-tuned kernels of exaFMM.

As shown in [LF14], for astrophysical simulations pfalcON on multi-core CPUs is in the
end only slightly slower than Bonsai on a high-end GPU, and pfalcON can run larger sim-
ulations (e.g. with 50M particles). One then naturally aims at combining the best algorithm
(FMM with DTT) with the most powerful hardware currently available (GPUs). While the
FMM has already been deployed on GPUs in numerous works [32,60,66,72,93,113,120,161],
none of these applies to the DTT-based FMM. Indeed due to its double recursion, obtaining
an efficient DTT on many-core architectures like GPUs is difficult. In [161] the FMM deploy-
ment on GPU is performed by concatenating all source particles and expansions in a large
buffer that is then transfered over the PCI bus to the discrete GPU. As detailed in [FTxx],
the lower compute intensity used in astrophysics leads to a too large share of PCI transfers
and data copies in the overall computation time, and to possible memory problems on the
limited GPU memory when N increases. In order to overcome these issues, we will thus
aim at minimizing the data volume exchanged by the CPU and the GPU, while relying on
integrated GPUs (see Sect. 1.1) to reduce the data exchange cost.

We will thus present in the following the first CPU-GPU heterogeneous deployment of a
fast multipole method based on dual tree traversal, using integrated GPUs (iGPUs). This is
also, to our knowledge, the first FMM deployment on integrated GPUs. Such deployment
relies on a new hybrid CPU-GPU algorithm, where the DTT is performed on the CPU cores,
and all the computations are performed on the iGPU cores. This has been implemented in
OpenCL in the pfalcON code as pfalcON-iGPU. More details can be found in [FTxx].

3.3.2 The far-field part

The far-field part translates to numerous independent M2L computations on the iGPU. How-
ever, one has to ensure that two M2L computations will not concurrently update the same

https://github.com/exafmm/exafmm
https://github.com/exafmm/exafmm
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local expansion due to the use of the mutuality of the M2L interactions. We have considered
several strategies to synchronize the M2L computations on iGPU and avoid such conflicts:
their performance results are compared in Fig. 3.10 on a reference (non-uniform) astrophys-
ical model, the Plummer distribution, with 10M particles.

Preserving mutuality. The three first strategies preserve the mutuality of M2L inter-
actions, hence save M2L computation cost. The first one, referred to as atomic float, relies
on emulating atomic additions on floating-point variables with a loop over the OpenCL
1.2 “compare-exchange” atomic operation. Each M2L computation is then assigned to one
work-item, and each local expansion coefficient is updated (in both cells) thanks to these
atomic additions on floating-point variables. Contrary to other works such as [66,161] where
each M2L operation was performed by a work-group, we use here only one work-item since
the expansion orders are lower due to the low accuracies required in astrophysics. This re-
sults in massive, regular and rather fine-grained parallelism which is well suited for GPU
processing, contrary to many GPU-based FMMs [60, 72, 93, 113, 120] where the far-field part
is not efficiently processed on GPU, and hence often computed on CPU. In order to expose
to the GPU cores all the M2L interactions that have to be performed, we simply use here
a large zero-copy buffer (the interaction buffer) where all pairs of cell indices involved in a
M2L operation are consecutively written by the CPU thread during the DTT. As shown in
Fig. 3.10, the numerous atomic operation of this strategy are however too expensive.

The second strategy (atomic bit) aims at reducing the number of atomic operations per-
formed and is close to our multi-core CPU parallelization of the DTT [LF14]. We use here
atomic operations on a specific bit within the cell data structure to emulate locks and en-
sure exclusive access to the cell local expansion. But contrary to multi-core CPUs where the
atomic bit synchronizations were fast, infrequent and interleaved with other computations,
this strategy implies a too strong overhead on GPU. Using stridden memory accesses in the
interaction buffer can reduce the contention on these bit locks (stridden atomic bit strategy).

Forsaking mutuality. Forsaking the mutuality of the interactions prevents us from sav-
ing M2L computation costs, but enables us to avoid any synchronization costs and leads in
the end to better results. We have first considered here a sort no-mutual strategy where a
sort on all couples of cell indices enables us to gather continuously in the interaction buffer
the M2L operations depending on their target cell. We then launch the M2L kernel with one
work-item per target cell. In order to avoid this sorting (whose cost is not shown in Fig. 3.10),
we have proposed a last strategy, referred to as no-mutual. We use here a specific data struc-
ture (detailed in [FTxx]) to store, for each target cell C, the (linked) list of source cell indices
involved in a M2L interaction with C. On the GPU, the work-item in charge of the target
cell C has then to browse the corresponding linked list to retrieve all the source cell indices
involved in a M2L interaction with C and to perform all these computations.

As the number of M2L interactions varies from a target cell to another, this introduces
compute divergence among the work-items. We have thus finally proposed the sort no-
mutual WG and no-mutual WG variants where one work-group is used per target cell C:
each work-item within this work-group will process one M2L computation with C as target
cell. One has of course to perform a reduction on the local expansion terms among all work-
items of each work-group. Here distinct implementations are required for the APU and the
Intel iGPU due to architectural differences regarding the OpenCL local memory banks and
the work-group sizes [FTxx]. As shown in Fig. 3.10, the reduction overhead is largely offset
by the performance gain due to the decrease in compute divergence, which justifies the final
choice of no-mutual WG (on both the APU and the Intel iGPU).
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Figure 3.10 – Performance comparison of the M2L synchronizations on the APU.

3.3.3 The near-field part

The direct computation of the near-field part is a classical HPC kernel, and its efficient GPU
deployment has been extensively studied (e.g. [111]). Numerous implementations are pub-
licly available: in the NVIDIA CUDA and OpenCL code samples, in the AMD OpenCL SDK
2.8 and in other OpenCL tutorials6. They use local memory to reduce global memory ac-
cesses to the source bodies, as well as loop unrolling. All these HPC implementations do
not exploit the mutuality of gravity: it is indeed more efficient to perform twice the direct
computations than to introduce divergence with the mutuality of gravity. The compute core
of our P2P kernel relies on such implementations, however these are designed for one (very)
large P2P operation involving thousands of bodies. In our case, we rather have to deal with
numerous independant P2P operations involving few bodies (up to 64 in practice). This
relates to GPU deployments of adaptive FMMs (without DTT) such as [66, 93, 113, 120, 161].

We have chosen to consider one work-group per P2P operation, even with our low num-
ber of particles per cell. Using one work-item per P2P operation as in the M2L strategies,
would have indeed introduced a too coarse computation grain per work-item and compute
divergence among the work-items, while preventing the use of local memory.

P2P synchronization strategies. Following the results obtained for the far-field part, we
have considered the atomic float and no-mutual WG strategies for the near-field part, which
correspond to the homonymous M2L strategies. The P2P no-mutual WG strategy can here be
related to the sparse U-List of the kernel-independent adaptive FMM (without DTT) men-
tioned in [93]. Figure 3.11a shows the relevance of the no-mutual WG strategy.

P2P specific optimizations. For best performance, we have performed several low-level
optimizations (detailed in [FTxx]) regarding the implementation of our P2P kernel in order
to efficiently support various work-group sizes and various Ncrit values. Since moreover
most cells do not have Ncrit (but less) particles, one of our main challenges was to minimize
the number of idle work-items. We have first generalized the technique presented in [111]
by dynamically choosing to have multiple work-items contributing to the computation of a
given target body (multi-work-item). Then, since the number of bodies in the source cell can
be low and in order to best benefit from the loop unrolling, we have prefered to fill the local
memory buffer with bodies from different cells. While this is naturally obtained in [161]
since the source bodies of all source cells are stored contiguously in memory, in our case it

6See for example: http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html, or:
https://developer.apple.com/library/content/samplecode/OpenCL_NBody_Simulation/Introduction/Intro.html

http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
https://developer.apple.com/library/content/samplecode/OpenCL_NBody_Simulation/Introduction/Intro.html
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is up to each work-group to dynamically (and efficiently) concatenate in local memory the
source bodies from multiple source cells scattered in global memory. If relevant, the target
bodies are also stored in local memory in order to avoid multiple global memory accesses.
Besides, due to the falcON implementation, we had to use a separate kernel launch (referred
to as P2PLeafTgt, but still using the P2P kernel) for cells with one single particle (leaf in
falcON).

As shown in Fig. 3.11b, the Intel iGPU reaches 303.1 Gflop/s for our numerous small P2P
operations with very different body numbers, which represents 34% of the single precision
peak performance of this iGPU. This is largely satisfactory when comparing to the CUDA
N-body SDK which reaches 40% of a NVIDIA K40c GPU peak performance for one single
very large (and regular) P2P computation. The Intel GPU outperforms here the APU, which
can be explained by the different SIMD widths. The 64 wide APU wave-front is a too high
value for our simulations: even with Ncrit = 64 or Ncrit = 128, most cells have a particle
number around 20 or 25. A non-negligible share of the work-items are then idle, even with
our multi-work-item optimization. On the contrary, the lower and flexible SIMD width of the
Intel iGPU (see Sect. 1.1 and [78]) enables to better adapt to such cells
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Name Detailed name Compute
features

Launch
date TDP Current

price
APU AMD A10-7850K Radeon R7 APU 2 2-way SMT CPU cores + 512 iGPU PE Q1’14 95W $150
Intel iGPU Intel Xeon E3-1285L v4 - Iris Pro Gr. P6300 4 2-way SMT CPU cores + 384 iGPU PE Q2’15 65W $445
[2x]8C CPU [2x] Intel Xeon E5-2630 v3 [2x] 8 2-wax SMT CPU cores - AVX2 Q3’14 [2x]85W [2x]$667
18C CPU Intel Xeon E5-2695 v4 18 2-way SMT CPU cores - AVX2 Q1’16 120W $2424
K40c NVIDIA K40c GPU 2880 GPU PE Q4’13 235W $2400

Table 3.3 – Architectures considered. PE stands for (OpenCL) Processing Element.

3.3.4 Overlapping the parallel CPU traversal with GPU computations

In order to efficiently overlap the DTT on CPU with GPU computations, we rely on our
task-based parallel DTT with OpenMP [LF14]. Since no computations are performed on the
CPU, we do not require here task synchronizations. Instead of filling one single interaction
buffer set with multiple threads in parallel (requiring thread synchronizations), we have
prefered to assign one interaction buffer set to each thread, which processes its part of the
DTT independently. Once one of its interaction buffer is filled, the corresponding kernel
(P2P, P2PLeafTgt or M2L) is executed on the iGPU and the thread waits for its termination.
The smaller the interaction buffers are, the sooner the GPU computations will start, but the
GPU computations must still be large enough to exploit all compute units and to offset the
OpenCL kernel launch overhead. Three in-order command queues, one for each kernel type,
are used in order to prevent from running two kernels of the same type concurrently (write
conflicts) and to let kernels of different types run concurrently (as supported by the APU),
with no scheduling constraint among kernels launched concurrently by different threads.

After extensive manual tuning of the different parameters on each iGPU, we show in
Fig. 3.12 that using a parallel DTT with multiple CPU threads and multiple kernel launches,
we manage to largely overlap the DTT on CPU with GPU computations, the remaining non-
overlap part of the DTT representing 25% of the overall times (on both the APU and the
Intel iGPU). In the end, the Intel iGPU performs here better than the APU, since: (i) the Intel
iGPU compute power is 20% higher than the APU iGPU one, (ii) the P2P kernel performs
better on the Intel iGPU for the optimal Ncrit values (32 or 48), (iii) the CPU compute power
associated with the Intel iGPU is greater than the APU one (twice more cores), which eases
minimizing the time of the non-overlap part of the DTT, as well as the evaluation step time.

3.3.5 Comparison with CPUs and discrete GPUs

Using the architectures listed in Table 3.3, Fig. 3.13 shows that both the AMD APU and the
Intel iGPU with pfalcON-iGPU outperform a standard 8-core CPU with pfalcON. The Intel
iGPU performance matches even the two 8-core CPU one or the 18-core CPU one (within a
7.5% margin). With respect to Bonsai on a K40c GPU, pfalcON-iGPU on the Intel iGPU is
also 13% faster. We also emphasize here that 50M distributions can be run with pfalcON and
pfalcON-iGPU, but not with Bonsai.

Morover, when considering the power efficiencies in Fig. 3.14a, the Intel iGPU is 1.7x to
2.7x more power-efficient than the CPUs (based on the theoretical TDP values), and with-
out considering the CPU associated with the GPU, 4.2x more power-efficient than the K40c.
When considering the cost efficiencies in Fig. 3.14b, the Intel iGPU is 3.0x to 5.0x more cost-
efficient than the CPUs, and still without considering the associated CPU, 6.2x more cost-
efficient than the K40c. Due to its very low price, the AMD APU offers here the best ratio,
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Figure 3.14 – Power and cost efficiencies (based on Table 3.3 and on computation times of Fig. 3.13).

being 2.0x more cost-efficient than the Intel iGPU.

3.3.6 Conclusion

We have presented a hybrid CPU-GPU algorithm that deploys a fast multipole method
(FMM) based on a dual tree traversal (DTT) on integrated GPUs (iGPUs) in an astrophys-
ical context. In order to obtain the best performance results, we had to forsake the use of
the mutuality of the far-field and near-field interactions in this heterogenous deployment.
However, this deployment offers efficient SIMD processing of both the far- and near-field
computations by aggregating multiple computations on the GPU. Thanks to its lower SIMD
width and its greater compute-power, the Intel iGPU performs here better than the AMD
APU, and can match the performance of two standard CPUs, of one high-end CPU, or even
of the Bonsai GPU tree-code, being hence clearly more power- and cost-efficient.

It would be straightforward to extend such work to multiple compute nodes, using the
LET (Local Essential Tree) technique as e.g. in exaFMM, since all data are stored in the main
memory: this is another asset compared to GPU tree-codes. In the future, we plan to test
pfalcON-iGPU on new integrated GPUs such as the forthcoming AMD Ryzen APUs. We
also believe that our hybrid CPU-GPU algorithm could be efficiently deployed on other ar-
chitectures such as integrated FPGAs (with OpenCL programming), or even discrete GPUs,
especially those equipped with the NVIDIA NVLink interconnect. Finally, this work could
be extended to other application domains of the FMM where low accuracies are required,
e.g. when using FMM as a preconditioner [73].
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Chapter 4

Handling the SIMD divergence

4.1 For generating correctly rounded mathematical functions

4.1.1 The Table Maker’s Dilemma and Lefèvre algorithm

Since 1985, the IEEE 754 standard specifies the implementation of floating-point operations
in order to have portable and predictable numerical software. Its latest revision [37, 75] rec-
ommends the correct rounding of some elementary functions, like log, exp and the trigono-
metric functions. Since such functions are transcendental, one cannot evaluate them exactly
but have to approximate their evaluation. Hence, for precision-p floating-point numbers1,
a typical implementation of a mathematical function f will have to approximate the exact
mathematical result f(x) by f̂(x) with precision ε, and then round this approximation to
p bits of precision. However, if for some argument x, f̂(x) is at a distance less than ε to
a rounding breakpoint (where the result of the rounding function changes), it is impossi-
ble to determine the correct rounding of f(x) from f̂(x) as illustrated in Fig. 4.1. Such an
argument x is called a (p, ε) hard-to-round case (abbreviated as HR-case). The Table Maker’s
Dilemma [107] is hence defined as finding the necessary accuracy ε (hardness-to-round) such
that both f(x) and an approximation f̂(x) with accuracy ε round to the same precision-p
floating-point number for every argument in the definition domain of f . This largest ε is
given by the hardest-to-round arguments of f [107], that is to say the arguments requiring
the highest precision to be correctly rounded when f is evaluated at. The hardest-to-round
cases can be found by exhaustive search, which implies to browse each floating-point number
in the domain of definition of the function. This approach is however prohibitive for double
precision and for higher precisions.

In order to speed up the search for hardest-to-round arguments, the Lefèvre algorithm
[95] uses local affine approximations of the targeted function. Using probabilistic assump-
tions [107], a “convenient” ε is first chosen so that there will be (in the end) few (p, ε) HR-
cases. The domain of definition of the function f is then split into several domainsDi and an
affine approximation Pi of the function is computed for eachDi. Thanks to the affine approx-
imations, and taking into account the affine approximation error εapprox with ε′ = ε+ εapprox,
one can search for the (p, ε′) HR-cases of Pi (corresponding to the (p, ε) HR-cases of f ). This
HR-case search can be efficiently performed on each domain Di in polynomial time in p,

1p is the number of bits of the mantissa, e.g. p = 53 in double precision.
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[f̂(x)− ε, f̂(x) + ε]

Midpoints

Floating-points

Figure 4.1 – Example of undetermined correct rounding for a value y computed with precision ε in the case of
rounding to nearest, where the rounding breakpoints are the midpoints of floating-point numbers.

against an exponential time for the exhaustive search. The hardest-to-round cases are then
found among the HR-cases with a localized exhaustive search, and one can finally deduce
the hardness-to-round ε.

Higher degree approximations have been introduced since (SLZ algorithm [136]) in order
to further reduce the asymptotic operation count for large values of p. However quadruple
precision (p = 113) is still currently out of reach. We thus focus here on the double preci-
sion format (p = 53), for which the Lefèvre algorithm is as efficient as the SLZ algorithm
in practice [38, 107]. The Lefèvre algorithm has already been used to generate all known
hardness-to-round in double precision [107], and it offers fine-grained parallelism which
is suitable for massively parallel architectures like GPUs [FGG12]: we therefore study the
Lefèvre algorithm here. Even if the Lefèvre algorithm makes it possible to compute the
hardness-to-round of elementary functions, it remains very computationally intensive. For
example, it requires around five years of CPU time (at the end of the 90’s) for the exponential
function over all double precision arguments. Moreover, even if the hardest-to-round cases
of some functions in double precision are known [107], this is still not the case for about half
of the univariate functions recommended by the IEEE standard 754-2008. Furthermore, some
scientific computations may require correctly-rounded implementations of other elementary
functions, of specific compositions of elementary functions or even of elementary functions
using non-standard formats or precisions. Being able to find the hardness-to-round of any
elementary function in double precision in a reasonable amount of time would therefore be
very useful.

In practice, both the affine approximation generation and the HR-case search are inde-
pendent among the Di domains. This data-parallel algorithm is thus embarrassingly and
massively parallel which suits well to multi-core and many-core parallel architectures. How-
ever, while the polynomial approximation generation has a regular control flow [FGG16], the
original HR-case search of Lefèvre algorithm (Lefèvre HR-case search), which is also the most
time consuming step, presents divergence issues when executed on SIMD architectures. In
the following, we show that efficiently solving the TMD on various multi-core and many-
core SIMD architectures (CPUs, GPUs, Intel Xeon Phi), and scaling performance with the
number of SIMD lanes, requires to jointly handle this divergence at multiple levels: algo-
rithm, programming and hardware. We start by presenting a new regular HR-case search al-
gorithm, detailed in [FGG16], which drastically reduces divergence in the execution flow on
NVIDIA GPUs. Thanks to the OpenCL SPMD-on-SIMD (Single Program Multiple Data) pro-
gramming model, we then present a performance portability study (detailed in [AFGZ16])
on various architectures.
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Algorithm 1: Lefèvre HR-case test algorithm.
input : b− a · x, ε′, N

1 initialisation: p← {a}; q ← 1− {a}; d← {b};
u← 1; v ← 1;

2 if d < ε′ then return Failure;
3 while True do
4 if d < p then
5 k = bq/pc;
6 q ← q − k ∗ p; u← u+ k ∗ v;
7 if u+ v ≥ N then return Success;
8 p← p− q; v ← v + u;
9 else

10 d← d− p;
11 if d < ε′ then return Failure;
12 k = bp/qc;
13 p← p− k ∗ q; v ← v + k ∗ u;
14 if u+ v ≥ N then return Success;
15 q ← q − p; u← u+ v;

Related work. General solutions have been proposed to handle divergence on SIMD
architectures, at the hardware level [22, 55, 101] as well as at the software level [54, 67, 127,
162]. We target here currently available hardware, and our HR-case searches offer very fine
computation grains: the overhead of software solutions to handle divergence would be too
high here (see [FGG12]). Up to our knowledge, there is no other specific work to reduce
the SIMD divergence when solving the TMD. The reference C code of V. Lefèvre [95] is a
CPU scalar code that can target multi-core and distributed multi-processor architectures,
but does not exploit SIMD parallelism within each CPU core. It can be noticed that another
implementation to solve the TMD has been designed for FPGA architectures [38], but this
implementation relies on the exhaustive search.

HR-case test. The HR-case search on the polynomials Pi is done using an isolation strat-
egy [94]. A HR-case Boolean test is executed on each domain Di: it successes if there is no
(p, ε′) HR-case for Pi in Di, and fails otherwise. If the test fails (that is to say, there might
be a HR-case in Di; false negatives are possible), we split Di into sub-domains Di,j , upon
which we repeat the HR-case test. For each of these sub-domains failing the HR-case test,
we finally perform exhaustive search.

Lefèvre HR-case test takes as argument a degree one polynomial Pi or Pi,j . As we do not
need the dynamic range of floating-point numbers, we use fixed-point arithmetic to avoid
rounding errors, and we apply a suitable change of variable to write Pi or Pi,j as a polyno-
mial b− a · x, while representing only the 64 bits after the pth bit of the significands of a and
b as 64-bit integers. Hence we also consider x ∈ N. This HR-case test then computes a lower
bound on the distance between the values of b − a · x for x < N and the rounding break-
points, with N the number of arguments to test in Di or Di,j . Thanks to the three distance
theorem [131] and to the continued fraction formalism, this is achieved by computing the
continued fraction expansion of a with the Euclidean algorithm, and a particular decompo-
sition of b in the sequence of partial remainders. This leads to a O(logN) operation count,
against O(N) for the exhaustive search. Comparing this lower bound to ε′, we can then
determine whether there is potentially a (p, ε′) HR-case in the domain or not. The Lefèvre
HR-case test is presented in Algorithm 1.
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(a) Lefèvre HR-case search (b) Regular HR-case search

Figure 4.2 – Normalized mean deviation to the maximum of the number of main loop iterations per CUDA
warp, on NVIDIA GPUs, among the 220 CUDA warps required for the exp function in the domain [1; 1 + 2−13].

4.1.2 A regular algorithm for the HR-case search

In [FGG12], we deployed the Lefèvre HR-case search on NVIDIA GPUs in CUDA, using one
GPU thread per domain Di or Di,j : each thread performs the corresponding HR-case test
over its domain. Although offering performance gain over a multi-core CPU, we underlined
a problem in Lefèvre algorithm execution on GPU architectures: the execution flow is highly
divergent from one thread to another. There are indeed three sources of divergence in Algo-
rithm 1: (i) the main unconditional loop (line 3), whose number of iterations depends on the
value of the arguments; (ii) the main conditional statement (line 4), whose scope contains
all the intructions within the main loop; and (iii) finally the divisions, which are computed
using a hybrid implementation with a user tunable parameter to potentially enable repeated
subtractions instead of the division instruction.

Even though the hybrid divisions affect the control flow, they do not lead to a strong
divergence issue at runtime since almost all the computed quotients are expected to be small
in practice [FGG16]. However when processing multiple instances of the Lefèvre HR-case
test in parallel on GPUs, the main conditional statement and the main loop have a strong
performance impact because of the partial SIMD execution of GPUs. Both are induced by
conditioning the computation of the quotients of the continued fraction of a by the value of
b. To our knowledge there is no a priori information on the number of loop iterations or on
the branch executed at each iteration that would enable us to statically reorder the domains
Di in order to decrease this divergence. We also tried to use software solutions to reduce
the impact of the loop divergence [FGG12]: no performance gain was obtained because the
computation is very fine-grained.

To highlight the impact of loop divergence during Lefèvre test execution, we introduced
in [FGG12] an indicator named the normalized mean deviation to the maximum. When process-
ing concurrently n independent instances of a divergent loop on a SIMD unit with n lanes,
the number of loop iterations issued in total is the maximum number of loop iterations is-
sued among all the lanes of the SIMD unit. This indicator aims thus at giving the average
percentage of loop iterations for which a lane remains idle during the SIMD execution. More
formally, we denote `i the number of loop iterations to issue for the lane i and we number
the lanes within a SIMD vector from 1 to n. If ` = {`i, i ∈ J1, nK}, the Normalized Mean
Deviation to the Maximum (NMDM) is defined as: NMDM(`) = 1 − mean(`)

max(`) . In Fig. 4.2a,
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Algorithm 2: Regular HR-case
test.

input : b− a · x, ε′, N
1 initialisation:
2 p← {a}; q ← 1; d← {b}; u← 1; v ← 0;
3 if d < ε′ then return Failure;
4 while True do
5 if p < q then
6 k = bq/pc;
7 q = q − k ∗ p; u = u+ k ∗ v;
8 d = d mod p;
9 else

10 k = bp/qc;
11 p = p− k ∗ q; v = v + k ∗ u;
12 if d ≥ p then
13 d = (d− p) mod q;
14 if u+ v ≥ N then return d > ε′;

Algorithm 3: Regular HR-case
test, unrolled.

input : b− a · x, ε′, N
1 initialisation:
2 p← {a}; q ← 1; d← {b}; u← 1; v ← 0;
3 while True do
4 k = bq/pc;
5 q = q − k ∗ p; u = u+ k ∗ v;
6 d = d mod p;
7 if u+ v ≥ N then return d > ε′;
8 k = bp/qc;
9 p = p− k ∗ q; v = v + k ∗ u;

10 if d ≥ p then
11 d = d− p mod q;
12 if u+ v ≥ N then return d > ε′;

we measured the NMDM of the main unconditional loop of Lefèvre HR-case search execu-
tion on a NVIDIA GPU (n = 32) on a set of domains Di for the exponential function. We
can see that the NMDM is uniformly high with an average NMDM of 25.6%, which means
that a SIMD lane remains idle on average 25.6% of the number of loop iterations issued on
its SIMD unit. This divergence in Lefèvre HR-case test is mainly due to the fact that, in or-
der to minimize the number of instructions, the algorithm goes from the subtraction-based
Euclidean algorithm to the division-based one depending on the value of b.

In [FGG16], we proposed a new HR-case test which presents a regular execution, as il-
lustrated in Algorithm 3. Thanks to the continued fraction formalism, we have rewritten
the algorithm in order to avoid the dependence between the computation of the continued
fraction expansion of a and the value of b. This first turns the unpredictable main condi-
tional statement of Lefèvre algorithm into a deterministic test (see Algorithm 2), which is
alternatively true and false and can thus be removed by unrolling two loop iterations as in
Algorithm 3. Second, contrary to the Lefèvre test which aims at minimizing the number
of operations performed (in scalar mode on CPU), we now rely only on the division-based
Euclidean algorithm: a full quotient of the Euclidean algorithm is entirely computed at each
loop iteration in the regular HR-case test, which can introduce extra computations. Thereby
however, as the number of quotients to compute is almost constant from one domain Di to
the next, the number of iterations is also very stable from one domain to the next in the regu-
lar HR-case test. We therefore reduce the mean NMDM per SIMD computation on NVIDIA
GPUs from 25.6% to 0.1% (see Fig. 4.2b). Finally, GPU branch predication can efficiently
handle the remaining short “ if ” blocks.

As shown in Table 4.1, and detailed in [FGG16], such regular test offers performance
gains up to 3.44x over Lefèvre test on NVIDIA GPUs (with CUDA). When comparing an
MPI parallelization of the reference C code of V. Lefèvre [95] on a high-end2 hex-core CPU
with our CUDA deployment on a high-end NVIDIA GPU, the regular HR-case search (based
on the regular HR-case test) on GPU delivers a 6.63x speedup over the regular HR-case
search on CPU and a 7.43x speedup over the Lefèvre HR-case search on CPU. Due to the
extra computations introduced by the regular HR-case test, such performance gain may vary

2At the time of writing.



48 Chapter 4 – Handling the SIMD divergence

1 CPU core
6 CPU cores

(MPI)
GPU 6 CPU cores

GPU

Lefèvre HR-case search 36816.10 5292.67 2446.27 2.16
Regular HR-case search 34039.94 4716.97 711.92 6.63

Lefèvre / Regular 1.08 1.12 3.44 -

Table 4.1 – Timings (in seconds) and performance gains for exp(x) in double precision over the binade [1, 2[
(Intel X5650 6-core CPU, NVIDIA C2070 GPU).

depending on the binade and on the targeted mathematical function, but remains overall
significant [FGG16]. Such performance gap is partly due to the lack of SIMD computations
on the CPU: we will therefore now consider the vectorization of the HR-case searches on
CPUs and on Xeon Phi, as well as on other GPUs.

4.1.3 Performance portability of the SIMD divergence handling

Relevant programming paradigm. As detailed in [AFGZ16], despite a strong rewriting of
the original code, C programming has been found unsuitable for vectorizing the (regular or
Lefèvre) HR-case search on CPUs and on the Xeon Phi. Manual SIMD programming with
intrinsics would indeed be an especially tedious task because of the multiple nested while
loops and conditional branches, each one implying a different mask to handle the divergence
on CPU SIMD units. Automatic vectorization, or guided vectorization with compiler direc-
tives (from Intel C/C++ Compiler, or from OpenMP 4.X), also failed to vectorize the code,
due to while loops with unknown iteration numbers [76], and to an output dependency
among loop iteration. Indeed, the found HR-cases are written consecutively in memory
thanks to a unique counter.

We thus rely on the SPMD-on-SIMD (Single Program Multiple Data) programming model
(see Sect. 1.2), using OpenCL in order to maintain one single source code for both CPUs
and GPUs, and to target other GPUs like the AMD ones. On multi-core CPUs, we use the
Intel OpenCL SDK3 which provides OpenCL implicit vectorization while supporting condi-
tional statements as well as while loops in the OpenCL kernels [125]. Like in the previous
CUDA implementation, atomic operations are used in OpenCL to consecutively write the
found HR-cases in memory. We thus emphasize that the HR-case search of the Table Maker’s
Dilemma fits naturally with the SPMD-on-SIMD programming model: each work-item pro-
cesses one (or a few)Di domain(s), and only a few atomic operations are required for correct
work-item synchronization. We then fully exploit the data parallelism of this massively par-
allel application to concurrently process the numerous work-items on the SIMD units (as
well as on all the available CPU cores).

Performance portability. We now consider performance tests for the HR-case search on
the exp function in double precision over the 1024 first intervals I0..1023 = [1; 1 + 2−3[ of the
binade [1; 2[. As shown in Fig. 4.3, compared to the previous Fermi architecture (C2070),
our HR-case search GPU implementation scales well on the newer Kepler GPU architecture
(K20c) which offers a much higher number of GPU cores. Moreover, thanks to its regular
execution flow, the regular HR-case search offer a 2.7x or 2.9x performance gain over the
Lefèvre HR-case search on the NVIDIA GPUs: the gain is here similar since both GPUs

3See: https://software.intel.com/en-us/intel-opencl

https://software.intel.com/en-us/intel-opencl
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Figure 4.3 – HR-case searches computation times on various GPUs.

have the same SIMD width (32 work-items in a NVIDIA “warp”). The performance gain is
however much greater (10.5x) on AMD GPUs due to their larger SIMD width (64 work-items
in an AMD “wave-front” [7]). Comparing the AMD Radeon HD 7970 and the NVIDIA K20c,
whose hardware compute powers are similar, one can see that only thanks to the regular HR-
case search similar application performance can be achieved on these two GPUs.

As shown in Fig. 4.4, compared to the Lefèvre HR-case search, the regular HR-case search
still improves performance on CPU (AVX2) and on a Xeon Phi coprocessor (Knights Corner),
but the SIMD versions offer no (AVX2) or very low (Xeon Phi) performance gains over their
scalar counterpart. This is first explained by the differences in SIMD divergence handling on
CPU and on GPU [69]. When the control flow diverges on a GPU SIMD unit, a mask register
is set according to the condition evaluation: each processing element then either performs
the following instruction or remains idle. A stack of mask registers is used to handle nested
divergence levels. This is handled dynamically by the GPU hardware, which can then skip
at runtime branches where all processing elements would be idle. When control flows di-
verge within a CPU SIMD unit, mask registers are also used to handle divergence among
the SIMD lanes. On AVX, all computations are always performed by all the SIMD lanes
(predication) [147]. On Xeon Phi, the overhead of masking is lower since all Xeon Phi SIMD
instructions directly support a 16-bit mask to control which lanes are active or not during the
instruction execution. However, on CPUs and on Xeon Phi all this is handled explicitly in
software by the compiler. This implies a general overhead4 compared to the GPU hardware
management, and can also be crucial for the SIMD performance of our specific application.
Both HR-case tests show indeed important static divergence (at compile time, in their control
flow: see Algorithms 1 and 3), but the regular HR-case test presents low dynamic divergence
(at runtime, in its execution flow), as shown in Fig. 4.2b. This low execution flow divergence
can thus be handled efficiently by the GPU hardware, while the CPU - Xeon Phi compiler
has to set all the required masks for predication according to the control flow divergence
of the source code. It can be noticed that SIMD divergence handling is still improving on
GPU at the hardware level: see for example the independent thread scheduling of the new
NVIDIA Volta architecture [3].

The second issue with the vectorization of the HR-case test on CPU and on Xeon Phi is the
lack of vector integer division instruction in AVX2 [77], in the Xeon Phi SIMD instructions
and even in the forthcoming AVX-512 [79]. The compiler therefore uses the scalar integer

4 As far as masks with all zeros or all ones are concerned, it has to be noticed that recent work can detect these
cases at runtime in order to avoid using code with predication when possible on CPUs [147].
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Figure 4.4 – Performance results for Lefèvre and regular HR-case searches, in scalar and SIMD modes.

division instruction (on AVX2), or emulates the vector integer division with optimized in-
trinsics from the Intel Short Vector Math Library - SVML (on Xeon Phi), which offer limited
speedups (see [AFGZ16] for details). Finally, the low Xeon Phi performance is also explained
by the compiler emulation of 64-bit integer SIMD arithmetic operations with 32-bit integer
SIMD operations (while 64-bit scalar operations are not emulated).

In the end, for a (roughly) same power consumption, both NVIDIA and AMD high-
end GPUs outperform a CPU or Xeon Phi server by a 6.25x performance gap, due to this
inefficient SIMD execution of the HR-case search on the CPUs and on the Xeon Phi.

4.1.4 Conclusion

We have here shown that handling efficiently the divergence on SIMD architectures for the
most time consuming step of the Table Maker’s Dilemma solving requires to introduce reg-
ular algorithms, implemented with the relevant programming model, but also depends on
the hardware.

Thanks to the continued fraction formalism, we have first rewritten this step in order to
strongly reduce the divergence in the conditional statements within the main loop, as well
as to reduce the execution flow divergence on this main loop, at the price of some extra
computations. This results in a 3.4x performance gain on GPU compared to the original,
divergent, algorithm.

Thanks to the SPMD-on-SIMD programming model and to the OpenCL portability, we
have shown that such algorithm is more efficiently deployed on GPU (NVIDIA or AMD)
SIMD units than on CPU or Xeon Phi (Knights Corner) ones. This is mainly due to the SIMD
integer division implementation and to the static software handling of divergence on CPUs
and on Xeon Phi. This latter implies indeed an overhead compared to the dynamic hardware
handling of divergence on GPUs, and cannot take full advantage of our regular algorithm,
which presents important divergence in its control flow, but low divergence in its execution
flow.

In the future, we could target the new AVX-512 SIMD instruction set which could lead
to better SIMD performance gains on CPU, especially for our regular algorithm. It would
also be very interesting to compare an OpenCL deployment of our algorithm on FPGAs with
these GPU and CPU deployments, as well as with other FPGA implementations for solving
the TMD [38].



4.2 – For numerical validation using stochastic arithmetic 51

4.2 For numerical validation using stochastic arithmetic

Three main approaches exist for the numerical validation of scientific codes.
Fistly, interval arithmetic [6, 89] replaces all operands in floating-point operations by in-

tervals containing the exact value. However, these intervals can grow very large as the com-
pensation in rounding errors is not taken into account: this leads to an overestimation of
the rounding errors. To prevent intervals from expanding too much, specific algorithms
and methods have been developed [6, 89], but usually require recoding the application. In
terms of performance, recent implementations can show a good scalability and a low over-
head [123]. An interval arithmetic library for GPUs is presented in [35].

Secondly, backward error analysis [157] considers that instead of an approximate solu-
tion to an exact problem, we compute the exact solution to an approximate problem. By
studying the behaviour of an application when its entry is perturbed, the direct error can be
deduced by an estimation of the condition number [70]. This method has a low overhead in
terms of execution time, but does not support every type of problem: it is used mainly for
linear problems, e.g. in the MAGMA library [148] for high performance linear algebra.

Thirdly, numerical validation can also be performed with a probabilistic approach based
on several executions of the program to control. This approach enables one to estimate
rounding errors and is used in various tools such as CADNA [83, 91], MCALIB [52], Ver-
ificarlo [41], VERROU [56], that differ by the number of executions required, by their im-
plementation in the user program and by their ability to detect floating-point operations
responsible for numerical instabilities.

We have focused on Discrete Stochastic Arithmetic [153], the probabilistic approach im-
plemented in the CADNA5 library, and we present here how we have improved the CADNA
library for the numerical validation of scientific high performance simulations on CPUs. This
has been achieved by reducing the overhead of scalar executions and by enabling the (pre-
viously impossible) use of the SIMD units, these two improvements being closely related.
More details can be found in [EBFJ15].

4.2.1 The CADNA library

Thanks to three executions of floating-point operations with a random rounding mode in the
user program, CADNA estimates, with a 95% confidence level, the number of exact signifi-
cant digits of any computed result. This number of exact significant digits is an estimation
of the number of digits unaffected by the rounding errors. We first present the CADNA
implementation at the start of this work (version 1.1.9).

The CADNA library relies on new numerical types: the stochastic types. In practice, clas-
sic floating-point variables are replaced by the corresponding stochastic variables, which
are composed of three floating-point fields and an integer field to store the accuracy. The
library contains the definition of all arithmetic operations, order relations and mathemati-
cal functions for the stochastic types. For instance, let us consider an arithmetic operation
◦ ∈ {+,−, ∗, /} between two stochastic variables A and B. This arithmetic operation is per-
formed three times: once for each of the three associated floating-point fields Ai and Bi

(i = 0 .. 2). The rounding mode is randomly set to rounding towards +∞ or −∞ for the
first two operations, and A2 ◦B2 and A3 ◦B3 are computed with opposite rounding modes.

5Control of Accuracy and Debugging of Numerical Applications: http://cadna.lip6.fr

http://cadna.lip6.fr
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Because all operators are redefined for stochastic variables, the use of CADNA in a program
requires only a few modifications: essentially changes in the declarations of variables and in
input/output statements.

CADNA can also detect numerical instabilities which occur during the execution of the
code. These instabilities are usually due to numerical noise, i.e. results that have no more
correct digits because of rounding errors, and are of four types. An instability can occur first
in an overloaded mathematical function or in the test evaluation of a branching statement.
A numerical instability is also reported in the case of a cancellation, i.e. the subtraction of
two very close values which generates a sudden loss of accuracy. A last type of instabilities
is related to the self-validation of CADNA: a multiplication where the two operands are nu-
merical noise and a division where the divisor is numerical noise. These instabilities indicate
that the validity of the accuracy estimation has been compromised and the CADNA results
cannot be relied on. The user can specify the instabilities to be detected.

Performance impact of CADNA. A program that uses the CADNA library executes three
times each arithmetic operations and a few additional operations if instability detection
is activated. However, once a program had been instrumented with the CADNA library,
there is a very important overhead on computation time, up to about 2 orders of magnitude
slower [80], depending on the program and on the level of instability detection. In highly
optimized programs, such as BLAS routines, it could even go up to 1000 times [105]. This is
mainly due to the cost of instability detection and to the cost of stochastic operations.

Instability detection is based mostly on the test of whether a stochastic value is significant
or not. In the case of cancellation detection, the test depends on the difference of number
of exact significant digits between the operands and the result. The computation of each
number of exact significant digits however relies on the log10 function, whose execution is
costly. Thanks to an approximation of the integer part of the log10 evaluation by the base 2
exponent of the argument, we have managed to reduce the CADNA overhead by 43% when
using cancellation detection (see [EBFJ15]).

Stochastic arithmetic operations are implemented with the help of standard operations
and the explicit change of rounding mode in the FPU (Floating-Point Unit). At the beginning
of a program using CADNA, the rounding mode is arbitrarily set to −∞ or +∞. Then the
rounding mode is explicitely and randomly changed, from +∞ to −∞ or inversely. Chang-
ing the rounding mode is of relatively low cost in itself (only a few assembler instructions
required: reading, modifying and writing the control word of the FPU), but it flushes the
pipelines of the FPU, requiring several processor cycles to refill them. This is especially
disadvantageous for CADNA, as up to three rounding mode changes can occur in every
stochastic operation. As HPC applications aim to fill these pipelines as much as possible to
improve their performance, CADNA has an even more detrimental impact in a HPC context.
Besides, the stochastic operations are implemented by overloading the arithmetic operators
for stochastic types. As such, they are defined as functions or methods, which implies a func-
tion call overhead (for each arithmetic operation) and can also prevent pipelining successive
operations. Finally, the reliance on the rounding mode of the hardware makes it impossible
to use SIMD parallelism with the current CADNA version. Indeed, SSE, AVX or Xeon Phi
vector units only enable the rounding mode control on the whole vector, not on a lane by
lane basis. This would result in the same rounding mode being selected for operations in the
same SIMD instruction, breaking the hypothesis of CADNA that the rounding mode should
be chosen independently for each operation. This is why CADNA (version 1.1.9) was unable
to use vector instructions.
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4.2.2 A new CADNA version for HPC applications

We now present our improvements for the CADNA library in order to reduce its overhead
and enable the vectorization of CADNA codes.

Rounding mode emulation. The random rounding mode of CADNA relies on changing
the rounding mode of the FPU. In addition to flushing the pipelines of the FPU, and to
preventing vectorization for codes instrumented with CADNA, this forces to disable any
optimization when compiling the CADNA code with the gcc compiler, as optimizing may
generate incorrect code with gcc when changing the rounding mode, even when using the
-frounding-math option6. We thus propose in our new CADNA version to emulate the
rounding modes toward infinity taking advantage of the following properties: a ⊕+∞ b =
− (−a⊕−∞ −b) (similarly for	), and a⊗+∞ b = − (a⊗−∞ −b) (similarly for�), where⊕+∞
and ⊗+∞ (resp. ⊕−∞ and ⊗−∞) are the floating-point operations rounded towards +∞
(resp. −∞). Since the results of each rounding mode can be obtained from computation
made in the other rounding mode, there is no need to change the rounding mode of the FPU
during the execution of the program. We only require to set the rounding mode towards +∞
or −∞ once, in the CADNA initialization function.

As our goal is also to enable SIMD parallelism, we avoid using if blocks depending
on the chosen rounding mode, since this would introduce divergence in the execution flow.
We could have multiplied the operands and the results, according to the aforementioned
properties, by 1 or -1. Although this avoids the divergence, this would come at the cost of
two or three floating-point multiplications for each sample of the stochastic value. Instead,
we apply a random mask to the sign bit of the binary representation of the floating-point
numbers to change their sign as required, without relying on the multiplication.

As there is no more rounding mode change in the computation part of the application
code, we can use optimization options of gcc without the risk of floating-point instructions
being moved and executed in an unintended rounding mode. This enables the optimization
of the CADNA library for high performance.

Inlining. To enable inlining, we have moved the code of the stochastic arithmetic opera-
tors from the library source code to the CADNA header file. Thereby, we can get rid of much
of the overhead of CADNA due to function calls. Moreover, this enables optimizations such
as pipelining several stochastic operations, or interleaving their instructions.

Random generator. The rounding mode selection for stochastic operations is based on a
randomly generated bit. The 1.1.9 version of CADNA uses an intrinsically sequential, and
difficult to vectorize, method which aims at reducing the computation cost. An array is pre-
filled with randomly generated numbers in the CADNA initialization, and bits are picked
by sequentially reading each number bit per bit. In a SIMD context, this implies to compute
a different bit index for each lane and to increment the index according to the vector width.

Following a similar idea proposed for the CADNA prototype on GPU [84], we have
chosen to replicate the random generator for each SIMD lane in order to account for any
possible vector width and to have a straightforward and efficient vectorization. Instead of
pre-generating an array that would be duplicated, the random number generation will now
be executed on the fly. As such, an integer will be randomly generated and read bit per bit for
each random pick. When every bit has been picked, every lane will produce a new number
at the same time, as the bits were consumed at the same rate on each lane. Where the pre-

6GCC bug 34678 - optimization generates incorrect code with -frounding-math option.
See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678
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Program 1 Loop of independent floating-point operations

f o r ( i n t i = 0 ; i < n ; i ++)
c [ i ] = a [ i ] + b [ i ] ;

vious version of CADNA used a 16-bit short integer generator, we now use the generator
presented in Mohanty and al. [104] which produces 32-bit int values. This new generator
also has a longer period, a good statistical distribution, and uses only integer addition, mul-
tiplication, and logical operations, whereas the previous also used integer division. Integer
division is usually relatively inefficient and most vector instructions sets (such as SSE, AVX
and the Xeon Phi ones) do not contain integer division.

The dynamic generation will have the added benefit of reducing the memory footprint
and memory accesses of CADNA, at the cost of slightly more computation. As computation
is becoming increasingly cheaper than memory accesses on current and future HPC archi-
tectures, this should also yield an improvement in the performance of CADNA applications.

Vectorizing. For vectorization, several programming paradigms are possible, as listed in
Sect. 1.2. Using intrinsics with CADNA, would be especially tedious as we have to handle
the composite data types and replace each intrinsic call with a corresponding CADNA ver-
sion. On the other hand automatic vectorizing needs to ensure that the dependencies of the
scalar code are respected when vectorizing. For instance, in IEEE floating-point arithmetic,
the iterations of the loop of Program 1 are independent from each other and can be automat-
ically vectorized. However, with CADNA, even though the variables in these operations are
completely different, the process of choosing the rounding mode introduces a dependency.
Indeed, the random bit chosen for one iteration is necessarily picked after the previous iter-
ation. As such, automatic vectorizing cannot be achieved for any code instrumented with
CADNA. Regarding compiler directive (such as in OpenMP 4.X), we must duplicate the ran-
dom generator on each lane in order to ensure that the randomness of the rounding mode
is retained. However there is no lane identifier, necessary to access each generator indepen-
dently, when using these directives. In the end, we thus focus here on the SPMD-on-SIMD
model. In addition to its assets (see Sect. 1.2), there is a lane identifier that enables us to
easily replicate the random generator (with a different seed for each lane). We have elected
to choose ispc over OpenCL, since at the time of this work OpenCL did not support the
overloading of operators necessary for CADNA. Nevertheless, the same process could be
applied for other SPMD-on-SIMD languages, as long as operator overloading is supported.

Thanks to our previous contributions, very few changes are necessary to adapt the CADNA
library to ispc. Indeed, adding relevant ispc attributes to variables (varying for lane spe-
cific variables, uniform for vector shared ones) and initializing the seed for each lane were
the only necessary adjustments. Like C++ code, ispc code can be instrumented with CADNA
by simply changing the types of the variables to stochastic ones.

Execution masks. In the current version of CADNA, the detected instabilities are chosen
at execution time. As such, detection flags are checked dynamically, leading to conditional
branches in the CADNA code. However, when a given instability is not detected, these
branches still produce divergence in the control flow, which can prevent vectorization or
lower its performance due to the required software execution masks (predication). We have
thus replaced the tests in these branches by preprocessor directives that can be evaluated at
compile time. We can still change the detected instabilities, but now only at compile time.
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Figure 4.5 – Scalar performance for operations (compute-bound) and overhead over IEEE performance.

4.2.3 Performance results

To assess the impact of our different improvements on the performance of CADNA, we will
first measure the CADNA overhead on purely “arithmetic” benchmarks. As such, we will
perform only one arithmetic operation (addition or multiplication) and repeat it with a high
number of floating-point numbers in both compute- and memory-bound versions. Then,
considering more realistic applications, we will rely on a 3D finite difference stencil compu-
tation (memory-bound), as well as on a Mandelbrot set computation (compute-bound) for
which the use of CADNA will allow us to better determine if the sequence corresponding to
a specific point of the 2D plane is bounded or not. These benchmarks will be first considered
in scalar C/C++ versions, then in vectorized versions written with ispc (version 1.8.2), on
a single core of an Intel Xeon E3-1275 CPU with AVX2.

Scalar performance results. For each benchmark, we will compare a version imple-
mented with IEEE arithmetic (IEEE) to several CADNA versions of the same code (with
only self-validation activated): the previous version (named 1.1.9); basing the computation
on one rounding mode and masks, using the gcc -O0 flag for no optimization (mask O0) or
using high level optimizations with the -O3 gcc flag (mask O3); using mask O3 and adding
the inlining (inline); and finally using inline and the dynamic random generation (dyn).

For the compute-bound arithmetic benchmarks, we see in Fig. 4.5 that our successive
modifications to the CADNA library significantly improve the performance. Most of the
total gain in performance is gained from the mask O3 version, due to the combined effects
of compiler optimization and the absence of change in the rounding mode of the FPU. Per-
formance further increases with the inline version, that allows a tighter integration of the
CADNA code in the application code. Moreover, the dyn version also slighlty improves per-
formance, even though its main focus was to prepare the random generator for vectorization.
Overall, we reduced both addition and multiplication overheads by 83%.

For the memory-bound arithmetic benchmarks, we see in Fig. 4.6 that each optimization
(mask O0, mask O3, inline) also leads to a significant improvement in performance. We can
also see that the overhead of the addition and multiplication benchmarks are similar to their
compute-bound equivalent. Indeed, with CADNA we have at least 3 times more computa-
tions (for each sample), while needing 4 times more memory accesses. But these memory
accesses can be performed at once within the same cache line (as the members of the stochas-
tic types are contiguous in memory), which lower their performance impact. Moreover, ex-
tra operations (random number generation, masking, instability detection) also increase the
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Figure 4.7 – Scalar performance for applications and overhead over IEEE performance.

computation cost with CADNA. The arithmetic intensities of our memory-bound bench-
marks thus increase with CADNA. In the end, similarly to the compute-bound case, the
overhead was reduced by 82% on addition and by 83% on multiplication.

On more realistic applications, we see from Fig. 4.7 that performance has much improved
too. However, the overhead is higher than for our arithmetic benchmarks. The Mandelbrot
set computation is indeed even more arithmetic intensive than our arithmetic benchmarks.
For each iteration, there are more floating-point instructions than in the arithmetic bench-
marks, and when the code is instrumented with CADNA, the overhead increases more. The
stencil computation is memory-bound but contrary to the memory-bound arithmetic bench-
marks, the 3D memory access pattern lowers the effectiveness of the memory caches and
prefetch especially for the CADNA versions. Nevertheless, the overhead was reduced by
85% on the Mandelbrot set computation and by 82% on the finite difference stencil.

Vectorized performance results. We will consider here: a vectorized version of the best
scalar version (dyn); and a version using dyn and instability detection tests with #define
preprocessor directives evaluated at compile time (define) as presented in subsection 4.2.2.

The vectorized versions of the memory-bound arithmetic benchmarks have shown little
to no gain over the corresponding scalar versions (tests not presented here). Their perfor-
mance is indeed limited by the bandwidth of the caches and the memory prefetch, and is
not improved by the vectorization. For compute-bound arithmetic benchmarks, we can see
from Fig. 4.8 that the IEEE speedup on vectorization is almost maximum, here on AVX2
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Figure 4.9 – Vectorized performance for applications on AVX2, with speedup on scalar version

SIMD units. We have also achieved vectorization for CADNA with speedups up to 3.64x,
whereas no vectorization was possible with the previous CADNA version. The CADNA
speedups are however lower than the IEEE ones. After analysis with the Intel VTune Am-
plifier profiler7, we have found that this is due to the memory accesses that are much more
costly with CADNA. This can be explained by the AoS (Array of Structures) memory layout
of our stochastic types. The AoS data layout is indeed not best suited for SIMD process-
ing, since it requires special memory loads (gather) and stores (scatter) that are less efficient
than simple vector loads and stores. Finally, we also see the beneficial effect of removing
the execution masks from our code with the define version. As only self-validation is acti-
vated, the multiplication benchmark is the only one that creates execution masks during the
computation. As such, it benefits from this improvement much more than the addition.

On realistic applications, we see from Fig. 4.9 that we achieve a speedup of up to 3.05x.
We also observe that the speedup on the Mandelbrot set computation with the dyn version
is slightly higher than for our other benchmarks. This confirms that the AoS memory layout
is partially responsible for the lower CADNA speedup, as this application is the only one
that does not need to load stochastic values from memory. The define version improves
performance, without improving the speedup due to vectorization.

On the whole, our vectorized CADNA versions have a global overhead on the IEEE
vectorized versions that varies from 19.2x to 32.4x. Although these are higher than in scalar,

7 https://software.intel.com/en-us/intel-vtune-amplifier-xe

https://software.intel.com/en-us/intel-vtune-amplifier-xe
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there is still a net improvement over the former (non-vectorizable) version of CADNA which
has an overhead between 407x and 651x over the vectorized IEEE benchmarks.

4.2.4 Conclusion

Through our successive modifications to the CADNA library, we have improved the scalar
performance significantly, reducing its overhead by up to 85%. We have also enabled vector-
ization with the SPMD-on-SIMD programming paradigm, leading to an additional speedup
between 2.5 and 3. With vectorization enabled, we make numerical validation possible for a
wider variety of architectures and codes used in HPC.

Regarding many-core architectures, we could unfortunately not test this new CADNA
version on the Xeon Phi processors due to compiler restrictions at the time of this work.
Depending on the new compiler versions, we could in the future study its impact on this
architecture whose SIMD units are wider and improved at the hardware level (e.g. execution
masks for SIMD divergence, and scatter and gather operations).

As far as GPUs are concerned, since GPUs also (partially, but heavily) rely on SIMD
execution, we have been interested in the impact of some of these improvements on the
CADNA-GPU prototype presented in [84], which enables one to estimate rounding errors
in CUDA codes. As shown in [ELBFJ18], the rounding mode emulation, which was here
clearly beneficial on CPU, did not improve performance on GPU: this is likely due to the
GPU predication mechanism and to the extra register consumption. Nevertheless, we have
significantly reduced the overhead of CADNA by improving the random generator and by
accessing this new generator twice less often. Through these modifications, we have re-
duced the computation time of single precision stochastic arithmetic on GPU by 39% to 61%
(depending on the benchmark). We have also extended the CADNA-GPU library to double
precision, with an even lower overhead than in single precision.

Regarding OpenCL, which generalizes the SPMD-on-SIMD programming model to var-
ious HPC architectures (GPUs, CPUs . . . ), C++ object-oriented features are supported since
OpenCL 2.2, but unfortunately current OpenCL versions lack the minimal support for round-
ing mode changes that would enable to integrate CADNA in OpenCL codes.

Finally, we have also enabled the support of OpenMP codes by CADNA in order to
estimate the round-off error propagations in multi-threaded OpenMP codes [EBFJ16]. Since
there is no guarantee in the OpenMP standard that the worker threads have the same round-
ing mode as their master thread, we had first to design a compatibility check for OpenMP im-
plementations (GOMP and Intel implementations have found to be compatible with CADNA).
We have then used a distinct random generator (the same as in Sect. 4.2.2) in each OpenMP
thread, and OpenMP atomic constructs were required for the safe updates of internal CADNA
counters. We have also been able to support OpenMP reductions with CADNA in the user
code (thanks to OpenMP 4.0 features), but not atomic operations (which have to be replaced
by OpenMP critical sections in the user code). All this has resulted in similar or lower
CADNA performance overheads for OpenMP codes than for serial codes (except if numer-
ous atomic operations are used in the user code). In the end, this CADNA version detects
numerical instabilities in OpenMP codes and estimates the number of exact significant dig-
its of the results. For another parallel execution, or for the execution of the serial code, this
number of exact significant digits can vary when the order of the floating-point operations
varies, but we can still rely on the values of the exact significant digits given by CADNA.
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Conclusion and future work

Conclusion

In this manuscript, we have presented our algorithmic contributions to scientific computing
applications on high performance architectures.

After a brief introduction to the technical HPC aspects used in our work, we have first
summarized our research results since our PhD thesis according to the following three di-
rections: (i) designing algorithms for many-core or multi-core architectures, or for both via
hybrid algorithms; (ii) handling the SIMD divergence; and (iii) taking advantage of new
heterogeneous architectures for scientific applications.

Then, we have chosen to detail the two first research directions in order to highlight our
algorithmic contributions, their interdisciplinary context, and the close combination they
require between application specificities, algorithmics, programming and architectural fea-
tures.

Regarding the design of algorithms for many-core or multi-core architectures, or both,
we have first presented how we have modified the algorithm of a birth and death process
for cell nuclei extraction in histopathology images. This has enabled us to obtain massive
parallelism for all steps of the algorithm which has then be efficiently deployed on GPUs.
Then we have strongly rewritten, based on task parallelism, the reference sequential algo-
rithm building merge and contour trees in scientific visualization. This has led to important
performance gains both in serial and in parallel on multi-core CPUs. Besides, the interest of
hybrid CPU-GPU algorithms has been illustrated on integrated GPUs with a recursive fast
multipole method in astrophysics. This hybrid algorithm benefits indeed from the efficient
recursive tree traversal on the CPU cores, and from the compute power of the integrated
GPU cores, along with their power and cost efficiencies, for the most compute-intensive op-
erations.

Regarding the SIMD divergence handling, we have first revisited in computer arith-
metics the main algorithm of the Table Maker’s Dilemma solving. This rewriting has strongly
reduced the execution flow divergence which has resulted in important performance gains
on GPU SIMD units. Finally, the previous versions of the CADNA library, which estimates
round-off error propagations in numerical codes, could not support CPU SIMD codes, since
SIMD lanes cannot have different rounding modes. Partly thanks to a rounding mode emu-
lation, we have here managed to enable the numerical validation of CPU SIMD codes, and
also to significantly reduce the scalar overhead of CADNA: this makes CADNA suitable for
HPC.
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Future work

In addition to the extensions presented in Sects. 3.1.4, 3.2.5, 3.3.6, 4.1.4 and 4.2.4, we plan
in the forthcoming years to continue providing algorithmic contributions to specific or key
applications in scientific high performance computing, following these three research direc-
tions.

Hybrid algorithms for heterogeneous architectures

As detailed in Sect. 3.3, we have recently shown the interest of a hybrid algorithm for the
deployment of a recursive fast multipole method (FMM), specific to astrophysical simula-
tions, on a heterogeneous architecture composed of a multi-core CPU and of an integrated
GPU. We plan to further study the impact of such hybrid algorithms, especially this FMM,
on other heterogeneous architectures which should be relevant for such algorithms: multi-
core CPU with a discrete GPU equipped with an NVIDIA NVLink bus offering much higher
bandwidth than the traditional PCI Express bus, multi-core CPU with integrated FPGAs
(now programmable with OpenCL [122]) . . .

We also plan to consider for FMMs other application domains than astrophysics. As
part of the PhD thesis of I. Chollet (co-supervised with X. Claeys and L. Grigori, 2017-),
we have started to study the relevance of this recursive FMM in the context of boundary
integral equation methods for wave propagation problems (Helmholtz kernel in low and
high frequency regimes, with non-uniform distributions of particles). We are also investi-
gating the benefit of such FMM in the context of polarizable molecular dynamics within the
Tinker-HP8 software [90] developed at Sorbonne Université (LCT laboratory, Laboratoire de
Chimie Théorique). These molecular dynamics simulations offering uniform distributions of
particles, one challenge here will consist in taking advantage of these uniform distributions
(leading to regular computations) within such recursive FMM. We will rely in this purpose
on our previous work for FMMs regarding SIMD processing (see Sect. 3.3) or regarding our
matrix formulation for efficient processing with level 3 BLAS routines (see Sect. 2.3.1).

HPC and symbolic computing

So far, almost all our previous work has focused on numerical applications. As part of a
secondment with CNRS in the CFHP9 team at CRIStAL10 - Université de Lille (2017-2018),
we are currently investigating the impact of HPC on symbolic computing applications. Some
progress has already been achieved on such topic these past years, but numerous algorithms
and implementations used in symbolic computing are still currently designed in sequential
mode. This has in particular led to the MEA4SRNC11 proposal, in which we are involved,
and which aims at revisiting symbolic computing algorithms in a HPC context.

During this secondment we have started to work in differential algebra on the Rosenfeld-
Gröbner algorithm [17] implemented by F. Boulier in the BLAD12 software. Similarly to

8See: http://tinker-hp.ip2ct.upmc.fr/
9Computer Algebra and High Performance Computing, see: http://www.cristal.univ-lille.fr/CFHP/

10See: https://www.cristal.univ-lille.fr/
11Modern efficient algorithms for symbolic and reliable numeric computing, principal investigator: G. Lecerf, sub-

mitted to the ANR 2018 generic call for proposals (ANR is the french National Research Agency).
12See: http://cristal.univ-lille.fr/~boulier/pmwiki/pmwiki.php/Main/BLAD

http://tinker-hp.ip2ct.upmc.fr/
http://www.cristal.univ-lille.fr/CFHP/
https://www.cristal.univ-lille.fr/
http://cristal.univ-lille.fr/~boulier/pmwiki/pmwiki.php/Main/BLAD
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previous work in scientific visualization (see Sect. 3.2) and on the fast multipole method (see
Sect. 3.3.1), task parallelism has turned out to be very suitable to deploy this algorithm on
multi-core CPUs. Indeed such parallelism naturally matches the underlying computation
tree that drives this algorithm, and this could moreover save computations with respect to
the sequential execution. This also enables us to exploit the nested levels of parallelism
available in this algorithm, each level offering a limited parallelism degree, on current HPC
computers with a few dozen of cores. A performance bottleneck could also lie in the GCD
(greatest common divisor) computation of multi-variate polynomials: this problem could be
tackled via algorithms specific to our differential algebra context (leading to a large number
of variables with low degrees), as well as via low-level algorithmics for SIMD computing.

It can also be noticed that a coupling between fast multipole methods and differential
algebra has already been developed [163]: this may be further investigated, especially in a
HPC context.

More generally, an interesting feature of some symbolic computations is their ability to
(partly) check the correctness of the exact result. In GCD computations for example, one can
easily verify that the resulting polynomial divides indeed the two input polynomials. This
could open the way to fault-tolerant algorithms in symbolic computing.

Finally, due to the very high cost of some symbolic algorithms (e.g. exponential or
double-exponential) and to operation count worst cases, a small increase in the input sizes
or a slight difference in the input structure can lead to much greater computation times.
Such computations could thus benefit from different execution environments, such as cloud
computing which can offer elastic compute resources.

Taking advantage of new architectures

In addition to new architectures or new hardware features recently introduced in HPC (multi-
core CPUs with integrated FPGAs, AVX-512 SIMD units . . . ), the convergence of HPC and
Big Data has driven some of the main architectural developments over the latest years. The
rise of deep learning in artificial intelligence has for example led to the introduction of “ten-
sor cores” in the newest NVIDIA GPU architecture (Volta [3]), of “tensor processing units”
(TPUs) by Google, and of new Intel Xeon Phi processors (Knights Mill) and forthcoming Intel
Nervana chips, both specialized in deep learning. These architectures offer indeed increased
compute power which could benefit to scientific computations other than deep learning (e.g.
fast multipole methods). However this increased compute power applies to lower floating-
point precisions, which will likely raises issues regarding performance-precision trade-offs.
More generally, we plan to consider in the medium term algorithmic contributions required
to adapt at best numerical applications in scientific computing to these new high perfor-
mance architectures, considering performance, performance portability or power efficiency.

In the longer term, the introduction of memristor-based memories and of photonic inter-
connection networks between compute units and off-chip memories, as well as the foreseen
end of Moore’s law and the birth of quantum computers, will heavily impact HPC architec-
tures and will require further strong algorithmic contributions to numerous applications in
scientific computing.
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Appendix A

Publications

Our publications in international journals and in international peer-reviewed conferences
with proceedings are listed here. Other publications (abstract-only conference communica-
tions, research reports) are listed in: http://lip6.fr/Pierre.Fortin/CV_Fortin.pdf

Publications issued from our PhD thesis are indicated by *.

Journal articles

2018 [GFJTxx] C. Gueunet, P. Fortin, J. Jomier and J. Tierny, Task-based Augmented Contour
Trees with Fibonacci Heaps, IEEE Transactions on Parallel and Distributed Systems (sub-
mitted)

2018 [FTxx] P. Fortin and M. Touche, Dual tree traversal on integrated GPUs for astrophysical N-
body simulations, International Journal of High Performance Computing Applications
(submitted)

2017 [SFLC18] I. Said, P. Fortin, J.-L. Lamotte and H. Calandra, Leveraging the Accelerated
Processing Units for seismic imaging: a performance and power efficiency comparison against
CPUs and GPUs, International Journal of High Performance Computing Applications
(to appear)

2016 [FGG16] P. Fortin, M. Gouicem and S. Graillat, GPU-Accelerated Generation of Correctly
Rounded Elementary Functions, ACM TOMS (Transactions on Mathematical Software),
Vol. 43(3)

- [AFGZ16] C. Avenel, P. Fortin, M. Gouicem and S. Zaidi, Solving the Table Maker’s
Dilemma on Current SIMD Architectures, Scalable Computing: Practice and Experience,
Vol. 17(3)

2015 [EBFJ15] P. Eberhart, J. Brajard, P. Fortin and F. Jézéquel, High Performance Numerical
Validation using Stochastic Arithmetic, Reliable Computing, Vol. 21, pp 35-52

2013 [FL13] P. Fortin and J.-L. Lamotte, An (almost) direct deployment of the Fast Multipole
Method on the Cell processor, The Journal of Supercomputing, Vol. 65, Issue 3, pp 1205-
1222

http://lip6.fr/Pierre.Fortin/CV_Fortin.pdf
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2011 [FAL11] P. Fortin, E. Athanassoula, and J.-C. Lambert, Comparisons of different codes for
galactic N-body simulations, Astronomy & Astrophysics, 531, A120

2010 * [CFR10] O. Coulaud, P. Fortin and J. Roman, High performance BLAS formulation of the
adaptive Fast Multipole Method, Mathematical and Computer Modelling, Vol. 51/3-4, pp
177-188

2008 * [CFR08] O. Coulaud, P. Fortin and J. Roman, High performance BLAS formulation of the
multipole-to-local operator in the fast multipole method, Journal of Computational Physics,
Vol. 227/3, pp 1836-1862

Book chapters

2013 [HFJ+13] R. Habel, P. Fortin, F. Jézéquel, J.-L. Lamotte and N.S. Scott, Numerical valida-
tion and performance optimization on GPUs of an application in atomic physics, In Designing
Scientific Applications on GPUs, R. Couturier Ed., Chapman & Hall/CRC

Conference papers, peer-reviewed with proceedings

2018 [ELB+18] P. Eberhart, B. Landreau, J. Brajard, P. Fortin and F. Jézéquel, Improving CADNA
performance on GPUs, 19th IEEE Int. Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-18), IPDPS Workshops

2017 [GFJT17] C. Gueunet, P. Fortin, J. Jomier and J. Tierny, Task-based Augmented Merge
Trees with Fibonacci Heaps, IEEE Symposium on Large Data Analysis and Visualization
(LDAV 2017)

2016 [EBFJ16] P. Eberhart, J. Brajard, P. Fortin and F. Jézéquel, Estimation of round-off errors in
OpenMP codes, 12th International Workshop on OpenMP (IWOMP 2016)

- [GFJT16] C. Gueunet, P. Fortin, J. Jomier and J. Tierny, Contour Forests: Fast Multi-
threaded Augmented Contour Trees, IEEE Symposium on Large Data Analysis and Vi-
sualization (LDAV 2016)

- [SFLC16] I. Said, P. Fortin, J.-L. Lamotte and H. Calandra, hiCL: An OpenCL Abstrac-
tion Layer for Scientific Computing, Application to Depth Imaging on GPU and APU, Int.
Workshop on OpenCL (IWOCL 2016)

- [SFL+16] I. Said, P. Fortin, J.-L. Lamotte, R. Dolbeau and H. Calandra, On the efficiency
of the Accelerated Processing Unit for scientific computing, 24th High Performance Com-
puting Symposium (HPC 2016, Best Paper Runner-Up award)

2014 [LF14] B. Lange and P. Fortin, Parallel dual tree traversal on multi-core and many-core ar-
chitectures for astrophysical N-body simulations, Euro-Par 2014

- [ESFC14] P. Eberhart, I. Said, P. Fortin and H. Calandra, Hybrid strategy for stencil com-
putations on the APU, 1st Int. Workshop on High-Performance Stencil Computations
(HiStencils 2014)
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2013 [AFB13] C. Avenel, P. Fortin and D. Béréziat, Parallel birth and death process for cell nuclei
extraction in histopathology images, 42nd Int. Conference on Parallel Processing (ICPP
2013)

- [CDF+13] H. Calandra, R. Dolbeau, P. Fortin, J.-L. Lamotte and I. Said, Evaluation of
successive CPUs/APUs/GPUs based on an OpenCL finite difference stencil, Special session
"GPU Computing and Hybrid Computing", 21st Euromicro Int. Conference on Paral-
lel, Distributed and Network-Based Processing (PDP 2013)

2012 [NBFT12] L. Nardi, F. Badran, P. Fortin and S. Thiria, YAO: a generator of parallel code for
variational data assimilation applications, 14th IEEE Int. Conference on High Performance
Computing and Communication (HPCC-2012)

- [FGG12] P. Fortin, M. Gouicem and S. Graillat, Towards solving the Table Maker’s Dilemma
on GPU, Special session "GPU Computing and Hybrid Computing", 20th Euromicro
Int. Conference on Parallel, Distributed and Network-Based Computing (PDP 2012)

2011 [FHJ+11] P. Fortin, R. Habel, F. Jézéquel, J.-L. Lamotte and N.S. Scott, Deployment on
GPUs of an application in computational atomic physics, 12th IEEE Int. Workshop on Par-
allel and Distributed Scientific and Engineering Computing (PDSEC-11), IPDPS Work-
shops

2010 [BFL10] Q. Bourgerie, P. Fortin and J.-L. Lamotte, Efficient Complex Matrix Multiplication
on the Synergistic Processing Element of the Cell Processor, Workshop on Parallel Program-
ming and Applications on Accelerator Clusters (PPAAC10)

2009 [FL09] P. Fortin and J.-L. Lamotte, Fast Multipole Method on the Cell Broadband Engine: the
Near Field Part, Parallel Computing: From Multicores and GPU’s to Petascale, Selected
Papers from the int. Parallel Computing Conference (ParCo2009), Advances in Parallel
Computing, Vol. 19, pp 323-330, IOS Press

2007 * [CFR07] O. Coulaud, P. Fortin and J. Roman, Hybrid MPI-thread parallelization of the
Fast Multipole Method, IEEE Int. Symposium on Parallel and Distributed Computing
(ISPDC), pp 391-398

2005 * [CFR05] O. Coulaud, P. Fortin and J. Roman, High-performance BLAS formulation of the
Adaptive Fast Multipole Method, Advances in Computational Methods in Sciences and
Engineering 2005, Selected Papers from the Int. Conference of Computational Methods
in Sciences and Engineering (ICCMSE), Vol. 4B, pp 1796-1799, VSP/Brill
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List of supervised students

We have supervised or co-supervised the following students.

Post-doctoral researchers:

• Benoit Lange, Astrophysical N-body simulations on multi-core and many-core architectures,
2012-2013

• Christophe Avenel (with D. Béréziat), Selective cell nuclei detection from histopathologi-
cal images and deployment on many-core architectures (2012-2013), then The table maker’s
dilemma on massively parallel SIMD architectures (2013)

• Mounira Bachir (with J. Brajard and F. Jézéquel), Automatic generation of parallel numer-
ical codes for data assimilation, 2011-2012

PhD students

• Igor Chollet (with X. Claeys and L. Grigori), High performance solvers based on compres-
sion techniques with application to electromagnetics, 2017-

• Charles Gueunet (with J. Jomier and J. Tierny), In-situ topological data analysis, 2016-

• Pacôme Eberhart (with J. Brajard and F. Jézéquel), Automatic generation of efficient and
reliable codes for data assimilation, 2013-interrupted

• Issam Said (with J.L. Lamotte), Contributions of hybrid architectures to depth imaging: a
CPU, APU and GPU comparative study, 2011-2015

• Mourad Gouicem (with J.C. Bajard and S. Graillat), Conception and deployment of efficient
algorithms for solving the table maker’s dilemma on parallel architectures, 2010-2013

Research engineers

• Maxime Touche, Astrophysical simulations on hybrid CPU-GPU architecture, 2015



Master 2 students (5- or 6-month internships)

• Charles Gueunet (with J. Tierny), In-situ visualization for high performance computing,
2015

• Maxime Touche, Astrophysical simulations on hybrid CPU-GPU architecture, 2014

• Pacôme Eberhart (with I. Said), Finite difference stencils on hybrid CPU-GPU architecture,
2013

• Rachid Habel (with F. Jézéquel), Deployment on GPU of an application in atomic physics,
2010

Master 1 students (2-month internships)

• Baptiste Landreau (with P. Eberhart, J. Brajard and F. Jézéquel), Numerical validation on
GPU and application to oceanography, 2015

• Richard Dang (with I. Said), High-level programming of hybrid CPU-GPU architectures,
2014

• Samia Zaidi (with M. Gouicem), Solving the table maker’s dilemma on CPUs and on GPUs,
2012

• Joachim Dehais (with S. Graillat), Path following for pseudospectra computations on GPUs,
2010

• Hertz Hendrix Emani Emani (with S. Graillat), Pseudospectra computations on GPUs,
2010

• Sethy Montan, Time integration of a parallel code for astrophysical simulations, 2009

• Thomas Bussière (with L. Perret), GPU implementation of the MD6 hash function, 2009

Licence 3 students (3-month internships)

• Ambroise Fleury (with F. Lemaire), SIMD speedup for polynomial evaluations, 2018
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Abstract

High performance architectures are constantly evolving in order to deliver ever greater com-
pute powers, as well as ever greater energy efficiencies. This applies to multi-core CPUs
(with higher core count and wider vector units) as well as to various many-core, possibly
heterogeneous, architectures (GPUs, Xeon Phi processors . . . ). Considering performance,
power efficiency or performance portability, and relying on new and relevant programming
paradigms, we have focused on algorithmic changes allowing to adapt at best specific or key
applications in scientific computing to such high performance architectures.

Our research work has been structured according to three research directions: (i) design-
ing algorithms for many-core architectures via massive parallelism, for multi-core architec-
tures via task parallelism, or for both via hybrid algorithms; (ii) handling the vector diver-
gence on high performance architectures; and (iii) taking advantage of new heterogeneous
architectures for scientific applications. We present here our algorithmic contributions, their
interdisciplinary context, and the close combination they require between application speci-
ficities, algorithmics, programming and architectural features.

Résumé

Les architectures de calcul haute performance évoluent en permanence afin d’offrir des ca-
pacités de calcul, et des efficacités énergétiques, toujours plus importantes. Ceci concerne
d’une part les CPU multi-cœurs, qui comportent de plus en plus de cœurs et des unités
vectorielles toujours plus grandes, et d’autre part les diverses architectures many-core, po-
tentiellement hétérogènes (GPU, processeurs Xeon Phi . . . ). En prenant en compte la per-
formance, l’efficacité énergétique ou la portabilité des performances, et en nous appuyant
sur des paradigmes de programmation récents et appropriés, nous avons apporté des con-
tributions algorithmiques permettant d’adapter au mieux des applications de référence, ou
spécifiques, en calcul scientifique à ces architectures haute performance.

Nos travaux ont été structurés selon les trois axes de recherche suivants : (i) concevoir
des algorithmes pour les architectures many-core via du parallélisme massif, pour les archi-
tectures multi-cœurs via du parallélisme de tâches, ou pour les deux via des algorithmes hy-
brides ; (ii) réduire la divergence au sein des calculs vectoriels sur les architectures haute per-
formance ; et (iii) tirer parti des nouvelles architectures hétérogènes pour des applications en
calcul scientifique. Nous présentons ici nos contributions algorithmiques, leur contexte in-
terdisciplinaire, ainsi que les fortes interactions qu’elles requièrent entre les caractéristiques
de l’application, l’algorithmique, la programmation et l’architecture matérielle.
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