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Introduction Générale

Contexte Principal

Le guidage optimal des véhicules lanceurs a, au cours des dernières décennies, sus-
cité de plus en plus l’attention, à tel point, qu’il est devenu un prérequis pour diverses
applications aérospatiales, comme, le transfert orbital (voir, e.g. [1, 2]), la rentrée at-
mosphérique (voir, e.g. [3, 4]) et le guidage de missiles (voir, e.g. [5, 6, 7, 8]).

Le problème a comme objectif de trouver une loi de contrôle permettant à un véhicule
aérospatial de rejoindre une zone cible en considérant des contraintes spécifiques et
des critères de performance. Les contraintes impliquent que seulement certaines
manœuvres et trajectoires sont autorisées, et les critères de performance sont requis
pour réduire les efforts et maximiser les chances de succès. Il est évident que ces
contraintes et critères de performance dépendent du véhicule et de la mission.

Par exemple, pour le transfert orbital, une des missions typiques consiste à déplacer
un satellite sur une orbite déterminée, avec le minimum d’effort. Dans ce cas, les lois
gravitationelles fixent des mouvements dynamiques précis. De plus, en raison du
coût élevé des manœuvres en espace ouvert, on cherche à déplacer le satellite avec
une consommation minimale de carburant. D’un autre côté, la mission d’interception
consiste à mener un missile vers une cible (potentiellement rapide), en cherchant à
la neutraliser. Dans cette situation, les contraintes sont données par l’équation de
dynamique du vol et par la faisabilité de certaines manœuvres. Typiquement, on
maximise la vitesse du véhicule pour augmenter les chances de détruire la menace.

Le problème de guidage optimal peut être interprété, étudié et résolu à travers le for-
malisme mathématique du contrôle optimal. Dans sa généralité, le problème con-
siste à trouver un contrôle, comme fonction mesurable, pour un système dynamique
évoluant sur une variété, tel qu’un coût lisse donné soit minimisé. Des contraintes,
limitant aussi bien les contrôles que leurs trajectoires, sont souvent prises en compte.

Les premiers apports à la théorie du contrôle optimal datent du 18ème siècle avec
les travaux d’Euler et Lagrange, qui ont mené au calcul des variations. Cependant,
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Introduction Générale

il a fallu attendre la fin des années 50 pour que les contributions de l’école russe de
mathématiques fournissent les fondements théoriques pour le contrôle optimal de
systèmes très généraux. Le travail novateur de Lev Pontryagin et de ses étudiants a
apporté des conditions nécessaires d’optimalité puissantes, connues sous le nom du
Principe de Maximum de Pontryagin (ou Principe de Maximum, ou encore PMP, voir,
e.g. [9]), posant les bases de conditions plus exhaustives (voir, e.g. [10, 11, 12, 13, 14]).

Dans le même temps, l’avancée de l’informatique et des méthodes numériques a
permis de résoudre concrètement presque tout problème de contrôle optimal soumis
par les applications et l’industrie, à l’exception d’erreurs numériques. Aujourd’hui,
un large éventail d’algorithmes existe pour déterminer la solution de problèmes de
contrôle optimal. Nous pouvons les classer en deux domaines principaux: méthodes
directes et indirectes (voir, e.g. [15, 16, 17] pour plus de détails sur ces procédures).

Les méthodes directes consistent à discrétiser les variables du problème de guidage
optimal (l’état, le contrôle, etc.) pour le réduire à un problème d’optimisation non-
linéaire sous contraintes. Un haut degré de robustesse est garanti et, de manière
générale, aucune connaissance du système dynamique n’est nécessaire, entraînant
une utilisation simple de ces méthodes en pratique. Cependant, leur efficience dépend
fortement des capacités de calcul, impliquant une utilisation hors ligne le plus sou-
vent. Par ailleurs, les méthodes indirectes consistent à appliquer les conditions don-
nées par le Principe de Maximum en transformant le problème de guidage optimal
en un problème aux valeurs limites. Les avantages de ces méthodes, dont la version
basique est connue comme étant la méthode de tir, sont leur précision numérique
extrêmement élevée et leur convergence rapide, si elle est atteinte. En revanche,
l’initialisation de méthodes indirectes reste une tâche ardue.

Parmi les études menées par l’ONERA (Office National d’Etudes et de Recherches
Aérospatiales), le guidage optimal de véhicules autonomes a acquis une position im-
portante, à travers des applications civiles et militaires (lanceurs Ariane, systèmes de
missiles, véhicules aériens sans pilote, etc.).

La plupart des travaux considèrent des calculs hors ligne à l’aide de méthodes di-
rectes pour assurer une convergence robuste vers la solution optimale. Cependant,
lorsqu’on traite de problèmes dynamiques, comme, par exemple, l’interception de
cibles manœuvrantes, des trajectoires évaluées au préalable peuvent perdre rapide-
ment leur optimalité, ou pire, mener à l’échec de la mission. Face à cela, une rééval-
uation rapide des strategies optimales est nécessaire pour la réussite de la mission.

Pour ces raisons, aujourd’hui, l’ONERA porte une attention particulière au développe-
ment d’algorithmes pour le guidage optimal embarqué. Les nouvelles méthodes
doivent être capables d’opérer efficacement avec des capacités computationnelles
restreintes, permettant une mise à jour des calculs à une fréquence compatible de
celle du guidage (souvent dans une gamme de 1-10 Hz).
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Objectifs et Contributions de ce Travail

Ce travail est né d’une collaboration entre l’ONERA et le Laboratoire Jacques-Louis
Lions (Sorbonne Université). L’objectif est de concevoir un algorithme autonome
pour la prédiction de strategies de contrôle optimal concernant des missions à des-
tination de véhicules lanceurs endo-atmosphériques. L’algorithme doit se baser sur
des méthodes indirectes, et être capable de s’adapter à tout changement imprévu de
scénario, en temps réel. L’intérêt principal se trouve dans les missions d’interception.

Le choix des méthodes indirectes dérive du fait qu’elles sont bien adaptées pour ap-
porter une forte précision numérique et une rapidité de calculs, idéales pour des
opérations embarquées. Un autre point important consiste à assurer la mise en place
de strategies pour chaque scenario potentiellement réalisable. De plus, la robustesse
des algorithmes concernés doit être assurée au moins statistiquement.

Pour atteindre cet objectif, nous avons identifié les étapes et contributions suivantes:

1. Appliquer le Principe du Maximum pour des stratégies globales.

Une étude précise du guidage optimal de véhicules lanceurs nécessite de pren-
dre en compte de lourds critères de performance, ainsi que des missions diffi-
ciles. Etant donné que dans cette situation le véhicule est sujet à de nombreux
efforts mécaniques, differentes contraintes de stabilité doivent être imposées,
faisant ainsi apparaître des contraintes mixtes, c’est-à-dire, combinant à la fois
des variables de contrôle et d’état. Ce type de problème de contrôle optimal
est difficile à traiter par le Principe de Maximum (voir, e.g. [12, 18]). En ef-
fet, d’autres multiplicateurs de Lagrange apparaissent, pour lesquels, obtenir
des informations rigoureuses et utiles peut être compliqué, cela a été l’objet de
multiples études (voir, e.g. [19, 20, 21]). Cette complication empêche de pou-
voir considérer des méthodes indirectes basiques, compromettant une conver-
gence rapide vers les solutions optimales.

L’approche largement diffusée en aéronautique, permettant d’éviter de traiter
des contraintes mixtes, consiste à reformuler le problème original de guidage
en utilisant des coordonnées locales d’Euler, sous lesquelles, la contrainte de
stabilité devient une contrainte pure de contrôle (voir, e.g. [22]). Cette trans-
formation permet de considérer le Principe de Maximum classique, donc, les
méthodes usuelles de tir. En revanche, les coordonnées d’Euler ne sont pas
globales et ont des singularités, empêchant la resolution de toutes configura-
tions réalisables, et réduisant le nombre de missions achevables.

La solution que nous proposons consiste à reformuler le problème de guidage
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optimal dans un point de vue intrinsèque, en utilisant le contrôle géometrique
(il n’apparaît pas que ce cadre ait été systématiquement étudié dans le contexte
du guidage optimal). En particulier, nous construisons des coordonnées lo-
cales supplementaires, couvrant les singularités de ces dernières, sous lesquelles
la contrainte mixte peut être toujours réinterprétée comme une contrainte pure
de contrôle. De plus, ces deux ensembles de coordonnées locales constituent
un atlas de la variété en question, que nous utilisons aussi pour découvrir, en
exploitant des outils de contrôle géométrique, le comportement complet des
extrémaux de Pontryagin, aussi dans le cas d’arcs non réguliers.

L’introduction de ces coordonnées locales particulières engendre deux béné-
fices principaux. D’un côté, il n’y a pas de limite aux scénarios faisables pou-
vant être simulés. D’un autre côté, le problème de guidage optimal n’est pas
conditioné par des multiplicateurs dépendants de contraintes mixtes (ou, au
moins, localement), donc, les méthodes indirectes classiques peuvent être facile-
ment mises en pratique. C’est au prix du changement de coordonnées lo-
cales, qui complexifie légerement l’implementation de la méthode de tir, mais,
n’influence pas de manière importante la vitesse et la précision computationelles.

2. Concevoir un chemin numérique efficace basé sur des méthodes indirectes.

La procédure détaillée précedemment nous permet d’appliquer les méthodes
indirectes pour résoudre des problèmes de guidage optimal. Cependant, comme
il a déjà été relevé, même si les méthodes indirectes ont une très bonne préci-
sion numérique, leur défaut principal reste leur initialisation. Cette probléma-
tique est bien connue dans la communauté aérospatiale et beaucoup d’efforts
ont été faits pour permettre des procédures d’initialisation efficaces (on trouve
un résumé approfondi de ces techniques dans la revue [23]). Le but étant de
garder l’algorithme de résolution indépendant des méthodes directes, nous
souhaitons éviter l’utilisation de ces dernières.

Nous proposons une procédure d’initialisation efficace pour méthodes indi-
rectes par l’emploi des méthodes d’homotopie (voir, e.g. [24]). Récemment,
ces schémas numériques ont acquis une bonne réputation dans les applica-
tions aérospatiales, principalement grâce à leur haute fiabilité et polyvalence
(voir, e.g. [25, 26, 27]). L’idée de base des méthodes d’homotopie est de ré-
soudre un problème difficile, étape par étape, en commençant par un prob-
lème simple (usuellement appelé problème d’ordre zéro), par déformation de
paramètre. Associé au tir provenant du Principe de Maximum, une méthode
d’homotopie consiste à déformer le problème aux valeurs limites en un plus
simple (qui peut être facilement résolu), puis, résoudre une série de tirs, étape
par étape, en remontant au système original. Dans le cas où le paramètre
d’homotopie est un nombre réel et le chemin est constitué d’une combinai-
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son convexe du problème d’ordre zéro et original, la méthode d’homotopie est
plutôt appelée méthode de continuation.

Les méthodes d’homotopie numériques sont composées par deux principales
étapes: le choix d’un problème d’ordre zéro (qui devrait être le plus facilement
résoluble possible) et d’une procédure de déformation de paramètre. Nous
résolvons le problème de guidage optimal en adoptant le schéma suivant:

2.a) Concevoir et résoudre le problème d’ordre zéro par une loi explicite.

Des tests expérimentaux démontrent que le problème de guidage opti-
mal simplifié, obtenu en retirant les contributions de la poussée et de la
gravité du modèle dynamique initial, conserve des régularités suffisantes,
afin, qu’une fois que ce problème d’ordre zéro soit déterminé, une défor-
mation de paramètre appropriée permet une convergence rapide de la
procédure d’homotopie. En outre, l’initialisation des méthodes de tir sur
ce problème de guidage optimal simplifié peut être faite analytiquement
et instantanément. En effet, en manipulant le Principe du Maximum ap-
pliqué à ce problème, nous fournissons une nouvelle loi de guidage ca-
pable d’initialiser efficacement des méthodes indirectes sur le problème
d’ordre zéro précédent, pour un large éventail de scénarios.

2.b) Concevoir un schéma approprié de déformation de paramètre.

Le problème original de guidage optimal est résolu en déformant le prob-
lème d’ordre zéro précédent, par un ajout itératif de la poussée et de la
gravité précédemment retirées. Nous choisissons un scénario modifié ca-
pable d’initialiser analytiquement le problème simplifié (voir 2.a)) en le
gardant fixe pendant cette étape d’homotopie. Par la suite, une dernière
étape d’homotopie modifie le scénario temporaire pour obtenir la solu-
tion de l’intégralité du problème considérant le scenario original.

Lorsque le scénario implique que la trajectoire optimale rencontre des singu-
larités d’Euler, dans le schéma numérique précédent, les calculs sont tempo-
rairement arrêtés et un changement de coordonnées est opéré (voir 1.). A partir
de cela, l’intégration numérique reprend en évitant des échecs de convergence.
Ce changement de coordonnées affecte peu le temps computationnel total, en
maintenant le taux classique de convergence des méthodes indirectes.

3. Renforcer et accélérer la convergence pour le problème de guidage.

Même si les procédures numériques développées en 2. fournissent un schéma
efficace pour résoudre le problème de guidage optimal de véhicules lanceurs,
une problématique reste à régler: la haute sensibilité aux conditions initiales.
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En effet, toute la procédure d’homotopie décrite en 2., qui commence du prob-
lème simplifié et finit avec l’étape de déformation du scénario, peut contenir
plusieurs itérations homotopiques (dépendant de la difficulté de la mission).
Cela implique que différentes missions peuvent prendre plus ou moins de temps
computationnel pour converger vers la solution optimale. En d’autres termes,
le temps computationnel moyen de ce schéma d’homotopie peut être trop long
pour une implémentation en temps réel.

Comme solution, nous proposons de traiter le probème lié à la haute sensibil-
ité, et donc améliorer la robustesse du schéma d’homotopie, en utilisant une
grille raffinée de guesses initiaux, évaluée hors ligne, qui contient les solutions
du problème complet original (poussée et gravité incluses) pour plusieurs scé-
narios réalisables. Puis, la résolution de toutes missions arbitraires procède
de la manière suivante. Premièrement, la grille est chargée dans la RAM (hors
ligne). En suite, le scénario le plus proche (par rapport à une certaine métrique)
de celui fourni par l’utilisateur est sélectionné à partir de la grille d’initialisation.
Finalement, une déformation spatiale est mise en place pour récupérer la so-
lution du problème original. Plus la grille est fine, meilleure est la chance
d’obtenir une solution optimale globale.

Nous développons cette amélioration dans le contexte de l’interception op-
timale. Des tests statistiques montrent que seulement peu d’itérations homo-
topiques sont nécessaires en général pour obtenir une solution, donc, de hauts
taux de convergence sont assurés. De plus, comme la réévaluation de strate-
gies d’interception est assez élevée, la robustesse des solutions par rapport aux
variations extérieures du scénario initial, comme des cibles mouvantes, aug-
mente considérablement.

4. Caractère bien posé des méthodes d’homotopie pour les problèmes de con-
trôle optimal avec retards, lorsque l’homotopie est opérée sur les retards.

Les problèmes de guidage optimal se focalisent sur le contrôle de la dynamique
du centre de gravité des véhicules lanceurs, en évitant de traiter le contrôle des
configurations du corps rigide. Plusieurs raisons sont invoquées pour consid-
érer séparément le problème de guidage et les manœuvres réalisées par le pi-
lote. Celle faisant l’unanimité atteste que, généralement, le système de guidage
opère à une fréquence plus faible que celle du pilote. En revanche, certains re-
tards apparaissent dans le suivi des consignes. Pour améliorer le modèle et les
lois de contrôle, on peut étendre le problème de guidage optimal en approx-
imant l’action du pilote dans les équations de mouvement, et en considérant
des retards entre la translation et la rotation (voir, e.g. [6, 28]).

Ce contexte oblige à gérer des problèmes de contrôle optimal non linéaires
avec retards et le défi consiste à résoudre efficacement ces problèmes par des
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algorithmes de tir. Cette question est habituellement complexe et computa-
tionnellement coûteuse. En effet, le Principe de Maximum pour problèmes de
contrôle optimal avec retards (voir, e.g. [29, 30, 31, 32]) conduit à des prob-
lèmes aux valeurs finales qui combinent des termes antérieurs et postérieurs
du temps, en obligeant une intégration globale des équations différentielles
annexes. Un guess local concernant l’extrémale optimale n’est plus utile, un
guess global doit plutôt être fourni pour permettre la convergence de la procé-
dure. Cela représente une autre difficulté par rapport aux méthodes de tir
usuelles, et affecte clairement les performances computationnelles.

Comme les méthodes précédemment adoptées permettent de résoudre le prob-
lème de guidage optimal sans retards, il semble légitime de se demander si
on peut résoudre le problème de guidage optimal contenant des retards par
des méthodes indirectes, en commençant une procédure d’homotopie dans
laquelle le délai représente le paramètre de déformation, et le problème sans
retards est considéré comme le problème d’ordre zéro. Cette approche est un
moyen possible pour traiter le défaut des méthodes indirectes appliquées aux
problèmes de contrôle optimal avec retards: d’une part, l’information globale
donnée par le problème sans aucun retard pourrait être utilisée pour initialiser
efficacémment une méthode de tir avec retards; d’autre part, nous pourrions
résoudre le problème aux valeurs limites avec retards à l’aide de méthodes
itératives locales pour équations différentielles. Nonobstant, différemment du
contexte classique du contrôle optimal sans retards, pour lequel, sous des hy-
pothèses appropriées, la convergence des méthodes d’homotopie est comprise
et bien établie (voir, e.g. [23]), le caractère bien posé des méthodes indirectes
combinées avec des procédures d’homotopie sur le retard n’a pas encore été
bien traité dans la littérature. En particulier, des points de bifurcation ou des
singularités peuvent apparaître, entraînant des échecs de convergence.

La solution que nous proposons réside sur une étude détaillée du caractère
bien posé des procédures d’homotopie pour résoudre des problèmes généraux
de contrôle optimal non-lineaires avec retards, par des méthodes indirectes.
Notre principal resultat théorique est que, sous des hypothèses appropriées,
les quantités fournies par le Principe de Maximum, incluant les vecteurs ad-
joints et les trajectoires, sont continues par rapport aux retards. Ce résultat
assure le caractère bien posé du schéma numérique proposé précédemment:
tout chemin d’homotopie sur les retards converge vers les extrémaux de Pon-
tryagin du problème de contrôle original avec retards, si on part du problème
sans aucun délai. Une fois ces propriétés de continuité établies dans un con-
texte général, nous exploitons ce résultat pour fournir efficacement une réso-
lution numérique pour problèmes de guidage optimal avec retards.

Les contributions précédentes ont rendu possible le développement d’un logiciel
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complètement automatique, indépendant et auto-régulé, aujourd’hui propriété de
l’ONERA, pour des applications réalistes dans le cadre de véhicules lanceurs, focal-
isé, en particulier, sur des scénarios d’interception optimal. En une seule seconde,
l’algorithme est capable de fournir des strategies optimales pour onze missions dif-
férentes avec juste un processeur de quelque mégabyte de mémoire, permettant des
calculs en temps réel, idéal pour des véhicules autonomes.

Organisation du Manuscrit

Ce travail s’organise en sept chapitres et une conclusion finale.
Les chapitres 1 et 2 ont comme objectif d’introduire au lecteur la théorie classique du
contrôle optimal et les problèmes de guidage sur lesquels cette étude se concentre.
Dans un même temps, ces chapitres fournissent les notations et résultats théoriques
standards utilisés tout au long de ce manuscrit.
Dans le Chapitre 3, nous dérivons la structure des extrémaux de Pontryagin du prob-
lème de guidage optimal. Un contexte abstrait introduisant les conditions de con-
sistance des vecteurs adjoints sous transformations locales est d’abord présenté. Le
résultat est alors appliqué pour une étude correcte des contrôles réguliers et non
réguliers, à travers le Principe de Maximum, dans le contexte du guidage optimal.
Les chapitres 4 et 5 concernent le développement et les améliorations annexes des
stratégies numériques pour le guidage optimal de missiles intercepteurs, à travers
les méthodes indirectes. Dans le Chapitre 4, la méthode indirecte classique est com-
binée avec un schéma d’homotopie efficace, dont l’initialisation est apportée à l’aide
d’une étude additionnelle de certaines formulations approchées du Principe de Max-
imum. Le Chapitre 5 propose l’amélioration de la robustesse numérique via la con-
struction de grilles d’initialisation.
La strategie numérique pour résoudre les problèmes de contrôle optimal avec re-
tards, en combinant les méthodes indirectes et l’homotopie sur les retards, est intro-
duite et analysée dans les chapitres 6 et 7. Le Chapitre 6 fournit d’abord les propriétés
de continuité, par rapport au retard, des extrémals de Pontryagin liées aux problèmes
de contrôle optimal avec retards. Donc, sur la base de ces résultats, l’algorithme
d’homotopie annexe est introduit et commenté à l’aide de simulations numériques
concernant des problèmes de guidage optimal plus généraux. D’autre part, le Chapitre
7 est consacré aux détails de la preuve des propriétés de continuité précédentes.
Enfin, le manuscrit s’achève par une section dédiée aux conclusions et perspectives.
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Main Context

The optimal guidance of launch vehicles has attracted more and more attention in
the past few decades, so that, nowadays, it has become literally a prerequisite in vari-
ous aerospace applications, such as, orbit transfer (see, e.g. [1, 2]), atmospheric entry
(see, e.g. [3, 4]) and missile guidance (see, e.g. [5, 6, 7, 8]).

This problem is devoted to finding a control law enabling an aerospace vehicle to
join a final target area by considering prescribed constraints as well as performance
criteria. Constraints mean that only certain maneuvers (i.e. controls) and trajectories
are allowed while performance criteria are demanded to reduce expensive efforts or
maximize chances of success. Of course, these constraints and performance criteria
depend on the considered vehicle and, as well, on the mission to accomplish.

For instance, in orbit transfer applications, a typical mission consists in steering a
satellite from a halo to another given orbit, with minimal effort. In this case, gravita-
tional laws provide precise dynamical movements to which the vehicle is confined.
Moreover, due to the high cost of even small maneuvers in open space, one usually
tries to displace the satellite by minimal fuel consumption. On the other hand, inter-
ception missions consist in leading a missile towards a (possibly fast) target (cruise
missile, ballistic missile, etc.), with the aim of neutralizing it. In this situation, con-
straints are given by the equations of flight dynamics and by the feasibility of certain
maneuvers. Typically, one makes further efforts to maximize the velocity of the vehi-
cle, in order to increase lethality and chances to destroy the threat.

Optimal guidance problems can be interpreted, studied and solved via the formal
and well-posed mathematical representation given by optimal control. In its gener-
ality, classical optimal control deals with the problem of finding a measurable control
function for a given control dynamical system, evolving within a manifold, such that
a certain smooth cost functional is minimized. Constraints, limiting either the con-
trol functions or the dynamical trajectories, are usually taken into account.
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The first answers to optimal control problems date back to the 18th century with the
work done by Euler and Lagrange, which led to the calculus of variations. However,
it is in the late 50s of the last century that the contributions of the Russian school
of mathematics provided the theoretical fundamental results for the optimal control
of very general control systems. The pioneering work of Lev Pontryagin and his stu-
dents yielded powerful necessary optimality conditions, known as Pontryagin Max-
imum Principle (or just Maximum Principle, or PMP, see, e.g. [9]), and put the basis
for more exhaustive conditions (see, e.g. [10, 11, 12, 13, 14]).

Simultaneously, the advent of computers and numerical methods allowed to practi-
cally solve almost every optimal control problem provided by applications and com-
panies, up to numerical approximation errors. Nowadays, a large spectrum of nu-
merical algorithms exist to provide solutions to optimal control problems, and we
can roughly split them into two main classes: direct methods and indirect methods
(see, e.g. [15, 16, 17] for detailed surveys on these numerical procedures).

Direct methods consist in discretizing each component of the optimal guidance prob-
lem (the state, the control, etc.) to reduce it to a nonlinear constrained optimization
problem. A high degree of robustness is provided while, in general, no deep knowl-
edge of the dynamical system is required, making these methods rather easy to use
in practice. However, their efficiency strongly depends on computational capabili-
ties, which often obliges to use them offline uniquely. On the other hand, indirect
methods consists in applying the conditions given by the Maximum Principle, wrap-
ping the optimal guidance problem into a two-point boundary value problem, which
leads to accurate and fast algorithms. The advantages of indirect methods, whose
more basic version is known as shooting method, are their extremely good numerical
accuracy and the fact that, if they converge, the convergence is very quick. Neverthe-
less, initializing indirect methods still remains the hardest task.

Among research studies carried out at ONERA-The French Aerospace Lab, optimal
guidance of launch vehicles has earned an important position, finding both civil and
military applications (launch systems such as Ariane rockets, missile systems, un-
manned aerial vehicles, etc.).

Most of the main frameworks consider offline computations via direct methods to
ensure robust convergence to optimal solutions. However, when managing dynamic
problems such as, for example, an interceptor missile dealing with maneuvering tar-
gets, precomputed trajectories can lose quickly their optimality, or worse, lead to a
failure of the mission. In this situations, fast recomputations of optimal trajectories
are needed to definitely improve the chances to achieve the mission.

For these reasons, today, ONERA-The French Aerospace Lab devotes particular at-
tention on the development of algorithms for an onboard real-time optimal guidance
of launch vehicles. Onboard means that the new methods should be able to operate
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efficiently with a reduced charge of processors, while real-time implies the ability to
provide online updates of numerical computations at frequencies compatible with
the operating frequency of the guidance system (usually in the range of 1-10 Hz).

Objective and Contributions of this Work

The present work arises from a collaboration between ONERA-The French Aerospace
Lab and LJLL-Laboratoire Jacques-Louis Lions (at Sorbonne University). The main
objective consists in conceiving an autonomous algorithm for the prediction of opti-
mal control strategies for endo-atmospheric launch vehicle missions, based on indi-
rect methods, and able to adapt itself to unpredicted changes of the original scenario,
in real time. Particular interest is put on interception missions.

The choice of preferring indirect methods to compute optimal trajectories derives
from the fact that they are well-suited to provide both good numerical accuracy and
real-time compatibility, ideal for onboard processors. Another important require-
ment is to ensure that the whole method provides strategies for every feasible sce-
nario. Robustness of the concerned algorithms must be ensured at least statistically.

To this aim, we identify the following main goals and related contributions:

1. Apply the Maximum Principle and recover global strategies.

An accurate study of the optimal guidance of endo-atmospheric launch ve-
hicles compels to consider both usually demanding performance criteria and
possible onerous missions to accomplish. Since, in this situation, the vehicle
is subject to several strong mechanical strains, some stability constraints must
be imposed, which turn out to be modeled as mixed control-state constraints,
i.e. combined constraints limiting both controls and trajectories. This kind of
optimal control problems is difficult to treat by the Maximum Principle (see,
e.g. [12, 18]). Indeed, further Lagrange multipliers appear, for which, obtain-
ing rigorous and useful information may be arduous and has been the object
of many studies in the existing literature (see, e.g. [19, 20, 21]). This issue pre-
vents from considering usual indirect methods, therefore, compromising fast
convergences to optimal solutions.

A widespread approach in aeronautics to avoid to deal with these particular
mixed control-state constraints consists in reformulating the original guidance
problem using some local Euler coordinates, under which, the stability con-
straints become pure control constraints (see, e.g. [22]). The transformation
allows to consider the classical Maximum Principle, and then, usual shooting
methods. However, Euler coordinates are not global and have singularities that
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prevent from solving all reachable configurations, reducing the number of pos-
sible achievable missions.

The solution that we propose consists in reformulating the optimal guidance
problem within an intrinsic viewpoint, using geometric control (it does not
seem that this general framework has been systematically investigated in the
optimal guidance context so far). In particular, we build additional local co-
ordinates which cover the singularities of the previous ones and under which
the mixed control-state constraints can still be reinterpreted as pure control
constraints. Moreover, these two sets of local coordinates form an atlas of the
configuration manifold which we use also to recover, by using some geometric
control techniques, the complete behavior of Pontryagin extremals, even in the
case where nonregular arcs occur.

The introduction of these particular local coordinates provides, in turn, two
main benefits. On one hand, there is no limit on the feasible mission scenarios
that can be simulated, and, on the other hand, the optimal guidance problem is
not conditioned by multipliers depending on mixed constraints (or, at least, lo-
cally), therefore, classical standard indirect methods can be easily put in prac-
tice. This is at the price of changing local coordinates, which slightly compli-
cates the implementation of the shooting method, but, importantly, does not
affect its computational speed and precision.

2. Design an efficient numerical scheme based on indirect methods.

The procedure detailed previously allows to apply indirect methods to solve
endo-atmospheric optimal guidance problems. However, as already pointed
out, even if indirect methods have extremely good numerical accuracy, their
main drawback is their initialization. This issue is well-known in the aerospace
community and many efforts were gathered to provide efficient initialization
procedures (a thorough summary of these techniques can be found in the sur-
vey [23]). Since the aim is to keep the whole resolution algorithm independent
from direct methods, we desire to avoid the use of any kind of direct method.

We propose an efficient initialization procedures for indirect methods by em-
ploying homotopy methods (see, e.g. [24]). Recently, these numerical schemes
have acquired good reputation for aerospace applications, mostly thanks to
their high reliability and versatility (see, e.g. [25, 26, 27]). The basic idea of
homotopy methods is to solve a difficult problem step by step starting from a
simpler problem (usually called problem of order zero) by parameter deforma-
tion. Combined with the shooting problem derived from the Maximum Princi-
ple, a homotopy method consists in deforming this two-point boundary value
problem into a simpler one (which can be easily integrated) and then solving
a series of shooting problems step by step to come back to the original system.
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In the case in which the homotopic parameter is a real number and when the
path consists in a convex combination of the problem of order zero and of the
original problem, the homotopy method is rather called continuation method.

Numerical homotopy methods are composed by two main steps: the choice of
a problem of order zero (which should be as simple to solve as possible) and
a procedure for the parameter deformation. We solve numerically the endo-
atmospheric optimal guidance problem by adopting the following scheme:

2.a) Design and solve the problem of order zero by an explicit guidance law.

Experimental tests show that the simplified optimal guidance problem
obtained by removing the contribution of the thrust and the gravity from
the original flight dynamical model maintains sufficient regularities, so
that, once this problem of order zero is solved, appropriate parameters
deformations on it result in a fast converging homotopy procedure.

Another important property of this simplified optimal guidance problem
is that initializing shooting methods on it can be done analytically and in-
stantaneously. Indeed, by manipulating the Maximum Principle applied
to this problem, we provide a new approximated explicit guidance law
able to efficiently initialize indirect methods on the previous problem of
order zero, for a large range of initial and final conditions.

2.b) Devise an appropriate parameter deformation scheme.

The original optimal guidance problem is solved deforming the previous
problem of order zero by adding iteratively the contribution of the thrust
and the gravity previously removed. We choose a modified feasible sce-
nario able to initialize the simplified problem analytically (see 2.a)) and
keep it fixed during this homotopy step. Therefore, one further homotopy
step deforms the first temporary scenario to obtain the optimal solution
of the complete problem considering the original scenario.

When the scenario implies that the optimal trajectory encounters some Euler
singularity, in the previous numerical scheme, the computations are temporar-
ily stopped and a change of coordinates is operated (see 1.). From this, the
numerical integration starts again avoiding converging failures. This change
of coordinates slightly affects the total computational time, maintaining the
usual fast convergence rate of indirect methods.

3. Robustify and speed up the convergence of the guidance problem.

Even if the numerical procedure developed in 2. provides an efficient scheme
to solve the optimal guidance of launch vehicles, one main issue is not figured
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out: the high sensitivity to initial conditions. Indeed, the whole homotopy pro-
cedure described in 2., starting from the simplified problem and finishing with
the scenario deformation step, may contain several homotopic iterations (de-
pending on the difficulty of the mission), implying that different missions may
take more or less computational time to converge to the optimal solution. In
other words, the average computational time of the whole homotopy scheme
may be too large for a real-time implementation.

As solution, we propose to manage the high sensitivity issue, thus increasing
the robustness of the homotopy scheme, by calling a refined offline precom-
puted grid of initial guesses of Pontryagin extremals, that contains the solu-
tions of the complete original control problem (thrust and gravity included)
for many feasible scenarios. Therefore, the resolution of any given arbitrary
mission proceeds as follows. First, the grid is charged into the RAM (offline),
then, the scenario the closest (with respect to some metric) to the one provided
by the user is selected from the initialization grid, and finally, a spatial defor-
mation is computed to recover the solution of the original problem. The finer
the grid is, the better chance one has to obtain the global optimal solution.

We develop this improvement in the context of optimal interception missions.
Statistical numerical tests show that only few homotopic iterations are needed
in general to obtain a solution, thus high rates of convergence are ensured.
Furthermore, since the recomputing of interception strategies is fast enough,
the robustness of solutions with respect to exterior variations of the initial sce-
nario, such as fast moving targets, increases considerably.

4. Discuss and prove the well-posedness of homotopy methods for optimal con-
trol problems with delays, when the homotopy is operated on delays.

Optimal guidance problems focus on the control of the dynamics of the center
of gravity of launch vehicles, avoiding to manage the control of rigid body con-
figurations. Several reasons are invoked to consider separately the guidance
problem and the physical maneuvers realized by the pilot, and the most unan-
imous one states that, usually, the guidance system operates at lower frequen-
cies than the pilot. However, some delays on the follow-up of orders occur. In
order to refine the model and related control laws, one can extend the opti-
mal guidance problem by approximating the contribution of the pilot (i.e. of
the rigid body dynamics) into the equations of motion, and considering delays
between the translating dynamics and the rotating dynamics (see, e.g. [6, 28]).

This framework obliges to deal with nonlinear optimal control problems with
delays and the challenge consists in solving efficiently such problems by shoot-
ing algorithms. This question is usually complex and computationally demand-
ing. Indeed, the Maximum Principle for optimal control problems with delays
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(see, e.g. [29, 30, 31, 32]) provides nonlinear two-point boundary value prob-
lems which combine backward and forward terms of time, forcing a global in-
tegration of related differential equations. Therefore, a local guess concerning
the optimal extremal is no more useful, but rather, good global guesses must be
provided to make the procedure converge. This represents an additional diffi-
culty with respect to the usual shooting method, which clearly affects compu-
tational performances.

Since the methods previously adopted allow to solve the optimal guidance prob-
lems without delays, it seems legitimate to wonder if one may solve the opti-
mal guidance problem containing delays by indirect methods starting a homo-
topy procedure where the delay represents the deformation parameter and the
problem without delays is taken as the problem of order zero. This approach is
a way to address the flaw of indirect methods applied to optimal control prob-
lems with delays: on one hand, the global information of the problem without
any delay could be used to initialize efficiently a shooting method with delays
and, on the other hand, we could solve the two-point boundary value problem
with delays via usual local iterative methods for differential equations. Never-
theless, unlike the classical non-delayed optimal control framework, in which,
under appropriate assumptions, the convergence of homotopy methods is un-
derstood and well-established (see, e.g. [23]), the well-posedness of indirect
methods combined with homotopy procedures on delays has not been well
addressed in the literature yet. In particular, bifurcation points or singularities
may be encountered, causing convergence failures.

The solution that we propose resides on a detailed study of the well-posedness
concerning homotopy procedures on the delay to solve general nonlinear opti-
mal control problems with delays, via indirect methods. Our main theoretical
result is that, under appropriate assumptions, the quantities provided by the
Maximum Principle, including adjoint vectors and trajectories, are continu-
ous with respect to the delays. This result ensures the well-posedness of the
previously proposed numerical scheme: any homotopy path of delays con-
verges to Pontryagin extremals of the original optimal control problem with
delays, when starting from the problem without any delay. Once these con-
tinuity properties are well established in a general nonlinear optimal control
framework, we make use of this result to efficiently provide the numerical res-
olution for more general optimal guidance problems with delays.

The previous contributions made possible the development of a fully automatic, in-
dependent and completely self-regulating software, today property of ONERA-The
French Aerospace Lab, for general realistic endo-atmospheric launch vehicle appli-
cations focused, in particular, on optimal missile interception scenarios. Within one
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second, the algorithm is able to provide optimal strategies for eleven different mis-
sions with just one processor of few megabytes of memory, allowing a real-time com-
putation with small onboard computers, ideal for autonomous vehicles.

Organization of the Manuscript

The present thesis is organized in seven chapters and a final conclusion.
Chapter 1 and Chapter 2 aim to introduce the reader to the classical theory of optimal
control and the optimal guidance problems on which this study focuses, respectively.
At the same time, these chapters are exploited to provide notations and standard
theoretical results that are used throughout the manuscript.
In Chapter 3, we derive the structure of Pontryagin extremals of the optimal guidance
problem. An abstract framework introducing consistency conditions of adjoint vec-
tors under local change of representation is presented first. The result is then applied
to correctly study, via the classical Maximum Principle, both regular and nonregular
Pontryagin extremals in the optimal guidance context.
Chapter 4 and Chapter 5 concern the development and related improvements of nu-
merical strategies to solve the optimal guidance of interceptor missiles, via indirect
methods. In Chapter 4, the classical indirect method is combined with an efficient
homotopy scheme, whose initialization is provided under further computations via
approximated Maximum Principle formulations. Chapter 5 proposes improvements
on numerical robustness via the construction of initialization grids.
The numerical strategy to solve optimal control problems with delays, by combining
indirect methods and homotopy on the delay, is introduced and analyzed in Chapter
6 and Chapter 7. Chapter 6 provides first the main statement concerning continuity
properties, with respect to the delay, of Pontryagin extremals related to optimal con-
trol problems with delay. Therefore, based on these results, the related homotopy
algorithm is introduced and commented with the help of numerical simulations on
more general optimal guidance problems. On the other hand, Chapter 7 is devoted
to the detailed proof of the previous continuity properties.
The manuscript ends with a section devoted to conclusions and perspectives.
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Dynamical Model
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1 Elements of Optimal Control

In this chapter, we provide a brief introduction of the main mathematical results con-
cerning optimal control theory. Particular attention is emphasized on theoretical and
numerical techniques needed to deal with indirect methods, principal context of this
thesis. Furthermore, several references concerning fundamental works in the area of
optimal control and related aerospace applications are gradually provided.
The chapter is organized as follows. In Section 1.1 some basic tools of differential ge-
ometry concerning flows of vector fields and symplectic geometry are recalled, which
are essential to settle a control problem in a geometric intrinsic framework, feature
that we exploit in Chapter 3. Section 1.2 provides the classical optimal control prob-
lem formulation and necessary optimality conditions in the form of a Lagrange mul-
tipliers rule. Stronger optimality conditions are given and analyzed in Section 1.3
together with an introduction to classical numerical algorithms (direct and indirect
methods). Section 1.4 and Section 1.5 conclude by extending the results respectively
to optimal control problems with control and state constraints and to optimal con-
trol problems with delays, nontrivial frameworks on which this study focuses.

1.1 Some Tools from Differential Geometry

The aim of this section is to introduce notations and basic results concerning man-
ifolds and Hamiltonian systems. These frameworks are standard and well-known,
and we refer the reader for any further detail to classical texts such as [33, 34].

1.1.1 Notations and Properties of Vector Fields

Throughout this dissertation, M denotes a smooth manifold of dimension n and its
algebra of germs is denoted by C∞(M). The notation (V ,ϕ) identifies a local chart of
M , whose coordinates are (x1, . . . , xn). Every open subset V ⊆ M is a submanifold of
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Chapter 1. Elements of Optimal Control

dimension n of M , and we denote by C∞(V ) the related algebra of germs.
For a given point q ∈ M , the tangent and cotangent spaces at q of M are denoted
respectively by Tq M and by T ∗

q M while the tangent and the cotangent bundles are
denoted respectively by T M and by T ∗M . If F : M → N is a smooth mapping be-
tween smooth manifolds, we denote its differential by dF : T M → T N .

We call vector field on M every smooth section of the tangent bundle, i.e. every
smooth function f : M → T M such that f (q) ∈ Tq M . Let (V ,ϕ) be a smooth local
chart of M . Then, there exist n local functions f i (·) ∈C∞(V ), that we call coordinates
of the vector field, such that

f (q) =
n∑

i=1
f i (q)∂xi (q) =

n∑
i=1

f i (q)
∂

∂xi

∣∣∣
q

, q ∈V .

Given a vector field f , to every a(·) ∈ C∞(M), we can associate the smooth germ f a
defined as f a(q) = f (q)(a). Proceeding in this way, to every vector field f , we can
associate a unique linear operator in C∞(M), always denoted by f , defined as

f : C∞(M) →C∞(M) : a 7→ f a

which is a derivation, i.e. a linear operator satisfying the Leibniz rule. From this, we
define the Lie bracket of two vector fields f , g as the commutator

[ f , g ] : C∞(M) →C∞(M) : a 7→ f (g a)− g ( f a) .

The operator [ f , g ] is a derivation. Indeed, it is linear and satisfies

[ f , g ](ab) = f (g (ab))− g ( f (ab)) = f (ag (b))+ f (bg (a))− g (a f (b))− g (b f (a))

= a f (g b)+b f (g a)−ag ( f b)−bg ( f a) = a[ f , g ](b)+b[ f , g ](a) .

It follows that we can associate a unique vector field to [ f , g ], still denoted by [ f , g ],
with the following main properties.

Proposition 1.1. Let f , g and h be vector fields on M and a,b ∈ C∞(M). The Lie
bracket has the following properties:

1. [ f , g ] =−[g , f ]

2. [ f , [g ,h]]+ [g , [h, f ]]+ [h, [ f , g ]] = 0 (Jacobi identity)

3. [a f ,bg ] = ab[ f , g ]+a( f b)g −b(g a) f

4. If in local coordinates we have f =∑
h f h∂xh and g =∑

k g k∂xk , then:

[ f , g ] =
n∑

h,k=1

(
f h ∂g k

∂xh
− g h ∂ f k

∂xh

)
∂xk .
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We call nonautonomous vector field on M (or simply, vector field on M , when no
misunderstanding arises) every continuous mapping f :R×M ×Rm → T M such that
f (t , q,u) ∈ Tq M , and which is smooth w.r.t. (t , q). The variable u is understood as a
parameter and we call it control. Take a control u ∈ L∞

loc (R,Rm). The nonautonomous
vector field fu :R×M → T M : (t , q) 7→ f (t , q,u(t )) is measurable w.r.t. t , smooth w.r.t.
q and locally bounded. Note that it is always possible to provide globally bounded
vector fields from locally bounded ones by multiplying them by a smooth cut-off
function. Thanks to this remark, from now on, without loss of generality, we suppose
that any considered vector field on any manifold is globally bounded.
For every time t0 ∈ R and every point q0 ∈ M , we call dynamical problem every ordi-
nary differential equation of the following type

q̇(t ) = fu(t , q(t )) , q(t0) = q0 . (1.1)

As a standard result, for every couple (t0, q0) ∈ R× M , problem (1.1) has a unique
solution, that we denote by qt0,q0 (·), defined for every t ∈ R. In particular, we call
complete any vector field providing solutions to (1.1) that are defined in R (remark
that such vector fields do not need to be globally bounded). From this, we define the
exponential mapping of fu as the flow

exp fu
:R2 ×M → M : (t , t0, q0) 7→ qt0,q0 (t ) .

This function is Lipschitz w.r.t. t and t0 (then, absolutely continuous w.r.t. the Whit-
ney topology of C∞(M)) and is smooth w.r.t. q0. In particular, for every (t , t0) ∈ R2,
exp fu

(t ; t0, ·) : M → M is a diffeomorphism whose inverse is exp fu
(t0; t , ·) : M → M .

The mapping exp fu
is known as exponential.

1.1.2 Standard Results on Hamiltonian Fields

We denote by Λk (M) the vector bundle of all k-forms on M . A differential k-form
(or simply, k-form, when no misunderstanding arises) is a section of Λk (M), i.e. a
smooth function η : M → Λk (M) such that ηq = η(q) ∈ Λk

q (M). The space of all k-

forms is denoted by Ak (M). Let N be a smooth manifold and F : M → N be a smooth
mapping. We call the pull-back of η ∈ Ak (N ) the k-form F∗η ∈ Ak (M) obtained by

(F∗η)q (v1, . . . , vk ) = ηF (q)(dF (q)(v1), . . . ,dF (q)(vk ))

for every q ∈ M and every v1, . . . , vk ∈ Tq M .
The set A1(M) is the space of all 1-forms on M , i.e. smooth mappings s : M → T ∗M
such that s(q) ∈ T ∗

q M . We recall that any local chart (V ,ϕ) of M determines canonical

local coordinates of the form (x,ξ) = (x1, . . . , xn ;ξ1, . . . ,ξn) for the cotangent bundle
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T ∗M . Then, any covector p ∈ T ∗
q M has the decomposition p = ∑n

i=1ξ
i d xi |q , where

we denote d xi = (∂xi )∗ ∈ A1(M).
The cotangent bundle T ∗M can be equipped with a canonical symplectic structure
as follows. Consider the projection π : T ∗M → M and define the Liouville 1-form as

s : T ∗M → T ∗(T ∗M) : p 7→π∗p ∈ T ∗
p (T ∗M) .

In local coordinates, the 1-form s can be written as s(p) = ∑n
i=1ξ

i d xi |π(p). Then,
by taking the differential of s, we obtain the nondegenerate closed 2-form σ = d s =∑n

i=1 dξi ∧d xi ∈ A2(T ∗M), which makes (T ∗M ,σ) a symplectic manifold.

We call Hamiltonian every arbitrary smooth function on the cotangent bundle. To
any Hamiltonian h ∈C∞(T ∗M), we can associate a unique Hamiltonian vector field
h : T ∗M → T (T ∗M) such that σ(p)(·,h) = dh(p) for every p ∈ T ∗M . In canonical co-

ordinates, one has h = ∑n
i=1

(
∂h
∂ξi ∂xi − ∂h

∂xi ∂ξi

)
. We call Hamiltonian dynamical prob-

lem corresponding to h the following dynamical problem related to the field h

ṗ(t ) =h(p(t )) , p(t0) = p0 ∈ T ∗
π(p0)M

which, in canonical coordinates, with an abuse of notation, reads

q̇(t ) = ẋi = ∂h

∂ξi
= ∂h

∂p
(q(t ), p(t )) , ṗ(t ) = ξ̇i =− ∂h

∂xi
=−∂h

∂q
(q(t ), p(t )) . (1.2)

In control theory, one usually considers nonautonomous Hamiltonians of type

h(t , q, p,u) = h(t ,u)(p) = 〈p, f (t , q,u)〉 , q =π(p) , p ∈ T ∗
q M

where f is a nonautonomous vector field and (t ,u) ∈ R×Rm . In this case, t and u
must be read as parameters. Fix a control u ∈ L∞

loc (R,Rm). Therefore, the Hamiltonian
dynamical system takes the form

ṗ(t ) =h(t , q(t ), p(t ),u(t )) =h(t ,u(t ))(p(t )) , p(s) = ps ∈ T ∗
q(s)M . (1.3)

Its solutions are absolutely continuous curves (in the sense of the Whitney topology
of C∞(T ∗M)) and write p(t ) = (exp fu

(s; t , ·))∗π(ps ) ·ps for every ps ∈ T ∗
π(ps )M . This de-

rives immediately combining (1.2), the local coordinates version of (1.3), with the
following lemma.

Lemma 1.1. For almost every t ∈R, every s ∈R and every i = 1, . . . ,n, there holds

d

d t

(
(exp fu

(s; t , ·))∗π(ps ) ·ps

( ∂

∂xi

∣∣∣
qu (t )

))
(t ) =

−
n∑

j=1

∂ f j

∂xi
(t , qu(t ),u(t ))

(
(exp fu

(s; t , ·))∗π(ps ) ·ps

( ∂

∂x j

∣∣∣
qu (t )

))
where ps ∈ T ∗

π(ps )M is an arbitrary covector and qu(t ) = exp fu
(t ; s,π(ps)).
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Proof. For every i = 1, . . . ,n, denote ai (t ) = (exp fu
(s; t , ·))∗π(ps ) · ps

(
∂
∂xi

∣∣
qu (t )

)
and let

(V ,ϕ) be a local chart of π(ps). We have

ps

( ∂

∂xi

∣∣∣
π(ps )

)
=

n∑
j=1

a j (t )
∂

∂xi
(x j ◦exp fu

(t ; s, ·)◦ϕ−1)(ϕ(π(ps))) .

The term on the left does not depend on t . Therefore, by differentiating the previous
expression with respect to t , we easily obtain

n∑
j=1

[
ȧ j (t )

(
(exp fu

(t ; s, ·))∗qu (t ) ·d x j |qu (t )

)
+

n∑
l=1

a j (t )
∂ f j

∂x l
(t , qu(t ),u(t ))

(
(exp fu

(t ; s, ·))∗qu (t ) ·d x l |qu (t )

)]
= 0 .

Since (exp fu
(t ; s, ·))∗ is a bundle isomorphism, by linearity, we get

n∑
j=1

[
ȧ j (t )d x j |qu (t ) +

n∑
l=1

a j (t )
∂ f j

∂x l
(t , qu(t ),u(t ))d x l |qu (t )

]
= 0

which evaluated at ∂
∂xi

∣∣
qu (t ) gives the desired result.

1.2 Classical Optimal Control Problems

Let f be a nonautonomous vector field on M which is C 1 w.r.t. the variable u. More-
over, let M f be a subset of M , U be a subset of Rm and fix an initial condition q0 ∈ M .
We introduce a smooth final cost function g : R×M → R and a smooth integral cost
function f 0 : R×M ×Rm → R. A general nonlinear Optimal Control Problem (OCP)
on the manifold M consists in minimizing the cost

C (t f ,u) = g (t f , q(t f ))+
∫ t f

0
f 0(t , q(t ),u(t )) d t

such that
q̇(t ) = f (t , q(t ),u(t )) , q(0) = q0 , q(t f ) ∈ M f

among all the controls u ∈ L∞([0, t f ],Rm) satisfying u(t ) ∈ U almost everywhere in
[0, t f ]. Note that the final time t f may be fixed or not.

Remark 1.1. Sometimes, the initial condition is expressed more generally by asking
that q(0) ∈ M0, where M0 is a generic subset of M. However, in the context of this
thesis, we always consider q(0) = q0, where q0 ∈ M is a given fixed point. Moreover,
always under smooth behaviors, the final cost g can be written as an integral cost, and
we often make use of this transformation.
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Problem (OCP) is usually called classical optimal control problem because only pure
control constraints appear. The existence of solutions of (OCP), under appropriate
assumptions, is a well-established result (see, e.g. [16, 35, 36]).

A natural representation of (OCP) is given by considering an infinite dimensional op-
timization framework as follows. The infinite dimensional constraints are imposed
by considering the end-point mapping

E :R×L∞
loc (R,Rm) → M : (t f ,u) 7→ exp fu

(t f ;0, q0)

which is well-defined because the considered dynamics have compact supports. Re-
mark that, as a classical result, this mapping is continuously Fréchet differentiable
(see, e.g. [22]). Therefore, problem (OCP) is equivalent to

min
{

C (t f ,u) : t f ≥ 0 , u ∈ L∞([0, t f ],U ) , E(t f ,u) ∈ M f

}
. (1.4)

Under this new formulation, one is led to characterize the solutions of (OCP) among
the critical points of (1.4), by means of the Lagrange multiplier rule (see, e.g. [10, 37]).
The idea at the basis of the Lagrange multiplier rule arises as follows.
Let us consider the situation in which M = Rn , M f = {q f } where q f ∈ M is fixed,
U = Rm , the final time t f is fixed and, without loss of generality, g = 0 (see Remark
1.1). Denote f̃ = ( f , f 0) and introduce the extended end-point mapping

Ẽ :R×L∞
loc (R,Rm) → M : (t f ,u) 7→ exp f̃ (t f ;0, (q0,0)) .

If u ∈ L∞([0, t f ],Rm) is an optimal solution of (OCP) (or, equivalently, of (1.4)), it is
well known (see, e.g. [16, 34]) that u is a critical point of the extended end-point
mapping (i.e. ∂E

∂u (t f ,u) is not of full rank), and then, there exists a half-space con-
taining the image of the differential of Ẽ . In other words, there exists a nontrivial
multiplier (p, p0) ∈Rn ×R such that

p ·dEt f (u)+p0dCt f (u) = (p, p0) ·dẼt f (u) = 0 (1.5)

where dEt f (·), dCt f (·) and dẼt f (·) denote the Fréchet derivative w.r.t. u of Et f (·) =
E(t f , ·), Ct f (·) =C (t f , ·) and Ẽt f (·) = Ẽ(t f , ·), respectively. By defining the Lagrangian

Lt f (u, p, p0) = p ·Et f (u)+p0Ct f (u)

the optimality condition (1.5) can be written in the form
∂Lt f

∂u (u, p, p0) = 0.

The Lagrange multiplier rule is a first-order necessary optimality condition. Although
(1.5) turns out to be the most intuitive condition for optimal control problems, it
represents only weak necessary conditions and it can be improved considering ei-
ther high-order necessary conditions or sufficient optimality conditions, which we
provide and analyze in the following section.
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1.3 Optimality Conditions and Numerical Methods

More informative relations on optimal controls related to (OCP) can be achieved by
refining the Lagrange multiplier rule, arising conditions like the Maximum Principle,
whose aim consists in reformulating optimal control problems into initializations of
ordinary differential equation systems. A detailed analysis of optimal arcs leads also
to sufficient conditions of optimality. All this information can be exploited to set up
several numerical resolution strategies for (OCP), as we develop hereafter.

1.3.1 The Maximum Principle

First-order necessary conditions stronger than the Lagrange multiplier rule come
from the Pontryagin Maximum Principle (PMP or Maximum Principle, see, e.g. [9,
34]). For this, for every t ∈R, u ∈Rm , introduce the Hamiltonian related to (OCP), as

h(t , q, p, p0,u) = h(t ,u)(p, p0) = 〈p, f (t , q,u)〉+p0 f 0(t , q,u) . (1.6)

Theorem 1.1. Let q(·) be an optimal trajectory for (OCP), associated to the control
u(·) on [0, t f ]. There exist a nonpositive scalar p0 and an absolutely continuous curve
p : [0, t f ] → T ∗M called adjoint vector, for which p(t ) ∈ T ∗

q(t )M, with (p(·), p0) 6= 0 and
such that, almost everywhere in [0, t f ], the following relations hold:

• Adjoint Equations

q̇(t ) = ∂h

∂p
(t , q(t ), p(t ), p0,u(t )) , ṗ(t ) =−∂h

∂q
(t , q(t ), p(t ), p0,u(t )) (1.7)

• Maximality Condition

h(t , q(t ), p(t ), p0,u(t )) = max
u∈U

h(t , q(t ), p(t ), p0,u) (1.8)

• Transversality Conditions

If M f is a submanifold of M, locally around q(t f ), then the adjoint vector can be
built in order to satisfy

p(t f )−p0∂g

∂q
(t f , q(t f )) ⊥ Tq(t f )M f (1.9)

and, moreover, if the final time t f is free, one has

max
u∈U

h(t f , q(t f ), p(t f ), p0,u) =−p0∂g

∂t
(t f , q(t f )) . (1.10)
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Definition 1.1. A tuple (q(·), p(·), p0,u(·)) satisfying the Maximum Principle is called
the extremal lift of q(·) or just extremal. An extremal is said to be normal if p0 < 0 and,
in this case, it is usual to set p0 =−1. Otherwise, it is said to be abnormal.

In the literature, many approaches to prove the Maximum Principle were developed.
The first proof was given by Pontryagin and its students and goes back to early 60s
(the original procedure can be found in [9, 10]). Their approach is based on particu-
lar variations of the control, called needle-like variations. Other works propose more
complex variations, such as sliding variations or v-variations (see, e.g. [38, 39, 40]),
in order to apply classical Lagrange multiplier rules on modified versions of (OCP).
Finally, more general proofs exist and are based on variational principles such as the
Ekeland’s variational principle (see, e.g. [14, 41]). The reader can find in [42] a com-
plete survey on all these techniques.

The role of the Maximum Principle consists in transforming an optimization prob-
lem of infinite dimensional spaces into the initialization of an evolutionary problem,
by means of the adjoint equations. More specifically, the adjoint vector p comes into
play making the couple (q, p) the new variable, instead of the control u, whose evo-
lution in time is completely recovered by the adjoint equations, once an appropriate
initial condition (q0, p0) is provided. Since the Maximum Principle does not furnish
complete information about (q0, p0), the problem becomes to seek, among all fea-
sible values, the initial condition (q0, p0) corresponding to the optimal solution of
(OCP). This problem is know as two-point boundary value problem and, even if it
still remains an infinite dimensional problem, it is of lower dimension.
The previous initialization problem is well-posed only if an appropriate expression of
the optimal control as function of (q, p) exists. For this, it becomes necessary to work
with the maximality condition. However, the maximality condition does not always
provide a closed-loop expression, preventing the new formulation to be well-posed.
This essentially depends on the second variation of the Hamiltonian (1.6).

Definition 1.2. Let (q(·), p(·), p0,u(·)) be an extremal of (OCP). Denote by

ḧ(t ) = ∂2h

∂u2
(t , q(t ), p(t ), p0,u(t ))

the partial second variation of the Hamiltonian of (OCP). The tuple (q(·), p(·), p0,u(·))
satisfies the strong Legendre condition if there exists a scalar η> 0 such that

ḧ(t )(v, v) <−η‖v‖2 , v ∈Rm , a.e. [0, t f ] . (1.11)

Such an extremal is said to be regular. Otherwise, it is said to be nonregular.
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As a classical result (see, e.g. [34]), if an extremal of (OCP) does not satisfy the strong
Legendre condition, then, the Maximality Condition may not lead to closed-loop for-
mulas for optimal controls as functions of trajectories and related adjoint vectors.

The conditions stated by Theorem 1.1 are of first-order type. Higher-order necessary
condition exist, but we do not need them explicitly in this thesis, so we avoid to report
them. The reader can find a complete treatise of these conditions in [34, 43, 44].

1.3.2 Sufficient Optimality Conditions

Since the Maximum Principle is a necessary condition, an extremal fulfilling the con-
ditions of Theorem 1.1 may not be related to an optimal solution of (OCP). However,
under appropriate assumptions, further conditions exist to ensure the optimality of
normal extremals. We recall here some basic facts concerning sufficient optimality
conditions, used in Chapter 3 of this thesis (we refer to [34, Chapter 17]).

Suppose that M is simply connected and consider the following autonomous version
of (OCP), for which we fix a final time t f and we minimize the cost

C (u) =
∫ t f

0
f 0(q(t ),u(t )) d t

such that
q̇(t ) = f (q(t ),u(t )) , q(0) = q0 , q(t f ) = q f ∈ M f

among all the controls u ∈ L∞([0,T ],Rm) satisfying u(t ) ∈U a.e. in [0, t f ], where q f is
a fixed final state. The Hamiltonian corresponding to normal extremals is

h(q, p,u) = hu(p) = 〈p, f (q,u)〉− f 0(q,u) , q =π(p) , p ∈ T ∗
q M , u ∈Rm .

Assume that the maximized Hamiltonian H(q, p) = max
u∈U

h(q, p,u) = max
u∈U

hu(p) is

well-defined and smooth in T ∗M . Therefore, according to the Maximum Principle,
the trajectories of the Hamiltonian dynamical system

q̇(t ) = ∂H

∂p
(q(t ), p(t )) , ṗ(t ) =−∂H

∂q
(q(t ), p(t ))

are extremals of (OCP).
For any smooth germ a ∈ C∞(M), the image of its differential L0 = {d a(q) | q ∈
M } is a smooth submanifold of dimension n in T ∗M . Moreover, by denoting Lt =
expH (t ;0, ·) ·L0, the set L = {(p, t ) | p ∈ Lt , t ∈ R} is a smooth (n +1)-dimensional
submanifold in T ∗M ×R, because it is the image of the smooth injective embedding

iL : L0 ×R→ T ∗M ×R : (p0, t ) 7→ (expH (t ;0, p0), t ) .
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Consider the 1-form

pd q −Hd t = s −Hd t ∈ A1(T ∗M ×R) (1.12)

where s = pd q is the canonical Liouville 1-form. In mechanics, (1.12) is known as
the integral invariant of Poincaré-Cartan on the extended phase space T ∗M ×R. As
a classical result, the restriction (pd q −Hd t )|L is an exact 1-form.

A standard sufficient optimality condition arises from the following result.

Theorem 1.2. Assume that the restriction of the projection π : T ∗M → M onto Lt is a
diffeomorphism for any t ∈ [0, t f ]. Then, for any p0 ∈L0, the normal trajectory

q(t ) =π◦expH (t ;0, p0) , t ∈ [0, t f ]

realizes a strict minimum for problem (OCP).

Conditions providing that the restriction of the projection π|Lt is a diffeomorphism
for any t ∈ [0, t f ] are usually called no-fold conditions. In general, they are not easy
to verify. However, when unconstrained problems are treated, i.e. U = Rm , no-fold
conditions are provided by an analysis of conjugate times.

Definition 1.3. Consider an extremal (q(·), p(·), p0,u(·)) of (OCP). For every u ∈ Rm ,
introduce the nonautonomous vector field

g (t , q,u) = d
(

exp f̃ (t f ; t , ·)) · ( f̃ (t , q,u)− f̃ (t , q,u(t ))
)

,

its first partial variation ġ (t ) = ∂g
∂u (t , q(t ),u(t )) and the spaces of variations

Vt = {v ∈ L2
loc (R,U ) | v(s) = 0 for s > t } , Kt =

{
v ∈ Vt |

∫ t

0
ġ (s) · v(s)(q0) = 0

}
.

Denoting p̃0 = (p(0), p0), consider the intrinsic second variation of the Hamiltonian

Qt =Q|Vt =
∫ t

0
ḧ(s)(v(s), v(s)) d s +

∫ t

0
p̃0

[∫ s1

0
ġ (s2) · v(s2) d s2 , ġ (s1) · v(s1)

]
d s1 .

A time t ∈R is said conjugate time if the quadratic form Qt |Kt is degenerate.

As a standard fact (see, e.g. [34, Chapter 20]), the absence of conjugate times implies
the existence of no-fold conditions, hence, the thesis of Theorem 1.2. For further
details on the conjugate time theory, the reader is invited to examine [34, 45, 46].
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1.3.3 Classical Numerical Methods in Optimal Control

In order to numerically solve (OCP), two main classes of methods are widely known,
that are, direct and indirect methods. Direct methods consist in solving a nonlinear
optimization problem with constraints by discretizing the state and the control. In-
direct methods consist of solving numerically the boundary value problem derived
from the application of the Maximum Principle. The first class of methods is usually
known as first-discretize-then-optimize while the second one first-optimize-then-
discretize. Only indirect methods make use of the Maximum Principle. Here, we
recall the main properties of these methods, referring to the survey [47] for details.

Direct Methods

These techniques consist in discretizing each component of the optimal control prob-
lem (the state, the control, etc.) to reduce it to a nonlinear constrained optimization
problem. The discretization method depends on the problem under consideration.
Just to give an example, consider a subdivision 0 = t0 < ·· · < tN = t f of the inter-
val [0, t f ]. We discretize the control by taking piecewise constant functions on each
subinterval [ti , ti+1], with values in U , while we model the evolution of the state by
a discretization method for differential equation. For example, by taking an explicit
Euler method, we obtain

xi+1 = xi + (ti+1 − ti ) f (ti , xi ,ui ) = xi +hi f (ti , xi ,ui ) .

Therefore, by substituting all the discretized variables within the cost, the finite di-
mensional optimization problem related to (OCP) is

min C (u0, . . . ,uN , x0, . . . , xN )

subject to:

xi+1 −xi −hi f (ti , xi ,ui ) = 0 , ui ∈U , i = 1, . . . , N −1 , x0 = q0 , xN ∈ M f

.

The numerical resolution of a nonlinear constrained optimization problem repre-
sents a widespread standard context. Many algorithms are available: gradient meth-
ods, penalization methods, quasi-Newton, dual methods, genetic and multi-starting
algorithms, etc. (see, e.g. [48, 49]). It is interesting to note that, conceptually, noth-
ing change in the routine of direct methods if a more general control problem where
control and state constraints are taken into account (see also Section 1.4).
In the aerospace context, direct methods are the most popular numerical methods
and many different strategies have been developed during the last decades. By way
of example, related to our launch vehicle application, we cite collocation methods
[50, 51, 52] and inverse/parameter optimization approaches [53, 54] for trajectory
optimization, and convex/conic approximations for rendezvous problem [55, 56, 57].
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By using these procedures, a high degree of robustness is provided while, in gen-
eral, no deep knowledge of the dynamical system is required, making these methods
rather easy to use in practice. However, their efficiency (numerical precision and ro-
bustness) remains proportional to the computational load: the more the discretiza-
tion, and then the precision, is finer, the more memory and computational time are
needed in general to seek the optimal solution.

Indirect Methods

They wrap the optimal control problem into the two-point or multi-point boundary
value problem coming from the Maximum Principle, which leads to accurate and fast
algorithms. The most basic version is the shooting method, which we recall below.
Assume that the couple (q(·),u(·)) is an optimal solution of (OCP) whose extremal
(q(·), p(·), p0,u(·)) is regular (i.e. the maximality condition leads to a unique solu-
tion with respect to u, see Section 1.3.1). Therefore, we are able to write the optimal
control as function of the state q and the adjoint vector p by u(t ) = F (q(t ), p(t )).
From this, the initial/final conditions and the transversality conditions take the form
R(q(0), p(0), q(t f ), p(t f )) = 0. We obtain the following boundary value problem

q̇(t ) = ∂h

∂p

(
q(t ), p(t ),F (q(t ), p(t ))

)
, ṗ(t ) =−∂h

∂q

(
q(t ), p(t ),F (q(t ), p(t ))

)
R(q(0), p(0), q(t f ), p(t f )) = R(p(0), p(t f )) = 0

.

The previous system can be written in a more compact form. Indeed, by denoting
G(q0, p0) = R(p0,exphF

(t f ;0, p0)), one is led to solve the following problem

Find (q0, p0) such that G(q0, p0) = 0 . (1.13)

Very convenient and fast algorithms to solve problem (1.13) are Newton-like meth-
ods (see, e.g. [58, 59]). Their rate of convergence is high (quadratic, for the classical
Newton method) and a significant level of numerical precision can be obtained with
a low computation effort, useful when managing problems with high sensitivity, as
in aerospace frameworks. Nevertheless, their main drawback still remains their ini-
tialization, which makes practically difficult to use them, if, no further information
on the original problem is known. This classical issue is known as bad robustness.
In the aerospace context, indirect methods know a lower development than direct
methods mainly because of their bad robustness. Related to our launch vehicle ap-
plication, important works concern high-order geometrical analysis with applica-
tions to shuttle reentry [4, 26, 60] and orbital transfer [61, 62, 63], and indirect pe-
nalization/collocation methods for rendezvous problem [64, 65, 66].
To overcome the bad robustness of classical shooting methods, one can consider
multi-point boundary value problems instead of two-point boundary value prob-
lems, which raise multi-shooting methods. These algorithms add further continuity
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conditions to the previous research of zeros of a function, which improves the ef-
ficiency and the stability of the method (for further details, we refer the reader to
[15, 16]). However, this increases the dimension of the problem and the original fast
convergence of the shooting method may be strongly compromised.

In the literature, procedures have been developed to robustify the shooting method.
Among them, recently, homotopy methods have proved to be reliable for problems
in the aerospace context (see, e.g. [23, 26, 61, 67]). From this, we have considered
them to conceive a numerical procedure based on indirect methods for our launch
vehicle application. In the next section, we develop fundamental results to demon-
strate that, under suitable assumptions, homotopy methods coupled with indirect
methods provide fine convergence properties.

1.3.4 Numerical Homotopy Methods

The basic idea of homotopy methods is to solve a difficult problem step by step start-
ing from a simpler problem (that we call problem of order zero) by parameter de-
formation. Combined with the boundary value problem derived from the Maximum
Principle, a homotopy method consists in solving a series of shooting problems step
by step to come back to the original problem. In the case in which the homotopic pa-
rameter is a real number and when the path consists in a convex combination of the
problem of order zero and of the original problem, the homotopy method is rather
called a continuation method. For sake of clarity, in the following, we consider only
continuation methods (a complete survey on homotopies can be found in [24]).

Figure 1.1: Different zero paths.

The continuation method can be stated
in its generality as follows. Suppose to
seek a solution for the problem

G1(x) = 0 , G1 :RN →RN (1.14)

where G1 is smooth. We must think to
(1.14) as a problem which is particularly
difficult to solve. Suppose that there ex-
ists a smooth map G0 : RN → RN whose
zeros are known. We would like to re-
cover the zeros of G1 by operating some
kind of transformation on G0. For this, we define a deformation G , i.e. a map

G :RN × [0,1] →RN , G(x,0) =G0(x) , G(x,1) =G1(x) .

A typical choice of G is a convex continuation of type G(x,λ) =λG1(x)+ (1−λ)G0(x).
To recover a zero of G1, one expects to follow a zero path (see Figure 1.1) starting from
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a point x0 such that G0(x0) = 0, i.e. a curve c : [sa , sb] →G−1(0) for which x1 = c(sb) is
a zero of the function G1. These zero paths are also known as deformation paths.
A handling and fast continuation algorithm is given by the discrete continuation with
acceleration step, which is presented as follows. One tries to find the zero points of
G1 via a convex continuation by discretizing the parameter λ as 0 =λ0 < ·· · <λnc = 1
and solving the sequence of problems G(x,λi ) = 0, i = 1, . . . ,nc . The problem at the
iteration i is initialized with the solution found at the iteration i − 1. If the incre-
ment ∆λi = λi+1 −λi is small enough, the solution xi corresponding to λi is gener-
ally close to the solution of G(x,λi+1) = 0. Thus, we can reduce ∆λi till a solution of
G(x,λi+1) = 0 is found. However, if the increment ∆λi has reduced too much, the
iterative procedure may become lengthy. To overcome this, at each iteration, we can
fix the length of ∆λi by an acceleration procedure. The algorithm is given below.

Data: Solution x0 of problem G0(x) = 0.
Result: Solution y1 of problem G1(x) = 0.
begin

Set i = 1, λ0 = 0, λOl d = 0, ∆λ0 = 1 and ε ∈ (0,1]

while λi−1 ≤ 1 and ∆λi−1 ≥ ε do
Solve G(x,λi−1) = 0 initialized with xi−1.
if G(x,λi−1) = 0 converges with y as solution then

xi = y , xOl d = y , λOl d =λi−1

if i > 1 and G(x,λi−2) = 0 converged then
∆λi = (1−λi−1)

else
∆λi =∆λi−1

end

λi =λi−1 +∆λi
else

xi = xOl d , ∆λi = ∆λi−1

2
, λi =λOl d +∆λi

end
i −→ i +1

end
y1 = xi−1

end
Algorithm 1: Discrete continuation algorithm with acceleration step.

Let us now analyze how continuation methods can solve the boundary value prob-
lem related to (OCP) and under which assumptions the problem is well-posed.
To provide global results, consider the version of (OCP) with M = Rn , M f = {q f },
U = Rm and with fixed final time t f . We are faced with a family of optimal con-
trol problems, parameterized by a parameter λ, that, using the infinite dimensional
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formulation (1.4), can be written in the form min
Et f ,λ(u)=q f

Ct f ,λ(u). According to the

Lagrange multiplier rule (1.5), if uλ is an optimal solution of the previous problem,
there exists a non trivial couple (pλ, p0

λ
) ∈Rn+1 satisfying

∂Lt f ,λ

∂u
(uλ, pλ, p0

λ) = pλ ·dEt f ,λ(uλ)+p0
λdCt f ,λ(uλ) = 0 .

Assuming that there are no minimizing abnormal extremals in the problem, we can
set p0

λ
=−1. Therefore, we are seeking a solution (uλ, pλ) of

G(λ,u, p) =
(

p ·dEt f ,λ(u)−dCt f ,λ(u)

Et f ,λ(u)−q f

)
=

 ∂Lt f ,λ

∂u (u, p)

Et f ,λ(u)−q f

= 0

when λ= 1, by starting from the solution of the shooting G(0,u, p) = 0 (which should
be an easy task) and making λ converge to 1. Assume that G is smooth and let
(λ̄,uλ̄, pλ̄) be a zero of G . If the Jacobian of G with respect to (u, p), taken at the
point (λ̄,uλ̄, pλ̄), is invertible, then according to usual implicit function arguments,
one can solve the equation G(λ,uλ, pλ) = 0, and the solution (uλ, pλ) depends in a
smooth way on the parameter λ. Therefore, we only need to analyze the invertibility
condition. The Jacobian matrix of G with respect to (u, p) is(

Qt f ,λ dEt f ,λ(u)∗

dEt f ,λ(u) 0

)

where, in this case, Qt f ,λ is
∂2Lt f ,λ

∂2u
(u, p, p0) restricted to ker

∂Lt f ,λ

∂u and dEt f ,λ(u)∗ is the
transpose of dEt f ,λ(u). It is easy to prove that this sensitivity matrix is invertible if
and only if the linear mapping dEt f ,λ(u) is surjective and the quadratic form Qt f ,λ is
nondegenerate. The surjectivity of dEt f ,λ(u) exactly means that the control u is not
singular while, as long as we do not encounter any conjugate time along the contin-
uation path, the extremals that are computed are locally optimal, which implies the
nondegeneracy of Qt f ,λ. Therefore, we conclude that, as long as we do not encounter
any minimizing singular control nor conjugate time along the continuation proce-
dure, the continuation method is locally feasible, and the extremal solution (uλ, pλ),
which is locally computed as above, is smooth with respect to the parameter λ.
These implicit function arguments permit to ensure the local feasibility of the con-
tinuation procedure. Nevertheless, the path may not be globally defined for every
λ ∈ [0,1]. Its global existence depends on the presence of singular minimizers and on
the properness of the exponential mapping exphu

. From this, one has (see, e.g. [23])

Proposition 1.2. If there are no minimizing singular trajectories nor conjugate times
over all the state space, the continuation procedure developed to solve the boundary
value problem coming from the Maximum Principle applied to (OCP) with M = Rn ,
M f = {q f }, U =Rm and fixed final time t f is globally feasible for parameters λ ∈ [0,1].

33



Chapter 1. Elements of Optimal Control

1.4 Problems with Control and State Constraints

Problem (OCP) is not general enough to describe the optimal control problems aris-
ing from our launch vehicle application. More specifically, we need to add con-
straints which combine control and state variables to the formulation. When this
happens, the results concerning necessary conditions and indirect methods previ-
ously developed must be carefully adapted. In this section, we introduce and discuss
optimal control problems with control and state constraints.

Consider the same quantities defined for problem (OCP) in Section 1.2. We introduce
a smooth mixed control-state equality constraint cme :R×M ×Rm →Rrme , a smooth
mixed control-state inequality constraint cmi :R×M ×Rm →Rrmi and a smooth state
constraint cs :R×M →Rrs . A general nonlinear Optimal Control Problem with Con-
trol and State Constraints (OCP)m,s consists in minimizing the cost

C (t f ,u) = g (t f , q(t f ))+
∫ t f

0
f 0(t , q(t ),u(t )) d t

such that
q̇(t ) = f (t , q(t ),u(t )) , q(0) = q0 , q(t f ) ∈ M f

among all the controls u ∈ L∞([0, t f ],Rm) satisfying, almost everywhere in [0, t f ],

cme (t , q(t ),u(t )) = 0 , cmi (t , q(t ),u(t )) ≤ 0 , cs(t , q(t )) ≤ 0

where the final time t f may be free or not. Remark that no constraints of type u(t ) ∈U
are considered because, concerning our applications, the set of control constraint
U can be always parametrized, and then, it is incorporated directly within mixed
control-state constraints. The existence of solutions of (OCP)m,s , under appropriate
assumptions, is a well-established result (see, e.g. [16, 35, 36]).

Unlike the classical optimal control problem (OCP), necessary optimality conditions
in the form of the Maximum Principle can be obtained only by considering additional
assumptions and several crucial adaptations concerning the adjoint vector.

Assumption 1.1 (Mangasarian-Fromovitz Constraint Qualification). For every tu-

ple (t , q,u) ∈ R× M ×Rm , denote by I (t , q,u) = { j | c j
mi

(t , q,u) = 0} the set of active
mixed control-state inequality constraints. For every (t , q,u) ∈ R×M ×Rm , there are
no a j ≥ 0 , j ∈ I (t , q,u) and b j , j = 1, . . . ,rme which are not all zero, such that

∑
j∈I (t ,q,u)

a j
∂c j

mi

∂u
(t , q,u)+

rme∑
j=1

b j
∂c j

me

∂u
(t , q,u) = 0 .

Mixed constraints cme and cmi satisfying this condition are said to be regular.
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1.4.1 General Control and State Constraints

In what follows, we provide the suitable adaptations to develop the Maximum Prin-
ciple in the presence of general state and control constraints. Indeed, in this case,
further multipliers appear in the Maximum Principle formulation, which obliges to
adapt the Hamiltonian convention introduced in the formalism related to (OCP).

Consider a smooth map cm(t , q,u). Fix an integer rm , as well as a positive time t f ,
and assume to have a bounded function µm ∈ L∞([0, t f ],Rrm ) and a positive measure
dµs ∈ M ([0, t f ],Rrs ). Finally, consider a control u ∈ L∞([0, t f ],Rm), the related curve
qu(·) = exp fu

(·;0, q0) and, for t ∈ [0, t f ], take a local chart (V ,ϕ) centered at qu(t ) ∈ M .

Since, for every (t , q,u) ∈ R× M ×Rm , the quantity µm(t ) · ∂cm
∂q (t , q,u) can be inter-

preted as an element that belongs to T ∗
q M in a standard way, we define, for every

t ∈ [0, t f ], the covector curve∫ t f

t
(exp fu

(s; t , ·))∗qu (s) ·µm(s) · ∂cm

∂q
(s, qu(s),u(s)) d s : [0, t f ] → T ∗M (1.15)

t 7→
n∑

l=1

(∫ t f

t
(exp fu

(s; t , ·))∗qu (s) ·µm(s) · ∂cm

∂q
(s, qu(s),u(s))

( ∂

∂x l

∣∣∣
qu (t )

)
d s

)
d x l (qu(t ))

where xi are the local coordinates of the chart (V ,ϕ). Let x l
a and x l

b be local coordi-

nates of two different charts of qu(t ). Since d x l
a(qu(t )) = ∑n

j=1
∂xl

a

∂x
j
b

(qu(t ))d x j
b(qu(t )),

it is straightforward that (1.15) is a globally well-defined absolutely continuous curve
(with respect to the Whitney topology of C∞(T ∗M)) on the cotangent bundle.

Conversely, since for every (t , q) ∈ R×M and every j = 1, . . . ,rs , the quantity ∂c
j
s

∂q (t , q)
can be interpreted as an element that belongs to T ∗

q M in a standard way, we define,
for every t ∈ [0, t f ], another covector curve∫ t f

t
(exp fu

(s; t , ·))∗qu (s) ·dµs(s) · ∂cs

∂q
(s, qu(s)) : [0, t f ] → T ∗M (1.16)

t 7→
n∑

l=1

rs∑
j=1

(∫ t f

t
(exp fu

(s; t , ·))∗qu (s) ·
∂c j

s

∂q
(s, qu(s))

( ∂

∂x l

∣∣∣
qu (t )

)
dµ j

s (s)
)
d x l (qu(t ))

where xi are the local coordinates of the chart (V ,ϕ) and the integral in (1.16) is the
classical Riemann-Stieltjes integral. Exactly as done previously, it is straightforward
to verify that (1.16) is a globally well-defined curve of bounded variation in T ∗M .
For every pt f ∈ T ∗

qu (t f )M , the previous computations allow to define the curve

p : [0, t f ] → T ∗M : t 7→ (exp fu
(t f ; t , ·))∗qu (t f ) ·pt f + (1.17)∫ t f

t
(exp fu

(s; t , ·))∗qu (s)·µm(s)·∂cm

∂q
(s, qu(s),u(s)) d s+

∫ t f

t
(exp fu

(s; t , ·))∗qu (s)·dµs(s)·∂cs

∂q
(s, qu(s)) .
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The curve of bounded variation defined by (1.17) is the good candidate as adjoint
vector for the Maximum Principle related to (OCP)m,s . More precisely, if h(t , q, p, p0,u)
denotes the Hamiltonian defined by (1.6),the following Maximum Principle holds.

Theorem 1.3. Let q(·) be an optimal trajectory for (OCP)m,s , associated to the control
u(·) on [0, t f ]. Under Assumption 1.1, there exist a nonpositive scalar p0, a curve of
bounded variation p : [0, t f ] → T ∗M, for which p(t ) ∈ T ∗

q(t )M, two bounded functions

µme ∈ L∞([0, t f ],Rrme ), µmi ∈ L∞([0, t f ],Rrmi ) where µmi is nonpositive, and nonin-

creasing functions µ j
s , j = 1, . . . ,rs (generating measures dµ j

s ) such that, almost every-
where in [0, t f ], the following relations hold:

• Nontriviality Condition

|p0|+ max
j∈{0,...,n}

‖ξ j ◦p(t f )‖+
∫ t f

0
‖µmi (t )‖ d t +

rs∑
j=1

|µ j
s (t f )−µ j

s (0)| > 0

• Adjoint Equations

q̇(t ) = ∂h

∂p
(t , q(t ), p(t ), p0,u(t )) ,

p(t ) = (exp fu
(t f ; t , ·))∗q(t f ) ·p(t f )+

∫ t f

t
(exp fu

(s; t , ·))∗q(s) ·µme (s) · ∂cme

∂q
(s, q(s),u(s)) d s

+
∫ t f

t
(exp fu

(s; t , ·))∗q(s) ·µmi (s) · ∂cmi

∂q
(s, q(s),u(s)) d s +

∫ t f

t
(exp fu

(s; t , ·))∗q(s) ·dµs (s) · ∂cs

∂q
(s, q(s))

• Maximality Condition

h(t , q(t ), p(t ), p0,u(t )) ≥ h(t , q(t ), p(t ), p0,u)

for every u : cme (t , q(t ),u) = 0 , cmi (t , q(t ),u) ≤ 0

• Stationarity Condition

∂h

∂u
(t , q(t ), p(t ), p0,u(t ))+µme (t )

∂cme

∂u
(t , q(t ),u(t ))+µmi (t )

∂cmi

∂u
(t , q(t ),u(t )) = 0

• Complementarity Slackness Conditions

µ
j
mi

(t )c j
mi

(t , q(t ),u(t )) = 0 for every j = 1, . . . ,rmi ,

∫ t f

0
c j

s (t , q(t )) dµ j
s (t ) = 0 for every j = 1, . . . ,rs
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• Transversality Conditions

If M f is a submanifold of M, locally around q(t f ), then the adjoint vector can be
built in order to satisfy

p(t f )−p0∂g

∂q
(t f , q(t f )) ⊥ Tq(t f )M f

and, moreover, if the final time t f is free, one has

max
cme (t f , q(t f ),u) = 0
cmi (t f , q(t f ),u) ≤ 0

h(t f , q(t f ), p(t f ), p0,u) =−p0∂g

∂t
(t f , q(t f )) .

Remark 1.2. To avoid making the notations too cumbersome, in Theorem 1.3, the ad-
joint equation related to the evolution of p(·) is given via integral formulations. How-
ever, it is not difficult to adapt the previous arguments and provide full differential
adjoint equations (we refer to [68] for any omitted detail).

The main difference with respect to the classical case is that the adjoint vector pro-
vided by this Maximum Principle may not be an absolutely continuous function. In-
deed, if the jump and the singular parts of the measures dµi

s , i = 1, . . . ,rs are not zero,
p may exhibit discontinuities. Moreover, a serious difficulty arises, that is, no knowl-
edge concerning the evolution of multipliers µme , µmi and µs is provided, making
impossible the integration of the new adjoint equations without further information.
The principal role of Assumption 1.1 consists in providing the boundness of the mul-
tipliers µme , µmi related to the mixed constraints. Indeed, these multipliers are orig-
inally recovered as functionals in (L∞)∗, therefore, their structure may be very com-
plex. However, thanks to Assumption 1.1, one actually proves that µme ,µmi ∈ (L1)∗.
It is interesting to note that a slightly weaker version of Theorem 1.3 can be obtained
without considering Assumption 1.1 (see, e.g. [40]). Nevertheless, this result provides
a family of partial Maximum Principles which does not reduce to the formalism of the
usual Maximum Principle and the multiplicity of the conditions is the price for the
nonregular mixed constraints (for further details, we refer to [69, 70]).
Even if Theorem 1.3 is a well-established result (see, e.g. [40] for the version of The-
orem 1.3 in the case M = Rn), we provide a proof in Appendix A. This because the
geometric version of Theorem 1.3 does not appear explicitly in the literature

1.4.2 Mixed Control-State Constraints

In this section we consider optimal control problems with only mixed control-state
constraints, i.e. problems (OCP)m,s satisfying cs = 0. In this case, Theorem 1.3 simpli-
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fies giving more regularity to the adjoint vector and the Lagrange multipliers. More-
over, unlike the previous case, a handling Hamiltonian formalism can be adopted.

For sake of clarity, we restate the context. A general nonlinear Optimal Control Prob-
lem with Mixed Control-State Constraints (OCP)m consists in minimizing the cost

C (t f ,u) = g (t f , q(t f ))+
∫ t f

0
f 0(t , q(t ),u(t )) d t (1.18)

such that
q̇(t ) = f (t , q(t ),u(t )) , q(0) = q0 , q(t f ) ∈ M f (1.19)

among all the controls u ∈ L∞([0,T ],Rm) satisfying, almost everywhere in [0, t f ],

cme (t , q(t ),u(t )) = 0 , cmi (t , q(t ),u(t )) ≤ 0 . (1.20)

Consider a smooth vector function cm(t , q,u) and introduce the following family of
nonautonomous Hamiltonians

hm(t , q, p,µ,u) = hm,(t ,u,µ)(p) = h(t , q, p,u)+µ · cm(t , q,u) = 〈p, f (t , q,u)〉+µ · cm(t , q,u)

where t , u and µ are considered as parameters. Fix an integer rm , as well as a pos-
itive time t f , and let u ∈ L∞([0, t f ],Rm) a control function and µ ∈ L∞([0, t f ],Rrm ) a
bounded function. We can associate to hm a Hamiltonian field, therefore, the follow-
ing Hamiltonian dynamical system

ṗ(t ) =hm(t , q(t ), p(t ),µ(t ),u(t )) , p(t f ) = pt f ∈ T ∗
π(pt f

)M . (1.21)

Denoting qu(t ) = exp fu
(t ; t f ,π(pt f )), by a local differentiation via Lemma 1.1, it is

straightforward to see that the unique solution of Problem (1.21) takes the form

p(t ) = (exp fu
(t f ; t , ·))∗qu (t f ) ·pt f +

∫ t f

t
(exp fu

(s; t , ·))∗qu (s) ·µm(s) · ∂cm

∂q
(s, qu(s),u(s)) d s

for every pt f ∈ T ∗
π(pt f

)M . Since µm is bounded, this curve is absolutely continuous

and represents the suitable adjoint vector related to (OCP)m . To state the Maximum
Principle in the presence of mixed control-state constraints, for every t ∈ R, every
u ∈Rm and every µe ∈Rrme , µi ∈Rrmi , define the Hamiltonian related to (OCP)m as

hm(t , q, p, p0,µe ,µi ,u) = hm,(t ,u,µ)(p, p0) = (1.22)

h(t , q, p, p0,u)+µe · cme (t , q,u)+µi · cmi (t , q,u) =
〈p, f (t , q,u)〉+p0 f 0(t , q,u)+µe · cme (t , q,u)+µi · cmi (t , q,u) .
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Theorem 1.4. Let q(·) be an optimal trajectory for (OCP)m , associated to the control
u(·) on [0, t f ]. Under Assumption 1.1, there exist a nonpositive scalar p0, an abso-
lutely continuous curve p : [0, t f ] → T ∗M, for which p(t ) ∈ T ∗

q(t )M, and two bounded

functions µme ∈ L∞([0, t f ],Rrme ), µmi ∈ L∞([0, t f ],Rrmi ) where µmi is nonpositive, with
(p(·), p0) 6= 0 and such that, almost everywhere in [0, t f ], the following relations hold:

• Adjoint Equations

q̇(t ) = ∂hm

∂p
(t , q(t ), p(t ), p0,µme (t ),µmi (t ),u(t )) , (1.23)

ṗ(t ) =−∂hm

∂q
(t , q(t ), p(t ), p0,µme (t ),µmi (t ),u(t ))

• Maximality Condition

h(t , q(t ), p(t ), p0,u(t )) ≥ h(t , q(t ), p(t ), p0,u) (1.24)

for every u : cme (t , q(t ),u) = 0 , cmi (t , q(t ),u) ≤ 0

• Stationarity Condition

∂hm

∂u
(t , q(t ), p(t ), p0,µme (t ),µmi (t ),u(t )) = 0 (1.25)

• Complementarity Slackness Conditions

µ
j
mi

(t )c j
mi

(t , q(t ),u(t )) = 0 for every j = 1, . . . ,rmi (1.26)

• Transversality Conditions

If M f is a submanifold of M, locally around q(t f ), then the adjoint vector can be
built in order to satisfy

p(t f )−p0∂g

∂q
(t f , q(t f )) ⊥ Tq(t f )M f (1.27)

and, moreover, if the final time t f is free, one has

max
cme (t f , q(t f ),u) = 0
cmi (t f , q(t f ),u) ≤ 0

h(t f , q(t f ), p(t f ), p0,u) =−p0∂g

∂t
(t f , q(t f )) . (1.28)

Even if the formalism has been simplified, the same difficulties, related to the inte-
gration of the adjoint equations arising from Theorem 1.3, still appear in the formu-
lation of Theorem 1.4. Besides, Assumption 1.1 is needed again to prove the bound-
ness of the multipliers µme , µmi related to the mixed constraints. It is crucial to note
that, in the case where only mixed control-state constraints appear, Assumption 1.1
provides moreover that precisely the couple (p(·), p0) is not trivial, which is more in-
formative than the weaker condition (p(·), p0,µme (·),µmi (·)) 6= 0 (compare with The-
orem 1.3). The proof of Theorem 1.4 arises easily adapting the proof of Theorem 1.3.
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1.4.3 Numerical Difficulties Due to Control and State Constraints

Even if the adjustments to run direct methods on (OCP)m,s and (OCP)m are provided
straightforwardly by discretizing the constraints depending on the state, by analyzing
both Theorem 1.3 and Theorem 1.4, it is easily understood that adapting numerical
methods such as shooting or multi-shooting algorithms becomes complicated when
considering control and state constraints. Indeed, even if we assume to deal with
regular controls, the presence of the multipliers µme , µmi and µs prevents from inte-
grating the adjoint equations. As pointed out previously, this is due to the fact that,
usually, no knowledge concerning the evolution of these multipliers is provided.
Obtaining rigorous and useful information on the evolution and the regularity ofµme ,
µmi and µs may be arduous and has been the object of many studies in the existing
literature, both from theoretical (for example, high-order analysis [19, 21, 71]) and
numerical point of views (for example, aerospace applications [4, 26]). Even if indi-
rect methods to solve (OCP)m,s and (OCP)m have already been proposed, they are
able to work under very particular assumptions and make the numerical compu-
tations more demanding, often losing the fast convergence of the original shooting
method (for further details on these procedures, we refer to [20, 72, 73, 74]).

1.5 Problems with Control and State Delays

We conclude this chapter by introducing necessary optimality conditions and dif-
ficulties of related indirect methods for optimal control problems with control and
state delays. The interest of introducing this kind of problems arises from the fact
that, in the context of our launch vehicle application, delays coming from model re-
finement often occur. Therefore, related to our main challenge of solely exploiting
indirect methods, we need to understand whether it is possible to efficiently solve
optimal control problems with control and state delays by shooting-type procedures.

1.5.1 Maximum Principle for Problems with Delays

For matter of concision, in what follows, all the concerned results are developed con-
sidering systems evolving in the Euclidean space, i.e. M = Rn , and subject to pure
control constraints. This is not limiting to address our launch vehicle application.

A nonautonomous vector field with delays on Rn is a continuous vector function

f :R×R2n ×R2m →Rn : (t , x, y,u, v) 7→ f (t , x, y,u, v)

which is smooth w.r.t. its second and third variables. Without loss of generality, we
assume that any considered vector field with delays has a compact support. Fix a
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positive value ∆ and consider an initial state function Φ1 ∈ C 0([−∆,0],Rn) as well
as an initial control function Φ2 ∈ L∞([−∆,0),Rm). For every couple of delays τ =
(τ1,τ2) ∈ [0,∆]2 and every control u ∈ L∞

l oc ([−∆,∞),Rm) such that u|[−∆,0)(·) = Φ2(·),
the following dynamical system with delays

ẋ(t ) = f (t , x(t ), x(t −τ1),u(t ),u(t −τ2)) , x|[−∆,0](·) =Φ1(·) (1.29)

is well-defined. As a classical result, there exists a unique curve x(·) defined for ev-
ery t ∈ [−∆,∞) and satisfying (1.29), which depends continuously (w.r.t. appropriate
topologies) on the initial data τ ∈ [0,∆]2, u ∈ L∞

l oc ([−∆,∞),Rm), Φ1 ∈ L∞([−∆,0],Rn).
Consider a continuous integral cost function with delays

f 0 :R×R2n ×R2m →R : (t , x, y,u, v) 7→ f 0(t , x, y,u, v)

which is smooth w.r.t. its second and third variables. Moreover, take subsets M f ⊆
Rn and U ⊆ Rm . For every couple of constant delays τ = (τ1,τ2) ∈ [0,∆]2, a general
nonlinear Optimal Control Problem with Control and State Delays (OCP)τ consists
in minimizing the cost

Cτ(t f ,u) =
∫ t f

0
f 0(t , x(t ), x(t −τ1),u(t ),u(t −τ2)) d t

such that

ẋ(t ) = f (t , x(t ), x(t −τ1),u(t ),u(t −τ2)) , x|[−∆,0](·) =Φ1(·) , x(t f ) ∈ M f

among all the controls u ∈ L∞([−∆, t f ],Rm) satisfying

u|[−∆,0)(·) =Φ2(·) , u(t ) ∈U

almost everywhere in [0, t f ], where the final time t f may be fixed or not. No general
results on the existence of solutions of (OCP)τ are available and, as far as we know,
only the analysis proposed by [75] treats this issue. However, the given existence re-
sult turns out to be only partially correct. We return on this controversy in Chapter 6.

Providing a Maximum Principle for (OCP)τ is possible, up to some adaptations of the
adjoint equations. The first proofs of these necessary conditions appear in [29, 76],
where only either state delays or control delays are considered. The proofs concern-
ing more sophisticated cases have been developed later in [30, 31, 32, 77, 78, 79].
Since we need to work directly with the variation vectors of (OCP)τ, we sketch in
Chapter 7 the proof of the Maximum Principle for optimal control problems with
control and state delays by means of needle-like variations, which does not appear
directly in the litterature. We define the Hamiltonian related to (OCP)τ, as

h(t , x, y, p, p0,u, v) = 〈p, f (t , x, y,u, v)〉+p0 f 0(t , x, y,u, v) .
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Theorem 1.5. Let x(·) be an optimal trajectory for (OCP)τ, associated to the control
u(·) on [−∆, t f ]. There exist a nonpositive scalar p0 and an absolutely continuous curve
p : [0, t f ] → Rn , with (p(·), p0) 6= 0, and such that, almost everywhere in [0, t f ], the
following relations hold:

• Adjoint Equations

ẋ(t ) = ∂h

∂p
(t , x(t ), x(t −τ1), p(t ), p0,u(t ),u(t −τ2)) ,

ṗ(t ) =−∂h

∂x
(t , x(t ), x(t −τ1), p(t ), p0,u(t ),u(t −τ2))

−1[0,t f −τ1](t )
∂h

∂y
(t +τ1, x(t +τ1), x(t ), p(t +τ1), p0,u(t +τ1),u(t +τ1 −τ2))

• Maximality Condition

h(t , x(t ), x(t −τ1), p(t ), p0,u(t ),u(t −τ2))+
1[0,t f −τ2](t )h(t +τ2, x(t +τ2), x(t +τ2 −τ1), p(t +τ2), p0,u(t +τ2),u(t ))

≥ h(t , x(t ), x(t −τ1), p(t ), p0,u,u(t −τ2))+
1[0,t f −τ2](t )h(t +τ2, x(t +τ2), x(t +τ2 −τ1), p(t +τ2), p0,u(t +τ2),u)

for every u ∈U

• Transversality Conditions

If M f is a submanifold of Rn , locally around x(t f ), then the adjoint vector can
be built in order to satisfy

p(t f ) ⊥ Tx(t f )M f

and, moreover, if the final time t f is free and both t f and t f −τ2 are points of
continuity of u(·), one has

h(t , x(t f ), x(t f −τ1), p(t f ), p0,u(t f ),u(t f −τ2)) = 0 .

Remark 1.3. To state standard transversality conditions, one needs to assume that
both t f and t f −τ2 are points of continuity of the optimal control, because the evalua-
tion of u(·) at t f and at t f −τ2 is required. However, with slight modifications, similar
transversality conditions are recovered (we refer to [80] for further details).
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1.5.2 Numerical Difficulties Due to Control and State Delays

From the arguments presented in Section 1.3.3, it is clear that adapting direct meth-
ods to solve (OCP)τ does not produce any obstacle. However, solving (OCP)τ from a
numerical point of view by means of indirect methods becomes complex because a
global information on the adjoint vector p is needed. This is explained as follows.
Assume that the optimal control u(·) is regular, i.e. it can be written as a function of
x(·) and p(·) (by the Maximality Condition, see Section 1.3.1). Therefore, each itera-
tion of a shooting method consists in solving the coupled dynamics coming from the
adjoint equations, where a value of p(0) is provided. In the context of Theorem 1.5,
this means that one has to solve Differential-Difference Boundary Value Problems
(DDBVP), where both forward and backward terms of time appear within mixed type
differential equations. The difficulty in solving DDBVP is the lack of global informa-
tion which forbids a purely local integration by usual iterative methods for ordinary
differential equations. Techniques to solve mixed type differential equations aris-
ing from DDBVP have been analyzed, such as analytical decompositions of solutions
[81, 82], and related numerical schemes [83, 84]. In these approaches, the dimension
of the problem may drastically increase as much as the numerical accuracy increases.
The previous considerations show that, in order to initialize correctly a shooting
method on (OCP)τ, a standard guess of the initial value of the adjoint vector p(0)
is not sufficient, but rather, a good numerical guess of the whole function p(·) must
be provided to make the procedure converge. This represents an additional difficulty
with respect to the usual shooting method and it requires a global discretization of
the adjoint equations, increasing considerably the dimension of the problem.
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2 Rendezvous Problems

This chapter is devoted to introduce the guidance of endo-atmospheric launch vehi-
cles as an optimal control problem. Related to the applications of interest for ONERA-
The French Aerospace Lab, the attention is focused on simulating rendezvous prob-
lems, which consist in steering the launch vehicle from a given initial point to some
final point whose spatial coordinates are fixed, but final orientations are not nec-
essarily imposed, and this, by minimizing some final cost. The model of the endo-
atmospheric flight dynamics is carefully introduced and the considered optimality
criteria are initially taken to be as general as possible for an intrinsic geometric anal-
ysis of the problem. From this general framework, two applications of interest for
ONERA-The French Aerospace Lab, concerning missile interception, are derived.
The chapter is splitted into two sections. In Section 2.1, the physical model simu-
lating the dynamics of an endo-atmospheric launch vehicle system is provided. In
particular, after having introduced the main frames in which we establish the equa-
tions of motion, the models of the environment and the forces acting on the vehicle
are given. Section 2.2 describes the main optimal control problems on which we de-
velop our analysis: a first generic problem and two real application frameworks.

2.1 Physical Problem and Dynamical Model

The aim of this section consists in providing the equations of motion for axial sym-
metric endo-atmospheric vehicles, which are the dynamical systems of interest for
our rendezvous problems. Some standard simplifying assumptions and approxima-
tions are taken into account to recover handy, but still, nonlinear dynamics.

2.1.1 Fundamental Coordinate Systems

Throughout this thesis, we consider the following assumptions:

• Since the physically meaningful trajectories have bounded range and duration,

45



Chapter 2. Rendezvous Problems

we assume that the Earth is a sphere fixed in the inertial space, i.e. the angular
velocity of the Earth and Coriolis-type forces are considered to be zero.

• We consider a class of launch vehicles modeled as a three-dimensional axial
symmetric cylinder steered by a control system (based on either steering fins
or a reaction control system). The principal body axis is denoted by b.

• The mass flow of the launch vehicle is a given non-negative function of the time
as well as the magnitude of its thrust, function of the mass flow. The direction
of the thrust coincides with the direction of the principal body axis.

We work with the help of two main frames:

1. The inertial frame (I ,J ,K) which is a fixed orthonormal frame centered at O,
the center of the Earth, such that K is the north-south axis of the planet and
the plane (I ,J ) is chosen to satisfy the right-hand rule. This is the frame where
the Newton’s law of motion are valid.

2. The North-East-Down (NED) frame (eL ,e`,er ) that is parallel to the Earth sur-
face and whose origin is at the center of gravity of the vehicle, denoted by G . In
particular, this frame rotates with the vehicle and coincides with the orthonor-
mal frame defined univocally as follows: −er is the local vertical direction,
(eL ,e`) is the local horizontal plane and eL is pointing to the North.

Figure 2.1: Graphical relations between frame (I ,J ,K) and frame (eL ,e`,er ).
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Figure 2.1 shows the relations between frame (I ,J ,K) and frame (eL ,e`,er ). The
NED frame is expressed locally as a function of the inertial frame by the relations

eL =−sinL cos` I − sinL sin` J +cosL K

e` =−sin` I +cos` J

er =−cosL cos` I −cosL sin` J − sinL K

(2.1)

where L and ` are local Euler coordinates representing respectively the geocentric
latitude and the longitude, such that the linear transformation from frame (I ,J ,K)
to frame (eL ,e`,er ) takes the form

R(L,`) =
 −sinL cos` −sinL sin` cosL

−sin` cos` 0
−cosL cos` −cosL sin` −sinL

 ∈ SO(3) .

Moreover, the evolution of frame (eL ,e`,er ) have the following closed-loop form

ėL =− ˙̀sinL e`+ L̇ er , ė` = ˙̀sinL eL + ˙̀cosL er , ėr =−L̇ eL − ˙̀cosL e` . (2.2)

It is important to note that, since (L, l ) are local Euler coordinates, they exhibit singu-
larities when cosL is equal to zero. However, by assumption, the physically meaning-
ful trajectories have bounded ranges and durations, so that, starting from neighbor-
hoods of points satisfying cosL 6= 0, the targets possibly reached by the vehicle are far
enough from the subset satisfying cosL = 0. In any case, this is not limiting because
transformations of coordinates can be operated. We return on this in Chapter 3.

Figure 2.2: Orientations of frame (eL ,e`,er ) and of the principal body axis b.
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2.1.2 Environmental and Dynamical Modeling

By assumption, we model the launch vehicle as an axial symmetric rigid body of mass
m. Its motion is described by the evolution of the state variables (r,v,b,ω), where
r = xI+yJ+zK is the trajectory of its center of gravity G , v = ẋI+ ẏJ+ żK denotes
its velocity and the normal vector b corresponds to the principal body axis, whose
time evolution is defined by the angular velocity ω. We proceed firstly by analyzing
the environment, and thereafter, by providing the models of physical quantities.

Air Density

All the concerned aerodynamical forces depend on the interaction between the at-
mosphere and the vehicle. It is crucial to provide a model of the air density. We
present a concise introduction and further details on atmospheric models can be
found in [8, 85, 86, 87]. In the following, we define the altitude as the scalar quantity
h = ‖r−rT ‖, where rT = ‖rT ‖ = 6378,145 km is the radius of the Earth.
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Figure 2.3: Air density and atmospheric pressure as functions of h (m): US-76 model.

The work of the U.S. Committee On Extension to the Standard Atmosphere (COESA),
established in 1953, led to the 1958, 1962, 1966, and 1976 versions of the U.S. Stan-
dard Atmosphere. Based on rocket and satellite data and perfect gas theory, the at-
mospheric densities and temperatures are represented from sea level to 1000 km.
The U.S. Standard Atmospheres 1958, 1962, and 1976 consist of single profile repre-
senting the idealized, steady-state atmosphere for moderate solar activity. The alti-
tude resolution varies from 0.05 km at low altitudes to 5 km at high altitudes shown
in Figure 2.3. In the lower earth atmosphere (h < 35 km), the density of air and the
atmospheric pressure decrease exponentially with h and approach zero at 35 km.
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The previous model can be put under the following closed-loop form which describes
the temperature Tatm and the pressure patm of the atmosphere

Tatm =


15.04−0.00649h °C , h < 11 km (Troposphere)

−56.46 °C , 11 km ≤ h < 25 km (Lower Stratosphere)

−131.21+0.00299h °C , h ≥ 25 km (Upper Stratosphere)

patm =


101.29

(
Tatm+273.1

288.08

)5.256
kPa , h < 11 km (Troposphere)

22.65e−1.73−0.000157h kPa , 11 km ≤ h < 25 km (Lower Stratosphere)

2.488
(

Tatm+273.1
216.6

)−11.388
kPa , h ≥ 25 km (Upper Stratosphere)

and, from which, we recover the air density as

ρ = patm

0.2869(Tatm +273.1)
kg/m3 . (2.3)

For our numerical simulations, since the altitude is included between 1000 m and 20
km, denoting by ρ0 the air density at the standard atmosphere at the sea level and by
hr a fixed reference altitude, expression (2.3) is simplified as

ρ(h) = ρ0e−h/hr kg/m3 .

Drag and Lift

The drag on the vehicle is the force exerted on it by the medium through which it is
moving, in this case the air. Since the drag is generated by the motion of the vehicle
through the air, it is naturally directed opposite to the velocity vector v.

Figure 2.4: Graphical relations between the angle of attack α and the velocity v.
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Usually, the effect of the drag force is lumped into one coefficient CD called drag co-
efficients which depends mainly on the angle of attackα, which is the angle between
the velocity of the vehicle v and its principal body axis b (see Figure 2.4). The drag
force is defined in terms of the drag coefficient as (see, e.g. [8, 85, 86, 88])

D =−1

2
ρ(h)SCD (α)‖v‖v

where S denotes a reference area that sums up all the pointwise contributions of the
interaction between the atmosphere and the vehicle. The drag coefficient is not given
directly. It can be found by using the axial force coefficient C A and the normal force
coefficient CN (in body frame, see, e.g. [8, 85, 86, 88]), both functions of the angle of
attack α and other parameters. The relation connecting them reads

CD (α) =C A cosα+CN sinα . (2.4)

Under second-order approximation, the coefficient CN takes the form CN = CNαα+
CN2α|α| where CNα and CN2 are constant normal force coefficients. On the other
hand, the expression of C A is much more complex and a common explicit model is
given by the following conic approximation (see, e.g. [8, 85, 86, 87])

C A =



2sin2αc +C A2α
2 , M < 0.5

2sin2αc (k1 +k2 sinαc )

k3 +k4 sinαc
+k5κ(M −0.5)+C A2α

2 , 0.5 ≤ M < 1.5

2sin2αc (k6 +
p

M 2 −1sinαc )

k7 +
p

M 2 −1sinαc

+ κ

M 2
+C A2α

2 , M ≥ 1.5

where αc represents the cone angle, C A2 is the induced axial force coefficient, M is
the Mach number, k1, . . . ,k7 represent design values depending on the missile con-
figuration, and there holds κ= 0 for powered flight, and κ= 1 for coasting flight.

The lift is defined as the aerodynamic force that acts orthogonally to the velocity vec-
tor. The explicit expression of the lift is provided as (see, e.g. [8, 85, 86, 88])

L= 1

2
ρ(h)SCL(α)

where S is the same reference area appearing in the the drag force, while CL is a
vector quantity whose orientation coincides with the direction of the product v ∧
(b∧v). As done for the drag, we can lump into one scalar coefficient CL = ‖CL‖,
called lift coefficient, the effect of the lift force, so that the norm ofL satisfies

‖L‖ = 1

2
ρ(h)SCL(α)‖v‖2
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and CL(α) depends on coefficients C A and CN as follows

CL(α) =CN cosα−C A sinα . (2.5)

The complex structure of coefficients C A and CN can make the equations of motion
very difficult to treat from an analytical point of view. On the other hand, considering
endo-atmospheric applications, the vehicle can be stabilized only if the velocity v
assumes its values inside a cone around the body axis b, of maximal amplitude αmax.
The angle αmax is called maximal angle of attack. In this case, the expressions of C A

and CN can be simplified by considering the following assumption.

Assumption 2.1. For points (ε, x) ∈ R+×R such that (1+ε)x2 ≤ sin2(αmax) (αmax > 0
is considered constant and small enough), the following approximations hold:

sin x ∼= x , cos x ∼= 1−x2/2 ,
√

1− (1+ε)x2 ∼=
(
1− (1+ε)x2/2

)
.

The last expression of this assumption will be crucial in Chapter 3 to derive optimal
controls. From (2.4) and (2.5), Assumption 2.1 make us able to write CD (α), CL(α) as

CD (α) =CD0 +CDα sin2α , CL(α) =CLα sinα (2.6)

where coefficients CD0 , CDα and CLα are considered to be constant. This allows to
contract the expression of the forces D and L, for a more handling treating of the
dynamical equations, as follows (see, e.g. [4, 89, 90, 91])

D

m
=−

(
d(h,m)+ηcm(h,m)sin2α

)
‖v‖v ,

L

m
= cm(h,m)

(
v∧ (b∧v)

)
(2.7)

where d and cm denotes respectively the normalized drag coefficient and the nor-
malized lift coefficient, η is an efficiency factor (which is assumed to be constant),
and the following expressions hold

d(h,m) = d0(m)e−h/hr , cm(h,m) = c0(m)e−h/hr .

It is important to note that, thanks to the relation ‖v‖|sinα| = ‖b∧v‖, the drag and
the lift can be expressed as implicit functions of the state variables (r,v,b,ω).

The drag and lift forces do not act on the center of gravity of the vehicle, but rather,
on its center of pressure P , that is, the virtual point on which the resultant of all in-
finitesimal pressure forces acts. Usually, the center of pressure does not coincide
with the center of gravity, therefore, turning moments arise. More precisely, drag and
lift provide the overturning moment, which writes (see, e.g. [8, 85, 86, 88])

MOver = 1

2
ρ(h)SDCOver(α)‖v‖(v∧b)

where S is the same reference area for the drag and the lift, D is the largest diam-
eter of the cylindrical vehicle and COver ≥ 0 is an aerodynamical coefficient whose
expression is function of axial and normal force coefficients C A, CN (see, e.g. [88]).
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Further Aerodynamical Contributions

We introduce one last relevant aerodynamical contribution: the pitch damping force.
Pitch damping is the tendency of the vehicle to cease its pitching motion due to air
resistance. When the vehicle is spinned, it slows down because of the sticking of the
fluid to the surface and the resultant viscous action. On the other hand, when the ve-
hicle mounts until the bearing is transverse to the principal body axis and spins, one
observes the viscous action slowing the vehicle down; however, this is overwhelmed
by the pressure forces that retard the motion and the vehicle spins down much faster.
This combination of forces is called pitch damping and, under appropriate assump-
tions, the resultant can be written as (see, e.g. [8, 85, 86, 88])

FPi tch = D

2
ρ(h)SCFPi tch‖v‖

db

d t

where D is the largest diameter of the cylindrical vehicle, S is the same reference area
appearing in the expression of the drag and the lift and CFPi tch is a coefficient depend-
ing on many physical parameters. Generally, the pitch damping force is neglected
from the equations of motion since its magnitude is considerably smaller than other
considered forces (see, e.g. [88]). Nevertheless, the moment caused by the pitch
damping is frequently significant. It is described as follows (see, e.g. [8, 85, 86, 88])

MPi tch = D2

2
ρ(h)SCMPi tch‖v‖

(
b∧ db

d t

)
and the coefficient CMPi tch ≥ 0 may depend on several physical parameters as well.

Gravity, Thrust and Control System Effect

The gravity is taken as the usual gradient of a hyperbolic potential, because we ap-
proximate the Earth as a sphere. Its expression reads

G

m
=−g (r)

r

‖r‖ =− µ0

‖r‖2

r

‖r‖
where µ0 = 3.986 ·1014 N·m2/kg is the gravitational constant related to the Earth.

The vehicle is pushed by a thrust varying with the time. The thrust force reads

T

m
= fT (t )

m
b= Is g (rT )q(t )+ (Pe −Pa)ST

m
b

where Is is the specific impulse, q is the mass flow, ST is the perpendicular section
of the nozzle and Pe , Pa are the ejection pressure and the ambient pressure, respec-
tively. For our analysis, we assume the contribution of the term (Pe −Pa)ST to be
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negligible. Remark that fT models also the contribution of the term ṁv, arising from
the equations of motion (compare also with the dynamical system (2.8) below).

The control system that steers the vehicle acts by a force denoted FC S , which allows
to control the translation and the rotation of the rigid body. Concerning our applica-
tions, the magnitude of this force is much weaker than the contribution of the drag
and the lift, so it does not appear within the moment equation. Nevertheless, its
torque has a strong effect on the dynamics. Denoting by Q the point of the vehicle at
which the control system is placed, this torque writes

MC S =QG∧FC S .

The quantityQG can be expressed as function of the state variables (r,v,b,ω). Note
that, usually when considering axial symmetric vehicles, the point Q lies along the
principal body axis, so thatQG= ‖QG‖b and ‖QG‖ coincides with the lever arm.

Equations of the Dynamics and Motion Constraints

From the previous analysis, we define the rigid body motion of a launch vehicle by
the following system of equation (see, e.g. [4, 91, 92])

ṙ = v

v̇ = f (t ,r,v,b) = fT (t )

m
b− g (r)

r

‖r‖ −
(
d +ηcm

(‖b∧v‖
‖v‖

)2 )
‖v‖v+ cm

(
v∧ (b∧v)

)
Ṙ = Rω∧ , b= R · (1,0,0)>

d

d t
(IGω) =−ω∧ IGω+ 1

2
ρ(h)SDCOver(α)‖v‖(v∧b)+ d

2
ρSCMPi tch‖v‖2(b∧ω)+QG∧FC S

(2.8)

where IG denotes the inertial matrix of the vehicle at G , and we have introduced the
rotational matrix R as auxiliary variable. Implicitly, these equations contain the evo-
lution of the mass ṁ(t ) =−q(t ), where q is the mass flow. Since the evolution of q is
known a priori, the evolution of IG is known as well. The dynamical system (2.8) is
known as control and guidance system. Since the principal body axis is a normal vec-
tor, the natural configuration manifold, within which the state variables (r,v,b,ω)
evolve, is R6 \ {0}×S2 ×R3. Once the evolution in time of the forceFC S(·) is given, the
feasible trajectories of an endo-atmospheric launch vehicle are computed by (2.8).

Remark 2.1. One makes v evolve in R3 \ {0} because, when ‖v‖ approaches 0, the dy-
namical model obtained by (2.8) is no more valid and other physical contributions
emerge, modifying drastically the moment equation. Moreover, upper and lower bounds
on the magnitude of r should be adopted since the model of the air density taken into
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account could not be fine enough for high altitudes. However, the physics of the dy-
namical system prevents from reaching too large distances and forces the bound ‖r‖ ≥
‖rT ‖. From these remarks, without loss of generality, we assume that (r,v) ∈R6 \ {0}.

The dynamical system (2.8) turns out to be only partially appropriate to describe
the complete evolution of the trajectories of the launch vehicle. Indeed, rendezvous
problems must consider constraints arising from stability and structural designs.
The most important class of constraints comes from controllability issues. Indeed,
in order to control efficiently the vehicle, one has to ensure a good stabilization by
forcing the velocity v to take values inside a cone around the principal body axis b,
of maximal amplitude αmax. This consists in forcing the constraints (see, e.g. [8, 85])

cosα= v ·b‖v‖ ≥ 0 ,
‖b∧v‖
‖v‖ = |sinα| =≤ sinαmax . (2.9)

We stress on the fact that the previous constraints are crucial to correctly control the
endo-atmospheric launch vehicle and can neither be removed nor approximated.
Another bound which deserves to be mentioned is the load factor constraint. During
endo-atmospheric flights, strong structural strains due to the aerodynamical forces
may arise, thus jeopardizing the success of the mission or, at worst, risking the loss
of the vehicle. To prevent this, the load factor due to aerodynamical forces must be
limited according to (see, e.g. [8, 85])

ρ‖v‖2SCN (α)

2mg (r)
≤ loadmax = const (2.10)

where S is the same reference area appearing in the expression of the drag and the
lift, and CN is the normal force coefficient. Nevertheless, for our analysis, we neglect
the presence of constraint (2.10). This can be justified by the fact that, for our specific
endo-atmospheric rendezvous problems, the maximal load factor loadmax takes large
enough values so that (2.10) is automatically satisfied. Moreover, procedures adding
constraint (2.10) by homotopy could be considered at a later time (see, e.g. [93]).

2.2 Optimal Control Problems

Once the motion of the considered vehicle is established by dynamics (2.8) and con-
straints (2.9), we look for trajectories satisfying some optimality criteria. Three opti-
mal control problems are analyzed. The first one represents an abstract launch ve-
hicle framework, on which a detailed geometric analysis is carefully developed in
Chapter 3. The remaining two problems are special instantiations of the first one.
They model a particular interception scenario and they are adopted to test the nu-
merical approaches developed in Chapter 4, Chapter 5 and Chapter 6.
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2.2.1 General Optimal Guidance Problem (GOGP)

In practical rendezvous applications, the rotational dynamics related to the torque
equation of system (2.8) are faster than its translational dynamics. Therefore, it is
possible and more convenient to divide and treat them separately (see, e.g. [92, 94]).
If we consider only the translational dynamics within (2.8), the contribution of the
control forceFC S disappears and what is usually controlled is the principal body axis
b that, in this context, is no more a state variable but it becomes the control and we
denote it by u. The variableω does not affect anymore the evolution of the state.

Denoting by q = (r,v) the new state variables, a General Optimal Guidance Problem
(GOGP) consists in minimizing the general final cost

C (t f ,u) = g (t f , q(t f )) = g (t f ,r(t f ),v(t f )) (2.11)

such that
q̇(t ) =

(
ṙ(t )

v̇(t )

)
=

(
v(t )

f (t ,r(t ),v(t ),u(t ))

)
= f (t , q(t ),u(t ))

q(t ) = (r(t ),v(t )) ∈R6 \ {0}

q(0) = q0 = (r0,v0) , q(t f ) = (r(t f ),v(t f )) ∈ M f ⊆R6 \ {0}

(2.12)

among all the control u ∈ L∞([0, t f ],R3) satisfying, almost everywhere in [0, t f ],

c0(u(t )) = ‖u(t )‖2 −1 = 0 (i.e. u(t ) ∈ S2) , c1(q(t ),u(t )) = c1(v(t ),u(t )) =−v(t ) ·u(t )

‖v(t )‖ ≤ 0

(2.13)

c2(q(t ),u(t )) = c2(v(t ),u(t )) =
(‖u(t )∧v(t )‖

‖v(t )‖
)2
− sinα2

max ≤ 0

and the final time t f may be free or not. Motivated by the discussion of the previous
section, since we take into account constraint (2.9), we do not consider the load fac-
tor constraint in problem (GOGP). Nevertheless, we let the cost (2.11) and the final
target set M f be quite general, with the only requirement that the following holds.

Assumption 2.2. At least one between the following two conditions holds:

A) The final time t f is free and
∂g

∂t
(t , q) 6= 0 for every (t , q) ∈R×M.

B) For every local chart (x1, . . . , x6) of R6 \ {0}, there exists a free final variable, say

xi , such that
∂g

∂xi
6= 0 and (0, . . . , 1︸︷︷︸

i-th

, . . . ,0) ∈ Tq(t f )M f (in local coordinates).

As we show later (see Chapter 3), Assumption 2.2 reveals to be useful to recover a
closed-loop form of optimal controls as functions of the state and the adjoint vector.

55



Chapter 2. Rendezvous Problems

2.2.2 Optimal Interception Problem (OIP)

From a numerical viewpoint, we focus on a particular subclass of (GOGP): the endo-
atmospheric interception. The context can be summarized as follows (see, e.g. [6]).
The target is represented by a supersonic missile whose position is assumed to be
known at each time step. The objective consists in intercepting the target employing
a ground-to-air/air-to-air missile by maximizing the chances to neutralize the threat.
Many phases occur to control the vehicle. During the first phase, when the intercept-
ing missile is launched, some predefined controllers stabilize its critical movements
due to its too low velocity. When a certain threshold value of the velocity is reached,
the mid-course phase controllers start to guide the vehicle; this phase is the longest
one and needs a control strategy able to provide the best conditions to intercept the
target when the interceptor reach some precomputed impact point. When this point
is attained, the mid-course controller stops allowing the last, usually automatized,
control strategy to guide the intercepting missile to the impact with the threat.

We focus on seeking optimal strategies for the mid-course phase. This problem can
be represented mathematically introducing the Optimal Interception Problem (OIP),
which consists in minimizing the cost

C (t f ,u) =C1t f −‖v(t f )‖2 +C2

∫ t f

0

(‖u(t )∧v(t )‖
‖v(t )‖

)2

d t (2.14)

where coefficients 0 ≤ C1 ≤ 1 and C2 ≥ 0 are constant, under the dynamical system
(2.12) and constraints (2.13), with free final time t f . This cost is set up to maximize
the chances to reach the target with reasonable delay and with maximal velocity, fol-
lowing the hit-to-kill principle: the more the magnitude of the velocity is significant
at the impact point, the more probably the impact succeeds (see, e.g. [6]).
According to the discussion above, the final target represents some predicted impact
point whose final position and direction of the final velocity are fixed. This is due to
the fact that better chances to complete the mission arise if specific orientations of
the final velocity are ensured. Therefore, the target manifold M f writes

M f =
{

(r,v) ∈R6 \ {0} | r = r f ,
v ·er

‖v‖ = cosψ1
f ,
v ·eL

‖v‖ = cosψ2
f ,
v ·e`
‖v‖ = sinψ2

f

}
(2.15)

where r f is a fixed position and ψ1
f ,ψ2

f are fixed angles. Coherently with (2.14), the
magnitude of the final velocity is left free. Assumption 2.2 is satisfied (see Chapter 3).
The integral term of cost (2.14) prevents problem (OIP) to be properly interpreted as
a particular guidance problem (GOGP), where only Mayer-type terms appear. How-
ever, its presence is merely used, in the engineering community, as an expedient to
better stabilize the optimal control problem by minimizing the number of excessively
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abrupt maneuvers. Since our general problem (GOGP) imposes a bound on the pos-
sible values of the angle α (by means of constraints (2.13)), we remove the integral
term from cost (2.14), minimizing rather the following criterion

C (t f ,u) =C1t f −‖v(t f )‖2 (2.16)

where C1 ∈ {0,1}. When (2.16) replaces (2.14), problem (OIP) may become harder to
solve because quadratic expressions able to convexifying the problem are removed.
For numerical simulations, we are interested in considering a solid-fuel propelled,
skid-to-turn, axial symmetric missile of low weight. In terms of the aerodynamical
quantities introduced in the previous sections, the parameters of the missile are

• cm0 (m0) = 0.00075 m−1 , d0(m0) = 0.00005 m−1

• η= 0.442 , hr = 7500 m , αmax = π
6 rad

•
q

m0
(t ) =

{
0.025 s−1 , t ≤ 20 s

0 , t > 20 s
,

fT

m0
(t ) =

{
37.5 m · s−2 , t ≤ 20 s

0 , t > 20 s
.

We end the paragraph by remarking the importance of solving fast problem (OIP). In-
deed, the predicted impact point may change rapidly during time in the case that the
threat is able to elaborate fast evasive maneuvers, in which case, high speed updates
of optimal intercepting strategies are compulsory (often, in a delay of 1-10 Hz).

2.2.3 Optimal Interception Problem with Delays (OIP)τ

The last problem that we consider is a variant of the optimal interception problem, in
which a control on the rotational velocity is introduced, considering moreover some
delay on mechanical information communication. This problem allows to simulate
phenomena like the non-minimum phase problem, whose principle is as follows
(see, e.g. [95, 96]). Consider a bank-to-turn or a skid-to-turn vehicle (such as the
dynamical system considered for (OIP), see, e.g. [8, 6]). In order to gain altitude,
the first typical maneuver executed by the control system consists in rotating the air-
craft to increase the angle of attack. Rotating the vehicle produces a temporary loss of
pressure that develops a downward force at the tail. This causes an overall downward
force on the aircraft that initially lowers the center of gravity, before the increased up-
ward force on the main wings from the increased angle of attack raises the vehicle.
Practically, this phenomenon can be easily reproduced by inserting a delay between
the variation of the angular velocity and the effect of the lift raising the vehicle.
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In this context, the vehicle is subject to the following augmented dynamics

ṙ = v , ḃ=u

v̇ = fτ(t ,r,v,b,b(t −τ)) = fT (t )

m
b− g (r)

r

‖r‖−(
d +ηcm

(‖b∧v‖
‖v‖

)2 )
‖v‖v+ cm

(
v∧ (b(t −τ)∧v)

)
(2.17)

where, now, we do not control the direction of the principal body axis b any more,
but rather, its velocity, that we denote by u. Remark the presence of the state delay
τ within the lift term. Denoting by x = (r,v,b) the new state variables, the Optimal
Interception Problem with Delays (OIP)τ consists in minimizing the cost

C (t f ,u) =−‖v(t f )‖2 +
∫ t f

0
‖u(t )‖2 d t (2.18)

such that

ẋ(t ) =


ṙ(t )

v̇(t )

ḃ(t )

=


v(t )

fτ(t ,r(t ),v(t ),b(t ),b(t −τ))

u(t )

= f (t , x(t ), x(t −τ),u(t ))

x(t ) = (r(t ),v(t ),b(t )) ∈R6 \ {0}×S2

x(0) = x0 = (r0,v0,b0) , x(t f ) = (r(t f ),v(t f ),b(t f )) ∈ M f ⊆R6 \ {0}×S2

(2.19)

among all the control u ∈ L∞([0, t f ],R3) satisfying, almost everywhere in [0, t f ],

‖u(t )‖ ≤Cω (2.20)

where Cω > 0 is constant, and the final time t f may be free or not. Similarly to the
original problem without delays, the final manifold takes the form

M f =
{

(r,v,b) ∈R6 \ {0}×S2 | r = r f ,
v ·er

‖v‖ = cosψ1
f ,
v ·eL

‖v‖ = cosψ2
f ,
v ·e`
‖v‖ = sinψ2

f (2.21)

b ·er

‖b‖ = cosψ3
f ,
b ·eL

‖b‖ = cosψ4
f ,
b ·e`
‖b‖ = sinψ4

f

}
where ψ3

f and ψ4
f are fixed angles related to the direction of the principal body axis.

One remarks that formulation (OIP)τ does not contain constraints (2.9), considered
in both the two previous optimal control problems. Unfortunately, in this case, (2.9)
arises pure state constraints, thus making harder the analysis via the Maximum Prin-
ciple than in (OIP) (see Chapter 3), and consequently, the implementation of effi-
cient shooting methods. The interest of considering (OIP)τ lies on the presence of
the delay τ, which makes the analysis of the Maximum Principle and performing im-
plementations of shooting methods more challenging (but possible, see Chapter 6).
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Structure of Extremals and Numerical
Strategies of Guidance
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3
Structure of Extremals for

Optimal Guidance Problems

As presented in the introduction, one of the main objectives of this thesis consists in
providing efficient algorithms, based on indirect methods, for the optimal guidance
of launch vehicles, and for this, the first step dwells upon the analysis of necessary
optimality conditions via the Maximum Principle. This chapter aims to provide the
analytical structure of Pontryagin extremals, in particular of controls as functions of
the state and the adjoint vector, for a broad optimal guidance framework, by inves-
tigating the general optimal guidance problem (GOGP). The abstract nature of the
proposed study makes possible to apply the achieved results to more general endo-
atmospheric launch vehicle problems than usual rendezvous applications.

Our analysis faces two main difficulties, that we can informally illustrate as follows.

As we designed in Chapter 2, formulation (GOGP) contains mixed control-state con-
straints. In Chapter 1, we saw that solving these control problems by means of shoot-
ing methods turns out to be a hard task because Theorem 1.4 provides closed-loop
dynamical equations related to the adjoint vector, only if, the evolutions of the multi-
pliers µme , µmi related to the mixed constraints are known. In the aerospace context,
a smart solution to this first issue, often taken into account by the engineering com-
munity, consists in reducing (GOGP) to a particular local formulation by using Euler
coordinates. This allows to rewrite the original mixed control-state constraints as
pure control constraints, which is of great advantage for applying classical shooting
methods to (GOGP), as discussed in Section 1.3.3. However, this smart trick provides
a second nonnegligible difficulty. Indeed, due to their local nature, Euler coordinates
introduce some singularities, preventing from describing all feasible missions, which
translates into the loss of possible optimal solutions, or worse, numerical failures.

Any efficient solution to the previous issues should provide the possibility to use clas-
sical shooting methods avoiding to fall into singularities due to local representations.
Analyzing the dynamics related to (GOGP), one suspects that there is no global trans-
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formation to convert the concerned mixed constraints into pure control constraints
(e.g. quaternions are not suited for). Then, a smart mix of local strategies is preferred.

The solution that we propose consists in providing an additional chart, which covers
the singularities of the previous coordinates, and under which, the mixed control-
state constraints can be converted into pure control constraints. We are able to pro-
vide the consistency of these new problems, in the sense that, any global extremals
of (GOGP) can be locally projected onto the extremals coming from the two local re-
formulations of (GOGP). This allows to entirely classify regular and nonregular arcs.

The chapter is organized as follows. In Section 3.1, we analyze the abstract framework
in which an optimal control problem with mixed control-state constraints (OCP)m

(see Section 1.4.2) can be splitted into several local problems with pure control con-
straints. We derive abstract conditions concerning the consistency of the local ad-
joint vectors (as explained above). Sufficient optimality conditions are analyzed as
well. Section 3.2 is devoted to the development of specific local charts satisfying con-
sistency conditions for (GOGP). First, the usual Euler coordinates for the transforma-
tion of mixed constraints are introduced from a more geometric point of view. Then,
they are closed by other Euler coordinates, always providing pure control constraints.
Finally, in Section 3.3, we provide a complete description of both regular and nonreg-
ular extremals for (GOGP), by exploiting the local formulations developed previously.

3.1 Local Change of Problems Under Abstract Framework

In this section, we focus on the abstract form (OCP)m of a general optimal control
problem with mixed control-state constraints, as in formulation (1.18)-(1.20). We are
interested in applying the Maximum Principle, given by Theorem 1.4, to conceive a
shooting method able to converge efficiently and quickly. However, as we detailed
in Section 1.4.2, the presence of the multiplier µm , related to the mixed constraint,
prevents from integrating the adjoint equations in an easy way. In what follows, we
develop an analysis to show that, with the help of some local transformations, we are
able to recover the global evolution of the adjoint vector of an extremal of (OCP)m ,
without any information about the multiplier µm , by studying local problems with
pure control constraints. This result is applied to (GOGP) in Section 3.2.

From now on, we denote by (q̄(·), ū(·)) any optimal solution of problem (OCP)m , with
final time t f . Moreover, we assume that the mixed constraint function cm satisfies
Assumption 1.1, i.e. it is regular. Then, there exists a tuple (p(·), p0,µe,m(·),µi ,m(·)),
with (p(·), p0) 6= 0, satisfying the thesis of Theorem 1.4 and, in particular, conditions
(1.23)-(1.28), where the Hamiltonian related to (OCP)m is given by (1.22).

62



3.1. Local Change of Problems Under Abstract Framework

3.1.1 Reduction to Local Problems with Pure Control Constraints

The local reduction that we present is based on the existence of some transforma-
tions allowing to commute locally the mixed constraint into pure control constraints.

Assumption 3.1. There exist an atlas {(Vi ,ϕi )}i∈I of M and related smooth functions
Ti : Vi ×Rm →Rm , ci ,me :R×Rm →Rrme , ci ,mi :R×Rm →Rrmi satisfying:

• For every q ∈ Vi , the mappings Ti (q, ·) : Rm → Rm are homeomorphisms such
that their inverses T −1

i (q, ·) :Rm →Rm are continuous with respect to q.

• For every (t , q, w) ∈ R×Vi ×Rm , there hold cme (t , q,Ti (q, w)) = ci ,me (t , w) and
cmi (t , q,Ti (q, w)) = ci ,mi (t , w).

Under Assumption 3.1, the modified local problems are introduced as follows.
Since q̄([0, t f ]) is compact, we cover [0, t f ] by a finite number of closed intervals
[ri , si ], for which q̄([ri , si ]) ⊆ Vi , where (Vi ,ϕi ) are the local charts given by Assump-
tion 3.1. Our analysis is developed around the optimal trajectory q̄ , and then, with-
out loss of generality, we multiply the dynamics (1.19) related to problem (OCP)m by
smooth cut-off functions, each of which has support contained in Vi and assume 1 as
value within a compact set in Vi containing the local trajectory q̄([ri , si ]). This allows
to consider local formulations of (OCP)m , under the following compact form

(OCP)m,i



min g (si , q(si ))+
∫ si

ri

f 0(t , q(t ),u(t )) d t

q̇(t ) = f (t , q(t ),u(t )) , q(t ) ∈Vi a.e. t ∈ [ri , si ]

q(ri ) = q̄(ri ) , q(si ) = q̄(si ) , u ∈ L∞([ri , si ],Rm)

cme (t , q(t ),u(t )) = 0 , cmi (t , q(t ),u(t )) ≤ 0 a.e. t ∈ [ri , si ]

which is well-defined for the construction operated above. From the local optimality
of (q̄(·), ū(·)), we derive that, for every index i where q̄ |[ri ,si ] is defined, the couples
(q̄i (·), ūi (·)) = (q̄|[ri ,si ](·), ū|[ri ,si ](·)) are solutions of problems (OCP)m,i , respectively.
Let (qi (·),ui (·)) be any admissible trajectory of (OCP)m,i and define the curve

wi (·) = T −1
i (qi (·),ui (·)) : [ri , si ] →Rm

which, under Assumption 3.1, is a measurable bounded function in [ri , si ]. It is clear
that, almost everywhere in [ri , si ], there hold

q̇i (t ) = f (t , qi (t ),ui (t )) = f
(
t , qi (t ),Ti (qi (t ), wi (t ))

)
and

ci ,me (t , wi (t )) = cme

(
t , qi (t ),Ti (qi (t ), wi (t ))

)= cme (t , qi (t ),ui (t )) = 0 ,
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ci ,mi (t , wi (t )) = cmi

(
t , qi (t ),Ti (qi (t ), wi (t ))

)= cmi (t , qi (t ),ui (t )) ≤ 0 .

Therefore, it follows straightforwardly that, by denoting w̄i (·) = T −1
i (q̄i (·), ūi (·)), the

couples (q̄i (·), w̄i (·)) are optimal solutions, respectively, of the new class of local prob-
lems with pure control constraints assuming the following compact form

(OCP)i



min g (si , q(si ))+
∫ si

ri

f 0(t , q(t ),Ti (q(t ), w(t ))
)

d t

q̇(t ) = f
(
t , q(t ),Ti (q(t ), w(t ))

)
, q(t ) ∈Vi a.e. t ∈ [ri , si ]

q(ri ) = q̄(ri ) , q(si ) = q̄(si ) , w ∈ L∞([ri , si ],Rm)

ci ,me (t , w(t )) = 0 , ci ,mi (t , w(t )) ≤ 0 a.e. t ∈ [ri , si ]

where the functions u are substituted by the new control functions w . In the same
way as before, one proves that if (q̄i (·), w̄i (·)) are solutions of (OCP)i , respectively,
then, the couples

(
q̄i (·),Ti (q̄i (·), w̄i (·))

)
are solutions of (OCP)m,i , respectively.

Problems (OCP)i are local reformulations with only pure control constraints of the
original problem (OCP)m . From this, one may wonder whether it is possible to solve
(OCP)m with shooting methods, by applying the Maximum Principle to problems
(OCP)i with pure control constraints, avoiding the presence of additional multipliers
related to mixed constraints. In this case, an issue arises. Indeed, since the control
changes when passing from (OCP)m,i to (OCP)i , it is not clear a priori how the adjoint
vector of problem (OCP)m,i is related to the adjoint vector of problem (OCP)i . A
solution to this controversy is provided by the following consistency result.

Theorem 3.1. Suppose that (q̄(·), ū(·)) is an optimal solution of (OCP)m , with final
time t f . Assume that Assumption 1.1 holds for (OCP)m and let (p(·), p0,µme (·),µmi (·))
be any tuple, with (p(·), p0) 6= 0 and p0 ≤ 0, satisfying conditions (1.23)-(1.28) of The-
orem 1.4. Denoting q̄i = q̄|[ri ,si ], ūi = ū|[ri ,si ] and w̄i = T −1

i (q̄i , ūi ), under Assump-
tion 3.1, there exist couples (pi (·), p0

i ) such that the tuple (q̄i (·), pi (·), p0
i , w̄i (·)) is an

extremal of (OCP)i in [ri , si ], satisfying the Maximum Principle (1.7)-(1.10) and

p0
i = p0 and pi (t ) = p(t ) , t ∈ [ri , si ] . (3.1)

Theorem 3.1 states that there exist adjoint vectors coming from the Maximum Prin-
ciples applied to (OCP)m and to (OCP)i , respectively, which coincides within each
subinterval [ri , si ]. This practically allows us to seek a global adjoint vector of (OCP)m

by gluing together the local adjoint vectors related to the local problems (OCP)i .
Before giving the proof of Theorem 3.1, let us clarify how one could take advantage
of this to solve (OCP)m numerically by classical shooting methods (see Section1.3.3).
Without loss of generality, we assume that Assumption 3.1 is satisfied by an atlas
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composed by two charts (V1,ϕ1), (V2,ϕ2) and that q(0) ∈ V1. If the optimal value of
p(0) is known, from p1(0) = p(0), we start a shooting method on (OCP)1. Suppose
that, at a given time t2 ∈ (0, t f ), the optimal trajectory is such that q(t2) ∈ V2 \ V1, i.e.
the solution crosses a singular region of the first local chart. Then, we can stop mo-
mentarily the numerical computations at a time t1 < t2 such that q(t1) ∈V1 ∩V2 and
start, from p2(t1) = p1(t1), a shooting method on (OCP)2, avoiding the geometrical
singularity related to V1 when reaching the point q(t2). This procedure can be iter-
ated every time a jump from V1 to V2 (as well as a jump from V2 to V1) occurs in the
optimal trajectory. The adjoint vector related to (OCP)m is recovered thanks to (3.1).

Remark 3.1. The thesis of Theorem 3.1 still remains valid if we consider any extremal
(q(·), p(·), p0,µme (·),µmi (·),u(·)) of (OCP)m satisfying the conditions of Theorem 1.4,
but not necessarily optimal (this follows easily from the proof of Theorem 3.1, below).

Proof of Theorem 3.1. Without loss of generality, we consider the case for which the
integral cost function is zero, i.e. f 0 = 0, and, for sake of clarity in notations, we
assume that only mixed inequality constraints appear and that we denote by cm .
Let (p(·), p0,µm(·)) be any tuple, with (p(·), p0) 6= 0 and p0 ≤ 0, satisfying conditions
(1.23)-(1.28) of Theorem 1.4. In the following, (x1, . . . , xn ;ξ1, . . . ,ξn) denote the local
coordinates of T ∗M and we use the Einstein’s notation for sums.

Fix an integer i and define p0
i = p0. The stationarity condition (1.25), almost every-

where in [ri , si ], locally reads

ξk (t )
∂ f k

∂u j
(t , q̄i (t ), ūi (t ))+µk

m(t )
∂ck

m

∂u j
(t , q̄i (t ), ūi (t )) = 0 (3.2)

for every j = 1, . . . ,m. Assumption 3.1 implies that cm(t , q,Ti (q, w)) = ci (t , w), for ev-
ery (t , q, w) ∈R×Vi ×Rm , which does not depend on the state q . Then, differentiating
each coordinate of this expression with respect to x l at (t , q̄i (t ), w̄i (t )), we obtain

0 = d [ck
m(t , q,Ti (q, w))]

d x l
(t , q̄i (t ), w̄i (t ))

= ∂ck
m

∂x l
(t , q̄i (t ), ūi (t ))+ ∂ck

m

∂u j
(t , q̄i (t ), ūi (t ))

∂T j
i

∂x l
(q̄i (t ), w̄i (t ))

for every k =,1 . . . ,rm . Multiplying the previous expression by µk
m(t ), and plugging it

into (3.2), there results

µk
m(t )

∂ck
m

∂x l
(t , q̄i (t ), ūi (t )) = ξk (t )

∂ f k

∂u j
(t , q̄i (t ), ūi (t ))

∂T j
i

∂x l
(q̄i (t ), w̄i (t )) . (3.3)
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By definition of Hamiltonian field (see expression (1.2) and the Hamiltonian dynam-
ical system (1.21)), the adjoint vector p, almost everywhere in [ri , si ], satisfies

ξ̇l (t ) =−∂ f k

∂x l
(t , q̄i (t ), ūi (t ))ξk (t )−µk

m(t )
∂ck

m

∂x l
(t , q̄i (t ), ūi (t )) (3.4)

for every l =,1 . . . ,n. Exploiting expression (3.3), from (3.4) we finally obtain

ξ̇l (t ) =−∂ f k

∂x l
(t , q̄i (t ), ūi (t ))ξk (t )− ∂ f k

∂u j
(t , q̄i (t ), ūi (t ))

∂T j
i

∂x l
(q̄i (t ), w̄i (t ))ξk (t )

=−d [ f k (t , q,Ti (q, w))]

d x l
(t , q̄i (t ), w̄i (t ))ξk (t ) .

The previous relation and (1.2) show that the local covector curve pi (·) = p|[ri ,si ](·)
is an adjoint vector for problem (OCP)i , satisfying the adjoint equations (1.7). In
particular, the transversality conditions (1.9)-(1.10) clearly follows from (1.27)-(1.28).
It remains to recover the maximality condition (1.8). Writing locally condition (1.24),
almost everywhere in [ri , si ], one has〈

pi (t ), f (t , q̄i (t ), ūi (t ))
〉≥ 〈

pi (t ), f (t , q̄i (t ),u)
〉

(3.5)

for every u ∈ Rm such that cm(t , q̄i (t ),u) ≤ 0. If w ∈ Rm satisfies ci (w) ≤ 0, setting
u = Ti (q̄i (t ), w), one obtains cm(t , q̄i (t ),u) ≤ 0. Then, from (3.5), we infer that〈

pi (t ), f
(
t , q̄i (t ),Ti (q̄i (t ), w̄i (t ))

)〉= 〈
pi (t ), f (t , q̄i (t ), ūi (t ))

〉
≥ 〈

pi (t ), f (t , q̄i (t ),u)
〉= 〈

pi (t ), f
(
t , q̄i (t ),Ti (q̄i (t ), w)

)〉
which implies condition (1.8) for problem (OCP)i . The conclusion follows.

3.1.2 Sufficient Conditions Under Reduction to Local Problems

In the presence of constraints depending on the state, giving sufficient conditions of
optimality becomes a difficult question and the framework provided in Section 1.3.2
cannot be considered. In the literature, many authors analyzed the issue and gave
different sufficient conditions (the classical references are [97, 98, 99, 100, 101, 102]).
However, when the problem (OCP)m with mixed constraints can be reduced, by As-
sumption 3.1, to the local problems (OCP)i with pure control constraints, providing
sufficient conditions of local optimality becomes easier because one can adopt the
structure of Theorem 1.2. In this section, we develop such sufficient conditions.

We consider the autonomous framework, i.e. we assume to deal with a problem
(OCP)m with mixed control-state constraints governed by autonomous dynamics
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3.1. Local Change of Problems Under Abstract Framework

f (q,u), autonomous cost f 0(q,u) and autonomous constraints cm(q,u). Moreover,
without loss of generality, we suppose that the final cost function g is zero (see Re-
mark 1.1 of Chapter 1). Proceeding as in Section 1.3.2, we need to build submanifolds
of T ∗M in which we assume that the canonical projections are diffeomorphisms.
Under Assumption 3.1, up to multiply the vector field f by some smooth cut-off func-
tions with compact support contained in the open sets Vi , we may assume that each

q̇(t ) = f
(
q(t ),Ti (q(t ), w(t ))

)
, w(t ) ∈Rm (3.6)

evolves within each Vi . From this, after having defined the normal Hamiltonians

hi (q, p, w) = hi ,w (p) = 〈p, f (q,Ti (q, w))〉− f 0(q,Ti (q, w))

and their maxima
Hi (q, p) = max

ci ,me (w) = 0
ci ,mi (w) ≤ 0

hi (q, p, w)

we may assume that Hi : T ∗Vi →R are smooth and such that their Hamiltonian fields
Hi : T ∗Vi → T (T ∗Vi ) are well-defined, smooth and complete. From now on, we con-
sider only curves starting from some fixed times ri and ending at some fixed times
si , where ri+1 = si (the reason for this will be clear soon, see Theorem 3.2). For every
germ ai ∈ C∞(Vi ), the images of their differentials L i

ri
= d ai (Vi ) ⊆ T ∗Vi are smooth

submanifolds of dimension n of T ∗Vi , respectively. It follows that the sets

L i
t = expHi

(t ;ri , ·) ·L i
ri
⊆ T ∗Vi , L i = {(p, t ) | p ∈L i

t , t ∈R} ⊆ T ∗Vi ×R
are smooth submanifolds of dimension n and n+1, respectively. As a classical result,
the restrictions of the integral invariants of Poincaré-Cartan

pd q −Hi d t ∈ A1(T ∗Vi ×R)

onto the submanifolds L i , respectively, are exact smooth 1-forms. From these pre-
liminary considerations, we provide the following sufficient condition framework.

Assumption 3.2. There exists an atlas {(Vi ,ϕi )}i∈I of M satisfying Assumption 3.1
whose local charts have simply connected domains Vi and, for every i ∈I , the trajec-
tories arising from the dynamical problem (3.6) are piecewise smooth. Moreover, for
every i ∈ I , there exist germs ai ∈ C∞(Vi ) such that the mappings π|L i

t
: L i

t → Vi are

diffeomorphisms for every t ∈R, where π : T ∗Vi →Vi are the canonical projections.

Remark 3.2. In Assumption 3.2, we ask for a greater regularity than one needs. From
a practical point of view, one requires that, around a normal extremal of final time t f ,
a finite number of projections π|L i

t
: L i

t →Vi are diffeomorphisms for every t ∈ (ri , si ].
The piecewise smooth regularity of the trajectories arising from (3.6) is necessary to
correctly evaluate line integrals. Related to this, a misprint is contained in the proof of
Theorem 17.2 in [34]: the issue is solved by requiring this piecewise smooth regularity.
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Assumption 3.2 represents sufficient prerequisites for local optimality, which hold
under no-fold conditions. Our local optimality result takes the following form.

Theorem 3.2. Assume that Assumption 3.2 holds and let (q∗, p∗,µ∗
me

,µ∗
mi

,u∗) be a
normal extremal of problem (OCP)m with final time t f , satisfying q∗([ri , si ]) ⊆Vi and
p∗(ri ) ∈L i

ri
, for integers i = 1, . . . ,k such that r1 = 0 and sk = t f . There exists an open

neighborhood W ⊆ M of q∗, such that, the inequality∫ t f

0
f 0(q∗(t ),u∗(t )) d t ≤

∫ t f

0
f 0(q(t ),u(t )) d t (3.7)

holds for every admissible trajectory q : [0, t f ] → M of (OCP)m , i.e. satisfying dynamics
(1.19) and associated to a control u : [0, t f ] → Rm which satisfies constraints (1.20),
that belongs to W and provides q(ri ) = q∗(ri ), q(si ) = q∗(si ) for every i = 1, . . . ,k.

Proof. Without loss of generality, for sake of clarity in the exposition and notations,
we assume that only mixed inequality constraints appear and that we denote by cm .

Since M is a locally compact Hausdorff space, we build k open sets Wi with com-
pact closures, such that q∗([ri , si ]) ⊆ Wi ⊆ W i ⊆ Vi , for every i = 1, . . . ,k. Then, up
to multiply the dynamics f (q,u) by some smooth cut-off functions that assume the
value 1 in W i and that have supports contained in Vi , respectively, thanks to Assump-
tion 3.1, any problem (OCP)i , in which q(ri ) = q̄(ri ), q(ri ) = q̄(ri ) are substituted by
q(ri ) = q∗(ri ), q(ri ) = q∗(ri ), is well-defined if i = 1, . . . ,k. We set W = ⋃

i=1,...,k
Wi .

For any integer i ∈ {1, . . . ,k}, since T ∗
q Vi

∼= T ∗
q M for q ∈Vi , the curves

q∗
i (·) = q∗|[ri ,si ](·) : [ri , si ] →Vi , p∗

i (·) = p∗|[ri ,si ](·) : [ri , si ] → T ∗Vi

are well-defined and absolutely continuous. Moreover, the control u∗
i (·) = u∗|[ri ,si ](·),

locally almost everywhere in [ri , si ], satisfies cm(q∗
i (t ),u∗

i (t )) ≤ 0 . Then, by coupling
conditions (1.23)-(1.28) with (3.2), (3.3) and (3.4) as done in the proof of Theorem
3.1, we easily obtain that the local control w∗

i (·) = T −1
i (q∗

i (·),u∗
i (·)) makes the tuple

(q∗
i (·), p∗

i (·), w∗
i (·)) a normal extremal of problem (OCP)i in [ri , si ], for any i = 1, . . . ,k.

Let (q(·),u(·)) be an admissible couple for (OCP)m defined on [0, t f ], satisfying the in-
clusion q([0, t f ]) ⊆ W and the compatibility conditions q(ri ) = q∗(ri ), q(si ) = q∗(si )
for any i = 1, . . . ,k. Denoting qi (·) = q |[ri ,si ], ui (·) = u|[ri ,si ] and wi (·) = T −1

i (qi (·),ui (·)),
with the same computations provided in Section 3.1.1, Assumption 3.1 gives that
(qi (·), wi (·)) is an admissible couple for problem (OCP)i on [ri , si ], for every i = 1, . . . ,k.

We prove that (3.7) holds in any subinterval [ri , si ], for i = 1, . . . ,k. Fix i ∈ {1, . . . ,k} and
define the mapping

π̄i : L i →Vi ×R : (p, t ) 7→ (π(p), t ) = (π|L i
t
(p), t )
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3.2. Local Transformations for (GOGP)

which is smooth because restriction of a smooth map on L i . Under Assumption 3.2,
π|L i

t
: L i

t →Vi are diffeomorphisms for every t ∈R, therefore, it is easily checked that

π̄i is an injective immersion. Since dim(L i ) = n +1, map π̄i is a diffeomorphism.
Consider the curve pi (·) = πT ∗ ◦ π̄−1

i (qi (·), ·) : [ri , si ] 7→ T ∗Vi , where πT ∗ is the projec-
tion onto T ∗M , such that pi (t ) ∈ T ∗

qi (t )Vi . Under Assumption 3.2, pi (·) is piecewise
smooth, while p∗

i (·) is smooth because the Hamiltonian fieldsHi are smooth maps.
We define the piecewise smooth curves

γ∗i : [ri , si ] →L i : t 7→ (p∗
i (t ), t ) , γi : [ri , si ] →L i : t 7→ (pi (t ), t )

that have the same initial and final points. Since Vi are simply connected and π̄i

are diffeomorphisms, L i are simply connected as well, and then, γ∗i (·) is homotopic
equivalent to γi (·). From the C∞-extension Whitney’s theorems and the fact that the
1-forms (s − Hi d t )|L i = (pd q − Hi d t )|L i are closed, from the properties of the line
integrals, we obtain∫ si

ri

f 0(q∗(t ),u∗(t )) d t =
∫ si

ri

f 0(q∗
i (t ),Ti (q∗

i (t ), w∗
i (t ))

)
d t

=
∫ si

ri

〈
p∗

i (t ), f
(
q∗

i (t ),Ti (q∗
i (t ), w∗

i (t ))
)〉

d t −
∫ si

ri

Hi (q∗
i (t ), p∗

i (t )) d t

=
∫ si

ri

(
sp∗

i (t )(ṗ∗
i (t ))−Hi (q∗

i (t ), p∗
i (t )

)
d t =

∫
γ∗i

(s −Hd t )

=
∫
γi

(s −Hd t ) =
∫ si

ri

(
spi (t )(ṗi (t ))−Hi (qi (t ), pi (t )

)
d t

=
∫ si

ri

〈
pi (t ), f

(
qi (t ),Ti (qi (t ), wi (t ))

)〉
d t −

∫ si

ri

Hi (qi (t ), pi (t )) d t

≤
∫ si

ri

〈
pi (t ), f

(
qi (t ),Ti (qi (t ), wi (t ))

)〉
d t −

∫ si

ri

hi (qi (t ), pi (t ), wi (t )) d t

=
∫ si

ri

f 0(qi (t ),Ti (qi (t ), wi (t ))
)

d t =
∫ si

ri

f 0(q(t ),u(t )) d t .

The conclusion follows.

3.2 Local Transformations for (GOGP)

Thanks to the previous treatise of mixed control-state constraints under abstract
frameworks, we are able to come back and efficiently manipulate our original endo-
atmospheric rendezvous problem. More specifically, the aim of this section consists
in showing how to build two local changes of coordinates for the general optimal
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guidance problem (GOGP) with mixed control-state constraints, introduced in Sec-
tion 2.2.1, that allows to convert the analysis to problems with only pure control con-
straints via Theorem 3.1. This turns out ot be fundamental to prepare the ground for
numerical computations of classical shooting methods (that we study in Chapter 4).

We start considering the transformation coming from the trajectory reference frame
(see, e.g. [4, 23]). These are classical local coordinates often used from the engineer-
ing community in flight contexts because of two main advantages: they allow to ex-
press all the concerned physical quantities as functions of estimable parameters, and
moreover, they implicitly remove the mixed control-state constraints coming from
relations (2.9). Nevertheless, due to their local nature, these coordinates introduce
some Euler singularities which prevent from representing the whole configuration
manifold. For the considered applications, this arises a complex issue since the vehi-
cle is often subject to abrupt maneuvers, falling into these Euler singularities. Several
choices can be made to figure out this issue. The most natural one consists in passing
to global coordinates, for example by using quaternions, even if, we may lose the pos-
sibility to translate the mixed constraints into pure control constraints. The novelty
of the proposed approach consists in introducing a new set of local coordinates able
both to cover the singularities of the trajectory reference frame and to still provide an
expression as pure control constraints of the mixed constraints (2.9).

3.2.1 Coordinates Under the Trajectory Reference Frame

The first local transformation is based on the trajectory reference frame. This frame
is built by using Euler coordinates based on the relations between the inertial frame
(I ,J ,K) and the NED frame (eL ,e`,er ) (see Section 2.1.1). We provide a construc-
tion by an intrinsic geometric insight, useful to establish the thesis of Theorem 3.1.

The trajectory reference frame (i1,j1,k1) is the unique local orthonormal frame, with
origin at the center of gravity G , whose normal vector i1 coincides with the direction
of the velocity v of the vehicle, the normal vector j1 belongs to the plane (i1,er ) and
is perpendicular to i1, such that, j1·er < 0, whilek1 = i1∧j1. By introducing the Euler
coordinates (v,γ,χ), frame (i1,j1,k1) can be uniquely described by the relations


i1 = v

v
= cosγcosχeL +cosγsinχe`− sinγer

j1 =−sinγcosχeL − sinγsinχe`−cosγer

k1 =−sinχeL +cosχe`

(3.8)
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such that the linear transformation from (eL ,e`,er ) to (i1,j1,k1) is given by

Ra(γ,χ) =
 cosγcosχ cosγsinχ −sinγ

−sinγcosχ −sinγsinχ −cosγ
−sinχ cosχ 0

 ∈ SO(3) .

Note that the set {(
eL

0

)
,

(
el

0

)
,

(
er

0

)
,

(
0
i1

)
,

(
0
j1

)
,

(
0
k1

)}

Figure 3.1: Graphical relations between
frame (eL ,e`,er ) and frame (i1,j1,k1).

is a basis of R6. The main step consists in
introducing a local chart for the configu-
ration manifold R6 \ {0} whose coordinates
are exactly the tuple (r,L, l , v,γ,χ), thanks
to which, we are able to express local basis
of the tangent bundle T (R6 \ {0}) as func-
tions of the orthonormal frame (eL ,e`,er )
and the orthonormal frame (i1,j1,k1). The
coordinate angles γ and χ are usually
known, in the engineering community, as
the slope and the azimuth, respectively.

Denote V =
[

(0,∞)× (−π
2 , π2

)× (−π,π)
]2

.

Lemma 3.1. The smooth mapping

ϕ−1
a : V →R6 \ {0} : (r,L,`, v,γ,χ) 7→

(
r
v

)
=

( −rer (L,`)
vi1(L,`,γ,χ)

)

=
r cosL cos` , r cosL sin` , r sinL , vRT (L,`) ·RT

a (γ,χ)

 1
0
0

>

is an injective embedding. Hence, denoting by Va =ϕ−1
a (V ) the open image of ϕ−1

a , the
couple (Va ,ϕa) is a local chart of R6 \ {0}. Moreover, the following relations hold

∂

∂r
=

( −er

0

)
,

∂

∂L
=

(
reL

−v cosχj1 − v sinγsinχk1

)
∂

∂`
=

(
r cosLe`

−v cosL sinχj1 + v(cosL sinγcosχ− sinL cosγ)k1

)
∂

∂v
=

(
0
i1

)
,

∂

∂γ
=

(
0

vj1

)
,

∂

∂χ
=

(
0

v cosγk1

)
where we identify TxR

6 ∼=R6 by the canonical isomorphism y 7→∑6
i=1 y i ∂

∂xi

∣∣
x .
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Proof. Evaluating the determinant of the Jacobian of the mapping ϕ−1
a by symbolic

computations gives
det (Jϕ−1

a ) =−r 2v2 cosL cosγ 6= 0

from which we infer thatϕ−1
a is a local diffeomorphism. Moreover, it is not difficult to

show that, thanks to (2.1) and (3.8), ϕ−1
a is injective. Therefore, the first part follows.

For the second part, we remark first that, by differentiating −rer (L,`), vi1(L,`,γ,χ)
with respect to (r,L, l , v,γ,χ), from (2.1) and (3.8), one has

∂i1

∂L
=−cosχj1 − sinγsinχk1 ,

∂i1

∂γ
= j1 ,

∂i1

∂χ
= cosγk1 (3.9)

∂i1

∂l
=−cosL sinχj1 + (cosL sinγcosχ− sinL cosγ)k1 .

At this step, let f ∈C∞(R6 \ {0}). Differentiating, we obtain

d f

(
∂

∂r

)
= ∂

∂r
( f ◦ϕ−1

a ) =∇ f · ∂ϕ
−1
a

∂r
= d f

(
6∑

i=1

∂(πi ◦ϕ−1
a )

∂r

∂

∂xi

)

therefore ∂
∂r =∑6

i=1
∂(πi ◦ϕ−1

a )
∂r

∂
∂xi . The same computation can be operated for the other

variables. Combining this with (3.9), the conclusion follows straightforwardly.

This chart allows to reduce the mixed control-state constraints in problem (GOGP)
to standard pure control constraint as follows. Related to the local chart (Va ,ϕa), we
define the following local smooth functions

Ta : Va ×R3 →R3 : (r,v,w) 7→ R>(L,`) ·R>
a (γ,χ)w (3.10)

c0 :R3 →R :w 7→ w 2
1 +w 2

2 +w 2
3 −1 (3.11)

c1 :R3 →R :w 7→ −w1 (3.12)

c2 :R3 →R :w 7→ w 2
2 +w 2

3 − sin2αmax . (3.13)

where no misreadings of notations arise considering the mixed constraints in (GOGP):
the mixed constraints c1 and c2 related to (GOGP) take the couple (q,u) as argument.
Referring to (GOGP) as defined in Section 2.2.1, for every (r,v,w) ∈Va×R3, there hold

c0(Ta(r,v,w)) = c0(w) , c1(v,Ta(r,v,w)) = c1(w) , c2(v,Ta(r,v,w)) = c2(w) .

Therefore, the local chart (Va ,ϕa), together with transformations Ta , c0, c1 and c2,
satisfy Assumption 3.1 (remark that Ta(r,v, ·) is continuously invertible), and then,
is a good candidate to constitute an atlas for R6 \ {0} to correctly apply Theorem 3.1.
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Before passing to the next local coordinates, let us write explicitly problem (GOGP) in
the local coordinates provided by (Va ,ϕa). For this, we write the dynamics of (GOGP)
along the frames (eL ,e`,er ), (i1,j1,k1) with respect to coordinates (r,L, l , v,γ,χ), by
using the transformation Ta . In particular, denotingw = Ra(γ,χ) ·R(L,`)u, we have

v = v cosγcosχeL + v cosγsinχel − v sinγer

fT (t )

m
b= fT (t )

m
(w1i1 +w2j1 +w3k1) , g (r)

r

‖r‖ = g (r )(sinγi1 +cosγj1)

(
d +ηcm

(‖b∧v‖
‖v‖

)2 )
‖v‖v =

(
d +ηcm

(
w 2

2 +w 2
3

))
v2i1

cm
(
v∧ (b∧v)

)= cm v2(w2j1 +w3k1) .

Thanks to Lemma 3.1 and an inversion of change of coordinates matrix, we obtain
that the control system (2.12) is locally equivalent to

ṙ = v sinγ , L̇ = v

r
cosγcosχ , ˙̀= v

r

cosγsinχ

cosL

v̇ = fT

m
w1 −

(
d +ηcm

(
w 2

2 +w 2
3

))
v2 − g sinγ

γ̇=ωw2 +
(v

r
− g

v

)
cosγ , χ̇= ω

cosγ
w3 + v

r
cosγsinχ tanL

(r (t ),L(t ), l (t ), v(t ),γ(t ),χ(t )) ∈V

(3.14)

where ω(t ) = fT (t )
m(t )v(t ) + v(t )cm(t ) > 0, subject to the pure control constraints

c0(w) = w 2
1 +w 2

2 +w 2
3 −1 = 0 , c1(w) =−w1 ≤ 0 (3.15)

c2(w) = w 2
2 +w 2

3 − sin2αmax ≤ 0 .

Remark 3.3. A more explicit way to obtain system (3.14) consists in identifying T (R6 \
{0}) to R6 and considering the time derivative of the position r and the velocity v ex-
pressed along frames (eL ,e`,er ), (i1,j1,k1), respectively. Indeed, exploiting relations
(2.1), (2.2) and (3.8), one obtains

ṙ = d

d t
(−rer ) = r L̇eL + r l̇ cosLel − ṙer

v̇ = d

d t
(vi1) = v̇i1 +

(
v γ̇− v2

r
cosγ

)
j1 +

(
v cosγχ̇− v2

r
cos2γsinχ tanL

)
k1 .

These computations come straightforwardly from (3.9), so we avoid to report them.
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The Local Optimal Control Problem (GOGP)a in the local chart (Va ,ϕa) consists in
minimizing the general final cost

Ca(t f ,w) = g (t f ,ϕ−1
a (r,L,`, v,γ,χ)(t f )) (3.16)

subject to the dynamics (3.14) and the control constraints (3.15), under appropri-
ate initial and final conditions (as in control system (2.12)). The local formulation
(GOGP)a is already known and widely used in the aerospace community. However,
it does not allow to describe totally the original problem (GOGP) because of its local
nature. In several situations, demanding performance criteria and onerous missions
force optimal trajectories to pass through points that do not lie within the domain
of the local chart (Va ,ϕa), from which, by exploiting (GOGP)a , either the optimality
could be lost or, in the worst case, the numerical computations may fail. The geo-
metric insight that we gave allows to extend (GOGP)a to any concerned mission just
by introducing further local coordinates able to cover the singularity of (Va ,ϕa).

3.2.2 Additional Local Euler Coordinates

The singularities introduced by the local chart (Va ,ϕa) concerned the latitude L and
the slope γ. Indeed, when either L = π/2+kπ or γ = π/2+kπ, this chart is no more
a local diffeomorphism (see the proof of Lemma 3.1). In order to cover completely
R6 \ {0}, one need additional local charts for both L and γ. However, recalling the as-
sumptions provided in Section 2.1.1, the trajectories usually considered for our ap-
plications extend to few hundreds of kilometers, therefore, the singularity due to the
latitude is rarely encountered. Motivated from this important consideration, we seek
new local coordinates able to compensate the singularities due to the slope γ only.

Figure 3.2: Graphical relations between
frame (eL ,e`,er ) and frame (i1,j1,k1).

Inspired by the local expressions (3.8)
of the previously introduced Euler local
coordinates, we define a new trajectory
reference frame, denoted by (i2,j2,k2),
as the local frame whose origin is at
the center of gravity G of the vehicle
and which is related to the NED frame
(eL ,e`,er ) by the following relations

i2 = v
v
= cosθ sinφeL + sinθe`+cosθcosφer

j2 =−sinθ sinφeL +cosθe`− sinθcosφer

k2 =−cosφeL + sinφer

(3.17)
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such that the linear transformation from (eL ,e`,er ) to (i2,j2,k2) is given by

Rb(θ,φ) =
 cosθ sinφ sinθ cosθcosφ

−sinθ sinφ cosθ −sinθcosφ
−cosφ 0 sinφ

 ∈ SO(3) .

Comparing i1 and i2 from (3.8) and (3.17), we obtain

cosγcosχ= cosθ sinφ , cosγsinχ= sinθ , −sinγ= cosθcosφ

from which cosθ 6= 0 when cosγ= 0, and vice versa, therefore, frame (i2,j2,k2) covers
the Euler singularities due to γ of the first frame (i1,j1,k1). As before, the set{(

eL

0

)
,

(
el

0

)
,

(
er

0

)
,

(
0
i2

)
,

(
0
j2

)
,

(
0
k2

)}
is a basis of R6. The second chart, with coordinates (r,L, l , v,θ,φ), arises as follows.

Lemma 3.2. The smooth mapping

ϕ−1
b : V →R6 \ {0} : (r,L,`, v,θ,φ) 7→

(
r
v

)
=

( −rer (L,`)
vi2(L,`,θ,φ)

)

=
r cosL cos` , r cosL sin` , r sinL , vRT (L,`) ·RT

b (θ,φ)

 1
0
0


is an injective embedding. Hence, denoting by Vb =ϕ−1

b (V ) the open image of ϕ−1
b , the

couple (Vb ,ϕb) is a local chart of R6 \ {0}. Moreover, the following relations hold

∂

∂r
=

( −er

0

)
,

∂

∂L
=

(
reL

v cosθk2

)
∂

∂`
=

(
r cosLe`

−v(sinL sinφ+cosL cosφ)j2 + v sinθ(cosL sinφ− sinL cosφ)k2

)
∂

∂v
=

(
0
i2

)
,

∂

∂θ
=

(
0

vj2

)
,

∂

∂φ
=

(
0

−v cosθk2

)
where we identify TxR

6 ∼=R6 by the canonical isomorphism y 7→∑6
i=1 y i ∂

∂xi

∣∣
x .

Proof. The proof argues exactly as in Lemma 3.1, by noticing that

det (Jϕ−1
b ) = r 2v2 cosL cosθ 6= 0
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which we provide by symbolic computations, and there hold

∂i2

∂L
= cosθk2 ,

∂i2

∂θ
= j2 ,

∂i2

∂φ
=−cosθk2 (3.18)

∂i2

∂l
=−(sinL sinφ+cosL cosφ)j2 + sinθ(cosL sinφ− sinL cosφ)k2 .

To conclude, it remains to show that the new chart (Vb ,ϕb) transforms the mixed
control-state constraints of problem (GOGP) into pure control constraints. Com-
bined with the results on (Va ,ϕa), this will allow to apply Theorem 3.1 afterwards.
Define the following local smooth transformation

Tb : Vb ×R3 →R3 : (r,v,z) 7→ R>(L,`) ·R>
b (θ,φ)z (3.19)

from which, as in the previous section, for every (r,v,z) ∈Vb ×R3, we obtain

c0(Tb(r,v,z)) = c0(z) , c1(v,Tb(r,v,z)) = c1(z) , c2(v,Tb(r,v,z)) = c2(z) .

The pure control constraints c1(w), c2(w) replace the mixed constraints c1(v,u),
c2(v,u), respectively. In particular, the local chart (Vb ,ϕb), together with the trans-
formations Tb , c0, c1 and c2, satisfy Assumption 3.1 (remark that Tb(r,v, ·) is contin-
uously invertible). Then, charts (Va ,ϕa), (Vb ,ϕb) are suitable to apply Theorem 3.1.

As done for the chart (Va ,ϕa), we write explicitly problem (GOGP) in the local coor-
dinates provided by (Vb ,ϕb). Denoting z = Rb(θ,φ) ·R(L,`)u, we have

v = v cosθ sinφeL + v sinθe`+ v cosθcosφer

fT (t )

m
b= fT (t )

m
(z1i2+z2j2+z3k2) , g (r)

r

‖r‖ = g (r )(cosθcosφi2−sinθcosφj2+sinφk2)

(
d+ηcm

(‖b∧v‖
‖v‖

)2 )
‖v‖v =

(
d+ηcm

(
z2

2 + z2
3

))
v2i2 , cm

(
v∧(b∧v)

)= cm v2(z2j2+z3k2) .

Thanks to Lemma 3.2 and an inversion of change of coordinates matrix, we obtain
that the control system (2.12) is locally equivalent to

ṙ =−v cosθcosφ , L̇ = v

r
cosθ sinφ , ˙̀= v

r

sinθ

cosL

v̇ = fT

m
z1 −

(
d +ηcm

(
z2

2 + z2
3

))
v2 + g cosθcosφ

θ̇ =ωz2 + v

r
sinθ

(
cosφ+ sinφ tanL

)
− g

v
sinθcosφ

φ̇=− ω

cosθ
z3 + v

r
cosθ

(
sinφ+ tan2θ

(
sinφ− tanL cosφ

))
− g

v

sinφ

cosθ

(r (t ),L(t ), l (t ), v(t ),θ(t ),φ(t )) ∈V

. (3.20)
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Remark 3.4. Similarly to chart (Va ,ϕa), one can obtain system (3.20) by identifying
T (R6 \ {0}) to R6 and considering the time derivative of the velocity v expressed along
frame (i2,j2,k2). Exploiting relations (2.1), (2.2), (3.8) and (3.18), one obtains that

v̇ = v̇i2 +
[

v θ̇− v2

r
sinθ

(
cosφ+ sinφ tanL

)]
j2

+
[v2

r
cos2θ

(
sinφ+ tan2θ

(
sinφ− tanL cosφ

))
− vφ̇cosθ

]
k2 .

The Local Optimal Control Problem (GOGP)b in the local chart (Vb ,ϕb) consists in
minimizing the general final cost

Cb(t f ,z) = g (t f ,ϕ−1
b (r,L,`, v,θ,φ)(t f )) (3.21)

subject to dynamics (3.20) and constraints (3.15), under initial and final conditions.

Remark 3.5. The mappings ϕ−1
a : U → R6 \ {0}, ϕ−1

b : U → R6 \ {0} are not defined re-
spectively for the values χ = π, φ = π. However, these singularities can be covered by

considering ϕ−1
a and ϕ−1

b also within Ṽ =
[

(0,∞)× (−π
2 , π2

)× (0,2π)
]2

. Moreover, as we

specified previously, the Euler singularities induced by the variable L do not affect the
concerned trajectories. From these remarks, without loss of generality, we can assume
that the configuration manifold of (GOGP) reduces to the open set Va ∪Vb ⊆R6 \ {0}.

3.2.3 Global and Local Adjoint Formulations for (GOGP)

The previous transformations allow, under Theorem 3.1, to express the Maximum
Principle formulation related to (GOGP) by the Maximum Principle formulations re-
lated to (GOGP)a , (GOGP)b . In this section, we provide explicitly this relationship.

We first apply the intrinsic Maximum Principle formulation of Theorem 1.4 to prob-
lem (GOGP). We need to verify that Assumption 1.1 holds. Since c2(v,u) ≤ 0 implies
c1(v,u) 6= 0, it is sufficient to check that there are no coefficients a2 ≥ 0, b0 ∈R, which
are not both zero, such that

a2
∂

∂u

(‖v∧u‖2

‖v‖2
− sin2αmax

)
+b0

∂

∂u

(‖u‖2 −1
)= 0 .

But, it is easily verified that the matrix which arises combining these gradients −(v1u3 − v3u1)v3 − (v1u2 − v2u1)v2 u1

−(v2u3 − v3u2)v3 + (v1u2 − v2u1)v1 u2

(v2u3 − v3u2)v2 + (v1u3 − v3u1)v1 u3
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is of full rank, therefore, Assumption 1.1 holds. Let (q(·) = (r(t ),v(t )),u(·)) be an
optimal solution of (GOGP) with final time t f . Thanks to Theorem 1.4, there exist a
nonpositive scalar p0, an absolutely continuous curve p : [0, t f ] → T ∗M , for which
p(t ) ∈ T ∗

q(t )M , and three bounded functions µ0,µ1,µ2 ∈ L∞([0, t f ],R), where µ1,µ2

are nonpositive, with (p(·), p0) 6= 0 and such that, almost everywhere in [0, t f ], the
relations (1.23)-(1.28) hold. The multipliersµ0,µ1,µ2 are related to c0(u), c1(v,u) and
c2(v,u), respectively, and multiplier µ0 does not affect the adjoint equations (1.23).
Under the conclusions of Remark 3.5, let us assume that q([0, t f ]) ⊆ Va ∪Vb and
[0, t f ] =∪[ri , si ] such that either q([ri , si ]) ⊆Va or q([ri , si ]) ⊆Vb . Therefore, denote

xa(·) =ϕa ◦q(·) , w(·) = Ra(xa(·)) ·R(xa(·))u(·) , (3.22)

xb(·) =ϕb ◦q(·) , z(·) = Rb(xb(·)) ·R(xb(·))u(·)
where xa and xb must be understood as disjoint pieces of absolutely continuous
curves which exist only in each subinterval [ri , si ] (since it will be clear from the con-
text, we skip the dependence on i to keep better readability). By the optimality of
(q(·),u(·)), every segment of (xa ,w) and (xb ,z) are optimal solutions of (GOGP)a and
(GOGP)b , respectively, when concentrated on each subinterval [ri , si ]. At this step,
we apply Theorem 3.1, and it is clear that this theorem can be considered directly on
the coordinate versions of the concerned local problems (OCP)i , i.e. (GOGP)a and
(GOGP)b . In other words, there exist adjoint vectors

pa(·) = (pa
r , pa

L , pa
` , pa

v , pγ, pχ)(·) , pb(·) = (pb
r , pb

L , pb
` , pb

v , pθ, pφ)(·)
such that (xa , pa , p0,w) and (xb , pb , p0,z) are extremals of (GOGP)a and (GOGP)b , re-
spectively, satisfying conditions (1.7)-(1.10) of the Maximum Principle for problems
with pure control constraints, and such that (compare with Theorem 3.1)

p(t ) =
{

(ϕa)∗ϕa (r(t ),v(t )) ·pa(t ) , (r(t ),v(t )) ∈Va

(ϕb)∗ϕb (r(t ),v(t )) ·pb(t ) , (r(t ),v(t )) ∈Vb
(3.23)

where (ϕa)∗ and (ϕb)∗ are the pullbacks of charts (Va ,ϕa) and (Vb ,ϕb), respectively.

This procedure allows to study the Maximum Principle formulation of (GOGP) by
focusing only on the Maximum Principle formulations of (GOGP)a , (GOGP)b . We
stress the fact that, as suggested in Section 3.1.1, numerically our approach consists
in integrating the adjoint equations of pa and, as a coordinate singularity is encoun-
tered, passing to integrate the adjoint equations of pb , by first computing (compare
with (3.23))

pb(t ) = (ϕ−1
b )∗(r(t ),v(t )) ◦ (ϕa)∗ϕa (r(t ),v(t )) ·pa(t ) . (3.24)

Transformation (3.24) can be obtained quickly enough to ensure that usual numeri-
cal rates of convergence of classical shooting methods are efficiently maintained.
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We end by providing the adjoint equations of problems (GOGP)a , (GOGP)b , obtained
by symbolic computations and used both in the following sections and in Chapter 4.

Proposition 3.1. The adjoint equations of problems (GOGP)a , (GOGP)b are as follows:

ṗa
r = pa

L
v

r 2
cosγcosχ+pa

`

v

r 2

cosγsinχ

cosL
+pγ

( vcm

hr
w2 +

v

r 2
cosγ+ ∂g

∂r

cosγ

v

)
+ pχ

( vcm

hr cosγ
w3 +

v

r 2
cosγsinχ tanL

)
+pa

v

(∂g

∂r
sinγ− v2

hr

(
d +ηcm

(
w2

2 +w2
3

)))

ṗa
L =−pa

l
v

r

cosγsinχ tanL

cosL
−pχ

v

r

cosγsinχ

cos2 L
, ṗa

`
= 0

ṗa
v = −pa

r sinγ−pa
L

cosγcosχ

r
−pa

`

cosγsinχ

r cosL
+2pa

v v
(
d +ηcm

(
w2

2 +w2
3

))
+ pγ

(ω
v

w2 −
cosγ

r
− g

v2
cosγ

)
+pχ

(ω
v

w3

cosγ
− cosγsinχ tanL

r

)

ṗγ = −pa
r v cosγ+pa

L
v

r
sinγcosχ+pa

`

v

r

sinγsinχ

cosL

+ pχ
( v

r
sinγsinχ tanL− ωsinγ

cos2γ
w3

)
+pγ

( v

r
− g

v

)
sinγ+pa

v g cosγ

ṗχ = pa
L

v

r
cosγsinχ−pa

`

v

r

cosγcosχ

cosL
−pχ

v

r
cosγcosχ tanL

ṗb
r = pb

L
v

r 2
cosθ sinφ+pb

`

v

r 2

sinθ

cosL
+pθ

( vcm

hr
z2 +

v

r 2
sinθ

(
cosφ+ sinφ tanL

)+ ∂g

∂r

sinθcosφ

v

)
− pφ

( vcm

hr cosθ
z3 −

∂g

∂r

sinφ

v cosθ
− v

r 2
cosθ

(
sinφ+ tan2 θ(sinφ− tanL cosφ)

))
− pb

v

(∂g

∂r
cosθcosφ+ v2

hr

(
d +ηcm

(
z2

2 + z2
3

)))
, ṗb

`
= 0

ṗb
L =−pb

l
v

r

sinθ tanL

cosL
−pθ

v

r
sinθ sinφ

(
1+ tan2 L

)−pφ
v

r
cosθ tan2 θcosφ

(
1+ tan2 L

)

ṗb
v = pb

r cosθcosφ−pb
L

cosθ sinφ

r
−pb

`

sinθ

r cosL
+pθ

(ω
v

z2 +
sinθ(cosφ+ sinφ tanL)

r
+ g

v2
sinθcosφ

)
− pφ

(ω
v

z3

cosθ
− cosθ

(
sinφ+ tan2 θ(sinφ−cosφ tanL)

)
r

− g sinφ

cosθ

)
+2pb

v v
(
d +ηcm

(
z2

2 + z2
3

))

ṗθ = −pb
r v sinθcosφ+pb

L
v

r
sinθ sinφ−pb

`

v

r

cosθ

cosL
+pb

v g sinθcosφ−pθ
( v

r
cosθ(cosφ+ sinφ tanL)− g

v
cosθcosφ

)
+ pφ

(ωsinγ

cos2γ
z3 +

g

v

sinθ sinφ

cos2 θ
+ v

r
sinθ

(
sinφ+ tan2 θ(sinφ−cosφ tanL)

)−2
v

r
cosθ tanθ(sinφ−cosφ tanL)(1+ tan2 θ)

)

ṗφ = −pb
r v cosθ sinφ−pb

L
v

r
cosθcosφ+pb

v
g

v
cosθ sinφ−pθ

( g

v
sinθ sinφ+ v

r
(cosφ tanL− sinφ)

)
− pφ

( v

r
cosθ

(
cosφ+ tan2 θ(cosφ+ sinφ tanL)

)− g

v

cosφ

cosθ

)
.

79



Chapter 3. Structure of Extremals for Optimal Guidance Problems

3.3 Regular and Nonregular Pontryagin Extremals

Studying (GOGP)a and (GOGP)b permits to recover the whole behavior of optimal
controls u of (GOGP) as functions of the state and the costate. From this, we will be
able to efficiently compute shooting methods for problem (GOGP) (in Chapter 4).
More precisely, in the following section, we study the maximality conditions related
to problems (GOGP)a , (GOGP)b to recover related optimal controls w, z, respec-
tively, as functions of the state and the costate. Regular and nonregular cases arise.

From now on, we skip the dependence of the time t to keep better readability. Let
(q(·),u(·)) represent a solution of (GOGP) in the time interval [0, t f ], with augmented
adjoint vector (p(·), p0). Relations (3.22) provide that the local expressionsw, z of u
must maximize, respectively, the following Hamiltonians

ha = pa
r v sin+pa

L
v

r
cosγcosχ+pa

`

v

r

cosγsinχ

cosL

+pa
v

(
fT

m
w1 −

(
d +ηcm

(
w 2

2 +w 2
3

))
v2 − g sinγ

)
+pγ

(
ωw2 +

(v

r
− g

v

)
cosγ

)
+pχ

(
ω

cosγ
w3 + v

r
cosγsinχ tanL

)

hb =−pb
r v cosθcosφ+pb

L
v

r
cosθ sinφ+pb

`

v

r

sinθ

cosL

+pb
v

(
fT

m
z1 −

(
d +ηcm

(
z2

2 + z2
3

))
v2 + g cosθcosφ

)
+pθ

(
ωz2 + v

r
sinθ

(
cosφ+ sinφ tanL

)
− g

v
sinθcosφ

)
+pφ

(
− ω

cosθ
z3 + v

r
cosθ

(
sinφ+ tan2θ

(
sinφ− tanL cosφ

))
− g

v

sinφ

cosθ

)
when evaluated at the optimal local trajectories. By denoting Ca = pa

v
fT
m , Cb = pb

v
fT
m ,

Da = pa
vηcm v2 and Db = pb

vηcm v2, the maximality conditions read respectively

w(t ) = argmax

{
Ca w1 −Da(w 2

2 +w 2
3)+pγωw2 +pχ

ω

cosγ
w3 | (3.25)

w 2
1 +w 2

2 +w 2
3 = 1 , w1 ≥ 0 , w 2

2 +w 2
3 ≤ sin2αmax

}

z(t ) = argmax

{
Cb z1 −Db(z2

2 + z2
3)+pθωz2 −pφ

ω

cosθ
z3 | (3.26)

z2
1 + z2

2 + z2
3 = 1 , z1 ≥ 0 , z2

2 + z2
3 ≤ sin2αmax

}
.
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As specified in Section 1.3.1, the maximality condition (1.8) does not always provide
a closed-loop formula for optimal controls and this depends on the strong Legendre
condition (1.11). In this context, closed-loop formula of extremal controls are given
explicitly by (3.25) and (3.26) when the adjoint coordinates satisfy (pγ, pχ) 6= 0 and
(pθ, pφ) 6= 0 almost everywhere, respectively. We speak then of regular extremals.
Otherwise, we will deal with nonregular extremals. Since a given control rule affects
the dynamical system only almost everywhere in the time interval [0, t f ], we study
regular and nonregular extremals within some subset E ⊆ [0, t f ] that has non-zero
Lebesgue measure. Since constraint c2 forces constraint c1 to be active, we implicitly
assume that w1(·) > 0, z1(·) > 0, respectively, without reporting it at each step.

3.3.1 Regular Pontryagin Extremals

Assume that along a subset E ⊆ [0, t f ], that has non-zero Lebesgue measure, either
(pγ, pχ) 6= 0 if the optimal trajectory crosses the domain Va or (pθ, pφ) 6= 0 if, instead,
the optimal trajectory crosses the domain Vb . In this case, closed-loop formulas for
u as function of (q, p) can be achieved by applying the Karush-Kuhn-Tucker condi-
tions, together with Assumption 2.1, on the optimization problems (3.25), (3.26).

We start considering the case for which the optimal trajectory crosses the domain Va ,
that is, (pγ, pχ)|E 6= 0. In this framework, we always refer implicitly to problem (3.25).
If pa

v |E (·) = 0, by definition Ca |E (·) = Da |E (·) = 0, therefore, from the Cauchy-Schwarz
inequality, we obtain

w2 =
sinαmaxpγ√
p2
γ+

p2
χ

cos2γ

, w3 =
sinαmaxpχ

cosγ

√
p2
γ+

p2
χ

cos2γ

, w1 = cosαmax . (3.27)

We focus now on the harder case pa
v |E (·) 6= 0. Denote λ= pγω, ρ = pχ

ω
cosγ . We apply

the Karush-Kuhn-Tucker conditions. For this, we first remark that, if the constraints
of (3.25) were active at the optimum, then, it would satisfy w 2

1 +w 2
2 +w 2

3 = 1 and w 2
2 +

w 2
3 = sin2αmax, and consequently, the gradients of constraints c0 and c2 evaluated

at this point would satisfy the linear independence constraint qualification. From
applying the Karush-Kuhn-Tucker conditions, we infer the existence of a non-zero
multiplier (η1,η2) ∈R×R+ which satisfiesCa −2η1w1 = 0 , 2(η1 +η2 +Da)w2 −λ= 0

2(η1 +η2 +Da)w3 −ρ = 0 , η2(w 2
2 +w 2

3 − sin2αmax) = 0 .

Since either λ 6= 0 or ρ 6= 0, necessarily η1 +η2 +Da 6= 0, therefore, any optimal con-
trol satisfies ρw2 = λw3. We proceed considering λ 6= 0, that is, w3 = (ρ/λ)w2. The
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problem is reduced to the study of

max

{
Ca w1 −

(
1+ ρ2

λ2

)
(Da w 2

2 −λw2)
∣∣∣ w 2

1 +
(
1+ ρ2

λ2

)
w 2

2 = 1 ,
(
1+ ρ2

λ2

)
w 2

2 ≤ sin2αmax

}
.

Remark that in the case Ca 6= 0, we seek points (w1, w2) such that the relations

w1 = 1

Ca

(
1+ ρ2

λ2

)
(Da w 2

2 −λw2)+ C

Ca
, w 2

1 +
(
1+ ρ2

λ2

)
w 2

2 = 1 ,
(
1+ ρ2

λ2

)
w 2

2 ≤ sin2αmax

(3.28)
are satisfied with the largest possible value of C ∈R. Three circumstances occur.

Coefficient Ca is zero. Since Da 6= 0, this case results in the maximization of a

parabola under bound constraints. Denoting A = −
(
1+ ρ2

λ2

)
Da , B =

(
1+ ρ2

λ2

)
λ and

D = |λ|sinαmaxp
λ2+ρ2

, we maximize Aw 2
2 +B w2 such that −D ≤ w2 ≤ D . Therefore, one has



w2 =−D , if A > 0 , B < 0

w2 = D , if A > 0 , B > 0

w2 =− B
2A , if A > 0 , −2|A|D ≤ B ≤ 2|A|D

w2 =−D , if A > 0 , B <−2|A|D
w2 = D , if A < 0 , B > 2|A|D

, w1 =
√

1−
(
1+ ρ2

λ2

)
w 2

2 . (3.29)

Figure 3.3: Tangent point between the
parabola and the ellipse of (3.28).

Coefficient Ca is positive. The optimum
is given by the contact point between the
parabola and the ellipse coming from (3.28),
that lies in the positive half-plane w1 > 0 (see
Figure 3.3). Matching the first derivatives
and using Assumption 2.1, we obtain

w1 =
√

1− λ2 +ρ2

(Ca +2Da)2

w2 = λ

Ca +2Da

(3.30)

if
λ2 +ρ2

(Ca +2Da)2
≤ sin2αmax
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while saturations of the control arise in the opposite case (see also Figure 3.4), that is

w1 = cosαmax , w2 =−|λ|sinαmax√
λ2 +ρ2

, if
λ

Ca +2Da
<−|λ|sinαmax√

λ2 +ρ2

w1 = cosαmax , w2 = |λ|sinαmax√
λ2 +ρ2

, if
λ

Ca +2Da
> |λ|sinαmax√

λ2 +ρ2
.

(3.31)

Figure 3.4: Intersection between the
parabola and the ellipse of (3.28).

Coefficient Ca is negative. In this case,
since w1 > 0, the optimum becomes the
point of intersection between the parabola
and the upper part of the ellipse given by
(3.28) for which C takes the maximum value.
Only saturations are allowed (see Figure 3.4).
Straightforwardly, we have

w1 = cosαmax

w2 =−|λ|sinαmax√
λ2 +ρ2

, if
λ

Da
> 0 (3.32)


w1 = cosαmax

w2 = |λ|sinαmax√
λ2 +ρ2

, if
λ

Da
< 0 . (3.33)

The same procedure holds when ρ 6= 0, by swapping the role of w2, w3 and of λ, ρ.

At this step, we have found the explicit expression of Pontryagin extremals in the
regular case for the chart (Va ,ϕa). By the similarity of (3.25) and (3.26), analogous
results hold true for the local control z using instead the chart (Ub ,ϕb), for which
λ and ρ are replaced respectively by pθω and by −pφ

ω
cosθ . The computations are

identical, so we avoid to report them. We have finally proved the following statement.

Proposition 3.2. Under Assumption 2.1, regular optimal controls u of (GOGP) are
well-defined and their local behaviorsw and z are explicitly given, as function of the
state and the adjoint vector, by the procedures provided in expressions (3.27)-(3.33).

We stress once more on the fact that Assumption 2.1 is not limiting because, for our
applications, the maximal angle of attackαmax ranges in (0,π/6]. Moreover, as further
motivation for this choice, we recall that Assumption 2.1 has been already implicitly
used to recover the explicit expressions of the drag and the lift (see Section 2.1.2).
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3.3.2 Nonregular Pontryagin Extremals

Assume that along a subset E ⊆ [0, t f ], that has non-zero Lebesgue measure, either
(pγ, pχ) = 0 if the optimal trajectory crosses the domain Va or (pθ, pφ) = 0 if, instead,
the optimal trajectory crosses the domain Vb . We are in the presence of nonregular
extremals and optimization problems (3.25), (3.26) reduce respectively to

w(t ) = argmax

{
Ca w1 −Da(w 2

2 +w 2
3) | w 2

1 +w 2
2 +w 2

3 = 1 , (3.34)

w1 ≥ 0 , w 2
2 +w 2

3 ≤ sin2αmax

}

z(t ) = argmax

{
Cb z1 −Db(z2

2 + z2
3) | z2

1 + z2
2 + z2

3 = 1 , (3.35)

z1 ≥ 0 , z2
2 + z2

3 ≤ sin2αmax

}
.

The Karush-Kuhn-Tucker conditions do not help any more because, depending on
the value of Ca or Cb , many uncountable values (w2, w3) or (z2, z3) are optimal. In-
stead, a geometric study is required. When computing nonregular extremals, As-
sumption 2.2, concerning the regularity of the cost and the final target set, becomes
very useful to manage hard computations, as well as the following requirement.

Assumption 3.3. Let (r(·),v(·),u(·)) be an optimal solution of (GOGP) with final time
t f . If the related extremal is nonregular along a subset E ⊆ [0, t f ] of non-zero Lebesgue
measure, then, the optimal trajectory (r(·),v(·)) satisfies, along E,

‖v‖ >
√

3

2
g (r)hr

√√√√√
1+ 4

9

1

g (r)hr

(
fT

md

)
−1 .

It is important to note that, for our applications, such as the interception problem
(OIP), the magnitude of the velocities of the vehicle is large enough when fT > 0,
so that Assumption 3.3 is always satisfied, as numerical simulations confirm. More-
over, it must be remarked that this assumption is required only for nonregular arcs,
i.e., if only regular extremals arise, then, no boundaries on the velocities are imposed.

In the next paragraphs, we compute the expressions of nonregular extremals pro-
ceeding through several steps. In what follows, E ⊆ [0, t f ] represents a measurable
subset of non-zero Lebesgue measure in which either pγ = pχ = 0 or pθ = pφ = 0.
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Non Degeneracy of Nonregular Extremals

When Assumption 2.2 holds, it turns out that the optimization problems (3.34), (3.35)
are well-defined and nondegenerate, i.e. Da 6= 0 and Db 6= 0, respectively. This feature
is crucial to adopt the maximality condition to evaluate optimal controls.

Lemma 3.3. Suppose pγ|E = pχ|E = 0 if the trajectory crosses Va or pθ|E = pφ|E = 0 if
the trajectory crosses Vb . Under Assumption 2.2, there hold pa

v |E 6= 0 and pb
v |E 6= 0.

Proof. We prove the statement considering the chart (Va ,ϕa). The same arguments
hold for the chart (Vb ,ϕb). Without loss of generality, suppose that E ⊆ [ri , si ], where
[ri , si ] is a subinterval within which (GOGP)a is locally well-defined (see Section 3.2.3).
By contradiction, suppose that pγ|E = pχ|E = pa

v |E = 0. From the adjoint equations of
pγ, pχ and pa

v restricted to E (see Proposition 3.1), we obtain



−v cosγ
v

r
sinγcosχ

v

r

sinγsinχ

cosL

0
v

r
cosγsinχ −v

r

cosγcosχ

cosL

−sinγ
cosγcosχ

r

cosγsinχ

r cosL




pa
r

pa
L

pa
`

=


0

0

0

 . (3.36)

The determinant of the matrix in (3.36) is v2 cosγ
r 2 cosL

6= 0, and then, (pa
r , pa

L , pa
`

)|E = 0.
This implies that pa is zero everywhere in [ri , si ] and, by Theorem 3.1, we infer that
p|[ri ,si ] = (ϕa)∗ ·pa = 0, from which, p = 0 in [0, t f ]. Assumption 2.2 and the transver-
sality conditions (1.27)-(1.28) provide p0 = 0, a contradiction with Theorem 1.4.

Nonregular Extremals Along the Local Chart (Va,ϕa)

In this framework, without loss of generality, we assume that E ⊆ [ri , si ], where [ri , si ]
is a subinterval such that the optimal trajectory satisfies q([ri , si ]) ⊆ Va , and within
which, (GOGP)a is locally well-defined (see Section 3.2.3). Moreover, we always im-
plicitly assume that pa

v |E 6= 0 (see Lemma 3.3). We proceed by a geometric analysis.

Consider, for the moment, a general dynamical problem on M , of the type

q̇(t ) = f1(q(t ))+Ω(t ) f2(q(t ))

where Ω is some measurable and bounded scalar quantity. Denoting by p(·) the
curve solution of the dynamical Hamiltonian problem related to the Hamiltonian h =〈

p, f1(q)+Ω f2(q)
〉

, assume that
〈

p(t ), f1(q(t ))
〉|E = 0. Therefore, since

〈
p(t ), f1(q(t ))

〉
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is absolutely continuous, its derivative is zero almost everywhere in E . By using
Proposition 1.1, let us evaluate explicitly this derivative in local coordinates:

d

d t

〈
p(t ), f1(t )

〉= n∑
j=1

ξ̇ j (t ) f j
1 (q(t ))+

n∑
j=1

ξ j (t )
d

d t
f j

1 (q(t ))

=
n∑

j ,k=1

(
−∂ f k

1

∂x j
(t )−Ω(t )

∂ f k
2

∂x j
(t )

)
ξk (t ) f j

1 (t )+
n∑

j ,k=1
ξ j (t )

∂ f j
1

∂xk
(t )

(
f k

1 (t )+Ω(t ) f k
2 (t )

)

= 〈
p(t ), [ f1, f1](t )

〉+Ω(t )
〈

p(t ), [ f2, f1](t )
〉=Ω(t )

〈
p(t ), [ f2, f1](t )

〉
.

We have finally obtained, up to reduce E , thatΩ(t )
〈

p(t ), [ f2, f1](q(t ))
〉|E = 0.

The previous computations allow to recover some further relations on the adjoint
vector as follows. Define the following local nonautonomous vector fields (we recall
that cm and d depends on the mass m, which depends explicitly on the time)

X (t , q) = v sinγ
∂

∂r
+ v

r
cosγcosχ

∂

∂L
+ v

r

cosγsinχ

cosL

∂

∂`

−(
d v2 + g sinγ

) ∂

∂v
+

(v

r
− g

v

)
cosγ

∂

∂γ
+ v

r
cosγsinχ tanL

∂

∂χ

Y1(t , q) = fT

m

∂

∂v
, YQ (t , q) =−ηcm v2 ∂

∂v

Y2(t , q) =ω ∂

∂γ
, Y3(t , q) = ω

cosγ

∂

∂χ
.

Then, the local dynamics (3.14) of (GOGP) in the local chart (Va ,ϕa) reads

q̇(t ) = X (t , q(t ))+w1(t )Y1(t , q(t ))+w2(t )Y2(t , q(t ))

+w3(t )Y3(t , q(t ))+ (
w 2

2(t )+w 2
3(t )

)
YQ (t , q(t )) .

As a standard result, applying iteratively the previous procedure, one has

Lemma 3.4. In the local chart (Va ,ϕa), a.e. in E, the following expressions hold:

d

d t

〈
p,Y2

〉= 〈
p,

∂

∂t
Y2

〉+〈
p, [X ,Y2]

〉+w1
〈

p, [Y1,Y2]
〉

+w3
〈

p, [Y3,Y2]
〉+ (w 2

2 +w 2
3)

〈
p, [YQ ,Y2]

〉
d

d t

〈
p,Y3

〉= 〈
p,

∂

∂t
Y3

〉+〈
p, [X ,Y3]

〉+w1
〈

p, [Y1,Y3]
〉

+w2
〈

p, [Y2,Y3]
〉+ (w 2

2 +w 2
3)

〈
p, [YQ ,Y3]

〉
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d

d t

〈
p, [X ,Y2]

〉= 〈
p,

∂

∂t
[X ,Y2]

〉+〈
p, [X , [X ,Y2]]

〉+w1
〈

p, [Y1, [X ,Y2]]
〉

(3.37)

+w2
〈

p, [Y2, [X ,Y2]]
〉+w3

〈
p, [Y3, [X ,Y2]]

〉+ (w 2
2 +w 2

3)
〈

p, [YQ , [X ,Y2]]
〉

d

d t

〈
p, [X ,Y3]

〉= 〈
p,

∂

∂t
[X ,Y3]

〉+〈
p, [X , [X ,Y3]]

〉+w1
〈

p, [Y1, [X ,Y3]]
〉

(3.38)

+w2
〈

p, [Y2, [X ,Y3]]
〉+w3

〈
p, [Y3, [X ,Y3]]

〉+ (w 2
2 +w 2

3)
〈

p, [YQ , [X ,Y3]]
〉

where p(·) is the adjoint vector coming from the Maximum Principle formulation of
(GOGP) and restricted at E, which corresponds to the local adjoint vector related to the
Maximum Principle formulation of (GOGP)a in E (we implicitly use Theorem 3.1).

The idea developed in what follows consists in exploiting expressions (3.37), (3.38)
to reduce the set of solutions of problem (3.34), seeking therefore the unique explicit
expression of any optimal controlw as function of the state and the adjoint vector. To
continue our analysis, we need the following explicit expressions concerning iterated
Lie brackets (that we obtained by symbolic computations).

Lemma 3.5. Considering pγ|E (·) = pχ|E (·) = 0, in the local chart (Va ,ϕa), there hold:

[Y1,Y2] = fT

mv

( vcm

m
− fT

mv

) ∂
∂γ

, [Y1,Y3] = fT

mv cosγ

( vcm

m
− fT

mv

) ∂
∂χ

[Y2,Y3] = ω2 tanγ

cosγ

∂

∂χ
, [YQ ,Y2] =−ηcm

(
v2cm − fT

m

) ∂
∂γ

[YQ ,Y3] =− ηcm

cosγ

(
v2cm − fT

m

) ∂
∂χ

, [Y2, [X ,Y3]] =ωC[Y2,[X ,Y3]](m,r, v,γ, fT )
∂

∂χ

〈p, [X ,Y2]〉 =ω
(
−pa

r v cosγ+pa
L

v

r
sinγcosχ+pa

`

v sinγsinχ

r cosL
+pa

v g cosγ
)

〈p, [X ,Y3]〉 =ω
(
pa

L
v

r
sinχ−pa

`

v cosχ

r cosL

)
, 〈p, [Y1, [X ,Y3]]〉 = 2 fT cm

m

(
pa

L
v

r
sinχ−pa

`

v cosχ

r cosL

)
〈p, [X , [X ,Y3]]〉 =C[X ,[X ,Y3]](m,r, v,γ, fT )

(
−pa

L
v

r
sinχ+pa

`

v cosχ

r cosL

)
〈p, [YQ , [X ,Y3]]〉 =−2ηc2

m v2

m

(
pa

L
v

r
sinχ−pa

`

v cosχ

r cosL

)
, 〈p, [Y3, [X ,Y3]]〉 = ω2

cosγ

(
pa

L
v

r
cosχ+pa

`

v sinχ

r cosL

)
〈p, [Y2, [X ,Y2]]〉 =ω2

(
pa

r v sinγ+pa
L

v

r
cosγcosχ+pa

`

v cosγsinχ

r cosL
−pa

v g sinγ
)

〈p, [Y2, [Y2, [X ,Y2]]]〉 =ω3
(
pa

r v cosγ−pa
L

v

r
sinγcosχ−pa

`

v sinγsinχ

r cosL
−pa

v g cosγ
)

where C[Y2,[X ,Y3]], C[X ,[X ,Y3]] are coefficients depending on quantities (m,r, v,γ, fT ) and
p(·) is the adjoint vector coming from the Maximum Principle formulation of (GOGP)
and restricted at E, which corresponds to the local adjoint vector related to the Maxi-
mum Principle formulation of (GOGP)a in E (we implicitly use Theorem 3.1).
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From Lemma 3.5, we start by considering the following statements

(A) The Lie brackets [Y1,Y2], [YQ ,Y2] are proportional to
∂

∂γ
.

(B) The Lie brackets [Y1,Y3], [Y2,Y3], [YQ ,Y3], [Y2, [X ,Y3]] are proportional to
∂

∂χ
.

(C) By considering pγ|E = pχ|E = 0, the scalars
〈

p, [X , [X ,Y3]]
〉

,
〈

p, [Y1, [X ,Y3]]
〉

and〈
p, [YQ , [X ,Y3]]

〉
are proportional to ṗχ.

(D) By considering pγ|E = pχ|E = 0,
〈

p,
∂

∂t
[X ,Y2]

〉
is proportional to

〈
p, [X ,Y2]

〉
,

while
〈

p,
∂

∂t
[X ,Y3]

〉
is proportional to

〈
p, [X ,Y3]

〉
.

From pγ|E = pχ|E = 0, Lemma 3.5 gives
〈

p, [X ,Y2]
〉∣∣

E = 〈
p, [X ,Y3]

〉∣∣
E = 0. These ex-

pressions, plugged into (3.38) and using (B), (C) and (D), lead straightforwardly to

w3(t )
〈

p, [Y3, [X ,Y3]]
〉

(t ) = 0 , a.e. in E . (3.39)

At this step, seeking the explicit expressions of nonregular extremals from (3.39) be-
comes a hard and tedious task in the case that

〈
p, [Y3, [X ,Y3]]

〉 = 0. This because
more many time derivatives are required, which provide complex expressions of Lie
brackets. In this situation, the environmental conditions concerning the feasibility of
(GOGP) and represented by Assumption 3.3 play an important role in making these
further time derivatives of Lie brackets not necessary for our purpose.

Lemma 3.6. Under Assumption 3.3,
〈

p, [Y3, [X ,Y3]]
〉 6= 0 almost everywhere in E.

Proof. We implicitly refer to Proposition 3.1 and Lemma 3.5. By contradiction, sup-
pose that

〈
p, [Y3, [X ,Y3]]

〉 = 0 a.e. in E . This implies that cosχpa
L + sinχ

cosL pa
`
= 0 a.e.

within E . The previous expression, combined with the adjoint equation of pχ, gives
pa

L |E = pa
`
|E = 0. On the other hand, from the adjoint equation of pγ, we have (v pa

r −
g pa

v )|E = 0. Combining this expression with its derivative w.r.t. time within E and
imposing pa

v |E 6= 0 lead to

v4 +3g hr v2 − g hr

(
fT w1

m
(
d +ηcm

(
w 2

2 +w 2
3

)))= 0 .

First of all, if fT = 0 a contradiction arises immediately. Therefore, imposing fT 6= 0,
the only physically meaningful solution is

v =
√

3

2
g hr

√√√√√
√√√√1+ 4

9

1

g hr

(
fT w1

m
(
d +ηcm

(
w 2

2 +w 2
3

)))−1

and, since 0 < w1 ≤ 1, a contradiction arises because of Assumption 3.3.
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The previous results make us able to reformulate (3.34) as(w1, w2)|E = argmax
{

Ca w1 −Da w 2
2

∣∣ w 2
1 +w 2

2 = 1 , w 2
2 ≤ sin2(αmax)

}
w3|E = 0

(3.40)

that, now, we can solve easily. Notice that Da 6= 0, and that Ca 6= 0 if and only if fT 6= 0.
Suppose first that Ca = 0. In this case, it is clear that component w1 of the control
does not affect the dynamics, therefore, we can chose it arbitrarily, satisfying the ap-
propriate constraints. From (3.40), we obtainw1 = 1 , w2 = 0 , if Da > 0

w1 = cosαmax , w2 =±sinαmax , if Da < 0
. (3.41)

Let now Ca 6= 0. Exploiting a quick graphical study, it is straightforward thatw1 = 1 , w2 = 0 , if Ca > 0

w1 = cosαmax , w2 =±sinαmax , if Ca < 0
. (3.42)

To conclude the study with respect to the local chart (Va ,ϕa), it remains to establish
the value of the coordinate w2 when w1 = cosαmax and w 2

2 = sin2αmax. For this, we
make use of expression (3.37). Indeed, it is clear that, when

〈
p, [Y2, [X ,Y2]]

〉 6= 0, the
second coordinate of the control is given by (recall statements (A)-(D))

w2 =−
〈

p, [X , [X ,Y2]]
〉〈

p, [Y2, [X ,Y2]]
〉 −w1

〈
p, [Y1, [X ,Y2]]

〉〈
p, [Y2, [X ,Y2]]

〉 −w 2
2

〈
p, [YQ , [X ,Y2]]

〉〈
p, [Y2, [X ,Y2]]

〉 . (3.43)

Instead, in the case
〈

p, [Y2, [X ,Y2]]
〉 = 0 almost everywhere in E , suppose that there

holds
〈

p, [Y2, [Y2, [X ,Y2]]]
〉|E 6= 0. By differentiating with respect to the time the ex-

pression
〈

p, [Y2, [X ,Y2]]
〉= 0, as in Lemma 3.4, we have (see also Lemma 3.5)

w2 =− 〈p, [Y2, [X , [X ,Y2]]]〉
〈p, [Y2, [Y2, [X ,Y2]]]〉 −w1

〈p, [Y2, [Y1, [X ,Y2]]]〉
〈p, [Y2, [Y2, [X ,Y2]]]〉 −w2

2

〈p, [Y2, [YQ , [X ,Y2]]]〉
〈p, [Y2, [Y2, [X ,Y2]]]〉 . (3.44)

Actually, at least one between expression (3.43) and expression (3.44) always holds.

Lemma 3.7. Under Assumption 3.3, almost everywhere in E, there holds〈
p, [Y2, [X ,Y2]]

〉 6= 0 or
〈

p, [Y2, [Y2, [X ,Y2]]]
〉 6= 0 .

Proof. We implicitly refer to Proposition 3.1 and Lemma 3.5. Suppose, by contradic-
tion, that

〈
p, [Y2, [X ,Y2]]

〉 = 〈
p, [Y2, [Y2, [X ,Y2]]]

〉 = 0 almost everywhere in E . From
this, one recovers respectively the following two expressions(

sinγpa
r + cosγcosχ

r
pa

L + cosγsinχ

r cosL
pa
` −

g sinγ

v
pa

v

)∣∣∣
E
= 0
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(
cosγpa

r − sinγcosχ

r
pa

L − sinγsinχ

r cosL
pa
` −

g cosγ

v
pa

v

)∣∣∣
E
= 0

which, combined, lead to cosχpa
L + sinχ

cosL pa
`
= 0 almost everywhere within E . This

expression, combined with the adjoint equation of pχ, gives pa
L |E = pa

`
|E = 0. On the

other hand, from the adjoint equation of pγ, we have (v pa
r − g pa

v )|E = 0. Proceeding
as in the proof of Lemma 3.6, a contradiction arises straightforwardly.

The previous analysis shows how it is always possible to identify nonregular extremals
along the local chart (Va ,ϕa) using the procedure given by expressions (3.40)-(3.44).

Nonregular Extremals Along the Chart (Vb,ϕb)

The approach proposed for chart (Va ,ϕa) is no more exploitable for chart (Vb ,ϕb).
Indeed, the terms including the gravity, the thrust and the curvature of the Earth con-
tained in (3.20) make the computations on the Lie algebra generated by local fields
hard to treat. However, we can still recover nonregular arcs, proceeding as follows.
Thanks to the previous computation, we know the explicit behavior of nonregular
extremals for every point of the domain Va . Therefore, it is enough to compute pos-
sible nonregular arcs at points of the domain Vb that do not belong to the domain Va .
From the expressions (3.8) and (3.17) of the local frames, one sees that these points
of singularity lie exactly within the following submanifold

Sb =
{

(r,v) ∈R6 \ {0}
∣∣ v // r

}
⊆R6 \ {0}

which corresponds, by forcing the coordinates of the chart (Vb ,ϕb), to points such
that θ = 0, φ= 0 or θ = 0, φ=π. Following the previous argument, suppose that there
exists a non-zero measure subset E ⊆ [ri , si ] ⊆ [0, t f ] such that the optimal trajectory
(r,v)(·) arisen from a nonregular extremal is such that (r,v)(t ) ∈ Sb ⊆ Vb for every
t ∈ E . In particular, suppose that θ|E = 0 , φ|E = 0 or φ|E = π. Then, from (3.20), we
obtain that, almost everywhere in E , the trajectory (r,v)(·) satisfies

ṙ =±v , L̇ = 0 , l̇ = 0 , θ̇ =ωz2 , φ̇=−ωz3

v̇ = fT

m
z1 −

(
d +ηcm

(
z2

2 + z2
3

))
v2 ± g .

Since the values of θ and φ remain the same along E , their derivative with respect to
the time must be zero almost everywhere in E . Nonregular extremals satisfy

(z1, z2, z3)|E = (1,0,0) . (3.45)

The whole previous analysis gives us the following conclusion.

Proposition 3.3. Under Assumption 3.3, nonregular optimal controlsu of (GOGP) are
uniquely well-defined and their local behaviorsw and z are given, as function of the
state and the adjoint vector, by the procedures provided in expressions (3.40)-(3.45).
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3.4 Conclusions

In this chapter, we have proposed a strategy to define well-posed indirect methods
on (GOGP), giving optimal controls as functions of the state and the adjoint vector.

This task is far from being easy. Indeed, problem (GOGP) contains mixed control-
state constraints and the Maximum Principle adopted to work with this kind of prob-
lems implies the existence of further multipliers whose evolution is unknown, pre-
venting from integrating the adjoint equations without the help of more information.
The provided solution consists in reformulating locally (GOGP) via two complemen-
tary sets of Euler coordinates, so that, the original mixed control-state constraints are
converted into pure control constraints, allowing the use of the usual Maximum Prin-
ciple and standard shooting methods. Our main geometric result states that these
two local formulations are consistent with the original global formulation, that is,
the global adjoint vector arising from the mixed control-state constraints Maximum
Principle can be totally retraced by studying the behaviors of the two local adjoint
vectors related to the pure control constraint problems in Euler coordinates.
These useful transformations allow also to recover optimal controls, related to (GOGP),
as functions of the state and the adjoint vector, both in regular and nonregular cases.

The conclusions achieved throughout this chapter are fundamental to implement
a numerical strategy that efficiently solves (GOGP) by indirect methods. Using the
established geometric relations to build such numerical procedures will be the object
of the analysis developed in Chapter 4.
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The arguments presented in this chapter concern, from a practical point of view,
one of the main objectives of this thesis, that is, providing efficient indirect methods
to solve rendezvous problems. We base our methodology on the previous chapter,
in which we propose a strategy to define well-posed indirect methods on problem
(GOGP), providing also optimal controls as functions of the state and the adjoint vec-
tor. More precisely, the aim of the present chapter consists in exploiting the previous
geometric information to conceive a numerical strategy to solve problem (OIP).

The proposed numerical approach can be summarized as follows. Adopting indi-
rect methods to solve (OIP) faces two crucial issues: the presence of mixed control-
state constraints and the initialization of shooting methods. The first difficulty can
be managed by the procedure developed in Chapter 3, that, thanks to a consistent
localization of the problem, allows to convert mixed control-state constraints into
pure control constraints. On the other hand, initializing shooting methods directly
on (OIP) is quite complicated, because, the complex structure of the Lie algebra gen-
erated by the flight dynamics and sophisticated missions may remove the intuition
on the shape of optimal trajectories. The proposed idea consists in adopting homo-
topy methods to simplified the original problem and achieve the optimal solution
by parameter deformation. More specifically, the problem of order zero is obtained
by removing the contributions of the thrust, of the gravity, of the roundness of the
Earth and simplifying the original scenario. This trick allows, with some manipu-
lations on the Maximum Principle, to recover a new explicit guidance law, able to
correctly initialize a shooting method on the simplified problem. In a second time,
the contributions previously removed are added by an efficient deformation strategy.

The chapter is organized as follows. In Section 4.1, we provide a homotopy scheme
generalized to the broader problem (GOGP). Therefore, in Section 4.2, we deal with
the initialization of shooting methods on the problem of order zero. Finally, Section
4.3 provides numerical simulations testing the efficiency of our approach.

93



Chapter 4. Numerical Guidance Strategy

4.1 General Numerical Homotopy Procedure for (GOGP)

Before focusing on the development of an efficient algorithm for (OIP), we provide a
homotopy scheme to solve the general version (GOGP) by parametrized shootings.
The first step consists in providing a General Optimal Guidance Problem of Order
Zero (GOGP)0, problem from which the iterative shooting path starts. This prob-
lem should be, on one hand, handy to solve via basic shooting methods and, on the
other hand, as close as possible to (GOGP) to recover easily the original solution by
parameter deformation. Subsequently, a homotopy scheme, depending on some de-
formation parameter λ, is introduced by defining the family of deformed problems
(GOGP)λ. The homotopy algorithm tries to find an optimal solution of (GOGP), by
making λ converge from 0 to some value which represents problem (GOGP).
This general scheme has the advantage to be cost-independent and it may be em-
ployed for general version of (GOGP), for which (OIP) represents a particular case.

4.1.1 General Optimal Guidance Problem of Order Zero (GOGP)0

The General Optimal Guidance Problem of Order Zero (GOGP)0 consists in minimiz-
ing the final cost

C0(t f ,u) = g0(t f , q(t f )) = g0(t f ,r(t f ),v(t f )) (4.1)

such that
q̇(t ) =

(
ṙ(t )

v̇(t )

)
=

(
v(t )

f0(t ,r(t ),v(t ),u(t ))

)
= f0(t , q(t ),u(t ))

q(t ) = (r(t ),v(t )) ∈R6 \ {0}

q(0) = q0 = (r0,v0) , q(t f ) = (r(t f ),v(t f )) ∈ M 0
f ⊆R6 \ {0}

(4.2)

among all controls u ∈ L∞([0, t f ],R3) that may satisfy or not constraints (2.13), al-
most everywhere in [0, t f ]. In this framework, the user has free choices concerning
the cost g0(t f ,r(t f ),v(t f )), the dynamics f0(t ,r,v,u), the final manifold M 0

f and the
fact of taking into account or not constraints (2.13), totally or even partially.

The cost and the final target of (GOGP) can take very general behaviors, which pre-
vents from providing a suitable form of the cost (4.1) and the manifold M 0

f . However,
the dynamics of (GOGP) is definitively given by system (2.12), therefore, it is legiti-
mate to formulate convenient candidates for the dynamics of order zero f0, appear-
ing in the control system (4.2), starting an analysis on the dynamics of (GOGP).
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We stress on the fact that, in general, modeling f0 depends on the form of the cost
(4.1) and the manifold M 0

f . Nevertheless, when the geometric structures of the orig-
inal cost (2.11) and the original final manifold M f are simple enough, as in the case
of the optimal interception problem (OIP), a good insight on the original dynamics
of (GOGP) seems to be sufficient to provide successful explicit formulations of f0.
The most intuitive way to model the dynamics of order zero f0 comes from the fact
that, usually, the contributions of the gravity and the thrust within (2.12) make the
structure of the Lie algebra generated by the vector field f complex, which prevents
ordinary shooting methods to converge efficiently directly on problem (GOGP). More-
over, since, often, the feasible trajectories related to endo-atmospheric optimal guid-
ance problems are in the range of some hundred of kilometers, to further simplify
analytical computations, one may be pushed for neglecting the curvature terms aris-
ing from the rotation of the NED frame. This contribution is locally expressed via
the local charts (Va ,ϕa) and (Vb ,ϕb) respectively in (3.14) and (3.20) (in particular,
compare with the local frames computed in Lemma 3.1 and Lemma 3.2).
From these remarks, we propose the following model for the dynamics of order zero

f0(t ,r,v,u) = f (t ,r,v,u)−
(

fT (t )

m
u− g (r)

r

‖r‖ −ωNED(r,v)∧v
)

(4.3)

where ωNED(r,v) represents the angular velocity of the NED frame (eL ,el ,er ) with
respect to the inertial frame (I ,J ,K). Expression (4.3) removes explicitly the contri-
butions of the gravity and the thrust and this clearly decreases the number of achiev-
able missions (since the thrust enlarges the admissible set). However, the applica-
tions modeled by (GOGP) need to consider large values of the velocity which makes
the removal of the thrust adequate. Under the local representations of (GOGP) via
the local charts (Va ,ϕa) and (Vb ,ϕb), also the contribution of the rotation of the NED
is removed. This follows either from classical relative dynamics arguments or, explic-
itly, by applying the following lemma to the local dynamics (3.14) and (3.20).

Lemma 4.1. Under the local coordinates provided by charts (Va ,ϕa) and (Vb ,ϕb), the
contribution of the rotation of the NED takes respectively the following forms

ωNED ∧v =−v2

r
cosγj1 − v2

r
cos2γsinχ tanLk1

ωNED∧v =−v2

r
sinθ

(
cosφ+sinφ tanL

)
j2+v2

r
cos2θ

(
sinφ+tan2θ

(
sinφ−tanL cosφ

))
k2 .

Proof. We prove the statement only for (Va ,ϕa). By similarity, the same reasoning
holds for (Vb ,ϕb). By definition, the vectorωNED satisfies the following relations

ėL =ωNED ∧eL , ė` =ωNED ∧e` , ėr =ωNED ∧er . (4.4)
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By applying formulas (2.2) and (4.4) to the local expression of the velocity v in the
coordinates of the NED frame, we obtain

ωNED ∧v =ωNED ∧ (v cosγcosχeL + v cosγsinχe`− v sinγer )

= v cosγcosχėL + v cosγsinχė`− v sinγėr

= v(L̇ sinγ+ ˙̀sinL cosγsinχ)eL + v ˙̀(cosL sinγ− sinL cosγcosχ)e`

+v(L̇ cosγcosχ+ l̇ cosL cosγsinχ)er .

Writing (eL ,e`,er ) along the frame (i1,j1,k1) and using the evolution of coordinates
L, l and r , the conclusion is easily achieved from the previous expression.

We stress on the fact that the introduction of the term ωNED ∧v becomes useful to
simplify the dynamics of (GOGP) only if the equations of motion are evaluated in the
local coordinates of charts (Va ,ϕa), (Vb ,ϕb). Indeed, it is clear that, with respect to
other general coordinates such as Cartesian coordinates, addingωNED∧v does noth-
ing but complexifying the whole treatise (this is verified by simple computations).
As final remark, it is recommended to select zero order costs (4.1) and zero order final
manifolds M 0

f such that non-challenging maneuvers suffice to reach the target with
an optimal behavior. This may imply that no change of local chart arise when solving
the simplified problem (GOGP)0 or its optimal solution has no active constraints.

At this step, (GOGP)0 can be solved by classical shooting methods, by applying the
procedure described in Chapter 3. One assumes that this simplified problem is built
such that it is known how to efficiently initialize a shooting method on it. The reso-
lution of (GOGP)0 leads to a simplified solution (r0(·),v0(·),u0(·)) in [0, t 0

f ], with (ex-

tended) adjoint vector (p0(·), p0
0). The multipliers related to the mixed control-state

constraints are not reported since they are not needed if one applies the geometric
localization techniques described in Chapter 3 (via Theorem 3.1).

4.1.2 Parametrized Family of Optimal Control Problems (GOGP)λ

Once the simplified problem of order zero (GOGP)0 is solved, its solution can be used
to initialize the family of shooting methods that will converge by parameter deforma-
tion to the desire solution of the original guidance problem (GOGP).

Each instantiation (GOGP)λ of the family of parametrized problems, depending on
the parameter λ, consists in minimizing the final cost

Cλ(t f ,u) = gλ(t f , q(t f )) = gλ(t f ,r(t f ),v(t f )) (4.5)
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such that
q̇(t ) =

(
ṙ(t )

v̇(t )

)
=

(
v(t )

fλ(t ,r(t ),v(t ),u(t ))

)
= fλ(t , q(t ),u(t ))

q(t ) = (r(t ),v(t )) ∈R6 \ {0}

q(0) = q0 = (r0,v0) , q(t f ) = (r(t f ),v(t f )) ∈ Mλ
f ⊆R6 \ {0}

(4.6)

among all controls u ∈ L∞([0, t f ],R3) that satisfy, almost everywhere in [0, t f ],

cλ0 (u(t )) = 0 , cλ1 (q(t ),u(t )) ≤ 0 , cλ2 (q(t ),u(t )) ≤ 0 (4.7)

where the cost (4.5), the control system (4.6) and the constraints (4.7) are appropri-
ate modifications of (2.11), (2.12) and (2.13), respectively, and such that the new con-
straints cλ0 , cλ1 and cλ2 satisfy Assumption 3.1 with (Va ,ϕa) and (Vb ,ϕb) as local charts.
There are no restrictions on the choice of the parameter λ, usually a vector of some
metric space. It could be a physical parameter as well as an artificial variable. The
family of problems is built such that (GOGP)λ=0 is equivalent to (GOGP)0, while,
there exists some value λ1, such that (GOGP)=(GOGP)λ1 . If one is able to solve
(GOGP)λ, a solution (rλ(·),vλ(·),uλ(·)), with (extended) adjoint vector (pλ(·), p0

λ
) in

[0, tλf ], is found. As in the case of the problem of order zero, the multipliers related to
the mixed constraints are not reported since they are not needed if one applies the
localization techniques described in Chapter 3. The homotopy procedure consists
then in seeking the solution (rλ1 (·),vλ1 (·),uλ1 (·)) in [0, tλ1

f ] with extremal (pλ1 (·), p0
λ1

)

of the original problem (GOGP)λ1 , starting from the solution vector (r0(·),v0(·),u0(·))
with extremal (p0(·), p0

0) of the problem of order zero, by making λ converge to λ1.

The remarks concerning the problem of order zero (GOGP)0 allow to introduce a par-
ticular family of parametrized problems (GOGP)λ that will be often used in the fol-
lowing of this thesis (see Section 4.3 and Chapter 5). We assume that the cost of order
zero (4.1) and the final manifold of order zero M 0

f are chosen such that the solution

of (GOGP)0 has no active constraints along the time interval [0, t 0
f ]. Therefore, we

operate with a discrete continuation by setting λ= (λ1,λ2) ∈ [0,1]2 as the homotopic
parameter. Its first component λ1 acts on the cost and the dynamics as follows

gλ(t f ,r,v) = g0(t f ,r,v)+λ1

(
g (t f ,r,v)− g0(t f ,r,v)

)
(4.8)

fλ(t ,r,v,u) = f (t ,r,v,u)− (1−λ1)

(
fT (t )

m
u− g (r)

r

‖r‖ −ωNED(r,v)∧v
)

(4.9)

cλ0 (u) = c0(u) , cλ1 (q,u) = c1(q,u) , cλ2 (q,u) = c2(q,u) (4.10)
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while its second component λ2 acts only on M f and it is chosen such that M 0
f =

Mλ2=0
f and M f = Mλ2=1

f . We see that the problem of order zero corresponds to λ= 0

while the original problem corresponds to λ = (1,1). The numerical scheme that
we provide consists in applying two discrete continuations with acceleration step.
First Algorithm 1 is operated on the parameterλ1 considering a sequence of shooting
methods where λ2 = 0, and this step is initialized by the extremal of the problem of
order zero (GOGP)0. Then, Algorithm 1 is operated on the parameter λ2 considering
rather a sequence of shooting methods where λ1 = 1 (see Section 4.3 for details). The
scheme is suppose to converge to an extremal of the original problem (GOGP)λ=(1,1).
The idea behind the splitting of the deformation parameter λ into two components
arises from the fact that treating separately the physical nature of the problem (mainly,
the considered costs and dynamics) and the mission involved (that is, the imposed
terminal configuration) helps numerical algorithms to converge more regularly. This
can be explain empirically by remarking that the convergence of numerical simula-
tions is more sensitive to the second component λ2 than the first one λ1: adding the
previously removed effect of the dynamics to a basic scenario (represented by M 0

f )

makes the iterations on λ1 converge quickly, while modifying M 0
f to reach M f may

easily lead to bifurcation points, singularities or infeasible scenarios.

The whole procedure is suppose to converge to a solution of the original problem
(GOGP). Nevertheless, since we are in the presence of control constraints (recall The-
orem 3.1) and final conditions M f , we cannot apply the result of Proposition 1.2,
thus, obtain a rigorous optimal convergence. However, numerical simulations (see
Section 4.3) show that our choice of the problem of order zero (GOGP)0 is such that
the physical structure of the solutions of the original problem (GOGP) is maintained,
which makes the previous homotopy procedure converge more systematically to the
optimum when starting from a solution of (GOGP)0. We return on this in Chapter 5.

4.2 Optimal Interception Problem of Order Zero (OIP)0

The numerical scheme provided in the previous sections is applied to practically
solve the optimal interception problem (OIP). In particular, the homotopy procedure
is completely provided by the two-parameter scheme of Section 4.1.2, together with
quantities (4.8)-(4.10). Moreover, the Optimal Interception Problem of Order Zero
(OIP)0 is defined as in Section 4.1.1. If one assumes that the scenarios Mλ

f have al-
ready been defined as explained in the previous sections, then, to give a closed-loop
algorithm, we need to provide a cost function g0(t f , q) and final conditions M 0

f thank
to which (OIP)0 would be easy enough to solve by a standard shooting method. We
propose to consider a problem of order zero satisfying the following assumption.
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Assumption 4.1. The cost function of (OIP)0 is

g0(t f , q(t f )) = g0(t f ,r(t f ),v(t f )) =−‖v(t f )‖2

while the simplified final submanifold M 0
f is given, similarly to (2.15), by

M 0
f =

{
(r,v) ∈R6 \ {0} | r = r0

f ,
v ·er

‖v‖ = cosψ1
f ,0 ,

v ·eL

‖v‖ = cosψ2
f ,0 ,

v ·el

‖v‖ = sinψ2
f ,0

}
where r0

1 , ψ1
f ,0 and ψ2

f ,0 are such that:

• The direction of v0 coincides with the direction of the final velocity.

• The modulus of the difference between the initial altitude and the final altitude
is bounded by small values.

• The optimal trajectory lies entirely either in the domain Va or in the domain Vb

and is close to the straight line joining the initial position to the final position.

• The optimal solution of (OIP)0 has no active constraints (2.13) and the related
optimal control is of class at least C 2.

The goal of this section consists in proving that a problem of order zero (OIP)0 sat-
isfying Assumption 4.1 is a good candidate to correctly initialize a shooting method
on (OIP)0. More specifically, working on (OIP)0 with the help of Assumption 4.1,
whose choice is made by considering similarities with the original cost (2.16) and the
original target manifold (2.15), we aim to recover a new guidance law which is used
as initial guess to run indirect methods on (OIP)0. Numerical simulations (see, e.g.
Section 4.3) show that this guidance law often provides optimal solutions of (OIP)0,
validating the previous homotopic approach (recall the remarks in Section 4.1.2).

From the results obtained in Chapter 3, we can localize the study of the problem
of order zero (OIP)0 in the two local charts (Va ,ϕa) and (Vb ,ϕb). Without loss of
generality, by Assumption 4.1, we assume that the optimal solution of (OIP)0 lies
entirely in the domain Va . Always by the requirements in Assumption 4.1, (OIP)0 is
equivalent to the following local problem (written in a compact form)

min −v2(t f ) , (w2, w3) ∈R2

ṙ = v sinγ , L̇ = v

r
cosγcosχ , ˙̀= v

r

cosγsinχ

cosL

v̇ =−(d +ηcm(w 2
2 +w 2

3))v2 , γ̇= vcm w2 , χ̇= vcm

cosγ
w3

(r,L, l , v,γ,χ)(0) = (r0,L0, l0, v0,γ0,χ0)

(r,L, l ,γ,χ)(t f ) = (r f ,L f , l f ,γ f ,χ f )

(4.11)
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where the final condition (r f ,L f ,` f ,γ f ,χ f ) is chosen to satisfy Assumption 4.1. It
is interesting to note that the first component of the control w1 does not affect the
problem any more. This is not surprising since controlling w1 acts strictly on the
thrust, whose contribution disappears within (OIP)0. The special structure of prob-
lem (4.11) allows to simplify it once more. Indeed, introducing the curvilinear ab-
scissa s(t ) = ∫ t

0 v(t ′) d t ′ and the new variable vs = ln(v), we can neglect the evolu-
tion of the velocity in (4.11) and define a new optimal control problem equivalent to
(4.11). The Optimal Interception Problem of Order Zero along Curvilinear Abscissa
(OIP)s

0 consists in minimizing the cost

C s
0(s f ,w) =

∫ s f

0
(d +ηcm(w 2

2 +w 2
3)) d t (4.12)

such that



r ′ = dr

d s
= sinγ , L′ = dL

d s
= cosγcosχ

r
, `′ = d`

d s
= cosγsinχ

r cosL

γ′ = dγ

d s
= cm w2 , χ′ = dχ

d s
= cm w3

cosγ

(r,L, l , v,γ,χ)(0) = (r0,L0, l0, v0,γ0,χ0)

(r,L, l ,γ,χ)(t f ) = (r f ,L f , l f ,γ f ,χ f )

(4.13)

among all controlsw ∈ L∞([0, s f ],R3), and s f is the free final curvilinear abscissa.

Variable ` does not affect the new dynamics any more. However, removing it from
the formulation prevents from recovering complete information (see the next sec-
tions). Additionally, its presence do not complexify overly the main computations.

In what follows, the objective consists in analyzing (OIP)s
0 and finding, under appro-

priate simplifications, an explicit guidance law, i.e. explicit expressions of w2 and
w3 as pure functions of the state, that evaluated at the initial instant t = 0 provides
a value of the adjoint vector p(0) which turns out to initialize efficiently a classical
shooting method on (OIP)s

0 (therefore, on (OIP)0, up to time scale changes).

We split the study into two main steps. First, we operate an approximation of (OIP)s
0

which induces a local controllability with small variations of the controls and their
time derivatives. At a second time, an analysis of the Line Of Sight (LOS) is computed
to recover suitable initial conditions (see the next sections for further definitions).
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4.2.1 Approximated Local Controllability of (OIP)s
0

We now apply the Maximum Principle to (OIP)s
0. In order to keep better readability,

we denote p = (pr , pL , p`, pv , pγ, pχ) = (pa
r , pa

L , pa
`

, pa
v , pγ, pχ). The Hamiltonian is

H = pr sinγ+pL
cosγcosχ

r
+p`

cosγsinχ

r cosL

+pγcm w2 +pχ
cm w3

cosγ
+p0(d +ηcm(w 2

2 +w 2
3))

As a standard fact (see, e.g. [16]), since s f is not fixed and we deal with an au-
tonomous problem, the Hamiltonian is equal to zero along any extremal. Since no
constraints are considered onw, by differentiating H with respect tow, we obtain

pγ =−2ηp0w2 , pχ =−2ηp0 cosγw3 . (4.14)

The adjoint equations simplify as follows (compare with Proposition 3.1)

p ′
r = pL

cosγcosχ

r 2
+p`

cosγsinγ

r 2 cosL
+ p0

hr
(d −ηcm(w 2

2 +w 3
2))

p ′
L =−p`

cosγsinχ tanL

r cosL
, p ′

` = 0

p ′
γ =−pr cosγ+pL

sinγcosχ

r
+p`

sinγsinχ

r cosL
−pχ

cm w3 tanγ

cosγ

p ′
χ = pL

cosγsinχ

r
−pl

cosγcosχ

r cosL

. (4.15)

As done in the proof of Lemma 3.3, it is not difficult to see that, necessarily, p0 6= 0.
From this, without loss of generality, we can assume that ‖p‖C 0 ≤ r and, just to avoid
redundant constants, we impose p0 =−1 (up to constants, this is not limiting).

We now proceed formally. By Assumption 4.1, the considered optimal control is of
class at least C 2, therefore, we derive twice expressions (4.14). Combining (4.14) and
(4.15), it is not difficult to see that the first expression in (4.14) leads to

w ′′
2 =

p ′′
γ

2η
= d

2η

(
cm w2 + cosγ

hr

)
− 1

2ηr 2

(
pL cosχ+pl

sinχ

cosL

)
+P1(w2, w3, w ′

2, w ′
3)

where P1(w2, w3, w ′
2, w ′

3) is a polynomial of degree greater than one in w2, w3 and in

their first time derivatives. Since we can assume
‖p‖C 0

r 2
¿ d

2η

cosγ

hr
under standard

flight conditions and Assumption 4.1, the previous expression can be formally ap-
proximated. Iterating the same procedure on the second expression of (4.14) (here,
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P2(w2, w3, w ′
2, w ′

3) denotes again a polynomial of degree greater than one in w2, w3

and in their first time derivatives), under these approximations, we easily get


w ′′

2 = cmd

2η

(
w2 + cosγ

cmhr

)
+P1(w2, w3, w ′

2, w ′
3)

w ′′
3 = cmd

2η
w3 +P2(w2, w3, w ′

2, w ′
3)

. (4.16)

At this step, in order to obtain an explicit guidance law for controls w2, w3, one pos-
sible way consists in integrating system (4.16). Actually, two difficulties arise. First,
the terms cm d

2η and cosγ
cm hr

present nonlinear dependencies with respect to the state,
which prevents an analytical integration of (4.16). This issue can be figured out with
the help of Assumption 4.1, that is, since the values of the altitude do not have strong
variations and the optimal trajectory is close to the straight line joining the initial po-
sition to the final position, we approximate these two terms by constants along the
optimal trajectory. Secondly, the presence of polynomials P1 and P2 complexify sig-
nificantly the resolution of (4.16). However, by Assumption 4.1, we impose that the
optimal trajectory is close to the straight line joining the initial position to the final
position, and then, we may assume that controls w2, w3 take small values. There-
fore, one understands that, if also the variations w ′

2, w ′
3 are sufficiently small, then,

the contributions of polynomials P1 and P2 can be neglected and system (4.16) can
be integrated analytically. These remarks allow to focus on the resolution of the fol-
lowing approximated system


w ′′

2 = cmd

2η

(
w2 + cosγ

cmhr

)

w ′′
3 = cmd

2η
w3

(4.17)

where d , cm and cosγ are maintained constant.

From what we pointed out above, in order to ensure the advantage of solving the
approximated system (4.17) instead of system (4.16), we should show that problem
(OIP)s

0 is controllable with controls that are close, with respect to the strong topol-
ogy of the Sobolev space W 1,∞, to the control w0(t ) = (0,0,0). In other words, we
ask that (OIP)s

0 is W 1,∞-locally controllable in s f around the solution generated by
the constant zero controlw0. It turns out that, this W 1,∞-local controllability holds
for problem (OIP)s

0. To avoid a rough break of our treatise, the reader can find the
detailed proof of this property in Appendix B.
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4.2. Optimal Interception Problem of Order Zero (OIP)0

4.2.2 From a LOS Analysis to a Suboptimal Guidance Law for (OIP)s
0

In order to solve system (4.17), four initial conditions are required. Two of them
are obtained immediately by integrating the two differential equations of γ and χ

in (4.13), by imposing cm and cosγ to be constant (see Assumption 4.1). The second
set of initial conditions can be investigated exploiting an analysis of the line of sight.

The Line Of Sight (LOS) is defined as the vector joining the current position r to the
desired final point, which in this case is r0

f . We denote by R = ‖r0
f −r‖ its modulus

and by n= r0
f −r
R its direction. It is useful to express the vector n under local coordi-

nates along the NED frame (eL ,e`,er ), that is

n= cosδ1 cosδ2eL +cosδ1 sinδ2e`− sinδ1er

where δ1, δ2 are Euler coordinates depending on R. The third point in Assumption
4.1 provides that the launch vehicle performs locally small maneuvers nearby the line
of sight. Expressing this statement mathematically in the NED frame means that, at
the first order, angles γ, χ are forced to be close respectively to δ1 and δ2.

Lemma 4.2. Under Assumption 4.1, i.e. at a first order approximation, the following
relations hold

δ̇1 =− v

R
sin(γ−δ1) , δ̇2 =− v

R
sin(χ−δ2) , Ṙ =−v cos(γ−δ1) .

Notice that the time derivatives considered in Lemma 4.2 are computed with respect
to the variable t . To keep continuity, the proof of this result is given in Appendix B.
The following last steps exploit Lemma 4.2 to tune the two missing initial conditions.
Implicitly, Assumption 4.1 will be always adopted. We start considering control w2.
Integrating system (4.17), we have

w2(s) = Aeb(s f −s) +Be−b(s f −s) − cosγ

cmhr
(4.18)

where we denote b =
√

cm d
2η , which is assumed to be constant. The third point in

Assumption 4.1 makes one approximate R ∼= (s f − s). Plugging (4.18) into equation
γ′ = cm w2 and integrating, one obtains

cm

b
(ebR −1)A− cm

b
(e−bR −1)B = γ f −γ+

cosγ

hr
R (4.19)

On the other hand, using Lemma 4.2 to differentiate the quantity R sin(γ−δ1) with
respect to t , we obtain

d

d t

(
R sin(γ−δ1)

)= Ṙ sin(γ−δ1)+R cos(γ−δ1)(γ̇− δ̇1)

= Ṙ sin(γ−δ1)+R cos(γ−δ1)γ̇+ v sin(γ−δ1)cos(γ−δ1)

= R cos(γ−δ1)vcm w2 =−RṘcm w2
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Therefore, since under Assumption 4.1 we approximate Ṙ ∼=−v , it follows that

(
R sin(γ−δ1)

)′ = 1

v

d

d t

(
R sin(γ−δ1)

)= Rcm w2 .

Again, under Assumption 4.1, we impose the equality R = s f − s, and, integrating the
latter equation by substituting (4.18), one finds

cm

b

(
RebR −

∫ R

0
ebR dR

)
A+ cm

b

(∫ R

0
e−bR dR −Re−bR

)
B = cosγ

hr

R2

2
−R sin(γ−δ1) .

(4.20)
The solution of the system composed by equations (4.19), (4.20) provides the param-
eters A and B needed to close expression (4.18) related to control w2. Indeed, by
defining the gain parameters k1(R) and k2(R) as

k1(R) = bR
ebR −e−bR −2bR

4+ebR (bR −2)−e−bR (bR +2)
, k2(R) = bR

ebR (bR −1)+e−bR (bR +1)

4+ebR (bR −2)−e−bR (bR +2)

and substituting into (4.18) the expressions of A and B provided by the system (4.19)-
(4.20), one obtains straightforwardly that

cm w2 + cosγ

hr
=−k1(R)+k2(R)

R2

(
R sin(γ−δ1)− cosγ

hr

R2

2

)
− k1(R)

R

(
γ f −γ+

cosγ

hr
R

)
(4.21)

Finally, from Assumption 4.1 we approximate sin(γ− δ1) ∼= γ− δ1, deducing from
(4.21) the following guidance law for control w2

w2(R) =−k1(R)
γ f −δ1(R)

Rcm
−k2(R)

sin(γ(R)−δ1(R))

Rcm
−k3(R)

cosγ(R)

2hr cm
(4.22)

where we denote k3(R) = 2+k1(R)−k2(R).
Under Assumption 4.1, very similar computations can be performed for the control
component w3 (that we do not report to avoid redundancy). The following guidance
law for control w3 is therefore derived

w3(R) =−cosγ(R)

(
k1(R)

χ f −δ2(R)

Rcm
+k2(R)

sin(χ(R)−δ2(R))

Rcm

)
. (4.23)

The new guidance law recovered by (4.22)-(4.23) generalizes classical guidance laws
for the optimal interception problem when considering endo-atmospheric flights,
and this, by introducing the presence of terms depending on cosγ which, in some
sense, improve the stability of the law for bounded altitudes (see, e.g. [6]).

Relations (4.22) and (4.23) can be used to provide an explicit guess for the initial value
of the adjoint vector of problem (OIP)0 and its free final time t f , as follows.

104



4.3. Numerical Simulations for (OIP)

Considering Assumption 4.1, we may choose as initial guess t f = R(0)/v0 and pγ(0) =
2ηw2(0), pχ(0) = 2ηcos(γ0)w3(0) from expressions (4.14). The guess values of pr (0),
pL(0), pl (0) are easily obtained by combining the relation H(s = 0) = 0, where H is
the Hamiltonian of (OIP)s

0, with the dual system (4.15) (by differentiating succes-
sively expressions (4.14)). Concerning the initial guess of pv (0), we modify slightly
the problem as follows. When introducing formulation (OIP)s

0, the new velocity vari-
able vs = ln(v) is adopted. Its dynamical equation is given by

v ′
s =−(d +ηcm(w 2

2 +w 2
3)) .

We integrate the quantity vs and its dynamics into (OIP)s
0. Therefore, it is not difficult

to see that, the previous arguments concerning (OIP)s
0 still hold if we substitute p0

by p0 −pvs (in particular in expressions (4.14) and in the dual system (4.15)), where
pvs is the adjoint variable related to vs . Thanks to the fact that the variable vs does
not enter explicitly within this formulation, there holds

p ′
vs
= 0 .

This and the transversality conditions provide immediately the equality pvs (0) = 0.
All the numerical methods that we derive for (OIP) contain intrinsically this modified
formulation, in which the norm v of the velocity is replaced by its natural logarithm
vs = ln(v). This procedure allows to obtain a guess from (4.22)-(4.23) to initialize
classical shooting methods on the problem of order zero (OIP)0, as shown above.

4.3 Numerical Simulations for (OIP)

Within this section, we propose numerical simulations concerning the optimal in-
terception problem (OIP), to justify the homotopy approach previously developed.
We first introduce the mathematical modelization of interception missions and nu-
merical values of tested scenarios. In a second time, we explicitly provide the homo-
topy numerical scheme proposed in Section 4.1.2 and related numerical results.

4.3.1 Mathematical Design of the Mission

The implemented numerical algorithm solve (OIP) by combining the numerical strate-
gies proposed in Section 4.1 and Section 4.2. In particular, the linear continuation
scheme with two parametersλ= (λ1,λ2) of Section 4.1.2 and the initialization arisen
from the analysis of the problem of order zero presented in Section 4.2 are adopted.
For these numerical simulations, we consider two different type of mission. The first
mission consists in reaching the target with the highest possible final velocity while
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the second mission considers the same objective by combining maximal final veloc-
ity and minimal final time. Therefore, the costs of the parametrized family of optimal
interception problems (OIP)λ take the form

Cλ(t f ,u) = gλ(t f , q(t f )) =λ1C1t f − v2(t f ) (4.24)

with C1 ∈ {0,1}. Moreover, the final target manifolds are represented in the coordi-
nates of the local chart (Va ,ϕa) as

Mλ2
f =

{
(r − rT ,L · rT ,` · rT ) = (hλ2

f ,Lλ2
T, f ,`λ2

T, f ) , (γ,χ) = (γλ2
f ,χλ2

f )
}

(4.25)

and the physical parameters of the intercepting missile are listed in Section 2.2.2.
Costs (4.24) and final target manifolds (4.25) are chosen such that the original prob-
lem is given by λ = (1,1). Missions considering minimal final time are often more
challenging, therefore, in general, abrupter maneuvers are more common.
In this context, we fix a unique optimal interception problem of order zero for both
missions. Represented by their local coordinates (r,v) ∼= (r,L, l , v,γ,χ) (reported in
standard units), the initial point (r0,v0) is fixed to the value (rT +h0,0,0, v0,γ0,0),
where h0 = 1000, v0 = 500 and γ0 = 0, while the values of its final point are

h0
f = 5000 , L0

T, f = 14000 , `0
T, f = 0 , γ0

f =−π
6

, χ0
f = 0 .

In particular, its optimal trajectory is supposed to lie in a plane. Two different prob-
lems, corresponding to two different scenarios, are tested. More precisely, we denote
by (OIP)C1,1 the optimal interception problem with the same starting point as (OIP)0

and whose final target (4.25) is given by the quantities (in standard units)

h1
f = 5000 , L1

T, f = 14000 , `1
T, f =−2000 , γ1

f =−π
6

, χ1
f =

π

6

while (OIP)C1,2 denotes the optimal interception problem with the same starting
point as (OIP)0 and whose final target (4.25) is given by (in standard units)

h1
f = 7900 , L1

T, f = 7500 , `1
T, f = 2000 , γ1

f =−π
4

, χ1
f =−π

4
.

From a computational point of view, the shooting method is solved using the C rou-
tines hybrd.c (see, e.g. [103]), which provides modified versions of the Powell’s method
(see, e.g. [103]), while a fixed time-step explicit fourth-order Runge-Kutta method is
used to integrate differential equations (whose number of integration steps varies
between 250 and 350, depending on the final time t f of each problem). We use a ma-
chine Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz, with 7.00 Gb of RAM. On average,
final self-contained executable files are of 1.9 Mb, then, of low computational load.

106



4.3. Numerical Simulations for (OIP)

4.3.2 Homotopy Scheme and Numerical Results

In the context of (OIP), the numerical homotopy scheme presented in Section 4.1
can be resumed as in Figure 4.1, below. Here, (OIP) represents both (OIP)C1,1 and
(OIP)C1,2. First, the guidance law (4.22)-(4.23) is employed to initialize the problem
of order zero (OIP)0, as detailed at the end of Section 4.2.2. Therefore, maintaining
the scenario constant, i.e. λ2 = 0, the contributions of the thrust, of the gravity, of the
roundness of the Earth and of the minimal final time (if C1 6= 0) are added to obtain
the intermediate problem (OIP)Inter. Finally, the original scenario is recovered by a
discrete continuation on parameter λ2, which leads to the solution of (OIP).

Guidance Law
(4.22)-(4.23)

(OIP)0 (OIP)Inter (OIP)

λ1 → 1
λ2 = 0

λ1 = 1
λ2 → 1

Figure 4.1: Homotopy scheme for (OIP). Continuations are done by Algorithm 1.
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Figure 4.2: Trajectories and constraints of the guidance law (4.22)-(4.23) and (OIP)0.

The first step in the homotopic procedure exploits the trajectory provided by the
guidance law (4.22)-(4.23) to recover the optimal solution of the optimal interception
problem of order zero (OIP)0. In Figure 4.2, the related trajectories and stability con-

straints
√

w 2
2 +w 2

3 ≤ sinαmax are shown. Remark that we provide the global stability
constraint via the local coordinates (w1, w2, w3) by transforming the coordinates of
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the chart (Vb ,ϕb) into the coordinates of chart (Va ,ϕa) (if needed). As expected, the
two solutions do not differ so much. This can be also checked from the values of the
final times and modulus of velocities (which in this case coincide with the costs), that
are respectively (in standard units)

Guidance Law (4.22)-(4.23) →→→
{

t f = 45

v(t f ) = 223.1
, (OIP)0 →→→

{
t f = 44.8

v(t f ) = 241.6
.

In this case, problem (OIP)0 does not require a change of local chart and its optimal
trajectory lies in a plane. The solution provided by the guidance law does not respect
the stability constraints. Nevertheless, we decide to consider constraints (2.13) in
the formulation of (OIP)0 (see Section 4.1), which clearly appears from Figure 4.2 b)
(there are saturations in the terminal phase). From this, one observes that the prob-
lem of order zero that we proposed does not fulfill entirely Assumption 4.1. How-
ever, experimentally, the new guidance law (4.22)-(4.23) that we recovered seems to
be robust enough to initialize a larger number of scenarios than the ones fulfilling
Assumption 4.1. To show this for the present numerical simulations, we ran some
Monte Carlo tests on different missions. In particular, with fixed initial point (the
one used previously for these simulations), we solve the following range of scenarios

h0
f ∈ [h0

f ,min,h0
f ,max] = [2000,4000+k ·2000] , L0

T, f ∈ [8000,18000]

`0
T, f ∈ [−2000,2000] , γ0

f ∈
[
−π

4
,
π

4

]
, χ0

f ∈
[
−π

4
,
π

4

]
reported in standard units, where the integer k varies in {0, . . . ,6}. For each k, we
performed 10000 Monte Carlo simulations. Figure 4.3 resumes the results obtained.
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Figure 4.3: Monte Carlo simulations for the guidance law (4.22)-(4.23).

The simulations showed that the most sensitive variables is the maximal final alti-
tude h0

f ,max. However, we see that the half of the scenarios still remains solvable even

108



4.3. Numerical Simulations for (OIP)

when the maximal altitude h0
f ,max is 16000 meters. Moreover, among the solvable

scenarios, we notice that the number of scenarios that saturate the stability con-
straint increases with h and is not negligible even for small value of h0

f ,max (19.44 % at
4000 meters). This may motivate the use of the analytical guidance law (4.22)-(4.23)
to initialize many more scenarios than the ones satisfying Assumption 4.1.
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Figure 4.4: Trajectories and constraints of (4.22)-(4.23), (OIP)0 and (OIP)Inter.

Following the diagram of Figure 4.1, from the solution of the problem of order zero
(OIP)0, we start a homotopy procedure to add the contributions of the thrust, of the
gravity and of the roundness of the Earth. The solid lines in Figure 4.4 show the so-
lutions achieved both in the case for which C1 = 0 (green) as well as C1 = 1 (brown).
The following optimal values are obtained (in standard units)

(OIP)C1=0
Inter →→→

{
t f = 21.3

v(t f ) = 882.4
, (OIP)C1=1

Inter →→→
{

t f = 20.7

v(t f ) = 830.2
.

Problems (OIP)Inter are solved without change of local chart and their optimal tra-
jectories lie in a plane. Compared with the previous case, the final times are much
smaller and the final velocities are much higher. This is of course caused by the pres-
ence of the thrust. Moreover, one sees from Figure 4.4 b) that the presence of the
minimal final time induces abrupter maneuvers at the end of the trajectory. As ex-
pected, the problem with minimal final time is harder to solve. Indeed, 7 iterations
of the homotopy procedure are needed to solve (OIP)C1=0

Inter while 14 iterations occur

to solve (OIP)C1=1
Inter . This translates in 552.3 milliseconds to solve (OIP)C1=0

Inter and 1540
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milliseconds to solve (OIP)C1=1
Inter . We stress on the fact that the homotopy on the thrust

and on the gravity are operated at the same time. Empirically, this considerably in-
creases the number of solvable scenarios. Furthermore, we provide the contribution
of the minimal final time at the same time of the thrust and the gravity. Experimen-
tally, it seems to be more appropriate to define the structure of the solution when
C1 = 1 before focusing on the final target, because, their structure can change a lot if
the mission is very different than the one employed for the problem of order zero.

From the Intermediate Problem to the Original Problem: No Minimal Final Time
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Figure 4.5: Trajectories and constraints of the first scenario, no minimal time.
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Figure 4.6: Trajectories and constraints of the second scenario, no minimal time. The
black boxes within the subplot of Figure a) show changes of local chart.
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From the diagram of Figure 4.1, the last homotopic step consists in recovering the
original scenario by spatial homotopy on the parameter λ2. The solid lines in figures
4.5 and 4.6 give some detail of the optimal solutions in the case where no minimal
final time appears, respectively for problem (OIP)C1=0,1 and problems (OIP)C1=0,2.
The following optimal values are obtained (in standard units).

(OIP)C1=0,1 →→→
{

t f = 22.1

v(t f ) = 803.8
, (OIP)C1=0,2 →→→

{
t f = 29.05

v(t f ) = 476.9
.

In this case, problem (OIP)C1=0,1 is solved without change of local chart, but for prob-
lem (OIP)C1=0,2 the change of variables between chart (Va ,ϕa) and chart (Vb ,ϕb) is
operated. This can be seen from Figure 4.6 a) where a subplot representing the pro-
jection of the optimal trajectory of (OIP)C1=0,2 onto the plane (L · rT ,r − rT ) is pro-
vided. Starting the computation in the local chart (Va ,ϕa), the trajectory gets close
to the singularity given by γ = 0. Therefore, the change of coordinates to the local
chart (Vb ,ϕb) is operated. After, the trajectory encounters the singularity given by
θ = 0, therefore, the change of coordinates to the local chart (Va ,ϕa) is operated. In
our simulations, without the change of coordinates, this scenario cannot be solved.
Concerning the computations of the spatial homotopy step on λ2, 5 iterations are
needed to solve (OIP)C1=0,1 while 20 iterations occur to solve (OIP)C1=0,2. The total
computational time, considering both the homotopy on λ1 and the homotopy on λ2,
are 750 milliseconds to solve (OIP)C1=0,1 and 1980 milliseconds to solve (OIP)C1=0,2.
The second scenario needs much more spatial homotopy iterations and provides a
much more complicated behavior of the optimal control: most of the time, this con-
trol saturates (Figure 4.6 b)). Notice that the homotopy maintains the topology of the
structure of the optimal solutions (the parabolic behavior, see Figure 4.6 b)).
In order to verify the optimality of the found trajectories, the same problems are
solved by exploiting direct methods. More specifically, we implement the optimal
control problems in the AMPL framework, combined with IPOPT, using an explicit
second-order Runge-Kutta method with 200 time steps (see, e.g. [104, 105]). Mod-
ifying the initial guess of IPOPT, these problems are solved by the direct method
with computational times comparable or even larger to the ones given by the ho-
motopy method, obtaining the same solutions that we presented. Moreover, when
(OIP)C1=0,2 is considered, the computational time of the direct method increases fast
because of the presence of singularities concerning the Euler coordinates.
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From the Intermediate Problem to the Original Problem: Minimal Final Time
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Figure 4.7: Trajectories and constraints of the first scenario, with minimal time.
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Figure 4.8: Trajectories and constraints of the second scenario, with minimal time.
The black boxes within the subplot of Figure a) show changes of local chart.

Adding the contribution of the original scenario in the case of minimal final time pro-
vides the solutions shown in Figure 4.7 for (OIP)C1=1,1, and, in Figure 4.8 for (OIP)C1=1,2.
The following optimal values are obtained (in standard units).

(OIP)C1=1,1 →→→
{

t f = 21.4

v(t f ) = 753.7
, (OIP)C1=1,2 →→→

{
t f = 29.03

v(t f ) = 475.2
.

Comparing Figure 4.5 with Figure 4.7, we notice that the solutions of the two prob-
lems differ, and the optimal control of problem (OIP)C1=1,1 contains some satura-
tions (see Figure 4.7 b)). This is not surprising since the structure of the optimal
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solution of problem (OIP)C1=1
Inter already contains saturations. Similarly to the previous

case, to solve (OIP)C1=1,1 no change of local chart is needed. Figure 4.6 and Figure 4.8
show instead that the second scenario presents similar solutions for both cases, with
or without minimal final time (compare the blue solid lines of Figure 4.6 b) and of Fig-
ure 4.8 b)). In particular, the same changes of local chart adopted to solve (OIP)C1=0,2

are employed to solve (OIP)C1=1,2 (see Figure 4.8 a)). We explain this fact empirically,
by saying that, the final configuration imposed to the vehicle in problems (OIP)C1=0,2

and (OIP)C1=1,2 is restrictive enough to prevent significant modifications when the
minimal final time is added. Of course, we may have obtained a local solution.
The computational iterations and times for the spatial homotopy on λ2 in the case
of minimal final time are the following: 11 iterations and 1730 milliseconds to solve
(OIP)C1=1,1, and, 26 iterations and 2580 milliseconds to solve (OIP)C1=1,2.
The optimality of the solution was checked by direct methods, in the AMPL-IPOPT
framework, as done previously for problem (OIP)C1=0,1 and problem (OIP)C1=0,2. The
same analysis of the case without minimal final time arises. In particular, even if we
cannot ensure the global optimality of the control strategy found by AMPL-IPOPT, we
can infer that common direct methods and our homotopy procedure seek the same
solutions also in the presence of hard missions (like problem (OIP)C1=1,2).

4.4 Conclusions

In this chapter, we have proposed a numerical strategy which combines indirect
methods with homotopy procedures to solve the optimal interception problem (OIP).

The methodology consists in deforming (OIP) by removing the contributions of the
thrust, of the gravity, of the roundness of the Earth and by simplifying the original
scenario. The obtained problem of order zero represents an appropriate formula-
tion, from which, a first discrete continuation on the dynamics and a second discrete
continuation on the initial and final conditions efficiently lead to obtain an optimal
solution of the original problem. Our main contribution is represented by a new
guidance law, conveniently developed approximating a particular Maximum Princi-
ple formulation, which correctly initializes, on the problem of order zero, the starting
shooting related to the previous homotopy procedure. Numerical simulations show
that this method provides optimal strategies comparable, and in some cases, better
(from a computational viewpoint) than usual direct method approaches.

Although the previous procedure provides optimal strategies quickly, the average ob-
tained computational times remain too large and still not exploitable for a real-time
use. In the next chapter, we will develop a fine method to both speed-up computa-
tions and to make the algorithm more robust to radical changes of the scenario.
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Numerical Robustness and

Interception Software (ONERA)

In Chapter 4, we provided a numerical strategy, based on homotopy algorithms, to
solve via indirect methods the optimal interception problem (OIP) (see Section 2.2.2).

The idea behind this numerical approach consists in a parameter deformation pro-
cedure. First, the original optimal control problem is simplified by removing some
components of the dynamics, such as the thrust and the gravity, and modifying the
original scenario. We obtain an approximate solution of this simplified version thanks
to an ad hoc conceived guidance law. Then, the solution of the original problem is
found by deforming the approximated solution, firstly, by adding the physical com-
ponents previously removed, and secondly, by recovering the original scenario.

Numerical simulations provided in Chapter 4 show the efficiency of the latter pro-
cedure, that is, good computational speed and precision are obtained both on some
basic and even more challenging scenario with a low computational load. Neverthe-
less, the high sensitivity to initial conditions is evident, that is, different scenarios
may take more or less computational time to converge to the optimal solution, in
particular because the integration starts from the solution provided by the guidance
law on the simplified problem. In other words, roughly speaking, the width of the
interval containing the computational times (obtained by Monte Carlo simulations)
of the whole homotopy scheme related to complex missions is too wide and contains
times that are considered too large for a real-time optimal interception.

The objective of this chapter, in which we consider the simplest version of (OIP) with-
out minimal final time, is to provide a framework to manage the high sensitivity of
the homotopy scheme proposed in Chapter 4 by robustifying the entire procedure.

We organize the exposition in two main parts. In Section 5.1, we propose, as so-
lution to the high sensitivity problem discussed above, the offline development of
grids storing initial values of adjoint vectors, related to many different feasible sce-
narios, from which the solution of current scenarios is evaluated by exploiting only
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one spatial homotopic step. This strategy has three main advantages. Firstly, it helps
considerably to robustify the convergence when drastic changes of the scenario oc-
cur (such as, trajectory reconfigurations of the evader). Secondly, it accelerates, on
average, the converging computational time related to all kind of mission. Finally,
it allows to make these computational times more uniform, i.e. quite independent
on the considered scenario, which may be understood as a possible solution to the
previous high sensitivity problem. On the other hand, in Section 5.2, we provide an
insight on the C++ library and its methods conceived to manage optimal interception
missions. Details on this code are analyzed and standard usage script are suggested.

5.1 Increasing the Robustness: Initialization Grids

Consider problem (OIP) in which one strictly maximizes the final velocity (i.e. no
minimal final time is considered). The high sensitivity with respect to changes of the
initial scenario and robustness improvements can be achieved by an offline com-
puting of grids containing initial values of optimal adjoint vectors for many different
feasible missions. More specifically, the idea that we propose develops as follows:

• Compute, for many possible fixed scenarios, the related initial values of the
optimal adjoint vectors, where the contributions of the thrust, of the gravity
and of the roundness of the Earth are already considered, and store them.

• To solve any feasible scenario given by the user, denoted by Suser, proceed as
follows. Choose, among all the scenarios already solved offline, the one the
closest to Suser (w.r.t. the euclidean norm, see Section 5.1.2), and denote it by
Sclosest; moreover, denote the initial value of the adjoint vector of Sclosest by
pclosest(0). Then, start a spatial homotopy procedure, whose aim is to solve the
original mission by deforming Sclosest into Suser, which is initialized by pclosest(0).

Once the initialization grid is provided, the spatial homotopy can be developed, for
example, as done in Chapter 4, i.e. by employing the discrete continuation of Algo-
rithm 1, where either all the scenario variables can be deformed at the same time
or sequentially. An important detail that we consider is the following. Since in the
context of (OIP) usually solid-fuel propelled vehicles are employed, we look for opti-
mal scenario whose final time t f is grater or equal than 20 seconds (see the technical
values provided in Section 2.2.2). Therefore, if some scenario provides t f < 20 as op-
timal value, we recompute the optimal strategy by imposing a fixed final time t f = 20.
To conclude, we need to provide valid initialization grids.
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5.1.1 Fast Initialization Grids Design

The most reliable way to proceed to design a valid initialization grid consists in com-
puting the global optimal solution of (OIP) for a large family of fixed scenarios, for
example, by using global direct methods (see Section 1.3.3). However, this procedure
may take too much time (depending on the discretization step of direct methods)
and may not be appropriate for the evaluation of several grids with the focus on the
validation of our initializing method, and not on boosted software optimization (in
the context of the present work). A fast scheme to build up these grids is required.

We propose to develop initialization grids by spatial homotopies operated on some
basic scenario which is correctly initialized by the guidance law (4.22)-(4.23), pro-
vided in Chapter 4. We resume this procedure by the simplified scheme below, which,
for sake of concision in the exposition, iterates only on one variable.

Data: Maximal value rmax, minimal value rmin and iterations Imax ≥ 1.
Result: Initialization grid files (G1

init,G2
init) on variable r for (OIP).

begin

Consider problem (OIP) without minimal final time. Solve (OIP) on the following scenario (in standard
units)

S0 :

{
r0 = rT +1000 , L0 · rT = 0 , `0 · rT = 0 , v0 = 500 , γ0 = π

4 , χ0 = 0

r f = rT +5000 , L f · rT = 14000 , ` f · rT = 0 , γ f = 0 , χ f = 0

for example, with the homotopy scheme provided in Section 4.3 (see Figure 4.1). Store S0 in G1
init and

the initial value of its optimal adjoint in G2
init.

for integer i = 2 , i ≤ 2 · Ir +1 , i → i +1 do

integer j = i /2

if i % 2 == 0 then

rtemp = r f + |r f − rmax| ·double( j /Ir )

else

rtemp = r f − |r f − rmin| ·double( j /Ir )

end

Denote by Stemp the scenario S0 where r f is replaced by rtemp .

Seek in G1
init the scenario S which satisfies d2(S,Stemp) = min

S′∈G1
init

d2(S′,Stemp), where d2 is the

euclidean norm with respect to variable r .

Solve (OIP) on scenario Stemp by Algorithm 1, acting on the variable r , and starting from the
solution (state and adjoint variables) of scenario S.

if a solution of (OIP) for scenario Stemp is found then

Store Stemp in G1
init and the initial value of its optimal adjoint in G2

init.
end

end
end

Algorithm 2: Example of algorithm to develop initialization grids for (OIP).
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The main idea of Algorithm 2 consists in recovering solutions of many different sce-
narios for (OIP) by deforming, with a spatial homotopy method, the solution of (OIP)
on the given starting scenario S0. The information concerning the initialization grid
are stored in the files (G1

init,G2
init). Without loss of generality, every admissible sce-

nario is represented by the coordinates of the local chart (Va ,ϕa) (see Section 3.2.1).

The starting scenario S0 is chosen so that a solution of (OIP) on it can be found eas-
ily by the homotopic scheme in Figure 4.1, which is initialized by the guidance law
(4.22)-(4.23). We choose those particular initial and final conditions to ascertain the
convergence for S0 (we have chosen them relying on the structural values provided in
Section 2.2.2, although the choice is merely free). The initial value of the optimal ad-
joint vector for a given deformed scenario Stemp is sought by spatial homotopy, start-
ing from the scenario in G1

init the closest to Stemp , in order to maximize the chances to
find a solution. The homotopy procedure makes the state variables varying between
a given minimal value (i.e. rmin) and a given maximal value (i.e. rmax). The global
density of the grid is chosen via the number of iterations of homotopic steps Imax.

Algorithm 2 makes only one variable change at time. However, it is straightforward
to extend this procedure to several varying parameters, by nesting many for loops,
one for each variable. Remark that one can also make initial states vary. In particular,
for our numerical simulations on grids, we make the initial velocity v0 increase.

When several states vary, the domain of explored scenarios can be shown as below
(in the following, without loss of generality, we represent every admissible scenario
by the coordinates of the local chart (Va ,ϕa), see Section 3.2.1).

Figure 5.1: Representation of the explored scenarios of an initialization grid.

118



5.1. Increasing the Robustness: Initialization Grids

The points within the rectangle of Figure 5.1 represent the scenarios that Algorithm
2 tries to solve when the varying variables are r , L and angle γ (between given mini-
mal and maximal values, respectively). In particular, for each couple (r − rT ,L · rT ) a
discretized range of slope angles γ is considered (the region covered by the two-head
arrow). This procedure is clearly generalized to all the remaining variables.

Some comments on the previous construction of the initialization grid are as follows.
Firstly, it is important to note that, due to evident feasibility constraints, not all the
explored scenarios may be figured out by Algorithm 2. In other words, plotting the
solved scenarios as in Figure 5.1 would arise probably a geometric shape which is
not an uniform box as in Figure 5.1. A first explanation may summon controllability
properties of each scenario that do not depend on the numerical procedure.
Secondly, the lack exposed above may not be related only to feasibility constraints.
More specifically, when no constraints are imposed, under standard regularity as-
sumptions the spatial homotopy procedure is well-posed to solve optimal control
problems (see Proposition 1.2). However, in the presence of control constraints, as in
our case (we implicitly assume the local forms of (OIP) by using charts (Va ,ϕa) and
(Vb ,ϕb), see Chapter 3), the spatial homotopy procedure may not converge globally,
and this may reduce the number of solved scenarios. Despite this flaw, as we show
hereafter, in the case of (OIP), we experimentally see that grids evaluated by Algo-
rithm 2 which are dense enough provide a totally acceptable level of failures.
Finally, the same drawback as above is summoned to explain the sub-optimality pos-
sibly provided by Algorithm 2. Indeed, by considering the argument developed in
Section 1.3.4, when convergence is achieved, we ensure that only first-order neces-
sary conditions are satisfied and it may happen that different homotopic path lead to
different local solutions (see also [23]). To improve the chances of obtaining (at least
local) optimality, one could operate with several different spatial homotopy paths
and choose the one satisfying second-order necessary conditions (by improving the
argument developed in Section 3.1.2), or better, proceed with globally optimal direct
methods. Because of lack of time, we did not implement such improvements in the
present work, leaving this issue among possible perspectives.

5.1.2 Numerical Time-Robustness Monte Carlo Experiments

We devote this section to numerical simulations suitable for testing initializing grids
that have been computed by Algorithm 2, considering real interception scenarios.
The main objective consists in testing the robustness of the grids as function of the
density of points that they contain. The more points an initialization grid contains,
the less computational time (and failures) the resolution method is supposed to pro-
vide, making the average computational time converge uniformly to some value de-
pending only on the refinement of the grid. Informally, it is easily understood that
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this kind of tests is an efficient way to check whether the sensitivity problem dis-
cussed at the beginning of this chapter can be considered statistically solved.

Monte Carlo experiments are provided with the following setting. For any tested grid,
we ran 50000 uniformly randomized simulations. Each simulation consists in:

• Giving a random scenario Srand, whose points are chosen inside the physical
region in which the grid was developed.

• Choosing, within the grid, the scenario Sgrid which is the closest to Srand and
operating a spatial homotopy (via Algorithm 1) on each state variable at the
same time, starting from Sgrid, to recover the solution of Srand.

We noticed that deforming all the state variables at the same time is usually faster and
still well-posed. Moreover, considering the dimension of the tested grids (at most 10
Mb), we remarked that the time needed to find the closest scenario within the grid is
negligible if compared to the time taken by the spatial homotopy procedure.

We tested six initialization grids {G1, . . . ,G6} computed offline by Algorithm 2 by vary-
ing several state variables. In particular, all the six grids only differ in their density of
contained solved scenarios (which iteratively increases) and are computed by vary-
ing the following variables, within their corresponding maximal and minimal bounds
(in standard units)

v0 ∈ [500,1500] , r f − rT ∈ [5000,20000] , L f · rT ∈ [6000,30000]

` f · rT , [−2000,2000] , γ f ∈
[
−π

3
,
π

3

]
, χ f ∈

[
−π

3
,
π

3

]
where we fixed the initial variables r0 − rT = 1000, L0 = 0, `0 = 0, γ0 = π/4 and χ0 = 0
(as in Algorithm 2). These state bounds allow to simulate real endo-atmospheric
missile interception conditions when a standard initial slope of π/4 rad is chosen.
The density of points of every grids corresponds to the number of iterations Imax in
Algorithm 2 used for each state variables. The number of iterations used is repre-
sented in Table 5.1, in which there are reported also the total number of scenarios
explored (column "Total") and the number of scenarios solved (column "Solved").
We remark that, the more points one grid has, the more explored scenarios are ef-
fectively solved (compare the percentage in column "Solved" of Table 5.1). We can
explain this heuristically by saying that the presence of more points makes each spa-
tial homotopy step shorter, helping the related convergence.
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Imax(v0) Imax(r f ) Imax(L f ) Imax(` f ) Imax(γ f ) Imax(χ f ) Total Solved

G1 3 2 2 1 1 1 471 351 (74.52 %)

G2 3 2 3 2 1 1 1389 1020 (73.43 %)

G3 3 3 3 2 2 2 6652 5473 (82.28 %)

G4 3 3 3 2 3 3 14524 12197 (83.98 %)

G5 4 3 3 3 3 3 26956 22719 (84.28 %)

G6 4 4 4 3 3 3 44925 38399 (85.47 %)

Table 5.1: Number of iterations used for each state variable, for different grids.

From a computational point of view, the shooting methods are solved using the C
routines hybrd.c (see, e.g. [103]), which provides modified version of the Powell’s
method (see, e.g. [103]), while a fixed time-step explicit fourth-order Runge-Kutta
method is used to integrate differential equations (whose number of integration steps
varies between 250 and 350, depending on the value of t f ). The calculations are done
on a machine Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz, with 7.00 Gb of RAM.

The results obtained by Monte Carlo simulations are reported in figures 5.2 and 5.3.
In Figure 5.2 a), one remarks that, following the intuition, the average percentage
of non-solved scenarios statistically decreases when the number of points in the ini-
tialization grids increases. The same conclusions arise for the average computational
time necessary to solve one random scenario, by analyzing Figure 5.2 b).
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Figure 5.2: Average percentage of failed scenarios and average computational time
for one scenario.

From Figure 5.2 a), one sees that a large gap between grids G2 and G3 occurs. This
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should not be surprising since we pass from 1386 to 6652 valid scenarios in the grids.
However, this does not happen when passing from grid G3 to grid G6, even if we in-
crease by six the number of valid scenarios (see Table 5.1). The same structure ap-
pears when considering the average computational time for one scenario in 5.2 b),
i.e. a jump occurs between grid G2 and grid G3 while no particular difference exists
among the provided data when switching from grid G3 to grid G6.
The presence of large jumps from grid G2 and grid G3 and the clusters created by
data arising from grids G3-G6 in Figure 5.2 suggests, as our initial intuition expected,
that, as the number of valid scenarios of a grid increases, both the average percent-
age of failures converges uniformly towards a small value, which represents an ac-
ceptable threshold for our interception applications, and the average computational
time needed to solve one random scenario tends uniformly to some small time.
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Figure 5.3: Average percentage of changes of chart and simulation/failures.

In Figure 5.3 a), the average percentage of changes of chart for successful scenario
resolutions is reported. These percentages keep track of scenarios where at least one
change of chart occurs. The same interpretations provided above concerning Figure
5.2 are still valid if applied to Figure 5.3 a). At the same time, we remark that, even in
the best case, these percentages remain high, showing the importance of operating
changes of chart to considerably increase the number of successful missions.
Finally, Figure 5.3 b) shows the position of each tested initialization grid in the plane
failed scenarios-computational time. We remark that a small number of failed sce-
narios always exists. For this, we must recall also that, among possible Monte Carlo
scenarios, there are missions with conditions close to the boundary of the accessible
set, which has not been studied in the present work. However, this last graph reflects
our intuition on considering more valid scenarios, that is, finer grids obtain both a
higher number of accomplished missions and a smaller average computational time.
This empirically shows the numerical time-robustness of our initialization approach.
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5.2 Software Design: a Template C++ Library (ONERA)

This final section desires to show the detailed structure of the template C++ library
conceived to efficiently recover optimal strategies for optimal interception missions.
This C++ library was born from the work developed in ONERA - The French Aerospace
Lab, with the aim of providing an optimized and fast procedure to obtain optimal in-
terception strategies, able to update within a range of 1-10 Hz. A template framework
is employed to make as easy as possible any transition to other, possibly more per-
forming, dynamical models and/or costs related to problem (OIP).

5.2.1 Library Structure (Simplified UML Class Diagram)

The main structure of the conceived template C++ library can be well summarized in
the following simplified UML class diagram.

Figure 5.4: UML representation of the C++ library for optimal interception strategies.

The class implementing officially our indirect method coupled with homotopy pro-
cedures is RealTimeShooting. In particular, the method shoot of this class is all the
user needs to call to evaluate one optimal interception strategy, when a feasible sce-
nario is provided. The function shoot reads the file adjointGuess.txt which repre-
sents a given offline precomputed initialization grid (see Section 5.1), searching the
appropriate scenario from which a spatial homotopy procedure starts (see Section
5.1.2). The performances of this library are shown by the simulations of Section 5.1.2.

5.2.2 Details on Classes and User Script Examples

In the following, referring to Figure 5.4, we provide some computational details about
the methods contained within this template C++ library, in order to show its com-
patibility with other structure provided by the user. An example of main script for
optimal interception strategies is furnished at the end of the present section.

123



Chapter 5. Numerical Robustness and Interception Software (ONERA)

The main characteristics of each class of the library in Figure 5.4 are in order.

• Eigen Class and CMinPack Library. The template routines composing Eigen
are devoted to state-of-the-art optimized and fast linear algebra methods (de-
tails can be found at http://eigen.tuxfamily.org/). We exploit Eigen to quickly
operate the change of coordinates from chart (Va ,ϕa) to chart (Vb ,ϕb) and vice
versa (see Chapter 3), and this is indeed efficiently computed because pre-
screening and conditioning steps are combined. The CMinPack library pro-
vides an improved version of Powell’s method to find local zeros of nonlinear
functions, which is computed by the routine hybrd.c. We employ this library to
solve shooting problems. Further details on this procedure are given in [103].

• LieBracket Class. This template class (the template real stands for the numer-
ical precision) provides public methods to compute the iterated Lie brackets
needed to recover possible nonregular extremals for (OIP). We refer to Section
3.3.2 for further details on the computation of nonregular extremals.

• Model Class. A standard association relation connect Eigen and LieBracket
classes to the template class Model (the template real stands for the numerical
precision). This class numerically represents the endo-atmospheric dynamical
model considered for (OIP) and its adjoint equations (see Section 3.2). More
specifically, methods evalFirst and evalSecond evaluate dynamics (3.14) and
(3.20), respectively, together with their adjoint equations, which is all a numer-
ical solver of ordinary differential equations needs to integrate the dynamics of
the Maximum Principle formulation related to (OIP). This is possible thanks
to methods controlFirst and controlSecond which provide the value of the
control in the coordinates of the local charts (Va ,ϕa) and (Vb ,ϕb), respectively,
and both regular and nonregular extremals are considered (with the help of
LieBracket). Finally, when needed, method conversionFirstToSecond oper-
ates the change of coordinates from chart (Va ,ϕa) to chart (Vb ,ϕb) in the cotan-
gent space, i.e. on the adjoint vector, necessary to change coordinates within
the adjoint equations. As provided in Section 3.2, this requires to invert a linear
system, that we compute with the help of Eigen. Same conclusions hold for its
dual method conversionSecondToFirst.

• Runge4Method Class. Class Model is passed as a template parameter to the
three template class Runge4Method, whose objective consists in integrating
dynamics and adjoint equations related to (OIP) (the first two template pa-
rameters represent the numerical precision and the dimension of the prob-
lem, respectively). This is operated via an explicit fourth-order Runge-Kutta
algorithm, by method solve. In particular, any needed change of coordinates is
computed in solve, with the help of the routines in Model, by checking whether
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the numerical integration passes through some singular zone for the consid-
ered local coordinates. The flexibility of maintaining the class Model as a tem-
plate parameter for this integration class comes form the fact that one can sub-
stitute Model with any other endo-atmospheric dynamical model, up to pre-
serve the existence of the six methods previously provided in Model.

• HomotopyProcedure Class. This template class covers an important role: op-
erating the discrete continuation with acceleration step, that is Algorithm 1, on
several parameters (remark that the template real stands for the numerical pre-
cision). For this, methods from CMinPack, Model and Runge4Method are ex-
ploited via standard association relations. There exist two principal methods.
Method homotopySpGrPr operates Algorithm 1 to recover, from the problem
of order zero (OIP)0, the contributions of the thrust, of the gravity and of the
roundness of the Earth. The user has the choice to deform all these three pa-
rameters either at the same time ot sequentially. However, our tests in Section
5.1.2 have shown that the first choice is usually more efficient. Finally, method
homotopySpatial is devoted to the spatial continuation on the scenario. The
inputs are the initial scenario, its optimal adjoint vector and the desired final
scenario and, as the previous methods, deformations can be operated either
on all state variables at the same time or sequentially (we adopted simultane-
ous deformations). The method homotopySpatial is the one adopted for the
deformation between a scenario chosen from an initialization grid and the de-
sired final scenario, as detailed in Section 5.1.2.

• RealTimeShooting Class. Class RealTimeShooting, whose template variable
represents the numerical precision, sets up the methods that are directly en-
dorsed by the user to provide optimal strategy for (OIP). The standard associ-
ation relation with class HomotopyProcedure is exploited by method shoot to
read the technical details of the vehicle, load into the RAM the intialization grid
(i.e. adjointGuess.txt), read and analyze the scenario provided by the user and
finally evaluate optimal trajectories for interception. A typical instantiation of
RealTimeShooting is provided below, via a template example script.

We conclude this section by providing a template example script for a standard us-
age of this C++ library for an efficient evaluation of optimal interception strategies,
showing the ease of considering this C++ library. The user starts to instantiate Real-
TimeShooting with a given numerical precision

#include "realTimeShooting . hpp"

typedef double Real ; / / Chose the numerical precision

typedef RealTimeShooting<Real > Shooting ; / / Class instantiation
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and to provide numerical parameters concerning the vehicle, with which initializing
an object of type RealTimeShooting

const Real pi = M_PI ; / / Vehicle parameters ( see Section 2 . 2 . 2 )
const Real eta = 0 . 4 4 2 ; const Real r r = 7500;
const Real c0 = 0.00075; const Real d0 = 0.00005;
const Real mu0 = 3.986 e14 ; const Real RT = 6378145;
const Real ve = 1500; const Real q0 = 10;
const Real tSw = 20; const Real alpha_m = pi / 6 . 0 ;
const Real massInit = 400; const Real fixedT = tSw ;

Shooting * shooting = / / I n i t i a l i z e an object of type Shooting
new Shooting ( eta , rr , c0 , d0 ,mu0, RT, ve , q0 , tSw , alpha_m , massInit ) ;

It is at the step of declaring the object shooting that the initialization grid provided
in adjointGuess.txt is read and copied into the RAM. This operation is required only
once for all optimal interception scenarios the user needs to solve. The last iteration
consists in declaring the scenario that the user wants to solve

Real r0 = . . . , L0 = . . . , l 0 = . . . ,
v0 = . . . , gamma0 = . . . , chi0 = . . . ;

Real r _ f = . . . , L_f = . . . , l _ f = . . . ,
gamma_f = . . . , chi_f = . . . ;

and instantiating the method shoot to recover the optimal solution

Real pr , pL , pl , pgamma, pchi , pv , t_f , / / Some parameters
err_r , err_L , e r r _ l , err_gamma , err_chi ,
finalContinuationParam , f i n a l V e l o c i t y ,
deltaTReadAdjointGuess , deltaTExecution ;

unsigned ret , iterContinuation , iterChartChange , i te r S i ng u l a r ,
nearestRawAdjointGuess , fixedFinalTOrNot ;

r e t = shooting −> shoot ( 0 , r0 , L0 , l0 ,gamma0, chi0 , v0 , / / Computation
r_f , L_f , l _ f , gamma_f, chi_f ,
pr , pL , pl ,pgamma, pchi , pv , t_f ,
err_r , err_L , e r r _ l , err_gamma , err_chi ,
finalContinuationParam , iterContinuation ,
f i n a l V e l o c i t y , iterChartChange ,
i t e r S i ng u l a r , nearestRawAdjointGuess ,
deltaTReadAdjointGuess , deltaTExecution ,
fixedFinalTOrNot ) ;

Parameter ret takes 1 as value if the computation of the optimal strategy ends cor-
rectly. Parameters err_ contain the absolute errors between the state found from
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shoot and the desired final scenario. Parameters finalContinuationParam, iterCon-
tinuation, finalVelocity and iterChartChange contain information on final values
of continuation parameters, the cost, nonregular arcs and the number of taken itera-
tions while deltaTReadAdjointGuess, deltaTExecution provide computational times.
Finally, nearestRawAdjointGuess furnishes the scenario chosen from the initializa-
tion grid to solve the scenario provided by the user and fixedFinalTOrNot specifies
whether a fixed final time t f is needed or not (see the beginning of Section 5.1).

5.3 Conclusions

In this chapter, we have proposed numerical improvements of the homotopy proce-
dure of Chapter 4 to solve problem (OIP) without minimal final time, by managing
high sensitivity of mission conditions and by robustifying the whole algorithm.

The homotopy scheme introduced in Chapter 4 suffers from the high sensitivity of
initial conditions, that is, different scenarios may take more or less time to converge
to the optimal solution and this prevents to consider one average delay in which,
statistically, any shooting correctly converges. Our solution consists in computing
offline an initialization grid containing many solved scenarios and the initial value
of their optimal adjoint vectors. Thanks to this, any feasible mission can be solved
by one spatial homotopy procedure on the scenario, which is initialized by the most
suitable (in a metric sense) point of the previous grid. Monte Carlo numerical sim-
ulations show that this additional procedure provides optimal solutions for many
feasible missions uniformly within a small computational delay, broadly acceptable
for real-time interception missions. Moreover, the whole numerical scheme gains in
robustness: in the case of quick changes of the initial scenario, such as evasive ma-
neuvers of the target, the new optimal strategy can be computed within the same
small average computational delay, allowing real-time strategy update. Finally, our
self-contained C++ based code providing this shooting procedure needs only few
Megabytes of memory, which is fitting for real-time onboard computations.

The numerical process developed in this chapter represents a first satisfactory an-
swer to the problem initially proposed by ONERA-The French Aerospace Lab, con-
cerning the onboard real-time optimal guidance of launch vehicle, focused on opti-
mal interception missions.
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Continuity of Pontryagin Extremals
with Respect to Delays
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6
Solving Optimal Control

Problems with Delays

Besides the real-time optimal guidance of launch vehicles problem, which, in the
context of optimal interception missions, has been satisfactorily treated in the previ-
ous chapters, ONERA-The French Aerospace Lab proposed the challenge to provide
optimal solutions when delays are added to the formulation of the optimal intercep-
tion problem (OIP), by maintaining the consistency with the framework proposed in
Chapter 4. This translates into solving, via indirect methods, the optimal intercep-
tion problem with delays (OIP)τ, introduced in Section 2.2.3. The aim of this chapter
consists in proposing a numerical strategy, based on homotopy procedures on the
delay, to efficiently provide optimal solutions of (OIP)τ, by using indirect methods.
The considered framework makes possible to apply the same strategy to solve opti-
mal control problems with delays far more general than problem (OIP)τ.

The proposed approach can be explained as follows. Consider a general optimal con-
trol problem with control and state delays (OCP)τ, as introduced in Section 1.5. The
Maximum Principle stated in Theorem 1.5 provides appropriate first-order necessary
optimality conditions. However, a good guess of the initial condition related to the
optimal adjoint vector does not suffice to make converge correctly classical shoot-
ing methods on (OCP)τ, as usual. Indeed, even in the case of regular extremals, the
adjoint equations related to this problem contain both forward and backward evo-
lutions of time, therefore, preventing from solving the related dynamical system by
standard local integration methods whether only pointwise initial conditions on the
adjoint vector are provided. In this context, to correctly integrate the adjoint equa-
tions, more information is required, so that, rather, a good numerical guess of the
whole adjoint vector function must be provided. At this step, suppose that we are
able to solve by indirect method the non-delayed version of (OCP)τ, that is, with the
notations of Chapter 1, the standard optimal control problem (OCP) (as we did for
(OIP) in Chapter 4). It seems legitimate to wonder if one may solve (OCP)τ by indi-
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rect methods starting a homotopy method where the delay represents the deforma-
tion parameter and (OCP) is taken as the problem of order zero. This approach is
a way to address the flaw of indirect methods applied to optimal control problems
with delays: on one hand, the global information of the problem without any delay
could be used to initialize efficiently a shooting method with delays and, on the other
hand, we could solve the two-point boundary value problem with delays via usual
iterative methods for differential equations. Nevertheless, unlike the classical non-
delayed optimal control framework in which, under appropriate assumptions, the
convergence of homotopy methods is understood and well-established (see Propo-
sition 1.2), nowadays, the well-posedness of indirect methods combined with homo-
topy procedures on the delay to solve optimal control problems with delays has not
been well addressed in the literature. In particular, bifurcation points, singularities or
different connected components may be encountered, arising convergence failures.
Our main result consists in proving that, actually, the homotopy procedure on the
delay explained above is well-posed. More specifically, we prove that, under appro-
priate assumptions, the quantities provided by the Maximum Principle, including
optimal trajectories and related adjoint vectors, are continuous with respect to the
delays. This result ensures the well-posedness of the previously proposed numerical
scheme: any homotopy path of delays converges to an extremal of the original opti-
mal control problem with delays. We exploit this result to efficiently apply indirect
methods to problem (OIP)τ.

The chapter is organized as follows. Section 6.1 provides the framework to state the
rigorous result concerning the continuity properties of the state, of the control and
of the adjoint vector, related to problem (OCP)τ, with respect to the delay. In Section
6.2, a numerical algorithm, whose convergence is ensured thanks to the previous
continuity result, is proposed to solve general optimal control problems with delays
by homotopy on the delay. Moreover, some numerical simulations on nontrivial con-
trol problems are proposed. Finally, in Section 6.3 the previous numerical scheme is
employed to efficiently solve problem (OIP)τ by means of shooting methods.

6.1 Continuity Properties with Respect to Delays

The objective of this section consists in introducing the theoretical result concerning
the continuity of the state, of the control and of the adjoint vector, related to the very
general problem (OCP)τ, with respect to the delay τ. This fundamental step ensures
the well-posedness of a homotopy on the delay to solve (OIP)τ. For sake of clarity
in the exposition, we first recall the notations concerning the Maximum Principle re-
lated to problem (OCP)τ, provided by Theorem 1.5. Then, the main assumptions and
the sought continuity result are introduced, followed by appropriate remarks.
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We consider the general optimal control problem with control and state delays (OCP)τ,
introduced in Section 1.5. More precisely, fixing initial state and control functions
Φ1 ∈C 0([−∆,0],Rn) andΦ2 ∈ L∞([−∆,0),Rm), respectively, and given a couple of con-
stant delays τ= (τ1,τ2) ∈ [0,∆]2, we minimize the cost

Cτ(t f ,u) =
∫ t f

0
f 0(t , x(t ), x(t −τ1),u(t ),u(t −τ2)) d t (6.1)

such that

ẋ(t ) = f (t , x(t ), x(t −τ1),u(t ),u(t −τ2)) , x|[−∆,0](·) =Φ1(·) , x(t f ) ∈ M f (6.2)

among all the controls u ∈ L∞([−∆, t f ],Rm) satisfying

u|[−∆,0)(·) =Φ2(·) , u(t ) ∈U (6.3)

a.e. in [0, t f ], where the final time t f may be fixed or not. For technical reasons that
will be more clear in Chapter 7, we need to work with dynamics and costs satisfying

f 0(t , x, y,u, v) = f 0
1 (t , x, y,u)+ f 0

2 (t , x, y, v) , f (t , x, y,u, v) = f1(t , x, y,u)+ f2(t , x, y, v)

where f 0
1 : R×R2n ×Rm → R, f 0

2 : R×R2n ×Rm → R, f1 : R×R2n ×Rm → Rn and
f2 : R×R2n ×Rm → Rn are continuous and of class (at least) C 2 with respect to their
second and third variables. We denote by U τ

t f ,Rm the set of all admissible controls of

(6.2) defined in [−∆, t f ] taking their values in Rm while U τ
t f ,U denotes the set of all

admissible controls of (6.2) defined in [−∆, t f ] taking their values in U . From this,

U τ
Rm = ⋃

t f >0
U τ

t f ,Rm , U τ
U = ⋃

t f >0
U τ

t f ,U .

In what follows, optimal solutions of (OCP)τ are denoted by (xτ(·),uτ(·)), with related
optimal final time tτf . We recall that the Hamiltonian related to problem (OCP)τ is

h(t , x, y, p, p0,u, v) = 〈p, f (t , x, y,u, v)〉+p0 f 0(t , x, y,u, v) .

For every optimal solution (xτ(·),uτ(·)) of (OCP)τ, Theorem 1.5 provides the existence
of a nontrivial couple (pτ(·), p0

τ) 6= 0, where p0
τ ≤ 0 is constant and pτ : [0, tτf ] → Rn is

absolutely continuous, such that the extremal (xτ(·), pτ(·), p0
τ,uτ(·)) satisfies, almost

everywhere in [0, tτf ], the following adjoint equations

ẋ(t ) = ∂h

∂p
(t , x(t ), x(t −τ1), p(t ), p0,u(t ),u(t −τ2))

ṗ(t ) =−∂h

∂x
(t , x(t ), x(t −τ1), p(t ), p0,u(t ),u(t −τ2))

−1[0,tτf −τ1](t )
∂h

∂y
(t +τ1, x(t +τ1), x(t ), p(t +τ1), p0,u(t +τ1),u(t +τ1 −τ2))

(6.4)
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and the following maximization condition, for every u ∈U

h(t , x(t ), x(t −τ1), p(t ), p0,u(t ),u(t −τ2))+ (6.5)

1[0,tτf −τ2](t )h(t +τ2, x(t +τ2), x(t +τ2 −τ1), p(t +τ2), p0,u(t +τ2),u(t ))

≥ h(t , x(t ), x(t −τ1), p(t ), p0,u,u(t −τ2))+
1[0,tτf −τ2](t )h(t +τ2, x(t +τ2), x(t +τ2 −τ1), p(t +τ2), p0,u(t +τ2),u) .

Furthermore, if M f is a submanifold of Rn , locally around xτ(tτf ), then the adjoint
vector can be built in order to satisfy

pτ(tτf ) ⊥ Txτ(tτf )M f (6.6)

and, moreover, if the final time tτf is free and both tτf and tτf −τ2 are points of conti-

nuity of uτ(·), the extremal (xτ(·), pτ(·), p0
τ,uτ(·)) satisfies the following final condition

h(t , x(tτf ), x(tτf −τ1), p(tτf ), p0,u(tτf ),u(tτf −τ2)) = 0 . (6.7)

It is important to remark that, when considering optimal control problems where no
delays appear, i.e. (OCP)τ=0 = (OCP), this Maximum Principle formulation coincides
with the classical formulation given by Theorem 1.1 for the standard problem (OCP).

As we will see in the proof of the main continuity result in Chapter 7, it is crucial
to split the case in which the delay τ2 on the control variable appears from the one
which considers only pure state delays. The context of control delays reveals to be
more complex, especially, in proving the existence of optimal control for (OCP)τ. In-
deed, a standard approach to prove existence would consider usual Filippov’s as-
sumptions (as in the classical reference [106]) which, in the case of control delays,
must be extended. In particular, using the Guinn’s reduction (see, e.g. [77]), the con-
trol system with delays results to be equivalent to a non-delayed system with a larger
number of variables depending on the value of τ2. Such extension was used in [75].
However, it is not difficult to see that the usual assumption concerning the convexity
of the epigraph of the extended dynamics is not sufficient to prove Lemma 2.1 in [75].
We provide more details about this issue in Chapter 7 (see Section 7.3.2).
Led by this important remark, below, we provide the assumptions under which the
sought continuity properties with respect to delays hold, by splitting them into three
classes, that is, assumptions that must be satisfied by problems with delay appearing
only in the state, assumptions that must be satisfied by problems with delay appear-
ing both in the control and in the state and assumptions shared by both these cases.
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Common assumptions:

(A)



(A1) U is compact and convex in Rm , while M f is a compact submanifold of Rn .

(A2) The optimal control problem without delays (OCP) has a unique solution,
denoted by (x(·),u(·)), defined on an open neighborhood of [−∆, t f ].

(A3) The optimal trajectory x(·) has a unique extremal lift (up to a multiplica-
tive scalar) defined in [0, t f ], which is normal, denoted (x(·), p(·),−1,u(·)),
solution of the Maximum Principle formulation given by Theorem 1.1.

(A4) There exists a positive real number b such that, for every τ= (τ1,τ2) ∈ [0,∆]2

and every v(·) ∈U τ
U , denoting xτ,v (·) the related trajectory arising from dy-

namics (6.2) with final time tτ,v
f , one has

for every t ∈ [−∆, tτ,v
f ] there holds : t f + tτ,v

f +‖xτ,v (t )‖ ≤ b .

Assumptions in case of pure state delays:

(B)



(B1) For every delay τ, every optimal control uτ(·) of (OCP)τ is continuous.

(B2) The sets { (
f1(t , x, y,u), f 0

1 (t , x, y,u)+γ)
: u ∈U , γ≥ 0

}
,{ (

f1(t , x, x,u), f 0
1 (t , x, x,u)+γ,

∂ f̃1

∂x
(t , x, x,u),

∂ f̃1

∂y
(t , x, x,u)

)
: u ∈U , γ≥ 0

}
are convex for every t ∈R and every x, y ∈Rn , where we denote

f̃1(t , x, y,u) = (
f1(t , x, y,u), f 0

1 (t , x, y,u)
)

.

Assumptions in case of delays both in state and control variables:

(C )



(C1) The maps f 0
1 , f1 and f 0

2 , f2 are affine w.r.t. variables u and v , respectively.

(C2) Problem (OCP)τ with both state and control delays has fixed final time t f .

(C3) Either, for every delay τ, every optimal control uτ(·) of (OCP)τ is continuous
or control u(·) assumes its values at extremal points of U , a.e. in [−∆, t f ].

To justify the use of these assumptions in the following, some remarks are in order.
First of all, assumptions (A2) and (A3) on the uniqueness of the solution of (OCP) and
on the uniqueness of its extremal lift are related to the differentiability properties of
the value function (see, e.g. [107, 108, 109]). They are standard in optimization and
are just made to keep a nice statement (see Theorem 6.1). These assumptions can be
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weakened as follows. If we replace (A2) and (A3) with the assumption "every extremal
lift of every solution of (OCP) is normal", then, the conclusion provided in Theorem
6.1 below still holds, except that the convergence properties must be written in terms
of closure points. The proof of this fact follows the same guideline used to prove
Theorem 6.1, without complications (see Chapter 7 and also [110, Remark 1.11]).
Assumptions (B1) and (C ) play a complementary role in proving the convergence
property for the adjoint vectors. In particular, Assumption (C1) becomes also cru-
cial to ensure the convergence of optimal controls and trajectories when considering
delays both in state and control variables (see Section 7.3.3). Without this assump-
tion proving these last convergences becomes a hard task. The issue is related to
the following fact. Let X , Y be Banach spaces and F : X → Y be a continuous map.
Suppose that (xk )k∈N ⊆ X is a sequence such that xk * x and F (xk )* F (x̄) for some
x, x̄ ∈ X . Therefore, in general, we cannot ensure that the two limits coincide, that is
x = x̄, when F is not linear. On the other hand, Assumption (C2) becomes essential
to correctly evaluate the convergence of Pontryagin cones when delays in the control
variables appear (see Section 7.3.4) while the second statement in Assumption (C3) is
not fundamental to obtain the main continuity properties, but it is useful to provide
more regularity to convergences related to optimal controls (see Theorem 6.1 below).
The previous assumptions allow to provide the continuity of extremals of (OCP)τ
with respect to the delay τ in neighborhoods of τ = 0. From the proof presented in
Chapter 7, it results evident that, if assumptions (A)-(C ) are extended to some other
delay τ̄ ∈ [0,∆]2, these continuity properties are valid for neighborhoods of delay τ̄.
We are now able to state our main result, as contained in the following theorem.

Theorem 6.1. Throughout the statement, suppose that assumptions (A) hold.

Consider first the context of pure state delays, that is, problems (OCP)τ for which τ =
(τ1,0) and f2(t , x, y,u) = f 0

2 (t , x, y,u) = 0, and assume also that assumptions (B) hold.
There exists τ0 > 0 such that, for every τ = (τ1,0) ∈ (0,τ0)× {0}, each problem (OCP)τ
has at least one solution (xτ(·),uτ(·)) defined in [−∆, tτf ], every extremal lift of which

is normal. Let (xτ(·), pτ(·),−1,uτ(·)) be such a normal extremal lift. Therefore, up to
continuous extensions on [−∆, t f ], as τ tends to 0, the following convergences hold:

• The final times tτf converge to t f .

• The trajectories xτ(·) converge uniformly to x(·).

• The adjoint vectors pτ(·) converge uniformly to p(·).

• The tangent vectors ẋτ(·) converge to ẋ(·) in L∞ for the weak star topology.

If we work in fixed final time tτf , then, tτf = t f for every τ ∈ (0,τ0)× {0}.
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On the other hand, consider general problems (OCP)τ with delays τ = (τ1,τ2) in both
state and control variables, and, furthermore, assume that assumptions (C ) hold true.
There exists τ0 > 0 such that, for every τ= (τ1,τ2) ∈ (0,τ0)2, the same conclusions given
above hold with tτf = t f and, in addition, as τ tends to 0, the following holds:

• Controls uτ(·), uτ(·−τ) converge to u(·) in L2 for the weak topology.

Moreover, if in addition, there holds that control u(·) assumes its values at extremal
points of U , a.e. in [−∆, t f ], as τ tends to 0, one also has that:

• Controls uτ(·), uτ(·−τ) converge to u(·) almost everywhere in [0, t f ].

Lastly, for every τ̄ ∈ [−∆,0], by extending to the delay τ̄ all the previous assumptions,
we have that the optimal solutions (xτ(·),uτ(·)) of problems (OCP)τ (or (xτ(·), ẋτ(·)) in
the case of pure state delays) and their related adjoint vectors pτ(·) are continuous with
respect to delay τ at τ̄ for the related topologies introduced above.

The most challenging and most important nontrivial conclusion achieved by Theo-
rem 6.1 is the continuous dependence of the adjoint vectors of (OCP)τ with respect
to the delay τ. It represents the essential step that allows homotopy methods on the
delay based on shooting algorithms to converge robustly. The proof of this fact is not
easy and an accurate analysis of the convergence of Pontryagin cones related to the
Maximum Principle formulation with delays is required (for details, see Chapter 7).

Remark 6.1. It is clear that, the conclusions established by Theorem 6.1 can be strength-
ened for some special cases (up to properly modify, sometimes, assumptions (A)-(C )).
In particular, Theorem 6.1 can be extended to obtain stronger convergence conclusions,
by using weaker assumptions, in the specific case of dynamics f that are affine in the
two control variables, and of quadratic costs of type∫ t f

0

[
K1‖x(t )‖2 +K2‖x(t −τ1)‖2 +K3‖u(t )‖2 +K4‖u(t −τ2)‖2

]
d t

where K1,K2,K3,K4 ≥ 0 are constant. Indeed, considering assumptions (A) and either
(B) or (C ), the convergence properties established in Theorem 6.1 for xτ(·) and pτ(·)
still hold and uτ(·) converges to u(·) in L2 for the weak topology, as the delay τ tends
to 0. This fact is also true when U = Rm and arises adapting the proof of Theorem 6.1
without particular complications (see Chapter 7 and the proof in [111, Theorem 1]).

6.2 Homotopy Algorithm and Numerical Simulations

The convergence properties established by Theorem 6.1 can be exploited to con-
ceive, by adapting the structure of Algorithm 1, a general numerical scheme, based
on indirect methods, capable of solving (OCP)τ by applying homotopy procedures on
parameter τ, starting from the optimal extremal of its non-delayed version (OCP).
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Data: Optimal extremal (x(·), p(·),−1,u(·)) of the problem without delays (OCP).
Result: Optimal extremal (xτ(·), pτ(·),−1,uτ(·)) of the problem with delays (OCP)τ.
begin

Set k = 0, τk = 0, ∆τ = τ and fix an integer kmax. Solve (OCP) by indirect
methods and denote (xτk (·), pτk (·),−1,uτk (·)) its numerical extremal solution.
while ‖τk‖ < ‖τ‖ and k < kmax do

A.1) Compute τk+1 = τk +∆τ.
A.2) Solve (OCP)τk+1 by indirect methods initialized by pτk (·), where the
usual internal integration of adjoint equations is substituted by the following:
Modified Internal Integration of Adjoint Equations to Compute pτk+1 (·):

Assume to have a guess pτk+1 (·) of the optimal extremal of (OCP)τk+1 .
Express uτk+1 (·) as function of the state variable and of pτk+1 (·), and solve

ẋ(t ) = ∂h

∂p

(·, x(·), pτk+1 (·),−1,uτk+1 (·))(t )

x(t ) =φ1(t ) , t ∈ [−∆,0]

From this, with xτk+1 (·) as solution of the previous system and uτk+1 (·)
as function of xτk+1 (·) and of the adjoint vector variable, solve

ṗ(t ) =−∂h

∂x

(·, xτk+1 (·), p(·),−1,uτk+1 (·))(t )

−∂h

∂y

(·, xτk+1 (·), p(·), p(·−τ1
k+1),−1,uτk+1 (·))(t +τ1

k+1) ,

t ∈ [0, t f −τ1
k+1]

ṗ(t ) =−∂h

∂x

(·, xτk+1 (·), p(·),−1,uτk+1 (·))(t ) ,

t ∈ (t f −τ1
k+1, t f ]

p(t f ) = pτk+1 (t f )

.

Denote the solution of the previous system as pτk+1 (·).

A.3) If convergence is achieved in the previous shooting, set pτk (·) = pτk+1 (·)
and k → k +1. Otherwise, set ∆τ→∆τ/2.

end
end

Algorithm 3: Discrete continuation to solve (OCP)τ via indirect methods.
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6.2.1 Solving (OCP)τ by Shooting Methods and Homotopy on Delays

As pointed out previously, the critical behavior coming out from applying indirect
methods to (OCP)τ consists of the integration of mixed-type equations that arise
from system (6.4). The convergence results of Theorem 6.1 suggests the idea that,
when considering indirect methods coupled to homotopies on the delay, one may
solve the adjoint system (6.4) via usual iterative methods for ODEs, for example, by
using the global state solution at the previous iteration. Moreover, the global adjoint
vector of (OCP) could be used to initialize, from the beginning, the whole procedure.
Under assumptions of nice enough extremals, these considerations lead us to Algo-
rithm 3. For sake of brevity, we design this algorithm for problems (OCP)τ with pure
state delays, i.e. τ = (τ1,0) and fixed final time t f . Nevertheless, it is evident how
to adapt Algorithm 3 to problems (OCP)τ with general constant delays and free final
time t f . For sake of clarity, we do not consider any acceleration step in Algorithm 3,
although, adapting this speed-up procedure from Algorithm 1 is straightforward.

We prove the convergence of Algorithm 3, under appropriate assumptions, by apply-
ing Theorem 6.1. Without loss of generality, we focus on the case where (OCP)τ has
pure state delays. We assume that we are able to express optimal controls, via (6.5), as
continuous functions of x and p (note that we do not remove nonregular extremals).
Suppose that assumptions (A) and (B) hold and that the delay τ= (τ1,0) ∈ [0,∆]× {0}
considered is such that τ1 ∈ (0,τ0), where τ0 is provided by Theorem 6.1. Therefore,
for every ε in the open interval (0,τ), problem (OCP)ε has at least one optimal solu-
tion with normal extremal lift. This justifies the choice of setting p0 = −1 through-

out Algorithm 3. Thanks to Theorem 6.1, there hold xε(·) C 0

−→ x(·), pε(·) C 0

−→ p(·), and
then, uε(·) a.e.−−→ u(·), as soon as ε→ 0. From this, if ‖τk+1 −τk‖ is small enough, the
modified internal integration of adjoint equations within Algorithm 3 results to be
well-defined and well-initialized by the optimal adjoint vector p(·) of (OCP). Indeed,
necessarily, the algorithm will travel backward one of the subsequence converging to
the solution of (OCP). Since, for every sequence (εk )k∈N converging to 0, the related
extremal lift (xε(·), pε(·),−1,uε(·)) of (OCP)ε converges to the one of (OCP) (for the ev-
ident topologies), steps A.1), A.3) of Algorithm 3 are well-posed and make the while
loop converge in a finite number of iterations. Note that, if assumptions (A2) and
(A3) are weakened as previously explained in Section 6.1, Algorithm 3 still remains
well-posed and converges to some local extremal.

Remark 6.2. It is interesting to remark that, at least formally, there are no difficulties
to apply Algorithm 3 to more general (OCP)τ that consider locally bounded varying
delays, functions of the time and the state, i.e., τ : R×Rn → [−∆,0]2 : (t , x) 7→ τ(t , x).
In this context, some relations close to (6.4)-(6.7) are still provided (see, e.g. [112]), so
that, the proposed numerical continuation scheme remains well-defined.
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6.2.2 First Numerical Tests

In order to prove effectiveness and robustness of our approach, we test Algorithm
3 preliminarily on an example, which is not related to aerospace applications and
considers the nontrivial problem consisting of the optimal control of a continuous
nonlinear two-stage stirred tank reactor system (CSTR), proposed by [113, 114].

We stress the fact that, in this section, we are interested in solving an optimal control
problem with delays (OCP)τ by indirect methods starting from its non-delayed ver-
sion (OCP), without taking care of how (OCP) is solved, recalling that, in the case of
the interception problem with delays (OIP)τ, we have already discussed in Chapter 4
how to efficiently initialize indirect methods on its non-delayed version (OIP).

The numerical examples proposed are solved applying verbatim Algorithm 3, appro-
priately modified by considering the same acceleration step as in Algorithm 1. An
explicit second-order Runge-Kutta method is handled to solve all the ODEs coming
from the Maximum Principle formulation while the routine hybrd.c (see, e.g. [103])
is used to solve related shootings. The procedure is initialized using the solution of
(OCP) provided by the AMPL framework, combined with IPOPT (see, e.g. [104, 105]).

One important remark is the following. When passing the numerical approximation
of the extremals in the modified internal integration of adjoint equations step of Al-
gorithm 3, attention must be adopted. Indeed, it is known that, using collocation
methods like Runge-Kutta schemes, the error between the solution and its numer-
ical approximation remains bounded within [0, t f ] and decreases with hp , where h
is the time step while p is the order of the method, only if this numerical approxi-
mation is obtained by interpolating the numerical values within each subinterval of
integration with a polynomial of order p. From this remark, it is straightforward that
the dimension of the shooting considered in Algorithm 3, not only increases with re-
spect to 1/h, but is also proportional to p. In the particular case of an explicit second-
order Runge-Kutta method, the dimension of the shooting problems in Algorithm 3
is bounded above by 2n/h (where n is the dimension of the state). We use a machine
Intel(R) Xeon(R) CPU E5-1607 v2 3.00GHz, with 7.00 Gb of RAM.

A Nonlinear Chemical Tank Reactor Model

The introductory numerical example that we consider concerns a two-stage non-
linear continuous stirred tank reactor (CSTR) system with a first-order irreversible
chemical reaction occurring in each tank. The system was first proposed and studied
by [113], and successively by [114] in the framework of the dynamic programming.
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6.2. Homotopy Algorithm and Numerical Simulations

This Optimal Control Problem with Delays (OCP)(CSTR)
τ consists in minimizing

C (CSTR)
τ (t f ,u) =

∫ 2

0

(
‖x(t )‖2 +0.1‖u(t )‖2

)
d t

such that

ẋ1(t ) = 0.5−x1(t )−R1(x1(t ), x2(t )) , t ∈ [0,2]

ẋ2(t ) = R1(x1(t ), x2(t ))− (u1(t )+2)(x2(t )+0.25) , t ∈ [0,2]

ẋ3(t ) = x1(t −τ)−x3(t )−R2(x3(t ), x4(t ))+0.25 , t ∈ [0,2]

ẋ4(t ) = x2(t −τ)−2x4(t )−u2(t )(x4(t )+0.25)+R2(x3(t ), x4(t ))−0.25 , t ∈ [0,2]

x1(t ) = 0.15 , x2(t ) =−0.03 , t ∈ [−τ,0] , x3(0) = 0.1 , x4(0) = 0

among all the controls u1(·), u2(·) ∈ L∞([0,2],R). In this example, we have one fixed
scalar delay τ which is chosen within the interval [0,0.8] and acts on the state only.
Functions R1, R2 are given by

R1(a,b) = (a +0.5)exp
( 25b

b +2

)
, R2(a,b) = (a +0.25)exp

( 25b

b +2

)
.

Since no terminal conditions are imposed, (OCP)(CSTR)
τ have only normal extremals.

Therefore, the Hamiltonian takes the form

H = p1

(
0.5−x1 −R1(x1, x2)

)
+p2

(
R1(x1, x2)− (u1 +2)(x2 +0.25)

)
+p3

(
y1 −x3 −R2(x3, x4)+0.25

)
+p4

(
y2 −2x4 −u2(x4 +0.25)+R2(x3, x4)−0.25

)
−

(
x2

1 +x2
2 +x2

3 +x2
4 +0.1u2

1 +0.1u2
2

)
while the adjoint equations are given by

ṗ1(t ) = p1(t )+ ∂R1

∂x
(x1(t ), x2(t ))

(
p1(t )−p2(t )

)
+2x1(t )−1[0,2−τ](t )p3(t +τ)

ṗ2(t ) = p2(t )(u1(t )+2)+ ∂R1

∂y
(x1(t ), x2(t ))

(
p1(t )−p2(t )

)
+2x2(t )−1[0,2−τ](t )p4(t +τ)

ṗ3(t ) = p3(t )+ ∂R2

∂x
(x3(t ), x4(t ))

(
p3(t )−p4(t )

)
+2x3(t )

ṗ4(t ) = p4(t )(u2(t )+2)+ ∂R2

∂y
(x3(t ), x4(t ))

(
p3(t )−p4(t )

)
+2x4(t )
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with final condition p(2) = 0. Denoting by (xτ(·), pτ(·),uτ(·)) optimal extremals, from
the maximization condition (6.5), optimal controls are given in the closed-loop form

uτ,1(t ) =−5pτ,2(t )
(
xτ,2(t )+0.25

)
, uτ,2(t ) =−5pτ,4(t )

(
xτ,4(t )+0.25

)
.

We applied Algorithm 3 to solve (OCP)(CSTR)
τ , thanks to Remark 6.1. Several differ-

ent delays τ were tested, as done also in [113]. We used N = 1/h = 50 Runge-Kutta
time steps, and an error tolerance of 10−10 and 1500 maximal iterations for hybrd.c
routine. Results concerning optimal costs and computational times are reported in
Table 6.1 (the Simpson’s rule to compute the cost is retained).

τ 0 0.05 0.1 0.2 0.4

C (CSTR)
τ (tτf ,uτ) 0.02248 0.02282 0.02313 0.02370 0.02459

N. of Continuation Iterations 1 1 1 1 3

Computational Time (s) 0.200 0.240 0.450 0.820 2.120

τ 0.6 0.8 1 1.2 1.5

C (CSTR)
τ (tτf ,uτ) 0.02516 0.02547 0.02556 0.02549 0.02527

N. of Continuation Iterations 5 5 5 3 6

Computational Time (s) 2.860 3.260 3.070 2.150 4.220

Table 6.1: Optimal values of (OCP)(CSTR)
τ for different delays τ.

These values are comparable with the ones obtained by [113, 114]. Moreover, our
continuation scheme finds a solution also for larger delays, i.e. τ ∈ [0.8,1.5] (see Table
6.1). As expected, the more the delay grows the larger the number of iterations of the
continuation method is. In order to check the goodness of these results, a numerical
strategy for (OCP)(CSTR)

τ considering an AMPL framework is developed (IPOPT solver
with an explicit forward Euler scheme and N = 10000, see, e.g. [104, 105]). The op-
timal values provided for (OCP)(CSTR)

τ by the direct method coincide with the ones
obtained by employing Algorithm 3. Some optimal quantities recovered by using our
method are shown in Figure 6.1.

142



6.2. Homotopy Algorithm and Numerical Simulations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t  (s)

x1 τ

 

 
τ = 0
τ = 0.6
τ = 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

t  (s)

x2 τ

 

 
τ = 0

τ = 0.6

τ = 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t  (s)

x3 τ

 

 
τ = 0
τ = 0.6
τ = 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t  (s)

x4 τ

 

 

τ = 0

τ = 0.6

τ = 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t  (s)

u
1 τ

 

 
τ = 0
τ = 0.6
τ = 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t  (s)

u
2 τ

 

 
τ = 0
τ = 0.6
τ = 1.5

Figure 6.1: Optimal quantities of (OCP)(CSTR)
τ for different delays τ.
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6.3 Numerical Strategy to Solve (OIP)τ

The objective of this section consists in providing solutions via indirect methods for
the optimal interception problem with delays (OIP)τ, which we introduced in Sec-
tion 2.2.3, by making use of the homotopy procedure developed within Algorithm 3.

The state variables are represented by the tuple x = (r,v,b) ∈ R6 \ {0}× S2 and the
delay enters within the state variable b as a time lag on the rotational velocity. In
order to provide numerical results for (OIP)τ, we simplify the treatise by making use
of local coordinates, needed to correctly represents the state delay. Without loss of
generality, we assume that the projection of optimal trajectories onto variables (r,v)
belongs to the domain of the local chart (Va ,ϕa), introduced in Chapter 3 (see Section
3.2.1). From this, the evolution of variables (r,v) is completely described by dynam-
ics (3.14). In particular, with respect to the notation provided by dynamics (3.14), we
describe variables (w1, w2, w3) as follows

w1 = cosα , w2 = sinαcosβ , w3 = sinαsinβ , α ∈
(
−π

2
,
π

2

)
, β ∈ (−π,π) (6.8)

whereα and β are local coordinates for S2. Summing up all the previous remarks, we
focus on the Local Optimal Interception Problem with Delays (OIP)a

τ which consists
in minimizing the cost

C (t f ,uα,uβ) =−v2(t f )+Cu

∫ t f

0
(u2

α+u2
β) d t (6.9)

such that

ṙ = v sinγ , L̇ = v

r
cosγcosχ , ˙̀= v

r

cosγsinχ

cosL

v̇ = fT

m
cosα−

(
d +ηcm sin2α

)
v2 − g sinγ

γ̇=ωsinα(t −τ)cosβ+
(v

r
− g

v

)
cosγ

χ̇= ω

cosγ
sinα(t −τ)sinβ+ v

r
cosγsinχ tanL

α̇= uα , β̇= uβ

(r (t ),L(t ), l (t ), v(t ),γ(t ),χ(t ),α(t ),β(t )) ∈V ×
(
−π

2
,
π

2

)
× (−π,π)

(6.10)

among all controls uα,uβ ∈ L∞([0, t f ],R), where the final time t f may be free or not,
τ is a scalar constant delay and, similarly to the original global problem (OIP)τ, the
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initial conditions are fixed to some given point and the final manifold is taken as in
(2.21). Remark that, differently from the original problem (OIP)τ, we substitute the
constraints on the controls by a direct penalization in the cost (with the help of Cu).
This is not limiting and is used to give nice formulations of the Maximum Principle.

The description of problem (OIP)τ can be simplified once more, by making one fur-
ther change of variable in (OIP)a

τ . This simplification will help to define an initializa-
tion strategy for the shooting scheme applied to (OIP)a

τ (see the following sections).
As done for the initialization of the optimal interception problem without delay in
Chapter 4, we introduce the new variable vs = ln(v) and, since ln is a monotonic
function, we replace (OIP)a

τ by the equivalent formulation (still denoted by (OIP)a
τ )

which consists in minimizing the cost

C (t f ,uα,uβ) =−vs(t f )+Cu

∫ t f

0
(u2

α+u2
β) d t (6.11)

such that

ṙ = evs sinγ , L̇ = evs

r
cosγcosχ , ˙̀= evs

r

cosγsinχ

cosL

v̇s = fT

evs m
cosα−

(
d +ηcm sin2α

)
evs − g

evs
sinγ

γ̇=ωsinα(t −τ)cosβ+
(

evs

r
− g

evs

)
cosγ

χ̇= ω

cosγ
sinα(t −τ)sinβ+ evs

r
cosγsinχ tanL

α̇= uα , β̇= uβ

(r (t ),L(t ), l (t ),evs (t ),γ(t ),χ(t ),α(t ),β(t )) ∈V ×
(
−π

2
,
π

2

)
× (−π,π)

(6.12)

among all controls uα,uβ ∈ L∞([0, t f ],R), where the final time t f mat be free or not,
τ is a scalar constant delay and, similarly to the original problem (OIP)τ, the initial
conditions are fixed to some given point and the final manifold is taken as in (2.21).

In order to efficiently solve (OIP)a
τ , we propose to apply first the homotopy scheme

derived in Chapter 4 on the non-delayed version of (OIP)a
τ to deal with the compo-

nents of thrust, of the gravity and of the roundness of the Earth, and then, recover
the sought optimal solution by iterating Algorithm 3. Our aim is achieved if a good
approximated initial guess for a shooting method applied on the simplified version
of (OIP)a

τ , where neither thrust, gravity, roundness of the Earth nor delays appear,
is provided. Therefore, in what follows, we develop firstly an analysis close to the
initialization scheme provided for the non-delayed problem (OIP), in Section 4.2.
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6.3.1 Local Initialization Procedure for (OIP)τ

In what follows, we provide an efficient initial guess to correctly initialize a shooting
method on the Local Optimal Interception Problem with Delays of Order Zero (OIP)a

0
= (OIP)a

τ=0, which consists in minimizing cost (6.11) under the simplified dynamics

ṙ = evs sinγ , L̇ = evs

r
cosγcosχ , ˙̀= evs

r

cosγsinχ

cosL

γ̇= evs cm sinαcosβ , χ̇= evs cm

cosγ
sinαsinβ

v̇s =−
(
d +ηcm sin2α

)
evs , α̇= uα , β̇= uβ

among all controls uα,uβ ∈ L∞([0, t 0
f ],R), where the final time t 0

f is free and the delay
τ is removed. The scenario of order zero is chosen, respecting (2.21), in order to make
the problem simple enough to be solved (as specified within Section 4.1.1).
The main idea resides on the fact that, up to denote

w2 = sinαcosβ , w3 = sinαsinβ (6.13)

and add the two new variables α, β to the formulation, (OIP)a
0 is structurally close

to the problem of order zero derived for (OIP) in Chapter 4. Thus, it is legitimate to
wonder if one may initialize indirect methods on (OIP)a

0 by using the guidance law
derived throughout Section 4.2, and more precisely, its time derivatives.

We now proceed formally. Under the assumption that the time derivative of the guid-
ance law (4.22)-(4.23) is close to the optimal control related to (OIP)a

0 , we recover an
efficient guess of the initial value of the adjoint vector related to (OIP)a

0 as follows.
First of all, without loss of generality, we can assume that cosα 6= 0 and sinα 6= 0
almost everywhere in [0, t 0

f ] (this depends on the simplified scenario, that we use

to solve (OIP)a
0 ). From this, coupling (6.13) with the guidance law (4.22)-(4.23), the

value of α and β is obtained from

β= arctan

(
w3

w2

)
, sinα= w2

cosβ
or sinα= w3

sinβ
. (6.14)

Differentiating (6.14) and w 2
2 +w 2

3 = sin2α with respect to time, we obtain the value
of controls uα and uβ as follows

uβ = β̇= w2ẇ3 −w3ẇ2

sin2α
, uα = α̇= w2ẇ2 +w3ẇ3

sinαcosα
.

We focus on the Maximum Principle related to (OIP)a
0 . The normal Hamiltonian is

H = pr evs sinγ+pL
evs

r
cosγcosχ+p`

evs

r

cosγsinχ

cosL
−pvs

(
d +ηcm sin2α

)
evs
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+pγevs cm sinαcosβ+pχ
evs cm

cosγ
sinαsinβ+pαuα+pβuβ−Cu(u2

α+u2
β)

whose maximization condition leads to

pα = 2Cuuα , pβ = 2Cuuβ . (6.15)

Since the problem is autonomous and the final time t 0
f is free, the adjoint equation

related to pvs reads ṗvs =−H +Cu(u2
α+u2

β
) =Cu(u2

α+u2
β

), from which we recover

pvs (t ) = 1+Cu

∫ t

t 0
f

(u2
α(s)+u2

β(s)) d s (6.16)

thanks to the transversality conditions concerning the final manifold (2.21). To re-
cover the guess of pγ(0) and pχ(0), we need to work we the adjoint equations of vari-
ables α and β. They assume the following form

ṗα = 2pvs evs cmηcosαsinα−pγevs cm cosαcosβ−pχ
evs cm

cosγ
cosαsinβ

ṗβ = pγevscm sinαsinβ−pχ
evs cm

cosγ
sinαcosβ .

Since the behaviors of ṗα and ṗβ are known from (6.15) (by exploiting simply system
(4.17)), the guess concerning pγ and pχ are found by coupling the previous adjoint
equations and solving the system

evs cm


cosαcosβ

cosαsinβ

cosγ

sinαsinβ −sinαcosβ

cosγ


(

pγ

pχ

)
=

(
2pvs evs cmηcosαsinα− ṗα

ṗβ

)
.

(6.17)
From (6.17) we obtain the evolution of the time derivatives related to pγ and pχ.
Therefore, coupling the following adjoint equations (related to pγ and pχ)

ṗγ = pL
evs

r
sinγcosχ+p`

evs

r

sinγsinχ

cosL
−pr evs cosγ

ṗχ = pL
evs

r
cosγsinχ−p`

evs

r

cosγcosχ

cosL
with the expression of the Hamiltonian, we deduce the guess of pr , pL and p` by
solving the following linear system

evs

r



−r cosγ sinγcosχ
sinγsinχ

cosL

0 cosγsinχ −cosγcosχ

cosL

r sinγ cosγcosχ
cosγsinχ

cosL




pr

pL

p`

= (6.18)
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ṗγ

ṗχ

pvs

(
d +ηcm sin2α

)
evs −pγevs cm sinαcosβ−pχ

evs cm
cosγ sinαsinβ−Cu(u2

α+u2
β

)

 .

Efficient initial guesses of pr (0), pL(0), p`(0), pvs (0), pγ(0) and pχ(0) for a shooting
algorithm on (OIP)a

0 are therefore given by solving expression (6.15)-(6.18) at t = 0.

6.3.2 Numerical Simulations for (OIP)τ

The numerical scheme used to solve (OIP)a
τ is close to the one provided in Figure 4.1

of Chapter 4. More specifically, we resume this homotopy procedure in Figure 6.2.
First, the derivative of the guidance law (4.22)-(4.23), law recovered in Chapter 4, is
used to initialize the homotopy procedure on the thrust, on the gravity and on the
roundness of the Earth to solve the optimal interception problem without any de-
lay (this is represented in Figure 4.1 of Chapter 4). More precisely, this initialization
is provided by the scheme (6.15)-(6.18). Once the optimal solution of (OIP)a

τ=0 is ob-
tained, a discrete continuation starts on the parameter ε, representing the temporary
delay, to make ε converges towards τ, recovering so an optimal solution of (OIP)a

τ .

Derivative of the
Guidance Law

(4.22)-(4.23)
(OIP)a

ε=0 (OIP)a
ε=τ

λ1 → 1
λ2 → 1 ε→ τ

Figure 6.2: Homotopy scheme for (OIP)a
τ . Continuations are done by Algorithm 1.

For these numerical simulations, we adopt the first scenario provided in Section 4.3,
to which we add initial and final conditions for α and β such that they are equivalent
to the conditions obtained by the optimal control found solving problem (OIP)C1,1.
With the notations of Section 4.3, this becomes (in standard units)

h0 = 1000 , v0 = 500 , γ0 = 0 , α0 = 0.48 , β0 =−0.43

h f = 5000 , LT, f = 14000 , `T, f =−2000 , γ f =−π
6

, χ f =
π

6
α f =−0.36 , β f =−0.9 .

This choice is made to maximize the chances to provide a good initialization of the
problem without delays, by the procedure obtained thanks to relations (6.15)-(6.18).
This is not limiting, because the scenario can be modified in a second time by spatial
homotopy, as done in Chapter 4. For sake of concision in the exposition, without loss
of generality, we avoid to apply also the deformation on the scenario.
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Remark that, in this case, we do not consider any intermediate scenario, so that, only
the homotopy on the thrust, on the gravity and on the roundness of the Earth appear
in the first step of the diagram in Figure 6.2. We motivate our choice by the argu-
ment provided in Section 4.3.2, concerning the guidance law (4.22)-(4.23), and the
fact that, empirically, for scenarios such that the guidance law provide a good initial-
ization of the interception problem without delays, the derivative of this law should
correctly initialize the augmented version (6.9)-(6.10). In order to make the numeri-
cal computations easier to manipulate, we impose a fixed final time t f = 22.1, which
is equivalent to the optimal final time achieved for problem (OIP)C1,1, in Section 4.3.
Finally, we impose Cu = 1000, whose choice is merely practical and is needed to avoid
that controls uα and uβ may take too large values.

The computational framework is similar to the one in Chapter 4. In particular, we fix
60 time steps for the explicit two-order Runge-Kutta for the integration of differential
equations, which gives a total dimension related to the shooting algorithm of 248
variables (see the discussion of Section 6.2.2: 60 ·4 variables due to 2 delayed adjoint
variables and their numerical approximations both at integer and intermediate time
steps, and 8 more variables due to the transversality conditions).

From the Derivative of the Guidance Law to the Problem without Delays

The first iteration of the numerical scheme presented in Figure 6.2 consists in using
the computations arising from relations (6.15)-(6.18) to solve problem (OIP)a

τ=0.

Figures 6.3 and 6.4 show some numerical quantities associated to these solutions.
The orange curves in figures 6.3 and 6.4 represent the solution obtained by forc-
ing controls (uα(·),uβ(·)) obtained by differentiating the guidance law (4.22)-(4.23)
(this is obtained immediately from relations (6.15)-(6.18)). Comparing figures 6.3
and 6.4 with figures 4.2 and 4.5 (remark that w 2

2 + w 2
3 = sin2α), one sees that the

derivative of the guidance law (4.22)-(4.23) provides, via (6.15)-(6.18), a good guess
to obtain an optimal solution of (OIP)a

τ=0, whose trajectory is moreover close to the
one corresponding to problem (OIP)C1,1 of Section 4.3 (see Figure 4.5 a)). This can be
checked also by observing the optimal quantities obtained in this context (note that
the derivative of the guidance law is used to intialize directly the final scenario and
no other intermediate scenarios), that is (in standard units)

Derivative of the Guidance
Law (4.22)-(4.23)

→→→
{

t f = 49

v(t f ) = 190.2
, (OIP)0 →→→ v(t f ) = 803.3 .

This whole step (from (6.15)-(6.18) to the solution of (OIP)a
τ=0) takes on average 750

milliseconds, as in the simulations of Chapter 4 related to problem (OIP).
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Figure 6.3: Three-dimensional trajectories and controls for the derivative of the guid-
ance law (4.22)-(4.23) and (OIP)a
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From the Problem without Delays to the Original Problem
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The solution of the original problem (OIP)a
τ is recovered from the solution of (OIP)a

ε=0
by making ε converge to τ, whose solutions are in figures 6.5 and 6.6 for different τ.
The new optimal velocities achieved are the following (in standard units)

(OIP)a
τ=2 →→→ v(t f ) = 789.1 , (OIP)a

τ=4 →→→ v(t f ) = 781.4

and the computations need one homotopy iteration on ε and 1200 milliseconds to
solve (OIP)a

τ=2, while two homotopy iterations on ε and 3400 milliseconds to solve
(OIP)a

τ=4. The non-negligible increase of computational times are due to the higher
dimension of the shooting problem that must be solved at each iteration of the ho-
motopy procedure on the delay. One remarks from Figure 6.6 b) that, for this par-
ticular scenario, the stability constraint is satisfied. Moreover, even for not too large
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values of the delay, the optimal strategy change drastically from the non-delayed one,
arising a discontinuity of the first time derivative of control uα at time t f −τ (see Fig-
ure 6.5 b)). The optimality of the trajectories obtained by this homotopy procedure
is verified by the AMPL framework, combined with IPOPT (see, e.g. [104, 105]).

Adding More Delay
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Figure 6.8: Two-dimensional trajectories and stability constraints of (OIP)a
τ .

Even if physically meaningless, we stressed this optimal control problem with delays
by adding very large values of τ. Some obtained results are in figures 6.7 and 6.8.
We see that the optimal solutions are found also for τ= 8 s and Figure 6.7 shows that a
discontinuity of the first time derivative of control uα arises at time t f −τ. Concerning

152



6.4. Conclusions

the optimal velocities, we obtain the following values (in standard units)

(OIP)a
τ=6 →→→ v(t f ) = 836.4 , (OIP)a

τ=8 →→→ v(t f ) = 839.3

and the computations need two homotopy iterations on ε and 4700 milliseconds to
solve (OIP)a

τ=6, while five homotopy iterations on ε and 17500 milliseconds to solve
(OIP)a

τ=8. We ascertained that, in this case, the most of the used computational time
is lost in the computing of failing homotopy steps on ε. This seems the price to pay
for taking too large delays. The optimality of these trajectories is verified by the AMPL
framework, combined with IPOPT (see, e.g. [104, 105]).

6.4 Conclusions

In this chapter, we have proposed a numerical scheme exploiting homotopy methods
to solve the optimal interception problem with delays (OIP)τ, via indirect methods.

This task is far from being easy. Indeed, solving via indirect methods general opti-
mal control problems with control and state delays (OCP)τ requires the integration
of particular adjoint equations in which forward and backward terms appear simul-
taneously, preventing from exploiting local information, such as an initial guess of
the adjoint vector, to efficiently solve these equations. Rather, a global guess of the
whole adjoint vector is needed to solve the related shooting problem. Our idea con-
sists in solving (OCP)τ via indirect methods by operating a homotopy procedure on
the delay. More specifically, with the optimal extremal of the non-delayed problem
(OCP)τ=0 as global guess, we start a homotopy where τ is the deformation param-
eter. The algorithm makes the delay parameter converge from 0 (the non-delayed
problem) towards the desired value τ (the original delayed problem), therefore, ob-
taining the optimal solution of (OCP)τ. Our main contribution is a theoretical re-
sult inferring that the Pontryagin extremals of (OCP)τ are continuous with respect to
τ (for appropriate topologies), which motivates the previous procedure by proving
that every homotopy path of delays followed by the algorithm, which starts from the
extremal of (OCP)τ=0, converges correctly to the desired extremal related to (OCP)τ.
The proposed procedure holds for general optimal control problems with delays. As
a particular case, we applied it to efficiently recover optimal solutions, via indirect
methods, of the optimal interception problem with delays (OIP)τ.

The present chapter focused mainly on the development of this numerical homotopy
algorithm starting from our theoretical continuity result. The next chapter aims to
provide a complete proof of the continuity properties, with respect to τ, of extremals
related to general optimal control problems with control and state delays (OCP)τ.
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7
Continuity Properties of

Pontryagin Extremals

In the previous chapter, we focused on how to efficiently solve general optimal con-
trol problems with control and state delays (OCP)τ, via indirect methods. The pro-
posed algorithm is based on a homotopy procedure acting by deforming the delay.
The well-posedness of this numerical scheme arises from some continuity proper-
ties, with respect to τ, of extremals related to (OCP)τ. The aim of this chapter con-
sists in proving such continuity properties, under appropriate assumptions, in the
very general case of optimal control problems with control and state delays.

We focus on the proof of Theorem 6.1. As pointed out in Section 6.1, we only need to
consider continuity properties around τ = 0, whose proof goes in three main steps.
First, by using assumptions on the non-delayed version of the problem only, we in-
fer the controllability of problems (OCP)τ, for every positive τ sufficiently small. The
previous step requires some implicit function theorem involving parameters. This
allows to proceed to the second part, which consists in showing the existence of so-
lutions of (OCP)τ, for τ sufficiently small, and their convergences, as τ tends to 0,
towards solutions of (OCP)τ=0. In the case of both control and state delays, we will
see the importance of considering affine systems throughout this step. Finally, we
address the more difficult issue of establishing the convergence, as τ tends to 0, of
the adjoint vectors related to (OCP)τ towards the adjoint vector of (OCP)τ=0. For this
step, a refined analysis on the convergence of Pontryagin cones is needed.

The chapter is organized as follows. Section 7.1 recalls the main steps of the proof
related to the Maximum Principle for problems (OCP)τ, that is, Theorem 1.5. At the
best of our knowledge, the proof of Theorem 1.5 via needle-like variations does not
appear explicitly in the literature, therefore, we believe useful to report it directly.
Section 7.2 provides a convenient conic version of the implicit function theorem.
Finally, in Section 7.3, we report the whole proof of the result, as detailed above.
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7.1 Proof of the PMP Using Needle-Like Variations

In this section we sketch the proof of the Maximum Principle for (OCP)τ (i.e. The-
orem 1.5) using needle-like variations. For this, we do not rely on the assumptions
of Theorem 6.1, giving the result for a large class of control systems with constant
delays (as described in Section 1.5). Our reasoning is not affected for problems with
free final time, since, we do not employ the well known reduction to a fixed final time
problem, but rather, we modify conveniently the Pontryagin cone to keep track of the
free variable tτf , by making L1-variations on tτf (as done in [29], for pure state delays).

7.1.1 Preliminary Notations

Fix a constant delay τ = (τ1,τ2) ∈ [0,∆]2. Consider (OCP)τ as given by formulation
(6.1)-(6.3) and let (xτ(·),uτ(·)) be an optimal solution. For every positive final time t f ,
introduce the instantaneous cost function x0

τ(·) defined in [−∆, t f ] and solution ofẋ0(t ) = f 0(t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2)) , t ∈ [0, t f ]

x0(t ) = 0 , t ∈ [−∆,0]

such that cost (6.1) provides Cτ(t f ,uτ) = x0
τ(t f ). We defined the extended state x̃ =

(x, x0) and the extended dynamics f̃ (t , x̃, ỹ ,u, v) = ( f (t , x, y,u, v), f 0(t , x, y,u, v)), for
which, we will often denote f̃ (t , x, y,u, v) = f̃ (t , x̃, ỹ ,u, v). Therefore, consider the
following extended dynamical problem in Rn+1

˙̃x(t ) = f̃ (t , x̃(t ), x̃(t −τ1),u(t ),u(t −τ2)) , t ∈ [0, t f ]

x̃|[−∆,0](t ) = (φ1(t ),0) , x̃(t f ) ∈ M f ×R
u(·) ∈ L∞([−∆, t f ],U ) , u|[−∆,0](t ) =φ2(t )

. (7.1)

As provided in Chapter 6, the set of all admissible controls of (7.1) defined in [−∆, t f ]
taking their values in Rm is denoted by Ũ τ

t f ,Rm , while Ũ τ
t f ,U denotes the set of all ad-

missible controls of (7.1) defined in [−∆, t f ] taking their values in U . From this

Ũ τ
Rm = ⋃

t f >0
Ũ τ

t f ,Rm , Ũ τ
U = ⋃

t f >0
Ũ τ

t f ,U .

The extended end-point mapping is defined as

Ẽτ,t f : Ũ τ
t f ,Rm →Rn+1 : u 7→ x̃(t f )

where x̃(·) is the unique solution of problem (7.1), related to control u(·) ∈ Ũ τ
t f ,Rm . As

standard facts (see, e.g. [22, 115]), the set Ũ τ
t f ,Rm , endowed with the standard topol-

ogy of L∞([−∆, t f ],Rm), is open and the end-point mapping is smooth on Ũ τ
t f ,Rm .
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For every t ≥ 0, define the extended accessible set Ãτ,U (t ) as the image of the ex-
tended end-point mapping Ẽτ,t restricted to Ũ τ

t ,U , where Ãτ,U (0) = {(φ1(0),0)}. The
following fact is at the basis of the proof of the Maximum Principle (see, e.g. [16, 34]).

Lemma 7.1. For every optimal solution (xτ(·),uτ(·)) of (OCP)τ defined in [−∆, tτf ], the

point x̃τ(tτf ) belongs to the boundary of the set Ãτ,U (tτf ).

7.1.2 Needle-Like Variations and Pontryagin Cones

In what follows we consider (OCP)τ whit free final time, remarking that all the pro-
posed results can be easily adapted for problems with fixed final time (see, e.g. [34]).
Moreover, we suppose that the optimal final time tτf is a Lebesgue point for the op-
timal control uτ(·) of (OCP)τ and of uτ(·−τ2). Otherwise, we can extend all the con-
clusions that follow by using closure points of tτf (in the same way as in [35, 116]).

For a couple of delays τ= (τ1,τ2) ∈ [0,∆]2, let (xτ(·),uτ(·)) be a solution of (OCP)τ and,
without loss of generality, extend uτ(·) by some constant vector of U in [tτf , tτf +τ2].

Let p ≥ 1 be an integer and consider 0 < t1 < ·· · < tp < tτf Lebesgue points respectively

of uτ(·), uτ(·−τ2) and of uτ(·+τ2). Choosing p arbitrary values ui ∈U , for every ηi > 0
such that −∆≤ ti −ηi , the needle-like variation π= {t1, . . . , tp ,η1, . . . ,ηp ,u1, . . . ,up } of
control uτ(·) is defined by the modified control

uπ
τ (t ) =

{
ui t ∈ (ti −ηi , ti ] ,

uτ(t ) otherwise
.

Control uπ
τ (·) takes its values in U and, by continuity with respect to initial data, for

every ηi > 0 small enough, uπ
τ (·) ∈ Ũ τ

U . Moreover, whenever ‖(η1, . . . ,ηp )‖ → 0, the
trajectory x̃πτ (·), solution of the dynamics of (7.1) related to control uπ

τ (·), converges
uniformly to x̃τ(·) = (x0

τ(·), xτ(·)). For every value z ∈ U and appropriate Lebesgue
point s ∈ (0, tτf ), we define the vectors

ω−
z (s) = f̃ (s, xτ(s), xτ(s −τ1), z,uτ(s −τ2)) (7.2)

− f̃ (s, xτ(s), xτ(s −τ1),uτ(s),uτ(s −τ2))

ω+
z (s) = f̃ (s +τ2, xτ(s +τ2), xτ(s +τ2 −τ1),uτ(s +τ2), z) (7.3)

− f̃ (s +τ2, xτ(s +τ2), xτ(s +τ2 −τ1),uτ(s +τ2),uτ(s))
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and, given ξ ∈Rn+1, we denote by ṽτs,ξ(·) the solution of the following linear system



ψ̇(t ) = ∂ f̃

∂x
(t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2))ψ(t )

+∂ f̃

∂y
(t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2))ψ(t −τ1)

ψ(s) = ξ , ψ(t ) = 0 , t ∈ (s −τ1, s)

. (7.4)

Vectors ṽτs,ξ(·) are usually called variations vectors. In what follows, for sake of clarity
in the exposition, it is useful to denote w̃τ

s,z(t ) = ṽτs,ω−
z (s)(t )+ ṽτ

s+τ2,ω+
z (s)

(t ).

Definition 7.1. For every t ∈ (0, tτf ], the first Pontryagin cone K̃ τ(t ) ⊆ Rn+1 at x̃τ(t )

for the extended system is defined as the closed convex cone containing vectors w̃τ
s,z(t )

where z ∈ U and 0 < s < t is a Lebesgue point of uτ(·), uτ(· − τ2) and of uτ(· + τ2).
The augmented first Pontryagin cone K̃ τ

1 (t ) ⊆ Rn+1 at x̃τ(t ) for the extended system
is defined as the closed convex cone containing f̃ (t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2)),
− f̃ (t , xτ(t ), xτ(t−τ1),uτ(t ),uτ(t−τ2)) and vectors w̃τ

s,z(t ) where z ∈U and 0 < s < t is a
Lebesgue point of uτ(·), uτ(·−τ2) and of uτ(·+τ2). The first Pontryagin cone K τ(t ) ⊆Rn

and the augmented first Pontryagin cone K τ
1 (t ) ⊆ Rn at xτ(t ) for the non-augmented

system are defined similarly, considering dynamics f instead of the extended dynamics
f̃ . Obviously, K τ(t ), K τ

1 (t ) are the projections onto Rn of K̃ τ(t ), K̃ τ
1 (t ), respectively.

Remark 7.1. In the case of optimal control problems without delays, i.e. (OCP)τ=0,
the definition of first Pontryagin cones is slightly different from the one obtained from
Definition 7.1 by substituting τ= 0. Indeed, considering K̃ 0(t ), vectors w̃τ

s,z(t ) are sub-
stituted by single variations ṽ0

s,ωz (s)(t ) for which

ωz(s) = f̃ (s, x0(s), x0(s), z, z)− f̃ (s, x0(s), x0(s),u0(s),u0(s))

where (x0(·),u0(·)) is an optimal solution of (OCP)τ=0 (see, e.g. [9]).

The proof of the Maximum Principle is established on the following variational result.

Lemma 7.2. Let (δ,η1, . . . ,ηp ) ∈ R×Rp
+ small enough. For every tp < t ≤ tτf Lebesgue

point of uτ(·) and of uτ(·−τ2), the following expression holds

x̃πτ (t +δ) = x̃τ(t )+δ f̃ (t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2))

+
p∑

i=1
ηi

(
ṽτti ,ω−

ui
(ti )(t )+ ṽτti+τ2,ω+

ui
(ti )(t )

)
+o

(
δ+

p∑
i=1

ηi

)
.
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Proof. The proof argues by induction. We provide computations for p = 1. The in-
ductive step develops in the same manner, as the standard case (see, e.g. [9]). For
this, let t1 < t ≤ tτf Lebesgue point of uτ(·) and of uτ(·−τ2). First, let us show that

x̃πτ (t )− x̃τ(t ) = η1w̃τ
t1,u1

(t )+o(η1) = η1

(
ṽτt1,ω−

u1
(t1)(t )+ ṽτt1+τ2,ω+

u1
(t1)(t )

)
+o(η1) . (7.5)

We consider directly the case t ≥ t1 +τ2 (the case t < t1 +τ2 is similar but easier).
There holds

‖x̃πτ (t )− x̃τ(t )−η1w̃τ
t1,u1

(t )‖ ≤ ‖x̃πτ (t1 +τ2)− x̃τ(t1 +τ2)−η1w̃τ
t1,u1

(t1 +τ2)‖

+
∥∥∥∫ t

t1+τ2

[
f̃ (s, x̃πτ (s), x̃πτ (s −τ1),uτ(s),uτ(s −τ2))− f̃ (s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2))−η1 ˙̃wτ

t1,u1
(s)

]
d s

∥∥∥ .

By exploiting the facts that t1 is a Lebesgue point of uτ(·), uτ(·−τ2) and of uτ(·+τ2),
and that x̃πτ (·) converges uniformly to x̃τ(·), developing the extended dynamics until
the second order, the first term of the expression above can be bounded as follows:

‖x̃πτ (t1 +τ2)− x̃τ(t1 +τ2)−η1w̃τ
t1,u1

(t1 +τ2)‖

≤
∥∥∥∫ t1

t1−η1

[
f̃ (s, x̃πτ (s), x̃πτ (s −τ1),u1,uτ(s −τ2))− f̃ (s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2))

]
d s −η1ω

−
u1

(t1)
∥∥∥

+
∥∥∥∫ t1+τ2−η1

t1

[
f̃ (s, x̃πτ (s), x̃πτ (s −τ1),uτ(s),uτ(s −τ2))− f̃ (s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2))−η1 ˙̃wτ

t1,u1
(s)

]
d s

∥∥∥
+

∥∥∥∫ t1+τ2

t1+τ2−η1

[
f̃ (s, x̃πτ (s), x̃πτ (s −τ1),uτ(s),u1)− f̃ (s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2))−η1 ˙̃wτ

t1,u1
(s)

]
d s−η1ω

+
u1

(t1)
∥∥∥

≤
∥∥∥∫ t1

t1−η1

[
f̃ (s, x̃τ(s), x̃τ(s −τ1),u1,uτ(s −τ2))− f̃ (s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2))

]
d s−η1ω

−
u1

(t1)
∥∥∥+o(η1)

+
∫ t1+τ2−η1

t1

∥∥∥∂ f̃

∂x
(s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2)) ·

(
x̃πτ (s)− x̃τ(s)−η1w̃τ

t1,u1
(s)

)∥∥∥d s

+
∫ t1+τ2−η1

t1

∥∥∥∂ f̃

∂y
(s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2)) ·

(
x̃πτ (s −τ1)− x̃τ(s −τ1)−η1w̃τ

t1,u1
(s −τ1)

)∥∥∥d s

+
∫ t1+τ2−η1

t1

∫ 1

0

∥∥∥d 2 f̃
(
s, (σx̃τ+ (1−σ)x̃πτ )(s), (σx̃τ+ (1−σ)x̃πτ )(s −τ1),uτ(s),uτ(s −τ2)

)∥∥∥·
·
[
‖x̃πτ (s)− x̃τ(s)‖2 +‖x̃πτ (s −τ1)− x̃τ(s −τ1)‖2 +2‖x̃πτ (s)− x̃τ(s)‖‖x̃πτ (s −τ1)− x̃τ(s −τ1)‖

]
dσd s

+η1

∥∥∥∫ t1

t1−η1

˙̃wτ
t1,u1

(s +τ2)d s
∥∥∥+∥∥∥∫ t1

t1−η1

[
f̃ (s +τ2, x̃τ(s +τ2), x̃τ(s +τ2 −τ1),uτ(s +τ2),u1)

− f̃ (s +τ2, x̃τ(s +τ2), x̃τ(s +τ2 −τ1),uτ(s +τ2),uτ(s))
]

d s −η1ω
+
u1

(t1)
∥∥∥+o(η1) .
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Therefore, by bounding the derivatives of the extended dynamics, we have

‖x̃πτ (t1+τ2)−x̃τ(t1+τ2)−η1w̃τ
t1,u1

(t1+τ2)‖ ≤ C̃1

∫ t1+τ2−η1

t1−τ1
‖x̃πτ (s)−x̃τ(s)−η1w̃τ

t1,u1
(s)‖ d s+o(η1)

where C̃1 ≥ 0 is an appropriate constant. Exactly with the same technique, we can
bound the remaining term as∥∥∥∫ t

t1+τ2

[
f̃ (s, x̃πτ (s), x̃πτ (s −τ1),uτ(s),uτ(s −τ2))− f̃ (s, x̃τ(s), x̃τ(s −τ1),uτ(s),uτ(s −τ2))−η1 ˙̃wτ

t1,u1
(s)

]
d s

∥∥∥
≤ C̃2

∫ t

t1+τ2−τ1
‖x̃πτ (s)− x̃τ(s)−η1w̃τ

t1,u1
(s)‖ d s +o(η1)

where C̃2 ≥ 0 is another appropriate constant. Coupling the two last results with
the Grönwall’s inequality, expression (7.5) follows straightforwardly. The conclusion
comes from (7.5) and the fact that t is a Lebesgue point of uτ(·) and of uτ(·−τ2).

7.1.3 Proof of The Maximum Principle

The proof of the Maximum Principle using needle-like variations argues by contra-
diction using the following classical well-established result (see, e.g. [34, 117]).

Lemma 7.3 (Conic Implicit Function Theorem). Let C ⊆ Rm be a convex subset with
non empty interior, of vertex 0, and F : C → Rn be a Lipschitzian mapping such that
F (0) = 0 and F is Gâteaux differentiable at 0 along admissible directions of C (in the
sense of [117, Lemma 46]). Assume that dF (0) ·Cone(C ) = Rn , where Cone(C ) stands
for the convex cone of C . Then, 0 ∈ Int F (V ∩C ), for every neighborhood V of 0 in Rm .

Consider any integer p ≥ 1 and a positive real number εp > 0. Define

Gτ
p : Bεp (0)∩R×Rp

+ →Rn+1 : (δ,η1, . . . ,ηp ) 7→ x̃πτ (tτf +δ)− x̃τ(tτf )

where π is any variation of control uτ(·) and εp is small enough such that Gτ
p is well-

defined (see Section 7.1.2). The following statements hold:

• Gτ
p (0) = 0 and Gτ

p is Lipschitz continuous.

• Gτ
p is Gâteaux differentiable at 0 along admissible directions of R×Rp

+ (in the
sense of [117, Lemma 46]), thanks to Lemma 7.2.

The Lipschitz behavior of Gτ
p is proved by a recursive use of needle-like variations at

ti −ηi , 1 ≤ i ≤ p (for ηi small enough), Lebesgue points of uτ(·). The proof makes a
recursive use of Lemma 7.2. Remark that, since ti −ηi are Lebesgue points of uτ(·)
only for almost every ηi , the recursive use of Lemma 7.2 can be done only almost ev-
erywhere. The conclusion follows from the continuity of Gτ

p and density arguments.
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The Maximum Principle is then established as follows. Suppose, by contradiction,
that the augmented first Pontryagin cone K̃ τ

1 (tτf ) coincides with Rn+1. Then, by def-
inition, there would exist an integer p ≥ 1, a variation π of uτ(·) and a positive real
number εp > 0 such that

dGτ
p (0) · (R×Rp

+) = K̃ τ
1 (tτf ) =Rn+1 .

In this case, Lemma 7.3 would imply that the point x̃τ(tτf ) belongs to the interior of

the accessible set Ãτ,U (tτf ), which contradicts Lemma 7.1. The Hahn-Banach theo-
rem provides therefore the following more general Lagrange multiplier rule.

Lemma 7.4. There exists ψ̃τ ∈Rn+1 \ {0} (Lagrange multiplier) such that

〈ψ̃τ, f̃ (tτf , xτ(tτf ), xτ(tτf −τ1),uτ(tτf ),uτ(tτf −τ2))〉 = 0 ,

〈ψ̃τ, ṽτ〉 ≤ 0 , ∀ ṽτ ∈ K̃ τ(tτf ) .

The relations provided by Lemma 7.4 allow to derive the necessary conditions (6.4)-
(6.7) arising from Theorem 1.5 (we skip these computations, referring to [34, 117] for
details). The relation between the adjoint vector satisfying (6.4) and the above La-
grange multiplier ψ̃τ = (ψτ,ψ0

τ) is that (pτ(·), p0
τ) is built so that pτ(tτf ) =ψτ, p0

τ =ψ0
τ.

We will make use of the result below, which follows from the previous considerations.

Lemma 7.5. Consider the free final time optimal control problem (OCP)=(OCP)τ=0.
For any optimal trajectory x(·) of (OCP), the following statements are equivalent:

• The trajectory x(·) has an unique extremal lift (x(·), p(·), p0,u(·)) whose adjoint
(p(·), p0) is unique up to a multiplicative scalar, which is normal, i.e. p0

τ < 0.

• The first Pontryagin cone K̃ τ=0
1 (t f ) is a half-space of Rn+1 and K τ=0

1 (t f ) =Rn .

7.2 Conic Implicit Function Theorem with Parameters

The main first step of the proof of Theorem 6.1 makes use of the procedure detailed
in Section 7.1. More specifically, we need the needle-like variation formula and the
conic implicit function theorem. However, Lemma 7.3 is not suited to this situation
because we have to take into account the dependence with respect to the delay τ.
Indeed, the proof of Lemma 7.3 is based on the Brower’s fixed point theorem (see,
e.g. [34]) which does not consider continuous dependence with respect to parame-
ters (which, in our case, is represented by τ). Therefore, a more general version of the
conic implicit function theorem depending on parameters must be introduced.
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When considering the delay τ as a varying parameter, the variation formula provided
by Lemma 7.2 holds only for almost every τ, and this, because we need that each ti

is a Lebesgue point of uτ(·), uτ(·−τ) and of uτ(·+τ). This obliges to introduce a no-
tion of conic implicit function theorem which, on one hand, ensures a continuous
dependence with respect to parameters and, on the other hand, deals with quan-
tities defined uniquely on dense subsets. The notion of differentiability needed is
the following. A function f : C ⊆ Rp → Rn is said almost everywhere strictly differ-
entiable at some point x0 ∈ C whenever there exists a linear continuous mapping
d f (x0) :Rp →Rn such that

f (y)− f (x) = d f (x0) · (y −x)+‖y −x‖g (x, y)

for almost every x, y ∈C , where g (x, y) tends to 0 as soon as ‖x−x0‖+‖y −x0‖ a.e.−−→ 0.
One may remark that the notion of strictly differentiability and of conic implicit func-
tion theorem depending on parameters was already introduced by [118]. Neverthe-
less, in our framework, we need to adapt these results considering dense subsets.

Lemma 7.6 (Conic Implicit Function Theorem with Parameters). Let C ⊆ Rp be an
open convex subset with non empty interior, of vertex 0, and F :Rk+×C →Rn : (ε, x) 7→
F (ε, x) be a continuous mapping, for which F (0,0) = 0, satisfying the following:

• For almost every ε ∈ Rk+, F is almost everywhere strictly differentiable with re-

spect to x at 0, and,
∂F

∂x
(ε,0) is continuous with respect to ε on dense subsets.

• For almost every ε ∈Rk+, the remainder satisfies gε(x, y) → 0 as (x, y)
a.e.−−→ 0, uni-

formly with respect to ε on dense subsets.

• There holds
∂F

∂x
(0,0) ·Cone(C ) =Rn .

There exist a real ε0 > 0, an open neighborhood V of 0 inRn and a continuous function
h : [0,ε0)k ×V →C , such that F (ε,h(ε, y)) = y for every ε ∈ [0,ε0)k and every y ∈ V .

Proof. We start the proof by recalling the following standard result (see, e.g. [34]).
Let L :Rp →Rn be a linear mapping such that L(Rp

+) =Rn . The following hold true:

• There holds p > n +1 and the intersection (0,+∞)p ∩ker L is nontrivial.

• There is a subspace S ⊆Rp , dim(S) = n, so that L|S : S →Rn is an isomorphism.

In our particular case, applying the previous result to the linear mapping L = ∂F
∂x (0,0)

yields the existence of a nontrivial vector v ∈ (0,+∞)p such that L(v) = 0, and, of a
n-dimensional subspace S ⊆Rp such that L|S : S →Rn is an isomorphism.

162



7.3. Proof of Theorem 6.1

For every ε ∈ Rk+ and every y,u ∈ Rn , set Φ(ε, y,u) = u −F (ε,L|S−1(u))+ y . This map-
ping is continuous and there holds Φ(0,0,0) = 0. Fix ε ∈ Rk+ at which F is almost
everywhere strictly differentiable. Then, for every y ∈Rn , one has

Φ(ε, y,u1)−Φ(ε, y,u2) =
[

Id− ∂F

∂x
(ε,0)◦L|S−1

]
(u1 −u2)+‖u1 −u2‖Gε(u1,u2) (7.6)

where Gε(u1,u2) = gε(L|S−1(u2),L|S−1(u1)) → 0 as soon as (u1,u2)
a.e.−−→ 0. From the

continuity property of ∂F
∂x (ε,0) on dense subsets, there exists ε0 ∈ Rk+ and a dense

subset E ⊆ [0,ε0)k , such that for every ε ∈ E there holds∥∥∥∥Id− ∂F

∂x
(ε,0)◦L|S−1

∥∥∥∥∗
≤ 1

4

and there exists rε > 0 such that

‖Gε(u1,u2)‖ ≤ 1

4
for almost every u1 , u2 ∈ Brε(0) .

On the other hand, by assumption, the remainder in expression (7.6) converge to 0
uniformly with respect to ε on dense subsets. Therefore, up to reduce E , gathering
the previous results with (7.6), we infer the existence of r > 0 such that

‖Φ(ε, y,u1)−Φ(ε, y,u2)‖ ≤ 1

2
‖u1 −u2‖ for almost every ε ∈ E , u1 , u2 ∈ Br (0) .

From this last result and the continuity of mapping F , for every ε ∈ [0,ε0)k and y ∈Rn ,
the mapping u 7→Φ(ε, y,u) is 1

2 -Lipschitzian on an open neighborhood of 0 in Rn .

At this step, for every δ > 0, denote Bδ = S ∩Bδ(0) and choose δ > 0 small enough
such that v +Bδ ⊆ (0,+∞)p . The set Uδ = L(Bδ) is a closed neighborhood of 0 in Rn .
With the same argument as above, it is not difficult to show that, if the quantities δ,
‖ε‖ and ‖y‖ are small enough, then, the mapping u 7→Φ(ε, y,u) maps Uδ into itself.
Lemma 7.6 follows from the application of the usual Banach fixed point theorem to
the contraction mapping u 7→Φ(ε, y,u) with parameters (ε, y).

7.3 Proof of Theorem 6.1

From now on, assume that assumptions (A) hold. We summon the other assump-
tions of Theorem 6.1 when they are needed. Moreover, in what follows, (x(·),u(·))
denotes the (unique) solution of (OCP) = (OCP)τ=0 and we assume that its related fi-
nal time t f is a Lebesgue point of u(·) (if not, as pointed out in Section 7.1.2, we refer
the reader to the approach proposed by [35, 116]). Finally, without loss of generality,
we consider free final time problems (otherwise, the proof is similar but simpler), in-
troducing later Assumption (C2) for problems (OCP)τ with control and state delays.
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7.3.1 Controllability for (OCP)τ

For any integer p ≥ 1, fix 0 < t1 < ·· · < tp < t f Lebesgue points of control u(·) and p
arbitrary values ui ∈U . We denote v |n the first n coordinates of a vector v ∈Rn+1. For
an appropriate small positive real number εp > 0, denoting by x̃(ε1,ε2)(·) the trajectory
solution of (7.1) with delay τ= (ε1,ε2) and control u(τ1,τ2)(·), we define the mapping

Γ : Bεp (0)∩ (R2
+×R×Rp

+) →Rn : (ε1,ε2,δ,η1, . . . ,ηp ) 7→ [x̃π(ε1,ε2)(t f +δ)− x̃(t f )]
∣∣
n

Thanks to Assumption (A2) and by continuity with respect to initial data, Γ is well-
defined and continuous. Moreover, Γ(0, . . . ,0) = 0 and we note that

Γ(ε1,ε2,δ,η1, . . . ,ηp ) = [x̃π(ε1,ε2)(t f +δ)− x̃(ε1,ε2)(t f )]
∣∣
n + [x̃(ε1,ε2)(t f )− x̃(t f )]

∣∣
n .

From Lemma 7.2 and a recursive use of the needle-like variation formula (as detailed
in Section 7.1.3), for almost every (ε1,ε2) ∈R2+ small enough, one obtains that Γ is al-

most everywhere strictly differentiable w.r.t. (δ,η1, . . . ,ηp ) at 0,
∂Γ

∂(δ,η1, . . . ,ηp )
(ε1,ε2,0)

is continuous w.r.t. (ε1,ε2) on dense subsets and, moreover, the remainder of the re-
lated Taylor development converges to zero uniformly w.r.t. (ε1,ε2) on dense subsets.
From Assumption (A3), the unique extremal lift of x(·) is normal, hence, it follows
from Lemma 7.5 that Int K τ=0

1 (t f ) = IntRn =Rn . We recall that the dynamics and the
integral cost function related to (OCP)τ take the forms

f 0(t , x, y,u, v) = f 0
1 (t , x, y,u)+ f 0

2 (t , x, y, v) , f (t , x, y,u, v) = f1(t , x, y,u)+ f2(t , x, y, v) .

Therefore, thanks to Remark 7.1, it is straightforward to see that there exist a real
number δ, an integer p ≥ 1 and a variation π = {t1, . . . , tp ,η1, . . . ,ηp ,u1, . . . ,up } such
that the associated mapping Γ satisfies

∂Γ

∂(δ,η1, . . . ,ηp )
(0,0,0) · (R×Rp

+) = Int K τ=0
1 (t f ) =Rn .

At this point, Lemma 7.6 implies the existence of a scalar delay τ0 > 0 such that, for
every τ = (τ1,τ2) ∈ [0,τ0)2, there exist a real δ(τ) and positive reals η1(τ), . . . ,ηp (τ)
such that Γ(τ1,τ2,δ(τ),η1(τ), . . . ,ηp (τ)) = 0. Moreover, quantities δ(τ),η1(τ), . . . ,ηp (τ)
are continuous with respect to τ. From Assumption (A4), it follows that, for every
τ= (τ1,τ2) ∈ [0,τ0)2, the subset M f is reachable for the dynamics of (OCP)τ, in a final
time tτf ∈ [0,b], by using control uπ

(τ1,τ2)
(·) ∈ L∞([0, tτf ],U ).

We have proved that, for every τ = (τ1,τ2) ∈ (0,τ0)2, (OCP)τ is controllable. Remark
that this argument still holds for problems (OCP)τ with pure state delays τ= (τ1,0).
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7.3.2 Existence of Optimal Controls for (OCP)τ

We focus first on the existence of an optimal control for (OCP)τ, for every τ ∈ (0,τ0)2.
No other assumptions but (A) and (C1) are considered. In particular, mappings f
and f 0 are affine in the two control variables. Thanks to this property, the existence
can be achieved by using the arguments in [111, Theorem 2]. However, we prefer to
develop the usual Filippov’s scheme [106] (following [16]) to highlight the difficulty
in applying this procedure to more general systems (in particular, see Remark 7.2).
Even if problems (OCP)τ with control and state delays are considered, we assume to
have free final time just to use the same approach for problem with pure state delays.

Fix τ= (τ1,τ2) ∈ (0,τ0)2 and let

α= inf
u∈U τ

U

Cτ(t f (u),u) =
∫ t f (u)

0
f 0(t , x(t ), x(t −τ1),u(t ),u(t −τ2)) d t

Consider now a minimizing sequence of trajectories xk (·) associated to uk (·), that is
Cτ(t f (uk ),uk ) →α when k →∞ and define

F̃k (t ) = f̃ (t , xk (t ), xk (t −τ1),uk (t ),uk (t −τ2))

for almost every t ∈ [0, t f (uk )]. By Assumption (A4), we can extend F̃k (·) by zero on
(t f (uk ),b] so that (F̃k (·))k∈N is bounded in L∞([0,b],Rn+1). Therefore, up to some
subsequence, (F̃k (·))k∈N converges to some F̃ (·) = (F (·),F 0(·)) ∈ L∞([0,b],Rn+1) for the
weak star topology of L∞. On the other hand, up to some subsequence, the sequence
(t f (uk ))k∈N converges to some tτf ≥ 0. Therefore, for every t ∈ [−∆, tτf ], define

xτ(t ) =φ1(t )1[−∆,0)(t )+1[0,tτf ](t )
[
φ1(0)+

∫ t

0
F (s) d s

]
(7.7)

Clearly, xτ(·) is absolutely continuous and, up to continuous extensions, (xk (·))k∈N
converges pointwise to xτ(·) within [−∆, tτf ]. Moreover, by assumptions (A1), (A4)
and the Arzelà-Ascoli theorem, up to some subsequence, xk (·) converges to xτ(·),
uniformly in [−∆, tτf ]. From the compactness of M f , there holds xτ(tτf ) ∈ M f .

In the next paragraph, we show that xτ(·) comes from an admissible control in U τ
tτf ,U .

For almost every t ∈ [0, t f (uk )], set

H̃k (t ) = f̃ (t , xτ(t ), xτ(t −τ1),uk (t ),uk (t −τ2))

and, if t f (uk )+τ2 < tτf , extend it by 0 on (t f (uk ),b]. At this step, we need to introduce

several structures to deal with the presence of the control delay τ2. First, let

β= max
{
| f 0(t , x, y,u, v)| : 0 ≤ t ≤ b , ‖(x, y)‖ ≤ b , (u, v) ∈U 2

}
> 0
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and N ∈N such that Nτ2 ≤ tτf < (N+1)τ2. By taking continuous extensions, we clearly

see that xτ(·) is well-defined in [−∆, (N +1)τ2]. Therefore, we define

G̃(t ,u1, . . . ,uN+1,γ1, . . . ,γN+1) =



f (t , xτ(t ), xτ(t −τ1),u1,φ2(t −τ2))
f 0(t , xτ(t ), xτ(t −τ1),u1,φ2(t −τ2))+γ1

f (t +τ2, xτ(t +τ2), xτ(t +τ2 −τ1),u2,u1)
f 0(t +τ2, xτ(t +τ2), xτ(t +τ2 −τ1),u2,u1)+γ2

. . .
f (t +Nτ2, xτ(t +Nτ2), xτ(t +Nτ2 −τ1),uN+1,uN )

f 0(t +Nτ2, xτ(t +Nτ2), xτ(t +Nτ2 −τ1),uN+1,uN )+γN+1


(7.8)

almost everywhere in [0,τ2], and

Ṽβ(t ) =
{

G̃(t ,u1, . . . ,uN+1,γ1, . . . ,γN+1) : (u1, . . . ,uN+1) ∈U N+1 , ∀i = 1, . . . , N +1 : γi ≥ 0 ,

| f 0(t , xτ(t ), xτ(t −τ1),u1,φ2(t −τ2))+γ1| ≤β

∀i = 1, . . . , N : | f 0(t + iτ2, xτ(t + iτ2), xτ(t + iτ2 −τ1),ui+1,ui )+γi+1| ≤β
}

.

Thanks to Assumption (A1), Ṽβ(t ) is compact for the standard topology ofR(n+1)(N+1).
Moreover, it is not difficult to see that assumptions (A1) and (C1) ensure that Ṽβ(t ) is
convex for the same topology (remark the importance of (C1)). We then introduce

Ṽ =
{

G̃(·) ∈ L2([0,τ2],R(n+1)(N+1)) : G̃(t ) ∈ Ṽβ(t ) , a.e. [0,τ2]
}

.

One checks easily that Ṽ is convex and closed in L2([0,τ2],R(n+1)(N+1)) for the strong
topology of L2, and therefore, it is convex and closed in L2([0,τ2],R(n+1)(N+1)) for the
weak topology of L2. At this step, for every i = 0, . . . , N , denote

G̃ i+1
k (t ) = f̃ (t + iτ2, xτ(t + iτ2), xτ(t + iτ2 −τ1),uk (t + iτ2),uk (t + (i −1)τ2))

and G̃k (t ) = (G̃1
k (t ), . . . ,G̃ N+1

k (t )). Therefore G̃k (·) ∈ Ṽ for every k ∈N. Moreover, since

(G̃k (·))k∈N is bounded in L2([0,τ2],R(n+1)(N+1)), up to some subsequence, it converges
for the weak topology of L2 to a function G̃(·) that necessarily belongs to Ṽ . Therefore,
for almost every t ∈ [0,τ2] and i = 1, . . . , N +1, there exist ui

τ(t ) ∈U , γi
τ(t ) ≥ 0 such that

G̃1(t ) =
(

f (t , xτ(t ), xτ(t −τ1),u1
τ(t ),φ2(t −τ2))

f 0(t , xτ(t ), xτ(t −τ1),u1
τ(t ),φ2(t −τ2))+γ1

τ(t )

)
and, for every i = 1, . . . , N ,

G̃ i+1(t ) =
(

f (t + iτ2, xτ(t + iτ2), xτ(t + iτ2 −τ1),ui+1
τ (t ),ui

τ(t ))
f 0(t + iτ2, xτ(t + iτ2), xτ(t + iτ2 −τ1),ui+1

τ (t ),ui
τ(t ))+γi+1

τ (t )

)
.
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Moreover, since U is compact, functions ui
τ(·), γi

τ(·) can be chosen to be measurable
on [0,τ2] using a measurable selection lemma (see, e.g. [35, Lemma 3A, page 161]).
At this step, we come back to the whole interval [−τ2, tτf ]. For this, set

uτ(t ) =
{ φ2(t ) t ∈ [−τ2,0] ,

ui+1
τ (t − iτ2) t ∈ [iτ2, (i +1)τ2] , i = 0, . . . , N

γτ(t ) = γi+1
τ (t − iτ2) t ∈ [iτ2, (i +1)τ2] , i = 0, . . . , N

which are measurable functions in [−τ2, tτf ], and let

H̃(t ) =
(

f (t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2))
f 0(t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2))+γτ(t )

)
.

From the weak star convergence in L∞ of (G̃k (·))k∈N towards G̃(·), it follows imme-
diately that (H̃k (·))k∈N converges to H̃(·) for the weak topology of L2. Furthermore,
from the differentiability of f̃ w.r.t. (x, y), the compactness of U and the dominated
covergence theorem, there holds

lim
k→∞

∫ tτf

0

(
F̃k (t )− H̃k (t )

)
·ϕ(t ) d t = 0

for every map ϕ(·) ∈ L2([0, tτf ],Rn+1), from which H̃ = F̃ almost everywhere in [0, tτf ].
Combining (7.7) with all the previous results, we obtain

xτ(t ) =φ1(t )1[−∆,0)(t )+1[0,tτf ](t )
[
φ1(0)+

∫ t

0
f (t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2)) d s

]
which proves that the measurable function uτ(·) is an admissible control for (OCP)τ.

It remains to show that control uτ(·) is optimal for (OCP)τ. For this, from what we
showed above and by definition of weak star convergence, we have

Cτ(t f (uk ),uk ) →
∫ tτf

0

(
f 0(t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2))+γτ(t )

)
d t .

Since γτ(·) takes only non-negative values, there holds∫ tτf

0
f 0(t , xτ(t ), xτ(t −τ1),uτ(t ),uτ(t −τ2)) d t ≤α≤Cτ(t f (v), v)

for every v(·) ∈U τ
U . Therefore, γτ(·) is necessarily zero and the conclusion follows.

Now, we consider pure state delays, that is, problems (OCP)τ for which τ = (τ1,0).
It is clear that, if Assumption (B2) holds, one can proceed with the same procedure
as above (which is nothing else but the usual Filippov’s scheme [106]) to achieve the
existence of optimal controls. Of course, Guinn’s reduction (7.8) is not needed.
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Remark 7.2. Guinn’s reduction (7.8) converts the dynamics with control delays into
a new dynamics without control delays but with a larger number of variables. It is
clear, from the context, that the natural assumption to provide the existence of optimal
controls for generic nonlinear dynamics is the convexity of system (7.8) for every N ∈N
(since the delay varies), which is a very strong assumption. From this, we ascertain
that the proof of Lemma 2.1 in [75] does not work under the weaker assumption of
convexity of the epigraph of the extended dynamics.

7.3.3 Convergence of Optimal Controls and Trajectories for (OCP)τ

We start by considering problems (OCP)τ with pure state delays, for which τ= (τ1,0) ∈
(0,τ0)× {0}, by assuming that Assumption (B2) holds. In this case, the classical way
to proceed consists in reproducing and adapting the convexity Filippov’s argument
used in the previous section concerning existence of optimal controls (see, e.g. [110]).

Let (τk )k∈N = ((τ1
k ,0))k∈N ⊆ (0,τ0) × {0} an arbitrary sequence converging to 0 as k

tends to ∞ and let (xτk (·),uτk (·)) be an optimal solution of (OCP)τk with final time
tτk

f (uτk ). Since tτk
f (uτk ) ∈ [0,b], up to some subsequence, the sequence of final times

(tτk
f )k∈N = (tτk

f (uτk ))k∈N converges to some t̄ f ∈ [0,b]. Since M f is compact, up to

some subsequence, the sequence (xτk (tτk
f ))k∈N ⊆ M f converges to some point in M f .

For every integer k and almost every t ∈ [0, tτk
f ], set

G̃k (t ) =
(

f̃1(t , xτk (t ), xτk (t −τ1
k ),uτk (t )),

∂ f̃1

∂x
(t , xτk (t ), xτk (t −τ1

k ),uτk (t )),
∂ f̃1

∂y
(t , xτk (t ), xτk (t −τ1

k ),uτk (t ))

)
.

Thanks to Assumption (A4), we extend G̃k (·) by zero on (tτk
f ,b]. Assumptions (A1)

and (A4) imply that the sequence (G̃k (·))k∈N is bounded in L∞, then, up to some sub-
sequence, it converges to some G̃(·) = (G(·),G0(·),Gx(·),Gy (·)) ∈ L∞([0,b],Rn+1) for
the weak star topology of L∞. Exploiting the weak star convergence of L∞ (and using
1[t̄ f ,b]G̃ as test function), we get that G̃(t ) = 0 for almost every t ∈ [t̄ f ,b]. From this,
for every t ∈ [0, t̄ f ], denote

x̄(t ) =φ1(t )1[−∆,0)(t )+1[0,t̄ f ](t )
[
φ1(0)+

∫ t

0
G(s) d s

]
. (7.9)

Clearly, x̄(·) is absolutely continuous and x̄(t ) = lim
k→∞

xτk (t ) pointwise in [−∆, t̄ f ]. More-

over, by assumptions (A1), (A4) and the Arzelà-Ascoli theorem, up to some subse-
quence, xτk (·) converges to x̄(·), uniformly in [−∆, t̄ f ], and there holds x̄(t̄ f ) ∈ M f .

In the next paragraph, we prove that there exists a control ū(·) ∈ L∞([0, t̄ f ],U ) such
that x̄(·) is an admissible trajectory of (OCP) associated with this control ū(·).
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Using the definition of β given in Section 7.3.2, for every t ∈ [0, t̄ f ], consider the set

Z̃β(t ) =
{ (

f1(t , x̄(t ), x̄(t ),u), f 0
1 (t , x̄(t ), x̄(t ),u)+γ,

∂ f̃1

∂x
(t , x̄(t ), x̄(t ),u),

∂ f̃1

∂y
(t , x̄(t ), x̄(t ),u)

)
:

u ∈U , γ≥ 0 , | f 0
1 (t , x̄(t ), x̄(t ),u, v)+γ| ≤β

}
.

Thanks to Assumption (B2), the set Z̃β(t ) is compact and convex for the standard
topology of Rn+1. Therefore, we have the following statements.

• From the convexity and the compactness of Z̃β(t ), for every δ> 0 and t ∈ [0, t̄ f ],

Z̃ δ
β (t ) =

{
x ∈Rn+1 : d(x, Z̃β(t )) ≤ δ

}
, where d(x, A) = inf

y∈A
‖x − y‖

is convex and compact for the standard topology of Rn+1. This fact is evident.

• For every δ> 0, the set

Z̃δ =
{

F̃ (·) ∈ L2([0, t̄ f ],Rn+1) : F̃ (t ) ∈ Z̃ δ
β (t ) for almost every t ∈ [0, t̄ f ]

}
results to be convex and closed in L2([0, t̄ f ],Rn+1) for the strong topology of L2.
Then, we have that it is closed in L2([0, t̄ f ],Rn+1) for the weak topology of L2.

Convexity is obvious from the previous statement. Let (F̃k (·))k∈N ∈ Z̃δ such that

F̃k (·) L2

−→ F̃ (·). Then, F̃ (·) ∈ L2([0, t̄ f ],Rn+1) and there exists a subsequence such

that F̃km (·) a.e−−→ F̃ (·). Since Z̃ δ
β

(t ) is closed for the standard topology of Rn+1, a.e.

in t ∈ [0, t̄ f ], there holds F̃ (t ) = lim
m→∞ F̃km (t ) ∈ Z̃ δ

β (t ) and the statement follows.

• For every δ> 0, there exists kδ ∈N such that, if k ≥ kδ, there holds G̃k (·) ∈ Z̃δ.

Indeed, thanks to assumptions (A1), (A4), mappings f1, f 0
1 are globally Lips-

chitz within [0, t̄ f ]×B 2n
b (0)×U and, by using the mean value theorem, for al-

most every t ∈ [0, t̄ f ], we obtain

inf
z∈Z̃β(t )

‖G̃k (t )− z‖ ≤ C̃
[
‖xτk (t )− x̄(t )‖+‖xτk (t −τ1

k )− x̄(t )‖
]

where C̃ > 0 is a suitable constant, which is independent from t . The conclu-
sion follows from the uniform convergence of (xτk (·))k∈N towards x̄(·).

Using the closeness of Z̃δ with respect to the weak topology of L2, we infer that G̃(·) ∈
Z̃δ for every δ> 0. It is not difficult to see that this implies G̃(·) ∈ ∩

j∈N
Z̃1/ j ⊆ Z̃0.
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We have obtained that, a.e. in t ∈ [0, t̄ f ], there exist ū(t ) ∈U and γ̄(t ) ≥ 0 such that

G̃(t ) =
(

f1(t , x̄(t ), x̄(t ), ū(t )) , f 0
1 (t , x̄(t ), x̄(t ), ū(t ))+ γ̄(t ) , (7.10)

∂ f̃1

∂x
(t , x̄(t ), x̄(t ), ū(t )) ,

∂ f̃1

∂y
(t , x̄(t ), x̄(t ), ū(t ))

)
.

Moreover, since U is compact, functions ū(·), γ̄(·) can be chosen to be measurable
on [0, t̄ f ] using a measurable selection lemma (see, e.g. [35, Lemma 3A, page 161]).
Combining (7.10) with (7.9) provides

x̄(t ) =φ1(t )1[−∆,0)(t )+1[0,t̄ f ](t )
[
φ1(0)+

∫ t

0
f1(t , x̄(t ), x̄(t ), ū(t )) d s

]
which proves that the function ū(·) is an admissible control for (OCP)τ=0 = (OCP).

In order to conclude, it remains to show that t̄ f = t f , ū(·) = u(·) and then x̄(·) = x(·).
First, the previous argument shows that

Cτk (tτk
f ,uτk ) →C0(t̄ f , ū)+

∫ t̄ f

0
γ̄(t ) d t .

Thanks to the construction of the mapping Γ provided in Section 7.3.1, for every in-
teger k, there exists a sequence (t k

f , vk (·), yk (·)), respectively of final times, of admis-
sible controls and of trajectories for (OCP)τk , which converges to (t f ,u(·), x(·)) (for
the evident topologies) as k tends to ∞. Thanks to the optimality of each uτk (·),
there holds Cτk (tτk

f ,uτk ) ≤ Cτk (t k
f , vk ) and, since γ̄(t ) ≥ 0, passing to the limit gives

C0(t̄ f , ū) ≤C0(t f ,u). From Assumption (A2) we infer t̄ f = t f , ū(·) = u(·) and x̄(·) = x(·).
Remark that, from the previous argument, the following weak convergences hold

∂ f̃1

∂x
(·, xτk (·), xτk (·−τ1

k ),uτk (·))
(L∞)∗
*

∂ f̃1

∂x
(·, x(·), x(·),u(·))

∂ f̃1

∂y
(·, xτk (·), xτk (·−τ1

k ),uτk (·))
(L∞)∗
*

∂ f̃1

∂y
(·, x(·), x(·),u(·))

. (7.11)

Let now consider problems (OCP)τ with control and state delays τ= (τ1,τ2) ∈ (0,τ0)2

under Assumption (C1). Thanks to the affine behavior of the considered mappings,
the previous argument simplifies considerably, because we can transpose the weak
convergence directly on controls. Adapting these proofs to more general systems
turns out to be very challenging (see remarks in Section 6.1). We adopt free final time
to show that, for this step, no problems arise if Assumption (C2) does not hold.
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Let (τk )k∈N = ((τ1
k ,τ2

k ))k∈N ∈ (0,τ0)2 an arbitrary sequence of delays converging to 0
as k tends to ∞ and let (xτk (·),uτk (·)) be an optimal solution of (OCP)τk with final
time tτk

f (uτk ). Since tτk
f (uτk ) ∈ [0,b], up to some subsequence, the sequence of final

times (tτk
f )k∈N = (tτk

f (uτk ))k∈N converges to some t̄ f ∈ [0,b]. Since M f is compact, up

to some subsequence, the sequence (xτk (tτk
f ))k∈N ⊆ M f converges to a point in M f .

On the other hand, thanks to Assumption (A1), the sequence (uτk (·))k∈N is bounded
in L2([−∆, t̄ f ],Rm). Therefore, up to some subsequence, (uτk (·))k∈N converges to some
ū(·) ∈ L2([−∆, t̄ f ],Rm) for the weak topology of L2. More precisely, there holds ū(·) ∈
L∞([−∆, t̄ f ],U ). Indeed, (uτk (·))k∈N ⊆ L2([−∆, t̄ f ],U ) and, thanks to Assumption (A1),
the set L2([−∆, t̄ f ],U ) is closed and convex for the strong topology of L2. There-
fore, it is closed and convex for the weak topology of L2, from which there holds
ū(·) ∈ L2([−∆, t̄ f ],U ) ⊆ L∞([−∆, t̄ f ],U ) (the last inclusion still follows from (A1)).
At this step, one crucial result is represented by the weak convergence in L2 of the
sequence (uτk (·−τ2

k ))k∈N towards control ū(·). To see this, consider the shift operator

Sτ2 : L2(R,Rm) → L2(R,Rm) :
(
t 7→φ(t )

)
7→

(
t 7→φ(t −τ2)

)
.

Using the dominated convergence theorem, it is clear that, for every φ(·) ∈ L2(R,Rm),
there holds ‖Sτ2φ−φ‖L2 → 0 as soon as τ2 → 0. At this point, extend uτk (·), uτk (·−τ2

k )
and ū(·) by zero out [−∆, t̄ f ]. Therefore, for every map ϕ(·) ∈ L2(R,Rm), one obtains∫ t̄ f

0
(uτk (t −τk )− ū(t )) ·ϕ(t ) d t =

∫
R

(uτk (t )− ū(t )) ·
(
S−τ2

k
ϕ

)
(t ) d t +

∫
R

(Sτ2
k
ū − ū)(t ) ·ϕ(t ) d t

=
∫ t̄ f

0
(uτk (t )− ū(t )) ·ϕ(t ) d t +

∫
R

(uτk (t )− ū(t )) ·
(
S−τ2

k
ϕ−ϕ

)
(t ) d t +

∫
R

(Sτ2
k
ū − ū)(t ) ·ϕ(t ) d t

(7.12)

which converges to 0, providing the weak convergence in L2 of (uτk (·−τ2
k ))k∈N to ū(·).

We can now show that, under Assumption (C1), the trajectory arising from control
ū(·) is admissible for problem (OCP)τ=0 = (OCP), proceeding as follows. First, remark
that, up to continuous extensions, for every k, there holds

xτk (t ) =φ1(t )1[−∆,0)(t )+1[0,t̄ f ](t )
[
φ1(0)+

∫ t

0
f (s, xτk (s), xτk (s −τ1

k ),uτk (s),uτk (s −τ2
k )) d s

]
.

(7.13)

From this, assumptions (A1), (A4) ensure that (xτk (·))k∈N is bounded in H 1, and then,
it converges to some x̄(·) ∈ H 1([−∆, t̄ f ],Rn) for the weak topology of H 1. Since the
immersion of H 1 into C 0 is compact, up to some subsequence, (xτk (·))k∈N converges
to x̄(·) ∈C 0([−∆, t̄ f ],Rn) uniformly in [−∆, t̄ f ], and, passing to the limit in (7.13) gives

x̄(t ) =φ1(t )1[−∆,0)(t )+1[0,t̄ f ](t )
[
φ1(0)+

∫ t

0
f (s, x̄(s), x̄(s), ū(s), ū(s)) d s

]
.
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In particular, there holds x̄(t̄ f ) ∈ M f , then, ū(·) is admissible for (OCP)τ=0 = (OCP).
Similarly to the previous case, thanks to the achieved convergences and Assumption
(C1), one easily proves that C0(t̄ f , ū) ≤ C0(t f ,u). Therefore, from Assumption (A2),
we infer that t̄ f = t f , ū(·) = u(·) and x̄(·) = x(·), from which, the conclusion follows.
In this case, not only we have weak convergence of the dynamics and of their deriva-
tives (similarly to (7.11)), but also of optimal controls (under appropriate topologies).

The convergence almost everywhere concerning the optimal controls can be achieved
when the second option of Assumption (C3) holds, and more specifically, when con-
trol u(·) assumes its values at extremal points of U , almost everywhere in [−∆, t f ].
We proceed as follows. The previous computations provide that (uτk (·))k∈N converges
to u(·) for the weak topology of L2. At this step, the fact that control u(·) assumes its
values at extremal points of U , almost everywhere in [−∆, t f ], implies that (uτk (·))k∈N
converges to u(·) for the strong topology of L1 (see [119, Corollary 1]). Therefore, up
to some subsequence, (uτk (·))k∈N converges to u(·), almost everywhere in [−∆, t f ].

Remark 7.3. Up to some subsequence, thanks to the computations in (7.12), both
(uτk (·−τ2

k ))k∈N and (uτk (·+τ2
k ))k∈N converges to u(·), almost everywhere in [−∆, t f ].

Resuming all the previous results, for every considered case, we have shown that
(t f , x(·),u(·)) (substituted by (t f , x(·), ẋ(·)) for the case of pure state delays) is the unique
closure point (for the topologies used above) of (tτk

f , xτk (·),uτk (·))k∈N (substituted by

(tτk
f , xτk (·), ẋτk (·))k∈N for the cases of pure state delays), for any (sub)sequence of de-

lays (τk )k∈N converging to 0. Then, the convergence holds as well for the whole family
(tτf , xτ(·),uτ(·))τ∈(0,τ0)2 (substituted by (tτf , xτ(·), ẋτ(·))τ∈(0,τ0)2 for pure state delays).

7.3.4 Convergence of Optimal Adjoint Vectors for (OCP)τ

In what follows, (xτ(·),uτ(·)) will denote an optimal solution of (OCP)τ defined in the
interval [−∆, tτf ] such that, if needed, it is extended continuously in [−∆, t f ]. From
the Maximum Principle given by Theorem 1.5, the trajectory xτ(·) is the projection
of an extremal (xτ(·), pτ(·), p0

τ,uτ(·)) which satisfies equations (6.4). From now on, we
consider implicitly that either assumptions (B) or assumptions (C ) are satisfied, de-
pending on whether we consider pure state delays or not. The main step of this part
consists in showing the convergence of the Pontryagin cone of (OCP)τ towards the
Pontryagin cone of (OCP). Since the definition of variation vectors relies on Lebesgue
points of optimal controls, we need first a set of converging Lebesgue points. Finally,
for sake of concision, we do not consider final conditions on the state. Recovering
the desired convergence results equipped with transversality conditions can be eas-
ily done by traveling back the arguments that follow, and using Assumption (A1).
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Lemma 7.7. Consider (OCP)τ with pure state delays, i.e., τ= (τ1,0) ∈ (0,τ0)× {0} and
assume that Assumption (B1) holds. For every s ∈ (0, t f ), Lebesgue point of function
f̃1(·, x(·), x(·),u(·)), there exists a family (sτ)τ1∈(0,τ0) ⊆ [s, t f ), which are Lebesgue points
of function f̃1(·, xτ(·), xτ(·−τ1),uτ(·)), such that

f̃1(sτ, xτ(sτ), xτ(sτ−τ1),uτ(sτ))
τ→0−−−→ f̃1(s, x(s), x(s),u(s)) , sτ

τ→0−−−→ s .

Conversely, consider (OCP)τ with general delays τ= (τ1,τ2) ∈ (0,τ0)2 and assume that
Assumption (C3) holds. For every s ∈ (0, t f ), Lebesgue point of u(·), there exists a family
(sτ)τ∈(0,τ0)2 ⊆ [s, t f ), which are Lebesgue points of uτ(·), of uτ(· −τ2) and of uτ(· +τ2),
such that

uτ(sτ)
τ→0−−−→ u(s) , uτ(sτ−τ2)

τ→0−−−→ u(s) , uτ(sτ+τ2)
τ→0−−−→ u(s) , sτ

τ→0−−−→ s .

Proof of Lemma 7.7. We start by proving the first assertion. For this, denote

hτ(t ) = (hτ
1(t ), . . . ,hτ

n+1(t )) = f̃1(t , xτ(t ), xτ(t −τ1),uτ(t ))

h(t ) = (h1(t ), . . . ,hn+1(t )) = f̃1(t , x(t ), x(t ),u(t )) .

Let us prove that, for every s ∈ (0, t f ) Lebesgue point of function h(·), for every β> 0,
αs > 0 (such that s+αs < t f ), there exists γs,αs ,β > 0 such that, for every τ1 ∈ (0,γs,αs ,β),
there exists sτ ∈ [s, s +αs] Lebesgue point of hτ(·) for which ‖hτ(sτ)−h(s)‖ <β.
By contradiction, suppose that there exists s ∈ (0, t f ) Lebesgue point of h(·), αs > 0,
β> 0 such that, for every integer k, there exists τk ∈ (0,1/k)× {0} and ik ∈ {1, . . . ,n+1}
for which, for t ∈ [s, s +αs] Lebesgue point of hτk (·), there holds |hτk

ik
(t )−hik (s)| ≥β.

From the previous results, the family (hτ(·))τ∈(0,τ0)×{0} converges to h(·) in L∞ for the
weak star topology. Therefore, for every 0 < δ≤ 1, there exists an integer kδ such that,
for every k ≥ kδ, there holds

1

δαs

∣∣∣∫ s+δαs

s
hτk

i (t ) d t −
∫ s+δαs

s
hi (t ) d t

∣∣∣< β

3
.

for every i ∈ {1, . . . ,n +1}. We exploits this fact to bound |hτk
ik

(t )−hik (s)| by β.
Firstly, since s is a Lebesgue point of h(·), there exists 0 < δs,αs ≤ 1 such that∣∣∣hi (s)− 1

δs,αsαs

∫ s+δs,αsαs

s
hi (t ) d t

∣∣∣< β

3

for every i ∈ {1, . . . ,n +1}. On the other hand, from what said above, there exists an
integer kδs,αs

such that

1

δs,αsαs

∣∣∣∫ s+δs,αsαs

s
hτk

i (t ) d t −
∫ s+δs,αsαs

s
hi (t ) d t

∣∣∣< β

3
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for every k ≥ kδs,αs
and every i ∈ {1, . . . ,n + 1}. Finally, by assumption, we have that

hτ(·) is continuous for τ1 > 0, and then, for every k ≥ kδs,αs
and every i ∈ {1, . . . ,n +1},

there exists tk,i ∈ [s, s +δs,αsαs] ⊆ [s, s +αs] such that∣∣∣hτk
i (tk,i )− 1

δs,αsαs

∫ s+δs,αsαs

s
hτk

i (t ) d t
∣∣∣< β

3
.

Resuming, for every τk ∈
(
0, 1

kδs,αs

)
×{0} and i ∈ {1, . . . ,n+1} there exists tk,i ∈ [s, s+αs]

Lebesgue point of hτk (·) (by continuity) such that |hτk
i (tk,i )−hi (s)| <β, contradiction.

Now, we consider the second statement. The case for which Assumption (C3) en-
sures that, for every delay τ, every optimal control uτ(·) of (OCP)τ is continuous, is
treated as above because of the weak convergence in L2 of uτ(·), of uτ(·−τ2) and of
uτ(·+τ2). Therefore, suppose that control u(·) assumes its values at extremal points
of U , almost everywhere in [−∆, t f ]. Without loss of generality, we extend uτ(·) by
some constant vector of U in [tτf ,b]. Denote

hτ(t ) = (hτ
1(t ), . . . ,hτ

3m(t )) =
(
uτ(t ),uτ(t −τ2),uτ(t +τ2)

)
h(t ) = (h1(t ), . . . ,h3m(t )) =

(
u(t ),u(t ),u(t )

)
and fix s ∈ (0, t f ), Lebesgue point of h(·). By contradiction, suppose that there exist
β > 0 and α > 0 such that, for every integer k, there exist τk = (τ1

k ,τ2
k ) ∈ (0,1/k)2

and ik ∈ {1, . . . ,3m} for which, for every r ∈ [s, s +α] Lebesgue point of hτk (·), there
holds |hτk

ik
(r )−hik (s)| ≥ β. From the arguments of the previous sections, up to some

extension, the family of controls (uτ(·))τ∈(0,τ0)2 converges to u(·) almost everywhere
in [0, t f ] and the same holds true for (uτ(·−τ2))τ∈(0,τ0)2 and (uτ(·+τ2))τ∈(0,τ0)2 , thanks
to Remark 7.3. Then, (hi

τk
(·))k∈N converges a.e. to hi (·), raising a contradiction.

Lemma 7.7 allows to prove the following convergence property for Pontryagin cones.

Lemma 7.8. For every ṽ ∈ K̃ 0(t f ) and every τ= (τ1,τ2) ∈ (0,τ0)2 (as well as τ= (τ1,0) ∈
(0,τ0)×{0} in the case of pure state delays), there exists w̃τ ∈ K̃ τ(tτf ) such that the family

(w̃τ)τ∈(0,τ0)2 converges to ṽ as τ tends to 0.

Proof of Lemma 7.8. We prove the statement for problems (OCP)τ with general state
and control delays τ= (τ1,τ2). If pure state delays τ= (τ1,0) are considered, the same
guideline can be straightforwardly employed by exploiting Lemma 7.7 and (7.11).
Suppose first that ṽ = ṽ0

s,ωz (s)(t f ), where z ∈ U and 0 < s < t f is a Lebesgue point of

u(·) (recall Remark 7.1). By definition, ṽ0
s,ωz (s)(·) is the solution of

ψ̇(t ) =
(∂ f̃

∂x
(t , x(t ), x(t ),u(t ),u(t ))+ ∂ f̃

∂y
(t , x(t ), x(t ),u(t ),u(t ))

)
ψ(t )

ψ(s) = f̃ (s, x(s), x(s), z, z)− f̃ (s, x(s), x(s),u(s),u(s))

. (7.14)
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7.3. Proof of Theorem 6.1

From Lemma 7.7, there exists a family (sτ)τ∈(0,τ0)2 ⊆ [s, t f ), which are Lebesgue points
of uτ(·), of uτ(·−τ2) and of uτ(·+τ2), such that

uτ(sτ)
τ→0−−−→ u(s) , uτ(sτ−τ2)

τ→0−−−→ u(s) , uτ(sτ+τ2)
τ→0−−−→ u(s) , sτ

τ→0−−−→ s .

This allows to consider ṽτsτ,ω−
z (sτ)(·) and ṽτ

sτ+τ2,ω+
z (sτ)

(·), solutions of (7.4) with initial

data provided respectively by (7.2) and (7.3). We denote

w̃τ
sτ,z(t ) = ṽτsτ,ω−

z (sτ)(t )+ ṽτsτ+τ2,ω+
z (sτ)(t ) .

Since the dynamics and the integral cost function related to (OCP)τ take the forms

f 0(t , x, y,u, v) = f 0
1 (t , x, y,u)+ f 0

2 (t , x, y, v) , f (t , x, y,u, v) = f1(t , x, y,u)+ f2(t , x, y, v)

Lemma 7.7 easily gives

lim
τ→0

(
ω−

z (sτ)+ω+
z (sτ)

)
= f̃ (s, x(s), x(s), z, z)− f̃ (s, x(s), x(s),u(s),u(s)) .

Moreover, from the results of the previous sections, there holds in particular

∂ f̃

∂x
(·, xτ(·), xτ(·−τ1),uτ(·),uτ(·−τ2))

L2

*
∂ f̃

∂x
(·, x(·), x(·),u(·),u(·))

∂ f̃

∂y
(·, xτ(·), xτ(·−τ1),uτ(·),uτ(·−τ2))

L2

*
∂ f̃

∂y
(·, x(·), x(·),u(·),u(·)) .

By the continuous dependence w.r.t initial data for dynamical systems and since tτf
converges to t f , the family (w̃τ)τ∈(0,τ0)2 = (w̃τ

sτ,z(tτf ))τ∈(0,τ0)2 converges to ṽ as τ→ 0.

Take now ṽ ∈ IntK̃ 0(t f ). In this case, the conclusion follows straightforwardly by com-
bining the previous case with the Carathéodory’s lemma. Lastly, in the case of generic
ṽ ∈ K̃ 0(t f ), we proceed by closure points in IntK̃ τ(tτf ) thanks to assumptions (A1) and
(A4), which, from the continuous dependence with respect to the initial data, pro-
vides that related w̃τ

sτ,z(tτf ) are uniformly bounded. The conclusion follows.

For the last part of the proof, an iterative use of Lemma 7.8 is done. It is at this step
that, for problems with general delays τ= (τ1,τ2), Assumption (C2) of fixed final time
becomes fundamental to correctly derive the convergence related to adjoint vectors.
Indeed, problems arise when one tries to make the final condition on the Hamil-
tonian (6.7) converge to the transversality condition related to problem (OCP)τ. For
sake of concision, in this context, we focus only on problems (OCP)τ with general de-
lays τ= (τ1,τ2). The case concerning pure state delays is similar (we refer the reader
to [110, Proposition 2.15] for details). Assumptions (B) and (C ) are implicitly used.
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Chapter 7. Continuity Properties of Pontryagin Extremals

We first prove that the following statements hold true:

• For every τ = (τ1,τ2) ∈ (0,τ0)2, every extremal lift (xτ(·), pτ(·), p0
τ,uτ(·)) of any

solution of (OCP)τ is normal.

• The set of final adjoint vectors {pτ(t f ) : τ ∈ (0,τ0)2} is bounded.

We consider the first statement proceeding by contradiction. Assume that, for every
integer k, there exist τk = (τ1

k ,τ2
k ) ∈ (0,1/k)2 and a solution (xτk (·),uτk (·)) of (OCP)τk

having an abnormal extremal lift (xτk (·), pτk (·),0,uτk (·)). Set ψτk = pτk
(t f )

‖pτk
(t f )‖ for every

integer k. Therefore, there holds
〈

(ψτk ,0), ṽτk

〉
≤ 0, for every ṽτk ∈ K̃ τk (t f ) and every

integer k. Up to a subsequence, the sequence (ψτk )k∈N ⊆ Sn−1 converges to some
unit vector ψ ∈ Rn . Passing to the limit, by using the previous results, we infer that〈

(ψ,0), ṽ
〉
≤ 0 for every ṽ ∈ K̃ 0(t f ). Thanks to Assumption (C2), it then follows that

(x(·),u(·)) has an abnormal extremal lift. This contradicts Assumption (A3).
For the second statement, again by contradiction, assume that there exists a sequence
(τk = (τ1

k ,τ2
k ))k∈N ⊆ (0,τ0)2 converging to 0 such that ‖pτk (t f )‖ tends to +∞. Since

the sequence
(

pτk
(t f )

‖pτk
(t f )‖

)
k∈N

belongs to Sn−1, up to some subsequence, it converges

to some unit vector ψ. On the other hand, by construction, the following inequality〈
(pτk (t f ),−1), ṽτk

〉
≤ 0 holds for every ṽτk ∈ K̃ τk (t f ) and every integer k. Dividing by

‖pτk (t f )‖ and passing to the limit, it follows that the solution (x(·),u(·)) has an abnor-
mal extremal lift, which again contradicts Assumption (A3).

Now, let ψ be a closure point of {pτ(t f ) : τ ∈ (0,τ0)2} and (τk = (τ1
k ,τ2

k ))k∈N ⊆ (0,τ0)2 a
sequence converging to 0 such that pτk (t f ) tends to ψ. Using the continuous depen-
dence w.r.t. initial data and the established convergence properties, we infer that the
sequence (pτk (·))k∈N converges uniformly to the solution z(·) of the Cauchy problem

ż(t ) =−∂h

∂x
(t , x(t ), x(t ), z(t ),−1,u(t ),u(t ))− ∂h

∂y
(t , x(t ), x(t ), z(t ),−1,u(t ),u(t ))

z(t f ) =ψ

Moreover, since
〈

(pτk (t f ),−1), ṽτk

〉
≤ 0, for every ṽτk ∈ K̃ τk (t f ) and every integer k,

passing to the limit, thanks to the previous results, we obtain
〈

(ψ,−1), ṽ
〉
≤ 0, for ev-

ery ṽ ∈ K̃ 0(t f ). By definition, it follows that (x(·), z(·),−1,u(·)) is a normal extremal lift
of (OCP). Using Assumption (A3), we finally obtain z(·) = p(·) in [0, t f ].

This last result provides the conclusion of the proof of Theorem 6.1.
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7.4. Conclusions

7.4 Conclusions

In this chapter, we have provided a complete proof of continuity properties of ex-
tremals related to optimal control problems with control and state delays (OCP)τ.

The proof develops in three main parts. The controllability of problems (OCP)τ, for
every positive τ sufficiently small, is inferred first. For this, we adapt the conclu-
sions of implicit function theorems when parameters and restriction to dense sub-
sets are considered. After that, the existence of solutions of (OCP)τ, for τ sufficiently
small, and their convergences, as τ tends to 0, towards solutions of (OCP) is recov-
ered. For problems (OCP)τ with control and state delays, considering dynamics and
costs affine with respect to the two control variables is crucial to derive these con-
vergences properties. As last step, we prove the convergence of the adjoint vectors
related to (OCP)τ towards the adjoint vector of (OCP), as τ tends to 0. This part is the
most difficult and requires to show that, in a generic sense, the Pontryagin cones of
problems (OCP)τ converge uniformly to the Pontryagin cone of (OCP).

The continuity properties concerning the state and the adjoint vector are the most
crucial ones, because, they allow to ensure the convergence of any homotopy pro-
cedure on τ to solve (OCP)τ by indirect methods, as pointed out in Chapter 6. The
proof of these important properties requires a fine use of needle-like variations for
problems with state and control delays, that, since it does not appear explicitly in the
literature, we propose and analyze before proving the main convergence result.
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Main Contributions

In this work, we have addressed the real-time optimal guidance of launch vehicles
with the objective of designing an autonomous algorithm for the prediction of opti-
mal control strategies, based on indirect methods, able to adapt itself to unpredicted
changes of the original scenario. To this aim, we first provided an accurate geomet-
ric analysis to recover a well-posed framework and correctly apply indirect methods.
We proposed a practical numerical integration of the problem by efficiently combin-
ing indirect methods with homotopy procedures, increasing robustness and com-
putational speed. Moreover, we improved dynamical models by considering delays.
More specifically, we introduced a rigorous and well-posed homotopy framework to
recover solutions for optimal control problems with delays via indirect methods. All
our contributions made possible the development of a fully automatic, independent
and self-regulating software, today property of ONERA-The French Aerospace Lab,
for general realistic endo-atmospheric launch vehicle applications focused, in par-
ticular, on optimal missile interception scenarios.

Perspectives

Hereafter, we list some possible developments for future research works.

• Considering additional structural constraints and control variables.

Concerning the dynamical model introduced in Chapter 2, to further general-
ize the previous treatise, one should consider additional structural state con-
straints. The most important one is certainly represented by the load factor
(see Section 2.1.2). This constraint is imposed to bound the magnitude of the
velocity and the values of normal aerodynamical coefficients within some safe
range, preventing strong structural strains which could jeopardize the mission.
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As pointed out in Section 2.1.2, for interception frameworks, this bound is neg-
ligible. On the other hand, for more general launch vehicle applications, this
constraint becomes fundamental to avoid the loss of the aircraft. Integrating
the load factor into our formulation and managing it by indirect methods raise
new difficulties: one further mixed control-state constraint appears. However,
in this case, our trick related to local transformations of coordinates provided
in Chapter 3 and the homotopy scheme developed in chapters 4 and 5 cannot
be exploited directly and need to be carefully revisited. This represents a limit
for our approach and our guidance software. On the other hand, recent works,
such as [93, 120], efficiently solve complex guidance problems in the presence
of load factor constraints, by homotopy techniques, showing that similar ex-
tensions to our context may certainly be performed.

As a further development, we could consider additional controls. More specif-
ically, in some guidance problems, it is important to control the magnitude of
the thrust (see, e.g. [27, 64]). To increase the number of feasible missions, the
control of the thrust could be added to our framework and, in this case, new
analysis of adjoint equations and of regular/nonregular controls are needed.

• Relaxing approximating assumptions for regular and nonregular controls.

In Chapter 3, we recovered the behavior of both regular and nonregular con-
trols as functions of the state and the adjoint vector. This fundamental step
allowed to correctly define indirect method strategies for our guidance prob-
lem. However, these computations made use of some first-order development
approximations or of assumptions on the existence of particular lower bounds
for the magnitude of the velocity. To generalize this context to other guidance
problems, which are different from interception missions, it would be inter-
esting to study regular and nonregular controls without considering any of the
previous assumptions. Nevertheless, in this case, many further nonvanishing
Lie brackets appear, making the computations harder to manage analytically.

• Improving the construction and the robustness of initialization grids.

In Chapter 5, the use of initialization grids is proposed, in the framework of
optimal interception problems, to improve numerical robustness and increase
computational speed. Nevertheless, two aspects certainly need improvements.
First progresses should concern the generation of the grids. Indeed, a simple
algorithm for their construction is provided in Chapter 5, which, however, rep-
resents a first rough attempt. Since the grids are supposed to be generated
offline, we propose the use of global techniques, such as direct methods (see
Section 1.3.3) or numerical resolutions of high-dimensional Hamilton-Jacobi-
Bellman equations (see, e.g. [121, 122]), to implement more efficient grids.
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On the other hand, more refined results concerning the robustness of these
initialization grids are necessary. Indeed, the convergence of the spatial ho-
motopy on the scenario, initialized with these grids, has been proved only sta-
tistically, by Monte Carlo simulations. We suggest to treat more systematically
the convergence of the concerned homotopies, either via more satisfactory sta-
tistical tests or the development of rigorous theoretical results.

• Extending the continuity properties of extremals to more general cases.

In chapters 6 and 7, we provided continuity properties, with respect to delays
(for appropriate topologies), of extremals related to optimal control problems
with control and state delays, and subject to pure control constraints. It would
be interesting to extend these properties to problems with more general con-
straints, such as, control and state constraints (see Section 1.4). This would
require to analyze the proof of the Maximum Principle with state and con-
trol constraints via sliding or v-variations (see, e.g. [42]), to exploit the con-
tinuous dependence with respect to parameters of implicit function theorems
(Ekeland-type approaches prone to fail because this continuous dependence
does not arise). Furthermore, in the case of both control and state delays, the
proof that we provided needs to consider affine dynamics/costs and fixed fi-
nal time. The extension to more general systems is an interesting challenge
(problems related to this extensions are developed in Section 6.1).

• Considering nonconstant delays or unknown delays.

The approach developed in Chapter 6, concerning the resolution of optimal
control problems with delays via indirect methods and homotopy on the de-
lays, works in the presence of constant delays. However, we suspect that this
procedure can be extended to problems with nonconstant or unknown delays,
at least from a numerical point of view. Indeed, in the case of delays depend-
ing on the time and the state, Maximum Principle formulations still exist (see,
e.g. [112]), so that, the proposed numerical continuation scheme remains well-
defined. On the other hand, when delays are unknown, our homotopy ap-
proach could be coupled with estimation techniques on delays (see, e.g. [123]).
The estimation and homotopy steps could be iterated successively in a loop
until converge is obtained.
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A
Geometric Maximum Principle

with State Constraints

In this appendix we develop a proof of Theorem 1.3 stated in Chapter 1. In the lit-
erature, the proof of Theorem 1.3 appears explicitly only in the case M ≡ Rn . In this
thesis we need to work with the version of Theorem 1.3 valid on manifolds (see the
arguments developed in Chapter 3), so we believe necessary providing its proof.
We follow the argument proposed in [124]. More specifically, the main idea consists
in embedding the configuration manifold and the related vector fields into RN for an
appropriate integer N ∈ N, therefore, exploiting the version of Theorem 1.3 valid in
RN to recover the appropriate set of adjoint vectors and Lagrange multipliers.
The appendix is organized as follows. First, we recall the version of Theorem 1.3 valid
in Rn . In a second time, we introduce some geometric results which allow to operate
an appropriate embedding of the configuration manifold into the Euclidean space.
Finally, the main part of the proof is provided with all the details. Remark that, in
what follows, we make use of all the notations introduced in Chapter 1.

A.1 Version of Theorem 1.3 Valid in Euclidean Spaces

The following version of Theorem 1.3 is well-known (for the proof, see, e.g. [40]).

Theorem A.1. Let x(·) be an optimal trajectory for (OCP)m,s in Rn , associated to the
control u(·) on [0, t f ]. Under Assumption 1.1, there exist a nonpositive scalar p0, a
curve of bounded variation p : [0, t f ] →Rn , two functionsµme ∈ L∞([0, t f ],Rrme ),µmi ∈
L∞([0, t f ],Rrmi ) where µmi is nonpositive, and nonincreasing functions µi

s , i = 1, . . . ,rs

(generating measures dµi
s) such that, a.e. in [0, t f ], the following relations hold:

• Nontriviality Condition

|p0|+‖p(t f )‖+
∫ t f

0
‖µmi (t )‖ d t +

rs∑
i=1

|µi
s(t f )−µi

s(0)| > 0 (A.1)
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• Adjoint Equations

ẋ(t ) = ∂h

∂p
(t , x(t ), p(t ), p0,u(t )) , (A.2)

p(t ) = (exp fu
(t f ; t , ·))∗x(t f ) ·p(t f )+

∫ t f

t
(exp fu

(s; t , ·))∗x(s) ·µme (s) · ∂cme

∂q
(s, x(s),u(s)) d s (A.3)

+
∫ t f

t
(exp fu

(s; t , ·))∗x(s) ·µmi (s) · ∂cmi

∂q
(s, x(s),u(s)) d s +

∫ t f

t
(exp fu

(s; t , ·))∗x(s) ·dµs (s) · ∂cs

∂q
(s, x(s))

• Maximality Condition

h(t , x(t ), p(t ), p0,u(t )) ≥ h(t , x(t ), p(t ), p0,u) (A.4)

for every u : cme (t , x(t ),u) = 0 , cmi (t , x(t ),u) ≤ 0

• Stationarity Condition

∂h

∂u
(t , x(t ), p(t ), p0,u(t ))+µme (t )

∂cme

∂u
(t , x(t ),u(t ))+µmi (t )

∂cmi

∂u
(t , x(t ),u(t )) = 0 (A.5)

• Complementarity Slackness Conditions

µ
j
mi

(t )c j
mi

(t , x(t ),u(t )) = 0 for every j = 1, . . . ,rmi , (A.6)∫ t f

0
c j

s (t , x(t )) dµ j
s (t ) = 0 for every j = 1, . . . ,rs (A.7)

• Transversality Conditions

If M f is a submanifold of M, locally around x(t f ), then the adjoint vector can be
built in order to satisfy

p(t f )−p0∂g

∂x
(t f , x(t f )) ⊥ Tx(t f )M f

and, moreover, if the final time t f is free, one has

max
cme (t f , x(t f ),u) = 0
cmi (t f , x(t f ),u) ≤ 0

h(t f , x(t f ), p(t f ), p0,u) =−p0∂g

∂t
(t f , x(t f )) .

Several proofs of Theorem A.1 exist. Even if, the first results have been achieved by
Dubovitskii and Milyutin (we found contributions only in Russian, see, e.g. [39]), we
think that one of the clearest proofs is provided by Dmitruk in [40]. Dmitruk’s proof
is based on a convexification of the problem by using sliding variations, tools intro-
duced by Gamkrelidze (see, e.g. [34, 116]). The main steps are sketched as follows.
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• First, the dimension of the problem is modified by introducing, for a given in-
teger k, fixed controls u1(·), . . . ,uk (·), where u1(·) coincides with the optimal
control u(·), and considering the following relaxed control system

ẋ(t ) =
k∑

j=1
a j (t ) f (t , x(t ),u j (t )) , cme (t , x(t ),u j (t )) = 0 , cmi (t , x(t ),u j (t )) ≤ 0

for every j = 1, . . . ,k, where, the controls are a j (·) ∈ L∞([0, t f ],R), subject to

a j (t ) ≥ 0 ,
k∑

j=1
a j (t ) = 1 , a.e. [0, t f ] .

• The main step consists in proving that the tuple
(
x(·), (u1(·), . . . ,uk (·)), (1,0, . . . ,0)

)
is a stationary point of the relaxed version of (OCP)m,s , in which, the origi-
nal control system is substituted by the previous relaxed dynamics and con-
straints, while, the control variable u is substituted by a1, . . . , ak (see [40]). For
this, Assumption 1.1, on the regularity of mixed constraints, is fundamental.

• The stationarity property allows to apply the classical Lagrange multiplier rule
(see, e.g. [72]) on the previous convexified problem. The nontriviality con-
dition, adjoint equations, the stationarity condition, slackness conditions and
transversality conditions are immediately recovered. Working on the stationar-
ity condition (which is given by the partial derivative of the Hamiltonian with
respect to each a j ), the following weak maximality condition is obtained, al-
most everywhere in [0, t f ], for every j = 1, . . . ,k (see [40])

h(t , x(t ), p(t ), p0,u(t )) ≥ h(t , x(t ), p(t ), p0,u j (t )) . (A.8)

• The previous analysis shows that, for every tuple ũ(·) = (u1(·), . . . ,uk (·)) of ad-
missible controls of (OCP)m,s , there exists, at least, one tuple of Lagrange multi-
pliers, of norm one (up to normalization), satisfying Theorem A.1 but the maxi-
mality condition, which must be substituted by (A.8). Denote byΛ(ũ(·)) the set
of such Lagrange multipliers. It turns out that, thanks to the Banach–Alaoglu
theorem, every Λ(ũ(·)) is weak star compact. Moreover, by introducing the
canonical orders both on the set of controls ũ(·) and of multipliers Λ(ũ(·)),
one obtains that the family {Λ(ũ(·))}ũ(·) is a centered system of nonempty com-
pacta. Therefore, its intersection is nonempty and provides the sough Lagrange
multiplier related to Theorem A.1, satisfying the strong maximality condition.

In the following, we make use of Theorem A.1 to provide a proof of Theorem 1.3.
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A.2 Some Useful Geometric Results

In this section, we recall some fact from differential geometry, useful for what follows.
These results are standard and, for any detail, we refer to classic texts such as [33].

Let M be a n-dimensional manifold. The Whitney’s theorem states that there ex-
ists a smooth proper embedding i : M → RN , where N = 2n + 1, such that i (M) is
a closed embedded submanifold of RN . Therefore, without loss of generality, in the
following we always interpret M ⊆ RN as a closed embedded submanifold. As a fur-
ther embedding result, thanks to the closedness of M , there exist an open (tubular)
neighborhood A of M in RN , a smooth retraction πA : A → M , and a smooth scalar
map ρ :RN → [0,1], which satisfy M ⊆ A ⊆RN , πA|M = Id and supp(ρ) ⊆ A, ρ|M = 1.

Consider the usual cotangent bundles T ∗M and T ∗RN , and define

T ∗RN |M = ⋃
q∈M

{q}×T ∗
i (q)R

N = ⋃
q∈M

{q}×T ∗
q R

N ∼=
⋃

q∈M
{q}×RN .

Equipped with the structure of pullback bundle, the projection π̃ : T ∗RN |M → M is a
vector bundle of rank N . In particular, T ∗M is identified to a subbundle of T ∗RN |M .

In the proof of Theorem 1.3, we are interested in projecting adjoint vectors lying in
T ∗RN |M onto T ∗M . For this, we need to define the following orthogonal projection.

Let q ∈ M and (V ,ϕ) a local chart of q in RN such thatϕ(V ∩M) =ϕ(V )∩Rn × {0}N−n .
It follows that {d x j (·)} j=1,...,N is a local basis for T ∗RN and that {d x j (·)} j=1,...,n is a local
basis for T ∗M around q . Consider the standard flat metric 〈·, ·〉(·) onRN , coming from
the Euclidean scalar product. By using the Gram–Schmidt process on {d x j (·)} j=1,...,N ,
we build a local orthonormal frame {E j (·)} j=1,...,N for T ∗RN around q . In particular

span〈E1(·), . . . ,En(·)〉 = span〈d x1(·), . . . ,d xn(·)〉 = T ∗M |V ∩M . (A.9)

From the previous results, when restricted to V ∩M , the orthogonal projection

π : T ∗RN |M → T ∗M : (q, v) 7→
n∑

j=1
〈v,E j (q)〉q E j (q) (A.10)

is well-defined and smooth. Finally, since the change of frame mapping between two
orthonormal frames is orthogonal, it is easy to see that (A.10) is globally well-defined.

With an abuse of notation, we often identify any (q, v) ∈ T ∗M to its coordinate v .
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A.3 Proof of Theorem 1.3 on Manifolds

For sake of concision, without loss of generality, we prove Theorem 1.3 considering
the following fixed final time optimal control problem with state constraints

min g (q(t f )) , u(·) ∈ L∞([0, t f ],Rm)

q̇(t ) = f (q(t ),u(t )) , q(0) = q0 , q(t f ) = q f

cm(q(t ),u(t )) ≤ 0 , cs(q(t )) ≤ 0 , a.e. [0, t f ]

. (A.11)

In what follows, we use the notations introduced in the two previous sections without
reporting them continuously. In particular, M is a closed embedded submanifold of
RN , where N = 2n +1. For sake of clarity, we split the proof in several subparts.

Global Change of Variables

Up to canonical identifications, define the following smooth mappings in RN

F :RN ×Rm →RN : (x,u) 7→
{
ρ(x) f (πA(x),u) , x ∈ A

0 , x ∉ A
,

G :RN →R : x 7→
{
ρ(x)g (πA(x)) , x ∈ A

0 , x ∉ A
,

Cs :RN →R : x 7→
{
ρ(x)cs(πA(x)) , x ∈ A

0 , x ∉ A
,

Cm :RN ×Rm →RN : (x,u) 7→
{
ρ(x)cm(πA(x),u) , x ∈ A

0 , x ∉ A
.

Instead of analyzing (A.11), we study the following problem in RN
min G(x(t f )) , u(·) ∈ L∞([0, t f ],Rm)

ẋ(t ) = F (x(t ),u(t )) , x(0) = i (q0) = x0 , x(t f ) = i (q f ) = x f

Cm(x(t ),u(t )) ≤ 0 , Cs(x(t )) ≤ 0 , a.e. [0, t f ]

. (A.12)

We see that, for x ∈ M , there holds F (x,u) = f (x,u) ∈ Tx M . Therefore, by applying the
flow theorem to the restriction of F to M ×Rm , since x0 ∈ M , the feasible trajectories
of problem (A.12) belong to M and are equivalent to the feasible trajectories of (A.11).
Let (q(·),u(·)) be an optimal solution of problem (A.11). From the consideration given
above, it is straightforward to see that (q(·),u(·)) is also optimal for problem (A.12).
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Projection of Euclidean Pontryagin Extremals

We apply Theorem A.1 to problem (A.12). Therefore, we recover a nonpositive scalar
p0, a curve of bounded variation λ : [0, t f ] → RN , a nonpositive vector function µm ∈
L∞([0, t f ],Rrm ), and nonincreasing functions µi

s , i = 1, . . . ,rs (generating measures
dµi

s) such that, a.e. in [0, t f ], relations (A.1)-(A.7) are satisfied (recall that, for sake of
concision, we do not consider neither particular final conditions nor free final time).
Since x([0, t f ]) ∈ M , there holds (x(t ),λ(t )) ∈ T ∗RN |M a.e. in [0, t f ]. We want to prove
that the orthogonal projection of λ(·) onto T ∗M is the sought adjoint vector of prob-
lem (A.11). More precisely, we prove that the curve of bounded variation defined by

p : [0, t f ] → T ∗M : t →π(λ(t )) (A.13)

represents the sought adjoint vector satisfying the conditions of Theorem 1.3.

Before continuing, we first derive some useful relations. For a given s ∈ [0, t f ], let
λs ∈ T ∗RN |x(s) and consider a local chart (V ,ϕ) of x(t ) in RN such that ϕ(V ∩ M) =
ϕ(V )∩Rn×{0}N−n . Following exactly the same computations to prove Lemma 1.1 and
the properties of the flow of field F , it is straightforward to verify that, with respect to
the local coordinates of chart (V ,ϕ), the following relation holds for every k = 1, . . . ,n

d

d t

(
π
(
(expFu

(s; t , ·))∗x(s) ·λs
)( ∂

∂xk

∣∣∣
q(t )

))
(t ) =

−
n∑

j=1

∂ f j

∂xk
(q(t ),u(t ))

(
π
(
(expFu

(s; t , ·))∗x(s) ·λs
)( ∂

∂x j

∣∣∣
q(t )

))
.

By the uniqueness of Hamiltonian flows, the previous expression leads immediately
to the following fundamental equality (useful in what follows)

(exp fu
(s; t , ·))∗q(s) ·π(λs) =π(

(expFu
(s; t , ·))∗x(s) ·λs

)
. (A.14)

Maximum Principle Projected onto the Manifold

At this step, recall definitions (1.15) and (1.16) of Chapter 1 concerning integral curves
in T ∗M . From this, easy computations in local coordinates lead to

π
(∫ t f

t
(expFu

(s; t , ·))∗x(s)·µm(s)·∂Cm

∂x
(x(s),u(s)) d s

)
=

∫ t f

t
π
(
(expFu

(s; t , ·))∗x(s)·µm(s)·∂Cm

∂x
(x(s),u(s))

)
d s

π
(∫ t f

t
(expFu

(s; t , ·))∗x(s) ·dµs (s) · ∂Cs

∂x
(x(s))

)
=

∫ t f

t
π
(
(expFu

(s; t , ·))∗x(s) ·dµs (s) · ∂Cs

∂x
(x(s))

)
.

Thanks to the previous relations and the equivalence (A.14), the projected adjoint
vector defined by (A.13) satisfies, for t ∈ [0, t f ],

p(t ) =π(λ(t )) =π
(∫ t f

t
(expFu

(s; t , ·))∗x(s) ·µm(s) · ∂Cm

∂x
(x(s),u(s)) d s
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+
∫ t f

t
(expFu

(s; t , ·))∗x(s) ·dµs(s) · ∂Cs

∂x
(x(s))+ (expFu

(t f ; t , ·))∗x(t f ) ·λ(t f )
)

=
rm∑
j=1

∫ t f

t
µ

j
m(s)(exp fu

(s; t , ·))∗q(s) ·π
(∂C j

m

∂x
(x(s),u(s))

)
d s

+
rs∑

j=1

∫ t f

t
dµ j

s (s)(exp fu
(s; t , ·))∗q(s) ·π

(∂C j
s

∂x
(x(s))

)
+ (exp fu

(t f ; t , ·))∗q(t f ) ·p(t f ) .

The adjoint equations follow if we prove that, for every j = 1, . . . ,rm , k = 1, . . . ,rs ,

π
(∂C j

m

∂x
(x(s),u(s))

)
= ∂c j

m

∂q
(q(s),u(s)) , π

(∂C k
s

∂x
(x(s))

)
= ∂ck

s

∂q
(q(s)) . (A.15)

But, from relations (A.9), under appropriate local coordinates, one has

π
(∂C j

m

∂x
(x(s),u(s))

)
=

n∑
l=1

∂C j
m

∂x l
(x(s),u(s))

∂

∂x l

∣∣∣
x(s)

=
n∑

l=1

∂c j
m

∂x l
(q(s),u(s))

∂

∂x l

∣∣∣
q(s)

= ∂c j
m

∂q
(q(s),u(s))

and similarly for constraints ck
s . The adjoint equations of Theorem 1.3 then follow.

Recovering the nontriviality condition, the maximality condition, the stationarity
condition and transversality conditions related to Theorem 1.3 follows trivially by
the previous results. Finally, extending this context to problem with particular final
conditions and free final time can be easily done as in the classical framework (see,
e.g. [34]). Therefore, the proof of Theorem 1.3 is concluded.
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B Controllability Results

In this appendix, we provide results concerning the local controllability of the op-
timal interception problem of order zero along curvilinear abscissa (OIP)s

0 and the
analysis of the LOS needed in Chapter 4. The study is organised in two sections.

B.1 Local Controllability of (OIP)s
0

Let us show first that the optimal interception problem of order zero along curvilin-
ear abscissa (OIP)s

0 is W 1,∞-locally controllable in s f around the solution associated
with the constant zero control w0(·) = 0. As a standard result, it suffices to prove
that the linearized dynamics of (OIP)s

0 along the reduced control (w 0
2 , w 0

3)(·) = (0,0)
is W 1,∞-controllable in s f . We use the following classical result (see, e.g. [16, 125]).

Theorem B.1. Consider the linear dynamical control system y ′(s) = A(s)y(s)+B(s)u(s)
in Rn with control u ∈Rm , where s 7→ A(s) and s 7→ B(s) are of class C∞. We define the
matrix sequence

B0(s) = B(s) , Bi+1(s) = A(s)Bi (s)− dBi

d s
(s) , i ∈N .

If there exists s ∈ [0, s f ] such that

span
{

Bi (s)w | w ∈Rm , i ∈N
}
=Rn

then, the linear system y ′(s) = A(s)y(s)+B(s)u(s) is W 1,∞-controllable in time s f .

Simple computations show that the linearized matrices evaluated at (w 0
2 , w 0

3)(·) of
the problem of order zero along curvilinear abscissa (OIP)s

0 are

A(s) =


0 0 0 cosγ0 0

−cosγ0 cosχ0

r 2 0 0 − sinγ0 cosχ0
r −cosγ0 sinχ0

r

−cosγ0 sinχ0

r 2 cosL
cosγ0 sinχ0 tanL

r cosL 0 − sinγ0 sinχ0
r cosL

cosγ0 cosχ0
r cosL

0 0 0 0 0
0 0 0 0 0
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and

B(s) =
(

0 0 0 0 cm (r )
cosγ0

0 0 0 cm(r ) 0

)>
.

With the help of symbolic computations, by denoting wa = (1,0)>, wb = (0,1)>, one
obtains that

det
(
B0(s)wa ,B0(s)wb ,B1(s)wa ,B1(s)wb ,B2(s)wa

)= c5
m(r )

r 3 cosL
6= 0 .

Therefore, the conclusion follows by Theorem B.1.

B.2 Analysis of the Line Of Sight

In what follows, we provide the proof of Lemma 4.2. We introduce first the follow-
ing local orthonormal frame along the direction n of the line of sight (remark the
similarity with the local system (3.8) for the velocity v)

in =n= cosδ1 cosδ2eL +cosδ1 sinδ2e`− sinδ1er

jn =−sinδ1 cosδ2eL − sinδ1 sinδ2e`−cosδ1er

kn =−sinδ2eL +cosδ2e`

and we denote Rn(δ1,δ2) ∈ SO(3) the transformation from frame (eL ,el ,er ) to frame
(in ,jn ,kn). We denote by (·)(a,b,c) the coordinates of a vector along frame (a,b,c).
At this step, we use Assumption 4.1 to impose that angles γ, χ vary closely to angles
δ1, δ2, that is γ ∼= λ1 and χ ∼= λ2. Furthermore, since for (OIP) only bounded trajec-
tories are considered, the contribution of the rotation of the NED frame around the
fixed frame (I ,J ,K) is negligible, or in other words, d

d t (n)(eL ,el ,er )
∼=

(
d

d tn
)

(eL ,el ,er )
.

From (3.8) and under Assumption 4.1, approximating cos(χ−δ2) ∼= 1 gives

Rn(δ1,δ2) ·R>
a (γ,χ) =

 cos(γ−δ1) −sin(γ−δ1) −sin(χ−δ2)cos(γ)
sin(γ−δ1) cos(γ−δ1) sin(χ−δ2)sin(γ)

sin(χ−δ2)cos(γ) −sin(χ−δ2)sin(γ) cos(χ−δ2)


from which

(v)(in ,jn ,kn ) =
 v cos(γ−δ1)

v sin(γ−δ1)
v sin(χ−δ2)cos(γ)

 .

We immediately obtain

Ṙ =−
(r0

f −r) ·v
‖r0

f −r‖
=−n ·v =−v cos(γ−δ1)
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which gives the sought relation for Ṙ.
For the expressions related to δ̇1 and δ̇2, let us first differentiate vectorn, as follows

d

d t
n = d

d t

(
r0

f −r
‖r0

f −r‖

)
=−v

R
+ 1

R2

(r0
f −r) ·v

R
(r0

f −r) =−v
R
+ (n ·v)

R
n=− 1

R

(
I −nn >)

v .

Therefore, we have

(
d

d t
n

)
(in ,jn ,kn )

=

 0

− v

R
sin(γ−δ1)

− v

R
sin(χ−δ2)cos(γ)

 .

On the other hand

[
d

d t
Rn(δ1,δ2)

]> 1
0
0

= d

d t
(n)(eL ,el ,er ) =

(
d

d t
n

)
(eL ,el ,er )

= R>
n (δ1,δ2)

(
d

d t
n

)
(in ,jn ,kn )

from which we infer(
d

d t
n

)
(in ,jn ,kn )

=
[

d

d t

(
Rn(δ1,δ2)

)
·R>

n (δ1,δ2)

]> (
1
0
0

)
.

Moreover, simple computations show that

[
d

d t

(
Rn(δ1,δ2)

)
·R>

n (δ1,δ2)

]> (
1
0
0

)
=

(
0
δ̇1

δ̇2 cos(δ1)

)
.

Gathering together all the previous results, the sought relations δ̇1 = − v

R
sin(γ−δ1),

δ̇2 =− v

R
sin(χ−δ2) arise and the conclusion follows.
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Résumé

Dans ce travail, on s’est concentré sur le guidage optimal en temps réel de véhicules
lanceurs, avec comme objectif, de développer un algorithme autonome pour la pré-
diction de stratégies de contrôle optimal, basé sur les méthodes indirectes, et capable
de s’adapter à tout changement imprévu de scénario. Pour cela, tout d’abord nous
fournissons une analyse géométrique précise dans le cas de contraintes mixtes, pour
obtenir un cadre bien posé, et donc, appliquer correctement les méthodes indirectes.
L’intégration numérique du problème est proposée par une combinaison efficace
des méthodes indirectes avec des procédures d’homotopie, en améliorant, ainsi, à la
fois robustesse et vitesse de calcul. De plus, nous améliorons le modèle dynamique
en considérant des retards. Plus précisément, nous introduisons un cadre rigoureux
d’homotopie pour résoudre des problèmes de contrôle optimal avec retards, à l’aide
des méthodes indirectes. Nos contributions ont rendu possible le développement
d’un logiciel automatique, indépendant et auto-régulé, propriété de l’ONERA, pour
des applications réalistes dans le cadre de véhicules lanceurs, focalisé, en particulier,
sur des scénarios d’interception optimale.

Mots Clés. Contrôle optimal non linéaire, Contrôle géométrique, Contraintes sur
le contrôle et sur l’état, Retards sur le contrôle et sur l’état, Méthodes de tir, Méth-
odes d’homotopie et de continuation, Guidage optimal, Véhicules lanceurs endo-
atmosphériques, Missiles intercepteurs.

Classification AMS. 49J15, 49M05, 49M37, 65H20.
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Abstract

In this work, we address the real-time optimal guidance of launch vehicles with the
objective of designing an autonomous algorithm for the prediction of optimal con-
trol strategies, based on indirect methods, able to adapt itself to unpredicted changes
of the original scenario. To this aim, we first provide an accurate geometric analysis
in the presence of mixed control-state constraints to recover a well-posed framework
and correctly apply indirect methods. A practical numerical integration of the prob-
lem is proposed by efficiently combining indirect methods with homotopy proce-
dures, increasing robustness and computational speed. Moreover, we improve dy-
namical models by considering delays. More specifically, we introduce a rigorous
and well-posed homotopy framework to recover solutions for optimal control prob-
lems with delays via indirect methods. All our contributions made possible the devel-
opment of a fully automatic, independent and self-regulating software, today prop-
erty of ONERA-The French Aerospace Lab, for general realistic endo-atmospheric
launch vehicle applications focused on optimal missile interception scenarios.

Key words. Nonlinear optimal control, Geometric control, Control and state con-
straints, Control and state delays, Shooting methods, Homotopy and continuation
methods, Optimal guidance, Endo-atmospheric launch vehicles, Interceptor mis-
siles.

AMS subject classification. 49J15, 49M05, 49M37, 65H20.
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